Skip to content
Snippets Groups Projects

Resolve "integration-sota"

Merged Charly Lamothe requested to merge 15-integration-sota into master
1 file
+ 2
2
Compare changes
  • Side-by-side
  • Inline
@@ -3,6 +3,7 @@ from sklearn.metrics import mean_squared_error
from sklearn.base import BaseEstimator
from abc import abstractmethod, ABCMeta
import numpy as np
from tqdm import tqdm
class SimilarityForestRegressor(BaseEstimator, metaclass=ABCMeta):
@@ -10,56 +11,69 @@ class SimilarityForestRegressor(BaseEstimator, metaclass=ABCMeta):
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822360/
"""
def __init__(self, models_parameters):
def __init__(self, models_parameters, score_metric=mean_squared_error):
self._models_parameters = models_parameters
self._regressor = RandomForestRegressor(n_estimators=self._models_parameters.hyperparameters['n_estimators'],
random_state=models_parameters.seed)
self._estimator = RandomForestRegressor(**self._models_parameters.hyperparameters,
random_state=self._models_parameters.seed, n_jobs=-1)
self._extracted_forest_size = self._models_parameters.extracted_forest_size
self._score_metric = score_metric
@property
def models_parameters(self):
return self._models_parameters
def fit(self, X_train, y_train, X_val, y_val, score_metric=mean_squared_error):
def fit(self, X_train, y_train, X_val, y_val):
self._estimator.fit(X_train, y_train)
self._regressor.fit(X_train, y_train)
y_val_pred = self._regressor.predict(X_val)
forest_pred = score_metric(y_val, y_val_pred)
forest = self._regressor.estimators_
y_val_pred = self._estimator.predict(X_val)
forest_pred = self._score_metric(y_val, y_val_pred)
forest = self._estimator.estimators_
selected_trees = list()
tree_list = list(self._regressor.estimators_)
tree_list = list(self._estimator.estimators_)
val_scores = list()
with tqdm(tree_list) as tree_pred_bar:
tree_pred_bar.set_description('[Initial tree predictions]')
for tree in tree_pred_bar:
val_scores.append(tree.predict(X_val))
tree_pred_bar.update(1)
for _ in range(self._extracted_forest_size):
with tqdm(range(self._extracted_forest_size), disable=True) as pruning_forest_bar:
pruning_forest_bar.set_description(f'[Pruning forest s={self._extracted_forest_size}]')
for i in pruning_forest_bar:
best_similarity = 100000
found_index = 0
for i in range(len(tree_list)):
lonely_tree = tree_list[i]
del tree_list[i]
val_list = list()
for tree in tree_list:
val_pred = tree.predict(X_val)
val_list.append(val_pred)
val_list = np.array(val_list)
val_mean = np.mean(val_list, axis=0)
val_score = score_metric(val_mean, y_val)
with tqdm(range(len(tree_list)), disable=True) as tree_list_bar:
tree_list_bar.set_description(f'[Tree selection s={self._extracted_forest_size} #{i}]')
for j in tree_list_bar:
lonely_tree = tree_list[j]
del tree_list[j]
val_mean = np.mean(np.asarray(val_scores), axis=0)
val_score = self._score_metric(val_mean, y_val)
temp_similarity = abs(forest_pred - val_score)
if (temp_similarity < best_similarity):
found_index = i
found_index = j
best_similarity = temp_similarity
tree_list.insert(i, lonely_tree)
tree_list.insert(j, lonely_tree)
val_scores.insert(j, lonely_tree.predict(X_val))
tree_list_bar.update(1)
selected_trees.append(tree_list[found_index])
del tree_list[found_index]
del val_scores[found_index]
pruning_forest_bar.update(1)
pruned_forest = list(set(forest) - set(selected_trees))
self._regressor.estimators_ = pruned_forest
self._estimator.estimators_ = pruned_forest
def score(self, X, y):
test_list = list()
for mod in self._regressor.estimators_:
for mod in self._estimator.estimators_:
test_pred = mod.predict(X)
test_list.append(test_pred)
test_list = np.array(test_list)
test_mean = np.mean(test_list, axis=0)
score = mean_squared_error(test_mean, y)
score = self._score_metric(test_mean, y)
return score
def predict_base_estimator(self, X):
return self._estimator.predict(X)
Loading