- 06 Mar, 2020 2 commits
-
-
Charly Lamothe authored
Fix hyperparams bugs in base and random. Fix extracted forest size used in random. Factorize random fitting
-
Charly Lamothe authored
Integrate Paolo's code of method 'Ensemble selection from libraries of models' by Rich Caruana et al
-
- 28 Feb, 2020 1 commit
-
-
Charly Lamothe authored
-
- 04 Feb, 2020 1 commit
-
-
Charly Lamothe authored
Add Paolo's first implementation of this paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822360/
-
- 19 Dec, 2019 1 commit
-
-
Charly Lamothe authored
- Reduce the extracted forest sizes upper bound and number because OMP seems to converge only with small forest sizes; - Add extraction_strategy parameter in order to save base forest and the forests trained with the same size as the extracted forest sizes used in the experiment that used OMP.
-
- 18 Dec, 2019 1 commit
-
-
Charly Lamothe authored
- Add new best params for 7 datasets.
-
- 22 Nov, 2019 2 commits
-
-
Charly Lamothe authored
-
Luc Giffon authored
-
- 21 Nov, 2019 1 commit
-
-
Luc Giffon authored
Big changes: Create intermediate classes OMPForest and SingleOmpForest for code factoring: share code between OmpForestRegressor and OmpForestBinaryClassifer. Remove set_wweights and set_forest which are not relevant anymore. load function from model_factory isn't trustfull now: raises an error. TODO: multiclass classifier
-
- 04 Nov, 2019 2 commits
-
-
Charly LAMOTHE authored
- In compute_results, add loadenv, load raw results, and update experiment_ids so that it's possible to specify a list of experiments ids. The default behavior is to load all exp ids; - Fix normalization option in train.py. By default it normalizes D, and it doesn't when specify wo_normalization option; - Fix logger.warn to logger.warning in train.py - Replace the dumping of result in trainer.py by a dedicated class to save and load the trained model and training metadatas: model_raw_results.py; - Rename too long func DatasetLoader.load_from_name to DatasetLoader.load; - Add loading functions in dataset_parameters and model_parameters; - Set console logging level to INFO to summarize the most important console logs; - Add a load function in model_factory; - In omp_forest_regressor, move private funcs to the bottom of the file. TODO: compute the plot from the loaded raw results in compute_results file.
-
Luc Giffon authored
rassemble le code dans un répertoire 'code' + update setup.py en conséquence + ajoute scikit-learn à requirements.txt
-
- 03 Nov, 2019 1 commit
-
-
Charly LAMOTHE authored
- Add error handling module (TODO: add logging over the code) - Record dataset parameters and model parameters - Begin compute_results, plotter and visualize files
-
- 24 Oct, 2019 1 commit
-
-
charly.lamothe authored
-