From baca128104b726057e5f878817a7e99d611f6b9a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?L=C3=A9o=20Bouscarrat?= <leo.bouscarrat@euranova.eu> Date: Thu, 5 Mar 2020 14:44:45 +0100 Subject: [PATCH] Correction for predict_no_weights --- code/bolsonaro/models/omp_forest_classifier.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/code/bolsonaro/models/omp_forest_classifier.py b/code/bolsonaro/models/omp_forest_classifier.py index 26d9f6a..a86e53b 100644 --- a/code/bolsonaro/models/omp_forest_classifier.py +++ b/code/bolsonaro/models/omp_forest_classifier.py @@ -33,7 +33,8 @@ class OmpForestBinaryClassifier(SingleOmpForest): :param X: a Forest :return: a np.array of the predictions of the entire forest """ - forest_predictions = self._base_estimator_predictions(X).T + + forest_predictions = np.array([tree.predict_proba(X) for tree in self._base_forest_estimator.estimators_]) if self._models_parameters.normalize_D: forest_predictions /= self._forest_norms @@ -41,9 +42,17 @@ class OmpForestBinaryClassifier(SingleOmpForest): weights = self._omp.coef_ omp_trees_indices = np.nonzero(weights) - select_trees = np.argmax(forest_predictions[omp_trees_indices], axis=0) + omp_trees_predictions = forest_predictions[omp_trees_indices].T[1] + + # Here forest_pred is the probability of being class 1. + + result_omp = np.mean(omp_trees_predictions, axis=1) + + result_omp = (result_omp - 0.5) * 2 + + print(result_omp) - return select_trees + return result_omp def score(self, X, y, metric=DEFAULT_SCORE_METRIC): """ -- GitLab