diff --git a/code/compute_hyperparameters.py b/code/compute_hyperparameters.py index e6068e0bdb4a1e4f93ab1f71b3f727d325dec192..a96ef68259d91929d97878fc402760941c6562d5 100644 --- a/code/compute_hyperparameters.py +++ b/code/compute_hyperparameters.py @@ -77,7 +77,6 @@ def compute_best_params_over_seeds(seeds, dataset_name, param_space, args): # Move k best_parameters to a list of dict all_best_params = [opt_result['_best_parameters'] for opt_result in opt_results] - print(all_best_params) """ list of hyperparam dicts -> list of hyperparam list @@ -114,7 +113,7 @@ def compute_best_params_over_seeds(seeds, dataset_name, param_space, args): break return { - '_scorer': opt_results[0]['_best_parameters'], + '_scorer': opt_results[0]['_scorer'], '_best_score_train': np.mean([opt_result['_best_score_train'] for opt_result in opt_results]), '_best_score_test': np.mean([opt_result['_best_score_test'] for opt_result in opt_results]), '_best_parameters': best_params, @@ -153,7 +152,7 @@ if __name__ == "__main__": logger.warning('seeds and random_seed_number parameters are both specified. Seeds will be used.') # Seeds are either provided as parameters or generated at random - if args.use_variable_seed_number: + if not args.use_variable_seed_number: seeds = args.seeds if args.seeds is not None \ else [random.randint(begin_random_seed_range, end_random_seed_range) \ for i in range(args.random_seed_number)] @@ -174,6 +173,6 @@ if __name__ == "__main__": for i in range(DatasetLoader.dataset_seed_numbers[dataset_name])] dict_results = compute_best_params_over_seeds(seeds, dataset_name, - DICT_PARAM_SPACE, args) + DICT_PARAM_SPACE, args) save_obj_to_json(os.path.join(dataset_dir, 'params.json'), dict_results)