diff --git a/parmorceauxMax-git/Dynamics_Model.m b/parmorceauxMax-git/Dynamics_Model.m
index 9ba2a4d16eda2a7e0846af657202756b2758300b..57a8d2403918e226eab2fff17f50e4b172c8e2b7 100644
--- a/parmorceauxMax-git/Dynamics_Model.m
+++ b/parmorceauxMax-git/Dynamics_Model.m
@@ -54,97 +54,9 @@ classdef Dynamics_Model < matlab.mixin.Copyable %handle
             obj.sigma_estimation = sigma_estimation;
             obj.sigma_test = sigma_test;
         end
-        function process_new_frame(obj, Yt, Tt)
-            obj.T = [obj.T; Tt];
-            obj.Y = [obj.Y; Yt(:,1:obj.num_dim_Y)];
-            
-            % estimate alpha and adjust the window size
-            alpha = obj.estimate_alpha();
-            sprintf('estimated alpha_variable: %f', alpha);
-            obj.current_alpha = alpha;
-            
-            % estimate X inside the window
-            obj.estimate_X();
-            %sprintf('"normalised" log likelihood of X (or confidence): %f', obj.confidence(frame));
-            if obj.display_screen ~= -1
-                obj.plot_estimated_X();
-            end
-        end
-        function alpha = estimate_alpha(obj)
-            N = size(obj.X,1);
-            
-            if N < 3
-                alpha = obj.alpha_initial;
-                return
-            end
-            
-            first_index = 1;
-            nb_points = N;
-            
-            if nb_points < 3 % we need at least 2 intervals to compute the mean
-                alpha = obj.alpha_initial;
-            else
-                X_2_to_N = obj.X(first_index+1:N);
-                X_1_to_Nminus1 = obj.X(first_index:N-1);
-                T_2_to_N = obj.T(first_index+1:N);
-                T_1_to_Nminus1 = obj.T(first_index:N-1);
-
-                delta_X = X_2_to_N - X_1_to_Nminus1;
-                delta_T = T_2_to_N - T_1_to_Nminus1;
-
-                factors = delta_X ./ delta_T;
-
-                alpha = mean(factors);
-
-                if alpha <= 0.85 * obj.alpha_initial; %0.75 %0.015  0.75%0.85%0.9
-                    alpha = 0.85 * obj.alpha_initial; %0.75%0.015;%0.85%0.9
-                end
-                if alpha >= 1.15 * obj.alpha_initial; %1.25%0.015  1.25%1.15%1.1
-                    alpha = 1.15 * obj.alpha_initial; %1.25%0.015;%1.15%1.1
-                end
-            end
-        end
-        function estimate_X(obj)
-            %function to be minimised over new_X, with extra parameters Y, alpha and T
-            f = @(variable_X)(-obj.logP_x_knowing_y_paquet(variable_X,obj.current_alpha,obj.sigma_estimation));
-
-            N = size(obj.X,1);
-
-            if N == 0
-                X_ini = obj.initial_estimate_X;
-            else
-                X_ini = [obj.X; obj.X(N) + obj.current_alpha * (obj.T(N+1) - obj.T(N))];
-            end
-
-            lb = repmat(0,1,length(X_ini));
-            ub = repmat(1,1,length(X_ini));
-            A = [];
-            b = [];
-            Aeq = [];
-            beq = [];
-            [new_X_variable,loglikelihood] = fmincon(f,X_ini,A,b,Aeq,beq,lb,ub);
-            
-            obj.X = new_X_variable;
-        end
         function spread_X(obj)
             N = 25;
             
-%             if N ==1
-%                 obj.X = 0;
-%                 obj.current_alpha = obj.alpha_initial;
-%             
-%                 obj.plot_estimated_X()
-%                 obj.compute_loglikelihood_dynamics(1:N)
-%                 return
-%             elseif N == 2
-%                 obj.X = [0 1];
-%                 obj.current_alpha = 1;
-%             
-%                 obj.plot_estimated_X()
-%                 obj.compute_loglikelihood_dynamics(1:N)
-%                 return
-%             end
-            
             %%% estimation initiale de X
             X_tmp = 0:1/(N-1):1;
             
@@ -197,33 +109,6 @@ classdef Dynamics_Model < matlab.mixin.Copyable %handle
             if obj.current_alpha >= 1.15 * obj.alpha_initial; %1.25%0.015  1.25%1.15%1.1
                 obj.current_alpha = 1.15 * obj.alpha_initial; %1.25%0.015;%1.15%1.1
             end
-            
-            
-            obj.plot_estimated_X()
-            obj.compute_loglikelihood_dynamics(1:N)
-        end
-        function loglikelihood = logP_x_knowing_y_paquet(obj, variable_X, alpha, sigma)
-            N_variable = size(variable_X,1);
-
-            % if N == 1, we maximise P_cond_y(Y(1),X(1)) * P_x_Markov_simple(X(1),X(0)) avec X(0) virtuel
-            % if N == 2, we maximise P_cond_y(Y(2),X(2)) * P_x_Markov_simple(X(2),X(1)) * P_cond_y(Y(1),X(1)) with P_x_Markov_simple(X(2),X(1)) = 0 if delta_X is negative, and uniform proba otherwise
-
-            loglikelihood = obj.logP_cond_y(obj.Y(1,:),variable_X(1));
-            loglikelihood = loglikelihood + obj.logP_x_Markov(variable_X(1), variable_X(1)-alpha, 2, 1, alpha, sigma);
-
-            if N_variable > 1
-                Y_2_to_N = obj.Y(2:N_variable,:);
-                X_2_to_N = variable_X(2:N_variable);
-                X_1_to_Nminus1 = variable_X(1:N_variable-1);
-                T_2_to_N = obj.T(2:N_variable);
-                T_1_to_Nminus1 = obj.T(1:N_variable-1);
-
-                ll_proba_cond_y = obj.logP_cond_y(Y_2_to_N, X_2_to_N);
-                ll_proba_x_Markov = obj.logP_x_Markov(X_2_to_N,X_1_to_Nminus1,T_2_to_N,T_1_to_Nminus1,alpha,sigma);
-                vect_tmp = ll_proba_cond_y + ll_proba_x_Markov;
-
-                loglikelihood = loglikelihood + sum(vect_tmp);
-            end
         end
         function loglikelihood = logP_x_knowing_y_spread(obj, variable_X, alpha, sigma)
             N_variable = size(variable_X,1);
@@ -281,7 +166,6 @@ classdef Dynamics_Model < matlab.mixin.Copyable %handle
                 loglikelihood(index2) = -100;%a été supprimé
             end
         end
-                
         function llh_dynamics = compute_loglikelihood_dynamics(obj, frames)
             %llh_dynamics(frames <= 1) = nan;
             
@@ -323,7 +207,6 @@ classdef Dynamics_Model < matlab.mixin.Copyable %handle
             end
 
         end
-
         function [im]=final_plot_estimated_X(obj)
             if obj.display_screen ~= -1
                 N = size(obj.X,1);
@@ -346,7 +229,6 @@ classdef Dynamics_Model < matlab.mixin.Copyable %handle
                 %saveas(obj.display_screen, strcat('estimatedX_frame', int2str(N), '.png'))
             end
         end
-
         function X = normalise_X(obj, X)
             X(X<0) = 0;
             X(X>1) = 1;