diff --git a/OAR.2073614.stderr b/OAR.2073614.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073614.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073614.stdout b/OAR.2073614.stdout new file mode 100644 index 0000000000000000000000000000000000000000..66020866a81aa2d0329c58c710a2dafcc3ab7cf4 --- /dev/null +++ b/OAR.2073614.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=90000, experiment_name='VAE_bs_64_ls_30', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=30, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=60, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=30, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 780735 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last (iter 151)' diff --git a/OAR.2073615.stderr b/OAR.2073615.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073615.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073615.stdout b/OAR.2073615.stdout new file mode 100644 index 0000000000000000000000000000000000000000..0a8efe970b046805d80801bac8026ab605adcb85 --- /dev/null +++ b/OAR.2073615.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_40', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=40, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=80, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=40, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 788435 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last (iter 279)' diff --git a/OAR.2073616.stderr b/OAR.2073616.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073616.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073616.stdout b/OAR.2073616.stdout new file mode 100644 index 0000000000000000000000000000000000000000..8279477f7f6f0bc801dd1e118ae95a149724d96b --- /dev/null +++ b/OAR.2073616.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_50', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=50, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=100, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=50, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 796135 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last (iter 274)' diff --git a/OAR.2073617.stderr b/OAR.2073617.stderr new file mode 100644 index 0000000000000000000000000000000000000000..b800dbc96d0955b2893e858442aeea11bcc338e5 --- /dev/null +++ b/OAR.2073617.stderr @@ -0,0 +1,10 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 417, in load_checkpoint + self.mean_epoch_loss = checkpoint['loss'] +KeyError: 'loss' diff --git a/OAR.2073617.stdout b/OAR.2073617.stdout new file mode 100644 index 0000000000000000000000000000000000000000..e943950ae7124cf77d6991cee93fa200316bb8fb --- /dev/null +++ b/OAR.2073617.stdout @@ -0,0 +1,46 @@ +Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity diff --git a/OAR.2073618.stderr b/OAR.2073618.stderr new file mode 100644 index 0000000000000000000000000000000000000000..098b08da0aaa87bef5c2bd27253657ef66d93589 --- /dev/null +++ b/OAR.2073618.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073618.stdout b/OAR.2073618.stdout new file mode 100644 index 0000000000000000000000000000000000000000..1202a570fecb38c4eeeeabb6be079490e99ebf35 --- /dev/null +++ b/OAR.2073618.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 797)' diff --git a/OAR.2073619.stderr b/OAR.2073619.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073619.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073619.stdout b/OAR.2073619.stdout new file mode 100644 index 0000000000000000000000000000000000000000..67e7361c72d348e4207d8f7d180714c73dffb53a --- /dev/null +++ b/OAR.2073619.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 728)' diff --git a/OAR.2073620.stderr b/OAR.2073620.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073620.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073620.stdout b/OAR.2073620.stdout new file mode 100644 index 0000000000000000000000000000000000000000..3e687bb7cce3ed2b837b89e0bcbc563b8ab2477f --- /dev/null +++ b/OAR.2073620.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 929)' diff --git a/OAR.2073621.stderr b/OAR.2073621.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073621.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073621.stdout b/OAR.2073621.stdout new file mode 100644 index 0000000000000000000000000000000000000000..ad3dc39bb9c9125ad93ff2828f2426b9cb2049ae --- /dev/null +++ b/OAR.2073621.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 769185 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last (iter 418)' diff --git a/OAR.2073622.stderr b/OAR.2073622.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073622.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073622.stdout b/OAR.2073622.stdout new file mode 100644 index 0000000000000000000000000000000000000000..8f812fd6f98e66ea3d9a5c1980052c12aa6513e4 --- /dev/null +++ b/OAR.2073622.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 773035 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last (iter 390)' diff --git a/OAR.2073623.stderr b/OAR.2073623.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073623.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073623.stdout b/OAR.2073623.stdout new file mode 100644 index 0000000000000000000000000000000000000000..a81af3d1f14cb11e862afe026c721e7b3dcd7de2 --- /dev/null +++ b/OAR.2073623.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 761485 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last (iter 423)' diff --git a/OAR.2073624.stderr b/OAR.2073624.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073624.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073624.stdout b/OAR.2073624.stdout new file mode 100644 index 0000000000000000000000000000000000000000..d48a91da485def2e078ed07d7640428a69258cc1 --- /dev/null +++ b/OAR.2073624.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 761485 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last (iter 469)' diff --git a/OAR.2073625.stderr b/OAR.2073625.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073625.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073625.stdout b/OAR.2073625.stdout new file mode 100644 index 0000000000000000000000000000000000000000..8334200c81d4bd2e046d56e1f730946db9b2f6a1 --- /dev/null +++ b/OAR.2073625.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 769185 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last (iter 473)' diff --git a/OAR.2073626.stderr b/OAR.2073626.stderr new file mode 100644 index 0000000000000000000000000000000000000000..098b08da0aaa87bef5c2bd27253657ef66d93589 --- /dev/null +++ b/OAR.2073626.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073626.stdout b/OAR.2073626.stdout new file mode 100644 index 0000000000000000000000000000000000000000..0320def299d5bf92924e7e9c58dc9e5aaa26c6bc --- /dev/null +++ b/OAR.2073626.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 773035 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last (iter 306)' diff --git a/OAR.2073627.stderr b/OAR.2073627.stderr new file mode 100644 index 0000000000000000000000000000000000000000..b800dbc96d0955b2893e858442aeea11bcc338e5 --- /dev/null +++ b/OAR.2073627.stderr @@ -0,0 +1,10 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 417, in load_checkpoint + self.mean_epoch_loss = checkpoint['loss'] +KeyError: 'loss' diff --git a/OAR.2073627.stdout b/OAR.2073627.stdout new file mode 100644 index 0000000000000000000000000000000000000000..3fe0224e9c4c7307bf82327141400a998bf48f00 --- /dev/null +++ b/OAR.2073627.stdout @@ -0,0 +1,46 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=5e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity diff --git a/OAR.2073628.stderr b/OAR.2073628.stderr new file mode 100644 index 0000000000000000000000000000000000000000..098b08da0aaa87bef5c2bd27253657ef66d93589 --- /dev/null +++ b/OAR.2073628.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073628.stdout b/OAR.2073628.stdout new file mode 100644 index 0000000000000000000000000000000000000000..97ef0d150e4bf2a60306ef46367a88385cd972f0 --- /dev/null +++ b/OAR.2073628.stdout @@ -0,0 +1,47 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_conv_64_64_128_128', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=64, nb_filter_conv2=64, nb_filter_conv3=128, nb_filter_conv4=128, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(128, 512, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=512, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=512, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(512, 128, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 3037975 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last (iter 86)' diff --git a/OAR.2073629.stderr b/OAR.2073629.stderr new file mode 100644 index 0000000000000000000000000000000000000000..a05bd0cf67e59c97a5ce1817b6b36aa1d39a5602 --- /dev/null +++ b/OAR.2073629.stderr @@ -0,0 +1,18 @@ + 0it [00:00, ?it/s] 0%| | 0/26421880 [00:00<?, ?it/s] 2%|▏ | 458752/26421880 [00:00<00:05, 4474569.32it/s] 20%|█▉ | 5201920/26421880 [00:00<00:03, 6143480.35it/s] 42%|████▏ | 11124736/26421880 [00:00<00:01, 8375378.25it/s] 67%|██████▋ | 17571840/26421880 [00:00<00:00, 11333282.55it/s] 81%|████████ | 21405696/26421880 [00:00<00:00, 14153805.20it/s] 26427392it [00:00, 34157672.34it/s] + 0it [00:00, ?it/s] 32768it [00:00, 377753.89it/s] + 0it [00:00, ?it/s] 1%| | 40960/4422102 [00:00<00:11, 383863.09it/s] 43%|████▎ | 1892352/4422102 [00:00<00:04, 543543.42it/s] 4423680it [00:00, 18197425.40it/s] + 0it [00:00, ?it/s] 8192it [00:00, 155806.69it/s] +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073629.stdout b/OAR.2073629.stdout new file mode 100644 index 0000000000000000000000000000000000000000..941eb758629f7b4dc090749cc5ee5095112388dd --- /dev/null +++ b/OAR.2073629.stdout @@ -0,0 +1,53 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_30', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=30, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_30 +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Processing... +Done! +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=60, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=30, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 745853 +don't use continuous capacity diff --git a/OAR.2073630.stderr b/OAR.2073630.stderr new file mode 100644 index 0000000000000000000000000000000000000000..58928426168a8079560ed30fb20401078b2ad5cf --- /dev/null +++ b/OAR.2073630.stderr @@ -0,0 +1,17 @@ + 0it [00:00, ?it/s] 0%| | 0/26421880 [00:00<?, ?it/s] 2%|▏ | 434176/26421880 [00:00<00:06, 4139831.03it/s] 20%|█▉ | 5210112/26421880 [00:00<00:03, 5684392.16it/s] 43%|████▎ | 11468800/26421880 [00:00<00:01, 7791554.56it/s] 67%|██████▋ | 17588224/26421880 [00:00<00:00, 10554194.82it/s] 81%|████████ | 21323776/26421880 [00:00<00:00, 13404568.69it/s] 26427392it [00:00, 32585926.59it/s] + 0it [00:00, ?it/s] 32768it [00:00, 380307.52it/s] + 0it [00:00, ?it/s] 1%| | 40960/4422102 [00:00<00:11, 367976.57it/s] 32%|███▏ | 1425408/4422102 [00:00<00:05, 519533.42it/s] 4423680it [00:00, 14307670.56it/s] +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073630.stdout b/OAR.2073630.stdout new file mode 100644 index 0000000000000000000000000000000000000000..a5a252ea06c9f703d2b260b4a9c0fe79317f7904 --- /dev/null +++ b/OAR.2073630.stdout @@ -0,0 +1,53 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_40', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=40, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_40 +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Using downloaded and verified file: ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Processing... +Done! +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=80, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=40, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 753553 +don't use continuous capacity diff --git a/OAR.2073631.stderr b/OAR.2073631.stderr new file mode 100644 index 0000000000000000000000000000000000000000..12689b97a5e2548e098a7d7e506c8fb49514bad9 --- /dev/null +++ b/OAR.2073631.stderr @@ -0,0 +1,15 @@ + 0it [00:00, ?it/s] 0%| | 0/26421880 [00:00<?, ?it/s] 2%|▏ | 442368/26421880 [00:00<00:06, 4070505.31it/s] 4%|▍ | 1097728/26421880 [00:00<00:05, 4564965.03it/s] 6%|▌ | 1499136/26421880 [00:00<00:05, 4351570.58it/s] 8%|▊ | 1998848/26421880 [00:00<00:05, 4483903.94it/s] 9%|▉ | 2490368/26421880 [00:00<00:05, 4592980.04it/s] 11%|█ | 2891776/26421880 [00:00<00:05, 4194835.70it/s] 13%|█▎ | 3424256/26421880 [00:00<00:05, 4331072.15it/s] 15%|█▌ | 3973120/26421880 [00:01<00:05, 4478339.92it/s] 17%|█▋ | 4481024/26421880 [00:01<00:04, 4632115.71it/s] 19%|█▉ | 5046272/26421880 [00:01<00:04, 4790979.61it/s] 21%|██ | 5611520/26421880 [00:01<00:04, 5019353.37it/s] 24%|██▎ | 6217728/26421880 [00:01<00:03, 5179866.35it/s] 26%|██▌ | 6832128/26421880 [00:01<00:03, 5422062.47it/s] 28%|██▊ | 7438336/26421880 [00:01<00:03, 5542913.83it/s] 31%|███ | 8060928/26421880 [00:01<00:03, 5705859.60it/s] 33%|███▎ | 8691712/26421880 [00:01<00:03, 5858477.57it/s] 35%|███▌ | 9371648/26421880 [00:01<00:02, 6110391.30it/s] 38%|███▊ | 9994240/26421880 [00:02<00:02, 5649039.49it/s] 40%|████ | 10575872/26421880 [00:02<00:02, 5470762.67it/s] 42%|████▏ | 11132928/26421880 [00:02<00:02, 5333611.24it/s] 44%|████▍ | 11706368/26421880 [00:02<00:02, 5428585.36it/s] 46%|████▋ | 12279808/26421880 [00:02<00:02, 5408230.81it/s] 49%|████▉ | 12894208/26421880 [00:02<00:02, 5596652.44it/s] 51%|█████ | 13524992/26421880 [00:02<00:02, 5712618.58it/s] 54%|█████▎ | 14163968/26421880 [00:02<00:02, 5892932.04it/s] 56%|█████▌ | 14811136/26421880 [00:02<00:01, 6050963.43it/s] 59%|█████▊ | 15491072/26421880 [00:03<00:01, 6205873.01it/s] 61%|██████▏ | 16195584/26421880 [00:03<00:01, 6423779.29it/s] 64%|██████▍ | 16924672/26421880 [00:03<00:01, 6651538.87it/s] 67%|██████▋ | 17661952/26421880 [00:03<00:01, 6799540.10it/s] 70%|██████▉ | 18399232/26421880 [00:03<00:01, 6952568.09it/s] 73%|███████▎ | 19218432/26421880 [00:03<00:00, 7225465.44it/s] 76%|███████▌ | 20045824/26421880 [00:03<00:00, 7387079.73it/s] 79%|███████▉ | 20914176/26421880 [00:03<00:00, 7682798.75it/s] 82%|████████▏ | 21733376/26421880 [00:03<00:00, 7824386.58it/s] 86%|████████▌ | 22626304/26421880 [00:03<00:00, 8112099.21it/s] 89%|████████▉ | 23511040/26421880 [00:04<00:00, 8282547.03it/s] 92%|█████████▏| 24436736/26421880 [00:04<00:00, 8514264.00it/s] 96%|█████████▌| 25395200/26421880 [00:04<00:00, 8798873.09it/s] 100%|█████████▉| 26337280/26421880 [00:04<00:00, 8971802.37it/s] 26427392it [00:04, 5711392.68it/s] +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073631.stdout b/OAR.2073631.stdout new file mode 100644 index 0000000000000000000000000000000000000000..ae4288ac1589cbc7bad8992bd53748b0c327147a --- /dev/null +++ b/OAR.2073631.stdout @@ -0,0 +1,53 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_50', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=50, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_50 +Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Using downloaded and verified file: ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Using downloaded and verified file: ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Using downloaded and verified file: ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz +Extracting ../data/fashion_data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/fashion_data/FashionMNIST/raw +Processing... +Done! +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=100, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=50, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 761253 +don't use continuous capacity diff --git a/OAR.2073632.stderr b/OAR.2073632.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53422e29aaddfc8344f662f9f75b39f077a2b864 --- /dev/null +++ b/OAR.2073632.stderr @@ -0,0 +1,14 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073632.stdout b/OAR.2073632.stdout new file mode 100644 index 0000000000000000000000000000000000000000..c9cc82f4bd0586e5941048355f9104270d9d8901 --- /dev/null +++ b/OAR.2073632.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/beta_VAE_bs_64 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 730453 +don't use continuous capacity diff --git a/OAR.2073633.stderr b/OAR.2073633.stderr new file mode 100644 index 0000000000000000000000000000000000000000..7e7e28a232a403708d1b9f7d3408370611296849 --- /dev/null +++ b/OAR.2073633.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073633.stdout b/OAR.2073633.stdout new file mode 100644 index 0000000000000000000000000000000000000000..678b1b41c628c15aa010bc4c49c53c851c505c19 --- /dev/null +++ b/OAR.2073633.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 730453 +don't use continuous capacity diff --git a/OAR.2073634.stderr b/OAR.2073634.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53422e29aaddfc8344f662f9f75b39f077a2b864 --- /dev/null +++ b/OAR.2073634.stderr @@ -0,0 +1,14 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073634.stdout b/OAR.2073634.stdout new file mode 100644 index 0000000000000000000000000000000000000000..221f7ee51263c571276dd60b7959228e06ba754e --- /dev/null +++ b/OAR.2073634.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/beta_VAE_bs_64_ls_15 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 734303 +don't use continuous capacity diff --git a/OAR.2073635.stderr b/OAR.2073635.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53422e29aaddfc8344f662f9f75b39f077a2b864 --- /dev/null +++ b/OAR.2073635.stderr @@ -0,0 +1,14 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073635.stdout b/OAR.2073635.stdout new file mode 100644 index 0000000000000000000000000000000000000000..02a1b936c306230808f0b5b6e6351c911369da79 --- /dev/null +++ b/OAR.2073635.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/beta_VAE_bs_64_ls_20 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 738153 +don't use continuous capacity diff --git a/OAR.2073636.stderr b/OAR.2073636.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53422e29aaddfc8344f662f9f75b39f077a2b864 --- /dev/null +++ b/OAR.2073636.stderr @@ -0,0 +1,14 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073636.stdout b/OAR.2073636.stdout new file mode 100644 index 0000000000000000000000000000000000000000..eaeca4913be3b81c08fe7c8e2e0c71797e5af237 --- /dev/null +++ b/OAR.2073636.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/beta_VAE_bs_64_ls_5 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 726603 +don't use continuous capacity diff --git a/OAR.2073637.stderr b/OAR.2073637.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53422e29aaddfc8344f662f9f75b39f077a2b864 --- /dev/null +++ b/OAR.2073637.stderr @@ -0,0 +1,14 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073637.stdout b/OAR.2073637.stdout new file mode 100644 index 0000000000000000000000000000000000000000..607f58d9a072a54547d57d1bc45678cafc9a5e50 --- /dev/null +++ b/OAR.2073637.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_5 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 726603 +don't use continuous capacity diff --git a/OAR.2073638.stderr b/OAR.2073638.stderr new file mode 100644 index 0000000000000000000000000000000000000000..7e7e28a232a403708d1b9f7d3408370611296849 --- /dev/null +++ b/OAR.2073638.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073638.stdout b/OAR.2073638.stdout new file mode 100644 index 0000000000000000000000000000000000000000..bf4d4b186e451b7e30d4ecf88799b84b8b91f014 --- /dev/null +++ b/OAR.2073638.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_15 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 734303 +don't use continuous capacity diff --git a/OAR.2073639.stderr b/OAR.2073639.stderr new file mode 100644 index 0000000000000000000000000000000000000000..4a4dd9e8ac27dd96e76572cf1c6e9c9a17567927 --- /dev/null +++ b/OAR.2073639.stderr @@ -0,0 +1,44 @@ +Traceback (most recent call last): + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 2289, in next + tarinfo = self.tarinfo.fromtarfile(self) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 1095, in fromtarfile + obj = cls.frombuf(buf, tarfile.encoding, tarfile.errors) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 1031, in frombuf + raise EmptyHeaderError("empty header") +tarfile.EmptyHeaderError: empty header + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 595, in _load + return legacy_load(f) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 506, in legacy_load + with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \ + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 1591, in open + return func(name, filemode, fileobj, **kwargs) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 1621, in taropen + return cls(name, mode, fileobj, **kwargs) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 1484, in __init__ + self.firstmember = self.next() + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/tarfile.py", line 2304, in next + raise ReadError("empty file") +tarfile.ReadError: empty file + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 597, in _load + if _is_zipfile(f): + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 75, in _is_zipfile + if ord(magic_byte) != ord(read_byte): +TypeError: ord() expected a character, but string of length 0 found diff --git a/OAR.2073639.stdout b/OAR.2073639.stdout new file mode 100644 index 0000000000000000000000000000000000000000..47fa97396a045d9d7fa30dc41a15e90a3d9af2d6 --- /dev/null +++ b/OAR.2073639.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_20 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 738153 +don't use continuous capacity diff --git a/OAR.2073640.stderr b/OAR.2073640.stderr new file mode 100644 index 0000000000000000000000000000000000000000..fb24beae5afe1d77fbc9d36af38e2f3cefc52aa5 --- /dev/null +++ b/OAR.2073640.stderr @@ -0,0 +1,14 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 90, in main + trainer.train(train_loader, args.epochs) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 116, in train + mean_epoch_loss, recon_loss, kl_loss, prediction_loss, prediction_random_continue_loss = self._train_epoch(data_loader) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 177, in _train_epoch + iter_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter = self._train_iteration(data, label) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 227, in _train_iteration + pred_loss_iter = pred_loss.item() +AttributeError: 'float' object has no attribute 'item' diff --git a/OAR.2073640.stdout b/OAR.2073640.stdout new file mode 100644 index 0000000000000000000000000000000000000000..c9819896770dee7abf6d68caf0778aba0265613d --- /dev/null +++ b/OAR.2073640.stdout @@ -0,0 +1,45 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0005, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_ls_10_lr_5e_4 +create new directory: trained_models/fashion_data/VAE_bs_64_ls_10_lr_5e_4/checkpoints +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 730453 +don't use continuous capacity +=> no checkpoint found at 'trained_models/fashion_data/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' diff --git a/OAR.2073641.stderr b/OAR.2073641.stderr new file mode 100644 index 0000000000000000000000000000000000000000..7e7e28a232a403708d1b9f7d3408370611296849 --- /dev/null +++ b/OAR.2073641.stderr @@ -0,0 +1,20 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 416, in load_checkpoint + checkpoint = torch.load(file_path) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 426, in load + return _load(f, map_location, pickle_module, **pickle_load_args) + File "/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/serialization.py", line 603, in _load + magic_number = pickle_module.load(f, **pickle_load_args) +_pickle.UnpicklingError: invalid load key, 'v'. diff --git a/OAR.2073641.stdout b/OAR.2073641.stdout new file mode 100644 index 0000000000000000000000000000000000000000..cbd72273605ed03ceb6515fa430db355dbcfc843 --- /dev/null +++ b/OAR.2073641.stdout @@ -0,0 +1,43 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='fashion_data', disc_capacity=None, epochs=9000000, experiment_name='VAE_bs_64_conv_64_64_128_128', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, nb_filter_conv1=64, nb_filter_conv2=64, nb_filter_conv3=128, nb_filter_conv4=128, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +creare new diretory experiment: fashion_data/VAE_bs_64_conv_64_64_128_128 +load dataset: fashion_data, with: 60032 train images of shape: (1, 32, 32) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(1, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(128, 512, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=512, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=512, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(512, 128, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(64, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): Sigmoid() + ) + ) +) +The number of parameters of model is 2902677 +don't use continuous capacity diff --git a/OAR.2073642.stderr b/OAR.2073642.stderr new file mode 100644 index 0000000000000000000000000000000000000000..4d7c3450eca653bd78d41f7de18ba444d3017bf9 --- /dev/null +++ b/OAR.2073642.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-07 08:29:14] Job 2073642 KILLED ## diff --git a/OAR.2073642.stdout b/OAR.2073642.stdout new file mode 100644 index 0000000000000000000000000000000000000000..7f7eb13148ad7c92b8a769c2ce15b660ff83bf91 --- /dev/null +++ b/OAR.2073642.stdout @@ -0,0 +1,5216 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=90000, experiment_name='VAE_bs_64_ls_30', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=30, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=60, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=30, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 780735 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last (iter 151)' +0/69092 Loss: 90.857 +3200/69092 Loss: 100.896 +6400/69092 Loss: 102.867 +9600/69092 Loss: 100.896 +12800/69092 Loss: 101.476 +16000/69092 Loss: 100.314 +19200/69092 Loss: 102.579 +22400/69092 Loss: 100.823 +25600/69092 Loss: 101.249 +28800/69092 Loss: 98.799 +32000/69092 Loss: 100.542 +35200/69092 Loss: 100.504 +38400/69092 Loss: 99.883 +41600/69092 Loss: 100.650 +44800/69092 Loss: 101.331 +48000/69092 Loss: 101.926 +51200/69092 Loss: 100.185 +54400/69092 Loss: 100.923 +57600/69092 Loss: 100.491 +60800/69092 Loss: 101.226 +64000/69092 Loss: 101.842 +67200/69092 Loss: 100.903 +Training time 0:13:22.536955 +Epoch: 1 Average loss: 100.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 152) +0/69092 Loss: 112.391 +3200/69092 Loss: 101.627 +6400/69092 Loss: 101.528 +9600/69092 Loss: 100.415 +12800/69092 Loss: 101.177 +16000/69092 Loss: 100.456 +19200/69092 Loss: 101.405 +22400/69092 Loss: 100.677 +25600/69092 Loss: 100.944 +28800/69092 Loss: 101.739 +32000/69092 Loss: 100.738 +35200/69092 Loss: 100.845 +38400/69092 Loss: 100.162 +41600/69092 Loss: 101.028 +44800/69092 Loss: 99.590 +48000/69092 Loss: 100.294 +51200/69092 Loss: 101.643 +54400/69092 Loss: 100.665 +57600/69092 Loss: 101.591 +60800/69092 Loss: 100.224 +64000/69092 Loss: 100.692 +67200/69092 Loss: 102.154 +Training time 0:10:52.556148 +Epoch: 2 Average loss: 100.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 153) +0/69092 Loss: 107.454 +3200/69092 Loss: 101.489 +6400/69092 Loss: 100.728 +9600/69092 Loss: 99.638 +12800/69092 Loss: 100.251 +16000/69092 Loss: 100.477 +19200/69092 Loss: 100.710 +22400/69092 Loss: 99.758 +25600/69092 Loss: 99.931 +28800/69092 Loss: 101.879 +32000/69092 Loss: 100.798 +35200/69092 Loss: 100.518 +38400/69092 Loss: 100.419 +41600/69092 Loss: 100.298 +44800/69092 Loss: 101.043 +48000/69092 Loss: 101.101 +51200/69092 Loss: 100.542 +54400/69092 Loss: 101.929 +57600/69092 Loss: 100.215 +60800/69092 Loss: 101.169 +64000/69092 Loss: 101.229 +67200/69092 Loss: 100.054 +Training time 0:10:13.335563 +Epoch: 3 Average loss: 100.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 154) +0/69092 Loss: 88.903 +3200/69092 Loss: 100.694 +6400/69092 Loss: 100.380 +9600/69092 Loss: 100.438 +12800/69092 Loss: 100.192 +16000/69092 Loss: 101.963 +19200/69092 Loss: 100.461 +22400/69092 Loss: 100.583 +25600/69092 Loss: 100.875 +28800/69092 Loss: 98.934 +32000/69092 Loss: 99.607 +35200/69092 Loss: 101.819 +38400/69092 Loss: 99.161 +41600/69092 Loss: 100.947 +44800/69092 Loss: 99.773 +48000/69092 Loss: 100.309 +51200/69092 Loss: 100.968 +54400/69092 Loss: 100.739 +57600/69092 Loss: 101.130 +60800/69092 Loss: 102.463 +64000/69092 Loss: 101.432 +67200/69092 Loss: 101.092 +Training time 0:10:10.925639 +Epoch: 4 Average loss: 100.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 155) +0/69092 Loss: 101.284 +3200/69092 Loss: 100.317 +6400/69092 Loss: 100.133 +9600/69092 Loss: 101.435 +12800/69092 Loss: 101.001 +16000/69092 Loss: 101.030 +19200/69092 Loss: 101.369 +22400/69092 Loss: 99.846 +25600/69092 Loss: 99.866 +28800/69092 Loss: 100.989 +32000/69092 Loss: 99.827 +35200/69092 Loss: 100.994 +38400/69092 Loss: 100.439 +41600/69092 Loss: 100.306 +44800/69092 Loss: 101.138 +48000/69092 Loss: 101.276 +51200/69092 Loss: 100.358 +54400/69092 Loss: 101.804 +57600/69092 Loss: 100.310 +60800/69092 Loss: 100.296 +64000/69092 Loss: 101.495 +67200/69092 Loss: 101.331 +Training time 0:10:24.263162 +Epoch: 5 Average loss: 100.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 156) +0/69092 Loss: 91.869 +3200/69092 Loss: 100.730 +6400/69092 Loss: 100.619 +9600/69092 Loss: 99.290 +12800/69092 Loss: 99.293 +16000/69092 Loss: 101.506 +19200/69092 Loss: 100.954 +22400/69092 Loss: 100.630 +25600/69092 Loss: 100.642 +28800/69092 Loss: 101.194 +32000/69092 Loss: 99.540 +35200/69092 Loss: 101.119 +38400/69092 Loss: 100.036 +41600/69092 Loss: 102.296 +44800/69092 Loss: 101.366 +48000/69092 Loss: 101.069 +51200/69092 Loss: 99.667 +54400/69092 Loss: 100.424 +57600/69092 Loss: 101.080 +60800/69092 Loss: 101.214 +64000/69092 Loss: 100.979 +67200/69092 Loss: 100.434 +Training time 0:10:16.979999 +Epoch: 6 Average loss: 100.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 157) +0/69092 Loss: 103.696 +3200/69092 Loss: 99.888 +6400/69092 Loss: 102.452 +9600/69092 Loss: 101.145 +12800/69092 Loss: 98.928 +16000/69092 Loss: 99.634 +19200/69092 Loss: 100.475 +22400/69092 Loss: 100.984 +25600/69092 Loss: 101.335 +28800/69092 Loss: 100.237 +32000/69092 Loss: 100.423 +35200/69092 Loss: 101.199 +38400/69092 Loss: 100.595 +41600/69092 Loss: 100.726 +44800/69092 Loss: 100.514 +48000/69092 Loss: 100.415 +51200/69092 Loss: 100.428 +54400/69092 Loss: 100.919 +57600/69092 Loss: 101.008 +60800/69092 Loss: 100.350 +64000/69092 Loss: 101.610 +67200/69092 Loss: 100.413 +Training time 0:10:44.289171 +Epoch: 7 Average loss: 100.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 158) +0/69092 Loss: 99.058 +3200/69092 Loss: 100.530 +6400/69092 Loss: 99.354 +9600/69092 Loss: 100.078 +12800/69092 Loss: 100.434 +16000/69092 Loss: 100.931 +19200/69092 Loss: 100.534 +22400/69092 Loss: 100.907 +25600/69092 Loss: 100.255 +28800/69092 Loss: 99.552 +32000/69092 Loss: 102.825 +35200/69092 Loss: 101.045 +38400/69092 Loss: 102.631 +41600/69092 Loss: 99.552 +44800/69092 Loss: 101.287 +48000/69092 Loss: 100.109 +51200/69092 Loss: 99.976 +54400/69092 Loss: 101.527 +57600/69092 Loss: 101.586 +60800/69092 Loss: 100.806 +64000/69092 Loss: 101.035 +67200/69092 Loss: 99.979 +Training time 0:09:59.705624 +Epoch: 8 Average loss: 100.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 159) +0/69092 Loss: 103.561 +3200/69092 Loss: 101.245 +6400/69092 Loss: 101.131 +9600/69092 Loss: 99.564 +12800/69092 Loss: 99.659 +16000/69092 Loss: 100.434 +19200/69092 Loss: 101.038 +22400/69092 Loss: 100.173 +25600/69092 Loss: 100.267 +28800/69092 Loss: 100.739 +32000/69092 Loss: 100.412 +35200/69092 Loss: 102.110 +38400/69092 Loss: 100.020 +41600/69092 Loss: 101.792 +44800/69092 Loss: 101.294 +48000/69092 Loss: 101.586 +51200/69092 Loss: 99.891 +54400/69092 Loss: 100.281 +57600/69092 Loss: 101.081 +60800/69092 Loss: 100.948 +64000/69092 Loss: 99.330 +67200/69092 Loss: 101.067 +Training time 0:10:03.692942 +Epoch: 9 Average loss: 100.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 160) +0/69092 Loss: 100.755 +3200/69092 Loss: 102.696 +6400/69092 Loss: 102.509 +9600/69092 Loss: 100.596 +12800/69092 Loss: 99.879 +16000/69092 Loss: 101.567 +19200/69092 Loss: 100.958 +22400/69092 Loss: 100.226 +25600/69092 Loss: 99.870 +28800/69092 Loss: 99.772 +32000/69092 Loss: 100.681 +35200/69092 Loss: 101.588 +38400/69092 Loss: 100.448 +41600/69092 Loss: 99.148 +44800/69092 Loss: 100.254 +48000/69092 Loss: 100.904 +51200/69092 Loss: 99.440 +54400/69092 Loss: 100.085 +57600/69092 Loss: 98.232 +60800/69092 Loss: 100.112 +64000/69092 Loss: 101.036 +67200/69092 Loss: 101.011 +Training time 0:10:25.881331 +Epoch: 10 Average loss: 100.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 161) +0/69092 Loss: 91.759 +3200/69092 Loss: 101.597 +6400/69092 Loss: 99.947 +9600/69092 Loss: 100.180 +12800/69092 Loss: 101.015 +16000/69092 Loss: 97.057 +19200/69092 Loss: 100.711 +22400/69092 Loss: 101.811 +25600/69092 Loss: 99.226 +28800/69092 Loss: 100.769 +32000/69092 Loss: 99.366 +35200/69092 Loss: 100.113 +38400/69092 Loss: 100.704 +41600/69092 Loss: 101.669 +44800/69092 Loss: 101.506 +48000/69092 Loss: 101.513 +51200/69092 Loss: 101.313 +54400/69092 Loss: 101.363 +57600/69092 Loss: 99.833 +60800/69092 Loss: 100.909 +64000/69092 Loss: 99.774 +67200/69092 Loss: 100.637 +Training time 0:10:35.023585 +Epoch: 11 Average loss: 100.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 162) +0/69092 Loss: 107.944 +3200/69092 Loss: 100.648 +6400/69092 Loss: 99.919 +9600/69092 Loss: 101.079 +12800/69092 Loss: 100.624 +16000/69092 Loss: 100.319 +19200/69092 Loss: 101.166 +22400/69092 Loss: 101.354 +25600/69092 Loss: 100.493 +28800/69092 Loss: 99.155 +32000/69092 Loss: 98.583 +35200/69092 Loss: 101.474 +38400/69092 Loss: 99.048 +41600/69092 Loss: 100.080 +44800/69092 Loss: 99.624 +48000/69092 Loss: 102.056 +51200/69092 Loss: 99.685 +54400/69092 Loss: 100.620 +57600/69092 Loss: 100.928 +60800/69092 Loss: 101.815 +64000/69092 Loss: 101.294 +67200/69092 Loss: 100.444 +Training time 0:10:39.147597 +Epoch: 12 Average loss: 100.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 163) +0/69092 Loss: 90.271 +3200/69092 Loss: 100.667 +6400/69092 Loss: 100.967 +9600/69092 Loss: 100.144 +12800/69092 Loss: 100.500 +16000/69092 Loss: 100.114 +19200/69092 Loss: 100.426 +22400/69092 Loss: 101.159 +25600/69092 Loss: 99.706 +28800/69092 Loss: 100.198 +32000/69092 Loss: 100.439 +35200/69092 Loss: 100.815 +38400/69092 Loss: 100.880 +41600/69092 Loss: 98.307 +44800/69092 Loss: 99.669 +48000/69092 Loss: 101.589 +51200/69092 Loss: 101.234 +54400/69092 Loss: 100.851 +57600/69092 Loss: 99.295 +60800/69092 Loss: 101.259 +64000/69092 Loss: 100.284 +67200/69092 Loss: 100.930 +Training time 0:10:16.745973 +Epoch: 13 Average loss: 100.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 164) +0/69092 Loss: 110.381 +3200/69092 Loss: 100.312 +6400/69092 Loss: 99.831 +9600/69092 Loss: 100.926 +12800/69092 Loss: 98.216 +16000/69092 Loss: 101.681 +19200/69092 Loss: 101.070 +22400/69092 Loss: 99.323 +25600/69092 Loss: 100.217 +28800/69092 Loss: 102.129 +32000/69092 Loss: 100.339 +35200/69092 Loss: 102.523 +38400/69092 Loss: 100.062 +41600/69092 Loss: 100.664 +44800/69092 Loss: 99.133 +48000/69092 Loss: 100.377 +51200/69092 Loss: 101.199 +54400/69092 Loss: 100.055 +57600/69092 Loss: 100.580 +60800/69092 Loss: 101.073 +64000/69092 Loss: 99.813 +67200/69092 Loss: 101.102 +Training time 0:10:22.531546 +Epoch: 14 Average loss: 100.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 165) +0/69092 Loss: 105.286 +3200/69092 Loss: 100.594 +6400/69092 Loss: 100.157 +9600/69092 Loss: 100.147 +12800/69092 Loss: 99.849 +16000/69092 Loss: 100.910 +19200/69092 Loss: 97.858 +22400/69092 Loss: 100.878 +25600/69092 Loss: 101.757 +28800/69092 Loss: 99.680 +32000/69092 Loss: 100.134 +35200/69092 Loss: 100.873 +38400/69092 Loss: 100.967 +41600/69092 Loss: 101.347 +44800/69092 Loss: 102.215 +48000/69092 Loss: 100.206 +51200/69092 Loss: 99.963 +54400/69092 Loss: 101.613 +57600/69092 Loss: 100.700 +60800/69092 Loss: 100.405 +64000/69092 Loss: 99.284 +67200/69092 Loss: 100.606 +Training time 0:10:17.460304 +Epoch: 15 Average loss: 100.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 166) +0/69092 Loss: 109.605 +3200/69092 Loss: 99.625 +6400/69092 Loss: 101.296 +9600/69092 Loss: 99.007 +12800/69092 Loss: 101.360 +16000/69092 Loss: 100.476 +19200/69092 Loss: 100.594 +22400/69092 Loss: 101.498 +25600/69092 Loss: 98.941 +28800/69092 Loss: 98.080 +32000/69092 Loss: 100.335 +35200/69092 Loss: 99.571 +38400/69092 Loss: 102.125 +41600/69092 Loss: 99.909 +44800/69092 Loss: 100.261 +48000/69092 Loss: 101.179 +51200/69092 Loss: 99.661 +54400/69092 Loss: 101.432 +57600/69092 Loss: 99.418 +60800/69092 Loss: 100.694 +64000/69092 Loss: 100.913 +67200/69092 Loss: 100.276 +Training time 0:10:08.676841 +Epoch: 16 Average loss: 100.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 167) +0/69092 Loss: 103.221 +3200/69092 Loss: 99.201 +6400/69092 Loss: 100.848 +9600/69092 Loss: 98.694 +12800/69092 Loss: 101.440 +16000/69092 Loss: 99.760 +19200/69092 Loss: 100.571 +22400/69092 Loss: 101.013 +25600/69092 Loss: 98.245 +28800/69092 Loss: 100.137 +32000/69092 Loss: 100.147 +35200/69092 Loss: 102.266 +38400/69092 Loss: 99.774 +41600/69092 Loss: 101.011 +44800/69092 Loss: 100.263 +48000/69092 Loss: 100.845 +51200/69092 Loss: 100.166 +54400/69092 Loss: 100.333 +57600/69092 Loss: 99.643 +60800/69092 Loss: 100.004 +64000/69092 Loss: 100.515 +67200/69092 Loss: 100.858 +Training time 0:10:09.258986 +Epoch: 17 Average loss: 100.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 168) +0/69092 Loss: 98.589 +3200/69092 Loss: 100.657 +6400/69092 Loss: 99.640 +9600/69092 Loss: 99.491 +12800/69092 Loss: 100.384 +16000/69092 Loss: 99.559 +19200/69092 Loss: 100.651 +22400/69092 Loss: 99.591 +25600/69092 Loss: 103.578 +28800/69092 Loss: 101.906 +32000/69092 Loss: 100.018 +35200/69092 Loss: 99.243 +38400/69092 Loss: 98.868 +41600/69092 Loss: 100.799 +44800/69092 Loss: 99.205 +48000/69092 Loss: 100.436 +51200/69092 Loss: 100.848 +54400/69092 Loss: 101.567 +57600/69092 Loss: 100.539 +60800/69092 Loss: 100.597 +64000/69092 Loss: 99.924 +67200/69092 Loss: 99.761 +Training time 0:10:40.501785 +Epoch: 18 Average loss: 100.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 169) +0/69092 Loss: 101.090 +3200/69092 Loss: 98.897 +6400/69092 Loss: 101.100 +9600/69092 Loss: 98.165 +12800/69092 Loss: 101.350 +16000/69092 Loss: 101.014 +19200/69092 Loss: 99.836 +22400/69092 Loss: 100.248 +25600/69092 Loss: 98.994 +28800/69092 Loss: 100.682 +32000/69092 Loss: 101.074 +35200/69092 Loss: 101.534 +38400/69092 Loss: 99.495 +41600/69092 Loss: 100.129 +44800/69092 Loss: 100.414 +48000/69092 Loss: 99.205 +51200/69092 Loss: 100.103 +54400/69092 Loss: 100.189 +57600/69092 Loss: 101.436 +60800/69092 Loss: 100.053 +64000/69092 Loss: 100.833 +67200/69092 Loss: 101.550 +Training time 0:10:35.079849 +Epoch: 19 Average loss: 100.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 170) +0/69092 Loss: 104.111 +3200/69092 Loss: 99.837 +6400/69092 Loss: 99.601 +9600/69092 Loss: 99.668 +12800/69092 Loss: 101.194 +16000/69092 Loss: 101.369 +19200/69092 Loss: 99.923 +22400/69092 Loss: 100.139 +25600/69092 Loss: 99.507 +28800/69092 Loss: 99.263 +32000/69092 Loss: 100.740 +35200/69092 Loss: 101.556 +38400/69092 Loss: 99.704 +41600/69092 Loss: 98.574 +44800/69092 Loss: 99.651 +48000/69092 Loss: 101.120 +51200/69092 Loss: 100.802 +54400/69092 Loss: 100.553 +57600/69092 Loss: 100.646 +60800/69092 Loss: 100.835 +64000/69092 Loss: 100.099 +67200/69092 Loss: 101.293 +Training time 0:10:31.615761 +Epoch: 20 Average loss: 100.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 171) +0/69092 Loss: 100.596 +3200/69092 Loss: 99.743 +6400/69092 Loss: 100.214 +9600/69092 Loss: 100.563 +12800/69092 Loss: 100.838 +16000/69092 Loss: 100.816 +19200/69092 Loss: 99.976 +22400/69092 Loss: 100.197 +25600/69092 Loss: 102.278 +28800/69092 Loss: 99.107 +32000/69092 Loss: 99.602 +35200/69092 Loss: 99.449 +38400/69092 Loss: 100.602 +41600/69092 Loss: 100.785 +44800/69092 Loss: 100.824 +48000/69092 Loss: 100.576 +51200/69092 Loss: 99.966 +54400/69092 Loss: 100.054 +57600/69092 Loss: 100.230 +60800/69092 Loss: 100.171 +64000/69092 Loss: 100.501 +67200/69092 Loss: 100.154 +Training time 0:10:23.653780 +Epoch: 21 Average loss: 100.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 172) +0/69092 Loss: 102.655 +3200/69092 Loss: 100.107 +6400/69092 Loss: 100.795 +9600/69092 Loss: 101.244 +12800/69092 Loss: 100.354 +16000/69092 Loss: 101.621 +19200/69092 Loss: 99.983 +22400/69092 Loss: 102.301 +25600/69092 Loss: 100.026 +28800/69092 Loss: 98.556 +32000/69092 Loss: 100.287 +35200/69092 Loss: 99.643 +38400/69092 Loss: 100.953 +41600/69092 Loss: 100.417 +44800/69092 Loss: 99.072 +48000/69092 Loss: 99.223 +51200/69092 Loss: 99.633 +54400/69092 Loss: 99.651 +57600/69092 Loss: 101.218 +60800/69092 Loss: 100.078 +64000/69092 Loss: 100.579 +67200/69092 Loss: 101.242 +Training time 0:10:20.973984 +Epoch: 22 Average loss: 100.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 173) +0/69092 Loss: 103.888 +3200/69092 Loss: 100.748 +6400/69092 Loss: 100.900 +9600/69092 Loss: 100.073 +12800/69092 Loss: 98.744 +16000/69092 Loss: 99.252 +19200/69092 Loss: 101.954 +22400/69092 Loss: 101.632 +25600/69092 Loss: 101.654 +28800/69092 Loss: 99.831 +32000/69092 Loss: 100.271 +35200/69092 Loss: 99.135 +38400/69092 Loss: 99.074 +41600/69092 Loss: 99.457 +44800/69092 Loss: 101.231 +48000/69092 Loss: 101.178 +51200/69092 Loss: 101.375 +54400/69092 Loss: 98.308 +57600/69092 Loss: 100.247 +60800/69092 Loss: 99.567 +64000/69092 Loss: 99.512 +67200/69092 Loss: 100.534 +Training time 0:10:18.045025 +Epoch: 23 Average loss: 100.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 174) +0/69092 Loss: 98.240 +3200/69092 Loss: 102.289 +6400/69092 Loss: 98.598 +9600/69092 Loss: 98.990 +12800/69092 Loss: 99.472 +16000/69092 Loss: 101.627 +19200/69092 Loss: 101.218 +22400/69092 Loss: 100.225 +25600/69092 Loss: 100.430 +28800/69092 Loss: 100.316 +32000/69092 Loss: 101.919 +35200/69092 Loss: 100.060 +38400/69092 Loss: 99.616 +41600/69092 Loss: 101.506 +44800/69092 Loss: 99.442 +48000/69092 Loss: 101.454 +51200/69092 Loss: 99.450 +54400/69092 Loss: 100.213 +57600/69092 Loss: 98.830 +60800/69092 Loss: 102.337 +64000/69092 Loss: 100.273 +67200/69092 Loss: 98.916 +Training time 0:10:38.205521 +Epoch: 24 Average loss: 100.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 175) +0/69092 Loss: 92.109 +3200/69092 Loss: 100.725 +6400/69092 Loss: 100.539 +9600/69092 Loss: 100.119 +12800/69092 Loss: 100.424 +16000/69092 Loss: 100.177 +19200/69092 Loss: 100.786 +22400/69092 Loss: 99.217 +25600/69092 Loss: 100.067 +28800/69092 Loss: 100.467 +32000/69092 Loss: 101.432 +35200/69092 Loss: 99.315 +38400/69092 Loss: 101.069 +41600/69092 Loss: 100.867 +44800/69092 Loss: 100.729 +48000/69092 Loss: 100.158 +51200/69092 Loss: 99.724 +54400/69092 Loss: 101.087 +57600/69092 Loss: 99.889 +60800/69092 Loss: 97.432 +64000/69092 Loss: 100.877 +67200/69092 Loss: 99.569 +Training time 0:10:21.527763 +Epoch: 25 Average loss: 100.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 176) +0/69092 Loss: 108.606 +3200/69092 Loss: 101.711 +6400/69092 Loss: 99.079 +9600/69092 Loss: 99.500 +12800/69092 Loss: 99.765 +16000/69092 Loss: 98.451 +19200/69092 Loss: 101.255 +22400/69092 Loss: 101.426 +25600/69092 Loss: 99.685 +28800/69092 Loss: 99.951 +32000/69092 Loss: 101.204 +35200/69092 Loss: 100.354 +38400/69092 Loss: 100.712 +41600/69092 Loss: 100.057 +44800/69092 Loss: 99.986 +48000/69092 Loss: 100.277 +51200/69092 Loss: 99.919 +54400/69092 Loss: 100.001 +57600/69092 Loss: 100.471 +60800/69092 Loss: 100.701 +64000/69092 Loss: 98.902 +67200/69092 Loss: 98.618 +Training time 0:10:13.242627 +Epoch: 26 Average loss: 100.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 177) +0/69092 Loss: 105.623 +3200/69092 Loss: 99.517 +6400/69092 Loss: 100.253 +9600/69092 Loss: 99.371 +12800/69092 Loss: 100.768 +16000/69092 Loss: 100.403 +19200/69092 Loss: 100.631 +22400/69092 Loss: 100.900 +25600/69092 Loss: 100.815 +28800/69092 Loss: 99.351 +32000/69092 Loss: 100.677 +35200/69092 Loss: 100.108 +38400/69092 Loss: 99.413 +41600/69092 Loss: 100.386 +44800/69092 Loss: 98.949 +48000/69092 Loss: 99.557 +51200/69092 Loss: 100.739 +54400/69092 Loss: 101.089 +57600/69092 Loss: 99.154 +60800/69092 Loss: 101.132 +64000/69092 Loss: 99.649 +67200/69092 Loss: 100.929 +Training time 0:10:31.626549 +Epoch: 27 Average loss: 100.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 178) +0/69092 Loss: 95.884 +3200/69092 Loss: 99.686 +6400/69092 Loss: 99.836 +9600/69092 Loss: 100.794 +12800/69092 Loss: 100.388 +16000/69092 Loss: 99.477 +19200/69092 Loss: 101.988 +22400/69092 Loss: 99.644 +25600/69092 Loss: 101.782 +28800/69092 Loss: 100.246 +32000/69092 Loss: 100.852 +35200/69092 Loss: 100.964 +38400/69092 Loss: 99.352 +41600/69092 Loss: 101.068 +44800/69092 Loss: 98.179 +48000/69092 Loss: 100.101 +51200/69092 Loss: 99.964 +54400/69092 Loss: 99.895 +57600/69092 Loss: 100.055 +60800/69092 Loss: 99.892 +64000/69092 Loss: 101.129 +67200/69092 Loss: 99.472 +Training time 0:10:26.415918 +Epoch: 28 Average loss: 100.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 179) +0/69092 Loss: 91.758 +3200/69092 Loss: 98.980 +6400/69092 Loss: 100.410 +9600/69092 Loss: 98.389 +12800/69092 Loss: 101.778 +16000/69092 Loss: 98.980 +19200/69092 Loss: 100.459 +22400/69092 Loss: 101.037 +25600/69092 Loss: 100.936 +28800/69092 Loss: 99.847 +32000/69092 Loss: 99.671 +35200/69092 Loss: 101.104 +38400/69092 Loss: 98.966 +41600/69092 Loss: 100.606 +44800/69092 Loss: 100.329 +48000/69092 Loss: 100.492 +51200/69092 Loss: 98.739 +54400/69092 Loss: 101.190 +57600/69092 Loss: 100.210 +60800/69092 Loss: 101.215 +64000/69092 Loss: 102.043 +67200/69092 Loss: 98.037 +Training time 0:10:31.627884 +Epoch: 29 Average loss: 100.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 180) +0/69092 Loss: 99.603 +3200/69092 Loss: 100.262 +6400/69092 Loss: 99.990 +9600/69092 Loss: 99.990 +12800/69092 Loss: 99.227 +16000/69092 Loss: 99.937 +19200/69092 Loss: 99.885 +22400/69092 Loss: 99.973 +25600/69092 Loss: 100.742 +28800/69092 Loss: 100.392 +32000/69092 Loss: 99.453 +35200/69092 Loss: 100.560 +38400/69092 Loss: 101.674 +41600/69092 Loss: 100.410 +44800/69092 Loss: 98.796 +48000/69092 Loss: 99.496 +51200/69092 Loss: 98.951 +54400/69092 Loss: 99.372 +57600/69092 Loss: 99.080 +60800/69092 Loss: 101.399 +64000/69092 Loss: 100.448 +67200/69092 Loss: 101.755 +Training time 0:10:48.548870 +Epoch: 30 Average loss: 100.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 181) +0/69092 Loss: 91.752 +3200/69092 Loss: 99.817 +6400/69092 Loss: 102.202 +9600/69092 Loss: 100.571 +12800/69092 Loss: 98.966 +16000/69092 Loss: 99.668 +19200/69092 Loss: 99.439 +22400/69092 Loss: 100.390 +25600/69092 Loss: 97.432 +28800/69092 Loss: 100.275 +32000/69092 Loss: 100.104 +35200/69092 Loss: 98.484 +38400/69092 Loss: 101.402 +41600/69092 Loss: 99.439 +44800/69092 Loss: 101.007 +48000/69092 Loss: 99.529 +51200/69092 Loss: 99.163 +54400/69092 Loss: 100.444 +57600/69092 Loss: 100.537 +60800/69092 Loss: 98.722 +64000/69092 Loss: 99.280 +67200/69092 Loss: 101.686 +Training time 0:10:14.941037 +Epoch: 31 Average loss: 99.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 182) +0/69092 Loss: 106.586 +3200/69092 Loss: 100.005 +6400/69092 Loss: 99.821 +9600/69092 Loss: 99.832 +12800/69092 Loss: 99.667 +16000/69092 Loss: 99.305 +19200/69092 Loss: 100.230 +22400/69092 Loss: 99.397 +25600/69092 Loss: 100.039 +28800/69092 Loss: 101.120 +32000/69092 Loss: 100.445 +35200/69092 Loss: 99.876 +38400/69092 Loss: 99.501 +41600/69092 Loss: 100.364 +44800/69092 Loss: 101.419 +48000/69092 Loss: 100.961 +51200/69092 Loss: 100.997 +54400/69092 Loss: 99.904 +57600/69092 Loss: 100.214 +60800/69092 Loss: 100.010 +64000/69092 Loss: 100.869 +67200/69092 Loss: 99.687 +Training time 0:10:34.812231 +Epoch: 32 Average loss: 100.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 183) +0/69092 Loss: 93.891 +3200/69092 Loss: 100.324 +6400/69092 Loss: 98.926 +9600/69092 Loss: 99.533 +12800/69092 Loss: 99.932 +16000/69092 Loss: 100.664 +19200/69092 Loss: 99.626 +22400/69092 Loss: 98.362 +25600/69092 Loss: 101.330 +28800/69092 Loss: 100.157 +32000/69092 Loss: 99.218 +35200/69092 Loss: 99.712 +38400/69092 Loss: 99.349 +41600/69092 Loss: 100.170 +44800/69092 Loss: 99.584 +48000/69092 Loss: 101.099 +51200/69092 Loss: 101.326 +54400/69092 Loss: 100.069 +57600/69092 Loss: 97.962 +60800/69092 Loss: 99.988 +64000/69092 Loss: 100.369 +67200/69092 Loss: 100.646 +Training time 0:10:34.876007 +Epoch: 33 Average loss: 99.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 184) +0/69092 Loss: 109.234 +3200/69092 Loss: 100.259 +6400/69092 Loss: 99.103 +9600/69092 Loss: 99.288 +12800/69092 Loss: 99.466 +16000/69092 Loss: 99.369 +19200/69092 Loss: 99.338 +22400/69092 Loss: 99.939 +25600/69092 Loss: 100.008 +28800/69092 Loss: 99.636 +32000/69092 Loss: 100.290 +35200/69092 Loss: 98.803 +38400/69092 Loss: 101.810 +41600/69092 Loss: 98.660 +44800/69092 Loss: 100.392 +48000/69092 Loss: 100.782 +51200/69092 Loss: 101.097 +54400/69092 Loss: 98.786 +57600/69092 Loss: 100.128 +60800/69092 Loss: 100.663 +64000/69092 Loss: 99.414 +67200/69092 Loss: 99.784 +Training time 0:10:47.630232 +Epoch: 34 Average loss: 99.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 185) +0/69092 Loss: 97.111 +3200/69092 Loss: 100.152 +6400/69092 Loss: 99.348 +9600/69092 Loss: 100.469 +12800/69092 Loss: 98.369 +16000/69092 Loss: 100.901 +19200/69092 Loss: 100.777 +22400/69092 Loss: 99.093 +25600/69092 Loss: 99.746 +28800/69092 Loss: 100.486 +32000/69092 Loss: 99.241 +35200/69092 Loss: 98.725 +38400/69092 Loss: 97.958 +41600/69092 Loss: 100.874 +44800/69092 Loss: 100.811 +48000/69092 Loss: 100.262 +51200/69092 Loss: 100.120 +54400/69092 Loss: 101.258 +57600/69092 Loss: 100.820 +60800/69092 Loss: 99.457 +64000/69092 Loss: 99.680 +67200/69092 Loss: 99.815 +Training time 0:10:41.843923 +Epoch: 35 Average loss: 99.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 186) +0/69092 Loss: 108.355 +3200/69092 Loss: 98.779 +6400/69092 Loss: 100.292 +9600/69092 Loss: 98.851 +12800/69092 Loss: 100.044 +16000/69092 Loss: 98.120 +19200/69092 Loss: 99.108 +22400/69092 Loss: 101.134 +25600/69092 Loss: 100.805 +28800/69092 Loss: 100.451 +32000/69092 Loss: 99.621 +35200/69092 Loss: 99.175 +38400/69092 Loss: 99.566 +41600/69092 Loss: 100.592 +44800/69092 Loss: 99.871 +48000/69092 Loss: 99.017 +51200/69092 Loss: 100.155 +54400/69092 Loss: 100.068 +57600/69092 Loss: 100.351 +60800/69092 Loss: 101.316 +64000/69092 Loss: 100.137 +67200/69092 Loss: 99.779 +Training time 0:10:05.566934 +Epoch: 36 Average loss: 99.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 187) +0/69092 Loss: 103.196 +3200/69092 Loss: 99.906 +6400/69092 Loss: 100.314 +9600/69092 Loss: 98.491 +12800/69092 Loss: 99.373 +16000/69092 Loss: 100.230 +19200/69092 Loss: 100.517 +22400/69092 Loss: 100.481 +25600/69092 Loss: 99.836 +28800/69092 Loss: 100.558 +32000/69092 Loss: 99.144 +35200/69092 Loss: 100.250 +38400/69092 Loss: 99.398 +41600/69092 Loss: 99.600 +44800/69092 Loss: 100.777 +48000/69092 Loss: 101.557 +51200/69092 Loss: 99.813 +54400/69092 Loss: 100.117 +57600/69092 Loss: 99.102 +60800/69092 Loss: 100.214 +64000/69092 Loss: 98.335 +67200/69092 Loss: 99.586 +Training time 0:10:04.009083 +Epoch: 37 Average loss: 99.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 188) +0/69092 Loss: 107.788 +3200/69092 Loss: 99.971 +6400/69092 Loss: 99.769 +9600/69092 Loss: 99.672 +12800/69092 Loss: 98.309 +16000/69092 Loss: 100.179 +19200/69092 Loss: 99.373 +22400/69092 Loss: 101.619 +25600/69092 Loss: 100.711 +28800/69092 Loss: 100.456 +32000/69092 Loss: 99.981 +35200/69092 Loss: 100.431 +38400/69092 Loss: 99.393 +41600/69092 Loss: 99.713 +44800/69092 Loss: 100.156 +48000/69092 Loss: 98.664 +51200/69092 Loss: 101.249 +54400/69092 Loss: 97.876 +57600/69092 Loss: 98.876 +60800/69092 Loss: 100.144 +64000/69092 Loss: 98.713 +67200/69092 Loss: 102.235 +Training time 0:10:43.959253 +Epoch: 38 Average loss: 99.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 189) +0/69092 Loss: 95.501 +3200/69092 Loss: 99.865 +6400/69092 Loss: 100.067 +9600/69092 Loss: 99.613 +12800/69092 Loss: 99.825 +16000/69092 Loss: 100.896 +19200/69092 Loss: 99.022 +22400/69092 Loss: 100.082 +25600/69092 Loss: 99.652 +28800/69092 Loss: 100.217 +32000/69092 Loss: 100.147 +35200/69092 Loss: 99.513 +38400/69092 Loss: 98.243 +41600/69092 Loss: 101.492 +44800/69092 Loss: 99.259 +48000/69092 Loss: 100.438 +51200/69092 Loss: 101.395 +54400/69092 Loss: 100.464 +57600/69092 Loss: 100.178 +60800/69092 Loss: 100.122 +64000/69092 Loss: 98.909 +67200/69092 Loss: 100.198 +Training time 0:10:17.392535 +Epoch: 39 Average loss: 99.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 190) +0/69092 Loss: 101.971 +3200/69092 Loss: 100.184 +6400/69092 Loss: 99.472 +9600/69092 Loss: 100.074 +12800/69092 Loss: 99.729 +16000/69092 Loss: 99.095 +19200/69092 Loss: 98.950 +22400/69092 Loss: 100.000 +25600/69092 Loss: 98.855 +28800/69092 Loss: 99.936 +32000/69092 Loss: 99.257 +35200/69092 Loss: 100.012 +38400/69092 Loss: 100.004 +41600/69092 Loss: 99.095 +44800/69092 Loss: 99.975 +48000/69092 Loss: 99.939 +51200/69092 Loss: 100.654 +54400/69092 Loss: 98.649 +57600/69092 Loss: 100.555 +60800/69092 Loss: 100.283 +64000/69092 Loss: 99.914 +67200/69092 Loss: 99.788 +Training time 0:10:28.842219 +Epoch: 40 Average loss: 99.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 191) +0/69092 Loss: 101.597 +3200/69092 Loss: 100.014 +6400/69092 Loss: 98.563 +9600/69092 Loss: 98.354 +12800/69092 Loss: 99.940 +16000/69092 Loss: 100.385 +19200/69092 Loss: 99.405 +22400/69092 Loss: 101.010 +25600/69092 Loss: 100.370 +28800/69092 Loss: 100.120 +32000/69092 Loss: 99.645 +35200/69092 Loss: 99.534 +38400/69092 Loss: 100.931 +41600/69092 Loss: 101.011 +44800/69092 Loss: 98.383 +48000/69092 Loss: 100.098 +51200/69092 Loss: 101.095 +54400/69092 Loss: 99.720 +57600/69092 Loss: 98.328 +60800/69092 Loss: 101.772 +64000/69092 Loss: 100.598 +67200/69092 Loss: 99.596 +Training time 0:10:45.286246 +Epoch: 41 Average loss: 99.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 192) +0/69092 Loss: 91.291 +3200/69092 Loss: 98.867 +6400/69092 Loss: 99.181 +9600/69092 Loss: 99.653 +12800/69092 Loss: 100.358 +16000/69092 Loss: 100.018 +19200/69092 Loss: 98.716 +22400/69092 Loss: 100.581 +25600/69092 Loss: 99.702 +28800/69092 Loss: 100.165 +32000/69092 Loss: 100.310 +35200/69092 Loss: 100.323 +38400/69092 Loss: 99.728 +41600/69092 Loss: 99.181 +44800/69092 Loss: 99.004 +48000/69092 Loss: 98.477 +51200/69092 Loss: 100.643 +54400/69092 Loss: 101.339 +57600/69092 Loss: 100.399 +60800/69092 Loss: 99.899 +64000/69092 Loss: 99.267 +67200/69092 Loss: 100.047 +Training time 0:10:18.492338 +Epoch: 42 Average loss: 99.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 193) +0/69092 Loss: 105.006 +3200/69092 Loss: 99.319 +6400/69092 Loss: 99.881 +9600/69092 Loss: 97.793 +12800/69092 Loss: 100.456 +16000/69092 Loss: 100.753 +19200/69092 Loss: 100.031 +22400/69092 Loss: 99.345 +25600/69092 Loss: 99.292 +28800/69092 Loss: 100.057 +32000/69092 Loss: 100.796 +35200/69092 Loss: 100.910 +38400/69092 Loss: 99.907 +41600/69092 Loss: 99.271 +44800/69092 Loss: 100.345 +48000/69092 Loss: 99.032 +51200/69092 Loss: 99.591 +54400/69092 Loss: 100.363 +57600/69092 Loss: 100.152 +60800/69092 Loss: 100.329 +64000/69092 Loss: 98.795 +67200/69092 Loss: 99.749 +Training time 0:10:32.316081 +Epoch: 43 Average loss: 99.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 194) +0/69092 Loss: 109.327 +3200/69092 Loss: 99.620 +6400/69092 Loss: 101.251 +9600/69092 Loss: 99.205 +12800/69092 Loss: 100.275 +16000/69092 Loss: 100.633 +19200/69092 Loss: 100.554 +22400/69092 Loss: 99.521 +25600/69092 Loss: 100.220 +28800/69092 Loss: 99.770 +32000/69092 Loss: 100.229 +35200/69092 Loss: 100.142 +38400/69092 Loss: 100.114 +41600/69092 Loss: 99.020 +44800/69092 Loss: 99.948 +48000/69092 Loss: 99.449 +51200/69092 Loss: 100.691 +54400/69092 Loss: 99.656 +57600/69092 Loss: 99.175 +60800/69092 Loss: 97.822 +64000/69092 Loss: 100.637 +67200/69092 Loss: 98.860 +Training time 0:10:27.955207 +Epoch: 44 Average loss: 99.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 195) +0/69092 Loss: 103.113 +3200/69092 Loss: 100.830 +6400/69092 Loss: 100.051 +9600/69092 Loss: 98.203 +12800/69092 Loss: 99.365 +16000/69092 Loss: 101.058 +19200/69092 Loss: 100.739 +22400/69092 Loss: 100.733 +25600/69092 Loss: 98.094 +28800/69092 Loss: 99.634 +32000/69092 Loss: 98.826 +35200/69092 Loss: 100.177 +38400/69092 Loss: 101.023 +41600/69092 Loss: 99.069 +44800/69092 Loss: 98.332 +48000/69092 Loss: 99.572 +51200/69092 Loss: 101.048 +54400/69092 Loss: 99.387 +57600/69092 Loss: 100.036 +60800/69092 Loss: 99.614 +64000/69092 Loss: 100.092 +67200/69092 Loss: 100.824 +Training time 0:10:20.707392 +Epoch: 45 Average loss: 99.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 196) +0/69092 Loss: 101.672 +3200/69092 Loss: 100.151 +6400/69092 Loss: 98.475 +9600/69092 Loss: 98.938 +12800/69092 Loss: 99.368 +16000/69092 Loss: 100.406 +19200/69092 Loss: 101.791 +22400/69092 Loss: 98.229 +25600/69092 Loss: 99.229 +28800/69092 Loss: 99.775 +32000/69092 Loss: 100.879 +35200/69092 Loss: 99.694 +38400/69092 Loss: 99.279 +41600/69092 Loss: 99.232 +44800/69092 Loss: 99.763 +48000/69092 Loss: 99.679 +51200/69092 Loss: 101.186 +54400/69092 Loss: 100.612 +57600/69092 Loss: 101.177 +60800/69092 Loss: 99.868 +64000/69092 Loss: 99.273 +67200/69092 Loss: 100.419 +Training time 0:10:36.786436 +Epoch: 46 Average loss: 99.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 197) +0/69092 Loss: 100.309 +3200/69092 Loss: 100.264 +6400/69092 Loss: 100.730 +9600/69092 Loss: 100.129 +12800/69092 Loss: 99.833 +16000/69092 Loss: 100.191 +19200/69092 Loss: 100.162 +22400/69092 Loss: 98.993 +25600/69092 Loss: 98.119 +28800/69092 Loss: 98.927 +32000/69092 Loss: 99.597 +35200/69092 Loss: 99.961 +38400/69092 Loss: 99.764 +41600/69092 Loss: 98.273 +44800/69092 Loss: 100.927 +48000/69092 Loss: 99.511 +51200/69092 Loss: 99.209 +54400/69092 Loss: 98.003 +57600/69092 Loss: 100.990 +60800/69092 Loss: 100.939 +64000/69092 Loss: 101.469 +67200/69092 Loss: 98.810 +Training time 0:10:40.852756 +Epoch: 47 Average loss: 99.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 198) +0/69092 Loss: 105.644 +3200/69092 Loss: 100.593 +6400/69092 Loss: 101.211 +9600/69092 Loss: 100.058 +12800/69092 Loss: 99.996 +16000/69092 Loss: 99.575 +19200/69092 Loss: 100.106 +22400/69092 Loss: 99.275 +25600/69092 Loss: 98.502 +28800/69092 Loss: 99.723 +32000/69092 Loss: 99.027 +35200/69092 Loss: 101.237 +38400/69092 Loss: 100.273 +41600/69092 Loss: 98.902 +44800/69092 Loss: 98.972 +48000/69092 Loss: 100.254 +51200/69092 Loss: 98.863 +54400/69092 Loss: 100.031 +57600/69092 Loss: 99.992 +60800/69092 Loss: 98.660 +64000/69092 Loss: 100.026 +67200/69092 Loss: 100.506 +Training time 0:10:26.034638 +Epoch: 48 Average loss: 99.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 199) +0/69092 Loss: 95.413 +3200/69092 Loss: 98.943 +6400/69092 Loss: 98.991 +9600/69092 Loss: 100.614 +12800/69092 Loss: 100.537 +16000/69092 Loss: 98.366 +19200/69092 Loss: 100.623 +22400/69092 Loss: 100.206 +25600/69092 Loss: 99.816 +28800/69092 Loss: 99.232 +32000/69092 Loss: 98.806 +35200/69092 Loss: 100.646 +38400/69092 Loss: 99.282 +41600/69092 Loss: 100.115 +44800/69092 Loss: 99.019 +48000/69092 Loss: 99.151 +51200/69092 Loss: 99.442 +54400/69092 Loss: 100.448 +57600/69092 Loss: 101.120 +60800/69092 Loss: 100.314 +64000/69092 Loss: 100.010 +67200/69092 Loss: 98.674 +Training time 0:10:21.240841 +Epoch: 49 Average loss: 99.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 200) +0/69092 Loss: 102.408 +3200/69092 Loss: 100.761 +6400/69092 Loss: 97.953 +9600/69092 Loss: 98.630 +12800/69092 Loss: 98.831 +16000/69092 Loss: 98.589 +19200/69092 Loss: 99.892 +22400/69092 Loss: 99.324 +25600/69092 Loss: 101.391 +28800/69092 Loss: 99.549 +32000/69092 Loss: 99.111 +35200/69092 Loss: 99.079 +38400/69092 Loss: 100.512 +41600/69092 Loss: 100.609 +44800/69092 Loss: 99.491 +48000/69092 Loss: 98.808 +51200/69092 Loss: 100.457 +54400/69092 Loss: 99.549 +57600/69092 Loss: 99.309 +60800/69092 Loss: 100.732 +64000/69092 Loss: 99.489 +67200/69092 Loss: 100.023 +Training time 0:10:25.492892 +Epoch: 50 Average loss: 99.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 201) +0/69092 Loss: 97.946 +3200/69092 Loss: 99.103 +6400/69092 Loss: 99.525 +9600/69092 Loss: 100.505 +12800/69092 Loss: 99.001 +16000/69092 Loss: 98.883 +19200/69092 Loss: 99.661 +22400/69092 Loss: 100.461 +25600/69092 Loss: 100.764 +28800/69092 Loss: 100.174 +32000/69092 Loss: 98.131 +35200/69092 Loss: 98.357 +38400/69092 Loss: 100.394 +41600/69092 Loss: 100.652 +44800/69092 Loss: 99.453 +48000/69092 Loss: 99.669 +51200/69092 Loss: 99.848 +54400/69092 Loss: 99.853 +57600/69092 Loss: 99.930 +60800/69092 Loss: 99.252 +64000/69092 Loss: 99.663 +67200/69092 Loss: 99.385 +Training time 0:10:11.897027 +Epoch: 51 Average loss: 99.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 202) +0/69092 Loss: 100.107 +3200/69092 Loss: 99.804 +6400/69092 Loss: 99.210 +9600/69092 Loss: 98.463 +12800/69092 Loss: 98.645 +16000/69092 Loss: 98.991 +19200/69092 Loss: 100.865 +22400/69092 Loss: 99.669 +25600/69092 Loss: 99.627 +28800/69092 Loss: 99.284 +32000/69092 Loss: 98.647 +35200/69092 Loss: 100.887 +38400/69092 Loss: 98.235 +41600/69092 Loss: 98.853 +44800/69092 Loss: 100.267 +48000/69092 Loss: 99.703 +51200/69092 Loss: 99.212 +54400/69092 Loss: 99.498 +57600/69092 Loss: 99.871 +60800/69092 Loss: 100.398 +64000/69092 Loss: 99.988 +67200/69092 Loss: 100.443 +Training time 0:10:33.920889 +Epoch: 52 Average loss: 99.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 203) +0/69092 Loss: 102.239 +3200/69092 Loss: 100.075 +6400/69092 Loss: 98.246 +9600/69092 Loss: 98.537 +12800/69092 Loss: 100.331 +16000/69092 Loss: 100.385 +19200/69092 Loss: 98.937 +22400/69092 Loss: 98.990 +25600/69092 Loss: 99.417 +28800/69092 Loss: 99.268 +32000/69092 Loss: 100.513 +35200/69092 Loss: 99.251 +38400/69092 Loss: 100.531 +41600/69092 Loss: 98.965 +44800/69092 Loss: 97.725 +48000/69092 Loss: 100.967 +51200/69092 Loss: 98.503 +54400/69092 Loss: 99.213 +57600/69092 Loss: 100.521 +60800/69092 Loss: 100.201 +64000/69092 Loss: 98.700 +67200/69092 Loss: 99.567 +Training time 0:10:38.298598 +Epoch: 53 Average loss: 99.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 204) +0/69092 Loss: 105.655 +3200/69092 Loss: 101.401 +6400/69092 Loss: 99.467 +9600/69092 Loss: 98.936 +12800/69092 Loss: 99.665 +16000/69092 Loss: 99.952 +19200/69092 Loss: 98.737 +22400/69092 Loss: 98.863 +25600/69092 Loss: 97.455 +28800/69092 Loss: 99.410 +32000/69092 Loss: 98.793 +35200/69092 Loss: 99.978 +38400/69092 Loss: 99.341 +41600/69092 Loss: 100.227 +44800/69092 Loss: 100.890 +48000/69092 Loss: 97.993 +51200/69092 Loss: 99.457 +54400/69092 Loss: 99.362 +57600/69092 Loss: 99.603 +60800/69092 Loss: 100.673 +64000/69092 Loss: 100.219 +67200/69092 Loss: 101.139 +Training time 0:10:21.205873 +Epoch: 54 Average loss: 99.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 205) +0/69092 Loss: 102.741 +3200/69092 Loss: 99.815 +6400/69092 Loss: 98.845 +9600/69092 Loss: 99.791 +12800/69092 Loss: 98.744 +16000/69092 Loss: 98.616 +19200/69092 Loss: 99.934 +22400/69092 Loss: 100.888 +25600/69092 Loss: 100.002 +28800/69092 Loss: 99.425 +32000/69092 Loss: 100.970 +35200/69092 Loss: 98.703 +38400/69092 Loss: 99.776 +41600/69092 Loss: 99.547 +44800/69092 Loss: 99.242 +48000/69092 Loss: 100.630 +51200/69092 Loss: 100.067 +54400/69092 Loss: 98.791 +57600/69092 Loss: 98.962 +60800/69092 Loss: 99.509 +64000/69092 Loss: 99.143 +67200/69092 Loss: 100.739 +Training time 0:10:28.607954 +Epoch: 55 Average loss: 99.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 206) +0/69092 Loss: 101.518 +3200/69092 Loss: 99.409 +6400/69092 Loss: 100.732 +9600/69092 Loss: 98.345 +12800/69092 Loss: 98.863 +16000/69092 Loss: 99.533 +19200/69092 Loss: 97.889 +22400/69092 Loss: 99.086 +25600/69092 Loss: 98.706 +28800/69092 Loss: 99.156 +32000/69092 Loss: 100.096 +35200/69092 Loss: 99.982 +38400/69092 Loss: 100.506 +41600/69092 Loss: 99.459 +44800/69092 Loss: 100.491 +48000/69092 Loss: 100.745 +51200/69092 Loss: 99.351 +54400/69092 Loss: 99.836 +57600/69092 Loss: 98.923 +60800/69092 Loss: 98.979 +64000/69092 Loss: 99.750 +67200/69092 Loss: 99.852 +Training time 0:10:32.159731 +Epoch: 56 Average loss: 99.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 207) +0/69092 Loss: 109.474 +3200/69092 Loss: 98.843 +6400/69092 Loss: 97.963 +9600/69092 Loss: 97.940 +12800/69092 Loss: 101.564 +16000/69092 Loss: 99.928 +19200/69092 Loss: 99.958 +22400/69092 Loss: 100.826 +25600/69092 Loss: 99.833 +28800/69092 Loss: 99.193 +32000/69092 Loss: 99.281 +35200/69092 Loss: 101.295 +38400/69092 Loss: 99.704 +41600/69092 Loss: 98.427 +44800/69092 Loss: 99.495 +48000/69092 Loss: 98.707 +51200/69092 Loss: 100.527 +54400/69092 Loss: 99.484 +57600/69092 Loss: 99.227 +60800/69092 Loss: 97.992 +64000/69092 Loss: 99.812 +67200/69092 Loss: 99.742 +Training time 0:10:26.434714 +Epoch: 57 Average loss: 99.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 208) +0/69092 Loss: 89.529 +3200/69092 Loss: 99.274 +6400/69092 Loss: 98.912 +9600/69092 Loss: 99.182 +12800/69092 Loss: 101.189 +16000/69092 Loss: 100.550 +19200/69092 Loss: 99.465 +22400/69092 Loss: 100.113 +25600/69092 Loss: 99.419 +28800/69092 Loss: 99.792 +32000/69092 Loss: 100.569 +35200/69092 Loss: 99.029 +38400/69092 Loss: 99.296 +41600/69092 Loss: 99.008 +44800/69092 Loss: 99.276 +48000/69092 Loss: 100.129 +51200/69092 Loss: 99.816 +54400/69092 Loss: 99.758 +57600/69092 Loss: 99.577 +60800/69092 Loss: 99.559 +64000/69092 Loss: 99.507 +67200/69092 Loss: 99.881 +Training time 0:10:19.568203 +Epoch: 58 Average loss: 99.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 209) +0/69092 Loss: 102.095 +3200/69092 Loss: 98.804 +6400/69092 Loss: 99.094 +9600/69092 Loss: 101.257 +12800/69092 Loss: 100.161 +16000/69092 Loss: 100.096 +19200/69092 Loss: 98.840 +22400/69092 Loss: 98.773 +25600/69092 Loss: 99.646 +28800/69092 Loss: 98.767 +32000/69092 Loss: 98.419 +35200/69092 Loss: 99.061 +38400/69092 Loss: 99.012 +41600/69092 Loss: 99.509 +44800/69092 Loss: 97.732 +48000/69092 Loss: 98.475 +51200/69092 Loss: 100.461 +54400/69092 Loss: 100.377 +57600/69092 Loss: 98.997 +60800/69092 Loss: 100.422 +64000/69092 Loss: 99.270 +67200/69092 Loss: 100.090 +Training time 0:10:40.459240 +Epoch: 59 Average loss: 99.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 210) +0/69092 Loss: 95.130 +3200/69092 Loss: 98.785 +6400/69092 Loss: 99.397 +9600/69092 Loss: 100.195 +12800/69092 Loss: 98.950 +16000/69092 Loss: 99.349 +19200/69092 Loss: 99.120 +22400/69092 Loss: 99.751 +25600/69092 Loss: 99.621 +28800/69092 Loss: 99.267 +32000/69092 Loss: 98.711 +35200/69092 Loss: 99.986 +38400/69092 Loss: 100.057 +41600/69092 Loss: 98.161 +44800/69092 Loss: 100.598 +48000/69092 Loss: 100.427 +51200/69092 Loss: 99.950 +54400/69092 Loss: 99.130 +57600/69092 Loss: 100.212 +60800/69092 Loss: 100.297 +64000/69092 Loss: 97.729 +67200/69092 Loss: 98.686 +Training time 0:10:32.378114 +Epoch: 60 Average loss: 99.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 211) +0/69092 Loss: 97.846 +3200/69092 Loss: 99.329 +6400/69092 Loss: 100.636 +9600/69092 Loss: 99.569 +12800/69092 Loss: 99.186 +16000/69092 Loss: 99.478 +19200/69092 Loss: 100.048 +22400/69092 Loss: 99.767 +25600/69092 Loss: 98.263 +28800/69092 Loss: 99.787 +32000/69092 Loss: 99.854 +35200/69092 Loss: 99.202 +38400/69092 Loss: 98.750 +41600/69092 Loss: 99.060 +44800/69092 Loss: 100.517 +48000/69092 Loss: 98.832 +51200/69092 Loss: 100.595 +54400/69092 Loss: 97.948 +57600/69092 Loss: 100.756 +60800/69092 Loss: 97.541 +64000/69092 Loss: 99.417 +67200/69092 Loss: 99.893 +Training time 0:10:28.694864 +Epoch: 61 Average loss: 99.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 212) +0/69092 Loss: 93.360 +3200/69092 Loss: 98.589 +6400/69092 Loss: 98.516 +9600/69092 Loss: 98.308 +12800/69092 Loss: 101.047 +16000/69092 Loss: 100.486 +19200/69092 Loss: 100.801 +22400/69092 Loss: 99.115 +25600/69092 Loss: 99.551 +28800/69092 Loss: 99.936 +32000/69092 Loss: 99.656 +35200/69092 Loss: 98.617 +38400/69092 Loss: 97.997 +41600/69092 Loss: 98.681 +44800/69092 Loss: 100.006 +48000/69092 Loss: 99.858 +51200/69092 Loss: 97.644 +54400/69092 Loss: 100.042 +57600/69092 Loss: 100.402 +60800/69092 Loss: 99.417 +64000/69092 Loss: 99.340 +67200/69092 Loss: 100.697 +Training time 0:10:31.409032 +Epoch: 62 Average loss: 99.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 213) +0/69092 Loss: 84.580 +3200/69092 Loss: 99.229 +6400/69092 Loss: 99.526 +9600/69092 Loss: 99.732 +12800/69092 Loss: 99.422 +16000/69092 Loss: 99.754 +19200/69092 Loss: 98.123 +22400/69092 Loss: 99.946 +25600/69092 Loss: 99.046 +28800/69092 Loss: 100.582 +32000/69092 Loss: 100.366 +35200/69092 Loss: 99.814 +38400/69092 Loss: 97.370 +41600/69092 Loss: 99.952 +44800/69092 Loss: 99.620 +48000/69092 Loss: 99.263 +51200/69092 Loss: 97.473 +54400/69092 Loss: 99.297 +57600/69092 Loss: 98.905 +60800/69092 Loss: 98.707 +64000/69092 Loss: 100.912 +67200/69092 Loss: 100.969 +Training time 0:10:17.362485 +Epoch: 63 Average loss: 99.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 214) +0/69092 Loss: 114.400 +3200/69092 Loss: 97.764 +6400/69092 Loss: 99.099 +9600/69092 Loss: 98.859 +12800/69092 Loss: 97.764 +16000/69092 Loss: 99.153 +19200/69092 Loss: 97.880 +22400/69092 Loss: 99.759 +25600/69092 Loss: 100.466 +28800/69092 Loss: 99.716 +32000/69092 Loss: 100.597 +35200/69092 Loss: 100.961 +38400/69092 Loss: 97.704 +41600/69092 Loss: 101.317 +44800/69092 Loss: 99.530 +48000/69092 Loss: 100.704 +51200/69092 Loss: 99.413 +54400/69092 Loss: 99.026 +57600/69092 Loss: 100.211 +60800/69092 Loss: 98.438 +64000/69092 Loss: 100.655 +67200/69092 Loss: 98.607 +Training time 0:10:36.457637 +Epoch: 64 Average loss: 99.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 215) +0/69092 Loss: 96.599 +3200/69092 Loss: 98.555 +6400/69092 Loss: 99.314 +9600/69092 Loss: 99.056 +12800/69092 Loss: 98.790 +16000/69092 Loss: 98.815 +19200/69092 Loss: 98.971 +22400/69092 Loss: 99.589 +25600/69092 Loss: 100.497 +28800/69092 Loss: 99.577 +32000/69092 Loss: 98.631 +35200/69092 Loss: 99.650 +38400/69092 Loss: 99.623 +41600/69092 Loss: 100.140 +44800/69092 Loss: 97.560 +48000/69092 Loss: 98.809 +51200/69092 Loss: 99.295 +54400/69092 Loss: 99.682 +57600/69092 Loss: 100.089 +60800/69092 Loss: 100.863 +64000/69092 Loss: 100.211 +67200/69092 Loss: 98.723 +Training time 0:10:27.230790 +Epoch: 65 Average loss: 99.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 216) +0/69092 Loss: 100.366 +3200/69092 Loss: 99.686 +6400/69092 Loss: 98.964 +9600/69092 Loss: 99.077 +12800/69092 Loss: 99.877 +16000/69092 Loss: 98.458 +19200/69092 Loss: 100.246 +22400/69092 Loss: 97.611 +25600/69092 Loss: 99.237 +28800/69092 Loss: 100.466 +32000/69092 Loss: 98.007 +35200/69092 Loss: 97.007 +38400/69092 Loss: 99.961 +41600/69092 Loss: 99.189 +44800/69092 Loss: 99.750 +48000/69092 Loss: 100.621 +51200/69092 Loss: 100.004 +54400/69092 Loss: 98.347 +57600/69092 Loss: 98.564 +60800/69092 Loss: 101.066 +64000/69092 Loss: 100.448 +67200/69092 Loss: 99.723 +Training time 0:10:22.426309 +Epoch: 66 Average loss: 99.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 217) +0/69092 Loss: 98.789 +3200/69092 Loss: 99.339 +6400/69092 Loss: 98.521 +9600/69092 Loss: 98.536 +12800/69092 Loss: 98.876 +16000/69092 Loss: 99.705 +19200/69092 Loss: 98.964 +22400/69092 Loss: 98.826 +25600/69092 Loss: 99.523 +28800/69092 Loss: 99.250 +32000/69092 Loss: 98.844 +35200/69092 Loss: 99.166 +38400/69092 Loss: 101.091 +41600/69092 Loss: 99.869 +44800/69092 Loss: 99.679 +48000/69092 Loss: 99.413 +51200/69092 Loss: 100.144 +54400/69092 Loss: 99.404 +57600/69092 Loss: 98.200 +60800/69092 Loss: 100.960 +64000/69092 Loss: 100.765 +67200/69092 Loss: 101.017 +Training time 0:10:40.205976 +Epoch: 67 Average loss: 99.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 218) +0/69092 Loss: 109.803 +3200/69092 Loss: 99.957 +6400/69092 Loss: 99.134 +9600/69092 Loss: 100.166 +12800/69092 Loss: 98.530 +16000/69092 Loss: 98.898 +19200/69092 Loss: 98.245 +22400/69092 Loss: 100.597 +25600/69092 Loss: 100.457 +28800/69092 Loss: 98.862 +32000/69092 Loss: 97.467 +35200/69092 Loss: 99.263 +38400/69092 Loss: 99.180 +41600/69092 Loss: 99.412 +44800/69092 Loss: 99.609 +48000/69092 Loss: 99.519 +51200/69092 Loss: 100.844 +54400/69092 Loss: 97.654 +57600/69092 Loss: 98.671 +60800/69092 Loss: 99.506 +64000/69092 Loss: 99.574 +67200/69092 Loss: 99.087 +Training time 0:10:28.822329 +Epoch: 68 Average loss: 99.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 219) +0/69092 Loss: 97.867 +3200/69092 Loss: 98.609 +6400/69092 Loss: 98.641 +9600/69092 Loss: 99.894 +12800/69092 Loss: 100.005 +16000/69092 Loss: 99.819 +19200/69092 Loss: 98.976 +22400/69092 Loss: 98.451 +25600/69092 Loss: 98.603 +28800/69092 Loss: 98.912 +32000/69092 Loss: 99.339 +35200/69092 Loss: 101.135 +38400/69092 Loss: 99.092 +41600/69092 Loss: 98.658 +44800/69092 Loss: 98.752 +48000/69092 Loss: 97.118 +51200/69092 Loss: 100.844 +54400/69092 Loss: 99.823 +57600/69092 Loss: 99.695 +60800/69092 Loss: 101.050 +64000/69092 Loss: 97.502 +67200/69092 Loss: 99.955 +Training time 0:10:18.164627 +Epoch: 69 Average loss: 99.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 220) +0/69092 Loss: 94.395 +3200/69092 Loss: 100.399 +6400/69092 Loss: 100.678 +9600/69092 Loss: 99.434 +12800/69092 Loss: 100.388 +16000/69092 Loss: 99.588 +19200/69092 Loss: 99.382 +22400/69092 Loss: 97.942 +25600/69092 Loss: 99.185 +28800/69092 Loss: 98.890 +32000/69092 Loss: 99.167 +35200/69092 Loss: 100.040 +38400/69092 Loss: 99.774 +41600/69092 Loss: 98.856 +44800/69092 Loss: 99.065 +48000/69092 Loss: 98.722 +51200/69092 Loss: 97.716 +54400/69092 Loss: 100.949 +57600/69092 Loss: 98.078 +60800/69092 Loss: 99.115 +64000/69092 Loss: 99.518 +67200/69092 Loss: 98.646 +Training time 0:10:37.524317 +Epoch: 70 Average loss: 99.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 221) +0/69092 Loss: 105.368 +3200/69092 Loss: 99.256 +6400/69092 Loss: 99.528 +9600/69092 Loss: 100.234 +12800/69092 Loss: 99.197 +16000/69092 Loss: 100.231 +19200/69092 Loss: 98.183 +22400/69092 Loss: 98.898 +25600/69092 Loss: 99.552 +28800/69092 Loss: 99.032 +32000/69092 Loss: 100.158 +35200/69092 Loss: 97.229 +38400/69092 Loss: 99.679 +41600/69092 Loss: 99.922 +44800/69092 Loss: 99.412 +48000/69092 Loss: 99.900 +51200/69092 Loss: 99.628 +54400/69092 Loss: 97.570 +57600/69092 Loss: 99.811 +60800/69092 Loss: 100.126 +64000/69092 Loss: 97.179 +67200/69092 Loss: 99.324 +Training time 0:10:31.258195 +Epoch: 71 Average loss: 99.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 222) +0/69092 Loss: 104.108 +3200/69092 Loss: 98.577 +6400/69092 Loss: 99.775 +9600/69092 Loss: 100.890 +12800/69092 Loss: 97.435 +16000/69092 Loss: 97.928 +19200/69092 Loss: 98.478 +22400/69092 Loss: 100.490 +25600/69092 Loss: 99.116 +28800/69092 Loss: 99.096 +32000/69092 Loss: 97.359 +35200/69092 Loss: 99.158 +38400/69092 Loss: 101.062 +41600/69092 Loss: 99.293 +44800/69092 Loss: 99.071 +48000/69092 Loss: 100.375 +51200/69092 Loss: 101.212 +54400/69092 Loss: 99.896 +57600/69092 Loss: 99.020 +60800/69092 Loss: 99.228 +64000/69092 Loss: 99.576 +67200/69092 Loss: 98.851 +Training time 0:10:30.945296 +Epoch: 72 Average loss: 99.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 223) +0/69092 Loss: 93.491 +3200/69092 Loss: 99.093 +6400/69092 Loss: 99.817 +9600/69092 Loss: 99.590 +12800/69092 Loss: 98.515 +16000/69092 Loss: 99.938 +19200/69092 Loss: 99.258 +22400/69092 Loss: 98.386 +25600/69092 Loss: 102.214 +28800/69092 Loss: 99.706 +32000/69092 Loss: 98.739 +35200/69092 Loss: 98.925 +38400/69092 Loss: 99.295 +41600/69092 Loss: 98.350 +44800/69092 Loss: 98.394 +48000/69092 Loss: 99.782 +51200/69092 Loss: 98.796 +54400/69092 Loss: 100.287 +57600/69092 Loss: 100.266 +60800/69092 Loss: 99.069 +64000/69092 Loss: 99.144 +67200/69092 Loss: 99.899 +Training time 0:10:31.165774 +Epoch: 73 Average loss: 99.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 224) +0/69092 Loss: 106.387 +3200/69092 Loss: 98.902 +6400/69092 Loss: 100.000 +9600/69092 Loss: 98.327 +12800/69092 Loss: 99.572 +16000/69092 Loss: 99.375 +19200/69092 Loss: 98.281 +22400/69092 Loss: 99.901 +25600/69092 Loss: 99.264 +28800/69092 Loss: 98.952 +32000/69092 Loss: 100.325 +35200/69092 Loss: 99.743 +38400/69092 Loss: 99.838 +41600/69092 Loss: 100.191 +44800/69092 Loss: 99.107 +48000/69092 Loss: 98.932 +51200/69092 Loss: 99.173 +54400/69092 Loss: 98.154 +57600/69092 Loss: 99.257 +60800/69092 Loss: 98.945 +64000/69092 Loss: 99.543 +67200/69092 Loss: 99.801 +Training time 0:10:34.406944 +Epoch: 74 Average loss: 99.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 225) +0/69092 Loss: 98.389 +3200/69092 Loss: 100.869 +6400/69092 Loss: 98.677 +9600/69092 Loss: 98.637 +12800/69092 Loss: 97.887 +16000/69092 Loss: 98.800 +19200/69092 Loss: 97.284 +22400/69092 Loss: 99.148 +25600/69092 Loss: 99.804 +28800/69092 Loss: 99.968 +32000/69092 Loss: 100.616 +35200/69092 Loss: 99.178 +38400/69092 Loss: 98.575 +41600/69092 Loss: 98.959 +44800/69092 Loss: 99.988 +48000/69092 Loss: 99.310 +51200/69092 Loss: 99.221 +54400/69092 Loss: 100.472 +57600/69092 Loss: 99.669 +60800/69092 Loss: 100.452 +64000/69092 Loss: 97.570 +67200/69092 Loss: 99.181 +Training time 0:10:17.411851 +Epoch: 75 Average loss: 99.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 226) +0/69092 Loss: 98.780 +3200/69092 Loss: 99.397 +6400/69092 Loss: 99.242 +9600/69092 Loss: 100.508 +12800/69092 Loss: 99.479 +16000/69092 Loss: 100.158 +19200/69092 Loss: 99.054 +22400/69092 Loss: 98.258 +25600/69092 Loss: 98.245 +28800/69092 Loss: 99.051 +32000/69092 Loss: 98.291 +35200/69092 Loss: 99.707 +38400/69092 Loss: 99.244 +41600/69092 Loss: 100.194 +44800/69092 Loss: 98.354 +48000/69092 Loss: 99.872 +51200/69092 Loss: 99.970 +54400/69092 Loss: 98.065 +57600/69092 Loss: 98.466 +60800/69092 Loss: 98.341 +64000/69092 Loss: 99.715 +67200/69092 Loss: 100.325 +Training time 0:10:38.849781 +Epoch: 76 Average loss: 99.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 227) +0/69092 Loss: 102.952 +3200/69092 Loss: 100.087 +6400/69092 Loss: 99.581 +9600/69092 Loss: 100.062 +12800/69092 Loss: 100.268 +16000/69092 Loss: 99.628 +19200/69092 Loss: 99.227 +22400/69092 Loss: 99.407 +25600/69092 Loss: 97.170 +28800/69092 Loss: 100.830 +32000/69092 Loss: 97.849 +35200/69092 Loss: 100.026 +38400/69092 Loss: 99.145 +41600/69092 Loss: 98.742 +44800/69092 Loss: 100.311 +48000/69092 Loss: 99.138 +51200/69092 Loss: 98.717 +54400/69092 Loss: 98.835 +57600/69092 Loss: 98.037 +60800/69092 Loss: 97.376 +64000/69092 Loss: 98.881 +67200/69092 Loss: 99.222 +Training time 0:10:26.673666 +Epoch: 77 Average loss: 99.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 228) +0/69092 Loss: 87.921 +3200/69092 Loss: 100.402 +6400/69092 Loss: 99.976 +9600/69092 Loss: 98.764 +12800/69092 Loss: 98.846 +16000/69092 Loss: 100.066 +19200/69092 Loss: 98.141 +22400/69092 Loss: 99.022 +25600/69092 Loss: 97.897 +28800/69092 Loss: 99.372 +32000/69092 Loss: 100.833 +35200/69092 Loss: 99.021 +38400/69092 Loss: 99.166 +41600/69092 Loss: 99.064 +44800/69092 Loss: 98.650 +48000/69092 Loss: 100.626 +51200/69092 Loss: 99.083 +54400/69092 Loss: 99.847 +57600/69092 Loss: 98.998 +60800/69092 Loss: 98.627 +64000/69092 Loss: 98.806 +67200/69092 Loss: 99.728 +Training time 0:10:37.664902 +Epoch: 78 Average loss: 99.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 229) +0/69092 Loss: 109.811 +3200/69092 Loss: 100.358 +6400/69092 Loss: 101.364 +9600/69092 Loss: 98.614 +12800/69092 Loss: 98.648 +16000/69092 Loss: 98.593 +19200/69092 Loss: 97.558 +22400/69092 Loss: 99.017 +25600/69092 Loss: 100.614 +28800/69092 Loss: 99.702 +32000/69092 Loss: 98.807 +35200/69092 Loss: 99.061 +38400/69092 Loss: 98.723 +41600/69092 Loss: 98.554 +44800/69092 Loss: 99.565 +48000/69092 Loss: 98.677 +51200/69092 Loss: 99.086 +54400/69092 Loss: 99.887 +57600/69092 Loss: 100.090 +60800/69092 Loss: 99.174 +64000/69092 Loss: 98.506 +67200/69092 Loss: 98.298 +Training time 0:10:33.331640 +Epoch: 79 Average loss: 99.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 230) +0/69092 Loss: 94.283 +3200/69092 Loss: 99.549 +6400/69092 Loss: 98.015 +9600/69092 Loss: 98.759 +12800/69092 Loss: 99.363 +16000/69092 Loss: 100.129 +19200/69092 Loss: 99.409 +22400/69092 Loss: 99.431 +25600/69092 Loss: 100.150 +28800/69092 Loss: 99.732 +32000/69092 Loss: 100.437 +35200/69092 Loss: 98.752 +38400/69092 Loss: 97.004 +41600/69092 Loss: 98.458 +44800/69092 Loss: 99.319 +48000/69092 Loss: 98.833 +51200/69092 Loss: 99.067 +54400/69092 Loss: 98.386 +57600/69092 Loss: 98.963 +60800/69092 Loss: 99.550 +64000/69092 Loss: 100.058 +67200/69092 Loss: 100.280 +Training time 0:10:23.848317 +Epoch: 80 Average loss: 99.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 231) +0/69092 Loss: 101.924 +3200/69092 Loss: 99.985 +6400/69092 Loss: 97.544 +9600/69092 Loss: 98.280 +12800/69092 Loss: 97.306 +16000/69092 Loss: 99.610 +19200/69092 Loss: 99.412 +22400/69092 Loss: 99.224 +25600/69092 Loss: 99.132 +28800/69092 Loss: 99.296 +32000/69092 Loss: 100.490 +35200/69092 Loss: 98.591 +38400/69092 Loss: 99.881 +41600/69092 Loss: 98.775 +44800/69092 Loss: 99.705 +48000/69092 Loss: 100.777 +51200/69092 Loss: 97.449 +54400/69092 Loss: 100.868 +57600/69092 Loss: 100.173 +60800/69092 Loss: 99.337 +64000/69092 Loss: 100.408 +67200/69092 Loss: 98.402 +Training time 0:10:36.524471 +Epoch: 81 Average loss: 99.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 232) +0/69092 Loss: 103.526 +3200/69092 Loss: 99.547 +6400/69092 Loss: 98.269 +9600/69092 Loss: 98.637 +12800/69092 Loss: 99.514 +16000/69092 Loss: 99.068 +19200/69092 Loss: 99.232 +22400/69092 Loss: 99.161 +25600/69092 Loss: 98.426 +28800/69092 Loss: 100.371 +32000/69092 Loss: 99.635 +35200/69092 Loss: 99.191 +38400/69092 Loss: 97.908 +41600/69092 Loss: 100.038 +44800/69092 Loss: 99.239 +48000/69092 Loss: 99.931 +51200/69092 Loss: 97.986 +54400/69092 Loss: 99.182 +57600/69092 Loss: 99.678 +60800/69092 Loss: 99.397 +64000/69092 Loss: 98.969 +67200/69092 Loss: 100.575 +Training time 0:10:48.089806 +Epoch: 82 Average loss: 99.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 233) +0/69092 Loss: 92.129 +3200/69092 Loss: 100.658 +6400/69092 Loss: 98.405 +9600/69092 Loss: 98.366 +12800/69092 Loss: 98.647 +16000/69092 Loss: 96.981 +19200/69092 Loss: 99.084 +22400/69092 Loss: 99.128 +25600/69092 Loss: 100.695 +28800/69092 Loss: 98.688 +32000/69092 Loss: 99.727 +35200/69092 Loss: 98.280 +38400/69092 Loss: 99.637 +41600/69092 Loss: 99.496 +44800/69092 Loss: 99.707 +48000/69092 Loss: 98.748 +51200/69092 Loss: 100.248 +54400/69092 Loss: 98.489 +57600/69092 Loss: 100.189 +60800/69092 Loss: 98.423 +64000/69092 Loss: 99.148 +67200/69092 Loss: 99.478 +Training time 0:09:45.925560 +Epoch: 83 Average loss: 99.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 234) +0/69092 Loss: 93.463 +3200/69092 Loss: 99.626 +6400/69092 Loss: 97.580 +9600/69092 Loss: 98.217 +12800/69092 Loss: 98.922 +16000/69092 Loss: 99.757 +19200/69092 Loss: 100.830 +22400/69092 Loss: 99.100 +25600/69092 Loss: 99.799 +28800/69092 Loss: 100.161 +32000/69092 Loss: 100.623 +35200/69092 Loss: 97.484 +38400/69092 Loss: 97.975 +41600/69092 Loss: 97.973 +44800/69092 Loss: 99.185 +48000/69092 Loss: 99.038 +51200/69092 Loss: 99.636 +54400/69092 Loss: 99.811 +57600/69092 Loss: 100.309 +60800/69092 Loss: 97.666 +64000/69092 Loss: 97.866 +67200/69092 Loss: 99.766 +Training time 0:10:16.510681 +Epoch: 84 Average loss: 99.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 235) +0/69092 Loss: 102.812 +3200/69092 Loss: 98.052 +6400/69092 Loss: 99.620 +9600/69092 Loss: 99.427 +12800/69092 Loss: 99.510 +16000/69092 Loss: 101.195 +19200/69092 Loss: 100.284 +22400/69092 Loss: 98.965 +25600/69092 Loss: 97.533 +28800/69092 Loss: 98.793 +32000/69092 Loss: 98.119 +35200/69092 Loss: 97.290 +38400/69092 Loss: 99.500 +41600/69092 Loss: 99.102 +44800/69092 Loss: 101.072 +48000/69092 Loss: 99.608 +51200/69092 Loss: 98.555 +54400/69092 Loss: 98.967 +57600/69092 Loss: 97.408 +60800/69092 Loss: 99.532 +64000/69092 Loss: 99.765 +67200/69092 Loss: 97.934 +Training time 0:10:15.160627 +Epoch: 85 Average loss: 99.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 236) +0/69092 Loss: 102.621 +3200/69092 Loss: 99.022 +6400/69092 Loss: 98.307 +9600/69092 Loss: 100.852 +12800/69092 Loss: 99.912 +16000/69092 Loss: 99.109 +19200/69092 Loss: 100.314 +22400/69092 Loss: 97.830 +25600/69092 Loss: 100.599 +28800/69092 Loss: 99.092 +32000/69092 Loss: 99.244 +35200/69092 Loss: 97.937 +38400/69092 Loss: 100.204 +41600/69092 Loss: 99.820 +44800/69092 Loss: 99.690 +48000/69092 Loss: 98.882 +51200/69092 Loss: 97.975 +54400/69092 Loss: 98.407 +57600/69092 Loss: 98.634 +60800/69092 Loss: 99.031 +64000/69092 Loss: 99.036 +67200/69092 Loss: 98.991 +Training time 0:10:45.680722 +Epoch: 86 Average loss: 99.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 237) +0/69092 Loss: 104.285 +3200/69092 Loss: 99.902 +6400/69092 Loss: 98.074 +9600/69092 Loss: 98.142 +12800/69092 Loss: 98.598 +16000/69092 Loss: 98.965 +19200/69092 Loss: 99.079 +22400/69092 Loss: 98.010 +25600/69092 Loss: 99.684 +28800/69092 Loss: 97.595 +32000/69092 Loss: 98.295 +35200/69092 Loss: 99.976 +38400/69092 Loss: 99.888 +41600/69092 Loss: 99.573 +44800/69092 Loss: 99.795 +48000/69092 Loss: 99.878 +51200/69092 Loss: 99.294 +54400/69092 Loss: 100.283 +57600/69092 Loss: 98.221 +60800/69092 Loss: 99.276 +64000/69092 Loss: 97.463 +67200/69092 Loss: 100.611 +Training time 0:10:12.430585 +Epoch: 87 Average loss: 99.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 238) +0/69092 Loss: 101.892 +3200/69092 Loss: 100.164 +6400/69092 Loss: 99.467 +9600/69092 Loss: 98.335 +12800/69092 Loss: 99.113 +16000/69092 Loss: 99.338 +19200/69092 Loss: 99.825 +22400/69092 Loss: 100.239 +25600/69092 Loss: 98.354 +28800/69092 Loss: 97.892 +32000/69092 Loss: 98.672 +35200/69092 Loss: 98.835 +38400/69092 Loss: 98.258 +41600/69092 Loss: 100.696 +44800/69092 Loss: 98.587 +48000/69092 Loss: 99.385 +51200/69092 Loss: 98.473 +54400/69092 Loss: 98.644 +57600/69092 Loss: 100.082 +60800/69092 Loss: 99.625 +64000/69092 Loss: 99.819 +67200/69092 Loss: 99.417 +Training time 0:10:32.449104 +Epoch: 88 Average loss: 99.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 239) +0/69092 Loss: 105.595 +3200/69092 Loss: 98.453 +6400/69092 Loss: 97.851 +9600/69092 Loss: 98.561 +12800/69092 Loss: 101.079 +16000/69092 Loss: 99.070 +19200/69092 Loss: 99.938 +22400/69092 Loss: 99.074 +25600/69092 Loss: 99.105 +28800/69092 Loss: 98.036 +32000/69092 Loss: 99.721 +35200/69092 Loss: 98.840 +38400/69092 Loss: 100.590 +41600/69092 Loss: 98.668 +44800/69092 Loss: 98.289 +48000/69092 Loss: 98.401 +51200/69092 Loss: 99.559 +54400/69092 Loss: 99.276 +57600/69092 Loss: 97.903 +60800/69092 Loss: 99.403 +64000/69092 Loss: 99.028 +67200/69092 Loss: 100.135 +Training time 0:10:34.555334 +Epoch: 89 Average loss: 99.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 240) +0/69092 Loss: 95.125 +3200/69092 Loss: 99.690 +6400/69092 Loss: 97.846 +9600/69092 Loss: 97.319 +12800/69092 Loss: 99.719 +16000/69092 Loss: 99.222 +19200/69092 Loss: 99.902 +22400/69092 Loss: 99.044 +25600/69092 Loss: 97.726 +28800/69092 Loss: 99.980 +32000/69092 Loss: 98.695 +35200/69092 Loss: 99.287 +38400/69092 Loss: 99.201 +41600/69092 Loss: 98.397 +44800/69092 Loss: 99.932 +48000/69092 Loss: 99.465 +51200/69092 Loss: 99.647 +54400/69092 Loss: 97.407 +57600/69092 Loss: 100.467 +60800/69092 Loss: 99.159 +64000/69092 Loss: 100.879 +67200/69092 Loss: 97.347 +Training time 0:10:10.573935 +Epoch: 90 Average loss: 99.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 241) +0/69092 Loss: 111.658 +3200/69092 Loss: 97.923 +6400/69092 Loss: 99.544 +9600/69092 Loss: 99.224 +12800/69092 Loss: 100.153 +16000/69092 Loss: 99.906 +19200/69092 Loss: 99.125 +22400/69092 Loss: 96.866 +25600/69092 Loss: 97.861 +28800/69092 Loss: 98.636 +32000/69092 Loss: 98.740 +35200/69092 Loss: 100.130 +38400/69092 Loss: 99.103 +41600/69092 Loss: 98.502 +44800/69092 Loss: 100.889 +48000/69092 Loss: 99.161 +51200/69092 Loss: 98.216 +54400/69092 Loss: 98.799 +57600/69092 Loss: 99.252 +60800/69092 Loss: 98.619 +64000/69092 Loss: 98.038 +67200/69092 Loss: 101.625 +Training time 0:10:26.970431 +Epoch: 91 Average loss: 99.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 242) +0/69092 Loss: 97.840 +3200/69092 Loss: 99.273 +6400/69092 Loss: 98.959 +9600/69092 Loss: 99.583 +12800/69092 Loss: 98.686 +16000/69092 Loss: 99.050 +19200/69092 Loss: 98.815 +22400/69092 Loss: 97.071 +25600/69092 Loss: 98.985 +28800/69092 Loss: 99.336 +32000/69092 Loss: 98.921 +35200/69092 Loss: 98.031 +38400/69092 Loss: 99.580 +41600/69092 Loss: 99.806 +44800/69092 Loss: 99.071 +48000/69092 Loss: 97.771 +51200/69092 Loss: 99.534 +54400/69092 Loss: 98.068 +57600/69092 Loss: 98.452 +60800/69092 Loss: 98.951 +64000/69092 Loss: 99.077 +67200/69092 Loss: 99.067 +Training time 0:10:25.025753 +Epoch: 92 Average loss: 98.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 243) +0/69092 Loss: 107.718 +3200/69092 Loss: 101.105 +6400/69092 Loss: 97.580 +9600/69092 Loss: 97.574 +12800/69092 Loss: 99.387 +16000/69092 Loss: 97.995 +19200/69092 Loss: 98.825 +22400/69092 Loss: 99.196 +25600/69092 Loss: 97.883 +28800/69092 Loss: 100.067 +32000/69092 Loss: 98.843 +35200/69092 Loss: 100.284 +38400/69092 Loss: 99.270 +41600/69092 Loss: 98.541 +44800/69092 Loss: 98.088 +48000/69092 Loss: 98.626 +51200/69092 Loss: 98.179 +54400/69092 Loss: 99.273 +57600/69092 Loss: 99.039 +60800/69092 Loss: 99.310 +64000/69092 Loss: 98.925 +67200/69092 Loss: 98.689 +Training time 0:10:25.323452 +Epoch: 93 Average loss: 98.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 244) +0/69092 Loss: 86.214 +3200/69092 Loss: 98.565 +6400/69092 Loss: 99.478 +9600/69092 Loss: 98.690 +12800/69092 Loss: 98.257 +16000/69092 Loss: 98.812 +19200/69092 Loss: 97.820 +22400/69092 Loss: 98.563 +25600/69092 Loss: 99.713 +28800/69092 Loss: 98.386 +32000/69092 Loss: 100.239 +35200/69092 Loss: 98.999 +38400/69092 Loss: 98.993 +41600/69092 Loss: 98.289 +44800/69092 Loss: 99.814 +48000/69092 Loss: 99.835 +51200/69092 Loss: 98.398 +54400/69092 Loss: 100.137 +57600/69092 Loss: 98.619 +60800/69092 Loss: 100.086 +64000/69092 Loss: 98.693 +67200/69092 Loss: 98.451 +Training time 0:10:30.324973 +Epoch: 94 Average loss: 99.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 245) +0/69092 Loss: 99.532 +3200/69092 Loss: 99.680 +6400/69092 Loss: 98.193 +9600/69092 Loss: 99.868 +12800/69092 Loss: 99.532 +16000/69092 Loss: 98.199 +19200/69092 Loss: 98.594 +22400/69092 Loss: 97.658 +25600/69092 Loss: 100.549 +28800/69092 Loss: 98.632 +32000/69092 Loss: 100.618 +35200/69092 Loss: 98.734 +38400/69092 Loss: 98.452 +41600/69092 Loss: 99.495 +44800/69092 Loss: 98.108 +48000/69092 Loss: 98.371 +51200/69092 Loss: 99.155 +54400/69092 Loss: 99.637 +57600/69092 Loss: 97.717 +60800/69092 Loss: 98.352 +64000/69092 Loss: 99.477 +67200/69092 Loss: 99.635 +Training time 0:10:29.572871 +Epoch: 95 Average loss: 98.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 246) +0/69092 Loss: 95.001 +3200/69092 Loss: 99.029 +6400/69092 Loss: 98.986 +9600/69092 Loss: 99.667 +12800/69092 Loss: 98.571 +16000/69092 Loss: 98.138 +19200/69092 Loss: 99.715 +22400/69092 Loss: 98.078 +25600/69092 Loss: 99.314 +28800/69092 Loss: 99.503 +32000/69092 Loss: 97.795 +35200/69092 Loss: 99.282 +38400/69092 Loss: 98.624 +41600/69092 Loss: 99.043 +44800/69092 Loss: 98.546 +48000/69092 Loss: 98.368 +51200/69092 Loss: 97.927 +54400/69092 Loss: 98.224 +57600/69092 Loss: 99.160 +60800/69092 Loss: 100.036 +64000/69092 Loss: 99.130 +67200/69092 Loss: 97.335 +Training time 0:10:08.509580 +Epoch: 96 Average loss: 98.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 247) +0/69092 Loss: 93.311 +3200/69092 Loss: 99.820 +6400/69092 Loss: 99.523 +9600/69092 Loss: 97.247 +12800/69092 Loss: 99.071 +16000/69092 Loss: 98.345 +19200/69092 Loss: 97.879 +22400/69092 Loss: 98.900 +25600/69092 Loss: 99.475 +28800/69092 Loss: 98.694 +32000/69092 Loss: 99.222 +35200/69092 Loss: 100.106 +38400/69092 Loss: 96.652 +41600/69092 Loss: 100.552 +44800/69092 Loss: 97.940 +48000/69092 Loss: 98.427 +51200/69092 Loss: 99.076 +54400/69092 Loss: 99.999 +57600/69092 Loss: 100.056 +60800/69092 Loss: 98.433 +64000/69092 Loss: 100.495 +67200/69092 Loss: 98.764 +Training time 0:10:22.063797 +Epoch: 97 Average loss: 98.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 248) +0/69092 Loss: 98.693 +3200/69092 Loss: 100.855 +6400/69092 Loss: 98.262 +9600/69092 Loss: 99.731 +12800/69092 Loss: 98.220 +16000/69092 Loss: 97.726 +19200/69092 Loss: 99.780 +22400/69092 Loss: 99.159 +25600/69092 Loss: 98.670 +28800/69092 Loss: 99.235 +32000/69092 Loss: 98.775 +35200/69092 Loss: 96.842 +38400/69092 Loss: 97.729 +41600/69092 Loss: 100.913 +44800/69092 Loss: 99.267 +48000/69092 Loss: 98.531 +51200/69092 Loss: 98.822 +54400/69092 Loss: 98.035 +57600/69092 Loss: 99.868 +60800/69092 Loss: 100.472 +64000/69092 Loss: 99.601 +67200/69092 Loss: 97.966 +Training time 0:10:13.090204 +Epoch: 98 Average loss: 99.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 249) +0/69092 Loss: 88.454 +3200/69092 Loss: 97.730 +6400/69092 Loss: 99.225 +9600/69092 Loss: 99.317 +12800/69092 Loss: 98.428 +16000/69092 Loss: 98.746 +19200/69092 Loss: 98.330 +22400/69092 Loss: 98.306 +25600/69092 Loss: 98.327 +28800/69092 Loss: 98.844 +32000/69092 Loss: 100.410 +35200/69092 Loss: 99.688 +38400/69092 Loss: 99.052 +41600/69092 Loss: 98.822 +44800/69092 Loss: 99.719 +48000/69092 Loss: 99.182 +51200/69092 Loss: 99.239 +54400/69092 Loss: 98.993 +57600/69092 Loss: 98.474 +60800/69092 Loss: 98.763 +64000/69092 Loss: 98.223 +67200/69092 Loss: 98.313 +Training time 0:10:27.496126 +Epoch: 99 Average loss: 98.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 250) +0/69092 Loss: 102.590 +3200/69092 Loss: 98.479 +6400/69092 Loss: 99.874 +9600/69092 Loss: 97.540 +12800/69092 Loss: 98.293 +16000/69092 Loss: 98.983 +19200/69092 Loss: 98.369 +22400/69092 Loss: 99.900 +25600/69092 Loss: 97.751 +28800/69092 Loss: 99.351 +32000/69092 Loss: 97.763 +35200/69092 Loss: 98.322 +38400/69092 Loss: 98.047 +41600/69092 Loss: 99.253 +44800/69092 Loss: 99.355 +48000/69092 Loss: 99.390 +51200/69092 Loss: 99.517 +54400/69092 Loss: 100.238 +57600/69092 Loss: 98.731 +60800/69092 Loss: 100.086 +64000/69092 Loss: 99.195 +67200/69092 Loss: 100.533 +Training time 0:10:18.275978 +Epoch: 100 Average loss: 98.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 251) +0/69092 Loss: 93.609 +3200/69092 Loss: 100.738 +6400/69092 Loss: 96.840 +9600/69092 Loss: 98.427 +12800/69092 Loss: 98.057 +16000/69092 Loss: 99.746 +19200/69092 Loss: 99.726 +22400/69092 Loss: 98.523 +25600/69092 Loss: 98.646 +28800/69092 Loss: 99.007 +32000/69092 Loss: 98.105 +35200/69092 Loss: 100.718 +38400/69092 Loss: 98.691 +41600/69092 Loss: 98.906 +44800/69092 Loss: 98.304 +48000/69092 Loss: 100.525 +51200/69092 Loss: 98.442 +54400/69092 Loss: 98.311 +57600/69092 Loss: 99.547 +60800/69092 Loss: 99.844 +64000/69092 Loss: 99.649 +67200/69092 Loss: 98.293 +Training time 0:10:31.567484 +Epoch: 101 Average loss: 98.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 252) +0/69092 Loss: 94.362 +3200/69092 Loss: 98.184 +6400/69092 Loss: 100.606 +9600/69092 Loss: 97.213 +12800/69092 Loss: 97.817 +16000/69092 Loss: 98.551 +19200/69092 Loss: 100.620 +22400/69092 Loss: 100.030 +25600/69092 Loss: 98.031 +28800/69092 Loss: 99.267 +32000/69092 Loss: 99.198 +35200/69092 Loss: 98.783 +38400/69092 Loss: 99.336 +41600/69092 Loss: 100.487 +44800/69092 Loss: 98.712 +48000/69092 Loss: 100.012 +51200/69092 Loss: 98.383 +54400/69092 Loss: 98.342 +57600/69092 Loss: 99.834 +60800/69092 Loss: 98.140 +64000/69092 Loss: 97.984 +67200/69092 Loss: 98.191 +Training time 0:10:37.234835 +Epoch: 102 Average loss: 98.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 253) +0/69092 Loss: 97.374 +3200/69092 Loss: 97.769 +6400/69092 Loss: 98.464 +9600/69092 Loss: 98.917 +12800/69092 Loss: 99.658 +16000/69092 Loss: 96.673 +19200/69092 Loss: 98.784 +22400/69092 Loss: 98.609 +25600/69092 Loss: 99.417 +28800/69092 Loss: 98.932 +32000/69092 Loss: 98.814 +35200/69092 Loss: 98.513 +38400/69092 Loss: 98.504 +41600/69092 Loss: 99.014 +44800/69092 Loss: 100.019 +48000/69092 Loss: 98.961 +51200/69092 Loss: 99.899 +54400/69092 Loss: 98.945 +57600/69092 Loss: 98.474 +60800/69092 Loss: 99.327 +64000/69092 Loss: 99.894 +67200/69092 Loss: 98.659 +Training time 0:10:08.035781 +Epoch: 103 Average loss: 98.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 254) +0/69092 Loss: 99.626 +3200/69092 Loss: 97.197 +6400/69092 Loss: 98.259 +9600/69092 Loss: 99.032 +12800/69092 Loss: 98.055 +16000/69092 Loss: 98.747 +19200/69092 Loss: 99.960 +22400/69092 Loss: 99.989 +25600/69092 Loss: 99.400 +28800/69092 Loss: 100.510 +32000/69092 Loss: 99.858 +35200/69092 Loss: 99.394 +38400/69092 Loss: 98.393 +41600/69092 Loss: 98.095 +44800/69092 Loss: 99.095 +48000/69092 Loss: 97.623 +51200/69092 Loss: 100.186 +54400/69092 Loss: 98.630 +57600/69092 Loss: 99.150 +60800/69092 Loss: 99.358 +64000/69092 Loss: 97.832 +67200/69092 Loss: 98.932 +Training time 0:10:28.218869 +Epoch: 104 Average loss: 98.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 255) +0/69092 Loss: 94.488 +3200/69092 Loss: 99.937 +6400/69092 Loss: 99.457 +9600/69092 Loss: 99.375 +12800/69092 Loss: 98.323 +16000/69092 Loss: 97.700 +19200/69092 Loss: 99.237 +22400/69092 Loss: 97.971 +25600/69092 Loss: 100.020 +28800/69092 Loss: 98.505 +32000/69092 Loss: 96.550 +35200/69092 Loss: 98.845 +38400/69092 Loss: 99.345 +41600/69092 Loss: 99.848 +44800/69092 Loss: 100.902 +48000/69092 Loss: 97.708 +51200/69092 Loss: 96.901 +54400/69092 Loss: 100.179 +57600/69092 Loss: 97.890 +60800/69092 Loss: 97.009 +64000/69092 Loss: 99.320 +67200/69092 Loss: 98.929 +Training time 0:10:31.234475 +Epoch: 105 Average loss: 98.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 256) +0/69092 Loss: 101.578 +3200/69092 Loss: 98.218 +6400/69092 Loss: 97.824 +9600/69092 Loss: 99.117 +12800/69092 Loss: 96.841 +16000/69092 Loss: 98.896 +19200/69092 Loss: 99.521 +22400/69092 Loss: 98.704 +25600/69092 Loss: 99.478 +28800/69092 Loss: 98.487 +32000/69092 Loss: 99.705 +35200/69092 Loss: 98.446 +38400/69092 Loss: 99.202 +41600/69092 Loss: 99.235 +44800/69092 Loss: 100.131 +48000/69092 Loss: 98.772 +51200/69092 Loss: 98.807 +54400/69092 Loss: 100.603 +57600/69092 Loss: 98.563 +60800/69092 Loss: 98.919 +64000/69092 Loss: 97.886 +67200/69092 Loss: 98.843 +Training time 0:10:25.889772 +Epoch: 106 Average loss: 98.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 257) +0/69092 Loss: 99.491 +3200/69092 Loss: 99.610 +6400/69092 Loss: 98.347 +9600/69092 Loss: 98.265 +12800/69092 Loss: 99.069 +16000/69092 Loss: 98.850 +19200/69092 Loss: 98.376 +22400/69092 Loss: 98.158 +25600/69092 Loss: 98.114 +28800/69092 Loss: 99.623 +32000/69092 Loss: 98.381 +35200/69092 Loss: 98.226 +38400/69092 Loss: 98.138 +41600/69092 Loss: 99.238 +44800/69092 Loss: 98.165 +48000/69092 Loss: 99.429 +51200/69092 Loss: 98.098 +54400/69092 Loss: 97.925 +57600/69092 Loss: 98.783 +60800/69092 Loss: 99.652 +64000/69092 Loss: 100.639 +67200/69092 Loss: 99.100 +Training time 0:10:35.845565 +Epoch: 107 Average loss: 98.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 258) +0/69092 Loss: 94.732 +3200/69092 Loss: 96.377 +6400/69092 Loss: 99.500 +9600/69092 Loss: 98.618 +12800/69092 Loss: 97.919 +16000/69092 Loss: 98.264 +19200/69092 Loss: 99.733 +22400/69092 Loss: 97.459 +25600/69092 Loss: 99.160 +28800/69092 Loss: 98.385 +32000/69092 Loss: 98.206 +35200/69092 Loss: 97.784 +38400/69092 Loss: 99.597 +41600/69092 Loss: 100.180 +44800/69092 Loss: 99.451 +48000/69092 Loss: 98.920 +51200/69092 Loss: 98.045 +54400/69092 Loss: 99.843 +57600/69092 Loss: 97.916 +60800/69092 Loss: 99.611 +64000/69092 Loss: 99.624 +67200/69092 Loss: 99.657 +Training time 0:10:46.319442 +Epoch: 108 Average loss: 98.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 259) +0/69092 Loss: 110.590 +3200/69092 Loss: 99.784 +6400/69092 Loss: 99.346 +9600/69092 Loss: 98.343 +12800/69092 Loss: 98.832 +16000/69092 Loss: 96.803 +19200/69092 Loss: 98.279 +22400/69092 Loss: 98.313 +25600/69092 Loss: 99.064 +28800/69092 Loss: 98.987 +32000/69092 Loss: 100.291 +35200/69092 Loss: 98.616 +38400/69092 Loss: 99.924 +41600/69092 Loss: 99.383 +44800/69092 Loss: 99.305 +48000/69092 Loss: 98.644 +51200/69092 Loss: 98.700 +54400/69092 Loss: 98.429 +57600/69092 Loss: 98.916 +60800/69092 Loss: 99.116 +64000/69092 Loss: 98.253 +67200/69092 Loss: 97.839 +Training time 0:10:18.440703 +Epoch: 109 Average loss: 98.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 260) +0/69092 Loss: 115.601 +3200/69092 Loss: 98.674 +6400/69092 Loss: 97.657 +9600/69092 Loss: 99.094 +12800/69092 Loss: 99.079 +16000/69092 Loss: 97.859 +19200/69092 Loss: 98.138 +22400/69092 Loss: 99.600 +25600/69092 Loss: 100.680 +28800/69092 Loss: 99.131 +32000/69092 Loss: 98.798 +35200/69092 Loss: 99.170 +38400/69092 Loss: 99.927 +41600/69092 Loss: 98.535 +44800/69092 Loss: 99.218 +48000/69092 Loss: 98.048 +51200/69092 Loss: 98.948 +54400/69092 Loss: 98.943 +57600/69092 Loss: 99.115 +60800/69092 Loss: 98.129 +64000/69092 Loss: 98.448 +67200/69092 Loss: 98.506 +Training time 0:10:26.736152 +Epoch: 110 Average loss: 98.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 261) +0/69092 Loss: 94.403 +3200/69092 Loss: 99.228 +6400/69092 Loss: 98.565 +9600/69092 Loss: 98.569 +12800/69092 Loss: 98.821 +16000/69092 Loss: 98.912 +19200/69092 Loss: 98.084 +22400/69092 Loss: 97.886 +25600/69092 Loss: 99.759 +28800/69092 Loss: 98.914 +32000/69092 Loss: 99.195 +35200/69092 Loss: 97.876 +38400/69092 Loss: 98.064 +41600/69092 Loss: 98.249 +44800/69092 Loss: 96.990 +48000/69092 Loss: 98.236 +51200/69092 Loss: 98.676 +54400/69092 Loss: 98.936 +57600/69092 Loss: 101.399 +60800/69092 Loss: 100.339 +64000/69092 Loss: 99.687 +67200/69092 Loss: 98.807 +Training time 0:10:29.046351 +Epoch: 111 Average loss: 98.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 262) +0/69092 Loss: 103.774 +3200/69092 Loss: 100.638 +6400/69092 Loss: 98.972 +9600/69092 Loss: 98.367 +12800/69092 Loss: 99.890 +16000/69092 Loss: 99.726 +19200/69092 Loss: 98.440 +22400/69092 Loss: 97.697 +25600/69092 Loss: 99.088 +28800/69092 Loss: 97.347 +32000/69092 Loss: 97.509 +35200/69092 Loss: 97.567 +38400/69092 Loss: 99.541 +41600/69092 Loss: 97.235 +44800/69092 Loss: 99.266 +48000/69092 Loss: 98.442 +51200/69092 Loss: 100.383 +54400/69092 Loss: 98.253 +57600/69092 Loss: 98.218 +60800/69092 Loss: 98.251 +64000/69092 Loss: 99.729 +67200/69092 Loss: 98.685 +Training time 0:10:35.961673 +Epoch: 112 Average loss: 98.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 263) +0/69092 Loss: 109.545 +3200/69092 Loss: 97.657 +6400/69092 Loss: 98.942 +9600/69092 Loss: 97.782 +12800/69092 Loss: 98.704 +16000/69092 Loss: 98.309 +19200/69092 Loss: 100.616 +22400/69092 Loss: 98.134 +25600/69092 Loss: 97.824 +28800/69092 Loss: 99.474 +32000/69092 Loss: 98.873 +35200/69092 Loss: 99.349 +38400/69092 Loss: 98.306 +41600/69092 Loss: 99.802 +44800/69092 Loss: 97.853 +48000/69092 Loss: 100.459 +51200/69092 Loss: 98.803 +54400/69092 Loss: 98.975 +57600/69092 Loss: 98.562 +60800/69092 Loss: 98.699 +64000/69092 Loss: 98.975 +67200/69092 Loss: 97.911 +Training time 0:10:31.132783 +Epoch: 113 Average loss: 98.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 264) +0/69092 Loss: 103.454 +3200/69092 Loss: 98.401 +6400/69092 Loss: 98.843 +9600/69092 Loss: 98.734 +12800/69092 Loss: 99.785 +16000/69092 Loss: 100.057 +19200/69092 Loss: 99.403 +22400/69092 Loss: 98.390 +25600/69092 Loss: 98.437 +28800/69092 Loss: 98.720 +32000/69092 Loss: 99.720 +35200/69092 Loss: 98.922 +38400/69092 Loss: 98.614 +41600/69092 Loss: 98.077 +44800/69092 Loss: 97.787 +48000/69092 Loss: 99.757 +51200/69092 Loss: 98.740 +54400/69092 Loss: 98.306 +57600/69092 Loss: 98.743 +60800/69092 Loss: 99.224 +64000/69092 Loss: 98.016 +67200/69092 Loss: 99.824 +Training time 0:10:24.936053 +Epoch: 114 Average loss: 98.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 265) +0/69092 Loss: 98.865 +3200/69092 Loss: 98.951 +6400/69092 Loss: 98.716 +9600/69092 Loss: 98.896 +12800/69092 Loss: 98.418 +16000/69092 Loss: 99.490 +19200/69092 Loss: 98.408 +22400/69092 Loss: 98.574 +25600/69092 Loss: 98.328 +28800/69092 Loss: 98.546 +32000/69092 Loss: 98.182 +35200/69092 Loss: 98.733 +38400/69092 Loss: 98.931 +41600/69092 Loss: 98.965 +44800/69092 Loss: 98.981 +48000/69092 Loss: 99.097 +51200/69092 Loss: 99.452 +54400/69092 Loss: 98.928 +57600/69092 Loss: 98.436 +60800/69092 Loss: 97.488 +64000/69092 Loss: 100.692 +67200/69092 Loss: 99.162 +Training time 0:10:34.224755 +Epoch: 115 Average loss: 98.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 266) +0/69092 Loss: 85.697 +3200/69092 Loss: 98.166 +6400/69092 Loss: 99.140 +9600/69092 Loss: 98.631 +12800/69092 Loss: 98.678 +16000/69092 Loss: 98.181 +19200/69092 Loss: 99.097 +22400/69092 Loss: 98.661 +25600/69092 Loss: 98.836 +28800/69092 Loss: 97.148 +32000/69092 Loss: 98.742 +35200/69092 Loss: 98.295 +38400/69092 Loss: 98.489 +41600/69092 Loss: 99.555 +44800/69092 Loss: 99.137 +48000/69092 Loss: 97.042 +51200/69092 Loss: 98.053 +54400/69092 Loss: 100.318 +57600/69092 Loss: 98.544 +60800/69092 Loss: 99.422 +64000/69092 Loss: 97.940 +67200/69092 Loss: 99.854 +Training time 0:10:15.185600 +Epoch: 116 Average loss: 98.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 267) +0/69092 Loss: 88.505 +3200/69092 Loss: 98.396 +6400/69092 Loss: 98.087 +9600/69092 Loss: 100.591 +12800/69092 Loss: 98.791 +16000/69092 Loss: 99.759 +19200/69092 Loss: 98.374 +22400/69092 Loss: 98.124 +25600/69092 Loss: 98.916 +28800/69092 Loss: 99.692 +32000/69092 Loss: 97.827 +35200/69092 Loss: 99.124 +38400/69092 Loss: 97.897 +41600/69092 Loss: 96.897 +44800/69092 Loss: 98.948 +48000/69092 Loss: 98.237 +51200/69092 Loss: 97.524 +54400/69092 Loss: 98.083 +57600/69092 Loss: 98.497 +60800/69092 Loss: 99.602 +64000/69092 Loss: 99.660 +67200/69092 Loss: 98.344 +Training time 0:10:45.372155 +Epoch: 117 Average loss: 98.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 268) +0/69092 Loss: 99.270 +3200/69092 Loss: 97.211 +6400/69092 Loss: 99.847 +9600/69092 Loss: 98.950 +12800/69092 Loss: 98.025 +16000/69092 Loss: 98.622 +19200/69092 Loss: 98.070 +22400/69092 Loss: 99.196 +25600/69092 Loss: 98.983 +28800/69092 Loss: 100.103 +32000/69092 Loss: 98.518 +35200/69092 Loss: 98.949 +38400/69092 Loss: 97.678 +41600/69092 Loss: 97.062 +44800/69092 Loss: 98.002 +48000/69092 Loss: 98.484 +51200/69092 Loss: 99.186 +54400/69092 Loss: 99.095 +57600/69092 Loss: 98.615 +60800/69092 Loss: 99.406 +64000/69092 Loss: 99.090 +67200/69092 Loss: 100.346 +Training time 0:10:25.266835 +Epoch: 118 Average loss: 98.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 269) +0/69092 Loss: 99.660 +3200/69092 Loss: 98.231 +6400/69092 Loss: 98.274 +9600/69092 Loss: 100.041 +12800/69092 Loss: 99.512 +16000/69092 Loss: 98.146 +19200/69092 Loss: 98.281 +22400/69092 Loss: 98.315 +25600/69092 Loss: 97.663 +28800/69092 Loss: 98.510 +32000/69092 Loss: 98.154 +35200/69092 Loss: 99.951 +38400/69092 Loss: 98.099 +41600/69092 Loss: 99.442 +44800/69092 Loss: 98.226 +48000/69092 Loss: 100.145 +51200/69092 Loss: 98.799 +54400/69092 Loss: 96.772 +57600/69092 Loss: 100.247 +60800/69092 Loss: 97.223 +64000/69092 Loss: 99.750 +67200/69092 Loss: 97.982 +Training time 0:10:27.498358 +Epoch: 119 Average loss: 98.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 270) +0/69092 Loss: 94.983 +3200/69092 Loss: 98.443 +6400/69092 Loss: 99.057 +9600/69092 Loss: 98.459 +12800/69092 Loss: 99.162 +16000/69092 Loss: 98.247 +19200/69092 Loss: 98.858 +22400/69092 Loss: 98.894 +25600/69092 Loss: 97.264 +28800/69092 Loss: 98.660 +32000/69092 Loss: 98.670 +35200/69092 Loss: 97.978 +38400/69092 Loss: 98.569 +41600/69092 Loss: 98.715 +44800/69092 Loss: 99.049 +48000/69092 Loss: 98.303 +51200/69092 Loss: 97.731 +54400/69092 Loss: 100.895 +57600/69092 Loss: 98.347 +60800/69092 Loss: 99.190 +64000/69092 Loss: 97.600 +67200/69092 Loss: 98.586 +Training time 0:10:27.809132 +Epoch: 120 Average loss: 98.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 271) +0/69092 Loss: 101.818 +3200/69092 Loss: 98.286 +6400/69092 Loss: 98.266 +9600/69092 Loss: 98.556 +12800/69092 Loss: 98.669 +16000/69092 Loss: 98.633 +19200/69092 Loss: 99.275 +22400/69092 Loss: 97.456 +25600/69092 Loss: 98.470 +28800/69092 Loss: 99.459 +32000/69092 Loss: 98.363 +35200/69092 Loss: 98.356 +38400/69092 Loss: 98.960 +41600/69092 Loss: 97.701 +44800/69092 Loss: 99.724 +48000/69092 Loss: 98.626 +51200/69092 Loss: 98.387 +54400/69092 Loss: 98.564 +57600/69092 Loss: 97.938 +60800/69092 Loss: 99.437 +64000/69092 Loss: 99.516 +67200/69092 Loss: 98.770 +Training time 0:10:18.800496 +Epoch: 121 Average loss: 98.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 272) +0/69092 Loss: 96.437 +3200/69092 Loss: 99.130 +6400/69092 Loss: 98.909 +9600/69092 Loss: 98.070 +12800/69092 Loss: 99.098 +16000/69092 Loss: 98.010 +19200/69092 Loss: 99.002 +22400/69092 Loss: 96.719 +25600/69092 Loss: 98.446 +28800/69092 Loss: 98.676 +32000/69092 Loss: 99.038 +35200/69092 Loss: 98.908 +38400/69092 Loss: 98.903 +41600/69092 Loss: 98.020 +44800/69092 Loss: 98.295 +48000/69092 Loss: 98.390 +51200/69092 Loss: 99.037 +54400/69092 Loss: 99.202 +57600/69092 Loss: 99.083 +60800/69092 Loss: 99.129 +64000/69092 Loss: 99.545 +67200/69092 Loss: 98.098 +Training time 0:10:28.101881 +Epoch: 122 Average loss: 98.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 273) +0/69092 Loss: 101.104 +3200/69092 Loss: 97.900 +6400/69092 Loss: 97.458 +9600/69092 Loss: 99.173 +12800/69092 Loss: 98.348 +16000/69092 Loss: 99.288 +19200/69092 Loss: 99.352 +22400/69092 Loss: 99.387 +25600/69092 Loss: 97.231 +28800/69092 Loss: 100.906 +32000/69092 Loss: 99.274 +35200/69092 Loss: 100.112 +38400/69092 Loss: 98.376 +41600/69092 Loss: 98.328 +44800/69092 Loss: 97.700 +48000/69092 Loss: 99.080 +51200/69092 Loss: 98.462 +54400/69092 Loss: 98.649 +57600/69092 Loss: 97.769 +60800/69092 Loss: 98.053 +64000/69092 Loss: 98.871 +67200/69092 Loss: 98.753 +Training time 0:10:12.667619 +Epoch: 123 Average loss: 98.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 274) +0/69092 Loss: 102.894 +3200/69092 Loss: 99.044 +6400/69092 Loss: 98.853 +9600/69092 Loss: 99.544 +12800/69092 Loss: 99.897 +16000/69092 Loss: 98.303 +19200/69092 Loss: 97.396 +22400/69092 Loss: 99.102 +25600/69092 Loss: 97.025 +28800/69092 Loss: 98.859 +32000/69092 Loss: 98.263 +35200/69092 Loss: 100.300 +38400/69092 Loss: 97.882 +41600/69092 Loss: 99.375 +44800/69092 Loss: 98.942 +48000/69092 Loss: 98.175 +51200/69092 Loss: 97.519 +54400/69092 Loss: 97.573 +57600/69092 Loss: 99.656 +60800/69092 Loss: 99.213 +64000/69092 Loss: 99.329 +67200/69092 Loss: 96.632 +Training time 0:10:38.487318 +Epoch: 124 Average loss: 98.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 275) +0/69092 Loss: 97.808 +3200/69092 Loss: 95.900 +6400/69092 Loss: 98.032 +9600/69092 Loss: 96.562 +12800/69092 Loss: 98.402 +16000/69092 Loss: 100.517 +19200/69092 Loss: 98.362 +22400/69092 Loss: 99.075 +25600/69092 Loss: 97.855 +28800/69092 Loss: 98.702 +32000/69092 Loss: 98.910 +35200/69092 Loss: 99.569 +38400/69092 Loss: 99.370 +41600/69092 Loss: 97.321 +44800/69092 Loss: 99.075 +48000/69092 Loss: 98.568 +51200/69092 Loss: 98.374 +54400/69092 Loss: 99.082 +57600/69092 Loss: 98.001 +60800/69092 Loss: 99.141 +64000/69092 Loss: 98.745 +67200/69092 Loss: 97.701 +Training time 0:10:41.476743 +Epoch: 125 Average loss: 98.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 276) +0/69092 Loss: 102.256 +3200/69092 Loss: 99.115 +6400/69092 Loss: 97.904 +9600/69092 Loss: 99.509 +12800/69092 Loss: 98.623 +16000/69092 Loss: 98.369 +19200/69092 Loss: 99.457 +22400/69092 Loss: 99.467 +25600/69092 Loss: 98.196 +28800/69092 Loss: 98.077 +32000/69092 Loss: 98.595 +35200/69092 Loss: 99.892 +38400/69092 Loss: 97.922 +41600/69092 Loss: 99.063 +44800/69092 Loss: 98.022 +48000/69092 Loss: 99.446 +51200/69092 Loss: 99.145 +54400/69092 Loss: 99.323 +57600/69092 Loss: 99.772 +60800/69092 Loss: 96.952 +64000/69092 Loss: 98.408 +67200/69092 Loss: 98.170 +Training time 0:10:31.423372 +Epoch: 126 Average loss: 98.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 277) +0/69092 Loss: 97.958 +3200/69092 Loss: 98.819 +6400/69092 Loss: 97.799 +9600/69092 Loss: 98.747 +12800/69092 Loss: 98.379 +16000/69092 Loss: 98.692 +19200/69092 Loss: 97.661 +22400/69092 Loss: 98.691 +25600/69092 Loss: 100.230 +28800/69092 Loss: 97.506 +32000/69092 Loss: 97.221 +35200/69092 Loss: 98.100 +38400/69092 Loss: 99.038 +41600/69092 Loss: 98.308 +44800/69092 Loss: 99.725 +48000/69092 Loss: 99.213 +51200/69092 Loss: 98.948 +54400/69092 Loss: 99.543 +57600/69092 Loss: 98.551 +60800/69092 Loss: 99.690 +64000/69092 Loss: 98.492 +67200/69092 Loss: 98.971 +Training time 0:10:28.978466 +Epoch: 127 Average loss: 98.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 278) +0/69092 Loss: 106.670 +3200/69092 Loss: 97.802 +6400/69092 Loss: 97.966 +9600/69092 Loss: 97.787 +12800/69092 Loss: 99.087 +16000/69092 Loss: 98.838 +19200/69092 Loss: 99.758 +22400/69092 Loss: 97.964 +25600/69092 Loss: 98.655 +28800/69092 Loss: 99.478 +32000/69092 Loss: 99.127 +35200/69092 Loss: 98.086 +38400/69092 Loss: 97.900 +41600/69092 Loss: 98.880 +44800/69092 Loss: 97.843 +48000/69092 Loss: 99.151 +51200/69092 Loss: 98.958 +54400/69092 Loss: 99.395 +57600/69092 Loss: 98.591 +60800/69092 Loss: 98.381 +64000/69092 Loss: 98.563 +67200/69092 Loss: 98.453 +Training time 0:10:29.193911 +Epoch: 128 Average loss: 98.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 279) +0/69092 Loss: 101.359 +3200/69092 Loss: 97.391 +6400/69092 Loss: 97.292 +9600/69092 Loss: 97.842 +12800/69092 Loss: 97.984 +16000/69092 Loss: 98.537 +19200/69092 Loss: 98.032 +22400/69092 Loss: 98.464 +25600/69092 Loss: 99.194 +28800/69092 Loss: 98.746 +32000/69092 Loss: 98.544 +35200/69092 Loss: 97.388 +38400/69092 Loss: 99.068 +41600/69092 Loss: 98.491 +44800/69092 Loss: 98.757 +48000/69092 Loss: 98.400 +51200/69092 Loss: 99.418 +54400/69092 Loss: 98.476 +57600/69092 Loss: 98.492 +60800/69092 Loss: 99.015 +64000/69092 Loss: 99.371 +67200/69092 Loss: 98.891 +Training time 0:10:32.851927 +Epoch: 129 Average loss: 98.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 280) +0/69092 Loss: 98.029 +3200/69092 Loss: 99.026 +6400/69092 Loss: 97.905 +9600/69092 Loss: 98.112 +12800/69092 Loss: 97.918 +16000/69092 Loss: 98.824 +19200/69092 Loss: 98.755 +22400/69092 Loss: 98.154 +25600/69092 Loss: 101.081 +28800/69092 Loss: 98.334 +32000/69092 Loss: 97.766 +35200/69092 Loss: 96.227 +38400/69092 Loss: 98.203 +41600/69092 Loss: 99.392 +44800/69092 Loss: 99.051 +48000/69092 Loss: 98.998 +51200/69092 Loss: 98.726 +54400/69092 Loss: 98.878 +57600/69092 Loss: 98.373 +60800/69092 Loss: 97.725 +64000/69092 Loss: 99.019 +67200/69092 Loss: 99.384 +Training time 0:10:41.214559 +Epoch: 130 Average loss: 98.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 281) +0/69092 Loss: 100.678 +3200/69092 Loss: 98.059 +6400/69092 Loss: 99.675 +9600/69092 Loss: 98.551 +12800/69092 Loss: 97.614 +16000/69092 Loss: 97.759 +19200/69092 Loss: 98.724 +22400/69092 Loss: 98.811 +25600/69092 Loss: 96.727 +28800/69092 Loss: 99.437 +32000/69092 Loss: 98.063 +35200/69092 Loss: 99.031 +38400/69092 Loss: 99.057 +41600/69092 Loss: 98.237 +44800/69092 Loss: 99.694 +48000/69092 Loss: 98.055 +51200/69092 Loss: 97.867 +54400/69092 Loss: 99.231 +57600/69092 Loss: 98.162 +60800/69092 Loss: 98.853 +64000/69092 Loss: 99.195 +67200/69092 Loss: 97.849 +Training time 0:10:26.754492 +Epoch: 131 Average loss: 98.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 282) +0/69092 Loss: 100.615 +3200/69092 Loss: 99.320 +6400/69092 Loss: 97.542 +9600/69092 Loss: 98.810 +12800/69092 Loss: 98.380 +16000/69092 Loss: 99.230 +19200/69092 Loss: 97.971 +22400/69092 Loss: 98.558 +25600/69092 Loss: 97.468 +28800/69092 Loss: 99.457 +32000/69092 Loss: 97.994 +35200/69092 Loss: 98.892 +38400/69092 Loss: 97.328 +41600/69092 Loss: 99.474 +44800/69092 Loss: 98.549 +48000/69092 Loss: 98.674 +51200/69092 Loss: 97.408 +54400/69092 Loss: 98.666 +57600/69092 Loss: 98.514 +60800/69092 Loss: 98.359 +64000/69092 Loss: 99.643 +67200/69092 Loss: 99.517 +Training time 0:10:27.167253 +Epoch: 132 Average loss: 98.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 283) +0/69092 Loss: 89.895 +3200/69092 Loss: 98.919 +6400/69092 Loss: 97.937 +9600/69092 Loss: 97.707 +12800/69092 Loss: 99.383 +16000/69092 Loss: 99.259 +19200/69092 Loss: 99.148 +22400/69092 Loss: 98.974 +25600/69092 Loss: 99.648 +28800/69092 Loss: 98.567 +32000/69092 Loss: 98.732 +35200/69092 Loss: 96.210 +38400/69092 Loss: 100.812 +41600/69092 Loss: 99.828 +44800/69092 Loss: 97.758 +48000/69092 Loss: 98.541 +51200/69092 Loss: 98.438 +54400/69092 Loss: 96.690 +57600/69092 Loss: 99.386 +60800/69092 Loss: 98.561 +64000/69092 Loss: 97.414 +67200/69092 Loss: 97.860 +Training time 0:10:24.859007 +Epoch: 133 Average loss: 98.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 284) +0/69092 Loss: 100.080 +3200/69092 Loss: 97.017 +6400/69092 Loss: 99.757 +9600/69092 Loss: 99.276 +12800/69092 Loss: 98.276 +16000/69092 Loss: 99.191 +19200/69092 Loss: 99.390 +22400/69092 Loss: 97.710 +25600/69092 Loss: 98.060 +28800/69092 Loss: 97.419 +32000/69092 Loss: 96.787 +35200/69092 Loss: 97.848 +38400/69092 Loss: 99.227 +41600/69092 Loss: 99.486 +44800/69092 Loss: 97.815 +48000/69092 Loss: 98.645 +51200/69092 Loss: 98.701 +54400/69092 Loss: 99.337 +57600/69092 Loss: 99.774 +60800/69092 Loss: 97.595 +64000/69092 Loss: 98.149 +67200/69092 Loss: 98.285 +Training time 0:10:16.761856 +Epoch: 134 Average loss: 98.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 285) +0/69092 Loss: 105.237 +3200/69092 Loss: 98.529 +6400/69092 Loss: 98.428 +9600/69092 Loss: 97.423 +12800/69092 Loss: 97.184 +16000/69092 Loss: 99.279 +19200/69092 Loss: 98.273 +22400/69092 Loss: 99.237 +25600/69092 Loss: 97.066 +28800/69092 Loss: 98.408 +32000/69092 Loss: 98.637 +35200/69092 Loss: 98.477 +38400/69092 Loss: 98.687 +41600/69092 Loss: 97.425 +44800/69092 Loss: 98.174 +48000/69092 Loss: 98.884 +51200/69092 Loss: 100.182 +54400/69092 Loss: 98.017 +57600/69092 Loss: 99.281 +60800/69092 Loss: 97.644 +64000/69092 Loss: 99.423 +67200/69092 Loss: 99.320 +Training time 0:10:17.579363 +Epoch: 135 Average loss: 98.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 286) +0/69092 Loss: 97.202 +3200/69092 Loss: 98.813 +6400/69092 Loss: 97.670 +9600/69092 Loss: 99.975 +12800/69092 Loss: 99.169 +16000/69092 Loss: 98.087 +19200/69092 Loss: 97.434 +22400/69092 Loss: 98.845 +25600/69092 Loss: 99.485 +28800/69092 Loss: 98.105 +32000/69092 Loss: 97.124 +35200/69092 Loss: 98.818 +38400/69092 Loss: 98.321 +41600/69092 Loss: 97.651 +44800/69092 Loss: 99.416 +48000/69092 Loss: 97.635 +51200/69092 Loss: 99.676 +54400/69092 Loss: 98.931 +57600/69092 Loss: 97.522 +60800/69092 Loss: 97.577 +64000/69092 Loss: 98.071 +67200/69092 Loss: 97.484 +Training time 0:10:24.271254 +Epoch: 136 Average loss: 98.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 287) +0/69092 Loss: 103.737 +3200/69092 Loss: 98.677 +6400/69092 Loss: 98.604 +9600/69092 Loss: 97.905 +12800/69092 Loss: 97.756 +16000/69092 Loss: 99.539 +19200/69092 Loss: 98.145 +22400/69092 Loss: 99.369 +25600/69092 Loss: 97.996 +28800/69092 Loss: 98.759 +32000/69092 Loss: 96.655 +35200/69092 Loss: 98.155 +38400/69092 Loss: 98.803 +41600/69092 Loss: 98.039 +44800/69092 Loss: 98.440 +48000/69092 Loss: 99.315 +51200/69092 Loss: 100.570 +54400/69092 Loss: 98.031 +57600/69092 Loss: 96.842 +60800/69092 Loss: 99.460 +64000/69092 Loss: 99.473 +67200/69092 Loss: 97.046 +Training time 0:10:23.146550 +Epoch: 137 Average loss: 98.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 288) +0/69092 Loss: 92.527 +3200/69092 Loss: 98.655 +6400/69092 Loss: 97.883 +9600/69092 Loss: 99.229 +12800/69092 Loss: 98.880 +16000/69092 Loss: 98.283 +19200/69092 Loss: 99.199 +22400/69092 Loss: 97.316 +25600/69092 Loss: 98.587 +28800/69092 Loss: 98.073 +32000/69092 Loss: 98.898 +35200/69092 Loss: 98.165 +38400/69092 Loss: 97.567 +41600/69092 Loss: 99.373 +44800/69092 Loss: 97.609 +48000/69092 Loss: 99.446 +51200/69092 Loss: 97.965 +54400/69092 Loss: 99.250 +57600/69092 Loss: 98.495 +60800/69092 Loss: 96.142 +64000/69092 Loss: 98.584 +67200/69092 Loss: 98.841 +Training time 0:10:37.106839 +Epoch: 138 Average loss: 98.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 289) +0/69092 Loss: 99.328 +3200/69092 Loss: 99.179 +6400/69092 Loss: 98.470 +9600/69092 Loss: 99.869 +12800/69092 Loss: 97.914 +16000/69092 Loss: 98.960 +19200/69092 Loss: 99.191 +22400/69092 Loss: 98.092 +25600/69092 Loss: 100.163 +28800/69092 Loss: 98.588 +32000/69092 Loss: 97.221 +35200/69092 Loss: 97.644 +38400/69092 Loss: 97.014 +41600/69092 Loss: 97.451 +44800/69092 Loss: 98.982 +48000/69092 Loss: 98.598 +51200/69092 Loss: 97.818 +54400/69092 Loss: 97.614 +57600/69092 Loss: 98.327 +60800/69092 Loss: 98.403 +64000/69092 Loss: 97.821 +67200/69092 Loss: 98.665 +Training time 0:10:34.502115 +Epoch: 139 Average loss: 98.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 290) +0/69092 Loss: 94.039 +3200/69092 Loss: 98.070 +6400/69092 Loss: 99.132 +9600/69092 Loss: 97.534 +12800/69092 Loss: 97.171 +16000/69092 Loss: 99.415 +19200/69092 Loss: 98.698 +22400/69092 Loss: 98.433 +25600/69092 Loss: 99.066 +28800/69092 Loss: 98.335 +32000/69092 Loss: 97.498 +35200/69092 Loss: 98.642 +38400/69092 Loss: 98.515 +41600/69092 Loss: 99.160 +44800/69092 Loss: 96.507 +48000/69092 Loss: 97.834 +51200/69092 Loss: 97.400 +54400/69092 Loss: 98.969 +57600/69092 Loss: 97.840 +60800/69092 Loss: 97.378 +64000/69092 Loss: 99.370 +67200/69092 Loss: 99.599 +Training time 0:10:57.252210 +Epoch: 140 Average loss: 98.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 291) +0/69092 Loss: 101.593 +3200/69092 Loss: 98.785 +6400/69092 Loss: 97.931 +9600/69092 Loss: 99.381 +12800/69092 Loss: 97.848 +16000/69092 Loss: 97.517 +19200/69092 Loss: 98.539 +22400/69092 Loss: 98.114 +25600/69092 Loss: 98.551 +28800/69092 Loss: 99.319 +32000/69092 Loss: 97.925 +35200/69092 Loss: 97.890 +38400/69092 Loss: 99.090 +41600/69092 Loss: 97.863 +44800/69092 Loss: 98.007 +48000/69092 Loss: 100.040 +51200/69092 Loss: 99.104 +54400/69092 Loss: 97.189 +57600/69092 Loss: 98.525 +60800/69092 Loss: 96.958 +64000/69092 Loss: 99.238 +67200/69092 Loss: 100.164 +Training time 0:10:20.674060 +Epoch: 141 Average loss: 98.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 292) +0/69092 Loss: 85.537 +3200/69092 Loss: 98.715 +6400/69092 Loss: 98.937 +9600/69092 Loss: 99.761 +12800/69092 Loss: 99.436 +16000/69092 Loss: 98.100 +19200/69092 Loss: 98.830 +22400/69092 Loss: 98.625 +25600/69092 Loss: 97.310 +28800/69092 Loss: 98.030 +32000/69092 Loss: 99.130 +35200/69092 Loss: 99.253 +38400/69092 Loss: 97.947 +41600/69092 Loss: 96.838 +44800/69092 Loss: 97.668 +48000/69092 Loss: 99.483 +51200/69092 Loss: 96.936 +54400/69092 Loss: 98.784 +57600/69092 Loss: 98.785 +60800/69092 Loss: 98.730 +64000/69092 Loss: 98.913 +67200/69092 Loss: 98.924 +Training time 0:10:37.186976 +Epoch: 142 Average loss: 98.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 293) +0/69092 Loss: 94.435 +3200/69092 Loss: 97.969 +6400/69092 Loss: 98.976 +9600/69092 Loss: 97.173 +12800/69092 Loss: 97.825 +16000/69092 Loss: 98.651 +19200/69092 Loss: 98.510 +22400/69092 Loss: 98.659 +25600/69092 Loss: 97.602 +28800/69092 Loss: 100.083 +32000/69092 Loss: 99.947 +35200/69092 Loss: 98.868 +38400/69092 Loss: 97.315 +41600/69092 Loss: 98.191 +44800/69092 Loss: 97.384 +48000/69092 Loss: 96.543 +51200/69092 Loss: 98.852 +54400/69092 Loss: 98.953 +57600/69092 Loss: 98.563 +60800/69092 Loss: 98.152 +64000/69092 Loss: 98.745 +67200/69092 Loss: 98.965 +Training time 0:10:31.861825 +Epoch: 143 Average loss: 98.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 294) +0/69092 Loss: 96.216 +3200/69092 Loss: 98.170 +6400/69092 Loss: 98.166 +9600/69092 Loss: 99.268 +12800/69092 Loss: 98.237 +16000/69092 Loss: 98.222 +19200/69092 Loss: 98.679 +22400/69092 Loss: 97.154 +25600/69092 Loss: 98.758 +28800/69092 Loss: 97.806 +32000/69092 Loss: 98.351 +35200/69092 Loss: 97.559 +38400/69092 Loss: 99.658 +41600/69092 Loss: 98.732 +44800/69092 Loss: 97.176 +48000/69092 Loss: 98.501 +51200/69092 Loss: 99.359 +54400/69092 Loss: 97.647 +57600/69092 Loss: 98.539 +60800/69092 Loss: 99.332 +64000/69092 Loss: 98.792 +67200/69092 Loss: 98.245 +Training time 0:10:30.650951 +Epoch: 144 Average loss: 98.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 295) +0/69092 Loss: 102.145 +3200/69092 Loss: 98.363 +6400/69092 Loss: 97.904 +9600/69092 Loss: 98.767 +12800/69092 Loss: 99.173 +16000/69092 Loss: 98.887 +19200/69092 Loss: 98.632 +22400/69092 Loss: 98.926 +25600/69092 Loss: 96.997 +28800/69092 Loss: 100.028 +32000/69092 Loss: 98.836 +35200/69092 Loss: 98.990 +38400/69092 Loss: 96.708 +41600/69092 Loss: 97.499 +44800/69092 Loss: 98.089 +48000/69092 Loss: 99.078 +51200/69092 Loss: 99.274 +54400/69092 Loss: 95.953 +57600/69092 Loss: 98.308 +60800/69092 Loss: 99.239 +64000/69092 Loss: 98.664 +67200/69092 Loss: 97.616 +Training time 0:10:48.303826 +Epoch: 145 Average loss: 98.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 296) +0/69092 Loss: 99.387 +3200/69092 Loss: 97.394 +6400/69092 Loss: 97.301 +9600/69092 Loss: 97.645 +12800/69092 Loss: 100.027 +16000/69092 Loss: 97.941 +19200/69092 Loss: 98.672 +22400/69092 Loss: 98.900 +25600/69092 Loss: 99.204 +28800/69092 Loss: 99.052 +32000/69092 Loss: 98.551 +35200/69092 Loss: 98.615 +38400/69092 Loss: 98.000 +41600/69092 Loss: 96.409 +44800/69092 Loss: 98.255 +48000/69092 Loss: 98.872 +51200/69092 Loss: 99.568 +54400/69092 Loss: 98.767 +57600/69092 Loss: 98.571 +60800/69092 Loss: 98.233 +64000/69092 Loss: 97.396 +67200/69092 Loss: 97.899 +Training time 0:10:49.425042 +Epoch: 146 Average loss: 98.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 297) +0/69092 Loss: 98.357 +3200/69092 Loss: 99.496 +6400/69092 Loss: 99.227 +9600/69092 Loss: 98.636 +12800/69092 Loss: 97.246 +16000/69092 Loss: 97.778 +19200/69092 Loss: 97.675 +22400/69092 Loss: 98.415 +25600/69092 Loss: 98.900 +28800/69092 Loss: 98.005 +32000/69092 Loss: 98.163 +35200/69092 Loss: 98.116 +38400/69092 Loss: 98.168 +41600/69092 Loss: 98.462 +44800/69092 Loss: 98.854 +48000/69092 Loss: 97.907 +51200/69092 Loss: 97.429 +54400/69092 Loss: 98.364 +57600/69092 Loss: 98.297 +60800/69092 Loss: 99.846 +64000/69092 Loss: 96.692 +67200/69092 Loss: 97.110 +Training time 0:10:06.833043 +Epoch: 147 Average loss: 98.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 298) +0/69092 Loss: 96.069 +3200/69092 Loss: 97.859 +6400/69092 Loss: 98.930 +9600/69092 Loss: 97.821 +12800/69092 Loss: 99.021 +16000/69092 Loss: 99.069 +19200/69092 Loss: 97.184 +22400/69092 Loss: 97.245 +25600/69092 Loss: 98.352 +28800/69092 Loss: 96.889 +32000/69092 Loss: 98.159 +35200/69092 Loss: 98.896 +38400/69092 Loss: 97.425 +41600/69092 Loss: 98.510 +44800/69092 Loss: 98.904 +48000/69092 Loss: 98.539 +51200/69092 Loss: 98.922 +54400/69092 Loss: 97.954 +57600/69092 Loss: 99.850 +60800/69092 Loss: 100.112 +64000/69092 Loss: 98.760 +67200/69092 Loss: 96.992 +Training time 0:10:27.090574 +Epoch: 148 Average loss: 98.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 299) +0/69092 Loss: 108.348 +3200/69092 Loss: 97.272 +6400/69092 Loss: 98.914 +9600/69092 Loss: 96.968 +12800/69092 Loss: 97.904 +16000/69092 Loss: 97.084 +19200/69092 Loss: 97.373 +22400/69092 Loss: 98.297 +25600/69092 Loss: 98.165 +28800/69092 Loss: 99.564 +32000/69092 Loss: 99.031 +35200/69092 Loss: 97.925 +38400/69092 Loss: 97.819 +41600/69092 Loss: 99.011 +44800/69092 Loss: 99.046 +48000/69092 Loss: 98.453 +51200/69092 Loss: 97.966 +54400/69092 Loss: 99.508 +57600/69092 Loss: 98.384 +60800/69092 Loss: 97.129 +64000/69092 Loss: 97.142 +67200/69092 Loss: 99.113 +Training time 0:10:21.922799 +Epoch: 149 Average loss: 98.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 300) +0/69092 Loss: 110.945 +3200/69092 Loss: 96.326 +6400/69092 Loss: 97.493 +9600/69092 Loss: 98.999 +12800/69092 Loss: 97.451 +16000/69092 Loss: 100.029 +19200/69092 Loss: 97.191 +22400/69092 Loss: 96.891 +25600/69092 Loss: 97.948 +28800/69092 Loss: 98.265 +32000/69092 Loss: 98.684 +35200/69092 Loss: 98.927 +38400/69092 Loss: 96.890 +41600/69092 Loss: 99.031 +44800/69092 Loss: 99.347 +48000/69092 Loss: 97.646 +51200/69092 Loss: 99.456 +54400/69092 Loss: 97.599 +57600/69092 Loss: 99.749 +60800/69092 Loss: 97.586 +64000/69092 Loss: 97.544 +67200/69092 Loss: 100.680 +Training time 0:10:15.347600 +Epoch: 150 Average loss: 98.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 301) +0/69092 Loss: 109.307 +3200/69092 Loss: 98.101 +6400/69092 Loss: 97.161 +9600/69092 Loss: 99.357 +12800/69092 Loss: 96.355 +16000/69092 Loss: 98.253 +19200/69092 Loss: 98.471 +22400/69092 Loss: 98.589 +25600/69092 Loss: 98.359 +28800/69092 Loss: 97.120 +32000/69092 Loss: 98.567 +35200/69092 Loss: 97.941 +38400/69092 Loss: 97.811 +41600/69092 Loss: 96.742 +44800/69092 Loss: 99.476 +48000/69092 Loss: 97.908 +51200/69092 Loss: 98.560 +54400/69092 Loss: 98.548 +57600/69092 Loss: 98.758 +60800/69092 Loss: 97.784 +64000/69092 Loss: 99.288 +67200/69092 Loss: 97.976 +Training time 0:10:15.257413 +Epoch: 151 Average loss: 98.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 302) +0/69092 Loss: 94.001 +3200/69092 Loss: 98.239 +6400/69092 Loss: 98.724 +9600/69092 Loss: 98.566 +12800/69092 Loss: 98.176 +16000/69092 Loss: 97.801 +19200/69092 Loss: 99.283 +22400/69092 Loss: 98.597 +25600/69092 Loss: 97.821 +28800/69092 Loss: 98.645 +32000/69092 Loss: 100.474 +35200/69092 Loss: 97.675 +38400/69092 Loss: 97.048 +41600/69092 Loss: 98.515 +44800/69092 Loss: 98.712 +48000/69092 Loss: 98.630 +51200/69092 Loss: 97.517 +54400/69092 Loss: 98.662 +57600/69092 Loss: 97.529 +60800/69092 Loss: 97.986 +64000/69092 Loss: 99.003 +67200/69092 Loss: 97.709 +Training time 0:10:34.425206 +Epoch: 152 Average loss: 98.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 303) +0/69092 Loss: 102.046 +3200/69092 Loss: 98.243 +6400/69092 Loss: 99.078 +9600/69092 Loss: 98.772 +12800/69092 Loss: 99.060 +16000/69092 Loss: 98.515 +19200/69092 Loss: 99.940 +22400/69092 Loss: 97.495 +25600/69092 Loss: 97.657 +28800/69092 Loss: 98.360 +32000/69092 Loss: 97.212 +35200/69092 Loss: 97.612 +38400/69092 Loss: 97.888 +41600/69092 Loss: 97.036 +44800/69092 Loss: 97.052 +48000/69092 Loss: 98.905 +51200/69092 Loss: 98.694 +54400/69092 Loss: 99.106 +57600/69092 Loss: 98.671 +60800/69092 Loss: 98.324 +64000/69092 Loss: 97.433 +67200/69092 Loss: 99.143 +Training time 0:10:28.626121 +Epoch: 153 Average loss: 98.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 304) +0/69092 Loss: 100.501 +3200/69092 Loss: 97.604 +6400/69092 Loss: 98.605 +9600/69092 Loss: 97.758 +12800/69092 Loss: 98.162 +16000/69092 Loss: 97.972 +19200/69092 Loss: 97.782 +22400/69092 Loss: 98.166 +25600/69092 Loss: 98.511 +28800/69092 Loss: 99.453 +32000/69092 Loss: 99.088 +35200/69092 Loss: 99.949 +38400/69092 Loss: 98.477 +41600/69092 Loss: 97.469 +44800/69092 Loss: 96.807 +48000/69092 Loss: 99.028 +51200/69092 Loss: 98.257 +54400/69092 Loss: 96.969 +57600/69092 Loss: 99.813 +60800/69092 Loss: 98.249 +64000/69092 Loss: 98.962 +67200/69092 Loss: 97.984 +Training time 0:10:13.843669 +Epoch: 154 Average loss: 98.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 305) +0/69092 Loss: 97.084 +3200/69092 Loss: 98.443 +6400/69092 Loss: 99.652 +9600/69092 Loss: 97.663 +12800/69092 Loss: 98.178 +16000/69092 Loss: 97.596 +19200/69092 Loss: 97.024 +22400/69092 Loss: 97.737 +25600/69092 Loss: 99.803 +28800/69092 Loss: 98.216 +32000/69092 Loss: 97.949 +35200/69092 Loss: 98.836 +38400/69092 Loss: 99.411 +41600/69092 Loss: 97.976 +44800/69092 Loss: 98.455 +48000/69092 Loss: 99.194 +51200/69092 Loss: 98.135 +54400/69092 Loss: 96.989 +57600/69092 Loss: 98.332 +60800/69092 Loss: 97.931 +64000/69092 Loss: 98.652 +67200/69092 Loss: 97.984 +Training time 0:10:28.599627 +Epoch: 155 Average loss: 98.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 306) +0/69092 Loss: 107.279 +3200/69092 Loss: 99.302 +6400/69092 Loss: 99.558 +9600/69092 Loss: 99.768 +12800/69092 Loss: 98.088 +16000/69092 Loss: 96.747 +19200/69092 Loss: 98.581 +22400/69092 Loss: 98.178 +25600/69092 Loss: 98.172 +28800/69092 Loss: 99.518 +32000/69092 Loss: 97.413 +35200/69092 Loss: 98.609 +38400/69092 Loss: 97.131 +41600/69092 Loss: 97.922 +44800/69092 Loss: 98.377 +48000/69092 Loss: 97.890 +51200/69092 Loss: 98.349 +54400/69092 Loss: 99.377 +57600/69092 Loss: 97.795 +60800/69092 Loss: 98.940 +64000/69092 Loss: 96.303 +67200/69092 Loss: 100.146 +Training time 0:10:41.862376 +Epoch: 156 Average loss: 98.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 307) +0/69092 Loss: 102.525 +3200/69092 Loss: 98.392 +6400/69092 Loss: 97.438 +9600/69092 Loss: 96.778 +12800/69092 Loss: 96.937 +16000/69092 Loss: 96.735 +19200/69092 Loss: 97.385 +22400/69092 Loss: 100.006 +25600/69092 Loss: 97.696 +28800/69092 Loss: 98.371 +32000/69092 Loss: 98.732 +35200/69092 Loss: 97.810 +38400/69092 Loss: 98.441 +41600/69092 Loss: 98.206 +44800/69092 Loss: 98.781 +48000/69092 Loss: 99.793 +51200/69092 Loss: 97.651 +54400/69092 Loss: 98.632 +57600/69092 Loss: 97.181 +60800/69092 Loss: 98.633 +64000/69092 Loss: 97.575 +67200/69092 Loss: 99.577 +Training time 0:10:31.616132 +Epoch: 157 Average loss: 98.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 308) +0/69092 Loss: 99.327 +3200/69092 Loss: 98.287 +6400/69092 Loss: 98.610 +9600/69092 Loss: 97.281 +12800/69092 Loss: 97.840 +16000/69092 Loss: 98.693 +19200/69092 Loss: 97.774 +22400/69092 Loss: 99.588 +25600/69092 Loss: 99.339 +28800/69092 Loss: 97.803 +32000/69092 Loss: 99.933 +35200/69092 Loss: 96.479 +38400/69092 Loss: 98.698 +41600/69092 Loss: 98.091 +44800/69092 Loss: 96.881 +48000/69092 Loss: 98.518 +51200/69092 Loss: 98.704 +54400/69092 Loss: 97.293 +57600/69092 Loss: 98.132 +60800/69092 Loss: 97.992 +64000/69092 Loss: 99.329 +67200/69092 Loss: 98.083 +Training time 0:10:23.959769 +Epoch: 158 Average loss: 98.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 309) +0/69092 Loss: 93.983 +3200/69092 Loss: 97.368 +6400/69092 Loss: 100.395 +9600/69092 Loss: 98.142 +12800/69092 Loss: 98.373 +16000/69092 Loss: 100.137 +19200/69092 Loss: 97.934 +22400/69092 Loss: 98.226 +25600/69092 Loss: 96.776 +28800/69092 Loss: 98.399 +32000/69092 Loss: 97.609 +35200/69092 Loss: 98.009 +38400/69092 Loss: 97.960 +41600/69092 Loss: 99.538 +44800/69092 Loss: 98.594 +48000/69092 Loss: 96.821 +51200/69092 Loss: 97.301 +54400/69092 Loss: 98.321 +57600/69092 Loss: 98.153 +60800/69092 Loss: 97.221 +64000/69092 Loss: 99.593 +67200/69092 Loss: 97.517 +Training time 0:10:16.637672 +Epoch: 159 Average loss: 98.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 310) +0/69092 Loss: 96.012 +3200/69092 Loss: 97.340 +6400/69092 Loss: 97.680 +9600/69092 Loss: 98.576 +12800/69092 Loss: 97.615 +16000/69092 Loss: 99.634 +19200/69092 Loss: 99.387 +22400/69092 Loss: 98.379 +25600/69092 Loss: 98.459 +28800/69092 Loss: 97.290 +32000/69092 Loss: 98.527 +35200/69092 Loss: 97.772 +38400/69092 Loss: 98.714 +41600/69092 Loss: 99.336 +44800/69092 Loss: 97.575 +48000/69092 Loss: 97.995 +51200/69092 Loss: 99.236 +54400/69092 Loss: 99.729 +57600/69092 Loss: 96.037 +60800/69092 Loss: 97.127 +64000/69092 Loss: 97.614 +67200/69092 Loss: 96.731 +Training time 0:10:44.079531 +Epoch: 160 Average loss: 98.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 311) +0/69092 Loss: 112.640 +3200/69092 Loss: 99.934 +6400/69092 Loss: 97.467 +9600/69092 Loss: 98.054 +12800/69092 Loss: 98.297 +16000/69092 Loss: 98.461 +19200/69092 Loss: 98.143 +22400/69092 Loss: 98.465 +25600/69092 Loss: 99.428 +28800/69092 Loss: 96.475 +32000/69092 Loss: 98.502 +35200/69092 Loss: 98.954 +38400/69092 Loss: 99.319 +41600/69092 Loss: 97.561 +44800/69092 Loss: 97.548 +48000/69092 Loss: 98.486 +51200/69092 Loss: 97.166 +54400/69092 Loss: 98.884 +57600/69092 Loss: 97.741 +60800/69092 Loss: 98.200 +64000/69092 Loss: 97.814 +67200/69092 Loss: 98.132 +Training time 0:10:50.559813 +Epoch: 161 Average loss: 98.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 312) +0/69092 Loss: 94.173 +3200/69092 Loss: 97.410 +6400/69092 Loss: 96.475 +9600/69092 Loss: 98.185 +12800/69092 Loss: 96.671 +16000/69092 Loss: 98.491 +19200/69092 Loss: 97.583 +22400/69092 Loss: 98.252 +25600/69092 Loss: 99.322 +28800/69092 Loss: 98.044 +32000/69092 Loss: 100.112 +35200/69092 Loss: 99.285 +38400/69092 Loss: 98.923 +41600/69092 Loss: 99.141 +44800/69092 Loss: 97.089 +48000/69092 Loss: 98.774 +51200/69092 Loss: 98.400 +54400/69092 Loss: 98.352 +57600/69092 Loss: 97.435 +60800/69092 Loss: 98.286 +64000/69092 Loss: 97.831 +67200/69092 Loss: 98.898 +Training time 0:11:08.525258 +Epoch: 162 Average loss: 98.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 313) +0/69092 Loss: 95.671 +3200/69092 Loss: 97.893 +6400/69092 Loss: 98.044 +9600/69092 Loss: 97.302 +12800/69092 Loss: 97.660 +16000/69092 Loss: 98.089 +19200/69092 Loss: 98.233 +22400/69092 Loss: 96.830 +25600/69092 Loss: 98.003 +28800/69092 Loss: 98.802 +32000/69092 Loss: 98.502 +35200/69092 Loss: 98.406 +38400/69092 Loss: 98.020 +41600/69092 Loss: 98.801 +44800/69092 Loss: 97.595 +48000/69092 Loss: 98.753 +51200/69092 Loss: 98.745 +54400/69092 Loss: 97.978 +57600/69092 Loss: 97.811 +60800/69092 Loss: 98.615 +64000/69092 Loss: 100.102 +67200/69092 Loss: 99.495 +Training time 0:11:16.224858 +Epoch: 163 Average loss: 98.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 314) +0/69092 Loss: 98.616 +3200/69092 Loss: 97.936 +6400/69092 Loss: 97.944 +9600/69092 Loss: 95.848 +12800/69092 Loss: 99.850 +16000/69092 Loss: 98.917 +19200/69092 Loss: 99.031 +22400/69092 Loss: 99.726 +25600/69092 Loss: 98.182 +28800/69092 Loss: 99.309 +32000/69092 Loss: 97.809 +35200/69092 Loss: 97.213 +38400/69092 Loss: 98.065 +41600/69092 Loss: 98.268 +44800/69092 Loss: 98.813 +48000/69092 Loss: 98.330 +51200/69092 Loss: 98.716 +54400/69092 Loss: 98.264 +57600/69092 Loss: 98.029 +60800/69092 Loss: 98.342 +64000/69092 Loss: 96.711 +67200/69092 Loss: 99.837 +Training time 0:10:33.351697 +Epoch: 164 Average loss: 98.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 315) +0/69092 Loss: 92.416 +3200/69092 Loss: 97.405 +6400/69092 Loss: 97.930 +9600/69092 Loss: 96.540 +12800/69092 Loss: 98.906 +16000/69092 Loss: 99.651 +19200/69092 Loss: 98.192 +22400/69092 Loss: 98.803 +25600/69092 Loss: 98.830 +28800/69092 Loss: 97.878 +32000/69092 Loss: 98.335 +35200/69092 Loss: 99.160 +38400/69092 Loss: 98.621 +41600/69092 Loss: 98.579 +44800/69092 Loss: 96.659 +48000/69092 Loss: 98.567 +51200/69092 Loss: 98.634 +54400/69092 Loss: 97.512 +57600/69092 Loss: 98.730 +60800/69092 Loss: 97.594 +64000/69092 Loss: 98.190 +67200/69092 Loss: 97.129 +Training time 0:12:43.264850 +Epoch: 165 Average loss: 98.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 316) +0/69092 Loss: 97.774 +3200/69092 Loss: 97.828 +6400/69092 Loss: 98.169 +9600/69092 Loss: 98.105 +12800/69092 Loss: 98.137 +16000/69092 Loss: 99.100 +19200/69092 Loss: 98.124 +22400/69092 Loss: 98.813 +25600/69092 Loss: 97.239 +28800/69092 Loss: 97.551 +32000/69092 Loss: 96.868 +35200/69092 Loss: 98.813 +38400/69092 Loss: 97.649 +41600/69092 Loss: 98.714 +44800/69092 Loss: 98.114 +48000/69092 Loss: 97.653 +51200/69092 Loss: 98.701 +54400/69092 Loss: 98.485 +57600/69092 Loss: 99.091 +60800/69092 Loss: 98.612 +64000/69092 Loss: 97.324 +67200/69092 Loss: 98.253 +Training time 0:13:24.917905 +Epoch: 166 Average loss: 98.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 317) +0/69092 Loss: 94.077 +3200/69092 Loss: 99.126 +6400/69092 Loss: 97.794 +9600/69092 Loss: 98.755 +12800/69092 Loss: 97.960 +16000/69092 Loss: 98.922 +19200/69092 Loss: 97.375 +22400/69092 Loss: 99.253 +25600/69092 Loss: 99.195 +28800/69092 Loss: 97.207 +32000/69092 Loss: 98.464 +35200/69092 Loss: 97.130 +38400/69092 Loss: 95.987 +41600/69092 Loss: 98.964 +44800/69092 Loss: 98.555 +48000/69092 Loss: 97.369 +51200/69092 Loss: 98.525 +54400/69092 Loss: 97.068 +57600/69092 Loss: 98.455 +60800/69092 Loss: 99.489 +64000/69092 Loss: 97.640 +67200/69092 Loss: 97.681 +Training time 0:14:09.367848 +Epoch: 167 Average loss: 98.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 318) +0/69092 Loss: 93.512 +3200/69092 Loss: 97.701 +6400/69092 Loss: 97.278 +9600/69092 Loss: 98.994 +12800/69092 Loss: 99.049 +16000/69092 Loss: 97.475 +19200/69092 Loss: 97.776 +22400/69092 Loss: 97.669 +25600/69092 Loss: 99.101 +28800/69092 Loss: 99.841 +32000/69092 Loss: 98.693 +35200/69092 Loss: 98.556 +38400/69092 Loss: 98.925 +41600/69092 Loss: 97.482 +44800/69092 Loss: 96.635 +48000/69092 Loss: 98.162 +51200/69092 Loss: 98.428 +54400/69092 Loss: 98.160 +57600/69092 Loss: 97.599 +60800/69092 Loss: 98.079 +64000/69092 Loss: 99.420 +67200/69092 Loss: 97.285 +Training time 0:10:34.036559 +Epoch: 168 Average loss: 98.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 319) +0/69092 Loss: 103.887 +3200/69092 Loss: 98.155 +6400/69092 Loss: 98.173 +9600/69092 Loss: 98.513 +12800/69092 Loss: 95.892 +16000/69092 Loss: 98.028 +19200/69092 Loss: 97.630 +22400/69092 Loss: 98.138 +25600/69092 Loss: 98.080 +28800/69092 Loss: 97.712 +32000/69092 Loss: 99.004 +35200/69092 Loss: 97.991 +38400/69092 Loss: 98.123 +41600/69092 Loss: 99.218 +44800/69092 Loss: 98.908 +48000/69092 Loss: 96.220 +51200/69092 Loss: 99.173 +54400/69092 Loss: 98.415 +57600/69092 Loss: 98.235 +60800/69092 Loss: 99.162 +64000/69092 Loss: 98.697 +67200/69092 Loss: 98.868 +Training time 0:10:14.244180 +Epoch: 169 Average loss: 98.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 320) +0/69092 Loss: 94.253 +3200/69092 Loss: 98.496 +6400/69092 Loss: 98.539 +9600/69092 Loss: 98.586 +12800/69092 Loss: 98.096 +16000/69092 Loss: 97.709 +19200/69092 Loss: 97.516 +22400/69092 Loss: 96.776 +25600/69092 Loss: 97.082 +28800/69092 Loss: 98.180 +32000/69092 Loss: 98.591 +35200/69092 Loss: 97.163 +38400/69092 Loss: 99.337 +41600/69092 Loss: 98.631 +44800/69092 Loss: 99.544 +48000/69092 Loss: 98.170 +51200/69092 Loss: 97.214 +54400/69092 Loss: 96.568 +57600/69092 Loss: 97.335 +60800/69092 Loss: 99.304 +64000/69092 Loss: 97.544 +67200/69092 Loss: 97.252 +Training time 0:10:35.787056 +Epoch: 170 Average loss: 97.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 321) +0/69092 Loss: 95.024 +3200/69092 Loss: 97.308 +6400/69092 Loss: 96.921 +9600/69092 Loss: 98.798 +12800/69092 Loss: 98.268 +16000/69092 Loss: 97.637 +19200/69092 Loss: 99.079 +22400/69092 Loss: 98.449 +25600/69092 Loss: 99.124 +28800/69092 Loss: 98.336 +32000/69092 Loss: 96.917 +35200/69092 Loss: 99.851 +38400/69092 Loss: 96.948 +41600/69092 Loss: 96.668 +44800/69092 Loss: 98.954 +48000/69092 Loss: 97.796 +51200/69092 Loss: 98.903 +54400/69092 Loss: 97.784 +57600/69092 Loss: 98.566 +60800/69092 Loss: 98.480 +64000/69092 Loss: 99.075 +67200/69092 Loss: 99.186 +Training time 0:10:36.581540 +Epoch: 171 Average loss: 98.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 322) +0/69092 Loss: 101.326 +3200/69092 Loss: 98.032 +6400/69092 Loss: 98.862 +9600/69092 Loss: 98.017 +12800/69092 Loss: 97.800 +16000/69092 Loss: 98.697 +19200/69092 Loss: 99.089 +22400/69092 Loss: 97.971 +25600/69092 Loss: 98.371 +28800/69092 Loss: 98.178 +32000/69092 Loss: 98.555 +35200/69092 Loss: 98.254 +38400/69092 Loss: 99.814 +41600/69092 Loss: 98.124 +44800/69092 Loss: 97.826 +48000/69092 Loss: 99.624 +51200/69092 Loss: 98.152 +54400/69092 Loss: 97.692 +57600/69092 Loss: 96.734 +60800/69092 Loss: 99.029 +64000/69092 Loss: 96.515 +67200/69092 Loss: 96.665 +Training time 0:10:24.525175 +Epoch: 172 Average loss: 98.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 323) +0/69092 Loss: 92.380 +3200/69092 Loss: 98.063 +6400/69092 Loss: 98.860 +9600/69092 Loss: 97.082 +12800/69092 Loss: 98.747 +16000/69092 Loss: 98.258 +19200/69092 Loss: 98.613 +22400/69092 Loss: 100.499 +25600/69092 Loss: 97.583 +28800/69092 Loss: 98.128 +32000/69092 Loss: 97.839 +35200/69092 Loss: 97.443 +38400/69092 Loss: 97.941 +41600/69092 Loss: 98.619 +44800/69092 Loss: 98.128 +48000/69092 Loss: 97.087 +51200/69092 Loss: 97.866 +54400/69092 Loss: 99.180 +57600/69092 Loss: 96.889 +60800/69092 Loss: 98.515 +64000/69092 Loss: 99.746 +67200/69092 Loss: 97.253 +Training time 0:10:13.844486 +Epoch: 173 Average loss: 98.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 324) +0/69092 Loss: 104.825 +3200/69092 Loss: 97.515 +6400/69092 Loss: 98.988 +9600/69092 Loss: 97.247 +12800/69092 Loss: 98.691 +16000/69092 Loss: 97.595 +19200/69092 Loss: 99.162 +22400/69092 Loss: 98.002 +25600/69092 Loss: 98.334 +28800/69092 Loss: 97.022 +32000/69092 Loss: 97.954 +35200/69092 Loss: 96.054 +38400/69092 Loss: 99.949 +41600/69092 Loss: 97.668 +44800/69092 Loss: 97.102 +48000/69092 Loss: 97.000 +51200/69092 Loss: 98.170 +54400/69092 Loss: 100.072 +57600/69092 Loss: 98.318 +60800/69092 Loss: 98.244 +64000/69092 Loss: 97.852 +67200/69092 Loss: 98.157 +Training time 0:10:25.395935 +Epoch: 174 Average loss: 98.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 325) +0/69092 Loss: 95.461 +3200/69092 Loss: 98.727 +6400/69092 Loss: 97.471 +9600/69092 Loss: 99.072 +12800/69092 Loss: 97.924 +16000/69092 Loss: 98.807 +19200/69092 Loss: 97.924 +22400/69092 Loss: 96.782 +25600/69092 Loss: 97.791 +28800/69092 Loss: 97.544 +32000/69092 Loss: 97.709 +35200/69092 Loss: 97.729 +38400/69092 Loss: 98.362 +41600/69092 Loss: 98.389 +44800/69092 Loss: 97.310 +48000/69092 Loss: 99.556 +51200/69092 Loss: 97.419 +54400/69092 Loss: 99.490 +57600/69092 Loss: 97.560 +60800/69092 Loss: 98.428 +64000/69092 Loss: 97.345 +67200/69092 Loss: 97.150 +Training time 0:10:32.988209 +Epoch: 175 Average loss: 98.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 326) +0/69092 Loss: 95.774 +3200/69092 Loss: 96.909 +6400/69092 Loss: 97.670 +9600/69092 Loss: 98.492 +12800/69092 Loss: 98.244 +16000/69092 Loss: 98.693 +19200/69092 Loss: 98.651 +22400/69092 Loss: 96.936 +25600/69092 Loss: 96.211 +28800/69092 Loss: 98.904 +32000/69092 Loss: 97.423 +35200/69092 Loss: 97.747 +38400/69092 Loss: 97.414 +41600/69092 Loss: 98.549 +44800/69092 Loss: 98.433 +48000/69092 Loss: 100.038 +51200/69092 Loss: 98.135 +54400/69092 Loss: 97.355 +57600/69092 Loss: 96.570 +60800/69092 Loss: 97.969 +64000/69092 Loss: 98.980 +67200/69092 Loss: 98.654 +Training time 0:10:21.617439 +Epoch: 176 Average loss: 98.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 327) +0/69092 Loss: 105.659 +3200/69092 Loss: 98.557 +6400/69092 Loss: 97.608 +9600/69092 Loss: 98.763 +12800/69092 Loss: 98.059 +16000/69092 Loss: 98.490 +19200/69092 Loss: 97.642 +22400/69092 Loss: 98.409 +25600/69092 Loss: 98.616 +28800/69092 Loss: 96.312 +32000/69092 Loss: 98.706 +35200/69092 Loss: 96.496 +38400/69092 Loss: 99.041 +41600/69092 Loss: 99.345 +44800/69092 Loss: 97.950 +48000/69092 Loss: 98.456 +51200/69092 Loss: 97.258 +54400/69092 Loss: 97.572 +57600/69092 Loss: 99.140 +60800/69092 Loss: 97.441 +64000/69092 Loss: 97.064 +67200/69092 Loss: 97.635 +Training time 0:10:52.977585 +Epoch: 177 Average loss: 98.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 328) +0/69092 Loss: 100.260 +3200/69092 Loss: 97.870 +6400/69092 Loss: 97.507 +9600/69092 Loss: 98.781 +12800/69092 Loss: 99.599 +16000/69092 Loss: 99.306 +19200/69092 Loss: 98.309 +22400/69092 Loss: 97.510 +25600/69092 Loss: 97.543 +28800/69092 Loss: 99.745 +32000/69092 Loss: 98.470 +35200/69092 Loss: 97.717 +38400/69092 Loss: 98.658 +41600/69092 Loss: 97.954 +44800/69092 Loss: 100.100 +48000/69092 Loss: 97.260 +51200/69092 Loss: 96.223 +54400/69092 Loss: 97.890 +57600/69092 Loss: 97.910 +60800/69092 Loss: 98.846 +64000/69092 Loss: 96.599 +67200/69092 Loss: 96.259 +Training time 0:10:30.435081 +Epoch: 178 Average loss: 98.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 329) +0/69092 Loss: 100.609 +3200/69092 Loss: 97.095 +6400/69092 Loss: 98.219 +9600/69092 Loss: 99.088 +12800/69092 Loss: 98.063 +16000/69092 Loss: 97.975 +19200/69092 Loss: 98.779 +22400/69092 Loss: 98.486 +25600/69092 Loss: 98.405 +28800/69092 Loss: 98.183 +32000/69092 Loss: 97.464 +35200/69092 Loss: 97.266 +38400/69092 Loss: 97.498 +41600/69092 Loss: 97.087 +44800/69092 Loss: 97.639 +48000/69092 Loss: 98.185 +51200/69092 Loss: 97.865 +54400/69092 Loss: 96.195 +57600/69092 Loss: 97.484 +60800/69092 Loss: 99.810 +64000/69092 Loss: 97.416 +67200/69092 Loss: 97.201 +Training time 0:10:38.142472 +Epoch: 179 Average loss: 97.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 330) +0/69092 Loss: 96.943 +3200/69092 Loss: 96.603 +6400/69092 Loss: 98.701 +9600/69092 Loss: 98.923 +12800/69092 Loss: 98.372 +16000/69092 Loss: 98.435 +19200/69092 Loss: 97.619 +22400/69092 Loss: 99.150 +25600/69092 Loss: 99.389 +28800/69092 Loss: 99.122 +32000/69092 Loss: 96.686 +35200/69092 Loss: 98.883 +38400/69092 Loss: 97.304 +41600/69092 Loss: 96.530 +44800/69092 Loss: 97.108 +48000/69092 Loss: 98.530 +51200/69092 Loss: 98.975 +54400/69092 Loss: 97.504 +57600/69092 Loss: 99.012 +60800/69092 Loss: 98.877 +64000/69092 Loss: 97.133 +67200/69092 Loss: 96.516 +Training time 0:10:02.390300 +Epoch: 180 Average loss: 98.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 331) +0/69092 Loss: 88.820 +3200/69092 Loss: 96.257 +6400/69092 Loss: 97.321 +9600/69092 Loss: 96.604 +12800/69092 Loss: 99.226 +16000/69092 Loss: 96.869 +19200/69092 Loss: 97.724 +22400/69092 Loss: 97.475 +25600/69092 Loss: 98.080 +28800/69092 Loss: 98.804 +32000/69092 Loss: 97.523 +35200/69092 Loss: 98.680 +38400/69092 Loss: 98.864 +41600/69092 Loss: 97.495 +44800/69092 Loss: 99.304 +48000/69092 Loss: 97.814 +51200/69092 Loss: 98.917 +54400/69092 Loss: 96.779 +57600/69092 Loss: 99.296 +60800/69092 Loss: 98.977 +64000/69092 Loss: 98.939 +67200/69092 Loss: 98.346 +Training time 0:10:33.987920 +Epoch: 181 Average loss: 98.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 332) +0/69092 Loss: 97.747 +3200/69092 Loss: 98.473 +6400/69092 Loss: 98.071 +9600/69092 Loss: 98.417 +12800/69092 Loss: 97.509 +16000/69092 Loss: 97.445 +19200/69092 Loss: 97.630 +22400/69092 Loss: 98.036 +25600/69092 Loss: 96.162 +28800/69092 Loss: 97.567 +32000/69092 Loss: 97.982 +35200/69092 Loss: 98.037 +38400/69092 Loss: 98.349 +41600/69092 Loss: 99.363 +44800/69092 Loss: 96.832 +48000/69092 Loss: 99.166 +51200/69092 Loss: 97.011 +54400/69092 Loss: 98.906 +57600/69092 Loss: 98.500 +60800/69092 Loss: 98.300 +64000/69092 Loss: 99.183 +67200/69092 Loss: 98.772 +Training time 0:10:08.792180 +Epoch: 182 Average loss: 98.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 333) +0/69092 Loss: 96.913 +3200/69092 Loss: 96.387 +6400/69092 Loss: 100.573 +9600/69092 Loss: 97.668 +12800/69092 Loss: 98.330 +16000/69092 Loss: 97.493 +19200/69092 Loss: 99.429 +22400/69092 Loss: 98.247 +25600/69092 Loss: 96.254 +28800/69092 Loss: 97.794 +32000/69092 Loss: 97.240 +35200/69092 Loss: 97.468 +38400/69092 Loss: 99.131 +41600/69092 Loss: 98.339 +44800/69092 Loss: 98.618 +48000/69092 Loss: 98.992 +51200/69092 Loss: 98.526 +54400/69092 Loss: 98.435 +57600/69092 Loss: 98.435 +60800/69092 Loss: 97.758 +64000/69092 Loss: 97.085 +67200/69092 Loss: 96.175 +Training time 0:10:32.837426 +Epoch: 183 Average loss: 98.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 334) +0/69092 Loss: 115.002 +3200/69092 Loss: 98.958 +6400/69092 Loss: 97.857 +9600/69092 Loss: 99.014 +12800/69092 Loss: 98.108 +16000/69092 Loss: 97.282 +19200/69092 Loss: 97.820 +22400/69092 Loss: 98.268 +25600/69092 Loss: 98.444 +28800/69092 Loss: 97.034 +32000/69092 Loss: 98.147 +35200/69092 Loss: 97.583 +38400/69092 Loss: 98.471 +41600/69092 Loss: 97.852 +44800/69092 Loss: 98.298 +48000/69092 Loss: 99.073 +51200/69092 Loss: 97.965 +54400/69092 Loss: 97.504 +57600/69092 Loss: 98.467 +60800/69092 Loss: 98.421 +64000/69092 Loss: 97.045 +67200/69092 Loss: 97.283 +Training time 0:10:40.812992 +Epoch: 184 Average loss: 98.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 335) +0/69092 Loss: 95.924 +3200/69092 Loss: 96.572 +6400/69092 Loss: 97.020 +9600/69092 Loss: 97.838 +12800/69092 Loss: 97.814 +16000/69092 Loss: 97.843 +19200/69092 Loss: 98.173 +22400/69092 Loss: 98.884 +25600/69092 Loss: 99.090 +28800/69092 Loss: 98.278 +32000/69092 Loss: 96.425 +35200/69092 Loss: 98.154 +38400/69092 Loss: 97.862 +41600/69092 Loss: 99.277 +44800/69092 Loss: 97.498 +48000/69092 Loss: 99.522 +51200/69092 Loss: 99.470 +54400/69092 Loss: 97.273 +57600/69092 Loss: 96.970 +60800/69092 Loss: 98.124 +64000/69092 Loss: 97.301 +67200/69092 Loss: 97.058 +Training time 0:10:55.541279 +Epoch: 185 Average loss: 97.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 336) +0/69092 Loss: 83.727 +3200/69092 Loss: 98.492 +6400/69092 Loss: 98.066 +9600/69092 Loss: 97.880 +12800/69092 Loss: 97.536 +16000/69092 Loss: 97.832 +19200/69092 Loss: 99.815 +22400/69092 Loss: 96.815 +25600/69092 Loss: 97.552 +28800/69092 Loss: 97.938 +32000/69092 Loss: 98.550 +35200/69092 Loss: 98.376 +38400/69092 Loss: 97.697 +41600/69092 Loss: 98.552 +44800/69092 Loss: 97.927 +48000/69092 Loss: 97.156 +51200/69092 Loss: 98.214 +54400/69092 Loss: 99.438 +57600/69092 Loss: 98.492 +60800/69092 Loss: 97.725 +64000/69092 Loss: 98.602 +67200/69092 Loss: 98.765 +Training time 0:10:24.438608 +Epoch: 186 Average loss: 98.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 337) +0/69092 Loss: 92.979 +3200/69092 Loss: 97.604 +6400/69092 Loss: 98.249 +9600/69092 Loss: 98.921 +12800/69092 Loss: 97.965 +16000/69092 Loss: 98.428 +19200/69092 Loss: 97.862 +22400/69092 Loss: 96.876 +25600/69092 Loss: 98.547 +28800/69092 Loss: 98.908 +32000/69092 Loss: 98.379 +35200/69092 Loss: 97.194 +38400/69092 Loss: 97.365 +41600/69092 Loss: 99.197 +44800/69092 Loss: 96.762 +48000/69092 Loss: 98.557 +51200/69092 Loss: 98.386 +54400/69092 Loss: 98.735 +57600/69092 Loss: 96.891 +60800/69092 Loss: 97.820 +64000/69092 Loss: 97.124 +67200/69092 Loss: 96.989 +Training time 0:10:18.409025 +Epoch: 187 Average loss: 97.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 338) +0/69092 Loss: 97.516 +3200/69092 Loss: 99.095 +6400/69092 Loss: 98.399 +9600/69092 Loss: 98.691 +12800/69092 Loss: 97.038 +16000/69092 Loss: 97.569 +19200/69092 Loss: 98.539 +22400/69092 Loss: 99.650 +25600/69092 Loss: 97.976 +28800/69092 Loss: 97.396 +32000/69092 Loss: 96.578 +35200/69092 Loss: 97.632 +38400/69092 Loss: 98.994 +41600/69092 Loss: 98.655 +44800/69092 Loss: 99.178 +48000/69092 Loss: 99.633 +51200/69092 Loss: 98.347 +54400/69092 Loss: 98.289 +57600/69092 Loss: 96.850 +60800/69092 Loss: 97.944 +64000/69092 Loss: 96.652 +67200/69092 Loss: 98.260 +Training time 0:10:25.715475 +Epoch: 188 Average loss: 98.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 339) +0/69092 Loss: 101.824 +3200/69092 Loss: 97.819 +6400/69092 Loss: 98.402 +9600/69092 Loss: 97.668 +12800/69092 Loss: 95.909 +16000/69092 Loss: 98.196 +19200/69092 Loss: 97.940 +22400/69092 Loss: 99.174 +25600/69092 Loss: 97.898 +28800/69092 Loss: 99.509 +32000/69092 Loss: 98.409 +35200/69092 Loss: 97.470 +38400/69092 Loss: 98.635 +41600/69092 Loss: 97.413 +44800/69092 Loss: 98.501 +48000/69092 Loss: 98.064 +51200/69092 Loss: 97.456 +54400/69092 Loss: 98.637 +57600/69092 Loss: 97.086 +60800/69092 Loss: 97.561 +64000/69092 Loss: 96.761 +67200/69092 Loss: 98.108 +Training time 0:10:52.228950 +Epoch: 189 Average loss: 97.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 340) +0/69092 Loss: 86.152 +3200/69092 Loss: 98.043 +6400/69092 Loss: 99.174 +9600/69092 Loss: 97.275 +12800/69092 Loss: 99.317 +16000/69092 Loss: 97.388 +19200/69092 Loss: 96.797 +22400/69092 Loss: 98.445 +25600/69092 Loss: 98.645 +28800/69092 Loss: 96.769 +32000/69092 Loss: 98.106 +35200/69092 Loss: 98.173 +38400/69092 Loss: 97.182 +41600/69092 Loss: 98.197 +44800/69092 Loss: 98.253 +48000/69092 Loss: 98.544 +51200/69092 Loss: 98.266 +54400/69092 Loss: 96.415 +57600/69092 Loss: 98.549 +60800/69092 Loss: 97.085 +64000/69092 Loss: 96.785 +67200/69092 Loss: 98.781 +Training time 0:10:20.197803 +Epoch: 190 Average loss: 97.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 341) +0/69092 Loss: 98.072 +3200/69092 Loss: 97.119 +6400/69092 Loss: 97.593 +9600/69092 Loss: 99.705 +12800/69092 Loss: 98.692 +16000/69092 Loss: 97.643 +19200/69092 Loss: 96.582 +22400/69092 Loss: 98.620 +25600/69092 Loss: 98.305 +28800/69092 Loss: 98.110 +32000/69092 Loss: 98.872 +35200/69092 Loss: 97.149 +38400/69092 Loss: 98.614 +41600/69092 Loss: 98.579 +44800/69092 Loss: 97.584 +48000/69092 Loss: 96.324 +51200/69092 Loss: 98.902 +54400/69092 Loss: 96.874 +57600/69092 Loss: 99.538 +60800/69092 Loss: 97.361 +64000/69092 Loss: 98.255 +67200/69092 Loss: 97.632 +Training time 0:10:44.401777 +Epoch: 191 Average loss: 97.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 342) +0/69092 Loss: 94.441 +3200/69092 Loss: 98.059 +6400/69092 Loss: 98.131 +9600/69092 Loss: 97.335 +12800/69092 Loss: 97.602 +16000/69092 Loss: 99.272 +19200/69092 Loss: 97.943 +22400/69092 Loss: 96.309 +25600/69092 Loss: 96.554 +28800/69092 Loss: 97.751 +32000/69092 Loss: 98.636 +35200/69092 Loss: 98.097 +38400/69092 Loss: 97.270 +41600/69092 Loss: 98.393 +44800/69092 Loss: 97.996 +48000/69092 Loss: 96.554 +51200/69092 Loss: 97.515 +54400/69092 Loss: 98.180 +57600/69092 Loss: 98.681 +60800/69092 Loss: 98.844 +64000/69092 Loss: 98.858 +67200/69092 Loss: 97.694 +Training time 0:10:32.081897 +Epoch: 192 Average loss: 97.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 343) +0/69092 Loss: 96.472 +3200/69092 Loss: 97.645 +6400/69092 Loss: 98.490 +9600/69092 Loss: 97.526 +12800/69092 Loss: 98.333 +16000/69092 Loss: 97.153 +19200/69092 Loss: 97.306 +22400/69092 Loss: 98.635 +25600/69092 Loss: 97.469 +28800/69092 Loss: 98.038 +32000/69092 Loss: 97.387 +35200/69092 Loss: 98.271 +38400/69092 Loss: 97.678 +41600/69092 Loss: 98.379 +44800/69092 Loss: 97.652 +48000/69092 Loss: 97.200 +51200/69092 Loss: 98.087 +54400/69092 Loss: 98.409 +57600/69092 Loss: 98.387 +60800/69092 Loss: 97.629 +64000/69092 Loss: 98.820 +67200/69092 Loss: 97.312 +Training time 0:10:30.891479 +Epoch: 193 Average loss: 97.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 344) +0/69092 Loss: 98.469 +3200/69092 Loss: 97.283 +6400/69092 Loss: 97.438 +9600/69092 Loss: 96.912 +12800/69092 Loss: 97.868 +16000/69092 Loss: 98.130 +19200/69092 Loss: 98.277 +22400/69092 Loss: 98.162 +25600/69092 Loss: 98.349 +28800/69092 Loss: 97.048 +32000/69092 Loss: 98.323 +35200/69092 Loss: 97.162 +38400/69092 Loss: 98.097 +41600/69092 Loss: 97.650 +44800/69092 Loss: 98.070 +48000/69092 Loss: 95.570 +51200/69092 Loss: 99.206 +54400/69092 Loss: 97.327 +57600/69092 Loss: 97.433 +60800/69092 Loss: 97.848 +64000/69092 Loss: 99.489 +67200/69092 Loss: 98.195 +Training time 0:10:39.120607 +Epoch: 194 Average loss: 97.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 345) +0/69092 Loss: 86.333 +3200/69092 Loss: 97.974 +6400/69092 Loss: 99.585 +9600/69092 Loss: 97.048 +12800/69092 Loss: 97.467 +16000/69092 Loss: 97.703 +19200/69092 Loss: 97.812 +22400/69092 Loss: 98.048 +25600/69092 Loss: 98.004 +28800/69092 Loss: 98.876 +32000/69092 Loss: 97.479 +35200/69092 Loss: 98.245 +38400/69092 Loss: 97.552 +41600/69092 Loss: 97.420 +44800/69092 Loss: 98.804 +48000/69092 Loss: 97.136 +51200/69092 Loss: 96.495 +54400/69092 Loss: 97.353 +57600/69092 Loss: 97.528 +60800/69092 Loss: 98.153 +64000/69092 Loss: 98.409 +67200/69092 Loss: 99.141 +Training time 0:10:38.047377 +Epoch: 195 Average loss: 97.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 346) +0/69092 Loss: 99.119 +3200/69092 Loss: 98.141 +6400/69092 Loss: 96.620 +9600/69092 Loss: 98.305 +12800/69092 Loss: 98.017 +16000/69092 Loss: 97.531 +19200/69092 Loss: 97.241 +22400/69092 Loss: 97.690 +25600/69092 Loss: 97.796 +28800/69092 Loss: 99.507 +32000/69092 Loss: 98.128 +35200/69092 Loss: 98.194 +38400/69092 Loss: 97.341 +41600/69092 Loss: 96.924 +44800/69092 Loss: 97.130 +48000/69092 Loss: 97.802 +51200/69092 Loss: 96.838 +54400/69092 Loss: 98.265 +57600/69092 Loss: 98.351 +60800/69092 Loss: 97.449 +64000/69092 Loss: 99.622 +67200/69092 Loss: 97.265 +Training time 0:10:34.787996 +Epoch: 196 Average loss: 97.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 347) +0/69092 Loss: 95.408 +3200/69092 Loss: 97.688 +6400/69092 Loss: 97.898 +9600/69092 Loss: 98.392 +12800/69092 Loss: 97.737 +16000/69092 Loss: 97.542 +19200/69092 Loss: 97.926 +22400/69092 Loss: 98.490 +25600/69092 Loss: 97.883 +28800/69092 Loss: 95.956 +32000/69092 Loss: 98.769 +35200/69092 Loss: 97.105 +38400/69092 Loss: 97.668 +41600/69092 Loss: 97.119 +44800/69092 Loss: 100.023 +48000/69092 Loss: 98.737 +51200/69092 Loss: 99.350 +54400/69092 Loss: 98.811 +57600/69092 Loss: 97.783 +60800/69092 Loss: 98.435 +64000/69092 Loss: 97.226 +67200/69092 Loss: 95.603 +Training time 0:10:42.729827 +Epoch: 197 Average loss: 97.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 348) +0/69092 Loss: 94.113 +3200/69092 Loss: 99.649 +6400/69092 Loss: 98.943 +9600/69092 Loss: 100.372 +12800/69092 Loss: 96.863 +16000/69092 Loss: 98.158 +19200/69092 Loss: 97.115 +22400/69092 Loss: 98.433 +25600/69092 Loss: 98.001 +28800/69092 Loss: 97.901 +32000/69092 Loss: 97.640 +35200/69092 Loss: 98.062 +38400/69092 Loss: 98.358 +41600/69092 Loss: 98.673 +44800/69092 Loss: 96.951 +48000/69092 Loss: 97.734 +51200/69092 Loss: 100.051 +54400/69092 Loss: 96.786 +57600/69092 Loss: 96.129 +60800/69092 Loss: 96.951 +64000/69092 Loss: 97.081 +67200/69092 Loss: 96.266 +Training time 0:10:27.510002 +Epoch: 198 Average loss: 97.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 349) +0/69092 Loss: 104.497 +3200/69092 Loss: 97.216 +6400/69092 Loss: 98.226 +9600/69092 Loss: 99.271 +12800/69092 Loss: 97.410 +16000/69092 Loss: 97.223 +19200/69092 Loss: 97.969 +22400/69092 Loss: 97.534 +25600/69092 Loss: 98.070 +28800/69092 Loss: 97.627 +32000/69092 Loss: 96.902 +35200/69092 Loss: 97.853 +38400/69092 Loss: 97.673 +41600/69092 Loss: 98.188 +44800/69092 Loss: 98.555 +48000/69092 Loss: 98.012 +51200/69092 Loss: 99.784 +54400/69092 Loss: 100.155 +57600/69092 Loss: 97.122 +60800/69092 Loss: 98.559 +64000/69092 Loss: 96.351 +67200/69092 Loss: 97.841 +Training time 0:10:41.839104 +Epoch: 199 Average loss: 98.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 350) +0/69092 Loss: 95.922 +3200/69092 Loss: 97.496 +6400/69092 Loss: 97.386 +9600/69092 Loss: 98.313 +12800/69092 Loss: 97.158 +16000/69092 Loss: 98.775 +19200/69092 Loss: 97.778 +22400/69092 Loss: 98.637 +25600/69092 Loss: 98.333 +28800/69092 Loss: 98.738 +32000/69092 Loss: 96.877 +35200/69092 Loss: 98.001 +38400/69092 Loss: 96.466 +41600/69092 Loss: 98.758 +44800/69092 Loss: 96.998 +48000/69092 Loss: 97.217 +51200/69092 Loss: 98.025 +54400/69092 Loss: 98.595 +57600/69092 Loss: 96.985 +60800/69092 Loss: 97.694 +64000/69092 Loss: 98.705 +67200/69092 Loss: 97.716 +Training time 0:10:27.551727 +Epoch: 200 Average loss: 97.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 351) +0/69092 Loss: 91.509 +3200/69092 Loss: 97.435 +6400/69092 Loss: 98.897 +9600/69092 Loss: 96.761 +12800/69092 Loss: 97.232 +16000/69092 Loss: 96.543 +19200/69092 Loss: 99.271 +22400/69092 Loss: 97.821 +25600/69092 Loss: 97.965 +28800/69092 Loss: 98.099 +32000/69092 Loss: 97.253 +35200/69092 Loss: 97.722 +38400/69092 Loss: 96.786 +41600/69092 Loss: 98.450 +44800/69092 Loss: 99.835 +48000/69092 Loss: 97.886 +51200/69092 Loss: 99.599 +54400/69092 Loss: 98.938 +57600/69092 Loss: 96.867 +60800/69092 Loss: 97.954 +64000/69092 Loss: 98.348 +67200/69092 Loss: 97.235 +Training time 0:11:01.813552 +Epoch: 201 Average loss: 97.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 352) +0/69092 Loss: 102.499 +3200/69092 Loss: 98.574 +6400/69092 Loss: 97.649 +9600/69092 Loss: 97.225 +12800/69092 Loss: 98.061 +16000/69092 Loss: 98.130 +19200/69092 Loss: 99.615 +22400/69092 Loss: 98.586 +25600/69092 Loss: 97.974 +28800/69092 Loss: 97.136 +32000/69092 Loss: 95.949 +35200/69092 Loss: 97.230 +38400/69092 Loss: 98.174 +41600/69092 Loss: 97.678 +44800/69092 Loss: 98.705 +48000/69092 Loss: 97.620 +51200/69092 Loss: 97.813 +54400/69092 Loss: 98.589 +57600/69092 Loss: 98.827 +60800/69092 Loss: 97.111 +64000/69092 Loss: 96.536 +67200/69092 Loss: 97.584 +Training time 0:10:31.163189 +Epoch: 202 Average loss: 97.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 353) +0/69092 Loss: 109.693 +3200/69092 Loss: 97.077 +6400/69092 Loss: 97.594 +9600/69092 Loss: 98.576 +12800/69092 Loss: 98.821 +16000/69092 Loss: 96.185 +19200/69092 Loss: 97.421 +22400/69092 Loss: 98.388 +25600/69092 Loss: 98.489 +28800/69092 Loss: 97.288 +32000/69092 Loss: 98.274 +35200/69092 Loss: 98.240 +38400/69092 Loss: 96.641 +41600/69092 Loss: 99.368 +44800/69092 Loss: 97.768 +48000/69092 Loss: 95.759 +51200/69092 Loss: 97.804 +54400/69092 Loss: 97.744 +57600/69092 Loss: 98.908 +60800/69092 Loss: 97.468 +64000/69092 Loss: 98.823 +67200/69092 Loss: 96.620 +Training time 0:10:33.018121 +Epoch: 203 Average loss: 97.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 354) +0/69092 Loss: 97.965 +3200/69092 Loss: 97.269 +6400/69092 Loss: 97.580 +9600/69092 Loss: 98.522 +12800/69092 Loss: 97.169 +16000/69092 Loss: 98.043 +19200/69092 Loss: 96.798 +22400/69092 Loss: 98.586 +25600/69092 Loss: 98.638 +28800/69092 Loss: 97.944 +32000/69092 Loss: 97.545 +35200/69092 Loss: 97.260 +38400/69092 Loss: 96.615 +41600/69092 Loss: 97.607 +44800/69092 Loss: 99.194 +48000/69092 Loss: 97.125 +51200/69092 Loss: 98.589 +54400/69092 Loss: 97.997 +57600/69092 Loss: 97.204 +60800/69092 Loss: 97.009 +64000/69092 Loss: 98.240 +67200/69092 Loss: 98.572 +Training time 0:10:10.687875 +Epoch: 204 Average loss: 97.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 355) +0/69092 Loss: 98.507 +3200/69092 Loss: 98.386 +6400/69092 Loss: 97.213 +9600/69092 Loss: 98.662 +12800/69092 Loss: 96.034 +16000/69092 Loss: 97.866 +19200/69092 Loss: 96.961 +22400/69092 Loss: 98.053 +25600/69092 Loss: 97.088 +28800/69092 Loss: 97.881 +32000/69092 Loss: 97.400 +35200/69092 Loss: 100.212 +38400/69092 Loss: 98.334 +41600/69092 Loss: 97.652 +44800/69092 Loss: 97.892 +48000/69092 Loss: 97.527 +51200/69092 Loss: 97.728 +54400/69092 Loss: 97.826 +57600/69092 Loss: 97.310 +60800/69092 Loss: 97.911 +64000/69092 Loss: 98.249 +67200/69092 Loss: 98.853 +Training time 0:10:30.378191 +Epoch: 205 Average loss: 97.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 356) +0/69092 Loss: 96.756 +3200/69092 Loss: 98.532 +6400/69092 Loss: 98.281 +9600/69092 Loss: 98.570 +12800/69092 Loss: 98.263 +16000/69092 Loss: 96.547 +19200/69092 Loss: 97.878 +22400/69092 Loss: 96.021 +25600/69092 Loss: 98.586 +28800/69092 Loss: 96.415 +32000/69092 Loss: 97.505 +35200/69092 Loss: 97.731 +38400/69092 Loss: 97.374 +41600/69092 Loss: 97.430 +44800/69092 Loss: 96.433 +48000/69092 Loss: 97.403 +51200/69092 Loss: 97.949 +54400/69092 Loss: 99.123 +57600/69092 Loss: 97.852 +60800/69092 Loss: 99.742 +64000/69092 Loss: 98.782 +67200/69092 Loss: 98.849 +Training time 0:10:51.129242 +Epoch: 206 Average loss: 97.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last' (iter 357) +0/69092 Loss: 95.449 +3200/69092 Loss: 97.979 +6400/69092 Loss: 97.863 +9600/69092 Loss: 98.400 +12800/69092 Loss: 97.270 +16000/69092 Loss: 97.595 +19200/69092 Loss: 97.647 +22400/69092 Loss: 97.214 +25600/69092 Loss: 97.525 +28800/69092 Loss: 96.985 +32000/69092 Loss: 97.120 +35200/69092 Loss: 97.459 +38400/69092 Loss: 97.695 +41600/69092 Loss: 96.474 +44800/69092 Loss: 99.245 +48000/69092 Loss: 97.658 +51200/69092 Loss: 98.111 +54400/69092 Loss: 98.033 +57600/69092 Loss: 97.019 diff --git a/OAR.2073643.stderr b/OAR.2073643.stderr new file mode 100644 index 0000000000000000000000000000000000000000..8f70a76f45784adba8e6d01f48bc3e89cd128d8f --- /dev/null +++ b/OAR.2073643.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-07 08:29:14] Job 2073643 KILLED ## diff --git a/OAR.2073643.stdout b/OAR.2073643.stdout new file mode 100644 index 0000000000000000000000000000000000000000..c2c5585dee89bb259858bcc351f0268cffc42623 --- /dev/null +++ b/OAR.2073643.stdout @@ -0,0 +1,5103 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_40', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=40, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=80, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=40, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 788435 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last (iter 279)' +0/69092 Loss: 90.062 +3200/69092 Loss: 92.127 +6400/69092 Loss: 93.724 +9600/69092 Loss: 93.963 +12800/69092 Loss: 94.650 +16000/69092 Loss: 94.306 +19200/69092 Loss: 94.823 +22400/69092 Loss: 93.715 +25600/69092 Loss: 95.173 +28800/69092 Loss: 95.067 +32000/69092 Loss: 95.303 +35200/69092 Loss: 94.709 +38400/69092 Loss: 94.902 +41600/69092 Loss: 92.377 +44800/69092 Loss: 95.477 +48000/69092 Loss: 94.952 +51200/69092 Loss: 95.302 +54400/69092 Loss: 94.206 +57600/69092 Loss: 94.081 +60800/69092 Loss: 95.543 +64000/69092 Loss: 95.627 +67200/69092 Loss: 95.776 +Training time 0:13:30.634241 +Epoch: 1 Average loss: 94.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 280) +0/69092 Loss: 90.951 +3200/69092 Loss: 96.083 +6400/69092 Loss: 94.799 +9600/69092 Loss: 93.262 +12800/69092 Loss: 93.921 +16000/69092 Loss: 93.531 +19200/69092 Loss: 93.428 +22400/69092 Loss: 94.305 +25600/69092 Loss: 95.280 +28800/69092 Loss: 94.237 +32000/69092 Loss: 94.560 +35200/69092 Loss: 93.562 +38400/69092 Loss: 94.773 +41600/69092 Loss: 95.325 +44800/69092 Loss: 94.066 +48000/69092 Loss: 95.690 +51200/69092 Loss: 95.321 +54400/69092 Loss: 95.202 +57600/69092 Loss: 93.775 +60800/69092 Loss: 95.257 +64000/69092 Loss: 95.236 +67200/69092 Loss: 94.271 +Training time 0:10:22.101409 +Epoch: 2 Average loss: 94.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 281) +0/69092 Loss: 97.683 +3200/69092 Loss: 92.747 +6400/69092 Loss: 93.986 +9600/69092 Loss: 94.415 +12800/69092 Loss: 95.132 +16000/69092 Loss: 93.981 +19200/69092 Loss: 92.975 +22400/69092 Loss: 94.128 +25600/69092 Loss: 95.040 +28800/69092 Loss: 93.717 +32000/69092 Loss: 95.277 +35200/69092 Loss: 93.803 +38400/69092 Loss: 94.774 +41600/69092 Loss: 95.887 +44800/69092 Loss: 93.361 +48000/69092 Loss: 94.360 +51200/69092 Loss: 93.718 +54400/69092 Loss: 94.478 +57600/69092 Loss: 95.977 +60800/69092 Loss: 94.555 +64000/69092 Loss: 94.732 +67200/69092 Loss: 95.300 +Training time 0:10:30.531983 +Epoch: 3 Average loss: 94.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 282) +0/69092 Loss: 91.931 +3200/69092 Loss: 94.240 +6400/69092 Loss: 94.260 +9600/69092 Loss: 94.548 +12800/69092 Loss: 94.758 +16000/69092 Loss: 94.921 +19200/69092 Loss: 94.685 +22400/69092 Loss: 96.334 +25600/69092 Loss: 94.208 +28800/69092 Loss: 94.628 +32000/69092 Loss: 93.526 +35200/69092 Loss: 94.099 +38400/69092 Loss: 94.247 +41600/69092 Loss: 93.982 +44800/69092 Loss: 93.824 +48000/69092 Loss: 94.342 +51200/69092 Loss: 93.605 +54400/69092 Loss: 95.787 +57600/69092 Loss: 94.975 +60800/69092 Loss: 93.679 +64000/69092 Loss: 94.578 +67200/69092 Loss: 95.152 +Training time 0:10:29.827038 +Epoch: 4 Average loss: 94.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 283) +0/69092 Loss: 90.517 +3200/69092 Loss: 93.376 +6400/69092 Loss: 94.892 +9600/69092 Loss: 94.142 +12800/69092 Loss: 95.824 +16000/69092 Loss: 94.210 +19200/69092 Loss: 93.727 +22400/69092 Loss: 94.493 +25600/69092 Loss: 94.132 +28800/69092 Loss: 94.704 +32000/69092 Loss: 93.185 +35200/69092 Loss: 95.027 +38400/69092 Loss: 94.719 +41600/69092 Loss: 93.959 +44800/69092 Loss: 95.454 +48000/69092 Loss: 95.132 +51200/69092 Loss: 94.695 +54400/69092 Loss: 95.315 +57600/69092 Loss: 95.112 +60800/69092 Loss: 93.908 +64000/69092 Loss: 94.693 +67200/69092 Loss: 95.416 +Training time 0:10:35.687181 +Epoch: 5 Average loss: 94.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 284) +0/69092 Loss: 102.264 +3200/69092 Loss: 95.347 +6400/69092 Loss: 94.211 +9600/69092 Loss: 95.431 +12800/69092 Loss: 95.243 +16000/69092 Loss: 93.567 +19200/69092 Loss: 94.266 +22400/69092 Loss: 94.106 +25600/69092 Loss: 93.788 +28800/69092 Loss: 93.050 +32000/69092 Loss: 93.675 +35200/69092 Loss: 94.448 +38400/69092 Loss: 95.023 +41600/69092 Loss: 94.651 +44800/69092 Loss: 93.729 +48000/69092 Loss: 94.630 +51200/69092 Loss: 94.486 +54400/69092 Loss: 93.786 +57600/69092 Loss: 93.810 +60800/69092 Loss: 94.318 +64000/69092 Loss: 94.251 +67200/69092 Loss: 95.064 +Training time 0:10:58.632172 +Epoch: 6 Average loss: 94.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 285) +0/69092 Loss: 89.557 +3200/69092 Loss: 93.906 +6400/69092 Loss: 94.836 +9600/69092 Loss: 93.274 +12800/69092 Loss: 95.897 +16000/69092 Loss: 96.075 +19200/69092 Loss: 93.992 +22400/69092 Loss: 93.822 +25600/69092 Loss: 95.243 +28800/69092 Loss: 95.421 +32000/69092 Loss: 93.787 +35200/69092 Loss: 94.358 +38400/69092 Loss: 94.404 +41600/69092 Loss: 93.337 +44800/69092 Loss: 95.039 +48000/69092 Loss: 93.211 +51200/69092 Loss: 94.632 +54400/69092 Loss: 94.891 +57600/69092 Loss: 94.976 +60800/69092 Loss: 93.462 +64000/69092 Loss: 94.408 +67200/69092 Loss: 94.039 +Training time 0:10:55.584807 +Epoch: 7 Average loss: 94.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 286) +0/69092 Loss: 89.352 +3200/69092 Loss: 92.762 +6400/69092 Loss: 94.771 +9600/69092 Loss: 94.339 +12800/69092 Loss: 94.957 +16000/69092 Loss: 95.579 +19200/69092 Loss: 92.809 +22400/69092 Loss: 94.711 +25600/69092 Loss: 92.725 +28800/69092 Loss: 94.606 +32000/69092 Loss: 95.029 +35200/69092 Loss: 93.435 +38400/69092 Loss: 94.479 +41600/69092 Loss: 94.267 +44800/69092 Loss: 95.211 +48000/69092 Loss: 93.675 +51200/69092 Loss: 94.738 +54400/69092 Loss: 94.714 +57600/69092 Loss: 93.979 +60800/69092 Loss: 95.250 +64000/69092 Loss: 94.338 +67200/69092 Loss: 93.909 +Training time 0:10:48.878921 +Epoch: 8 Average loss: 94.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 287) +0/69092 Loss: 90.621 +3200/69092 Loss: 94.090 +6400/69092 Loss: 94.171 +9600/69092 Loss: 95.123 +12800/69092 Loss: 95.265 +16000/69092 Loss: 94.843 +19200/69092 Loss: 92.990 +22400/69092 Loss: 94.017 +25600/69092 Loss: 94.433 +28800/69092 Loss: 93.810 +32000/69092 Loss: 94.122 +35200/69092 Loss: 93.692 +38400/69092 Loss: 94.331 +41600/69092 Loss: 93.690 +44800/69092 Loss: 95.067 +48000/69092 Loss: 95.660 +51200/69092 Loss: 95.810 +54400/69092 Loss: 95.727 +57600/69092 Loss: 95.705 +60800/69092 Loss: 94.158 +64000/69092 Loss: 93.369 +67200/69092 Loss: 92.778 +Training time 0:10:24.506099 +Epoch: 9 Average loss: 94.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 288) +0/69092 Loss: 91.054 +3200/69092 Loss: 94.535 +6400/69092 Loss: 94.008 +9600/69092 Loss: 93.659 +12800/69092 Loss: 93.564 +16000/69092 Loss: 96.651 +19200/69092 Loss: 95.015 +22400/69092 Loss: 96.180 +25600/69092 Loss: 94.190 +28800/69092 Loss: 93.314 +32000/69092 Loss: 93.923 +35200/69092 Loss: 94.088 +38400/69092 Loss: 93.784 +41600/69092 Loss: 93.139 +44800/69092 Loss: 94.075 +48000/69092 Loss: 93.511 +51200/69092 Loss: 94.008 +54400/69092 Loss: 95.164 +57600/69092 Loss: 96.185 +60800/69092 Loss: 94.715 +64000/69092 Loss: 92.108 +67200/69092 Loss: 93.921 +Training time 0:10:31.554608 +Epoch: 10 Average loss: 94.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 289) +0/69092 Loss: 93.204 +3200/69092 Loss: 94.995 +6400/69092 Loss: 94.490 +9600/69092 Loss: 94.443 +12800/69092 Loss: 94.003 +16000/69092 Loss: 94.537 +19200/69092 Loss: 93.581 +22400/69092 Loss: 94.067 +25600/69092 Loss: 92.671 +28800/69092 Loss: 93.422 +32000/69092 Loss: 94.332 +35200/69092 Loss: 94.320 +38400/69092 Loss: 93.178 +41600/69092 Loss: 95.623 +44800/69092 Loss: 94.529 +48000/69092 Loss: 94.550 +51200/69092 Loss: 93.908 +54400/69092 Loss: 95.316 +57600/69092 Loss: 92.934 +60800/69092 Loss: 94.673 +64000/69092 Loss: 93.934 +67200/69092 Loss: 95.314 +Training time 0:10:25.657683 +Epoch: 11 Average loss: 94.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 290) +0/69092 Loss: 99.109 +3200/69092 Loss: 94.751 +6400/69092 Loss: 94.757 +9600/69092 Loss: 94.364 +12800/69092 Loss: 94.417 +16000/69092 Loss: 95.638 +19200/69092 Loss: 92.656 +22400/69092 Loss: 94.072 +25600/69092 Loss: 95.199 +28800/69092 Loss: 95.556 +32000/69092 Loss: 93.645 +35200/69092 Loss: 94.451 +38400/69092 Loss: 94.337 +41600/69092 Loss: 93.353 +44800/69092 Loss: 95.311 +48000/69092 Loss: 94.620 +51200/69092 Loss: 93.632 +54400/69092 Loss: 93.475 +57600/69092 Loss: 94.060 +60800/69092 Loss: 94.199 +64000/69092 Loss: 94.110 +67200/69092 Loss: 94.039 +Training time 0:10:49.936370 +Epoch: 12 Average loss: 94.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 291) +0/69092 Loss: 102.801 +3200/69092 Loss: 94.418 +6400/69092 Loss: 96.271 +9600/69092 Loss: 94.013 +12800/69092 Loss: 94.636 +16000/69092 Loss: 95.640 +19200/69092 Loss: 94.740 +22400/69092 Loss: 93.915 +25600/69092 Loss: 93.762 +28800/69092 Loss: 93.424 +32000/69092 Loss: 94.651 +35200/69092 Loss: 94.494 +38400/69092 Loss: 93.475 +41600/69092 Loss: 95.305 +44800/69092 Loss: 93.138 +48000/69092 Loss: 93.580 +51200/69092 Loss: 94.607 +54400/69092 Loss: 93.940 +57600/69092 Loss: 93.794 +60800/69092 Loss: 91.554 +64000/69092 Loss: 94.278 +67200/69092 Loss: 94.153 +Training time 0:10:30.127103 +Epoch: 13 Average loss: 94.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 292) +0/69092 Loss: 97.813 +3200/69092 Loss: 94.570 +6400/69092 Loss: 95.107 +9600/69092 Loss: 95.424 +12800/69092 Loss: 95.236 +16000/69092 Loss: 94.456 +19200/69092 Loss: 94.789 +22400/69092 Loss: 93.595 +25600/69092 Loss: 94.092 +28800/69092 Loss: 93.685 +32000/69092 Loss: 94.292 +35200/69092 Loss: 93.131 +38400/69092 Loss: 93.888 +41600/69092 Loss: 94.569 +44800/69092 Loss: 95.488 +48000/69092 Loss: 92.736 +51200/69092 Loss: 92.209 +54400/69092 Loss: 92.599 +57600/69092 Loss: 93.625 +60800/69092 Loss: 97.537 +64000/69092 Loss: 95.275 +67200/69092 Loss: 94.127 +Training time 0:10:20.730920 +Epoch: 14 Average loss: 94.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 293) +0/69092 Loss: 92.929 +3200/69092 Loss: 93.241 +6400/69092 Loss: 93.330 +9600/69092 Loss: 94.250 +12800/69092 Loss: 94.991 +16000/69092 Loss: 95.790 +19200/69092 Loss: 94.748 +22400/69092 Loss: 94.071 +25600/69092 Loss: 93.631 +28800/69092 Loss: 94.931 +32000/69092 Loss: 95.609 +35200/69092 Loss: 95.746 +38400/69092 Loss: 95.259 +41600/69092 Loss: 93.472 +44800/69092 Loss: 94.526 +48000/69092 Loss: 93.954 +51200/69092 Loss: 93.832 +54400/69092 Loss: 94.496 +57600/69092 Loss: 93.355 +60800/69092 Loss: 93.306 +64000/69092 Loss: 94.493 +67200/69092 Loss: 93.216 +Training time 0:10:28.250658 +Epoch: 15 Average loss: 94.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 294) +0/69092 Loss: 95.393 +3200/69092 Loss: 94.157 +6400/69092 Loss: 93.741 +9600/69092 Loss: 93.715 +12800/69092 Loss: 95.003 +16000/69092 Loss: 93.440 +19200/69092 Loss: 95.051 +22400/69092 Loss: 93.532 +25600/69092 Loss: 95.343 +28800/69092 Loss: 94.239 +32000/69092 Loss: 93.302 +35200/69092 Loss: 94.442 +38400/69092 Loss: 94.246 +41600/69092 Loss: 94.406 +44800/69092 Loss: 94.621 +48000/69092 Loss: 92.936 +51200/69092 Loss: 92.757 +54400/69092 Loss: 93.988 +57600/69092 Loss: 93.822 +60800/69092 Loss: 94.382 +64000/69092 Loss: 94.957 +67200/69092 Loss: 94.552 +Training time 0:10:29.129736 +Epoch: 16 Average loss: 94.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 295) +0/69092 Loss: 86.593 +3200/69092 Loss: 95.287 +6400/69092 Loss: 94.160 +9600/69092 Loss: 93.123 +12800/69092 Loss: 92.906 +16000/69092 Loss: 94.603 +19200/69092 Loss: 94.526 +22400/69092 Loss: 93.770 +25600/69092 Loss: 96.173 +28800/69092 Loss: 94.388 +32000/69092 Loss: 94.031 +35200/69092 Loss: 93.333 +38400/69092 Loss: 94.892 +41600/69092 Loss: 94.177 +44800/69092 Loss: 94.670 +48000/69092 Loss: 93.633 +51200/69092 Loss: 93.732 +54400/69092 Loss: 93.265 +57600/69092 Loss: 94.181 +60800/69092 Loss: 94.458 +64000/69092 Loss: 93.650 +67200/69092 Loss: 95.634 +Training time 0:10:28.383342 +Epoch: 17 Average loss: 94.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 296) +0/69092 Loss: 81.037 +3200/69092 Loss: 94.363 +6400/69092 Loss: 94.314 +9600/69092 Loss: 94.396 +12800/69092 Loss: 93.673 +16000/69092 Loss: 93.163 +19200/69092 Loss: 94.376 +22400/69092 Loss: 92.470 +25600/69092 Loss: 92.443 +28800/69092 Loss: 94.757 +32000/69092 Loss: 94.372 +35200/69092 Loss: 95.580 +38400/69092 Loss: 94.350 +41600/69092 Loss: 94.296 +44800/69092 Loss: 93.922 +48000/69092 Loss: 94.408 +51200/69092 Loss: 95.380 +54400/69092 Loss: 93.608 +57600/69092 Loss: 95.070 +60800/69092 Loss: 94.955 +64000/69092 Loss: 94.112 +67200/69092 Loss: 96.193 +Training time 0:10:38.745453 +Epoch: 18 Average loss: 94.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 297) +0/69092 Loss: 93.908 +3200/69092 Loss: 94.368 +6400/69092 Loss: 94.409 +9600/69092 Loss: 95.082 +12800/69092 Loss: 93.833 +16000/69092 Loss: 94.199 +19200/69092 Loss: 94.719 +22400/69092 Loss: 94.627 +25600/69092 Loss: 94.982 +28800/69092 Loss: 93.910 +32000/69092 Loss: 92.852 +35200/69092 Loss: 93.515 +38400/69092 Loss: 93.511 +41600/69092 Loss: 94.768 +44800/69092 Loss: 93.140 +48000/69092 Loss: 94.372 +51200/69092 Loss: 94.120 +54400/69092 Loss: 94.566 +57600/69092 Loss: 94.570 +60800/69092 Loss: 95.180 +64000/69092 Loss: 93.900 +67200/69092 Loss: 94.121 +Training time 0:10:45.134890 +Epoch: 19 Average loss: 94.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 298) +0/69092 Loss: 95.812 +3200/69092 Loss: 94.678 +6400/69092 Loss: 94.021 +9600/69092 Loss: 93.892 +12800/69092 Loss: 93.107 +16000/69092 Loss: 95.708 +19200/69092 Loss: 92.913 +22400/69092 Loss: 94.806 +25600/69092 Loss: 93.961 +28800/69092 Loss: 95.161 +32000/69092 Loss: 94.426 +35200/69092 Loss: 93.957 +38400/69092 Loss: 93.731 +41600/69092 Loss: 94.069 +44800/69092 Loss: 95.331 +48000/69092 Loss: 94.701 +51200/69092 Loss: 93.854 +54400/69092 Loss: 95.016 +57600/69092 Loss: 92.991 +60800/69092 Loss: 93.896 +64000/69092 Loss: 93.064 +67200/69092 Loss: 94.073 +Training time 0:11:00.403629 +Epoch: 20 Average loss: 94.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 299) +0/69092 Loss: 89.588 +3200/69092 Loss: 93.278 +6400/69092 Loss: 96.235 +9600/69092 Loss: 93.222 +12800/69092 Loss: 93.654 +16000/69092 Loss: 94.987 +19200/69092 Loss: 94.971 +22400/69092 Loss: 93.417 +25600/69092 Loss: 94.479 +28800/69092 Loss: 93.525 +32000/69092 Loss: 94.055 +35200/69092 Loss: 93.564 +38400/69092 Loss: 95.036 +41600/69092 Loss: 95.032 +44800/69092 Loss: 93.298 +48000/69092 Loss: 93.432 +51200/69092 Loss: 94.703 +54400/69092 Loss: 93.462 +57600/69092 Loss: 93.451 +60800/69092 Loss: 94.250 +64000/69092 Loss: 94.008 +67200/69092 Loss: 94.224 +Training time 0:10:30.457194 +Epoch: 21 Average loss: 94.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 300) +0/69092 Loss: 89.474 +3200/69092 Loss: 93.320 +6400/69092 Loss: 93.639 +9600/69092 Loss: 94.005 +12800/69092 Loss: 93.445 +16000/69092 Loss: 93.968 +19200/69092 Loss: 94.719 +22400/69092 Loss: 94.857 +25600/69092 Loss: 93.765 +28800/69092 Loss: 96.977 +32000/69092 Loss: 91.818 +35200/69092 Loss: 93.080 +38400/69092 Loss: 92.996 +41600/69092 Loss: 92.983 +44800/69092 Loss: 95.323 +48000/69092 Loss: 93.522 +51200/69092 Loss: 93.380 +54400/69092 Loss: 95.464 +57600/69092 Loss: 95.885 +60800/69092 Loss: 95.609 +64000/69092 Loss: 93.769 +67200/69092 Loss: 95.229 +Training time 0:10:49.630924 +Epoch: 22 Average loss: 94.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 301) +0/69092 Loss: 96.493 +3200/69092 Loss: 94.153 +6400/69092 Loss: 93.156 +9600/69092 Loss: 94.911 +12800/69092 Loss: 94.657 +16000/69092 Loss: 94.565 +19200/69092 Loss: 92.726 +22400/69092 Loss: 94.688 +25600/69092 Loss: 94.343 +28800/69092 Loss: 93.823 +32000/69092 Loss: 95.017 +35200/69092 Loss: 94.691 +38400/69092 Loss: 94.541 +41600/69092 Loss: 95.187 +44800/69092 Loss: 93.248 +48000/69092 Loss: 94.871 +51200/69092 Loss: 93.162 +54400/69092 Loss: 92.747 +57600/69092 Loss: 92.467 +60800/69092 Loss: 95.027 +64000/69092 Loss: 95.520 +67200/69092 Loss: 93.740 +Training time 0:10:50.953666 +Epoch: 23 Average loss: 94.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 302) +0/69092 Loss: 101.088 +3200/69092 Loss: 93.482 +6400/69092 Loss: 93.258 +9600/69092 Loss: 93.316 +12800/69092 Loss: 93.475 +16000/69092 Loss: 93.925 +19200/69092 Loss: 94.067 +22400/69092 Loss: 93.826 +25600/69092 Loss: 93.931 +28800/69092 Loss: 94.234 +32000/69092 Loss: 94.437 +35200/69092 Loss: 94.203 +38400/69092 Loss: 95.815 +41600/69092 Loss: 93.341 +44800/69092 Loss: 93.926 +48000/69092 Loss: 93.442 +51200/69092 Loss: 93.138 +54400/69092 Loss: 94.481 +57600/69092 Loss: 94.592 +60800/69092 Loss: 93.437 +64000/69092 Loss: 93.474 +67200/69092 Loss: 94.584 +Training time 0:10:30.408554 +Epoch: 24 Average loss: 94.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 303) +0/69092 Loss: 100.640 +3200/69092 Loss: 94.266 +6400/69092 Loss: 94.227 +9600/69092 Loss: 93.327 +12800/69092 Loss: 93.505 +16000/69092 Loss: 94.949 +19200/69092 Loss: 95.621 +22400/69092 Loss: 94.061 +25600/69092 Loss: 93.607 +28800/69092 Loss: 93.687 +32000/69092 Loss: 93.864 +35200/69092 Loss: 94.900 +38400/69092 Loss: 94.223 +41600/69092 Loss: 95.471 +44800/69092 Loss: 93.960 +48000/69092 Loss: 95.435 +51200/69092 Loss: 92.648 +54400/69092 Loss: 94.453 +57600/69092 Loss: 94.473 +60800/69092 Loss: 92.275 +64000/69092 Loss: 94.242 +67200/69092 Loss: 94.453 +Training time 0:10:51.076592 +Epoch: 25 Average loss: 94.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 304) +0/69092 Loss: 88.775 +3200/69092 Loss: 94.757 +6400/69092 Loss: 93.794 +9600/69092 Loss: 93.371 +12800/69092 Loss: 94.524 +16000/69092 Loss: 94.112 +19200/69092 Loss: 93.324 +22400/69092 Loss: 94.696 +25600/69092 Loss: 93.885 +28800/69092 Loss: 94.023 +32000/69092 Loss: 94.264 +35200/69092 Loss: 93.104 +38400/69092 Loss: 93.689 +41600/69092 Loss: 94.124 +44800/69092 Loss: 94.872 +48000/69092 Loss: 94.566 +51200/69092 Loss: 96.347 +54400/69092 Loss: 92.798 +57600/69092 Loss: 93.758 +60800/69092 Loss: 93.838 +64000/69092 Loss: 92.867 +67200/69092 Loss: 94.021 +Training time 0:10:40.206415 +Epoch: 26 Average loss: 94.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 305) +0/69092 Loss: 92.354 +3200/69092 Loss: 94.390 +6400/69092 Loss: 94.257 +9600/69092 Loss: 93.907 +12800/69092 Loss: 93.558 +16000/69092 Loss: 93.990 +19200/69092 Loss: 95.038 +22400/69092 Loss: 96.045 +25600/69092 Loss: 94.059 +28800/69092 Loss: 93.922 +32000/69092 Loss: 93.534 +35200/69092 Loss: 93.713 +38400/69092 Loss: 95.056 +41600/69092 Loss: 93.655 +44800/69092 Loss: 94.967 +48000/69092 Loss: 92.187 +51200/69092 Loss: 93.460 +54400/69092 Loss: 94.512 +57600/69092 Loss: 95.157 +60800/69092 Loss: 93.564 +64000/69092 Loss: 93.379 +67200/69092 Loss: 93.080 +Training time 0:10:29.219139 +Epoch: 27 Average loss: 94.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 306) +0/69092 Loss: 90.003 +3200/69092 Loss: 94.164 +6400/69092 Loss: 93.748 +9600/69092 Loss: 93.214 +12800/69092 Loss: 93.978 +16000/69092 Loss: 94.132 +19200/69092 Loss: 93.207 +22400/69092 Loss: 93.649 +25600/69092 Loss: 94.456 +28800/69092 Loss: 93.758 +32000/69092 Loss: 92.961 +35200/69092 Loss: 94.443 +38400/69092 Loss: 93.744 +41600/69092 Loss: 93.153 +44800/69092 Loss: 92.916 +48000/69092 Loss: 94.093 +51200/69092 Loss: 95.057 +54400/69092 Loss: 95.187 +57600/69092 Loss: 94.597 +60800/69092 Loss: 95.053 +64000/69092 Loss: 93.444 +67200/69092 Loss: 94.923 +Training time 0:10:26.627547 +Epoch: 28 Average loss: 94.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 307) +0/69092 Loss: 100.771 +3200/69092 Loss: 94.660 +6400/69092 Loss: 93.754 +9600/69092 Loss: 93.956 +12800/69092 Loss: 94.563 +16000/69092 Loss: 95.127 +19200/69092 Loss: 94.366 +22400/69092 Loss: 93.047 +25600/69092 Loss: 93.726 +28800/69092 Loss: 94.213 +32000/69092 Loss: 93.763 +35200/69092 Loss: 93.387 +38400/69092 Loss: 95.023 +41600/69092 Loss: 93.503 +44800/69092 Loss: 93.875 +48000/69092 Loss: 92.791 +51200/69092 Loss: 92.249 +54400/69092 Loss: 93.682 +57600/69092 Loss: 94.508 +60800/69092 Loss: 95.796 +64000/69092 Loss: 94.746 +67200/69092 Loss: 93.809 +Training time 0:10:36.289573 +Epoch: 29 Average loss: 94.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 308) +0/69092 Loss: 96.888 +3200/69092 Loss: 93.222 +6400/69092 Loss: 94.509 +9600/69092 Loss: 93.478 +12800/69092 Loss: 95.061 +16000/69092 Loss: 93.410 +19200/69092 Loss: 94.674 +22400/69092 Loss: 94.888 +25600/69092 Loss: 94.629 +28800/69092 Loss: 93.529 +32000/69092 Loss: 93.122 +35200/69092 Loss: 93.818 +38400/69092 Loss: 94.058 +41600/69092 Loss: 95.044 +44800/69092 Loss: 93.375 +48000/69092 Loss: 95.014 +51200/69092 Loss: 93.816 +54400/69092 Loss: 95.248 +57600/69092 Loss: 93.815 +60800/69092 Loss: 94.455 +64000/69092 Loss: 93.377 +67200/69092 Loss: 94.519 +Training time 0:10:54.788735 +Epoch: 30 Average loss: 94.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 309) +0/69092 Loss: 103.957 +3200/69092 Loss: 94.313 +6400/69092 Loss: 94.209 +9600/69092 Loss: 93.350 +12800/69092 Loss: 93.228 +16000/69092 Loss: 93.007 +19200/69092 Loss: 95.048 +22400/69092 Loss: 93.818 +25600/69092 Loss: 94.668 +28800/69092 Loss: 94.130 +32000/69092 Loss: 93.457 +35200/69092 Loss: 92.966 +38400/69092 Loss: 94.326 +41600/69092 Loss: 93.678 +44800/69092 Loss: 94.249 +48000/69092 Loss: 94.661 +51200/69092 Loss: 94.184 +54400/69092 Loss: 93.789 +57600/69092 Loss: 94.010 +60800/69092 Loss: 93.693 +64000/69092 Loss: 92.614 +67200/69092 Loss: 95.820 +Training time 0:10:41.256937 +Epoch: 31 Average loss: 94.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 310) +0/69092 Loss: 96.519 +3200/69092 Loss: 95.154 +6400/69092 Loss: 94.012 +9600/69092 Loss: 94.815 +12800/69092 Loss: 93.738 +16000/69092 Loss: 93.837 +19200/69092 Loss: 94.652 +22400/69092 Loss: 94.056 +25600/69092 Loss: 93.506 +28800/69092 Loss: 93.725 +32000/69092 Loss: 94.850 +35200/69092 Loss: 94.285 +38400/69092 Loss: 94.121 +41600/69092 Loss: 95.157 +44800/69092 Loss: 93.979 +48000/69092 Loss: 94.338 +51200/69092 Loss: 93.361 +54400/69092 Loss: 93.352 +57600/69092 Loss: 93.057 +60800/69092 Loss: 92.999 +64000/69092 Loss: 93.894 +67200/69092 Loss: 92.925 +Training time 0:10:27.068294 +Epoch: 32 Average loss: 94.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 311) +0/69092 Loss: 93.470 +3200/69092 Loss: 93.513 +6400/69092 Loss: 93.260 +9600/69092 Loss: 93.967 +12800/69092 Loss: 92.515 +16000/69092 Loss: 95.400 +19200/69092 Loss: 93.748 +22400/69092 Loss: 93.285 +25600/69092 Loss: 93.450 +28800/69092 Loss: 94.270 +32000/69092 Loss: 93.409 +35200/69092 Loss: 94.455 +38400/69092 Loss: 93.518 +41600/69092 Loss: 93.216 +44800/69092 Loss: 93.972 +48000/69092 Loss: 94.182 +51200/69092 Loss: 95.269 +54400/69092 Loss: 94.576 +57600/69092 Loss: 95.072 +60800/69092 Loss: 93.496 +64000/69092 Loss: 93.759 +67200/69092 Loss: 94.463 +Training time 0:10:16.913002 +Epoch: 33 Average loss: 93.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 312) +0/69092 Loss: 92.650 +3200/69092 Loss: 93.411 +6400/69092 Loss: 92.568 +9600/69092 Loss: 93.373 +12800/69092 Loss: 94.506 +16000/69092 Loss: 94.164 +19200/69092 Loss: 91.653 +22400/69092 Loss: 95.103 +25600/69092 Loss: 93.660 +28800/69092 Loss: 94.945 +32000/69092 Loss: 94.570 +35200/69092 Loss: 94.760 +38400/69092 Loss: 95.807 +41600/69092 Loss: 94.614 +44800/69092 Loss: 93.025 +48000/69092 Loss: 92.880 +51200/69092 Loss: 93.670 +54400/69092 Loss: 95.694 +57600/69092 Loss: 94.117 +60800/69092 Loss: 93.031 +64000/69092 Loss: 92.123 +67200/69092 Loss: 94.501 +Training time 0:10:25.478866 +Epoch: 34 Average loss: 93.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 313) +0/69092 Loss: 80.142 +3200/69092 Loss: 93.381 +6400/69092 Loss: 93.474 +9600/69092 Loss: 94.070 +12800/69092 Loss: 96.848 +16000/69092 Loss: 94.279 +19200/69092 Loss: 93.618 +22400/69092 Loss: 95.734 +25600/69092 Loss: 93.517 +28800/69092 Loss: 93.299 +32000/69092 Loss: 95.076 +35200/69092 Loss: 94.460 +38400/69092 Loss: 93.393 +41600/69092 Loss: 94.109 +44800/69092 Loss: 93.366 +48000/69092 Loss: 93.402 +51200/69092 Loss: 94.606 +54400/69092 Loss: 93.081 +57600/69092 Loss: 93.782 +60800/69092 Loss: 93.678 +64000/69092 Loss: 92.884 +67200/69092 Loss: 92.180 +Training time 0:10:48.334792 +Epoch: 35 Average loss: 93.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 314) +0/69092 Loss: 91.645 +3200/69092 Loss: 94.449 +6400/69092 Loss: 92.176 +9600/69092 Loss: 93.584 +12800/69092 Loss: 95.331 +16000/69092 Loss: 94.522 +19200/69092 Loss: 93.280 +22400/69092 Loss: 94.975 +25600/69092 Loss: 94.475 +28800/69092 Loss: 94.589 +32000/69092 Loss: 93.709 +35200/69092 Loss: 93.841 +38400/69092 Loss: 93.641 +41600/69092 Loss: 93.983 +44800/69092 Loss: 95.004 +48000/69092 Loss: 93.206 +51200/69092 Loss: 92.587 +54400/69092 Loss: 94.150 +57600/69092 Loss: 92.740 +60800/69092 Loss: 92.728 +64000/69092 Loss: 95.103 +67200/69092 Loss: 94.123 +Training time 0:10:48.713966 +Epoch: 36 Average loss: 93.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 315) +0/69092 Loss: 87.068 +3200/69092 Loss: 94.678 +6400/69092 Loss: 94.100 +9600/69092 Loss: 95.393 +12800/69092 Loss: 94.393 +16000/69092 Loss: 92.247 +19200/69092 Loss: 93.782 +22400/69092 Loss: 95.070 +25600/69092 Loss: 92.727 +28800/69092 Loss: 94.301 +32000/69092 Loss: 95.089 +35200/69092 Loss: 93.218 +38400/69092 Loss: 92.831 +41600/69092 Loss: 92.293 +44800/69092 Loss: 93.800 +48000/69092 Loss: 93.725 +51200/69092 Loss: 94.635 +54400/69092 Loss: 94.867 +57600/69092 Loss: 94.279 +60800/69092 Loss: 93.998 +64000/69092 Loss: 93.703 +67200/69092 Loss: 94.096 +Training time 0:10:50.714192 +Epoch: 37 Average loss: 93.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 316) +0/69092 Loss: 97.875 +3200/69092 Loss: 93.623 +6400/69092 Loss: 93.877 +9600/69092 Loss: 93.865 +12800/69092 Loss: 95.129 +16000/69092 Loss: 93.284 +19200/69092 Loss: 93.721 +22400/69092 Loss: 93.877 +25600/69092 Loss: 93.348 +28800/69092 Loss: 94.354 +32000/69092 Loss: 93.045 +35200/69092 Loss: 94.670 +38400/69092 Loss: 93.021 +41600/69092 Loss: 93.430 +44800/69092 Loss: 93.097 +48000/69092 Loss: 92.507 +51200/69092 Loss: 94.753 +54400/69092 Loss: 93.890 +57600/69092 Loss: 95.244 +60800/69092 Loss: 95.188 +64000/69092 Loss: 93.751 +67200/69092 Loss: 94.579 +Training time 0:10:40.885305 +Epoch: 38 Average loss: 93.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 317) +0/69092 Loss: 88.424 +3200/69092 Loss: 94.248 +6400/69092 Loss: 94.151 +9600/69092 Loss: 93.240 +12800/69092 Loss: 93.187 +16000/69092 Loss: 91.476 +19200/69092 Loss: 92.942 +22400/69092 Loss: 93.945 +25600/69092 Loss: 93.531 +28800/69092 Loss: 92.651 +32000/69092 Loss: 94.060 +35200/69092 Loss: 94.553 +38400/69092 Loss: 93.318 +41600/69092 Loss: 94.657 +44800/69092 Loss: 94.166 +48000/69092 Loss: 94.787 +51200/69092 Loss: 94.678 +54400/69092 Loss: 93.087 +57600/69092 Loss: 94.456 +60800/69092 Loss: 94.053 +64000/69092 Loss: 93.648 +67200/69092 Loss: 94.813 +Training time 0:10:47.817993 +Epoch: 39 Average loss: 93.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 318) +0/69092 Loss: 94.965 +3200/69092 Loss: 94.969 +6400/69092 Loss: 93.172 +9600/69092 Loss: 94.174 +12800/69092 Loss: 94.615 +16000/69092 Loss: 93.682 +19200/69092 Loss: 93.186 +22400/69092 Loss: 93.061 +25600/69092 Loss: 94.124 +28800/69092 Loss: 92.944 +32000/69092 Loss: 94.999 +35200/69092 Loss: 93.597 +38400/69092 Loss: 94.263 +41600/69092 Loss: 94.084 +44800/69092 Loss: 95.346 +48000/69092 Loss: 93.892 +51200/69092 Loss: 91.671 +54400/69092 Loss: 95.098 +57600/69092 Loss: 93.045 +60800/69092 Loss: 93.489 +64000/69092 Loss: 93.430 +67200/69092 Loss: 93.228 +Training time 0:10:32.870865 +Epoch: 40 Average loss: 93.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 319) +0/69092 Loss: 86.917 +3200/69092 Loss: 93.715 +6400/69092 Loss: 93.626 +9600/69092 Loss: 94.910 +12800/69092 Loss: 94.522 +16000/69092 Loss: 93.942 +19200/69092 Loss: 93.057 +22400/69092 Loss: 94.004 +25600/69092 Loss: 94.994 +28800/69092 Loss: 94.258 +32000/69092 Loss: 93.649 +35200/69092 Loss: 95.653 +38400/69092 Loss: 91.878 +41600/69092 Loss: 94.769 +44800/69092 Loss: 94.468 +48000/69092 Loss: 93.675 +51200/69092 Loss: 93.398 +54400/69092 Loss: 94.706 +57600/69092 Loss: 93.085 +60800/69092 Loss: 94.529 +64000/69092 Loss: 93.158 +67200/69092 Loss: 93.161 +Training time 0:10:43.638691 +Epoch: 41 Average loss: 93.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 320) +0/69092 Loss: 87.768 +3200/69092 Loss: 94.699 +6400/69092 Loss: 93.527 +9600/69092 Loss: 94.223 +12800/69092 Loss: 93.342 +16000/69092 Loss: 92.859 +19200/69092 Loss: 93.052 +22400/69092 Loss: 94.519 +25600/69092 Loss: 93.413 +28800/69092 Loss: 93.617 +32000/69092 Loss: 93.733 +35200/69092 Loss: 94.451 +38400/69092 Loss: 94.345 +41600/69092 Loss: 94.210 +44800/69092 Loss: 94.269 +48000/69092 Loss: 94.442 +51200/69092 Loss: 93.162 +54400/69092 Loss: 93.156 +57600/69092 Loss: 92.932 +60800/69092 Loss: 93.738 +64000/69092 Loss: 93.713 +67200/69092 Loss: 95.445 +Training time 0:10:32.000321 +Epoch: 42 Average loss: 93.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 321) +0/69092 Loss: 88.507 +3200/69092 Loss: 92.841 +6400/69092 Loss: 92.975 +9600/69092 Loss: 94.405 +12800/69092 Loss: 94.209 +16000/69092 Loss: 93.111 +19200/69092 Loss: 95.354 +22400/69092 Loss: 93.674 +25600/69092 Loss: 94.043 +28800/69092 Loss: 92.929 +32000/69092 Loss: 93.857 +35200/69092 Loss: 95.059 +38400/69092 Loss: 93.693 +41600/69092 Loss: 93.454 +44800/69092 Loss: 93.999 +48000/69092 Loss: 93.539 +51200/69092 Loss: 93.027 +54400/69092 Loss: 93.221 +57600/69092 Loss: 92.859 +60800/69092 Loss: 94.803 +64000/69092 Loss: 94.403 +67200/69092 Loss: 94.374 +Training time 0:10:44.552921 +Epoch: 43 Average loss: 93.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 322) +0/69092 Loss: 107.069 +3200/69092 Loss: 94.490 +6400/69092 Loss: 93.673 +9600/69092 Loss: 91.984 +12800/69092 Loss: 94.495 +16000/69092 Loss: 93.666 +19200/69092 Loss: 93.649 +22400/69092 Loss: 94.771 +25600/69092 Loss: 95.232 +28800/69092 Loss: 94.001 +32000/69092 Loss: 95.673 +35200/69092 Loss: 94.528 +38400/69092 Loss: 94.192 +41600/69092 Loss: 92.761 +44800/69092 Loss: 93.199 +48000/69092 Loss: 94.364 +51200/69092 Loss: 94.319 +54400/69092 Loss: 95.102 +57600/69092 Loss: 93.310 +60800/69092 Loss: 93.831 +64000/69092 Loss: 93.343 +67200/69092 Loss: 92.768 +Training time 0:10:28.554288 +Epoch: 44 Average loss: 93.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 323) +0/69092 Loss: 93.793 +3200/69092 Loss: 93.803 +6400/69092 Loss: 94.286 +9600/69092 Loss: 93.879 +12800/69092 Loss: 93.531 +16000/69092 Loss: 93.348 +19200/69092 Loss: 92.392 +22400/69092 Loss: 93.632 +25600/69092 Loss: 94.094 +28800/69092 Loss: 92.591 +32000/69092 Loss: 94.115 +35200/69092 Loss: 94.448 +38400/69092 Loss: 93.824 +41600/69092 Loss: 95.941 +44800/69092 Loss: 93.069 +48000/69092 Loss: 93.786 +51200/69092 Loss: 95.296 +54400/69092 Loss: 94.012 +57600/69092 Loss: 93.662 +60800/69092 Loss: 94.884 +64000/69092 Loss: 93.442 +67200/69092 Loss: 93.690 +Training time 0:10:36.744010 +Epoch: 45 Average loss: 93.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 324) +0/69092 Loss: 94.660 +3200/69092 Loss: 93.649 +6400/69092 Loss: 94.423 +9600/69092 Loss: 94.346 +12800/69092 Loss: 93.043 +16000/69092 Loss: 93.049 +19200/69092 Loss: 94.619 +22400/69092 Loss: 93.491 +25600/69092 Loss: 94.080 +28800/69092 Loss: 94.317 +32000/69092 Loss: 92.625 +35200/69092 Loss: 95.222 +38400/69092 Loss: 93.880 +41600/69092 Loss: 94.808 +44800/69092 Loss: 92.622 +48000/69092 Loss: 95.024 +51200/69092 Loss: 94.033 +54400/69092 Loss: 93.735 +57600/69092 Loss: 93.349 +60800/69092 Loss: 93.479 +64000/69092 Loss: 92.826 +67200/69092 Loss: 93.137 +Training time 0:10:43.670530 +Epoch: 46 Average loss: 93.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 325) +0/69092 Loss: 98.125 +3200/69092 Loss: 94.271 +6400/69092 Loss: 94.287 +9600/69092 Loss: 92.739 +12800/69092 Loss: 92.710 +16000/69092 Loss: 93.411 +19200/69092 Loss: 93.016 +22400/69092 Loss: 94.499 +25600/69092 Loss: 93.442 +28800/69092 Loss: 94.471 +32000/69092 Loss: 92.853 +35200/69092 Loss: 92.048 +38400/69092 Loss: 95.092 +41600/69092 Loss: 95.678 +44800/69092 Loss: 94.217 +48000/69092 Loss: 93.141 +51200/69092 Loss: 94.403 +54400/69092 Loss: 92.884 +57600/69092 Loss: 94.682 +60800/69092 Loss: 93.126 +64000/69092 Loss: 96.204 +67200/69092 Loss: 95.518 +Training time 0:10:43.610951 +Epoch: 47 Average loss: 93.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 326) +0/69092 Loss: 87.553 +3200/69092 Loss: 94.290 +6400/69092 Loss: 93.089 +9600/69092 Loss: 92.226 +12800/69092 Loss: 92.421 +16000/69092 Loss: 93.151 +19200/69092 Loss: 94.758 +22400/69092 Loss: 94.134 +25600/69092 Loss: 94.610 +28800/69092 Loss: 94.296 +32000/69092 Loss: 94.332 +35200/69092 Loss: 93.665 +38400/69092 Loss: 92.983 +41600/69092 Loss: 94.154 +44800/69092 Loss: 93.543 +48000/69092 Loss: 93.819 +51200/69092 Loss: 93.420 +54400/69092 Loss: 94.570 +57600/69092 Loss: 94.479 +60800/69092 Loss: 94.079 +64000/69092 Loss: 94.093 +67200/69092 Loss: 94.628 +Training time 0:11:11.709011 +Epoch: 48 Average loss: 93.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 327) +0/69092 Loss: 104.280 +3200/69092 Loss: 93.718 +6400/69092 Loss: 93.072 +9600/69092 Loss: 93.980 +12800/69092 Loss: 93.250 +16000/69092 Loss: 92.617 +19200/69092 Loss: 93.370 +22400/69092 Loss: 94.072 +25600/69092 Loss: 92.757 +28800/69092 Loss: 93.939 +32000/69092 Loss: 93.351 +35200/69092 Loss: 94.774 +38400/69092 Loss: 94.409 +41600/69092 Loss: 95.391 +44800/69092 Loss: 94.891 +48000/69092 Loss: 93.988 +51200/69092 Loss: 92.940 +54400/69092 Loss: 94.364 +57600/69092 Loss: 92.687 +60800/69092 Loss: 93.910 +64000/69092 Loss: 93.571 +67200/69092 Loss: 93.841 +Training time 0:10:46.446267 +Epoch: 49 Average loss: 93.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 328) +0/69092 Loss: 85.613 +3200/69092 Loss: 92.660 +6400/69092 Loss: 91.070 +9600/69092 Loss: 93.964 +12800/69092 Loss: 94.087 +16000/69092 Loss: 94.567 +19200/69092 Loss: 92.924 +22400/69092 Loss: 94.953 +25600/69092 Loss: 94.798 +28800/69092 Loss: 94.329 +32000/69092 Loss: 94.662 +35200/69092 Loss: 92.155 +38400/69092 Loss: 93.715 +41600/69092 Loss: 94.913 +44800/69092 Loss: 94.578 +48000/69092 Loss: 93.348 +51200/69092 Loss: 92.859 +54400/69092 Loss: 95.280 +57600/69092 Loss: 93.593 +60800/69092 Loss: 93.226 +64000/69092 Loss: 93.532 +67200/69092 Loss: 93.291 +Training time 0:10:20.887831 +Epoch: 50 Average loss: 93.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 329) +0/69092 Loss: 90.140 +3200/69092 Loss: 93.856 +6400/69092 Loss: 94.237 +9600/69092 Loss: 94.275 +12800/69092 Loss: 92.595 +16000/69092 Loss: 93.652 +19200/69092 Loss: 93.164 +22400/69092 Loss: 94.560 +25600/69092 Loss: 94.025 +28800/69092 Loss: 94.527 +32000/69092 Loss: 94.459 +35200/69092 Loss: 93.232 +38400/69092 Loss: 93.240 +41600/69092 Loss: 93.255 +44800/69092 Loss: 92.832 +48000/69092 Loss: 94.889 +51200/69092 Loss: 93.614 +54400/69092 Loss: 93.460 +57600/69092 Loss: 94.807 +60800/69092 Loss: 92.929 +64000/69092 Loss: 94.662 +67200/69092 Loss: 92.950 +Training time 0:10:44.235536 +Epoch: 51 Average loss: 93.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 330) +0/69092 Loss: 104.381 +3200/69092 Loss: 93.802 +6400/69092 Loss: 93.638 +9600/69092 Loss: 95.066 +12800/69092 Loss: 93.497 +16000/69092 Loss: 93.339 +19200/69092 Loss: 94.026 +22400/69092 Loss: 94.118 +25600/69092 Loss: 93.668 +28800/69092 Loss: 92.626 +32000/69092 Loss: 93.066 +35200/69092 Loss: 93.379 +38400/69092 Loss: 93.780 +41600/69092 Loss: 93.851 +44800/69092 Loss: 93.368 +48000/69092 Loss: 94.458 +51200/69092 Loss: 95.296 +54400/69092 Loss: 92.985 +57600/69092 Loss: 92.921 +60800/69092 Loss: 95.247 +64000/69092 Loss: 93.265 +67200/69092 Loss: 93.007 +Training time 0:10:25.267321 +Epoch: 52 Average loss: 93.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 331) +0/69092 Loss: 94.611 +3200/69092 Loss: 94.682 +6400/69092 Loss: 92.591 +9600/69092 Loss: 93.942 +12800/69092 Loss: 93.096 +16000/69092 Loss: 94.815 +19200/69092 Loss: 93.033 +22400/69092 Loss: 93.299 +25600/69092 Loss: 94.855 +28800/69092 Loss: 93.325 +32000/69092 Loss: 94.892 +35200/69092 Loss: 93.945 +38400/69092 Loss: 93.738 +41600/69092 Loss: 92.569 +44800/69092 Loss: 93.935 +48000/69092 Loss: 93.047 +51200/69092 Loss: 94.012 +54400/69092 Loss: 93.767 +57600/69092 Loss: 92.217 +60800/69092 Loss: 93.283 +64000/69092 Loss: 93.440 +67200/69092 Loss: 92.007 +Training time 0:11:12.081660 +Epoch: 53 Average loss: 93.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 332) +0/69092 Loss: 91.799 +3200/69092 Loss: 94.342 +6400/69092 Loss: 92.949 +9600/69092 Loss: 94.042 +12800/69092 Loss: 92.989 +16000/69092 Loss: 93.149 +19200/69092 Loss: 93.480 +22400/69092 Loss: 93.612 +25600/69092 Loss: 93.186 +28800/69092 Loss: 92.968 +32000/69092 Loss: 95.336 +35200/69092 Loss: 93.970 +38400/69092 Loss: 93.371 +41600/69092 Loss: 94.509 +44800/69092 Loss: 93.293 +48000/69092 Loss: 95.765 +51200/69092 Loss: 93.389 +54400/69092 Loss: 94.413 +57600/69092 Loss: 93.011 +60800/69092 Loss: 94.563 +64000/69092 Loss: 95.267 +67200/69092 Loss: 93.826 +Training time 0:10:15.713979 +Epoch: 54 Average loss: 93.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 333) +0/69092 Loss: 82.821 +3200/69092 Loss: 92.179 +6400/69092 Loss: 94.134 +9600/69092 Loss: 95.103 +12800/69092 Loss: 93.233 +16000/69092 Loss: 93.716 +19200/69092 Loss: 95.101 +22400/69092 Loss: 93.786 +25600/69092 Loss: 92.941 +28800/69092 Loss: 94.624 +32000/69092 Loss: 93.407 +35200/69092 Loss: 93.867 +38400/69092 Loss: 94.004 +41600/69092 Loss: 93.934 +44800/69092 Loss: 92.560 +48000/69092 Loss: 93.935 +51200/69092 Loss: 92.927 +54400/69092 Loss: 93.604 +57600/69092 Loss: 93.230 +60800/69092 Loss: 92.845 +64000/69092 Loss: 94.115 +67200/69092 Loss: 95.146 +Training time 0:10:46.281093 +Epoch: 55 Average loss: 93.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 334) +0/69092 Loss: 83.000 +3200/69092 Loss: 94.618 +6400/69092 Loss: 93.545 +9600/69092 Loss: 93.158 +12800/69092 Loss: 92.242 +16000/69092 Loss: 94.265 +19200/69092 Loss: 92.946 +22400/69092 Loss: 93.535 +25600/69092 Loss: 93.044 +28800/69092 Loss: 93.854 +32000/69092 Loss: 93.857 +35200/69092 Loss: 94.083 +38400/69092 Loss: 93.601 +41600/69092 Loss: 94.777 +44800/69092 Loss: 94.328 +48000/69092 Loss: 92.966 +51200/69092 Loss: 94.225 +54400/69092 Loss: 92.348 +57600/69092 Loss: 93.390 +60800/69092 Loss: 93.468 +64000/69092 Loss: 94.404 +67200/69092 Loss: 92.891 +Training time 0:10:27.672323 +Epoch: 56 Average loss: 93.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 335) +0/69092 Loss: 95.782 +3200/69092 Loss: 93.675 +6400/69092 Loss: 94.183 +9600/69092 Loss: 93.289 +12800/69092 Loss: 93.912 +16000/69092 Loss: 93.555 +19200/69092 Loss: 93.607 +22400/69092 Loss: 94.599 +25600/69092 Loss: 93.778 +28800/69092 Loss: 92.169 +32000/69092 Loss: 93.203 +35200/69092 Loss: 92.976 +38400/69092 Loss: 93.974 +41600/69092 Loss: 92.062 +44800/69092 Loss: 94.843 +48000/69092 Loss: 92.731 +51200/69092 Loss: 94.358 +54400/69092 Loss: 92.918 +57600/69092 Loss: 93.464 +60800/69092 Loss: 93.956 +64000/69092 Loss: 94.787 +67200/69092 Loss: 93.464 +Training time 0:10:47.121286 +Epoch: 57 Average loss: 93.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 336) +0/69092 Loss: 90.839 +3200/69092 Loss: 94.247 +6400/69092 Loss: 94.569 +9600/69092 Loss: 93.034 +12800/69092 Loss: 91.728 +16000/69092 Loss: 93.733 +19200/69092 Loss: 92.902 +22400/69092 Loss: 93.387 +25600/69092 Loss: 93.770 +28800/69092 Loss: 95.099 +32000/69092 Loss: 94.297 +35200/69092 Loss: 94.988 +38400/69092 Loss: 91.945 +41600/69092 Loss: 94.340 +44800/69092 Loss: 93.725 +48000/69092 Loss: 92.993 +51200/69092 Loss: 94.025 +54400/69092 Loss: 94.224 +57600/69092 Loss: 94.774 +60800/69092 Loss: 92.468 +64000/69092 Loss: 92.612 +67200/69092 Loss: 93.712 +Training time 0:10:53.274171 +Epoch: 58 Average loss: 93.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 337) +0/69092 Loss: 103.451 +3200/69092 Loss: 92.769 +6400/69092 Loss: 94.309 +9600/69092 Loss: 93.778 +12800/69092 Loss: 92.876 +16000/69092 Loss: 92.994 +19200/69092 Loss: 92.498 +22400/69092 Loss: 94.322 +25600/69092 Loss: 93.830 +28800/69092 Loss: 93.148 +32000/69092 Loss: 93.398 +35200/69092 Loss: 93.967 +38400/69092 Loss: 92.806 +41600/69092 Loss: 94.089 +44800/69092 Loss: 93.826 +48000/69092 Loss: 93.341 +51200/69092 Loss: 94.301 +54400/69092 Loss: 92.928 +57600/69092 Loss: 94.290 +60800/69092 Loss: 93.169 +64000/69092 Loss: 93.868 +67200/69092 Loss: 92.297 +Training time 0:10:47.736382 +Epoch: 59 Average loss: 93.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 338) +0/69092 Loss: 93.654 +3200/69092 Loss: 93.087 +6400/69092 Loss: 94.411 +9600/69092 Loss: 93.600 +12800/69092 Loss: 94.434 +16000/69092 Loss: 92.525 +19200/69092 Loss: 93.344 +22400/69092 Loss: 95.188 +25600/69092 Loss: 95.582 +28800/69092 Loss: 94.093 +32000/69092 Loss: 93.263 +35200/69092 Loss: 92.677 +38400/69092 Loss: 94.232 +41600/69092 Loss: 93.526 +44800/69092 Loss: 92.630 +48000/69092 Loss: 93.196 +51200/69092 Loss: 92.544 +54400/69092 Loss: 93.112 +57600/69092 Loss: 94.689 +60800/69092 Loss: 93.489 +64000/69092 Loss: 93.710 +67200/69092 Loss: 92.706 +Training time 0:10:28.966380 +Epoch: 60 Average loss: 93.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 339) +0/69092 Loss: 78.740 +3200/69092 Loss: 93.480 +6400/69092 Loss: 93.314 +9600/69092 Loss: 94.021 +12800/69092 Loss: 94.114 +16000/69092 Loss: 93.242 +19200/69092 Loss: 93.225 +22400/69092 Loss: 94.696 +25600/69092 Loss: 92.980 +28800/69092 Loss: 91.839 +32000/69092 Loss: 92.788 +35200/69092 Loss: 93.778 +38400/69092 Loss: 93.517 +41600/69092 Loss: 93.107 +44800/69092 Loss: 93.467 +48000/69092 Loss: 93.032 +51200/69092 Loss: 93.623 +54400/69092 Loss: 94.729 +57600/69092 Loss: 94.084 +60800/69092 Loss: 93.136 +64000/69092 Loss: 93.954 +67200/69092 Loss: 95.566 +Training time 0:10:43.183355 +Epoch: 61 Average loss: 93.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 340) +0/69092 Loss: 91.613 +3200/69092 Loss: 93.946 +6400/69092 Loss: 92.747 +9600/69092 Loss: 93.448 +12800/69092 Loss: 93.313 +16000/69092 Loss: 93.559 +19200/69092 Loss: 93.056 +22400/69092 Loss: 93.715 +25600/69092 Loss: 92.430 +28800/69092 Loss: 93.267 +32000/69092 Loss: 95.508 +35200/69092 Loss: 93.233 +38400/69092 Loss: 94.355 +41600/69092 Loss: 95.457 +44800/69092 Loss: 94.100 +48000/69092 Loss: 92.964 +51200/69092 Loss: 94.300 +54400/69092 Loss: 93.156 +57600/69092 Loss: 94.397 +60800/69092 Loss: 94.424 +64000/69092 Loss: 94.050 +67200/69092 Loss: 91.892 +Training time 0:10:45.744916 +Epoch: 62 Average loss: 93.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 341) +0/69092 Loss: 97.121 +3200/69092 Loss: 93.754 +6400/69092 Loss: 93.947 +9600/69092 Loss: 95.104 +12800/69092 Loss: 94.653 +16000/69092 Loss: 92.718 +19200/69092 Loss: 93.451 +22400/69092 Loss: 93.326 +25600/69092 Loss: 93.938 +28800/69092 Loss: 93.909 +32000/69092 Loss: 93.116 +35200/69092 Loss: 92.642 +38400/69092 Loss: 94.566 +41600/69092 Loss: 92.150 +44800/69092 Loss: 92.594 +48000/69092 Loss: 93.509 +51200/69092 Loss: 92.714 +54400/69092 Loss: 91.746 +57600/69092 Loss: 92.485 +60800/69092 Loss: 94.249 +64000/69092 Loss: 94.711 +67200/69092 Loss: 95.766 +Training time 0:10:18.249303 +Epoch: 63 Average loss: 93.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 342) +0/69092 Loss: 91.275 +3200/69092 Loss: 93.367 +6400/69092 Loss: 92.896 +9600/69092 Loss: 94.132 +12800/69092 Loss: 93.990 +16000/69092 Loss: 95.226 +19200/69092 Loss: 93.667 +22400/69092 Loss: 93.977 +25600/69092 Loss: 93.667 +28800/69092 Loss: 93.275 +32000/69092 Loss: 93.369 +35200/69092 Loss: 94.473 +38400/69092 Loss: 93.676 +41600/69092 Loss: 92.817 +44800/69092 Loss: 93.642 +48000/69092 Loss: 92.691 +51200/69092 Loss: 93.612 +54400/69092 Loss: 93.220 +57600/69092 Loss: 93.291 +60800/69092 Loss: 93.362 +64000/69092 Loss: 93.798 +67200/69092 Loss: 94.131 +Training time 0:11:04.557626 +Epoch: 64 Average loss: 93.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 343) +0/69092 Loss: 90.220 +3200/69092 Loss: 93.183 +6400/69092 Loss: 93.528 +9600/69092 Loss: 93.657 +12800/69092 Loss: 93.460 +16000/69092 Loss: 93.907 +19200/69092 Loss: 93.063 +22400/69092 Loss: 94.296 +25600/69092 Loss: 94.204 +28800/69092 Loss: 92.946 +32000/69092 Loss: 93.969 +35200/69092 Loss: 93.280 +38400/69092 Loss: 93.673 +41600/69092 Loss: 93.735 +44800/69092 Loss: 92.797 +48000/69092 Loss: 93.097 +51200/69092 Loss: 93.747 +54400/69092 Loss: 95.499 +57600/69092 Loss: 94.483 +60800/69092 Loss: 93.581 +64000/69092 Loss: 94.156 +67200/69092 Loss: 93.294 +Training time 0:10:48.512914 +Epoch: 65 Average loss: 93.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 344) +0/69092 Loss: 90.981 +3200/69092 Loss: 94.630 +6400/69092 Loss: 93.270 +9600/69092 Loss: 93.398 +12800/69092 Loss: 92.333 +16000/69092 Loss: 93.434 +19200/69092 Loss: 93.049 +22400/69092 Loss: 94.175 +25600/69092 Loss: 94.450 +28800/69092 Loss: 93.623 +32000/69092 Loss: 92.720 +35200/69092 Loss: 94.464 +38400/69092 Loss: 92.684 +41600/69092 Loss: 94.409 +44800/69092 Loss: 93.357 +48000/69092 Loss: 92.763 +51200/69092 Loss: 93.720 +54400/69092 Loss: 93.593 +57600/69092 Loss: 95.032 +60800/69092 Loss: 92.524 +64000/69092 Loss: 93.596 +67200/69092 Loss: 94.064 +Training time 0:10:17.124985 +Epoch: 66 Average loss: 93.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 345) +0/69092 Loss: 90.782 +3200/69092 Loss: 94.750 +6400/69092 Loss: 92.050 +9600/69092 Loss: 94.678 +12800/69092 Loss: 94.304 +16000/69092 Loss: 93.228 +19200/69092 Loss: 93.369 +22400/69092 Loss: 93.253 +25600/69092 Loss: 93.266 +28800/69092 Loss: 95.673 +32000/69092 Loss: 94.099 +35200/69092 Loss: 93.299 +38400/69092 Loss: 94.528 +41600/69092 Loss: 93.298 +44800/69092 Loss: 93.503 +48000/69092 Loss: 93.527 +51200/69092 Loss: 92.007 +54400/69092 Loss: 92.966 +57600/69092 Loss: 92.457 +60800/69092 Loss: 93.290 +64000/69092 Loss: 92.631 +67200/69092 Loss: 93.215 +Training time 0:10:44.966047 +Epoch: 67 Average loss: 93.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 346) +0/69092 Loss: 98.519 +3200/69092 Loss: 93.010 +6400/69092 Loss: 92.382 +9600/69092 Loss: 95.853 +12800/69092 Loss: 92.674 +16000/69092 Loss: 93.336 +19200/69092 Loss: 94.292 +22400/69092 Loss: 92.968 +25600/69092 Loss: 94.035 +28800/69092 Loss: 93.809 +32000/69092 Loss: 93.663 +35200/69092 Loss: 93.719 +38400/69092 Loss: 93.585 +41600/69092 Loss: 94.165 +44800/69092 Loss: 92.985 +48000/69092 Loss: 93.080 +51200/69092 Loss: 93.261 +54400/69092 Loss: 93.419 +57600/69092 Loss: 92.706 +60800/69092 Loss: 94.022 +64000/69092 Loss: 94.465 +67200/69092 Loss: 92.091 +Training time 0:10:18.947311 +Epoch: 68 Average loss: 93.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 347) +0/69092 Loss: 91.965 +3200/69092 Loss: 94.526 +6400/69092 Loss: 93.082 +9600/69092 Loss: 92.697 +12800/69092 Loss: 94.063 +16000/69092 Loss: 93.788 +19200/69092 Loss: 92.797 +22400/69092 Loss: 93.205 +25600/69092 Loss: 94.681 +28800/69092 Loss: 92.913 +32000/69092 Loss: 94.804 +35200/69092 Loss: 92.840 +38400/69092 Loss: 94.924 +41600/69092 Loss: 92.809 +44800/69092 Loss: 93.386 +48000/69092 Loss: 94.458 +51200/69092 Loss: 93.294 +54400/69092 Loss: 93.781 +57600/69092 Loss: 93.429 +60800/69092 Loss: 93.449 +64000/69092 Loss: 93.976 +67200/69092 Loss: 93.203 +Training time 0:10:51.205243 +Epoch: 69 Average loss: 93.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 348) +0/69092 Loss: 104.108 +3200/69092 Loss: 92.725 +6400/69092 Loss: 93.064 +9600/69092 Loss: 92.727 +12800/69092 Loss: 93.658 +16000/69092 Loss: 93.335 +19200/69092 Loss: 93.741 +22400/69092 Loss: 93.193 +25600/69092 Loss: 94.980 +28800/69092 Loss: 93.892 +32000/69092 Loss: 94.744 +35200/69092 Loss: 95.291 +38400/69092 Loss: 93.873 +41600/69092 Loss: 92.612 +44800/69092 Loss: 93.855 +48000/69092 Loss: 93.433 +51200/69092 Loss: 92.960 +54400/69092 Loss: 93.434 +57600/69092 Loss: 92.983 +60800/69092 Loss: 93.999 +64000/69092 Loss: 93.278 +67200/69092 Loss: 94.061 +Training time 0:10:37.592550 +Epoch: 70 Average loss: 93.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 349) +0/69092 Loss: 82.235 +3200/69092 Loss: 92.812 +6400/69092 Loss: 92.741 +9600/69092 Loss: 94.391 +12800/69092 Loss: 94.425 +16000/69092 Loss: 93.650 +19200/69092 Loss: 93.154 +22400/69092 Loss: 95.355 +25600/69092 Loss: 93.702 +28800/69092 Loss: 94.673 +32000/69092 Loss: 92.063 +35200/69092 Loss: 93.349 +38400/69092 Loss: 92.878 +41600/69092 Loss: 92.942 +44800/69092 Loss: 94.199 +48000/69092 Loss: 93.258 +51200/69092 Loss: 94.028 +54400/69092 Loss: 93.478 +57600/69092 Loss: 94.004 +60800/69092 Loss: 93.429 +64000/69092 Loss: 94.098 +67200/69092 Loss: 93.044 +Training time 0:11:04.850925 +Epoch: 71 Average loss: 93.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 350) +0/69092 Loss: 100.796 +3200/69092 Loss: 93.263 +6400/69092 Loss: 94.184 +9600/69092 Loss: 93.715 +12800/69092 Loss: 93.848 +16000/69092 Loss: 93.524 +19200/69092 Loss: 94.057 +22400/69092 Loss: 94.713 +25600/69092 Loss: 93.748 +28800/69092 Loss: 92.868 +32000/69092 Loss: 93.377 +35200/69092 Loss: 92.899 +38400/69092 Loss: 93.682 +41600/69092 Loss: 92.089 +44800/69092 Loss: 93.360 +48000/69092 Loss: 93.175 +51200/69092 Loss: 93.489 +54400/69092 Loss: 93.405 +57600/69092 Loss: 93.629 +60800/69092 Loss: 93.500 +64000/69092 Loss: 92.478 +67200/69092 Loss: 93.935 +Training time 0:10:34.096643 +Epoch: 72 Average loss: 93.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 351) +0/69092 Loss: 89.861 +3200/69092 Loss: 92.903 +6400/69092 Loss: 91.705 +9600/69092 Loss: 93.914 +12800/69092 Loss: 94.076 +16000/69092 Loss: 94.721 +19200/69092 Loss: 93.891 +22400/69092 Loss: 93.222 +25600/69092 Loss: 93.116 +28800/69092 Loss: 94.796 +32000/69092 Loss: 93.511 +35200/69092 Loss: 92.675 +38400/69092 Loss: 94.428 +41600/69092 Loss: 92.970 +44800/69092 Loss: 92.453 +48000/69092 Loss: 93.748 +51200/69092 Loss: 94.910 +54400/69092 Loss: 91.896 +57600/69092 Loss: 92.810 +60800/69092 Loss: 94.371 +64000/69092 Loss: 93.392 +67200/69092 Loss: 93.430 +Training time 0:10:04.464712 +Epoch: 73 Average loss: 93.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 352) +0/69092 Loss: 95.843 +3200/69092 Loss: 93.184 +6400/69092 Loss: 93.751 +9600/69092 Loss: 94.840 +12800/69092 Loss: 92.201 +16000/69092 Loss: 93.448 +19200/69092 Loss: 93.396 +22400/69092 Loss: 94.736 +25600/69092 Loss: 93.537 +28800/69092 Loss: 94.030 +32000/69092 Loss: 93.660 +35200/69092 Loss: 93.655 +38400/69092 Loss: 94.503 +41600/69092 Loss: 93.255 +44800/69092 Loss: 92.909 +48000/69092 Loss: 92.781 +51200/69092 Loss: 92.169 +54400/69092 Loss: 92.230 +57600/69092 Loss: 95.200 +60800/69092 Loss: 91.602 +64000/69092 Loss: 93.138 +67200/69092 Loss: 93.071 +Training time 0:10:18.756998 +Epoch: 74 Average loss: 93.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 353) +0/69092 Loss: 92.921 +3200/69092 Loss: 93.396 +6400/69092 Loss: 92.975 +9600/69092 Loss: 94.340 +12800/69092 Loss: 92.569 +16000/69092 Loss: 92.573 +19200/69092 Loss: 93.607 +22400/69092 Loss: 93.360 +25600/69092 Loss: 95.043 +28800/69092 Loss: 92.903 +32000/69092 Loss: 94.881 +35200/69092 Loss: 94.222 +38400/69092 Loss: 93.932 +41600/69092 Loss: 93.562 +44800/69092 Loss: 92.710 +48000/69092 Loss: 92.794 +51200/69092 Loss: 93.467 +54400/69092 Loss: 93.089 +57600/69092 Loss: 93.438 +60800/69092 Loss: 92.193 +64000/69092 Loss: 94.156 +67200/69092 Loss: 93.943 +Training time 0:10:16.165284 +Epoch: 75 Average loss: 93.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 354) +0/69092 Loss: 95.177 +3200/69092 Loss: 92.442 +6400/69092 Loss: 94.267 +9600/69092 Loss: 92.330 +12800/69092 Loss: 94.030 +16000/69092 Loss: 92.451 +19200/69092 Loss: 94.075 +22400/69092 Loss: 93.067 +25600/69092 Loss: 93.337 +28800/69092 Loss: 94.821 +32000/69092 Loss: 93.224 +35200/69092 Loss: 93.146 +38400/69092 Loss: 94.790 +41600/69092 Loss: 92.286 +44800/69092 Loss: 93.207 +48000/69092 Loss: 93.340 +51200/69092 Loss: 94.035 +54400/69092 Loss: 92.794 +57600/69092 Loss: 93.137 +60800/69092 Loss: 93.927 +64000/69092 Loss: 94.569 +67200/69092 Loss: 92.188 +Training time 0:10:49.195784 +Epoch: 76 Average loss: 93.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 355) +0/69092 Loss: 89.324 +3200/69092 Loss: 94.037 +6400/69092 Loss: 93.003 +9600/69092 Loss: 92.637 +12800/69092 Loss: 94.320 +16000/69092 Loss: 93.852 +19200/69092 Loss: 93.051 +22400/69092 Loss: 94.155 +25600/69092 Loss: 92.843 +28800/69092 Loss: 93.565 +32000/69092 Loss: 94.534 +35200/69092 Loss: 92.705 +38400/69092 Loss: 92.279 +41600/69092 Loss: 93.574 +44800/69092 Loss: 93.035 +48000/69092 Loss: 93.338 +51200/69092 Loss: 92.290 +54400/69092 Loss: 94.119 +57600/69092 Loss: 93.823 +60800/69092 Loss: 93.651 +64000/69092 Loss: 93.460 +67200/69092 Loss: 92.970 +Training time 0:10:05.405173 +Epoch: 77 Average loss: 93.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 356) +0/69092 Loss: 85.505 +3200/69092 Loss: 93.821 +6400/69092 Loss: 93.204 +9600/69092 Loss: 92.696 +12800/69092 Loss: 94.265 +16000/69092 Loss: 94.397 +19200/69092 Loss: 92.243 +22400/69092 Loss: 93.589 +25600/69092 Loss: 94.552 +28800/69092 Loss: 92.744 +32000/69092 Loss: 92.802 +35200/69092 Loss: 92.272 +38400/69092 Loss: 94.469 +41600/69092 Loss: 93.443 +44800/69092 Loss: 92.450 +48000/69092 Loss: 94.336 +51200/69092 Loss: 94.288 +54400/69092 Loss: 93.237 +57600/69092 Loss: 92.444 +60800/69092 Loss: 93.364 +64000/69092 Loss: 94.600 +67200/69092 Loss: 93.644 +Training time 0:10:21.989771 +Epoch: 78 Average loss: 93.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 357) +0/69092 Loss: 87.242 +3200/69092 Loss: 92.819 +6400/69092 Loss: 93.888 +9600/69092 Loss: 94.163 +12800/69092 Loss: 93.736 +16000/69092 Loss: 93.927 +19200/69092 Loss: 93.687 +22400/69092 Loss: 93.341 +25600/69092 Loss: 93.330 +28800/69092 Loss: 93.096 +32000/69092 Loss: 92.230 +35200/69092 Loss: 94.912 +38400/69092 Loss: 92.257 +41600/69092 Loss: 94.762 +44800/69092 Loss: 93.502 +48000/69092 Loss: 94.494 +51200/69092 Loss: 93.814 +54400/69092 Loss: 92.832 +57600/69092 Loss: 93.161 +60800/69092 Loss: 93.054 +64000/69092 Loss: 92.648 +67200/69092 Loss: 94.265 +Training time 0:10:29.106962 +Epoch: 79 Average loss: 93.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 358) +0/69092 Loss: 95.626 +3200/69092 Loss: 92.874 +6400/69092 Loss: 92.411 +9600/69092 Loss: 95.036 +12800/69092 Loss: 93.458 +16000/69092 Loss: 94.352 +19200/69092 Loss: 93.344 +22400/69092 Loss: 94.011 +25600/69092 Loss: 92.603 +28800/69092 Loss: 93.313 +32000/69092 Loss: 92.520 +35200/69092 Loss: 92.456 +38400/69092 Loss: 93.778 +41600/69092 Loss: 94.948 +44800/69092 Loss: 94.949 +48000/69092 Loss: 92.678 +51200/69092 Loss: 93.405 +54400/69092 Loss: 93.366 +57600/69092 Loss: 92.806 +60800/69092 Loss: 93.200 +64000/69092 Loss: 93.024 +67200/69092 Loss: 92.731 +Training time 0:10:57.349828 +Epoch: 80 Average loss: 93.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 359) +0/69092 Loss: 87.426 +3200/69092 Loss: 93.116 +6400/69092 Loss: 94.516 +9600/69092 Loss: 93.443 +12800/69092 Loss: 92.971 +16000/69092 Loss: 92.884 +19200/69092 Loss: 92.774 +22400/69092 Loss: 92.323 +25600/69092 Loss: 93.548 +28800/69092 Loss: 94.352 +32000/69092 Loss: 93.653 +35200/69092 Loss: 92.704 +38400/69092 Loss: 92.110 +41600/69092 Loss: 93.742 +44800/69092 Loss: 93.418 +48000/69092 Loss: 94.923 +51200/69092 Loss: 92.469 +54400/69092 Loss: 92.945 +57600/69092 Loss: 91.576 +60800/69092 Loss: 92.975 +64000/69092 Loss: 93.850 +67200/69092 Loss: 93.810 +Training time 0:10:13.115020 +Epoch: 81 Average loss: 93.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 360) +0/69092 Loss: 88.595 +3200/69092 Loss: 95.700 +6400/69092 Loss: 93.163 +9600/69092 Loss: 93.252 +12800/69092 Loss: 93.610 +16000/69092 Loss: 92.514 +19200/69092 Loss: 94.053 +22400/69092 Loss: 94.457 +25600/69092 Loss: 92.067 +28800/69092 Loss: 92.828 +32000/69092 Loss: 92.876 +35200/69092 Loss: 92.619 +38400/69092 Loss: 92.744 +41600/69092 Loss: 94.729 +44800/69092 Loss: 94.009 +48000/69092 Loss: 92.407 +51200/69092 Loss: 93.996 +54400/69092 Loss: 93.670 +57600/69092 Loss: 93.544 +60800/69092 Loss: 93.276 +64000/69092 Loss: 93.250 +67200/69092 Loss: 92.561 +Training time 0:10:40.684723 +Epoch: 82 Average loss: 93.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 361) +0/69092 Loss: 93.785 +3200/69092 Loss: 93.695 +6400/69092 Loss: 94.678 +9600/69092 Loss: 93.210 +12800/69092 Loss: 93.096 +16000/69092 Loss: 94.200 +19200/69092 Loss: 93.596 +22400/69092 Loss: 92.040 +25600/69092 Loss: 92.404 +28800/69092 Loss: 94.030 +32000/69092 Loss: 92.594 +35200/69092 Loss: 93.848 +38400/69092 Loss: 93.397 +41600/69092 Loss: 92.260 +44800/69092 Loss: 93.439 +48000/69092 Loss: 93.827 +51200/69092 Loss: 92.154 +54400/69092 Loss: 94.116 +57600/69092 Loss: 92.068 +60800/69092 Loss: 94.413 +64000/69092 Loss: 93.673 +67200/69092 Loss: 94.197 +Training time 0:10:35.844321 +Epoch: 83 Average loss: 93.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 362) +0/69092 Loss: 92.934 +3200/69092 Loss: 93.670 +6400/69092 Loss: 93.369 +9600/69092 Loss: 93.842 +12800/69092 Loss: 92.851 +16000/69092 Loss: 93.542 +19200/69092 Loss: 92.557 +22400/69092 Loss: 92.931 +25600/69092 Loss: 93.982 +28800/69092 Loss: 93.119 +32000/69092 Loss: 95.363 +35200/69092 Loss: 94.018 +38400/69092 Loss: 94.180 +41600/69092 Loss: 93.164 +44800/69092 Loss: 94.118 +48000/69092 Loss: 92.912 +51200/69092 Loss: 93.462 +54400/69092 Loss: 93.054 +57600/69092 Loss: 93.863 +60800/69092 Loss: 93.283 +64000/69092 Loss: 92.327 +67200/69092 Loss: 92.859 +Training time 0:10:54.145131 +Epoch: 84 Average loss: 93.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 363) +0/69092 Loss: 95.754 +3200/69092 Loss: 92.482 +6400/69092 Loss: 93.969 +9600/69092 Loss: 93.435 +12800/69092 Loss: 93.159 +16000/69092 Loss: 92.647 +19200/69092 Loss: 94.998 +22400/69092 Loss: 94.188 +25600/69092 Loss: 93.303 +28800/69092 Loss: 93.018 +32000/69092 Loss: 93.043 +35200/69092 Loss: 92.635 +38400/69092 Loss: 93.277 +41600/69092 Loss: 92.563 +44800/69092 Loss: 93.278 +48000/69092 Loss: 92.763 +51200/69092 Loss: 92.947 +54400/69092 Loss: 94.537 +57600/69092 Loss: 93.407 +60800/69092 Loss: 91.743 +64000/69092 Loss: 94.066 +67200/69092 Loss: 93.531 +Training time 0:10:34.161029 +Epoch: 85 Average loss: 93.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 364) +0/69092 Loss: 96.530 +3200/69092 Loss: 93.022 +6400/69092 Loss: 92.420 +9600/69092 Loss: 94.596 +12800/69092 Loss: 92.947 +16000/69092 Loss: 93.145 +19200/69092 Loss: 93.278 +22400/69092 Loss: 94.265 +25600/69092 Loss: 93.723 +28800/69092 Loss: 93.386 +32000/69092 Loss: 93.487 +35200/69092 Loss: 94.597 +38400/69092 Loss: 93.526 +41600/69092 Loss: 93.846 +44800/69092 Loss: 92.769 +48000/69092 Loss: 92.951 +51200/69092 Loss: 92.333 +54400/69092 Loss: 92.112 +57600/69092 Loss: 92.950 +60800/69092 Loss: 94.800 +64000/69092 Loss: 94.437 +67200/69092 Loss: 93.722 +Training time 0:10:38.937684 +Epoch: 86 Average loss: 93.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 365) +0/69092 Loss: 97.330 +3200/69092 Loss: 93.229 +6400/69092 Loss: 92.290 +9600/69092 Loss: 93.796 +12800/69092 Loss: 94.234 +16000/69092 Loss: 93.165 +19200/69092 Loss: 93.118 +22400/69092 Loss: 93.820 +25600/69092 Loss: 93.293 +28800/69092 Loss: 95.025 +32000/69092 Loss: 93.205 +35200/69092 Loss: 93.418 +38400/69092 Loss: 92.891 +41600/69092 Loss: 93.064 +44800/69092 Loss: 93.847 +48000/69092 Loss: 93.459 +51200/69092 Loss: 93.284 +54400/69092 Loss: 94.561 +57600/69092 Loss: 94.526 +60800/69092 Loss: 90.668 +64000/69092 Loss: 94.631 +67200/69092 Loss: 93.117 +Training time 0:10:50.356417 +Epoch: 87 Average loss: 93.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 366) +0/69092 Loss: 94.543 +3200/69092 Loss: 94.212 +6400/69092 Loss: 93.966 +9600/69092 Loss: 93.539 +12800/69092 Loss: 94.239 +16000/69092 Loss: 94.081 +19200/69092 Loss: 92.671 +22400/69092 Loss: 94.137 +25600/69092 Loss: 95.149 +28800/69092 Loss: 94.142 +32000/69092 Loss: 93.541 +35200/69092 Loss: 92.719 +38400/69092 Loss: 92.652 +41600/69092 Loss: 94.204 +44800/69092 Loss: 91.114 +48000/69092 Loss: 91.702 +51200/69092 Loss: 93.539 +54400/69092 Loss: 93.712 +57600/69092 Loss: 92.674 +60800/69092 Loss: 93.194 +64000/69092 Loss: 92.666 +67200/69092 Loss: 94.341 +Training time 0:10:49.309912 +Epoch: 88 Average loss: 93.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 367) +0/69092 Loss: 86.173 +3200/69092 Loss: 93.099 +6400/69092 Loss: 92.606 +9600/69092 Loss: 94.876 +12800/69092 Loss: 92.194 +16000/69092 Loss: 93.623 +19200/69092 Loss: 93.115 +22400/69092 Loss: 92.932 +25600/69092 Loss: 92.861 +28800/69092 Loss: 92.878 +32000/69092 Loss: 93.145 +35200/69092 Loss: 93.950 +38400/69092 Loss: 93.245 +41600/69092 Loss: 93.932 +44800/69092 Loss: 93.972 +48000/69092 Loss: 94.023 +51200/69092 Loss: 93.706 +54400/69092 Loss: 93.776 +57600/69092 Loss: 92.748 +60800/69092 Loss: 92.978 +64000/69092 Loss: 94.306 +67200/69092 Loss: 92.028 +Training time 0:10:30.747518 +Epoch: 89 Average loss: 93.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 368) +0/69092 Loss: 97.815 +3200/69092 Loss: 93.206 +6400/69092 Loss: 92.617 +9600/69092 Loss: 91.872 +12800/69092 Loss: 92.346 +16000/69092 Loss: 91.508 +19200/69092 Loss: 91.624 +22400/69092 Loss: 95.040 +25600/69092 Loss: 93.901 +28800/69092 Loss: 94.224 +32000/69092 Loss: 92.994 +35200/69092 Loss: 93.151 +38400/69092 Loss: 93.251 +41600/69092 Loss: 93.677 +44800/69092 Loss: 94.083 +48000/69092 Loss: 92.831 +51200/69092 Loss: 94.215 +54400/69092 Loss: 94.062 +57600/69092 Loss: 94.467 +60800/69092 Loss: 93.354 +64000/69092 Loss: 93.449 +67200/69092 Loss: 93.560 +Training time 0:10:19.015547 +Epoch: 90 Average loss: 93.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 369) +0/69092 Loss: 87.766 +3200/69092 Loss: 91.804 +6400/69092 Loss: 92.952 +9600/69092 Loss: 91.812 +12800/69092 Loss: 92.293 +16000/69092 Loss: 92.947 +19200/69092 Loss: 93.683 +22400/69092 Loss: 94.450 +25600/69092 Loss: 94.473 +28800/69092 Loss: 94.273 +32000/69092 Loss: 92.958 +35200/69092 Loss: 93.850 +38400/69092 Loss: 92.598 +41600/69092 Loss: 93.348 +44800/69092 Loss: 92.885 +48000/69092 Loss: 92.044 +51200/69092 Loss: 95.132 +54400/69092 Loss: 93.126 +57600/69092 Loss: 92.650 +60800/69092 Loss: 92.829 +64000/69092 Loss: 94.101 +67200/69092 Loss: 93.342 +Training time 0:10:17.918173 +Epoch: 91 Average loss: 93.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 370) +0/69092 Loss: 90.838 +3200/69092 Loss: 92.117 +6400/69092 Loss: 94.715 +9600/69092 Loss: 94.004 +12800/69092 Loss: 94.227 +16000/69092 Loss: 93.608 +19200/69092 Loss: 93.524 +22400/69092 Loss: 92.143 +25600/69092 Loss: 93.169 +28800/69092 Loss: 93.174 +32000/69092 Loss: 93.853 +35200/69092 Loss: 91.713 +38400/69092 Loss: 93.433 +41600/69092 Loss: 94.185 +44800/69092 Loss: 93.540 +48000/69092 Loss: 93.354 +51200/69092 Loss: 93.178 +54400/69092 Loss: 93.200 +57600/69092 Loss: 92.983 +60800/69092 Loss: 93.639 +64000/69092 Loss: 93.720 +67200/69092 Loss: 92.330 +Training time 0:10:32.328375 +Epoch: 92 Average loss: 93.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 371) +0/69092 Loss: 94.150 +3200/69092 Loss: 93.642 +6400/69092 Loss: 92.822 +9600/69092 Loss: 94.322 +12800/69092 Loss: 94.064 +16000/69092 Loss: 93.369 +19200/69092 Loss: 92.466 +22400/69092 Loss: 92.793 +25600/69092 Loss: 94.409 +28800/69092 Loss: 92.861 +32000/69092 Loss: 92.606 +35200/69092 Loss: 92.700 +38400/69092 Loss: 94.214 +41600/69092 Loss: 92.900 +44800/69092 Loss: 91.607 +48000/69092 Loss: 94.258 +51200/69092 Loss: 93.236 +54400/69092 Loss: 92.883 +57600/69092 Loss: 94.439 +60800/69092 Loss: 92.686 +64000/69092 Loss: 93.645 +67200/69092 Loss: 92.396 +Training time 0:10:22.161247 +Epoch: 93 Average loss: 93.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 372) +0/69092 Loss: 89.555 +3200/69092 Loss: 95.058 +6400/69092 Loss: 93.503 +9600/69092 Loss: 93.409 +12800/69092 Loss: 91.083 +16000/69092 Loss: 92.802 +19200/69092 Loss: 93.026 +22400/69092 Loss: 92.553 +25600/69092 Loss: 93.463 +28800/69092 Loss: 92.431 +32000/69092 Loss: 93.631 +35200/69092 Loss: 94.406 +38400/69092 Loss: 93.383 +41600/69092 Loss: 93.139 +44800/69092 Loss: 92.231 +48000/69092 Loss: 93.091 +51200/69092 Loss: 94.125 +54400/69092 Loss: 93.199 +57600/69092 Loss: 94.166 +60800/69092 Loss: 91.734 +64000/69092 Loss: 93.253 +67200/69092 Loss: 92.737 +Training time 0:10:14.232471 +Epoch: 94 Average loss: 93.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 373) +0/69092 Loss: 83.989 +3200/69092 Loss: 94.660 +6400/69092 Loss: 94.513 +9600/69092 Loss: 92.861 +12800/69092 Loss: 93.349 +16000/69092 Loss: 93.826 +19200/69092 Loss: 92.991 +22400/69092 Loss: 94.577 +25600/69092 Loss: 93.038 +28800/69092 Loss: 92.260 +32000/69092 Loss: 92.849 +35200/69092 Loss: 94.482 +38400/69092 Loss: 91.464 +41600/69092 Loss: 94.078 +44800/69092 Loss: 94.280 +48000/69092 Loss: 93.147 +51200/69092 Loss: 92.431 +54400/69092 Loss: 94.081 +57600/69092 Loss: 91.688 +60800/69092 Loss: 91.693 +64000/69092 Loss: 93.510 +67200/69092 Loss: 94.065 +Training time 0:10:36.824236 +Epoch: 95 Average loss: 93.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 374) +0/69092 Loss: 96.164 +3200/69092 Loss: 93.377 +6400/69092 Loss: 92.605 +9600/69092 Loss: 94.189 +12800/69092 Loss: 92.072 +16000/69092 Loss: 92.690 +19200/69092 Loss: 94.215 +22400/69092 Loss: 92.605 +25600/69092 Loss: 93.772 +28800/69092 Loss: 92.963 +32000/69092 Loss: 93.318 +35200/69092 Loss: 95.218 +38400/69092 Loss: 92.291 +41600/69092 Loss: 94.312 +44800/69092 Loss: 94.576 +48000/69092 Loss: 92.322 +51200/69092 Loss: 93.366 +54400/69092 Loss: 93.770 +57600/69092 Loss: 92.244 +60800/69092 Loss: 91.873 +64000/69092 Loss: 93.404 +67200/69092 Loss: 94.060 +Training time 0:10:42.962750 +Epoch: 96 Average loss: 93.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 375) +0/69092 Loss: 84.413 +3200/69092 Loss: 93.457 +6400/69092 Loss: 92.662 +9600/69092 Loss: 94.372 +12800/69092 Loss: 93.429 +16000/69092 Loss: 92.817 +19200/69092 Loss: 91.943 +22400/69092 Loss: 91.658 +25600/69092 Loss: 93.169 +28800/69092 Loss: 93.488 +32000/69092 Loss: 92.568 +35200/69092 Loss: 94.250 +38400/69092 Loss: 93.258 +41600/69092 Loss: 92.991 +44800/69092 Loss: 92.823 +48000/69092 Loss: 94.266 +51200/69092 Loss: 93.473 +54400/69092 Loss: 93.341 +57600/69092 Loss: 94.293 +60800/69092 Loss: 93.675 +64000/69092 Loss: 93.603 +67200/69092 Loss: 93.318 +Training time 0:10:21.682315 +Epoch: 97 Average loss: 93.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 376) +0/69092 Loss: 98.388 +3200/69092 Loss: 92.533 +6400/69092 Loss: 93.545 +9600/69092 Loss: 94.627 +12800/69092 Loss: 94.389 +16000/69092 Loss: 93.306 +19200/69092 Loss: 91.969 +22400/69092 Loss: 93.434 +25600/69092 Loss: 92.900 +28800/69092 Loss: 92.817 +32000/69092 Loss: 93.684 +35200/69092 Loss: 93.093 +38400/69092 Loss: 92.636 +41600/69092 Loss: 93.225 +44800/69092 Loss: 93.836 +48000/69092 Loss: 93.190 +51200/69092 Loss: 94.696 +54400/69092 Loss: 92.536 +57600/69092 Loss: 92.526 +60800/69092 Loss: 93.463 +64000/69092 Loss: 93.073 +67200/69092 Loss: 92.885 +Training time 0:10:39.016477 +Epoch: 98 Average loss: 93.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 377) +0/69092 Loss: 87.540 +3200/69092 Loss: 92.396 +6400/69092 Loss: 91.925 +9600/69092 Loss: 93.321 +12800/69092 Loss: 92.368 +16000/69092 Loss: 93.790 +19200/69092 Loss: 92.207 +22400/69092 Loss: 92.945 +25600/69092 Loss: 93.762 +28800/69092 Loss: 94.125 +32000/69092 Loss: 94.558 +35200/69092 Loss: 92.852 +38400/69092 Loss: 93.077 +41600/69092 Loss: 92.475 +44800/69092 Loss: 92.134 +48000/69092 Loss: 93.057 +51200/69092 Loss: 94.465 +54400/69092 Loss: 93.876 +57600/69092 Loss: 93.163 +60800/69092 Loss: 91.432 +64000/69092 Loss: 95.150 +67200/69092 Loss: 94.076 +Training time 0:10:20.850274 +Epoch: 99 Average loss: 93.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 378) +0/69092 Loss: 97.614 +3200/69092 Loss: 93.088 +6400/69092 Loss: 92.352 +9600/69092 Loss: 91.916 +12800/69092 Loss: 93.096 +16000/69092 Loss: 92.663 +19200/69092 Loss: 93.151 +22400/69092 Loss: 92.147 +25600/69092 Loss: 93.913 +28800/69092 Loss: 94.454 +32000/69092 Loss: 93.530 +35200/69092 Loss: 94.338 +38400/69092 Loss: 92.459 +41600/69092 Loss: 93.448 +44800/69092 Loss: 92.937 +48000/69092 Loss: 93.509 +51200/69092 Loss: 92.862 +54400/69092 Loss: 94.531 +57600/69092 Loss: 93.318 +60800/69092 Loss: 93.863 +64000/69092 Loss: 93.527 +67200/69092 Loss: 92.795 +Training time 0:10:17.596621 +Epoch: 100 Average loss: 93.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 379) +0/69092 Loss: 87.935 +3200/69092 Loss: 93.397 +6400/69092 Loss: 94.411 +9600/69092 Loss: 94.278 +12800/69092 Loss: 94.121 +16000/69092 Loss: 93.760 +19200/69092 Loss: 92.294 +22400/69092 Loss: 92.889 +25600/69092 Loss: 91.303 +28800/69092 Loss: 93.701 +32000/69092 Loss: 91.905 +35200/69092 Loss: 92.849 +38400/69092 Loss: 93.837 +41600/69092 Loss: 91.498 +44800/69092 Loss: 93.884 +48000/69092 Loss: 92.587 +51200/69092 Loss: 93.240 +54400/69092 Loss: 92.330 +57600/69092 Loss: 92.932 +60800/69092 Loss: 93.897 +64000/69092 Loss: 93.748 +67200/69092 Loss: 93.455 +Training time 0:10:18.915215 +Epoch: 101 Average loss: 93.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 380) +0/69092 Loss: 93.243 +3200/69092 Loss: 94.220 +6400/69092 Loss: 94.624 +9600/69092 Loss: 92.951 +12800/69092 Loss: 93.796 +16000/69092 Loss: 92.441 +19200/69092 Loss: 91.993 +22400/69092 Loss: 92.123 +25600/69092 Loss: 93.954 +28800/69092 Loss: 93.799 +32000/69092 Loss: 93.025 +35200/69092 Loss: 93.269 +38400/69092 Loss: 92.431 +41600/69092 Loss: 91.693 +44800/69092 Loss: 93.827 +48000/69092 Loss: 94.016 +51200/69092 Loss: 92.687 +54400/69092 Loss: 92.480 +57600/69092 Loss: 94.146 +60800/69092 Loss: 93.695 +64000/69092 Loss: 93.799 +67200/69092 Loss: 92.996 +Training time 0:10:32.999726 +Epoch: 102 Average loss: 93.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 381) +0/69092 Loss: 108.876 +3200/69092 Loss: 94.292 +6400/69092 Loss: 92.078 +9600/69092 Loss: 95.396 +12800/69092 Loss: 93.931 +16000/69092 Loss: 93.794 +19200/69092 Loss: 92.863 +22400/69092 Loss: 95.653 +25600/69092 Loss: 93.833 +28800/69092 Loss: 92.646 +32000/69092 Loss: 93.796 +35200/69092 Loss: 92.025 +38400/69092 Loss: 93.800 +41600/69092 Loss: 93.843 +44800/69092 Loss: 91.993 +48000/69092 Loss: 92.345 +51200/69092 Loss: 92.797 +54400/69092 Loss: 92.643 +57600/69092 Loss: 90.890 +60800/69092 Loss: 92.933 +64000/69092 Loss: 93.356 +67200/69092 Loss: 92.786 +Training time 0:10:50.960320 +Epoch: 103 Average loss: 93.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 382) +0/69092 Loss: 89.526 +3200/69092 Loss: 92.887 +6400/69092 Loss: 92.039 +9600/69092 Loss: 93.266 +12800/69092 Loss: 92.443 +16000/69092 Loss: 92.459 +19200/69092 Loss: 93.064 +22400/69092 Loss: 94.990 +25600/69092 Loss: 91.917 +28800/69092 Loss: 93.694 +32000/69092 Loss: 92.197 +35200/69092 Loss: 92.531 +38400/69092 Loss: 92.136 +41600/69092 Loss: 93.338 +44800/69092 Loss: 93.354 +48000/69092 Loss: 92.719 +51200/69092 Loss: 92.902 +54400/69092 Loss: 93.501 +57600/69092 Loss: 94.066 +60800/69092 Loss: 93.344 +64000/69092 Loss: 93.143 +67200/69092 Loss: 94.855 +Training time 0:11:09.814920 +Epoch: 104 Average loss: 93.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 383) +0/69092 Loss: 95.561 +3200/69092 Loss: 93.742 +6400/69092 Loss: 93.176 +9600/69092 Loss: 93.379 +12800/69092 Loss: 93.054 +16000/69092 Loss: 92.370 +19200/69092 Loss: 94.151 +22400/69092 Loss: 94.237 +25600/69092 Loss: 93.574 +28800/69092 Loss: 92.937 +32000/69092 Loss: 92.888 +35200/69092 Loss: 93.677 +38400/69092 Loss: 92.699 +41600/69092 Loss: 92.560 +44800/69092 Loss: 93.318 +48000/69092 Loss: 95.227 +51200/69092 Loss: 91.778 +54400/69092 Loss: 92.178 +57600/69092 Loss: 91.886 +60800/69092 Loss: 94.202 +64000/69092 Loss: 92.882 +67200/69092 Loss: 93.135 +Training time 0:10:40.158421 +Epoch: 105 Average loss: 93.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 384) +0/69092 Loss: 98.050 +3200/69092 Loss: 91.779 +6400/69092 Loss: 93.130 +9600/69092 Loss: 92.072 +12800/69092 Loss: 94.323 +16000/69092 Loss: 91.280 +19200/69092 Loss: 92.840 +22400/69092 Loss: 92.747 +25600/69092 Loss: 93.052 +28800/69092 Loss: 92.560 +32000/69092 Loss: 95.072 +35200/69092 Loss: 93.046 +38400/69092 Loss: 94.286 +41600/69092 Loss: 93.489 +44800/69092 Loss: 92.134 +48000/69092 Loss: 93.374 +51200/69092 Loss: 93.179 +54400/69092 Loss: 92.706 +57600/69092 Loss: 93.548 +60800/69092 Loss: 93.596 +64000/69092 Loss: 92.708 +67200/69092 Loss: 93.568 +Training time 0:10:51.023876 +Epoch: 106 Average loss: 93.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 385) +0/69092 Loss: 99.075 +3200/69092 Loss: 91.688 +6400/69092 Loss: 93.294 +9600/69092 Loss: 92.068 +12800/69092 Loss: 92.708 +16000/69092 Loss: 93.353 +19200/69092 Loss: 94.015 +22400/69092 Loss: 94.014 +25600/69092 Loss: 92.689 +28800/69092 Loss: 93.682 +32000/69092 Loss: 93.225 +35200/69092 Loss: 93.438 +38400/69092 Loss: 93.619 +41600/69092 Loss: 91.915 +44800/69092 Loss: 93.156 +48000/69092 Loss: 92.798 +51200/69092 Loss: 93.799 +54400/69092 Loss: 93.697 +57600/69092 Loss: 94.238 +60800/69092 Loss: 94.197 +64000/69092 Loss: 92.857 +67200/69092 Loss: 92.104 +Training time 0:10:29.527706 +Epoch: 107 Average loss: 93.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 386) +0/69092 Loss: 89.326 +3200/69092 Loss: 92.230 +6400/69092 Loss: 92.167 +9600/69092 Loss: 92.387 +12800/69092 Loss: 92.049 +16000/69092 Loss: 93.047 +19200/69092 Loss: 93.672 +22400/69092 Loss: 92.070 +25600/69092 Loss: 94.433 +28800/69092 Loss: 92.233 +32000/69092 Loss: 93.321 +35200/69092 Loss: 94.089 +38400/69092 Loss: 93.188 +41600/69092 Loss: 93.962 +44800/69092 Loss: 93.079 +48000/69092 Loss: 93.290 +51200/69092 Loss: 92.913 +54400/69092 Loss: 93.311 +57600/69092 Loss: 92.095 +60800/69092 Loss: 94.072 +64000/69092 Loss: 93.965 +67200/69092 Loss: 93.204 +Training time 0:10:49.708456 +Epoch: 108 Average loss: 93.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 387) +0/69092 Loss: 87.865 +3200/69092 Loss: 92.366 +6400/69092 Loss: 91.558 +9600/69092 Loss: 93.628 +12800/69092 Loss: 93.970 +16000/69092 Loss: 92.362 +19200/69092 Loss: 93.312 +22400/69092 Loss: 92.616 +25600/69092 Loss: 94.466 +28800/69092 Loss: 94.325 +32000/69092 Loss: 91.492 +35200/69092 Loss: 93.476 +38400/69092 Loss: 92.427 +41600/69092 Loss: 93.670 +44800/69092 Loss: 92.911 +48000/69092 Loss: 93.421 +51200/69092 Loss: 92.963 +54400/69092 Loss: 93.408 +57600/69092 Loss: 93.892 +60800/69092 Loss: 94.477 +64000/69092 Loss: 93.131 +67200/69092 Loss: 94.088 +Training time 0:10:44.515131 +Epoch: 109 Average loss: 93.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 388) +0/69092 Loss: 89.751 +3200/69092 Loss: 92.979 +6400/69092 Loss: 92.594 +9600/69092 Loss: 93.847 +12800/69092 Loss: 93.643 +16000/69092 Loss: 94.281 +19200/69092 Loss: 93.882 +22400/69092 Loss: 92.724 +25600/69092 Loss: 94.097 +28800/69092 Loss: 93.811 +32000/69092 Loss: 93.824 +35200/69092 Loss: 91.924 +38400/69092 Loss: 91.544 +41600/69092 Loss: 92.576 +44800/69092 Loss: 93.398 +48000/69092 Loss: 92.276 +51200/69092 Loss: 92.337 +54400/69092 Loss: 92.222 +57600/69092 Loss: 94.228 +60800/69092 Loss: 91.604 +64000/69092 Loss: 95.424 +67200/69092 Loss: 92.890 +Training time 0:10:36.137533 +Epoch: 110 Average loss: 93.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 389) +0/69092 Loss: 94.808 +3200/69092 Loss: 91.856 +6400/69092 Loss: 91.423 +9600/69092 Loss: 93.353 +12800/69092 Loss: 93.567 +16000/69092 Loss: 92.577 +19200/69092 Loss: 93.185 +22400/69092 Loss: 93.367 +25600/69092 Loss: 93.260 +28800/69092 Loss: 92.536 +32000/69092 Loss: 94.393 +35200/69092 Loss: 94.419 +38400/69092 Loss: 93.505 +41600/69092 Loss: 93.685 +44800/69092 Loss: 92.806 +48000/69092 Loss: 93.655 +51200/69092 Loss: 93.391 +54400/69092 Loss: 93.514 +57600/69092 Loss: 93.438 +60800/69092 Loss: 93.269 +64000/69092 Loss: 93.942 +67200/69092 Loss: 92.341 +Training time 0:10:45.578260 +Epoch: 111 Average loss: 93.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 390) +0/69092 Loss: 88.081 +3200/69092 Loss: 92.803 +6400/69092 Loss: 93.073 +9600/69092 Loss: 92.147 +12800/69092 Loss: 93.128 +16000/69092 Loss: 92.517 +19200/69092 Loss: 92.602 +22400/69092 Loss: 92.353 +25600/69092 Loss: 94.206 +28800/69092 Loss: 92.127 +32000/69092 Loss: 93.050 +35200/69092 Loss: 92.023 +38400/69092 Loss: 92.767 +41600/69092 Loss: 92.940 +44800/69092 Loss: 93.283 +48000/69092 Loss: 93.302 +51200/69092 Loss: 93.715 +54400/69092 Loss: 94.356 +57600/69092 Loss: 94.043 +60800/69092 Loss: 94.796 +64000/69092 Loss: 93.478 +67200/69092 Loss: 91.771 +Training time 0:11:04.307800 +Epoch: 112 Average loss: 93.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 391) +0/69092 Loss: 88.149 +3200/69092 Loss: 93.759 +6400/69092 Loss: 93.228 +9600/69092 Loss: 92.095 +12800/69092 Loss: 93.082 +16000/69092 Loss: 92.882 +19200/69092 Loss: 93.695 +22400/69092 Loss: 93.062 +25600/69092 Loss: 93.911 +28800/69092 Loss: 93.465 +32000/69092 Loss: 93.598 +35200/69092 Loss: 94.359 +38400/69092 Loss: 92.227 +41600/69092 Loss: 93.105 +44800/69092 Loss: 94.303 +48000/69092 Loss: 93.551 +51200/69092 Loss: 93.316 +54400/69092 Loss: 92.581 +57600/69092 Loss: 91.721 +60800/69092 Loss: 92.639 +64000/69092 Loss: 91.375 +67200/69092 Loss: 92.839 +Training time 0:10:48.253999 +Epoch: 113 Average loss: 93.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 392) +0/69092 Loss: 98.237 +3200/69092 Loss: 91.908 +6400/69092 Loss: 92.181 +9600/69092 Loss: 92.891 +12800/69092 Loss: 92.179 +16000/69092 Loss: 94.107 +19200/69092 Loss: 91.840 +22400/69092 Loss: 94.854 +25600/69092 Loss: 92.926 +28800/69092 Loss: 94.183 +32000/69092 Loss: 93.174 +35200/69092 Loss: 93.321 +38400/69092 Loss: 92.210 +41600/69092 Loss: 92.549 +44800/69092 Loss: 92.444 +48000/69092 Loss: 95.022 +51200/69092 Loss: 92.186 +54400/69092 Loss: 92.679 +57600/69092 Loss: 94.080 +60800/69092 Loss: 92.168 +64000/69092 Loss: 94.054 +67200/69092 Loss: 92.729 +Training time 0:10:29.851312 +Epoch: 114 Average loss: 93.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 393) +0/69092 Loss: 86.609 +3200/69092 Loss: 93.674 +6400/69092 Loss: 93.881 +9600/69092 Loss: 92.217 +12800/69092 Loss: 91.985 +16000/69092 Loss: 92.412 +19200/69092 Loss: 94.073 +22400/69092 Loss: 92.943 +25600/69092 Loss: 94.747 +28800/69092 Loss: 91.898 +32000/69092 Loss: 93.993 +35200/69092 Loss: 92.886 +38400/69092 Loss: 92.542 +41600/69092 Loss: 92.750 +44800/69092 Loss: 92.892 +48000/69092 Loss: 94.908 +51200/69092 Loss: 93.009 +54400/69092 Loss: 93.582 +57600/69092 Loss: 93.712 +60800/69092 Loss: 91.920 +64000/69092 Loss: 92.220 +67200/69092 Loss: 93.459 +Training time 0:10:40.600873 +Epoch: 115 Average loss: 93.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 394) +0/69092 Loss: 94.926 +3200/69092 Loss: 92.642 +6400/69092 Loss: 94.107 +9600/69092 Loss: 91.696 +12800/69092 Loss: 94.893 +16000/69092 Loss: 93.190 +19200/69092 Loss: 93.737 +22400/69092 Loss: 93.238 +25600/69092 Loss: 92.427 +28800/69092 Loss: 93.149 +32000/69092 Loss: 93.052 +35200/69092 Loss: 92.421 +38400/69092 Loss: 92.784 +41600/69092 Loss: 92.562 +44800/69092 Loss: 93.329 +48000/69092 Loss: 92.789 +51200/69092 Loss: 93.117 +54400/69092 Loss: 92.468 +57600/69092 Loss: 93.375 +60800/69092 Loss: 93.003 +64000/69092 Loss: 93.221 +67200/69092 Loss: 93.009 +Training time 0:10:53.926276 +Epoch: 116 Average loss: 93.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 395) +0/69092 Loss: 94.007 +3200/69092 Loss: 93.694 +6400/69092 Loss: 93.024 +9600/69092 Loss: 92.914 +12800/69092 Loss: 92.620 +16000/69092 Loss: 92.830 +19200/69092 Loss: 92.584 +22400/69092 Loss: 94.293 +25600/69092 Loss: 92.538 +28800/69092 Loss: 92.377 +32000/69092 Loss: 93.225 +35200/69092 Loss: 92.971 +38400/69092 Loss: 92.910 +41600/69092 Loss: 93.796 +44800/69092 Loss: 93.406 +48000/69092 Loss: 94.198 +51200/69092 Loss: 90.760 +54400/69092 Loss: 92.323 +57600/69092 Loss: 93.172 +60800/69092 Loss: 93.920 +64000/69092 Loss: 93.892 +67200/69092 Loss: 93.834 +Training time 0:10:17.078378 +Epoch: 117 Average loss: 93.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 396) +0/69092 Loss: 89.664 +3200/69092 Loss: 92.027 +6400/69092 Loss: 93.108 +9600/69092 Loss: 92.048 +12800/69092 Loss: 92.275 +16000/69092 Loss: 92.081 +19200/69092 Loss: 92.479 +22400/69092 Loss: 92.895 +25600/69092 Loss: 92.499 +28800/69092 Loss: 93.346 +32000/69092 Loss: 93.775 +35200/69092 Loss: 94.435 +38400/69092 Loss: 94.060 +41600/69092 Loss: 94.301 +44800/69092 Loss: 93.337 +48000/69092 Loss: 93.531 +51200/69092 Loss: 94.846 +54400/69092 Loss: 92.542 +57600/69092 Loss: 91.542 +60800/69092 Loss: 93.113 +64000/69092 Loss: 93.243 +67200/69092 Loss: 92.793 +Training time 0:10:57.910485 +Epoch: 118 Average loss: 93.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 397) +0/69092 Loss: 88.337 +3200/69092 Loss: 91.948 +6400/69092 Loss: 93.151 +9600/69092 Loss: 92.505 +12800/69092 Loss: 94.577 +16000/69092 Loss: 93.575 +19200/69092 Loss: 93.444 +22400/69092 Loss: 92.096 +25600/69092 Loss: 91.046 +28800/69092 Loss: 93.556 +32000/69092 Loss: 93.214 +35200/69092 Loss: 92.968 +38400/69092 Loss: 92.385 +41600/69092 Loss: 92.507 +44800/69092 Loss: 93.555 +48000/69092 Loss: 93.972 +51200/69092 Loss: 92.333 +54400/69092 Loss: 92.924 +57600/69092 Loss: 93.133 +60800/69092 Loss: 94.692 +64000/69092 Loss: 93.631 +67200/69092 Loss: 93.929 +Training time 0:10:42.323308 +Epoch: 119 Average loss: 93.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 398) +0/69092 Loss: 91.245 +3200/69092 Loss: 92.356 +6400/69092 Loss: 93.430 +9600/69092 Loss: 93.024 +12800/69092 Loss: 93.941 +16000/69092 Loss: 92.007 +19200/69092 Loss: 92.801 +22400/69092 Loss: 92.910 +25600/69092 Loss: 92.494 +28800/69092 Loss: 92.386 +32000/69092 Loss: 92.848 +35200/69092 Loss: 92.557 +38400/69092 Loss: 93.233 +41600/69092 Loss: 92.927 +44800/69092 Loss: 93.097 +48000/69092 Loss: 91.985 +51200/69092 Loss: 93.202 +54400/69092 Loss: 94.537 +57600/69092 Loss: 93.491 +60800/69092 Loss: 93.098 +64000/69092 Loss: 93.099 +67200/69092 Loss: 94.546 +Training time 0:10:26.932577 +Epoch: 120 Average loss: 93.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 399) +0/69092 Loss: 89.426 +3200/69092 Loss: 94.838 +6400/69092 Loss: 92.622 +9600/69092 Loss: 92.332 +12800/69092 Loss: 93.995 +16000/69092 Loss: 92.640 +19200/69092 Loss: 92.442 +22400/69092 Loss: 94.118 +25600/69092 Loss: 93.424 +28800/69092 Loss: 92.711 +32000/69092 Loss: 93.608 +35200/69092 Loss: 92.313 +38400/69092 Loss: 92.453 +41600/69092 Loss: 93.801 +44800/69092 Loss: 92.606 +48000/69092 Loss: 93.221 +51200/69092 Loss: 92.375 +54400/69092 Loss: 91.509 +57600/69092 Loss: 93.812 +60800/69092 Loss: 92.116 +64000/69092 Loss: 94.152 +67200/69092 Loss: 92.840 +Training time 0:10:27.257799 +Epoch: 121 Average loss: 93.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 400) +0/69092 Loss: 97.193 +3200/69092 Loss: 91.592 +6400/69092 Loss: 92.902 +9600/69092 Loss: 94.000 +12800/69092 Loss: 93.285 +16000/69092 Loss: 93.834 +19200/69092 Loss: 92.712 +22400/69092 Loss: 93.901 +25600/69092 Loss: 93.045 +28800/69092 Loss: 93.403 +32000/69092 Loss: 93.258 +35200/69092 Loss: 92.264 +38400/69092 Loss: 92.838 +41600/69092 Loss: 92.269 +44800/69092 Loss: 93.020 +48000/69092 Loss: 94.076 +51200/69092 Loss: 93.069 +54400/69092 Loss: 94.148 +57600/69092 Loss: 92.873 +60800/69092 Loss: 94.485 +64000/69092 Loss: 92.589 +67200/69092 Loss: 92.385 +Training time 0:10:42.115896 +Epoch: 122 Average loss: 93.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 401) +0/69092 Loss: 88.332 +3200/69092 Loss: 92.735 +6400/69092 Loss: 93.849 +9600/69092 Loss: 91.491 +12800/69092 Loss: 93.878 +16000/69092 Loss: 92.936 +19200/69092 Loss: 93.155 +22400/69092 Loss: 91.845 +25600/69092 Loss: 93.143 +28800/69092 Loss: 92.731 +32000/69092 Loss: 92.627 +35200/69092 Loss: 94.780 +38400/69092 Loss: 92.513 +41600/69092 Loss: 92.267 +44800/69092 Loss: 93.836 +48000/69092 Loss: 93.423 +51200/69092 Loss: 93.381 +54400/69092 Loss: 93.835 +57600/69092 Loss: 92.983 +60800/69092 Loss: 91.522 +64000/69092 Loss: 92.581 +67200/69092 Loss: 94.301 +Training time 0:10:38.127068 +Epoch: 123 Average loss: 93.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 402) +0/69092 Loss: 92.243 +3200/69092 Loss: 92.621 +6400/69092 Loss: 92.776 +9600/69092 Loss: 93.160 +12800/69092 Loss: 93.042 +16000/69092 Loss: 91.590 +19200/69092 Loss: 93.035 +22400/69092 Loss: 92.473 +25600/69092 Loss: 93.589 +28800/69092 Loss: 93.776 +32000/69092 Loss: 93.274 +35200/69092 Loss: 93.864 +38400/69092 Loss: 92.742 +41600/69092 Loss: 93.702 +44800/69092 Loss: 92.730 +48000/69092 Loss: 92.770 +51200/69092 Loss: 92.466 +54400/69092 Loss: 94.704 +57600/69092 Loss: 92.089 +60800/69092 Loss: 92.548 +64000/69092 Loss: 92.184 +67200/69092 Loss: 92.784 +Training time 0:10:35.228475 +Epoch: 124 Average loss: 92.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 403) +0/69092 Loss: 100.818 +3200/69092 Loss: 92.687 +6400/69092 Loss: 92.773 +9600/69092 Loss: 92.782 +12800/69092 Loss: 91.514 +16000/69092 Loss: 94.386 +19200/69092 Loss: 94.405 +22400/69092 Loss: 93.170 +25600/69092 Loss: 93.122 +28800/69092 Loss: 92.309 +32000/69092 Loss: 92.932 +35200/69092 Loss: 93.517 +38400/69092 Loss: 91.624 +41600/69092 Loss: 91.835 +44800/69092 Loss: 93.660 +48000/69092 Loss: 93.561 +51200/69092 Loss: 93.070 +54400/69092 Loss: 93.029 +57600/69092 Loss: 93.015 +60800/69092 Loss: 92.498 +64000/69092 Loss: 93.090 +67200/69092 Loss: 94.505 +Training time 0:10:17.123610 +Epoch: 125 Average loss: 93.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 404) +0/69092 Loss: 104.049 +3200/69092 Loss: 92.856 +6400/69092 Loss: 92.192 +9600/69092 Loss: 93.618 +12800/69092 Loss: 93.275 +16000/69092 Loss: 93.292 +19200/69092 Loss: 94.127 +22400/69092 Loss: 92.421 +25600/69092 Loss: 91.846 +28800/69092 Loss: 94.998 +32000/69092 Loss: 92.040 +35200/69092 Loss: 93.367 +38400/69092 Loss: 92.792 +41600/69092 Loss: 92.259 +44800/69092 Loss: 92.135 +48000/69092 Loss: 93.271 +51200/69092 Loss: 94.114 +54400/69092 Loss: 93.362 +57600/69092 Loss: 92.816 +60800/69092 Loss: 92.795 +64000/69092 Loss: 91.757 +67200/69092 Loss: 93.204 +Training time 0:10:44.599854 +Epoch: 126 Average loss: 92.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 405) +0/69092 Loss: 91.300 +3200/69092 Loss: 92.898 +6400/69092 Loss: 91.986 +9600/69092 Loss: 93.458 +12800/69092 Loss: 92.807 +16000/69092 Loss: 92.489 +19200/69092 Loss: 92.270 +22400/69092 Loss: 93.285 +25600/69092 Loss: 93.074 +28800/69092 Loss: 93.289 +32000/69092 Loss: 92.585 +35200/69092 Loss: 93.272 +38400/69092 Loss: 93.186 +41600/69092 Loss: 92.558 +44800/69092 Loss: 92.380 +48000/69092 Loss: 91.924 +51200/69092 Loss: 92.879 +54400/69092 Loss: 93.371 +57600/69092 Loss: 93.254 +60800/69092 Loss: 94.290 +64000/69092 Loss: 92.572 +67200/69092 Loss: 92.624 +Training time 0:10:34.105276 +Epoch: 127 Average loss: 92.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 406) +0/69092 Loss: 83.986 +3200/69092 Loss: 92.417 +6400/69092 Loss: 93.875 +9600/69092 Loss: 94.722 +12800/69092 Loss: 92.962 +16000/69092 Loss: 92.808 +19200/69092 Loss: 93.143 +22400/69092 Loss: 93.782 +25600/69092 Loss: 91.485 +28800/69092 Loss: 93.670 +32000/69092 Loss: 94.345 +35200/69092 Loss: 93.397 +38400/69092 Loss: 92.906 +41600/69092 Loss: 92.286 +44800/69092 Loss: 91.499 +48000/69092 Loss: 92.866 +51200/69092 Loss: 92.817 +54400/69092 Loss: 93.149 +57600/69092 Loss: 93.320 +60800/69092 Loss: 91.789 +64000/69092 Loss: 93.931 +67200/69092 Loss: 91.805 +Training time 0:10:54.483345 +Epoch: 128 Average loss: 92.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 407) +0/69092 Loss: 90.794 +3200/69092 Loss: 92.083 +6400/69092 Loss: 92.445 +9600/69092 Loss: 93.604 +12800/69092 Loss: 93.503 +16000/69092 Loss: 91.706 +19200/69092 Loss: 92.541 +22400/69092 Loss: 92.868 +25600/69092 Loss: 92.774 +28800/69092 Loss: 92.219 +32000/69092 Loss: 92.986 +35200/69092 Loss: 93.444 +38400/69092 Loss: 92.733 +41600/69092 Loss: 94.288 +44800/69092 Loss: 92.904 +48000/69092 Loss: 92.915 +51200/69092 Loss: 92.664 +54400/69092 Loss: 92.916 +57600/69092 Loss: 92.673 +60800/69092 Loss: 92.689 +64000/69092 Loss: 95.054 +67200/69092 Loss: 93.448 +Training time 0:10:48.198722 +Epoch: 129 Average loss: 93.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 408) +0/69092 Loss: 90.181 +3200/69092 Loss: 93.975 +6400/69092 Loss: 92.188 +9600/69092 Loss: 92.333 +12800/69092 Loss: 92.765 +16000/69092 Loss: 92.159 +19200/69092 Loss: 93.249 +22400/69092 Loss: 92.388 +25600/69092 Loss: 93.475 +28800/69092 Loss: 93.020 +32000/69092 Loss: 91.649 +35200/69092 Loss: 93.006 +38400/69092 Loss: 93.334 +41600/69092 Loss: 92.615 +44800/69092 Loss: 94.136 +48000/69092 Loss: 92.207 +51200/69092 Loss: 92.943 +54400/69092 Loss: 93.218 +57600/69092 Loss: 93.575 +60800/69092 Loss: 91.072 +64000/69092 Loss: 93.338 +67200/69092 Loss: 94.143 +Training time 0:10:40.807683 +Epoch: 130 Average loss: 92.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 409) +0/69092 Loss: 84.556 +3200/69092 Loss: 93.355 +6400/69092 Loss: 92.359 +9600/69092 Loss: 93.099 +12800/69092 Loss: 91.579 +16000/69092 Loss: 91.999 +19200/69092 Loss: 93.407 +22400/69092 Loss: 91.712 +25600/69092 Loss: 93.416 +28800/69092 Loss: 94.313 +32000/69092 Loss: 92.880 +35200/69092 Loss: 91.527 +38400/69092 Loss: 92.863 +41600/69092 Loss: 92.629 +44800/69092 Loss: 93.964 +48000/69092 Loss: 93.107 +51200/69092 Loss: 92.486 +54400/69092 Loss: 94.472 +57600/69092 Loss: 93.828 +60800/69092 Loss: 93.671 +64000/69092 Loss: 91.859 +67200/69092 Loss: 92.353 +Training time 0:10:26.909666 +Epoch: 131 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 410) +0/69092 Loss: 97.387 +3200/69092 Loss: 92.917 +6400/69092 Loss: 92.521 +9600/69092 Loss: 94.050 +12800/69092 Loss: 92.133 +16000/69092 Loss: 92.038 +19200/69092 Loss: 92.344 +22400/69092 Loss: 94.058 +25600/69092 Loss: 93.527 +28800/69092 Loss: 92.044 +32000/69092 Loss: 93.721 +35200/69092 Loss: 93.522 +38400/69092 Loss: 93.740 +41600/69092 Loss: 92.677 +44800/69092 Loss: 92.292 +48000/69092 Loss: 93.323 +51200/69092 Loss: 92.423 +54400/69092 Loss: 93.030 +57600/69092 Loss: 93.527 +60800/69092 Loss: 92.770 +64000/69092 Loss: 91.827 +67200/69092 Loss: 93.940 +Training time 0:10:38.802806 +Epoch: 132 Average loss: 92.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 411) +0/69092 Loss: 93.207 +3200/69092 Loss: 92.878 +6400/69092 Loss: 91.821 +9600/69092 Loss: 92.161 +12800/69092 Loss: 92.381 +16000/69092 Loss: 93.821 +19200/69092 Loss: 93.307 +22400/69092 Loss: 92.035 +25600/69092 Loss: 93.219 +28800/69092 Loss: 92.943 +32000/69092 Loss: 92.589 +35200/69092 Loss: 92.745 +38400/69092 Loss: 93.047 +41600/69092 Loss: 91.810 +44800/69092 Loss: 92.287 +48000/69092 Loss: 93.075 +51200/69092 Loss: 93.894 +54400/69092 Loss: 92.598 +57600/69092 Loss: 92.557 +60800/69092 Loss: 93.418 +64000/69092 Loss: 92.871 +67200/69092 Loss: 94.204 +Training time 0:10:04.269922 +Epoch: 133 Average loss: 92.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 412) +0/69092 Loss: 95.815 +3200/69092 Loss: 91.796 +6400/69092 Loss: 93.268 +9600/69092 Loss: 92.160 +12800/69092 Loss: 93.307 +16000/69092 Loss: 92.116 +19200/69092 Loss: 93.080 +22400/69092 Loss: 92.102 +25600/69092 Loss: 93.933 +28800/69092 Loss: 92.353 +32000/69092 Loss: 92.734 +35200/69092 Loss: 93.464 +38400/69092 Loss: 94.395 +41600/69092 Loss: 93.934 +44800/69092 Loss: 93.643 +48000/69092 Loss: 93.663 +51200/69092 Loss: 92.442 +54400/69092 Loss: 91.788 +57600/69092 Loss: 92.589 +60800/69092 Loss: 93.192 +64000/69092 Loss: 94.311 +67200/69092 Loss: 93.025 +Training time 0:10:04.276959 +Epoch: 134 Average loss: 93.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 413) +0/69092 Loss: 96.029 +3200/69092 Loss: 92.543 +6400/69092 Loss: 92.354 +9600/69092 Loss: 92.196 +12800/69092 Loss: 92.613 +16000/69092 Loss: 93.342 +19200/69092 Loss: 94.706 +22400/69092 Loss: 93.770 +25600/69092 Loss: 93.232 +28800/69092 Loss: 93.728 +32000/69092 Loss: 92.380 +35200/69092 Loss: 92.904 +38400/69092 Loss: 93.974 +41600/69092 Loss: 92.652 +44800/69092 Loss: 93.805 +48000/69092 Loss: 93.695 +51200/69092 Loss: 92.491 +54400/69092 Loss: 93.166 +57600/69092 Loss: 93.815 +60800/69092 Loss: 92.654 +64000/69092 Loss: 92.171 +67200/69092 Loss: 91.781 +Training time 0:10:59.850583 +Epoch: 135 Average loss: 93.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 414) +0/69092 Loss: 95.098 +3200/69092 Loss: 94.281 +6400/69092 Loss: 93.102 +9600/69092 Loss: 92.027 +12800/69092 Loss: 94.561 +16000/69092 Loss: 91.357 +19200/69092 Loss: 92.438 +22400/69092 Loss: 93.048 +25600/69092 Loss: 94.280 +28800/69092 Loss: 91.933 +32000/69092 Loss: 93.188 +35200/69092 Loss: 92.309 +38400/69092 Loss: 94.220 +41600/69092 Loss: 92.865 +44800/69092 Loss: 92.582 +48000/69092 Loss: 92.289 +51200/69092 Loss: 92.623 +54400/69092 Loss: 92.547 +57600/69092 Loss: 94.436 +60800/69092 Loss: 92.077 +64000/69092 Loss: 92.514 +67200/69092 Loss: 93.932 +Training time 0:10:36.400766 +Epoch: 136 Average loss: 92.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 415) +0/69092 Loss: 93.723 +3200/69092 Loss: 93.254 +6400/69092 Loss: 92.740 +9600/69092 Loss: 91.423 +12800/69092 Loss: 92.415 +16000/69092 Loss: 92.553 +19200/69092 Loss: 92.836 +22400/69092 Loss: 93.249 +25600/69092 Loss: 92.435 +28800/69092 Loss: 94.443 +32000/69092 Loss: 92.792 +35200/69092 Loss: 93.931 +38400/69092 Loss: 93.294 +41600/69092 Loss: 92.864 +44800/69092 Loss: 93.080 +48000/69092 Loss: 93.300 +51200/69092 Loss: 92.678 +54400/69092 Loss: 92.800 +57600/69092 Loss: 94.014 +60800/69092 Loss: 93.319 +64000/69092 Loss: 93.552 +67200/69092 Loss: 93.351 +Training time 0:10:46.625126 +Epoch: 137 Average loss: 93.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 416) +0/69092 Loss: 83.073 +3200/69092 Loss: 92.685 +6400/69092 Loss: 94.249 +9600/69092 Loss: 91.166 +12800/69092 Loss: 93.139 +16000/69092 Loss: 94.625 +19200/69092 Loss: 93.245 +22400/69092 Loss: 92.896 +25600/69092 Loss: 93.215 +28800/69092 Loss: 92.936 +32000/69092 Loss: 93.682 +35200/69092 Loss: 93.277 +38400/69092 Loss: 92.487 +41600/69092 Loss: 92.163 +44800/69092 Loss: 92.388 +48000/69092 Loss: 92.107 +51200/69092 Loss: 93.174 +54400/69092 Loss: 93.597 +57600/69092 Loss: 93.263 +60800/69092 Loss: 92.878 +64000/69092 Loss: 91.622 +67200/69092 Loss: 92.843 +Training time 0:10:38.082873 +Epoch: 138 Average loss: 92.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 417) +0/69092 Loss: 84.538 +3200/69092 Loss: 92.483 +6400/69092 Loss: 91.764 +9600/69092 Loss: 93.084 +12800/69092 Loss: 91.997 +16000/69092 Loss: 92.692 +19200/69092 Loss: 93.185 +22400/69092 Loss: 92.357 +25600/69092 Loss: 92.564 +28800/69092 Loss: 93.586 +32000/69092 Loss: 93.415 +35200/69092 Loss: 94.352 +38400/69092 Loss: 92.790 +41600/69092 Loss: 93.303 +44800/69092 Loss: 94.855 +48000/69092 Loss: 93.431 +51200/69092 Loss: 94.643 +54400/69092 Loss: 93.406 +57600/69092 Loss: 92.656 +60800/69092 Loss: 92.678 +64000/69092 Loss: 92.930 +67200/69092 Loss: 92.387 +Training time 0:10:31.526656 +Epoch: 139 Average loss: 93.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 418) +0/69092 Loss: 89.698 +3200/69092 Loss: 93.729 +6400/69092 Loss: 92.970 +9600/69092 Loss: 92.804 +12800/69092 Loss: 92.160 +16000/69092 Loss: 92.843 +19200/69092 Loss: 93.642 +22400/69092 Loss: 92.238 +25600/69092 Loss: 92.019 +28800/69092 Loss: 92.808 +32000/69092 Loss: 91.063 +35200/69092 Loss: 94.019 +38400/69092 Loss: 92.879 +41600/69092 Loss: 92.326 +44800/69092 Loss: 92.767 +48000/69092 Loss: 91.848 +51200/69092 Loss: 93.054 +54400/69092 Loss: 93.977 +57600/69092 Loss: 93.319 +60800/69092 Loss: 93.594 +64000/69092 Loss: 92.563 +67200/69092 Loss: 93.264 +Training time 0:10:33.874226 +Epoch: 140 Average loss: 92.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 419) +0/69092 Loss: 91.154 +3200/69092 Loss: 93.618 +6400/69092 Loss: 94.282 +9600/69092 Loss: 92.971 +12800/69092 Loss: 91.736 +16000/69092 Loss: 92.483 +19200/69092 Loss: 92.561 +22400/69092 Loss: 93.544 +25600/69092 Loss: 92.295 +28800/69092 Loss: 93.888 +32000/69092 Loss: 92.345 +35200/69092 Loss: 94.055 +38400/69092 Loss: 92.691 +41600/69092 Loss: 93.083 +44800/69092 Loss: 92.989 +48000/69092 Loss: 92.051 +51200/69092 Loss: 93.164 +54400/69092 Loss: 93.679 +57600/69092 Loss: 92.144 +60800/69092 Loss: 92.188 +64000/69092 Loss: 93.344 +67200/69092 Loss: 92.635 +Training time 0:10:36.839920 +Epoch: 141 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 420) +0/69092 Loss: 83.899 +3200/69092 Loss: 92.778 +6400/69092 Loss: 92.069 +9600/69092 Loss: 92.756 +12800/69092 Loss: 91.874 +16000/69092 Loss: 93.649 +19200/69092 Loss: 92.758 +22400/69092 Loss: 92.600 +25600/69092 Loss: 92.993 +28800/69092 Loss: 93.549 +32000/69092 Loss: 94.084 +35200/69092 Loss: 93.365 +38400/69092 Loss: 94.286 +41600/69092 Loss: 91.596 +44800/69092 Loss: 92.703 +48000/69092 Loss: 92.240 +51200/69092 Loss: 92.672 +54400/69092 Loss: 92.783 +57600/69092 Loss: 92.782 +60800/69092 Loss: 93.148 +64000/69092 Loss: 91.929 +67200/69092 Loss: 92.755 +Training time 0:10:39.495611 +Epoch: 142 Average loss: 92.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 421) +0/69092 Loss: 97.825 +3200/69092 Loss: 93.288 +6400/69092 Loss: 93.094 +9600/69092 Loss: 92.260 +12800/69092 Loss: 92.941 +16000/69092 Loss: 93.603 +19200/69092 Loss: 93.006 +22400/69092 Loss: 93.695 +25600/69092 Loss: 93.251 +28800/69092 Loss: 92.894 +32000/69092 Loss: 92.698 +35200/69092 Loss: 92.797 +38400/69092 Loss: 90.492 +41600/69092 Loss: 91.992 +44800/69092 Loss: 92.887 +48000/69092 Loss: 93.263 +51200/69092 Loss: 93.575 +54400/69092 Loss: 92.437 +57600/69092 Loss: 92.324 +60800/69092 Loss: 93.326 +64000/69092 Loss: 94.074 +67200/69092 Loss: 92.197 +Training time 0:10:38.455544 +Epoch: 143 Average loss: 92.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 422) +0/69092 Loss: 90.894 +3200/69092 Loss: 91.916 +6400/69092 Loss: 91.427 +9600/69092 Loss: 93.712 +12800/69092 Loss: 94.001 +16000/69092 Loss: 93.151 +19200/69092 Loss: 92.549 +22400/69092 Loss: 92.010 +25600/69092 Loss: 92.871 +28800/69092 Loss: 93.270 +32000/69092 Loss: 94.491 +35200/69092 Loss: 92.157 +38400/69092 Loss: 93.929 +41600/69092 Loss: 91.636 +44800/69092 Loss: 93.549 +48000/69092 Loss: 92.356 +51200/69092 Loss: 93.653 +54400/69092 Loss: 93.757 +57600/69092 Loss: 91.801 +60800/69092 Loss: 93.015 +64000/69092 Loss: 92.028 +67200/69092 Loss: 93.175 +Training time 0:10:13.981074 +Epoch: 144 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 423) +0/69092 Loss: 104.413 +3200/69092 Loss: 92.388 +6400/69092 Loss: 91.732 +9600/69092 Loss: 92.339 +12800/69092 Loss: 94.161 +16000/69092 Loss: 92.366 +19200/69092 Loss: 93.041 +22400/69092 Loss: 93.785 +25600/69092 Loss: 92.204 +28800/69092 Loss: 93.527 +32000/69092 Loss: 94.112 +35200/69092 Loss: 94.044 +38400/69092 Loss: 93.299 +41600/69092 Loss: 93.159 +44800/69092 Loss: 93.798 +48000/69092 Loss: 92.750 +51200/69092 Loss: 92.404 +54400/69092 Loss: 92.520 +57600/69092 Loss: 92.371 +60800/69092 Loss: 91.477 +64000/69092 Loss: 93.162 +67200/69092 Loss: 91.925 +Training time 0:10:35.682296 +Epoch: 145 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 424) +0/69092 Loss: 89.356 +3200/69092 Loss: 93.536 +6400/69092 Loss: 92.218 +9600/69092 Loss: 92.449 +12800/69092 Loss: 92.867 +16000/69092 Loss: 91.542 +19200/69092 Loss: 91.271 +22400/69092 Loss: 91.859 +25600/69092 Loss: 92.772 +28800/69092 Loss: 93.386 +32000/69092 Loss: 93.342 +35200/69092 Loss: 93.441 +38400/69092 Loss: 93.085 +41600/69092 Loss: 93.765 +44800/69092 Loss: 92.729 +48000/69092 Loss: 93.216 +51200/69092 Loss: 92.087 +54400/69092 Loss: 92.072 +57600/69092 Loss: 93.404 +60800/69092 Loss: 93.825 +64000/69092 Loss: 93.335 +67200/69092 Loss: 93.914 +Training time 0:10:30.771325 +Epoch: 146 Average loss: 92.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 425) +0/69092 Loss: 101.423 +3200/69092 Loss: 93.674 +6400/69092 Loss: 92.133 +9600/69092 Loss: 93.390 +12800/69092 Loss: 92.812 +16000/69092 Loss: 93.253 +19200/69092 Loss: 93.861 +22400/69092 Loss: 91.644 +25600/69092 Loss: 92.594 +28800/69092 Loss: 93.106 +32000/69092 Loss: 93.050 +35200/69092 Loss: 93.248 +38400/69092 Loss: 93.993 +41600/69092 Loss: 92.544 +44800/69092 Loss: 92.994 +48000/69092 Loss: 92.434 +51200/69092 Loss: 92.495 +54400/69092 Loss: 93.254 +57600/69092 Loss: 93.568 +60800/69092 Loss: 93.049 +64000/69092 Loss: 93.536 +67200/69092 Loss: 91.718 +Training time 0:10:39.887029 +Epoch: 147 Average loss: 93.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 426) +0/69092 Loss: 82.522 +3200/69092 Loss: 92.492 +6400/69092 Loss: 92.481 +9600/69092 Loss: 92.860 +12800/69092 Loss: 92.540 +16000/69092 Loss: 92.853 +19200/69092 Loss: 93.533 +22400/69092 Loss: 93.401 +25600/69092 Loss: 93.694 +28800/69092 Loss: 92.160 +32000/69092 Loss: 93.058 +35200/69092 Loss: 93.053 +38400/69092 Loss: 92.013 +41600/69092 Loss: 92.034 +44800/69092 Loss: 91.935 +48000/69092 Loss: 92.554 +51200/69092 Loss: 91.733 +54400/69092 Loss: 92.891 +57600/69092 Loss: 93.490 +60800/69092 Loss: 93.728 +64000/69092 Loss: 92.161 +67200/69092 Loss: 92.819 +Training time 0:10:38.454582 +Epoch: 148 Average loss: 92.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 427) +0/69092 Loss: 94.332 +3200/69092 Loss: 91.162 +6400/69092 Loss: 92.746 +9600/69092 Loss: 92.496 +12800/69092 Loss: 93.606 +16000/69092 Loss: 91.950 +19200/69092 Loss: 92.480 +22400/69092 Loss: 93.707 +25600/69092 Loss: 94.140 +28800/69092 Loss: 92.761 +32000/69092 Loss: 92.878 +35200/69092 Loss: 92.131 +38400/69092 Loss: 91.730 +41600/69092 Loss: 92.214 +44800/69092 Loss: 92.513 +48000/69092 Loss: 92.412 +51200/69092 Loss: 94.266 +54400/69092 Loss: 93.336 +57600/69092 Loss: 93.120 +60800/69092 Loss: 93.477 +64000/69092 Loss: 91.787 +67200/69092 Loss: 93.768 +Training time 0:10:51.682157 +Epoch: 149 Average loss: 92.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 428) +0/69092 Loss: 97.419 +3200/69092 Loss: 93.700 +6400/69092 Loss: 92.978 +9600/69092 Loss: 92.343 +12800/69092 Loss: 92.202 +16000/69092 Loss: 93.202 +19200/69092 Loss: 91.335 +22400/69092 Loss: 92.251 +25600/69092 Loss: 92.886 +28800/69092 Loss: 93.881 +32000/69092 Loss: 93.772 +35200/69092 Loss: 93.186 +38400/69092 Loss: 93.336 +41600/69092 Loss: 93.024 +44800/69092 Loss: 92.387 +48000/69092 Loss: 92.079 +51200/69092 Loss: 91.588 +54400/69092 Loss: 92.114 +57600/69092 Loss: 92.234 +60800/69092 Loss: 94.003 +64000/69092 Loss: 93.736 +67200/69092 Loss: 93.493 +Training time 0:10:32.611799 +Epoch: 150 Average loss: 92.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 429) +0/69092 Loss: 94.042 +3200/69092 Loss: 93.882 +6400/69092 Loss: 92.430 +9600/69092 Loss: 92.286 +12800/69092 Loss: 94.925 +16000/69092 Loss: 92.846 +19200/69092 Loss: 92.135 +22400/69092 Loss: 92.071 +25600/69092 Loss: 93.609 +28800/69092 Loss: 92.092 +32000/69092 Loss: 93.037 +35200/69092 Loss: 92.769 +38400/69092 Loss: 92.612 +41600/69092 Loss: 92.442 +44800/69092 Loss: 93.483 +48000/69092 Loss: 93.213 +51200/69092 Loss: 92.836 +54400/69092 Loss: 92.849 +57600/69092 Loss: 92.134 +60800/69092 Loss: 92.533 +64000/69092 Loss: 92.823 +67200/69092 Loss: 93.321 +Training time 0:10:53.980795 +Epoch: 151 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 430) +0/69092 Loss: 88.658 +3200/69092 Loss: 92.810 +6400/69092 Loss: 93.345 +9600/69092 Loss: 93.535 +12800/69092 Loss: 92.969 +16000/69092 Loss: 94.599 +19200/69092 Loss: 93.207 +22400/69092 Loss: 93.485 +25600/69092 Loss: 92.813 +28800/69092 Loss: 91.258 +32000/69092 Loss: 92.441 +35200/69092 Loss: 92.333 +38400/69092 Loss: 93.291 +41600/69092 Loss: 92.246 +44800/69092 Loss: 92.190 +48000/69092 Loss: 92.565 +51200/69092 Loss: 92.379 +54400/69092 Loss: 93.843 +57600/69092 Loss: 93.077 +60800/69092 Loss: 93.615 +64000/69092 Loss: 92.499 +67200/69092 Loss: 91.966 +Training time 0:10:28.942846 +Epoch: 152 Average loss: 92.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 431) +0/69092 Loss: 102.087 +3200/69092 Loss: 92.374 +6400/69092 Loss: 91.864 +9600/69092 Loss: 91.151 +12800/69092 Loss: 91.203 +16000/69092 Loss: 91.771 +19200/69092 Loss: 92.434 +22400/69092 Loss: 93.213 +25600/69092 Loss: 93.744 +28800/69092 Loss: 93.287 +32000/69092 Loss: 94.058 +35200/69092 Loss: 92.670 +38400/69092 Loss: 93.197 +41600/69092 Loss: 94.437 +44800/69092 Loss: 94.098 +48000/69092 Loss: 93.689 +51200/69092 Loss: 92.412 +54400/69092 Loss: 92.879 +57600/69092 Loss: 91.638 +60800/69092 Loss: 93.128 +64000/69092 Loss: 92.243 +67200/69092 Loss: 94.215 +Training time 0:10:30.490395 +Epoch: 153 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 432) +0/69092 Loss: 83.173 +3200/69092 Loss: 93.030 +6400/69092 Loss: 93.077 +9600/69092 Loss: 94.095 +12800/69092 Loss: 91.667 +16000/69092 Loss: 92.354 +19200/69092 Loss: 93.146 +22400/69092 Loss: 91.985 +25600/69092 Loss: 92.529 +28800/69092 Loss: 93.015 +32000/69092 Loss: 92.307 +35200/69092 Loss: 92.896 +38400/69092 Loss: 92.455 +41600/69092 Loss: 93.323 +44800/69092 Loss: 92.593 +48000/69092 Loss: 92.467 +51200/69092 Loss: 93.519 +54400/69092 Loss: 92.836 +57600/69092 Loss: 93.026 +60800/69092 Loss: 93.938 +64000/69092 Loss: 92.617 +67200/69092 Loss: 92.414 +Training time 0:10:43.155449 +Epoch: 154 Average loss: 92.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 433) +0/69092 Loss: 103.120 +3200/69092 Loss: 92.787 +6400/69092 Loss: 93.819 +9600/69092 Loss: 93.367 +12800/69092 Loss: 93.610 +16000/69092 Loss: 93.725 +19200/69092 Loss: 95.230 +22400/69092 Loss: 92.244 +25600/69092 Loss: 92.450 +28800/69092 Loss: 93.141 +32000/69092 Loss: 90.276 +35200/69092 Loss: 93.080 +38400/69092 Loss: 92.214 +41600/69092 Loss: 93.509 +44800/69092 Loss: 93.094 +48000/69092 Loss: 93.051 +51200/69092 Loss: 93.429 +54400/69092 Loss: 92.450 +57600/69092 Loss: 93.224 +60800/69092 Loss: 93.277 +64000/69092 Loss: 92.529 +67200/69092 Loss: 91.890 +Training time 0:10:38.340251 +Epoch: 155 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 434) +0/69092 Loss: 90.987 +3200/69092 Loss: 92.740 +6400/69092 Loss: 92.512 +9600/69092 Loss: 94.668 +12800/69092 Loss: 92.736 +16000/69092 Loss: 91.533 +19200/69092 Loss: 92.426 +22400/69092 Loss: 92.731 +25600/69092 Loss: 92.565 +28800/69092 Loss: 92.953 +32000/69092 Loss: 92.791 +35200/69092 Loss: 92.574 +38400/69092 Loss: 91.891 +41600/69092 Loss: 93.508 +44800/69092 Loss: 91.257 +48000/69092 Loss: 93.105 +51200/69092 Loss: 91.657 +54400/69092 Loss: 92.872 +57600/69092 Loss: 93.037 +60800/69092 Loss: 92.898 +64000/69092 Loss: 92.788 +67200/69092 Loss: 94.447 +Training time 0:10:39.192905 +Epoch: 156 Average loss: 92.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 435) +0/69092 Loss: 97.992 +3200/69092 Loss: 93.115 +6400/69092 Loss: 92.143 +9600/69092 Loss: 93.289 +12800/69092 Loss: 91.520 +16000/69092 Loss: 93.910 +19200/69092 Loss: 93.405 +22400/69092 Loss: 92.044 +25600/69092 Loss: 92.599 +28800/69092 Loss: 92.772 +32000/69092 Loss: 92.693 +35200/69092 Loss: 93.297 +38400/69092 Loss: 92.199 +41600/69092 Loss: 92.969 +44800/69092 Loss: 94.223 +48000/69092 Loss: 92.875 +51200/69092 Loss: 92.817 +54400/69092 Loss: 94.291 +57600/69092 Loss: 92.057 +60800/69092 Loss: 92.360 +64000/69092 Loss: 91.728 +67200/69092 Loss: 93.170 +Training time 0:11:35.168481 +Epoch: 157 Average loss: 92.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 436) +0/69092 Loss: 92.065 +3200/69092 Loss: 92.700 +6400/69092 Loss: 93.842 +9600/69092 Loss: 93.038 +12800/69092 Loss: 91.883 +16000/69092 Loss: 92.705 +19200/69092 Loss: 91.840 +22400/69092 Loss: 93.197 +25600/69092 Loss: 92.719 +28800/69092 Loss: 92.529 +32000/69092 Loss: 92.895 +35200/69092 Loss: 91.699 +38400/69092 Loss: 92.395 +41600/69092 Loss: 94.089 +44800/69092 Loss: 92.500 +48000/69092 Loss: 92.667 +51200/69092 Loss: 93.456 +54400/69092 Loss: 91.206 +57600/69092 Loss: 92.393 +60800/69092 Loss: 93.445 +64000/69092 Loss: 92.554 +67200/69092 Loss: 93.267 +Training time 0:11:09.459121 +Epoch: 158 Average loss: 92.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 437) +0/69092 Loss: 99.344 +3200/69092 Loss: 91.585 +6400/69092 Loss: 93.008 +9600/69092 Loss: 93.073 +12800/69092 Loss: 93.788 +16000/69092 Loss: 91.790 +19200/69092 Loss: 93.268 +22400/69092 Loss: 92.151 +25600/69092 Loss: 92.697 +28800/69092 Loss: 92.211 +32000/69092 Loss: 91.837 +35200/69092 Loss: 93.241 +38400/69092 Loss: 92.424 +41600/69092 Loss: 93.267 +44800/69092 Loss: 93.277 +48000/69092 Loss: 93.537 +51200/69092 Loss: 92.476 +54400/69092 Loss: 92.203 +57600/69092 Loss: 93.006 +60800/69092 Loss: 93.362 +64000/69092 Loss: 92.736 +67200/69092 Loss: 94.273 +Training time 0:11:22.310285 +Epoch: 159 Average loss: 92.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 438) +0/69092 Loss: 90.908 +3200/69092 Loss: 91.694 +6400/69092 Loss: 92.887 +9600/69092 Loss: 92.846 +12800/69092 Loss: 93.420 +16000/69092 Loss: 90.729 +19200/69092 Loss: 93.893 +22400/69092 Loss: 91.621 +25600/69092 Loss: 92.845 +28800/69092 Loss: 91.687 +32000/69092 Loss: 92.533 +35200/69092 Loss: 92.680 +38400/69092 Loss: 93.147 +41600/69092 Loss: 92.878 +44800/69092 Loss: 92.820 +48000/69092 Loss: 93.196 +51200/69092 Loss: 92.597 +54400/69092 Loss: 94.920 +57600/69092 Loss: 92.636 +60800/69092 Loss: 93.071 +64000/69092 Loss: 91.582 +67200/69092 Loss: 93.103 +Training time 0:10:59.184643 +Epoch: 160 Average loss: 92.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 439) +0/69092 Loss: 94.952 +3200/69092 Loss: 92.177 +6400/69092 Loss: 94.629 +9600/69092 Loss: 93.266 +12800/69092 Loss: 92.670 +16000/69092 Loss: 91.086 +19200/69092 Loss: 92.305 +22400/69092 Loss: 94.199 +25600/69092 Loss: 93.500 +28800/69092 Loss: 93.080 +32000/69092 Loss: 92.591 +35200/69092 Loss: 92.554 +38400/69092 Loss: 92.200 +41600/69092 Loss: 92.432 +44800/69092 Loss: 92.504 +48000/69092 Loss: 93.211 +51200/69092 Loss: 92.318 +54400/69092 Loss: 92.699 +57600/69092 Loss: 92.347 +60800/69092 Loss: 92.598 +64000/69092 Loss: 92.230 +67200/69092 Loss: 93.321 +Training time 0:11:21.028169 +Epoch: 161 Average loss: 92.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 440) +0/69092 Loss: 92.402 +3200/69092 Loss: 92.545 +6400/69092 Loss: 92.410 +9600/69092 Loss: 92.444 +12800/69092 Loss: 93.641 +16000/69092 Loss: 91.989 +19200/69092 Loss: 92.751 +22400/69092 Loss: 91.664 +25600/69092 Loss: 92.504 +28800/69092 Loss: 93.056 +32000/69092 Loss: 92.495 +35200/69092 Loss: 92.511 +38400/69092 Loss: 92.549 +41600/69092 Loss: 92.764 +44800/69092 Loss: 93.110 +48000/69092 Loss: 93.157 +51200/69092 Loss: 92.351 +54400/69092 Loss: 94.744 +57600/69092 Loss: 92.229 +60800/69092 Loss: 91.876 +64000/69092 Loss: 93.223 +67200/69092 Loss: 92.951 +Training time 0:11:56.227905 +Epoch: 162 Average loss: 92.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 441) +0/69092 Loss: 100.154 +3200/69092 Loss: 91.521 +6400/69092 Loss: 92.523 +9600/69092 Loss: 91.553 +12800/69092 Loss: 92.128 +16000/69092 Loss: 94.121 +19200/69092 Loss: 92.589 +22400/69092 Loss: 92.929 +25600/69092 Loss: 91.780 +28800/69092 Loss: 92.307 +32000/69092 Loss: 93.191 +35200/69092 Loss: 92.857 +38400/69092 Loss: 92.768 +41600/69092 Loss: 92.521 +44800/69092 Loss: 94.326 +48000/69092 Loss: 92.633 +51200/69092 Loss: 93.447 +54400/69092 Loss: 92.513 +57600/69092 Loss: 95.053 +60800/69092 Loss: 92.998 +64000/69092 Loss: 92.526 +67200/69092 Loss: 93.215 +Training time 0:14:26.862560 +Epoch: 163 Average loss: 92.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 442) +0/69092 Loss: 90.839 +3200/69092 Loss: 91.524 +6400/69092 Loss: 92.355 +9600/69092 Loss: 92.871 +12800/69092 Loss: 91.255 +16000/69092 Loss: 92.741 +19200/69092 Loss: 92.673 +22400/69092 Loss: 92.434 +25600/69092 Loss: 91.646 +28800/69092 Loss: 92.801 +32000/69092 Loss: 92.603 +35200/69092 Loss: 94.120 +38400/69092 Loss: 92.599 +41600/69092 Loss: 92.280 +44800/69092 Loss: 93.647 +48000/69092 Loss: 93.144 +51200/69092 Loss: 92.409 +54400/69092 Loss: 93.433 +57600/69092 Loss: 93.739 +60800/69092 Loss: 94.157 +64000/69092 Loss: 92.826 +67200/69092 Loss: 92.880 +Training time 0:11:23.589847 +Epoch: 164 Average loss: 92.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 443) +0/69092 Loss: 97.982 +3200/69092 Loss: 91.516 +6400/69092 Loss: 91.544 +9600/69092 Loss: 92.972 +12800/69092 Loss: 93.560 +16000/69092 Loss: 92.869 +19200/69092 Loss: 92.897 +22400/69092 Loss: 92.610 +25600/69092 Loss: 92.667 +28800/69092 Loss: 91.959 +32000/69092 Loss: 91.774 +35200/69092 Loss: 92.412 +38400/69092 Loss: 92.780 +41600/69092 Loss: 94.373 +44800/69092 Loss: 92.833 +48000/69092 Loss: 93.547 +51200/69092 Loss: 92.515 +54400/69092 Loss: 92.601 +57600/69092 Loss: 92.428 +60800/69092 Loss: 92.510 +64000/69092 Loss: 93.201 +67200/69092 Loss: 92.349 +Training time 0:11:07.633772 +Epoch: 165 Average loss: 92.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 444) +0/69092 Loss: 90.887 +3200/69092 Loss: 93.536 +6400/69092 Loss: 92.283 +9600/69092 Loss: 91.533 +12800/69092 Loss: 92.279 +16000/69092 Loss: 91.654 +19200/69092 Loss: 90.824 +22400/69092 Loss: 93.798 +25600/69092 Loss: 93.047 +28800/69092 Loss: 93.303 +32000/69092 Loss: 92.739 +35200/69092 Loss: 93.785 +38400/69092 Loss: 91.458 +41600/69092 Loss: 91.973 +44800/69092 Loss: 92.394 +48000/69092 Loss: 91.556 +51200/69092 Loss: 92.645 +54400/69092 Loss: 93.173 +57600/69092 Loss: 93.159 +60800/69092 Loss: 93.056 +64000/69092 Loss: 92.762 +67200/69092 Loss: 93.991 +Training time 0:10:20.514311 +Epoch: 166 Average loss: 92.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 445) +0/69092 Loss: 93.494 +3200/69092 Loss: 91.970 +6400/69092 Loss: 93.435 +9600/69092 Loss: 92.003 +12800/69092 Loss: 91.916 +16000/69092 Loss: 92.947 +19200/69092 Loss: 92.408 +22400/69092 Loss: 93.012 +25600/69092 Loss: 93.882 +28800/69092 Loss: 91.818 +32000/69092 Loss: 91.754 +35200/69092 Loss: 94.543 +38400/69092 Loss: 92.568 +41600/69092 Loss: 93.018 +44800/69092 Loss: 91.753 +48000/69092 Loss: 92.220 +51200/69092 Loss: 91.576 +54400/69092 Loss: 91.339 +57600/69092 Loss: 93.548 +60800/69092 Loss: 94.048 +64000/69092 Loss: 92.063 +67200/69092 Loss: 93.065 +Training time 0:10:56.164581 +Epoch: 167 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 446) +0/69092 Loss: 90.560 +3200/69092 Loss: 91.919 +6400/69092 Loss: 92.691 +9600/69092 Loss: 93.532 +12800/69092 Loss: 93.153 +16000/69092 Loss: 93.061 +19200/69092 Loss: 92.376 +22400/69092 Loss: 92.599 +25600/69092 Loss: 92.373 +28800/69092 Loss: 93.244 +32000/69092 Loss: 92.755 +35200/69092 Loss: 92.788 +38400/69092 Loss: 93.401 +41600/69092 Loss: 93.271 +44800/69092 Loss: 93.963 +48000/69092 Loss: 92.309 +51200/69092 Loss: 93.145 +54400/69092 Loss: 93.192 +57600/69092 Loss: 91.803 +60800/69092 Loss: 92.540 +64000/69092 Loss: 93.315 +67200/69092 Loss: 91.833 +Training time 0:10:31.015599 +Epoch: 168 Average loss: 92.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 447) +0/69092 Loss: 93.882 +3200/69092 Loss: 93.591 +6400/69092 Loss: 93.615 +9600/69092 Loss: 92.101 +12800/69092 Loss: 91.429 +16000/69092 Loss: 93.371 +19200/69092 Loss: 92.655 +22400/69092 Loss: 93.453 +25600/69092 Loss: 92.498 +28800/69092 Loss: 93.157 +32000/69092 Loss: 91.542 +35200/69092 Loss: 92.817 +38400/69092 Loss: 92.345 +41600/69092 Loss: 92.896 +44800/69092 Loss: 93.575 +48000/69092 Loss: 91.823 +51200/69092 Loss: 92.919 +54400/69092 Loss: 92.022 +57600/69092 Loss: 92.067 +60800/69092 Loss: 92.513 +64000/69092 Loss: 92.290 +67200/69092 Loss: 93.124 +Training time 0:10:21.042751 +Epoch: 169 Average loss: 92.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 448) +0/69092 Loss: 103.285 +3200/69092 Loss: 93.666 +6400/69092 Loss: 93.684 +9600/69092 Loss: 91.306 +12800/69092 Loss: 92.302 +16000/69092 Loss: 93.916 +19200/69092 Loss: 92.740 +22400/69092 Loss: 91.915 +25600/69092 Loss: 91.330 +28800/69092 Loss: 92.101 +32000/69092 Loss: 90.521 +35200/69092 Loss: 91.957 +38400/69092 Loss: 92.475 +41600/69092 Loss: 93.507 +44800/69092 Loss: 92.725 +48000/69092 Loss: 93.816 +51200/69092 Loss: 92.967 +54400/69092 Loss: 92.237 +57600/69092 Loss: 92.127 +60800/69092 Loss: 93.455 +64000/69092 Loss: 92.980 +67200/69092 Loss: 92.201 +Training time 0:10:26.782398 +Epoch: 170 Average loss: 92.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 449) +0/69092 Loss: 87.156 +3200/69092 Loss: 91.641 +6400/69092 Loss: 93.449 +9600/69092 Loss: 92.240 +12800/69092 Loss: 93.877 +16000/69092 Loss: 92.015 +19200/69092 Loss: 92.658 +22400/69092 Loss: 92.695 +25600/69092 Loss: 94.481 +28800/69092 Loss: 90.406 +32000/69092 Loss: 91.478 +35200/69092 Loss: 91.058 +38400/69092 Loss: 92.694 +41600/69092 Loss: 91.006 +44800/69092 Loss: 92.159 +48000/69092 Loss: 93.657 +51200/69092 Loss: 93.565 +54400/69092 Loss: 92.680 +57600/69092 Loss: 92.646 +60800/69092 Loss: 94.558 +64000/69092 Loss: 92.886 +67200/69092 Loss: 93.612 +Training time 0:10:42.963639 +Epoch: 171 Average loss: 92.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 450) +0/69092 Loss: 84.385 +3200/69092 Loss: 93.089 +6400/69092 Loss: 91.851 +9600/69092 Loss: 92.672 +12800/69092 Loss: 93.035 +16000/69092 Loss: 92.405 +19200/69092 Loss: 92.007 +22400/69092 Loss: 92.916 +25600/69092 Loss: 91.622 +28800/69092 Loss: 93.539 +32000/69092 Loss: 93.928 +35200/69092 Loss: 93.043 +38400/69092 Loss: 92.519 +41600/69092 Loss: 92.308 +44800/69092 Loss: 92.966 +48000/69092 Loss: 92.310 +51200/69092 Loss: 92.362 +54400/69092 Loss: 92.594 +57600/69092 Loss: 91.638 +60800/69092 Loss: 91.898 +64000/69092 Loss: 93.718 +67200/69092 Loss: 92.159 +Training time 0:10:22.760602 +Epoch: 172 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 451) +0/69092 Loss: 90.252 +3200/69092 Loss: 92.456 +6400/69092 Loss: 92.929 +9600/69092 Loss: 91.999 +12800/69092 Loss: 93.072 +16000/69092 Loss: 91.577 +19200/69092 Loss: 92.841 +22400/69092 Loss: 93.241 +25600/69092 Loss: 92.856 +28800/69092 Loss: 93.055 +32000/69092 Loss: 93.222 +35200/69092 Loss: 94.372 +38400/69092 Loss: 93.372 +41600/69092 Loss: 92.259 +44800/69092 Loss: 92.712 +48000/69092 Loss: 91.906 +51200/69092 Loss: 93.420 +54400/69092 Loss: 92.562 +57600/69092 Loss: 92.518 +60800/69092 Loss: 93.032 +64000/69092 Loss: 91.319 +67200/69092 Loss: 91.820 +Training time 0:10:57.946468 +Epoch: 173 Average loss: 92.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 452) +0/69092 Loss: 91.930 +3200/69092 Loss: 93.453 +6400/69092 Loss: 91.731 +9600/69092 Loss: 92.870 +12800/69092 Loss: 91.697 +16000/69092 Loss: 92.753 +19200/69092 Loss: 92.857 +22400/69092 Loss: 93.258 +25600/69092 Loss: 92.915 +28800/69092 Loss: 92.205 +32000/69092 Loss: 93.165 +35200/69092 Loss: 92.251 +38400/69092 Loss: 93.386 +41600/69092 Loss: 93.801 +44800/69092 Loss: 92.312 +48000/69092 Loss: 92.315 +51200/69092 Loss: 92.373 +54400/69092 Loss: 92.062 +57600/69092 Loss: 92.035 +60800/69092 Loss: 93.666 +64000/69092 Loss: 92.560 +67200/69092 Loss: 91.099 +Training time 0:10:41.318035 +Epoch: 174 Average loss: 92.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 453) +0/69092 Loss: 82.586 +3200/69092 Loss: 93.251 +6400/69092 Loss: 92.397 +9600/69092 Loss: 92.935 +12800/69092 Loss: 92.876 +16000/69092 Loss: 91.954 +19200/69092 Loss: 92.968 +22400/69092 Loss: 92.790 +25600/69092 Loss: 92.764 +28800/69092 Loss: 92.401 +32000/69092 Loss: 94.146 +35200/69092 Loss: 93.090 +38400/69092 Loss: 92.904 +41600/69092 Loss: 92.034 +44800/69092 Loss: 92.973 +48000/69092 Loss: 92.423 +51200/69092 Loss: 93.674 +54400/69092 Loss: 91.698 +57600/69092 Loss: 91.945 +60800/69092 Loss: 92.933 +64000/69092 Loss: 93.204 +67200/69092 Loss: 92.511 +Training time 0:10:45.669945 +Epoch: 175 Average loss: 92.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 454) +0/69092 Loss: 88.391 +3200/69092 Loss: 92.528 +6400/69092 Loss: 92.982 +9600/69092 Loss: 92.507 +12800/69092 Loss: 93.359 +16000/69092 Loss: 91.904 +19200/69092 Loss: 92.416 +22400/69092 Loss: 92.454 +25600/69092 Loss: 93.473 +28800/69092 Loss: 92.864 +32000/69092 Loss: 91.651 +35200/69092 Loss: 92.862 +38400/69092 Loss: 91.972 +41600/69092 Loss: 93.798 +44800/69092 Loss: 92.918 +48000/69092 Loss: 93.156 +51200/69092 Loss: 92.729 +54400/69092 Loss: 94.296 +57600/69092 Loss: 92.130 +60800/69092 Loss: 92.243 +64000/69092 Loss: 92.266 +67200/69092 Loss: 92.665 +Training time 0:10:38.643054 +Epoch: 176 Average loss: 92.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 455) +0/69092 Loss: 83.928 +3200/69092 Loss: 92.335 +6400/69092 Loss: 92.905 +9600/69092 Loss: 92.988 +12800/69092 Loss: 92.964 +16000/69092 Loss: 92.387 +19200/69092 Loss: 94.349 +22400/69092 Loss: 93.665 +25600/69092 Loss: 91.839 +28800/69092 Loss: 91.781 +32000/69092 Loss: 90.829 +35200/69092 Loss: 92.898 +38400/69092 Loss: 91.968 +41600/69092 Loss: 92.870 +44800/69092 Loss: 92.918 +48000/69092 Loss: 93.163 +51200/69092 Loss: 92.666 +54400/69092 Loss: 91.964 +57600/69092 Loss: 91.282 +60800/69092 Loss: 93.389 +64000/69092 Loss: 91.629 +67200/69092 Loss: 93.425 +Training time 0:11:11.368907 +Epoch: 177 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 456) +0/69092 Loss: 83.436 +3200/69092 Loss: 93.696 +6400/69092 Loss: 91.353 +9600/69092 Loss: 91.755 +12800/69092 Loss: 92.184 +16000/69092 Loss: 92.313 +19200/69092 Loss: 92.749 +22400/69092 Loss: 90.866 +25600/69092 Loss: 93.148 +28800/69092 Loss: 92.560 +32000/69092 Loss: 92.564 +35200/69092 Loss: 92.717 +38400/69092 Loss: 92.202 +41600/69092 Loss: 93.448 +44800/69092 Loss: 91.946 +48000/69092 Loss: 93.629 +51200/69092 Loss: 92.672 +54400/69092 Loss: 93.566 +57600/69092 Loss: 92.906 +60800/69092 Loss: 92.986 +64000/69092 Loss: 93.440 +67200/69092 Loss: 92.533 +Training time 0:10:32.444736 +Epoch: 178 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 457) +0/69092 Loss: 86.162 +3200/69092 Loss: 91.271 +6400/69092 Loss: 90.640 +9600/69092 Loss: 92.296 +12800/69092 Loss: 92.395 +16000/69092 Loss: 92.516 +19200/69092 Loss: 92.512 +22400/69092 Loss: 91.991 +25600/69092 Loss: 93.367 +28800/69092 Loss: 92.180 +32000/69092 Loss: 93.759 +35200/69092 Loss: 93.920 +38400/69092 Loss: 93.289 +41600/69092 Loss: 94.922 +44800/69092 Loss: 91.826 +48000/69092 Loss: 92.534 +51200/69092 Loss: 92.486 +54400/69092 Loss: 93.135 +57600/69092 Loss: 91.654 +60800/69092 Loss: 92.805 +64000/69092 Loss: 92.064 +67200/69092 Loss: 92.992 +Training time 0:10:31.600962 +Epoch: 179 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 458) +0/69092 Loss: 89.158 +3200/69092 Loss: 93.148 +6400/69092 Loss: 92.906 +9600/69092 Loss: 91.583 +12800/69092 Loss: 92.373 +16000/69092 Loss: 91.599 +19200/69092 Loss: 92.637 +22400/69092 Loss: 92.869 +25600/69092 Loss: 92.410 +28800/69092 Loss: 92.777 +32000/69092 Loss: 93.002 +35200/69092 Loss: 93.796 +38400/69092 Loss: 92.593 +41600/69092 Loss: 92.165 +44800/69092 Loss: 91.496 +48000/69092 Loss: 93.085 +51200/69092 Loss: 92.728 +54400/69092 Loss: 93.376 +57600/69092 Loss: 91.856 +60800/69092 Loss: 93.537 +64000/69092 Loss: 92.197 +67200/69092 Loss: 92.791 +Training time 0:10:40.119288 +Epoch: 180 Average loss: 92.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 459) +0/69092 Loss: 93.258 +3200/69092 Loss: 90.900 +6400/69092 Loss: 93.865 +9600/69092 Loss: 92.885 +12800/69092 Loss: 93.183 +16000/69092 Loss: 92.266 +19200/69092 Loss: 92.361 +22400/69092 Loss: 92.740 +25600/69092 Loss: 90.777 +28800/69092 Loss: 93.450 +32000/69092 Loss: 92.781 +35200/69092 Loss: 90.543 +38400/69092 Loss: 92.855 +41600/69092 Loss: 91.698 +44800/69092 Loss: 93.032 +48000/69092 Loss: 92.603 +51200/69092 Loss: 92.596 +54400/69092 Loss: 92.934 +57600/69092 Loss: 92.824 +60800/69092 Loss: 93.949 +64000/69092 Loss: 93.466 +67200/69092 Loss: 92.311 +Training time 0:10:52.512686 +Epoch: 181 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 460) +0/69092 Loss: 86.120 +3200/69092 Loss: 92.113 +6400/69092 Loss: 92.283 +9600/69092 Loss: 93.856 +12800/69092 Loss: 92.229 +16000/69092 Loss: 93.213 +19200/69092 Loss: 92.442 +22400/69092 Loss: 93.274 +25600/69092 Loss: 91.560 +28800/69092 Loss: 93.002 +32000/69092 Loss: 91.572 +35200/69092 Loss: 92.197 +38400/69092 Loss: 90.301 +41600/69092 Loss: 93.663 +44800/69092 Loss: 93.376 +48000/69092 Loss: 92.500 +51200/69092 Loss: 92.471 +54400/69092 Loss: 91.995 +57600/69092 Loss: 92.888 +60800/69092 Loss: 91.116 +64000/69092 Loss: 93.169 +67200/69092 Loss: 92.923 +Training time 0:10:33.818379 +Epoch: 182 Average loss: 92.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 461) +0/69092 Loss: 87.226 +3200/69092 Loss: 93.678 +6400/69092 Loss: 92.400 +9600/69092 Loss: 91.502 +12800/69092 Loss: 92.020 +16000/69092 Loss: 89.879 +19200/69092 Loss: 92.629 +22400/69092 Loss: 92.349 +25600/69092 Loss: 93.667 +28800/69092 Loss: 92.156 +32000/69092 Loss: 93.218 +35200/69092 Loss: 93.326 +38400/69092 Loss: 93.544 +41600/69092 Loss: 92.253 +44800/69092 Loss: 91.279 +48000/69092 Loss: 94.387 +51200/69092 Loss: 92.045 +54400/69092 Loss: 91.683 +57600/69092 Loss: 93.107 +60800/69092 Loss: 92.844 +64000/69092 Loss: 91.739 +67200/69092 Loss: 92.502 +Training time 0:10:29.321499 +Epoch: 183 Average loss: 92.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 462) +0/69092 Loss: 103.018 +3200/69092 Loss: 92.706 +6400/69092 Loss: 92.266 +9600/69092 Loss: 92.676 +12800/69092 Loss: 93.383 +16000/69092 Loss: 92.799 +19200/69092 Loss: 92.630 +22400/69092 Loss: 93.472 +25600/69092 Loss: 93.238 +28800/69092 Loss: 92.351 +32000/69092 Loss: 92.212 +35200/69092 Loss: 91.585 +38400/69092 Loss: 92.610 +41600/69092 Loss: 91.825 +44800/69092 Loss: 92.440 +48000/69092 Loss: 91.657 +51200/69092 Loss: 92.552 +54400/69092 Loss: 93.105 +57600/69092 Loss: 94.083 +60800/69092 Loss: 92.704 +64000/69092 Loss: 93.204 +67200/69092 Loss: 92.770 +Training time 0:10:35.427171 +Epoch: 184 Average loss: 92.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 463) +0/69092 Loss: 101.298 +3200/69092 Loss: 92.107 +6400/69092 Loss: 92.218 +9600/69092 Loss: 91.101 +12800/69092 Loss: 92.191 +16000/69092 Loss: 93.511 +19200/69092 Loss: 91.511 +22400/69092 Loss: 93.112 +25600/69092 Loss: 92.585 +28800/69092 Loss: 91.572 +32000/69092 Loss: 92.950 +35200/69092 Loss: 91.212 +38400/69092 Loss: 93.288 +41600/69092 Loss: 93.010 +44800/69092 Loss: 92.958 +48000/69092 Loss: 91.705 +51200/69092 Loss: 92.134 +54400/69092 Loss: 90.469 +57600/69092 Loss: 92.843 +60800/69092 Loss: 93.032 +64000/69092 Loss: 93.692 +67200/69092 Loss: 92.259 +Training time 0:11:02.285664 +Epoch: 185 Average loss: 92.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 464) +0/69092 Loss: 94.230 +3200/69092 Loss: 92.898 +6400/69092 Loss: 92.181 +9600/69092 Loss: 93.121 +12800/69092 Loss: 91.863 +16000/69092 Loss: 92.530 +19200/69092 Loss: 92.870 +22400/69092 Loss: 92.006 +25600/69092 Loss: 93.110 +28800/69092 Loss: 92.332 +32000/69092 Loss: 92.339 +35200/69092 Loss: 93.616 +38400/69092 Loss: 92.527 +41600/69092 Loss: 92.748 +44800/69092 Loss: 92.354 +48000/69092 Loss: 92.645 +51200/69092 Loss: 92.903 +54400/69092 Loss: 92.011 +57600/69092 Loss: 93.055 +60800/69092 Loss: 92.064 +64000/69092 Loss: 91.617 +67200/69092 Loss: 93.046 +Training time 0:11:04.614186 +Epoch: 186 Average loss: 92.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 465) +0/69092 Loss: 94.537 +3200/69092 Loss: 91.913 +6400/69092 Loss: 91.461 +9600/69092 Loss: 92.096 +12800/69092 Loss: 92.526 +16000/69092 Loss: 91.855 +19200/69092 Loss: 93.129 +22400/69092 Loss: 93.452 +25600/69092 Loss: 92.157 +28800/69092 Loss: 92.099 +32000/69092 Loss: 93.290 +35200/69092 Loss: 93.678 +38400/69092 Loss: 93.111 +41600/69092 Loss: 92.108 +44800/69092 Loss: 93.602 +48000/69092 Loss: 92.090 +51200/69092 Loss: 93.006 +54400/69092 Loss: 94.072 +57600/69092 Loss: 93.320 +60800/69092 Loss: 91.673 +64000/69092 Loss: 91.897 +67200/69092 Loss: 92.567 +Training time 0:10:40.193147 +Epoch: 187 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 466) +0/69092 Loss: 90.278 +3200/69092 Loss: 91.407 +6400/69092 Loss: 93.088 +9600/69092 Loss: 93.036 +12800/69092 Loss: 92.580 +16000/69092 Loss: 91.596 +19200/69092 Loss: 92.700 +22400/69092 Loss: 93.023 +25600/69092 Loss: 93.418 +28800/69092 Loss: 92.939 +32000/69092 Loss: 92.595 +35200/69092 Loss: 91.702 +38400/69092 Loss: 92.677 +41600/69092 Loss: 92.524 +44800/69092 Loss: 92.354 +48000/69092 Loss: 92.348 +51200/69092 Loss: 93.573 +54400/69092 Loss: 93.214 +57600/69092 Loss: 92.145 +60800/69092 Loss: 92.430 +64000/69092 Loss: 92.550 +67200/69092 Loss: 92.699 +Training time 0:10:39.310802 +Epoch: 188 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 467) +0/69092 Loss: 99.565 +3200/69092 Loss: 91.206 +6400/69092 Loss: 92.903 +9600/69092 Loss: 92.298 +12800/69092 Loss: 91.976 +16000/69092 Loss: 93.157 +19200/69092 Loss: 91.430 +22400/69092 Loss: 92.500 +25600/69092 Loss: 93.151 +28800/69092 Loss: 92.158 +32000/69092 Loss: 91.928 +35200/69092 Loss: 92.842 +38400/69092 Loss: 94.140 +41600/69092 Loss: 93.696 +44800/69092 Loss: 93.453 +48000/69092 Loss: 92.950 +51200/69092 Loss: 92.625 +54400/69092 Loss: 93.399 +57600/69092 Loss: 92.864 +60800/69092 Loss: 92.555 +64000/69092 Loss: 92.598 +67200/69092 Loss: 92.057 +Training time 0:10:26.294749 +Epoch: 189 Average loss: 92.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 468) +0/69092 Loss: 85.838 +3200/69092 Loss: 91.951 +6400/69092 Loss: 91.191 +9600/69092 Loss: 92.056 +12800/69092 Loss: 94.117 +16000/69092 Loss: 94.127 +19200/69092 Loss: 92.044 +22400/69092 Loss: 91.650 +25600/69092 Loss: 92.858 +28800/69092 Loss: 93.462 +32000/69092 Loss: 92.354 +35200/69092 Loss: 92.319 +38400/69092 Loss: 92.187 +41600/69092 Loss: 92.585 +44800/69092 Loss: 93.096 +48000/69092 Loss: 92.838 +51200/69092 Loss: 91.398 +54400/69092 Loss: 91.908 +57600/69092 Loss: 93.913 +60800/69092 Loss: 91.988 +64000/69092 Loss: 91.901 +67200/69092 Loss: 92.324 +Training time 0:10:20.593176 +Epoch: 190 Average loss: 92.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 469) +0/69092 Loss: 92.622 +3200/69092 Loss: 93.003 +6400/69092 Loss: 92.547 +9600/69092 Loss: 92.204 +12800/69092 Loss: 91.962 +16000/69092 Loss: 91.887 +19200/69092 Loss: 91.924 +22400/69092 Loss: 92.730 +25600/69092 Loss: 92.754 +28800/69092 Loss: 92.795 +32000/69092 Loss: 92.629 +35200/69092 Loss: 93.732 +38400/69092 Loss: 91.211 +41600/69092 Loss: 91.717 +44800/69092 Loss: 92.955 +48000/69092 Loss: 92.939 +51200/69092 Loss: 92.652 +54400/69092 Loss: 92.614 +57600/69092 Loss: 93.141 +60800/69092 Loss: 92.928 +64000/69092 Loss: 92.873 +67200/69092 Loss: 91.201 +Training time 0:10:27.798105 +Epoch: 191 Average loss: 92.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 470) +0/69092 Loss: 96.099 +3200/69092 Loss: 92.184 +6400/69092 Loss: 92.081 +9600/69092 Loss: 92.690 +12800/69092 Loss: 91.783 +16000/69092 Loss: 93.174 +19200/69092 Loss: 92.695 +22400/69092 Loss: 91.656 +25600/69092 Loss: 93.218 +28800/69092 Loss: 94.121 +32000/69092 Loss: 92.712 +35200/69092 Loss: 93.155 +38400/69092 Loss: 91.690 +41600/69092 Loss: 92.591 +44800/69092 Loss: 92.888 +48000/69092 Loss: 91.969 +51200/69092 Loss: 92.458 +54400/69092 Loss: 93.482 +57600/69092 Loss: 92.603 +60800/69092 Loss: 93.017 +64000/69092 Loss: 91.957 +67200/69092 Loss: 91.439 +Training time 0:10:56.385201 +Epoch: 192 Average loss: 92.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 471) +0/69092 Loss: 84.336 +3200/69092 Loss: 92.357 +6400/69092 Loss: 92.352 +9600/69092 Loss: 92.338 +12800/69092 Loss: 91.587 +16000/69092 Loss: 93.890 +19200/69092 Loss: 93.367 +22400/69092 Loss: 92.494 +25600/69092 Loss: 92.851 +28800/69092 Loss: 92.525 +32000/69092 Loss: 92.054 +35200/69092 Loss: 91.901 +38400/69092 Loss: 91.780 +41600/69092 Loss: 92.783 +44800/69092 Loss: 91.485 +48000/69092 Loss: 92.374 +51200/69092 Loss: 93.102 +54400/69092 Loss: 92.504 +57600/69092 Loss: 93.013 +60800/69092 Loss: 93.715 +64000/69092 Loss: 91.671 +67200/69092 Loss: 92.538 +Training time 0:10:26.126458 +Epoch: 193 Average loss: 92.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 472) +0/69092 Loss: 89.818 +3200/69092 Loss: 94.018 +6400/69092 Loss: 90.942 +9600/69092 Loss: 93.684 +12800/69092 Loss: 91.798 +16000/69092 Loss: 91.883 +19200/69092 Loss: 92.467 +22400/69092 Loss: 92.450 +25600/69092 Loss: 94.195 +28800/69092 Loss: 93.936 +32000/69092 Loss: 93.713 +35200/69092 Loss: 92.489 +38400/69092 Loss: 92.968 +41600/69092 Loss: 92.700 +44800/69092 Loss: 91.922 +48000/69092 Loss: 92.163 +51200/69092 Loss: 91.745 +54400/69092 Loss: 92.315 +57600/69092 Loss: 92.008 +60800/69092 Loss: 92.013 +64000/69092 Loss: 93.017 +67200/69092 Loss: 91.755 +Training time 0:10:38.505884 +Epoch: 194 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 473) +0/69092 Loss: 92.269 +3200/69092 Loss: 91.396 +6400/69092 Loss: 91.928 +9600/69092 Loss: 92.637 +12800/69092 Loss: 91.957 +16000/69092 Loss: 92.614 +19200/69092 Loss: 93.457 +22400/69092 Loss: 92.885 +25600/69092 Loss: 92.671 +28800/69092 Loss: 92.226 +32000/69092 Loss: 91.443 +35200/69092 Loss: 92.527 +38400/69092 Loss: 92.012 +41600/69092 Loss: 94.093 +44800/69092 Loss: 92.257 +48000/69092 Loss: 91.921 +51200/69092 Loss: 92.791 +54400/69092 Loss: 92.523 +57600/69092 Loss: 92.955 +60800/69092 Loss: 93.206 +64000/69092 Loss: 92.459 +67200/69092 Loss: 92.122 +Training time 0:11:05.959997 +Epoch: 195 Average loss: 92.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 474) +0/69092 Loss: 91.724 +3200/69092 Loss: 91.884 +6400/69092 Loss: 92.152 +9600/69092 Loss: 92.388 +12800/69092 Loss: 92.620 +16000/69092 Loss: 91.821 +19200/69092 Loss: 92.299 +22400/69092 Loss: 92.259 +25600/69092 Loss: 92.619 +28800/69092 Loss: 92.508 +32000/69092 Loss: 91.919 +35200/69092 Loss: 91.998 +38400/69092 Loss: 92.711 +41600/69092 Loss: 92.019 +44800/69092 Loss: 92.816 +48000/69092 Loss: 92.754 +51200/69092 Loss: 93.547 +54400/69092 Loss: 92.742 +57600/69092 Loss: 92.858 +60800/69092 Loss: 92.868 +64000/69092 Loss: 93.404 +67200/69092 Loss: 92.245 +Training time 0:10:51.499053 +Epoch: 196 Average loss: 92.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 475) +0/69092 Loss: 96.481 +3200/69092 Loss: 91.750 +6400/69092 Loss: 92.215 +9600/69092 Loss: 93.006 +12800/69092 Loss: 91.998 +16000/69092 Loss: 91.175 +19200/69092 Loss: 91.971 +22400/69092 Loss: 91.524 +25600/69092 Loss: 92.058 +28800/69092 Loss: 93.617 +32000/69092 Loss: 93.533 +35200/69092 Loss: 93.356 +38400/69092 Loss: 92.348 +41600/69092 Loss: 92.702 +44800/69092 Loss: 94.332 +48000/69092 Loss: 91.605 +51200/69092 Loss: 92.907 +54400/69092 Loss: 92.183 +57600/69092 Loss: 91.541 +60800/69092 Loss: 91.980 +64000/69092 Loss: 93.047 +67200/69092 Loss: 91.123 +Training time 0:10:29.424338 +Epoch: 197 Average loss: 92.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 476) +0/69092 Loss: 87.769 +3200/69092 Loss: 92.669 +6400/69092 Loss: 91.453 +9600/69092 Loss: 92.485 +12800/69092 Loss: 93.129 +16000/69092 Loss: 91.369 +19200/69092 Loss: 92.321 +22400/69092 Loss: 93.134 +25600/69092 Loss: 92.215 +28800/69092 Loss: 93.010 +32000/69092 Loss: 92.574 +35200/69092 Loss: 92.627 +38400/69092 Loss: 92.220 +41600/69092 Loss: 94.017 +44800/69092 Loss: 91.105 +48000/69092 Loss: 92.115 +51200/69092 Loss: 90.874 +54400/69092 Loss: 92.496 +57600/69092 Loss: 93.233 +60800/69092 Loss: 92.243 +64000/69092 Loss: 93.127 +67200/69092 Loss: 93.025 +Training time 0:10:16.299810 +Epoch: 198 Average loss: 92.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 477) +0/69092 Loss: 83.428 +3200/69092 Loss: 93.127 +6400/69092 Loss: 92.790 +9600/69092 Loss: 91.634 +12800/69092 Loss: 92.417 +16000/69092 Loss: 92.834 +19200/69092 Loss: 94.438 +22400/69092 Loss: 92.961 +25600/69092 Loss: 93.887 +28800/69092 Loss: 93.067 +32000/69092 Loss: 93.212 +35200/69092 Loss: 92.223 +38400/69092 Loss: 91.626 +41600/69092 Loss: 92.802 +44800/69092 Loss: 93.675 +48000/69092 Loss: 92.884 +51200/69092 Loss: 92.731 +54400/69092 Loss: 92.181 +57600/69092 Loss: 92.289 +60800/69092 Loss: 91.751 +64000/69092 Loss: 91.235 +67200/69092 Loss: 90.683 +Training time 0:10:48.505391 +Epoch: 199 Average loss: 92.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 478) +0/69092 Loss: 91.822 +3200/69092 Loss: 92.707 +6400/69092 Loss: 93.541 +9600/69092 Loss: 92.129 +12800/69092 Loss: 94.054 +16000/69092 Loss: 92.689 +19200/69092 Loss: 91.195 +22400/69092 Loss: 91.319 +25600/69092 Loss: 92.728 +28800/69092 Loss: 91.862 +32000/69092 Loss: 92.363 +35200/69092 Loss: 93.152 +38400/69092 Loss: 92.711 +41600/69092 Loss: 91.474 +44800/69092 Loss: 92.733 +48000/69092 Loss: 92.265 +51200/69092 Loss: 91.150 +54400/69092 Loss: 92.162 +57600/69092 Loss: 93.075 +60800/69092 Loss: 92.043 +64000/69092 Loss: 92.671 +67200/69092 Loss: 93.117 +Training time 0:10:32.431884 +Epoch: 200 Average loss: 92.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 479) +0/69092 Loss: 98.031 +3200/69092 Loss: 92.128 +6400/69092 Loss: 92.114 +9600/69092 Loss: 91.745 +12800/69092 Loss: 91.583 +16000/69092 Loss: 92.139 +19200/69092 Loss: 92.212 +22400/69092 Loss: 93.572 +25600/69092 Loss: 92.626 +28800/69092 Loss: 93.128 +32000/69092 Loss: 92.394 +35200/69092 Loss: 93.756 +38400/69092 Loss: 93.330 +41600/69092 Loss: 93.668 +44800/69092 Loss: 91.225 +48000/69092 Loss: 93.133 +51200/69092 Loss: 92.841 +54400/69092 Loss: 93.078 +57600/69092 Loss: 91.876 +60800/69092 Loss: 92.406 +64000/69092 Loss: 92.119 +67200/69092 Loss: 92.584 +Training time 0:10:32.857613 +Epoch: 201 Average loss: 92.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 480) +0/69092 Loss: 90.992 +3200/69092 Loss: 92.732 +6400/69092 Loss: 93.011 +9600/69092 Loss: 91.974 +12800/69092 Loss: 91.857 +16000/69092 Loss: 91.501 +19200/69092 Loss: 91.941 +22400/69092 Loss: 91.566 +25600/69092 Loss: 91.031 +28800/69092 Loss: 92.270 +32000/69092 Loss: 92.784 +35200/69092 Loss: 93.741 +38400/69092 Loss: 93.047 +41600/69092 Loss: 91.970 +44800/69092 Loss: 92.652 +48000/69092 Loss: 91.572 +51200/69092 Loss: 92.155 +54400/69092 Loss: 91.571 +57600/69092 Loss: 93.037 +60800/69092 Loss: 93.415 +64000/69092 Loss: 92.755 +67200/69092 Loss: 92.004 +Training time 0:10:35.915462 +Epoch: 202 Average loss: 92.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last' (iter 481) +0/69092 Loss: 89.663 +3200/69092 Loss: 91.683 +6400/69092 Loss: 91.916 +9600/69092 Loss: 92.958 +12800/69092 Loss: 92.345 +16000/69092 Loss: 92.465 diff --git a/OAR.2073644.stderr b/OAR.2073644.stderr new file mode 100644 index 0000000000000000000000000000000000000000..25f0bd4e7283b06c123a60e22a4d8b415a7d5146 --- /dev/null +++ b/OAR.2073644.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-07 08:29:14] Job 2073644 KILLED ## diff --git a/OAR.2073644.stdout b/OAR.2073644.stdout new file mode 100644 index 0000000000000000000000000000000000000000..fd1ffa2ec0d6482438f26a7d927f02c63fd94ee4 --- /dev/null +++ b/OAR.2073644.stdout @@ -0,0 +1,5828 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_50', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=50, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=100, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=50, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 796135 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last (iter 274)' +0/69092 Loss: 94.171 +3200/69092 Loss: 93.079 +6400/69092 Loss: 92.601 +9600/69092 Loss: 92.397 +12800/69092 Loss: 93.522 +16000/69092 Loss: 93.329 +19200/69092 Loss: 93.968 +22400/69092 Loss: 93.346 +25600/69092 Loss: 94.830 +28800/69092 Loss: 93.552 +32000/69092 Loss: 94.874 +35200/69092 Loss: 94.381 +38400/69092 Loss: 94.107 +41600/69092 Loss: 94.216 +44800/69092 Loss: 93.497 +48000/69092 Loss: 94.159 +51200/69092 Loss: 93.171 +54400/69092 Loss: 93.685 +57600/69092 Loss: 92.449 +60800/69092 Loss: 93.786 +64000/69092 Loss: 93.418 +67200/69092 Loss: 94.545 +Training time 0:12:24.747342 +Epoch: 1 Average loss: 93.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 275) +0/69092 Loss: 89.487 +3200/69092 Loss: 94.612 +6400/69092 Loss: 92.062 +9600/69092 Loss: 92.781 +12800/69092 Loss: 93.898 +16000/69092 Loss: 92.809 +19200/69092 Loss: 94.357 +22400/69092 Loss: 94.360 +25600/69092 Loss: 94.800 +28800/69092 Loss: 93.993 +32000/69092 Loss: 93.283 +35200/69092 Loss: 94.105 +38400/69092 Loss: 94.011 +41600/69092 Loss: 93.273 +44800/69092 Loss: 95.076 +48000/69092 Loss: 92.417 +51200/69092 Loss: 92.085 +54400/69092 Loss: 94.623 +57600/69092 Loss: 92.516 +60800/69092 Loss: 93.975 +64000/69092 Loss: 93.641 +67200/69092 Loss: 93.186 +Training time 0:08:54.179311 +Epoch: 2 Average loss: 93.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 276) +0/69092 Loss: 96.873 +3200/69092 Loss: 92.929 +6400/69092 Loss: 93.681 +9600/69092 Loss: 93.369 +12800/69092 Loss: 93.340 +16000/69092 Loss: 93.285 +19200/69092 Loss: 92.920 +22400/69092 Loss: 95.403 +25600/69092 Loss: 93.331 +28800/69092 Loss: 92.447 +32000/69092 Loss: 93.763 +35200/69092 Loss: 94.113 +38400/69092 Loss: 93.603 +41600/69092 Loss: 93.491 +44800/69092 Loss: 94.353 +48000/69092 Loss: 94.139 +51200/69092 Loss: 93.301 +54400/69092 Loss: 93.129 +57600/69092 Loss: 94.955 +60800/69092 Loss: 93.380 +64000/69092 Loss: 93.037 +67200/69092 Loss: 93.444 +Training time 0:08:56.059074 +Epoch: 3 Average loss: 93.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 277) +0/69092 Loss: 97.778 +3200/69092 Loss: 94.069 +6400/69092 Loss: 94.302 +9600/69092 Loss: 92.691 +12800/69092 Loss: 94.155 +16000/69092 Loss: 92.070 +19200/69092 Loss: 93.580 +22400/69092 Loss: 92.614 +25600/69092 Loss: 94.540 +28800/69092 Loss: 93.328 +32000/69092 Loss: 93.538 +35200/69092 Loss: 93.719 +38400/69092 Loss: 93.445 +41600/69092 Loss: 93.099 +44800/69092 Loss: 93.675 +48000/69092 Loss: 93.535 +51200/69092 Loss: 92.904 +54400/69092 Loss: 93.583 +57600/69092 Loss: 93.261 +60800/69092 Loss: 93.472 +64000/69092 Loss: 93.284 +67200/69092 Loss: 95.204 +Training time 0:09:10.272473 +Epoch: 4 Average loss: 93.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 278) +0/69092 Loss: 86.271 +3200/69092 Loss: 93.676 +6400/69092 Loss: 94.426 +9600/69092 Loss: 94.084 +12800/69092 Loss: 93.524 +16000/69092 Loss: 92.676 +19200/69092 Loss: 93.707 +22400/69092 Loss: 93.055 +25600/69092 Loss: 93.221 +28800/69092 Loss: 92.657 +32000/69092 Loss: 94.043 +35200/69092 Loss: 94.045 +38400/69092 Loss: 92.696 +41600/69092 Loss: 96.054 +44800/69092 Loss: 94.689 +48000/69092 Loss: 92.708 +51200/69092 Loss: 93.713 +54400/69092 Loss: 93.299 +57600/69092 Loss: 93.193 +60800/69092 Loss: 92.962 +64000/69092 Loss: 93.602 +67200/69092 Loss: 94.286 +Training time 0:09:09.392027 +Epoch: 5 Average loss: 93.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 279) +0/69092 Loss: 93.200 +3200/69092 Loss: 92.074 +6400/69092 Loss: 94.685 +9600/69092 Loss: 94.216 +12800/69092 Loss: 93.531 +16000/69092 Loss: 93.191 +19200/69092 Loss: 93.374 +22400/69092 Loss: 92.278 +25600/69092 Loss: 94.312 +28800/69092 Loss: 94.145 +32000/69092 Loss: 92.816 +35200/69092 Loss: 93.201 +38400/69092 Loss: 92.762 +41600/69092 Loss: 92.741 +44800/69092 Loss: 93.414 +48000/69092 Loss: 93.376 +51200/69092 Loss: 94.532 +54400/69092 Loss: 93.962 +57600/69092 Loss: 93.874 +60800/69092 Loss: 94.916 +64000/69092 Loss: 94.396 +67200/69092 Loss: 93.210 +Training time 0:09:16.675170 +Epoch: 6 Average loss: 93.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 280) +0/69092 Loss: 89.279 +3200/69092 Loss: 92.938 +6400/69092 Loss: 92.165 +9600/69092 Loss: 93.781 +12800/69092 Loss: 92.608 +16000/69092 Loss: 94.012 +19200/69092 Loss: 93.300 +22400/69092 Loss: 93.015 +25600/69092 Loss: 93.647 +28800/69092 Loss: 92.447 +32000/69092 Loss: 93.420 +35200/69092 Loss: 93.221 +38400/69092 Loss: 93.671 +41600/69092 Loss: 94.249 +44800/69092 Loss: 92.618 +48000/69092 Loss: 94.144 +51200/69092 Loss: 93.794 +54400/69092 Loss: 93.913 +57600/69092 Loss: 94.202 +60800/69092 Loss: 94.121 +64000/69092 Loss: 93.907 +67200/69092 Loss: 94.036 +Training time 0:09:14.131427 +Epoch: 7 Average loss: 93.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 281) +0/69092 Loss: 85.379 +3200/69092 Loss: 92.941 +6400/69092 Loss: 93.353 +9600/69092 Loss: 92.721 +12800/69092 Loss: 93.543 +16000/69092 Loss: 92.995 +19200/69092 Loss: 94.431 +22400/69092 Loss: 94.455 +25600/69092 Loss: 93.985 +28800/69092 Loss: 93.950 +32000/69092 Loss: 92.949 +35200/69092 Loss: 92.878 +38400/69092 Loss: 93.961 +41600/69092 Loss: 93.731 +44800/69092 Loss: 94.249 +48000/69092 Loss: 94.512 +51200/69092 Loss: 94.194 +54400/69092 Loss: 93.273 +57600/69092 Loss: 92.902 +60800/69092 Loss: 94.162 +64000/69092 Loss: 93.001 +67200/69092 Loss: 93.141 +Training time 0:09:13.068327 +Epoch: 8 Average loss: 93.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 282) +0/69092 Loss: 86.436 +3200/69092 Loss: 93.237 +6400/69092 Loss: 92.964 +9600/69092 Loss: 94.443 +12800/69092 Loss: 93.707 +16000/69092 Loss: 92.492 +19200/69092 Loss: 93.118 +22400/69092 Loss: 92.762 +25600/69092 Loss: 93.426 +28800/69092 Loss: 93.814 +32000/69092 Loss: 92.573 +35200/69092 Loss: 92.773 +38400/69092 Loss: 94.087 +41600/69092 Loss: 93.629 +44800/69092 Loss: 93.683 +48000/69092 Loss: 95.221 +51200/69092 Loss: 93.250 +54400/69092 Loss: 94.393 +57600/69092 Loss: 93.862 +60800/69092 Loss: 92.650 +64000/69092 Loss: 93.051 +67200/69092 Loss: 92.132 +Training time 0:09:08.309031 +Epoch: 9 Average loss: 93.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 283) +0/69092 Loss: 95.725 +3200/69092 Loss: 92.831 +6400/69092 Loss: 94.043 +9600/69092 Loss: 92.847 +12800/69092 Loss: 93.584 +16000/69092 Loss: 91.817 +19200/69092 Loss: 93.803 +22400/69092 Loss: 93.590 +25600/69092 Loss: 93.885 +28800/69092 Loss: 93.658 +32000/69092 Loss: 93.663 +35200/69092 Loss: 93.371 +38400/69092 Loss: 93.228 +41600/69092 Loss: 94.679 +44800/69092 Loss: 93.913 +48000/69092 Loss: 94.224 +51200/69092 Loss: 93.134 +54400/69092 Loss: 94.145 +57600/69092 Loss: 92.890 +60800/69092 Loss: 92.728 +64000/69092 Loss: 93.624 +67200/69092 Loss: 93.444 +Training time 0:08:54.515244 +Epoch: 10 Average loss: 93.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 284) +0/69092 Loss: 86.428 +3200/69092 Loss: 93.002 +6400/69092 Loss: 93.937 +9600/69092 Loss: 92.397 +12800/69092 Loss: 95.019 +16000/69092 Loss: 92.794 +19200/69092 Loss: 93.366 +22400/69092 Loss: 93.594 +25600/69092 Loss: 94.183 +28800/69092 Loss: 93.157 +32000/69092 Loss: 93.485 +35200/69092 Loss: 93.029 +38400/69092 Loss: 94.680 +41600/69092 Loss: 93.339 +44800/69092 Loss: 92.704 +48000/69092 Loss: 94.446 +51200/69092 Loss: 94.541 +54400/69092 Loss: 94.422 +57600/69092 Loss: 92.413 +60800/69092 Loss: 92.343 +64000/69092 Loss: 94.117 +67200/69092 Loss: 93.225 +Training time 0:09:03.489313 +Epoch: 11 Average loss: 93.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 285) +0/69092 Loss: 98.704 +3200/69092 Loss: 93.930 +6400/69092 Loss: 92.749 +9600/69092 Loss: 93.849 +12800/69092 Loss: 93.336 +16000/69092 Loss: 93.485 +19200/69092 Loss: 93.007 +22400/69092 Loss: 95.324 +25600/69092 Loss: 93.369 +28800/69092 Loss: 92.165 +32000/69092 Loss: 92.701 +35200/69092 Loss: 93.137 +38400/69092 Loss: 94.353 +41600/69092 Loss: 91.906 +44800/69092 Loss: 92.608 +48000/69092 Loss: 93.939 +51200/69092 Loss: 93.132 +54400/69092 Loss: 93.149 +57600/69092 Loss: 93.642 +60800/69092 Loss: 93.933 +64000/69092 Loss: 94.381 +67200/69092 Loss: 92.727 +Training time 0:09:16.329956 +Epoch: 12 Average loss: 93.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 286) +0/69092 Loss: 95.387 +3200/69092 Loss: 92.552 +6400/69092 Loss: 93.314 +9600/69092 Loss: 94.765 +12800/69092 Loss: 92.677 +16000/69092 Loss: 93.309 +19200/69092 Loss: 93.529 +22400/69092 Loss: 93.079 +25600/69092 Loss: 93.663 +28800/69092 Loss: 93.961 +32000/69092 Loss: 94.001 +35200/69092 Loss: 92.333 +38400/69092 Loss: 93.983 +41600/69092 Loss: 94.369 +44800/69092 Loss: 93.371 +48000/69092 Loss: 93.257 +51200/69092 Loss: 93.428 +54400/69092 Loss: 94.222 +57600/69092 Loss: 93.504 +60800/69092 Loss: 93.311 +64000/69092 Loss: 94.335 +67200/69092 Loss: 93.403 +Training time 0:09:27.830834 +Epoch: 13 Average loss: 93.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 287) +0/69092 Loss: 85.074 +3200/69092 Loss: 93.894 +6400/69092 Loss: 93.087 +9600/69092 Loss: 94.560 +12800/69092 Loss: 94.731 +16000/69092 Loss: 93.367 +19200/69092 Loss: 92.803 +22400/69092 Loss: 93.618 +25600/69092 Loss: 93.186 +28800/69092 Loss: 93.312 +32000/69092 Loss: 92.745 +35200/69092 Loss: 94.608 +38400/69092 Loss: 92.966 +41600/69092 Loss: 92.505 +44800/69092 Loss: 92.746 +48000/69092 Loss: 93.057 +51200/69092 Loss: 94.573 +54400/69092 Loss: 94.453 +57600/69092 Loss: 93.111 +60800/69092 Loss: 93.336 +64000/69092 Loss: 93.189 +67200/69092 Loss: 94.195 +Training time 0:09:12.375810 +Epoch: 14 Average loss: 93.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 288) +0/69092 Loss: 92.848 +3200/69092 Loss: 92.873 +6400/69092 Loss: 93.109 +9600/69092 Loss: 92.799 +12800/69092 Loss: 94.013 +16000/69092 Loss: 92.559 +19200/69092 Loss: 93.419 +22400/69092 Loss: 93.750 +25600/69092 Loss: 93.318 +28800/69092 Loss: 93.947 +32000/69092 Loss: 93.622 +35200/69092 Loss: 92.423 +38400/69092 Loss: 94.657 +41600/69092 Loss: 92.932 +44800/69092 Loss: 92.285 +48000/69092 Loss: 93.633 +51200/69092 Loss: 93.106 +54400/69092 Loss: 92.883 +57600/69092 Loss: 93.004 +60800/69092 Loss: 92.573 +64000/69092 Loss: 93.143 +67200/69092 Loss: 94.979 +Training time 0:09:20.141515 +Epoch: 15 Average loss: 93.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 289) +0/69092 Loss: 97.313 +3200/69092 Loss: 94.001 +6400/69092 Loss: 92.579 +9600/69092 Loss: 94.481 +12800/69092 Loss: 92.436 +16000/69092 Loss: 93.777 +19200/69092 Loss: 93.558 +22400/69092 Loss: 92.738 +25600/69092 Loss: 93.722 +28800/69092 Loss: 93.448 +32000/69092 Loss: 92.296 +35200/69092 Loss: 92.675 +38400/69092 Loss: 92.853 +41600/69092 Loss: 92.430 +44800/69092 Loss: 92.978 +48000/69092 Loss: 94.814 +51200/69092 Loss: 93.994 +54400/69092 Loss: 93.750 +57600/69092 Loss: 93.661 +60800/69092 Loss: 94.722 +64000/69092 Loss: 92.031 +67200/69092 Loss: 92.779 +Training time 0:09:16.144999 +Epoch: 16 Average loss: 93.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 290) +0/69092 Loss: 79.670 +3200/69092 Loss: 93.182 +6400/69092 Loss: 92.583 +9600/69092 Loss: 93.652 +12800/69092 Loss: 93.444 +16000/69092 Loss: 93.248 +19200/69092 Loss: 93.543 +22400/69092 Loss: 91.749 +25600/69092 Loss: 93.729 +28800/69092 Loss: 93.327 +32000/69092 Loss: 92.210 +35200/69092 Loss: 93.699 +38400/69092 Loss: 93.533 +41600/69092 Loss: 93.795 +44800/69092 Loss: 93.293 +48000/69092 Loss: 92.339 +51200/69092 Loss: 94.008 +54400/69092 Loss: 93.455 +57600/69092 Loss: 93.526 +60800/69092 Loss: 93.409 +64000/69092 Loss: 95.072 +67200/69092 Loss: 93.499 +Training time 0:09:01.453545 +Epoch: 17 Average loss: 93.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 291) +0/69092 Loss: 86.439 +3200/69092 Loss: 94.083 +6400/69092 Loss: 94.068 +9600/69092 Loss: 92.989 +12800/69092 Loss: 93.610 +16000/69092 Loss: 92.276 +19200/69092 Loss: 92.931 +22400/69092 Loss: 94.299 +25600/69092 Loss: 91.339 +28800/69092 Loss: 93.922 +32000/69092 Loss: 91.557 +35200/69092 Loss: 94.409 +38400/69092 Loss: 93.147 +41600/69092 Loss: 92.870 +44800/69092 Loss: 93.254 +48000/69092 Loss: 93.467 +51200/69092 Loss: 94.077 +54400/69092 Loss: 93.688 +57600/69092 Loss: 92.409 +60800/69092 Loss: 93.094 +64000/69092 Loss: 93.325 +67200/69092 Loss: 93.706 +Training time 0:08:47.697694 +Epoch: 18 Average loss: 93.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 292) +0/69092 Loss: 97.519 +3200/69092 Loss: 92.142 +6400/69092 Loss: 92.940 +9600/69092 Loss: 94.811 +12800/69092 Loss: 91.465 +16000/69092 Loss: 93.842 +19200/69092 Loss: 94.063 +22400/69092 Loss: 92.699 +25600/69092 Loss: 94.073 +28800/69092 Loss: 94.100 +32000/69092 Loss: 93.638 +35200/69092 Loss: 92.771 +38400/69092 Loss: 92.896 +41600/69092 Loss: 91.073 +44800/69092 Loss: 93.748 +48000/69092 Loss: 93.839 +51200/69092 Loss: 93.471 +54400/69092 Loss: 93.214 +57600/69092 Loss: 92.759 +60800/69092 Loss: 92.296 +64000/69092 Loss: 93.018 +67200/69092 Loss: 93.859 +Training time 0:09:02.677565 +Epoch: 19 Average loss: 93.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 293) +0/69092 Loss: 94.773 +3200/69092 Loss: 93.693 +6400/69092 Loss: 92.404 +9600/69092 Loss: 92.524 +12800/69092 Loss: 92.522 +16000/69092 Loss: 92.759 +19200/69092 Loss: 94.271 +22400/69092 Loss: 93.934 +25600/69092 Loss: 93.350 +28800/69092 Loss: 94.041 +32000/69092 Loss: 92.509 +35200/69092 Loss: 93.604 +38400/69092 Loss: 92.169 +41600/69092 Loss: 93.550 +44800/69092 Loss: 93.454 +48000/69092 Loss: 92.883 +51200/69092 Loss: 93.223 +54400/69092 Loss: 93.216 +57600/69092 Loss: 93.290 +60800/69092 Loss: 94.767 +64000/69092 Loss: 94.251 +67200/69092 Loss: 92.508 +Training time 0:08:59.005856 +Epoch: 20 Average loss: 93.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 294) +0/69092 Loss: 92.414 +3200/69092 Loss: 91.658 +6400/69092 Loss: 93.250 +9600/69092 Loss: 94.645 +12800/69092 Loss: 92.136 +16000/69092 Loss: 92.797 +19200/69092 Loss: 94.295 +22400/69092 Loss: 94.057 +25600/69092 Loss: 91.451 +28800/69092 Loss: 93.679 +32000/69092 Loss: 93.656 +35200/69092 Loss: 93.722 +38400/69092 Loss: 92.824 +41600/69092 Loss: 93.301 +44800/69092 Loss: 94.104 +48000/69092 Loss: 92.305 +51200/69092 Loss: 93.627 +54400/69092 Loss: 93.462 +57600/69092 Loss: 93.802 +60800/69092 Loss: 92.675 +64000/69092 Loss: 93.522 +67200/69092 Loss: 93.201 +Training time 0:09:20.435732 +Epoch: 21 Average loss: 93.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 295) +0/69092 Loss: 89.961 +3200/69092 Loss: 94.322 +6400/69092 Loss: 93.141 +9600/69092 Loss: 94.475 +12800/69092 Loss: 93.865 +16000/69092 Loss: 93.500 +19200/69092 Loss: 94.701 +22400/69092 Loss: 92.901 +25600/69092 Loss: 92.956 +28800/69092 Loss: 92.499 +32000/69092 Loss: 91.599 +35200/69092 Loss: 94.097 +38400/69092 Loss: 93.373 +41600/69092 Loss: 92.877 +44800/69092 Loss: 93.051 +48000/69092 Loss: 92.471 +51200/69092 Loss: 95.107 +54400/69092 Loss: 93.969 +57600/69092 Loss: 92.352 +60800/69092 Loss: 92.653 +64000/69092 Loss: 92.398 +67200/69092 Loss: 93.465 +Training time 0:09:15.229790 +Epoch: 22 Average loss: 93.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 296) +0/69092 Loss: 101.109 +3200/69092 Loss: 93.396 +6400/69092 Loss: 93.314 +9600/69092 Loss: 91.433 +12800/69092 Loss: 93.540 +16000/69092 Loss: 93.448 +19200/69092 Loss: 92.858 +22400/69092 Loss: 93.580 +25600/69092 Loss: 95.532 +28800/69092 Loss: 92.783 +32000/69092 Loss: 93.119 +35200/69092 Loss: 91.836 +38400/69092 Loss: 94.153 +41600/69092 Loss: 93.916 +44800/69092 Loss: 92.488 +48000/69092 Loss: 92.639 +51200/69092 Loss: 93.025 +54400/69092 Loss: 93.030 +57600/69092 Loss: 94.041 +60800/69092 Loss: 93.853 +64000/69092 Loss: 93.284 +67200/69092 Loss: 93.208 +Training time 0:09:13.766607 +Epoch: 23 Average loss: 93.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 297) +0/69092 Loss: 91.590 +3200/69092 Loss: 93.942 +6400/69092 Loss: 93.564 +9600/69092 Loss: 94.264 +12800/69092 Loss: 92.455 +16000/69092 Loss: 93.498 +19200/69092 Loss: 93.120 +22400/69092 Loss: 93.019 +25600/69092 Loss: 93.677 +28800/69092 Loss: 92.789 +32000/69092 Loss: 93.649 +35200/69092 Loss: 92.487 +38400/69092 Loss: 92.863 +41600/69092 Loss: 92.913 +44800/69092 Loss: 92.006 +48000/69092 Loss: 92.975 +51200/69092 Loss: 94.016 +54400/69092 Loss: 94.105 +57600/69092 Loss: 93.806 +60800/69092 Loss: 92.699 +64000/69092 Loss: 92.434 +67200/69092 Loss: 93.459 +Training time 0:09:15.779607 +Epoch: 24 Average loss: 93.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 298) +0/69092 Loss: 94.655 +3200/69092 Loss: 93.598 +6400/69092 Loss: 94.222 +9600/69092 Loss: 91.900 +12800/69092 Loss: 93.590 +16000/69092 Loss: 94.950 +19200/69092 Loss: 93.481 +22400/69092 Loss: 94.023 +25600/69092 Loss: 93.733 +28800/69092 Loss: 91.787 +32000/69092 Loss: 94.645 +35200/69092 Loss: 92.705 +38400/69092 Loss: 93.667 +41600/69092 Loss: 93.330 +44800/69092 Loss: 92.721 +48000/69092 Loss: 92.846 +51200/69092 Loss: 92.884 +54400/69092 Loss: 93.638 +57600/69092 Loss: 93.569 +60800/69092 Loss: 92.869 +64000/69092 Loss: 94.030 +67200/69092 Loss: 93.146 +Training time 0:09:10.913424 +Epoch: 25 Average loss: 93.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 299) +0/69092 Loss: 93.866 +3200/69092 Loss: 92.887 +6400/69092 Loss: 93.778 +9600/69092 Loss: 93.955 +12800/69092 Loss: 94.024 +16000/69092 Loss: 92.954 +19200/69092 Loss: 93.491 +22400/69092 Loss: 92.632 +25600/69092 Loss: 95.782 +28800/69092 Loss: 93.306 +32000/69092 Loss: 91.925 +35200/69092 Loss: 92.395 +38400/69092 Loss: 94.453 +41600/69092 Loss: 93.495 +44800/69092 Loss: 92.956 +48000/69092 Loss: 92.995 +51200/69092 Loss: 92.717 +54400/69092 Loss: 93.183 +57600/69092 Loss: 93.895 +60800/69092 Loss: 94.147 +64000/69092 Loss: 93.088 +67200/69092 Loss: 92.705 +Training time 0:08:55.987150 +Epoch: 26 Average loss: 93.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 300) +0/69092 Loss: 96.701 +3200/69092 Loss: 91.900 +6400/69092 Loss: 92.925 +9600/69092 Loss: 94.128 +12800/69092 Loss: 94.118 +16000/69092 Loss: 92.992 +19200/69092 Loss: 93.387 +22400/69092 Loss: 91.942 +25600/69092 Loss: 92.759 +28800/69092 Loss: 92.764 +32000/69092 Loss: 92.974 +35200/69092 Loss: 93.306 +38400/69092 Loss: 92.291 +41600/69092 Loss: 93.849 +44800/69092 Loss: 93.916 +48000/69092 Loss: 93.401 +51200/69092 Loss: 94.042 +54400/69092 Loss: 93.596 +57600/69092 Loss: 93.304 +60800/69092 Loss: 93.083 +64000/69092 Loss: 93.412 +67200/69092 Loss: 90.991 +Training time 0:09:11.290138 +Epoch: 27 Average loss: 93.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 301) +0/69092 Loss: 93.350 +3200/69092 Loss: 93.899 +6400/69092 Loss: 93.899 +9600/69092 Loss: 93.154 +12800/69092 Loss: 93.319 +16000/69092 Loss: 92.362 +19200/69092 Loss: 92.871 +22400/69092 Loss: 93.858 +25600/69092 Loss: 92.736 +28800/69092 Loss: 92.411 +32000/69092 Loss: 94.172 +35200/69092 Loss: 93.307 +38400/69092 Loss: 92.258 +41600/69092 Loss: 93.826 +44800/69092 Loss: 92.502 +48000/69092 Loss: 93.170 +51200/69092 Loss: 93.661 +54400/69092 Loss: 93.405 +57600/69092 Loss: 92.324 +60800/69092 Loss: 92.630 +64000/69092 Loss: 93.041 +67200/69092 Loss: 93.981 +Training time 0:08:57.391692 +Epoch: 28 Average loss: 93.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 302) +0/69092 Loss: 92.937 +3200/69092 Loss: 92.252 +6400/69092 Loss: 93.891 +9600/69092 Loss: 92.776 +12800/69092 Loss: 92.120 +16000/69092 Loss: 94.235 +19200/69092 Loss: 93.920 +22400/69092 Loss: 92.630 +25600/69092 Loss: 91.660 +28800/69092 Loss: 94.295 +32000/69092 Loss: 91.234 +35200/69092 Loss: 92.451 +38400/69092 Loss: 93.450 +41600/69092 Loss: 92.694 +44800/69092 Loss: 94.962 +48000/69092 Loss: 93.863 +51200/69092 Loss: 93.472 +54400/69092 Loss: 93.918 +57600/69092 Loss: 92.976 +60800/69092 Loss: 91.720 +64000/69092 Loss: 93.701 +67200/69092 Loss: 93.579 +Training time 0:09:10.114667 +Epoch: 29 Average loss: 93.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 303) +0/69092 Loss: 95.726 +3200/69092 Loss: 92.662 +6400/69092 Loss: 92.068 +9600/69092 Loss: 92.231 +12800/69092 Loss: 93.608 +16000/69092 Loss: 93.085 +19200/69092 Loss: 93.584 +22400/69092 Loss: 94.159 +25600/69092 Loss: 93.367 +28800/69092 Loss: 92.545 +32000/69092 Loss: 92.723 +35200/69092 Loss: 93.889 +38400/69092 Loss: 92.020 +41600/69092 Loss: 95.421 +44800/69092 Loss: 92.356 +48000/69092 Loss: 92.870 +51200/69092 Loss: 92.684 +54400/69092 Loss: 93.095 +57600/69092 Loss: 93.094 +60800/69092 Loss: 92.761 +64000/69092 Loss: 93.711 +67200/69092 Loss: 93.186 +Training time 0:09:10.975927 +Epoch: 30 Average loss: 93.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 304) +0/69092 Loss: 86.803 +3200/69092 Loss: 94.320 +6400/69092 Loss: 91.788 +9600/69092 Loss: 93.463 +12800/69092 Loss: 92.526 +16000/69092 Loss: 92.773 +19200/69092 Loss: 92.296 +22400/69092 Loss: 93.049 +25600/69092 Loss: 92.288 +28800/69092 Loss: 93.342 +32000/69092 Loss: 93.168 +35200/69092 Loss: 93.990 +38400/69092 Loss: 94.378 +41600/69092 Loss: 93.186 +44800/69092 Loss: 94.196 +48000/69092 Loss: 94.267 +51200/69092 Loss: 92.565 +54400/69092 Loss: 93.110 +57600/69092 Loss: 94.095 +60800/69092 Loss: 94.380 +64000/69092 Loss: 92.064 +67200/69092 Loss: 92.900 +Training time 0:09:20.948343 +Epoch: 31 Average loss: 93.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 305) +0/69092 Loss: 87.428 +3200/69092 Loss: 92.198 +6400/69092 Loss: 93.170 +9600/69092 Loss: 92.081 +12800/69092 Loss: 92.896 +16000/69092 Loss: 92.308 +19200/69092 Loss: 93.448 +22400/69092 Loss: 92.297 +25600/69092 Loss: 93.808 +28800/69092 Loss: 92.849 +32000/69092 Loss: 92.154 +35200/69092 Loss: 93.473 +38400/69092 Loss: 92.854 +41600/69092 Loss: 93.400 +44800/69092 Loss: 94.340 +48000/69092 Loss: 92.392 +51200/69092 Loss: 93.010 +54400/69092 Loss: 94.536 +57600/69092 Loss: 93.023 +60800/69092 Loss: 93.731 +64000/69092 Loss: 92.124 +67200/69092 Loss: 93.178 +Training time 0:09:18.863995 +Epoch: 32 Average loss: 93.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 306) +0/69092 Loss: 93.263 +3200/69092 Loss: 92.436 +6400/69092 Loss: 92.635 +9600/69092 Loss: 92.857 +12800/69092 Loss: 92.078 +16000/69092 Loss: 93.207 +19200/69092 Loss: 92.871 +22400/69092 Loss: 93.184 +25600/69092 Loss: 93.331 +28800/69092 Loss: 93.466 +32000/69092 Loss: 93.100 +35200/69092 Loss: 93.360 +38400/69092 Loss: 93.644 +41600/69092 Loss: 94.003 +44800/69092 Loss: 92.711 +48000/69092 Loss: 93.426 +51200/69092 Loss: 95.009 +54400/69092 Loss: 92.568 +57600/69092 Loss: 92.759 +60800/69092 Loss: 92.461 +64000/69092 Loss: 92.920 +67200/69092 Loss: 92.513 +Training time 0:09:05.001772 +Epoch: 33 Average loss: 93.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 307) +0/69092 Loss: 90.420 +3200/69092 Loss: 93.377 +6400/69092 Loss: 92.897 +9600/69092 Loss: 91.893 +12800/69092 Loss: 93.884 +16000/69092 Loss: 93.180 +19200/69092 Loss: 94.515 +22400/69092 Loss: 92.231 +25600/69092 Loss: 93.297 +28800/69092 Loss: 93.476 +32000/69092 Loss: 94.129 +35200/69092 Loss: 93.566 +38400/69092 Loss: 91.786 +41600/69092 Loss: 93.423 +44800/69092 Loss: 93.216 +48000/69092 Loss: 92.462 +51200/69092 Loss: 93.350 +54400/69092 Loss: 93.833 +57600/69092 Loss: 93.084 +60800/69092 Loss: 94.297 +64000/69092 Loss: 92.278 +67200/69092 Loss: 94.540 +Training time 0:08:53.322226 +Epoch: 34 Average loss: 93.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 308) +0/69092 Loss: 92.941 +3200/69092 Loss: 93.941 +6400/69092 Loss: 92.915 +9600/69092 Loss: 94.183 +12800/69092 Loss: 94.274 +16000/69092 Loss: 93.520 +19200/69092 Loss: 92.716 +22400/69092 Loss: 93.269 +25600/69092 Loss: 93.016 +28800/69092 Loss: 92.019 +32000/69092 Loss: 93.732 +35200/69092 Loss: 93.400 +38400/69092 Loss: 91.519 +41600/69092 Loss: 91.875 +44800/69092 Loss: 93.257 +48000/69092 Loss: 91.828 +51200/69092 Loss: 92.866 +54400/69092 Loss: 93.144 +57600/69092 Loss: 94.088 +60800/69092 Loss: 93.046 +64000/69092 Loss: 92.716 +67200/69092 Loss: 93.448 +Training time 0:08:56.456150 +Epoch: 35 Average loss: 93.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 309) +0/69092 Loss: 85.000 +3200/69092 Loss: 93.239 +6400/69092 Loss: 94.217 +9600/69092 Loss: 91.885 +12800/69092 Loss: 93.497 +16000/69092 Loss: 92.800 +19200/69092 Loss: 93.403 +22400/69092 Loss: 92.862 +25600/69092 Loss: 91.794 +28800/69092 Loss: 92.080 +32000/69092 Loss: 91.710 +35200/69092 Loss: 92.635 +38400/69092 Loss: 93.021 +41600/69092 Loss: 93.562 +44800/69092 Loss: 92.525 +48000/69092 Loss: 92.593 +51200/69092 Loss: 93.543 +54400/69092 Loss: 93.861 +57600/69092 Loss: 93.588 +60800/69092 Loss: 94.758 +64000/69092 Loss: 93.225 +67200/69092 Loss: 93.588 +Training time 0:09:05.509716 +Epoch: 36 Average loss: 93.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 310) +0/69092 Loss: 94.820 +3200/69092 Loss: 92.994 +6400/69092 Loss: 93.781 +9600/69092 Loss: 92.262 +12800/69092 Loss: 92.576 +16000/69092 Loss: 93.395 +19200/69092 Loss: 94.131 +22400/69092 Loss: 94.540 +25600/69092 Loss: 93.293 +28800/69092 Loss: 93.217 +32000/69092 Loss: 92.519 +35200/69092 Loss: 93.844 +38400/69092 Loss: 90.852 +41600/69092 Loss: 92.797 +44800/69092 Loss: 93.824 +48000/69092 Loss: 93.177 +51200/69092 Loss: 92.878 +54400/69092 Loss: 92.564 +57600/69092 Loss: 92.466 +60800/69092 Loss: 94.519 +64000/69092 Loss: 93.816 +67200/69092 Loss: 92.304 +Training time 0:09:25.274613 +Epoch: 37 Average loss: 93.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 311) +0/69092 Loss: 85.349 +3200/69092 Loss: 91.810 +6400/69092 Loss: 93.417 +9600/69092 Loss: 92.758 +12800/69092 Loss: 93.733 +16000/69092 Loss: 92.941 +19200/69092 Loss: 92.671 +22400/69092 Loss: 93.615 +25600/69092 Loss: 93.900 +28800/69092 Loss: 92.606 +32000/69092 Loss: 92.450 +35200/69092 Loss: 93.769 +38400/69092 Loss: 92.863 +41600/69092 Loss: 93.619 +44800/69092 Loss: 92.686 +48000/69092 Loss: 91.596 +51200/69092 Loss: 93.151 +54400/69092 Loss: 93.981 +57600/69092 Loss: 93.131 +60800/69092 Loss: 93.298 +64000/69092 Loss: 94.434 +67200/69092 Loss: 93.934 +Training time 0:09:03.162613 +Epoch: 38 Average loss: 93.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 312) +0/69092 Loss: 95.512 +3200/69092 Loss: 93.457 +6400/69092 Loss: 93.417 +9600/69092 Loss: 91.788 +12800/69092 Loss: 93.237 +16000/69092 Loss: 93.325 +19200/69092 Loss: 92.951 +22400/69092 Loss: 92.650 +25600/69092 Loss: 92.834 +28800/69092 Loss: 93.691 +32000/69092 Loss: 92.471 +35200/69092 Loss: 92.118 +38400/69092 Loss: 92.163 +41600/69092 Loss: 93.660 +44800/69092 Loss: 92.467 +48000/69092 Loss: 93.244 +51200/69092 Loss: 91.655 +54400/69092 Loss: 91.911 +57600/69092 Loss: 92.963 +60800/69092 Loss: 93.356 +64000/69092 Loss: 93.997 +67200/69092 Loss: 93.235 +Training time 0:09:17.860662 +Epoch: 39 Average loss: 92.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 313) +0/69092 Loss: 92.395 +3200/69092 Loss: 93.665 +6400/69092 Loss: 91.589 +9600/69092 Loss: 92.672 +12800/69092 Loss: 93.019 +16000/69092 Loss: 95.176 +19200/69092 Loss: 91.531 +22400/69092 Loss: 92.808 +25600/69092 Loss: 94.464 +28800/69092 Loss: 92.202 +32000/69092 Loss: 92.302 +35200/69092 Loss: 92.390 +38400/69092 Loss: 92.867 +41600/69092 Loss: 94.488 +44800/69092 Loss: 94.896 +48000/69092 Loss: 92.284 +51200/69092 Loss: 91.376 +54400/69092 Loss: 93.320 +57600/69092 Loss: 93.868 +60800/69092 Loss: 92.887 +64000/69092 Loss: 94.401 +67200/69092 Loss: 93.860 +Training time 0:09:14.467706 +Epoch: 40 Average loss: 93.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 314) +0/69092 Loss: 86.068 +3200/69092 Loss: 92.051 +6400/69092 Loss: 93.087 +9600/69092 Loss: 93.177 +12800/69092 Loss: 92.944 +16000/69092 Loss: 92.248 +19200/69092 Loss: 92.143 +22400/69092 Loss: 92.708 +25600/69092 Loss: 92.379 +28800/69092 Loss: 93.414 +32000/69092 Loss: 92.668 +35200/69092 Loss: 94.332 +38400/69092 Loss: 93.871 +41600/69092 Loss: 93.112 +44800/69092 Loss: 92.181 +48000/69092 Loss: 92.381 +51200/69092 Loss: 93.681 +54400/69092 Loss: 91.773 +57600/69092 Loss: 92.056 +60800/69092 Loss: 92.662 +64000/69092 Loss: 93.394 +67200/69092 Loss: 92.564 +Training time 0:09:08.767133 +Epoch: 41 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 315) +0/69092 Loss: 84.834 +3200/69092 Loss: 91.208 +6400/69092 Loss: 92.690 +9600/69092 Loss: 93.549 +12800/69092 Loss: 94.351 +16000/69092 Loss: 93.303 +19200/69092 Loss: 92.865 +22400/69092 Loss: 92.950 +25600/69092 Loss: 93.099 +28800/69092 Loss: 93.616 +32000/69092 Loss: 92.142 +35200/69092 Loss: 92.456 +38400/69092 Loss: 92.886 +41600/69092 Loss: 92.760 +44800/69092 Loss: 93.058 +48000/69092 Loss: 93.004 +51200/69092 Loss: 93.690 +54400/69092 Loss: 92.208 +57600/69092 Loss: 92.520 +60800/69092 Loss: 93.459 +64000/69092 Loss: 93.640 +67200/69092 Loss: 93.598 +Training time 0:09:18.511430 +Epoch: 42 Average loss: 93.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 316) +0/69092 Loss: 95.101 +3200/69092 Loss: 92.276 +6400/69092 Loss: 93.702 +9600/69092 Loss: 93.057 +12800/69092 Loss: 94.419 +16000/69092 Loss: 93.006 +19200/69092 Loss: 92.774 +22400/69092 Loss: 93.312 +25600/69092 Loss: 92.276 +28800/69092 Loss: 93.207 +32000/69092 Loss: 91.700 +35200/69092 Loss: 93.234 +38400/69092 Loss: 92.150 +41600/69092 Loss: 94.456 +44800/69092 Loss: 92.400 +48000/69092 Loss: 93.206 +51200/69092 Loss: 93.103 +54400/69092 Loss: 92.667 +57600/69092 Loss: 93.006 +60800/69092 Loss: 93.961 +64000/69092 Loss: 93.147 +67200/69092 Loss: 93.522 +Training time 0:09:04.336493 +Epoch: 43 Average loss: 93.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 317) +0/69092 Loss: 93.529 +3200/69092 Loss: 92.401 +6400/69092 Loss: 91.202 +9600/69092 Loss: 91.839 +12800/69092 Loss: 92.349 +16000/69092 Loss: 93.097 +19200/69092 Loss: 91.168 +22400/69092 Loss: 93.340 +25600/69092 Loss: 94.741 +28800/69092 Loss: 92.208 +32000/69092 Loss: 94.123 +35200/69092 Loss: 93.215 +38400/69092 Loss: 93.843 +41600/69092 Loss: 92.704 +44800/69092 Loss: 93.324 +48000/69092 Loss: 93.691 +51200/69092 Loss: 94.091 +54400/69092 Loss: 93.019 +57600/69092 Loss: 93.252 +60800/69092 Loss: 92.973 +64000/69092 Loss: 92.577 +67200/69092 Loss: 93.234 +Training time 0:09:02.132811 +Epoch: 44 Average loss: 92.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 318) +0/69092 Loss: 81.592 +3200/69092 Loss: 92.831 +6400/69092 Loss: 93.682 +9600/69092 Loss: 92.850 +12800/69092 Loss: 92.703 +16000/69092 Loss: 93.445 +19200/69092 Loss: 92.897 +22400/69092 Loss: 92.640 +25600/69092 Loss: 92.519 +28800/69092 Loss: 92.145 +32000/69092 Loss: 92.444 +35200/69092 Loss: 93.052 +38400/69092 Loss: 94.431 +41600/69092 Loss: 94.020 +44800/69092 Loss: 91.941 +48000/69092 Loss: 91.807 +51200/69092 Loss: 93.478 +54400/69092 Loss: 93.005 +57600/69092 Loss: 92.305 +60800/69092 Loss: 93.120 +64000/69092 Loss: 93.958 +67200/69092 Loss: 91.882 +Training time 0:09:22.164519 +Epoch: 45 Average loss: 92.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 319) +0/69092 Loss: 92.080 +3200/69092 Loss: 92.673 +6400/69092 Loss: 93.812 +9600/69092 Loss: 93.060 +12800/69092 Loss: 93.175 +16000/69092 Loss: 93.410 +19200/69092 Loss: 92.248 +22400/69092 Loss: 92.058 +25600/69092 Loss: 92.174 +28800/69092 Loss: 92.418 +32000/69092 Loss: 94.227 +35200/69092 Loss: 93.867 +38400/69092 Loss: 92.980 +41600/69092 Loss: 93.344 +44800/69092 Loss: 92.652 +48000/69092 Loss: 92.404 +51200/69092 Loss: 93.223 +54400/69092 Loss: 92.351 +57600/69092 Loss: 93.682 +60800/69092 Loss: 92.551 +64000/69092 Loss: 93.147 +67200/69092 Loss: 92.993 +Training time 0:09:08.056991 +Epoch: 46 Average loss: 92.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 320) +0/69092 Loss: 96.639 +3200/69092 Loss: 91.435 +6400/69092 Loss: 93.381 +9600/69092 Loss: 93.901 +12800/69092 Loss: 92.927 +16000/69092 Loss: 92.235 +19200/69092 Loss: 92.968 +22400/69092 Loss: 91.677 +25600/69092 Loss: 92.111 +28800/69092 Loss: 93.615 +32000/69092 Loss: 94.040 +35200/69092 Loss: 93.014 +38400/69092 Loss: 93.282 +41600/69092 Loss: 92.837 +44800/69092 Loss: 93.308 +48000/69092 Loss: 93.579 +51200/69092 Loss: 92.607 +54400/69092 Loss: 92.643 +57600/69092 Loss: 92.219 +60800/69092 Loss: 93.892 +64000/69092 Loss: 93.335 +67200/69092 Loss: 93.426 +Training time 0:09:16.491726 +Epoch: 47 Average loss: 92.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 321) +0/69092 Loss: 89.210 +3200/69092 Loss: 92.131 +6400/69092 Loss: 93.575 +9600/69092 Loss: 93.251 +12800/69092 Loss: 93.450 +16000/69092 Loss: 91.159 +19200/69092 Loss: 92.438 +22400/69092 Loss: 93.100 +25600/69092 Loss: 92.302 +28800/69092 Loss: 92.370 +32000/69092 Loss: 91.996 +35200/69092 Loss: 93.309 +38400/69092 Loss: 93.970 +41600/69092 Loss: 94.355 +44800/69092 Loss: 92.368 +48000/69092 Loss: 92.421 +51200/69092 Loss: 92.885 +54400/69092 Loss: 92.810 +57600/69092 Loss: 93.795 +60800/69092 Loss: 93.335 +64000/69092 Loss: 95.613 +67200/69092 Loss: 92.874 +Training time 0:09:25.873932 +Epoch: 48 Average loss: 92.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 322) +0/69092 Loss: 95.645 +3200/69092 Loss: 93.029 +6400/69092 Loss: 92.981 +9600/69092 Loss: 93.816 +12800/69092 Loss: 91.315 +16000/69092 Loss: 93.945 +19200/69092 Loss: 92.917 +22400/69092 Loss: 92.797 +25600/69092 Loss: 93.565 +28800/69092 Loss: 90.544 +32000/69092 Loss: 92.893 +35200/69092 Loss: 91.734 +38400/69092 Loss: 93.979 +41600/69092 Loss: 93.776 +44800/69092 Loss: 92.381 +48000/69092 Loss: 93.205 +51200/69092 Loss: 92.100 +54400/69092 Loss: 92.229 +57600/69092 Loss: 92.954 +60800/69092 Loss: 92.949 +64000/69092 Loss: 93.447 +67200/69092 Loss: 93.243 +Training time 0:09:18.524643 +Epoch: 49 Average loss: 92.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 323) +0/69092 Loss: 95.336 +3200/69092 Loss: 92.807 +6400/69092 Loss: 91.405 +9600/69092 Loss: 93.846 +12800/69092 Loss: 93.401 +16000/69092 Loss: 94.095 +19200/69092 Loss: 93.607 +22400/69092 Loss: 93.023 +25600/69092 Loss: 92.289 +28800/69092 Loss: 91.994 +32000/69092 Loss: 90.906 +35200/69092 Loss: 91.534 +38400/69092 Loss: 92.946 +41600/69092 Loss: 93.298 +44800/69092 Loss: 93.622 +48000/69092 Loss: 94.143 +51200/69092 Loss: 91.452 +54400/69092 Loss: 92.777 +57600/69092 Loss: 93.300 +60800/69092 Loss: 93.776 +64000/69092 Loss: 92.362 +67200/69092 Loss: 93.293 +Training time 0:09:03.842659 +Epoch: 50 Average loss: 92.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 324) +0/69092 Loss: 86.841 +3200/69092 Loss: 92.905 +6400/69092 Loss: 93.323 +9600/69092 Loss: 92.134 +12800/69092 Loss: 94.696 +16000/69092 Loss: 90.739 +19200/69092 Loss: 93.433 +22400/69092 Loss: 91.864 +25600/69092 Loss: 93.016 +28800/69092 Loss: 93.802 +32000/69092 Loss: 93.991 +35200/69092 Loss: 92.975 +38400/69092 Loss: 92.694 +41600/69092 Loss: 93.068 +44800/69092 Loss: 92.984 +48000/69092 Loss: 91.641 +51200/69092 Loss: 92.747 +54400/69092 Loss: 92.316 +57600/69092 Loss: 93.504 +60800/69092 Loss: 93.318 +64000/69092 Loss: 91.457 +67200/69092 Loss: 92.611 +Training time 0:09:19.062174 +Epoch: 51 Average loss: 92.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 325) +0/69092 Loss: 92.469 +3200/69092 Loss: 94.819 +6400/69092 Loss: 90.666 +9600/69092 Loss: 90.973 +12800/69092 Loss: 92.130 +16000/69092 Loss: 92.325 +19200/69092 Loss: 91.847 +22400/69092 Loss: 93.715 +25600/69092 Loss: 92.911 +28800/69092 Loss: 92.366 +32000/69092 Loss: 93.465 +35200/69092 Loss: 91.471 +38400/69092 Loss: 92.781 +41600/69092 Loss: 92.166 +44800/69092 Loss: 92.867 +48000/69092 Loss: 94.009 +51200/69092 Loss: 94.476 +54400/69092 Loss: 92.444 +57600/69092 Loss: 93.165 +60800/69092 Loss: 93.614 +64000/69092 Loss: 93.459 +67200/69092 Loss: 93.418 +Training time 0:09:03.165637 +Epoch: 52 Average loss: 92.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 326) +0/69092 Loss: 92.111 +3200/69092 Loss: 93.004 +6400/69092 Loss: 93.335 +9600/69092 Loss: 92.357 +12800/69092 Loss: 92.651 +16000/69092 Loss: 93.130 +19200/69092 Loss: 93.198 +22400/69092 Loss: 93.440 +25600/69092 Loss: 93.224 +28800/69092 Loss: 93.267 +32000/69092 Loss: 93.465 +35200/69092 Loss: 93.061 +38400/69092 Loss: 91.830 +41600/69092 Loss: 91.567 +44800/69092 Loss: 92.045 +48000/69092 Loss: 92.200 +51200/69092 Loss: 94.537 +54400/69092 Loss: 93.313 +57600/69092 Loss: 93.035 +60800/69092 Loss: 92.910 +64000/69092 Loss: 92.239 +67200/69092 Loss: 93.358 +Training time 0:09:17.381804 +Epoch: 53 Average loss: 92.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 327) +0/69092 Loss: 84.398 +3200/69092 Loss: 93.096 +6400/69092 Loss: 92.449 +9600/69092 Loss: 93.541 +12800/69092 Loss: 93.814 +16000/69092 Loss: 91.529 +19200/69092 Loss: 94.506 +22400/69092 Loss: 93.160 +25600/69092 Loss: 93.692 +28800/69092 Loss: 91.481 +32000/69092 Loss: 93.049 +35200/69092 Loss: 93.394 +38400/69092 Loss: 93.537 +41600/69092 Loss: 93.458 +44800/69092 Loss: 92.521 +48000/69092 Loss: 91.702 +51200/69092 Loss: 92.961 +54400/69092 Loss: 93.162 +57600/69092 Loss: 92.915 +60800/69092 Loss: 92.597 +64000/69092 Loss: 91.999 +67200/69092 Loss: 92.150 +Training time 0:09:01.257973 +Epoch: 54 Average loss: 92.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 328) +0/69092 Loss: 100.464 +3200/69092 Loss: 92.283 +6400/69092 Loss: 93.492 +9600/69092 Loss: 93.591 +12800/69092 Loss: 91.443 +16000/69092 Loss: 91.503 +19200/69092 Loss: 93.173 +22400/69092 Loss: 93.432 +25600/69092 Loss: 92.834 +28800/69092 Loss: 91.732 +32000/69092 Loss: 92.707 +35200/69092 Loss: 92.745 +38400/69092 Loss: 93.023 +41600/69092 Loss: 92.681 +44800/69092 Loss: 93.684 +48000/69092 Loss: 93.087 +51200/69092 Loss: 92.651 +54400/69092 Loss: 92.951 +57600/69092 Loss: 93.302 +60800/69092 Loss: 92.218 +64000/69092 Loss: 93.281 +67200/69092 Loss: 93.140 +Training time 0:09:23.841306 +Epoch: 55 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 329) +0/69092 Loss: 97.575 +3200/69092 Loss: 92.268 +6400/69092 Loss: 93.325 +9600/69092 Loss: 92.218 +12800/69092 Loss: 92.721 +16000/69092 Loss: 92.995 +19200/69092 Loss: 92.820 +22400/69092 Loss: 91.817 +25600/69092 Loss: 92.479 +28800/69092 Loss: 93.091 +32000/69092 Loss: 93.483 +35200/69092 Loss: 91.549 +38400/69092 Loss: 92.100 +41600/69092 Loss: 92.307 +44800/69092 Loss: 92.972 +48000/69092 Loss: 93.736 +51200/69092 Loss: 92.991 +54400/69092 Loss: 93.274 +57600/69092 Loss: 93.542 +60800/69092 Loss: 93.596 +64000/69092 Loss: 93.094 +67200/69092 Loss: 91.901 +Training time 0:09:06.669423 +Epoch: 56 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 330) +0/69092 Loss: 92.927 +3200/69092 Loss: 92.698 +6400/69092 Loss: 92.982 +9600/69092 Loss: 93.800 +12800/69092 Loss: 92.966 +16000/69092 Loss: 93.241 +19200/69092 Loss: 91.585 +22400/69092 Loss: 92.479 +25600/69092 Loss: 91.727 +28800/69092 Loss: 94.271 +32000/69092 Loss: 92.211 +35200/69092 Loss: 92.391 +38400/69092 Loss: 92.659 +41600/69092 Loss: 92.718 +44800/69092 Loss: 93.463 +48000/69092 Loss: 93.318 +51200/69092 Loss: 92.016 +54400/69092 Loss: 91.048 +57600/69092 Loss: 93.603 +60800/69092 Loss: 93.016 +64000/69092 Loss: 92.574 +67200/69092 Loss: 93.123 +Training time 0:09:19.401507 +Epoch: 57 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 331) +0/69092 Loss: 80.537 +3200/69092 Loss: 92.741 +6400/69092 Loss: 91.633 +9600/69092 Loss: 91.786 +12800/69092 Loss: 92.872 +16000/69092 Loss: 92.995 +19200/69092 Loss: 92.252 +22400/69092 Loss: 93.245 +25600/69092 Loss: 93.260 +28800/69092 Loss: 93.247 +32000/69092 Loss: 92.649 +35200/69092 Loss: 93.025 +38400/69092 Loss: 91.787 +41600/69092 Loss: 91.439 +44800/69092 Loss: 92.915 +48000/69092 Loss: 91.855 +51200/69092 Loss: 93.009 +54400/69092 Loss: 94.265 +57600/69092 Loss: 92.616 +60800/69092 Loss: 93.464 +64000/69092 Loss: 93.628 +67200/69092 Loss: 93.244 +Training time 0:08:59.076508 +Epoch: 58 Average loss: 92.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 332) +0/69092 Loss: 97.261 +3200/69092 Loss: 92.943 +6400/69092 Loss: 92.258 +9600/69092 Loss: 92.484 +12800/69092 Loss: 91.827 +16000/69092 Loss: 92.832 +19200/69092 Loss: 91.955 +22400/69092 Loss: 94.278 +25600/69092 Loss: 94.405 +28800/69092 Loss: 92.715 +32000/69092 Loss: 91.639 +35200/69092 Loss: 91.069 +38400/69092 Loss: 92.167 +41600/69092 Loss: 93.190 +44800/69092 Loss: 92.525 +48000/69092 Loss: 91.678 +51200/69092 Loss: 93.416 +54400/69092 Loss: 92.801 +57600/69092 Loss: 91.383 +60800/69092 Loss: 93.379 +64000/69092 Loss: 94.608 +67200/69092 Loss: 93.466 +Training time 0:09:19.607324 +Epoch: 59 Average loss: 92.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 333) +0/69092 Loss: 95.697 +3200/69092 Loss: 90.910 +6400/69092 Loss: 94.230 +9600/69092 Loss: 92.091 +12800/69092 Loss: 93.166 +16000/69092 Loss: 93.982 +19200/69092 Loss: 91.477 +22400/69092 Loss: 92.561 +25600/69092 Loss: 92.917 +28800/69092 Loss: 92.715 +32000/69092 Loss: 93.933 +35200/69092 Loss: 92.997 +38400/69092 Loss: 92.920 +41600/69092 Loss: 91.964 +44800/69092 Loss: 93.404 +48000/69092 Loss: 93.127 +51200/69092 Loss: 91.331 +54400/69092 Loss: 93.219 +57600/69092 Loss: 94.402 +60800/69092 Loss: 92.442 +64000/69092 Loss: 91.941 +67200/69092 Loss: 93.307 +Training time 0:09:13.870528 +Epoch: 60 Average loss: 92.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 334) +0/69092 Loss: 94.789 +3200/69092 Loss: 91.223 +6400/69092 Loss: 93.083 +9600/69092 Loss: 92.612 +12800/69092 Loss: 92.889 +16000/69092 Loss: 93.315 +19200/69092 Loss: 94.172 +22400/69092 Loss: 92.083 +25600/69092 Loss: 91.740 +28800/69092 Loss: 92.869 +32000/69092 Loss: 92.003 +35200/69092 Loss: 93.132 +38400/69092 Loss: 94.067 +41600/69092 Loss: 92.680 +44800/69092 Loss: 92.031 +48000/69092 Loss: 90.195 +51200/69092 Loss: 92.418 +54400/69092 Loss: 93.042 +57600/69092 Loss: 92.979 +60800/69092 Loss: 92.918 +64000/69092 Loss: 93.784 +67200/69092 Loss: 92.155 +Training time 0:09:11.371413 +Epoch: 61 Average loss: 92.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 335) +0/69092 Loss: 93.223 +3200/69092 Loss: 93.363 +6400/69092 Loss: 92.555 +9600/69092 Loss: 92.281 +12800/69092 Loss: 92.126 +16000/69092 Loss: 91.309 +19200/69092 Loss: 92.277 +22400/69092 Loss: 92.563 +25600/69092 Loss: 93.179 +28800/69092 Loss: 92.375 +32000/69092 Loss: 93.928 +35200/69092 Loss: 92.101 +38400/69092 Loss: 91.988 +41600/69092 Loss: 93.135 +44800/69092 Loss: 94.172 +48000/69092 Loss: 93.787 +51200/69092 Loss: 93.077 +54400/69092 Loss: 92.190 +57600/69092 Loss: 91.280 +60800/69092 Loss: 93.947 +64000/69092 Loss: 94.148 +67200/69092 Loss: 92.484 +Training time 0:09:20.132109 +Epoch: 62 Average loss: 92.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 336) +0/69092 Loss: 88.215 +3200/69092 Loss: 92.615 +6400/69092 Loss: 92.780 +9600/69092 Loss: 92.886 +12800/69092 Loss: 93.494 +16000/69092 Loss: 92.624 +19200/69092 Loss: 93.661 +22400/69092 Loss: 93.841 +25600/69092 Loss: 92.660 +28800/69092 Loss: 93.783 +32000/69092 Loss: 91.765 +35200/69092 Loss: 92.750 +38400/69092 Loss: 93.049 +41600/69092 Loss: 92.542 +44800/69092 Loss: 92.338 +48000/69092 Loss: 93.033 +51200/69092 Loss: 91.889 +54400/69092 Loss: 92.742 +57600/69092 Loss: 92.720 +60800/69092 Loss: 92.299 +64000/69092 Loss: 91.584 +67200/69092 Loss: 93.228 +Training time 0:09:04.761640 +Epoch: 63 Average loss: 92.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 337) +0/69092 Loss: 89.847 +3200/69092 Loss: 92.129 +6400/69092 Loss: 93.793 +9600/69092 Loss: 92.179 +12800/69092 Loss: 93.794 +16000/69092 Loss: 92.462 +19200/69092 Loss: 93.471 +22400/69092 Loss: 92.942 +25600/69092 Loss: 93.235 +28800/69092 Loss: 92.808 +32000/69092 Loss: 92.041 +35200/69092 Loss: 92.615 +38400/69092 Loss: 91.374 +41600/69092 Loss: 91.330 +44800/69092 Loss: 93.226 +48000/69092 Loss: 94.729 +51200/69092 Loss: 91.781 +54400/69092 Loss: 92.486 +57600/69092 Loss: 92.895 +60800/69092 Loss: 92.269 +64000/69092 Loss: 91.702 +67200/69092 Loss: 92.197 +Training time 0:09:06.237376 +Epoch: 64 Average loss: 92.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 338) +0/69092 Loss: 94.393 +3200/69092 Loss: 93.704 +6400/69092 Loss: 93.066 +9600/69092 Loss: 92.929 +12800/69092 Loss: 92.408 +16000/69092 Loss: 92.560 +19200/69092 Loss: 91.174 +22400/69092 Loss: 92.738 +25600/69092 Loss: 91.986 +28800/69092 Loss: 92.754 +32000/69092 Loss: 91.361 +35200/69092 Loss: 93.694 +38400/69092 Loss: 92.798 +41600/69092 Loss: 91.758 +44800/69092 Loss: 91.921 +48000/69092 Loss: 93.418 +51200/69092 Loss: 92.257 +54400/69092 Loss: 95.055 +57600/69092 Loss: 93.380 +60800/69092 Loss: 94.093 +64000/69092 Loss: 91.634 +67200/69092 Loss: 92.647 +Training time 0:09:07.762064 +Epoch: 65 Average loss: 92.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 339) +0/69092 Loss: 86.038 +3200/69092 Loss: 93.798 +6400/69092 Loss: 93.210 +9600/69092 Loss: 91.563 +12800/69092 Loss: 93.473 +16000/69092 Loss: 91.733 +19200/69092 Loss: 91.998 +22400/69092 Loss: 93.425 +25600/69092 Loss: 93.737 +28800/69092 Loss: 91.113 +32000/69092 Loss: 93.119 +35200/69092 Loss: 92.425 +38400/69092 Loss: 93.718 +41600/69092 Loss: 91.998 +44800/69092 Loss: 93.094 +48000/69092 Loss: 92.465 +51200/69092 Loss: 92.835 +54400/69092 Loss: 92.684 +57600/69092 Loss: 91.931 +60800/69092 Loss: 92.704 +64000/69092 Loss: 92.822 +67200/69092 Loss: 91.625 +Training time 0:09:13.169273 +Epoch: 66 Average loss: 92.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 340) +0/69092 Loss: 89.037 +3200/69092 Loss: 91.810 +6400/69092 Loss: 92.360 +9600/69092 Loss: 93.140 +12800/69092 Loss: 92.541 +16000/69092 Loss: 93.934 +19200/69092 Loss: 93.167 +22400/69092 Loss: 92.129 +25600/69092 Loss: 92.710 +28800/69092 Loss: 92.049 +32000/69092 Loss: 92.884 +35200/69092 Loss: 92.476 +38400/69092 Loss: 93.797 +41600/69092 Loss: 93.568 +44800/69092 Loss: 93.645 +48000/69092 Loss: 92.282 +51200/69092 Loss: 92.997 +54400/69092 Loss: 94.692 +57600/69092 Loss: 91.854 +60800/69092 Loss: 92.538 +64000/69092 Loss: 92.900 +67200/69092 Loss: 90.296 +Training time 0:09:04.855597 +Epoch: 67 Average loss: 92.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 341) +0/69092 Loss: 94.247 +3200/69092 Loss: 93.142 +6400/69092 Loss: 92.362 +9600/69092 Loss: 93.531 +12800/69092 Loss: 93.227 +16000/69092 Loss: 93.134 +19200/69092 Loss: 92.585 +22400/69092 Loss: 92.774 +25600/69092 Loss: 92.837 +28800/69092 Loss: 92.629 +32000/69092 Loss: 92.789 +35200/69092 Loss: 92.988 +38400/69092 Loss: 91.701 +41600/69092 Loss: 92.462 +44800/69092 Loss: 92.286 +48000/69092 Loss: 92.056 +51200/69092 Loss: 92.748 +54400/69092 Loss: 93.425 +57600/69092 Loss: 92.800 +60800/69092 Loss: 92.203 +64000/69092 Loss: 93.046 +67200/69092 Loss: 91.332 +Training time 0:09:20.219479 +Epoch: 68 Average loss: 92.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 342) +0/69092 Loss: 94.114 +3200/69092 Loss: 92.626 +6400/69092 Loss: 92.000 +9600/69092 Loss: 92.182 +12800/69092 Loss: 92.931 +16000/69092 Loss: 92.683 +19200/69092 Loss: 92.599 +22400/69092 Loss: 93.828 +25600/69092 Loss: 92.619 +28800/69092 Loss: 92.376 +32000/69092 Loss: 92.293 +35200/69092 Loss: 92.402 +38400/69092 Loss: 92.099 +41600/69092 Loss: 93.837 +44800/69092 Loss: 93.860 +48000/69092 Loss: 92.235 +51200/69092 Loss: 93.947 +54400/69092 Loss: 93.093 +57600/69092 Loss: 93.099 +60800/69092 Loss: 91.532 +64000/69092 Loss: 92.334 +67200/69092 Loss: 93.184 +Training time 0:09:17.056017 +Epoch: 69 Average loss: 92.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 343) +0/69092 Loss: 94.984 +3200/69092 Loss: 93.035 +6400/69092 Loss: 92.881 +9600/69092 Loss: 94.114 +12800/69092 Loss: 92.079 +16000/69092 Loss: 92.413 +19200/69092 Loss: 92.954 +22400/69092 Loss: 92.325 +25600/69092 Loss: 93.133 +28800/69092 Loss: 92.842 +32000/69092 Loss: 92.430 +35200/69092 Loss: 93.479 +38400/69092 Loss: 92.938 +41600/69092 Loss: 91.762 +44800/69092 Loss: 92.856 +48000/69092 Loss: 92.513 +51200/69092 Loss: 91.970 +54400/69092 Loss: 91.756 +57600/69092 Loss: 93.176 +60800/69092 Loss: 92.761 +64000/69092 Loss: 92.831 +67200/69092 Loss: 91.815 +Training time 0:09:24.122106 +Epoch: 70 Average loss: 92.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 344) +0/69092 Loss: 101.133 +3200/69092 Loss: 93.217 +6400/69092 Loss: 93.222 +9600/69092 Loss: 91.015 +12800/69092 Loss: 92.314 +16000/69092 Loss: 90.406 +19200/69092 Loss: 92.745 +22400/69092 Loss: 92.929 +25600/69092 Loss: 93.717 +28800/69092 Loss: 92.662 +32000/69092 Loss: 91.972 +35200/69092 Loss: 91.797 +38400/69092 Loss: 91.946 +41600/69092 Loss: 93.048 +44800/69092 Loss: 93.003 +48000/69092 Loss: 92.246 +51200/69092 Loss: 92.159 +54400/69092 Loss: 92.750 +57600/69092 Loss: 92.997 +60800/69092 Loss: 92.647 +64000/69092 Loss: 92.233 +67200/69092 Loss: 93.211 +Training time 0:09:00.905668 +Epoch: 71 Average loss: 92.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 345) +0/69092 Loss: 101.036 +3200/69092 Loss: 91.632 +6400/69092 Loss: 92.074 +9600/69092 Loss: 93.010 +12800/69092 Loss: 92.954 +16000/69092 Loss: 92.502 +19200/69092 Loss: 92.092 +22400/69092 Loss: 91.572 +25600/69092 Loss: 92.410 +28800/69092 Loss: 92.332 +32000/69092 Loss: 93.616 +35200/69092 Loss: 92.349 +38400/69092 Loss: 92.732 +41600/69092 Loss: 92.395 +44800/69092 Loss: 92.790 +48000/69092 Loss: 92.697 +51200/69092 Loss: 93.355 +54400/69092 Loss: 91.957 +57600/69092 Loss: 92.419 +60800/69092 Loss: 93.072 +64000/69092 Loss: 93.767 +67200/69092 Loss: 92.532 +Training time 0:09:02.298593 +Epoch: 72 Average loss: 92.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 346) +0/69092 Loss: 90.406 +3200/69092 Loss: 91.837 +6400/69092 Loss: 92.679 +9600/69092 Loss: 94.408 +12800/69092 Loss: 93.613 +16000/69092 Loss: 92.154 +19200/69092 Loss: 92.112 +22400/69092 Loss: 92.650 +25600/69092 Loss: 92.385 +28800/69092 Loss: 90.958 +32000/69092 Loss: 93.429 +35200/69092 Loss: 93.716 +38400/69092 Loss: 93.348 +41600/69092 Loss: 90.943 +44800/69092 Loss: 91.621 +48000/69092 Loss: 92.789 +51200/69092 Loss: 92.514 +54400/69092 Loss: 92.710 +57600/69092 Loss: 90.896 +60800/69092 Loss: 93.166 +64000/69092 Loss: 93.524 +67200/69092 Loss: 92.438 +Training time 0:08:52.426041 +Epoch: 73 Average loss: 92.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 347) +0/69092 Loss: 94.813 +3200/69092 Loss: 91.527 +6400/69092 Loss: 93.465 +9600/69092 Loss: 91.611 +12800/69092 Loss: 93.184 +16000/69092 Loss: 93.312 +19200/69092 Loss: 92.665 +22400/69092 Loss: 91.151 +25600/69092 Loss: 92.765 +28800/69092 Loss: 91.962 +32000/69092 Loss: 93.744 +35200/69092 Loss: 93.317 +38400/69092 Loss: 92.749 +41600/69092 Loss: 93.280 +44800/69092 Loss: 92.477 +48000/69092 Loss: 93.299 +51200/69092 Loss: 92.521 +54400/69092 Loss: 92.499 +57600/69092 Loss: 92.273 +60800/69092 Loss: 93.128 +64000/69092 Loss: 93.439 +67200/69092 Loss: 91.348 +Training time 0:09:04.808072 +Epoch: 74 Average loss: 92.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 348) +0/69092 Loss: 88.978 +3200/69092 Loss: 93.339 +6400/69092 Loss: 91.512 +9600/69092 Loss: 93.294 +12800/69092 Loss: 92.480 +16000/69092 Loss: 93.985 +19200/69092 Loss: 91.829 +22400/69092 Loss: 92.074 +25600/69092 Loss: 92.779 +28800/69092 Loss: 93.188 +32000/69092 Loss: 92.488 +35200/69092 Loss: 90.728 +38400/69092 Loss: 91.603 +41600/69092 Loss: 93.129 +44800/69092 Loss: 93.415 +48000/69092 Loss: 91.470 +51200/69092 Loss: 92.375 +54400/69092 Loss: 92.552 +57600/69092 Loss: 93.385 +60800/69092 Loss: 91.635 +64000/69092 Loss: 92.538 +67200/69092 Loss: 93.602 +Training time 0:09:14.036294 +Epoch: 75 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 349) +0/69092 Loss: 88.200 +3200/69092 Loss: 91.713 +6400/69092 Loss: 92.429 +9600/69092 Loss: 92.610 +12800/69092 Loss: 92.892 +16000/69092 Loss: 91.790 +19200/69092 Loss: 92.742 +22400/69092 Loss: 92.233 +25600/69092 Loss: 93.628 +28800/69092 Loss: 90.922 +32000/69092 Loss: 91.466 +35200/69092 Loss: 92.868 +38400/69092 Loss: 93.775 +41600/69092 Loss: 92.962 +44800/69092 Loss: 92.343 +48000/69092 Loss: 92.501 +51200/69092 Loss: 94.172 +54400/69092 Loss: 92.765 +57600/69092 Loss: 92.924 +60800/69092 Loss: 93.382 +64000/69092 Loss: 91.429 +67200/69092 Loss: 92.952 +Training time 0:09:11.248002 +Epoch: 76 Average loss: 92.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 350) +0/69092 Loss: 99.020 +3200/69092 Loss: 93.539 +6400/69092 Loss: 91.345 +9600/69092 Loss: 93.098 +12800/69092 Loss: 91.953 +16000/69092 Loss: 93.597 +19200/69092 Loss: 92.772 +22400/69092 Loss: 94.078 +25600/69092 Loss: 92.692 +28800/69092 Loss: 93.393 +32000/69092 Loss: 91.140 +35200/69092 Loss: 91.590 +38400/69092 Loss: 93.622 +41600/69092 Loss: 91.336 +44800/69092 Loss: 92.285 +48000/69092 Loss: 92.387 +51200/69092 Loss: 91.141 +54400/69092 Loss: 94.264 +57600/69092 Loss: 93.215 +60800/69092 Loss: 93.102 +64000/69092 Loss: 91.942 +67200/69092 Loss: 93.209 +Training time 0:09:20.061150 +Epoch: 77 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 351) +0/69092 Loss: 92.395 +3200/69092 Loss: 92.189 +6400/69092 Loss: 92.322 +9600/69092 Loss: 91.407 +12800/69092 Loss: 91.891 +16000/69092 Loss: 93.186 +19200/69092 Loss: 93.585 +22400/69092 Loss: 93.631 +25600/69092 Loss: 93.334 +28800/69092 Loss: 93.689 +32000/69092 Loss: 91.948 +35200/69092 Loss: 91.973 +38400/69092 Loss: 92.419 +41600/69092 Loss: 92.235 +44800/69092 Loss: 92.814 +48000/69092 Loss: 93.729 +51200/69092 Loss: 92.181 +54400/69092 Loss: 92.826 +57600/69092 Loss: 91.554 +60800/69092 Loss: 91.470 +64000/69092 Loss: 92.387 +67200/69092 Loss: 92.213 +Training time 0:09:22.655556 +Epoch: 78 Average loss: 92.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 352) +0/69092 Loss: 92.701 +3200/69092 Loss: 94.436 +6400/69092 Loss: 92.113 +9600/69092 Loss: 91.777 +12800/69092 Loss: 93.225 +16000/69092 Loss: 93.088 +19200/69092 Loss: 93.043 +22400/69092 Loss: 92.941 +25600/69092 Loss: 91.669 +28800/69092 Loss: 91.849 +32000/69092 Loss: 93.743 +35200/69092 Loss: 92.708 +38400/69092 Loss: 93.142 +41600/69092 Loss: 92.153 +44800/69092 Loss: 92.138 +48000/69092 Loss: 93.251 +51200/69092 Loss: 91.722 +54400/69092 Loss: 92.566 +57600/69092 Loss: 92.368 +60800/69092 Loss: 90.682 +64000/69092 Loss: 93.346 +67200/69092 Loss: 93.698 +Training time 0:09:28.585701 +Epoch: 79 Average loss: 92.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 353) +0/69092 Loss: 92.916 +3200/69092 Loss: 92.209 +6400/69092 Loss: 92.589 +9600/69092 Loss: 91.909 +12800/69092 Loss: 92.639 +16000/69092 Loss: 92.223 +19200/69092 Loss: 93.152 +22400/69092 Loss: 92.880 +25600/69092 Loss: 92.704 +28800/69092 Loss: 92.755 +32000/69092 Loss: 93.771 +35200/69092 Loss: 92.869 +38400/69092 Loss: 92.582 +41600/69092 Loss: 92.074 +44800/69092 Loss: 92.419 +48000/69092 Loss: 92.237 +51200/69092 Loss: 92.565 +54400/69092 Loss: 93.548 +57600/69092 Loss: 92.752 +60800/69092 Loss: 92.263 +64000/69092 Loss: 91.161 +67200/69092 Loss: 92.716 +Training time 0:09:24.779396 +Epoch: 80 Average loss: 92.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 354) +0/69092 Loss: 89.718 +3200/69092 Loss: 92.237 +6400/69092 Loss: 91.515 +9600/69092 Loss: 93.306 +12800/69092 Loss: 93.117 +16000/69092 Loss: 91.449 +19200/69092 Loss: 93.427 +22400/69092 Loss: 91.727 +25600/69092 Loss: 92.545 +28800/69092 Loss: 91.876 +32000/69092 Loss: 92.226 +35200/69092 Loss: 92.364 +38400/69092 Loss: 91.616 +41600/69092 Loss: 92.890 +44800/69092 Loss: 92.879 +48000/69092 Loss: 92.443 +51200/69092 Loss: 94.304 +54400/69092 Loss: 92.509 +57600/69092 Loss: 92.717 +60800/69092 Loss: 93.267 +64000/69092 Loss: 92.295 +67200/69092 Loss: 91.868 +Training time 0:09:10.255964 +Epoch: 81 Average loss: 92.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 355) +0/69092 Loss: 95.241 +3200/69092 Loss: 92.047 +6400/69092 Loss: 92.330 +9600/69092 Loss: 92.093 +12800/69092 Loss: 91.874 +16000/69092 Loss: 92.867 +19200/69092 Loss: 93.324 +22400/69092 Loss: 93.148 +25600/69092 Loss: 92.900 +28800/69092 Loss: 92.408 +32000/69092 Loss: 91.952 +35200/69092 Loss: 92.847 +38400/69092 Loss: 90.621 +41600/69092 Loss: 92.639 +44800/69092 Loss: 92.216 +48000/69092 Loss: 92.020 +51200/69092 Loss: 92.817 +54400/69092 Loss: 91.798 +57600/69092 Loss: 92.978 +60800/69092 Loss: 92.888 +64000/69092 Loss: 93.224 +67200/69092 Loss: 93.445 +Training time 0:09:14.945449 +Epoch: 82 Average loss: 92.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 356) +0/69092 Loss: 88.614 +3200/69092 Loss: 92.839 +6400/69092 Loss: 91.376 +9600/69092 Loss: 93.249 +12800/69092 Loss: 92.303 +16000/69092 Loss: 92.483 +19200/69092 Loss: 92.411 +22400/69092 Loss: 91.891 +25600/69092 Loss: 94.025 +28800/69092 Loss: 92.734 +32000/69092 Loss: 91.745 +35200/69092 Loss: 91.762 +38400/69092 Loss: 92.831 +41600/69092 Loss: 92.359 +44800/69092 Loss: 91.865 +48000/69092 Loss: 93.978 +51200/69092 Loss: 92.783 +54400/69092 Loss: 92.876 +57600/69092 Loss: 92.456 +60800/69092 Loss: 92.798 +64000/69092 Loss: 92.739 +67200/69092 Loss: 92.764 +Training time 0:09:00.189561 +Epoch: 83 Average loss: 92.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 357) +0/69092 Loss: 92.353 +3200/69092 Loss: 92.025 +6400/69092 Loss: 91.983 +9600/69092 Loss: 92.258 +12800/69092 Loss: 92.672 +16000/69092 Loss: 91.614 +19200/69092 Loss: 93.940 +22400/69092 Loss: 92.666 +25600/69092 Loss: 93.206 +28800/69092 Loss: 94.376 +32000/69092 Loss: 93.161 +35200/69092 Loss: 91.801 +38400/69092 Loss: 91.450 +41600/69092 Loss: 92.336 +44800/69092 Loss: 92.474 +48000/69092 Loss: 93.434 +51200/69092 Loss: 91.323 +54400/69092 Loss: 91.694 +57600/69092 Loss: 93.193 +60800/69092 Loss: 91.834 +64000/69092 Loss: 93.180 +67200/69092 Loss: 92.002 +Training time 0:09:06.752821 +Epoch: 84 Average loss: 92.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 358) +0/69092 Loss: 89.928 +3200/69092 Loss: 91.577 +6400/69092 Loss: 92.177 +9600/69092 Loss: 92.456 +12800/69092 Loss: 92.114 +16000/69092 Loss: 92.926 +19200/69092 Loss: 91.164 +22400/69092 Loss: 92.419 +25600/69092 Loss: 92.565 +28800/69092 Loss: 92.107 +32000/69092 Loss: 91.972 +35200/69092 Loss: 91.662 +38400/69092 Loss: 93.627 +41600/69092 Loss: 93.307 +44800/69092 Loss: 92.325 +48000/69092 Loss: 93.227 +51200/69092 Loss: 92.681 +54400/69092 Loss: 94.165 +57600/69092 Loss: 92.675 +60800/69092 Loss: 92.131 +64000/69092 Loss: 91.804 +67200/69092 Loss: 92.121 +Training time 0:08:46.237079 +Epoch: 85 Average loss: 92.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 359) +0/69092 Loss: 96.206 +3200/69092 Loss: 92.961 +6400/69092 Loss: 91.041 +9600/69092 Loss: 92.624 +12800/69092 Loss: 91.493 +16000/69092 Loss: 91.728 +19200/69092 Loss: 90.083 +22400/69092 Loss: 92.817 +25600/69092 Loss: 92.751 +28800/69092 Loss: 92.966 +32000/69092 Loss: 92.241 +35200/69092 Loss: 93.226 +38400/69092 Loss: 92.007 +41600/69092 Loss: 94.626 +44800/69092 Loss: 92.399 +48000/69092 Loss: 92.921 +51200/69092 Loss: 92.373 +54400/69092 Loss: 93.409 +57600/69092 Loss: 93.640 +60800/69092 Loss: 92.176 +64000/69092 Loss: 92.598 +67200/69092 Loss: 92.194 +Training time 0:09:09.692338 +Epoch: 86 Average loss: 92.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 360) +0/69092 Loss: 88.608 +3200/69092 Loss: 92.030 +6400/69092 Loss: 91.621 +9600/69092 Loss: 93.396 +12800/69092 Loss: 92.679 +16000/69092 Loss: 94.066 +19200/69092 Loss: 92.588 +22400/69092 Loss: 91.318 +25600/69092 Loss: 91.912 +28800/69092 Loss: 91.588 +32000/69092 Loss: 92.873 +35200/69092 Loss: 93.128 +38400/69092 Loss: 92.898 +41600/69092 Loss: 92.867 +44800/69092 Loss: 93.031 +48000/69092 Loss: 92.335 +51200/69092 Loss: 91.190 +54400/69092 Loss: 92.458 +57600/69092 Loss: 92.221 +60800/69092 Loss: 92.870 +64000/69092 Loss: 92.621 +67200/69092 Loss: 93.696 +Training time 0:09:14.589407 +Epoch: 87 Average loss: 92.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 361) +0/69092 Loss: 93.102 +3200/69092 Loss: 93.604 +6400/69092 Loss: 93.492 +9600/69092 Loss: 92.752 +12800/69092 Loss: 92.960 +16000/69092 Loss: 93.057 +19200/69092 Loss: 93.448 +22400/69092 Loss: 92.796 +25600/69092 Loss: 93.914 +28800/69092 Loss: 90.658 +32000/69092 Loss: 92.540 +35200/69092 Loss: 92.774 +38400/69092 Loss: 93.041 +41600/69092 Loss: 91.714 +44800/69092 Loss: 92.051 +48000/69092 Loss: 91.279 +51200/69092 Loss: 92.665 +54400/69092 Loss: 91.531 +57600/69092 Loss: 91.586 +60800/69092 Loss: 92.973 +64000/69092 Loss: 93.911 +67200/69092 Loss: 91.511 +Training time 0:09:09.556676 +Epoch: 88 Average loss: 92.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 362) +0/69092 Loss: 104.718 +3200/69092 Loss: 91.965 +6400/69092 Loss: 91.982 +9600/69092 Loss: 91.386 +12800/69092 Loss: 93.186 +16000/69092 Loss: 91.821 +19200/69092 Loss: 91.277 +22400/69092 Loss: 91.287 +25600/69092 Loss: 93.302 +28800/69092 Loss: 92.187 +32000/69092 Loss: 92.465 +35200/69092 Loss: 93.042 +38400/69092 Loss: 92.904 +41600/69092 Loss: 93.602 +44800/69092 Loss: 92.662 +48000/69092 Loss: 92.210 +51200/69092 Loss: 92.860 +54400/69092 Loss: 92.116 +57600/69092 Loss: 93.576 +60800/69092 Loss: 92.395 +64000/69092 Loss: 93.066 +67200/69092 Loss: 92.533 +Training time 0:09:17.192621 +Epoch: 89 Average loss: 92.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 363) +0/69092 Loss: 103.000 +3200/69092 Loss: 92.302 +6400/69092 Loss: 92.547 +9600/69092 Loss: 92.996 +12800/69092 Loss: 93.129 +16000/69092 Loss: 92.819 +19200/69092 Loss: 91.761 +22400/69092 Loss: 91.859 +25600/69092 Loss: 92.097 +28800/69092 Loss: 93.936 +32000/69092 Loss: 92.431 +35200/69092 Loss: 92.406 +38400/69092 Loss: 92.025 +41600/69092 Loss: 91.283 +44800/69092 Loss: 92.613 +48000/69092 Loss: 91.666 +51200/69092 Loss: 92.467 +54400/69092 Loss: 92.308 +57600/69092 Loss: 93.005 +60800/69092 Loss: 92.721 +64000/69092 Loss: 92.137 +67200/69092 Loss: 91.879 +Training time 0:09:08.428994 +Epoch: 90 Average loss: 92.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 364) +0/69092 Loss: 82.716 +3200/69092 Loss: 92.449 +6400/69092 Loss: 91.703 +9600/69092 Loss: 92.598 +12800/69092 Loss: 92.333 +16000/69092 Loss: 92.989 +19200/69092 Loss: 91.603 +22400/69092 Loss: 92.084 +25600/69092 Loss: 92.378 +28800/69092 Loss: 92.196 +32000/69092 Loss: 91.555 +35200/69092 Loss: 92.045 +38400/69092 Loss: 92.567 +41600/69092 Loss: 92.949 +44800/69092 Loss: 93.265 +48000/69092 Loss: 92.327 +51200/69092 Loss: 92.595 +54400/69092 Loss: 92.712 +57600/69092 Loss: 94.190 +60800/69092 Loss: 91.594 +64000/69092 Loss: 93.643 +67200/69092 Loss: 92.694 +Training time 0:09:12.135638 +Epoch: 91 Average loss: 92.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 365) +0/69092 Loss: 104.875 +3200/69092 Loss: 92.339 +6400/69092 Loss: 92.153 +9600/69092 Loss: 92.778 +12800/69092 Loss: 91.941 +16000/69092 Loss: 91.447 +19200/69092 Loss: 92.550 +22400/69092 Loss: 92.549 +25600/69092 Loss: 93.416 +28800/69092 Loss: 93.126 +32000/69092 Loss: 92.138 +35200/69092 Loss: 93.260 +38400/69092 Loss: 91.350 +41600/69092 Loss: 91.683 +44800/69092 Loss: 91.188 +48000/69092 Loss: 91.367 +51200/69092 Loss: 92.264 +54400/69092 Loss: 92.671 +57600/69092 Loss: 92.402 +60800/69092 Loss: 93.257 +64000/69092 Loss: 93.056 +67200/69092 Loss: 93.728 +Training time 0:09:27.749909 +Epoch: 92 Average loss: 92.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 366) +0/69092 Loss: 93.427 +3200/69092 Loss: 92.449 +6400/69092 Loss: 92.103 +9600/69092 Loss: 92.246 +12800/69092 Loss: 92.679 +16000/69092 Loss: 92.186 +19200/69092 Loss: 92.240 +22400/69092 Loss: 91.309 +25600/69092 Loss: 93.193 +28800/69092 Loss: 92.451 +32000/69092 Loss: 92.282 +35200/69092 Loss: 92.168 +38400/69092 Loss: 92.788 +41600/69092 Loss: 91.928 +44800/69092 Loss: 91.749 +48000/69092 Loss: 93.404 +51200/69092 Loss: 92.610 +54400/69092 Loss: 92.807 +57600/69092 Loss: 93.625 +60800/69092 Loss: 92.166 +64000/69092 Loss: 92.650 +67200/69092 Loss: 92.156 +Training time 0:08:46.452016 +Epoch: 93 Average loss: 92.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 367) +0/69092 Loss: 96.524 +3200/69092 Loss: 92.316 +6400/69092 Loss: 93.008 +9600/69092 Loss: 90.796 +12800/69092 Loss: 92.777 +16000/69092 Loss: 93.128 +19200/69092 Loss: 91.016 +22400/69092 Loss: 92.290 +25600/69092 Loss: 92.625 +28800/69092 Loss: 94.257 +32000/69092 Loss: 91.106 +35200/69092 Loss: 92.826 +38400/69092 Loss: 91.789 +41600/69092 Loss: 91.184 +44800/69092 Loss: 91.977 +48000/69092 Loss: 92.299 +51200/69092 Loss: 94.001 +54400/69092 Loss: 93.078 +57600/69092 Loss: 92.552 +60800/69092 Loss: 91.626 +64000/69092 Loss: 91.538 +67200/69092 Loss: 92.795 +Training time 0:08:58.323246 +Epoch: 94 Average loss: 92.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 368) +0/69092 Loss: 95.575 +3200/69092 Loss: 90.826 +6400/69092 Loss: 91.631 +9600/69092 Loss: 92.376 +12800/69092 Loss: 92.371 +16000/69092 Loss: 93.220 +19200/69092 Loss: 94.069 +22400/69092 Loss: 93.650 +25600/69092 Loss: 92.034 +28800/69092 Loss: 92.200 +32000/69092 Loss: 92.388 +35200/69092 Loss: 91.503 +38400/69092 Loss: 93.614 +41600/69092 Loss: 92.213 +44800/69092 Loss: 92.917 +48000/69092 Loss: 93.453 +51200/69092 Loss: 90.660 +54400/69092 Loss: 92.457 +57600/69092 Loss: 92.100 +60800/69092 Loss: 91.673 +64000/69092 Loss: 91.396 +67200/69092 Loss: 93.210 +Training time 0:09:07.354259 +Epoch: 95 Average loss: 92.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 369) +0/69092 Loss: 81.568 +3200/69092 Loss: 91.293 +6400/69092 Loss: 93.157 +9600/69092 Loss: 93.041 +12800/69092 Loss: 91.778 +16000/69092 Loss: 92.214 +19200/69092 Loss: 90.883 +22400/69092 Loss: 90.262 +25600/69092 Loss: 92.852 +28800/69092 Loss: 91.931 +32000/69092 Loss: 92.010 +35200/69092 Loss: 92.932 +38400/69092 Loss: 92.611 +41600/69092 Loss: 93.099 +44800/69092 Loss: 92.877 +48000/69092 Loss: 92.357 +51200/69092 Loss: 92.563 +54400/69092 Loss: 92.527 +57600/69092 Loss: 92.992 +60800/69092 Loss: 92.935 +64000/69092 Loss: 92.053 +67200/69092 Loss: 92.539 +Training time 0:09:11.212684 +Epoch: 96 Average loss: 92.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 370) +0/69092 Loss: 98.752 +3200/69092 Loss: 90.993 +6400/69092 Loss: 92.489 +9600/69092 Loss: 92.776 +12800/69092 Loss: 92.002 +16000/69092 Loss: 92.147 +19200/69092 Loss: 91.973 +22400/69092 Loss: 92.433 +25600/69092 Loss: 92.714 +28800/69092 Loss: 92.857 +32000/69092 Loss: 92.600 +35200/69092 Loss: 91.916 +38400/69092 Loss: 92.645 +41600/69092 Loss: 92.834 +44800/69092 Loss: 92.084 +48000/69092 Loss: 91.984 +51200/69092 Loss: 91.730 +54400/69092 Loss: 93.363 +57600/69092 Loss: 93.023 +60800/69092 Loss: 92.141 +64000/69092 Loss: 92.364 +67200/69092 Loss: 93.095 +Training time 0:09:20.304428 +Epoch: 97 Average loss: 92.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 371) +0/69092 Loss: 84.726 +3200/69092 Loss: 91.747 +6400/69092 Loss: 90.850 +9600/69092 Loss: 92.755 +12800/69092 Loss: 92.124 +16000/69092 Loss: 92.311 +19200/69092 Loss: 93.082 +22400/69092 Loss: 92.177 +25600/69092 Loss: 91.205 +28800/69092 Loss: 93.862 +32000/69092 Loss: 93.168 +35200/69092 Loss: 92.310 +38400/69092 Loss: 92.646 +41600/69092 Loss: 90.954 +44800/69092 Loss: 93.012 +48000/69092 Loss: 92.678 +51200/69092 Loss: 92.702 +54400/69092 Loss: 92.416 +57600/69092 Loss: 91.733 +60800/69092 Loss: 93.885 +64000/69092 Loss: 92.027 +67200/69092 Loss: 91.699 +Training time 0:09:13.793960 +Epoch: 98 Average loss: 92.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 372) +0/69092 Loss: 90.081 +3200/69092 Loss: 92.782 +6400/69092 Loss: 92.002 +9600/69092 Loss: 93.358 +12800/69092 Loss: 91.384 +16000/69092 Loss: 92.188 +19200/69092 Loss: 93.008 +22400/69092 Loss: 92.693 +25600/69092 Loss: 92.169 +28800/69092 Loss: 92.704 +32000/69092 Loss: 92.604 +35200/69092 Loss: 93.166 +38400/69092 Loss: 91.065 +41600/69092 Loss: 92.471 +44800/69092 Loss: 92.023 +48000/69092 Loss: 92.736 +51200/69092 Loss: 91.925 +54400/69092 Loss: 92.390 +57600/69092 Loss: 92.138 +60800/69092 Loss: 91.775 +64000/69092 Loss: 93.261 +67200/69092 Loss: 92.011 +Training time 0:09:04.739344 +Epoch: 99 Average loss: 92.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 373) +0/69092 Loss: 93.962 +3200/69092 Loss: 92.368 +6400/69092 Loss: 91.617 +9600/69092 Loss: 90.768 +12800/69092 Loss: 93.207 +16000/69092 Loss: 92.035 +19200/69092 Loss: 92.287 +22400/69092 Loss: 92.210 +25600/69092 Loss: 92.650 +28800/69092 Loss: 92.435 +32000/69092 Loss: 92.510 +35200/69092 Loss: 92.643 +38400/69092 Loss: 93.035 +41600/69092 Loss: 92.735 +44800/69092 Loss: 91.862 +48000/69092 Loss: 92.361 +51200/69092 Loss: 93.824 +54400/69092 Loss: 90.932 +57600/69092 Loss: 91.344 +60800/69092 Loss: 92.436 +64000/69092 Loss: 93.419 +67200/69092 Loss: 92.690 +Training time 0:09:18.714874 +Epoch: 100 Average loss: 92.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 374) +0/69092 Loss: 103.066 +3200/69092 Loss: 92.092 +6400/69092 Loss: 91.992 +9600/69092 Loss: 91.224 +12800/69092 Loss: 92.488 +16000/69092 Loss: 93.364 +19200/69092 Loss: 92.584 +22400/69092 Loss: 93.243 +25600/69092 Loss: 92.120 +28800/69092 Loss: 91.267 +32000/69092 Loss: 92.206 +35200/69092 Loss: 93.500 +38400/69092 Loss: 91.371 +41600/69092 Loss: 91.104 +44800/69092 Loss: 92.495 +48000/69092 Loss: 92.449 +51200/69092 Loss: 92.511 +54400/69092 Loss: 91.929 +57600/69092 Loss: 93.250 +60800/69092 Loss: 91.732 +64000/69092 Loss: 92.609 +67200/69092 Loss: 92.654 +Training time 0:08:51.837136 +Epoch: 101 Average loss: 92.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 375) +0/69092 Loss: 92.746 +3200/69092 Loss: 91.637 +6400/69092 Loss: 92.688 +9600/69092 Loss: 90.825 +12800/69092 Loss: 91.479 +16000/69092 Loss: 92.493 +19200/69092 Loss: 91.535 +22400/69092 Loss: 92.017 +25600/69092 Loss: 92.893 +28800/69092 Loss: 92.482 +32000/69092 Loss: 92.273 +35200/69092 Loss: 91.402 +38400/69092 Loss: 92.502 +41600/69092 Loss: 92.207 +44800/69092 Loss: 93.004 +48000/69092 Loss: 92.879 +51200/69092 Loss: 93.345 +54400/69092 Loss: 93.163 +57600/69092 Loss: 91.810 +60800/69092 Loss: 93.678 +64000/69092 Loss: 92.688 +67200/69092 Loss: 93.021 +Training time 0:08:56.473340 +Epoch: 102 Average loss: 92.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 376) +0/69092 Loss: 89.314 +3200/69092 Loss: 92.020 +6400/69092 Loss: 92.702 +9600/69092 Loss: 91.382 +12800/69092 Loss: 91.895 +16000/69092 Loss: 93.160 +19200/69092 Loss: 92.146 +22400/69092 Loss: 91.990 +25600/69092 Loss: 92.041 +28800/69092 Loss: 92.134 +32000/69092 Loss: 91.965 +35200/69092 Loss: 92.147 +38400/69092 Loss: 91.780 +41600/69092 Loss: 93.073 +44800/69092 Loss: 90.884 +48000/69092 Loss: 90.093 +51200/69092 Loss: 92.549 +54400/69092 Loss: 93.637 +57600/69092 Loss: 93.680 +60800/69092 Loss: 93.024 +64000/69092 Loss: 92.193 +67200/69092 Loss: 93.562 +Training time 0:09:00.407773 +Epoch: 103 Average loss: 92.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 377) +0/69092 Loss: 92.262 +3200/69092 Loss: 94.452 +6400/69092 Loss: 92.233 +9600/69092 Loss: 92.509 +12800/69092 Loss: 90.670 +16000/69092 Loss: 92.692 +19200/69092 Loss: 92.287 +22400/69092 Loss: 91.804 +25600/69092 Loss: 92.455 +28800/69092 Loss: 91.249 +32000/69092 Loss: 94.175 +35200/69092 Loss: 92.779 +38400/69092 Loss: 92.605 +41600/69092 Loss: 92.501 +44800/69092 Loss: 92.958 +48000/69092 Loss: 92.356 +51200/69092 Loss: 90.282 +54400/69092 Loss: 91.727 +57600/69092 Loss: 91.624 +60800/69092 Loss: 93.527 +64000/69092 Loss: 91.460 +67200/69092 Loss: 90.648 +Training time 0:08:59.421049 +Epoch: 104 Average loss: 92.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 378) +0/69092 Loss: 88.826 +3200/69092 Loss: 91.335 +6400/69092 Loss: 92.654 +9600/69092 Loss: 92.926 +12800/69092 Loss: 93.326 +16000/69092 Loss: 91.624 +19200/69092 Loss: 91.837 +22400/69092 Loss: 93.082 +25600/69092 Loss: 92.662 +28800/69092 Loss: 92.629 +32000/69092 Loss: 91.681 +35200/69092 Loss: 92.898 +38400/69092 Loss: 92.053 +41600/69092 Loss: 90.738 +44800/69092 Loss: 92.545 +48000/69092 Loss: 92.181 +51200/69092 Loss: 92.485 +54400/69092 Loss: 91.714 +57600/69092 Loss: 91.719 +60800/69092 Loss: 93.318 +64000/69092 Loss: 92.722 +67200/69092 Loss: 92.365 +Training time 0:09:19.492233 +Epoch: 105 Average loss: 92.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 379) +0/69092 Loss: 91.529 +3200/69092 Loss: 92.826 +6400/69092 Loss: 93.237 +9600/69092 Loss: 91.105 +12800/69092 Loss: 92.507 +16000/69092 Loss: 92.531 +19200/69092 Loss: 92.566 +22400/69092 Loss: 90.830 +25600/69092 Loss: 91.846 +28800/69092 Loss: 92.695 +32000/69092 Loss: 91.575 +35200/69092 Loss: 93.104 +38400/69092 Loss: 91.608 +41600/69092 Loss: 91.142 +44800/69092 Loss: 91.853 +48000/69092 Loss: 93.279 +51200/69092 Loss: 94.067 +54400/69092 Loss: 91.931 +57600/69092 Loss: 92.592 +60800/69092 Loss: 92.062 +64000/69092 Loss: 91.874 +67200/69092 Loss: 92.214 +Training time 0:09:15.672185 +Epoch: 106 Average loss: 92.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 380) +0/69092 Loss: 94.194 +3200/69092 Loss: 91.213 +6400/69092 Loss: 92.626 +9600/69092 Loss: 92.669 +12800/69092 Loss: 91.897 +16000/69092 Loss: 91.004 +19200/69092 Loss: 92.226 +22400/69092 Loss: 92.354 +25600/69092 Loss: 91.977 +28800/69092 Loss: 93.197 +32000/69092 Loss: 90.986 +35200/69092 Loss: 92.260 +38400/69092 Loss: 92.975 +41600/69092 Loss: 93.292 +44800/69092 Loss: 92.653 +48000/69092 Loss: 92.239 +51200/69092 Loss: 93.282 +54400/69092 Loss: 93.646 +57600/69092 Loss: 91.104 +60800/69092 Loss: 92.204 +64000/69092 Loss: 90.749 +67200/69092 Loss: 92.200 +Training time 0:09:15.754790 +Epoch: 107 Average loss: 92.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 381) +0/69092 Loss: 93.731 +3200/69092 Loss: 92.872 +6400/69092 Loss: 93.003 +9600/69092 Loss: 91.341 +12800/69092 Loss: 92.704 +16000/69092 Loss: 91.940 +19200/69092 Loss: 92.758 +22400/69092 Loss: 92.465 +25600/69092 Loss: 92.835 +28800/69092 Loss: 91.770 +32000/69092 Loss: 91.545 +35200/69092 Loss: 93.779 +38400/69092 Loss: 92.024 +41600/69092 Loss: 92.991 +44800/69092 Loss: 91.749 +48000/69092 Loss: 91.697 +51200/69092 Loss: 92.615 +54400/69092 Loss: 91.461 +57600/69092 Loss: 91.839 +60800/69092 Loss: 92.887 +64000/69092 Loss: 93.056 +67200/69092 Loss: 92.558 +Training time 0:09:08.943550 +Epoch: 108 Average loss: 92.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 382) +0/69092 Loss: 92.492 +3200/69092 Loss: 92.741 +6400/69092 Loss: 91.364 +9600/69092 Loss: 92.145 +12800/69092 Loss: 92.186 +16000/69092 Loss: 90.767 +19200/69092 Loss: 93.248 +22400/69092 Loss: 91.511 +25600/69092 Loss: 92.218 +28800/69092 Loss: 91.278 +32000/69092 Loss: 91.371 +35200/69092 Loss: 92.631 +38400/69092 Loss: 92.230 +41600/69092 Loss: 92.179 +44800/69092 Loss: 92.089 +48000/69092 Loss: 93.679 +51200/69092 Loss: 92.663 +54400/69092 Loss: 93.295 +57600/69092 Loss: 90.916 +60800/69092 Loss: 94.807 +64000/69092 Loss: 93.444 +67200/69092 Loss: 91.806 +Training time 0:09:31.166076 +Epoch: 109 Average loss: 92.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 383) +0/69092 Loss: 89.371 +3200/69092 Loss: 92.759 +6400/69092 Loss: 91.894 +9600/69092 Loss: 92.290 +12800/69092 Loss: 93.371 +16000/69092 Loss: 91.988 +19200/69092 Loss: 93.333 +22400/69092 Loss: 91.791 +25600/69092 Loss: 92.648 +28800/69092 Loss: 91.478 +32000/69092 Loss: 91.414 +35200/69092 Loss: 91.253 +38400/69092 Loss: 93.281 +41600/69092 Loss: 92.110 +44800/69092 Loss: 94.109 +48000/69092 Loss: 92.248 +51200/69092 Loss: 92.400 +54400/69092 Loss: 92.745 +57600/69092 Loss: 92.195 +60800/69092 Loss: 92.535 +64000/69092 Loss: 92.632 +67200/69092 Loss: 92.644 +Training time 0:09:11.690337 +Epoch: 110 Average loss: 92.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 384) +0/69092 Loss: 93.816 +3200/69092 Loss: 91.604 +6400/69092 Loss: 91.588 +9600/69092 Loss: 90.429 +12800/69092 Loss: 91.694 +16000/69092 Loss: 92.754 +19200/69092 Loss: 94.083 +22400/69092 Loss: 92.486 +25600/69092 Loss: 93.748 +28800/69092 Loss: 91.552 +32000/69092 Loss: 92.203 +35200/69092 Loss: 92.131 +38400/69092 Loss: 92.076 +41600/69092 Loss: 93.538 +44800/69092 Loss: 91.877 +48000/69092 Loss: 92.202 +51200/69092 Loss: 93.409 +54400/69092 Loss: 92.680 +57600/69092 Loss: 92.216 +60800/69092 Loss: 91.898 +64000/69092 Loss: 92.296 +67200/69092 Loss: 91.761 +Training time 0:09:02.647368 +Epoch: 111 Average loss: 92.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 385) +0/69092 Loss: 91.325 +3200/69092 Loss: 90.225 +6400/69092 Loss: 91.722 +9600/69092 Loss: 92.634 +12800/69092 Loss: 92.710 +16000/69092 Loss: 92.705 +19200/69092 Loss: 92.802 +22400/69092 Loss: 92.700 +25600/69092 Loss: 93.177 +28800/69092 Loss: 93.241 +32000/69092 Loss: 91.321 +35200/69092 Loss: 90.026 +38400/69092 Loss: 93.153 +41600/69092 Loss: 93.158 +44800/69092 Loss: 91.482 +48000/69092 Loss: 93.233 +51200/69092 Loss: 91.125 +54400/69092 Loss: 93.355 +57600/69092 Loss: 92.627 +60800/69092 Loss: 90.121 +64000/69092 Loss: 93.660 +67200/69092 Loss: 92.791 +Training time 0:09:12.225430 +Epoch: 112 Average loss: 92.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 386) +0/69092 Loss: 91.477 +3200/69092 Loss: 92.017 +6400/69092 Loss: 91.245 +9600/69092 Loss: 91.574 +12800/69092 Loss: 92.611 +16000/69092 Loss: 92.942 +19200/69092 Loss: 91.640 +22400/69092 Loss: 92.594 +25600/69092 Loss: 92.164 +28800/69092 Loss: 92.873 +32000/69092 Loss: 91.110 +35200/69092 Loss: 90.749 +38400/69092 Loss: 93.530 +41600/69092 Loss: 92.352 +44800/69092 Loss: 91.628 +48000/69092 Loss: 93.285 +51200/69092 Loss: 92.325 +54400/69092 Loss: 91.289 +57600/69092 Loss: 92.133 +60800/69092 Loss: 93.034 +64000/69092 Loss: 92.405 +67200/69092 Loss: 91.135 +Training time 0:09:00.760721 +Epoch: 113 Average loss: 92.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 387) +0/69092 Loss: 106.513 +3200/69092 Loss: 92.986 +6400/69092 Loss: 91.135 +9600/69092 Loss: 91.670 +12800/69092 Loss: 91.506 +16000/69092 Loss: 91.461 +19200/69092 Loss: 92.161 +22400/69092 Loss: 92.173 +25600/69092 Loss: 93.073 +28800/69092 Loss: 91.202 +32000/69092 Loss: 94.143 +35200/69092 Loss: 93.282 +38400/69092 Loss: 91.763 +41600/69092 Loss: 91.175 +44800/69092 Loss: 93.207 +48000/69092 Loss: 92.446 +51200/69092 Loss: 93.591 +54400/69092 Loss: 92.475 +57600/69092 Loss: 92.347 +60800/69092 Loss: 93.135 +64000/69092 Loss: 92.417 +67200/69092 Loss: 91.755 +Training time 0:09:05.409547 +Epoch: 114 Average loss: 92.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 388) +0/69092 Loss: 95.302 +3200/69092 Loss: 92.477 +6400/69092 Loss: 92.197 +9600/69092 Loss: 92.145 +12800/69092 Loss: 92.258 +16000/69092 Loss: 93.385 +19200/69092 Loss: 92.887 +22400/69092 Loss: 92.396 +25600/69092 Loss: 92.098 +28800/69092 Loss: 91.625 +32000/69092 Loss: 91.741 +35200/69092 Loss: 91.481 +38400/69092 Loss: 90.699 +41600/69092 Loss: 91.285 +44800/69092 Loss: 92.672 +48000/69092 Loss: 90.956 +51200/69092 Loss: 92.834 +54400/69092 Loss: 92.541 +57600/69092 Loss: 92.764 +60800/69092 Loss: 93.462 +64000/69092 Loss: 91.247 +67200/69092 Loss: 93.163 +Training time 0:09:20.420192 +Epoch: 115 Average loss: 92.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 389) +0/69092 Loss: 88.873 +3200/69092 Loss: 93.439 +6400/69092 Loss: 90.976 +9600/69092 Loss: 91.998 +12800/69092 Loss: 92.274 +16000/69092 Loss: 92.200 +19200/69092 Loss: 91.082 +22400/69092 Loss: 93.744 +25600/69092 Loss: 93.241 +28800/69092 Loss: 90.897 +32000/69092 Loss: 92.269 +35200/69092 Loss: 93.289 +38400/69092 Loss: 91.202 +41600/69092 Loss: 92.805 +44800/69092 Loss: 92.574 +48000/69092 Loss: 92.290 +51200/69092 Loss: 92.296 +54400/69092 Loss: 92.143 +57600/69092 Loss: 91.274 +60800/69092 Loss: 91.962 +64000/69092 Loss: 92.522 +67200/69092 Loss: 92.236 +Training time 0:08:58.289886 +Epoch: 116 Average loss: 92.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 390) +0/69092 Loss: 90.088 +3200/69092 Loss: 92.259 +6400/69092 Loss: 91.516 +9600/69092 Loss: 92.972 +12800/69092 Loss: 92.004 +16000/69092 Loss: 92.212 +19200/69092 Loss: 91.535 +22400/69092 Loss: 90.083 +25600/69092 Loss: 93.278 +28800/69092 Loss: 91.207 +32000/69092 Loss: 90.633 +35200/69092 Loss: 93.664 +38400/69092 Loss: 92.865 +41600/69092 Loss: 92.463 +44800/69092 Loss: 92.728 +48000/69092 Loss: 91.879 +51200/69092 Loss: 93.085 +54400/69092 Loss: 93.096 +57600/69092 Loss: 91.823 +60800/69092 Loss: 92.062 +64000/69092 Loss: 93.339 +67200/69092 Loss: 92.343 +Training time 0:09:04.326513 +Epoch: 117 Average loss: 92.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 391) +0/69092 Loss: 94.318 +3200/69092 Loss: 91.598 +6400/69092 Loss: 93.536 +9600/69092 Loss: 91.712 +12800/69092 Loss: 93.184 +16000/69092 Loss: 92.643 +19200/69092 Loss: 92.392 +22400/69092 Loss: 91.402 +25600/69092 Loss: 92.222 +28800/69092 Loss: 92.407 +32000/69092 Loss: 92.681 +35200/69092 Loss: 91.864 +38400/69092 Loss: 92.632 +41600/69092 Loss: 92.171 +44800/69092 Loss: 92.369 +48000/69092 Loss: 91.703 +51200/69092 Loss: 93.311 +54400/69092 Loss: 93.602 +57600/69092 Loss: 91.778 +60800/69092 Loss: 91.332 +64000/69092 Loss: 92.286 +67200/69092 Loss: 91.772 +Training time 0:09:17.706127 +Epoch: 118 Average loss: 92.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 392) +0/69092 Loss: 94.949 +3200/69092 Loss: 91.064 +6400/69092 Loss: 91.952 +9600/69092 Loss: 91.042 +12800/69092 Loss: 91.838 +16000/69092 Loss: 92.709 +19200/69092 Loss: 92.625 +22400/69092 Loss: 90.595 +25600/69092 Loss: 92.364 +28800/69092 Loss: 92.043 +32000/69092 Loss: 92.889 +35200/69092 Loss: 94.609 +38400/69092 Loss: 91.975 +41600/69092 Loss: 92.385 +44800/69092 Loss: 92.334 +48000/69092 Loss: 91.568 +51200/69092 Loss: 93.462 +54400/69092 Loss: 93.018 +57600/69092 Loss: 92.697 +60800/69092 Loss: 91.974 +64000/69092 Loss: 92.622 +67200/69092 Loss: 91.546 +Training time 0:09:00.811130 +Epoch: 119 Average loss: 92.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 393) +0/69092 Loss: 96.708 +3200/69092 Loss: 91.631 +6400/69092 Loss: 91.755 +9600/69092 Loss: 92.328 +12800/69092 Loss: 91.551 +16000/69092 Loss: 91.468 +19200/69092 Loss: 93.741 +22400/69092 Loss: 92.504 +25600/69092 Loss: 91.219 +28800/69092 Loss: 92.333 +32000/69092 Loss: 92.606 +35200/69092 Loss: 93.082 +38400/69092 Loss: 92.986 +41600/69092 Loss: 92.457 +44800/69092 Loss: 92.689 +48000/69092 Loss: 93.570 +51200/69092 Loss: 91.720 +54400/69092 Loss: 92.240 +57600/69092 Loss: 92.101 +60800/69092 Loss: 92.084 +64000/69092 Loss: 91.728 +67200/69092 Loss: 91.929 +Training time 0:09:14.037553 +Epoch: 120 Average loss: 92.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 394) +0/69092 Loss: 86.541 +3200/69092 Loss: 93.480 +6400/69092 Loss: 92.065 +9600/69092 Loss: 92.428 +12800/69092 Loss: 91.657 +16000/69092 Loss: 92.244 +19200/69092 Loss: 91.355 +22400/69092 Loss: 91.793 +25600/69092 Loss: 92.254 +28800/69092 Loss: 91.670 +32000/69092 Loss: 91.832 +35200/69092 Loss: 92.050 +38400/69092 Loss: 93.497 +41600/69092 Loss: 93.303 +44800/69092 Loss: 93.595 +48000/69092 Loss: 92.424 +51200/69092 Loss: 92.277 +54400/69092 Loss: 91.309 +57600/69092 Loss: 92.650 +60800/69092 Loss: 90.181 +64000/69092 Loss: 92.546 +67200/69092 Loss: 91.876 +Training time 0:09:05.779394 +Epoch: 121 Average loss: 92.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 395) +0/69092 Loss: 88.550 +3200/69092 Loss: 93.514 +6400/69092 Loss: 91.738 +9600/69092 Loss: 91.828 +12800/69092 Loss: 91.703 +16000/69092 Loss: 92.316 +19200/69092 Loss: 91.899 +22400/69092 Loss: 91.801 +25600/69092 Loss: 91.043 +28800/69092 Loss: 92.077 +32000/69092 Loss: 92.416 +35200/69092 Loss: 92.462 +38400/69092 Loss: 92.953 +41600/69092 Loss: 90.666 +44800/69092 Loss: 92.955 +48000/69092 Loss: 91.962 +51200/69092 Loss: 92.126 +54400/69092 Loss: 92.340 +57600/69092 Loss: 94.594 +60800/69092 Loss: 92.728 +64000/69092 Loss: 91.579 +67200/69092 Loss: 92.637 +Training time 0:09:08.777185 +Epoch: 122 Average loss: 92.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 396) +0/69092 Loss: 91.330 +3200/69092 Loss: 93.586 +6400/69092 Loss: 92.467 +9600/69092 Loss: 90.773 +12800/69092 Loss: 92.348 +16000/69092 Loss: 91.955 +19200/69092 Loss: 92.019 +22400/69092 Loss: 91.536 +25600/69092 Loss: 92.186 +28800/69092 Loss: 92.792 +32000/69092 Loss: 91.842 +35200/69092 Loss: 93.194 +38400/69092 Loss: 91.709 +41600/69092 Loss: 91.812 +44800/69092 Loss: 92.246 +48000/69092 Loss: 92.385 +51200/69092 Loss: 91.701 +54400/69092 Loss: 92.834 +57600/69092 Loss: 90.888 +60800/69092 Loss: 91.332 +64000/69092 Loss: 92.862 +67200/69092 Loss: 94.451 +Training time 0:09:25.072186 +Epoch: 123 Average loss: 92.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 397) +0/69092 Loss: 83.727 +3200/69092 Loss: 92.323 +6400/69092 Loss: 91.273 +9600/69092 Loss: 92.397 +12800/69092 Loss: 91.398 +16000/69092 Loss: 92.398 +19200/69092 Loss: 91.375 +22400/69092 Loss: 93.676 +25600/69092 Loss: 91.985 +28800/69092 Loss: 91.409 +32000/69092 Loss: 93.498 +35200/69092 Loss: 92.955 +38400/69092 Loss: 91.515 +41600/69092 Loss: 91.239 +44800/69092 Loss: 92.136 +48000/69092 Loss: 92.433 +51200/69092 Loss: 92.161 +54400/69092 Loss: 92.319 +57600/69092 Loss: 92.389 +60800/69092 Loss: 92.386 +64000/69092 Loss: 91.474 +67200/69092 Loss: 92.845 +Training time 0:09:04.158750 +Epoch: 124 Average loss: 92.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 398) +0/69092 Loss: 100.008 +3200/69092 Loss: 92.646 +6400/69092 Loss: 93.066 +9600/69092 Loss: 91.612 +12800/69092 Loss: 92.198 +16000/69092 Loss: 92.803 +19200/69092 Loss: 91.680 +22400/69092 Loss: 92.580 +25600/69092 Loss: 92.333 +28800/69092 Loss: 92.072 +32000/69092 Loss: 91.722 +35200/69092 Loss: 92.165 +38400/69092 Loss: 92.906 +41600/69092 Loss: 92.016 +44800/69092 Loss: 92.050 +48000/69092 Loss: 92.403 +51200/69092 Loss: 92.147 +54400/69092 Loss: 93.074 +57600/69092 Loss: 91.078 +60800/69092 Loss: 91.143 +64000/69092 Loss: 91.866 +67200/69092 Loss: 90.970 +Training time 0:09:00.199569 +Epoch: 125 Average loss: 92.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 399) +0/69092 Loss: 84.643 +3200/69092 Loss: 91.363 +6400/69092 Loss: 91.885 +9600/69092 Loss: 91.944 +12800/69092 Loss: 92.691 +16000/69092 Loss: 92.874 +19200/69092 Loss: 93.412 +22400/69092 Loss: 92.265 +25600/69092 Loss: 90.137 +28800/69092 Loss: 92.528 +32000/69092 Loss: 91.899 +35200/69092 Loss: 92.221 +38400/69092 Loss: 92.439 +41600/69092 Loss: 92.578 +44800/69092 Loss: 91.654 +48000/69092 Loss: 91.931 +51200/69092 Loss: 92.146 +54400/69092 Loss: 92.570 +57600/69092 Loss: 91.268 +60800/69092 Loss: 93.372 +64000/69092 Loss: 91.359 +67200/69092 Loss: 93.631 +Training time 0:09:07.977562 +Epoch: 126 Average loss: 92.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 400) +0/69092 Loss: 83.043 +3200/69092 Loss: 91.639 +6400/69092 Loss: 91.768 +9600/69092 Loss: 93.207 +12800/69092 Loss: 93.872 +16000/69092 Loss: 91.180 +19200/69092 Loss: 91.889 +22400/69092 Loss: 91.315 +25600/69092 Loss: 94.384 +28800/69092 Loss: 91.115 +32000/69092 Loss: 91.295 +35200/69092 Loss: 91.049 +38400/69092 Loss: 92.832 +41600/69092 Loss: 93.149 +44800/69092 Loss: 91.419 +48000/69092 Loss: 92.136 +51200/69092 Loss: 93.314 +54400/69092 Loss: 92.709 +57600/69092 Loss: 92.682 +60800/69092 Loss: 91.880 +64000/69092 Loss: 91.384 +67200/69092 Loss: 91.523 +Training time 0:09:26.145670 +Epoch: 127 Average loss: 92.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 401) +0/69092 Loss: 89.109 +3200/69092 Loss: 90.963 +6400/69092 Loss: 92.288 +9600/69092 Loss: 91.891 +12800/69092 Loss: 91.798 +16000/69092 Loss: 93.924 +19200/69092 Loss: 92.904 +22400/69092 Loss: 92.207 +25600/69092 Loss: 90.720 +28800/69092 Loss: 91.450 +32000/69092 Loss: 91.571 +35200/69092 Loss: 91.587 +38400/69092 Loss: 92.477 +41600/69092 Loss: 92.679 +44800/69092 Loss: 92.520 +48000/69092 Loss: 92.721 +51200/69092 Loss: 93.114 +54400/69092 Loss: 91.964 +57600/69092 Loss: 92.969 +60800/69092 Loss: 91.913 +64000/69092 Loss: 92.004 +67200/69092 Loss: 90.623 +Training time 0:09:14.492296 +Epoch: 128 Average loss: 92.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 402) +0/69092 Loss: 87.012 +3200/69092 Loss: 91.671 +6400/69092 Loss: 91.960 +9600/69092 Loss: 92.405 +12800/69092 Loss: 93.042 +16000/69092 Loss: 91.771 +19200/69092 Loss: 91.449 +22400/69092 Loss: 92.717 +25600/69092 Loss: 93.286 +28800/69092 Loss: 93.324 +32000/69092 Loss: 92.235 +35200/69092 Loss: 92.970 +38400/69092 Loss: 91.767 +41600/69092 Loss: 92.104 +44800/69092 Loss: 91.945 +48000/69092 Loss: 91.703 +51200/69092 Loss: 91.693 +54400/69092 Loss: 92.659 +57600/69092 Loss: 92.279 +60800/69092 Loss: 92.133 +64000/69092 Loss: 92.678 +67200/69092 Loss: 92.053 +Training time 0:09:07.251519 +Epoch: 129 Average loss: 92.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 403) +0/69092 Loss: 87.376 +3200/69092 Loss: 91.925 +6400/69092 Loss: 92.901 +9600/69092 Loss: 91.405 +12800/69092 Loss: 91.570 +16000/69092 Loss: 93.809 +19200/69092 Loss: 92.422 +22400/69092 Loss: 92.515 +25600/69092 Loss: 92.818 +28800/69092 Loss: 91.918 +32000/69092 Loss: 91.335 +35200/69092 Loss: 92.251 +38400/69092 Loss: 91.761 +41600/69092 Loss: 92.677 +44800/69092 Loss: 92.043 +48000/69092 Loss: 92.765 +51200/69092 Loss: 91.619 +54400/69092 Loss: 90.414 +57600/69092 Loss: 92.127 +60800/69092 Loss: 91.804 +64000/69092 Loss: 92.577 +67200/69092 Loss: 91.053 +Training time 0:09:19.374484 +Epoch: 130 Average loss: 92.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 404) +0/69092 Loss: 82.119 +3200/69092 Loss: 91.396 +6400/69092 Loss: 92.834 +9600/69092 Loss: 92.783 +12800/69092 Loss: 92.664 +16000/69092 Loss: 92.209 +19200/69092 Loss: 92.523 +22400/69092 Loss: 91.125 +25600/69092 Loss: 92.665 +28800/69092 Loss: 91.461 +32000/69092 Loss: 91.956 +35200/69092 Loss: 93.796 +38400/69092 Loss: 91.151 +41600/69092 Loss: 91.364 +44800/69092 Loss: 92.885 +48000/69092 Loss: 92.278 +51200/69092 Loss: 92.537 +54400/69092 Loss: 92.797 +57600/69092 Loss: 92.300 +60800/69092 Loss: 91.094 +64000/69092 Loss: 93.296 +67200/69092 Loss: 92.364 +Training time 0:09:21.617601 +Epoch: 131 Average loss: 92.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 405) +0/69092 Loss: 90.586 +3200/69092 Loss: 91.807 +6400/69092 Loss: 92.535 +9600/69092 Loss: 94.028 +12800/69092 Loss: 90.884 +16000/69092 Loss: 93.966 +19200/69092 Loss: 91.147 +22400/69092 Loss: 91.639 +25600/69092 Loss: 92.338 +28800/69092 Loss: 92.027 +32000/69092 Loss: 92.208 +35200/69092 Loss: 92.011 +38400/69092 Loss: 91.749 +41600/69092 Loss: 91.772 +44800/69092 Loss: 92.543 +48000/69092 Loss: 93.104 +51200/69092 Loss: 92.586 +54400/69092 Loss: 91.996 +57600/69092 Loss: 90.559 +60800/69092 Loss: 91.474 +64000/69092 Loss: 91.504 +67200/69092 Loss: 92.398 +Training time 0:09:19.551918 +Epoch: 132 Average loss: 92.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 406) +0/69092 Loss: 95.776 +3200/69092 Loss: 91.024 +6400/69092 Loss: 90.952 +9600/69092 Loss: 91.850 +12800/69092 Loss: 91.891 +16000/69092 Loss: 92.509 +19200/69092 Loss: 92.154 +22400/69092 Loss: 93.121 +25600/69092 Loss: 92.245 +28800/69092 Loss: 91.237 +32000/69092 Loss: 92.365 +35200/69092 Loss: 92.513 +38400/69092 Loss: 90.698 +41600/69092 Loss: 92.358 +44800/69092 Loss: 94.475 +48000/69092 Loss: 91.907 +51200/69092 Loss: 91.035 +54400/69092 Loss: 92.961 +57600/69092 Loss: 93.340 +60800/69092 Loss: 92.449 +64000/69092 Loss: 90.522 +67200/69092 Loss: 92.188 +Training time 0:08:56.215793 +Epoch: 133 Average loss: 92.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 407) +0/69092 Loss: 96.443 +3200/69092 Loss: 92.253 +6400/69092 Loss: 93.106 +9600/69092 Loss: 90.904 +12800/69092 Loss: 91.891 +16000/69092 Loss: 92.583 +19200/69092 Loss: 91.328 +22400/69092 Loss: 92.431 +25600/69092 Loss: 92.384 +28800/69092 Loss: 90.784 +32000/69092 Loss: 91.219 +35200/69092 Loss: 91.672 +38400/69092 Loss: 91.621 +41600/69092 Loss: 92.225 +44800/69092 Loss: 91.398 +48000/69092 Loss: 91.670 +51200/69092 Loss: 91.664 +54400/69092 Loss: 91.837 +57600/69092 Loss: 93.080 +60800/69092 Loss: 92.781 +64000/69092 Loss: 92.439 +67200/69092 Loss: 92.898 +Training time 0:09:06.798722 +Epoch: 134 Average loss: 92.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 408) +0/69092 Loss: 93.209 +3200/69092 Loss: 91.517 +6400/69092 Loss: 91.649 +9600/69092 Loss: 91.688 +12800/69092 Loss: 90.766 +16000/69092 Loss: 91.784 +19200/69092 Loss: 92.636 +22400/69092 Loss: 92.001 +25600/69092 Loss: 91.213 +28800/69092 Loss: 92.284 +32000/69092 Loss: 92.465 +35200/69092 Loss: 92.156 +38400/69092 Loss: 92.335 +41600/69092 Loss: 91.043 +44800/69092 Loss: 91.395 +48000/69092 Loss: 92.365 +51200/69092 Loss: 93.463 +54400/69092 Loss: 92.153 +57600/69092 Loss: 91.810 +60800/69092 Loss: 90.732 +64000/69092 Loss: 92.684 +67200/69092 Loss: 92.826 +Training time 0:08:52.208051 +Epoch: 135 Average loss: 91.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 409) +0/69092 Loss: 84.643 +3200/69092 Loss: 91.970 +6400/69092 Loss: 91.153 +9600/69092 Loss: 91.851 +12800/69092 Loss: 90.788 +16000/69092 Loss: 92.018 +19200/69092 Loss: 92.835 +22400/69092 Loss: 91.239 +25600/69092 Loss: 91.001 +28800/69092 Loss: 91.265 +32000/69092 Loss: 91.277 +35200/69092 Loss: 93.150 +38400/69092 Loss: 92.244 +41600/69092 Loss: 92.757 +44800/69092 Loss: 92.247 +48000/69092 Loss: 91.675 +51200/69092 Loss: 91.988 +54400/69092 Loss: 91.622 +57600/69092 Loss: 92.529 +60800/69092 Loss: 92.589 +64000/69092 Loss: 92.547 +67200/69092 Loss: 92.397 +Training time 0:09:20.491583 +Epoch: 136 Average loss: 91.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 410) +0/69092 Loss: 90.657 +3200/69092 Loss: 93.395 +6400/69092 Loss: 91.712 +9600/69092 Loss: 92.762 +12800/69092 Loss: 92.146 +16000/69092 Loss: 91.592 +19200/69092 Loss: 91.913 +22400/69092 Loss: 91.197 +25600/69092 Loss: 92.207 +28800/69092 Loss: 92.175 +32000/69092 Loss: 90.639 +35200/69092 Loss: 93.225 +38400/69092 Loss: 92.183 +41600/69092 Loss: 92.805 +44800/69092 Loss: 93.115 +48000/69092 Loss: 91.750 +51200/69092 Loss: 92.780 +54400/69092 Loss: 91.844 +57600/69092 Loss: 92.839 +60800/69092 Loss: 92.164 +64000/69092 Loss: 91.050 +67200/69092 Loss: 91.254 +Training time 0:09:32.273765 +Epoch: 137 Average loss: 92.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 411) +0/69092 Loss: 96.427 +3200/69092 Loss: 91.007 +6400/69092 Loss: 91.983 +9600/69092 Loss: 91.835 +12800/69092 Loss: 91.049 +16000/69092 Loss: 91.340 +19200/69092 Loss: 92.444 +22400/69092 Loss: 92.486 +25600/69092 Loss: 93.009 +28800/69092 Loss: 92.403 +32000/69092 Loss: 92.993 +35200/69092 Loss: 91.424 +38400/69092 Loss: 93.535 +41600/69092 Loss: 91.450 +44800/69092 Loss: 92.310 +48000/69092 Loss: 91.469 +51200/69092 Loss: 91.299 +54400/69092 Loss: 92.681 +57600/69092 Loss: 92.148 +60800/69092 Loss: 91.447 +64000/69092 Loss: 91.688 +67200/69092 Loss: 91.070 +Training time 0:09:24.914193 +Epoch: 138 Average loss: 91.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 412) +0/69092 Loss: 93.081 +3200/69092 Loss: 91.895 +6400/69092 Loss: 91.587 +9600/69092 Loss: 93.229 +12800/69092 Loss: 91.042 +16000/69092 Loss: 92.410 +19200/69092 Loss: 92.185 +22400/69092 Loss: 92.732 +25600/69092 Loss: 92.631 +28800/69092 Loss: 92.081 +32000/69092 Loss: 90.789 +35200/69092 Loss: 92.325 +38400/69092 Loss: 92.411 +41600/69092 Loss: 92.100 +44800/69092 Loss: 93.229 +48000/69092 Loss: 92.378 +51200/69092 Loss: 91.726 +54400/69092 Loss: 90.949 +57600/69092 Loss: 92.487 +60800/69092 Loss: 91.802 +64000/69092 Loss: 92.132 +67200/69092 Loss: 90.835 +Training time 0:09:13.285170 +Epoch: 139 Average loss: 92.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 413) +0/69092 Loss: 95.461 +3200/69092 Loss: 92.109 +6400/69092 Loss: 91.748 +9600/69092 Loss: 92.418 +12800/69092 Loss: 92.609 +16000/69092 Loss: 92.160 +19200/69092 Loss: 92.325 +22400/69092 Loss: 91.534 +25600/69092 Loss: 92.438 +28800/69092 Loss: 91.502 +32000/69092 Loss: 92.192 +35200/69092 Loss: 90.582 +38400/69092 Loss: 91.600 +41600/69092 Loss: 91.933 +44800/69092 Loss: 90.583 +48000/69092 Loss: 91.809 +51200/69092 Loss: 91.625 +54400/69092 Loss: 91.565 +57600/69092 Loss: 92.129 +60800/69092 Loss: 92.085 +64000/69092 Loss: 92.768 +67200/69092 Loss: 92.154 +Training time 0:09:29.904519 +Epoch: 140 Average loss: 91.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 414) +0/69092 Loss: 95.504 +3200/69092 Loss: 92.589 +6400/69092 Loss: 91.692 +9600/69092 Loss: 91.525 +12800/69092 Loss: 92.060 +16000/69092 Loss: 91.612 +19200/69092 Loss: 93.510 +22400/69092 Loss: 92.056 +25600/69092 Loss: 91.996 +28800/69092 Loss: 92.132 +32000/69092 Loss: 91.751 +35200/69092 Loss: 91.047 +38400/69092 Loss: 91.366 +41600/69092 Loss: 92.720 +44800/69092 Loss: 92.109 +48000/69092 Loss: 93.151 +51200/69092 Loss: 92.653 +54400/69092 Loss: 91.985 +57600/69092 Loss: 92.938 +60800/69092 Loss: 92.094 +64000/69092 Loss: 90.968 +67200/69092 Loss: 91.573 +Training time 0:09:09.413433 +Epoch: 141 Average loss: 92.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 415) +0/69092 Loss: 81.082 +3200/69092 Loss: 92.105 +6400/69092 Loss: 93.118 +9600/69092 Loss: 91.644 +12800/69092 Loss: 91.527 +16000/69092 Loss: 90.760 +19200/69092 Loss: 92.783 +22400/69092 Loss: 90.977 +25600/69092 Loss: 90.821 +28800/69092 Loss: 92.008 +32000/69092 Loss: 91.398 +35200/69092 Loss: 92.125 +38400/69092 Loss: 92.672 +41600/69092 Loss: 91.161 +44800/69092 Loss: 91.718 +48000/69092 Loss: 91.701 +51200/69092 Loss: 91.764 +54400/69092 Loss: 91.028 +57600/69092 Loss: 92.776 +60800/69092 Loss: 94.048 +64000/69092 Loss: 91.044 +67200/69092 Loss: 92.388 +Training time 0:08:58.090750 +Epoch: 142 Average loss: 91.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 416) +0/69092 Loss: 89.243 +3200/69092 Loss: 91.684 +6400/69092 Loss: 93.159 +9600/69092 Loss: 91.663 +12800/69092 Loss: 91.474 +16000/69092 Loss: 91.078 +19200/69092 Loss: 92.375 +22400/69092 Loss: 91.978 +25600/69092 Loss: 92.557 +28800/69092 Loss: 92.784 +32000/69092 Loss: 92.195 +35200/69092 Loss: 92.066 +38400/69092 Loss: 92.731 +41600/69092 Loss: 91.959 +44800/69092 Loss: 92.472 +48000/69092 Loss: 91.268 +51200/69092 Loss: 92.488 +54400/69092 Loss: 92.305 +57600/69092 Loss: 91.417 +60800/69092 Loss: 92.057 +64000/69092 Loss: 90.280 +67200/69092 Loss: 90.723 +Training time 0:09:03.935169 +Epoch: 143 Average loss: 91.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 417) +0/69092 Loss: 88.340 +3200/69092 Loss: 91.891 +6400/69092 Loss: 91.574 +9600/69092 Loss: 92.456 +12800/69092 Loss: 90.660 +16000/69092 Loss: 92.496 +19200/69092 Loss: 91.106 +22400/69092 Loss: 91.626 +25600/69092 Loss: 91.525 +28800/69092 Loss: 92.384 +32000/69092 Loss: 91.438 +35200/69092 Loss: 92.786 +38400/69092 Loss: 92.752 +41600/69092 Loss: 91.987 +44800/69092 Loss: 92.181 +48000/69092 Loss: 90.806 +51200/69092 Loss: 91.076 +54400/69092 Loss: 92.485 +57600/69092 Loss: 91.163 +60800/69092 Loss: 93.816 +64000/69092 Loss: 92.153 +67200/69092 Loss: 91.900 +Training time 0:09:05.801074 +Epoch: 144 Average loss: 91.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 418) +0/69092 Loss: 92.790 +3200/69092 Loss: 92.358 +6400/69092 Loss: 92.373 +9600/69092 Loss: 91.877 +12800/69092 Loss: 90.258 +16000/69092 Loss: 92.545 +19200/69092 Loss: 92.394 +22400/69092 Loss: 93.182 +25600/69092 Loss: 91.071 +28800/69092 Loss: 89.542 +32000/69092 Loss: 93.394 +35200/69092 Loss: 91.280 +38400/69092 Loss: 92.491 +41600/69092 Loss: 92.250 +44800/69092 Loss: 92.035 +48000/69092 Loss: 90.767 +51200/69092 Loss: 92.683 +54400/69092 Loss: 93.363 +57600/69092 Loss: 92.379 +60800/69092 Loss: 91.534 +64000/69092 Loss: 91.797 +67200/69092 Loss: 91.573 +Training time 0:09:37.577532 +Epoch: 145 Average loss: 91.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 419) +0/69092 Loss: 97.883 +3200/69092 Loss: 91.900 +6400/69092 Loss: 91.811 +9600/69092 Loss: 90.275 +12800/69092 Loss: 91.939 +16000/69092 Loss: 91.186 +19200/69092 Loss: 93.104 +22400/69092 Loss: 91.598 +25600/69092 Loss: 90.858 +28800/69092 Loss: 93.596 +32000/69092 Loss: 92.274 +35200/69092 Loss: 91.530 +38400/69092 Loss: 92.206 +41600/69092 Loss: 92.682 +44800/69092 Loss: 91.545 +48000/69092 Loss: 91.640 +51200/69092 Loss: 92.157 +54400/69092 Loss: 92.538 +57600/69092 Loss: 92.324 +60800/69092 Loss: 90.733 +64000/69092 Loss: 91.797 +67200/69092 Loss: 93.266 +Training time 0:09:18.120688 +Epoch: 146 Average loss: 91.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 420) +0/69092 Loss: 91.639 +3200/69092 Loss: 93.180 +6400/69092 Loss: 92.272 +9600/69092 Loss: 92.385 +12800/69092 Loss: 91.132 +16000/69092 Loss: 92.219 +19200/69092 Loss: 93.381 +22400/69092 Loss: 91.944 +25600/69092 Loss: 91.329 +28800/69092 Loss: 91.822 +32000/69092 Loss: 91.813 +35200/69092 Loss: 91.763 +38400/69092 Loss: 92.133 +41600/69092 Loss: 91.600 +44800/69092 Loss: 92.026 +48000/69092 Loss: 92.787 +51200/69092 Loss: 93.262 +54400/69092 Loss: 92.367 +57600/69092 Loss: 90.323 +60800/69092 Loss: 89.872 +64000/69092 Loss: 91.262 +67200/69092 Loss: 90.591 +Training time 0:09:07.749334 +Epoch: 147 Average loss: 91.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 421) +0/69092 Loss: 88.543 +3200/69092 Loss: 93.043 +6400/69092 Loss: 91.033 +9600/69092 Loss: 92.557 +12800/69092 Loss: 91.374 +16000/69092 Loss: 91.621 +19200/69092 Loss: 91.353 +22400/69092 Loss: 91.149 +25600/69092 Loss: 92.072 +28800/69092 Loss: 92.517 +32000/69092 Loss: 92.389 +35200/69092 Loss: 92.783 +38400/69092 Loss: 92.784 +41600/69092 Loss: 93.411 +44800/69092 Loss: 91.714 +48000/69092 Loss: 91.790 +51200/69092 Loss: 92.152 +54400/69092 Loss: 91.367 +57600/69092 Loss: 93.516 +60800/69092 Loss: 90.557 +64000/69092 Loss: 90.918 +67200/69092 Loss: 92.455 +Training time 0:09:01.288443 +Epoch: 148 Average loss: 92.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 422) +0/69092 Loss: 89.943 +3200/69092 Loss: 93.111 +6400/69092 Loss: 92.314 +9600/69092 Loss: 92.072 +12800/69092 Loss: 90.164 +16000/69092 Loss: 91.631 +19200/69092 Loss: 92.145 +22400/69092 Loss: 90.386 +25600/69092 Loss: 91.931 +28800/69092 Loss: 92.050 +32000/69092 Loss: 92.364 +35200/69092 Loss: 92.730 +38400/69092 Loss: 91.133 +41600/69092 Loss: 92.610 +44800/69092 Loss: 91.955 +48000/69092 Loss: 91.750 +51200/69092 Loss: 91.959 +54400/69092 Loss: 92.519 +57600/69092 Loss: 92.149 +60800/69092 Loss: 91.678 +64000/69092 Loss: 91.990 +67200/69092 Loss: 90.230 +Training time 0:09:20.311216 +Epoch: 149 Average loss: 91.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 423) +0/69092 Loss: 92.492 +3200/69092 Loss: 91.581 +6400/69092 Loss: 91.678 +9600/69092 Loss: 91.262 +12800/69092 Loss: 91.903 +16000/69092 Loss: 91.913 +19200/69092 Loss: 91.392 +22400/69092 Loss: 91.102 +25600/69092 Loss: 91.342 +28800/69092 Loss: 92.159 +32000/69092 Loss: 92.236 +35200/69092 Loss: 91.951 +38400/69092 Loss: 92.421 +41600/69092 Loss: 92.697 +44800/69092 Loss: 91.083 +48000/69092 Loss: 93.362 +51200/69092 Loss: 93.409 +54400/69092 Loss: 92.621 +57600/69092 Loss: 89.747 +60800/69092 Loss: 92.156 +64000/69092 Loss: 93.163 +67200/69092 Loss: 91.170 +Training time 0:09:13.848839 +Epoch: 150 Average loss: 91.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 424) +0/69092 Loss: 94.543 +3200/69092 Loss: 92.248 +6400/69092 Loss: 92.062 +9600/69092 Loss: 91.151 +12800/69092 Loss: 90.570 +16000/69092 Loss: 92.841 +19200/69092 Loss: 90.666 +22400/69092 Loss: 91.464 +25600/69092 Loss: 92.524 +28800/69092 Loss: 92.911 +32000/69092 Loss: 91.105 +35200/69092 Loss: 89.963 +38400/69092 Loss: 91.110 +41600/69092 Loss: 91.666 +44800/69092 Loss: 92.966 +48000/69092 Loss: 91.451 +51200/69092 Loss: 91.222 +54400/69092 Loss: 93.134 +57600/69092 Loss: 90.936 +60800/69092 Loss: 92.781 +64000/69092 Loss: 93.864 +67200/69092 Loss: 92.620 +Training time 0:09:15.479361 +Epoch: 151 Average loss: 91.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 425) +0/69092 Loss: 96.764 +3200/69092 Loss: 92.419 +6400/69092 Loss: 93.363 +9600/69092 Loss: 91.241 +12800/69092 Loss: 92.509 +16000/69092 Loss: 91.952 +19200/69092 Loss: 91.725 +22400/69092 Loss: 92.405 +25600/69092 Loss: 92.974 +28800/69092 Loss: 91.684 +32000/69092 Loss: 92.642 +35200/69092 Loss: 92.634 +38400/69092 Loss: 92.644 +41600/69092 Loss: 90.291 +44800/69092 Loss: 91.599 +48000/69092 Loss: 92.321 +51200/69092 Loss: 91.403 +54400/69092 Loss: 91.857 +57600/69092 Loss: 91.674 +60800/69092 Loss: 91.592 +64000/69092 Loss: 90.822 +67200/69092 Loss: 91.827 +Training time 0:09:15.708044 +Epoch: 152 Average loss: 91.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 426) +0/69092 Loss: 94.601 +3200/69092 Loss: 91.506 +6400/69092 Loss: 90.643 +9600/69092 Loss: 91.191 +12800/69092 Loss: 92.072 +16000/69092 Loss: 92.680 +19200/69092 Loss: 92.120 +22400/69092 Loss: 92.606 +25600/69092 Loss: 92.032 +28800/69092 Loss: 92.899 +32000/69092 Loss: 91.660 +35200/69092 Loss: 91.510 +38400/69092 Loss: 91.417 +41600/69092 Loss: 91.145 +44800/69092 Loss: 90.927 +48000/69092 Loss: 92.462 +51200/69092 Loss: 92.723 +54400/69092 Loss: 91.720 +57600/69092 Loss: 93.010 +60800/69092 Loss: 89.922 +64000/69092 Loss: 91.724 +67200/69092 Loss: 94.043 +Training time 0:09:18.938997 +Epoch: 153 Average loss: 91.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 427) +0/69092 Loss: 89.691 +3200/69092 Loss: 92.673 +6400/69092 Loss: 92.301 +9600/69092 Loss: 92.408 +12800/69092 Loss: 92.118 +16000/69092 Loss: 92.145 +19200/69092 Loss: 90.207 +22400/69092 Loss: 92.873 +25600/69092 Loss: 92.958 +28800/69092 Loss: 91.627 +32000/69092 Loss: 92.223 +35200/69092 Loss: 91.044 +38400/69092 Loss: 92.608 +41600/69092 Loss: 91.498 +44800/69092 Loss: 91.784 +48000/69092 Loss: 91.375 +51200/69092 Loss: 93.525 +54400/69092 Loss: 91.571 +57600/69092 Loss: 91.459 +60800/69092 Loss: 91.974 +64000/69092 Loss: 90.593 +67200/69092 Loss: 92.447 +Training time 0:09:29.670206 +Epoch: 154 Average loss: 91.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 428) +0/69092 Loss: 89.314 +3200/69092 Loss: 93.143 +6400/69092 Loss: 90.607 +9600/69092 Loss: 92.733 +12800/69092 Loss: 91.938 +16000/69092 Loss: 91.166 +19200/69092 Loss: 92.572 +22400/69092 Loss: 90.644 +25600/69092 Loss: 92.476 +28800/69092 Loss: 90.634 +32000/69092 Loss: 92.255 +35200/69092 Loss: 92.141 +38400/69092 Loss: 90.818 +41600/69092 Loss: 91.034 +44800/69092 Loss: 92.699 +48000/69092 Loss: 91.935 +51200/69092 Loss: 91.307 +54400/69092 Loss: 92.660 +57600/69092 Loss: 92.205 +60800/69092 Loss: 93.390 +64000/69092 Loss: 91.593 +67200/69092 Loss: 92.591 +Training time 0:09:05.594088 +Epoch: 155 Average loss: 91.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 429) +0/69092 Loss: 91.487 +3200/69092 Loss: 92.353 +6400/69092 Loss: 91.678 +9600/69092 Loss: 90.897 +12800/69092 Loss: 90.662 +16000/69092 Loss: 91.044 +19200/69092 Loss: 89.622 +22400/69092 Loss: 91.656 +25600/69092 Loss: 92.274 +28800/69092 Loss: 91.995 +32000/69092 Loss: 93.435 +35200/69092 Loss: 93.628 +38400/69092 Loss: 93.267 +41600/69092 Loss: 92.528 +44800/69092 Loss: 92.000 +48000/69092 Loss: 92.430 +51200/69092 Loss: 91.319 +54400/69092 Loss: 91.601 +57600/69092 Loss: 91.823 +60800/69092 Loss: 91.966 +64000/69092 Loss: 91.414 +67200/69092 Loss: 91.830 +Training time 0:08:58.181731 +Epoch: 156 Average loss: 91.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 430) +0/69092 Loss: 96.361 +3200/69092 Loss: 91.647 +6400/69092 Loss: 91.788 +9600/69092 Loss: 92.381 +12800/69092 Loss: 91.669 +16000/69092 Loss: 91.384 +19200/69092 Loss: 91.880 +22400/69092 Loss: 92.831 +25600/69092 Loss: 92.682 +28800/69092 Loss: 91.870 +32000/69092 Loss: 91.848 +35200/69092 Loss: 91.838 +38400/69092 Loss: 91.670 +41600/69092 Loss: 90.990 +44800/69092 Loss: 92.064 +48000/69092 Loss: 91.539 +51200/69092 Loss: 92.761 +54400/69092 Loss: 91.867 +57600/69092 Loss: 92.019 +60800/69092 Loss: 91.618 +64000/69092 Loss: 91.437 +67200/69092 Loss: 91.545 +Training time 0:09:08.343688 +Epoch: 157 Average loss: 91.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 431) +0/69092 Loss: 99.896 +3200/69092 Loss: 92.485 +6400/69092 Loss: 92.375 +9600/69092 Loss: 91.831 +12800/69092 Loss: 92.214 +16000/69092 Loss: 92.564 +19200/69092 Loss: 91.289 +22400/69092 Loss: 92.427 +25600/69092 Loss: 90.088 +28800/69092 Loss: 92.852 +32000/69092 Loss: 91.822 +35200/69092 Loss: 91.957 +38400/69092 Loss: 93.161 +41600/69092 Loss: 92.558 +44800/69092 Loss: 91.904 +48000/69092 Loss: 92.761 +51200/69092 Loss: 91.247 +54400/69092 Loss: 91.004 +57600/69092 Loss: 92.523 +60800/69092 Loss: 92.166 +64000/69092 Loss: 90.841 +67200/69092 Loss: 91.122 +Training time 0:09:26.582489 +Epoch: 158 Average loss: 91.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 432) +0/69092 Loss: 92.624 +3200/69092 Loss: 92.245 +6400/69092 Loss: 92.827 +9600/69092 Loss: 93.325 +12800/69092 Loss: 91.907 +16000/69092 Loss: 91.640 +19200/69092 Loss: 91.528 +22400/69092 Loss: 91.894 +25600/69092 Loss: 92.436 +28800/69092 Loss: 91.410 +32000/69092 Loss: 91.042 +35200/69092 Loss: 91.476 +38400/69092 Loss: 90.761 +41600/69092 Loss: 91.502 +44800/69092 Loss: 92.094 +48000/69092 Loss: 92.243 +51200/69092 Loss: 90.975 +54400/69092 Loss: 91.310 +57600/69092 Loss: 91.008 +60800/69092 Loss: 91.027 +64000/69092 Loss: 92.788 +67200/69092 Loss: 92.353 +Training time 0:08:49.510622 +Epoch: 159 Average loss: 91.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 433) +0/69092 Loss: 89.864 +3200/69092 Loss: 91.134 +6400/69092 Loss: 93.499 +9600/69092 Loss: 92.372 +12800/69092 Loss: 91.157 +16000/69092 Loss: 92.344 +19200/69092 Loss: 90.973 +22400/69092 Loss: 92.031 +25600/69092 Loss: 91.280 +28800/69092 Loss: 90.753 +32000/69092 Loss: 90.838 +35200/69092 Loss: 90.666 +38400/69092 Loss: 91.878 +41600/69092 Loss: 92.154 +44800/69092 Loss: 93.469 +48000/69092 Loss: 92.247 +51200/69092 Loss: 92.311 +54400/69092 Loss: 92.195 +57600/69092 Loss: 91.593 +60800/69092 Loss: 90.559 +64000/69092 Loss: 90.635 +67200/69092 Loss: 93.316 +Training time 0:08:59.944768 +Epoch: 160 Average loss: 91.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 434) +0/69092 Loss: 90.190 +3200/69092 Loss: 91.361 +6400/69092 Loss: 92.635 +9600/69092 Loss: 92.279 +12800/69092 Loss: 92.198 +16000/69092 Loss: 91.146 +19200/69092 Loss: 93.696 +22400/69092 Loss: 91.185 +25600/69092 Loss: 90.985 +28800/69092 Loss: 91.240 +32000/69092 Loss: 92.493 +35200/69092 Loss: 92.108 +38400/69092 Loss: 92.665 +41600/69092 Loss: 92.089 +44800/69092 Loss: 91.375 +48000/69092 Loss: 91.549 +51200/69092 Loss: 90.948 +54400/69092 Loss: 90.172 +57600/69092 Loss: 92.630 +60800/69092 Loss: 93.305 +64000/69092 Loss: 91.477 +67200/69092 Loss: 92.110 +Training time 0:09:13.735779 +Epoch: 161 Average loss: 91.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 435) +0/69092 Loss: 86.516 +3200/69092 Loss: 92.952 +6400/69092 Loss: 91.350 +9600/69092 Loss: 91.201 +12800/69092 Loss: 91.818 +16000/69092 Loss: 92.395 +19200/69092 Loss: 91.143 +22400/69092 Loss: 91.159 +25600/69092 Loss: 91.175 +28800/69092 Loss: 91.230 +32000/69092 Loss: 91.962 +35200/69092 Loss: 92.215 +38400/69092 Loss: 93.155 +41600/69092 Loss: 92.329 +44800/69092 Loss: 90.965 +48000/69092 Loss: 92.067 +51200/69092 Loss: 92.496 +54400/69092 Loss: 92.338 +57600/69092 Loss: 91.556 +60800/69092 Loss: 90.312 +64000/69092 Loss: 91.713 +67200/69092 Loss: 92.577 +Training time 0:09:04.908932 +Epoch: 162 Average loss: 91.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 436) +0/69092 Loss: 84.524 +3200/69092 Loss: 90.767 +6400/69092 Loss: 90.377 +9600/69092 Loss: 91.579 +12800/69092 Loss: 92.959 +16000/69092 Loss: 91.280 +19200/69092 Loss: 92.682 +22400/69092 Loss: 92.747 +25600/69092 Loss: 91.847 +28800/69092 Loss: 93.304 +32000/69092 Loss: 91.480 +35200/69092 Loss: 91.805 +38400/69092 Loss: 92.221 +41600/69092 Loss: 92.247 +44800/69092 Loss: 92.214 +48000/69092 Loss: 90.888 +51200/69092 Loss: 91.454 +54400/69092 Loss: 91.290 +57600/69092 Loss: 91.981 +60800/69092 Loss: 90.664 +64000/69092 Loss: 92.822 +67200/69092 Loss: 90.980 +Training time 0:09:24.313635 +Epoch: 163 Average loss: 91.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 437) +0/69092 Loss: 90.152 +3200/69092 Loss: 91.822 +6400/69092 Loss: 91.403 +9600/69092 Loss: 91.338 +12800/69092 Loss: 91.744 +16000/69092 Loss: 91.207 +19200/69092 Loss: 91.558 +22400/69092 Loss: 91.500 +25600/69092 Loss: 92.289 +28800/69092 Loss: 92.393 +32000/69092 Loss: 91.084 +35200/69092 Loss: 92.961 +38400/69092 Loss: 92.017 +41600/69092 Loss: 91.545 +44800/69092 Loss: 92.963 +48000/69092 Loss: 91.542 +51200/69092 Loss: 91.571 +54400/69092 Loss: 91.306 +57600/69092 Loss: 94.102 +60800/69092 Loss: 92.204 +64000/69092 Loss: 91.182 +67200/69092 Loss: 90.887 +Training time 0:09:22.947507 +Epoch: 164 Average loss: 91.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 438) +0/69092 Loss: 98.447 +3200/69092 Loss: 91.358 +6400/69092 Loss: 92.214 +9600/69092 Loss: 92.528 +12800/69092 Loss: 91.887 +16000/69092 Loss: 91.895 +19200/69092 Loss: 91.081 +22400/69092 Loss: 90.581 +25600/69092 Loss: 91.746 +28800/69092 Loss: 91.165 +32000/69092 Loss: 91.634 +35200/69092 Loss: 91.140 +38400/69092 Loss: 92.708 +41600/69092 Loss: 93.343 +44800/69092 Loss: 91.092 +48000/69092 Loss: 91.630 +51200/69092 Loss: 90.971 +54400/69092 Loss: 91.955 +57600/69092 Loss: 91.865 +60800/69092 Loss: 93.230 +64000/69092 Loss: 92.588 +67200/69092 Loss: 92.681 +Training time 0:09:15.726676 +Epoch: 165 Average loss: 91.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 439) +0/69092 Loss: 90.650 +3200/69092 Loss: 90.522 +6400/69092 Loss: 92.173 +9600/69092 Loss: 91.827 +12800/69092 Loss: 92.291 +16000/69092 Loss: 92.532 +19200/69092 Loss: 92.692 +22400/69092 Loss: 90.684 +25600/69092 Loss: 91.755 +28800/69092 Loss: 91.724 +32000/69092 Loss: 91.894 +35200/69092 Loss: 93.405 +38400/69092 Loss: 92.250 +41600/69092 Loss: 93.758 +44800/69092 Loss: 91.522 +48000/69092 Loss: 92.384 +51200/69092 Loss: 90.878 +54400/69092 Loss: 90.904 +57600/69092 Loss: 91.748 +60800/69092 Loss: 91.047 +64000/69092 Loss: 92.421 +67200/69092 Loss: 90.242 +Training time 0:09:09.442750 +Epoch: 166 Average loss: 91.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 440) +0/69092 Loss: 97.741 +3200/69092 Loss: 91.428 +6400/69092 Loss: 91.373 +9600/69092 Loss: 91.282 +12800/69092 Loss: 91.818 +16000/69092 Loss: 92.355 +19200/69092 Loss: 91.813 +22400/69092 Loss: 91.377 +25600/69092 Loss: 89.945 +28800/69092 Loss: 92.778 +32000/69092 Loss: 91.164 +35200/69092 Loss: 92.578 +38400/69092 Loss: 91.562 +41600/69092 Loss: 92.660 +44800/69092 Loss: 92.416 +48000/69092 Loss: 92.265 +51200/69092 Loss: 92.370 +54400/69092 Loss: 93.890 +57600/69092 Loss: 91.277 +60800/69092 Loss: 91.758 +64000/69092 Loss: 91.558 +67200/69092 Loss: 90.921 +Training time 0:09:31.640009 +Epoch: 167 Average loss: 91.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 441) +0/69092 Loss: 91.409 +3200/69092 Loss: 92.777 +6400/69092 Loss: 91.107 +9600/69092 Loss: 91.246 +12800/69092 Loss: 91.945 +16000/69092 Loss: 92.590 +19200/69092 Loss: 91.660 +22400/69092 Loss: 91.578 +25600/69092 Loss: 91.893 +28800/69092 Loss: 92.470 +32000/69092 Loss: 92.178 +35200/69092 Loss: 91.622 +38400/69092 Loss: 92.650 +41600/69092 Loss: 91.304 +44800/69092 Loss: 91.879 +48000/69092 Loss: 90.472 +51200/69092 Loss: 92.684 +54400/69092 Loss: 92.375 +57600/69092 Loss: 91.308 +60800/69092 Loss: 91.203 +64000/69092 Loss: 92.507 +67200/69092 Loss: 92.946 +Training time 0:08:59.187869 +Epoch: 168 Average loss: 91.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 442) +0/69092 Loss: 89.336 +3200/69092 Loss: 91.378 +6400/69092 Loss: 91.673 +9600/69092 Loss: 92.039 +12800/69092 Loss: 93.234 +16000/69092 Loss: 92.424 +19200/69092 Loss: 91.539 +22400/69092 Loss: 90.152 +25600/69092 Loss: 91.199 +28800/69092 Loss: 91.356 +32000/69092 Loss: 91.843 +35200/69092 Loss: 92.231 +38400/69092 Loss: 91.968 +41600/69092 Loss: 91.428 +44800/69092 Loss: 90.820 +48000/69092 Loss: 91.748 +51200/69092 Loss: 92.291 +54400/69092 Loss: 92.437 +57600/69092 Loss: 91.829 +60800/69092 Loss: 92.164 +64000/69092 Loss: 92.103 +67200/69092 Loss: 92.449 +Training time 0:09:22.967632 +Epoch: 169 Average loss: 91.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 443) +0/69092 Loss: 93.775 +3200/69092 Loss: 92.694 +6400/69092 Loss: 91.256 +9600/69092 Loss: 92.471 +12800/69092 Loss: 91.624 +16000/69092 Loss: 91.881 +19200/69092 Loss: 92.353 +22400/69092 Loss: 92.406 +25600/69092 Loss: 91.526 +28800/69092 Loss: 93.356 +32000/69092 Loss: 90.846 +35200/69092 Loss: 91.820 +38400/69092 Loss: 91.454 +41600/69092 Loss: 92.195 +44800/69092 Loss: 92.123 +48000/69092 Loss: 92.899 +51200/69092 Loss: 91.788 +54400/69092 Loss: 91.439 +57600/69092 Loss: 91.066 +60800/69092 Loss: 92.002 +64000/69092 Loss: 90.087 +67200/69092 Loss: 90.685 +Training time 0:08:50.075514 +Epoch: 170 Average loss: 91.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 444) +0/69092 Loss: 81.602 +3200/69092 Loss: 92.934 +6400/69092 Loss: 92.069 +9600/69092 Loss: 90.232 +12800/69092 Loss: 91.002 +16000/69092 Loss: 91.504 +19200/69092 Loss: 92.093 +22400/69092 Loss: 91.098 +25600/69092 Loss: 91.227 +28800/69092 Loss: 91.037 +32000/69092 Loss: 91.163 +35200/69092 Loss: 91.024 +38400/69092 Loss: 92.176 +41600/69092 Loss: 92.087 +44800/69092 Loss: 92.202 +48000/69092 Loss: 91.532 +51200/69092 Loss: 92.734 +54400/69092 Loss: 92.289 +57600/69092 Loss: 91.990 +60800/69092 Loss: 91.315 +64000/69092 Loss: 93.516 +67200/69092 Loss: 92.237 +Training time 0:09:02.109141 +Epoch: 171 Average loss: 91.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 445) +0/69092 Loss: 84.844 +3200/69092 Loss: 92.028 +6400/69092 Loss: 91.517 +9600/69092 Loss: 92.498 +12800/69092 Loss: 92.784 +16000/69092 Loss: 92.034 +19200/69092 Loss: 91.006 +22400/69092 Loss: 93.901 +25600/69092 Loss: 91.241 +28800/69092 Loss: 91.173 +32000/69092 Loss: 91.885 +35200/69092 Loss: 92.421 +38400/69092 Loss: 91.936 +41600/69092 Loss: 91.537 +44800/69092 Loss: 92.433 +48000/69092 Loss: 92.513 +51200/69092 Loss: 91.291 +54400/69092 Loss: 89.847 +57600/69092 Loss: 91.786 +60800/69092 Loss: 92.028 +64000/69092 Loss: 92.531 +67200/69092 Loss: 90.933 +Training time 0:08:58.896339 +Epoch: 172 Average loss: 91.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 446) +0/69092 Loss: 94.568 +3200/69092 Loss: 92.393 +6400/69092 Loss: 90.037 +9600/69092 Loss: 91.358 +12800/69092 Loss: 91.837 +16000/69092 Loss: 91.871 +19200/69092 Loss: 93.222 +22400/69092 Loss: 92.132 +25600/69092 Loss: 91.676 +28800/69092 Loss: 91.789 +32000/69092 Loss: 92.364 +35200/69092 Loss: 91.985 +38400/69092 Loss: 92.698 +41600/69092 Loss: 91.804 +44800/69092 Loss: 91.294 +48000/69092 Loss: 93.502 +51200/69092 Loss: 89.991 +54400/69092 Loss: 92.177 +57600/69092 Loss: 90.834 +60800/69092 Loss: 92.515 +64000/69092 Loss: 92.191 +67200/69092 Loss: 91.381 +Training time 0:09:00.754946 +Epoch: 173 Average loss: 91.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 447) +0/69092 Loss: 100.044 +3200/69092 Loss: 91.859 +6400/69092 Loss: 91.349 +9600/69092 Loss: 91.472 +12800/69092 Loss: 89.989 +16000/69092 Loss: 91.070 +19200/69092 Loss: 91.906 +22400/69092 Loss: 89.921 +25600/69092 Loss: 91.405 +28800/69092 Loss: 91.710 +32000/69092 Loss: 91.621 +35200/69092 Loss: 91.327 +38400/69092 Loss: 93.174 +41600/69092 Loss: 91.958 +44800/69092 Loss: 92.252 +48000/69092 Loss: 92.608 +51200/69092 Loss: 93.162 +54400/69092 Loss: 90.326 +57600/69092 Loss: 90.613 +60800/69092 Loss: 93.389 +64000/69092 Loss: 92.382 +67200/69092 Loss: 92.523 +Training time 0:09:10.544357 +Epoch: 174 Average loss: 91.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 448) +0/69092 Loss: 93.416 +3200/69092 Loss: 91.120 +6400/69092 Loss: 92.129 +9600/69092 Loss: 91.573 +12800/69092 Loss: 91.099 +16000/69092 Loss: 91.033 +19200/69092 Loss: 92.283 +22400/69092 Loss: 90.043 +25600/69092 Loss: 90.900 +28800/69092 Loss: 91.581 +32000/69092 Loss: 91.037 +35200/69092 Loss: 92.822 +38400/69092 Loss: 92.874 +41600/69092 Loss: 92.387 +44800/69092 Loss: 92.890 +48000/69092 Loss: 92.056 +51200/69092 Loss: 92.874 +54400/69092 Loss: 90.125 +57600/69092 Loss: 91.422 +60800/69092 Loss: 92.047 +64000/69092 Loss: 92.317 +67200/69092 Loss: 91.987 +Training time 0:09:17.327961 +Epoch: 175 Average loss: 91.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 449) +0/69092 Loss: 98.819 +3200/69092 Loss: 91.749 +6400/69092 Loss: 90.821 +9600/69092 Loss: 91.248 +12800/69092 Loss: 92.095 +16000/69092 Loss: 91.560 +19200/69092 Loss: 91.401 +22400/69092 Loss: 90.632 +25600/69092 Loss: 93.116 +28800/69092 Loss: 90.629 +32000/69092 Loss: 90.011 +35200/69092 Loss: 91.184 +38400/69092 Loss: 92.474 +41600/69092 Loss: 92.149 +44800/69092 Loss: 92.230 +48000/69092 Loss: 90.949 +51200/69092 Loss: 92.886 +54400/69092 Loss: 91.655 +57600/69092 Loss: 91.410 +60800/69092 Loss: 92.876 +64000/69092 Loss: 92.639 +67200/69092 Loss: 91.653 +Training time 0:09:09.515024 +Epoch: 176 Average loss: 91.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 450) +0/69092 Loss: 90.693 +3200/69092 Loss: 90.501 +6400/69092 Loss: 90.469 +9600/69092 Loss: 90.508 +12800/69092 Loss: 91.830 +16000/69092 Loss: 92.630 +19200/69092 Loss: 92.514 +22400/69092 Loss: 91.701 +25600/69092 Loss: 92.163 +28800/69092 Loss: 91.209 +32000/69092 Loss: 91.816 +35200/69092 Loss: 92.451 +38400/69092 Loss: 90.851 +41600/69092 Loss: 92.181 +44800/69092 Loss: 92.330 +48000/69092 Loss: 92.783 +51200/69092 Loss: 91.644 +54400/69092 Loss: 91.231 +57600/69092 Loss: 92.562 +60800/69092 Loss: 92.537 +64000/69092 Loss: 91.384 +67200/69092 Loss: 92.631 +Training time 0:09:29.266967 +Epoch: 177 Average loss: 91.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 451) +0/69092 Loss: 90.781 +3200/69092 Loss: 91.826 +6400/69092 Loss: 92.675 +9600/69092 Loss: 91.407 +12800/69092 Loss: 91.850 +16000/69092 Loss: 91.849 +19200/69092 Loss: 90.995 +22400/69092 Loss: 91.104 +25600/69092 Loss: 93.555 +28800/69092 Loss: 90.598 +32000/69092 Loss: 91.653 +35200/69092 Loss: 92.138 +38400/69092 Loss: 94.147 +41600/69092 Loss: 92.391 +44800/69092 Loss: 91.517 +48000/69092 Loss: 89.849 +51200/69092 Loss: 90.936 +54400/69092 Loss: 90.106 +57600/69092 Loss: 91.651 +60800/69092 Loss: 91.083 +64000/69092 Loss: 92.676 +67200/69092 Loss: 91.086 +Training time 0:09:12.378687 +Epoch: 178 Average loss: 91.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 452) +0/69092 Loss: 98.726 +3200/69092 Loss: 91.072 +6400/69092 Loss: 93.083 +9600/69092 Loss: 92.259 +12800/69092 Loss: 92.251 +16000/69092 Loss: 91.763 +19200/69092 Loss: 90.831 +22400/69092 Loss: 93.074 +25600/69092 Loss: 91.892 +28800/69092 Loss: 92.073 +32000/69092 Loss: 91.117 +35200/69092 Loss: 90.273 +38400/69092 Loss: 91.604 +41600/69092 Loss: 90.439 +44800/69092 Loss: 92.370 +48000/69092 Loss: 91.896 +51200/69092 Loss: 91.670 +54400/69092 Loss: 92.627 +57600/69092 Loss: 91.415 +60800/69092 Loss: 90.224 +64000/69092 Loss: 91.772 +67200/69092 Loss: 93.028 +Training time 0:09:36.366639 +Epoch: 179 Average loss: 91.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 453) +0/69092 Loss: 89.203 +3200/69092 Loss: 92.047 +6400/69092 Loss: 90.991 +9600/69092 Loss: 91.363 +12800/69092 Loss: 91.896 +16000/69092 Loss: 90.785 +19200/69092 Loss: 92.240 +22400/69092 Loss: 91.270 +25600/69092 Loss: 91.735 +28800/69092 Loss: 93.242 +32000/69092 Loss: 92.068 +35200/69092 Loss: 92.400 +38400/69092 Loss: 90.716 +41600/69092 Loss: 91.059 +44800/69092 Loss: 91.896 +48000/69092 Loss: 91.600 +51200/69092 Loss: 91.380 +54400/69092 Loss: 90.623 +57600/69092 Loss: 90.711 +60800/69092 Loss: 92.317 +64000/69092 Loss: 92.609 +67200/69092 Loss: 91.545 +Training time 0:08:59.004187 +Epoch: 180 Average loss: 91.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 454) +0/69092 Loss: 83.991 +3200/69092 Loss: 93.609 +6400/69092 Loss: 91.455 +9600/69092 Loss: 92.076 +12800/69092 Loss: 92.204 +16000/69092 Loss: 92.018 +19200/69092 Loss: 91.327 +22400/69092 Loss: 91.308 +25600/69092 Loss: 92.144 +28800/69092 Loss: 92.155 +32000/69092 Loss: 90.352 +35200/69092 Loss: 91.324 +38400/69092 Loss: 91.553 +41600/69092 Loss: 91.787 +44800/69092 Loss: 92.048 +48000/69092 Loss: 91.230 +51200/69092 Loss: 91.914 +54400/69092 Loss: 91.360 +57600/69092 Loss: 92.023 +60800/69092 Loss: 91.325 +64000/69092 Loss: 91.326 +67200/69092 Loss: 91.440 +Training time 0:10:03.312567 +Epoch: 181 Average loss: 91.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 455) +0/69092 Loss: 88.782 +3200/69092 Loss: 91.873 +6400/69092 Loss: 91.373 +9600/69092 Loss: 91.447 +12800/69092 Loss: 91.848 +16000/69092 Loss: 90.694 +19200/69092 Loss: 92.265 +22400/69092 Loss: 91.969 +25600/69092 Loss: 91.948 +28800/69092 Loss: 93.139 +32000/69092 Loss: 92.529 +35200/69092 Loss: 90.908 +38400/69092 Loss: 91.751 +41600/69092 Loss: 90.522 +44800/69092 Loss: 90.246 +48000/69092 Loss: 92.367 +51200/69092 Loss: 91.342 +54400/69092 Loss: 91.874 +57600/69092 Loss: 92.841 +60800/69092 Loss: 90.962 +64000/69092 Loss: 92.092 +67200/69092 Loss: 92.193 +Training time 0:10:09.506059 +Epoch: 182 Average loss: 91.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 456) +0/69092 Loss: 88.207 +3200/69092 Loss: 91.771 +6400/69092 Loss: 92.292 +9600/69092 Loss: 91.255 +12800/69092 Loss: 90.549 +16000/69092 Loss: 91.699 +19200/69092 Loss: 91.294 +22400/69092 Loss: 90.931 +25600/69092 Loss: 91.445 +28800/69092 Loss: 93.210 +32000/69092 Loss: 91.764 +35200/69092 Loss: 90.597 +38400/69092 Loss: 92.382 +41600/69092 Loss: 90.849 +44800/69092 Loss: 92.949 +48000/69092 Loss: 93.269 +51200/69092 Loss: 91.900 +54400/69092 Loss: 90.744 +57600/69092 Loss: 90.673 +60800/69092 Loss: 91.716 +64000/69092 Loss: 91.432 +67200/69092 Loss: 91.098 +Training time 0:09:34.606604 +Epoch: 183 Average loss: 91.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 457) +0/69092 Loss: 92.495 +3200/69092 Loss: 91.981 +6400/69092 Loss: 91.809 +9600/69092 Loss: 91.381 +12800/69092 Loss: 92.153 +16000/69092 Loss: 91.703 +19200/69092 Loss: 91.903 +22400/69092 Loss: 92.772 +25600/69092 Loss: 93.223 +28800/69092 Loss: 91.319 +32000/69092 Loss: 91.020 +35200/69092 Loss: 92.605 +38400/69092 Loss: 91.373 +41600/69092 Loss: 92.144 +44800/69092 Loss: 91.837 +48000/69092 Loss: 91.208 +51200/69092 Loss: 91.332 +54400/69092 Loss: 90.824 +57600/69092 Loss: 92.335 +60800/69092 Loss: 91.835 +64000/69092 Loss: 91.587 +67200/69092 Loss: 91.433 +Training time 0:09:26.976478 +Epoch: 184 Average loss: 91.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 458) +0/69092 Loss: 91.757 +3200/69092 Loss: 91.004 +6400/69092 Loss: 90.986 +9600/69092 Loss: 91.437 +12800/69092 Loss: 92.783 +16000/69092 Loss: 91.126 +19200/69092 Loss: 92.294 +22400/69092 Loss: 91.914 +25600/69092 Loss: 92.063 +28800/69092 Loss: 91.555 +32000/69092 Loss: 90.565 +35200/69092 Loss: 91.741 +38400/69092 Loss: 91.401 +41600/69092 Loss: 92.477 +44800/69092 Loss: 91.405 +48000/69092 Loss: 91.884 +51200/69092 Loss: 92.537 +54400/69092 Loss: 89.975 +57600/69092 Loss: 90.544 +60800/69092 Loss: 93.293 +64000/69092 Loss: 91.254 +67200/69092 Loss: 91.357 +Training time 0:10:25.513529 +Epoch: 185 Average loss: 91.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 459) +0/69092 Loss: 83.694 +3200/69092 Loss: 91.531 +6400/69092 Loss: 90.794 +9600/69092 Loss: 91.129 +12800/69092 Loss: 91.605 +16000/69092 Loss: 92.120 +19200/69092 Loss: 90.303 +22400/69092 Loss: 91.690 +25600/69092 Loss: 91.863 +28800/69092 Loss: 92.357 +32000/69092 Loss: 91.197 +35200/69092 Loss: 92.009 +38400/69092 Loss: 91.103 +41600/69092 Loss: 91.392 +44800/69092 Loss: 93.181 +48000/69092 Loss: 92.062 +51200/69092 Loss: 91.375 +54400/69092 Loss: 92.252 +57600/69092 Loss: 91.727 +60800/69092 Loss: 91.365 +64000/69092 Loss: 91.595 +67200/69092 Loss: 92.010 +Training time 0:12:30.042349 +Epoch: 186 Average loss: 91.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 460) +0/69092 Loss: 96.268 +3200/69092 Loss: 91.410 +6400/69092 Loss: 91.754 +9600/69092 Loss: 90.444 +12800/69092 Loss: 92.474 +16000/69092 Loss: 91.239 +19200/69092 Loss: 91.643 +22400/69092 Loss: 90.980 +25600/69092 Loss: 91.908 +28800/69092 Loss: 92.625 +32000/69092 Loss: 91.359 +35200/69092 Loss: 91.546 +38400/69092 Loss: 91.605 +41600/69092 Loss: 91.670 +44800/69092 Loss: 90.528 +48000/69092 Loss: 92.515 +51200/69092 Loss: 91.964 +54400/69092 Loss: 90.902 +57600/69092 Loss: 91.447 +60800/69092 Loss: 92.375 +64000/69092 Loss: 91.659 +67200/69092 Loss: 92.271 +Training time 0:12:18.991371 +Epoch: 187 Average loss: 91.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 461) +0/69092 Loss: 88.961 +3200/69092 Loss: 91.695 +6400/69092 Loss: 90.395 +9600/69092 Loss: 90.898 +12800/69092 Loss: 90.639 +16000/69092 Loss: 92.316 +19200/69092 Loss: 91.790 +22400/69092 Loss: 90.799 +25600/69092 Loss: 91.855 +28800/69092 Loss: 91.979 +32000/69092 Loss: 91.185 +35200/69092 Loss: 91.431 +38400/69092 Loss: 91.946 +41600/69092 Loss: 92.278 +44800/69092 Loss: 91.822 +48000/69092 Loss: 92.549 +51200/69092 Loss: 92.060 +54400/69092 Loss: 92.006 +57600/69092 Loss: 90.796 +60800/69092 Loss: 91.388 +64000/69092 Loss: 92.066 +67200/69092 Loss: 91.156 +Training time 0:09:12.808779 +Epoch: 188 Average loss: 91.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 462) +0/69092 Loss: 93.178 +3200/69092 Loss: 93.087 +6400/69092 Loss: 92.024 +9600/69092 Loss: 93.261 +12800/69092 Loss: 90.820 +16000/69092 Loss: 91.301 +19200/69092 Loss: 90.181 +22400/69092 Loss: 90.112 +25600/69092 Loss: 91.096 +28800/69092 Loss: 91.560 +32000/69092 Loss: 92.218 +35200/69092 Loss: 90.702 +38400/69092 Loss: 91.090 +41600/69092 Loss: 93.038 +44800/69092 Loss: 91.909 +48000/69092 Loss: 91.183 +51200/69092 Loss: 92.272 +54400/69092 Loss: 91.147 +57600/69092 Loss: 91.311 +60800/69092 Loss: 91.273 +64000/69092 Loss: 90.928 +67200/69092 Loss: 91.762 +Training time 0:08:57.042188 +Epoch: 189 Average loss: 91.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 463) +0/69092 Loss: 93.221 +3200/69092 Loss: 91.421 +6400/69092 Loss: 91.188 +9600/69092 Loss: 91.617 +12800/69092 Loss: 91.484 +16000/69092 Loss: 91.671 +19200/69092 Loss: 90.307 +22400/69092 Loss: 92.640 +25600/69092 Loss: 92.106 +28800/69092 Loss: 92.910 +32000/69092 Loss: 92.764 +35200/69092 Loss: 90.614 +38400/69092 Loss: 90.834 +41600/69092 Loss: 92.050 +44800/69092 Loss: 91.245 +48000/69092 Loss: 90.336 +51200/69092 Loss: 92.334 +54400/69092 Loss: 91.068 +57600/69092 Loss: 92.019 +60800/69092 Loss: 91.188 +64000/69092 Loss: 92.173 +67200/69092 Loss: 92.519 +Training time 0:09:12.835653 +Epoch: 190 Average loss: 91.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 464) +0/69092 Loss: 88.732 +3200/69092 Loss: 92.387 +6400/69092 Loss: 91.347 +9600/69092 Loss: 92.028 +12800/69092 Loss: 91.810 +16000/69092 Loss: 91.178 +19200/69092 Loss: 90.543 +22400/69092 Loss: 90.820 +25600/69092 Loss: 91.033 +28800/69092 Loss: 91.481 +32000/69092 Loss: 91.733 +35200/69092 Loss: 92.369 +38400/69092 Loss: 91.325 +41600/69092 Loss: 91.638 +44800/69092 Loss: 92.088 +48000/69092 Loss: 90.575 +51200/69092 Loss: 91.883 +54400/69092 Loss: 91.051 +57600/69092 Loss: 91.777 +60800/69092 Loss: 90.907 +64000/69092 Loss: 91.780 +67200/69092 Loss: 92.448 +Training time 0:09:07.374636 +Epoch: 191 Average loss: 91.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 465) +0/69092 Loss: 92.439 +3200/69092 Loss: 91.334 +6400/69092 Loss: 92.625 +9600/69092 Loss: 91.749 +12800/69092 Loss: 91.084 +16000/69092 Loss: 92.094 +19200/69092 Loss: 93.100 +22400/69092 Loss: 91.623 +25600/69092 Loss: 92.272 +28800/69092 Loss: 91.040 +32000/69092 Loss: 90.631 +35200/69092 Loss: 92.136 +38400/69092 Loss: 90.950 +41600/69092 Loss: 92.829 +44800/69092 Loss: 91.511 +48000/69092 Loss: 92.627 +51200/69092 Loss: 90.338 +54400/69092 Loss: 92.538 +57600/69092 Loss: 91.398 +60800/69092 Loss: 91.970 +64000/69092 Loss: 91.432 +67200/69092 Loss: 91.022 +Training time 0:09:14.327296 +Epoch: 192 Average loss: 91.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 466) +0/69092 Loss: 91.983 +3200/69092 Loss: 91.116 +6400/69092 Loss: 92.378 +9600/69092 Loss: 90.838 +12800/69092 Loss: 92.496 +16000/69092 Loss: 91.071 +19200/69092 Loss: 91.687 +22400/69092 Loss: 91.931 +25600/69092 Loss: 91.802 +28800/69092 Loss: 91.077 +32000/69092 Loss: 91.557 +35200/69092 Loss: 91.991 +38400/69092 Loss: 91.032 +41600/69092 Loss: 92.928 +44800/69092 Loss: 92.509 +48000/69092 Loss: 91.002 +51200/69092 Loss: 90.788 +54400/69092 Loss: 91.908 +57600/69092 Loss: 91.492 +60800/69092 Loss: 92.735 +64000/69092 Loss: 92.212 +67200/69092 Loss: 90.923 +Training time 0:09:08.964932 +Epoch: 193 Average loss: 91.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 467) +0/69092 Loss: 99.497 +3200/69092 Loss: 90.870 +6400/69092 Loss: 90.090 +9600/69092 Loss: 90.786 +12800/69092 Loss: 91.568 +16000/69092 Loss: 91.131 +19200/69092 Loss: 93.189 +22400/69092 Loss: 92.022 +25600/69092 Loss: 91.893 +28800/69092 Loss: 91.072 +32000/69092 Loss: 92.211 +35200/69092 Loss: 91.330 +38400/69092 Loss: 92.226 +41600/69092 Loss: 92.685 +44800/69092 Loss: 90.488 +48000/69092 Loss: 91.999 +51200/69092 Loss: 91.439 +54400/69092 Loss: 91.164 +57600/69092 Loss: 90.495 +60800/69092 Loss: 92.162 +64000/69092 Loss: 92.239 +67200/69092 Loss: 90.326 +Training time 0:09:15.572436 +Epoch: 194 Average loss: 91.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 468) +0/69092 Loss: 96.908 +3200/69092 Loss: 91.746 +6400/69092 Loss: 90.765 +9600/69092 Loss: 92.329 +12800/69092 Loss: 91.663 +16000/69092 Loss: 92.256 +19200/69092 Loss: 91.099 +22400/69092 Loss: 92.186 +25600/69092 Loss: 90.801 +28800/69092 Loss: 89.694 +32000/69092 Loss: 90.998 +35200/69092 Loss: 93.487 +38400/69092 Loss: 91.097 +41600/69092 Loss: 90.159 +44800/69092 Loss: 91.116 +48000/69092 Loss: 91.449 +51200/69092 Loss: 91.246 +54400/69092 Loss: 94.168 +57600/69092 Loss: 90.752 +60800/69092 Loss: 91.528 +64000/69092 Loss: 93.140 +67200/69092 Loss: 91.218 +Training time 0:09:25.758512 +Epoch: 195 Average loss: 91.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 469) +0/69092 Loss: 79.500 +3200/69092 Loss: 91.367 +6400/69092 Loss: 90.851 +9600/69092 Loss: 92.389 +12800/69092 Loss: 91.697 +16000/69092 Loss: 91.831 +19200/69092 Loss: 91.671 +22400/69092 Loss: 90.995 +25600/69092 Loss: 92.067 +28800/69092 Loss: 92.329 +32000/69092 Loss: 92.280 +35200/69092 Loss: 91.215 +38400/69092 Loss: 91.755 +41600/69092 Loss: 90.177 +44800/69092 Loss: 91.322 +48000/69092 Loss: 92.094 +51200/69092 Loss: 93.036 +54400/69092 Loss: 92.035 +57600/69092 Loss: 92.133 +60800/69092 Loss: 91.636 +64000/69092 Loss: 91.200 +67200/69092 Loss: 92.404 +Training time 0:09:13.104178 +Epoch: 196 Average loss: 91.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 470) +0/69092 Loss: 85.968 +3200/69092 Loss: 92.276 +6400/69092 Loss: 91.106 +9600/69092 Loss: 90.865 +12800/69092 Loss: 91.741 +16000/69092 Loss: 92.611 +19200/69092 Loss: 92.188 +22400/69092 Loss: 90.565 +25600/69092 Loss: 91.004 +28800/69092 Loss: 91.303 +32000/69092 Loss: 92.477 +35200/69092 Loss: 91.044 +38400/69092 Loss: 90.608 +41600/69092 Loss: 92.426 +44800/69092 Loss: 92.520 +48000/69092 Loss: 91.778 +51200/69092 Loss: 90.289 +54400/69092 Loss: 91.373 +57600/69092 Loss: 92.193 +60800/69092 Loss: 92.792 +64000/69092 Loss: 91.452 +67200/69092 Loss: 92.881 +Training time 0:09:20.320731 +Epoch: 197 Average loss: 91.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 471) +0/69092 Loss: 91.516 +3200/69092 Loss: 90.725 +6400/69092 Loss: 90.803 +9600/69092 Loss: 92.089 +12800/69092 Loss: 92.492 +16000/69092 Loss: 92.983 +19200/69092 Loss: 90.578 +22400/69092 Loss: 90.874 +25600/69092 Loss: 89.864 +28800/69092 Loss: 92.386 +32000/69092 Loss: 91.860 +35200/69092 Loss: 92.691 +38400/69092 Loss: 91.121 +41600/69092 Loss: 91.445 +44800/69092 Loss: 91.971 +48000/69092 Loss: 92.604 +51200/69092 Loss: 92.029 +54400/69092 Loss: 91.812 +57600/69092 Loss: 92.076 +60800/69092 Loss: 92.732 +64000/69092 Loss: 90.182 +67200/69092 Loss: 92.071 +Training time 0:09:03.455825 +Epoch: 198 Average loss: 91.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 472) +0/69092 Loss: 92.601 +3200/69092 Loss: 92.523 +6400/69092 Loss: 91.811 +9600/69092 Loss: 92.786 +12800/69092 Loss: 92.378 +16000/69092 Loss: 90.828 +19200/69092 Loss: 91.295 +22400/69092 Loss: 91.170 +25600/69092 Loss: 90.942 +28800/69092 Loss: 90.897 +32000/69092 Loss: 90.957 +35200/69092 Loss: 91.855 +38400/69092 Loss: 92.091 +41600/69092 Loss: 91.807 +44800/69092 Loss: 91.590 +48000/69092 Loss: 92.009 +51200/69092 Loss: 89.820 +54400/69092 Loss: 91.851 +57600/69092 Loss: 93.456 +60800/69092 Loss: 91.052 +64000/69092 Loss: 91.228 +67200/69092 Loss: 91.647 +Training time 0:09:18.905715 +Epoch: 199 Average loss: 91.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 473) +0/69092 Loss: 91.826 +3200/69092 Loss: 90.827 +6400/69092 Loss: 90.540 +9600/69092 Loss: 91.062 +12800/69092 Loss: 91.202 +16000/69092 Loss: 92.162 +19200/69092 Loss: 91.683 +22400/69092 Loss: 91.639 +25600/69092 Loss: 92.209 +28800/69092 Loss: 92.721 +32000/69092 Loss: 91.379 +35200/69092 Loss: 92.341 +38400/69092 Loss: 91.677 +41600/69092 Loss: 92.160 +44800/69092 Loss: 90.510 +48000/69092 Loss: 90.753 +51200/69092 Loss: 90.465 +54400/69092 Loss: 92.816 +57600/69092 Loss: 91.572 +60800/69092 Loss: 92.127 +64000/69092 Loss: 92.406 +67200/69092 Loss: 92.154 +Training time 0:09:16.899494 +Epoch: 200 Average loss: 91.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 474) +0/69092 Loss: 90.308 +3200/69092 Loss: 92.036 +6400/69092 Loss: 91.401 +9600/69092 Loss: 91.493 +12800/69092 Loss: 90.525 +16000/69092 Loss: 91.276 +19200/69092 Loss: 92.181 +22400/69092 Loss: 92.536 +25600/69092 Loss: 91.577 +28800/69092 Loss: 91.189 +32000/69092 Loss: 93.311 +35200/69092 Loss: 91.838 +38400/69092 Loss: 92.170 +41600/69092 Loss: 91.492 +44800/69092 Loss: 91.990 +48000/69092 Loss: 91.767 +51200/69092 Loss: 91.123 +54400/69092 Loss: 91.407 +57600/69092 Loss: 91.919 +60800/69092 Loss: 91.818 +64000/69092 Loss: 90.941 +67200/69092 Loss: 91.026 +Training time 0:09:09.534051 +Epoch: 201 Average loss: 91.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 475) +0/69092 Loss: 83.192 +3200/69092 Loss: 90.671 +6400/69092 Loss: 91.714 +9600/69092 Loss: 91.149 +12800/69092 Loss: 91.642 +16000/69092 Loss: 91.795 +19200/69092 Loss: 92.004 +22400/69092 Loss: 92.022 +25600/69092 Loss: 91.033 +28800/69092 Loss: 90.057 +32000/69092 Loss: 91.457 +35200/69092 Loss: 91.091 +38400/69092 Loss: 92.147 +41600/69092 Loss: 92.131 +44800/69092 Loss: 91.589 +48000/69092 Loss: 93.013 +51200/69092 Loss: 91.901 +54400/69092 Loss: 91.198 +57600/69092 Loss: 91.179 +60800/69092 Loss: 91.746 +64000/69092 Loss: 91.792 +67200/69092 Loss: 91.031 +Training time 0:09:17.341926 +Epoch: 202 Average loss: 91.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 476) +0/69092 Loss: 106.665 +3200/69092 Loss: 92.247 +6400/69092 Loss: 92.297 +9600/69092 Loss: 92.054 +12800/69092 Loss: 92.337 +16000/69092 Loss: 92.159 +19200/69092 Loss: 90.383 +22400/69092 Loss: 91.833 +25600/69092 Loss: 91.857 +28800/69092 Loss: 91.190 +32000/69092 Loss: 90.715 +35200/69092 Loss: 92.041 +38400/69092 Loss: 91.930 +41600/69092 Loss: 91.957 +44800/69092 Loss: 92.099 +48000/69092 Loss: 91.563 +51200/69092 Loss: 91.762 +54400/69092 Loss: 91.049 +57600/69092 Loss: 90.407 +60800/69092 Loss: 92.133 +64000/69092 Loss: 91.316 +67200/69092 Loss: 90.968 +Training time 0:08:52.498032 +Epoch: 203 Average loss: 91.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 477) +0/69092 Loss: 88.260 +3200/69092 Loss: 89.999 +6400/69092 Loss: 91.828 +9600/69092 Loss: 91.987 +12800/69092 Loss: 92.744 +16000/69092 Loss: 90.678 +19200/69092 Loss: 91.542 +22400/69092 Loss: 91.632 +25600/69092 Loss: 91.608 +28800/69092 Loss: 91.265 +32000/69092 Loss: 92.682 +35200/69092 Loss: 91.484 +38400/69092 Loss: 92.124 +41600/69092 Loss: 91.703 +44800/69092 Loss: 90.467 +48000/69092 Loss: 91.379 +51200/69092 Loss: 91.012 +54400/69092 Loss: 91.756 +57600/69092 Loss: 91.115 +60800/69092 Loss: 91.991 +64000/69092 Loss: 92.679 +67200/69092 Loss: 90.919 +Training time 0:08:47.392015 +Epoch: 204 Average loss: 91.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 478) +0/69092 Loss: 99.760 +3200/69092 Loss: 90.563 +6400/69092 Loss: 90.993 +9600/69092 Loss: 90.338 +12800/69092 Loss: 91.112 +16000/69092 Loss: 92.846 +19200/69092 Loss: 91.754 +22400/69092 Loss: 91.798 +25600/69092 Loss: 90.936 +28800/69092 Loss: 91.713 +32000/69092 Loss: 91.267 +35200/69092 Loss: 91.586 +38400/69092 Loss: 91.011 +41600/69092 Loss: 90.421 +44800/69092 Loss: 91.459 +48000/69092 Loss: 90.299 +51200/69092 Loss: 93.219 +54400/69092 Loss: 90.953 +57600/69092 Loss: 90.416 +60800/69092 Loss: 93.810 +64000/69092 Loss: 92.520 +67200/69092 Loss: 91.793 +Training time 0:09:21.041407 +Epoch: 205 Average loss: 91.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 479) +0/69092 Loss: 87.775 +3200/69092 Loss: 91.696 +6400/69092 Loss: 89.644 +9600/69092 Loss: 89.711 +12800/69092 Loss: 92.757 +16000/69092 Loss: 92.531 +19200/69092 Loss: 92.506 +22400/69092 Loss: 91.429 +25600/69092 Loss: 89.811 +28800/69092 Loss: 91.141 +32000/69092 Loss: 91.976 +35200/69092 Loss: 92.275 +38400/69092 Loss: 92.947 +41600/69092 Loss: 90.709 +44800/69092 Loss: 91.624 +48000/69092 Loss: 92.914 +51200/69092 Loss: 91.979 +54400/69092 Loss: 90.829 +57600/69092 Loss: 92.758 +60800/69092 Loss: 91.317 +64000/69092 Loss: 90.494 +67200/69092 Loss: 91.251 +Training time 0:08:52.697592 +Epoch: 206 Average loss: 91.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 480) +0/69092 Loss: 97.792 +3200/69092 Loss: 91.187 +6400/69092 Loss: 89.968 +9600/69092 Loss: 91.875 +12800/69092 Loss: 92.778 +16000/69092 Loss: 91.456 +19200/69092 Loss: 93.176 +22400/69092 Loss: 91.277 +25600/69092 Loss: 91.504 +28800/69092 Loss: 91.197 +32000/69092 Loss: 90.127 +35200/69092 Loss: 90.962 +38400/69092 Loss: 90.393 +41600/69092 Loss: 90.520 +44800/69092 Loss: 91.587 +48000/69092 Loss: 91.792 +51200/69092 Loss: 91.772 +54400/69092 Loss: 92.937 +57600/69092 Loss: 91.873 +60800/69092 Loss: 92.609 +64000/69092 Loss: 92.312 +67200/69092 Loss: 92.201 +Training time 0:09:15.241987 +Epoch: 207 Average loss: 91.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 481) +0/69092 Loss: 90.590 +3200/69092 Loss: 91.629 +6400/69092 Loss: 93.082 +9600/69092 Loss: 91.510 +12800/69092 Loss: 90.775 +16000/69092 Loss: 90.925 +19200/69092 Loss: 91.343 +22400/69092 Loss: 91.588 +25600/69092 Loss: 92.711 +28800/69092 Loss: 91.215 +32000/69092 Loss: 91.919 +35200/69092 Loss: 92.863 +38400/69092 Loss: 91.875 +41600/69092 Loss: 90.464 +44800/69092 Loss: 91.958 +48000/69092 Loss: 91.656 +51200/69092 Loss: 91.971 +54400/69092 Loss: 90.733 +57600/69092 Loss: 91.118 +60800/69092 Loss: 90.745 +64000/69092 Loss: 90.727 +67200/69092 Loss: 91.163 +Training time 0:09:24.140712 +Epoch: 208 Average loss: 91.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 482) +0/69092 Loss: 89.602 +3200/69092 Loss: 91.499 +6400/69092 Loss: 92.348 +9600/69092 Loss: 90.159 +12800/69092 Loss: 90.509 +16000/69092 Loss: 90.774 +19200/69092 Loss: 92.990 +22400/69092 Loss: 91.155 +25600/69092 Loss: 91.896 +28800/69092 Loss: 91.219 +32000/69092 Loss: 92.131 +35200/69092 Loss: 92.111 +38400/69092 Loss: 92.349 +41600/69092 Loss: 89.981 +44800/69092 Loss: 91.968 +48000/69092 Loss: 91.060 +51200/69092 Loss: 91.757 +54400/69092 Loss: 91.203 +57600/69092 Loss: 90.723 +60800/69092 Loss: 91.250 +64000/69092 Loss: 91.773 +67200/69092 Loss: 92.112 +Training time 0:09:04.877000 +Epoch: 209 Average loss: 91.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 483) +0/69092 Loss: 91.984 +3200/69092 Loss: 91.854 +6400/69092 Loss: 92.329 +9600/69092 Loss: 91.337 +12800/69092 Loss: 92.547 +16000/69092 Loss: 90.957 +19200/69092 Loss: 91.673 +22400/69092 Loss: 91.630 +25600/69092 Loss: 90.557 +28800/69092 Loss: 90.722 +32000/69092 Loss: 91.880 +35200/69092 Loss: 91.527 +38400/69092 Loss: 91.958 +41600/69092 Loss: 91.326 +44800/69092 Loss: 92.134 +48000/69092 Loss: 90.518 +51200/69092 Loss: 90.685 +54400/69092 Loss: 91.670 +57600/69092 Loss: 90.780 +60800/69092 Loss: 90.762 +64000/69092 Loss: 90.769 +67200/69092 Loss: 92.253 +Training time 0:09:07.705281 +Epoch: 210 Average loss: 91.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 484) +0/69092 Loss: 91.881 +3200/69092 Loss: 90.612 +6400/69092 Loss: 90.786 +9600/69092 Loss: 90.490 +12800/69092 Loss: 91.644 +16000/69092 Loss: 92.392 +19200/69092 Loss: 92.432 +22400/69092 Loss: 91.932 +25600/69092 Loss: 92.309 +28800/69092 Loss: 91.375 +32000/69092 Loss: 92.026 +35200/69092 Loss: 91.892 +38400/69092 Loss: 90.820 +41600/69092 Loss: 91.423 +44800/69092 Loss: 91.307 +48000/69092 Loss: 91.737 +51200/69092 Loss: 91.880 +54400/69092 Loss: 91.247 +57600/69092 Loss: 92.057 +60800/69092 Loss: 90.043 +64000/69092 Loss: 91.656 +67200/69092 Loss: 92.037 +Training time 0:09:08.531300 +Epoch: 211 Average loss: 91.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 485) +0/69092 Loss: 85.857 +3200/69092 Loss: 90.742 +6400/69092 Loss: 91.722 +9600/69092 Loss: 92.336 +12800/69092 Loss: 92.299 +16000/69092 Loss: 91.076 +19200/69092 Loss: 91.467 +22400/69092 Loss: 91.578 +25600/69092 Loss: 90.805 +28800/69092 Loss: 91.768 +32000/69092 Loss: 91.014 +35200/69092 Loss: 89.680 +38400/69092 Loss: 91.202 +41600/69092 Loss: 91.631 +44800/69092 Loss: 91.583 +48000/69092 Loss: 91.460 +51200/69092 Loss: 92.024 +54400/69092 Loss: 90.914 +57600/69092 Loss: 92.518 +60800/69092 Loss: 91.812 +64000/69092 Loss: 91.631 +67200/69092 Loss: 92.560 +Training time 0:09:26.058235 +Epoch: 212 Average loss: 91.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 486) +0/69092 Loss: 93.344 +3200/69092 Loss: 91.268 +6400/69092 Loss: 91.952 +9600/69092 Loss: 90.728 +12800/69092 Loss: 90.793 +16000/69092 Loss: 90.978 +19200/69092 Loss: 92.151 +22400/69092 Loss: 91.901 +25600/69092 Loss: 90.961 +28800/69092 Loss: 90.796 +32000/69092 Loss: 90.302 +35200/69092 Loss: 92.061 +38400/69092 Loss: 92.254 +41600/69092 Loss: 91.867 +44800/69092 Loss: 92.227 +48000/69092 Loss: 91.060 +51200/69092 Loss: 91.018 +54400/69092 Loss: 92.325 +57600/69092 Loss: 92.060 +60800/69092 Loss: 91.679 +64000/69092 Loss: 92.001 +67200/69092 Loss: 91.493 +Training time 0:09:03.952879 +Epoch: 213 Average loss: 91.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 487) +0/69092 Loss: 88.031 +3200/69092 Loss: 91.149 +6400/69092 Loss: 91.437 +9600/69092 Loss: 89.715 +12800/69092 Loss: 91.769 +16000/69092 Loss: 92.271 +19200/69092 Loss: 90.687 +22400/69092 Loss: 89.984 +25600/69092 Loss: 92.056 +28800/69092 Loss: 91.661 +32000/69092 Loss: 92.071 +35200/69092 Loss: 91.821 +38400/69092 Loss: 91.258 +41600/69092 Loss: 90.714 +44800/69092 Loss: 92.087 +48000/69092 Loss: 91.446 +51200/69092 Loss: 91.021 +54400/69092 Loss: 91.508 +57600/69092 Loss: 91.004 +60800/69092 Loss: 93.188 +64000/69092 Loss: 92.469 +67200/69092 Loss: 91.949 +Training time 0:08:55.908873 +Epoch: 214 Average loss: 91.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 488) +0/69092 Loss: 91.599 +3200/69092 Loss: 91.367 +6400/69092 Loss: 91.809 +9600/69092 Loss: 92.465 +12800/69092 Loss: 92.420 +16000/69092 Loss: 91.711 +19200/69092 Loss: 92.323 +22400/69092 Loss: 90.466 +25600/69092 Loss: 91.660 +28800/69092 Loss: 91.886 +32000/69092 Loss: 92.149 +35200/69092 Loss: 90.678 +38400/69092 Loss: 92.076 +41600/69092 Loss: 91.075 +44800/69092 Loss: 92.862 +48000/69092 Loss: 90.071 +51200/69092 Loss: 92.559 +54400/69092 Loss: 91.078 +57600/69092 Loss: 91.822 +60800/69092 Loss: 92.045 +64000/69092 Loss: 91.109 +67200/69092 Loss: 91.409 +Training time 0:09:14.219483 +Epoch: 215 Average loss: 91.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 489) +0/69092 Loss: 92.964 +3200/69092 Loss: 91.060 +6400/69092 Loss: 91.848 +9600/69092 Loss: 93.152 +12800/69092 Loss: 90.070 +16000/69092 Loss: 91.104 +19200/69092 Loss: 91.235 +22400/69092 Loss: 92.064 +25600/69092 Loss: 92.003 +28800/69092 Loss: 90.685 +32000/69092 Loss: 91.561 +35200/69092 Loss: 91.848 +38400/69092 Loss: 92.279 +41600/69092 Loss: 91.566 +44800/69092 Loss: 91.479 +48000/69092 Loss: 91.301 +51200/69092 Loss: 91.533 +54400/69092 Loss: 90.562 +57600/69092 Loss: 91.511 +60800/69092 Loss: 92.648 +64000/69092 Loss: 92.069 +67200/69092 Loss: 92.032 +Training time 0:09:28.980372 +Epoch: 216 Average loss: 91.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 490) +0/69092 Loss: 102.241 +3200/69092 Loss: 91.065 +6400/69092 Loss: 90.175 +9600/69092 Loss: 90.486 +12800/69092 Loss: 91.130 +16000/69092 Loss: 89.589 +19200/69092 Loss: 90.505 +22400/69092 Loss: 91.521 +25600/69092 Loss: 93.202 +28800/69092 Loss: 92.229 +32000/69092 Loss: 91.167 +35200/69092 Loss: 92.020 +38400/69092 Loss: 90.941 +41600/69092 Loss: 91.863 +44800/69092 Loss: 91.561 +48000/69092 Loss: 91.797 +51200/69092 Loss: 91.513 +54400/69092 Loss: 92.564 +57600/69092 Loss: 92.595 +60800/69092 Loss: 90.930 +64000/69092 Loss: 92.695 +67200/69092 Loss: 92.692 +Training time 0:08:55.337526 +Epoch: 217 Average loss: 91.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 491) +0/69092 Loss: 96.405 +3200/69092 Loss: 92.009 +6400/69092 Loss: 90.605 +9600/69092 Loss: 91.626 +12800/69092 Loss: 91.359 +16000/69092 Loss: 92.120 +19200/69092 Loss: 90.475 +22400/69092 Loss: 93.177 +25600/69092 Loss: 92.101 +28800/69092 Loss: 90.976 +32000/69092 Loss: 90.938 +35200/69092 Loss: 91.934 +38400/69092 Loss: 91.385 +41600/69092 Loss: 91.017 +44800/69092 Loss: 91.009 +48000/69092 Loss: 92.317 +51200/69092 Loss: 92.172 +54400/69092 Loss: 91.313 +57600/69092 Loss: 92.144 +60800/69092 Loss: 89.707 +64000/69092 Loss: 90.897 +67200/69092 Loss: 93.352 +Training time 0:09:28.894598 +Epoch: 218 Average loss: 91.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 492) +0/69092 Loss: 94.742 +3200/69092 Loss: 92.601 +6400/69092 Loss: 91.037 +9600/69092 Loss: 90.292 +12800/69092 Loss: 91.088 +16000/69092 Loss: 93.489 +19200/69092 Loss: 92.605 +22400/69092 Loss: 90.891 +25600/69092 Loss: 90.250 +28800/69092 Loss: 91.333 +32000/69092 Loss: 92.696 +35200/69092 Loss: 90.957 +38400/69092 Loss: 92.158 +41600/69092 Loss: 91.606 +44800/69092 Loss: 91.978 +48000/69092 Loss: 91.174 +51200/69092 Loss: 90.943 +54400/69092 Loss: 91.311 +57600/69092 Loss: 91.200 +60800/69092 Loss: 91.156 +64000/69092 Loss: 92.155 +67200/69092 Loss: 91.356 +Training time 0:09:22.922135 +Epoch: 219 Average loss: 91.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 493) +0/69092 Loss: 83.161 +3200/69092 Loss: 91.061 +6400/69092 Loss: 91.244 +9600/69092 Loss: 90.590 +12800/69092 Loss: 91.123 +16000/69092 Loss: 92.694 +19200/69092 Loss: 91.686 +22400/69092 Loss: 91.914 +25600/69092 Loss: 91.151 +28800/69092 Loss: 90.826 +32000/69092 Loss: 91.369 +35200/69092 Loss: 91.703 +38400/69092 Loss: 91.720 +41600/69092 Loss: 92.262 +44800/69092 Loss: 90.355 +48000/69092 Loss: 91.018 +51200/69092 Loss: 90.991 +54400/69092 Loss: 91.628 +57600/69092 Loss: 91.681 +60800/69092 Loss: 91.762 +64000/69092 Loss: 91.671 +67200/69092 Loss: 91.123 +Training time 0:09:26.713460 +Epoch: 220 Average loss: 91.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 494) +0/69092 Loss: 85.072 +3200/69092 Loss: 90.496 +6400/69092 Loss: 91.069 +9600/69092 Loss: 92.433 +12800/69092 Loss: 91.338 +16000/69092 Loss: 92.060 +19200/69092 Loss: 92.391 +22400/69092 Loss: 91.740 +25600/69092 Loss: 92.502 +28800/69092 Loss: 91.013 +32000/69092 Loss: 91.335 +35200/69092 Loss: 90.481 +38400/69092 Loss: 92.236 +41600/69092 Loss: 91.094 +44800/69092 Loss: 92.170 +48000/69092 Loss: 91.390 +51200/69092 Loss: 91.162 +54400/69092 Loss: 91.180 +57600/69092 Loss: 90.616 +60800/69092 Loss: 92.372 +64000/69092 Loss: 90.649 +67200/69092 Loss: 90.470 +Training time 0:09:13.642592 +Epoch: 221 Average loss: 91.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 495) +0/69092 Loss: 94.170 +3200/69092 Loss: 90.876 +6400/69092 Loss: 91.545 +9600/69092 Loss: 92.283 +12800/69092 Loss: 90.910 +16000/69092 Loss: 91.307 +19200/69092 Loss: 89.587 +22400/69092 Loss: 91.929 +25600/69092 Loss: 91.142 +28800/69092 Loss: 92.661 +32000/69092 Loss: 92.211 +35200/69092 Loss: 91.127 +38400/69092 Loss: 90.971 +41600/69092 Loss: 91.651 +44800/69092 Loss: 91.189 +48000/69092 Loss: 92.072 +51200/69092 Loss: 91.302 +54400/69092 Loss: 92.091 +57600/69092 Loss: 91.916 +60800/69092 Loss: 90.704 +64000/69092 Loss: 90.850 +67200/69092 Loss: 91.265 +Training time 0:09:26.807780 +Epoch: 222 Average loss: 91.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 496) +0/69092 Loss: 89.271 +3200/69092 Loss: 92.420 +6400/69092 Loss: 90.450 +9600/69092 Loss: 92.155 +12800/69092 Loss: 90.594 +16000/69092 Loss: 89.982 +19200/69092 Loss: 91.262 +22400/69092 Loss: 91.691 +25600/69092 Loss: 93.615 +28800/69092 Loss: 92.190 +32000/69092 Loss: 91.231 +35200/69092 Loss: 90.893 +38400/69092 Loss: 90.571 +41600/69092 Loss: 92.117 +44800/69092 Loss: 90.486 +48000/69092 Loss: 92.205 +51200/69092 Loss: 91.111 +54400/69092 Loss: 91.993 +57600/69092 Loss: 90.869 +60800/69092 Loss: 91.939 +64000/69092 Loss: 91.235 +67200/69092 Loss: 91.504 +Training time 0:09:05.484379 +Epoch: 223 Average loss: 91.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 497) +0/69092 Loss: 89.181 +3200/69092 Loss: 90.413 +6400/69092 Loss: 90.718 +9600/69092 Loss: 91.599 +12800/69092 Loss: 91.833 +16000/69092 Loss: 90.470 +19200/69092 Loss: 92.388 +22400/69092 Loss: 92.364 +25600/69092 Loss: 93.409 +28800/69092 Loss: 91.568 +32000/69092 Loss: 91.481 +35200/69092 Loss: 91.362 +38400/69092 Loss: 89.977 +41600/69092 Loss: 91.041 +44800/69092 Loss: 90.258 +48000/69092 Loss: 91.862 +51200/69092 Loss: 90.980 +54400/69092 Loss: 89.762 +57600/69092 Loss: 92.184 +60800/69092 Loss: 91.036 +64000/69092 Loss: 91.268 +67200/69092 Loss: 92.936 +Training time 0:09:04.440334 +Epoch: 224 Average loss: 91.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 498) +0/69092 Loss: 91.026 +3200/69092 Loss: 91.255 +6400/69092 Loss: 91.719 +9600/69092 Loss: 91.157 +12800/69092 Loss: 92.406 +16000/69092 Loss: 91.583 +19200/69092 Loss: 91.929 +22400/69092 Loss: 90.688 +25600/69092 Loss: 92.398 +28800/69092 Loss: 91.607 +32000/69092 Loss: 91.711 +35200/69092 Loss: 90.678 +38400/69092 Loss: 91.806 +41600/69092 Loss: 91.460 +44800/69092 Loss: 90.860 +48000/69092 Loss: 93.146 +51200/69092 Loss: 90.785 +54400/69092 Loss: 91.771 +57600/69092 Loss: 91.671 +60800/69092 Loss: 90.313 +64000/69092 Loss: 90.619 +67200/69092 Loss: 91.646 +Training time 0:09:06.338469 +Epoch: 225 Average loss: 91.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 499) +0/69092 Loss: 89.670 +3200/69092 Loss: 90.785 +6400/69092 Loss: 92.256 +9600/69092 Loss: 90.962 +12800/69092 Loss: 91.310 +16000/69092 Loss: 90.989 +19200/69092 Loss: 90.828 +22400/69092 Loss: 91.930 +25600/69092 Loss: 91.360 +28800/69092 Loss: 90.975 +32000/69092 Loss: 93.853 +35200/69092 Loss: 91.287 +38400/69092 Loss: 90.064 +41600/69092 Loss: 90.798 +44800/69092 Loss: 91.702 +48000/69092 Loss: 92.073 +51200/69092 Loss: 92.525 +54400/69092 Loss: 91.912 +57600/69092 Loss: 91.698 +60800/69092 Loss: 91.356 +64000/69092 Loss: 92.227 +67200/69092 Loss: 91.197 +Training time 0:09:20.758062 +Epoch: 226 Average loss: 91.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 500) +0/69092 Loss: 94.209 +3200/69092 Loss: 90.273 +6400/69092 Loss: 91.390 +9600/69092 Loss: 90.108 +12800/69092 Loss: 92.401 +16000/69092 Loss: 91.664 +19200/69092 Loss: 90.982 +22400/69092 Loss: 92.526 +25600/69092 Loss: 92.870 +28800/69092 Loss: 90.755 +32000/69092 Loss: 91.740 +35200/69092 Loss: 90.622 +38400/69092 Loss: 90.655 +41600/69092 Loss: 92.257 +44800/69092 Loss: 91.149 +48000/69092 Loss: 91.351 +51200/69092 Loss: 91.690 +54400/69092 Loss: 91.563 +57600/69092 Loss: 91.349 +60800/69092 Loss: 90.898 +64000/69092 Loss: 93.412 +67200/69092 Loss: 91.794 +Training time 0:09:18.575249 +Epoch: 227 Average loss: 91.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 501) +0/69092 Loss: 89.815 +3200/69092 Loss: 90.205 +6400/69092 Loss: 92.771 +9600/69092 Loss: 91.412 +12800/69092 Loss: 91.882 +16000/69092 Loss: 92.039 +19200/69092 Loss: 90.997 +22400/69092 Loss: 91.267 +25600/69092 Loss: 90.162 +28800/69092 Loss: 90.757 +32000/69092 Loss: 91.968 +35200/69092 Loss: 91.184 +38400/69092 Loss: 91.391 +41600/69092 Loss: 92.231 +44800/69092 Loss: 92.805 +48000/69092 Loss: 91.353 +51200/69092 Loss: 91.103 +54400/69092 Loss: 91.689 +57600/69092 Loss: 91.242 +60800/69092 Loss: 91.488 +64000/69092 Loss: 89.920 +67200/69092 Loss: 91.587 +Training time 0:09:11.332201 +Epoch: 228 Average loss: 91.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 502) +0/69092 Loss: 97.890 +3200/69092 Loss: 90.488 +6400/69092 Loss: 90.414 +9600/69092 Loss: 91.751 +12800/69092 Loss: 90.765 +16000/69092 Loss: 91.700 +19200/69092 Loss: 90.633 +22400/69092 Loss: 91.844 +25600/69092 Loss: 91.076 +28800/69092 Loss: 91.281 +32000/69092 Loss: 92.061 +35200/69092 Loss: 90.002 +38400/69092 Loss: 92.285 +41600/69092 Loss: 91.231 +44800/69092 Loss: 91.473 +48000/69092 Loss: 92.521 +51200/69092 Loss: 91.218 +54400/69092 Loss: 92.007 +57600/69092 Loss: 91.683 +60800/69092 Loss: 91.943 +64000/69092 Loss: 90.460 +67200/69092 Loss: 92.123 +Training time 0:08:57.582498 +Epoch: 229 Average loss: 91.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 503) +0/69092 Loss: 82.349 +3200/69092 Loss: 91.664 +6400/69092 Loss: 90.908 +9600/69092 Loss: 91.213 +12800/69092 Loss: 89.733 +16000/69092 Loss: 92.262 +19200/69092 Loss: 93.181 +22400/69092 Loss: 90.687 +25600/69092 Loss: 90.776 +28800/69092 Loss: 92.175 +32000/69092 Loss: 91.615 +35200/69092 Loss: 90.498 +38400/69092 Loss: 90.153 +41600/69092 Loss: 91.187 +44800/69092 Loss: 91.861 +48000/69092 Loss: 90.863 +51200/69092 Loss: 91.644 +54400/69092 Loss: 93.041 +57600/69092 Loss: 90.276 +60800/69092 Loss: 91.210 +64000/69092 Loss: 92.169 +67200/69092 Loss: 90.042 +Training time 0:09:17.600384 +Epoch: 230 Average loss: 91.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 504) +0/69092 Loss: 91.827 +3200/69092 Loss: 90.411 +6400/69092 Loss: 90.648 +9600/69092 Loss: 91.059 +12800/69092 Loss: 91.310 +16000/69092 Loss: 91.963 +19200/69092 Loss: 92.521 +22400/69092 Loss: 89.598 +25600/69092 Loss: 90.726 +28800/69092 Loss: 92.736 +32000/69092 Loss: 91.885 +35200/69092 Loss: 91.264 +38400/69092 Loss: 90.551 +41600/69092 Loss: 91.847 +44800/69092 Loss: 90.194 +48000/69092 Loss: 91.781 +51200/69092 Loss: 93.145 +54400/69092 Loss: 91.810 +57600/69092 Loss: 91.763 +60800/69092 Loss: 91.025 +64000/69092 Loss: 91.372 +67200/69092 Loss: 91.085 +Training time 0:09:17.945246 +Epoch: 231 Average loss: 91.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last' (iter 505) +0/69092 Loss: 86.150 +3200/69092 Loss: 91.619 +6400/69092 Loss: 91.922 +9600/69092 Loss: 91.481 +12800/69092 Loss: 91.698 +16000/69092 Loss: 91.638 diff --git a/OAR.2073645.stderr b/OAR.2073645.stderr new file mode 100644 index 0000000000000000000000000000000000000000..b800dbc96d0955b2893e858442aeea11bcc338e5 --- /dev/null +++ b/OAR.2073645.stderr @@ -0,0 +1,10 @@ +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 417, in load_checkpoint + self.mean_epoch_loss = checkpoint['loss'] +KeyError: 'loss' diff --git a/OAR.2073645.stdout b/OAR.2073645.stdout new file mode 100644 index 0000000000000000000000000000000000000000..e943950ae7124cf77d6991cee93fa200316bb8fb --- /dev/null +++ b/OAR.2073645.stdout @@ -0,0 +1,46 @@ +Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity diff --git a/OAR.2073646.stderr b/OAR.2073646.stderr new file mode 100644 index 0000000000000000000000000000000000000000..428f51beba791a9e4402d9e7e7cb048737a3ccb0 --- /dev/null +++ b/OAR.2073646.stderr @@ -0,0 +1,9 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 14:09:39] Job 2073646 KILLED ## diff --git a/OAR.2073646.stdout b/OAR.2073646.stdout new file mode 100644 index 0000000000000000000000000000000000000000..1f8a48422fb8bb6424673dc55a7a824ab234430e --- /dev/null +++ b/OAR.2073646.stdout @@ -0,0 +1,3603 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 797)' +0/69092 Loss: 142.832 +3200/69092 Loss: 151.428 +6400/69092 Loss: 154.939 +9600/69092 Loss: 150.255 +12800/69092 Loss: 152.961 +16000/69092 Loss: 151.128 +19200/69092 Loss: 150.601 +22400/69092 Loss: 151.621 +25600/69092 Loss: 151.453 +28800/69092 Loss: 151.952 +32000/69092 Loss: 150.342 +35200/69092 Loss: 152.334 +38400/69092 Loss: 152.996 +41600/69092 Loss: 154.452 +44800/69092 Loss: 149.559 +48000/69092 Loss: 152.127 +51200/69092 Loss: 150.600 +54400/69092 Loss: 152.427 +57600/69092 Loss: 152.343 +60800/69092 Loss: 151.399 +64000/69092 Loss: 151.713 +67200/69092 Loss: 151.581 +Training time 0:10:46.693358 +Epoch: 1 Average loss: 151.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 798) +0/69092 Loss: 131.466 +3200/69092 Loss: 153.140 +6400/69092 Loss: 152.061 +9600/69092 Loss: 151.407 +12800/69092 Loss: 148.320 +16000/69092 Loss: 152.133 +19200/69092 Loss: 153.223 +22400/69092 Loss: 152.522 +25600/69092 Loss: 149.832 +28800/69092 Loss: 154.702 +32000/69092 Loss: 152.283 +35200/69092 Loss: 147.379 +38400/69092 Loss: 150.764 +41600/69092 Loss: 150.538 +44800/69092 Loss: 150.184 +48000/69092 Loss: 150.135 +51200/69092 Loss: 152.698 +54400/69092 Loss: 152.481 +57600/69092 Loss: 152.071 +60800/69092 Loss: 155.076 +64000/69092 Loss: 151.858 +67200/69092 Loss: 150.355 +Training time 0:07:52.566749 +Epoch: 2 Average loss: 151.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 799) +0/69092 Loss: 153.552 +3200/69092 Loss: 151.396 +6400/69092 Loss: 154.249 +9600/69092 Loss: 152.852 +12800/69092 Loss: 151.672 +16000/69092 Loss: 153.207 +19200/69092 Loss: 151.788 +22400/69092 Loss: 150.910 +25600/69092 Loss: 150.622 +28800/69092 Loss: 149.125 +32000/69092 Loss: 150.276 +35200/69092 Loss: 152.476 +38400/69092 Loss: 151.409 +41600/69092 Loss: 152.512 +44800/69092 Loss: 151.830 +48000/69092 Loss: 153.252 +51200/69092 Loss: 148.425 +54400/69092 Loss: 153.022 +57600/69092 Loss: 151.896 +60800/69092 Loss: 151.356 +64000/69092 Loss: 150.920 +67200/69092 Loss: 150.466 +Training time 0:07:40.210971 +Epoch: 3 Average loss: 151.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 800) +0/69092 Loss: 149.220 +3200/69092 Loss: 153.549 +6400/69092 Loss: 152.571 +9600/69092 Loss: 151.262 +12800/69092 Loss: 151.059 +16000/69092 Loss: 150.423 +19200/69092 Loss: 154.031 +22400/69092 Loss: 152.053 +25600/69092 Loss: 153.655 +28800/69092 Loss: 149.575 +32000/69092 Loss: 149.359 +35200/69092 Loss: 150.729 +38400/69092 Loss: 152.202 +41600/69092 Loss: 151.922 +44800/69092 Loss: 151.350 +48000/69092 Loss: 153.064 +51200/69092 Loss: 152.192 +54400/69092 Loss: 148.975 +57600/69092 Loss: 149.852 +60800/69092 Loss: 152.121 +64000/69092 Loss: 153.938 +67200/69092 Loss: 152.545 +Training time 0:07:35.708027 +Epoch: 4 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 801) +0/69092 Loss: 147.088 +3200/69092 Loss: 154.065 +6400/69092 Loss: 149.628 +9600/69092 Loss: 149.559 +12800/69092 Loss: 151.099 +16000/69092 Loss: 154.106 +19200/69092 Loss: 149.777 +22400/69092 Loss: 150.702 +25600/69092 Loss: 154.616 +28800/69092 Loss: 149.317 +32000/69092 Loss: 152.851 +35200/69092 Loss: 153.567 +38400/69092 Loss: 151.744 +41600/69092 Loss: 149.520 +44800/69092 Loss: 148.214 +48000/69092 Loss: 151.462 +51200/69092 Loss: 151.701 +54400/69092 Loss: 150.467 +57600/69092 Loss: 149.840 +60800/69092 Loss: 151.528 +64000/69092 Loss: 151.747 +67200/69092 Loss: 152.380 +Training time 0:07:57.809355 +Epoch: 5 Average loss: 151.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 802) +0/69092 Loss: 151.311 +3200/69092 Loss: 150.602 +6400/69092 Loss: 150.899 +9600/69092 Loss: 152.649 +12800/69092 Loss: 152.877 +16000/69092 Loss: 152.631 +19200/69092 Loss: 152.606 +22400/69092 Loss: 151.643 +25600/69092 Loss: 150.756 +28800/69092 Loss: 149.740 +32000/69092 Loss: 151.477 +35200/69092 Loss: 152.934 +38400/69092 Loss: 151.614 +41600/69092 Loss: 149.164 +44800/69092 Loss: 152.253 +48000/69092 Loss: 152.297 +51200/69092 Loss: 149.771 +54400/69092 Loss: 153.283 +57600/69092 Loss: 153.180 +60800/69092 Loss: 150.826 +64000/69092 Loss: 150.909 +67200/69092 Loss: 153.284 +Training time 0:07:30.752925 +Epoch: 6 Average loss: 151.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 803) +0/69092 Loss: 155.523 +3200/69092 Loss: 152.202 +6400/69092 Loss: 151.890 +9600/69092 Loss: 154.005 +12800/69092 Loss: 152.243 +16000/69092 Loss: 150.647 +19200/69092 Loss: 149.749 +22400/69092 Loss: 149.702 +25600/69092 Loss: 150.467 +28800/69092 Loss: 151.769 +32000/69092 Loss: 149.260 +35200/69092 Loss: 152.489 +38400/69092 Loss: 153.783 +41600/69092 Loss: 154.698 +44800/69092 Loss: 150.038 +48000/69092 Loss: 150.720 +51200/69092 Loss: 152.133 +54400/69092 Loss: 151.531 +57600/69092 Loss: 150.957 +60800/69092 Loss: 151.272 +64000/69092 Loss: 150.041 +67200/69092 Loss: 152.465 +Training time 0:07:32.685306 +Epoch: 7 Average loss: 151.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 804) +0/69092 Loss: 146.798 +3200/69092 Loss: 149.984 +6400/69092 Loss: 150.086 +9600/69092 Loss: 151.987 +12800/69092 Loss: 150.882 +16000/69092 Loss: 150.604 +19200/69092 Loss: 150.730 +22400/69092 Loss: 152.218 +25600/69092 Loss: 151.894 +28800/69092 Loss: 152.447 +32000/69092 Loss: 153.182 +35200/69092 Loss: 150.758 +38400/69092 Loss: 151.858 +41600/69092 Loss: 153.620 +44800/69092 Loss: 154.218 +48000/69092 Loss: 149.610 +51200/69092 Loss: 151.251 +54400/69092 Loss: 149.222 +57600/69092 Loss: 153.495 +60800/69092 Loss: 152.255 +64000/69092 Loss: 152.853 +67200/69092 Loss: 152.295 +Training time 0:07:35.505770 +Epoch: 8 Average loss: 151.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 805) +0/69092 Loss: 160.319 +3200/69092 Loss: 152.974 +6400/69092 Loss: 150.695 +9600/69092 Loss: 150.355 +12800/69092 Loss: 150.285 +16000/69092 Loss: 150.416 +19200/69092 Loss: 151.078 +22400/69092 Loss: 154.285 +25600/69092 Loss: 151.172 +28800/69092 Loss: 151.029 +32000/69092 Loss: 151.973 +35200/69092 Loss: 154.305 +38400/69092 Loss: 151.517 +41600/69092 Loss: 150.787 +44800/69092 Loss: 150.841 +48000/69092 Loss: 153.113 +51200/69092 Loss: 149.988 +54400/69092 Loss: 151.136 +57600/69092 Loss: 151.874 +60800/69092 Loss: 151.309 +64000/69092 Loss: 152.939 +67200/69092 Loss: 152.066 +Training time 0:07:40.346530 +Epoch: 9 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 806) +0/69092 Loss: 140.940 +3200/69092 Loss: 149.976 +6400/69092 Loss: 153.539 +9600/69092 Loss: 154.428 +12800/69092 Loss: 153.127 +16000/69092 Loss: 152.540 +19200/69092 Loss: 152.555 +22400/69092 Loss: 151.403 +25600/69092 Loss: 151.441 +28800/69092 Loss: 150.558 +32000/69092 Loss: 151.403 +35200/69092 Loss: 149.511 +38400/69092 Loss: 149.908 +41600/69092 Loss: 151.184 +44800/69092 Loss: 149.961 +48000/69092 Loss: 151.066 +51200/69092 Loss: 151.044 +54400/69092 Loss: 152.363 +57600/69092 Loss: 151.708 +60800/69092 Loss: 153.671 +64000/69092 Loss: 151.170 +67200/69092 Loss: 152.389 +Training time 0:07:37.483801 +Epoch: 10 Average loss: 151.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 807) +0/69092 Loss: 159.772 +3200/69092 Loss: 151.655 +6400/69092 Loss: 152.404 +9600/69092 Loss: 152.278 +12800/69092 Loss: 153.847 +16000/69092 Loss: 151.843 +19200/69092 Loss: 151.602 +22400/69092 Loss: 153.643 +25600/69092 Loss: 148.815 +28800/69092 Loss: 151.932 +32000/69092 Loss: 150.882 +35200/69092 Loss: 148.644 +38400/69092 Loss: 150.872 +41600/69092 Loss: 151.482 +44800/69092 Loss: 150.188 +48000/69092 Loss: 151.897 +51200/69092 Loss: 148.668 +54400/69092 Loss: 152.283 +57600/69092 Loss: 151.700 +60800/69092 Loss: 153.371 +64000/69092 Loss: 152.254 +67200/69092 Loss: 152.654 +Training time 0:07:35.844384 +Epoch: 11 Average loss: 151.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 808) +0/69092 Loss: 149.332 +3200/69092 Loss: 150.202 +6400/69092 Loss: 147.318 +9600/69092 Loss: 151.879 +12800/69092 Loss: 155.115 +16000/69092 Loss: 152.035 +19200/69092 Loss: 151.063 +22400/69092 Loss: 149.873 +25600/69092 Loss: 151.657 +28800/69092 Loss: 150.022 +32000/69092 Loss: 151.053 +35200/69092 Loss: 152.898 +38400/69092 Loss: 154.348 +41600/69092 Loss: 151.439 +44800/69092 Loss: 151.348 +48000/69092 Loss: 150.846 +51200/69092 Loss: 151.212 +54400/69092 Loss: 151.078 +57600/69092 Loss: 151.025 +60800/69092 Loss: 154.230 +64000/69092 Loss: 154.987 +67200/69092 Loss: 151.852 +Training time 0:07:37.224474 +Epoch: 12 Average loss: 151.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 809) +0/69092 Loss: 138.583 +3200/69092 Loss: 153.194 +6400/69092 Loss: 152.075 +9600/69092 Loss: 150.860 +12800/69092 Loss: 148.227 +16000/69092 Loss: 150.734 +19200/69092 Loss: 149.018 +22400/69092 Loss: 153.552 +25600/69092 Loss: 152.421 +28800/69092 Loss: 151.671 +32000/69092 Loss: 152.167 +35200/69092 Loss: 151.276 +38400/69092 Loss: 152.898 +41600/69092 Loss: 152.320 +44800/69092 Loss: 152.869 +48000/69092 Loss: 151.612 +51200/69092 Loss: 148.819 +54400/69092 Loss: 150.429 +57600/69092 Loss: 153.729 +60800/69092 Loss: 151.637 +64000/69092 Loss: 151.642 +67200/69092 Loss: 149.629 +Training time 0:07:40.787807 +Epoch: 13 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 810) +0/69092 Loss: 147.644 +3200/69092 Loss: 153.846 +6400/69092 Loss: 151.848 +9600/69092 Loss: 149.836 +12800/69092 Loss: 152.001 +16000/69092 Loss: 151.389 +19200/69092 Loss: 150.485 +22400/69092 Loss: 150.750 +25600/69092 Loss: 149.420 +28800/69092 Loss: 152.185 +32000/69092 Loss: 149.508 +35200/69092 Loss: 152.795 +38400/69092 Loss: 148.575 +41600/69092 Loss: 152.989 +44800/69092 Loss: 154.810 +48000/69092 Loss: 151.022 +51200/69092 Loss: 152.563 +54400/69092 Loss: 152.374 +57600/69092 Loss: 148.134 +60800/69092 Loss: 151.173 +64000/69092 Loss: 152.669 +67200/69092 Loss: 153.190 +Training time 0:07:45.114223 +Epoch: 14 Average loss: 151.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 811) +0/69092 Loss: 141.849 +3200/69092 Loss: 152.143 +6400/69092 Loss: 153.037 +9600/69092 Loss: 152.729 +12800/69092 Loss: 150.901 +16000/69092 Loss: 153.110 +19200/69092 Loss: 151.586 +22400/69092 Loss: 152.629 +25600/69092 Loss: 150.923 +28800/69092 Loss: 151.909 +32000/69092 Loss: 152.531 +35200/69092 Loss: 153.017 +38400/69092 Loss: 149.319 +41600/69092 Loss: 151.842 +44800/69092 Loss: 150.922 +48000/69092 Loss: 149.904 +51200/69092 Loss: 149.914 +54400/69092 Loss: 154.381 +57600/69092 Loss: 150.180 +60800/69092 Loss: 149.407 +64000/69092 Loss: 152.661 +67200/69092 Loss: 151.762 +Training time 0:07:35.326505 +Epoch: 15 Average loss: 151.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 812) +0/69092 Loss: 148.428 +3200/69092 Loss: 150.966 +6400/69092 Loss: 151.189 +9600/69092 Loss: 152.722 +12800/69092 Loss: 148.759 +16000/69092 Loss: 151.323 +19200/69092 Loss: 153.601 +22400/69092 Loss: 150.202 +25600/69092 Loss: 153.207 +28800/69092 Loss: 153.975 +32000/69092 Loss: 151.357 +35200/69092 Loss: 151.863 +38400/69092 Loss: 150.525 +41600/69092 Loss: 150.028 +44800/69092 Loss: 151.842 +48000/69092 Loss: 151.937 +51200/69092 Loss: 150.990 +54400/69092 Loss: 152.793 +57600/69092 Loss: 152.481 +60800/69092 Loss: 153.697 +64000/69092 Loss: 150.563 +67200/69092 Loss: 150.937 +Training time 0:07:52.454446 +Epoch: 16 Average loss: 151.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 813) +0/69092 Loss: 165.051 +3200/69092 Loss: 152.356 +6400/69092 Loss: 151.707 +9600/69092 Loss: 152.731 +12800/69092 Loss: 148.486 +16000/69092 Loss: 151.790 +19200/69092 Loss: 152.862 +22400/69092 Loss: 151.890 +25600/69092 Loss: 152.049 +28800/69092 Loss: 149.456 +32000/69092 Loss: 151.685 +35200/69092 Loss: 154.041 +38400/69092 Loss: 148.235 +41600/69092 Loss: 154.044 +44800/69092 Loss: 149.114 +48000/69092 Loss: 152.398 +51200/69092 Loss: 148.419 +54400/69092 Loss: 149.442 +57600/69092 Loss: 152.814 +60800/69092 Loss: 152.266 +64000/69092 Loss: 149.424 +67200/69092 Loss: 151.552 +Training time 0:07:43.384686 +Epoch: 17 Average loss: 151.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 814) +0/69092 Loss: 126.141 +3200/69092 Loss: 151.218 +6400/69092 Loss: 151.762 +9600/69092 Loss: 153.108 +12800/69092 Loss: 150.925 +16000/69092 Loss: 152.302 +19200/69092 Loss: 152.114 +22400/69092 Loss: 154.952 +25600/69092 Loss: 149.640 +28800/69092 Loss: 153.500 +32000/69092 Loss: 152.145 +35200/69092 Loss: 150.850 +38400/69092 Loss: 150.811 +41600/69092 Loss: 151.004 +44800/69092 Loss: 150.151 +48000/69092 Loss: 150.852 +51200/69092 Loss: 150.746 +54400/69092 Loss: 153.982 +57600/69092 Loss: 150.529 +60800/69092 Loss: 152.979 +64000/69092 Loss: 151.288 +67200/69092 Loss: 151.380 +Training time 0:07:34.996320 +Epoch: 18 Average loss: 151.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 815) +0/69092 Loss: 172.651 +3200/69092 Loss: 153.101 +6400/69092 Loss: 153.456 +9600/69092 Loss: 150.571 +12800/69092 Loss: 149.409 +16000/69092 Loss: 151.089 +19200/69092 Loss: 154.176 +22400/69092 Loss: 148.249 +25600/69092 Loss: 150.918 +28800/69092 Loss: 151.937 +32000/69092 Loss: 151.031 +35200/69092 Loss: 150.894 +38400/69092 Loss: 151.705 +41600/69092 Loss: 153.474 +44800/69092 Loss: 151.484 +48000/69092 Loss: 148.892 +51200/69092 Loss: 151.000 +54400/69092 Loss: 153.309 +57600/69092 Loss: 150.007 +60800/69092 Loss: 152.490 +64000/69092 Loss: 151.719 +67200/69092 Loss: 152.703 +Training time 0:07:38.211483 +Epoch: 19 Average loss: 151.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 816) +0/69092 Loss: 136.414 +3200/69092 Loss: 150.012 +6400/69092 Loss: 150.873 +9600/69092 Loss: 151.578 +12800/69092 Loss: 151.445 +16000/69092 Loss: 153.938 +19200/69092 Loss: 152.728 +22400/69092 Loss: 152.766 +25600/69092 Loss: 149.509 +28800/69092 Loss: 151.017 +32000/69092 Loss: 149.687 +35200/69092 Loss: 152.461 +38400/69092 Loss: 151.911 +41600/69092 Loss: 152.539 +44800/69092 Loss: 148.983 +48000/69092 Loss: 153.657 +51200/69092 Loss: 151.178 +54400/69092 Loss: 152.763 +57600/69092 Loss: 150.197 +60800/69092 Loss: 151.684 +64000/69092 Loss: 151.547 +67200/69092 Loss: 150.111 +Training time 0:07:31.339478 +Epoch: 20 Average loss: 151.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 817) +0/69092 Loss: 143.900 +3200/69092 Loss: 151.848 +6400/69092 Loss: 152.165 +9600/69092 Loss: 150.452 +12800/69092 Loss: 152.078 +16000/69092 Loss: 152.112 +19200/69092 Loss: 151.913 +22400/69092 Loss: 149.455 +25600/69092 Loss: 150.123 +28800/69092 Loss: 152.930 +32000/69092 Loss: 151.828 +35200/69092 Loss: 152.006 +38400/69092 Loss: 150.040 +41600/69092 Loss: 151.655 +44800/69092 Loss: 151.215 +48000/69092 Loss: 152.819 +51200/69092 Loss: 150.766 +54400/69092 Loss: 152.408 +57600/69092 Loss: 149.854 +60800/69092 Loss: 151.033 +64000/69092 Loss: 151.729 +67200/69092 Loss: 152.009 +Training time 0:07:35.017780 +Epoch: 21 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 818) +0/69092 Loss: 157.734 +3200/69092 Loss: 150.653 +6400/69092 Loss: 149.956 +9600/69092 Loss: 151.723 +12800/69092 Loss: 152.990 +16000/69092 Loss: 152.325 +19200/69092 Loss: 149.504 +22400/69092 Loss: 150.876 +25600/69092 Loss: 150.986 +28800/69092 Loss: 151.457 +32000/69092 Loss: 150.582 +35200/69092 Loss: 155.020 +38400/69092 Loss: 152.673 +41600/69092 Loss: 151.270 +44800/69092 Loss: 151.241 +48000/69092 Loss: 152.973 +51200/69092 Loss: 151.529 +54400/69092 Loss: 150.431 +57600/69092 Loss: 151.148 +60800/69092 Loss: 147.814 +64000/69092 Loss: 151.480 +67200/69092 Loss: 155.033 +Training time 0:07:40.380809 +Epoch: 22 Average loss: 151.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 819) +0/69092 Loss: 155.389 +3200/69092 Loss: 150.793 +6400/69092 Loss: 152.988 +9600/69092 Loss: 148.746 +12800/69092 Loss: 152.022 +16000/69092 Loss: 153.037 +19200/69092 Loss: 152.275 +22400/69092 Loss: 151.229 +25600/69092 Loss: 151.761 +28800/69092 Loss: 150.749 +32000/69092 Loss: 152.514 +35200/69092 Loss: 152.362 +38400/69092 Loss: 149.450 +41600/69092 Loss: 151.644 +44800/69092 Loss: 150.395 +48000/69092 Loss: 151.387 +51200/69092 Loss: 149.469 +54400/69092 Loss: 153.230 +57600/69092 Loss: 152.747 +60800/69092 Loss: 149.452 +64000/69092 Loss: 152.556 +67200/69092 Loss: 154.979 +Training time 0:07:37.195908 +Epoch: 23 Average loss: 151.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 820) +0/69092 Loss: 147.278 +3200/69092 Loss: 150.818 +6400/69092 Loss: 150.412 +9600/69092 Loss: 155.031 +12800/69092 Loss: 150.162 +16000/69092 Loss: 152.846 +19200/69092 Loss: 151.563 +22400/69092 Loss: 150.620 +25600/69092 Loss: 153.353 +28800/69092 Loss: 150.121 +32000/69092 Loss: 152.388 +35200/69092 Loss: 150.256 +38400/69092 Loss: 150.500 +41600/69092 Loss: 149.279 +44800/69092 Loss: 153.392 +48000/69092 Loss: 151.072 +51200/69092 Loss: 152.543 +54400/69092 Loss: 153.213 +57600/69092 Loss: 152.648 +60800/69092 Loss: 149.935 +64000/69092 Loss: 148.767 +67200/69092 Loss: 152.621 +Training time 0:07:34.708826 +Epoch: 24 Average loss: 151.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 821) +0/69092 Loss: 142.904 +3200/69092 Loss: 150.181 +6400/69092 Loss: 150.047 +9600/69092 Loss: 151.204 +12800/69092 Loss: 153.292 +16000/69092 Loss: 152.787 +19200/69092 Loss: 150.105 +22400/69092 Loss: 150.024 +25600/69092 Loss: 150.287 +28800/69092 Loss: 150.240 +32000/69092 Loss: 151.663 +35200/69092 Loss: 152.149 +38400/69092 Loss: 152.479 +41600/69092 Loss: 155.239 +44800/69092 Loss: 150.795 +48000/69092 Loss: 148.347 +51200/69092 Loss: 152.913 +54400/69092 Loss: 152.134 +57600/69092 Loss: 152.681 +60800/69092 Loss: 151.110 +64000/69092 Loss: 152.178 +67200/69092 Loss: 152.020 +Training time 0:07:33.964920 +Epoch: 25 Average loss: 151.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 822) +0/69092 Loss: 159.863 +3200/69092 Loss: 153.939 +6400/69092 Loss: 148.890 +9600/69092 Loss: 151.681 +12800/69092 Loss: 150.213 +16000/69092 Loss: 151.870 +19200/69092 Loss: 150.416 +22400/69092 Loss: 150.563 +25600/69092 Loss: 151.130 +28800/69092 Loss: 152.032 +32000/69092 Loss: 152.799 +35200/69092 Loss: 151.744 +38400/69092 Loss: 153.140 +41600/69092 Loss: 152.244 +44800/69092 Loss: 150.946 +48000/69092 Loss: 148.664 +51200/69092 Loss: 151.003 +54400/69092 Loss: 150.275 +57600/69092 Loss: 151.283 +60800/69092 Loss: 152.473 +64000/69092 Loss: 153.192 +67200/69092 Loss: 149.443 +Training time 0:07:45.012621 +Epoch: 26 Average loss: 151.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 823) +0/69092 Loss: 141.299 +3200/69092 Loss: 151.075 +6400/69092 Loss: 152.108 +9600/69092 Loss: 149.469 +12800/69092 Loss: 152.957 +16000/69092 Loss: 153.685 +19200/69092 Loss: 150.958 +22400/69092 Loss: 151.207 +25600/69092 Loss: 154.237 +28800/69092 Loss: 151.630 +32000/69092 Loss: 152.125 +35200/69092 Loss: 150.062 +38400/69092 Loss: 150.619 +41600/69092 Loss: 151.156 +44800/69092 Loss: 151.004 +48000/69092 Loss: 150.362 +51200/69092 Loss: 149.012 +54400/69092 Loss: 153.539 +57600/69092 Loss: 151.311 +60800/69092 Loss: 151.837 +64000/69092 Loss: 154.029 +67200/69092 Loss: 153.095 +Training time 0:07:34.528430 +Epoch: 27 Average loss: 151.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 824) +0/69092 Loss: 145.865 +3200/69092 Loss: 150.555 +6400/69092 Loss: 150.805 +9600/69092 Loss: 149.113 +12800/69092 Loss: 152.178 +16000/69092 Loss: 152.462 +19200/69092 Loss: 150.257 +22400/69092 Loss: 153.100 +25600/69092 Loss: 151.356 +28800/69092 Loss: 153.961 +32000/69092 Loss: 148.219 +35200/69092 Loss: 148.384 +38400/69092 Loss: 154.166 +41600/69092 Loss: 154.838 +44800/69092 Loss: 150.812 +48000/69092 Loss: 151.954 +51200/69092 Loss: 152.448 +54400/69092 Loss: 150.004 +57600/69092 Loss: 151.900 +60800/69092 Loss: 151.151 +64000/69092 Loss: 151.995 +67200/69092 Loss: 152.103 +Training time 0:07:39.083113 +Epoch: 28 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 825) +0/69092 Loss: 150.216 +3200/69092 Loss: 151.561 +6400/69092 Loss: 155.378 +9600/69092 Loss: 153.434 +12800/69092 Loss: 152.985 +16000/69092 Loss: 150.476 +19200/69092 Loss: 152.858 +22400/69092 Loss: 151.955 +25600/69092 Loss: 151.650 +28800/69092 Loss: 149.985 +32000/69092 Loss: 150.730 +35200/69092 Loss: 152.483 +38400/69092 Loss: 148.704 +41600/69092 Loss: 150.577 +44800/69092 Loss: 153.234 +48000/69092 Loss: 151.425 +51200/69092 Loss: 151.968 +54400/69092 Loss: 151.549 +57600/69092 Loss: 151.721 +60800/69092 Loss: 152.422 +64000/69092 Loss: 151.836 +67200/69092 Loss: 148.307 +Training time 0:07:36.019182 +Epoch: 29 Average loss: 151.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 826) +0/69092 Loss: 156.343 +3200/69092 Loss: 150.589 +6400/69092 Loss: 150.726 +9600/69092 Loss: 152.634 +12800/69092 Loss: 150.066 +16000/69092 Loss: 151.919 +19200/69092 Loss: 151.432 +22400/69092 Loss: 152.506 +25600/69092 Loss: 151.867 +28800/69092 Loss: 152.442 +32000/69092 Loss: 151.872 +35200/69092 Loss: 150.297 +38400/69092 Loss: 149.650 +41600/69092 Loss: 150.866 +44800/69092 Loss: 151.734 +48000/69092 Loss: 152.931 +51200/69092 Loss: 149.614 +54400/69092 Loss: 151.499 +57600/69092 Loss: 150.234 +60800/69092 Loss: 152.314 +64000/69092 Loss: 155.569 +67200/69092 Loss: 151.621 +Training time 0:07:33.470198 +Epoch: 30 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 827) +0/69092 Loss: 155.492 +3200/69092 Loss: 153.382 +6400/69092 Loss: 151.534 +9600/69092 Loss: 150.828 +12800/69092 Loss: 153.038 +16000/69092 Loss: 151.518 +19200/69092 Loss: 151.304 +22400/69092 Loss: 150.959 +25600/69092 Loss: 150.637 +28800/69092 Loss: 151.818 +32000/69092 Loss: 151.033 +35200/69092 Loss: 152.163 +38400/69092 Loss: 153.237 +41600/69092 Loss: 151.388 +44800/69092 Loss: 151.100 +48000/69092 Loss: 150.104 +51200/69092 Loss: 154.188 +54400/69092 Loss: 154.144 +57600/69092 Loss: 150.934 +60800/69092 Loss: 151.874 +64000/69092 Loss: 151.437 +67200/69092 Loss: 150.266 +Training time 0:07:37.138291 +Epoch: 31 Average loss: 151.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 828) +0/69092 Loss: 145.907 +3200/69092 Loss: 151.533 +6400/69092 Loss: 154.072 +9600/69092 Loss: 151.454 +12800/69092 Loss: 150.346 +16000/69092 Loss: 149.936 +19200/69092 Loss: 151.889 +22400/69092 Loss: 148.086 +25600/69092 Loss: 153.147 +28800/69092 Loss: 153.771 +32000/69092 Loss: 152.930 +35200/69092 Loss: 150.331 +38400/69092 Loss: 152.814 +41600/69092 Loss: 153.773 +44800/69092 Loss: 150.495 +48000/69092 Loss: 151.142 +51200/69092 Loss: 151.384 +54400/69092 Loss: 152.779 +57600/69092 Loss: 150.765 +60800/69092 Loss: 149.029 +64000/69092 Loss: 150.336 +67200/69092 Loss: 152.609 +Training time 0:07:35.584028 +Epoch: 32 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 829) +0/69092 Loss: 131.127 +3200/69092 Loss: 152.275 +6400/69092 Loss: 153.022 +9600/69092 Loss: 150.722 +12800/69092 Loss: 149.923 +16000/69092 Loss: 150.498 +19200/69092 Loss: 150.895 +22400/69092 Loss: 152.347 +25600/69092 Loss: 151.595 +28800/69092 Loss: 150.419 +32000/69092 Loss: 153.956 +35200/69092 Loss: 153.850 +38400/69092 Loss: 151.821 +41600/69092 Loss: 151.555 +44800/69092 Loss: 152.504 +48000/69092 Loss: 152.158 +51200/69092 Loss: 148.888 +54400/69092 Loss: 149.542 +57600/69092 Loss: 149.583 +60800/69092 Loss: 151.856 +64000/69092 Loss: 150.854 +67200/69092 Loss: 153.969 +Training time 0:07:51.138900 +Epoch: 33 Average loss: 151.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 830) +0/69092 Loss: 145.941 +3200/69092 Loss: 151.467 +6400/69092 Loss: 152.570 +9600/69092 Loss: 152.221 +12800/69092 Loss: 150.075 +16000/69092 Loss: 152.178 +19200/69092 Loss: 152.883 +22400/69092 Loss: 150.432 +25600/69092 Loss: 150.659 +28800/69092 Loss: 152.024 +32000/69092 Loss: 152.508 +35200/69092 Loss: 150.870 +38400/69092 Loss: 150.071 +41600/69092 Loss: 150.047 +44800/69092 Loss: 149.818 +48000/69092 Loss: 152.068 +51200/69092 Loss: 151.641 +54400/69092 Loss: 155.692 +57600/69092 Loss: 150.311 +60800/69092 Loss: 150.921 +64000/69092 Loss: 151.945 +67200/69092 Loss: 150.429 +Training time 0:07:48.640179 +Epoch: 34 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 831) +0/69092 Loss: 129.463 +3200/69092 Loss: 152.059 +6400/69092 Loss: 149.939 +9600/69092 Loss: 151.276 +12800/69092 Loss: 153.012 +16000/69092 Loss: 150.880 +19200/69092 Loss: 150.761 +22400/69092 Loss: 153.611 +25600/69092 Loss: 150.532 +28800/69092 Loss: 155.550 +32000/69092 Loss: 152.714 +35200/69092 Loss: 151.665 +38400/69092 Loss: 150.973 +41600/69092 Loss: 151.548 +44800/69092 Loss: 152.894 +48000/69092 Loss: 152.537 +51200/69092 Loss: 151.179 +54400/69092 Loss: 153.387 +57600/69092 Loss: 147.593 +60800/69092 Loss: 149.746 +64000/69092 Loss: 149.527 +67200/69092 Loss: 151.966 +Training time 0:07:34.838033 +Epoch: 35 Average loss: 151.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 832) +0/69092 Loss: 146.773 +3200/69092 Loss: 151.064 +6400/69092 Loss: 151.500 +9600/69092 Loss: 151.055 +12800/69092 Loss: 152.780 +16000/69092 Loss: 152.913 +19200/69092 Loss: 150.440 +22400/69092 Loss: 151.940 +25600/69092 Loss: 150.062 +28800/69092 Loss: 150.541 +32000/69092 Loss: 152.565 +35200/69092 Loss: 152.666 +38400/69092 Loss: 149.760 +41600/69092 Loss: 150.890 +44800/69092 Loss: 152.341 +48000/69092 Loss: 153.297 +51200/69092 Loss: 150.884 +54400/69092 Loss: 148.739 +57600/69092 Loss: 152.008 +60800/69092 Loss: 151.627 +64000/69092 Loss: 150.045 +67200/69092 Loss: 152.656 +Training time 0:07:35.291730 +Epoch: 36 Average loss: 151.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 833) +0/69092 Loss: 146.509 +3200/69092 Loss: 150.445 +6400/69092 Loss: 151.660 +9600/69092 Loss: 153.585 +12800/69092 Loss: 150.631 +16000/69092 Loss: 152.061 +19200/69092 Loss: 151.235 +22400/69092 Loss: 153.355 +25600/69092 Loss: 148.362 +28800/69092 Loss: 150.806 +32000/69092 Loss: 151.053 +35200/69092 Loss: 150.152 +38400/69092 Loss: 148.463 +41600/69092 Loss: 151.203 +44800/69092 Loss: 154.476 +48000/69092 Loss: 155.432 +51200/69092 Loss: 152.111 +54400/69092 Loss: 153.823 +57600/69092 Loss: 154.021 +60800/69092 Loss: 149.723 +64000/69092 Loss: 152.438 +67200/69092 Loss: 149.385 +Training time 0:07:36.515783 +Epoch: 37 Average loss: 151.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 834) +0/69092 Loss: 153.602 +3200/69092 Loss: 151.257 +6400/69092 Loss: 149.391 +9600/69092 Loss: 150.068 +12800/69092 Loss: 152.997 +16000/69092 Loss: 150.922 +19200/69092 Loss: 154.546 +22400/69092 Loss: 151.994 +25600/69092 Loss: 152.501 +28800/69092 Loss: 151.521 +32000/69092 Loss: 152.743 +35200/69092 Loss: 151.628 +38400/69092 Loss: 155.490 +41600/69092 Loss: 150.549 +44800/69092 Loss: 150.071 +48000/69092 Loss: 151.341 +51200/69092 Loss: 151.829 +54400/69092 Loss: 151.698 +57600/69092 Loss: 148.534 +60800/69092 Loss: 150.604 +64000/69092 Loss: 151.572 +67200/69092 Loss: 152.958 +Training time 0:07:34.411869 +Epoch: 38 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 835) +0/69092 Loss: 161.981 +3200/69092 Loss: 152.470 +6400/69092 Loss: 151.932 +9600/69092 Loss: 152.589 +12800/69092 Loss: 151.797 +16000/69092 Loss: 149.790 +19200/69092 Loss: 152.149 +22400/69092 Loss: 151.319 +25600/69092 Loss: 152.050 +28800/69092 Loss: 152.242 +32000/69092 Loss: 149.891 +35200/69092 Loss: 152.207 +38400/69092 Loss: 154.751 +41600/69092 Loss: 151.576 +44800/69092 Loss: 149.018 +48000/69092 Loss: 152.876 +51200/69092 Loss: 149.972 +54400/69092 Loss: 152.175 +57600/69092 Loss: 153.034 +60800/69092 Loss: 148.984 +64000/69092 Loss: 148.672 +67200/69092 Loss: 153.463 +Training time 0:07:35.626440 +Epoch: 39 Average loss: 151.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 836) +0/69092 Loss: 158.717 +3200/69092 Loss: 148.959 +6400/69092 Loss: 152.216 +9600/69092 Loss: 151.690 +12800/69092 Loss: 148.565 +16000/69092 Loss: 150.666 +19200/69092 Loss: 150.117 +22400/69092 Loss: 152.342 +25600/69092 Loss: 152.197 +28800/69092 Loss: 153.327 +32000/69092 Loss: 150.696 +35200/69092 Loss: 152.002 +38400/69092 Loss: 154.478 +41600/69092 Loss: 152.650 +44800/69092 Loss: 149.524 +48000/69092 Loss: 151.688 +51200/69092 Loss: 152.667 +54400/69092 Loss: 152.383 +57600/69092 Loss: 150.812 +60800/69092 Loss: 153.931 +64000/69092 Loss: 152.876 +67200/69092 Loss: 152.458 +Training time 0:07:45.286150 +Epoch: 40 Average loss: 151.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 837) +0/69092 Loss: 162.840 +3200/69092 Loss: 151.954 +6400/69092 Loss: 151.287 +9600/69092 Loss: 150.269 +12800/69092 Loss: 152.269 +16000/69092 Loss: 149.740 +19200/69092 Loss: 154.775 +22400/69092 Loss: 149.637 +25600/69092 Loss: 151.240 +28800/69092 Loss: 149.026 +32000/69092 Loss: 151.486 +35200/69092 Loss: 151.374 +38400/69092 Loss: 152.272 +41600/69092 Loss: 152.155 +44800/69092 Loss: 156.598 +48000/69092 Loss: 151.002 +51200/69092 Loss: 151.720 +54400/69092 Loss: 149.406 +57600/69092 Loss: 149.929 +60800/69092 Loss: 149.740 +64000/69092 Loss: 152.415 +67200/69092 Loss: 152.816 +Training time 0:07:33.936036 +Epoch: 41 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 838) +0/69092 Loss: 150.645 +3200/69092 Loss: 151.761 +6400/69092 Loss: 150.145 +9600/69092 Loss: 152.392 +12800/69092 Loss: 152.893 +16000/69092 Loss: 151.411 +19200/69092 Loss: 148.751 +22400/69092 Loss: 151.250 +25600/69092 Loss: 152.111 +28800/69092 Loss: 148.938 +32000/69092 Loss: 153.270 +35200/69092 Loss: 153.319 +38400/69092 Loss: 150.267 +41600/69092 Loss: 149.395 +44800/69092 Loss: 149.878 +48000/69092 Loss: 151.724 +51200/69092 Loss: 151.297 +54400/69092 Loss: 151.145 +57600/69092 Loss: 151.265 +60800/69092 Loss: 151.728 +64000/69092 Loss: 151.701 +67200/69092 Loss: 151.539 +Training time 0:07:55.005597 +Epoch: 42 Average loss: 151.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 839) +0/69092 Loss: 183.931 +3200/69092 Loss: 151.163 +6400/69092 Loss: 152.234 +9600/69092 Loss: 151.751 +12800/69092 Loss: 152.093 +16000/69092 Loss: 152.687 +19200/69092 Loss: 151.363 +22400/69092 Loss: 151.641 +25600/69092 Loss: 153.672 +28800/69092 Loss: 150.082 +32000/69092 Loss: 151.247 +35200/69092 Loss: 152.237 +38400/69092 Loss: 151.965 +41600/69092 Loss: 150.709 +44800/69092 Loss: 149.321 +48000/69092 Loss: 152.310 +51200/69092 Loss: 152.118 +54400/69092 Loss: 148.331 +57600/69092 Loss: 149.578 +60800/69092 Loss: 150.470 +64000/69092 Loss: 152.448 +67200/69092 Loss: 153.658 +Training time 0:07:35.024454 +Epoch: 43 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 840) +0/69092 Loss: 150.344 +3200/69092 Loss: 154.014 +6400/69092 Loss: 153.034 +9600/69092 Loss: 151.526 +12800/69092 Loss: 150.034 +16000/69092 Loss: 149.227 +19200/69092 Loss: 153.081 +22400/69092 Loss: 151.226 +25600/69092 Loss: 150.088 +28800/69092 Loss: 153.720 +32000/69092 Loss: 151.633 +35200/69092 Loss: 148.493 +38400/69092 Loss: 149.547 +41600/69092 Loss: 151.836 +44800/69092 Loss: 151.819 +48000/69092 Loss: 150.160 +51200/69092 Loss: 152.762 +54400/69092 Loss: 149.306 +57600/69092 Loss: 152.050 +60800/69092 Loss: 151.088 +64000/69092 Loss: 150.549 +67200/69092 Loss: 154.260 +Training time 0:07:34.248350 +Epoch: 44 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 841) +0/69092 Loss: 155.962 +3200/69092 Loss: 152.279 +6400/69092 Loss: 153.646 +9600/69092 Loss: 150.635 +12800/69092 Loss: 150.855 +16000/69092 Loss: 146.692 +19200/69092 Loss: 151.541 +22400/69092 Loss: 150.950 +25600/69092 Loss: 149.900 +28800/69092 Loss: 151.448 +32000/69092 Loss: 151.423 +35200/69092 Loss: 152.091 +38400/69092 Loss: 152.075 +41600/69092 Loss: 150.752 +44800/69092 Loss: 149.251 +48000/69092 Loss: 154.978 +51200/69092 Loss: 148.872 +54400/69092 Loss: 151.395 +57600/69092 Loss: 150.361 +60800/69092 Loss: 151.489 +64000/69092 Loss: 154.696 +67200/69092 Loss: 154.022 +Training time 0:07:39.461431 +Epoch: 45 Average loss: 151.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 842) +0/69092 Loss: 151.089 +3200/69092 Loss: 152.291 +6400/69092 Loss: 151.832 +9600/69092 Loss: 153.371 +12800/69092 Loss: 151.524 +16000/69092 Loss: 149.537 +19200/69092 Loss: 151.702 +22400/69092 Loss: 150.057 +25600/69092 Loss: 154.001 +28800/69092 Loss: 149.155 +32000/69092 Loss: 150.513 +35200/69092 Loss: 152.533 +38400/69092 Loss: 153.268 +41600/69092 Loss: 148.851 +44800/69092 Loss: 152.209 +48000/69092 Loss: 152.880 +51200/69092 Loss: 152.949 +54400/69092 Loss: 152.736 +57600/69092 Loss: 152.959 +60800/69092 Loss: 151.585 +64000/69092 Loss: 150.524 +67200/69092 Loss: 149.943 +Training time 0:07:39.102713 +Epoch: 46 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 843) +0/69092 Loss: 146.557 +3200/69092 Loss: 149.225 +6400/69092 Loss: 150.049 +9600/69092 Loss: 150.623 +12800/69092 Loss: 152.907 +16000/69092 Loss: 153.392 +19200/69092 Loss: 151.544 +22400/69092 Loss: 151.809 +25600/69092 Loss: 152.952 +28800/69092 Loss: 151.328 +32000/69092 Loss: 152.578 +35200/69092 Loss: 151.836 +38400/69092 Loss: 152.135 +41600/69092 Loss: 152.685 +44800/69092 Loss: 151.322 +48000/69092 Loss: 150.688 +51200/69092 Loss: 151.443 +54400/69092 Loss: 153.286 +57600/69092 Loss: 149.521 +60800/69092 Loss: 150.660 +64000/69092 Loss: 152.052 +67200/69092 Loss: 151.998 +Training time 0:07:35.342869 +Epoch: 47 Average loss: 151.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 844) +0/69092 Loss: 143.089 +3200/69092 Loss: 151.485 +6400/69092 Loss: 153.235 +9600/69092 Loss: 154.274 +12800/69092 Loss: 150.935 +16000/69092 Loss: 149.854 +19200/69092 Loss: 149.337 +22400/69092 Loss: 154.559 +25600/69092 Loss: 149.585 +28800/69092 Loss: 151.836 +32000/69092 Loss: 152.825 +35200/69092 Loss: 149.223 +38400/69092 Loss: 151.225 +41600/69092 Loss: 149.979 +44800/69092 Loss: 152.462 +48000/69092 Loss: 150.496 +51200/69092 Loss: 150.364 +54400/69092 Loss: 152.760 +57600/69092 Loss: 151.801 +60800/69092 Loss: 152.488 +64000/69092 Loss: 153.734 +67200/69092 Loss: 150.663 +Training time 0:07:49.695895 +Epoch: 48 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 845) +0/69092 Loss: 155.660 +3200/69092 Loss: 150.560 +6400/69092 Loss: 150.629 +9600/69092 Loss: 152.177 +12800/69092 Loss: 151.549 +16000/69092 Loss: 151.071 +19200/69092 Loss: 148.713 +22400/69092 Loss: 150.422 +25600/69092 Loss: 152.487 +28800/69092 Loss: 151.357 +32000/69092 Loss: 154.991 +35200/69092 Loss: 150.415 +38400/69092 Loss: 150.284 +41600/69092 Loss: 151.071 +44800/69092 Loss: 154.770 +48000/69092 Loss: 152.408 +51200/69092 Loss: 152.929 +54400/69092 Loss: 151.278 +57600/69092 Loss: 150.417 +60800/69092 Loss: 150.844 +64000/69092 Loss: 151.480 +67200/69092 Loss: 150.186 +Training time 0:07:40.542448 +Epoch: 49 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 846) +0/69092 Loss: 155.733 +3200/69092 Loss: 154.211 +6400/69092 Loss: 148.923 +9600/69092 Loss: 152.061 +12800/69092 Loss: 150.150 +16000/69092 Loss: 151.785 +19200/69092 Loss: 149.939 +22400/69092 Loss: 152.052 +25600/69092 Loss: 152.723 +28800/69092 Loss: 150.755 +32000/69092 Loss: 152.961 +35200/69092 Loss: 152.570 +38400/69092 Loss: 150.670 +41600/69092 Loss: 152.345 +44800/69092 Loss: 152.134 +48000/69092 Loss: 150.101 +51200/69092 Loss: 151.016 +54400/69092 Loss: 149.897 +57600/69092 Loss: 154.775 +60800/69092 Loss: 151.545 +64000/69092 Loss: 152.591 +67200/69092 Loss: 150.957 +Training time 0:07:38.406691 +Epoch: 50 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 847) +0/69092 Loss: 140.377 +3200/69092 Loss: 150.537 +6400/69092 Loss: 151.419 +9600/69092 Loss: 152.083 +12800/69092 Loss: 151.928 +16000/69092 Loss: 150.602 +19200/69092 Loss: 152.386 +22400/69092 Loss: 154.785 +25600/69092 Loss: 151.679 +28800/69092 Loss: 150.657 +32000/69092 Loss: 152.711 +35200/69092 Loss: 151.516 +38400/69092 Loss: 149.067 +41600/69092 Loss: 149.770 +44800/69092 Loss: 153.697 +48000/69092 Loss: 152.634 +51200/69092 Loss: 153.059 +54400/69092 Loss: 152.175 +57600/69092 Loss: 153.382 +60800/69092 Loss: 148.785 +64000/69092 Loss: 150.690 +67200/69092 Loss: 150.496 +Training time 0:07:47.536340 +Epoch: 51 Average loss: 151.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 848) +0/69092 Loss: 136.843 +3200/69092 Loss: 149.979 +6400/69092 Loss: 152.106 +9600/69092 Loss: 150.426 +12800/69092 Loss: 152.593 +16000/69092 Loss: 150.988 +19200/69092 Loss: 151.268 +22400/69092 Loss: 152.821 +25600/69092 Loss: 150.912 +28800/69092 Loss: 154.224 +32000/69092 Loss: 151.247 +35200/69092 Loss: 151.740 +38400/69092 Loss: 150.941 +41600/69092 Loss: 152.373 +44800/69092 Loss: 151.265 +48000/69092 Loss: 152.015 +51200/69092 Loss: 151.144 +54400/69092 Loss: 150.975 +57600/69092 Loss: 151.627 +60800/69092 Loss: 148.726 +64000/69092 Loss: 156.755 +67200/69092 Loss: 148.798 +Training time 0:07:58.776896 +Epoch: 52 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 849) +0/69092 Loss: 140.561 +3200/69092 Loss: 150.403 +6400/69092 Loss: 155.091 +9600/69092 Loss: 151.266 +12800/69092 Loss: 151.431 +16000/69092 Loss: 153.583 +19200/69092 Loss: 150.372 +22400/69092 Loss: 153.775 +25600/69092 Loss: 149.314 +28800/69092 Loss: 150.687 +32000/69092 Loss: 150.352 +35200/69092 Loss: 149.310 +38400/69092 Loss: 150.123 +41600/69092 Loss: 153.417 +44800/69092 Loss: 152.001 +48000/69092 Loss: 151.352 +51200/69092 Loss: 151.352 +54400/69092 Loss: 150.156 +57600/69092 Loss: 151.690 +60800/69092 Loss: 150.803 +64000/69092 Loss: 154.677 +67200/69092 Loss: 151.108 +Training time 0:07:36.522039 +Epoch: 53 Average loss: 151.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 850) +0/69092 Loss: 162.074 +3200/69092 Loss: 151.919 +6400/69092 Loss: 150.039 +9600/69092 Loss: 154.313 +12800/69092 Loss: 152.460 +16000/69092 Loss: 153.334 +19200/69092 Loss: 149.642 +22400/69092 Loss: 151.049 +25600/69092 Loss: 152.598 +28800/69092 Loss: 153.376 +32000/69092 Loss: 150.193 +35200/69092 Loss: 148.767 +38400/69092 Loss: 149.622 +41600/69092 Loss: 150.426 +44800/69092 Loss: 151.896 +48000/69092 Loss: 149.380 +51200/69092 Loss: 151.168 +54400/69092 Loss: 149.517 +57600/69092 Loss: 153.738 +60800/69092 Loss: 150.471 +64000/69092 Loss: 152.249 +67200/69092 Loss: 151.627 +Training time 0:07:38.594072 +Epoch: 54 Average loss: 151.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 851) +0/69092 Loss: 148.631 +3200/69092 Loss: 151.909 +6400/69092 Loss: 153.851 +9600/69092 Loss: 151.910 +12800/69092 Loss: 153.049 +16000/69092 Loss: 151.858 +19200/69092 Loss: 151.358 +22400/69092 Loss: 149.659 +25600/69092 Loss: 151.006 +28800/69092 Loss: 151.739 +32000/69092 Loss: 149.778 +35200/69092 Loss: 150.882 +38400/69092 Loss: 151.412 +41600/69092 Loss: 152.538 +44800/69092 Loss: 151.463 +48000/69092 Loss: 152.800 +51200/69092 Loss: 152.533 +54400/69092 Loss: 149.130 +57600/69092 Loss: 151.907 +60800/69092 Loss: 148.845 +64000/69092 Loss: 151.295 +67200/69092 Loss: 153.621 +Training time 0:07:36.093060 +Epoch: 55 Average loss: 151.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 852) +0/69092 Loss: 158.281 +3200/69092 Loss: 151.695 +6400/69092 Loss: 149.784 +9600/69092 Loss: 151.923 +12800/69092 Loss: 150.744 +16000/69092 Loss: 148.405 +19200/69092 Loss: 151.635 +22400/69092 Loss: 152.307 +25600/69092 Loss: 152.283 +28800/69092 Loss: 151.932 +32000/69092 Loss: 152.264 +35200/69092 Loss: 149.167 +38400/69092 Loss: 151.545 +41600/69092 Loss: 150.594 +44800/69092 Loss: 151.744 +48000/69092 Loss: 152.171 +51200/69092 Loss: 152.604 +54400/69092 Loss: 153.203 +57600/69092 Loss: 150.825 +60800/69092 Loss: 151.207 +64000/69092 Loss: 151.133 +67200/69092 Loss: 152.664 +Training time 0:07:38.075063 +Epoch: 56 Average loss: 151.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 853) +0/69092 Loss: 163.182 +3200/69092 Loss: 151.793 +6400/69092 Loss: 151.067 +9600/69092 Loss: 154.832 +12800/69092 Loss: 148.680 +16000/69092 Loss: 152.565 +19200/69092 Loss: 151.734 +22400/69092 Loss: 150.807 +25600/69092 Loss: 152.454 +28800/69092 Loss: 150.769 +32000/69092 Loss: 150.016 +35200/69092 Loss: 153.698 +38400/69092 Loss: 149.397 +41600/69092 Loss: 151.375 +44800/69092 Loss: 152.518 +48000/69092 Loss: 150.920 +51200/69092 Loss: 152.198 +54400/69092 Loss: 151.408 +57600/69092 Loss: 150.845 +60800/69092 Loss: 151.092 +64000/69092 Loss: 150.236 +67200/69092 Loss: 151.326 +Training time 0:07:42.185598 +Epoch: 57 Average loss: 151.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 854) +0/69092 Loss: 144.853 +3200/69092 Loss: 148.688 +6400/69092 Loss: 152.467 +9600/69092 Loss: 152.406 +12800/69092 Loss: 152.451 +16000/69092 Loss: 150.961 +19200/69092 Loss: 150.909 +22400/69092 Loss: 152.136 +25600/69092 Loss: 152.761 +28800/69092 Loss: 151.629 +32000/69092 Loss: 151.163 +35200/69092 Loss: 152.129 +38400/69092 Loss: 151.678 +41600/69092 Loss: 149.007 +44800/69092 Loss: 151.170 +48000/69092 Loss: 152.365 +51200/69092 Loss: 153.188 +54400/69092 Loss: 155.184 +57600/69092 Loss: 151.104 +60800/69092 Loss: 151.530 +64000/69092 Loss: 148.222 +67200/69092 Loss: 150.165 +Training time 0:07:39.779970 +Epoch: 58 Average loss: 151.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 855) +0/69092 Loss: 153.227 +3200/69092 Loss: 151.947 +6400/69092 Loss: 152.006 +9600/69092 Loss: 153.038 +12800/69092 Loss: 153.663 +16000/69092 Loss: 152.115 +19200/69092 Loss: 150.457 +22400/69092 Loss: 151.314 +25600/69092 Loss: 149.759 +28800/69092 Loss: 153.268 +32000/69092 Loss: 152.711 +35200/69092 Loss: 147.877 +38400/69092 Loss: 152.865 +41600/69092 Loss: 149.362 +44800/69092 Loss: 151.283 +48000/69092 Loss: 150.177 +51200/69092 Loss: 152.851 +54400/69092 Loss: 151.225 +57600/69092 Loss: 150.886 +60800/69092 Loss: 150.500 +64000/69092 Loss: 152.566 +67200/69092 Loss: 151.522 +Training time 0:07:37.075589 +Epoch: 59 Average loss: 151.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 856) +0/69092 Loss: 147.013 +3200/69092 Loss: 153.650 +6400/69092 Loss: 152.426 +9600/69092 Loss: 152.810 +12800/69092 Loss: 151.935 +16000/69092 Loss: 155.987 +19200/69092 Loss: 152.130 +22400/69092 Loss: 150.510 +25600/69092 Loss: 149.378 +28800/69092 Loss: 149.973 +32000/69092 Loss: 153.151 +35200/69092 Loss: 150.832 +38400/69092 Loss: 148.988 +41600/69092 Loss: 150.571 +44800/69092 Loss: 151.220 +48000/69092 Loss: 152.081 +51200/69092 Loss: 152.567 +54400/69092 Loss: 150.113 +57600/69092 Loss: 152.749 +60800/69092 Loss: 150.156 +64000/69092 Loss: 151.934 +67200/69092 Loss: 151.577 +Training time 0:07:36.800745 +Epoch: 60 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 857) +0/69092 Loss: 150.134 +3200/69092 Loss: 150.763 +6400/69092 Loss: 153.411 +9600/69092 Loss: 152.628 +12800/69092 Loss: 150.582 +16000/69092 Loss: 150.822 +19200/69092 Loss: 153.413 +22400/69092 Loss: 151.991 +25600/69092 Loss: 150.710 +28800/69092 Loss: 153.838 +32000/69092 Loss: 149.281 +35200/69092 Loss: 148.797 +38400/69092 Loss: 153.284 +41600/69092 Loss: 151.293 +44800/69092 Loss: 152.779 +48000/69092 Loss: 148.917 +51200/69092 Loss: 151.181 +54400/69092 Loss: 149.702 +57600/69092 Loss: 150.129 +60800/69092 Loss: 152.238 +64000/69092 Loss: 151.912 +67200/69092 Loss: 153.346 +Training time 0:07:35.187880 +Epoch: 61 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 858) +0/69092 Loss: 147.975 +3200/69092 Loss: 150.023 +6400/69092 Loss: 153.001 +9600/69092 Loss: 151.785 +12800/69092 Loss: 153.763 +16000/69092 Loss: 150.788 +19200/69092 Loss: 150.391 +22400/69092 Loss: 151.880 +25600/69092 Loss: 153.504 +28800/69092 Loss: 154.019 +32000/69092 Loss: 151.893 +35200/69092 Loss: 152.371 +38400/69092 Loss: 152.318 +41600/69092 Loss: 152.111 +44800/69092 Loss: 151.928 +48000/69092 Loss: 151.303 +51200/69092 Loss: 150.538 +54400/69092 Loss: 152.962 +57600/69092 Loss: 148.381 +60800/69092 Loss: 150.177 +64000/69092 Loss: 150.390 +67200/69092 Loss: 150.073 +Training time 0:07:32.187509 +Epoch: 62 Average loss: 151.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 859) +0/69092 Loss: 169.056 +3200/69092 Loss: 148.712 +6400/69092 Loss: 148.413 +9600/69092 Loss: 150.207 +12800/69092 Loss: 152.430 +16000/69092 Loss: 152.445 +19200/69092 Loss: 152.584 +22400/69092 Loss: 149.667 +25600/69092 Loss: 154.336 +28800/69092 Loss: 147.804 +32000/69092 Loss: 149.177 +35200/69092 Loss: 150.044 +38400/69092 Loss: 151.559 +41600/69092 Loss: 155.681 +44800/69092 Loss: 152.565 +48000/69092 Loss: 151.673 +51200/69092 Loss: 153.146 +54400/69092 Loss: 152.596 +57600/69092 Loss: 150.351 +60800/69092 Loss: 151.416 +64000/69092 Loss: 152.239 +67200/69092 Loss: 151.553 +Training time 0:07:34.560857 +Epoch: 63 Average loss: 151.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 860) +0/69092 Loss: 145.945 +3200/69092 Loss: 151.033 +6400/69092 Loss: 151.174 +9600/69092 Loss: 151.210 +12800/69092 Loss: 150.499 +16000/69092 Loss: 152.411 +19200/69092 Loss: 150.989 +22400/69092 Loss: 150.905 +25600/69092 Loss: 151.837 +28800/69092 Loss: 151.898 +32000/69092 Loss: 151.616 +35200/69092 Loss: 152.144 +38400/69092 Loss: 150.950 +41600/69092 Loss: 154.086 +44800/69092 Loss: 151.463 +48000/69092 Loss: 151.348 +51200/69092 Loss: 152.976 +54400/69092 Loss: 152.047 +57600/69092 Loss: 149.097 +60800/69092 Loss: 152.755 +64000/69092 Loss: 151.627 +67200/69092 Loss: 152.789 +Training time 0:07:56.579525 +Epoch: 64 Average loss: 151.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 861) +0/69092 Loss: 146.176 +3200/69092 Loss: 148.223 +6400/69092 Loss: 149.564 +9600/69092 Loss: 151.475 +12800/69092 Loss: 149.558 +16000/69092 Loss: 151.422 +19200/69092 Loss: 154.957 +22400/69092 Loss: 150.334 +25600/69092 Loss: 152.287 +28800/69092 Loss: 151.307 +32000/69092 Loss: 149.633 +35200/69092 Loss: 152.780 +38400/69092 Loss: 152.389 +41600/69092 Loss: 149.597 +44800/69092 Loss: 152.851 +48000/69092 Loss: 150.653 +51200/69092 Loss: 152.210 +54400/69092 Loss: 152.172 +57600/69092 Loss: 153.998 +60800/69092 Loss: 154.679 +64000/69092 Loss: 151.385 +67200/69092 Loss: 151.006 +Training time 0:07:42.847622 +Epoch: 65 Average loss: 151.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 862) +0/69092 Loss: 154.149 +3200/69092 Loss: 149.388 +6400/69092 Loss: 152.301 +9600/69092 Loss: 151.748 +12800/69092 Loss: 149.220 +16000/69092 Loss: 152.403 +19200/69092 Loss: 149.946 +22400/69092 Loss: 150.778 +25600/69092 Loss: 152.194 +28800/69092 Loss: 154.048 +32000/69092 Loss: 151.090 +35200/69092 Loss: 151.482 +38400/69092 Loss: 150.429 +41600/69092 Loss: 151.166 +44800/69092 Loss: 150.006 +48000/69092 Loss: 152.620 +51200/69092 Loss: 151.766 +54400/69092 Loss: 152.974 +57600/69092 Loss: 149.831 +60800/69092 Loss: 150.454 +64000/69092 Loss: 149.608 +67200/69092 Loss: 153.691 +Training time 0:07:37.368375 +Epoch: 66 Average loss: 151.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 863) +0/69092 Loss: 151.393 +3200/69092 Loss: 151.296 +6400/69092 Loss: 147.542 +9600/69092 Loss: 151.600 +12800/69092 Loss: 152.295 +16000/69092 Loss: 151.298 +19200/69092 Loss: 152.330 +22400/69092 Loss: 153.543 +25600/69092 Loss: 153.862 +28800/69092 Loss: 152.523 +32000/69092 Loss: 153.246 +35200/69092 Loss: 153.467 +38400/69092 Loss: 151.394 +41600/69092 Loss: 149.819 +44800/69092 Loss: 150.496 +48000/69092 Loss: 150.882 +51200/69092 Loss: 152.111 +54400/69092 Loss: 150.156 +57600/69092 Loss: 153.272 +60800/69092 Loss: 150.958 +64000/69092 Loss: 151.789 +67200/69092 Loss: 150.645 +Training time 0:07:37.792409 +Epoch: 67 Average loss: 151.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 864) +0/69092 Loss: 170.446 +3200/69092 Loss: 153.697 +6400/69092 Loss: 152.718 +9600/69092 Loss: 150.773 +12800/69092 Loss: 152.108 +16000/69092 Loss: 152.803 +19200/69092 Loss: 152.607 +22400/69092 Loss: 152.027 +25600/69092 Loss: 150.403 +28800/69092 Loss: 148.508 +32000/69092 Loss: 151.515 +35200/69092 Loss: 150.197 +38400/69092 Loss: 152.050 +41600/69092 Loss: 148.399 +44800/69092 Loss: 152.840 +48000/69092 Loss: 151.724 +51200/69092 Loss: 150.307 +54400/69092 Loss: 152.615 +57600/69092 Loss: 151.746 +60800/69092 Loss: 152.285 +64000/69092 Loss: 150.272 +67200/69092 Loss: 151.935 +Training time 0:07:42.186948 +Epoch: 68 Average loss: 151.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 865) +0/69092 Loss: 155.991 +3200/69092 Loss: 152.881 +6400/69092 Loss: 150.641 +9600/69092 Loss: 153.638 +12800/69092 Loss: 151.079 +16000/69092 Loss: 150.153 +19200/69092 Loss: 150.928 +22400/69092 Loss: 148.706 +25600/69092 Loss: 152.960 +28800/69092 Loss: 149.290 +32000/69092 Loss: 150.741 +35200/69092 Loss: 150.429 +38400/69092 Loss: 152.109 +41600/69092 Loss: 151.485 +44800/69092 Loss: 153.924 +48000/69092 Loss: 150.636 +51200/69092 Loss: 154.407 +54400/69092 Loss: 151.364 +57600/69092 Loss: 153.029 +60800/69092 Loss: 150.284 +64000/69092 Loss: 150.788 +67200/69092 Loss: 153.225 +Training time 0:07:33.606851 +Epoch: 69 Average loss: 151.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 866) +0/69092 Loss: 152.879 +3200/69092 Loss: 152.723 +6400/69092 Loss: 152.343 +9600/69092 Loss: 153.286 +12800/69092 Loss: 151.546 +16000/69092 Loss: 150.674 +19200/69092 Loss: 151.705 +22400/69092 Loss: 152.203 +25600/69092 Loss: 152.026 +28800/69092 Loss: 152.854 +32000/69092 Loss: 150.951 +35200/69092 Loss: 152.716 +38400/69092 Loss: 151.200 +41600/69092 Loss: 150.397 +44800/69092 Loss: 152.115 +48000/69092 Loss: 148.521 +51200/69092 Loss: 149.884 +54400/69092 Loss: 150.266 +57600/69092 Loss: 152.231 +60800/69092 Loss: 150.078 +64000/69092 Loss: 152.986 +67200/69092 Loss: 153.517 +Training time 0:07:37.050520 +Epoch: 70 Average loss: 151.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 867) +0/69092 Loss: 149.063 +3200/69092 Loss: 152.799 +6400/69092 Loss: 153.356 +9600/69092 Loss: 149.920 +12800/69092 Loss: 149.809 +16000/69092 Loss: 154.313 +19200/69092 Loss: 152.109 +22400/69092 Loss: 151.976 +25600/69092 Loss: 151.311 +28800/69092 Loss: 151.980 +32000/69092 Loss: 152.076 +35200/69092 Loss: 152.732 +38400/69092 Loss: 152.986 +41600/69092 Loss: 150.907 +44800/69092 Loss: 148.753 +48000/69092 Loss: 150.983 +51200/69092 Loss: 149.974 +54400/69092 Loss: 149.888 +57600/69092 Loss: 149.023 +60800/69092 Loss: 151.059 +64000/69092 Loss: 149.782 +67200/69092 Loss: 150.526 +Training time 0:07:37.835208 +Epoch: 71 Average loss: 151.34 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 868) +0/69092 Loss: 164.662 +3200/69092 Loss: 152.846 +6400/69092 Loss: 151.462 +9600/69092 Loss: 151.064 +12800/69092 Loss: 151.844 +16000/69092 Loss: 149.955 +19200/69092 Loss: 148.535 +22400/69092 Loss: 150.732 +25600/69092 Loss: 151.644 +28800/69092 Loss: 149.863 +32000/69092 Loss: 150.861 +35200/69092 Loss: 151.746 +38400/69092 Loss: 150.364 +41600/69092 Loss: 153.433 +44800/69092 Loss: 151.907 +48000/69092 Loss: 153.137 +51200/69092 Loss: 149.829 +54400/69092 Loss: 152.759 +57600/69092 Loss: 153.306 +60800/69092 Loss: 151.135 +64000/69092 Loss: 151.388 +67200/69092 Loss: 151.485 +Training time 0:07:38.297053 +Epoch: 72 Average loss: 151.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 869) +0/69092 Loss: 157.771 +3200/69092 Loss: 151.041 +6400/69092 Loss: 150.920 +9600/69092 Loss: 152.116 +12800/69092 Loss: 151.117 +16000/69092 Loss: 150.886 +19200/69092 Loss: 153.310 +22400/69092 Loss: 151.706 +25600/69092 Loss: 150.601 +28800/69092 Loss: 150.425 +32000/69092 Loss: 150.411 +35200/69092 Loss: 148.931 +38400/69092 Loss: 154.019 +41600/69092 Loss: 152.004 +44800/69092 Loss: 151.884 +48000/69092 Loss: 149.600 +51200/69092 Loss: 152.308 +54400/69092 Loss: 152.061 +57600/69092 Loss: 148.121 +60800/69092 Loss: 152.427 +64000/69092 Loss: 152.344 +67200/69092 Loss: 152.203 +Training time 0:07:52.942758 +Epoch: 73 Average loss: 151.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 870) +0/69092 Loss: 148.119 +3200/69092 Loss: 150.712 +6400/69092 Loss: 152.390 +9600/69092 Loss: 152.926 +12800/69092 Loss: 151.616 +16000/69092 Loss: 149.947 +19200/69092 Loss: 150.700 +22400/69092 Loss: 149.983 +25600/69092 Loss: 152.097 +28800/69092 Loss: 152.446 +32000/69092 Loss: 154.134 +35200/69092 Loss: 150.350 +38400/69092 Loss: 152.253 +41600/69092 Loss: 151.443 +44800/69092 Loss: 152.741 +48000/69092 Loss: 151.163 +51200/69092 Loss: 151.111 +54400/69092 Loss: 151.078 +57600/69092 Loss: 150.303 +60800/69092 Loss: 154.820 +64000/69092 Loss: 150.865 +67200/69092 Loss: 150.962 +Training time 0:07:35.776608 +Epoch: 74 Average loss: 151.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 871) +0/69092 Loss: 147.972 +3200/69092 Loss: 148.852 +6400/69092 Loss: 152.856 +9600/69092 Loss: 150.040 +12800/69092 Loss: 147.537 +16000/69092 Loss: 153.254 +19200/69092 Loss: 152.623 +22400/69092 Loss: 150.306 +25600/69092 Loss: 152.989 +28800/69092 Loss: 152.159 +32000/69092 Loss: 154.063 +35200/69092 Loss: 152.573 +38400/69092 Loss: 151.725 +41600/69092 Loss: 151.475 +44800/69092 Loss: 150.166 +48000/69092 Loss: 155.101 +51200/69092 Loss: 151.782 +54400/69092 Loss: 152.329 +57600/69092 Loss: 149.719 +60800/69092 Loss: 152.479 +64000/69092 Loss: 149.745 +67200/69092 Loss: 150.588 +Training time 0:07:35.483603 +Epoch: 75 Average loss: 151.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 872) +0/69092 Loss: 140.566 +3200/69092 Loss: 150.002 +6400/69092 Loss: 152.128 +9600/69092 Loss: 151.915 +12800/69092 Loss: 152.106 +16000/69092 Loss: 150.701 +19200/69092 Loss: 151.165 +22400/69092 Loss: 150.934 +25600/69092 Loss: 151.687 +28800/69092 Loss: 149.870 +32000/69092 Loss: 153.237 +35200/69092 Loss: 149.838 +38400/69092 Loss: 152.331 +41600/69092 Loss: 149.753 +44800/69092 Loss: 152.738 +48000/69092 Loss: 150.817 +51200/69092 Loss: 151.148 +54400/69092 Loss: 150.511 +57600/69092 Loss: 152.361 +60800/69092 Loss: 150.435 +64000/69092 Loss: 152.482 +67200/69092 Loss: 149.576 +Training time 0:07:40.647560 +Epoch: 76 Average loss: 151.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 873) +0/69092 Loss: 175.019 +3200/69092 Loss: 153.450 +6400/69092 Loss: 152.658 +9600/69092 Loss: 152.091 +12800/69092 Loss: 150.961 +16000/69092 Loss: 152.048 +19200/69092 Loss: 154.208 +22400/69092 Loss: 148.509 +25600/69092 Loss: 152.884 +28800/69092 Loss: 148.494 +32000/69092 Loss: 150.876 +35200/69092 Loss: 150.145 +38400/69092 Loss: 151.725 +41600/69092 Loss: 150.463 +44800/69092 Loss: 153.040 +48000/69092 Loss: 151.438 +51200/69092 Loss: 151.968 +54400/69092 Loss: 148.669 +57600/69092 Loss: 152.886 +60800/69092 Loss: 153.448 +64000/69092 Loss: 150.613 +67200/69092 Loss: 151.963 +Training time 0:07:33.939496 +Epoch: 77 Average loss: 151.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 874) +0/69092 Loss: 148.194 +3200/69092 Loss: 151.244 +6400/69092 Loss: 148.929 +9600/69092 Loss: 149.664 +12800/69092 Loss: 151.336 +16000/69092 Loss: 152.821 +19200/69092 Loss: 153.150 +22400/69092 Loss: 152.796 +25600/69092 Loss: 147.603 +28800/69092 Loss: 153.180 +32000/69092 Loss: 148.301 +35200/69092 Loss: 151.931 +38400/69092 Loss: 150.962 +41600/69092 Loss: 151.369 +44800/69092 Loss: 151.380 +48000/69092 Loss: 152.627 +51200/69092 Loss: 153.190 +54400/69092 Loss: 153.314 +57600/69092 Loss: 153.476 +60800/69092 Loss: 150.728 +64000/69092 Loss: 150.906 +67200/69092 Loss: 148.881 +Training time 0:07:57.715041 +Epoch: 78 Average loss: 151.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 875) +0/69092 Loss: 146.389 +3200/69092 Loss: 152.284 +6400/69092 Loss: 150.465 +9600/69092 Loss: 150.060 +12800/69092 Loss: 150.105 +16000/69092 Loss: 150.448 +19200/69092 Loss: 153.003 +22400/69092 Loss: 154.831 +25600/69092 Loss: 153.177 +28800/69092 Loss: 148.600 +32000/69092 Loss: 151.578 +35200/69092 Loss: 150.732 +38400/69092 Loss: 149.679 +41600/69092 Loss: 152.871 +44800/69092 Loss: 151.491 +48000/69092 Loss: 152.220 +51200/69092 Loss: 151.054 +54400/69092 Loss: 153.449 +57600/69092 Loss: 153.129 +60800/69092 Loss: 150.026 +64000/69092 Loss: 149.647 +67200/69092 Loss: 151.158 +Training time 0:07:40.608221 +Epoch: 79 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 876) +0/69092 Loss: 132.077 +3200/69092 Loss: 151.664 +6400/69092 Loss: 151.464 +9600/69092 Loss: 151.544 +12800/69092 Loss: 149.698 +16000/69092 Loss: 153.136 +19200/69092 Loss: 150.185 +22400/69092 Loss: 150.527 +25600/69092 Loss: 151.198 +28800/69092 Loss: 150.775 +32000/69092 Loss: 151.247 +35200/69092 Loss: 150.618 +38400/69092 Loss: 151.768 +41600/69092 Loss: 149.998 +44800/69092 Loss: 152.774 +48000/69092 Loss: 151.701 +51200/69092 Loss: 151.204 +54400/69092 Loss: 153.007 +57600/69092 Loss: 150.206 +60800/69092 Loss: 151.677 +64000/69092 Loss: 152.326 +67200/69092 Loss: 153.497 +Training time 0:07:38.716555 +Epoch: 80 Average loss: 151.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 877) +0/69092 Loss: 155.279 +3200/69092 Loss: 152.674 +6400/69092 Loss: 152.262 +9600/69092 Loss: 152.250 +12800/69092 Loss: 149.598 +16000/69092 Loss: 153.996 +19200/69092 Loss: 149.634 +22400/69092 Loss: 153.440 +25600/69092 Loss: 150.359 +28800/69092 Loss: 152.092 +32000/69092 Loss: 151.356 +35200/69092 Loss: 148.492 +38400/69092 Loss: 152.233 +41600/69092 Loss: 150.583 +44800/69092 Loss: 150.103 +48000/69092 Loss: 150.627 +51200/69092 Loss: 152.497 +54400/69092 Loss: 149.655 +57600/69092 Loss: 152.860 +60800/69092 Loss: 152.174 +64000/69092 Loss: 151.200 +67200/69092 Loss: 153.268 +Training time 0:07:46.567610 +Epoch: 81 Average loss: 151.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 878) +0/69092 Loss: 148.904 +3200/69092 Loss: 151.772 +6400/69092 Loss: 148.686 +9600/69092 Loss: 151.858 +12800/69092 Loss: 151.878 +16000/69092 Loss: 152.589 +19200/69092 Loss: 155.627 +22400/69092 Loss: 151.760 +25600/69092 Loss: 152.694 +28800/69092 Loss: 153.236 +32000/69092 Loss: 151.818 +35200/69092 Loss: 151.159 +38400/69092 Loss: 152.159 +41600/69092 Loss: 152.296 +44800/69092 Loss: 152.003 +48000/69092 Loss: 150.205 +51200/69092 Loss: 149.469 +54400/69092 Loss: 147.805 +57600/69092 Loss: 151.206 +60800/69092 Loss: 151.589 +64000/69092 Loss: 151.707 +67200/69092 Loss: 151.902 +Training time 0:07:37.600077 +Epoch: 82 Average loss: 151.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 879) +0/69092 Loss: 164.760 +3200/69092 Loss: 150.540 +6400/69092 Loss: 150.227 +9600/69092 Loss: 152.567 +12800/69092 Loss: 153.974 +16000/69092 Loss: 147.926 +19200/69092 Loss: 153.066 +22400/69092 Loss: 155.024 +25600/69092 Loss: 151.530 +28800/69092 Loss: 149.971 +32000/69092 Loss: 153.349 +35200/69092 Loss: 149.885 +38400/69092 Loss: 150.838 +41600/69092 Loss: 153.046 +44800/69092 Loss: 153.558 +48000/69092 Loss: 152.719 +51200/69092 Loss: 153.469 +54400/69092 Loss: 149.714 +57600/69092 Loss: 150.189 +60800/69092 Loss: 149.686 +64000/69092 Loss: 153.459 +67200/69092 Loss: 151.777 +Training time 0:07:38.415977 +Epoch: 83 Average loss: 151.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 880) +0/69092 Loss: 162.769 +3200/69092 Loss: 152.163 +6400/69092 Loss: 153.496 +9600/69092 Loss: 152.533 +12800/69092 Loss: 151.115 +16000/69092 Loss: 150.944 +19200/69092 Loss: 152.540 +22400/69092 Loss: 152.076 +25600/69092 Loss: 151.318 +28800/69092 Loss: 149.871 +32000/69092 Loss: 151.224 +35200/69092 Loss: 151.019 +38400/69092 Loss: 151.872 +41600/69092 Loss: 152.052 +44800/69092 Loss: 151.556 +48000/69092 Loss: 150.753 +51200/69092 Loss: 149.376 +54400/69092 Loss: 149.057 +57600/69092 Loss: 152.320 +60800/69092 Loss: 153.210 +64000/69092 Loss: 152.460 +67200/69092 Loss: 151.521 +Training time 0:07:33.711978 +Epoch: 84 Average loss: 151.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 881) +0/69092 Loss: 141.111 +3200/69092 Loss: 151.446 +6400/69092 Loss: 150.608 +9600/69092 Loss: 150.939 +12800/69092 Loss: 152.575 +16000/69092 Loss: 150.781 +19200/69092 Loss: 152.780 +22400/69092 Loss: 152.547 +25600/69092 Loss: 149.345 +28800/69092 Loss: 153.721 +32000/69092 Loss: 153.068 +35200/69092 Loss: 149.089 +38400/69092 Loss: 151.671 +41600/69092 Loss: 150.596 +44800/69092 Loss: 153.497 +48000/69092 Loss: 148.934 +51200/69092 Loss: 149.873 +54400/69092 Loss: 151.871 +57600/69092 Loss: 151.323 +60800/69092 Loss: 150.910 +64000/69092 Loss: 153.238 +67200/69092 Loss: 151.919 +Training time 0:07:54.364856 +Epoch: 85 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 882) +0/69092 Loss: 162.261 +3200/69092 Loss: 148.440 +6400/69092 Loss: 152.706 +9600/69092 Loss: 149.196 +12800/69092 Loss: 152.875 +16000/69092 Loss: 151.714 +19200/69092 Loss: 149.560 +22400/69092 Loss: 152.348 +25600/69092 Loss: 151.359 +28800/69092 Loss: 150.500 +32000/69092 Loss: 152.552 +35200/69092 Loss: 152.464 +38400/69092 Loss: 152.728 +41600/69092 Loss: 152.489 +44800/69092 Loss: 151.485 +48000/69092 Loss: 150.166 +51200/69092 Loss: 156.189 +54400/69092 Loss: 149.404 +57600/69092 Loss: 151.032 +60800/69092 Loss: 151.603 +64000/69092 Loss: 151.235 +67200/69092 Loss: 151.769 +Training time 0:07:39.289184 +Epoch: 86 Average loss: 151.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 883) +0/69092 Loss: 176.861 +3200/69092 Loss: 152.551 +6400/69092 Loss: 149.110 +9600/69092 Loss: 154.435 +12800/69092 Loss: 149.980 +16000/69092 Loss: 149.305 +19200/69092 Loss: 153.687 +22400/69092 Loss: 152.641 +25600/69092 Loss: 150.999 +28800/69092 Loss: 149.878 +32000/69092 Loss: 151.861 +35200/69092 Loss: 151.251 +38400/69092 Loss: 150.109 +41600/69092 Loss: 152.600 +44800/69092 Loss: 152.776 +48000/69092 Loss: 150.123 +51200/69092 Loss: 151.485 +54400/69092 Loss: 152.279 +57600/69092 Loss: 149.676 +60800/69092 Loss: 151.028 +64000/69092 Loss: 151.030 +67200/69092 Loss: 151.203 +Training time 0:07:35.373838 +Epoch: 87 Average loss: 151.34 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 884) +0/69092 Loss: 153.482 +3200/69092 Loss: 153.651 +6400/69092 Loss: 154.553 +9600/69092 Loss: 151.406 +12800/69092 Loss: 150.757 +16000/69092 Loss: 150.184 +19200/69092 Loss: 152.285 +22400/69092 Loss: 150.965 +25600/69092 Loss: 154.127 +28800/69092 Loss: 149.651 +32000/69092 Loss: 151.519 +35200/69092 Loss: 153.777 +38400/69092 Loss: 150.398 +41600/69092 Loss: 150.349 +44800/69092 Loss: 154.070 +48000/69092 Loss: 148.891 +51200/69092 Loss: 149.017 +54400/69092 Loss: 152.366 +57600/69092 Loss: 149.803 +60800/69092 Loss: 150.851 +64000/69092 Loss: 151.345 +67200/69092 Loss: 150.895 +Training time 0:07:50.131878 +Epoch: 88 Average loss: 151.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 885) +0/69092 Loss: 143.799 +3200/69092 Loss: 148.467 +6400/69092 Loss: 150.767 +9600/69092 Loss: 151.863 +12800/69092 Loss: 150.831 +16000/69092 Loss: 151.992 +19200/69092 Loss: 149.041 +22400/69092 Loss: 151.428 +25600/69092 Loss: 155.027 +28800/69092 Loss: 148.773 +32000/69092 Loss: 151.724 +35200/69092 Loss: 151.577 +38400/69092 Loss: 151.777 +41600/69092 Loss: 154.385 +44800/69092 Loss: 151.314 +48000/69092 Loss: 152.915 +51200/69092 Loss: 151.027 +54400/69092 Loss: 153.338 +57600/69092 Loss: 151.407 +60800/69092 Loss: 151.961 +64000/69092 Loss: 152.864 +67200/69092 Loss: 150.913 +Training time 0:07:51.068566 +Epoch: 89 Average loss: 151.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 886) +0/69092 Loss: 157.546 +3200/69092 Loss: 153.194 +6400/69092 Loss: 150.980 +9600/69092 Loss: 151.157 +12800/69092 Loss: 151.822 +16000/69092 Loss: 151.735 +19200/69092 Loss: 149.325 +22400/69092 Loss: 151.724 +25600/69092 Loss: 153.192 +28800/69092 Loss: 152.907 +32000/69092 Loss: 151.824 +35200/69092 Loss: 150.518 +38400/69092 Loss: 154.142 +41600/69092 Loss: 153.308 +44800/69092 Loss: 150.174 +48000/69092 Loss: 150.697 +51200/69092 Loss: 150.051 +54400/69092 Loss: 150.680 +57600/69092 Loss: 148.826 +60800/69092 Loss: 149.197 +64000/69092 Loss: 153.010 +67200/69092 Loss: 151.971 +Training time 0:07:51.080143 +Epoch: 90 Average loss: 151.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 887) +0/69092 Loss: 159.020 +3200/69092 Loss: 150.331 +6400/69092 Loss: 154.572 +9600/69092 Loss: 150.962 +12800/69092 Loss: 152.509 +16000/69092 Loss: 150.354 +19200/69092 Loss: 150.918 +22400/69092 Loss: 150.014 +25600/69092 Loss: 152.484 +28800/69092 Loss: 152.718 +32000/69092 Loss: 149.829 +35200/69092 Loss: 152.499 +38400/69092 Loss: 151.121 +41600/69092 Loss: 151.080 +44800/69092 Loss: 151.831 +48000/69092 Loss: 151.317 +51200/69092 Loss: 152.472 +54400/69092 Loss: 151.541 +57600/69092 Loss: 149.862 +60800/69092 Loss: 151.022 +64000/69092 Loss: 150.477 +67200/69092 Loss: 152.143 +Training time 0:07:40.137377 +Epoch: 91 Average loss: 151.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 888) +0/69092 Loss: 151.678 +3200/69092 Loss: 151.702 +6400/69092 Loss: 152.180 +9600/69092 Loss: 152.016 +12800/69092 Loss: 151.444 +16000/69092 Loss: 152.884 +19200/69092 Loss: 150.936 +22400/69092 Loss: 150.607 +25600/69092 Loss: 152.027 +28800/69092 Loss: 153.034 +32000/69092 Loss: 149.741 +35200/69092 Loss: 151.221 +38400/69092 Loss: 152.065 +41600/69092 Loss: 152.622 +44800/69092 Loss: 153.016 +48000/69092 Loss: 152.754 +51200/69092 Loss: 152.119 +54400/69092 Loss: 152.164 +57600/69092 Loss: 149.970 +60800/69092 Loss: 150.801 +64000/69092 Loss: 150.955 +67200/69092 Loss: 150.412 +Training time 0:07:52.897097 +Epoch: 92 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 889) +0/69092 Loss: 163.479 +3200/69092 Loss: 150.120 +6400/69092 Loss: 150.210 +9600/69092 Loss: 151.268 +12800/69092 Loss: 151.710 +16000/69092 Loss: 151.681 +19200/69092 Loss: 152.679 +22400/69092 Loss: 152.099 +25600/69092 Loss: 147.713 +28800/69092 Loss: 152.231 +32000/69092 Loss: 152.320 +35200/69092 Loss: 154.435 +38400/69092 Loss: 149.799 +41600/69092 Loss: 149.733 +44800/69092 Loss: 152.707 +48000/69092 Loss: 153.996 +51200/69092 Loss: 152.315 +54400/69092 Loss: 151.434 +57600/69092 Loss: 151.247 +60800/69092 Loss: 150.553 +64000/69092 Loss: 152.636 +67200/69092 Loss: 150.287 +Training time 0:07:35.952629 +Epoch: 93 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 890) +0/69092 Loss: 149.656 +3200/69092 Loss: 151.266 +6400/69092 Loss: 153.111 +9600/69092 Loss: 153.139 +12800/69092 Loss: 147.987 +16000/69092 Loss: 150.603 +19200/69092 Loss: 152.333 +22400/69092 Loss: 150.884 +25600/69092 Loss: 151.856 +28800/69092 Loss: 151.026 +32000/69092 Loss: 151.486 +35200/69092 Loss: 153.454 +38400/69092 Loss: 151.554 +41600/69092 Loss: 151.957 +44800/69092 Loss: 150.872 +48000/69092 Loss: 150.631 +51200/69092 Loss: 151.841 +54400/69092 Loss: 151.096 +57600/69092 Loss: 150.099 +60800/69092 Loss: 150.060 +64000/69092 Loss: 151.091 +67200/69092 Loss: 153.183 +Training time 0:07:34.815005 +Epoch: 94 Average loss: 151.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 891) +0/69092 Loss: 146.697 +3200/69092 Loss: 151.784 +6400/69092 Loss: 149.451 +9600/69092 Loss: 152.945 +12800/69092 Loss: 149.684 +16000/69092 Loss: 149.272 +19200/69092 Loss: 154.081 +22400/69092 Loss: 150.217 +25600/69092 Loss: 153.595 +28800/69092 Loss: 149.243 +32000/69092 Loss: 151.404 +35200/69092 Loss: 151.538 +38400/69092 Loss: 152.753 +41600/69092 Loss: 151.557 +44800/69092 Loss: 151.340 +48000/69092 Loss: 152.216 +51200/69092 Loss: 151.222 +54400/69092 Loss: 149.355 +57600/69092 Loss: 153.309 +60800/69092 Loss: 152.917 +64000/69092 Loss: 151.826 +67200/69092 Loss: 150.871 +Training time 0:07:42.369064 +Epoch: 95 Average loss: 151.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 892) +0/69092 Loss: 132.722 +3200/69092 Loss: 152.614 +6400/69092 Loss: 149.095 +9600/69092 Loss: 148.463 +12800/69092 Loss: 154.037 +16000/69092 Loss: 151.243 +19200/69092 Loss: 149.769 +22400/69092 Loss: 151.363 +25600/69092 Loss: 153.165 +28800/69092 Loss: 152.653 +32000/69092 Loss: 153.832 +35200/69092 Loss: 150.578 +38400/69092 Loss: 150.591 +41600/69092 Loss: 151.344 +44800/69092 Loss: 152.977 +48000/69092 Loss: 151.501 +51200/69092 Loss: 155.654 +54400/69092 Loss: 150.654 +57600/69092 Loss: 152.273 +60800/69092 Loss: 150.871 +64000/69092 Loss: 152.093 +67200/69092 Loss: 149.928 +Training time 0:07:40.563998 +Epoch: 96 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 893) +0/69092 Loss: 158.394 +3200/69092 Loss: 151.229 +6400/69092 Loss: 151.547 +9600/69092 Loss: 149.583 +12800/69092 Loss: 151.756 +16000/69092 Loss: 152.531 +19200/69092 Loss: 150.526 +22400/69092 Loss: 149.856 +25600/69092 Loss: 153.197 +28800/69092 Loss: 152.801 +32000/69092 Loss: 151.376 +35200/69092 Loss: 149.091 +38400/69092 Loss: 153.837 +41600/69092 Loss: 150.527 +44800/69092 Loss: 151.316 +48000/69092 Loss: 151.643 +51200/69092 Loss: 151.929 +54400/69092 Loss: 150.770 +57600/69092 Loss: 151.318 +60800/69092 Loss: 150.065 +64000/69092 Loss: 150.733 +67200/69092 Loss: 153.145 +Training time 0:07:45.530033 +Epoch: 97 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 894) +0/69092 Loss: 165.743 +3200/69092 Loss: 152.942 +6400/69092 Loss: 151.343 +9600/69092 Loss: 155.051 +12800/69092 Loss: 150.427 +16000/69092 Loss: 153.537 +19200/69092 Loss: 151.910 +22400/69092 Loss: 149.785 +25600/69092 Loss: 154.403 +28800/69092 Loss: 150.624 +32000/69092 Loss: 150.162 +35200/69092 Loss: 150.642 +38400/69092 Loss: 152.267 +41600/69092 Loss: 149.553 +44800/69092 Loss: 152.384 +48000/69092 Loss: 150.848 +51200/69092 Loss: 154.525 +54400/69092 Loss: 151.814 +57600/69092 Loss: 152.285 +60800/69092 Loss: 149.554 +64000/69092 Loss: 150.372 +67200/69092 Loss: 149.517 +Training time 0:07:41.393850 +Epoch: 98 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 895) +0/69092 Loss: 148.125 +3200/69092 Loss: 152.650 +6400/69092 Loss: 154.048 +9600/69092 Loss: 154.121 +12800/69092 Loss: 149.044 +16000/69092 Loss: 149.968 +19200/69092 Loss: 152.629 +22400/69092 Loss: 151.965 +25600/69092 Loss: 151.777 +28800/69092 Loss: 151.206 +32000/69092 Loss: 150.733 +35200/69092 Loss: 153.568 +38400/69092 Loss: 151.080 +41600/69092 Loss: 149.641 +44800/69092 Loss: 151.921 +48000/69092 Loss: 151.333 +51200/69092 Loss: 149.293 +54400/69092 Loss: 151.745 +57600/69092 Loss: 151.967 +60800/69092 Loss: 148.697 +64000/69092 Loss: 152.313 +67200/69092 Loss: 152.915 +Training time 0:07:43.305919 +Epoch: 99 Average loss: 151.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 896) +0/69092 Loss: 157.737 +3200/69092 Loss: 151.856 +6400/69092 Loss: 151.661 +9600/69092 Loss: 149.485 +12800/69092 Loss: 152.336 +16000/69092 Loss: 152.246 +19200/69092 Loss: 150.339 +22400/69092 Loss: 150.714 +25600/69092 Loss: 152.132 +28800/69092 Loss: 149.841 +32000/69092 Loss: 151.223 +35200/69092 Loss: 149.853 +38400/69092 Loss: 150.628 +41600/69092 Loss: 150.985 +44800/69092 Loss: 149.466 +48000/69092 Loss: 154.050 +51200/69092 Loss: 151.470 +54400/69092 Loss: 153.108 +57600/69092 Loss: 151.644 +60800/69092 Loss: 151.227 +64000/69092 Loss: 151.662 +67200/69092 Loss: 148.947 +Training time 0:07:43.103732 +Epoch: 100 Average loss: 151.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 897) +0/69092 Loss: 139.435 +3200/69092 Loss: 151.818 +6400/69092 Loss: 151.119 +9600/69092 Loss: 151.283 +12800/69092 Loss: 151.404 +16000/69092 Loss: 153.324 +19200/69092 Loss: 152.203 +22400/69092 Loss: 150.871 +25600/69092 Loss: 151.851 +28800/69092 Loss: 152.013 +32000/69092 Loss: 151.537 +35200/69092 Loss: 153.320 +38400/69092 Loss: 150.302 +41600/69092 Loss: 151.758 +44800/69092 Loss: 151.733 +48000/69092 Loss: 153.290 +51200/69092 Loss: 152.065 +54400/69092 Loss: 146.482 +57600/69092 Loss: 152.299 +60800/69092 Loss: 152.533 +64000/69092 Loss: 150.166 +67200/69092 Loss: 150.168 +Training time 0:07:53.142403 +Epoch: 101 Average loss: 151.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 898) +0/69092 Loss: 150.759 +3200/69092 Loss: 150.691 +6400/69092 Loss: 152.753 +9600/69092 Loss: 152.361 +12800/69092 Loss: 151.122 +16000/69092 Loss: 148.944 +19200/69092 Loss: 151.744 +22400/69092 Loss: 154.734 +25600/69092 Loss: 151.083 +28800/69092 Loss: 149.688 +32000/69092 Loss: 152.595 +35200/69092 Loss: 152.274 +38400/69092 Loss: 151.103 +41600/69092 Loss: 152.834 +44800/69092 Loss: 151.022 +48000/69092 Loss: 150.979 +51200/69092 Loss: 149.973 +54400/69092 Loss: 150.438 +57600/69092 Loss: 152.553 +60800/69092 Loss: 151.034 +64000/69092 Loss: 152.376 +67200/69092 Loss: 151.672 +Training time 0:07:37.514345 +Epoch: 102 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 899) +0/69092 Loss: 177.508 +3200/69092 Loss: 152.606 +6400/69092 Loss: 152.283 +9600/69092 Loss: 148.295 +12800/69092 Loss: 151.339 +16000/69092 Loss: 153.645 +19200/69092 Loss: 151.798 +22400/69092 Loss: 153.114 +25600/69092 Loss: 152.247 +28800/69092 Loss: 152.481 +32000/69092 Loss: 151.484 +35200/69092 Loss: 151.385 +38400/69092 Loss: 149.273 +41600/69092 Loss: 148.435 +44800/69092 Loss: 149.123 +48000/69092 Loss: 152.659 +51200/69092 Loss: 152.627 +54400/69092 Loss: 153.370 +57600/69092 Loss: 149.766 +60800/69092 Loss: 149.074 +64000/69092 Loss: 149.879 +67200/69092 Loss: 150.215 +Training time 0:07:36.319376 +Epoch: 103 Average loss: 151.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 900) +0/69092 Loss: 143.156 +3200/69092 Loss: 151.639 +6400/69092 Loss: 153.048 +9600/69092 Loss: 150.752 +12800/69092 Loss: 148.393 +16000/69092 Loss: 151.419 +19200/69092 Loss: 149.919 +22400/69092 Loss: 152.721 +25600/69092 Loss: 149.942 +28800/69092 Loss: 151.455 +32000/69092 Loss: 152.018 +35200/69092 Loss: 150.035 +38400/69092 Loss: 151.944 +41600/69092 Loss: 149.496 +44800/69092 Loss: 150.375 +48000/69092 Loss: 151.705 +51200/69092 Loss: 153.085 +54400/69092 Loss: 153.474 +57600/69092 Loss: 152.073 +60800/69092 Loss: 154.008 +64000/69092 Loss: 152.584 +67200/69092 Loss: 151.138 +Training time 0:07:56.406031 +Epoch: 104 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 901) +0/69092 Loss: 165.233 +3200/69092 Loss: 151.321 +6400/69092 Loss: 153.195 +9600/69092 Loss: 150.820 +12800/69092 Loss: 150.396 +16000/69092 Loss: 152.134 +19200/69092 Loss: 150.121 +22400/69092 Loss: 153.466 +25600/69092 Loss: 152.980 +28800/69092 Loss: 153.869 +32000/69092 Loss: 151.198 +35200/69092 Loss: 151.766 +38400/69092 Loss: 150.067 +41600/69092 Loss: 150.087 +44800/69092 Loss: 151.755 +48000/69092 Loss: 152.414 +51200/69092 Loss: 151.720 +54400/69092 Loss: 150.343 +57600/69092 Loss: 148.168 +60800/69092 Loss: 150.746 +64000/69092 Loss: 151.576 +67200/69092 Loss: 150.761 +Training time 0:07:43.661213 +Epoch: 105 Average loss: 151.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 902) +0/69092 Loss: 146.604 +3200/69092 Loss: 152.449 +6400/69092 Loss: 151.446 +9600/69092 Loss: 152.866 +12800/69092 Loss: 152.050 +16000/69092 Loss: 151.969 +19200/69092 Loss: 149.835 +22400/69092 Loss: 149.119 +25600/69092 Loss: 150.592 +28800/69092 Loss: 151.768 +32000/69092 Loss: 151.755 +35200/69092 Loss: 149.949 +38400/69092 Loss: 153.261 +41600/69092 Loss: 150.041 +44800/69092 Loss: 151.270 +48000/69092 Loss: 150.028 +51200/69092 Loss: 149.866 +54400/69092 Loss: 152.386 +57600/69092 Loss: 151.076 +60800/69092 Loss: 154.246 +64000/69092 Loss: 153.755 +67200/69092 Loss: 149.399 +Training time 0:07:35.772736 +Epoch: 106 Average loss: 151.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 903) +0/69092 Loss: 146.718 +3200/69092 Loss: 154.045 +6400/69092 Loss: 151.719 +9600/69092 Loss: 150.495 +12800/69092 Loss: 151.347 +16000/69092 Loss: 147.822 +19200/69092 Loss: 151.888 +22400/69092 Loss: 152.787 +25600/69092 Loss: 150.599 +28800/69092 Loss: 151.054 +32000/69092 Loss: 151.965 +35200/69092 Loss: 151.209 +38400/69092 Loss: 150.557 +41600/69092 Loss: 152.109 +44800/69092 Loss: 151.280 +48000/69092 Loss: 151.640 +51200/69092 Loss: 151.572 +54400/69092 Loss: 152.225 +57600/69092 Loss: 149.797 +60800/69092 Loss: 148.725 +64000/69092 Loss: 150.581 +67200/69092 Loss: 152.225 +Training time 0:07:34.337732 +Epoch: 107 Average loss: 151.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 904) +0/69092 Loss: 148.489 +3200/69092 Loss: 153.499 +6400/69092 Loss: 150.819 +9600/69092 Loss: 151.166 +12800/69092 Loss: 152.612 +16000/69092 Loss: 148.260 +19200/69092 Loss: 151.130 +22400/69092 Loss: 152.847 +25600/69092 Loss: 151.573 +28800/69092 Loss: 151.488 +32000/69092 Loss: 150.933 +35200/69092 Loss: 149.576 +38400/69092 Loss: 151.064 +41600/69092 Loss: 153.102 +44800/69092 Loss: 151.842 +48000/69092 Loss: 149.934 +51200/69092 Loss: 151.099 +54400/69092 Loss: 152.865 +57600/69092 Loss: 150.884 +60800/69092 Loss: 150.083 +64000/69092 Loss: 153.264 +67200/69092 Loss: 151.809 +Training time 0:07:42.232368 +Epoch: 108 Average loss: 151.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 905) +0/69092 Loss: 151.527 +3200/69092 Loss: 150.381 +6400/69092 Loss: 151.409 +9600/69092 Loss: 152.144 +12800/69092 Loss: 150.401 +16000/69092 Loss: 149.757 +19200/69092 Loss: 152.949 +22400/69092 Loss: 151.044 +25600/69092 Loss: 149.624 +28800/69092 Loss: 151.317 +32000/69092 Loss: 151.304 +35200/69092 Loss: 152.259 +38400/69092 Loss: 153.894 +41600/69092 Loss: 152.094 +44800/69092 Loss: 151.369 +48000/69092 Loss: 150.070 +51200/69092 Loss: 152.494 +54400/69092 Loss: 151.574 +57600/69092 Loss: 152.465 +60800/69092 Loss: 152.010 +64000/69092 Loss: 150.174 +67200/69092 Loss: 150.667 +Training time 0:07:36.722938 +Epoch: 109 Average loss: 151.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 906) +0/69092 Loss: 125.892 +3200/69092 Loss: 152.042 +6400/69092 Loss: 151.201 +9600/69092 Loss: 150.779 +12800/69092 Loss: 151.454 +16000/69092 Loss: 152.048 +19200/69092 Loss: 151.438 +22400/69092 Loss: 150.652 +25600/69092 Loss: 152.461 +28800/69092 Loss: 153.321 +32000/69092 Loss: 154.214 +35200/69092 Loss: 150.505 +38400/69092 Loss: 150.507 +41600/69092 Loss: 154.431 +44800/69092 Loss: 152.689 +48000/69092 Loss: 152.679 +51200/69092 Loss: 150.218 +54400/69092 Loss: 150.897 +57600/69092 Loss: 149.717 +60800/69092 Loss: 150.404 +64000/69092 Loss: 150.079 +67200/69092 Loss: 151.367 +Training time 0:07:44.129451 +Epoch: 110 Average loss: 151.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 907) +0/69092 Loss: 147.243 +3200/69092 Loss: 152.565 +6400/69092 Loss: 149.439 +9600/69092 Loss: 151.038 +12800/69092 Loss: 151.094 +16000/69092 Loss: 149.406 +19200/69092 Loss: 149.134 +22400/69092 Loss: 151.980 +25600/69092 Loss: 153.981 +28800/69092 Loss: 153.876 +32000/69092 Loss: 154.702 +35200/69092 Loss: 149.567 +38400/69092 Loss: 150.614 +41600/69092 Loss: 150.392 +44800/69092 Loss: 149.862 +48000/69092 Loss: 150.744 +51200/69092 Loss: 151.150 +54400/69092 Loss: 150.578 +57600/69092 Loss: 153.044 +60800/69092 Loss: 154.562 +64000/69092 Loss: 152.086 +67200/69092 Loss: 150.764 +Training time 0:07:37.534872 +Epoch: 111 Average loss: 151.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 908) +0/69092 Loss: 173.649 +3200/69092 Loss: 151.838 +6400/69092 Loss: 151.378 +9600/69092 Loss: 150.939 +12800/69092 Loss: 151.517 +16000/69092 Loss: 152.590 +19200/69092 Loss: 150.400 +22400/69092 Loss: 151.948 +25600/69092 Loss: 151.186 +28800/69092 Loss: 148.228 +32000/69092 Loss: 149.957 +35200/69092 Loss: 150.422 +38400/69092 Loss: 149.014 +41600/69092 Loss: 153.795 +44800/69092 Loss: 150.486 +48000/69092 Loss: 153.006 +51200/69092 Loss: 150.860 +54400/69092 Loss: 152.941 +57600/69092 Loss: 150.360 +60800/69092 Loss: 153.025 +64000/69092 Loss: 149.598 +67200/69092 Loss: 154.917 +Training time 0:07:45.409074 +Epoch: 112 Average loss: 151.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 909) +0/69092 Loss: 149.609 +3200/69092 Loss: 150.810 +6400/69092 Loss: 150.274 +9600/69092 Loss: 150.584 +12800/69092 Loss: 151.060 +16000/69092 Loss: 150.193 +19200/69092 Loss: 152.068 +22400/69092 Loss: 150.325 +25600/69092 Loss: 151.293 +28800/69092 Loss: 152.517 +32000/69092 Loss: 152.809 +35200/69092 Loss: 152.860 +38400/69092 Loss: 153.586 +41600/69092 Loss: 150.560 +44800/69092 Loss: 153.344 +48000/69092 Loss: 149.599 +51200/69092 Loss: 151.207 +54400/69092 Loss: 153.610 +57600/69092 Loss: 149.566 +60800/69092 Loss: 149.413 +64000/69092 Loss: 151.353 +67200/69092 Loss: 153.570 +Training time 0:07:54.981671 +Epoch: 113 Average loss: 151.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 910) +0/69092 Loss: 144.998 +3200/69092 Loss: 151.353 +6400/69092 Loss: 153.139 +9600/69092 Loss: 152.563 +12800/69092 Loss: 151.941 +16000/69092 Loss: 150.398 +19200/69092 Loss: 151.273 +22400/69092 Loss: 151.755 +25600/69092 Loss: 152.129 +28800/69092 Loss: 149.613 +32000/69092 Loss: 154.309 +35200/69092 Loss: 152.101 +38400/69092 Loss: 154.426 +41600/69092 Loss: 150.935 +44800/69092 Loss: 151.034 +48000/69092 Loss: 149.470 +51200/69092 Loss: 151.719 +54400/69092 Loss: 150.375 +57600/69092 Loss: 149.638 +60800/69092 Loss: 152.823 +64000/69092 Loss: 150.772 +67200/69092 Loss: 150.935 +Training time 0:07:33.264126 +Epoch: 114 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 911) +0/69092 Loss: 142.994 +3200/69092 Loss: 153.644 +6400/69092 Loss: 151.376 +9600/69092 Loss: 150.338 +12800/69092 Loss: 150.488 +16000/69092 Loss: 153.243 +19200/69092 Loss: 151.167 +22400/69092 Loss: 151.611 +25600/69092 Loss: 149.909 +28800/69092 Loss: 150.841 +32000/69092 Loss: 151.587 +35200/69092 Loss: 152.647 +38400/69092 Loss: 151.409 +41600/69092 Loss: 152.997 +44800/69092 Loss: 152.912 +48000/69092 Loss: 151.887 +51200/69092 Loss: 150.695 +54400/69092 Loss: 152.019 +57600/69092 Loss: 151.228 +60800/69092 Loss: 150.380 +64000/69092 Loss: 150.044 +67200/69092 Loss: 149.774 +Training time 0:07:38.506687 +Epoch: 115 Average loss: 151.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 912) +0/69092 Loss: 156.308 +3200/69092 Loss: 150.914 +6400/69092 Loss: 154.129 +9600/69092 Loss: 154.683 +12800/69092 Loss: 152.993 +16000/69092 Loss: 150.762 +19200/69092 Loss: 149.033 +22400/69092 Loss: 148.239 +25600/69092 Loss: 152.287 +28800/69092 Loss: 152.040 +32000/69092 Loss: 151.876 +35200/69092 Loss: 149.819 +38400/69092 Loss: 149.002 +41600/69092 Loss: 154.284 +44800/69092 Loss: 151.874 +48000/69092 Loss: 151.499 +51200/69092 Loss: 151.405 +54400/69092 Loss: 150.912 +57600/69092 Loss: 150.138 +60800/69092 Loss: 150.580 +64000/69092 Loss: 150.884 +67200/69092 Loss: 150.559 +Training time 0:07:38.096699 +Epoch: 116 Average loss: 151.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 913) +0/69092 Loss: 141.612 +3200/69092 Loss: 149.199 +6400/69092 Loss: 152.284 +9600/69092 Loss: 149.168 +12800/69092 Loss: 149.723 +16000/69092 Loss: 151.776 +19200/69092 Loss: 152.113 +22400/69092 Loss: 150.250 +25600/69092 Loss: 152.536 +28800/69092 Loss: 153.413 +32000/69092 Loss: 154.031 +35200/69092 Loss: 151.454 +38400/69092 Loss: 149.730 +41600/69092 Loss: 152.665 +44800/69092 Loss: 151.905 +48000/69092 Loss: 151.106 +51200/69092 Loss: 151.221 +54400/69092 Loss: 151.693 +57600/69092 Loss: 152.620 +60800/69092 Loss: 150.047 +64000/69092 Loss: 150.633 +67200/69092 Loss: 149.653 +Training time 0:07:41.130272 +Epoch: 117 Average loss: 151.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 914) +0/69092 Loss: 155.953 +3200/69092 Loss: 149.312 +6400/69092 Loss: 152.249 +9600/69092 Loss: 151.618 +12800/69092 Loss: 151.824 +16000/69092 Loss: 150.747 +19200/69092 Loss: 150.063 +22400/69092 Loss: 149.770 +25600/69092 Loss: 152.689 +28800/69092 Loss: 153.044 +32000/69092 Loss: 153.086 +35200/69092 Loss: 152.088 +38400/69092 Loss: 150.299 +41600/69092 Loss: 152.036 +44800/69092 Loss: 152.260 +48000/69092 Loss: 147.098 +51200/69092 Loss: 153.311 +54400/69092 Loss: 150.711 +57600/69092 Loss: 150.065 +60800/69092 Loss: 151.125 +64000/69092 Loss: 152.485 +67200/69092 Loss: 152.314 +Training time 0:07:37.825595 +Epoch: 118 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 915) +0/69092 Loss: 148.051 +3200/69092 Loss: 154.283 +6400/69092 Loss: 151.714 +9600/69092 Loss: 150.922 +12800/69092 Loss: 152.883 +16000/69092 Loss: 153.030 +19200/69092 Loss: 151.173 +22400/69092 Loss: 152.366 +25600/69092 Loss: 149.495 +28800/69092 Loss: 148.783 +32000/69092 Loss: 154.459 +35200/69092 Loss: 152.983 +38400/69092 Loss: 150.659 +41600/69092 Loss: 153.003 +44800/69092 Loss: 151.932 +48000/69092 Loss: 152.443 +51200/69092 Loss: 149.858 +54400/69092 Loss: 149.497 +57600/69092 Loss: 150.831 +60800/69092 Loss: 150.863 +64000/69092 Loss: 151.705 +67200/69092 Loss: 151.566 +Training time 0:07:44.524489 +Epoch: 119 Average loss: 151.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 916) +0/69092 Loss: 142.340 +3200/69092 Loss: 149.670 +6400/69092 Loss: 152.443 +9600/69092 Loss: 150.113 +12800/69092 Loss: 147.185 +16000/69092 Loss: 150.174 +19200/69092 Loss: 152.503 +22400/69092 Loss: 150.977 +25600/69092 Loss: 150.322 +28800/69092 Loss: 153.315 +32000/69092 Loss: 152.230 +35200/69092 Loss: 152.723 +38400/69092 Loss: 151.079 +41600/69092 Loss: 154.848 +44800/69092 Loss: 149.747 +48000/69092 Loss: 152.488 +51200/69092 Loss: 151.711 +54400/69092 Loss: 153.382 +57600/69092 Loss: 152.753 +60800/69092 Loss: 153.032 +64000/69092 Loss: 150.018 +67200/69092 Loss: 149.703 +Training time 0:07:40.885898 +Epoch: 120 Average loss: 151.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 917) +0/69092 Loss: 164.281 +3200/69092 Loss: 151.590 +6400/69092 Loss: 151.736 +9600/69092 Loss: 151.577 +12800/69092 Loss: 150.526 +16000/69092 Loss: 153.429 +19200/69092 Loss: 151.341 +22400/69092 Loss: 154.072 +25600/69092 Loss: 152.463 +28800/69092 Loss: 149.213 +32000/69092 Loss: 149.914 +35200/69092 Loss: 151.247 +38400/69092 Loss: 151.235 +41600/69092 Loss: 150.678 +44800/69092 Loss: 150.713 +48000/69092 Loss: 151.425 +51200/69092 Loss: 151.093 +54400/69092 Loss: 152.958 +57600/69092 Loss: 149.996 +60800/69092 Loss: 150.891 +64000/69092 Loss: 151.416 +67200/69092 Loss: 151.186 +Training time 0:07:40.110124 +Epoch: 121 Average loss: 151.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 918) +0/69092 Loss: 151.546 +3200/69092 Loss: 154.108 +6400/69092 Loss: 150.318 +9600/69092 Loss: 153.542 +12800/69092 Loss: 150.893 +16000/69092 Loss: 151.538 +19200/69092 Loss: 151.993 +22400/69092 Loss: 149.791 +25600/69092 Loss: 153.092 +28800/69092 Loss: 153.002 +32000/69092 Loss: 150.149 +35200/69092 Loss: 150.776 +38400/69092 Loss: 151.102 +41600/69092 Loss: 155.553 +44800/69092 Loss: 151.075 +48000/69092 Loss: 151.019 +51200/69092 Loss: 149.472 +54400/69092 Loss: 150.907 +57600/69092 Loss: 147.349 +60800/69092 Loss: 150.102 +64000/69092 Loss: 151.381 +67200/69092 Loss: 151.375 +Training time 0:07:40.865243 +Epoch: 122 Average loss: 151.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 919) +0/69092 Loss: 153.755 +3200/69092 Loss: 152.052 +6400/69092 Loss: 151.914 +9600/69092 Loss: 150.326 +12800/69092 Loss: 152.523 +16000/69092 Loss: 149.649 +19200/69092 Loss: 152.185 +22400/69092 Loss: 150.844 +25600/69092 Loss: 151.141 +28800/69092 Loss: 153.327 +32000/69092 Loss: 152.586 +35200/69092 Loss: 153.870 +38400/69092 Loss: 148.910 +41600/69092 Loss: 149.012 +44800/69092 Loss: 152.260 +48000/69092 Loss: 152.266 +51200/69092 Loss: 151.286 +54400/69092 Loss: 150.506 +57600/69092 Loss: 152.536 +60800/69092 Loss: 150.690 +64000/69092 Loss: 150.083 +67200/69092 Loss: 151.849 +Training time 0:07:48.615941 +Epoch: 123 Average loss: 151.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 920) +0/69092 Loss: 153.725 +3200/69092 Loss: 152.735 +6400/69092 Loss: 150.295 +9600/69092 Loss: 150.218 +12800/69092 Loss: 150.871 +16000/69092 Loss: 148.731 +19200/69092 Loss: 149.065 +22400/69092 Loss: 148.538 +25600/69092 Loss: 151.412 +28800/69092 Loss: 151.277 +32000/69092 Loss: 151.501 +35200/69092 Loss: 152.738 +38400/69092 Loss: 155.225 +41600/69092 Loss: 153.449 +44800/69092 Loss: 149.839 +48000/69092 Loss: 152.095 +51200/69092 Loss: 151.263 +54400/69092 Loss: 150.984 +57600/69092 Loss: 154.250 +60800/69092 Loss: 149.270 +64000/69092 Loss: 151.713 +67200/69092 Loss: 150.166 +Training time 0:07:40.258479 +Epoch: 124 Average loss: 151.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 921) +0/69092 Loss: 142.312 +3200/69092 Loss: 149.601 +6400/69092 Loss: 153.045 +9600/69092 Loss: 154.507 +12800/69092 Loss: 152.208 +16000/69092 Loss: 151.183 +19200/69092 Loss: 151.878 +22400/69092 Loss: 152.822 +25600/69092 Loss: 152.257 +28800/69092 Loss: 149.383 +32000/69092 Loss: 153.064 +35200/69092 Loss: 150.889 +38400/69092 Loss: 150.712 +41600/69092 Loss: 150.904 +44800/69092 Loss: 150.949 +48000/69092 Loss: 151.822 +51200/69092 Loss: 152.137 +54400/69092 Loss: 151.709 +57600/69092 Loss: 152.184 +60800/69092 Loss: 150.664 +64000/69092 Loss: 150.333 +67200/69092 Loss: 153.974 +Training time 0:07:39.217246 +Epoch: 125 Average loss: 151.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 922) +0/69092 Loss: 159.935 +3200/69092 Loss: 150.666 +6400/69092 Loss: 151.595 +9600/69092 Loss: 150.919 +12800/69092 Loss: 152.729 +16000/69092 Loss: 151.851 +19200/69092 Loss: 152.421 +22400/69092 Loss: 153.180 +25600/69092 Loss: 152.496 +28800/69092 Loss: 151.596 +32000/69092 Loss: 150.062 +35200/69092 Loss: 149.879 +38400/69092 Loss: 150.485 +41600/69092 Loss: 149.738 +44800/69092 Loss: 150.755 +48000/69092 Loss: 150.068 +51200/69092 Loss: 152.259 +54400/69092 Loss: 151.634 +57600/69092 Loss: 152.558 +60800/69092 Loss: 151.090 +64000/69092 Loss: 149.036 +67200/69092 Loss: 152.283 +Training time 0:07:40.821096 +Epoch: 126 Average loss: 151.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 923) +0/69092 Loss: 133.395 +3200/69092 Loss: 151.205 +6400/69092 Loss: 153.174 +9600/69092 Loss: 152.048 +12800/69092 Loss: 150.364 +16000/69092 Loss: 149.779 +19200/69092 Loss: 151.923 +22400/69092 Loss: 151.112 +25600/69092 Loss: 151.557 +28800/69092 Loss: 151.695 +32000/69092 Loss: 151.893 +35200/69092 Loss: 153.473 +38400/69092 Loss: 150.701 +41600/69092 Loss: 148.429 +44800/69092 Loss: 152.116 +48000/69092 Loss: 150.101 +51200/69092 Loss: 149.370 +54400/69092 Loss: 152.866 +57600/69092 Loss: 151.995 +60800/69092 Loss: 149.668 +64000/69092 Loss: 149.759 +67200/69092 Loss: 153.295 +Training time 0:07:33.827181 +Epoch: 127 Average loss: 151.27 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 924) +0/69092 Loss: 139.178 +3200/69092 Loss: 152.090 +6400/69092 Loss: 150.405 +9600/69092 Loss: 150.435 +12800/69092 Loss: 154.370 +16000/69092 Loss: 152.774 +19200/69092 Loss: 150.386 +22400/69092 Loss: 151.599 +25600/69092 Loss: 153.623 +28800/69092 Loss: 152.030 +32000/69092 Loss: 151.782 +35200/69092 Loss: 146.994 +38400/69092 Loss: 152.255 +41600/69092 Loss: 151.885 +44800/69092 Loss: 153.996 +48000/69092 Loss: 150.656 +51200/69092 Loss: 150.490 +54400/69092 Loss: 150.645 +57600/69092 Loss: 152.508 +60800/69092 Loss: 150.855 +64000/69092 Loss: 147.958 +67200/69092 Loss: 151.810 +Training time 0:07:39.201312 +Epoch: 128 Average loss: 151.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 925) +0/69092 Loss: 156.363 +3200/69092 Loss: 151.579 +6400/69092 Loss: 149.007 +9600/69092 Loss: 151.809 +12800/69092 Loss: 152.189 +16000/69092 Loss: 152.400 +19200/69092 Loss: 153.051 +22400/69092 Loss: 153.260 +25600/69092 Loss: 149.170 +28800/69092 Loss: 149.261 +32000/69092 Loss: 149.228 +35200/69092 Loss: 153.453 +38400/69092 Loss: 151.917 +41600/69092 Loss: 149.064 +44800/69092 Loss: 149.448 +48000/69092 Loss: 149.718 +51200/69092 Loss: 151.338 +54400/69092 Loss: 153.480 +57600/69092 Loss: 152.084 +60800/69092 Loss: 150.879 +64000/69092 Loss: 151.104 +67200/69092 Loss: 152.700 +Training time 0:07:29.239496 +Epoch: 129 Average loss: 151.34 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 926) +0/69092 Loss: 153.602 +3200/69092 Loss: 149.365 +6400/69092 Loss: 152.429 +9600/69092 Loss: 153.624 +12800/69092 Loss: 150.918 +16000/69092 Loss: 149.167 +19200/69092 Loss: 151.346 +22400/69092 Loss: 153.452 +25600/69092 Loss: 150.274 +28800/69092 Loss: 153.584 +32000/69092 Loss: 151.051 +35200/69092 Loss: 152.301 +38400/69092 Loss: 152.248 +41600/69092 Loss: 150.312 +44800/69092 Loss: 150.440 +48000/69092 Loss: 150.268 +51200/69092 Loss: 151.808 +54400/69092 Loss: 148.809 +57600/69092 Loss: 152.787 +60800/69092 Loss: 150.325 +64000/69092 Loss: 153.076 +67200/69092 Loss: 152.864 +Training time 0:07:31.459204 +Epoch: 130 Average loss: 151.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 927) +0/69092 Loss: 145.687 +3200/69092 Loss: 150.562 +6400/69092 Loss: 151.754 +9600/69092 Loss: 151.882 +12800/69092 Loss: 150.695 +16000/69092 Loss: 151.925 +19200/69092 Loss: 150.311 +22400/69092 Loss: 150.984 +25600/69092 Loss: 150.768 +28800/69092 Loss: 149.421 +32000/69092 Loss: 152.532 +35200/69092 Loss: 148.857 +38400/69092 Loss: 148.691 +41600/69092 Loss: 153.912 +44800/69092 Loss: 153.506 +48000/69092 Loss: 150.628 +51200/69092 Loss: 148.804 +54400/69092 Loss: 154.073 +57600/69092 Loss: 150.662 +60800/69092 Loss: 153.195 +64000/69092 Loss: 153.375 +67200/69092 Loss: 149.911 +Training time 0:07:34.103900 +Epoch: 131 Average loss: 151.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 928) +0/69092 Loss: 158.890 +3200/69092 Loss: 148.898 +6400/69092 Loss: 152.258 +9600/69092 Loss: 148.922 +12800/69092 Loss: 151.149 +16000/69092 Loss: 151.924 +19200/69092 Loss: 149.390 +22400/69092 Loss: 151.368 +25600/69092 Loss: 151.039 +28800/69092 Loss: 150.526 +32000/69092 Loss: 151.997 +35200/69092 Loss: 150.298 +38400/69092 Loss: 149.817 +41600/69092 Loss: 153.578 +44800/69092 Loss: 150.472 +48000/69092 Loss: 152.785 +51200/69092 Loss: 151.896 +54400/69092 Loss: 152.163 +57600/69092 Loss: 151.637 +60800/69092 Loss: 152.326 +64000/69092 Loss: 152.074 +67200/69092 Loss: 150.963 +Training time 0:07:30.411037 +Epoch: 132 Average loss: 151.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 929) +0/69092 Loss: 152.476 +3200/69092 Loss: 151.153 +6400/69092 Loss: 150.819 +9600/69092 Loss: 151.512 +12800/69092 Loss: 151.300 +16000/69092 Loss: 150.884 +19200/69092 Loss: 152.737 +22400/69092 Loss: 153.723 +25600/69092 Loss: 150.138 +28800/69092 Loss: 152.493 +32000/69092 Loss: 150.295 +35200/69092 Loss: 147.729 +38400/69092 Loss: 149.652 +41600/69092 Loss: 153.145 +44800/69092 Loss: 150.353 +48000/69092 Loss: 149.840 +51200/69092 Loss: 149.113 +54400/69092 Loss: 154.326 +57600/69092 Loss: 150.752 +60800/69092 Loss: 154.172 +64000/69092 Loss: 151.482 +67200/69092 Loss: 149.927 +Training time 0:07:35.144481 +Epoch: 133 Average loss: 151.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 930) +0/69092 Loss: 150.330 +3200/69092 Loss: 150.738 +6400/69092 Loss: 153.947 +9600/69092 Loss: 154.037 +12800/69092 Loss: 152.520 +16000/69092 Loss: 153.493 +19200/69092 Loss: 149.971 +22400/69092 Loss: 152.351 +25600/69092 Loss: 151.293 +28800/69092 Loss: 150.689 +32000/69092 Loss: 151.960 +35200/69092 Loss: 151.174 +38400/69092 Loss: 149.856 +41600/69092 Loss: 149.570 +44800/69092 Loss: 151.184 +48000/69092 Loss: 148.480 +51200/69092 Loss: 150.741 +54400/69092 Loss: 152.689 +57600/69092 Loss: 152.733 +60800/69092 Loss: 151.415 +64000/69092 Loss: 151.705 +67200/69092 Loss: 150.536 +Training time 0:07:31.230422 +Epoch: 134 Average loss: 151.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 931) +0/69092 Loss: 156.602 +3200/69092 Loss: 155.902 +6400/69092 Loss: 149.523 +9600/69092 Loss: 150.878 +12800/69092 Loss: 150.130 +16000/69092 Loss: 149.182 +19200/69092 Loss: 151.504 +22400/69092 Loss: 151.428 +25600/69092 Loss: 151.358 +28800/69092 Loss: 150.165 +32000/69092 Loss: 153.422 +35200/69092 Loss: 151.532 +38400/69092 Loss: 153.305 +41600/69092 Loss: 151.262 +44800/69092 Loss: 148.662 +48000/69092 Loss: 151.726 +51200/69092 Loss: 150.145 +54400/69092 Loss: 151.123 +57600/69092 Loss: 150.252 +60800/69092 Loss: 153.389 +64000/69092 Loss: 152.228 +67200/69092 Loss: 153.550 +Training time 0:07:42.546566 +Epoch: 135 Average loss: 151.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 932) +0/69092 Loss: 192.917 +3200/69092 Loss: 150.780 +6400/69092 Loss: 149.718 +9600/69092 Loss: 152.790 +12800/69092 Loss: 155.841 +16000/69092 Loss: 149.099 +19200/69092 Loss: 152.797 +22400/69092 Loss: 151.635 +25600/69092 Loss: 149.675 +28800/69092 Loss: 150.155 +32000/69092 Loss: 152.205 +35200/69092 Loss: 150.884 +38400/69092 Loss: 150.843 +41600/69092 Loss: 152.562 +44800/69092 Loss: 150.871 +48000/69092 Loss: 151.262 +51200/69092 Loss: 152.155 +54400/69092 Loss: 149.894 +57600/69092 Loss: 152.348 +60800/69092 Loss: 151.301 +64000/69092 Loss: 154.194 +67200/69092 Loss: 151.420 +Training time 0:07:34.404030 +Epoch: 136 Average loss: 151.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 933) +0/69092 Loss: 154.081 +3200/69092 Loss: 151.023 +6400/69092 Loss: 150.659 +9600/69092 Loss: 150.859 +12800/69092 Loss: 150.957 +16000/69092 Loss: 151.402 +19200/69092 Loss: 149.551 +22400/69092 Loss: 150.514 +25600/69092 Loss: 150.607 +28800/69092 Loss: 146.690 +32000/69092 Loss: 152.425 +35200/69092 Loss: 150.959 +38400/69092 Loss: 151.241 +41600/69092 Loss: 153.284 +44800/69092 Loss: 150.841 +48000/69092 Loss: 151.468 +51200/69092 Loss: 154.135 +54400/69092 Loss: 150.535 +57600/69092 Loss: 152.113 +60800/69092 Loss: 151.415 +64000/69092 Loss: 151.924 +67200/69092 Loss: 152.794 +Training time 0:07:41.406707 +Epoch: 137 Average loss: 151.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 934) +0/69092 Loss: 151.758 +3200/69092 Loss: 152.303 +6400/69092 Loss: 150.552 +9600/69092 Loss: 153.624 +12800/69092 Loss: 151.600 +16000/69092 Loss: 152.235 +19200/69092 Loss: 149.450 +22400/69092 Loss: 153.171 +25600/69092 Loss: 150.775 +28800/69092 Loss: 149.502 +32000/69092 Loss: 154.112 +35200/69092 Loss: 151.205 +38400/69092 Loss: 150.401 +41600/69092 Loss: 151.936 +44800/69092 Loss: 151.007 +48000/69092 Loss: 149.750 +51200/69092 Loss: 151.773 +54400/69092 Loss: 151.719 +57600/69092 Loss: 150.312 +60800/69092 Loss: 150.264 +64000/69092 Loss: 152.165 +67200/69092 Loss: 153.599 +Training time 0:07:51.149834 +Epoch: 138 Average loss: 151.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 935) +0/69092 Loss: 163.942 +3200/69092 Loss: 153.892 +6400/69092 Loss: 152.419 +9600/69092 Loss: 149.816 +12800/69092 Loss: 149.134 +16000/69092 Loss: 149.846 +19200/69092 Loss: 151.529 +22400/69092 Loss: 148.865 +25600/69092 Loss: 150.458 +28800/69092 Loss: 153.477 +32000/69092 Loss: 151.430 +35200/69092 Loss: 151.400 +38400/69092 Loss: 149.812 +41600/69092 Loss: 149.920 +44800/69092 Loss: 155.557 +48000/69092 Loss: 151.174 +51200/69092 Loss: 151.239 +54400/69092 Loss: 152.275 +57600/69092 Loss: 152.798 +60800/69092 Loss: 148.169 +64000/69092 Loss: 151.449 +67200/69092 Loss: 155.051 +Training time 0:07:34.220237 +Epoch: 139 Average loss: 151.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 936) +0/69092 Loss: 135.889 +3200/69092 Loss: 149.259 +6400/69092 Loss: 150.723 +9600/69092 Loss: 149.894 +12800/69092 Loss: 152.169 +16000/69092 Loss: 152.595 +19200/69092 Loss: 153.289 +22400/69092 Loss: 151.341 +25600/69092 Loss: 150.578 +28800/69092 Loss: 149.681 +32000/69092 Loss: 150.240 +35200/69092 Loss: 151.527 +38400/69092 Loss: 152.612 +41600/69092 Loss: 151.566 +44800/69092 Loss: 151.978 +48000/69092 Loss: 153.291 +51200/69092 Loss: 152.420 +54400/69092 Loss: 150.876 +57600/69092 Loss: 151.893 +60800/69092 Loss: 149.141 +64000/69092 Loss: 151.689 +67200/69092 Loss: 152.193 +Training time 0:07:37.798861 +Epoch: 140 Average loss: 151.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 937) +0/69092 Loss: 154.060 +3200/69092 Loss: 151.337 +6400/69092 Loss: 149.624 +9600/69092 Loss: 153.368 +12800/69092 Loss: 151.766 +16000/69092 Loss: 150.789 +19200/69092 Loss: 153.736 +22400/69092 Loss: 149.811 +25600/69092 Loss: 148.097 +28800/69092 Loss: 153.147 +32000/69092 Loss: 150.933 +35200/69092 Loss: 151.689 +38400/69092 Loss: 149.050 +41600/69092 Loss: 151.974 +44800/69092 Loss: 153.462 +48000/69092 Loss: 150.815 +51200/69092 Loss: 150.851 +54400/69092 Loss: 152.239 +57600/69092 Loss: 150.101 +60800/69092 Loss: 151.103 +64000/69092 Loss: 153.330 +67200/69092 Loss: 151.500 +Training time 0:07:47.568019 +Epoch: 141 Average loss: 151.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 938) +0/69092 Loss: 165.318 +3200/69092 Loss: 151.236 +6400/69092 Loss: 148.331 +9600/69092 Loss: 153.908 +12800/69092 Loss: 150.460 +16000/69092 Loss: 155.007 +19200/69092 Loss: 151.594 +22400/69092 Loss: 150.946 +25600/69092 Loss: 150.128 +28800/69092 Loss: 154.425 +32000/69092 Loss: 150.489 +35200/69092 Loss: 150.490 +38400/69092 Loss: 151.721 +41600/69092 Loss: 150.946 +44800/69092 Loss: 150.970 +48000/69092 Loss: 153.242 +51200/69092 Loss: 150.033 +54400/69092 Loss: 150.964 +57600/69092 Loss: 151.133 +60800/69092 Loss: 149.568 +64000/69092 Loss: 152.084 +67200/69092 Loss: 152.417 +Training time 0:07:38.374045 +Epoch: 142 Average loss: 151.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 939) +0/69092 Loss: 142.387 +3200/69092 Loss: 148.898 +6400/69092 Loss: 152.681 +9600/69092 Loss: 150.284 +12800/69092 Loss: 151.873 +16000/69092 Loss: 150.691 diff --git a/OAR.2073647.stderr b/OAR.2073647.stderr new file mode 100644 index 0000000000000000000000000000000000000000..768d34c20f7db93ff5f20685260f859f72fc0e77 --- /dev/null +++ b/OAR.2073647.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 17:10:05] Job 2073647 KILLED ## diff --git a/OAR.2073647.stdout b/OAR.2073647.stdout new file mode 100644 index 0000000000000000000000000000000000000000..0c79a03968ca8afb550c8655dfcbf10854b3a8ea --- /dev/null +++ b/OAR.2073647.stdout @@ -0,0 +1,1285 @@ +Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 728)' +0/69092 Loss: 108.722 +12800/69092 Loss: 111.769 +25600/69092 Loss: 111.041 +38400/69092 Loss: 110.182 +51200/69092 Loss: 111.193 +64000/69092 Loss: 111.485 +Training time 0:12:50.917397 +Epoch: 1 Average loss: 111.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 729) +0/69092 Loss: 118.472 +12800/69092 Loss: 111.021 +25600/69092 Loss: 110.994 +38400/69092 Loss: 110.750 +51200/69092 Loss: 110.677 +64000/69092 Loss: 111.111 +Training time 0:09:42.548435 +Epoch: 2 Average loss: 111.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 730) +0/69092 Loss: 111.381 +12800/69092 Loss: 110.644 +25600/69092 Loss: 110.944 +38400/69092 Loss: 110.808 +51200/69092 Loss: 111.205 +64000/69092 Loss: 111.103 +Training time 0:09:11.095322 +Epoch: 3 Average loss: 111.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 731) +0/69092 Loss: 114.332 +12800/69092 Loss: 111.023 +25600/69092 Loss: 111.035 +38400/69092 Loss: 110.424 +51200/69092 Loss: 111.363 +64000/69092 Loss: 111.774 +Training time 0:08:52.508478 +Epoch: 4 Average loss: 111.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 732) +0/69092 Loss: 119.026 +12800/69092 Loss: 110.528 +25600/69092 Loss: 111.693 +38400/69092 Loss: 110.988 +51200/69092 Loss: 110.733 +64000/69092 Loss: 110.715 +Training time 0:09:21.937621 +Epoch: 5 Average loss: 110.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 733) +0/69092 Loss: 108.146 +12800/69092 Loss: 111.403 +25600/69092 Loss: 111.106 +38400/69092 Loss: 110.541 +51200/69092 Loss: 111.245 +64000/69092 Loss: 111.007 +Training time 0:09:30.392595 +Epoch: 6 Average loss: 111.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 734) +0/69092 Loss: 113.794 +12800/69092 Loss: 110.684 +25600/69092 Loss: 110.569 +38400/69092 Loss: 110.473 +51200/69092 Loss: 111.011 +64000/69092 Loss: 111.652 +Training time 0:09:35.919293 +Epoch: 7 Average loss: 110.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 735) +0/69092 Loss: 115.122 +12800/69092 Loss: 111.179 +25600/69092 Loss: 110.384 +38400/69092 Loss: 110.799 +51200/69092 Loss: 111.416 +64000/69092 Loss: 111.023 +Training time 0:09:27.262362 +Epoch: 8 Average loss: 111.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 736) +0/69092 Loss: 115.438 +12800/69092 Loss: 110.856 +25600/69092 Loss: 110.571 +38400/69092 Loss: 111.065 +51200/69092 Loss: 110.808 +64000/69092 Loss: 111.537 +Training time 0:09:14.635852 +Epoch: 9 Average loss: 111.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 737) +0/69092 Loss: 116.129 +12800/69092 Loss: 110.795 +25600/69092 Loss: 112.093 +38400/69092 Loss: 110.329 +51200/69092 Loss: 110.786 +64000/69092 Loss: 110.971 +Training time 0:09:33.102811 +Epoch: 10 Average loss: 111.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 738) +0/69092 Loss: 105.028 +12800/69092 Loss: 110.760 +25600/69092 Loss: 110.789 +38400/69092 Loss: 111.709 +51200/69092 Loss: 111.264 +64000/69092 Loss: 110.362 +Training time 0:09:31.890882 +Epoch: 11 Average loss: 110.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 739) +0/69092 Loss: 108.533 +12800/69092 Loss: 111.041 +25600/69092 Loss: 111.805 +38400/69092 Loss: 110.619 +51200/69092 Loss: 111.334 +64000/69092 Loss: 110.778 +Training time 0:09:30.715261 +Epoch: 12 Average loss: 111.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 740) +0/69092 Loss: 108.909 +12800/69092 Loss: 110.857 +25600/69092 Loss: 110.783 +38400/69092 Loss: 111.424 +51200/69092 Loss: 111.517 +64000/69092 Loss: 110.597 +Training time 0:09:28.943902 +Epoch: 13 Average loss: 111.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 741) +0/69092 Loss: 108.396 +12800/69092 Loss: 110.911 +25600/69092 Loss: 111.253 +38400/69092 Loss: 110.931 +51200/69092 Loss: 110.386 +64000/69092 Loss: 110.619 +Training time 0:09:27.970261 +Epoch: 14 Average loss: 110.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 742) +0/69092 Loss: 111.882 +12800/69092 Loss: 111.296 +25600/69092 Loss: 110.975 +38400/69092 Loss: 111.392 +51200/69092 Loss: 110.892 +64000/69092 Loss: 110.304 +Training time 0:09:16.109476 +Epoch: 15 Average loss: 111.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 743) +0/69092 Loss: 110.869 +12800/69092 Loss: 110.965 +25600/69092 Loss: 110.654 +38400/69092 Loss: 111.196 +51200/69092 Loss: 110.621 +64000/69092 Loss: 111.541 +Training time 0:09:39.838887 +Epoch: 16 Average loss: 110.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 744) +0/69092 Loss: 112.494 +12800/69092 Loss: 111.245 +25600/69092 Loss: 110.699 +38400/69092 Loss: 110.605 +51200/69092 Loss: 110.514 +64000/69092 Loss: 111.295 +Training time 0:09:20.638673 +Epoch: 17 Average loss: 110.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 745) +0/69092 Loss: 109.675 +12800/69092 Loss: 111.226 +25600/69092 Loss: 110.258 +38400/69092 Loss: 111.344 +51200/69092 Loss: 111.517 +64000/69092 Loss: 110.551 +Training time 0:09:26.955377 +Epoch: 18 Average loss: 110.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 746) +0/69092 Loss: 108.544 +12800/69092 Loss: 111.181 +25600/69092 Loss: 111.452 +38400/69092 Loss: 111.120 +51200/69092 Loss: 110.681 +64000/69092 Loss: 110.614 +Training time 0:09:29.038946 +Epoch: 19 Average loss: 111.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 747) +0/69092 Loss: 114.664 +12800/69092 Loss: 110.344 +25600/69092 Loss: 111.641 +38400/69092 Loss: 111.159 +51200/69092 Loss: 110.458 +64000/69092 Loss: 110.285 +Training time 0:09:22.146378 +Epoch: 20 Average loss: 110.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 748) +0/69092 Loss: 107.660 +12800/69092 Loss: 110.671 +25600/69092 Loss: 110.731 +38400/69092 Loss: 111.661 +51200/69092 Loss: 110.905 +64000/69092 Loss: 111.217 +Training time 0:09:23.430340 +Epoch: 21 Average loss: 110.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 749) +0/69092 Loss: 106.079 +12800/69092 Loss: 110.776 +25600/69092 Loss: 111.176 +38400/69092 Loss: 110.900 +51200/69092 Loss: 110.411 +64000/69092 Loss: 111.377 +Training time 0:09:26.846976 +Epoch: 22 Average loss: 110.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 750) +0/69092 Loss: 114.890 +12800/69092 Loss: 110.829 +25600/69092 Loss: 110.961 +38400/69092 Loss: 109.853 +51200/69092 Loss: 111.639 +64000/69092 Loss: 110.591 +Training time 0:09:32.735858 +Epoch: 23 Average loss: 110.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 751) +0/69092 Loss: 113.187 +12800/69092 Loss: 110.524 +25600/69092 Loss: 110.147 +38400/69092 Loss: 111.201 +51200/69092 Loss: 111.177 +64000/69092 Loss: 111.199 +Training time 0:09:31.917799 +Epoch: 24 Average loss: 110.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 752) +0/69092 Loss: 110.364 +12800/69092 Loss: 111.024 +25600/69092 Loss: 112.059 +38400/69092 Loss: 110.908 +51200/69092 Loss: 110.672 +64000/69092 Loss: 110.566 +Training time 0:09:21.939992 +Epoch: 25 Average loss: 111.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 753) +0/69092 Loss: 109.060 +12800/69092 Loss: 111.556 +25600/69092 Loss: 110.863 +38400/69092 Loss: 110.807 +51200/69092 Loss: 110.126 +64000/69092 Loss: 111.303 +Training time 0:09:38.005277 +Epoch: 26 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 754) +0/69092 Loss: 103.543 +12800/69092 Loss: 110.507 +25600/69092 Loss: 111.684 +38400/69092 Loss: 111.196 +51200/69092 Loss: 110.785 +64000/69092 Loss: 110.943 +Training time 0:09:21.809287 +Epoch: 27 Average loss: 111.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 755) +0/69092 Loss: 114.147 +12800/69092 Loss: 110.551 +25600/69092 Loss: 111.071 +38400/69092 Loss: 111.689 +51200/69092 Loss: 110.300 +64000/69092 Loss: 110.318 +Training time 0:09:26.235358 +Epoch: 28 Average loss: 110.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 756) +0/69092 Loss: 112.000 +12800/69092 Loss: 111.224 +25600/69092 Loss: 112.045 +38400/69092 Loss: 110.952 +51200/69092 Loss: 110.337 +64000/69092 Loss: 110.128 +Training time 0:09:22.257001 +Epoch: 29 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 757) +0/69092 Loss: 108.528 +12800/69092 Loss: 111.069 +25600/69092 Loss: 110.553 +38400/69092 Loss: 111.450 +51200/69092 Loss: 111.261 +64000/69092 Loss: 110.485 +Training time 0:09:16.983149 +Epoch: 30 Average loss: 110.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 758) +0/69092 Loss: 115.859 +12800/69092 Loss: 111.616 +25600/69092 Loss: 110.740 +38400/69092 Loss: 110.353 +51200/69092 Loss: 111.360 +64000/69092 Loss: 110.719 +Training time 0:09:54.731527 +Epoch: 31 Average loss: 110.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 759) +0/69092 Loss: 111.381 +12800/69092 Loss: 110.646 +25600/69092 Loss: 110.058 +38400/69092 Loss: 110.738 +51200/69092 Loss: 111.080 +64000/69092 Loss: 111.261 +Training time 0:09:16.553942 +Epoch: 32 Average loss: 110.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 760) +0/69092 Loss: 110.746 +12800/69092 Loss: 111.595 +25600/69092 Loss: 110.628 +38400/69092 Loss: 111.136 +51200/69092 Loss: 111.155 +64000/69092 Loss: 110.105 +Training time 0:09:05.338645 +Epoch: 33 Average loss: 110.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 761) +0/69092 Loss: 113.203 +12800/69092 Loss: 111.038 +25600/69092 Loss: 111.675 +38400/69092 Loss: 110.887 +51200/69092 Loss: 110.927 +64000/69092 Loss: 110.654 +Training time 0:09:34.197636 +Epoch: 34 Average loss: 111.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 762) +0/69092 Loss: 110.218 +12800/69092 Loss: 111.339 +25600/69092 Loss: 111.423 +38400/69092 Loss: 110.442 +51200/69092 Loss: 109.938 +64000/69092 Loss: 111.407 +Training time 0:09:03.749859 +Epoch: 35 Average loss: 110.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 763) +0/69092 Loss: 106.947 +12800/69092 Loss: 111.473 +25600/69092 Loss: 110.609 +38400/69092 Loss: 111.658 +51200/69092 Loss: 111.304 +64000/69092 Loss: 110.435 +Training time 0:09:20.644634 +Epoch: 36 Average loss: 111.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 764) +0/69092 Loss: 108.108 +12800/69092 Loss: 111.297 +25600/69092 Loss: 110.830 +38400/69092 Loss: 110.317 +51200/69092 Loss: 110.617 +64000/69092 Loss: 110.754 +Training time 0:09:15.332540 +Epoch: 37 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 765) +0/69092 Loss: 110.004 +12800/69092 Loss: 110.830 +25600/69092 Loss: 110.717 +38400/69092 Loss: 110.325 +51200/69092 Loss: 110.496 +64000/69092 Loss: 111.425 +Training time 0:09:25.173369 +Epoch: 38 Average loss: 110.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 766) +0/69092 Loss: 105.573 +12800/69092 Loss: 110.753 +25600/69092 Loss: 111.396 +38400/69092 Loss: 110.258 +51200/69092 Loss: 111.492 +64000/69092 Loss: 111.294 +Training time 0:09:41.659884 +Epoch: 39 Average loss: 110.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 767) +0/69092 Loss: 108.419 +12800/69092 Loss: 110.709 +25600/69092 Loss: 111.199 +38400/69092 Loss: 110.095 +51200/69092 Loss: 111.092 +64000/69092 Loss: 110.901 +Training time 0:09:14.703659 +Epoch: 40 Average loss: 110.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 768) +0/69092 Loss: 113.637 +12800/69092 Loss: 110.347 +25600/69092 Loss: 110.965 +38400/69092 Loss: 111.031 +51200/69092 Loss: 110.508 +64000/69092 Loss: 111.368 +Training time 0:09:21.885794 +Epoch: 41 Average loss: 110.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 769) +0/69092 Loss: 105.631 +12800/69092 Loss: 110.383 +25600/69092 Loss: 110.511 +38400/69092 Loss: 110.422 +51200/69092 Loss: 112.063 +64000/69092 Loss: 111.508 +Training time 0:09:24.024432 +Epoch: 42 Average loss: 110.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 770) +0/69092 Loss: 115.095 +12800/69092 Loss: 110.708 +25600/69092 Loss: 110.450 +38400/69092 Loss: 111.719 +51200/69092 Loss: 109.691 +64000/69092 Loss: 110.597 +Training time 0:09:23.937265 +Epoch: 43 Average loss: 110.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 771) +0/69092 Loss: 107.393 +12800/69092 Loss: 110.297 +25600/69092 Loss: 111.521 +38400/69092 Loss: 110.714 +51200/69092 Loss: 110.861 +64000/69092 Loss: 110.477 +Training time 0:10:23.365242 +Epoch: 44 Average loss: 110.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 772) +0/69092 Loss: 109.554 +12800/69092 Loss: 110.261 +25600/69092 Loss: 111.825 +38400/69092 Loss: 109.385 +51200/69092 Loss: 111.255 +64000/69092 Loss: 111.497 +Training time 0:09:07.169341 +Epoch: 45 Average loss: 110.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 773) +0/69092 Loss: 116.077 +12800/69092 Loss: 110.554 +25600/69092 Loss: 110.277 +38400/69092 Loss: 110.429 +51200/69092 Loss: 111.507 +64000/69092 Loss: 110.480 +Training time 0:09:33.652198 +Epoch: 46 Average loss: 110.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 774) +0/69092 Loss: 109.116 +12800/69092 Loss: 110.612 +25600/69092 Loss: 111.120 +38400/69092 Loss: 110.521 +51200/69092 Loss: 111.198 +64000/69092 Loss: 110.803 +Training time 0:09:23.694512 +Epoch: 47 Average loss: 110.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 775) +0/69092 Loss: 110.395 +12800/69092 Loss: 110.039 +25600/69092 Loss: 110.418 +38400/69092 Loss: 111.108 +51200/69092 Loss: 110.654 +64000/69092 Loss: 112.227 +Training time 0:09:29.653805 +Epoch: 48 Average loss: 110.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 776) +0/69092 Loss: 108.087 +12800/69092 Loss: 110.537 +25600/69092 Loss: 110.493 +38400/69092 Loss: 111.042 +51200/69092 Loss: 110.571 +64000/69092 Loss: 110.815 +Training time 0:09:27.424934 +Epoch: 49 Average loss: 110.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 777) +0/69092 Loss: 109.888 +12800/69092 Loss: 110.678 +25600/69092 Loss: 111.083 +38400/69092 Loss: 111.059 +51200/69092 Loss: 109.860 +64000/69092 Loss: 111.425 +Training time 0:08:54.410094 +Epoch: 50 Average loss: 110.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 778) +0/69092 Loss: 112.188 +12800/69092 Loss: 111.156 +25600/69092 Loss: 111.841 +38400/69092 Loss: 110.080 +51200/69092 Loss: 110.892 +64000/69092 Loss: 110.658 +Training time 0:09:35.232762 +Epoch: 51 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 779) +0/69092 Loss: 103.264 +12800/69092 Loss: 111.536 +25600/69092 Loss: 109.918 +38400/69092 Loss: 110.863 +51200/69092 Loss: 110.727 +64000/69092 Loss: 111.331 +Training time 0:08:47.956574 +Epoch: 52 Average loss: 110.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 780) +0/69092 Loss: 113.592 +12800/69092 Loss: 110.269 +25600/69092 Loss: 111.601 +38400/69092 Loss: 110.717 +51200/69092 Loss: 110.301 +64000/69092 Loss: 111.271 +Training time 0:09:21.444065 +Epoch: 53 Average loss: 110.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 781) +0/69092 Loss: 108.693 +12800/69092 Loss: 110.228 +25600/69092 Loss: 110.811 +38400/69092 Loss: 110.954 +51200/69092 Loss: 110.510 +64000/69092 Loss: 111.624 +Training time 0:09:07.410746 +Epoch: 54 Average loss: 110.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 782) +0/69092 Loss: 103.967 +12800/69092 Loss: 110.694 +25600/69092 Loss: 111.077 +38400/69092 Loss: 110.095 +51200/69092 Loss: 110.875 +64000/69092 Loss: 111.014 +Training time 0:09:14.922046 +Epoch: 55 Average loss: 110.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 783) +0/69092 Loss: 111.120 +12800/69092 Loss: 110.731 +25600/69092 Loss: 111.300 +38400/69092 Loss: 111.100 +51200/69092 Loss: 110.527 +64000/69092 Loss: 110.682 +Training time 0:09:28.395634 +Epoch: 56 Average loss: 110.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 784) +0/69092 Loss: 107.371 +12800/69092 Loss: 109.852 +25600/69092 Loss: 110.899 +38400/69092 Loss: 110.503 +51200/69092 Loss: 110.930 +64000/69092 Loss: 112.002 +Training time 0:09:13.943243 +Epoch: 57 Average loss: 110.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 785) +0/69092 Loss: 114.718 +12800/69092 Loss: 110.516 +25600/69092 Loss: 110.660 +38400/69092 Loss: 110.440 +51200/69092 Loss: 110.680 +64000/69092 Loss: 111.125 +Training time 0:09:01.761234 +Epoch: 58 Average loss: 110.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 786) +0/69092 Loss: 107.819 +12800/69092 Loss: 110.622 +25600/69092 Loss: 110.877 +38400/69092 Loss: 110.857 +51200/69092 Loss: 111.334 +64000/69092 Loss: 110.141 +Training time 0:09:28.778046 +Epoch: 59 Average loss: 110.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 787) +0/69092 Loss: 106.999 +12800/69092 Loss: 110.307 +25600/69092 Loss: 111.129 +38400/69092 Loss: 110.174 +51200/69092 Loss: 110.798 +64000/69092 Loss: 111.206 +Training time 0:09:31.579343 +Epoch: 60 Average loss: 110.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 788) +0/69092 Loss: 106.323 +12800/69092 Loss: 110.373 +25600/69092 Loss: 111.004 +38400/69092 Loss: 110.273 +51200/69092 Loss: 110.979 +64000/69092 Loss: 110.907 +Training time 0:09:35.626419 +Epoch: 61 Average loss: 110.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 789) +0/69092 Loss: 116.201 +12800/69092 Loss: 110.666 +25600/69092 Loss: 111.164 +38400/69092 Loss: 110.355 +51200/69092 Loss: 110.315 +64000/69092 Loss: 111.331 +Training time 0:09:14.447993 +Epoch: 62 Average loss: 110.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 790) +0/69092 Loss: 113.965 +12800/69092 Loss: 110.962 +25600/69092 Loss: 110.917 +38400/69092 Loss: 110.439 +51200/69092 Loss: 111.038 +64000/69092 Loss: 111.206 +Training time 0:09:43.207240 +Epoch: 63 Average loss: 110.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 791) +0/69092 Loss: 109.430 +12800/69092 Loss: 111.008 +25600/69092 Loss: 110.273 +38400/69092 Loss: 110.829 +51200/69092 Loss: 111.109 +64000/69092 Loss: 111.296 +Training time 0:09:07.940413 +Epoch: 64 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 792) +0/69092 Loss: 109.388 +12800/69092 Loss: 110.486 +25600/69092 Loss: 111.653 +38400/69092 Loss: 110.553 +51200/69092 Loss: 110.533 +64000/69092 Loss: 111.202 +Training time 0:09:09.833629 +Epoch: 65 Average loss: 110.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 793) +0/69092 Loss: 104.720 +12800/69092 Loss: 110.922 +25600/69092 Loss: 110.895 +38400/69092 Loss: 111.097 +51200/69092 Loss: 110.356 +64000/69092 Loss: 110.858 +Training time 0:09:24.944779 +Epoch: 66 Average loss: 110.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 794) +0/69092 Loss: 107.669 +12800/69092 Loss: 110.905 +25600/69092 Loss: 111.141 +38400/69092 Loss: 110.614 +51200/69092 Loss: 110.986 +64000/69092 Loss: 110.421 +Training time 0:09:16.543716 +Epoch: 67 Average loss: 110.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 795) +0/69092 Loss: 113.192 +12800/69092 Loss: 110.770 +25600/69092 Loss: 110.409 +38400/69092 Loss: 110.689 +51200/69092 Loss: 111.417 +64000/69092 Loss: 111.049 +Training time 0:09:32.051056 +Epoch: 68 Average loss: 110.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 796) +0/69092 Loss: 112.199 +12800/69092 Loss: 110.057 +25600/69092 Loss: 111.591 +38400/69092 Loss: 111.081 +51200/69092 Loss: 109.164 +64000/69092 Loss: 111.199 +Training time 0:09:45.081340 +Epoch: 69 Average loss: 110.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 797) +0/69092 Loss: 106.831 +12800/69092 Loss: 110.352 +25600/69092 Loss: 110.350 +38400/69092 Loss: 110.250 +51200/69092 Loss: 111.470 +64000/69092 Loss: 110.668 +Training time 0:09:14.544888 +Epoch: 70 Average loss: 110.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 798) +0/69092 Loss: 113.878 +12800/69092 Loss: 110.857 +25600/69092 Loss: 110.477 +38400/69092 Loss: 110.961 +51200/69092 Loss: 111.401 +64000/69092 Loss: 110.299 +Training time 0:09:13.631755 +Epoch: 71 Average loss: 110.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 799) +0/69092 Loss: 110.599 +12800/69092 Loss: 111.133 +25600/69092 Loss: 110.335 +38400/69092 Loss: 110.928 +51200/69092 Loss: 110.199 +64000/69092 Loss: 110.929 +Training time 0:09:08.233061 +Epoch: 72 Average loss: 110.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 800) +0/69092 Loss: 111.680 +12800/69092 Loss: 110.415 +25600/69092 Loss: 109.988 +38400/69092 Loss: 111.468 +51200/69092 Loss: 111.468 +64000/69092 Loss: 110.725 +Training time 0:09:11.325134 +Epoch: 73 Average loss: 110.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 801) +0/69092 Loss: 107.396 +12800/69092 Loss: 110.507 +25600/69092 Loss: 109.940 +38400/69092 Loss: 111.694 +51200/69092 Loss: 110.797 +64000/69092 Loss: 110.296 +Training time 0:09:29.676659 +Epoch: 74 Average loss: 110.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 802) +0/69092 Loss: 111.676 +12800/69092 Loss: 110.461 +25600/69092 Loss: 110.492 +38400/69092 Loss: 111.101 +51200/69092 Loss: 110.632 +64000/69092 Loss: 110.672 +Training time 0:09:05.906074 +Epoch: 75 Average loss: 110.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 803) +0/69092 Loss: 112.054 +12800/69092 Loss: 110.984 +25600/69092 Loss: 110.414 +38400/69092 Loss: 110.621 +51200/69092 Loss: 110.603 +64000/69092 Loss: 111.128 +Training time 0:09:32.638334 +Epoch: 76 Average loss: 110.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 804) +0/69092 Loss: 106.933 +12800/69092 Loss: 109.913 +25600/69092 Loss: 111.064 +38400/69092 Loss: 110.595 +51200/69092 Loss: 110.109 +64000/69092 Loss: 111.180 +Training time 0:09:42.792656 +Epoch: 77 Average loss: 110.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 805) +0/69092 Loss: 110.726 +12800/69092 Loss: 111.207 +25600/69092 Loss: 110.603 +38400/69092 Loss: 111.033 +51200/69092 Loss: 110.874 +64000/69092 Loss: 109.952 +Training time 0:09:39.582453 +Epoch: 78 Average loss: 110.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 806) +0/69092 Loss: 112.277 +12800/69092 Loss: 110.543 +25600/69092 Loss: 110.230 +38400/69092 Loss: 111.120 +51200/69092 Loss: 111.396 +64000/69092 Loss: 110.047 +Training time 0:09:15.718235 +Epoch: 79 Average loss: 110.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 807) +0/69092 Loss: 111.844 +12800/69092 Loss: 110.929 +25600/69092 Loss: 111.159 +38400/69092 Loss: 110.613 +51200/69092 Loss: 111.185 +64000/69092 Loss: 110.582 +Training time 0:09:11.576576 +Epoch: 80 Average loss: 110.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 808) +0/69092 Loss: 107.992 +12800/69092 Loss: 110.108 +25600/69092 Loss: 110.508 +38400/69092 Loss: 110.977 +51200/69092 Loss: 110.487 +64000/69092 Loss: 110.423 +Training time 0:09:21.274824 +Epoch: 81 Average loss: 110.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 809) +0/69092 Loss: 109.205 +12800/69092 Loss: 110.442 +25600/69092 Loss: 109.896 +38400/69092 Loss: 111.430 +51200/69092 Loss: 110.768 +64000/69092 Loss: 110.871 +Training time 0:09:42.119095 +Epoch: 82 Average loss: 110.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 810) +0/69092 Loss: 103.766 +12800/69092 Loss: 111.101 +25600/69092 Loss: 110.351 +38400/69092 Loss: 111.058 +51200/69092 Loss: 110.465 +64000/69092 Loss: 111.212 +Training time 0:09:09.753667 +Epoch: 83 Average loss: 110.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 811) +0/69092 Loss: 107.883 +12800/69092 Loss: 111.215 +25600/69092 Loss: 110.932 +38400/69092 Loss: 111.436 +51200/69092 Loss: 110.905 +64000/69092 Loss: 109.741 +Training time 0:09:40.094972 +Epoch: 84 Average loss: 110.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 812) +0/69092 Loss: 113.163 +12800/69092 Loss: 111.128 +25600/69092 Loss: 110.817 +38400/69092 Loss: 110.731 +51200/69092 Loss: 111.000 +64000/69092 Loss: 110.024 +Training time 0:09:20.497057 +Epoch: 85 Average loss: 110.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 813) +0/69092 Loss: 108.458 +12800/69092 Loss: 109.776 +25600/69092 Loss: 110.576 +38400/69092 Loss: 111.410 +51200/69092 Loss: 111.095 +64000/69092 Loss: 110.718 +Training time 0:09:12.810462 +Epoch: 86 Average loss: 110.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 814) +0/69092 Loss: 104.994 +12800/69092 Loss: 111.258 +25600/69092 Loss: 111.109 +38400/69092 Loss: 109.538 +51200/69092 Loss: 111.264 +64000/69092 Loss: 110.145 +Training time 0:09:00.101882 +Epoch: 87 Average loss: 110.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 815) +0/69092 Loss: 109.292 +12800/69092 Loss: 110.546 +25600/69092 Loss: 110.846 +38400/69092 Loss: 110.351 +51200/69092 Loss: 111.075 +64000/69092 Loss: 111.178 +Training time 0:09:31.204758 +Epoch: 88 Average loss: 110.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 816) +0/69092 Loss: 110.052 +12800/69092 Loss: 111.120 +25600/69092 Loss: 109.840 +38400/69092 Loss: 110.721 +51200/69092 Loss: 111.175 +64000/69092 Loss: 110.536 +Training time 0:08:57.774653 +Epoch: 89 Average loss: 110.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 817) +0/69092 Loss: 119.815 +12800/69092 Loss: 110.189 +25600/69092 Loss: 109.965 +38400/69092 Loss: 111.429 +51200/69092 Loss: 110.971 +64000/69092 Loss: 110.336 +Training time 0:09:29.941374 +Epoch: 90 Average loss: 110.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 818) +0/69092 Loss: 109.860 +12800/69092 Loss: 111.020 +25600/69092 Loss: 109.924 +38400/69092 Loss: 111.336 +51200/69092 Loss: 110.517 +64000/69092 Loss: 110.184 +Training time 0:09:24.364463 +Epoch: 91 Average loss: 110.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 819) +0/69092 Loss: 109.001 +12800/69092 Loss: 110.340 +25600/69092 Loss: 111.048 +38400/69092 Loss: 110.527 +51200/69092 Loss: 110.367 +64000/69092 Loss: 110.272 +Training time 0:08:57.566618 +Epoch: 92 Average loss: 110.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 820) +0/69092 Loss: 104.126 +12800/69092 Loss: 110.573 +25600/69092 Loss: 110.813 +38400/69092 Loss: 110.816 +51200/69092 Loss: 109.755 +64000/69092 Loss: 110.878 +Training time 0:09:03.412078 +Epoch: 93 Average loss: 110.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 821) +0/69092 Loss: 108.554 +12800/69092 Loss: 109.801 +25600/69092 Loss: 111.819 +38400/69092 Loss: 110.925 +51200/69092 Loss: 110.261 +64000/69092 Loss: 111.312 +Training time 0:09:31.002607 +Epoch: 94 Average loss: 110.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 822) +0/69092 Loss: 106.443 +12800/69092 Loss: 109.902 +25600/69092 Loss: 110.375 +38400/69092 Loss: 110.660 +51200/69092 Loss: 110.759 +64000/69092 Loss: 111.541 +Training time 0:09:18.002569 +Epoch: 95 Average loss: 110.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 823) +0/69092 Loss: 107.398 +12800/69092 Loss: 109.581 +25600/69092 Loss: 111.191 +38400/69092 Loss: 111.395 +51200/69092 Loss: 110.605 +64000/69092 Loss: 110.493 +Training time 0:09:28.393583 +Epoch: 96 Average loss: 110.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 824) +0/69092 Loss: 110.220 +12800/69092 Loss: 110.445 +25600/69092 Loss: 110.862 +38400/69092 Loss: 110.497 +51200/69092 Loss: 110.779 +64000/69092 Loss: 110.767 +Training time 0:09:33.528565 +Epoch: 97 Average loss: 110.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 825) +0/69092 Loss: 117.846 +12800/69092 Loss: 110.501 +25600/69092 Loss: 110.407 +38400/69092 Loss: 110.654 +51200/69092 Loss: 110.627 +64000/69092 Loss: 110.859 +Training time 0:09:20.117127 +Epoch: 98 Average loss: 110.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 826) +0/69092 Loss: 105.806 +12800/69092 Loss: 110.053 +25600/69092 Loss: 110.372 +38400/69092 Loss: 110.532 +51200/69092 Loss: 110.372 +64000/69092 Loss: 111.571 +Training time 0:08:40.701518 +Epoch: 99 Average loss: 110.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 827) +0/69092 Loss: 106.543 +12800/69092 Loss: 110.920 +25600/69092 Loss: 110.315 +38400/69092 Loss: 111.535 +51200/69092 Loss: 110.650 +64000/69092 Loss: 110.403 +Training time 0:09:14.096051 +Epoch: 100 Average loss: 110.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 828) +0/69092 Loss: 112.116 +12800/69092 Loss: 110.574 +25600/69092 Loss: 109.391 +38400/69092 Loss: 111.166 +51200/69092 Loss: 111.020 +64000/69092 Loss: 111.379 +Training time 0:09:44.293904 +Epoch: 101 Average loss: 110.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 829) +0/69092 Loss: 108.356 +12800/69092 Loss: 110.845 +25600/69092 Loss: 110.886 +38400/69092 Loss: 111.231 +51200/69092 Loss: 109.792 +64000/69092 Loss: 110.705 +Training time 0:09:43.141476 +Epoch: 102 Average loss: 110.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 830) +0/69092 Loss: 106.065 +12800/69092 Loss: 110.636 +25600/69092 Loss: 110.538 +38400/69092 Loss: 111.432 +51200/69092 Loss: 110.778 +64000/69092 Loss: 110.876 +Training time 0:09:10.919842 +Epoch: 103 Average loss: 110.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 831) +0/69092 Loss: 120.438 +12800/69092 Loss: 109.686 +25600/69092 Loss: 110.314 +38400/69092 Loss: 111.785 +51200/69092 Loss: 110.249 +64000/69092 Loss: 110.609 +Training time 0:09:27.853299 +Epoch: 104 Average loss: 110.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 832) +0/69092 Loss: 110.595 +12800/69092 Loss: 110.160 +25600/69092 Loss: 110.482 +38400/69092 Loss: 110.654 +51200/69092 Loss: 111.073 +64000/69092 Loss: 110.639 +Training time 0:09:27.059038 +Epoch: 105 Average loss: 110.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 833) +0/69092 Loss: 106.981 +12800/69092 Loss: 111.485 +25600/69092 Loss: 110.760 +38400/69092 Loss: 110.000 +51200/69092 Loss: 110.279 +64000/69092 Loss: 111.093 +Training time 0:09:25.152512 +Epoch: 106 Average loss: 110.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 834) +0/69092 Loss: 110.986 +12800/69092 Loss: 110.963 +25600/69092 Loss: 110.512 +38400/69092 Loss: 110.091 +51200/69092 Loss: 109.974 +64000/69092 Loss: 110.977 +Training time 0:08:44.454873 +Epoch: 107 Average loss: 110.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 835) +0/69092 Loss: 112.354 +12800/69092 Loss: 110.144 +25600/69092 Loss: 111.182 +38400/69092 Loss: 111.277 +51200/69092 Loss: 110.576 +64000/69092 Loss: 110.416 +Training time 0:08:47.514584 +Epoch: 108 Average loss: 110.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 836) +0/69092 Loss: 116.993 +12800/69092 Loss: 110.769 +25600/69092 Loss: 110.491 +38400/69092 Loss: 109.808 +51200/69092 Loss: 110.572 +64000/69092 Loss: 111.335 +Training time 0:09:38.156651 +Epoch: 109 Average loss: 110.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 837) +0/69092 Loss: 108.175 +12800/69092 Loss: 110.609 +25600/69092 Loss: 110.064 +38400/69092 Loss: 110.026 +51200/69092 Loss: 111.051 +64000/69092 Loss: 110.888 +Training time 0:09:08.347423 +Epoch: 110 Average loss: 110.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 838) +0/69092 Loss: 107.197 +12800/69092 Loss: 110.511 +25600/69092 Loss: 111.262 +38400/69092 Loss: 110.479 +51200/69092 Loss: 110.725 +64000/69092 Loss: 110.455 +Training time 0:09:23.611929 +Epoch: 111 Average loss: 110.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 839) +0/69092 Loss: 116.361 +12800/69092 Loss: 110.514 +25600/69092 Loss: 109.877 +38400/69092 Loss: 110.808 +51200/69092 Loss: 109.813 +64000/69092 Loss: 110.522 +Training time 0:09:12.732763 +Epoch: 112 Average loss: 110.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 840) +0/69092 Loss: 105.930 +12800/69092 Loss: 111.152 +25600/69092 Loss: 110.327 +38400/69092 Loss: 110.064 +51200/69092 Loss: 110.287 +64000/69092 Loss: 110.793 +Training time 0:09:22.571833 +Epoch: 113 Average loss: 110.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 841) +0/69092 Loss: 116.128 +12800/69092 Loss: 109.647 +25600/69092 Loss: 110.083 +38400/69092 Loss: 111.086 +51200/69092 Loss: 111.549 +64000/69092 Loss: 110.421 +Training time 0:09:23.405122 +Epoch: 114 Average loss: 110.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 842) +0/69092 Loss: 106.056 +12800/69092 Loss: 110.710 +25600/69092 Loss: 111.498 +38400/69092 Loss: 110.963 +51200/69092 Loss: 110.159 +64000/69092 Loss: 110.144 +Training time 0:09:06.206294 +Epoch: 115 Average loss: 110.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 843) +0/69092 Loss: 111.178 +12800/69092 Loss: 110.435 +25600/69092 Loss: 110.752 +38400/69092 Loss: 110.418 +51200/69092 Loss: 110.192 +64000/69092 Loss: 110.591 +Training time 0:09:39.852707 +Epoch: 116 Average loss: 110.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 844) +0/69092 Loss: 112.482 +12800/69092 Loss: 110.511 +25600/69092 Loss: 110.777 +38400/69092 Loss: 110.404 +51200/69092 Loss: 110.699 +64000/69092 Loss: 110.528 +Training time 0:09:32.608957 +Epoch: 117 Average loss: 110.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 845) +0/69092 Loss: 110.397 +12800/69092 Loss: 111.069 +25600/69092 Loss: 111.563 +38400/69092 Loss: 109.983 +51200/69092 Loss: 109.842 +64000/69092 Loss: 111.304 +Training time 0:09:41.847353 +Epoch: 118 Average loss: 110.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 846) +0/69092 Loss: 111.541 +12800/69092 Loss: 109.897 +25600/69092 Loss: 111.014 +38400/69092 Loss: 110.863 +51200/69092 Loss: 110.090 +64000/69092 Loss: 110.441 +Training time 0:09:28.264368 +Epoch: 119 Average loss: 110.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 847) +0/69092 Loss: 111.272 +12800/69092 Loss: 110.933 +25600/69092 Loss: 110.636 +38400/69092 Loss: 110.295 +51200/69092 Loss: 110.469 +64000/69092 Loss: 110.508 +Training time 0:08:58.640254 +Epoch: 120 Average loss: 110.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 848) +0/69092 Loss: 112.465 +12800/69092 Loss: 109.964 +25600/69092 Loss: 110.024 +38400/69092 Loss: 110.330 +51200/69092 Loss: 110.639 +64000/69092 Loss: 111.438 +Training time 0:09:21.596255 +Epoch: 121 Average loss: 110.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 849) +0/69092 Loss: 118.270 +12800/69092 Loss: 111.282 +25600/69092 Loss: 110.149 +38400/69092 Loss: 109.954 +51200/69092 Loss: 109.958 +64000/69092 Loss: 111.181 +Training time 0:09:16.289846 +Epoch: 122 Average loss: 110.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 850) +0/69092 Loss: 110.169 +12800/69092 Loss: 111.006 +25600/69092 Loss: 110.165 +38400/69092 Loss: 110.450 +51200/69092 Loss: 110.775 +64000/69092 Loss: 110.115 +Training time 0:09:26.057855 +Epoch: 123 Average loss: 110.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 851) +0/69092 Loss: 108.889 +12800/69092 Loss: 110.592 +25600/69092 Loss: 110.551 +38400/69092 Loss: 110.836 +51200/69092 Loss: 110.575 +64000/69092 Loss: 110.835 +Training time 0:09:10.406542 +Epoch: 124 Average loss: 110.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 852) +0/69092 Loss: 111.799 +12800/69092 Loss: 110.133 +25600/69092 Loss: 109.486 +38400/69092 Loss: 110.276 +51200/69092 Loss: 110.870 +64000/69092 Loss: 111.259 +Training time 0:09:11.313073 +Epoch: 125 Average loss: 110.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 853) +0/69092 Loss: 111.487 +12800/69092 Loss: 110.530 +25600/69092 Loss: 110.150 +38400/69092 Loss: 109.724 +51200/69092 Loss: 110.238 +64000/69092 Loss: 110.872 +Training time 0:09:11.117149 +Epoch: 126 Average loss: 110.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 854) +0/69092 Loss: 123.888 +12800/69092 Loss: 110.554 +25600/69092 Loss: 110.668 +38400/69092 Loss: 111.352 +51200/69092 Loss: 109.735 +64000/69092 Loss: 110.383 +Training time 0:08:58.827179 +Epoch: 127 Average loss: 110.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 855) +0/69092 Loss: 108.684 +12800/69092 Loss: 110.252 +25600/69092 Loss: 110.477 +38400/69092 Loss: 110.820 +51200/69092 Loss: 110.424 +64000/69092 Loss: 110.678 +Training time 0:09:03.152078 +Epoch: 128 Average loss: 110.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 856) +0/69092 Loss: 112.977 +12800/69092 Loss: 110.040 +25600/69092 Loss: 110.962 +38400/69092 Loss: 109.784 +51200/69092 Loss: 110.822 +64000/69092 Loss: 110.423 +Training time 0:09:25.768023 +Epoch: 129 Average loss: 110.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 857) +0/69092 Loss: 113.245 +12800/69092 Loss: 111.059 +25600/69092 Loss: 109.962 +38400/69092 Loss: 110.863 +51200/69092 Loss: 110.278 +64000/69092 Loss: 110.042 +Training time 0:08:57.985347 +Epoch: 130 Average loss: 110.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 858) +0/69092 Loss: 114.785 +12800/69092 Loss: 110.276 +25600/69092 Loss: 110.468 +38400/69092 Loss: 110.324 +51200/69092 Loss: 110.425 +64000/69092 Loss: 110.479 +Training time 0:08:55.078107 +Epoch: 131 Average loss: 110.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 859) +0/69092 Loss: 114.275 +12800/69092 Loss: 111.197 +25600/69092 Loss: 110.283 +38400/69092 Loss: 110.909 +51200/69092 Loss: 110.412 +64000/69092 Loss: 110.283 +Training time 0:09:26.989719 +Epoch: 132 Average loss: 110.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 860) +0/69092 Loss: 109.824 +12800/69092 Loss: 109.870 +25600/69092 Loss: 110.879 +38400/69092 Loss: 110.591 +51200/69092 Loss: 110.901 +64000/69092 Loss: 109.260 +Training time 0:09:37.785464 +Epoch: 133 Average loss: 110.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 861) +0/69092 Loss: 112.696 +12800/69092 Loss: 111.167 +25600/69092 Loss: 109.916 +38400/69092 Loss: 110.680 +51200/69092 Loss: 110.332 +64000/69092 Loss: 109.972 +Training time 0:09:31.872476 +Epoch: 134 Average loss: 110.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 862) +0/69092 Loss: 107.555 +12800/69092 Loss: 110.143 +25600/69092 Loss: 110.142 +38400/69092 Loss: 111.046 +51200/69092 Loss: 110.600 +64000/69092 Loss: 110.539 +Training time 0:09:17.019553 +Epoch: 135 Average loss: 110.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 863) +0/69092 Loss: 112.538 +12800/69092 Loss: 109.582 +25600/69092 Loss: 110.707 +38400/69092 Loss: 109.935 +51200/69092 Loss: 110.932 +64000/69092 Loss: 110.877 +Training time 0:09:17.472150 +Epoch: 136 Average loss: 110.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 864) +0/69092 Loss: 105.532 +12800/69092 Loss: 110.992 +25600/69092 Loss: 110.579 +38400/69092 Loss: 110.271 +51200/69092 Loss: 110.040 +64000/69092 Loss: 111.116 +Training time 0:09:03.335520 +Epoch: 137 Average loss: 110.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 865) +0/69092 Loss: 109.361 +12800/69092 Loss: 110.865 +25600/69092 Loss: 110.507 +38400/69092 Loss: 109.830 +51200/69092 Loss: 110.366 diff --git a/OAR.2073648.stderr b/OAR.2073648.stderr new file mode 100644 index 0000000000000000000000000000000000000000..8c2b0a227200abd981a210161746b6cb17454d75 --- /dev/null +++ b/OAR.2073648.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 17:10:05] Job 2073648 KILLED ## diff --git a/OAR.2073648.stdout b/OAR.2073648.stdout new file mode 100644 index 0000000000000000000000000000000000000000..dcc0f46e71f9c8564abbc5f32592f1e4f170c9d5 --- /dev/null +++ b/OAR.2073648.stdout @@ -0,0 +1,3334 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 929)' +0/69092 Loss: 100.849 +3200/69092 Loss: 110.892 +6400/69092 Loss: 110.727 +9600/69092 Loss: 109.908 +12800/69092 Loss: 113.204 +16000/69092 Loss: 109.874 +19200/69092 Loss: 108.876 +22400/69092 Loss: 109.982 +25600/69092 Loss: 110.812 +28800/69092 Loss: 110.252 +32000/69092 Loss: 110.938 +35200/69092 Loss: 110.095 +38400/69092 Loss: 109.440 +41600/69092 Loss: 109.325 +44800/69092 Loss: 110.153 +48000/69092 Loss: 110.963 +51200/69092 Loss: 110.980 +54400/69092 Loss: 111.173 +57600/69092 Loss: 110.656 +60800/69092 Loss: 107.658 +64000/69092 Loss: 110.596 +67200/69092 Loss: 111.186 +Training time 0:12:41.329477 +Epoch: 1 Average loss: 110.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 930) +0/69092 Loss: 116.485 +3200/69092 Loss: 109.978 +6400/69092 Loss: 110.684 +9600/69092 Loss: 109.545 +12800/69092 Loss: 108.703 +16000/69092 Loss: 110.500 +19200/69092 Loss: 109.581 +22400/69092 Loss: 111.463 +25600/69092 Loss: 110.190 +28800/69092 Loss: 110.460 +32000/69092 Loss: 109.763 +35200/69092 Loss: 112.021 +38400/69092 Loss: 110.517 +41600/69092 Loss: 111.780 +44800/69092 Loss: 110.398 +48000/69092 Loss: 110.330 +51200/69092 Loss: 111.126 +54400/69092 Loss: 108.190 +57600/69092 Loss: 109.580 +60800/69092 Loss: 109.197 +64000/69092 Loss: 107.998 +67200/69092 Loss: 109.014 +Training time 0:10:11.661029 +Epoch: 2 Average loss: 110.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 931) +0/69092 Loss: 104.328 +3200/69092 Loss: 109.268 +6400/69092 Loss: 109.760 +9600/69092 Loss: 110.103 +12800/69092 Loss: 110.188 +16000/69092 Loss: 108.597 +19200/69092 Loss: 110.113 +22400/69092 Loss: 108.816 +25600/69092 Loss: 109.361 +28800/69092 Loss: 109.889 +32000/69092 Loss: 111.162 +35200/69092 Loss: 108.928 +38400/69092 Loss: 112.430 +41600/69092 Loss: 110.559 +44800/69092 Loss: 110.144 +48000/69092 Loss: 111.235 +51200/69092 Loss: 110.282 +54400/69092 Loss: 109.522 +57600/69092 Loss: 109.977 +60800/69092 Loss: 111.115 +64000/69092 Loss: 110.645 +67200/69092 Loss: 110.972 +Training time 0:09:39.709244 +Epoch: 3 Average loss: 110.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 932) +0/69092 Loss: 108.828 +3200/69092 Loss: 110.284 +6400/69092 Loss: 110.382 +9600/69092 Loss: 106.883 +12800/69092 Loss: 110.148 +16000/69092 Loss: 113.084 +19200/69092 Loss: 109.552 +22400/69092 Loss: 108.769 +25600/69092 Loss: 111.203 +28800/69092 Loss: 110.577 +32000/69092 Loss: 110.546 +35200/69092 Loss: 108.450 +38400/69092 Loss: 110.288 +41600/69092 Loss: 111.301 +44800/69092 Loss: 110.825 +48000/69092 Loss: 110.990 +51200/69092 Loss: 108.261 +54400/69092 Loss: 109.103 +57600/69092 Loss: 108.537 +60800/69092 Loss: 109.679 +64000/69092 Loss: 109.810 +67200/69092 Loss: 110.730 +Training time 0:09:52.117677 +Epoch: 4 Average loss: 110.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 933) +0/69092 Loss: 101.167 +3200/69092 Loss: 108.648 +6400/69092 Loss: 110.088 +9600/69092 Loss: 111.332 +12800/69092 Loss: 109.218 +16000/69092 Loss: 111.634 +19200/69092 Loss: 110.557 +22400/69092 Loss: 111.165 +25600/69092 Loss: 108.554 +28800/69092 Loss: 109.655 +32000/69092 Loss: 109.440 +35200/69092 Loss: 109.522 +38400/69092 Loss: 110.165 +41600/69092 Loss: 111.696 +44800/69092 Loss: 110.700 +48000/69092 Loss: 110.255 +51200/69092 Loss: 108.220 +54400/69092 Loss: 109.651 +57600/69092 Loss: 109.740 +60800/69092 Loss: 110.133 +64000/69092 Loss: 109.295 +67200/69092 Loss: 108.310 +Training time 0:09:25.772454 +Epoch: 5 Average loss: 109.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 934) +0/69092 Loss: 110.209 +3200/69092 Loss: 109.782 +6400/69092 Loss: 107.741 +9600/69092 Loss: 110.935 +12800/69092 Loss: 109.686 +16000/69092 Loss: 112.218 +19200/69092 Loss: 110.139 +22400/69092 Loss: 109.731 +25600/69092 Loss: 108.515 +28800/69092 Loss: 109.562 +32000/69092 Loss: 108.441 +35200/69092 Loss: 107.848 +38400/69092 Loss: 110.805 +41600/69092 Loss: 110.464 +44800/69092 Loss: 110.586 +48000/69092 Loss: 108.876 +51200/69092 Loss: 109.657 +54400/69092 Loss: 110.250 +57600/69092 Loss: 110.417 +60800/69092 Loss: 110.506 +64000/69092 Loss: 110.707 +67200/69092 Loss: 110.146 +Training time 0:09:30.662585 +Epoch: 6 Average loss: 109.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 935) +0/69092 Loss: 124.815 +3200/69092 Loss: 111.305 +6400/69092 Loss: 109.799 +9600/69092 Loss: 111.216 +12800/69092 Loss: 109.129 +16000/69092 Loss: 110.281 +19200/69092 Loss: 111.050 +22400/69092 Loss: 112.108 +25600/69092 Loss: 109.284 +28800/69092 Loss: 108.843 +32000/69092 Loss: 109.346 +35200/69092 Loss: 109.485 +38400/69092 Loss: 108.350 +41600/69092 Loss: 111.311 +44800/69092 Loss: 110.882 +48000/69092 Loss: 108.689 +51200/69092 Loss: 108.626 +54400/69092 Loss: 110.371 +57600/69092 Loss: 110.578 +60800/69092 Loss: 108.876 +64000/69092 Loss: 109.560 +67200/69092 Loss: 109.777 +Training time 0:09:50.445055 +Epoch: 7 Average loss: 109.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 936) +0/69092 Loss: 111.901 +3200/69092 Loss: 109.261 +6400/69092 Loss: 111.310 +9600/69092 Loss: 108.375 +12800/69092 Loss: 110.236 +16000/69092 Loss: 109.069 +19200/69092 Loss: 109.362 +22400/69092 Loss: 110.474 +25600/69092 Loss: 109.946 +28800/69092 Loss: 110.452 +32000/69092 Loss: 109.352 +35200/69092 Loss: 110.880 +38400/69092 Loss: 109.157 +41600/69092 Loss: 110.096 +44800/69092 Loss: 110.939 +48000/69092 Loss: 109.960 +51200/69092 Loss: 110.264 +54400/69092 Loss: 108.350 +57600/69092 Loss: 107.830 +60800/69092 Loss: 112.005 +64000/69092 Loss: 111.000 +67200/69092 Loss: 111.781 +Training time 0:10:01.101869 +Epoch: 8 Average loss: 110.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 937) +0/69092 Loss: 103.813 +3200/69092 Loss: 109.813 +6400/69092 Loss: 110.431 +9600/69092 Loss: 110.024 +12800/69092 Loss: 110.216 +16000/69092 Loss: 109.504 +19200/69092 Loss: 110.869 +22400/69092 Loss: 109.662 +25600/69092 Loss: 111.663 +28800/69092 Loss: 109.335 +32000/69092 Loss: 107.370 +35200/69092 Loss: 109.345 +38400/69092 Loss: 109.761 +41600/69092 Loss: 110.735 +44800/69092 Loss: 110.624 +48000/69092 Loss: 110.560 +51200/69092 Loss: 110.884 +54400/69092 Loss: 109.436 +57600/69092 Loss: 110.047 +60800/69092 Loss: 108.684 +64000/69092 Loss: 110.756 +67200/69092 Loss: 109.519 +Training time 0:09:20.203164 +Epoch: 9 Average loss: 110.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 938) +0/69092 Loss: 108.684 +3200/69092 Loss: 110.669 +6400/69092 Loss: 109.319 +9600/69092 Loss: 110.055 +12800/69092 Loss: 110.047 +16000/69092 Loss: 108.181 +19200/69092 Loss: 111.334 +22400/69092 Loss: 107.835 +25600/69092 Loss: 110.995 +28800/69092 Loss: 108.113 +32000/69092 Loss: 109.638 +35200/69092 Loss: 109.313 +38400/69092 Loss: 110.170 +41600/69092 Loss: 111.594 +44800/69092 Loss: 109.434 +48000/69092 Loss: 109.755 +51200/69092 Loss: 110.266 +54400/69092 Loss: 109.270 +57600/69092 Loss: 110.455 +60800/69092 Loss: 111.685 +64000/69092 Loss: 108.725 +67200/69092 Loss: 111.577 +Training time 0:09:47.302121 +Epoch: 10 Average loss: 109.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 939) +0/69092 Loss: 118.846 +3200/69092 Loss: 109.046 +6400/69092 Loss: 111.975 +9600/69092 Loss: 109.306 +12800/69092 Loss: 108.267 +16000/69092 Loss: 107.807 +19200/69092 Loss: 110.471 +22400/69092 Loss: 109.888 +25600/69092 Loss: 110.271 +28800/69092 Loss: 110.627 +32000/69092 Loss: 110.349 +35200/69092 Loss: 108.353 +38400/69092 Loss: 109.904 +41600/69092 Loss: 110.000 +44800/69092 Loss: 111.137 +48000/69092 Loss: 110.982 +51200/69092 Loss: 110.426 +54400/69092 Loss: 110.151 +57600/69092 Loss: 110.103 +60800/69092 Loss: 110.788 +64000/69092 Loss: 110.741 +67200/69092 Loss: 110.840 +Training time 0:09:48.105291 +Epoch: 11 Average loss: 110.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 940) +0/69092 Loss: 114.442 +3200/69092 Loss: 109.057 +6400/69092 Loss: 109.495 +9600/69092 Loss: 110.674 +12800/69092 Loss: 109.861 +16000/69092 Loss: 110.979 +19200/69092 Loss: 111.237 +22400/69092 Loss: 109.628 +25600/69092 Loss: 109.901 +28800/69092 Loss: 110.205 +32000/69092 Loss: 111.370 +35200/69092 Loss: 110.523 +38400/69092 Loss: 108.632 +41600/69092 Loss: 111.517 +44800/69092 Loss: 109.284 +48000/69092 Loss: 109.305 +51200/69092 Loss: 109.643 +54400/69092 Loss: 110.029 +57600/69092 Loss: 110.488 +60800/69092 Loss: 111.066 +64000/69092 Loss: 107.914 +67200/69092 Loss: 109.275 +Training time 0:09:46.692554 +Epoch: 12 Average loss: 110.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 941) +0/69092 Loss: 112.749 +3200/69092 Loss: 109.741 +6400/69092 Loss: 109.613 +9600/69092 Loss: 109.997 +12800/69092 Loss: 110.088 +16000/69092 Loss: 110.204 +19200/69092 Loss: 109.341 +22400/69092 Loss: 109.334 +25600/69092 Loss: 110.054 +28800/69092 Loss: 109.299 +32000/69092 Loss: 109.417 +35200/69092 Loss: 111.100 +38400/69092 Loss: 109.561 +41600/69092 Loss: 109.575 +44800/69092 Loss: 108.689 +48000/69092 Loss: 109.589 +51200/69092 Loss: 110.427 +54400/69092 Loss: 109.439 +57600/69092 Loss: 111.085 +60800/69092 Loss: 109.520 +64000/69092 Loss: 111.047 +67200/69092 Loss: 110.421 +Training time 0:09:57.676172 +Epoch: 13 Average loss: 109.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 942) +0/69092 Loss: 115.775 +3200/69092 Loss: 110.452 +6400/69092 Loss: 109.458 +9600/69092 Loss: 110.028 +12800/69092 Loss: 108.496 +16000/69092 Loss: 109.474 +19200/69092 Loss: 112.008 +22400/69092 Loss: 110.529 +25600/69092 Loss: 112.507 +28800/69092 Loss: 110.940 +32000/69092 Loss: 108.307 +35200/69092 Loss: 111.564 +38400/69092 Loss: 111.243 +41600/69092 Loss: 111.302 +44800/69092 Loss: 110.708 +48000/69092 Loss: 108.706 +51200/69092 Loss: 107.567 +54400/69092 Loss: 110.761 +57600/69092 Loss: 110.145 +60800/69092 Loss: 109.537 +64000/69092 Loss: 109.645 +67200/69092 Loss: 109.373 +Training time 0:09:39.795225 +Epoch: 14 Average loss: 110.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 943) +0/69092 Loss: 111.891 +3200/69092 Loss: 111.539 +6400/69092 Loss: 110.997 +9600/69092 Loss: 110.979 +12800/69092 Loss: 111.068 +16000/69092 Loss: 109.918 +19200/69092 Loss: 108.622 +22400/69092 Loss: 108.562 +25600/69092 Loss: 110.405 +28800/69092 Loss: 110.436 +32000/69092 Loss: 111.500 +35200/69092 Loss: 110.229 +38400/69092 Loss: 110.858 +41600/69092 Loss: 112.382 +44800/69092 Loss: 109.113 +48000/69092 Loss: 109.128 +51200/69092 Loss: 109.043 +54400/69092 Loss: 108.629 +57600/69092 Loss: 110.196 +60800/69092 Loss: 110.518 +64000/69092 Loss: 109.969 +67200/69092 Loss: 107.845 +Training time 0:09:11.807624 +Epoch: 15 Average loss: 110.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 944) +0/69092 Loss: 105.307 +3200/69092 Loss: 111.676 +6400/69092 Loss: 109.680 +9600/69092 Loss: 109.625 +12800/69092 Loss: 110.054 +16000/69092 Loss: 109.262 +19200/69092 Loss: 109.855 +22400/69092 Loss: 110.965 +25600/69092 Loss: 109.726 +28800/69092 Loss: 109.252 +32000/69092 Loss: 109.909 +35200/69092 Loss: 111.014 +38400/69092 Loss: 110.435 +41600/69092 Loss: 109.251 +44800/69092 Loss: 109.878 +48000/69092 Loss: 111.149 +51200/69092 Loss: 109.453 +54400/69092 Loss: 109.171 +57600/69092 Loss: 109.580 +60800/69092 Loss: 109.357 +64000/69092 Loss: 109.625 +67200/69092 Loss: 108.985 +Training time 0:09:26.719826 +Epoch: 16 Average loss: 109.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 945) +0/69092 Loss: 113.802 +3200/69092 Loss: 110.720 +6400/69092 Loss: 110.516 +9600/69092 Loss: 108.718 +12800/69092 Loss: 107.139 +16000/69092 Loss: 109.699 +19200/69092 Loss: 109.344 +22400/69092 Loss: 110.459 +25600/69092 Loss: 107.671 +28800/69092 Loss: 110.246 +32000/69092 Loss: 110.141 +35200/69092 Loss: 110.000 +38400/69092 Loss: 110.684 +41600/69092 Loss: 111.225 +44800/69092 Loss: 109.754 +48000/69092 Loss: 109.640 +51200/69092 Loss: 110.313 +54400/69092 Loss: 109.681 +57600/69092 Loss: 109.847 +60800/69092 Loss: 108.549 +64000/69092 Loss: 110.907 +67200/69092 Loss: 110.284 +Training time 0:09:12.625890 +Epoch: 17 Average loss: 109.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 946) +0/69092 Loss: 111.809 +3200/69092 Loss: 109.939 +6400/69092 Loss: 110.058 +9600/69092 Loss: 111.377 +12800/69092 Loss: 109.438 +16000/69092 Loss: 109.248 +19200/69092 Loss: 110.895 +22400/69092 Loss: 108.640 +25600/69092 Loss: 109.818 +28800/69092 Loss: 109.075 +32000/69092 Loss: 110.351 +35200/69092 Loss: 110.844 +38400/69092 Loss: 109.181 +41600/69092 Loss: 110.982 +44800/69092 Loss: 110.268 +48000/69092 Loss: 107.615 +51200/69092 Loss: 109.679 +54400/69092 Loss: 110.259 +57600/69092 Loss: 109.615 +60800/69092 Loss: 109.567 +64000/69092 Loss: 111.875 +67200/69092 Loss: 109.233 +Training time 0:09:52.886644 +Epoch: 18 Average loss: 109.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 947) +0/69092 Loss: 121.056 +3200/69092 Loss: 109.085 +6400/69092 Loss: 108.729 +9600/69092 Loss: 108.968 +12800/69092 Loss: 109.767 +16000/69092 Loss: 108.967 +19200/69092 Loss: 111.042 +22400/69092 Loss: 109.615 +25600/69092 Loss: 109.796 +28800/69092 Loss: 111.178 +32000/69092 Loss: 110.762 +35200/69092 Loss: 109.985 +38400/69092 Loss: 109.131 +41600/69092 Loss: 110.685 +44800/69092 Loss: 110.775 +48000/69092 Loss: 109.219 +51200/69092 Loss: 111.029 +54400/69092 Loss: 109.122 +57600/69092 Loss: 109.873 +60800/69092 Loss: 110.023 +64000/69092 Loss: 111.547 +67200/69092 Loss: 109.169 +Training time 0:09:44.186610 +Epoch: 19 Average loss: 109.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 948) +0/69092 Loss: 120.552 +3200/69092 Loss: 110.605 +6400/69092 Loss: 107.976 +9600/69092 Loss: 108.576 +12800/69092 Loss: 111.709 +16000/69092 Loss: 110.319 +19200/69092 Loss: 110.571 +22400/69092 Loss: 109.953 +25600/69092 Loss: 111.655 +28800/69092 Loss: 111.242 +32000/69092 Loss: 110.470 +35200/69092 Loss: 110.478 +38400/69092 Loss: 109.851 +41600/69092 Loss: 109.894 +44800/69092 Loss: 108.003 +48000/69092 Loss: 109.420 +51200/69092 Loss: 108.525 +54400/69092 Loss: 110.392 +57600/69092 Loss: 108.462 +60800/69092 Loss: 109.949 +64000/69092 Loss: 110.202 +67200/69092 Loss: 110.703 +Training time 0:10:10.724932 +Epoch: 20 Average loss: 109.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 949) +0/69092 Loss: 104.065 +3200/69092 Loss: 109.470 +6400/69092 Loss: 110.471 +9600/69092 Loss: 110.790 +12800/69092 Loss: 109.120 +16000/69092 Loss: 110.503 +19200/69092 Loss: 110.451 +22400/69092 Loss: 110.142 +25600/69092 Loss: 110.279 +28800/69092 Loss: 109.611 +32000/69092 Loss: 109.450 +35200/69092 Loss: 110.025 +38400/69092 Loss: 111.676 +41600/69092 Loss: 109.132 +44800/69092 Loss: 112.366 +48000/69092 Loss: 109.355 +51200/69092 Loss: 109.265 +54400/69092 Loss: 109.478 +57600/69092 Loss: 110.828 +60800/69092 Loss: 110.748 +64000/69092 Loss: 109.204 +67200/69092 Loss: 109.576 +Training time 0:09:52.822086 +Epoch: 21 Average loss: 110.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 950) +0/69092 Loss: 118.232 +3200/69092 Loss: 109.740 +6400/69092 Loss: 110.399 +9600/69092 Loss: 109.924 +12800/69092 Loss: 110.311 +16000/69092 Loss: 108.396 +19200/69092 Loss: 109.673 +22400/69092 Loss: 109.302 +25600/69092 Loss: 109.713 +28800/69092 Loss: 110.154 +32000/69092 Loss: 109.289 +35200/69092 Loss: 110.692 +38400/69092 Loss: 109.124 +41600/69092 Loss: 109.018 +44800/69092 Loss: 109.421 +48000/69092 Loss: 110.402 +51200/69092 Loss: 110.834 +54400/69092 Loss: 109.512 +57600/69092 Loss: 109.451 +60800/69092 Loss: 110.875 +64000/69092 Loss: 111.067 +67200/69092 Loss: 110.912 +Training time 0:09:33.053883 +Epoch: 22 Average loss: 109.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 951) +0/69092 Loss: 114.726 +3200/69092 Loss: 108.914 +6400/69092 Loss: 109.178 +9600/69092 Loss: 110.064 +12800/69092 Loss: 109.048 +16000/69092 Loss: 111.037 +19200/69092 Loss: 110.549 +22400/69092 Loss: 109.868 +25600/69092 Loss: 110.990 +28800/69092 Loss: 110.111 +32000/69092 Loss: 110.393 +35200/69092 Loss: 111.285 +38400/69092 Loss: 111.660 +41600/69092 Loss: 109.019 +44800/69092 Loss: 110.090 +48000/69092 Loss: 112.044 +51200/69092 Loss: 110.454 +54400/69092 Loss: 109.942 +57600/69092 Loss: 108.834 +60800/69092 Loss: 110.020 +64000/69092 Loss: 109.516 +67200/69092 Loss: 108.459 +Training time 0:09:57.172410 +Epoch: 23 Average loss: 110.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 952) +0/69092 Loss: 116.534 +3200/69092 Loss: 109.546 +6400/69092 Loss: 109.347 +9600/69092 Loss: 110.519 +12800/69092 Loss: 110.451 +16000/69092 Loss: 108.098 +19200/69092 Loss: 111.323 +22400/69092 Loss: 109.167 +25600/69092 Loss: 110.024 +28800/69092 Loss: 109.614 +32000/69092 Loss: 109.767 +35200/69092 Loss: 109.853 +38400/69092 Loss: 109.708 +41600/69092 Loss: 110.470 +44800/69092 Loss: 110.592 +48000/69092 Loss: 111.614 +51200/69092 Loss: 107.394 +54400/69092 Loss: 109.627 +57600/69092 Loss: 109.404 +60800/69092 Loss: 111.589 +64000/69092 Loss: 109.854 +67200/69092 Loss: 109.504 +Training time 0:09:35.857220 +Epoch: 24 Average loss: 109.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 953) +0/69092 Loss: 114.948 +3200/69092 Loss: 110.611 +6400/69092 Loss: 108.821 +9600/69092 Loss: 111.068 +12800/69092 Loss: 108.951 +16000/69092 Loss: 110.240 +19200/69092 Loss: 109.077 +22400/69092 Loss: 111.071 +25600/69092 Loss: 110.978 +28800/69092 Loss: 109.945 +32000/69092 Loss: 109.387 +35200/69092 Loss: 109.972 +38400/69092 Loss: 110.315 +41600/69092 Loss: 109.124 +44800/69092 Loss: 109.530 +48000/69092 Loss: 110.762 +51200/69092 Loss: 111.401 +54400/69092 Loss: 110.935 +57600/69092 Loss: 108.048 +60800/69092 Loss: 109.378 +64000/69092 Loss: 110.239 +67200/69092 Loss: 108.000 +Training time 0:09:50.045880 +Epoch: 25 Average loss: 109.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 954) +0/69092 Loss: 108.966 +3200/69092 Loss: 109.257 +6400/69092 Loss: 111.118 +9600/69092 Loss: 111.533 +12800/69092 Loss: 110.944 +16000/69092 Loss: 108.941 +19200/69092 Loss: 108.917 +22400/69092 Loss: 110.003 +25600/69092 Loss: 109.403 +28800/69092 Loss: 107.755 +32000/69092 Loss: 109.971 +35200/69092 Loss: 111.855 +38400/69092 Loss: 109.217 +41600/69092 Loss: 109.742 +44800/69092 Loss: 109.509 +48000/69092 Loss: 109.871 +51200/69092 Loss: 109.661 +54400/69092 Loss: 109.472 +57600/69092 Loss: 109.827 +60800/69092 Loss: 109.931 +64000/69092 Loss: 110.080 +67200/69092 Loss: 110.577 +Training time 0:09:41.761523 +Epoch: 26 Average loss: 109.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 955) +0/69092 Loss: 113.490 +3200/69092 Loss: 110.245 +6400/69092 Loss: 109.807 +9600/69092 Loss: 109.717 +12800/69092 Loss: 110.373 +16000/69092 Loss: 108.715 +19200/69092 Loss: 109.860 +22400/69092 Loss: 110.857 +25600/69092 Loss: 109.997 +28800/69092 Loss: 109.488 +32000/69092 Loss: 110.274 +35200/69092 Loss: 110.355 +38400/69092 Loss: 108.761 +41600/69092 Loss: 108.724 +44800/69092 Loss: 109.370 +48000/69092 Loss: 110.335 +51200/69092 Loss: 108.635 +54400/69092 Loss: 110.619 +57600/69092 Loss: 111.014 +60800/69092 Loss: 108.825 +64000/69092 Loss: 111.314 +67200/69092 Loss: 111.589 +Training time 0:09:25.650776 +Epoch: 27 Average loss: 109.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 956) +0/69092 Loss: 120.477 +3200/69092 Loss: 109.018 +6400/69092 Loss: 108.904 +9600/69092 Loss: 110.672 +12800/69092 Loss: 110.287 +16000/69092 Loss: 108.620 +19200/69092 Loss: 109.111 +22400/69092 Loss: 108.832 +25600/69092 Loss: 109.338 +28800/69092 Loss: 110.201 +32000/69092 Loss: 109.797 +35200/69092 Loss: 110.017 +38400/69092 Loss: 110.777 +41600/69092 Loss: 108.246 +44800/69092 Loss: 111.980 +48000/69092 Loss: 110.694 +51200/69092 Loss: 110.802 +54400/69092 Loss: 108.300 +57600/69092 Loss: 109.641 +60800/69092 Loss: 110.005 +64000/69092 Loss: 109.531 +67200/69092 Loss: 109.301 +Training time 0:10:06.221637 +Epoch: 28 Average loss: 109.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 957) +0/69092 Loss: 114.162 +3200/69092 Loss: 111.305 +6400/69092 Loss: 110.024 +9600/69092 Loss: 110.596 +12800/69092 Loss: 110.251 +16000/69092 Loss: 109.079 +19200/69092 Loss: 110.062 +22400/69092 Loss: 108.918 +25600/69092 Loss: 108.469 +28800/69092 Loss: 108.788 +32000/69092 Loss: 110.630 +35200/69092 Loss: 109.170 +38400/69092 Loss: 108.325 +41600/69092 Loss: 108.816 +44800/69092 Loss: 109.323 +48000/69092 Loss: 108.733 +51200/69092 Loss: 109.662 +54400/69092 Loss: 109.448 +57600/69092 Loss: 108.393 +60800/69092 Loss: 111.194 +64000/69092 Loss: 111.564 +67200/69092 Loss: 112.045 +Training time 0:10:00.302035 +Epoch: 29 Average loss: 109.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 958) +0/69092 Loss: 120.257 +3200/69092 Loss: 110.266 +6400/69092 Loss: 109.394 +9600/69092 Loss: 111.054 +12800/69092 Loss: 109.159 +16000/69092 Loss: 109.892 +19200/69092 Loss: 110.296 +22400/69092 Loss: 109.802 +25600/69092 Loss: 110.835 +28800/69092 Loss: 111.544 +32000/69092 Loss: 108.179 +35200/69092 Loss: 109.584 +38400/69092 Loss: 108.839 +41600/69092 Loss: 108.886 +44800/69092 Loss: 109.983 +48000/69092 Loss: 110.458 +51200/69092 Loss: 109.782 +54400/69092 Loss: 110.509 +57600/69092 Loss: 110.375 +60800/69092 Loss: 109.690 +64000/69092 Loss: 109.546 +67200/69092 Loss: 109.349 +Training time 0:09:22.565747 +Epoch: 30 Average loss: 109.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 959) +0/69092 Loss: 101.501 +3200/69092 Loss: 111.831 +6400/69092 Loss: 109.255 +9600/69092 Loss: 110.849 +12800/69092 Loss: 109.357 +16000/69092 Loss: 109.907 +19200/69092 Loss: 107.548 +22400/69092 Loss: 109.430 +25600/69092 Loss: 108.791 +28800/69092 Loss: 110.252 +32000/69092 Loss: 109.824 +35200/69092 Loss: 112.214 +38400/69092 Loss: 112.134 +41600/69092 Loss: 108.836 +44800/69092 Loss: 108.572 +48000/69092 Loss: 108.661 +51200/69092 Loss: 109.338 +54400/69092 Loss: 108.989 +57600/69092 Loss: 110.290 +60800/69092 Loss: 111.544 +64000/69092 Loss: 111.172 +67200/69092 Loss: 108.555 +Training time 0:09:50.181810 +Epoch: 31 Average loss: 109.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 960) +0/69092 Loss: 106.285 +3200/69092 Loss: 109.912 +6400/69092 Loss: 110.195 +9600/69092 Loss: 111.441 +12800/69092 Loss: 110.403 +16000/69092 Loss: 110.787 +19200/69092 Loss: 110.337 +22400/69092 Loss: 110.172 +25600/69092 Loss: 109.134 +28800/69092 Loss: 108.633 +32000/69092 Loss: 109.388 +35200/69092 Loss: 109.763 +38400/69092 Loss: 108.487 +41600/69092 Loss: 112.454 +44800/69092 Loss: 110.194 +48000/69092 Loss: 108.854 +51200/69092 Loss: 109.895 +54400/69092 Loss: 109.460 +57600/69092 Loss: 108.417 +60800/69092 Loss: 110.385 +64000/69092 Loss: 108.397 +67200/69092 Loss: 109.865 +Training time 0:09:43.513921 +Epoch: 32 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 961) +0/69092 Loss: 105.236 +3200/69092 Loss: 110.641 +6400/69092 Loss: 108.153 +9600/69092 Loss: 109.300 +12800/69092 Loss: 110.016 +16000/69092 Loss: 107.980 +19200/69092 Loss: 109.421 +22400/69092 Loss: 109.703 +25600/69092 Loss: 109.869 +28800/69092 Loss: 108.514 +32000/69092 Loss: 109.813 +35200/69092 Loss: 111.234 +38400/69092 Loss: 109.531 +41600/69092 Loss: 110.015 +44800/69092 Loss: 111.334 +48000/69092 Loss: 110.539 +51200/69092 Loss: 109.409 +54400/69092 Loss: 110.580 +57600/69092 Loss: 110.200 +60800/69092 Loss: 110.545 +64000/69092 Loss: 112.061 +67200/69092 Loss: 107.346 +Training time 0:09:51.386182 +Epoch: 33 Average loss: 109.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 962) +0/69092 Loss: 105.681 +3200/69092 Loss: 109.930 +6400/69092 Loss: 109.296 +9600/69092 Loss: 108.854 +12800/69092 Loss: 111.702 +16000/69092 Loss: 110.686 +19200/69092 Loss: 110.924 +22400/69092 Loss: 109.627 +25600/69092 Loss: 109.565 +28800/69092 Loss: 109.815 +32000/69092 Loss: 110.394 +35200/69092 Loss: 110.393 +38400/69092 Loss: 109.578 +41600/69092 Loss: 109.206 +44800/69092 Loss: 110.162 +48000/69092 Loss: 112.173 +51200/69092 Loss: 110.605 +54400/69092 Loss: 109.455 +57600/69092 Loss: 108.654 +60800/69092 Loss: 110.267 +64000/69092 Loss: 110.371 +67200/69092 Loss: 109.031 +Training time 0:09:41.182116 +Epoch: 34 Average loss: 110.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 963) +0/69092 Loss: 112.134 +3200/69092 Loss: 109.169 +6400/69092 Loss: 111.367 +9600/69092 Loss: 112.611 +12800/69092 Loss: 111.506 +16000/69092 Loss: 110.327 +19200/69092 Loss: 108.402 +22400/69092 Loss: 109.891 +25600/69092 Loss: 111.112 +28800/69092 Loss: 110.181 +32000/69092 Loss: 108.794 +35200/69092 Loss: 109.571 +38400/69092 Loss: 108.670 +41600/69092 Loss: 109.831 +44800/69092 Loss: 110.149 +48000/69092 Loss: 109.229 +51200/69092 Loss: 109.133 +54400/69092 Loss: 108.624 +57600/69092 Loss: 108.969 +60800/69092 Loss: 110.683 +64000/69092 Loss: 109.818 +67200/69092 Loss: 111.161 +Training time 0:09:52.128525 +Epoch: 35 Average loss: 109.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 964) +0/69092 Loss: 114.526 +3200/69092 Loss: 110.310 +6400/69092 Loss: 110.633 +9600/69092 Loss: 110.568 +12800/69092 Loss: 109.060 +16000/69092 Loss: 110.985 +19200/69092 Loss: 108.260 +22400/69092 Loss: 110.367 +25600/69092 Loss: 110.945 +28800/69092 Loss: 109.573 +32000/69092 Loss: 109.710 +35200/69092 Loss: 110.429 +38400/69092 Loss: 109.824 +41600/69092 Loss: 110.823 +44800/69092 Loss: 110.113 +48000/69092 Loss: 109.942 +51200/69092 Loss: 110.036 +54400/69092 Loss: 110.054 +57600/69092 Loss: 110.635 +60800/69092 Loss: 109.760 +64000/69092 Loss: 110.688 +67200/69092 Loss: 109.500 +Training time 0:09:15.753527 +Epoch: 36 Average loss: 110.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 965) +0/69092 Loss: 112.070 +3200/69092 Loss: 109.720 +6400/69092 Loss: 108.799 +9600/69092 Loss: 110.789 +12800/69092 Loss: 109.991 +16000/69092 Loss: 110.895 +19200/69092 Loss: 111.490 +22400/69092 Loss: 110.167 +25600/69092 Loss: 110.909 +28800/69092 Loss: 108.727 +32000/69092 Loss: 108.645 +35200/69092 Loss: 111.309 +38400/69092 Loss: 109.048 +41600/69092 Loss: 107.036 +44800/69092 Loss: 110.065 +48000/69092 Loss: 111.331 +51200/69092 Loss: 109.395 +54400/69092 Loss: 109.773 +57600/69092 Loss: 111.569 +60800/69092 Loss: 110.082 +64000/69092 Loss: 108.185 +67200/69092 Loss: 110.942 +Training time 0:10:07.344917 +Epoch: 37 Average loss: 109.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 966) +0/69092 Loss: 107.227 +3200/69092 Loss: 111.389 +6400/69092 Loss: 109.520 +9600/69092 Loss: 111.971 +12800/69092 Loss: 112.437 +16000/69092 Loss: 108.659 +19200/69092 Loss: 109.152 +22400/69092 Loss: 109.504 +25600/69092 Loss: 108.105 +28800/69092 Loss: 110.015 +32000/69092 Loss: 110.482 +35200/69092 Loss: 111.777 +38400/69092 Loss: 108.966 +41600/69092 Loss: 109.310 +44800/69092 Loss: 109.582 +48000/69092 Loss: 109.455 +51200/69092 Loss: 109.546 +54400/69092 Loss: 109.138 +57600/69092 Loss: 110.364 +60800/69092 Loss: 109.687 +64000/69092 Loss: 110.955 +67200/69092 Loss: 111.744 +Training time 0:09:38.915663 +Epoch: 38 Average loss: 110.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 967) +0/69092 Loss: 116.668 +3200/69092 Loss: 110.969 +6400/69092 Loss: 111.258 +9600/69092 Loss: 109.870 +12800/69092 Loss: 110.244 +16000/69092 Loss: 110.560 +19200/69092 Loss: 111.165 +22400/69092 Loss: 110.855 +25600/69092 Loss: 108.306 +28800/69092 Loss: 111.792 +32000/69092 Loss: 108.635 +35200/69092 Loss: 109.326 +38400/69092 Loss: 109.116 +41600/69092 Loss: 110.282 +44800/69092 Loss: 109.264 +48000/69092 Loss: 110.383 +51200/69092 Loss: 110.432 +54400/69092 Loss: 109.699 +57600/69092 Loss: 109.611 +60800/69092 Loss: 109.165 +64000/69092 Loss: 109.302 +67200/69092 Loss: 109.116 +Training time 0:10:03.208954 +Epoch: 39 Average loss: 109.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 968) +0/69092 Loss: 106.118 +3200/69092 Loss: 109.839 +6400/69092 Loss: 109.228 +9600/69092 Loss: 108.848 +12800/69092 Loss: 110.868 +16000/69092 Loss: 108.699 +19200/69092 Loss: 111.005 +22400/69092 Loss: 110.430 +25600/69092 Loss: 108.667 +28800/69092 Loss: 110.014 +32000/69092 Loss: 109.441 +35200/69092 Loss: 111.826 +38400/69092 Loss: 109.252 +41600/69092 Loss: 109.109 +44800/69092 Loss: 110.185 +48000/69092 Loss: 110.136 +51200/69092 Loss: 109.378 +54400/69092 Loss: 110.570 +57600/69092 Loss: 109.370 +60800/69092 Loss: 110.731 +64000/69092 Loss: 109.241 +67200/69092 Loss: 111.206 +Training time 0:09:47.254470 +Epoch: 40 Average loss: 109.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 969) +0/69092 Loss: 109.406 +3200/69092 Loss: 109.696 +6400/69092 Loss: 108.612 +9600/69092 Loss: 109.655 +12800/69092 Loss: 109.373 +16000/69092 Loss: 109.559 +19200/69092 Loss: 110.542 +22400/69092 Loss: 109.307 +25600/69092 Loss: 108.919 +28800/69092 Loss: 111.054 +32000/69092 Loss: 111.290 +35200/69092 Loss: 110.409 +38400/69092 Loss: 109.053 +41600/69092 Loss: 108.477 +44800/69092 Loss: 110.485 +48000/69092 Loss: 108.989 +51200/69092 Loss: 110.306 +54400/69092 Loss: 109.712 +57600/69092 Loss: 110.063 +60800/69092 Loss: 108.970 +64000/69092 Loss: 111.053 +67200/69092 Loss: 110.489 +Training time 0:09:58.241010 +Epoch: 41 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 970) +0/69092 Loss: 100.507 +3200/69092 Loss: 109.880 +6400/69092 Loss: 107.740 +9600/69092 Loss: 109.030 +12800/69092 Loss: 109.416 +16000/69092 Loss: 111.196 +19200/69092 Loss: 110.674 +22400/69092 Loss: 110.185 +25600/69092 Loss: 109.566 +28800/69092 Loss: 109.042 +32000/69092 Loss: 111.826 +35200/69092 Loss: 110.544 +38400/69092 Loss: 111.217 +41600/69092 Loss: 107.811 +44800/69092 Loss: 109.904 +48000/69092 Loss: 109.952 +51200/69092 Loss: 110.781 +54400/69092 Loss: 110.210 +57600/69092 Loss: 109.358 +60800/69092 Loss: 109.899 +64000/69092 Loss: 110.180 +67200/69092 Loss: 110.480 +Training time 0:08:48.771073 +Epoch: 42 Average loss: 109.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 971) +0/69092 Loss: 97.424 +3200/69092 Loss: 108.734 +6400/69092 Loss: 110.472 +9600/69092 Loss: 109.192 +12800/69092 Loss: 109.264 +16000/69092 Loss: 110.462 +19200/69092 Loss: 108.597 +22400/69092 Loss: 109.893 +25600/69092 Loss: 111.866 +28800/69092 Loss: 111.663 +32000/69092 Loss: 109.090 +35200/69092 Loss: 108.511 +38400/69092 Loss: 109.332 +41600/69092 Loss: 110.090 +44800/69092 Loss: 109.573 +48000/69092 Loss: 108.026 +51200/69092 Loss: 108.783 +54400/69092 Loss: 112.529 +57600/69092 Loss: 110.637 +60800/69092 Loss: 110.479 +64000/69092 Loss: 109.171 +67200/69092 Loss: 109.733 +Training time 0:09:22.529668 +Epoch: 43 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 972) +0/69092 Loss: 108.482 +3200/69092 Loss: 108.730 +6400/69092 Loss: 109.494 +9600/69092 Loss: 109.743 +12800/69092 Loss: 110.783 +16000/69092 Loss: 110.607 +19200/69092 Loss: 108.334 +22400/69092 Loss: 111.401 +25600/69092 Loss: 109.842 +28800/69092 Loss: 112.170 +32000/69092 Loss: 110.730 +35200/69092 Loss: 109.330 +38400/69092 Loss: 109.702 +41600/69092 Loss: 109.205 +44800/69092 Loss: 110.101 +48000/69092 Loss: 109.739 +51200/69092 Loss: 109.359 +54400/69092 Loss: 108.733 +57600/69092 Loss: 109.831 +60800/69092 Loss: 110.282 +64000/69092 Loss: 109.607 +67200/69092 Loss: 109.492 +Training time 0:09:36.389770 +Epoch: 44 Average loss: 109.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 973) +0/69092 Loss: 102.352 +3200/69092 Loss: 108.933 +6400/69092 Loss: 109.283 +9600/69092 Loss: 110.233 +12800/69092 Loss: 109.919 +16000/69092 Loss: 110.649 +19200/69092 Loss: 111.195 +22400/69092 Loss: 108.622 +25600/69092 Loss: 110.896 +28800/69092 Loss: 109.175 +32000/69092 Loss: 109.308 +35200/69092 Loss: 109.722 +38400/69092 Loss: 109.405 +41600/69092 Loss: 111.334 +44800/69092 Loss: 110.206 +48000/69092 Loss: 110.267 +51200/69092 Loss: 110.190 +54400/69092 Loss: 111.104 +57600/69092 Loss: 110.619 +60800/69092 Loss: 110.805 +64000/69092 Loss: 109.691 +67200/69092 Loss: 109.607 +Training time 0:09:58.939143 +Epoch: 45 Average loss: 110.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 974) +0/69092 Loss: 111.265 +3200/69092 Loss: 109.269 +6400/69092 Loss: 109.937 +9600/69092 Loss: 109.679 +12800/69092 Loss: 111.503 +16000/69092 Loss: 110.008 +19200/69092 Loss: 110.346 +22400/69092 Loss: 109.575 +25600/69092 Loss: 110.278 +28800/69092 Loss: 111.269 +32000/69092 Loss: 108.933 +35200/69092 Loss: 110.774 +38400/69092 Loss: 110.337 +41600/69092 Loss: 110.050 +44800/69092 Loss: 108.639 +48000/69092 Loss: 110.814 +51200/69092 Loss: 110.735 +54400/69092 Loss: 108.723 +57600/69092 Loss: 110.659 +60800/69092 Loss: 109.278 +64000/69092 Loss: 109.848 +67200/69092 Loss: 109.435 +Training time 0:09:35.743267 +Epoch: 46 Average loss: 109.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 975) +0/69092 Loss: 109.214 +3200/69092 Loss: 109.049 +6400/69092 Loss: 109.434 +9600/69092 Loss: 110.284 +12800/69092 Loss: 109.220 +16000/69092 Loss: 109.914 +19200/69092 Loss: 110.088 +22400/69092 Loss: 109.476 +25600/69092 Loss: 110.059 +28800/69092 Loss: 107.733 +32000/69092 Loss: 109.633 +35200/69092 Loss: 109.344 +38400/69092 Loss: 110.374 +41600/69092 Loss: 110.799 +44800/69092 Loss: 111.761 +48000/69092 Loss: 109.216 +51200/69092 Loss: 110.465 +54400/69092 Loss: 110.636 +57600/69092 Loss: 109.732 +60800/69092 Loss: 109.485 +64000/69092 Loss: 110.342 +67200/69092 Loss: 110.162 +Training time 0:09:19.166558 +Epoch: 47 Average loss: 109.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 976) +0/69092 Loss: 118.404 +3200/69092 Loss: 109.027 +6400/69092 Loss: 110.159 +9600/69092 Loss: 109.710 +12800/69092 Loss: 111.096 +16000/69092 Loss: 111.408 +19200/69092 Loss: 109.845 +22400/69092 Loss: 110.383 +25600/69092 Loss: 108.485 +28800/69092 Loss: 109.666 +32000/69092 Loss: 108.974 +35200/69092 Loss: 108.683 +38400/69092 Loss: 109.937 +41600/69092 Loss: 109.915 +44800/69092 Loss: 108.205 +48000/69092 Loss: 110.005 +51200/69092 Loss: 110.277 +54400/69092 Loss: 110.747 +57600/69092 Loss: 109.642 +60800/69092 Loss: 110.752 +64000/69092 Loss: 109.346 +67200/69092 Loss: 110.103 +Training time 0:09:42.947738 +Epoch: 48 Average loss: 109.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 977) +0/69092 Loss: 106.546 +3200/69092 Loss: 109.017 +6400/69092 Loss: 108.551 +9600/69092 Loss: 109.321 +12800/69092 Loss: 109.615 +16000/69092 Loss: 109.119 +19200/69092 Loss: 108.870 +22400/69092 Loss: 109.374 +25600/69092 Loss: 109.933 +28800/69092 Loss: 110.945 +32000/69092 Loss: 111.118 +35200/69092 Loss: 110.164 +38400/69092 Loss: 112.185 +41600/69092 Loss: 109.893 +44800/69092 Loss: 110.876 +48000/69092 Loss: 112.349 +51200/69092 Loss: 110.187 +54400/69092 Loss: 108.540 +57600/69092 Loss: 108.920 +60800/69092 Loss: 109.402 +64000/69092 Loss: 109.512 +67200/69092 Loss: 109.407 +Training time 0:09:41.600229 +Epoch: 49 Average loss: 109.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 978) +0/69092 Loss: 107.909 +3200/69092 Loss: 111.014 +6400/69092 Loss: 109.225 +9600/69092 Loss: 111.137 +12800/69092 Loss: 108.936 +16000/69092 Loss: 109.933 +19200/69092 Loss: 109.868 +22400/69092 Loss: 110.730 +25600/69092 Loss: 109.578 +28800/69092 Loss: 110.765 +32000/69092 Loss: 110.477 +35200/69092 Loss: 109.832 +38400/69092 Loss: 107.875 +41600/69092 Loss: 110.056 +44800/69092 Loss: 110.030 +48000/69092 Loss: 110.290 +51200/69092 Loss: 110.623 +54400/69092 Loss: 109.520 +57600/69092 Loss: 109.983 +60800/69092 Loss: 110.018 +64000/69092 Loss: 109.151 +67200/69092 Loss: 109.756 +Training time 0:10:11.591850 +Epoch: 50 Average loss: 109.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 979) +0/69092 Loss: 112.156 +3200/69092 Loss: 109.854 +6400/69092 Loss: 110.461 +9600/69092 Loss: 110.673 +12800/69092 Loss: 111.879 +16000/69092 Loss: 109.466 +19200/69092 Loss: 109.672 +22400/69092 Loss: 109.746 +25600/69092 Loss: 111.687 +28800/69092 Loss: 109.142 +32000/69092 Loss: 108.274 +35200/69092 Loss: 111.291 +38400/69092 Loss: 109.810 +41600/69092 Loss: 110.519 +44800/69092 Loss: 109.559 +48000/69092 Loss: 110.053 +51200/69092 Loss: 110.924 +54400/69092 Loss: 109.901 +57600/69092 Loss: 108.652 +60800/69092 Loss: 111.050 +64000/69092 Loss: 111.523 +67200/69092 Loss: 108.035 +Training time 0:09:45.646408 +Epoch: 51 Average loss: 110.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 980) +0/69092 Loss: 101.501 +3200/69092 Loss: 108.269 +6400/69092 Loss: 108.893 +9600/69092 Loss: 110.595 +12800/69092 Loss: 111.328 +16000/69092 Loss: 109.985 +19200/69092 Loss: 111.817 +22400/69092 Loss: 110.348 +25600/69092 Loss: 110.134 +28800/69092 Loss: 110.653 +32000/69092 Loss: 109.158 +35200/69092 Loss: 109.740 +38400/69092 Loss: 108.855 +41600/69092 Loss: 107.795 +44800/69092 Loss: 110.023 +48000/69092 Loss: 110.564 +51200/69092 Loss: 110.052 +54400/69092 Loss: 110.068 +57600/69092 Loss: 108.919 +60800/69092 Loss: 109.091 +64000/69092 Loss: 108.404 +67200/69092 Loss: 110.457 +Training time 0:09:17.648649 +Epoch: 52 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 981) +0/69092 Loss: 101.706 +3200/69092 Loss: 109.731 +6400/69092 Loss: 109.818 +9600/69092 Loss: 109.548 +12800/69092 Loss: 109.297 +16000/69092 Loss: 109.530 +19200/69092 Loss: 109.890 +22400/69092 Loss: 111.203 +25600/69092 Loss: 109.603 +28800/69092 Loss: 109.654 +32000/69092 Loss: 109.072 +35200/69092 Loss: 109.657 +38400/69092 Loss: 111.192 +41600/69092 Loss: 108.345 +44800/69092 Loss: 110.009 +48000/69092 Loss: 109.572 +51200/69092 Loss: 109.907 +54400/69092 Loss: 109.328 +57600/69092 Loss: 110.764 +60800/69092 Loss: 110.277 +64000/69092 Loss: 111.131 +67200/69092 Loss: 109.490 +Training time 0:09:41.020852 +Epoch: 53 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 982) +0/69092 Loss: 109.952 +3200/69092 Loss: 109.830 +6400/69092 Loss: 109.407 +9600/69092 Loss: 110.096 +12800/69092 Loss: 110.872 +16000/69092 Loss: 108.535 +19200/69092 Loss: 109.442 +22400/69092 Loss: 109.445 +25600/69092 Loss: 111.682 +28800/69092 Loss: 111.811 +32000/69092 Loss: 111.540 +35200/69092 Loss: 109.166 +38400/69092 Loss: 110.722 +41600/69092 Loss: 109.629 +44800/69092 Loss: 108.566 +48000/69092 Loss: 109.898 +51200/69092 Loss: 109.739 +54400/69092 Loss: 108.083 +57600/69092 Loss: 109.780 +60800/69092 Loss: 110.278 +64000/69092 Loss: 108.752 +67200/69092 Loss: 111.432 +Training time 0:09:46.076131 +Epoch: 54 Average loss: 109.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 983) +0/69092 Loss: 121.892 +3200/69092 Loss: 108.674 +6400/69092 Loss: 109.927 +9600/69092 Loss: 110.736 +12800/69092 Loss: 110.426 +16000/69092 Loss: 109.523 +19200/69092 Loss: 110.060 +22400/69092 Loss: 108.039 +25600/69092 Loss: 107.462 +28800/69092 Loss: 109.517 +32000/69092 Loss: 110.880 +35200/69092 Loss: 109.724 +38400/69092 Loss: 110.802 +41600/69092 Loss: 110.441 +44800/69092 Loss: 108.906 +48000/69092 Loss: 110.964 +51200/69092 Loss: 109.531 +54400/69092 Loss: 109.213 +57600/69092 Loss: 110.660 +60800/69092 Loss: 109.762 +64000/69092 Loss: 110.440 +67200/69092 Loss: 110.185 +Training time 0:09:49.341124 +Epoch: 55 Average loss: 109.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 984) +0/69092 Loss: 113.341 +3200/69092 Loss: 109.095 +6400/69092 Loss: 108.640 +9600/69092 Loss: 108.830 +12800/69092 Loss: 111.374 +16000/69092 Loss: 110.970 +19200/69092 Loss: 110.596 +22400/69092 Loss: 110.321 +25600/69092 Loss: 110.362 +28800/69092 Loss: 110.848 +32000/69092 Loss: 110.161 +35200/69092 Loss: 109.474 +38400/69092 Loss: 109.632 +41600/69092 Loss: 110.097 +44800/69092 Loss: 109.438 +48000/69092 Loss: 112.429 +51200/69092 Loss: 108.416 +54400/69092 Loss: 110.355 +57600/69092 Loss: 108.922 +60800/69092 Loss: 109.368 +64000/69092 Loss: 111.265 +67200/69092 Loss: 110.665 +Training time 0:09:44.359444 +Epoch: 56 Average loss: 110.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 985) +0/69092 Loss: 111.494 +3200/69092 Loss: 109.323 +6400/69092 Loss: 108.265 +9600/69092 Loss: 109.550 +12800/69092 Loss: 109.469 +16000/69092 Loss: 110.305 +19200/69092 Loss: 110.053 +22400/69092 Loss: 110.847 +25600/69092 Loss: 108.924 +28800/69092 Loss: 109.990 +32000/69092 Loss: 110.945 +35200/69092 Loss: 109.409 +38400/69092 Loss: 110.815 +41600/69092 Loss: 110.350 +44800/69092 Loss: 108.901 +48000/69092 Loss: 111.284 +51200/69092 Loss: 108.817 +54400/69092 Loss: 109.965 +57600/69092 Loss: 110.244 +60800/69092 Loss: 108.327 +64000/69092 Loss: 109.514 +67200/69092 Loss: 112.023 +Training time 0:09:30.398458 +Epoch: 57 Average loss: 109.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 986) +0/69092 Loss: 106.285 +3200/69092 Loss: 109.579 +6400/69092 Loss: 109.837 +9600/69092 Loss: 110.065 +12800/69092 Loss: 108.229 +16000/69092 Loss: 110.524 +19200/69092 Loss: 109.901 +22400/69092 Loss: 108.604 +25600/69092 Loss: 111.377 +28800/69092 Loss: 109.274 +32000/69092 Loss: 109.278 +35200/69092 Loss: 109.899 +38400/69092 Loss: 110.892 +41600/69092 Loss: 108.955 +44800/69092 Loss: 112.049 +48000/69092 Loss: 108.945 +51200/69092 Loss: 109.392 +54400/69092 Loss: 108.316 +57600/69092 Loss: 110.040 +60800/69092 Loss: 110.416 +64000/69092 Loss: 108.352 +67200/69092 Loss: 109.836 +Training time 0:09:28.147049 +Epoch: 58 Average loss: 109.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 987) +0/69092 Loss: 103.122 +3200/69092 Loss: 111.554 +6400/69092 Loss: 109.099 +9600/69092 Loss: 111.845 +12800/69092 Loss: 108.626 +16000/69092 Loss: 110.425 +19200/69092 Loss: 107.408 +22400/69092 Loss: 109.022 +25600/69092 Loss: 111.299 +28800/69092 Loss: 109.599 +32000/69092 Loss: 111.397 +35200/69092 Loss: 108.244 +38400/69092 Loss: 111.585 +41600/69092 Loss: 107.838 +44800/69092 Loss: 109.274 +48000/69092 Loss: 109.108 +51200/69092 Loss: 111.564 +54400/69092 Loss: 109.191 +57600/69092 Loss: 109.630 +60800/69092 Loss: 110.144 +64000/69092 Loss: 109.201 +67200/69092 Loss: 110.112 +Training time 0:09:36.235021 +Epoch: 59 Average loss: 109.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 988) +0/69092 Loss: 123.109 +3200/69092 Loss: 108.975 +6400/69092 Loss: 109.180 +9600/69092 Loss: 109.837 +12800/69092 Loss: 109.390 +16000/69092 Loss: 110.148 +19200/69092 Loss: 111.012 +22400/69092 Loss: 109.610 +25600/69092 Loss: 110.018 +28800/69092 Loss: 108.966 +32000/69092 Loss: 109.625 +35200/69092 Loss: 109.780 +38400/69092 Loss: 111.556 +41600/69092 Loss: 110.248 +44800/69092 Loss: 108.438 +48000/69092 Loss: 110.413 +51200/69092 Loss: 109.611 +54400/69092 Loss: 109.966 +57600/69092 Loss: 111.923 +60800/69092 Loss: 110.398 +64000/69092 Loss: 109.762 +67200/69092 Loss: 109.835 +Training time 0:09:11.918238 +Epoch: 60 Average loss: 109.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 989) +0/69092 Loss: 105.415 +3200/69092 Loss: 110.537 +6400/69092 Loss: 110.251 +9600/69092 Loss: 109.671 +12800/69092 Loss: 109.485 +16000/69092 Loss: 108.863 +19200/69092 Loss: 109.272 +22400/69092 Loss: 108.404 +25600/69092 Loss: 109.038 +28800/69092 Loss: 109.038 +32000/69092 Loss: 108.874 +35200/69092 Loss: 108.531 +38400/69092 Loss: 108.546 +41600/69092 Loss: 110.151 +44800/69092 Loss: 110.604 +48000/69092 Loss: 110.680 +51200/69092 Loss: 110.508 +54400/69092 Loss: 111.268 +57600/69092 Loss: 110.676 +60800/69092 Loss: 111.323 +64000/69092 Loss: 109.621 +67200/69092 Loss: 110.589 +Training time 0:09:09.201319 +Epoch: 61 Average loss: 109.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 990) +0/69092 Loss: 100.039 +3200/69092 Loss: 108.597 +6400/69092 Loss: 109.372 +9600/69092 Loss: 108.721 +12800/69092 Loss: 110.140 +16000/69092 Loss: 112.095 +19200/69092 Loss: 108.828 +22400/69092 Loss: 107.849 +25600/69092 Loss: 110.122 +28800/69092 Loss: 108.723 +32000/69092 Loss: 111.523 +35200/69092 Loss: 108.691 +38400/69092 Loss: 108.834 +41600/69092 Loss: 109.112 +44800/69092 Loss: 110.776 +48000/69092 Loss: 110.508 +51200/69092 Loss: 110.540 +54400/69092 Loss: 111.413 +57600/69092 Loss: 110.860 +60800/69092 Loss: 110.604 +64000/69092 Loss: 109.456 +67200/69092 Loss: 109.998 +Training time 0:09:13.271082 +Epoch: 62 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 991) +0/69092 Loss: 105.217 +3200/69092 Loss: 108.260 +6400/69092 Loss: 109.037 +9600/69092 Loss: 109.386 +12800/69092 Loss: 110.773 +16000/69092 Loss: 110.668 +19200/69092 Loss: 110.454 +22400/69092 Loss: 108.660 +25600/69092 Loss: 109.772 +28800/69092 Loss: 111.190 +32000/69092 Loss: 109.384 +35200/69092 Loss: 109.839 +38400/69092 Loss: 110.429 +41600/69092 Loss: 108.888 +44800/69092 Loss: 111.115 +48000/69092 Loss: 111.268 +51200/69092 Loss: 109.302 +54400/69092 Loss: 109.219 +57600/69092 Loss: 109.040 +60800/69092 Loss: 109.891 +64000/69092 Loss: 110.585 +67200/69092 Loss: 109.202 +Training time 0:09:53.661757 +Epoch: 63 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 992) +0/69092 Loss: 114.394 +3200/69092 Loss: 110.287 +6400/69092 Loss: 109.858 +9600/69092 Loss: 109.631 +12800/69092 Loss: 108.753 +16000/69092 Loss: 110.775 +19200/69092 Loss: 110.479 +22400/69092 Loss: 109.279 +25600/69092 Loss: 109.588 +28800/69092 Loss: 111.930 +32000/69092 Loss: 110.633 +35200/69092 Loss: 110.082 +38400/69092 Loss: 109.884 +41600/69092 Loss: 108.452 +44800/69092 Loss: 111.604 +48000/69092 Loss: 109.282 +51200/69092 Loss: 109.625 +54400/69092 Loss: 109.731 +57600/69092 Loss: 109.520 +60800/69092 Loss: 110.393 +64000/69092 Loss: 110.963 +67200/69092 Loss: 108.692 +Training time 0:10:01.127425 +Epoch: 64 Average loss: 109.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 993) +0/69092 Loss: 124.592 +3200/69092 Loss: 111.549 +6400/69092 Loss: 108.144 +9600/69092 Loss: 111.863 +12800/69092 Loss: 108.554 +16000/69092 Loss: 109.531 +19200/69092 Loss: 109.053 +22400/69092 Loss: 110.155 +25600/69092 Loss: 109.716 +28800/69092 Loss: 109.811 +32000/69092 Loss: 111.223 +35200/69092 Loss: 110.118 +38400/69092 Loss: 109.607 +41600/69092 Loss: 110.438 +44800/69092 Loss: 111.005 +48000/69092 Loss: 110.132 +51200/69092 Loss: 109.334 +54400/69092 Loss: 111.077 +57600/69092 Loss: 108.757 +60800/69092 Loss: 108.986 +64000/69092 Loss: 108.796 +67200/69092 Loss: 109.112 +Training time 0:09:28.934546 +Epoch: 65 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 994) +0/69092 Loss: 113.085 +3200/69092 Loss: 109.984 +6400/69092 Loss: 109.336 +9600/69092 Loss: 108.569 +12800/69092 Loss: 110.443 +16000/69092 Loss: 109.225 +19200/69092 Loss: 107.671 +22400/69092 Loss: 110.237 +25600/69092 Loss: 110.015 +28800/69092 Loss: 109.258 +32000/69092 Loss: 110.251 +35200/69092 Loss: 110.588 +38400/69092 Loss: 107.606 +41600/69092 Loss: 110.622 +44800/69092 Loss: 108.248 +48000/69092 Loss: 109.229 +51200/69092 Loss: 110.027 +54400/69092 Loss: 109.947 +57600/69092 Loss: 108.869 +60800/69092 Loss: 110.331 +64000/69092 Loss: 110.448 +67200/69092 Loss: 112.286 +Training time 0:09:40.542536 +Epoch: 66 Average loss: 109.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 995) +0/69092 Loss: 97.397 +3200/69092 Loss: 110.222 +6400/69092 Loss: 108.274 +9600/69092 Loss: 108.580 +12800/69092 Loss: 108.344 +16000/69092 Loss: 108.800 +19200/69092 Loss: 109.966 +22400/69092 Loss: 108.440 +25600/69092 Loss: 109.934 +28800/69092 Loss: 109.907 +32000/69092 Loss: 110.779 +35200/69092 Loss: 109.471 +38400/69092 Loss: 111.230 +41600/69092 Loss: 109.748 +44800/69092 Loss: 109.718 +48000/69092 Loss: 110.817 +51200/69092 Loss: 109.607 +54400/69092 Loss: 113.029 +57600/69092 Loss: 109.430 +60800/69092 Loss: 110.483 +64000/69092 Loss: 110.092 +67200/69092 Loss: 108.999 +Training time 0:09:24.931054 +Epoch: 67 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 996) +0/69092 Loss: 106.747 +3200/69092 Loss: 110.110 +6400/69092 Loss: 109.859 +9600/69092 Loss: 109.335 +12800/69092 Loss: 110.085 +16000/69092 Loss: 110.960 +19200/69092 Loss: 107.890 +22400/69092 Loss: 109.852 +25600/69092 Loss: 109.056 +28800/69092 Loss: 108.131 +32000/69092 Loss: 109.659 +35200/69092 Loss: 109.327 +38400/69092 Loss: 108.499 +41600/69092 Loss: 109.629 +44800/69092 Loss: 110.013 +48000/69092 Loss: 108.801 +51200/69092 Loss: 113.158 +54400/69092 Loss: 111.023 +57600/69092 Loss: 110.505 +60800/69092 Loss: 109.891 +64000/69092 Loss: 109.350 +67200/69092 Loss: 110.297 +Training time 0:09:43.835147 +Epoch: 68 Average loss: 109.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 997) +0/69092 Loss: 108.101 +3200/69092 Loss: 110.397 +6400/69092 Loss: 111.182 +9600/69092 Loss: 108.486 +12800/69092 Loss: 108.786 +16000/69092 Loss: 110.345 +19200/69092 Loss: 110.101 +22400/69092 Loss: 111.738 +25600/69092 Loss: 110.922 +28800/69092 Loss: 111.029 +32000/69092 Loss: 108.959 +35200/69092 Loss: 110.008 +38400/69092 Loss: 109.716 +41600/69092 Loss: 108.448 +44800/69092 Loss: 109.556 +48000/69092 Loss: 109.331 +51200/69092 Loss: 110.988 +54400/69092 Loss: 110.148 +57600/69092 Loss: 111.302 +60800/69092 Loss: 109.180 +64000/69092 Loss: 109.729 +67200/69092 Loss: 109.619 +Training time 0:09:44.479689 +Epoch: 69 Average loss: 109.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 998) +0/69092 Loss: 115.747 +3200/69092 Loss: 109.115 +6400/69092 Loss: 109.722 +9600/69092 Loss: 109.877 +12800/69092 Loss: 109.241 +16000/69092 Loss: 111.992 +19200/69092 Loss: 110.075 +22400/69092 Loss: 110.275 +25600/69092 Loss: 109.895 +28800/69092 Loss: 108.509 +32000/69092 Loss: 111.236 +35200/69092 Loss: 109.932 +38400/69092 Loss: 109.302 +41600/69092 Loss: 109.825 +44800/69092 Loss: 109.411 +48000/69092 Loss: 111.387 +51200/69092 Loss: 108.784 +54400/69092 Loss: 108.532 +57600/69092 Loss: 109.904 +60800/69092 Loss: 106.965 +64000/69092 Loss: 110.552 +67200/69092 Loss: 110.410 +Training time 0:09:49.124762 +Epoch: 70 Average loss: 109.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 999) +0/69092 Loss: 107.647 +3200/69092 Loss: 108.965 +6400/69092 Loss: 109.347 +9600/69092 Loss: 110.007 +12800/69092 Loss: 108.295 +16000/69092 Loss: 109.995 +19200/69092 Loss: 110.010 +22400/69092 Loss: 108.392 +25600/69092 Loss: 109.654 +28800/69092 Loss: 109.507 +32000/69092 Loss: 110.031 +35200/69092 Loss: 109.458 +38400/69092 Loss: 111.370 +41600/69092 Loss: 111.002 +44800/69092 Loss: 110.555 +48000/69092 Loss: 110.261 +51200/69092 Loss: 110.595 +54400/69092 Loss: 110.098 +57600/69092 Loss: 109.914 +60800/69092 Loss: 110.619 +64000/69092 Loss: 109.567 +67200/69092 Loss: 109.967 +Training time 0:10:03.921722 +Epoch: 71 Average loss: 109.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1000) +0/69092 Loss: 118.594 +3200/69092 Loss: 110.543 +6400/69092 Loss: 109.169 +9600/69092 Loss: 110.722 +12800/69092 Loss: 109.839 +16000/69092 Loss: 108.879 +19200/69092 Loss: 108.609 +22400/69092 Loss: 109.130 +25600/69092 Loss: 110.224 +28800/69092 Loss: 109.102 +32000/69092 Loss: 110.978 +35200/69092 Loss: 111.166 +38400/69092 Loss: 109.473 +41600/69092 Loss: 110.275 +44800/69092 Loss: 109.078 +48000/69092 Loss: 109.106 +51200/69092 Loss: 109.655 +54400/69092 Loss: 109.283 +57600/69092 Loss: 110.331 +60800/69092 Loss: 109.908 +64000/69092 Loss: 109.906 +67200/69092 Loss: 109.922 +Training time 0:09:33.178170 +Epoch: 72 Average loss: 109.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1001) +0/69092 Loss: 112.799 +3200/69092 Loss: 109.679 +6400/69092 Loss: 111.202 +9600/69092 Loss: 108.047 +12800/69092 Loss: 108.761 +16000/69092 Loss: 111.232 +19200/69092 Loss: 110.988 +22400/69092 Loss: 109.701 +25600/69092 Loss: 109.150 +28800/69092 Loss: 109.186 +32000/69092 Loss: 110.029 +35200/69092 Loss: 110.936 +38400/69092 Loss: 108.429 +41600/69092 Loss: 108.890 +44800/69092 Loss: 110.743 +48000/69092 Loss: 109.363 +51200/69092 Loss: 110.464 +54400/69092 Loss: 110.645 +57600/69092 Loss: 109.414 +60800/69092 Loss: 109.350 +64000/69092 Loss: 110.205 +67200/69092 Loss: 110.112 +Training time 0:09:20.325148 +Epoch: 73 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1002) +0/69092 Loss: 109.049 +3200/69092 Loss: 109.315 +6400/69092 Loss: 111.125 +9600/69092 Loss: 110.308 +12800/69092 Loss: 109.195 +16000/69092 Loss: 108.440 +19200/69092 Loss: 109.414 +22400/69092 Loss: 109.457 +25600/69092 Loss: 110.249 +28800/69092 Loss: 110.902 +32000/69092 Loss: 110.676 +35200/69092 Loss: 108.934 +38400/69092 Loss: 109.641 +41600/69092 Loss: 109.850 +44800/69092 Loss: 109.003 +48000/69092 Loss: 108.910 +51200/69092 Loss: 110.933 +54400/69092 Loss: 109.379 +57600/69092 Loss: 111.217 +60800/69092 Loss: 110.566 +64000/69092 Loss: 111.083 +67200/69092 Loss: 110.147 +Training time 0:09:18.817060 +Epoch: 74 Average loss: 109.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1003) +0/69092 Loss: 113.316 +3200/69092 Loss: 110.840 +6400/69092 Loss: 108.996 +9600/69092 Loss: 108.585 +12800/69092 Loss: 111.286 +16000/69092 Loss: 110.721 +19200/69092 Loss: 108.523 +22400/69092 Loss: 112.089 +25600/69092 Loss: 110.240 +28800/69092 Loss: 109.134 +32000/69092 Loss: 107.603 +35200/69092 Loss: 108.369 +38400/69092 Loss: 109.229 +41600/69092 Loss: 109.751 +44800/69092 Loss: 109.388 +48000/69092 Loss: 110.182 +51200/69092 Loss: 110.072 +54400/69092 Loss: 110.621 +57600/69092 Loss: 110.260 +60800/69092 Loss: 108.966 +64000/69092 Loss: 109.899 +67200/69092 Loss: 109.657 +Training time 0:09:41.876870 +Epoch: 75 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1004) +0/69092 Loss: 108.545 +3200/69092 Loss: 110.364 +6400/69092 Loss: 109.358 +9600/69092 Loss: 109.338 +12800/69092 Loss: 110.788 +16000/69092 Loss: 109.715 +19200/69092 Loss: 111.973 +22400/69092 Loss: 111.157 +25600/69092 Loss: 110.285 +28800/69092 Loss: 108.790 +32000/69092 Loss: 108.647 +35200/69092 Loss: 108.882 +38400/69092 Loss: 109.661 +41600/69092 Loss: 108.815 +44800/69092 Loss: 110.043 +48000/69092 Loss: 109.152 +51200/69092 Loss: 111.668 +54400/69092 Loss: 109.826 +57600/69092 Loss: 110.999 +60800/69092 Loss: 108.021 +64000/69092 Loss: 108.862 +67200/69092 Loss: 110.181 +Training time 0:09:26.932766 +Epoch: 76 Average loss: 109.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1005) +0/69092 Loss: 106.649 +3200/69092 Loss: 109.473 +6400/69092 Loss: 108.214 +9600/69092 Loss: 110.899 +12800/69092 Loss: 111.050 +16000/69092 Loss: 111.746 +19200/69092 Loss: 111.725 +22400/69092 Loss: 110.145 +25600/69092 Loss: 107.743 +28800/69092 Loss: 108.278 +32000/69092 Loss: 110.150 +35200/69092 Loss: 109.135 +38400/69092 Loss: 110.270 +41600/69092 Loss: 110.072 +44800/69092 Loss: 108.288 +48000/69092 Loss: 110.426 +51200/69092 Loss: 110.937 +54400/69092 Loss: 109.174 +57600/69092 Loss: 110.854 +60800/69092 Loss: 109.001 +64000/69092 Loss: 109.816 +67200/69092 Loss: 109.748 +Training time 0:09:14.815503 +Epoch: 77 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1006) +0/69092 Loss: 107.577 +3200/69092 Loss: 110.283 +6400/69092 Loss: 108.870 +9600/69092 Loss: 109.450 +12800/69092 Loss: 110.048 +16000/69092 Loss: 110.088 +19200/69092 Loss: 109.829 +22400/69092 Loss: 109.619 +25600/69092 Loss: 112.136 +28800/69092 Loss: 109.176 +32000/69092 Loss: 109.680 +35200/69092 Loss: 110.338 +38400/69092 Loss: 110.421 +41600/69092 Loss: 108.396 +44800/69092 Loss: 110.617 +48000/69092 Loss: 110.619 +51200/69092 Loss: 108.490 +54400/69092 Loss: 109.445 +57600/69092 Loss: 108.722 +60800/69092 Loss: 110.096 +64000/69092 Loss: 110.280 +67200/69092 Loss: 109.206 +Training time 0:09:37.734441 +Epoch: 78 Average loss: 109.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1007) +0/69092 Loss: 106.134 +3200/69092 Loss: 110.379 +6400/69092 Loss: 109.738 +9600/69092 Loss: 108.363 +12800/69092 Loss: 110.382 +16000/69092 Loss: 110.460 +19200/69092 Loss: 111.037 +22400/69092 Loss: 108.616 +25600/69092 Loss: 109.653 +28800/69092 Loss: 108.912 +32000/69092 Loss: 109.741 +35200/69092 Loss: 108.693 +38400/69092 Loss: 110.167 +41600/69092 Loss: 109.229 +44800/69092 Loss: 110.012 +48000/69092 Loss: 108.464 +51200/69092 Loss: 110.584 +54400/69092 Loss: 109.751 +57600/69092 Loss: 110.138 +60800/69092 Loss: 112.825 +64000/69092 Loss: 110.273 +67200/69092 Loss: 111.704 +Training time 0:09:17.415925 +Epoch: 79 Average loss: 109.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1008) +0/69092 Loss: 107.784 +3200/69092 Loss: 110.692 +6400/69092 Loss: 108.668 +9600/69092 Loss: 109.345 +12800/69092 Loss: 109.792 +16000/69092 Loss: 109.298 +19200/69092 Loss: 109.330 +22400/69092 Loss: 108.473 +25600/69092 Loss: 110.827 +28800/69092 Loss: 109.936 +32000/69092 Loss: 110.759 +35200/69092 Loss: 108.405 +38400/69092 Loss: 109.995 +41600/69092 Loss: 109.992 +44800/69092 Loss: 111.133 +48000/69092 Loss: 110.078 +51200/69092 Loss: 109.861 +54400/69092 Loss: 110.582 +57600/69092 Loss: 109.082 +60800/69092 Loss: 110.692 +64000/69092 Loss: 109.924 +67200/69092 Loss: 107.730 +Training time 0:10:21.716419 +Epoch: 80 Average loss: 109.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1009) +0/69092 Loss: 102.824 +3200/69092 Loss: 108.845 +6400/69092 Loss: 109.087 +9600/69092 Loss: 109.198 +12800/69092 Loss: 110.312 +16000/69092 Loss: 108.578 +19200/69092 Loss: 112.176 +22400/69092 Loss: 111.468 +25600/69092 Loss: 108.801 +28800/69092 Loss: 108.657 +32000/69092 Loss: 110.375 +35200/69092 Loss: 110.812 +38400/69092 Loss: 108.511 +41600/69092 Loss: 109.230 +44800/69092 Loss: 110.693 +48000/69092 Loss: 109.914 +51200/69092 Loss: 110.365 +54400/69092 Loss: 109.667 +57600/69092 Loss: 108.246 +60800/69092 Loss: 110.866 +64000/69092 Loss: 113.160 +67200/69092 Loss: 109.737 +Training time 0:09:36.204113 +Epoch: 81 Average loss: 109.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1010) +0/69092 Loss: 125.301 +3200/69092 Loss: 109.201 +6400/69092 Loss: 110.707 +9600/69092 Loss: 111.091 +12800/69092 Loss: 110.658 +16000/69092 Loss: 109.300 +19200/69092 Loss: 109.023 +22400/69092 Loss: 110.111 +25600/69092 Loss: 110.461 +28800/69092 Loss: 109.384 +32000/69092 Loss: 109.576 +35200/69092 Loss: 108.763 +38400/69092 Loss: 109.176 +41600/69092 Loss: 109.793 +44800/69092 Loss: 109.589 +48000/69092 Loss: 109.708 +51200/69092 Loss: 110.607 +54400/69092 Loss: 109.024 +57600/69092 Loss: 109.359 +60800/69092 Loss: 110.638 +64000/69092 Loss: 108.729 +67200/69092 Loss: 109.922 +Training time 0:09:49.207324 +Epoch: 82 Average loss: 109.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1011) +0/69092 Loss: 119.929 +3200/69092 Loss: 109.484 +6400/69092 Loss: 109.469 +9600/69092 Loss: 110.071 +12800/69092 Loss: 109.051 +16000/69092 Loss: 110.493 +19200/69092 Loss: 108.444 +22400/69092 Loss: 110.623 +25600/69092 Loss: 110.420 +28800/69092 Loss: 109.818 +32000/69092 Loss: 111.495 +35200/69092 Loss: 109.353 +38400/69092 Loss: 109.717 +41600/69092 Loss: 108.863 +44800/69092 Loss: 109.813 +48000/69092 Loss: 110.053 +51200/69092 Loss: 110.612 +54400/69092 Loss: 109.759 +57600/69092 Loss: 109.951 +60800/69092 Loss: 110.782 +64000/69092 Loss: 109.413 +67200/69092 Loss: 109.006 +Training time 0:09:39.852423 +Epoch: 83 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1012) +0/69092 Loss: 111.588 +3200/69092 Loss: 109.416 +6400/69092 Loss: 109.620 +9600/69092 Loss: 109.188 +12800/69092 Loss: 111.654 +16000/69092 Loss: 110.292 +19200/69092 Loss: 109.607 +22400/69092 Loss: 108.442 +25600/69092 Loss: 110.933 +28800/69092 Loss: 109.703 +32000/69092 Loss: 110.197 +35200/69092 Loss: 109.987 +38400/69092 Loss: 110.169 +41600/69092 Loss: 108.781 +44800/69092 Loss: 110.324 +48000/69092 Loss: 110.599 +51200/69092 Loss: 109.695 +54400/69092 Loss: 110.062 +57600/69092 Loss: 109.701 +60800/69092 Loss: 109.461 +64000/69092 Loss: 110.054 +67200/69092 Loss: 107.681 +Training time 0:09:25.142762 +Epoch: 84 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1013) +0/69092 Loss: 109.571 +3200/69092 Loss: 109.031 +6400/69092 Loss: 109.771 +9600/69092 Loss: 110.375 +12800/69092 Loss: 109.589 +16000/69092 Loss: 109.147 +19200/69092 Loss: 109.089 +22400/69092 Loss: 111.161 +25600/69092 Loss: 108.664 +28800/69092 Loss: 111.310 +32000/69092 Loss: 109.502 +35200/69092 Loss: 108.561 +38400/69092 Loss: 110.799 +41600/69092 Loss: 111.300 +44800/69092 Loss: 108.675 +48000/69092 Loss: 109.183 +51200/69092 Loss: 110.578 +54400/69092 Loss: 109.389 +57600/69092 Loss: 109.447 +60800/69092 Loss: 108.056 +64000/69092 Loss: 108.214 +67200/69092 Loss: 111.012 +Training time 0:10:13.994843 +Epoch: 85 Average loss: 109.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1014) +0/69092 Loss: 112.780 +3200/69092 Loss: 108.574 +6400/69092 Loss: 109.885 +9600/69092 Loss: 109.547 +12800/69092 Loss: 110.769 +16000/69092 Loss: 108.954 +19200/69092 Loss: 108.015 +22400/69092 Loss: 109.133 +25600/69092 Loss: 109.829 +28800/69092 Loss: 110.320 +32000/69092 Loss: 110.155 +35200/69092 Loss: 111.465 +38400/69092 Loss: 109.558 +41600/69092 Loss: 109.142 +44800/69092 Loss: 109.076 +48000/69092 Loss: 111.051 +51200/69092 Loss: 110.121 +54400/69092 Loss: 110.278 +57600/69092 Loss: 110.320 +60800/69092 Loss: 109.872 +64000/69092 Loss: 109.726 +67200/69092 Loss: 109.058 +Training time 0:08:56.056529 +Epoch: 86 Average loss: 109.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1015) +0/69092 Loss: 107.917 +3200/69092 Loss: 111.276 +6400/69092 Loss: 110.195 +9600/69092 Loss: 109.494 +12800/69092 Loss: 107.208 +16000/69092 Loss: 109.486 +19200/69092 Loss: 107.497 +22400/69092 Loss: 110.254 +25600/69092 Loss: 110.503 +28800/69092 Loss: 108.188 +32000/69092 Loss: 110.412 +35200/69092 Loss: 108.955 +38400/69092 Loss: 110.508 +41600/69092 Loss: 110.555 +44800/69092 Loss: 110.181 +48000/69092 Loss: 110.595 +51200/69092 Loss: 110.906 +54400/69092 Loss: 108.903 +57600/69092 Loss: 108.610 +60800/69092 Loss: 109.911 +64000/69092 Loss: 110.248 +67200/69092 Loss: 110.041 +Training time 0:09:23.242808 +Epoch: 87 Average loss: 109.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1016) +0/69092 Loss: 113.882 +3200/69092 Loss: 110.454 +6400/69092 Loss: 108.562 +9600/69092 Loss: 108.108 +12800/69092 Loss: 108.810 +16000/69092 Loss: 108.466 +19200/69092 Loss: 112.169 +22400/69092 Loss: 111.085 +25600/69092 Loss: 106.935 +28800/69092 Loss: 108.740 +32000/69092 Loss: 110.504 +35200/69092 Loss: 111.105 +38400/69092 Loss: 110.368 +41600/69092 Loss: 108.585 +44800/69092 Loss: 111.216 +48000/69092 Loss: 108.775 +51200/69092 Loss: 110.337 +54400/69092 Loss: 109.398 +57600/69092 Loss: 111.386 +60800/69092 Loss: 111.226 +64000/69092 Loss: 109.934 +67200/69092 Loss: 109.880 +Training time 0:09:58.719186 +Epoch: 88 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1017) +0/69092 Loss: 121.694 +3200/69092 Loss: 109.305 +6400/69092 Loss: 111.168 +9600/69092 Loss: 108.614 +12800/69092 Loss: 110.991 +16000/69092 Loss: 110.530 +19200/69092 Loss: 109.723 +22400/69092 Loss: 111.063 +25600/69092 Loss: 108.987 +28800/69092 Loss: 110.451 +32000/69092 Loss: 108.577 +35200/69092 Loss: 110.236 +38400/69092 Loss: 108.561 +41600/69092 Loss: 110.788 +44800/69092 Loss: 109.295 +48000/69092 Loss: 109.576 +51200/69092 Loss: 109.856 +54400/69092 Loss: 108.123 +57600/69092 Loss: 110.158 +60800/69092 Loss: 108.592 +64000/69092 Loss: 110.925 +67200/69092 Loss: 110.493 +Training time 0:09:10.414518 +Epoch: 89 Average loss: 109.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1018) +0/69092 Loss: 107.933 +3200/69092 Loss: 109.628 +6400/69092 Loss: 109.562 +9600/69092 Loss: 110.016 +12800/69092 Loss: 109.599 +16000/69092 Loss: 109.338 +19200/69092 Loss: 109.610 +22400/69092 Loss: 108.740 +25600/69092 Loss: 109.552 +28800/69092 Loss: 111.177 +32000/69092 Loss: 111.473 +35200/69092 Loss: 109.037 +38400/69092 Loss: 109.630 +41600/69092 Loss: 110.823 +44800/69092 Loss: 109.891 +48000/69092 Loss: 108.577 +51200/69092 Loss: 109.156 +54400/69092 Loss: 110.907 +57600/69092 Loss: 109.350 +60800/69092 Loss: 109.721 +64000/69092 Loss: 109.935 +67200/69092 Loss: 109.383 +Training time 0:10:01.381803 +Epoch: 90 Average loss: 109.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1019) +0/69092 Loss: 105.488 +3200/69092 Loss: 109.993 +6400/69092 Loss: 108.548 +9600/69092 Loss: 109.358 +12800/69092 Loss: 112.093 +16000/69092 Loss: 109.583 +19200/69092 Loss: 110.206 +22400/69092 Loss: 109.316 +25600/69092 Loss: 110.051 +28800/69092 Loss: 109.831 +32000/69092 Loss: 108.229 +35200/69092 Loss: 110.691 +38400/69092 Loss: 111.654 +41600/69092 Loss: 108.031 +44800/69092 Loss: 109.460 +48000/69092 Loss: 110.520 +51200/69092 Loss: 108.553 +54400/69092 Loss: 110.351 +57600/69092 Loss: 110.559 +60800/69092 Loss: 111.436 +64000/69092 Loss: 107.854 +67200/69092 Loss: 109.612 +Training time 0:09:38.697834 +Epoch: 91 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1020) +0/69092 Loss: 110.511 +3200/69092 Loss: 109.530 +6400/69092 Loss: 109.689 +9600/69092 Loss: 110.565 +12800/69092 Loss: 110.365 +16000/69092 Loss: 108.153 +19200/69092 Loss: 109.011 +22400/69092 Loss: 108.555 +25600/69092 Loss: 110.814 +28800/69092 Loss: 111.417 +32000/69092 Loss: 110.948 +35200/69092 Loss: 110.538 +38400/69092 Loss: 111.402 +41600/69092 Loss: 109.518 +44800/69092 Loss: 110.361 +48000/69092 Loss: 107.544 +51200/69092 Loss: 110.728 +54400/69092 Loss: 108.568 +57600/69092 Loss: 110.643 +60800/69092 Loss: 109.953 +64000/69092 Loss: 109.409 +67200/69092 Loss: 109.593 +Training time 0:09:45.541864 +Epoch: 92 Average loss: 109.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1021) +0/69092 Loss: 111.638 +3200/69092 Loss: 108.933 +6400/69092 Loss: 110.042 +9600/69092 Loss: 109.028 +12800/69092 Loss: 111.549 +16000/69092 Loss: 109.567 +19200/69092 Loss: 111.713 +22400/69092 Loss: 110.468 +25600/69092 Loss: 109.413 +28800/69092 Loss: 110.228 +32000/69092 Loss: 110.307 +35200/69092 Loss: 111.018 +38400/69092 Loss: 109.335 +41600/69092 Loss: 109.025 +44800/69092 Loss: 110.623 +48000/69092 Loss: 109.383 +51200/69092 Loss: 111.323 +54400/69092 Loss: 109.346 +57600/69092 Loss: 110.475 +60800/69092 Loss: 108.192 +64000/69092 Loss: 107.599 +67200/69092 Loss: 109.680 +Training time 0:10:07.670400 +Epoch: 93 Average loss: 109.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1022) +0/69092 Loss: 105.201 +3200/69092 Loss: 109.837 +6400/69092 Loss: 109.129 +9600/69092 Loss: 108.476 +12800/69092 Loss: 110.047 +16000/69092 Loss: 109.114 +19200/69092 Loss: 109.524 +22400/69092 Loss: 109.852 +25600/69092 Loss: 109.728 +28800/69092 Loss: 110.078 +32000/69092 Loss: 109.304 +35200/69092 Loss: 111.493 +38400/69092 Loss: 110.204 +41600/69092 Loss: 110.542 +44800/69092 Loss: 109.919 +48000/69092 Loss: 109.889 +51200/69092 Loss: 110.826 +54400/69092 Loss: 110.454 +57600/69092 Loss: 108.770 +60800/69092 Loss: 110.116 +64000/69092 Loss: 109.556 +67200/69092 Loss: 109.362 +Training time 0:10:03.553217 +Epoch: 94 Average loss: 109.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1023) +0/69092 Loss: 113.933 +3200/69092 Loss: 110.499 +6400/69092 Loss: 110.261 +9600/69092 Loss: 108.775 +12800/69092 Loss: 110.982 +16000/69092 Loss: 109.711 +19200/69092 Loss: 109.999 +22400/69092 Loss: 109.285 +25600/69092 Loss: 109.997 +28800/69092 Loss: 110.283 +32000/69092 Loss: 110.563 +35200/69092 Loss: 109.477 +38400/69092 Loss: 108.412 +41600/69092 Loss: 109.553 +44800/69092 Loss: 111.806 +48000/69092 Loss: 110.547 +51200/69092 Loss: 109.685 +54400/69092 Loss: 109.348 +57600/69092 Loss: 108.907 +60800/69092 Loss: 108.768 +64000/69092 Loss: 108.654 +67200/69092 Loss: 109.497 +Training time 0:09:23.514495 +Epoch: 95 Average loss: 109.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1024) +0/69092 Loss: 114.984 +3200/69092 Loss: 110.199 +6400/69092 Loss: 108.950 +9600/69092 Loss: 110.214 +12800/69092 Loss: 109.753 +16000/69092 Loss: 110.906 +19200/69092 Loss: 111.099 +22400/69092 Loss: 109.504 +25600/69092 Loss: 109.017 +28800/69092 Loss: 109.199 +32000/69092 Loss: 107.374 +35200/69092 Loss: 109.379 +38400/69092 Loss: 111.726 +41600/69092 Loss: 109.420 +44800/69092 Loss: 109.260 +48000/69092 Loss: 109.609 +51200/69092 Loss: 111.393 +54400/69092 Loss: 111.157 +57600/69092 Loss: 109.533 +60800/69092 Loss: 109.482 +64000/69092 Loss: 108.666 +67200/69092 Loss: 109.959 +Training time 0:09:47.455945 +Epoch: 96 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1025) +0/69092 Loss: 100.810 +3200/69092 Loss: 108.833 +6400/69092 Loss: 109.290 +9600/69092 Loss: 108.656 +12800/69092 Loss: 110.082 +16000/69092 Loss: 110.122 +19200/69092 Loss: 109.032 +22400/69092 Loss: 109.852 +25600/69092 Loss: 110.275 +28800/69092 Loss: 108.503 +32000/69092 Loss: 110.206 +35200/69092 Loss: 109.903 +38400/69092 Loss: 109.936 +41600/69092 Loss: 109.757 +44800/69092 Loss: 109.150 +48000/69092 Loss: 110.557 +51200/69092 Loss: 111.725 +54400/69092 Loss: 110.015 +57600/69092 Loss: 110.343 +60800/69092 Loss: 110.034 +64000/69092 Loss: 109.841 +67200/69092 Loss: 109.808 +Training time 0:09:51.370142 +Epoch: 97 Average loss: 109.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1026) +0/69092 Loss: 106.962 +3200/69092 Loss: 112.222 +6400/69092 Loss: 109.474 +9600/69092 Loss: 107.872 +12800/69092 Loss: 109.205 +16000/69092 Loss: 108.734 +19200/69092 Loss: 108.021 +22400/69092 Loss: 109.550 +25600/69092 Loss: 109.325 +28800/69092 Loss: 111.843 +32000/69092 Loss: 109.816 +35200/69092 Loss: 108.455 +38400/69092 Loss: 109.788 +41600/69092 Loss: 112.646 +44800/69092 Loss: 108.881 +48000/69092 Loss: 109.577 +51200/69092 Loss: 108.902 +54400/69092 Loss: 110.166 +57600/69092 Loss: 111.115 +60800/69092 Loss: 108.981 +64000/69092 Loss: 108.492 +67200/69092 Loss: 109.356 +Training time 0:10:01.797407 +Epoch: 98 Average loss: 109.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1027) +0/69092 Loss: 106.664 +3200/69092 Loss: 110.525 +6400/69092 Loss: 109.000 +9600/69092 Loss: 110.405 +12800/69092 Loss: 110.037 +16000/69092 Loss: 110.775 +19200/69092 Loss: 110.007 +22400/69092 Loss: 109.335 +25600/69092 Loss: 108.334 +28800/69092 Loss: 109.193 +32000/69092 Loss: 108.213 +35200/69092 Loss: 109.007 +38400/69092 Loss: 109.760 +41600/69092 Loss: 110.103 +44800/69092 Loss: 112.318 +48000/69092 Loss: 110.290 +51200/69092 Loss: 109.312 +54400/69092 Loss: 110.620 +57600/69092 Loss: 111.824 +60800/69092 Loss: 110.067 +64000/69092 Loss: 109.046 +67200/69092 Loss: 110.197 +Training time 0:09:11.988133 +Epoch: 99 Average loss: 109.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1028) +0/69092 Loss: 117.303 +3200/69092 Loss: 109.878 +6400/69092 Loss: 108.761 +9600/69092 Loss: 109.519 +12800/69092 Loss: 110.341 +16000/69092 Loss: 107.917 +19200/69092 Loss: 109.564 +22400/69092 Loss: 109.096 +25600/69092 Loss: 109.063 +28800/69092 Loss: 109.506 +32000/69092 Loss: 111.093 +35200/69092 Loss: 110.374 +38400/69092 Loss: 109.616 +41600/69092 Loss: 110.997 +44800/69092 Loss: 110.396 +48000/69092 Loss: 110.758 +51200/69092 Loss: 108.895 +54400/69092 Loss: 110.528 +57600/69092 Loss: 109.830 +60800/69092 Loss: 108.950 +64000/69092 Loss: 108.205 +67200/69092 Loss: 111.540 +Training time 0:09:04.067008 +Epoch: 100 Average loss: 109.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1029) +0/69092 Loss: 108.615 +3200/69092 Loss: 109.045 +6400/69092 Loss: 108.881 +9600/69092 Loss: 108.749 +12800/69092 Loss: 110.520 +16000/69092 Loss: 109.214 +19200/69092 Loss: 109.291 +22400/69092 Loss: 110.409 +25600/69092 Loss: 109.112 +28800/69092 Loss: 108.544 +32000/69092 Loss: 110.211 +35200/69092 Loss: 110.129 +38400/69092 Loss: 110.640 +41600/69092 Loss: 110.482 +44800/69092 Loss: 108.933 +48000/69092 Loss: 109.136 +51200/69092 Loss: 111.123 +54400/69092 Loss: 109.426 +57600/69092 Loss: 110.706 +60800/69092 Loss: 109.224 +64000/69092 Loss: 110.943 +67200/69092 Loss: 109.007 +Training time 0:09:22.234257 +Epoch: 101 Average loss: 109.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1030) +0/69092 Loss: 105.161 +3200/69092 Loss: 108.770 +6400/69092 Loss: 112.311 +9600/69092 Loss: 109.034 +12800/69092 Loss: 110.434 +16000/69092 Loss: 108.568 +19200/69092 Loss: 111.517 +22400/69092 Loss: 109.773 +25600/69092 Loss: 109.253 +28800/69092 Loss: 109.825 +32000/69092 Loss: 108.991 +35200/69092 Loss: 109.242 +38400/69092 Loss: 110.725 +41600/69092 Loss: 110.419 +44800/69092 Loss: 109.508 +48000/69092 Loss: 109.679 +51200/69092 Loss: 111.504 +54400/69092 Loss: 110.605 +57600/69092 Loss: 110.122 +60800/69092 Loss: 108.274 +64000/69092 Loss: 108.751 +67200/69092 Loss: 109.882 +Training time 0:09:46.206172 +Epoch: 102 Average loss: 109.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1031) +0/69092 Loss: 104.835 +3200/69092 Loss: 109.757 +6400/69092 Loss: 109.933 +9600/69092 Loss: 109.402 +12800/69092 Loss: 110.283 +16000/69092 Loss: 109.118 +19200/69092 Loss: 110.138 +22400/69092 Loss: 110.425 +25600/69092 Loss: 108.842 +28800/69092 Loss: 108.635 +32000/69092 Loss: 110.231 +35200/69092 Loss: 110.879 +38400/69092 Loss: 108.665 +41600/69092 Loss: 109.739 +44800/69092 Loss: 110.391 +48000/69092 Loss: 110.893 +51200/69092 Loss: 110.228 +54400/69092 Loss: 107.698 +57600/69092 Loss: 109.917 +60800/69092 Loss: 108.718 +64000/69092 Loss: 110.239 +67200/69092 Loss: 110.007 +Training time 0:09:29.587165 +Epoch: 103 Average loss: 109.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1032) +0/69092 Loss: 97.211 +3200/69092 Loss: 108.747 +6400/69092 Loss: 109.319 +9600/69092 Loss: 108.982 +12800/69092 Loss: 109.917 +16000/69092 Loss: 109.414 +19200/69092 Loss: 109.216 +22400/69092 Loss: 109.124 +25600/69092 Loss: 111.577 +28800/69092 Loss: 111.311 +32000/69092 Loss: 109.564 +35200/69092 Loss: 109.876 +38400/69092 Loss: 108.511 +41600/69092 Loss: 111.396 +44800/69092 Loss: 109.346 +48000/69092 Loss: 108.568 +51200/69092 Loss: 110.430 +54400/69092 Loss: 109.548 +57600/69092 Loss: 109.721 +60800/69092 Loss: 110.285 +64000/69092 Loss: 109.206 +67200/69092 Loss: 110.824 +Training time 0:09:36.574227 +Epoch: 104 Average loss: 109.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1033) +0/69092 Loss: 99.769 +3200/69092 Loss: 111.336 +6400/69092 Loss: 109.473 +9600/69092 Loss: 109.632 +12800/69092 Loss: 109.469 +16000/69092 Loss: 108.645 +19200/69092 Loss: 109.888 +22400/69092 Loss: 110.738 +25600/69092 Loss: 110.015 +28800/69092 Loss: 110.484 +32000/69092 Loss: 109.706 +35200/69092 Loss: 109.046 +38400/69092 Loss: 108.697 +41600/69092 Loss: 109.263 +44800/69092 Loss: 108.629 +48000/69092 Loss: 110.666 +51200/69092 Loss: 109.243 +54400/69092 Loss: 110.916 +57600/69092 Loss: 109.194 +60800/69092 Loss: 110.094 +64000/69092 Loss: 108.391 +67200/69092 Loss: 109.667 +Training time 0:09:19.203192 +Epoch: 105 Average loss: 109.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1034) +0/69092 Loss: 100.673 +3200/69092 Loss: 110.440 +6400/69092 Loss: 109.714 +9600/69092 Loss: 108.809 +12800/69092 Loss: 109.203 +16000/69092 Loss: 108.550 +19200/69092 Loss: 109.205 +22400/69092 Loss: 109.854 +25600/69092 Loss: 110.670 +28800/69092 Loss: 109.514 +32000/69092 Loss: 109.174 +35200/69092 Loss: 107.817 +38400/69092 Loss: 109.425 +41600/69092 Loss: 109.788 +44800/69092 Loss: 111.551 +48000/69092 Loss: 108.902 +51200/69092 Loss: 109.202 +54400/69092 Loss: 111.008 +57600/69092 Loss: 111.398 +60800/69092 Loss: 108.660 +64000/69092 Loss: 110.533 +67200/69092 Loss: 111.801 +Training time 0:09:32.195764 +Epoch: 106 Average loss: 109.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1035) +0/69092 Loss: 107.852 +3200/69092 Loss: 109.844 +6400/69092 Loss: 108.862 +9600/69092 Loss: 109.532 +12800/69092 Loss: 110.358 +16000/69092 Loss: 110.058 +19200/69092 Loss: 109.570 +22400/69092 Loss: 109.834 +25600/69092 Loss: 109.349 +28800/69092 Loss: 109.583 +32000/69092 Loss: 110.571 +35200/69092 Loss: 110.343 +38400/69092 Loss: 110.389 +41600/69092 Loss: 108.817 +44800/69092 Loss: 109.810 +48000/69092 Loss: 110.297 +51200/69092 Loss: 109.093 +54400/69092 Loss: 110.081 +57600/69092 Loss: 108.565 +60800/69092 Loss: 107.888 +64000/69092 Loss: 112.007 +67200/69092 Loss: 108.203 +Training time 0:09:48.049972 +Epoch: 107 Average loss: 109.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1036) +0/69092 Loss: 108.961 +3200/69092 Loss: 109.847 +6400/69092 Loss: 107.595 +9600/69092 Loss: 108.948 +12800/69092 Loss: 109.602 +16000/69092 Loss: 109.808 +19200/69092 Loss: 110.749 +22400/69092 Loss: 107.729 +25600/69092 Loss: 111.367 +28800/69092 Loss: 109.831 +32000/69092 Loss: 110.410 +35200/69092 Loss: 111.335 +38400/69092 Loss: 108.909 +41600/69092 Loss: 110.873 +44800/69092 Loss: 109.005 +48000/69092 Loss: 109.924 +51200/69092 Loss: 108.385 +54400/69092 Loss: 109.272 +57600/69092 Loss: 108.737 +60800/69092 Loss: 110.283 +64000/69092 Loss: 110.197 +67200/69092 Loss: 109.082 +Training time 0:09:25.813362 +Epoch: 108 Average loss: 109.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1037) +0/69092 Loss: 104.737 +3200/69092 Loss: 107.895 +6400/69092 Loss: 110.195 +9600/69092 Loss: 110.515 +12800/69092 Loss: 109.102 +16000/69092 Loss: 109.259 +19200/69092 Loss: 110.609 +22400/69092 Loss: 112.155 +25600/69092 Loss: 110.839 +28800/69092 Loss: 110.589 +32000/69092 Loss: 111.350 +35200/69092 Loss: 110.317 +38400/69092 Loss: 109.830 +41600/69092 Loss: 107.723 +44800/69092 Loss: 108.015 +48000/69092 Loss: 109.564 +51200/69092 Loss: 109.720 +54400/69092 Loss: 108.484 +57600/69092 Loss: 108.624 +60800/69092 Loss: 109.319 +64000/69092 Loss: 108.665 +67200/69092 Loss: 110.095 +Training time 0:09:13.768742 +Epoch: 109 Average loss: 109.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1038) +0/69092 Loss: 118.631 +3200/69092 Loss: 110.008 +6400/69092 Loss: 108.389 +9600/69092 Loss: 108.378 +12800/69092 Loss: 109.866 +16000/69092 Loss: 108.258 +19200/69092 Loss: 110.421 +22400/69092 Loss: 110.000 +25600/69092 Loss: 110.764 +28800/69092 Loss: 107.693 +32000/69092 Loss: 110.977 +35200/69092 Loss: 110.708 +38400/69092 Loss: 109.320 +41600/69092 Loss: 110.031 +44800/69092 Loss: 108.891 +48000/69092 Loss: 110.133 +51200/69092 Loss: 109.764 +54400/69092 Loss: 110.949 +57600/69092 Loss: 108.944 +60800/69092 Loss: 109.427 +64000/69092 Loss: 108.573 +67200/69092 Loss: 111.784 +Training time 0:09:28.379127 +Epoch: 110 Average loss: 109.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1039) +0/69092 Loss: 109.007 +3200/69092 Loss: 109.353 +6400/69092 Loss: 109.569 +9600/69092 Loss: 111.380 +12800/69092 Loss: 109.205 +16000/69092 Loss: 109.867 +19200/69092 Loss: 108.848 +22400/69092 Loss: 110.716 +25600/69092 Loss: 110.442 +28800/69092 Loss: 107.853 +32000/69092 Loss: 108.066 +35200/69092 Loss: 109.971 +38400/69092 Loss: 111.199 +41600/69092 Loss: 108.968 +44800/69092 Loss: 109.452 +48000/69092 Loss: 109.601 +51200/69092 Loss: 111.401 +54400/69092 Loss: 110.805 +57600/69092 Loss: 110.561 +60800/69092 Loss: 110.180 +64000/69092 Loss: 109.264 +67200/69092 Loss: 109.635 +Training time 0:09:14.259632 +Epoch: 111 Average loss: 109.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1040) +0/69092 Loss: 107.270 +3200/69092 Loss: 110.267 +6400/69092 Loss: 108.279 +9600/69092 Loss: 109.548 +12800/69092 Loss: 110.586 +16000/69092 Loss: 111.115 +19200/69092 Loss: 110.434 +22400/69092 Loss: 109.173 +25600/69092 Loss: 109.930 +28800/69092 Loss: 109.796 +32000/69092 Loss: 109.011 +35200/69092 Loss: 109.599 +38400/69092 Loss: 109.210 +41600/69092 Loss: 109.517 +44800/69092 Loss: 108.401 +48000/69092 Loss: 109.338 +51200/69092 Loss: 108.944 +54400/69092 Loss: 110.206 +57600/69092 Loss: 108.580 +60800/69092 Loss: 110.788 +64000/69092 Loss: 110.492 +67200/69092 Loss: 109.671 +Training time 0:10:05.020596 +Epoch: 112 Average loss: 109.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1041) +0/69092 Loss: 103.943 +3200/69092 Loss: 109.070 +6400/69092 Loss: 110.108 +9600/69092 Loss: 108.602 +12800/69092 Loss: 108.847 +16000/69092 Loss: 110.279 +19200/69092 Loss: 110.721 +22400/69092 Loss: 108.053 +25600/69092 Loss: 109.302 +28800/69092 Loss: 108.853 +32000/69092 Loss: 111.674 +35200/69092 Loss: 110.295 +38400/69092 Loss: 110.385 +41600/69092 Loss: 109.194 +44800/69092 Loss: 110.531 +48000/69092 Loss: 108.591 +51200/69092 Loss: 110.524 +54400/69092 Loss: 110.434 +57600/69092 Loss: 109.951 +60800/69092 Loss: 109.009 +64000/69092 Loss: 108.467 +67200/69092 Loss: 110.865 +Training time 0:10:05.144603 +Epoch: 113 Average loss: 109.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1042) +0/69092 Loss: 117.786 +3200/69092 Loss: 109.952 +6400/69092 Loss: 109.887 +9600/69092 Loss: 108.840 +12800/69092 Loss: 110.730 +16000/69092 Loss: 110.473 +19200/69092 Loss: 108.216 +22400/69092 Loss: 110.246 +25600/69092 Loss: 109.362 +28800/69092 Loss: 109.157 +32000/69092 Loss: 110.033 +35200/69092 Loss: 109.544 +38400/69092 Loss: 111.425 +41600/69092 Loss: 110.305 +44800/69092 Loss: 108.535 +48000/69092 Loss: 109.595 +51200/69092 Loss: 110.140 +54400/69092 Loss: 108.731 +57600/69092 Loss: 108.746 +60800/69092 Loss: 109.777 +64000/69092 Loss: 109.522 +67200/69092 Loss: 110.459 +Training time 0:09:33.808219 +Epoch: 114 Average loss: 109.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1043) +0/69092 Loss: 101.102 +3200/69092 Loss: 109.834 +6400/69092 Loss: 109.711 +9600/69092 Loss: 107.910 +12800/69092 Loss: 110.702 +16000/69092 Loss: 109.310 +19200/69092 Loss: 109.566 +22400/69092 Loss: 110.473 +25600/69092 Loss: 110.729 +28800/69092 Loss: 108.766 +32000/69092 Loss: 109.291 +35200/69092 Loss: 110.111 +38400/69092 Loss: 109.225 +41600/69092 Loss: 108.910 +44800/69092 Loss: 111.090 +48000/69092 Loss: 110.506 +51200/69092 Loss: 111.418 +54400/69092 Loss: 109.853 +57600/69092 Loss: 109.346 +60800/69092 Loss: 108.679 +64000/69092 Loss: 108.943 +67200/69092 Loss: 109.387 +Training time 0:09:36.025684 +Epoch: 115 Average loss: 109.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1044) +0/69092 Loss: 109.994 +3200/69092 Loss: 111.022 +6400/69092 Loss: 111.936 +9600/69092 Loss: 109.127 +12800/69092 Loss: 108.844 +16000/69092 Loss: 110.885 +19200/69092 Loss: 108.063 +22400/69092 Loss: 108.094 +25600/69092 Loss: 109.222 +28800/69092 Loss: 109.290 +32000/69092 Loss: 110.895 +35200/69092 Loss: 108.503 +38400/69092 Loss: 109.722 +41600/69092 Loss: 109.713 +44800/69092 Loss: 107.675 +48000/69092 Loss: 109.993 +51200/69092 Loss: 110.508 +54400/69092 Loss: 109.303 +57600/69092 Loss: 110.280 +60800/69092 Loss: 109.654 +64000/69092 Loss: 109.710 +67200/69092 Loss: 111.324 +Training time 0:09:28.185711 +Epoch: 116 Average loss: 109.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1045) +0/69092 Loss: 111.285 +3200/69092 Loss: 107.845 +6400/69092 Loss: 110.331 +9600/69092 Loss: 108.492 +12800/69092 Loss: 108.827 +16000/69092 Loss: 109.325 +19200/69092 Loss: 111.362 +22400/69092 Loss: 110.073 +25600/69092 Loss: 110.690 +28800/69092 Loss: 109.958 +32000/69092 Loss: 109.319 +35200/69092 Loss: 109.035 +38400/69092 Loss: 110.854 +41600/69092 Loss: 108.351 +44800/69092 Loss: 110.231 +48000/69092 Loss: 110.652 +51200/69092 Loss: 108.416 +54400/69092 Loss: 110.815 +57600/69092 Loss: 111.250 +60800/69092 Loss: 108.693 +64000/69092 Loss: 109.240 +67200/69092 Loss: 110.689 +Training time 0:09:52.619903 +Epoch: 117 Average loss: 109.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1046) +0/69092 Loss: 122.277 +3200/69092 Loss: 108.935 +6400/69092 Loss: 110.610 +9600/69092 Loss: 109.581 +12800/69092 Loss: 109.249 +16000/69092 Loss: 110.880 +19200/69092 Loss: 107.687 +22400/69092 Loss: 109.419 +25600/69092 Loss: 108.148 +28800/69092 Loss: 109.469 +32000/69092 Loss: 111.104 +35200/69092 Loss: 109.794 +38400/69092 Loss: 110.430 +41600/69092 Loss: 109.881 +44800/69092 Loss: 111.100 +48000/69092 Loss: 109.124 +51200/69092 Loss: 109.265 +54400/69092 Loss: 110.166 +57600/69092 Loss: 109.763 +60800/69092 Loss: 110.624 +64000/69092 Loss: 110.479 +67200/69092 Loss: 110.636 +Training time 0:10:10.514988 +Epoch: 118 Average loss: 109.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1047) +0/69092 Loss: 118.996 +3200/69092 Loss: 109.490 +6400/69092 Loss: 109.521 +9600/69092 Loss: 109.954 +12800/69092 Loss: 108.905 +16000/69092 Loss: 111.313 +19200/69092 Loss: 108.448 +22400/69092 Loss: 110.653 +25600/69092 Loss: 109.203 +28800/69092 Loss: 110.807 +32000/69092 Loss: 108.112 +35200/69092 Loss: 109.618 +38400/69092 Loss: 110.085 +41600/69092 Loss: 108.057 +44800/69092 Loss: 110.644 +48000/69092 Loss: 109.436 +51200/69092 Loss: 109.163 +54400/69092 Loss: 110.263 +57600/69092 Loss: 109.872 +60800/69092 Loss: 111.295 +64000/69092 Loss: 110.021 +67200/69092 Loss: 109.977 +Training time 0:09:47.798493 +Epoch: 119 Average loss: 109.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1048) +0/69092 Loss: 97.597 +3200/69092 Loss: 110.587 +6400/69092 Loss: 108.317 +9600/69092 Loss: 108.556 +12800/69092 Loss: 110.277 +16000/69092 Loss: 111.070 +19200/69092 Loss: 109.211 +22400/69092 Loss: 110.353 +25600/69092 Loss: 108.452 +28800/69092 Loss: 108.820 +32000/69092 Loss: 110.477 +35200/69092 Loss: 111.591 +38400/69092 Loss: 108.414 +41600/69092 Loss: 110.235 +44800/69092 Loss: 109.828 +48000/69092 Loss: 109.331 +51200/69092 Loss: 109.440 +54400/69092 Loss: 108.387 +57600/69092 Loss: 111.328 +60800/69092 Loss: 108.748 +64000/69092 Loss: 111.560 +67200/69092 Loss: 111.450 +Training time 0:09:50.345036 +Epoch: 120 Average loss: 109.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1049) +0/69092 Loss: 107.182 +3200/69092 Loss: 108.845 +6400/69092 Loss: 108.401 +9600/69092 Loss: 110.517 +12800/69092 Loss: 111.282 +16000/69092 Loss: 109.767 +19200/69092 Loss: 110.072 +22400/69092 Loss: 108.609 +25600/69092 Loss: 109.492 +28800/69092 Loss: 108.905 +32000/69092 Loss: 109.233 +35200/69092 Loss: 110.270 +38400/69092 Loss: 110.617 +41600/69092 Loss: 107.933 +44800/69092 Loss: 109.198 +48000/69092 Loss: 109.188 +51200/69092 Loss: 110.372 +54400/69092 Loss: 109.893 +57600/69092 Loss: 108.692 +60800/69092 Loss: 111.128 +64000/69092 Loss: 108.969 +67200/69092 Loss: 110.155 +Training time 0:09:33.383641 +Epoch: 121 Average loss: 109.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1050) +0/69092 Loss: 107.561 +3200/69092 Loss: 109.063 +6400/69092 Loss: 108.674 +9600/69092 Loss: 111.323 +12800/69092 Loss: 111.997 +16000/69092 Loss: 108.568 +19200/69092 Loss: 110.808 +22400/69092 Loss: 109.206 +25600/69092 Loss: 110.102 +28800/69092 Loss: 110.955 +32000/69092 Loss: 109.058 +35200/69092 Loss: 110.528 +38400/69092 Loss: 110.501 +41600/69092 Loss: 108.741 +44800/69092 Loss: 111.336 +48000/69092 Loss: 109.881 +51200/69092 Loss: 109.347 +54400/69092 Loss: 110.004 +57600/69092 Loss: 107.737 +60800/69092 Loss: 108.618 +64000/69092 Loss: 111.482 +67200/69092 Loss: 109.229 +Training time 0:09:36.757163 +Epoch: 122 Average loss: 109.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1051) +0/69092 Loss: 112.618 +3200/69092 Loss: 109.690 +6400/69092 Loss: 109.943 +9600/69092 Loss: 109.097 +12800/69092 Loss: 110.720 +16000/69092 Loss: 108.858 +19200/69092 Loss: 109.588 +22400/69092 Loss: 109.564 +25600/69092 Loss: 109.486 +28800/69092 Loss: 110.333 +32000/69092 Loss: 108.842 +35200/69092 Loss: 108.787 +38400/69092 Loss: 110.222 +41600/69092 Loss: 110.047 +44800/69092 Loss: 111.034 +48000/69092 Loss: 109.025 +51200/69092 Loss: 110.521 +54400/69092 Loss: 110.585 +57600/69092 Loss: 109.221 +60800/69092 Loss: 109.705 +64000/69092 Loss: 110.547 +67200/69092 Loss: 111.281 +Training time 0:08:54.410304 +Epoch: 123 Average loss: 109.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1052) +0/69092 Loss: 105.133 +3200/69092 Loss: 109.048 +6400/69092 Loss: 109.221 +9600/69092 Loss: 108.922 +12800/69092 Loss: 109.301 +16000/69092 Loss: 110.753 +19200/69092 Loss: 109.936 +22400/69092 Loss: 108.969 +25600/69092 Loss: 110.502 +28800/69092 Loss: 109.627 +32000/69092 Loss: 108.977 +35200/69092 Loss: 109.344 +38400/69092 Loss: 109.291 +41600/69092 Loss: 109.545 +44800/69092 Loss: 110.059 +48000/69092 Loss: 110.288 +51200/69092 Loss: 109.768 +54400/69092 Loss: 109.012 +57600/69092 Loss: 110.516 +60800/69092 Loss: 110.924 +64000/69092 Loss: 110.367 +67200/69092 Loss: 108.457 +Training time 0:09:36.806168 +Epoch: 124 Average loss: 109.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1053) +0/69092 Loss: 114.895 +3200/69092 Loss: 109.157 +6400/69092 Loss: 110.336 +9600/69092 Loss: 109.060 +12800/69092 Loss: 109.916 +16000/69092 Loss: 109.966 +19200/69092 Loss: 110.500 +22400/69092 Loss: 108.774 +25600/69092 Loss: 109.018 +28800/69092 Loss: 109.723 +32000/69092 Loss: 108.612 +35200/69092 Loss: 110.469 +38400/69092 Loss: 110.947 +41600/69092 Loss: 108.073 +44800/69092 Loss: 109.292 +48000/69092 Loss: 108.629 +51200/69092 Loss: 110.383 +54400/69092 Loss: 109.498 +57600/69092 Loss: 108.565 +60800/69092 Loss: 111.926 +64000/69092 Loss: 109.617 +67200/69092 Loss: 110.363 +Training time 0:09:38.875681 +Epoch: 125 Average loss: 109.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1054) +0/69092 Loss: 106.338 +3200/69092 Loss: 109.310 +6400/69092 Loss: 111.285 +9600/69092 Loss: 110.067 +12800/69092 Loss: 108.286 +16000/69092 Loss: 109.110 +19200/69092 Loss: 108.005 +22400/69092 Loss: 109.809 +25600/69092 Loss: 108.997 +28800/69092 Loss: 110.646 +32000/69092 Loss: 108.205 +35200/69092 Loss: 108.792 +38400/69092 Loss: 109.460 +41600/69092 Loss: 111.838 +44800/69092 Loss: 109.803 +48000/69092 Loss: 110.221 +51200/69092 Loss: 110.843 +54400/69092 Loss: 109.890 +57600/69092 Loss: 110.155 +60800/69092 Loss: 110.504 +64000/69092 Loss: 108.333 +67200/69092 Loss: 108.294 +Training time 0:09:22.440934 +Epoch: 126 Average loss: 109.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1055) +0/69092 Loss: 113.913 +3200/69092 Loss: 109.517 +6400/69092 Loss: 109.728 +9600/69092 Loss: 110.323 +12800/69092 Loss: 109.655 +16000/69092 Loss: 108.962 +19200/69092 Loss: 108.562 +22400/69092 Loss: 108.490 +25600/69092 Loss: 109.994 +28800/69092 Loss: 110.248 +32000/69092 Loss: 109.974 +35200/69092 Loss: 109.774 +38400/69092 Loss: 108.949 +41600/69092 Loss: 109.853 +44800/69092 Loss: 109.374 +48000/69092 Loss: 112.275 +51200/69092 Loss: 110.004 +54400/69092 Loss: 110.049 +57600/69092 Loss: 110.466 +60800/69092 Loss: 108.552 +64000/69092 Loss: 108.873 +67200/69092 Loss: 109.560 +Training time 0:09:37.063552 +Epoch: 127 Average loss: 109.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1056) +0/69092 Loss: 117.734 +3200/69092 Loss: 109.726 +6400/69092 Loss: 109.372 +9600/69092 Loss: 109.028 +12800/69092 Loss: 111.126 +16000/69092 Loss: 109.814 +19200/69092 Loss: 109.864 +22400/69092 Loss: 109.095 +25600/69092 Loss: 110.321 +28800/69092 Loss: 109.822 +32000/69092 Loss: 108.665 +35200/69092 Loss: 110.830 +38400/69092 Loss: 108.969 +41600/69092 Loss: 109.819 +44800/69092 Loss: 110.208 +48000/69092 Loss: 107.401 +51200/69092 Loss: 108.834 +54400/69092 Loss: 111.112 +57600/69092 Loss: 111.229 +60800/69092 Loss: 110.035 +64000/69092 Loss: 109.469 +67200/69092 Loss: 109.512 +Training time 0:09:58.360008 +Epoch: 128 Average loss: 109.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1057) +0/69092 Loss: 110.206 +3200/69092 Loss: 109.687 +6400/69092 Loss: 109.535 +9600/69092 Loss: 108.924 +12800/69092 Loss: 109.477 +16000/69092 Loss: 109.692 +19200/69092 Loss: 109.597 +22400/69092 Loss: 109.446 +25600/69092 Loss: 108.950 +28800/69092 Loss: 110.178 +32000/69092 Loss: 110.556 +35200/69092 Loss: 108.899 +38400/69092 Loss: 109.801 +41600/69092 Loss: 109.923 +44800/69092 Loss: 110.374 +48000/69092 Loss: 110.574 +51200/69092 Loss: 109.992 +54400/69092 Loss: 109.901 +57600/69092 Loss: 108.305 +60800/69092 Loss: 111.519 +64000/69092 Loss: 110.861 +67200/69092 Loss: 108.387 +Training time 0:09:27.109565 +Epoch: 129 Average loss: 109.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1058) +0/69092 Loss: 115.793 +3200/69092 Loss: 109.019 +6400/69092 Loss: 109.807 +9600/69092 Loss: 108.722 +12800/69092 Loss: 109.212 +16000/69092 Loss: 111.998 +19200/69092 Loss: 108.485 +22400/69092 Loss: 110.602 +25600/69092 Loss: 110.121 +28800/69092 Loss: 108.439 +32000/69092 Loss: 109.692 +35200/69092 Loss: 109.507 +38400/69092 Loss: 109.034 +41600/69092 Loss: 111.004 +44800/69092 Loss: 110.019 +48000/69092 Loss: 107.646 +51200/69092 Loss: 108.868 +54400/69092 Loss: 110.308 +57600/69092 Loss: 109.209 +60800/69092 Loss: 110.329 +64000/69092 Loss: 110.542 +67200/69092 Loss: 109.214 +Training time 0:09:25.586374 +Epoch: 130 Average loss: 109.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1059) +0/69092 Loss: 117.831 +3200/69092 Loss: 108.790 +6400/69092 Loss: 108.638 +9600/69092 Loss: 111.646 +12800/69092 Loss: 110.365 +16000/69092 Loss: 110.225 +19200/69092 Loss: 109.508 +22400/69092 Loss: 107.939 +25600/69092 Loss: 110.038 +28800/69092 Loss: 110.083 +32000/69092 Loss: 111.168 +35200/69092 Loss: 110.116 +38400/69092 Loss: 109.007 +41600/69092 Loss: 110.076 +44800/69092 Loss: 110.069 +48000/69092 Loss: 110.077 +51200/69092 Loss: 110.483 +54400/69092 Loss: 108.907 +57600/69092 Loss: 110.974 +60800/69092 Loss: 108.696 +64000/69092 Loss: 110.101 +67200/69092 Loss: 108.844 +Training time 0:09:43.523422 +Epoch: 131 Average loss: 109.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 1060) +0/69092 Loss: 105.153 +3200/69092 Loss: 110.586 +6400/69092 Loss: 108.532 +9600/69092 Loss: 109.132 +12800/69092 Loss: 107.735 +16000/69092 Loss: 108.301 +19200/69092 Loss: 108.845 +22400/69092 Loss: 108.643 +25600/69092 Loss: 109.032 +28800/69092 Loss: 110.030 +32000/69092 Loss: 108.722 +35200/69092 Loss: 108.866 diff --git a/OAR.2073649.stderr b/OAR.2073649.stderr new file mode 100644 index 0000000000000000000000000000000000000000..5dfa2d961718d9360fe6febaab7de3ccdf5b6ec3 --- /dev/null +++ b/OAR.2073649.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 17:10:05] Job 2073649 KILLED ## diff --git a/OAR.2073649.stdout b/OAR.2073649.stdout new file mode 100644 index 0000000000000000000000000000000000000000..b9e80b1e04aa2c957542a9c11daf78f0dab1c606 --- /dev/null +++ b/OAR.2073649.stdout @@ -0,0 +1,3951 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce GTX 1080 Ti +GeForce GTX 1080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 769185 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last (iter 418)' +0/69092 Loss: 143.183 +3200/69092 Loss: 147.618 +6400/69092 Loss: 147.473 +9600/69092 Loss: 148.717 +12800/69092 Loss: 147.245 +16000/69092 Loss: 148.120 +19200/69092 Loss: 147.159 +22400/69092 Loss: 148.509 +25600/69092 Loss: 148.512 +28800/69092 Loss: 149.219 +32000/69092 Loss: 149.731 +35200/69092 Loss: 148.253 +38400/69092 Loss: 148.995 +41600/69092 Loss: 146.679 +44800/69092 Loss: 148.135 +48000/69092 Loss: 145.226 +51200/69092 Loss: 148.689 +54400/69092 Loss: 149.348 +57600/69092 Loss: 147.100 +60800/69092 Loss: 149.646 +64000/69092 Loss: 148.485 +67200/69092 Loss: 148.533 +Training time 0:11:39.698038 +Epoch: 1 Average loss: 148.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 419) +0/69092 Loss: 142.137 +3200/69092 Loss: 149.179 +6400/69092 Loss: 147.509 +9600/69092 Loss: 148.427 +12800/69092 Loss: 148.778 +16000/69092 Loss: 148.029 +19200/69092 Loss: 149.429 +22400/69092 Loss: 146.531 +25600/69092 Loss: 148.761 +28800/69092 Loss: 151.364 +32000/69092 Loss: 146.891 +35200/69092 Loss: 148.280 +38400/69092 Loss: 146.444 +41600/69092 Loss: 147.072 +44800/69092 Loss: 148.196 +48000/69092 Loss: 147.938 +51200/69092 Loss: 148.821 +54400/69092 Loss: 148.115 +57600/69092 Loss: 149.511 +60800/69092 Loss: 146.412 +64000/69092 Loss: 151.522 +67200/69092 Loss: 146.447 +Training time 0:07:54.532880 +Epoch: 2 Average loss: 148.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 420) +0/69092 Loss: 151.972 +3200/69092 Loss: 147.955 +6400/69092 Loss: 148.205 +9600/69092 Loss: 150.636 +12800/69092 Loss: 148.021 +16000/69092 Loss: 149.129 +19200/69092 Loss: 146.083 +22400/69092 Loss: 148.885 +25600/69092 Loss: 149.544 +28800/69092 Loss: 149.156 +32000/69092 Loss: 146.294 +35200/69092 Loss: 147.960 +38400/69092 Loss: 146.559 +41600/69092 Loss: 147.397 +44800/69092 Loss: 148.683 +48000/69092 Loss: 150.809 +51200/69092 Loss: 150.111 +54400/69092 Loss: 147.976 +57600/69092 Loss: 145.551 +60800/69092 Loss: 149.531 +64000/69092 Loss: 150.106 +67200/69092 Loss: 147.041 +Training time 0:08:10.046653 +Epoch: 3 Average loss: 148.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 421) +0/69092 Loss: 141.968 +3200/69092 Loss: 147.410 +6400/69092 Loss: 147.605 +9600/69092 Loss: 147.441 +12800/69092 Loss: 147.353 +16000/69092 Loss: 148.181 +19200/69092 Loss: 148.599 +22400/69092 Loss: 146.185 +25600/69092 Loss: 148.612 +28800/69092 Loss: 148.729 +32000/69092 Loss: 147.882 +35200/69092 Loss: 149.332 +38400/69092 Loss: 146.653 +41600/69092 Loss: 147.763 +44800/69092 Loss: 149.313 +48000/69092 Loss: 147.069 +51200/69092 Loss: 149.832 +54400/69092 Loss: 151.244 +57600/69092 Loss: 148.217 +60800/69092 Loss: 146.018 +64000/69092 Loss: 148.313 +67200/69092 Loss: 147.461 +Training time 0:07:55.915490 +Epoch: 4 Average loss: 148.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 422) +0/69092 Loss: 128.724 +3200/69092 Loss: 148.896 +6400/69092 Loss: 148.732 +9600/69092 Loss: 146.904 +12800/69092 Loss: 148.209 +16000/69092 Loss: 148.359 +19200/69092 Loss: 151.128 +22400/69092 Loss: 150.880 +25600/69092 Loss: 146.344 +28800/69092 Loss: 145.558 +32000/69092 Loss: 149.491 +35200/69092 Loss: 147.168 +38400/69092 Loss: 148.340 +41600/69092 Loss: 149.432 +44800/69092 Loss: 148.780 +48000/69092 Loss: 149.556 +51200/69092 Loss: 148.414 +54400/69092 Loss: 149.195 +57600/69092 Loss: 148.268 +60800/69092 Loss: 149.315 +64000/69092 Loss: 146.709 +67200/69092 Loss: 148.883 +Training time 0:07:59.023014 +Epoch: 5 Average loss: 148.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 423) +0/69092 Loss: 145.389 +3200/69092 Loss: 147.523 +6400/69092 Loss: 147.467 +9600/69092 Loss: 147.423 +12800/69092 Loss: 145.648 +16000/69092 Loss: 148.186 +19200/69092 Loss: 147.821 +22400/69092 Loss: 148.511 +25600/69092 Loss: 147.849 +28800/69092 Loss: 148.381 +32000/69092 Loss: 147.617 +35200/69092 Loss: 148.262 +38400/69092 Loss: 150.722 +41600/69092 Loss: 149.193 +44800/69092 Loss: 147.609 +48000/69092 Loss: 149.602 +51200/69092 Loss: 151.075 +54400/69092 Loss: 147.856 +57600/69092 Loss: 148.833 +60800/69092 Loss: 147.634 +64000/69092 Loss: 150.236 +67200/69092 Loss: 146.731 +Training time 0:08:05.637128 +Epoch: 6 Average loss: 148.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 424) +0/69092 Loss: 156.154 +3200/69092 Loss: 147.157 +6400/69092 Loss: 148.065 +9600/69092 Loss: 148.416 +12800/69092 Loss: 149.543 +16000/69092 Loss: 150.355 +19200/69092 Loss: 148.574 +22400/69092 Loss: 148.524 +25600/69092 Loss: 148.022 +28800/69092 Loss: 146.403 +32000/69092 Loss: 151.165 +35200/69092 Loss: 146.379 +38400/69092 Loss: 148.845 +41600/69092 Loss: 148.021 +44800/69092 Loss: 145.643 +48000/69092 Loss: 146.532 +51200/69092 Loss: 147.306 +54400/69092 Loss: 148.737 +57600/69092 Loss: 147.937 +60800/69092 Loss: 147.891 +64000/69092 Loss: 148.591 +67200/69092 Loss: 149.620 +Training time 0:07:56.883112 +Epoch: 7 Average loss: 148.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 425) +0/69092 Loss: 145.754 +3200/69092 Loss: 147.945 +6400/69092 Loss: 146.160 +9600/69092 Loss: 149.960 +12800/69092 Loss: 145.591 +16000/69092 Loss: 147.812 +19200/69092 Loss: 151.044 +22400/69092 Loss: 148.629 +25600/69092 Loss: 147.459 +28800/69092 Loss: 150.248 +32000/69092 Loss: 146.320 +35200/69092 Loss: 150.205 +38400/69092 Loss: 149.483 +41600/69092 Loss: 146.850 +44800/69092 Loss: 148.456 +48000/69092 Loss: 147.206 +51200/69092 Loss: 144.131 +54400/69092 Loss: 148.001 +57600/69092 Loss: 145.962 +60800/69092 Loss: 150.821 +64000/69092 Loss: 150.089 +67200/69092 Loss: 149.186 +Training time 0:08:14.918053 +Epoch: 8 Average loss: 148.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 426) +0/69092 Loss: 146.375 +3200/69092 Loss: 146.793 +6400/69092 Loss: 147.296 +9600/69092 Loss: 149.391 +12800/69092 Loss: 148.266 +16000/69092 Loss: 146.895 +19200/69092 Loss: 148.269 +22400/69092 Loss: 144.834 +25600/69092 Loss: 146.757 +28800/69092 Loss: 149.730 +32000/69092 Loss: 147.362 +35200/69092 Loss: 151.049 +38400/69092 Loss: 148.387 +41600/69092 Loss: 146.074 +44800/69092 Loss: 150.241 +48000/69092 Loss: 151.275 +51200/69092 Loss: 148.801 +54400/69092 Loss: 147.876 +57600/69092 Loss: 148.990 +60800/69092 Loss: 148.252 +64000/69092 Loss: 149.032 +67200/69092 Loss: 146.944 +Training time 0:08:08.954540 +Epoch: 9 Average loss: 148.20 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 427) +0/69092 Loss: 155.638 +3200/69092 Loss: 148.712 +6400/69092 Loss: 148.019 +9600/69092 Loss: 149.487 +12800/69092 Loss: 148.484 +16000/69092 Loss: 146.584 +19200/69092 Loss: 148.630 +22400/69092 Loss: 148.356 +25600/69092 Loss: 151.760 +28800/69092 Loss: 148.265 +32000/69092 Loss: 146.722 +35200/69092 Loss: 147.526 +38400/69092 Loss: 147.863 +41600/69092 Loss: 148.233 +44800/69092 Loss: 150.088 +48000/69092 Loss: 146.819 +51200/69092 Loss: 148.843 +54400/69092 Loss: 148.068 +57600/69092 Loss: 149.204 +60800/69092 Loss: 150.213 +64000/69092 Loss: 147.274 +67200/69092 Loss: 149.855 +Training time 0:07:56.412687 +Epoch: 10 Average loss: 148.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 428) +0/69092 Loss: 156.538 +3200/69092 Loss: 148.370 +6400/69092 Loss: 148.031 +9600/69092 Loss: 150.001 +12800/69092 Loss: 149.847 +16000/69092 Loss: 148.283 +19200/69092 Loss: 148.921 +22400/69092 Loss: 146.693 +25600/69092 Loss: 147.832 +28800/69092 Loss: 148.380 +32000/69092 Loss: 148.320 +35200/69092 Loss: 150.534 +38400/69092 Loss: 149.614 +41600/69092 Loss: 147.369 +44800/69092 Loss: 147.269 +48000/69092 Loss: 148.624 +51200/69092 Loss: 146.261 +54400/69092 Loss: 148.377 +57600/69092 Loss: 149.715 +60800/69092 Loss: 150.184 +64000/69092 Loss: 146.827 +67200/69092 Loss: 146.942 +Training time 0:08:17.455823 +Epoch: 11 Average loss: 148.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 429) +0/69092 Loss: 135.437 +3200/69092 Loss: 145.795 +6400/69092 Loss: 149.987 +9600/69092 Loss: 147.563 +12800/69092 Loss: 147.523 +16000/69092 Loss: 149.619 +19200/69092 Loss: 143.788 +22400/69092 Loss: 148.897 +25600/69092 Loss: 151.577 +28800/69092 Loss: 149.206 +32000/69092 Loss: 147.418 +35200/69092 Loss: 146.874 +38400/69092 Loss: 146.673 +41600/69092 Loss: 148.630 +44800/69092 Loss: 146.626 +48000/69092 Loss: 151.496 +51200/69092 Loss: 149.410 +54400/69092 Loss: 147.152 +57600/69092 Loss: 149.060 +60800/69092 Loss: 149.144 +64000/69092 Loss: 144.658 +67200/69092 Loss: 150.248 +Training time 0:08:14.879181 +Epoch: 12 Average loss: 148.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 430) +0/69092 Loss: 140.867 +3200/69092 Loss: 148.903 +6400/69092 Loss: 148.330 +9600/69092 Loss: 149.084 +12800/69092 Loss: 149.345 +16000/69092 Loss: 146.931 +19200/69092 Loss: 148.202 +22400/69092 Loss: 148.223 +25600/69092 Loss: 149.430 +28800/69092 Loss: 146.027 +32000/69092 Loss: 150.377 +35200/69092 Loss: 146.120 +38400/69092 Loss: 147.849 +41600/69092 Loss: 148.908 +44800/69092 Loss: 148.744 +48000/69092 Loss: 147.663 +51200/69092 Loss: 149.876 +54400/69092 Loss: 150.930 +57600/69092 Loss: 147.989 +60800/69092 Loss: 146.148 +64000/69092 Loss: 150.220 +67200/69092 Loss: 145.671 +Training time 0:07:54.587141 +Epoch: 13 Average loss: 148.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 431) +0/69092 Loss: 173.080 +3200/69092 Loss: 148.688 +6400/69092 Loss: 147.209 +9600/69092 Loss: 148.451 +12800/69092 Loss: 147.353 +16000/69092 Loss: 145.839 +19200/69092 Loss: 146.161 +22400/69092 Loss: 149.156 +25600/69092 Loss: 148.625 +28800/69092 Loss: 146.879 +32000/69092 Loss: 149.375 +35200/69092 Loss: 148.484 +38400/69092 Loss: 150.579 +41600/69092 Loss: 149.484 +44800/69092 Loss: 149.941 +48000/69092 Loss: 149.240 +51200/69092 Loss: 147.528 +54400/69092 Loss: 148.218 +57600/69092 Loss: 144.949 +60800/69092 Loss: 148.823 +64000/69092 Loss: 147.993 +67200/69092 Loss: 148.369 +Training time 0:08:15.532555 +Epoch: 14 Average loss: 148.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 432) +0/69092 Loss: 157.533 +3200/69092 Loss: 148.672 +6400/69092 Loss: 148.216 +9600/69092 Loss: 151.031 +12800/69092 Loss: 147.606 +16000/69092 Loss: 148.248 +19200/69092 Loss: 144.587 +22400/69092 Loss: 146.560 +25600/69092 Loss: 147.953 +28800/69092 Loss: 150.668 +32000/69092 Loss: 147.917 +35200/69092 Loss: 148.531 +38400/69092 Loss: 148.173 +41600/69092 Loss: 148.771 +44800/69092 Loss: 148.117 +48000/69092 Loss: 147.374 +51200/69092 Loss: 148.461 +54400/69092 Loss: 147.842 +57600/69092 Loss: 147.981 +60800/69092 Loss: 148.616 +64000/69092 Loss: 148.052 +67200/69092 Loss: 147.393 +Training time 0:08:13.360769 +Epoch: 15 Average loss: 148.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 433) +0/69092 Loss: 143.217 +3200/69092 Loss: 147.051 +6400/69092 Loss: 148.431 +9600/69092 Loss: 148.788 +12800/69092 Loss: 147.885 +16000/69092 Loss: 149.630 +19200/69092 Loss: 146.780 +22400/69092 Loss: 149.477 +25600/69092 Loss: 146.637 +28800/69092 Loss: 146.005 +32000/69092 Loss: 148.121 +35200/69092 Loss: 149.538 +38400/69092 Loss: 148.992 +41600/69092 Loss: 146.767 +44800/69092 Loss: 146.575 +48000/69092 Loss: 148.247 +51200/69092 Loss: 147.566 +54400/69092 Loss: 148.181 +57600/69092 Loss: 149.464 +60800/69092 Loss: 147.129 +64000/69092 Loss: 149.189 +67200/69092 Loss: 151.608 +Training time 0:08:01.282106 +Epoch: 16 Average loss: 148.27 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 434) +0/69092 Loss: 141.424 +3200/69092 Loss: 148.376 +6400/69092 Loss: 149.043 +9600/69092 Loss: 147.739 +12800/69092 Loss: 148.168 +16000/69092 Loss: 147.035 +19200/69092 Loss: 147.584 +22400/69092 Loss: 147.715 +25600/69092 Loss: 147.867 +28800/69092 Loss: 148.391 +32000/69092 Loss: 150.060 +35200/69092 Loss: 148.538 +38400/69092 Loss: 147.262 +41600/69092 Loss: 146.985 +44800/69092 Loss: 146.733 +48000/69092 Loss: 147.953 +51200/69092 Loss: 150.002 +54400/69092 Loss: 144.197 +57600/69092 Loss: 147.031 +60800/69092 Loss: 149.365 +64000/69092 Loss: 146.765 +67200/69092 Loss: 151.156 +Training time 0:08:09.618079 +Epoch: 17 Average loss: 147.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 435) +0/69092 Loss: 148.481 +3200/69092 Loss: 147.458 +6400/69092 Loss: 147.018 +9600/69092 Loss: 148.193 +12800/69092 Loss: 150.312 +16000/69092 Loss: 146.336 +19200/69092 Loss: 151.199 +22400/69092 Loss: 149.720 +25600/69092 Loss: 148.621 +28800/69092 Loss: 146.475 +32000/69092 Loss: 147.064 +35200/69092 Loss: 145.493 +38400/69092 Loss: 148.069 +41600/69092 Loss: 147.616 +44800/69092 Loss: 149.106 +48000/69092 Loss: 147.316 +51200/69092 Loss: 147.639 +54400/69092 Loss: 146.997 +57600/69092 Loss: 147.944 +60800/69092 Loss: 148.630 +64000/69092 Loss: 145.983 +67200/69092 Loss: 151.094 +Training time 0:08:10.071948 +Epoch: 18 Average loss: 148.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 436) +0/69092 Loss: 148.115 +3200/69092 Loss: 149.206 +6400/69092 Loss: 143.855 +9600/69092 Loss: 143.719 +12800/69092 Loss: 148.447 +16000/69092 Loss: 147.355 +19200/69092 Loss: 150.515 +22400/69092 Loss: 148.988 +25600/69092 Loss: 148.082 +28800/69092 Loss: 146.642 +32000/69092 Loss: 150.371 +35200/69092 Loss: 148.081 +38400/69092 Loss: 149.873 +41600/69092 Loss: 147.399 +44800/69092 Loss: 147.447 +48000/69092 Loss: 148.191 +51200/69092 Loss: 150.706 +54400/69092 Loss: 150.777 +57600/69092 Loss: 147.912 +60800/69092 Loss: 146.146 +64000/69092 Loss: 147.305 +67200/69092 Loss: 146.441 +Training time 0:07:59.220278 +Epoch: 19 Average loss: 147.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 437) +0/69092 Loss: 131.021 +3200/69092 Loss: 146.446 +6400/69092 Loss: 146.946 +9600/69092 Loss: 148.588 +12800/69092 Loss: 149.286 +16000/69092 Loss: 150.007 +19200/69092 Loss: 150.473 +22400/69092 Loss: 149.020 +25600/69092 Loss: 147.899 +28800/69092 Loss: 147.834 +32000/69092 Loss: 145.860 +35200/69092 Loss: 149.508 +38400/69092 Loss: 149.057 +41600/69092 Loss: 146.578 +44800/69092 Loss: 150.041 +48000/69092 Loss: 148.928 +51200/69092 Loss: 147.288 +54400/69092 Loss: 148.036 +57600/69092 Loss: 147.716 +60800/69092 Loss: 147.762 +64000/69092 Loss: 144.956 +67200/69092 Loss: 147.061 +Training time 0:08:12.216152 +Epoch: 20 Average loss: 148.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 438) +0/69092 Loss: 150.240 +3200/69092 Loss: 149.712 +6400/69092 Loss: 149.016 +9600/69092 Loss: 148.304 +12800/69092 Loss: 146.313 +16000/69092 Loss: 148.699 +19200/69092 Loss: 145.658 +22400/69092 Loss: 145.821 +25600/69092 Loss: 148.022 +28800/69092 Loss: 148.880 +32000/69092 Loss: 148.422 +35200/69092 Loss: 146.137 +38400/69092 Loss: 149.069 +41600/69092 Loss: 151.531 +44800/69092 Loss: 149.311 +48000/69092 Loss: 147.249 +51200/69092 Loss: 147.168 +54400/69092 Loss: 148.229 +57600/69092 Loss: 146.840 +60800/69092 Loss: 146.514 +64000/69092 Loss: 148.016 +67200/69092 Loss: 146.485 +Training time 0:08:09.801460 +Epoch: 21 Average loss: 147.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 439) +0/69092 Loss: 162.247 +3200/69092 Loss: 148.213 +6400/69092 Loss: 150.657 +9600/69092 Loss: 147.509 +12800/69092 Loss: 148.421 +16000/69092 Loss: 147.295 +19200/69092 Loss: 147.616 +22400/69092 Loss: 147.921 +25600/69092 Loss: 146.332 +28800/69092 Loss: 149.402 +32000/69092 Loss: 148.166 +35200/69092 Loss: 148.783 +38400/69092 Loss: 146.822 +41600/69092 Loss: 148.938 +44800/69092 Loss: 148.111 +48000/69092 Loss: 150.963 +51200/69092 Loss: 148.606 +54400/69092 Loss: 148.309 +57600/69092 Loss: 147.807 +60800/69092 Loss: 147.408 +64000/69092 Loss: 146.878 +67200/69092 Loss: 148.016 +Training time 0:07:55.938343 +Epoch: 22 Average loss: 148.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 440) +0/69092 Loss: 155.706 +3200/69092 Loss: 148.599 +6400/69092 Loss: 146.513 +9600/69092 Loss: 145.756 +12800/69092 Loss: 149.388 +16000/69092 Loss: 148.574 +19200/69092 Loss: 146.949 +22400/69092 Loss: 147.869 +25600/69092 Loss: 145.385 +28800/69092 Loss: 146.625 +32000/69092 Loss: 151.839 +35200/69092 Loss: 147.076 +38400/69092 Loss: 147.623 +41600/69092 Loss: 150.296 +44800/69092 Loss: 148.547 +48000/69092 Loss: 146.676 +51200/69092 Loss: 148.324 +54400/69092 Loss: 145.567 +57600/69092 Loss: 148.300 +60800/69092 Loss: 151.457 +64000/69092 Loss: 147.204 +67200/69092 Loss: 148.512 +Training time 0:08:07.568188 +Epoch: 23 Average loss: 148.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 441) +0/69092 Loss: 156.300 +3200/69092 Loss: 147.409 +6400/69092 Loss: 148.853 +9600/69092 Loss: 151.547 +12800/69092 Loss: 147.351 +16000/69092 Loss: 147.707 +19200/69092 Loss: 147.603 +22400/69092 Loss: 149.792 +25600/69092 Loss: 145.896 +28800/69092 Loss: 151.087 +32000/69092 Loss: 148.622 +35200/69092 Loss: 148.990 +38400/69092 Loss: 147.862 +41600/69092 Loss: 148.976 +44800/69092 Loss: 148.330 +48000/69092 Loss: 145.300 +51200/69092 Loss: 147.794 +54400/69092 Loss: 146.840 +57600/69092 Loss: 147.746 +60800/69092 Loss: 147.394 +64000/69092 Loss: 147.259 +67200/69092 Loss: 148.705 +Training time 0:08:10.596763 +Epoch: 24 Average loss: 148.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 442) +0/69092 Loss: 164.702 +3200/69092 Loss: 148.065 +6400/69092 Loss: 147.172 +9600/69092 Loss: 149.072 +12800/69092 Loss: 148.064 +16000/69092 Loss: 148.151 +19200/69092 Loss: 148.973 +22400/69092 Loss: 148.406 +25600/69092 Loss: 148.134 +28800/69092 Loss: 148.082 +32000/69092 Loss: 147.130 +35200/69092 Loss: 146.779 +38400/69092 Loss: 149.002 +41600/69092 Loss: 148.293 +44800/69092 Loss: 147.374 +48000/69092 Loss: 150.518 +51200/69092 Loss: 148.212 +54400/69092 Loss: 149.365 +57600/69092 Loss: 150.856 +60800/69092 Loss: 146.766 +64000/69092 Loss: 148.604 +67200/69092 Loss: 146.261 +Training time 0:08:04.134514 +Epoch: 25 Average loss: 148.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 443) +0/69092 Loss: 139.293 +3200/69092 Loss: 149.153 +6400/69092 Loss: 147.671 +9600/69092 Loss: 146.209 +12800/69092 Loss: 145.942 +16000/69092 Loss: 147.053 +19200/69092 Loss: 148.615 +22400/69092 Loss: 150.480 +25600/69092 Loss: 148.883 +28800/69092 Loss: 150.828 +32000/69092 Loss: 147.771 +35200/69092 Loss: 150.045 +38400/69092 Loss: 147.675 +41600/69092 Loss: 147.483 +44800/69092 Loss: 148.487 +48000/69092 Loss: 149.847 +51200/69092 Loss: 145.931 +54400/69092 Loss: 150.154 +57600/69092 Loss: 145.836 +60800/69092 Loss: 147.828 +64000/69092 Loss: 148.121 +67200/69092 Loss: 146.828 +Training time 0:08:11.302526 +Epoch: 26 Average loss: 148.11 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 444) +0/69092 Loss: 145.546 +3200/69092 Loss: 146.655 +6400/69092 Loss: 148.614 +9600/69092 Loss: 148.423 +12800/69092 Loss: 148.222 +16000/69092 Loss: 148.028 +19200/69092 Loss: 146.499 +22400/69092 Loss: 148.356 +25600/69092 Loss: 150.092 +28800/69092 Loss: 148.466 +32000/69092 Loss: 148.952 +35200/69092 Loss: 149.688 +38400/69092 Loss: 147.727 +41600/69092 Loss: 148.294 +44800/69092 Loss: 147.270 +48000/69092 Loss: 148.046 +51200/69092 Loss: 146.498 +54400/69092 Loss: 147.327 +57600/69092 Loss: 147.433 +60800/69092 Loss: 147.472 +64000/69092 Loss: 151.523 +67200/69092 Loss: 146.017 +Training time 0:08:03.606979 +Epoch: 27 Average loss: 148.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 445) +0/69092 Loss: 146.829 +3200/69092 Loss: 150.099 +6400/69092 Loss: 149.186 +9600/69092 Loss: 149.600 +12800/69092 Loss: 146.362 +16000/69092 Loss: 150.737 +19200/69092 Loss: 149.330 +22400/69092 Loss: 148.516 +25600/69092 Loss: 148.261 +28800/69092 Loss: 149.302 +32000/69092 Loss: 147.198 +35200/69092 Loss: 147.400 +38400/69092 Loss: 146.582 +41600/69092 Loss: 148.072 +44800/69092 Loss: 143.896 +48000/69092 Loss: 147.628 +51200/69092 Loss: 147.017 +54400/69092 Loss: 150.601 +57600/69092 Loss: 147.691 +60800/69092 Loss: 147.907 +64000/69092 Loss: 146.175 +67200/69092 Loss: 146.997 +Training time 0:08:02.229186 +Epoch: 28 Average loss: 148.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 446) +0/69092 Loss: 141.041 +3200/69092 Loss: 145.905 +6400/69092 Loss: 147.013 +9600/69092 Loss: 149.193 +12800/69092 Loss: 149.434 +16000/69092 Loss: 147.402 +19200/69092 Loss: 148.860 +22400/69092 Loss: 149.273 +25600/69092 Loss: 148.087 +28800/69092 Loss: 146.363 +32000/69092 Loss: 147.747 +35200/69092 Loss: 149.471 +38400/69092 Loss: 148.715 +41600/69092 Loss: 148.992 +44800/69092 Loss: 144.856 +48000/69092 Loss: 148.000 +51200/69092 Loss: 150.016 +54400/69092 Loss: 146.175 +57600/69092 Loss: 149.239 +60800/69092 Loss: 148.430 +64000/69092 Loss: 148.121 +67200/69092 Loss: 146.915 +Training time 0:08:06.193518 +Epoch: 29 Average loss: 148.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 447) +0/69092 Loss: 153.961 +3200/69092 Loss: 145.624 +6400/69092 Loss: 149.661 +9600/69092 Loss: 150.121 +12800/69092 Loss: 148.938 +16000/69092 Loss: 148.346 +19200/69092 Loss: 147.282 +22400/69092 Loss: 145.541 +25600/69092 Loss: 147.446 +28800/69092 Loss: 149.718 +32000/69092 Loss: 145.130 +35200/69092 Loss: 146.380 +38400/69092 Loss: 149.341 +41600/69092 Loss: 147.638 +44800/69092 Loss: 146.055 +48000/69092 Loss: 148.953 +51200/69092 Loss: 147.412 +54400/69092 Loss: 148.449 +57600/69092 Loss: 149.200 +60800/69092 Loss: 145.262 +64000/69092 Loss: 149.707 +67200/69092 Loss: 146.116 +Training time 0:07:56.714020 +Epoch: 30 Average loss: 147.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 448) +0/69092 Loss: 147.208 +3200/69092 Loss: 147.898 +6400/69092 Loss: 148.379 +9600/69092 Loss: 148.956 +12800/69092 Loss: 147.439 +16000/69092 Loss: 149.625 +19200/69092 Loss: 146.804 +22400/69092 Loss: 148.697 +25600/69092 Loss: 144.557 +28800/69092 Loss: 150.664 +32000/69092 Loss: 148.874 +35200/69092 Loss: 148.875 +38400/69092 Loss: 147.146 +41600/69092 Loss: 146.803 +44800/69092 Loss: 147.706 +48000/69092 Loss: 147.382 +51200/69092 Loss: 148.540 +54400/69092 Loss: 146.964 +57600/69092 Loss: 146.207 +60800/69092 Loss: 147.512 +64000/69092 Loss: 147.036 +67200/69092 Loss: 149.246 +Training time 0:08:08.049636 +Epoch: 31 Average loss: 147.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 449) +0/69092 Loss: 154.486 +3200/69092 Loss: 146.538 +6400/69092 Loss: 147.309 +9600/69092 Loss: 147.183 +12800/69092 Loss: 147.674 +16000/69092 Loss: 146.870 +19200/69092 Loss: 146.350 +22400/69092 Loss: 146.527 +25600/69092 Loss: 149.160 +28800/69092 Loss: 148.780 +32000/69092 Loss: 146.034 +35200/69092 Loss: 147.837 +38400/69092 Loss: 150.295 +41600/69092 Loss: 149.436 +44800/69092 Loss: 147.406 +48000/69092 Loss: 148.187 +51200/69092 Loss: 148.190 +54400/69092 Loss: 147.674 +57600/69092 Loss: 148.366 +60800/69092 Loss: 146.110 +64000/69092 Loss: 147.097 +67200/69092 Loss: 148.212 +Training time 0:08:08.612121 +Epoch: 32 Average loss: 147.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 450) +0/69092 Loss: 157.820 +3200/69092 Loss: 147.279 +6400/69092 Loss: 146.476 +9600/69092 Loss: 146.643 +12800/69092 Loss: 149.833 +16000/69092 Loss: 148.621 +19200/69092 Loss: 145.554 +22400/69092 Loss: 147.437 +25600/69092 Loss: 149.238 +28800/69092 Loss: 148.816 +32000/69092 Loss: 148.049 +35200/69092 Loss: 144.955 +38400/69092 Loss: 151.129 +41600/69092 Loss: 146.837 +44800/69092 Loss: 148.611 +48000/69092 Loss: 148.916 +51200/69092 Loss: 147.479 +54400/69092 Loss: 147.995 +57600/69092 Loss: 150.899 +60800/69092 Loss: 148.429 +64000/69092 Loss: 145.854 +67200/69092 Loss: 148.767 +Training time 0:08:00.133266 +Epoch: 33 Average loss: 148.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 451) +0/69092 Loss: 146.987 +3200/69092 Loss: 148.967 +6400/69092 Loss: 149.877 +9600/69092 Loss: 149.288 +12800/69092 Loss: 147.283 +16000/69092 Loss: 149.386 +19200/69092 Loss: 147.005 +22400/69092 Loss: 145.841 +25600/69092 Loss: 149.361 +28800/69092 Loss: 148.619 +32000/69092 Loss: 148.246 +35200/69092 Loss: 147.190 +38400/69092 Loss: 148.138 +41600/69092 Loss: 147.676 +44800/69092 Loss: 149.170 +48000/69092 Loss: 149.179 +51200/69092 Loss: 144.251 +54400/69092 Loss: 147.534 +57600/69092 Loss: 148.770 +60800/69092 Loss: 149.348 +64000/69092 Loss: 149.214 +67200/69092 Loss: 146.594 +Training time 0:08:10.495989 +Epoch: 34 Average loss: 148.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 452) +0/69092 Loss: 154.872 +3200/69092 Loss: 150.102 +6400/69092 Loss: 148.049 +9600/69092 Loss: 146.893 +12800/69092 Loss: 149.331 +16000/69092 Loss: 146.750 +19200/69092 Loss: 148.587 +22400/69092 Loss: 144.538 +25600/69092 Loss: 147.891 +28800/69092 Loss: 147.443 +32000/69092 Loss: 148.261 +35200/69092 Loss: 147.756 +38400/69092 Loss: 148.438 +41600/69092 Loss: 149.877 +44800/69092 Loss: 145.629 +48000/69092 Loss: 147.936 +51200/69092 Loss: 148.292 +54400/69092 Loss: 149.120 +57600/69092 Loss: 146.668 +60800/69092 Loss: 148.293 +64000/69092 Loss: 146.584 +67200/69092 Loss: 149.138 +Training time 0:08:08.066059 +Epoch: 35 Average loss: 147.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 453) +0/69092 Loss: 144.107 +3200/69092 Loss: 147.263 +6400/69092 Loss: 148.721 +9600/69092 Loss: 146.997 +12800/69092 Loss: 148.728 +16000/69092 Loss: 146.582 +19200/69092 Loss: 146.552 +22400/69092 Loss: 147.329 +25600/69092 Loss: 148.620 +28800/69092 Loss: 146.287 +32000/69092 Loss: 147.103 +35200/69092 Loss: 148.038 +38400/69092 Loss: 145.561 +41600/69092 Loss: 147.841 +44800/69092 Loss: 146.746 +48000/69092 Loss: 149.432 +51200/69092 Loss: 151.244 +54400/69092 Loss: 147.422 +57600/69092 Loss: 148.779 +60800/69092 Loss: 149.898 +64000/69092 Loss: 150.070 +67200/69092 Loss: 145.500 +Training time 0:08:01.168977 +Epoch: 36 Average loss: 147.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 454) +0/69092 Loss: 158.654 +3200/69092 Loss: 149.694 +6400/69092 Loss: 148.231 +9600/69092 Loss: 148.486 +12800/69092 Loss: 145.361 +16000/69092 Loss: 149.350 +19200/69092 Loss: 147.505 +22400/69092 Loss: 147.571 +25600/69092 Loss: 148.206 +28800/69092 Loss: 142.649 +32000/69092 Loss: 147.909 +35200/69092 Loss: 149.097 +38400/69092 Loss: 149.508 +41600/69092 Loss: 148.885 +44800/69092 Loss: 147.852 +48000/69092 Loss: 148.087 +51200/69092 Loss: 150.050 +54400/69092 Loss: 147.069 +57600/69092 Loss: 150.538 +60800/69092 Loss: 148.262 +64000/69092 Loss: 147.661 +67200/69092 Loss: 146.824 +Training time 0:08:17.519137 +Epoch: 37 Average loss: 148.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 455) +0/69092 Loss: 149.688 +3200/69092 Loss: 146.304 +6400/69092 Loss: 147.775 +9600/69092 Loss: 146.869 +12800/69092 Loss: 148.176 +16000/69092 Loss: 148.856 +19200/69092 Loss: 149.063 +22400/69092 Loss: 147.659 +25600/69092 Loss: 146.572 +28800/69092 Loss: 147.572 +32000/69092 Loss: 148.656 +35200/69092 Loss: 150.193 +38400/69092 Loss: 147.900 +41600/69092 Loss: 151.263 +44800/69092 Loss: 147.189 +48000/69092 Loss: 147.041 +51200/69092 Loss: 146.532 +54400/69092 Loss: 148.287 +57600/69092 Loss: 145.252 +60800/69092 Loss: 148.043 +64000/69092 Loss: 147.553 +67200/69092 Loss: 146.769 +Training time 0:08:06.081523 +Epoch: 38 Average loss: 147.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 456) +0/69092 Loss: 150.797 +3200/69092 Loss: 147.095 +6400/69092 Loss: 145.967 +9600/69092 Loss: 148.106 +12800/69092 Loss: 149.112 +16000/69092 Loss: 149.403 +19200/69092 Loss: 148.268 +22400/69092 Loss: 145.286 +25600/69092 Loss: 147.793 +28800/69092 Loss: 149.574 +32000/69092 Loss: 147.595 +35200/69092 Loss: 148.577 +38400/69092 Loss: 149.670 +41600/69092 Loss: 147.611 +44800/69092 Loss: 149.895 +48000/69092 Loss: 146.503 +51200/69092 Loss: 147.977 +54400/69092 Loss: 145.945 +57600/69092 Loss: 147.262 +60800/69092 Loss: 146.957 +64000/69092 Loss: 146.696 +67200/69092 Loss: 149.292 +Training time 0:07:53.634117 +Epoch: 39 Average loss: 147.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 457) +0/69092 Loss: 137.992 +3200/69092 Loss: 149.550 +6400/69092 Loss: 147.822 +9600/69092 Loss: 149.553 +12800/69092 Loss: 148.779 +16000/69092 Loss: 150.581 +19200/69092 Loss: 145.373 +22400/69092 Loss: 146.937 +25600/69092 Loss: 146.867 +28800/69092 Loss: 146.965 +32000/69092 Loss: 147.773 +35200/69092 Loss: 146.226 +38400/69092 Loss: 149.469 +41600/69092 Loss: 146.900 +44800/69092 Loss: 148.533 +48000/69092 Loss: 146.440 +51200/69092 Loss: 146.106 +54400/69092 Loss: 146.527 +57600/69092 Loss: 147.226 +60800/69092 Loss: 146.908 +64000/69092 Loss: 151.346 +67200/69092 Loss: 147.449 +Training time 0:08:11.125053 +Epoch: 40 Average loss: 147.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 458) +0/69092 Loss: 151.597 +3200/69092 Loss: 148.039 +6400/69092 Loss: 146.658 +9600/69092 Loss: 149.576 +12800/69092 Loss: 147.667 +16000/69092 Loss: 146.826 +19200/69092 Loss: 149.286 +22400/69092 Loss: 148.785 +25600/69092 Loss: 148.059 +28800/69092 Loss: 145.862 +32000/69092 Loss: 147.839 +35200/69092 Loss: 146.473 +38400/69092 Loss: 148.723 +41600/69092 Loss: 146.382 +44800/69092 Loss: 148.383 +48000/69092 Loss: 146.915 +51200/69092 Loss: 151.326 +54400/69092 Loss: 146.806 +57600/69092 Loss: 146.054 +60800/69092 Loss: 148.095 +64000/69092 Loss: 147.353 +67200/69092 Loss: 147.817 +Training time 0:08:05.367305 +Epoch: 41 Average loss: 147.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 459) +0/69092 Loss: 137.070 +3200/69092 Loss: 149.880 +6400/69092 Loss: 144.188 +9600/69092 Loss: 146.220 +12800/69092 Loss: 147.654 +16000/69092 Loss: 149.157 +19200/69092 Loss: 147.671 +22400/69092 Loss: 150.200 +25600/69092 Loss: 148.826 +28800/69092 Loss: 150.492 +32000/69092 Loss: 146.492 +35200/69092 Loss: 148.099 +38400/69092 Loss: 146.570 +41600/69092 Loss: 147.864 +44800/69092 Loss: 145.999 +48000/69092 Loss: 146.403 +51200/69092 Loss: 148.065 +54400/69092 Loss: 150.361 +57600/69092 Loss: 149.461 +60800/69092 Loss: 146.866 +64000/69092 Loss: 147.946 +67200/69092 Loss: 147.057 +Training time 0:07:59.299594 +Epoch: 42 Average loss: 147.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 460) +0/69092 Loss: 156.091 +3200/69092 Loss: 146.357 +6400/69092 Loss: 147.889 +9600/69092 Loss: 147.301 +12800/69092 Loss: 149.765 +16000/69092 Loss: 147.479 +19200/69092 Loss: 146.767 +22400/69092 Loss: 148.197 +25600/69092 Loss: 148.841 +28800/69092 Loss: 150.382 +32000/69092 Loss: 147.229 +35200/69092 Loss: 146.671 +38400/69092 Loss: 149.988 +41600/69092 Loss: 147.914 +44800/69092 Loss: 148.624 +48000/69092 Loss: 146.680 +51200/69092 Loss: 148.477 +54400/69092 Loss: 149.339 +57600/69092 Loss: 148.026 +60800/69092 Loss: 148.727 +64000/69092 Loss: 147.142 +67200/69092 Loss: 148.418 +Training time 0:08:13.834192 +Epoch: 43 Average loss: 148.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 461) +0/69092 Loss: 145.296 +3200/69092 Loss: 149.456 +6400/69092 Loss: 149.430 +9600/69092 Loss: 149.795 +12800/69092 Loss: 147.863 +16000/69092 Loss: 146.812 +19200/69092 Loss: 147.363 +22400/69092 Loss: 148.909 +25600/69092 Loss: 149.190 +28800/69092 Loss: 147.190 +32000/69092 Loss: 148.826 +35200/69092 Loss: 147.786 +38400/69092 Loss: 148.715 +41600/69092 Loss: 145.456 +44800/69092 Loss: 149.306 +48000/69092 Loss: 147.830 +51200/69092 Loss: 143.954 +54400/69092 Loss: 147.292 +57600/69092 Loss: 144.963 +60800/69092 Loss: 150.076 +64000/69092 Loss: 147.673 +67200/69092 Loss: 148.857 +Training time 0:08:08.137736 +Epoch: 44 Average loss: 147.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 462) +0/69092 Loss: 135.402 +3200/69092 Loss: 145.745 +6400/69092 Loss: 147.940 +9600/69092 Loss: 147.087 +12800/69092 Loss: 146.681 +16000/69092 Loss: 147.194 +19200/69092 Loss: 148.038 +22400/69092 Loss: 148.515 +25600/69092 Loss: 150.095 +28800/69092 Loss: 146.330 +32000/69092 Loss: 145.407 +35200/69092 Loss: 149.563 +38400/69092 Loss: 150.124 +41600/69092 Loss: 149.799 +44800/69092 Loss: 149.942 +48000/69092 Loss: 148.292 +51200/69092 Loss: 148.653 +54400/69092 Loss: 147.412 +57600/69092 Loss: 146.634 +60800/69092 Loss: 146.140 +64000/69092 Loss: 148.629 +67200/69092 Loss: 146.649 +Training time 0:08:04.533059 +Epoch: 45 Average loss: 147.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 463) +0/69092 Loss: 134.291 +3200/69092 Loss: 149.769 +6400/69092 Loss: 150.208 +9600/69092 Loss: 148.465 +12800/69092 Loss: 145.368 +16000/69092 Loss: 145.483 +19200/69092 Loss: 146.001 +22400/69092 Loss: 149.066 +25600/69092 Loss: 147.709 +28800/69092 Loss: 148.044 +32000/69092 Loss: 147.961 +35200/69092 Loss: 147.483 +38400/69092 Loss: 149.518 +41600/69092 Loss: 146.165 +44800/69092 Loss: 146.633 +48000/69092 Loss: 148.310 +51200/69092 Loss: 148.504 +54400/69092 Loss: 146.682 +57600/69092 Loss: 152.826 +60800/69092 Loss: 149.200 +64000/69092 Loss: 149.433 +67200/69092 Loss: 146.115 +Training time 0:08:20.033304 +Epoch: 46 Average loss: 147.99 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 464) +0/69092 Loss: 142.656 +3200/69092 Loss: 146.437 +6400/69092 Loss: 147.613 +9600/69092 Loss: 146.981 +12800/69092 Loss: 149.262 +16000/69092 Loss: 147.658 +19200/69092 Loss: 147.653 +22400/69092 Loss: 147.737 +25600/69092 Loss: 150.158 +28800/69092 Loss: 147.674 +32000/69092 Loss: 147.185 +35200/69092 Loss: 146.266 +38400/69092 Loss: 148.152 +41600/69092 Loss: 148.771 +44800/69092 Loss: 148.195 +48000/69092 Loss: 146.765 +51200/69092 Loss: 148.167 +54400/69092 Loss: 149.248 +57600/69092 Loss: 146.866 +60800/69092 Loss: 148.037 +64000/69092 Loss: 149.821 +67200/69092 Loss: 149.010 +Training time 0:08:08.210877 +Epoch: 47 Average loss: 148.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 465) +0/69092 Loss: 141.979 +3200/69092 Loss: 146.551 +6400/69092 Loss: 144.719 +9600/69092 Loss: 147.675 +12800/69092 Loss: 149.406 +16000/69092 Loss: 149.955 +19200/69092 Loss: 149.545 +22400/69092 Loss: 148.148 +25600/69092 Loss: 147.784 +28800/69092 Loss: 143.561 +32000/69092 Loss: 146.728 +35200/69092 Loss: 148.039 +38400/69092 Loss: 149.162 +41600/69092 Loss: 145.788 +44800/69092 Loss: 148.363 +48000/69092 Loss: 147.782 +51200/69092 Loss: 147.930 +54400/69092 Loss: 148.442 +57600/69092 Loss: 149.321 +60800/69092 Loss: 149.428 +64000/69092 Loss: 146.285 +67200/69092 Loss: 147.884 +Training time 0:07:59.799955 +Epoch: 48 Average loss: 147.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 466) +0/69092 Loss: 172.191 +3200/69092 Loss: 146.721 +6400/69092 Loss: 142.361 +9600/69092 Loss: 148.484 +12800/69092 Loss: 149.466 +16000/69092 Loss: 147.471 +19200/69092 Loss: 149.073 +22400/69092 Loss: 148.399 +25600/69092 Loss: 148.828 +28800/69092 Loss: 147.570 +32000/69092 Loss: 147.190 +35200/69092 Loss: 146.663 +38400/69092 Loss: 148.451 +41600/69092 Loss: 147.317 +44800/69092 Loss: 148.366 +48000/69092 Loss: 149.674 +51200/69092 Loss: 146.408 +54400/69092 Loss: 148.305 +57600/69092 Loss: 148.341 +60800/69092 Loss: 147.900 +64000/69092 Loss: 148.286 +67200/69092 Loss: 146.068 +Training time 0:08:16.050488 +Epoch: 49 Average loss: 147.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 467) +0/69092 Loss: 142.790 +3200/69092 Loss: 146.814 +6400/69092 Loss: 148.383 +9600/69092 Loss: 144.958 +12800/69092 Loss: 149.076 +16000/69092 Loss: 147.434 +19200/69092 Loss: 150.512 +22400/69092 Loss: 148.685 +25600/69092 Loss: 148.754 +28800/69092 Loss: 145.935 +32000/69092 Loss: 146.291 +35200/69092 Loss: 148.561 +38400/69092 Loss: 150.090 +41600/69092 Loss: 148.168 +44800/69092 Loss: 146.254 +48000/69092 Loss: 149.541 +51200/69092 Loss: 146.826 +54400/69092 Loss: 147.428 +57600/69092 Loss: 147.312 +60800/69092 Loss: 146.237 +64000/69092 Loss: 147.917 +67200/69092 Loss: 147.982 +Training time 0:07:59.060184 +Epoch: 50 Average loss: 147.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 468) +0/69092 Loss: 138.113 +3200/69092 Loss: 147.075 +6400/69092 Loss: 147.436 +9600/69092 Loss: 147.216 +12800/69092 Loss: 151.128 +16000/69092 Loss: 147.135 +19200/69092 Loss: 149.678 +22400/69092 Loss: 150.715 +25600/69092 Loss: 147.066 +28800/69092 Loss: 145.876 +32000/69092 Loss: 148.671 +35200/69092 Loss: 149.096 +38400/69092 Loss: 147.086 +41600/69092 Loss: 146.227 +44800/69092 Loss: 146.770 +48000/69092 Loss: 148.102 +51200/69092 Loss: 147.864 +54400/69092 Loss: 146.793 +57600/69092 Loss: 148.213 +60800/69092 Loss: 147.481 +64000/69092 Loss: 148.723 +67200/69092 Loss: 145.572 +Training time 0:08:05.098546 +Epoch: 51 Average loss: 147.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 469) +0/69092 Loss: 138.135 +3200/69092 Loss: 145.227 +6400/69092 Loss: 148.162 +9600/69092 Loss: 150.537 +12800/69092 Loss: 147.951 +16000/69092 Loss: 146.280 +19200/69092 Loss: 149.030 +22400/69092 Loss: 149.056 +25600/69092 Loss: 144.649 +28800/69092 Loss: 147.771 +32000/69092 Loss: 146.186 +35200/69092 Loss: 146.767 +38400/69092 Loss: 149.182 +41600/69092 Loss: 147.523 +44800/69092 Loss: 149.208 +48000/69092 Loss: 149.837 +51200/69092 Loss: 144.433 +54400/69092 Loss: 146.990 +57600/69092 Loss: 148.214 +60800/69092 Loss: 151.211 +64000/69092 Loss: 147.203 +67200/69092 Loss: 149.614 +Training time 0:08:05.860257 +Epoch: 52 Average loss: 147.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 470) +0/69092 Loss: 134.241 +3200/69092 Loss: 147.406 +6400/69092 Loss: 148.054 +9600/69092 Loss: 147.130 +12800/69092 Loss: 146.299 +16000/69092 Loss: 147.966 +19200/69092 Loss: 145.672 +22400/69092 Loss: 147.195 +25600/69092 Loss: 149.086 +28800/69092 Loss: 147.373 +32000/69092 Loss: 146.088 +35200/69092 Loss: 146.685 +38400/69092 Loss: 149.995 +41600/69092 Loss: 147.336 +44800/69092 Loss: 147.009 +48000/69092 Loss: 147.086 +51200/69092 Loss: 147.297 +54400/69092 Loss: 147.429 +57600/69092 Loss: 149.985 +60800/69092 Loss: 145.981 +64000/69092 Loss: 148.734 +67200/69092 Loss: 148.410 +Training time 0:08:01.590198 +Epoch: 53 Average loss: 147.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 471) +0/69092 Loss: 155.960 +3200/69092 Loss: 148.155 +6400/69092 Loss: 148.295 +9600/69092 Loss: 144.030 +12800/69092 Loss: 147.189 +16000/69092 Loss: 148.088 +19200/69092 Loss: 147.126 +22400/69092 Loss: 148.164 +25600/69092 Loss: 148.587 +28800/69092 Loss: 147.496 +32000/69092 Loss: 145.704 +35200/69092 Loss: 148.467 +38400/69092 Loss: 146.380 +41600/69092 Loss: 150.873 +44800/69092 Loss: 144.490 +48000/69092 Loss: 148.206 +51200/69092 Loss: 146.042 +54400/69092 Loss: 150.670 +57600/69092 Loss: 147.252 +60800/69092 Loss: 151.639 +64000/69092 Loss: 146.631 +67200/69092 Loss: 149.878 +Training time 0:08:01.247998 +Epoch: 54 Average loss: 147.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 472) +0/69092 Loss: 149.394 +3200/69092 Loss: 150.620 +6400/69092 Loss: 149.638 +9600/69092 Loss: 146.113 +12800/69092 Loss: 147.130 +16000/69092 Loss: 148.149 +19200/69092 Loss: 148.539 +22400/69092 Loss: 148.260 +25600/69092 Loss: 145.291 +28800/69092 Loss: 146.523 +32000/69092 Loss: 148.225 +35200/69092 Loss: 147.852 +38400/69092 Loss: 148.826 +41600/69092 Loss: 148.099 +44800/69092 Loss: 145.906 +48000/69092 Loss: 147.891 +51200/69092 Loss: 147.586 +54400/69092 Loss: 148.273 +57600/69092 Loss: 147.848 +60800/69092 Loss: 147.545 +64000/69092 Loss: 146.404 +67200/69092 Loss: 147.911 +Training time 0:08:07.731624 +Epoch: 55 Average loss: 147.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 473) +0/69092 Loss: 145.554 +3200/69092 Loss: 148.096 +6400/69092 Loss: 146.533 +9600/69092 Loss: 144.554 +12800/69092 Loss: 145.518 +16000/69092 Loss: 148.028 +19200/69092 Loss: 148.519 +22400/69092 Loss: 147.132 +25600/69092 Loss: 147.399 +28800/69092 Loss: 148.102 +32000/69092 Loss: 147.398 +35200/69092 Loss: 149.871 +38400/69092 Loss: 148.646 +41600/69092 Loss: 149.078 +44800/69092 Loss: 147.635 +48000/69092 Loss: 147.394 +51200/69092 Loss: 148.157 +54400/69092 Loss: 146.131 +57600/69092 Loss: 149.055 +60800/69092 Loss: 149.161 +64000/69092 Loss: 148.470 +67200/69092 Loss: 148.216 +Training time 0:07:59.311078 +Epoch: 56 Average loss: 147.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 474) +0/69092 Loss: 146.526 +3200/69092 Loss: 146.871 +6400/69092 Loss: 147.454 +9600/69092 Loss: 148.470 +12800/69092 Loss: 146.253 +16000/69092 Loss: 149.347 +19200/69092 Loss: 148.875 +22400/69092 Loss: 148.004 +25600/69092 Loss: 147.982 +28800/69092 Loss: 148.783 +32000/69092 Loss: 149.006 +35200/69092 Loss: 149.213 +38400/69092 Loss: 148.202 +41600/69092 Loss: 144.362 +44800/69092 Loss: 147.079 +48000/69092 Loss: 146.207 +51200/69092 Loss: 145.895 +54400/69092 Loss: 149.871 +57600/69092 Loss: 148.416 +60800/69092 Loss: 150.377 +64000/69092 Loss: 146.150 +67200/69092 Loss: 147.322 +Training time 0:08:08.323224 +Epoch: 57 Average loss: 147.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 475) +0/69092 Loss: 156.756 +3200/69092 Loss: 147.819 +6400/69092 Loss: 146.791 +9600/69092 Loss: 146.817 +12800/69092 Loss: 146.121 +16000/69092 Loss: 149.812 +19200/69092 Loss: 145.045 +22400/69092 Loss: 147.587 +25600/69092 Loss: 149.517 +28800/69092 Loss: 149.582 +32000/69092 Loss: 149.649 +35200/69092 Loss: 149.031 +38400/69092 Loss: 148.733 +41600/69092 Loss: 148.798 +44800/69092 Loss: 148.223 +48000/69092 Loss: 147.306 +51200/69092 Loss: 149.765 +54400/69092 Loss: 147.611 +57600/69092 Loss: 148.472 +60800/69092 Loss: 144.799 +64000/69092 Loss: 146.900 +67200/69092 Loss: 146.943 +Training time 0:08:16.767151 +Epoch: 58 Average loss: 147.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 476) +0/69092 Loss: 166.062 +3200/69092 Loss: 146.490 +6400/69092 Loss: 150.273 +9600/69092 Loss: 146.619 +12800/69092 Loss: 147.692 +16000/69092 Loss: 145.404 +19200/69092 Loss: 150.362 +22400/69092 Loss: 149.257 +25600/69092 Loss: 148.728 +28800/69092 Loss: 148.697 +32000/69092 Loss: 146.319 +35200/69092 Loss: 146.263 +38400/69092 Loss: 146.905 +41600/69092 Loss: 148.212 +44800/69092 Loss: 146.479 +48000/69092 Loss: 146.932 +51200/69092 Loss: 149.571 +54400/69092 Loss: 148.682 +57600/69092 Loss: 147.077 +60800/69092 Loss: 146.838 +64000/69092 Loss: 148.488 +67200/69092 Loss: 149.977 +Training time 0:08:06.254737 +Epoch: 59 Average loss: 147.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 477) +0/69092 Loss: 164.949 +3200/69092 Loss: 149.320 +6400/69092 Loss: 150.263 +9600/69092 Loss: 146.362 +12800/69092 Loss: 144.981 +16000/69092 Loss: 147.118 +19200/69092 Loss: 146.999 +22400/69092 Loss: 146.674 +25600/69092 Loss: 148.998 +28800/69092 Loss: 148.602 +32000/69092 Loss: 147.459 +35200/69092 Loss: 148.472 +38400/69092 Loss: 149.124 +41600/69092 Loss: 149.270 +44800/69092 Loss: 148.242 +48000/69092 Loss: 149.437 +51200/69092 Loss: 146.726 +54400/69092 Loss: 145.715 +57600/69092 Loss: 147.939 +60800/69092 Loss: 147.379 +64000/69092 Loss: 148.864 +67200/69092 Loss: 147.665 +Training time 0:08:11.309099 +Epoch: 60 Average loss: 147.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 478) +0/69092 Loss: 150.170 +3200/69092 Loss: 146.303 +6400/69092 Loss: 149.527 +9600/69092 Loss: 146.989 +12800/69092 Loss: 148.267 +16000/69092 Loss: 148.765 +19200/69092 Loss: 148.736 +22400/69092 Loss: 148.196 +25600/69092 Loss: 146.703 +28800/69092 Loss: 146.208 +32000/69092 Loss: 148.105 +35200/69092 Loss: 149.833 +38400/69092 Loss: 146.248 +41600/69092 Loss: 148.791 +44800/69092 Loss: 146.799 +48000/69092 Loss: 147.169 +51200/69092 Loss: 147.322 +54400/69092 Loss: 147.924 +57600/69092 Loss: 147.948 +60800/69092 Loss: 147.565 +64000/69092 Loss: 148.086 +67200/69092 Loss: 148.707 +Training time 0:08:12.296952 +Epoch: 61 Average loss: 147.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 479) +0/69092 Loss: 161.114 +3200/69092 Loss: 146.314 +6400/69092 Loss: 148.966 +9600/69092 Loss: 149.766 +12800/69092 Loss: 148.643 +16000/69092 Loss: 147.866 +19200/69092 Loss: 147.891 +22400/69092 Loss: 147.430 +25600/69092 Loss: 147.493 +28800/69092 Loss: 146.280 +32000/69092 Loss: 147.055 +35200/69092 Loss: 148.138 +38400/69092 Loss: 147.175 +41600/69092 Loss: 147.260 +44800/69092 Loss: 147.012 +48000/69092 Loss: 147.416 +51200/69092 Loss: 148.775 +54400/69092 Loss: 150.922 +57600/69092 Loss: 147.944 +60800/69092 Loss: 145.582 +64000/69092 Loss: 149.088 +67200/69092 Loss: 146.646 +Training time 0:08:02.683893 +Epoch: 62 Average loss: 147.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 480) +0/69092 Loss: 132.742 +3200/69092 Loss: 149.377 +6400/69092 Loss: 147.588 +9600/69092 Loss: 146.643 +12800/69092 Loss: 145.527 +16000/69092 Loss: 146.099 +19200/69092 Loss: 148.547 +22400/69092 Loss: 148.333 +25600/69092 Loss: 148.210 +28800/69092 Loss: 148.356 +32000/69092 Loss: 147.654 +35200/69092 Loss: 148.502 +38400/69092 Loss: 148.352 +41600/69092 Loss: 148.618 +44800/69092 Loss: 147.938 +48000/69092 Loss: 144.796 +51200/69092 Loss: 149.221 +54400/69092 Loss: 147.302 +57600/69092 Loss: 148.802 +60800/69092 Loss: 148.363 +64000/69092 Loss: 145.717 +67200/69092 Loss: 146.996 +Training time 0:08:03.994530 +Epoch: 63 Average loss: 147.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 481) +0/69092 Loss: 158.100 +3200/69092 Loss: 148.050 +6400/69092 Loss: 146.655 +9600/69092 Loss: 148.858 +12800/69092 Loss: 145.539 +16000/69092 Loss: 146.745 +19200/69092 Loss: 150.005 +22400/69092 Loss: 150.585 +25600/69092 Loss: 147.427 +28800/69092 Loss: 146.490 +32000/69092 Loss: 146.466 +35200/69092 Loss: 147.380 +38400/69092 Loss: 146.968 +41600/69092 Loss: 148.550 +44800/69092 Loss: 151.894 +48000/69092 Loss: 145.848 +51200/69092 Loss: 146.153 +54400/69092 Loss: 149.692 +57600/69092 Loss: 147.893 +60800/69092 Loss: 146.377 +64000/69092 Loss: 146.444 +67200/69092 Loss: 148.846 +Training time 0:08:20.347860 +Epoch: 64 Average loss: 147.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 482) +0/69092 Loss: 156.470 +3200/69092 Loss: 147.868 +6400/69092 Loss: 147.238 +9600/69092 Loss: 147.330 +12800/69092 Loss: 143.805 +16000/69092 Loss: 148.650 +19200/69092 Loss: 148.664 +22400/69092 Loss: 148.092 +25600/69092 Loss: 148.626 +28800/69092 Loss: 147.226 +32000/69092 Loss: 144.805 +35200/69092 Loss: 148.884 +38400/69092 Loss: 146.363 +41600/69092 Loss: 148.717 +44800/69092 Loss: 148.801 +48000/69092 Loss: 146.797 +51200/69092 Loss: 147.627 +54400/69092 Loss: 149.043 +57600/69092 Loss: 149.468 +60800/69092 Loss: 148.037 +64000/69092 Loss: 147.522 +67200/69092 Loss: 148.540 +Training time 0:08:00.876787 +Epoch: 65 Average loss: 147.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 483) +0/69092 Loss: 149.686 +3200/69092 Loss: 145.144 +6400/69092 Loss: 147.802 +9600/69092 Loss: 144.740 +12800/69092 Loss: 148.536 +16000/69092 Loss: 148.564 +19200/69092 Loss: 147.007 +22400/69092 Loss: 149.423 +25600/69092 Loss: 148.068 +28800/69092 Loss: 145.189 +32000/69092 Loss: 147.339 +35200/69092 Loss: 148.305 +38400/69092 Loss: 146.814 +41600/69092 Loss: 145.674 +44800/69092 Loss: 148.672 +48000/69092 Loss: 147.767 +51200/69092 Loss: 148.660 +54400/69092 Loss: 148.286 +57600/69092 Loss: 150.484 +60800/69092 Loss: 151.237 +64000/69092 Loss: 149.309 +67200/69092 Loss: 147.670 +Training time 0:08:01.836567 +Epoch: 66 Average loss: 147.93 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 484) +0/69092 Loss: 134.220 +3200/69092 Loss: 147.559 +6400/69092 Loss: 148.264 +9600/69092 Loss: 148.192 +12800/69092 Loss: 147.086 +16000/69092 Loss: 150.275 +19200/69092 Loss: 145.772 +22400/69092 Loss: 147.116 +25600/69092 Loss: 148.544 +28800/69092 Loss: 145.792 +32000/69092 Loss: 149.287 +35200/69092 Loss: 147.223 +38400/69092 Loss: 148.293 +41600/69092 Loss: 147.027 +44800/69092 Loss: 148.958 +48000/69092 Loss: 148.512 +51200/69092 Loss: 148.366 +54400/69092 Loss: 147.952 +57600/69092 Loss: 147.857 +60800/69092 Loss: 146.250 +64000/69092 Loss: 148.176 +67200/69092 Loss: 146.308 +Training time 0:08:10.463024 +Epoch: 67 Average loss: 147.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 485) +0/69092 Loss: 150.623 +3200/69092 Loss: 147.072 +6400/69092 Loss: 148.225 +9600/69092 Loss: 148.183 +12800/69092 Loss: 147.470 +16000/69092 Loss: 145.792 +19200/69092 Loss: 147.714 +22400/69092 Loss: 146.061 +25600/69092 Loss: 146.760 +28800/69092 Loss: 146.819 +32000/69092 Loss: 148.986 +35200/69092 Loss: 147.071 +38400/69092 Loss: 149.131 +41600/69092 Loss: 150.407 +44800/69092 Loss: 146.936 +48000/69092 Loss: 148.496 +51200/69092 Loss: 147.860 +54400/69092 Loss: 148.570 +57600/69092 Loss: 146.489 +60800/69092 Loss: 149.126 +64000/69092 Loss: 148.316 +67200/69092 Loss: 146.348 +Training time 0:07:54.026186 +Epoch: 68 Average loss: 147.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 486) +0/69092 Loss: 159.239 +3200/69092 Loss: 148.075 +6400/69092 Loss: 147.400 +9600/69092 Loss: 149.850 +12800/69092 Loss: 146.572 +16000/69092 Loss: 148.331 +19200/69092 Loss: 146.869 +22400/69092 Loss: 147.211 +25600/69092 Loss: 147.775 +28800/69092 Loss: 147.969 +32000/69092 Loss: 147.285 +35200/69092 Loss: 147.255 +38400/69092 Loss: 148.382 +41600/69092 Loss: 146.525 +44800/69092 Loss: 146.984 +48000/69092 Loss: 147.473 +51200/69092 Loss: 147.320 +54400/69092 Loss: 147.303 +57600/69092 Loss: 148.118 +60800/69092 Loss: 150.639 +64000/69092 Loss: 146.166 +67200/69092 Loss: 148.848 +Training time 0:08:07.657566 +Epoch: 69 Average loss: 147.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 487) +0/69092 Loss: 152.437 +3200/69092 Loss: 146.726 +6400/69092 Loss: 145.381 +9600/69092 Loss: 146.292 +12800/69092 Loss: 147.554 +16000/69092 Loss: 147.518 +19200/69092 Loss: 147.292 +22400/69092 Loss: 147.597 +25600/69092 Loss: 146.593 +28800/69092 Loss: 148.970 +32000/69092 Loss: 146.340 +35200/69092 Loss: 150.680 +38400/69092 Loss: 150.258 +41600/69092 Loss: 147.113 +44800/69092 Loss: 146.031 +48000/69092 Loss: 148.553 +51200/69092 Loss: 148.968 +54400/69092 Loss: 149.680 +57600/69092 Loss: 149.045 +60800/69092 Loss: 147.915 +64000/69092 Loss: 148.425 +67200/69092 Loss: 149.528 +Training time 0:08:12.730213 +Epoch: 70 Average loss: 147.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 488) +0/69092 Loss: 150.596 +3200/69092 Loss: 147.031 +6400/69092 Loss: 147.127 +9600/69092 Loss: 148.107 +12800/69092 Loss: 144.678 +16000/69092 Loss: 149.595 +19200/69092 Loss: 146.229 +22400/69092 Loss: 149.459 +25600/69092 Loss: 146.053 +28800/69092 Loss: 147.049 +32000/69092 Loss: 149.130 +35200/69092 Loss: 149.700 +38400/69092 Loss: 147.908 +41600/69092 Loss: 146.448 +44800/69092 Loss: 148.774 +48000/69092 Loss: 146.317 +51200/69092 Loss: 147.227 +54400/69092 Loss: 147.296 +57600/69092 Loss: 145.805 +60800/69092 Loss: 147.846 +64000/69092 Loss: 148.879 +67200/69092 Loss: 147.286 +Training time 0:08:00.545413 +Epoch: 71 Average loss: 147.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 489) +0/69092 Loss: 153.573 +3200/69092 Loss: 150.779 +6400/69092 Loss: 148.933 +9600/69092 Loss: 148.347 +12800/69092 Loss: 149.494 +16000/69092 Loss: 146.201 +19200/69092 Loss: 148.578 +22400/69092 Loss: 147.148 +25600/69092 Loss: 148.903 +28800/69092 Loss: 149.757 +32000/69092 Loss: 144.795 +35200/69092 Loss: 146.287 +38400/69092 Loss: 146.238 +41600/69092 Loss: 150.254 +44800/69092 Loss: 146.729 +48000/69092 Loss: 148.038 +51200/69092 Loss: 146.533 +54400/69092 Loss: 149.126 +57600/69092 Loss: 147.769 +60800/69092 Loss: 144.744 +64000/69092 Loss: 146.757 +67200/69092 Loss: 147.329 +Training time 0:08:05.859777 +Epoch: 72 Average loss: 147.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 490) +0/69092 Loss: 142.988 +3200/69092 Loss: 149.538 +6400/69092 Loss: 148.085 +9600/69092 Loss: 144.918 +12800/69092 Loss: 149.324 +16000/69092 Loss: 146.290 +19200/69092 Loss: 148.996 +22400/69092 Loss: 147.449 +25600/69092 Loss: 148.123 +28800/69092 Loss: 147.910 +32000/69092 Loss: 146.773 +35200/69092 Loss: 147.690 +38400/69092 Loss: 149.474 +41600/69092 Loss: 147.384 +44800/69092 Loss: 146.233 +48000/69092 Loss: 147.615 +51200/69092 Loss: 148.699 +54400/69092 Loss: 147.564 +57600/69092 Loss: 146.802 +60800/69092 Loss: 146.808 +64000/69092 Loss: 148.041 +67200/69092 Loss: 147.266 +Training time 0:08:12.850143 +Epoch: 73 Average loss: 147.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 491) +0/69092 Loss: 160.430 +3200/69092 Loss: 146.395 +6400/69092 Loss: 147.341 +9600/69092 Loss: 149.192 +12800/69092 Loss: 144.175 +16000/69092 Loss: 147.611 +19200/69092 Loss: 146.300 +22400/69092 Loss: 146.721 +25600/69092 Loss: 146.007 +28800/69092 Loss: 147.536 +32000/69092 Loss: 146.327 +35200/69092 Loss: 148.050 +38400/69092 Loss: 149.947 +41600/69092 Loss: 146.226 +44800/69092 Loss: 149.838 +48000/69092 Loss: 149.326 +51200/69092 Loss: 146.998 +54400/69092 Loss: 148.815 +57600/69092 Loss: 149.600 +60800/69092 Loss: 148.327 +64000/69092 Loss: 149.284 +67200/69092 Loss: 145.096 +Training time 0:07:54.301976 +Epoch: 74 Average loss: 147.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 492) +0/69092 Loss: 118.721 +3200/69092 Loss: 146.334 +6400/69092 Loss: 145.412 +9600/69092 Loss: 147.852 +12800/69092 Loss: 147.854 +16000/69092 Loss: 147.607 +19200/69092 Loss: 146.192 +22400/69092 Loss: 149.040 +25600/69092 Loss: 145.435 +28800/69092 Loss: 148.128 +32000/69092 Loss: 147.518 +35200/69092 Loss: 149.242 +38400/69092 Loss: 148.009 +41600/69092 Loss: 151.082 +44800/69092 Loss: 148.590 +48000/69092 Loss: 145.866 +51200/69092 Loss: 147.532 +54400/69092 Loss: 148.850 +57600/69092 Loss: 149.558 +60800/69092 Loss: 147.745 +64000/69092 Loss: 148.991 +67200/69092 Loss: 148.642 +Training time 0:08:07.135607 +Epoch: 75 Average loss: 147.93 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 493) +0/69092 Loss: 162.003 +3200/69092 Loss: 146.595 +6400/69092 Loss: 145.067 +9600/69092 Loss: 147.766 +12800/69092 Loss: 145.111 +16000/69092 Loss: 147.810 +19200/69092 Loss: 147.221 +22400/69092 Loss: 147.677 +25600/69092 Loss: 149.013 +28800/69092 Loss: 148.079 +32000/69092 Loss: 147.279 +35200/69092 Loss: 149.759 +38400/69092 Loss: 147.905 +41600/69092 Loss: 148.204 +44800/69092 Loss: 147.397 +48000/69092 Loss: 149.801 +51200/69092 Loss: 146.389 +54400/69092 Loss: 148.871 +57600/69092 Loss: 148.890 +60800/69092 Loss: 148.565 +64000/69092 Loss: 147.958 +67200/69092 Loss: 146.508 +Training time 0:08:15.098624 +Epoch: 76 Average loss: 147.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 494) +0/69092 Loss: 156.167 +3200/69092 Loss: 147.619 +6400/69092 Loss: 147.630 +9600/69092 Loss: 148.685 +12800/69092 Loss: 146.421 +16000/69092 Loss: 148.485 +19200/69092 Loss: 147.908 +22400/69092 Loss: 146.355 +25600/69092 Loss: 148.664 +28800/69092 Loss: 148.097 +32000/69092 Loss: 149.818 +35200/69092 Loss: 146.800 +38400/69092 Loss: 146.318 +41600/69092 Loss: 148.177 +44800/69092 Loss: 147.624 +48000/69092 Loss: 147.742 +51200/69092 Loss: 150.796 +54400/69092 Loss: 146.732 +57600/69092 Loss: 147.670 +60800/69092 Loss: 148.511 +64000/69092 Loss: 146.433 +67200/69092 Loss: 146.693 +Training time 0:08:02.243860 +Epoch: 77 Average loss: 147.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 495) +0/69092 Loss: 155.573 +3200/69092 Loss: 149.174 +6400/69092 Loss: 147.261 +9600/69092 Loss: 148.125 +12800/69092 Loss: 146.556 +16000/69092 Loss: 147.495 +19200/69092 Loss: 149.037 +22400/69092 Loss: 148.689 +25600/69092 Loss: 145.319 +28800/69092 Loss: 147.632 +32000/69092 Loss: 146.534 +35200/69092 Loss: 145.337 +38400/69092 Loss: 149.021 +41600/69092 Loss: 147.914 +44800/69092 Loss: 150.437 +48000/69092 Loss: 146.795 +51200/69092 Loss: 147.591 +54400/69092 Loss: 148.298 +57600/69092 Loss: 148.966 +60800/69092 Loss: 147.551 +64000/69092 Loss: 146.674 +67200/69092 Loss: 144.583 +Training time 0:08:09.306475 +Epoch: 78 Average loss: 147.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 496) +0/69092 Loss: 134.958 +3200/69092 Loss: 150.737 +6400/69092 Loss: 147.099 +9600/69092 Loss: 145.468 +12800/69092 Loss: 149.608 +16000/69092 Loss: 147.893 +19200/69092 Loss: 148.544 +22400/69092 Loss: 147.294 +25600/69092 Loss: 147.239 +28800/69092 Loss: 145.701 +32000/69092 Loss: 148.572 +35200/69092 Loss: 147.888 +38400/69092 Loss: 145.297 +41600/69092 Loss: 146.695 +44800/69092 Loss: 148.117 +48000/69092 Loss: 148.865 +51200/69092 Loss: 149.021 +54400/69092 Loss: 146.633 +57600/69092 Loss: 146.149 +60800/69092 Loss: 147.611 +64000/69092 Loss: 148.343 +67200/69092 Loss: 149.154 +Training time 0:08:17.476480 +Epoch: 79 Average loss: 147.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 497) +0/69092 Loss: 137.519 +3200/69092 Loss: 146.366 +6400/69092 Loss: 150.280 +9600/69092 Loss: 149.294 +12800/69092 Loss: 146.915 +16000/69092 Loss: 146.916 +19200/69092 Loss: 145.042 +22400/69092 Loss: 147.667 +25600/69092 Loss: 147.308 +28800/69092 Loss: 147.992 +32000/69092 Loss: 151.514 +35200/69092 Loss: 145.262 +38400/69092 Loss: 147.613 +41600/69092 Loss: 148.685 +44800/69092 Loss: 147.722 +48000/69092 Loss: 145.971 +51200/69092 Loss: 146.321 +54400/69092 Loss: 148.260 +57600/69092 Loss: 147.512 +60800/69092 Loss: 149.371 +64000/69092 Loss: 146.708 +67200/69092 Loss: 149.506 +Training time 0:08:04.414892 +Epoch: 80 Average loss: 147.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 498) +0/69092 Loss: 154.737 +3200/69092 Loss: 147.845 +6400/69092 Loss: 147.557 +9600/69092 Loss: 144.314 +12800/69092 Loss: 148.370 +16000/69092 Loss: 147.748 +19200/69092 Loss: 145.924 +22400/69092 Loss: 149.566 +25600/69092 Loss: 146.930 +28800/69092 Loss: 147.473 +32000/69092 Loss: 147.248 +35200/69092 Loss: 148.774 +38400/69092 Loss: 148.108 +41600/69092 Loss: 145.911 +44800/69092 Loss: 147.717 +48000/69092 Loss: 147.603 +51200/69092 Loss: 150.033 +54400/69092 Loss: 148.107 +57600/69092 Loss: 147.870 +60800/69092 Loss: 149.684 +64000/69092 Loss: 147.125 +67200/69092 Loss: 146.929 +Training time 0:08:07.579532 +Epoch: 81 Average loss: 147.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 499) +0/69092 Loss: 135.185 +3200/69092 Loss: 146.080 +6400/69092 Loss: 150.029 +9600/69092 Loss: 148.247 +12800/69092 Loss: 148.878 +16000/69092 Loss: 146.841 +19200/69092 Loss: 148.527 +22400/69092 Loss: 147.904 +25600/69092 Loss: 145.949 +28800/69092 Loss: 147.557 +32000/69092 Loss: 147.416 +35200/69092 Loss: 147.015 +38400/69092 Loss: 147.752 +41600/69092 Loss: 147.364 +44800/69092 Loss: 145.552 +48000/69092 Loss: 148.077 +51200/69092 Loss: 146.565 +54400/69092 Loss: 147.934 +57600/69092 Loss: 148.519 +60800/69092 Loss: 149.135 +64000/69092 Loss: 147.331 +67200/69092 Loss: 147.317 +Training time 0:08:12.978166 +Epoch: 82 Average loss: 147.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 500) +0/69092 Loss: 136.819 +3200/69092 Loss: 145.044 +6400/69092 Loss: 147.238 +9600/69092 Loss: 146.320 +12800/69092 Loss: 147.935 +16000/69092 Loss: 146.883 +19200/69092 Loss: 146.125 +22400/69092 Loss: 147.902 +25600/69092 Loss: 145.536 +28800/69092 Loss: 149.641 +32000/69092 Loss: 143.462 +35200/69092 Loss: 147.313 +38400/69092 Loss: 148.904 +41600/69092 Loss: 147.050 +44800/69092 Loss: 149.485 +48000/69092 Loss: 147.878 +51200/69092 Loss: 148.114 +54400/69092 Loss: 149.537 +57600/69092 Loss: 147.324 +60800/69092 Loss: 148.123 +64000/69092 Loss: 148.448 +67200/69092 Loss: 148.748 +Training time 0:07:54.036569 +Epoch: 83 Average loss: 147.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 501) +0/69092 Loss: 135.650 +3200/69092 Loss: 146.067 +6400/69092 Loss: 147.043 +9600/69092 Loss: 147.076 +12800/69092 Loss: 146.580 +16000/69092 Loss: 148.806 +19200/69092 Loss: 144.973 +22400/69092 Loss: 150.626 +25600/69092 Loss: 149.575 +28800/69092 Loss: 146.888 +32000/69092 Loss: 148.025 +35200/69092 Loss: 148.847 +38400/69092 Loss: 148.982 +41600/69092 Loss: 146.736 +44800/69092 Loss: 148.138 +48000/69092 Loss: 147.213 +51200/69092 Loss: 147.875 +54400/69092 Loss: 146.184 +57600/69092 Loss: 146.093 +60800/69092 Loss: 149.322 +64000/69092 Loss: 148.082 +67200/69092 Loss: 148.149 +Training time 0:08:23.560828 +Epoch: 84 Average loss: 147.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 502) +0/69092 Loss: 155.349 +3200/69092 Loss: 147.661 +6400/69092 Loss: 145.798 +9600/69092 Loss: 148.066 +12800/69092 Loss: 146.832 +16000/69092 Loss: 146.631 +19200/69092 Loss: 147.877 +22400/69092 Loss: 148.664 +25600/69092 Loss: 146.001 +28800/69092 Loss: 147.571 +32000/69092 Loss: 148.930 +35200/69092 Loss: 146.671 +38400/69092 Loss: 146.147 +41600/69092 Loss: 147.096 +44800/69092 Loss: 152.366 +48000/69092 Loss: 147.906 +51200/69092 Loss: 146.929 +54400/69092 Loss: 146.356 +57600/69092 Loss: 148.891 +60800/69092 Loss: 146.702 +64000/69092 Loss: 147.325 +67200/69092 Loss: 146.521 +Training time 0:08:17.577059 +Epoch: 85 Average loss: 147.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 503) +0/69092 Loss: 163.972 +3200/69092 Loss: 146.746 +6400/69092 Loss: 148.067 +9600/69092 Loss: 147.307 +12800/69092 Loss: 147.552 +16000/69092 Loss: 147.474 +19200/69092 Loss: 148.758 +22400/69092 Loss: 147.979 +25600/69092 Loss: 147.099 +28800/69092 Loss: 147.179 +32000/69092 Loss: 147.097 +35200/69092 Loss: 149.327 +38400/69092 Loss: 146.647 +41600/69092 Loss: 147.902 +44800/69092 Loss: 146.341 +48000/69092 Loss: 148.940 +51200/69092 Loss: 147.932 +54400/69092 Loss: 147.762 +57600/69092 Loss: 147.697 +60800/69092 Loss: 148.365 +64000/69092 Loss: 148.080 +67200/69092 Loss: 147.055 +Training time 0:07:58.455668 +Epoch: 86 Average loss: 147.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 504) +0/69092 Loss: 147.318 +3200/69092 Loss: 150.924 +6400/69092 Loss: 147.242 +9600/69092 Loss: 147.379 +12800/69092 Loss: 148.316 +16000/69092 Loss: 146.900 +19200/69092 Loss: 146.470 +22400/69092 Loss: 146.816 +25600/69092 Loss: 146.232 +28800/69092 Loss: 148.870 +32000/69092 Loss: 148.522 +35200/69092 Loss: 146.695 +38400/69092 Loss: 148.517 +41600/69092 Loss: 147.169 +44800/69092 Loss: 149.679 +48000/69092 Loss: 149.307 +51200/69092 Loss: 146.480 +54400/69092 Loss: 147.332 +57600/69092 Loss: 146.588 +60800/69092 Loss: 149.258 +64000/69092 Loss: 148.278 +67200/69092 Loss: 147.715 +Training time 0:08:10.216719 +Epoch: 87 Average loss: 147.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 505) +0/69092 Loss: 140.944 +3200/69092 Loss: 147.757 +6400/69092 Loss: 147.884 +9600/69092 Loss: 144.680 +12800/69092 Loss: 146.142 +16000/69092 Loss: 148.803 +19200/69092 Loss: 145.198 +22400/69092 Loss: 149.061 +25600/69092 Loss: 148.217 +28800/69092 Loss: 149.004 +32000/69092 Loss: 148.815 +35200/69092 Loss: 148.192 +38400/69092 Loss: 149.235 +41600/69092 Loss: 146.242 +44800/69092 Loss: 145.157 +48000/69092 Loss: 148.070 +51200/69092 Loss: 150.627 +54400/69092 Loss: 146.369 +57600/69092 Loss: 146.079 +60800/69092 Loss: 147.702 +64000/69092 Loss: 144.910 +67200/69092 Loss: 149.907 +Training time 0:08:12.385406 +Epoch: 88 Average loss: 147.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 506) +0/69092 Loss: 152.500 +3200/69092 Loss: 148.537 +6400/69092 Loss: 148.159 +9600/69092 Loss: 145.010 +12800/69092 Loss: 148.960 +16000/69092 Loss: 147.353 +19200/69092 Loss: 146.021 +22400/69092 Loss: 148.964 +25600/69092 Loss: 149.490 +28800/69092 Loss: 146.247 +32000/69092 Loss: 148.036 +35200/69092 Loss: 149.508 +38400/69092 Loss: 147.327 +41600/69092 Loss: 147.604 +44800/69092 Loss: 144.935 +48000/69092 Loss: 148.282 +51200/69092 Loss: 145.934 +54400/69092 Loss: 146.569 +57600/69092 Loss: 147.644 +60800/69092 Loss: 147.019 +64000/69092 Loss: 148.032 +67200/69092 Loss: 147.709 +Training time 0:07:55.828928 +Epoch: 89 Average loss: 147.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 507) +0/69092 Loss: 140.336 +3200/69092 Loss: 148.462 +6400/69092 Loss: 149.642 +9600/69092 Loss: 148.141 +12800/69092 Loss: 147.736 +16000/69092 Loss: 148.605 +19200/69092 Loss: 149.172 +22400/69092 Loss: 146.730 +25600/69092 Loss: 146.967 +28800/69092 Loss: 148.742 +32000/69092 Loss: 145.618 +35200/69092 Loss: 148.630 +38400/69092 Loss: 146.286 +41600/69092 Loss: 146.504 +44800/69092 Loss: 147.819 +48000/69092 Loss: 148.904 +51200/69092 Loss: 148.692 +54400/69092 Loss: 147.058 +57600/69092 Loss: 147.391 +60800/69092 Loss: 146.200 +64000/69092 Loss: 147.115 +67200/69092 Loss: 147.220 +Training time 0:08:12.233386 +Epoch: 90 Average loss: 147.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 508) +0/69092 Loss: 163.084 +3200/69092 Loss: 147.225 +6400/69092 Loss: 149.745 +9600/69092 Loss: 148.163 +12800/69092 Loss: 145.341 +16000/69092 Loss: 147.504 +19200/69092 Loss: 147.433 +22400/69092 Loss: 148.004 +25600/69092 Loss: 146.638 +28800/69092 Loss: 148.799 +32000/69092 Loss: 146.636 +35200/69092 Loss: 145.366 +38400/69092 Loss: 148.274 +41600/69092 Loss: 146.978 +44800/69092 Loss: 148.799 +48000/69092 Loss: 147.228 +51200/69092 Loss: 148.699 +54400/69092 Loss: 148.522 +57600/69092 Loss: 147.266 +60800/69092 Loss: 146.425 +64000/69092 Loss: 146.838 +67200/69092 Loss: 148.239 +Training time 0:08:05.861440 +Epoch: 91 Average loss: 147.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 509) +0/69092 Loss: 161.314 +3200/69092 Loss: 147.510 +6400/69092 Loss: 147.959 +9600/69092 Loss: 146.308 +12800/69092 Loss: 147.346 +16000/69092 Loss: 149.496 +19200/69092 Loss: 145.616 +22400/69092 Loss: 148.794 +25600/69092 Loss: 146.330 +28800/69092 Loss: 148.777 +32000/69092 Loss: 145.517 +35200/69092 Loss: 146.641 +38400/69092 Loss: 147.547 +41600/69092 Loss: 149.627 +44800/69092 Loss: 147.428 +48000/69092 Loss: 147.202 +51200/69092 Loss: 148.737 +54400/69092 Loss: 147.726 +57600/69092 Loss: 146.789 +60800/69092 Loss: 149.622 +64000/69092 Loss: 146.021 +67200/69092 Loss: 148.590 +Training time 0:07:57.001161 +Epoch: 92 Average loss: 147.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 510) +0/69092 Loss: 134.804 +3200/69092 Loss: 147.918 +6400/69092 Loss: 147.887 +9600/69092 Loss: 147.149 +12800/69092 Loss: 148.444 +16000/69092 Loss: 148.305 +19200/69092 Loss: 147.981 +22400/69092 Loss: 148.457 +25600/69092 Loss: 147.454 +28800/69092 Loss: 147.559 +32000/69092 Loss: 147.965 +35200/69092 Loss: 146.426 +38400/69092 Loss: 149.440 +41600/69092 Loss: 149.855 +44800/69092 Loss: 145.485 +48000/69092 Loss: 147.974 +51200/69092 Loss: 148.486 +54400/69092 Loss: 147.198 +57600/69092 Loss: 146.138 +60800/69092 Loss: 146.566 +64000/69092 Loss: 148.464 +67200/69092 Loss: 146.112 +Training time 0:08:11.052943 +Epoch: 93 Average loss: 147.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 511) +0/69092 Loss: 162.450 +3200/69092 Loss: 146.729 +6400/69092 Loss: 146.884 +9600/69092 Loss: 146.767 +12800/69092 Loss: 146.424 +16000/69092 Loss: 145.226 +19200/69092 Loss: 147.174 +22400/69092 Loss: 148.910 +25600/69092 Loss: 147.281 +28800/69092 Loss: 148.277 +32000/69092 Loss: 150.619 +35200/69092 Loss: 148.943 +38400/69092 Loss: 146.155 +41600/69092 Loss: 149.078 +44800/69092 Loss: 146.909 +48000/69092 Loss: 149.739 +51200/69092 Loss: 148.480 +54400/69092 Loss: 148.257 +57600/69092 Loss: 146.433 +60800/69092 Loss: 146.926 +64000/69092 Loss: 146.405 +67200/69092 Loss: 147.375 +Training time 0:08:14.260243 +Epoch: 94 Average loss: 147.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 512) +0/69092 Loss: 148.071 +3200/69092 Loss: 148.283 +6400/69092 Loss: 148.561 +9600/69092 Loss: 149.444 +12800/69092 Loss: 146.401 +16000/69092 Loss: 146.077 +19200/69092 Loss: 148.641 +22400/69092 Loss: 149.240 +25600/69092 Loss: 146.069 +28800/69092 Loss: 147.599 +32000/69092 Loss: 147.274 +35200/69092 Loss: 146.148 +38400/69092 Loss: 146.235 +41600/69092 Loss: 148.912 +44800/69092 Loss: 147.283 +48000/69092 Loss: 147.811 +51200/69092 Loss: 145.115 +54400/69092 Loss: 148.596 +57600/69092 Loss: 148.462 +60800/69092 Loss: 150.560 +64000/69092 Loss: 145.737 +67200/69092 Loss: 148.026 +Training time 0:08:00.072262 +Epoch: 95 Average loss: 147.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 513) +0/69092 Loss: 142.155 +3200/69092 Loss: 146.731 +6400/69092 Loss: 147.541 +9600/69092 Loss: 146.518 +12800/69092 Loss: 148.861 +16000/69092 Loss: 147.425 +19200/69092 Loss: 148.138 +22400/69092 Loss: 148.554 +25600/69092 Loss: 148.874 +28800/69092 Loss: 147.928 +32000/69092 Loss: 147.873 +35200/69092 Loss: 147.112 +38400/69092 Loss: 148.005 +41600/69092 Loss: 146.327 +44800/69092 Loss: 146.952 +48000/69092 Loss: 146.966 +51200/69092 Loss: 148.605 +54400/69092 Loss: 150.269 +57600/69092 Loss: 146.599 +60800/69092 Loss: 146.306 +64000/69092 Loss: 145.989 +67200/69092 Loss: 146.062 +Training time 0:08:15.707317 +Epoch: 96 Average loss: 147.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 514) +0/69092 Loss: 152.896 +3200/69092 Loss: 145.565 +6400/69092 Loss: 147.373 +9600/69092 Loss: 144.888 +12800/69092 Loss: 146.331 +16000/69092 Loss: 146.029 +19200/69092 Loss: 148.672 +22400/69092 Loss: 147.382 +25600/69092 Loss: 146.595 +28800/69092 Loss: 149.114 +32000/69092 Loss: 148.268 +35200/69092 Loss: 144.069 +38400/69092 Loss: 147.740 +41600/69092 Loss: 146.003 +44800/69092 Loss: 146.959 +48000/69092 Loss: 148.516 +51200/69092 Loss: 149.198 +54400/69092 Loss: 146.288 +57600/69092 Loss: 147.963 +60800/69092 Loss: 148.418 +64000/69092 Loss: 151.847 +67200/69092 Loss: 147.474 +Training time 0:08:18.100296 +Epoch: 97 Average loss: 147.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 515) +0/69092 Loss: 146.202 +3200/69092 Loss: 145.613 +6400/69092 Loss: 146.668 +9600/69092 Loss: 146.731 +12800/69092 Loss: 145.234 +16000/69092 Loss: 146.444 +19200/69092 Loss: 149.336 +22400/69092 Loss: 147.294 +25600/69092 Loss: 148.730 +28800/69092 Loss: 148.962 +32000/69092 Loss: 147.806 +35200/69092 Loss: 149.632 +38400/69092 Loss: 148.029 +41600/69092 Loss: 145.635 +44800/69092 Loss: 148.433 +48000/69092 Loss: 148.164 +51200/69092 Loss: 147.554 +54400/69092 Loss: 147.824 +57600/69092 Loss: 147.327 +60800/69092 Loss: 147.750 +64000/69092 Loss: 146.468 +67200/69092 Loss: 148.670 +Training time 0:07:55.536206 +Epoch: 98 Average loss: 147.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 516) +0/69092 Loss: 129.299 +3200/69092 Loss: 147.476 +6400/69092 Loss: 147.209 +9600/69092 Loss: 146.903 +12800/69092 Loss: 149.666 +16000/69092 Loss: 147.846 +19200/69092 Loss: 148.262 +22400/69092 Loss: 148.026 +25600/69092 Loss: 146.662 +28800/69092 Loss: 145.144 +32000/69092 Loss: 146.433 +35200/69092 Loss: 146.580 +38400/69092 Loss: 146.032 +41600/69092 Loss: 146.448 +44800/69092 Loss: 146.491 +48000/69092 Loss: 148.486 +51200/69092 Loss: 148.369 +54400/69092 Loss: 148.601 +57600/69092 Loss: 147.551 +60800/69092 Loss: 149.184 +64000/69092 Loss: 147.858 +67200/69092 Loss: 148.645 +Training time 0:08:15.924963 +Epoch: 99 Average loss: 147.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 517) +0/69092 Loss: 140.958 +3200/69092 Loss: 147.424 +6400/69092 Loss: 148.779 +9600/69092 Loss: 147.866 +12800/69092 Loss: 149.118 +16000/69092 Loss: 147.473 +19200/69092 Loss: 149.822 +22400/69092 Loss: 147.037 +25600/69092 Loss: 146.054 +28800/69092 Loss: 148.704 +32000/69092 Loss: 146.316 +35200/69092 Loss: 146.097 +38400/69092 Loss: 148.950 +41600/69092 Loss: 147.435 +44800/69092 Loss: 149.595 +48000/69092 Loss: 145.107 +51200/69092 Loss: 148.559 +54400/69092 Loss: 147.290 +57600/69092 Loss: 148.233 +60800/69092 Loss: 147.083 +64000/69092 Loss: 145.557 +67200/69092 Loss: 148.468 +Training time 0:08:14.569202 +Epoch: 100 Average loss: 147.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 518) +0/69092 Loss: 145.551 +3200/69092 Loss: 149.179 +6400/69092 Loss: 145.650 +9600/69092 Loss: 145.334 +12800/69092 Loss: 146.776 +16000/69092 Loss: 145.474 +19200/69092 Loss: 146.642 +22400/69092 Loss: 147.965 +25600/69092 Loss: 147.585 +28800/69092 Loss: 147.092 +32000/69092 Loss: 148.408 +35200/69092 Loss: 148.777 +38400/69092 Loss: 146.952 +41600/69092 Loss: 147.564 +44800/69092 Loss: 147.728 +48000/69092 Loss: 146.030 +51200/69092 Loss: 149.226 +54400/69092 Loss: 148.627 +57600/69092 Loss: 148.533 +60800/69092 Loss: 147.407 +64000/69092 Loss: 150.093 +67200/69092 Loss: 147.888 +Training time 0:07:56.109121 +Epoch: 101 Average loss: 147.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 519) +0/69092 Loss: 160.292 +3200/69092 Loss: 149.533 +6400/69092 Loss: 146.530 +9600/69092 Loss: 149.473 +12800/69092 Loss: 145.931 +16000/69092 Loss: 146.320 +19200/69092 Loss: 146.926 +22400/69092 Loss: 145.928 +25600/69092 Loss: 147.875 +28800/69092 Loss: 148.001 +32000/69092 Loss: 145.241 +35200/69092 Loss: 146.594 +38400/69092 Loss: 148.955 +41600/69092 Loss: 152.342 +44800/69092 Loss: 148.385 +48000/69092 Loss: 146.921 +51200/69092 Loss: 145.987 +54400/69092 Loss: 146.966 +57600/69092 Loss: 145.693 +60800/69092 Loss: 149.795 +64000/69092 Loss: 148.175 +67200/69092 Loss: 147.622 +Training time 0:08:05.008511 +Epoch: 102 Average loss: 147.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 520) +0/69092 Loss: 148.057 +3200/69092 Loss: 146.475 +6400/69092 Loss: 148.238 +9600/69092 Loss: 147.985 +12800/69092 Loss: 148.074 +16000/69092 Loss: 148.332 +19200/69092 Loss: 147.114 +22400/69092 Loss: 146.694 +25600/69092 Loss: 148.469 +28800/69092 Loss: 147.798 +32000/69092 Loss: 147.778 +35200/69092 Loss: 147.148 +38400/69092 Loss: 149.829 +41600/69092 Loss: 145.903 +44800/69092 Loss: 144.400 +48000/69092 Loss: 147.282 +51200/69092 Loss: 151.700 +54400/69092 Loss: 146.351 +57600/69092 Loss: 148.215 +60800/69092 Loss: 149.661 +64000/69092 Loss: 145.294 +67200/69092 Loss: 147.886 +Training time 0:08:10.060694 +Epoch: 103 Average loss: 147.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 521) +0/69092 Loss: 136.738 +3200/69092 Loss: 148.736 +6400/69092 Loss: 145.925 +9600/69092 Loss: 148.449 +12800/69092 Loss: 148.286 +16000/69092 Loss: 150.222 +19200/69092 Loss: 146.531 +22400/69092 Loss: 146.262 +25600/69092 Loss: 146.841 +28800/69092 Loss: 148.632 +32000/69092 Loss: 147.031 +35200/69092 Loss: 147.599 +38400/69092 Loss: 147.164 +41600/69092 Loss: 147.928 +44800/69092 Loss: 145.883 +48000/69092 Loss: 148.497 +51200/69092 Loss: 150.466 +54400/69092 Loss: 146.723 +57600/69092 Loss: 147.582 +60800/69092 Loss: 145.117 +64000/69092 Loss: 144.893 +67200/69092 Loss: 149.262 +Training time 0:08:05.079702 +Epoch: 104 Average loss: 147.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 522) +0/69092 Loss: 149.773 +3200/69092 Loss: 144.630 +6400/69092 Loss: 146.729 +9600/69092 Loss: 149.109 +12800/69092 Loss: 147.683 +16000/69092 Loss: 146.872 +19200/69092 Loss: 147.522 +22400/69092 Loss: 145.183 +25600/69092 Loss: 148.903 +28800/69092 Loss: 147.712 +32000/69092 Loss: 148.348 +35200/69092 Loss: 148.851 +38400/69092 Loss: 147.985 +41600/69092 Loss: 150.745 +44800/69092 Loss: 147.507 +48000/69092 Loss: 146.582 +51200/69092 Loss: 148.033 +54400/69092 Loss: 146.095 +57600/69092 Loss: 145.749 +60800/69092 Loss: 146.536 +64000/69092 Loss: 146.788 +67200/69092 Loss: 148.825 +Training time 0:08:06.408761 +Epoch: 105 Average loss: 147.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 523) +0/69092 Loss: 145.118 +3200/69092 Loss: 148.173 +6400/69092 Loss: 148.325 +9600/69092 Loss: 147.924 +12800/69092 Loss: 149.131 +16000/69092 Loss: 147.525 +19200/69092 Loss: 146.508 +22400/69092 Loss: 146.059 +25600/69092 Loss: 144.840 +28800/69092 Loss: 146.562 +32000/69092 Loss: 146.584 +35200/69092 Loss: 146.812 +38400/69092 Loss: 145.653 +41600/69092 Loss: 146.580 +44800/69092 Loss: 150.697 +48000/69092 Loss: 147.812 +51200/69092 Loss: 147.550 +54400/69092 Loss: 145.244 +57600/69092 Loss: 146.819 +60800/69092 Loss: 146.409 +64000/69092 Loss: 148.653 +67200/69092 Loss: 149.149 +Training time 0:08:10.038232 +Epoch: 106 Average loss: 147.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 524) +0/69092 Loss: 151.083 +3200/69092 Loss: 148.231 +6400/69092 Loss: 149.923 +9600/69092 Loss: 145.992 +12800/69092 Loss: 147.813 +16000/69092 Loss: 147.781 +19200/69092 Loss: 148.138 +22400/69092 Loss: 148.577 +25600/69092 Loss: 147.331 +28800/69092 Loss: 147.888 +32000/69092 Loss: 148.076 +35200/69092 Loss: 147.255 +38400/69092 Loss: 146.204 +41600/69092 Loss: 148.343 +44800/69092 Loss: 148.550 +48000/69092 Loss: 146.231 +51200/69092 Loss: 146.592 +54400/69092 Loss: 149.095 +57600/69092 Loss: 146.762 +60800/69092 Loss: 148.242 +64000/69092 Loss: 145.483 +67200/69092 Loss: 148.491 +Training time 0:08:01.060046 +Epoch: 107 Average loss: 147.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 525) +0/69092 Loss: 159.302 +3200/69092 Loss: 146.271 +6400/69092 Loss: 148.401 +9600/69092 Loss: 148.905 +12800/69092 Loss: 145.988 +16000/69092 Loss: 146.825 +19200/69092 Loss: 148.741 +22400/69092 Loss: 145.509 +25600/69092 Loss: 147.826 +28800/69092 Loss: 144.333 +32000/69092 Loss: 150.294 +35200/69092 Loss: 146.781 +38400/69092 Loss: 147.857 +41600/69092 Loss: 148.922 +44800/69092 Loss: 149.093 +48000/69092 Loss: 146.189 +51200/69092 Loss: 146.758 +54400/69092 Loss: 150.542 +57600/69092 Loss: 146.531 +60800/69092 Loss: 146.979 +64000/69092 Loss: 147.766 +67200/69092 Loss: 147.279 +Training time 0:08:21.107097 +Epoch: 108 Average loss: 147.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 526) +0/69092 Loss: 166.670 +3200/69092 Loss: 150.091 +6400/69092 Loss: 146.647 +9600/69092 Loss: 148.459 +12800/69092 Loss: 148.485 +16000/69092 Loss: 145.739 +19200/69092 Loss: 150.105 +22400/69092 Loss: 149.956 +25600/69092 Loss: 147.548 +28800/69092 Loss: 146.998 +32000/69092 Loss: 149.395 +35200/69092 Loss: 146.746 +38400/69092 Loss: 148.088 +41600/69092 Loss: 147.727 +44800/69092 Loss: 149.681 +48000/69092 Loss: 145.742 +51200/69092 Loss: 146.390 +54400/69092 Loss: 147.955 +57600/69092 Loss: 147.966 +60800/69092 Loss: 147.038 +64000/69092 Loss: 147.214 +67200/69092 Loss: 147.317 +Training time 0:08:12.813550 +Epoch: 109 Average loss: 147.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 527) +0/69092 Loss: 142.467 +3200/69092 Loss: 145.671 +6400/69092 Loss: 145.747 +9600/69092 Loss: 147.597 +12800/69092 Loss: 145.084 +16000/69092 Loss: 149.997 +19200/69092 Loss: 145.442 +22400/69092 Loss: 149.166 +25600/69092 Loss: 148.598 +28800/69092 Loss: 146.938 +32000/69092 Loss: 147.460 +35200/69092 Loss: 147.701 +38400/69092 Loss: 148.551 +41600/69092 Loss: 147.959 +44800/69092 Loss: 147.409 +48000/69092 Loss: 148.133 +51200/69092 Loss: 148.010 +54400/69092 Loss: 149.896 +57600/69092 Loss: 146.633 +60800/69092 Loss: 145.686 +64000/69092 Loss: 150.277 +67200/69092 Loss: 146.427 +Training time 0:08:01.131396 +Epoch: 110 Average loss: 147.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 528) +0/69092 Loss: 149.691 +3200/69092 Loss: 146.897 +6400/69092 Loss: 148.604 +9600/69092 Loss: 146.684 +12800/69092 Loss: 148.613 +16000/69092 Loss: 147.791 +19200/69092 Loss: 147.025 +22400/69092 Loss: 147.596 +25600/69092 Loss: 147.919 +28800/69092 Loss: 149.502 +32000/69092 Loss: 146.143 +35200/69092 Loss: 147.450 +38400/69092 Loss: 146.729 +41600/69092 Loss: 148.392 +44800/69092 Loss: 145.983 +48000/69092 Loss: 149.527 +51200/69092 Loss: 147.957 +54400/69092 Loss: 146.620 +57600/69092 Loss: 147.728 +60800/69092 Loss: 148.002 +64000/69092 Loss: 145.630 +67200/69092 Loss: 147.906 +Training time 0:08:07.185914 +Epoch: 111 Average loss: 147.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 529) +0/69092 Loss: 160.350 +3200/69092 Loss: 147.683 +6400/69092 Loss: 147.527 +9600/69092 Loss: 149.726 +12800/69092 Loss: 150.507 +16000/69092 Loss: 145.917 +19200/69092 Loss: 147.107 +22400/69092 Loss: 148.405 +25600/69092 Loss: 149.008 +28800/69092 Loss: 146.652 +32000/69092 Loss: 148.998 +35200/69092 Loss: 147.370 +38400/69092 Loss: 146.146 +41600/69092 Loss: 145.483 +44800/69092 Loss: 146.394 +48000/69092 Loss: 147.461 +51200/69092 Loss: 147.053 +54400/69092 Loss: 149.007 +57600/69092 Loss: 149.327 +60800/69092 Loss: 146.428 +64000/69092 Loss: 148.075 +67200/69092 Loss: 147.085 +Training time 0:08:15.738968 +Epoch: 112 Average loss: 147.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 530) +0/69092 Loss: 152.454 +3200/69092 Loss: 147.156 +6400/69092 Loss: 146.305 +9600/69092 Loss: 145.165 +12800/69092 Loss: 146.405 +16000/69092 Loss: 147.580 +19200/69092 Loss: 147.711 +22400/69092 Loss: 147.206 +25600/69092 Loss: 145.634 +28800/69092 Loss: 145.832 +32000/69092 Loss: 149.233 +35200/69092 Loss: 148.879 +38400/69092 Loss: 147.525 +41600/69092 Loss: 148.223 +44800/69092 Loss: 149.008 +48000/69092 Loss: 149.579 +51200/69092 Loss: 148.423 +54400/69092 Loss: 147.668 +57600/69092 Loss: 146.085 +60800/69092 Loss: 146.043 +64000/69092 Loss: 147.029 +67200/69092 Loss: 149.432 +Training time 0:08:01.205496 +Epoch: 113 Average loss: 147.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 531) +0/69092 Loss: 161.051 +3200/69092 Loss: 150.524 +6400/69092 Loss: 148.156 +9600/69092 Loss: 145.730 +12800/69092 Loss: 148.912 +16000/69092 Loss: 146.919 +19200/69092 Loss: 148.927 +22400/69092 Loss: 146.552 +25600/69092 Loss: 150.537 +28800/69092 Loss: 147.477 +32000/69092 Loss: 145.482 +35200/69092 Loss: 149.337 +38400/69092 Loss: 148.177 +41600/69092 Loss: 147.276 +44800/69092 Loss: 146.537 +48000/69092 Loss: 145.323 +51200/69092 Loss: 145.134 +54400/69092 Loss: 147.545 +57600/69092 Loss: 144.988 +60800/69092 Loss: 147.304 +64000/69092 Loss: 146.970 +67200/69092 Loss: 146.491 +Training time 0:08:10.818199 +Epoch: 114 Average loss: 147.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 532) +0/69092 Loss: 139.090 +3200/69092 Loss: 146.309 +6400/69092 Loss: 147.047 +9600/69092 Loss: 147.101 +12800/69092 Loss: 145.913 +16000/69092 Loss: 147.181 +19200/69092 Loss: 145.638 +22400/69092 Loss: 148.865 +25600/69092 Loss: 147.394 +28800/69092 Loss: 147.110 +32000/69092 Loss: 148.380 +35200/69092 Loss: 147.768 +38400/69092 Loss: 146.963 +41600/69092 Loss: 146.760 +44800/69092 Loss: 146.915 +48000/69092 Loss: 149.674 +51200/69092 Loss: 143.686 +54400/69092 Loss: 148.340 +57600/69092 Loss: 148.897 +60800/69092 Loss: 150.137 +64000/69092 Loss: 147.660 +67200/69092 Loss: 148.278 +Training time 0:08:17.305804 +Epoch: 115 Average loss: 147.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 533) +0/69092 Loss: 168.487 +3200/69092 Loss: 148.369 +6400/69092 Loss: 148.275 +9600/69092 Loss: 150.465 +12800/69092 Loss: 146.279 +16000/69092 Loss: 150.053 +19200/69092 Loss: 147.836 +22400/69092 Loss: 148.895 +25600/69092 Loss: 146.658 +28800/69092 Loss: 144.695 +32000/69092 Loss: 147.762 +35200/69092 Loss: 146.311 +38400/69092 Loss: 146.574 +41600/69092 Loss: 145.270 +44800/69092 Loss: 148.973 +48000/69092 Loss: 145.952 +51200/69092 Loss: 146.232 +54400/69092 Loss: 149.366 +57600/69092 Loss: 147.644 +60800/69092 Loss: 147.552 +64000/69092 Loss: 145.241 +67200/69092 Loss: 148.423 +Training time 0:07:55.130128 +Epoch: 116 Average loss: 147.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 534) +0/69092 Loss: 158.945 +3200/69092 Loss: 146.989 +6400/69092 Loss: 146.338 +9600/69092 Loss: 147.853 +12800/69092 Loss: 150.202 +16000/69092 Loss: 147.990 +19200/69092 Loss: 146.240 +22400/69092 Loss: 148.249 +25600/69092 Loss: 148.402 +28800/69092 Loss: 149.935 +32000/69092 Loss: 148.400 +35200/69092 Loss: 144.883 +38400/69092 Loss: 149.779 +41600/69092 Loss: 145.199 +44800/69092 Loss: 148.300 +48000/69092 Loss: 146.905 +51200/69092 Loss: 147.159 +54400/69092 Loss: 146.000 +57600/69092 Loss: 148.086 +60800/69092 Loss: 146.103 +64000/69092 Loss: 148.067 +67200/69092 Loss: 144.166 +Training time 0:08:03.987456 +Epoch: 117 Average loss: 147.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 535) +0/69092 Loss: 141.966 +3200/69092 Loss: 148.568 +6400/69092 Loss: 149.284 +9600/69092 Loss: 148.073 +12800/69092 Loss: 146.455 +16000/69092 Loss: 149.468 +19200/69092 Loss: 147.936 +22400/69092 Loss: 147.576 +25600/69092 Loss: 146.253 +28800/69092 Loss: 145.205 +32000/69092 Loss: 145.820 +35200/69092 Loss: 148.744 +38400/69092 Loss: 145.711 +41600/69092 Loss: 149.104 +44800/69092 Loss: 146.777 +48000/69092 Loss: 146.779 +51200/69092 Loss: 147.031 +54400/69092 Loss: 148.005 +57600/69092 Loss: 147.228 +60800/69092 Loss: 150.324 +64000/69092 Loss: 145.341 +67200/69092 Loss: 146.204 +Training time 0:08:09.574476 +Epoch: 118 Average loss: 147.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 536) +0/69092 Loss: 144.354 +3200/69092 Loss: 146.886 +6400/69092 Loss: 152.442 +9600/69092 Loss: 149.404 +12800/69092 Loss: 145.389 +16000/69092 Loss: 146.080 +19200/69092 Loss: 148.041 +22400/69092 Loss: 148.131 +25600/69092 Loss: 147.823 +28800/69092 Loss: 148.095 +32000/69092 Loss: 147.581 +35200/69092 Loss: 147.602 +38400/69092 Loss: 146.330 +41600/69092 Loss: 148.689 +44800/69092 Loss: 147.656 +48000/69092 Loss: 146.543 +51200/69092 Loss: 146.352 +54400/69092 Loss: 147.308 +57600/69092 Loss: 143.988 +60800/69092 Loss: 145.653 +64000/69092 Loss: 148.626 +67200/69092 Loss: 147.035 +Training time 0:07:57.078689 +Epoch: 119 Average loss: 147.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 537) +0/69092 Loss: 151.588 +3200/69092 Loss: 146.803 +6400/69092 Loss: 149.077 +9600/69092 Loss: 147.033 +12800/69092 Loss: 148.103 +16000/69092 Loss: 146.288 +19200/69092 Loss: 149.896 +22400/69092 Loss: 146.481 +25600/69092 Loss: 148.949 +28800/69092 Loss: 148.946 +32000/69092 Loss: 149.971 +35200/69092 Loss: 148.363 +38400/69092 Loss: 147.742 +41600/69092 Loss: 150.030 +44800/69092 Loss: 146.451 +48000/69092 Loss: 149.914 +51200/69092 Loss: 146.593 +54400/69092 Loss: 143.870 +57600/69092 Loss: 146.620 +60800/69092 Loss: 148.666 +64000/69092 Loss: 147.897 +67200/69092 Loss: 145.023 +Training time 0:08:15.246061 +Epoch: 120 Average loss: 147.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 538) +0/69092 Loss: 152.920 +3200/69092 Loss: 144.815 +6400/69092 Loss: 147.639 +9600/69092 Loss: 146.946 +12800/69092 Loss: 149.872 +16000/69092 Loss: 146.020 +19200/69092 Loss: 147.146 +22400/69092 Loss: 146.844 +25600/69092 Loss: 148.834 +28800/69092 Loss: 147.639 +32000/69092 Loss: 145.993 +35200/69092 Loss: 146.130 +38400/69092 Loss: 147.786 +41600/69092 Loss: 147.516 +44800/69092 Loss: 147.006 +48000/69092 Loss: 148.924 +51200/69092 Loss: 147.979 +54400/69092 Loss: 147.544 +57600/69092 Loss: 148.029 +60800/69092 Loss: 147.669 +64000/69092 Loss: 147.253 +67200/69092 Loss: 148.900 +Training time 0:08:09.342244 +Epoch: 121 Average loss: 147.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 539) +0/69092 Loss: 151.948 +3200/69092 Loss: 145.662 +6400/69092 Loss: 149.176 +9600/69092 Loss: 146.233 +12800/69092 Loss: 147.181 +16000/69092 Loss: 147.305 +19200/69092 Loss: 148.629 +22400/69092 Loss: 147.639 +25600/69092 Loss: 148.447 +28800/69092 Loss: 146.908 +32000/69092 Loss: 149.289 +35200/69092 Loss: 147.695 +38400/69092 Loss: 145.855 +41600/69092 Loss: 147.471 +44800/69092 Loss: 147.665 +48000/69092 Loss: 147.344 +51200/69092 Loss: 147.826 +54400/69092 Loss: 146.256 +57600/69092 Loss: 147.767 +60800/69092 Loss: 146.763 +64000/69092 Loss: 147.085 +67200/69092 Loss: 147.189 +Training time 0:07:57.461286 +Epoch: 122 Average loss: 147.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 540) +0/69092 Loss: 151.962 +3200/69092 Loss: 145.114 +6400/69092 Loss: 147.746 +9600/69092 Loss: 146.342 +12800/69092 Loss: 148.232 +16000/69092 Loss: 147.960 +19200/69092 Loss: 149.212 +22400/69092 Loss: 148.888 +25600/69092 Loss: 146.312 +28800/69092 Loss: 147.355 +32000/69092 Loss: 148.328 +35200/69092 Loss: 147.972 +38400/69092 Loss: 146.040 +41600/69092 Loss: 145.291 +44800/69092 Loss: 146.460 +48000/69092 Loss: 146.681 +51200/69092 Loss: 148.134 +54400/69092 Loss: 146.123 +57600/69092 Loss: 147.561 +60800/69092 Loss: 147.775 +64000/69092 Loss: 147.625 +67200/69092 Loss: 145.857 +Training time 0:08:07.404815 +Epoch: 123 Average loss: 147.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 541) +0/69092 Loss: 152.717 +3200/69092 Loss: 145.806 +6400/69092 Loss: 147.693 +9600/69092 Loss: 147.025 +12800/69092 Loss: 149.400 +16000/69092 Loss: 146.482 +19200/69092 Loss: 146.437 +22400/69092 Loss: 147.060 +25600/69092 Loss: 148.020 +28800/69092 Loss: 147.830 +32000/69092 Loss: 147.630 +35200/69092 Loss: 147.215 +38400/69092 Loss: 147.355 +41600/69092 Loss: 148.222 +44800/69092 Loss: 149.177 +48000/69092 Loss: 146.179 +51200/69092 Loss: 149.570 +54400/69092 Loss: 147.375 +57600/69092 Loss: 147.435 +60800/69092 Loss: 149.018 +64000/69092 Loss: 146.493 +67200/69092 Loss: 147.510 +Training time 0:08:04.794687 +Epoch: 124 Average loss: 147.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 542) +0/69092 Loss: 170.132 +3200/69092 Loss: 147.135 +6400/69092 Loss: 146.621 +9600/69092 Loss: 146.015 +12800/69092 Loss: 147.906 +16000/69092 Loss: 149.700 +19200/69092 Loss: 149.005 +22400/69092 Loss: 148.115 +25600/69092 Loss: 146.691 +28800/69092 Loss: 147.986 +32000/69092 Loss: 146.489 +35200/69092 Loss: 149.301 +38400/69092 Loss: 148.275 +41600/69092 Loss: 146.862 +44800/69092 Loss: 144.979 +48000/69092 Loss: 146.003 +51200/69092 Loss: 147.676 +54400/69092 Loss: 146.996 +57600/69092 Loss: 143.947 +60800/69092 Loss: 148.326 +64000/69092 Loss: 147.689 +67200/69092 Loss: 149.267 +Training time 0:07:50.549805 +Epoch: 125 Average loss: 147.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 543) +0/69092 Loss: 165.316 +3200/69092 Loss: 146.985 +6400/69092 Loss: 146.590 +9600/69092 Loss: 147.091 +12800/69092 Loss: 149.088 +16000/69092 Loss: 147.641 +19200/69092 Loss: 147.147 +22400/69092 Loss: 147.452 +25600/69092 Loss: 147.438 +28800/69092 Loss: 147.815 +32000/69092 Loss: 145.122 +35200/69092 Loss: 147.243 +38400/69092 Loss: 146.451 +41600/69092 Loss: 147.378 +44800/69092 Loss: 148.379 +48000/69092 Loss: 146.824 +51200/69092 Loss: 148.175 +54400/69092 Loss: 149.874 +57600/69092 Loss: 147.951 +60800/69092 Loss: 146.629 +64000/69092 Loss: 147.688 +67200/69092 Loss: 147.375 +Training time 0:08:08.270873 +Epoch: 126 Average loss: 147.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 544) +0/69092 Loss: 148.949 +3200/69092 Loss: 147.543 +6400/69092 Loss: 149.402 +9600/69092 Loss: 149.680 +12800/69092 Loss: 146.733 +16000/69092 Loss: 144.827 +19200/69092 Loss: 144.892 +22400/69092 Loss: 149.029 +25600/69092 Loss: 147.039 +28800/69092 Loss: 149.478 +32000/69092 Loss: 146.511 +35200/69092 Loss: 147.992 +38400/69092 Loss: 147.671 +41600/69092 Loss: 145.764 +44800/69092 Loss: 146.266 +48000/69092 Loss: 149.204 +51200/69092 Loss: 149.231 +54400/69092 Loss: 147.095 +57600/69092 Loss: 146.810 +60800/69092 Loss: 145.939 +64000/69092 Loss: 150.034 +67200/69092 Loss: 146.821 +Training time 0:08:13.346742 +Epoch: 127 Average loss: 147.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 545) +0/69092 Loss: 138.288 +3200/69092 Loss: 145.850 +6400/69092 Loss: 148.308 +9600/69092 Loss: 147.834 +12800/69092 Loss: 144.476 +16000/69092 Loss: 147.858 +19200/69092 Loss: 146.749 +22400/69092 Loss: 146.655 +25600/69092 Loss: 149.386 +28800/69092 Loss: 148.407 +32000/69092 Loss: 147.363 +35200/69092 Loss: 148.665 +38400/69092 Loss: 145.892 +41600/69092 Loss: 147.257 +44800/69092 Loss: 148.445 +48000/69092 Loss: 148.779 +51200/69092 Loss: 147.671 +54400/69092 Loss: 147.750 +57600/69092 Loss: 147.413 +60800/69092 Loss: 148.905 +64000/69092 Loss: 145.074 +67200/69092 Loss: 146.179 +Training time 0:07:59.000302 +Epoch: 128 Average loss: 147.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 546) +0/69092 Loss: 152.609 +3200/69092 Loss: 148.827 +6400/69092 Loss: 149.909 +9600/69092 Loss: 147.004 +12800/69092 Loss: 147.111 +16000/69092 Loss: 144.803 +19200/69092 Loss: 148.799 +22400/69092 Loss: 150.989 +25600/69092 Loss: 146.997 +28800/69092 Loss: 147.658 +32000/69092 Loss: 145.647 +35200/69092 Loss: 149.345 +38400/69092 Loss: 148.063 +41600/69092 Loss: 146.276 +44800/69092 Loss: 146.095 +48000/69092 Loss: 147.454 +51200/69092 Loss: 147.728 +54400/69092 Loss: 146.567 +57600/69092 Loss: 146.449 +60800/69092 Loss: 146.527 +64000/69092 Loss: 148.803 +67200/69092 Loss: 144.118 +Training time 0:08:12.911462 +Epoch: 129 Average loss: 147.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 547) +0/69092 Loss: 146.925 +3200/69092 Loss: 147.856 +6400/69092 Loss: 147.443 +9600/69092 Loss: 147.255 +12800/69092 Loss: 148.931 +16000/69092 Loss: 147.518 +19200/69092 Loss: 148.060 +22400/69092 Loss: 147.788 +25600/69092 Loss: 149.779 +28800/69092 Loss: 147.333 +32000/69092 Loss: 148.796 +35200/69092 Loss: 147.501 +38400/69092 Loss: 146.472 +41600/69092 Loss: 146.156 +44800/69092 Loss: 148.704 +48000/69092 Loss: 144.879 +51200/69092 Loss: 149.971 +54400/69092 Loss: 147.289 +57600/69092 Loss: 145.771 +60800/69092 Loss: 147.910 +64000/69092 Loss: 148.098 +67200/69092 Loss: 146.290 +Training time 0:08:13.558156 +Epoch: 130 Average loss: 147.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 548) +0/69092 Loss: 149.508 +3200/69092 Loss: 147.696 +6400/69092 Loss: 148.856 +9600/69092 Loss: 147.725 +12800/69092 Loss: 146.567 +16000/69092 Loss: 149.474 +19200/69092 Loss: 149.224 +22400/69092 Loss: 147.491 +25600/69092 Loss: 150.212 +28800/69092 Loss: 146.108 +32000/69092 Loss: 146.547 +35200/69092 Loss: 144.104 +38400/69092 Loss: 147.899 +41600/69092 Loss: 147.223 +44800/69092 Loss: 148.601 +48000/69092 Loss: 148.724 +51200/69092 Loss: 147.372 +54400/69092 Loss: 146.775 +57600/69092 Loss: 145.695 +60800/69092 Loss: 145.900 +64000/69092 Loss: 145.089 +67200/69092 Loss: 146.736 +Training time 0:07:51.320967 +Epoch: 131 Average loss: 147.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 549) +0/69092 Loss: 141.001 +3200/69092 Loss: 149.148 +6400/69092 Loss: 147.794 +9600/69092 Loss: 147.679 +12800/69092 Loss: 146.907 +16000/69092 Loss: 145.313 +19200/69092 Loss: 148.850 +22400/69092 Loss: 148.830 +25600/69092 Loss: 146.937 +28800/69092 Loss: 147.875 +32000/69092 Loss: 147.571 +35200/69092 Loss: 146.423 +38400/69092 Loss: 147.562 +41600/69092 Loss: 148.850 +44800/69092 Loss: 146.919 +48000/69092 Loss: 148.755 +51200/69092 Loss: 146.945 +54400/69092 Loss: 148.743 +57600/69092 Loss: 146.731 +60800/69092 Loss: 146.545 +64000/69092 Loss: 146.132 +67200/69092 Loss: 150.567 +Training time 0:08:10.009287 +Epoch: 132 Average loss: 147.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 550) +0/69092 Loss: 152.756 +3200/69092 Loss: 146.223 +6400/69092 Loss: 148.479 +9600/69092 Loss: 148.050 +12800/69092 Loss: 145.997 +16000/69092 Loss: 147.631 +19200/69092 Loss: 146.452 +22400/69092 Loss: 146.036 +25600/69092 Loss: 147.272 +28800/69092 Loss: 146.291 +32000/69092 Loss: 147.560 +35200/69092 Loss: 148.799 +38400/69092 Loss: 147.844 +41600/69092 Loss: 148.385 +44800/69092 Loss: 146.596 +48000/69092 Loss: 148.314 +51200/69092 Loss: 148.889 +54400/69092 Loss: 147.303 +57600/69092 Loss: 149.438 +60800/69092 Loss: 146.217 +64000/69092 Loss: 145.970 +67200/69092 Loss: 146.731 +Training time 0:08:13.614751 +Epoch: 133 Average loss: 147.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 551) +0/69092 Loss: 147.097 +3200/69092 Loss: 149.939 +6400/69092 Loss: 145.717 +9600/69092 Loss: 148.853 +12800/69092 Loss: 147.567 +16000/69092 Loss: 145.807 +19200/69092 Loss: 148.500 +22400/69092 Loss: 147.097 +25600/69092 Loss: 148.303 +28800/69092 Loss: 146.412 +32000/69092 Loss: 148.049 +35200/69092 Loss: 147.622 +38400/69092 Loss: 143.306 +41600/69092 Loss: 148.530 +44800/69092 Loss: 146.442 +48000/69092 Loss: 146.443 +51200/69092 Loss: 148.110 +54400/69092 Loss: 146.320 +57600/69092 Loss: 146.567 +60800/69092 Loss: 147.958 +64000/69092 Loss: 149.559 +67200/69092 Loss: 148.704 +Training time 0:07:57.950908 +Epoch: 134 Average loss: 147.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 552) +0/69092 Loss: 144.213 +3200/69092 Loss: 148.146 +6400/69092 Loss: 145.956 +9600/69092 Loss: 148.158 +12800/69092 Loss: 145.836 +16000/69092 Loss: 145.665 +19200/69092 Loss: 147.205 +22400/69092 Loss: 146.121 +25600/69092 Loss: 148.371 +28800/69092 Loss: 146.314 +32000/69092 Loss: 147.920 +35200/69092 Loss: 147.553 +38400/69092 Loss: 150.762 +41600/69092 Loss: 150.620 +44800/69092 Loss: 149.081 +48000/69092 Loss: 145.399 +51200/69092 Loss: 146.686 +54400/69092 Loss: 146.642 +57600/69092 Loss: 149.188 +60800/69092 Loss: 146.796 +64000/69092 Loss: 147.291 +67200/69092 Loss: 149.267 +Training time 0:08:06.854811 +Epoch: 135 Average loss: 147.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 553) +0/69092 Loss: 130.863 +3200/69092 Loss: 146.169 +6400/69092 Loss: 147.892 +9600/69092 Loss: 146.109 +12800/69092 Loss: 148.935 +16000/69092 Loss: 147.303 +19200/69092 Loss: 149.477 +22400/69092 Loss: 147.083 +25600/69092 Loss: 146.878 +28800/69092 Loss: 144.482 +32000/69092 Loss: 148.034 +35200/69092 Loss: 146.969 +38400/69092 Loss: 148.132 +41600/69092 Loss: 147.810 +44800/69092 Loss: 148.127 +48000/69092 Loss: 148.731 +51200/69092 Loss: 147.875 +54400/69092 Loss: 147.381 +57600/69092 Loss: 149.727 +60800/69092 Loss: 144.134 +64000/69092 Loss: 147.235 +67200/69092 Loss: 148.247 +Training time 0:08:26.751803 +Epoch: 136 Average loss: 147.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 554) +0/69092 Loss: 141.173 +3200/69092 Loss: 148.024 +6400/69092 Loss: 146.600 +9600/69092 Loss: 146.682 +12800/69092 Loss: 147.187 +16000/69092 Loss: 145.813 +19200/69092 Loss: 145.991 +22400/69092 Loss: 146.792 +25600/69092 Loss: 146.281 +28800/69092 Loss: 148.965 +32000/69092 Loss: 147.063 +35200/69092 Loss: 148.140 +38400/69092 Loss: 147.617 +41600/69092 Loss: 148.269 +44800/69092 Loss: 148.357 +48000/69092 Loss: 150.111 +51200/69092 Loss: 147.012 +54400/69092 Loss: 144.853 +57600/69092 Loss: 150.206 +60800/69092 Loss: 146.126 +64000/69092 Loss: 145.905 +67200/69092 Loss: 148.163 +Training time 0:07:55.368098 +Epoch: 137 Average loss: 147.22 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 555) +0/69092 Loss: 148.608 +3200/69092 Loss: 148.326 +6400/69092 Loss: 146.898 +9600/69092 Loss: 150.176 +12800/69092 Loss: 148.185 +16000/69092 Loss: 145.446 +19200/69092 Loss: 149.077 +22400/69092 Loss: 146.385 +25600/69092 Loss: 148.332 +28800/69092 Loss: 146.333 +32000/69092 Loss: 149.204 +35200/69092 Loss: 146.366 +38400/69092 Loss: 149.394 +41600/69092 Loss: 147.970 +44800/69092 Loss: 145.831 +48000/69092 Loss: 146.894 +51200/69092 Loss: 145.432 +54400/69092 Loss: 148.743 +57600/69092 Loss: 145.576 +60800/69092 Loss: 147.274 +64000/69092 Loss: 146.176 +67200/69092 Loss: 149.620 +Training time 0:08:10.197081 +Epoch: 138 Average loss: 147.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 556) +0/69092 Loss: 134.684 +3200/69092 Loss: 148.582 +6400/69092 Loss: 146.947 +9600/69092 Loss: 146.362 +12800/69092 Loss: 146.738 +16000/69092 Loss: 149.528 +19200/69092 Loss: 147.867 +22400/69092 Loss: 146.849 +25600/69092 Loss: 147.079 +28800/69092 Loss: 148.170 +32000/69092 Loss: 146.702 +35200/69092 Loss: 146.809 +38400/69092 Loss: 149.344 +41600/69092 Loss: 148.242 +44800/69092 Loss: 147.575 +48000/69092 Loss: 148.723 +51200/69092 Loss: 148.396 +54400/69092 Loss: 145.200 +57600/69092 Loss: 146.916 +60800/69092 Loss: 144.552 +64000/69092 Loss: 146.248 +67200/69092 Loss: 149.941 +Training time 0:08:02.915528 +Epoch: 139 Average loss: 147.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 557) +0/69092 Loss: 166.295 +3200/69092 Loss: 148.723 +6400/69092 Loss: 147.220 +9600/69092 Loss: 144.637 +12800/69092 Loss: 147.887 +16000/69092 Loss: 148.894 +19200/69092 Loss: 147.247 +22400/69092 Loss: 148.885 +25600/69092 Loss: 146.589 +28800/69092 Loss: 145.854 +32000/69092 Loss: 147.788 +35200/69092 Loss: 146.078 +38400/69092 Loss: 149.950 +41600/69092 Loss: 147.224 +44800/69092 Loss: 147.910 +48000/69092 Loss: 146.259 +51200/69092 Loss: 147.717 +54400/69092 Loss: 147.671 +57600/69092 Loss: 146.417 +60800/69092 Loss: 147.124 +64000/69092 Loss: 147.495 +67200/69092 Loss: 148.547 +Training time 0:08:01.500627 +Epoch: 140 Average loss: 147.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 558) +0/69092 Loss: 150.415 +3200/69092 Loss: 147.755 +6400/69092 Loss: 148.786 +9600/69092 Loss: 145.049 +12800/69092 Loss: 148.315 +16000/69092 Loss: 146.712 +19200/69092 Loss: 149.528 +22400/69092 Loss: 147.612 +25600/69092 Loss: 148.713 +28800/69092 Loss: 147.505 +32000/69092 Loss: 148.213 +35200/69092 Loss: 147.243 +38400/69092 Loss: 144.729 +41600/69092 Loss: 148.828 +44800/69092 Loss: 146.919 +48000/69092 Loss: 147.031 +51200/69092 Loss: 145.458 +54400/69092 Loss: 145.426 +57600/69092 Loss: 149.812 +60800/69092 Loss: 148.419 +64000/69092 Loss: 148.254 +67200/69092 Loss: 146.173 +Training time 0:08:08.570936 +Epoch: 141 Average loss: 147.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 559) +0/69092 Loss: 157.977 +3200/69092 Loss: 144.659 +6400/69092 Loss: 146.196 +9600/69092 Loss: 147.784 +12800/69092 Loss: 149.669 +16000/69092 Loss: 145.861 +19200/69092 Loss: 147.748 +22400/69092 Loss: 148.604 +25600/69092 Loss: 147.250 +28800/69092 Loss: 146.363 +32000/69092 Loss: 145.803 +35200/69092 Loss: 145.224 +38400/69092 Loss: 146.404 +41600/69092 Loss: 148.886 +44800/69092 Loss: 149.378 +48000/69092 Loss: 149.546 +51200/69092 Loss: 148.315 +54400/69092 Loss: 149.531 +57600/69092 Loss: 145.622 +60800/69092 Loss: 148.121 +64000/69092 Loss: 147.169 +67200/69092 Loss: 148.191 +Training time 0:08:22.773814 +Epoch: 142 Average loss: 147.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 560) +0/69092 Loss: 130.874 +3200/69092 Loss: 146.979 +6400/69092 Loss: 147.386 +9600/69092 Loss: 146.650 +12800/69092 Loss: 147.119 +16000/69092 Loss: 145.112 +19200/69092 Loss: 148.646 +22400/69092 Loss: 146.642 +25600/69092 Loss: 148.992 +28800/69092 Loss: 146.060 +32000/69092 Loss: 148.406 +35200/69092 Loss: 145.636 +38400/69092 Loss: 144.372 +41600/69092 Loss: 146.853 +44800/69092 Loss: 151.247 +48000/69092 Loss: 148.157 +51200/69092 Loss: 144.789 +54400/69092 Loss: 147.969 +57600/69092 Loss: 147.084 +60800/69092 Loss: 146.353 +64000/69092 Loss: 146.482 +67200/69092 Loss: 150.983 +Training time 0:07:57.892779 +Epoch: 143 Average loss: 147.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 561) +0/69092 Loss: 136.492 +3200/69092 Loss: 146.379 +6400/69092 Loss: 146.394 +9600/69092 Loss: 147.678 +12800/69092 Loss: 149.821 +16000/69092 Loss: 144.392 +19200/69092 Loss: 147.237 +22400/69092 Loss: 146.966 +25600/69092 Loss: 145.617 +28800/69092 Loss: 147.089 +32000/69092 Loss: 147.727 +35200/69092 Loss: 144.910 +38400/69092 Loss: 145.244 +41600/69092 Loss: 144.676 +44800/69092 Loss: 149.029 +48000/69092 Loss: 148.726 +51200/69092 Loss: 149.572 +54400/69092 Loss: 144.836 +57600/69092 Loss: 149.442 +60800/69092 Loss: 152.128 +64000/69092 Loss: 148.383 +67200/69092 Loss: 147.801 +Training time 0:08:05.278064 +Epoch: 144 Average loss: 147.27 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 562) +0/69092 Loss: 155.547 +3200/69092 Loss: 147.878 +6400/69092 Loss: 147.437 +9600/69092 Loss: 145.749 +12800/69092 Loss: 146.523 +16000/69092 Loss: 147.208 +19200/69092 Loss: 148.561 +22400/69092 Loss: 146.663 +25600/69092 Loss: 145.962 +28800/69092 Loss: 146.542 +32000/69092 Loss: 148.000 +35200/69092 Loss: 148.007 +38400/69092 Loss: 148.534 +41600/69092 Loss: 149.100 +44800/69092 Loss: 146.897 +48000/69092 Loss: 148.061 +51200/69092 Loss: 148.487 +54400/69092 Loss: 147.675 +57600/69092 Loss: 147.388 +60800/69092 Loss: 147.710 +64000/69092 Loss: 148.644 +67200/69092 Loss: 148.430 +Training time 0:08:05.462415 +Epoch: 145 Average loss: 147.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 563) +0/69092 Loss: 141.476 +3200/69092 Loss: 149.284 +6400/69092 Loss: 144.505 +9600/69092 Loss: 148.749 +12800/69092 Loss: 146.887 +16000/69092 Loss: 147.784 +19200/69092 Loss: 149.906 +22400/69092 Loss: 145.781 +25600/69092 Loss: 144.321 +28800/69092 Loss: 149.136 +32000/69092 Loss: 149.494 +35200/69092 Loss: 149.456 +38400/69092 Loss: 150.965 +41600/69092 Loss: 147.199 +44800/69092 Loss: 148.103 +48000/69092 Loss: 147.629 +51200/69092 Loss: 146.827 +54400/69092 Loss: 146.338 +57600/69092 Loss: 145.584 +60800/69092 Loss: 146.086 +64000/69092 Loss: 144.735 +67200/69092 Loss: 147.242 +Training time 0:07:53.375742 +Epoch: 146 Average loss: 147.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 564) +0/69092 Loss: 145.077 +3200/69092 Loss: 149.148 +6400/69092 Loss: 147.610 +9600/69092 Loss: 145.020 +12800/69092 Loss: 146.620 +16000/69092 Loss: 149.771 +19200/69092 Loss: 148.582 +22400/69092 Loss: 147.811 +25600/69092 Loss: 148.411 +28800/69092 Loss: 145.871 +32000/69092 Loss: 149.438 +35200/69092 Loss: 147.239 +38400/69092 Loss: 147.398 +41600/69092 Loss: 148.715 +44800/69092 Loss: 146.787 +48000/69092 Loss: 145.832 +51200/69092 Loss: 147.700 +54400/69092 Loss: 149.107 +57600/69092 Loss: 144.336 +60800/69092 Loss: 147.276 +64000/69092 Loss: 143.743 +67200/69092 Loss: 147.773 +Training time 0:08:05.876698 +Epoch: 147 Average loss: 147.33 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 565) +0/69092 Loss: 142.938 +3200/69092 Loss: 148.796 +6400/69092 Loss: 148.258 +9600/69092 Loss: 145.669 +12800/69092 Loss: 145.873 +16000/69092 Loss: 147.909 +19200/69092 Loss: 148.045 +22400/69092 Loss: 148.101 +25600/69092 Loss: 147.774 +28800/69092 Loss: 148.303 +32000/69092 Loss: 145.500 +35200/69092 Loss: 147.596 +38400/69092 Loss: 146.555 +41600/69092 Loss: 148.442 +44800/69092 Loss: 148.635 +48000/69092 Loss: 148.830 +51200/69092 Loss: 148.524 +54400/69092 Loss: 147.142 +57600/69092 Loss: 147.998 +60800/69092 Loss: 149.083 +64000/69092 Loss: 146.412 +67200/69092 Loss: 145.932 +Training time 0:08:11.503127 +Epoch: 148 Average loss: 147.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 566) +0/69092 Loss: 146.477 +3200/69092 Loss: 147.490 +6400/69092 Loss: 145.514 +9600/69092 Loss: 147.572 +12800/69092 Loss: 150.839 +16000/69092 Loss: 149.132 +19200/69092 Loss: 147.461 +22400/69092 Loss: 146.922 +25600/69092 Loss: 146.440 +28800/69092 Loss: 145.862 +32000/69092 Loss: 146.229 +35200/69092 Loss: 145.243 +38400/69092 Loss: 147.437 +41600/69092 Loss: 146.530 +44800/69092 Loss: 149.220 +48000/69092 Loss: 147.374 +51200/69092 Loss: 148.015 +54400/69092 Loss: 146.136 +57600/69092 Loss: 144.269 +60800/69092 Loss: 148.842 +64000/69092 Loss: 151.641 +67200/69092 Loss: 148.462 +Training time 0:07:57.278589 +Epoch: 149 Average loss: 147.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 567) +0/69092 Loss: 145.207 +3200/69092 Loss: 146.490 +6400/69092 Loss: 147.967 +9600/69092 Loss: 147.514 +12800/69092 Loss: 147.989 +16000/69092 Loss: 147.985 +19200/69092 Loss: 146.667 +22400/69092 Loss: 146.715 +25600/69092 Loss: 146.711 +28800/69092 Loss: 148.897 +32000/69092 Loss: 147.984 +35200/69092 Loss: 146.848 +38400/69092 Loss: 145.464 +41600/69092 Loss: 146.983 +44800/69092 Loss: 149.883 +48000/69092 Loss: 149.218 +51200/69092 Loss: 148.783 +54400/69092 Loss: 148.493 +57600/69092 Loss: 148.876 +60800/69092 Loss: 146.480 +64000/69092 Loss: 146.203 +67200/69092 Loss: 149.277 +Training time 0:08:11.809089 +Epoch: 150 Average loss: 147.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 568) +0/69092 Loss: 145.365 +3200/69092 Loss: 144.960 +6400/69092 Loss: 147.693 +9600/69092 Loss: 146.036 +12800/69092 Loss: 146.263 +16000/69092 Loss: 145.250 +19200/69092 Loss: 148.490 +22400/69092 Loss: 149.705 +25600/69092 Loss: 149.470 +28800/69092 Loss: 146.566 +32000/69092 Loss: 145.759 +35200/69092 Loss: 149.376 +38400/69092 Loss: 146.257 +41600/69092 Loss: 147.143 +44800/69092 Loss: 147.430 +48000/69092 Loss: 149.140 +51200/69092 Loss: 148.773 +54400/69092 Loss: 148.749 +57600/69092 Loss: 148.413 +60800/69092 Loss: 146.255 +64000/69092 Loss: 150.442 +67200/69092 Loss: 146.416 +Training time 0:08:16.196576 +Epoch: 151 Average loss: 147.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 569) +0/69092 Loss: 146.574 +3200/69092 Loss: 151.177 +6400/69092 Loss: 146.402 +9600/69092 Loss: 145.951 +12800/69092 Loss: 146.410 +16000/69092 Loss: 147.403 +19200/69092 Loss: 149.892 +22400/69092 Loss: 147.560 +25600/69092 Loss: 149.338 +28800/69092 Loss: 147.166 +32000/69092 Loss: 147.069 +35200/69092 Loss: 146.217 +38400/69092 Loss: 145.716 +41600/69092 Loss: 145.488 +44800/69092 Loss: 148.051 +48000/69092 Loss: 148.589 +51200/69092 Loss: 149.149 +54400/69092 Loss: 147.680 +57600/69092 Loss: 144.959 +60800/69092 Loss: 147.551 +64000/69092 Loss: 147.548 +67200/69092 Loss: 145.768 +Training time 0:07:54.904224 +Epoch: 152 Average loss: 147.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 570) +0/69092 Loss: 145.068 +3200/69092 Loss: 147.537 +6400/69092 Loss: 148.622 +9600/69092 Loss: 147.140 +12800/69092 Loss: 145.827 +16000/69092 Loss: 148.789 +19200/69092 Loss: 148.151 +22400/69092 Loss: 148.940 +25600/69092 Loss: 146.418 +28800/69092 Loss: 146.190 +32000/69092 Loss: 147.580 +35200/69092 Loss: 146.546 +38400/69092 Loss: 145.092 +41600/69092 Loss: 149.301 +44800/69092 Loss: 147.918 +48000/69092 Loss: 146.547 +51200/69092 Loss: 147.253 +54400/69092 Loss: 146.969 +57600/69092 Loss: 147.285 +60800/69092 Loss: 146.194 +64000/69092 Loss: 146.748 +67200/69092 Loss: 147.187 +Training time 0:08:16.881495 +Epoch: 153 Average loss: 147.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 571) +0/69092 Loss: 159.744 +3200/69092 Loss: 146.211 +6400/69092 Loss: 147.397 +9600/69092 Loss: 146.285 +12800/69092 Loss: 148.917 +16000/69092 Loss: 146.914 +19200/69092 Loss: 147.067 +22400/69092 Loss: 147.831 +25600/69092 Loss: 147.842 +28800/69092 Loss: 147.920 +32000/69092 Loss: 146.866 +35200/69092 Loss: 145.670 +38400/69092 Loss: 147.534 +41600/69092 Loss: 147.350 +44800/69092 Loss: 149.753 +48000/69092 Loss: 147.743 +51200/69092 Loss: 147.723 +54400/69092 Loss: 148.435 +57600/69092 Loss: 146.846 +60800/69092 Loss: 147.330 +64000/69092 Loss: 148.129 +67200/69092 Loss: 144.898 +Training time 0:08:08.467235 +Epoch: 154 Average loss: 147.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 572) +0/69092 Loss: 138.177 +3200/69092 Loss: 146.514 +6400/69092 Loss: 147.551 +9600/69092 Loss: 143.710 +12800/69092 Loss: 149.011 +16000/69092 Loss: 145.641 +19200/69092 Loss: 149.521 +22400/69092 Loss: 146.858 +25600/69092 Loss: 145.464 +28800/69092 Loss: 146.863 +32000/69092 Loss: 145.421 +35200/69092 Loss: 150.571 +38400/69092 Loss: 146.843 +41600/69092 Loss: 144.797 +44800/69092 Loss: 149.111 +48000/69092 Loss: 147.898 +51200/69092 Loss: 147.740 +54400/69092 Loss: 148.382 +57600/69092 Loss: 148.760 +60800/69092 Loss: 146.837 +64000/69092 Loss: 145.467 +67200/69092 Loss: 146.055 +Training time 0:08:09.439371 +Epoch: 155 Average loss: 147.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 573) +0/69092 Loss: 152.974 +3200/69092 Loss: 146.848 +6400/69092 Loss: 146.924 +9600/69092 Loss: 146.766 +12800/69092 Loss: 148.556 +16000/69092 Loss: 147.481 +19200/69092 Loss: 146.657 +22400/69092 Loss: 147.372 +25600/69092 Loss: 147.000 +28800/69092 Loss: 145.636 +32000/69092 Loss: 147.123 +35200/69092 Loss: 146.664 +38400/69092 Loss: 146.039 +41600/69092 Loss: 147.847 +44800/69092 Loss: 148.166 +48000/69092 Loss: 145.284 +51200/69092 Loss: 148.066 +54400/69092 Loss: 145.196 +57600/69092 Loss: 147.271 +60800/69092 Loss: 147.550 +64000/69092 Loss: 148.953 +67200/69092 Loss: 146.986 +Training time 0:08:08.310172 +Epoch: 156 Average loss: 147.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 574) +0/69092 Loss: 171.319 +3200/69092 Loss: 145.073 +6400/69092 Loss: 147.437 +9600/69092 Loss: 145.683 diff --git a/OAR.2073650.stderr b/OAR.2073650.stderr new file mode 100644 index 0000000000000000000000000000000000000000..65b567295131a38d6567f9bfb6d59e94bd60c566 --- /dev/null +++ b/OAR.2073650.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-05 20:29:46] Job 2073650 KILLED ## diff --git a/OAR.2073650.stdout b/OAR.2073650.stdout new file mode 100644 index 0000000000000000000000000000000000000000..2efcb5c8d55b967f9fb554cc1e1fae25b1c04fe3 --- /dev/null +++ b/OAR.2073650.stdout @@ -0,0 +1,201 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 773035 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last (iter 390)' +0/69092 Loss: 145.765 +3200/69092 Loss: 147.315 +6400/69092 Loss: 148.337 +9600/69092 Loss: 145.964 +12800/69092 Loss: 148.572 +16000/69092 Loss: 149.361 +19200/69092 Loss: 147.523 +22400/69092 Loss: 149.899 +25600/69092 Loss: 151.143 +28800/69092 Loss: 148.882 +32000/69092 Loss: 150.949 +35200/69092 Loss: 146.058 +38400/69092 Loss: 148.318 +41600/69092 Loss: 150.406 +44800/69092 Loss: 147.602 +48000/69092 Loss: 151.432 +51200/69092 Loss: 148.786 +54400/69092 Loss: 148.442 +57600/69092 Loss: 150.469 +60800/69092 Loss: 147.312 +64000/69092 Loss: 148.590 +67200/69092 Loss: 148.844 +Training time 0:12:40.828613 +Epoch: 1 Average loss: 148.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 391) +0/69092 Loss: 162.627 +3200/69092 Loss: 149.409 +6400/69092 Loss: 148.732 +9600/69092 Loss: 146.733 +12800/69092 Loss: 145.768 +16000/69092 Loss: 148.202 +19200/69092 Loss: 150.671 +22400/69092 Loss: 148.493 +25600/69092 Loss: 146.693 +28800/69092 Loss: 145.756 +32000/69092 Loss: 147.772 +35200/69092 Loss: 152.809 +38400/69092 Loss: 148.927 +41600/69092 Loss: 147.875 +44800/69092 Loss: 148.387 +48000/69092 Loss: 148.842 +51200/69092 Loss: 149.023 +54400/69092 Loss: 151.485 +57600/69092 Loss: 150.449 +60800/69092 Loss: 147.836 +64000/69092 Loss: 148.325 +67200/69092 Loss: 150.672 +Training time 0:07:51.103281 +Epoch: 2 Average loss: 148.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 392) +0/69092 Loss: 119.724 +3200/69092 Loss: 149.423 +6400/69092 Loss: 148.858 +9600/69092 Loss: 148.994 +12800/69092 Loss: 147.881 +16000/69092 Loss: 149.553 +19200/69092 Loss: 148.149 +22400/69092 Loss: 151.134 +25600/69092 Loss: 150.630 +28800/69092 Loss: 151.023 +32000/69092 Loss: 149.217 +35200/69092 Loss: 148.181 +38400/69092 Loss: 149.857 +41600/69092 Loss: 147.063 +44800/69092 Loss: 150.003 +48000/69092 Loss: 148.208 +51200/69092 Loss: 148.987 +54400/69092 Loss: 148.855 +57600/69092 Loss: 148.799 +60800/69092 Loss: 147.418 +64000/69092 Loss: 147.488 +67200/69092 Loss: 148.435 +Training time 0:08:44.211685 +Epoch: 3 Average loss: 148.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 393) +0/69092 Loss: 152.990 +3200/69092 Loss: 150.329 +6400/69092 Loss: 152.139 +9600/69092 Loss: 146.796 +12800/69092 Loss: 150.662 +16000/69092 Loss: 146.989 +19200/69092 Loss: 147.228 +22400/69092 Loss: 145.273 +25600/69092 Loss: 147.688 +28800/69092 Loss: 149.986 +32000/69092 Loss: 148.849 +35200/69092 Loss: 147.079 +38400/69092 Loss: 150.577 +41600/69092 Loss: 150.871 +44800/69092 Loss: 147.883 +48000/69092 Loss: 149.811 +51200/69092 Loss: 148.183 +54400/69092 Loss: 148.998 +57600/69092 Loss: 147.924 +60800/69092 Loss: 148.276 +64000/69092 Loss: 149.520 +67200/69092 Loss: 147.679 +Training time 0:10:01.435877 +Epoch: 4 Average loss: 148.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 394) +0/69092 Loss: 148.686 +3200/69092 Loss: 151.682 +6400/69092 Loss: 147.438 +9600/69092 Loss: 148.873 +12800/69092 Loss: 147.928 +16000/69092 Loss: 148.323 +19200/69092 Loss: 149.025 +22400/69092 Loss: 146.181 +25600/69092 Loss: 150.025 +28800/69092 Loss: 148.004 +32000/69092 Loss: 148.554 +35200/69092 Loss: 149.418 +38400/69092 Loss: 149.126 +41600/69092 Loss: 149.163 +44800/69092 Loss: 150.799 +48000/69092 Loss: 145.510 +51200/69092 Loss: 147.544 +54400/69092 Loss: 146.746 +57600/69092 Loss: 149.351 +60800/69092 Loss: 149.152 +64000/69092 Loss: 150.710 +67200/69092 Loss: 147.245 +Training time 0:09:41.807893 +Epoch: 5 Average loss: 148.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 395) +0/69092 Loss: 153.664 +3200/69092 Loss: 148.122 +6400/69092 Loss: 146.158 +9600/69092 Loss: 151.407 +12800/69092 Loss: 146.721 +16000/69092 Loss: 148.823 +19200/69092 Loss: 148.206 +22400/69092 Loss: 148.728 +25600/69092 Loss: 145.796 +28800/69092 Loss: 149.885 +32000/69092 Loss: 148.442 +35200/69092 Loss: 150.618 +38400/69092 Loss: 149.806 +41600/69092 Loss: 147.652 +44800/69092 Loss: 149.269 +48000/69092 Loss: 149.191 +51200/69092 Loss: 148.144 +54400/69092 Loss: 150.763 +57600/69092 Loss: 148.333 +60800/69092 Loss: 149.834 +64000/69092 Loss: 148.157 +67200/69092 Loss: 148.662 +Training time 0:09:42.791872 +Epoch: 6 Average loss: 148.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 396) +0/69092 Loss: 151.873 +3200/69092 Loss: 147.416 +6400/69092 Loss: 147.394 +9600/69092 Loss: 150.011 diff --git a/OAR.2073651.stderr b/OAR.2073651.stderr new file mode 100644 index 0000000000000000000000000000000000000000..dfb27d850c18db25c96bfad25d3ed853f4adfd78 --- /dev/null +++ b/OAR.2073651.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-07 08:29:14] Job 2073651 KILLED ## diff --git a/OAR.2073651.stdout b/OAR.2073651.stdout new file mode 100644 index 0000000000000000000000000000000000000000..48dfea6333c00ee0a623d7c5717fa37c608ddcf1 --- /dev/null +++ b/OAR.2073651.stdout @@ -0,0 +1,7074 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 761485 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last (iter 423)' +0/69092 Loss: 159.536 +3200/69092 Loss: 156.964 +6400/69092 Loss: 156.627 +9600/69092 Loss: 159.322 +12800/69092 Loss: 157.604 +16000/69092 Loss: 157.206 +19200/69092 Loss: 156.209 +22400/69092 Loss: 158.548 +25600/69092 Loss: 160.952 +28800/69092 Loss: 157.815 +32000/69092 Loss: 156.125 +35200/69092 Loss: 155.692 +38400/69092 Loss: 157.666 +41600/69092 Loss: 157.600 +44800/69092 Loss: 159.084 +48000/69092 Loss: 157.553 +51200/69092 Loss: 155.862 +54400/69092 Loss: 160.372 +57600/69092 Loss: 158.866 +60800/69092 Loss: 157.537 +64000/69092 Loss: 157.912 +67200/69092 Loss: 159.467 +Training time 0:12:14.428787 +Epoch: 1 Average loss: 157.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 424) +0/69092 Loss: 136.983 +3200/69092 Loss: 161.328 +6400/69092 Loss: 158.126 +9600/69092 Loss: 157.329 +12800/69092 Loss: 158.636 +16000/69092 Loss: 158.760 +19200/69092 Loss: 159.480 +22400/69092 Loss: 157.049 +25600/69092 Loss: 157.733 +28800/69092 Loss: 157.126 +32000/69092 Loss: 158.278 +35200/69092 Loss: 158.989 +38400/69092 Loss: 156.966 +41600/69092 Loss: 159.647 +44800/69092 Loss: 159.306 +48000/69092 Loss: 156.091 +51200/69092 Loss: 158.123 +54400/69092 Loss: 157.545 +57600/69092 Loss: 158.712 +60800/69092 Loss: 159.296 +64000/69092 Loss: 158.417 +67200/69092 Loss: 157.313 +Training time 0:09:12.950775 +Epoch: 2 Average loss: 158.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 425) +0/69092 Loss: 162.019 +3200/69092 Loss: 160.239 +6400/69092 Loss: 158.537 +9600/69092 Loss: 157.791 +12800/69092 Loss: 157.710 +16000/69092 Loss: 159.825 +19200/69092 Loss: 156.028 +22400/69092 Loss: 154.636 +25600/69092 Loss: 157.583 +28800/69092 Loss: 158.573 +32000/69092 Loss: 157.252 +35200/69092 Loss: 158.742 +38400/69092 Loss: 156.330 +41600/69092 Loss: 157.850 +44800/69092 Loss: 157.223 +48000/69092 Loss: 158.273 +51200/69092 Loss: 159.822 +54400/69092 Loss: 155.480 +57600/69092 Loss: 157.110 +60800/69092 Loss: 157.016 +64000/69092 Loss: 157.585 +67200/69092 Loss: 156.774 +Training time 0:08:07.513902 +Epoch: 3 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 426) +0/69092 Loss: 148.759 +3200/69092 Loss: 156.159 +6400/69092 Loss: 156.133 +9600/69092 Loss: 158.954 +12800/69092 Loss: 157.994 +16000/69092 Loss: 156.004 +19200/69092 Loss: 158.864 +22400/69092 Loss: 159.584 +25600/69092 Loss: 158.186 +28800/69092 Loss: 159.375 +32000/69092 Loss: 158.775 +35200/69092 Loss: 157.204 +38400/69092 Loss: 156.828 +41600/69092 Loss: 156.434 +44800/69092 Loss: 160.350 +48000/69092 Loss: 155.378 +51200/69092 Loss: 161.229 +54400/69092 Loss: 158.433 +57600/69092 Loss: 158.731 +60800/69092 Loss: 159.032 +64000/69092 Loss: 153.309 +67200/69092 Loss: 158.461 +Training time 0:09:39.626804 +Epoch: 4 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 427) +0/69092 Loss: 139.619 +3200/69092 Loss: 158.908 +6400/69092 Loss: 159.686 +9600/69092 Loss: 161.158 +12800/69092 Loss: 156.215 +16000/69092 Loss: 155.079 +19200/69092 Loss: 156.965 +22400/69092 Loss: 157.822 +25600/69092 Loss: 156.639 +28800/69092 Loss: 157.618 +32000/69092 Loss: 161.737 +35200/69092 Loss: 160.074 +38400/69092 Loss: 156.458 +41600/69092 Loss: 157.742 +44800/69092 Loss: 161.107 +48000/69092 Loss: 157.207 +51200/69092 Loss: 154.605 +54400/69092 Loss: 154.957 +57600/69092 Loss: 155.753 +60800/69092 Loss: 159.835 +64000/69092 Loss: 157.179 +67200/69092 Loss: 158.128 +Training time 0:08:50.536363 +Epoch: 5 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 428) +0/69092 Loss: 150.030 +3200/69092 Loss: 160.528 +6400/69092 Loss: 157.679 +9600/69092 Loss: 157.090 +12800/69092 Loss: 158.818 +16000/69092 Loss: 157.122 +19200/69092 Loss: 157.595 +22400/69092 Loss: 159.602 +25600/69092 Loss: 158.655 +28800/69092 Loss: 157.908 +32000/69092 Loss: 161.211 +35200/69092 Loss: 156.909 +38400/69092 Loss: 159.956 +41600/69092 Loss: 155.615 +44800/69092 Loss: 157.701 +48000/69092 Loss: 156.338 +51200/69092 Loss: 155.603 +54400/69092 Loss: 158.105 +57600/69092 Loss: 157.580 +60800/69092 Loss: 155.637 +64000/69092 Loss: 154.851 +67200/69092 Loss: 157.567 +Training time 0:08:41.573118 +Epoch: 6 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 429) +0/69092 Loss: 158.621 +3200/69092 Loss: 156.626 +6400/69092 Loss: 157.778 +9600/69092 Loss: 155.444 +12800/69092 Loss: 158.748 +16000/69092 Loss: 154.759 +19200/69092 Loss: 156.554 +22400/69092 Loss: 161.091 +25600/69092 Loss: 157.952 +28800/69092 Loss: 157.593 +32000/69092 Loss: 157.132 +35200/69092 Loss: 158.869 +38400/69092 Loss: 159.848 +41600/69092 Loss: 154.804 +44800/69092 Loss: 159.082 +48000/69092 Loss: 159.371 +51200/69092 Loss: 158.761 +54400/69092 Loss: 159.219 +57600/69092 Loss: 157.669 +60800/69092 Loss: 159.230 +64000/69092 Loss: 156.938 +67200/69092 Loss: 157.781 +Training time 0:07:39.687882 +Epoch: 7 Average loss: 157.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 430) +0/69092 Loss: 151.337 +3200/69092 Loss: 156.832 +6400/69092 Loss: 156.516 +9600/69092 Loss: 157.503 +12800/69092 Loss: 159.391 +16000/69092 Loss: 156.212 +19200/69092 Loss: 157.825 +22400/69092 Loss: 160.044 +25600/69092 Loss: 155.110 +28800/69092 Loss: 158.103 +32000/69092 Loss: 156.077 +35200/69092 Loss: 155.735 +38400/69092 Loss: 157.534 +41600/69092 Loss: 155.975 +44800/69092 Loss: 158.959 +48000/69092 Loss: 160.933 +51200/69092 Loss: 157.570 +54400/69092 Loss: 158.874 +57600/69092 Loss: 156.658 +60800/69092 Loss: 159.475 +64000/69092 Loss: 158.879 +67200/69092 Loss: 158.843 +Training time 0:07:31.381801 +Epoch: 8 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 431) +0/69092 Loss: 160.945 +3200/69092 Loss: 158.518 +6400/69092 Loss: 156.842 +9600/69092 Loss: 156.422 +12800/69092 Loss: 160.022 +16000/69092 Loss: 159.528 +19200/69092 Loss: 156.142 +22400/69092 Loss: 158.788 +25600/69092 Loss: 159.407 +28800/69092 Loss: 156.944 +32000/69092 Loss: 155.368 +35200/69092 Loss: 157.420 +38400/69092 Loss: 155.830 +41600/69092 Loss: 158.310 +44800/69092 Loss: 159.056 +48000/69092 Loss: 157.731 +51200/69092 Loss: 160.071 +54400/69092 Loss: 160.835 +57600/69092 Loss: 159.315 +60800/69092 Loss: 156.692 +64000/69092 Loss: 154.337 +67200/69092 Loss: 156.444 +Training time 0:07:35.292036 +Epoch: 9 Average loss: 157.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 432) +0/69092 Loss: 153.914 +3200/69092 Loss: 159.609 +6400/69092 Loss: 157.889 +9600/69092 Loss: 157.788 +12800/69092 Loss: 159.061 +16000/69092 Loss: 157.617 +19200/69092 Loss: 157.626 +22400/69092 Loss: 156.800 +25600/69092 Loss: 159.390 +28800/69092 Loss: 156.528 +32000/69092 Loss: 158.310 +35200/69092 Loss: 159.955 +38400/69092 Loss: 156.574 +41600/69092 Loss: 158.475 +44800/69092 Loss: 155.531 +48000/69092 Loss: 157.169 +51200/69092 Loss: 158.367 +54400/69092 Loss: 159.216 +57600/69092 Loss: 158.485 +60800/69092 Loss: 160.287 +64000/69092 Loss: 158.240 +67200/69092 Loss: 158.035 +Training time 0:07:37.014366 +Epoch: 10 Average loss: 158.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 433) +0/69092 Loss: 148.680 +3200/69092 Loss: 157.224 +6400/69092 Loss: 158.397 +9600/69092 Loss: 156.786 +12800/69092 Loss: 157.735 +16000/69092 Loss: 158.394 +19200/69092 Loss: 157.466 +22400/69092 Loss: 156.144 +25600/69092 Loss: 155.949 +28800/69092 Loss: 157.839 +32000/69092 Loss: 159.235 +35200/69092 Loss: 157.036 +38400/69092 Loss: 154.763 +41600/69092 Loss: 158.088 +44800/69092 Loss: 158.654 +48000/69092 Loss: 159.390 +51200/69092 Loss: 161.350 +54400/69092 Loss: 158.083 +57600/69092 Loss: 158.831 +60800/69092 Loss: 159.074 +64000/69092 Loss: 157.965 +67200/69092 Loss: 159.681 +Training time 0:07:35.085213 +Epoch: 11 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 434) +0/69092 Loss: 153.850 +3200/69092 Loss: 159.010 +6400/69092 Loss: 160.210 +9600/69092 Loss: 155.147 +12800/69092 Loss: 157.174 +16000/69092 Loss: 157.598 +19200/69092 Loss: 159.140 +22400/69092 Loss: 156.286 +25600/69092 Loss: 158.417 +28800/69092 Loss: 154.750 +32000/69092 Loss: 157.324 +35200/69092 Loss: 160.133 +38400/69092 Loss: 159.134 +41600/69092 Loss: 159.046 +44800/69092 Loss: 153.860 +48000/69092 Loss: 158.555 +51200/69092 Loss: 157.517 +54400/69092 Loss: 160.169 +57600/69092 Loss: 155.645 +60800/69092 Loss: 160.217 +64000/69092 Loss: 156.511 +67200/69092 Loss: 157.118 +Training time 0:08:43.207458 +Epoch: 12 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 435) +0/69092 Loss: 165.635 +3200/69092 Loss: 159.634 +6400/69092 Loss: 155.154 +9600/69092 Loss: 158.033 +12800/69092 Loss: 158.410 +16000/69092 Loss: 159.610 +19200/69092 Loss: 157.520 +22400/69092 Loss: 160.794 +25600/69092 Loss: 158.873 +28800/69092 Loss: 159.508 +32000/69092 Loss: 158.083 +35200/69092 Loss: 158.731 +38400/69092 Loss: 156.455 +41600/69092 Loss: 156.757 +44800/69092 Loss: 158.436 +48000/69092 Loss: 158.004 +51200/69092 Loss: 155.409 +54400/69092 Loss: 159.227 +57600/69092 Loss: 157.677 +60800/69092 Loss: 154.932 +64000/69092 Loss: 155.825 +67200/69092 Loss: 159.334 +Training time 0:07:47.871126 +Epoch: 13 Average loss: 157.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 436) +0/69092 Loss: 135.028 +3200/69092 Loss: 160.175 +6400/69092 Loss: 157.534 +9600/69092 Loss: 157.038 +12800/69092 Loss: 160.133 +16000/69092 Loss: 155.530 +19200/69092 Loss: 158.124 +22400/69092 Loss: 157.626 +25600/69092 Loss: 161.138 +28800/69092 Loss: 158.219 +32000/69092 Loss: 160.403 +35200/69092 Loss: 159.659 +38400/69092 Loss: 155.102 +41600/69092 Loss: 156.331 +44800/69092 Loss: 155.884 +48000/69092 Loss: 159.341 +51200/69092 Loss: 157.517 +54400/69092 Loss: 155.084 +57600/69092 Loss: 157.817 +60800/69092 Loss: 158.205 +64000/69092 Loss: 159.767 +67200/69092 Loss: 153.757 +Training time 0:08:09.446855 +Epoch: 14 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 437) +0/69092 Loss: 155.597 +3200/69092 Loss: 158.299 +6400/69092 Loss: 157.800 +9600/69092 Loss: 160.022 +12800/69092 Loss: 158.368 +16000/69092 Loss: 158.516 +19200/69092 Loss: 158.466 +22400/69092 Loss: 154.448 +25600/69092 Loss: 155.393 +28800/69092 Loss: 157.818 +32000/69092 Loss: 160.555 +35200/69092 Loss: 155.853 +38400/69092 Loss: 158.591 +41600/69092 Loss: 157.010 +44800/69092 Loss: 158.718 +48000/69092 Loss: 158.461 +51200/69092 Loss: 157.971 +54400/69092 Loss: 156.120 +57600/69092 Loss: 157.377 +60800/69092 Loss: 157.720 +64000/69092 Loss: 155.116 +67200/69092 Loss: 156.510 +Training time 0:07:35.945721 +Epoch: 15 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 438) +0/69092 Loss: 177.483 +3200/69092 Loss: 154.189 +6400/69092 Loss: 159.241 +9600/69092 Loss: 158.459 +12800/69092 Loss: 155.605 +16000/69092 Loss: 158.645 +19200/69092 Loss: 158.505 +22400/69092 Loss: 154.217 +25600/69092 Loss: 159.937 +28800/69092 Loss: 158.370 +32000/69092 Loss: 156.295 +35200/69092 Loss: 159.231 +38400/69092 Loss: 159.712 +41600/69092 Loss: 155.789 +44800/69092 Loss: 158.654 +48000/69092 Loss: 156.719 +51200/69092 Loss: 158.857 +54400/69092 Loss: 159.011 +57600/69092 Loss: 157.526 +60800/69092 Loss: 155.950 +64000/69092 Loss: 159.854 +67200/69092 Loss: 158.624 +Training time 0:07:34.116056 +Epoch: 16 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 439) +0/69092 Loss: 148.961 +3200/69092 Loss: 158.660 +6400/69092 Loss: 155.501 +9600/69092 Loss: 160.251 +12800/69092 Loss: 155.608 +16000/69092 Loss: 159.457 +19200/69092 Loss: 161.825 +22400/69092 Loss: 157.308 +25600/69092 Loss: 158.308 +28800/69092 Loss: 156.571 +32000/69092 Loss: 158.415 +35200/69092 Loss: 156.649 +38400/69092 Loss: 159.040 +41600/69092 Loss: 156.326 +44800/69092 Loss: 159.690 +48000/69092 Loss: 157.073 +51200/69092 Loss: 160.259 +54400/69092 Loss: 157.097 +57600/69092 Loss: 157.901 +60800/69092 Loss: 158.658 +64000/69092 Loss: 155.405 +67200/69092 Loss: 157.610 +Training time 0:07:48.198007 +Epoch: 17 Average loss: 157.99 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 440) +0/69092 Loss: 138.413 +3200/69092 Loss: 158.417 +6400/69092 Loss: 158.447 +9600/69092 Loss: 155.117 +12800/69092 Loss: 158.345 +16000/69092 Loss: 158.679 +19200/69092 Loss: 157.537 +22400/69092 Loss: 156.858 +25600/69092 Loss: 158.419 +28800/69092 Loss: 160.004 +32000/69092 Loss: 156.825 +35200/69092 Loss: 154.287 +38400/69092 Loss: 160.405 +41600/69092 Loss: 160.493 +44800/69092 Loss: 158.079 +48000/69092 Loss: 154.292 +51200/69092 Loss: 160.759 +54400/69092 Loss: 155.447 +57600/69092 Loss: 157.609 +60800/69092 Loss: 157.401 +64000/69092 Loss: 160.541 +67200/69092 Loss: 156.489 +Training time 0:08:01.101580 +Epoch: 18 Average loss: 157.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 441) +0/69092 Loss: 169.945 +3200/69092 Loss: 156.416 +6400/69092 Loss: 156.250 +9600/69092 Loss: 158.096 +12800/69092 Loss: 160.494 +16000/69092 Loss: 157.494 +19200/69092 Loss: 158.930 +22400/69092 Loss: 157.447 +25600/69092 Loss: 156.814 +28800/69092 Loss: 157.671 +32000/69092 Loss: 158.687 +35200/69092 Loss: 157.307 +38400/69092 Loss: 156.875 +41600/69092 Loss: 159.263 +44800/69092 Loss: 158.342 +48000/69092 Loss: 157.680 +51200/69092 Loss: 156.715 +54400/69092 Loss: 155.700 +57600/69092 Loss: 158.389 +60800/69092 Loss: 158.697 +64000/69092 Loss: 157.015 +67200/69092 Loss: 157.701 +Training time 0:07:32.109713 +Epoch: 19 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 442) +0/69092 Loss: 169.998 +3200/69092 Loss: 159.432 +6400/69092 Loss: 157.711 +9600/69092 Loss: 159.400 +12800/69092 Loss: 159.333 +16000/69092 Loss: 157.852 +19200/69092 Loss: 157.206 +22400/69092 Loss: 158.495 +25600/69092 Loss: 158.703 +28800/69092 Loss: 158.501 +32000/69092 Loss: 156.430 +35200/69092 Loss: 158.784 +38400/69092 Loss: 160.165 +41600/69092 Loss: 157.315 +44800/69092 Loss: 155.959 +48000/69092 Loss: 155.729 +51200/69092 Loss: 155.444 +54400/69092 Loss: 156.798 +57600/69092 Loss: 156.547 +60800/69092 Loss: 154.793 +64000/69092 Loss: 156.876 +67200/69092 Loss: 159.865 +Training time 0:07:35.684876 +Epoch: 20 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 443) +0/69092 Loss: 161.519 +3200/69092 Loss: 157.563 +6400/69092 Loss: 156.920 +9600/69092 Loss: 155.982 +12800/69092 Loss: 154.449 +16000/69092 Loss: 158.604 +19200/69092 Loss: 154.128 +22400/69092 Loss: 155.172 +25600/69092 Loss: 160.305 +28800/69092 Loss: 157.151 +32000/69092 Loss: 159.658 +35200/69092 Loss: 157.295 +38400/69092 Loss: 157.922 +41600/69092 Loss: 158.129 +44800/69092 Loss: 158.988 +48000/69092 Loss: 159.844 +51200/69092 Loss: 158.109 +54400/69092 Loss: 162.173 +57600/69092 Loss: 155.860 +60800/69092 Loss: 159.922 +64000/69092 Loss: 156.174 +67200/69092 Loss: 158.907 +Training time 0:07:28.638223 +Epoch: 21 Average loss: 157.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 444) +0/69092 Loss: 153.325 +3200/69092 Loss: 158.200 +6400/69092 Loss: 155.818 +9600/69092 Loss: 158.507 +12800/69092 Loss: 157.911 +16000/69092 Loss: 155.296 +19200/69092 Loss: 158.632 +22400/69092 Loss: 155.027 +25600/69092 Loss: 156.718 +28800/69092 Loss: 156.570 +32000/69092 Loss: 158.150 +35200/69092 Loss: 158.443 +38400/69092 Loss: 159.040 +41600/69092 Loss: 157.918 +44800/69092 Loss: 157.619 +48000/69092 Loss: 156.201 +51200/69092 Loss: 160.044 +54400/69092 Loss: 159.485 +57600/69092 Loss: 159.081 +60800/69092 Loss: 158.667 +64000/69092 Loss: 159.902 +67200/69092 Loss: 157.733 +Training time 0:07:30.791146 +Epoch: 22 Average loss: 157.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 445) +0/69092 Loss: 158.628 +3200/69092 Loss: 158.180 +6400/69092 Loss: 158.053 +9600/69092 Loss: 156.529 +12800/69092 Loss: 158.562 +16000/69092 Loss: 159.743 +19200/69092 Loss: 158.554 +22400/69092 Loss: 157.059 +25600/69092 Loss: 153.542 +28800/69092 Loss: 158.726 +32000/69092 Loss: 158.651 +35200/69092 Loss: 156.593 +38400/69092 Loss: 158.955 +41600/69092 Loss: 157.519 +44800/69092 Loss: 158.518 +48000/69092 Loss: 155.934 +51200/69092 Loss: 157.039 +54400/69092 Loss: 156.536 +57600/69092 Loss: 162.095 +60800/69092 Loss: 158.211 +64000/69092 Loss: 157.827 +67200/69092 Loss: 156.679 +Training time 0:07:28.715618 +Epoch: 23 Average loss: 157.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 446) +0/69092 Loss: 135.041 +3200/69092 Loss: 159.116 +6400/69092 Loss: 156.269 +9600/69092 Loss: 156.588 +12800/69092 Loss: 155.984 +16000/69092 Loss: 160.897 +19200/69092 Loss: 158.422 +22400/69092 Loss: 154.919 +25600/69092 Loss: 158.799 +28800/69092 Loss: 159.270 +32000/69092 Loss: 157.490 +35200/69092 Loss: 155.106 +38400/69092 Loss: 157.986 +41600/69092 Loss: 156.978 +44800/69092 Loss: 157.706 +48000/69092 Loss: 160.118 +51200/69092 Loss: 157.313 +54400/69092 Loss: 156.847 +57600/69092 Loss: 160.380 +60800/69092 Loss: 159.421 +64000/69092 Loss: 161.294 +67200/69092 Loss: 157.942 +Training time 0:07:30.263099 +Epoch: 24 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 447) +0/69092 Loss: 163.860 +3200/69092 Loss: 158.033 +6400/69092 Loss: 158.920 +9600/69092 Loss: 158.141 +12800/69092 Loss: 157.238 +16000/69092 Loss: 158.312 +19200/69092 Loss: 159.095 +22400/69092 Loss: 158.834 +25600/69092 Loss: 157.593 +28800/69092 Loss: 157.538 +32000/69092 Loss: 157.712 +35200/69092 Loss: 156.390 +38400/69092 Loss: 157.083 +41600/69092 Loss: 159.103 +44800/69092 Loss: 159.812 +48000/69092 Loss: 155.763 +51200/69092 Loss: 161.061 +54400/69092 Loss: 155.743 +57600/69092 Loss: 155.257 +60800/69092 Loss: 155.723 +64000/69092 Loss: 155.967 +67200/69092 Loss: 156.284 +Training time 0:07:28.319904 +Epoch: 25 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 448) +0/69092 Loss: 157.403 +3200/69092 Loss: 157.724 +6400/69092 Loss: 155.377 +9600/69092 Loss: 157.979 +12800/69092 Loss: 156.250 +16000/69092 Loss: 156.869 +19200/69092 Loss: 159.364 +22400/69092 Loss: 157.592 +25600/69092 Loss: 157.574 +28800/69092 Loss: 159.507 +32000/69092 Loss: 156.364 +35200/69092 Loss: 156.684 +38400/69092 Loss: 161.020 +41600/69092 Loss: 159.087 +44800/69092 Loss: 156.981 +48000/69092 Loss: 156.067 +51200/69092 Loss: 159.865 +54400/69092 Loss: 154.966 +57600/69092 Loss: 157.134 +60800/69092 Loss: 155.247 +64000/69092 Loss: 160.806 +67200/69092 Loss: 157.971 +Training time 0:07:40.149343 +Epoch: 26 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 449) +0/69092 Loss: 162.971 +3200/69092 Loss: 157.845 +6400/69092 Loss: 155.922 +9600/69092 Loss: 156.814 +12800/69092 Loss: 158.191 +16000/69092 Loss: 156.917 +19200/69092 Loss: 159.588 +22400/69092 Loss: 160.150 +25600/69092 Loss: 158.296 +28800/69092 Loss: 153.561 +32000/69092 Loss: 157.998 +35200/69092 Loss: 155.695 +38400/69092 Loss: 158.921 +41600/69092 Loss: 158.336 +44800/69092 Loss: 158.163 +48000/69092 Loss: 160.202 +51200/69092 Loss: 156.374 +54400/69092 Loss: 157.517 +57600/69092 Loss: 160.644 +60800/69092 Loss: 156.087 +64000/69092 Loss: 160.525 +67200/69092 Loss: 155.504 +Training time 0:07:30.363968 +Epoch: 27 Average loss: 157.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 450) +0/69092 Loss: 165.755 +3200/69092 Loss: 159.196 +6400/69092 Loss: 160.127 +9600/69092 Loss: 159.290 +12800/69092 Loss: 155.791 +16000/69092 Loss: 156.838 +19200/69092 Loss: 159.976 +22400/69092 Loss: 157.286 +25600/69092 Loss: 156.672 +28800/69092 Loss: 156.827 +32000/69092 Loss: 154.734 +35200/69092 Loss: 157.951 +38400/69092 Loss: 160.563 +41600/69092 Loss: 157.092 +44800/69092 Loss: 157.523 +48000/69092 Loss: 158.848 +51200/69092 Loss: 156.014 +54400/69092 Loss: 158.609 +57600/69092 Loss: 159.528 +60800/69092 Loss: 156.997 +64000/69092 Loss: 156.395 +67200/69092 Loss: 156.661 +Training time 0:07:34.520403 +Epoch: 28 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 451) +0/69092 Loss: 160.219 +3200/69092 Loss: 153.065 +6400/69092 Loss: 157.090 +9600/69092 Loss: 159.633 +12800/69092 Loss: 159.466 +16000/69092 Loss: 160.660 +19200/69092 Loss: 157.340 +22400/69092 Loss: 158.569 +25600/69092 Loss: 160.586 +28800/69092 Loss: 157.947 +32000/69092 Loss: 159.776 +35200/69092 Loss: 157.696 +38400/69092 Loss: 158.275 +41600/69092 Loss: 157.770 +44800/69092 Loss: 160.570 +48000/69092 Loss: 159.735 +51200/69092 Loss: 158.444 +54400/69092 Loss: 155.352 +57600/69092 Loss: 155.977 +60800/69092 Loss: 155.812 +64000/69092 Loss: 157.951 +67200/69092 Loss: 154.404 +Training time 0:07:31.941548 +Epoch: 29 Average loss: 157.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 452) +0/69092 Loss: 166.430 +3200/69092 Loss: 159.564 +6400/69092 Loss: 156.582 +9600/69092 Loss: 157.540 +12800/69092 Loss: 158.818 +16000/69092 Loss: 156.869 +19200/69092 Loss: 156.178 +22400/69092 Loss: 158.644 +25600/69092 Loss: 157.656 +28800/69092 Loss: 157.686 +32000/69092 Loss: 158.225 +35200/69092 Loss: 159.664 +38400/69092 Loss: 157.870 +41600/69092 Loss: 157.813 +44800/69092 Loss: 159.590 +48000/69092 Loss: 155.009 +51200/69092 Loss: 156.005 +54400/69092 Loss: 156.799 +57600/69092 Loss: 156.104 +60800/69092 Loss: 157.916 +64000/69092 Loss: 156.787 +67200/69092 Loss: 155.482 +Training time 0:07:36.748072 +Epoch: 30 Average loss: 157.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 453) +0/69092 Loss: 163.325 +3200/69092 Loss: 155.646 +6400/69092 Loss: 157.582 +9600/69092 Loss: 157.121 +12800/69092 Loss: 156.148 +16000/69092 Loss: 159.717 +19200/69092 Loss: 157.148 +22400/69092 Loss: 157.519 +25600/69092 Loss: 159.857 +28800/69092 Loss: 157.745 +32000/69092 Loss: 156.552 +35200/69092 Loss: 158.519 +38400/69092 Loss: 157.368 +41600/69092 Loss: 157.087 +44800/69092 Loss: 155.060 +48000/69092 Loss: 156.740 +51200/69092 Loss: 159.011 +54400/69092 Loss: 161.226 +57600/69092 Loss: 158.500 +60800/69092 Loss: 159.401 +64000/69092 Loss: 157.380 +67200/69092 Loss: 160.290 +Training time 0:07:31.573076 +Epoch: 31 Average loss: 157.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 454) +0/69092 Loss: 146.385 +3200/69092 Loss: 157.417 +6400/69092 Loss: 158.278 +9600/69092 Loss: 157.038 +12800/69092 Loss: 159.594 +16000/69092 Loss: 157.125 +19200/69092 Loss: 157.863 +22400/69092 Loss: 152.382 +25600/69092 Loss: 155.450 +28800/69092 Loss: 156.221 +32000/69092 Loss: 161.784 +35200/69092 Loss: 158.565 +38400/69092 Loss: 161.362 +41600/69092 Loss: 159.096 +44800/69092 Loss: 155.598 +48000/69092 Loss: 159.111 +51200/69092 Loss: 159.060 +54400/69092 Loss: 158.627 +57600/69092 Loss: 157.373 +60800/69092 Loss: 157.541 +64000/69092 Loss: 156.879 +67200/69092 Loss: 154.919 +Training time 0:07:37.412683 +Epoch: 32 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 455) +0/69092 Loss: 142.466 +3200/69092 Loss: 152.271 +6400/69092 Loss: 155.401 +9600/69092 Loss: 155.945 +12800/69092 Loss: 154.574 +16000/69092 Loss: 157.240 +19200/69092 Loss: 158.032 +22400/69092 Loss: 160.299 +25600/69092 Loss: 157.174 +28800/69092 Loss: 158.655 +32000/69092 Loss: 158.095 +35200/69092 Loss: 158.948 +38400/69092 Loss: 158.932 +41600/69092 Loss: 159.085 +44800/69092 Loss: 158.413 +48000/69092 Loss: 158.878 +51200/69092 Loss: 158.709 +54400/69092 Loss: 157.626 +57600/69092 Loss: 158.141 +60800/69092 Loss: 159.096 +64000/69092 Loss: 158.316 +67200/69092 Loss: 156.466 +Training time 0:07:27.948784 +Epoch: 33 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 456) +0/69092 Loss: 153.999 +3200/69092 Loss: 156.933 +6400/69092 Loss: 155.182 +9600/69092 Loss: 159.844 +12800/69092 Loss: 154.900 +16000/69092 Loss: 156.357 +19200/69092 Loss: 157.805 +22400/69092 Loss: 156.866 +25600/69092 Loss: 157.166 +28800/69092 Loss: 154.984 +32000/69092 Loss: 157.503 +35200/69092 Loss: 158.644 +38400/69092 Loss: 157.302 +41600/69092 Loss: 158.051 +44800/69092 Loss: 159.428 +48000/69092 Loss: 161.496 +51200/69092 Loss: 158.001 +54400/69092 Loss: 155.704 +57600/69092 Loss: 157.623 +60800/69092 Loss: 158.762 +64000/69092 Loss: 157.340 +67200/69092 Loss: 161.074 +Training time 0:07:25.243557 +Epoch: 34 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 457) +0/69092 Loss: 144.385 +3200/69092 Loss: 158.341 +6400/69092 Loss: 157.857 +9600/69092 Loss: 158.972 +12800/69092 Loss: 157.677 +16000/69092 Loss: 155.563 +19200/69092 Loss: 158.630 +22400/69092 Loss: 155.157 +25600/69092 Loss: 157.419 +28800/69092 Loss: 156.716 +32000/69092 Loss: 156.451 +35200/69092 Loss: 158.569 +38400/69092 Loss: 156.660 +41600/69092 Loss: 158.836 +44800/69092 Loss: 156.027 +48000/69092 Loss: 158.701 +51200/69092 Loss: 157.159 +54400/69092 Loss: 159.675 +57600/69092 Loss: 155.961 +60800/69092 Loss: 156.966 +64000/69092 Loss: 160.523 +67200/69092 Loss: 159.242 +Training time 0:07:35.939551 +Epoch: 35 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 458) +0/69092 Loss: 164.249 +3200/69092 Loss: 154.462 +6400/69092 Loss: 157.998 +9600/69092 Loss: 163.055 +12800/69092 Loss: 158.905 +16000/69092 Loss: 159.674 +19200/69092 Loss: 159.829 +22400/69092 Loss: 156.884 +25600/69092 Loss: 161.338 +28800/69092 Loss: 156.185 +32000/69092 Loss: 157.947 +35200/69092 Loss: 155.582 +38400/69092 Loss: 158.581 +41600/69092 Loss: 158.427 +44800/69092 Loss: 157.159 +48000/69092 Loss: 155.027 +51200/69092 Loss: 153.522 +54400/69092 Loss: 157.793 +57600/69092 Loss: 159.441 +60800/69092 Loss: 157.273 +64000/69092 Loss: 157.635 +67200/69092 Loss: 159.946 +Training time 0:07:32.633520 +Epoch: 36 Average loss: 157.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 459) +0/69092 Loss: 139.044 +3200/69092 Loss: 157.458 +6400/69092 Loss: 157.206 +9600/69092 Loss: 157.655 +12800/69092 Loss: 159.076 +16000/69092 Loss: 158.025 +19200/69092 Loss: 157.303 +22400/69092 Loss: 159.800 +25600/69092 Loss: 158.122 +28800/69092 Loss: 156.810 +32000/69092 Loss: 156.160 +35200/69092 Loss: 158.712 +38400/69092 Loss: 159.101 +41600/69092 Loss: 159.997 +44800/69092 Loss: 159.593 +48000/69092 Loss: 156.579 +51200/69092 Loss: 157.373 +54400/69092 Loss: 155.787 +57600/69092 Loss: 156.307 +60800/69092 Loss: 155.068 +64000/69092 Loss: 156.597 +67200/69092 Loss: 158.604 +Training time 0:07:33.490087 +Epoch: 37 Average loss: 157.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 460) +0/69092 Loss: 165.975 +3200/69092 Loss: 158.789 +6400/69092 Loss: 156.324 +9600/69092 Loss: 158.873 +12800/69092 Loss: 159.270 +16000/69092 Loss: 158.967 +19200/69092 Loss: 160.449 +22400/69092 Loss: 159.487 +25600/69092 Loss: 157.722 +28800/69092 Loss: 157.806 +32000/69092 Loss: 156.079 +35200/69092 Loss: 161.162 +38400/69092 Loss: 154.722 +41600/69092 Loss: 157.306 +44800/69092 Loss: 155.380 +48000/69092 Loss: 155.809 +51200/69092 Loss: 158.918 +54400/69092 Loss: 157.188 +57600/69092 Loss: 156.670 +60800/69092 Loss: 159.142 +64000/69092 Loss: 158.229 +67200/69092 Loss: 159.156 +Training time 0:07:34.304181 +Epoch: 38 Average loss: 158.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 461) +0/69092 Loss: 163.055 +3200/69092 Loss: 159.943 +6400/69092 Loss: 158.158 +9600/69092 Loss: 156.320 +12800/69092 Loss: 155.420 +16000/69092 Loss: 157.499 +19200/69092 Loss: 158.000 +22400/69092 Loss: 155.748 +25600/69092 Loss: 156.185 +28800/69092 Loss: 156.601 +32000/69092 Loss: 159.267 +35200/69092 Loss: 157.785 +38400/69092 Loss: 160.043 +41600/69092 Loss: 156.823 +44800/69092 Loss: 156.731 +48000/69092 Loss: 156.648 +51200/69092 Loss: 159.410 +54400/69092 Loss: 156.176 +57600/69092 Loss: 156.914 +60800/69092 Loss: 157.496 +64000/69092 Loss: 160.938 +67200/69092 Loss: 158.193 +Training time 0:07:39.282624 +Epoch: 39 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 462) +0/69092 Loss: 160.755 +3200/69092 Loss: 159.788 +6400/69092 Loss: 160.640 +9600/69092 Loss: 158.701 +12800/69092 Loss: 155.827 +16000/69092 Loss: 158.481 +19200/69092 Loss: 156.902 +22400/69092 Loss: 158.198 +25600/69092 Loss: 158.487 +28800/69092 Loss: 155.883 +32000/69092 Loss: 157.862 +35200/69092 Loss: 159.911 +38400/69092 Loss: 155.398 +41600/69092 Loss: 156.336 +44800/69092 Loss: 160.418 +48000/69092 Loss: 157.492 +51200/69092 Loss: 156.238 +54400/69092 Loss: 155.950 +57600/69092 Loss: 158.323 +60800/69092 Loss: 158.120 +64000/69092 Loss: 160.272 +67200/69092 Loss: 159.877 +Training time 0:07:42.173467 +Epoch: 40 Average loss: 157.93 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 463) +0/69092 Loss: 157.864 +3200/69092 Loss: 159.010 +6400/69092 Loss: 155.389 +9600/69092 Loss: 157.847 +12800/69092 Loss: 158.346 +16000/69092 Loss: 157.199 +19200/69092 Loss: 155.473 +22400/69092 Loss: 156.966 +25600/69092 Loss: 158.426 +28800/69092 Loss: 153.900 +32000/69092 Loss: 155.413 +35200/69092 Loss: 157.920 +38400/69092 Loss: 156.925 +41600/69092 Loss: 159.595 +44800/69092 Loss: 160.514 +48000/69092 Loss: 161.608 +51200/69092 Loss: 161.725 +54400/69092 Loss: 155.291 +57600/69092 Loss: 159.972 +60800/69092 Loss: 155.776 +64000/69092 Loss: 158.482 +67200/69092 Loss: 158.647 +Training time 0:07:31.080061 +Epoch: 41 Average loss: 157.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 464) +0/69092 Loss: 198.417 +3200/69092 Loss: 156.595 +6400/69092 Loss: 160.298 +9600/69092 Loss: 156.485 +12800/69092 Loss: 161.984 +16000/69092 Loss: 157.696 +19200/69092 Loss: 162.508 +22400/69092 Loss: 157.214 +25600/69092 Loss: 156.766 +28800/69092 Loss: 157.453 +32000/69092 Loss: 156.545 +35200/69092 Loss: 155.983 +38400/69092 Loss: 158.753 +41600/69092 Loss: 155.557 +44800/69092 Loss: 162.291 +48000/69092 Loss: 157.190 +51200/69092 Loss: 159.337 +54400/69092 Loss: 153.634 +57600/69092 Loss: 155.849 +60800/69092 Loss: 153.693 +64000/69092 Loss: 158.057 +67200/69092 Loss: 159.184 +Training time 0:07:32.633305 +Epoch: 42 Average loss: 157.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 465) +0/69092 Loss: 144.310 +3200/69092 Loss: 155.938 +6400/69092 Loss: 157.943 +9600/69092 Loss: 155.812 +12800/69092 Loss: 157.117 +16000/69092 Loss: 159.440 +19200/69092 Loss: 156.132 +22400/69092 Loss: 158.839 +25600/69092 Loss: 156.862 +28800/69092 Loss: 158.235 +32000/69092 Loss: 160.057 +35200/69092 Loss: 157.470 +38400/69092 Loss: 155.689 +41600/69092 Loss: 156.034 +44800/69092 Loss: 158.062 +48000/69092 Loss: 157.677 +51200/69092 Loss: 156.948 +54400/69092 Loss: 156.635 +57600/69092 Loss: 160.083 +60800/69092 Loss: 160.143 +64000/69092 Loss: 159.007 +67200/69092 Loss: 156.043 +Training time 0:07:28.668771 +Epoch: 43 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 466) +0/69092 Loss: 143.828 +3200/69092 Loss: 155.298 +6400/69092 Loss: 155.176 +9600/69092 Loss: 158.871 +12800/69092 Loss: 159.521 +16000/69092 Loss: 157.098 +19200/69092 Loss: 158.389 +22400/69092 Loss: 158.505 +25600/69092 Loss: 156.950 +28800/69092 Loss: 158.765 +32000/69092 Loss: 162.927 +35200/69092 Loss: 155.623 +38400/69092 Loss: 157.428 +41600/69092 Loss: 159.964 +44800/69092 Loss: 155.743 +48000/69092 Loss: 158.573 +51200/69092 Loss: 161.717 +54400/69092 Loss: 155.745 +57600/69092 Loss: 155.543 +60800/69092 Loss: 158.965 +64000/69092 Loss: 156.742 +67200/69092 Loss: 156.293 +Training time 0:07:30.555282 +Epoch: 44 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 467) +0/69092 Loss: 167.066 +3200/69092 Loss: 155.951 +6400/69092 Loss: 154.763 +9600/69092 Loss: 156.667 +12800/69092 Loss: 157.389 +16000/69092 Loss: 157.016 +19200/69092 Loss: 158.355 +22400/69092 Loss: 160.057 +25600/69092 Loss: 163.740 +28800/69092 Loss: 157.719 +32000/69092 Loss: 157.181 +35200/69092 Loss: 158.170 +38400/69092 Loss: 156.384 +41600/69092 Loss: 158.605 +44800/69092 Loss: 159.870 +48000/69092 Loss: 159.804 +51200/69092 Loss: 154.350 +54400/69092 Loss: 155.310 +57600/69092 Loss: 158.728 +60800/69092 Loss: 159.856 +64000/69092 Loss: 159.515 +67200/69092 Loss: 156.412 +Training time 0:07:28.581745 +Epoch: 45 Average loss: 157.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 468) +0/69092 Loss: 165.600 +3200/69092 Loss: 159.889 +6400/69092 Loss: 158.593 +9600/69092 Loss: 157.733 +12800/69092 Loss: 157.333 +16000/69092 Loss: 156.285 +19200/69092 Loss: 159.797 +22400/69092 Loss: 158.490 +25600/69092 Loss: 158.735 +28800/69092 Loss: 156.754 +32000/69092 Loss: 156.805 +35200/69092 Loss: 156.848 +38400/69092 Loss: 159.611 +41600/69092 Loss: 156.584 +44800/69092 Loss: 157.814 +48000/69092 Loss: 156.737 +51200/69092 Loss: 157.790 +54400/69092 Loss: 155.975 +57600/69092 Loss: 159.745 +60800/69092 Loss: 161.202 +64000/69092 Loss: 155.437 +67200/69092 Loss: 157.135 +Training time 0:07:30.221401 +Epoch: 46 Average loss: 157.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 469) +0/69092 Loss: 159.077 +3200/69092 Loss: 159.469 +6400/69092 Loss: 158.697 +9600/69092 Loss: 157.568 +12800/69092 Loss: 157.646 +16000/69092 Loss: 161.394 +19200/69092 Loss: 160.164 +22400/69092 Loss: 153.992 +25600/69092 Loss: 158.537 +28800/69092 Loss: 157.216 +32000/69092 Loss: 157.256 +35200/69092 Loss: 156.997 +38400/69092 Loss: 159.490 +41600/69092 Loss: 156.580 +44800/69092 Loss: 159.537 +48000/69092 Loss: 159.586 +51200/69092 Loss: 155.126 +54400/69092 Loss: 157.433 +57600/69092 Loss: 155.467 +60800/69092 Loss: 160.119 +64000/69092 Loss: 157.282 +67200/69092 Loss: 154.882 +Training time 0:07:49.702594 +Epoch: 47 Average loss: 157.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 470) +0/69092 Loss: 159.025 +3200/69092 Loss: 155.234 +6400/69092 Loss: 157.276 +9600/69092 Loss: 159.072 +12800/69092 Loss: 157.287 +16000/69092 Loss: 157.078 +19200/69092 Loss: 157.664 +22400/69092 Loss: 158.371 +25600/69092 Loss: 156.353 +28800/69092 Loss: 160.357 +32000/69092 Loss: 161.027 +35200/69092 Loss: 155.301 +38400/69092 Loss: 158.415 +41600/69092 Loss: 156.501 +44800/69092 Loss: 158.796 +48000/69092 Loss: 156.372 +51200/69092 Loss: 155.284 +54400/69092 Loss: 156.160 +57600/69092 Loss: 159.940 +60800/69092 Loss: 158.967 +64000/69092 Loss: 161.591 +67200/69092 Loss: 159.111 +Training time 0:08:29.306800 +Epoch: 48 Average loss: 157.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 471) +0/69092 Loss: 157.146 +3200/69092 Loss: 155.314 +6400/69092 Loss: 157.281 +9600/69092 Loss: 157.749 +12800/69092 Loss: 155.575 +16000/69092 Loss: 157.257 +19200/69092 Loss: 157.824 +22400/69092 Loss: 158.352 +25600/69092 Loss: 157.666 +28800/69092 Loss: 159.461 +32000/69092 Loss: 155.983 +35200/69092 Loss: 153.892 +38400/69092 Loss: 156.310 +41600/69092 Loss: 158.427 +44800/69092 Loss: 158.951 +48000/69092 Loss: 160.813 +51200/69092 Loss: 155.588 +54400/69092 Loss: 161.481 +57600/69092 Loss: 155.487 +60800/69092 Loss: 159.400 +64000/69092 Loss: 157.534 +67200/69092 Loss: 160.670 +Training time 0:07:29.275441 +Epoch: 49 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 472) +0/69092 Loss: 172.591 +3200/69092 Loss: 155.204 +6400/69092 Loss: 158.104 +9600/69092 Loss: 159.351 +12800/69092 Loss: 154.560 +16000/69092 Loss: 155.691 +19200/69092 Loss: 158.396 +22400/69092 Loss: 156.553 +25600/69092 Loss: 157.996 +28800/69092 Loss: 158.379 +32000/69092 Loss: 156.720 +35200/69092 Loss: 161.390 +38400/69092 Loss: 158.068 +41600/69092 Loss: 157.631 +44800/69092 Loss: 155.707 +48000/69092 Loss: 160.336 +51200/69092 Loss: 158.281 +54400/69092 Loss: 158.087 +57600/69092 Loss: 158.537 +60800/69092 Loss: 157.649 +64000/69092 Loss: 156.861 +67200/69092 Loss: 155.258 +Training time 0:07:29.743816 +Epoch: 50 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 473) +0/69092 Loss: 155.477 +3200/69092 Loss: 157.979 +6400/69092 Loss: 159.863 +9600/69092 Loss: 160.009 +12800/69092 Loss: 158.330 +16000/69092 Loss: 153.192 +19200/69092 Loss: 157.508 +22400/69092 Loss: 157.419 +25600/69092 Loss: 158.850 +28800/69092 Loss: 158.648 +32000/69092 Loss: 158.057 +35200/69092 Loss: 156.817 +38400/69092 Loss: 159.275 +41600/69092 Loss: 160.543 +44800/69092 Loss: 154.189 +48000/69092 Loss: 159.542 +51200/69092 Loss: 156.242 +54400/69092 Loss: 157.000 +57600/69092 Loss: 158.416 +60800/69092 Loss: 154.753 +64000/69092 Loss: 157.756 +67200/69092 Loss: 159.783 +Training time 0:07:36.223022 +Epoch: 51 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 474) +0/69092 Loss: 165.735 +3200/69092 Loss: 157.595 +6400/69092 Loss: 156.003 +9600/69092 Loss: 155.961 +12800/69092 Loss: 158.992 +16000/69092 Loss: 159.623 +19200/69092 Loss: 155.420 +22400/69092 Loss: 151.796 +25600/69092 Loss: 156.521 +28800/69092 Loss: 158.757 +32000/69092 Loss: 157.291 +35200/69092 Loss: 158.200 +38400/69092 Loss: 157.655 +41600/69092 Loss: 157.352 +44800/69092 Loss: 157.901 +48000/69092 Loss: 160.207 +51200/69092 Loss: 158.081 +54400/69092 Loss: 160.122 +57600/69092 Loss: 159.104 +60800/69092 Loss: 158.453 +64000/69092 Loss: 157.288 +67200/69092 Loss: 159.032 +Training time 0:07:32.174426 +Epoch: 52 Average loss: 157.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 475) +0/69092 Loss: 167.347 +3200/69092 Loss: 161.563 +6400/69092 Loss: 156.677 +9600/69092 Loss: 160.996 +12800/69092 Loss: 160.230 +16000/69092 Loss: 158.322 +19200/69092 Loss: 159.476 +22400/69092 Loss: 155.623 +25600/69092 Loss: 155.243 +28800/69092 Loss: 157.815 +32000/69092 Loss: 159.040 +35200/69092 Loss: 158.070 +38400/69092 Loss: 156.740 +41600/69092 Loss: 156.291 +44800/69092 Loss: 157.158 +48000/69092 Loss: 158.305 +51200/69092 Loss: 156.913 +54400/69092 Loss: 157.220 +57600/69092 Loss: 158.817 +60800/69092 Loss: 157.658 +64000/69092 Loss: 156.407 +67200/69092 Loss: 156.897 +Training time 0:07:31.289501 +Epoch: 53 Average loss: 157.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 476) +0/69092 Loss: 158.875 +3200/69092 Loss: 155.913 +6400/69092 Loss: 158.100 +9600/69092 Loss: 158.476 +12800/69092 Loss: 158.445 +16000/69092 Loss: 152.969 +19200/69092 Loss: 158.938 +22400/69092 Loss: 156.929 +25600/69092 Loss: 156.582 +28800/69092 Loss: 159.499 +32000/69092 Loss: 158.120 +35200/69092 Loss: 156.898 +38400/69092 Loss: 157.154 +41600/69092 Loss: 155.716 +44800/69092 Loss: 159.241 +48000/69092 Loss: 158.169 +51200/69092 Loss: 156.931 +54400/69092 Loss: 158.298 +57600/69092 Loss: 157.166 +60800/69092 Loss: 159.364 +64000/69092 Loss: 159.900 +67200/69092 Loss: 159.146 +Training time 0:07:36.089106 +Epoch: 54 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 477) +0/69092 Loss: 159.011 +3200/69092 Loss: 157.986 +6400/69092 Loss: 157.676 +9600/69092 Loss: 159.503 +12800/69092 Loss: 157.431 +16000/69092 Loss: 156.340 +19200/69092 Loss: 157.077 +22400/69092 Loss: 155.529 +25600/69092 Loss: 159.662 +28800/69092 Loss: 157.499 +32000/69092 Loss: 156.259 +35200/69092 Loss: 157.602 +38400/69092 Loss: 160.567 +41600/69092 Loss: 157.208 +44800/69092 Loss: 158.421 +48000/69092 Loss: 159.192 +51200/69092 Loss: 155.303 +54400/69092 Loss: 157.020 +57600/69092 Loss: 158.002 +60800/69092 Loss: 159.252 +64000/69092 Loss: 156.877 +67200/69092 Loss: 160.496 +Training time 0:07:29.785545 +Epoch: 55 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 478) +0/69092 Loss: 151.712 +3200/69092 Loss: 158.548 +6400/69092 Loss: 156.886 +9600/69092 Loss: 157.200 +12800/69092 Loss: 159.449 +16000/69092 Loss: 157.285 +19200/69092 Loss: 158.016 +22400/69092 Loss: 157.836 +25600/69092 Loss: 157.994 +28800/69092 Loss: 157.491 +32000/69092 Loss: 161.676 +35200/69092 Loss: 161.374 +38400/69092 Loss: 155.570 +41600/69092 Loss: 159.026 +44800/69092 Loss: 157.879 +48000/69092 Loss: 155.676 +51200/69092 Loss: 156.321 +54400/69092 Loss: 157.255 +57600/69092 Loss: 158.790 +60800/69092 Loss: 157.885 +64000/69092 Loss: 159.198 +67200/69092 Loss: 158.576 +Training time 0:07:36.019956 +Epoch: 56 Average loss: 158.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 479) +0/69092 Loss: 156.696 +3200/69092 Loss: 157.496 +6400/69092 Loss: 158.474 +9600/69092 Loss: 158.264 +12800/69092 Loss: 155.566 +16000/69092 Loss: 156.643 +19200/69092 Loss: 157.793 +22400/69092 Loss: 158.285 +25600/69092 Loss: 158.708 +28800/69092 Loss: 159.137 +32000/69092 Loss: 156.195 +35200/69092 Loss: 158.831 +38400/69092 Loss: 159.532 +41600/69092 Loss: 156.902 +44800/69092 Loss: 158.801 +48000/69092 Loss: 156.933 +51200/69092 Loss: 159.086 +54400/69092 Loss: 155.272 +57600/69092 Loss: 160.956 +60800/69092 Loss: 157.412 +64000/69092 Loss: 158.223 +67200/69092 Loss: 157.163 +Training time 0:07:37.716575 +Epoch: 57 Average loss: 157.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 480) +0/69092 Loss: 148.896 +3200/69092 Loss: 157.887 +6400/69092 Loss: 157.917 +9600/69092 Loss: 157.860 +12800/69092 Loss: 157.949 +16000/69092 Loss: 157.004 +19200/69092 Loss: 157.736 +22400/69092 Loss: 160.963 +25600/69092 Loss: 160.660 +28800/69092 Loss: 158.485 +32000/69092 Loss: 157.079 +35200/69092 Loss: 155.928 +38400/69092 Loss: 154.981 +41600/69092 Loss: 159.016 +44800/69092 Loss: 157.633 +48000/69092 Loss: 158.116 +51200/69092 Loss: 155.318 +54400/69092 Loss: 157.204 +57600/69092 Loss: 153.138 +60800/69092 Loss: 159.904 +64000/69092 Loss: 155.828 +67200/69092 Loss: 156.614 +Training time 0:07:28.466256 +Epoch: 58 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 481) +0/69092 Loss: 178.673 +3200/69092 Loss: 155.829 +6400/69092 Loss: 156.476 +9600/69092 Loss: 156.880 +12800/69092 Loss: 155.676 +16000/69092 Loss: 158.761 +19200/69092 Loss: 161.487 +22400/69092 Loss: 158.028 +25600/69092 Loss: 157.643 +28800/69092 Loss: 160.287 +32000/69092 Loss: 159.935 +35200/69092 Loss: 157.920 +38400/69092 Loss: 158.957 +41600/69092 Loss: 157.600 +44800/69092 Loss: 155.572 +48000/69092 Loss: 159.200 +51200/69092 Loss: 157.740 +54400/69092 Loss: 157.863 +57600/69092 Loss: 157.484 +60800/69092 Loss: 156.703 +64000/69092 Loss: 159.493 +67200/69092 Loss: 158.097 +Training time 0:07:31.131752 +Epoch: 59 Average loss: 157.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 482) +0/69092 Loss: 151.102 +3200/69092 Loss: 157.276 +6400/69092 Loss: 159.549 +9600/69092 Loss: 157.093 +12800/69092 Loss: 159.041 +16000/69092 Loss: 161.438 +19200/69092 Loss: 158.270 +22400/69092 Loss: 158.304 +25600/69092 Loss: 157.209 +28800/69092 Loss: 157.592 +32000/69092 Loss: 156.703 +35200/69092 Loss: 159.556 +38400/69092 Loss: 157.933 +41600/69092 Loss: 158.015 +44800/69092 Loss: 158.100 +48000/69092 Loss: 157.244 +51200/69092 Loss: 158.557 +54400/69092 Loss: 156.265 +57600/69092 Loss: 156.502 +60800/69092 Loss: 157.331 +64000/69092 Loss: 156.732 +67200/69092 Loss: 157.119 +Training time 0:07:40.180973 +Epoch: 60 Average loss: 157.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 483) +0/69092 Loss: 146.360 +3200/69092 Loss: 157.591 +6400/69092 Loss: 156.830 +9600/69092 Loss: 156.833 +12800/69092 Loss: 157.044 +16000/69092 Loss: 154.918 +19200/69092 Loss: 154.866 +22400/69092 Loss: 156.445 +25600/69092 Loss: 158.546 +28800/69092 Loss: 160.042 +32000/69092 Loss: 161.277 +35200/69092 Loss: 155.353 +38400/69092 Loss: 157.046 +41600/69092 Loss: 158.467 +44800/69092 Loss: 157.417 +48000/69092 Loss: 159.266 +51200/69092 Loss: 155.781 +54400/69092 Loss: 156.215 +57600/69092 Loss: 156.808 +60800/69092 Loss: 157.807 +64000/69092 Loss: 159.583 +67200/69092 Loss: 159.790 +Training time 0:08:00.641862 +Epoch: 61 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 484) +0/69092 Loss: 167.018 +3200/69092 Loss: 156.631 +6400/69092 Loss: 158.543 +9600/69092 Loss: 157.933 +12800/69092 Loss: 158.797 +16000/69092 Loss: 156.845 +19200/69092 Loss: 156.346 +22400/69092 Loss: 160.184 +25600/69092 Loss: 156.655 +28800/69092 Loss: 159.033 +32000/69092 Loss: 159.177 +35200/69092 Loss: 157.871 +38400/69092 Loss: 157.949 +41600/69092 Loss: 159.109 +44800/69092 Loss: 157.267 +48000/69092 Loss: 155.324 +51200/69092 Loss: 157.927 +54400/69092 Loss: 159.365 +57600/69092 Loss: 156.606 +60800/69092 Loss: 158.809 +64000/69092 Loss: 158.727 +67200/69092 Loss: 155.436 +Training time 0:07:30.974796 +Epoch: 62 Average loss: 157.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 485) +0/69092 Loss: 155.326 +3200/69092 Loss: 156.929 +6400/69092 Loss: 155.049 +9600/69092 Loss: 158.304 +12800/69092 Loss: 163.425 +16000/69092 Loss: 156.725 +19200/69092 Loss: 156.249 +22400/69092 Loss: 160.923 +25600/69092 Loss: 155.296 +28800/69092 Loss: 159.084 +32000/69092 Loss: 156.402 +35200/69092 Loss: 157.944 +38400/69092 Loss: 158.721 +41600/69092 Loss: 155.966 +44800/69092 Loss: 158.320 +48000/69092 Loss: 158.684 +51200/69092 Loss: 159.604 +54400/69092 Loss: 156.545 +57600/69092 Loss: 159.011 +60800/69092 Loss: 156.561 +64000/69092 Loss: 158.070 +67200/69092 Loss: 154.584 +Training time 0:08:09.582895 +Epoch: 63 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 486) +0/69092 Loss: 168.420 +3200/69092 Loss: 156.431 +6400/69092 Loss: 157.543 +9600/69092 Loss: 158.296 +12800/69092 Loss: 156.973 +16000/69092 Loss: 156.646 +19200/69092 Loss: 157.887 +22400/69092 Loss: 159.200 +25600/69092 Loss: 157.018 +28800/69092 Loss: 155.296 +32000/69092 Loss: 159.029 +35200/69092 Loss: 157.972 +38400/69092 Loss: 159.447 +41600/69092 Loss: 157.054 +44800/69092 Loss: 156.327 +48000/69092 Loss: 160.036 +51200/69092 Loss: 157.215 +54400/69092 Loss: 161.374 +57600/69092 Loss: 158.391 +60800/69092 Loss: 155.169 +64000/69092 Loss: 157.558 +67200/69092 Loss: 153.867 +Training time 0:07:30.493331 +Epoch: 64 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 487) +0/69092 Loss: 144.962 +3200/69092 Loss: 155.772 +6400/69092 Loss: 159.550 +9600/69092 Loss: 157.597 +12800/69092 Loss: 157.691 +16000/69092 Loss: 156.698 +19200/69092 Loss: 158.598 +22400/69092 Loss: 157.551 +25600/69092 Loss: 156.226 +28800/69092 Loss: 158.912 +32000/69092 Loss: 159.055 +35200/69092 Loss: 158.394 +38400/69092 Loss: 158.601 +41600/69092 Loss: 157.803 +44800/69092 Loss: 159.575 +48000/69092 Loss: 156.542 +51200/69092 Loss: 156.270 +54400/69092 Loss: 159.968 +57600/69092 Loss: 158.202 +60800/69092 Loss: 156.081 +64000/69092 Loss: 156.754 +67200/69092 Loss: 156.584 +Training time 0:07:32.118855 +Epoch: 65 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 488) +0/69092 Loss: 143.323 +3200/69092 Loss: 158.589 +6400/69092 Loss: 153.716 +9600/69092 Loss: 156.417 +12800/69092 Loss: 158.518 +16000/69092 Loss: 158.377 +19200/69092 Loss: 159.547 +22400/69092 Loss: 155.179 +25600/69092 Loss: 154.204 +28800/69092 Loss: 157.441 +32000/69092 Loss: 157.618 +35200/69092 Loss: 158.159 +38400/69092 Loss: 158.831 +41600/69092 Loss: 159.529 +44800/69092 Loss: 159.033 +48000/69092 Loss: 160.695 +51200/69092 Loss: 157.434 +54400/69092 Loss: 156.107 +57600/69092 Loss: 156.562 +60800/69092 Loss: 160.719 +64000/69092 Loss: 158.900 +67200/69092 Loss: 158.112 +Training time 0:07:32.329658 +Epoch: 66 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 489) +0/69092 Loss: 163.275 +3200/69092 Loss: 159.104 +6400/69092 Loss: 159.158 +9600/69092 Loss: 161.419 +12800/69092 Loss: 157.232 +16000/69092 Loss: 157.068 +19200/69092 Loss: 156.820 +22400/69092 Loss: 155.693 +25600/69092 Loss: 158.043 +28800/69092 Loss: 158.508 +32000/69092 Loss: 158.496 +35200/69092 Loss: 156.385 +38400/69092 Loss: 157.975 +41600/69092 Loss: 158.994 +44800/69092 Loss: 155.701 +48000/69092 Loss: 158.541 +51200/69092 Loss: 158.515 +54400/69092 Loss: 160.072 +57600/69092 Loss: 158.282 +60800/69092 Loss: 155.165 +64000/69092 Loss: 158.147 +67200/69092 Loss: 156.474 +Training time 0:07:33.695244 +Epoch: 67 Average loss: 157.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 490) +0/69092 Loss: 183.316 +3200/69092 Loss: 157.776 +6400/69092 Loss: 159.626 +9600/69092 Loss: 159.549 +12800/69092 Loss: 156.583 +16000/69092 Loss: 156.609 +19200/69092 Loss: 157.547 +22400/69092 Loss: 159.544 +25600/69092 Loss: 156.285 +28800/69092 Loss: 158.823 +32000/69092 Loss: 158.139 +35200/69092 Loss: 157.351 +38400/69092 Loss: 158.399 +41600/69092 Loss: 154.968 +44800/69092 Loss: 158.081 +48000/69092 Loss: 158.903 +51200/69092 Loss: 155.875 +54400/69092 Loss: 156.611 +57600/69092 Loss: 158.537 +60800/69092 Loss: 159.901 +64000/69092 Loss: 158.478 +67200/69092 Loss: 155.375 +Training time 0:07:30.351889 +Epoch: 68 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 491) +0/69092 Loss: 156.753 +3200/69092 Loss: 157.296 +6400/69092 Loss: 157.190 +9600/69092 Loss: 157.249 +12800/69092 Loss: 157.096 +16000/69092 Loss: 156.875 +19200/69092 Loss: 156.136 +22400/69092 Loss: 155.847 +25600/69092 Loss: 156.994 +28800/69092 Loss: 156.398 +32000/69092 Loss: 157.977 +35200/69092 Loss: 156.912 +38400/69092 Loss: 157.829 +41600/69092 Loss: 157.409 +44800/69092 Loss: 161.576 +48000/69092 Loss: 159.671 +51200/69092 Loss: 156.388 +54400/69092 Loss: 157.143 +57600/69092 Loss: 160.184 +60800/69092 Loss: 157.542 +64000/69092 Loss: 156.720 +67200/69092 Loss: 157.236 +Training time 0:07:27.149328 +Epoch: 69 Average loss: 157.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 492) +0/69092 Loss: 146.036 +3200/69092 Loss: 158.580 +6400/69092 Loss: 160.748 +9600/69092 Loss: 158.193 +12800/69092 Loss: 156.470 +16000/69092 Loss: 161.262 +19200/69092 Loss: 158.562 +22400/69092 Loss: 159.261 +25600/69092 Loss: 160.112 +28800/69092 Loss: 156.451 +32000/69092 Loss: 156.681 +35200/69092 Loss: 158.118 +38400/69092 Loss: 156.407 +41600/69092 Loss: 158.808 +44800/69092 Loss: 157.607 +48000/69092 Loss: 154.996 +51200/69092 Loss: 157.781 +54400/69092 Loss: 158.173 +57600/69092 Loss: 158.151 +60800/69092 Loss: 157.266 +64000/69092 Loss: 155.779 +67200/69092 Loss: 157.892 +Training time 0:07:34.042645 +Epoch: 70 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 493) +0/69092 Loss: 148.045 +3200/69092 Loss: 159.902 +6400/69092 Loss: 159.570 +9600/69092 Loss: 159.575 +12800/69092 Loss: 158.521 +16000/69092 Loss: 156.979 +19200/69092 Loss: 158.946 +22400/69092 Loss: 157.023 +25600/69092 Loss: 157.809 +28800/69092 Loss: 158.470 +32000/69092 Loss: 156.692 +35200/69092 Loss: 156.278 +38400/69092 Loss: 155.847 +41600/69092 Loss: 156.178 +44800/69092 Loss: 157.457 +48000/69092 Loss: 157.843 +51200/69092 Loss: 154.199 +54400/69092 Loss: 157.615 +57600/69092 Loss: 158.812 +60800/69092 Loss: 156.712 +64000/69092 Loss: 156.000 +67200/69092 Loss: 156.968 +Training time 0:07:30.942015 +Epoch: 71 Average loss: 157.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 494) +0/69092 Loss: 193.557 +3200/69092 Loss: 158.581 +6400/69092 Loss: 159.960 +9600/69092 Loss: 158.709 +12800/69092 Loss: 157.749 +16000/69092 Loss: 155.311 +19200/69092 Loss: 157.527 +22400/69092 Loss: 155.882 +25600/69092 Loss: 154.842 +28800/69092 Loss: 156.252 +32000/69092 Loss: 157.488 +35200/69092 Loss: 156.919 +38400/69092 Loss: 159.173 +41600/69092 Loss: 158.074 +44800/69092 Loss: 158.017 +48000/69092 Loss: 161.706 +51200/69092 Loss: 156.514 +54400/69092 Loss: 157.500 +57600/69092 Loss: 157.416 +60800/69092 Loss: 157.818 +64000/69092 Loss: 156.300 +67200/69092 Loss: 159.368 +Training time 0:07:32.607108 +Epoch: 72 Average loss: 157.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 495) +0/69092 Loss: 177.926 +3200/69092 Loss: 157.066 +6400/69092 Loss: 159.206 +9600/69092 Loss: 154.233 +12800/69092 Loss: 159.151 +16000/69092 Loss: 156.032 +19200/69092 Loss: 158.726 +22400/69092 Loss: 159.773 +25600/69092 Loss: 158.140 +28800/69092 Loss: 159.467 +32000/69092 Loss: 154.816 +35200/69092 Loss: 157.403 +38400/69092 Loss: 159.988 +41600/69092 Loss: 156.329 +44800/69092 Loss: 154.020 +48000/69092 Loss: 156.968 +51200/69092 Loss: 156.505 +54400/69092 Loss: 157.025 +57600/69092 Loss: 159.158 +60800/69092 Loss: 158.788 +64000/69092 Loss: 160.673 +67200/69092 Loss: 159.491 +Training time 0:07:28.142897 +Epoch: 73 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 496) +0/69092 Loss: 160.803 +3200/69092 Loss: 155.213 +6400/69092 Loss: 156.567 +9600/69092 Loss: 159.224 +12800/69092 Loss: 157.978 +16000/69092 Loss: 156.166 +19200/69092 Loss: 157.324 +22400/69092 Loss: 160.065 +25600/69092 Loss: 158.215 +28800/69092 Loss: 156.018 +32000/69092 Loss: 156.612 +35200/69092 Loss: 159.352 +38400/69092 Loss: 159.471 +41600/69092 Loss: 154.980 +44800/69092 Loss: 156.727 +48000/69092 Loss: 156.928 +51200/69092 Loss: 159.177 +54400/69092 Loss: 159.593 +57600/69092 Loss: 158.898 +60800/69092 Loss: 156.536 +64000/69092 Loss: 158.953 +67200/69092 Loss: 159.860 +Training time 0:07:39.044267 +Epoch: 74 Average loss: 157.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 497) +0/69092 Loss: 153.554 +3200/69092 Loss: 157.763 +6400/69092 Loss: 159.655 +9600/69092 Loss: 158.467 +12800/69092 Loss: 155.612 +16000/69092 Loss: 155.849 +19200/69092 Loss: 157.095 +22400/69092 Loss: 160.706 +25600/69092 Loss: 157.661 +28800/69092 Loss: 157.534 +32000/69092 Loss: 156.247 +35200/69092 Loss: 156.362 +38400/69092 Loss: 159.599 +41600/69092 Loss: 157.146 +44800/69092 Loss: 159.098 +48000/69092 Loss: 156.492 +51200/69092 Loss: 156.702 +54400/69092 Loss: 155.818 +57600/69092 Loss: 160.725 +60800/69092 Loss: 157.031 +64000/69092 Loss: 157.832 +67200/69092 Loss: 156.698 +Training time 0:07:26.504107 +Epoch: 75 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 498) +0/69092 Loss: 161.422 +3200/69092 Loss: 157.520 +6400/69092 Loss: 156.469 +9600/69092 Loss: 157.827 +12800/69092 Loss: 159.594 +16000/69092 Loss: 158.252 +19200/69092 Loss: 158.536 +22400/69092 Loss: 156.967 +25600/69092 Loss: 159.976 +28800/69092 Loss: 156.504 +32000/69092 Loss: 157.253 +35200/69092 Loss: 156.574 +38400/69092 Loss: 158.118 +41600/69092 Loss: 155.130 +44800/69092 Loss: 158.647 +48000/69092 Loss: 154.845 +51200/69092 Loss: 160.102 +54400/69092 Loss: 157.422 +57600/69092 Loss: 159.893 +60800/69092 Loss: 157.545 +64000/69092 Loss: 156.112 +67200/69092 Loss: 158.826 +Training time 0:07:32.783897 +Epoch: 76 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 499) +0/69092 Loss: 177.210 +3200/69092 Loss: 158.884 +6400/69092 Loss: 155.924 +9600/69092 Loss: 156.157 +12800/69092 Loss: 158.097 +16000/69092 Loss: 156.407 +19200/69092 Loss: 156.113 +22400/69092 Loss: 158.193 +25600/69092 Loss: 158.247 +28800/69092 Loss: 158.418 +32000/69092 Loss: 155.925 +35200/69092 Loss: 160.295 +38400/69092 Loss: 158.446 +41600/69092 Loss: 156.533 +44800/69092 Loss: 154.964 +48000/69092 Loss: 159.130 +51200/69092 Loss: 157.237 +54400/69092 Loss: 157.130 +57600/69092 Loss: 158.043 +60800/69092 Loss: 156.191 +64000/69092 Loss: 157.533 +67200/69092 Loss: 162.101 +Training time 0:07:34.133075 +Epoch: 77 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 500) +0/69092 Loss: 153.853 +3200/69092 Loss: 156.814 +6400/69092 Loss: 157.885 +9600/69092 Loss: 157.709 +12800/69092 Loss: 155.759 +16000/69092 Loss: 157.194 +19200/69092 Loss: 158.385 +22400/69092 Loss: 158.610 +25600/69092 Loss: 159.825 +28800/69092 Loss: 157.883 +32000/69092 Loss: 156.003 +35200/69092 Loss: 156.775 +38400/69092 Loss: 157.722 +41600/69092 Loss: 158.185 +44800/69092 Loss: 159.210 +48000/69092 Loss: 158.070 +51200/69092 Loss: 156.546 +54400/69092 Loss: 155.647 +57600/69092 Loss: 157.785 +60800/69092 Loss: 157.660 +64000/69092 Loss: 157.465 +67200/69092 Loss: 159.105 +Training time 0:07:32.954687 +Epoch: 78 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 501) +0/69092 Loss: 154.571 +3200/69092 Loss: 155.958 +6400/69092 Loss: 159.548 +9600/69092 Loss: 158.884 +12800/69092 Loss: 155.646 +16000/69092 Loss: 154.697 +19200/69092 Loss: 157.752 +22400/69092 Loss: 157.124 +25600/69092 Loss: 157.724 +28800/69092 Loss: 157.061 +32000/69092 Loss: 155.054 +35200/69092 Loss: 160.488 +38400/69092 Loss: 157.938 +41600/69092 Loss: 156.897 +44800/69092 Loss: 160.877 +48000/69092 Loss: 156.670 +51200/69092 Loss: 159.104 +54400/69092 Loss: 157.708 +57600/69092 Loss: 160.187 +60800/69092 Loss: 156.840 +64000/69092 Loss: 156.505 +67200/69092 Loss: 159.275 +Training time 0:07:29.071097 +Epoch: 79 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 502) +0/69092 Loss: 171.694 +3200/69092 Loss: 157.378 +6400/69092 Loss: 158.375 +9600/69092 Loss: 160.253 +12800/69092 Loss: 156.585 +16000/69092 Loss: 157.419 +19200/69092 Loss: 156.079 +22400/69092 Loss: 157.016 +25600/69092 Loss: 157.493 +28800/69092 Loss: 158.673 +32000/69092 Loss: 154.919 +35200/69092 Loss: 159.952 +38400/69092 Loss: 156.969 +41600/69092 Loss: 157.544 +44800/69092 Loss: 158.691 +48000/69092 Loss: 156.667 +51200/69092 Loss: 155.791 +54400/69092 Loss: 158.113 +57600/69092 Loss: 156.650 +60800/69092 Loss: 157.105 +64000/69092 Loss: 157.365 +67200/69092 Loss: 159.565 +Training time 0:07:36.664371 +Epoch: 80 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 503) +0/69092 Loss: 180.853 +3200/69092 Loss: 156.686 +6400/69092 Loss: 156.408 +9600/69092 Loss: 158.892 +12800/69092 Loss: 157.009 +16000/69092 Loss: 158.433 +19200/69092 Loss: 157.543 +22400/69092 Loss: 156.384 +25600/69092 Loss: 158.493 +28800/69092 Loss: 159.497 +32000/69092 Loss: 160.577 +35200/69092 Loss: 158.540 +38400/69092 Loss: 160.839 +41600/69092 Loss: 159.118 +44800/69092 Loss: 155.514 +48000/69092 Loss: 154.819 +51200/69092 Loss: 153.832 +54400/69092 Loss: 156.862 +57600/69092 Loss: 155.018 +60800/69092 Loss: 157.100 +64000/69092 Loss: 160.682 +67200/69092 Loss: 159.814 +Training time 0:07:41.365855 +Epoch: 81 Average loss: 157.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 504) +0/69092 Loss: 166.087 +3200/69092 Loss: 157.924 +6400/69092 Loss: 153.683 +9600/69092 Loss: 157.940 +12800/69092 Loss: 158.585 +16000/69092 Loss: 157.431 +19200/69092 Loss: 156.970 +22400/69092 Loss: 157.899 +25600/69092 Loss: 154.913 +28800/69092 Loss: 157.029 +32000/69092 Loss: 159.909 +35200/69092 Loss: 158.122 +38400/69092 Loss: 156.410 +41600/69092 Loss: 159.825 +44800/69092 Loss: 158.490 +48000/69092 Loss: 157.772 +51200/69092 Loss: 162.079 +54400/69092 Loss: 159.966 +57600/69092 Loss: 156.245 +60800/69092 Loss: 158.083 +64000/69092 Loss: 157.085 +67200/69092 Loss: 155.864 +Training time 0:08:16.314267 +Epoch: 82 Average loss: 157.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 505) +0/69092 Loss: 140.381 +3200/69092 Loss: 157.880 +6400/69092 Loss: 156.526 +9600/69092 Loss: 158.492 +12800/69092 Loss: 156.435 +16000/69092 Loss: 158.491 +19200/69092 Loss: 156.780 +22400/69092 Loss: 160.067 +25600/69092 Loss: 159.845 +28800/69092 Loss: 157.697 +32000/69092 Loss: 158.112 +35200/69092 Loss: 156.679 +38400/69092 Loss: 157.398 +41600/69092 Loss: 154.574 +44800/69092 Loss: 159.494 +48000/69092 Loss: 154.338 +51200/69092 Loss: 158.943 +54400/69092 Loss: 159.074 +57600/69092 Loss: 155.267 +60800/69092 Loss: 158.214 +64000/69092 Loss: 158.086 +67200/69092 Loss: 158.946 +Training time 0:07:36.062949 +Epoch: 83 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 506) +0/69092 Loss: 175.959 +3200/69092 Loss: 156.967 +6400/69092 Loss: 159.068 +9600/69092 Loss: 155.671 +12800/69092 Loss: 158.297 +16000/69092 Loss: 155.674 +19200/69092 Loss: 159.069 +22400/69092 Loss: 158.530 +25600/69092 Loss: 154.055 +28800/69092 Loss: 155.656 +32000/69092 Loss: 154.008 +35200/69092 Loss: 157.444 +38400/69092 Loss: 155.039 +41600/69092 Loss: 158.831 +44800/69092 Loss: 158.923 +48000/69092 Loss: 160.924 +51200/69092 Loss: 157.080 +54400/69092 Loss: 159.392 +57600/69092 Loss: 159.830 +60800/69092 Loss: 158.372 +64000/69092 Loss: 160.610 +67200/69092 Loss: 159.146 +Training time 0:07:28.071768 +Epoch: 84 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 507) +0/69092 Loss: 144.935 +3200/69092 Loss: 156.230 +6400/69092 Loss: 157.904 +9600/69092 Loss: 157.111 +12800/69092 Loss: 156.397 +16000/69092 Loss: 161.397 +19200/69092 Loss: 158.465 +22400/69092 Loss: 157.977 +25600/69092 Loss: 158.557 +28800/69092 Loss: 157.043 +32000/69092 Loss: 160.598 +35200/69092 Loss: 160.585 +38400/69092 Loss: 160.295 +41600/69092 Loss: 157.566 +44800/69092 Loss: 157.047 +48000/69092 Loss: 156.283 +51200/69092 Loss: 157.593 +54400/69092 Loss: 155.550 +57600/69092 Loss: 158.410 +60800/69092 Loss: 157.781 +64000/69092 Loss: 155.881 +67200/69092 Loss: 158.025 +Training time 0:07:34.064737 +Epoch: 85 Average loss: 157.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 508) +0/69092 Loss: 152.740 +3200/69092 Loss: 153.671 +6400/69092 Loss: 159.215 +9600/69092 Loss: 161.432 +12800/69092 Loss: 159.513 +16000/69092 Loss: 157.684 +19200/69092 Loss: 156.483 +22400/69092 Loss: 159.997 +25600/69092 Loss: 159.024 +28800/69092 Loss: 158.370 +32000/69092 Loss: 157.508 +35200/69092 Loss: 155.269 +38400/69092 Loss: 155.662 +41600/69092 Loss: 156.736 +44800/69092 Loss: 157.925 +48000/69092 Loss: 159.825 +51200/69092 Loss: 154.409 +54400/69092 Loss: 156.880 +57600/69092 Loss: 158.776 +60800/69092 Loss: 158.358 +64000/69092 Loss: 156.484 +67200/69092 Loss: 157.780 +Training time 0:07:35.892446 +Epoch: 86 Average loss: 157.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 509) +0/69092 Loss: 152.511 +3200/69092 Loss: 160.191 +6400/69092 Loss: 158.204 +9600/69092 Loss: 158.823 +12800/69092 Loss: 158.925 +16000/69092 Loss: 159.903 +19200/69092 Loss: 158.950 +22400/69092 Loss: 155.247 +25600/69092 Loss: 155.340 +28800/69092 Loss: 158.975 +32000/69092 Loss: 156.164 +35200/69092 Loss: 159.493 +38400/69092 Loss: 154.748 +41600/69092 Loss: 157.242 +44800/69092 Loss: 158.245 +48000/69092 Loss: 155.570 +51200/69092 Loss: 159.349 +54400/69092 Loss: 155.647 +57600/69092 Loss: 157.646 +60800/69092 Loss: 155.890 +64000/69092 Loss: 157.267 +67200/69092 Loss: 162.443 +Training time 0:07:44.662175 +Epoch: 87 Average loss: 157.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 510) +0/69092 Loss: 151.160 +3200/69092 Loss: 157.396 +6400/69092 Loss: 159.034 +9600/69092 Loss: 156.480 +12800/69092 Loss: 156.810 +16000/69092 Loss: 161.978 +19200/69092 Loss: 154.267 +22400/69092 Loss: 158.934 +25600/69092 Loss: 160.265 +28800/69092 Loss: 159.777 +32000/69092 Loss: 156.637 +35200/69092 Loss: 158.547 +38400/69092 Loss: 156.789 +41600/69092 Loss: 157.268 +44800/69092 Loss: 155.549 +48000/69092 Loss: 158.503 +51200/69092 Loss: 158.325 +54400/69092 Loss: 155.834 +57600/69092 Loss: 158.405 +60800/69092 Loss: 156.796 +64000/69092 Loss: 157.036 +67200/69092 Loss: 155.809 +Training time 0:07:46.648842 +Epoch: 88 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 511) +0/69092 Loss: 149.176 +3200/69092 Loss: 156.270 +6400/69092 Loss: 159.844 +9600/69092 Loss: 158.502 +12800/69092 Loss: 156.811 +16000/69092 Loss: 158.520 +19200/69092 Loss: 155.946 +22400/69092 Loss: 157.646 +25600/69092 Loss: 159.586 +28800/69092 Loss: 158.628 +32000/69092 Loss: 158.061 +35200/69092 Loss: 155.156 +38400/69092 Loss: 156.480 +41600/69092 Loss: 157.869 +44800/69092 Loss: 154.838 +48000/69092 Loss: 155.653 +51200/69092 Loss: 158.589 +54400/69092 Loss: 155.287 +57600/69092 Loss: 159.938 +60800/69092 Loss: 156.214 +64000/69092 Loss: 159.472 +67200/69092 Loss: 161.634 +Training time 0:07:38.683238 +Epoch: 89 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 512) +0/69092 Loss: 149.412 +3200/69092 Loss: 155.525 +6400/69092 Loss: 158.904 +9600/69092 Loss: 157.171 +12800/69092 Loss: 155.118 +16000/69092 Loss: 155.509 +19200/69092 Loss: 159.854 +22400/69092 Loss: 157.420 +25600/69092 Loss: 157.897 +28800/69092 Loss: 158.223 +32000/69092 Loss: 158.064 +35200/69092 Loss: 158.312 +38400/69092 Loss: 156.556 +41600/69092 Loss: 156.076 +44800/69092 Loss: 157.220 +48000/69092 Loss: 157.626 +51200/69092 Loss: 160.222 +54400/69092 Loss: 158.497 +57600/69092 Loss: 160.412 +60800/69092 Loss: 159.398 +64000/69092 Loss: 156.802 +67200/69092 Loss: 156.908 +Training time 0:07:39.444737 +Epoch: 90 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 513) +0/69092 Loss: 154.813 +3200/69092 Loss: 159.117 +6400/69092 Loss: 159.558 +9600/69092 Loss: 158.387 +12800/69092 Loss: 158.814 +16000/69092 Loss: 155.542 +19200/69092 Loss: 157.716 +22400/69092 Loss: 156.328 +25600/69092 Loss: 159.649 +28800/69092 Loss: 156.218 +32000/69092 Loss: 157.246 +35200/69092 Loss: 155.319 +38400/69092 Loss: 159.493 +41600/69092 Loss: 161.007 +44800/69092 Loss: 158.224 +48000/69092 Loss: 155.385 +51200/69092 Loss: 155.362 +54400/69092 Loss: 158.967 +57600/69092 Loss: 157.250 +60800/69092 Loss: 154.913 +64000/69092 Loss: 159.351 +67200/69092 Loss: 155.443 +Training time 0:07:32.094765 +Epoch: 91 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 514) +0/69092 Loss: 159.650 +3200/69092 Loss: 157.919 +6400/69092 Loss: 160.026 +9600/69092 Loss: 158.221 +12800/69092 Loss: 157.497 +16000/69092 Loss: 159.998 +19200/69092 Loss: 161.137 +22400/69092 Loss: 154.795 +25600/69092 Loss: 158.357 +28800/69092 Loss: 161.084 +32000/69092 Loss: 154.626 +35200/69092 Loss: 153.999 +38400/69092 Loss: 158.061 +41600/69092 Loss: 155.212 +44800/69092 Loss: 154.351 +48000/69092 Loss: 159.020 +51200/69092 Loss: 159.936 +54400/69092 Loss: 157.242 +57600/69092 Loss: 157.101 +60800/69092 Loss: 159.235 +64000/69092 Loss: 158.422 +67200/69092 Loss: 155.296 +Training time 0:07:32.004785 +Epoch: 92 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 515) +0/69092 Loss: 133.340 +3200/69092 Loss: 158.566 +6400/69092 Loss: 158.643 +9600/69092 Loss: 158.676 +12800/69092 Loss: 156.503 +16000/69092 Loss: 159.262 +19200/69092 Loss: 156.363 +22400/69092 Loss: 157.053 +25600/69092 Loss: 157.230 +28800/69092 Loss: 155.916 +32000/69092 Loss: 157.024 +35200/69092 Loss: 158.469 +38400/69092 Loss: 159.448 +41600/69092 Loss: 152.880 +44800/69092 Loss: 160.283 +48000/69092 Loss: 157.761 +51200/69092 Loss: 159.088 +54400/69092 Loss: 157.107 +57600/69092 Loss: 156.287 +60800/69092 Loss: 154.336 +64000/69092 Loss: 159.178 +67200/69092 Loss: 160.539 +Training time 0:07:29.730490 +Epoch: 93 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 516) +0/69092 Loss: 133.082 +3200/69092 Loss: 156.999 +6400/69092 Loss: 155.885 +9600/69092 Loss: 159.934 +12800/69092 Loss: 158.078 +16000/69092 Loss: 157.008 +19200/69092 Loss: 157.699 +22400/69092 Loss: 156.368 +25600/69092 Loss: 157.416 +28800/69092 Loss: 157.283 +32000/69092 Loss: 157.344 +35200/69092 Loss: 158.307 +38400/69092 Loss: 159.427 +41600/69092 Loss: 155.643 +44800/69092 Loss: 155.279 +48000/69092 Loss: 160.106 +51200/69092 Loss: 159.145 +54400/69092 Loss: 156.276 +57600/69092 Loss: 156.176 +60800/69092 Loss: 156.426 +64000/69092 Loss: 157.087 +67200/69092 Loss: 158.761 +Training time 0:07:39.387163 +Epoch: 94 Average loss: 157.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 517) +0/69092 Loss: 163.615 +3200/69092 Loss: 160.066 +6400/69092 Loss: 159.195 +9600/69092 Loss: 158.727 +12800/69092 Loss: 157.707 +16000/69092 Loss: 159.915 +19200/69092 Loss: 157.481 +22400/69092 Loss: 160.829 +25600/69092 Loss: 154.970 +28800/69092 Loss: 157.831 +32000/69092 Loss: 156.736 +35200/69092 Loss: 158.355 +38400/69092 Loss: 158.129 +41600/69092 Loss: 155.511 +44800/69092 Loss: 157.054 +48000/69092 Loss: 159.390 +51200/69092 Loss: 157.639 +54400/69092 Loss: 157.697 +57600/69092 Loss: 156.910 +60800/69092 Loss: 155.846 +64000/69092 Loss: 156.083 +67200/69092 Loss: 155.491 +Training time 0:07:32.986929 +Epoch: 95 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 518) +0/69092 Loss: 153.329 +3200/69092 Loss: 157.565 +6400/69092 Loss: 155.014 +9600/69092 Loss: 156.838 +12800/69092 Loss: 158.355 +16000/69092 Loss: 158.197 +19200/69092 Loss: 160.262 +22400/69092 Loss: 158.112 +25600/69092 Loss: 156.113 +28800/69092 Loss: 155.881 +32000/69092 Loss: 155.352 +35200/69092 Loss: 156.577 +38400/69092 Loss: 155.390 +41600/69092 Loss: 157.399 +44800/69092 Loss: 158.062 +48000/69092 Loss: 157.288 +51200/69092 Loss: 156.992 +54400/69092 Loss: 159.520 +57600/69092 Loss: 156.766 +60800/69092 Loss: 157.826 +64000/69092 Loss: 158.585 +67200/69092 Loss: 159.178 +Training time 0:07:37.982177 +Epoch: 96 Average loss: 157.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 519) +0/69092 Loss: 162.029 +3200/69092 Loss: 156.626 +6400/69092 Loss: 153.748 +9600/69092 Loss: 158.342 +12800/69092 Loss: 158.772 +16000/69092 Loss: 155.870 +19200/69092 Loss: 156.046 +22400/69092 Loss: 159.318 +25600/69092 Loss: 158.274 +28800/69092 Loss: 155.267 +32000/69092 Loss: 156.078 +35200/69092 Loss: 159.641 +38400/69092 Loss: 159.899 +41600/69092 Loss: 158.241 +44800/69092 Loss: 158.806 +48000/69092 Loss: 158.657 +51200/69092 Loss: 157.880 +54400/69092 Loss: 153.940 +57600/69092 Loss: 159.558 +60800/69092 Loss: 159.391 +64000/69092 Loss: 156.917 +67200/69092 Loss: 159.417 +Training time 0:07:31.927608 +Epoch: 97 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 520) +0/69092 Loss: 165.583 +3200/69092 Loss: 158.770 +6400/69092 Loss: 157.282 +9600/69092 Loss: 157.116 +12800/69092 Loss: 158.771 +16000/69092 Loss: 159.874 +19200/69092 Loss: 156.210 +22400/69092 Loss: 156.745 +25600/69092 Loss: 156.833 +28800/69092 Loss: 159.779 +32000/69092 Loss: 157.629 +35200/69092 Loss: 157.827 +38400/69092 Loss: 153.247 +41600/69092 Loss: 159.797 +44800/69092 Loss: 158.356 +48000/69092 Loss: 159.857 +51200/69092 Loss: 156.370 +54400/69092 Loss: 153.245 +57600/69092 Loss: 157.504 +60800/69092 Loss: 158.390 +64000/69092 Loss: 158.892 +67200/69092 Loss: 157.246 +Training time 0:07:37.231391 +Epoch: 98 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 521) +0/69092 Loss: 141.044 +3200/69092 Loss: 158.203 +6400/69092 Loss: 153.718 +9600/69092 Loss: 157.338 +12800/69092 Loss: 157.688 +16000/69092 Loss: 157.834 +19200/69092 Loss: 157.629 +22400/69092 Loss: 160.042 +25600/69092 Loss: 157.854 +28800/69092 Loss: 157.055 +32000/69092 Loss: 159.542 +35200/69092 Loss: 156.095 +38400/69092 Loss: 156.955 +41600/69092 Loss: 159.779 +44800/69092 Loss: 158.995 +48000/69092 Loss: 157.464 +51200/69092 Loss: 158.600 +54400/69092 Loss: 157.075 +57600/69092 Loss: 155.842 +60800/69092 Loss: 159.863 +64000/69092 Loss: 156.596 +67200/69092 Loss: 160.781 +Training time 0:07:34.204102 +Epoch: 99 Average loss: 157.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 522) +0/69092 Loss: 180.745 +3200/69092 Loss: 157.653 +6400/69092 Loss: 158.186 +9600/69092 Loss: 156.445 +12800/69092 Loss: 154.923 +16000/69092 Loss: 160.860 +19200/69092 Loss: 158.407 +22400/69092 Loss: 159.320 +25600/69092 Loss: 158.541 +28800/69092 Loss: 157.419 +32000/69092 Loss: 154.546 +35200/69092 Loss: 158.590 +38400/69092 Loss: 162.366 +41600/69092 Loss: 156.903 +44800/69092 Loss: 155.062 +48000/69092 Loss: 156.125 +51200/69092 Loss: 156.371 +54400/69092 Loss: 157.718 +57600/69092 Loss: 156.786 +60800/69092 Loss: 158.285 +64000/69092 Loss: 159.447 +67200/69092 Loss: 158.777 +Training time 0:07:29.705925 +Epoch: 100 Average loss: 157.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 523) +0/69092 Loss: 157.171 +3200/69092 Loss: 157.894 +6400/69092 Loss: 156.242 +9600/69092 Loss: 157.526 +12800/69092 Loss: 156.011 +16000/69092 Loss: 158.175 +19200/69092 Loss: 157.286 +22400/69092 Loss: 157.715 +25600/69092 Loss: 157.283 +28800/69092 Loss: 156.726 +32000/69092 Loss: 157.936 +35200/69092 Loss: 157.302 +38400/69092 Loss: 158.715 +41600/69092 Loss: 161.168 +44800/69092 Loss: 155.476 +48000/69092 Loss: 158.630 +51200/69092 Loss: 157.993 +54400/69092 Loss: 158.533 +57600/69092 Loss: 158.010 +60800/69092 Loss: 155.998 +64000/69092 Loss: 155.585 +67200/69092 Loss: 162.289 +Training time 0:07:38.889646 +Epoch: 101 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 524) +0/69092 Loss: 153.805 +3200/69092 Loss: 156.773 +6400/69092 Loss: 158.692 +9600/69092 Loss: 158.670 +12800/69092 Loss: 158.378 +16000/69092 Loss: 161.036 +19200/69092 Loss: 157.005 +22400/69092 Loss: 157.486 +25600/69092 Loss: 161.685 +28800/69092 Loss: 155.105 +32000/69092 Loss: 155.731 +35200/69092 Loss: 158.598 +38400/69092 Loss: 159.383 +41600/69092 Loss: 159.138 +44800/69092 Loss: 156.092 +48000/69092 Loss: 155.319 +51200/69092 Loss: 155.354 +54400/69092 Loss: 153.979 +57600/69092 Loss: 159.201 +60800/69092 Loss: 156.898 +64000/69092 Loss: 155.546 +67200/69092 Loss: 158.344 +Training time 0:07:33.440113 +Epoch: 102 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 525) +0/69092 Loss: 175.364 +3200/69092 Loss: 157.498 +6400/69092 Loss: 156.026 +9600/69092 Loss: 158.885 +12800/69092 Loss: 157.601 +16000/69092 Loss: 155.731 +19200/69092 Loss: 159.688 +22400/69092 Loss: 158.584 +25600/69092 Loss: 155.957 +28800/69092 Loss: 155.444 +32000/69092 Loss: 159.895 +35200/69092 Loss: 155.682 +38400/69092 Loss: 159.003 +41600/69092 Loss: 157.092 +44800/69092 Loss: 156.799 +48000/69092 Loss: 160.252 +51200/69092 Loss: 158.584 +54400/69092 Loss: 156.823 +57600/69092 Loss: 157.794 +60800/69092 Loss: 158.527 +64000/69092 Loss: 161.254 +67200/69092 Loss: 155.707 +Training time 0:07:38.758941 +Epoch: 103 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 526) +0/69092 Loss: 166.588 +3200/69092 Loss: 159.379 +6400/69092 Loss: 155.092 +9600/69092 Loss: 157.486 +12800/69092 Loss: 160.161 +16000/69092 Loss: 157.334 +19200/69092 Loss: 156.723 +22400/69092 Loss: 155.221 +25600/69092 Loss: 157.481 +28800/69092 Loss: 156.966 +32000/69092 Loss: 160.210 +35200/69092 Loss: 158.788 +38400/69092 Loss: 160.669 +41600/69092 Loss: 156.398 +44800/69092 Loss: 158.739 +48000/69092 Loss: 156.517 +51200/69092 Loss: 157.833 +54400/69092 Loss: 157.629 +57600/69092 Loss: 157.974 +60800/69092 Loss: 157.256 +64000/69092 Loss: 157.863 +67200/69092 Loss: 156.069 +Training time 0:07:34.366990 +Epoch: 104 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 527) +0/69092 Loss: 148.907 +3200/69092 Loss: 158.471 +6400/69092 Loss: 157.535 +9600/69092 Loss: 156.035 +12800/69092 Loss: 153.833 +16000/69092 Loss: 155.330 +19200/69092 Loss: 157.304 +22400/69092 Loss: 159.477 +25600/69092 Loss: 161.069 +28800/69092 Loss: 154.926 +32000/69092 Loss: 157.506 +35200/69092 Loss: 162.517 +38400/69092 Loss: 158.310 +41600/69092 Loss: 159.988 +44800/69092 Loss: 154.527 +48000/69092 Loss: 157.365 +51200/69092 Loss: 155.951 +54400/69092 Loss: 156.660 +57600/69092 Loss: 157.906 +60800/69092 Loss: 161.578 +64000/69092 Loss: 157.248 +67200/69092 Loss: 155.029 +Training time 0:07:43.933782 +Epoch: 105 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 528) +0/69092 Loss: 138.659 +3200/69092 Loss: 157.540 +6400/69092 Loss: 158.332 +9600/69092 Loss: 157.455 +12800/69092 Loss: 158.218 +16000/69092 Loss: 161.150 +19200/69092 Loss: 159.393 +22400/69092 Loss: 157.972 +25600/69092 Loss: 159.304 +28800/69092 Loss: 155.094 +32000/69092 Loss: 158.448 +35200/69092 Loss: 156.939 +38400/69092 Loss: 157.354 +41600/69092 Loss: 158.582 +44800/69092 Loss: 157.610 +48000/69092 Loss: 156.005 +51200/69092 Loss: 158.786 +54400/69092 Loss: 158.008 +57600/69092 Loss: 155.811 +60800/69092 Loss: 155.675 +64000/69092 Loss: 157.527 +67200/69092 Loss: 158.638 +Training time 0:08:14.252079 +Epoch: 106 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 529) +0/69092 Loss: 154.639 +3200/69092 Loss: 158.463 +6400/69092 Loss: 160.434 +9600/69092 Loss: 160.350 +12800/69092 Loss: 157.455 +16000/69092 Loss: 156.921 +19200/69092 Loss: 156.405 +22400/69092 Loss: 160.849 +25600/69092 Loss: 157.923 +28800/69092 Loss: 156.720 +32000/69092 Loss: 155.894 +35200/69092 Loss: 158.784 +38400/69092 Loss: 156.914 +41600/69092 Loss: 157.736 +44800/69092 Loss: 157.359 +48000/69092 Loss: 158.633 +51200/69092 Loss: 159.198 +54400/69092 Loss: 157.491 +57600/69092 Loss: 157.254 +60800/69092 Loss: 155.340 +64000/69092 Loss: 155.930 +67200/69092 Loss: 158.540 +Training time 0:07:33.596004 +Epoch: 107 Average loss: 157.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 530) +0/69092 Loss: 167.570 +3200/69092 Loss: 157.847 +6400/69092 Loss: 157.940 +9600/69092 Loss: 159.031 +12800/69092 Loss: 156.011 +16000/69092 Loss: 156.789 +19200/69092 Loss: 157.924 +22400/69092 Loss: 156.473 +25600/69092 Loss: 159.354 +28800/69092 Loss: 156.620 +32000/69092 Loss: 158.289 +35200/69092 Loss: 158.404 +38400/69092 Loss: 158.593 +41600/69092 Loss: 157.324 +44800/69092 Loss: 156.190 +48000/69092 Loss: 157.745 +51200/69092 Loss: 155.562 +54400/69092 Loss: 155.357 +57600/69092 Loss: 158.929 +60800/69092 Loss: 159.424 +64000/69092 Loss: 158.075 +67200/69092 Loss: 159.811 +Training time 0:07:36.767132 +Epoch: 108 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 531) +0/69092 Loss: 162.367 +3200/69092 Loss: 156.644 +6400/69092 Loss: 156.080 +9600/69092 Loss: 157.753 +12800/69092 Loss: 158.813 +16000/69092 Loss: 156.766 +19200/69092 Loss: 157.441 +22400/69092 Loss: 157.998 +25600/69092 Loss: 157.398 +28800/69092 Loss: 159.541 +32000/69092 Loss: 154.696 +35200/69092 Loss: 160.105 +38400/69092 Loss: 156.032 +41600/69092 Loss: 156.427 +44800/69092 Loss: 157.212 +48000/69092 Loss: 157.728 +51200/69092 Loss: 155.416 +54400/69092 Loss: 156.667 +57600/69092 Loss: 157.998 +60800/69092 Loss: 160.001 +64000/69092 Loss: 160.777 +67200/69092 Loss: 159.602 +Training time 0:07:39.017471 +Epoch: 109 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 532) +0/69092 Loss: 175.037 +3200/69092 Loss: 156.504 +6400/69092 Loss: 158.976 +9600/69092 Loss: 160.418 +12800/69092 Loss: 157.926 +16000/69092 Loss: 156.491 +19200/69092 Loss: 158.173 +22400/69092 Loss: 156.645 +25600/69092 Loss: 158.619 +28800/69092 Loss: 156.447 +32000/69092 Loss: 155.338 +35200/69092 Loss: 156.937 +38400/69092 Loss: 158.081 +41600/69092 Loss: 158.036 +44800/69092 Loss: 154.806 +48000/69092 Loss: 159.961 +51200/69092 Loss: 159.160 +54400/69092 Loss: 159.260 +57600/69092 Loss: 160.224 +60800/69092 Loss: 158.742 +64000/69092 Loss: 158.323 +67200/69092 Loss: 157.368 +Training time 0:07:36.974228 +Epoch: 110 Average loss: 157.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 533) +0/69092 Loss: 179.771 +3200/69092 Loss: 154.565 +6400/69092 Loss: 161.583 +9600/69092 Loss: 158.368 +12800/69092 Loss: 156.272 +16000/69092 Loss: 156.113 +19200/69092 Loss: 157.924 +22400/69092 Loss: 159.049 +25600/69092 Loss: 158.233 +28800/69092 Loss: 158.169 +32000/69092 Loss: 159.938 +35200/69092 Loss: 158.658 +38400/69092 Loss: 158.060 +41600/69092 Loss: 162.068 +44800/69092 Loss: 156.388 +48000/69092 Loss: 156.615 +51200/69092 Loss: 155.177 +54400/69092 Loss: 156.735 +57600/69092 Loss: 156.178 +60800/69092 Loss: 158.855 +64000/69092 Loss: 153.721 +67200/69092 Loss: 156.748 +Training time 0:07:37.014190 +Epoch: 111 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 534) +0/69092 Loss: 162.394 +3200/69092 Loss: 159.000 +6400/69092 Loss: 160.320 +9600/69092 Loss: 158.007 +12800/69092 Loss: 159.478 +16000/69092 Loss: 159.099 +19200/69092 Loss: 156.682 +22400/69092 Loss: 159.713 +25600/69092 Loss: 157.806 +28800/69092 Loss: 159.176 +32000/69092 Loss: 156.696 +35200/69092 Loss: 157.030 +38400/69092 Loss: 158.218 +41600/69092 Loss: 156.629 +44800/69092 Loss: 156.802 +48000/69092 Loss: 157.418 +51200/69092 Loss: 156.118 +54400/69092 Loss: 157.219 +57600/69092 Loss: 157.793 +60800/69092 Loss: 157.957 +64000/69092 Loss: 155.350 +67200/69092 Loss: 155.440 +Training time 0:07:33.607448 +Epoch: 112 Average loss: 157.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 535) +0/69092 Loss: 154.372 +3200/69092 Loss: 161.210 +6400/69092 Loss: 158.909 +9600/69092 Loss: 158.434 +12800/69092 Loss: 160.500 +16000/69092 Loss: 155.414 +19200/69092 Loss: 156.818 +22400/69092 Loss: 152.939 +25600/69092 Loss: 158.943 +28800/69092 Loss: 156.231 +32000/69092 Loss: 156.918 +35200/69092 Loss: 159.132 +38400/69092 Loss: 158.406 +41600/69092 Loss: 160.160 +44800/69092 Loss: 156.350 +48000/69092 Loss: 157.058 +51200/69092 Loss: 158.736 +54400/69092 Loss: 157.486 +57600/69092 Loss: 156.042 +60800/69092 Loss: 157.649 +64000/69092 Loss: 159.331 +67200/69092 Loss: 156.511 +Training time 0:07:31.432569 +Epoch: 113 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 536) +0/69092 Loss: 155.213 +3200/69092 Loss: 157.873 +6400/69092 Loss: 156.680 +9600/69092 Loss: 158.211 +12800/69092 Loss: 157.539 +16000/69092 Loss: 159.580 +19200/69092 Loss: 161.102 +22400/69092 Loss: 159.066 +25600/69092 Loss: 157.993 +28800/69092 Loss: 153.145 +32000/69092 Loss: 156.692 +35200/69092 Loss: 155.099 +38400/69092 Loss: 157.060 +41600/69092 Loss: 158.202 +44800/69092 Loss: 158.167 +48000/69092 Loss: 157.341 +51200/69092 Loss: 158.491 +54400/69092 Loss: 155.059 +57600/69092 Loss: 156.088 +60800/69092 Loss: 156.604 +64000/69092 Loss: 158.748 +67200/69092 Loss: 159.491 +Training time 0:07:48.434067 +Epoch: 114 Average loss: 157.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 537) +0/69092 Loss: 151.641 +3200/69092 Loss: 156.945 +6400/69092 Loss: 158.783 +9600/69092 Loss: 158.498 +12800/69092 Loss: 156.144 +16000/69092 Loss: 154.472 +19200/69092 Loss: 156.409 +22400/69092 Loss: 159.653 +25600/69092 Loss: 157.343 +28800/69092 Loss: 158.705 +32000/69092 Loss: 157.564 +35200/69092 Loss: 157.154 +38400/69092 Loss: 155.107 +41600/69092 Loss: 156.172 +44800/69092 Loss: 160.661 +48000/69092 Loss: 158.266 +51200/69092 Loss: 157.888 +54400/69092 Loss: 159.203 +57600/69092 Loss: 154.964 +60800/69092 Loss: 157.041 +64000/69092 Loss: 160.978 +67200/69092 Loss: 156.787 +Training time 0:07:30.532157 +Epoch: 115 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 538) +0/69092 Loss: 137.076 +3200/69092 Loss: 157.124 +6400/69092 Loss: 157.279 +9600/69092 Loss: 158.082 +12800/69092 Loss: 156.043 +16000/69092 Loss: 156.691 +19200/69092 Loss: 159.120 +22400/69092 Loss: 157.479 +25600/69092 Loss: 158.891 +28800/69092 Loss: 156.418 +32000/69092 Loss: 157.741 +35200/69092 Loss: 159.003 +38400/69092 Loss: 158.222 +41600/69092 Loss: 155.730 +44800/69092 Loss: 157.036 +48000/69092 Loss: 156.345 +51200/69092 Loss: 158.013 +54400/69092 Loss: 155.993 +57600/69092 Loss: 159.208 +60800/69092 Loss: 156.974 +64000/69092 Loss: 159.441 +67200/69092 Loss: 157.091 +Training time 0:07:34.693144 +Epoch: 116 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 539) +0/69092 Loss: 149.649 +3200/69092 Loss: 158.083 +6400/69092 Loss: 157.855 +9600/69092 Loss: 155.776 +12800/69092 Loss: 157.110 +16000/69092 Loss: 156.025 +19200/69092 Loss: 156.228 +22400/69092 Loss: 160.435 +25600/69092 Loss: 158.659 +28800/69092 Loss: 159.455 +32000/69092 Loss: 158.097 +35200/69092 Loss: 155.090 +38400/69092 Loss: 160.601 +41600/69092 Loss: 158.407 +44800/69092 Loss: 157.914 +48000/69092 Loss: 158.019 +51200/69092 Loss: 159.770 +54400/69092 Loss: 155.188 +57600/69092 Loss: 154.323 +60800/69092 Loss: 156.814 +64000/69092 Loss: 155.683 +67200/69092 Loss: 156.353 +Training time 0:07:36.189551 +Epoch: 117 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 540) +0/69092 Loss: 169.442 +3200/69092 Loss: 158.095 +6400/69092 Loss: 157.981 +9600/69092 Loss: 158.030 +12800/69092 Loss: 158.142 +16000/69092 Loss: 157.510 +19200/69092 Loss: 158.548 +22400/69092 Loss: 156.893 +25600/69092 Loss: 160.023 +28800/69092 Loss: 155.014 +32000/69092 Loss: 157.423 +35200/69092 Loss: 156.354 +38400/69092 Loss: 159.705 +41600/69092 Loss: 156.175 +44800/69092 Loss: 156.050 +48000/69092 Loss: 157.878 +51200/69092 Loss: 158.591 +54400/69092 Loss: 157.971 +57600/69092 Loss: 159.717 +60800/69092 Loss: 157.341 +64000/69092 Loss: 158.109 +67200/69092 Loss: 159.147 +Training time 0:07:41.286300 +Epoch: 118 Average loss: 157.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 541) +0/69092 Loss: 153.137 +3200/69092 Loss: 161.917 +6400/69092 Loss: 157.672 +9600/69092 Loss: 154.587 +12800/69092 Loss: 156.489 +16000/69092 Loss: 158.081 +19200/69092 Loss: 156.600 +22400/69092 Loss: 158.864 +25600/69092 Loss: 158.821 +28800/69092 Loss: 160.553 +32000/69092 Loss: 156.911 +35200/69092 Loss: 155.479 +38400/69092 Loss: 154.620 +41600/69092 Loss: 159.646 +44800/69092 Loss: 158.487 +48000/69092 Loss: 155.076 +51200/69092 Loss: 158.790 +54400/69092 Loss: 160.677 +57600/69092 Loss: 157.842 +60800/69092 Loss: 157.588 +64000/69092 Loss: 157.628 +67200/69092 Loss: 156.536 +Training time 0:07:42.715600 +Epoch: 119 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 542) +0/69092 Loss: 153.410 +3200/69092 Loss: 157.655 +6400/69092 Loss: 156.319 +9600/69092 Loss: 157.130 +12800/69092 Loss: 158.155 +16000/69092 Loss: 156.282 +19200/69092 Loss: 159.313 +22400/69092 Loss: 157.748 +25600/69092 Loss: 158.311 +28800/69092 Loss: 158.539 +32000/69092 Loss: 156.371 +35200/69092 Loss: 155.880 +38400/69092 Loss: 158.229 +41600/69092 Loss: 161.615 +44800/69092 Loss: 155.849 +48000/69092 Loss: 158.351 +51200/69092 Loss: 157.506 +54400/69092 Loss: 158.126 +57600/69092 Loss: 156.234 +60800/69092 Loss: 158.687 +64000/69092 Loss: 158.833 +67200/69092 Loss: 155.857 +Training time 0:07:32.009732 +Epoch: 120 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 543) +0/69092 Loss: 179.363 +3200/69092 Loss: 158.294 +6400/69092 Loss: 158.698 +9600/69092 Loss: 159.869 +12800/69092 Loss: 156.849 +16000/69092 Loss: 157.781 +19200/69092 Loss: 156.632 +22400/69092 Loss: 158.853 +25600/69092 Loss: 157.685 +28800/69092 Loss: 156.085 +32000/69092 Loss: 154.915 +35200/69092 Loss: 161.598 +38400/69092 Loss: 157.391 +41600/69092 Loss: 157.427 +44800/69092 Loss: 155.825 +48000/69092 Loss: 159.498 +51200/69092 Loss: 156.742 +54400/69092 Loss: 155.002 +57600/69092 Loss: 156.491 +60800/69092 Loss: 159.239 +64000/69092 Loss: 157.330 +67200/69092 Loss: 158.634 +Training time 0:07:34.852113 +Epoch: 121 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 544) +0/69092 Loss: 137.819 +3200/69092 Loss: 157.019 +6400/69092 Loss: 157.263 +9600/69092 Loss: 157.098 +12800/69092 Loss: 159.498 +16000/69092 Loss: 156.247 +19200/69092 Loss: 159.691 +22400/69092 Loss: 156.537 +25600/69092 Loss: 160.002 +28800/69092 Loss: 158.084 +32000/69092 Loss: 159.027 +35200/69092 Loss: 153.295 +38400/69092 Loss: 159.349 +41600/69092 Loss: 157.174 +44800/69092 Loss: 156.608 +48000/69092 Loss: 157.920 +51200/69092 Loss: 158.569 +54400/69092 Loss: 159.910 +57600/69092 Loss: 157.080 +60800/69092 Loss: 155.810 +64000/69092 Loss: 157.640 +67200/69092 Loss: 158.447 +Training time 0:07:39.426315 +Epoch: 122 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 545) +0/69092 Loss: 170.004 +3200/69092 Loss: 160.362 +6400/69092 Loss: 158.722 +9600/69092 Loss: 157.007 +12800/69092 Loss: 154.457 +16000/69092 Loss: 155.164 +19200/69092 Loss: 159.093 +22400/69092 Loss: 160.189 +25600/69092 Loss: 159.434 +28800/69092 Loss: 158.000 +32000/69092 Loss: 161.001 +35200/69092 Loss: 156.351 +38400/69092 Loss: 153.391 +41600/69092 Loss: 156.968 +44800/69092 Loss: 155.192 +48000/69092 Loss: 155.886 +51200/69092 Loss: 160.045 +54400/69092 Loss: 157.289 +57600/69092 Loss: 159.222 +60800/69092 Loss: 159.050 +64000/69092 Loss: 156.111 +67200/69092 Loss: 158.931 +Training time 0:07:37.343092 +Epoch: 123 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 546) +0/69092 Loss: 174.328 +3200/69092 Loss: 155.237 +6400/69092 Loss: 159.603 +9600/69092 Loss: 156.943 +12800/69092 Loss: 156.390 +16000/69092 Loss: 158.366 +19200/69092 Loss: 155.592 +22400/69092 Loss: 160.915 +25600/69092 Loss: 157.330 +28800/69092 Loss: 157.144 +32000/69092 Loss: 156.733 +35200/69092 Loss: 157.930 +38400/69092 Loss: 156.557 +41600/69092 Loss: 158.043 +44800/69092 Loss: 157.822 +48000/69092 Loss: 161.522 +51200/69092 Loss: 158.922 +54400/69092 Loss: 156.538 +57600/69092 Loss: 156.733 +60800/69092 Loss: 156.486 +64000/69092 Loss: 157.491 +67200/69092 Loss: 154.345 +Training time 0:07:39.944313 +Epoch: 124 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 547) +0/69092 Loss: 160.394 +3200/69092 Loss: 157.469 +6400/69092 Loss: 156.858 +9600/69092 Loss: 158.479 +12800/69092 Loss: 156.681 +16000/69092 Loss: 157.442 +19200/69092 Loss: 155.448 +22400/69092 Loss: 157.970 +25600/69092 Loss: 158.692 +28800/69092 Loss: 153.689 +32000/69092 Loss: 158.340 +35200/69092 Loss: 160.584 +38400/69092 Loss: 158.523 +41600/69092 Loss: 155.824 +44800/69092 Loss: 159.318 +48000/69092 Loss: 155.997 +51200/69092 Loss: 157.354 +54400/69092 Loss: 157.836 +57600/69092 Loss: 156.951 +60800/69092 Loss: 158.756 +64000/69092 Loss: 156.022 +67200/69092 Loss: 158.210 +Training time 0:07:30.659569 +Epoch: 125 Average loss: 157.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 548) +0/69092 Loss: 160.689 +3200/69092 Loss: 160.385 +6400/69092 Loss: 155.574 +9600/69092 Loss: 157.549 +12800/69092 Loss: 155.905 +16000/69092 Loss: 158.574 +19200/69092 Loss: 157.234 +22400/69092 Loss: 157.416 +25600/69092 Loss: 157.406 +28800/69092 Loss: 156.412 +32000/69092 Loss: 159.487 +35200/69092 Loss: 156.872 +38400/69092 Loss: 158.171 +41600/69092 Loss: 156.892 +44800/69092 Loss: 158.599 +48000/69092 Loss: 159.727 +51200/69092 Loss: 155.946 +54400/69092 Loss: 158.131 +57600/69092 Loss: 156.736 +60800/69092 Loss: 159.232 +64000/69092 Loss: 155.416 +67200/69092 Loss: 159.607 +Training time 0:07:39.661861 +Epoch: 126 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 549) +0/69092 Loss: 149.110 +3200/69092 Loss: 156.887 +6400/69092 Loss: 158.658 +9600/69092 Loss: 159.439 +12800/69092 Loss: 156.015 +16000/69092 Loss: 154.967 +19200/69092 Loss: 160.868 +22400/69092 Loss: 158.704 +25600/69092 Loss: 155.430 +28800/69092 Loss: 156.584 +32000/69092 Loss: 160.100 +35200/69092 Loss: 158.211 +38400/69092 Loss: 158.787 +41600/69092 Loss: 157.194 +44800/69092 Loss: 160.943 +48000/69092 Loss: 156.191 +51200/69092 Loss: 158.944 +54400/69092 Loss: 155.895 +57600/69092 Loss: 156.671 +60800/69092 Loss: 160.419 +64000/69092 Loss: 158.792 +67200/69092 Loss: 154.660 +Training time 0:07:32.259968 +Epoch: 127 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 550) +0/69092 Loss: 149.246 +3200/69092 Loss: 156.037 +6400/69092 Loss: 156.968 +9600/69092 Loss: 156.575 +12800/69092 Loss: 158.100 +16000/69092 Loss: 160.061 +19200/69092 Loss: 159.751 +22400/69092 Loss: 157.136 +25600/69092 Loss: 157.351 +28800/69092 Loss: 158.194 +32000/69092 Loss: 156.615 +35200/69092 Loss: 154.513 +38400/69092 Loss: 159.028 +41600/69092 Loss: 156.446 +44800/69092 Loss: 155.243 +48000/69092 Loss: 157.796 +51200/69092 Loss: 160.048 +54400/69092 Loss: 156.069 +57600/69092 Loss: 157.878 +60800/69092 Loss: 157.147 +64000/69092 Loss: 158.952 +67200/69092 Loss: 156.280 +Training time 0:07:35.727273 +Epoch: 128 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 551) +0/69092 Loss: 151.922 +3200/69092 Loss: 158.455 +6400/69092 Loss: 160.622 +9600/69092 Loss: 155.704 +12800/69092 Loss: 158.521 +16000/69092 Loss: 155.192 +19200/69092 Loss: 158.924 +22400/69092 Loss: 161.128 +25600/69092 Loss: 158.221 +28800/69092 Loss: 159.442 +32000/69092 Loss: 155.222 +35200/69092 Loss: 156.489 +38400/69092 Loss: 156.253 +41600/69092 Loss: 158.622 +44800/69092 Loss: 155.789 +48000/69092 Loss: 159.086 +51200/69092 Loss: 157.604 +54400/69092 Loss: 156.975 +57600/69092 Loss: 157.523 +60800/69092 Loss: 156.466 +64000/69092 Loss: 156.221 +67200/69092 Loss: 158.753 +Training time 0:07:31.982051 +Epoch: 129 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 552) +0/69092 Loss: 157.552 +3200/69092 Loss: 156.863 +6400/69092 Loss: 158.178 +9600/69092 Loss: 159.923 +12800/69092 Loss: 158.983 +16000/69092 Loss: 160.690 +19200/69092 Loss: 159.687 +22400/69092 Loss: 155.216 +25600/69092 Loss: 158.828 +28800/69092 Loss: 159.243 +32000/69092 Loss: 158.921 +35200/69092 Loss: 155.196 +38400/69092 Loss: 159.039 +41600/69092 Loss: 154.585 +44800/69092 Loss: 156.886 +48000/69092 Loss: 160.080 +51200/69092 Loss: 154.623 +54400/69092 Loss: 157.087 +57600/69092 Loss: 156.692 +60800/69092 Loss: 156.039 +64000/69092 Loss: 156.557 +67200/69092 Loss: 156.796 +Training time 0:07:27.748161 +Epoch: 130 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 553) +0/69092 Loss: 151.445 +3200/69092 Loss: 160.886 +6400/69092 Loss: 158.578 +9600/69092 Loss: 159.083 +12800/69092 Loss: 155.244 +16000/69092 Loss: 155.853 +19200/69092 Loss: 157.628 +22400/69092 Loss: 159.420 +25600/69092 Loss: 159.323 +28800/69092 Loss: 155.715 +32000/69092 Loss: 155.918 +35200/69092 Loss: 159.235 +38400/69092 Loss: 161.040 +41600/69092 Loss: 155.665 +44800/69092 Loss: 155.954 +48000/69092 Loss: 155.505 +51200/69092 Loss: 159.228 +54400/69092 Loss: 158.519 +57600/69092 Loss: 158.319 +60800/69092 Loss: 157.675 +64000/69092 Loss: 157.176 +67200/69092 Loss: 157.067 +Training time 0:07:31.240596 +Epoch: 131 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 554) +0/69092 Loss: 151.562 +3200/69092 Loss: 158.496 +6400/69092 Loss: 158.880 +9600/69092 Loss: 156.507 +12800/69092 Loss: 155.950 +16000/69092 Loss: 156.512 +19200/69092 Loss: 157.274 +22400/69092 Loss: 159.114 +25600/69092 Loss: 154.284 +28800/69092 Loss: 158.299 +32000/69092 Loss: 158.954 +35200/69092 Loss: 156.397 +38400/69092 Loss: 155.934 +41600/69092 Loss: 156.704 +44800/69092 Loss: 157.631 +48000/69092 Loss: 159.806 +51200/69092 Loss: 160.580 +54400/69092 Loss: 158.373 +57600/69092 Loss: 155.902 +60800/69092 Loss: 156.825 +64000/69092 Loss: 156.582 +67200/69092 Loss: 157.746 +Training time 0:07:36.552860 +Epoch: 132 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 555) +0/69092 Loss: 156.585 +3200/69092 Loss: 156.940 +6400/69092 Loss: 157.925 +9600/69092 Loss: 158.641 +12800/69092 Loss: 158.766 +16000/69092 Loss: 154.475 +19200/69092 Loss: 157.123 +22400/69092 Loss: 156.140 +25600/69092 Loss: 157.949 +28800/69092 Loss: 156.293 +32000/69092 Loss: 156.870 +35200/69092 Loss: 159.570 +38400/69092 Loss: 158.292 +41600/69092 Loss: 160.321 +44800/69092 Loss: 156.911 +48000/69092 Loss: 158.080 +51200/69092 Loss: 157.669 +54400/69092 Loss: 156.592 +57600/69092 Loss: 159.447 +60800/69092 Loss: 158.283 +64000/69092 Loss: 158.935 +67200/69092 Loss: 159.733 +Training time 0:07:33.368496 +Epoch: 133 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 556) +0/69092 Loss: 150.330 +3200/69092 Loss: 158.740 +6400/69092 Loss: 158.504 +9600/69092 Loss: 156.857 +12800/69092 Loss: 159.995 +16000/69092 Loss: 158.288 +19200/69092 Loss: 159.422 +22400/69092 Loss: 159.759 +25600/69092 Loss: 155.959 +28800/69092 Loss: 157.435 +32000/69092 Loss: 155.511 +35200/69092 Loss: 156.140 +38400/69092 Loss: 155.265 +41600/69092 Loss: 158.958 +44800/69092 Loss: 155.890 +48000/69092 Loss: 156.560 +51200/69092 Loss: 157.505 +54400/69092 Loss: 156.555 +57600/69092 Loss: 157.701 +60800/69092 Loss: 157.473 +64000/69092 Loss: 156.480 +67200/69092 Loss: 157.461 +Training time 0:07:37.041754 +Epoch: 134 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 557) +0/69092 Loss: 172.086 +3200/69092 Loss: 157.709 +6400/69092 Loss: 159.150 +9600/69092 Loss: 155.036 +12800/69092 Loss: 157.026 +16000/69092 Loss: 156.621 +19200/69092 Loss: 157.727 +22400/69092 Loss: 157.726 +25600/69092 Loss: 157.719 +28800/69092 Loss: 156.382 +32000/69092 Loss: 155.383 +35200/69092 Loss: 156.653 +38400/69092 Loss: 156.165 +41600/69092 Loss: 158.031 +44800/69092 Loss: 158.078 +48000/69092 Loss: 158.477 +51200/69092 Loss: 159.168 +54400/69092 Loss: 158.892 +57600/69092 Loss: 156.917 +60800/69092 Loss: 160.670 +64000/69092 Loss: 158.868 +67200/69092 Loss: 156.348 +Training time 0:07:36.754586 +Epoch: 135 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 558) +0/69092 Loss: 172.547 +3200/69092 Loss: 158.034 +6400/69092 Loss: 160.220 +9600/69092 Loss: 158.167 +12800/69092 Loss: 157.359 +16000/69092 Loss: 156.467 +19200/69092 Loss: 154.688 +22400/69092 Loss: 156.849 +25600/69092 Loss: 159.270 +28800/69092 Loss: 155.340 +32000/69092 Loss: 155.756 +35200/69092 Loss: 159.042 +38400/69092 Loss: 157.911 +41600/69092 Loss: 160.961 +44800/69092 Loss: 161.927 +48000/69092 Loss: 154.191 +51200/69092 Loss: 156.660 +54400/69092 Loss: 156.343 +57600/69092 Loss: 158.113 +60800/69092 Loss: 158.078 +64000/69092 Loss: 156.939 +67200/69092 Loss: 157.892 +Training time 0:07:50.220120 +Epoch: 136 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 559) +0/69092 Loss: 174.445 +3200/69092 Loss: 154.993 +6400/69092 Loss: 159.176 +9600/69092 Loss: 159.244 +12800/69092 Loss: 158.363 +16000/69092 Loss: 158.955 +19200/69092 Loss: 155.242 +22400/69092 Loss: 159.683 +25600/69092 Loss: 157.203 +28800/69092 Loss: 156.860 +32000/69092 Loss: 157.487 +35200/69092 Loss: 156.931 +38400/69092 Loss: 157.995 +41600/69092 Loss: 156.932 +44800/69092 Loss: 155.384 +48000/69092 Loss: 158.965 +51200/69092 Loss: 158.571 +54400/69092 Loss: 159.130 +57600/69092 Loss: 156.192 +60800/69092 Loss: 157.434 +64000/69092 Loss: 155.856 +67200/69092 Loss: 159.269 +Training time 0:07:32.263084 +Epoch: 137 Average loss: 157.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 560) +0/69092 Loss: 147.103 +3200/69092 Loss: 156.539 +6400/69092 Loss: 156.454 +9600/69092 Loss: 159.312 +12800/69092 Loss: 157.100 +16000/69092 Loss: 159.078 +19200/69092 Loss: 157.501 +22400/69092 Loss: 159.186 +25600/69092 Loss: 154.777 +28800/69092 Loss: 159.359 +32000/69092 Loss: 157.333 +35200/69092 Loss: 155.639 +38400/69092 Loss: 163.222 +41600/69092 Loss: 156.795 +44800/69092 Loss: 160.510 +48000/69092 Loss: 156.618 +51200/69092 Loss: 156.652 +54400/69092 Loss: 157.446 +57600/69092 Loss: 156.295 +60800/69092 Loss: 157.645 +64000/69092 Loss: 156.577 +67200/69092 Loss: 156.857 +Training time 0:07:29.166213 +Epoch: 138 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 561) +0/69092 Loss: 170.943 +3200/69092 Loss: 157.639 +6400/69092 Loss: 158.043 +9600/69092 Loss: 157.371 +12800/69092 Loss: 157.514 +16000/69092 Loss: 160.305 +19200/69092 Loss: 157.355 +22400/69092 Loss: 156.155 +25600/69092 Loss: 156.073 +28800/69092 Loss: 159.727 +32000/69092 Loss: 158.306 +35200/69092 Loss: 156.657 +38400/69092 Loss: 155.775 +41600/69092 Loss: 156.455 +44800/69092 Loss: 157.475 +48000/69092 Loss: 158.948 +51200/69092 Loss: 156.795 +54400/69092 Loss: 157.214 +57600/69092 Loss: 157.687 +60800/69092 Loss: 156.088 +64000/69092 Loss: 160.783 +67200/69092 Loss: 159.322 +Training time 0:07:38.692024 +Epoch: 139 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 562) +0/69092 Loss: 179.612 +3200/69092 Loss: 155.447 +6400/69092 Loss: 156.380 +9600/69092 Loss: 159.278 +12800/69092 Loss: 156.468 +16000/69092 Loss: 156.650 +19200/69092 Loss: 157.592 +22400/69092 Loss: 157.142 +25600/69092 Loss: 161.815 +28800/69092 Loss: 157.884 +32000/69092 Loss: 158.676 +35200/69092 Loss: 156.305 +38400/69092 Loss: 159.655 +41600/69092 Loss: 157.841 +44800/69092 Loss: 157.702 +48000/69092 Loss: 156.135 +51200/69092 Loss: 159.790 +54400/69092 Loss: 157.179 +57600/69092 Loss: 160.587 +60800/69092 Loss: 157.249 +64000/69092 Loss: 157.380 +67200/69092 Loss: 154.489 +Training time 0:07:33.759771 +Epoch: 140 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 563) +0/69092 Loss: 151.940 +3200/69092 Loss: 154.769 +6400/69092 Loss: 157.635 +9600/69092 Loss: 156.257 +12800/69092 Loss: 156.871 +16000/69092 Loss: 156.371 +19200/69092 Loss: 157.391 +22400/69092 Loss: 159.100 +25600/69092 Loss: 155.099 +28800/69092 Loss: 158.059 +32000/69092 Loss: 157.667 +35200/69092 Loss: 158.421 +38400/69092 Loss: 158.139 +41600/69092 Loss: 159.278 +44800/69092 Loss: 162.742 +48000/69092 Loss: 158.485 +51200/69092 Loss: 156.742 +54400/69092 Loss: 156.999 +57600/69092 Loss: 156.105 +60800/69092 Loss: 158.540 +64000/69092 Loss: 158.390 +67200/69092 Loss: 158.914 +Training time 0:07:38.529632 +Epoch: 141 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 564) +0/69092 Loss: 134.936 +3200/69092 Loss: 156.142 +6400/69092 Loss: 156.290 +9600/69092 Loss: 156.892 +12800/69092 Loss: 156.823 +16000/69092 Loss: 159.848 +19200/69092 Loss: 160.416 +22400/69092 Loss: 158.661 +25600/69092 Loss: 156.366 +28800/69092 Loss: 157.418 +32000/69092 Loss: 157.358 +35200/69092 Loss: 157.473 +38400/69092 Loss: 156.318 +41600/69092 Loss: 161.031 +44800/69092 Loss: 158.307 +48000/69092 Loss: 155.263 +51200/69092 Loss: 157.837 +54400/69092 Loss: 158.823 +57600/69092 Loss: 158.565 +60800/69092 Loss: 157.197 +64000/69092 Loss: 156.653 +67200/69092 Loss: 158.134 +Training time 0:07:33.031430 +Epoch: 142 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 565) +0/69092 Loss: 138.290 +3200/69092 Loss: 158.065 +6400/69092 Loss: 160.900 +9600/69092 Loss: 157.415 +12800/69092 Loss: 156.159 +16000/69092 Loss: 158.781 +19200/69092 Loss: 157.327 +22400/69092 Loss: 157.692 +25600/69092 Loss: 159.307 +28800/69092 Loss: 158.612 +32000/69092 Loss: 155.432 +35200/69092 Loss: 158.188 +38400/69092 Loss: 158.421 +41600/69092 Loss: 158.745 +44800/69092 Loss: 157.045 +48000/69092 Loss: 154.721 +51200/69092 Loss: 157.948 +54400/69092 Loss: 158.203 +57600/69092 Loss: 158.470 +60800/69092 Loss: 156.306 +64000/69092 Loss: 157.323 +67200/69092 Loss: 158.209 +Training time 0:07:32.882592 +Epoch: 143 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 566) +0/69092 Loss: 165.816 +3200/69092 Loss: 158.589 +6400/69092 Loss: 158.320 +9600/69092 Loss: 154.226 +12800/69092 Loss: 155.964 +16000/69092 Loss: 157.126 +19200/69092 Loss: 158.443 +22400/69092 Loss: 157.113 +25600/69092 Loss: 158.750 +28800/69092 Loss: 156.506 +32000/69092 Loss: 156.697 +35200/69092 Loss: 158.375 +38400/69092 Loss: 160.871 +41600/69092 Loss: 156.209 +44800/69092 Loss: 157.836 +48000/69092 Loss: 160.432 +51200/69092 Loss: 156.294 +54400/69092 Loss: 158.507 +57600/69092 Loss: 157.464 +60800/69092 Loss: 159.123 +64000/69092 Loss: 154.387 +67200/69092 Loss: 157.301 +Training time 0:07:37.051703 +Epoch: 144 Average loss: 157.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 567) +0/69092 Loss: 151.906 +3200/69092 Loss: 159.466 +6400/69092 Loss: 157.882 +9600/69092 Loss: 156.481 +12800/69092 Loss: 157.955 +16000/69092 Loss: 159.651 +19200/69092 Loss: 155.534 +22400/69092 Loss: 153.136 +25600/69092 Loss: 159.864 +28800/69092 Loss: 157.575 +32000/69092 Loss: 160.670 +35200/69092 Loss: 158.845 +38400/69092 Loss: 157.844 +41600/69092 Loss: 157.322 +44800/69092 Loss: 157.093 +48000/69092 Loss: 157.155 +51200/69092 Loss: 158.484 +54400/69092 Loss: 157.726 +57600/69092 Loss: 157.877 +60800/69092 Loss: 157.902 +64000/69092 Loss: 157.429 +67200/69092 Loss: 155.661 +Training time 0:07:40.172647 +Epoch: 145 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 568) +0/69092 Loss: 155.941 +3200/69092 Loss: 156.528 +6400/69092 Loss: 156.156 +9600/69092 Loss: 155.926 +12800/69092 Loss: 160.122 +16000/69092 Loss: 159.266 +19200/69092 Loss: 156.164 +22400/69092 Loss: 161.245 +25600/69092 Loss: 155.799 +28800/69092 Loss: 158.147 +32000/69092 Loss: 157.278 +35200/69092 Loss: 155.746 +38400/69092 Loss: 156.716 +41600/69092 Loss: 156.799 +44800/69092 Loss: 159.564 +48000/69092 Loss: 156.814 +51200/69092 Loss: 158.785 +54400/69092 Loss: 158.308 +57600/69092 Loss: 158.322 +60800/69092 Loss: 157.712 +64000/69092 Loss: 157.641 +67200/69092 Loss: 157.965 +Training time 0:07:35.113159 +Epoch: 146 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 569) +0/69092 Loss: 162.413 +3200/69092 Loss: 157.637 +6400/69092 Loss: 154.652 +9600/69092 Loss: 156.862 +12800/69092 Loss: 160.446 +16000/69092 Loss: 157.836 +19200/69092 Loss: 155.493 +22400/69092 Loss: 156.408 +25600/69092 Loss: 157.957 +28800/69092 Loss: 158.517 +32000/69092 Loss: 156.975 +35200/69092 Loss: 159.872 +38400/69092 Loss: 156.428 +41600/69092 Loss: 159.732 +44800/69092 Loss: 156.381 +48000/69092 Loss: 157.746 +51200/69092 Loss: 156.800 +54400/69092 Loss: 157.887 +57600/69092 Loss: 156.202 +60800/69092 Loss: 156.999 +64000/69092 Loss: 156.427 +67200/69092 Loss: 157.321 +Training time 0:07:37.974020 +Epoch: 147 Average loss: 157.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 570) +0/69092 Loss: 157.540 +3200/69092 Loss: 158.477 +6400/69092 Loss: 159.515 +9600/69092 Loss: 158.417 +12800/69092 Loss: 158.495 +16000/69092 Loss: 154.786 +19200/69092 Loss: 160.099 +22400/69092 Loss: 156.751 +25600/69092 Loss: 158.726 +28800/69092 Loss: 159.040 +32000/69092 Loss: 156.782 +35200/69092 Loss: 157.749 +38400/69092 Loss: 157.976 +41600/69092 Loss: 157.520 +44800/69092 Loss: 158.275 +48000/69092 Loss: 155.623 +51200/69092 Loss: 159.340 +54400/69092 Loss: 155.644 +57600/69092 Loss: 159.055 +60800/69092 Loss: 155.638 +64000/69092 Loss: 157.971 +67200/69092 Loss: 156.784 +Training time 0:07:34.040837 +Epoch: 148 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 571) +0/69092 Loss: 161.969 +3200/69092 Loss: 156.266 +6400/69092 Loss: 159.168 +9600/69092 Loss: 155.671 +12800/69092 Loss: 156.644 +16000/69092 Loss: 156.128 +19200/69092 Loss: 158.327 +22400/69092 Loss: 158.152 +25600/69092 Loss: 157.229 +28800/69092 Loss: 158.405 +32000/69092 Loss: 158.227 +35200/69092 Loss: 161.026 +38400/69092 Loss: 158.292 +41600/69092 Loss: 155.421 +44800/69092 Loss: 156.554 +48000/69092 Loss: 159.499 +51200/69092 Loss: 156.884 +54400/69092 Loss: 159.473 +57600/69092 Loss: 158.906 +60800/69092 Loss: 157.057 +64000/69092 Loss: 157.263 +67200/69092 Loss: 158.798 +Training time 0:07:33.300036 +Epoch: 149 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 572) +0/69092 Loss: 147.575 +3200/69092 Loss: 155.691 +6400/69092 Loss: 158.440 +9600/69092 Loss: 156.984 +12800/69092 Loss: 158.317 +16000/69092 Loss: 157.635 +19200/69092 Loss: 161.228 +22400/69092 Loss: 154.388 +25600/69092 Loss: 156.727 +28800/69092 Loss: 161.078 +32000/69092 Loss: 157.491 +35200/69092 Loss: 158.318 +38400/69092 Loss: 158.364 +41600/69092 Loss: 159.265 +44800/69092 Loss: 157.156 +48000/69092 Loss: 157.230 +51200/69092 Loss: 158.163 +54400/69092 Loss: 155.237 +57600/69092 Loss: 157.997 +60800/69092 Loss: 158.076 +64000/69092 Loss: 158.344 +67200/69092 Loss: 156.163 +Training time 0:07:34.015131 +Epoch: 150 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 573) +0/69092 Loss: 156.372 +3200/69092 Loss: 157.531 +6400/69092 Loss: 153.738 +9600/69092 Loss: 156.251 +12800/69092 Loss: 156.623 +16000/69092 Loss: 156.240 +19200/69092 Loss: 160.660 +22400/69092 Loss: 158.848 +25600/69092 Loss: 159.892 +28800/69092 Loss: 155.658 +32000/69092 Loss: 158.692 +35200/69092 Loss: 160.047 +38400/69092 Loss: 156.790 +41600/69092 Loss: 159.111 +44800/69092 Loss: 158.932 +48000/69092 Loss: 154.847 +51200/69092 Loss: 159.027 +54400/69092 Loss: 157.751 +57600/69092 Loss: 158.262 +60800/69092 Loss: 158.945 +64000/69092 Loss: 158.123 +67200/69092 Loss: 156.328 +Training time 0:07:35.692055 +Epoch: 151 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 574) +0/69092 Loss: 157.629 +3200/69092 Loss: 157.319 +6400/69092 Loss: 155.297 +9600/69092 Loss: 159.079 +12800/69092 Loss: 158.089 +16000/69092 Loss: 155.334 +19200/69092 Loss: 157.682 +22400/69092 Loss: 160.591 +25600/69092 Loss: 153.539 +28800/69092 Loss: 159.145 +32000/69092 Loss: 157.782 +35200/69092 Loss: 156.195 +38400/69092 Loss: 156.305 +41600/69092 Loss: 158.123 +44800/69092 Loss: 157.942 +48000/69092 Loss: 160.998 +51200/69092 Loss: 157.680 +54400/69092 Loss: 159.152 +57600/69092 Loss: 157.167 +60800/69092 Loss: 157.719 +64000/69092 Loss: 157.060 +67200/69092 Loss: 156.538 +Training time 0:07:30.807987 +Epoch: 152 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 575) +0/69092 Loss: 158.606 +3200/69092 Loss: 159.367 +6400/69092 Loss: 158.610 +9600/69092 Loss: 156.728 +12800/69092 Loss: 158.428 +16000/69092 Loss: 158.012 +19200/69092 Loss: 160.548 +22400/69092 Loss: 156.056 +25600/69092 Loss: 157.358 +28800/69092 Loss: 156.122 +32000/69092 Loss: 155.810 +35200/69092 Loss: 157.920 +38400/69092 Loss: 157.542 +41600/69092 Loss: 155.280 +44800/69092 Loss: 159.999 +48000/69092 Loss: 157.542 +51200/69092 Loss: 157.614 +54400/69092 Loss: 158.417 +57600/69092 Loss: 158.175 +60800/69092 Loss: 158.242 +64000/69092 Loss: 154.758 +67200/69092 Loss: 157.766 +Training time 0:07:29.214958 +Epoch: 153 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 576) +0/69092 Loss: 168.942 +3200/69092 Loss: 155.688 +6400/69092 Loss: 156.287 +9600/69092 Loss: 158.142 +12800/69092 Loss: 155.721 +16000/69092 Loss: 156.256 +19200/69092 Loss: 158.818 +22400/69092 Loss: 154.299 +25600/69092 Loss: 157.721 +28800/69092 Loss: 159.517 +32000/69092 Loss: 156.966 +35200/69092 Loss: 159.170 +38400/69092 Loss: 156.202 +41600/69092 Loss: 160.466 +44800/69092 Loss: 159.677 +48000/69092 Loss: 159.785 +51200/69092 Loss: 157.685 +54400/69092 Loss: 157.489 +57600/69092 Loss: 158.254 +60800/69092 Loss: 156.083 +64000/69092 Loss: 157.199 +67200/69092 Loss: 156.997 +Training time 0:07:39.012350 +Epoch: 154 Average loss: 157.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 577) +0/69092 Loss: 161.232 +3200/69092 Loss: 156.203 +6400/69092 Loss: 157.742 +9600/69092 Loss: 155.068 +12800/69092 Loss: 155.648 +16000/69092 Loss: 158.624 +19200/69092 Loss: 158.679 +22400/69092 Loss: 158.236 +25600/69092 Loss: 157.195 +28800/69092 Loss: 160.149 +32000/69092 Loss: 154.798 +35200/69092 Loss: 157.432 +38400/69092 Loss: 157.620 +41600/69092 Loss: 159.608 +44800/69092 Loss: 157.899 +48000/69092 Loss: 156.649 +51200/69092 Loss: 161.352 +54400/69092 Loss: 160.268 +57600/69092 Loss: 158.071 +60800/69092 Loss: 154.520 +64000/69092 Loss: 159.978 +67200/69092 Loss: 156.549 +Training time 0:07:36.146058 +Epoch: 155 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 578) +0/69092 Loss: 157.331 +3200/69092 Loss: 154.817 +6400/69092 Loss: 154.749 +9600/69092 Loss: 156.004 +12800/69092 Loss: 159.058 +16000/69092 Loss: 158.516 +19200/69092 Loss: 159.369 +22400/69092 Loss: 160.356 +25600/69092 Loss: 159.928 +28800/69092 Loss: 158.600 +32000/69092 Loss: 159.409 +35200/69092 Loss: 154.035 +38400/69092 Loss: 156.726 +41600/69092 Loss: 159.601 +44800/69092 Loss: 156.436 +48000/69092 Loss: 159.958 +51200/69092 Loss: 160.012 +54400/69092 Loss: 158.891 +57600/69092 Loss: 155.204 +60800/69092 Loss: 158.772 +64000/69092 Loss: 155.424 +67200/69092 Loss: 155.731 +Training time 0:07:44.521468 +Epoch: 156 Average loss: 157.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 579) +0/69092 Loss: 157.496 +3200/69092 Loss: 157.541 +6400/69092 Loss: 152.987 +9600/69092 Loss: 155.788 +12800/69092 Loss: 157.378 +16000/69092 Loss: 156.998 +19200/69092 Loss: 158.461 +22400/69092 Loss: 157.885 +25600/69092 Loss: 156.643 +28800/69092 Loss: 156.350 +32000/69092 Loss: 157.118 +35200/69092 Loss: 160.775 +38400/69092 Loss: 159.535 +41600/69092 Loss: 157.165 +44800/69092 Loss: 158.838 +48000/69092 Loss: 154.420 +51200/69092 Loss: 159.609 +54400/69092 Loss: 157.423 +57600/69092 Loss: 159.854 +60800/69092 Loss: 156.587 +64000/69092 Loss: 158.592 +67200/69092 Loss: 157.958 +Training time 0:07:36.105986 +Epoch: 157 Average loss: 157.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 580) +0/69092 Loss: 160.850 +3200/69092 Loss: 159.117 +6400/69092 Loss: 157.698 +9600/69092 Loss: 158.008 +12800/69092 Loss: 156.495 +16000/69092 Loss: 159.852 +19200/69092 Loss: 158.409 +22400/69092 Loss: 157.026 +25600/69092 Loss: 158.382 +28800/69092 Loss: 157.361 +32000/69092 Loss: 156.182 +35200/69092 Loss: 156.698 +38400/69092 Loss: 156.975 +41600/69092 Loss: 155.870 +44800/69092 Loss: 157.218 +48000/69092 Loss: 159.132 +51200/69092 Loss: 158.100 +54400/69092 Loss: 155.740 +57600/69092 Loss: 160.819 +60800/69092 Loss: 158.610 +64000/69092 Loss: 156.735 +67200/69092 Loss: 157.518 +Training time 0:07:37.671465 +Epoch: 158 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 581) +0/69092 Loss: 149.397 +3200/69092 Loss: 158.202 +6400/69092 Loss: 158.326 +9600/69092 Loss: 158.630 +12800/69092 Loss: 156.976 +16000/69092 Loss: 155.844 +19200/69092 Loss: 156.389 +22400/69092 Loss: 158.058 +25600/69092 Loss: 157.957 +28800/69092 Loss: 158.209 +32000/69092 Loss: 158.773 +35200/69092 Loss: 155.653 +38400/69092 Loss: 157.369 +41600/69092 Loss: 156.969 +44800/69092 Loss: 158.648 +48000/69092 Loss: 155.004 +51200/69092 Loss: 158.904 +54400/69092 Loss: 157.876 +57600/69092 Loss: 157.111 +60800/69092 Loss: 157.359 +64000/69092 Loss: 159.632 +67200/69092 Loss: 160.806 +Training time 0:07:41.364212 +Epoch: 159 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 582) +0/69092 Loss: 164.168 +3200/69092 Loss: 156.120 +6400/69092 Loss: 155.482 +9600/69092 Loss: 156.257 +12800/69092 Loss: 159.174 +16000/69092 Loss: 156.061 +19200/69092 Loss: 157.886 +22400/69092 Loss: 157.194 +25600/69092 Loss: 155.159 +28800/69092 Loss: 159.429 +32000/69092 Loss: 157.514 +35200/69092 Loss: 156.551 +38400/69092 Loss: 157.895 +41600/69092 Loss: 157.831 +44800/69092 Loss: 157.575 +48000/69092 Loss: 156.571 +51200/69092 Loss: 161.243 +54400/69092 Loss: 158.887 +57600/69092 Loss: 154.868 +60800/69092 Loss: 160.358 +64000/69092 Loss: 160.210 +67200/69092 Loss: 158.976 +Training time 0:07:35.514233 +Epoch: 160 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 583) +0/69092 Loss: 168.368 +3200/69092 Loss: 154.760 +6400/69092 Loss: 158.793 +9600/69092 Loss: 156.824 +12800/69092 Loss: 158.812 +16000/69092 Loss: 158.357 +19200/69092 Loss: 157.593 +22400/69092 Loss: 156.447 +25600/69092 Loss: 158.375 +28800/69092 Loss: 159.535 +32000/69092 Loss: 156.386 +35200/69092 Loss: 157.691 +38400/69092 Loss: 157.110 +41600/69092 Loss: 158.631 +44800/69092 Loss: 155.094 +48000/69092 Loss: 157.894 +51200/69092 Loss: 157.890 +54400/69092 Loss: 157.593 +57600/69092 Loss: 157.227 +60800/69092 Loss: 155.624 +64000/69092 Loss: 157.391 +67200/69092 Loss: 159.611 +Training time 0:07:35.033398 +Epoch: 161 Average loss: 157.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 584) +0/69092 Loss: 165.207 +3200/69092 Loss: 158.466 +6400/69092 Loss: 160.988 +9600/69092 Loss: 157.273 +12800/69092 Loss: 159.614 +16000/69092 Loss: 158.125 +19200/69092 Loss: 159.237 +22400/69092 Loss: 158.507 +25600/69092 Loss: 158.233 +28800/69092 Loss: 157.058 +32000/69092 Loss: 159.193 +35200/69092 Loss: 153.101 +38400/69092 Loss: 157.462 +41600/69092 Loss: 156.859 +44800/69092 Loss: 157.796 +48000/69092 Loss: 157.700 +51200/69092 Loss: 154.186 +54400/69092 Loss: 157.121 +57600/69092 Loss: 156.711 +60800/69092 Loss: 157.822 +64000/69092 Loss: 155.033 +67200/69092 Loss: 158.255 +Training time 0:07:39.541165 +Epoch: 162 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 585) +0/69092 Loss: 138.320 +3200/69092 Loss: 155.451 +6400/69092 Loss: 157.330 +9600/69092 Loss: 158.322 +12800/69092 Loss: 155.975 +16000/69092 Loss: 158.303 +19200/69092 Loss: 159.179 +22400/69092 Loss: 157.473 +25600/69092 Loss: 157.194 +28800/69092 Loss: 160.414 +32000/69092 Loss: 157.592 +35200/69092 Loss: 157.834 +38400/69092 Loss: 154.972 +41600/69092 Loss: 156.708 +44800/69092 Loss: 159.109 +48000/69092 Loss: 159.086 +51200/69092 Loss: 156.588 +54400/69092 Loss: 159.890 +57600/69092 Loss: 156.334 +60800/69092 Loss: 156.099 +64000/69092 Loss: 157.336 +67200/69092 Loss: 158.788 +Training time 0:07:35.086432 +Epoch: 163 Average loss: 157.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 586) +0/69092 Loss: 165.900 +3200/69092 Loss: 158.198 +6400/69092 Loss: 155.431 +9600/69092 Loss: 158.344 +12800/69092 Loss: 159.762 +16000/69092 Loss: 155.675 +19200/69092 Loss: 155.244 +22400/69092 Loss: 160.708 +25600/69092 Loss: 159.464 +28800/69092 Loss: 156.408 +32000/69092 Loss: 159.559 +35200/69092 Loss: 159.711 +38400/69092 Loss: 160.937 +41600/69092 Loss: 154.514 +44800/69092 Loss: 157.858 +48000/69092 Loss: 155.412 +51200/69092 Loss: 157.878 +54400/69092 Loss: 158.454 +57600/69092 Loss: 157.101 +60800/69092 Loss: 159.258 +64000/69092 Loss: 158.499 +67200/69092 Loss: 158.199 +Training time 0:07:36.880300 +Epoch: 164 Average loss: 157.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 587) +0/69092 Loss: 141.148 +3200/69092 Loss: 159.687 +6400/69092 Loss: 156.635 +9600/69092 Loss: 156.497 +12800/69092 Loss: 157.843 +16000/69092 Loss: 157.354 +19200/69092 Loss: 157.629 +22400/69092 Loss: 159.723 +25600/69092 Loss: 159.514 +28800/69092 Loss: 155.280 +32000/69092 Loss: 157.964 +35200/69092 Loss: 159.061 +38400/69092 Loss: 160.602 +41600/69092 Loss: 158.340 +44800/69092 Loss: 152.932 +48000/69092 Loss: 158.254 +51200/69092 Loss: 159.090 +54400/69092 Loss: 156.299 +57600/69092 Loss: 156.386 +60800/69092 Loss: 158.229 +64000/69092 Loss: 157.547 +67200/69092 Loss: 157.726 +Training time 0:07:38.550898 +Epoch: 165 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 588) +0/69092 Loss: 160.765 +3200/69092 Loss: 157.126 +6400/69092 Loss: 156.447 +9600/69092 Loss: 159.068 +12800/69092 Loss: 157.285 +16000/69092 Loss: 155.405 +19200/69092 Loss: 157.813 +22400/69092 Loss: 158.670 +25600/69092 Loss: 155.494 +28800/69092 Loss: 156.514 +32000/69092 Loss: 156.943 +35200/69092 Loss: 154.752 +38400/69092 Loss: 156.897 +41600/69092 Loss: 157.593 +44800/69092 Loss: 159.810 +48000/69092 Loss: 159.160 +51200/69092 Loss: 157.756 +54400/69092 Loss: 157.367 +57600/69092 Loss: 156.229 +60800/69092 Loss: 158.080 +64000/69092 Loss: 159.853 +67200/69092 Loss: 157.733 +Training time 0:07:35.165190 +Epoch: 166 Average loss: 157.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 589) +0/69092 Loss: 159.348 +3200/69092 Loss: 158.664 +6400/69092 Loss: 154.618 +9600/69092 Loss: 155.180 +12800/69092 Loss: 156.193 +16000/69092 Loss: 157.908 +19200/69092 Loss: 155.748 +22400/69092 Loss: 160.448 +25600/69092 Loss: 155.524 +28800/69092 Loss: 158.314 +32000/69092 Loss: 157.238 +35200/69092 Loss: 155.111 +38400/69092 Loss: 161.002 +41600/69092 Loss: 161.296 +44800/69092 Loss: 157.794 +48000/69092 Loss: 157.986 +51200/69092 Loss: 156.786 +54400/69092 Loss: 157.191 +57600/69092 Loss: 160.684 +60800/69092 Loss: 156.962 +64000/69092 Loss: 160.131 +67200/69092 Loss: 158.277 +Training time 0:07:34.766934 +Epoch: 167 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 590) +0/69092 Loss: 155.969 +3200/69092 Loss: 156.915 +6400/69092 Loss: 160.469 +9600/69092 Loss: 155.958 +12800/69092 Loss: 159.059 +16000/69092 Loss: 159.818 +19200/69092 Loss: 157.555 +22400/69092 Loss: 157.441 +25600/69092 Loss: 159.666 +28800/69092 Loss: 156.989 +32000/69092 Loss: 157.511 +35200/69092 Loss: 155.771 +38400/69092 Loss: 154.154 +41600/69092 Loss: 159.000 +44800/69092 Loss: 159.744 +48000/69092 Loss: 158.419 +51200/69092 Loss: 155.037 +54400/69092 Loss: 156.153 +57600/69092 Loss: 159.510 +60800/69092 Loss: 161.079 +64000/69092 Loss: 158.898 +67200/69092 Loss: 156.675 +Training time 0:07:29.686827 +Epoch: 168 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 591) +0/69092 Loss: 165.386 +3200/69092 Loss: 155.850 +6400/69092 Loss: 158.909 +9600/69092 Loss: 157.740 +12800/69092 Loss: 156.855 +16000/69092 Loss: 152.735 +19200/69092 Loss: 155.648 +22400/69092 Loss: 156.709 +25600/69092 Loss: 156.016 +28800/69092 Loss: 158.331 +32000/69092 Loss: 157.529 +35200/69092 Loss: 158.512 +38400/69092 Loss: 158.528 +41600/69092 Loss: 155.483 +44800/69092 Loss: 160.280 +48000/69092 Loss: 157.706 +51200/69092 Loss: 159.157 +54400/69092 Loss: 158.383 +57600/69092 Loss: 158.947 +60800/69092 Loss: 159.239 +64000/69092 Loss: 160.786 +67200/69092 Loss: 158.631 +Training time 0:07:36.384444 +Epoch: 169 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 592) +0/69092 Loss: 154.395 +3200/69092 Loss: 157.242 +6400/69092 Loss: 158.456 +9600/69092 Loss: 157.566 +12800/69092 Loss: 158.523 +16000/69092 Loss: 155.000 +19200/69092 Loss: 155.762 +22400/69092 Loss: 159.672 +25600/69092 Loss: 159.687 +28800/69092 Loss: 159.685 +32000/69092 Loss: 159.410 +35200/69092 Loss: 159.551 +38400/69092 Loss: 159.012 +41600/69092 Loss: 155.671 +44800/69092 Loss: 157.067 +48000/69092 Loss: 158.265 +51200/69092 Loss: 158.251 +54400/69092 Loss: 158.763 +57600/69092 Loss: 160.267 +60800/69092 Loss: 157.815 +64000/69092 Loss: 154.141 +67200/69092 Loss: 160.085 +Training time 0:07:40.152736 +Epoch: 170 Average loss: 158.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 593) +0/69092 Loss: 171.260 +3200/69092 Loss: 161.330 +6400/69092 Loss: 156.507 +9600/69092 Loss: 157.869 +12800/69092 Loss: 158.359 +16000/69092 Loss: 159.218 +19200/69092 Loss: 156.429 +22400/69092 Loss: 157.623 +25600/69092 Loss: 156.294 +28800/69092 Loss: 154.625 +32000/69092 Loss: 157.367 +35200/69092 Loss: 156.660 +38400/69092 Loss: 155.588 +41600/69092 Loss: 157.521 +44800/69092 Loss: 158.097 +48000/69092 Loss: 157.386 +51200/69092 Loss: 158.002 +54400/69092 Loss: 156.418 +57600/69092 Loss: 159.561 +60800/69092 Loss: 159.149 +64000/69092 Loss: 157.309 +67200/69092 Loss: 155.133 +Training time 0:07:35.152269 +Epoch: 171 Average loss: 157.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 594) +0/69092 Loss: 177.483 +3200/69092 Loss: 156.440 +6400/69092 Loss: 157.100 +9600/69092 Loss: 157.633 +12800/69092 Loss: 156.243 +16000/69092 Loss: 159.834 +19200/69092 Loss: 156.708 +22400/69092 Loss: 155.138 +25600/69092 Loss: 156.997 +28800/69092 Loss: 157.461 +32000/69092 Loss: 156.920 +35200/69092 Loss: 159.017 +38400/69092 Loss: 157.894 +41600/69092 Loss: 155.722 +44800/69092 Loss: 158.760 +48000/69092 Loss: 159.385 +51200/69092 Loss: 158.632 +54400/69092 Loss: 159.996 +57600/69092 Loss: 157.450 +60800/69092 Loss: 159.991 +64000/69092 Loss: 153.244 +67200/69092 Loss: 158.906 +Training time 0:07:38.241058 +Epoch: 172 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 595) +0/69092 Loss: 166.485 +3200/69092 Loss: 158.436 +6400/69092 Loss: 157.324 +9600/69092 Loss: 158.178 +12800/69092 Loss: 156.055 +16000/69092 Loss: 157.700 +19200/69092 Loss: 159.334 +22400/69092 Loss: 157.934 +25600/69092 Loss: 158.722 +28800/69092 Loss: 159.795 +32000/69092 Loss: 156.964 +35200/69092 Loss: 156.047 +38400/69092 Loss: 156.924 +41600/69092 Loss: 159.855 +44800/69092 Loss: 158.209 +48000/69092 Loss: 155.539 +51200/69092 Loss: 155.959 +54400/69092 Loss: 157.026 +57600/69092 Loss: 156.007 +60800/69092 Loss: 158.623 +64000/69092 Loss: 156.867 +67200/69092 Loss: 158.229 +Training time 0:07:42.910369 +Epoch: 173 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 596) +0/69092 Loss: 141.178 +3200/69092 Loss: 157.746 +6400/69092 Loss: 157.070 +9600/69092 Loss: 154.965 +12800/69092 Loss: 162.220 +16000/69092 Loss: 159.964 +19200/69092 Loss: 157.555 +22400/69092 Loss: 160.990 +25600/69092 Loss: 157.136 +28800/69092 Loss: 157.806 +32000/69092 Loss: 158.328 +35200/69092 Loss: 156.697 +38400/69092 Loss: 159.196 +41600/69092 Loss: 156.823 +44800/69092 Loss: 155.562 +48000/69092 Loss: 156.899 +51200/69092 Loss: 157.460 +54400/69092 Loss: 156.030 +57600/69092 Loss: 157.469 +60800/69092 Loss: 157.496 +64000/69092 Loss: 158.228 +67200/69092 Loss: 157.746 +Training time 0:07:37.251206 +Epoch: 174 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 597) +0/69092 Loss: 168.837 +3200/69092 Loss: 158.414 +6400/69092 Loss: 157.100 +9600/69092 Loss: 159.997 +12800/69092 Loss: 156.166 +16000/69092 Loss: 158.511 +19200/69092 Loss: 158.966 +22400/69092 Loss: 156.826 +25600/69092 Loss: 158.046 +28800/69092 Loss: 162.048 +32000/69092 Loss: 155.340 +35200/69092 Loss: 158.604 +38400/69092 Loss: 157.979 +41600/69092 Loss: 156.428 +44800/69092 Loss: 160.221 +48000/69092 Loss: 156.886 +51200/69092 Loss: 157.056 +54400/69092 Loss: 158.518 +57600/69092 Loss: 155.829 +60800/69092 Loss: 159.613 +64000/69092 Loss: 156.314 +67200/69092 Loss: 153.499 +Training time 0:07:41.461541 +Epoch: 175 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 598) +0/69092 Loss: 159.585 +3200/69092 Loss: 154.874 +6400/69092 Loss: 158.457 +9600/69092 Loss: 154.007 +12800/69092 Loss: 157.953 +16000/69092 Loss: 158.239 +19200/69092 Loss: 156.989 +22400/69092 Loss: 157.668 +25600/69092 Loss: 159.302 +28800/69092 Loss: 158.750 +32000/69092 Loss: 158.621 +35200/69092 Loss: 157.667 +38400/69092 Loss: 158.795 +41600/69092 Loss: 158.600 +44800/69092 Loss: 155.883 +48000/69092 Loss: 160.499 +51200/69092 Loss: 155.893 +54400/69092 Loss: 158.664 +57600/69092 Loss: 153.297 +60800/69092 Loss: 157.384 +64000/69092 Loss: 158.331 +67200/69092 Loss: 160.109 +Training time 0:07:37.710212 +Epoch: 176 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 599) +0/69092 Loss: 160.920 +3200/69092 Loss: 158.659 +6400/69092 Loss: 156.873 +9600/69092 Loss: 157.227 +12800/69092 Loss: 156.968 +16000/69092 Loss: 155.658 +19200/69092 Loss: 158.138 +22400/69092 Loss: 157.335 +25600/69092 Loss: 156.164 +28800/69092 Loss: 157.401 +32000/69092 Loss: 157.507 +35200/69092 Loss: 157.700 +38400/69092 Loss: 156.494 +41600/69092 Loss: 160.415 +44800/69092 Loss: 155.215 +48000/69092 Loss: 154.603 +51200/69092 Loss: 157.051 +54400/69092 Loss: 158.753 +57600/69092 Loss: 158.697 +60800/69092 Loss: 159.003 +64000/69092 Loss: 159.154 +67200/69092 Loss: 157.155 +Training time 0:07:36.311156 +Epoch: 177 Average loss: 157.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 600) +0/69092 Loss: 150.988 +3200/69092 Loss: 158.310 +6400/69092 Loss: 155.896 +9600/69092 Loss: 155.675 +12800/69092 Loss: 156.712 +16000/69092 Loss: 157.989 +19200/69092 Loss: 159.349 +22400/69092 Loss: 157.821 +25600/69092 Loss: 160.085 +28800/69092 Loss: 158.995 +32000/69092 Loss: 157.454 +35200/69092 Loss: 158.746 +38400/69092 Loss: 158.789 +41600/69092 Loss: 158.579 +44800/69092 Loss: 156.085 +48000/69092 Loss: 156.502 +51200/69092 Loss: 156.648 +54400/69092 Loss: 157.603 +57600/69092 Loss: 156.512 +60800/69092 Loss: 156.832 +64000/69092 Loss: 155.638 +67200/69092 Loss: 158.790 +Training time 0:08:05.916671 +Epoch: 178 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 601) +0/69092 Loss: 169.491 +3200/69092 Loss: 156.528 +6400/69092 Loss: 161.458 +9600/69092 Loss: 157.217 +12800/69092 Loss: 156.467 +16000/69092 Loss: 159.129 +19200/69092 Loss: 156.950 +22400/69092 Loss: 157.813 +25600/69092 Loss: 156.928 +28800/69092 Loss: 154.885 +32000/69092 Loss: 155.419 +35200/69092 Loss: 157.629 +38400/69092 Loss: 157.844 +41600/69092 Loss: 156.886 +44800/69092 Loss: 155.190 +48000/69092 Loss: 158.683 +51200/69092 Loss: 160.116 +54400/69092 Loss: 155.946 +57600/69092 Loss: 157.248 +60800/69092 Loss: 160.106 +64000/69092 Loss: 155.087 +67200/69092 Loss: 161.082 +Training time 0:07:34.403645 +Epoch: 179 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 602) +0/69092 Loss: 167.608 +3200/69092 Loss: 159.435 +6400/69092 Loss: 158.108 +9600/69092 Loss: 157.288 +12800/69092 Loss: 156.517 +16000/69092 Loss: 156.863 +19200/69092 Loss: 156.393 +22400/69092 Loss: 157.945 +25600/69092 Loss: 158.303 +28800/69092 Loss: 159.508 +32000/69092 Loss: 156.490 +35200/69092 Loss: 157.311 +38400/69092 Loss: 156.896 +41600/69092 Loss: 159.701 +44800/69092 Loss: 159.847 +48000/69092 Loss: 156.521 +51200/69092 Loss: 157.384 +54400/69092 Loss: 156.918 +57600/69092 Loss: 159.120 +60800/69092 Loss: 156.268 +64000/69092 Loss: 156.010 +67200/69092 Loss: 157.066 +Training time 0:07:34.545298 +Epoch: 180 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 603) +0/69092 Loss: 148.676 +3200/69092 Loss: 156.439 +6400/69092 Loss: 160.112 +9600/69092 Loss: 160.696 +12800/69092 Loss: 155.957 +16000/69092 Loss: 156.509 +19200/69092 Loss: 159.799 +22400/69092 Loss: 159.549 +25600/69092 Loss: 157.601 +28800/69092 Loss: 158.060 +32000/69092 Loss: 155.266 +35200/69092 Loss: 157.444 +38400/69092 Loss: 156.037 +41600/69092 Loss: 159.626 +44800/69092 Loss: 157.327 +48000/69092 Loss: 156.531 +51200/69092 Loss: 155.651 +54400/69092 Loss: 157.492 +57600/69092 Loss: 155.488 +60800/69092 Loss: 159.355 +64000/69092 Loss: 156.963 +67200/69092 Loss: 158.526 +Training time 0:07:34.366560 +Epoch: 181 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 604) +0/69092 Loss: 143.644 +3200/69092 Loss: 155.323 +6400/69092 Loss: 157.121 +9600/69092 Loss: 155.870 +12800/69092 Loss: 159.925 +16000/69092 Loss: 156.942 +19200/69092 Loss: 159.134 +22400/69092 Loss: 157.727 +25600/69092 Loss: 158.373 +28800/69092 Loss: 154.012 +32000/69092 Loss: 158.499 +35200/69092 Loss: 159.468 +38400/69092 Loss: 160.424 +41600/69092 Loss: 159.488 +44800/69092 Loss: 155.264 +48000/69092 Loss: 156.358 +51200/69092 Loss: 156.569 +54400/69092 Loss: 155.001 +57600/69092 Loss: 156.082 +60800/69092 Loss: 160.624 +64000/69092 Loss: 160.117 +67200/69092 Loss: 156.360 +Training time 0:07:41.079643 +Epoch: 182 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 605) +0/69092 Loss: 133.890 +3200/69092 Loss: 156.213 +6400/69092 Loss: 158.994 +9600/69092 Loss: 157.136 +12800/69092 Loss: 157.116 +16000/69092 Loss: 160.643 +19200/69092 Loss: 156.756 +22400/69092 Loss: 158.026 +25600/69092 Loss: 152.892 +28800/69092 Loss: 158.951 +32000/69092 Loss: 159.433 +35200/69092 Loss: 155.035 +38400/69092 Loss: 157.525 +41600/69092 Loss: 156.527 +44800/69092 Loss: 158.945 +48000/69092 Loss: 160.184 +51200/69092 Loss: 158.659 +54400/69092 Loss: 154.336 +57600/69092 Loss: 158.405 +60800/69092 Loss: 159.350 +64000/69092 Loss: 158.548 +67200/69092 Loss: 156.981 +Training time 0:07:37.461778 +Epoch: 183 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 606) +0/69092 Loss: 145.325 +3200/69092 Loss: 157.000 +6400/69092 Loss: 161.352 +9600/69092 Loss: 154.287 +12800/69092 Loss: 158.631 +16000/69092 Loss: 154.803 +19200/69092 Loss: 157.109 +22400/69092 Loss: 157.306 +25600/69092 Loss: 156.488 +28800/69092 Loss: 158.934 +32000/69092 Loss: 156.908 +35200/69092 Loss: 159.783 +38400/69092 Loss: 155.848 +41600/69092 Loss: 157.559 +44800/69092 Loss: 156.732 +48000/69092 Loss: 158.123 +51200/69092 Loss: 158.195 +54400/69092 Loss: 157.608 +57600/69092 Loss: 158.760 +60800/69092 Loss: 156.997 +64000/69092 Loss: 157.911 +67200/69092 Loss: 159.239 +Training time 0:07:34.433890 +Epoch: 184 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 607) +0/69092 Loss: 177.742 +3200/69092 Loss: 156.059 +6400/69092 Loss: 157.517 +9600/69092 Loss: 154.764 +12800/69092 Loss: 156.131 +16000/69092 Loss: 157.224 +19200/69092 Loss: 156.580 +22400/69092 Loss: 157.351 +25600/69092 Loss: 158.039 +28800/69092 Loss: 155.882 +32000/69092 Loss: 156.152 +35200/69092 Loss: 159.161 +38400/69092 Loss: 159.803 +41600/69092 Loss: 159.802 +44800/69092 Loss: 160.223 +48000/69092 Loss: 159.518 +51200/69092 Loss: 157.102 +54400/69092 Loss: 156.523 +57600/69092 Loss: 154.298 +60800/69092 Loss: 159.953 +64000/69092 Loss: 158.586 +67200/69092 Loss: 157.217 +Training time 0:07:35.334517 +Epoch: 185 Average loss: 157.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 608) +0/69092 Loss: 182.018 +3200/69092 Loss: 156.924 +6400/69092 Loss: 159.277 +9600/69092 Loss: 155.167 +12800/69092 Loss: 156.623 +16000/69092 Loss: 158.364 +19200/69092 Loss: 156.229 +22400/69092 Loss: 156.371 +25600/69092 Loss: 156.666 +28800/69092 Loss: 158.292 +32000/69092 Loss: 160.448 +35200/69092 Loss: 158.838 +38400/69092 Loss: 159.192 +41600/69092 Loss: 156.650 +44800/69092 Loss: 156.176 +48000/69092 Loss: 159.092 +51200/69092 Loss: 154.732 +54400/69092 Loss: 157.818 +57600/69092 Loss: 156.083 +60800/69092 Loss: 159.137 +64000/69092 Loss: 159.914 +67200/69092 Loss: 155.665 +Training time 0:07:39.703439 +Epoch: 186 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 609) +0/69092 Loss: 172.023 +3200/69092 Loss: 156.334 +6400/69092 Loss: 157.239 +9600/69092 Loss: 159.482 +12800/69092 Loss: 160.004 +16000/69092 Loss: 156.459 +19200/69092 Loss: 158.972 +22400/69092 Loss: 156.472 +25600/69092 Loss: 158.676 +28800/69092 Loss: 158.023 +32000/69092 Loss: 156.167 +35200/69092 Loss: 157.349 +38400/69092 Loss: 157.466 +41600/69092 Loss: 156.012 +44800/69092 Loss: 160.488 +48000/69092 Loss: 156.160 +51200/69092 Loss: 155.272 +54400/69092 Loss: 155.341 +57600/69092 Loss: 157.444 +60800/69092 Loss: 156.807 +64000/69092 Loss: 158.850 +67200/69092 Loss: 158.939 +Training time 0:07:36.607504 +Epoch: 187 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 610) +0/69092 Loss: 163.892 +3200/69092 Loss: 158.662 +6400/69092 Loss: 158.364 +9600/69092 Loss: 157.944 +12800/69092 Loss: 158.743 +16000/69092 Loss: 152.852 +19200/69092 Loss: 155.688 +22400/69092 Loss: 159.464 +25600/69092 Loss: 157.648 +28800/69092 Loss: 159.439 +32000/69092 Loss: 157.836 +35200/69092 Loss: 155.836 +38400/69092 Loss: 155.681 +41600/69092 Loss: 157.312 +44800/69092 Loss: 156.431 +48000/69092 Loss: 155.888 +51200/69092 Loss: 159.088 +54400/69092 Loss: 157.676 +57600/69092 Loss: 157.577 +60800/69092 Loss: 158.445 +64000/69092 Loss: 158.900 +67200/69092 Loss: 157.604 +Training time 0:08:18.772524 +Epoch: 188 Average loss: 157.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 611) +0/69092 Loss: 141.056 +3200/69092 Loss: 158.676 +6400/69092 Loss: 157.418 +9600/69092 Loss: 160.080 +12800/69092 Loss: 155.999 +16000/69092 Loss: 157.233 +19200/69092 Loss: 156.699 +22400/69092 Loss: 158.991 +25600/69092 Loss: 155.729 +28800/69092 Loss: 156.248 +32000/69092 Loss: 156.852 +35200/69092 Loss: 156.165 +38400/69092 Loss: 161.924 +41600/69092 Loss: 157.702 +44800/69092 Loss: 157.302 +48000/69092 Loss: 156.972 +51200/69092 Loss: 155.138 +54400/69092 Loss: 157.846 +57600/69092 Loss: 156.043 +60800/69092 Loss: 158.438 +64000/69092 Loss: 158.873 +67200/69092 Loss: 159.367 +Training time 0:07:35.369007 +Epoch: 189 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 612) +0/69092 Loss: 146.726 +3200/69092 Loss: 157.415 +6400/69092 Loss: 154.521 +9600/69092 Loss: 158.966 +12800/69092 Loss: 160.788 +16000/69092 Loss: 157.357 +19200/69092 Loss: 159.127 +22400/69092 Loss: 155.891 +25600/69092 Loss: 156.274 +28800/69092 Loss: 156.649 +32000/69092 Loss: 159.500 +35200/69092 Loss: 159.579 +38400/69092 Loss: 159.208 +41600/69092 Loss: 157.265 +44800/69092 Loss: 158.083 +48000/69092 Loss: 159.789 +51200/69092 Loss: 157.382 +54400/69092 Loss: 156.513 +57600/69092 Loss: 155.798 +60800/69092 Loss: 155.259 +64000/69092 Loss: 156.658 +67200/69092 Loss: 157.497 +Training time 0:07:38.211596 +Epoch: 190 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 613) +0/69092 Loss: 180.047 +3200/69092 Loss: 157.902 +6400/69092 Loss: 156.048 +9600/69092 Loss: 158.405 +12800/69092 Loss: 157.967 +16000/69092 Loss: 159.044 +19200/69092 Loss: 157.465 +22400/69092 Loss: 157.645 +25600/69092 Loss: 157.444 +28800/69092 Loss: 157.110 +32000/69092 Loss: 155.758 +35200/69092 Loss: 157.546 +38400/69092 Loss: 154.290 +41600/69092 Loss: 158.861 +44800/69092 Loss: 157.067 +48000/69092 Loss: 159.403 +51200/69092 Loss: 158.355 +54400/69092 Loss: 157.282 +57600/69092 Loss: 155.941 +60800/69092 Loss: 158.261 +64000/69092 Loss: 157.084 +67200/69092 Loss: 160.714 +Training time 0:07:43.680654 +Epoch: 191 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 614) +0/69092 Loss: 175.190 +3200/69092 Loss: 157.154 +6400/69092 Loss: 156.420 +9600/69092 Loss: 158.191 +12800/69092 Loss: 157.948 +16000/69092 Loss: 158.924 +19200/69092 Loss: 157.251 +22400/69092 Loss: 156.486 +25600/69092 Loss: 158.766 +28800/69092 Loss: 162.113 +32000/69092 Loss: 157.325 +35200/69092 Loss: 155.732 +38400/69092 Loss: 157.225 +41600/69092 Loss: 157.198 +44800/69092 Loss: 157.932 +48000/69092 Loss: 158.251 +51200/69092 Loss: 158.341 +54400/69092 Loss: 159.315 +57600/69092 Loss: 156.826 +60800/69092 Loss: 159.633 +64000/69092 Loss: 158.644 +67200/69092 Loss: 154.937 +Training time 0:07:34.193681 +Epoch: 192 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 615) +0/69092 Loss: 147.571 +3200/69092 Loss: 158.004 +6400/69092 Loss: 155.703 +9600/69092 Loss: 159.606 +12800/69092 Loss: 154.389 +16000/69092 Loss: 155.737 +19200/69092 Loss: 156.994 +22400/69092 Loss: 157.846 +25600/69092 Loss: 158.390 +28800/69092 Loss: 157.601 +32000/69092 Loss: 159.340 +35200/69092 Loss: 159.134 +38400/69092 Loss: 158.195 +41600/69092 Loss: 158.419 +44800/69092 Loss: 158.536 +48000/69092 Loss: 158.838 +51200/69092 Loss: 157.131 +54400/69092 Loss: 159.612 +57600/69092 Loss: 154.506 +60800/69092 Loss: 155.223 +64000/69092 Loss: 160.115 +67200/69092 Loss: 158.260 +Training time 0:07:39.476485 +Epoch: 193 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 616) +0/69092 Loss: 153.108 +3200/69092 Loss: 159.743 +6400/69092 Loss: 156.046 +9600/69092 Loss: 155.994 +12800/69092 Loss: 155.641 +16000/69092 Loss: 156.978 +19200/69092 Loss: 158.841 +22400/69092 Loss: 159.033 +25600/69092 Loss: 156.887 +28800/69092 Loss: 160.245 +32000/69092 Loss: 155.959 +35200/69092 Loss: 156.779 +38400/69092 Loss: 156.823 +41600/69092 Loss: 159.671 +44800/69092 Loss: 159.073 +48000/69092 Loss: 157.770 +51200/69092 Loss: 157.133 +54400/69092 Loss: 157.473 +57600/69092 Loss: 154.999 +60800/69092 Loss: 157.107 +64000/69092 Loss: 159.923 +67200/69092 Loss: 157.766 +Training time 0:07:37.958284 +Epoch: 194 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 617) +0/69092 Loss: 145.361 +3200/69092 Loss: 158.009 +6400/69092 Loss: 154.777 +9600/69092 Loss: 157.656 +12800/69092 Loss: 160.636 +16000/69092 Loss: 158.539 +19200/69092 Loss: 157.457 +22400/69092 Loss: 155.913 +25600/69092 Loss: 156.222 +28800/69092 Loss: 158.488 +32000/69092 Loss: 156.609 +35200/69092 Loss: 157.812 +38400/69092 Loss: 155.622 +41600/69092 Loss: 159.498 +44800/69092 Loss: 155.850 +48000/69092 Loss: 159.557 +51200/69092 Loss: 159.982 +54400/69092 Loss: 159.749 +57600/69092 Loss: 157.003 +60800/69092 Loss: 155.729 +64000/69092 Loss: 159.356 +67200/69092 Loss: 156.089 +Training time 0:07:49.865886 +Epoch: 195 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 618) +0/69092 Loss: 168.732 +3200/69092 Loss: 159.855 +6400/69092 Loss: 154.344 +9600/69092 Loss: 157.099 +12800/69092 Loss: 160.431 +16000/69092 Loss: 158.283 +19200/69092 Loss: 156.780 +22400/69092 Loss: 158.061 +25600/69092 Loss: 155.664 +28800/69092 Loss: 159.731 +32000/69092 Loss: 157.994 +35200/69092 Loss: 154.159 +38400/69092 Loss: 157.570 +41600/69092 Loss: 158.064 +44800/69092 Loss: 156.379 +48000/69092 Loss: 158.322 +51200/69092 Loss: 158.288 +54400/69092 Loss: 157.102 +57600/69092 Loss: 156.673 +60800/69092 Loss: 158.601 +64000/69092 Loss: 156.436 +67200/69092 Loss: 157.286 +Training time 0:07:26.682721 +Epoch: 196 Average loss: 157.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 619) +0/69092 Loss: 158.793 +3200/69092 Loss: 155.976 +6400/69092 Loss: 155.984 +9600/69092 Loss: 158.079 +12800/69092 Loss: 157.242 +16000/69092 Loss: 158.488 +19200/69092 Loss: 155.632 +22400/69092 Loss: 158.625 +25600/69092 Loss: 160.230 +28800/69092 Loss: 158.373 +32000/69092 Loss: 158.051 +35200/69092 Loss: 159.043 +38400/69092 Loss: 155.068 +41600/69092 Loss: 157.542 +44800/69092 Loss: 155.554 +48000/69092 Loss: 157.905 +51200/69092 Loss: 158.387 +54400/69092 Loss: 159.354 +57600/69092 Loss: 155.931 +60800/69092 Loss: 158.576 +64000/69092 Loss: 157.481 +67200/69092 Loss: 157.360 +Training time 0:07:33.628042 +Epoch: 197 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 620) +0/69092 Loss: 141.904 +3200/69092 Loss: 158.869 +6400/69092 Loss: 158.140 +9600/69092 Loss: 153.492 +12800/69092 Loss: 159.395 +16000/69092 Loss: 159.524 +19200/69092 Loss: 159.216 +22400/69092 Loss: 156.895 +25600/69092 Loss: 157.570 +28800/69092 Loss: 156.397 +32000/69092 Loss: 156.194 +35200/69092 Loss: 157.473 +38400/69092 Loss: 159.513 +41600/69092 Loss: 158.500 +44800/69092 Loss: 159.099 +48000/69092 Loss: 156.454 +51200/69092 Loss: 156.345 +54400/69092 Loss: 157.165 +57600/69092 Loss: 157.710 +60800/69092 Loss: 158.507 +64000/69092 Loss: 158.493 +67200/69092 Loss: 155.632 +Training time 0:07:32.436926 +Epoch: 198 Average loss: 157.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 621) +0/69092 Loss: 164.177 +3200/69092 Loss: 156.312 +6400/69092 Loss: 156.298 +9600/69092 Loss: 155.576 +12800/69092 Loss: 155.596 +16000/69092 Loss: 162.446 +19200/69092 Loss: 155.976 +22400/69092 Loss: 154.942 +25600/69092 Loss: 155.946 +28800/69092 Loss: 156.241 +32000/69092 Loss: 156.882 +35200/69092 Loss: 157.430 +38400/69092 Loss: 159.217 +41600/69092 Loss: 159.027 +44800/69092 Loss: 158.796 +48000/69092 Loss: 159.190 +51200/69092 Loss: 158.960 +54400/69092 Loss: 153.885 +57600/69092 Loss: 158.114 +60800/69092 Loss: 156.608 +64000/69092 Loss: 161.150 +67200/69092 Loss: 157.713 +Training time 0:07:42.994815 +Epoch: 199 Average loss: 157.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 622) +0/69092 Loss: 151.057 +3200/69092 Loss: 160.530 +6400/69092 Loss: 156.774 +9600/69092 Loss: 157.654 +12800/69092 Loss: 157.646 +16000/69092 Loss: 157.090 +19200/69092 Loss: 156.094 +22400/69092 Loss: 159.176 +25600/69092 Loss: 156.123 +28800/69092 Loss: 156.407 +32000/69092 Loss: 156.777 +35200/69092 Loss: 156.713 +38400/69092 Loss: 155.698 +41600/69092 Loss: 156.345 +44800/69092 Loss: 160.135 +48000/69092 Loss: 158.960 +51200/69092 Loss: 155.590 +54400/69092 Loss: 157.558 +57600/69092 Loss: 155.968 +60800/69092 Loss: 158.909 +64000/69092 Loss: 159.598 +67200/69092 Loss: 159.320 +Training time 0:07:34.905489 +Epoch: 200 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 623) +0/69092 Loss: 175.519 +3200/69092 Loss: 158.075 +6400/69092 Loss: 158.617 +9600/69092 Loss: 157.481 +12800/69092 Loss: 155.900 +16000/69092 Loss: 157.542 +19200/69092 Loss: 158.225 +22400/69092 Loss: 160.189 +25600/69092 Loss: 156.822 +28800/69092 Loss: 160.196 +32000/69092 Loss: 157.383 +35200/69092 Loss: 157.431 +38400/69092 Loss: 158.968 +41600/69092 Loss: 156.870 +44800/69092 Loss: 156.406 +48000/69092 Loss: 158.396 +51200/69092 Loss: 156.479 +54400/69092 Loss: 156.965 +57600/69092 Loss: 157.680 +60800/69092 Loss: 158.387 +64000/69092 Loss: 154.770 +67200/69092 Loss: 158.280 +Training time 0:07:38.496225 +Epoch: 201 Average loss: 157.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 624) +0/69092 Loss: 153.015 +3200/69092 Loss: 156.760 +6400/69092 Loss: 159.202 +9600/69092 Loss: 159.991 +12800/69092 Loss: 157.782 +16000/69092 Loss: 157.568 +19200/69092 Loss: 157.789 +22400/69092 Loss: 154.274 +25600/69092 Loss: 157.496 +28800/69092 Loss: 157.947 +32000/69092 Loss: 155.606 +35200/69092 Loss: 158.124 +38400/69092 Loss: 157.003 +41600/69092 Loss: 155.084 +44800/69092 Loss: 157.436 +48000/69092 Loss: 157.212 +51200/69092 Loss: 158.412 +54400/69092 Loss: 156.959 +57600/69092 Loss: 156.266 +60800/69092 Loss: 158.161 +64000/69092 Loss: 159.983 +67200/69092 Loss: 158.754 +Training time 0:07:39.867830 +Epoch: 202 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 625) +0/69092 Loss: 154.864 +3200/69092 Loss: 159.007 +6400/69092 Loss: 158.854 +9600/69092 Loss: 158.087 +12800/69092 Loss: 159.630 +16000/69092 Loss: 156.095 +19200/69092 Loss: 156.862 +22400/69092 Loss: 156.390 +25600/69092 Loss: 156.392 +28800/69092 Loss: 159.387 +32000/69092 Loss: 155.419 +35200/69092 Loss: 157.499 +38400/69092 Loss: 158.846 +41600/69092 Loss: 155.451 +44800/69092 Loss: 157.738 +48000/69092 Loss: 155.327 +51200/69092 Loss: 157.131 +54400/69092 Loss: 158.595 +57600/69092 Loss: 155.259 +60800/69092 Loss: 157.866 +64000/69092 Loss: 157.081 +67200/69092 Loss: 158.313 +Training time 0:07:40.975488 +Epoch: 203 Average loss: 157.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 626) +0/69092 Loss: 173.770 +3200/69092 Loss: 157.722 +6400/69092 Loss: 155.573 +9600/69092 Loss: 156.457 +12800/69092 Loss: 158.817 +16000/69092 Loss: 159.988 +19200/69092 Loss: 155.019 +22400/69092 Loss: 159.238 +25600/69092 Loss: 158.432 +28800/69092 Loss: 158.066 +32000/69092 Loss: 158.518 +35200/69092 Loss: 158.990 +38400/69092 Loss: 155.104 +41600/69092 Loss: 157.804 +44800/69092 Loss: 155.990 +48000/69092 Loss: 159.481 +51200/69092 Loss: 158.609 +54400/69092 Loss: 158.299 +57600/69092 Loss: 157.616 +60800/69092 Loss: 160.391 +64000/69092 Loss: 158.006 +67200/69092 Loss: 155.921 +Training time 0:07:38.760921 +Epoch: 204 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 627) +0/69092 Loss: 181.800 +3200/69092 Loss: 155.916 +6400/69092 Loss: 157.706 +9600/69092 Loss: 156.083 +12800/69092 Loss: 159.041 +16000/69092 Loss: 156.399 +19200/69092 Loss: 159.783 +22400/69092 Loss: 159.092 +25600/69092 Loss: 158.199 +28800/69092 Loss: 156.969 +32000/69092 Loss: 155.250 +35200/69092 Loss: 156.461 +38400/69092 Loss: 158.443 +41600/69092 Loss: 156.895 +44800/69092 Loss: 158.725 +48000/69092 Loss: 157.817 +51200/69092 Loss: 157.491 +54400/69092 Loss: 158.133 +57600/69092 Loss: 158.895 +60800/69092 Loss: 158.319 +64000/69092 Loss: 157.406 +67200/69092 Loss: 157.734 +Training time 0:08:07.703009 +Epoch: 205 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 628) +0/69092 Loss: 147.709 +3200/69092 Loss: 154.964 +6400/69092 Loss: 159.075 +9600/69092 Loss: 158.660 +12800/69092 Loss: 156.360 +16000/69092 Loss: 156.506 +19200/69092 Loss: 158.661 +22400/69092 Loss: 157.413 +25600/69092 Loss: 157.526 +28800/69092 Loss: 159.354 +32000/69092 Loss: 156.501 +35200/69092 Loss: 157.939 +38400/69092 Loss: 156.461 +41600/69092 Loss: 158.859 +44800/69092 Loss: 155.435 +48000/69092 Loss: 158.034 +51200/69092 Loss: 158.688 +54400/69092 Loss: 155.043 +57600/69092 Loss: 159.326 +60800/69092 Loss: 158.101 +64000/69092 Loss: 157.895 +67200/69092 Loss: 160.042 +Training time 0:08:40.501933 +Epoch: 206 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 629) +0/69092 Loss: 149.379 +3200/69092 Loss: 156.451 +6400/69092 Loss: 162.007 +9600/69092 Loss: 154.785 +12800/69092 Loss: 156.326 +16000/69092 Loss: 158.797 +19200/69092 Loss: 155.302 +22400/69092 Loss: 158.797 +25600/69092 Loss: 158.475 +28800/69092 Loss: 156.845 +32000/69092 Loss: 158.263 +35200/69092 Loss: 158.897 +38400/69092 Loss: 160.416 +41600/69092 Loss: 157.644 +44800/69092 Loss: 158.725 +48000/69092 Loss: 158.818 +51200/69092 Loss: 156.397 +54400/69092 Loss: 156.142 +57600/69092 Loss: 156.123 +60800/69092 Loss: 156.385 +64000/69092 Loss: 155.916 +67200/69092 Loss: 158.422 +Training time 0:07:35.869309 +Epoch: 207 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 630) +0/69092 Loss: 161.830 +3200/69092 Loss: 157.200 +6400/69092 Loss: 159.562 +9600/69092 Loss: 156.876 +12800/69092 Loss: 157.110 +16000/69092 Loss: 159.913 +19200/69092 Loss: 158.115 +22400/69092 Loss: 160.568 +25600/69092 Loss: 158.243 +28800/69092 Loss: 159.737 +32000/69092 Loss: 157.197 +35200/69092 Loss: 154.088 +38400/69092 Loss: 155.213 +41600/69092 Loss: 156.872 +44800/69092 Loss: 155.931 +48000/69092 Loss: 156.351 +51200/69092 Loss: 157.343 +54400/69092 Loss: 159.157 +57600/69092 Loss: 158.354 +60800/69092 Loss: 156.326 +64000/69092 Loss: 159.202 +67200/69092 Loss: 158.062 +Training time 0:07:34.592295 +Epoch: 208 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 631) +0/69092 Loss: 167.264 +3200/69092 Loss: 155.962 +6400/69092 Loss: 159.347 +9600/69092 Loss: 158.574 +12800/69092 Loss: 155.356 +16000/69092 Loss: 158.029 +19200/69092 Loss: 160.409 +22400/69092 Loss: 158.317 +25600/69092 Loss: 160.273 +28800/69092 Loss: 161.428 +32000/69092 Loss: 158.356 +35200/69092 Loss: 155.940 +38400/69092 Loss: 156.851 +41600/69092 Loss: 156.007 +44800/69092 Loss: 158.827 +48000/69092 Loss: 156.510 +51200/69092 Loss: 157.872 +54400/69092 Loss: 156.139 +57600/69092 Loss: 155.908 +60800/69092 Loss: 156.345 +64000/69092 Loss: 157.051 +67200/69092 Loss: 154.484 +Training time 0:07:32.710867 +Epoch: 209 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 632) +0/69092 Loss: 156.012 +3200/69092 Loss: 158.887 +6400/69092 Loss: 155.052 +9600/69092 Loss: 154.760 +12800/69092 Loss: 156.522 +16000/69092 Loss: 157.577 +19200/69092 Loss: 156.028 +22400/69092 Loss: 157.146 +25600/69092 Loss: 157.063 +28800/69092 Loss: 157.054 +32000/69092 Loss: 158.659 +35200/69092 Loss: 155.841 +38400/69092 Loss: 158.155 +41600/69092 Loss: 159.075 +44800/69092 Loss: 156.631 +48000/69092 Loss: 158.785 +51200/69092 Loss: 158.876 +54400/69092 Loss: 158.567 +57600/69092 Loss: 159.628 +60800/69092 Loss: 157.635 +64000/69092 Loss: 158.806 +67200/69092 Loss: 157.916 +Training time 0:09:21.159502 +Epoch: 210 Average loss: 157.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 633) +0/69092 Loss: 149.434 +3200/69092 Loss: 156.384 +6400/69092 Loss: 155.799 +9600/69092 Loss: 156.483 +12800/69092 Loss: 155.343 +16000/69092 Loss: 159.804 +19200/69092 Loss: 160.305 +22400/69092 Loss: 154.660 +25600/69092 Loss: 157.097 +28800/69092 Loss: 155.317 +32000/69092 Loss: 158.126 +35200/69092 Loss: 158.762 +38400/69092 Loss: 155.186 +41600/69092 Loss: 161.378 +44800/69092 Loss: 157.198 +48000/69092 Loss: 157.813 +51200/69092 Loss: 158.939 +54400/69092 Loss: 158.631 +57600/69092 Loss: 156.800 +60800/69092 Loss: 158.036 +64000/69092 Loss: 156.362 +67200/69092 Loss: 156.562 +Training time 0:08:02.469975 +Epoch: 211 Average loss: 157.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 634) +0/69092 Loss: 171.673 +3200/69092 Loss: 159.009 +6400/69092 Loss: 159.309 +9600/69092 Loss: 158.129 +12800/69092 Loss: 156.129 +16000/69092 Loss: 158.394 +19200/69092 Loss: 159.815 +22400/69092 Loss: 155.188 +25600/69092 Loss: 158.333 +28800/69092 Loss: 156.852 +32000/69092 Loss: 156.943 +35200/69092 Loss: 156.836 +38400/69092 Loss: 159.630 +41600/69092 Loss: 158.213 +44800/69092 Loss: 158.314 +48000/69092 Loss: 158.386 +51200/69092 Loss: 156.015 +54400/69092 Loss: 156.358 +57600/69092 Loss: 154.555 +60800/69092 Loss: 158.991 +64000/69092 Loss: 157.958 +67200/69092 Loss: 157.672 +Training time 0:07:34.827391 +Epoch: 212 Average loss: 157.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 635) +0/69092 Loss: 164.967 +3200/69092 Loss: 157.399 +6400/69092 Loss: 156.897 +9600/69092 Loss: 157.779 +12800/69092 Loss: 159.042 +16000/69092 Loss: 156.097 +19200/69092 Loss: 156.920 +22400/69092 Loss: 159.080 +25600/69092 Loss: 156.531 +28800/69092 Loss: 159.148 +32000/69092 Loss: 158.062 +35200/69092 Loss: 158.928 +38400/69092 Loss: 157.210 +41600/69092 Loss: 157.960 +44800/69092 Loss: 160.283 +48000/69092 Loss: 158.575 +51200/69092 Loss: 156.386 +54400/69092 Loss: 154.536 +57600/69092 Loss: 158.317 +60800/69092 Loss: 155.755 +64000/69092 Loss: 158.907 +67200/69092 Loss: 156.247 +Training time 0:07:38.126465 +Epoch: 213 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 636) +0/69092 Loss: 155.418 +3200/69092 Loss: 156.562 +6400/69092 Loss: 155.872 +9600/69092 Loss: 158.804 +12800/69092 Loss: 155.374 +16000/69092 Loss: 161.571 +19200/69092 Loss: 155.028 +22400/69092 Loss: 157.048 +25600/69092 Loss: 161.181 +28800/69092 Loss: 158.956 +32000/69092 Loss: 157.274 +35200/69092 Loss: 159.582 +38400/69092 Loss: 156.870 +41600/69092 Loss: 155.474 +44800/69092 Loss: 158.835 +48000/69092 Loss: 155.290 +51200/69092 Loss: 156.300 +54400/69092 Loss: 158.695 +57600/69092 Loss: 160.743 +60800/69092 Loss: 158.966 +64000/69092 Loss: 159.325 +67200/69092 Loss: 157.103 +Training time 0:07:43.581868 +Epoch: 214 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 637) +0/69092 Loss: 169.926 +3200/69092 Loss: 159.784 +6400/69092 Loss: 154.882 +9600/69092 Loss: 158.005 +12800/69092 Loss: 158.423 +16000/69092 Loss: 156.531 +19200/69092 Loss: 157.812 +22400/69092 Loss: 160.198 +25600/69092 Loss: 157.394 +28800/69092 Loss: 155.889 +32000/69092 Loss: 158.388 +35200/69092 Loss: 158.960 +38400/69092 Loss: 157.061 +41600/69092 Loss: 156.178 +44800/69092 Loss: 157.984 +48000/69092 Loss: 159.153 +51200/69092 Loss: 159.307 +54400/69092 Loss: 157.805 +57600/69092 Loss: 155.050 +60800/69092 Loss: 157.670 +64000/69092 Loss: 156.737 +67200/69092 Loss: 157.288 +Training time 0:07:37.038836 +Epoch: 215 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 638) +0/69092 Loss: 131.219 +3200/69092 Loss: 156.208 +6400/69092 Loss: 154.055 +9600/69092 Loss: 158.885 +12800/69092 Loss: 157.732 +16000/69092 Loss: 155.100 +19200/69092 Loss: 155.972 +22400/69092 Loss: 156.878 +25600/69092 Loss: 157.127 +28800/69092 Loss: 159.192 +32000/69092 Loss: 155.335 +35200/69092 Loss: 158.400 +38400/69092 Loss: 160.318 +41600/69092 Loss: 157.896 +44800/69092 Loss: 158.552 +48000/69092 Loss: 160.066 +51200/69092 Loss: 159.652 +54400/69092 Loss: 159.627 +57600/69092 Loss: 154.927 +60800/69092 Loss: 158.691 +64000/69092 Loss: 158.396 +67200/69092 Loss: 158.281 +Training time 0:07:26.769823 +Epoch: 216 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 639) +0/69092 Loss: 165.630 +3200/69092 Loss: 157.758 +6400/69092 Loss: 158.962 +9600/69092 Loss: 157.403 +12800/69092 Loss: 160.079 +16000/69092 Loss: 158.076 +19200/69092 Loss: 157.829 +22400/69092 Loss: 156.869 +25600/69092 Loss: 155.839 +28800/69092 Loss: 157.018 +32000/69092 Loss: 157.180 +35200/69092 Loss: 156.363 +38400/69092 Loss: 156.714 +41600/69092 Loss: 158.279 +44800/69092 Loss: 159.396 +48000/69092 Loss: 156.562 +51200/69092 Loss: 154.892 +54400/69092 Loss: 159.854 +57600/69092 Loss: 158.474 +60800/69092 Loss: 157.075 +64000/69092 Loss: 158.667 +67200/69092 Loss: 159.407 +Training time 0:07:30.917387 +Epoch: 217 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 640) +0/69092 Loss: 150.273 +3200/69092 Loss: 157.732 +6400/69092 Loss: 156.981 +9600/69092 Loss: 157.096 +12800/69092 Loss: 155.246 +16000/69092 Loss: 157.502 +19200/69092 Loss: 159.538 +22400/69092 Loss: 158.878 +25600/69092 Loss: 154.627 +28800/69092 Loss: 158.307 +32000/69092 Loss: 153.297 +35200/69092 Loss: 156.225 +38400/69092 Loss: 158.003 +41600/69092 Loss: 160.492 +44800/69092 Loss: 157.817 +48000/69092 Loss: 154.894 +51200/69092 Loss: 157.154 +54400/69092 Loss: 158.653 +57600/69092 Loss: 156.552 +60800/69092 Loss: 157.712 +64000/69092 Loss: 157.656 +67200/69092 Loss: 157.510 +Training time 0:07:54.328914 +Epoch: 218 Average loss: 157.22 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 641) +0/69092 Loss: 162.638 +3200/69092 Loss: 161.718 +6400/69092 Loss: 155.650 +9600/69092 Loss: 159.514 +12800/69092 Loss: 158.213 +16000/69092 Loss: 154.755 +19200/69092 Loss: 158.405 +22400/69092 Loss: 155.158 +25600/69092 Loss: 156.802 +28800/69092 Loss: 157.383 +32000/69092 Loss: 157.675 +35200/69092 Loss: 158.821 +38400/69092 Loss: 156.335 +41600/69092 Loss: 156.381 +44800/69092 Loss: 157.550 +48000/69092 Loss: 158.135 +51200/69092 Loss: 158.909 +54400/69092 Loss: 157.901 +57600/69092 Loss: 157.998 +60800/69092 Loss: 155.305 +64000/69092 Loss: 158.089 +67200/69092 Loss: 160.339 +Training time 0:07:49.090733 +Epoch: 219 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 642) +0/69092 Loss: 163.415 +3200/69092 Loss: 156.735 +6400/69092 Loss: 158.633 +9600/69092 Loss: 158.713 +12800/69092 Loss: 156.107 +16000/69092 Loss: 159.507 +19200/69092 Loss: 157.209 +22400/69092 Loss: 157.614 +25600/69092 Loss: 155.762 +28800/69092 Loss: 157.695 +32000/69092 Loss: 159.135 +35200/69092 Loss: 156.995 +38400/69092 Loss: 156.430 +41600/69092 Loss: 153.220 +44800/69092 Loss: 157.828 +48000/69092 Loss: 156.284 +51200/69092 Loss: 157.853 +54400/69092 Loss: 155.137 +57600/69092 Loss: 158.350 +60800/69092 Loss: 157.934 +64000/69092 Loss: 159.661 +67200/69092 Loss: 158.552 +Training time 0:07:40.269336 +Epoch: 220 Average loss: 157.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 643) +0/69092 Loss: 153.594 +3200/69092 Loss: 154.537 +6400/69092 Loss: 160.754 +9600/69092 Loss: 155.823 +12800/69092 Loss: 160.722 +16000/69092 Loss: 158.272 +19200/69092 Loss: 157.110 +22400/69092 Loss: 157.591 +25600/69092 Loss: 156.688 +28800/69092 Loss: 157.240 +32000/69092 Loss: 157.917 +35200/69092 Loss: 157.478 +38400/69092 Loss: 158.463 +41600/69092 Loss: 155.253 +44800/69092 Loss: 157.915 +48000/69092 Loss: 160.178 +51200/69092 Loss: 156.033 +54400/69092 Loss: 159.377 +57600/69092 Loss: 155.823 +60800/69092 Loss: 158.618 +64000/69092 Loss: 158.516 +67200/69092 Loss: 156.348 +Training time 0:07:29.057146 +Epoch: 221 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 644) +0/69092 Loss: 165.422 +3200/69092 Loss: 156.695 +6400/69092 Loss: 158.539 +9600/69092 Loss: 157.992 +12800/69092 Loss: 157.688 +16000/69092 Loss: 159.195 +19200/69092 Loss: 158.279 +22400/69092 Loss: 156.324 +25600/69092 Loss: 157.026 +28800/69092 Loss: 157.665 +32000/69092 Loss: 157.597 +35200/69092 Loss: 155.522 +38400/69092 Loss: 155.558 +41600/69092 Loss: 159.187 +44800/69092 Loss: 155.394 +48000/69092 Loss: 159.829 +51200/69092 Loss: 158.002 +54400/69092 Loss: 159.767 +57600/69092 Loss: 159.285 +60800/69092 Loss: 155.716 +64000/69092 Loss: 158.566 +67200/69092 Loss: 156.444 +Training time 0:08:31.135405 +Epoch: 222 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 645) +0/69092 Loss: 168.154 +3200/69092 Loss: 157.900 +6400/69092 Loss: 156.841 +9600/69092 Loss: 160.198 +12800/69092 Loss: 158.099 +16000/69092 Loss: 158.207 +19200/69092 Loss: 157.919 +22400/69092 Loss: 158.184 +25600/69092 Loss: 156.459 +28800/69092 Loss: 155.513 +32000/69092 Loss: 158.063 +35200/69092 Loss: 157.210 +38400/69092 Loss: 154.747 +41600/69092 Loss: 158.105 +44800/69092 Loss: 154.578 +48000/69092 Loss: 157.065 +51200/69092 Loss: 158.454 +54400/69092 Loss: 158.166 +57600/69092 Loss: 154.526 +60800/69092 Loss: 158.770 +64000/69092 Loss: 158.475 +67200/69092 Loss: 158.743 +Training time 0:08:34.548517 +Epoch: 223 Average loss: 157.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 646) +0/69092 Loss: 165.393 +3200/69092 Loss: 156.250 +6400/69092 Loss: 158.106 +9600/69092 Loss: 156.820 +12800/69092 Loss: 159.785 +16000/69092 Loss: 159.302 +19200/69092 Loss: 157.720 +22400/69092 Loss: 156.442 +25600/69092 Loss: 154.447 +28800/69092 Loss: 157.395 +32000/69092 Loss: 155.199 +35200/69092 Loss: 157.014 +38400/69092 Loss: 156.051 +41600/69092 Loss: 160.226 +44800/69092 Loss: 155.608 +48000/69092 Loss: 158.439 +51200/69092 Loss: 157.160 +54400/69092 Loss: 160.060 +57600/69092 Loss: 156.248 +60800/69092 Loss: 159.355 +64000/69092 Loss: 158.188 +67200/69092 Loss: 158.642 +Training time 0:07:23.080956 +Epoch: 224 Average loss: 157.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 647) +0/69092 Loss: 152.752 +3200/69092 Loss: 157.439 +6400/69092 Loss: 158.802 +9600/69092 Loss: 158.109 +12800/69092 Loss: 158.069 +16000/69092 Loss: 159.496 +19200/69092 Loss: 156.509 +22400/69092 Loss: 156.898 +25600/69092 Loss: 159.133 +28800/69092 Loss: 159.639 +32000/69092 Loss: 157.353 +35200/69092 Loss: 155.471 +38400/69092 Loss: 156.690 +41600/69092 Loss: 153.811 +44800/69092 Loss: 157.616 +48000/69092 Loss: 155.397 +51200/69092 Loss: 158.626 +54400/69092 Loss: 157.483 +57600/69092 Loss: 159.738 +60800/69092 Loss: 159.406 +64000/69092 Loss: 159.305 +67200/69092 Loss: 156.101 +Training time 0:07:28.639905 +Epoch: 225 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 648) +0/69092 Loss: 165.204 +3200/69092 Loss: 156.710 +6400/69092 Loss: 156.687 +9600/69092 Loss: 153.931 +12800/69092 Loss: 158.072 +16000/69092 Loss: 160.193 +19200/69092 Loss: 158.714 +22400/69092 Loss: 155.951 +25600/69092 Loss: 159.136 +28800/69092 Loss: 153.546 +32000/69092 Loss: 157.509 +35200/69092 Loss: 158.651 +38400/69092 Loss: 158.493 +41600/69092 Loss: 156.138 +44800/69092 Loss: 155.734 +48000/69092 Loss: 156.357 +51200/69092 Loss: 157.247 +54400/69092 Loss: 157.459 +57600/69092 Loss: 157.807 +60800/69092 Loss: 159.110 +64000/69092 Loss: 162.848 +67200/69092 Loss: 158.559 +Training time 0:07:30.555783 +Epoch: 226 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 649) +0/69092 Loss: 159.436 +3200/69092 Loss: 157.789 +6400/69092 Loss: 160.089 +9600/69092 Loss: 156.628 +12800/69092 Loss: 158.362 +16000/69092 Loss: 155.360 +19200/69092 Loss: 155.078 +22400/69092 Loss: 158.432 +25600/69092 Loss: 156.425 +28800/69092 Loss: 158.673 +32000/69092 Loss: 153.432 +35200/69092 Loss: 159.404 +38400/69092 Loss: 159.359 +41600/69092 Loss: 157.259 +44800/69092 Loss: 155.562 +48000/69092 Loss: 157.404 +51200/69092 Loss: 155.964 +54400/69092 Loss: 160.147 +57600/69092 Loss: 155.106 +60800/69092 Loss: 161.558 +64000/69092 Loss: 157.674 +67200/69092 Loss: 156.519 +Training time 0:07:27.343898 +Epoch: 227 Average loss: 157.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 650) +0/69092 Loss: 149.842 +3200/69092 Loss: 158.026 +6400/69092 Loss: 158.612 +9600/69092 Loss: 156.117 +12800/69092 Loss: 154.649 +16000/69092 Loss: 158.555 +19200/69092 Loss: 158.747 +22400/69092 Loss: 161.806 +25600/69092 Loss: 158.291 +28800/69092 Loss: 158.494 +32000/69092 Loss: 154.675 +35200/69092 Loss: 156.707 +38400/69092 Loss: 156.160 +41600/69092 Loss: 157.002 +44800/69092 Loss: 155.868 +48000/69092 Loss: 156.845 +51200/69092 Loss: 156.971 +54400/69092 Loss: 156.629 +57600/69092 Loss: 157.007 +60800/69092 Loss: 159.208 +64000/69092 Loss: 159.291 +67200/69092 Loss: 157.110 +Training time 0:09:27.067758 +Epoch: 228 Average loss: 157.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 651) +0/69092 Loss: 159.460 +3200/69092 Loss: 158.683 +6400/69092 Loss: 155.711 +9600/69092 Loss: 156.483 +12800/69092 Loss: 159.359 +16000/69092 Loss: 156.764 +19200/69092 Loss: 156.813 +22400/69092 Loss: 158.229 +25600/69092 Loss: 156.143 +28800/69092 Loss: 159.128 +32000/69092 Loss: 159.613 +35200/69092 Loss: 157.953 +38400/69092 Loss: 156.959 +41600/69092 Loss: 157.033 +44800/69092 Loss: 155.479 +48000/69092 Loss: 157.104 +51200/69092 Loss: 158.896 +54400/69092 Loss: 155.478 +57600/69092 Loss: 157.954 +60800/69092 Loss: 159.093 +64000/69092 Loss: 155.458 +67200/69092 Loss: 157.690 +Training time 0:07:39.063601 +Epoch: 229 Average loss: 157.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 652) +0/69092 Loss: 147.211 +3200/69092 Loss: 156.889 +6400/69092 Loss: 158.873 +9600/69092 Loss: 154.357 +12800/69092 Loss: 157.826 +16000/69092 Loss: 160.319 +19200/69092 Loss: 156.137 +22400/69092 Loss: 155.428 +25600/69092 Loss: 159.530 +28800/69092 Loss: 158.142 +32000/69092 Loss: 158.270 +35200/69092 Loss: 155.916 +38400/69092 Loss: 158.390 +41600/69092 Loss: 158.231 +44800/69092 Loss: 157.584 +48000/69092 Loss: 160.831 +51200/69092 Loss: 157.718 +54400/69092 Loss: 158.864 +57600/69092 Loss: 155.941 +60800/69092 Loss: 159.108 +64000/69092 Loss: 156.228 +67200/69092 Loss: 158.341 +Training time 0:07:40.237119 +Epoch: 230 Average loss: 157.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 653) +0/69092 Loss: 165.612 +3200/69092 Loss: 157.404 +6400/69092 Loss: 159.238 +9600/69092 Loss: 159.448 +12800/69092 Loss: 157.142 +16000/69092 Loss: 157.463 +19200/69092 Loss: 158.130 +22400/69092 Loss: 156.421 +25600/69092 Loss: 156.434 +28800/69092 Loss: 157.084 +32000/69092 Loss: 158.176 +35200/69092 Loss: 159.090 +38400/69092 Loss: 156.300 +41600/69092 Loss: 157.593 +44800/69092 Loss: 157.062 +48000/69092 Loss: 157.326 +51200/69092 Loss: 159.395 +54400/69092 Loss: 157.943 +57600/69092 Loss: 156.873 +60800/69092 Loss: 159.478 +64000/69092 Loss: 159.483 +67200/69092 Loss: 154.997 +Training time 0:07:35.400742 +Epoch: 231 Average loss: 157.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 654) +0/69092 Loss: 135.142 +3200/69092 Loss: 156.664 +6400/69092 Loss: 159.073 +9600/69092 Loss: 158.802 +12800/69092 Loss: 157.453 +16000/69092 Loss: 156.378 +19200/69092 Loss: 158.038 +22400/69092 Loss: 159.764 +25600/69092 Loss: 157.333 +28800/69092 Loss: 156.931 +32000/69092 Loss: 155.577 +35200/69092 Loss: 158.228 +38400/69092 Loss: 160.355 +41600/69092 Loss: 155.534 +44800/69092 Loss: 156.046 +48000/69092 Loss: 157.863 +51200/69092 Loss: 156.395 +54400/69092 Loss: 162.240 +57600/69092 Loss: 158.858 +60800/69092 Loss: 158.871 +64000/69092 Loss: 154.907 +67200/69092 Loss: 157.596 +Training time 0:07:33.701474 +Epoch: 232 Average loss: 157.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 655) +0/69092 Loss: 166.783 +3200/69092 Loss: 156.038 +6400/69092 Loss: 157.812 +9600/69092 Loss: 160.981 +12800/69092 Loss: 157.212 +16000/69092 Loss: 156.838 +19200/69092 Loss: 157.642 +22400/69092 Loss: 157.276 +25600/69092 Loss: 155.770 +28800/69092 Loss: 159.388 +32000/69092 Loss: 156.635 +35200/69092 Loss: 155.745 +38400/69092 Loss: 156.889 +41600/69092 Loss: 159.764 +44800/69092 Loss: 158.597 +48000/69092 Loss: 158.640 +51200/69092 Loss: 157.284 +54400/69092 Loss: 154.917 +57600/69092 Loss: 156.581 +60800/69092 Loss: 158.896 +64000/69092 Loss: 157.990 +67200/69092 Loss: 155.136 +Training time 0:07:34.924746 +Epoch: 233 Average loss: 157.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 656) +0/69092 Loss: 152.277 +3200/69092 Loss: 161.199 +6400/69092 Loss: 156.836 +9600/69092 Loss: 156.624 +12800/69092 Loss: 157.327 +16000/69092 Loss: 158.385 +19200/69092 Loss: 160.872 +22400/69092 Loss: 154.521 +25600/69092 Loss: 157.786 +28800/69092 Loss: 157.276 +32000/69092 Loss: 158.574 +35200/69092 Loss: 156.062 +38400/69092 Loss: 157.278 +41600/69092 Loss: 155.273 +44800/69092 Loss: 158.205 +48000/69092 Loss: 161.003 +51200/69092 Loss: 158.045 +54400/69092 Loss: 154.989 +57600/69092 Loss: 156.540 +60800/69092 Loss: 156.320 +64000/69092 Loss: 159.063 +67200/69092 Loss: 158.782 +Training time 0:07:32.283646 +Epoch: 234 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 657) +0/69092 Loss: 169.157 +3200/69092 Loss: 158.112 +6400/69092 Loss: 157.902 +9600/69092 Loss: 157.054 +12800/69092 Loss: 157.195 +16000/69092 Loss: 157.924 +19200/69092 Loss: 156.349 +22400/69092 Loss: 157.939 +25600/69092 Loss: 157.406 +28800/69092 Loss: 156.426 +32000/69092 Loss: 157.339 +35200/69092 Loss: 159.729 +38400/69092 Loss: 159.014 +41600/69092 Loss: 158.079 +44800/69092 Loss: 157.769 +48000/69092 Loss: 157.675 +51200/69092 Loss: 158.435 +54400/69092 Loss: 159.091 +57600/69092 Loss: 156.783 +60800/69092 Loss: 156.545 +64000/69092 Loss: 155.534 +67200/69092 Loss: 154.316 +Training time 0:07:39.845884 +Epoch: 235 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 658) +0/69092 Loss: 167.230 +3200/69092 Loss: 156.155 +6400/69092 Loss: 156.916 +9600/69092 Loss: 156.587 +12800/69092 Loss: 158.048 +16000/69092 Loss: 156.720 +19200/69092 Loss: 160.000 +22400/69092 Loss: 157.109 +25600/69092 Loss: 158.094 +28800/69092 Loss: 157.775 +32000/69092 Loss: 161.040 +35200/69092 Loss: 157.586 +38400/69092 Loss: 159.437 +41600/69092 Loss: 158.170 +44800/69092 Loss: 157.498 +48000/69092 Loss: 156.832 +51200/69092 Loss: 156.972 +54400/69092 Loss: 157.212 +57600/69092 Loss: 154.557 +60800/69092 Loss: 156.061 +64000/69092 Loss: 159.269 +67200/69092 Loss: 154.682 +Training time 0:07:58.555641 +Epoch: 236 Average loss: 157.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 659) +0/69092 Loss: 163.321 +3200/69092 Loss: 156.580 +6400/69092 Loss: 159.103 +9600/69092 Loss: 156.652 +12800/69092 Loss: 161.733 +16000/69092 Loss: 158.861 +19200/69092 Loss: 157.690 +22400/69092 Loss: 159.509 +25600/69092 Loss: 154.750 +28800/69092 Loss: 156.892 +32000/69092 Loss: 154.900 +35200/69092 Loss: 158.736 +38400/69092 Loss: 159.680 +41600/69092 Loss: 156.126 +44800/69092 Loss: 157.815 +48000/69092 Loss: 155.897 +51200/69092 Loss: 156.146 +54400/69092 Loss: 156.602 +57600/69092 Loss: 159.568 +60800/69092 Loss: 158.433 +64000/69092 Loss: 156.584 +67200/69092 Loss: 156.818 +Training time 0:07:47.349364 +Epoch: 237 Average loss: 157.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 660) +0/69092 Loss: 157.487 +3200/69092 Loss: 158.543 +6400/69092 Loss: 156.723 +9600/69092 Loss: 158.471 +12800/69092 Loss: 157.595 +16000/69092 Loss: 156.657 +19200/69092 Loss: 154.597 +22400/69092 Loss: 156.592 +25600/69092 Loss: 157.666 +28800/69092 Loss: 157.409 +32000/69092 Loss: 158.694 +35200/69092 Loss: 156.536 +38400/69092 Loss: 157.915 +41600/69092 Loss: 157.884 +44800/69092 Loss: 160.490 +48000/69092 Loss: 158.963 +51200/69092 Loss: 153.950 +54400/69092 Loss: 158.040 +57600/69092 Loss: 157.445 +60800/69092 Loss: 158.193 +64000/69092 Loss: 156.619 +67200/69092 Loss: 159.141 +Training time 0:07:38.576687 +Epoch: 238 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 661) +0/69092 Loss: 140.434 +3200/69092 Loss: 157.503 +6400/69092 Loss: 158.362 +9600/69092 Loss: 159.353 +12800/69092 Loss: 157.157 +16000/69092 Loss: 155.927 +19200/69092 Loss: 157.459 +22400/69092 Loss: 159.925 +25600/69092 Loss: 156.135 +28800/69092 Loss: 159.938 +32000/69092 Loss: 159.392 +35200/69092 Loss: 155.249 +38400/69092 Loss: 157.386 +41600/69092 Loss: 155.197 +44800/69092 Loss: 157.951 +48000/69092 Loss: 154.863 +51200/69092 Loss: 157.671 +54400/69092 Loss: 156.218 +57600/69092 Loss: 160.190 +60800/69092 Loss: 157.629 +64000/69092 Loss: 160.046 +67200/69092 Loss: 159.282 +Training time 0:07:32.733046 +Epoch: 239 Average loss: 157.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 662) +0/69092 Loss: 170.820 +3200/69092 Loss: 157.957 +6400/69092 Loss: 155.316 +9600/69092 Loss: 159.614 +12800/69092 Loss: 159.481 +16000/69092 Loss: 158.384 +19200/69092 Loss: 158.038 +22400/69092 Loss: 157.481 +25600/69092 Loss: 159.728 +28800/69092 Loss: 157.422 +32000/69092 Loss: 158.377 +35200/69092 Loss: 158.576 +38400/69092 Loss: 156.419 +41600/69092 Loss: 157.921 +44800/69092 Loss: 157.281 +48000/69092 Loss: 154.419 +51200/69092 Loss: 154.820 +54400/69092 Loss: 154.779 +57600/69092 Loss: 155.158 +60800/69092 Loss: 157.255 +64000/69092 Loss: 159.551 +67200/69092 Loss: 158.003 +Training time 0:07:43.609744 +Epoch: 240 Average loss: 157.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 663) +0/69092 Loss: 178.682 +3200/69092 Loss: 156.709 +6400/69092 Loss: 156.846 +9600/69092 Loss: 157.574 +12800/69092 Loss: 155.808 +16000/69092 Loss: 157.887 +19200/69092 Loss: 157.215 +22400/69092 Loss: 156.989 +25600/69092 Loss: 157.277 +28800/69092 Loss: 158.370 +32000/69092 Loss: 156.660 +35200/69092 Loss: 159.573 +38400/69092 Loss: 160.505 +41600/69092 Loss: 157.373 +44800/69092 Loss: 157.142 +48000/69092 Loss: 157.022 +51200/69092 Loss: 156.562 +54400/69092 Loss: 155.457 +57600/69092 Loss: 157.330 +60800/69092 Loss: 158.825 +64000/69092 Loss: 157.376 +67200/69092 Loss: 156.851 +Training time 0:07:41.978073 +Epoch: 241 Average loss: 157.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 664) +0/69092 Loss: 159.727 +3200/69092 Loss: 157.929 +6400/69092 Loss: 159.463 +9600/69092 Loss: 157.586 +12800/69092 Loss: 155.757 +16000/69092 Loss: 160.154 +19200/69092 Loss: 156.907 +22400/69092 Loss: 156.835 +25600/69092 Loss: 158.434 +28800/69092 Loss: 158.155 +32000/69092 Loss: 156.614 +35200/69092 Loss: 158.101 +38400/69092 Loss: 156.382 +41600/69092 Loss: 157.202 +44800/69092 Loss: 156.553 +48000/69092 Loss: 158.516 +51200/69092 Loss: 157.882 +54400/69092 Loss: 157.532 +57600/69092 Loss: 159.226 +60800/69092 Loss: 157.566 +64000/69092 Loss: 156.436 +67200/69092 Loss: 155.050 +Training time 0:07:36.172927 +Epoch: 242 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 665) +0/69092 Loss: 164.934 +3200/69092 Loss: 159.192 +6400/69092 Loss: 157.854 +9600/69092 Loss: 155.690 +12800/69092 Loss: 156.738 +16000/69092 Loss: 157.358 +19200/69092 Loss: 158.618 +22400/69092 Loss: 156.325 +25600/69092 Loss: 154.404 +28800/69092 Loss: 158.225 +32000/69092 Loss: 157.006 +35200/69092 Loss: 156.456 +38400/69092 Loss: 159.631 +41600/69092 Loss: 156.939 +44800/69092 Loss: 158.114 +48000/69092 Loss: 157.912 +51200/69092 Loss: 154.870 +54400/69092 Loss: 159.142 +57600/69092 Loss: 160.029 +60800/69092 Loss: 155.246 +64000/69092 Loss: 160.011 +67200/69092 Loss: 157.988 +Training time 0:07:33.959249 +Epoch: 243 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 666) +0/69092 Loss: 165.088 +3200/69092 Loss: 155.538 +6400/69092 Loss: 157.139 +9600/69092 Loss: 157.152 +12800/69092 Loss: 158.106 +16000/69092 Loss: 156.606 +19200/69092 Loss: 156.542 +22400/69092 Loss: 155.602 +25600/69092 Loss: 157.769 +28800/69092 Loss: 155.845 +32000/69092 Loss: 161.616 +35200/69092 Loss: 158.078 +38400/69092 Loss: 154.961 +41600/69092 Loss: 159.019 +44800/69092 Loss: 158.107 +48000/69092 Loss: 157.880 +51200/69092 Loss: 159.080 +54400/69092 Loss: 156.839 +57600/69092 Loss: 158.698 +60800/69092 Loss: 156.394 +64000/69092 Loss: 157.126 +67200/69092 Loss: 159.301 +Training time 0:07:32.989240 +Epoch: 244 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 667) +0/69092 Loss: 152.444 +3200/69092 Loss: 157.637 +6400/69092 Loss: 156.684 +9600/69092 Loss: 154.209 +12800/69092 Loss: 156.289 +16000/69092 Loss: 158.931 +19200/69092 Loss: 159.552 +22400/69092 Loss: 155.623 +25600/69092 Loss: 159.546 +28800/69092 Loss: 155.009 +32000/69092 Loss: 157.174 +35200/69092 Loss: 158.050 +38400/69092 Loss: 158.391 +41600/69092 Loss: 155.482 +44800/69092 Loss: 156.941 +48000/69092 Loss: 156.623 +51200/69092 Loss: 158.083 +54400/69092 Loss: 161.623 +57600/69092 Loss: 155.900 +60800/69092 Loss: 157.517 +64000/69092 Loss: 157.320 +67200/69092 Loss: 159.660 +Training time 0:07:43.657413 +Epoch: 245 Average loss: 157.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 668) +0/69092 Loss: 152.707 +3200/69092 Loss: 158.502 +6400/69092 Loss: 157.934 +9600/69092 Loss: 156.288 +12800/69092 Loss: 159.421 +16000/69092 Loss: 156.261 +19200/69092 Loss: 157.577 +22400/69092 Loss: 156.986 +25600/69092 Loss: 154.865 +28800/69092 Loss: 158.829 +32000/69092 Loss: 156.027 +35200/69092 Loss: 157.017 +38400/69092 Loss: 154.530 +41600/69092 Loss: 155.374 +44800/69092 Loss: 159.311 +48000/69092 Loss: 157.567 +51200/69092 Loss: 160.210 +54400/69092 Loss: 158.580 +57600/69092 Loss: 159.976 +60800/69092 Loss: 160.003 +64000/69092 Loss: 156.852 +67200/69092 Loss: 155.587 +Training time 0:07:36.121956 +Epoch: 246 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 669) +0/69092 Loss: 181.860 +3200/69092 Loss: 157.105 +6400/69092 Loss: 155.907 +9600/69092 Loss: 156.386 +12800/69092 Loss: 157.277 +16000/69092 Loss: 156.455 +19200/69092 Loss: 156.895 +22400/69092 Loss: 157.734 +25600/69092 Loss: 157.851 +28800/69092 Loss: 158.176 +32000/69092 Loss: 156.525 +35200/69092 Loss: 154.914 +38400/69092 Loss: 157.737 +41600/69092 Loss: 157.862 +44800/69092 Loss: 158.928 +48000/69092 Loss: 159.542 +51200/69092 Loss: 157.113 +54400/69092 Loss: 158.738 +57600/69092 Loss: 156.704 +60800/69092 Loss: 157.582 +64000/69092 Loss: 159.843 +67200/69092 Loss: 157.081 +Training time 0:07:36.995088 +Epoch: 247 Average loss: 157.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 670) +0/69092 Loss: 152.530 +3200/69092 Loss: 156.265 +6400/69092 Loss: 155.189 +9600/69092 Loss: 156.064 +12800/69092 Loss: 158.366 +16000/69092 Loss: 159.182 +19200/69092 Loss: 157.137 +22400/69092 Loss: 156.787 +25600/69092 Loss: 160.494 +28800/69092 Loss: 155.822 +32000/69092 Loss: 156.550 +35200/69092 Loss: 155.756 +38400/69092 Loss: 155.000 +41600/69092 Loss: 155.665 +44800/69092 Loss: 160.296 +48000/69092 Loss: 159.049 +51200/69092 Loss: 159.516 +54400/69092 Loss: 161.067 +57600/69092 Loss: 154.574 +60800/69092 Loss: 159.237 +64000/69092 Loss: 157.746 +67200/69092 Loss: 160.311 +Training time 0:07:35.345169 +Epoch: 248 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 671) +0/69092 Loss: 162.783 +3200/69092 Loss: 157.681 +6400/69092 Loss: 158.285 +9600/69092 Loss: 159.105 +12800/69092 Loss: 157.653 +16000/69092 Loss: 158.883 +19200/69092 Loss: 153.858 +22400/69092 Loss: 156.370 +25600/69092 Loss: 157.553 +28800/69092 Loss: 155.266 +32000/69092 Loss: 154.497 +35200/69092 Loss: 159.008 +38400/69092 Loss: 156.035 +41600/69092 Loss: 157.882 +44800/69092 Loss: 158.786 +48000/69092 Loss: 156.896 +51200/69092 Loss: 157.845 +54400/69092 Loss: 157.316 +57600/69092 Loss: 158.213 +60800/69092 Loss: 156.744 +64000/69092 Loss: 155.998 +67200/69092 Loss: 159.556 +Training time 0:07:43.588049 +Epoch: 249 Average loss: 157.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 672) +0/69092 Loss: 145.406 +3200/69092 Loss: 158.839 +6400/69092 Loss: 156.912 +9600/69092 Loss: 159.930 +12800/69092 Loss: 157.382 +16000/69092 Loss: 154.219 +19200/69092 Loss: 159.020 +22400/69092 Loss: 156.271 +25600/69092 Loss: 154.495 +28800/69092 Loss: 157.481 +32000/69092 Loss: 158.202 +35200/69092 Loss: 158.609 +38400/69092 Loss: 155.990 +41600/69092 Loss: 155.685 +44800/69092 Loss: 158.223 +48000/69092 Loss: 157.648 +51200/69092 Loss: 158.530 +54400/69092 Loss: 156.836 +57600/69092 Loss: 156.824 +60800/69092 Loss: 157.565 +64000/69092 Loss: 158.570 +67200/69092 Loss: 159.140 +Training time 0:07:39.737410 +Epoch: 250 Average loss: 157.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 673) +0/69092 Loss: 157.635 +3200/69092 Loss: 158.552 +6400/69092 Loss: 156.030 +9600/69092 Loss: 160.073 +12800/69092 Loss: 157.446 +16000/69092 Loss: 159.477 +19200/69092 Loss: 155.846 +22400/69092 Loss: 156.788 +25600/69092 Loss: 157.874 +28800/69092 Loss: 158.564 +32000/69092 Loss: 156.002 +35200/69092 Loss: 153.275 +38400/69092 Loss: 155.809 +41600/69092 Loss: 157.106 +44800/69092 Loss: 158.700 +48000/69092 Loss: 156.193 +51200/69092 Loss: 157.711 +54400/69092 Loss: 155.676 +57600/69092 Loss: 158.656 +60800/69092 Loss: 158.858 +64000/69092 Loss: 160.502 +67200/69092 Loss: 158.877 +Training time 0:07:49.189809 +Epoch: 251 Average loss: 157.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 674) +0/69092 Loss: 167.217 +3200/69092 Loss: 157.839 +6400/69092 Loss: 158.193 +9600/69092 Loss: 154.776 +12800/69092 Loss: 155.872 +16000/69092 Loss: 158.835 +19200/69092 Loss: 156.828 +22400/69092 Loss: 159.803 +25600/69092 Loss: 158.849 +28800/69092 Loss: 156.283 +32000/69092 Loss: 155.758 +35200/69092 Loss: 158.542 +38400/69092 Loss: 158.298 +41600/69092 Loss: 157.600 +44800/69092 Loss: 159.154 +48000/69092 Loss: 155.967 +51200/69092 Loss: 156.936 +54400/69092 Loss: 159.248 +57600/69092 Loss: 157.138 +60800/69092 Loss: 157.816 +64000/69092 Loss: 155.210 +67200/69092 Loss: 159.220 +Training time 0:07:33.072866 +Epoch: 252 Average loss: 157.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 675) +0/69092 Loss: 159.543 +3200/69092 Loss: 158.999 +6400/69092 Loss: 157.556 +9600/69092 Loss: 156.440 +12800/69092 Loss: 159.147 +16000/69092 Loss: 157.413 +19200/69092 Loss: 161.325 +22400/69092 Loss: 157.194 +25600/69092 Loss: 155.274 +28800/69092 Loss: 155.720 +32000/69092 Loss: 156.870 +35200/69092 Loss: 160.702 +38400/69092 Loss: 157.420 +41600/69092 Loss: 157.496 +44800/69092 Loss: 158.645 +48000/69092 Loss: 156.718 +51200/69092 Loss: 156.572 +54400/69092 Loss: 156.028 +57600/69092 Loss: 158.541 +60800/69092 Loss: 155.314 +64000/69092 Loss: 157.135 +67200/69092 Loss: 157.360 +Training time 0:07:37.136717 +Epoch: 253 Average loss: 157.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 676) +0/69092 Loss: 139.126 +3200/69092 Loss: 158.090 +6400/69092 Loss: 158.715 +9600/69092 Loss: 154.786 +12800/69092 Loss: 156.779 +16000/69092 Loss: 159.865 +19200/69092 Loss: 155.037 +22400/69092 Loss: 158.391 +25600/69092 Loss: 161.238 +28800/69092 Loss: 157.620 +32000/69092 Loss: 156.057 +35200/69092 Loss: 160.585 +38400/69092 Loss: 154.940 +41600/69092 Loss: 156.335 +44800/69092 Loss: 160.514 +48000/69092 Loss: 158.022 +51200/69092 Loss: 161.697 +54400/69092 Loss: 156.325 +57600/69092 Loss: 155.433 +60800/69092 Loss: 155.553 +64000/69092 Loss: 158.572 +67200/69092 Loss: 155.470 +Training time 0:07:32.710693 +Epoch: 254 Average loss: 157.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 677) +0/69092 Loss: 165.030 +3200/69092 Loss: 157.949 +6400/69092 Loss: 158.148 +9600/69092 Loss: 158.408 +12800/69092 Loss: 157.474 +16000/69092 Loss: 158.042 +19200/69092 Loss: 156.091 +22400/69092 Loss: 156.129 +25600/69092 Loss: 157.499 +28800/69092 Loss: 158.058 +32000/69092 Loss: 158.349 +35200/69092 Loss: 157.292 +38400/69092 Loss: 155.642 +41600/69092 Loss: 159.201 +44800/69092 Loss: 157.683 +48000/69092 Loss: 154.592 +51200/69092 Loss: 158.938 +54400/69092 Loss: 159.736 +57600/69092 Loss: 156.224 +60800/69092 Loss: 158.542 +64000/69092 Loss: 158.136 +67200/69092 Loss: 156.483 +Training time 0:07:42.830556 +Epoch: 255 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 678) +0/69092 Loss: 137.903 +3200/69092 Loss: 159.199 +6400/69092 Loss: 157.636 +9600/69092 Loss: 156.664 +12800/69092 Loss: 156.465 +16000/69092 Loss: 160.921 +19200/69092 Loss: 159.267 +22400/69092 Loss: 155.399 +25600/69092 Loss: 156.110 +28800/69092 Loss: 159.375 +32000/69092 Loss: 156.961 +35200/69092 Loss: 157.206 +38400/69092 Loss: 157.490 +41600/69092 Loss: 155.517 +44800/69092 Loss: 158.413 +48000/69092 Loss: 155.593 +51200/69092 Loss: 157.942 +54400/69092 Loss: 159.012 +57600/69092 Loss: 156.682 +60800/69092 Loss: 159.408 +64000/69092 Loss: 154.027 +67200/69092 Loss: 160.148 +Training time 0:07:37.489644 +Epoch: 256 Average loss: 157.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 679) +0/69092 Loss: 140.880 +3200/69092 Loss: 156.649 +6400/69092 Loss: 158.730 +9600/69092 Loss: 156.898 +12800/69092 Loss: 158.728 +16000/69092 Loss: 157.619 +19200/69092 Loss: 158.391 +22400/69092 Loss: 158.116 +25600/69092 Loss: 161.976 +28800/69092 Loss: 156.874 +32000/69092 Loss: 158.399 +35200/69092 Loss: 157.130 +38400/69092 Loss: 157.954 +41600/69092 Loss: 156.492 +44800/69092 Loss: 155.536 +48000/69092 Loss: 155.078 +51200/69092 Loss: 156.746 +54400/69092 Loss: 158.005 +57600/69092 Loss: 156.873 +60800/69092 Loss: 153.324 +64000/69092 Loss: 157.212 +67200/69092 Loss: 156.518 +Training time 0:08:41.812492 +Epoch: 257 Average loss: 157.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 680) +0/69092 Loss: 138.184 +3200/69092 Loss: 156.718 +6400/69092 Loss: 158.124 +9600/69092 Loss: 154.938 +12800/69092 Loss: 158.232 +16000/69092 Loss: 156.993 +19200/69092 Loss: 159.702 +22400/69092 Loss: 157.015 +25600/69092 Loss: 159.666 +28800/69092 Loss: 159.700 +32000/69092 Loss: 157.899 +35200/69092 Loss: 156.194 +38400/69092 Loss: 159.429 +41600/69092 Loss: 157.223 +44800/69092 Loss: 157.274 +48000/69092 Loss: 160.449 +51200/69092 Loss: 155.574 +54400/69092 Loss: 155.937 +57600/69092 Loss: 157.231 +60800/69092 Loss: 158.693 +64000/69092 Loss: 156.158 +67200/69092 Loss: 157.720 +Training time 0:07:40.897864 +Epoch: 258 Average loss: 157.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 681) +0/69092 Loss: 124.902 +3200/69092 Loss: 158.009 +6400/69092 Loss: 160.588 +9600/69092 Loss: 155.904 +12800/69092 Loss: 155.931 +16000/69092 Loss: 156.695 +19200/69092 Loss: 156.970 +22400/69092 Loss: 157.453 +25600/69092 Loss: 156.306 +28800/69092 Loss: 157.191 +32000/69092 Loss: 160.078 +35200/69092 Loss: 158.584 +38400/69092 Loss: 155.771 +41600/69092 Loss: 157.530 +44800/69092 Loss: 156.359 +48000/69092 Loss: 158.986 +51200/69092 Loss: 157.743 +54400/69092 Loss: 160.276 +57600/69092 Loss: 156.841 +60800/69092 Loss: 156.391 +64000/69092 Loss: 158.078 +67200/69092 Loss: 155.318 +Training time 0:07:41.677996 +Epoch: 259 Average loss: 157.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 682) +0/69092 Loss: 150.735 +3200/69092 Loss: 157.969 +6400/69092 Loss: 157.329 +9600/69092 Loss: 158.551 +12800/69092 Loss: 159.620 +16000/69092 Loss: 157.743 +19200/69092 Loss: 159.034 +22400/69092 Loss: 156.136 +25600/69092 Loss: 155.416 +28800/69092 Loss: 155.967 +32000/69092 Loss: 155.474 +35200/69092 Loss: 159.902 +38400/69092 Loss: 157.254 +41600/69092 Loss: 157.093 +44800/69092 Loss: 157.005 +48000/69092 Loss: 156.092 +51200/69092 Loss: 158.366 +54400/69092 Loss: 158.418 +57600/69092 Loss: 157.654 +60800/69092 Loss: 155.939 +64000/69092 Loss: 158.255 +67200/69092 Loss: 159.384 +Training time 0:07:35.529990 +Epoch: 260 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 683) +0/69092 Loss: 150.084 +3200/69092 Loss: 156.844 +6400/69092 Loss: 156.512 +9600/69092 Loss: 156.607 +12800/69092 Loss: 156.718 +16000/69092 Loss: 157.412 +19200/69092 Loss: 157.445 +22400/69092 Loss: 157.137 +25600/69092 Loss: 157.410 +28800/69092 Loss: 156.848 +32000/69092 Loss: 157.330 +35200/69092 Loss: 157.259 +38400/69092 Loss: 159.093 +41600/69092 Loss: 157.905 +44800/69092 Loss: 155.528 +48000/69092 Loss: 156.322 +51200/69092 Loss: 158.055 +54400/69092 Loss: 158.270 +57600/69092 Loss: 159.768 +60800/69092 Loss: 157.772 +64000/69092 Loss: 159.548 +67200/69092 Loss: 158.298 +Training time 0:07:28.478459 +Epoch: 261 Average loss: 157.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 684) +0/69092 Loss: 171.561 +3200/69092 Loss: 157.923 +6400/69092 Loss: 159.139 +9600/69092 Loss: 156.244 +12800/69092 Loss: 161.067 +16000/69092 Loss: 158.863 +19200/69092 Loss: 160.395 +22400/69092 Loss: 155.792 +25600/69092 Loss: 157.610 +28800/69092 Loss: 158.492 +32000/69092 Loss: 157.127 +35200/69092 Loss: 156.017 +38400/69092 Loss: 157.327 +41600/69092 Loss: 156.312 +44800/69092 Loss: 157.014 +48000/69092 Loss: 155.458 +51200/69092 Loss: 154.266 +54400/69092 Loss: 162.097 +57600/69092 Loss: 159.459 +60800/69092 Loss: 156.189 +64000/69092 Loss: 155.786 +67200/69092 Loss: 158.530 +Training time 0:07:43.058545 +Epoch: 262 Average loss: 157.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 685) +0/69092 Loss: 167.708 +3200/69092 Loss: 158.033 +6400/69092 Loss: 157.344 +9600/69092 Loss: 157.700 +12800/69092 Loss: 155.776 +16000/69092 Loss: 158.295 +19200/69092 Loss: 159.296 +22400/69092 Loss: 159.852 +25600/69092 Loss: 157.460 +28800/69092 Loss: 158.619 +32000/69092 Loss: 157.040 +35200/69092 Loss: 156.105 +38400/69092 Loss: 156.671 +41600/69092 Loss: 157.075 +44800/69092 Loss: 158.154 +48000/69092 Loss: 154.487 +51200/69092 Loss: 155.113 +54400/69092 Loss: 160.538 +57600/69092 Loss: 155.589 +60800/69092 Loss: 157.508 +64000/69092 Loss: 160.337 +67200/69092 Loss: 154.938 +Training time 0:07:31.899714 +Epoch: 263 Average loss: 157.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 686) +0/69092 Loss: 137.668 +3200/69092 Loss: 157.111 +6400/69092 Loss: 160.522 +9600/69092 Loss: 157.502 +12800/69092 Loss: 156.576 +16000/69092 Loss: 157.174 +19200/69092 Loss: 156.528 +22400/69092 Loss: 155.604 +25600/69092 Loss: 158.396 +28800/69092 Loss: 162.261 +32000/69092 Loss: 156.578 +35200/69092 Loss: 154.026 +38400/69092 Loss: 157.737 +41600/69092 Loss: 159.060 +44800/69092 Loss: 157.753 +48000/69092 Loss: 158.761 +51200/69092 Loss: 157.040 +54400/69092 Loss: 158.709 +57600/69092 Loss: 154.255 +60800/69092 Loss: 156.416 +64000/69092 Loss: 160.261 +67200/69092 Loss: 158.212 +Training time 0:07:34.499681 +Epoch: 264 Average loss: 157.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 687) +0/69092 Loss: 164.637 +3200/69092 Loss: 156.188 +6400/69092 Loss: 157.435 +9600/69092 Loss: 160.656 +12800/69092 Loss: 157.974 +16000/69092 Loss: 157.627 +19200/69092 Loss: 155.596 +22400/69092 Loss: 158.257 +25600/69092 Loss: 158.706 +28800/69092 Loss: 157.658 +32000/69092 Loss: 155.946 +35200/69092 Loss: 156.116 +38400/69092 Loss: 157.252 +41600/69092 Loss: 158.349 +44800/69092 Loss: 156.059 +48000/69092 Loss: 156.505 +51200/69092 Loss: 159.020 +54400/69092 Loss: 156.486 +57600/69092 Loss: 159.544 +60800/69092 Loss: 157.354 +64000/69092 Loss: 159.575 +67200/69092 Loss: 159.196 +Training time 0:07:38.920540 +Epoch: 265 Average loss: 157.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 688) +0/69092 Loss: 149.948 +3200/69092 Loss: 155.691 +6400/69092 Loss: 154.476 +9600/69092 Loss: 158.929 +12800/69092 Loss: 157.492 +16000/69092 Loss: 154.655 +19200/69092 Loss: 156.833 +22400/69092 Loss: 157.460 +25600/69092 Loss: 156.317 +28800/69092 Loss: 160.404 +32000/69092 Loss: 157.536 +35200/69092 Loss: 158.176 +38400/69092 Loss: 158.255 +41600/69092 Loss: 159.151 +44800/69092 Loss: 159.288 +48000/69092 Loss: 156.109 +51200/69092 Loss: 158.000 +54400/69092 Loss: 158.139 +57600/69092 Loss: 160.240 +60800/69092 Loss: 156.146 +64000/69092 Loss: 158.478 +67200/69092 Loss: 156.057 +Training time 0:07:41.304395 +Epoch: 266 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 689) +0/69092 Loss: 154.804 +3200/69092 Loss: 157.990 +6400/69092 Loss: 159.491 +9600/69092 Loss: 157.213 +12800/69092 Loss: 158.820 +16000/69092 Loss: 157.402 +19200/69092 Loss: 157.387 +22400/69092 Loss: 154.706 +25600/69092 Loss: 155.631 +28800/69092 Loss: 157.437 +32000/69092 Loss: 155.631 +35200/69092 Loss: 157.743 +38400/69092 Loss: 158.059 +41600/69092 Loss: 157.678 +44800/69092 Loss: 158.915 +48000/69092 Loss: 159.970 +51200/69092 Loss: 158.124 +54400/69092 Loss: 157.595 +57600/69092 Loss: 158.616 +60800/69092 Loss: 156.601 +64000/69092 Loss: 157.488 +67200/69092 Loss: 158.032 +Training time 0:07:35.257852 +Epoch: 267 Average loss: 157.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 690) +0/69092 Loss: 151.060 +3200/69092 Loss: 156.749 +6400/69092 Loss: 151.717 +9600/69092 Loss: 157.937 +12800/69092 Loss: 157.876 +16000/69092 Loss: 157.827 +19200/69092 Loss: 158.120 +22400/69092 Loss: 157.076 +25600/69092 Loss: 157.360 +28800/69092 Loss: 158.850 +32000/69092 Loss: 160.067 +35200/69092 Loss: 157.814 +38400/69092 Loss: 156.714 +41600/69092 Loss: 155.541 +44800/69092 Loss: 157.782 +48000/69092 Loss: 158.179 +51200/69092 Loss: 158.315 +54400/69092 Loss: 158.555 +57600/69092 Loss: 157.713 +60800/69092 Loss: 157.374 +64000/69092 Loss: 158.540 +67200/69092 Loss: 155.107 +Training time 0:07:36.847943 +Epoch: 268 Average loss: 157.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 691) +0/69092 Loss: 146.647 +3200/69092 Loss: 160.471 +6400/69092 Loss: 157.051 +9600/69092 Loss: 158.092 +12800/69092 Loss: 157.591 +16000/69092 Loss: 157.686 +19200/69092 Loss: 151.771 +22400/69092 Loss: 158.309 +25600/69092 Loss: 157.546 +28800/69092 Loss: 159.462 +32000/69092 Loss: 158.719 +35200/69092 Loss: 157.994 +38400/69092 Loss: 155.524 +41600/69092 Loss: 154.891 +44800/69092 Loss: 158.220 +48000/69092 Loss: 160.938 +51200/69092 Loss: 159.594 +54400/69092 Loss: 156.666 +57600/69092 Loss: 155.518 +60800/69092 Loss: 157.903 +64000/69092 Loss: 158.688 +67200/69092 Loss: 155.682 +Training time 0:07:41.583010 +Epoch: 269 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 692) +0/69092 Loss: 156.220 +3200/69092 Loss: 153.789 +6400/69092 Loss: 156.208 +9600/69092 Loss: 156.981 +12800/69092 Loss: 156.991 +16000/69092 Loss: 159.575 +19200/69092 Loss: 157.275 +22400/69092 Loss: 159.398 +25600/69092 Loss: 156.132 +28800/69092 Loss: 158.873 +32000/69092 Loss: 156.328 +35200/69092 Loss: 157.530 +38400/69092 Loss: 155.022 +41600/69092 Loss: 157.293 +44800/69092 Loss: 156.530 +48000/69092 Loss: 159.617 +51200/69092 Loss: 157.754 +54400/69092 Loss: 155.890 +57600/69092 Loss: 160.574 +60800/69092 Loss: 159.995 +64000/69092 Loss: 157.530 +67200/69092 Loss: 156.858 +Training time 0:07:41.562144 +Epoch: 270 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 693) +0/69092 Loss: 172.112 +3200/69092 Loss: 160.308 +6400/69092 Loss: 162.254 +9600/69092 Loss: 160.804 +12800/69092 Loss: 156.522 +16000/69092 Loss: 157.060 +19200/69092 Loss: 157.016 +22400/69092 Loss: 156.770 +25600/69092 Loss: 157.280 +28800/69092 Loss: 158.316 +32000/69092 Loss: 160.076 +35200/69092 Loss: 156.920 +38400/69092 Loss: 155.420 +41600/69092 Loss: 160.004 +44800/69092 Loss: 155.001 +48000/69092 Loss: 157.122 +51200/69092 Loss: 155.133 +54400/69092 Loss: 154.623 +57600/69092 Loss: 159.797 +60800/69092 Loss: 156.337 +64000/69092 Loss: 157.381 +67200/69092 Loss: 155.793 +Training time 0:07:30.729852 +Epoch: 271 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 694) +0/69092 Loss: 167.680 +3200/69092 Loss: 156.980 +6400/69092 Loss: 155.884 +9600/69092 Loss: 159.285 +12800/69092 Loss: 158.853 +16000/69092 Loss: 161.585 +19200/69092 Loss: 158.043 +22400/69092 Loss: 156.746 +25600/69092 Loss: 158.053 +28800/69092 Loss: 157.132 +32000/69092 Loss: 153.829 +35200/69092 Loss: 156.670 +38400/69092 Loss: 158.647 +41600/69092 Loss: 155.072 +44800/69092 Loss: 160.985 +48000/69092 Loss: 157.775 +51200/69092 Loss: 154.770 +54400/69092 Loss: 157.964 +57600/69092 Loss: 157.510 +60800/69092 Loss: 157.228 +64000/69092 Loss: 156.659 +67200/69092 Loss: 157.305 +Training time 0:07:43.524459 +Epoch: 272 Average loss: 157.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 695) +0/69092 Loss: 167.797 +3200/69092 Loss: 158.578 +6400/69092 Loss: 154.811 +9600/69092 Loss: 160.185 +12800/69092 Loss: 155.726 +16000/69092 Loss: 159.100 +19200/69092 Loss: 158.056 +22400/69092 Loss: 161.618 +25600/69092 Loss: 159.943 +28800/69092 Loss: 156.218 +32000/69092 Loss: 158.256 +35200/69092 Loss: 153.625 +38400/69092 Loss: 156.100 +41600/69092 Loss: 155.861 +44800/69092 Loss: 157.910 +48000/69092 Loss: 159.175 +51200/69092 Loss: 157.337 +54400/69092 Loss: 157.381 +57600/69092 Loss: 156.793 +60800/69092 Loss: 156.070 +64000/69092 Loss: 157.054 +67200/69092 Loss: 159.082 +Training time 0:07:35.160484 +Epoch: 273 Average loss: 157.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 696) +0/69092 Loss: 146.389 +3200/69092 Loss: 157.123 +6400/69092 Loss: 159.981 +9600/69092 Loss: 157.355 +12800/69092 Loss: 156.907 +16000/69092 Loss: 156.149 +19200/69092 Loss: 157.529 +22400/69092 Loss: 158.127 +25600/69092 Loss: 159.885 +28800/69092 Loss: 155.712 +32000/69092 Loss: 157.550 +35200/69092 Loss: 155.854 +38400/69092 Loss: 156.630 +41600/69092 Loss: 158.318 +44800/69092 Loss: 157.748 +48000/69092 Loss: 160.435 +51200/69092 Loss: 158.422 +54400/69092 Loss: 156.895 +57600/69092 Loss: 155.758 +60800/69092 Loss: 158.355 +64000/69092 Loss: 155.057 +67200/69092 Loss: 157.523 +Training time 0:07:50.876576 +Epoch: 274 Average loss: 157.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 697) +0/69092 Loss: 142.083 +3200/69092 Loss: 159.597 +6400/69092 Loss: 157.307 +9600/69092 Loss: 151.973 +12800/69092 Loss: 158.961 +16000/69092 Loss: 158.612 +19200/69092 Loss: 156.589 +22400/69092 Loss: 158.650 +25600/69092 Loss: 158.789 +28800/69092 Loss: 155.355 +32000/69092 Loss: 156.042 +35200/69092 Loss: 158.158 +38400/69092 Loss: 157.172 +41600/69092 Loss: 159.512 +44800/69092 Loss: 160.031 +48000/69092 Loss: 158.648 +51200/69092 Loss: 159.265 +54400/69092 Loss: 158.366 +57600/69092 Loss: 158.198 +60800/69092 Loss: 156.951 +64000/69092 Loss: 156.118 +67200/69092 Loss: 155.880 +Training time 0:07:33.697046 +Epoch: 275 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 698) +0/69092 Loss: 171.321 +3200/69092 Loss: 155.661 +6400/69092 Loss: 155.586 +9600/69092 Loss: 157.672 +12800/69092 Loss: 154.750 +16000/69092 Loss: 157.793 +19200/69092 Loss: 158.272 +22400/69092 Loss: 157.810 +25600/69092 Loss: 160.113 +28800/69092 Loss: 158.394 +32000/69092 Loss: 158.593 +35200/69092 Loss: 155.887 +38400/69092 Loss: 160.003 +41600/69092 Loss: 154.201 +44800/69092 Loss: 158.239 +48000/69092 Loss: 157.998 +51200/69092 Loss: 156.685 +54400/69092 Loss: 156.268 +57600/69092 Loss: 157.000 +60800/69092 Loss: 157.273 +64000/69092 Loss: 158.987 +67200/69092 Loss: 157.873 +Training time 0:07:36.726057 +Epoch: 276 Average loss: 157.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 699) +0/69092 Loss: 167.596 +3200/69092 Loss: 157.971 +6400/69092 Loss: 156.976 +9600/69092 Loss: 155.775 +12800/69092 Loss: 157.938 +16000/69092 Loss: 156.099 +19200/69092 Loss: 157.671 +22400/69092 Loss: 158.223 +25600/69092 Loss: 156.549 +28800/69092 Loss: 157.698 +32000/69092 Loss: 158.130 +35200/69092 Loss: 158.142 +38400/69092 Loss: 156.906 +41600/69092 Loss: 158.899 +44800/69092 Loss: 155.386 +48000/69092 Loss: 160.891 +51200/69092 Loss: 157.796 +54400/69092 Loss: 154.575 +57600/69092 Loss: 156.941 +60800/69092 Loss: 156.318 +64000/69092 Loss: 158.514 +67200/69092 Loss: 159.779 +Training time 0:07:37.367831 +Epoch: 277 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 700) +0/69092 Loss: 165.296 +3200/69092 Loss: 160.373 +6400/69092 Loss: 157.965 +9600/69092 Loss: 157.980 +12800/69092 Loss: 157.789 +16000/69092 Loss: 157.404 +19200/69092 Loss: 159.235 +22400/69092 Loss: 157.438 +25600/69092 Loss: 156.843 +28800/69092 Loss: 156.713 +32000/69092 Loss: 155.818 +35200/69092 Loss: 156.167 +38400/69092 Loss: 155.093 +41600/69092 Loss: 157.651 +44800/69092 Loss: 160.103 +48000/69092 Loss: 155.808 +51200/69092 Loss: 157.302 +54400/69092 Loss: 159.865 +57600/69092 Loss: 158.357 +60800/69092 Loss: 155.599 +64000/69092 Loss: 156.140 +67200/69092 Loss: 154.441 +Training time 0:07:38.408207 +Epoch: 278 Average loss: 157.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 701) +0/69092 Loss: 147.480 +3200/69092 Loss: 157.266 +6400/69092 Loss: 154.348 +9600/69092 Loss: 158.170 +12800/69092 Loss: 156.369 +16000/69092 Loss: 157.915 +19200/69092 Loss: 159.682 +22400/69092 Loss: 156.452 +25600/69092 Loss: 156.686 +28800/69092 Loss: 157.188 +32000/69092 Loss: 158.046 +35200/69092 Loss: 158.989 +38400/69092 Loss: 157.229 +41600/69092 Loss: 155.170 +44800/69092 Loss: 161.901 +48000/69092 Loss: 156.488 +51200/69092 Loss: 158.907 +54400/69092 Loss: 156.270 +57600/69092 Loss: 156.652 +60800/69092 Loss: 157.642 +64000/69092 Loss: 158.532 +67200/69092 Loss: 158.501 +Training time 0:07:36.663876 +Epoch: 279 Average loss: 157.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 702) +0/69092 Loss: 152.062 +3200/69092 Loss: 157.108 +6400/69092 Loss: 156.663 +9600/69092 Loss: 157.127 +12800/69092 Loss: 158.631 +16000/69092 Loss: 159.611 +19200/69092 Loss: 158.040 +22400/69092 Loss: 159.395 +25600/69092 Loss: 156.501 +28800/69092 Loss: 155.584 +32000/69092 Loss: 156.305 +35200/69092 Loss: 153.902 +38400/69092 Loss: 160.102 +41600/69092 Loss: 159.699 +44800/69092 Loss: 156.850 +48000/69092 Loss: 157.765 +51200/69092 Loss: 156.288 +54400/69092 Loss: 158.632 +57600/69092 Loss: 159.344 +60800/69092 Loss: 158.614 +64000/69092 Loss: 155.630 +67200/69092 Loss: 154.872 +Training time 0:07:33.220694 +Epoch: 280 Average loss: 157.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 703) +0/69092 Loss: 131.567 +3200/69092 Loss: 158.315 +6400/69092 Loss: 158.409 +9600/69092 Loss: 156.568 +12800/69092 Loss: 156.065 +16000/69092 Loss: 156.406 +19200/69092 Loss: 156.014 +22400/69092 Loss: 157.036 +25600/69092 Loss: 155.302 +28800/69092 Loss: 157.809 +32000/69092 Loss: 158.977 +35200/69092 Loss: 161.593 +38400/69092 Loss: 158.303 +41600/69092 Loss: 159.882 +44800/69092 Loss: 160.027 +48000/69092 Loss: 156.316 +51200/69092 Loss: 158.364 +54400/69092 Loss: 158.806 +57600/69092 Loss: 155.088 +60800/69092 Loss: 155.857 +64000/69092 Loss: 155.195 +67200/69092 Loss: 158.472 +Training time 0:08:06.428184 +Epoch: 281 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 704) +0/69092 Loss: 154.389 +3200/69092 Loss: 153.969 diff --git a/OAR.2073652.stderr b/OAR.2073652.stderr new file mode 100644 index 0000000000000000000000000000000000000000..dbc93daec1078dca62d7b6d8b3d9de249fee0417 --- /dev/null +++ b/OAR.2073652.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 17:08:45] Job 2073652 KILLED ## diff --git a/OAR.2073652.stdout b/OAR.2073652.stdout new file mode 100644 index 0000000000000000000000000000000000000000..6a569987b3b07bb6b39c1500394b839098652d16 --- /dev/null +++ b/OAR.2073652.stdout @@ -0,0 +1,4535 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=10, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=5, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 761485 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last (iter 469)' +0/69092 Loss: 135.538 +3200/69092 Loss: 135.969 +6400/69092 Loss: 137.192 +9600/69092 Loss: 140.028 +12800/69092 Loss: 138.366 +16000/69092 Loss: 137.522 +19200/69092 Loss: 139.420 +22400/69092 Loss: 135.316 +25600/69092 Loss: 138.027 +28800/69092 Loss: 137.690 +32000/69092 Loss: 138.593 +35200/69092 Loss: 136.212 +38400/69092 Loss: 139.847 +41600/69092 Loss: 138.461 +44800/69092 Loss: 133.852 +48000/69092 Loss: 139.049 +51200/69092 Loss: 138.220 +54400/69092 Loss: 138.660 +57600/69092 Loss: 137.624 +60800/69092 Loss: 139.481 +64000/69092 Loss: 139.207 +67200/69092 Loss: 139.778 +Training time 0:10:50.309535 +Epoch: 1 Average loss: 138.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 470) +0/69092 Loss: 155.394 +3200/69092 Loss: 139.534 +6400/69092 Loss: 137.487 +9600/69092 Loss: 138.845 +12800/69092 Loss: 136.582 +16000/69092 Loss: 136.198 +19200/69092 Loss: 136.659 +22400/69092 Loss: 139.602 +25600/69092 Loss: 137.535 +28800/69092 Loss: 137.933 +32000/69092 Loss: 138.951 +35200/69092 Loss: 138.145 +38400/69092 Loss: 137.581 +41600/69092 Loss: 139.672 +44800/69092 Loss: 138.085 +48000/69092 Loss: 139.772 +51200/69092 Loss: 136.350 +54400/69092 Loss: 135.653 +57600/69092 Loss: 138.363 +60800/69092 Loss: 137.155 +64000/69092 Loss: 139.792 +67200/69092 Loss: 137.502 +Training time 0:07:01.490429 +Epoch: 2 Average loss: 138.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 471) +0/69092 Loss: 143.459 +3200/69092 Loss: 138.368 +6400/69092 Loss: 138.595 +9600/69092 Loss: 139.335 +12800/69092 Loss: 139.312 +16000/69092 Loss: 135.976 +19200/69092 Loss: 137.318 +22400/69092 Loss: 139.115 +25600/69092 Loss: 135.847 +28800/69092 Loss: 136.129 +32000/69092 Loss: 137.623 +35200/69092 Loss: 140.500 +38400/69092 Loss: 138.070 +41600/69092 Loss: 137.363 +44800/69092 Loss: 139.157 +48000/69092 Loss: 135.501 +51200/69092 Loss: 138.347 +54400/69092 Loss: 135.000 +57600/69092 Loss: 140.670 +60800/69092 Loss: 137.951 +64000/69092 Loss: 136.888 +67200/69092 Loss: 139.456 +Training time 0:06:58.555305 +Epoch: 3 Average loss: 137.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 472) +0/69092 Loss: 154.152 +3200/69092 Loss: 140.272 +6400/69092 Loss: 140.132 +9600/69092 Loss: 136.916 +12800/69092 Loss: 139.042 +16000/69092 Loss: 138.926 +19200/69092 Loss: 136.476 +22400/69092 Loss: 140.618 +25600/69092 Loss: 138.422 +28800/69092 Loss: 138.851 +32000/69092 Loss: 138.223 +35200/69092 Loss: 136.512 +38400/69092 Loss: 136.162 +41600/69092 Loss: 134.734 +44800/69092 Loss: 137.555 +48000/69092 Loss: 139.731 +51200/69092 Loss: 138.669 +54400/69092 Loss: 138.437 +57600/69092 Loss: 134.274 +60800/69092 Loss: 136.031 +64000/69092 Loss: 138.654 +67200/69092 Loss: 138.006 +Training time 0:06:57.863673 +Epoch: 4 Average loss: 137.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 473) +0/69092 Loss: 142.500 +3200/69092 Loss: 139.406 +6400/69092 Loss: 137.681 +9600/69092 Loss: 140.452 +12800/69092 Loss: 137.902 +16000/69092 Loss: 135.751 +19200/69092 Loss: 137.053 +22400/69092 Loss: 136.416 +25600/69092 Loss: 140.289 +28800/69092 Loss: 139.878 +32000/69092 Loss: 137.293 +35200/69092 Loss: 137.235 +38400/69092 Loss: 137.941 +41600/69092 Loss: 136.962 +44800/69092 Loss: 135.903 +48000/69092 Loss: 136.330 +51200/69092 Loss: 136.389 +54400/69092 Loss: 138.160 +57600/69092 Loss: 138.806 +60800/69092 Loss: 135.389 +64000/69092 Loss: 140.278 +67200/69092 Loss: 134.762 +Training time 0:07:07.191231 +Epoch: 5 Average loss: 137.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 474) +0/69092 Loss: 163.450 +3200/69092 Loss: 138.333 +6400/69092 Loss: 136.438 +9600/69092 Loss: 138.390 +12800/69092 Loss: 135.661 +16000/69092 Loss: 140.131 +19200/69092 Loss: 136.901 +22400/69092 Loss: 138.080 +25600/69092 Loss: 137.564 +28800/69092 Loss: 136.841 +32000/69092 Loss: 136.598 +35200/69092 Loss: 134.516 +38400/69092 Loss: 136.094 +41600/69092 Loss: 139.794 +44800/69092 Loss: 138.222 +48000/69092 Loss: 140.596 +51200/69092 Loss: 139.941 +54400/69092 Loss: 138.913 +57600/69092 Loss: 138.568 +60800/69092 Loss: 137.476 +64000/69092 Loss: 135.877 +67200/69092 Loss: 137.592 +Training time 0:07:00.265324 +Epoch: 6 Average loss: 137.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 475) +0/69092 Loss: 135.322 +3200/69092 Loss: 139.732 +6400/69092 Loss: 137.752 +9600/69092 Loss: 138.996 +12800/69092 Loss: 136.109 +16000/69092 Loss: 137.023 +19200/69092 Loss: 139.149 +22400/69092 Loss: 136.605 +25600/69092 Loss: 138.289 +28800/69092 Loss: 138.671 +32000/69092 Loss: 137.409 +35200/69092 Loss: 138.425 +38400/69092 Loss: 137.661 +41600/69092 Loss: 136.906 +44800/69092 Loss: 135.966 +48000/69092 Loss: 136.983 +51200/69092 Loss: 138.004 +54400/69092 Loss: 140.625 +57600/69092 Loss: 137.241 +60800/69092 Loss: 138.695 +64000/69092 Loss: 137.038 +67200/69092 Loss: 137.401 +Training time 0:07:01.052617 +Epoch: 7 Average loss: 137.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 476) +0/69092 Loss: 140.550 +3200/69092 Loss: 137.219 +6400/69092 Loss: 136.599 +9600/69092 Loss: 138.418 +12800/69092 Loss: 137.820 +16000/69092 Loss: 138.161 +19200/69092 Loss: 136.275 +22400/69092 Loss: 138.910 +25600/69092 Loss: 138.868 +28800/69092 Loss: 138.601 +32000/69092 Loss: 137.357 +35200/69092 Loss: 136.010 +38400/69092 Loss: 139.330 +41600/69092 Loss: 139.147 +44800/69092 Loss: 139.498 +48000/69092 Loss: 137.385 +51200/69092 Loss: 139.710 +54400/69092 Loss: 137.604 +57600/69092 Loss: 138.456 +60800/69092 Loss: 135.592 +64000/69092 Loss: 138.117 +67200/69092 Loss: 137.439 +Training time 0:07:05.456969 +Epoch: 8 Average loss: 137.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 477) +0/69092 Loss: 142.035 +3200/69092 Loss: 136.773 +6400/69092 Loss: 137.671 +9600/69092 Loss: 138.018 +12800/69092 Loss: 137.208 +16000/69092 Loss: 137.811 +19200/69092 Loss: 140.344 +22400/69092 Loss: 137.280 +25600/69092 Loss: 139.148 +28800/69092 Loss: 136.744 +32000/69092 Loss: 136.831 +35200/69092 Loss: 139.722 +38400/69092 Loss: 136.057 +41600/69092 Loss: 136.985 +44800/69092 Loss: 140.392 +48000/69092 Loss: 135.353 +51200/69092 Loss: 136.677 +54400/69092 Loss: 138.782 +57600/69092 Loss: 139.880 +60800/69092 Loss: 134.946 +64000/69092 Loss: 138.305 +67200/69092 Loss: 139.392 +Training time 0:06:54.722586 +Epoch: 9 Average loss: 137.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 478) +0/69092 Loss: 156.420 +3200/69092 Loss: 138.104 +6400/69092 Loss: 137.494 +9600/69092 Loss: 140.361 +12800/69092 Loss: 138.221 +16000/69092 Loss: 138.535 +19200/69092 Loss: 135.744 +22400/69092 Loss: 137.266 +25600/69092 Loss: 139.176 +28800/69092 Loss: 137.927 +32000/69092 Loss: 137.005 +35200/69092 Loss: 137.042 +38400/69092 Loss: 140.307 +41600/69092 Loss: 138.017 +44800/69092 Loss: 136.913 +48000/69092 Loss: 136.648 +51200/69092 Loss: 136.431 +54400/69092 Loss: 135.853 +57600/69092 Loss: 137.992 +60800/69092 Loss: 137.899 +64000/69092 Loss: 138.182 +67200/69092 Loss: 138.591 +Training time 0:07:06.654254 +Epoch: 10 Average loss: 137.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 479) +0/69092 Loss: 131.433 +3200/69092 Loss: 137.231 +6400/69092 Loss: 137.407 +9600/69092 Loss: 139.768 +12800/69092 Loss: 136.075 +16000/69092 Loss: 141.442 +19200/69092 Loss: 136.680 +22400/69092 Loss: 138.213 +25600/69092 Loss: 138.272 +28800/69092 Loss: 136.384 +32000/69092 Loss: 135.571 +35200/69092 Loss: 137.978 +38400/69092 Loss: 136.812 +41600/69092 Loss: 138.179 +44800/69092 Loss: 139.828 +48000/69092 Loss: 135.621 +51200/69092 Loss: 137.073 +54400/69092 Loss: 141.089 +57600/69092 Loss: 140.331 +60800/69092 Loss: 135.769 +64000/69092 Loss: 137.641 +67200/69092 Loss: 137.875 +Training time 0:07:04.261148 +Epoch: 11 Average loss: 137.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 480) +0/69092 Loss: 134.601 +3200/69092 Loss: 138.650 +6400/69092 Loss: 137.956 +9600/69092 Loss: 137.617 +12800/69092 Loss: 137.608 +16000/69092 Loss: 139.375 +19200/69092 Loss: 136.245 +22400/69092 Loss: 136.381 +25600/69092 Loss: 138.684 +28800/69092 Loss: 137.402 +32000/69092 Loss: 136.254 +35200/69092 Loss: 136.883 +38400/69092 Loss: 138.386 +41600/69092 Loss: 136.286 +44800/69092 Loss: 138.285 +48000/69092 Loss: 138.132 +51200/69092 Loss: 138.041 +54400/69092 Loss: 135.941 +57600/69092 Loss: 136.807 +60800/69092 Loss: 139.531 +64000/69092 Loss: 139.166 +67200/69092 Loss: 137.075 +Training time 0:07:01.311718 +Epoch: 12 Average loss: 137.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 481) +0/69092 Loss: 128.250 +3200/69092 Loss: 138.738 +6400/69092 Loss: 138.729 +9600/69092 Loss: 140.347 +12800/69092 Loss: 137.426 +16000/69092 Loss: 138.766 +19200/69092 Loss: 140.406 +22400/69092 Loss: 138.809 +25600/69092 Loss: 138.751 +28800/69092 Loss: 137.504 +32000/69092 Loss: 135.517 +35200/69092 Loss: 136.866 +38400/69092 Loss: 137.263 +41600/69092 Loss: 138.687 +44800/69092 Loss: 135.410 +48000/69092 Loss: 136.019 +51200/69092 Loss: 136.740 +54400/69092 Loss: 137.201 +57600/69092 Loss: 137.202 +60800/69092 Loss: 135.423 +64000/69092 Loss: 141.050 +67200/69092 Loss: 138.124 +Training time 0:06:57.452872 +Epoch: 13 Average loss: 137.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 482) +0/69092 Loss: 134.031 +3200/69092 Loss: 137.000 +6400/69092 Loss: 138.101 +9600/69092 Loss: 137.382 +12800/69092 Loss: 138.721 +16000/69092 Loss: 140.975 +19200/69092 Loss: 135.436 +22400/69092 Loss: 138.318 +25600/69092 Loss: 136.755 +28800/69092 Loss: 134.939 +32000/69092 Loss: 138.207 +35200/69092 Loss: 137.167 +38400/69092 Loss: 136.249 +41600/69092 Loss: 140.590 +44800/69092 Loss: 138.143 +48000/69092 Loss: 138.473 +51200/69092 Loss: 138.471 +54400/69092 Loss: 137.825 +57600/69092 Loss: 138.982 +60800/69092 Loss: 139.645 +64000/69092 Loss: 140.508 +67200/69092 Loss: 135.137 +Training time 0:07:04.747622 +Epoch: 14 Average loss: 137.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 483) +0/69092 Loss: 134.364 +3200/69092 Loss: 138.819 +6400/69092 Loss: 139.875 +9600/69092 Loss: 136.636 +12800/69092 Loss: 136.994 +16000/69092 Loss: 137.671 +19200/69092 Loss: 137.005 +22400/69092 Loss: 135.962 +25600/69092 Loss: 136.993 +28800/69092 Loss: 138.914 +32000/69092 Loss: 136.734 +35200/69092 Loss: 139.739 +38400/69092 Loss: 138.756 +41600/69092 Loss: 138.678 +44800/69092 Loss: 137.802 +48000/69092 Loss: 136.255 +51200/69092 Loss: 138.719 +54400/69092 Loss: 137.163 +57600/69092 Loss: 138.531 +60800/69092 Loss: 138.056 +64000/69092 Loss: 138.240 +67200/69092 Loss: 137.816 +Training time 0:07:02.619884 +Epoch: 15 Average loss: 137.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 484) +0/69092 Loss: 130.591 +3200/69092 Loss: 135.814 +6400/69092 Loss: 137.769 +9600/69092 Loss: 139.067 +12800/69092 Loss: 137.024 +16000/69092 Loss: 140.110 +19200/69092 Loss: 138.100 +22400/69092 Loss: 138.436 +25600/69092 Loss: 136.819 +28800/69092 Loss: 139.371 +32000/69092 Loss: 138.212 +35200/69092 Loss: 139.354 +38400/69092 Loss: 137.879 +41600/69092 Loss: 135.298 +44800/69092 Loss: 138.339 +48000/69092 Loss: 136.152 +51200/69092 Loss: 137.304 +54400/69092 Loss: 138.269 +57600/69092 Loss: 137.205 +60800/69092 Loss: 139.723 +64000/69092 Loss: 137.535 +67200/69092 Loss: 135.891 +Training time 0:07:06.325899 +Epoch: 16 Average loss: 137.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 485) +0/69092 Loss: 153.949 +3200/69092 Loss: 137.512 +6400/69092 Loss: 136.370 +9600/69092 Loss: 138.023 +12800/69092 Loss: 139.123 +16000/69092 Loss: 139.771 +19200/69092 Loss: 137.606 +22400/69092 Loss: 137.496 +25600/69092 Loss: 138.650 +28800/69092 Loss: 137.624 +32000/69092 Loss: 134.798 +35200/69092 Loss: 137.695 +38400/69092 Loss: 137.180 +41600/69092 Loss: 137.319 +44800/69092 Loss: 139.709 +48000/69092 Loss: 139.760 +51200/69092 Loss: 137.800 +54400/69092 Loss: 140.595 +57600/69092 Loss: 137.833 +60800/69092 Loss: 137.849 +64000/69092 Loss: 135.956 +67200/69092 Loss: 137.918 +Training time 0:06:52.729540 +Epoch: 17 Average loss: 137.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 486) +0/69092 Loss: 143.657 +3200/69092 Loss: 139.495 +6400/69092 Loss: 137.900 +9600/69092 Loss: 136.746 +12800/69092 Loss: 139.124 +16000/69092 Loss: 138.296 +19200/69092 Loss: 137.774 +22400/69092 Loss: 137.939 +25600/69092 Loss: 139.711 +28800/69092 Loss: 135.610 +32000/69092 Loss: 136.860 +35200/69092 Loss: 140.280 +38400/69092 Loss: 137.544 +41600/69092 Loss: 136.297 +44800/69092 Loss: 138.012 +48000/69092 Loss: 138.512 +51200/69092 Loss: 136.697 +54400/69092 Loss: 135.357 +57600/69092 Loss: 137.625 +60800/69092 Loss: 138.354 +64000/69092 Loss: 138.413 +67200/69092 Loss: 139.840 +Training time 0:07:03.484406 +Epoch: 18 Average loss: 137.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 487) +0/69092 Loss: 146.916 +3200/69092 Loss: 138.893 +6400/69092 Loss: 137.044 +9600/69092 Loss: 138.878 +12800/69092 Loss: 136.918 +16000/69092 Loss: 138.940 +19200/69092 Loss: 138.577 +22400/69092 Loss: 137.356 +25600/69092 Loss: 136.841 +28800/69092 Loss: 138.899 +32000/69092 Loss: 136.852 +35200/69092 Loss: 138.547 +38400/69092 Loss: 137.640 +41600/69092 Loss: 137.772 +44800/69092 Loss: 135.953 +48000/69092 Loss: 137.126 +51200/69092 Loss: 138.391 +54400/69092 Loss: 137.549 +57600/69092 Loss: 139.612 +60800/69092 Loss: 136.264 +64000/69092 Loss: 138.256 +67200/69092 Loss: 140.513 +Training time 0:07:06.743195 +Epoch: 19 Average loss: 138.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 488) +0/69092 Loss: 131.284 +3200/69092 Loss: 137.073 +6400/69092 Loss: 139.271 +9600/69092 Loss: 138.538 +12800/69092 Loss: 137.825 +16000/69092 Loss: 138.829 +19200/69092 Loss: 136.523 +22400/69092 Loss: 137.389 +25600/69092 Loss: 138.327 +28800/69092 Loss: 138.541 +32000/69092 Loss: 136.764 +35200/69092 Loss: 140.385 +38400/69092 Loss: 140.119 +41600/69092 Loss: 136.867 +44800/69092 Loss: 136.307 +48000/69092 Loss: 136.365 +51200/69092 Loss: 137.000 +54400/69092 Loss: 136.374 +57600/69092 Loss: 139.761 +60800/69092 Loss: 138.985 +64000/69092 Loss: 137.728 +67200/69092 Loss: 136.531 +Training time 0:07:02.595521 +Epoch: 20 Average loss: 137.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 489) +0/69092 Loss: 162.236 +3200/69092 Loss: 139.635 +6400/69092 Loss: 140.383 +9600/69092 Loss: 135.864 +12800/69092 Loss: 141.550 +16000/69092 Loss: 140.037 +19200/69092 Loss: 134.787 +22400/69092 Loss: 136.238 +25600/69092 Loss: 140.205 +28800/69092 Loss: 138.215 +32000/69092 Loss: 139.026 +35200/69092 Loss: 137.655 +38400/69092 Loss: 136.322 +41600/69092 Loss: 137.637 +44800/69092 Loss: 137.705 +48000/69092 Loss: 138.172 +51200/69092 Loss: 133.882 +54400/69092 Loss: 137.191 +57600/69092 Loss: 137.514 +60800/69092 Loss: 136.976 +64000/69092 Loss: 138.046 +67200/69092 Loss: 137.329 +Training time 0:07:07.352591 +Epoch: 21 Average loss: 137.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 490) +0/69092 Loss: 146.004 +3200/69092 Loss: 136.571 +6400/69092 Loss: 139.675 +9600/69092 Loss: 139.546 +12800/69092 Loss: 138.232 +16000/69092 Loss: 137.708 +19200/69092 Loss: 139.274 +22400/69092 Loss: 139.376 +25600/69092 Loss: 138.302 +28800/69092 Loss: 137.745 +32000/69092 Loss: 137.433 +35200/69092 Loss: 136.729 +38400/69092 Loss: 137.717 +41600/69092 Loss: 139.863 +44800/69092 Loss: 138.989 +48000/69092 Loss: 134.990 +51200/69092 Loss: 135.932 +54400/69092 Loss: 136.971 +57600/69092 Loss: 137.550 +60800/69092 Loss: 137.848 +64000/69092 Loss: 139.054 +67200/69092 Loss: 137.098 +Training time 0:07:02.895443 +Epoch: 22 Average loss: 137.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 491) +0/69092 Loss: 135.403 +3200/69092 Loss: 136.966 +6400/69092 Loss: 138.980 +9600/69092 Loss: 138.646 +12800/69092 Loss: 136.820 +16000/69092 Loss: 137.652 +19200/69092 Loss: 138.463 +22400/69092 Loss: 136.304 +25600/69092 Loss: 135.184 +28800/69092 Loss: 139.519 +32000/69092 Loss: 139.038 +35200/69092 Loss: 137.822 +38400/69092 Loss: 138.698 +41600/69092 Loss: 140.412 +44800/69092 Loss: 138.412 +48000/69092 Loss: 136.333 +51200/69092 Loss: 137.155 +54400/69092 Loss: 136.986 +57600/69092 Loss: 139.806 +60800/69092 Loss: 137.012 +64000/69092 Loss: 136.808 +67200/69092 Loss: 137.106 +Training time 0:07:00.968394 +Epoch: 23 Average loss: 137.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 492) +0/69092 Loss: 137.671 +3200/69092 Loss: 135.745 +6400/69092 Loss: 139.610 +9600/69092 Loss: 137.444 +12800/69092 Loss: 138.104 +16000/69092 Loss: 138.220 +19200/69092 Loss: 135.945 +22400/69092 Loss: 135.883 +25600/69092 Loss: 139.367 +28800/69092 Loss: 135.597 +32000/69092 Loss: 136.769 +35200/69092 Loss: 139.386 +38400/69092 Loss: 138.976 +41600/69092 Loss: 136.854 +44800/69092 Loss: 137.840 +48000/69092 Loss: 136.606 +51200/69092 Loss: 138.986 +54400/69092 Loss: 138.557 +57600/69092 Loss: 135.918 +60800/69092 Loss: 136.905 +64000/69092 Loss: 138.176 +67200/69092 Loss: 137.706 +Training time 0:06:54.330350 +Epoch: 24 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 493) +0/69092 Loss: 147.244 +3200/69092 Loss: 136.999 +6400/69092 Loss: 135.600 +9600/69092 Loss: 136.782 +12800/69092 Loss: 137.357 +16000/69092 Loss: 140.511 +19200/69092 Loss: 134.866 +22400/69092 Loss: 138.362 +25600/69092 Loss: 137.678 +28800/69092 Loss: 137.437 +32000/69092 Loss: 139.303 +35200/69092 Loss: 138.194 +38400/69092 Loss: 139.673 +41600/69092 Loss: 138.194 +44800/69092 Loss: 138.635 +48000/69092 Loss: 139.580 +51200/69092 Loss: 137.809 +54400/69092 Loss: 136.677 +57600/69092 Loss: 138.228 +60800/69092 Loss: 138.599 +64000/69092 Loss: 137.098 +67200/69092 Loss: 138.084 +Training time 0:07:06.224142 +Epoch: 25 Average loss: 137.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 494) +0/69092 Loss: 145.884 +3200/69092 Loss: 137.833 +6400/69092 Loss: 139.946 +9600/69092 Loss: 138.231 +12800/69092 Loss: 139.096 +16000/69092 Loss: 137.879 +19200/69092 Loss: 139.538 +22400/69092 Loss: 135.020 +25600/69092 Loss: 137.740 +28800/69092 Loss: 140.483 +32000/69092 Loss: 137.300 +35200/69092 Loss: 135.826 +38400/69092 Loss: 136.030 +41600/69092 Loss: 137.316 +44800/69092 Loss: 137.415 +48000/69092 Loss: 136.516 +51200/69092 Loss: 136.661 +54400/69092 Loss: 137.909 +57600/69092 Loss: 137.383 +60800/69092 Loss: 140.074 +64000/69092 Loss: 137.497 +67200/69092 Loss: 139.075 +Training time 0:07:04.068573 +Epoch: 26 Average loss: 137.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 495) +0/69092 Loss: 140.699 +3200/69092 Loss: 137.284 +6400/69092 Loss: 138.597 +9600/69092 Loss: 135.982 +12800/69092 Loss: 138.419 +16000/69092 Loss: 140.320 +19200/69092 Loss: 139.080 +22400/69092 Loss: 137.104 +25600/69092 Loss: 140.962 +28800/69092 Loss: 135.913 +32000/69092 Loss: 137.032 +35200/69092 Loss: 138.945 +38400/69092 Loss: 136.823 +41600/69092 Loss: 135.606 +44800/69092 Loss: 138.557 +48000/69092 Loss: 138.760 +51200/69092 Loss: 138.996 +54400/69092 Loss: 135.676 +57600/69092 Loss: 138.658 +60800/69092 Loss: 138.095 +64000/69092 Loss: 138.345 +67200/69092 Loss: 136.971 +Training time 0:06:56.399288 +Epoch: 27 Average loss: 137.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 496) +0/69092 Loss: 115.512 +3200/69092 Loss: 136.271 +6400/69092 Loss: 138.992 +9600/69092 Loss: 138.047 +12800/69092 Loss: 137.607 +16000/69092 Loss: 136.805 +19200/69092 Loss: 134.689 +22400/69092 Loss: 138.379 +25600/69092 Loss: 138.592 +28800/69092 Loss: 137.339 +32000/69092 Loss: 137.184 +35200/69092 Loss: 138.024 +38400/69092 Loss: 138.656 +41600/69092 Loss: 139.167 +44800/69092 Loss: 137.078 +48000/69092 Loss: 136.658 +51200/69092 Loss: 138.379 +54400/69092 Loss: 140.630 +57600/69092 Loss: 138.030 +60800/69092 Loss: 137.213 +64000/69092 Loss: 140.150 +67200/69092 Loss: 137.913 +Training time 0:07:05.156402 +Epoch: 28 Average loss: 137.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 497) +0/69092 Loss: 136.829 +3200/69092 Loss: 137.586 +6400/69092 Loss: 138.480 +9600/69092 Loss: 139.421 +12800/69092 Loss: 137.439 +16000/69092 Loss: 136.789 +19200/69092 Loss: 139.326 +22400/69092 Loss: 137.935 +25600/69092 Loss: 137.735 +28800/69092 Loss: 136.976 +32000/69092 Loss: 136.138 +35200/69092 Loss: 138.369 +38400/69092 Loss: 137.832 +41600/69092 Loss: 137.840 +44800/69092 Loss: 137.448 +48000/69092 Loss: 138.248 +51200/69092 Loss: 137.705 +54400/69092 Loss: 139.648 +57600/69092 Loss: 137.724 +60800/69092 Loss: 138.256 +64000/69092 Loss: 137.954 +67200/69092 Loss: 135.624 +Training time 0:07:02.959445 +Epoch: 29 Average loss: 137.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 498) +0/69092 Loss: 148.699 +3200/69092 Loss: 138.626 +6400/69092 Loss: 138.177 +9600/69092 Loss: 134.916 +12800/69092 Loss: 141.545 +16000/69092 Loss: 138.944 +19200/69092 Loss: 136.307 +22400/69092 Loss: 136.933 +25600/69092 Loss: 135.945 +28800/69092 Loss: 139.178 +32000/69092 Loss: 139.542 +35200/69092 Loss: 140.472 +38400/69092 Loss: 140.343 +41600/69092 Loss: 137.611 +44800/69092 Loss: 135.697 +48000/69092 Loss: 136.818 +51200/69092 Loss: 135.153 +54400/69092 Loss: 138.267 +57600/69092 Loss: 136.700 +60800/69092 Loss: 135.267 +64000/69092 Loss: 140.111 +67200/69092 Loss: 138.103 +Training time 0:07:01.777559 +Epoch: 30 Average loss: 137.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 499) +0/69092 Loss: 138.174 +3200/69092 Loss: 136.863 +6400/69092 Loss: 135.318 +9600/69092 Loss: 140.547 +12800/69092 Loss: 136.954 +16000/69092 Loss: 137.483 +19200/69092 Loss: 136.848 +22400/69092 Loss: 139.032 +25600/69092 Loss: 136.222 +28800/69092 Loss: 140.349 +32000/69092 Loss: 136.035 +35200/69092 Loss: 135.756 +38400/69092 Loss: 139.787 +41600/69092 Loss: 138.942 +44800/69092 Loss: 139.784 +48000/69092 Loss: 137.893 +51200/69092 Loss: 138.659 +54400/69092 Loss: 136.508 +57600/69092 Loss: 137.505 +60800/69092 Loss: 135.906 +64000/69092 Loss: 139.654 +67200/69092 Loss: 137.160 +Training time 0:07:06.187611 +Epoch: 31 Average loss: 137.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 500) +0/69092 Loss: 132.505 +3200/69092 Loss: 137.910 +6400/69092 Loss: 139.389 +9600/69092 Loss: 137.022 +12800/69092 Loss: 137.312 +16000/69092 Loss: 137.938 +19200/69092 Loss: 138.513 +22400/69092 Loss: 136.744 +25600/69092 Loss: 138.571 +28800/69092 Loss: 135.996 +32000/69092 Loss: 137.202 +35200/69092 Loss: 137.741 +38400/69092 Loss: 138.387 +41600/69092 Loss: 138.127 +44800/69092 Loss: 140.409 +48000/69092 Loss: 138.029 +51200/69092 Loss: 139.933 +54400/69092 Loss: 136.371 +57600/69092 Loss: 136.599 +60800/69092 Loss: 136.376 +64000/69092 Loss: 138.295 +67200/69092 Loss: 139.085 +Training time 0:07:04.941644 +Epoch: 32 Average loss: 137.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 501) +0/69092 Loss: 135.643 +3200/69092 Loss: 137.645 +6400/69092 Loss: 134.643 +9600/69092 Loss: 136.881 +12800/69092 Loss: 137.471 +16000/69092 Loss: 138.874 +19200/69092 Loss: 132.499 +22400/69092 Loss: 136.963 +25600/69092 Loss: 136.635 +28800/69092 Loss: 138.121 +32000/69092 Loss: 138.604 +35200/69092 Loss: 138.182 +38400/69092 Loss: 139.011 +41600/69092 Loss: 136.696 +44800/69092 Loss: 140.720 +48000/69092 Loss: 138.175 +51200/69092 Loss: 136.353 +54400/69092 Loss: 138.719 +57600/69092 Loss: 138.004 +60800/69092 Loss: 141.862 +64000/69092 Loss: 139.660 +67200/69092 Loss: 136.846 +Training time 0:06:59.691644 +Epoch: 33 Average loss: 137.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 502) +0/69092 Loss: 126.075 +3200/69092 Loss: 136.895 +6400/69092 Loss: 137.659 +9600/69092 Loss: 138.619 +12800/69092 Loss: 136.089 +16000/69092 Loss: 138.117 +19200/69092 Loss: 139.553 +22400/69092 Loss: 137.674 +25600/69092 Loss: 140.538 +28800/69092 Loss: 140.381 +32000/69092 Loss: 136.142 +35200/69092 Loss: 134.840 +38400/69092 Loss: 139.442 +41600/69092 Loss: 136.942 +44800/69092 Loss: 135.879 +48000/69092 Loss: 138.041 +51200/69092 Loss: 137.564 +54400/69092 Loss: 136.315 +57600/69092 Loss: 137.969 +60800/69092 Loss: 138.995 +64000/69092 Loss: 137.394 +67200/69092 Loss: 137.720 +Training time 0:07:01.024297 +Epoch: 34 Average loss: 137.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 503) +0/69092 Loss: 144.575 +3200/69092 Loss: 138.659 +6400/69092 Loss: 138.809 +9600/69092 Loss: 137.383 +12800/69092 Loss: 136.302 +16000/69092 Loss: 136.964 +19200/69092 Loss: 139.088 +22400/69092 Loss: 138.777 +25600/69092 Loss: 138.084 +28800/69092 Loss: 134.621 +32000/69092 Loss: 138.316 +35200/69092 Loss: 134.286 +38400/69092 Loss: 135.775 +41600/69092 Loss: 139.274 +44800/69092 Loss: 137.957 +48000/69092 Loss: 135.652 +51200/69092 Loss: 139.497 +54400/69092 Loss: 138.435 +57600/69092 Loss: 136.949 +60800/69092 Loss: 139.390 +64000/69092 Loss: 140.080 +67200/69092 Loss: 136.108 +Training time 0:07:05.065905 +Epoch: 35 Average loss: 137.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 504) +0/69092 Loss: 121.560 +3200/69092 Loss: 137.566 +6400/69092 Loss: 137.235 +9600/69092 Loss: 138.813 +12800/69092 Loss: 136.578 +16000/69092 Loss: 138.724 +19200/69092 Loss: 138.039 +22400/69092 Loss: 138.079 +25600/69092 Loss: 135.014 +28800/69092 Loss: 137.224 +32000/69092 Loss: 140.537 +35200/69092 Loss: 137.283 +38400/69092 Loss: 138.640 +41600/69092 Loss: 138.021 +44800/69092 Loss: 140.429 +48000/69092 Loss: 136.650 +51200/69092 Loss: 138.638 +54400/69092 Loss: 139.000 +57600/69092 Loss: 136.472 +60800/69092 Loss: 134.800 +64000/69092 Loss: 137.553 +67200/69092 Loss: 136.365 +Training time 0:07:00.347058 +Epoch: 36 Average loss: 137.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 505) +0/69092 Loss: 146.177 +3200/69092 Loss: 138.979 +6400/69092 Loss: 138.357 +9600/69092 Loss: 138.181 +12800/69092 Loss: 136.630 +16000/69092 Loss: 136.378 +19200/69092 Loss: 135.355 +22400/69092 Loss: 136.688 +25600/69092 Loss: 138.704 +28800/69092 Loss: 137.912 +32000/69092 Loss: 135.932 +35200/69092 Loss: 139.310 +38400/69092 Loss: 135.275 +41600/69092 Loss: 141.664 +44800/69092 Loss: 139.711 +48000/69092 Loss: 138.493 +51200/69092 Loss: 134.268 +54400/69092 Loss: 137.496 +57600/69092 Loss: 137.696 +60800/69092 Loss: 138.044 +64000/69092 Loss: 136.808 +67200/69092 Loss: 137.897 +Training time 0:07:01.900965 +Epoch: 37 Average loss: 137.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 506) +0/69092 Loss: 138.810 +3200/69092 Loss: 137.992 +6400/69092 Loss: 135.522 +9600/69092 Loss: 138.569 +12800/69092 Loss: 137.007 +16000/69092 Loss: 134.937 +19200/69092 Loss: 141.835 +22400/69092 Loss: 137.075 +25600/69092 Loss: 136.678 +28800/69092 Loss: 138.376 +32000/69092 Loss: 134.648 +35200/69092 Loss: 138.038 +38400/69092 Loss: 137.639 +41600/69092 Loss: 138.311 +44800/69092 Loss: 137.402 +48000/69092 Loss: 138.298 +51200/69092 Loss: 137.503 +54400/69092 Loss: 136.560 +57600/69092 Loss: 136.374 +60800/69092 Loss: 139.926 +64000/69092 Loss: 137.719 +67200/69092 Loss: 139.287 +Training time 0:06:56.977291 +Epoch: 38 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 507) +0/69092 Loss: 119.955 +3200/69092 Loss: 136.947 +6400/69092 Loss: 136.439 +9600/69092 Loss: 137.138 +12800/69092 Loss: 137.199 +16000/69092 Loss: 138.448 +19200/69092 Loss: 135.113 +22400/69092 Loss: 135.365 +25600/69092 Loss: 138.161 +28800/69092 Loss: 139.437 +32000/69092 Loss: 137.729 +35200/69092 Loss: 137.470 +38400/69092 Loss: 137.529 +41600/69092 Loss: 138.389 +44800/69092 Loss: 137.138 +48000/69092 Loss: 140.068 +51200/69092 Loss: 136.523 +54400/69092 Loss: 138.969 +57600/69092 Loss: 137.777 +60800/69092 Loss: 137.163 +64000/69092 Loss: 138.577 +67200/69092 Loss: 137.471 +Training time 0:07:04.552540 +Epoch: 39 Average loss: 137.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 508) +0/69092 Loss: 147.175 +3200/69092 Loss: 139.263 +6400/69092 Loss: 135.882 +9600/69092 Loss: 138.091 +12800/69092 Loss: 138.563 +16000/69092 Loss: 137.328 +19200/69092 Loss: 138.584 +22400/69092 Loss: 137.365 +25600/69092 Loss: 135.899 +28800/69092 Loss: 136.745 +32000/69092 Loss: 139.435 +35200/69092 Loss: 138.578 +38400/69092 Loss: 135.058 +41600/69092 Loss: 141.671 +44800/69092 Loss: 135.672 +48000/69092 Loss: 136.277 +51200/69092 Loss: 137.343 +54400/69092 Loss: 137.395 +57600/69092 Loss: 138.986 +60800/69092 Loss: 137.981 +64000/69092 Loss: 138.809 +67200/69092 Loss: 136.888 +Training time 0:07:03.281877 +Epoch: 40 Average loss: 137.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 509) +0/69092 Loss: 119.979 +3200/69092 Loss: 138.596 +6400/69092 Loss: 139.334 +9600/69092 Loss: 135.155 +12800/69092 Loss: 137.896 +16000/69092 Loss: 137.723 +19200/69092 Loss: 138.001 +22400/69092 Loss: 137.038 +25600/69092 Loss: 136.184 +28800/69092 Loss: 137.785 +32000/69092 Loss: 137.832 +35200/69092 Loss: 135.757 +38400/69092 Loss: 138.039 +41600/69092 Loss: 139.494 +44800/69092 Loss: 139.978 +48000/69092 Loss: 138.500 +51200/69092 Loss: 137.876 +54400/69092 Loss: 137.800 +57600/69092 Loss: 136.846 +60800/69092 Loss: 137.360 +64000/69092 Loss: 136.780 +67200/69092 Loss: 138.590 +Training time 0:07:13.055270 +Epoch: 41 Average loss: 137.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 510) +0/69092 Loss: 137.640 +3200/69092 Loss: 136.118 +6400/69092 Loss: 138.151 +9600/69092 Loss: 140.964 +12800/69092 Loss: 139.533 +16000/69092 Loss: 134.925 +19200/69092 Loss: 137.509 +22400/69092 Loss: 135.128 +25600/69092 Loss: 137.342 +28800/69092 Loss: 139.950 +32000/69092 Loss: 138.564 +35200/69092 Loss: 136.999 +38400/69092 Loss: 140.443 +41600/69092 Loss: 136.472 +44800/69092 Loss: 136.612 +48000/69092 Loss: 136.450 +51200/69092 Loss: 139.945 +54400/69092 Loss: 138.345 +57600/69092 Loss: 136.962 +60800/69092 Loss: 134.722 +64000/69092 Loss: 140.230 +67200/69092 Loss: 137.780 +Training time 0:07:04.672645 +Epoch: 42 Average loss: 137.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 511) +0/69092 Loss: 130.017 +3200/69092 Loss: 136.665 +6400/69092 Loss: 136.609 +9600/69092 Loss: 135.911 +12800/69092 Loss: 138.876 +16000/69092 Loss: 138.727 +19200/69092 Loss: 140.467 +22400/69092 Loss: 140.810 +25600/69092 Loss: 138.040 +28800/69092 Loss: 137.460 +32000/69092 Loss: 138.559 +35200/69092 Loss: 136.843 +38400/69092 Loss: 135.188 +41600/69092 Loss: 139.180 +44800/69092 Loss: 135.626 +48000/69092 Loss: 136.853 +51200/69092 Loss: 138.186 +54400/69092 Loss: 136.407 +57600/69092 Loss: 136.348 +60800/69092 Loss: 139.426 +64000/69092 Loss: 136.452 +67200/69092 Loss: 136.897 +Training time 0:07:02.960620 +Epoch: 43 Average loss: 137.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 512) +0/69092 Loss: 134.933 +3200/69092 Loss: 139.770 +6400/69092 Loss: 136.481 +9600/69092 Loss: 139.190 +12800/69092 Loss: 135.540 +16000/69092 Loss: 136.850 +19200/69092 Loss: 137.719 +22400/69092 Loss: 136.341 +25600/69092 Loss: 139.162 +28800/69092 Loss: 136.772 +32000/69092 Loss: 137.789 +35200/69092 Loss: 135.881 +38400/69092 Loss: 138.286 +41600/69092 Loss: 138.363 +44800/69092 Loss: 137.530 +48000/69092 Loss: 138.415 +51200/69092 Loss: 138.944 +54400/69092 Loss: 135.499 +57600/69092 Loss: 139.076 +60800/69092 Loss: 135.097 +64000/69092 Loss: 137.392 +67200/69092 Loss: 139.681 +Training time 0:06:55.148428 +Epoch: 44 Average loss: 137.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 513) +0/69092 Loss: 130.399 +3200/69092 Loss: 138.850 +6400/69092 Loss: 137.576 +9600/69092 Loss: 135.583 +12800/69092 Loss: 138.504 +16000/69092 Loss: 136.553 +19200/69092 Loss: 137.286 +22400/69092 Loss: 139.198 +25600/69092 Loss: 137.541 +28800/69092 Loss: 137.728 +32000/69092 Loss: 137.078 +35200/69092 Loss: 140.543 +38400/69092 Loss: 135.320 +41600/69092 Loss: 135.699 +44800/69092 Loss: 136.210 +48000/69092 Loss: 138.436 +51200/69092 Loss: 136.330 +54400/69092 Loss: 140.190 +57600/69092 Loss: 137.050 +60800/69092 Loss: 139.002 +64000/69092 Loss: 137.549 +67200/69092 Loss: 137.547 +Training time 0:07:00.340881 +Epoch: 45 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 514) +0/69092 Loss: 141.976 +3200/69092 Loss: 137.152 +6400/69092 Loss: 139.066 +9600/69092 Loss: 139.171 +12800/69092 Loss: 135.295 +16000/69092 Loss: 137.704 +19200/69092 Loss: 136.804 +22400/69092 Loss: 136.364 +25600/69092 Loss: 139.625 +28800/69092 Loss: 136.614 +32000/69092 Loss: 138.083 +35200/69092 Loss: 137.483 +38400/69092 Loss: 135.783 +41600/69092 Loss: 137.815 +44800/69092 Loss: 139.363 +48000/69092 Loss: 141.434 +51200/69092 Loss: 137.406 +54400/69092 Loss: 138.294 +57600/69092 Loss: 137.910 +60800/69092 Loss: 137.519 +64000/69092 Loss: 136.174 +67200/69092 Loss: 136.904 +Training time 0:07:02.238480 +Epoch: 46 Average loss: 137.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 515) +0/69092 Loss: 123.691 +3200/69092 Loss: 136.906 +6400/69092 Loss: 139.665 +9600/69092 Loss: 136.445 +12800/69092 Loss: 138.131 +16000/69092 Loss: 137.985 +19200/69092 Loss: 137.283 +22400/69092 Loss: 139.800 +25600/69092 Loss: 135.622 +28800/69092 Loss: 139.264 +32000/69092 Loss: 135.670 +35200/69092 Loss: 137.351 +38400/69092 Loss: 138.966 +41600/69092 Loss: 136.448 +44800/69092 Loss: 137.496 +48000/69092 Loss: 139.326 +51200/69092 Loss: 138.607 +54400/69092 Loss: 136.220 +57600/69092 Loss: 138.064 +60800/69092 Loss: 140.213 +64000/69092 Loss: 137.907 +67200/69092 Loss: 136.407 +Training time 0:07:06.345103 +Epoch: 47 Average loss: 137.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 516) +0/69092 Loss: 154.327 +3200/69092 Loss: 132.135 +6400/69092 Loss: 137.770 +9600/69092 Loss: 137.531 +12800/69092 Loss: 138.767 +16000/69092 Loss: 137.809 +19200/69092 Loss: 139.891 +22400/69092 Loss: 136.485 +25600/69092 Loss: 136.954 +28800/69092 Loss: 137.544 +32000/69092 Loss: 137.797 +35200/69092 Loss: 137.638 +38400/69092 Loss: 138.251 +41600/69092 Loss: 138.169 +44800/69092 Loss: 138.844 +48000/69092 Loss: 141.044 +51200/69092 Loss: 139.041 +54400/69092 Loss: 136.660 +57600/69092 Loss: 137.281 +60800/69092 Loss: 138.270 +64000/69092 Loss: 137.551 +67200/69092 Loss: 134.805 +Training time 0:07:04.534222 +Epoch: 48 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 517) +0/69092 Loss: 128.199 +3200/69092 Loss: 138.579 +6400/69092 Loss: 139.881 +9600/69092 Loss: 135.242 +12800/69092 Loss: 136.722 +16000/69092 Loss: 137.077 +19200/69092 Loss: 138.179 +22400/69092 Loss: 139.228 +25600/69092 Loss: 139.307 +28800/69092 Loss: 137.431 +32000/69092 Loss: 139.082 +35200/69092 Loss: 138.168 +38400/69092 Loss: 137.206 +41600/69092 Loss: 138.147 +44800/69092 Loss: 135.886 +48000/69092 Loss: 135.795 +51200/69092 Loss: 137.107 +54400/69092 Loss: 139.295 +57600/69092 Loss: 138.465 +60800/69092 Loss: 137.090 +64000/69092 Loss: 137.417 +67200/69092 Loss: 137.876 +Training time 0:07:03.969488 +Epoch: 49 Average loss: 137.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 518) +0/69092 Loss: 128.941 +3200/69092 Loss: 136.698 +6400/69092 Loss: 138.476 +9600/69092 Loss: 139.067 +12800/69092 Loss: 137.637 +16000/69092 Loss: 135.453 +19200/69092 Loss: 138.238 +22400/69092 Loss: 139.762 +25600/69092 Loss: 138.018 +28800/69092 Loss: 137.134 +32000/69092 Loss: 139.403 +35200/69092 Loss: 139.139 +38400/69092 Loss: 138.088 +41600/69092 Loss: 136.212 +44800/69092 Loss: 138.857 +48000/69092 Loss: 137.188 +51200/69092 Loss: 137.930 +54400/69092 Loss: 138.027 +57600/69092 Loss: 135.335 +60800/69092 Loss: 137.301 +64000/69092 Loss: 136.898 +67200/69092 Loss: 136.456 +Training time 0:07:02.207466 +Epoch: 50 Average loss: 137.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 519) +0/69092 Loss: 168.541 +3200/69092 Loss: 136.037 +6400/69092 Loss: 140.787 +9600/69092 Loss: 137.187 +12800/69092 Loss: 138.907 +16000/69092 Loss: 137.830 +19200/69092 Loss: 140.766 +22400/69092 Loss: 138.146 +25600/69092 Loss: 136.387 +28800/69092 Loss: 136.816 +32000/69092 Loss: 137.602 +35200/69092 Loss: 132.961 +38400/69092 Loss: 138.636 +41600/69092 Loss: 136.946 +44800/69092 Loss: 138.107 +48000/69092 Loss: 135.676 +51200/69092 Loss: 134.695 +54400/69092 Loss: 136.433 +57600/69092 Loss: 139.019 +60800/69092 Loss: 137.588 +64000/69092 Loss: 138.237 +67200/69092 Loss: 136.772 +Training time 0:07:01.494565 +Epoch: 51 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 520) +0/69092 Loss: 147.427 +3200/69092 Loss: 139.834 +6400/69092 Loss: 135.416 +9600/69092 Loss: 134.528 +12800/69092 Loss: 136.580 +16000/69092 Loss: 137.651 +19200/69092 Loss: 138.634 +22400/69092 Loss: 139.115 +25600/69092 Loss: 136.687 +28800/69092 Loss: 137.274 +32000/69092 Loss: 140.194 +35200/69092 Loss: 136.983 +38400/69092 Loss: 137.479 +41600/69092 Loss: 139.535 +44800/69092 Loss: 139.277 +48000/69092 Loss: 136.736 +51200/69092 Loss: 136.939 +54400/69092 Loss: 138.289 +57600/69092 Loss: 138.807 +60800/69092 Loss: 134.891 +64000/69092 Loss: 136.719 +67200/69092 Loss: 136.676 +Training time 0:07:03.352130 +Epoch: 52 Average loss: 137.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 521) +0/69092 Loss: 136.834 +3200/69092 Loss: 137.353 +6400/69092 Loss: 138.259 +9600/69092 Loss: 142.192 +12800/69092 Loss: 136.419 +16000/69092 Loss: 134.710 +19200/69092 Loss: 137.924 +22400/69092 Loss: 137.576 +25600/69092 Loss: 138.453 +28800/69092 Loss: 136.414 +32000/69092 Loss: 135.665 +35200/69092 Loss: 139.402 +38400/69092 Loss: 138.213 +41600/69092 Loss: 137.055 +44800/69092 Loss: 140.782 +48000/69092 Loss: 135.127 +51200/69092 Loss: 137.406 +54400/69092 Loss: 140.239 +57600/69092 Loss: 136.793 +60800/69092 Loss: 134.970 +64000/69092 Loss: 135.725 +67200/69092 Loss: 137.956 +Training time 0:07:04.745543 +Epoch: 53 Average loss: 137.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 522) +0/69092 Loss: 166.699 +3200/69092 Loss: 139.538 +6400/69092 Loss: 137.013 +9600/69092 Loss: 134.144 +12800/69092 Loss: 140.789 +16000/69092 Loss: 135.582 +19200/69092 Loss: 140.997 +22400/69092 Loss: 138.317 +25600/69092 Loss: 136.617 +28800/69092 Loss: 135.932 +32000/69092 Loss: 139.898 +35200/69092 Loss: 136.469 +38400/69092 Loss: 138.120 +41600/69092 Loss: 137.900 +44800/69092 Loss: 138.062 +48000/69092 Loss: 137.348 +51200/69092 Loss: 137.745 +54400/69092 Loss: 136.591 +57600/69092 Loss: 137.110 +60800/69092 Loss: 136.202 +64000/69092 Loss: 140.011 +67200/69092 Loss: 137.366 +Training time 0:07:04.055063 +Epoch: 54 Average loss: 137.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 523) +0/69092 Loss: 144.750 +3200/69092 Loss: 141.765 +6400/69092 Loss: 138.016 +9600/69092 Loss: 137.052 +12800/69092 Loss: 137.433 +16000/69092 Loss: 138.204 +19200/69092 Loss: 141.255 +22400/69092 Loss: 138.737 +25600/69092 Loss: 135.503 +28800/69092 Loss: 138.431 +32000/69092 Loss: 139.289 +35200/69092 Loss: 134.503 +38400/69092 Loss: 137.153 +41600/69092 Loss: 137.387 +44800/69092 Loss: 137.637 +48000/69092 Loss: 136.963 +51200/69092 Loss: 136.481 +54400/69092 Loss: 137.667 +57600/69092 Loss: 139.008 +60800/69092 Loss: 136.330 +64000/69092 Loss: 137.579 +67200/69092 Loss: 135.602 +Training time 0:06:54.653184 +Epoch: 55 Average loss: 137.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 524) +0/69092 Loss: 125.789 +3200/69092 Loss: 134.851 +6400/69092 Loss: 138.762 +9600/69092 Loss: 134.859 +12800/69092 Loss: 137.029 +16000/69092 Loss: 138.106 +19200/69092 Loss: 139.637 +22400/69092 Loss: 136.917 +25600/69092 Loss: 139.254 +28800/69092 Loss: 138.989 +32000/69092 Loss: 137.919 +35200/69092 Loss: 138.351 +38400/69092 Loss: 138.085 +41600/69092 Loss: 138.531 +44800/69092 Loss: 136.643 +48000/69092 Loss: 138.666 +51200/69092 Loss: 136.811 +54400/69092 Loss: 136.477 +57600/69092 Loss: 136.051 +60800/69092 Loss: 139.355 +64000/69092 Loss: 138.676 +67200/69092 Loss: 136.746 +Training time 0:06:58.673029 +Epoch: 56 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 525) +0/69092 Loss: 138.498 +3200/69092 Loss: 136.203 +6400/69092 Loss: 136.941 +9600/69092 Loss: 140.046 +12800/69092 Loss: 137.781 +16000/69092 Loss: 137.961 +19200/69092 Loss: 137.407 +22400/69092 Loss: 139.167 +25600/69092 Loss: 140.466 +28800/69092 Loss: 137.333 +32000/69092 Loss: 136.595 +35200/69092 Loss: 137.601 +38400/69092 Loss: 137.662 +41600/69092 Loss: 140.061 +44800/69092 Loss: 136.220 +48000/69092 Loss: 135.749 +51200/69092 Loss: 136.377 +54400/69092 Loss: 137.084 +57600/69092 Loss: 137.287 +60800/69092 Loss: 138.743 +64000/69092 Loss: 139.111 +67200/69092 Loss: 135.550 +Training time 0:07:04.328802 +Epoch: 57 Average loss: 137.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 526) +0/69092 Loss: 142.367 +3200/69092 Loss: 135.086 +6400/69092 Loss: 136.702 +9600/69092 Loss: 137.410 +12800/69092 Loss: 135.978 +16000/69092 Loss: 140.835 +19200/69092 Loss: 138.124 +22400/69092 Loss: 136.413 +25600/69092 Loss: 136.763 +28800/69092 Loss: 138.470 +32000/69092 Loss: 134.816 +35200/69092 Loss: 134.723 +38400/69092 Loss: 139.062 +41600/69092 Loss: 139.040 +44800/69092 Loss: 136.292 +48000/69092 Loss: 138.080 +51200/69092 Loss: 140.008 +54400/69092 Loss: 140.091 +57600/69092 Loss: 138.074 +60800/69092 Loss: 135.817 +64000/69092 Loss: 137.358 +67200/69092 Loss: 139.547 +Training time 0:07:02.833754 +Epoch: 58 Average loss: 137.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 527) +0/69092 Loss: 137.641 +3200/69092 Loss: 134.733 +6400/69092 Loss: 135.880 +9600/69092 Loss: 138.089 +12800/69092 Loss: 138.002 +16000/69092 Loss: 139.355 +19200/69092 Loss: 133.663 +22400/69092 Loss: 137.193 +25600/69092 Loss: 138.649 +28800/69092 Loss: 139.570 +32000/69092 Loss: 137.813 +35200/69092 Loss: 138.393 +38400/69092 Loss: 139.018 +41600/69092 Loss: 138.609 +44800/69092 Loss: 136.289 +48000/69092 Loss: 137.658 +51200/69092 Loss: 136.251 +54400/69092 Loss: 138.707 +57600/69092 Loss: 137.481 +60800/69092 Loss: 136.812 +64000/69092 Loss: 139.564 +67200/69092 Loss: 136.137 +Training time 0:07:02.024226 +Epoch: 59 Average loss: 137.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 528) +0/69092 Loss: 134.721 +3200/69092 Loss: 136.548 +6400/69092 Loss: 139.715 +9600/69092 Loss: 140.183 +12800/69092 Loss: 139.944 +16000/69092 Loss: 134.130 +19200/69092 Loss: 136.630 +22400/69092 Loss: 136.396 +25600/69092 Loss: 140.036 +28800/69092 Loss: 139.068 +32000/69092 Loss: 137.237 +35200/69092 Loss: 138.329 +38400/69092 Loss: 137.938 +41600/69092 Loss: 137.570 +44800/69092 Loss: 137.797 +48000/69092 Loss: 138.152 +51200/69092 Loss: 138.618 +54400/69092 Loss: 138.076 +57600/69092 Loss: 135.196 +60800/69092 Loss: 136.452 +64000/69092 Loss: 137.453 +67200/69092 Loss: 139.294 +Training time 0:07:00.654833 +Epoch: 60 Average loss: 137.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 529) +0/69092 Loss: 133.738 +3200/69092 Loss: 134.620 +6400/69092 Loss: 136.579 +9600/69092 Loss: 137.426 +12800/69092 Loss: 136.900 +16000/69092 Loss: 138.678 +19200/69092 Loss: 136.932 +22400/69092 Loss: 139.108 +25600/69092 Loss: 141.420 +28800/69092 Loss: 138.590 +32000/69092 Loss: 139.324 +35200/69092 Loss: 138.050 +38400/69092 Loss: 137.274 +41600/69092 Loss: 135.879 +44800/69092 Loss: 138.038 +48000/69092 Loss: 138.510 +51200/69092 Loss: 137.849 +54400/69092 Loss: 138.459 +57600/69092 Loss: 139.892 +60800/69092 Loss: 137.455 +64000/69092 Loss: 134.658 +67200/69092 Loss: 138.404 +Training time 0:07:01.776946 +Epoch: 61 Average loss: 137.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 530) +0/69092 Loss: 131.982 +3200/69092 Loss: 137.668 +6400/69092 Loss: 137.471 +9600/69092 Loss: 136.770 +12800/69092 Loss: 139.134 +16000/69092 Loss: 141.195 +19200/69092 Loss: 138.329 +22400/69092 Loss: 135.135 +25600/69092 Loss: 134.654 +28800/69092 Loss: 136.185 +32000/69092 Loss: 138.731 +35200/69092 Loss: 137.706 +38400/69092 Loss: 137.493 +41600/69092 Loss: 135.834 +44800/69092 Loss: 139.042 +48000/69092 Loss: 137.341 +51200/69092 Loss: 140.636 +54400/69092 Loss: 135.522 +57600/69092 Loss: 140.762 +60800/69092 Loss: 138.525 +64000/69092 Loss: 136.137 +67200/69092 Loss: 135.286 +Training time 0:07:04.396612 +Epoch: 62 Average loss: 137.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 531) +0/69092 Loss: 147.962 +3200/69092 Loss: 137.432 +6400/69092 Loss: 138.314 +9600/69092 Loss: 138.730 +12800/69092 Loss: 137.900 +16000/69092 Loss: 137.458 +19200/69092 Loss: 137.012 +22400/69092 Loss: 138.890 +25600/69092 Loss: 137.425 +28800/69092 Loss: 137.010 +32000/69092 Loss: 136.620 +35200/69092 Loss: 135.696 +38400/69092 Loss: 137.132 +41600/69092 Loss: 137.827 +44800/69092 Loss: 140.106 +48000/69092 Loss: 137.971 +51200/69092 Loss: 139.247 +54400/69092 Loss: 137.742 +57600/69092 Loss: 136.288 +60800/69092 Loss: 135.685 +64000/69092 Loss: 138.932 +67200/69092 Loss: 135.521 +Training time 0:07:03.659487 +Epoch: 63 Average loss: 137.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 532) +0/69092 Loss: 134.156 +3200/69092 Loss: 136.139 +6400/69092 Loss: 137.592 +9600/69092 Loss: 136.251 +12800/69092 Loss: 138.407 +16000/69092 Loss: 137.472 +19200/69092 Loss: 138.438 +22400/69092 Loss: 137.726 +25600/69092 Loss: 138.266 +28800/69092 Loss: 137.411 +32000/69092 Loss: 135.423 +35200/69092 Loss: 137.246 +38400/69092 Loss: 137.855 +41600/69092 Loss: 139.475 +44800/69092 Loss: 135.943 +48000/69092 Loss: 138.440 +51200/69092 Loss: 137.155 +54400/69092 Loss: 137.327 +57600/69092 Loss: 138.256 +60800/69092 Loss: 136.962 +64000/69092 Loss: 139.903 +67200/69092 Loss: 138.186 +Training time 0:07:05.191189 +Epoch: 64 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 533) +0/69092 Loss: 124.054 +3200/69092 Loss: 136.502 +6400/69092 Loss: 141.074 +9600/69092 Loss: 134.042 +12800/69092 Loss: 137.907 +16000/69092 Loss: 137.449 +19200/69092 Loss: 135.489 +22400/69092 Loss: 135.537 +25600/69092 Loss: 136.524 +28800/69092 Loss: 136.355 +32000/69092 Loss: 139.597 +35200/69092 Loss: 138.198 +38400/69092 Loss: 138.527 +41600/69092 Loss: 137.848 +44800/69092 Loss: 140.554 +48000/69092 Loss: 138.021 +51200/69092 Loss: 138.652 +54400/69092 Loss: 137.813 +57600/69092 Loss: 137.666 +60800/69092 Loss: 140.141 +64000/69092 Loss: 137.083 +67200/69092 Loss: 135.227 +Training time 0:06:54.458840 +Epoch: 65 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 534) +0/69092 Loss: 137.015 +3200/69092 Loss: 136.242 +6400/69092 Loss: 140.350 +9600/69092 Loss: 139.246 +12800/69092 Loss: 136.612 +16000/69092 Loss: 135.598 +19200/69092 Loss: 137.091 +22400/69092 Loss: 138.767 +25600/69092 Loss: 138.182 +28800/69092 Loss: 140.170 +32000/69092 Loss: 136.821 +35200/69092 Loss: 138.787 +38400/69092 Loss: 135.316 +41600/69092 Loss: 137.165 +44800/69092 Loss: 139.105 +48000/69092 Loss: 133.906 +51200/69092 Loss: 139.122 +54400/69092 Loss: 137.000 +57600/69092 Loss: 139.575 +60800/69092 Loss: 137.270 +64000/69092 Loss: 136.107 +67200/69092 Loss: 136.899 +Training time 0:07:06.320470 +Epoch: 66 Average loss: 137.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 535) +0/69092 Loss: 146.985 +3200/69092 Loss: 137.832 +6400/69092 Loss: 138.364 +9600/69092 Loss: 137.299 +12800/69092 Loss: 139.044 +16000/69092 Loss: 136.803 +19200/69092 Loss: 134.321 +22400/69092 Loss: 137.928 +25600/69092 Loss: 139.011 +28800/69092 Loss: 138.325 +32000/69092 Loss: 140.722 +35200/69092 Loss: 137.246 +38400/69092 Loss: 136.651 +41600/69092 Loss: 137.173 +44800/69092 Loss: 135.233 +48000/69092 Loss: 139.961 +51200/69092 Loss: 137.752 +54400/69092 Loss: 136.899 +57600/69092 Loss: 136.269 +60800/69092 Loss: 136.405 +64000/69092 Loss: 137.252 +67200/69092 Loss: 138.098 +Training time 0:07:04.457213 +Epoch: 67 Average loss: 137.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 536) +0/69092 Loss: 129.011 +3200/69092 Loss: 137.573 +6400/69092 Loss: 137.191 +9600/69092 Loss: 141.068 +12800/69092 Loss: 138.971 +16000/69092 Loss: 138.117 +19200/69092 Loss: 138.117 +22400/69092 Loss: 136.850 +25600/69092 Loss: 138.008 +28800/69092 Loss: 137.175 +32000/69092 Loss: 137.631 +35200/69092 Loss: 137.360 +38400/69092 Loss: 137.711 +41600/69092 Loss: 136.729 +44800/69092 Loss: 136.005 +48000/69092 Loss: 136.628 +51200/69092 Loss: 137.807 +54400/69092 Loss: 138.695 +57600/69092 Loss: 137.904 +60800/69092 Loss: 136.777 +64000/69092 Loss: 136.034 +67200/69092 Loss: 140.012 +Training time 0:07:04.965682 +Epoch: 68 Average loss: 137.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 537) +0/69092 Loss: 141.391 +3200/69092 Loss: 136.493 +6400/69092 Loss: 136.826 +9600/69092 Loss: 139.758 +12800/69092 Loss: 137.859 +16000/69092 Loss: 139.534 +19200/69092 Loss: 137.995 +22400/69092 Loss: 136.955 +25600/69092 Loss: 138.184 +28800/69092 Loss: 135.643 +32000/69092 Loss: 139.137 +35200/69092 Loss: 135.635 +38400/69092 Loss: 136.678 +41600/69092 Loss: 137.716 +44800/69092 Loss: 139.362 +48000/69092 Loss: 135.075 +51200/69092 Loss: 136.632 +54400/69092 Loss: 138.942 +57600/69092 Loss: 137.750 +60800/69092 Loss: 136.229 +64000/69092 Loss: 138.707 +67200/69092 Loss: 137.402 +Training time 0:07:05.773331 +Epoch: 69 Average loss: 137.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 538) +0/69092 Loss: 132.675 +3200/69092 Loss: 139.153 +6400/69092 Loss: 137.262 +9600/69092 Loss: 138.699 +12800/69092 Loss: 138.882 +16000/69092 Loss: 137.230 +19200/69092 Loss: 139.617 +22400/69092 Loss: 135.763 +25600/69092 Loss: 136.216 +28800/69092 Loss: 138.813 +32000/69092 Loss: 136.103 +35200/69092 Loss: 139.341 +38400/69092 Loss: 137.215 +41600/69092 Loss: 137.807 +44800/69092 Loss: 136.433 +48000/69092 Loss: 139.641 +51200/69092 Loss: 136.837 +54400/69092 Loss: 137.899 +57600/69092 Loss: 137.815 +60800/69092 Loss: 135.573 +64000/69092 Loss: 136.348 +67200/69092 Loss: 137.919 +Training time 0:07:07.113460 +Epoch: 70 Average loss: 137.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 539) +0/69092 Loss: 137.722 +3200/69092 Loss: 138.064 +6400/69092 Loss: 137.198 +9600/69092 Loss: 137.575 +12800/69092 Loss: 138.126 +16000/69092 Loss: 138.735 +19200/69092 Loss: 136.503 +22400/69092 Loss: 136.620 +25600/69092 Loss: 138.162 +28800/69092 Loss: 135.542 +32000/69092 Loss: 137.914 +35200/69092 Loss: 137.214 +38400/69092 Loss: 139.343 +41600/69092 Loss: 138.743 +44800/69092 Loss: 136.413 +48000/69092 Loss: 139.115 +51200/69092 Loss: 136.331 +54400/69092 Loss: 141.294 +57600/69092 Loss: 135.827 +60800/69092 Loss: 137.709 +64000/69092 Loss: 137.452 +67200/69092 Loss: 137.671 +Training time 0:07:04.002163 +Epoch: 71 Average loss: 137.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 540) +0/69092 Loss: 146.278 +3200/69092 Loss: 138.465 +6400/69092 Loss: 140.116 +9600/69092 Loss: 140.039 +12800/69092 Loss: 135.496 +16000/69092 Loss: 139.682 +19200/69092 Loss: 138.132 +22400/69092 Loss: 138.879 +25600/69092 Loss: 137.383 +28800/69092 Loss: 139.102 +32000/69092 Loss: 138.673 +35200/69092 Loss: 136.501 +38400/69092 Loss: 138.235 +41600/69092 Loss: 136.648 +44800/69092 Loss: 138.070 +48000/69092 Loss: 136.777 +51200/69092 Loss: 134.959 +54400/69092 Loss: 134.498 +57600/69092 Loss: 138.037 +60800/69092 Loss: 135.301 +64000/69092 Loss: 135.833 +67200/69092 Loss: 137.134 +Training time 0:07:06.368706 +Epoch: 72 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 541) +0/69092 Loss: 134.704 +3200/69092 Loss: 136.283 +6400/69092 Loss: 138.422 +9600/69092 Loss: 139.223 +12800/69092 Loss: 137.487 +16000/69092 Loss: 137.320 +19200/69092 Loss: 134.204 +22400/69092 Loss: 136.798 +25600/69092 Loss: 138.050 +28800/69092 Loss: 139.559 +32000/69092 Loss: 139.027 +35200/69092 Loss: 136.201 +38400/69092 Loss: 136.249 +41600/69092 Loss: 138.951 +44800/69092 Loss: 137.797 +48000/69092 Loss: 138.274 +51200/69092 Loss: 135.830 +54400/69092 Loss: 137.948 +57600/69092 Loss: 137.533 +60800/69092 Loss: 137.335 +64000/69092 Loss: 138.393 +67200/69092 Loss: 139.176 +Training time 0:07:06.181894 +Epoch: 73 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 542) +0/69092 Loss: 137.732 +3200/69092 Loss: 136.832 +6400/69092 Loss: 138.588 +9600/69092 Loss: 136.945 +12800/69092 Loss: 140.044 +16000/69092 Loss: 135.502 +19200/69092 Loss: 137.359 +22400/69092 Loss: 138.095 +25600/69092 Loss: 136.973 +28800/69092 Loss: 139.356 +32000/69092 Loss: 137.808 +35200/69092 Loss: 139.502 +38400/69092 Loss: 133.384 +41600/69092 Loss: 138.016 +44800/69092 Loss: 137.544 +48000/69092 Loss: 138.299 +51200/69092 Loss: 136.221 +54400/69092 Loss: 137.073 +57600/69092 Loss: 138.430 +60800/69092 Loss: 137.821 +64000/69092 Loss: 138.034 +67200/69092 Loss: 137.031 +Training time 0:07:02.802141 +Epoch: 74 Average loss: 137.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 543) +0/69092 Loss: 136.364 +3200/69092 Loss: 138.296 +6400/69092 Loss: 136.257 +9600/69092 Loss: 134.057 +12800/69092 Loss: 142.354 +16000/69092 Loss: 136.352 +19200/69092 Loss: 136.649 +22400/69092 Loss: 139.360 +25600/69092 Loss: 137.896 +28800/69092 Loss: 136.553 +32000/69092 Loss: 136.027 +35200/69092 Loss: 137.389 +38400/69092 Loss: 138.050 +41600/69092 Loss: 140.393 +44800/69092 Loss: 134.139 +48000/69092 Loss: 138.650 +51200/69092 Loss: 139.890 +54400/69092 Loss: 136.628 +57600/69092 Loss: 137.681 +60800/69092 Loss: 138.793 +64000/69092 Loss: 138.470 +67200/69092 Loss: 136.232 +Training time 0:07:01.680507 +Epoch: 75 Average loss: 137.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 544) +0/69092 Loss: 125.191 +3200/69092 Loss: 137.333 +6400/69092 Loss: 135.552 +9600/69092 Loss: 138.416 +12800/69092 Loss: 137.268 +16000/69092 Loss: 135.030 +19200/69092 Loss: 135.297 +22400/69092 Loss: 137.474 +25600/69092 Loss: 136.799 +28800/69092 Loss: 136.738 +32000/69092 Loss: 137.581 +35200/69092 Loss: 139.706 +38400/69092 Loss: 138.981 +41600/69092 Loss: 136.269 +44800/69092 Loss: 139.274 +48000/69092 Loss: 138.364 +51200/69092 Loss: 137.796 +54400/69092 Loss: 140.602 +57600/69092 Loss: 135.647 +60800/69092 Loss: 138.991 +64000/69092 Loss: 136.970 +67200/69092 Loss: 136.869 +Training time 0:06:58.093453 +Epoch: 76 Average loss: 137.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 545) +0/69092 Loss: 125.852 +3200/69092 Loss: 136.450 +6400/69092 Loss: 137.021 +9600/69092 Loss: 137.864 +12800/69092 Loss: 138.058 +16000/69092 Loss: 136.353 +19200/69092 Loss: 136.587 +22400/69092 Loss: 137.971 +25600/69092 Loss: 137.872 +28800/69092 Loss: 138.742 +32000/69092 Loss: 134.550 +35200/69092 Loss: 137.788 +38400/69092 Loss: 138.389 +41600/69092 Loss: 137.276 +44800/69092 Loss: 139.970 +48000/69092 Loss: 135.863 +51200/69092 Loss: 138.710 +54400/69092 Loss: 137.339 +57600/69092 Loss: 138.083 +60800/69092 Loss: 137.885 +64000/69092 Loss: 137.185 +67200/69092 Loss: 139.148 +Training time 0:07:03.920571 +Epoch: 77 Average loss: 137.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 546) +0/69092 Loss: 161.990 +3200/69092 Loss: 136.146 +6400/69092 Loss: 138.216 +9600/69092 Loss: 135.178 +12800/69092 Loss: 135.306 +16000/69092 Loss: 136.543 +19200/69092 Loss: 135.063 +22400/69092 Loss: 138.407 +25600/69092 Loss: 136.919 +28800/69092 Loss: 137.144 +32000/69092 Loss: 136.522 +35200/69092 Loss: 136.766 +38400/69092 Loss: 140.572 +41600/69092 Loss: 137.852 +44800/69092 Loss: 138.701 +48000/69092 Loss: 138.720 +51200/69092 Loss: 138.819 +54400/69092 Loss: 139.186 +57600/69092 Loss: 138.005 +60800/69092 Loss: 138.772 +64000/69092 Loss: 138.366 +67200/69092 Loss: 137.476 +Training time 0:06:56.971770 +Epoch: 78 Average loss: 137.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 547) +0/69092 Loss: 141.074 +3200/69092 Loss: 139.399 +6400/69092 Loss: 137.958 +9600/69092 Loss: 138.489 +12800/69092 Loss: 137.715 +16000/69092 Loss: 137.938 +19200/69092 Loss: 138.239 +22400/69092 Loss: 136.519 +25600/69092 Loss: 139.257 +28800/69092 Loss: 136.344 +32000/69092 Loss: 137.667 +35200/69092 Loss: 140.520 +38400/69092 Loss: 136.957 +41600/69092 Loss: 135.409 +44800/69092 Loss: 135.888 +48000/69092 Loss: 137.466 +51200/69092 Loss: 136.651 +54400/69092 Loss: 135.856 +57600/69092 Loss: 137.655 +60800/69092 Loss: 135.088 +64000/69092 Loss: 139.647 +67200/69092 Loss: 135.757 +Training time 0:07:00.840281 +Epoch: 79 Average loss: 137.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 548) +0/69092 Loss: 149.243 +3200/69092 Loss: 139.325 +6400/69092 Loss: 139.568 +9600/69092 Loss: 135.900 +12800/69092 Loss: 139.758 +16000/69092 Loss: 138.489 +19200/69092 Loss: 138.312 +22400/69092 Loss: 137.502 +25600/69092 Loss: 137.839 +28800/69092 Loss: 136.501 +32000/69092 Loss: 136.782 +35200/69092 Loss: 139.818 +38400/69092 Loss: 137.017 +41600/69092 Loss: 137.361 +44800/69092 Loss: 137.869 +48000/69092 Loss: 136.965 +51200/69092 Loss: 133.913 +54400/69092 Loss: 137.194 +57600/69092 Loss: 138.555 +60800/69092 Loss: 136.755 +64000/69092 Loss: 137.439 +67200/69092 Loss: 137.417 +Training time 0:06:57.353549 +Epoch: 80 Average loss: 137.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 549) +0/69092 Loss: 132.335 +3200/69092 Loss: 139.265 +6400/69092 Loss: 138.750 +9600/69092 Loss: 136.960 +12800/69092 Loss: 135.726 +16000/69092 Loss: 135.547 +19200/69092 Loss: 137.831 +22400/69092 Loss: 136.656 +25600/69092 Loss: 138.579 +28800/69092 Loss: 136.462 +32000/69092 Loss: 137.076 +35200/69092 Loss: 136.259 +38400/69092 Loss: 137.406 +41600/69092 Loss: 139.879 +44800/69092 Loss: 135.638 +48000/69092 Loss: 138.535 +51200/69092 Loss: 137.206 +54400/69092 Loss: 137.075 +57600/69092 Loss: 139.439 +60800/69092 Loss: 135.773 +64000/69092 Loss: 138.865 +67200/69092 Loss: 135.904 +Training time 0:07:06.864559 +Epoch: 81 Average loss: 137.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 550) +0/69092 Loss: 140.866 +3200/69092 Loss: 138.285 +6400/69092 Loss: 137.761 +9600/69092 Loss: 138.304 +12800/69092 Loss: 136.499 +16000/69092 Loss: 136.480 +19200/69092 Loss: 137.838 +22400/69092 Loss: 136.413 +25600/69092 Loss: 138.573 +28800/69092 Loss: 137.139 +32000/69092 Loss: 137.225 +35200/69092 Loss: 138.421 +38400/69092 Loss: 138.919 +41600/69092 Loss: 140.307 +44800/69092 Loss: 137.387 +48000/69092 Loss: 136.456 +51200/69092 Loss: 136.025 +54400/69092 Loss: 138.313 +57600/69092 Loss: 137.266 +60800/69092 Loss: 135.909 +64000/69092 Loss: 138.932 +67200/69092 Loss: 138.496 +Training time 0:07:03.108912 +Epoch: 82 Average loss: 137.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 551) +0/69092 Loss: 138.206 +3200/69092 Loss: 136.312 +6400/69092 Loss: 138.770 +9600/69092 Loss: 137.582 +12800/69092 Loss: 135.256 +16000/69092 Loss: 138.786 +19200/69092 Loss: 136.986 +22400/69092 Loss: 137.961 +25600/69092 Loss: 138.398 +28800/69092 Loss: 138.428 +32000/69092 Loss: 135.836 +35200/69092 Loss: 140.026 +38400/69092 Loss: 135.707 +41600/69092 Loss: 137.970 +44800/69092 Loss: 135.689 +48000/69092 Loss: 137.163 +51200/69092 Loss: 136.484 +54400/69092 Loss: 138.279 +57600/69092 Loss: 139.650 +60800/69092 Loss: 137.564 +64000/69092 Loss: 135.245 +67200/69092 Loss: 140.726 +Training time 0:07:06.806562 +Epoch: 83 Average loss: 137.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 552) +0/69092 Loss: 131.151 +3200/69092 Loss: 137.296 +6400/69092 Loss: 136.788 +9600/69092 Loss: 137.007 +12800/69092 Loss: 135.409 +16000/69092 Loss: 136.729 +19200/69092 Loss: 137.991 +22400/69092 Loss: 137.267 +25600/69092 Loss: 137.817 +28800/69092 Loss: 138.888 +32000/69092 Loss: 136.990 +35200/69092 Loss: 138.637 +38400/69092 Loss: 138.642 +41600/69092 Loss: 139.335 +44800/69092 Loss: 136.833 +48000/69092 Loss: 137.181 +51200/69092 Loss: 134.951 +54400/69092 Loss: 135.855 +57600/69092 Loss: 137.864 +60800/69092 Loss: 139.015 +64000/69092 Loss: 139.076 +67200/69092 Loss: 136.954 +Training time 0:06:58.165180 +Epoch: 84 Average loss: 137.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 553) +0/69092 Loss: 128.627 +3200/69092 Loss: 137.839 +6400/69092 Loss: 137.927 +9600/69092 Loss: 139.172 +12800/69092 Loss: 138.357 +16000/69092 Loss: 136.370 +19200/69092 Loss: 138.608 +22400/69092 Loss: 136.235 +25600/69092 Loss: 139.559 +28800/69092 Loss: 139.278 +32000/69092 Loss: 138.273 +35200/69092 Loss: 135.888 +38400/69092 Loss: 134.735 +41600/69092 Loss: 138.573 +44800/69092 Loss: 136.297 +48000/69092 Loss: 138.128 +51200/69092 Loss: 137.511 +54400/69092 Loss: 139.101 +57600/69092 Loss: 137.825 +60800/69092 Loss: 137.810 +64000/69092 Loss: 136.620 +67200/69092 Loss: 138.309 +Training time 0:06:53.044736 +Epoch: 85 Average loss: 137.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 554) +0/69092 Loss: 126.152 +3200/69092 Loss: 138.757 +6400/69092 Loss: 136.294 +9600/69092 Loss: 137.299 +12800/69092 Loss: 139.085 +16000/69092 Loss: 137.252 +19200/69092 Loss: 137.421 +22400/69092 Loss: 137.717 +25600/69092 Loss: 137.043 +28800/69092 Loss: 138.315 +32000/69092 Loss: 138.541 +35200/69092 Loss: 138.473 +38400/69092 Loss: 138.167 +41600/69092 Loss: 138.028 +44800/69092 Loss: 139.404 +48000/69092 Loss: 138.695 +51200/69092 Loss: 134.336 +54400/69092 Loss: 137.189 +57600/69092 Loss: 136.152 +60800/69092 Loss: 137.611 +64000/69092 Loss: 137.438 +67200/69092 Loss: 137.775 +Training time 0:06:59.588228 +Epoch: 86 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 555) +0/69092 Loss: 128.985 +3200/69092 Loss: 135.065 +6400/69092 Loss: 137.790 +9600/69092 Loss: 137.883 +12800/69092 Loss: 137.759 +16000/69092 Loss: 138.017 +19200/69092 Loss: 135.312 +22400/69092 Loss: 140.561 +25600/69092 Loss: 137.315 +28800/69092 Loss: 138.699 +32000/69092 Loss: 139.333 +35200/69092 Loss: 137.230 +38400/69092 Loss: 135.823 +41600/69092 Loss: 141.030 +44800/69092 Loss: 136.194 +48000/69092 Loss: 139.118 +51200/69092 Loss: 137.136 +54400/69092 Loss: 135.964 +57600/69092 Loss: 137.980 +60800/69092 Loss: 139.524 +64000/69092 Loss: 137.985 +67200/69092 Loss: 136.004 +Training time 0:07:03.033365 +Epoch: 87 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 556) +0/69092 Loss: 134.932 +3200/69092 Loss: 139.005 +6400/69092 Loss: 138.687 +9600/69092 Loss: 136.539 +12800/69092 Loss: 140.354 +16000/69092 Loss: 138.659 +19200/69092 Loss: 136.413 +22400/69092 Loss: 136.883 +25600/69092 Loss: 136.617 +28800/69092 Loss: 134.222 +32000/69092 Loss: 138.373 +35200/69092 Loss: 135.156 +38400/69092 Loss: 139.113 +41600/69092 Loss: 136.176 +44800/69092 Loss: 137.891 +48000/69092 Loss: 138.615 +51200/69092 Loss: 138.471 +54400/69092 Loss: 138.331 +57600/69092 Loss: 139.576 +60800/69092 Loss: 137.767 +64000/69092 Loss: 139.469 +67200/69092 Loss: 136.544 +Training time 0:07:02.798628 +Epoch: 88 Average loss: 137.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 557) +0/69092 Loss: 156.930 +3200/69092 Loss: 135.866 +6400/69092 Loss: 138.552 +9600/69092 Loss: 137.309 +12800/69092 Loss: 135.493 +16000/69092 Loss: 139.729 +19200/69092 Loss: 135.331 +22400/69092 Loss: 137.346 +25600/69092 Loss: 138.662 +28800/69092 Loss: 137.038 +32000/69092 Loss: 140.117 +35200/69092 Loss: 136.975 +38400/69092 Loss: 139.352 +41600/69092 Loss: 138.388 +44800/69092 Loss: 137.258 +48000/69092 Loss: 139.113 +51200/69092 Loss: 139.074 +54400/69092 Loss: 136.762 +57600/69092 Loss: 137.131 +60800/69092 Loss: 135.860 +64000/69092 Loss: 136.301 +67200/69092 Loss: 136.279 +Training time 0:07:04.790198 +Epoch: 89 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 558) +0/69092 Loss: 138.511 +3200/69092 Loss: 136.210 +6400/69092 Loss: 135.587 +9600/69092 Loss: 138.228 +12800/69092 Loss: 137.891 +16000/69092 Loss: 138.360 +19200/69092 Loss: 138.384 +22400/69092 Loss: 135.816 +25600/69092 Loss: 137.243 +28800/69092 Loss: 140.028 +32000/69092 Loss: 137.089 +35200/69092 Loss: 139.611 +38400/69092 Loss: 137.061 +41600/69092 Loss: 138.263 +44800/69092 Loss: 139.515 +48000/69092 Loss: 138.667 +51200/69092 Loss: 140.072 +54400/69092 Loss: 135.583 +57600/69092 Loss: 138.043 +60800/69092 Loss: 136.352 +64000/69092 Loss: 138.327 +67200/69092 Loss: 135.535 +Training time 0:07:03.313215 +Epoch: 90 Average loss: 137.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 559) +0/69092 Loss: 143.809 +3200/69092 Loss: 134.594 +6400/69092 Loss: 137.333 +9600/69092 Loss: 138.115 +12800/69092 Loss: 138.883 +16000/69092 Loss: 137.260 +19200/69092 Loss: 136.027 +22400/69092 Loss: 137.442 +25600/69092 Loss: 138.602 +28800/69092 Loss: 136.506 +32000/69092 Loss: 137.576 +35200/69092 Loss: 138.102 +38400/69092 Loss: 137.898 +41600/69092 Loss: 136.908 +44800/69092 Loss: 140.000 +48000/69092 Loss: 136.899 +51200/69092 Loss: 140.654 +54400/69092 Loss: 136.052 +57600/69092 Loss: 138.567 +60800/69092 Loss: 138.635 +64000/69092 Loss: 138.058 +67200/69092 Loss: 137.750 +Training time 0:07:03.856442 +Epoch: 91 Average loss: 137.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 560) +0/69092 Loss: 135.565 +3200/69092 Loss: 138.729 +6400/69092 Loss: 139.497 +9600/69092 Loss: 137.149 +12800/69092 Loss: 137.232 +16000/69092 Loss: 135.914 +19200/69092 Loss: 137.866 +22400/69092 Loss: 136.592 +25600/69092 Loss: 138.468 +28800/69092 Loss: 138.532 +32000/69092 Loss: 135.842 +35200/69092 Loss: 135.261 +38400/69092 Loss: 136.950 +41600/69092 Loss: 139.182 +44800/69092 Loss: 136.167 +48000/69092 Loss: 139.098 +51200/69092 Loss: 138.782 +54400/69092 Loss: 137.054 +57600/69092 Loss: 137.813 +60800/69092 Loss: 136.379 +64000/69092 Loss: 135.963 +67200/69092 Loss: 138.597 +Training time 0:06:56.201143 +Epoch: 92 Average loss: 137.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 561) +0/69092 Loss: 135.278 +3200/69092 Loss: 137.250 +6400/69092 Loss: 136.187 +9600/69092 Loss: 132.068 +12800/69092 Loss: 136.642 +16000/69092 Loss: 137.665 +19200/69092 Loss: 136.472 +22400/69092 Loss: 138.845 +25600/69092 Loss: 137.881 +28800/69092 Loss: 137.139 +32000/69092 Loss: 138.056 +35200/69092 Loss: 135.353 +38400/69092 Loss: 136.853 +41600/69092 Loss: 138.728 +44800/69092 Loss: 139.212 +48000/69092 Loss: 137.727 +51200/69092 Loss: 137.876 +54400/69092 Loss: 140.069 +57600/69092 Loss: 137.047 +60800/69092 Loss: 140.564 +64000/69092 Loss: 136.693 +67200/69092 Loss: 138.684 +Training time 0:07:02.806557 +Epoch: 93 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 562) +0/69092 Loss: 132.208 +3200/69092 Loss: 136.266 +6400/69092 Loss: 135.165 +9600/69092 Loss: 140.734 +12800/69092 Loss: 136.540 +16000/69092 Loss: 137.836 +19200/69092 Loss: 140.870 +22400/69092 Loss: 138.118 +25600/69092 Loss: 137.122 +28800/69092 Loss: 137.464 +32000/69092 Loss: 134.333 +35200/69092 Loss: 137.472 +38400/69092 Loss: 136.207 +41600/69092 Loss: 135.616 +44800/69092 Loss: 137.309 +48000/69092 Loss: 138.895 +51200/69092 Loss: 138.484 +54400/69092 Loss: 136.076 +57600/69092 Loss: 140.025 +60800/69092 Loss: 135.623 +64000/69092 Loss: 137.328 +67200/69092 Loss: 139.125 +Training time 0:07:04.786560 +Epoch: 94 Average loss: 137.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 563) +0/69092 Loss: 150.682 +3200/69092 Loss: 137.684 +6400/69092 Loss: 135.759 +9600/69092 Loss: 134.590 +12800/69092 Loss: 136.999 +16000/69092 Loss: 136.298 +19200/69092 Loss: 137.434 +22400/69092 Loss: 137.408 +25600/69092 Loss: 136.789 +28800/69092 Loss: 136.977 +32000/69092 Loss: 137.441 +35200/69092 Loss: 139.139 +38400/69092 Loss: 137.962 +41600/69092 Loss: 137.652 +44800/69092 Loss: 136.993 +48000/69092 Loss: 138.766 +51200/69092 Loss: 141.769 +54400/69092 Loss: 137.211 +57600/69092 Loss: 135.588 +60800/69092 Loss: 140.397 +64000/69092 Loss: 137.453 +67200/69092 Loss: 136.431 +Training time 0:07:05.200543 +Epoch: 95 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 564) +0/69092 Loss: 135.517 +3200/69092 Loss: 136.046 +6400/69092 Loss: 137.769 +9600/69092 Loss: 136.884 +12800/69092 Loss: 138.431 +16000/69092 Loss: 138.801 +19200/69092 Loss: 135.763 +22400/69092 Loss: 137.235 +25600/69092 Loss: 135.689 +28800/69092 Loss: 138.487 +32000/69092 Loss: 138.191 +35200/69092 Loss: 137.319 +38400/69092 Loss: 138.876 +41600/69092 Loss: 138.423 +44800/69092 Loss: 136.980 +48000/69092 Loss: 135.971 +51200/69092 Loss: 138.629 +54400/69092 Loss: 137.472 +57600/69092 Loss: 135.998 +60800/69092 Loss: 136.609 +64000/69092 Loss: 138.640 +67200/69092 Loss: 138.710 +Training time 0:06:57.307091 +Epoch: 96 Average loss: 137.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 565) +0/69092 Loss: 145.323 +3200/69092 Loss: 136.216 +6400/69092 Loss: 138.983 +9600/69092 Loss: 138.974 +12800/69092 Loss: 136.031 +16000/69092 Loss: 137.332 +19200/69092 Loss: 137.473 +22400/69092 Loss: 134.256 +25600/69092 Loss: 138.401 +28800/69092 Loss: 139.802 +32000/69092 Loss: 137.772 +35200/69092 Loss: 137.333 +38400/69092 Loss: 136.083 +41600/69092 Loss: 136.849 +44800/69092 Loss: 136.716 +48000/69092 Loss: 136.813 +51200/69092 Loss: 139.985 +54400/69092 Loss: 136.601 +57600/69092 Loss: 138.674 +60800/69092 Loss: 138.393 +64000/69092 Loss: 135.959 +67200/69092 Loss: 137.683 +Training time 0:06:57.217045 +Epoch: 97 Average loss: 137.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 566) +0/69092 Loss: 121.019 +3200/69092 Loss: 137.140 +6400/69092 Loss: 137.980 +9600/69092 Loss: 135.733 +12800/69092 Loss: 137.737 +16000/69092 Loss: 137.739 +19200/69092 Loss: 139.915 +22400/69092 Loss: 138.259 +25600/69092 Loss: 137.409 +28800/69092 Loss: 136.399 +32000/69092 Loss: 139.573 +35200/69092 Loss: 136.591 +38400/69092 Loss: 138.457 +41600/69092 Loss: 137.257 +44800/69092 Loss: 139.082 +48000/69092 Loss: 138.394 +51200/69092 Loss: 136.753 +54400/69092 Loss: 136.515 +57600/69092 Loss: 139.582 +60800/69092 Loss: 138.280 +64000/69092 Loss: 136.440 +67200/69092 Loss: 136.432 +Training time 0:06:56.682158 +Epoch: 98 Average loss: 137.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 567) +0/69092 Loss: 162.177 +3200/69092 Loss: 136.476 +6400/69092 Loss: 137.412 +9600/69092 Loss: 137.967 +12800/69092 Loss: 135.089 +16000/69092 Loss: 138.224 +19200/69092 Loss: 135.961 +22400/69092 Loss: 138.583 +25600/69092 Loss: 137.202 +28800/69092 Loss: 138.333 +32000/69092 Loss: 138.282 +35200/69092 Loss: 136.696 +38400/69092 Loss: 137.557 +41600/69092 Loss: 140.194 +44800/69092 Loss: 136.435 +48000/69092 Loss: 135.845 +51200/69092 Loss: 136.661 +54400/69092 Loss: 140.613 +57600/69092 Loss: 136.833 +60800/69092 Loss: 138.077 +64000/69092 Loss: 135.930 +67200/69092 Loss: 139.023 +Training time 0:07:01.005958 +Epoch: 99 Average loss: 137.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 568) +0/69092 Loss: 152.814 +3200/69092 Loss: 135.508 +6400/69092 Loss: 136.148 +9600/69092 Loss: 137.351 +12800/69092 Loss: 138.427 +16000/69092 Loss: 137.623 +19200/69092 Loss: 135.437 +22400/69092 Loss: 137.985 +25600/69092 Loss: 137.637 +28800/69092 Loss: 137.108 +32000/69092 Loss: 139.696 +35200/69092 Loss: 140.132 +38400/69092 Loss: 136.973 +41600/69092 Loss: 139.388 +44800/69092 Loss: 139.250 +48000/69092 Loss: 139.945 +51200/69092 Loss: 138.455 +54400/69092 Loss: 136.112 +57600/69092 Loss: 136.089 +60800/69092 Loss: 137.288 +64000/69092 Loss: 137.065 +67200/69092 Loss: 135.359 +Training time 0:07:07.197932 +Epoch: 100 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 569) +0/69092 Loss: 141.706 +3200/69092 Loss: 140.070 +6400/69092 Loss: 135.587 +9600/69092 Loss: 136.472 +12800/69092 Loss: 136.435 +16000/69092 Loss: 138.586 +19200/69092 Loss: 137.550 +22400/69092 Loss: 138.674 +25600/69092 Loss: 135.954 +28800/69092 Loss: 139.889 +32000/69092 Loss: 140.002 +35200/69092 Loss: 137.279 +38400/69092 Loss: 139.549 +41600/69092 Loss: 138.584 +44800/69092 Loss: 137.056 +48000/69092 Loss: 138.026 +51200/69092 Loss: 139.035 +54400/69092 Loss: 136.527 +57600/69092 Loss: 132.871 +60800/69092 Loss: 135.484 +64000/69092 Loss: 138.275 +67200/69092 Loss: 136.444 +Training time 0:07:03.974461 +Epoch: 101 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 570) +0/69092 Loss: 136.064 +3200/69092 Loss: 139.152 +6400/69092 Loss: 134.847 +9600/69092 Loss: 138.018 +12800/69092 Loss: 136.954 +16000/69092 Loss: 136.100 +19200/69092 Loss: 136.513 +22400/69092 Loss: 138.138 +25600/69092 Loss: 137.796 +28800/69092 Loss: 137.556 +32000/69092 Loss: 139.746 +35200/69092 Loss: 138.035 +38400/69092 Loss: 138.688 +41600/69092 Loss: 135.731 +44800/69092 Loss: 138.542 +48000/69092 Loss: 137.158 +51200/69092 Loss: 136.604 +54400/69092 Loss: 138.319 +57600/69092 Loss: 136.721 +60800/69092 Loss: 137.902 +64000/69092 Loss: 136.349 +67200/69092 Loss: 136.986 +Training time 0:07:03.623227 +Epoch: 102 Average loss: 137.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 571) +0/69092 Loss: 133.811 +3200/69092 Loss: 135.743 +6400/69092 Loss: 138.152 +9600/69092 Loss: 138.356 +12800/69092 Loss: 139.701 +16000/69092 Loss: 136.376 +19200/69092 Loss: 140.075 +22400/69092 Loss: 138.654 +25600/69092 Loss: 137.332 +28800/69092 Loss: 135.600 +32000/69092 Loss: 137.387 +35200/69092 Loss: 134.974 +38400/69092 Loss: 136.499 +41600/69092 Loss: 135.534 +44800/69092 Loss: 138.471 +48000/69092 Loss: 138.219 +51200/69092 Loss: 137.264 +54400/69092 Loss: 135.032 +57600/69092 Loss: 137.345 +60800/69092 Loss: 139.170 +64000/69092 Loss: 138.647 +67200/69092 Loss: 137.419 +Training time 0:07:06.695748 +Epoch: 103 Average loss: 137.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 572) +0/69092 Loss: 134.644 +3200/69092 Loss: 139.694 +6400/69092 Loss: 137.753 +9600/69092 Loss: 138.768 +12800/69092 Loss: 139.049 +16000/69092 Loss: 137.833 +19200/69092 Loss: 139.649 +22400/69092 Loss: 135.966 +25600/69092 Loss: 140.097 +28800/69092 Loss: 136.961 +32000/69092 Loss: 138.124 +35200/69092 Loss: 136.622 +38400/69092 Loss: 137.996 +41600/69092 Loss: 139.213 +44800/69092 Loss: 135.309 +48000/69092 Loss: 138.735 +51200/69092 Loss: 134.773 +54400/69092 Loss: 135.717 +57600/69092 Loss: 137.293 +60800/69092 Loss: 136.343 +64000/69092 Loss: 137.692 +67200/69092 Loss: 135.065 +Training time 0:06:56.025388 +Epoch: 104 Average loss: 137.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 573) +0/69092 Loss: 115.409 +3200/69092 Loss: 135.182 +6400/69092 Loss: 135.308 +9600/69092 Loss: 139.501 +12800/69092 Loss: 136.359 +16000/69092 Loss: 140.471 +19200/69092 Loss: 134.181 +22400/69092 Loss: 136.227 +25600/69092 Loss: 134.309 +28800/69092 Loss: 139.164 +32000/69092 Loss: 137.411 +35200/69092 Loss: 138.485 +38400/69092 Loss: 138.820 +41600/69092 Loss: 135.309 +44800/69092 Loss: 137.792 +48000/69092 Loss: 138.016 +51200/69092 Loss: 138.643 +54400/69092 Loss: 139.641 +57600/69092 Loss: 138.841 +60800/69092 Loss: 138.372 +64000/69092 Loss: 137.464 +67200/69092 Loss: 137.479 +Training time 0:06:57.566302 +Epoch: 105 Average loss: 137.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 574) +0/69092 Loss: 133.853 +3200/69092 Loss: 139.869 +6400/69092 Loss: 140.069 +9600/69092 Loss: 138.346 +12800/69092 Loss: 136.207 +16000/69092 Loss: 135.186 +19200/69092 Loss: 137.963 +22400/69092 Loss: 137.347 +25600/69092 Loss: 138.038 +28800/69092 Loss: 136.558 +32000/69092 Loss: 138.078 +35200/69092 Loss: 140.048 +38400/69092 Loss: 137.205 +41600/69092 Loss: 140.222 +44800/69092 Loss: 138.219 +48000/69092 Loss: 135.378 +51200/69092 Loss: 137.162 +54400/69092 Loss: 138.933 +57600/69092 Loss: 136.469 +60800/69092 Loss: 136.783 +64000/69092 Loss: 137.024 +67200/69092 Loss: 136.859 +Training time 0:07:01.537553 +Epoch: 106 Average loss: 137.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 575) +0/69092 Loss: 137.980 +3200/69092 Loss: 137.503 +6400/69092 Loss: 137.691 +9600/69092 Loss: 139.284 +12800/69092 Loss: 136.908 +16000/69092 Loss: 135.983 +19200/69092 Loss: 137.016 +22400/69092 Loss: 138.137 +25600/69092 Loss: 135.964 +28800/69092 Loss: 137.611 +32000/69092 Loss: 139.805 +35200/69092 Loss: 137.050 +38400/69092 Loss: 136.471 +41600/69092 Loss: 136.766 +44800/69092 Loss: 138.421 +48000/69092 Loss: 134.423 +51200/69092 Loss: 138.860 +54400/69092 Loss: 135.853 +57600/69092 Loss: 138.341 +60800/69092 Loss: 140.546 +64000/69092 Loss: 137.999 +67200/69092 Loss: 137.015 +Training time 0:07:07.926278 +Epoch: 107 Average loss: 137.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 576) +0/69092 Loss: 145.514 +3200/69092 Loss: 139.730 +6400/69092 Loss: 137.256 +9600/69092 Loss: 136.303 +12800/69092 Loss: 135.934 +16000/69092 Loss: 138.360 +19200/69092 Loss: 135.878 +22400/69092 Loss: 137.107 +25600/69092 Loss: 135.649 +28800/69092 Loss: 135.059 +32000/69092 Loss: 137.441 +35200/69092 Loss: 138.506 +38400/69092 Loss: 137.365 +41600/69092 Loss: 137.307 +44800/69092 Loss: 137.455 +48000/69092 Loss: 137.289 +51200/69092 Loss: 138.579 +54400/69092 Loss: 137.191 +57600/69092 Loss: 137.107 +60800/69092 Loss: 137.320 +64000/69092 Loss: 138.310 +67200/69092 Loss: 137.822 +Training time 0:07:00.513488 +Epoch: 108 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 577) +0/69092 Loss: 141.379 +3200/69092 Loss: 136.139 +6400/69092 Loss: 137.798 +9600/69092 Loss: 136.773 +12800/69092 Loss: 137.673 +16000/69092 Loss: 137.237 +19200/69092 Loss: 136.986 +22400/69092 Loss: 140.044 +25600/69092 Loss: 139.725 +28800/69092 Loss: 138.112 +32000/69092 Loss: 136.954 +35200/69092 Loss: 137.823 +38400/69092 Loss: 140.456 +41600/69092 Loss: 138.062 +44800/69092 Loss: 138.798 +48000/69092 Loss: 138.383 +51200/69092 Loss: 137.754 +54400/69092 Loss: 136.265 +57600/69092 Loss: 135.813 +60800/69092 Loss: 136.707 +64000/69092 Loss: 134.953 +67200/69092 Loss: 134.579 +Training time 0:07:04.655262 +Epoch: 109 Average loss: 137.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 578) +0/69092 Loss: 128.293 +3200/69092 Loss: 139.264 +6400/69092 Loss: 136.299 +9600/69092 Loss: 134.699 +12800/69092 Loss: 136.443 +16000/69092 Loss: 138.902 +19200/69092 Loss: 140.745 +22400/69092 Loss: 137.677 +25600/69092 Loss: 137.892 +28800/69092 Loss: 139.421 +32000/69092 Loss: 138.713 +35200/69092 Loss: 137.537 +38400/69092 Loss: 137.053 +41600/69092 Loss: 136.891 +44800/69092 Loss: 135.418 +48000/69092 Loss: 134.783 +51200/69092 Loss: 135.678 +54400/69092 Loss: 137.667 +57600/69092 Loss: 141.672 +60800/69092 Loss: 135.528 +64000/69092 Loss: 138.388 +67200/69092 Loss: 138.926 +Training time 0:07:02.963028 +Epoch: 110 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 579) +0/69092 Loss: 137.559 +3200/69092 Loss: 137.189 +6400/69092 Loss: 137.946 +9600/69092 Loss: 136.702 +12800/69092 Loss: 137.461 +16000/69092 Loss: 137.592 +19200/69092 Loss: 137.227 +22400/69092 Loss: 136.809 +25600/69092 Loss: 138.581 +28800/69092 Loss: 138.867 +32000/69092 Loss: 134.995 +35200/69092 Loss: 137.956 +38400/69092 Loss: 137.545 +41600/69092 Loss: 137.945 +44800/69092 Loss: 137.636 +48000/69092 Loss: 135.896 +51200/69092 Loss: 137.861 +54400/69092 Loss: 134.934 +57600/69092 Loss: 136.871 +60800/69092 Loss: 139.762 +64000/69092 Loss: 136.839 +67200/69092 Loss: 135.480 +Training time 0:07:00.626147 +Epoch: 111 Average loss: 137.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 580) +0/69092 Loss: 125.567 +3200/69092 Loss: 136.137 +6400/69092 Loss: 140.266 +9600/69092 Loss: 134.805 +12800/69092 Loss: 139.812 +16000/69092 Loss: 137.764 +19200/69092 Loss: 138.253 +22400/69092 Loss: 137.063 +25600/69092 Loss: 138.517 +28800/69092 Loss: 139.471 +32000/69092 Loss: 138.131 +35200/69092 Loss: 138.934 +38400/69092 Loss: 136.895 +41600/69092 Loss: 134.084 +44800/69092 Loss: 138.866 +48000/69092 Loss: 137.948 +51200/69092 Loss: 135.488 +54400/69092 Loss: 135.933 +57600/69092 Loss: 139.743 +60800/69092 Loss: 137.825 +64000/69092 Loss: 135.608 +67200/69092 Loss: 136.306 +Training time 0:07:05.222537 +Epoch: 112 Average loss: 137.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 581) +0/69092 Loss: 153.372 +3200/69092 Loss: 139.117 +6400/69092 Loss: 136.387 +9600/69092 Loss: 138.820 +12800/69092 Loss: 135.883 +16000/69092 Loss: 137.461 +19200/69092 Loss: 137.695 +22400/69092 Loss: 137.382 +25600/69092 Loss: 139.382 +28800/69092 Loss: 137.153 +32000/69092 Loss: 136.316 +35200/69092 Loss: 136.986 +38400/69092 Loss: 137.240 +41600/69092 Loss: 134.991 +44800/69092 Loss: 138.945 +48000/69092 Loss: 136.242 +51200/69092 Loss: 136.944 +54400/69092 Loss: 138.345 +57600/69092 Loss: 137.384 +60800/69092 Loss: 136.578 +64000/69092 Loss: 136.218 +67200/69092 Loss: 139.231 +Training time 0:06:59.854447 +Epoch: 113 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 582) +0/69092 Loss: 137.648 +3200/69092 Loss: 135.653 +6400/69092 Loss: 138.243 +9600/69092 Loss: 138.529 +12800/69092 Loss: 138.670 +16000/69092 Loss: 138.867 +19200/69092 Loss: 136.936 +22400/69092 Loss: 137.245 +25600/69092 Loss: 138.667 +28800/69092 Loss: 137.264 +32000/69092 Loss: 137.707 +35200/69092 Loss: 136.237 +38400/69092 Loss: 137.295 +41600/69092 Loss: 138.263 +44800/69092 Loss: 139.045 +48000/69092 Loss: 137.120 +51200/69092 Loss: 136.695 +54400/69092 Loss: 137.372 +57600/69092 Loss: 139.529 +60800/69092 Loss: 135.912 +64000/69092 Loss: 137.278 +67200/69092 Loss: 134.754 +Training time 0:06:58.309749 +Epoch: 114 Average loss: 137.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 583) +0/69092 Loss: 141.072 +3200/69092 Loss: 136.413 +6400/69092 Loss: 138.288 +9600/69092 Loss: 136.578 +12800/69092 Loss: 134.410 +16000/69092 Loss: 137.112 +19200/69092 Loss: 137.461 +22400/69092 Loss: 138.321 +25600/69092 Loss: 138.258 +28800/69092 Loss: 138.000 +32000/69092 Loss: 138.044 +35200/69092 Loss: 134.738 +38400/69092 Loss: 137.557 +41600/69092 Loss: 139.192 +44800/69092 Loss: 139.264 +48000/69092 Loss: 139.239 +51200/69092 Loss: 136.331 +54400/69092 Loss: 134.636 +57600/69092 Loss: 136.842 +60800/69092 Loss: 137.205 +64000/69092 Loss: 137.547 +67200/69092 Loss: 138.280 +Training time 0:07:05.548562 +Epoch: 115 Average loss: 137.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 584) +0/69092 Loss: 145.842 +3200/69092 Loss: 137.567 +6400/69092 Loss: 139.632 +9600/69092 Loss: 137.947 +12800/69092 Loss: 138.653 +16000/69092 Loss: 139.267 +19200/69092 Loss: 138.876 +22400/69092 Loss: 136.472 +25600/69092 Loss: 137.098 +28800/69092 Loss: 135.679 +32000/69092 Loss: 138.471 +35200/69092 Loss: 138.247 +38400/69092 Loss: 136.541 +41600/69092 Loss: 136.532 +44800/69092 Loss: 139.236 +48000/69092 Loss: 135.849 +51200/69092 Loss: 137.262 +54400/69092 Loss: 137.455 +57600/69092 Loss: 136.735 +60800/69092 Loss: 137.607 +64000/69092 Loss: 136.417 +67200/69092 Loss: 136.690 +Training time 0:07:05.753116 +Epoch: 116 Average loss: 137.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 585) +0/69092 Loss: 151.570 +3200/69092 Loss: 137.654 +6400/69092 Loss: 136.449 +9600/69092 Loss: 137.736 +12800/69092 Loss: 139.626 +16000/69092 Loss: 137.156 +19200/69092 Loss: 139.725 +22400/69092 Loss: 137.440 +25600/69092 Loss: 137.774 +28800/69092 Loss: 137.876 +32000/69092 Loss: 137.504 +35200/69092 Loss: 137.767 +38400/69092 Loss: 135.872 +41600/69092 Loss: 134.913 +44800/69092 Loss: 136.612 +48000/69092 Loss: 137.177 +51200/69092 Loss: 137.634 +54400/69092 Loss: 136.515 +57600/69092 Loss: 137.033 +60800/69092 Loss: 136.308 +64000/69092 Loss: 136.727 +67200/69092 Loss: 139.070 +Training time 0:06:58.613853 +Epoch: 117 Average loss: 137.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 586) +0/69092 Loss: 134.090 +3200/69092 Loss: 138.902 +6400/69092 Loss: 135.224 +9600/69092 Loss: 136.159 +12800/69092 Loss: 138.267 +16000/69092 Loss: 139.944 +19200/69092 Loss: 137.635 +22400/69092 Loss: 137.235 +25600/69092 Loss: 137.497 +28800/69092 Loss: 137.428 +32000/69092 Loss: 138.361 +35200/69092 Loss: 138.210 +38400/69092 Loss: 137.193 +41600/69092 Loss: 136.893 +44800/69092 Loss: 138.661 +48000/69092 Loss: 138.786 +51200/69092 Loss: 138.698 +54400/69092 Loss: 134.855 +57600/69092 Loss: 136.249 +60800/69092 Loss: 137.639 +64000/69092 Loss: 136.871 +67200/69092 Loss: 135.350 +Training time 0:07:00.850074 +Epoch: 118 Average loss: 137.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 587) +0/69092 Loss: 171.977 +3200/69092 Loss: 137.320 +6400/69092 Loss: 138.392 +9600/69092 Loss: 135.818 +12800/69092 Loss: 138.777 +16000/69092 Loss: 136.024 +19200/69092 Loss: 136.038 +22400/69092 Loss: 137.182 +25600/69092 Loss: 138.280 +28800/69092 Loss: 138.276 +32000/69092 Loss: 138.332 +35200/69092 Loss: 135.097 +38400/69092 Loss: 136.179 +41600/69092 Loss: 136.777 +44800/69092 Loss: 138.347 +48000/69092 Loss: 137.430 +51200/69092 Loss: 140.122 +54400/69092 Loss: 138.683 +57600/69092 Loss: 137.124 +60800/69092 Loss: 135.644 +64000/69092 Loss: 137.826 +67200/69092 Loss: 138.622 +Training time 0:07:02.131247 +Epoch: 119 Average loss: 137.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 588) +0/69092 Loss: 152.717 +3200/69092 Loss: 138.368 +6400/69092 Loss: 137.535 +9600/69092 Loss: 136.370 +12800/69092 Loss: 136.407 +16000/69092 Loss: 136.792 +19200/69092 Loss: 135.130 +22400/69092 Loss: 138.735 +25600/69092 Loss: 138.883 +28800/69092 Loss: 138.623 +32000/69092 Loss: 135.149 +35200/69092 Loss: 135.089 +38400/69092 Loss: 139.177 +41600/69092 Loss: 136.699 +44800/69092 Loss: 140.049 +48000/69092 Loss: 136.316 +51200/69092 Loss: 137.850 +54400/69092 Loss: 140.049 +57600/69092 Loss: 136.871 +60800/69092 Loss: 139.197 +64000/69092 Loss: 136.568 +67200/69092 Loss: 135.397 +Training time 0:07:03.655075 +Epoch: 120 Average loss: 137.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 589) +0/69092 Loss: 132.558 +3200/69092 Loss: 138.063 +6400/69092 Loss: 136.856 +9600/69092 Loss: 138.306 +12800/69092 Loss: 135.550 +16000/69092 Loss: 137.790 +19200/69092 Loss: 136.963 +22400/69092 Loss: 136.162 +25600/69092 Loss: 135.081 +28800/69092 Loss: 140.742 +32000/69092 Loss: 138.145 +35200/69092 Loss: 136.324 +38400/69092 Loss: 135.956 +41600/69092 Loss: 136.224 +44800/69092 Loss: 138.495 +48000/69092 Loss: 137.849 +51200/69092 Loss: 141.835 +54400/69092 Loss: 137.177 +57600/69092 Loss: 137.573 +60800/69092 Loss: 134.064 +64000/69092 Loss: 140.345 +67200/69092 Loss: 136.503 +Training time 0:07:05.257540 +Epoch: 121 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 590) +0/69092 Loss: 131.473 +3200/69092 Loss: 137.991 +6400/69092 Loss: 139.076 +9600/69092 Loss: 136.478 +12800/69092 Loss: 139.331 +16000/69092 Loss: 137.023 +19200/69092 Loss: 136.818 +22400/69092 Loss: 136.867 +25600/69092 Loss: 137.229 +28800/69092 Loss: 139.767 +32000/69092 Loss: 137.876 +35200/69092 Loss: 136.088 +38400/69092 Loss: 137.033 +41600/69092 Loss: 135.018 +44800/69092 Loss: 136.151 +48000/69092 Loss: 138.040 +51200/69092 Loss: 137.032 +54400/69092 Loss: 141.154 +57600/69092 Loss: 139.473 +60800/69092 Loss: 136.121 +64000/69092 Loss: 136.973 +67200/69092 Loss: 137.503 +Training time 0:07:00.870921 +Epoch: 122 Average loss: 137.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 591) +0/69092 Loss: 136.980 +3200/69092 Loss: 138.843 +6400/69092 Loss: 135.193 +9600/69092 Loss: 136.536 +12800/69092 Loss: 139.866 +16000/69092 Loss: 138.544 +19200/69092 Loss: 137.938 +22400/69092 Loss: 140.628 +25600/69092 Loss: 136.704 +28800/69092 Loss: 136.806 +32000/69092 Loss: 138.378 +35200/69092 Loss: 135.525 +38400/69092 Loss: 135.837 +41600/69092 Loss: 139.619 +44800/69092 Loss: 137.959 +48000/69092 Loss: 139.442 +51200/69092 Loss: 136.975 +54400/69092 Loss: 137.200 +57600/69092 Loss: 134.471 +60800/69092 Loss: 137.065 +64000/69092 Loss: 134.798 +67200/69092 Loss: 138.199 +Training time 0:07:04.265169 +Epoch: 123 Average loss: 137.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 592) +0/69092 Loss: 128.618 +3200/69092 Loss: 136.665 +6400/69092 Loss: 135.923 +9600/69092 Loss: 136.460 +12800/69092 Loss: 140.450 +16000/69092 Loss: 138.304 +19200/69092 Loss: 138.977 +22400/69092 Loss: 137.426 +25600/69092 Loss: 136.303 +28800/69092 Loss: 137.072 +32000/69092 Loss: 135.327 +35200/69092 Loss: 136.751 +38400/69092 Loss: 137.739 +41600/69092 Loss: 136.240 +44800/69092 Loss: 140.395 +48000/69092 Loss: 137.255 +51200/69092 Loss: 135.790 +54400/69092 Loss: 136.268 +57600/69092 Loss: 137.469 +60800/69092 Loss: 137.416 +64000/69092 Loss: 136.999 +67200/69092 Loss: 138.404 +Training time 0:07:04.527241 +Epoch: 124 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 593) +0/69092 Loss: 121.268 +3200/69092 Loss: 137.327 +6400/69092 Loss: 139.286 +9600/69092 Loss: 137.549 +12800/69092 Loss: 138.812 +16000/69092 Loss: 135.737 +19200/69092 Loss: 139.260 +22400/69092 Loss: 135.631 +25600/69092 Loss: 136.654 +28800/69092 Loss: 140.085 +32000/69092 Loss: 138.211 +35200/69092 Loss: 137.619 +38400/69092 Loss: 136.551 +41600/69092 Loss: 139.876 +44800/69092 Loss: 134.080 +48000/69092 Loss: 133.602 +51200/69092 Loss: 137.205 +54400/69092 Loss: 139.570 +57600/69092 Loss: 138.744 +60800/69092 Loss: 134.916 +64000/69092 Loss: 138.377 +67200/69092 Loss: 138.605 +Training time 0:07:04.142399 +Epoch: 125 Average loss: 137.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 594) +0/69092 Loss: 145.567 +3200/69092 Loss: 138.042 +6400/69092 Loss: 137.125 +9600/69092 Loss: 135.972 +12800/69092 Loss: 138.211 +16000/69092 Loss: 138.090 +19200/69092 Loss: 135.951 +22400/69092 Loss: 136.387 +25600/69092 Loss: 137.857 +28800/69092 Loss: 138.654 +32000/69092 Loss: 136.491 +35200/69092 Loss: 137.247 +38400/69092 Loss: 136.684 +41600/69092 Loss: 135.701 +44800/69092 Loss: 136.341 +48000/69092 Loss: 136.988 +51200/69092 Loss: 137.523 +54400/69092 Loss: 138.421 +57600/69092 Loss: 140.860 +60800/69092 Loss: 137.850 +64000/69092 Loss: 138.025 +67200/69092 Loss: 140.309 +Training time 0:07:07.805571 +Epoch: 126 Average loss: 137.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 595) +0/69092 Loss: 126.380 +3200/69092 Loss: 137.297 +6400/69092 Loss: 138.985 +9600/69092 Loss: 136.799 +12800/69092 Loss: 137.521 +16000/69092 Loss: 137.835 +19200/69092 Loss: 137.431 +22400/69092 Loss: 135.658 +25600/69092 Loss: 136.068 +28800/69092 Loss: 139.732 +32000/69092 Loss: 135.400 +35200/69092 Loss: 137.605 +38400/69092 Loss: 137.799 +41600/69092 Loss: 135.339 +44800/69092 Loss: 136.488 +48000/69092 Loss: 137.290 +51200/69092 Loss: 138.326 +54400/69092 Loss: 138.192 +57600/69092 Loss: 136.807 +60800/69092 Loss: 137.925 +64000/69092 Loss: 137.280 +67200/69092 Loss: 137.643 +Training time 0:06:58.995375 +Epoch: 127 Average loss: 137.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 596) +0/69092 Loss: 146.283 +3200/69092 Loss: 137.003 +6400/69092 Loss: 137.233 +9600/69092 Loss: 135.068 +12800/69092 Loss: 137.095 +16000/69092 Loss: 137.024 +19200/69092 Loss: 138.154 +22400/69092 Loss: 138.143 +25600/69092 Loss: 138.279 +28800/69092 Loss: 136.625 +32000/69092 Loss: 140.093 +35200/69092 Loss: 139.978 +38400/69092 Loss: 138.527 +41600/69092 Loss: 134.858 +44800/69092 Loss: 137.498 +48000/69092 Loss: 137.356 +51200/69092 Loss: 137.248 +54400/69092 Loss: 138.795 +57600/69092 Loss: 138.945 +60800/69092 Loss: 135.404 +64000/69092 Loss: 136.427 +67200/69092 Loss: 138.250 +Training time 0:07:00.617462 +Epoch: 128 Average loss: 137.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 597) +0/69092 Loss: 165.792 +3200/69092 Loss: 138.249 +6400/69092 Loss: 136.161 +9600/69092 Loss: 137.680 +12800/69092 Loss: 137.552 +16000/69092 Loss: 137.025 +19200/69092 Loss: 135.955 +22400/69092 Loss: 136.956 +25600/69092 Loss: 138.004 +28800/69092 Loss: 139.453 +32000/69092 Loss: 139.439 +35200/69092 Loss: 136.909 +38400/69092 Loss: 138.092 +41600/69092 Loss: 136.955 +44800/69092 Loss: 139.026 +48000/69092 Loss: 136.969 +51200/69092 Loss: 138.431 +54400/69092 Loss: 134.469 +57600/69092 Loss: 136.406 +60800/69092 Loss: 137.079 +64000/69092 Loss: 138.073 +67200/69092 Loss: 137.511 +Training time 0:07:06.008605 +Epoch: 129 Average loss: 137.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 598) +0/69092 Loss: 127.436 +3200/69092 Loss: 138.087 +6400/69092 Loss: 137.705 +9600/69092 Loss: 137.799 +12800/69092 Loss: 138.107 +16000/69092 Loss: 136.736 +19200/69092 Loss: 137.785 +22400/69092 Loss: 137.919 +25600/69092 Loss: 136.862 +28800/69092 Loss: 138.022 +32000/69092 Loss: 137.765 +35200/69092 Loss: 137.000 +38400/69092 Loss: 138.694 +41600/69092 Loss: 136.685 +44800/69092 Loss: 137.894 +48000/69092 Loss: 137.223 +51200/69092 Loss: 136.671 +54400/69092 Loss: 137.181 +57600/69092 Loss: 137.252 +60800/69092 Loss: 135.507 +64000/69092 Loss: 136.341 +67200/69092 Loss: 136.376 +Training time 0:06:55.541309 +Epoch: 130 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 599) +0/69092 Loss: 140.502 +3200/69092 Loss: 137.312 +6400/69092 Loss: 137.890 +9600/69092 Loss: 136.323 +12800/69092 Loss: 136.446 +16000/69092 Loss: 136.625 +19200/69092 Loss: 135.409 +22400/69092 Loss: 137.424 +25600/69092 Loss: 138.315 +28800/69092 Loss: 136.871 +32000/69092 Loss: 137.235 +35200/69092 Loss: 139.183 +38400/69092 Loss: 138.625 +41600/69092 Loss: 137.983 +44800/69092 Loss: 134.760 +48000/69092 Loss: 137.889 +51200/69092 Loss: 137.154 +54400/69092 Loss: 136.836 +57600/69092 Loss: 139.668 +60800/69092 Loss: 136.431 +64000/69092 Loss: 138.148 +67200/69092 Loss: 134.985 +Training time 0:07:00.033351 +Epoch: 131 Average loss: 137.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 600) +0/69092 Loss: 130.557 +3200/69092 Loss: 137.531 +6400/69092 Loss: 136.070 +9600/69092 Loss: 137.658 +12800/69092 Loss: 139.371 +16000/69092 Loss: 139.742 +19200/69092 Loss: 137.672 +22400/69092 Loss: 136.000 +25600/69092 Loss: 138.360 +28800/69092 Loss: 137.908 +32000/69092 Loss: 135.132 +35200/69092 Loss: 137.786 +38400/69092 Loss: 138.021 +41600/69092 Loss: 137.134 +44800/69092 Loss: 137.553 +48000/69092 Loss: 136.758 +51200/69092 Loss: 135.758 +54400/69092 Loss: 136.682 +57600/69092 Loss: 138.759 +60800/69092 Loss: 135.576 +64000/69092 Loss: 137.567 +67200/69092 Loss: 138.935 +Training time 0:07:07.686889 +Epoch: 132 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 601) +0/69092 Loss: 161.495 +3200/69092 Loss: 138.146 +6400/69092 Loss: 136.180 +9600/69092 Loss: 138.562 +12800/69092 Loss: 137.462 +16000/69092 Loss: 136.921 +19200/69092 Loss: 137.476 +22400/69092 Loss: 138.034 +25600/69092 Loss: 138.479 +28800/69092 Loss: 140.286 +32000/69092 Loss: 137.894 +35200/69092 Loss: 133.730 +38400/69092 Loss: 135.882 +41600/69092 Loss: 137.223 +44800/69092 Loss: 137.829 +48000/69092 Loss: 139.202 +51200/69092 Loss: 138.285 +54400/69092 Loss: 137.980 +57600/69092 Loss: 137.312 +60800/69092 Loss: 134.594 +64000/69092 Loss: 135.259 +67200/69092 Loss: 137.067 +Training time 0:07:08.731732 +Epoch: 133 Average loss: 137.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 602) +0/69092 Loss: 140.403 +3200/69092 Loss: 140.625 +6400/69092 Loss: 136.302 +9600/69092 Loss: 139.991 +12800/69092 Loss: 139.647 +16000/69092 Loss: 137.683 +19200/69092 Loss: 136.367 +22400/69092 Loss: 137.371 +25600/69092 Loss: 136.536 +28800/69092 Loss: 137.439 +32000/69092 Loss: 137.125 +35200/69092 Loss: 138.322 +38400/69092 Loss: 137.686 +41600/69092 Loss: 135.970 +44800/69092 Loss: 137.461 +48000/69092 Loss: 136.866 +51200/69092 Loss: 136.339 +54400/69092 Loss: 137.988 +57600/69092 Loss: 135.839 +60800/69092 Loss: 135.823 +64000/69092 Loss: 135.519 +67200/69092 Loss: 136.271 +Training time 0:07:04.159290 +Epoch: 134 Average loss: 137.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 603) +0/69092 Loss: 145.135 +3200/69092 Loss: 136.720 +6400/69092 Loss: 138.205 +9600/69092 Loss: 138.502 +12800/69092 Loss: 135.846 +16000/69092 Loss: 135.059 +19200/69092 Loss: 137.166 +22400/69092 Loss: 137.986 +25600/69092 Loss: 138.035 +28800/69092 Loss: 138.575 +32000/69092 Loss: 137.125 +35200/69092 Loss: 135.771 +38400/69092 Loss: 139.069 +41600/69092 Loss: 136.735 +44800/69092 Loss: 135.715 +48000/69092 Loss: 138.296 +51200/69092 Loss: 138.066 +54400/69092 Loss: 138.904 +57600/69092 Loss: 136.491 +60800/69092 Loss: 138.743 +64000/69092 Loss: 135.127 +67200/69092 Loss: 137.690 +Training time 0:07:07.700765 +Epoch: 135 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 604) +0/69092 Loss: 128.222 +3200/69092 Loss: 137.991 +6400/69092 Loss: 137.308 +9600/69092 Loss: 137.646 +12800/69092 Loss: 136.099 +16000/69092 Loss: 139.563 +19200/69092 Loss: 138.335 +22400/69092 Loss: 137.080 +25600/69092 Loss: 138.145 +28800/69092 Loss: 136.891 +32000/69092 Loss: 139.252 +35200/69092 Loss: 138.111 +38400/69092 Loss: 137.264 +41600/69092 Loss: 136.906 +44800/69092 Loss: 137.366 +48000/69092 Loss: 134.073 +51200/69092 Loss: 139.609 +54400/69092 Loss: 136.701 +57600/69092 Loss: 135.146 +60800/69092 Loss: 138.184 +64000/69092 Loss: 137.863 +67200/69092 Loss: 138.237 +Training time 0:07:07.406879 +Epoch: 136 Average loss: 137.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 605) +0/69092 Loss: 129.378 +3200/69092 Loss: 136.591 +6400/69092 Loss: 136.783 +9600/69092 Loss: 136.987 +12800/69092 Loss: 137.917 +16000/69092 Loss: 138.054 +19200/69092 Loss: 137.635 +22400/69092 Loss: 136.221 +25600/69092 Loss: 134.933 +28800/69092 Loss: 137.075 +32000/69092 Loss: 138.280 +35200/69092 Loss: 137.401 +38400/69092 Loss: 136.186 +41600/69092 Loss: 136.967 +44800/69092 Loss: 138.738 +48000/69092 Loss: 137.726 +51200/69092 Loss: 137.509 +54400/69092 Loss: 135.743 +57600/69092 Loss: 137.574 +60800/69092 Loss: 137.505 +64000/69092 Loss: 136.691 +67200/69092 Loss: 138.826 +Training time 0:07:08.155116 +Epoch: 137 Average loss: 137.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 606) +0/69092 Loss: 137.293 +3200/69092 Loss: 138.179 +6400/69092 Loss: 137.646 +9600/69092 Loss: 137.499 +12800/69092 Loss: 135.902 +16000/69092 Loss: 140.409 +19200/69092 Loss: 138.592 +22400/69092 Loss: 135.634 +25600/69092 Loss: 136.679 +28800/69092 Loss: 135.871 +32000/69092 Loss: 136.854 +35200/69092 Loss: 138.191 +38400/69092 Loss: 136.087 +41600/69092 Loss: 137.149 +44800/69092 Loss: 139.762 +48000/69092 Loss: 137.455 +51200/69092 Loss: 138.770 +54400/69092 Loss: 135.510 +57600/69092 Loss: 135.024 +60800/69092 Loss: 136.312 +64000/69092 Loss: 141.086 +67200/69092 Loss: 137.296 +Training time 0:07:06.211211 +Epoch: 138 Average loss: 137.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 607) +0/69092 Loss: 142.217 +3200/69092 Loss: 135.797 +6400/69092 Loss: 137.642 +9600/69092 Loss: 136.053 +12800/69092 Loss: 137.283 +16000/69092 Loss: 136.665 +19200/69092 Loss: 136.627 +22400/69092 Loss: 138.352 +25600/69092 Loss: 134.875 +28800/69092 Loss: 135.417 +32000/69092 Loss: 135.949 +35200/69092 Loss: 137.704 +38400/69092 Loss: 136.341 +41600/69092 Loss: 136.374 +44800/69092 Loss: 139.884 +48000/69092 Loss: 137.421 +51200/69092 Loss: 137.751 +54400/69092 Loss: 137.959 +57600/69092 Loss: 138.750 +60800/69092 Loss: 136.802 +64000/69092 Loss: 140.060 +67200/69092 Loss: 137.966 +Training time 0:07:00.433339 +Epoch: 139 Average loss: 137.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 608) +0/69092 Loss: 139.555 +3200/69092 Loss: 137.725 +6400/69092 Loss: 137.070 +9600/69092 Loss: 134.132 +12800/69092 Loss: 135.371 +16000/69092 Loss: 135.437 +19200/69092 Loss: 138.262 +22400/69092 Loss: 137.049 +25600/69092 Loss: 138.480 +28800/69092 Loss: 137.473 +32000/69092 Loss: 135.880 +35200/69092 Loss: 138.249 +38400/69092 Loss: 137.511 +41600/69092 Loss: 140.401 +44800/69092 Loss: 138.418 +48000/69092 Loss: 136.271 +51200/69092 Loss: 139.437 +54400/69092 Loss: 137.623 +57600/69092 Loss: 136.764 +60800/69092 Loss: 138.058 +64000/69092 Loss: 136.513 +67200/69092 Loss: 137.886 +Training time 0:06:59.025088 +Epoch: 140 Average loss: 137.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 609) +0/69092 Loss: 169.637 +3200/69092 Loss: 136.986 +6400/69092 Loss: 136.058 +9600/69092 Loss: 135.499 +12800/69092 Loss: 138.492 +16000/69092 Loss: 136.818 +19200/69092 Loss: 137.664 +22400/69092 Loss: 138.145 +25600/69092 Loss: 137.246 +28800/69092 Loss: 136.003 +32000/69092 Loss: 136.605 +35200/69092 Loss: 138.759 +38400/69092 Loss: 135.479 +41600/69092 Loss: 137.034 +44800/69092 Loss: 139.595 +48000/69092 Loss: 138.058 +51200/69092 Loss: 136.997 +54400/69092 Loss: 136.911 +57600/69092 Loss: 137.186 +60800/69092 Loss: 138.782 +64000/69092 Loss: 135.877 +67200/69092 Loss: 138.309 +Training time 0:06:53.234575 +Epoch: 141 Average loss: 137.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 610) +0/69092 Loss: 156.874 +3200/69092 Loss: 137.948 +6400/69092 Loss: 136.438 +9600/69092 Loss: 137.237 +12800/69092 Loss: 136.485 +16000/69092 Loss: 136.389 +19200/69092 Loss: 138.609 +22400/69092 Loss: 137.892 +25600/69092 Loss: 136.503 +28800/69092 Loss: 137.340 +32000/69092 Loss: 135.164 +35200/69092 Loss: 138.208 +38400/69092 Loss: 139.728 +41600/69092 Loss: 134.913 +44800/69092 Loss: 139.733 +48000/69092 Loss: 137.594 +51200/69092 Loss: 138.941 +54400/69092 Loss: 138.687 +57600/69092 Loss: 138.452 +60800/69092 Loss: 136.019 +64000/69092 Loss: 137.999 +67200/69092 Loss: 134.458 +Training time 0:07:02.354517 +Epoch: 142 Average loss: 137.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 611) +0/69092 Loss: 131.690 +3200/69092 Loss: 135.874 +6400/69092 Loss: 138.534 +9600/69092 Loss: 134.998 +12800/69092 Loss: 136.687 +16000/69092 Loss: 135.637 +19200/69092 Loss: 136.563 +22400/69092 Loss: 137.114 +25600/69092 Loss: 138.267 +28800/69092 Loss: 137.060 +32000/69092 Loss: 136.518 +35200/69092 Loss: 140.572 +38400/69092 Loss: 135.723 +41600/69092 Loss: 134.804 +44800/69092 Loss: 136.245 +48000/69092 Loss: 139.286 +51200/69092 Loss: 139.640 +54400/69092 Loss: 138.511 +57600/69092 Loss: 138.329 +60800/69092 Loss: 139.234 +64000/69092 Loss: 138.738 +67200/69092 Loss: 134.240 +Training time 0:06:52.148996 +Epoch: 143 Average loss: 137.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 612) +0/69092 Loss: 127.645 +3200/69092 Loss: 139.078 +6400/69092 Loss: 136.389 +9600/69092 Loss: 135.393 +12800/69092 Loss: 138.444 +16000/69092 Loss: 136.113 +19200/69092 Loss: 137.037 +22400/69092 Loss: 137.330 +25600/69092 Loss: 138.036 +28800/69092 Loss: 136.683 +32000/69092 Loss: 138.907 +35200/69092 Loss: 138.892 +38400/69092 Loss: 137.374 +41600/69092 Loss: 135.701 +44800/69092 Loss: 136.058 +48000/69092 Loss: 139.039 +51200/69092 Loss: 139.282 +54400/69092 Loss: 136.387 +57600/69092 Loss: 134.074 +60800/69092 Loss: 136.237 +64000/69092 Loss: 137.707 +67200/69092 Loss: 139.025 +Training time 0:07:02.813147 +Epoch: 144 Average loss: 137.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 613) +0/69092 Loss: 121.295 +3200/69092 Loss: 138.603 +6400/69092 Loss: 139.204 +9600/69092 Loss: 136.954 +12800/69092 Loss: 139.104 +16000/69092 Loss: 135.379 +19200/69092 Loss: 135.079 +22400/69092 Loss: 136.497 +25600/69092 Loss: 135.619 +28800/69092 Loss: 138.272 +32000/69092 Loss: 139.269 +35200/69092 Loss: 138.155 +38400/69092 Loss: 137.333 +41600/69092 Loss: 138.750 +44800/69092 Loss: 136.639 +48000/69092 Loss: 136.508 +51200/69092 Loss: 135.648 +54400/69092 Loss: 134.613 +57600/69092 Loss: 137.506 +60800/69092 Loss: 137.302 +64000/69092 Loss: 138.585 +67200/69092 Loss: 140.736 +Training time 0:07:04.504901 +Epoch: 145 Average loss: 137.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 614) +0/69092 Loss: 122.992 +3200/69092 Loss: 133.984 +6400/69092 Loss: 137.165 +9600/69092 Loss: 136.063 +12800/69092 Loss: 136.980 +16000/69092 Loss: 137.486 +19200/69092 Loss: 139.524 +22400/69092 Loss: 137.150 +25600/69092 Loss: 136.811 +28800/69092 Loss: 139.236 +32000/69092 Loss: 135.751 +35200/69092 Loss: 137.183 +38400/69092 Loss: 137.081 +41600/69092 Loss: 137.353 +44800/69092 Loss: 138.075 +48000/69092 Loss: 140.188 +51200/69092 Loss: 136.717 +54400/69092 Loss: 138.877 +57600/69092 Loss: 137.460 +60800/69092 Loss: 134.799 +64000/69092 Loss: 139.702 +67200/69092 Loss: 137.790 +Training time 0:07:07.564262 +Epoch: 146 Average loss: 137.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 615) +0/69092 Loss: 140.828 +3200/69092 Loss: 138.529 +6400/69092 Loss: 139.063 +9600/69092 Loss: 138.039 +12800/69092 Loss: 135.923 +16000/69092 Loss: 135.723 +19200/69092 Loss: 138.196 +22400/69092 Loss: 137.429 +25600/69092 Loss: 139.711 +28800/69092 Loss: 138.349 +32000/69092 Loss: 134.656 +35200/69092 Loss: 135.567 +38400/69092 Loss: 136.296 +41600/69092 Loss: 134.752 +44800/69092 Loss: 136.391 +48000/69092 Loss: 138.196 +51200/69092 Loss: 137.919 +54400/69092 Loss: 137.477 +57600/69092 Loss: 136.481 +60800/69092 Loss: 139.240 +64000/69092 Loss: 134.034 +67200/69092 Loss: 137.796 +Training time 0:06:57.179378 +Epoch: 147 Average loss: 137.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 616) +0/69092 Loss: 156.629 +3200/69092 Loss: 138.219 +6400/69092 Loss: 137.189 +9600/69092 Loss: 137.069 +12800/69092 Loss: 137.917 +16000/69092 Loss: 138.196 +19200/69092 Loss: 136.550 +22400/69092 Loss: 136.585 +25600/69092 Loss: 136.999 +28800/69092 Loss: 136.835 +32000/69092 Loss: 134.869 +35200/69092 Loss: 139.333 +38400/69092 Loss: 138.491 +41600/69092 Loss: 136.317 +44800/69092 Loss: 136.428 +48000/69092 Loss: 138.260 +51200/69092 Loss: 137.966 +54400/69092 Loss: 137.451 +57600/69092 Loss: 136.661 +60800/69092 Loss: 137.898 +64000/69092 Loss: 137.740 +67200/69092 Loss: 137.406 +Training time 0:07:02.087132 +Epoch: 148 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 617) +0/69092 Loss: 158.015 +3200/69092 Loss: 139.037 +6400/69092 Loss: 137.449 +9600/69092 Loss: 137.616 +12800/69092 Loss: 139.139 +16000/69092 Loss: 136.246 +19200/69092 Loss: 138.558 +22400/69092 Loss: 135.272 +25600/69092 Loss: 136.072 +28800/69092 Loss: 138.385 +32000/69092 Loss: 138.414 +35200/69092 Loss: 136.668 +38400/69092 Loss: 136.242 +41600/69092 Loss: 138.096 +44800/69092 Loss: 137.044 +48000/69092 Loss: 136.391 +51200/69092 Loss: 137.563 +54400/69092 Loss: 136.547 +57600/69092 Loss: 137.969 +60800/69092 Loss: 136.980 +64000/69092 Loss: 139.396 +67200/69092 Loss: 135.714 +Training time 0:07:02.628499 +Epoch: 149 Average loss: 137.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 618) +0/69092 Loss: 142.375 +3200/69092 Loss: 135.429 +6400/69092 Loss: 136.802 +9600/69092 Loss: 137.530 +12800/69092 Loss: 134.706 +16000/69092 Loss: 138.461 +19200/69092 Loss: 136.250 +22400/69092 Loss: 141.704 +25600/69092 Loss: 141.572 +28800/69092 Loss: 137.391 +32000/69092 Loss: 137.267 +35200/69092 Loss: 138.921 +38400/69092 Loss: 136.591 +41600/69092 Loss: 137.713 +44800/69092 Loss: 139.190 +48000/69092 Loss: 136.354 +51200/69092 Loss: 136.949 +54400/69092 Loss: 135.410 +57600/69092 Loss: 136.229 +60800/69092 Loss: 139.495 +64000/69092 Loss: 137.145 +67200/69092 Loss: 137.040 +Training time 0:07:10.601837 +Epoch: 150 Average loss: 137.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 619) +0/69092 Loss: 136.625 +3200/69092 Loss: 139.129 +6400/69092 Loss: 135.155 +9600/69092 Loss: 136.351 +12800/69092 Loss: 135.990 +16000/69092 Loss: 135.526 +19200/69092 Loss: 139.599 +22400/69092 Loss: 137.911 +25600/69092 Loss: 136.177 +28800/69092 Loss: 138.429 +32000/69092 Loss: 137.884 +35200/69092 Loss: 139.544 +38400/69092 Loss: 139.152 +41600/69092 Loss: 139.963 +44800/69092 Loss: 135.885 +48000/69092 Loss: 135.894 +51200/69092 Loss: 137.070 +54400/69092 Loss: 139.815 +57600/69092 Loss: 136.968 +60800/69092 Loss: 136.801 +64000/69092 Loss: 134.852 +67200/69092 Loss: 137.998 +Training time 0:07:08.969125 +Epoch: 151 Average loss: 137.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 620) +0/69092 Loss: 129.457 +3200/69092 Loss: 137.548 +6400/69092 Loss: 134.707 +9600/69092 Loss: 137.487 +12800/69092 Loss: 137.299 +16000/69092 Loss: 138.196 +19200/69092 Loss: 138.457 +22400/69092 Loss: 135.305 +25600/69092 Loss: 139.240 +28800/69092 Loss: 140.284 +32000/69092 Loss: 136.700 +35200/69092 Loss: 137.166 +38400/69092 Loss: 138.589 +41600/69092 Loss: 138.048 +44800/69092 Loss: 139.237 +48000/69092 Loss: 136.850 +51200/69092 Loss: 138.358 +54400/69092 Loss: 135.795 +57600/69092 Loss: 135.547 +60800/69092 Loss: 137.474 +64000/69092 Loss: 137.601 +67200/69092 Loss: 135.390 +Training time 0:06:55.050465 +Epoch: 152 Average loss: 137.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 621) +0/69092 Loss: 139.419 +3200/69092 Loss: 134.813 +6400/69092 Loss: 139.945 +9600/69092 Loss: 138.857 +12800/69092 Loss: 137.616 +16000/69092 Loss: 137.496 +19200/69092 Loss: 135.684 +22400/69092 Loss: 137.593 +25600/69092 Loss: 137.000 +28800/69092 Loss: 141.376 +32000/69092 Loss: 137.702 +35200/69092 Loss: 137.900 +38400/69092 Loss: 136.715 +41600/69092 Loss: 137.148 +44800/69092 Loss: 134.471 +48000/69092 Loss: 140.351 +51200/69092 Loss: 140.049 +54400/69092 Loss: 138.434 +57600/69092 Loss: 137.598 +60800/69092 Loss: 133.296 +64000/69092 Loss: 133.871 +67200/69092 Loss: 139.414 +Training time 0:07:05.576331 +Epoch: 153 Average loss: 137.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 622) +0/69092 Loss: 121.743 +3200/69092 Loss: 136.824 +6400/69092 Loss: 135.275 +9600/69092 Loss: 135.910 +12800/69092 Loss: 138.611 +16000/69092 Loss: 137.371 +19200/69092 Loss: 135.332 +22400/69092 Loss: 139.136 +25600/69092 Loss: 135.997 +28800/69092 Loss: 136.486 +32000/69092 Loss: 136.750 +35200/69092 Loss: 134.836 +38400/69092 Loss: 138.617 +41600/69092 Loss: 139.054 +44800/69092 Loss: 136.880 +48000/69092 Loss: 137.928 +51200/69092 Loss: 137.988 +54400/69092 Loss: 137.811 +57600/69092 Loss: 139.803 +60800/69092 Loss: 136.498 +64000/69092 Loss: 135.327 +67200/69092 Loss: 139.255 +Training time 0:07:06.546023 +Epoch: 154 Average loss: 137.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 623) +0/69092 Loss: 120.645 +3200/69092 Loss: 136.487 +6400/69092 Loss: 136.118 +9600/69092 Loss: 137.346 +12800/69092 Loss: 137.554 +16000/69092 Loss: 137.785 +19200/69092 Loss: 136.478 +22400/69092 Loss: 139.375 +25600/69092 Loss: 137.938 +28800/69092 Loss: 136.584 +32000/69092 Loss: 137.618 +35200/69092 Loss: 136.851 +38400/69092 Loss: 137.817 +41600/69092 Loss: 135.837 +44800/69092 Loss: 138.166 +48000/69092 Loss: 135.931 +51200/69092 Loss: 139.016 +54400/69092 Loss: 138.224 +57600/69092 Loss: 138.886 +60800/69092 Loss: 139.036 +64000/69092 Loss: 137.669 +67200/69092 Loss: 134.812 +Training time 0:07:02.154645 +Epoch: 155 Average loss: 137.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 624) +0/69092 Loss: 124.046 +3200/69092 Loss: 136.456 +6400/69092 Loss: 139.995 +9600/69092 Loss: 140.252 +12800/69092 Loss: 138.071 +16000/69092 Loss: 135.230 +19200/69092 Loss: 137.541 +22400/69092 Loss: 137.609 +25600/69092 Loss: 137.746 +28800/69092 Loss: 133.935 +32000/69092 Loss: 136.519 +35200/69092 Loss: 137.143 +38400/69092 Loss: 136.310 +41600/69092 Loss: 139.143 +44800/69092 Loss: 137.373 +48000/69092 Loss: 137.086 +51200/69092 Loss: 135.817 +54400/69092 Loss: 134.919 +57600/69092 Loss: 136.346 +60800/69092 Loss: 138.308 +64000/69092 Loss: 136.880 +67200/69092 Loss: 136.680 +Training time 0:07:15.274479 +Epoch: 156 Average loss: 137.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 625) +0/69092 Loss: 117.992 +3200/69092 Loss: 136.054 +6400/69092 Loss: 137.630 +9600/69092 Loss: 137.238 +12800/69092 Loss: 136.589 +16000/69092 Loss: 135.125 +19200/69092 Loss: 140.689 +22400/69092 Loss: 136.195 +25600/69092 Loss: 137.085 +28800/69092 Loss: 137.474 +32000/69092 Loss: 137.548 +35200/69092 Loss: 137.555 +38400/69092 Loss: 135.891 +41600/69092 Loss: 136.732 +44800/69092 Loss: 139.782 +48000/69092 Loss: 136.235 +51200/69092 Loss: 140.333 +54400/69092 Loss: 138.651 +57600/69092 Loss: 138.706 +60800/69092 Loss: 137.753 +64000/69092 Loss: 134.910 +67200/69092 Loss: 135.398 +Training time 0:07:11.144289 +Epoch: 157 Average loss: 137.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 626) +0/69092 Loss: 133.730 +3200/69092 Loss: 137.699 +6400/69092 Loss: 137.510 +9600/69092 Loss: 137.051 +12800/69092 Loss: 138.015 +16000/69092 Loss: 137.267 +19200/69092 Loss: 138.071 +22400/69092 Loss: 136.123 +25600/69092 Loss: 136.885 +28800/69092 Loss: 136.107 +32000/69092 Loss: 136.444 +35200/69092 Loss: 138.473 +38400/69092 Loss: 138.295 +41600/69092 Loss: 137.404 +44800/69092 Loss: 135.692 +48000/69092 Loss: 137.100 +51200/69092 Loss: 135.978 +54400/69092 Loss: 137.572 +57600/69092 Loss: 140.156 +60800/69092 Loss: 137.552 +64000/69092 Loss: 136.765 +67200/69092 Loss: 138.244 +Training time 0:07:04.959482 +Epoch: 158 Average loss: 137.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 627) +0/69092 Loss: 141.186 +3200/69092 Loss: 139.635 +6400/69092 Loss: 137.073 +9600/69092 Loss: 135.146 +12800/69092 Loss: 136.737 +16000/69092 Loss: 138.353 +19200/69092 Loss: 135.922 +22400/69092 Loss: 138.326 +25600/69092 Loss: 135.771 +28800/69092 Loss: 136.010 +32000/69092 Loss: 138.027 +35200/69092 Loss: 136.506 +38400/69092 Loss: 138.816 +41600/69092 Loss: 138.494 +44800/69092 Loss: 136.181 +48000/69092 Loss: 137.089 +51200/69092 Loss: 139.949 +54400/69092 Loss: 136.674 +57600/69092 Loss: 136.139 +60800/69092 Loss: 137.370 +64000/69092 Loss: 137.611 +67200/69092 Loss: 135.653 +Training time 0:06:59.543655 +Epoch: 159 Average loss: 137.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 628) +0/69092 Loss: 135.930 +3200/69092 Loss: 135.911 +6400/69092 Loss: 139.102 +9600/69092 Loss: 138.464 +12800/69092 Loss: 136.776 +16000/69092 Loss: 135.898 +19200/69092 Loss: 137.792 +22400/69092 Loss: 137.491 +25600/69092 Loss: 137.447 +28800/69092 Loss: 135.576 +32000/69092 Loss: 139.326 +35200/69092 Loss: 137.588 +38400/69092 Loss: 139.188 +41600/69092 Loss: 136.802 +44800/69092 Loss: 136.496 +48000/69092 Loss: 138.510 +51200/69092 Loss: 135.761 +54400/69092 Loss: 135.612 +57600/69092 Loss: 136.575 +60800/69092 Loss: 137.163 +64000/69092 Loss: 139.689 +67200/69092 Loss: 139.965 +Training time 0:07:04.670691 +Epoch: 160 Average loss: 137.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 629) +0/69092 Loss: 127.680 +3200/69092 Loss: 140.615 +6400/69092 Loss: 137.274 +9600/69092 Loss: 137.831 +12800/69092 Loss: 138.321 +16000/69092 Loss: 136.146 +19200/69092 Loss: 135.832 +22400/69092 Loss: 135.858 +25600/69092 Loss: 135.342 +28800/69092 Loss: 136.666 +32000/69092 Loss: 138.164 +35200/69092 Loss: 137.514 +38400/69092 Loss: 138.985 +41600/69092 Loss: 137.945 +44800/69092 Loss: 134.614 +48000/69092 Loss: 136.510 +51200/69092 Loss: 138.740 +54400/69092 Loss: 137.430 +57600/69092 Loss: 135.528 +60800/69092 Loss: 139.216 +64000/69092 Loss: 138.054 +67200/69092 Loss: 136.934 +Training time 0:07:04.696100 +Epoch: 161 Average loss: 137.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 630) +0/69092 Loss: 128.855 +3200/69092 Loss: 137.804 +6400/69092 Loss: 136.401 +9600/69092 Loss: 138.942 +12800/69092 Loss: 137.867 +16000/69092 Loss: 137.871 +19200/69092 Loss: 138.055 +22400/69092 Loss: 138.680 +25600/69092 Loss: 138.562 +28800/69092 Loss: 135.947 +32000/69092 Loss: 137.661 +35200/69092 Loss: 134.759 +38400/69092 Loss: 138.724 +41600/69092 Loss: 137.489 +44800/69092 Loss: 136.678 +48000/69092 Loss: 136.760 +51200/69092 Loss: 134.139 +54400/69092 Loss: 138.430 +57600/69092 Loss: 136.863 +60800/69092 Loss: 137.694 +64000/69092 Loss: 136.665 +67200/69092 Loss: 140.952 +Training time 0:07:02.998019 +Epoch: 162 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 631) +0/69092 Loss: 128.680 +3200/69092 Loss: 136.458 +6400/69092 Loss: 137.841 +9600/69092 Loss: 138.255 +12800/69092 Loss: 138.047 +16000/69092 Loss: 137.012 +19200/69092 Loss: 137.025 +22400/69092 Loss: 135.496 +25600/69092 Loss: 138.328 +28800/69092 Loss: 137.912 +32000/69092 Loss: 136.231 +35200/69092 Loss: 137.612 +38400/69092 Loss: 137.193 +41600/69092 Loss: 136.259 +44800/69092 Loss: 135.605 +48000/69092 Loss: 137.525 +51200/69092 Loss: 138.592 +54400/69092 Loss: 136.616 +57600/69092 Loss: 136.308 +60800/69092 Loss: 136.479 +64000/69092 Loss: 138.310 +67200/69092 Loss: 138.280 +Training time 0:07:05.804628 +Epoch: 163 Average loss: 137.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 632) +0/69092 Loss: 129.115 +3200/69092 Loss: 136.749 +6400/69092 Loss: 137.629 +9600/69092 Loss: 136.888 +12800/69092 Loss: 138.472 +16000/69092 Loss: 138.795 +19200/69092 Loss: 138.384 +22400/69092 Loss: 137.504 +25600/69092 Loss: 136.772 +28800/69092 Loss: 139.005 +32000/69092 Loss: 137.004 +35200/69092 Loss: 137.964 +38400/69092 Loss: 136.984 +41600/69092 Loss: 136.172 +44800/69092 Loss: 135.261 +48000/69092 Loss: 138.485 +51200/69092 Loss: 133.876 +54400/69092 Loss: 140.018 +57600/69092 Loss: 136.785 +60800/69092 Loss: 136.879 +64000/69092 Loss: 137.706 +67200/69092 Loss: 137.032 +Training time 0:06:54.692784 +Epoch: 164 Average loss: 137.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 633) +0/69092 Loss: 147.345 +3200/69092 Loss: 137.095 +6400/69092 Loss: 137.712 +9600/69092 Loss: 136.241 +12800/69092 Loss: 137.236 +16000/69092 Loss: 136.562 +19200/69092 Loss: 137.944 +22400/69092 Loss: 137.646 +25600/69092 Loss: 137.432 +28800/69092 Loss: 138.938 +32000/69092 Loss: 133.844 +35200/69092 Loss: 138.869 +38400/69092 Loss: 136.333 +41600/69092 Loss: 138.314 +44800/69092 Loss: 137.465 +48000/69092 Loss: 137.144 +51200/69092 Loss: 137.217 +54400/69092 Loss: 136.154 +57600/69092 Loss: 136.466 +60800/69092 Loss: 138.365 +64000/69092 Loss: 137.691 +67200/69092 Loss: 138.381 +Training time 0:06:57.115571 +Epoch: 165 Average loss: 137.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 634) +0/69092 Loss: 145.605 +3200/69092 Loss: 140.393 +6400/69092 Loss: 134.598 +9600/69092 Loss: 138.350 +12800/69092 Loss: 135.411 +16000/69092 Loss: 139.057 +19200/69092 Loss: 137.853 +22400/69092 Loss: 136.918 +25600/69092 Loss: 138.213 +28800/69092 Loss: 136.805 +32000/69092 Loss: 137.913 +35200/69092 Loss: 137.967 +38400/69092 Loss: 135.102 +41600/69092 Loss: 140.336 +44800/69092 Loss: 138.614 +48000/69092 Loss: 137.457 +51200/69092 Loss: 135.858 +54400/69092 Loss: 135.490 +57600/69092 Loss: 136.074 +60800/69092 Loss: 138.006 +64000/69092 Loss: 137.950 +67200/69092 Loss: 136.088 +Training time 0:07:09.889647 +Epoch: 166 Average loss: 137.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 635) +0/69092 Loss: 136.224 +3200/69092 Loss: 136.230 +6400/69092 Loss: 135.314 +9600/69092 Loss: 134.625 +12800/69092 Loss: 139.331 +16000/69092 Loss: 139.176 +19200/69092 Loss: 135.674 +22400/69092 Loss: 135.796 +25600/69092 Loss: 137.893 +28800/69092 Loss: 139.104 +32000/69092 Loss: 137.726 +35200/69092 Loss: 138.345 +38400/69092 Loss: 137.796 +41600/69092 Loss: 136.110 +44800/69092 Loss: 138.004 +48000/69092 Loss: 136.473 +51200/69092 Loss: 137.527 +54400/69092 Loss: 138.407 +57600/69092 Loss: 138.281 +60800/69092 Loss: 135.763 +64000/69092 Loss: 135.982 +67200/69092 Loss: 140.734 +Training time 0:07:02.986309 +Epoch: 167 Average loss: 137.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 636) +0/69092 Loss: 125.382 +3200/69092 Loss: 141.314 +6400/69092 Loss: 136.799 +9600/69092 Loss: 137.675 +12800/69092 Loss: 136.521 +16000/69092 Loss: 137.020 +19200/69092 Loss: 138.286 +22400/69092 Loss: 136.919 +25600/69092 Loss: 137.289 +28800/69092 Loss: 133.581 +32000/69092 Loss: 135.955 +35200/69092 Loss: 136.563 +38400/69092 Loss: 137.093 +41600/69092 Loss: 138.113 +44800/69092 Loss: 137.992 +48000/69092 Loss: 139.808 +51200/69092 Loss: 138.051 +54400/69092 Loss: 136.606 +57600/69092 Loss: 137.671 +60800/69092 Loss: 137.234 +64000/69092 Loss: 138.672 +67200/69092 Loss: 135.372 +Training time 0:06:59.504046 +Epoch: 168 Average loss: 137.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 637) +0/69092 Loss: 133.032 +3200/69092 Loss: 137.790 +6400/69092 Loss: 136.188 +9600/69092 Loss: 138.190 +12800/69092 Loss: 134.532 +16000/69092 Loss: 136.832 +19200/69092 Loss: 136.750 +22400/69092 Loss: 139.038 +25600/69092 Loss: 138.768 +28800/69092 Loss: 138.300 +32000/69092 Loss: 140.379 +35200/69092 Loss: 135.434 +38400/69092 Loss: 137.300 +41600/69092 Loss: 137.053 +44800/69092 Loss: 137.444 +48000/69092 Loss: 137.713 +51200/69092 Loss: 137.082 +54400/69092 Loss: 137.810 +57600/69092 Loss: 136.607 +60800/69092 Loss: 138.038 +64000/69092 Loss: 137.399 +67200/69092 Loss: 135.843 +Training time 0:07:01.328662 +Epoch: 169 Average loss: 137.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 638) +0/69092 Loss: 141.717 +3200/69092 Loss: 137.220 +6400/69092 Loss: 137.196 +9600/69092 Loss: 135.865 +12800/69092 Loss: 138.326 +16000/69092 Loss: 134.038 +19200/69092 Loss: 136.452 +22400/69092 Loss: 138.033 +25600/69092 Loss: 135.072 +28800/69092 Loss: 136.660 +32000/69092 Loss: 137.697 +35200/69092 Loss: 137.152 +38400/69092 Loss: 138.974 +41600/69092 Loss: 137.060 +44800/69092 Loss: 138.959 +48000/69092 Loss: 137.970 +51200/69092 Loss: 136.799 +54400/69092 Loss: 138.721 +57600/69092 Loss: 139.594 +60800/69092 Loss: 137.153 +64000/69092 Loss: 138.230 +67200/69092 Loss: 135.638 +Training time 0:07:02.377090 +Epoch: 170 Average loss: 137.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 639) +0/69092 Loss: 123.992 +3200/69092 Loss: 137.682 +6400/69092 Loss: 137.247 +9600/69092 Loss: 135.949 +12800/69092 Loss: 136.682 +16000/69092 Loss: 136.130 +19200/69092 Loss: 138.974 +22400/69092 Loss: 137.731 +25600/69092 Loss: 136.103 +28800/69092 Loss: 138.550 +32000/69092 Loss: 136.896 +35200/69092 Loss: 137.622 +38400/69092 Loss: 136.963 +41600/69092 Loss: 136.296 +44800/69092 Loss: 136.759 +48000/69092 Loss: 140.318 +51200/69092 Loss: 136.411 +54400/69092 Loss: 138.086 +57600/69092 Loss: 135.491 +60800/69092 Loss: 137.948 +64000/69092 Loss: 137.991 +67200/69092 Loss: 135.457 +Training time 0:07:01.536069 +Epoch: 171 Average loss: 137.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 640) +0/69092 Loss: 136.708 +3200/69092 Loss: 137.422 +6400/69092 Loss: 134.495 +9600/69092 Loss: 135.260 +12800/69092 Loss: 136.142 +16000/69092 Loss: 137.661 +19200/69092 Loss: 135.320 +22400/69092 Loss: 137.400 +25600/69092 Loss: 138.398 +28800/69092 Loss: 138.920 +32000/69092 Loss: 137.235 +35200/69092 Loss: 138.165 +38400/69092 Loss: 134.705 +41600/69092 Loss: 139.482 +44800/69092 Loss: 137.887 +48000/69092 Loss: 137.788 +51200/69092 Loss: 139.340 +54400/69092 Loss: 138.944 +57600/69092 Loss: 138.420 +60800/69092 Loss: 136.808 +64000/69092 Loss: 139.406 +67200/69092 Loss: 137.098 +Training time 0:07:03.423821 +Epoch: 172 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 641) +0/69092 Loss: 132.639 +3200/69092 Loss: 137.087 +6400/69092 Loss: 139.271 +9600/69092 Loss: 136.309 +12800/69092 Loss: 136.404 +16000/69092 Loss: 135.161 +19200/69092 Loss: 135.830 +22400/69092 Loss: 136.829 +25600/69092 Loss: 135.491 +28800/69092 Loss: 138.850 +32000/69092 Loss: 133.894 +35200/69092 Loss: 138.197 +38400/69092 Loss: 136.736 +41600/69092 Loss: 137.061 +44800/69092 Loss: 135.063 +48000/69092 Loss: 139.652 +51200/69092 Loss: 138.461 +54400/69092 Loss: 136.956 +57600/69092 Loss: 137.720 +60800/69092 Loss: 137.971 +64000/69092 Loss: 137.992 +67200/69092 Loss: 138.081 +Training time 0:07:06.304808 +Epoch: 173 Average loss: 137.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 642) +0/69092 Loss: 148.388 +3200/69092 Loss: 135.785 +6400/69092 Loss: 137.679 +9600/69092 Loss: 137.744 +12800/69092 Loss: 138.848 +16000/69092 Loss: 137.159 +19200/69092 Loss: 138.104 +22400/69092 Loss: 137.650 +25600/69092 Loss: 135.661 +28800/69092 Loss: 137.016 +32000/69092 Loss: 137.279 +35200/69092 Loss: 137.231 +38400/69092 Loss: 139.299 +41600/69092 Loss: 137.836 +44800/69092 Loss: 137.040 +48000/69092 Loss: 137.062 +51200/69092 Loss: 137.580 +54400/69092 Loss: 135.841 +57600/69092 Loss: 139.646 +60800/69092 Loss: 136.046 +64000/69092 Loss: 135.742 +67200/69092 Loss: 137.801 +Training time 0:06:59.685285 +Epoch: 174 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 643) +0/69092 Loss: 139.189 +3200/69092 Loss: 137.419 +6400/69092 Loss: 139.871 +9600/69092 Loss: 135.855 +12800/69092 Loss: 138.632 +16000/69092 Loss: 136.547 +19200/69092 Loss: 136.968 +22400/69092 Loss: 138.490 +25600/69092 Loss: 136.767 +28800/69092 Loss: 138.016 +32000/69092 Loss: 136.103 +35200/69092 Loss: 135.975 +38400/69092 Loss: 136.876 +41600/69092 Loss: 135.559 +44800/69092 Loss: 139.379 +48000/69092 Loss: 135.144 +51200/69092 Loss: 141.037 +54400/69092 Loss: 137.935 +57600/69092 Loss: 136.973 +60800/69092 Loss: 136.365 +64000/69092 Loss: 137.618 +67200/69092 Loss: 137.089 +Training time 0:06:59.145267 +Epoch: 175 Average loss: 137.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 644) +0/69092 Loss: 134.153 +3200/69092 Loss: 136.646 +6400/69092 Loss: 135.994 +9600/69092 Loss: 137.880 +12800/69092 Loss: 136.118 +16000/69092 Loss: 136.165 +19200/69092 Loss: 135.870 +22400/69092 Loss: 136.137 +25600/69092 Loss: 138.196 +28800/69092 Loss: 139.644 +32000/69092 Loss: 136.251 +35200/69092 Loss: 135.749 +38400/69092 Loss: 138.907 +41600/69092 Loss: 138.745 +44800/69092 Loss: 138.036 +48000/69092 Loss: 134.538 +51200/69092 Loss: 135.657 +54400/69092 Loss: 139.340 +57600/69092 Loss: 138.619 +60800/69092 Loss: 137.635 +64000/69092 Loss: 138.167 +67200/69092 Loss: 137.430 +Training time 0:06:56.086483 +Epoch: 176 Average loss: 137.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 645) +0/69092 Loss: 127.767 +3200/69092 Loss: 135.259 +6400/69092 Loss: 137.364 +9600/69092 Loss: 138.035 +12800/69092 Loss: 138.614 +16000/69092 Loss: 136.309 +19200/69092 Loss: 137.662 +22400/69092 Loss: 137.079 +25600/69092 Loss: 138.845 +28800/69092 Loss: 136.859 +32000/69092 Loss: 137.136 +35200/69092 Loss: 136.194 +38400/69092 Loss: 136.897 +41600/69092 Loss: 136.828 +44800/69092 Loss: 137.545 +48000/69092 Loss: 138.922 +51200/69092 Loss: 136.868 +54400/69092 Loss: 139.543 +57600/69092 Loss: 137.975 +60800/69092 Loss: 139.122 +64000/69092 Loss: 137.569 +67200/69092 Loss: 135.618 +Training time 0:07:04.567286 +Epoch: 177 Average loss: 137.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 646) +0/69092 Loss: 139.475 +3200/69092 Loss: 135.280 +6400/69092 Loss: 135.869 +9600/69092 Loss: 135.646 +12800/69092 Loss: 139.043 +16000/69092 Loss: 137.428 +19200/69092 Loss: 136.605 +22400/69092 Loss: 137.416 +25600/69092 Loss: 137.479 +28800/69092 Loss: 135.880 +32000/69092 Loss: 135.239 +35200/69092 Loss: 137.418 +38400/69092 Loss: 136.794 +41600/69092 Loss: 138.655 +44800/69092 Loss: 137.671 +48000/69092 Loss: 138.197 +51200/69092 Loss: 135.071 +54400/69092 Loss: 137.690 +57600/69092 Loss: 140.763 +60800/69092 Loss: 138.863 +64000/69092 Loss: 136.654 +67200/69092 Loss: 138.094 +Training time 0:06:56.750453 +Epoch: 178 Average loss: 137.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 647) +0/69092 Loss: 139.799 +3200/69092 Loss: 135.600 +6400/69092 Loss: 135.783 +9600/69092 Loss: 139.319 +12800/69092 Loss: 139.130 +16000/69092 Loss: 138.631 +19200/69092 Loss: 140.573 +22400/69092 Loss: 140.244 +25600/69092 Loss: 137.789 +28800/69092 Loss: 135.270 +32000/69092 Loss: 135.486 +35200/69092 Loss: 133.635 +38400/69092 Loss: 135.808 +41600/69092 Loss: 137.640 +44800/69092 Loss: 139.202 +48000/69092 Loss: 136.712 +51200/69092 Loss: 140.177 +54400/69092 Loss: 137.734 +57600/69092 Loss: 138.416 +60800/69092 Loss: 135.477 +64000/69092 Loss: 137.688 +67200/69092 Loss: 136.632 +Training time 0:07:04.804265 +Epoch: 179 Average loss: 137.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 648) +0/69092 Loss: 128.183 +3200/69092 Loss: 136.450 +6400/69092 Loss: 136.428 +9600/69092 Loss: 137.765 +12800/69092 Loss: 136.786 +16000/69092 Loss: 135.401 +19200/69092 Loss: 137.445 +22400/69092 Loss: 138.064 +25600/69092 Loss: 135.685 +28800/69092 Loss: 138.150 +32000/69092 Loss: 138.632 +35200/69092 Loss: 138.078 +38400/69092 Loss: 136.317 diff --git a/OAR.2073653.stderr b/OAR.2073653.stderr new file mode 100644 index 0000000000000000000000000000000000000000..53728a5c11f597b145dad300082ce7a98171a1c5 --- /dev/null +++ b/OAR.2073653.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-07 08:29:29] Job 2073653 KILLED ## diff --git a/OAR.2073653.stdout b/OAR.2073653.stdout new file mode 100644 index 0000000000000000000000000000000000000000..e8dcd8bf1a151990f120b32b2da9dac7139df3cd --- /dev/null +++ b/OAR.2073653.stdout @@ -0,0 +1,6439 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=30, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=15, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 769185 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last (iter 473)' +0/69092 Loss: 110.581 +3200/69092 Loss: 108.566 +6400/69092 Loss: 106.471 +9600/69092 Loss: 108.384 +12800/69092 Loss: 106.179 +16000/69092 Loss: 108.363 +19200/69092 Loss: 107.383 +22400/69092 Loss: 106.201 +25600/69092 Loss: 107.748 +28800/69092 Loss: 106.345 +32000/69092 Loss: 106.933 +35200/69092 Loss: 104.953 +38400/69092 Loss: 107.716 +41600/69092 Loss: 107.336 +44800/69092 Loss: 108.383 +48000/69092 Loss: 105.740 +51200/69092 Loss: 107.848 +54400/69092 Loss: 106.690 +57600/69092 Loss: 108.056 +60800/69092 Loss: 107.377 +64000/69092 Loss: 106.159 +67200/69092 Loss: 106.285 +Training time 0:11:27.149249 +Epoch: 1 Average loss: 107.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 474) +0/69092 Loss: 99.702 +3200/69092 Loss: 107.183 +6400/69092 Loss: 105.993 +9600/69092 Loss: 108.311 +12800/69092 Loss: 106.867 +16000/69092 Loss: 107.440 +19200/69092 Loss: 107.263 +22400/69092 Loss: 107.394 +25600/69092 Loss: 107.183 +28800/69092 Loss: 107.871 +32000/69092 Loss: 107.158 +35200/69092 Loss: 106.926 +38400/69092 Loss: 107.633 +41600/69092 Loss: 107.240 +44800/69092 Loss: 106.964 +48000/69092 Loss: 107.199 +51200/69092 Loss: 107.033 +54400/69092 Loss: 108.140 +57600/69092 Loss: 108.732 +60800/69092 Loss: 107.360 +64000/69092 Loss: 106.795 +67200/69092 Loss: 105.665 +Training time 0:08:21.160838 +Epoch: 2 Average loss: 107.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 475) +0/69092 Loss: 100.981 +3200/69092 Loss: 107.292 +6400/69092 Loss: 106.760 +9600/69092 Loss: 107.908 +12800/69092 Loss: 108.657 +16000/69092 Loss: 107.260 +19200/69092 Loss: 108.109 +22400/69092 Loss: 106.831 +25600/69092 Loss: 107.451 +28800/69092 Loss: 106.991 +32000/69092 Loss: 105.879 +35200/69092 Loss: 107.224 +38400/69092 Loss: 105.254 +41600/69092 Loss: 106.785 +44800/69092 Loss: 106.556 +48000/69092 Loss: 107.053 +51200/69092 Loss: 105.321 +54400/69092 Loss: 107.260 +57600/69092 Loss: 107.236 +60800/69092 Loss: 107.563 +64000/69092 Loss: 107.818 +67200/69092 Loss: 106.996 +Training time 0:08:24.511412 +Epoch: 3 Average loss: 107.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 476) +0/69092 Loss: 101.654 +3200/69092 Loss: 107.112 +6400/69092 Loss: 107.697 +9600/69092 Loss: 108.108 +12800/69092 Loss: 107.534 +16000/69092 Loss: 107.792 +19200/69092 Loss: 107.133 +22400/69092 Loss: 106.991 +25600/69092 Loss: 106.777 +28800/69092 Loss: 107.075 +32000/69092 Loss: 106.054 +35200/69092 Loss: 106.968 +38400/69092 Loss: 106.188 +41600/69092 Loss: 107.597 +44800/69092 Loss: 107.695 +48000/69092 Loss: 106.289 +51200/69092 Loss: 108.033 +54400/69092 Loss: 105.069 +57600/69092 Loss: 106.915 +60800/69092 Loss: 106.857 +64000/69092 Loss: 106.869 +67200/69092 Loss: 106.638 +Training time 0:08:19.924611 +Epoch: 4 Average loss: 107.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 477) +0/69092 Loss: 114.821 +3200/69092 Loss: 107.246 +6400/69092 Loss: 107.752 +9600/69092 Loss: 108.112 +12800/69092 Loss: 106.756 +16000/69092 Loss: 107.722 +19200/69092 Loss: 107.283 +22400/69092 Loss: 107.405 +25600/69092 Loss: 106.939 +28800/69092 Loss: 108.485 +32000/69092 Loss: 106.440 +35200/69092 Loss: 107.298 +38400/69092 Loss: 107.824 +41600/69092 Loss: 106.948 +44800/69092 Loss: 105.555 +48000/69092 Loss: 107.234 +51200/69092 Loss: 108.271 +54400/69092 Loss: 106.022 +57600/69092 Loss: 107.570 +60800/69092 Loss: 106.151 +64000/69092 Loss: 107.214 +67200/69092 Loss: 106.246 +Training time 0:08:23.167325 +Epoch: 5 Average loss: 107.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 478) +0/69092 Loss: 103.693 +3200/69092 Loss: 106.994 +6400/69092 Loss: 105.527 +9600/69092 Loss: 106.331 +12800/69092 Loss: 108.530 +16000/69092 Loss: 107.233 +19200/69092 Loss: 107.429 +22400/69092 Loss: 107.106 +25600/69092 Loss: 105.530 +28800/69092 Loss: 108.257 +32000/69092 Loss: 107.044 +35200/69092 Loss: 108.063 +38400/69092 Loss: 104.476 +41600/69092 Loss: 107.319 +44800/69092 Loss: 107.246 +48000/69092 Loss: 107.314 +51200/69092 Loss: 108.196 +54400/69092 Loss: 106.151 +57600/69092 Loss: 107.594 +60800/69092 Loss: 107.574 +64000/69092 Loss: 107.560 +67200/69092 Loss: 107.120 +Training time 0:08:30.595398 +Epoch: 6 Average loss: 107.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 479) +0/69092 Loss: 103.409 +3200/69092 Loss: 107.584 +6400/69092 Loss: 105.331 +9600/69092 Loss: 105.813 +12800/69092 Loss: 107.597 +16000/69092 Loss: 105.975 +19200/69092 Loss: 107.453 +22400/69092 Loss: 108.537 +25600/69092 Loss: 107.829 +28800/69092 Loss: 107.378 +32000/69092 Loss: 106.630 +35200/69092 Loss: 106.915 +38400/69092 Loss: 107.930 +41600/69092 Loss: 107.281 +44800/69092 Loss: 106.304 +48000/69092 Loss: 106.464 +51200/69092 Loss: 106.313 +54400/69092 Loss: 107.652 +57600/69092 Loss: 108.498 +60800/69092 Loss: 107.306 +64000/69092 Loss: 106.384 +67200/69092 Loss: 106.797 +Training time 0:08:27.744257 +Epoch: 7 Average loss: 107.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 480) +0/69092 Loss: 108.074 +3200/69092 Loss: 106.775 +6400/69092 Loss: 106.262 +9600/69092 Loss: 106.973 +12800/69092 Loss: 108.121 +16000/69092 Loss: 107.404 +19200/69092 Loss: 107.896 +22400/69092 Loss: 106.314 +25600/69092 Loss: 107.000 +28800/69092 Loss: 105.784 +32000/69092 Loss: 107.484 +35200/69092 Loss: 107.277 +38400/69092 Loss: 108.077 +41600/69092 Loss: 107.103 +44800/69092 Loss: 108.139 +48000/69092 Loss: 106.600 +51200/69092 Loss: 106.753 +54400/69092 Loss: 107.793 +57600/69092 Loss: 107.806 +60800/69092 Loss: 106.514 +64000/69092 Loss: 106.559 +67200/69092 Loss: 105.460 +Training time 0:08:17.349364 +Epoch: 8 Average loss: 107.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 481) +0/69092 Loss: 102.789 +3200/69092 Loss: 107.755 +6400/69092 Loss: 104.764 +9600/69092 Loss: 107.358 +12800/69092 Loss: 105.349 +16000/69092 Loss: 109.045 +19200/69092 Loss: 105.747 +22400/69092 Loss: 107.275 +25600/69092 Loss: 107.799 +28800/69092 Loss: 107.039 +32000/69092 Loss: 106.828 +35200/69092 Loss: 107.710 +38400/69092 Loss: 105.495 +41600/69092 Loss: 107.351 +44800/69092 Loss: 108.321 +48000/69092 Loss: 107.437 +51200/69092 Loss: 106.254 +54400/69092 Loss: 107.760 +57600/69092 Loss: 107.354 +60800/69092 Loss: 106.981 +64000/69092 Loss: 106.516 +67200/69092 Loss: 107.745 +Training time 0:08:30.688107 +Epoch: 9 Average loss: 107.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 482) +0/69092 Loss: 105.944 +3200/69092 Loss: 105.756 +6400/69092 Loss: 106.049 +9600/69092 Loss: 108.480 +12800/69092 Loss: 107.277 +16000/69092 Loss: 106.685 +19200/69092 Loss: 106.659 +22400/69092 Loss: 108.246 +25600/69092 Loss: 107.582 +28800/69092 Loss: 106.032 +32000/69092 Loss: 107.498 +35200/69092 Loss: 107.376 +38400/69092 Loss: 106.715 +41600/69092 Loss: 106.488 +44800/69092 Loss: 107.986 +48000/69092 Loss: 106.161 +51200/69092 Loss: 106.795 +54400/69092 Loss: 107.495 +57600/69092 Loss: 106.581 +60800/69092 Loss: 106.513 +64000/69092 Loss: 107.938 +67200/69092 Loss: 106.343 +Training time 0:08:30.902520 +Epoch: 10 Average loss: 107.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 483) +0/69092 Loss: 107.215 +3200/69092 Loss: 106.000 +6400/69092 Loss: 108.314 +9600/69092 Loss: 105.244 +12800/69092 Loss: 107.664 +16000/69092 Loss: 107.489 +19200/69092 Loss: 106.426 +22400/69092 Loss: 107.607 +25600/69092 Loss: 106.536 +28800/69092 Loss: 107.047 +32000/69092 Loss: 106.565 +35200/69092 Loss: 107.611 +38400/69092 Loss: 107.552 +41600/69092 Loss: 106.444 +44800/69092 Loss: 107.971 +48000/69092 Loss: 107.682 +51200/69092 Loss: 107.682 +54400/69092 Loss: 105.808 +57600/69092 Loss: 107.946 +60800/69092 Loss: 107.230 +64000/69092 Loss: 105.990 +67200/69092 Loss: 107.448 +Training time 0:08:17.127701 +Epoch: 11 Average loss: 107.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 484) +0/69092 Loss: 108.883 +3200/69092 Loss: 105.996 +6400/69092 Loss: 107.297 +9600/69092 Loss: 106.803 +12800/69092 Loss: 105.791 +16000/69092 Loss: 106.937 +19200/69092 Loss: 106.463 +22400/69092 Loss: 107.672 +25600/69092 Loss: 106.902 +28800/69092 Loss: 107.051 +32000/69092 Loss: 106.500 +35200/69092 Loss: 106.837 +38400/69092 Loss: 107.289 +41600/69092 Loss: 106.878 +44800/69092 Loss: 107.706 +48000/69092 Loss: 107.641 +51200/69092 Loss: 108.040 +54400/69092 Loss: 107.375 +57600/69092 Loss: 108.067 +60800/69092 Loss: 106.578 +64000/69092 Loss: 107.220 +67200/69092 Loss: 106.131 +Training time 0:08:21.377214 +Epoch: 12 Average loss: 107.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 485) +0/69092 Loss: 98.170 +3200/69092 Loss: 109.277 +6400/69092 Loss: 107.257 +9600/69092 Loss: 104.721 +12800/69092 Loss: 107.396 +16000/69092 Loss: 107.453 +19200/69092 Loss: 107.329 +22400/69092 Loss: 105.373 +25600/69092 Loss: 107.099 +28800/69092 Loss: 105.214 +32000/69092 Loss: 108.016 +35200/69092 Loss: 106.363 +38400/69092 Loss: 107.079 +41600/69092 Loss: 105.177 +44800/69092 Loss: 106.292 +48000/69092 Loss: 108.207 +51200/69092 Loss: 107.205 +54400/69092 Loss: 107.133 +57600/69092 Loss: 106.349 +60800/69092 Loss: 106.411 +64000/69092 Loss: 108.426 +67200/69092 Loss: 108.723 +Training time 0:08:40.537179 +Epoch: 13 Average loss: 106.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 486) +0/69092 Loss: 131.432 +3200/69092 Loss: 105.775 +6400/69092 Loss: 107.623 +9600/69092 Loss: 106.193 +12800/69092 Loss: 107.760 +16000/69092 Loss: 106.770 +19200/69092 Loss: 106.897 +22400/69092 Loss: 106.845 +25600/69092 Loss: 107.052 +28800/69092 Loss: 106.259 +32000/69092 Loss: 106.689 +35200/69092 Loss: 106.810 +38400/69092 Loss: 106.179 +41600/69092 Loss: 107.628 +44800/69092 Loss: 106.408 +48000/69092 Loss: 108.090 +51200/69092 Loss: 106.630 +54400/69092 Loss: 106.855 +57600/69092 Loss: 107.487 +60800/69092 Loss: 107.528 +64000/69092 Loss: 106.653 +67200/69092 Loss: 107.294 +Training time 0:08:34.089958 +Epoch: 14 Average loss: 106.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 487) +0/69092 Loss: 112.647 +3200/69092 Loss: 105.902 +6400/69092 Loss: 106.145 +9600/69092 Loss: 106.712 +12800/69092 Loss: 106.521 +16000/69092 Loss: 106.187 +19200/69092 Loss: 108.799 +22400/69092 Loss: 107.252 +25600/69092 Loss: 107.509 +28800/69092 Loss: 107.038 +32000/69092 Loss: 104.798 +35200/69092 Loss: 107.998 +38400/69092 Loss: 107.046 +41600/69092 Loss: 107.723 +44800/69092 Loss: 107.305 +48000/69092 Loss: 106.835 +51200/69092 Loss: 107.211 +54400/69092 Loss: 106.013 +57600/69092 Loss: 106.989 +60800/69092 Loss: 106.761 +64000/69092 Loss: 107.381 +67200/69092 Loss: 105.521 +Training time 0:08:18.814183 +Epoch: 15 Average loss: 106.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 488) +0/69092 Loss: 105.213 +3200/69092 Loss: 106.556 +6400/69092 Loss: 106.534 +9600/69092 Loss: 106.534 +12800/69092 Loss: 107.659 +16000/69092 Loss: 106.278 +19200/69092 Loss: 107.353 +22400/69092 Loss: 106.516 +25600/69092 Loss: 106.815 +28800/69092 Loss: 106.272 +32000/69092 Loss: 106.202 +35200/69092 Loss: 107.211 +38400/69092 Loss: 108.800 +41600/69092 Loss: 107.586 +44800/69092 Loss: 107.131 +48000/69092 Loss: 106.819 +51200/69092 Loss: 106.776 +54400/69092 Loss: 107.619 +57600/69092 Loss: 107.367 +60800/69092 Loss: 107.814 +64000/69092 Loss: 107.028 +67200/69092 Loss: 105.636 +Training time 0:08:30.234504 +Epoch: 16 Average loss: 107.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 489) +0/69092 Loss: 109.155 +3200/69092 Loss: 106.319 +6400/69092 Loss: 106.810 +9600/69092 Loss: 107.343 +12800/69092 Loss: 107.245 +16000/69092 Loss: 107.087 +19200/69092 Loss: 104.626 +22400/69092 Loss: 108.206 +25600/69092 Loss: 106.612 +28800/69092 Loss: 106.779 +32000/69092 Loss: 107.265 +35200/69092 Loss: 108.162 +38400/69092 Loss: 108.400 +41600/69092 Loss: 106.947 +44800/69092 Loss: 106.623 +48000/69092 Loss: 107.640 +51200/69092 Loss: 107.158 +54400/69092 Loss: 106.243 +57600/69092 Loss: 107.981 +60800/69092 Loss: 107.052 +64000/69092 Loss: 106.735 +67200/69092 Loss: 106.029 +Training time 0:08:36.323006 +Epoch: 17 Average loss: 106.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 490) +0/69092 Loss: 108.026 +3200/69092 Loss: 107.877 +6400/69092 Loss: 107.309 +9600/69092 Loss: 107.339 +12800/69092 Loss: 107.716 +16000/69092 Loss: 107.257 +19200/69092 Loss: 109.342 +22400/69092 Loss: 108.281 +25600/69092 Loss: 106.066 +28800/69092 Loss: 106.281 +32000/69092 Loss: 106.672 +35200/69092 Loss: 107.658 +38400/69092 Loss: 106.854 +41600/69092 Loss: 106.254 +44800/69092 Loss: 107.185 +48000/69092 Loss: 107.933 +51200/69092 Loss: 105.698 +54400/69092 Loss: 106.216 +57600/69092 Loss: 106.335 +60800/69092 Loss: 108.794 +64000/69092 Loss: 106.184 +67200/69092 Loss: 105.062 +Training time 0:08:06.879925 +Epoch: 18 Average loss: 107.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 491) +0/69092 Loss: 103.597 +3200/69092 Loss: 106.341 +6400/69092 Loss: 108.225 +9600/69092 Loss: 107.684 +12800/69092 Loss: 106.259 +16000/69092 Loss: 106.648 +19200/69092 Loss: 106.431 +22400/69092 Loss: 105.961 +25600/69092 Loss: 106.845 +28800/69092 Loss: 107.147 +32000/69092 Loss: 108.493 +35200/69092 Loss: 106.672 +38400/69092 Loss: 107.321 +41600/69092 Loss: 105.631 +44800/69092 Loss: 106.323 +48000/69092 Loss: 107.250 +51200/69092 Loss: 106.301 +54400/69092 Loss: 107.021 +57600/69092 Loss: 107.016 +60800/69092 Loss: 107.770 +64000/69092 Loss: 106.568 +67200/69092 Loss: 105.828 +Training time 0:08:23.348185 +Epoch: 19 Average loss: 106.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 492) +0/69092 Loss: 108.248 +3200/69092 Loss: 107.122 +6400/69092 Loss: 108.162 +9600/69092 Loss: 107.138 +12800/69092 Loss: 106.262 +16000/69092 Loss: 106.244 +19200/69092 Loss: 105.231 +22400/69092 Loss: 107.058 +25600/69092 Loss: 106.647 +28800/69092 Loss: 107.388 +32000/69092 Loss: 108.098 +35200/69092 Loss: 106.578 +38400/69092 Loss: 107.507 +41600/69092 Loss: 106.009 +44800/69092 Loss: 105.557 +48000/69092 Loss: 106.489 +51200/69092 Loss: 107.989 +54400/69092 Loss: 107.395 +57600/69092 Loss: 107.140 +60800/69092 Loss: 107.572 +64000/69092 Loss: 105.796 +67200/69092 Loss: 109.904 +Training time 0:08:24.788049 +Epoch: 20 Average loss: 107.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 493) +0/69092 Loss: 100.870 +3200/69092 Loss: 107.126 +6400/69092 Loss: 106.857 +9600/69092 Loss: 108.536 +12800/69092 Loss: 106.562 +16000/69092 Loss: 107.101 +19200/69092 Loss: 106.720 +22400/69092 Loss: 105.400 +25600/69092 Loss: 104.825 +28800/69092 Loss: 105.123 +32000/69092 Loss: 108.347 +35200/69092 Loss: 107.264 +38400/69092 Loss: 108.469 +41600/69092 Loss: 106.208 +44800/69092 Loss: 107.207 +48000/69092 Loss: 106.957 +51200/69092 Loss: 107.260 +54400/69092 Loss: 106.784 +57600/69092 Loss: 106.922 +60800/69092 Loss: 105.668 +64000/69092 Loss: 107.480 +67200/69092 Loss: 107.907 +Training time 0:08:07.942677 +Epoch: 21 Average loss: 106.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 494) +0/69092 Loss: 108.267 +3200/69092 Loss: 106.839 +6400/69092 Loss: 106.348 +9600/69092 Loss: 107.386 +12800/69092 Loss: 107.184 +16000/69092 Loss: 107.226 +19200/69092 Loss: 105.995 +22400/69092 Loss: 107.061 +25600/69092 Loss: 106.122 +28800/69092 Loss: 107.395 +32000/69092 Loss: 107.483 +35200/69092 Loss: 105.361 +38400/69092 Loss: 107.751 +41600/69092 Loss: 108.151 +44800/69092 Loss: 107.938 +48000/69092 Loss: 107.507 +51200/69092 Loss: 109.059 +54400/69092 Loss: 106.667 +57600/69092 Loss: 105.810 +60800/69092 Loss: 106.929 +64000/69092 Loss: 105.931 +67200/69092 Loss: 106.566 +Training time 0:08:18.878440 +Epoch: 22 Average loss: 106.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 495) +0/69092 Loss: 105.672 +3200/69092 Loss: 108.753 +6400/69092 Loss: 105.781 +9600/69092 Loss: 106.675 +12800/69092 Loss: 106.896 +16000/69092 Loss: 108.113 +19200/69092 Loss: 105.695 +22400/69092 Loss: 107.899 +25600/69092 Loss: 107.738 +28800/69092 Loss: 106.382 +32000/69092 Loss: 105.981 +35200/69092 Loss: 105.818 +38400/69092 Loss: 107.833 +41600/69092 Loss: 107.663 +44800/69092 Loss: 105.357 +48000/69092 Loss: 107.884 +51200/69092 Loss: 107.039 +54400/69092 Loss: 106.675 +57600/69092 Loss: 105.224 +60800/69092 Loss: 108.835 +64000/69092 Loss: 106.660 +67200/69092 Loss: 108.126 +Training time 0:08:36.022962 +Epoch: 23 Average loss: 107.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 496) +0/69092 Loss: 107.576 +3200/69092 Loss: 106.632 +6400/69092 Loss: 106.224 +9600/69092 Loss: 106.893 +12800/69092 Loss: 105.810 +16000/69092 Loss: 106.152 +19200/69092 Loss: 106.513 +22400/69092 Loss: 108.053 +25600/69092 Loss: 106.056 +28800/69092 Loss: 107.938 +32000/69092 Loss: 106.839 +35200/69092 Loss: 108.765 +38400/69092 Loss: 106.971 +41600/69092 Loss: 108.739 +44800/69092 Loss: 106.710 +48000/69092 Loss: 107.535 +51200/69092 Loss: 107.811 +54400/69092 Loss: 106.460 +57600/69092 Loss: 107.138 +60800/69092 Loss: 108.401 +64000/69092 Loss: 106.212 +67200/69092 Loss: 106.666 +Training time 0:08:17.218747 +Epoch: 24 Average loss: 107.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 497) +0/69092 Loss: 102.996 +3200/69092 Loss: 106.118 +6400/69092 Loss: 106.992 +9600/69092 Loss: 105.989 +12800/69092 Loss: 105.910 +16000/69092 Loss: 106.373 +19200/69092 Loss: 106.200 +22400/69092 Loss: 107.477 +25600/69092 Loss: 107.872 +28800/69092 Loss: 107.502 +32000/69092 Loss: 107.335 +35200/69092 Loss: 106.230 +38400/69092 Loss: 106.722 +41600/69092 Loss: 105.630 +44800/69092 Loss: 107.345 +48000/69092 Loss: 106.915 +51200/69092 Loss: 106.840 +54400/69092 Loss: 106.987 +57600/69092 Loss: 106.607 +60800/69092 Loss: 106.304 +64000/69092 Loss: 108.054 +67200/69092 Loss: 108.310 +Training time 0:08:24.180124 +Epoch: 25 Average loss: 106.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 498) +0/69092 Loss: 105.010 +3200/69092 Loss: 108.896 +6400/69092 Loss: 106.295 +9600/69092 Loss: 106.410 +12800/69092 Loss: 107.433 +16000/69092 Loss: 105.642 +19200/69092 Loss: 108.190 +22400/69092 Loss: 107.077 +25600/69092 Loss: 107.923 +28800/69092 Loss: 107.344 +32000/69092 Loss: 106.113 +35200/69092 Loss: 106.689 +38400/69092 Loss: 107.690 +41600/69092 Loss: 108.282 +44800/69092 Loss: 107.482 +48000/69092 Loss: 106.993 +51200/69092 Loss: 106.132 +54400/69092 Loss: 105.725 +57600/69092 Loss: 106.606 +60800/69092 Loss: 106.179 +64000/69092 Loss: 108.073 +67200/69092 Loss: 107.625 +Training time 0:08:43.351278 +Epoch: 26 Average loss: 107.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 499) +0/69092 Loss: 106.543 +3200/69092 Loss: 107.193 +6400/69092 Loss: 106.418 +9600/69092 Loss: 107.404 +12800/69092 Loss: 107.335 +16000/69092 Loss: 106.308 +19200/69092 Loss: 106.810 +22400/69092 Loss: 104.263 +25600/69092 Loss: 107.484 +28800/69092 Loss: 107.588 +32000/69092 Loss: 108.462 +35200/69092 Loss: 107.494 +38400/69092 Loss: 106.157 +41600/69092 Loss: 106.973 +44800/69092 Loss: 105.203 +48000/69092 Loss: 105.543 +51200/69092 Loss: 106.507 +54400/69092 Loss: 107.511 +57600/69092 Loss: 106.889 +60800/69092 Loss: 108.089 +64000/69092 Loss: 106.536 +67200/69092 Loss: 106.497 +Training time 0:08:22.273776 +Epoch: 27 Average loss: 106.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 500) +0/69092 Loss: 97.420 +3200/69092 Loss: 107.024 +6400/69092 Loss: 106.458 +9600/69092 Loss: 107.287 +12800/69092 Loss: 106.788 +16000/69092 Loss: 107.978 +19200/69092 Loss: 107.754 +22400/69092 Loss: 107.332 +25600/69092 Loss: 106.206 +28800/69092 Loss: 105.199 +32000/69092 Loss: 106.908 +35200/69092 Loss: 106.104 +38400/69092 Loss: 106.949 +41600/69092 Loss: 106.501 +44800/69092 Loss: 105.393 +48000/69092 Loss: 108.152 +51200/69092 Loss: 106.595 +54400/69092 Loss: 107.061 +57600/69092 Loss: 108.498 +60800/69092 Loss: 106.840 +64000/69092 Loss: 106.131 +67200/69092 Loss: 106.161 +Training time 0:08:14.546658 +Epoch: 28 Average loss: 106.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 501) +0/69092 Loss: 108.669 +3200/69092 Loss: 106.569 +6400/69092 Loss: 106.626 +9600/69092 Loss: 107.054 +12800/69092 Loss: 107.283 +16000/69092 Loss: 107.007 +19200/69092 Loss: 106.005 +22400/69092 Loss: 107.045 +25600/69092 Loss: 107.353 +28800/69092 Loss: 106.559 +32000/69092 Loss: 105.510 +35200/69092 Loss: 108.191 +38400/69092 Loss: 106.361 +41600/69092 Loss: 106.957 +44800/69092 Loss: 106.322 +48000/69092 Loss: 107.274 +51200/69092 Loss: 107.770 +54400/69092 Loss: 105.803 +57600/69092 Loss: 106.405 +60800/69092 Loss: 105.515 +64000/69092 Loss: 108.015 +67200/69092 Loss: 108.649 +Training time 0:08:27.655091 +Epoch: 29 Average loss: 106.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 502) +0/69092 Loss: 106.857 +3200/69092 Loss: 106.873 +6400/69092 Loss: 106.267 +9600/69092 Loss: 105.969 +12800/69092 Loss: 107.742 +16000/69092 Loss: 106.952 +19200/69092 Loss: 106.847 +22400/69092 Loss: 107.004 +25600/69092 Loss: 107.268 +28800/69092 Loss: 106.542 +32000/69092 Loss: 106.626 +35200/69092 Loss: 107.428 +38400/69092 Loss: 106.724 +41600/69092 Loss: 104.702 +44800/69092 Loss: 106.833 +48000/69092 Loss: 107.734 +51200/69092 Loss: 106.590 +54400/69092 Loss: 106.606 +57600/69092 Loss: 107.504 +60800/69092 Loss: 107.595 +64000/69092 Loss: 108.234 +67200/69092 Loss: 106.115 +Training time 0:08:29.535035 +Epoch: 30 Average loss: 106.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 503) +0/69092 Loss: 107.827 +3200/69092 Loss: 106.073 +6400/69092 Loss: 106.897 +9600/69092 Loss: 106.870 +12800/69092 Loss: 106.946 +16000/69092 Loss: 106.631 +19200/69092 Loss: 107.671 +22400/69092 Loss: 107.664 +25600/69092 Loss: 105.752 +28800/69092 Loss: 105.688 +32000/69092 Loss: 107.678 +35200/69092 Loss: 106.947 +38400/69092 Loss: 105.980 +41600/69092 Loss: 107.643 +44800/69092 Loss: 106.687 +48000/69092 Loss: 107.158 +51200/69092 Loss: 107.248 +54400/69092 Loss: 106.510 +57600/69092 Loss: 105.684 +60800/69092 Loss: 106.212 +64000/69092 Loss: 106.979 +67200/69092 Loss: 107.192 +Training time 0:08:05.845919 +Epoch: 31 Average loss: 106.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 504) +0/69092 Loss: 108.461 +3200/69092 Loss: 108.145 +6400/69092 Loss: 106.632 +9600/69092 Loss: 105.608 +12800/69092 Loss: 107.973 +16000/69092 Loss: 107.031 +19200/69092 Loss: 108.228 +22400/69092 Loss: 106.640 +25600/69092 Loss: 105.945 +28800/69092 Loss: 105.854 +32000/69092 Loss: 107.204 +35200/69092 Loss: 106.140 +38400/69092 Loss: 104.946 +41600/69092 Loss: 107.611 +44800/69092 Loss: 107.065 +48000/69092 Loss: 106.297 +51200/69092 Loss: 105.887 +54400/69092 Loss: 105.536 +57600/69092 Loss: 106.101 +60800/69092 Loss: 107.308 +64000/69092 Loss: 108.106 +67200/69092 Loss: 107.629 +Training time 0:08:23.864787 +Epoch: 32 Average loss: 106.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 505) +0/69092 Loss: 101.212 +3200/69092 Loss: 107.772 +6400/69092 Loss: 105.749 +9600/69092 Loss: 106.881 +12800/69092 Loss: 108.960 +16000/69092 Loss: 106.376 +19200/69092 Loss: 107.399 +22400/69092 Loss: 106.471 +25600/69092 Loss: 105.895 +28800/69092 Loss: 107.655 +32000/69092 Loss: 106.518 +35200/69092 Loss: 106.101 +38400/69092 Loss: 107.582 +41600/69092 Loss: 107.576 +44800/69092 Loss: 105.842 +48000/69092 Loss: 106.587 +51200/69092 Loss: 106.687 +54400/69092 Loss: 108.002 +57600/69092 Loss: 106.438 +60800/69092 Loss: 107.092 +64000/69092 Loss: 107.006 +67200/69092 Loss: 106.410 +Training time 0:08:33.277565 +Epoch: 33 Average loss: 106.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 506) +0/69092 Loss: 109.246 +3200/69092 Loss: 106.619 +6400/69092 Loss: 106.207 +9600/69092 Loss: 107.888 +12800/69092 Loss: 107.262 +16000/69092 Loss: 106.334 +19200/69092 Loss: 107.032 +22400/69092 Loss: 107.633 +25600/69092 Loss: 109.776 +28800/69092 Loss: 106.656 +32000/69092 Loss: 106.536 +35200/69092 Loss: 108.375 +38400/69092 Loss: 105.658 +41600/69092 Loss: 107.611 +44800/69092 Loss: 104.977 +48000/69092 Loss: 106.749 +51200/69092 Loss: 108.565 +54400/69092 Loss: 107.083 +57600/69092 Loss: 105.167 +60800/69092 Loss: 107.340 +64000/69092 Loss: 105.946 +67200/69092 Loss: 107.182 +Training time 0:08:21.139834 +Epoch: 34 Average loss: 106.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 507) +0/69092 Loss: 110.170 +3200/69092 Loss: 108.322 +6400/69092 Loss: 106.893 +9600/69092 Loss: 106.532 +12800/69092 Loss: 107.037 +16000/69092 Loss: 106.681 +19200/69092 Loss: 106.283 +22400/69092 Loss: 105.767 +25600/69092 Loss: 106.004 +28800/69092 Loss: 107.043 +32000/69092 Loss: 107.321 +35200/69092 Loss: 105.726 +38400/69092 Loss: 104.772 +41600/69092 Loss: 105.755 +44800/69092 Loss: 106.256 +48000/69092 Loss: 108.280 +51200/69092 Loss: 107.653 +54400/69092 Loss: 107.005 +57600/69092 Loss: 106.009 +60800/69092 Loss: 106.482 +64000/69092 Loss: 107.809 +67200/69092 Loss: 105.659 +Training time 0:08:17.733348 +Epoch: 35 Average loss: 106.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 508) +0/69092 Loss: 110.557 +3200/69092 Loss: 106.410 +6400/69092 Loss: 106.518 +9600/69092 Loss: 107.600 +12800/69092 Loss: 109.078 +16000/69092 Loss: 106.978 +19200/69092 Loss: 105.890 +22400/69092 Loss: 107.280 +25600/69092 Loss: 106.900 +28800/69092 Loss: 106.252 +32000/69092 Loss: 105.889 +35200/69092 Loss: 106.463 +38400/69092 Loss: 106.380 +41600/69092 Loss: 106.067 +44800/69092 Loss: 107.137 +48000/69092 Loss: 106.704 +51200/69092 Loss: 107.798 +54400/69092 Loss: 107.473 +57600/69092 Loss: 108.272 +60800/69092 Loss: 106.100 +64000/69092 Loss: 106.764 +67200/69092 Loss: 107.516 +Training time 0:08:37.361854 +Epoch: 36 Average loss: 106.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 509) +0/69092 Loss: 107.444 +3200/69092 Loss: 106.662 +6400/69092 Loss: 107.098 +9600/69092 Loss: 107.999 +12800/69092 Loss: 107.046 +16000/69092 Loss: 108.800 +19200/69092 Loss: 105.016 +22400/69092 Loss: 107.985 +25600/69092 Loss: 105.942 +28800/69092 Loss: 105.818 +32000/69092 Loss: 107.889 +35200/69092 Loss: 106.710 +38400/69092 Loss: 107.147 +41600/69092 Loss: 106.291 +44800/69092 Loss: 106.536 +48000/69092 Loss: 106.982 +51200/69092 Loss: 106.912 +54400/69092 Loss: 107.344 +57600/69092 Loss: 105.220 +60800/69092 Loss: 106.958 +64000/69092 Loss: 106.911 +67200/69092 Loss: 106.952 +Training time 0:08:23.202986 +Epoch: 37 Average loss: 106.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 510) +0/69092 Loss: 100.629 +3200/69092 Loss: 107.848 +6400/69092 Loss: 108.056 +9600/69092 Loss: 106.803 +12800/69092 Loss: 106.100 +16000/69092 Loss: 105.998 +19200/69092 Loss: 106.265 +22400/69092 Loss: 107.394 +25600/69092 Loss: 106.804 +28800/69092 Loss: 108.393 +32000/69092 Loss: 107.156 +35200/69092 Loss: 106.850 +38400/69092 Loss: 106.741 +41600/69092 Loss: 104.793 +44800/69092 Loss: 107.003 +48000/69092 Loss: 108.023 +51200/69092 Loss: 106.073 +54400/69092 Loss: 104.939 +57600/69092 Loss: 107.922 +60800/69092 Loss: 106.742 +64000/69092 Loss: 106.262 +67200/69092 Loss: 106.401 +Training time 0:08:06.821813 +Epoch: 38 Average loss: 106.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 511) +0/69092 Loss: 109.724 +3200/69092 Loss: 106.508 +6400/69092 Loss: 107.910 +9600/69092 Loss: 106.535 +12800/69092 Loss: 107.349 +16000/69092 Loss: 106.108 +19200/69092 Loss: 106.120 +22400/69092 Loss: 106.935 +25600/69092 Loss: 105.665 +28800/69092 Loss: 108.991 +32000/69092 Loss: 106.678 +35200/69092 Loss: 105.922 +38400/69092 Loss: 104.620 +41600/69092 Loss: 106.537 +44800/69092 Loss: 106.395 +48000/69092 Loss: 106.549 +51200/69092 Loss: 106.264 +54400/69092 Loss: 106.134 +57600/69092 Loss: 108.281 +60800/69092 Loss: 107.664 +64000/69092 Loss: 107.395 +67200/69092 Loss: 107.978 +Training time 0:08:30.801808 +Epoch: 39 Average loss: 106.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 512) +0/69092 Loss: 109.247 +3200/69092 Loss: 108.578 +6400/69092 Loss: 106.147 +9600/69092 Loss: 108.482 +12800/69092 Loss: 106.185 +16000/69092 Loss: 105.012 +19200/69092 Loss: 106.996 +22400/69092 Loss: 105.604 +25600/69092 Loss: 105.303 +28800/69092 Loss: 106.530 +32000/69092 Loss: 108.041 +35200/69092 Loss: 106.429 +38400/69092 Loss: 105.155 +41600/69092 Loss: 107.396 +44800/69092 Loss: 107.649 +48000/69092 Loss: 106.824 +51200/69092 Loss: 106.821 +54400/69092 Loss: 106.505 +57600/69092 Loss: 106.454 +60800/69092 Loss: 105.907 +64000/69092 Loss: 107.592 +67200/69092 Loss: 107.295 +Training time 0:08:35.982697 +Epoch: 40 Average loss: 106.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 513) +0/69092 Loss: 114.350 +3200/69092 Loss: 106.682 +6400/69092 Loss: 106.009 +9600/69092 Loss: 106.302 +12800/69092 Loss: 108.305 +16000/69092 Loss: 105.490 +19200/69092 Loss: 105.432 +22400/69092 Loss: 106.721 +25600/69092 Loss: 106.706 +28800/69092 Loss: 107.209 +32000/69092 Loss: 109.893 +35200/69092 Loss: 109.479 +38400/69092 Loss: 106.742 +41600/69092 Loss: 107.065 +44800/69092 Loss: 108.064 +48000/69092 Loss: 105.576 +51200/69092 Loss: 105.902 +54400/69092 Loss: 107.118 +57600/69092 Loss: 106.050 +60800/69092 Loss: 106.753 +64000/69092 Loss: 106.105 +67200/69092 Loss: 105.076 +Training time 0:08:07.857647 +Epoch: 41 Average loss: 106.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 514) +0/69092 Loss: 102.038 +3200/69092 Loss: 109.922 +6400/69092 Loss: 105.815 +9600/69092 Loss: 106.493 +12800/69092 Loss: 107.484 +16000/69092 Loss: 106.596 +19200/69092 Loss: 106.378 +22400/69092 Loss: 107.316 +25600/69092 Loss: 107.115 +28800/69092 Loss: 106.703 +32000/69092 Loss: 106.695 +35200/69092 Loss: 107.728 +38400/69092 Loss: 107.789 +41600/69092 Loss: 106.428 +44800/69092 Loss: 105.520 +48000/69092 Loss: 107.843 +51200/69092 Loss: 107.281 +54400/69092 Loss: 106.313 +57600/69092 Loss: 105.557 +60800/69092 Loss: 105.716 +64000/69092 Loss: 106.714 +67200/69092 Loss: 107.592 +Training time 0:08:25.967587 +Epoch: 42 Average loss: 106.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 515) +0/69092 Loss: 101.390 +3200/69092 Loss: 107.405 +6400/69092 Loss: 107.609 +9600/69092 Loss: 107.797 +12800/69092 Loss: 106.650 +16000/69092 Loss: 105.702 +19200/69092 Loss: 105.273 +22400/69092 Loss: 105.955 +25600/69092 Loss: 106.845 +28800/69092 Loss: 105.636 +32000/69092 Loss: 105.610 +35200/69092 Loss: 108.198 +38400/69092 Loss: 105.806 +41600/69092 Loss: 105.594 +44800/69092 Loss: 106.841 +48000/69092 Loss: 106.960 +51200/69092 Loss: 108.810 +54400/69092 Loss: 106.051 +57600/69092 Loss: 107.328 +60800/69092 Loss: 106.294 +64000/69092 Loss: 107.300 +67200/69092 Loss: 106.395 +Training time 0:08:31.408546 +Epoch: 43 Average loss: 106.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 516) +0/69092 Loss: 102.848 +3200/69092 Loss: 106.033 +6400/69092 Loss: 106.320 +9600/69092 Loss: 106.961 +12800/69092 Loss: 106.706 +16000/69092 Loss: 105.678 +19200/69092 Loss: 106.095 +22400/69092 Loss: 107.887 +25600/69092 Loss: 107.070 +28800/69092 Loss: 107.213 +32000/69092 Loss: 108.178 +35200/69092 Loss: 107.664 +38400/69092 Loss: 107.535 +41600/69092 Loss: 106.038 +44800/69092 Loss: 108.408 +48000/69092 Loss: 104.797 +51200/69092 Loss: 108.708 +54400/69092 Loss: 106.583 +57600/69092 Loss: 107.269 +60800/69092 Loss: 106.591 +64000/69092 Loss: 105.971 +67200/69092 Loss: 105.606 +Training time 0:08:13.582210 +Epoch: 44 Average loss: 106.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 517) +0/69092 Loss: 105.827 +3200/69092 Loss: 106.205 +6400/69092 Loss: 107.455 +9600/69092 Loss: 107.544 +12800/69092 Loss: 108.701 +16000/69092 Loss: 107.936 +19200/69092 Loss: 107.604 +22400/69092 Loss: 107.274 +25600/69092 Loss: 105.197 +28800/69092 Loss: 106.126 +32000/69092 Loss: 107.541 +35200/69092 Loss: 105.957 +38400/69092 Loss: 108.218 +41600/69092 Loss: 106.857 +44800/69092 Loss: 107.006 +48000/69092 Loss: 107.561 +51200/69092 Loss: 105.684 +54400/69092 Loss: 107.322 +57600/69092 Loss: 107.773 +60800/69092 Loss: 105.880 +64000/69092 Loss: 106.092 +67200/69092 Loss: 105.626 +Training time 0:08:18.106203 +Epoch: 45 Average loss: 106.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 518) +0/69092 Loss: 109.860 +3200/69092 Loss: 105.764 +6400/69092 Loss: 105.985 +9600/69092 Loss: 106.342 +12800/69092 Loss: 107.274 +16000/69092 Loss: 105.462 +19200/69092 Loss: 106.628 +22400/69092 Loss: 105.899 +25600/69092 Loss: 107.117 +28800/69092 Loss: 106.538 +32000/69092 Loss: 107.762 +35200/69092 Loss: 107.619 +38400/69092 Loss: 107.434 +41600/69092 Loss: 104.578 +44800/69092 Loss: 109.876 +48000/69092 Loss: 108.222 +51200/69092 Loss: 106.361 +54400/69092 Loss: 106.332 +57600/69092 Loss: 106.598 +60800/69092 Loss: 106.290 +64000/69092 Loss: 107.496 +67200/69092 Loss: 107.478 +Training time 0:08:39.952923 +Epoch: 46 Average loss: 106.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 519) +0/69092 Loss: 105.803 +3200/69092 Loss: 105.469 +6400/69092 Loss: 105.932 +9600/69092 Loss: 105.877 +12800/69092 Loss: 107.837 +16000/69092 Loss: 107.789 +19200/69092 Loss: 106.782 +22400/69092 Loss: 106.652 +25600/69092 Loss: 106.474 +28800/69092 Loss: 105.564 +32000/69092 Loss: 106.586 +35200/69092 Loss: 108.011 +38400/69092 Loss: 107.188 +41600/69092 Loss: 107.798 +44800/69092 Loss: 108.757 +48000/69092 Loss: 104.974 +51200/69092 Loss: 106.995 +54400/69092 Loss: 108.837 +57600/69092 Loss: 107.007 +60800/69092 Loss: 106.155 +64000/69092 Loss: 105.993 +67200/69092 Loss: 107.549 +Training time 0:08:21.676459 +Epoch: 47 Average loss: 106.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 520) +0/69092 Loss: 108.203 +3200/69092 Loss: 106.524 +6400/69092 Loss: 105.515 +9600/69092 Loss: 106.197 +12800/69092 Loss: 107.347 +16000/69092 Loss: 106.653 +19200/69092 Loss: 106.651 +22400/69092 Loss: 107.174 +25600/69092 Loss: 106.456 +28800/69092 Loss: 107.546 +32000/69092 Loss: 107.244 +35200/69092 Loss: 106.776 +38400/69092 Loss: 107.812 +41600/69092 Loss: 106.700 +44800/69092 Loss: 107.211 +48000/69092 Loss: 108.394 +51200/69092 Loss: 106.195 +54400/69092 Loss: 105.493 +57600/69092 Loss: 107.863 +60800/69092 Loss: 107.016 +64000/69092 Loss: 106.536 +67200/69092 Loss: 106.268 +Training time 0:08:17.604271 +Epoch: 48 Average loss: 106.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 521) +0/69092 Loss: 102.978 +3200/69092 Loss: 106.468 +6400/69092 Loss: 103.890 +9600/69092 Loss: 107.473 +12800/69092 Loss: 106.071 +16000/69092 Loss: 106.918 +19200/69092 Loss: 105.772 +22400/69092 Loss: 106.806 +25600/69092 Loss: 105.864 +28800/69092 Loss: 107.401 +32000/69092 Loss: 106.899 +35200/69092 Loss: 107.052 +38400/69092 Loss: 107.087 +41600/69092 Loss: 107.963 +44800/69092 Loss: 106.511 +48000/69092 Loss: 106.965 +51200/69092 Loss: 107.969 +54400/69092 Loss: 106.642 +57600/69092 Loss: 107.029 +60800/69092 Loss: 106.361 +64000/69092 Loss: 106.886 +67200/69092 Loss: 108.013 +Training time 0:08:30.393458 +Epoch: 49 Average loss: 106.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 522) +0/69092 Loss: 95.741 +3200/69092 Loss: 106.334 +6400/69092 Loss: 108.141 +9600/69092 Loss: 106.306 +12800/69092 Loss: 108.745 +16000/69092 Loss: 108.070 +19200/69092 Loss: 107.803 +22400/69092 Loss: 105.934 +25600/69092 Loss: 107.191 +28800/69092 Loss: 105.372 +32000/69092 Loss: 107.674 +35200/69092 Loss: 107.673 +38400/69092 Loss: 105.772 +41600/69092 Loss: 106.580 +44800/69092 Loss: 105.924 +48000/69092 Loss: 106.089 +51200/69092 Loss: 107.257 +54400/69092 Loss: 106.356 +57600/69092 Loss: 106.322 +60800/69092 Loss: 106.747 +64000/69092 Loss: 106.514 +67200/69092 Loss: 104.662 +Training time 0:08:29.382164 +Epoch: 50 Average loss: 106.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 523) +0/69092 Loss: 101.972 +3200/69092 Loss: 106.313 +6400/69092 Loss: 106.647 +9600/69092 Loss: 106.959 +12800/69092 Loss: 106.342 +16000/69092 Loss: 107.635 +19200/69092 Loss: 106.454 +22400/69092 Loss: 107.158 +25600/69092 Loss: 107.453 +28800/69092 Loss: 107.335 +32000/69092 Loss: 107.739 +35200/69092 Loss: 107.990 +38400/69092 Loss: 106.934 +41600/69092 Loss: 105.147 +44800/69092 Loss: 107.051 +48000/69092 Loss: 104.712 +51200/69092 Loss: 107.068 +54400/69092 Loss: 105.616 +57600/69092 Loss: 108.176 +60800/69092 Loss: 107.511 +64000/69092 Loss: 107.636 +67200/69092 Loss: 104.888 +Training time 0:08:20.121373 +Epoch: 51 Average loss: 106.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 524) +0/69092 Loss: 93.587 +3200/69092 Loss: 107.374 +6400/69092 Loss: 106.663 +9600/69092 Loss: 106.714 +12800/69092 Loss: 107.444 +16000/69092 Loss: 105.215 +19200/69092 Loss: 107.283 +22400/69092 Loss: 107.709 +25600/69092 Loss: 106.121 +28800/69092 Loss: 105.951 +32000/69092 Loss: 109.354 +35200/69092 Loss: 107.679 +38400/69092 Loss: 105.551 +41600/69092 Loss: 107.467 +44800/69092 Loss: 107.667 +48000/69092 Loss: 105.611 +51200/69092 Loss: 106.438 +54400/69092 Loss: 105.717 +57600/69092 Loss: 106.327 +60800/69092 Loss: 105.746 +64000/69092 Loss: 107.642 +67200/69092 Loss: 105.958 +Training time 0:08:30.745085 +Epoch: 52 Average loss: 106.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 525) +0/69092 Loss: 112.160 +3200/69092 Loss: 106.440 +6400/69092 Loss: 107.581 +9600/69092 Loss: 105.631 +12800/69092 Loss: 106.926 +16000/69092 Loss: 106.457 +19200/69092 Loss: 106.489 +22400/69092 Loss: 105.510 +25600/69092 Loss: 108.836 +28800/69092 Loss: 107.760 +32000/69092 Loss: 105.559 +35200/69092 Loss: 105.682 +38400/69092 Loss: 107.110 +41600/69092 Loss: 106.419 +44800/69092 Loss: 105.980 +48000/69092 Loss: 106.853 +51200/69092 Loss: 106.923 +54400/69092 Loss: 107.570 +57600/69092 Loss: 105.892 +60800/69092 Loss: 105.469 +64000/69092 Loss: 105.728 +67200/69092 Loss: 106.600 +Training time 0:08:45.418786 +Epoch: 53 Average loss: 106.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 526) +0/69092 Loss: 102.195 +3200/69092 Loss: 107.118 +6400/69092 Loss: 106.974 +9600/69092 Loss: 105.472 +12800/69092 Loss: 106.946 +16000/69092 Loss: 107.167 +19200/69092 Loss: 105.577 +22400/69092 Loss: 107.048 +25600/69092 Loss: 107.961 +28800/69092 Loss: 107.448 +32000/69092 Loss: 106.838 +35200/69092 Loss: 106.739 +38400/69092 Loss: 107.685 +41600/69092 Loss: 106.328 +44800/69092 Loss: 105.111 +48000/69092 Loss: 105.203 +51200/69092 Loss: 106.698 +54400/69092 Loss: 107.482 +57600/69092 Loss: 106.516 +60800/69092 Loss: 106.298 +64000/69092 Loss: 106.267 +67200/69092 Loss: 109.480 +Training time 0:08:22.556495 +Epoch: 54 Average loss: 106.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 527) +0/69092 Loss: 108.209 +3200/69092 Loss: 107.823 +6400/69092 Loss: 106.985 +9600/69092 Loss: 107.505 +12800/69092 Loss: 107.094 +16000/69092 Loss: 106.705 +19200/69092 Loss: 106.293 +22400/69092 Loss: 107.451 +25600/69092 Loss: 106.788 +28800/69092 Loss: 105.683 +32000/69092 Loss: 107.584 +35200/69092 Loss: 106.157 +38400/69092 Loss: 106.938 +41600/69092 Loss: 106.661 +44800/69092 Loss: 107.833 +48000/69092 Loss: 105.252 +51200/69092 Loss: 106.931 +54400/69092 Loss: 106.828 +57600/69092 Loss: 106.179 +60800/69092 Loss: 106.439 +64000/69092 Loss: 106.747 +67200/69092 Loss: 106.926 +Training time 0:08:10.221260 +Epoch: 55 Average loss: 106.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 528) +0/69092 Loss: 109.420 +3200/69092 Loss: 108.991 +6400/69092 Loss: 107.875 +9600/69092 Loss: 107.293 +12800/69092 Loss: 107.075 +16000/69092 Loss: 106.492 +19200/69092 Loss: 106.480 +22400/69092 Loss: 106.645 +25600/69092 Loss: 107.123 +28800/69092 Loss: 106.739 +32000/69092 Loss: 105.794 +35200/69092 Loss: 107.405 +38400/69092 Loss: 105.508 +41600/69092 Loss: 107.081 +44800/69092 Loss: 106.113 +48000/69092 Loss: 107.965 +51200/69092 Loss: 105.703 +54400/69092 Loss: 106.718 +57600/69092 Loss: 106.942 +60800/69092 Loss: 107.319 +64000/69092 Loss: 108.163 +67200/69092 Loss: 105.169 +Training time 0:08:36.355698 +Epoch: 56 Average loss: 106.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 529) +0/69092 Loss: 100.465 +3200/69092 Loss: 107.272 +6400/69092 Loss: 108.924 +9600/69092 Loss: 107.829 +12800/69092 Loss: 106.168 +16000/69092 Loss: 106.408 +19200/69092 Loss: 108.190 +22400/69092 Loss: 107.250 +25600/69092 Loss: 107.463 +28800/69092 Loss: 107.658 +32000/69092 Loss: 104.361 +35200/69092 Loss: 106.182 +38400/69092 Loss: 104.780 +41600/69092 Loss: 107.314 +44800/69092 Loss: 107.224 +48000/69092 Loss: 105.673 +51200/69092 Loss: 106.430 +54400/69092 Loss: 106.830 +57600/69092 Loss: 106.561 +60800/69092 Loss: 106.044 +64000/69092 Loss: 106.222 +67200/69092 Loss: 105.596 +Training time 0:08:21.643994 +Epoch: 57 Average loss: 106.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 530) +0/69092 Loss: 98.758 +3200/69092 Loss: 106.472 +6400/69092 Loss: 107.820 +9600/69092 Loss: 107.238 +12800/69092 Loss: 106.649 +16000/69092 Loss: 106.293 +19200/69092 Loss: 107.955 +22400/69092 Loss: 107.307 +25600/69092 Loss: 105.488 +28800/69092 Loss: 107.026 +32000/69092 Loss: 106.625 +35200/69092 Loss: 109.939 +38400/69092 Loss: 106.629 +41600/69092 Loss: 105.961 +44800/69092 Loss: 105.147 +48000/69092 Loss: 106.347 +51200/69092 Loss: 106.109 +54400/69092 Loss: 106.690 +57600/69092 Loss: 106.794 +60800/69092 Loss: 105.890 +64000/69092 Loss: 106.664 +67200/69092 Loss: 107.543 +Training time 0:08:09.871251 +Epoch: 58 Average loss: 106.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 531) +0/69092 Loss: 108.428 +3200/69092 Loss: 105.886 +6400/69092 Loss: 106.944 +9600/69092 Loss: 106.287 +12800/69092 Loss: 106.540 +16000/69092 Loss: 105.932 +19200/69092 Loss: 105.131 +22400/69092 Loss: 107.265 +25600/69092 Loss: 106.732 +28800/69092 Loss: 106.844 +32000/69092 Loss: 107.476 +35200/69092 Loss: 106.372 +38400/69092 Loss: 107.511 +41600/69092 Loss: 105.322 +44800/69092 Loss: 107.139 +48000/69092 Loss: 105.875 +51200/69092 Loss: 108.235 +54400/69092 Loss: 107.404 +57600/69092 Loss: 106.026 +60800/69092 Loss: 108.478 +64000/69092 Loss: 108.211 +67200/69092 Loss: 106.507 +Training time 0:08:31.787390 +Epoch: 59 Average loss: 106.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 532) +0/69092 Loss: 108.698 +3200/69092 Loss: 107.275 +6400/69092 Loss: 107.531 +9600/69092 Loss: 106.384 +12800/69092 Loss: 107.447 +16000/69092 Loss: 106.106 +19200/69092 Loss: 106.766 +22400/69092 Loss: 107.103 +25600/69092 Loss: 107.157 +28800/69092 Loss: 106.150 +32000/69092 Loss: 106.438 +35200/69092 Loss: 106.090 +38400/69092 Loss: 107.609 +41600/69092 Loss: 107.172 +44800/69092 Loss: 107.083 +48000/69092 Loss: 106.671 +51200/69092 Loss: 106.723 +54400/69092 Loss: 106.216 +57600/69092 Loss: 105.887 +60800/69092 Loss: 106.272 +64000/69092 Loss: 107.759 +67200/69092 Loss: 107.448 +Training time 0:08:37.463056 +Epoch: 60 Average loss: 106.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 533) +0/69092 Loss: 104.250 +3200/69092 Loss: 105.862 +6400/69092 Loss: 105.964 +9600/69092 Loss: 106.609 +12800/69092 Loss: 106.665 +16000/69092 Loss: 106.525 +19200/69092 Loss: 107.308 +22400/69092 Loss: 105.962 +25600/69092 Loss: 105.774 +28800/69092 Loss: 105.981 +32000/69092 Loss: 108.180 +35200/69092 Loss: 107.349 +38400/69092 Loss: 104.827 +41600/69092 Loss: 106.227 +44800/69092 Loss: 109.025 +48000/69092 Loss: 106.376 +51200/69092 Loss: 107.433 +54400/69092 Loss: 108.442 +57600/69092 Loss: 104.143 +60800/69092 Loss: 106.602 +64000/69092 Loss: 107.485 +67200/69092 Loss: 105.913 +Training time 0:08:27.137078 +Epoch: 61 Average loss: 106.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 534) +0/69092 Loss: 119.722 +3200/69092 Loss: 107.069 +6400/69092 Loss: 106.705 +9600/69092 Loss: 105.566 +12800/69092 Loss: 105.498 +16000/69092 Loss: 106.748 +19200/69092 Loss: 106.485 +22400/69092 Loss: 107.436 +25600/69092 Loss: 107.625 +28800/69092 Loss: 107.373 +32000/69092 Loss: 107.248 +35200/69092 Loss: 106.855 +38400/69092 Loss: 106.684 +41600/69092 Loss: 105.001 +44800/69092 Loss: 107.639 +48000/69092 Loss: 107.366 +51200/69092 Loss: 106.844 +54400/69092 Loss: 106.253 +57600/69092 Loss: 107.009 +60800/69092 Loss: 106.688 +64000/69092 Loss: 107.537 +67200/69092 Loss: 107.166 +Training time 0:08:22.210383 +Epoch: 62 Average loss: 106.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 535) +0/69092 Loss: 107.845 +3200/69092 Loss: 106.216 +6400/69092 Loss: 106.168 +9600/69092 Loss: 107.975 +12800/69092 Loss: 107.211 +16000/69092 Loss: 105.226 +19200/69092 Loss: 105.755 +22400/69092 Loss: 107.111 +25600/69092 Loss: 106.224 +28800/69092 Loss: 107.624 +32000/69092 Loss: 106.296 +35200/69092 Loss: 106.039 +38400/69092 Loss: 106.196 +41600/69092 Loss: 106.224 +44800/69092 Loss: 106.773 +48000/69092 Loss: 107.783 +51200/69092 Loss: 106.054 +54400/69092 Loss: 107.029 +57600/69092 Loss: 108.663 +60800/69092 Loss: 105.947 +64000/69092 Loss: 106.820 +67200/69092 Loss: 107.061 +Training time 0:08:37.904903 +Epoch: 63 Average loss: 106.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 536) +0/69092 Loss: 111.054 +3200/69092 Loss: 106.672 +6400/69092 Loss: 106.212 +9600/69092 Loss: 108.126 +12800/69092 Loss: 107.029 +16000/69092 Loss: 107.758 +19200/69092 Loss: 106.359 +22400/69092 Loss: 106.246 +25600/69092 Loss: 106.931 +28800/69092 Loss: 106.470 +32000/69092 Loss: 107.582 +35200/69092 Loss: 109.367 +38400/69092 Loss: 105.843 +41600/69092 Loss: 106.772 +44800/69092 Loss: 105.913 +48000/69092 Loss: 107.322 +51200/69092 Loss: 106.561 +54400/69092 Loss: 106.277 +57600/69092 Loss: 106.100 +60800/69092 Loss: 105.362 +64000/69092 Loss: 105.952 +67200/69092 Loss: 107.689 +Training time 0:08:24.476130 +Epoch: 64 Average loss: 106.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 537) +0/69092 Loss: 111.773 +3200/69092 Loss: 104.871 +6400/69092 Loss: 108.071 +9600/69092 Loss: 107.920 +12800/69092 Loss: 107.922 +16000/69092 Loss: 106.287 +19200/69092 Loss: 106.118 +22400/69092 Loss: 107.349 +25600/69092 Loss: 107.380 +28800/69092 Loss: 106.257 +32000/69092 Loss: 105.502 +35200/69092 Loss: 106.947 +38400/69092 Loss: 106.041 +41600/69092 Loss: 106.067 +44800/69092 Loss: 105.584 +48000/69092 Loss: 106.243 +51200/69092 Loss: 107.221 +54400/69092 Loss: 107.389 +57600/69092 Loss: 107.492 +60800/69092 Loss: 108.348 +64000/69092 Loss: 105.872 +67200/69092 Loss: 106.413 +Training time 0:08:18.334459 +Epoch: 65 Average loss: 106.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 538) +0/69092 Loss: 112.067 +3200/69092 Loss: 107.682 +6400/69092 Loss: 105.987 +9600/69092 Loss: 105.848 +12800/69092 Loss: 106.582 +16000/69092 Loss: 106.802 +19200/69092 Loss: 105.275 +22400/69092 Loss: 105.901 +25600/69092 Loss: 106.418 +28800/69092 Loss: 107.751 +32000/69092 Loss: 106.626 +35200/69092 Loss: 106.677 +38400/69092 Loss: 108.056 +41600/69092 Loss: 107.051 +44800/69092 Loss: 106.778 +48000/69092 Loss: 105.643 +51200/69092 Loss: 106.562 +54400/69092 Loss: 107.139 +57600/69092 Loss: 104.818 +60800/69092 Loss: 107.066 +64000/69092 Loss: 107.190 +67200/69092 Loss: 105.588 +Training time 0:08:34.224917 +Epoch: 66 Average loss: 106.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 539) +0/69092 Loss: 96.431 +3200/69092 Loss: 105.703 +6400/69092 Loss: 106.395 +9600/69092 Loss: 105.818 +12800/69092 Loss: 106.416 +16000/69092 Loss: 107.512 +19200/69092 Loss: 107.952 +22400/69092 Loss: 107.421 +25600/69092 Loss: 107.462 +28800/69092 Loss: 106.543 +32000/69092 Loss: 107.037 +35200/69092 Loss: 108.065 +38400/69092 Loss: 107.340 +41600/69092 Loss: 105.795 +44800/69092 Loss: 106.505 +48000/69092 Loss: 107.215 +51200/69092 Loss: 106.552 +54400/69092 Loss: 104.983 +57600/69092 Loss: 105.564 +60800/69092 Loss: 106.356 +64000/69092 Loss: 107.983 +67200/69092 Loss: 105.731 +Training time 0:08:30.439337 +Epoch: 67 Average loss: 106.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 540) +0/69092 Loss: 114.976 +3200/69092 Loss: 107.309 +6400/69092 Loss: 107.935 +9600/69092 Loss: 106.125 +12800/69092 Loss: 107.908 +16000/69092 Loss: 107.148 +19200/69092 Loss: 104.218 +22400/69092 Loss: 106.371 +25600/69092 Loss: 106.396 +28800/69092 Loss: 106.559 +32000/69092 Loss: 106.036 +35200/69092 Loss: 106.566 +38400/69092 Loss: 107.157 +41600/69092 Loss: 108.126 +44800/69092 Loss: 106.319 +48000/69092 Loss: 106.069 +51200/69092 Loss: 106.067 +54400/69092 Loss: 107.370 +57600/69092 Loss: 105.881 +60800/69092 Loss: 105.403 +64000/69092 Loss: 107.310 +67200/69092 Loss: 107.275 +Training time 0:08:13.252026 +Epoch: 68 Average loss: 106.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 541) +0/69092 Loss: 99.917 +3200/69092 Loss: 106.224 +6400/69092 Loss: 105.666 +9600/69092 Loss: 107.847 +12800/69092 Loss: 106.500 +16000/69092 Loss: 106.338 +19200/69092 Loss: 107.664 +22400/69092 Loss: 105.729 +25600/69092 Loss: 106.861 +28800/69092 Loss: 105.373 +32000/69092 Loss: 105.832 +35200/69092 Loss: 106.081 +38400/69092 Loss: 107.193 +41600/69092 Loss: 105.715 +44800/69092 Loss: 107.808 +48000/69092 Loss: 106.107 +51200/69092 Loss: 106.647 +54400/69092 Loss: 106.196 +57600/69092 Loss: 107.286 +60800/69092 Loss: 107.081 +64000/69092 Loss: 107.824 +67200/69092 Loss: 106.659 +Training time 0:08:26.220815 +Epoch: 69 Average loss: 106.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 542) +0/69092 Loss: 96.187 +3200/69092 Loss: 106.788 +6400/69092 Loss: 108.266 +9600/69092 Loss: 107.103 +12800/69092 Loss: 105.631 +16000/69092 Loss: 105.931 +19200/69092 Loss: 107.223 +22400/69092 Loss: 105.194 +25600/69092 Loss: 106.766 +28800/69092 Loss: 106.415 +32000/69092 Loss: 107.222 +35200/69092 Loss: 108.016 +38400/69092 Loss: 103.679 +41600/69092 Loss: 107.784 +44800/69092 Loss: 106.803 +48000/69092 Loss: 107.110 +51200/69092 Loss: 106.737 +54400/69092 Loss: 106.157 +57600/69092 Loss: 106.908 +60800/69092 Loss: 106.449 +64000/69092 Loss: 106.568 +67200/69092 Loss: 106.570 +Training time 0:08:35.328716 +Epoch: 70 Average loss: 106.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 543) +0/69092 Loss: 96.465 +3200/69092 Loss: 106.525 +6400/69092 Loss: 106.143 +9600/69092 Loss: 108.722 +12800/69092 Loss: 108.110 +16000/69092 Loss: 104.806 +19200/69092 Loss: 106.896 +22400/69092 Loss: 107.663 +25600/69092 Loss: 106.672 +28800/69092 Loss: 106.500 +32000/69092 Loss: 106.319 +35200/69092 Loss: 105.591 +38400/69092 Loss: 106.479 +41600/69092 Loss: 106.430 +44800/69092 Loss: 106.870 +48000/69092 Loss: 105.698 +51200/69092 Loss: 108.331 +54400/69092 Loss: 106.279 +57600/69092 Loss: 106.722 +60800/69092 Loss: 106.074 +64000/69092 Loss: 105.704 +67200/69092 Loss: 108.033 +Training time 0:08:26.880116 +Epoch: 71 Average loss: 106.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 544) +0/69092 Loss: 101.296 +3200/69092 Loss: 106.033 +6400/69092 Loss: 107.260 +9600/69092 Loss: 106.719 +12800/69092 Loss: 106.981 +16000/69092 Loss: 105.958 +19200/69092 Loss: 107.825 +22400/69092 Loss: 105.346 +25600/69092 Loss: 106.700 +28800/69092 Loss: 105.283 +32000/69092 Loss: 103.792 +35200/69092 Loss: 108.263 +38400/69092 Loss: 106.326 +41600/69092 Loss: 108.210 +44800/69092 Loss: 107.555 +48000/69092 Loss: 107.407 +51200/69092 Loss: 107.132 +54400/69092 Loss: 106.339 +57600/69092 Loss: 107.422 +60800/69092 Loss: 105.770 +64000/69092 Loss: 107.280 +67200/69092 Loss: 105.756 +Training time 0:08:21.596944 +Epoch: 72 Average loss: 106.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 545) +0/69092 Loss: 116.358 +3200/69092 Loss: 103.536 +6400/69092 Loss: 106.004 +9600/69092 Loss: 103.473 +12800/69092 Loss: 107.769 +16000/69092 Loss: 107.683 +19200/69092 Loss: 107.130 +22400/69092 Loss: 105.699 +25600/69092 Loss: 105.810 +28800/69092 Loss: 107.358 +32000/69092 Loss: 107.047 +35200/69092 Loss: 106.652 +38400/69092 Loss: 105.134 +41600/69092 Loss: 107.443 +44800/69092 Loss: 107.734 +48000/69092 Loss: 106.109 +51200/69092 Loss: 106.634 +54400/69092 Loss: 107.113 +57600/69092 Loss: 107.120 +60800/69092 Loss: 107.067 +64000/69092 Loss: 106.259 +67200/69092 Loss: 108.002 +Training time 0:08:30.729269 +Epoch: 73 Average loss: 106.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 546) +0/69092 Loss: 106.279 +3200/69092 Loss: 106.892 +6400/69092 Loss: 106.179 +9600/69092 Loss: 106.715 +12800/69092 Loss: 104.768 +16000/69092 Loss: 107.740 +19200/69092 Loss: 105.980 +22400/69092 Loss: 105.612 +25600/69092 Loss: 106.042 +28800/69092 Loss: 105.079 +32000/69092 Loss: 106.306 +35200/69092 Loss: 108.450 +38400/69092 Loss: 107.619 +41600/69092 Loss: 106.596 +44800/69092 Loss: 107.582 +48000/69092 Loss: 106.963 +51200/69092 Loss: 105.493 +54400/69092 Loss: 107.232 +57600/69092 Loss: 105.938 +60800/69092 Loss: 106.657 +64000/69092 Loss: 106.846 +67200/69092 Loss: 106.780 +Training time 0:08:40.156697 +Epoch: 74 Average loss: 106.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 547) +0/69092 Loss: 93.932 +3200/69092 Loss: 107.153 +6400/69092 Loss: 106.022 +9600/69092 Loss: 108.522 +12800/69092 Loss: 106.109 +16000/69092 Loss: 107.748 +19200/69092 Loss: 106.444 +22400/69092 Loss: 106.379 +25600/69092 Loss: 107.872 +28800/69092 Loss: 107.523 +32000/69092 Loss: 107.394 +35200/69092 Loss: 105.740 +38400/69092 Loss: 104.618 +41600/69092 Loss: 108.158 +44800/69092 Loss: 105.419 +48000/69092 Loss: 106.338 +51200/69092 Loss: 106.559 +54400/69092 Loss: 105.933 +57600/69092 Loss: 107.268 +60800/69092 Loss: 108.054 +64000/69092 Loss: 105.295 +67200/69092 Loss: 107.670 +Training time 0:08:22.713389 +Epoch: 75 Average loss: 106.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 548) +0/69092 Loss: 112.471 +3200/69092 Loss: 105.479 +6400/69092 Loss: 105.327 +9600/69092 Loss: 106.741 +12800/69092 Loss: 107.022 +16000/69092 Loss: 108.649 +19200/69092 Loss: 106.341 +22400/69092 Loss: 108.150 +25600/69092 Loss: 105.045 +28800/69092 Loss: 105.651 +32000/69092 Loss: 106.048 +35200/69092 Loss: 107.443 +38400/69092 Loss: 107.691 +41600/69092 Loss: 107.966 +44800/69092 Loss: 107.182 +48000/69092 Loss: 105.511 +51200/69092 Loss: 108.080 +54400/69092 Loss: 106.122 +57600/69092 Loss: 107.991 +60800/69092 Loss: 106.702 +64000/69092 Loss: 106.680 +67200/69092 Loss: 106.126 +Training time 0:08:25.586818 +Epoch: 76 Average loss: 106.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 549) +0/69092 Loss: 125.446 +3200/69092 Loss: 108.327 +6400/69092 Loss: 105.549 +9600/69092 Loss: 106.768 +12800/69092 Loss: 105.472 +16000/69092 Loss: 107.463 +19200/69092 Loss: 106.317 +22400/69092 Loss: 106.274 +25600/69092 Loss: 107.934 +28800/69092 Loss: 106.100 +32000/69092 Loss: 106.401 +35200/69092 Loss: 106.016 +38400/69092 Loss: 106.066 +41600/69092 Loss: 106.097 +44800/69092 Loss: 107.460 +48000/69092 Loss: 106.000 +51200/69092 Loss: 106.356 +54400/69092 Loss: 106.783 +57600/69092 Loss: 105.841 +60800/69092 Loss: 105.273 +64000/69092 Loss: 106.082 +67200/69092 Loss: 107.837 +Training time 0:08:36.774481 +Epoch: 77 Average loss: 106.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 550) +0/69092 Loss: 106.139 +3200/69092 Loss: 107.667 +6400/69092 Loss: 107.984 +9600/69092 Loss: 107.187 +12800/69092 Loss: 106.824 +16000/69092 Loss: 105.626 +19200/69092 Loss: 105.925 +22400/69092 Loss: 105.984 +25600/69092 Loss: 104.631 +28800/69092 Loss: 105.691 +32000/69092 Loss: 106.019 +35200/69092 Loss: 109.997 +38400/69092 Loss: 106.446 +41600/69092 Loss: 107.079 +44800/69092 Loss: 107.219 +48000/69092 Loss: 106.572 +51200/69092 Loss: 105.760 +54400/69092 Loss: 107.277 +57600/69092 Loss: 106.704 +60800/69092 Loss: 106.896 +64000/69092 Loss: 106.848 +67200/69092 Loss: 108.343 +Training time 0:08:29.199597 +Epoch: 78 Average loss: 106.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 551) +0/69092 Loss: 105.906 +3200/69092 Loss: 105.913 +6400/69092 Loss: 107.170 +9600/69092 Loss: 108.895 +12800/69092 Loss: 107.597 +16000/69092 Loss: 106.216 +19200/69092 Loss: 107.371 +22400/69092 Loss: 104.867 +25600/69092 Loss: 106.390 +28800/69092 Loss: 107.227 +32000/69092 Loss: 107.842 +35200/69092 Loss: 107.306 +38400/69092 Loss: 106.476 +41600/69092 Loss: 106.402 +44800/69092 Loss: 105.766 +48000/69092 Loss: 106.704 +51200/69092 Loss: 107.318 +54400/69092 Loss: 106.777 +57600/69092 Loss: 106.117 +60800/69092 Loss: 107.979 +64000/69092 Loss: 106.311 +67200/69092 Loss: 105.790 +Training time 0:08:11.219389 +Epoch: 79 Average loss: 106.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 552) +0/69092 Loss: 110.955 +3200/69092 Loss: 105.677 +6400/69092 Loss: 105.314 +9600/69092 Loss: 106.001 +12800/69092 Loss: 105.724 +16000/69092 Loss: 104.606 +19200/69092 Loss: 107.861 +22400/69092 Loss: 106.510 +25600/69092 Loss: 106.375 +28800/69092 Loss: 107.115 +32000/69092 Loss: 106.786 +35200/69092 Loss: 106.548 +38400/69092 Loss: 106.094 +41600/69092 Loss: 107.739 +44800/69092 Loss: 107.100 +48000/69092 Loss: 106.136 +51200/69092 Loss: 105.870 +54400/69092 Loss: 106.975 +57600/69092 Loss: 107.084 +60800/69092 Loss: 106.723 +64000/69092 Loss: 107.267 +67200/69092 Loss: 107.024 +Training time 0:08:25.854508 +Epoch: 80 Average loss: 106.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 553) +0/69092 Loss: 106.960 +3200/69092 Loss: 108.173 +6400/69092 Loss: 105.275 +9600/69092 Loss: 106.056 +12800/69092 Loss: 107.179 +16000/69092 Loss: 106.083 +19200/69092 Loss: 107.189 +22400/69092 Loss: 106.707 +25600/69092 Loss: 105.663 +28800/69092 Loss: 105.250 +32000/69092 Loss: 107.233 +35200/69092 Loss: 104.668 +38400/69092 Loss: 106.654 +41600/69092 Loss: 107.300 +44800/69092 Loss: 107.596 +48000/69092 Loss: 105.159 +51200/69092 Loss: 108.112 +54400/69092 Loss: 107.545 +57600/69092 Loss: 108.110 +60800/69092 Loss: 106.197 +64000/69092 Loss: 106.268 +67200/69092 Loss: 106.146 +Training time 0:08:32.617019 +Epoch: 81 Average loss: 106.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 554) +0/69092 Loss: 107.212 +3200/69092 Loss: 106.938 +6400/69092 Loss: 107.014 +9600/69092 Loss: 105.588 +12800/69092 Loss: 106.036 +16000/69092 Loss: 106.525 +19200/69092 Loss: 106.197 +22400/69092 Loss: 106.753 +25600/69092 Loss: 107.698 +28800/69092 Loss: 107.652 +32000/69092 Loss: 106.486 +35200/69092 Loss: 106.304 +38400/69092 Loss: 107.150 +41600/69092 Loss: 105.466 +44800/69092 Loss: 105.933 +48000/69092 Loss: 107.223 +51200/69092 Loss: 108.269 +54400/69092 Loss: 106.749 +57600/69092 Loss: 106.128 +60800/69092 Loss: 106.430 +64000/69092 Loss: 106.371 +67200/69092 Loss: 105.995 +Training time 0:08:26.599709 +Epoch: 82 Average loss: 106.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 555) +0/69092 Loss: 115.997 +3200/69092 Loss: 107.198 +6400/69092 Loss: 104.869 +9600/69092 Loss: 104.136 +12800/69092 Loss: 106.274 +16000/69092 Loss: 106.781 +19200/69092 Loss: 107.005 +22400/69092 Loss: 106.329 +25600/69092 Loss: 106.498 +28800/69092 Loss: 108.122 +32000/69092 Loss: 107.925 +35200/69092 Loss: 105.565 +38400/69092 Loss: 106.657 +41600/69092 Loss: 107.688 +44800/69092 Loss: 106.680 +48000/69092 Loss: 106.717 +51200/69092 Loss: 107.740 +54400/69092 Loss: 108.111 +57600/69092 Loss: 107.357 +60800/69092 Loss: 105.864 +64000/69092 Loss: 107.012 +67200/69092 Loss: 107.682 +Training time 0:08:24.579715 +Epoch: 83 Average loss: 106.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 556) +0/69092 Loss: 100.154 +3200/69092 Loss: 106.847 +6400/69092 Loss: 105.558 +9600/69092 Loss: 105.568 +12800/69092 Loss: 107.240 +16000/69092 Loss: 107.364 +19200/69092 Loss: 107.726 +22400/69092 Loss: 106.409 +25600/69092 Loss: 105.221 +28800/69092 Loss: 106.967 +32000/69092 Loss: 107.232 +35200/69092 Loss: 107.840 +38400/69092 Loss: 104.893 +41600/69092 Loss: 107.144 +44800/69092 Loss: 107.629 +48000/69092 Loss: 109.101 +51200/69092 Loss: 107.478 +54400/69092 Loss: 106.878 +57600/69092 Loss: 104.645 +60800/69092 Loss: 105.861 +64000/69092 Loss: 105.539 +67200/69092 Loss: 107.056 +Training time 0:08:33.416262 +Epoch: 84 Average loss: 106.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 557) +0/69092 Loss: 105.662 +3200/69092 Loss: 105.575 +6400/69092 Loss: 107.484 +9600/69092 Loss: 106.945 +12800/69092 Loss: 106.892 +16000/69092 Loss: 107.622 +19200/69092 Loss: 106.659 +22400/69092 Loss: 106.549 +25600/69092 Loss: 107.377 +28800/69092 Loss: 106.225 +32000/69092 Loss: 105.550 +35200/69092 Loss: 107.221 +38400/69092 Loss: 106.690 +41600/69092 Loss: 106.347 +44800/69092 Loss: 105.450 +48000/69092 Loss: 107.171 +51200/69092 Loss: 106.586 +54400/69092 Loss: 108.083 +57600/69092 Loss: 107.785 +60800/69092 Loss: 105.308 +64000/69092 Loss: 106.415 +67200/69092 Loss: 105.815 +Training time 0:08:27.993073 +Epoch: 85 Average loss: 106.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 558) +0/69092 Loss: 105.058 +3200/69092 Loss: 105.433 +6400/69092 Loss: 105.411 +9600/69092 Loss: 107.266 +12800/69092 Loss: 106.522 +16000/69092 Loss: 105.677 +19200/69092 Loss: 106.750 +22400/69092 Loss: 106.820 +25600/69092 Loss: 106.956 +28800/69092 Loss: 106.802 +32000/69092 Loss: 108.028 +35200/69092 Loss: 106.721 +38400/69092 Loss: 106.031 +41600/69092 Loss: 105.631 +44800/69092 Loss: 106.996 +48000/69092 Loss: 107.511 +51200/69092 Loss: 107.214 +54400/69092 Loss: 106.492 +57600/69092 Loss: 106.354 +60800/69092 Loss: 105.675 +64000/69092 Loss: 107.078 +67200/69092 Loss: 106.644 +Training time 0:08:21.113474 +Epoch: 86 Average loss: 106.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 559) +0/69092 Loss: 87.738 +3200/69092 Loss: 108.162 +6400/69092 Loss: 105.874 +9600/69092 Loss: 105.788 +12800/69092 Loss: 106.591 +16000/69092 Loss: 106.330 +19200/69092 Loss: 105.440 +22400/69092 Loss: 105.758 +25600/69092 Loss: 105.230 +28800/69092 Loss: 106.226 +32000/69092 Loss: 108.200 +35200/69092 Loss: 106.278 +38400/69092 Loss: 107.685 +41600/69092 Loss: 106.803 +44800/69092 Loss: 107.027 +48000/69092 Loss: 107.643 +51200/69092 Loss: 107.109 +54400/69092 Loss: 106.528 +57600/69092 Loss: 107.204 +60800/69092 Loss: 106.700 +64000/69092 Loss: 107.322 +67200/69092 Loss: 105.244 +Training time 0:08:34.354287 +Epoch: 87 Average loss: 106.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 560) +0/69092 Loss: 104.140 +3200/69092 Loss: 106.488 +6400/69092 Loss: 108.441 +9600/69092 Loss: 105.809 +12800/69092 Loss: 107.063 +16000/69092 Loss: 105.639 +19200/69092 Loss: 105.780 +22400/69092 Loss: 105.358 +25600/69092 Loss: 106.857 +28800/69092 Loss: 105.501 +32000/69092 Loss: 106.418 +35200/69092 Loss: 106.043 +38400/69092 Loss: 107.935 +41600/69092 Loss: 106.012 +44800/69092 Loss: 107.955 +48000/69092 Loss: 106.256 +51200/69092 Loss: 105.531 +54400/69092 Loss: 106.118 +57600/69092 Loss: 108.879 +60800/69092 Loss: 107.136 +64000/69092 Loss: 105.615 +67200/69092 Loss: 106.285 +Training time 0:08:37.034070 +Epoch: 88 Average loss: 106.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 561) +0/69092 Loss: 105.211 +3200/69092 Loss: 106.010 +6400/69092 Loss: 104.993 +9600/69092 Loss: 105.633 +12800/69092 Loss: 106.076 +16000/69092 Loss: 105.572 +19200/69092 Loss: 106.904 +22400/69092 Loss: 106.634 +25600/69092 Loss: 106.452 +28800/69092 Loss: 105.901 +32000/69092 Loss: 108.212 +35200/69092 Loss: 105.657 +38400/69092 Loss: 106.694 +41600/69092 Loss: 107.034 +44800/69092 Loss: 106.607 +48000/69092 Loss: 106.575 +51200/69092 Loss: 106.384 +54400/69092 Loss: 108.745 +57600/69092 Loss: 106.425 +60800/69092 Loss: 106.217 +64000/69092 Loss: 106.343 +67200/69092 Loss: 107.606 +Training time 0:08:19.491601 +Epoch: 89 Average loss: 106.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 562) +0/69092 Loss: 101.996 +3200/69092 Loss: 105.231 +6400/69092 Loss: 106.409 +9600/69092 Loss: 107.256 +12800/69092 Loss: 107.033 +16000/69092 Loss: 107.012 +19200/69092 Loss: 107.187 +22400/69092 Loss: 107.347 +25600/69092 Loss: 105.871 +28800/69092 Loss: 106.757 +32000/69092 Loss: 106.765 +35200/69092 Loss: 106.306 +38400/69092 Loss: 106.443 +41600/69092 Loss: 105.710 +44800/69092 Loss: 107.804 +48000/69092 Loss: 108.114 +51200/69092 Loss: 106.316 +54400/69092 Loss: 107.193 +57600/69092 Loss: 105.402 +60800/69092 Loss: 104.739 +64000/69092 Loss: 105.906 +67200/69092 Loss: 106.012 +Training time 0:08:17.810853 +Epoch: 90 Average loss: 106.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 563) +0/69092 Loss: 101.866 +3200/69092 Loss: 107.387 +6400/69092 Loss: 106.410 +9600/69092 Loss: 106.109 +12800/69092 Loss: 105.469 +16000/69092 Loss: 105.496 +19200/69092 Loss: 108.623 +22400/69092 Loss: 107.144 +25600/69092 Loss: 106.123 +28800/69092 Loss: 107.911 +32000/69092 Loss: 107.436 +35200/69092 Loss: 106.696 +38400/69092 Loss: 104.772 +41600/69092 Loss: 105.925 +44800/69092 Loss: 105.818 +48000/69092 Loss: 106.528 +51200/69092 Loss: 107.295 +54400/69092 Loss: 106.600 +57600/69092 Loss: 103.775 +60800/69092 Loss: 105.873 +64000/69092 Loss: 106.677 +67200/69092 Loss: 106.123 +Training time 0:08:46.247104 +Epoch: 91 Average loss: 106.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 564) +0/69092 Loss: 104.837 +3200/69092 Loss: 106.875 +6400/69092 Loss: 106.457 +9600/69092 Loss: 105.655 +12800/69092 Loss: 105.351 +16000/69092 Loss: 106.428 +19200/69092 Loss: 105.372 +22400/69092 Loss: 108.413 +25600/69092 Loss: 108.880 +28800/69092 Loss: 107.827 +32000/69092 Loss: 105.930 +35200/69092 Loss: 105.307 +38400/69092 Loss: 107.566 +41600/69092 Loss: 106.520 +44800/69092 Loss: 106.724 +48000/69092 Loss: 106.119 +51200/69092 Loss: 106.419 +54400/69092 Loss: 105.963 +57600/69092 Loss: 107.450 +60800/69092 Loss: 108.206 +64000/69092 Loss: 106.904 +67200/69092 Loss: 106.441 +Training time 0:08:32.769669 +Epoch: 92 Average loss: 106.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 565) +0/69092 Loss: 97.841 +3200/69092 Loss: 104.655 +6400/69092 Loss: 107.035 +9600/69092 Loss: 107.489 +12800/69092 Loss: 105.805 +16000/69092 Loss: 106.489 +19200/69092 Loss: 105.825 +22400/69092 Loss: 106.233 +25600/69092 Loss: 106.867 +28800/69092 Loss: 106.509 +32000/69092 Loss: 108.193 +35200/69092 Loss: 105.844 +38400/69092 Loss: 107.280 +41600/69092 Loss: 106.671 +44800/69092 Loss: 106.287 +48000/69092 Loss: 105.643 +51200/69092 Loss: 107.181 +54400/69092 Loss: 106.311 +57600/69092 Loss: 106.823 +60800/69092 Loss: 107.617 +64000/69092 Loss: 106.174 +67200/69092 Loss: 107.108 +Training time 0:08:20.870279 +Epoch: 93 Average loss: 106.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 566) +0/69092 Loss: 97.813 +3200/69092 Loss: 107.677 +6400/69092 Loss: 106.696 +9600/69092 Loss: 105.603 +12800/69092 Loss: 107.431 +16000/69092 Loss: 108.037 +19200/69092 Loss: 106.538 +22400/69092 Loss: 107.028 +25600/69092 Loss: 105.010 +28800/69092 Loss: 106.051 +32000/69092 Loss: 105.185 +35200/69092 Loss: 105.695 +38400/69092 Loss: 107.749 +41600/69092 Loss: 107.442 +44800/69092 Loss: 105.340 +48000/69092 Loss: 106.588 +51200/69092 Loss: 106.778 +54400/69092 Loss: 106.053 +57600/69092 Loss: 106.711 +60800/69092 Loss: 105.811 +64000/69092 Loss: 107.183 +67200/69092 Loss: 106.535 +Training time 0:08:18.803144 +Epoch: 94 Average loss: 106.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 567) +0/69092 Loss: 108.440 +3200/69092 Loss: 105.307 +6400/69092 Loss: 106.170 +9600/69092 Loss: 104.826 +12800/69092 Loss: 106.699 +16000/69092 Loss: 107.565 +19200/69092 Loss: 105.973 +22400/69092 Loss: 106.493 +25600/69092 Loss: 106.743 +28800/69092 Loss: 105.288 +32000/69092 Loss: 105.875 +35200/69092 Loss: 108.064 +38400/69092 Loss: 107.672 +41600/69092 Loss: 107.145 +44800/69092 Loss: 108.879 +48000/69092 Loss: 107.308 +51200/69092 Loss: 105.958 +54400/69092 Loss: 106.727 +57600/69092 Loss: 106.470 +60800/69092 Loss: 106.323 +64000/69092 Loss: 106.873 +67200/69092 Loss: 105.398 +Training time 0:08:36.684925 +Epoch: 95 Average loss: 106.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 568) +0/69092 Loss: 112.306 +3200/69092 Loss: 107.046 +6400/69092 Loss: 108.012 +9600/69092 Loss: 108.744 +12800/69092 Loss: 105.387 +16000/69092 Loss: 106.749 +19200/69092 Loss: 106.476 +22400/69092 Loss: 106.902 +25600/69092 Loss: 107.680 +28800/69092 Loss: 105.778 +32000/69092 Loss: 106.024 +35200/69092 Loss: 106.227 +38400/69092 Loss: 107.963 +41600/69092 Loss: 106.264 +44800/69092 Loss: 105.777 +48000/69092 Loss: 106.060 +51200/69092 Loss: 105.065 +54400/69092 Loss: 107.312 +57600/69092 Loss: 107.417 +60800/69092 Loss: 105.747 +64000/69092 Loss: 106.944 +67200/69092 Loss: 105.562 +Training time 0:08:22.477667 +Epoch: 96 Average loss: 106.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 569) +0/69092 Loss: 103.174 +3200/69092 Loss: 108.266 +6400/69092 Loss: 106.937 +9600/69092 Loss: 106.551 +12800/69092 Loss: 107.026 +16000/69092 Loss: 106.835 +19200/69092 Loss: 105.323 +22400/69092 Loss: 106.354 +25600/69092 Loss: 107.187 +28800/69092 Loss: 104.643 +32000/69092 Loss: 104.611 +35200/69092 Loss: 105.228 +38400/69092 Loss: 106.619 +41600/69092 Loss: 105.949 +44800/69092 Loss: 105.117 +48000/69092 Loss: 107.675 +51200/69092 Loss: 107.087 +54400/69092 Loss: 106.688 +57600/69092 Loss: 108.028 +60800/69092 Loss: 107.003 +64000/69092 Loss: 107.631 +67200/69092 Loss: 107.081 +Training time 0:08:12.499307 +Epoch: 97 Average loss: 106.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 570) +0/69092 Loss: 96.257 +3200/69092 Loss: 105.628 +6400/69092 Loss: 107.010 +9600/69092 Loss: 104.935 +12800/69092 Loss: 106.254 +16000/69092 Loss: 106.339 +19200/69092 Loss: 106.130 +22400/69092 Loss: 106.609 +25600/69092 Loss: 107.554 +28800/69092 Loss: 107.556 +32000/69092 Loss: 106.997 +35200/69092 Loss: 107.574 +38400/69092 Loss: 106.652 +41600/69092 Loss: 106.061 +44800/69092 Loss: 107.786 +48000/69092 Loss: 105.993 +51200/69092 Loss: 106.971 +54400/69092 Loss: 107.254 +57600/69092 Loss: 107.461 +60800/69092 Loss: 105.741 +64000/69092 Loss: 106.470 +67200/69092 Loss: 105.178 +Training time 0:08:36.302635 +Epoch: 98 Average loss: 106.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 571) +0/69092 Loss: 108.847 +3200/69092 Loss: 105.326 +6400/69092 Loss: 107.382 +9600/69092 Loss: 105.930 +12800/69092 Loss: 105.297 +16000/69092 Loss: 106.556 +19200/69092 Loss: 105.766 +22400/69092 Loss: 106.902 +25600/69092 Loss: 107.530 +28800/69092 Loss: 108.505 +32000/69092 Loss: 105.405 +35200/69092 Loss: 106.487 +38400/69092 Loss: 106.815 +41600/69092 Loss: 107.256 +44800/69092 Loss: 106.005 +48000/69092 Loss: 106.362 +51200/69092 Loss: 104.808 +54400/69092 Loss: 105.526 +57600/69092 Loss: 107.615 +60800/69092 Loss: 108.101 +64000/69092 Loss: 107.221 +67200/69092 Loss: 106.666 +Training time 0:08:32.220972 +Epoch: 99 Average loss: 106.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 572) +0/69092 Loss: 110.655 +3200/69092 Loss: 104.544 +6400/69092 Loss: 105.357 +9600/69092 Loss: 106.638 +12800/69092 Loss: 107.022 +16000/69092 Loss: 105.573 +19200/69092 Loss: 107.178 +22400/69092 Loss: 104.602 +25600/69092 Loss: 107.409 +28800/69092 Loss: 104.997 +32000/69092 Loss: 105.977 +35200/69092 Loss: 106.093 +38400/69092 Loss: 107.718 +41600/69092 Loss: 106.939 +44800/69092 Loss: 106.759 +48000/69092 Loss: 105.517 +51200/69092 Loss: 106.247 +54400/69092 Loss: 107.240 +57600/69092 Loss: 107.913 +60800/69092 Loss: 107.271 +64000/69092 Loss: 106.277 +67200/69092 Loss: 106.964 +Training time 0:08:15.646117 +Epoch: 100 Average loss: 106.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 573) +0/69092 Loss: 104.857 +3200/69092 Loss: 106.219 +6400/69092 Loss: 107.007 +9600/69092 Loss: 106.799 +12800/69092 Loss: 108.105 +16000/69092 Loss: 107.167 +19200/69092 Loss: 105.635 +22400/69092 Loss: 106.038 +25600/69092 Loss: 106.076 +28800/69092 Loss: 106.105 +32000/69092 Loss: 108.328 +35200/69092 Loss: 106.938 +38400/69092 Loss: 107.063 +41600/69092 Loss: 106.562 +44800/69092 Loss: 104.637 +48000/69092 Loss: 105.994 +51200/69092 Loss: 106.819 +54400/69092 Loss: 107.028 +57600/69092 Loss: 106.172 +60800/69092 Loss: 106.296 +64000/69092 Loss: 106.977 +67200/69092 Loss: 106.896 +Training time 0:08:22.812712 +Epoch: 101 Average loss: 106.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 574) +0/69092 Loss: 108.823 +3200/69092 Loss: 106.071 +6400/69092 Loss: 106.411 +9600/69092 Loss: 104.916 +12800/69092 Loss: 105.965 +16000/69092 Loss: 106.965 +19200/69092 Loss: 106.267 +22400/69092 Loss: 105.886 +25600/69092 Loss: 107.156 +28800/69092 Loss: 107.479 +32000/69092 Loss: 106.866 +35200/69092 Loss: 106.268 +38400/69092 Loss: 105.987 +41600/69092 Loss: 107.420 +44800/69092 Loss: 105.909 +48000/69092 Loss: 106.953 +51200/69092 Loss: 106.461 +54400/69092 Loss: 104.351 +57600/69092 Loss: 105.880 +60800/69092 Loss: 106.526 +64000/69092 Loss: 107.518 +67200/69092 Loss: 108.069 +Training time 0:08:28.246423 +Epoch: 102 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 575) +0/69092 Loss: 90.145 +3200/69092 Loss: 106.912 +6400/69092 Loss: 106.513 +9600/69092 Loss: 106.783 +12800/69092 Loss: 106.567 +16000/69092 Loss: 108.657 +19200/69092 Loss: 104.472 +22400/69092 Loss: 104.730 +25600/69092 Loss: 106.228 +28800/69092 Loss: 106.621 +32000/69092 Loss: 105.932 +35200/69092 Loss: 106.758 +38400/69092 Loss: 106.631 +41600/69092 Loss: 106.657 +44800/69092 Loss: 106.986 +48000/69092 Loss: 105.172 +51200/69092 Loss: 107.157 +54400/69092 Loss: 105.394 +57600/69092 Loss: 107.325 +60800/69092 Loss: 107.413 +64000/69092 Loss: 106.906 +67200/69092 Loss: 106.041 +Training time 0:08:21.547282 +Epoch: 103 Average loss: 106.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 576) +0/69092 Loss: 101.803 +3200/69092 Loss: 105.891 +6400/69092 Loss: 107.034 +9600/69092 Loss: 104.733 +12800/69092 Loss: 109.100 +16000/69092 Loss: 106.509 +19200/69092 Loss: 107.214 +22400/69092 Loss: 106.740 +25600/69092 Loss: 106.181 +28800/69092 Loss: 106.539 +32000/69092 Loss: 106.197 +35200/69092 Loss: 106.938 +38400/69092 Loss: 105.540 +41600/69092 Loss: 106.054 +44800/69092 Loss: 104.853 +48000/69092 Loss: 106.676 +51200/69092 Loss: 106.511 +54400/69092 Loss: 107.937 +57600/69092 Loss: 107.244 +60800/69092 Loss: 105.338 +64000/69092 Loss: 105.975 +67200/69092 Loss: 106.113 +Training time 0:08:12.558727 +Epoch: 104 Average loss: 106.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 577) +0/69092 Loss: 109.674 +3200/69092 Loss: 108.123 +6400/69092 Loss: 105.217 +9600/69092 Loss: 107.941 +12800/69092 Loss: 106.427 +16000/69092 Loss: 107.033 +19200/69092 Loss: 105.876 +22400/69092 Loss: 105.880 +25600/69092 Loss: 106.558 +28800/69092 Loss: 105.464 +32000/69092 Loss: 106.877 +35200/69092 Loss: 104.750 +38400/69092 Loss: 106.217 +41600/69092 Loss: 107.001 +44800/69092 Loss: 106.580 +48000/69092 Loss: 107.178 +51200/69092 Loss: 106.426 +54400/69092 Loss: 108.541 +57600/69092 Loss: 106.001 +60800/69092 Loss: 106.436 +64000/69092 Loss: 107.500 +67200/69092 Loss: 107.767 +Training time 0:08:34.456709 +Epoch: 105 Average loss: 106.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 578) +0/69092 Loss: 101.095 +3200/69092 Loss: 106.131 +6400/69092 Loss: 106.041 +9600/69092 Loss: 106.539 +12800/69092 Loss: 105.599 +16000/69092 Loss: 106.751 +19200/69092 Loss: 106.833 +22400/69092 Loss: 107.411 +25600/69092 Loss: 106.772 +28800/69092 Loss: 104.804 +32000/69092 Loss: 106.089 +35200/69092 Loss: 106.887 +38400/69092 Loss: 106.886 +41600/69092 Loss: 106.114 +44800/69092 Loss: 106.894 +48000/69092 Loss: 106.840 +51200/69092 Loss: 105.489 +54400/69092 Loss: 106.712 +57600/69092 Loss: 106.660 +60800/69092 Loss: 106.437 +64000/69092 Loss: 106.806 +67200/69092 Loss: 107.489 +Training time 0:08:28.235144 +Epoch: 106 Average loss: 106.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 579) +0/69092 Loss: 97.506 +3200/69092 Loss: 106.761 +6400/69092 Loss: 107.421 +9600/69092 Loss: 107.569 +12800/69092 Loss: 105.493 +16000/69092 Loss: 106.673 +19200/69092 Loss: 107.873 +22400/69092 Loss: 108.085 +25600/69092 Loss: 105.795 +28800/69092 Loss: 107.487 +32000/69092 Loss: 105.760 +35200/69092 Loss: 105.321 +38400/69092 Loss: 106.811 +41600/69092 Loss: 105.967 +44800/69092 Loss: 105.562 +48000/69092 Loss: 106.116 +51200/69092 Loss: 106.836 +54400/69092 Loss: 107.578 +57600/69092 Loss: 106.066 +60800/69092 Loss: 105.927 +64000/69092 Loss: 107.201 +67200/69092 Loss: 106.226 +Training time 0:08:12.790983 +Epoch: 107 Average loss: 106.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 580) +0/69092 Loss: 104.775 +3200/69092 Loss: 107.174 +6400/69092 Loss: 106.880 +9600/69092 Loss: 107.510 +12800/69092 Loss: 108.077 +16000/69092 Loss: 106.683 +19200/69092 Loss: 105.363 +22400/69092 Loss: 108.048 +25600/69092 Loss: 106.564 +28800/69092 Loss: 106.165 +32000/69092 Loss: 107.178 +35200/69092 Loss: 105.587 +38400/69092 Loss: 106.691 +41600/69092 Loss: 105.587 +44800/69092 Loss: 107.081 +48000/69092 Loss: 105.576 +51200/69092 Loss: 106.919 +54400/69092 Loss: 105.137 +57600/69092 Loss: 105.929 +60800/69092 Loss: 105.176 +64000/69092 Loss: 105.134 +67200/69092 Loss: 105.331 +Training time 0:08:34.503189 +Epoch: 108 Average loss: 106.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 581) +0/69092 Loss: 114.262 +3200/69092 Loss: 104.593 +6400/69092 Loss: 106.806 +9600/69092 Loss: 107.125 +12800/69092 Loss: 105.918 +16000/69092 Loss: 106.070 +19200/69092 Loss: 105.864 +22400/69092 Loss: 106.633 +25600/69092 Loss: 107.604 +28800/69092 Loss: 106.119 +32000/69092 Loss: 106.117 +35200/69092 Loss: 106.122 +38400/69092 Loss: 108.070 +41600/69092 Loss: 106.325 +44800/69092 Loss: 106.823 +48000/69092 Loss: 106.984 +51200/69092 Loss: 106.556 +54400/69092 Loss: 106.284 +57600/69092 Loss: 106.956 +60800/69092 Loss: 106.351 +64000/69092 Loss: 104.856 +67200/69092 Loss: 106.425 +Training time 0:08:28.963040 +Epoch: 109 Average loss: 106.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 582) +0/69092 Loss: 103.309 +3200/69092 Loss: 106.830 +6400/69092 Loss: 106.490 +9600/69092 Loss: 107.545 +12800/69092 Loss: 106.740 +16000/69092 Loss: 107.174 +19200/69092 Loss: 106.037 +22400/69092 Loss: 105.181 +25600/69092 Loss: 107.872 +28800/69092 Loss: 106.313 +32000/69092 Loss: 106.348 +35200/69092 Loss: 106.432 +38400/69092 Loss: 106.739 +41600/69092 Loss: 106.703 +44800/69092 Loss: 106.294 +48000/69092 Loss: 106.885 +51200/69092 Loss: 105.335 +54400/69092 Loss: 105.724 +57600/69092 Loss: 105.690 +60800/69092 Loss: 107.216 +64000/69092 Loss: 106.446 +67200/69092 Loss: 106.363 +Training time 0:08:08.024328 +Epoch: 110 Average loss: 106.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 583) +0/69092 Loss: 107.794 +3200/69092 Loss: 107.753 +6400/69092 Loss: 105.483 +9600/69092 Loss: 106.462 +12800/69092 Loss: 104.751 +16000/69092 Loss: 107.653 +19200/69092 Loss: 106.754 +22400/69092 Loss: 105.699 +25600/69092 Loss: 108.046 +28800/69092 Loss: 105.099 +32000/69092 Loss: 107.641 +35200/69092 Loss: 106.035 +38400/69092 Loss: 107.441 +41600/69092 Loss: 105.351 +44800/69092 Loss: 106.360 +48000/69092 Loss: 105.913 +51200/69092 Loss: 107.599 +54400/69092 Loss: 106.876 +57600/69092 Loss: 105.477 +60800/69092 Loss: 105.446 +64000/69092 Loss: 106.565 +67200/69092 Loss: 105.272 +Training time 0:08:26.274149 +Epoch: 111 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 584) +0/69092 Loss: 97.800 +3200/69092 Loss: 104.214 +6400/69092 Loss: 105.424 +9600/69092 Loss: 106.198 +12800/69092 Loss: 107.105 +16000/69092 Loss: 107.020 +19200/69092 Loss: 104.743 +22400/69092 Loss: 105.924 +25600/69092 Loss: 106.824 +28800/69092 Loss: 105.913 +32000/69092 Loss: 106.818 +35200/69092 Loss: 105.020 +38400/69092 Loss: 106.240 +41600/69092 Loss: 107.335 +44800/69092 Loss: 107.042 +48000/69092 Loss: 106.666 +51200/69092 Loss: 107.157 +54400/69092 Loss: 106.591 +57600/69092 Loss: 105.460 +60800/69092 Loss: 107.370 +64000/69092 Loss: 106.605 +67200/69092 Loss: 108.525 +Training time 0:08:28.023627 +Epoch: 112 Average loss: 106.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 585) +0/69092 Loss: 97.752 +3200/69092 Loss: 107.426 +6400/69092 Loss: 106.317 +9600/69092 Loss: 106.898 +12800/69092 Loss: 107.114 +16000/69092 Loss: 106.105 +19200/69092 Loss: 107.259 +22400/69092 Loss: 107.036 +25600/69092 Loss: 105.074 +28800/69092 Loss: 105.453 +32000/69092 Loss: 105.192 +35200/69092 Loss: 106.822 +38400/69092 Loss: 104.521 +41600/69092 Loss: 104.586 +44800/69092 Loss: 107.501 +48000/69092 Loss: 106.268 +51200/69092 Loss: 108.413 +54400/69092 Loss: 105.898 +57600/69092 Loss: 107.150 +60800/69092 Loss: 106.675 +64000/69092 Loss: 105.366 +67200/69092 Loss: 106.280 +Training time 0:08:28.891248 +Epoch: 113 Average loss: 106.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 586) +0/69092 Loss: 105.591 +3200/69092 Loss: 106.394 +6400/69092 Loss: 107.415 +9600/69092 Loss: 108.271 +12800/69092 Loss: 108.131 +16000/69092 Loss: 106.722 +19200/69092 Loss: 106.922 +22400/69092 Loss: 106.939 +25600/69092 Loss: 105.477 +28800/69092 Loss: 106.114 +32000/69092 Loss: 106.219 +35200/69092 Loss: 105.660 +38400/69092 Loss: 106.372 +41600/69092 Loss: 107.382 +44800/69092 Loss: 106.470 +48000/69092 Loss: 106.321 +51200/69092 Loss: 106.890 +54400/69092 Loss: 107.213 +57600/69092 Loss: 105.992 +60800/69092 Loss: 107.278 +64000/69092 Loss: 105.836 +67200/69092 Loss: 105.479 +Training time 0:08:11.030553 +Epoch: 114 Average loss: 106.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 587) +0/69092 Loss: 97.103 +3200/69092 Loss: 106.608 +6400/69092 Loss: 106.589 +9600/69092 Loss: 105.374 +12800/69092 Loss: 107.543 +16000/69092 Loss: 106.442 +19200/69092 Loss: 106.628 +22400/69092 Loss: 106.406 +25600/69092 Loss: 106.435 +28800/69092 Loss: 104.022 +32000/69092 Loss: 106.017 +35200/69092 Loss: 105.766 +38400/69092 Loss: 105.761 +41600/69092 Loss: 105.409 +44800/69092 Loss: 107.452 +48000/69092 Loss: 106.582 +51200/69092 Loss: 105.450 +54400/69092 Loss: 106.892 +57600/69092 Loss: 105.557 +60800/69092 Loss: 108.768 +64000/69092 Loss: 106.782 +67200/69092 Loss: 106.896 +Training time 0:08:29.245296 +Epoch: 115 Average loss: 106.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 588) +0/69092 Loss: 105.229 +3200/69092 Loss: 105.985 +6400/69092 Loss: 106.827 +9600/69092 Loss: 106.551 +12800/69092 Loss: 104.720 +16000/69092 Loss: 106.133 +19200/69092 Loss: 106.348 +22400/69092 Loss: 107.927 +25600/69092 Loss: 107.240 +28800/69092 Loss: 106.887 +32000/69092 Loss: 105.037 +35200/69092 Loss: 106.658 +38400/69092 Loss: 106.463 +41600/69092 Loss: 106.902 +44800/69092 Loss: 106.547 +48000/69092 Loss: 107.392 +51200/69092 Loss: 107.407 +54400/69092 Loss: 106.834 +57600/69092 Loss: 105.283 +60800/69092 Loss: 106.722 +64000/69092 Loss: 107.001 +67200/69092 Loss: 105.936 +Training time 0:08:48.953124 +Epoch: 116 Average loss: 106.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 589) +0/69092 Loss: 103.118 +3200/69092 Loss: 106.755 +6400/69092 Loss: 106.061 +9600/69092 Loss: 105.774 +12800/69092 Loss: 106.025 +16000/69092 Loss: 105.834 +19200/69092 Loss: 106.687 +22400/69092 Loss: 107.147 +25600/69092 Loss: 106.915 +28800/69092 Loss: 106.410 +32000/69092 Loss: 108.176 +35200/69092 Loss: 104.790 +38400/69092 Loss: 107.187 +41600/69092 Loss: 106.425 +44800/69092 Loss: 105.947 +48000/69092 Loss: 106.277 +51200/69092 Loss: 106.188 +54400/69092 Loss: 105.367 +57600/69092 Loss: 104.945 +60800/69092 Loss: 108.165 +64000/69092 Loss: 105.182 +67200/69092 Loss: 105.689 +Training time 0:08:16.602949 +Epoch: 117 Average loss: 106.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 590) +0/69092 Loss: 119.743 +3200/69092 Loss: 105.768 +6400/69092 Loss: 106.127 +9600/69092 Loss: 106.418 +12800/69092 Loss: 105.977 +16000/69092 Loss: 104.420 +19200/69092 Loss: 107.169 +22400/69092 Loss: 105.479 +25600/69092 Loss: 104.814 +28800/69092 Loss: 108.067 +32000/69092 Loss: 106.086 +35200/69092 Loss: 108.541 +38400/69092 Loss: 107.326 +41600/69092 Loss: 106.012 +44800/69092 Loss: 106.440 +48000/69092 Loss: 107.001 +51200/69092 Loss: 106.054 +54400/69092 Loss: 106.745 +57600/69092 Loss: 106.697 +60800/69092 Loss: 107.612 +64000/69092 Loss: 106.268 +67200/69092 Loss: 107.344 +Training time 0:08:27.542186 +Epoch: 118 Average loss: 106.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 591) +0/69092 Loss: 96.661 +3200/69092 Loss: 106.137 +6400/69092 Loss: 105.095 +9600/69092 Loss: 106.112 +12800/69092 Loss: 105.124 +16000/69092 Loss: 107.041 +19200/69092 Loss: 107.167 +22400/69092 Loss: 106.055 +25600/69092 Loss: 106.759 +28800/69092 Loss: 106.469 +32000/69092 Loss: 106.223 +35200/69092 Loss: 107.669 +38400/69092 Loss: 105.719 +41600/69092 Loss: 106.517 +44800/69092 Loss: 105.777 +48000/69092 Loss: 107.730 +51200/69092 Loss: 106.931 +54400/69092 Loss: 106.590 +57600/69092 Loss: 106.871 +60800/69092 Loss: 106.979 +64000/69092 Loss: 106.402 +67200/69092 Loss: 105.103 +Training time 0:08:28.363494 +Epoch: 119 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 592) +0/69092 Loss: 113.644 +3200/69092 Loss: 106.551 +6400/69092 Loss: 104.861 +9600/69092 Loss: 106.265 +12800/69092 Loss: 105.388 +16000/69092 Loss: 106.465 +19200/69092 Loss: 105.612 +22400/69092 Loss: 109.600 +25600/69092 Loss: 107.627 +28800/69092 Loss: 105.646 +32000/69092 Loss: 105.520 +35200/69092 Loss: 104.602 +38400/69092 Loss: 105.231 +41600/69092 Loss: 106.590 +44800/69092 Loss: 105.713 +48000/69092 Loss: 106.131 +51200/69092 Loss: 107.068 +54400/69092 Loss: 105.567 +57600/69092 Loss: 106.380 +60800/69092 Loss: 106.401 +64000/69092 Loss: 107.425 +67200/69092 Loss: 107.170 +Training time 0:08:34.803348 +Epoch: 120 Average loss: 106.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 593) +0/69092 Loss: 104.630 +3200/69092 Loss: 104.440 +6400/69092 Loss: 105.104 +9600/69092 Loss: 105.837 +12800/69092 Loss: 105.936 +16000/69092 Loss: 105.117 +19200/69092 Loss: 106.623 +22400/69092 Loss: 105.770 +25600/69092 Loss: 107.649 +28800/69092 Loss: 106.685 +32000/69092 Loss: 106.831 +35200/69092 Loss: 106.589 +38400/69092 Loss: 107.943 +41600/69092 Loss: 107.373 +44800/69092 Loss: 106.926 +48000/69092 Loss: 105.803 +51200/69092 Loss: 106.560 +54400/69092 Loss: 107.363 +57600/69092 Loss: 106.822 +60800/69092 Loss: 108.878 +64000/69092 Loss: 106.219 +67200/69092 Loss: 106.611 +Training time 0:08:14.919534 +Epoch: 121 Average loss: 106.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 594) +0/69092 Loss: 101.315 +3200/69092 Loss: 105.890 +6400/69092 Loss: 105.370 +9600/69092 Loss: 107.407 +12800/69092 Loss: 105.891 +16000/69092 Loss: 104.991 +19200/69092 Loss: 106.024 +22400/69092 Loss: 107.245 +25600/69092 Loss: 106.381 +28800/69092 Loss: 106.326 +32000/69092 Loss: 105.435 +35200/69092 Loss: 107.826 +38400/69092 Loss: 106.359 +41600/69092 Loss: 106.437 +44800/69092 Loss: 106.346 +48000/69092 Loss: 106.349 +51200/69092 Loss: 106.990 +54400/69092 Loss: 106.704 +57600/69092 Loss: 107.567 +60800/69092 Loss: 107.675 +64000/69092 Loss: 106.474 +67200/69092 Loss: 105.417 +Training time 0:08:18.623811 +Epoch: 122 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 595) +0/69092 Loss: 102.429 +3200/69092 Loss: 106.037 +6400/69092 Loss: 106.831 +9600/69092 Loss: 106.770 +12800/69092 Loss: 106.117 +16000/69092 Loss: 105.508 +19200/69092 Loss: 105.744 +22400/69092 Loss: 106.718 +25600/69092 Loss: 105.912 +28800/69092 Loss: 108.314 +32000/69092 Loss: 106.325 +35200/69092 Loss: 107.150 +38400/69092 Loss: 106.054 +41600/69092 Loss: 106.640 +44800/69092 Loss: 108.025 +48000/69092 Loss: 105.248 +51200/69092 Loss: 105.531 +54400/69092 Loss: 107.128 +57600/69092 Loss: 106.754 +60800/69092 Loss: 106.831 +64000/69092 Loss: 107.007 +67200/69092 Loss: 106.866 +Training time 0:08:30.658669 +Epoch: 123 Average loss: 106.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 596) +0/69092 Loss: 107.835 +3200/69092 Loss: 106.623 +6400/69092 Loss: 106.246 +9600/69092 Loss: 107.522 +12800/69092 Loss: 106.709 +16000/69092 Loss: 107.464 +19200/69092 Loss: 105.407 +22400/69092 Loss: 105.617 +25600/69092 Loss: 106.054 +28800/69092 Loss: 106.538 +32000/69092 Loss: 106.082 +35200/69092 Loss: 106.230 +38400/69092 Loss: 106.589 +41600/69092 Loss: 106.343 +44800/69092 Loss: 105.836 +48000/69092 Loss: 106.071 +51200/69092 Loss: 105.857 +54400/69092 Loss: 104.746 +57600/69092 Loss: 107.207 +60800/69092 Loss: 105.396 +64000/69092 Loss: 107.155 +67200/69092 Loss: 107.643 +Training time 0:08:20.486913 +Epoch: 124 Average loss: 106.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 597) +0/69092 Loss: 103.166 +3200/69092 Loss: 106.715 +6400/69092 Loss: 105.546 +9600/69092 Loss: 105.337 +12800/69092 Loss: 106.911 +16000/69092 Loss: 105.444 +19200/69092 Loss: 106.380 +22400/69092 Loss: 106.603 +25600/69092 Loss: 105.923 +28800/69092 Loss: 108.098 +32000/69092 Loss: 107.570 +35200/69092 Loss: 106.293 +38400/69092 Loss: 107.966 +41600/69092 Loss: 106.807 +44800/69092 Loss: 106.515 +48000/69092 Loss: 107.138 +51200/69092 Loss: 107.418 +54400/69092 Loss: 106.295 +57600/69092 Loss: 105.855 +60800/69092 Loss: 106.414 +64000/69092 Loss: 105.596 +67200/69092 Loss: 106.692 +Training time 0:08:17.332521 +Epoch: 125 Average loss: 106.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 598) +0/69092 Loss: 105.111 +3200/69092 Loss: 104.476 +6400/69092 Loss: 106.249 +9600/69092 Loss: 105.327 +12800/69092 Loss: 106.027 +16000/69092 Loss: 105.614 +19200/69092 Loss: 107.485 +22400/69092 Loss: 105.200 +25600/69092 Loss: 107.388 +28800/69092 Loss: 106.803 +32000/69092 Loss: 104.665 +35200/69092 Loss: 105.369 +38400/69092 Loss: 106.338 +41600/69092 Loss: 107.317 +44800/69092 Loss: 105.720 +48000/69092 Loss: 105.836 +51200/69092 Loss: 107.443 +54400/69092 Loss: 106.583 +57600/69092 Loss: 106.481 +60800/69092 Loss: 107.986 +64000/69092 Loss: 106.785 +67200/69092 Loss: 109.144 +Training time 0:08:33.796142 +Epoch: 126 Average loss: 106.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 599) +0/69092 Loss: 105.267 +3200/69092 Loss: 105.740 +6400/69092 Loss: 105.368 +9600/69092 Loss: 106.310 +12800/69092 Loss: 108.301 +16000/69092 Loss: 106.223 +19200/69092 Loss: 106.160 +22400/69092 Loss: 106.523 +25600/69092 Loss: 105.164 +28800/69092 Loss: 106.265 +32000/69092 Loss: 107.491 +35200/69092 Loss: 106.396 +38400/69092 Loss: 106.430 +41600/69092 Loss: 105.629 +44800/69092 Loss: 106.231 +48000/69092 Loss: 106.040 +51200/69092 Loss: 105.864 +54400/69092 Loss: 106.237 +57600/69092 Loss: 105.828 +60800/69092 Loss: 107.219 +64000/69092 Loss: 106.337 +67200/69092 Loss: 106.374 +Training time 0:08:25.077128 +Epoch: 127 Average loss: 106.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 600) +0/69092 Loss: 109.431 +3200/69092 Loss: 105.668 +6400/69092 Loss: 107.004 +9600/69092 Loss: 108.074 +12800/69092 Loss: 107.686 +16000/69092 Loss: 106.271 +19200/69092 Loss: 105.931 +22400/69092 Loss: 106.594 +25600/69092 Loss: 107.101 +28800/69092 Loss: 106.281 +32000/69092 Loss: 105.554 +35200/69092 Loss: 105.083 +38400/69092 Loss: 106.437 +41600/69092 Loss: 105.270 +44800/69092 Loss: 106.243 +48000/69092 Loss: 106.977 +51200/69092 Loss: 105.794 +54400/69092 Loss: 106.586 +57600/69092 Loss: 106.681 +60800/69092 Loss: 105.542 +64000/69092 Loss: 108.228 +67200/69092 Loss: 105.383 +Training time 0:08:11.675960 +Epoch: 128 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 601) +0/69092 Loss: 95.905 +3200/69092 Loss: 106.125 +6400/69092 Loss: 106.219 +9600/69092 Loss: 105.957 +12800/69092 Loss: 105.352 +16000/69092 Loss: 106.789 +19200/69092 Loss: 105.449 +22400/69092 Loss: 105.926 +25600/69092 Loss: 106.291 +28800/69092 Loss: 107.513 +32000/69092 Loss: 107.065 +35200/69092 Loss: 108.309 +38400/69092 Loss: 105.017 +41600/69092 Loss: 106.239 +44800/69092 Loss: 106.296 +48000/69092 Loss: 106.892 +51200/69092 Loss: 106.450 +54400/69092 Loss: 106.094 +57600/69092 Loss: 107.825 +60800/69092 Loss: 106.022 +64000/69092 Loss: 105.732 +67200/69092 Loss: 106.652 +Training time 0:08:21.033959 +Epoch: 129 Average loss: 106.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 602) +0/69092 Loss: 104.252 +3200/69092 Loss: 107.029 +6400/69092 Loss: 106.802 +9600/69092 Loss: 106.794 +12800/69092 Loss: 106.811 +16000/69092 Loss: 106.363 +19200/69092 Loss: 104.865 +22400/69092 Loss: 106.846 +25600/69092 Loss: 105.222 +28800/69092 Loss: 107.828 +32000/69092 Loss: 105.689 +35200/69092 Loss: 106.731 +38400/69092 Loss: 106.298 +41600/69092 Loss: 106.902 +44800/69092 Loss: 106.351 +48000/69092 Loss: 106.622 +51200/69092 Loss: 106.934 +54400/69092 Loss: 106.261 +57600/69092 Loss: 106.321 +60800/69092 Loss: 106.988 +64000/69092 Loss: 105.036 +67200/69092 Loss: 104.902 +Training time 0:08:42.086068 +Epoch: 130 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 603) +0/69092 Loss: 99.543 +3200/69092 Loss: 104.679 +6400/69092 Loss: 105.977 +9600/69092 Loss: 106.278 +12800/69092 Loss: 106.978 +16000/69092 Loss: 106.384 +19200/69092 Loss: 106.959 +22400/69092 Loss: 106.418 +25600/69092 Loss: 106.715 +28800/69092 Loss: 106.505 +32000/69092 Loss: 106.786 +35200/69092 Loss: 106.298 +38400/69092 Loss: 106.792 +41600/69092 Loss: 106.055 +44800/69092 Loss: 106.440 +48000/69092 Loss: 105.135 +51200/69092 Loss: 106.796 +54400/69092 Loss: 105.947 +57600/69092 Loss: 105.942 +60800/69092 Loss: 106.960 +64000/69092 Loss: 106.913 +67200/69092 Loss: 107.432 +Training time 0:08:16.324414 +Epoch: 131 Average loss: 106.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 604) +0/69092 Loss: 105.038 +3200/69092 Loss: 107.183 +6400/69092 Loss: 105.946 +9600/69092 Loss: 106.588 +12800/69092 Loss: 105.127 +16000/69092 Loss: 107.115 +19200/69092 Loss: 106.682 +22400/69092 Loss: 105.415 +25600/69092 Loss: 106.875 +28800/69092 Loss: 107.723 +32000/69092 Loss: 107.636 +35200/69092 Loss: 105.725 +38400/69092 Loss: 107.405 +41600/69092 Loss: 105.711 +44800/69092 Loss: 106.147 +48000/69092 Loss: 104.095 +51200/69092 Loss: 105.742 +54400/69092 Loss: 105.099 +57600/69092 Loss: 105.718 +60800/69092 Loss: 106.787 +64000/69092 Loss: 106.759 +67200/69092 Loss: 107.464 +Training time 0:08:16.505574 +Epoch: 132 Average loss: 106.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 605) +0/69092 Loss: 96.708 +3200/69092 Loss: 106.405 +6400/69092 Loss: 104.834 +9600/69092 Loss: 108.773 +12800/69092 Loss: 105.859 +16000/69092 Loss: 107.340 +19200/69092 Loss: 105.542 +22400/69092 Loss: 105.718 +25600/69092 Loss: 106.139 +28800/69092 Loss: 106.453 +32000/69092 Loss: 105.585 +35200/69092 Loss: 105.836 +38400/69092 Loss: 105.845 +41600/69092 Loss: 107.077 +44800/69092 Loss: 107.236 +48000/69092 Loss: 105.610 +51200/69092 Loss: 106.219 +54400/69092 Loss: 107.686 +57600/69092 Loss: 107.099 +60800/69092 Loss: 104.547 +64000/69092 Loss: 107.793 +67200/69092 Loss: 105.780 +Training time 0:08:39.826238 +Epoch: 133 Average loss: 106.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 606) +0/69092 Loss: 99.716 +3200/69092 Loss: 106.593 +6400/69092 Loss: 106.744 +9600/69092 Loss: 106.524 +12800/69092 Loss: 105.361 +16000/69092 Loss: 106.144 +19200/69092 Loss: 106.262 +22400/69092 Loss: 105.060 +25600/69092 Loss: 105.970 +28800/69092 Loss: 106.904 +32000/69092 Loss: 106.427 +35200/69092 Loss: 106.735 +38400/69092 Loss: 107.290 +41600/69092 Loss: 105.280 +44800/69092 Loss: 107.943 +48000/69092 Loss: 106.406 +51200/69092 Loss: 105.800 +54400/69092 Loss: 105.467 +57600/69092 Loss: 106.627 +60800/69092 Loss: 107.227 +64000/69092 Loss: 105.814 +67200/69092 Loss: 106.085 +Training time 0:08:37.037833 +Epoch: 134 Average loss: 106.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 607) +0/69092 Loss: 108.462 +3200/69092 Loss: 105.953 +6400/69092 Loss: 106.460 +9600/69092 Loss: 106.975 +12800/69092 Loss: 108.791 +16000/69092 Loss: 108.032 +19200/69092 Loss: 105.841 +22400/69092 Loss: 107.681 +25600/69092 Loss: 107.230 +28800/69092 Loss: 105.135 +32000/69092 Loss: 105.796 +35200/69092 Loss: 105.770 +38400/69092 Loss: 107.392 +41600/69092 Loss: 105.437 +44800/69092 Loss: 106.451 +48000/69092 Loss: 105.326 +51200/69092 Loss: 106.773 +54400/69092 Loss: 104.993 +57600/69092 Loss: 107.558 +60800/69092 Loss: 103.042 +64000/69092 Loss: 107.979 +67200/69092 Loss: 106.564 +Training time 0:08:08.090380 +Epoch: 135 Average loss: 106.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 608) +0/69092 Loss: 101.914 +3200/69092 Loss: 106.167 +6400/69092 Loss: 106.149 +9600/69092 Loss: 107.780 +12800/69092 Loss: 106.658 +16000/69092 Loss: 107.444 +19200/69092 Loss: 106.102 +22400/69092 Loss: 105.142 +25600/69092 Loss: 106.027 +28800/69092 Loss: 104.446 +32000/69092 Loss: 107.230 +35200/69092 Loss: 106.812 +38400/69092 Loss: 106.766 +41600/69092 Loss: 106.461 +44800/69092 Loss: 107.803 +48000/69092 Loss: 107.616 +51200/69092 Loss: 106.551 +54400/69092 Loss: 106.260 +57600/69092 Loss: 106.447 +60800/69092 Loss: 107.337 +64000/69092 Loss: 105.952 +67200/69092 Loss: 104.934 +Training time 0:08:26.636746 +Epoch: 136 Average loss: 106.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 609) +0/69092 Loss: 101.575 +3200/69092 Loss: 105.532 +6400/69092 Loss: 106.598 +9600/69092 Loss: 105.126 +12800/69092 Loss: 106.401 +16000/69092 Loss: 105.780 +19200/69092 Loss: 107.407 +22400/69092 Loss: 105.728 +25600/69092 Loss: 108.358 +28800/69092 Loss: 104.707 +32000/69092 Loss: 106.437 +35200/69092 Loss: 107.102 +38400/69092 Loss: 106.530 +41600/69092 Loss: 107.183 +44800/69092 Loss: 106.736 +48000/69092 Loss: 105.565 +51200/69092 Loss: 106.659 +54400/69092 Loss: 106.873 +57600/69092 Loss: 106.344 +60800/69092 Loss: 106.046 +64000/69092 Loss: 107.468 +67200/69092 Loss: 105.486 +Training time 0:08:34.403215 +Epoch: 137 Average loss: 106.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 610) +0/69092 Loss: 107.156 +3200/69092 Loss: 106.627 +6400/69092 Loss: 106.269 +9600/69092 Loss: 106.492 +12800/69092 Loss: 105.058 +16000/69092 Loss: 106.726 +19200/69092 Loss: 106.069 +22400/69092 Loss: 105.511 +25600/69092 Loss: 107.677 +28800/69092 Loss: 107.636 +32000/69092 Loss: 104.413 +35200/69092 Loss: 106.052 +38400/69092 Loss: 106.223 +41600/69092 Loss: 106.668 +44800/69092 Loss: 106.102 +48000/69092 Loss: 104.982 +51200/69092 Loss: 106.572 +54400/69092 Loss: 107.873 +57600/69092 Loss: 106.456 +60800/69092 Loss: 107.378 +64000/69092 Loss: 107.214 +67200/69092 Loss: 104.788 +Training time 0:08:24.705983 +Epoch: 138 Average loss: 106.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 611) +0/69092 Loss: 103.643 +3200/69092 Loss: 106.194 +6400/69092 Loss: 104.763 +9600/69092 Loss: 106.033 +12800/69092 Loss: 106.947 +16000/69092 Loss: 106.770 +19200/69092 Loss: 107.186 +22400/69092 Loss: 106.170 +25600/69092 Loss: 106.241 +28800/69092 Loss: 107.349 +32000/69092 Loss: 106.452 +35200/69092 Loss: 105.886 +38400/69092 Loss: 106.320 +41600/69092 Loss: 107.577 +44800/69092 Loss: 106.197 +48000/69092 Loss: 105.279 +51200/69092 Loss: 106.271 +54400/69092 Loss: 106.254 +57600/69092 Loss: 105.631 +60800/69092 Loss: 104.857 +64000/69092 Loss: 106.817 +67200/69092 Loss: 106.352 +Training time 0:08:12.999556 +Epoch: 139 Average loss: 106.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 612) +0/69092 Loss: 113.564 +3200/69092 Loss: 105.412 +6400/69092 Loss: 108.021 +9600/69092 Loss: 106.346 +12800/69092 Loss: 106.656 +16000/69092 Loss: 105.474 +19200/69092 Loss: 105.172 +22400/69092 Loss: 107.173 +25600/69092 Loss: 105.552 +28800/69092 Loss: 107.890 +32000/69092 Loss: 106.278 +35200/69092 Loss: 106.499 +38400/69092 Loss: 106.431 +41600/69092 Loss: 106.754 +44800/69092 Loss: 105.029 +48000/69092 Loss: 106.255 +51200/69092 Loss: 106.492 +54400/69092 Loss: 106.695 +57600/69092 Loss: 106.687 +60800/69092 Loss: 105.782 +64000/69092 Loss: 107.154 +67200/69092 Loss: 105.823 +Training time 0:08:42.226282 +Epoch: 140 Average loss: 106.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 613) +0/69092 Loss: 111.642 +3200/69092 Loss: 106.180 +6400/69092 Loss: 107.641 +9600/69092 Loss: 106.141 +12800/69092 Loss: 106.160 +16000/69092 Loss: 105.968 +19200/69092 Loss: 105.013 +22400/69092 Loss: 106.176 +25600/69092 Loss: 107.007 +28800/69092 Loss: 104.581 +32000/69092 Loss: 106.638 +35200/69092 Loss: 105.095 +38400/69092 Loss: 107.453 +41600/69092 Loss: 106.475 +44800/69092 Loss: 106.125 +48000/69092 Loss: 104.305 +51200/69092 Loss: 106.699 +54400/69092 Loss: 106.323 +57600/69092 Loss: 106.933 +60800/69092 Loss: 105.928 +64000/69092 Loss: 107.140 +67200/69092 Loss: 105.720 +Training time 0:08:37.687024 +Epoch: 141 Average loss: 106.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 614) +0/69092 Loss: 108.796 +3200/69092 Loss: 107.468 +6400/69092 Loss: 105.921 +9600/69092 Loss: 106.658 +12800/69092 Loss: 106.459 +16000/69092 Loss: 106.300 +19200/69092 Loss: 106.444 +22400/69092 Loss: 107.141 +25600/69092 Loss: 106.612 +28800/69092 Loss: 107.921 +32000/69092 Loss: 105.659 +35200/69092 Loss: 105.728 +38400/69092 Loss: 106.242 +41600/69092 Loss: 106.881 +44800/69092 Loss: 106.298 +48000/69092 Loss: 106.092 +51200/69092 Loss: 106.532 +54400/69092 Loss: 104.145 +57600/69092 Loss: 106.085 +60800/69092 Loss: 107.060 +64000/69092 Loss: 105.750 +67200/69092 Loss: 106.540 +Training time 0:08:22.859666 +Epoch: 142 Average loss: 106.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 615) +0/69092 Loss: 111.678 +3200/69092 Loss: 106.834 +6400/69092 Loss: 106.227 +9600/69092 Loss: 107.401 +12800/69092 Loss: 105.634 +16000/69092 Loss: 106.606 +19200/69092 Loss: 105.371 +22400/69092 Loss: 106.523 +25600/69092 Loss: 106.470 +28800/69092 Loss: 106.625 +32000/69092 Loss: 106.423 +35200/69092 Loss: 106.719 +38400/69092 Loss: 106.401 +41600/69092 Loss: 108.100 +44800/69092 Loss: 105.143 +48000/69092 Loss: 105.925 +51200/69092 Loss: 106.185 +54400/69092 Loss: 107.011 +57600/69092 Loss: 107.522 +60800/69092 Loss: 105.884 +64000/69092 Loss: 106.463 +67200/69092 Loss: 105.846 +Training time 0:08:25.775306 +Epoch: 143 Average loss: 106.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 616) +0/69092 Loss: 103.589 +3200/69092 Loss: 106.559 +6400/69092 Loss: 105.287 +9600/69092 Loss: 105.772 +12800/69092 Loss: 106.219 +16000/69092 Loss: 107.691 +19200/69092 Loss: 105.949 +22400/69092 Loss: 107.319 +25600/69092 Loss: 106.698 +28800/69092 Loss: 107.620 +32000/69092 Loss: 106.050 +35200/69092 Loss: 106.500 +38400/69092 Loss: 106.633 +41600/69092 Loss: 106.670 +44800/69092 Loss: 106.506 +48000/69092 Loss: 105.151 +51200/69092 Loss: 106.134 +54400/69092 Loss: 105.899 +57600/69092 Loss: 106.461 +60800/69092 Loss: 109.485 +64000/69092 Loss: 104.659 +67200/69092 Loss: 105.670 +Training time 0:08:38.139192 +Epoch: 144 Average loss: 106.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 617) +0/69092 Loss: 107.307 +3200/69092 Loss: 106.609 +6400/69092 Loss: 107.364 +9600/69092 Loss: 106.176 +12800/69092 Loss: 105.491 +16000/69092 Loss: 104.753 +19200/69092 Loss: 107.109 +22400/69092 Loss: 106.196 +25600/69092 Loss: 107.115 +28800/69092 Loss: 107.063 +32000/69092 Loss: 105.674 +35200/69092 Loss: 106.065 +38400/69092 Loss: 106.408 +41600/69092 Loss: 106.739 +44800/69092 Loss: 105.355 +48000/69092 Loss: 106.797 +51200/69092 Loss: 106.939 +54400/69092 Loss: 107.264 +57600/69092 Loss: 105.452 +60800/69092 Loss: 105.418 +64000/69092 Loss: 106.218 +67200/69092 Loss: 106.495 +Training time 0:08:43.183328 +Epoch: 145 Average loss: 106.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 618) +0/69092 Loss: 118.166 +3200/69092 Loss: 108.248 +6400/69092 Loss: 105.946 +9600/69092 Loss: 106.232 +12800/69092 Loss: 106.777 +16000/69092 Loss: 107.487 +19200/69092 Loss: 105.836 +22400/69092 Loss: 106.183 +25600/69092 Loss: 104.862 +28800/69092 Loss: 103.776 +32000/69092 Loss: 104.604 +35200/69092 Loss: 105.622 +38400/69092 Loss: 106.399 +41600/69092 Loss: 106.023 +44800/69092 Loss: 105.882 +48000/69092 Loss: 108.274 +51200/69092 Loss: 107.866 +54400/69092 Loss: 107.289 +57600/69092 Loss: 106.942 +60800/69092 Loss: 106.512 +64000/69092 Loss: 105.591 +67200/69092 Loss: 105.986 +Training time 0:08:18.399874 +Epoch: 146 Average loss: 106.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 619) +0/69092 Loss: 91.033 +3200/69092 Loss: 105.303 +6400/69092 Loss: 105.894 +9600/69092 Loss: 104.790 +12800/69092 Loss: 106.725 +16000/69092 Loss: 107.019 +19200/69092 Loss: 105.843 +22400/69092 Loss: 107.518 +25600/69092 Loss: 106.697 +28800/69092 Loss: 107.069 +32000/69092 Loss: 106.438 +35200/69092 Loss: 105.452 +38400/69092 Loss: 105.375 +41600/69092 Loss: 105.868 +44800/69092 Loss: 106.021 +48000/69092 Loss: 106.487 +51200/69092 Loss: 106.224 +54400/69092 Loss: 105.844 +57600/69092 Loss: 107.270 +60800/69092 Loss: 106.462 +64000/69092 Loss: 108.079 +67200/69092 Loss: 106.537 +Training time 0:08:15.985489 +Epoch: 147 Average loss: 106.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 620) +0/69092 Loss: 103.090 +3200/69092 Loss: 107.557 +6400/69092 Loss: 106.116 +9600/69092 Loss: 105.086 +12800/69092 Loss: 105.961 +16000/69092 Loss: 105.557 +19200/69092 Loss: 105.440 +22400/69092 Loss: 106.793 +25600/69092 Loss: 107.227 +28800/69092 Loss: 108.228 +32000/69092 Loss: 107.334 +35200/69092 Loss: 106.873 +38400/69092 Loss: 106.799 +41600/69092 Loss: 105.144 +44800/69092 Loss: 106.008 +48000/69092 Loss: 106.832 +51200/69092 Loss: 104.217 +54400/69092 Loss: 106.799 +57600/69092 Loss: 104.853 +60800/69092 Loss: 106.075 +64000/69092 Loss: 104.721 +67200/69092 Loss: 106.609 +Training time 0:08:34.452690 +Epoch: 148 Average loss: 106.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 621) +0/69092 Loss: 103.947 +3200/69092 Loss: 107.375 +6400/69092 Loss: 106.868 +9600/69092 Loss: 106.013 +12800/69092 Loss: 106.012 +16000/69092 Loss: 105.344 +19200/69092 Loss: 104.824 +22400/69092 Loss: 106.123 +25600/69092 Loss: 106.322 +28800/69092 Loss: 105.007 +32000/69092 Loss: 107.555 +35200/69092 Loss: 107.611 +38400/69092 Loss: 104.756 +41600/69092 Loss: 106.276 +44800/69092 Loss: 106.279 +48000/69092 Loss: 107.064 +51200/69092 Loss: 106.648 +54400/69092 Loss: 106.109 +57600/69092 Loss: 105.015 +60800/69092 Loss: 107.683 +64000/69092 Loss: 106.661 +67200/69092 Loss: 107.035 +Training time 0:08:16.543387 +Epoch: 149 Average loss: 106.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 622) +0/69092 Loss: 114.599 +3200/69092 Loss: 106.866 +6400/69092 Loss: 105.930 +9600/69092 Loss: 105.977 +12800/69092 Loss: 106.724 +16000/69092 Loss: 105.056 +19200/69092 Loss: 107.604 +22400/69092 Loss: 106.229 +25600/69092 Loss: 105.807 +28800/69092 Loss: 105.189 +32000/69092 Loss: 105.421 +35200/69092 Loss: 105.684 +38400/69092 Loss: 106.346 +41600/69092 Loss: 106.292 +44800/69092 Loss: 106.443 +48000/69092 Loss: 105.208 +51200/69092 Loss: 106.628 +54400/69092 Loss: 107.195 +57600/69092 Loss: 106.429 +60800/69092 Loss: 106.738 +64000/69092 Loss: 106.217 +67200/69092 Loss: 104.911 +Training time 0:08:22.248470 +Epoch: 150 Average loss: 106.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 623) +0/69092 Loss: 104.065 +3200/69092 Loss: 105.674 +6400/69092 Loss: 105.507 +9600/69092 Loss: 107.979 +12800/69092 Loss: 105.907 +16000/69092 Loss: 105.868 +19200/69092 Loss: 104.409 +22400/69092 Loss: 107.326 +25600/69092 Loss: 106.426 +28800/69092 Loss: 105.926 +32000/69092 Loss: 105.391 +35200/69092 Loss: 106.836 +38400/69092 Loss: 106.695 +41600/69092 Loss: 107.574 +44800/69092 Loss: 105.841 +48000/69092 Loss: 106.130 +51200/69092 Loss: 107.225 +54400/69092 Loss: 106.852 +57600/69092 Loss: 107.106 +60800/69092 Loss: 107.048 +64000/69092 Loss: 107.266 +67200/69092 Loss: 105.593 +Training time 0:08:31.629004 +Epoch: 151 Average loss: 106.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 624) +0/69092 Loss: 101.019 +3200/69092 Loss: 107.271 +6400/69092 Loss: 106.377 +9600/69092 Loss: 104.875 +12800/69092 Loss: 106.455 +16000/69092 Loss: 105.267 +19200/69092 Loss: 106.775 +22400/69092 Loss: 106.340 +25600/69092 Loss: 107.269 +28800/69092 Loss: 108.377 +32000/69092 Loss: 108.174 +35200/69092 Loss: 106.464 +38400/69092 Loss: 107.017 +41600/69092 Loss: 105.652 +44800/69092 Loss: 106.126 +48000/69092 Loss: 107.427 +51200/69092 Loss: 106.495 +54400/69092 Loss: 105.070 +57600/69092 Loss: 105.258 +60800/69092 Loss: 106.094 +64000/69092 Loss: 103.244 +67200/69092 Loss: 107.117 +Training time 0:08:38.422099 +Epoch: 152 Average loss: 106.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 625) +0/69092 Loss: 104.087 +3200/69092 Loss: 104.994 +6400/69092 Loss: 106.283 +9600/69092 Loss: 107.426 +12800/69092 Loss: 107.016 +16000/69092 Loss: 105.175 +19200/69092 Loss: 105.616 +22400/69092 Loss: 106.631 +25600/69092 Loss: 106.958 +28800/69092 Loss: 106.397 +32000/69092 Loss: 105.247 +35200/69092 Loss: 103.924 +38400/69092 Loss: 105.895 +41600/69092 Loss: 106.890 +44800/69092 Loss: 107.576 +48000/69092 Loss: 107.275 +51200/69092 Loss: 106.932 +54400/69092 Loss: 107.117 +57600/69092 Loss: 106.378 +60800/69092 Loss: 106.298 +64000/69092 Loss: 107.264 +67200/69092 Loss: 106.644 +Training time 0:08:25.353461 +Epoch: 153 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 626) +0/69092 Loss: 112.910 +3200/69092 Loss: 106.849 +6400/69092 Loss: 107.942 +9600/69092 Loss: 105.090 +12800/69092 Loss: 104.768 +16000/69092 Loss: 107.669 +19200/69092 Loss: 109.046 +22400/69092 Loss: 104.983 +25600/69092 Loss: 105.862 +28800/69092 Loss: 104.873 +32000/69092 Loss: 104.740 +35200/69092 Loss: 107.301 +38400/69092 Loss: 108.264 +41600/69092 Loss: 106.906 +44800/69092 Loss: 106.016 +48000/69092 Loss: 105.364 +51200/69092 Loss: 105.209 +54400/69092 Loss: 107.008 +57600/69092 Loss: 107.327 +60800/69092 Loss: 105.538 +64000/69092 Loss: 105.477 +67200/69092 Loss: 107.230 +Training time 0:08:13.558508 +Epoch: 154 Average loss: 106.35 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 627) +0/69092 Loss: 112.831 +3200/69092 Loss: 105.354 +6400/69092 Loss: 105.560 +9600/69092 Loss: 107.356 +12800/69092 Loss: 106.602 +16000/69092 Loss: 106.148 +19200/69092 Loss: 106.547 +22400/69092 Loss: 107.677 +25600/69092 Loss: 106.524 +28800/69092 Loss: 105.977 +32000/69092 Loss: 105.667 +35200/69092 Loss: 106.275 +38400/69092 Loss: 105.988 +41600/69092 Loss: 105.503 +44800/69092 Loss: 106.181 +48000/69092 Loss: 105.640 +51200/69092 Loss: 106.136 +54400/69092 Loss: 106.349 +57600/69092 Loss: 106.623 +60800/69092 Loss: 107.047 +64000/69092 Loss: 106.716 +67200/69092 Loss: 106.919 +Training time 0:08:39.579683 +Epoch: 155 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 628) +0/69092 Loss: 106.791 +3200/69092 Loss: 105.759 +6400/69092 Loss: 106.296 +9600/69092 Loss: 106.131 +12800/69092 Loss: 106.034 +16000/69092 Loss: 108.019 +19200/69092 Loss: 106.410 +22400/69092 Loss: 105.982 +25600/69092 Loss: 108.167 +28800/69092 Loss: 104.943 +32000/69092 Loss: 106.737 +35200/69092 Loss: 107.003 +38400/69092 Loss: 106.389 +41600/69092 Loss: 106.474 +44800/69092 Loss: 108.025 +48000/69092 Loss: 105.631 +51200/69092 Loss: 105.088 +54400/69092 Loss: 105.338 +57600/69092 Loss: 107.064 +60800/69092 Loss: 106.084 +64000/69092 Loss: 106.163 +67200/69092 Loss: 107.051 +Training time 0:08:21.832192 +Epoch: 156 Average loss: 106.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 629) +0/69092 Loss: 123.707 +3200/69092 Loss: 107.526 +6400/69092 Loss: 106.226 +9600/69092 Loss: 105.490 +12800/69092 Loss: 106.645 +16000/69092 Loss: 106.121 +19200/69092 Loss: 105.477 +22400/69092 Loss: 105.842 +25600/69092 Loss: 105.931 +28800/69092 Loss: 104.568 +32000/69092 Loss: 105.756 +35200/69092 Loss: 107.412 +38400/69092 Loss: 105.123 +41600/69092 Loss: 105.608 +44800/69092 Loss: 107.481 +48000/69092 Loss: 106.902 +51200/69092 Loss: 105.679 +54400/69092 Loss: 107.386 +57600/69092 Loss: 105.921 +60800/69092 Loss: 107.146 +64000/69092 Loss: 107.076 +67200/69092 Loss: 106.559 +Training time 0:08:08.376544 +Epoch: 157 Average loss: 106.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 630) +0/69092 Loss: 111.108 +3200/69092 Loss: 106.194 +6400/69092 Loss: 105.758 +9600/69092 Loss: 107.273 +12800/69092 Loss: 105.600 +16000/69092 Loss: 107.264 +19200/69092 Loss: 107.281 +22400/69092 Loss: 106.857 +25600/69092 Loss: 105.594 +28800/69092 Loss: 106.675 +32000/69092 Loss: 105.002 +35200/69092 Loss: 107.134 +38400/69092 Loss: 104.871 +41600/69092 Loss: 105.858 +44800/69092 Loss: 104.821 +48000/69092 Loss: 107.591 +51200/69092 Loss: 104.520 +54400/69092 Loss: 106.111 +57600/69092 Loss: 105.793 +60800/69092 Loss: 105.154 +64000/69092 Loss: 106.807 +67200/69092 Loss: 105.789 +Training time 0:08:21.520761 +Epoch: 158 Average loss: 106.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 631) +0/69092 Loss: 113.612 +3200/69092 Loss: 107.260 +6400/69092 Loss: 106.513 +9600/69092 Loss: 104.958 +12800/69092 Loss: 106.151 +16000/69092 Loss: 106.089 +19200/69092 Loss: 105.652 +22400/69092 Loss: 105.481 +25600/69092 Loss: 105.723 +28800/69092 Loss: 105.451 +32000/69092 Loss: 108.005 +35200/69092 Loss: 106.453 +38400/69092 Loss: 106.414 +41600/69092 Loss: 105.789 +44800/69092 Loss: 106.162 +48000/69092 Loss: 104.757 +51200/69092 Loss: 107.299 +54400/69092 Loss: 104.893 +57600/69092 Loss: 107.049 +60800/69092 Loss: 105.553 +64000/69092 Loss: 106.189 +67200/69092 Loss: 106.842 +Training time 0:08:37.048002 +Epoch: 159 Average loss: 106.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 632) +0/69092 Loss: 99.175 +3200/69092 Loss: 105.730 +6400/69092 Loss: 104.835 +9600/69092 Loss: 106.859 +12800/69092 Loss: 106.440 +16000/69092 Loss: 105.655 +19200/69092 Loss: 107.942 +22400/69092 Loss: 106.235 +25600/69092 Loss: 106.242 +28800/69092 Loss: 107.423 +32000/69092 Loss: 103.999 +35200/69092 Loss: 103.961 +38400/69092 Loss: 105.326 +41600/69092 Loss: 106.280 +44800/69092 Loss: 107.865 +48000/69092 Loss: 106.718 +51200/69092 Loss: 106.364 +54400/69092 Loss: 106.402 +57600/69092 Loss: 106.456 +60800/69092 Loss: 106.265 +64000/69092 Loss: 106.396 +67200/69092 Loss: 105.726 +Training time 0:08:19.228089 +Epoch: 160 Average loss: 106.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 633) +0/69092 Loss: 101.499 +3200/69092 Loss: 106.536 +6400/69092 Loss: 104.710 +9600/69092 Loss: 105.313 +12800/69092 Loss: 106.060 +16000/69092 Loss: 105.105 +19200/69092 Loss: 105.808 +22400/69092 Loss: 105.693 +25600/69092 Loss: 105.092 +28800/69092 Loss: 104.230 +32000/69092 Loss: 106.200 +35200/69092 Loss: 107.685 +38400/69092 Loss: 107.772 +41600/69092 Loss: 106.738 +44800/69092 Loss: 106.580 +48000/69092 Loss: 107.038 +51200/69092 Loss: 104.568 +54400/69092 Loss: 105.250 +57600/69092 Loss: 108.956 +60800/69092 Loss: 107.426 +64000/69092 Loss: 108.206 +67200/69092 Loss: 107.729 +Training time 0:08:27.473838 +Epoch: 161 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 634) +0/69092 Loss: 103.104 +3200/69092 Loss: 105.581 +6400/69092 Loss: 107.549 +9600/69092 Loss: 106.213 +12800/69092 Loss: 106.159 +16000/69092 Loss: 106.786 +19200/69092 Loss: 106.404 +22400/69092 Loss: 106.502 +25600/69092 Loss: 105.334 +28800/69092 Loss: 105.553 +32000/69092 Loss: 106.382 +35200/69092 Loss: 106.532 +38400/69092 Loss: 107.053 +41600/69092 Loss: 106.794 +44800/69092 Loss: 105.866 +48000/69092 Loss: 103.564 +51200/69092 Loss: 107.239 +54400/69092 Loss: 105.693 +57600/69092 Loss: 108.131 +60800/69092 Loss: 106.163 +64000/69092 Loss: 107.144 +67200/69092 Loss: 105.549 +Training time 0:08:32.504036 +Epoch: 162 Average loss: 106.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 635) +0/69092 Loss: 114.729 +3200/69092 Loss: 105.933 +6400/69092 Loss: 106.045 +9600/69092 Loss: 105.880 +12800/69092 Loss: 108.005 +16000/69092 Loss: 107.339 +19200/69092 Loss: 106.500 +22400/69092 Loss: 107.307 +25600/69092 Loss: 105.699 +28800/69092 Loss: 105.272 +32000/69092 Loss: 106.882 +35200/69092 Loss: 106.098 +38400/69092 Loss: 106.675 +41600/69092 Loss: 105.165 +44800/69092 Loss: 106.053 +48000/69092 Loss: 106.396 +51200/69092 Loss: 106.518 +54400/69092 Loss: 106.671 +57600/69092 Loss: 104.725 +60800/69092 Loss: 106.148 +64000/69092 Loss: 106.251 +67200/69092 Loss: 107.675 +Training time 0:08:29.995960 +Epoch: 163 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 636) +0/69092 Loss: 113.876 +3200/69092 Loss: 106.557 +6400/69092 Loss: 105.789 +9600/69092 Loss: 106.629 +12800/69092 Loss: 105.523 +16000/69092 Loss: 105.887 +19200/69092 Loss: 106.711 +22400/69092 Loss: 106.003 +25600/69092 Loss: 106.695 +28800/69092 Loss: 106.786 +32000/69092 Loss: 105.858 +35200/69092 Loss: 107.559 +38400/69092 Loss: 107.610 +41600/69092 Loss: 106.049 +44800/69092 Loss: 106.416 +48000/69092 Loss: 105.589 +51200/69092 Loss: 107.041 +54400/69092 Loss: 106.527 +57600/69092 Loss: 107.595 +60800/69092 Loss: 105.678 +64000/69092 Loss: 104.753 +67200/69092 Loss: 105.369 +Training time 0:08:03.835941 +Epoch: 164 Average loss: 106.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 637) +0/69092 Loss: 112.605 +3200/69092 Loss: 105.648 +6400/69092 Loss: 105.620 +9600/69092 Loss: 103.891 +12800/69092 Loss: 106.706 +16000/69092 Loss: 107.004 +19200/69092 Loss: 104.920 +22400/69092 Loss: 109.076 +25600/69092 Loss: 105.552 +28800/69092 Loss: 105.813 +32000/69092 Loss: 105.789 +35200/69092 Loss: 105.230 +38400/69092 Loss: 105.678 +41600/69092 Loss: 106.788 +44800/69092 Loss: 106.565 +48000/69092 Loss: 105.815 +51200/69092 Loss: 107.664 +54400/69092 Loss: 105.155 +57600/69092 Loss: 107.443 +60800/69092 Loss: 106.976 +64000/69092 Loss: 104.528 +67200/69092 Loss: 107.764 +Training time 0:08:33.306799 +Epoch: 165 Average loss: 106.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 638) +0/69092 Loss: 110.511 +3200/69092 Loss: 105.141 +6400/69092 Loss: 106.911 +9600/69092 Loss: 106.732 +12800/69092 Loss: 107.680 +16000/69092 Loss: 105.404 +19200/69092 Loss: 105.394 +22400/69092 Loss: 106.448 +25600/69092 Loss: 106.402 +28800/69092 Loss: 106.346 +32000/69092 Loss: 108.766 +35200/69092 Loss: 103.543 +38400/69092 Loss: 105.832 +41600/69092 Loss: 106.723 +44800/69092 Loss: 105.981 +48000/69092 Loss: 106.328 +51200/69092 Loss: 107.691 +54400/69092 Loss: 107.114 +57600/69092 Loss: 105.868 +60800/69092 Loss: 103.995 +64000/69092 Loss: 107.094 +67200/69092 Loss: 104.498 +Training time 0:08:25.923331 +Epoch: 166 Average loss: 106.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 639) +0/69092 Loss: 119.198 +3200/69092 Loss: 106.737 +6400/69092 Loss: 105.527 +9600/69092 Loss: 107.486 +12800/69092 Loss: 105.919 +16000/69092 Loss: 107.945 +19200/69092 Loss: 105.816 +22400/69092 Loss: 106.888 +25600/69092 Loss: 105.539 +28800/69092 Loss: 105.991 +32000/69092 Loss: 105.468 +35200/69092 Loss: 107.024 +38400/69092 Loss: 107.114 +41600/69092 Loss: 105.403 +44800/69092 Loss: 105.742 +48000/69092 Loss: 105.142 +51200/69092 Loss: 107.458 +54400/69092 Loss: 105.856 +57600/69092 Loss: 107.611 +60800/69092 Loss: 105.448 +64000/69092 Loss: 105.525 +67200/69092 Loss: 106.793 +Training time 0:08:21.650338 +Epoch: 167 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 640) +0/69092 Loss: 112.421 +3200/69092 Loss: 105.626 +6400/69092 Loss: 106.442 +9600/69092 Loss: 106.056 +12800/69092 Loss: 105.935 +16000/69092 Loss: 104.975 +19200/69092 Loss: 106.532 +22400/69092 Loss: 108.227 +25600/69092 Loss: 107.582 +28800/69092 Loss: 107.706 +32000/69092 Loss: 108.707 +35200/69092 Loss: 106.561 +38400/69092 Loss: 106.332 +41600/69092 Loss: 106.955 +44800/69092 Loss: 106.615 +48000/69092 Loss: 105.365 +51200/69092 Loss: 106.889 +54400/69092 Loss: 104.038 +57600/69092 Loss: 106.275 +60800/69092 Loss: 106.115 +64000/69092 Loss: 105.630 +67200/69092 Loss: 105.237 +Training time 0:08:17.934448 +Epoch: 168 Average loss: 106.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 641) +0/69092 Loss: 119.286 +3200/69092 Loss: 105.703 +6400/69092 Loss: 104.759 +9600/69092 Loss: 106.928 +12800/69092 Loss: 106.573 +16000/69092 Loss: 105.933 +19200/69092 Loss: 105.553 +22400/69092 Loss: 104.980 +25600/69092 Loss: 106.173 +28800/69092 Loss: 107.519 +32000/69092 Loss: 105.865 +35200/69092 Loss: 105.603 +38400/69092 Loss: 106.265 +41600/69092 Loss: 104.790 +44800/69092 Loss: 107.345 +48000/69092 Loss: 106.041 +51200/69092 Loss: 106.506 +54400/69092 Loss: 106.642 +57600/69092 Loss: 107.894 +60800/69092 Loss: 106.745 +64000/69092 Loss: 105.603 +67200/69092 Loss: 105.327 +Training time 0:08:29.840809 +Epoch: 169 Average loss: 106.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 642) +0/69092 Loss: 111.407 +3200/69092 Loss: 105.978 +6400/69092 Loss: 106.141 +9600/69092 Loss: 105.839 +12800/69092 Loss: 106.573 +16000/69092 Loss: 104.863 +19200/69092 Loss: 106.344 +22400/69092 Loss: 106.114 +25600/69092 Loss: 105.481 +28800/69092 Loss: 105.784 +32000/69092 Loss: 105.421 +35200/69092 Loss: 104.894 +38400/69092 Loss: 105.867 +41600/69092 Loss: 106.710 +44800/69092 Loss: 106.871 +48000/69092 Loss: 106.657 +51200/69092 Loss: 104.890 +54400/69092 Loss: 106.857 +57600/69092 Loss: 107.301 +60800/69092 Loss: 107.939 +64000/69092 Loss: 106.845 +67200/69092 Loss: 107.290 +Training time 0:08:29.747814 +Epoch: 170 Average loss: 106.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 643) +0/69092 Loss: 115.918 +3200/69092 Loss: 105.632 +6400/69092 Loss: 106.979 +9600/69092 Loss: 107.617 +12800/69092 Loss: 104.661 +16000/69092 Loss: 105.708 +19200/69092 Loss: 106.840 +22400/69092 Loss: 106.674 +25600/69092 Loss: 106.787 +28800/69092 Loss: 106.033 +32000/69092 Loss: 104.585 +35200/69092 Loss: 106.252 +38400/69092 Loss: 105.477 +41600/69092 Loss: 106.333 +44800/69092 Loss: 106.297 +48000/69092 Loss: 107.628 +51200/69092 Loss: 105.891 +54400/69092 Loss: 106.921 +57600/69092 Loss: 106.832 +60800/69092 Loss: 106.293 +64000/69092 Loss: 104.330 +67200/69092 Loss: 107.470 +Training time 0:08:14.275672 +Epoch: 171 Average loss: 106.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 644) +0/69092 Loss: 114.956 +3200/69092 Loss: 106.346 +6400/69092 Loss: 105.487 +9600/69092 Loss: 104.452 +12800/69092 Loss: 104.639 +16000/69092 Loss: 106.510 +19200/69092 Loss: 106.035 +22400/69092 Loss: 105.798 +25600/69092 Loss: 105.150 +28800/69092 Loss: 106.474 +32000/69092 Loss: 105.409 +35200/69092 Loss: 106.078 +38400/69092 Loss: 105.853 +41600/69092 Loss: 105.997 +44800/69092 Loss: 106.067 +48000/69092 Loss: 107.257 +51200/69092 Loss: 106.668 +54400/69092 Loss: 105.918 +57600/69092 Loss: 106.297 +60800/69092 Loss: 107.519 +64000/69092 Loss: 106.230 +67200/69092 Loss: 107.361 +Training time 0:08:20.688106 +Epoch: 172 Average loss: 106.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 645) +0/69092 Loss: 113.568 +3200/69092 Loss: 105.951 +6400/69092 Loss: 106.892 +9600/69092 Loss: 105.094 +12800/69092 Loss: 105.464 +16000/69092 Loss: 106.138 +19200/69092 Loss: 105.782 +22400/69092 Loss: 107.610 +25600/69092 Loss: 104.289 +28800/69092 Loss: 106.648 +32000/69092 Loss: 106.911 +35200/69092 Loss: 106.891 +38400/69092 Loss: 107.523 +41600/69092 Loss: 107.910 +44800/69092 Loss: 106.836 +48000/69092 Loss: 106.664 +51200/69092 Loss: 107.208 +54400/69092 Loss: 104.447 +57600/69092 Loss: 106.562 +60800/69092 Loss: 105.034 +64000/69092 Loss: 105.915 +67200/69092 Loss: 106.870 +Training time 0:08:42.419094 +Epoch: 173 Average loss: 106.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 646) +0/69092 Loss: 106.192 +3200/69092 Loss: 106.345 +6400/69092 Loss: 105.661 +9600/69092 Loss: 105.997 +12800/69092 Loss: 106.460 +16000/69092 Loss: 104.251 +19200/69092 Loss: 105.373 +22400/69092 Loss: 106.509 +25600/69092 Loss: 106.460 +28800/69092 Loss: 105.586 +32000/69092 Loss: 106.393 +35200/69092 Loss: 106.056 +38400/69092 Loss: 106.845 +41600/69092 Loss: 105.712 +44800/69092 Loss: 106.367 +48000/69092 Loss: 106.048 +51200/69092 Loss: 106.720 +54400/69092 Loss: 106.660 +57600/69092 Loss: 106.654 +60800/69092 Loss: 105.900 +64000/69092 Loss: 107.156 +67200/69092 Loss: 108.004 +Training time 0:08:36.606066 +Epoch: 174 Average loss: 106.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 647) +0/69092 Loss: 101.648 +3200/69092 Loss: 106.331 +6400/69092 Loss: 105.194 +9600/69092 Loss: 105.898 +12800/69092 Loss: 106.454 +16000/69092 Loss: 105.316 +19200/69092 Loss: 105.719 +22400/69092 Loss: 105.500 +25600/69092 Loss: 105.375 +28800/69092 Loss: 105.662 +32000/69092 Loss: 107.120 +35200/69092 Loss: 107.355 +38400/69092 Loss: 105.944 +41600/69092 Loss: 106.107 +44800/69092 Loss: 105.893 +48000/69092 Loss: 107.473 +51200/69092 Loss: 104.945 +54400/69092 Loss: 107.269 +57600/69092 Loss: 107.693 +60800/69092 Loss: 105.258 +64000/69092 Loss: 107.064 +67200/69092 Loss: 106.537 +Training time 0:08:24.032807 +Epoch: 175 Average loss: 106.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 648) +0/69092 Loss: 106.738 +3200/69092 Loss: 105.884 +6400/69092 Loss: 106.055 +9600/69092 Loss: 105.565 +12800/69092 Loss: 107.312 +16000/69092 Loss: 104.994 +19200/69092 Loss: 106.457 +22400/69092 Loss: 105.945 +25600/69092 Loss: 107.124 +28800/69092 Loss: 107.976 +32000/69092 Loss: 105.539 +35200/69092 Loss: 107.506 +38400/69092 Loss: 104.254 +41600/69092 Loss: 106.009 +44800/69092 Loss: 106.371 +48000/69092 Loss: 105.289 +51200/69092 Loss: 105.468 +54400/69092 Loss: 105.606 +57600/69092 Loss: 107.179 +60800/69092 Loss: 105.632 +64000/69092 Loss: 107.227 +67200/69092 Loss: 106.591 +Training time 0:08:23.464363 +Epoch: 176 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 649) +0/69092 Loss: 114.687 +3200/69092 Loss: 106.509 +6400/69092 Loss: 106.485 +9600/69092 Loss: 106.079 +12800/69092 Loss: 106.546 +16000/69092 Loss: 107.287 +19200/69092 Loss: 105.287 +22400/69092 Loss: 106.512 +25600/69092 Loss: 105.958 +28800/69092 Loss: 105.841 +32000/69092 Loss: 105.776 +35200/69092 Loss: 106.429 +38400/69092 Loss: 107.060 +41600/69092 Loss: 108.003 +44800/69092 Loss: 106.185 +48000/69092 Loss: 107.813 +51200/69092 Loss: 105.801 +54400/69092 Loss: 103.957 +57600/69092 Loss: 106.232 +60800/69092 Loss: 105.615 +64000/69092 Loss: 106.377 +67200/69092 Loss: 106.752 +Training time 0:08:31.896691 +Epoch: 177 Average loss: 106.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 650) +0/69092 Loss: 104.687 +3200/69092 Loss: 105.704 +6400/69092 Loss: 106.365 +9600/69092 Loss: 105.290 +12800/69092 Loss: 106.102 +16000/69092 Loss: 105.630 +19200/69092 Loss: 105.288 +22400/69092 Loss: 107.092 +25600/69092 Loss: 104.434 +28800/69092 Loss: 106.113 +32000/69092 Loss: 106.087 +35200/69092 Loss: 105.684 +38400/69092 Loss: 106.555 +41600/69092 Loss: 106.947 +44800/69092 Loss: 104.299 +48000/69092 Loss: 108.113 +51200/69092 Loss: 107.524 +54400/69092 Loss: 105.757 +57600/69092 Loss: 106.317 +60800/69092 Loss: 106.831 +64000/69092 Loss: 106.129 +67200/69092 Loss: 106.901 +Training time 0:08:31.488343 +Epoch: 178 Average loss: 106.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 651) +0/69092 Loss: 96.227 +3200/69092 Loss: 106.056 +6400/69092 Loss: 106.925 +9600/69092 Loss: 105.806 +12800/69092 Loss: 105.606 +16000/69092 Loss: 104.951 +19200/69092 Loss: 104.468 +22400/69092 Loss: 105.716 +25600/69092 Loss: 105.503 +28800/69092 Loss: 107.245 +32000/69092 Loss: 106.466 +35200/69092 Loss: 105.531 +38400/69092 Loss: 105.055 +41600/69092 Loss: 106.715 +44800/69092 Loss: 104.756 +48000/69092 Loss: 105.615 +51200/69092 Loss: 106.280 +54400/69092 Loss: 105.221 +57600/69092 Loss: 106.246 +60800/69092 Loss: 107.447 +64000/69092 Loss: 107.442 +67200/69092 Loss: 107.430 +Training time 0:08:20.345816 +Epoch: 179 Average loss: 106.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 652) +0/69092 Loss: 99.658 +3200/69092 Loss: 104.520 +6400/69092 Loss: 106.737 +9600/69092 Loss: 106.669 +12800/69092 Loss: 105.889 +16000/69092 Loss: 106.393 +19200/69092 Loss: 107.050 +22400/69092 Loss: 106.392 +25600/69092 Loss: 105.461 +28800/69092 Loss: 105.702 +32000/69092 Loss: 107.226 +35200/69092 Loss: 104.355 +38400/69092 Loss: 107.219 +41600/69092 Loss: 105.363 +44800/69092 Loss: 105.420 +48000/69092 Loss: 107.675 +51200/69092 Loss: 105.255 +54400/69092 Loss: 107.612 +57600/69092 Loss: 107.036 +60800/69092 Loss: 106.792 +64000/69092 Loss: 105.676 +67200/69092 Loss: 105.658 +Training time 0:08:28.190321 +Epoch: 180 Average loss: 106.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 653) +0/69092 Loss: 104.538 +3200/69092 Loss: 106.888 +6400/69092 Loss: 107.114 +9600/69092 Loss: 104.938 +12800/69092 Loss: 106.017 +16000/69092 Loss: 106.870 +19200/69092 Loss: 105.833 +22400/69092 Loss: 106.439 +25600/69092 Loss: 106.345 +28800/69092 Loss: 106.883 +32000/69092 Loss: 105.520 +35200/69092 Loss: 106.427 +38400/69092 Loss: 106.069 +41600/69092 Loss: 107.284 +44800/69092 Loss: 105.862 +48000/69092 Loss: 105.435 +51200/69092 Loss: 105.858 +54400/69092 Loss: 106.808 +57600/69092 Loss: 106.924 +60800/69092 Loss: 105.874 +64000/69092 Loss: 107.083 +67200/69092 Loss: 106.573 +Training time 0:08:49.301589 +Epoch: 181 Average loss: 106.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 654) +0/69092 Loss: 99.589 +3200/69092 Loss: 105.879 +6400/69092 Loss: 105.663 +9600/69092 Loss: 104.516 +12800/69092 Loss: 105.185 +16000/69092 Loss: 106.581 +19200/69092 Loss: 107.397 +22400/69092 Loss: 105.517 +25600/69092 Loss: 106.952 +28800/69092 Loss: 107.122 +32000/69092 Loss: 106.775 +35200/69092 Loss: 105.639 +38400/69092 Loss: 106.474 +41600/69092 Loss: 103.631 +44800/69092 Loss: 105.929 +48000/69092 Loss: 108.040 +51200/69092 Loss: 105.129 +54400/69092 Loss: 105.851 +57600/69092 Loss: 108.116 +60800/69092 Loss: 105.640 +64000/69092 Loss: 104.543 +67200/69092 Loss: 107.084 +Training time 0:08:26.750377 +Epoch: 182 Average loss: 106.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 655) +0/69092 Loss: 109.438 +3200/69092 Loss: 106.124 +6400/69092 Loss: 107.405 +9600/69092 Loss: 105.758 +12800/69092 Loss: 105.600 +16000/69092 Loss: 105.296 +19200/69092 Loss: 106.407 +22400/69092 Loss: 107.188 +25600/69092 Loss: 106.151 +28800/69092 Loss: 107.008 +32000/69092 Loss: 106.099 +35200/69092 Loss: 106.690 +38400/69092 Loss: 106.545 +41600/69092 Loss: 106.126 +44800/69092 Loss: 105.617 +48000/69092 Loss: 106.194 +51200/69092 Loss: 105.447 +54400/69092 Loss: 105.896 +57600/69092 Loss: 106.638 +60800/69092 Loss: 106.794 +64000/69092 Loss: 105.825 +67200/69092 Loss: 104.562 +Training time 0:08:25.071642 +Epoch: 183 Average loss: 106.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 656) +0/69092 Loss: 100.594 +3200/69092 Loss: 107.020 +6400/69092 Loss: 107.429 +9600/69092 Loss: 105.480 +12800/69092 Loss: 107.552 +16000/69092 Loss: 104.795 +19200/69092 Loss: 106.994 +22400/69092 Loss: 105.302 +25600/69092 Loss: 104.263 +28800/69092 Loss: 106.352 +32000/69092 Loss: 105.634 +35200/69092 Loss: 106.360 +38400/69092 Loss: 106.514 +41600/69092 Loss: 106.477 +44800/69092 Loss: 105.800 +48000/69092 Loss: 106.264 +51200/69092 Loss: 105.476 +54400/69092 Loss: 106.184 +57600/69092 Loss: 107.339 +60800/69092 Loss: 104.739 +64000/69092 Loss: 107.735 +67200/69092 Loss: 106.082 +Training time 0:08:32.600178 +Epoch: 184 Average loss: 106.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 657) +0/69092 Loss: 106.166 +3200/69092 Loss: 107.171 +6400/69092 Loss: 105.457 +9600/69092 Loss: 107.010 +12800/69092 Loss: 105.664 +16000/69092 Loss: 105.292 +19200/69092 Loss: 106.641 +22400/69092 Loss: 106.605 +25600/69092 Loss: 106.073 +28800/69092 Loss: 104.203 +32000/69092 Loss: 105.311 +35200/69092 Loss: 106.064 +38400/69092 Loss: 106.548 +41600/69092 Loss: 105.081 +44800/69092 Loss: 107.079 +48000/69092 Loss: 105.305 +51200/69092 Loss: 106.892 +54400/69092 Loss: 106.656 +57600/69092 Loss: 106.890 +60800/69092 Loss: 105.171 +64000/69092 Loss: 107.462 +67200/69092 Loss: 106.277 +Training time 0:08:45.422148 +Epoch: 185 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 658) +0/69092 Loss: 107.112 +3200/69092 Loss: 106.577 +6400/69092 Loss: 105.211 +9600/69092 Loss: 105.759 +12800/69092 Loss: 107.173 +16000/69092 Loss: 105.580 +19200/69092 Loss: 105.172 +22400/69092 Loss: 104.954 +25600/69092 Loss: 104.585 +28800/69092 Loss: 107.556 +32000/69092 Loss: 106.528 +35200/69092 Loss: 106.396 +38400/69092 Loss: 105.812 +41600/69092 Loss: 106.657 +44800/69092 Loss: 106.313 +48000/69092 Loss: 106.548 +51200/69092 Loss: 107.501 +54400/69092 Loss: 107.137 +57600/69092 Loss: 106.477 +60800/69092 Loss: 106.822 +64000/69092 Loss: 104.379 +67200/69092 Loss: 105.673 +Training time 0:08:28.390628 +Epoch: 186 Average loss: 106.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 659) +0/69092 Loss: 102.416 +3200/69092 Loss: 104.570 +6400/69092 Loss: 106.035 +9600/69092 Loss: 106.506 +12800/69092 Loss: 107.174 +16000/69092 Loss: 107.193 +19200/69092 Loss: 105.039 +22400/69092 Loss: 107.687 +25600/69092 Loss: 106.161 +28800/69092 Loss: 104.646 +32000/69092 Loss: 105.247 +35200/69092 Loss: 105.952 +38400/69092 Loss: 107.302 +41600/69092 Loss: 105.439 +44800/69092 Loss: 107.263 +48000/69092 Loss: 106.918 +51200/69092 Loss: 106.889 +54400/69092 Loss: 105.596 +57600/69092 Loss: 107.068 +60800/69092 Loss: 104.568 +64000/69092 Loss: 105.991 +67200/69092 Loss: 106.859 +Training time 0:08:18.036083 +Epoch: 187 Average loss: 106.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 660) +0/69092 Loss: 104.139 +3200/69092 Loss: 105.068 +6400/69092 Loss: 105.863 +9600/69092 Loss: 105.486 +12800/69092 Loss: 105.535 +16000/69092 Loss: 105.958 +19200/69092 Loss: 107.501 +22400/69092 Loss: 105.112 +25600/69092 Loss: 107.498 +28800/69092 Loss: 106.341 +32000/69092 Loss: 104.306 +35200/69092 Loss: 105.726 +38400/69092 Loss: 109.437 +41600/69092 Loss: 106.546 +44800/69092 Loss: 106.107 +48000/69092 Loss: 105.707 +51200/69092 Loss: 106.536 +54400/69092 Loss: 104.779 +57600/69092 Loss: 106.826 +60800/69092 Loss: 107.336 +64000/69092 Loss: 105.776 +67200/69092 Loss: 106.477 +Training time 0:08:29.714514 +Epoch: 188 Average loss: 106.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 661) +0/69092 Loss: 119.480 +3200/69092 Loss: 106.908 +6400/69092 Loss: 106.206 +9600/69092 Loss: 105.326 +12800/69092 Loss: 106.525 +16000/69092 Loss: 106.218 +19200/69092 Loss: 105.695 +22400/69092 Loss: 105.194 +25600/69092 Loss: 107.715 +28800/69092 Loss: 106.304 +32000/69092 Loss: 106.407 +35200/69092 Loss: 104.883 +38400/69092 Loss: 105.244 +41600/69092 Loss: 105.946 +44800/69092 Loss: 106.724 +48000/69092 Loss: 105.583 +51200/69092 Loss: 105.445 +54400/69092 Loss: 106.614 +57600/69092 Loss: 106.551 +60800/69092 Loss: 105.417 +64000/69092 Loss: 106.266 +67200/69092 Loss: 107.410 +Training time 0:08:38.499331 +Epoch: 189 Average loss: 106.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 662) +0/69092 Loss: 105.448 +3200/69092 Loss: 106.199 +6400/69092 Loss: 105.448 +9600/69092 Loss: 105.277 +12800/69092 Loss: 105.208 +16000/69092 Loss: 106.065 +19200/69092 Loss: 104.734 +22400/69092 Loss: 107.310 +25600/69092 Loss: 104.693 +28800/69092 Loss: 107.195 +32000/69092 Loss: 105.983 +35200/69092 Loss: 106.780 +38400/69092 Loss: 106.275 +41600/69092 Loss: 107.210 +44800/69092 Loss: 105.627 +48000/69092 Loss: 105.083 +51200/69092 Loss: 106.390 +54400/69092 Loss: 106.531 +57600/69092 Loss: 105.497 +60800/69092 Loss: 106.916 +64000/69092 Loss: 106.789 +67200/69092 Loss: 106.335 +Training time 0:08:24.794916 +Epoch: 190 Average loss: 106.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 663) +0/69092 Loss: 99.549 +3200/69092 Loss: 106.645 +6400/69092 Loss: 106.727 +9600/69092 Loss: 106.556 +12800/69092 Loss: 105.403 +16000/69092 Loss: 105.275 +19200/69092 Loss: 105.806 +22400/69092 Loss: 106.810 +25600/69092 Loss: 106.992 +28800/69092 Loss: 107.262 +32000/69092 Loss: 104.433 +35200/69092 Loss: 107.483 +38400/69092 Loss: 106.451 +41600/69092 Loss: 105.209 +44800/69092 Loss: 105.420 +48000/69092 Loss: 104.695 +51200/69092 Loss: 106.091 +54400/69092 Loss: 107.128 +57600/69092 Loss: 105.385 +60800/69092 Loss: 106.719 +64000/69092 Loss: 105.708 +67200/69092 Loss: 105.497 +Training time 0:08:19.924878 +Epoch: 191 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 664) +0/69092 Loss: 103.010 +3200/69092 Loss: 106.415 +6400/69092 Loss: 107.568 +9600/69092 Loss: 105.397 +12800/69092 Loss: 105.452 +16000/69092 Loss: 106.455 +19200/69092 Loss: 106.753 +22400/69092 Loss: 107.345 +25600/69092 Loss: 105.453 +28800/69092 Loss: 105.963 +32000/69092 Loss: 107.193 +35200/69092 Loss: 105.801 +38400/69092 Loss: 103.815 +41600/69092 Loss: 106.387 +44800/69092 Loss: 106.168 +48000/69092 Loss: 105.358 +51200/69092 Loss: 106.163 +54400/69092 Loss: 107.001 +57600/69092 Loss: 107.839 +60800/69092 Loss: 105.164 +64000/69092 Loss: 104.895 +67200/69092 Loss: 106.975 +Training time 0:08:38.482680 +Epoch: 192 Average loss: 106.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 665) +0/69092 Loss: 99.711 +3200/69092 Loss: 108.436 +6400/69092 Loss: 107.932 +9600/69092 Loss: 107.837 +12800/69092 Loss: 106.871 +16000/69092 Loss: 105.688 +19200/69092 Loss: 105.377 +22400/69092 Loss: 105.018 +25600/69092 Loss: 107.176 +28800/69092 Loss: 106.759 +32000/69092 Loss: 106.322 +35200/69092 Loss: 105.512 +38400/69092 Loss: 105.156 +41600/69092 Loss: 105.043 +44800/69092 Loss: 106.001 +48000/69092 Loss: 105.589 +51200/69092 Loss: 106.003 +54400/69092 Loss: 105.280 +57600/69092 Loss: 106.445 +60800/69092 Loss: 105.175 +64000/69092 Loss: 106.450 +67200/69092 Loss: 106.990 +Training time 0:08:28.728471 +Epoch: 193 Average loss: 106.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 666) +0/69092 Loss: 105.720 +3200/69092 Loss: 106.953 +6400/69092 Loss: 105.272 +9600/69092 Loss: 105.651 +12800/69092 Loss: 107.326 +16000/69092 Loss: 107.468 +19200/69092 Loss: 105.752 +22400/69092 Loss: 106.624 +25600/69092 Loss: 105.700 +28800/69092 Loss: 106.212 +32000/69092 Loss: 106.396 +35200/69092 Loss: 105.115 +38400/69092 Loss: 105.757 +41600/69092 Loss: 105.604 +44800/69092 Loss: 105.923 +48000/69092 Loss: 104.357 +51200/69092 Loss: 107.543 +54400/69092 Loss: 106.943 +57600/69092 Loss: 105.308 +60800/69092 Loss: 105.873 +64000/69092 Loss: 106.679 +67200/69092 Loss: 106.177 +Training time 0:08:23.362523 +Epoch: 194 Average loss: 106.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 667) +0/69092 Loss: 117.186 +3200/69092 Loss: 105.083 +6400/69092 Loss: 104.901 +9600/69092 Loss: 106.511 +12800/69092 Loss: 105.820 +16000/69092 Loss: 106.272 +19200/69092 Loss: 106.466 +22400/69092 Loss: 106.386 +25600/69092 Loss: 105.605 +28800/69092 Loss: 107.406 +32000/69092 Loss: 105.519 +35200/69092 Loss: 105.925 +38400/69092 Loss: 106.002 +41600/69092 Loss: 106.262 +44800/69092 Loss: 106.197 +48000/69092 Loss: 106.746 +51200/69092 Loss: 104.917 +54400/69092 Loss: 107.122 +57600/69092 Loss: 106.792 +60800/69092 Loss: 106.355 +64000/69092 Loss: 106.310 +67200/69092 Loss: 106.834 +Training time 0:08:21.710524 +Epoch: 195 Average loss: 106.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 668) +0/69092 Loss: 102.378 +3200/69092 Loss: 103.782 +6400/69092 Loss: 104.434 +9600/69092 Loss: 106.541 +12800/69092 Loss: 105.774 +16000/69092 Loss: 106.840 +19200/69092 Loss: 105.144 +22400/69092 Loss: 105.261 +25600/69092 Loss: 106.820 +28800/69092 Loss: 105.726 +32000/69092 Loss: 106.252 +35200/69092 Loss: 107.570 +38400/69092 Loss: 106.036 +41600/69092 Loss: 105.815 +44800/69092 Loss: 107.667 +48000/69092 Loss: 106.155 +51200/69092 Loss: 106.449 +54400/69092 Loss: 107.092 +57600/69092 Loss: 105.226 +60800/69092 Loss: 107.883 +64000/69092 Loss: 106.340 +67200/69092 Loss: 106.775 +Training time 0:08:45.796416 +Epoch: 196 Average loss: 106.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 669) +0/69092 Loss: 112.239 +3200/69092 Loss: 108.098 +6400/69092 Loss: 105.860 +9600/69092 Loss: 106.772 +12800/69092 Loss: 105.683 +16000/69092 Loss: 105.731 +19200/69092 Loss: 105.006 +22400/69092 Loss: 107.343 +25600/69092 Loss: 108.182 +28800/69092 Loss: 105.227 +32000/69092 Loss: 107.551 +35200/69092 Loss: 104.940 +38400/69092 Loss: 106.237 +41600/69092 Loss: 107.347 +44800/69092 Loss: 105.981 +48000/69092 Loss: 107.545 +51200/69092 Loss: 108.209 +54400/69092 Loss: 104.848 +57600/69092 Loss: 104.047 +60800/69092 Loss: 106.339 +64000/69092 Loss: 104.290 +67200/69092 Loss: 105.681 +Training time 0:08:35.358769 +Epoch: 197 Average loss: 106.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 670) +0/69092 Loss: 107.090 +3200/69092 Loss: 106.185 +6400/69092 Loss: 107.787 +9600/69092 Loss: 105.124 +12800/69092 Loss: 104.516 +16000/69092 Loss: 106.961 +19200/69092 Loss: 107.162 +22400/69092 Loss: 105.233 +25600/69092 Loss: 104.723 +28800/69092 Loss: 107.320 +32000/69092 Loss: 106.455 +35200/69092 Loss: 106.477 +38400/69092 Loss: 108.214 +41600/69092 Loss: 105.999 +44800/69092 Loss: 105.617 +48000/69092 Loss: 105.380 +51200/69092 Loss: 105.177 +54400/69092 Loss: 105.102 +57600/69092 Loss: 108.021 +60800/69092 Loss: 106.790 +64000/69092 Loss: 106.070 +67200/69092 Loss: 105.831 +Training time 0:08:38.048329 +Epoch: 198 Average loss: 106.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 671) +0/69092 Loss: 107.594 +3200/69092 Loss: 106.591 +6400/69092 Loss: 105.184 +9600/69092 Loss: 105.343 +12800/69092 Loss: 107.480 +16000/69092 Loss: 104.947 +19200/69092 Loss: 106.170 +22400/69092 Loss: 107.320 +25600/69092 Loss: 106.635 +28800/69092 Loss: 104.300 +32000/69092 Loss: 107.820 +35200/69092 Loss: 106.222 +38400/69092 Loss: 106.807 +41600/69092 Loss: 105.934 +44800/69092 Loss: 106.453 +48000/69092 Loss: 106.923 +51200/69092 Loss: 107.599 +54400/69092 Loss: 106.105 +57600/69092 Loss: 106.689 +60800/69092 Loss: 105.894 +64000/69092 Loss: 107.407 +67200/69092 Loss: 102.526 +Training time 0:08:58.569841 +Epoch: 199 Average loss: 106.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 672) +0/69092 Loss: 114.221 +3200/69092 Loss: 105.551 +6400/69092 Loss: 105.473 +9600/69092 Loss: 105.980 +12800/69092 Loss: 106.950 +16000/69092 Loss: 106.558 +19200/69092 Loss: 106.480 +22400/69092 Loss: 107.196 +25600/69092 Loss: 105.341 +28800/69092 Loss: 105.787 +32000/69092 Loss: 105.097 +35200/69092 Loss: 106.568 +38400/69092 Loss: 105.260 +41600/69092 Loss: 107.290 +44800/69092 Loss: 105.960 +48000/69092 Loss: 104.384 +51200/69092 Loss: 108.049 +54400/69092 Loss: 105.834 +57600/69092 Loss: 107.466 +60800/69092 Loss: 105.410 +64000/69092 Loss: 105.985 +67200/69092 Loss: 105.895 +Training time 0:08:34.109477 +Epoch: 200 Average loss: 106.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 673) +0/69092 Loss: 100.111 +3200/69092 Loss: 106.554 +6400/69092 Loss: 106.436 +9600/69092 Loss: 106.748 +12800/69092 Loss: 106.875 +16000/69092 Loss: 106.669 +19200/69092 Loss: 106.811 +22400/69092 Loss: 106.360 +25600/69092 Loss: 105.547 +28800/69092 Loss: 105.962 +32000/69092 Loss: 106.787 +35200/69092 Loss: 106.112 +38400/69092 Loss: 107.323 +41600/69092 Loss: 105.667 +44800/69092 Loss: 105.438 +48000/69092 Loss: 106.437 +51200/69092 Loss: 106.012 +54400/69092 Loss: 104.367 +57600/69092 Loss: 107.330 +60800/69092 Loss: 106.577 +64000/69092 Loss: 104.496 +67200/69092 Loss: 104.959 +Training time 0:09:09.886758 +Epoch: 201 Average loss: 106.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 674) +0/69092 Loss: 105.570 +3200/69092 Loss: 106.903 +6400/69092 Loss: 105.812 +9600/69092 Loss: 105.861 +12800/69092 Loss: 105.339 +16000/69092 Loss: 105.430 +19200/69092 Loss: 105.632 +22400/69092 Loss: 106.248 +25600/69092 Loss: 107.342 +28800/69092 Loss: 106.111 +32000/69092 Loss: 105.399 +35200/69092 Loss: 106.580 +38400/69092 Loss: 106.962 +41600/69092 Loss: 107.342 +44800/69092 Loss: 106.672 +48000/69092 Loss: 105.014 +51200/69092 Loss: 107.217 +54400/69092 Loss: 105.992 +57600/69092 Loss: 107.533 +60800/69092 Loss: 105.466 +64000/69092 Loss: 105.419 +67200/69092 Loss: 106.091 +Training time 0:09:03.665884 +Epoch: 202 Average loss: 106.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 675) +0/69092 Loss: 108.536 +3200/69092 Loss: 106.355 +6400/69092 Loss: 105.792 +9600/69092 Loss: 105.608 +12800/69092 Loss: 106.305 +16000/69092 Loss: 107.612 +19200/69092 Loss: 106.612 +22400/69092 Loss: 106.436 +25600/69092 Loss: 105.181 +28800/69092 Loss: 105.203 +32000/69092 Loss: 105.896 +35200/69092 Loss: 105.526 +38400/69092 Loss: 106.994 +41600/69092 Loss: 106.498 +44800/69092 Loss: 106.499 +48000/69092 Loss: 106.659 +51200/69092 Loss: 105.318 +54400/69092 Loss: 105.875 +57600/69092 Loss: 107.110 +60800/69092 Loss: 105.699 +64000/69092 Loss: 105.360 +67200/69092 Loss: 106.302 +Training time 0:08:38.337861 +Epoch: 203 Average loss: 106.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 676) +0/69092 Loss: 95.968 +3200/69092 Loss: 106.237 +6400/69092 Loss: 105.674 +9600/69092 Loss: 107.303 +12800/69092 Loss: 106.123 +16000/69092 Loss: 106.304 +19200/69092 Loss: 104.477 +22400/69092 Loss: 105.209 +25600/69092 Loss: 105.537 +28800/69092 Loss: 105.080 +32000/69092 Loss: 107.115 +35200/69092 Loss: 106.626 +38400/69092 Loss: 105.271 +41600/69092 Loss: 106.892 +44800/69092 Loss: 105.968 +48000/69092 Loss: 106.940 +51200/69092 Loss: 106.244 +54400/69092 Loss: 105.880 +57600/69092 Loss: 106.563 +60800/69092 Loss: 106.824 +64000/69092 Loss: 106.329 +67200/69092 Loss: 105.471 +Training time 0:09:39.057489 +Epoch: 204 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 677) +0/69092 Loss: 107.533 +3200/69092 Loss: 106.341 +6400/69092 Loss: 106.076 +9600/69092 Loss: 105.038 +12800/69092 Loss: 104.677 +16000/69092 Loss: 107.202 +19200/69092 Loss: 106.879 +22400/69092 Loss: 105.534 +25600/69092 Loss: 107.379 +28800/69092 Loss: 106.164 +32000/69092 Loss: 105.998 +35200/69092 Loss: 107.966 +38400/69092 Loss: 105.716 +41600/69092 Loss: 107.191 +44800/69092 Loss: 104.897 +48000/69092 Loss: 105.008 +51200/69092 Loss: 106.276 +54400/69092 Loss: 106.786 +57600/69092 Loss: 105.764 +60800/69092 Loss: 106.421 +64000/69092 Loss: 107.108 +67200/69092 Loss: 105.787 +Training time 0:09:07.050937 +Epoch: 205 Average loss: 106.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 678) +0/69092 Loss: 104.150 +3200/69092 Loss: 105.862 +6400/69092 Loss: 106.983 +9600/69092 Loss: 104.889 +12800/69092 Loss: 105.411 +16000/69092 Loss: 106.756 +19200/69092 Loss: 104.498 +22400/69092 Loss: 106.149 +25600/69092 Loss: 107.776 +28800/69092 Loss: 106.858 +32000/69092 Loss: 107.564 +35200/69092 Loss: 106.990 +38400/69092 Loss: 104.576 +41600/69092 Loss: 105.988 +44800/69092 Loss: 104.337 +48000/69092 Loss: 106.420 +51200/69092 Loss: 105.755 +54400/69092 Loss: 106.876 +57600/69092 Loss: 105.743 +60800/69092 Loss: 105.341 +64000/69092 Loss: 106.098 +67200/69092 Loss: 106.183 +Training time 0:11:15.706959 +Epoch: 206 Average loss: 106.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 679) +0/69092 Loss: 98.526 +3200/69092 Loss: 104.751 +6400/69092 Loss: 106.744 +9600/69092 Loss: 105.331 +12800/69092 Loss: 105.142 +16000/69092 Loss: 106.609 +19200/69092 Loss: 105.452 +22400/69092 Loss: 107.274 +25600/69092 Loss: 106.659 +28800/69092 Loss: 104.937 +32000/69092 Loss: 104.592 +35200/69092 Loss: 106.767 +38400/69092 Loss: 107.541 +41600/69092 Loss: 107.236 +44800/69092 Loss: 106.310 +48000/69092 Loss: 107.376 +51200/69092 Loss: 106.051 +54400/69092 Loss: 103.711 +57600/69092 Loss: 106.548 +60800/69092 Loss: 105.714 +64000/69092 Loss: 107.636 +67200/69092 Loss: 105.549 +Training time 0:10:10.872015 +Epoch: 207 Average loss: 106.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 680) +0/69092 Loss: 106.114 +3200/69092 Loss: 107.902 +6400/69092 Loss: 105.140 +9600/69092 Loss: 106.187 +12800/69092 Loss: 107.796 +16000/69092 Loss: 106.642 +19200/69092 Loss: 106.478 +22400/69092 Loss: 106.520 +25600/69092 Loss: 106.188 +28800/69092 Loss: 105.268 +32000/69092 Loss: 103.113 +35200/69092 Loss: 106.057 +38400/69092 Loss: 107.559 +41600/69092 Loss: 104.893 +44800/69092 Loss: 106.978 +48000/69092 Loss: 106.655 +51200/69092 Loss: 106.218 +54400/69092 Loss: 105.667 +57600/69092 Loss: 107.085 +60800/69092 Loss: 105.439 +64000/69092 Loss: 106.023 +67200/69092 Loss: 105.672 +Training time 0:08:37.520492 +Epoch: 208 Average loss: 106.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 681) +0/69092 Loss: 97.864 +3200/69092 Loss: 104.191 +6400/69092 Loss: 104.975 +9600/69092 Loss: 104.979 +12800/69092 Loss: 107.352 +16000/69092 Loss: 108.064 +19200/69092 Loss: 105.332 +22400/69092 Loss: 106.588 +25600/69092 Loss: 105.088 +28800/69092 Loss: 105.539 +32000/69092 Loss: 105.989 +35200/69092 Loss: 105.752 +38400/69092 Loss: 107.513 +41600/69092 Loss: 106.167 +44800/69092 Loss: 107.534 +48000/69092 Loss: 107.268 +51200/69092 Loss: 106.194 +54400/69092 Loss: 106.051 +57600/69092 Loss: 105.487 +60800/69092 Loss: 105.246 +64000/69092 Loss: 106.080 +67200/69092 Loss: 105.144 +Training time 0:08:21.637100 +Epoch: 209 Average loss: 106.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 682) +0/69092 Loss: 101.644 +3200/69092 Loss: 107.240 +6400/69092 Loss: 106.745 +9600/69092 Loss: 106.481 +12800/69092 Loss: 105.539 +16000/69092 Loss: 105.696 +19200/69092 Loss: 105.399 +22400/69092 Loss: 106.175 +25600/69092 Loss: 105.270 +28800/69092 Loss: 106.157 +32000/69092 Loss: 106.058 +35200/69092 Loss: 107.754 +38400/69092 Loss: 106.581 +41600/69092 Loss: 106.781 +44800/69092 Loss: 104.632 +48000/69092 Loss: 105.320 +51200/69092 Loss: 104.862 +54400/69092 Loss: 104.935 +57600/69092 Loss: 106.590 +60800/69092 Loss: 105.153 +64000/69092 Loss: 107.518 +67200/69092 Loss: 105.980 +Training time 0:08:17.855011 +Epoch: 210 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 683) +0/69092 Loss: 105.595 +3200/69092 Loss: 106.317 +6400/69092 Loss: 106.760 +9600/69092 Loss: 107.256 +12800/69092 Loss: 105.839 +16000/69092 Loss: 104.460 +19200/69092 Loss: 106.646 +22400/69092 Loss: 104.129 +25600/69092 Loss: 105.970 +28800/69092 Loss: 105.486 +32000/69092 Loss: 105.821 +35200/69092 Loss: 104.974 +38400/69092 Loss: 106.364 +41600/69092 Loss: 105.662 +44800/69092 Loss: 106.782 +48000/69092 Loss: 105.389 +51200/69092 Loss: 105.809 +54400/69092 Loss: 107.279 +57600/69092 Loss: 106.374 +60800/69092 Loss: 105.435 +64000/69092 Loss: 108.462 +67200/69092 Loss: 105.415 +Training time 0:08:41.386676 +Epoch: 211 Average loss: 106.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 684) +0/69092 Loss: 107.870 +3200/69092 Loss: 106.598 +6400/69092 Loss: 104.845 +9600/69092 Loss: 106.711 +12800/69092 Loss: 105.128 +16000/69092 Loss: 108.148 +19200/69092 Loss: 105.373 +22400/69092 Loss: 106.594 +25600/69092 Loss: 105.443 +28800/69092 Loss: 103.370 +32000/69092 Loss: 107.295 +35200/69092 Loss: 105.968 +38400/69092 Loss: 106.059 +41600/69092 Loss: 105.369 +44800/69092 Loss: 104.647 +48000/69092 Loss: 106.310 +51200/69092 Loss: 104.580 +54400/69092 Loss: 106.459 +57600/69092 Loss: 106.630 +60800/69092 Loss: 106.572 +64000/69092 Loss: 105.803 +67200/69092 Loss: 105.798 +Training time 0:08:36.739791 +Epoch: 212 Average loss: 105.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 685) +0/69092 Loss: 110.722 +3200/69092 Loss: 106.997 +6400/69092 Loss: 106.885 +9600/69092 Loss: 106.312 +12800/69092 Loss: 106.300 +16000/69092 Loss: 107.280 +19200/69092 Loss: 105.844 +22400/69092 Loss: 104.333 +25600/69092 Loss: 106.650 +28800/69092 Loss: 106.134 +32000/69092 Loss: 105.019 +35200/69092 Loss: 105.486 +38400/69092 Loss: 105.753 +41600/69092 Loss: 106.191 +44800/69092 Loss: 106.057 +48000/69092 Loss: 105.717 +51200/69092 Loss: 106.168 +54400/69092 Loss: 106.251 +57600/69092 Loss: 105.343 +60800/69092 Loss: 107.037 +64000/69092 Loss: 106.417 +67200/69092 Loss: 105.958 +Training time 0:08:27.109254 +Epoch: 213 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 686) +0/69092 Loss: 100.030 +3200/69092 Loss: 105.554 +6400/69092 Loss: 106.411 +9600/69092 Loss: 104.240 +12800/69092 Loss: 106.683 +16000/69092 Loss: 105.489 +19200/69092 Loss: 106.763 +22400/69092 Loss: 105.423 +25600/69092 Loss: 108.782 +28800/69092 Loss: 106.133 +32000/69092 Loss: 106.438 +35200/69092 Loss: 108.585 +38400/69092 Loss: 106.233 +41600/69092 Loss: 106.696 +44800/69092 Loss: 106.417 +48000/69092 Loss: 106.954 +51200/69092 Loss: 104.761 +54400/69092 Loss: 105.490 +57600/69092 Loss: 104.645 +60800/69092 Loss: 106.496 +64000/69092 Loss: 106.473 +67200/69092 Loss: 105.437 +Training time 0:08:21.003754 +Epoch: 214 Average loss: 106.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 687) +0/69092 Loss: 107.171 +3200/69092 Loss: 105.782 +6400/69092 Loss: 105.711 +9600/69092 Loss: 107.709 +12800/69092 Loss: 104.562 +16000/69092 Loss: 106.016 +19200/69092 Loss: 105.089 +22400/69092 Loss: 106.298 +25600/69092 Loss: 106.804 +28800/69092 Loss: 106.865 +32000/69092 Loss: 107.824 +35200/69092 Loss: 105.344 +38400/69092 Loss: 106.587 +41600/69092 Loss: 104.435 +44800/69092 Loss: 106.749 +48000/69092 Loss: 108.496 +51200/69092 Loss: 107.333 +54400/69092 Loss: 105.013 +57600/69092 Loss: 106.827 +60800/69092 Loss: 107.152 +64000/69092 Loss: 107.402 +67200/69092 Loss: 104.654 +Training time 0:08:30.695034 +Epoch: 215 Average loss: 106.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 688) +0/69092 Loss: 104.460 +3200/69092 Loss: 105.401 +6400/69092 Loss: 105.414 +9600/69092 Loss: 105.987 +12800/69092 Loss: 107.507 +16000/69092 Loss: 106.385 +19200/69092 Loss: 107.787 +22400/69092 Loss: 105.225 +25600/69092 Loss: 104.770 +28800/69092 Loss: 105.634 +32000/69092 Loss: 106.315 +35200/69092 Loss: 104.373 +38400/69092 Loss: 106.823 +41600/69092 Loss: 106.110 +44800/69092 Loss: 106.034 +48000/69092 Loss: 105.173 +51200/69092 Loss: 107.879 +54400/69092 Loss: 108.120 +57600/69092 Loss: 105.581 +60800/69092 Loss: 107.200 +64000/69092 Loss: 105.132 +67200/69092 Loss: 105.154 +Training time 0:08:45.636566 +Epoch: 216 Average loss: 106.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 689) +0/69092 Loss: 103.852 +3200/69092 Loss: 106.568 +6400/69092 Loss: 106.234 +9600/69092 Loss: 105.931 +12800/69092 Loss: 105.723 +16000/69092 Loss: 107.210 +19200/69092 Loss: 107.477 +22400/69092 Loss: 106.032 +25600/69092 Loss: 106.228 +28800/69092 Loss: 105.423 +32000/69092 Loss: 105.676 +35200/69092 Loss: 105.932 +38400/69092 Loss: 107.486 +41600/69092 Loss: 105.745 +44800/69092 Loss: 104.582 +48000/69092 Loss: 104.440 +51200/69092 Loss: 105.329 +54400/69092 Loss: 106.079 +57600/69092 Loss: 108.275 +60800/69092 Loss: 107.027 +64000/69092 Loss: 106.300 +67200/69092 Loss: 106.135 +Training time 0:08:11.376382 +Epoch: 217 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 690) +0/69092 Loss: 98.262 +3200/69092 Loss: 105.190 +6400/69092 Loss: 106.933 +9600/69092 Loss: 104.478 +12800/69092 Loss: 105.731 +16000/69092 Loss: 104.624 +19200/69092 Loss: 105.099 +22400/69092 Loss: 106.298 +25600/69092 Loss: 106.807 +28800/69092 Loss: 103.922 +32000/69092 Loss: 106.628 +35200/69092 Loss: 106.152 +38400/69092 Loss: 105.360 +41600/69092 Loss: 106.529 +44800/69092 Loss: 105.324 +48000/69092 Loss: 106.512 +51200/69092 Loss: 106.377 +54400/69092 Loss: 106.532 +57600/69092 Loss: 106.096 +60800/69092 Loss: 106.902 +64000/69092 Loss: 107.584 +67200/69092 Loss: 106.248 +Training time 0:08:29.352166 +Epoch: 218 Average loss: 105.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 691) +0/69092 Loss: 100.858 +3200/69092 Loss: 107.245 +6400/69092 Loss: 105.312 +9600/69092 Loss: 105.937 +12800/69092 Loss: 105.353 +16000/69092 Loss: 105.148 +19200/69092 Loss: 106.627 +22400/69092 Loss: 105.734 +25600/69092 Loss: 106.111 +28800/69092 Loss: 106.979 +32000/69092 Loss: 106.641 +35200/69092 Loss: 106.915 +38400/69092 Loss: 105.993 +41600/69092 Loss: 106.656 +44800/69092 Loss: 105.972 +48000/69092 Loss: 104.277 +51200/69092 Loss: 106.087 +54400/69092 Loss: 105.880 +57600/69092 Loss: 106.988 +60800/69092 Loss: 106.971 +64000/69092 Loss: 105.527 +67200/69092 Loss: 105.333 +Training time 0:08:26.506137 +Epoch: 219 Average loss: 106.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 692) +0/69092 Loss: 112.029 +3200/69092 Loss: 105.526 +6400/69092 Loss: 106.184 +9600/69092 Loss: 106.399 +12800/69092 Loss: 106.229 +16000/69092 Loss: 105.846 +19200/69092 Loss: 106.071 +22400/69092 Loss: 106.127 +25600/69092 Loss: 106.256 +28800/69092 Loss: 105.038 +32000/69092 Loss: 105.574 +35200/69092 Loss: 104.691 +38400/69092 Loss: 106.185 +41600/69092 Loss: 106.651 +44800/69092 Loss: 105.830 +48000/69092 Loss: 105.174 +51200/69092 Loss: 106.295 +54400/69092 Loss: 106.784 +57600/69092 Loss: 105.082 +60800/69092 Loss: 104.995 +64000/69092 Loss: 106.648 +67200/69092 Loss: 106.150 +Training time 0:08:40.404256 +Epoch: 220 Average loss: 105.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 693) +0/69092 Loss: 108.426 +3200/69092 Loss: 105.306 +6400/69092 Loss: 107.059 +9600/69092 Loss: 104.770 +12800/69092 Loss: 106.714 +16000/69092 Loss: 105.264 +19200/69092 Loss: 106.453 +22400/69092 Loss: 105.886 +25600/69092 Loss: 106.175 +28800/69092 Loss: 105.648 +32000/69092 Loss: 105.804 +35200/69092 Loss: 106.389 +38400/69092 Loss: 106.489 +41600/69092 Loss: 105.980 +44800/69092 Loss: 106.300 +48000/69092 Loss: 105.558 +51200/69092 Loss: 107.025 +54400/69092 Loss: 106.197 +57600/69092 Loss: 106.232 +60800/69092 Loss: 106.009 +64000/69092 Loss: 107.813 +67200/69092 Loss: 105.844 +Training time 0:08:16.025544 +Epoch: 221 Average loss: 106.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 694) +0/69092 Loss: 104.104 +3200/69092 Loss: 107.157 +6400/69092 Loss: 104.536 +9600/69092 Loss: 105.083 +12800/69092 Loss: 104.975 +16000/69092 Loss: 106.487 +19200/69092 Loss: 106.652 +22400/69092 Loss: 107.389 +25600/69092 Loss: 105.636 +28800/69092 Loss: 106.063 +32000/69092 Loss: 106.297 +35200/69092 Loss: 106.514 +38400/69092 Loss: 106.602 +41600/69092 Loss: 106.841 +44800/69092 Loss: 104.714 +48000/69092 Loss: 105.413 +51200/69092 Loss: 106.980 +54400/69092 Loss: 105.189 +57600/69092 Loss: 105.073 +60800/69092 Loss: 106.733 +64000/69092 Loss: 105.855 +67200/69092 Loss: 107.041 +Training time 0:08:29.128863 +Epoch: 222 Average loss: 106.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 695) +0/69092 Loss: 103.624 +3200/69092 Loss: 108.448 +6400/69092 Loss: 104.844 +9600/69092 Loss: 106.026 +12800/69092 Loss: 107.180 +16000/69092 Loss: 105.072 +19200/69092 Loss: 107.198 +22400/69092 Loss: 106.112 +25600/69092 Loss: 105.471 +28800/69092 Loss: 106.232 +32000/69092 Loss: 103.121 +35200/69092 Loss: 105.590 +38400/69092 Loss: 105.702 +41600/69092 Loss: 106.110 +44800/69092 Loss: 106.138 +48000/69092 Loss: 105.171 +51200/69092 Loss: 107.147 +54400/69092 Loss: 105.153 +57600/69092 Loss: 105.174 +60800/69092 Loss: 104.807 +64000/69092 Loss: 106.330 +67200/69092 Loss: 107.014 +Training time 0:08:39.588361 +Epoch: 223 Average loss: 105.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 696) +0/69092 Loss: 112.390 +3200/69092 Loss: 107.431 +6400/69092 Loss: 106.338 +9600/69092 Loss: 105.140 +12800/69092 Loss: 104.812 +16000/69092 Loss: 105.040 +19200/69092 Loss: 107.810 +22400/69092 Loss: 106.580 +25600/69092 Loss: 106.715 +28800/69092 Loss: 105.872 +32000/69092 Loss: 106.548 +35200/69092 Loss: 106.040 +38400/69092 Loss: 105.529 +41600/69092 Loss: 105.437 +44800/69092 Loss: 105.323 +48000/69092 Loss: 106.880 +51200/69092 Loss: 107.134 +54400/69092 Loss: 103.431 +57600/69092 Loss: 104.878 +60800/69092 Loss: 106.090 +64000/69092 Loss: 106.290 +67200/69092 Loss: 105.654 +Training time 0:08:33.948499 +Epoch: 224 Average loss: 105.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 697) +0/69092 Loss: 100.900 +3200/69092 Loss: 105.218 +6400/69092 Loss: 104.900 +9600/69092 Loss: 106.023 +12800/69092 Loss: 105.211 +16000/69092 Loss: 104.703 +19200/69092 Loss: 106.668 +22400/69092 Loss: 105.399 +25600/69092 Loss: 104.523 +28800/69092 Loss: 103.687 +32000/69092 Loss: 106.032 +35200/69092 Loss: 106.210 +38400/69092 Loss: 105.403 +41600/69092 Loss: 104.469 +44800/69092 Loss: 107.046 +48000/69092 Loss: 106.881 +51200/69092 Loss: 104.785 +54400/69092 Loss: 107.651 +57600/69092 Loss: 106.493 +60800/69092 Loss: 107.077 +64000/69092 Loss: 107.788 +67200/69092 Loss: 106.537 +Training time 0:08:10.624329 +Epoch: 225 Average loss: 105.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 698) +0/69092 Loss: 104.673 +3200/69092 Loss: 106.011 +6400/69092 Loss: 105.585 +9600/69092 Loss: 106.538 +12800/69092 Loss: 104.660 +16000/69092 Loss: 105.559 +19200/69092 Loss: 105.202 +22400/69092 Loss: 104.866 +25600/69092 Loss: 104.772 +28800/69092 Loss: 105.247 +32000/69092 Loss: 108.565 +35200/69092 Loss: 106.270 +38400/69092 Loss: 104.435 +41600/69092 Loss: 105.995 +44800/69092 Loss: 106.108 +48000/69092 Loss: 106.068 +51200/69092 Loss: 107.085 +54400/69092 Loss: 106.714 +57600/69092 Loss: 104.995 +60800/69092 Loss: 106.151 +64000/69092 Loss: 105.687 +67200/69092 Loss: 107.965 +Training time 0:08:28.033592 +Epoch: 226 Average loss: 105.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 699) +0/69092 Loss: 100.387 +3200/69092 Loss: 104.901 +6400/69092 Loss: 106.768 +9600/69092 Loss: 104.541 +12800/69092 Loss: 107.046 +16000/69092 Loss: 106.663 +19200/69092 Loss: 106.196 +22400/69092 Loss: 105.139 +25600/69092 Loss: 106.221 +28800/69092 Loss: 104.865 +32000/69092 Loss: 105.765 +35200/69092 Loss: 107.114 +38400/69092 Loss: 106.384 +41600/69092 Loss: 105.492 +44800/69092 Loss: 105.759 +48000/69092 Loss: 105.277 +51200/69092 Loss: 106.908 +54400/69092 Loss: 105.944 +57600/69092 Loss: 105.432 +60800/69092 Loss: 106.003 +64000/69092 Loss: 106.547 +67200/69092 Loss: 107.293 +Training time 0:08:40.540703 +Epoch: 227 Average loss: 106.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 700) +0/69092 Loss: 101.868 +3200/69092 Loss: 106.052 +6400/69092 Loss: 105.238 +9600/69092 Loss: 107.075 +12800/69092 Loss: 107.082 +16000/69092 Loss: 106.672 +19200/69092 Loss: 107.029 +22400/69092 Loss: 106.626 +25600/69092 Loss: 106.493 +28800/69092 Loss: 106.184 +32000/69092 Loss: 105.280 +35200/69092 Loss: 105.119 +38400/69092 Loss: 106.452 +41600/69092 Loss: 105.274 +44800/69092 Loss: 106.823 +48000/69092 Loss: 105.952 +51200/69092 Loss: 104.785 +54400/69092 Loss: 105.724 +57600/69092 Loss: 106.325 +60800/69092 Loss: 106.982 +64000/69092 Loss: 104.554 +67200/69092 Loss: 104.874 +Training time 0:08:23.904157 +Epoch: 228 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 701) +0/69092 Loss: 108.580 +3200/69092 Loss: 106.648 +6400/69092 Loss: 105.563 +9600/69092 Loss: 106.220 +12800/69092 Loss: 106.925 +16000/69092 Loss: 105.855 +19200/69092 Loss: 106.425 +22400/69092 Loss: 106.197 +25600/69092 Loss: 106.339 +28800/69092 Loss: 104.597 +32000/69092 Loss: 105.748 +35200/69092 Loss: 104.843 +38400/69092 Loss: 106.167 +41600/69092 Loss: 106.993 +44800/69092 Loss: 105.425 +48000/69092 Loss: 106.115 +51200/69092 Loss: 106.128 +54400/69092 Loss: 106.316 +57600/69092 Loss: 106.164 +60800/69092 Loss: 107.684 +64000/69092 Loss: 106.239 +67200/69092 Loss: 104.600 +Training time 0:08:17.987816 +Epoch: 229 Average loss: 106.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 702) +0/69092 Loss: 108.705 +3200/69092 Loss: 107.761 +6400/69092 Loss: 106.302 +9600/69092 Loss: 105.635 +12800/69092 Loss: 107.141 +16000/69092 Loss: 106.381 +19200/69092 Loss: 105.783 +22400/69092 Loss: 104.906 +25600/69092 Loss: 103.312 +28800/69092 Loss: 104.815 +32000/69092 Loss: 107.540 +35200/69092 Loss: 105.228 +38400/69092 Loss: 106.573 +41600/69092 Loss: 104.637 +44800/69092 Loss: 106.452 +48000/69092 Loss: 106.110 +51200/69092 Loss: 105.273 +54400/69092 Loss: 106.972 +57600/69092 Loss: 106.033 +60800/69092 Loss: 105.135 +64000/69092 Loss: 105.952 +67200/69092 Loss: 107.134 +Training time 0:08:31.411843 +Epoch: 230 Average loss: 105.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 703) +0/69092 Loss: 109.997 +3200/69092 Loss: 106.701 +6400/69092 Loss: 105.239 +9600/69092 Loss: 105.972 +12800/69092 Loss: 104.693 +16000/69092 Loss: 105.919 +19200/69092 Loss: 106.498 +22400/69092 Loss: 104.994 +25600/69092 Loss: 107.073 +28800/69092 Loss: 105.371 +32000/69092 Loss: 105.324 +35200/69092 Loss: 105.175 +38400/69092 Loss: 106.722 +41600/69092 Loss: 106.970 +44800/69092 Loss: 107.746 +48000/69092 Loss: 106.094 +51200/69092 Loss: 105.963 +54400/69092 Loss: 104.855 +57600/69092 Loss: 104.864 +60800/69092 Loss: 104.479 +64000/69092 Loss: 106.113 +67200/69092 Loss: 107.003 +Training time 0:08:35.640257 +Epoch: 231 Average loss: 105.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 704) +0/69092 Loss: 99.023 +3200/69092 Loss: 106.133 +6400/69092 Loss: 103.953 +9600/69092 Loss: 106.588 +12800/69092 Loss: 103.748 +16000/69092 Loss: 106.819 +19200/69092 Loss: 106.795 +22400/69092 Loss: 106.438 +25600/69092 Loss: 106.336 +28800/69092 Loss: 104.452 +32000/69092 Loss: 107.474 +35200/69092 Loss: 105.620 +38400/69092 Loss: 107.181 +41600/69092 Loss: 106.219 +44800/69092 Loss: 105.854 +48000/69092 Loss: 106.273 +51200/69092 Loss: 105.586 +54400/69092 Loss: 105.656 +57600/69092 Loss: 105.932 +60800/69092 Loss: 106.884 +64000/69092 Loss: 106.188 +67200/69092 Loss: 106.109 +Training time 0:08:30.378238 +Epoch: 232 Average loss: 106.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 705) +0/69092 Loss: 115.092 +3200/69092 Loss: 105.291 +6400/69092 Loss: 105.150 +9600/69092 Loss: 106.622 +12800/69092 Loss: 106.600 +16000/69092 Loss: 105.654 +19200/69092 Loss: 106.292 +22400/69092 Loss: 105.552 +25600/69092 Loss: 106.306 +28800/69092 Loss: 107.029 +32000/69092 Loss: 106.689 +35200/69092 Loss: 105.538 +38400/69092 Loss: 105.183 +41600/69092 Loss: 106.011 +44800/69092 Loss: 105.852 +48000/69092 Loss: 106.408 +51200/69092 Loss: 104.927 +54400/69092 Loss: 105.282 +57600/69092 Loss: 106.056 +60800/69092 Loss: 106.608 +64000/69092 Loss: 105.861 +67200/69092 Loss: 106.496 +Training time 0:08:17.459356 +Epoch: 233 Average loss: 105.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 706) +0/69092 Loss: 99.244 +3200/69092 Loss: 106.592 +6400/69092 Loss: 104.928 +9600/69092 Loss: 104.254 +12800/69092 Loss: 105.963 +16000/69092 Loss: 105.462 +19200/69092 Loss: 105.197 +22400/69092 Loss: 107.355 +25600/69092 Loss: 105.591 +28800/69092 Loss: 106.583 +32000/69092 Loss: 105.067 +35200/69092 Loss: 105.076 +38400/69092 Loss: 106.832 +41600/69092 Loss: 106.872 +44800/69092 Loss: 104.939 +48000/69092 Loss: 106.403 +51200/69092 Loss: 106.669 +54400/69092 Loss: 105.488 +57600/69092 Loss: 107.464 +60800/69092 Loss: 106.547 +64000/69092 Loss: 106.263 +67200/69092 Loss: 106.731 +Training time 0:08:23.984451 +Epoch: 234 Average loss: 105.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 707) +0/69092 Loss: 94.664 +3200/69092 Loss: 105.063 +6400/69092 Loss: 106.149 +9600/69092 Loss: 105.586 +12800/69092 Loss: 106.044 +16000/69092 Loss: 104.878 +19200/69092 Loss: 106.973 +22400/69092 Loss: 106.625 +25600/69092 Loss: 105.751 +28800/69092 Loss: 106.421 +32000/69092 Loss: 105.418 +35200/69092 Loss: 107.047 +38400/69092 Loss: 107.914 +41600/69092 Loss: 105.580 +44800/69092 Loss: 107.075 +48000/69092 Loss: 105.620 +51200/69092 Loss: 104.796 +54400/69092 Loss: 104.523 +57600/69092 Loss: 106.971 +60800/69092 Loss: 105.472 +64000/69092 Loss: 104.828 +67200/69092 Loss: 106.680 +Training time 0:08:37.702991 +Epoch: 235 Average loss: 105.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 708) +0/69092 Loss: 102.050 +3200/69092 Loss: 106.772 +6400/69092 Loss: 105.498 +9600/69092 Loss: 105.883 +12800/69092 Loss: 105.258 +16000/69092 Loss: 105.395 +19200/69092 Loss: 104.918 +22400/69092 Loss: 104.934 +25600/69092 Loss: 105.175 +28800/69092 Loss: 107.500 +32000/69092 Loss: 105.482 +35200/69092 Loss: 107.276 +38400/69092 Loss: 106.788 +41600/69092 Loss: 105.661 +44800/69092 Loss: 106.466 +48000/69092 Loss: 107.183 +51200/69092 Loss: 105.646 +54400/69092 Loss: 108.238 +57600/69092 Loss: 107.752 +60800/69092 Loss: 104.743 +64000/69092 Loss: 105.404 +67200/69092 Loss: 106.303 +Training time 0:08:12.504065 +Epoch: 236 Average loss: 106.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 709) +0/69092 Loss: 112.111 +3200/69092 Loss: 105.964 +6400/69092 Loss: 106.936 +9600/69092 Loss: 105.225 +12800/69092 Loss: 105.616 +16000/69092 Loss: 104.757 +19200/69092 Loss: 107.250 +22400/69092 Loss: 107.147 +25600/69092 Loss: 105.469 +28800/69092 Loss: 107.893 +32000/69092 Loss: 105.358 +35200/69092 Loss: 106.049 +38400/69092 Loss: 105.214 +41600/69092 Loss: 106.115 +44800/69092 Loss: 104.732 +48000/69092 Loss: 104.093 +51200/69092 Loss: 107.386 +54400/69092 Loss: 106.116 +57600/69092 Loss: 105.922 +60800/69092 Loss: 106.185 +64000/69092 Loss: 106.136 +67200/69092 Loss: 105.205 +Training time 0:08:17.323460 +Epoch: 237 Average loss: 105.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 710) +0/69092 Loss: 106.526 +3200/69092 Loss: 105.133 +6400/69092 Loss: 105.928 +9600/69092 Loss: 105.475 +12800/69092 Loss: 106.872 +16000/69092 Loss: 106.153 +19200/69092 Loss: 107.106 +22400/69092 Loss: 104.479 +25600/69092 Loss: 106.941 +28800/69092 Loss: 107.342 +32000/69092 Loss: 105.962 +35200/69092 Loss: 106.511 +38400/69092 Loss: 105.141 +41600/69092 Loss: 106.129 +44800/69092 Loss: 105.984 +48000/69092 Loss: 105.370 +51200/69092 Loss: 106.415 +54400/69092 Loss: 106.724 +57600/69092 Loss: 105.808 +60800/69092 Loss: 105.475 +64000/69092 Loss: 106.056 +67200/69092 Loss: 106.246 +Training time 0:08:36.748830 +Epoch: 238 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 711) +0/69092 Loss: 109.824 +3200/69092 Loss: 106.311 +6400/69092 Loss: 106.422 +9600/69092 Loss: 105.782 +12800/69092 Loss: 106.680 +16000/69092 Loss: 105.592 +19200/69092 Loss: 105.995 +22400/69092 Loss: 106.168 +25600/69092 Loss: 105.457 +28800/69092 Loss: 105.181 +32000/69092 Loss: 105.599 +35200/69092 Loss: 104.978 +38400/69092 Loss: 106.107 +41600/69092 Loss: 104.844 +44800/69092 Loss: 107.404 +48000/69092 Loss: 105.763 +51200/69092 Loss: 105.989 +54400/69092 Loss: 105.759 +57600/69092 Loss: 105.787 +60800/69092 Loss: 107.621 +64000/69092 Loss: 104.274 +67200/69092 Loss: 105.418 +Training time 0:08:41.468139 +Epoch: 239 Average loss: 105.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 712) +0/69092 Loss: 117.618 +3200/69092 Loss: 106.658 +6400/69092 Loss: 105.108 +9600/69092 Loss: 105.125 +12800/69092 Loss: 106.253 +16000/69092 Loss: 105.664 +19200/69092 Loss: 108.187 +22400/69092 Loss: 105.142 +25600/69092 Loss: 107.355 +28800/69092 Loss: 106.615 +32000/69092 Loss: 103.693 +35200/69092 Loss: 104.701 +38400/69092 Loss: 106.595 +41600/69092 Loss: 106.280 +44800/69092 Loss: 105.403 +48000/69092 Loss: 105.811 +51200/69092 Loss: 105.775 +54400/69092 Loss: 106.689 +57600/69092 Loss: 104.890 +60800/69092 Loss: 104.813 +64000/69092 Loss: 105.744 +67200/69092 Loss: 106.803 +Training time 0:08:24.811712 +Epoch: 240 Average loss: 105.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 713) +0/69092 Loss: 111.961 +3200/69092 Loss: 106.898 +6400/69092 Loss: 104.486 +9600/69092 Loss: 105.924 +12800/69092 Loss: 107.881 +16000/69092 Loss: 107.144 +19200/69092 Loss: 106.493 +22400/69092 Loss: 104.537 +25600/69092 Loss: 105.667 +28800/69092 Loss: 107.266 +32000/69092 Loss: 107.049 +35200/69092 Loss: 106.144 +38400/69092 Loss: 106.358 +41600/69092 Loss: 104.714 +44800/69092 Loss: 105.439 +48000/69092 Loss: 105.080 +51200/69092 Loss: 104.798 +54400/69092 Loss: 106.280 +57600/69092 Loss: 106.550 +60800/69092 Loss: 107.426 +64000/69092 Loss: 104.789 +67200/69092 Loss: 107.697 +Training time 0:08:22.312542 +Epoch: 241 Average loss: 106.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 714) +0/69092 Loss: 115.787 +3200/69092 Loss: 105.476 +6400/69092 Loss: 106.647 +9600/69092 Loss: 106.777 +12800/69092 Loss: 106.181 +16000/69092 Loss: 106.485 +19200/69092 Loss: 106.136 +22400/69092 Loss: 105.154 +25600/69092 Loss: 105.693 +28800/69092 Loss: 105.028 +32000/69092 Loss: 106.173 +35200/69092 Loss: 106.209 +38400/69092 Loss: 104.776 +41600/69092 Loss: 105.121 +44800/69092 Loss: 106.748 +48000/69092 Loss: 106.765 +51200/69092 Loss: 105.166 +54400/69092 Loss: 105.996 +57600/69092 Loss: 106.933 +60800/69092 Loss: 106.083 +64000/69092 Loss: 106.132 +67200/69092 Loss: 105.403 +Training time 0:08:41.926897 +Epoch: 242 Average loss: 106.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 715) +0/69092 Loss: 97.564 +3200/69092 Loss: 105.789 +6400/69092 Loss: 106.007 +9600/69092 Loss: 106.522 +12800/69092 Loss: 104.991 +16000/69092 Loss: 105.909 +19200/69092 Loss: 106.388 +22400/69092 Loss: 105.948 +25600/69092 Loss: 106.587 +28800/69092 Loss: 106.199 +32000/69092 Loss: 107.374 +35200/69092 Loss: 105.877 +38400/69092 Loss: 107.074 +41600/69092 Loss: 107.478 +44800/69092 Loss: 104.823 +48000/69092 Loss: 105.414 +51200/69092 Loss: 106.102 +54400/69092 Loss: 105.929 +57600/69092 Loss: 104.754 +60800/69092 Loss: 107.117 +64000/69092 Loss: 105.599 +67200/69092 Loss: 105.732 +Training time 0:08:48.720795 +Epoch: 243 Average loss: 106.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 716) +0/69092 Loss: 109.048 +3200/69092 Loss: 106.029 +6400/69092 Loss: 105.295 +9600/69092 Loss: 106.397 +12800/69092 Loss: 107.872 +16000/69092 Loss: 107.499 +19200/69092 Loss: 107.751 +22400/69092 Loss: 106.750 +25600/69092 Loss: 104.753 +28800/69092 Loss: 105.554 +32000/69092 Loss: 106.064 +35200/69092 Loss: 105.767 +38400/69092 Loss: 104.742 +41600/69092 Loss: 106.285 +44800/69092 Loss: 105.775 +48000/69092 Loss: 106.229 +51200/69092 Loss: 105.762 +54400/69092 Loss: 105.718 +57600/69092 Loss: 107.042 +60800/69092 Loss: 105.385 +64000/69092 Loss: 105.649 +67200/69092 Loss: 106.809 +Training time 0:08:30.647251 +Epoch: 244 Average loss: 106.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 717) +0/69092 Loss: 112.271 +3200/69092 Loss: 104.326 +6400/69092 Loss: 105.636 +9600/69092 Loss: 104.428 +12800/69092 Loss: 106.516 +16000/69092 Loss: 104.981 +19200/69092 Loss: 106.446 +22400/69092 Loss: 105.799 +25600/69092 Loss: 104.672 +28800/69092 Loss: 107.131 +32000/69092 Loss: 106.154 +35200/69092 Loss: 108.167 +38400/69092 Loss: 105.297 +41600/69092 Loss: 105.765 +44800/69092 Loss: 106.471 +48000/69092 Loss: 106.358 +51200/69092 Loss: 105.708 +54400/69092 Loss: 105.474 +57600/69092 Loss: 106.157 +60800/69092 Loss: 105.280 +64000/69092 Loss: 107.981 +67200/69092 Loss: 107.499 +Training time 0:08:11.488859 +Epoch: 245 Average loss: 106.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 718) +0/69092 Loss: 108.181 +3200/69092 Loss: 105.217 +6400/69092 Loss: 106.833 +9600/69092 Loss: 106.450 +12800/69092 Loss: 105.236 +16000/69092 Loss: 105.384 +19200/69092 Loss: 107.086 +22400/69092 Loss: 105.650 +25600/69092 Loss: 106.508 +28800/69092 Loss: 106.218 +32000/69092 Loss: 105.979 +35200/69092 Loss: 106.361 +38400/69092 Loss: 104.955 +41600/69092 Loss: 105.171 +44800/69092 Loss: 105.209 +48000/69092 Loss: 106.335 +51200/69092 Loss: 106.114 +54400/69092 Loss: 106.314 +57600/69092 Loss: 104.810 +60800/69092 Loss: 105.536 +64000/69092 Loss: 106.613 +67200/69092 Loss: 105.100 +Training time 0:08:25.901428 +Epoch: 246 Average loss: 105.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 719) +0/69092 Loss: 103.823 +3200/69092 Loss: 106.529 +6400/69092 Loss: 106.308 +9600/69092 Loss: 105.826 +12800/69092 Loss: 105.317 +16000/69092 Loss: 104.787 +19200/69092 Loss: 105.674 +22400/69092 Loss: 104.455 +25600/69092 Loss: 105.914 +28800/69092 Loss: 106.134 +32000/69092 Loss: 106.457 +35200/69092 Loss: 106.203 +38400/69092 Loss: 107.015 +41600/69092 Loss: 106.284 +44800/69092 Loss: 106.906 +48000/69092 Loss: 105.291 +51200/69092 Loss: 106.273 +54400/69092 Loss: 104.065 +57600/69092 Loss: 105.542 +60800/69092 Loss: 105.603 +64000/69092 Loss: 106.896 +67200/69092 Loss: 107.500 +Training time 0:08:34.102430 +Epoch: 247 Average loss: 106.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 720) +0/69092 Loss: 105.551 +3200/69092 Loss: 106.278 +6400/69092 Loss: 106.267 +9600/69092 Loss: 103.908 +12800/69092 Loss: 105.448 +16000/69092 Loss: 107.270 +19200/69092 Loss: 106.824 +22400/69092 Loss: 106.254 +25600/69092 Loss: 105.909 +28800/69092 Loss: 106.071 +32000/69092 Loss: 106.194 +35200/69092 Loss: 106.014 +38400/69092 Loss: 105.115 +41600/69092 Loss: 105.699 +44800/69092 Loss: 106.218 +48000/69092 Loss: 104.804 +51200/69092 Loss: 106.152 +54400/69092 Loss: 105.435 +57600/69092 Loss: 106.421 +60800/69092 Loss: 107.068 +64000/69092 Loss: 105.994 +67200/69092 Loss: 107.665 +Training time 0:08:21.557660 +Epoch: 248 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 721) +0/69092 Loss: 102.823 +3200/69092 Loss: 106.464 +6400/69092 Loss: 104.554 +9600/69092 Loss: 106.965 +12800/69092 Loss: 107.599 +16000/69092 Loss: 105.131 +19200/69092 Loss: 105.597 +22400/69092 Loss: 105.915 +25600/69092 Loss: 106.484 +28800/69092 Loss: 106.209 +32000/69092 Loss: 106.675 +35200/69092 Loss: 105.960 +38400/69092 Loss: 106.167 +41600/69092 Loss: 105.320 +44800/69092 Loss: 106.533 +48000/69092 Loss: 105.939 +51200/69092 Loss: 104.978 +54400/69092 Loss: 105.978 +57600/69092 Loss: 104.624 +60800/69092 Loss: 104.004 +64000/69092 Loss: 105.365 +67200/69092 Loss: 106.634 +Training time 0:08:13.500072 +Epoch: 249 Average loss: 105.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 722) +0/69092 Loss: 113.857 +3200/69092 Loss: 106.954 +6400/69092 Loss: 106.274 +9600/69092 Loss: 105.330 +12800/69092 Loss: 106.696 +16000/69092 Loss: 105.045 +19200/69092 Loss: 107.232 +22400/69092 Loss: 105.712 +25600/69092 Loss: 106.354 +28800/69092 Loss: 105.585 +32000/69092 Loss: 107.838 +35200/69092 Loss: 105.021 +38400/69092 Loss: 103.672 +41600/69092 Loss: 106.374 +44800/69092 Loss: 107.960 +48000/69092 Loss: 105.363 +51200/69092 Loss: 105.238 +54400/69092 Loss: 104.889 +57600/69092 Loss: 106.180 +60800/69092 Loss: 106.520 +64000/69092 Loss: 107.406 +67200/69092 Loss: 105.601 +Training time 0:08:42.971794 +Epoch: 250 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 723) +0/69092 Loss: 107.065 +3200/69092 Loss: 106.763 +6400/69092 Loss: 105.972 +9600/69092 Loss: 106.074 +12800/69092 Loss: 105.116 +16000/69092 Loss: 108.422 +19200/69092 Loss: 104.927 +22400/69092 Loss: 106.067 +25600/69092 Loss: 105.028 +28800/69092 Loss: 105.010 +32000/69092 Loss: 106.012 +35200/69092 Loss: 105.863 +38400/69092 Loss: 105.880 +41600/69092 Loss: 106.257 +44800/69092 Loss: 105.749 +48000/69092 Loss: 106.995 +51200/69092 Loss: 105.467 +54400/69092 Loss: 105.615 +57600/69092 Loss: 104.733 +60800/69092 Loss: 106.303 +64000/69092 Loss: 107.540 +67200/69092 Loss: 107.218 +Training time 0:08:42.142851 +Epoch: 251 Average loss: 106.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 724) +0/69092 Loss: 100.747 +3200/69092 Loss: 104.877 +6400/69092 Loss: 107.138 +9600/69092 Loss: 107.771 +12800/69092 Loss: 105.197 +16000/69092 Loss: 107.821 +19200/69092 Loss: 105.907 +22400/69092 Loss: 105.692 +25600/69092 Loss: 106.355 +28800/69092 Loss: 105.775 +32000/69092 Loss: 106.124 +35200/69092 Loss: 105.739 +38400/69092 Loss: 106.951 +41600/69092 Loss: 106.438 +44800/69092 Loss: 105.543 +48000/69092 Loss: 105.639 +51200/69092 Loss: 105.965 +54400/69092 Loss: 107.903 +57600/69092 Loss: 104.385 +60800/69092 Loss: 104.783 +64000/69092 Loss: 107.015 +67200/69092 Loss: 105.066 +Training time 0:08:19.916936 +Epoch: 252 Average loss: 106.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 725) +0/69092 Loss: 100.595 +3200/69092 Loss: 105.333 +6400/69092 Loss: 107.414 +9600/69092 Loss: 106.450 +12800/69092 Loss: 106.517 +16000/69092 Loss: 106.880 +19200/69092 Loss: 105.812 +22400/69092 Loss: 105.439 +25600/69092 Loss: 105.031 +28800/69092 Loss: 106.756 +32000/69092 Loss: 106.972 +35200/69092 Loss: 105.400 +38400/69092 Loss: 106.506 +41600/69092 Loss: 105.780 +44800/69092 Loss: 105.578 +48000/69092 Loss: 105.758 +51200/69092 Loss: 103.878 +54400/69092 Loss: 106.517 +57600/69092 Loss: 106.700 +60800/69092 Loss: 106.032 +64000/69092 Loss: 107.413 +67200/69092 Loss: 104.789 +Training time 0:08:23.023540 +Epoch: 253 Average loss: 106.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 726) +0/69092 Loss: 115.182 +3200/69092 Loss: 104.397 +6400/69092 Loss: 104.478 +9600/69092 Loss: 107.875 +12800/69092 Loss: 105.375 +16000/69092 Loss: 106.107 +19200/69092 Loss: 104.554 +22400/69092 Loss: 105.063 +25600/69092 Loss: 106.507 +28800/69092 Loss: 105.718 +32000/69092 Loss: 105.850 +35200/69092 Loss: 105.924 +38400/69092 Loss: 105.916 +41600/69092 Loss: 106.853 +44800/69092 Loss: 105.433 +48000/69092 Loss: 106.754 +51200/69092 Loss: 105.738 +54400/69092 Loss: 106.870 +57600/69092 Loss: 104.963 +60800/69092 Loss: 106.767 +64000/69092 Loss: 106.422 +67200/69092 Loss: 107.077 +Training time 0:08:41.310186 +Epoch: 254 Average loss: 105.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 727) +0/69092 Loss: 111.221 +3200/69092 Loss: 104.693 +6400/69092 Loss: 105.202 +9600/69092 Loss: 104.663 +12800/69092 Loss: 104.696 +16000/69092 Loss: 105.940 +19200/69092 Loss: 106.168 +22400/69092 Loss: 107.183 +25600/69092 Loss: 106.230 +28800/69092 Loss: 105.337 +32000/69092 Loss: 104.817 +35200/69092 Loss: 105.210 +38400/69092 Loss: 106.820 +41600/69092 Loss: 105.840 +44800/69092 Loss: 106.921 +48000/69092 Loss: 104.942 +51200/69092 Loss: 104.887 +54400/69092 Loss: 107.172 +57600/69092 Loss: 106.473 +60800/69092 Loss: 105.358 +64000/69092 Loss: 107.162 +67200/69092 Loss: 106.235 +Training time 0:08:50.651075 +Epoch: 255 Average loss: 105.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 728) +0/69092 Loss: 104.860 +3200/69092 Loss: 105.419 +6400/69092 Loss: 104.990 +9600/69092 Loss: 105.173 +12800/69092 Loss: 105.489 +16000/69092 Loss: 107.144 +19200/69092 Loss: 106.267 +22400/69092 Loss: 107.215 +25600/69092 Loss: 107.026 +28800/69092 Loss: 106.891 +32000/69092 Loss: 105.282 +35200/69092 Loss: 105.275 +38400/69092 Loss: 105.454 +41600/69092 Loss: 106.023 +44800/69092 Loss: 106.265 +48000/69092 Loss: 104.114 +51200/69092 Loss: 106.275 diff --git a/OAR.2073654.stderr b/OAR.2073654.stderr new file mode 100644 index 0000000000000000000000000000000000000000..92461377c1305714c42156039c92dd32bb540f67 --- /dev/null +++ b/OAR.2073654.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 15:43:57] Job 2073654 KILLED ## diff --git a/OAR.2073654.stdout b/OAR.2073654.stdout new file mode 100644 index 0000000000000000000000000000000000000000..ba6233289b23e4d6f55b8c3d7441f650889634ff --- /dev/null +++ b/OAR.2073654.stdout @@ -0,0 +1,1516 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=40, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=20, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 773035 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last (iter 306)' +0/69092 Loss: 103.436 +3200/69092 Loss: 101.891 +6400/69092 Loss: 101.232 +9600/69092 Loss: 100.114 +12800/69092 Loss: 100.473 +16000/69092 Loss: 100.469 +19200/69092 Loss: 101.966 +22400/69092 Loss: 100.943 +25600/69092 Loss: 100.959 +28800/69092 Loss: 100.555 +32000/69092 Loss: 101.914 +35200/69092 Loss: 101.552 +38400/69092 Loss: 100.987 +41600/69092 Loss: 100.993 +44800/69092 Loss: 101.747 +48000/69092 Loss: 100.503 +51200/69092 Loss: 101.382 +54400/69092 Loss: 101.060 +57600/69092 Loss: 101.328 +60800/69092 Loss: 101.804 +64000/69092 Loss: 99.939 +67200/69092 Loss: 101.055 +Training time 0:14:41.787025 +Epoch: 1 Average loss: 101.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 307) +0/69092 Loss: 107.130 +3200/69092 Loss: 101.321 +6400/69092 Loss: 100.395 +9600/69092 Loss: 100.241 +12800/69092 Loss: 100.907 +16000/69092 Loss: 101.341 +19200/69092 Loss: 99.843 +22400/69092 Loss: 100.946 +25600/69092 Loss: 100.380 +28800/69092 Loss: 101.629 +32000/69092 Loss: 102.444 +35200/69092 Loss: 101.570 +38400/69092 Loss: 101.353 +41600/69092 Loss: 101.364 +44800/69092 Loss: 101.641 +48000/69092 Loss: 100.585 +51200/69092 Loss: 100.068 +54400/69092 Loss: 101.052 +57600/69092 Loss: 100.505 +60800/69092 Loss: 101.015 +64000/69092 Loss: 101.804 +67200/69092 Loss: 101.833 +Training time 0:13:48.986240 +Epoch: 2 Average loss: 101.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 308) +0/69092 Loss: 97.897 +3200/69092 Loss: 99.790 +6400/69092 Loss: 100.779 +9600/69092 Loss: 101.454 +12800/69092 Loss: 101.456 +16000/69092 Loss: 100.413 +19200/69092 Loss: 101.386 +22400/69092 Loss: 100.628 +25600/69092 Loss: 102.060 +28800/69092 Loss: 101.975 +32000/69092 Loss: 100.300 +35200/69092 Loss: 100.916 +38400/69092 Loss: 101.092 +41600/69092 Loss: 100.152 +44800/69092 Loss: 100.723 +48000/69092 Loss: 100.422 +51200/69092 Loss: 102.224 +54400/69092 Loss: 101.234 +57600/69092 Loss: 101.301 +60800/69092 Loss: 100.431 +64000/69092 Loss: 100.798 +67200/69092 Loss: 100.829 +Training time 0:13:40.429280 +Epoch: 3 Average loss: 100.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 309) +0/69092 Loss: 104.405 +3200/69092 Loss: 102.697 +6400/69092 Loss: 102.042 +9600/69092 Loss: 99.874 +12800/69092 Loss: 101.562 +16000/69092 Loss: 101.218 +19200/69092 Loss: 99.150 +22400/69092 Loss: 100.849 +25600/69092 Loss: 99.347 +28800/69092 Loss: 102.045 +32000/69092 Loss: 101.202 +35200/69092 Loss: 100.960 +38400/69092 Loss: 100.857 +41600/69092 Loss: 100.561 +44800/69092 Loss: 100.716 +48000/69092 Loss: 101.735 +51200/69092 Loss: 101.473 +54400/69092 Loss: 101.561 +57600/69092 Loss: 101.530 +60800/69092 Loss: 101.593 +64000/69092 Loss: 100.781 +67200/69092 Loss: 102.120 +Training time 0:13:49.228027 +Epoch: 4 Average loss: 101.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 310) +0/69092 Loss: 100.612 +3200/69092 Loss: 100.087 +6400/69092 Loss: 101.472 +9600/69092 Loss: 101.564 +12800/69092 Loss: 102.014 +16000/69092 Loss: 101.146 +19200/69092 Loss: 100.999 +22400/69092 Loss: 99.694 +25600/69092 Loss: 100.075 +28800/69092 Loss: 100.433 +32000/69092 Loss: 101.577 +35200/69092 Loss: 101.377 +38400/69092 Loss: 101.565 +41600/69092 Loss: 101.110 +44800/69092 Loss: 101.574 +48000/69092 Loss: 102.736 +51200/69092 Loss: 101.637 +54400/69092 Loss: 100.963 +57600/69092 Loss: 100.847 +60800/69092 Loss: 100.658 +64000/69092 Loss: 100.277 +67200/69092 Loss: 101.948 +Training time 0:13:47.271542 +Epoch: 5 Average loss: 101.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 311) +0/69092 Loss: 99.503 +3200/69092 Loss: 100.903 +6400/69092 Loss: 100.999 +9600/69092 Loss: 100.163 +12800/69092 Loss: 100.597 +16000/69092 Loss: 102.861 +19200/69092 Loss: 101.342 +22400/69092 Loss: 101.746 +25600/69092 Loss: 100.579 +28800/69092 Loss: 100.999 +32000/69092 Loss: 100.485 +35200/69092 Loss: 100.170 +38400/69092 Loss: 102.094 +41600/69092 Loss: 99.767 +44800/69092 Loss: 101.411 +48000/69092 Loss: 100.740 +51200/69092 Loss: 101.403 +54400/69092 Loss: 100.745 +57600/69092 Loss: 100.775 +60800/69092 Loss: 102.080 +64000/69092 Loss: 99.539 +67200/69092 Loss: 102.890 +Training time 0:13:43.537098 +Epoch: 6 Average loss: 101.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 312) +0/69092 Loss: 93.034 +3200/69092 Loss: 100.929 +6400/69092 Loss: 99.783 +9600/69092 Loss: 101.700 +12800/69092 Loss: 101.977 +16000/69092 Loss: 101.483 +19200/69092 Loss: 101.781 +22400/69092 Loss: 100.891 +25600/69092 Loss: 101.834 +28800/69092 Loss: 101.288 +32000/69092 Loss: 100.274 +35200/69092 Loss: 99.955 +38400/69092 Loss: 100.806 +41600/69092 Loss: 101.287 +44800/69092 Loss: 101.291 +48000/69092 Loss: 101.328 +51200/69092 Loss: 101.429 +54400/69092 Loss: 99.736 +57600/69092 Loss: 100.624 +60800/69092 Loss: 102.407 +64000/69092 Loss: 100.510 +67200/69092 Loss: 100.911 +Training time 0:13:44.307700 +Epoch: 7 Average loss: 101.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 313) +0/69092 Loss: 89.404 +3200/69092 Loss: 102.486 +6400/69092 Loss: 99.687 +9600/69092 Loss: 102.481 +12800/69092 Loss: 100.509 +16000/69092 Loss: 101.168 +19200/69092 Loss: 101.004 +22400/69092 Loss: 99.535 +25600/69092 Loss: 100.197 +28800/69092 Loss: 101.713 +32000/69092 Loss: 100.322 +35200/69092 Loss: 100.941 +38400/69092 Loss: 100.301 +41600/69092 Loss: 101.583 +44800/69092 Loss: 100.323 +48000/69092 Loss: 101.930 +51200/69092 Loss: 99.980 +54400/69092 Loss: 100.723 +57600/69092 Loss: 99.924 +60800/69092 Loss: 100.310 +64000/69092 Loss: 102.018 +67200/69092 Loss: 100.703 +Training time 0:13:46.910893 +Epoch: 8 Average loss: 100.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 314) +0/69092 Loss: 92.930 +3200/69092 Loss: 100.759 +6400/69092 Loss: 101.740 +9600/69092 Loss: 102.505 +12800/69092 Loss: 100.584 +16000/69092 Loss: 100.649 +19200/69092 Loss: 100.761 +22400/69092 Loss: 101.945 +25600/69092 Loss: 101.388 +28800/69092 Loss: 100.734 +32000/69092 Loss: 99.510 +35200/69092 Loss: 100.671 +38400/69092 Loss: 101.366 +41600/69092 Loss: 101.232 +44800/69092 Loss: 102.137 +48000/69092 Loss: 100.523 +51200/69092 Loss: 99.612 +54400/69092 Loss: 101.236 +57600/69092 Loss: 101.923 +60800/69092 Loss: 100.240 +64000/69092 Loss: 100.809 +67200/69092 Loss: 100.129 +Training time 0:13:44.912871 +Epoch: 9 Average loss: 100.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 315) +0/69092 Loss: 102.599 +3200/69092 Loss: 100.465 +6400/69092 Loss: 100.713 +9600/69092 Loss: 100.518 +12800/69092 Loss: 101.146 +16000/69092 Loss: 101.154 +19200/69092 Loss: 100.163 +22400/69092 Loss: 100.315 +25600/69092 Loss: 100.951 +28800/69092 Loss: 100.877 +32000/69092 Loss: 101.357 +35200/69092 Loss: 101.423 +38400/69092 Loss: 99.401 +41600/69092 Loss: 101.006 +44800/69092 Loss: 100.012 +48000/69092 Loss: 101.520 +51200/69092 Loss: 101.633 +54400/69092 Loss: 101.297 +57600/69092 Loss: 101.751 +60800/69092 Loss: 101.034 +64000/69092 Loss: 101.549 +67200/69092 Loss: 101.087 +Training time 0:13:44.652055 +Epoch: 10 Average loss: 100.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 316) +0/69092 Loss: 92.348 +3200/69092 Loss: 102.245 +6400/69092 Loss: 101.216 +9600/69092 Loss: 99.526 +12800/69092 Loss: 99.655 +16000/69092 Loss: 99.898 +19200/69092 Loss: 101.512 +22400/69092 Loss: 100.677 +25600/69092 Loss: 101.003 +28800/69092 Loss: 101.273 +32000/69092 Loss: 101.460 +35200/69092 Loss: 102.999 +38400/69092 Loss: 101.679 +41600/69092 Loss: 101.618 +44800/69092 Loss: 101.401 +48000/69092 Loss: 102.100 +51200/69092 Loss: 101.394 +54400/69092 Loss: 101.714 +57600/69092 Loss: 99.548 +60800/69092 Loss: 98.904 +64000/69092 Loss: 100.759 +67200/69092 Loss: 101.279 +Training time 0:13:42.005208 +Epoch: 11 Average loss: 101.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 317) +0/69092 Loss: 103.127 +3200/69092 Loss: 101.304 +6400/69092 Loss: 99.571 +9600/69092 Loss: 100.235 +12800/69092 Loss: 100.589 +16000/69092 Loss: 101.852 +19200/69092 Loss: 101.960 +22400/69092 Loss: 99.812 +25600/69092 Loss: 102.380 +28800/69092 Loss: 100.200 +32000/69092 Loss: 100.231 +35200/69092 Loss: 101.429 +38400/69092 Loss: 99.558 +41600/69092 Loss: 102.223 +44800/69092 Loss: 101.304 +48000/69092 Loss: 101.044 +51200/69092 Loss: 100.311 +54400/69092 Loss: 100.586 +57600/69092 Loss: 100.771 +60800/69092 Loss: 100.979 +64000/69092 Loss: 101.382 +67200/69092 Loss: 102.821 +Training time 0:13:43.604928 +Epoch: 12 Average loss: 100.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 318) +0/69092 Loss: 98.660 +3200/69092 Loss: 98.855 +6400/69092 Loss: 100.068 +9600/69092 Loss: 102.204 +12800/69092 Loss: 100.711 +16000/69092 Loss: 100.779 +19200/69092 Loss: 99.195 +22400/69092 Loss: 102.301 +25600/69092 Loss: 101.048 +28800/69092 Loss: 102.352 +32000/69092 Loss: 102.131 +35200/69092 Loss: 102.798 +38400/69092 Loss: 101.116 +41600/69092 Loss: 102.418 +44800/69092 Loss: 101.405 +48000/69092 Loss: 98.969 +51200/69092 Loss: 100.470 +54400/69092 Loss: 98.923 +57600/69092 Loss: 101.077 +60800/69092 Loss: 100.787 +64000/69092 Loss: 99.927 +67200/69092 Loss: 101.746 +Training time 0:13:41.980342 +Epoch: 13 Average loss: 100.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 319) +0/69092 Loss: 98.023 +3200/69092 Loss: 102.193 +6400/69092 Loss: 100.323 +9600/69092 Loss: 100.398 +12800/69092 Loss: 101.151 +16000/69092 Loss: 100.041 +19200/69092 Loss: 102.545 +22400/69092 Loss: 99.132 +25600/69092 Loss: 102.000 +28800/69092 Loss: 100.742 +32000/69092 Loss: 100.574 +35200/69092 Loss: 101.581 +38400/69092 Loss: 100.994 +41600/69092 Loss: 99.856 +44800/69092 Loss: 100.919 +48000/69092 Loss: 99.236 +51200/69092 Loss: 100.868 +54400/69092 Loss: 100.408 +57600/69092 Loss: 100.827 +60800/69092 Loss: 100.282 +64000/69092 Loss: 101.909 +67200/69092 Loss: 100.761 +Training time 0:13:38.303177 +Epoch: 14 Average loss: 100.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 320) +0/69092 Loss: 109.281 +3200/69092 Loss: 100.533 +6400/69092 Loss: 99.538 +9600/69092 Loss: 100.395 +12800/69092 Loss: 100.455 +16000/69092 Loss: 100.452 +19200/69092 Loss: 100.573 +22400/69092 Loss: 101.403 +25600/69092 Loss: 101.141 +28800/69092 Loss: 100.852 +32000/69092 Loss: 100.873 +35200/69092 Loss: 100.685 +38400/69092 Loss: 100.592 +41600/69092 Loss: 100.568 +44800/69092 Loss: 101.289 +48000/69092 Loss: 101.164 +51200/69092 Loss: 101.361 +54400/69092 Loss: 100.941 +57600/69092 Loss: 101.323 +60800/69092 Loss: 100.579 +64000/69092 Loss: 100.892 +67200/69092 Loss: 100.701 +Training time 0:13:40.826917 +Epoch: 15 Average loss: 100.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 321) +0/69092 Loss: 101.397 +3200/69092 Loss: 101.202 +6400/69092 Loss: 100.958 +9600/69092 Loss: 100.390 +12800/69092 Loss: 101.428 +16000/69092 Loss: 100.071 +19200/69092 Loss: 100.303 +22400/69092 Loss: 98.971 +25600/69092 Loss: 100.058 +28800/69092 Loss: 100.524 +32000/69092 Loss: 101.166 +35200/69092 Loss: 101.840 +38400/69092 Loss: 100.657 +41600/69092 Loss: 102.041 +44800/69092 Loss: 100.348 +48000/69092 Loss: 101.761 +51200/69092 Loss: 100.236 +54400/69092 Loss: 102.768 +57600/69092 Loss: 101.903 +60800/69092 Loss: 100.334 +64000/69092 Loss: 100.594 +67200/69092 Loss: 100.598 +Training time 0:13:42.549648 +Epoch: 16 Average loss: 100.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 322) +0/69092 Loss: 101.384 +3200/69092 Loss: 100.735 +6400/69092 Loss: 102.624 +9600/69092 Loss: 101.360 +12800/69092 Loss: 100.728 +16000/69092 Loss: 99.622 +19200/69092 Loss: 101.134 +22400/69092 Loss: 100.231 +25600/69092 Loss: 102.931 +28800/69092 Loss: 100.630 +32000/69092 Loss: 101.530 +35200/69092 Loss: 99.538 +38400/69092 Loss: 100.677 +41600/69092 Loss: 100.330 +44800/69092 Loss: 100.533 +48000/69092 Loss: 100.834 +51200/69092 Loss: 101.262 +54400/69092 Loss: 101.080 +57600/69092 Loss: 99.789 +60800/69092 Loss: 103.044 +64000/69092 Loss: 101.774 +67200/69092 Loss: 101.678 +Training time 0:13:51.785993 +Epoch: 17 Average loss: 101.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 323) +0/69092 Loss: 96.900 +3200/69092 Loss: 100.394 +6400/69092 Loss: 100.396 +9600/69092 Loss: 100.228 +12800/69092 Loss: 101.286 +16000/69092 Loss: 100.394 +19200/69092 Loss: 100.482 +22400/69092 Loss: 100.136 +25600/69092 Loss: 101.057 +28800/69092 Loss: 101.637 +32000/69092 Loss: 100.654 +35200/69092 Loss: 100.904 +38400/69092 Loss: 101.429 +41600/69092 Loss: 101.235 +44800/69092 Loss: 100.382 +48000/69092 Loss: 101.907 +51200/69092 Loss: 101.232 +54400/69092 Loss: 100.439 +57600/69092 Loss: 100.745 +60800/69092 Loss: 101.506 +64000/69092 Loss: 100.779 +67200/69092 Loss: 100.891 +Training time 0:13:54.479107 +Epoch: 18 Average loss: 100.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 324) +0/69092 Loss: 106.432 +3200/69092 Loss: 101.905 +6400/69092 Loss: 102.005 +9600/69092 Loss: 100.527 +12800/69092 Loss: 101.517 +16000/69092 Loss: 102.610 +19200/69092 Loss: 99.099 +22400/69092 Loss: 100.048 +25600/69092 Loss: 100.255 +28800/69092 Loss: 100.488 +32000/69092 Loss: 100.228 +35200/69092 Loss: 101.847 +38400/69092 Loss: 101.005 +41600/69092 Loss: 100.958 +44800/69092 Loss: 100.345 +48000/69092 Loss: 100.847 +51200/69092 Loss: 99.665 +54400/69092 Loss: 100.755 +57600/69092 Loss: 99.048 +60800/69092 Loss: 100.771 +64000/69092 Loss: 101.709 +67200/69092 Loss: 100.025 +Training time 0:13:44.623544 +Epoch: 19 Average loss: 100.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 325) +0/69092 Loss: 108.081 +3200/69092 Loss: 100.867 +6400/69092 Loss: 99.876 +9600/69092 Loss: 101.975 +12800/69092 Loss: 100.503 +16000/69092 Loss: 100.244 +19200/69092 Loss: 100.371 +22400/69092 Loss: 100.663 +25600/69092 Loss: 98.655 +28800/69092 Loss: 101.352 +32000/69092 Loss: 100.645 +35200/69092 Loss: 101.024 +38400/69092 Loss: 101.967 +41600/69092 Loss: 99.261 +44800/69092 Loss: 103.108 +48000/69092 Loss: 100.840 +51200/69092 Loss: 100.834 +54400/69092 Loss: 101.388 +57600/69092 Loss: 99.898 +60800/69092 Loss: 100.670 +64000/69092 Loss: 100.716 +67200/69092 Loss: 99.829 +Training time 0:13:46.285635 +Epoch: 20 Average loss: 100.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 326) +0/69092 Loss: 115.593 +3200/69092 Loss: 100.072 +6400/69092 Loss: 99.461 +9600/69092 Loss: 100.909 +12800/69092 Loss: 100.815 +16000/69092 Loss: 101.452 +19200/69092 Loss: 99.734 +22400/69092 Loss: 99.116 +25600/69092 Loss: 99.806 +28800/69092 Loss: 103.116 +32000/69092 Loss: 99.992 +35200/69092 Loss: 99.445 +38400/69092 Loss: 102.130 +41600/69092 Loss: 100.887 +44800/69092 Loss: 100.788 +48000/69092 Loss: 99.998 +51200/69092 Loss: 101.494 +54400/69092 Loss: 103.332 +57600/69092 Loss: 100.992 +60800/69092 Loss: 99.393 +64000/69092 Loss: 102.040 +67200/69092 Loss: 100.811 +Training time 0:13:39.234210 +Epoch: 21 Average loss: 100.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 327) +0/69092 Loss: 103.422 +3200/69092 Loss: 101.220 +6400/69092 Loss: 99.921 +9600/69092 Loss: 102.307 +12800/69092 Loss: 100.684 +16000/69092 Loss: 100.662 +19200/69092 Loss: 101.321 +22400/69092 Loss: 101.583 +25600/69092 Loss: 100.118 +28800/69092 Loss: 99.843 +32000/69092 Loss: 100.445 +35200/69092 Loss: 99.932 +38400/69092 Loss: 100.984 +41600/69092 Loss: 100.616 +44800/69092 Loss: 100.551 +48000/69092 Loss: 100.435 +51200/69092 Loss: 101.420 +54400/69092 Loss: 100.868 +57600/69092 Loss: 101.580 +60800/69092 Loss: 101.371 +64000/69092 Loss: 100.412 +67200/69092 Loss: 100.385 +Training time 0:13:41.420463 +Epoch: 22 Average loss: 100.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 328) +0/69092 Loss: 101.117 +3200/69092 Loss: 102.322 +6400/69092 Loss: 100.668 +9600/69092 Loss: 100.493 +12800/69092 Loss: 100.947 +16000/69092 Loss: 102.199 +19200/69092 Loss: 100.582 +22400/69092 Loss: 102.171 +25600/69092 Loss: 100.547 +28800/69092 Loss: 98.796 +32000/69092 Loss: 101.258 +35200/69092 Loss: 100.227 +38400/69092 Loss: 100.362 +41600/69092 Loss: 99.823 +44800/69092 Loss: 100.352 +48000/69092 Loss: 101.622 +51200/69092 Loss: 99.726 +54400/69092 Loss: 101.785 +57600/69092 Loss: 100.515 +60800/69092 Loss: 101.281 +64000/69092 Loss: 100.352 +67200/69092 Loss: 101.289 +Training time 0:13:50.142950 +Epoch: 23 Average loss: 100.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 329) +0/69092 Loss: 97.676 +3200/69092 Loss: 100.696 +6400/69092 Loss: 100.726 +9600/69092 Loss: 101.559 +12800/69092 Loss: 102.584 +16000/69092 Loss: 101.524 +19200/69092 Loss: 100.448 +22400/69092 Loss: 100.422 +25600/69092 Loss: 100.866 +28800/69092 Loss: 101.324 +32000/69092 Loss: 102.293 +35200/69092 Loss: 98.867 +38400/69092 Loss: 100.347 +41600/69092 Loss: 100.123 +44800/69092 Loss: 102.359 +48000/69092 Loss: 100.427 +51200/69092 Loss: 100.088 +54400/69092 Loss: 100.438 +57600/69092 Loss: 99.811 +60800/69092 Loss: 100.910 +64000/69092 Loss: 100.345 +67200/69092 Loss: 100.536 +Training time 0:13:40.610892 +Epoch: 24 Average loss: 100.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 330) +0/69092 Loss: 94.685 +3200/69092 Loss: 100.876 +6400/69092 Loss: 102.026 +9600/69092 Loss: 100.950 +12800/69092 Loss: 99.815 +16000/69092 Loss: 100.259 +19200/69092 Loss: 101.200 +22400/69092 Loss: 99.880 +25600/69092 Loss: 99.571 +28800/69092 Loss: 99.784 +32000/69092 Loss: 101.550 +35200/69092 Loss: 100.886 +38400/69092 Loss: 100.867 +41600/69092 Loss: 101.638 +44800/69092 Loss: 99.415 +48000/69092 Loss: 101.404 +51200/69092 Loss: 101.102 +54400/69092 Loss: 101.780 +57600/69092 Loss: 102.143 +60800/69092 Loss: 99.996 +64000/69092 Loss: 100.388 +67200/69092 Loss: 101.842 +Training time 0:13:46.956463 +Epoch: 25 Average loss: 100.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 331) +0/69092 Loss: 95.708 +3200/69092 Loss: 100.578 +6400/69092 Loss: 101.617 +9600/69092 Loss: 101.631 +12800/69092 Loss: 99.029 +16000/69092 Loss: 101.988 +19200/69092 Loss: 101.572 +22400/69092 Loss: 101.821 +25600/69092 Loss: 99.838 +28800/69092 Loss: 99.405 +32000/69092 Loss: 99.064 +35200/69092 Loss: 101.492 +38400/69092 Loss: 102.232 +41600/69092 Loss: 99.298 +44800/69092 Loss: 103.041 +48000/69092 Loss: 100.975 +51200/69092 Loss: 101.170 +54400/69092 Loss: 99.590 +57600/69092 Loss: 100.178 +60800/69092 Loss: 101.634 +64000/69092 Loss: 100.417 +67200/69092 Loss: 100.651 +Training time 0:13:48.040434 +Epoch: 26 Average loss: 100.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 332) +0/69092 Loss: 103.689 +3200/69092 Loss: 101.952 +6400/69092 Loss: 99.726 +9600/69092 Loss: 99.885 +12800/69092 Loss: 100.487 +16000/69092 Loss: 100.782 +19200/69092 Loss: 102.541 +22400/69092 Loss: 99.627 +25600/69092 Loss: 101.096 +28800/69092 Loss: 102.418 +32000/69092 Loss: 101.862 +35200/69092 Loss: 100.870 +38400/69092 Loss: 102.061 +41600/69092 Loss: 100.232 +44800/69092 Loss: 99.418 +48000/69092 Loss: 100.322 +51200/69092 Loss: 100.581 +54400/69092 Loss: 99.918 +57600/69092 Loss: 100.539 +60800/69092 Loss: 99.828 +64000/69092 Loss: 100.200 +67200/69092 Loss: 99.650 +Training time 0:13:44.182382 +Epoch: 27 Average loss: 100.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 333) +0/69092 Loss: 115.419 +3200/69092 Loss: 99.606 +6400/69092 Loss: 101.413 +9600/69092 Loss: 100.534 +12800/69092 Loss: 100.875 +16000/69092 Loss: 100.690 +19200/69092 Loss: 101.778 +22400/69092 Loss: 100.888 +25600/69092 Loss: 100.077 +28800/69092 Loss: 100.943 +32000/69092 Loss: 101.113 +35200/69092 Loss: 99.948 +38400/69092 Loss: 100.024 +41600/69092 Loss: 101.024 +44800/69092 Loss: 100.483 +48000/69092 Loss: 99.951 +51200/69092 Loss: 100.460 +54400/69092 Loss: 99.669 +57600/69092 Loss: 101.102 +60800/69092 Loss: 101.202 +64000/69092 Loss: 100.955 +67200/69092 Loss: 101.127 +Training time 0:13:55.521302 +Epoch: 28 Average loss: 100.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 334) +0/69092 Loss: 95.009 +3200/69092 Loss: 101.236 +6400/69092 Loss: 101.021 +9600/69092 Loss: 101.044 +12800/69092 Loss: 100.359 +16000/69092 Loss: 99.065 +19200/69092 Loss: 101.529 +22400/69092 Loss: 101.653 +25600/69092 Loss: 100.111 +28800/69092 Loss: 101.576 +32000/69092 Loss: 99.921 +35200/69092 Loss: 100.603 +38400/69092 Loss: 101.467 +41600/69092 Loss: 101.212 +44800/69092 Loss: 102.408 +48000/69092 Loss: 101.539 +51200/69092 Loss: 102.248 +54400/69092 Loss: 99.994 +57600/69092 Loss: 99.332 +60800/69092 Loss: 100.135 +64000/69092 Loss: 100.359 +67200/69092 Loss: 100.526 +Training time 0:13:46.954900 +Epoch: 29 Average loss: 100.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 335) +0/69092 Loss: 97.568 +3200/69092 Loss: 100.509 +6400/69092 Loss: 101.608 +9600/69092 Loss: 101.264 +12800/69092 Loss: 100.528 +16000/69092 Loss: 101.217 +19200/69092 Loss: 99.940 +22400/69092 Loss: 100.970 +25600/69092 Loss: 100.889 +28800/69092 Loss: 101.200 +32000/69092 Loss: 101.455 +35200/69092 Loss: 101.029 +38400/69092 Loss: 100.961 +41600/69092 Loss: 100.779 +44800/69092 Loss: 100.871 +48000/69092 Loss: 100.535 +51200/69092 Loss: 102.219 +54400/69092 Loss: 100.587 +57600/69092 Loss: 100.572 +60800/69092 Loss: 100.140 +64000/69092 Loss: 100.289 +67200/69092 Loss: 100.067 +Training time 0:13:45.601360 +Epoch: 30 Average loss: 100.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 336) +0/69092 Loss: 102.497 +3200/69092 Loss: 99.248 +6400/69092 Loss: 100.866 +9600/69092 Loss: 100.674 +12800/69092 Loss: 101.074 +16000/69092 Loss: 100.521 +19200/69092 Loss: 99.516 +22400/69092 Loss: 99.370 +25600/69092 Loss: 100.613 +28800/69092 Loss: 101.589 +32000/69092 Loss: 100.437 +35200/69092 Loss: 100.770 +38400/69092 Loss: 100.437 +41600/69092 Loss: 99.955 +44800/69092 Loss: 100.674 +48000/69092 Loss: 102.203 +51200/69092 Loss: 102.422 +54400/69092 Loss: 102.031 +57600/69092 Loss: 100.293 +60800/69092 Loss: 99.808 +64000/69092 Loss: 101.312 +67200/69092 Loss: 98.753 +Training time 0:13:44.669288 +Epoch: 31 Average loss: 100.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 337) +0/69092 Loss: 106.944 +3200/69092 Loss: 101.007 +6400/69092 Loss: 100.195 +9600/69092 Loss: 101.764 +12800/69092 Loss: 101.632 +16000/69092 Loss: 100.218 +19200/69092 Loss: 100.050 +22400/69092 Loss: 100.597 +25600/69092 Loss: 100.329 +28800/69092 Loss: 100.744 +32000/69092 Loss: 99.927 +35200/69092 Loss: 101.054 +38400/69092 Loss: 100.543 +41600/69092 Loss: 100.871 +44800/69092 Loss: 100.249 +48000/69092 Loss: 101.372 +51200/69092 Loss: 101.038 +54400/69092 Loss: 100.213 +57600/69092 Loss: 101.135 +60800/69092 Loss: 101.279 +64000/69092 Loss: 100.189 +67200/69092 Loss: 100.705 +Training time 0:13:48.211620 +Epoch: 32 Average loss: 100.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 338) +0/69092 Loss: 105.057 +3200/69092 Loss: 101.411 +6400/69092 Loss: 101.123 +9600/69092 Loss: 101.170 +12800/69092 Loss: 100.024 +16000/69092 Loss: 100.326 +19200/69092 Loss: 99.945 +22400/69092 Loss: 98.713 +25600/69092 Loss: 99.956 +28800/69092 Loss: 100.547 +32000/69092 Loss: 101.102 +35200/69092 Loss: 100.738 +38400/69092 Loss: 100.379 +41600/69092 Loss: 99.797 +44800/69092 Loss: 101.107 +48000/69092 Loss: 101.870 +51200/69092 Loss: 100.093 +54400/69092 Loss: 102.743 +57600/69092 Loss: 100.909 +60800/69092 Loss: 100.894 +64000/69092 Loss: 101.919 +67200/69092 Loss: 99.192 +Training time 0:13:48.969388 +Epoch: 33 Average loss: 100.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 339) +0/69092 Loss: 96.143 +3200/69092 Loss: 99.165 +6400/69092 Loss: 99.795 +9600/69092 Loss: 99.921 +12800/69092 Loss: 100.474 +16000/69092 Loss: 100.559 +19200/69092 Loss: 100.752 +22400/69092 Loss: 100.915 +25600/69092 Loss: 101.454 +28800/69092 Loss: 100.202 +32000/69092 Loss: 99.591 +35200/69092 Loss: 102.369 +38400/69092 Loss: 101.682 +41600/69092 Loss: 100.845 +44800/69092 Loss: 100.682 +48000/69092 Loss: 100.252 +51200/69092 Loss: 100.750 +54400/69092 Loss: 99.184 +57600/69092 Loss: 99.807 +60800/69092 Loss: 101.246 +64000/69092 Loss: 101.431 +67200/69092 Loss: 101.695 +Training time 0:13:46.804170 +Epoch: 34 Average loss: 100.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 340) +0/69092 Loss: 102.265 +3200/69092 Loss: 99.336 +6400/69092 Loss: 100.856 +9600/69092 Loss: 100.959 +12800/69092 Loss: 99.595 +16000/69092 Loss: 101.360 +19200/69092 Loss: 99.363 +22400/69092 Loss: 100.603 +25600/69092 Loss: 99.662 +28800/69092 Loss: 100.459 +32000/69092 Loss: 100.961 +35200/69092 Loss: 102.079 +38400/69092 Loss: 102.189 +41600/69092 Loss: 100.266 +44800/69092 Loss: 100.887 +48000/69092 Loss: 100.614 +51200/69092 Loss: 99.363 +54400/69092 Loss: 102.400 +57600/69092 Loss: 99.713 +60800/69092 Loss: 100.407 +64000/69092 Loss: 99.955 +67200/69092 Loss: 101.930 +Training time 0:13:50.281189 +Epoch: 35 Average loss: 100.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 341) +0/69092 Loss: 91.077 +3200/69092 Loss: 99.407 +6400/69092 Loss: 100.558 +9600/69092 Loss: 99.682 +12800/69092 Loss: 100.872 +16000/69092 Loss: 101.568 +19200/69092 Loss: 100.120 +22400/69092 Loss: 100.198 +25600/69092 Loss: 100.478 +28800/69092 Loss: 100.683 +32000/69092 Loss: 100.751 +35200/69092 Loss: 101.349 +38400/69092 Loss: 99.203 +41600/69092 Loss: 100.295 +44800/69092 Loss: 100.931 +48000/69092 Loss: 102.029 +51200/69092 Loss: 101.676 +54400/69092 Loss: 100.771 +57600/69092 Loss: 100.971 +60800/69092 Loss: 100.550 +64000/69092 Loss: 100.418 +67200/69092 Loss: 100.937 +Training time 0:13:46.709090 +Epoch: 36 Average loss: 100.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 342) +0/69092 Loss: 100.407 +3200/69092 Loss: 101.588 +6400/69092 Loss: 99.413 +9600/69092 Loss: 99.810 +12800/69092 Loss: 100.302 +16000/69092 Loss: 99.598 +19200/69092 Loss: 99.751 +22400/69092 Loss: 101.144 +25600/69092 Loss: 101.085 +28800/69092 Loss: 99.240 +32000/69092 Loss: 99.390 +35200/69092 Loss: 99.293 +38400/69092 Loss: 102.304 +41600/69092 Loss: 101.368 +44800/69092 Loss: 101.371 +48000/69092 Loss: 102.314 +51200/69092 Loss: 102.150 +54400/69092 Loss: 101.411 +57600/69092 Loss: 98.967 +60800/69092 Loss: 100.610 +64000/69092 Loss: 101.944 +67200/69092 Loss: 100.726 +Training time 0:13:45.485489 +Epoch: 37 Average loss: 100.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 343) +0/69092 Loss: 104.606 +3200/69092 Loss: 101.576 +6400/69092 Loss: 99.949 +9600/69092 Loss: 99.341 +12800/69092 Loss: 99.824 +16000/69092 Loss: 101.046 +19200/69092 Loss: 101.872 +22400/69092 Loss: 100.617 +25600/69092 Loss: 102.134 +28800/69092 Loss: 100.201 +32000/69092 Loss: 100.859 +35200/69092 Loss: 99.919 +38400/69092 Loss: 100.106 +41600/69092 Loss: 101.852 +44800/69092 Loss: 101.565 +48000/69092 Loss: 100.622 +51200/69092 Loss: 100.042 +54400/69092 Loss: 100.122 +57600/69092 Loss: 99.449 +60800/69092 Loss: 99.677 +64000/69092 Loss: 101.347 +67200/69092 Loss: 101.118 +Training time 0:13:42.956023 +Epoch: 38 Average loss: 100.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 344) +0/69092 Loss: 102.286 +3200/69092 Loss: 101.637 +6400/69092 Loss: 101.905 +9600/69092 Loss: 99.692 +12800/69092 Loss: 101.770 +16000/69092 Loss: 101.143 +19200/69092 Loss: 99.607 +22400/69092 Loss: 99.366 +25600/69092 Loss: 101.293 +28800/69092 Loss: 100.114 +32000/69092 Loss: 100.635 +35200/69092 Loss: 101.462 +38400/69092 Loss: 101.717 +41600/69092 Loss: 100.653 +44800/69092 Loss: 101.033 +48000/69092 Loss: 100.163 +51200/69092 Loss: 100.070 +54400/69092 Loss: 99.830 +57600/69092 Loss: 100.736 +60800/69092 Loss: 100.665 +64000/69092 Loss: 98.934 +67200/69092 Loss: 100.187 +Training time 0:13:46.915183 +Epoch: 39 Average loss: 100.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 345) +0/69092 Loss: 103.864 +3200/69092 Loss: 100.026 +6400/69092 Loss: 101.029 +9600/69092 Loss: 100.974 +12800/69092 Loss: 100.535 +16000/69092 Loss: 101.225 +19200/69092 Loss: 100.081 +22400/69092 Loss: 100.278 +25600/69092 Loss: 101.053 +28800/69092 Loss: 100.120 +32000/69092 Loss: 99.946 +35200/69092 Loss: 100.005 +38400/69092 Loss: 101.667 +41600/69092 Loss: 101.446 +44800/69092 Loss: 100.376 +48000/69092 Loss: 100.063 +51200/69092 Loss: 101.316 +54400/69092 Loss: 100.083 +57600/69092 Loss: 101.342 +60800/69092 Loss: 100.845 +64000/69092 Loss: 100.255 +67200/69092 Loss: 101.640 +Training time 0:13:54.693774 +Epoch: 40 Average loss: 100.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 346) +0/69092 Loss: 95.797 +3200/69092 Loss: 100.685 +6400/69092 Loss: 99.963 +9600/69092 Loss: 98.557 +12800/69092 Loss: 101.479 +16000/69092 Loss: 101.028 +19200/69092 Loss: 100.734 +22400/69092 Loss: 101.016 +25600/69092 Loss: 101.209 +28800/69092 Loss: 99.807 +32000/69092 Loss: 100.774 +35200/69092 Loss: 100.273 +38400/69092 Loss: 100.478 +41600/69092 Loss: 100.282 +44800/69092 Loss: 100.459 +48000/69092 Loss: 99.303 +51200/69092 Loss: 100.207 +54400/69092 Loss: 101.014 +57600/69092 Loss: 101.858 +60800/69092 Loss: 99.894 +64000/69092 Loss: 101.244 +67200/69092 Loss: 100.885 +Training time 0:13:43.538655 +Epoch: 41 Average loss: 100.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 347) +0/69092 Loss: 86.912 +3200/69092 Loss: 100.820 +6400/69092 Loss: 100.731 +9600/69092 Loss: 101.455 +12800/69092 Loss: 100.516 +16000/69092 Loss: 101.065 +19200/69092 Loss: 100.845 +22400/69092 Loss: 100.765 +25600/69092 Loss: 100.414 +28800/69092 Loss: 99.092 +32000/69092 Loss: 101.805 +35200/69092 Loss: 101.380 +38400/69092 Loss: 100.966 +41600/69092 Loss: 101.460 +44800/69092 Loss: 102.057 +48000/69092 Loss: 101.760 +51200/69092 Loss: 100.726 +54400/69092 Loss: 100.003 +57600/69092 Loss: 100.214 +60800/69092 Loss: 99.511 +64000/69092 Loss: 100.547 +67200/69092 Loss: 99.267 +Training time 0:13:43.149858 +Epoch: 42 Average loss: 100.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 348) +0/69092 Loss: 97.847 +3200/69092 Loss: 100.792 +6400/69092 Loss: 98.761 +9600/69092 Loss: 99.049 +12800/69092 Loss: 101.049 +16000/69092 Loss: 100.065 +19200/69092 Loss: 101.160 +22400/69092 Loss: 100.325 +25600/69092 Loss: 102.291 +28800/69092 Loss: 100.398 +32000/69092 Loss: 100.803 +35200/69092 Loss: 99.658 +38400/69092 Loss: 98.757 +41600/69092 Loss: 102.815 +44800/69092 Loss: 100.821 +48000/69092 Loss: 99.938 +51200/69092 Loss: 101.464 +54400/69092 Loss: 100.865 +57600/69092 Loss: 100.684 +60800/69092 Loss: 99.620 +64000/69092 Loss: 101.463 +67200/69092 Loss: 100.893 +Training time 0:13:42.241883 +Epoch: 43 Average loss: 100.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 349) +0/69092 Loss: 101.090 +3200/69092 Loss: 100.023 +6400/69092 Loss: 101.341 +9600/69092 Loss: 100.497 +12800/69092 Loss: 101.284 +16000/69092 Loss: 100.879 +19200/69092 Loss: 102.923 +22400/69092 Loss: 99.894 +25600/69092 Loss: 100.222 +28800/69092 Loss: 100.785 +32000/69092 Loss: 100.263 +35200/69092 Loss: 99.577 +38400/69092 Loss: 100.231 +41600/69092 Loss: 98.636 +44800/69092 Loss: 101.394 +48000/69092 Loss: 99.093 +51200/69092 Loss: 99.776 +54400/69092 Loss: 99.552 +57600/69092 Loss: 101.132 +60800/69092 Loss: 100.358 +64000/69092 Loss: 101.070 +67200/69092 Loss: 99.866 +Training time 0:13:49.832824 +Epoch: 44 Average loss: 100.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 350) +0/69092 Loss: 102.602 +3200/69092 Loss: 100.804 +6400/69092 Loss: 99.065 +9600/69092 Loss: 100.865 +12800/69092 Loss: 100.152 +16000/69092 Loss: 101.009 +19200/69092 Loss: 99.823 +22400/69092 Loss: 101.312 +25600/69092 Loss: 100.640 +28800/69092 Loss: 101.284 +32000/69092 Loss: 101.579 +35200/69092 Loss: 101.127 +38400/69092 Loss: 100.654 +41600/69092 Loss: 100.400 +44800/69092 Loss: 100.680 +48000/69092 Loss: 100.607 +51200/69092 Loss: 100.626 +54400/69092 Loss: 99.207 +57600/69092 Loss: 101.036 +60800/69092 Loss: 101.112 +64000/69092 Loss: 100.693 +67200/69092 Loss: 99.929 +Training time 0:13:53.529081 +Epoch: 45 Average loss: 100.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 351) +0/69092 Loss: 100.066 +3200/69092 Loss: 99.912 +6400/69092 Loss: 101.233 +9600/69092 Loss: 99.804 +12800/69092 Loss: 102.190 +16000/69092 Loss: 99.184 +19200/69092 Loss: 101.650 +22400/69092 Loss: 100.873 +25600/69092 Loss: 100.475 +28800/69092 Loss: 100.704 +32000/69092 Loss: 100.968 +35200/69092 Loss: 101.267 +38400/69092 Loss: 100.878 +41600/69092 Loss: 100.626 +44800/69092 Loss: 101.391 +48000/69092 Loss: 101.039 +51200/69092 Loss: 100.021 +54400/69092 Loss: 101.445 +57600/69092 Loss: 98.989 +60800/69092 Loss: 100.863 +64000/69092 Loss: 100.098 +67200/69092 Loss: 101.075 +Training time 0:13:41.063634 +Epoch: 46 Average loss: 100.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 352) +0/69092 Loss: 107.767 +3200/69092 Loss: 100.035 +6400/69092 Loss: 100.032 +9600/69092 Loss: 100.271 +12800/69092 Loss: 99.648 +16000/69092 Loss: 100.324 +19200/69092 Loss: 100.401 +22400/69092 Loss: 99.610 +25600/69092 Loss: 100.587 +28800/69092 Loss: 101.548 +32000/69092 Loss: 100.786 +35200/69092 Loss: 101.132 +38400/69092 Loss: 100.279 +41600/69092 Loss: 102.115 +44800/69092 Loss: 101.417 +48000/69092 Loss: 99.832 +51200/69092 Loss: 100.492 +54400/69092 Loss: 99.372 +57600/69092 Loss: 101.261 +60800/69092 Loss: 99.410 +64000/69092 Loss: 100.038 +67200/69092 Loss: 100.951 +Training time 0:13:49.550724 +Epoch: 47 Average loss: 100.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 353) +0/69092 Loss: 93.837 +3200/69092 Loss: 100.101 +6400/69092 Loss: 100.211 +9600/69092 Loss: 100.170 +12800/69092 Loss: 100.578 +16000/69092 Loss: 101.474 +19200/69092 Loss: 100.247 +22400/69092 Loss: 101.133 +25600/69092 Loss: 100.646 +28800/69092 Loss: 100.263 +32000/69092 Loss: 98.845 +35200/69092 Loss: 99.886 +38400/69092 Loss: 100.471 +41600/69092 Loss: 99.829 +44800/69092 Loss: 100.039 +48000/69092 Loss: 100.441 +51200/69092 Loss: 99.633 +54400/69092 Loss: 100.533 +57600/69092 Loss: 102.072 +60800/69092 Loss: 102.218 +64000/69092 Loss: 99.556 +67200/69092 Loss: 102.889 +Training time 0:13:50.161023 +Epoch: 48 Average loss: 100.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 354) +0/69092 Loss: 100.686 +3200/69092 Loss: 100.585 +6400/69092 Loss: 100.088 +9600/69092 Loss: 99.718 +12800/69092 Loss: 99.970 +16000/69092 Loss: 99.199 +19200/69092 Loss: 101.050 +22400/69092 Loss: 101.403 +25600/69092 Loss: 100.966 +28800/69092 Loss: 99.846 +32000/69092 Loss: 101.012 +35200/69092 Loss: 101.104 +38400/69092 Loss: 99.477 +41600/69092 Loss: 99.318 +44800/69092 Loss: 99.971 +48000/69092 Loss: 101.069 +51200/69092 Loss: 99.977 +54400/69092 Loss: 100.429 +57600/69092 Loss: 100.081 +60800/69092 Loss: 100.556 +64000/69092 Loss: 101.308 +67200/69092 Loss: 100.124 +Training time 0:13:47.040809 +Epoch: 49 Average loss: 100.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 355) +0/69092 Loss: 89.059 +3200/69092 Loss: 101.336 +6400/69092 Loss: 101.861 +9600/69092 Loss: 100.589 +12800/69092 Loss: 100.375 +16000/69092 Loss: 100.899 +19200/69092 Loss: 99.267 +22400/69092 Loss: 102.534 +25600/69092 Loss: 100.905 +28800/69092 Loss: 100.869 +32000/69092 Loss: 99.325 +35200/69092 Loss: 100.350 +38400/69092 Loss: 100.475 +41600/69092 Loss: 100.603 +44800/69092 Loss: 98.825 +48000/69092 Loss: 100.561 +51200/69092 Loss: 100.774 +54400/69092 Loss: 100.773 +57600/69092 Loss: 101.630 +60800/69092 Loss: 101.062 +64000/69092 Loss: 101.236 +67200/69092 Loss: 100.310 +Training time 0:13:43.005405 +Epoch: 50 Average loss: 100.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 356) +0/69092 Loss: 91.132 +3200/69092 Loss: 99.519 +6400/69092 Loss: 100.225 +9600/69092 Loss: 101.541 +12800/69092 Loss: 101.806 +16000/69092 Loss: 99.941 +19200/69092 Loss: 101.028 +22400/69092 Loss: 100.086 +25600/69092 Loss: 101.582 +28800/69092 Loss: 100.797 +32000/69092 Loss: 100.452 +35200/69092 Loss: 99.772 +38400/69092 Loss: 99.878 +41600/69092 Loss: 100.222 +44800/69092 Loss: 100.721 +48000/69092 Loss: 100.135 +51200/69092 Loss: 100.271 +54400/69092 Loss: 100.150 +57600/69092 Loss: 99.640 +60800/69092 Loss: 99.987 +64000/69092 Loss: 100.358 +67200/69092 Loss: 100.402 +Training time 0:13:49.531916 +Epoch: 51 Average loss: 100.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 357) +0/69092 Loss: 105.467 +3200/69092 Loss: 101.626 +6400/69092 Loss: 101.443 +9600/69092 Loss: 99.973 +12800/69092 Loss: 100.457 +16000/69092 Loss: 100.529 +19200/69092 Loss: 100.246 +22400/69092 Loss: 101.710 +25600/69092 Loss: 101.091 +28800/69092 Loss: 100.090 +32000/69092 Loss: 100.719 +35200/69092 Loss: 99.877 +38400/69092 Loss: 102.515 +41600/69092 Loss: 101.461 +44800/69092 Loss: 100.760 +48000/69092 Loss: 98.784 +51200/69092 Loss: 100.719 +54400/69092 Loss: 99.888 +57600/69092 Loss: 99.288 +60800/69092 Loss: 100.307 +64000/69092 Loss: 100.025 +67200/69092 Loss: 100.322 +Training time 0:13:44.136672 +Epoch: 52 Average loss: 100.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 358) +0/69092 Loss: 103.413 +3200/69092 Loss: 101.116 +6400/69092 Loss: 99.892 +9600/69092 Loss: 100.741 +12800/69092 Loss: 100.848 +16000/69092 Loss: 101.090 +19200/69092 Loss: 100.641 +22400/69092 Loss: 100.172 +25600/69092 Loss: 100.832 +28800/69092 Loss: 100.282 +32000/69092 Loss: 98.993 +35200/69092 Loss: 100.923 +38400/69092 Loss: 99.936 +41600/69092 Loss: 101.969 +44800/69092 Loss: 100.839 +48000/69092 Loss: 98.820 +51200/69092 Loss: 100.309 +54400/69092 Loss: 101.948 +57600/69092 Loss: 101.291 +60800/69092 Loss: 99.798 +64000/69092 Loss: 100.224 +67200/69092 Loss: 99.963 +Training time 0:13:44.166708 +Epoch: 53 Average loss: 100.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 359) +0/69092 Loss: 100.345 +3200/69092 Loss: 100.271 +6400/69092 Loss: 100.389 +9600/69092 Loss: 99.517 +12800/69092 Loss: 99.882 +16000/69092 Loss: 100.379 +19200/69092 Loss: 100.314 +22400/69092 Loss: 101.294 +25600/69092 Loss: 100.095 +28800/69092 Loss: 100.261 +32000/69092 Loss: 100.296 +35200/69092 Loss: 99.492 +38400/69092 Loss: 100.098 +41600/69092 Loss: 99.006 +44800/69092 Loss: 100.877 +48000/69092 Loss: 99.248 +51200/69092 Loss: 103.000 +54400/69092 Loss: 101.639 +57600/69092 Loss: 100.030 +60800/69092 Loss: 101.416 +64000/69092 Loss: 101.094 +67200/69092 Loss: 100.794 +Training time 0:13:50.242757 +Epoch: 54 Average loss: 100.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 360) +0/69092 Loss: 98.868 +3200/69092 Loss: 99.569 +6400/69092 Loss: 99.254 +9600/69092 Loss: 101.088 +12800/69092 Loss: 100.279 +16000/69092 Loss: 100.382 +19200/69092 Loss: 100.065 +22400/69092 Loss: 100.891 +25600/69092 Loss: 100.505 +28800/69092 Loss: 101.372 +32000/69092 Loss: 100.538 +35200/69092 Loss: 100.650 +38400/69092 Loss: 100.566 +41600/69092 Loss: 100.490 +44800/69092 Loss: 100.784 +48000/69092 Loss: 99.588 +51200/69092 Loss: 99.606 +54400/69092 Loss: 100.486 +57600/69092 Loss: 100.960 +60800/69092 Loss: 100.114 +64000/69092 Loss: 101.671 +67200/69092 Loss: 100.957 +Training time 0:13:52.126694 +Epoch: 55 Average loss: 100.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 361) +0/69092 Loss: 104.398 +3200/69092 Loss: 100.300 +6400/69092 Loss: 98.830 +9600/69092 Loss: 100.375 +12800/69092 Loss: 99.873 +16000/69092 Loss: 99.702 +19200/69092 Loss: 100.963 +22400/69092 Loss: 101.926 +25600/69092 Loss: 101.091 +28800/69092 Loss: 99.871 +32000/69092 Loss: 99.574 +35200/69092 Loss: 100.283 +38400/69092 Loss: 100.876 +41600/69092 Loss: 101.385 +44800/69092 Loss: 101.390 +48000/69092 Loss: 100.784 +51200/69092 Loss: 99.778 +54400/69092 Loss: 100.156 +57600/69092 Loss: 100.555 +60800/69092 Loss: 100.305 +64000/69092 Loss: 100.260 +67200/69092 Loss: 99.962 +Training time 0:13:57.916502 +Epoch: 56 Average loss: 100.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 362) +0/69092 Loss: 104.034 +3200/69092 Loss: 101.533 +6400/69092 Loss: 100.483 +9600/69092 Loss: 99.607 +12800/69092 Loss: 99.642 +16000/69092 Loss: 102.000 +19200/69092 Loss: 100.447 +22400/69092 Loss: 101.309 +25600/69092 Loss: 100.319 +28800/69092 Loss: 98.204 +32000/69092 Loss: 100.233 +35200/69092 Loss: 100.042 +38400/69092 Loss: 99.224 +41600/69092 Loss: 99.368 +44800/69092 Loss: 101.921 +48000/69092 Loss: 99.659 +51200/69092 Loss: 100.453 +54400/69092 Loss: 97.972 +57600/69092 Loss: 101.011 +60800/69092 Loss: 101.066 +64000/69092 Loss: 101.635 +67200/69092 Loss: 100.867 +Training time 0:13:41.192453 +Epoch: 57 Average loss: 100.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 363) +0/69092 Loss: 107.364 +3200/69092 Loss: 101.032 +6400/69092 Loss: 98.642 +9600/69092 Loss: 99.176 +12800/69092 Loss: 99.515 +16000/69092 Loss: 100.130 +19200/69092 Loss: 99.074 +22400/69092 Loss: 100.887 +25600/69092 Loss: 100.365 +28800/69092 Loss: 100.932 +32000/69092 Loss: 99.809 +35200/69092 Loss: 100.467 +38400/69092 Loss: 101.305 +41600/69092 Loss: 100.963 +44800/69092 Loss: 102.353 +48000/69092 Loss: 101.274 +51200/69092 Loss: 101.449 +54400/69092 Loss: 99.864 +57600/69092 Loss: 99.350 +60800/69092 Loss: 99.826 +64000/69092 Loss: 100.279 +67200/69092 Loss: 100.586 +Training time 0:13:43.275302 +Epoch: 58 Average loss: 100.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 364) +0/69092 Loss: 110.838 +3200/69092 Loss: 101.059 +6400/69092 Loss: 100.328 +9600/69092 Loss: 100.405 +12800/69092 Loss: 99.802 +16000/69092 Loss: 100.925 +19200/69092 Loss: 100.708 +22400/69092 Loss: 98.793 +25600/69092 Loss: 99.593 +28800/69092 Loss: 100.162 +32000/69092 Loss: 99.660 +35200/69092 Loss: 100.428 +38400/69092 Loss: 101.090 +41600/69092 Loss: 100.439 +44800/69092 Loss: 99.765 +48000/69092 Loss: 101.605 +51200/69092 Loss: 101.158 +54400/69092 Loss: 100.832 +57600/69092 Loss: 101.225 diff --git a/OAR.2073655.stderr b/OAR.2073655.stderr new file mode 100644 index 0000000000000000000000000000000000000000..a02fd1a3ff50d0720544966e5f0b0942dd7a795d --- /dev/null +++ b/OAR.2073655.stderr @@ -0,0 +1,16 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +Traceback (most recent call last): + File "main.py", line 154, in <module> + main(args) + File "main.py", line 87, in main + beta=args.beta) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 75, in __init__ + self.load_checkpoint(self.ckpt_name) + File "/data1/data/expes/julien.dejasmin/Thesis/Pytorch_CNN_mixt_representation/utils/training.py", line 417, in load_checkpoint + self.mean_epoch_loss = checkpoint['loss'] +KeyError: 'loss' diff --git a/OAR.2073655.stdout b/OAR.2073655.stdout new file mode 100644 index 0000000000000000000000000000000000000000..7b546397f420f76bbcc49d7999567b8941791a7e --- /dev/null +++ b/OAR.2073655.stdout @@ -0,0 +1,46 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=5e-05, nb_filter_conv1=32, nb_filter_conv2=32, nb_filter_conv3=64, nb_filter_conv4=64, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity diff --git a/OAR.2073656.stderr b/OAR.2073656.stderr new file mode 100644 index 0000000000000000000000000000000000000000..227f3eb514e250ddeb2f552ffbf20957a58478c6 --- /dev/null +++ b/OAR.2073656.stderr @@ -0,0 +1,9 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-07-06 17:08:45] Job 2073656 KILLED ## diff --git a/OAR.2073656.stdout b/OAR.2073656.stdout new file mode 100644 index 0000000000000000000000000000000000000000..786e01aed0800b3dbe1131682bffb423862e3c81 --- /dev/null +++ b/OAR.2073656.stdout @@ -0,0 +1,468 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=9000, experiment_name='VAE_bs_64_conv_64_64_128_128', gpu_devices=[0, 1], is_beta_VAE=False, latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=1e-05, nb_filter_conv1=64, nb_filter_conv2=64, nb_filter_conv3=128, nb_filter_conv4=128, num_worker=1, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +CUDA Visible devices ! +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(128, 512, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=512, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=512, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(512, 128, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 3037975 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last (iter 86)' +0/69092 Loss: 117.694 +3200/69092 Loss: 118.432 +6400/69092 Loss: 118.501 +9600/69092 Loss: 118.489 +12800/69092 Loss: 119.350 +16000/69092 Loss: 118.195 +19200/69092 Loss: 122.088 +22400/69092 Loss: 118.524 +25600/69092 Loss: 119.645 +28800/69092 Loss: 118.861 +32000/69092 Loss: 120.393 +35200/69092 Loss: 118.982 +38400/69092 Loss: 117.442 +41600/69092 Loss: 118.423 +44800/69092 Loss: 117.580 +48000/69092 Loss: 119.497 +51200/69092 Loss: 119.496 +54400/69092 Loss: 117.932 +57600/69092 Loss: 122.195 +60800/69092 Loss: 115.537 +64000/69092 Loss: 120.373 +67200/69092 Loss: 119.428 +Training time 0:14:13.945016 +Epoch: 1 Average loss: 118.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 87) +0/69092 Loss: 130.393 +3200/69092 Loss: 117.386 +6400/69092 Loss: 119.379 +9600/69092 Loss: 120.024 +12800/69092 Loss: 117.695 +16000/69092 Loss: 119.331 +19200/69092 Loss: 118.637 +22400/69092 Loss: 119.156 +25600/69092 Loss: 120.262 +28800/69092 Loss: 120.793 +32000/69092 Loss: 118.257 +35200/69092 Loss: 116.527 +38400/69092 Loss: 117.896 +41600/69092 Loss: 119.483 +44800/69092 Loss: 118.941 +48000/69092 Loss: 117.900 +51200/69092 Loss: 118.215 +54400/69092 Loss: 119.306 +57600/69092 Loss: 119.740 +60800/69092 Loss: 118.641 +64000/69092 Loss: 117.922 +67200/69092 Loss: 118.341 +Training time 0:07:31.381226 +Epoch: 2 Average loss: 118.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 88) +0/69092 Loss: 119.623 +3200/69092 Loss: 120.716 +6400/69092 Loss: 118.038 +9600/69092 Loss: 119.440 +12800/69092 Loss: 119.888 +16000/69092 Loss: 116.939 +19200/69092 Loss: 118.108 +22400/69092 Loss: 118.553 +25600/69092 Loss: 118.557 +28800/69092 Loss: 119.174 +32000/69092 Loss: 119.645 +35200/69092 Loss: 118.940 +38400/69092 Loss: 117.269 +41600/69092 Loss: 121.778 +44800/69092 Loss: 120.010 +48000/69092 Loss: 117.630 +51200/69092 Loss: 119.292 +54400/69092 Loss: 119.268 +57600/69092 Loss: 118.923 +60800/69092 Loss: 119.078 +64000/69092 Loss: 118.655 +67200/69092 Loss: 119.249 +Training time 0:07:34.831308 +Epoch: 3 Average loss: 118.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 89) +0/69092 Loss: 114.239 +3200/69092 Loss: 120.136 +6400/69092 Loss: 119.018 +9600/69092 Loss: 119.484 +12800/69092 Loss: 119.795 +16000/69092 Loss: 119.599 +19200/69092 Loss: 118.820 +22400/69092 Loss: 117.392 +25600/69092 Loss: 119.914 +28800/69092 Loss: 118.627 +32000/69092 Loss: 119.123 +35200/69092 Loss: 118.777 +38400/69092 Loss: 116.972 +41600/69092 Loss: 117.295 +44800/69092 Loss: 118.909 +48000/69092 Loss: 119.073 +51200/69092 Loss: 120.202 +54400/69092 Loss: 118.076 +57600/69092 Loss: 118.386 +60800/69092 Loss: 118.060 +64000/69092 Loss: 118.025 +67200/69092 Loss: 119.918 +Training time 0:07:35.087687 +Epoch: 4 Average loss: 118.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 90) +0/69092 Loss: 121.327 +3200/69092 Loss: 118.618 +6400/69092 Loss: 117.247 +9600/69092 Loss: 120.337 +12800/69092 Loss: 117.886 +16000/69092 Loss: 116.250 +19200/69092 Loss: 117.602 +22400/69092 Loss: 120.076 +25600/69092 Loss: 120.992 +28800/69092 Loss: 119.478 +32000/69092 Loss: 121.168 +35200/69092 Loss: 117.906 +38400/69092 Loss: 119.290 +41600/69092 Loss: 117.479 +44800/69092 Loss: 117.553 +48000/69092 Loss: 117.566 +51200/69092 Loss: 118.227 +54400/69092 Loss: 118.682 +57600/69092 Loss: 118.498 +60800/69092 Loss: 120.303 +64000/69092 Loss: 117.960 +67200/69092 Loss: 117.698 +Training time 0:07:56.623599 +Epoch: 5 Average loss: 118.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 91) +0/69092 Loss: 105.633 +3200/69092 Loss: 118.554 +6400/69092 Loss: 119.615 +9600/69092 Loss: 119.318 +12800/69092 Loss: 118.742 +16000/69092 Loss: 119.974 +19200/69092 Loss: 121.265 +22400/69092 Loss: 119.141 +25600/69092 Loss: 118.307 +28800/69092 Loss: 118.427 +32000/69092 Loss: 116.378 +35200/69092 Loss: 119.006 +38400/69092 Loss: 119.625 +41600/69092 Loss: 118.215 +44800/69092 Loss: 117.062 +48000/69092 Loss: 120.085 +51200/69092 Loss: 117.497 +54400/69092 Loss: 118.513 +57600/69092 Loss: 117.501 +60800/69092 Loss: 119.534 +64000/69092 Loss: 118.761 +67200/69092 Loss: 119.786 +Training time 0:07:49.425830 +Epoch: 6 Average loss: 118.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 92) +0/69092 Loss: 128.389 +3200/69092 Loss: 117.092 +6400/69092 Loss: 119.006 +9600/69092 Loss: 119.130 +12800/69092 Loss: 116.969 +16000/69092 Loss: 118.569 +19200/69092 Loss: 119.163 +22400/69092 Loss: 116.380 +25600/69092 Loss: 117.838 +28800/69092 Loss: 119.352 +32000/69092 Loss: 118.976 +35200/69092 Loss: 118.172 +38400/69092 Loss: 118.417 +41600/69092 Loss: 119.819 +44800/69092 Loss: 117.800 +48000/69092 Loss: 119.049 +51200/69092 Loss: 121.287 +54400/69092 Loss: 120.721 +57600/69092 Loss: 118.213 +60800/69092 Loss: 117.643 +64000/69092 Loss: 119.564 +67200/69092 Loss: 118.016 +Training time 0:07:35.571668 +Epoch: 7 Average loss: 118.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 93) +0/69092 Loss: 119.123 +3200/69092 Loss: 116.765 +6400/69092 Loss: 118.645 +9600/69092 Loss: 118.229 +12800/69092 Loss: 118.869 +16000/69092 Loss: 118.261 +19200/69092 Loss: 118.188 +22400/69092 Loss: 117.008 +25600/69092 Loss: 118.807 +28800/69092 Loss: 117.948 +32000/69092 Loss: 119.650 +35200/69092 Loss: 118.231 +38400/69092 Loss: 119.093 +41600/69092 Loss: 119.147 +44800/69092 Loss: 119.808 +48000/69092 Loss: 118.298 +51200/69092 Loss: 119.673 +54400/69092 Loss: 119.079 +57600/69092 Loss: 117.252 +60800/69092 Loss: 118.739 +64000/69092 Loss: 119.065 +67200/69092 Loss: 120.760 +Training time 0:07:32.790181 +Epoch: 8 Average loss: 118.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 94) +0/69092 Loss: 101.608 +3200/69092 Loss: 119.196 +6400/69092 Loss: 119.704 +9600/69092 Loss: 119.780 +12800/69092 Loss: 118.972 +16000/69092 Loss: 117.676 +19200/69092 Loss: 120.463 +22400/69092 Loss: 118.339 +25600/69092 Loss: 118.546 +28800/69092 Loss: 118.832 +32000/69092 Loss: 119.358 +35200/69092 Loss: 119.058 +38400/69092 Loss: 117.461 +41600/69092 Loss: 116.151 +44800/69092 Loss: 119.484 +48000/69092 Loss: 117.108 +51200/69092 Loss: 120.395 +54400/69092 Loss: 118.880 +57600/69092 Loss: 118.098 +60800/69092 Loss: 118.353 +64000/69092 Loss: 118.227 +67200/69092 Loss: 118.784 +Training time 0:07:29.947963 +Epoch: 9 Average loss: 118.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 95) +0/69092 Loss: 126.880 +3200/69092 Loss: 119.853 +6400/69092 Loss: 118.711 +9600/69092 Loss: 118.999 +12800/69092 Loss: 117.955 +16000/69092 Loss: 119.300 +19200/69092 Loss: 117.833 +22400/69092 Loss: 117.864 +25600/69092 Loss: 118.584 +28800/69092 Loss: 118.970 +32000/69092 Loss: 117.937 +35200/69092 Loss: 118.265 +38400/69092 Loss: 118.579 +41600/69092 Loss: 119.163 +44800/69092 Loss: 117.567 +48000/69092 Loss: 119.146 +51200/69092 Loss: 117.409 +54400/69092 Loss: 119.171 +57600/69092 Loss: 119.717 +60800/69092 Loss: 120.156 +64000/69092 Loss: 117.829 +67200/69092 Loss: 118.871 +Training time 0:07:29.316301 +Epoch: 10 Average loss: 118.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 96) +0/69092 Loss: 115.064 +3200/69092 Loss: 119.530 +6400/69092 Loss: 117.345 +9600/69092 Loss: 119.148 +12800/69092 Loss: 119.863 +16000/69092 Loss: 118.319 +19200/69092 Loss: 118.111 +22400/69092 Loss: 116.091 +25600/69092 Loss: 118.846 +28800/69092 Loss: 119.157 +32000/69092 Loss: 117.030 +35200/69092 Loss: 118.431 +38400/69092 Loss: 120.034 +41600/69092 Loss: 118.253 +44800/69092 Loss: 118.826 +48000/69092 Loss: 118.417 +51200/69092 Loss: 119.849 +54400/69092 Loss: 118.038 +57600/69092 Loss: 118.830 +60800/69092 Loss: 120.045 +64000/69092 Loss: 116.852 +67200/69092 Loss: 116.874 +Training time 0:07:35.170053 +Epoch: 11 Average loss: 118.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 97) +0/69092 Loss: 131.390 +3200/69092 Loss: 119.872 +6400/69092 Loss: 119.467 +9600/69092 Loss: 119.365 +12800/69092 Loss: 121.863 +16000/69092 Loss: 118.354 +19200/69092 Loss: 117.457 +22400/69092 Loss: 120.095 +25600/69092 Loss: 118.251 +28800/69092 Loss: 118.245 +32000/69092 Loss: 119.155 +35200/69092 Loss: 119.537 +38400/69092 Loss: 116.894 +41600/69092 Loss: 118.937 +44800/69092 Loss: 117.073 +48000/69092 Loss: 117.284 +51200/69092 Loss: 119.048 +54400/69092 Loss: 119.683 +57600/69092 Loss: 116.164 +60800/69092 Loss: 117.780 +64000/69092 Loss: 119.660 +67200/69092 Loss: 116.056 +Training time 0:07:34.422163 +Epoch: 12 Average loss: 118.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 98) +0/69092 Loss: 122.095 +3200/69092 Loss: 117.016 +6400/69092 Loss: 116.512 +9600/69092 Loss: 120.309 +12800/69092 Loss: 118.080 +16000/69092 Loss: 116.443 +19200/69092 Loss: 119.067 +22400/69092 Loss: 117.616 +25600/69092 Loss: 120.111 +28800/69092 Loss: 118.229 +32000/69092 Loss: 118.735 +35200/69092 Loss: 115.753 +38400/69092 Loss: 117.180 +41600/69092 Loss: 117.769 +44800/69092 Loss: 118.198 +48000/69092 Loss: 118.902 +51200/69092 Loss: 117.921 +54400/69092 Loss: 120.463 +57600/69092 Loss: 117.913 +60800/69092 Loss: 118.975 +64000/69092 Loss: 119.985 +67200/69092 Loss: 120.136 +Training time 0:07:31.623966 +Epoch: 13 Average loss: 118.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 99) +0/69092 Loss: 111.591 +3200/69092 Loss: 116.552 +6400/69092 Loss: 117.541 +9600/69092 Loss: 119.470 +12800/69092 Loss: 118.757 +16000/69092 Loss: 117.719 +19200/69092 Loss: 117.224 +22400/69092 Loss: 119.372 +25600/69092 Loss: 120.709 +28800/69092 Loss: 117.695 +32000/69092 Loss: 116.136 +35200/69092 Loss: 120.033 +38400/69092 Loss: 120.406 +41600/69092 Loss: 117.325 +44800/69092 Loss: 117.913 +48000/69092 Loss: 117.831 +51200/69092 Loss: 119.979 +54400/69092 Loss: 118.512 +57600/69092 Loss: 118.619 +60800/69092 Loss: 117.288 +64000/69092 Loss: 117.566 +67200/69092 Loss: 120.574 +Training time 0:07:30.207680 +Epoch: 14 Average loss: 118.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 100) +0/69092 Loss: 123.426 +3200/69092 Loss: 118.659 +6400/69092 Loss: 118.713 +9600/69092 Loss: 117.724 +12800/69092 Loss: 118.388 +16000/69092 Loss: 117.357 +19200/69092 Loss: 117.287 +22400/69092 Loss: 118.643 +25600/69092 Loss: 117.376 +28800/69092 Loss: 117.028 +32000/69092 Loss: 120.223 +35200/69092 Loss: 119.158 +38400/69092 Loss: 119.948 +41600/69092 Loss: 118.666 +44800/69092 Loss: 119.500 +48000/69092 Loss: 121.176 +51200/69092 Loss: 119.840 +54400/69092 Loss: 117.195 +57600/69092 Loss: 116.212 +60800/69092 Loss: 117.903 +64000/69092 Loss: 117.594 +67200/69092 Loss: 117.326 +Training time 0:07:31.308007 +Epoch: 15 Average loss: 118.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 101) +0/69092 Loss: 120.264 +3200/69092 Loss: 119.231 +6400/69092 Loss: 115.626 +9600/69092 Loss: 117.766 +12800/69092 Loss: 118.371 +16000/69092 Loss: 118.611 +19200/69092 Loss: 118.427 +22400/69092 Loss: 118.136 +25600/69092 Loss: 117.239 +28800/69092 Loss: 119.401 +32000/69092 Loss: 118.719 +35200/69092 Loss: 119.317 +38400/69092 Loss: 118.726 +41600/69092 Loss: 119.508 +44800/69092 Loss: 119.788 +48000/69092 Loss: 120.357 +51200/69092 Loss: 118.214 +54400/69092 Loss: 119.092 +57600/69092 Loss: 118.792 +60800/69092 Loss: 118.131 +64000/69092 Loss: 119.248 +67200/69092 Loss: 117.364 +Training time 0:07:30.172670 +Epoch: 16 Average loss: 118.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last' (iter 102) +0/69092 Loss: 109.716 +3200/69092 Loss: 119.807 +6400/69092 Loss: 117.220 +9600/69092 Loss: 119.324 +12800/69092 Loss: 118.453 +16000/69092 Loss: 119.029 +19200/69092 Loss: 119.127 +22400/69092 Loss: 118.859 +25600/69092 Loss: 116.423 +28800/69092 Loss: 115.011 +32000/69092 Loss: 117.166 +35200/69092 Loss: 121.352 +38400/69092 Loss: 119.396 +41600/69092 Loss: 118.837 +44800/69092 Loss: 116.260 +48000/69092 Loss: 119.507 +51200/69092 Loss: 119.166 +54400/69092 Loss: 118.681 +57600/69092 Loss: 117.348 +60800/69092 Loss: 118.259 +64000/69092 Loss: 119.696 diff --git a/VAE_model/__pycache__/binary_activation.cpython-37.pyc b/VAE_model/__pycache__/binary_activation.cpython-37.pyc index d4b4a88d3e50b5c5615c90e6ec2c0fd299771617..0281594dac1b6f9cba314cb9974d58e1c8e33ad1 100644 Binary files a/VAE_model/__pycache__/binary_activation.cpython-37.pyc and b/VAE_model/__pycache__/binary_activation.cpython-37.pyc differ diff --git a/VAE_model/__pycache__/models.cpython-37.pyc b/VAE_model/__pycache__/models.cpython-37.pyc index b66bcc937eda9bc236e86b5150c4dc419043967c..bf2ae15b9d331cf50d65f2a667f3b1785270638c 100644 Binary files a/VAE_model/__pycache__/models.cpython-37.pyc and b/VAE_model/__pycache__/models.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/__init__.cpython-37.pyc b/VAE_model/distributions/__pycache__/__init__.cpython-37.pyc index 72a5b85b5727f69d19573a1052bfd8ebbca2c8de..94edce05a5895e317dff0c018bb6f210c52d3915 100644 Binary files a/VAE_model/distributions/__pycache__/__init__.cpython-37.pyc and b/VAE_model/distributions/__pycache__/__init__.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/bernoulli.cpython-37.pyc b/VAE_model/distributions/__pycache__/bernoulli.cpython-37.pyc index 47be158845f776013a384db81149c1095ced3eb3..ddbbaec450a4334cc2daba949638d85529c2fb41 100644 Binary files a/VAE_model/distributions/__pycache__/bernoulli.cpython-37.pyc and b/VAE_model/distributions/__pycache__/bernoulli.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/distribution.cpython-37.pyc b/VAE_model/distributions/__pycache__/distribution.cpython-37.pyc index 4bff73c8305628f75a7aaf69ffb08b10987c6a58..b1598f6251526ea47104023f2a996a5910f69212 100644 Binary files a/VAE_model/distributions/__pycache__/distribution.cpython-37.pyc and b/VAE_model/distributions/__pycache__/distribution.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/functions.cpython-37.pyc b/VAE_model/distributions/__pycache__/functions.cpython-37.pyc index be06f59cb370dd0bafe5b4029ff299bf2e4ad5fd..74e856fa9448f6aa01cb77e06bbe3b45e6ca8b13 100644 Binary files a/VAE_model/distributions/__pycache__/functions.cpython-37.pyc and b/VAE_model/distributions/__pycache__/functions.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/round.cpython-37.pyc b/VAE_model/distributions/__pycache__/round.cpython-37.pyc index 81af15d65ca5bdbd66a177b08c055a2e4a41c844..348f4315817320f11336421e9e3a8702525d94d7 100644 Binary files a/VAE_model/distributions/__pycache__/round.cpython-37.pyc and b/VAE_model/distributions/__pycache__/round.cpython-37.pyc differ diff --git a/VAE_model/distributions/__pycache__/utils.cpython-37.pyc b/VAE_model/distributions/__pycache__/utils.cpython-37.pyc index 8741c7cc8419e5da9760ce0727b4567db821b9f4..52799f7aa66a3bc43cc8ece1f337d7a6b7f13f12 100644 Binary files a/VAE_model/distributions/__pycache__/utils.cpython-37.pyc and b/VAE_model/distributions/__pycache__/utils.cpython-37.pyc differ diff --git a/dataloader/__pycache__/dataloaders.cpython-37.pyc b/dataloader/__pycache__/dataloaders.cpython-37.pyc index e19bec02c0871905e3f2f2ad557bb23db1635a83..bb56e963ff7cbe7b5deb67de148f28f33c4cf21d 100644 Binary files a/dataloader/__pycache__/dataloaders.cpython-37.pyc and b/dataloader/__pycache__/dataloaders.cpython-37.pyc differ diff --git a/parameters_combinations/param_combinations_chairs.txt b/parameters_combinations/param_combinations_chairs.txt index 0c6fe84ca55d9a216805065748e00df160533f50..07861d8d7a88b40309242721dcec205134a2de12 100644 --- a/parameters_combinations/param_combinations_chairs.txt +++ b/parameters_combinations/param_combinations_chairs.txt @@ -1,15 +1,15 @@ ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=30 --lr=1e-5 --experiment-name=VAE_bs_64_ls_30 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=40 --lr=1e-5 --experiment-name=VAE_bs_64_ls_40 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=50 --lr=1e-5 --experiment-name=VAE_bs_64_ls_50 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-5 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-5 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=5e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_64_conv_64_64_128_128 --gpu-devices 0 1 --nb-filter-conv1=64 --nb-filter-conv2=64 --nb-filter-conv3=128 --nb-filter-conv4=128 --load-model-checkpoint=True \ No newline at end of file +--batch-size=64 --dataset=rendered_chairs --epochs=90000 --latent_spec_cont=30 --lr=1e-5 --experiment-name=VAE_bs_64_ls_30 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=40 --lr=1e-5 --experiment-name=VAE_bs_64_ls_40 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=50 --lr=1e-5 --experiment-name=VAE_bs_64_ls_50 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=256 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-5 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-5 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=256 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-5 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=5 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=15 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=20 --lr=1e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --lr=5e-5 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=9000 --latent_spec_cont=10 --lr=1e-5 --experiment-name=VAE_bs_64_conv_64_64_128_128 --gpu-devices 0 1 --nb-filter-conv1=64 --nb-filter-conv2=64 --nb-filter-conv3=128 --nb-filter-conv4=128 --load-model-checkpoint=True diff --git a/parameters_combinations/param_combinations_fashion_mnist.txt b/parameters_combinations/param_combinations_fashion_mnist.txt index a3ed0197e42fb35d5ffe5650248a12cfcd723dee..0d72c21533077471c19196abf213b83898410785 100644 --- a/parameters_combinations/param_combinations_fashion_mnist.txt +++ b/parameters_combinations/param_combinations_fashion_mnist.txt @@ -1,13 +1,13 @@ ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=30 --lr=1e-4 --experiment-name=VAE_bs_64_ls_30 --gpu-devices 0 1 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=40 --lr=1e-4 --experiment-name=VAE_bs_64_ls_40 --gpu-devices 0 1 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=50 --lr=1e-4 --experiment-name=VAE_bs_64_ls_50 --gpu-devices 0 1 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 ---batch-size=64 --dataset=fashion_data --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64_conv_64_64_128_128 --gpu-devices 0 1 --nb-filter-conv1=64 --nb-filter-conv2=64 --nb-filter-conv3=128 --nb-filter-conv4=128 \ No newline at end of file +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=30 --lr=1e-4 --experiment-name=VAE_bs_64_ls_30 --gpu-devices 0 1 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=40 --lr=1e-4 --experiment-name=VAE_bs_64_ls_40 --gpu-devices 0 1 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=50 --lr=1e-4 --experiment-name=VAE_bs_64_ls_50 --gpu-devices 0 1 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 +--batch-size=64 --dataset=fashion_data --epochs=9000000 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64_conv_64_64_128_128 --gpu-devices 0 1 --nb-filter-conv1=64 --nb-filter-conv2=64 --nb-filter-conv3=128 --nb-filter-conv4=128 diff --git a/trained_models/fashion_data/VAE_bs_64/specs.json b/trained_models/fashion_data/VAE_bs_64/specs.json index 8827ec8ee8d7eacbabfc2256fa0102a8e0a0d15c..0b1d4c2329cabcd7e166e3bfd4bdfd8f0ca58195 100644 --- a/trained_models/fashion_data/VAE_bs_64/specs.json +++ b/trained_models/fashion_data/VAE_bs_64/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_conv_64_64_128_128/specs.json b/trained_models/fashion_data/VAE_bs_64_conv_64_64_128_128/specs.json index ffc5e2aba171d4b4dc140f49816b3025afe02795..fec300f1dea74c04fb2ad4157dd01bda4c53b9ea 100644 --- a/trained_models/fashion_data/VAE_bs_64_conv_64_64_128_128/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_conv_64_64_128_128/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64_conv_64_64_128_128", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64_conv_64_64_128_128", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_10_lr_5e_4/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_10_lr_5e_4/specs.json new file mode 100644 index 0000000000000000000000000000000000000000..b7db6ccc3d83186bbc6ade3cc8c24ca92c70e567 --- /dev/null +++ b/trained_models/fashion_data/VAE_bs_64_ls_10_lr_5e_4/specs.json @@ -0,0 +1 @@ +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64_ls_10_lr_5e_4", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_15/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_15/specs.json index 8dd2aa76bcf40d9aac98485c7cc5f94b296db0bc..356fd0e70e5451f10faef558e51782dd1eed5b49 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_15/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_15/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 15, "experiment_name": "VAE_bs_64_ls_15", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 15, "experiment_name": "VAE_bs_64_ls_15", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_20/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_20/specs.json index 742a1ec14c37e60e19cd5dfe11421ac7a900fc73..f714b4321f9b7dd4ebfb9c48e8e74300c0e5f20e 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_20/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_20/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 20, "experiment_name": "VAE_bs_64_ls_20", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 20, "experiment_name": "VAE_bs_64_ls_20", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_30/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_30/specs.json index ebd44573c2bfa66cc6e370419fb11254bc39c63e..3b531b00a37198c1efbdc8b4c52637f2e7646f04 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_30/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_30/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 30, "experiment_name": "VAE_bs_64_ls_30", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 30, "experiment_name": "VAE_bs_64_ls_30", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_40/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_40/specs.json index 6deb250aad790d8ad37a7b627e6d3178149f2217..9074cd4f299cbf8534fc0b0908022dcf52a1a911 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_40/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_40/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 40, "experiment_name": "VAE_bs_64_ls_40", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 40, "experiment_name": "VAE_bs_64_ls_40", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_5/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_5/specs.json index 75fb6db3940a910ae1ad3c0fe0a5fd39fdfb5354..02e347ff7f436400446ba679e80f69819c11217f 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_5/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_5/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 5, "experiment_name": "VAE_bs_64_ls_5", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 5, "experiment_name": "VAE_bs_64_ls_5", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/VAE_bs_64_ls_50/specs.json b/trained_models/fashion_data/VAE_bs_64_ls_50/specs.json index fc059be70e7c5268521354258dd8aba2933ee94e..eb12256d5d8080a75e0c0696f6eb2797ab71ccf8 100644 --- a/trained_models/fashion_data/VAE_bs_64_ls_50/specs.json +++ b/trained_models/fashion_data/VAE_bs_64_ls_50/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 50, "experiment_name": "VAE_bs_64_ls_50", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 50, "experiment_name": "VAE_bs_64_ls_50", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/beta_VAE_bs_64/specs.json b/trained_models/fashion_data/beta_VAE_bs_64/specs.json index 6070399134d9b84261d45a84d1b4626f5fd7f64f..d9b29d20d520bd81ba341f54b3a58b708f1a07f4 100644 --- a/trained_models/fashion_data/beta_VAE_bs_64/specs.json +++ b/trained_models/fashion_data/beta_VAE_bs_64/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/beta_VAE_bs_64_ls_15/specs.json b/trained_models/fashion_data/beta_VAE_bs_64_ls_15/specs.json index 2d5c0042568f8e9d274763e49ac51ec0f7392df9..fc6e32ef196478cebfcbb356fcd31c5d4edd676d 100644 --- a/trained_models/fashion_data/beta_VAE_bs_64_ls_15/specs.json +++ b/trained_models/fashion_data/beta_VAE_bs_64_ls_15/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 15, "experiment_name": "beta_VAE_bs_64_ls_15", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 15, "experiment_name": "beta_VAE_bs_64_ls_15", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/beta_VAE_bs_64_ls_20/specs.json b/trained_models/fashion_data/beta_VAE_bs_64_ls_20/specs.json index 30ae5379003d5e6199983749a50fdd6652fa41ef..fb6d45018286e6a3535d2ef12a0a94580419e785 100644 --- a/trained_models/fashion_data/beta_VAE_bs_64_ls_20/specs.json +++ b/trained_models/fashion_data/beta_VAE_bs_64_ls_20/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 20, "experiment_name": "beta_VAE_bs_64_ls_20", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 20, "experiment_name": "beta_VAE_bs_64_ls_20", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/fashion_data/beta_VAE_bs_64_ls_5/specs.json b/trained_models/fashion_data/beta_VAE_bs_64_ls_5/specs.json index 06042458f797ab61cacc57962a6c0dcf81ab98a7..e9bf876749bd87b9b5e4cb8ca404992345c3e93d 100644 --- a/trained_models/fashion_data/beta_VAE_bs_64_ls_5/specs.json +++ b/trained_models/fashion_data/beta_VAE_bs_64_ls_5/specs.json @@ -1 +1 @@ -{"dataset": "fashion_data", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 5, "experiment_name": "beta_VAE_bs_64_ls_5", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file +{"dataset": "fashion_data", "epochs": 9000000, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 5, "experiment_name": "beta_VAE_bs_64_ls_5", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 10} \ No newline at end of file diff --git a/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last index cb177b2a09cbbb5ec3855f67263df44ec114a168..3a1ca47b346c4cc743827e69eb6468b02f5a4f8c 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last index 4f2642ad341e29f5407b4424c4b4e2123c640da4..39717da547fa0b64bef48fa5c49cb503c7de1f67 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last index bea1d7c106bb084bf229132e559a4d7a7b15ec75..d5c7e714d0f090fe8c448adc742ea3c78312eda3 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_conv_64_64_128_128/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last index 7221155bdbbe2c7363eef33d85eface626b67d18..29ae868df0107585dba17f70297c779e05a3e28f 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last index 38197bbadf0b585f9d8609dd769acd38caffbf6b..ce6a799c271b4812f1afb6911568d6a7d341124d 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last index 72b2573a48d08d3e56c5496b1c132eabd5434fd4..1c7f1bc6a64f196c0760a4ff77c40f98fc67abbb 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_30/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last index ec60f6afe1e8e7f9ad62860e82424b6b1328e366..5eaaee5c35ee332c8c30b362f90442885392d920 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_40/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last index 6b228a26f653b8f9c577bf8d972789248386c44e..a9d9859a9330dd80d76baa9c6fd0c4c6e4c71b25 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last index 2b42d43dc2fecf682658e2bb42014de3bb47d9a5..7adf854108060734ac527343fd89106af42fec2b 100644 Binary files a/trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last and b/trained_models/rendered_chairs/VAE_bs_64_ls_50/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last index bd97a1596ce25bc80b9d7219543de89c95eb8da9..53410edf8474e996d6380e785b83a79f05936c90 100644 Binary files a/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last and b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last index 754683cd89ef435818991bf29b93f403a60bbb1c..74229b050f36d53c6813858e4a54717c836ed969 100644 Binary files a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last and b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last index 370e0479e6ef0e85a003c540bc44f2dc321e294c..eba082061469e7ed53eafa01bfcbb42052fecf4c 100644 Binary files a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last and b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last index 93f578b0f0b6f984624e70129a2298d6a17eaffa..db9be3928fe1deb94a215d98e62b01698f799643 100644 Binary files a/trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last and b/trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last differ diff --git a/utils/__pycache__/training.cpython-37.pyc b/utils/__pycache__/training.cpython-37.pyc index 284f1ae2db0b5e771f0b0b31ca3eb4de98376665..59954b810d7f6d786f331fc4b908486334ba7c1e 100644 Binary files a/utils/__pycache__/training.cpython-37.pyc and b/utils/__pycache__/training.cpython-37.pyc differ diff --git a/utils/training.py b/utils/training.py index 3b7c7ef1885e3de90a6bde1eb0d1f76772043e3d..6dbfc53da7db804a84e9f1a051e45ef6c55ba049 100644 --- a/utils/training.py +++ b/utils/training.py @@ -222,10 +222,10 @@ class Trainer: self.optimizer.step() train_loss = loss.item() - recon_loss_iter = recon_loss.item() - kl_loss_iter = kl_loss.item() - pred_loss_iter = pred_loss.item() - pred_random_loss_iter = pred_random_loss.item() + recon_loss_iter = recon_loss + kl_loss_iter = kl_loss + pred_loss_iter = pred_loss + pred_random_loss_iter = pred_random_loss return train_loss, recon_loss_iter, kl_loss_iter, pred_loss_iter, pred_random_loss_iter diff --git a/viz/__pycache__/latent_traversals.cpython-37.pyc b/viz/__pycache__/latent_traversals.cpython-37.pyc index edaee6f3a96f9f8af4206ac3de633dae53c234cb..7091d2bc17aa2f5bc68ecbad33d61fd09bf4f755 100644 Binary files a/viz/__pycache__/latent_traversals.cpython-37.pyc and b/viz/__pycache__/latent_traversals.cpython-37.pyc differ diff --git a/viz/__pycache__/visualize.cpython-37.pyc b/viz/__pycache__/visualize.cpython-37.pyc index 04ae3f7f39922c4320c30d9e0f44464bcb742118..2b3b8a388de1a10817c8f255e67ff77db11000e3 100644 Binary files a/viz/__pycache__/visualize.cpython-37.pyc and b/viz/__pycache__/visualize.cpython-37.pyc differ