From 4fd56d5e9ffd61089dd67c36c2f7923777c498de Mon Sep 17 00:00:00 2001
From: DejasDejas <julien.dejasmin@outlook.fr>
Date: Thu, 25 Jun 2020 10:41:31 +0200
Subject: [PATCH] update last 2

---
 OAR.2068271.stderr                            |    3 -
 OAR.2068271.stdout                            |   68 -
 OAR.2068272.stderr                            |    3 -
 OAR.2068272.stdout                            |  174 -
 OAR.2068273.stderr                            |    3 -
 OAR.2068273.stdout                            |   60 -
 OAR.2068274.stderr                            |    3 -
 OAR.2068274.stdout                            |  102 -
 OAR.2068275.stderr                            |    3 -
 OAR.2068275.stdout                            |   92 -
 OAR.2068276.stderr                            |    3 -
 OAR.2068276.stdout                            |  102 -
 OAR.2068277.stderr                            |    3 -
 OAR.2068277.stdout                            |  100 -
 OAR.2068278.stderr                            |    3 -
 OAR.2068278.stdout                            |   90 -
 OAR.2068279.stderr                            |    3 -
 OAR.2068279.stdout                            |  111 -
 OAR.2068280.stderr                            |    3 -
 OAR.2068280.stdout                            |  174 -
 OAR.2068281.stderr                            |    3 -
 OAR.2068281.stdout                            |   90 -
 OAR.2068282.stderr                            |    3 -
 OAR.2068282.stdout                            |  105 -
 OAR.2068284.stderr                            |    3 -
 OAR.2068284.stdout                            | 1347 ---
 OAR.2068285.stderr                            |    3 -
 OAR.2068285.stdout                            | 3089 -------
 OAR.2068286.stderr                            |    3 -
 OAR.2068286.stdout                            | 1509 ----
 OAR.2068287.stderr                            |    3 -
 OAR.2068287.stdout                            | 7690 -----------------
 OAR.2068288.stderr                            |    3 -
 OAR.2068288.stdout                            | 3001 -------
 OAR.2068289.stderr                            |    3 -
 OAR.2068289.stdout                            | 3003 -------
 OAR.2068290.stderr                            |    3 -
 OAR.2068290.stdout                            | 2690 ------
 OAR.2068291.stderr                            |    3 -
 OAR.2068291.stdout                            | 3168 -------
 OAR.2068292.stderr                            |    3 -
 OAR.2068292.stdout                            | 2903 -------
 OAR.2068293.stderr                            |    2 -
 OAR.2068293.stdout                            | 2050 -----
 OAR.2068294.stderr                            |    2 -
 OAR.2068294.stdout                            | 2052 -----
 OAR.2068295.stderr                            |    2 -
 OAR.2068295.stdout                            | 2193 -----
 dataloader/dataloaders.py                     |    5 +
 main.py                                       |    4 +-
 .../param_combinations_chairs.txt             |   20 +-
 reconstruction_im/charis_VAE_bs_64_ls_15.png  |  Bin 0 -> 122818 bytes
 reconstruction_im/charis_VAE_bs_64_ls_20.png  |  Bin 0 -> 116835 bytes
 reconstruction_im/charis_VAE_bs_64_ls_5.png   |  Bin 0 -> 116789 bytes
 .../charis_beta_VAE_bs_64_ls_15.png           |  Bin 0 -> 116042 bytes
 .../charis_beta_VAE_bs_64_ls_20.png           |  Bin 0 -> 123708 bytes
 .../charis_beta_VAE_bs_64_ls_5.png            |  Bin 0 -> 119930 bytes
 57 files changed, 16 insertions(+), 36045 deletions(-)
 delete mode 100644 OAR.2068271.stderr
 delete mode 100644 OAR.2068271.stdout
 delete mode 100644 OAR.2068272.stderr
 delete mode 100644 OAR.2068272.stdout
 delete mode 100644 OAR.2068273.stderr
 delete mode 100644 OAR.2068273.stdout
 delete mode 100644 OAR.2068274.stderr
 delete mode 100644 OAR.2068274.stdout
 delete mode 100644 OAR.2068275.stderr
 delete mode 100644 OAR.2068275.stdout
 delete mode 100644 OAR.2068276.stderr
 delete mode 100644 OAR.2068276.stdout
 delete mode 100644 OAR.2068277.stderr
 delete mode 100644 OAR.2068277.stdout
 delete mode 100644 OAR.2068278.stderr
 delete mode 100644 OAR.2068278.stdout
 delete mode 100644 OAR.2068279.stderr
 delete mode 100644 OAR.2068279.stdout
 delete mode 100644 OAR.2068280.stderr
 delete mode 100644 OAR.2068280.stdout
 delete mode 100644 OAR.2068281.stderr
 delete mode 100644 OAR.2068281.stdout
 delete mode 100644 OAR.2068282.stderr
 delete mode 100644 OAR.2068282.stdout
 delete mode 100644 OAR.2068284.stderr
 delete mode 100644 OAR.2068284.stdout
 delete mode 100644 OAR.2068285.stderr
 delete mode 100644 OAR.2068285.stdout
 delete mode 100644 OAR.2068286.stderr
 delete mode 100644 OAR.2068286.stdout
 delete mode 100644 OAR.2068287.stderr
 delete mode 100644 OAR.2068287.stdout
 delete mode 100644 OAR.2068288.stderr
 delete mode 100644 OAR.2068288.stdout
 delete mode 100644 OAR.2068289.stderr
 delete mode 100644 OAR.2068289.stdout
 delete mode 100644 OAR.2068290.stderr
 delete mode 100644 OAR.2068290.stdout
 delete mode 100644 OAR.2068291.stderr
 delete mode 100644 OAR.2068291.stdout
 delete mode 100644 OAR.2068292.stderr
 delete mode 100644 OAR.2068292.stdout
 delete mode 100644 OAR.2068293.stderr
 delete mode 100644 OAR.2068293.stdout
 delete mode 100644 OAR.2068294.stderr
 delete mode 100644 OAR.2068294.stdout
 delete mode 100644 OAR.2068295.stderr
 delete mode 100644 OAR.2068295.stdout
 create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_15.png
 create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_20.png
 create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_5.png
 create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_15.png
 create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_20.png
 create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_5.png

diff --git a/OAR.2068271.stderr b/OAR.2068271.stderr
deleted file mode 100644
index 64fb0257ff..0000000000
--- a/OAR.2068271.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:29:57] Job 2068271 KILLED ##
diff --git a/OAR.2068271.stdout b/OAR.2068271.stdout
deleted file mode 100644
index e1e66006f7..0000000000
--- a/OAR.2068271.stdout
+++ /dev/null
@@ -1,68 +0,0 @@
-Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 171)'
-0/69092	Loss: 147.665
-12800/69092	Loss: 158.181
-25600/69092	Loss: 159.590
-38400/69092	Loss: 158.551
-51200/69092	Loss: 158.112
-64000/69092	Loss: 157.238
-Training time 0:03:48.393375
-Epoch: 1 Average loss: 158.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 172)
-0/69092	Loss: 159.925
-12800/69092	Loss: 158.833
-25600/69092	Loss: 159.460
-38400/69092	Loss: 157.054
-51200/69092	Loss: 157.525
-64000/69092	Loss: 158.482
-Training time 0:03:41.025229
-Epoch: 2 Average loss: 158.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 173)
-0/69092	Loss: 152.283
-12800/69092	Loss: 157.230
-25600/69092	Loss: 157.103
-38400/69092	Loss: 158.817
diff --git a/OAR.2068272.stderr b/OAR.2068272.stderr
deleted file mode 100644
index 234dbc3557..0000000000
--- a/OAR.2068272.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:29:57] Job 2068272 KILLED ##
diff --git a/OAR.2068272.stdout b/OAR.2068272.stdout
deleted file mode 100644
index 1f62614dd1..0000000000
--- a/OAR.2068272.stdout
+++ /dev/null
@@ -1,174 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-Tesla K80
-Tesla K80
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 304)'
-0/69092	Loss: 153.033
-3200/69092	Loss: 151.558
-6400/69092	Loss: 150.062
-9600/69092	Loss: 154.221
-12800/69092	Loss: 151.615
-16000/69092	Loss: 153.931
-19200/69092	Loss: 153.015
-22400/69092	Loss: 153.433
-25600/69092	Loss: 151.584
-28800/69092	Loss: 154.002
-32000/69092	Loss: 153.302
-35200/69092	Loss: 151.154
-38400/69092	Loss: 152.741
-41600/69092	Loss: 153.137
-44800/69092	Loss: 152.327
-48000/69092	Loss: 152.095
-51200/69092	Loss: 150.511
-54400/69092	Loss: 151.692
-57600/69092	Loss: 151.058
-60800/69092	Loss: 155.055
-64000/69092	Loss: 150.898
-67200/69092	Loss: 155.036
-Training time 0:01:58.162781
-Epoch: 1 Average loss: 152.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 305)
-0/69092	Loss: 143.092
-3200/69092	Loss: 153.010
-6400/69092	Loss: 155.530
-9600/69092	Loss: 155.364
-12800/69092	Loss: 151.123
-16000/69092	Loss: 154.058
-19200/69092	Loss: 151.657
-22400/69092	Loss: 153.832
-25600/69092	Loss: 151.606
-28800/69092	Loss: 153.287
-32000/69092	Loss: 150.634
-35200/69092	Loss: 152.244
-38400/69092	Loss: 152.817
-41600/69092	Loss: 152.458
-44800/69092	Loss: 153.017
-48000/69092	Loss: 151.141
-51200/69092	Loss: 154.387
-54400/69092	Loss: 149.705
-57600/69092	Loss: 151.770
-60800/69092	Loss: 151.618
-64000/69092	Loss: 152.999
-67200/69092	Loss: 154.086
-Training time 0:01:57.931589
-Epoch: 2 Average loss: 152.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 306)
-0/69092	Loss: 149.850
-3200/69092	Loss: 153.249
-6400/69092	Loss: 153.873
-9600/69092	Loss: 153.335
-12800/69092	Loss: 153.749
-16000/69092	Loss: 148.933
-19200/69092	Loss: 154.976
-22400/69092	Loss: 153.382
-25600/69092	Loss: 151.603
-28800/69092	Loss: 152.808
-32000/69092	Loss: 151.032
-35200/69092	Loss: 151.926
-38400/69092	Loss: 155.662
-41600/69092	Loss: 150.252
-44800/69092	Loss: 152.976
-48000/69092	Loss: 153.162
-51200/69092	Loss: 153.542
-54400/69092	Loss: 152.422
-57600/69092	Loss: 150.808
-60800/69092	Loss: 152.001
-64000/69092	Loss: 153.256
-67200/69092	Loss: 152.930
-Training time 0:01:57.656130
-Epoch: 3 Average loss: 152.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 307)
-0/69092	Loss: 161.186
-3200/69092	Loss: 151.119
-6400/69092	Loss: 154.165
-9600/69092	Loss: 150.897
-12800/69092	Loss: 152.695
-16000/69092	Loss: 151.460
-19200/69092	Loss: 154.138
-22400/69092	Loss: 153.239
-25600/69092	Loss: 152.014
-28800/69092	Loss: 151.173
-32000/69092	Loss: 155.464
-35200/69092	Loss: 154.407
-38400/69092	Loss: 150.135
-41600/69092	Loss: 154.000
-44800/69092	Loss: 152.920
-48000/69092	Loss: 151.982
-51200/69092	Loss: 155.144
-54400/69092	Loss: 151.637
-57600/69092	Loss: 150.082
-60800/69092	Loss: 153.631
-64000/69092	Loss: 152.659
-67200/69092	Loss: 153.400
-Training time 0:01:58.079109
-Epoch: 4 Average loss: 152.67
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 308)
-0/69092	Loss: 173.856
-3200/69092	Loss: 152.023
-6400/69092	Loss: 153.829
-9600/69092	Loss: 150.343
-12800/69092	Loss: 151.734
-16000/69092	Loss: 152.576
-19200/69092	Loss: 153.110
-22400/69092	Loss: 155.344
-25600/69092	Loss: 151.083
-28800/69092	Loss: 151.468
-32000/69092	Loss: 150.122
-35200/69092	Loss: 150.961
-38400/69092	Loss: 152.861
-41600/69092	Loss: 150.400
-44800/69092	Loss: 154.243
-48000/69092	Loss: 156.053
-51200/69092	Loss: 151.848
-54400/69092	Loss: 154.020
-57600/69092	Loss: 152.957
-60800/69092	Loss: 154.637
-64000/69092	Loss: 151.895
-67200/69092	Loss: 152.106
-Training time 0:01:58.719240
-Epoch: 5 Average loss: 152.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 309)
-0/69092	Loss: 161.423
-3200/69092	Loss: 151.636
-6400/69092	Loss: 150.785
diff --git a/OAR.2068273.stderr b/OAR.2068273.stderr
deleted file mode 100644
index 178871f770..0000000000
--- a/OAR.2068273.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:29:57] Job 2068273 KILLED ##
diff --git a/OAR.2068273.stdout b/OAR.2068273.stdout
deleted file mode 100644
index bfda5c064b..0000000000
--- a/OAR.2068273.stdout
+++ /dev/null
@@ -1,60 +0,0 @@
-Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce GTX 1080 Ti
-GeForce GTX 1080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 143)'
-0/69092	Loss: 116.257
-12800/69092	Loss: 116.865
-25600/69092	Loss: 115.704
-38400/69092	Loss: 116.840
-51200/69092	Loss: 116.758
-64000/69092	Loss: 116.974
-Training time 0:05:34.767176
-Epoch: 1 Average loss: 116.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 144)
-0/69092	Loss: 115.425
-12800/69092	Loss: 116.366
-25600/69092	Loss: 115.519
-38400/69092	Loss: 116.832
-51200/69092	Loss: 116.514
diff --git a/OAR.2068274.stderr b/OAR.2068274.stderr
deleted file mode 100644
index 50eb79e2c9..0000000000
--- a/OAR.2068274.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:29:57] Job 2068274 KILLED ##
diff --git a/OAR.2068274.stdout b/OAR.2068274.stdout
deleted file mode 100644
index 6b9b463ae6..0000000000
--- a/OAR.2068274.stdout
+++ /dev/null
@@ -1,102 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 139)'
-0/69092	Loss: 110.847
-3200/69092	Loss: 115.390
-6400/69092	Loss: 112.621
-9600/69092	Loss: 112.659
-12800/69092	Loss: 114.223
-16000/69092	Loss: 112.621
-19200/69092	Loss: 115.178
-22400/69092	Loss: 113.874
-25600/69092	Loss: 113.745
-28800/69092	Loss: 114.605
-32000/69092	Loss: 113.612
-35200/69092	Loss: 114.793
-38400/69092	Loss: 116.839
-41600/69092	Loss: 114.658
-44800/69092	Loss: 114.111
-48000/69092	Loss: 112.756
-51200/69092	Loss: 114.016
-54400/69092	Loss: 114.316
-57600/69092	Loss: 112.581
-60800/69092	Loss: 112.926
-64000/69092	Loss: 112.703
-67200/69092	Loss: 112.203
-Training time 0:04:30.608806
-Epoch: 1 Average loss: 113.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 140)
-0/69092	Loss: 102.792
-3200/69092	Loss: 112.805
-6400/69092	Loss: 114.190
-9600/69092	Loss: 114.078
-12800/69092	Loss: 113.312
-16000/69092	Loss: 112.534
-19200/69092	Loss: 113.381
-22400/69092	Loss: 114.327
-25600/69092	Loss: 114.343
-28800/69092	Loss: 114.635
-32000/69092	Loss: 114.228
-35200/69092	Loss: 113.063
-38400/69092	Loss: 113.853
-41600/69092	Loss: 114.526
-44800/69092	Loss: 113.829
-48000/69092	Loss: 114.176
-51200/69092	Loss: 113.607
-54400/69092	Loss: 113.869
-57600/69092	Loss: 113.135
-60800/69092	Loss: 113.620
-64000/69092	Loss: 114.794
-67200/69092	Loss: 113.848
-Training time 0:04:18.213843
-Epoch: 2 Average loss: 113.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 141)
-0/69092	Loss: 123.686
-3200/69092	Loss: 115.639
-6400/69092	Loss: 113.484
-9600/69092	Loss: 112.216
-12800/69092	Loss: 112.320
-16000/69092	Loss: 115.109
diff --git a/OAR.2068275.stderr b/OAR.2068275.stderr
deleted file mode 100644
index b7fe79eccf..0000000000
--- a/OAR.2068275.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:29:57] Job 2068275 KILLED ##
diff --git a/OAR.2068275.stdout b/OAR.2068275.stdout
deleted file mode 100644
index 437dd91e0f..0000000000
--- a/OAR.2068275.stdout
+++ /dev/null
@@ -1,92 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_15
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=30, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=15, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 769185
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last'
-0/69092	Loss: 2891.769
-3200/69092	Loss: 2825.642
-6400/69092	Loss: 1205.228
-9600/69092	Loss: 556.734
-12800/69092	Loss: 484.027
-16000/69092	Loss: 465.437
-19200/69092	Loss: 448.356
-22400/69092	Loss: 437.048
-25600/69092	Loss: 401.074
-28800/69092	Loss: 289.548
-32000/69092	Loss: 238.668
-35200/69092	Loss: 234.046
-38400/69092	Loss: 226.796
-41600/69092	Loss: 222.254
-44800/69092	Loss: 225.392
-48000/69092	Loss: 221.208
-51200/69092	Loss: 220.618
-54400/69092	Loss: 213.913
-57600/69092	Loss: 210.644
-60800/69092	Loss: 213.087
-64000/69092	Loss: 216.019
-67200/69092	Loss: 208.903
-Training time 0:04:53.937253
-Epoch: 1 Average loss: 460.47
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 1)
-0/69092	Loss: 188.720
-3200/69092	Loss: 204.200
-6400/69092	Loss: 204.811
-9600/69092	Loss: 200.863
-12800/69092	Loss: 202.928
-16000/69092	Loss: 205.920
-19200/69092	Loss: 195.467
-22400/69092	Loss: 199.383
-25600/69092	Loss: 200.195
-28800/69092	Loss: 196.327
-32000/69092	Loss: 196.155
-35200/69092	Loss: 193.812
-38400/69092	Loss: 193.730
-41600/69092	Loss: 194.544
-44800/69092	Loss: 196.956
-48000/69092	Loss: 190.843
-51200/69092	Loss: 192.657
-54400/69092	Loss: 189.354
-57600/69092	Loss: 192.162
-60800/69092	Loss: 189.223
diff --git a/OAR.2068276.stderr b/OAR.2068276.stderr
deleted file mode 100644
index 7819e1f177..0000000000
--- a/OAR.2068276.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:39:19] Job 2068276 KILLED ##
diff --git a/OAR.2068276.stdout b/OAR.2068276.stdout
deleted file mode 100644
index c4b0467592..0000000000
--- a/OAR.2068276.stdout
+++ /dev/null
@@ -1,102 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_20
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=40, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=20, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 773035
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last'
-0/69092	Loss: 3095.371
-3200/69092	Loss: 3013.162
-6400/69092	Loss: 1142.397
-9600/69092	Loss: 583.239
-12800/69092	Loss: 500.184
-16000/69092	Loss: 479.822
-19200/69092	Loss: 462.136
-22400/69092	Loss: 446.272
-25600/69092	Loss: 445.532
-28800/69092	Loss: 451.249
-32000/69092	Loss: 444.728
-35200/69092	Loss: 436.249
-38400/69092	Loss: 434.357
-41600/69092	Loss: 450.662
-44800/69092	Loss: 436.829
-48000/69092	Loss: 444.385
-51200/69092	Loss: 442.255
-54400/69092	Loss: 431.708
-57600/69092	Loss: 444.837
-60800/69092	Loss: 445.616
-64000/69092	Loss: 438.358
-67200/69092	Loss: 448.892
-Training time 0:04:22.264375
-Epoch: 1 Average loss: 608.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 1)
-0/69092	Loss: 419.617
-3200/69092	Loss: 441.728
-6400/69092	Loss: 436.680
-9600/69092	Loss: 440.386
-12800/69092	Loss: 437.215
-16000/69092	Loss: 439.624
-19200/69092	Loss: 436.731
-22400/69092	Loss: 436.506
-25600/69092	Loss: 439.104
-28800/69092	Loss: 433.798
-32000/69092	Loss: 443.554
-35200/69092	Loss: 442.369
-38400/69092	Loss: 441.461
-41600/69092	Loss: 428.932
-44800/69092	Loss: 458.124
-48000/69092	Loss: 440.610
-51200/69092	Loss: 433.183
-54400/69092	Loss: 445.103
-57600/69092	Loss: 448.074
-60800/69092	Loss: 437.783
-64000/69092	Loss: 442.622
-67200/69092	Loss: 435.505
-Training time 0:04:38.790417
-Epoch: 2 Average loss: 439.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 2)
-0/69092	Loss: 419.540
-3200/69092	Loss: 431.518
-6400/69092	Loss: 444.740
-9600/69092	Loss: 437.046
-12800/69092	Loss: 446.255
diff --git a/OAR.2068277.stderr b/OAR.2068277.stderr
deleted file mode 100644
index be3f6a3232..0000000000
--- a/OAR.2068277.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:40:03] Job 2068277 KILLED ##
diff --git a/OAR.2068277.stdout b/OAR.2068277.stdout
deleted file mode 100644
index ce73d369bd..0000000000
--- a/OAR.2068277.stdout
+++ /dev/null
@@ -1,100 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_5
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=10, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=5, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 761485
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last'
-0/69092	Loss: 2840.949
-3200/69092	Loss: 2696.334
-6400/69092	Loss: 878.800
-9600/69092	Loss: 529.528
-12800/69092	Loss: 473.136
-16000/69092	Loss: 459.979
-19200/69092	Loss: 427.518
-22400/69092	Loss: 312.154
-25600/69092	Loss: 251.443
-28800/69092	Loss: 243.150
-32000/69092	Loss: 238.743
-35200/69092	Loss: 232.739
-38400/69092	Loss: 233.067
-41600/69092	Loss: 230.312
-44800/69092	Loss: 223.895
-48000/69092	Loss: 230.252
-51200/69092	Loss: 228.705
-54400/69092	Loss: 232.979
-57600/69092	Loss: 229.967
-60800/69092	Loss: 224.165
-64000/69092	Loss: 224.971
-67200/69092	Loss: 228.978
-Training time 0:04:33.155919
-Epoch: 1 Average loss: 426.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 1)
-0/69092	Loss: 220.633
-3200/69092	Loss: 223.511
-6400/69092	Loss: 224.541
-9600/69092	Loss: 225.067
-12800/69092	Loss: 222.152
-16000/69092	Loss: 222.201
-19200/69092	Loss: 225.091
-22400/69092	Loss: 220.790
-25600/69092	Loss: 219.536
-28800/69092	Loss: 214.187
-32000/69092	Loss: 221.030
-35200/69092	Loss: 217.724
-38400/69092	Loss: 214.937
-41600/69092	Loss: 221.160
-44800/69092	Loss: 214.006
-48000/69092	Loss: 216.696
-51200/69092	Loss: 208.186
-54400/69092	Loss: 198.221
-57600/69092	Loss: 202.476
-60800/69092	Loss: 191.258
-64000/69092	Loss: 196.500
-67200/69092	Loss: 196.036
-Training time 0:04:43.151928
-Epoch: 2 Average loss: 213.44
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 2)
-0/69092	Loss: 181.796
-3200/69092	Loss: 190.527
-6400/69092	Loss: 192.437
diff --git a/OAR.2068278.stderr b/OAR.2068278.stderr
deleted file mode 100644
index c77cae3370..0000000000
--- a/OAR.2068278.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:40:04] Job 2068278 KILLED ##
diff --git a/OAR.2068278.stdout b/OAR.2068278.stdout
deleted file mode 100644
index b700e16e37..0000000000
--- a/OAR.2068278.stdout
+++ /dev/null
@@ -1,90 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_5
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=10, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=5, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 761485
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last'
-0/69092	Loss: 2903.199
-3200/69092	Loss: 2704.227
-6400/69092	Loss: 982.409
-9600/69092	Loss: 523.329
-12800/69092	Loss: 363.221
-16000/69092	Loss: 276.723
-19200/69092	Loss: 250.323
-22400/69092	Loss: 229.455
-25600/69092	Loss: 220.906
-28800/69092	Loss: 220.425
-32000/69092	Loss: 216.671
-35200/69092	Loss: 213.795
-38400/69092	Loss: 211.775
-41600/69092	Loss: 205.819
-44800/69092	Loss: 206.077
-48000/69092	Loss: 208.456
-51200/69092	Loss: 210.820
-54400/69092	Loss: 204.282
-57600/69092	Loss: 204.736
-60800/69092	Loss: 204.576
-64000/69092	Loss: 200.975
-67200/69092	Loss: 198.954
-Training time 0:05:45.368750
-Epoch: 1 Average loss: 390.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 1)
-0/69092	Loss: 193.590
-3200/69092	Loss: 194.946
-6400/69092	Loss: 199.709
-9600/69092	Loss: 200.276
-12800/69092	Loss: 193.180
-16000/69092	Loss: 192.735
-19200/69092	Loss: 190.256
-22400/69092	Loss: 190.013
-25600/69092	Loss: 188.325
-28800/69092	Loss: 189.229
-32000/69092	Loss: 189.882
-35200/69092	Loss: 190.248
-38400/69092	Loss: 188.566
-41600/69092	Loss: 185.072
-44800/69092	Loss: 189.564
-48000/69092	Loss: 181.238
-51200/69092	Loss: 181.543
-54400/69092	Loss: 182.526
diff --git a/OAR.2068279.stderr b/OAR.2068279.stderr
deleted file mode 100644
index f9f388689b..0000000000
--- a/OAR.2068279.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:40:20] Job 2068279 KILLED ##
diff --git a/OAR.2068279.stdout b/OAR.2068279.stdout
deleted file mode 100644
index 5bf0bda7e7..0000000000
--- a/OAR.2068279.stdout
+++ /dev/null
@@ -1,111 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_15
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=30, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=15, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 769185
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last'
-0/69092	Loss: 3015.823
-3200/69092	Loss: 2867.494
-6400/69092	Loss: 899.528
-9600/69092	Loss: 536.005
-12800/69092	Loss: 478.343
-16000/69092	Loss: 455.459
-19200/69092	Loss: 457.437
-22400/69092	Loss: 370.021
-25600/69092	Loss: 263.633
-28800/69092	Loss: 232.440
-32000/69092	Loss: 210.459
-35200/69092	Loss: 217.661
-38400/69092	Loss: 216.086
-41600/69092	Loss: 215.461
-44800/69092	Loss: 208.221
-48000/69092	Loss: 205.981
-51200/69092	Loss: 208.176
-54400/69092	Loss: 204.615
-57600/69092	Loss: 205.887
-60800/69092	Loss: 203.826
-64000/69092	Loss: 202.141
-67200/69092	Loss: 198.343
-Training time 0:03:51.208936
-Epoch: 1 Average loss: 427.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 1)
-0/69092	Loss: 187.281
-3200/69092	Loss: 200.427
-6400/69092	Loss: 196.083
-9600/69092	Loss: 202.029
-12800/69092	Loss: 196.254
-16000/69092	Loss: 196.466
-19200/69092	Loss: 195.587
-22400/69092	Loss: 192.062
-25600/69092	Loss: 197.137
-28800/69092	Loss: 196.870
-32000/69092	Loss: 193.763
-35200/69092	Loss: 196.194
-38400/69092	Loss: 193.444
-41600/69092	Loss: 186.353
-44800/69092	Loss: 184.125
-48000/69092	Loss: 179.607
-51200/69092	Loss: 181.214
-54400/69092	Loss: 179.105
-57600/69092	Loss: 173.470
-60800/69092	Loss: 163.793
-64000/69092	Loss: 163.068
-67200/69092	Loss: 164.580
-Training time 0:03:46.574199
-Epoch: 2 Average loss: 186.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 2)
-0/69092	Loss: 164.363
-3200/69092	Loss: 157.112
-6400/69092	Loss: 152.674
-9600/69092	Loss: 154.297
-12800/69092	Loss: 155.036
-16000/69092	Loss: 151.871
-19200/69092	Loss: 151.537
-22400/69092	Loss: 152.374
-25600/69092	Loss: 150.578
-28800/69092	Loss: 152.244
-32000/69092	Loss: 150.801
-35200/69092	Loss: 147.880
-38400/69092	Loss: 148.003
-41600/69092	Loss: 147.567
diff --git a/OAR.2068280.stderr b/OAR.2068280.stderr
deleted file mode 100644
index 048a3f1856..0000000000
--- a/OAR.2068280.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:40:20] Job 2068280 KILLED ##
diff --git a/OAR.2068280.stdout b/OAR.2068280.stdout
deleted file mode 100644
index b2affcdd22..0000000000
--- a/OAR.2068280.stdout
+++ /dev/null
@@ -1,174 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_20
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-Tesla K80
-Tesla K80
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=40, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=20, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 773035
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last'
-0/69092	Loss: 2881.933
-3200/69092	Loss: 2719.794
-6400/69092	Loss: 873.853
-9600/69092	Loss: 554.953
-12800/69092	Loss: 492.325
-16000/69092	Loss: 482.132
-19200/69092	Loss: 452.762
-22400/69092	Loss: 330.168
-25600/69092	Loss: 255.698
-28800/69092	Loss: 239.942
-32000/69092	Loss: 228.030
-35200/69092	Loss: 218.689
-38400/69092	Loss: 215.508
-41600/69092	Loss: 216.039
-44800/69092	Loss: 210.728
-48000/69092	Loss: 214.618
-51200/69092	Loss: 213.710
-54400/69092	Loss: 209.650
-57600/69092	Loss: 205.299
-60800/69092	Loss: 203.167
-64000/69092	Loss: 204.888
-67200/69092	Loss: 199.354
-Training time 0:01:59.952372
-Epoch: 1 Average loss: 422.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 1)
-0/69092	Loss: 213.822
-3200/69092	Loss: 195.598
-6400/69092	Loss: 188.690
-9600/69092	Loss: 189.246
-12800/69092	Loss: 185.152
-16000/69092	Loss: 182.199
-19200/69092	Loss: 178.716
-22400/69092	Loss: 175.190
-25600/69092	Loss: 173.751
-28800/69092	Loss: 173.114
-32000/69092	Loss: 169.251
-35200/69092	Loss: 165.858
-38400/69092	Loss: 162.986
-41600/69092	Loss: 160.892
-44800/69092	Loss: 157.779
-48000/69092	Loss: 159.470
-51200/69092	Loss: 155.455
-54400/69092	Loss: 153.642
-57600/69092	Loss: 152.026
-60800/69092	Loss: 154.318
-64000/69092	Loss: 149.577
-67200/69092	Loss: 149.924
-Training time 0:01:58.317271
-Epoch: 2 Average loss: 167.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 2)
-0/69092	Loss: 165.835
-3200/69092	Loss: 147.308
-6400/69092	Loss: 149.297
-9600/69092	Loss: 142.005
-12800/69092	Loss: 146.004
-16000/69092	Loss: 143.574
-19200/69092	Loss: 144.306
-22400/69092	Loss: 142.412
-25600/69092	Loss: 141.625
-28800/69092	Loss: 141.184
-32000/69092	Loss: 140.178
-35200/69092	Loss: 142.290
-38400/69092	Loss: 140.434
-41600/69092	Loss: 138.432
-44800/69092	Loss: 141.047
-48000/69092	Loss: 138.527
-51200/69092	Loss: 140.962
-54400/69092	Loss: 137.973
-57600/69092	Loss: 137.226
-60800/69092	Loss: 136.121
-64000/69092	Loss: 138.238
-67200/69092	Loss: 138.245
-Training time 0:01:59.670387
-Epoch: 3 Average loss: 141.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 3)
-0/69092	Loss: 142.078
-3200/69092	Loss: 136.431
-6400/69092	Loss: 135.250
-9600/69092	Loss: 136.257
-12800/69092	Loss: 135.379
-16000/69092	Loss: 135.078
-19200/69092	Loss: 134.206
-22400/69092	Loss: 135.185
-25600/69092	Loss: 132.867
-28800/69092	Loss: 137.278
-32000/69092	Loss: 134.216
-35200/69092	Loss: 134.020
-38400/69092	Loss: 130.385
-41600/69092	Loss: 135.043
-44800/69092	Loss: 133.981
-48000/69092	Loss: 132.545
-51200/69092	Loss: 135.545
-54400/69092	Loss: 134.631
-57600/69092	Loss: 131.294
-60800/69092	Loss: 132.418
-64000/69092	Loss: 131.634
-67200/69092	Loss: 133.258
-Training time 0:01:58.240577
-Epoch: 4 Average loss: 134.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 4)
-0/69092	Loss: 142.708
-3200/69092	Loss: 132.561
-6400/69092	Loss: 130.874
-9600/69092	Loss: 131.468
-12800/69092	Loss: 131.411
-16000/69092	Loss: 131.824
-19200/69092	Loss: 131.005
-22400/69092	Loss: 132.192
-25600/69092	Loss: 132.671
-28800/69092	Loss: 131.997
-32000/69092	Loss: 128.867
-35200/69092	Loss: 130.574
-38400/69092	Loss: 132.202
-41600/69092	Loss: 129.819
-44800/69092	Loss: 131.265
-48000/69092	Loss: 129.098
-51200/69092	Loss: 130.616
-54400/69092	Loss: 130.498
-57600/69092	Loss: 126.580
-60800/69092	Loss: 130.212
-64000/69092	Loss: 132.173
-67200/69092	Loss: 129.980
-Training time 0:01:58.078942
-Epoch: 5 Average loss: 130.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 5)
-0/69092	Loss: 124.281
-3200/69092	Loss: 128.822
diff --git a/OAR.2068281.stderr b/OAR.2068281.stderr
deleted file mode 100644
index ed1a13f56d..0000000000
--- a/OAR.2068281.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:40:20] Job 2068281 KILLED ##
diff --git a/OAR.2068281.stdout b/OAR.2068281.stdout
deleted file mode 100644
index 88b79673c8..0000000000
--- a/OAR.2068281.stdout
+++ /dev/null
@@ -1,90 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0005, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_5e_4
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce GTX 1080 Ti
-GeForce GTX 1080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last'
-0/69092	Loss: 2961.939
-3200/69092	Loss: 1584.693
-6400/69092	Loss: 429.344
-9600/69092	Loss: 254.546
-12800/69092	Loss: 231.380
-16000/69092	Loss: 223.665
-19200/69092	Loss: 223.704
-22400/69092	Loss: 222.083
-25600/69092	Loss: 204.693
-28800/69092	Loss: 191.011
-32000/69092	Loss: 182.565
-35200/69092	Loss: 181.646
-38400/69092	Loss: 177.863
-41600/69092	Loss: 177.561
-44800/69092	Loss: 177.871
-48000/69092	Loss: 177.182
-51200/69092	Loss: 175.946
-54400/69092	Loss: 173.444
-57600/69092	Loss: 169.927
-60800/69092	Loss: 172.724
-64000/69092	Loss: 167.277
-67200/69092	Loss: 167.102
-Training time 0:05:38.196312
-Epoch: 1 Average loss: 269.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 1)
-0/69092	Loss: 163.101
-3200/69092	Loss: 165.132
-6400/69092	Loss: 164.033
-9600/69092	Loss: 164.653
-12800/69092	Loss: 165.870
-16000/69092	Loss: 162.765
-19200/69092	Loss: 159.483
-22400/69092	Loss: 160.846
-25600/69092	Loss: 150.316
-28800/69092	Loss: 153.128
-32000/69092	Loss: 151.751
-35200/69092	Loss: 149.352
-38400/69092	Loss: 153.455
-41600/69092	Loss: 151.018
-44800/69092	Loss: 146.968
-48000/69092	Loss: 149.090
-51200/69092	Loss: 146.556
-54400/69092	Loss: 146.958
diff --git a/OAR.2068282.stderr b/OAR.2068282.stderr
deleted file mode 100644
index 36785ebedb..0000000000
--- a/OAR.2068282.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-24 16:43:44] Job 2068282 KILLED ##
diff --git a/OAR.2068282.stdout b/OAR.2068282.stdout
deleted file mode 100644
index 7edde933fe..0000000000
--- a/OAR.2068282.stdout
+++ /dev/null
@@ -1,105 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_1e_3', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_1e_3
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce GTX 1080 Ti
-GeForce GTX 1080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last'
-0/69092	Loss: 2701.321
-3200/69092	Loss: 815.006
-6400/69092	Loss: 448.151
-9600/69092	Loss: 444.065
-12800/69092	Loss: 443.395
-16000/69092	Loss: 429.927
-19200/69092	Loss: 437.021
-22400/69092	Loss: 446.268
-25600/69092	Loss: 442.520
-28800/69092	Loss: 452.733
-32000/69092	Loss: 441.294
-35200/69092	Loss: 440.683
-38400/69092	Loss: 451.406
-41600/69092	Loss: 443.954
-44800/69092	Loss: 444.240
-48000/69092	Loss: 425.311
-51200/69092	Loss: 436.951
-54400/69092	Loss: 441.969
-57600/69092	Loss: 439.883
-60800/69092	Loss: 432.937
-64000/69092	Loss: 430.354
-67200/69092	Loss: 438.986
-Training time 0:04:22.675834
-Epoch: 1 Average loss: 460.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 1)
-0/69092	Loss: 477.468
-3200/69092	Loss: 444.829
-6400/69092	Loss: 439.752
-9600/69092	Loss: 448.288
-12800/69092	Loss: 433.830
-16000/69092	Loss: 441.858
-19200/69092	Loss: 441.838
-22400/69092	Loss: 440.030
-25600/69092	Loss: 441.060
-28800/69092	Loss: 443.189
-32000/69092	Loss: 444.328
-35200/69092	Loss: 444.173
-38400/69092	Loss: 425.570
-41600/69092	Loss: 442.802
-44800/69092	Loss: 443.597
-48000/69092	Loss: 435.120
-51200/69092	Loss: 447.508
-54400/69092	Loss: 446.497
-57600/69092	Loss: 438.670
-60800/69092	Loss: 433.847
-64000/69092	Loss: 438.785
-67200/69092	Loss: 439.632
-Training time 0:04:12.735653
-Epoch: 2 Average loss: 440.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 2)
-0/69092	Loss: 393.189
-3200/69092	Loss: 435.335
-6400/69092	Loss: 442.619
-9600/69092	Loss: 437.330
-12800/69092	Loss: 445.204
-16000/69092	Loss: 446.610
-19200/69092	Loss: 443.931
-22400/69092	Loss: 444.131
diff --git a/OAR.2068284.stderr b/OAR.2068284.stderr
deleted file mode 100644
index 8761745c12..0000000000
--- a/OAR.2068284.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068284 KILLED ##
diff --git a/OAR.2068284.stdout b/OAR.2068284.stdout
deleted file mode 100644
index 4d17472346..0000000000
--- a/OAR.2068284.stdout
+++ /dev/null
@@ -1,1347 +0,0 @@
-Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce GTX 1080 Ti
-GeForce GTX 1080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 173)'
-0/69092	Loss: 155.952
-12800/69092	Loss: 159.121
-25600/69092	Loss: 160.204
-38400/69092	Loss: 157.853
-51200/69092	Loss: 158.496
-64000/69092	Loss: 155.627
-Training time 0:04:07.256582
-Epoch: 1 Average loss: 158.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 174)
-0/69092	Loss: 156.559
-12800/69092	Loss: 157.571
-25600/69092	Loss: 157.691
-38400/69092	Loss: 158.235
-51200/69092	Loss: 158.045
-64000/69092	Loss: 157.110
-Training time 0:04:09.060156
-Epoch: 2 Average loss: 157.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 175)
-0/69092	Loss: 169.037
-12800/69092	Loss: 159.161
-25600/69092	Loss: 158.117
-38400/69092	Loss: 157.120
-51200/69092	Loss: 158.061
-64000/69092	Loss: 158.438
-Training time 0:04:11.693603
-Epoch: 3 Average loss: 158.06
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 176)
-0/69092	Loss: 173.992
-12800/69092	Loss: 157.694
-25600/69092	Loss: 158.061
-38400/69092	Loss: 158.073
-51200/69092	Loss: 157.170
-64000/69092	Loss: 158.600
-Training time 0:04:08.950306
-Epoch: 4 Average loss: 158.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 177)
-0/69092	Loss: 152.509
-12800/69092	Loss: 157.509
-25600/69092	Loss: 157.259
-38400/69092	Loss: 157.133
-51200/69092	Loss: 158.958
-64000/69092	Loss: 157.564
-Training time 0:04:04.422023
-Epoch: 5 Average loss: 157.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 178)
-0/69092	Loss: 159.325
-12800/69092	Loss: 157.663
-25600/69092	Loss: 158.119
-38400/69092	Loss: 157.028
-51200/69092	Loss: 157.416
-64000/69092	Loss: 158.792
-Training time 0:04:05.803442
-Epoch: 6 Average loss: 157.93
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 179)
-0/69092	Loss: 170.144
-12800/69092	Loss: 158.356
-25600/69092	Loss: 158.823
-38400/69092	Loss: 158.388
-51200/69092	Loss: 157.626
-64000/69092	Loss: 157.173
-Training time 0:04:07.837678
-Epoch: 7 Average loss: 158.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 180)
-0/69092	Loss: 155.297
-12800/69092	Loss: 158.118
-25600/69092	Loss: 158.781
-38400/69092	Loss: 156.992
-51200/69092	Loss: 157.078
-64000/69092	Loss: 157.590
-Training time 0:04:10.990231
-Epoch: 8 Average loss: 157.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 181)
-0/69092	Loss: 151.523
-12800/69092	Loss: 158.502
-25600/69092	Loss: 156.810
-38400/69092	Loss: 158.807
-51200/69092	Loss: 157.819
-64000/69092	Loss: 157.962
-Training time 0:04:08.934011
-Epoch: 9 Average loss: 158.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 182)
-0/69092	Loss: 158.328
-12800/69092	Loss: 156.602
-25600/69092	Loss: 157.674
-38400/69092	Loss: 158.318
-51200/69092	Loss: 158.263
-64000/69092	Loss: 156.871
-Training time 0:04:07.837835
-Epoch: 10 Average loss: 157.67
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 183)
-0/69092	Loss: 168.085
-12800/69092	Loss: 157.082
-25600/69092	Loss: 157.931
-38400/69092	Loss: 157.634
-51200/69092	Loss: 158.448
-64000/69092	Loss: 156.862
-Training time 0:04:04.238534
-Epoch: 11 Average loss: 157.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 184)
-0/69092	Loss: 152.943
-12800/69092	Loss: 157.047
-25600/69092	Loss: 159.241
-38400/69092	Loss: 156.479
-51200/69092	Loss: 157.264
-64000/69092	Loss: 157.732
-Training time 0:04:06.931607
-Epoch: 12 Average loss: 157.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 185)
-0/69092	Loss: 149.970
-12800/69092	Loss: 158.554
-25600/69092	Loss: 157.538
-38400/69092	Loss: 156.891
-51200/69092	Loss: 158.801
-64000/69092	Loss: 157.180
-Training time 0:04:06.729115
-Epoch: 13 Average loss: 157.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 186)
-0/69092	Loss: 168.819
-12800/69092	Loss: 157.445
-25600/69092	Loss: 158.959
-38400/69092	Loss: 157.423
-51200/69092	Loss: 158.772
-64000/69092	Loss: 155.783
-Training time 0:04:07.010972
-Epoch: 14 Average loss: 157.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 187)
-0/69092	Loss: 160.036
-12800/69092	Loss: 159.004
-25600/69092	Loss: 157.329
-38400/69092	Loss: 157.758
-51200/69092	Loss: 156.844
-64000/69092	Loss: 157.920
-Training time 0:04:08.909317
-Epoch: 15 Average loss: 157.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 188)
-0/69092	Loss: 149.585
-12800/69092	Loss: 157.099
-25600/69092	Loss: 157.843
-38400/69092	Loss: 156.822
-51200/69092	Loss: 156.968
-64000/69092	Loss: 158.730
-Training time 0:04:07.691350
-Epoch: 16 Average loss: 157.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 189)
-0/69092	Loss: 167.834
-12800/69092	Loss: 158.222
-25600/69092	Loss: 158.600
-38400/69092	Loss: 157.595
-51200/69092	Loss: 157.795
-64000/69092	Loss: 157.077
-Training time 0:04:07.152289
-Epoch: 17 Average loss: 157.83
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 190)
-0/69092	Loss: 157.181
-12800/69092	Loss: 157.831
-25600/69092	Loss: 158.101
-38400/69092	Loss: 158.576
-51200/69092	Loss: 157.180
-64000/69092	Loss: 158.019
-Training time 0:04:08.809209
-Epoch: 18 Average loss: 157.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 191)
-0/69092	Loss: 153.267
-12800/69092	Loss: 158.127
-25600/69092	Loss: 157.503
-38400/69092	Loss: 157.463
-51200/69092	Loss: 158.788
-64000/69092	Loss: 157.668
-Training time 0:04:11.227325
-Epoch: 19 Average loss: 157.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 192)
-0/69092	Loss: 161.668
-12800/69092	Loss: 157.593
-25600/69092	Loss: 157.789
-38400/69092	Loss: 157.822
-51200/69092	Loss: 157.680
-64000/69092	Loss: 158.281
-Training time 0:04:09.122571
-Epoch: 20 Average loss: 157.93
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 193)
-0/69092	Loss: 150.352
-12800/69092	Loss: 157.402
-25600/69092	Loss: 157.315
-38400/69092	Loss: 158.616
-51200/69092	Loss: 156.236
-64000/69092	Loss: 158.431
-Training time 0:04:11.388727
-Epoch: 21 Average loss: 157.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 194)
-0/69092	Loss: 156.163
-12800/69092	Loss: 157.171
-25600/69092	Loss: 156.466
-38400/69092	Loss: 158.786
-51200/69092	Loss: 158.157
-64000/69092	Loss: 157.648
-Training time 0:04:05.055387
-Epoch: 22 Average loss: 157.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 195)
-0/69092	Loss: 147.419
-12800/69092	Loss: 157.830
-25600/69092	Loss: 157.611
-38400/69092	Loss: 157.757
-51200/69092	Loss: 158.056
-64000/69092	Loss: 157.455
-Training time 0:04:05.411815
-Epoch: 23 Average loss: 157.72
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 196)
-0/69092	Loss: 171.791
-12800/69092	Loss: 156.112
-25600/69092	Loss: 157.859
-38400/69092	Loss: 158.415
-51200/69092	Loss: 158.944
-64000/69092	Loss: 156.379
-Training time 0:04:08.043169
-Epoch: 24 Average loss: 157.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 197)
-0/69092	Loss: 160.278
-12800/69092	Loss: 157.984
-25600/69092	Loss: 158.727
-38400/69092	Loss: 158.111
-51200/69092	Loss: 157.447
-64000/69092	Loss: 156.952
-Training time 0:04:12.129530
-Epoch: 25 Average loss: 157.79
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 198)
-0/69092	Loss: 152.806
-12800/69092	Loss: 156.814
-25600/69092	Loss: 158.617
-38400/69092	Loss: 158.246
-51200/69092	Loss: 156.832
-64000/69092	Loss: 156.933
-Training time 0:04:08.390553
-Epoch: 26 Average loss: 157.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 199)
-0/69092	Loss: 156.767
-12800/69092	Loss: 157.931
-25600/69092	Loss: 157.088
-38400/69092	Loss: 157.270
-51200/69092	Loss: 158.061
-64000/69092	Loss: 158.765
-Training time 0:04:08.695474
-Epoch: 27 Average loss: 157.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 200)
-0/69092	Loss: 156.520
-12800/69092	Loss: 157.872
-25600/69092	Loss: 159.027
-38400/69092	Loss: 158.514
-51200/69092	Loss: 157.492
-64000/69092	Loss: 156.484
-Training time 0:04:05.689479
-Epoch: 28 Average loss: 157.95
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 201)
-0/69092	Loss: 150.646
-12800/69092	Loss: 158.405
-25600/69092	Loss: 158.932
-38400/69092	Loss: 156.635
-51200/69092	Loss: 157.135
-64000/69092	Loss: 157.422
-Training time 0:04:06.258930
-Epoch: 29 Average loss: 157.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 202)
-0/69092	Loss: 165.311
-12800/69092	Loss: 157.452
-25600/69092	Loss: 157.317
-38400/69092	Loss: 156.785
-51200/69092	Loss: 158.505
-64000/69092	Loss: 158.541
-Training time 0:04:09.311575
-Epoch: 30 Average loss: 157.68
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 203)
-0/69092	Loss: 152.277
-12800/69092	Loss: 156.063
-25600/69092	Loss: 157.964
-38400/69092	Loss: 158.164
-51200/69092	Loss: 157.314
-64000/69092	Loss: 158.910
-Training time 0:04:08.771677
-Epoch: 31 Average loss: 157.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 204)
-0/69092	Loss: 164.293
-12800/69092	Loss: 157.703
-25600/69092	Loss: 158.666
-38400/69092	Loss: 157.075
-51200/69092	Loss: 157.553
-64000/69092	Loss: 158.131
-Training time 0:04:11.246236
-Epoch: 32 Average loss: 157.63
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 205)
-0/69092	Loss: 154.875
-12800/69092	Loss: 158.356
-25600/69092	Loss: 158.025
-38400/69092	Loss: 156.657
-51200/69092	Loss: 158.189
-64000/69092	Loss: 157.547
-Training time 0:04:09.750177
-Epoch: 33 Average loss: 157.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 206)
-0/69092	Loss: 153.610
-12800/69092	Loss: 158.994
-25600/69092	Loss: 158.683
-38400/69092	Loss: 158.389
-51200/69092	Loss: 157.156
-64000/69092	Loss: 155.605
-Training time 0:04:04.536860
-Epoch: 34 Average loss: 157.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 207)
-0/69092	Loss: 160.609
-12800/69092	Loss: 158.284
-25600/69092	Loss: 157.730
-38400/69092	Loss: 157.647
-51200/69092	Loss: 157.609
-64000/69092	Loss: 156.316
-Training time 0:04:07.207110
-Epoch: 35 Average loss: 157.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 208)
-0/69092	Loss: 157.581
-12800/69092	Loss: 157.032
-25600/69092	Loss: 157.428
-38400/69092	Loss: 158.491
-51200/69092	Loss: 157.662
-64000/69092	Loss: 157.269
-Training time 0:04:07.801669
-Epoch: 36 Average loss: 157.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 209)
-0/69092	Loss: 159.224
-12800/69092	Loss: 158.065
-25600/69092	Loss: 157.590
-38400/69092	Loss: 156.078
-51200/69092	Loss: 158.977
-64000/69092	Loss: 158.306
-Training time 0:04:09.360865
-Epoch: 37 Average loss: 157.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 210)
-0/69092	Loss: 165.091
-12800/69092	Loss: 158.108
-25600/69092	Loss: 157.228
-38400/69092	Loss: 157.449
-51200/69092	Loss: 156.462
-64000/69092	Loss: 157.308
-Training time 0:04:08.158248
-Epoch: 38 Average loss: 157.41
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 211)
-0/69092	Loss: 157.792
-12800/69092	Loss: 157.611
-25600/69092	Loss: 158.170
-38400/69092	Loss: 158.744
-51200/69092	Loss: 157.334
-64000/69092	Loss: 156.975
-Training time 0:04:07.028698
-Epoch: 39 Average loss: 157.68
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 212)
-0/69092	Loss: 170.346
-12800/69092	Loss: 156.963
-25600/69092	Loss: 157.363
-38400/69092	Loss: 156.976
-51200/69092	Loss: 156.863
-64000/69092	Loss: 158.115
-Training time 0:04:06.447876
-Epoch: 40 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 213)
-0/69092	Loss: 153.107
-12800/69092	Loss: 157.775
-25600/69092	Loss: 156.232
-38400/69092	Loss: 158.089
-51200/69092	Loss: 156.741
-64000/69092	Loss: 158.053
-Training time 0:04:07.363092
-Epoch: 41 Average loss: 157.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 214)
-0/69092	Loss: 158.205
-12800/69092	Loss: 157.932
-25600/69092	Loss: 157.873
-38400/69092	Loss: 157.378
-51200/69092	Loss: 157.124
-64000/69092	Loss: 156.899
-Training time 0:04:08.284864
-Epoch: 42 Average loss: 157.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 215)
-0/69092	Loss: 159.169
-12800/69092	Loss: 156.975
-25600/69092	Loss: 156.550
-38400/69092	Loss: 157.878
-51200/69092	Loss: 157.209
-64000/69092	Loss: 157.833
-Training time 0:04:08.949711
-Epoch: 43 Average loss: 157.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 216)
-0/69092	Loss: 152.923
-12800/69092	Loss: 156.564
-25600/69092	Loss: 157.336
-38400/69092	Loss: 157.758
-51200/69092	Loss: 158.955
-64000/69092	Loss: 157.532
-Training time 0:04:09.563251
-Epoch: 44 Average loss: 157.46
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 217)
-0/69092	Loss: 159.523
-12800/69092	Loss: 157.357
-25600/69092	Loss: 157.871
-38400/69092	Loss: 158.002
-51200/69092	Loss: 156.907
-64000/69092	Loss: 156.788
-Training time 0:04:07.358115
-Epoch: 45 Average loss: 157.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 218)
-0/69092	Loss: 166.447
-12800/69092	Loss: 156.163
-25600/69092	Loss: 158.640
-38400/69092	Loss: 157.564
-51200/69092	Loss: 155.737
-64000/69092	Loss: 158.560
-Training time 0:04:04.926735
-Epoch: 46 Average loss: 157.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 219)
-0/69092	Loss: 157.227
-12800/69092	Loss: 157.724
-25600/69092	Loss: 157.674
-38400/69092	Loss: 158.769
-51200/69092	Loss: 156.429
-64000/69092	Loss: 157.198
-Training time 0:04:09.950528
-Epoch: 47 Average loss: 157.59
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 220)
-0/69092	Loss: 165.830
-12800/69092	Loss: 156.446
-25600/69092	Loss: 157.076
-38400/69092	Loss: 158.443
-51200/69092	Loss: 157.780
-64000/69092	Loss: 158.231
-Training time 0:04:10.794276
-Epoch: 48 Average loss: 157.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 221)
-0/69092	Loss: 161.042
-12800/69092	Loss: 156.000
-25600/69092	Loss: 157.124
-38400/69092	Loss: 157.936
-51200/69092	Loss: 158.877
-64000/69092	Loss: 157.673
-Training time 0:04:11.640587
-Epoch: 49 Average loss: 157.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 222)
-0/69092	Loss: 157.060
-12800/69092	Loss: 157.399
-25600/69092	Loss: 157.788
-38400/69092	Loss: 156.679
-51200/69092	Loss: 158.832
-64000/69092	Loss: 156.170
-Training time 0:04:10.365157
-Epoch: 50 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 223)
-0/69092	Loss: 161.609
-12800/69092	Loss: 158.738
-25600/69092	Loss: 158.430
-38400/69092	Loss: 156.129
-51200/69092	Loss: 156.666
-64000/69092	Loss: 157.170
-Training time 0:04:09.316831
-Epoch: 51 Average loss: 157.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 224)
-0/69092	Loss: 153.683
-12800/69092	Loss: 157.725
-25600/69092	Loss: 156.806
-38400/69092	Loss: 157.850
-51200/69092	Loss: 158.526
-64000/69092	Loss: 156.939
-Training time 0:04:05.028103
-Epoch: 52 Average loss: 157.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 225)
-0/69092	Loss: 158.885
-12800/69092	Loss: 157.245
-25600/69092	Loss: 158.704
-38400/69092	Loss: 157.207
-51200/69092	Loss: 156.306
-64000/69092	Loss: 157.821
-Training time 0:04:10.674155
-Epoch: 53 Average loss: 157.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 226)
-0/69092	Loss: 155.339
-12800/69092	Loss: 158.253
-25600/69092	Loss: 158.159
-38400/69092	Loss: 155.812
-51200/69092	Loss: 156.602
-64000/69092	Loss: 157.555
-Training time 0:04:12.632021
-Epoch: 54 Average loss: 157.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 227)
-0/69092	Loss: 155.890
-12800/69092	Loss: 156.798
-25600/69092	Loss: 158.212
-38400/69092	Loss: 157.738
-51200/69092	Loss: 157.282
-64000/69092	Loss: 157.701
-Training time 0:04:11.221483
-Epoch: 55 Average loss: 157.68
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 228)
-0/69092	Loss: 161.760
-12800/69092	Loss: 158.265
-25600/69092	Loss: 157.248
-38400/69092	Loss: 156.036
-51200/69092	Loss: 158.352
-64000/69092	Loss: 156.961
-Training time 0:04:12.344839
-Epoch: 56 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 229)
-0/69092	Loss: 156.050
-12800/69092	Loss: 158.169
-25600/69092	Loss: 157.276
-38400/69092	Loss: 158.034
-51200/69092	Loss: 157.169
-64000/69092	Loss: 157.876
-Training time 0:04:06.652882
-Epoch: 57 Average loss: 157.70
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 230)
-0/69092	Loss: 155.364
-12800/69092	Loss: 157.337
-25600/69092	Loss: 156.698
-38400/69092	Loss: 158.144
-51200/69092	Loss: 157.125
-64000/69092	Loss: 158.089
-Training time 0:04:05.451386
-Epoch: 58 Average loss: 157.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 231)
-0/69092	Loss: 155.917
-12800/69092	Loss: 157.703
-25600/69092	Loss: 155.820
-38400/69092	Loss: 158.629
-51200/69092	Loss: 157.808
-64000/69092	Loss: 157.381
-Training time 0:04:10.231175
-Epoch: 59 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 232)
-0/69092	Loss: 154.034
-12800/69092	Loss: 156.802
-25600/69092	Loss: 157.941
-38400/69092	Loss: 158.557
-51200/69092	Loss: 156.309
-64000/69092	Loss: 157.781
-Training time 0:04:09.659678
-Epoch: 60 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 233)
-0/69092	Loss: 152.551
-12800/69092	Loss: 156.890
-25600/69092	Loss: 158.074
-38400/69092	Loss: 157.366
-51200/69092	Loss: 158.784
-64000/69092	Loss: 156.646
-Training time 0:04:12.622080
-Epoch: 61 Average loss: 157.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 234)
-0/69092	Loss: 159.347
-12800/69092	Loss: 157.794
-25600/69092	Loss: 157.253
-38400/69092	Loss: 157.027
-51200/69092	Loss: 156.760
-64000/69092	Loss: 157.832
-Training time 0:04:09.804689
-Epoch: 62 Average loss: 157.52
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 235)
-0/69092	Loss: 161.108
-12800/69092	Loss: 156.700
-25600/69092	Loss: 158.598
-38400/69092	Loss: 156.907
-51200/69092	Loss: 156.723
-64000/69092	Loss: 156.703
-Training time 0:04:06.690097
-Epoch: 63 Average loss: 157.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 236)
-0/69092	Loss: 151.689
-12800/69092	Loss: 159.341
-25600/69092	Loss: 156.846
-38400/69092	Loss: 157.478
-51200/69092	Loss: 158.575
-64000/69092	Loss: 156.002
-Training time 0:04:07.036244
-Epoch: 64 Average loss: 157.57
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 237)
-0/69092	Loss: 160.479
-12800/69092	Loss: 156.621
-25600/69092	Loss: 157.561
-38400/69092	Loss: 156.412
-51200/69092	Loss: 159.183
-64000/69092	Loss: 158.383
-Training time 0:04:12.176953
-Epoch: 65 Average loss: 157.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 238)
-0/69092	Loss: 168.077
-12800/69092	Loss: 156.993
-25600/69092	Loss: 158.328
-38400/69092	Loss: 156.861
-51200/69092	Loss: 157.901
-64000/69092	Loss: 157.954
-Training time 0:04:10.374660
-Epoch: 66 Average loss: 157.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 239)
-0/69092	Loss: 147.819
-12800/69092	Loss: 158.114
-25600/69092	Loss: 156.945
-38400/69092	Loss: 157.846
-51200/69092	Loss: 156.692
-64000/69092	Loss: 157.591
-Training time 0:04:09.441636
-Epoch: 67 Average loss: 157.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 240)
-0/69092	Loss: 158.824
-12800/69092	Loss: 156.585
-25600/69092	Loss: 157.306
-38400/69092	Loss: 158.213
-51200/69092	Loss: 157.915
-64000/69092	Loss: 157.248
-Training time 0:04:08.608228
-Epoch: 68 Average loss: 157.43
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 241)
-0/69092	Loss: 159.264
-12800/69092	Loss: 157.138
-25600/69092	Loss: 158.863
-38400/69092	Loss: 158.558
-51200/69092	Loss: 156.178
-64000/69092	Loss: 157.639
-Training time 0:04:03.071162
-Epoch: 69 Average loss: 157.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 242)
-0/69092	Loss: 152.968
-12800/69092	Loss: 156.544
-25600/69092	Loss: 156.787
-38400/69092	Loss: 158.234
-51200/69092	Loss: 156.915
-64000/69092	Loss: 157.555
-Training time 0:04:07.455852
-Epoch: 70 Average loss: 157.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 243)
-0/69092	Loss: 160.421
-12800/69092	Loss: 158.576
-25600/69092	Loss: 157.594
-38400/69092	Loss: 157.761
-51200/69092	Loss: 156.322
-64000/69092	Loss: 156.756
-Training time 0:04:08.703059
-Epoch: 71 Average loss: 157.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 244)
-0/69092	Loss: 153.485
-12800/69092	Loss: 157.888
-25600/69092	Loss: 157.596
-38400/69092	Loss: 156.846
-51200/69092	Loss: 157.866
-64000/69092	Loss: 156.987
-Training time 0:04:12.067903
-Epoch: 72 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 245)
-0/69092	Loss: 163.371
-12800/69092	Loss: 157.914
-25600/69092	Loss: 156.977
-38400/69092	Loss: 156.872
-51200/69092	Loss: 157.466
-64000/69092	Loss: 158.811
-Training time 0:04:10.709059
-Epoch: 73 Average loss: 157.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 246)
-0/69092	Loss: 161.437
-12800/69092	Loss: 158.193
-25600/69092	Loss: 156.608
-38400/69092	Loss: 158.900
-51200/69092	Loss: 156.847
-64000/69092	Loss: 156.355
-Training time 0:04:09.862156
-Epoch: 74 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 247)
-0/69092	Loss: 161.102
-12800/69092	Loss: 157.671
-25600/69092	Loss: 157.514
-38400/69092	Loss: 156.699
-51200/69092	Loss: 158.679
-64000/69092	Loss: 157.702
-Training time 0:04:07.326575
-Epoch: 75 Average loss: 157.59
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 248)
-0/69092	Loss: 151.403
-12800/69092	Loss: 157.397
-25600/69092	Loss: 157.554
-38400/69092	Loss: 156.725
-51200/69092	Loss: 158.962
-64000/69092	Loss: 157.685
-Training time 0:04:11.968574
-Epoch: 76 Average loss: 157.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 249)
-0/69092	Loss: 157.915
-12800/69092	Loss: 155.784
-25600/69092	Loss: 158.362
-38400/69092	Loss: 156.531
-51200/69092	Loss: 157.851
-64000/69092	Loss: 157.451
-Training time 0:04:09.654373
-Epoch: 77 Average loss: 157.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 250)
-0/69092	Loss: 148.656
-12800/69092	Loss: 157.064
-25600/69092	Loss: 156.904
-38400/69092	Loss: 157.858
-51200/69092	Loss: 157.146
-64000/69092	Loss: 157.414
-Training time 0:04:08.727900
-Epoch: 78 Average loss: 157.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 251)
-0/69092	Loss: 155.678
-12800/69092	Loss: 156.509
-25600/69092	Loss: 157.133
-38400/69092	Loss: 157.766
-51200/69092	Loss: 157.756
-64000/69092	Loss: 157.893
-Training time 0:04:07.309731
-Epoch: 79 Average loss: 157.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 252)
-0/69092	Loss: 144.090
-12800/69092	Loss: 156.885
-25600/69092	Loss: 157.186
-38400/69092	Loss: 156.099
-51200/69092	Loss: 157.945
-64000/69092	Loss: 157.640
-Training time 0:04:08.898807
-Epoch: 80 Average loss: 157.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 253)
-0/69092	Loss: 158.216
-12800/69092	Loss: 158.188
-25600/69092	Loss: 156.013
-38400/69092	Loss: 156.550
-51200/69092	Loss: 157.594
-64000/69092	Loss: 157.669
-Training time 0:04:04.894205
-Epoch: 81 Average loss: 157.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 254)
-0/69092	Loss: 163.928
-12800/69092	Loss: 158.098
-25600/69092	Loss: 156.798
-38400/69092	Loss: 157.754
-51200/69092	Loss: 156.268
-64000/69092	Loss: 157.443
-Training time 0:04:08.553407
-Epoch: 82 Average loss: 157.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 255)
-0/69092	Loss: 157.476
-12800/69092	Loss: 156.176
-25600/69092	Loss: 158.057
-38400/69092	Loss: 157.450
-51200/69092	Loss: 158.515
-64000/69092	Loss: 157.737
-Training time 0:04:11.952887
-Epoch: 83 Average loss: 157.47
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 256)
-0/69092	Loss: 152.488
-12800/69092	Loss: 158.060
-25600/69092	Loss: 157.019
-38400/69092	Loss: 155.443
-51200/69092	Loss: 157.548
-64000/69092	Loss: 157.624
-Training time 0:04:10.425186
-Epoch: 84 Average loss: 157.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 257)
-0/69092	Loss: 162.522
-12800/69092	Loss: 159.263
-25600/69092	Loss: 157.610
-38400/69092	Loss: 156.635
-51200/69092	Loss: 156.299
-64000/69092	Loss: 157.541
-Training time 0:04:11.270785
-Epoch: 85 Average loss: 157.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 258)
-0/69092	Loss: 153.684
-12800/69092	Loss: 158.437
-25600/69092	Loss: 155.698
-38400/69092	Loss: 157.179
-51200/69092	Loss: 157.263
-64000/69092	Loss: 158.020
-Training time 0:04:10.949805
-Epoch: 86 Average loss: 157.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 259)
-0/69092	Loss: 156.394
-12800/69092	Loss: 157.345
-25600/69092	Loss: 157.588
-38400/69092	Loss: 157.866
-51200/69092	Loss: 155.943
-64000/69092	Loss: 157.875
-Training time 0:04:04.290943
-Epoch: 87 Average loss: 157.27
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 260)
-0/69092	Loss: 151.419
-12800/69092	Loss: 156.644
-25600/69092	Loss: 156.534
-38400/69092	Loss: 158.318
-51200/69092	Loss: 156.783
-64000/69092	Loss: 156.739
-Training time 0:04:15.388469
-Epoch: 88 Average loss: 157.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 261)
-0/69092	Loss: 161.832
-12800/69092	Loss: 157.948
-25600/69092	Loss: 156.336
-38400/69092	Loss: 158.019
-51200/69092	Loss: 156.740
-64000/69092	Loss: 157.256
-Training time 0:04:12.798415
-Epoch: 89 Average loss: 157.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 262)
-0/69092	Loss: 167.103
-12800/69092	Loss: 157.328
-25600/69092	Loss: 157.233
-38400/69092	Loss: 157.854
-51200/69092	Loss: 155.752
-64000/69092	Loss: 156.840
-Training time 0:04:12.797798
-Epoch: 90 Average loss: 157.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 263)
-0/69092	Loss: 155.901
-12800/69092	Loss: 157.552
-25600/69092	Loss: 157.195
-38400/69092	Loss: 157.300
-51200/69092	Loss: 156.765
-64000/69092	Loss: 157.187
-Training time 0:04:11.831708
-Epoch: 91 Average loss: 157.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 264)
-0/69092	Loss: 154.262
-12800/69092	Loss: 158.352
-25600/69092	Loss: 156.119
-38400/69092	Loss: 158.913
-51200/69092	Loss: 157.989
-64000/69092	Loss: 156.361
-Training time 0:04:08.926917
-Epoch: 92 Average loss: 157.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 265)
-0/69092	Loss: 155.008
-12800/69092	Loss: 157.280
-25600/69092	Loss: 158.019
-38400/69092	Loss: 155.993
-51200/69092	Loss: 157.609
-64000/69092	Loss: 156.842
-Training time 0:04:03.073599
-Epoch: 93 Average loss: 157.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 266)
-0/69092	Loss: 162.025
-12800/69092	Loss: 157.524
-25600/69092	Loss: 157.398
-38400/69092	Loss: 157.294
-51200/69092	Loss: 157.970
-64000/69092	Loss: 156.351
-Training time 0:04:07.584761
-Epoch: 94 Average loss: 157.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 267)
-0/69092	Loss: 168.699
-12800/69092	Loss: 156.917
-25600/69092	Loss: 156.806
-38400/69092	Loss: 157.386
-51200/69092	Loss: 156.886
-64000/69092	Loss: 157.273
-Training time 0:04:09.591231
-Epoch: 95 Average loss: 157.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 268)
-0/69092	Loss: 158.137
-12800/69092	Loss: 157.558
-25600/69092	Loss: 157.538
-38400/69092	Loss: 157.434
-51200/69092	Loss: 157.487
-64000/69092	Loss: 156.290
-Training time 0:04:12.204420
-Epoch: 96 Average loss: 157.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 269)
-0/69092	Loss: 162.844
-12800/69092	Loss: 156.509
-25600/69092	Loss: 157.572
-38400/69092	Loss: 158.294
-51200/69092	Loss: 156.501
-64000/69092	Loss: 157.894
-Training time 0:04:10.931413
-Epoch: 97 Average loss: 157.46
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 270)
-0/69092	Loss: 160.477
-12800/69092	Loss: 157.578
-25600/69092	Loss: 157.279
-38400/69092	Loss: 157.476
-51200/69092	Loss: 157.491
-64000/69092	Loss: 156.596
-Training time 0:04:08.272934
-Epoch: 98 Average loss: 157.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 271)
-0/69092	Loss: 161.273
-12800/69092	Loss: 157.254
-25600/69092	Loss: 157.126
-38400/69092	Loss: 157.503
-51200/69092	Loss: 158.235
-64000/69092	Loss: 156.365
-Training time 0:04:03.909884
-Epoch: 99 Average loss: 157.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 272)
-0/69092	Loss: 157.615
-12800/69092	Loss: 157.470
-25600/69092	Loss: 157.726
-38400/69092	Loss: 158.092
-51200/69092	Loss: 156.651
-64000/69092	Loss: 157.146
-Training time 0:04:11.181057
-Epoch: 100 Average loss: 157.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 273)
-0/69092	Loss: 155.768
-12800/69092	Loss: 156.706
-25600/69092	Loss: 157.099
-38400/69092	Loss: 156.770
-51200/69092	Loss: 156.383
-64000/69092	Loss: 157.121
-Training time 0:04:09.140018
-Epoch: 101 Average loss: 156.98
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 274)
-0/69092	Loss: 146.619
-12800/69092	Loss: 158.031
-25600/69092	Loss: 157.539
-38400/69092	Loss: 157.488
-51200/69092	Loss: 156.214
-64000/69092	Loss: 157.160
-Training time 0:04:10.464033
-Epoch: 102 Average loss: 157.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 275)
-0/69092	Loss: 149.681
-12800/69092	Loss: 157.090
-25600/69092	Loss: 157.236
-38400/69092	Loss: 157.710
-51200/69092	Loss: 157.181
-64000/69092	Loss: 157.986
-Training time 0:04:09.876653
-Epoch: 103 Average loss: 157.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 276)
-0/69092	Loss: 163.643
-12800/69092	Loss: 157.128
-25600/69092	Loss: 157.302
-38400/69092	Loss: 156.973
-51200/69092	Loss: 156.821
-64000/69092	Loss: 157.241
-Training time 0:04:07.838607
-Epoch: 104 Average loss: 157.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 277)
-0/69092	Loss: 158.093
-12800/69092	Loss: 157.244
-25600/69092	Loss: 157.186
-38400/69092	Loss: 157.452
-51200/69092	Loss: 155.985
-64000/69092	Loss: 158.488
-Training time 0:04:03.601052
-Epoch: 105 Average loss: 157.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 278)
-0/69092	Loss: 154.813
-12800/69092	Loss: 157.052
-25600/69092	Loss: 157.161
-38400/69092	Loss: 157.203
-51200/69092	Loss: 157.232
-64000/69092	Loss: 157.310
-Training time 0:04:07.292869
-Epoch: 106 Average loss: 157.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 279)
-0/69092	Loss: 158.664
-12800/69092	Loss: 156.515
-25600/69092	Loss: 157.229
-38400/69092	Loss: 157.361
-51200/69092	Loss: 157.873
-64000/69092	Loss: 157.616
-Training time 0:04:06.809608
-Epoch: 107 Average loss: 157.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 280)
-0/69092	Loss: 156.387
-12800/69092	Loss: 158.136
-25600/69092	Loss: 157.099
-38400/69092	Loss: 156.837
-51200/69092	Loss: 156.747
-64000/69092	Loss: 156.586
-Training time 0:04:09.066369
-Epoch: 108 Average loss: 157.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 281)
-0/69092	Loss: 156.363
-12800/69092	Loss: 156.955
-25600/69092	Loss: 157.579
-38400/69092	Loss: 156.693
-51200/69092	Loss: 157.130
-64000/69092	Loss: 157.739
-Training time 0:04:07.344154
-Epoch: 109 Average loss: 157.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 282)
-0/69092	Loss: 154.839
-12800/69092	Loss: 156.584
-25600/69092	Loss: 156.852
-38400/69092	Loss: 156.705
-51200/69092	Loss: 157.566
-64000/69092	Loss: 157.846
-Training time 0:04:02.596162
-Epoch: 110 Average loss: 157.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 283)
-0/69092	Loss: 163.107
-12800/69092	Loss: 156.967
-25600/69092	Loss: 156.324
-38400/69092	Loss: 158.065
-51200/69092	Loss: 156.880
-64000/69092	Loss: 157.599
-Training time 0:04:03.459253
-Epoch: 111 Average loss: 157.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 284)
-0/69092	Loss: 152.234
-12800/69092	Loss: 155.948
-25600/69092	Loss: 156.527
-38400/69092	Loss: 157.628
-51200/69092	Loss: 157.727
-64000/69092	Loss: 156.804
-Training time 0:04:06.196250
-Epoch: 112 Average loss: 156.93
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 285)
-0/69092	Loss: 166.500
-12800/69092	Loss: 157.189
-25600/69092	Loss: 156.956
-38400/69092	Loss: 155.700
-51200/69092	Loss: 157.823
-64000/69092	Loss: 157.373
-Training time 0:04:08.707100
-Epoch: 113 Average loss: 157.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 286)
-0/69092	Loss: 161.993
-12800/69092	Loss: 157.234
-25600/69092	Loss: 158.382
-38400/69092	Loss: 156.551
-51200/69092	Loss: 157.351
-64000/69092	Loss: 156.157
-Training time 0:04:07.990283
-Epoch: 114 Average loss: 157.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 287)
-0/69092	Loss: 161.841
-12800/69092	Loss: 157.712
-25600/69092	Loss: 155.495
-38400/69092	Loss: 157.577
-51200/69092	Loss: 157.636
-64000/69092	Loss: 156.955
-Training time 0:04:09.016317
-Epoch: 115 Average loss: 157.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 288)
-0/69092	Loss: 155.560
-12800/69092	Loss: 157.573
-25600/69092	Loss: 158.010
-38400/69092	Loss: 156.599
-51200/69092	Loss: 156.843
-64000/69092	Loss: 156.326
-Training time 0:03:59.434990
-Epoch: 116 Average loss: 157.03
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 289)
-0/69092	Loss: 153.375
-12800/69092	Loss: 156.316
-25600/69092	Loss: 158.547
-38400/69092	Loss: 157.258
-51200/69092	Loss: 157.724
-64000/69092	Loss: 157.224
-Training time 0:04:06.722800
-Epoch: 117 Average loss: 157.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 290)
-0/69092	Loss: 155.603
-12800/69092	Loss: 157.760
-25600/69092	Loss: 156.922
-38400/69092	Loss: 157.641
-51200/69092	Loss: 157.616
-64000/69092	Loss: 156.164
-Training time 0:04:07.593237
-Epoch: 118 Average loss: 157.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 291)
-0/69092	Loss: 154.914
-12800/69092	Loss: 156.693
-25600/69092	Loss: 157.227
-38400/69092	Loss: 156.418
-51200/69092	Loss: 157.796
-64000/69092	Loss: 156.511
-Training time 0:04:06.697634
-Epoch: 119 Average loss: 157.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 292)
-0/69092	Loss: 162.489
-12800/69092	Loss: 156.861
-25600/69092	Loss: 157.719
-38400/69092	Loss: 158.311
-51200/69092	Loss: 155.898
-64000/69092	Loss: 156.442
-Training time 0:04:08.848071
-Epoch: 120 Average loss: 157.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 293)
-0/69092	Loss: 159.276
-12800/69092	Loss: 156.682
-25600/69092	Loss: 156.932
-38400/69092	Loss: 157.718
-51200/69092	Loss: 156.803
-64000/69092	Loss: 156.573
-Training time 0:04:05.920002
-Epoch: 121 Average loss: 157.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 294)
-0/69092	Loss: 155.874
-12800/69092	Loss: 157.463
-25600/69092	Loss: 157.989
-38400/69092	Loss: 155.701
-51200/69092	Loss: 156.886
-64000/69092	Loss: 156.351
-Training time 0:04:03.654210
-Epoch: 122 Average loss: 156.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 295)
-0/69092	Loss: 149.058
-12800/69092	Loss: 156.329
-25600/69092	Loss: 155.563
-38400/69092	Loss: 157.396
-51200/69092	Loss: 158.430
-64000/69092	Loss: 156.105
-Training time 0:04:06.935410
-Epoch: 123 Average loss: 156.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 296)
-0/69092	Loss: 158.406
-12800/69092	Loss: 156.088
-25600/69092	Loss: 156.076
-38400/69092	Loss: 157.194
-51200/69092	Loss: 158.158
-64000/69092	Loss: 157.273
-Training time 0:04:11.321915
-Epoch: 124 Average loss: 157.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 297)
-0/69092	Loss: 156.820
-12800/69092	Loss: 156.939
-25600/69092	Loss: 155.882
-38400/69092	Loss: 157.324
-51200/69092	Loss: 156.343
-64000/69092	Loss: 157.685
-Training time 0:04:13.570882
-Epoch: 125 Average loss: 156.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 298)
-0/69092	Loss: 153.471
-12800/69092	Loss: 156.685
-25600/69092	Loss: 157.746
-38400/69092	Loss: 156.922
-51200/69092	Loss: 158.207
-64000/69092	Loss: 157.401
-Training time 0:04:10.702523
-Epoch: 126 Average loss: 157.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 299)
-0/69092	Loss: 160.194
-12800/69092	Loss: 155.556
-25600/69092	Loss: 156.484
-38400/69092	Loss: 157.497
-51200/69092	Loss: 156.744
-64000/69092	Loss: 157.462
-Training time 0:04:04.298316
-Epoch: 127 Average loss: 156.81
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 300)
-0/69092	Loss: 145.845
-12800/69092	Loss: 157.552
-25600/69092	Loss: 157.499
-38400/69092	Loss: 156.503
-51200/69092	Loss: 158.020
-64000/69092	Loss: 157.439
-Training time 0:04:04.537136
-Epoch: 128 Average loss: 157.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 301)
-0/69092	Loss: 172.349
-12800/69092	Loss: 157.380
-25600/69092	Loss: 157.161
-38400/69092	Loss: 157.727
-51200/69092	Loss: 155.646
-64000/69092	Loss: 157.910
-Training time 0:04:08.531440
-Epoch: 129 Average loss: 157.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 302)
-0/69092	Loss: 155.418
-12800/69092	Loss: 156.609
-25600/69092	Loss: 157.015
-38400/69092	Loss: 158.265
-51200/69092	Loss: 157.511
-64000/69092	Loss: 157.121
-Training time 0:04:06.752566
-Epoch: 130 Average loss: 157.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 303)
-0/69092	Loss: 150.533
-12800/69092	Loss: 156.525
-25600/69092	Loss: 157.079
-38400/69092	Loss: 157.841
-51200/69092	Loss: 157.257
-64000/69092	Loss: 157.765
-Training time 0:04:08.646985
-Epoch: 131 Average loss: 157.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 304)
-0/69092	Loss: 155.461
-12800/69092	Loss: 156.606
-25600/69092	Loss: 156.778
-38400/69092	Loss: 156.201
-51200/69092	Loss: 156.135
-64000/69092	Loss: 158.307
-Training time 0:04:09.419583
-Epoch: 132 Average loss: 157.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 305)
-0/69092	Loss: 156.535
-12800/69092	Loss: 156.648
-25600/69092	Loss: 157.401
-38400/69092	Loss: 158.188
-51200/69092	Loss: 156.639
-64000/69092	Loss: 157.362
-Training time 0:04:02.464969
-Epoch: 133 Average loss: 157.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 306)
-0/69092	Loss: 166.057
-12800/69092	Loss: 156.458
-25600/69092	Loss: 156.344
-38400/69092	Loss: 157.892
-51200/69092	Loss: 157.120
-64000/69092	Loss: 158.209
-Training time 0:04:07.555364
-Epoch: 134 Average loss: 157.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 307)
-0/69092	Loss: 155.097
-12800/69092	Loss: 157.837
-25600/69092	Loss: 156.164
-38400/69092	Loss: 156.819
-51200/69092	Loss: 157.538
-64000/69092	Loss: 156.176
-Training time 0:04:09.609917
-Epoch: 135 Average loss: 157.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 308)
-0/69092	Loss: 152.057
-12800/69092	Loss: 156.457
-25600/69092	Loss: 156.684
-38400/69092	Loss: 158.750
-51200/69092	Loss: 156.853
-64000/69092	Loss: 157.246
-Training time 0:04:07.395100
-Epoch: 136 Average loss: 157.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 309)
-0/69092	Loss: 144.699
-12800/69092	Loss: 158.049
-25600/69092	Loss: 155.358
-38400/69092	Loss: 158.175
-51200/69092	Loss: 156.777
-64000/69092	Loss: 157.143
-Training time 0:04:08.038622
-Epoch: 137 Average loss: 157.06
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 310)
-0/69092	Loss: 154.776
-12800/69092	Loss: 158.213
-25600/69092	Loss: 157.469
-38400/69092	Loss: 156.029
-51200/69092	Loss: 155.871
-64000/69092	Loss: 158.126
-Training time 0:04:07.007746
-Epoch: 138 Average loss: 157.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 311)
-0/69092	Loss: 166.088
-12800/69092	Loss: 155.682
-25600/69092	Loss: 156.094
-38400/69092	Loss: 157.821
-51200/69092	Loss: 157.103
-64000/69092	Loss: 156.859
-Training time 0:04:04.057358
-Epoch: 139 Average loss: 156.84
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 312)
-0/69092	Loss: 148.434
-12800/69092	Loss: 156.650
-25600/69092	Loss: 156.832
-38400/69092	Loss: 156.339
-51200/69092	Loss: 157.166
-64000/69092	Loss: 157.624
-Training time 0:04:10.618231
-Epoch: 140 Average loss: 156.98
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 313)
-0/69092	Loss: 161.419
-12800/69092	Loss: 155.633
-25600/69092	Loss: 156.680
-38400/69092	Loss: 156.857
-51200/69092	Loss: 157.910
-64000/69092	Loss: 157.843
-Training time 0:04:11.862477
-Epoch: 141 Average loss: 157.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 314)
-0/69092	Loss: 159.316
-12800/69092	Loss: 156.805
-25600/69092	Loss: 157.847
-38400/69092	Loss: 155.797
-51200/69092	Loss: 156.922
-64000/69092	Loss: 156.482
-Training time 0:04:10.162818
-Epoch: 142 Average loss: 156.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 315)
-0/69092	Loss: 146.955
-12800/69092	Loss: 157.627
-25600/69092	Loss: 156.975
-38400/69092	Loss: 157.253
-51200/69092	Loss: 156.910
-64000/69092	Loss: 157.968
-Training time 0:04:08.477279
-Epoch: 143 Average loss: 157.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 316)
-0/69092	Loss: 154.526
-12800/69092	Loss: 157.462
-25600/69092	Loss: 158.502
-38400/69092	Loss: 155.874
-51200/69092	Loss: 157.289
-64000/69092	Loss: 156.534
-Training time 0:04:07.828540
-Epoch: 144 Average loss: 157.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 317)
-0/69092	Loss: 163.826
-12800/69092	Loss: 156.522
-25600/69092	Loss: 156.078
-38400/69092	Loss: 156.854
-51200/69092	Loss: 157.322
diff --git a/OAR.2068285.stderr b/OAR.2068285.stderr
deleted file mode 100644
index 5a9b289cbb..0000000000
--- a/OAR.2068285.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068285 KILLED ##
diff --git a/OAR.2068285.stdout b/OAR.2068285.stdout
deleted file mode 100644
index 7a2085697d..0000000000
--- a/OAR.2068285.stdout
+++ /dev/null
@@ -1,3089 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce GTX 1080 Ti
-GeForce GTX 1080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 309)'
-0/69092	Loss: 152.183
-3200/69092	Loss: 151.650
-6400/69092	Loss: 152.285
-9600/69092	Loss: 150.815
-12800/69092	Loss: 153.354
-16000/69092	Loss: 152.782
-19200/69092	Loss: 155.529
-22400/69092	Loss: 154.036
-25600/69092	Loss: 148.649
-28800/69092	Loss: 150.179
-32000/69092	Loss: 152.932
-35200/69092	Loss: 151.995
-38400/69092	Loss: 152.076
-41600/69092	Loss: 153.395
-44800/69092	Loss: 151.396
-48000/69092	Loss: 154.387
-51200/69092	Loss: 153.050
-54400/69092	Loss: 154.637
-57600/69092	Loss: 154.287
-60800/69092	Loss: 148.589
-64000/69092	Loss: 153.666
-67200/69092	Loss: 151.120
-Training time 0:04:52.357383
-Epoch: 1 Average loss: 152.43
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 310)
-0/69092	Loss: 159.442
-3200/69092	Loss: 154.781
-6400/69092	Loss: 152.621
-9600/69092	Loss: 150.426
-12800/69092	Loss: 150.802
-16000/69092	Loss: 152.935
-19200/69092	Loss: 150.630
-22400/69092	Loss: 150.863
-25600/69092	Loss: 154.977
-28800/69092	Loss: 150.534
-32000/69092	Loss: 155.075
-35200/69092	Loss: 150.436
-38400/69092	Loss: 152.814
-41600/69092	Loss: 152.529
-44800/69092	Loss: 151.246
-48000/69092	Loss: 151.439
-51200/69092	Loss: 152.896
-54400/69092	Loss: 153.654
-57600/69092	Loss: 151.745
-60800/69092	Loss: 154.735
-64000/69092	Loss: 152.990
-67200/69092	Loss: 154.547
-Training time 0:04:51.856329
-Epoch: 2 Average loss: 152.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 311)
-0/69092	Loss: 134.734
-3200/69092	Loss: 152.843
-6400/69092	Loss: 152.510
-9600/69092	Loss: 150.592
-12800/69092	Loss: 153.914
-16000/69092	Loss: 152.556
-19200/69092	Loss: 149.478
-22400/69092	Loss: 152.516
-25600/69092	Loss: 152.359
-28800/69092	Loss: 151.001
-32000/69092	Loss: 153.504
-35200/69092	Loss: 153.543
-38400/69092	Loss: 152.340
-41600/69092	Loss: 152.565
-44800/69092	Loss: 153.622
-48000/69092	Loss: 154.323
-51200/69092	Loss: 150.575
-54400/69092	Loss: 151.611
-57600/69092	Loss: 151.667
-60800/69092	Loss: 153.052
-64000/69092	Loss: 153.388
-67200/69092	Loss: 153.600
-Training time 0:04:50.139861
-Epoch: 3 Average loss: 152.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 312)
-0/69092	Loss: 142.408
-3200/69092	Loss: 149.926
-6400/69092	Loss: 154.006
-9600/69092	Loss: 154.148
-12800/69092	Loss: 151.793
-16000/69092	Loss: 151.222
-19200/69092	Loss: 152.250
-22400/69092	Loss: 151.391
-25600/69092	Loss: 155.184
-28800/69092	Loss: 151.960
-32000/69092	Loss: 153.657
-35200/69092	Loss: 155.231
-38400/69092	Loss: 152.180
-41600/69092	Loss: 152.465
-44800/69092	Loss: 152.076
-48000/69092	Loss: 149.416
-51200/69092	Loss: 152.701
-54400/69092	Loss: 151.919
-57600/69092	Loss: 152.060
-60800/69092	Loss: 150.976
-64000/69092	Loss: 151.854
-67200/69092	Loss: 154.316
-Training time 0:04:55.009685
-Epoch: 4 Average loss: 152.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 313)
-0/69092	Loss: 153.333
-3200/69092	Loss: 152.545
-6400/69092	Loss: 150.896
-9600/69092	Loss: 150.357
-12800/69092	Loss: 152.456
-16000/69092	Loss: 152.458
-19200/69092	Loss: 152.289
-22400/69092	Loss: 152.380
-25600/69092	Loss: 152.213
-28800/69092	Loss: 152.459
-32000/69092	Loss: 152.800
-35200/69092	Loss: 154.103
-38400/69092	Loss: 152.956
-41600/69092	Loss: 152.906
-44800/69092	Loss: 151.564
-48000/69092	Loss: 153.002
-51200/69092	Loss: 151.203
-54400/69092	Loss: 151.133
-57600/69092	Loss: 154.644
-60800/69092	Loss: 152.807
-64000/69092	Loss: 154.770
-67200/69092	Loss: 150.738
-Training time 0:04:51.641555
-Epoch: 5 Average loss: 152.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 314)
-0/69092	Loss: 148.495
-3200/69092	Loss: 154.320
-6400/69092	Loss: 153.600
-9600/69092	Loss: 153.046
-12800/69092	Loss: 150.433
-16000/69092	Loss: 151.382
-19200/69092	Loss: 152.088
-22400/69092	Loss: 152.638
-25600/69092	Loss: 152.848
-28800/69092	Loss: 149.897
-32000/69092	Loss: 155.370
-35200/69092	Loss: 153.207
-38400/69092	Loss: 152.994
-41600/69092	Loss: 152.902
-44800/69092	Loss: 152.503
-48000/69092	Loss: 151.920
-51200/69092	Loss: 152.251
-54400/69092	Loss: 150.518
-57600/69092	Loss: 153.685
-60800/69092	Loss: 151.117
-64000/69092	Loss: 153.273
-67200/69092	Loss: 152.338
-Training time 0:04:49.531773
-Epoch: 6 Average loss: 152.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 315)
-0/69092	Loss: 159.999
-3200/69092	Loss: 152.523
-6400/69092	Loss: 151.299
-9600/69092	Loss: 152.631
-12800/69092	Loss: 154.044
-16000/69092	Loss: 152.559
-19200/69092	Loss: 153.762
-22400/69092	Loss: 152.462
-25600/69092	Loss: 149.804
-28800/69092	Loss: 154.240
-32000/69092	Loss: 153.769
-35200/69092	Loss: 150.327
-38400/69092	Loss: 155.003
-41600/69092	Loss: 151.960
-44800/69092	Loss: 150.458
-48000/69092	Loss: 152.349
-51200/69092	Loss: 152.027
-54400/69092	Loss: 153.317
-57600/69092	Loss: 152.629
-60800/69092	Loss: 152.926
-64000/69092	Loss: 151.968
-67200/69092	Loss: 151.694
-Training time 0:04:58.512221
-Epoch: 7 Average loss: 152.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 316)
-0/69092	Loss: 163.111
-3200/69092	Loss: 153.264
-6400/69092	Loss: 154.351
-9600/69092	Loss: 154.740
-12800/69092	Loss: 153.918
-16000/69092	Loss: 151.023
-19200/69092	Loss: 152.130
-22400/69092	Loss: 154.274
-25600/69092	Loss: 152.311
-28800/69092	Loss: 148.902
-32000/69092	Loss: 152.154
-35200/69092	Loss: 152.465
-38400/69092	Loss: 152.427
-41600/69092	Loss: 151.234
-44800/69092	Loss: 151.904
-48000/69092	Loss: 154.259
-51200/69092	Loss: 148.981
-54400/69092	Loss: 151.418
-57600/69092	Loss: 153.284
-60800/69092	Loss: 153.432
-64000/69092	Loss: 154.522
-67200/69092	Loss: 151.813
-Training time 0:04:52.326015
-Epoch: 8 Average loss: 152.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 317)
-0/69092	Loss: 145.411
-3200/69092	Loss: 154.616
-6400/69092	Loss: 154.145
-9600/69092	Loss: 151.741
-12800/69092	Loss: 153.260
-16000/69092	Loss: 153.434
-19200/69092	Loss: 149.795
-22400/69092	Loss: 151.875
-25600/69092	Loss: 154.525
-28800/69092	Loss: 152.066
-32000/69092	Loss: 151.676
-35200/69092	Loss: 153.090
-38400/69092	Loss: 153.029
-41600/69092	Loss: 152.771
-44800/69092	Loss: 150.900
-48000/69092	Loss: 152.190
-51200/69092	Loss: 151.611
-54400/69092	Loss: 153.291
-57600/69092	Loss: 150.412
-60800/69092	Loss: 150.282
-64000/69092	Loss: 153.127
-67200/69092	Loss: 153.294
-Training time 0:04:53.794871
-Epoch: 9 Average loss: 152.44
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 318)
-0/69092	Loss: 128.179
-3200/69092	Loss: 149.781
-6400/69092	Loss: 152.331
-9600/69092	Loss: 154.396
-12800/69092	Loss: 151.316
-16000/69092	Loss: 152.371
-19200/69092	Loss: 152.552
-22400/69092	Loss: 153.303
-25600/69092	Loss: 153.643
-28800/69092	Loss: 150.225
-32000/69092	Loss: 150.622
-35200/69092	Loss: 152.424
-38400/69092	Loss: 151.834
-41600/69092	Loss: 152.264
-44800/69092	Loss: 154.677
-48000/69092	Loss: 153.459
-51200/69092	Loss: 153.347
-54400/69092	Loss: 152.326
-57600/69092	Loss: 153.728
-60800/69092	Loss: 152.451
-64000/69092	Loss: 148.630
-67200/69092	Loss: 152.763
-Training time 0:04:49.848114
-Epoch: 10 Average loss: 152.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 319)
-0/69092	Loss: 142.905
-3200/69092	Loss: 153.824
-6400/69092	Loss: 155.878
-9600/69092	Loss: 150.336
-12800/69092	Loss: 153.642
-16000/69092	Loss: 151.411
-19200/69092	Loss: 154.567
-22400/69092	Loss: 153.036
-25600/69092	Loss: 150.087
-28800/69092	Loss: 151.030
-32000/69092	Loss: 151.418
-35200/69092	Loss: 151.023
-38400/69092	Loss: 148.444
-41600/69092	Loss: 151.903
-44800/69092	Loss: 152.763
-48000/69092	Loss: 154.169
-51200/69092	Loss: 151.868
-54400/69092	Loss: 152.579
-57600/69092	Loss: 153.067
-60800/69092	Loss: 152.149
-64000/69092	Loss: 153.555
-67200/69092	Loss: 151.000
-Training time 0:04:57.013579
-Epoch: 11 Average loss: 152.29
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 320)
-0/69092	Loss: 151.394
-3200/69092	Loss: 152.447
-6400/69092	Loss: 152.888
-9600/69092	Loss: 152.646
-12800/69092	Loss: 151.644
-16000/69092	Loss: 152.469
-19200/69092	Loss: 152.163
-22400/69092	Loss: 150.452
-25600/69092	Loss: 151.902
-28800/69092	Loss: 152.144
-32000/69092	Loss: 150.738
-35200/69092	Loss: 153.309
-38400/69092	Loss: 153.811
-41600/69092	Loss: 152.597
-44800/69092	Loss: 151.872
-48000/69092	Loss: 153.172
-51200/69092	Loss: 153.323
-54400/69092	Loss: 150.141
-57600/69092	Loss: 152.336
-60800/69092	Loss: 154.109
-64000/69092	Loss: 152.203
-67200/69092	Loss: 153.926
-Training time 0:04:48.153389
-Epoch: 12 Average loss: 152.41
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 321)
-0/69092	Loss: 157.636
-3200/69092	Loss: 152.608
-6400/69092	Loss: 152.308
-9600/69092	Loss: 153.485
-12800/69092	Loss: 153.940
-16000/69092	Loss: 151.878
-19200/69092	Loss: 149.654
-22400/69092	Loss: 151.707
-25600/69092	Loss: 153.842
-28800/69092	Loss: 150.141
-32000/69092	Loss: 152.478
-35200/69092	Loss: 152.337
-38400/69092	Loss: 149.935
-41600/69092	Loss: 152.342
-44800/69092	Loss: 154.538
-48000/69092	Loss: 153.898
-51200/69092	Loss: 152.160
-54400/69092	Loss: 153.422
-57600/69092	Loss: 152.781
-60800/69092	Loss: 153.877
-64000/69092	Loss: 154.009
-67200/69092	Loss: 151.143
-Training time 0:04:45.355561
-Epoch: 13 Average loss: 152.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 322)
-0/69092	Loss: 162.517
-3200/69092	Loss: 152.929
-6400/69092	Loss: 152.477
-9600/69092	Loss: 150.981
-12800/69092	Loss: 152.707
-16000/69092	Loss: 155.280
-19200/69092	Loss: 151.793
-22400/69092	Loss: 152.082
-25600/69092	Loss: 155.199
-28800/69092	Loss: 151.704
-32000/69092	Loss: 150.883
-35200/69092	Loss: 153.300
-38400/69092	Loss: 150.486
-41600/69092	Loss: 155.252
-44800/69092	Loss: 155.059
-48000/69092	Loss: 152.528
-51200/69092	Loss: 153.416
-54400/69092	Loss: 154.628
-57600/69092	Loss: 150.056
-60800/69092	Loss: 152.059
-64000/69092	Loss: 151.454
-67200/69092	Loss: 149.021
-Training time 0:04:48.906956
-Epoch: 14 Average loss: 152.60
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 323)
-0/69092	Loss: 157.050
-3200/69092	Loss: 153.959
-6400/69092	Loss: 154.344
-9600/69092	Loss: 152.152
-12800/69092	Loss: 151.359
-16000/69092	Loss: 152.589
-19200/69092	Loss: 150.047
-22400/69092	Loss: 152.870
-25600/69092	Loss: 149.748
-28800/69092	Loss: 153.648
-32000/69092	Loss: 156.431
-35200/69092	Loss: 152.113
-38400/69092	Loss: 152.905
-41600/69092	Loss: 152.468
-44800/69092	Loss: 153.602
-48000/69092	Loss: 152.497
-51200/69092	Loss: 151.044
-54400/69092	Loss: 155.048
-57600/69092	Loss: 151.216
-60800/69092	Loss: 150.927
-64000/69092	Loss: 152.557
-67200/69092	Loss: 153.362
-Training time 0:04:54.813450
-Epoch: 15 Average loss: 152.59
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 324)
-0/69092	Loss: 148.821
-3200/69092	Loss: 152.991
-6400/69092	Loss: 152.562
-9600/69092	Loss: 150.855
-12800/69092	Loss: 153.888
-16000/69092	Loss: 153.659
-19200/69092	Loss: 152.960
-22400/69092	Loss: 152.873
-25600/69092	Loss: 152.063
-28800/69092	Loss: 151.277
-32000/69092	Loss: 151.158
-35200/69092	Loss: 152.072
-38400/69092	Loss: 153.704
-41600/69092	Loss: 153.907
-44800/69092	Loss: 149.131
-48000/69092	Loss: 151.833
-51200/69092	Loss: 151.896
-54400/69092	Loss: 152.958
-57600/69092	Loss: 151.339
-60800/69092	Loss: 151.675
-64000/69092	Loss: 152.641
-67200/69092	Loss: 151.787
-Training time 0:04:57.074914
-Epoch: 16 Average loss: 152.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 325)
-0/69092	Loss: 139.830
-3200/69092	Loss: 153.831
-6400/69092	Loss: 154.674
-9600/69092	Loss: 151.321
-12800/69092	Loss: 153.510
-16000/69092	Loss: 148.394
-19200/69092	Loss: 151.813
-22400/69092	Loss: 153.058
-25600/69092	Loss: 154.548
-28800/69092	Loss: 150.580
-32000/69092	Loss: 155.687
-35200/69092	Loss: 152.704
-38400/69092	Loss: 152.194
-41600/69092	Loss: 153.185
-44800/69092	Loss: 148.863
-48000/69092	Loss: 153.429
-51200/69092	Loss: 154.257
-54400/69092	Loss: 152.202
-57600/69092	Loss: 152.896
-60800/69092	Loss: 151.201
-64000/69092	Loss: 153.511
-67200/69092	Loss: 152.102
-Training time 0:04:56.971456
-Epoch: 17 Average loss: 152.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 326)
-0/69092	Loss: 144.373
-3200/69092	Loss: 152.078
-6400/69092	Loss: 153.584
-9600/69092	Loss: 149.502
-12800/69092	Loss: 152.185
-16000/69092	Loss: 152.809
-19200/69092	Loss: 153.496
-22400/69092	Loss: 154.004
-25600/69092	Loss: 154.795
-28800/69092	Loss: 151.465
-32000/69092	Loss: 154.518
-35200/69092	Loss: 149.687
-38400/69092	Loss: 153.964
-41600/69092	Loss: 152.572
-44800/69092	Loss: 149.701
-48000/69092	Loss: 150.567
-51200/69092	Loss: 151.033
-54400/69092	Loss: 153.177
-57600/69092	Loss: 151.122
-60800/69092	Loss: 151.542
-64000/69092	Loss: 152.469
-67200/69092	Loss: 153.430
-Training time 0:05:01.046983
-Epoch: 18 Average loss: 152.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 327)
-0/69092	Loss: 152.464
-3200/69092	Loss: 153.488
-6400/69092	Loss: 152.579
-9600/69092	Loss: 152.127
-12800/69092	Loss: 150.396
-16000/69092	Loss: 154.485
-19200/69092	Loss: 150.241
-22400/69092	Loss: 152.079
-25600/69092	Loss: 151.118
-28800/69092	Loss: 153.015
-32000/69092	Loss: 151.977
-35200/69092	Loss: 149.929
-38400/69092	Loss: 149.426
-41600/69092	Loss: 151.497
-44800/69092	Loss: 152.594
-48000/69092	Loss: 155.580
-51200/69092	Loss: 151.766
-54400/69092	Loss: 152.328
-57600/69092	Loss: 154.382
-60800/69092	Loss: 151.399
-64000/69092	Loss: 153.803
-67200/69092	Loss: 153.180
-Training time 0:04:55.558946
-Epoch: 19 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 328)
-0/69092	Loss: 146.869
-3200/69092	Loss: 153.782
-6400/69092	Loss: 153.934
-9600/69092	Loss: 153.725
-12800/69092	Loss: 153.885
-16000/69092	Loss: 154.710
-19200/69092	Loss: 152.246
-22400/69092	Loss: 152.874
-25600/69092	Loss: 152.616
-28800/69092	Loss: 153.899
-32000/69092	Loss: 150.965
-35200/69092	Loss: 152.105
-38400/69092	Loss: 150.924
-41600/69092	Loss: 151.229
-44800/69092	Loss: 150.414
-48000/69092	Loss: 151.099
-51200/69092	Loss: 151.417
-54400/69092	Loss: 151.783
-57600/69092	Loss: 152.924
-60800/69092	Loss: 151.453
-64000/69092	Loss: 151.253
-67200/69092	Loss: 151.988
-Training time 0:05:00.999168
-Epoch: 20 Average loss: 152.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 329)
-0/69092	Loss: 147.028
-3200/69092	Loss: 151.092
-6400/69092	Loss: 153.710
-9600/69092	Loss: 152.265
-12800/69092	Loss: 152.751
-16000/69092	Loss: 153.640
-19200/69092	Loss: 152.519
-22400/69092	Loss: 152.768
-25600/69092	Loss: 153.118
-28800/69092	Loss: 151.120
-32000/69092	Loss: 152.780
-35200/69092	Loss: 152.773
-38400/69092	Loss: 151.942
-41600/69092	Loss: 151.585
-44800/69092	Loss: 153.718
-48000/69092	Loss: 152.276
-51200/69092	Loss: 154.530
-54400/69092	Loss: 152.744
-57600/69092	Loss: 150.482
-60800/69092	Loss: 155.222
-64000/69092	Loss: 150.784
-67200/69092	Loss: 151.592
-Training time 0:04:54.733607
-Epoch: 21 Average loss: 152.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 330)
-0/69092	Loss: 151.133
-3200/69092	Loss: 151.407
-6400/69092	Loss: 152.002
-9600/69092	Loss: 152.132
-12800/69092	Loss: 150.633
-16000/69092	Loss: 150.642
-19200/69092	Loss: 153.192
-22400/69092	Loss: 153.700
-25600/69092	Loss: 150.160
-28800/69092	Loss: 152.733
-32000/69092	Loss: 152.790
-35200/69092	Loss: 150.569
-38400/69092	Loss: 152.402
-41600/69092	Loss: 152.672
-44800/69092	Loss: 153.412
-48000/69092	Loss: 155.049
-51200/69092	Loss: 152.697
-54400/69092	Loss: 154.992
-57600/69092	Loss: 151.886
-60800/69092	Loss: 153.533
-64000/69092	Loss: 150.066
-67200/69092	Loss: 151.130
-Training time 0:04:51.479730
-Epoch: 22 Average loss: 152.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 331)
-0/69092	Loss: 134.860
-3200/69092	Loss: 153.536
-6400/69092	Loss: 152.443
-9600/69092	Loss: 149.892
-12800/69092	Loss: 150.728
-16000/69092	Loss: 152.499
-19200/69092	Loss: 153.774
-22400/69092	Loss: 152.431
-25600/69092	Loss: 149.763
-28800/69092	Loss: 154.345
-32000/69092	Loss: 151.940
-35200/69092	Loss: 152.357
-38400/69092	Loss: 152.972
-41600/69092	Loss: 150.494
-44800/69092	Loss: 151.210
-48000/69092	Loss: 154.224
-51200/69092	Loss: 151.207
-54400/69092	Loss: 150.331
-57600/69092	Loss: 152.456
-60800/69092	Loss: 153.180
-64000/69092	Loss: 153.737
-67200/69092	Loss: 151.679
-Training time 0:04:55.682500
-Epoch: 23 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 332)
-0/69092	Loss: 146.132
-3200/69092	Loss: 151.199
-6400/69092	Loss: 151.551
-9600/69092	Loss: 155.865
-12800/69092	Loss: 150.800
-16000/69092	Loss: 151.015
-19200/69092	Loss: 152.506
-22400/69092	Loss: 151.661
-25600/69092	Loss: 151.519
-28800/69092	Loss: 151.153
-32000/69092	Loss: 152.509
-35200/69092	Loss: 150.394
-38400/69092	Loss: 152.259
-41600/69092	Loss: 153.364
-44800/69092	Loss: 152.367
-48000/69092	Loss: 153.211
-51200/69092	Loss: 153.377
-54400/69092	Loss: 152.013
-57600/69092	Loss: 149.970
-60800/69092	Loss: 152.552
-64000/69092	Loss: 152.334
-67200/69092	Loss: 152.434
-Training time 0:04:46.518119
-Epoch: 24 Average loss: 152.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 333)
-0/69092	Loss: 149.840
-3200/69092	Loss: 154.191
-6400/69092	Loss: 152.417
-9600/69092	Loss: 150.376
-12800/69092	Loss: 152.603
-16000/69092	Loss: 152.176
-19200/69092	Loss: 151.488
-22400/69092	Loss: 151.300
-25600/69092	Loss: 153.556
-28800/69092	Loss: 151.875
-32000/69092	Loss: 151.179
-35200/69092	Loss: 151.816
-38400/69092	Loss: 153.076
-41600/69092	Loss: 151.797
-44800/69092	Loss: 150.499
-48000/69092	Loss: 151.741
-51200/69092	Loss: 152.232
-54400/69092	Loss: 154.147
-57600/69092	Loss: 152.086
-60800/69092	Loss: 152.965
-64000/69092	Loss: 154.207
-67200/69092	Loss: 153.088
-Training time 0:04:50.798790
-Epoch: 25 Average loss: 152.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 334)
-0/69092	Loss: 148.167
-3200/69092	Loss: 154.325
-6400/69092	Loss: 152.557
-9600/69092	Loss: 152.038
-12800/69092	Loss: 150.379
-16000/69092	Loss: 152.418
-19200/69092	Loss: 151.297
-22400/69092	Loss: 151.685
-25600/69092	Loss: 153.702
-28800/69092	Loss: 153.929
-32000/69092	Loss: 151.989
-35200/69092	Loss: 152.220
-38400/69092	Loss: 153.127
-41600/69092	Loss: 153.456
-44800/69092	Loss: 153.248
-48000/69092	Loss: 151.492
-51200/69092	Loss: 152.005
-54400/69092	Loss: 150.737
-57600/69092	Loss: 155.506
-60800/69092	Loss: 148.446
-64000/69092	Loss: 152.352
-67200/69092	Loss: 151.310
-Training time 0:04:56.322250
-Epoch: 26 Average loss: 152.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 335)
-0/69092	Loss: 141.427
-3200/69092	Loss: 152.090
-6400/69092	Loss: 152.904
-9600/69092	Loss: 152.459
-12800/69092	Loss: 151.812
-16000/69092	Loss: 150.855
-19200/69092	Loss: 153.354
-22400/69092	Loss: 150.437
-25600/69092	Loss: 153.535
-28800/69092	Loss: 151.582
-32000/69092	Loss: 152.588
-35200/69092	Loss: 149.283
-38400/69092	Loss: 151.001
-41600/69092	Loss: 150.085
-44800/69092	Loss: 154.701
-48000/69092	Loss: 156.761
-51200/69092	Loss: 152.037
-54400/69092	Loss: 153.141
-57600/69092	Loss: 152.711
-60800/69092	Loss: 151.207
-64000/69092	Loss: 153.963
-67200/69092	Loss: 151.814
-Training time 0:04:57.506762
-Epoch: 27 Average loss: 152.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 336)
-0/69092	Loss: 133.221
-3200/69092	Loss: 153.101
-6400/69092	Loss: 153.749
-9600/69092	Loss: 152.099
-12800/69092	Loss: 150.121
-16000/69092	Loss: 153.229
-19200/69092	Loss: 152.229
-22400/69092	Loss: 153.361
-25600/69092	Loss: 152.052
-28800/69092	Loss: 152.372
-32000/69092	Loss: 151.172
-35200/69092	Loss: 149.881
-38400/69092	Loss: 152.041
-41600/69092	Loss: 152.504
-44800/69092	Loss: 150.522
-48000/69092	Loss: 152.769
-51200/69092	Loss: 151.048
-54400/69092	Loss: 152.903
-57600/69092	Loss: 151.750
-60800/69092	Loss: 152.186
-64000/69092	Loss: 149.461
-67200/69092	Loss: 154.764
-Training time 0:04:56.992493
-Epoch: 28 Average loss: 152.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 337)
-0/69092	Loss: 130.269
-3200/69092	Loss: 153.670
-6400/69092	Loss: 152.220
-9600/69092	Loss: 151.508
-12800/69092	Loss: 153.114
-16000/69092	Loss: 151.541
-19200/69092	Loss: 152.177
-22400/69092	Loss: 153.604
-25600/69092	Loss: 152.756
-28800/69092	Loss: 153.729
-32000/69092	Loss: 152.179
-35200/69092	Loss: 151.586
-38400/69092	Loss: 150.351
-41600/69092	Loss: 152.783
-44800/69092	Loss: 154.172
-48000/69092	Loss: 150.299
-51200/69092	Loss: 151.737
-54400/69092	Loss: 152.123
-57600/69092	Loss: 151.734
-60800/69092	Loss: 147.117
-64000/69092	Loss: 151.109
-67200/69092	Loss: 153.096
-Training time 0:04:51.204427
-Epoch: 29 Average loss: 152.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 338)
-0/69092	Loss: 138.425
-3200/69092	Loss: 152.477
-6400/69092	Loss: 150.676
-9600/69092	Loss: 153.611
-12800/69092	Loss: 150.906
-16000/69092	Loss: 152.130
-19200/69092	Loss: 150.774
-22400/69092	Loss: 153.285
-25600/69092	Loss: 153.297
-28800/69092	Loss: 153.633
-32000/69092	Loss: 151.448
-35200/69092	Loss: 153.320
-38400/69092	Loss: 152.201
-41600/69092	Loss: 152.348
-44800/69092	Loss: 150.531
-48000/69092	Loss: 151.512
-51200/69092	Loss: 150.381
-54400/69092	Loss: 152.497
-57600/69092	Loss: 151.720
-60800/69092	Loss: 152.262
-64000/69092	Loss: 155.182
-67200/69092	Loss: 150.858
-Training time 0:04:51.996438
-Epoch: 30 Average loss: 152.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 339)
-0/69092	Loss: 149.449
-3200/69092	Loss: 153.819
-6400/69092	Loss: 150.767
-9600/69092	Loss: 154.335
-12800/69092	Loss: 154.126
-16000/69092	Loss: 149.557
-19200/69092	Loss: 151.935
-22400/69092	Loss: 152.038
-25600/69092	Loss: 151.220
-28800/69092	Loss: 151.983
-32000/69092	Loss: 152.670
-35200/69092	Loss: 151.051
-38400/69092	Loss: 153.609
-41600/69092	Loss: 152.595
-44800/69092	Loss: 151.606
-48000/69092	Loss: 150.659
-51200/69092	Loss: 153.891
-54400/69092	Loss: 152.512
-57600/69092	Loss: 152.411
-60800/69092	Loss: 155.702
-64000/69092	Loss: 151.627
-67200/69092	Loss: 152.198
-Training time 0:04:51.963552
-Epoch: 31 Average loss: 152.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 340)
-0/69092	Loss: 134.457
-3200/69092	Loss: 153.652
-6400/69092	Loss: 154.143
-9600/69092	Loss: 150.744
-12800/69092	Loss: 154.232
-16000/69092	Loss: 149.880
-19200/69092	Loss: 153.318
-22400/69092	Loss: 152.315
-25600/69092	Loss: 151.022
-28800/69092	Loss: 152.031
-32000/69092	Loss: 150.523
-35200/69092	Loss: 154.217
-38400/69092	Loss: 150.024
-41600/69092	Loss: 151.019
-44800/69092	Loss: 152.273
-48000/69092	Loss: 152.065
-51200/69092	Loss: 156.054
-54400/69092	Loss: 152.644
-57600/69092	Loss: 150.708
-60800/69092	Loss: 150.233
-64000/69092	Loss: 151.841
-67200/69092	Loss: 153.538
-Training time 0:04:59.586796
-Epoch: 32 Average loss: 152.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 341)
-0/69092	Loss: 184.830
-3200/69092	Loss: 149.674
-6400/69092	Loss: 151.520
-9600/69092	Loss: 153.057
-12800/69092	Loss: 152.992
-16000/69092	Loss: 150.488
-19200/69092	Loss: 151.317
-22400/69092	Loss: 153.007
-25600/69092	Loss: 152.180
-28800/69092	Loss: 153.014
-32000/69092	Loss: 153.689
-35200/69092	Loss: 149.681
-38400/69092	Loss: 151.869
-41600/69092	Loss: 153.280
-44800/69092	Loss: 153.019
-48000/69092	Loss: 152.745
-51200/69092	Loss: 152.673
-54400/69092	Loss: 154.760
-57600/69092	Loss: 150.124
-60800/69092	Loss: 150.195
-64000/69092	Loss: 151.911
-67200/69092	Loss: 152.179
-Training time 0:04:44.373168
-Epoch: 33 Average loss: 152.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 342)
-0/69092	Loss: 149.493
-3200/69092	Loss: 153.542
-6400/69092	Loss: 152.415
-9600/69092	Loss: 154.209
-12800/69092	Loss: 150.385
-16000/69092	Loss: 153.775
-19200/69092	Loss: 150.375
-22400/69092	Loss: 151.428
-25600/69092	Loss: 151.631
-28800/69092	Loss: 153.269
-32000/69092	Loss: 151.129
-35200/69092	Loss: 151.653
-38400/69092	Loss: 155.009
-41600/69092	Loss: 155.339
-44800/69092	Loss: 151.274
-48000/69092	Loss: 153.453
-51200/69092	Loss: 150.441
-54400/69092	Loss: 152.416
-57600/69092	Loss: 153.149
-60800/69092	Loss: 151.520
-64000/69092	Loss: 152.832
-67200/69092	Loss: 152.487
-Training time 0:04:56.752912
-Epoch: 34 Average loss: 152.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 343)
-0/69092	Loss: 156.455
-3200/69092	Loss: 153.220
-6400/69092	Loss: 151.141
-9600/69092	Loss: 151.671
-12800/69092	Loss: 151.010
-16000/69092	Loss: 155.255
-19200/69092	Loss: 153.328
-22400/69092	Loss: 151.027
-25600/69092	Loss: 155.107
-28800/69092	Loss: 151.477
-32000/69092	Loss: 151.732
-35200/69092	Loss: 156.207
-38400/69092	Loss: 150.103
-41600/69092	Loss: 153.276
-44800/69092	Loss: 150.903
-48000/69092	Loss: 149.701
-51200/69092	Loss: 151.371
-54400/69092	Loss: 152.385
-57600/69092	Loss: 153.020
-60800/69092	Loss: 149.253
-64000/69092	Loss: 152.212
-67200/69092	Loss: 151.646
-Training time 0:04:41.271757
-Epoch: 35 Average loss: 152.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 344)
-0/69092	Loss: 152.728
-3200/69092	Loss: 154.176
-6400/69092	Loss: 152.111
-9600/69092	Loss: 153.827
-12800/69092	Loss: 148.727
-16000/69092	Loss: 154.085
-19200/69092	Loss: 150.397
-22400/69092	Loss: 152.221
-25600/69092	Loss: 152.440
-28800/69092	Loss: 151.169
-32000/69092	Loss: 150.328
-35200/69092	Loss: 153.477
-38400/69092	Loss: 154.612
-41600/69092	Loss: 151.677
-44800/69092	Loss: 153.689
-48000/69092	Loss: 150.797
-51200/69092	Loss: 151.514
-54400/69092	Loss: 149.755
-57600/69092	Loss: 152.959
-60800/69092	Loss: 151.039
-64000/69092	Loss: 150.996
-67200/69092	Loss: 157.028
-Training time 0:04:50.749251
-Epoch: 36 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 345)
-0/69092	Loss: 144.968
-3200/69092	Loss: 150.944
-6400/69092	Loss: 151.882
-9600/69092	Loss: 151.432
-12800/69092	Loss: 153.335
-16000/69092	Loss: 151.410
-19200/69092	Loss: 151.090
-22400/69092	Loss: 151.332
-25600/69092	Loss: 150.389
-28800/69092	Loss: 151.724
-32000/69092	Loss: 153.236
-35200/69092	Loss: 151.028
-38400/69092	Loss: 153.111
-41600/69092	Loss: 152.455
-44800/69092	Loss: 150.457
-48000/69092	Loss: 151.080
-51200/69092	Loss: 152.359
-54400/69092	Loss: 154.452
-57600/69092	Loss: 153.823
-60800/69092	Loss: 152.210
-64000/69092	Loss: 156.284
-67200/69092	Loss: 153.959
-Training time 0:04:56.092557
-Epoch: 37 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 346)
-0/69092	Loss: 154.519
-3200/69092	Loss: 152.953
-6400/69092	Loss: 151.713
-9600/69092	Loss: 151.209
-12800/69092	Loss: 152.897
-16000/69092	Loss: 152.985
-19200/69092	Loss: 150.601
-22400/69092	Loss: 152.633
-25600/69092	Loss: 152.365
-28800/69092	Loss: 152.170
-32000/69092	Loss: 153.599
-35200/69092	Loss: 154.194
-38400/69092	Loss: 151.321
-41600/69092	Loss: 151.657
-44800/69092	Loss: 152.809
-48000/69092	Loss: 149.193
-51200/69092	Loss: 151.585
-54400/69092	Loss: 147.995
-57600/69092	Loss: 154.751
-60800/69092	Loss: 152.405
-64000/69092	Loss: 151.126
-67200/69092	Loss: 153.054
-Training time 0:04:46.340005
-Epoch: 38 Average loss: 152.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 347)
-0/69092	Loss: 155.517
-3200/69092	Loss: 151.532
-6400/69092	Loss: 151.045
-9600/69092	Loss: 150.674
-12800/69092	Loss: 149.913
-16000/69092	Loss: 153.018
-19200/69092	Loss: 151.897
-22400/69092	Loss: 151.769
-25600/69092	Loss: 151.634
-28800/69092	Loss: 152.942
-32000/69092	Loss: 153.543
-35200/69092	Loss: 148.720
-38400/69092	Loss: 153.905
-41600/69092	Loss: 151.111
-44800/69092	Loss: 153.790
-48000/69092	Loss: 151.695
-51200/69092	Loss: 152.201
-54400/69092	Loss: 152.448
-57600/69092	Loss: 154.993
-60800/69092	Loss: 152.544
-64000/69092	Loss: 154.550
-67200/69092	Loss: 153.987
-Training time 0:04:51.157197
-Epoch: 39 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 348)
-0/69092	Loss: 164.980
-3200/69092	Loss: 152.534
-6400/69092	Loss: 151.433
-9600/69092	Loss: 148.842
-12800/69092	Loss: 153.554
-16000/69092	Loss: 153.431
-19200/69092	Loss: 152.971
-22400/69092	Loss: 152.744
-25600/69092	Loss: 151.805
-28800/69092	Loss: 154.479
-32000/69092	Loss: 151.800
-35200/69092	Loss: 152.465
-38400/69092	Loss: 152.071
-41600/69092	Loss: 150.298
-44800/69092	Loss: 153.446
-48000/69092	Loss: 151.722
-51200/69092	Loss: 154.719
-54400/69092	Loss: 149.358
-57600/69092	Loss: 151.644
-60800/69092	Loss: 152.203
-64000/69092	Loss: 153.698
-67200/69092	Loss: 153.300
-Training time 0:04:58.104908
-Epoch: 40 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 349)
-0/69092	Loss: 155.595
-3200/69092	Loss: 150.947
-6400/69092	Loss: 154.446
-9600/69092	Loss: 153.506
-12800/69092	Loss: 151.536
-16000/69092	Loss: 153.836
-19200/69092	Loss: 153.533
-22400/69092	Loss: 150.537
-25600/69092	Loss: 152.646
-28800/69092	Loss: 151.218
-32000/69092	Loss: 153.552
-35200/69092	Loss: 152.001
-38400/69092	Loss: 152.176
-41600/69092	Loss: 152.006
-44800/69092	Loss: 151.491
-48000/69092	Loss: 150.715
-51200/69092	Loss: 151.317
-54400/69092	Loss: 152.502
-57600/69092	Loss: 154.138
-60800/69092	Loss: 150.647
-64000/69092	Loss: 152.744
-67200/69092	Loss: 150.142
-Training time 0:04:54.278531
-Epoch: 41 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 350)
-0/69092	Loss: 165.297
-3200/69092	Loss: 150.804
-6400/69092	Loss: 151.645
-9600/69092	Loss: 153.291
-12800/69092	Loss: 152.469
-16000/69092	Loss: 150.577
-19200/69092	Loss: 154.290
-22400/69092	Loss: 150.442
-25600/69092	Loss: 154.266
-28800/69092	Loss: 154.679
-32000/69092	Loss: 152.875
-35200/69092	Loss: 151.537
-38400/69092	Loss: 151.901
-41600/69092	Loss: 151.255
-44800/69092	Loss: 151.752
-48000/69092	Loss: 152.236
-51200/69092	Loss: 152.769
-54400/69092	Loss: 151.213
-57600/69092	Loss: 153.572
-60800/69092	Loss: 152.105
-64000/69092	Loss: 149.684
-67200/69092	Loss: 152.700
-Training time 0:05:07.562855
-Epoch: 42 Average loss: 152.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 351)
-0/69092	Loss: 148.370
-3200/69092	Loss: 152.623
-6400/69092	Loss: 152.860
-9600/69092	Loss: 153.164
-12800/69092	Loss: 152.447
-16000/69092	Loss: 152.457
-19200/69092	Loss: 153.142
-22400/69092	Loss: 150.295
-25600/69092	Loss: 152.441
-28800/69092	Loss: 150.415
-32000/69092	Loss: 154.880
-35200/69092	Loss: 154.536
-38400/69092	Loss: 153.023
-41600/69092	Loss: 152.579
-44800/69092	Loss: 153.105
-48000/69092	Loss: 150.858
-51200/69092	Loss: 148.467
-54400/69092	Loss: 150.451
-57600/69092	Loss: 152.593
-60800/69092	Loss: 150.685
-64000/69092	Loss: 151.622
-67200/69092	Loss: 153.743
-Training time 0:04:51.185614
-Epoch: 43 Average loss: 152.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 352)
-0/69092	Loss: 167.932
-3200/69092	Loss: 151.753
-6400/69092	Loss: 153.492
-9600/69092	Loss: 153.002
-12800/69092	Loss: 151.284
-16000/69092	Loss: 152.758
-19200/69092	Loss: 152.294
-22400/69092	Loss: 150.516
-25600/69092	Loss: 152.514
-28800/69092	Loss: 152.163
-32000/69092	Loss: 147.794
-35200/69092	Loss: 152.661
-38400/69092	Loss: 152.315
-41600/69092	Loss: 152.247
-44800/69092	Loss: 155.118
-48000/69092	Loss: 152.939
-51200/69092	Loss: 153.689
-54400/69092	Loss: 152.181
-57600/69092	Loss: 149.681
-60800/69092	Loss: 150.995
-64000/69092	Loss: 151.173
-67200/69092	Loss: 153.536
-Training time 0:04:55.612014
-Epoch: 44 Average loss: 152.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 353)
-0/69092	Loss: 145.841
-3200/69092	Loss: 152.229
-6400/69092	Loss: 151.560
-9600/69092	Loss: 151.520
-12800/69092	Loss: 152.022
-16000/69092	Loss: 149.459
-19200/69092	Loss: 151.850
-22400/69092	Loss: 151.131
-25600/69092	Loss: 154.602
-28800/69092	Loss: 153.778
-32000/69092	Loss: 151.886
-35200/69092	Loss: 149.483
-38400/69092	Loss: 150.160
-41600/69092	Loss: 150.472
-44800/69092	Loss: 153.515
-48000/69092	Loss: 153.779
-51200/69092	Loss: 151.000
-54400/69092	Loss: 153.249
-57600/69092	Loss: 152.344
-60800/69092	Loss: 154.424
-64000/69092	Loss: 152.395
-67200/69092	Loss: 155.873
-Training time 0:04:51.201725
-Epoch: 45 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 354)
-0/69092	Loss: 137.913
-3200/69092	Loss: 152.157
-6400/69092	Loss: 152.798
-9600/69092	Loss: 152.298
-12800/69092	Loss: 152.906
-16000/69092	Loss: 154.373
-19200/69092	Loss: 151.240
-22400/69092	Loss: 153.380
-25600/69092	Loss: 153.667
-28800/69092	Loss: 152.635
-32000/69092	Loss: 151.434
-35200/69092	Loss: 150.640
-38400/69092	Loss: 151.175
-41600/69092	Loss: 150.284
-44800/69092	Loss: 151.346
-48000/69092	Loss: 149.708
-51200/69092	Loss: 153.606
-54400/69092	Loss: 151.059
-57600/69092	Loss: 150.702
-60800/69092	Loss: 153.747
-64000/69092	Loss: 152.882
-67200/69092	Loss: 152.776
-Training time 0:04:48.809736
-Epoch: 46 Average loss: 152.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 355)
-0/69092	Loss: 155.595
-3200/69092	Loss: 151.454
-6400/69092	Loss: 150.406
-9600/69092	Loss: 153.454
-12800/69092	Loss: 151.006
-16000/69092	Loss: 151.426
-19200/69092	Loss: 156.457
-22400/69092	Loss: 150.815
-25600/69092	Loss: 151.828
-28800/69092	Loss: 151.957
-32000/69092	Loss: 151.945
-35200/69092	Loss: 152.698
-38400/69092	Loss: 152.272
-41600/69092	Loss: 150.738
-44800/69092	Loss: 152.915
-48000/69092	Loss: 153.258
-51200/69092	Loss: 151.136
-54400/69092	Loss: 153.077
-57600/69092	Loss: 152.956
-60800/69092	Loss: 149.251
-64000/69092	Loss: 151.603
-67200/69092	Loss: 153.848
-Training time 0:04:50.084359
-Epoch: 47 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 356)
-0/69092	Loss: 156.728
-3200/69092	Loss: 153.443
-6400/69092	Loss: 150.638
-9600/69092	Loss: 151.727
-12800/69092	Loss: 152.303
-16000/69092	Loss: 151.170
-19200/69092	Loss: 152.111
-22400/69092	Loss: 152.699
-25600/69092	Loss: 150.311
-28800/69092	Loss: 150.221
-32000/69092	Loss: 155.142
-35200/69092	Loss: 152.097
-38400/69092	Loss: 152.748
-41600/69092	Loss: 155.204
-44800/69092	Loss: 152.113
-48000/69092	Loss: 152.013
-51200/69092	Loss: 152.560
-54400/69092	Loss: 154.394
-57600/69092	Loss: 151.125
-60800/69092	Loss: 153.749
-64000/69092	Loss: 152.106
-67200/69092	Loss: 151.150
-Training time 0:04:56.589392
-Epoch: 48 Average loss: 152.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 357)
-0/69092	Loss: 162.978
-3200/69092	Loss: 153.373
-6400/69092	Loss: 151.620
-9600/69092	Loss: 151.033
-12800/69092	Loss: 152.945
-16000/69092	Loss: 151.605
-19200/69092	Loss: 150.252
-22400/69092	Loss: 151.784
-25600/69092	Loss: 152.188
-28800/69092	Loss: 151.456
-32000/69092	Loss: 152.454
-35200/69092	Loss: 153.653
-38400/69092	Loss: 152.103
-41600/69092	Loss: 153.231
-44800/69092	Loss: 150.651
-48000/69092	Loss: 152.846
-51200/69092	Loss: 151.844
-54400/69092	Loss: 152.032
-57600/69092	Loss: 153.584
-60800/69092	Loss: 151.616
-64000/69092	Loss: 153.219
-67200/69092	Loss: 152.786
-Training time 0:04:47.694802
-Epoch: 49 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 358)
-0/69092	Loss: 146.221
-3200/69092	Loss: 152.938
-6400/69092	Loss: 153.933
-9600/69092	Loss: 152.109
-12800/69092	Loss: 153.504
-16000/69092	Loss: 153.531
-19200/69092	Loss: 153.283
-22400/69092	Loss: 150.464
-25600/69092	Loss: 152.537
-28800/69092	Loss: 153.610
-32000/69092	Loss: 152.708
-35200/69092	Loss: 152.029
-38400/69092	Loss: 148.441
-41600/69092	Loss: 149.923
-44800/69092	Loss: 151.397
-48000/69092	Loss: 151.045
-51200/69092	Loss: 152.944
-54400/69092	Loss: 151.273
-57600/69092	Loss: 153.945
-60800/69092	Loss: 153.427
-64000/69092	Loss: 153.790
-67200/69092	Loss: 151.499
-Training time 0:04:50.751972
-Epoch: 50 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 359)
-0/69092	Loss: 165.142
-3200/69092	Loss: 151.661
-6400/69092	Loss: 151.705
-9600/69092	Loss: 151.387
-12800/69092	Loss: 153.068
-16000/69092	Loss: 153.747
-19200/69092	Loss: 150.545
-22400/69092	Loss: 150.692
-25600/69092	Loss: 152.346
-28800/69092	Loss: 151.423
-32000/69092	Loss: 153.013
-35200/69092	Loss: 149.609
-38400/69092	Loss: 153.360
-41600/69092	Loss: 150.800
-44800/69092	Loss: 153.717
-48000/69092	Loss: 151.040
-51200/69092	Loss: 152.198
-54400/69092	Loss: 152.882
-57600/69092	Loss: 153.217
-60800/69092	Loss: 151.976
-64000/69092	Loss: 152.568
-67200/69092	Loss: 154.505
-Training time 0:04:53.556238
-Epoch: 51 Average loss: 152.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 360)
-0/69092	Loss: 155.354
-3200/69092	Loss: 151.415
-6400/69092	Loss: 148.914
-9600/69092	Loss: 151.348
-12800/69092	Loss: 152.186
-16000/69092	Loss: 154.559
-19200/69092	Loss: 153.989
-22400/69092	Loss: 154.117
-25600/69092	Loss: 152.078
-28800/69092	Loss: 152.098
-32000/69092	Loss: 151.568
-35200/69092	Loss: 151.049
-38400/69092	Loss: 151.978
-41600/69092	Loss: 153.583
-44800/69092	Loss: 152.448
-48000/69092	Loss: 148.927
-51200/69092	Loss: 153.927
-54400/69092	Loss: 152.828
-57600/69092	Loss: 152.888
-60800/69092	Loss: 150.125
-64000/69092	Loss: 150.730
-67200/69092	Loss: 152.808
-Training time 0:05:00.744422
-Epoch: 52 Average loss: 152.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 361)
-0/69092	Loss: 146.191
-3200/69092	Loss: 151.267
-6400/69092	Loss: 155.417
-9600/69092	Loss: 149.679
-12800/69092	Loss: 152.965
-16000/69092	Loss: 151.732
-19200/69092	Loss: 152.283
-22400/69092	Loss: 151.821
-25600/69092	Loss: 151.954
-28800/69092	Loss: 156.055
-32000/69092	Loss: 152.704
-35200/69092	Loss: 152.981
-38400/69092	Loss: 149.679
-41600/69092	Loss: 151.232
-44800/69092	Loss: 151.826
-48000/69092	Loss: 151.640
-51200/69092	Loss: 150.887
-54400/69092	Loss: 153.202
-57600/69092	Loss: 152.679
-60800/69092	Loss: 151.314
-64000/69092	Loss: 150.668
-67200/69092	Loss: 153.902
-Training time 0:04:54.495637
-Epoch: 53 Average loss: 152.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 362)
-0/69092	Loss: 166.947
-3200/69092	Loss: 154.093
-6400/69092	Loss: 154.242
-9600/69092	Loss: 152.789
-12800/69092	Loss: 154.342
-16000/69092	Loss: 149.782
-19200/69092	Loss: 153.207
-22400/69092	Loss: 151.134
-25600/69092	Loss: 152.531
-28800/69092	Loss: 151.491
-32000/69092	Loss: 149.411
-35200/69092	Loss: 153.941
-38400/69092	Loss: 152.423
-41600/69092	Loss: 151.690
-44800/69092	Loss: 150.280
-48000/69092	Loss: 152.689
-51200/69092	Loss: 149.195
-54400/69092	Loss: 153.367
-57600/69092	Loss: 154.523
-60800/69092	Loss: 152.483
-64000/69092	Loss: 152.741
-67200/69092	Loss: 149.173
-Training time 0:04:45.627212
-Epoch: 54 Average loss: 152.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 363)
-0/69092	Loss: 157.367
-3200/69092	Loss: 150.394
-6400/69092	Loss: 150.663
-9600/69092	Loss: 153.807
-12800/69092	Loss: 151.130
-16000/69092	Loss: 154.581
-19200/69092	Loss: 152.572
-22400/69092	Loss: 152.268
-25600/69092	Loss: 155.387
-28800/69092	Loss: 150.463
-32000/69092	Loss: 151.389
-35200/69092	Loss: 151.641
-38400/69092	Loss: 153.353
-41600/69092	Loss: 152.714
-44800/69092	Loss: 152.886
-48000/69092	Loss: 153.651
-51200/69092	Loss: 152.755
-54400/69092	Loss: 150.921
-57600/69092	Loss: 151.642
-60800/69092	Loss: 150.403
-64000/69092	Loss: 151.311
-67200/69092	Loss: 151.678
-Training time 0:05:02.730608
-Epoch: 55 Average loss: 152.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 364)
-0/69092	Loss: 145.930
-3200/69092	Loss: 150.429
-6400/69092	Loss: 151.513
-9600/69092	Loss: 152.365
-12800/69092	Loss: 151.374
-16000/69092	Loss: 152.184
-19200/69092	Loss: 152.533
-22400/69092	Loss: 154.206
-25600/69092	Loss: 153.850
-28800/69092	Loss: 151.375
-32000/69092	Loss: 154.196
-35200/69092	Loss: 152.400
-38400/69092	Loss: 151.774
-41600/69092	Loss: 153.905
-44800/69092	Loss: 151.187
-48000/69092	Loss: 150.063
-51200/69092	Loss: 152.525
-54400/69092	Loss: 150.089
-57600/69092	Loss: 153.965
-60800/69092	Loss: 152.555
-64000/69092	Loss: 150.469
-67200/69092	Loss: 153.792
-Training time 0:05:08.792934
-Epoch: 56 Average loss: 152.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 365)
-0/69092	Loss: 152.498
-3200/69092	Loss: 150.841
-6400/69092	Loss: 149.979
-9600/69092	Loss: 154.737
-12800/69092	Loss: 152.760
-16000/69092	Loss: 153.164
-19200/69092	Loss: 151.122
-22400/69092	Loss: 150.475
-25600/69092	Loss: 153.124
-28800/69092	Loss: 150.368
-32000/69092	Loss: 152.099
-35200/69092	Loss: 154.059
-38400/69092	Loss: 152.283
-41600/69092	Loss: 153.770
-44800/69092	Loss: 151.144
-48000/69092	Loss: 153.797
-51200/69092	Loss: 153.163
-54400/69092	Loss: 151.551
-57600/69092	Loss: 149.193
-60800/69092	Loss: 152.865
-64000/69092	Loss: 151.365
-67200/69092	Loss: 151.513
-Training time 0:04:57.827078
-Epoch: 57 Average loss: 152.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 366)
-0/69092	Loss: 147.381
-3200/69092	Loss: 153.777
-6400/69092	Loss: 153.114
-9600/69092	Loss: 149.780
-12800/69092	Loss: 153.229
-16000/69092	Loss: 150.720
-19200/69092	Loss: 151.541
-22400/69092	Loss: 152.261
-25600/69092	Loss: 151.935
-28800/69092	Loss: 150.915
-32000/69092	Loss: 153.301
-35200/69092	Loss: 151.364
-38400/69092	Loss: 151.890
-41600/69092	Loss: 153.117
-44800/69092	Loss: 151.360
-48000/69092	Loss: 152.360
-51200/69092	Loss: 152.068
-54400/69092	Loss: 149.764
-57600/69092	Loss: 152.226
-60800/69092	Loss: 151.177
-64000/69092	Loss: 153.096
-67200/69092	Loss: 153.029
-Training time 0:05:02.011952
-Epoch: 58 Average loss: 151.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 367)
-0/69092	Loss: 150.569
-3200/69092	Loss: 152.745
-6400/69092	Loss: 153.195
-9600/69092	Loss: 150.142
-12800/69092	Loss: 153.325
-16000/69092	Loss: 149.827
-19200/69092	Loss: 153.633
-22400/69092	Loss: 152.257
-25600/69092	Loss: 151.171
-28800/69092	Loss: 148.631
-32000/69092	Loss: 153.539
-35200/69092	Loss: 154.201
-38400/69092	Loss: 151.118
-41600/69092	Loss: 153.224
-44800/69092	Loss: 151.894
-48000/69092	Loss: 153.593
-51200/69092	Loss: 150.882
-54400/69092	Loss: 153.404
-57600/69092	Loss: 152.346
-60800/69092	Loss: 154.515
-64000/69092	Loss: 151.724
-67200/69092	Loss: 151.763
-Training time 0:04:51.397189
-Epoch: 59 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 368)
-0/69092	Loss: 152.698
-3200/69092	Loss: 150.510
-6400/69092	Loss: 154.781
-9600/69092	Loss: 152.349
-12800/69092	Loss: 152.191
-16000/69092	Loss: 150.223
-19200/69092	Loss: 150.018
-22400/69092	Loss: 153.098
-25600/69092	Loss: 152.559
-28800/69092	Loss: 150.995
-32000/69092	Loss: 150.916
-35200/69092	Loss: 155.911
-38400/69092	Loss: 151.247
-41600/69092	Loss: 151.564
-44800/69092	Loss: 154.736
-48000/69092	Loss: 150.521
-51200/69092	Loss: 151.808
-54400/69092	Loss: 153.132
-57600/69092	Loss: 152.417
-60800/69092	Loss: 155.007
-64000/69092	Loss: 151.645
-67200/69092	Loss: 151.255
-Training time 0:04:56.358551
-Epoch: 60 Average loss: 152.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 369)
-0/69092	Loss: 144.129
-3200/69092	Loss: 151.475
-6400/69092	Loss: 151.476
-9600/69092	Loss: 152.586
-12800/69092	Loss: 151.600
-16000/69092	Loss: 150.702
-19200/69092	Loss: 150.883
-22400/69092	Loss: 151.202
-25600/69092	Loss: 153.367
-28800/69092	Loss: 152.773
-32000/69092	Loss: 151.591
-35200/69092	Loss: 152.391
-38400/69092	Loss: 152.063
-41600/69092	Loss: 153.060
-44800/69092	Loss: 151.395
-48000/69092	Loss: 154.362
-51200/69092	Loss: 150.850
-54400/69092	Loss: 154.596
-57600/69092	Loss: 151.363
-60800/69092	Loss: 153.536
-64000/69092	Loss: 155.335
-67200/69092	Loss: 151.891
-Training time 0:05:23.467534
-Epoch: 61 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 370)
-0/69092	Loss: 163.940
-3200/69092	Loss: 150.827
-6400/69092	Loss: 149.793
-9600/69092	Loss: 151.618
-12800/69092	Loss: 151.544
-16000/69092	Loss: 152.441
-19200/69092	Loss: 152.698
-22400/69092	Loss: 152.034
-25600/69092	Loss: 150.992
-28800/69092	Loss: 149.667
-32000/69092	Loss: 153.019
-35200/69092	Loss: 154.537
-38400/69092	Loss: 155.126
-41600/69092	Loss: 150.875
-44800/69092	Loss: 151.684
-48000/69092	Loss: 150.959
-51200/69092	Loss: 152.445
-54400/69092	Loss: 152.994
-57600/69092	Loss: 151.815
-60800/69092	Loss: 153.775
-64000/69092	Loss: 151.573
-67200/69092	Loss: 155.133
-Training time 0:05:53.166138
-Epoch: 62 Average loss: 152.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 371)
-0/69092	Loss: 160.420
-3200/69092	Loss: 153.931
-6400/69092	Loss: 152.696
-9600/69092	Loss: 152.333
-12800/69092	Loss: 151.992
-16000/69092	Loss: 150.342
-19200/69092	Loss: 149.804
-22400/69092	Loss: 151.871
-25600/69092	Loss: 150.169
-28800/69092	Loss: 157.273
-32000/69092	Loss: 152.391
-35200/69092	Loss: 153.342
-38400/69092	Loss: 153.075
-41600/69092	Loss: 155.212
-44800/69092	Loss: 152.789
-48000/69092	Loss: 153.142
-51200/69092	Loss: 149.485
-54400/69092	Loss: 152.921
-57600/69092	Loss: 150.541
-60800/69092	Loss: 152.106
-64000/69092	Loss: 151.806
-67200/69092	Loss: 150.912
-Training time 0:05:24.650218
-Epoch: 63 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 372)
-0/69092	Loss: 157.216
-3200/69092	Loss: 152.605
-6400/69092	Loss: 154.170
-9600/69092	Loss: 150.242
-12800/69092	Loss: 150.847
-16000/69092	Loss: 153.558
-19200/69092	Loss: 149.197
-22400/69092	Loss: 152.052
-25600/69092	Loss: 153.600
-28800/69092	Loss: 150.805
-32000/69092	Loss: 151.154
-35200/69092	Loss: 151.345
-38400/69092	Loss: 153.986
-41600/69092	Loss: 153.242
-44800/69092	Loss: 151.297
-48000/69092	Loss: 152.481
-51200/69092	Loss: 154.252
-54400/69092	Loss: 150.514
-57600/69092	Loss: 151.360
-60800/69092	Loss: 151.142
-64000/69092	Loss: 152.341
-67200/69092	Loss: 152.235
-Training time 0:05:23.349995
-Epoch: 64 Average loss: 152.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 373)
-0/69092	Loss: 156.083
-3200/69092	Loss: 148.343
-6400/69092	Loss: 151.406
-9600/69092	Loss: 152.402
-12800/69092	Loss: 152.789
-16000/69092	Loss: 152.097
-19200/69092	Loss: 151.255
-22400/69092	Loss: 150.589
-25600/69092	Loss: 151.193
-28800/69092	Loss: 151.768
-32000/69092	Loss: 152.436
-35200/69092	Loss: 151.905
-38400/69092	Loss: 151.210
-41600/69092	Loss: 153.031
-44800/69092	Loss: 155.077
-48000/69092	Loss: 152.141
-51200/69092	Loss: 152.639
-54400/69092	Loss: 152.202
-57600/69092	Loss: 153.911
-60800/69092	Loss: 150.886
-64000/69092	Loss: 151.991
-67200/69092	Loss: 153.081
-Training time 0:05:27.113903
-Epoch: 65 Average loss: 152.06
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 374)
-0/69092	Loss: 146.668
-3200/69092	Loss: 154.008
-6400/69092	Loss: 155.628
-9600/69092	Loss: 152.317
-12800/69092	Loss: 152.248
-16000/69092	Loss: 153.502
-19200/69092	Loss: 153.896
-22400/69092	Loss: 151.885
-25600/69092	Loss: 153.051
-28800/69092	Loss: 150.148
-32000/69092	Loss: 151.484
-35200/69092	Loss: 151.041
-38400/69092	Loss: 152.862
-41600/69092	Loss: 150.271
-44800/69092	Loss: 153.355
-48000/69092	Loss: 150.979
-51200/69092	Loss: 150.087
-54400/69092	Loss: 150.249
-57600/69092	Loss: 153.382
-60800/69092	Loss: 150.308
-64000/69092	Loss: 152.263
-67200/69092	Loss: 150.980
-Training time 0:05:23.714057
-Epoch: 66 Average loss: 152.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 375)
-0/69092	Loss: 142.300
-3200/69092	Loss: 152.648
-6400/69092	Loss: 153.002
-9600/69092	Loss: 151.178
-12800/69092	Loss: 151.427
-16000/69092	Loss: 150.636
-19200/69092	Loss: 153.439
-22400/69092	Loss: 153.312
-25600/69092	Loss: 151.814
-28800/69092	Loss: 153.635
-32000/69092	Loss: 152.744
-35200/69092	Loss: 152.227
-38400/69092	Loss: 152.585
-41600/69092	Loss: 151.846
-44800/69092	Loss: 151.106
-48000/69092	Loss: 152.238
-51200/69092	Loss: 150.460
-54400/69092	Loss: 153.362
-57600/69092	Loss: 154.661
-60800/69092	Loss: 153.270
-64000/69092	Loss: 150.172
-67200/69092	Loss: 152.478
-Training time 0:05:33.072789
-Epoch: 67 Average loss: 152.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 376)
-0/69092	Loss: 167.086
-3200/69092	Loss: 152.539
-6400/69092	Loss: 153.615
-9600/69092	Loss: 153.984
-12800/69092	Loss: 153.109
-16000/69092	Loss: 151.658
-19200/69092	Loss: 153.113
-22400/69092	Loss: 151.606
-25600/69092	Loss: 149.857
-28800/69092	Loss: 152.291
-32000/69092	Loss: 152.001
-35200/69092	Loss: 150.874
-38400/69092	Loss: 152.269
-41600/69092	Loss: 152.812
-44800/69092	Loss: 152.633
-48000/69092	Loss: 153.407
-51200/69092	Loss: 149.529
-54400/69092	Loss: 150.778
-57600/69092	Loss: 154.074
-60800/69092	Loss: 155.265
-64000/69092	Loss: 150.943
-67200/69092	Loss: 152.413
-Training time 0:04:59.252105
-Epoch: 68 Average loss: 152.32
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 377)
-0/69092	Loss: 142.886
-3200/69092	Loss: 150.915
-6400/69092	Loss: 151.632
-9600/69092	Loss: 152.223
-12800/69092	Loss: 150.318
-16000/69092	Loss: 151.817
-19200/69092	Loss: 152.761
-22400/69092	Loss: 152.089
-25600/69092	Loss: 154.266
-28800/69092	Loss: 150.921
-32000/69092	Loss: 151.730
-35200/69092	Loss: 153.607
-38400/69092	Loss: 153.081
-41600/69092	Loss: 150.853
-44800/69092	Loss: 152.767
-48000/69092	Loss: 152.460
-51200/69092	Loss: 150.523
-54400/69092	Loss: 151.378
-57600/69092	Loss: 153.249
-60800/69092	Loss: 152.830
-64000/69092	Loss: 151.944
-67200/69092	Loss: 152.016
-Training time 0:05:16.139701
-Epoch: 69 Average loss: 152.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 378)
-0/69092	Loss: 171.625
-3200/69092	Loss: 154.513
-6400/69092	Loss: 151.640
-9600/69092	Loss: 150.764
-12800/69092	Loss: 150.490
-16000/69092	Loss: 151.810
-19200/69092	Loss: 153.845
-22400/69092	Loss: 150.604
-25600/69092	Loss: 152.091
-28800/69092	Loss: 150.351
-32000/69092	Loss: 154.173
-35200/69092	Loss: 153.935
-38400/69092	Loss: 151.496
-41600/69092	Loss: 150.508
-44800/69092	Loss: 151.278
-48000/69092	Loss: 148.709
-51200/69092	Loss: 152.223
-54400/69092	Loss: 154.862
-57600/69092	Loss: 152.224
-60800/69092	Loss: 153.854
-64000/69092	Loss: 150.635
-67200/69092	Loss: 150.417
-Training time 0:05:20.814982
-Epoch: 70 Average loss: 152.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 379)
-0/69092	Loss: 159.456
-3200/69092	Loss: 151.843
-6400/69092	Loss: 152.962
-9600/69092	Loss: 153.162
-12800/69092	Loss: 152.416
-16000/69092	Loss: 152.438
-19200/69092	Loss: 154.884
-22400/69092	Loss: 152.882
-25600/69092	Loss: 152.923
-28800/69092	Loss: 151.315
-32000/69092	Loss: 153.602
-35200/69092	Loss: 151.506
-38400/69092	Loss: 153.189
-41600/69092	Loss: 151.808
-44800/69092	Loss: 149.524
-48000/69092	Loss: 152.428
-51200/69092	Loss: 151.998
-54400/69092	Loss: 151.662
-57600/69092	Loss: 149.739
-60800/69092	Loss: 152.809
-64000/69092	Loss: 154.365
-67200/69092	Loss: 150.230
-Training time 0:04:41.908707
-Epoch: 71 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 380)
-0/69092	Loss: 147.989
-3200/69092	Loss: 152.401
-6400/69092	Loss: 151.690
-9600/69092	Loss: 151.527
-12800/69092	Loss: 151.547
-16000/69092	Loss: 148.992
-19200/69092	Loss: 153.467
-22400/69092	Loss: 150.681
-25600/69092	Loss: 153.436
-28800/69092	Loss: 152.665
-32000/69092	Loss: 153.847
-35200/69092	Loss: 149.465
-38400/69092	Loss: 154.151
-41600/69092	Loss: 152.815
-44800/69092	Loss: 152.269
-48000/69092	Loss: 150.504
-51200/69092	Loss: 153.604
-54400/69092	Loss: 153.192
-57600/69092	Loss: 151.053
-60800/69092	Loss: 153.720
-64000/69092	Loss: 153.013
-67200/69092	Loss: 152.351
-Training time 0:04:49.550108
-Epoch: 72 Average loss: 152.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 381)
-0/69092	Loss: 155.271
-3200/69092	Loss: 153.494
-6400/69092	Loss: 152.078
-9600/69092	Loss: 149.940
-12800/69092	Loss: 150.048
-16000/69092	Loss: 150.825
-19200/69092	Loss: 150.739
-22400/69092	Loss: 152.702
-25600/69092	Loss: 155.752
-28800/69092	Loss: 154.054
-32000/69092	Loss: 151.410
-35200/69092	Loss: 154.361
-38400/69092	Loss: 150.217
-41600/69092	Loss: 153.970
-44800/69092	Loss: 151.603
-48000/69092	Loss: 150.173
-51200/69092	Loss: 151.283
-54400/69092	Loss: 150.320
-57600/69092	Loss: 154.031
-60800/69092	Loss: 151.250
-64000/69092	Loss: 152.557
-67200/69092	Loss: 152.158
-Training time 0:04:51.031669
-Epoch: 73 Average loss: 152.07
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 382)
-0/69092	Loss: 167.281
-3200/69092	Loss: 151.140
-6400/69092	Loss: 151.214
-9600/69092	Loss: 154.212
-12800/69092	Loss: 152.252
-16000/69092	Loss: 148.862
-19200/69092	Loss: 149.399
-22400/69092	Loss: 152.893
-25600/69092	Loss: 153.142
-28800/69092	Loss: 152.190
-32000/69092	Loss: 151.733
-35200/69092	Loss: 152.655
-38400/69092	Loss: 154.997
-41600/69092	Loss: 151.070
-44800/69092	Loss: 153.855
-48000/69092	Loss: 152.491
-51200/69092	Loss: 150.044
-54400/69092	Loss: 150.720
-57600/69092	Loss: 150.193
-60800/69092	Loss: 152.856
-64000/69092	Loss: 152.537
-67200/69092	Loss: 152.294
-Training time 0:04:55.081420
-Epoch: 74 Average loss: 152.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 383)
-0/69092	Loss: 154.157
-3200/69092	Loss: 154.255
-6400/69092	Loss: 153.611
-9600/69092	Loss: 151.472
-12800/69092	Loss: 153.355
-16000/69092	Loss: 150.815
-19200/69092	Loss: 153.617
-22400/69092	Loss: 153.628
-25600/69092	Loss: 150.988
-28800/69092	Loss: 151.479
-32000/69092	Loss: 152.324
-35200/69092	Loss: 153.211
-38400/69092	Loss: 150.005
-41600/69092	Loss: 148.870
-44800/69092	Loss: 154.888
-48000/69092	Loss: 152.478
-51200/69092	Loss: 152.040
-54400/69092	Loss: 151.494
-57600/69092	Loss: 151.065
-60800/69092	Loss: 153.344
-64000/69092	Loss: 153.279
-67200/69092	Loss: 154.722
-Training time 0:04:50.357753
-Epoch: 75 Average loss: 152.45
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 384)
-0/69092	Loss: 148.367
-3200/69092	Loss: 149.811
-6400/69092	Loss: 152.498
-9600/69092	Loss: 153.230
-12800/69092	Loss: 151.580
-16000/69092	Loss: 149.368
-19200/69092	Loss: 153.172
-22400/69092	Loss: 152.466
-25600/69092	Loss: 149.360
-28800/69092	Loss: 150.754
-32000/69092	Loss: 150.235
-35200/69092	Loss: 152.744
-38400/69092	Loss: 152.375
-41600/69092	Loss: 152.117
-44800/69092	Loss: 149.865
-48000/69092	Loss: 152.296
-51200/69092	Loss: 150.958
-54400/69092	Loss: 154.242
-57600/69092	Loss: 154.513
-60800/69092	Loss: 153.132
-64000/69092	Loss: 154.810
-67200/69092	Loss: 152.240
-Training time 0:04:56.023137
-Epoch: 76 Average loss: 152.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 385)
-0/69092	Loss: 159.299
-3200/69092	Loss: 151.701
-6400/69092	Loss: 154.116
-9600/69092	Loss: 153.099
-12800/69092	Loss: 153.676
-16000/69092	Loss: 152.018
-19200/69092	Loss: 152.899
-22400/69092	Loss: 152.236
-25600/69092	Loss: 154.659
-28800/69092	Loss: 150.001
-32000/69092	Loss: 151.848
-35200/69092	Loss: 153.828
-38400/69092	Loss: 149.875
-41600/69092	Loss: 154.095
-44800/69092	Loss: 152.501
-48000/69092	Loss: 150.692
-51200/69092	Loss: 151.368
-54400/69092	Loss: 152.377
-57600/69092	Loss: 154.053
-60800/69092	Loss: 150.230
-64000/69092	Loss: 151.682
-67200/69092	Loss: 150.104
-Training time 0:05:38.090144
-Epoch: 77 Average loss: 152.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 386)
-0/69092	Loss: 133.769
-3200/69092	Loss: 150.945
-6400/69092	Loss: 152.139
-9600/69092	Loss: 150.133
-12800/69092	Loss: 153.125
-16000/69092	Loss: 152.958
-19200/69092	Loss: 153.307
-22400/69092	Loss: 154.924
-25600/69092	Loss: 150.651
-28800/69092	Loss: 152.592
-32000/69092	Loss: 151.322
-35200/69092	Loss: 151.483
-38400/69092	Loss: 151.906
-41600/69092	Loss: 151.097
-44800/69092	Loss: 152.955
-48000/69092	Loss: 152.512
-51200/69092	Loss: 153.579
-54400/69092	Loss: 150.903
-57600/69092	Loss: 151.697
-60800/69092	Loss: 152.023
-64000/69092	Loss: 152.772
-67200/69092	Loss: 152.888
-Training time 0:04:55.780531
-Epoch: 78 Average loss: 152.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 387)
-0/69092	Loss: 177.367
-3200/69092	Loss: 153.016
-6400/69092	Loss: 154.626
-9600/69092	Loss: 152.591
-12800/69092	Loss: 152.371
-16000/69092	Loss: 150.365
-19200/69092	Loss: 151.905
-22400/69092	Loss: 152.857
-25600/69092	Loss: 151.943
-28800/69092	Loss: 153.557
-32000/69092	Loss: 153.086
-35200/69092	Loss: 150.043
-38400/69092	Loss: 152.453
-41600/69092	Loss: 149.896
-44800/69092	Loss: 149.321
-48000/69092	Loss: 153.453
-51200/69092	Loss: 153.388
-54400/69092	Loss: 151.923
-57600/69092	Loss: 150.125
-60800/69092	Loss: 153.940
-64000/69092	Loss: 151.747
-67200/69092	Loss: 151.802
-Training time 0:04:55.208007
-Epoch: 79 Average loss: 152.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 388)
-0/69092	Loss: 150.818
-3200/69092	Loss: 151.441
-6400/69092	Loss: 154.883
-9600/69092	Loss: 152.123
-12800/69092	Loss: 152.493
-16000/69092	Loss: 152.560
-19200/69092	Loss: 152.359
-22400/69092	Loss: 152.105
-25600/69092	Loss: 152.571
-28800/69092	Loss: 150.197
-32000/69092	Loss: 151.594
-35200/69092	Loss: 148.968
-38400/69092	Loss: 153.790
-41600/69092	Loss: 154.585
-44800/69092	Loss: 152.791
-48000/69092	Loss: 151.996
-51200/69092	Loss: 151.946
-54400/69092	Loss: 151.222
-57600/69092	Loss: 151.251
-60800/69092	Loss: 153.577
-64000/69092	Loss: 148.282
-67200/69092	Loss: 153.347
-Training time 0:04:59.494419
-Epoch: 80 Average loss: 152.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 389)
-0/69092	Loss: 160.390
-3200/69092	Loss: 152.723
-6400/69092	Loss: 154.673
-9600/69092	Loss: 152.125
-12800/69092	Loss: 149.842
-16000/69092	Loss: 150.631
-19200/69092	Loss: 154.081
-22400/69092	Loss: 153.013
-25600/69092	Loss: 154.062
-28800/69092	Loss: 153.230
-32000/69092	Loss: 151.247
-35200/69092	Loss: 151.991
-38400/69092	Loss: 148.997
-41600/69092	Loss: 153.138
-44800/69092	Loss: 152.746
-48000/69092	Loss: 152.123
-51200/69092	Loss: 153.045
-54400/69092	Loss: 153.534
-57600/69092	Loss: 149.361
-60800/69092	Loss: 149.920
-64000/69092	Loss: 150.953
-67200/69092	Loss: 151.708
-Training time 0:04:59.060240
-Epoch: 81 Average loss: 152.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 390)
-0/69092	Loss: 153.963
-3200/69092	Loss: 152.424
-6400/69092	Loss: 155.083
-9600/69092	Loss: 151.304
-12800/69092	Loss: 152.461
-16000/69092	Loss: 152.443
-19200/69092	Loss: 152.779
-22400/69092	Loss: 152.083
-25600/69092	Loss: 151.778
-28800/69092	Loss: 152.084
-32000/69092	Loss: 151.633
-35200/69092	Loss: 153.404
-38400/69092	Loss: 148.104
-41600/69092	Loss: 155.486
-44800/69092	Loss: 148.950
-48000/69092	Loss: 152.170
-51200/69092	Loss: 154.032
-54400/69092	Loss: 152.849
-57600/69092	Loss: 150.474
-60800/69092	Loss: 153.086
-64000/69092	Loss: 151.313
-67200/69092	Loss: 149.878
-Training time 0:04:57.080448
-Epoch: 82 Average loss: 151.97
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 391)
-0/69092	Loss: 154.336
-3200/69092	Loss: 151.494
-6400/69092	Loss: 152.967
-9600/69092	Loss: 149.309
-12800/69092	Loss: 151.182
-16000/69092	Loss: 150.112
-19200/69092	Loss: 153.050
-22400/69092	Loss: 150.839
-25600/69092	Loss: 153.711
-28800/69092	Loss: 151.765
-32000/69092	Loss: 151.727
-35200/69092	Loss: 152.602
-38400/69092	Loss: 154.348
-41600/69092	Loss: 152.824
-44800/69092	Loss: 150.893
-48000/69092	Loss: 150.305
-51200/69092	Loss: 152.051
-54400/69092	Loss: 153.804
-57600/69092	Loss: 154.280
-60800/69092	Loss: 152.271
-64000/69092	Loss: 152.635
-67200/69092	Loss: 149.864
-Training time 0:04:57.010780
-Epoch: 83 Average loss: 151.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 392)
-0/69092	Loss: 182.028
-3200/69092	Loss: 152.429
-6400/69092	Loss: 150.760
-9600/69092	Loss: 151.331
-12800/69092	Loss: 151.735
-16000/69092	Loss: 151.469
-19200/69092	Loss: 151.580
-22400/69092	Loss: 151.156
-25600/69092	Loss: 153.199
-28800/69092	Loss: 151.023
-32000/69092	Loss: 152.648
-35200/69092	Loss: 151.730
-38400/69092	Loss: 155.580
-41600/69092	Loss: 152.280
-44800/69092	Loss: 153.323
-48000/69092	Loss: 151.427
-51200/69092	Loss: 154.983
-54400/69092	Loss: 150.072
-57600/69092	Loss: 153.436
-60800/69092	Loss: 152.252
-64000/69092	Loss: 150.017
-67200/69092	Loss: 152.116
-Training time 0:04:45.735179
-Epoch: 84 Average loss: 152.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 393)
-0/69092	Loss: 154.702
-3200/69092	Loss: 152.774
-6400/69092	Loss: 152.440
-9600/69092	Loss: 154.457
-12800/69092	Loss: 154.161
-16000/69092	Loss: 150.860
-19200/69092	Loss: 151.098
-22400/69092	Loss: 150.214
-25600/69092	Loss: 148.884
-28800/69092	Loss: 149.376
-32000/69092	Loss: 151.280
-35200/69092	Loss: 153.219
-38400/69092	Loss: 150.948
-41600/69092	Loss: 155.880
-44800/69092	Loss: 151.803
-48000/69092	Loss: 152.655
-51200/69092	Loss: 153.246
-54400/69092	Loss: 151.673
-57600/69092	Loss: 153.024
-60800/69092	Loss: 153.541
-64000/69092	Loss: 153.738
-67200/69092	Loss: 151.754
-Training time 0:04:57.023906
-Epoch: 85 Average loss: 152.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 394)
-0/69092	Loss: 142.829
-3200/69092	Loss: 152.490
-6400/69092	Loss: 151.030
-9600/69092	Loss: 150.666
-12800/69092	Loss: 151.519
-16000/69092	Loss: 150.399
-19200/69092	Loss: 153.108
-22400/69092	Loss: 151.066
-25600/69092	Loss: 152.339
-28800/69092	Loss: 152.410
-32000/69092	Loss: 155.271
-35200/69092	Loss: 153.059
-38400/69092	Loss: 151.213
-41600/69092	Loss: 152.088
-44800/69092	Loss: 154.145
-48000/69092	Loss: 150.306
-51200/69092	Loss: 150.901
-54400/69092	Loss: 151.373
-57600/69092	Loss: 150.391
-60800/69092	Loss: 150.261
-64000/69092	Loss: 153.969
-67200/69092	Loss: 151.814
-Training time 0:04:55.390241
-Epoch: 86 Average loss: 151.91
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 395)
-0/69092	Loss: 149.056
-3200/69092	Loss: 149.947
-6400/69092	Loss: 154.324
-9600/69092	Loss: 153.580
-12800/69092	Loss: 152.930
-16000/69092	Loss: 152.680
-19200/69092	Loss: 153.038
-22400/69092	Loss: 151.125
-25600/69092	Loss: 151.951
-28800/69092	Loss: 152.586
-32000/69092	Loss: 152.570
-35200/69092	Loss: 149.354
-38400/69092	Loss: 148.427
-41600/69092	Loss: 151.235
-44800/69092	Loss: 152.589
-48000/69092	Loss: 152.086
-51200/69092	Loss: 150.932
-54400/69092	Loss: 153.294
-57600/69092	Loss: 152.074
-60800/69092	Loss: 151.371
-64000/69092	Loss: 152.852
-67200/69092	Loss: 152.169
-Training time 0:04:48.814648
-Epoch: 87 Average loss: 151.95
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 396)
-0/69092	Loss: 157.786
-3200/69092	Loss: 152.570
-6400/69092	Loss: 153.078
-9600/69092	Loss: 152.408
-12800/69092	Loss: 152.629
-16000/69092	Loss: 151.153
-19200/69092	Loss: 151.928
-22400/69092	Loss: 151.346
-25600/69092	Loss: 150.992
-28800/69092	Loss: 150.583
-32000/69092	Loss: 149.188
-35200/69092	Loss: 152.389
-38400/69092	Loss: 152.509
-41600/69092	Loss: 154.821
-44800/69092	Loss: 150.531
-48000/69092	Loss: 151.399
-51200/69092	Loss: 150.111
-54400/69092	Loss: 152.454
-57600/69092	Loss: 152.133
-60800/69092	Loss: 150.629
-64000/69092	Loss: 153.384
-67200/69092	Loss: 153.505
-Training time 0:04:54.803282
-Epoch: 88 Average loss: 151.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 397)
-0/69092	Loss: 171.129
-3200/69092	Loss: 151.790
-6400/69092	Loss: 153.028
-9600/69092	Loss: 152.004
-12800/69092	Loss: 151.282
-16000/69092	Loss: 150.597
-19200/69092	Loss: 153.276
-22400/69092	Loss: 150.037
-25600/69092	Loss: 151.375
-28800/69092	Loss: 152.042
-32000/69092	Loss: 151.800
-35200/69092	Loss: 152.210
-38400/69092	Loss: 152.840
-41600/69092	Loss: 151.627
-44800/69092	Loss: 151.665
-48000/69092	Loss: 151.353
-51200/69092	Loss: 152.797
-54400/69092	Loss: 151.047
-57600/69092	Loss: 151.778
-60800/69092	Loss: 153.219
-64000/69092	Loss: 153.312
-67200/69092	Loss: 151.992
-Training time 0:04:50.539237
-Epoch: 89 Average loss: 152.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 398)
-0/69092	Loss: 163.351
-3200/69092	Loss: 151.922
-6400/69092	Loss: 152.530
-9600/69092	Loss: 154.250
-12800/69092	Loss: 150.779
-16000/69092	Loss: 153.006
-19200/69092	Loss: 152.350
-22400/69092	Loss: 150.987
-25600/69092	Loss: 153.924
-28800/69092	Loss: 152.805
-32000/69092	Loss: 152.224
-35200/69092	Loss: 151.677
-38400/69092	Loss: 155.644
-41600/69092	Loss: 150.963
-44800/69092	Loss: 152.313
-48000/69092	Loss: 152.735
-51200/69092	Loss: 149.950
-54400/69092	Loss: 150.979
-57600/69092	Loss: 153.317
-60800/69092	Loss: 153.071
-64000/69092	Loss: 152.851
-67200/69092	Loss: 151.237
-Training time 0:04:49.878713
-Epoch: 90 Average loss: 152.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 399)
-0/69092	Loss: 163.554
-3200/69092	Loss: 151.718
-6400/69092	Loss: 153.950
-9600/69092	Loss: 151.830
-12800/69092	Loss: 152.770
-16000/69092	Loss: 153.396
-19200/69092	Loss: 149.883
-22400/69092	Loss: 150.290
-25600/69092	Loss: 149.773
-28800/69092	Loss: 152.480
-32000/69092	Loss: 151.067
-35200/69092	Loss: 156.999
-38400/69092	Loss: 152.950
-41600/69092	Loss: 152.975
-44800/69092	Loss: 153.519
-48000/69092	Loss: 152.611
-51200/69092	Loss: 152.230
-54400/69092	Loss: 151.480
-57600/69092	Loss: 150.186
-60800/69092	Loss: 150.945
-64000/69092	Loss: 149.248
-67200/69092	Loss: 151.699
-Training time 0:04:47.200851
-Epoch: 91 Average loss: 152.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 400)
-0/69092	Loss: 150.296
-3200/69092	Loss: 149.735
-6400/69092	Loss: 153.625
-9600/69092	Loss: 150.936
-12800/69092	Loss: 152.938
-16000/69092	Loss: 150.642
-19200/69092	Loss: 153.460
-22400/69092	Loss: 152.283
-25600/69092	Loss: 153.096
-28800/69092	Loss: 152.937
-32000/69092	Loss: 151.133
-35200/69092	Loss: 154.050
-38400/69092	Loss: 152.118
-41600/69092	Loss: 152.096
-44800/69092	Loss: 151.038
-48000/69092	Loss: 149.925
-51200/69092	Loss: 151.219
-54400/69092	Loss: 152.395
-57600/69092	Loss: 153.124
-60800/69092	Loss: 151.859
-64000/69092	Loss: 151.257
-67200/69092	Loss: 149.621
-Training time 0:04:52.972326
-Epoch: 92 Average loss: 151.90
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 401)
-0/69092	Loss: 160.210
-3200/69092	Loss: 150.249
-6400/69092	Loss: 151.565
-9600/69092	Loss: 149.957
-12800/69092	Loss: 151.506
-16000/69092	Loss: 152.402
-19200/69092	Loss: 152.908
-22400/69092	Loss: 149.944
-25600/69092	Loss: 153.508
-28800/69092	Loss: 150.672
-32000/69092	Loss: 155.991
-35200/69092	Loss: 151.940
-38400/69092	Loss: 149.855
-41600/69092	Loss: 152.922
-44800/69092	Loss: 151.392
-48000/69092	Loss: 154.734
-51200/69092	Loss: 150.691
-54400/69092	Loss: 151.314
-57600/69092	Loss: 152.757
-60800/69092	Loss: 151.927
-64000/69092	Loss: 153.325
-67200/69092	Loss: 149.930
-Training time 0:04:55.110473
-Epoch: 93 Average loss: 151.98
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 402)
-0/69092	Loss: 141.758
-3200/69092	Loss: 148.836
-6400/69092	Loss: 153.720
-9600/69092	Loss: 151.733
-12800/69092	Loss: 150.266
-16000/69092	Loss: 153.532
-19200/69092	Loss: 151.682
-22400/69092	Loss: 152.700
-25600/69092	Loss: 151.377
-28800/69092	Loss: 151.040
-32000/69092	Loss: 148.090
-35200/69092	Loss: 153.011
-38400/69092	Loss: 152.989
-41600/69092	Loss: 153.283
-44800/69092	Loss: 155.993
-48000/69092	Loss: 152.637
-51200/69092	Loss: 152.229
-54400/69092	Loss: 151.351
-57600/69092	Loss: 154.748
-60800/69092	Loss: 151.491
-64000/69092	Loss: 151.453
-67200/69092	Loss: 152.492
-Training time 0:04:49.920553
-Epoch: 94 Average loss: 152.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 403)
-0/69092	Loss: 160.858
-3200/69092	Loss: 151.767
-6400/69092	Loss: 149.789
-9600/69092	Loss: 152.571
-12800/69092	Loss: 150.421
-16000/69092	Loss: 151.720
-19200/69092	Loss: 150.676
-22400/69092	Loss: 150.497
-25600/69092	Loss: 151.545
-28800/69092	Loss: 152.169
-32000/69092	Loss: 152.427
-35200/69092	Loss: 153.442
-38400/69092	Loss: 149.878
-41600/69092	Loss: 152.922
-44800/69092	Loss: 151.869
-48000/69092	Loss: 151.706
-51200/69092	Loss: 154.346
-54400/69092	Loss: 153.269
-57600/69092	Loss: 151.879
-60800/69092	Loss: 152.733
-64000/69092	Loss: 154.100
-67200/69092	Loss: 153.658
-Training time 0:04:46.535271
-Epoch: 95 Average loss: 152.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 404)
-0/69092	Loss: 151.968
-3200/69092	Loss: 153.705
-6400/69092	Loss: 152.080
-9600/69092	Loss: 152.701
-12800/69092	Loss: 151.054
-16000/69092	Loss: 152.064
-19200/69092	Loss: 152.099
-22400/69092	Loss: 152.200
-25600/69092	Loss: 152.526
-28800/69092	Loss: 151.792
-32000/69092	Loss: 150.670
-35200/69092	Loss: 155.599
-38400/69092	Loss: 148.762
-41600/69092	Loss: 151.034
-44800/69092	Loss: 153.194
-48000/69092	Loss: 154.365
-51200/69092	Loss: 151.639
-54400/69092	Loss: 152.496
-57600/69092	Loss: 151.936
-60800/69092	Loss: 152.478
-64000/69092	Loss: 150.782
-67200/69092	Loss: 153.092
-Training time 0:04:45.636976
-Epoch: 96 Average loss: 152.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 405)
-0/69092	Loss: 146.729
-3200/69092	Loss: 149.252
-6400/69092	Loss: 148.245
-9600/69092	Loss: 149.307
-12800/69092	Loss: 153.481
-16000/69092	Loss: 151.573
-19200/69092	Loss: 152.993
-22400/69092	Loss: 151.453
-25600/69092	Loss: 154.485
-28800/69092	Loss: 149.507
-32000/69092	Loss: 153.101
-35200/69092	Loss: 153.367
-38400/69092	Loss: 153.710
-41600/69092	Loss: 154.064
-44800/69092	Loss: 152.640
-48000/69092	Loss: 152.065
-51200/69092	Loss: 153.477
-54400/69092	Loss: 151.558
-57600/69092	Loss: 152.573
-60800/69092	Loss: 151.899
-64000/69092	Loss: 153.708
-67200/69092	Loss: 154.891
-Training time 0:04:59.854441
-Epoch: 97 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 406)
-0/69092	Loss: 137.998
-3200/69092	Loss: 151.489
-6400/69092	Loss: 151.412
-9600/69092	Loss: 150.391
-12800/69092	Loss: 151.562
-16000/69092	Loss: 152.893
-19200/69092	Loss: 152.713
-22400/69092	Loss: 150.260
-25600/69092	Loss: 151.633
-28800/69092	Loss: 151.326
-32000/69092	Loss: 154.725
-35200/69092	Loss: 150.661
-38400/69092	Loss: 152.762
-41600/69092	Loss: 151.188
-44800/69092	Loss: 152.194
-48000/69092	Loss: 152.163
-51200/69092	Loss: 150.429
-54400/69092	Loss: 153.507
-57600/69092	Loss: 154.009
-60800/69092	Loss: 153.067
-64000/69092	Loss: 154.646
-67200/69092	Loss: 151.797
-Training time 0:04:46.845983
-Epoch: 98 Average loss: 152.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 407)
-0/69092	Loss: 169.630
-3200/69092	Loss: 151.264
-6400/69092	Loss: 153.226
-9600/69092	Loss: 151.168
-12800/69092	Loss: 154.012
-16000/69092	Loss: 152.439
-19200/69092	Loss: 151.221
-22400/69092	Loss: 150.469
-25600/69092	Loss: 151.142
-28800/69092	Loss: 153.160
-32000/69092	Loss: 153.687
-35200/69092	Loss: 151.872
-38400/69092	Loss: 151.593
-41600/69092	Loss: 152.981
-44800/69092	Loss: 151.639
-48000/69092	Loss: 152.625
-51200/69092	Loss: 152.690
-54400/69092	Loss: 149.891
-57600/69092	Loss: 149.604
-60800/69092	Loss: 152.135
-64000/69092	Loss: 152.302
-67200/69092	Loss: 150.975
-Training time 0:04:57.776910
-Epoch: 99 Average loss: 151.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 408)
-0/69092	Loss: 157.478
-3200/69092	Loss: 148.961
-6400/69092	Loss: 154.174
-9600/69092	Loss: 149.814
-12800/69092	Loss: 149.233
-16000/69092	Loss: 151.266
-19200/69092	Loss: 149.778
-22400/69092	Loss: 155.607
-25600/69092	Loss: 150.476
-28800/69092	Loss: 152.955
-32000/69092	Loss: 151.325
-35200/69092	Loss: 152.565
-38400/69092	Loss: 155.373
-41600/69092	Loss: 150.391
-44800/69092	Loss: 151.788
-48000/69092	Loss: 152.091
-51200/69092	Loss: 151.354
-54400/69092	Loss: 152.939
-57600/69092	Loss: 154.037
-60800/69092	Loss: 152.035
-64000/69092	Loss: 152.074
-67200/69092	Loss: 153.509
-Training time 0:04:53.823615
-Epoch: 100 Average loss: 152.03
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 409)
-0/69092	Loss: 169.415
-3200/69092	Loss: 153.103
-6400/69092	Loss: 151.163
-9600/69092	Loss: 153.687
-12800/69092	Loss: 152.283
-16000/69092	Loss: 150.388
-19200/69092	Loss: 152.896
-22400/69092	Loss: 153.909
-25600/69092	Loss: 151.392
-28800/69092	Loss: 151.566
-32000/69092	Loss: 152.565
-35200/69092	Loss: 150.287
-38400/69092	Loss: 151.676
-41600/69092	Loss: 152.150
-44800/69092	Loss: 150.827
-48000/69092	Loss: 150.386
-51200/69092	Loss: 150.106
-54400/69092	Loss: 152.285
-57600/69092	Loss: 150.452
-60800/69092	Loss: 151.801
-64000/69092	Loss: 153.773
-67200/69092	Loss: 155.499
-Training time 0:04:48.562618
-Epoch: 101 Average loss: 152.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 410)
-0/69092	Loss: 158.078
-3200/69092	Loss: 147.879
-6400/69092	Loss: 151.176
-9600/69092	Loss: 150.107
-12800/69092	Loss: 154.523
-16000/69092	Loss: 149.720
-19200/69092	Loss: 153.969
-22400/69092	Loss: 152.776
-25600/69092	Loss: 152.456
-28800/69092	Loss: 150.317
-32000/69092	Loss: 154.425
-35200/69092	Loss: 152.331
-38400/69092	Loss: 151.896
-41600/69092	Loss: 153.088
-44800/69092	Loss: 152.307
-48000/69092	Loss: 152.278
-51200/69092	Loss: 154.122
-54400/69092	Loss: 151.100
-57600/69092	Loss: 150.320
-60800/69092	Loss: 150.146
-64000/69092	Loss: 154.554
-67200/69092	Loss: 150.885
-Training time 0:04:47.864876
-Epoch: 102 Average loss: 151.93
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 411)
-0/69092	Loss: 161.600
-3200/69092	Loss: 150.294
-6400/69092	Loss: 152.689
-9600/69092	Loss: 152.596
-12800/69092	Loss: 150.389
-16000/69092	Loss: 153.032
-19200/69092	Loss: 153.226
-22400/69092	Loss: 154.488
-25600/69092	Loss: 149.508
-28800/69092	Loss: 152.821
-32000/69092	Loss: 153.566
-35200/69092	Loss: 152.721
-38400/69092	Loss: 153.682
-41600/69092	Loss: 152.280
-44800/69092	Loss: 151.708
-48000/69092	Loss: 152.183
-51200/69092	Loss: 152.264
-54400/69092	Loss: 152.192
-57600/69092	Loss: 150.605
-60800/69092	Loss: 152.570
-64000/69092	Loss: 153.640
-67200/69092	Loss: 150.774
-Training time 0:04:46.565216
-Epoch: 103 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 412)
-0/69092	Loss: 142.357
-3200/69092	Loss: 153.350
-6400/69092	Loss: 152.448
-9600/69092	Loss: 150.219
-12800/69092	Loss: 153.586
-16000/69092	Loss: 153.335
-19200/69092	Loss: 151.796
-22400/69092	Loss: 151.756
-25600/69092	Loss: 151.087
-28800/69092	Loss: 153.957
-32000/69092	Loss: 151.021
-35200/69092	Loss: 151.751
-38400/69092	Loss: 150.219
-41600/69092	Loss: 153.643
-44800/69092	Loss: 151.641
-48000/69092	Loss: 151.229
-51200/69092	Loss: 152.683
-54400/69092	Loss: 150.299
-57600/69092	Loss: 151.652
-60800/69092	Loss: 152.452
-64000/69092	Loss: 152.588
-67200/69092	Loss: 155.900
-Training time 0:04:53.206867
-Epoch: 104 Average loss: 152.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 413)
-0/69092	Loss: 147.985
-3200/69092	Loss: 150.459
-6400/69092	Loss: 151.480
-9600/69092	Loss: 151.722
-12800/69092	Loss: 152.108
-16000/69092	Loss: 150.949
-19200/69092	Loss: 155.608
-22400/69092	Loss: 151.986
-25600/69092	Loss: 152.775
-28800/69092	Loss: 150.901
-32000/69092	Loss: 150.172
-35200/69092	Loss: 154.703
-38400/69092	Loss: 151.604
-41600/69092	Loss: 151.956
-44800/69092	Loss: 150.413
-48000/69092	Loss: 153.019
-51200/69092	Loss: 153.686
-54400/69092	Loss: 151.706
-57600/69092	Loss: 152.662
-60800/69092	Loss: 152.065
-64000/69092	Loss: 151.596
-67200/69092	Loss: 152.116
-Training time 0:04:58.640244
-Epoch: 105 Average loss: 152.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 414)
-0/69092	Loss: 149.987
-3200/69092	Loss: 149.893
-6400/69092	Loss: 152.323
-9600/69092	Loss: 152.562
-12800/69092	Loss: 151.810
-16000/69092	Loss: 152.911
-19200/69092	Loss: 153.191
-22400/69092	Loss: 150.899
-25600/69092	Loss: 153.012
-28800/69092	Loss: 153.163
-32000/69092	Loss: 151.207
-35200/69092	Loss: 152.882
-38400/69092	Loss: 150.813
-41600/69092	Loss: 152.901
-44800/69092	Loss: 152.755
-48000/69092	Loss: 150.881
-51200/69092	Loss: 151.376
-54400/69092	Loss: 152.687
-57600/69092	Loss: 153.730
-60800/69092	Loss: 150.189
-64000/69092	Loss: 151.934
-67200/69092	Loss: 151.211
-Training time 0:04:48.120273
-Epoch: 106 Average loss: 152.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 415)
-0/69092	Loss: 151.823
-3200/69092	Loss: 148.643
-6400/69092	Loss: 152.817
-9600/69092	Loss: 151.382
-12800/69092	Loss: 153.022
-16000/69092	Loss: 150.716
-19200/69092	Loss: 153.632
-22400/69092	Loss: 151.172
-25600/69092	Loss: 148.932
-28800/69092	Loss: 151.189
-32000/69092	Loss: 151.965
-35200/69092	Loss: 151.846
-38400/69092	Loss: 149.539
-41600/69092	Loss: 152.411
-44800/69092	Loss: 153.926
-48000/69092	Loss: 153.859
-51200/69092	Loss: 150.885
-54400/69092	Loss: 153.050
-57600/69092	Loss: 153.645
-60800/69092	Loss: 150.253
-64000/69092	Loss: 152.771
-67200/69092	Loss: 150.985
-Training time 0:04:48.540351
-Epoch: 107 Average loss: 151.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 416)
-0/69092	Loss: 131.866
-3200/69092	Loss: 149.503
-6400/69092	Loss: 152.488
-9600/69092	Loss: 152.815
-12800/69092	Loss: 151.525
-16000/69092	Loss: 151.414
-19200/69092	Loss: 153.750
-22400/69092	Loss: 152.786
-25600/69092	Loss: 152.018
-28800/69092	Loss: 153.919
-32000/69092	Loss: 152.371
-35200/69092	Loss: 153.434
-38400/69092	Loss: 151.454
-41600/69092	Loss: 152.944
-44800/69092	Loss: 151.085
-48000/69092	Loss: 153.937
-51200/69092	Loss: 151.860
-54400/69092	Loss: 150.493
-57600/69092	Loss: 148.695
-60800/69092	Loss: 154.028
-64000/69092	Loss: 152.080
-67200/69092	Loss: 154.185
-Training time 0:04:55.298100
-Epoch: 108 Average loss: 152.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 417)
-0/69092	Loss: 147.412
-3200/69092	Loss: 151.994
-6400/69092	Loss: 153.347
-9600/69092	Loss: 150.016
-12800/69092	Loss: 152.968
-16000/69092	Loss: 150.501
-19200/69092	Loss: 152.418
-22400/69092	Loss: 151.831
-25600/69092	Loss: 152.847
-28800/69092	Loss: 150.512
-32000/69092	Loss: 149.003
-35200/69092	Loss: 149.976
-38400/69092	Loss: 154.265
-41600/69092	Loss: 148.565
-44800/69092	Loss: 150.216
-48000/69092	Loss: 152.008
-51200/69092	Loss: 153.583
-54400/69092	Loss: 153.803
-57600/69092	Loss: 152.243
-60800/69092	Loss: 152.050
-64000/69092	Loss: 154.021
-67200/69092	Loss: 152.084
-Training time 0:04:41.255307
-Epoch: 109 Average loss: 151.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 418)
-0/69092	Loss: 162.086
-3200/69092	Loss: 152.745
-6400/69092	Loss: 152.261
-9600/69092	Loss: 150.936
-12800/69092	Loss: 153.044
-16000/69092	Loss: 151.620
-19200/69092	Loss: 150.673
-22400/69092	Loss: 151.599
-25600/69092	Loss: 153.168
-28800/69092	Loss: 152.770
-32000/69092	Loss: 153.143
-35200/69092	Loss: 152.202
-38400/69092	Loss: 153.055
-41600/69092	Loss: 151.643
-44800/69092	Loss: 150.894
-48000/69092	Loss: 150.257
-51200/69092	Loss: 152.914
-54400/69092	Loss: 152.266
-57600/69092	Loss: 150.819
-60800/69092	Loss: 151.397
-64000/69092	Loss: 152.063
-67200/69092	Loss: 152.324
-Training time 0:04:47.438624
-Epoch: 110 Average loss: 152.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 419)
-0/69092	Loss: 160.629
-3200/69092	Loss: 152.910
-6400/69092	Loss: 152.561
-9600/69092	Loss: 152.619
-12800/69092	Loss: 151.571
-16000/69092	Loss: 153.697
-19200/69092	Loss: 152.958
-22400/69092	Loss: 152.440
-25600/69092	Loss: 151.144
-28800/69092	Loss: 150.991
-32000/69092	Loss: 151.666
-35200/69092	Loss: 152.099
-38400/69092	Loss: 150.653
-41600/69092	Loss: 152.933
-44800/69092	Loss: 152.994
-48000/69092	Loss: 151.900
-51200/69092	Loss: 150.365
-54400/69092	Loss: 152.757
-57600/69092	Loss: 152.901
-60800/69092	Loss: 150.266
-64000/69092	Loss: 151.742
-67200/69092	Loss: 153.295
-Training time 0:04:51.982336
-Epoch: 111 Average loss: 152.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 420)
-0/69092	Loss: 157.400
-3200/69092	Loss: 149.721
-6400/69092	Loss: 154.515
-9600/69092	Loss: 151.512
-12800/69092	Loss: 154.721
-16000/69092	Loss: 150.363
-19200/69092	Loss: 151.800
-22400/69092	Loss: 152.965
-25600/69092	Loss: 151.072
-28800/69092	Loss: 152.065
-32000/69092	Loss: 151.845
-35200/69092	Loss: 150.387
-38400/69092	Loss: 150.705
-41600/69092	Loss: 151.653
-44800/69092	Loss: 154.105
-48000/69092	Loss: 149.193
-51200/69092	Loss: 150.544
-54400/69092	Loss: 150.828
-57600/69092	Loss: 154.232
-60800/69092	Loss: 152.992
-64000/69092	Loss: 151.455
-67200/69092	Loss: 151.612
-Training time 0:04:54.074097
-Epoch: 112 Average loss: 151.84
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 421)
-0/69092	Loss: 157.065
-3200/69092	Loss: 150.346
-6400/69092	Loss: 151.884
-9600/69092	Loss: 152.009
-12800/69092	Loss: 149.326
-16000/69092	Loss: 148.875
-19200/69092	Loss: 152.735
-22400/69092	Loss: 152.689
-25600/69092	Loss: 153.586
-28800/69092	Loss: 152.923
-32000/69092	Loss: 150.834
-35200/69092	Loss: 152.571
-38400/69092	Loss: 153.652
-41600/69092	Loss: 152.052
-44800/69092	Loss: 150.601
-48000/69092	Loss: 152.516
-51200/69092	Loss: 150.682
-54400/69092	Loss: 153.087
-57600/69092	Loss: 152.169
-60800/69092	Loss: 153.943
-64000/69092	Loss: 153.933
-67200/69092	Loss: 153.847
-Training time 0:04:45.471707
-Epoch: 113 Average loss: 152.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 422)
-0/69092	Loss: 166.283
-3200/69092	Loss: 152.282
-6400/69092	Loss: 152.711
-9600/69092	Loss: 154.190
-12800/69092	Loss: 148.430
-16000/69092	Loss: 154.423
-19200/69092	Loss: 154.683
-22400/69092	Loss: 150.249
-25600/69092	Loss: 151.769
-28800/69092	Loss: 151.643
-32000/69092	Loss: 150.683
-35200/69092	Loss: 152.734
-38400/69092	Loss: 152.737
-41600/69092	Loss: 150.408
-44800/69092	Loss: 153.608
-48000/69092	Loss: 149.757
-51200/69092	Loss: 150.082
-54400/69092	Loss: 151.735
-57600/69092	Loss: 152.117
-60800/69092	Loss: 152.901
-64000/69092	Loss: 150.976
-67200/69092	Loss: 152.441
-Training time 0:04:50.508285
-Epoch: 114 Average loss: 151.98
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 423)
-0/69092	Loss: 156.983
-3200/69092	Loss: 153.281
-6400/69092	Loss: 148.878
-9600/69092	Loss: 152.051
-12800/69092	Loss: 152.789
-16000/69092	Loss: 150.928
-19200/69092	Loss: 150.311
-22400/69092	Loss: 149.966
-25600/69092	Loss: 153.276
-28800/69092	Loss: 151.430
-32000/69092	Loss: 155.032
-35200/69092	Loss: 152.147
-38400/69092	Loss: 152.673
-41600/69092	Loss: 154.257
-44800/69092	Loss: 152.049
-48000/69092	Loss: 150.658
-51200/69092	Loss: 149.756
-54400/69092	Loss: 153.817
-57600/69092	Loss: 151.338
-60800/69092	Loss: 153.225
-64000/69092	Loss: 153.599
-67200/69092	Loss: 152.351
-Training time 0:04:54.961885
-Epoch: 115 Average loss: 152.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 424)
-0/69092	Loss: 132.478
-3200/69092	Loss: 149.838
-6400/69092	Loss: 152.855
-9600/69092	Loss: 152.989
-12800/69092	Loss: 153.865
-16000/69092	Loss: 150.047
-19200/69092	Loss: 151.295
-22400/69092	Loss: 151.470
-25600/69092	Loss: 150.768
-28800/69092	Loss: 151.075
-32000/69092	Loss: 150.120
-35200/69092	Loss: 156.213
-38400/69092	Loss: 152.625
-41600/69092	Loss: 152.245
-44800/69092	Loss: 153.139
-48000/69092	Loss: 151.104
-51200/69092	Loss: 151.805
-54400/69092	Loss: 153.466
-57600/69092	Loss: 149.804
-60800/69092	Loss: 154.504
-64000/69092	Loss: 148.703
-67200/69092	Loss: 153.108
-Training time 0:04:47.408569
-Epoch: 116 Average loss: 151.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 425)
-0/69092	Loss: 161.084
-3200/69092	Loss: 149.878
-6400/69092	Loss: 154.645
-9600/69092	Loss: 152.513
-12800/69092	Loss: 154.098
-16000/69092	Loss: 151.261
-19200/69092	Loss: 153.206
-22400/69092	Loss: 151.152
-25600/69092	Loss: 150.373
-28800/69092	Loss: 151.378
-32000/69092	Loss: 150.651
-35200/69092	Loss: 153.225
-38400/69092	Loss: 154.637
-41600/69092	Loss: 152.478
-44800/69092	Loss: 151.924
-48000/69092	Loss: 151.923
-51200/69092	Loss: 151.490
-54400/69092	Loss: 151.390
-57600/69092	Loss: 151.142
-60800/69092	Loss: 150.049
-64000/69092	Loss: 152.262
-67200/69092	Loss: 154.271
-Training time 0:04:42.203575
-Epoch: 117 Average loss: 152.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 426)
-0/69092	Loss: 167.484
-3200/69092	Loss: 151.594
-6400/69092	Loss: 151.849
-9600/69092	Loss: 151.773
-12800/69092	Loss: 154.473
-16000/69092	Loss: 153.150
-19200/69092	Loss: 151.681
-22400/69092	Loss: 151.531
-25600/69092	Loss: 151.840
-28800/69092	Loss: 152.144
-32000/69092	Loss: 155.200
-35200/69092	Loss: 152.617
-38400/69092	Loss: 152.047
-41600/69092	Loss: 150.749
-44800/69092	Loss: 152.802
-48000/69092	Loss: 153.691
-51200/69092	Loss: 151.513
-54400/69092	Loss: 149.877
-57600/69092	Loss: 149.372
-60800/69092	Loss: 151.032
-64000/69092	Loss: 147.679
-67200/69092	Loss: 153.573
-Training time 0:04:54.279119
-Epoch: 118 Average loss: 151.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 427)
-0/69092	Loss: 133.374
-3200/69092	Loss: 153.390
-6400/69092	Loss: 153.883
-9600/69092	Loss: 150.555
-12800/69092	Loss: 151.884
-16000/69092	Loss: 152.527
-19200/69092	Loss: 154.051
-22400/69092	Loss: 150.880
-25600/69092	Loss: 152.859
-28800/69092	Loss: 151.407
-32000/69092	Loss: 150.339
-35200/69092	Loss: 151.008
-38400/69092	Loss: 152.450
-41600/69092	Loss: 151.903
-44800/69092	Loss: 152.252
-48000/69092	Loss: 153.607
-51200/69092	Loss: 149.811
-54400/69092	Loss: 149.198
-57600/69092	Loss: 154.233
-60800/69092	Loss: 151.883
-64000/69092	Loss: 154.476
-67200/69092	Loss: 148.915
-Training time 0:04:42.952877
-Epoch: 119 Average loss: 152.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 428)
-0/69092	Loss: 130.876
-3200/69092	Loss: 153.569
-6400/69092	Loss: 149.717
-9600/69092	Loss: 152.734
-12800/69092	Loss: 150.330
-16000/69092	Loss: 152.841
-19200/69092	Loss: 153.176
-22400/69092	Loss: 152.644
-25600/69092	Loss: 153.954
-28800/69092	Loss: 149.216
-32000/69092	Loss: 154.519
-35200/69092	Loss: 151.584
-38400/69092	Loss: 150.392
-41600/69092	Loss: 149.239
-44800/69092	Loss: 152.308
-48000/69092	Loss: 152.019
-51200/69092	Loss: 150.558
-54400/69092	Loss: 153.810
-57600/69092	Loss: 151.494
-60800/69092	Loss: 154.102
-64000/69092	Loss: 151.360
-67200/69092	Loss: 150.479
-Training time 0:04:46.836761
-Epoch: 120 Average loss: 151.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 429)
-0/69092	Loss: 142.914
-3200/69092	Loss: 151.008
-6400/69092	Loss: 150.469
-9600/69092	Loss: 152.556
-12800/69092	Loss: 151.596
-16000/69092	Loss: 151.404
-19200/69092	Loss: 152.845
-22400/69092	Loss: 153.279
-25600/69092	Loss: 149.563
-28800/69092	Loss: 149.553
-32000/69092	Loss: 151.925
-35200/69092	Loss: 152.067
-38400/69092	Loss: 151.782
-41600/69092	Loss: 152.750
-44800/69092	Loss: 152.136
-48000/69092	Loss: 152.894
-51200/69092	Loss: 152.172
-54400/69092	Loss: 151.977
-57600/69092	Loss: 149.534
-60800/69092	Loss: 152.757
-64000/69092	Loss: 151.173
-67200/69092	Loss: 154.301
-Training time 0:04:35.789460
-Epoch: 121 Average loss: 151.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 430)
-0/69092	Loss: 150.952
-3200/69092	Loss: 152.128
-6400/69092	Loss: 152.453
-9600/69092	Loss: 151.920
-12800/69092	Loss: 153.240
-16000/69092	Loss: 153.071
-19200/69092	Loss: 151.953
-22400/69092	Loss: 147.788
-25600/69092	Loss: 150.992
-28800/69092	Loss: 153.508
-32000/69092	Loss: 151.623
-35200/69092	Loss: 154.380
-38400/69092	Loss: 150.654
-41600/69092	Loss: 153.483
-44800/69092	Loss: 154.157
-48000/69092	Loss: 150.010
-51200/69092	Loss: 155.253
-54400/69092	Loss: 152.480
diff --git a/OAR.2068286.stderr b/OAR.2068286.stderr
deleted file mode 100644
index 8656ad55ec..0000000000
--- a/OAR.2068286.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068286 KILLED ##
diff --git a/OAR.2068286.stdout b/OAR.2068286.stdout
deleted file mode 100644
index 1a2cfa4114..0000000000
--- a/OAR.2068286.stdout
+++ /dev/null
@@ -1,1509 +0,0 @@
-Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 144)'
-0/69092	Loss: 120.459
-12800/69092	Loss: 116.572
-25600/69092	Loss: 116.237
-38400/69092	Loss: 115.864
-51200/69092	Loss: 116.059
-64000/69092	Loss: 117.337
-Training time 0:03:42.281008
-Epoch: 1 Average loss: 116.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 145)
-0/69092	Loss: 120.358
-12800/69092	Loss: 116.899
-25600/69092	Loss: 115.721
-38400/69092	Loss: 116.798
-51200/69092	Loss: 116.771
-64000/69092	Loss: 116.356
-Training time 0:03:40.681431
-Epoch: 2 Average loss: 116.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 146)
-0/69092	Loss: 119.181
-12800/69092	Loss: 115.598
-25600/69092	Loss: 117.185
-38400/69092	Loss: 116.847
-51200/69092	Loss: 116.143
-64000/69092	Loss: 117.005
-Training time 0:03:40.721636
-Epoch: 3 Average loss: 116.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 147)
-0/69092	Loss: 115.099
-12800/69092	Loss: 116.701
-25600/69092	Loss: 116.450
-38400/69092	Loss: 116.328
-51200/69092	Loss: 115.482
-64000/69092	Loss: 116.387
-Training time 0:03:40.701471
-Epoch: 4 Average loss: 116.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 148)
-0/69092	Loss: 119.770
-12800/69092	Loss: 115.991
-25600/69092	Loss: 116.217
-38400/69092	Loss: 116.309
-51200/69092	Loss: 116.911
-64000/69092	Loss: 116.120
-Training time 0:03:39.979969
-Epoch: 5 Average loss: 116.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 149)
-0/69092	Loss: 118.151
-12800/69092	Loss: 115.808
-25600/69092	Loss: 116.703
-38400/69092	Loss: 116.090
-51200/69092	Loss: 116.427
-64000/69092	Loss: 117.572
-Training time 0:03:40.579498
-Epoch: 6 Average loss: 116.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 150)
-0/69092	Loss: 113.875
-12800/69092	Loss: 116.600
-25600/69092	Loss: 116.295
-38400/69092	Loss: 115.668
-51200/69092	Loss: 116.840
-64000/69092	Loss: 115.933
-Training time 0:03:41.221395
-Epoch: 7 Average loss: 116.36
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 151)
-0/69092	Loss: 114.324
-12800/69092	Loss: 116.549
-25600/69092	Loss: 115.837
-38400/69092	Loss: 116.300
-51200/69092	Loss: 116.452
-64000/69092	Loss: 116.383
-Training time 0:03:42.000145
-Epoch: 8 Average loss: 116.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 152)
-0/69092	Loss: 112.656
-12800/69092	Loss: 116.205
-25600/69092	Loss: 116.463
-38400/69092	Loss: 116.948
-51200/69092	Loss: 116.328
-64000/69092	Loss: 115.736
-Training time 0:03:39.929666
-Epoch: 9 Average loss: 116.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 153)
-0/69092	Loss: 121.883
-12800/69092	Loss: 116.664
-25600/69092	Loss: 115.788
-38400/69092	Loss: 116.076
-51200/69092	Loss: 116.190
-64000/69092	Loss: 116.272
-Training time 0:03:40.616174
-Epoch: 10 Average loss: 116.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 154)
-0/69092	Loss: 115.453
-12800/69092	Loss: 116.273
-25600/69092	Loss: 115.309
-38400/69092	Loss: 117.375
-51200/69092	Loss: 116.806
-64000/69092	Loss: 116.037
-Training time 0:03:40.447946
-Epoch: 11 Average loss: 116.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 155)
-0/69092	Loss: 119.812
-12800/69092	Loss: 116.018
-25600/69092	Loss: 116.276
-38400/69092	Loss: 115.628
-51200/69092	Loss: 115.753
-64000/69092	Loss: 116.374
-Training time 0:03:40.825373
-Epoch: 12 Average loss: 116.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 156)
-0/69092	Loss: 112.388
-12800/69092	Loss: 115.852
-25600/69092	Loss: 116.388
-38400/69092	Loss: 116.094
-51200/69092	Loss: 116.621
-64000/69092	Loss: 115.358
-Training time 0:03:40.482848
-Epoch: 13 Average loss: 116.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 157)
-0/69092	Loss: 117.393
-12800/69092	Loss: 116.509
-25600/69092	Loss: 115.161
-38400/69092	Loss: 116.172
-51200/69092	Loss: 116.397
-64000/69092	Loss: 116.203
-Training time 0:03:40.998442
-Epoch: 14 Average loss: 116.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 158)
-0/69092	Loss: 119.346
-12800/69092	Loss: 116.319
-25600/69092	Loss: 115.947
-38400/69092	Loss: 116.468
-51200/69092	Loss: 116.241
-64000/69092	Loss: 116.013
-Training time 0:03:42.395751
-Epoch: 15 Average loss: 116.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 159)
-0/69092	Loss: 113.202
-12800/69092	Loss: 116.460
-25600/69092	Loss: 115.730
-38400/69092	Loss: 115.797
-51200/69092	Loss: 116.281
-64000/69092	Loss: 115.448
-Training time 0:03:41.078200
-Epoch: 16 Average loss: 116.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 160)
-0/69092	Loss: 112.005
-12800/69092	Loss: 115.957
-25600/69092	Loss: 116.704
-38400/69092	Loss: 116.893
-51200/69092	Loss: 115.449
-64000/69092	Loss: 115.642
-Training time 0:03:40.431808
-Epoch: 17 Average loss: 116.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 161)
-0/69092	Loss: 113.287
-12800/69092	Loss: 116.447
-25600/69092	Loss: 115.693
-38400/69092	Loss: 116.821
-51200/69092	Loss: 116.644
-64000/69092	Loss: 115.405
-Training time 0:03:40.430938
-Epoch: 18 Average loss: 116.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 162)
-0/69092	Loss: 112.196
-12800/69092	Loss: 117.175
-25600/69092	Loss: 115.399
-38400/69092	Loss: 115.678
-51200/69092	Loss: 115.329
-64000/69092	Loss: 116.300
-Training time 0:03:40.572838
-Epoch: 19 Average loss: 116.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 163)
-0/69092	Loss: 117.480
-12800/69092	Loss: 117.243
-25600/69092	Loss: 115.588
-38400/69092	Loss: 115.861
-51200/69092	Loss: 115.026
-64000/69092	Loss: 115.228
-Training time 0:03:40.556184
-Epoch: 20 Average loss: 115.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 164)
-0/69092	Loss: 118.064
-12800/69092	Loss: 115.452
-25600/69092	Loss: 116.303
-38400/69092	Loss: 115.384
-51200/69092	Loss: 115.665
-64000/69092	Loss: 116.274
-Training time 0:03:40.790851
-Epoch: 21 Average loss: 115.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 165)
-0/69092	Loss: 112.775
-12800/69092	Loss: 116.776
-25600/69092	Loss: 116.287
-38400/69092	Loss: 115.689
-51200/69092	Loss: 115.688
-64000/69092	Loss: 115.419
-Training time 0:03:41.559039
-Epoch: 22 Average loss: 115.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 166)
-0/69092	Loss: 118.464
-12800/69092	Loss: 114.966
-25600/69092	Loss: 115.504
-38400/69092	Loss: 116.800
-51200/69092	Loss: 114.923
-64000/69092	Loss: 116.779
-Training time 0:03:40.445243
-Epoch: 23 Average loss: 115.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 167)
-0/69092	Loss: 117.857
-12800/69092	Loss: 116.386
-25600/69092	Loss: 115.667
-38400/69092	Loss: 114.653
-51200/69092	Loss: 116.496
-64000/69092	Loss: 115.861
-Training time 0:03:40.728070
-Epoch: 24 Average loss: 115.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 168)
-0/69092	Loss: 118.362
-12800/69092	Loss: 116.060
-25600/69092	Loss: 115.154
-38400/69092	Loss: 116.675
-51200/69092	Loss: 115.458
-64000/69092	Loss: 115.521
-Training time 0:03:41.048771
-Epoch: 25 Average loss: 115.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 169)
-0/69092	Loss: 119.678
-12800/69092	Loss: 115.659
-25600/69092	Loss: 115.170
-38400/69092	Loss: 116.955
-51200/69092	Loss: 116.197
-64000/69092	Loss: 115.340
-Training time 0:03:40.247926
-Epoch: 26 Average loss: 115.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 170)
-0/69092	Loss: 112.441
-12800/69092	Loss: 115.019
-25600/69092	Loss: 115.888
-38400/69092	Loss: 116.372
-51200/69092	Loss: 116.046
-64000/69092	Loss: 115.798
-Training time 0:03:40.481684
-Epoch: 27 Average loss: 115.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 171)
-0/69092	Loss: 118.454
-12800/69092	Loss: 115.568
-25600/69092	Loss: 116.489
-38400/69092	Loss: 115.309
-51200/69092	Loss: 115.959
-64000/69092	Loss: 115.868
-Training time 0:03:40.730148
-Epoch: 28 Average loss: 115.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 172)
-0/69092	Loss: 118.467
-12800/69092	Loss: 115.553
-25600/69092	Loss: 115.273
-38400/69092	Loss: 115.216
-51200/69092	Loss: 116.678
-64000/69092	Loss: 116.455
-Training time 0:03:41.245003
-Epoch: 29 Average loss: 115.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 173)
-0/69092	Loss: 114.006
-12800/69092	Loss: 115.621
-25600/69092	Loss: 116.126
-38400/69092	Loss: 115.985
-51200/69092	Loss: 113.654
-64000/69092	Loss: 116.662
-Training time 0:03:40.563781
-Epoch: 30 Average loss: 115.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 174)
-0/69092	Loss: 114.707
-12800/69092	Loss: 115.550
-25600/69092	Loss: 115.860
-38400/69092	Loss: 115.116
-51200/69092	Loss: 116.279
-64000/69092	Loss: 115.989
-Training time 0:03:40.619515
-Epoch: 31 Average loss: 115.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 175)
-0/69092	Loss: 116.031
-12800/69092	Loss: 115.936
-25600/69092	Loss: 116.239
-38400/69092	Loss: 114.555
-51200/69092	Loss: 115.844
-64000/69092	Loss: 116.013
-Training time 0:03:40.575515
-Epoch: 32 Average loss: 115.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 176)
-0/69092	Loss: 111.837
-12800/69092	Loss: 116.479
-25600/69092	Loss: 115.491
-38400/69092	Loss: 115.912
-51200/69092	Loss: 114.634
-64000/69092	Loss: 115.763
-Training time 0:03:40.491551
-Epoch: 33 Average loss: 115.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 177)
-0/69092	Loss: 117.520
-12800/69092	Loss: 116.071
-25600/69092	Loss: 116.613
-38400/69092	Loss: 114.784
-51200/69092	Loss: 115.905
-64000/69092	Loss: 115.579
-Training time 0:03:41.179735
-Epoch: 34 Average loss: 115.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 178)
-0/69092	Loss: 123.567
-12800/69092	Loss: 116.828
-25600/69092	Loss: 115.420
-38400/69092	Loss: 115.197
-51200/69092	Loss: 115.964
-64000/69092	Loss: 115.175
-Training time 0:03:40.153394
-Epoch: 35 Average loss: 115.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 179)
-0/69092	Loss: 116.028
-12800/69092	Loss: 115.196
-25600/69092	Loss: 115.596
-38400/69092	Loss: 115.706
-51200/69092	Loss: 116.102
-64000/69092	Loss: 115.148
-Training time 0:03:41.520109
-Epoch: 36 Average loss: 115.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 180)
-0/69092	Loss: 114.294
-12800/69092	Loss: 115.208
-25600/69092	Loss: 116.025
-38400/69092	Loss: 116.365
-51200/69092	Loss: 115.723
-64000/69092	Loss: 115.075
-Training time 0:03:41.725098
-Epoch: 37 Average loss: 115.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 181)
-0/69092	Loss: 108.952
-12800/69092	Loss: 115.211
-25600/69092	Loss: 115.684
-38400/69092	Loss: 114.832
-51200/69092	Loss: 116.676
-64000/69092	Loss: 115.385
-Training time 0:03:40.430924
-Epoch: 38 Average loss: 115.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 182)
-0/69092	Loss: 115.457
-12800/69092	Loss: 115.327
-25600/69092	Loss: 115.543
-38400/69092	Loss: 115.617
-51200/69092	Loss: 115.977
-64000/69092	Loss: 115.014
-Training time 0:03:41.206588
-Epoch: 39 Average loss: 115.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 183)
-0/69092	Loss: 116.693
-12800/69092	Loss: 114.557
-25600/69092	Loss: 115.086
-38400/69092	Loss: 115.546
-51200/69092	Loss: 116.112
-64000/69092	Loss: 114.996
-Training time 0:03:40.908944
-Epoch: 40 Average loss: 115.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 184)
-0/69092	Loss: 112.386
-12800/69092	Loss: 115.443
-25600/69092	Loss: 115.660
-38400/69092	Loss: 115.033
-51200/69092	Loss: 115.429
-64000/69092	Loss: 115.723
-Training time 0:03:40.941674
-Epoch: 41 Average loss: 115.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 185)
-0/69092	Loss: 116.749
-12800/69092	Loss: 115.176
-25600/69092	Loss: 116.024
-38400/69092	Loss: 115.643
-51200/69092	Loss: 115.313
-64000/69092	Loss: 115.243
-Training time 0:03:41.117220
-Epoch: 42 Average loss: 115.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 186)
-0/69092	Loss: 121.403
-12800/69092	Loss: 115.205
-25600/69092	Loss: 115.911
-38400/69092	Loss: 115.502
-51200/69092	Loss: 115.076
-64000/69092	Loss: 115.854
-Training time 0:03:41.143228
-Epoch: 43 Average loss: 115.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 187)
-0/69092	Loss: 112.070
-12800/69092	Loss: 115.371
-25600/69092	Loss: 115.118
-38400/69092	Loss: 115.911
-51200/69092	Loss: 114.989
-64000/69092	Loss: 115.609
-Training time 0:03:42.112486
-Epoch: 44 Average loss: 115.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 188)
-0/69092	Loss: 106.050
-12800/69092	Loss: 115.710
-25600/69092	Loss: 116.172
-38400/69092	Loss: 115.340
-51200/69092	Loss: 114.929
-64000/69092	Loss: 115.512
-Training time 0:03:40.727732
-Epoch: 45 Average loss: 115.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 189)
-0/69092	Loss: 117.641
-12800/69092	Loss: 114.826
-25600/69092	Loss: 115.081
-38400/69092	Loss: 115.612
-51200/69092	Loss: 115.316
-64000/69092	Loss: 115.945
-Training time 0:03:40.648978
-Epoch: 46 Average loss: 115.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 190)
-0/69092	Loss: 112.434
-12800/69092	Loss: 115.572
-25600/69092	Loss: 115.967
-38400/69092	Loss: 116.601
-51200/69092	Loss: 114.836
-64000/69092	Loss: 114.873
-Training time 0:03:40.988167
-Epoch: 47 Average loss: 115.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 191)
-0/69092	Loss: 115.484
-12800/69092	Loss: 114.976
-25600/69092	Loss: 114.461
-38400/69092	Loss: 116.200
-51200/69092	Loss: 115.965
-64000/69092	Loss: 115.243
-Training time 0:03:41.030348
-Epoch: 48 Average loss: 115.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 192)
-0/69092	Loss: 114.590
-12800/69092	Loss: 115.792
-25600/69092	Loss: 115.040
-38400/69092	Loss: 114.508
-51200/69092	Loss: 115.620
-64000/69092	Loss: 116.456
-Training time 0:03:40.662849
-Epoch: 49 Average loss: 115.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 193)
-0/69092	Loss: 122.536
-12800/69092	Loss: 115.258
-25600/69092	Loss: 115.104
-38400/69092	Loss: 115.037
-51200/69092	Loss: 116.723
-64000/69092	Loss: 114.876
-Training time 0:03:40.648263
-Epoch: 50 Average loss: 115.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 194)
-0/69092	Loss: 110.866
-12800/69092	Loss: 115.340
-25600/69092	Loss: 115.662
-38400/69092	Loss: 114.955
-51200/69092	Loss: 115.300
-64000/69092	Loss: 115.256
-Training time 0:03:41.139315
-Epoch: 51 Average loss: 115.37
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 195)
-0/69092	Loss: 117.302
-12800/69092	Loss: 115.389
-25600/69092	Loss: 114.703
-38400/69092	Loss: 115.806
-51200/69092	Loss: 115.654
-64000/69092	Loss: 115.386
-Training time 0:03:40.901612
-Epoch: 52 Average loss: 115.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 196)
-0/69092	Loss: 113.879
-12800/69092	Loss: 115.001
-25600/69092	Loss: 115.614
-38400/69092	Loss: 115.384
-51200/69092	Loss: 114.834
-64000/69092	Loss: 115.560
-Training time 0:03:40.568950
-Epoch: 53 Average loss: 115.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 197)
-0/69092	Loss: 122.464
-12800/69092	Loss: 114.625
-25600/69092	Loss: 116.063
-38400/69092	Loss: 114.064
-51200/69092	Loss: 114.791
-64000/69092	Loss: 116.462
-Training time 0:03:40.821567
-Epoch: 54 Average loss: 115.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 198)
-0/69092	Loss: 127.387
-12800/69092	Loss: 115.084
-25600/69092	Loss: 115.119
-38400/69092	Loss: 114.816
-51200/69092	Loss: 115.599
-64000/69092	Loss: 116.237
-Training time 0:03:41.123891
-Epoch: 55 Average loss: 115.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 199)
-0/69092	Loss: 113.509
-12800/69092	Loss: 115.800
-25600/69092	Loss: 114.487
-38400/69092	Loss: 114.952
-51200/69092	Loss: 115.551
-64000/69092	Loss: 116.056
-Training time 0:03:40.488129
-Epoch: 56 Average loss: 115.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 200)
-0/69092	Loss: 113.927
-12800/69092	Loss: 113.790
-25600/69092	Loss: 115.493
-38400/69092	Loss: 116.131
-51200/69092	Loss: 115.332
-64000/69092	Loss: 115.806
-Training time 0:03:40.772788
-Epoch: 57 Average loss: 115.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 201)
-0/69092	Loss: 111.797
-12800/69092	Loss: 114.642
-25600/69092	Loss: 116.307
-38400/69092	Loss: 114.750
-51200/69092	Loss: 114.781
-64000/69092	Loss: 116.396
-Training time 0:03:41.710917
-Epoch: 58 Average loss: 115.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 202)
-0/69092	Loss: 116.348
-12800/69092	Loss: 114.825
-25600/69092	Loss: 114.921
-38400/69092	Loss: 114.994
-51200/69092	Loss: 115.013
-64000/69092	Loss: 115.435
-Training time 0:03:40.356029
-Epoch: 59 Average loss: 115.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 203)
-0/69092	Loss: 111.710
-12800/69092	Loss: 115.723
-25600/69092	Loss: 115.646
-38400/69092	Loss: 115.310
-51200/69092	Loss: 114.750
-64000/69092	Loss: 114.651
-Training time 0:03:41.163611
-Epoch: 60 Average loss: 115.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 204)
-0/69092	Loss: 114.197
-12800/69092	Loss: 115.492
-25600/69092	Loss: 115.614
-38400/69092	Loss: 115.454
-51200/69092	Loss: 114.582
-64000/69092	Loss: 115.071
-Training time 0:03:40.874169
-Epoch: 61 Average loss: 115.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 205)
-0/69092	Loss: 118.631
-12800/69092	Loss: 115.554
-25600/69092	Loss: 115.449
-38400/69092	Loss: 115.311
-51200/69092	Loss: 115.563
-64000/69092	Loss: 115.179
-Training time 0:03:41.192234
-Epoch: 62 Average loss: 115.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 206)
-0/69092	Loss: 115.212
-12800/69092	Loss: 115.093
-25600/69092	Loss: 115.891
-38400/69092	Loss: 114.202
-51200/69092	Loss: 114.780
-64000/69092	Loss: 115.348
-Training time 0:03:37.915514
-Epoch: 63 Average loss: 115.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 207)
-0/69092	Loss: 119.185
-12800/69092	Loss: 115.877
-25600/69092	Loss: 115.202
-38400/69092	Loss: 114.906
-51200/69092	Loss: 115.212
-64000/69092	Loss: 114.694
-Training time 0:03:39.470830
-Epoch: 64 Average loss: 115.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 208)
-0/69092	Loss: 112.690
-12800/69092	Loss: 115.238
-25600/69092	Loss: 115.583
-38400/69092	Loss: 114.951
-51200/69092	Loss: 115.899
-64000/69092	Loss: 114.965
-Training time 0:03:40.621222
-Epoch: 65 Average loss: 115.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 209)
-0/69092	Loss: 111.283
-12800/69092	Loss: 115.453
-25600/69092	Loss: 115.282
-38400/69092	Loss: 115.247
-51200/69092	Loss: 115.254
-64000/69092	Loss: 114.364
-Training time 0:03:39.657240
-Epoch: 66 Average loss: 115.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 210)
-0/69092	Loss: 114.298
-12800/69092	Loss: 115.087
-25600/69092	Loss: 115.529
-38400/69092	Loss: 114.790
-51200/69092	Loss: 114.523
-64000/69092	Loss: 115.252
-Training time 0:03:39.587864
-Epoch: 67 Average loss: 115.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 211)
-0/69092	Loss: 119.244
-12800/69092	Loss: 114.677
-25600/69092	Loss: 115.632
-38400/69092	Loss: 115.939
-51200/69092	Loss: 113.807
-64000/69092	Loss: 114.473
-Training time 0:03:39.266111
-Epoch: 68 Average loss: 115.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 212)
-0/69092	Loss: 116.596
-12800/69092	Loss: 115.531
-25600/69092	Loss: 115.348
-38400/69092	Loss: 114.819
-51200/69092	Loss: 115.305
-64000/69092	Loss: 114.165
-Training time 0:03:39.576071
-Epoch: 69 Average loss: 115.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 213)
-0/69092	Loss: 111.364
-12800/69092	Loss: 115.789
-25600/69092	Loss: 115.457
-38400/69092	Loss: 114.520
-51200/69092	Loss: 114.835
-64000/69092	Loss: 114.175
-Training time 0:03:40.669528
-Epoch: 70 Average loss: 114.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 214)
-0/69092	Loss: 109.991
-12800/69092	Loss: 114.868
-25600/69092	Loss: 114.949
-38400/69092	Loss: 114.404
-51200/69092	Loss: 115.914
-64000/69092	Loss: 114.747
-Training time 0:03:39.913414
-Epoch: 71 Average loss: 115.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 215)
-0/69092	Loss: 115.842
-12800/69092	Loss: 114.590
-25600/69092	Loss: 115.731
-38400/69092	Loss: 114.622
-51200/69092	Loss: 115.623
-64000/69092	Loss: 114.875
-Training time 0:03:40.583036
-Epoch: 72 Average loss: 114.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 216)
-0/69092	Loss: 110.377
-12800/69092	Loss: 115.047
-25600/69092	Loss: 115.273
-38400/69092	Loss: 115.216
-51200/69092	Loss: 114.854
-64000/69092	Loss: 114.817
-Training time 0:03:40.331125
-Epoch: 73 Average loss: 115.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 217)
-0/69092	Loss: 106.582
-12800/69092	Loss: 115.858
-25600/69092	Loss: 114.577
-38400/69092	Loss: 115.438
-51200/69092	Loss: 114.821
-64000/69092	Loss: 114.224
-Training time 0:03:39.740569
-Epoch: 74 Average loss: 114.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 218)
-0/69092	Loss: 124.641
-12800/69092	Loss: 113.975
-25600/69092	Loss: 115.571
-38400/69092	Loss: 114.576
-51200/69092	Loss: 114.249
-64000/69092	Loss: 115.583
-Training time 0:03:39.557484
-Epoch: 75 Average loss: 114.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 219)
-0/69092	Loss: 115.628
-12800/69092	Loss: 114.197
-25600/69092	Loss: 114.989
-38400/69092	Loss: 115.503
-51200/69092	Loss: 114.342
-64000/69092	Loss: 114.788
-Training time 0:03:39.911937
-Epoch: 76 Average loss: 114.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 220)
-0/69092	Loss: 118.019
-12800/69092	Loss: 115.567
-25600/69092	Loss: 115.781
-38400/69092	Loss: 114.912
-51200/69092	Loss: 115.020
-64000/69092	Loss: 113.646
-Training time 0:03:39.957911
-Epoch: 77 Average loss: 114.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 221)
-0/69092	Loss: 109.805
-12800/69092	Loss: 114.832
-25600/69092	Loss: 114.996
-38400/69092	Loss: 114.294
-51200/69092	Loss: 114.873
-64000/69092	Loss: 114.860
-Training time 0:03:39.574652
-Epoch: 78 Average loss: 114.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 222)
-0/69092	Loss: 114.975
-12800/69092	Loss: 114.704
-25600/69092	Loss: 114.546
-38400/69092	Loss: 114.155
-51200/69092	Loss: 115.018
-64000/69092	Loss: 115.606
-Training time 0:03:40.653183
-Epoch: 79 Average loss: 114.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 223)
-0/69092	Loss: 118.612
-12800/69092	Loss: 115.064
-25600/69092	Loss: 113.899
-38400/69092	Loss: 114.684
-51200/69092	Loss: 115.660
-64000/69092	Loss: 114.569
-Training time 0:03:39.065048
-Epoch: 80 Average loss: 114.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 224)
-0/69092	Loss: 109.031
-12800/69092	Loss: 114.216
-25600/69092	Loss: 114.796
-38400/69092	Loss: 114.840
-51200/69092	Loss: 114.877
-64000/69092	Loss: 114.433
-Training time 0:03:39.553370
-Epoch: 81 Average loss: 114.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 225)
-0/69092	Loss: 111.758
-12800/69092	Loss: 115.345
-25600/69092	Loss: 114.349
-38400/69092	Loss: 114.239
-51200/69092	Loss: 115.207
-64000/69092	Loss: 115.440
-Training time 0:03:39.635807
-Epoch: 82 Average loss: 114.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 226)
-0/69092	Loss: 113.457
-12800/69092	Loss: 115.237
-25600/69092	Loss: 114.856
-38400/69092	Loss: 115.088
-51200/69092	Loss: 114.461
-64000/69092	Loss: 114.783
-Training time 0:03:39.479383
-Epoch: 83 Average loss: 114.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 227)
-0/69092	Loss: 118.418
-12800/69092	Loss: 115.666
-25600/69092	Loss: 114.994
-38400/69092	Loss: 114.782
-51200/69092	Loss: 114.864
-64000/69092	Loss: 113.881
-Training time 0:03:39.779647
-Epoch: 84 Average loss: 114.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 228)
-0/69092	Loss: 118.901
-12800/69092	Loss: 115.459
-25600/69092	Loss: 113.995
-38400/69092	Loss: 114.473
-51200/69092	Loss: 115.358
-64000/69092	Loss: 115.174
-Training time 0:03:39.825373
-Epoch: 85 Average loss: 114.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 229)
-0/69092	Loss: 116.887
-12800/69092	Loss: 115.089
-25600/69092	Loss: 114.870
-38400/69092	Loss: 114.173
-51200/69092	Loss: 114.921
-64000/69092	Loss: 114.568
-Training time 0:03:40.558272
-Epoch: 86 Average loss: 114.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 230)
-0/69092	Loss: 119.022
-12800/69092	Loss: 114.155
-25600/69092	Loss: 115.116
-38400/69092	Loss: 114.351
-51200/69092	Loss: 115.333
-64000/69092	Loss: 114.804
-Training time 0:03:39.110950
-Epoch: 87 Average loss: 114.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 231)
-0/69092	Loss: 114.052
-12800/69092	Loss: 114.419
-25600/69092	Loss: 115.095
-38400/69092	Loss: 114.998
-51200/69092	Loss: 113.998
-64000/69092	Loss: 114.826
-Training time 0:03:38.998349
-Epoch: 88 Average loss: 114.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 232)
-0/69092	Loss: 107.197
-12800/69092	Loss: 114.560
-25600/69092	Loss: 115.108
-38400/69092	Loss: 114.551
-51200/69092	Loss: 114.927
-64000/69092	Loss: 114.435
-Training time 0:03:42.260425
-Epoch: 89 Average loss: 114.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 233)
-0/69092	Loss: 107.413
-12800/69092	Loss: 114.444
-25600/69092	Loss: 114.685
-38400/69092	Loss: 114.867
-51200/69092	Loss: 115.129
-64000/69092	Loss: 113.986
-Training time 0:03:50.393656
-Epoch: 90 Average loss: 114.63
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 234)
-0/69092	Loss: 112.908
-12800/69092	Loss: 115.659
-25600/69092	Loss: 114.256
-38400/69092	Loss: 114.956
-51200/69092	Loss: 113.938
-64000/69092	Loss: 115.278
-Training time 0:03:41.978122
-Epoch: 91 Average loss: 114.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 235)
-0/69092	Loss: 113.401
-12800/69092	Loss: 114.613
-25600/69092	Loss: 115.830
-38400/69092	Loss: 114.113
-51200/69092	Loss: 114.794
-64000/69092	Loss: 114.232
-Training time 0:03:44.706303
-Epoch: 92 Average loss: 114.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 236)
-0/69092	Loss: 118.505
-12800/69092	Loss: 114.510
-25600/69092	Loss: 114.844
-38400/69092	Loss: 114.507
-51200/69092	Loss: 114.165
-64000/69092	Loss: 114.310
-Training time 0:03:42.290089
-Epoch: 93 Average loss: 114.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 237)
-0/69092	Loss: 111.298
-12800/69092	Loss: 115.110
-25600/69092	Loss: 114.177
-38400/69092	Loss: 114.547
-51200/69092	Loss: 114.346
-64000/69092	Loss: 114.125
-Training time 0:03:40.739105
-Epoch: 94 Average loss: 114.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 238)
-0/69092	Loss: 115.497
-12800/69092	Loss: 114.533
-25600/69092	Loss: 113.951
-38400/69092	Loss: 114.258
-51200/69092	Loss: 115.078
-64000/69092	Loss: 114.435
-Training time 0:03:40.520623
-Epoch: 95 Average loss: 114.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 239)
-0/69092	Loss: 120.449
-12800/69092	Loss: 114.306
-25600/69092	Loss: 114.458
-38400/69092	Loss: 113.983
-51200/69092	Loss: 114.979
-64000/69092	Loss: 115.746
-Training time 0:03:40.739195
-Epoch: 96 Average loss: 114.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 240)
-0/69092	Loss: 116.587
-12800/69092	Loss: 114.370
-25600/69092	Loss: 115.026
-38400/69092	Loss: 114.646
-51200/69092	Loss: 114.849
-64000/69092	Loss: 114.088
-Training time 0:03:40.295166
-Epoch: 97 Average loss: 114.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 241)
-0/69092	Loss: 113.646
-12800/69092	Loss: 114.517
-25600/69092	Loss: 114.350
-38400/69092	Loss: 114.589
-51200/69092	Loss: 114.638
-64000/69092	Loss: 114.851
-Training time 0:03:39.879273
-Epoch: 98 Average loss: 114.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 242)
-0/69092	Loss: 108.064
-12800/69092	Loss: 114.233
-25600/69092	Loss: 114.721
-38400/69092	Loss: 114.504
-51200/69092	Loss: 114.622
-64000/69092	Loss: 114.088
-Training time 0:03:46.401228
-Epoch: 99 Average loss: 114.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 243)
-0/69092	Loss: 112.234
-12800/69092	Loss: 115.063
-25600/69092	Loss: 114.201
-38400/69092	Loss: 115.500
-51200/69092	Loss: 114.187
-64000/69092	Loss: 113.749
-Training time 0:03:43.651188
-Epoch: 100 Average loss: 114.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 244)
-0/69092	Loss: 108.880
-12800/69092	Loss: 114.441
-25600/69092	Loss: 114.546
-38400/69092	Loss: 114.229
-51200/69092	Loss: 114.399
-64000/69092	Loss: 114.490
-Training time 0:03:41.775324
-Epoch: 101 Average loss: 114.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 245)
-0/69092	Loss: 116.923
-12800/69092	Loss: 114.301
-25600/69092	Loss: 114.859
-38400/69092	Loss: 114.571
-51200/69092	Loss: 114.437
-64000/69092	Loss: 114.160
-Training time 0:03:41.341339
-Epoch: 102 Average loss: 114.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 246)
-0/69092	Loss: 118.843
-12800/69092	Loss: 113.869
-25600/69092	Loss: 114.652
-38400/69092	Loss: 114.754
-51200/69092	Loss: 114.434
-64000/69092	Loss: 114.532
-Training time 0:03:40.704962
-Epoch: 103 Average loss: 114.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 247)
-0/69092	Loss: 108.865
-12800/69092	Loss: 114.752
-25600/69092	Loss: 114.883
-38400/69092	Loss: 113.607
-51200/69092	Loss: 114.288
-64000/69092	Loss: 114.525
-Training time 0:03:42.934816
-Epoch: 104 Average loss: 114.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 248)
-0/69092	Loss: 119.276
-12800/69092	Loss: 113.929
-25600/69092	Loss: 114.603
-38400/69092	Loss: 114.846
-51200/69092	Loss: 114.323
-64000/69092	Loss: 115.003
-Training time 0:03:41.347376
-Epoch: 105 Average loss: 114.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 249)
-0/69092	Loss: 117.378
-12800/69092	Loss: 114.512
-25600/69092	Loss: 114.029
-38400/69092	Loss: 113.996
-51200/69092	Loss: 114.640
-64000/69092	Loss: 114.273
-Training time 0:03:41.384372
-Epoch: 106 Average loss: 114.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 250)
-0/69092	Loss: 116.733
-12800/69092	Loss: 114.053
-25600/69092	Loss: 115.784
-38400/69092	Loss: 114.504
-51200/69092	Loss: 113.391
-64000/69092	Loss: 115.021
-Training time 0:03:43.748070
-Epoch: 107 Average loss: 114.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 251)
-0/69092	Loss: 109.071
-12800/69092	Loss: 115.350
-25600/69092	Loss: 114.421
-38400/69092	Loss: 113.817
-51200/69092	Loss: 114.571
-64000/69092	Loss: 113.952
-Training time 0:03:42.178234
-Epoch: 108 Average loss: 114.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 252)
-0/69092	Loss: 110.194
-12800/69092	Loss: 113.623
-25600/69092	Loss: 114.909
-38400/69092	Loss: 114.726
-51200/69092	Loss: 114.983
-64000/69092	Loss: 114.253
-Training time 0:03:42.143474
-Epoch: 109 Average loss: 114.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 253)
-0/69092	Loss: 112.906
-12800/69092	Loss: 113.083
-25600/69092	Loss: 114.752
-38400/69092	Loss: 114.171
-51200/69092	Loss: 114.487
-64000/69092	Loss: 114.980
-Training time 0:03:41.290923
-Epoch: 110 Average loss: 114.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 254)
-0/69092	Loss: 124.385
-12800/69092	Loss: 113.826
-25600/69092	Loss: 114.997
-38400/69092	Loss: 114.641
-51200/69092	Loss: 114.734
-64000/69092	Loss: 113.799
-Training time 0:03:41.705886
-Epoch: 111 Average loss: 114.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 255)
-0/69092	Loss: 111.269
-12800/69092	Loss: 113.420
-25600/69092	Loss: 115.922
-38400/69092	Loss: 113.670
-51200/69092	Loss: 113.914
-64000/69092	Loss: 114.474
-Training time 0:03:40.924247
-Epoch: 112 Average loss: 114.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 256)
-0/69092	Loss: 115.978
-12800/69092	Loss: 115.311
-25600/69092	Loss: 114.722
-38400/69092	Loss: 113.684
-51200/69092	Loss: 113.768
-64000/69092	Loss: 113.957
-Training time 0:03:40.834863
-Epoch: 113 Average loss: 114.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 257)
-0/69092	Loss: 109.364
-12800/69092	Loss: 114.242
-25600/69092	Loss: 114.552
-38400/69092	Loss: 114.000
-51200/69092	Loss: 114.802
-64000/69092	Loss: 113.713
-Training time 0:03:43.156358
-Epoch: 114 Average loss: 114.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 258)
-0/69092	Loss: 111.265
-12800/69092	Loss: 114.377
-25600/69092	Loss: 114.272
-38400/69092	Loss: 113.863
-51200/69092	Loss: 114.741
-64000/69092	Loss: 114.591
-Training time 0:03:41.998148
-Epoch: 115 Average loss: 114.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 259)
-0/69092	Loss: 117.682
-12800/69092	Loss: 115.080
-25600/69092	Loss: 113.807
-38400/69092	Loss: 113.662
-51200/69092	Loss: 115.175
-64000/69092	Loss: 114.527
-Training time 0:03:42.627598
-Epoch: 116 Average loss: 114.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 260)
-0/69092	Loss: 113.881
-12800/69092	Loss: 114.402
-25600/69092	Loss: 114.172
-38400/69092	Loss: 114.510
-51200/69092	Loss: 114.053
-64000/69092	Loss: 114.174
-Training time 0:03:42.035927
-Epoch: 117 Average loss: 114.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 261)
-0/69092	Loss: 113.673
-12800/69092	Loss: 114.281
-25600/69092	Loss: 114.134
-38400/69092	Loss: 114.204
-51200/69092	Loss: 114.304
-64000/69092	Loss: 114.797
-Training time 0:03:41.551131
-Epoch: 118 Average loss: 114.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 262)
-0/69092	Loss: 111.412
-12800/69092	Loss: 113.519
-25600/69092	Loss: 114.681
-38400/69092	Loss: 114.317
-51200/69092	Loss: 113.760
-64000/69092	Loss: 113.961
-Training time 0:03:44.184585
-Epoch: 119 Average loss: 114.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 263)
-0/69092	Loss: 111.933
-12800/69092	Loss: 114.447
-25600/69092	Loss: 113.720
-38400/69092	Loss: 113.964
-51200/69092	Loss: 113.929
-64000/69092	Loss: 114.812
-Training time 0:03:42.196323
-Epoch: 120 Average loss: 114.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 264)
-0/69092	Loss: 113.074
-12800/69092	Loss: 114.431
-25600/69092	Loss: 113.384
-38400/69092	Loss: 115.006
-51200/69092	Loss: 114.743
-64000/69092	Loss: 113.431
-Training time 0:03:42.197650
-Epoch: 121 Average loss: 114.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 265)
-0/69092	Loss: 115.437
-12800/69092	Loss: 114.323
-25600/69092	Loss: 113.790
-38400/69092	Loss: 114.352
-51200/69092	Loss: 114.947
-64000/69092	Loss: 114.044
-Training time 0:03:41.562076
-Epoch: 122 Average loss: 114.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 266)
-0/69092	Loss: 113.162
-12800/69092	Loss: 113.852
-25600/69092	Loss: 113.980
-38400/69092	Loss: 114.593
-51200/69092	Loss: 113.447
-64000/69092	Loss: 115.204
-Training time 0:03:40.874992
-Epoch: 123 Average loss: 114.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 267)
-0/69092	Loss: 116.120
-12800/69092	Loss: 114.274
-25600/69092	Loss: 114.634
-38400/69092	Loss: 114.158
-51200/69092	Loss: 114.676
-64000/69092	Loss: 112.900
-Training time 0:03:41.653124
-Epoch: 124 Average loss: 114.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 268)
-0/69092	Loss: 117.180
-12800/69092	Loss: 113.294
-25600/69092	Loss: 114.609
-38400/69092	Loss: 114.933
-51200/69092	Loss: 114.103
-64000/69092	Loss: 113.871
-Training time 0:03:41.242283
-Epoch: 125 Average loss: 114.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 269)
-0/69092	Loss: 109.756
-12800/69092	Loss: 114.033
-25600/69092	Loss: 114.634
-38400/69092	Loss: 114.371
-51200/69092	Loss: 114.184
-64000/69092	Loss: 113.549
-Training time 0:03:42.196836
-Epoch: 126 Average loss: 114.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 270)
-0/69092	Loss: 111.929
-12800/69092	Loss: 114.828
-25600/69092	Loss: 113.790
-38400/69092	Loss: 114.042
-51200/69092	Loss: 114.953
-64000/69092	Loss: 113.364
-Training time 0:03:41.900956
-Epoch: 127 Average loss: 114.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 271)
-0/69092	Loss: 110.864
-12800/69092	Loss: 114.467
-25600/69092	Loss: 114.406
-38400/69092	Loss: 113.131
-51200/69092	Loss: 114.844
-64000/69092	Loss: 114.251
-Training time 0:03:43.068656
-Epoch: 128 Average loss: 114.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 272)
-0/69092	Loss: 112.706
-12800/69092	Loss: 113.940
-25600/69092	Loss: 113.914
-38400/69092	Loss: 115.086
-51200/69092	Loss: 113.297
-64000/69092	Loss: 114.017
-Training time 0:03:42.137844
-Epoch: 129 Average loss: 114.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 273)
-0/69092	Loss: 114.385
-12800/69092	Loss: 113.581
-25600/69092	Loss: 113.566
-38400/69092	Loss: 114.429
-51200/69092	Loss: 114.653
-64000/69092	Loss: 113.894
-Training time 0:03:41.510301
-Epoch: 130 Average loss: 114.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 274)
-0/69092	Loss: 110.028
-12800/69092	Loss: 113.881
-25600/69092	Loss: 114.392
-38400/69092	Loss: 113.452
-51200/69092	Loss: 114.865
-64000/69092	Loss: 114.058
-Training time 0:03:41.511612
-Epoch: 131 Average loss: 114.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 275)
-0/69092	Loss: 110.665
-12800/69092	Loss: 114.053
-25600/69092	Loss: 114.680
-38400/69092	Loss: 113.985
-51200/69092	Loss: 113.684
-64000/69092	Loss: 114.159
-Training time 0:03:41.726226
-Epoch: 132 Average loss: 114.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 276)
-0/69092	Loss: 118.540
-12800/69092	Loss: 113.363
-25600/69092	Loss: 113.460
-38400/69092	Loss: 114.502
-51200/69092	Loss: 113.836
-64000/69092	Loss: 114.899
-Training time 0:03:41.569514
-Epoch: 133 Average loss: 114.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 277)
-0/69092	Loss: 117.445
-12800/69092	Loss: 114.008
-25600/69092	Loss: 114.618
-38400/69092	Loss: 114.031
-51200/69092	Loss: 113.772
-64000/69092	Loss: 113.839
-Training time 0:03:41.186443
-Epoch: 134 Average loss: 114.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 278)
-0/69092	Loss: 113.595
-12800/69092	Loss: 113.980
-25600/69092	Loss: 113.805
-38400/69092	Loss: 114.087
-51200/69092	Loss: 113.955
-64000/69092	Loss: 113.742
-Training time 0:03:42.152164
-Epoch: 135 Average loss: 113.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 279)
-0/69092	Loss: 112.821
-12800/69092	Loss: 114.496
-25600/69092	Loss: 113.962
-38400/69092	Loss: 114.649
-51200/69092	Loss: 113.409
-64000/69092	Loss: 113.551
-Training time 0:03:41.361916
-Epoch: 136 Average loss: 114.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 280)
-0/69092	Loss: 115.241
-12800/69092	Loss: 113.896
-25600/69092	Loss: 114.136
-38400/69092	Loss: 112.995
-51200/69092	Loss: 113.532
-64000/69092	Loss: 114.980
-Training time 0:03:40.680527
-Epoch: 137 Average loss: 113.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 281)
-0/69092	Loss: 117.064
-12800/69092	Loss: 113.764
-25600/69092	Loss: 114.953
-38400/69092	Loss: 113.620
-51200/69092	Loss: 113.511
-64000/69092	Loss: 114.963
-Training time 0:03:41.352191
-Epoch: 138 Average loss: 114.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 282)
-0/69092	Loss: 108.923
-12800/69092	Loss: 114.116
-25600/69092	Loss: 114.152
-38400/69092	Loss: 113.833
-51200/69092	Loss: 114.022
-64000/69092	Loss: 113.697
-Training time 0:03:40.793996
-Epoch: 139 Average loss: 113.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 283)
-0/69092	Loss: 115.468
-12800/69092	Loss: 114.883
-25600/69092	Loss: 113.313
-38400/69092	Loss: 114.564
-51200/69092	Loss: 114.127
-64000/69092	Loss: 113.590
-Training time 0:03:41.558375
-Epoch: 140 Average loss: 114.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 284)
-0/69092	Loss: 111.618
-12800/69092	Loss: 114.210
-25600/69092	Loss: 113.877
-38400/69092	Loss: 113.493
-51200/69092	Loss: 113.761
-64000/69092	Loss: 113.488
-Training time 0:03:40.687252
-Epoch: 141 Average loss: 113.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 285)
-0/69092	Loss: 115.856
-12800/69092	Loss: 113.995
-25600/69092	Loss: 113.398
-38400/69092	Loss: 114.115
-51200/69092	Loss: 115.273
-64000/69092	Loss: 113.940
-Training time 0:03:41.465886
-Epoch: 142 Average loss: 114.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 286)
-0/69092	Loss: 109.752
-12800/69092	Loss: 114.166
-25600/69092	Loss: 113.758
-38400/69092	Loss: 114.394
-51200/69092	Loss: 113.661
-64000/69092	Loss: 114.022
-Training time 0:03:40.046346
-Epoch: 143 Average loss: 113.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 287)
-0/69092	Loss: 113.853
-12800/69092	Loss: 114.157
-25600/69092	Loss: 113.092
-38400/69092	Loss: 113.822
-51200/69092	Loss: 113.737
-64000/69092	Loss: 113.995
-Training time 0:03:40.139976
-Epoch: 144 Average loss: 113.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 288)
-0/69092	Loss: 113.345
-12800/69092	Loss: 113.668
-25600/69092	Loss: 113.303
-38400/69092	Loss: 113.832
-51200/69092	Loss: 113.686
-64000/69092	Loss: 114.217
-Training time 0:03:40.291585
-Epoch: 145 Average loss: 113.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 289)
-0/69092	Loss: 110.422
-12800/69092	Loss: 113.919
-25600/69092	Loss: 114.204
-38400/69092	Loss: 114.164
-51200/69092	Loss: 113.983
-64000/69092	Loss: 113.053
-Training time 0:03:40.165304
-Epoch: 146 Average loss: 113.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 290)
-0/69092	Loss: 111.442
-12800/69092	Loss: 113.895
-25600/69092	Loss: 113.671
-38400/69092	Loss: 113.587
-51200/69092	Loss: 113.714
-64000/69092	Loss: 113.411
-Training time 0:03:40.558246
-Epoch: 147 Average loss: 113.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 291)
-0/69092	Loss: 114.554
-12800/69092	Loss: 113.458
-25600/69092	Loss: 113.886
-38400/69092	Loss: 114.594
-51200/69092	Loss: 113.528
-64000/69092	Loss: 113.846
-Training time 0:03:40.836498
-Epoch: 148 Average loss: 113.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 292)
-0/69092	Loss: 115.352
-12800/69092	Loss: 114.107
-25600/69092	Loss: 114.243
-38400/69092	Loss: 113.824
-51200/69092	Loss: 113.277
-64000/69092	Loss: 113.832
-Training time 0:03:41.716480
-Epoch: 149 Average loss: 113.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 293)
-0/69092	Loss: 110.963
-12800/69092	Loss: 113.638
-25600/69092	Loss: 113.369
-38400/69092	Loss: 114.120
-51200/69092	Loss: 113.222
-64000/69092	Loss: 114.146
-Training time 0:03:40.436857
-Epoch: 150 Average loss: 113.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 294)
-0/69092	Loss: 107.337
-12800/69092	Loss: 114.409
-25600/69092	Loss: 113.354
-38400/69092	Loss: 113.109
-51200/69092	Loss: 115.007
-64000/69092	Loss: 113.664
-Training time 0:03:40.938804
-Epoch: 151 Average loss: 113.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 295)
-0/69092	Loss: 109.025
-12800/69092	Loss: 114.129
-25600/69092	Loss: 113.999
-38400/69092	Loss: 112.536
-51200/69092	Loss: 114.157
-64000/69092	Loss: 113.699
-Training time 0:03:40.882615
-Epoch: 152 Average loss: 113.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 296)
-0/69092	Loss: 113.340
-12800/69092	Loss: 114.084
-25600/69092	Loss: 113.610
-38400/69092	Loss: 113.778
-51200/69092	Loss: 113.365
-64000/69092	Loss: 114.084
-Training time 0:03:41.200797
-Epoch: 153 Average loss: 113.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 297)
-0/69092	Loss: 107.227
-12800/69092	Loss: 113.711
-25600/69092	Loss: 113.918
-38400/69092	Loss: 113.109
-51200/69092	Loss: 114.343
-64000/69092	Loss: 114.783
-Training time 0:03:40.808502
-Epoch: 154 Average loss: 113.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 298)
-0/69092	Loss: 118.423
-12800/69092	Loss: 113.903
-25600/69092	Loss: 114.294
-38400/69092	Loss: 113.249
-51200/69092	Loss: 113.512
-64000/69092	Loss: 113.888
-Training time 0:03:40.464494
-Epoch: 155 Average loss: 113.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 299)
-0/69092	Loss: 110.552
-12800/69092	Loss: 114.813
-25600/69092	Loss: 113.985
-38400/69092	Loss: 113.234
-51200/69092	Loss: 113.633
-64000/69092	Loss: 112.940
-Training time 0:03:41.316922
-Epoch: 156 Average loss: 113.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 300)
-0/69092	Loss: 107.383
-12800/69092	Loss: 114.037
-25600/69092	Loss: 113.720
-38400/69092	Loss: 114.365
-51200/69092	Loss: 114.352
-64000/69092	Loss: 113.392
-Training time 0:03:40.482092
-Epoch: 157 Average loss: 113.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 301)
-0/69092	Loss: 117.259
-12800/69092	Loss: 113.602
-25600/69092	Loss: 114.473
-38400/69092	Loss: 114.025
-51200/69092	Loss: 113.492
-64000/69092	Loss: 113.360
-Training time 0:03:41.407732
-Epoch: 158 Average loss: 113.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 302)
-0/69092	Loss: 112.966
-12800/69092	Loss: 115.213
-25600/69092	Loss: 113.350
-38400/69092	Loss: 113.020
-51200/69092	Loss: 113.828
-64000/69092	Loss: 112.916
-Training time 0:03:40.707541
-Epoch: 159 Average loss: 113.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 303)
-0/69092	Loss: 112.165
-12800/69092	Loss: 113.725
-25600/69092	Loss: 113.370
-38400/69092	Loss: 113.152
-51200/69092	Loss: 114.303
-64000/69092	Loss: 113.987
-Training time 0:03:40.781130
-Epoch: 160 Average loss: 113.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 304)
-0/69092	Loss: 118.550
-12800/69092	Loss: 113.662
-25600/69092	Loss: 113.729
-38400/69092	Loss: 112.721
-51200/69092	Loss: 114.058
-64000/69092	Loss: 113.786
-Training time 0:03:40.647435
-Epoch: 161 Average loss: 113.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 305)
-0/69092	Loss: 110.329
-12800/69092	Loss: 113.751
-25600/69092	Loss: 113.522
-38400/69092	Loss: 113.958
-51200/69092	Loss: 113.470
-64000/69092	Loss: 114.256
-Training time 0:03:40.584303
-Epoch: 162 Average loss: 113.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 306)
-0/69092	Loss: 115.073
-12800/69092	Loss: 113.487
-25600/69092	Loss: 112.933
-38400/69092	Loss: 114.015
-51200/69092	Loss: 113.915
diff --git a/OAR.2068287.stderr b/OAR.2068287.stderr
deleted file mode 100644
index 8fc598446e..0000000000
--- a/OAR.2068287.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068287 KILLED ##
diff --git a/OAR.2068287.stdout b/OAR.2068287.stdout
deleted file mode 100644
index 6505e10a52..0000000000
--- a/OAR.2068287.stdout
+++ /dev/null
@@ -1,7690 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-Tesla K80
-Tesla K80
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 141)'
-0/69092	Loss: 125.079
-3200/69092	Loss: 115.007
-6400/69092	Loss: 112.859
-9600/69092	Loss: 111.069
-12800/69092	Loss: 112.965
-16000/69092	Loss: 115.110
-19200/69092	Loss: 114.558
-22400/69092	Loss: 112.883
-25600/69092	Loss: 115.052
-28800/69092	Loss: 113.553
-32000/69092	Loss: 113.282
-35200/69092	Loss: 113.634
-38400/69092	Loss: 115.232
-41600/69092	Loss: 114.954
-44800/69092	Loss: 114.793
-48000/69092	Loss: 113.861
-51200/69092	Loss: 115.127
-54400/69092	Loss: 114.662
-57600/69092	Loss: 113.465
-60800/69092	Loss: 115.242
-64000/69092	Loss: 113.780
-67200/69092	Loss: 115.152
-Training time 0:01:56.869585
-Epoch: 1 Average loss: 114.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 142)
-0/69092	Loss: 112.760
-3200/69092	Loss: 113.538
-6400/69092	Loss: 113.977
-9600/69092	Loss: 114.566
-12800/69092	Loss: 112.319
-16000/69092	Loss: 111.585
-19200/69092	Loss: 114.728
-22400/69092	Loss: 114.281
-25600/69092	Loss: 114.036
-28800/69092	Loss: 112.604
-32000/69092	Loss: 114.703
-35200/69092	Loss: 112.797
-38400/69092	Loss: 113.396
-41600/69092	Loss: 113.250
-44800/69092	Loss: 114.304
-48000/69092	Loss: 114.082
-51200/69092	Loss: 113.120
-54400/69092	Loss: 114.240
-57600/69092	Loss: 114.220
-60800/69092	Loss: 114.049
-64000/69092	Loss: 114.315
-67200/69092	Loss: 115.325
-Training time 0:01:55.978440
-Epoch: 2 Average loss: 113.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 143)
-0/69092	Loss: 104.286
-3200/69092	Loss: 113.911
-6400/69092	Loss: 113.413
-9600/69092	Loss: 114.114
-12800/69092	Loss: 114.172
-16000/69092	Loss: 112.455
-19200/69092	Loss: 113.278
-22400/69092	Loss: 112.483
-25600/69092	Loss: 114.161
-28800/69092	Loss: 113.708
-32000/69092	Loss: 113.457
-35200/69092	Loss: 114.794
-38400/69092	Loss: 115.137
-41600/69092	Loss: 113.252
-44800/69092	Loss: 113.677
-48000/69092	Loss: 114.658
-51200/69092	Loss: 114.810
-54400/69092	Loss: 114.506
-57600/69092	Loss: 114.287
-60800/69092	Loss: 112.400
-64000/69092	Loss: 113.262
-67200/69092	Loss: 113.660
-Training time 0:01:56.425483
-Epoch: 3 Average loss: 113.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 144)
-0/69092	Loss: 110.025
-3200/69092	Loss: 113.539
-6400/69092	Loss: 113.187
-9600/69092	Loss: 114.277
-12800/69092	Loss: 114.722
-16000/69092	Loss: 115.005
-19200/69092	Loss: 115.202
-22400/69092	Loss: 114.601
-25600/69092	Loss: 114.374
-28800/69092	Loss: 113.862
-32000/69092	Loss: 113.593
-35200/69092	Loss: 112.949
-38400/69092	Loss: 114.994
-41600/69092	Loss: 110.398
-44800/69092	Loss: 114.510
-48000/69092	Loss: 112.255
-51200/69092	Loss: 113.327
-54400/69092	Loss: 113.922
-57600/69092	Loss: 114.309
-60800/69092	Loss: 113.514
-64000/69092	Loss: 113.504
-67200/69092	Loss: 112.617
-Training time 0:01:57.257287
-Epoch: 4 Average loss: 113.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 145)
-0/69092	Loss: 115.686
-3200/69092	Loss: 113.514
-6400/69092	Loss: 113.764
-9600/69092	Loss: 114.790
-12800/69092	Loss: 114.248
-16000/69092	Loss: 115.185
-19200/69092	Loss: 114.162
-22400/69092	Loss: 113.379
-25600/69092	Loss: 112.616
-28800/69092	Loss: 111.764
-32000/69092	Loss: 111.180
-35200/69092	Loss: 113.116
-38400/69092	Loss: 112.823
-41600/69092	Loss: 114.039
-44800/69092	Loss: 115.470
-48000/69092	Loss: 112.761
-51200/69092	Loss: 114.183
-54400/69092	Loss: 114.356
-57600/69092	Loss: 113.520
-60800/69092	Loss: 113.811
-64000/69092	Loss: 114.090
-67200/69092	Loss: 114.403
-Training time 0:01:56.836488
-Epoch: 5 Average loss: 113.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 146)
-0/69092	Loss: 109.627
-3200/69092	Loss: 116.425
-6400/69092	Loss: 115.631
-9600/69092	Loss: 113.910
-12800/69092	Loss: 113.174
-16000/69092	Loss: 115.867
-19200/69092	Loss: 114.272
-22400/69092	Loss: 113.119
-25600/69092	Loss: 113.460
-28800/69092	Loss: 113.324
-32000/69092	Loss: 113.904
-35200/69092	Loss: 112.535
-38400/69092	Loss: 113.853
-41600/69092	Loss: 114.495
-44800/69092	Loss: 113.832
-48000/69092	Loss: 113.648
-51200/69092	Loss: 113.347
-54400/69092	Loss: 112.514
-57600/69092	Loss: 114.683
-60800/69092	Loss: 113.183
-64000/69092	Loss: 113.315
-67200/69092	Loss: 113.213
-Training time 0:01:57.404128
-Epoch: 6 Average loss: 113.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 147)
-0/69092	Loss: 109.914
-3200/69092	Loss: 114.036
-6400/69092	Loss: 114.713
-9600/69092	Loss: 113.437
-12800/69092	Loss: 114.746
-16000/69092	Loss: 111.768
-19200/69092	Loss: 114.115
-22400/69092	Loss: 114.814
-25600/69092	Loss: 115.645
-28800/69092	Loss: 112.973
-32000/69092	Loss: 113.810
-35200/69092	Loss: 115.210
-38400/69092	Loss: 113.221
-41600/69092	Loss: 114.990
-44800/69092	Loss: 114.650
-48000/69092	Loss: 113.660
-51200/69092	Loss: 112.482
-54400/69092	Loss: 113.060
-57600/69092	Loss: 113.071
-60800/69092	Loss: 113.850
-64000/69092	Loss: 112.558
-67200/69092	Loss: 112.789
-Training time 0:01:57.441482
-Epoch: 7 Average loss: 113.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 148)
-0/69092	Loss: 121.824
-3200/69092	Loss: 112.704
-6400/69092	Loss: 113.783
-9600/69092	Loss: 113.949
-12800/69092	Loss: 112.764
-16000/69092	Loss: 113.602
-19200/69092	Loss: 112.738
-22400/69092	Loss: 115.579
-25600/69092	Loss: 113.357
-28800/69092	Loss: 114.605
-32000/69092	Loss: 114.020
-35200/69092	Loss: 113.004
-38400/69092	Loss: 112.137
-41600/69092	Loss: 115.544
-44800/69092	Loss: 113.168
-48000/69092	Loss: 114.932
-51200/69092	Loss: 114.134
-54400/69092	Loss: 111.579
-57600/69092	Loss: 113.492
-60800/69092	Loss: 112.961
-64000/69092	Loss: 114.972
-67200/69092	Loss: 114.606
-Training time 0:01:58.520655
-Epoch: 8 Average loss: 113.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 149)
-0/69092	Loss: 110.463
-3200/69092	Loss: 113.137
-6400/69092	Loss: 114.297
-9600/69092	Loss: 112.593
-12800/69092	Loss: 116.417
-16000/69092	Loss: 115.145
-19200/69092	Loss: 111.854
-22400/69092	Loss: 112.939
-25600/69092	Loss: 111.441
-28800/69092	Loss: 112.811
-32000/69092	Loss: 114.812
-35200/69092	Loss: 115.321
-38400/69092	Loss: 114.408
-41600/69092	Loss: 113.814
-44800/69092	Loss: 112.967
-48000/69092	Loss: 111.880
-51200/69092	Loss: 113.830
-54400/69092	Loss: 113.349
-57600/69092	Loss: 114.363
-60800/69092	Loss: 113.460
-64000/69092	Loss: 113.752
-67200/69092	Loss: 113.491
-Training time 0:01:58.384435
-Epoch: 9 Average loss: 113.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 150)
-0/69092	Loss: 121.917
-3200/69092	Loss: 115.084
-6400/69092	Loss: 114.664
-9600/69092	Loss: 113.384
-12800/69092	Loss: 112.379
-16000/69092	Loss: 112.492
-19200/69092	Loss: 113.140
-22400/69092	Loss: 115.757
-25600/69092	Loss: 114.930
-28800/69092	Loss: 112.177
-32000/69092	Loss: 111.538
-35200/69092	Loss: 115.418
-38400/69092	Loss: 114.796
-41600/69092	Loss: 112.498
-44800/69092	Loss: 112.340
-48000/69092	Loss: 113.766
-51200/69092	Loss: 113.419
-54400/69092	Loss: 114.525
-57600/69092	Loss: 114.386
-60800/69092	Loss: 115.346
-64000/69092	Loss: 115.220
-67200/69092	Loss: 114.505
-Training time 0:01:57.951281
-Epoch: 10 Average loss: 113.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 151)
-0/69092	Loss: 108.863
-3200/69092	Loss: 112.518
-6400/69092	Loss: 113.433
-9600/69092	Loss: 112.106
-12800/69092	Loss: 113.909
-16000/69092	Loss: 113.413
-19200/69092	Loss: 112.693
-22400/69092	Loss: 113.943
-25600/69092	Loss: 113.133
-28800/69092	Loss: 111.835
-32000/69092	Loss: 115.210
-35200/69092	Loss: 114.977
-38400/69092	Loss: 113.770
-41600/69092	Loss: 114.100
-44800/69092	Loss: 113.332
-48000/69092	Loss: 113.625
-51200/69092	Loss: 111.323
-54400/69092	Loss: 113.913
-57600/69092	Loss: 113.490
-60800/69092	Loss: 116.104
-64000/69092	Loss: 114.764
-67200/69092	Loss: 114.384
-Training time 0:01:57.412617
-Epoch: 11 Average loss: 113.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 152)
-0/69092	Loss: 104.733
-3200/69092	Loss: 115.578
-6400/69092	Loss: 112.918
-9600/69092	Loss: 113.655
-12800/69092	Loss: 114.260
-16000/69092	Loss: 114.817
-19200/69092	Loss: 114.822
-22400/69092	Loss: 114.628
-25600/69092	Loss: 113.353
-28800/69092	Loss: 111.861
-32000/69092	Loss: 113.800
-35200/69092	Loss: 112.308
-38400/69092	Loss: 111.741
-41600/69092	Loss: 114.310
-44800/69092	Loss: 114.432
-48000/69092	Loss: 113.419
-51200/69092	Loss: 113.757
-54400/69092	Loss: 114.367
-57600/69092	Loss: 115.230
-60800/69092	Loss: 112.206
-64000/69092	Loss: 112.024
-67200/69092	Loss: 113.345
-Training time 0:01:57.934890
-Epoch: 12 Average loss: 113.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 153)
-0/69092	Loss: 107.076
-3200/69092	Loss: 114.470
-6400/69092	Loss: 112.783
-9600/69092	Loss: 111.472
-12800/69092	Loss: 113.910
-16000/69092	Loss: 112.457
-19200/69092	Loss: 114.655
-22400/69092	Loss: 111.367
-25600/69092	Loss: 114.837
-28800/69092	Loss: 114.223
-32000/69092	Loss: 114.428
-35200/69092	Loss: 114.466
-38400/69092	Loss: 114.307
-41600/69092	Loss: 113.122
-44800/69092	Loss: 112.442
-48000/69092	Loss: 112.000
-51200/69092	Loss: 114.755
-54400/69092	Loss: 115.889
-57600/69092	Loss: 115.738
-60800/69092	Loss: 113.443
-64000/69092	Loss: 113.503
-67200/69092	Loss: 112.557
-Training time 0:01:57.624968
-Epoch: 13 Average loss: 113.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 154)
-0/69092	Loss: 106.276
-3200/69092	Loss: 113.254
-6400/69092	Loss: 113.480
-9600/69092	Loss: 113.790
-12800/69092	Loss: 113.209
-16000/69092	Loss: 115.360
-19200/69092	Loss: 115.386
-22400/69092	Loss: 113.469
-25600/69092	Loss: 114.159
-28800/69092	Loss: 112.560
-32000/69092	Loss: 112.678
-35200/69092	Loss: 112.689
-38400/69092	Loss: 113.637
-41600/69092	Loss: 113.831
-44800/69092	Loss: 113.137
-48000/69092	Loss: 114.083
-51200/69092	Loss: 114.013
-54400/69092	Loss: 113.474
-57600/69092	Loss: 114.993
-60800/69092	Loss: 112.344
-64000/69092	Loss: 112.172
-67200/69092	Loss: 114.178
-Training time 0:01:58.010337
-Epoch: 14 Average loss: 113.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 155)
-0/69092	Loss: 108.611
-3200/69092	Loss: 111.197
-6400/69092	Loss: 112.415
-9600/69092	Loss: 114.600
-12800/69092	Loss: 114.010
-16000/69092	Loss: 112.331
-19200/69092	Loss: 115.730
-22400/69092	Loss: 114.922
-25600/69092	Loss: 113.552
-28800/69092	Loss: 114.249
-32000/69092	Loss: 113.767
-35200/69092	Loss: 112.832
-38400/69092	Loss: 113.465
-41600/69092	Loss: 113.522
-44800/69092	Loss: 111.865
-48000/69092	Loss: 113.941
-51200/69092	Loss: 114.104
-54400/69092	Loss: 113.277
-57600/69092	Loss: 114.511
-60800/69092	Loss: 114.295
-64000/69092	Loss: 114.379
-67200/69092	Loss: 115.290
-Training time 0:01:57.048396
-Epoch: 15 Average loss: 113.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 156)
-0/69092	Loss: 107.534
-3200/69092	Loss: 115.344
-6400/69092	Loss: 111.464
-9600/69092	Loss: 116.030
-12800/69092	Loss: 113.621
-16000/69092	Loss: 114.181
-19200/69092	Loss: 111.447
-22400/69092	Loss: 112.626
-25600/69092	Loss: 114.451
-28800/69092	Loss: 114.031
-32000/69092	Loss: 114.145
-35200/69092	Loss: 114.513
-38400/69092	Loss: 112.339
-41600/69092	Loss: 113.435
-44800/69092	Loss: 112.827
-48000/69092	Loss: 113.485
-51200/69092	Loss: 111.628
-54400/69092	Loss: 115.204
-57600/69092	Loss: 114.545
-60800/69092	Loss: 112.454
-64000/69092	Loss: 114.114
-67200/69092	Loss: 113.067
-Training time 0:01:57.457423
-Epoch: 16 Average loss: 113.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 157)
-0/69092	Loss: 116.660
-3200/69092	Loss: 114.853
-6400/69092	Loss: 112.667
-9600/69092	Loss: 112.774
-12800/69092	Loss: 114.292
-16000/69092	Loss: 114.432
-19200/69092	Loss: 112.169
-22400/69092	Loss: 113.521
-25600/69092	Loss: 113.267
-28800/69092	Loss: 113.237
-32000/69092	Loss: 114.095
-35200/69092	Loss: 113.309
-38400/69092	Loss: 113.006
-41600/69092	Loss: 114.433
-44800/69092	Loss: 112.666
-48000/69092	Loss: 113.657
-51200/69092	Loss: 113.695
-54400/69092	Loss: 112.925
-57600/69092	Loss: 114.781
-60800/69092	Loss: 112.507
-64000/69092	Loss: 113.606
-67200/69092	Loss: 113.461
-Training time 0:01:57.301919
-Epoch: 17 Average loss: 113.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 158)
-0/69092	Loss: 122.441
-3200/69092	Loss: 112.092
-6400/69092	Loss: 113.156
-9600/69092	Loss: 113.583
-12800/69092	Loss: 111.844
-16000/69092	Loss: 114.031
-19200/69092	Loss: 114.414
-22400/69092	Loss: 113.251
-25600/69092	Loss: 113.530
-28800/69092	Loss: 113.606
-32000/69092	Loss: 113.308
-35200/69092	Loss: 114.011
-38400/69092	Loss: 114.065
-41600/69092	Loss: 112.315
-44800/69092	Loss: 113.055
-48000/69092	Loss: 115.181
-51200/69092	Loss: 112.946
-54400/69092	Loss: 112.808
-57600/69092	Loss: 112.249
-60800/69092	Loss: 114.315
-64000/69092	Loss: 113.936
-67200/69092	Loss: 114.932
-Training time 0:01:57.483391
-Epoch: 18 Average loss: 113.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 159)
-0/69092	Loss: 122.759
-3200/69092	Loss: 113.321
-6400/69092	Loss: 113.648
-9600/69092	Loss: 112.375
-12800/69092	Loss: 112.852
-16000/69092	Loss: 112.071
-19200/69092	Loss: 113.528
-22400/69092	Loss: 114.628
-25600/69092	Loss: 112.113
-28800/69092	Loss: 113.940
-32000/69092	Loss: 113.889
-35200/69092	Loss: 113.388
-38400/69092	Loss: 112.044
-41600/69092	Loss: 115.349
-44800/69092	Loss: 115.419
-48000/69092	Loss: 115.057
-51200/69092	Loss: 111.960
-54400/69092	Loss: 113.128
-57600/69092	Loss: 114.014
-60800/69092	Loss: 114.916
-64000/69092	Loss: 112.238
-67200/69092	Loss: 114.478
-Training time 0:01:57.380616
-Epoch: 19 Average loss: 113.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 160)
-0/69092	Loss: 122.416
-3200/69092	Loss: 113.065
-6400/69092	Loss: 112.945
-9600/69092	Loss: 114.812
-12800/69092	Loss: 113.286
-16000/69092	Loss: 113.571
-19200/69092	Loss: 112.787
-22400/69092	Loss: 114.123
-25600/69092	Loss: 111.963
-28800/69092	Loss: 114.746
-32000/69092	Loss: 114.841
-35200/69092	Loss: 113.247
-38400/69092	Loss: 114.276
-41600/69092	Loss: 113.018
-44800/69092	Loss: 113.369
-48000/69092	Loss: 115.743
-51200/69092	Loss: 112.478
-54400/69092	Loss: 114.102
-57600/69092	Loss: 111.813
-60800/69092	Loss: 114.739
-64000/69092	Loss: 114.274
-67200/69092	Loss: 111.381
-Training time 0:01:56.380362
-Epoch: 20 Average loss: 113.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 161)
-0/69092	Loss: 112.697
-3200/69092	Loss: 111.970
-6400/69092	Loss: 113.422
-9600/69092	Loss: 114.740
-12800/69092	Loss: 112.861
-16000/69092	Loss: 113.943
-19200/69092	Loss: 114.139
-22400/69092	Loss: 114.140
-25600/69092	Loss: 112.929
-28800/69092	Loss: 113.136
-32000/69092	Loss: 113.414
-35200/69092	Loss: 112.107
-38400/69092	Loss: 113.728
-41600/69092	Loss: 115.102
-44800/69092	Loss: 113.559
-48000/69092	Loss: 112.958
-51200/69092	Loss: 114.589
-54400/69092	Loss: 113.106
-57600/69092	Loss: 113.833
-60800/69092	Loss: 113.401
-64000/69092	Loss: 113.879
-67200/69092	Loss: 113.091
-Training time 0:01:56.913742
-Epoch: 21 Average loss: 113.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 162)
-0/69092	Loss: 112.838
-3200/69092	Loss: 112.310
-6400/69092	Loss: 113.759
-9600/69092	Loss: 112.544
-12800/69092	Loss: 112.362
-16000/69092	Loss: 112.802
-19200/69092	Loss: 112.718
-22400/69092	Loss: 113.442
-25600/69092	Loss: 112.484
-28800/69092	Loss: 115.515
-32000/69092	Loss: 114.749
-35200/69092	Loss: 113.935
-38400/69092	Loss: 113.959
-41600/69092	Loss: 114.361
-44800/69092	Loss: 113.340
-48000/69092	Loss: 114.839
-51200/69092	Loss: 112.398
-54400/69092	Loss: 111.141
-57600/69092	Loss: 113.406
-60800/69092	Loss: 114.487
-64000/69092	Loss: 112.059
-67200/69092	Loss: 113.190
-Training time 0:01:56.616397
-Epoch: 22 Average loss: 113.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 163)
-0/69092	Loss: 112.265
-3200/69092	Loss: 113.519
-6400/69092	Loss: 114.359
-9600/69092	Loss: 114.245
-12800/69092	Loss: 113.577
-16000/69092	Loss: 110.586
-19200/69092	Loss: 114.820
-22400/69092	Loss: 113.391
-25600/69092	Loss: 113.191
-28800/69092	Loss: 113.830
-32000/69092	Loss: 115.596
-35200/69092	Loss: 111.519
-38400/69092	Loss: 113.771
-41600/69092	Loss: 112.730
-44800/69092	Loss: 113.291
-48000/69092	Loss: 113.354
-51200/69092	Loss: 113.362
-54400/69092	Loss: 114.491
-57600/69092	Loss: 112.943
-60800/69092	Loss: 115.163
-64000/69092	Loss: 114.269
-67200/69092	Loss: 111.660
-Training time 0:01:57.499579
-Epoch: 23 Average loss: 113.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 164)
-0/69092	Loss: 110.541
-3200/69092	Loss: 113.010
-6400/69092	Loss: 112.319
-9600/69092	Loss: 110.574
-12800/69092	Loss: 112.917
-16000/69092	Loss: 115.502
-19200/69092	Loss: 113.512
-22400/69092	Loss: 114.476
-25600/69092	Loss: 115.393
-28800/69092	Loss: 112.487
-32000/69092	Loss: 113.305
-35200/69092	Loss: 111.957
-38400/69092	Loss: 113.179
-41600/69092	Loss: 113.447
-44800/69092	Loss: 112.649
-48000/69092	Loss: 113.721
-51200/69092	Loss: 113.584
-54400/69092	Loss: 113.247
-57600/69092	Loss: 113.686
-60800/69092	Loss: 114.066
-64000/69092	Loss: 113.360
-67200/69092	Loss: 112.081
-Training time 0:01:57.703437
-Epoch: 24 Average loss: 113.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 165)
-0/69092	Loss: 105.358
-3200/69092	Loss: 114.464
-6400/69092	Loss: 112.813
-9600/69092	Loss: 113.094
-12800/69092	Loss: 113.297
-16000/69092	Loss: 114.835
-19200/69092	Loss: 115.511
-22400/69092	Loss: 112.595
-25600/69092	Loss: 113.581
-28800/69092	Loss: 113.866
-32000/69092	Loss: 114.044
-35200/69092	Loss: 114.533
-38400/69092	Loss: 115.093
-41600/69092	Loss: 114.654
-44800/69092	Loss: 114.217
-48000/69092	Loss: 113.844
-51200/69092	Loss: 111.626
-54400/69092	Loss: 112.837
-57600/69092	Loss: 112.028
-60800/69092	Loss: 111.412
-64000/69092	Loss: 111.944
-67200/69092	Loss: 114.354
-Training time 0:01:57.128045
-Epoch: 25 Average loss: 113.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 166)
-0/69092	Loss: 119.216
-3200/69092	Loss: 113.760
-6400/69092	Loss: 114.056
-9600/69092	Loss: 113.799
-12800/69092	Loss: 113.218
-16000/69092	Loss: 113.157
-19200/69092	Loss: 113.767
-22400/69092	Loss: 112.843
-25600/69092	Loss: 114.296
-28800/69092	Loss: 111.594
-32000/69092	Loss: 113.287
-35200/69092	Loss: 112.529
-38400/69092	Loss: 115.394
-41600/69092	Loss: 113.424
-44800/69092	Loss: 113.577
-48000/69092	Loss: 113.916
-51200/69092	Loss: 113.749
-54400/69092	Loss: 112.013
-57600/69092	Loss: 112.941
-60800/69092	Loss: 115.017
-64000/69092	Loss: 112.619
-67200/69092	Loss: 112.699
-Training time 0:01:56.817717
-Epoch: 26 Average loss: 113.44
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 167)
-0/69092	Loss: 112.080
-3200/69092	Loss: 113.181
-6400/69092	Loss: 113.334
-9600/69092	Loss: 113.410
-12800/69092	Loss: 114.304
-16000/69092	Loss: 115.035
-19200/69092	Loss: 110.356
-22400/69092	Loss: 113.695
-25600/69092	Loss: 111.821
-28800/69092	Loss: 112.289
-32000/69092	Loss: 112.570
-35200/69092	Loss: 113.323
-38400/69092	Loss: 112.747
-41600/69092	Loss: 114.286
-44800/69092	Loss: 114.734
-48000/69092	Loss: 115.015
-51200/69092	Loss: 113.396
-54400/69092	Loss: 114.657
-57600/69092	Loss: 112.889
-60800/69092	Loss: 113.635
-64000/69092	Loss: 114.906
-67200/69092	Loss: 113.901
-Training time 0:01:56.991105
-Epoch: 27 Average loss: 113.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 168)
-0/69092	Loss: 118.096
-3200/69092	Loss: 112.825
-6400/69092	Loss: 111.038
-9600/69092	Loss: 113.668
-12800/69092	Loss: 112.929
-16000/69092	Loss: 116.022
-19200/69092	Loss: 112.779
-22400/69092	Loss: 113.887
-25600/69092	Loss: 112.522
-28800/69092	Loss: 113.807
-32000/69092	Loss: 113.408
-35200/69092	Loss: 111.301
-38400/69092	Loss: 113.108
-41600/69092	Loss: 115.450
-44800/69092	Loss: 114.732
-48000/69092	Loss: 112.078
-51200/69092	Loss: 111.123
-54400/69092	Loss: 113.296
-57600/69092	Loss: 113.732
-60800/69092	Loss: 115.135
-64000/69092	Loss: 112.423
-67200/69092	Loss: 113.397
-Training time 0:01:57.699817
-Epoch: 28 Average loss: 113.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 169)
-0/69092	Loss: 129.896
-3200/69092	Loss: 111.535
-6400/69092	Loss: 113.759
-9600/69092	Loss: 112.517
-12800/69092	Loss: 113.311
-16000/69092	Loss: 113.559
-19200/69092	Loss: 113.697
-22400/69092	Loss: 114.203
-25600/69092	Loss: 112.384
-28800/69092	Loss: 111.674
-32000/69092	Loss: 114.226
-35200/69092	Loss: 111.903
-38400/69092	Loss: 111.676
-41600/69092	Loss: 114.267
-44800/69092	Loss: 114.515
-48000/69092	Loss: 114.730
-51200/69092	Loss: 113.357
-54400/69092	Loss: 113.161
-57600/69092	Loss: 113.563
-60800/69092	Loss: 113.460
-64000/69092	Loss: 112.999
-67200/69092	Loss: 113.924
-Training time 0:01:57.600318
-Epoch: 29 Average loss: 113.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 170)
-0/69092	Loss: 116.106
-3200/69092	Loss: 113.221
-6400/69092	Loss: 114.010
-9600/69092	Loss: 112.702
-12800/69092	Loss: 113.932
-16000/69092	Loss: 112.952
-19200/69092	Loss: 113.270
-22400/69092	Loss: 111.887
-25600/69092	Loss: 113.317
-28800/69092	Loss: 115.396
-32000/69092	Loss: 113.389
-35200/69092	Loss: 114.309
-38400/69092	Loss: 115.338
-41600/69092	Loss: 115.297
-44800/69092	Loss: 111.782
-48000/69092	Loss: 111.820
-51200/69092	Loss: 113.843
-54400/69092	Loss: 113.087
-57600/69092	Loss: 112.162
-60800/69092	Loss: 113.825
-64000/69092	Loss: 111.508
-67200/69092	Loss: 111.641
-Training time 0:01:57.824421
-Epoch: 30 Average loss: 113.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 171)
-0/69092	Loss: 111.976
-3200/69092	Loss: 113.670
-6400/69092	Loss: 112.234
-9600/69092	Loss: 112.258
-12800/69092	Loss: 111.372
-16000/69092	Loss: 113.058
-19200/69092	Loss: 114.690
-22400/69092	Loss: 113.186
-25600/69092	Loss: 112.399
-28800/69092	Loss: 113.581
-32000/69092	Loss: 112.355
-35200/69092	Loss: 114.725
-38400/69092	Loss: 114.342
-41600/69092	Loss: 113.915
-44800/69092	Loss: 114.097
-48000/69092	Loss: 111.121
-51200/69092	Loss: 112.346
-54400/69092	Loss: 112.699
-57600/69092	Loss: 114.326
-60800/69092	Loss: 115.077
-64000/69092	Loss: 113.883
-67200/69092	Loss: 112.444
-Training time 0:01:56.239890
-Epoch: 31 Average loss: 113.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 172)
-0/69092	Loss: 107.572
-3200/69092	Loss: 112.417
-6400/69092	Loss: 113.643
-9600/69092	Loss: 112.115
-12800/69092	Loss: 113.451
-16000/69092	Loss: 114.296
-19200/69092	Loss: 112.702
-22400/69092	Loss: 112.452
-25600/69092	Loss: 111.976
-28800/69092	Loss: 113.433
-32000/69092	Loss: 114.964
-35200/69092	Loss: 114.163
-38400/69092	Loss: 114.011
-41600/69092	Loss: 113.044
-44800/69092	Loss: 112.864
-48000/69092	Loss: 113.486
-51200/69092	Loss: 114.419
-54400/69092	Loss: 111.944
-57600/69092	Loss: 113.216
-60800/69092	Loss: 112.574
-64000/69092	Loss: 113.551
-67200/69092	Loss: 112.291
-Training time 0:01:58.274545
-Epoch: 32 Average loss: 113.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 173)
-0/69092	Loss: 128.844
-3200/69092	Loss: 113.094
-6400/69092	Loss: 113.790
-9600/69092	Loss: 114.675
-12800/69092	Loss: 113.787
-16000/69092	Loss: 113.817
-19200/69092	Loss: 111.743
-22400/69092	Loss: 112.467
-25600/69092	Loss: 113.830
-28800/69092	Loss: 113.495
-32000/69092	Loss: 113.034
-35200/69092	Loss: 112.246
-38400/69092	Loss: 112.938
-41600/69092	Loss: 113.047
-44800/69092	Loss: 112.097
-48000/69092	Loss: 115.020
-51200/69092	Loss: 112.659
-54400/69092	Loss: 114.513
-57600/69092	Loss: 112.853
-60800/69092	Loss: 112.763
-64000/69092	Loss: 112.027
-67200/69092	Loss: 114.172
-Training time 0:01:57.798408
-Epoch: 33 Average loss: 113.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 174)
-0/69092	Loss: 104.629
-3200/69092	Loss: 112.173
-6400/69092	Loss: 114.126
-9600/69092	Loss: 113.989
-12800/69092	Loss: 112.428
-16000/69092	Loss: 113.403
-19200/69092	Loss: 112.374
-22400/69092	Loss: 114.004
-25600/69092	Loss: 111.297
-28800/69092	Loss: 113.265
-32000/69092	Loss: 114.151
-35200/69092	Loss: 113.076
-38400/69092	Loss: 112.095
-41600/69092	Loss: 112.621
-44800/69092	Loss: 113.332
-48000/69092	Loss: 113.742
-51200/69092	Loss: 112.438
-54400/69092	Loss: 114.087
-57600/69092	Loss: 112.684
-60800/69092	Loss: 113.479
-64000/69092	Loss: 111.662
-67200/69092	Loss: 114.712
-Training time 0:01:57.837601
-Epoch: 34 Average loss: 113.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 175)
-0/69092	Loss: 103.858
-3200/69092	Loss: 112.354
-6400/69092	Loss: 112.711
-9600/69092	Loss: 112.340
-12800/69092	Loss: 114.180
-16000/69092	Loss: 114.228
-19200/69092	Loss: 112.943
-22400/69092	Loss: 113.147
-25600/69092	Loss: 113.512
-28800/69092	Loss: 113.014
-32000/69092	Loss: 112.682
-35200/69092	Loss: 113.589
-38400/69092	Loss: 113.333
-41600/69092	Loss: 110.257
-44800/69092	Loss: 113.071
-48000/69092	Loss: 113.393
-51200/69092	Loss: 112.867
-54400/69092	Loss: 112.875
-57600/69092	Loss: 114.227
-60800/69092	Loss: 114.129
-64000/69092	Loss: 113.988
-67200/69092	Loss: 113.577
-Training time 0:01:57.205795
-Epoch: 35 Average loss: 113.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 176)
-0/69092	Loss: 103.413
-3200/69092	Loss: 112.778
-6400/69092	Loss: 111.808
-9600/69092	Loss: 113.004
-12800/69092	Loss: 112.850
-16000/69092	Loss: 112.508
-19200/69092	Loss: 112.487
-22400/69092	Loss: 112.307
-25600/69092	Loss: 112.598
-28800/69092	Loss: 113.347
-32000/69092	Loss: 113.953
-35200/69092	Loss: 112.537
-38400/69092	Loss: 113.105
-41600/69092	Loss: 113.944
-44800/69092	Loss: 112.627
-48000/69092	Loss: 113.469
-51200/69092	Loss: 113.354
-54400/69092	Loss: 111.951
-57600/69092	Loss: 114.612
-60800/69092	Loss: 115.151
-64000/69092	Loss: 114.095
-67200/69092	Loss: 112.999
-Training time 0:01:58.093735
-Epoch: 36 Average loss: 113.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 177)
-0/69092	Loss: 118.704
-3200/69092	Loss: 115.288
-6400/69092	Loss: 112.416
-9600/69092	Loss: 113.091
-12800/69092	Loss: 113.384
-16000/69092	Loss: 111.939
-19200/69092	Loss: 115.027
-22400/69092	Loss: 113.573
-25600/69092	Loss: 111.731
-28800/69092	Loss: 112.633
-32000/69092	Loss: 113.658
-35200/69092	Loss: 111.934
-38400/69092	Loss: 113.779
-41600/69092	Loss: 112.805
-44800/69092	Loss: 113.871
-48000/69092	Loss: 112.855
-51200/69092	Loss: 113.678
-54400/69092	Loss: 111.995
-57600/69092	Loss: 113.649
-60800/69092	Loss: 113.059
-64000/69092	Loss: 112.577
-67200/69092	Loss: 113.533
-Training time 0:01:57.311183
-Epoch: 37 Average loss: 113.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 178)
-0/69092	Loss: 98.776
-3200/69092	Loss: 115.477
-6400/69092	Loss: 112.687
-9600/69092	Loss: 113.104
-12800/69092	Loss: 113.899
-16000/69092	Loss: 112.074
-19200/69092	Loss: 113.378
-22400/69092	Loss: 113.883
-25600/69092	Loss: 112.427
-28800/69092	Loss: 112.084
-32000/69092	Loss: 113.294
-35200/69092	Loss: 114.481
-38400/69092	Loss: 111.956
-41600/69092	Loss: 111.803
-44800/69092	Loss: 115.324
-48000/69092	Loss: 113.409
-51200/69092	Loss: 113.415
-54400/69092	Loss: 112.898
-57600/69092	Loss: 112.548
-60800/69092	Loss: 111.415
-64000/69092	Loss: 113.569
-67200/69092	Loss: 113.263
-Training time 0:01:58.672983
-Epoch: 38 Average loss: 113.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 179)
-0/69092	Loss: 117.852
-3200/69092	Loss: 114.132
-6400/69092	Loss: 113.622
-9600/69092	Loss: 114.413
-12800/69092	Loss: 113.895
-16000/69092	Loss: 113.178
-19200/69092	Loss: 112.793
-22400/69092	Loss: 113.263
-25600/69092	Loss: 112.936
-28800/69092	Loss: 112.303
-32000/69092	Loss: 112.990
-35200/69092	Loss: 111.565
-38400/69092	Loss: 112.377
-41600/69092	Loss: 113.479
-44800/69092	Loss: 115.034
-48000/69092	Loss: 112.626
-51200/69092	Loss: 111.186
-54400/69092	Loss: 112.106
-57600/69092	Loss: 114.955
-60800/69092	Loss: 113.966
-64000/69092	Loss: 112.044
-67200/69092	Loss: 113.459
-Training time 0:01:57.760976
-Epoch: 39 Average loss: 113.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 180)
-0/69092	Loss: 112.574
-3200/69092	Loss: 113.277
-6400/69092	Loss: 113.513
-9600/69092	Loss: 112.636
-12800/69092	Loss: 114.511
-16000/69092	Loss: 111.913
-19200/69092	Loss: 113.311
-22400/69092	Loss: 112.848
-25600/69092	Loss: 113.098
-28800/69092	Loss: 111.790
-32000/69092	Loss: 115.993
-35200/69092	Loss: 112.678
-38400/69092	Loss: 112.988
-41600/69092	Loss: 113.563
-44800/69092	Loss: 112.193
-48000/69092	Loss: 111.674
-51200/69092	Loss: 112.468
-54400/69092	Loss: 114.340
-57600/69092	Loss: 112.935
-60800/69092	Loss: 114.753
-64000/69092	Loss: 114.156
-67200/69092	Loss: 114.243
-Training time 0:01:56.222605
-Epoch: 40 Average loss: 113.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 181)
-0/69092	Loss: 105.331
-3200/69092	Loss: 114.259
-6400/69092	Loss: 111.239
-9600/69092	Loss: 115.819
-12800/69092	Loss: 111.548
-16000/69092	Loss: 112.908
-19200/69092	Loss: 113.682
-22400/69092	Loss: 113.371
-25600/69092	Loss: 112.336
-28800/69092	Loss: 113.930
-32000/69092	Loss: 113.883
-35200/69092	Loss: 113.407
-38400/69092	Loss: 112.290
-41600/69092	Loss: 112.645
-44800/69092	Loss: 113.480
-48000/69092	Loss: 114.097
-51200/69092	Loss: 114.638
-54400/69092	Loss: 112.103
-57600/69092	Loss: 112.390
-60800/69092	Loss: 113.538
-64000/69092	Loss: 112.240
-67200/69092	Loss: 113.869
-Training time 0:01:57.349000
-Epoch: 41 Average loss: 113.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 182)
-0/69092	Loss: 106.944
-3200/69092	Loss: 112.803
-6400/69092	Loss: 110.267
-9600/69092	Loss: 112.340
-12800/69092	Loss: 113.424
-16000/69092	Loss: 113.995
-19200/69092	Loss: 113.619
-22400/69092	Loss: 111.961
-25600/69092	Loss: 114.552
-28800/69092	Loss: 113.481
-32000/69092	Loss: 113.119
-35200/69092	Loss: 111.295
-38400/69092	Loss: 114.473
-41600/69092	Loss: 111.617
-44800/69092	Loss: 113.792
-48000/69092	Loss: 114.302
-51200/69092	Loss: 114.581
-54400/69092	Loss: 113.555
-57600/69092	Loss: 112.925
-60800/69092	Loss: 110.887
-64000/69092	Loss: 113.113
-67200/69092	Loss: 111.808
-Training time 0:01:56.222317
-Epoch: 42 Average loss: 112.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 183)
-0/69092	Loss: 118.230
-3200/69092	Loss: 114.454
-6400/69092	Loss: 114.169
-9600/69092	Loss: 113.332
-12800/69092	Loss: 113.019
-16000/69092	Loss: 112.611
-19200/69092	Loss: 113.410
-22400/69092	Loss: 112.536
-25600/69092	Loss: 113.521
-28800/69092	Loss: 112.724
-32000/69092	Loss: 113.471
-35200/69092	Loss: 113.396
-38400/69092	Loss: 112.500
-41600/69092	Loss: 112.662
-44800/69092	Loss: 112.447
-48000/69092	Loss: 113.205
-51200/69092	Loss: 113.619
-54400/69092	Loss: 112.108
-57600/69092	Loss: 112.777
-60800/69092	Loss: 111.704
-64000/69092	Loss: 113.784
-67200/69092	Loss: 114.549
-Training time 0:01:56.173590
-Epoch: 43 Average loss: 113.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 184)
-0/69092	Loss: 110.065
-3200/69092	Loss: 111.767
-6400/69092	Loss: 113.636
-9600/69092	Loss: 112.554
-12800/69092	Loss: 113.104
-16000/69092	Loss: 112.124
-19200/69092	Loss: 112.675
-22400/69092	Loss: 113.358
-25600/69092	Loss: 113.541
-28800/69092	Loss: 114.161
-32000/69092	Loss: 113.763
-35200/69092	Loss: 113.449
-38400/69092	Loss: 111.399
-41600/69092	Loss: 112.777
-44800/69092	Loss: 111.883
-48000/69092	Loss: 114.067
-51200/69092	Loss: 113.131
-54400/69092	Loss: 113.204
-57600/69092	Loss: 114.136
-60800/69092	Loss: 114.549
-64000/69092	Loss: 113.641
-67200/69092	Loss: 111.212
-Training time 0:01:56.315797
-Epoch: 44 Average loss: 113.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 185)
-0/69092	Loss: 107.930
-3200/69092	Loss: 112.748
-6400/69092	Loss: 113.215
-9600/69092	Loss: 112.162
-12800/69092	Loss: 112.736
-16000/69092	Loss: 113.186
-19200/69092	Loss: 112.042
-22400/69092	Loss: 111.728
-25600/69092	Loss: 113.111
-28800/69092	Loss: 112.076
-32000/69092	Loss: 112.213
-35200/69092	Loss: 113.642
-38400/69092	Loss: 113.701
-41600/69092	Loss: 113.927
-44800/69092	Loss: 112.954
-48000/69092	Loss: 113.721
-51200/69092	Loss: 112.651
-54400/69092	Loss: 111.437
-57600/69092	Loss: 113.122
-60800/69092	Loss: 113.259
-64000/69092	Loss: 114.487
-67200/69092	Loss: 112.311
-Training time 0:01:57.252377
-Epoch: 45 Average loss: 112.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 186)
-0/69092	Loss: 107.370
-3200/69092	Loss: 112.774
-6400/69092	Loss: 111.116
-9600/69092	Loss: 115.065
-12800/69092	Loss: 110.289
-16000/69092	Loss: 112.626
-19200/69092	Loss: 114.124
-22400/69092	Loss: 114.952
-25600/69092	Loss: 112.964
-28800/69092	Loss: 111.603
-32000/69092	Loss: 114.307
-35200/69092	Loss: 113.034
-38400/69092	Loss: 111.020
-41600/69092	Loss: 112.118
-44800/69092	Loss: 113.457
-48000/69092	Loss: 113.852
-51200/69092	Loss: 113.247
-54400/69092	Loss: 114.377
-57600/69092	Loss: 112.041
-60800/69092	Loss: 112.349
-64000/69092	Loss: 113.902
-67200/69092	Loss: 113.314
-Training time 0:01:57.677153
-Epoch: 46 Average loss: 113.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 187)
-0/69092	Loss: 108.191
-3200/69092	Loss: 111.180
-6400/69092	Loss: 114.511
-9600/69092	Loss: 114.274
-12800/69092	Loss: 112.695
-16000/69092	Loss: 112.708
-19200/69092	Loss: 113.813
-22400/69092	Loss: 113.495
-25600/69092	Loss: 113.813
-28800/69092	Loss: 113.657
-32000/69092	Loss: 113.259
-35200/69092	Loss: 114.526
-38400/69092	Loss: 113.245
-41600/69092	Loss: 112.102
-44800/69092	Loss: 113.019
-48000/69092	Loss: 113.146
-51200/69092	Loss: 111.802
-54400/69092	Loss: 111.874
-57600/69092	Loss: 112.954
-60800/69092	Loss: 112.509
-64000/69092	Loss: 112.301
-67200/69092	Loss: 113.756
-Training time 0:01:57.270936
-Epoch: 47 Average loss: 113.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 188)
-0/69092	Loss: 114.384
-3200/69092	Loss: 112.098
-6400/69092	Loss: 113.737
-9600/69092	Loss: 112.405
-12800/69092	Loss: 112.935
-16000/69092	Loss: 112.704
-19200/69092	Loss: 112.897
-22400/69092	Loss: 111.671
-25600/69092	Loss: 111.944
-28800/69092	Loss: 112.637
-32000/69092	Loss: 112.662
-35200/69092	Loss: 113.128
-38400/69092	Loss: 113.058
-41600/69092	Loss: 114.302
-44800/69092	Loss: 112.805
-48000/69092	Loss: 113.744
-51200/69092	Loss: 112.352
-54400/69092	Loss: 113.272
-57600/69092	Loss: 113.209
-60800/69092	Loss: 112.415
-64000/69092	Loss: 113.384
-67200/69092	Loss: 114.061
-Training time 0:01:56.621897
-Epoch: 48 Average loss: 112.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 189)
-0/69092	Loss: 122.424
-3200/69092	Loss: 113.558
-6400/69092	Loss: 114.006
-9600/69092	Loss: 113.438
-12800/69092	Loss: 112.103
-16000/69092	Loss: 111.731
-19200/69092	Loss: 113.225
-22400/69092	Loss: 113.965
-25600/69092	Loss: 112.907
-28800/69092	Loss: 113.415
-32000/69092	Loss: 113.648
-35200/69092	Loss: 112.892
-38400/69092	Loss: 113.315
-41600/69092	Loss: 113.611
-44800/69092	Loss: 112.368
-48000/69092	Loss: 111.456
-51200/69092	Loss: 114.291
-54400/69092	Loss: 112.338
-57600/69092	Loss: 112.937
-60800/69092	Loss: 113.357
-64000/69092	Loss: 112.928
-67200/69092	Loss: 110.368
-Training time 0:01:57.034065
-Epoch: 49 Average loss: 112.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 190)
-0/69092	Loss: 103.725
-3200/69092	Loss: 112.181
-6400/69092	Loss: 110.256
-9600/69092	Loss: 112.561
-12800/69092	Loss: 113.508
-16000/69092	Loss: 112.477
-19200/69092	Loss: 113.481
-22400/69092	Loss: 113.713
-25600/69092	Loss: 111.214
-28800/69092	Loss: 112.821
-32000/69092	Loss: 114.706
-35200/69092	Loss: 113.510
-38400/69092	Loss: 113.152
-41600/69092	Loss: 111.306
-44800/69092	Loss: 113.479
-48000/69092	Loss: 112.801
-51200/69092	Loss: 113.999
-54400/69092	Loss: 114.534
-57600/69092	Loss: 114.387
-60800/69092	Loss: 111.725
-64000/69092	Loss: 114.551
-67200/69092	Loss: 111.415
-Training time 0:01:57.144276
-Epoch: 50 Average loss: 112.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 191)
-0/69092	Loss: 123.784
-3200/69092	Loss: 113.886
-6400/69092	Loss: 112.050
-9600/69092	Loss: 112.913
-12800/69092	Loss: 112.992
-16000/69092	Loss: 113.581
-19200/69092	Loss: 112.858
-22400/69092	Loss: 109.655
-25600/69092	Loss: 113.699
-28800/69092	Loss: 113.077
-32000/69092	Loss: 113.015
-35200/69092	Loss: 113.601
-38400/69092	Loss: 113.509
-41600/69092	Loss: 112.657
-44800/69092	Loss: 112.097
-48000/69092	Loss: 112.557
-51200/69092	Loss: 113.076
-54400/69092	Loss: 111.945
-57600/69092	Loss: 112.558
-60800/69092	Loss: 113.805
-64000/69092	Loss: 113.686
-67200/69092	Loss: 112.579
-Training time 0:01:58.141268
-Epoch: 51 Average loss: 112.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 192)
-0/69092	Loss: 102.234
-3200/69092	Loss: 113.874
-6400/69092	Loss: 112.134
-9600/69092	Loss: 111.494
-12800/69092	Loss: 112.315
-16000/69092	Loss: 114.314
-19200/69092	Loss: 112.447
-22400/69092	Loss: 113.243
-25600/69092	Loss: 112.554
-28800/69092	Loss: 112.491
-32000/69092	Loss: 114.047
-35200/69092	Loss: 114.010
-38400/69092	Loss: 113.350
-41600/69092	Loss: 111.099
-44800/69092	Loss: 112.864
-48000/69092	Loss: 113.585
-51200/69092	Loss: 113.284
-54400/69092	Loss: 113.734
-57600/69092	Loss: 111.351
-60800/69092	Loss: 113.639
-64000/69092	Loss: 111.110
-67200/69092	Loss: 112.782
-Training time 0:01:57.109686
-Epoch: 52 Average loss: 112.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 193)
-0/69092	Loss: 125.149
-3200/69092	Loss: 113.593
-6400/69092	Loss: 113.225
-9600/69092	Loss: 113.240
-12800/69092	Loss: 113.332
-16000/69092	Loss: 112.498
-19200/69092	Loss: 111.564
-22400/69092	Loss: 112.087
-25600/69092	Loss: 114.866
-28800/69092	Loss: 113.822
-32000/69092	Loss: 112.653
-35200/69092	Loss: 112.648
-38400/69092	Loss: 113.448
-41600/69092	Loss: 112.285
-44800/69092	Loss: 111.339
-48000/69092	Loss: 114.992
-51200/69092	Loss: 112.286
-54400/69092	Loss: 113.181
-57600/69092	Loss: 114.641
-60800/69092	Loss: 112.185
-64000/69092	Loss: 110.240
-67200/69092	Loss: 111.789
-Training time 0:01:57.890895
-Epoch: 53 Average loss: 112.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 194)
-0/69092	Loss: 120.738
-3200/69092	Loss: 113.921
-6400/69092	Loss: 112.629
-9600/69092	Loss: 112.500
-12800/69092	Loss: 112.924
-16000/69092	Loss: 113.851
-19200/69092	Loss: 112.452
-22400/69092	Loss: 112.171
-25600/69092	Loss: 113.169
-28800/69092	Loss: 113.749
-32000/69092	Loss: 111.723
-35200/69092	Loss: 114.696
-38400/69092	Loss: 111.455
-41600/69092	Loss: 111.961
-44800/69092	Loss: 111.725
-48000/69092	Loss: 112.909
-51200/69092	Loss: 114.163
-54400/69092	Loss: 112.770
-57600/69092	Loss: 113.329
-60800/69092	Loss: 112.858
-64000/69092	Loss: 115.067
-67200/69092	Loss: 112.942
-Training time 0:01:58.375331
-Epoch: 54 Average loss: 113.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 195)
-0/69092	Loss: 113.161
-3200/69092	Loss: 112.216
-6400/69092	Loss: 114.245
-9600/69092	Loss: 112.978
-12800/69092	Loss: 111.724
-16000/69092	Loss: 112.694
-19200/69092	Loss: 114.218
-22400/69092	Loss: 113.346
-25600/69092	Loss: 113.955
-28800/69092	Loss: 112.076
-32000/69092	Loss: 112.785
-35200/69092	Loss: 113.738
-38400/69092	Loss: 112.492
-41600/69092	Loss: 111.618
-44800/69092	Loss: 112.485
-48000/69092	Loss: 110.495
-51200/69092	Loss: 112.329
-54400/69092	Loss: 113.543
-57600/69092	Loss: 112.926
-60800/69092	Loss: 111.947
-64000/69092	Loss: 113.947
-67200/69092	Loss: 113.614
-Training time 0:01:57.921067
-Epoch: 55 Average loss: 112.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 196)
-0/69092	Loss: 98.536
-3200/69092	Loss: 113.967
-6400/69092	Loss: 113.678
-9600/69092	Loss: 112.032
-12800/69092	Loss: 113.125
-16000/69092	Loss: 112.978
-19200/69092	Loss: 112.244
-22400/69092	Loss: 111.852
-25600/69092	Loss: 112.795
-28800/69092	Loss: 112.706
-32000/69092	Loss: 112.926
-35200/69092	Loss: 113.740
-38400/69092	Loss: 113.753
-41600/69092	Loss: 112.075
-44800/69092	Loss: 110.197
-48000/69092	Loss: 113.637
-51200/69092	Loss: 114.269
-54400/69092	Loss: 113.479
-57600/69092	Loss: 112.259
-60800/69092	Loss: 113.970
-64000/69092	Loss: 112.493
-67200/69092	Loss: 112.385
-Training time 0:01:57.750009
-Epoch: 56 Average loss: 112.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 197)
-0/69092	Loss: 111.093
-3200/69092	Loss: 113.880
-6400/69092	Loss: 112.762
-9600/69092	Loss: 111.905
-12800/69092	Loss: 114.283
-16000/69092	Loss: 112.578
-19200/69092	Loss: 113.268
-22400/69092	Loss: 113.933
-25600/69092	Loss: 113.673
-28800/69092	Loss: 113.308
-32000/69092	Loss: 113.911
-35200/69092	Loss: 112.552
-38400/69092	Loss: 112.965
-41600/69092	Loss: 112.686
-44800/69092	Loss: 112.111
-48000/69092	Loss: 112.260
-51200/69092	Loss: 113.688
-54400/69092	Loss: 110.520
-57600/69092	Loss: 112.602
-60800/69092	Loss: 111.985
-64000/69092	Loss: 113.892
-67200/69092	Loss: 111.503
-Training time 0:01:57.478060
-Epoch: 57 Average loss: 112.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 198)
-0/69092	Loss: 125.914
-3200/69092	Loss: 113.873
-6400/69092	Loss: 113.726
-9600/69092	Loss: 115.227
-12800/69092	Loss: 110.942
-16000/69092	Loss: 112.000
-19200/69092	Loss: 111.971
-22400/69092	Loss: 113.533
-25600/69092	Loss: 112.320
-28800/69092	Loss: 112.569
-32000/69092	Loss: 111.833
-35200/69092	Loss: 113.412
-38400/69092	Loss: 112.716
-41600/69092	Loss: 112.908
-44800/69092	Loss: 112.154
-48000/69092	Loss: 113.787
-51200/69092	Loss: 112.760
-54400/69092	Loss: 113.770
-57600/69092	Loss: 113.666
-60800/69092	Loss: 112.642
-64000/69092	Loss: 112.393
-67200/69092	Loss: 113.339
-Training time 0:01:57.454998
-Epoch: 58 Average loss: 112.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 199)
-0/69092	Loss: 113.249
-3200/69092	Loss: 112.831
-6400/69092	Loss: 113.055
-9600/69092	Loss: 112.264
-12800/69092	Loss: 113.239
-16000/69092	Loss: 114.807
-19200/69092	Loss: 111.828
-22400/69092	Loss: 112.956
-25600/69092	Loss: 112.355
-28800/69092	Loss: 114.544
-32000/69092	Loss: 110.842
-35200/69092	Loss: 113.752
-38400/69092	Loss: 114.699
-41600/69092	Loss: 113.010
-44800/69092	Loss: 113.437
-48000/69092	Loss: 114.445
-51200/69092	Loss: 112.138
-54400/69092	Loss: 112.515
-57600/69092	Loss: 111.633
-60800/69092	Loss: 110.929
-64000/69092	Loss: 112.556
-67200/69092	Loss: 111.946
-Training time 0:01:57.979320
-Epoch: 59 Average loss: 112.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 200)
-0/69092	Loss: 118.560
-3200/69092	Loss: 113.390
-6400/69092	Loss: 115.115
-9600/69092	Loss: 113.015
-12800/69092	Loss: 110.703
-16000/69092	Loss: 112.370
-19200/69092	Loss: 111.884
-22400/69092	Loss: 112.114
-25600/69092	Loss: 113.264
-28800/69092	Loss: 111.140
-32000/69092	Loss: 112.199
-35200/69092	Loss: 111.933
-38400/69092	Loss: 115.160
-41600/69092	Loss: 112.984
-44800/69092	Loss: 113.587
-48000/69092	Loss: 111.713
-51200/69092	Loss: 112.597
-54400/69092	Loss: 114.407
-57600/69092	Loss: 111.939
-60800/69092	Loss: 112.508
-64000/69092	Loss: 112.346
-67200/69092	Loss: 113.437
-Training time 0:01:57.129662
-Epoch: 60 Average loss: 112.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 201)
-0/69092	Loss: 106.730
-3200/69092	Loss: 111.336
-6400/69092	Loss: 112.730
-9600/69092	Loss: 112.802
-12800/69092	Loss: 112.511
-16000/69092	Loss: 112.847
-19200/69092	Loss: 112.665
-22400/69092	Loss: 112.093
-25600/69092	Loss: 111.901
-28800/69092	Loss: 113.367
-32000/69092	Loss: 111.384
-35200/69092	Loss: 114.479
-38400/69092	Loss: 113.044
-41600/69092	Loss: 112.871
-44800/69092	Loss: 111.875
-48000/69092	Loss: 113.852
-51200/69092	Loss: 114.161
-54400/69092	Loss: 113.598
-57600/69092	Loss: 112.559
-60800/69092	Loss: 111.755
-64000/69092	Loss: 113.378
-67200/69092	Loss: 114.233
-Training time 0:01:57.502646
-Epoch: 61 Average loss: 112.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 202)
-0/69092	Loss: 110.732
-3200/69092	Loss: 112.066
-6400/69092	Loss: 110.979
-9600/69092	Loss: 111.672
-12800/69092	Loss: 112.490
-16000/69092	Loss: 110.993
-19200/69092	Loss: 113.076
-22400/69092	Loss: 112.079
-25600/69092	Loss: 113.152
-28800/69092	Loss: 112.425
-32000/69092	Loss: 112.395
-35200/69092	Loss: 112.097
-38400/69092	Loss: 112.282
-41600/69092	Loss: 112.552
-44800/69092	Loss: 112.215
-48000/69092	Loss: 113.234
-51200/69092	Loss: 112.832
-54400/69092	Loss: 113.246
-57600/69092	Loss: 112.555
-60800/69092	Loss: 113.089
-64000/69092	Loss: 114.522
-67200/69092	Loss: 114.644
-Training time 0:01:56.714733
-Epoch: 62 Average loss: 112.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 203)
-0/69092	Loss: 125.102
-3200/69092	Loss: 114.078
-6400/69092	Loss: 114.435
-9600/69092	Loss: 113.205
-12800/69092	Loss: 112.800
-16000/69092	Loss: 110.416
-19200/69092	Loss: 113.880
-22400/69092	Loss: 111.915
-25600/69092	Loss: 112.619
-28800/69092	Loss: 112.915
-32000/69092	Loss: 111.166
-35200/69092	Loss: 113.828
-38400/69092	Loss: 113.011
-41600/69092	Loss: 113.585
-44800/69092	Loss: 112.541
-48000/69092	Loss: 113.303
-51200/69092	Loss: 113.605
-54400/69092	Loss: 112.948
-57600/69092	Loss: 110.535
-60800/69092	Loss: 113.138
-64000/69092	Loss: 112.730
-67200/69092	Loss: 112.324
-Training time 0:01:56.675149
-Epoch: 63 Average loss: 112.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 204)
-0/69092	Loss: 107.751
-3200/69092	Loss: 113.080
-6400/69092	Loss: 111.117
-9600/69092	Loss: 113.675
-12800/69092	Loss: 111.980
-16000/69092	Loss: 112.702
-19200/69092	Loss: 112.221
-22400/69092	Loss: 114.652
-25600/69092	Loss: 111.969
-28800/69092	Loss: 112.533
-32000/69092	Loss: 113.737
-35200/69092	Loss: 113.486
-38400/69092	Loss: 114.099
-41600/69092	Loss: 111.737
-44800/69092	Loss: 112.225
-48000/69092	Loss: 111.938
-51200/69092	Loss: 114.247
-54400/69092	Loss: 111.343
-57600/69092	Loss: 110.885
-60800/69092	Loss: 113.434
-64000/69092	Loss: 111.832
-67200/69092	Loss: 112.673
-Training time 0:01:57.304249
-Epoch: 64 Average loss: 112.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 205)
-0/69092	Loss: 119.555
-3200/69092	Loss: 111.338
-6400/69092	Loss: 111.867
-9600/69092	Loss: 111.428
-12800/69092	Loss: 111.916
-16000/69092	Loss: 114.298
-19200/69092	Loss: 112.599
-22400/69092	Loss: 113.052
-25600/69092	Loss: 112.724
-28800/69092	Loss: 112.868
-32000/69092	Loss: 115.266
-35200/69092	Loss: 113.234
-38400/69092	Loss: 113.548
-41600/69092	Loss: 111.175
-44800/69092	Loss: 113.618
-48000/69092	Loss: 112.329
-51200/69092	Loss: 111.662
-54400/69092	Loss: 111.407
-57600/69092	Loss: 114.493
-60800/69092	Loss: 113.059
-64000/69092	Loss: 112.701
-67200/69092	Loss: 112.004
-Training time 0:01:56.345180
-Epoch: 65 Average loss: 112.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 206)
-0/69092	Loss: 115.853
-3200/69092	Loss: 113.659
-6400/69092	Loss: 112.134
-9600/69092	Loss: 112.609
-12800/69092	Loss: 110.304
-16000/69092	Loss: 114.111
-19200/69092	Loss: 111.842
-22400/69092	Loss: 112.393
-25600/69092	Loss: 111.813
-28800/69092	Loss: 112.723
-32000/69092	Loss: 111.490
-35200/69092	Loss: 112.234
-38400/69092	Loss: 113.776
-41600/69092	Loss: 112.868
-44800/69092	Loss: 111.690
-48000/69092	Loss: 113.217
-51200/69092	Loss: 114.886
-54400/69092	Loss: 113.434
-57600/69092	Loss: 113.007
-60800/69092	Loss: 114.535
-64000/69092	Loss: 113.078
-67200/69092	Loss: 111.854
-Training time 0:01:57.293184
-Epoch: 66 Average loss: 112.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 207)
-0/69092	Loss: 121.578
-3200/69092	Loss: 112.014
-6400/69092	Loss: 111.408
-9600/69092	Loss: 114.871
-12800/69092	Loss: 112.817
-16000/69092	Loss: 111.106
-19200/69092	Loss: 111.748
-22400/69092	Loss: 111.850
-25600/69092	Loss: 113.682
-28800/69092	Loss: 112.155
-32000/69092	Loss: 111.136
-35200/69092	Loss: 114.829
-38400/69092	Loss: 109.859
-41600/69092	Loss: 114.682
-44800/69092	Loss: 112.475
-48000/69092	Loss: 113.490
-51200/69092	Loss: 113.920
-54400/69092	Loss: 113.714
-57600/69092	Loss: 112.002
-60800/69092	Loss: 113.716
-64000/69092	Loss: 113.480
-67200/69092	Loss: 112.792
-Training time 0:01:57.191413
-Epoch: 67 Average loss: 112.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 208)
-0/69092	Loss: 112.806
-3200/69092	Loss: 113.068
-6400/69092	Loss: 114.299
-9600/69092	Loss: 113.946
-12800/69092	Loss: 113.426
-16000/69092	Loss: 114.277
-19200/69092	Loss: 111.715
-22400/69092	Loss: 112.805
-25600/69092	Loss: 113.436
-28800/69092	Loss: 111.918
-32000/69092	Loss: 110.794
-35200/69092	Loss: 113.398
-38400/69092	Loss: 112.557
-41600/69092	Loss: 113.606
-44800/69092	Loss: 112.019
-48000/69092	Loss: 112.819
-51200/69092	Loss: 112.972
-54400/69092	Loss: 112.156
-57600/69092	Loss: 114.157
-60800/69092	Loss: 112.676
-64000/69092	Loss: 110.638
-67200/69092	Loss: 112.451
-Training time 0:01:57.261387
-Epoch: 68 Average loss: 112.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 209)
-0/69092	Loss: 113.386
-3200/69092	Loss: 114.170
-6400/69092	Loss: 110.506
-9600/69092	Loss: 113.760
-12800/69092	Loss: 111.703
-16000/69092	Loss: 112.979
-19200/69092	Loss: 113.631
-22400/69092	Loss: 112.239
-25600/69092	Loss: 113.287
-28800/69092	Loss: 112.579
-32000/69092	Loss: 112.529
-35200/69092	Loss: 112.516
-38400/69092	Loss: 112.248
-41600/69092	Loss: 110.628
-44800/69092	Loss: 111.668
-48000/69092	Loss: 114.073
-51200/69092	Loss: 114.264
-54400/69092	Loss: 111.930
-57600/69092	Loss: 113.082
-60800/69092	Loss: 113.034
-64000/69092	Loss: 111.445
-67200/69092	Loss: 113.708
-Training time 0:01:57.350971
-Epoch: 69 Average loss: 112.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 210)
-0/69092	Loss: 125.102
-3200/69092	Loss: 113.944
-6400/69092	Loss: 113.237
-9600/69092	Loss: 112.432
-12800/69092	Loss: 113.079
-16000/69092	Loss: 113.065
-19200/69092	Loss: 113.352
-22400/69092	Loss: 111.868
-25600/69092	Loss: 111.362
-28800/69092	Loss: 111.899
-32000/69092	Loss: 112.378
-35200/69092	Loss: 113.345
-38400/69092	Loss: 113.601
-41600/69092	Loss: 113.423
-44800/69092	Loss: 113.835
-48000/69092	Loss: 113.524
-51200/69092	Loss: 111.625
-54400/69092	Loss: 110.301
-57600/69092	Loss: 113.257
-60800/69092	Loss: 112.360
-64000/69092	Loss: 113.661
-67200/69092	Loss: 111.989
-Training time 0:01:57.706960
-Epoch: 70 Average loss: 112.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 211)
-0/69092	Loss: 109.951
-3200/69092	Loss: 111.585
-6400/69092	Loss: 112.386
-9600/69092	Loss: 114.688
-12800/69092	Loss: 112.558
-16000/69092	Loss: 114.412
-19200/69092	Loss: 110.693
-22400/69092	Loss: 112.368
-25600/69092	Loss: 111.187
-28800/69092	Loss: 110.824
-32000/69092	Loss: 111.415
-35200/69092	Loss: 113.049
-38400/69092	Loss: 112.739
-41600/69092	Loss: 114.434
-44800/69092	Loss: 112.295
-48000/69092	Loss: 111.453
-51200/69092	Loss: 113.783
-54400/69092	Loss: 114.709
-57600/69092	Loss: 114.544
-60800/69092	Loss: 111.354
-64000/69092	Loss: 113.425
-67200/69092	Loss: 114.318
-Training time 0:01:56.501884
-Epoch: 71 Average loss: 112.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 212)
-0/69092	Loss: 115.720
-3200/69092	Loss: 112.429
-6400/69092	Loss: 110.584
-9600/69092	Loss: 113.790
-12800/69092	Loss: 112.467
-16000/69092	Loss: 112.473
-19200/69092	Loss: 113.625
-22400/69092	Loss: 113.141
-25600/69092	Loss: 111.571
-28800/69092	Loss: 113.934
-32000/69092	Loss: 113.007
-35200/69092	Loss: 113.262
-38400/69092	Loss: 112.649
-41600/69092	Loss: 111.434
-44800/69092	Loss: 113.323
-48000/69092	Loss: 111.536
-51200/69092	Loss: 114.455
-54400/69092	Loss: 112.240
-57600/69092	Loss: 113.238
-60800/69092	Loss: 111.717
-64000/69092	Loss: 112.014
-67200/69092	Loss: 111.735
-Training time 0:01:58.567226
-Epoch: 72 Average loss: 112.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 213)
-0/69092	Loss: 111.391
-3200/69092	Loss: 110.615
-6400/69092	Loss: 111.063
-9600/69092	Loss: 113.281
-12800/69092	Loss: 113.252
-16000/69092	Loss: 113.083
-19200/69092	Loss: 112.328
-22400/69092	Loss: 112.919
-25600/69092	Loss: 113.872
-28800/69092	Loss: 112.001
-32000/69092	Loss: 112.789
-35200/69092	Loss: 112.941
-38400/69092	Loss: 113.896
-41600/69092	Loss: 112.776
-44800/69092	Loss: 112.682
-48000/69092	Loss: 111.300
-51200/69092	Loss: 112.580
-54400/69092	Loss: 113.257
-57600/69092	Loss: 113.428
-60800/69092	Loss: 111.667
-64000/69092	Loss: 112.985
-67200/69092	Loss: 113.264
-Training time 0:01:59.109756
-Epoch: 73 Average loss: 112.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 214)
-0/69092	Loss: 105.142
-3200/69092	Loss: 112.594
-6400/69092	Loss: 110.573
-9600/69092	Loss: 111.890
-12800/69092	Loss: 110.356
-16000/69092	Loss: 112.265
-19200/69092	Loss: 112.690
-22400/69092	Loss: 112.969
-25600/69092	Loss: 113.605
-28800/69092	Loss: 111.696
-32000/69092	Loss: 113.205
-35200/69092	Loss: 111.634
-38400/69092	Loss: 111.312
-41600/69092	Loss: 112.915
-44800/69092	Loss: 114.137
-48000/69092	Loss: 113.250
-51200/69092	Loss: 113.176
-54400/69092	Loss: 113.504
-57600/69092	Loss: 113.093
-60800/69092	Loss: 112.143
-64000/69092	Loss: 112.619
-67200/69092	Loss: 113.034
-Training time 0:01:57.727148
-Epoch: 74 Average loss: 112.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 215)
-0/69092	Loss: 106.662
-3200/69092	Loss: 111.343
-6400/69092	Loss: 113.590
-9600/69092	Loss: 113.685
-12800/69092	Loss: 111.313
-16000/69092	Loss: 113.363
-19200/69092	Loss: 111.301
-22400/69092	Loss: 112.669
-25600/69092	Loss: 111.878
-28800/69092	Loss: 114.197
-32000/69092	Loss: 112.956
-35200/69092	Loss: 112.539
-38400/69092	Loss: 112.137
-41600/69092	Loss: 113.329
-44800/69092	Loss: 112.944
-48000/69092	Loss: 113.005
-51200/69092	Loss: 112.354
-54400/69092	Loss: 111.350
-57600/69092	Loss: 113.151
-60800/69092	Loss: 113.402
-64000/69092	Loss: 112.928
-67200/69092	Loss: 111.612
-Training time 0:01:58.503154
-Epoch: 75 Average loss: 112.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 216)
-0/69092	Loss: 109.634
-3200/69092	Loss: 112.922
-6400/69092	Loss: 111.558
-9600/69092	Loss: 111.909
-12800/69092	Loss: 112.965
-16000/69092	Loss: 114.224
-19200/69092	Loss: 109.836
-22400/69092	Loss: 112.878
-25600/69092	Loss: 113.737
-28800/69092	Loss: 111.219
-32000/69092	Loss: 112.265
-35200/69092	Loss: 111.559
-38400/69092	Loss: 112.683
-41600/69092	Loss: 112.252
-44800/69092	Loss: 111.319
-48000/69092	Loss: 112.530
-51200/69092	Loss: 112.719
-54400/69092	Loss: 114.480
-57600/69092	Loss: 113.720
-60800/69092	Loss: 112.721
-64000/69092	Loss: 111.756
-67200/69092	Loss: 114.433
-Training time 0:01:57.915950
-Epoch: 76 Average loss: 112.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 217)
-0/69092	Loss: 110.370
-3200/69092	Loss: 113.485
-6400/69092	Loss: 111.071
-9600/69092	Loss: 112.981
-12800/69092	Loss: 113.115
-16000/69092	Loss: 113.565
-19200/69092	Loss: 112.656
-22400/69092	Loss: 112.244
-25600/69092	Loss: 113.620
-28800/69092	Loss: 112.454
-32000/69092	Loss: 113.654
-35200/69092	Loss: 110.934
-38400/69092	Loss: 110.700
-41600/69092	Loss: 111.663
-44800/69092	Loss: 111.770
-48000/69092	Loss: 113.938
-51200/69092	Loss: 112.635
-54400/69092	Loss: 111.136
-57600/69092	Loss: 114.183
-60800/69092	Loss: 110.725
-64000/69092	Loss: 111.686
-67200/69092	Loss: 113.193
-Training time 0:01:58.140659
-Epoch: 77 Average loss: 112.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 218)
-0/69092	Loss: 119.513
-3200/69092	Loss: 112.164
-6400/69092	Loss: 115.295
-9600/69092	Loss: 112.260
-12800/69092	Loss: 115.003
-16000/69092	Loss: 113.505
-19200/69092	Loss: 111.126
-22400/69092	Loss: 112.373
-25600/69092	Loss: 114.709
-28800/69092	Loss: 113.183
-32000/69092	Loss: 112.834
-35200/69092	Loss: 110.947
-38400/69092	Loss: 114.188
-41600/69092	Loss: 113.869
-44800/69092	Loss: 111.811
-48000/69092	Loss: 112.425
-51200/69092	Loss: 111.222
-54400/69092	Loss: 109.423
-57600/69092	Loss: 111.643
-60800/69092	Loss: 111.004
-64000/69092	Loss: 112.427
-67200/69092	Loss: 110.218
-Training time 0:01:58.233680
-Epoch: 78 Average loss: 112.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 219)
-0/69092	Loss: 112.880
-3200/69092	Loss: 111.231
-6400/69092	Loss: 111.246
-9600/69092	Loss: 112.264
-12800/69092	Loss: 111.231
-16000/69092	Loss: 113.573
-19200/69092	Loss: 112.453
-22400/69092	Loss: 111.672
-25600/69092	Loss: 111.678
-28800/69092	Loss: 112.624
-32000/69092	Loss: 113.164
-35200/69092	Loss: 112.180
-38400/69092	Loss: 111.770
-41600/69092	Loss: 114.413
-44800/69092	Loss: 113.653
-48000/69092	Loss: 112.630
-51200/69092	Loss: 114.465
-54400/69092	Loss: 111.538
-57600/69092	Loss: 111.864
-60800/69092	Loss: 113.904
-64000/69092	Loss: 113.190
-67200/69092	Loss: 112.678
-Training time 0:01:58.886331
-Epoch: 79 Average loss: 112.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 220)
-0/69092	Loss: 128.631
-3200/69092	Loss: 112.969
-6400/69092	Loss: 113.126
-9600/69092	Loss: 112.544
-12800/69092	Loss: 114.528
-16000/69092	Loss: 113.954
-19200/69092	Loss: 113.491
-22400/69092	Loss: 112.045
-25600/69092	Loss: 112.418
-28800/69092	Loss: 112.261
-32000/69092	Loss: 112.555
-35200/69092	Loss: 112.481
-38400/69092	Loss: 113.040
-41600/69092	Loss: 112.316
-44800/69092	Loss: 113.381
-48000/69092	Loss: 110.421
-51200/69092	Loss: 112.938
-54400/69092	Loss: 112.496
-57600/69092	Loss: 111.130
-60800/69092	Loss: 112.314
-64000/69092	Loss: 111.236
-67200/69092	Loss: 112.486
-Training time 0:01:59.192499
-Epoch: 80 Average loss: 112.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 221)
-0/69092	Loss: 110.983
-3200/69092	Loss: 111.795
-6400/69092	Loss: 114.281
-9600/69092	Loss: 114.297
-12800/69092	Loss: 111.781
-16000/69092	Loss: 113.590
-19200/69092	Loss: 111.945
-22400/69092	Loss: 111.954
-25600/69092	Loss: 114.341
-28800/69092	Loss: 111.819
-32000/69092	Loss: 111.738
-35200/69092	Loss: 112.450
-38400/69092	Loss: 112.232
-41600/69092	Loss: 113.709
-44800/69092	Loss: 109.591
-48000/69092	Loss: 111.978
-51200/69092	Loss: 113.746
-54400/69092	Loss: 112.940
-57600/69092	Loss: 111.191
-60800/69092	Loss: 113.764
-64000/69092	Loss: 110.196
-67200/69092	Loss: 113.870
-Training time 0:01:58.037191
-Epoch: 81 Average loss: 112.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 222)
-0/69092	Loss: 106.766
-3200/69092	Loss: 110.676
-6400/69092	Loss: 112.739
-9600/69092	Loss: 114.432
-12800/69092	Loss: 111.230
-16000/69092	Loss: 113.746
-19200/69092	Loss: 112.254
-22400/69092	Loss: 110.426
-25600/69092	Loss: 112.839
-28800/69092	Loss: 111.624
-32000/69092	Loss: 111.983
-35200/69092	Loss: 112.184
-38400/69092	Loss: 113.878
-41600/69092	Loss: 112.466
-44800/69092	Loss: 113.243
-48000/69092	Loss: 113.959
-51200/69092	Loss: 111.869
-54400/69092	Loss: 114.875
-57600/69092	Loss: 113.464
-60800/69092	Loss: 111.022
-64000/69092	Loss: 112.748
-67200/69092	Loss: 113.343
-Training time 0:01:57.151935
-Epoch: 82 Average loss: 112.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 223)
-0/69092	Loss: 112.459
-3200/69092	Loss: 113.521
-6400/69092	Loss: 112.971
-9600/69092	Loss: 114.863
-12800/69092	Loss: 113.266
-16000/69092	Loss: 111.280
-19200/69092	Loss: 113.492
-22400/69092	Loss: 111.211
-25600/69092	Loss: 112.837
-28800/69092	Loss: 111.302
-32000/69092	Loss: 112.393
-35200/69092	Loss: 113.066
-38400/69092	Loss: 111.966
-41600/69092	Loss: 113.211
-44800/69092	Loss: 112.303
-48000/69092	Loss: 112.610
-51200/69092	Loss: 111.012
-54400/69092	Loss: 113.453
-57600/69092	Loss: 113.841
-60800/69092	Loss: 111.124
-64000/69092	Loss: 111.964
-67200/69092	Loss: 112.159
-Training time 0:01:57.861526
-Epoch: 83 Average loss: 112.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 224)
-0/69092	Loss: 112.569
-3200/69092	Loss: 112.110
-6400/69092	Loss: 111.643
-9600/69092	Loss: 111.477
-12800/69092	Loss: 111.725
-16000/69092	Loss: 112.504
-19200/69092	Loss: 114.204
-22400/69092	Loss: 111.431
-25600/69092	Loss: 113.620
-28800/69092	Loss: 112.256
-32000/69092	Loss: 110.583
-35200/69092	Loss: 111.800
-38400/69092	Loss: 111.793
-41600/69092	Loss: 114.786
-44800/69092	Loss: 112.921
-48000/69092	Loss: 111.340
-51200/69092	Loss: 112.890
-54400/69092	Loss: 111.795
-57600/69092	Loss: 115.177
-60800/69092	Loss: 112.495
-64000/69092	Loss: 113.175
-67200/69092	Loss: 113.448
-Training time 0:01:56.508485
-Epoch: 84 Average loss: 112.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 225)
-0/69092	Loss: 108.268
-3200/69092	Loss: 113.082
-6400/69092	Loss: 113.174
-9600/69092	Loss: 112.854
-12800/69092	Loss: 111.730
-16000/69092	Loss: 112.991
-19200/69092	Loss: 112.370
-22400/69092	Loss: 112.805
-25600/69092	Loss: 112.939
-28800/69092	Loss: 110.554
-32000/69092	Loss: 112.918
-35200/69092	Loss: 112.305
-38400/69092	Loss: 112.502
-41600/69092	Loss: 112.318
-44800/69092	Loss: 114.760
-48000/69092	Loss: 110.678
-51200/69092	Loss: 111.979
-54400/69092	Loss: 113.421
-57600/69092	Loss: 111.349
-60800/69092	Loss: 111.670
-64000/69092	Loss: 110.914
-67200/69092	Loss: 115.127
-Training time 0:01:57.954607
-Epoch: 85 Average loss: 112.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 226)
-0/69092	Loss: 121.964
-3200/69092	Loss: 111.323
-6400/69092	Loss: 112.121
-9600/69092	Loss: 113.463
-12800/69092	Loss: 113.063
-16000/69092	Loss: 112.890
-19200/69092	Loss: 113.526
-22400/69092	Loss: 112.961
-25600/69092	Loss: 111.565
-28800/69092	Loss: 111.969
-32000/69092	Loss: 113.186
-35200/69092	Loss: 112.689
-38400/69092	Loss: 112.469
-41600/69092	Loss: 113.112
-44800/69092	Loss: 113.887
-48000/69092	Loss: 112.435
-51200/69092	Loss: 113.260
-54400/69092	Loss: 112.285
-57600/69092	Loss: 111.916
-60800/69092	Loss: 112.957
-64000/69092	Loss: 111.678
-67200/69092	Loss: 110.248
-Training time 0:01:56.265853
-Epoch: 86 Average loss: 112.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 227)
-0/69092	Loss: 109.157
-3200/69092	Loss: 113.487
-6400/69092	Loss: 111.748
-9600/69092	Loss: 113.971
-12800/69092	Loss: 113.269
-16000/69092	Loss: 111.564
-19200/69092	Loss: 112.596
-22400/69092	Loss: 113.633
-25600/69092	Loss: 112.949
-28800/69092	Loss: 112.985
-32000/69092	Loss: 113.670
-35200/69092	Loss: 111.751
-38400/69092	Loss: 109.655
-41600/69092	Loss: 113.779
-44800/69092	Loss: 112.315
-48000/69092	Loss: 113.399
-51200/69092	Loss: 111.939
-54400/69092	Loss: 112.200
-57600/69092	Loss: 112.255
-60800/69092	Loss: 113.125
-64000/69092	Loss: 110.611
-67200/69092	Loss: 111.268
-Training time 0:01:55.365660
-Epoch: 87 Average loss: 112.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 228)
-0/69092	Loss: 116.874
-3200/69092	Loss: 113.586
-6400/69092	Loss: 112.407
-9600/69092	Loss: 112.673
-12800/69092	Loss: 112.387
-16000/69092	Loss: 111.351
-19200/69092	Loss: 112.815
-22400/69092	Loss: 113.230
-25600/69092	Loss: 112.361
-28800/69092	Loss: 113.541
-32000/69092	Loss: 111.372
-35200/69092	Loss: 114.097
-38400/69092	Loss: 113.668
-41600/69092	Loss: 112.039
-44800/69092	Loss: 111.892
-48000/69092	Loss: 111.060
-51200/69092	Loss: 111.540
-54400/69092	Loss: 112.278
-57600/69092	Loss: 113.199
-60800/69092	Loss: 112.627
-64000/69092	Loss: 113.202
-67200/69092	Loss: 113.085
-Training time 0:01:57.042352
-Epoch: 88 Average loss: 112.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 229)
-0/69092	Loss: 114.875
-3200/69092	Loss: 112.138
-6400/69092	Loss: 111.415
-9600/69092	Loss: 111.738
-12800/69092	Loss: 110.809
-16000/69092	Loss: 113.625
-19200/69092	Loss: 111.668
-22400/69092	Loss: 114.136
-25600/69092	Loss: 111.754
-28800/69092	Loss: 112.277
-32000/69092	Loss: 113.830
-35200/69092	Loss: 113.253
-38400/69092	Loss: 110.957
-41600/69092	Loss: 109.613
-44800/69092	Loss: 114.308
-48000/69092	Loss: 110.400
-51200/69092	Loss: 113.213
-54400/69092	Loss: 114.264
-57600/69092	Loss: 113.775
-60800/69092	Loss: 113.685
-64000/69092	Loss: 114.123
-67200/69092	Loss: 112.675
-Training time 0:01:56.362619
-Epoch: 89 Average loss: 112.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 230)
-0/69092	Loss: 113.780
-3200/69092	Loss: 110.638
-6400/69092	Loss: 110.601
-9600/69092	Loss: 113.225
-12800/69092	Loss: 111.759
-16000/69092	Loss: 111.304
-19200/69092	Loss: 111.822
-22400/69092	Loss: 111.951
-25600/69092	Loss: 114.009
-28800/69092	Loss: 113.582
-32000/69092	Loss: 111.096
-35200/69092	Loss: 112.199
-38400/69092	Loss: 112.879
-41600/69092	Loss: 112.579
-44800/69092	Loss: 112.746
-48000/69092	Loss: 115.082
-51200/69092	Loss: 110.698
-54400/69092	Loss: 114.595
-57600/69092	Loss: 111.723
-60800/69092	Loss: 113.068
-64000/69092	Loss: 113.374
-67200/69092	Loss: 111.968
-Training time 0:01:57.460918
-Epoch: 90 Average loss: 112.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 231)
-0/69092	Loss: 128.725
-3200/69092	Loss: 113.530
-6400/69092	Loss: 110.484
-9600/69092	Loss: 111.388
-12800/69092	Loss: 111.532
-16000/69092	Loss: 114.390
-19200/69092	Loss: 112.773
-22400/69092	Loss: 112.701
-25600/69092	Loss: 111.224
-28800/69092	Loss: 112.133
-32000/69092	Loss: 112.773
-35200/69092	Loss: 111.604
-38400/69092	Loss: 112.374
-41600/69092	Loss: 112.812
-44800/69092	Loss: 112.262
-48000/69092	Loss: 113.658
-51200/69092	Loss: 112.086
-54400/69092	Loss: 112.476
-57600/69092	Loss: 111.860
-60800/69092	Loss: 114.189
-64000/69092	Loss: 111.349
-67200/69092	Loss: 113.362
-Training time 0:01:57.583728
-Epoch: 91 Average loss: 112.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 232)
-0/69092	Loss: 112.169
-3200/69092	Loss: 112.838
-6400/69092	Loss: 112.009
-9600/69092	Loss: 112.562
-12800/69092	Loss: 110.737
-16000/69092	Loss: 112.397
-19200/69092	Loss: 111.796
-22400/69092	Loss: 113.050
-25600/69092	Loss: 112.202
-28800/69092	Loss: 111.759
-32000/69092	Loss: 112.713
-35200/69092	Loss: 113.893
-38400/69092	Loss: 112.594
-41600/69092	Loss: 114.052
-44800/69092	Loss: 112.531
-48000/69092	Loss: 112.984
-51200/69092	Loss: 111.920
-54400/69092	Loss: 113.424
-57600/69092	Loss: 111.371
-60800/69092	Loss: 110.712
-64000/69092	Loss: 112.798
-67200/69092	Loss: 110.935
-Training time 0:01:56.638898
-Epoch: 92 Average loss: 112.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 233)
-0/69092	Loss: 104.901
-3200/69092	Loss: 113.506
-6400/69092	Loss: 110.374
-9600/69092	Loss: 113.009
-12800/69092	Loss: 113.245
-16000/69092	Loss: 111.917
-19200/69092	Loss: 112.796
-22400/69092	Loss: 110.250
-25600/69092	Loss: 110.654
-28800/69092	Loss: 112.481
-32000/69092	Loss: 113.008
-35200/69092	Loss: 111.767
-38400/69092	Loss: 110.780
-41600/69092	Loss: 113.789
-44800/69092	Loss: 112.085
-48000/69092	Loss: 113.199
-51200/69092	Loss: 112.478
-54400/69092	Loss: 114.154
-57600/69092	Loss: 113.327
-60800/69092	Loss: 112.483
-64000/69092	Loss: 113.620
-67200/69092	Loss: 112.331
-Training time 0:01:58.264885
-Epoch: 93 Average loss: 112.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 234)
-0/69092	Loss: 102.670
-3200/69092	Loss: 111.317
-6400/69092	Loss: 113.022
-9600/69092	Loss: 112.766
-12800/69092	Loss: 112.702
-16000/69092	Loss: 111.284
-19200/69092	Loss: 110.661
-22400/69092	Loss: 111.850
-25600/69092	Loss: 113.525
-28800/69092	Loss: 113.103
-32000/69092	Loss: 111.017
-35200/69092	Loss: 111.895
-38400/69092	Loss: 113.335
-41600/69092	Loss: 113.631
-44800/69092	Loss: 111.002
-48000/69092	Loss: 113.389
-51200/69092	Loss: 112.564
-54400/69092	Loss: 115.150
-57600/69092	Loss: 112.661
-60800/69092	Loss: 109.555
-64000/69092	Loss: 111.753
-67200/69092	Loss: 113.512
-Training time 0:01:57.561475
-Epoch: 94 Average loss: 112.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 235)
-0/69092	Loss: 111.616
-3200/69092	Loss: 111.908
-6400/69092	Loss: 114.024
-9600/69092	Loss: 112.815
-12800/69092	Loss: 112.405
-16000/69092	Loss: 112.368
-19200/69092	Loss: 112.817
-22400/69092	Loss: 112.361
-25600/69092	Loss: 112.703
-28800/69092	Loss: 113.290
-32000/69092	Loss: 112.128
-35200/69092	Loss: 111.069
-38400/69092	Loss: 112.229
-41600/69092	Loss: 111.405
-44800/69092	Loss: 112.453
-48000/69092	Loss: 111.708
-51200/69092	Loss: 110.954
-54400/69092	Loss: 112.996
-57600/69092	Loss: 110.041
-60800/69092	Loss: 113.277
-64000/69092	Loss: 111.377
-67200/69092	Loss: 112.470
-Training time 0:01:57.399955
-Epoch: 95 Average loss: 112.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 236)
-0/69092	Loss: 108.858
-3200/69092	Loss: 112.788
-6400/69092	Loss: 113.286
-9600/69092	Loss: 112.635
-12800/69092	Loss: 111.946
-16000/69092	Loss: 112.513
-19200/69092	Loss: 113.211
-22400/69092	Loss: 112.744
-25600/69092	Loss: 113.010
-28800/69092	Loss: 110.110
-32000/69092	Loss: 114.224
-35200/69092	Loss: 113.327
-38400/69092	Loss: 111.222
-41600/69092	Loss: 112.321
-44800/69092	Loss: 112.465
-48000/69092	Loss: 112.242
-51200/69092	Loss: 114.034
-54400/69092	Loss: 111.427
-57600/69092	Loss: 112.722
-60800/69092	Loss: 110.585
-64000/69092	Loss: 110.285
-67200/69092	Loss: 112.110
-Training time 0:01:57.737669
-Epoch: 96 Average loss: 112.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 237)
-0/69092	Loss: 113.734
-3200/69092	Loss: 112.927
-6400/69092	Loss: 110.756
-9600/69092	Loss: 112.624
-12800/69092	Loss: 113.738
-16000/69092	Loss: 113.159
-19200/69092	Loss: 110.637
-22400/69092	Loss: 111.946
-25600/69092	Loss: 111.776
-28800/69092	Loss: 112.537
-32000/69092	Loss: 111.712
-35200/69092	Loss: 111.581
-38400/69092	Loss: 113.931
-41600/69092	Loss: 113.069
-44800/69092	Loss: 113.205
-48000/69092	Loss: 111.657
-51200/69092	Loss: 112.759
-54400/69092	Loss: 113.272
-57600/69092	Loss: 112.965
-60800/69092	Loss: 113.063
-64000/69092	Loss: 112.486
-67200/69092	Loss: 113.419
-Training time 0:01:58.457412
-Epoch: 97 Average loss: 112.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 238)
-0/69092	Loss: 108.410
-3200/69092	Loss: 113.605
-6400/69092	Loss: 112.954
-9600/69092	Loss: 111.622
-12800/69092	Loss: 112.280
-16000/69092	Loss: 112.006
-19200/69092	Loss: 111.360
-22400/69092	Loss: 112.516
-25600/69092	Loss: 112.452
-28800/69092	Loss: 111.874
-32000/69092	Loss: 113.323
-35200/69092	Loss: 111.920
-38400/69092	Loss: 112.724
-41600/69092	Loss: 111.703
-44800/69092	Loss: 112.722
-48000/69092	Loss: 111.623
-51200/69092	Loss: 111.738
-54400/69092	Loss: 111.144
-57600/69092	Loss: 112.676
-60800/69092	Loss: 113.212
-64000/69092	Loss: 111.363
-67200/69092	Loss: 112.736
-Training time 0:01:59.224965
-Epoch: 98 Average loss: 112.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 239)
-0/69092	Loss: 111.845
-3200/69092	Loss: 113.693
-6400/69092	Loss: 111.175
-9600/69092	Loss: 113.933
-12800/69092	Loss: 112.771
-16000/69092	Loss: 110.274
-19200/69092	Loss: 111.342
-22400/69092	Loss: 110.797
-25600/69092	Loss: 111.887
-28800/69092	Loss: 111.159
-32000/69092	Loss: 112.912
-35200/69092	Loss: 112.362
-38400/69092	Loss: 111.300
-41600/69092	Loss: 112.362
-44800/69092	Loss: 113.710
-48000/69092	Loss: 113.416
-51200/69092	Loss: 114.248
-54400/69092	Loss: 113.388
-57600/69092	Loss: 113.971
-60800/69092	Loss: 112.745
-64000/69092	Loss: 111.748
-67200/69092	Loss: 111.991
-Training time 0:01:58.678730
-Epoch: 99 Average loss: 112.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 240)
-0/69092	Loss: 110.661
-3200/69092	Loss: 112.339
-6400/69092	Loss: 111.748
-9600/69092	Loss: 111.444
-12800/69092	Loss: 111.422
-16000/69092	Loss: 111.832
-19200/69092	Loss: 110.530
-22400/69092	Loss: 112.211
-25600/69092	Loss: 112.419
-28800/69092	Loss: 113.769
-32000/69092	Loss: 111.190
-35200/69092	Loss: 112.705
-38400/69092	Loss: 110.066
-41600/69092	Loss: 111.861
-44800/69092	Loss: 113.482
-48000/69092	Loss: 113.957
-51200/69092	Loss: 112.604
-54400/69092	Loss: 113.089
-57600/69092	Loss: 112.564
-60800/69092	Loss: 113.803
-64000/69092	Loss: 112.737
-67200/69092	Loss: 113.359
-Training time 0:01:56.680057
-Epoch: 100 Average loss: 112.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 241)
-0/69092	Loss: 110.930
-3200/69092	Loss: 112.815
-6400/69092	Loss: 112.960
-9600/69092	Loss: 113.546
-12800/69092	Loss: 112.789
-16000/69092	Loss: 112.152
-19200/69092	Loss: 112.332
-22400/69092	Loss: 112.596
-25600/69092	Loss: 110.187
-28800/69092	Loss: 111.092
-32000/69092	Loss: 112.499
-35200/69092	Loss: 110.721
-38400/69092	Loss: 111.915
-41600/69092	Loss: 114.503
-44800/69092	Loss: 112.824
-48000/69092	Loss: 112.665
-51200/69092	Loss: 111.630
-54400/69092	Loss: 113.112
-57600/69092	Loss: 112.477
-60800/69092	Loss: 111.280
-64000/69092	Loss: 111.140
-67200/69092	Loss: 112.843
-Training time 0:01:57.646950
-Epoch: 101 Average loss: 112.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 242)
-0/69092	Loss: 115.128
-3200/69092	Loss: 112.378
-6400/69092	Loss: 110.980
-9600/69092	Loss: 113.601
-12800/69092	Loss: 111.631
-16000/69092	Loss: 111.741
-19200/69092	Loss: 114.039
-22400/69092	Loss: 113.053
-25600/69092	Loss: 112.787
-28800/69092	Loss: 112.469
-32000/69092	Loss: 111.676
-35200/69092	Loss: 111.143
-38400/69092	Loss: 112.707
-41600/69092	Loss: 112.902
-44800/69092	Loss: 115.000
-48000/69092	Loss: 114.135
-51200/69092	Loss: 111.745
-54400/69092	Loss: 111.527
-57600/69092	Loss: 111.419
-60800/69092	Loss: 112.648
-64000/69092	Loss: 112.654
-67200/69092	Loss: 110.848
-Training time 0:01:57.675385
-Epoch: 102 Average loss: 112.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 243)
-0/69092	Loss: 122.110
-3200/69092	Loss: 111.696
-6400/69092	Loss: 113.218
-9600/69092	Loss: 111.855
-12800/69092	Loss: 111.998
-16000/69092	Loss: 111.435
-19200/69092	Loss: 114.606
-22400/69092	Loss: 111.574
-25600/69092	Loss: 112.168
-28800/69092	Loss: 113.102
-32000/69092	Loss: 110.812
-35200/69092	Loss: 111.244
-38400/69092	Loss: 110.454
-41600/69092	Loss: 111.764
-44800/69092	Loss: 111.940
-48000/69092	Loss: 112.859
-51200/69092	Loss: 111.696
-54400/69092	Loss: 112.131
-57600/69092	Loss: 114.864
-60800/69092	Loss: 112.273
-64000/69092	Loss: 113.124
-67200/69092	Loss: 112.506
-Training time 0:01:57.176206
-Epoch: 103 Average loss: 112.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 244)
-0/69092	Loss: 107.943
-3200/69092	Loss: 112.101
-6400/69092	Loss: 114.077
-9600/69092	Loss: 112.517
-12800/69092	Loss: 112.820
-16000/69092	Loss: 114.419
-19200/69092	Loss: 111.560
-22400/69092	Loss: 112.843
-25600/69092	Loss: 112.677
-28800/69092	Loss: 111.454
-32000/69092	Loss: 113.242
-35200/69092	Loss: 111.730
-38400/69092	Loss: 112.198
-41600/69092	Loss: 111.994
-44800/69092	Loss: 111.727
-48000/69092	Loss: 111.415
-51200/69092	Loss: 114.657
-54400/69092	Loss: 111.494
-57600/69092	Loss: 112.025
-60800/69092	Loss: 111.606
-64000/69092	Loss: 111.702
-67200/69092	Loss: 110.875
-Training time 0:01:57.934002
-Epoch: 104 Average loss: 112.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 245)
-0/69092	Loss: 118.837
-3200/69092	Loss: 112.914
-6400/69092	Loss: 112.777
-9600/69092	Loss: 113.202
-12800/69092	Loss: 112.745
-16000/69092	Loss: 112.602
-19200/69092	Loss: 111.085
-22400/69092	Loss: 111.904
-25600/69092	Loss: 113.905
-28800/69092	Loss: 112.016
-32000/69092	Loss: 114.198
-35200/69092	Loss: 112.954
-38400/69092	Loss: 112.641
-41600/69092	Loss: 110.650
-44800/69092	Loss: 110.040
-48000/69092	Loss: 110.839
-51200/69092	Loss: 111.753
-54400/69092	Loss: 111.339
-57600/69092	Loss: 112.851
-60800/69092	Loss: 110.588
-64000/69092	Loss: 112.322
-67200/69092	Loss: 111.523
-Training time 0:01:56.932822
-Epoch: 105 Average loss: 112.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 246)
-0/69092	Loss: 119.116
-3200/69092	Loss: 112.507
-6400/69092	Loss: 114.622
-9600/69092	Loss: 111.569
-12800/69092	Loss: 112.558
-16000/69092	Loss: 111.289
-19200/69092	Loss: 110.495
-22400/69092	Loss: 111.210
-25600/69092	Loss: 113.024
-28800/69092	Loss: 113.384
-32000/69092	Loss: 112.152
-35200/69092	Loss: 112.843
-38400/69092	Loss: 113.555
-41600/69092	Loss: 112.324
-44800/69092	Loss: 112.075
-48000/69092	Loss: 111.592
-51200/69092	Loss: 113.754
-54400/69092	Loss: 112.188
-57600/69092	Loss: 112.554
-60800/69092	Loss: 112.263
-64000/69092	Loss: 111.831
-67200/69092	Loss: 110.805
-Training time 0:01:56.950941
-Epoch: 106 Average loss: 112.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 247)
-0/69092	Loss: 104.412
-3200/69092	Loss: 111.679
-6400/69092	Loss: 112.090
-9600/69092	Loss: 111.886
-12800/69092	Loss: 112.062
-16000/69092	Loss: 112.733
-19200/69092	Loss: 112.301
-22400/69092	Loss: 112.985
-25600/69092	Loss: 113.072
-28800/69092	Loss: 112.380
-32000/69092	Loss: 112.159
-35200/69092	Loss: 110.853
-38400/69092	Loss: 113.615
-41600/69092	Loss: 111.124
-44800/69092	Loss: 112.985
-48000/69092	Loss: 111.388
-51200/69092	Loss: 114.311
-54400/69092	Loss: 112.027
-57600/69092	Loss: 111.420
-60800/69092	Loss: 111.063
-64000/69092	Loss: 112.437
-67200/69092	Loss: 113.936
-Training time 0:01:57.014313
-Epoch: 107 Average loss: 112.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 248)
-0/69092	Loss: 115.203
-3200/69092	Loss: 112.016
-6400/69092	Loss: 111.749
-9600/69092	Loss: 111.528
-12800/69092	Loss: 112.093
-16000/69092	Loss: 113.914
-19200/69092	Loss: 112.226
-22400/69092	Loss: 112.427
-25600/69092	Loss: 111.981
-28800/69092	Loss: 112.209
-32000/69092	Loss: 111.937
-35200/69092	Loss: 111.763
-38400/69092	Loss: 112.318
-41600/69092	Loss: 112.454
-44800/69092	Loss: 113.071
-48000/69092	Loss: 112.119
-51200/69092	Loss: 112.597
-54400/69092	Loss: 112.414
-57600/69092	Loss: 113.179
-60800/69092	Loss: 112.642
-64000/69092	Loss: 111.958
-67200/69092	Loss: 112.401
-Training time 0:01:57.301862
-Epoch: 108 Average loss: 112.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 249)
-0/69092	Loss: 122.546
-3200/69092	Loss: 113.128
-6400/69092	Loss: 112.474
-9600/69092	Loss: 110.420
-12800/69092	Loss: 112.803
-16000/69092	Loss: 110.452
-19200/69092	Loss: 112.079
-22400/69092	Loss: 110.320
-25600/69092	Loss: 112.415
-28800/69092	Loss: 112.520
-32000/69092	Loss: 110.496
-35200/69092	Loss: 112.416
-38400/69092	Loss: 111.564
-41600/69092	Loss: 112.560
-44800/69092	Loss: 112.120
-48000/69092	Loss: 113.670
-51200/69092	Loss: 111.537
-54400/69092	Loss: 113.272
-57600/69092	Loss: 113.247
-60800/69092	Loss: 112.408
-64000/69092	Loss: 112.795
-67200/69092	Loss: 112.773
-Training time 0:01:56.308761
-Epoch: 109 Average loss: 112.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 250)
-0/69092	Loss: 98.938
-3200/69092	Loss: 111.445
-6400/69092	Loss: 113.297
-9600/69092	Loss: 112.665
-12800/69092	Loss: 112.216
-16000/69092	Loss: 112.548
-19200/69092	Loss: 113.707
-22400/69092	Loss: 112.265
-25600/69092	Loss: 112.643
-28800/69092	Loss: 111.430
-32000/69092	Loss: 111.949
-35200/69092	Loss: 112.830
-38400/69092	Loss: 112.370
-41600/69092	Loss: 110.079
-44800/69092	Loss: 111.474
-48000/69092	Loss: 109.858
-51200/69092	Loss: 112.089
-54400/69092	Loss: 114.173
-57600/69092	Loss: 114.180
-60800/69092	Loss: 111.812
-64000/69092	Loss: 112.274
-67200/69092	Loss: 113.646
-Training time 0:01:56.748136
-Epoch: 110 Average loss: 112.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 251)
-0/69092	Loss: 109.140
-3200/69092	Loss: 112.765
-6400/69092	Loss: 113.035
-9600/69092	Loss: 111.078
-12800/69092	Loss: 113.376
-16000/69092	Loss: 113.253
-19200/69092	Loss: 111.920
-22400/69092	Loss: 111.738
-25600/69092	Loss: 109.345
-28800/69092	Loss: 111.622
-32000/69092	Loss: 112.487
-35200/69092	Loss: 111.012
-38400/69092	Loss: 110.377
-41600/69092	Loss: 113.165
-44800/69092	Loss: 113.685
-48000/69092	Loss: 111.998
-51200/69092	Loss: 112.723
-54400/69092	Loss: 112.647
-57600/69092	Loss: 112.257
-60800/69092	Loss: 111.227
-64000/69092	Loss: 112.463
-67200/69092	Loss: 111.712
-Training time 0:01:56.515083
-Epoch: 111 Average loss: 112.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 252)
-0/69092	Loss: 110.661
-3200/69092	Loss: 111.328
-6400/69092	Loss: 111.800
-9600/69092	Loss: 112.689
-12800/69092	Loss: 111.939
-16000/69092	Loss: 111.356
-19200/69092	Loss: 113.590
-22400/69092	Loss: 110.786
-25600/69092	Loss: 110.686
-28800/69092	Loss: 111.201
-32000/69092	Loss: 112.002
-35200/69092	Loss: 112.562
-38400/69092	Loss: 112.656
-41600/69092	Loss: 110.836
-44800/69092	Loss: 112.719
-48000/69092	Loss: 112.621
-51200/69092	Loss: 113.685
-54400/69092	Loss: 112.028
-57600/69092	Loss: 115.000
-60800/69092	Loss: 113.152
-64000/69092	Loss: 110.856
-67200/69092	Loss: 111.474
-Training time 0:01:56.597435
-Epoch: 112 Average loss: 112.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 253)
-0/69092	Loss: 109.960
-3200/69092	Loss: 110.964
-6400/69092	Loss: 112.876
-9600/69092	Loss: 110.982
-12800/69092	Loss: 113.332
-16000/69092	Loss: 110.655
-19200/69092	Loss: 112.564
-22400/69092	Loss: 112.240
-25600/69092	Loss: 112.795
-28800/69092	Loss: 112.056
-32000/69092	Loss: 112.768
-35200/69092	Loss: 111.929
-38400/69092	Loss: 110.701
-41600/69092	Loss: 113.828
-44800/69092	Loss: 111.824
-48000/69092	Loss: 111.996
-51200/69092	Loss: 112.019
-54400/69092	Loss: 111.082
-57600/69092	Loss: 112.899
-60800/69092	Loss: 111.659
-64000/69092	Loss: 111.178
-67200/69092	Loss: 113.213
-Training time 0:01:57.918296
-Epoch: 113 Average loss: 112.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 254)
-0/69092	Loss: 118.086
-3200/69092	Loss: 111.598
-6400/69092	Loss: 114.653
-9600/69092	Loss: 112.980
-12800/69092	Loss: 112.017
-16000/69092	Loss: 112.215
-19200/69092	Loss: 112.215
-22400/69092	Loss: 111.565
-25600/69092	Loss: 111.433
-28800/69092	Loss: 111.878
-32000/69092	Loss: 112.721
-35200/69092	Loss: 110.890
-38400/69092	Loss: 110.228
-41600/69092	Loss: 112.251
-44800/69092	Loss: 110.539
-48000/69092	Loss: 113.110
-51200/69092	Loss: 111.918
-54400/69092	Loss: 112.831
-57600/69092	Loss: 111.676
-60800/69092	Loss: 111.244
-64000/69092	Loss: 112.928
-67200/69092	Loss: 112.688
-Training time 0:01:56.785403
-Epoch: 114 Average loss: 112.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 255)
-0/69092	Loss: 105.504
-3200/69092	Loss: 111.509
-6400/69092	Loss: 110.423
-9600/69092	Loss: 111.608
-12800/69092	Loss: 112.015
-16000/69092	Loss: 111.526
-19200/69092	Loss: 112.261
-22400/69092	Loss: 110.048
-25600/69092	Loss: 113.101
-28800/69092	Loss: 113.714
-32000/69092	Loss: 111.425
-35200/69092	Loss: 113.042
-38400/69092	Loss: 113.132
-41600/69092	Loss: 112.322
-44800/69092	Loss: 114.220
-48000/69092	Loss: 113.080
-51200/69092	Loss: 110.365
-54400/69092	Loss: 109.480
-57600/69092	Loss: 112.605
-60800/69092	Loss: 111.615
-64000/69092	Loss: 113.207
-67200/69092	Loss: 114.524
-Training time 0:01:57.574441
-Epoch: 115 Average loss: 112.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 256)
-0/69092	Loss: 112.621
-3200/69092	Loss: 111.410
-6400/69092	Loss: 113.177
-9600/69092	Loss: 111.835
-12800/69092	Loss: 113.086
-16000/69092	Loss: 110.949
-19200/69092	Loss: 111.810
-22400/69092	Loss: 111.389
-25600/69092	Loss: 114.276
-28800/69092	Loss: 111.165
-32000/69092	Loss: 112.905
-35200/69092	Loss: 111.984
-38400/69092	Loss: 112.424
-41600/69092	Loss: 111.574
-44800/69092	Loss: 111.835
-48000/69092	Loss: 111.637
-51200/69092	Loss: 112.245
-54400/69092	Loss: 113.529
-57600/69092	Loss: 112.601
-60800/69092	Loss: 112.377
-64000/69092	Loss: 111.574
-67200/69092	Loss: 111.307
-Training time 0:01:57.667118
-Epoch: 116 Average loss: 112.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 257)
-0/69092	Loss: 107.236
-3200/69092	Loss: 111.610
-6400/69092	Loss: 112.600
-9600/69092	Loss: 111.004
-12800/69092	Loss: 111.948
-16000/69092	Loss: 110.685
-19200/69092	Loss: 110.344
-22400/69092	Loss: 113.975
-25600/69092	Loss: 112.237
-28800/69092	Loss: 112.586
-32000/69092	Loss: 113.264
-35200/69092	Loss: 111.315
-38400/69092	Loss: 112.652
-41600/69092	Loss: 113.324
-44800/69092	Loss: 111.615
-48000/69092	Loss: 113.560
-51200/69092	Loss: 112.039
-54400/69092	Loss: 113.206
-57600/69092	Loss: 112.907
-60800/69092	Loss: 111.778
-64000/69092	Loss: 113.576
-67200/69092	Loss: 109.730
-Training time 0:01:58.268045
-Epoch: 117 Average loss: 112.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 258)
-0/69092	Loss: 119.309
-3200/69092	Loss: 109.940
-6400/69092	Loss: 110.648
-9600/69092	Loss: 112.478
-12800/69092	Loss: 112.512
-16000/69092	Loss: 111.950
-19200/69092	Loss: 112.965
-22400/69092	Loss: 113.168
-25600/69092	Loss: 112.653
-28800/69092	Loss: 111.329
-32000/69092	Loss: 112.938
-35200/69092	Loss: 112.107
-38400/69092	Loss: 112.749
-41600/69092	Loss: 111.167
-44800/69092	Loss: 113.240
-48000/69092	Loss: 112.599
-51200/69092	Loss: 111.117
-54400/69092	Loss: 111.381
-57600/69092	Loss: 112.368
-60800/69092	Loss: 111.555
-64000/69092	Loss: 113.408
-67200/69092	Loss: 112.892
-Training time 0:01:58.493072
-Epoch: 118 Average loss: 112.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 259)
-0/69092	Loss: 110.086
-3200/69092	Loss: 113.020
-6400/69092	Loss: 111.594
-9600/69092	Loss: 109.827
-12800/69092	Loss: 112.473
-16000/69092	Loss: 113.471
-19200/69092	Loss: 112.421
-22400/69092	Loss: 113.545
-25600/69092	Loss: 112.571
-28800/69092	Loss: 111.506
-32000/69092	Loss: 111.066
-35200/69092	Loss: 111.101
-38400/69092	Loss: 112.553
-41600/69092	Loss: 112.108
-44800/69092	Loss: 112.328
-48000/69092	Loss: 113.641
-51200/69092	Loss: 111.265
-54400/69092	Loss: 111.934
-57600/69092	Loss: 113.249
-60800/69092	Loss: 111.569
-64000/69092	Loss: 111.621
-67200/69092	Loss: 110.803
-Training time 0:01:57.863728
-Epoch: 119 Average loss: 112.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 260)
-0/69092	Loss: 107.729
-3200/69092	Loss: 111.098
-6400/69092	Loss: 112.683
-9600/69092	Loss: 114.338
-12800/69092	Loss: 111.751
-16000/69092	Loss: 111.751
-19200/69092	Loss: 111.278
-22400/69092	Loss: 110.961
-25600/69092	Loss: 112.530
-28800/69092	Loss: 114.040
-32000/69092	Loss: 112.281
-35200/69092	Loss: 112.416
-38400/69092	Loss: 111.593
-41600/69092	Loss: 110.715
-44800/69092	Loss: 112.425
-48000/69092	Loss: 111.945
-51200/69092	Loss: 113.088
-54400/69092	Loss: 113.703
-57600/69092	Loss: 113.058
-60800/69092	Loss: 111.201
-64000/69092	Loss: 109.807
-67200/69092	Loss: 112.162
-Training time 0:01:58.318562
-Epoch: 120 Average loss: 112.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 261)
-0/69092	Loss: 115.668
-3200/69092	Loss: 113.417
-6400/69092	Loss: 111.360
-9600/69092	Loss: 112.868
-12800/69092	Loss: 111.201
-16000/69092	Loss: 112.403
-19200/69092	Loss: 111.328
-22400/69092	Loss: 111.108
-25600/69092	Loss: 111.842
-28800/69092	Loss: 111.713
-32000/69092	Loss: 113.858
-35200/69092	Loss: 111.048
-38400/69092	Loss: 110.803
-41600/69092	Loss: 112.040
-44800/69092	Loss: 112.643
-48000/69092	Loss: 111.528
-51200/69092	Loss: 113.667
-54400/69092	Loss: 111.525
-57600/69092	Loss: 112.965
-60800/69092	Loss: 112.586
-64000/69092	Loss: 109.281
-67200/69092	Loss: 113.376
-Training time 0:01:59.138927
-Epoch: 121 Average loss: 112.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 262)
-0/69092	Loss: 102.175
-3200/69092	Loss: 109.960
-6400/69092	Loss: 112.384
-9600/69092	Loss: 110.948
-12800/69092	Loss: 111.415
-16000/69092	Loss: 113.569
-19200/69092	Loss: 111.811
-22400/69092	Loss: 112.280
-25600/69092	Loss: 113.318
-28800/69092	Loss: 111.813
-32000/69092	Loss: 112.473
-35200/69092	Loss: 111.266
-38400/69092	Loss: 113.206
-41600/69092	Loss: 112.823
-44800/69092	Loss: 110.928
-48000/69092	Loss: 112.257
-51200/69092	Loss: 113.370
-54400/69092	Loss: 112.357
-57600/69092	Loss: 111.404
-60800/69092	Loss: 111.087
-64000/69092	Loss: 110.713
-67200/69092	Loss: 111.838
-Training time 0:01:58.268645
-Epoch: 122 Average loss: 111.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 263)
-0/69092	Loss: 114.347
-3200/69092	Loss: 112.021
-6400/69092	Loss: 110.714
-9600/69092	Loss: 112.481
-12800/69092	Loss: 112.010
-16000/69092	Loss: 112.858
-19200/69092	Loss: 114.146
-22400/69092	Loss: 113.468
-25600/69092	Loss: 113.793
-28800/69092	Loss: 110.912
-32000/69092	Loss: 112.297
-35200/69092	Loss: 110.685
-38400/69092	Loss: 111.899
-41600/69092	Loss: 111.598
-44800/69092	Loss: 110.782
-48000/69092	Loss: 110.557
-51200/69092	Loss: 112.468
-54400/69092	Loss: 114.146
-57600/69092	Loss: 113.223
-60800/69092	Loss: 110.101
-64000/69092	Loss: 112.696
-67200/69092	Loss: 112.284
-Training time 0:01:58.717772
-Epoch: 123 Average loss: 112.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 264)
-0/69092	Loss: 114.796
-3200/69092	Loss: 111.597
-6400/69092	Loss: 112.164
-9600/69092	Loss: 112.020
-12800/69092	Loss: 113.329
-16000/69092	Loss: 112.340
-19200/69092	Loss: 113.006
-22400/69092	Loss: 112.646
-25600/69092	Loss: 111.458
-28800/69092	Loss: 111.624
-32000/69092	Loss: 110.047
-35200/69092	Loss: 113.653
-38400/69092	Loss: 110.712
-41600/69092	Loss: 112.988
-44800/69092	Loss: 111.665
-48000/69092	Loss: 109.792
-51200/69092	Loss: 113.108
-54400/69092	Loss: 112.833
-57600/69092	Loss: 113.314
-60800/69092	Loss: 111.704
-64000/69092	Loss: 110.928
-67200/69092	Loss: 112.795
-Training time 0:01:58.193320
-Epoch: 124 Average loss: 112.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 265)
-0/69092	Loss: 108.997
-3200/69092	Loss: 111.090
-6400/69092	Loss: 111.651
-9600/69092	Loss: 112.592
-12800/69092	Loss: 113.259
-16000/69092	Loss: 111.718
-19200/69092	Loss: 111.622
-22400/69092	Loss: 110.863
-25600/69092	Loss: 111.885
-28800/69092	Loss: 110.308
-32000/69092	Loss: 113.694
-35200/69092	Loss: 110.378
-38400/69092	Loss: 112.791
-41600/69092	Loss: 113.794
-44800/69092	Loss: 111.802
-48000/69092	Loss: 110.771
-51200/69092	Loss: 111.244
-54400/69092	Loss: 113.381
-57600/69092	Loss: 111.620
-60800/69092	Loss: 110.666
-64000/69092	Loss: 111.954
-67200/69092	Loss: 111.739
-Training time 0:01:57.941828
-Epoch: 125 Average loss: 111.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 266)
-0/69092	Loss: 123.242
-3200/69092	Loss: 110.574
-6400/69092	Loss: 114.011
-9600/69092	Loss: 111.405
-12800/69092	Loss: 111.924
-16000/69092	Loss: 112.379
-19200/69092	Loss: 112.513
-22400/69092	Loss: 112.633
-25600/69092	Loss: 111.569
-28800/69092	Loss: 109.637
-32000/69092	Loss: 111.933
-35200/69092	Loss: 112.171
-38400/69092	Loss: 112.258
-41600/69092	Loss: 113.604
-44800/69092	Loss: 112.474
-48000/69092	Loss: 111.926
-51200/69092	Loss: 110.240
-54400/69092	Loss: 113.540
-57600/69092	Loss: 113.718
-60800/69092	Loss: 112.365
-64000/69092	Loss: 112.068
-67200/69092	Loss: 113.282
-Training time 0:01:58.633467
-Epoch: 126 Average loss: 112.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 267)
-0/69092	Loss: 118.893
-3200/69092	Loss: 112.783
-6400/69092	Loss: 111.837
-9600/69092	Loss: 112.242
-12800/69092	Loss: 112.555
-16000/69092	Loss: 113.339
-19200/69092	Loss: 112.081
-22400/69092	Loss: 111.319
-25600/69092	Loss: 111.447
-28800/69092	Loss: 113.518
-32000/69092	Loss: 112.991
-35200/69092	Loss: 112.440
-38400/69092	Loss: 111.251
-41600/69092	Loss: 111.765
-44800/69092	Loss: 109.843
-48000/69092	Loss: 110.788
-51200/69092	Loss: 110.088
-54400/69092	Loss: 112.768
-57600/69092	Loss: 114.083
-60800/69092	Loss: 112.801
-64000/69092	Loss: 112.033
-67200/69092	Loss: 112.089
-Training time 0:01:57.055968
-Epoch: 127 Average loss: 112.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 268)
-0/69092	Loss: 110.885
-3200/69092	Loss: 112.572
-6400/69092	Loss: 111.447
-9600/69092	Loss: 112.685
-12800/69092	Loss: 111.153
-16000/69092	Loss: 110.326
-19200/69092	Loss: 113.495
-22400/69092	Loss: 111.638
-25600/69092	Loss: 112.952
-28800/69092	Loss: 109.724
-32000/69092	Loss: 112.432
-35200/69092	Loss: 114.034
-38400/69092	Loss: 112.584
-41600/69092	Loss: 112.523
-44800/69092	Loss: 110.940
-48000/69092	Loss: 111.957
-51200/69092	Loss: 110.980
-54400/69092	Loss: 111.456
-57600/69092	Loss: 109.690
-60800/69092	Loss: 112.595
-64000/69092	Loss: 114.273
-67200/69092	Loss: 112.951
-Training time 0:01:58.018575
-Epoch: 128 Average loss: 112.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 269)
-0/69092	Loss: 109.695
-3200/69092	Loss: 111.374
-6400/69092	Loss: 111.361
-9600/69092	Loss: 112.371
-12800/69092	Loss: 113.973
-16000/69092	Loss: 112.413
-19200/69092	Loss: 112.429
-22400/69092	Loss: 112.522
-25600/69092	Loss: 111.950
-28800/69092	Loss: 112.936
-32000/69092	Loss: 110.791
-35200/69092	Loss: 111.810
-38400/69092	Loss: 111.177
-41600/69092	Loss: 110.538
-44800/69092	Loss: 111.373
-48000/69092	Loss: 113.135
-51200/69092	Loss: 111.911
-54400/69092	Loss: 110.473
-57600/69092	Loss: 112.694
-60800/69092	Loss: 111.446
-64000/69092	Loss: 112.469
-67200/69092	Loss: 112.830
-Training time 0:01:57.592824
-Epoch: 129 Average loss: 112.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 270)
-0/69092	Loss: 110.452
-3200/69092	Loss: 110.466
-6400/69092	Loss: 111.432
-9600/69092	Loss: 112.794
-12800/69092	Loss: 112.774
-16000/69092	Loss: 109.937
-19200/69092	Loss: 112.586
-22400/69092	Loss: 112.148
-25600/69092	Loss: 113.248
-28800/69092	Loss: 109.771
-32000/69092	Loss: 111.443
-35200/69092	Loss: 109.777
-38400/69092	Loss: 111.336
-41600/69092	Loss: 112.573
-44800/69092	Loss: 113.080
-48000/69092	Loss: 114.813
-51200/69092	Loss: 111.562
-54400/69092	Loss: 113.657
-57600/69092	Loss: 112.000
-60800/69092	Loss: 112.768
-64000/69092	Loss: 110.541
-67200/69092	Loss: 113.268
-Training time 0:01:57.598200
-Epoch: 130 Average loss: 112.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 271)
-0/69092	Loss: 105.434
-3200/69092	Loss: 111.917
-6400/69092	Loss: 111.433
-9600/69092	Loss: 112.869
-12800/69092	Loss: 111.079
-16000/69092	Loss: 110.561
-19200/69092	Loss: 113.303
-22400/69092	Loss: 113.539
-25600/69092	Loss: 110.971
-28800/69092	Loss: 111.493
-32000/69092	Loss: 113.151
-35200/69092	Loss: 111.416
-38400/69092	Loss: 113.769
-41600/69092	Loss: 112.592
-44800/69092	Loss: 112.700
-48000/69092	Loss: 110.438
-51200/69092	Loss: 111.709
-54400/69092	Loss: 112.481
-57600/69092	Loss: 111.177
-60800/69092	Loss: 111.158
-64000/69092	Loss: 111.630
-67200/69092	Loss: 112.780
-Training time 0:01:57.694994
-Epoch: 131 Average loss: 111.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 272)
-0/69092	Loss: 112.573
-3200/69092	Loss: 111.776
-6400/69092	Loss: 112.478
-9600/69092	Loss: 111.609
-12800/69092	Loss: 110.617
-16000/69092	Loss: 111.480
-19200/69092	Loss: 112.747
-22400/69092	Loss: 113.442
-25600/69092	Loss: 112.510
-28800/69092	Loss: 112.243
-32000/69092	Loss: 113.979
-35200/69092	Loss: 111.217
-38400/69092	Loss: 112.713
-41600/69092	Loss: 110.079
-44800/69092	Loss: 111.208
-48000/69092	Loss: 114.122
-51200/69092	Loss: 111.058
-54400/69092	Loss: 111.174
-57600/69092	Loss: 111.158
-60800/69092	Loss: 110.395
-64000/69092	Loss: 113.077
-67200/69092	Loss: 111.988
-Training time 0:01:58.058514
-Epoch: 132 Average loss: 111.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 273)
-0/69092	Loss: 121.018
-3200/69092	Loss: 112.661
-6400/69092	Loss: 112.562
-9600/69092	Loss: 110.916
-12800/69092	Loss: 112.616
-16000/69092	Loss: 110.914
-19200/69092	Loss: 112.020
-22400/69092	Loss: 111.536
-25600/69092	Loss: 110.976
-28800/69092	Loss: 111.438
-32000/69092	Loss: 112.881
-35200/69092	Loss: 111.717
-38400/69092	Loss: 110.565
-41600/69092	Loss: 111.493
-44800/69092	Loss: 110.398
-48000/69092	Loss: 110.814
-51200/69092	Loss: 113.235
-54400/69092	Loss: 111.401
-57600/69092	Loss: 113.059
-60800/69092	Loss: 112.742
-64000/69092	Loss: 112.204
-67200/69092	Loss: 112.430
-Training time 0:01:56.792400
-Epoch: 133 Average loss: 111.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 274)
-0/69092	Loss: 110.742
-3200/69092	Loss: 113.340
-6400/69092	Loss: 113.245
-9600/69092	Loss: 110.026
-12800/69092	Loss: 113.185
-16000/69092	Loss: 111.091
-19200/69092	Loss: 111.806
-22400/69092	Loss: 111.200
-25600/69092	Loss: 111.964
-28800/69092	Loss: 109.868
-32000/69092	Loss: 111.438
-35200/69092	Loss: 112.407
-38400/69092	Loss: 111.131
-41600/69092	Loss: 111.926
-44800/69092	Loss: 112.104
-48000/69092	Loss: 113.281
-51200/69092	Loss: 112.860
-54400/69092	Loss: 112.034
-57600/69092	Loss: 112.700
-60800/69092	Loss: 113.316
-64000/69092	Loss: 110.939
-67200/69092	Loss: 111.988
-Training time 0:01:57.272370
-Epoch: 134 Average loss: 111.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 275)
-0/69092	Loss: 127.176
-3200/69092	Loss: 111.731
-6400/69092	Loss: 110.770
-9600/69092	Loss: 112.029
-12800/69092	Loss: 112.023
-16000/69092	Loss: 112.091
-19200/69092	Loss: 112.280
-22400/69092	Loss: 111.250
-25600/69092	Loss: 112.418
-28800/69092	Loss: 111.083
-32000/69092	Loss: 111.736
-35200/69092	Loss: 111.939
-38400/69092	Loss: 113.224
-41600/69092	Loss: 111.375
-44800/69092	Loss: 113.684
-48000/69092	Loss: 113.034
-51200/69092	Loss: 111.617
-54400/69092	Loss: 113.043
-57600/69092	Loss: 111.940
-60800/69092	Loss: 111.944
-64000/69092	Loss: 111.805
-67200/69092	Loss: 111.653
-Training time 0:01:57.058910
-Epoch: 135 Average loss: 112.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 276)
-0/69092	Loss: 118.687
-3200/69092	Loss: 112.916
-6400/69092	Loss: 112.381
-9600/69092	Loss: 114.137
-12800/69092	Loss: 111.492
-16000/69092	Loss: 109.961
-19200/69092	Loss: 113.096
-22400/69092	Loss: 111.977
-25600/69092	Loss: 111.565
-28800/69092	Loss: 111.526
-32000/69092	Loss: 111.217
-35200/69092	Loss: 111.367
-38400/69092	Loss: 110.970
-41600/69092	Loss: 112.607
-44800/69092	Loss: 114.355
-48000/69092	Loss: 111.468
-51200/69092	Loss: 112.745
-54400/69092	Loss: 110.527
-57600/69092	Loss: 111.736
-60800/69092	Loss: 110.270
-64000/69092	Loss: 113.704
-67200/69092	Loss: 111.488
-Training time 0:01:56.959955
-Epoch: 136 Average loss: 112.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 277)
-0/69092	Loss: 109.122
-3200/69092	Loss: 111.330
-6400/69092	Loss: 111.645
-9600/69092	Loss: 113.376
-12800/69092	Loss: 110.622
-16000/69092	Loss: 111.457
-19200/69092	Loss: 113.859
-22400/69092	Loss: 111.271
-25600/69092	Loss: 109.988
-28800/69092	Loss: 110.879
-32000/69092	Loss: 112.654
-35200/69092	Loss: 113.028
-38400/69092	Loss: 110.386
-41600/69092	Loss: 111.067
-44800/69092	Loss: 109.077
-48000/69092	Loss: 113.784
-51200/69092	Loss: 113.707
-54400/69092	Loss: 112.856
-57600/69092	Loss: 112.763
-60800/69092	Loss: 113.247
-64000/69092	Loss: 112.301
-67200/69092	Loss: 111.590
-Training time 0:01:57.133902
-Epoch: 137 Average loss: 111.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 278)
-0/69092	Loss: 107.406
-3200/69092	Loss: 112.618
-6400/69092	Loss: 113.154
-9600/69092	Loss: 112.063
-12800/69092	Loss: 112.073
-16000/69092	Loss: 111.946
-19200/69092	Loss: 112.897
-22400/69092	Loss: 112.109
-25600/69092	Loss: 111.530
-28800/69092	Loss: 112.458
-32000/69092	Loss: 112.763
-35200/69092	Loss: 110.965
-38400/69092	Loss: 113.469
-41600/69092	Loss: 110.809
-44800/69092	Loss: 111.943
-48000/69092	Loss: 114.101
-51200/69092	Loss: 113.021
-54400/69092	Loss: 110.293
-57600/69092	Loss: 111.147
-60800/69092	Loss: 111.424
-64000/69092	Loss: 111.865
-67200/69092	Loss: 111.375
-Training time 0:01:57.266665
-Epoch: 138 Average loss: 112.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 279)
-0/69092	Loss: 103.212
-3200/69092	Loss: 112.472
-6400/69092	Loss: 113.479
-9600/69092	Loss: 112.589
-12800/69092	Loss: 112.073
-16000/69092	Loss: 111.552
-19200/69092	Loss: 111.969
-22400/69092	Loss: 111.225
-25600/69092	Loss: 113.232
-28800/69092	Loss: 112.642
-32000/69092	Loss: 111.045
-35200/69092	Loss: 110.319
-38400/69092	Loss: 109.832
-41600/69092	Loss: 110.909
-44800/69092	Loss: 111.229
-48000/69092	Loss: 113.238
-51200/69092	Loss: 112.517
-54400/69092	Loss: 113.034
-57600/69092	Loss: 112.834
-60800/69092	Loss: 112.623
-64000/69092	Loss: 111.474
-67200/69092	Loss: 112.129
-Training time 0:01:58.435114
-Epoch: 139 Average loss: 112.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 280)
-0/69092	Loss: 108.457
-3200/69092	Loss: 110.087
-6400/69092	Loss: 110.082
-9600/69092	Loss: 111.008
-12800/69092	Loss: 112.120
-16000/69092	Loss: 112.566
-19200/69092	Loss: 111.473
-22400/69092	Loss: 111.214
-25600/69092	Loss: 113.012
-28800/69092	Loss: 113.351
-32000/69092	Loss: 113.902
-35200/69092	Loss: 111.173
-38400/69092	Loss: 112.956
-41600/69092	Loss: 110.527
-44800/69092	Loss: 114.892
-48000/69092	Loss: 110.396
-51200/69092	Loss: 113.245
-54400/69092	Loss: 110.763
-57600/69092	Loss: 110.205
-60800/69092	Loss: 111.772
-64000/69092	Loss: 112.627
-67200/69092	Loss: 111.441
-Training time 0:01:56.262381
-Epoch: 140 Average loss: 111.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 281)
-0/69092	Loss: 98.658
-3200/69092	Loss: 113.159
-6400/69092	Loss: 110.102
-9600/69092	Loss: 112.839
-12800/69092	Loss: 112.983
-16000/69092	Loss: 110.094
-19200/69092	Loss: 111.538
-22400/69092	Loss: 112.158
-25600/69092	Loss: 112.301
-28800/69092	Loss: 111.748
-32000/69092	Loss: 110.355
-35200/69092	Loss: 110.992
-38400/69092	Loss: 112.652
-41600/69092	Loss: 113.077
-44800/69092	Loss: 111.689
-48000/69092	Loss: 112.482
-51200/69092	Loss: 111.524
-54400/69092	Loss: 111.967
-57600/69092	Loss: 111.668
-60800/69092	Loss: 110.932
-64000/69092	Loss: 112.046
-67200/69092	Loss: 113.020
-Training time 0:01:58.535137
-Epoch: 141 Average loss: 111.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 282)
-0/69092	Loss: 124.952
-3200/69092	Loss: 112.607
-6400/69092	Loss: 113.206
-9600/69092	Loss: 110.438
-12800/69092	Loss: 112.742
-16000/69092	Loss: 112.216
-19200/69092	Loss: 112.843
-22400/69092	Loss: 111.532
-25600/69092	Loss: 111.301
-28800/69092	Loss: 110.823
-32000/69092	Loss: 111.241
-35200/69092	Loss: 112.160
-38400/69092	Loss: 111.847
-41600/69092	Loss: 112.071
-44800/69092	Loss: 112.332
-48000/69092	Loss: 112.300
-51200/69092	Loss: 111.658
-54400/69092	Loss: 112.571
-57600/69092	Loss: 110.150
-60800/69092	Loss: 112.637
-64000/69092	Loss: 111.443
-67200/69092	Loss: 112.552
-Training time 0:01:57.326723
-Epoch: 142 Average loss: 111.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 283)
-0/69092	Loss: 108.045
-3200/69092	Loss: 112.897
-6400/69092	Loss: 112.089
-9600/69092	Loss: 110.165
-12800/69092	Loss: 111.870
-16000/69092	Loss: 112.836
-19200/69092	Loss: 113.111
-22400/69092	Loss: 111.287
-25600/69092	Loss: 111.836
-28800/69092	Loss: 112.930
-32000/69092	Loss: 111.349
-35200/69092	Loss: 112.133
-38400/69092	Loss: 111.580
-41600/69092	Loss: 113.092
-44800/69092	Loss: 112.667
-48000/69092	Loss: 111.006
-51200/69092	Loss: 111.750
-54400/69092	Loss: 110.065
-57600/69092	Loss: 112.065
-60800/69092	Loss: 111.136
-64000/69092	Loss: 111.657
-67200/69092	Loss: 113.054
-Training time 0:01:57.236775
-Epoch: 143 Average loss: 111.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 284)
-0/69092	Loss: 106.834
-3200/69092	Loss: 111.079
-6400/69092	Loss: 111.140
-9600/69092	Loss: 113.726
-12800/69092	Loss: 111.682
-16000/69092	Loss: 111.500
-19200/69092	Loss: 112.017
-22400/69092	Loss: 112.366
-25600/69092	Loss: 113.172
-28800/69092	Loss: 110.644
-32000/69092	Loss: 111.564
-35200/69092	Loss: 111.866
-38400/69092	Loss: 111.532
-41600/69092	Loss: 111.272
-44800/69092	Loss: 112.606
-48000/69092	Loss: 112.309
-51200/69092	Loss: 112.685
-54400/69092	Loss: 111.293
-57600/69092	Loss: 111.289
-60800/69092	Loss: 110.347
-64000/69092	Loss: 112.299
-67200/69092	Loss: 110.649
-Training time 0:01:58.010957
-Epoch: 144 Average loss: 111.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 285)
-0/69092	Loss: 118.306
-3200/69092	Loss: 111.237
-6400/69092	Loss: 111.661
-9600/69092	Loss: 114.291
-12800/69092	Loss: 113.517
-16000/69092	Loss: 110.445
-19200/69092	Loss: 111.158
-22400/69092	Loss: 109.768
-25600/69092	Loss: 110.498
-28800/69092	Loss: 113.142
-32000/69092	Loss: 113.399
-35200/69092	Loss: 111.526
-38400/69092	Loss: 113.117
-41600/69092	Loss: 110.777
-44800/69092	Loss: 111.227
-48000/69092	Loss: 112.151
-51200/69092	Loss: 111.684
-54400/69092	Loss: 110.881
-57600/69092	Loss: 111.018
-60800/69092	Loss: 113.214
-64000/69092	Loss: 111.659
-67200/69092	Loss: 111.615
-Training time 0:01:58.616269
-Epoch: 145 Average loss: 111.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 286)
-0/69092	Loss: 115.363
-3200/69092	Loss: 111.312
-6400/69092	Loss: 112.252
-9600/69092	Loss: 112.526
-12800/69092	Loss: 112.737
-16000/69092	Loss: 111.285
-19200/69092	Loss: 112.019
-22400/69092	Loss: 112.912
-25600/69092	Loss: 110.939
-28800/69092	Loss: 113.678
-32000/69092	Loss: 109.269
-35200/69092	Loss: 110.789
-38400/69092	Loss: 113.603
-41600/69092	Loss: 112.517
-44800/69092	Loss: 111.067
-48000/69092	Loss: 112.921
-51200/69092	Loss: 112.439
-54400/69092	Loss: 110.862
-57600/69092	Loss: 112.110
-60800/69092	Loss: 113.408
-64000/69092	Loss: 109.576
-67200/69092	Loss: 112.647
-Training time 0:01:57.659672
-Epoch: 146 Average loss: 111.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 287)
-0/69092	Loss: 117.260
-3200/69092	Loss: 111.658
-6400/69092	Loss: 109.211
-9600/69092	Loss: 113.671
-12800/69092	Loss: 111.070
-16000/69092	Loss: 112.197
-19200/69092	Loss: 113.150
-22400/69092	Loss: 112.106
-25600/69092	Loss: 110.923
-28800/69092	Loss: 110.465
-32000/69092	Loss: 112.369
-35200/69092	Loss: 111.273
-38400/69092	Loss: 111.069
-41600/69092	Loss: 112.165
-44800/69092	Loss: 110.222
-48000/69092	Loss: 113.154
-51200/69092	Loss: 114.592
-54400/69092	Loss: 112.268
-57600/69092	Loss: 112.081
-60800/69092	Loss: 112.133
-64000/69092	Loss: 112.107
-67200/69092	Loss: 111.921
-Training time 0:01:58.866951
-Epoch: 147 Average loss: 111.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 288)
-0/69092	Loss: 125.864
-3200/69092	Loss: 112.431
-6400/69092	Loss: 111.947
-9600/69092	Loss: 112.225
-12800/69092	Loss: 112.134
-16000/69092	Loss: 112.516
-19200/69092	Loss: 112.602
-22400/69092	Loss: 109.668
-25600/69092	Loss: 113.651
-28800/69092	Loss: 111.084
-32000/69092	Loss: 113.826
-35200/69092	Loss: 111.270
-38400/69092	Loss: 112.044
-41600/69092	Loss: 110.729
-44800/69092	Loss: 111.775
-48000/69092	Loss: 111.153
-51200/69092	Loss: 112.430
-54400/69092	Loss: 111.239
-57600/69092	Loss: 111.362
-60800/69092	Loss: 111.584
-64000/69092	Loss: 110.666
-67200/69092	Loss: 112.932
-Training time 0:01:56.854656
-Epoch: 148 Average loss: 111.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 289)
-0/69092	Loss: 120.989
-3200/69092	Loss: 110.863
-6400/69092	Loss: 111.532
-9600/69092	Loss: 110.060
-12800/69092	Loss: 111.442
-16000/69092	Loss: 112.615
-19200/69092	Loss: 110.756
-22400/69092	Loss: 113.074
-25600/69092	Loss: 111.051
-28800/69092	Loss: 114.605
-32000/69092	Loss: 112.238
-35200/69092	Loss: 112.525
-38400/69092	Loss: 112.964
-41600/69092	Loss: 110.887
-44800/69092	Loss: 109.753
-48000/69092	Loss: 110.362
-51200/69092	Loss: 113.599
-54400/69092	Loss: 111.841
-57600/69092	Loss: 109.317
-60800/69092	Loss: 111.099
-64000/69092	Loss: 113.230
-67200/69092	Loss: 111.380
-Training time 0:01:57.507897
-Epoch: 149 Average loss: 111.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 290)
-0/69092	Loss: 117.476
-3200/69092	Loss: 112.599
-6400/69092	Loss: 110.336
-9600/69092	Loss: 112.918
-12800/69092	Loss: 110.651
-16000/69092	Loss: 111.573
-19200/69092	Loss: 112.520
-22400/69092	Loss: 111.845
-25600/69092	Loss: 110.945
-28800/69092	Loss: 113.548
-32000/69092	Loss: 111.766
-35200/69092	Loss: 112.943
-38400/69092	Loss: 111.785
-41600/69092	Loss: 111.330
-44800/69092	Loss: 111.686
-48000/69092	Loss: 112.200
-51200/69092	Loss: 109.573
-54400/69092	Loss: 112.740
-57600/69092	Loss: 112.079
-60800/69092	Loss: 112.911
-64000/69092	Loss: 112.236
-67200/69092	Loss: 112.986
-Training time 0:01:58.333631
-Epoch: 150 Average loss: 111.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 291)
-0/69092	Loss: 115.953
-3200/69092	Loss: 113.134
-6400/69092	Loss: 113.103
-9600/69092	Loss: 110.199
-12800/69092	Loss: 113.194
-16000/69092	Loss: 111.184
-19200/69092	Loss: 111.698
-22400/69092	Loss: 112.935
-25600/69092	Loss: 111.881
-28800/69092	Loss: 111.115
-32000/69092	Loss: 112.603
-35200/69092	Loss: 112.020
-38400/69092	Loss: 112.642
-41600/69092	Loss: 111.432
-44800/69092	Loss: 112.172
-48000/69092	Loss: 110.613
-51200/69092	Loss: 111.053
-54400/69092	Loss: 111.428
-57600/69092	Loss: 112.518
-60800/69092	Loss: 111.422
-64000/69092	Loss: 111.675
-67200/69092	Loss: 112.371
-Training time 0:01:58.128314
-Epoch: 151 Average loss: 111.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 292)
-0/69092	Loss: 104.421
-3200/69092	Loss: 111.188
-6400/69092	Loss: 112.041
-9600/69092	Loss: 111.957
-12800/69092	Loss: 110.362
-16000/69092	Loss: 112.861
-19200/69092	Loss: 112.682
-22400/69092	Loss: 111.382
-25600/69092	Loss: 111.200
-28800/69092	Loss: 109.572
-32000/69092	Loss: 111.507
-35200/69092	Loss: 114.643
-38400/69092	Loss: 113.705
-41600/69092	Loss: 111.291
-44800/69092	Loss: 113.218
-48000/69092	Loss: 111.520
-51200/69092	Loss: 111.699
-54400/69092	Loss: 111.856
-57600/69092	Loss: 112.596
-60800/69092	Loss: 111.065
-64000/69092	Loss: 112.072
-67200/69092	Loss: 111.599
-Training time 0:01:56.836098
-Epoch: 152 Average loss: 111.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 293)
-0/69092	Loss: 107.049
-3200/69092	Loss: 111.545
-6400/69092	Loss: 112.860
-9600/69092	Loss: 109.550
-12800/69092	Loss: 109.521
-16000/69092	Loss: 111.000
-19200/69092	Loss: 112.895
-22400/69092	Loss: 109.538
-25600/69092	Loss: 111.365
-28800/69092	Loss: 113.803
-32000/69092	Loss: 111.668
-35200/69092	Loss: 112.163
-38400/69092	Loss: 112.722
-41600/69092	Loss: 112.485
-44800/69092	Loss: 112.295
-48000/69092	Loss: 112.679
-51200/69092	Loss: 113.590
-54400/69092	Loss: 110.211
-57600/69092	Loss: 109.907
-60800/69092	Loss: 113.576
-64000/69092	Loss: 112.936
-67200/69092	Loss: 110.808
-Training time 0:01:57.354715
-Epoch: 153 Average loss: 111.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 294)
-0/69092	Loss: 111.501
-3200/69092	Loss: 111.638
-6400/69092	Loss: 110.784
-9600/69092	Loss: 113.868
-12800/69092	Loss: 110.259
-16000/69092	Loss: 112.660
-19200/69092	Loss: 111.296
-22400/69092	Loss: 112.705
-25600/69092	Loss: 110.795
-28800/69092	Loss: 111.370
-32000/69092	Loss: 112.506
-35200/69092	Loss: 111.228
-38400/69092	Loss: 111.229
-41600/69092	Loss: 110.885
-44800/69092	Loss: 111.343
-48000/69092	Loss: 112.372
-51200/69092	Loss: 111.562
-54400/69092	Loss: 112.554
-57600/69092	Loss: 112.194
-60800/69092	Loss: 110.748
-64000/69092	Loss: 113.162
-67200/69092	Loss: 111.802
-Training time 0:01:57.258471
-Epoch: 154 Average loss: 111.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 295)
-0/69092	Loss: 108.742
-3200/69092	Loss: 110.511
-6400/69092	Loss: 111.703
-9600/69092	Loss: 110.358
-12800/69092	Loss: 112.914
-16000/69092	Loss: 111.439
-19200/69092	Loss: 112.426
-22400/69092	Loss: 112.589
-25600/69092	Loss: 111.170
-28800/69092	Loss: 111.646
-32000/69092	Loss: 111.722
-35200/69092	Loss: 110.836
-38400/69092	Loss: 112.782
-41600/69092	Loss: 111.605
-44800/69092	Loss: 113.442
-48000/69092	Loss: 110.468
-51200/69092	Loss: 110.794
-54400/69092	Loss: 110.828
-57600/69092	Loss: 113.813
-60800/69092	Loss: 110.367
-64000/69092	Loss: 112.361
-67200/69092	Loss: 111.840
-Training time 0:01:57.111745
-Epoch: 155 Average loss: 111.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 296)
-0/69092	Loss: 118.872
-3200/69092	Loss: 110.466
-6400/69092	Loss: 114.033
-9600/69092	Loss: 111.255
-12800/69092	Loss: 113.188
-16000/69092	Loss: 111.942
-19200/69092	Loss: 110.293
-22400/69092	Loss: 112.721
-25600/69092	Loss: 110.724
-28800/69092	Loss: 111.917
-32000/69092	Loss: 111.823
-35200/69092	Loss: 111.921
-38400/69092	Loss: 112.379
-41600/69092	Loss: 111.464
-44800/69092	Loss: 109.217
-48000/69092	Loss: 111.438
-51200/69092	Loss: 112.555
-54400/69092	Loss: 113.719
-57600/69092	Loss: 110.811
-60800/69092	Loss: 112.150
-64000/69092	Loss: 112.173
-67200/69092	Loss: 110.787
-Training time 0:01:56.623030
-Epoch: 156 Average loss: 111.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 297)
-0/69092	Loss: 114.869
-3200/69092	Loss: 111.270
-6400/69092	Loss: 110.590
-9600/69092	Loss: 111.682
-12800/69092	Loss: 111.369
-16000/69092	Loss: 111.500
-19200/69092	Loss: 113.862
-22400/69092	Loss: 112.474
-25600/69092	Loss: 113.168
-28800/69092	Loss: 110.683
-32000/69092	Loss: 111.306
-35200/69092	Loss: 109.768
-38400/69092	Loss: 111.974
-41600/69092	Loss: 112.443
-44800/69092	Loss: 113.173
-48000/69092	Loss: 111.066
-51200/69092	Loss: 110.422
-54400/69092	Loss: 110.778
-57600/69092	Loss: 110.822
-60800/69092	Loss: 112.678
-64000/69092	Loss: 111.867
-67200/69092	Loss: 111.467
-Training time 0:01:57.529709
-Epoch: 157 Average loss: 111.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 298)
-0/69092	Loss: 124.694
-3200/69092	Loss: 111.638
-6400/69092	Loss: 110.301
-9600/69092	Loss: 112.122
-12800/69092	Loss: 110.529
-16000/69092	Loss: 109.903
-19200/69092	Loss: 112.519
-22400/69092	Loss: 112.301
-25600/69092	Loss: 110.694
-28800/69092	Loss: 113.052
-32000/69092	Loss: 112.189
-35200/69092	Loss: 113.203
-38400/69092	Loss: 110.898
-41600/69092	Loss: 110.987
-44800/69092	Loss: 110.335
-48000/69092	Loss: 110.953
-51200/69092	Loss: 112.360
-54400/69092	Loss: 112.887
-57600/69092	Loss: 112.167
-60800/69092	Loss: 113.126
-64000/69092	Loss: 113.502
-67200/69092	Loss: 110.894
-Training time 0:01:57.557864
-Epoch: 158 Average loss: 111.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 299)
-0/69092	Loss: 114.132
-3200/69092	Loss: 112.711
-6400/69092	Loss: 112.266
-9600/69092	Loss: 111.940
-12800/69092	Loss: 110.040
-16000/69092	Loss: 110.274
-19200/69092	Loss: 111.464
-22400/69092	Loss: 114.249
-25600/69092	Loss: 110.451
-28800/69092	Loss: 111.813
-32000/69092	Loss: 110.874
-35200/69092	Loss: 111.192
-38400/69092	Loss: 110.178
-41600/69092	Loss: 111.566
-44800/69092	Loss: 112.302
-48000/69092	Loss: 112.227
-51200/69092	Loss: 112.962
-54400/69092	Loss: 112.561
-57600/69092	Loss: 111.218
-60800/69092	Loss: 113.534
-64000/69092	Loss: 111.048
-67200/69092	Loss: 110.810
-Training time 0:01:58.071249
-Epoch: 159 Average loss: 111.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 300)
-0/69092	Loss: 123.650
-3200/69092	Loss: 111.714
-6400/69092	Loss: 113.229
-9600/69092	Loss: 113.051
-12800/69092	Loss: 111.433
-16000/69092	Loss: 110.213
-19200/69092	Loss: 111.912
-22400/69092	Loss: 112.486
-25600/69092	Loss: 111.917
-28800/69092	Loss: 112.611
-32000/69092	Loss: 110.129
-35200/69092	Loss: 112.950
-38400/69092	Loss: 112.496
-41600/69092	Loss: 111.032
-44800/69092	Loss: 112.336
-48000/69092	Loss: 109.904
-51200/69092	Loss: 111.151
-54400/69092	Loss: 111.449
-57600/69092	Loss: 111.840
-60800/69092	Loss: 110.888
-64000/69092	Loss: 112.554
-67200/69092	Loss: 110.121
-Training time 0:01:58.034978
-Epoch: 160 Average loss: 111.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 301)
-0/69092	Loss: 116.410
-3200/69092	Loss: 110.600
-6400/69092	Loss: 112.400
-9600/69092	Loss: 111.510
-12800/69092	Loss: 110.163
-16000/69092	Loss: 110.768
-19200/69092	Loss: 114.241
-22400/69092	Loss: 112.413
-25600/69092	Loss: 113.094
-28800/69092	Loss: 110.829
-32000/69092	Loss: 113.481
-35200/69092	Loss: 112.277
-38400/69092	Loss: 112.755
-41600/69092	Loss: 112.485
-44800/69092	Loss: 111.657
-48000/69092	Loss: 111.142
-51200/69092	Loss: 110.248
-54400/69092	Loss: 109.791
-57600/69092	Loss: 112.472
-60800/69092	Loss: 112.471
-64000/69092	Loss: 112.048
-67200/69092	Loss: 111.838
-Training time 0:01:56.366043
-Epoch: 161 Average loss: 111.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 302)
-0/69092	Loss: 113.542
-3200/69092	Loss: 110.087
-6400/69092	Loss: 113.418
-9600/69092	Loss: 112.001
-12800/69092	Loss: 113.136
-16000/69092	Loss: 111.554
-19200/69092	Loss: 112.779
-22400/69092	Loss: 111.375
-25600/69092	Loss: 110.408
-28800/69092	Loss: 112.812
-32000/69092	Loss: 112.009
-35200/69092	Loss: 111.353
-38400/69092	Loss: 110.976
-41600/69092	Loss: 113.415
-44800/69092	Loss: 112.298
-48000/69092	Loss: 110.774
-51200/69092	Loss: 108.745
-54400/69092	Loss: 112.864
-57600/69092	Loss: 109.988
-60800/69092	Loss: 112.738
-64000/69092	Loss: 110.572
-67200/69092	Loss: 112.847
-Training time 0:01:58.019849
-Epoch: 162 Average loss: 111.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 303)
-0/69092	Loss: 119.715
-3200/69092	Loss: 110.518
-6400/69092	Loss: 111.559
-9600/69092	Loss: 112.434
-12800/69092	Loss: 112.339
-16000/69092	Loss: 112.397
-19200/69092	Loss: 110.979
-22400/69092	Loss: 110.737
-25600/69092	Loss: 111.644
-28800/69092	Loss: 112.902
-32000/69092	Loss: 111.472
-35200/69092	Loss: 113.155
-38400/69092	Loss: 109.615
-41600/69092	Loss: 112.107
-44800/69092	Loss: 111.096
-48000/69092	Loss: 112.698
-51200/69092	Loss: 112.322
-54400/69092	Loss: 111.918
-57600/69092	Loss: 112.837
-60800/69092	Loss: 110.629
-64000/69092	Loss: 111.170
-67200/69092	Loss: 112.125
-Training time 0:01:57.907451
-Epoch: 163 Average loss: 111.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 304)
-0/69092	Loss: 134.733
-3200/69092	Loss: 111.368
-6400/69092	Loss: 112.738
-9600/69092	Loss: 112.785
-12800/69092	Loss: 111.969
-16000/69092	Loss: 111.528
-19200/69092	Loss: 109.242
-22400/69092	Loss: 113.343
-25600/69092	Loss: 113.095
-28800/69092	Loss: 110.104
-32000/69092	Loss: 111.320
-35200/69092	Loss: 110.740
-38400/69092	Loss: 109.703
-41600/69092	Loss: 111.375
-44800/69092	Loss: 111.857
-48000/69092	Loss: 112.100
-51200/69092	Loss: 112.985
-54400/69092	Loss: 111.972
-57600/69092	Loss: 109.736
-60800/69092	Loss: 112.205
-64000/69092	Loss: 111.661
-67200/69092	Loss: 112.903
-Training time 0:01:58.142396
-Epoch: 164 Average loss: 111.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 305)
-0/69092	Loss: 118.115
-3200/69092	Loss: 110.009
-6400/69092	Loss: 111.570
-9600/69092	Loss: 112.055
-12800/69092	Loss: 113.302
-16000/69092	Loss: 110.916
-19200/69092	Loss: 111.357
-22400/69092	Loss: 111.904
-25600/69092	Loss: 110.185
-28800/69092	Loss: 111.550
-32000/69092	Loss: 113.098
-35200/69092	Loss: 110.133
-38400/69092	Loss: 111.114
-41600/69092	Loss: 112.392
-44800/69092	Loss: 114.921
-48000/69092	Loss: 111.498
-51200/69092	Loss: 111.717
-54400/69092	Loss: 111.010
-57600/69092	Loss: 111.393
-60800/69092	Loss: 111.221
-64000/69092	Loss: 111.821
-67200/69092	Loss: 111.310
-Training time 0:01:57.883301
-Epoch: 165 Average loss: 111.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 306)
-0/69092	Loss: 109.505
-3200/69092	Loss: 109.239
-6400/69092	Loss: 112.679
-9600/69092	Loss: 111.230
-12800/69092	Loss: 112.153
-16000/69092	Loss: 108.978
-19200/69092	Loss: 112.635
-22400/69092	Loss: 111.655
-25600/69092	Loss: 110.654
-28800/69092	Loss: 111.396
-32000/69092	Loss: 110.772
-35200/69092	Loss: 110.620
-38400/69092	Loss: 111.977
-41600/69092	Loss: 112.527
-44800/69092	Loss: 112.819
-48000/69092	Loss: 113.921
-51200/69092	Loss: 112.138
-54400/69092	Loss: 111.674
-57600/69092	Loss: 111.156
-60800/69092	Loss: 112.003
-64000/69092	Loss: 112.026
-67200/69092	Loss: 113.795
-Training time 0:01:57.628814
-Epoch: 166 Average loss: 111.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 307)
-0/69092	Loss: 111.059
-3200/69092	Loss: 111.078
-6400/69092	Loss: 111.255
-9600/69092	Loss: 111.719
-12800/69092	Loss: 110.882
-16000/69092	Loss: 114.077
-19200/69092	Loss: 111.082
-22400/69092	Loss: 112.027
-25600/69092	Loss: 110.732
-28800/69092	Loss: 111.248
-32000/69092	Loss: 112.801
-35200/69092	Loss: 110.367
-38400/69092	Loss: 111.870
-41600/69092	Loss: 111.445
-44800/69092	Loss: 112.290
-48000/69092	Loss: 112.549
-51200/69092	Loss: 111.689
-54400/69092	Loss: 111.940
-57600/69092	Loss: 112.155
-60800/69092	Loss: 112.263
-64000/69092	Loss: 112.639
-67200/69092	Loss: 111.075
-Training time 0:01:58.999863
-Epoch: 167 Average loss: 111.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 308)
-0/69092	Loss: 105.557
-3200/69092	Loss: 112.981
-6400/69092	Loss: 112.326
-9600/69092	Loss: 110.460
-12800/69092	Loss: 111.842
-16000/69092	Loss: 112.710
-19200/69092	Loss: 113.543
-22400/69092	Loss: 112.468
-25600/69092	Loss: 110.899
-28800/69092	Loss: 113.226
-32000/69092	Loss: 111.981
-35200/69092	Loss: 110.594
-38400/69092	Loss: 110.432
-41600/69092	Loss: 110.462
-44800/69092	Loss: 112.145
-48000/69092	Loss: 112.282
-51200/69092	Loss: 110.518
-54400/69092	Loss: 112.326
-57600/69092	Loss: 112.281
-60800/69092	Loss: 112.349
-64000/69092	Loss: 112.677
-67200/69092	Loss: 111.289
-Training time 0:01:57.916369
-Epoch: 168 Average loss: 111.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 309)
-0/69092	Loss: 106.652
-3200/69092	Loss: 112.091
-6400/69092	Loss: 112.037
-9600/69092	Loss: 111.819
-12800/69092	Loss: 111.874
-16000/69092	Loss: 110.806
-19200/69092	Loss: 112.183
-22400/69092	Loss: 112.422
-25600/69092	Loss: 109.044
-28800/69092	Loss: 112.361
-32000/69092	Loss: 111.146
-35200/69092	Loss: 112.348
-38400/69092	Loss: 110.026
-41600/69092	Loss: 112.366
-44800/69092	Loss: 112.497
-48000/69092	Loss: 111.515
-51200/69092	Loss: 111.187
-54400/69092	Loss: 111.332
-57600/69092	Loss: 109.368
-60800/69092	Loss: 111.638
-64000/69092	Loss: 114.175
-67200/69092	Loss: 110.968
-Training time 0:01:58.337494
-Epoch: 169 Average loss: 111.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 310)
-0/69092	Loss: 116.036
-3200/69092	Loss: 109.581
-6400/69092	Loss: 112.270
-9600/69092	Loss: 111.920
-12800/69092	Loss: 111.055
-16000/69092	Loss: 110.885
-19200/69092	Loss: 112.197
-22400/69092	Loss: 111.740
-25600/69092	Loss: 111.951
-28800/69092	Loss: 111.953
-32000/69092	Loss: 109.690
-35200/69092	Loss: 111.384
-38400/69092	Loss: 109.769
-41600/69092	Loss: 111.808
-44800/69092	Loss: 111.351
-48000/69092	Loss: 111.708
-51200/69092	Loss: 112.546
-54400/69092	Loss: 111.851
-57600/69092	Loss: 111.209
-60800/69092	Loss: 113.422
-64000/69092	Loss: 113.189
-67200/69092	Loss: 111.935
-Training time 0:01:57.384316
-Epoch: 170 Average loss: 111.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 311)
-0/69092	Loss: 127.703
-3200/69092	Loss: 111.678
-6400/69092	Loss: 110.477
-9600/69092	Loss: 111.366
-12800/69092	Loss: 111.567
-16000/69092	Loss: 113.184
-19200/69092	Loss: 112.240
-22400/69092	Loss: 111.619
-25600/69092	Loss: 108.892
-28800/69092	Loss: 112.422
-32000/69092	Loss: 112.121
-35200/69092	Loss: 111.129
-38400/69092	Loss: 112.726
-41600/69092	Loss: 110.563
-44800/69092	Loss: 111.391
-48000/69092	Loss: 111.781
-51200/69092	Loss: 112.103
-54400/69092	Loss: 110.624
-57600/69092	Loss: 111.868
-60800/69092	Loss: 111.465
-64000/69092	Loss: 112.831
-67200/69092	Loss: 113.136
-Training time 0:01:57.705388
-Epoch: 171 Average loss: 111.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 312)
-0/69092	Loss: 108.844
-3200/69092	Loss: 111.695
-6400/69092	Loss: 111.223
-9600/69092	Loss: 112.083
-12800/69092	Loss: 112.880
-16000/69092	Loss: 110.638
-19200/69092	Loss: 112.117
-22400/69092	Loss: 111.752
-25600/69092	Loss: 110.880
-28800/69092	Loss: 111.832
-32000/69092	Loss: 110.838
-35200/69092	Loss: 112.321
-38400/69092	Loss: 111.527
-41600/69092	Loss: 112.675
-44800/69092	Loss: 110.984
-48000/69092	Loss: 113.043
-51200/69092	Loss: 109.742
-54400/69092	Loss: 110.143
-57600/69092	Loss: 110.711
-60800/69092	Loss: 112.018
-64000/69092	Loss: 112.209
-67200/69092	Loss: 112.814
-Training time 0:01:57.964064
-Epoch: 172 Average loss: 111.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 313)
-0/69092	Loss: 117.573
-3200/69092	Loss: 111.334
-6400/69092	Loss: 112.929
-9600/69092	Loss: 111.225
-12800/69092	Loss: 111.788
-16000/69092	Loss: 110.620
-19200/69092	Loss: 110.578
-22400/69092	Loss: 111.633
-25600/69092	Loss: 112.730
-28800/69092	Loss: 112.205
-32000/69092	Loss: 111.285
-35200/69092	Loss: 111.097
-38400/69092	Loss: 110.843
-41600/69092	Loss: 110.864
-44800/69092	Loss: 110.815
-48000/69092	Loss: 112.478
-51200/69092	Loss: 113.079
-54400/69092	Loss: 111.633
-57600/69092	Loss: 110.176
-60800/69092	Loss: 112.667
-64000/69092	Loss: 110.104
-67200/69092	Loss: 112.285
-Training time 0:01:56.752130
-Epoch: 173 Average loss: 111.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 314)
-0/69092	Loss: 110.782
-3200/69092	Loss: 111.362
-6400/69092	Loss: 113.374
-9600/69092	Loss: 112.839
-12800/69092	Loss: 112.448
-16000/69092	Loss: 112.099
-19200/69092	Loss: 111.209
-22400/69092	Loss: 110.317
-25600/69092	Loss: 111.654
-28800/69092	Loss: 110.356
-32000/69092	Loss: 110.643
-35200/69092	Loss: 111.474
-38400/69092	Loss: 111.918
-41600/69092	Loss: 111.560
-44800/69092	Loss: 111.214
-48000/69092	Loss: 111.769
-51200/69092	Loss: 110.218
-54400/69092	Loss: 112.135
-57600/69092	Loss: 112.353
-60800/69092	Loss: 112.673
-64000/69092	Loss: 110.937
-67200/69092	Loss: 112.363
-Training time 0:01:58.067145
-Epoch: 174 Average loss: 111.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 315)
-0/69092	Loss: 114.900
-3200/69092	Loss: 111.194
-6400/69092	Loss: 110.765
-9600/69092	Loss: 113.184
-12800/69092	Loss: 111.068
-16000/69092	Loss: 111.820
-19200/69092	Loss: 110.786
-22400/69092	Loss: 110.856
-25600/69092	Loss: 112.766
-28800/69092	Loss: 112.088
-32000/69092	Loss: 110.329
-35200/69092	Loss: 112.775
-38400/69092	Loss: 111.490
-41600/69092	Loss: 112.312
-44800/69092	Loss: 112.025
-48000/69092	Loss: 110.544
-51200/69092	Loss: 112.408
-54400/69092	Loss: 110.298
-57600/69092	Loss: 111.694
-60800/69092	Loss: 111.988
-64000/69092	Loss: 111.013
-67200/69092	Loss: 110.715
-Training time 0:01:58.014468
-Epoch: 175 Average loss: 111.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 316)
-0/69092	Loss: 119.735
-3200/69092	Loss: 110.581
-6400/69092	Loss: 110.471
-9600/69092	Loss: 110.051
-12800/69092	Loss: 111.062
-16000/69092	Loss: 111.943
-19200/69092	Loss: 112.570
-22400/69092	Loss: 113.682
-25600/69092	Loss: 110.904
-28800/69092	Loss: 110.676
-32000/69092	Loss: 111.977
-35200/69092	Loss: 111.398
-38400/69092	Loss: 110.633
-41600/69092	Loss: 111.087
-44800/69092	Loss: 113.643
-48000/69092	Loss: 111.851
-51200/69092	Loss: 112.379
-54400/69092	Loss: 111.891
-57600/69092	Loss: 109.544
-60800/69092	Loss: 111.967
-64000/69092	Loss: 113.614
-67200/69092	Loss: 112.276
-Training time 0:01:58.495056
-Epoch: 176 Average loss: 111.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 317)
-0/69092	Loss: 124.552
-3200/69092	Loss: 112.319
-6400/69092	Loss: 111.483
-9600/69092	Loss: 110.606
-12800/69092	Loss: 112.892
-16000/69092	Loss: 112.674
-19200/69092	Loss: 111.931
-22400/69092	Loss: 109.751
-25600/69092	Loss: 111.548
-28800/69092	Loss: 109.975
-32000/69092	Loss: 111.960
-35200/69092	Loss: 110.546
-38400/69092	Loss: 111.756
-41600/69092	Loss: 111.660
-44800/69092	Loss: 112.089
-48000/69092	Loss: 112.292
-51200/69092	Loss: 111.803
-54400/69092	Loss: 112.917
-57600/69092	Loss: 109.461
-60800/69092	Loss: 109.814
-64000/69092	Loss: 112.297
-67200/69092	Loss: 112.958
-Training time 0:01:57.255709
-Epoch: 177 Average loss: 111.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 318)
-0/69092	Loss: 120.511
-3200/69092	Loss: 113.576
-6400/69092	Loss: 111.405
-9600/69092	Loss: 113.479
-12800/69092	Loss: 112.399
-16000/69092	Loss: 109.682
-19200/69092	Loss: 113.299
-22400/69092	Loss: 111.035
-25600/69092	Loss: 111.170
-28800/69092	Loss: 111.269
-32000/69092	Loss: 110.564
-35200/69092	Loss: 111.389
-38400/69092	Loss: 111.394
-41600/69092	Loss: 111.550
-44800/69092	Loss: 113.036
-48000/69092	Loss: 110.169
-51200/69092	Loss: 110.245
-54400/69092	Loss: 110.791
-57600/69092	Loss: 111.674
-60800/69092	Loss: 111.160
-64000/69092	Loss: 113.037
-67200/69092	Loss: 112.097
-Training time 0:01:57.057106
-Epoch: 178 Average loss: 111.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 319)
-0/69092	Loss: 103.304
-3200/69092	Loss: 111.873
-6400/69092	Loss: 110.717
-9600/69092	Loss: 112.062
-12800/69092	Loss: 111.397
-16000/69092	Loss: 111.597
-19200/69092	Loss: 112.798
-22400/69092	Loss: 110.245
-25600/69092	Loss: 110.977
-28800/69092	Loss: 111.191
-32000/69092	Loss: 110.798
-35200/69092	Loss: 110.867
-38400/69092	Loss: 112.236
-41600/69092	Loss: 112.333
-44800/69092	Loss: 110.852
-48000/69092	Loss: 111.670
-51200/69092	Loss: 110.712
-54400/69092	Loss: 111.992
-57600/69092	Loss: 112.176
-60800/69092	Loss: 112.691
-64000/69092	Loss: 111.358
-67200/69092	Loss: 112.990
-Training time 0:01:57.803994
-Epoch: 179 Average loss: 111.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 320)
-0/69092	Loss: 107.170
-3200/69092	Loss: 112.843
-6400/69092	Loss: 111.024
-9600/69092	Loss: 111.109
-12800/69092	Loss: 111.462
-16000/69092	Loss: 110.910
-19200/69092	Loss: 113.197
-22400/69092	Loss: 109.887
-25600/69092	Loss: 111.829
-28800/69092	Loss: 109.722
-32000/69092	Loss: 111.730
-35200/69092	Loss: 112.916
-38400/69092	Loss: 112.945
-41600/69092	Loss: 112.207
-44800/69092	Loss: 109.817
-48000/69092	Loss: 112.512
-51200/69092	Loss: 112.084
-54400/69092	Loss: 111.714
-57600/69092	Loss: 111.316
-60800/69092	Loss: 111.814
-64000/69092	Loss: 110.556
-67200/69092	Loss: 111.118
-Training time 0:01:56.358556
-Epoch: 180 Average loss: 111.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 321)
-0/69092	Loss: 100.743
-3200/69092	Loss: 111.787
-6400/69092	Loss: 111.899
-9600/69092	Loss: 111.281
-12800/69092	Loss: 111.201
-16000/69092	Loss: 110.951
-19200/69092	Loss: 111.522
-22400/69092	Loss: 111.217
-25600/69092	Loss: 110.644
-28800/69092	Loss: 112.240
-32000/69092	Loss: 113.481
-35200/69092	Loss: 110.947
-38400/69092	Loss: 111.085
-41600/69092	Loss: 110.284
-44800/69092	Loss: 111.467
-48000/69092	Loss: 112.270
-51200/69092	Loss: 112.145
-54400/69092	Loss: 111.475
-57600/69092	Loss: 113.179
-60800/69092	Loss: 111.228
-64000/69092	Loss: 111.896
-67200/69092	Loss: 110.584
-Training time 0:01:57.502158
-Epoch: 181 Average loss: 111.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 322)
-0/69092	Loss: 108.357
-3200/69092	Loss: 111.731
-6400/69092	Loss: 111.733
-9600/69092	Loss: 113.481
-12800/69092	Loss: 111.365
-16000/69092	Loss: 111.726
-19200/69092	Loss: 110.502
-22400/69092	Loss: 110.389
-25600/69092	Loss: 112.975
-28800/69092	Loss: 110.518
-32000/69092	Loss: 112.618
-35200/69092	Loss: 112.790
-38400/69092	Loss: 109.776
-41600/69092	Loss: 110.367
-44800/69092	Loss: 111.609
-48000/69092	Loss: 111.711
-51200/69092	Loss: 110.099
-54400/69092	Loss: 112.283
-57600/69092	Loss: 110.904
-60800/69092	Loss: 113.059
-64000/69092	Loss: 112.030
-67200/69092	Loss: 113.089
-Training time 0:01:56.875677
-Epoch: 182 Average loss: 111.63
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 323)
-0/69092	Loss: 114.072
-3200/69092	Loss: 110.401
-6400/69092	Loss: 110.559
-9600/69092	Loss: 111.795
-12800/69092	Loss: 111.781
-16000/69092	Loss: 111.667
-19200/69092	Loss: 111.338
-22400/69092	Loss: 111.120
-25600/69092	Loss: 110.425
-28800/69092	Loss: 111.761
-32000/69092	Loss: 111.229
-35200/69092	Loss: 111.569
-38400/69092	Loss: 112.074
-41600/69092	Loss: 110.837
-44800/69092	Loss: 113.152
-48000/69092	Loss: 112.021
-51200/69092	Loss: 111.156
-54400/69092	Loss: 113.387
-57600/69092	Loss: 111.168
-60800/69092	Loss: 112.002
-64000/69092	Loss: 111.889
-67200/69092	Loss: 111.340
-Training time 0:01:57.008256
-Epoch: 183 Average loss: 111.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 324)
-0/69092	Loss: 120.016
-3200/69092	Loss: 111.444
-6400/69092	Loss: 109.558
-9600/69092	Loss: 111.469
-12800/69092	Loss: 111.536
-16000/69092	Loss: 111.952
-19200/69092	Loss: 111.813
-22400/69092	Loss: 113.079
-25600/69092	Loss: 109.439
-28800/69092	Loss: 110.270
-32000/69092	Loss: 110.863
-35200/69092	Loss: 111.457
-38400/69092	Loss: 112.581
-41600/69092	Loss: 110.833
-44800/69092	Loss: 112.133
-48000/69092	Loss: 113.678
-51200/69092	Loss: 110.353
-54400/69092	Loss: 111.541
-57600/69092	Loss: 111.633
-60800/69092	Loss: 112.184
-64000/69092	Loss: 112.424
-67200/69092	Loss: 111.424
-Training time 0:01:58.523298
-Epoch: 184 Average loss: 111.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 325)
-0/69092	Loss: 107.876
-3200/69092	Loss: 109.747
-6400/69092	Loss: 109.868
-9600/69092	Loss: 111.135
-12800/69092	Loss: 111.407
-16000/69092	Loss: 112.379
-19200/69092	Loss: 111.545
-22400/69092	Loss: 113.547
-25600/69092	Loss: 110.568
-28800/69092	Loss: 113.485
-32000/69092	Loss: 112.639
-35200/69092	Loss: 111.609
-38400/69092	Loss: 109.332
-41600/69092	Loss: 113.248
-44800/69092	Loss: 112.174
-48000/69092	Loss: 110.729
-51200/69092	Loss: 112.713
-54400/69092	Loss: 112.936
-57600/69092	Loss: 110.470
-60800/69092	Loss: 111.682
-64000/69092	Loss: 111.546
-67200/69092	Loss: 110.812
-Training time 0:01:58.360094
-Epoch: 185 Average loss: 111.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 326)
-0/69092	Loss: 109.357
-3200/69092	Loss: 111.876
-6400/69092	Loss: 110.766
-9600/69092	Loss: 110.595
-12800/69092	Loss: 109.909
-16000/69092	Loss: 111.825
-19200/69092	Loss: 113.635
-22400/69092	Loss: 111.603
-25600/69092	Loss: 110.578
-28800/69092	Loss: 109.896
-32000/69092	Loss: 112.974
-35200/69092	Loss: 112.931
-38400/69092	Loss: 110.565
-41600/69092	Loss: 111.909
-44800/69092	Loss: 112.094
-48000/69092	Loss: 111.724
-51200/69092	Loss: 109.451
-54400/69092	Loss: 112.351
-57600/69092	Loss: 111.552
-60800/69092	Loss: 111.427
-64000/69092	Loss: 112.138
-67200/69092	Loss: 112.850
-Training time 0:01:58.267326
-Epoch: 186 Average loss: 111.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 327)
-0/69092	Loss: 106.456
-3200/69092	Loss: 111.164
-6400/69092	Loss: 111.993
-9600/69092	Loss: 112.414
-12800/69092	Loss: 109.983
-16000/69092	Loss: 112.061
-19200/69092	Loss: 111.702
-22400/69092	Loss: 111.505
-25600/69092	Loss: 110.846
-28800/69092	Loss: 112.006
-32000/69092	Loss: 111.262
-35200/69092	Loss: 111.303
-38400/69092	Loss: 112.328
-41600/69092	Loss: 111.673
-44800/69092	Loss: 112.157
-48000/69092	Loss: 110.761
-51200/69092	Loss: 110.008
-54400/69092	Loss: 112.026
-57600/69092	Loss: 112.987
-60800/69092	Loss: 111.907
-64000/69092	Loss: 112.970
-67200/69092	Loss: 111.228
-Training time 0:01:58.723759
-Epoch: 187 Average loss: 111.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 328)
-0/69092	Loss: 113.900
-3200/69092	Loss: 111.702
-6400/69092	Loss: 112.092
-9600/69092	Loss: 110.643
-12800/69092	Loss: 111.959
-16000/69092	Loss: 111.351
-19200/69092	Loss: 111.236
-22400/69092	Loss: 112.940
-25600/69092	Loss: 111.317
-28800/69092	Loss: 110.408
-32000/69092	Loss: 111.312
-35200/69092	Loss: 111.465
-38400/69092	Loss: 111.462
-41600/69092	Loss: 112.111
-44800/69092	Loss: 111.153
-48000/69092	Loss: 113.464
-51200/69092	Loss: 112.607
-54400/69092	Loss: 112.634
-57600/69092	Loss: 110.603
-60800/69092	Loss: 110.935
-64000/69092	Loss: 111.933
-67200/69092	Loss: 110.884
-Training time 0:01:56.799651
-Epoch: 188 Average loss: 111.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 329)
-0/69092	Loss: 109.241
-3200/69092	Loss: 112.366
-6400/69092	Loss: 110.846
-9600/69092	Loss: 111.406
-12800/69092	Loss: 110.057
-16000/69092	Loss: 110.629
-19200/69092	Loss: 111.649
-22400/69092	Loss: 112.120
-25600/69092	Loss: 113.910
-28800/69092	Loss: 109.390
-32000/69092	Loss: 112.291
-35200/69092	Loss: 112.187
-38400/69092	Loss: 109.937
-41600/69092	Loss: 112.167
-44800/69092	Loss: 111.798
-48000/69092	Loss: 112.998
-51200/69092	Loss: 110.693
-54400/69092	Loss: 110.759
-57600/69092	Loss: 112.801
-60800/69092	Loss: 113.271
-64000/69092	Loss: 109.608
-67200/69092	Loss: 110.332
-Training time 0:01:57.246459
-Epoch: 189 Average loss: 111.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 330)
-0/69092	Loss: 97.416
-3200/69092	Loss: 111.024
-6400/69092	Loss: 110.710
-9600/69092	Loss: 111.905
-12800/69092	Loss: 112.514
-16000/69092	Loss: 112.099
-19200/69092	Loss: 110.833
-22400/69092	Loss: 110.053
-25600/69092	Loss: 111.712
-28800/69092	Loss: 112.495
-32000/69092	Loss: 110.644
-35200/69092	Loss: 112.581
-38400/69092	Loss: 110.519
-41600/69092	Loss: 110.523
-44800/69092	Loss: 112.045
-48000/69092	Loss: 114.001
-51200/69092	Loss: 113.558
-54400/69092	Loss: 113.206
-57600/69092	Loss: 111.365
-60800/69092	Loss: 110.648
-64000/69092	Loss: 109.599
-67200/69092	Loss: 111.489
-Training time 0:01:58.534265
-Epoch: 190 Average loss: 111.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 331)
-0/69092	Loss: 109.889
-3200/69092	Loss: 111.807
-6400/69092	Loss: 111.917
-9600/69092	Loss: 112.418
-12800/69092	Loss: 111.399
-16000/69092	Loss: 111.778
-19200/69092	Loss: 110.268
-22400/69092	Loss: 112.134
-25600/69092	Loss: 111.793
-28800/69092	Loss: 113.554
-32000/69092	Loss: 111.343
-35200/69092	Loss: 111.764
-38400/69092	Loss: 111.731
-41600/69092	Loss: 111.383
-44800/69092	Loss: 110.959
-48000/69092	Loss: 111.216
-51200/69092	Loss: 112.441
-54400/69092	Loss: 110.586
-57600/69092	Loss: 111.640
-60800/69092	Loss: 109.830
-64000/69092	Loss: 111.446
-67200/69092	Loss: 108.799
-Training time 0:01:57.102272
-Epoch: 191 Average loss: 111.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 332)
-0/69092	Loss: 108.920
-3200/69092	Loss: 111.195
-6400/69092	Loss: 111.135
-9600/69092	Loss: 110.951
-12800/69092	Loss: 112.638
-16000/69092	Loss: 112.347
-19200/69092	Loss: 112.486
-22400/69092	Loss: 112.524
-25600/69092	Loss: 112.107
-28800/69092	Loss: 110.149
-32000/69092	Loss: 111.548
-35200/69092	Loss: 111.022
-38400/69092	Loss: 111.766
-41600/69092	Loss: 109.564
-44800/69092	Loss: 111.678
-48000/69092	Loss: 110.788
-51200/69092	Loss: 111.531
-54400/69092	Loss: 110.344
-57600/69092	Loss: 112.534
-60800/69092	Loss: 111.576
-64000/69092	Loss: 112.879
-67200/69092	Loss: 111.351
-Training time 0:01:59.373875
-Epoch: 192 Average loss: 111.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 333)
-0/69092	Loss: 94.938
-3200/69092	Loss: 109.984
-6400/69092	Loss: 113.110
-9600/69092	Loss: 112.400
-12800/69092	Loss: 110.083
-16000/69092	Loss: 112.644
-19200/69092	Loss: 110.717
-22400/69092	Loss: 110.447
-25600/69092	Loss: 111.353
-28800/69092	Loss: 111.059
-32000/69092	Loss: 112.197
-35200/69092	Loss: 110.996
-38400/69092	Loss: 111.752
-41600/69092	Loss: 111.362
-44800/69092	Loss: 111.330
-48000/69092	Loss: 110.749
-51200/69092	Loss: 112.118
-54400/69092	Loss: 111.676
-57600/69092	Loss: 111.923
-60800/69092	Loss: 111.846
-64000/69092	Loss: 112.101
-67200/69092	Loss: 111.094
-Training time 0:01:57.080547
-Epoch: 193 Average loss: 111.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 334)
-0/69092	Loss: 103.360
-3200/69092	Loss: 109.909
-6400/69092	Loss: 110.607
-9600/69092	Loss: 111.329
-12800/69092	Loss: 111.241
-16000/69092	Loss: 111.323
-19200/69092	Loss: 111.070
-22400/69092	Loss: 112.863
-25600/69092	Loss: 110.287
-28800/69092	Loss: 111.865
-32000/69092	Loss: 111.984
-35200/69092	Loss: 110.044
-38400/69092	Loss: 111.127
-41600/69092	Loss: 112.657
-44800/69092	Loss: 111.520
-48000/69092	Loss: 111.684
-51200/69092	Loss: 112.632
-54400/69092	Loss: 110.193
-57600/69092	Loss: 112.449
-60800/69092	Loss: 111.390
-64000/69092	Loss: 112.835
-67200/69092	Loss: 110.220
-Training time 0:01:56.919221
-Epoch: 194 Average loss: 111.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 335)
-0/69092	Loss: 114.571
-3200/69092	Loss: 109.905
-6400/69092	Loss: 112.086
-9600/69092	Loss: 113.124
-12800/69092	Loss: 111.455
-16000/69092	Loss: 111.385
-19200/69092	Loss: 110.461
-22400/69092	Loss: 113.651
-25600/69092	Loss: 111.032
-28800/69092	Loss: 111.218
-32000/69092	Loss: 110.235
-35200/69092	Loss: 111.196
-38400/69092	Loss: 110.942
-41600/69092	Loss: 111.118
-44800/69092	Loss: 112.162
-48000/69092	Loss: 112.270
-51200/69092	Loss: 112.336
-54400/69092	Loss: 112.304
-57600/69092	Loss: 112.400
-60800/69092	Loss: 110.947
-64000/69092	Loss: 112.175
-67200/69092	Loss: 110.084
-Training time 0:01:58.159029
-Epoch: 195 Average loss: 111.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 336)
-0/69092	Loss: 108.121
-3200/69092	Loss: 110.551
-6400/69092	Loss: 110.122
-9600/69092	Loss: 111.087
-12800/69092	Loss: 109.713
-16000/69092	Loss: 112.398
-19200/69092	Loss: 111.586
-22400/69092	Loss: 111.953
-25600/69092	Loss: 110.096
-28800/69092	Loss: 113.473
-32000/69092	Loss: 111.779
-35200/69092	Loss: 109.830
-38400/69092	Loss: 113.223
-41600/69092	Loss: 112.166
-44800/69092	Loss: 111.385
-48000/69092	Loss: 110.130
-51200/69092	Loss: 112.360
-54400/69092	Loss: 112.056
-57600/69092	Loss: 111.081
-60800/69092	Loss: 111.881
-64000/69092	Loss: 112.729
-67200/69092	Loss: 110.063
-Training time 0:01:58.104471
-Epoch: 196 Average loss: 111.44
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 337)
-0/69092	Loss: 106.781
-3200/69092	Loss: 110.821
-6400/69092	Loss: 111.953
-9600/69092	Loss: 109.727
-12800/69092	Loss: 111.328
-16000/69092	Loss: 111.844
-19200/69092	Loss: 112.256
-22400/69092	Loss: 111.124
-25600/69092	Loss: 110.867
-28800/69092	Loss: 113.414
-32000/69092	Loss: 112.425
-35200/69092	Loss: 110.892
-38400/69092	Loss: 112.804
-41600/69092	Loss: 112.032
-44800/69092	Loss: 111.316
-48000/69092	Loss: 110.373
-51200/69092	Loss: 110.897
-54400/69092	Loss: 111.082
-57600/69092	Loss: 111.780
-60800/69092	Loss: 111.888
-64000/69092	Loss: 111.758
-67200/69092	Loss: 110.124
-Training time 0:01:58.603707
-Epoch: 197 Average loss: 111.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 338)
-0/69092	Loss: 113.594
-3200/69092	Loss: 113.698
-6400/69092	Loss: 112.309
-9600/69092	Loss: 112.653
-12800/69092	Loss: 111.578
-16000/69092	Loss: 111.554
-19200/69092	Loss: 112.596
-22400/69092	Loss: 113.017
-25600/69092	Loss: 111.630
-28800/69092	Loss: 110.219
-32000/69092	Loss: 112.802
-35200/69092	Loss: 111.337
-38400/69092	Loss: 110.153
-41600/69092	Loss: 110.940
-44800/69092	Loss: 111.857
-48000/69092	Loss: 110.170
-51200/69092	Loss: 110.449
-54400/69092	Loss: 110.685
-57600/69092	Loss: 112.279
-60800/69092	Loss: 111.142
-64000/69092	Loss: 111.796
-67200/69092	Loss: 112.044
-Training time 0:01:57.167400
-Epoch: 198 Average loss: 111.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 339)
-0/69092	Loss: 112.419
-3200/69092	Loss: 109.955
-6400/69092	Loss: 112.138
-9600/69092	Loss: 111.481
-12800/69092	Loss: 112.328
-16000/69092	Loss: 111.303
-19200/69092	Loss: 111.574
-22400/69092	Loss: 110.819
-25600/69092	Loss: 111.268
-28800/69092	Loss: 111.733
-32000/69092	Loss: 112.241
-35200/69092	Loss: 112.829
-38400/69092	Loss: 112.505
-41600/69092	Loss: 112.321
-44800/69092	Loss: 113.180
-48000/69092	Loss: 110.595
-51200/69092	Loss: 109.521
-54400/69092	Loss: 112.243
-57600/69092	Loss: 112.375
-60800/69092	Loss: 110.801
-64000/69092	Loss: 111.653
-67200/69092	Loss: 109.770
-Training time 0:01:57.924023
-Epoch: 199 Average loss: 111.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 340)
-0/69092	Loss: 111.472
-3200/69092	Loss: 110.743
-6400/69092	Loss: 113.299
-9600/69092	Loss: 113.510
-12800/69092	Loss: 111.098
-16000/69092	Loss: 110.945
-19200/69092	Loss: 112.532
-22400/69092	Loss: 110.176
-25600/69092	Loss: 111.653
-28800/69092	Loss: 112.327
-32000/69092	Loss: 111.306
-35200/69092	Loss: 109.258
-38400/69092	Loss: 113.309
-41600/69092	Loss: 111.966
-44800/69092	Loss: 109.731
-48000/69092	Loss: 110.473
-51200/69092	Loss: 111.429
-54400/69092	Loss: 110.927
-57600/69092	Loss: 112.217
-60800/69092	Loss: 110.853
-64000/69092	Loss: 111.186
-67200/69092	Loss: 111.871
-Training time 0:01:58.334315
-Epoch: 200 Average loss: 111.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 341)
-0/69092	Loss: 115.150
-3200/69092	Loss: 110.023
-6400/69092	Loss: 112.227
-9600/69092	Loss: 111.714
-12800/69092	Loss: 112.349
-16000/69092	Loss: 110.676
-19200/69092	Loss: 110.853
-22400/69092	Loss: 113.538
-25600/69092	Loss: 110.516
-28800/69092	Loss: 111.096
-32000/69092	Loss: 111.750
-35200/69092	Loss: 111.765
-38400/69092	Loss: 111.635
-41600/69092	Loss: 110.206
-44800/69092	Loss: 112.139
-48000/69092	Loss: 111.607
-51200/69092	Loss: 111.363
-54400/69092	Loss: 112.149
-57600/69092	Loss: 110.888
-60800/69092	Loss: 110.482
-64000/69092	Loss: 112.155
-67200/69092	Loss: 111.006
-Training time 0:01:57.005626
-Epoch: 201 Average loss: 111.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 342)
-0/69092	Loss: 113.854
-3200/69092	Loss: 111.091
-6400/69092	Loss: 112.947
-9600/69092	Loss: 111.028
-12800/69092	Loss: 112.363
-16000/69092	Loss: 110.452
-19200/69092	Loss: 112.219
-22400/69092	Loss: 110.810
-25600/69092	Loss: 111.414
-28800/69092	Loss: 109.000
-32000/69092	Loss: 112.222
-35200/69092	Loss: 111.294
-38400/69092	Loss: 112.423
-41600/69092	Loss: 109.885
-44800/69092	Loss: 110.768
-48000/69092	Loss: 111.757
-51200/69092	Loss: 111.989
-54400/69092	Loss: 111.814
-57600/69092	Loss: 111.490
-60800/69092	Loss: 110.375
-64000/69092	Loss: 113.477
-67200/69092	Loss: 111.864
-Training time 0:01:58.205028
-Epoch: 202 Average loss: 111.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 343)
-0/69092	Loss: 122.803
-3200/69092	Loss: 109.099
-6400/69092	Loss: 111.211
-9600/69092	Loss: 112.652
-12800/69092	Loss: 110.796
-16000/69092	Loss: 112.224
-19200/69092	Loss: 111.626
-22400/69092	Loss: 110.358
-25600/69092	Loss: 110.847
-28800/69092	Loss: 109.929
-32000/69092	Loss: 112.566
-35200/69092	Loss: 111.338
-38400/69092	Loss: 112.282
-41600/69092	Loss: 112.631
-44800/69092	Loss: 111.255
-48000/69092	Loss: 111.783
-51200/69092	Loss: 110.747
-54400/69092	Loss: 112.228
-57600/69092	Loss: 111.133
-60800/69092	Loss: 112.582
-64000/69092	Loss: 112.125
-67200/69092	Loss: 110.639
-Training time 0:01:57.600120
-Epoch: 203 Average loss: 111.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 344)
-0/69092	Loss: 93.580
-3200/69092	Loss: 110.922
-6400/69092	Loss: 110.754
-9600/69092	Loss: 112.235
-12800/69092	Loss: 111.213
-16000/69092	Loss: 110.708
-19200/69092	Loss: 112.412
-22400/69092	Loss: 112.055
-25600/69092	Loss: 111.254
-28800/69092	Loss: 110.863
-32000/69092	Loss: 111.556
-35200/69092	Loss: 110.194
-38400/69092	Loss: 110.994
-41600/69092	Loss: 112.317
-44800/69092	Loss: 110.494
-48000/69092	Loss: 111.593
-51200/69092	Loss: 112.344
-54400/69092	Loss: 111.820
-57600/69092	Loss: 111.345
-60800/69092	Loss: 110.048
-64000/69092	Loss: 111.832
-67200/69092	Loss: 112.054
-Training time 0:01:56.237356
-Epoch: 204 Average loss: 111.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 345)
-0/69092	Loss: 112.522
-3200/69092	Loss: 111.112
-6400/69092	Loss: 110.098
-9600/69092	Loss: 108.869
-12800/69092	Loss: 112.934
-16000/69092	Loss: 111.414
-19200/69092	Loss: 111.944
-22400/69092	Loss: 113.090
-25600/69092	Loss: 112.490
-28800/69092	Loss: 112.373
-32000/69092	Loss: 112.170
-35200/69092	Loss: 111.583
-38400/69092	Loss: 112.493
-41600/69092	Loss: 111.659
-44800/69092	Loss: 109.277
-48000/69092	Loss: 111.841
-51200/69092	Loss: 111.398
-54400/69092	Loss: 110.888
-57600/69092	Loss: 110.742
-60800/69092	Loss: 111.845
-64000/69092	Loss: 113.225
-67200/69092	Loss: 111.037
-Training time 0:01:57.617241
-Epoch: 205 Average loss: 111.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 346)
-0/69092	Loss: 98.533
-3200/69092	Loss: 111.355
-6400/69092	Loss: 111.611
-9600/69092	Loss: 110.095
-12800/69092	Loss: 111.926
-16000/69092	Loss: 112.762
-19200/69092	Loss: 112.127
-22400/69092	Loss: 109.491
-25600/69092	Loss: 111.587
-28800/69092	Loss: 111.030
-32000/69092	Loss: 111.695
-35200/69092	Loss: 109.720
-38400/69092	Loss: 112.026
-41600/69092	Loss: 110.734
-44800/69092	Loss: 110.859
-48000/69092	Loss: 112.773
-51200/69092	Loss: 110.691
-54400/69092	Loss: 111.574
-57600/69092	Loss: 111.777
-60800/69092	Loss: 111.960
-64000/69092	Loss: 111.923
-67200/69092	Loss: 111.407
-Training time 0:01:56.652164
-Epoch: 206 Average loss: 111.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 347)
-0/69092	Loss: 108.875
-3200/69092	Loss: 110.916
-6400/69092	Loss: 113.648
-9600/69092	Loss: 110.534
-12800/69092	Loss: 111.209
-16000/69092	Loss: 111.274
-19200/69092	Loss: 112.621
-22400/69092	Loss: 110.061
-25600/69092	Loss: 112.428
-28800/69092	Loss: 111.467
-32000/69092	Loss: 111.706
-35200/69092	Loss: 111.864
-38400/69092	Loss: 111.089
-41600/69092	Loss: 111.207
-44800/69092	Loss: 111.968
-48000/69092	Loss: 110.630
-51200/69092	Loss: 109.912
-54400/69092	Loss: 111.795
-57600/69092	Loss: 110.983
-60800/69092	Loss: 110.989
-64000/69092	Loss: 111.718
-67200/69092	Loss: 112.320
-Training time 0:01:56.916312
-Epoch: 207 Average loss: 111.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 348)
-0/69092	Loss: 102.599
-3200/69092	Loss: 110.473
-6400/69092	Loss: 111.614
-9600/69092	Loss: 111.271
-12800/69092	Loss: 111.222
-16000/69092	Loss: 111.518
-19200/69092	Loss: 110.553
-22400/69092	Loss: 111.711
-25600/69092	Loss: 112.280
-28800/69092	Loss: 113.308
-32000/69092	Loss: 111.122
-35200/69092	Loss: 110.948
-38400/69092	Loss: 110.553
-41600/69092	Loss: 111.291
-44800/69092	Loss: 111.090
-48000/69092	Loss: 112.110
-51200/69092	Loss: 109.851
-54400/69092	Loss: 111.271
-57600/69092	Loss: 110.337
-60800/69092	Loss: 112.488
-64000/69092	Loss: 112.346
-67200/69092	Loss: 111.697
-Training time 0:01:56.969007
-Epoch: 208 Average loss: 111.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 349)
-0/69092	Loss: 113.835
-3200/69092	Loss: 111.938
-6400/69092	Loss: 111.895
-9600/69092	Loss: 109.699
-12800/69092	Loss: 111.054
-16000/69092	Loss: 112.884
-19200/69092	Loss: 111.537
-22400/69092	Loss: 110.177
-25600/69092	Loss: 111.210
-28800/69092	Loss: 110.937
-32000/69092	Loss: 110.941
-35200/69092	Loss: 111.862
-38400/69092	Loss: 112.476
-41600/69092	Loss: 111.416
-44800/69092	Loss: 109.835
-48000/69092	Loss: 113.591
-51200/69092	Loss: 110.922
-54400/69092	Loss: 112.708
-57600/69092	Loss: 112.562
-60800/69092	Loss: 111.865
-64000/69092	Loss: 109.793
-67200/69092	Loss: 111.836
-Training time 0:01:56.360459
-Epoch: 209 Average loss: 111.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 350)
-0/69092	Loss: 120.409
-3200/69092	Loss: 110.850
-6400/69092	Loss: 112.257
-9600/69092	Loss: 113.017
-12800/69092	Loss: 111.456
-16000/69092	Loss: 110.195
-19200/69092	Loss: 111.982
-22400/69092	Loss: 112.190
-25600/69092	Loss: 112.127
-28800/69092	Loss: 111.933
-32000/69092	Loss: 110.376
-35200/69092	Loss: 111.161
-38400/69092	Loss: 112.101
-41600/69092	Loss: 110.839
-44800/69092	Loss: 110.107
-48000/69092	Loss: 111.470
-51200/69092	Loss: 112.179
-54400/69092	Loss: 111.840
-57600/69092	Loss: 110.614
-60800/69092	Loss: 110.808
-64000/69092	Loss: 111.620
-67200/69092	Loss: 111.510
-Training time 0:01:57.590427
-Epoch: 210 Average loss: 111.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 351)
-0/69092	Loss: 119.344
-3200/69092	Loss: 112.807
-6400/69092	Loss: 112.348
-9600/69092	Loss: 110.871
-12800/69092	Loss: 111.955
-16000/69092	Loss: 110.985
-19200/69092	Loss: 110.206
-22400/69092	Loss: 111.836
-25600/69092	Loss: 110.782
-28800/69092	Loss: 111.066
-32000/69092	Loss: 113.356
-35200/69092	Loss: 108.950
-38400/69092	Loss: 110.221
-41600/69092	Loss: 109.766
-44800/69092	Loss: 110.668
-48000/69092	Loss: 109.244
-51200/69092	Loss: 112.367
-54400/69092	Loss: 111.290
-57600/69092	Loss: 113.432
-60800/69092	Loss: 112.470
-64000/69092	Loss: 111.769
-67200/69092	Loss: 110.955
-Training time 0:01:57.536802
-Epoch: 211 Average loss: 111.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 352)
-0/69092	Loss: 120.097
-3200/69092	Loss: 110.348
-6400/69092	Loss: 109.759
-9600/69092	Loss: 111.939
-12800/69092	Loss: 111.628
-16000/69092	Loss: 109.937
-19200/69092	Loss: 111.015
-22400/69092	Loss: 109.874
-25600/69092	Loss: 111.871
-28800/69092	Loss: 112.431
-32000/69092	Loss: 111.558
-35200/69092	Loss: 111.477
-38400/69092	Loss: 111.061
-41600/69092	Loss: 111.284
-44800/69092	Loss: 111.224
-48000/69092	Loss: 111.538
-51200/69092	Loss: 110.273
-54400/69092	Loss: 113.683
-57600/69092	Loss: 114.031
-60800/69092	Loss: 111.889
-64000/69092	Loss: 110.906
-67200/69092	Loss: 112.257
-Training time 0:01:59.027080
-Epoch: 212 Average loss: 111.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 353)
-0/69092	Loss: 112.744
-3200/69092	Loss: 111.743
-6400/69092	Loss: 111.099
-9600/69092	Loss: 112.636
-12800/69092	Loss: 110.038
-16000/69092	Loss: 110.172
-19200/69092	Loss: 111.920
-22400/69092	Loss: 111.602
-25600/69092	Loss: 111.908
-28800/69092	Loss: 112.016
-32000/69092	Loss: 112.443
-35200/69092	Loss: 109.461
-38400/69092	Loss: 110.080
-41600/69092	Loss: 111.385
-44800/69092	Loss: 112.291
-48000/69092	Loss: 112.444
-51200/69092	Loss: 110.867
-54400/69092	Loss: 111.104
-57600/69092	Loss: 112.389
-60800/69092	Loss: 111.302
-64000/69092	Loss: 111.587
-67200/69092	Loss: 110.853
-Training time 0:01:57.615160
-Epoch: 213 Average loss: 111.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 354)
-0/69092	Loss: 114.279
-3200/69092	Loss: 112.340
-6400/69092	Loss: 110.850
-9600/69092	Loss: 112.539
-12800/69092	Loss: 111.477
-16000/69092	Loss: 110.505
-19200/69092	Loss: 111.526
-22400/69092	Loss: 111.796
-25600/69092	Loss: 112.174
-28800/69092	Loss: 110.404
-32000/69092	Loss: 111.231
-35200/69092	Loss: 111.565
-38400/69092	Loss: 111.532
-41600/69092	Loss: 111.646
-44800/69092	Loss: 109.560
-48000/69092	Loss: 110.412
-51200/69092	Loss: 111.165
-54400/69092	Loss: 111.110
-57600/69092	Loss: 111.434
-60800/69092	Loss: 111.814
-64000/69092	Loss: 112.276
-67200/69092	Loss: 111.237
-Training time 0:01:58.346116
-Epoch: 214 Average loss: 111.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 355)
-0/69092	Loss: 127.044
-3200/69092	Loss: 110.452
-6400/69092	Loss: 111.756
-9600/69092	Loss: 112.551
-12800/69092	Loss: 111.003
-16000/69092	Loss: 112.250
-19200/69092	Loss: 110.165
-22400/69092	Loss: 112.154
-25600/69092	Loss: 110.438
-28800/69092	Loss: 112.979
-32000/69092	Loss: 110.254
-35200/69092	Loss: 109.706
-38400/69092	Loss: 111.473
-41600/69092	Loss: 112.342
-44800/69092	Loss: 111.705
-48000/69092	Loss: 111.665
-51200/69092	Loss: 112.091
-54400/69092	Loss: 111.668
-57600/69092	Loss: 112.842
-60800/69092	Loss: 111.255
-64000/69092	Loss: 110.401
-67200/69092	Loss: 110.209
-Training time 0:01:58.014856
-Epoch: 215 Average loss: 111.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 356)
-0/69092	Loss: 112.351
-3200/69092	Loss: 111.519
-6400/69092	Loss: 111.246
-9600/69092	Loss: 109.853
-12800/69092	Loss: 109.595
-16000/69092	Loss: 111.626
-19200/69092	Loss: 111.506
-22400/69092	Loss: 111.250
-25600/69092	Loss: 111.395
-28800/69092	Loss: 111.913
-32000/69092	Loss: 111.892
-35200/69092	Loss: 111.181
-38400/69092	Loss: 112.370
-41600/69092	Loss: 110.939
-44800/69092	Loss: 110.783
-48000/69092	Loss: 111.743
-51200/69092	Loss: 110.026
-54400/69092	Loss: 110.932
-57600/69092	Loss: 112.053
-60800/69092	Loss: 111.906
-64000/69092	Loss: 111.053
-67200/69092	Loss: 113.081
-Training time 0:01:58.788414
-Epoch: 216 Average loss: 111.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 357)
-0/69092	Loss: 121.562
-3200/69092	Loss: 111.542
-6400/69092	Loss: 109.944
-9600/69092	Loss: 112.213
-12800/69092	Loss: 111.913
-16000/69092	Loss: 110.020
-19200/69092	Loss: 111.637
-22400/69092	Loss: 110.192
-25600/69092	Loss: 111.485
-28800/69092	Loss: 111.960
-32000/69092	Loss: 111.698
-35200/69092	Loss: 110.886
-38400/69092	Loss: 111.271
-41600/69092	Loss: 110.022
-44800/69092	Loss: 111.836
-48000/69092	Loss: 110.569
-51200/69092	Loss: 113.301
-54400/69092	Loss: 110.978
-57600/69092	Loss: 111.605
-60800/69092	Loss: 111.127
-64000/69092	Loss: 111.314
-67200/69092	Loss: 112.614
-Training time 0:01:58.957951
-Epoch: 217 Average loss: 111.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 358)
-0/69092	Loss: 102.586
-3200/69092	Loss: 110.779
-6400/69092	Loss: 112.011
-9600/69092	Loss: 110.499
-12800/69092	Loss: 112.280
-16000/69092	Loss: 113.763
-19200/69092	Loss: 112.573
-22400/69092	Loss: 108.902
-25600/69092	Loss: 111.236
-28800/69092	Loss: 109.855
-32000/69092	Loss: 110.905
-35200/69092	Loss: 112.341
-38400/69092	Loss: 111.872
-41600/69092	Loss: 111.001
-44800/69092	Loss: 112.656
-48000/69092	Loss: 108.933
-51200/69092	Loss: 112.074
-54400/69092	Loss: 111.367
-57600/69092	Loss: 111.971
-60800/69092	Loss: 111.967
-64000/69092	Loss: 109.766
-67200/69092	Loss: 111.624
-Training time 0:01:57.840309
-Epoch: 218 Average loss: 111.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 359)
-0/69092	Loss: 124.881
-3200/69092	Loss: 109.882
-6400/69092	Loss: 111.695
-9600/69092	Loss: 111.945
-12800/69092	Loss: 111.044
-16000/69092	Loss: 110.048
-19200/69092	Loss: 110.531
-22400/69092	Loss: 111.482
-25600/69092	Loss: 112.433
-28800/69092	Loss: 110.267
-32000/69092	Loss: 112.630
-35200/69092	Loss: 112.747
-38400/69092	Loss: 111.090
-41600/69092	Loss: 111.716
-44800/69092	Loss: 109.714
-48000/69092	Loss: 110.786
-51200/69092	Loss: 110.437
-54400/69092	Loss: 110.069
-57600/69092	Loss: 112.107
-60800/69092	Loss: 111.284
-64000/69092	Loss: 112.616
-67200/69092	Loss: 110.709
-Training time 0:01:57.654049
-Epoch: 219 Average loss: 111.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 360)
-0/69092	Loss: 107.601
-3200/69092	Loss: 112.450
-6400/69092	Loss: 111.540
-9600/69092	Loss: 111.025
-12800/69092	Loss: 109.177
-16000/69092	Loss: 111.226
-19200/69092	Loss: 109.213
-22400/69092	Loss: 110.742
-25600/69092	Loss: 111.340
-28800/69092	Loss: 110.020
-32000/69092	Loss: 111.061
-35200/69092	Loss: 111.604
-38400/69092	Loss: 113.606
-41600/69092	Loss: 111.543
-44800/69092	Loss: 111.912
-48000/69092	Loss: 110.423
-51200/69092	Loss: 112.450
-54400/69092	Loss: 111.991
-57600/69092	Loss: 112.207
-60800/69092	Loss: 110.035
-64000/69092	Loss: 112.878
-67200/69092	Loss: 111.034
-Training time 0:01:58.261768
-Epoch: 220 Average loss: 111.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 361)
-0/69092	Loss: 110.842
-3200/69092	Loss: 110.316
-6400/69092	Loss: 111.318
-9600/69092	Loss: 111.450
-12800/69092	Loss: 112.726
-16000/69092	Loss: 109.595
-19200/69092	Loss: 110.400
-22400/69092	Loss: 110.424
-25600/69092	Loss: 112.292
-28800/69092	Loss: 112.729
-32000/69092	Loss: 110.775
-35200/69092	Loss: 111.294
-38400/69092	Loss: 110.349
-41600/69092	Loss: 109.950
-44800/69092	Loss: 111.693
-48000/69092	Loss: 113.166
-51200/69092	Loss: 111.447
-54400/69092	Loss: 110.477
-57600/69092	Loss: 112.263
-60800/69092	Loss: 113.131
-64000/69092	Loss: 112.114
-67200/69092	Loss: 110.500
-Training time 0:01:57.627358
-Epoch: 221 Average loss: 111.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 362)
-0/69092	Loss: 109.257
-3200/69092	Loss: 111.263
-6400/69092	Loss: 110.685
-9600/69092	Loss: 112.333
-12800/69092	Loss: 110.178
-16000/69092	Loss: 109.855
-19200/69092	Loss: 110.781
-22400/69092	Loss: 110.541
-25600/69092	Loss: 111.465
-28800/69092	Loss: 113.951
-32000/69092	Loss: 109.545
-35200/69092	Loss: 109.706
-38400/69092	Loss: 109.152
-41600/69092	Loss: 112.902
-44800/69092	Loss: 112.605
-48000/69092	Loss: 111.139
-51200/69092	Loss: 111.587
-54400/69092	Loss: 111.706
-57600/69092	Loss: 111.629
-60800/69092	Loss: 111.455
-64000/69092	Loss: 112.777
-67200/69092	Loss: 112.410
-Training time 0:01:58.640351
-Epoch: 222 Average loss: 111.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 363)
-0/69092	Loss: 127.826
-3200/69092	Loss: 111.929
-6400/69092	Loss: 110.048
-9600/69092	Loss: 110.230
-12800/69092	Loss: 110.655
-16000/69092	Loss: 112.476
-19200/69092	Loss: 111.954
-22400/69092	Loss: 112.187
-25600/69092	Loss: 111.901
-28800/69092	Loss: 111.431
-32000/69092	Loss: 110.900
-35200/69092	Loss: 110.733
-38400/69092	Loss: 110.865
-41600/69092	Loss: 111.837
-44800/69092	Loss: 111.534
-48000/69092	Loss: 110.931
-51200/69092	Loss: 111.468
-54400/69092	Loss: 110.263
-57600/69092	Loss: 111.144
-60800/69092	Loss: 111.499
-64000/69092	Loss: 113.455
-67200/69092	Loss: 111.727
-Training time 0:01:57.344704
-Epoch: 223 Average loss: 111.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 364)
-0/69092	Loss: 115.922
-3200/69092	Loss: 110.742
-6400/69092	Loss: 112.816
-9600/69092	Loss: 113.036
-12800/69092	Loss: 108.655
-16000/69092	Loss: 110.480
-19200/69092	Loss: 111.792
-22400/69092	Loss: 112.388
-25600/69092	Loss: 111.947
-28800/69092	Loss: 112.240
-32000/69092	Loss: 111.292
-35200/69092	Loss: 109.624
-38400/69092	Loss: 109.701
-41600/69092	Loss: 112.976
-44800/69092	Loss: 111.058
-48000/69092	Loss: 110.137
-51200/69092	Loss: 111.092
-54400/69092	Loss: 109.685
-57600/69092	Loss: 112.904
-60800/69092	Loss: 111.244
-64000/69092	Loss: 110.958
-67200/69092	Loss: 110.772
-Training time 0:01:57.242663
-Epoch: 224 Average loss: 111.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 365)
-0/69092	Loss: 105.513
-3200/69092	Loss: 111.115
-6400/69092	Loss: 110.288
-9600/69092	Loss: 111.020
-12800/69092	Loss: 113.001
-16000/69092	Loss: 110.015
-19200/69092	Loss: 111.040
-22400/69092	Loss: 112.315
-25600/69092	Loss: 111.176
-28800/69092	Loss: 111.426
-32000/69092	Loss: 110.235
-35200/69092	Loss: 112.121
-38400/69092	Loss: 110.873
-41600/69092	Loss: 112.275
-44800/69092	Loss: 111.597
-48000/69092	Loss: 110.714
-51200/69092	Loss: 112.752
-54400/69092	Loss: 111.250
-57600/69092	Loss: 110.235
-60800/69092	Loss: 111.397
-64000/69092	Loss: 109.267
-67200/69092	Loss: 110.353
-Training time 0:01:58.334069
-Epoch: 225 Average loss: 111.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 366)
-0/69092	Loss: 118.099
-3200/69092	Loss: 110.454
-6400/69092	Loss: 110.810
-9600/69092	Loss: 110.643
-12800/69092	Loss: 112.621
-16000/69092	Loss: 113.077
-19200/69092	Loss: 112.072
-22400/69092	Loss: 111.309
-25600/69092	Loss: 111.833
-28800/69092	Loss: 110.233
-32000/69092	Loss: 112.047
-35200/69092	Loss: 110.325
-38400/69092	Loss: 110.898
-41600/69092	Loss: 110.207
-44800/69092	Loss: 111.931
-48000/69092	Loss: 111.206
-51200/69092	Loss: 112.358
-54400/69092	Loss: 112.203
-57600/69092	Loss: 111.354
-60800/69092	Loss: 110.269
-64000/69092	Loss: 111.339
-67200/69092	Loss: 112.139
-Training time 0:01:56.571158
-Epoch: 226 Average loss: 111.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 367)
-0/69092	Loss: 105.174
-3200/69092	Loss: 111.525
-6400/69092	Loss: 110.272
-9600/69092	Loss: 111.046
-12800/69092	Loss: 109.603
-16000/69092	Loss: 110.997
-19200/69092	Loss: 110.737
-22400/69092	Loss: 111.180
-25600/69092	Loss: 112.482
-28800/69092	Loss: 112.495
-32000/69092	Loss: 112.216
-35200/69092	Loss: 109.527
-38400/69092	Loss: 110.979
-41600/69092	Loss: 110.004
-44800/69092	Loss: 111.313
-48000/69092	Loss: 111.064
-51200/69092	Loss: 111.682
-54400/69092	Loss: 110.034
-57600/69092	Loss: 110.902
-60800/69092	Loss: 111.099
-64000/69092	Loss: 111.124
-67200/69092	Loss: 112.292
-Training time 0:01:57.296885
-Epoch: 227 Average loss: 111.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 368)
-0/69092	Loss: 106.661
-3200/69092	Loss: 110.437
-6400/69092	Loss: 110.442
-9600/69092	Loss: 111.701
-12800/69092	Loss: 110.894
-16000/69092	Loss: 110.809
-19200/69092	Loss: 110.898
-22400/69092	Loss: 111.743
-25600/69092	Loss: 113.289
-28800/69092	Loss: 111.461
-32000/69092	Loss: 109.851
-35200/69092	Loss: 111.512
-38400/69092	Loss: 110.425
-41600/69092	Loss: 109.910
-44800/69092	Loss: 110.566
-48000/69092	Loss: 110.228
-51200/69092	Loss: 112.979
-54400/69092	Loss: 111.993
-57600/69092	Loss: 113.125
-60800/69092	Loss: 111.460
-64000/69092	Loss: 112.063
-67200/69092	Loss: 110.471
-Training time 0:01:57.932701
-Epoch: 228 Average loss: 111.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 369)
-0/69092	Loss: 109.460
-3200/69092	Loss: 109.768
-6400/69092	Loss: 111.855
-9600/69092	Loss: 111.658
-12800/69092	Loss: 110.377
-16000/69092	Loss: 111.898
-19200/69092	Loss: 110.089
-22400/69092	Loss: 111.923
-25600/69092	Loss: 112.154
-28800/69092	Loss: 111.484
-32000/69092	Loss: 110.921
-35200/69092	Loss: 110.930
-38400/69092	Loss: 110.767
-41600/69092	Loss: 111.373
-44800/69092	Loss: 111.323
-48000/69092	Loss: 111.928
-51200/69092	Loss: 111.844
-54400/69092	Loss: 110.907
-57600/69092	Loss: 111.087
-60800/69092	Loss: 111.255
-64000/69092	Loss: 111.467
-67200/69092	Loss: 110.572
-Training time 0:01:56.896235
-Epoch: 229 Average loss: 111.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 370)
-0/69092	Loss: 100.697
-3200/69092	Loss: 111.961
-6400/69092	Loss: 110.156
-9600/69092	Loss: 110.939
-12800/69092	Loss: 111.157
-16000/69092	Loss: 112.250
-19200/69092	Loss: 111.242
-22400/69092	Loss: 111.208
-25600/69092	Loss: 111.491
-28800/69092	Loss: 110.459
-32000/69092	Loss: 109.915
-35200/69092	Loss: 111.903
-38400/69092	Loss: 109.792
-41600/69092	Loss: 111.766
-44800/69092	Loss: 111.266
-48000/69092	Loss: 113.149
-51200/69092	Loss: 111.914
-54400/69092	Loss: 110.529
-57600/69092	Loss: 111.267
-60800/69092	Loss: 110.886
-64000/69092	Loss: 111.560
-67200/69092	Loss: 111.441
-Training time 0:01:57.565134
-Epoch: 230 Average loss: 111.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 371)
-0/69092	Loss: 107.621
-3200/69092	Loss: 111.732
-6400/69092	Loss: 110.538
-9600/69092	Loss: 112.264
-12800/69092	Loss: 109.527
-16000/69092	Loss: 111.364
-19200/69092	Loss: 113.838
-22400/69092	Loss: 112.676
-25600/69092	Loss: 110.422
-28800/69092	Loss: 112.439
-32000/69092	Loss: 110.913
-35200/69092	Loss: 110.436
-38400/69092	Loss: 111.448
-41600/69092	Loss: 109.956
-44800/69092	Loss: 110.899
-48000/69092	Loss: 111.218
-51200/69092	Loss: 109.792
-54400/69092	Loss: 112.106
-57600/69092	Loss: 109.574
-60800/69092	Loss: 110.445
-64000/69092	Loss: 111.070
-67200/69092	Loss: 111.572
-Training time 0:01:57.721162
-Epoch: 231 Average loss: 111.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 372)
-0/69092	Loss: 118.985
-3200/69092	Loss: 111.589
-6400/69092	Loss: 110.570
-9600/69092	Loss: 112.050
-12800/69092	Loss: 110.363
-16000/69092	Loss: 110.479
-19200/69092	Loss: 110.818
-22400/69092	Loss: 110.467
-25600/69092	Loss: 111.968
-28800/69092	Loss: 112.022
-32000/69092	Loss: 112.321
-35200/69092	Loss: 110.381
-38400/69092	Loss: 112.018
-41600/69092	Loss: 110.860
-44800/69092	Loss: 111.434
-48000/69092	Loss: 111.930
-51200/69092	Loss: 109.133
-54400/69092	Loss: 110.783
-57600/69092	Loss: 109.955
-60800/69092	Loss: 112.031
-64000/69092	Loss: 113.308
-67200/69092	Loss: 110.796
-Training time 0:01:56.902076
-Epoch: 232 Average loss: 111.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 373)
-0/69092	Loss: 107.782
-3200/69092	Loss: 112.229
-6400/69092	Loss: 111.837
-9600/69092	Loss: 111.382
-12800/69092	Loss: 110.122
-16000/69092	Loss: 112.720
-19200/69092	Loss: 110.917
-22400/69092	Loss: 110.515
-25600/69092	Loss: 111.300
-28800/69092	Loss: 111.422
-32000/69092	Loss: 110.690
-35200/69092	Loss: 111.913
-38400/69092	Loss: 111.768
-41600/69092	Loss: 111.117
-44800/69092	Loss: 110.936
-48000/69092	Loss: 109.291
-51200/69092	Loss: 111.271
-54400/69092	Loss: 110.415
-57600/69092	Loss: 111.206
-60800/69092	Loss: 111.269
-64000/69092	Loss: 112.456
-67200/69092	Loss: 112.000
-Training time 0:01:58.284692
-Epoch: 233 Average loss: 111.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 374)
-0/69092	Loss: 122.656
-3200/69092	Loss: 110.646
-6400/69092	Loss: 110.087
-9600/69092	Loss: 111.240
-12800/69092	Loss: 111.472
-16000/69092	Loss: 111.305
-19200/69092	Loss: 110.153
-22400/69092	Loss: 112.367
-25600/69092	Loss: 111.038
-28800/69092	Loss: 110.239
-32000/69092	Loss: 110.406
-35200/69092	Loss: 111.731
-38400/69092	Loss: 110.514
-41600/69092	Loss: 108.850
-44800/69092	Loss: 111.103
-48000/69092	Loss: 112.646
-51200/69092	Loss: 113.490
-54400/69092	Loss: 111.335
-57600/69092	Loss: 111.706
-60800/69092	Loss: 112.250
-64000/69092	Loss: 111.484
-67200/69092	Loss: 112.740
-Training time 0:01:56.956137
-Epoch: 234 Average loss: 111.28
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 375)
-0/69092	Loss: 110.892
-3200/69092	Loss: 110.887
-6400/69092	Loss: 110.948
-9600/69092	Loss: 111.023
-12800/69092	Loss: 111.547
-16000/69092	Loss: 112.227
-19200/69092	Loss: 111.496
-22400/69092	Loss: 112.579
-25600/69092	Loss: 110.428
-28800/69092	Loss: 110.210
-32000/69092	Loss: 110.786
-35200/69092	Loss: 111.905
-38400/69092	Loss: 110.357
-41600/69092	Loss: 111.679
-44800/69092	Loss: 110.700
-48000/69092	Loss: 109.927
-51200/69092	Loss: 112.556
-54400/69092	Loss: 111.367
-57600/69092	Loss: 110.971
-60800/69092	Loss: 111.714
-64000/69092	Loss: 111.642
-67200/69092	Loss: 110.445
-Training time 0:01:56.701332
-Epoch: 235 Average loss: 111.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 376)
-0/69092	Loss: 102.721
-3200/69092	Loss: 110.008
-6400/69092	Loss: 111.771
-9600/69092	Loss: 110.820
-12800/69092	Loss: 110.292
-16000/69092	Loss: 111.429
-19200/69092	Loss: 110.661
-22400/69092	Loss: 111.941
-25600/69092	Loss: 110.882
-28800/69092	Loss: 111.950
-32000/69092	Loss: 112.068
-35200/69092	Loss: 110.569
-38400/69092	Loss: 112.274
-41600/69092	Loss: 109.851
-44800/69092	Loss: 110.529
-48000/69092	Loss: 112.117
-51200/69092	Loss: 110.190
-54400/69092	Loss: 111.345
-57600/69092	Loss: 110.456
-60800/69092	Loss: 112.395
-64000/69092	Loss: 111.087
-67200/69092	Loss: 112.002
-Training time 0:01:57.784069
-Epoch: 236 Average loss: 111.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 377)
-0/69092	Loss: 108.712
-3200/69092	Loss: 112.343
-6400/69092	Loss: 112.327
-9600/69092	Loss: 109.230
-12800/69092	Loss: 112.186
-16000/69092	Loss: 109.064
-19200/69092	Loss: 113.283
-22400/69092	Loss: 111.513
-25600/69092	Loss: 110.349
-28800/69092	Loss: 112.609
-32000/69092	Loss: 109.786
-35200/69092	Loss: 109.445
-38400/69092	Loss: 112.362
-41600/69092	Loss: 112.131
-44800/69092	Loss: 110.724
-48000/69092	Loss: 112.368
-51200/69092	Loss: 110.325
-54400/69092	Loss: 111.311
-57600/69092	Loss: 110.564
-60800/69092	Loss: 112.719
-64000/69092	Loss: 112.450
-67200/69092	Loss: 112.526
-Training time 0:01:57.479259
-Epoch: 237 Average loss: 111.36
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 378)
-0/69092	Loss: 109.185
-3200/69092	Loss: 110.635
-6400/69092	Loss: 111.992
-9600/69092	Loss: 111.282
-12800/69092	Loss: 108.316
-16000/69092	Loss: 111.221
-19200/69092	Loss: 111.703
-22400/69092	Loss: 110.000
-25600/69092	Loss: 112.576
-28800/69092	Loss: 111.549
-32000/69092	Loss: 110.746
-35200/69092	Loss: 111.515
-38400/69092	Loss: 109.555
-41600/69092	Loss: 110.974
-44800/69092	Loss: 110.739
-48000/69092	Loss: 111.645
-51200/69092	Loss: 112.599
-54400/69092	Loss: 112.298
-57600/69092	Loss: 112.291
-60800/69092	Loss: 109.475
-64000/69092	Loss: 112.657
-67200/69092	Loss: 111.482
-Training time 0:01:58.070004
-Epoch: 238 Average loss: 111.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 379)
-0/69092	Loss: 103.191
-3200/69092	Loss: 111.912
-6400/69092	Loss: 110.286
-9600/69092	Loss: 111.739
-12800/69092	Loss: 110.873
-16000/69092	Loss: 111.077
-19200/69092	Loss: 112.737
-22400/69092	Loss: 111.359
-25600/69092	Loss: 110.602
-28800/69092	Loss: 111.192
-32000/69092	Loss: 109.452
-35200/69092	Loss: 110.769
-38400/69092	Loss: 109.890
-41600/69092	Loss: 114.046
-44800/69092	Loss: 110.270
-48000/69092	Loss: 110.798
-51200/69092	Loss: 111.544
-54400/69092	Loss: 111.508
-57600/69092	Loss: 110.659
-60800/69092	Loss: 110.040
-64000/69092	Loss: 112.591
-67200/69092	Loss: 111.184
-Training time 0:01:57.766793
-Epoch: 239 Average loss: 111.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 380)
-0/69092	Loss: 113.920
-3200/69092	Loss: 109.719
-6400/69092	Loss: 110.938
-9600/69092	Loss: 111.372
-12800/69092	Loss: 110.764
-16000/69092	Loss: 110.970
-19200/69092	Loss: 111.281
-22400/69092	Loss: 112.916
-25600/69092	Loss: 110.118
-28800/69092	Loss: 111.521
-32000/69092	Loss: 110.514
-35200/69092	Loss: 110.994
-38400/69092	Loss: 111.896
-41600/69092	Loss: 112.232
-44800/69092	Loss: 112.411
-48000/69092	Loss: 111.327
-51200/69092	Loss: 110.128
-54400/69092	Loss: 111.865
-57600/69092	Loss: 112.046
-60800/69092	Loss: 110.568
-64000/69092	Loss: 108.884
-67200/69092	Loss: 112.514
-Training time 0:01:58.447590
-Epoch: 240 Average loss: 111.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 381)
-0/69092	Loss: 106.667
-3200/69092	Loss: 110.994
-6400/69092	Loss: 111.828
-9600/69092	Loss: 110.403
-12800/69092	Loss: 110.869
-16000/69092	Loss: 111.339
-19200/69092	Loss: 110.626
-22400/69092	Loss: 112.181
-25600/69092	Loss: 109.524
-28800/69092	Loss: 110.179
-32000/69092	Loss: 112.797
-35200/69092	Loss: 112.763
-38400/69092	Loss: 112.085
-41600/69092	Loss: 111.966
-44800/69092	Loss: 108.199
-48000/69092	Loss: 111.263
-51200/69092	Loss: 111.702
-54400/69092	Loss: 111.092
-57600/69092	Loss: 111.441
-60800/69092	Loss: 110.747
-64000/69092	Loss: 109.926
-67200/69092	Loss: 111.399
-Training time 0:01:57.672062
-Epoch: 241 Average loss: 111.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 382)
-0/69092	Loss: 118.522
-3200/69092	Loss: 113.003
-6400/69092	Loss: 111.845
-9600/69092	Loss: 110.895
-12800/69092	Loss: 110.848
-16000/69092	Loss: 111.250
-19200/69092	Loss: 110.447
-22400/69092	Loss: 112.390
-25600/69092	Loss: 111.955
-28800/69092	Loss: 109.747
-32000/69092	Loss: 110.723
-35200/69092	Loss: 112.436
-38400/69092	Loss: 109.578
-41600/69092	Loss: 109.520
-44800/69092	Loss: 112.748
-48000/69092	Loss: 113.196
-51200/69092	Loss: 110.835
-54400/69092	Loss: 112.373
-57600/69092	Loss: 112.555
-60800/69092	Loss: 110.195
-64000/69092	Loss: 112.207
-67200/69092	Loss: 110.139
-Training time 0:01:58.554527
-Epoch: 242 Average loss: 111.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 383)
-0/69092	Loss: 110.692
-3200/69092	Loss: 109.538
-6400/69092	Loss: 111.412
-9600/69092	Loss: 111.209
-12800/69092	Loss: 110.019
-16000/69092	Loss: 113.119
-19200/69092	Loss: 111.463
-22400/69092	Loss: 110.923
-25600/69092	Loss: 111.187
-28800/69092	Loss: 110.448
-32000/69092	Loss: 111.356
-35200/69092	Loss: 111.989
-38400/69092	Loss: 112.339
-41600/69092	Loss: 111.679
-44800/69092	Loss: 111.292
-48000/69092	Loss: 110.369
-51200/69092	Loss: 110.691
-54400/69092	Loss: 110.423
-57600/69092	Loss: 110.764
-60800/69092	Loss: 111.110
-64000/69092	Loss: 111.982
-67200/69092	Loss: 109.894
-Training time 0:01:57.696635
-Epoch: 243 Average loss: 111.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 384)
-0/69092	Loss: 113.028
-3200/69092	Loss: 111.658
-6400/69092	Loss: 111.408
-9600/69092	Loss: 110.169
-12800/69092	Loss: 110.419
-16000/69092	Loss: 111.114
-19200/69092	Loss: 108.767
-22400/69092	Loss: 110.102
-25600/69092	Loss: 110.452
-28800/69092	Loss: 109.772
-32000/69092	Loss: 110.774
-35200/69092	Loss: 110.432
-38400/69092	Loss: 111.535
-41600/69092	Loss: 112.125
-44800/69092	Loss: 112.251
-48000/69092	Loss: 110.962
-51200/69092	Loss: 112.463
-54400/69092	Loss: 110.419
-57600/69092	Loss: 111.509
-60800/69092	Loss: 111.829
-64000/69092	Loss: 111.827
-67200/69092	Loss: 111.953
-Training time 0:01:57.499486
-Epoch: 244 Average loss: 111.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 385)
-0/69092	Loss: 111.727
-3200/69092	Loss: 111.671
-6400/69092	Loss: 111.128
-9600/69092	Loss: 110.674
-12800/69092	Loss: 110.573
-16000/69092	Loss: 111.281
-19200/69092	Loss: 111.655
-22400/69092	Loss: 111.609
-25600/69092	Loss: 109.946
-28800/69092	Loss: 110.985
-32000/69092	Loss: 112.240
-35200/69092	Loss: 111.988
-38400/69092	Loss: 110.245
-41600/69092	Loss: 110.574
-44800/69092	Loss: 111.236
-48000/69092	Loss: 111.256
-51200/69092	Loss: 112.173
-54400/69092	Loss: 110.117
-57600/69092	Loss: 110.748
-60800/69092	Loss: 109.949
-64000/69092	Loss: 111.060
-67200/69092	Loss: 112.144
-Training time 0:01:57.728370
-Epoch: 245 Average loss: 111.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 386)
-0/69092	Loss: 110.880
-3200/69092	Loss: 111.216
-6400/69092	Loss: 111.107
-9600/69092	Loss: 110.549
-12800/69092	Loss: 112.441
-16000/69092	Loss: 111.091
-19200/69092	Loss: 111.000
-22400/69092	Loss: 110.637
-25600/69092	Loss: 111.768
-28800/69092	Loss: 109.734
-32000/69092	Loss: 111.293
-35200/69092	Loss: 111.020
-38400/69092	Loss: 111.124
-41600/69092	Loss: 111.152
-44800/69092	Loss: 112.918
-48000/69092	Loss: 110.081
-51200/69092	Loss: 109.203
-54400/69092	Loss: 111.268
-57600/69092	Loss: 112.532
-60800/69092	Loss: 111.184
-64000/69092	Loss: 110.975
-67200/69092	Loss: 110.599
-Training time 0:01:59.189433
-Epoch: 246 Average loss: 111.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 387)
-0/69092	Loss: 119.276
-3200/69092	Loss: 109.900
-6400/69092	Loss: 111.798
-9600/69092	Loss: 110.056
-12800/69092	Loss: 110.956
-16000/69092	Loss: 111.421
-19200/69092	Loss: 110.138
-22400/69092	Loss: 110.850
-25600/69092	Loss: 112.589
-28800/69092	Loss: 110.275
-32000/69092	Loss: 112.987
-35200/69092	Loss: 110.354
-38400/69092	Loss: 110.669
-41600/69092	Loss: 111.464
-44800/69092	Loss: 112.296
-48000/69092	Loss: 107.889
-51200/69092	Loss: 110.713
-54400/69092	Loss: 111.676
-57600/69092	Loss: 110.659
-60800/69092	Loss: 112.807
-64000/69092	Loss: 111.888
-67200/69092	Loss: 111.914
-Training time 0:01:57.338323
-Epoch: 247 Average loss: 111.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 388)
-0/69092	Loss: 114.700
-3200/69092	Loss: 111.241
-6400/69092	Loss: 111.656
-9600/69092	Loss: 112.026
-12800/69092	Loss: 110.048
-16000/69092	Loss: 110.723
-19200/69092	Loss: 110.779
-22400/69092	Loss: 109.860
-25600/69092	Loss: 111.066
-28800/69092	Loss: 110.062
-32000/69092	Loss: 112.445
-35200/69092	Loss: 109.649
-38400/69092	Loss: 111.172
-41600/69092	Loss: 110.447
-44800/69092	Loss: 112.813
-48000/69092	Loss: 110.219
-51200/69092	Loss: 112.625
-54400/69092	Loss: 113.060
-57600/69092	Loss: 109.788
-60800/69092	Loss: 113.112
-64000/69092	Loss: 111.282
-67200/69092	Loss: 110.880
-Training time 0:01:58.430439
-Epoch: 248 Average loss: 111.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 389)
-0/69092	Loss: 103.736
-3200/69092	Loss: 109.705
-6400/69092	Loss: 111.352
-9600/69092	Loss: 110.496
-12800/69092	Loss: 110.735
-16000/69092	Loss: 109.864
-19200/69092	Loss: 110.467
-22400/69092	Loss: 111.431
-25600/69092	Loss: 110.229
-28800/69092	Loss: 112.154
-32000/69092	Loss: 110.671
-35200/69092	Loss: 111.736
-38400/69092	Loss: 112.159
-41600/69092	Loss: 110.002
-44800/69092	Loss: 113.132
-48000/69092	Loss: 111.088
-51200/69092	Loss: 111.827
-54400/69092	Loss: 111.049
-57600/69092	Loss: 111.497
-60800/69092	Loss: 111.336
-64000/69092	Loss: 111.809
-67200/69092	Loss: 111.159
-Training time 0:01:57.369860
-Epoch: 249 Average loss: 111.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 390)
-0/69092	Loss: 123.498
-3200/69092	Loss: 111.731
-6400/69092	Loss: 109.836
-9600/69092	Loss: 111.213
-12800/69092	Loss: 111.127
-16000/69092	Loss: 112.301
-19200/69092	Loss: 111.047
-22400/69092	Loss: 112.960
-25600/69092	Loss: 111.261
-28800/69092	Loss: 111.291
-32000/69092	Loss: 112.719
-35200/69092	Loss: 110.935
-38400/69092	Loss: 111.477
-41600/69092	Loss: 111.206
-44800/69092	Loss: 110.188
-48000/69092	Loss: 109.406
-51200/69092	Loss: 110.845
-54400/69092	Loss: 111.418
-57600/69092	Loss: 112.339
-60800/69092	Loss: 109.618
-64000/69092	Loss: 110.230
-67200/69092	Loss: 110.452
-Training time 0:01:57.411439
-Epoch: 250 Average loss: 111.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 391)
-0/69092	Loss: 106.357
-3200/69092	Loss: 110.279
-6400/69092	Loss: 110.361
-9600/69092	Loss: 113.076
-12800/69092	Loss: 111.444
-16000/69092	Loss: 110.781
-19200/69092	Loss: 109.138
-22400/69092	Loss: 111.925
-25600/69092	Loss: 109.538
-28800/69092	Loss: 111.920
-32000/69092	Loss: 111.026
-35200/69092	Loss: 110.586
-38400/69092	Loss: 113.298
-41600/69092	Loss: 111.047
-44800/69092	Loss: 110.734
-48000/69092	Loss: 110.385
-51200/69092	Loss: 111.447
-54400/69092	Loss: 111.839
-57600/69092	Loss: 111.870
-60800/69092	Loss: 111.131
-64000/69092	Loss: 110.217
-67200/69092	Loss: 111.671
-Training time 0:01:57.431767
-Epoch: 251 Average loss: 111.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 392)
-0/69092	Loss: 102.804
-3200/69092	Loss: 110.917
-6400/69092	Loss: 111.240
-9600/69092	Loss: 111.921
-12800/69092	Loss: 111.686
-16000/69092	Loss: 110.836
-19200/69092	Loss: 110.360
-22400/69092	Loss: 112.078
-25600/69092	Loss: 109.073
-28800/69092	Loss: 113.623
-32000/69092	Loss: 112.233
-35200/69092	Loss: 111.018
-38400/69092	Loss: 110.364
-41600/69092	Loss: 111.294
-44800/69092	Loss: 111.601
-48000/69092	Loss: 110.258
-51200/69092	Loss: 111.271
-54400/69092	Loss: 111.440
-57600/69092	Loss: 111.215
-60800/69092	Loss: 111.404
-64000/69092	Loss: 110.972
-67200/69092	Loss: 110.816
-Training time 0:01:57.637421
-Epoch: 252 Average loss: 111.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 393)
-0/69092	Loss: 108.239
-3200/69092	Loss: 110.886
-6400/69092	Loss: 113.579
-9600/69092	Loss: 110.798
-12800/69092	Loss: 108.050
-16000/69092	Loss: 110.297
-19200/69092	Loss: 110.946
-22400/69092	Loss: 112.451
-25600/69092	Loss: 113.043
-28800/69092	Loss: 110.665
-32000/69092	Loss: 110.870
-35200/69092	Loss: 111.911
-38400/69092	Loss: 112.313
-41600/69092	Loss: 109.459
-44800/69092	Loss: 110.712
-48000/69092	Loss: 110.312
-51200/69092	Loss: 111.116
-54400/69092	Loss: 110.275
-57600/69092	Loss: 112.778
-60800/69092	Loss: 112.580
-64000/69092	Loss: 109.848
-67200/69092	Loss: 112.238
-Training time 0:01:56.937335
-Epoch: 253 Average loss: 111.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 394)
-0/69092	Loss: 113.377
-3200/69092	Loss: 112.926
-6400/69092	Loss: 111.311
-9600/69092	Loss: 109.904
-12800/69092	Loss: 110.220
-16000/69092	Loss: 111.905
-19200/69092	Loss: 110.879
-22400/69092	Loss: 110.318
-25600/69092	Loss: 111.719
-28800/69092	Loss: 111.584
-32000/69092	Loss: 110.900
-35200/69092	Loss: 112.835
-38400/69092	Loss: 111.440
-41600/69092	Loss: 112.075
-44800/69092	Loss: 111.887
-48000/69092	Loss: 112.226
-51200/69092	Loss: 109.887
-54400/69092	Loss: 110.785
-57600/69092	Loss: 110.074
-60800/69092	Loss: 110.514
-64000/69092	Loss: 110.812
-67200/69092	Loss: 111.522
-Training time 0:01:56.496175
-Epoch: 254 Average loss: 111.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 395)
-0/69092	Loss: 125.020
-3200/69092	Loss: 111.732
-6400/69092	Loss: 111.201
-9600/69092	Loss: 109.565
-12800/69092	Loss: 112.074
-16000/69092	Loss: 110.631
-19200/69092	Loss: 109.777
-22400/69092	Loss: 111.223
-25600/69092	Loss: 112.449
-28800/69092	Loss: 112.911
-32000/69092	Loss: 109.928
-35200/69092	Loss: 110.396
-38400/69092	Loss: 112.070
-41600/69092	Loss: 111.047
-44800/69092	Loss: 111.813
-48000/69092	Loss: 109.342
-51200/69092	Loss: 112.822
-54400/69092	Loss: 108.774
-57600/69092	Loss: 109.953
-60800/69092	Loss: 110.226
-64000/69092	Loss: 110.831
-67200/69092	Loss: 111.720
-Training time 0:01:57.038958
-Epoch: 255 Average loss: 111.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 396)
-0/69092	Loss: 109.533
-3200/69092	Loss: 111.231
-6400/69092	Loss: 109.497
-9600/69092	Loss: 109.054
-12800/69092	Loss: 110.814
-16000/69092	Loss: 109.865
-19200/69092	Loss: 111.885
-22400/69092	Loss: 113.264
-25600/69092	Loss: 111.223
-28800/69092	Loss: 111.529
-32000/69092	Loss: 110.043
-35200/69092	Loss: 110.608
-38400/69092	Loss: 110.200
-41600/69092	Loss: 110.879
-44800/69092	Loss: 112.661
-48000/69092	Loss: 111.049
-51200/69092	Loss: 110.760
-54400/69092	Loss: 110.193
-57600/69092	Loss: 111.437
-60800/69092	Loss: 110.753
-64000/69092	Loss: 110.284
-67200/69092	Loss: 110.475
-Training time 0:01:57.300419
-Epoch: 256 Average loss: 110.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 397)
-0/69092	Loss: 119.043
-3200/69092	Loss: 110.694
-6400/69092	Loss: 112.449
-9600/69092	Loss: 110.888
-12800/69092	Loss: 112.096
-16000/69092	Loss: 111.366
-19200/69092	Loss: 111.170
-22400/69092	Loss: 111.517
-25600/69092	Loss: 112.610
-28800/69092	Loss: 110.832
-32000/69092	Loss: 110.499
-35200/69092	Loss: 111.410
-38400/69092	Loss: 111.158
-41600/69092	Loss: 110.478
-44800/69092	Loss: 111.160
-48000/69092	Loss: 110.847
-51200/69092	Loss: 110.402
-54400/69092	Loss: 112.098
-57600/69092	Loss: 109.922
-60800/69092	Loss: 110.733
-64000/69092	Loss: 113.063
-67200/69092	Loss: 110.606
-Training time 0:01:57.780238
-Epoch: 257 Average loss: 111.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 398)
-0/69092	Loss: 117.179
-3200/69092	Loss: 111.384
-6400/69092	Loss: 109.683
-9600/69092	Loss: 109.482
-12800/69092	Loss: 110.988
-16000/69092	Loss: 111.890
-19200/69092	Loss: 111.074
-22400/69092	Loss: 111.664
-25600/69092	Loss: 110.090
-28800/69092	Loss: 110.135
-32000/69092	Loss: 110.975
-35200/69092	Loss: 112.127
-38400/69092	Loss: 112.769
-41600/69092	Loss: 110.558
-44800/69092	Loss: 112.651
-48000/69092	Loss: 109.083
-51200/69092	Loss: 110.386
-54400/69092	Loss: 110.048
-57600/69092	Loss: 112.158
-60800/69092	Loss: 111.103
-64000/69092	Loss: 112.057
-67200/69092	Loss: 111.740
-Training time 0:01:58.561590
-Epoch: 258 Average loss: 111.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 399)
-0/69092	Loss: 118.334
-3200/69092	Loss: 109.569
-6400/69092	Loss: 111.863
-9600/69092	Loss: 110.048
-12800/69092	Loss: 111.313
-16000/69092	Loss: 111.699
-19200/69092	Loss: 110.905
-22400/69092	Loss: 112.432
-25600/69092	Loss: 111.223
-28800/69092	Loss: 109.268
-32000/69092	Loss: 111.676
-35200/69092	Loss: 113.159
-38400/69092	Loss: 111.500
-41600/69092	Loss: 109.357
-44800/69092	Loss: 110.880
-48000/69092	Loss: 109.824
-51200/69092	Loss: 110.635
-54400/69092	Loss: 111.235
-57600/69092	Loss: 110.958
-60800/69092	Loss: 111.464
-64000/69092	Loss: 111.591
-67200/69092	Loss: 111.618
-Training time 0:01:56.658825
-Epoch: 259 Average loss: 111.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 400)
-0/69092	Loss: 99.918
-3200/69092	Loss: 110.536
-6400/69092	Loss: 111.087
-9600/69092	Loss: 112.079
-12800/69092	Loss: 111.291
-16000/69092	Loss: 111.590
-19200/69092	Loss: 111.152
-22400/69092	Loss: 109.990
-25600/69092	Loss: 111.403
-28800/69092	Loss: 111.198
-32000/69092	Loss: 109.055
-35200/69092	Loss: 111.210
-38400/69092	Loss: 111.335
-41600/69092	Loss: 108.108
-44800/69092	Loss: 112.186
-48000/69092	Loss: 111.355
-51200/69092	Loss: 111.126
-54400/69092	Loss: 110.002
-57600/69092	Loss: 111.158
-60800/69092	Loss: 112.760
-64000/69092	Loss: 111.019
-67200/69092	Loss: 110.575
-Training time 0:01:57.564294
-Epoch: 260 Average loss: 110.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 401)
-0/69092	Loss: 102.919
-3200/69092	Loss: 111.334
-6400/69092	Loss: 110.592
-9600/69092	Loss: 111.426
-12800/69092	Loss: 110.922
-16000/69092	Loss: 111.627
-19200/69092	Loss: 112.994
-22400/69092	Loss: 109.935
-25600/69092	Loss: 109.856
-28800/69092	Loss: 109.845
-32000/69092	Loss: 110.726
-35200/69092	Loss: 111.638
-38400/69092	Loss: 111.053
-41600/69092	Loss: 110.047
-44800/69092	Loss: 110.895
-48000/69092	Loss: 110.560
-51200/69092	Loss: 112.562
-54400/69092	Loss: 110.502
-57600/69092	Loss: 111.007
-60800/69092	Loss: 110.608
-64000/69092	Loss: 111.131
-67200/69092	Loss: 111.897
-Training time 0:01:57.132493
-Epoch: 261 Average loss: 111.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 402)
-0/69092	Loss: 114.218
-3200/69092	Loss: 112.573
-6400/69092	Loss: 112.008
-9600/69092	Loss: 111.699
-12800/69092	Loss: 109.915
-16000/69092	Loss: 111.076
-19200/69092	Loss: 111.227
-22400/69092	Loss: 111.564
-25600/69092	Loss: 110.558
-28800/69092	Loss: 110.465
-32000/69092	Loss: 110.430
-35200/69092	Loss: 110.942
-38400/69092	Loss: 111.891
-41600/69092	Loss: 112.028
-44800/69092	Loss: 110.570
-48000/69092	Loss: 111.672
-51200/69092	Loss: 112.246
-54400/69092	Loss: 111.485
-57600/69092	Loss: 112.011
-60800/69092	Loss: 109.935
-64000/69092	Loss: 110.762
-67200/69092	Loss: 111.097
-Training time 0:01:58.383614
-Epoch: 262 Average loss: 111.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 403)
-0/69092	Loss: 112.604
-3200/69092	Loss: 110.540
-6400/69092	Loss: 111.252
-9600/69092	Loss: 109.829
-12800/69092	Loss: 113.017
-16000/69092	Loss: 113.760
-19200/69092	Loss: 110.520
-22400/69092	Loss: 111.341
-25600/69092	Loss: 110.474
-28800/69092	Loss: 110.952
-32000/69092	Loss: 110.309
-35200/69092	Loss: 109.334
-38400/69092	Loss: 110.914
-41600/69092	Loss: 110.116
-44800/69092	Loss: 111.209
-48000/69092	Loss: 112.935
-51200/69092	Loss: 110.746
-54400/69092	Loss: 110.242
-57600/69092	Loss: 110.549
-60800/69092	Loss: 112.742
-64000/69092	Loss: 111.958
-67200/69092	Loss: 111.216
-Training time 0:01:57.953651
-Epoch: 263 Average loss: 111.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 404)
-0/69092	Loss: 101.946
-3200/69092	Loss: 110.426
-6400/69092	Loss: 110.260
-9600/69092	Loss: 109.664
-12800/69092	Loss: 110.935
-16000/69092	Loss: 111.888
-19200/69092	Loss: 112.961
-22400/69092	Loss: 110.784
-25600/69092	Loss: 110.923
-28800/69092	Loss: 109.775
-32000/69092	Loss: 111.445
-35200/69092	Loss: 110.206
-38400/69092	Loss: 112.993
-41600/69092	Loss: 111.066
-44800/69092	Loss: 110.433
-48000/69092	Loss: 110.588
-51200/69092	Loss: 111.304
-54400/69092	Loss: 111.200
-57600/69092	Loss: 112.353
-60800/69092	Loss: 111.725
-64000/69092	Loss: 110.548
-67200/69092	Loss: 110.856
-Training time 0:01:57.917637
-Epoch: 264 Average loss: 111.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 405)
-0/69092	Loss: 102.223
-3200/69092	Loss: 110.544
-6400/69092	Loss: 110.596
-9600/69092	Loss: 109.487
-12800/69092	Loss: 110.647
-16000/69092	Loss: 110.012
-19200/69092	Loss: 111.867
-22400/69092	Loss: 109.929
-25600/69092	Loss: 112.987
-28800/69092	Loss: 110.354
-32000/69092	Loss: 109.552
-35200/69092	Loss: 111.469
-38400/69092	Loss: 111.168
-41600/69092	Loss: 110.773
-44800/69092	Loss: 110.498
-48000/69092	Loss: 112.108
-51200/69092	Loss: 110.388
-54400/69092	Loss: 113.500
-57600/69092	Loss: 109.864
-60800/69092	Loss: 112.753
-64000/69092	Loss: 111.999
-67200/69092	Loss: 112.182
-Training time 0:01:57.302165
-Epoch: 265 Average loss: 111.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 406)
-0/69092	Loss: 103.748
-3200/69092	Loss: 111.518
-6400/69092	Loss: 111.662
-9600/69092	Loss: 110.320
-12800/69092	Loss: 112.069
-16000/69092	Loss: 111.370
-19200/69092	Loss: 110.221
-22400/69092	Loss: 111.720
-25600/69092	Loss: 110.837
-28800/69092	Loss: 111.321
-32000/69092	Loss: 110.262
-35200/69092	Loss: 111.120
-38400/69092	Loss: 108.821
-41600/69092	Loss: 109.257
-44800/69092	Loss: 111.489
-48000/69092	Loss: 111.358
-51200/69092	Loss: 109.158
-54400/69092	Loss: 111.183
-57600/69092	Loss: 112.635
-60800/69092	Loss: 110.459
-64000/69092	Loss: 110.898
-67200/69092	Loss: 111.642
-Training time 0:01:58.368381
-Epoch: 266 Average loss: 110.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 407)
-0/69092	Loss: 112.892
-3200/69092	Loss: 111.153
-6400/69092	Loss: 111.807
-9600/69092	Loss: 111.807
-12800/69092	Loss: 112.844
-16000/69092	Loss: 111.230
-19200/69092	Loss: 111.024
-22400/69092	Loss: 111.635
-25600/69092	Loss: 112.329
-28800/69092	Loss: 110.557
-32000/69092	Loss: 111.422
-35200/69092	Loss: 110.001
-38400/69092	Loss: 110.677
-41600/69092	Loss: 111.130
-44800/69092	Loss: 110.490
-48000/69092	Loss: 111.001
-51200/69092	Loss: 110.854
-54400/69092	Loss: 111.521
-57600/69092	Loss: 110.090
-60800/69092	Loss: 111.625
-64000/69092	Loss: 109.477
-67200/69092	Loss: 109.777
-Training time 0:01:58.427540
-Epoch: 267 Average loss: 111.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 408)
-0/69092	Loss: 105.202
-3200/69092	Loss: 110.029
-6400/69092	Loss: 109.795
-9600/69092	Loss: 110.878
-12800/69092	Loss: 111.447
-16000/69092	Loss: 114.239
-19200/69092	Loss: 111.138
-22400/69092	Loss: 110.883
-25600/69092	Loss: 110.844
-28800/69092	Loss: 111.197
-32000/69092	Loss: 110.699
-35200/69092	Loss: 110.040
-38400/69092	Loss: 111.646
-41600/69092	Loss: 110.489
-44800/69092	Loss: 110.871
-48000/69092	Loss: 111.598
-51200/69092	Loss: 110.340
-54400/69092	Loss: 112.259
-57600/69092	Loss: 109.082
-60800/69092	Loss: 111.659
-64000/69092	Loss: 112.772
-67200/69092	Loss: 112.814
-Training time 0:01:57.560979
-Epoch: 268 Average loss: 111.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 409)
-0/69092	Loss: 114.172
-3200/69092	Loss: 109.790
-6400/69092	Loss: 111.874
-9600/69092	Loss: 112.924
-12800/69092	Loss: 112.108
-16000/69092	Loss: 110.863
-19200/69092	Loss: 110.759
-22400/69092	Loss: 111.317
-25600/69092	Loss: 111.183
-28800/69092	Loss: 112.582
-32000/69092	Loss: 110.774
-35200/69092	Loss: 109.770
-38400/69092	Loss: 111.539
-41600/69092	Loss: 111.438
-44800/69092	Loss: 112.325
-48000/69092	Loss: 109.711
-51200/69092	Loss: 110.771
-54400/69092	Loss: 111.276
-57600/69092	Loss: 111.158
-60800/69092	Loss: 109.779
-64000/69092	Loss: 109.416
-67200/69092	Loss: 111.248
-Training time 0:01:58.904154
-Epoch: 269 Average loss: 111.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 410)
-0/69092	Loss: 105.736
-3200/69092	Loss: 109.660
-6400/69092	Loss: 110.559
-9600/69092	Loss: 111.273
-12800/69092	Loss: 111.583
-16000/69092	Loss: 111.526
-19200/69092	Loss: 109.822
-22400/69092	Loss: 111.871
-25600/69092	Loss: 109.665
-28800/69092	Loss: 110.681
-32000/69092	Loss: 111.805
-35200/69092	Loss: 111.811
-38400/69092	Loss: 112.030
-41600/69092	Loss: 110.044
-44800/69092	Loss: 111.697
-48000/69092	Loss: 109.874
-51200/69092	Loss: 111.497
-54400/69092	Loss: 112.470
-57600/69092	Loss: 110.808
-60800/69092	Loss: 111.034
-64000/69092	Loss: 110.285
-67200/69092	Loss: 109.798
-Training time 0:01:57.119963
-Epoch: 270 Average loss: 110.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 411)
-0/69092	Loss: 107.418
-3200/69092	Loss: 113.195
-6400/69092	Loss: 111.603
-9600/69092	Loss: 110.949
-12800/69092	Loss: 110.224
-16000/69092	Loss: 111.228
-19200/69092	Loss: 111.496
-22400/69092	Loss: 111.003
-25600/69092	Loss: 110.157
-28800/69092	Loss: 111.891
-32000/69092	Loss: 111.249
-35200/69092	Loss: 111.203
-38400/69092	Loss: 111.227
-41600/69092	Loss: 110.084
-44800/69092	Loss: 112.262
-48000/69092	Loss: 111.512
-51200/69092	Loss: 112.289
-54400/69092	Loss: 110.747
-57600/69092	Loss: 110.910
-60800/69092	Loss: 109.941
-64000/69092	Loss: 112.352
-67200/69092	Loss: 110.064
-Training time 0:01:58.405551
-Epoch: 271 Average loss: 111.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 412)
-0/69092	Loss: 112.247
-3200/69092	Loss: 111.532
-6400/69092	Loss: 109.866
-9600/69092	Loss: 109.927
-12800/69092	Loss: 110.300
-16000/69092	Loss: 110.468
-19200/69092	Loss: 109.192
-22400/69092	Loss: 111.327
-25600/69092	Loss: 110.400
-28800/69092	Loss: 112.408
-32000/69092	Loss: 109.738
-35200/69092	Loss: 111.481
-38400/69092	Loss: 112.698
-41600/69092	Loss: 108.841
-44800/69092	Loss: 109.635
-48000/69092	Loss: 111.447
-51200/69092	Loss: 111.715
-54400/69092	Loss: 111.377
-57600/69092	Loss: 112.041
-60800/69092	Loss: 112.644
-64000/69092	Loss: 111.499
-67200/69092	Loss: 112.792
-Training time 0:01:57.107391
-Epoch: 272 Average loss: 111.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 413)
-0/69092	Loss: 113.593
-3200/69092	Loss: 111.851
-6400/69092	Loss: 112.942
-9600/69092	Loss: 109.614
-12800/69092	Loss: 113.096
-16000/69092	Loss: 110.529
-19200/69092	Loss: 110.020
-22400/69092	Loss: 111.430
-25600/69092	Loss: 111.389
-28800/69092	Loss: 112.372
-32000/69092	Loss: 110.273
-35200/69092	Loss: 109.844
-38400/69092	Loss: 110.619
-41600/69092	Loss: 110.420
-44800/69092	Loss: 111.002
-48000/69092	Loss: 111.528
-51200/69092	Loss: 111.237
-54400/69092	Loss: 113.031
-57600/69092	Loss: 110.168
-60800/69092	Loss: 109.557
-64000/69092	Loss: 110.396
-67200/69092	Loss: 113.071
-Training time 0:01:58.378197
-Epoch: 273 Average loss: 111.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 414)
-0/69092	Loss: 107.776
-3200/69092	Loss: 110.438
-6400/69092	Loss: 109.587
-9600/69092	Loss: 111.353
-12800/69092	Loss: 109.622
-16000/69092	Loss: 111.800
-19200/69092	Loss: 111.342
-22400/69092	Loss: 110.491
-25600/69092	Loss: 112.317
-28800/69092	Loss: 111.947
-32000/69092	Loss: 111.256
-35200/69092	Loss: 111.003
-38400/69092	Loss: 112.212
-41600/69092	Loss: 110.820
-44800/69092	Loss: 111.593
-48000/69092	Loss: 110.804
-51200/69092	Loss: 110.570
-54400/69092	Loss: 111.628
-57600/69092	Loss: 111.308
-60800/69092	Loss: 109.944
-64000/69092	Loss: 110.376
-67200/69092	Loss: 109.365
-Training time 0:01:58.140014
-Epoch: 274 Average loss: 110.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 415)
-0/69092	Loss: 107.265
-3200/69092	Loss: 110.911
-6400/69092	Loss: 111.722
-9600/69092	Loss: 111.788
-12800/69092	Loss: 111.163
-16000/69092	Loss: 111.562
-19200/69092	Loss: 112.048
-22400/69092	Loss: 112.247
-25600/69092	Loss: 110.505
-28800/69092	Loss: 111.820
-32000/69092	Loss: 110.298
-35200/69092	Loss: 110.960
-38400/69092	Loss: 112.540
-41600/69092	Loss: 110.044
-44800/69092	Loss: 109.915
-48000/69092	Loss: 110.118
-51200/69092	Loss: 110.464
-54400/69092	Loss: 110.355
-57600/69092	Loss: 111.397
-60800/69092	Loss: 111.731
-64000/69092	Loss: 110.044
-67200/69092	Loss: 110.554
-Training time 0:01:56.970570
-Epoch: 275 Average loss: 111.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 416)
-0/69092	Loss: 109.308
-3200/69092	Loss: 109.620
-6400/69092	Loss: 112.496
-9600/69092	Loss: 111.210
-12800/69092	Loss: 109.303
-16000/69092	Loss: 109.302
-19200/69092	Loss: 111.062
-22400/69092	Loss: 111.424
-25600/69092	Loss: 112.844
-28800/69092	Loss: 110.963
-32000/69092	Loss: 111.105
-35200/69092	Loss: 110.907
-38400/69092	Loss: 110.317
-41600/69092	Loss: 111.495
-44800/69092	Loss: 111.257
-48000/69092	Loss: 111.045
-51200/69092	Loss: 111.204
-54400/69092	Loss: 110.498
-57600/69092	Loss: 110.776
-60800/69092	Loss: 112.857
-64000/69092	Loss: 109.549
-67200/69092	Loss: 110.512
-Training time 0:01:57.871726
-Epoch: 276 Average loss: 110.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 417)
-0/69092	Loss: 114.632
-3200/69092	Loss: 111.907
-6400/69092	Loss: 109.742
-9600/69092	Loss: 109.988
-12800/69092	Loss: 109.891
-16000/69092	Loss: 110.597
-19200/69092	Loss: 109.888
-22400/69092	Loss: 110.783
-25600/69092	Loss: 110.870
-28800/69092	Loss: 112.833
-32000/69092	Loss: 111.495
-35200/69092	Loss: 112.458
-38400/69092	Loss: 112.049
-41600/69092	Loss: 111.632
-44800/69092	Loss: 112.290
-48000/69092	Loss: 111.698
-51200/69092	Loss: 108.472
-54400/69092	Loss: 111.141
-57600/69092	Loss: 110.113
-60800/69092	Loss: 110.784
-64000/69092	Loss: 109.813
-67200/69092	Loss: 109.572
-Training time 0:01:57.464278
-Epoch: 277 Average loss: 110.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 418)
-0/69092	Loss: 127.052
-3200/69092	Loss: 110.904
-6400/69092	Loss: 110.255
-9600/69092	Loss: 109.091
-12800/69092	Loss: 110.646
-16000/69092	Loss: 111.554
-19200/69092	Loss: 110.131
-22400/69092	Loss: 110.198
-25600/69092	Loss: 108.659
-28800/69092	Loss: 110.733
-32000/69092	Loss: 110.423
-35200/69092	Loss: 112.402
-38400/69092	Loss: 111.252
-41600/69092	Loss: 110.627
-44800/69092	Loss: 111.488
-48000/69092	Loss: 112.702
-51200/69092	Loss: 111.199
-54400/69092	Loss: 111.644
-57600/69092	Loss: 111.951
-60800/69092	Loss: 111.907
-64000/69092	Loss: 109.767
-67200/69092	Loss: 112.209
-Training time 0:01:56.721931
-Epoch: 278 Average loss: 110.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 419)
-0/69092	Loss: 111.806
-3200/69092	Loss: 113.157
-6400/69092	Loss: 110.903
-9600/69092	Loss: 110.516
-12800/69092	Loss: 111.144
-16000/69092	Loss: 109.884
-19200/69092	Loss: 111.071
-22400/69092	Loss: 112.457
-25600/69092	Loss: 109.489
-28800/69092	Loss: 110.938
-32000/69092	Loss: 109.966
-35200/69092	Loss: 112.436
-38400/69092	Loss: 111.449
-41600/69092	Loss: 111.393
-44800/69092	Loss: 111.038
-48000/69092	Loss: 111.123
-51200/69092	Loss: 111.270
-54400/69092	Loss: 110.161
-57600/69092	Loss: 111.428
-60800/69092	Loss: 111.725
-64000/69092	Loss: 110.831
-67200/69092	Loss: 110.678
-Training time 0:01:57.508080
-Epoch: 279 Average loss: 111.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 420)
-0/69092	Loss: 105.821
-3200/69092	Loss: 112.053
-6400/69092	Loss: 110.937
-9600/69092	Loss: 110.877
-12800/69092	Loss: 110.348
-16000/69092	Loss: 109.876
-19200/69092	Loss: 110.762
-22400/69092	Loss: 110.478
-25600/69092	Loss: 109.307
-28800/69092	Loss: 110.364
-32000/69092	Loss: 110.561
-35200/69092	Loss: 110.215
-38400/69092	Loss: 112.803
-41600/69092	Loss: 113.309
-44800/69092	Loss: 110.400
-48000/69092	Loss: 110.345
-51200/69092	Loss: 110.096
-54400/69092	Loss: 111.199
-57600/69092	Loss: 110.091
-60800/69092	Loss: 112.631
-64000/69092	Loss: 113.145
-67200/69092	Loss: 109.860
-Training time 0:01:57.990605
-Epoch: 280 Average loss: 110.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 421)
-0/69092	Loss: 99.305
-3200/69092	Loss: 111.363
-6400/69092	Loss: 111.338
-9600/69092	Loss: 111.436
-12800/69092	Loss: 110.589
-16000/69092	Loss: 108.550
-19200/69092	Loss: 111.130
-22400/69092	Loss: 111.056
-25600/69092	Loss: 110.729
-28800/69092	Loss: 111.964
-32000/69092	Loss: 110.826
-35200/69092	Loss: 110.334
-38400/69092	Loss: 112.357
-41600/69092	Loss: 111.353
-44800/69092	Loss: 110.260
-48000/69092	Loss: 111.335
-51200/69092	Loss: 110.534
-54400/69092	Loss: 111.128
-57600/69092	Loss: 110.575
-60800/69092	Loss: 110.258
-64000/69092	Loss: 111.142
-67200/69092	Loss: 110.867
-Training time 0:01:57.845171
-Epoch: 281 Average loss: 110.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 422)
-0/69092	Loss: 109.939
-3200/69092	Loss: 110.927
-6400/69092	Loss: 111.372
-9600/69092	Loss: 113.477
-12800/69092	Loss: 110.871
-16000/69092	Loss: 110.388
-19200/69092	Loss: 110.984
-22400/69092	Loss: 109.603
-25600/69092	Loss: 110.984
-28800/69092	Loss: 110.942
-32000/69092	Loss: 110.955
-35200/69092	Loss: 113.097
-38400/69092	Loss: 110.582
-41600/69092	Loss: 110.519
-44800/69092	Loss: 110.225
-48000/69092	Loss: 111.144
-51200/69092	Loss: 110.632
-54400/69092	Loss: 110.743
-57600/69092	Loss: 110.619
-60800/69092	Loss: 109.524
-64000/69092	Loss: 110.168
-67200/69092	Loss: 111.639
-Training time 0:01:57.405325
-Epoch: 282 Average loss: 110.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 423)
-0/69092	Loss: 119.652
-3200/69092	Loss: 111.000
-6400/69092	Loss: 109.335
-9600/69092	Loss: 110.609
-12800/69092	Loss: 110.800
-16000/69092	Loss: 112.095
-19200/69092	Loss: 109.557
-22400/69092	Loss: 110.808
-25600/69092	Loss: 110.399
-28800/69092	Loss: 111.826
-32000/69092	Loss: 110.780
-35200/69092	Loss: 111.985
-38400/69092	Loss: 112.738
-41600/69092	Loss: 111.138
-44800/69092	Loss: 110.412
-48000/69092	Loss: 111.163
-51200/69092	Loss: 112.704
-54400/69092	Loss: 111.012
-57600/69092	Loss: 110.059
-60800/69092	Loss: 111.216
-64000/69092	Loss: 111.620
-67200/69092	Loss: 110.888
-Training time 0:01:57.440733
-Epoch: 283 Average loss: 111.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 424)
-0/69092	Loss: 106.990
-3200/69092	Loss: 107.762
-6400/69092	Loss: 111.007
-9600/69092	Loss: 109.851
-12800/69092	Loss: 111.823
-16000/69092	Loss: 111.459
-19200/69092	Loss: 111.446
-22400/69092	Loss: 112.483
-25600/69092	Loss: 110.370
-28800/69092	Loss: 110.804
-32000/69092	Loss: 110.054
-35200/69092	Loss: 110.605
-38400/69092	Loss: 110.478
-41600/69092	Loss: 110.785
-44800/69092	Loss: 113.107
-48000/69092	Loss: 111.193
-51200/69092	Loss: 112.808
-54400/69092	Loss: 111.634
-57600/69092	Loss: 110.049
-60800/69092	Loss: 110.342
-64000/69092	Loss: 109.923
-67200/69092	Loss: 111.048
-Training time 0:01:58.276838
-Epoch: 284 Average loss: 110.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 425)
-0/69092	Loss: 126.258
-3200/69092	Loss: 110.308
-6400/69092	Loss: 108.240
-9600/69092	Loss: 111.404
-12800/69092	Loss: 110.676
-16000/69092	Loss: 110.967
-19200/69092	Loss: 113.284
-22400/69092	Loss: 109.787
-25600/69092	Loss: 109.907
-28800/69092	Loss: 112.063
-32000/69092	Loss: 111.203
-35200/69092	Loss: 112.119
-38400/69092	Loss: 110.590
-41600/69092	Loss: 110.458
-44800/69092	Loss: 113.380
-48000/69092	Loss: 111.126
-51200/69092	Loss: 111.631
-54400/69092	Loss: 110.385
-57600/69092	Loss: 109.505
-60800/69092	Loss: 109.918
-64000/69092	Loss: 110.778
-67200/69092	Loss: 111.695
-Training time 0:01:58.765267
-Epoch: 285 Average loss: 110.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 426)
-0/69092	Loss: 110.888
-3200/69092	Loss: 109.617
-6400/69092	Loss: 110.353
-9600/69092	Loss: 110.585
-12800/69092	Loss: 110.895
-16000/69092	Loss: 110.390
-19200/69092	Loss: 110.729
-22400/69092	Loss: 112.426
-25600/69092	Loss: 110.992
-28800/69092	Loss: 111.520
-32000/69092	Loss: 110.369
-35200/69092	Loss: 111.826
-38400/69092	Loss: 110.541
-41600/69092	Loss: 111.892
-44800/69092	Loss: 109.360
-48000/69092	Loss: 112.748
-51200/69092	Loss: 109.524
-54400/69092	Loss: 111.490
-57600/69092	Loss: 112.498
-60800/69092	Loss: 111.301
-64000/69092	Loss: 111.848
-67200/69092	Loss: 110.673
-Training time 0:01:57.282262
-Epoch: 286 Average loss: 110.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 427)
-0/69092	Loss: 114.157
-3200/69092	Loss: 110.901
-6400/69092	Loss: 108.332
-9600/69092	Loss: 111.945
-12800/69092	Loss: 110.487
-16000/69092	Loss: 110.610
-19200/69092	Loss: 110.866
-22400/69092	Loss: 111.028
-25600/69092	Loss: 110.484
-28800/69092	Loss: 112.734
-32000/69092	Loss: 110.830
-35200/69092	Loss: 111.092
-38400/69092	Loss: 109.632
-41600/69092	Loss: 109.797
-44800/69092	Loss: 111.363
-48000/69092	Loss: 110.378
-51200/69092	Loss: 111.159
-54400/69092	Loss: 109.174
-57600/69092	Loss: 111.778
-60800/69092	Loss: 111.520
-64000/69092	Loss: 111.976
-67200/69092	Loss: 111.374
-Training time 0:01:58.552811
-Epoch: 287 Average loss: 110.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 428)
-0/69092	Loss: 98.511
-3200/69092	Loss: 108.557
-6400/69092	Loss: 110.954
-9600/69092	Loss: 111.782
-12800/69092	Loss: 111.856
-16000/69092	Loss: 111.708
-19200/69092	Loss: 110.535
-22400/69092	Loss: 111.989
-25600/69092	Loss: 109.486
-28800/69092	Loss: 111.154
-32000/69092	Loss: 110.285
-35200/69092	Loss: 112.020
-38400/69092	Loss: 112.430
-41600/69092	Loss: 109.311
-44800/69092	Loss: 111.011
-48000/69092	Loss: 109.668
-51200/69092	Loss: 111.056
-54400/69092	Loss: 110.999
-57600/69092	Loss: 111.689
-60800/69092	Loss: 110.654
-64000/69092	Loss: 111.223
-67200/69092	Loss: 111.608
-Training time 0:01:57.676074
-Epoch: 288 Average loss: 110.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 429)
-0/69092	Loss: 104.075
-3200/69092	Loss: 111.203
-6400/69092	Loss: 110.838
-9600/69092	Loss: 110.986
-12800/69092	Loss: 110.098
-16000/69092	Loss: 109.012
-19200/69092	Loss: 111.120
-22400/69092	Loss: 109.926
-25600/69092	Loss: 112.095
-28800/69092	Loss: 111.210
-32000/69092	Loss: 110.441
-35200/69092	Loss: 112.471
-38400/69092	Loss: 110.142
-41600/69092	Loss: 111.790
-44800/69092	Loss: 112.376
-48000/69092	Loss: 110.861
-51200/69092	Loss: 111.021
-54400/69092	Loss: 109.097
-57600/69092	Loss: 111.030
-60800/69092	Loss: 111.385
-64000/69092	Loss: 110.457
-67200/69092	Loss: 112.128
-Training time 0:01:58.374407
-Epoch: 289 Average loss: 110.98
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 430)
-0/69092	Loss: 102.637
-3200/69092	Loss: 110.249
-6400/69092	Loss: 110.317
-9600/69092	Loss: 111.740
-12800/69092	Loss: 110.958
-16000/69092	Loss: 109.061
-19200/69092	Loss: 109.024
-22400/69092	Loss: 110.359
-25600/69092	Loss: 111.071
-28800/69092	Loss: 109.974
-32000/69092	Loss: 111.436
-35200/69092	Loss: 111.265
-38400/69092	Loss: 111.014
-41600/69092	Loss: 110.954
-44800/69092	Loss: 110.811
-48000/69092	Loss: 111.528
-51200/69092	Loss: 110.617
-54400/69092	Loss: 111.308
-57600/69092	Loss: 112.040
-60800/69092	Loss: 109.778
-64000/69092	Loss: 111.718
-67200/69092	Loss: 111.476
-Training time 0:01:57.290321
-Epoch: 290 Average loss: 110.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 431)
-0/69092	Loss: 112.755
-3200/69092	Loss: 111.344
-6400/69092	Loss: 110.573
-9600/69092	Loss: 110.679
-12800/69092	Loss: 111.196
-16000/69092	Loss: 111.228
-19200/69092	Loss: 109.418
-22400/69092	Loss: 110.008
-25600/69092	Loss: 112.658
-28800/69092	Loss: 111.429
-32000/69092	Loss: 110.372
-35200/69092	Loss: 111.216
-38400/69092	Loss: 111.777
-41600/69092	Loss: 110.837
-44800/69092	Loss: 111.508
-48000/69092	Loss: 109.906
-51200/69092	Loss: 109.060
-54400/69092	Loss: 111.110
-57600/69092	Loss: 109.381
-60800/69092	Loss: 111.219
-64000/69092	Loss: 112.256
-67200/69092	Loss: 111.393
-Training time 0:01:58.204894
-Epoch: 291 Average loss: 110.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 432)
-0/69092	Loss: 112.736
-3200/69092	Loss: 110.317
-6400/69092	Loss: 110.182
-9600/69092	Loss: 111.489
-12800/69092	Loss: 109.635
-16000/69092	Loss: 109.835
-19200/69092	Loss: 112.105
-22400/69092	Loss: 111.390
-25600/69092	Loss: 111.282
-28800/69092	Loss: 109.946
-32000/69092	Loss: 110.244
-35200/69092	Loss: 113.222
-38400/69092	Loss: 113.057
-41600/69092	Loss: 112.111
-44800/69092	Loss: 110.511
-48000/69092	Loss: 110.272
-51200/69092	Loss: 110.620
-54400/69092	Loss: 110.659
-57600/69092	Loss: 110.869
-60800/69092	Loss: 110.452
-64000/69092	Loss: 112.389
-67200/69092	Loss: 110.010
-Training time 0:01:57.528478
-Epoch: 292 Average loss: 110.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 433)
-0/69092	Loss: 114.500
-3200/69092	Loss: 110.128
-6400/69092	Loss: 109.510
-9600/69092	Loss: 111.423
-12800/69092	Loss: 110.941
-16000/69092	Loss: 108.992
-19200/69092	Loss: 111.361
-22400/69092	Loss: 110.340
-25600/69092	Loss: 110.495
-28800/69092	Loss: 110.377
-32000/69092	Loss: 110.545
-35200/69092	Loss: 109.933
-38400/69092	Loss: 109.964
-41600/69092	Loss: 112.998
-44800/69092	Loss: 111.314
-48000/69092	Loss: 111.898
-51200/69092	Loss: 111.896
-54400/69092	Loss: 111.930
-57600/69092	Loss: 109.081
-60800/69092	Loss: 111.646
-64000/69092	Loss: 110.968
-67200/69092	Loss: 110.556
-Training time 0:01:57.517016
-Epoch: 293 Average loss: 110.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 434)
-0/69092	Loss: 128.226
-3200/69092	Loss: 113.884
-6400/69092	Loss: 110.194
-9600/69092	Loss: 112.417
-12800/69092	Loss: 110.099
-16000/69092	Loss: 111.266
-19200/69092	Loss: 110.346
-22400/69092	Loss: 110.674
-25600/69092	Loss: 111.557
-28800/69092	Loss: 109.910
-32000/69092	Loss: 110.767
-35200/69092	Loss: 108.370
-38400/69092	Loss: 109.809
-41600/69092	Loss: 112.768
-44800/69092	Loss: 110.918
-48000/69092	Loss: 110.599
-51200/69092	Loss: 109.976
-54400/69092	Loss: 110.991
-57600/69092	Loss: 111.904
-60800/69092	Loss: 110.660
-64000/69092	Loss: 108.824
-67200/69092	Loss: 109.690
-Training time 0:01:58.568456
-Epoch: 294 Average loss: 110.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 435)
-0/69092	Loss: 101.908
-3200/69092	Loss: 111.186
-6400/69092	Loss: 110.414
-9600/69092	Loss: 110.318
-12800/69092	Loss: 112.272
-16000/69092	Loss: 109.021
-19200/69092	Loss: 113.014
-22400/69092	Loss: 110.897
-25600/69092	Loss: 110.764
-28800/69092	Loss: 110.582
-32000/69092	Loss: 112.341
-35200/69092	Loss: 112.834
-38400/69092	Loss: 111.393
-41600/69092	Loss: 110.558
-44800/69092	Loss: 111.250
-48000/69092	Loss: 110.628
-51200/69092	Loss: 109.401
-54400/69092	Loss: 110.663
-57600/69092	Loss: 110.167
-60800/69092	Loss: 111.613
-64000/69092	Loss: 109.191
-67200/69092	Loss: 113.185
-Training time 0:01:58.401494
-Epoch: 295 Average loss: 111.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 436)
-0/69092	Loss: 111.187
-3200/69092	Loss: 110.383
-6400/69092	Loss: 113.301
-9600/69092	Loss: 111.514
-12800/69092	Loss: 110.436
-16000/69092	Loss: 109.524
-19200/69092	Loss: 110.445
-22400/69092	Loss: 109.889
-25600/69092	Loss: 111.973
-28800/69092	Loss: 112.284
-32000/69092	Loss: 111.488
-35200/69092	Loss: 110.241
-38400/69092	Loss: 109.937
-41600/69092	Loss: 110.844
-44800/69092	Loss: 109.690
-48000/69092	Loss: 111.326
-51200/69092	Loss: 111.018
-54400/69092	Loss: 109.443
-57600/69092	Loss: 110.248
-60800/69092	Loss: 109.418
-64000/69092	Loss: 110.942
-67200/69092	Loss: 112.532
-Training time 0:01:58.054422
-Epoch: 296 Average loss: 110.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 437)
-0/69092	Loss: 109.589
-3200/69092	Loss: 108.906
-6400/69092	Loss: 111.589
-9600/69092	Loss: 110.672
-12800/69092	Loss: 111.534
-16000/69092	Loss: 111.271
-19200/69092	Loss: 111.011
-22400/69092	Loss: 110.344
-25600/69092	Loss: 110.352
-28800/69092	Loss: 111.733
-32000/69092	Loss: 111.576
-35200/69092	Loss: 109.561
-38400/69092	Loss: 113.457
-41600/69092	Loss: 112.402
-44800/69092	Loss: 110.143
-48000/69092	Loss: 109.951
-51200/69092	Loss: 112.914
-54400/69092	Loss: 112.174
-57600/69092	Loss: 109.020
-60800/69092	Loss: 109.533
-64000/69092	Loss: 111.442
-67200/69092	Loss: 111.365
-Training time 0:01:57.368761
-Epoch: 297 Average loss: 110.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 438)
-0/69092	Loss: 108.749
-3200/69092	Loss: 111.171
-6400/69092	Loss: 110.433
-9600/69092	Loss: 111.856
-12800/69092	Loss: 108.539
-16000/69092	Loss: 110.187
-19200/69092	Loss: 111.049
-22400/69092	Loss: 111.446
-25600/69092	Loss: 109.760
-28800/69092	Loss: 110.100
-32000/69092	Loss: 111.754
-35200/69092	Loss: 113.237
-38400/69092	Loss: 111.183
-41600/69092	Loss: 110.450
-44800/69092	Loss: 111.432
-48000/69092	Loss: 113.090
-51200/69092	Loss: 109.832
-54400/69092	Loss: 110.826
-57600/69092	Loss: 112.865
-60800/69092	Loss: 111.927
-64000/69092	Loss: 110.442
-67200/69092	Loss: 109.851
-Training time 0:01:56.984332
-Epoch: 298 Average loss: 110.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 439)
-0/69092	Loss: 105.931
-3200/69092	Loss: 110.126
-6400/69092	Loss: 110.617
-9600/69092	Loss: 110.992
-12800/69092	Loss: 110.139
-16000/69092	Loss: 112.035
-19200/69092	Loss: 110.818
-22400/69092	Loss: 110.201
-25600/69092	Loss: 111.025
-28800/69092	Loss: 110.035
-32000/69092	Loss: 111.795
-35200/69092	Loss: 112.614
-38400/69092	Loss: 111.208
-41600/69092	Loss: 110.589
-44800/69092	Loss: 110.215
-48000/69092	Loss: 111.576
-51200/69092	Loss: 111.711
-54400/69092	Loss: 109.680
-57600/69092	Loss: 112.130
-60800/69092	Loss: 110.922
-64000/69092	Loss: 110.125
-67200/69092	Loss: 110.402
-Training time 0:01:57.751606
-Epoch: 299 Average loss: 110.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 440)
-0/69092	Loss: 108.554
-3200/69092	Loss: 109.777
-6400/69092	Loss: 110.337
-9600/69092	Loss: 112.371
-12800/69092	Loss: 111.388
-16000/69092	Loss: 109.166
-19200/69092	Loss: 110.062
-22400/69092	Loss: 112.056
-25600/69092	Loss: 110.879
-28800/69092	Loss: 112.380
-32000/69092	Loss: 111.925
-35200/69092	Loss: 110.586
-38400/69092	Loss: 109.672
-41600/69092	Loss: 110.674
-44800/69092	Loss: 109.983
-48000/69092	Loss: 110.466
-51200/69092	Loss: 110.676
-54400/69092	Loss: 111.481
-57600/69092	Loss: 110.750
-60800/69092	Loss: 111.140
-64000/69092	Loss: 109.790
-67200/69092	Loss: 110.965
-Training time 0:01:57.502604
-Epoch: 300 Average loss: 110.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 441)
-0/69092	Loss: 126.165
-3200/69092	Loss: 110.285
-6400/69092	Loss: 110.129
-9600/69092	Loss: 111.424
-12800/69092	Loss: 109.740
-16000/69092	Loss: 111.854
-19200/69092	Loss: 110.794
-22400/69092	Loss: 110.792
-25600/69092	Loss: 111.706
-28800/69092	Loss: 112.301
-32000/69092	Loss: 111.723
-35200/69092	Loss: 112.221
-38400/69092	Loss: 111.395
-41600/69092	Loss: 111.282
-44800/69092	Loss: 110.389
-48000/69092	Loss: 109.643
-51200/69092	Loss: 110.450
-54400/69092	Loss: 111.629
-57600/69092	Loss: 111.873
-60800/69092	Loss: 110.584
-64000/69092	Loss: 111.131
-67200/69092	Loss: 109.687
-Training time 0:01:57.204475
-Epoch: 301 Average loss: 111.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 442)
-0/69092	Loss: 106.093
-3200/69092	Loss: 109.878
-6400/69092	Loss: 110.295
-9600/69092	Loss: 111.979
-12800/69092	Loss: 113.320
-16000/69092	Loss: 111.759
-19200/69092	Loss: 111.122
-22400/69092	Loss: 109.408
-25600/69092	Loss: 110.433
-28800/69092	Loss: 109.775
-32000/69092	Loss: 108.749
-35200/69092	Loss: 110.879
-38400/69092	Loss: 111.396
-41600/69092	Loss: 111.396
-44800/69092	Loss: 111.190
-48000/69092	Loss: 109.918
-51200/69092	Loss: 110.460
-54400/69092	Loss: 111.901
-57600/69092	Loss: 110.748
-60800/69092	Loss: 110.686
-64000/69092	Loss: 110.852
-67200/69092	Loss: 112.430
-Training time 0:01:58.077791
-Epoch: 302 Average loss: 110.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 443)
-0/69092	Loss: 108.815
-3200/69092	Loss: 112.556
-6400/69092	Loss: 110.766
-9600/69092	Loss: 108.460
-12800/69092	Loss: 111.993
-16000/69092	Loss: 110.540
-19200/69092	Loss: 109.040
-22400/69092	Loss: 110.837
-25600/69092	Loss: 111.466
-28800/69092	Loss: 110.389
-32000/69092	Loss: 108.280
-35200/69092	Loss: 110.833
-38400/69092	Loss: 110.869
-41600/69092	Loss: 108.830
-44800/69092	Loss: 112.886
-48000/69092	Loss: 110.929
-51200/69092	Loss: 110.975
-54400/69092	Loss: 111.118
-57600/69092	Loss: 110.810
-60800/69092	Loss: 110.648
-64000/69092	Loss: 112.793
-67200/69092	Loss: 110.700
-Training time 0:01:57.392230
-Epoch: 303 Average loss: 110.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 444)
-0/69092	Loss: 102.485
-3200/69092	Loss: 110.565
-6400/69092	Loss: 112.579
-9600/69092	Loss: 110.242
-12800/69092	Loss: 109.614
-16000/69092	Loss: 110.495
-19200/69092	Loss: 110.945
-22400/69092	Loss: 112.366
-25600/69092	Loss: 110.999
-28800/69092	Loss: 109.653
-32000/69092	Loss: 110.920
-35200/69092	Loss: 111.993
-38400/69092	Loss: 111.538
-41600/69092	Loss: 111.368
-44800/69092	Loss: 110.520
-48000/69092	Loss: 111.310
-51200/69092	Loss: 109.049
-54400/69092	Loss: 112.195
-57600/69092	Loss: 111.088
-60800/69092	Loss: 109.198
-64000/69092	Loss: 111.151
-67200/69092	Loss: 112.724
-Training time 0:01:57.946444
-Epoch: 304 Average loss: 110.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 445)
-0/69092	Loss: 102.396
-3200/69092	Loss: 110.045
-6400/69092	Loss: 111.459
-9600/69092	Loss: 110.740
-12800/69092	Loss: 109.375
-16000/69092	Loss: 109.528
-19200/69092	Loss: 110.296
-22400/69092	Loss: 111.529
-25600/69092	Loss: 112.015
-28800/69092	Loss: 112.480
-32000/69092	Loss: 111.684
-35200/69092	Loss: 109.674
-38400/69092	Loss: 109.920
-41600/69092	Loss: 110.739
-44800/69092	Loss: 112.200
-48000/69092	Loss: 110.242
-51200/69092	Loss: 109.654
-54400/69092	Loss: 110.177
-57600/69092	Loss: 111.492
-60800/69092	Loss: 110.973
-64000/69092	Loss: 114.455
-67200/69092	Loss: 110.318
-Training time 0:01:56.605594
-Epoch: 305 Average loss: 110.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 446)
-0/69092	Loss: 109.967
-3200/69092	Loss: 111.850
-6400/69092	Loss: 112.518
-9600/69092	Loss: 110.590
-12800/69092	Loss: 110.210
-16000/69092	Loss: 109.241
-19200/69092	Loss: 110.525
-22400/69092	Loss: 110.654
-25600/69092	Loss: 111.915
-28800/69092	Loss: 111.632
-32000/69092	Loss: 110.208
-35200/69092	Loss: 109.360
-38400/69092	Loss: 110.583
-41600/69092	Loss: 110.789
-44800/69092	Loss: 111.279
-48000/69092	Loss: 110.052
-51200/69092	Loss: 110.062
-54400/69092	Loss: 110.449
-57600/69092	Loss: 110.957
diff --git a/OAR.2068288.stderr b/OAR.2068288.stderr
deleted file mode 100644
index 1791261322..0000000000
--- a/OAR.2068288.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068288 KILLED ##
diff --git a/OAR.2068288.stdout b/OAR.2068288.stdout
deleted file mode 100644
index ede880f175..0000000000
--- a/OAR.2068288.stdout
+++ /dev/null
@@ -1,3001 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_15
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=30, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=15, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 769185
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last (iter 1)'
-0/69092	Loss: 206.887
-3200/69092	Loss: 207.842
-6400/69092	Loss: 208.285
-9600/69092	Loss: 202.771
-12800/69092	Loss: 200.673
-16000/69092	Loss: 204.444
-19200/69092	Loss: 200.745
-22400/69092	Loss: 196.177
-25600/69092	Loss: 196.550
-28800/69092	Loss: 196.250
-32000/69092	Loss: 193.874
-35200/69092	Loss: 190.245
-38400/69092	Loss: 194.581
-41600/69092	Loss: 192.099
-44800/69092	Loss: 192.691
-48000/69092	Loss: 187.078
-51200/69092	Loss: 190.474
-54400/69092	Loss: 187.622
-57600/69092	Loss: 183.145
-60800/69092	Loss: 187.360
-64000/69092	Loss: 180.957
-67200/69092	Loss: 182.479
-Training time 0:05:05.562599
-Epoch: 1 Average loss: 193.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 2)
-0/69092	Loss: 170.944
-3200/69092	Loss: 181.493
-6400/69092	Loss: 178.386
-9600/69092	Loss: 180.497
-12800/69092	Loss: 178.568
-16000/69092	Loss: 176.458
-19200/69092	Loss: 182.626
-22400/69092	Loss: 177.960
-25600/69092	Loss: 174.158
-28800/69092	Loss: 180.979
-32000/69092	Loss: 175.474
-35200/69092	Loss: 173.373
-38400/69092	Loss: 175.485
-41600/69092	Loss: 172.948
-44800/69092	Loss: 174.871
-48000/69092	Loss: 173.946
-51200/69092	Loss: 174.915
-54400/69092	Loss: 172.485
-57600/69092	Loss: 174.387
-60800/69092	Loss: 173.445
-64000/69092	Loss: 171.097
-67200/69092	Loss: 171.948
-Training time 0:05:04.217780
-Epoch: 2 Average loss: 175.77
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 3)
-0/69092	Loss: 166.616
-3200/69092	Loss: 174.563
-6400/69092	Loss: 169.681
-9600/69092	Loss: 169.392
-12800/69092	Loss: 169.089
-16000/69092	Loss: 169.595
-19200/69092	Loss: 169.412
-22400/69092	Loss: 171.284
-25600/69092	Loss: 168.897
-28800/69092	Loss: 165.861
-32000/69092	Loss: 164.709
-35200/69092	Loss: 166.149
-38400/69092	Loss: 167.966
-41600/69092	Loss: 167.646
-44800/69092	Loss: 168.247
-48000/69092	Loss: 165.073
-51200/69092	Loss: 165.861
-54400/69092	Loss: 166.124
-57600/69092	Loss: 171.008
-60800/69092	Loss: 166.149
-64000/69092	Loss: 172.057
-67200/69092	Loss: 165.177
-Training time 0:05:12.167257
-Epoch: 3 Average loss: 168.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 4)
-0/69092	Loss: 165.766
-3200/69092	Loss: 163.782
-6400/69092	Loss: 165.200
-9600/69092	Loss: 166.316
-12800/69092	Loss: 165.267
-16000/69092	Loss: 166.998
-19200/69092	Loss: 169.749
-22400/69092	Loss: 164.441
-25600/69092	Loss: 162.002
-28800/69092	Loss: 161.511
-32000/69092	Loss: 165.594
-35200/69092	Loss: 165.813
-38400/69092	Loss: 163.929
-41600/69092	Loss: 165.160
-44800/69092	Loss: 166.075
-48000/69092	Loss: 167.417
-51200/69092	Loss: 162.397
-54400/69092	Loss: 163.676
-57600/69092	Loss: 162.870
-60800/69092	Loss: 166.312
-64000/69092	Loss: 163.025
-67200/69092	Loss: 162.398
-Training time 0:05:07.147008
-Epoch: 4 Average loss: 164.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 5)
-0/69092	Loss: 153.476
-3200/69092	Loss: 159.726
-6400/69092	Loss: 165.582
-9600/69092	Loss: 161.601
-12800/69092	Loss: 162.702
-16000/69092	Loss: 164.992
-19200/69092	Loss: 166.401
-22400/69092	Loss: 163.438
-25600/69092	Loss: 159.738
-28800/69092	Loss: 161.781
-32000/69092	Loss: 164.914
-35200/69092	Loss: 165.694
-38400/69092	Loss: 163.410
-41600/69092	Loss: 162.084
-44800/69092	Loss: 160.367
-48000/69092	Loss: 161.416
-51200/69092	Loss: 160.890
-54400/69092	Loss: 166.457
-57600/69092	Loss: 164.688
-60800/69092	Loss: 164.736
-64000/69092	Loss: 164.117
-67200/69092	Loss: 164.351
-Training time 0:05:06.414312
-Epoch: 5 Average loss: 163.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 6)
-0/69092	Loss: 189.969
-3200/69092	Loss: 164.013
-6400/69092	Loss: 161.849
-9600/69092	Loss: 162.317
-12800/69092	Loss: 162.261
-16000/69092	Loss: 160.441
-19200/69092	Loss: 162.060
-22400/69092	Loss: 162.608
-25600/69092	Loss: 162.462
-28800/69092	Loss: 162.498
-32000/69092	Loss: 160.510
-35200/69092	Loss: 165.184
-38400/69092	Loss: 162.527
-41600/69092	Loss: 162.811
-44800/69092	Loss: 159.004
-48000/69092	Loss: 162.282
-51200/69092	Loss: 164.850
-54400/69092	Loss: 159.039
-57600/69092	Loss: 160.952
-60800/69092	Loss: 158.907
-64000/69092	Loss: 160.586
-67200/69092	Loss: 159.604
-Training time 0:04:58.356152
-Epoch: 6 Average loss: 161.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 7)
-0/69092	Loss: 163.107
-3200/69092	Loss: 159.555
-6400/69092	Loss: 160.722
-9600/69092	Loss: 160.986
-12800/69092	Loss: 161.709
-16000/69092	Loss: 161.245
-19200/69092	Loss: 162.102
-22400/69092	Loss: 160.872
-25600/69092	Loss: 159.378
-28800/69092	Loss: 163.367
-32000/69092	Loss: 160.811
-35200/69092	Loss: 162.435
-38400/69092	Loss: 159.574
-41600/69092	Loss: 160.831
-44800/69092	Loss: 161.828
-48000/69092	Loss: 158.710
-51200/69092	Loss: 158.553
-54400/69092	Loss: 159.628
-57600/69092	Loss: 160.123
-60800/69092	Loss: 158.915
-64000/69092	Loss: 161.189
-67200/69092	Loss: 163.030
-Training time 0:05:01.055401
-Epoch: 7 Average loss: 160.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 8)
-0/69092	Loss: 174.514
-3200/69092	Loss: 161.884
-6400/69092	Loss: 161.307
-9600/69092	Loss: 163.065
-12800/69092	Loss: 161.624
-16000/69092	Loss: 161.000
-19200/69092	Loss: 161.357
-22400/69092	Loss: 158.717
-25600/69092	Loss: 160.997
-28800/69092	Loss: 158.610
-32000/69092	Loss: 160.508
-35200/69092	Loss: 160.528
-38400/69092	Loss: 159.435
-41600/69092	Loss: 160.706
-44800/69092	Loss: 159.112
-48000/69092	Loss: 158.584
-51200/69092	Loss: 161.281
-54400/69092	Loss: 158.506
-57600/69092	Loss: 155.892
-60800/69092	Loss: 159.104
-64000/69092	Loss: 159.219
-67200/69092	Loss: 159.272
-Training time 0:05:04.411575
-Epoch: 8 Average loss: 160.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 9)
-0/69092	Loss: 151.763
-3200/69092	Loss: 156.918
-6400/69092	Loss: 158.726
-9600/69092	Loss: 158.688
-12800/69092	Loss: 159.796
-16000/69092	Loss: 161.199
-19200/69092	Loss: 160.557
-22400/69092	Loss: 155.504
-25600/69092	Loss: 158.230
-28800/69092	Loss: 159.681
-32000/69092	Loss: 163.094
-35200/69092	Loss: 159.575
-38400/69092	Loss: 158.562
-41600/69092	Loss: 159.907
-44800/69092	Loss: 158.514
-48000/69092	Loss: 157.097
-51200/69092	Loss: 157.089
-54400/69092	Loss: 160.598
-57600/69092	Loss: 161.355
-60800/69092	Loss: 159.777
-64000/69092	Loss: 160.242
-67200/69092	Loss: 158.511
-Training time 0:04:58.204644
-Epoch: 9 Average loss: 159.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 10)
-0/69092	Loss: 134.625
-3200/69092	Loss: 157.098
-6400/69092	Loss: 159.415
-9600/69092	Loss: 156.766
-12800/69092	Loss: 159.311
-16000/69092	Loss: 156.983
-19200/69092	Loss: 158.991
-22400/69092	Loss: 162.854
-25600/69092	Loss: 158.652
-28800/69092	Loss: 156.597
-32000/69092	Loss: 162.327
-35200/69092	Loss: 159.612
-38400/69092	Loss: 160.586
-41600/69092	Loss: 157.079
-44800/69092	Loss: 156.920
-48000/69092	Loss: 161.475
-51200/69092	Loss: 157.764
-54400/69092	Loss: 157.025
-57600/69092	Loss: 156.038
-60800/69092	Loss: 157.571
-64000/69092	Loss: 158.655
-67200/69092	Loss: 156.811
-Training time 0:04:59.827318
-Epoch: 10 Average loss: 158.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 11)
-0/69092	Loss: 159.620
-3200/69092	Loss: 157.281
-6400/69092	Loss: 159.662
-9600/69092	Loss: 157.641
-12800/69092	Loss: 159.027
-16000/69092	Loss: 154.571
-19200/69092	Loss: 157.737
-22400/69092	Loss: 155.758
-25600/69092	Loss: 158.316
-28800/69092	Loss: 157.215
-32000/69092	Loss: 159.709
-35200/69092	Loss: 157.757
-38400/69092	Loss: 161.319
-41600/69092	Loss: 161.856
-44800/69092	Loss: 159.194
-48000/69092	Loss: 156.638
-51200/69092	Loss: 159.944
-54400/69092	Loss: 156.483
-57600/69092	Loss: 158.072
-60800/69092	Loss: 160.427
-64000/69092	Loss: 158.403
-67200/69092	Loss: 157.545
-Training time 0:05:07.402879
-Epoch: 11 Average loss: 158.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 12)
-0/69092	Loss: 154.575
-3200/69092	Loss: 155.621
-6400/69092	Loss: 159.010
-9600/69092	Loss: 157.663
-12800/69092	Loss: 156.741
-16000/69092	Loss: 160.086
-19200/69092	Loss: 159.133
-22400/69092	Loss: 158.643
-25600/69092	Loss: 157.256
-28800/69092	Loss: 158.074
-32000/69092	Loss: 157.626
-35200/69092	Loss: 160.211
-38400/69092	Loss: 158.422
-41600/69092	Loss: 156.553
-44800/69092	Loss: 156.754
-48000/69092	Loss: 155.479
-51200/69092	Loss: 156.734
-54400/69092	Loss: 161.558
-57600/69092	Loss: 158.854
-60800/69092	Loss: 157.962
-64000/69092	Loss: 157.696
-67200/69092	Loss: 155.864
-Training time 0:04:57.898314
-Epoch: 12 Average loss: 157.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 13)
-0/69092	Loss: 198.587
-3200/69092	Loss: 156.337
-6400/69092	Loss: 157.083
-9600/69092	Loss: 158.551
-12800/69092	Loss: 155.835
-16000/69092	Loss: 159.414
-19200/69092	Loss: 156.997
-22400/69092	Loss: 156.781
-25600/69092	Loss: 157.049
-28800/69092	Loss: 159.597
-32000/69092	Loss: 158.982
-35200/69092	Loss: 156.480
-38400/69092	Loss: 157.809
-41600/69092	Loss: 157.435
-44800/69092	Loss: 155.803
-48000/69092	Loss: 157.486
-51200/69092	Loss: 159.577
-54400/69092	Loss: 156.059
-57600/69092	Loss: 155.216
-60800/69092	Loss: 157.501
-64000/69092	Loss: 159.789
-67200/69092	Loss: 157.693
-Training time 0:05:00.335381
-Epoch: 13 Average loss: 157.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 14)
-0/69092	Loss: 171.126
-3200/69092	Loss: 158.834
-6400/69092	Loss: 158.648
-9600/69092	Loss: 156.490
-12800/69092	Loss: 156.551
-16000/69092	Loss: 155.481
-19200/69092	Loss: 158.480
-22400/69092	Loss: 157.740
-25600/69092	Loss: 156.230
-28800/69092	Loss: 155.460
-32000/69092	Loss: 158.201
-35200/69092	Loss: 157.160
-38400/69092	Loss: 155.383
-41600/69092	Loss: 157.695
-44800/69092	Loss: 158.694
-48000/69092	Loss: 158.045
-51200/69092	Loss: 159.016
-54400/69092	Loss: 158.704
-57600/69092	Loss: 158.473
-60800/69092	Loss: 155.494
-64000/69092	Loss: 157.108
-67200/69092	Loss: 154.708
-Training time 0:05:01.352674
-Epoch: 14 Average loss: 157.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 15)
-0/69092	Loss: 158.885
-3200/69092	Loss: 159.121
-6400/69092	Loss: 156.716
-9600/69092	Loss: 155.387
-12800/69092	Loss: 154.486
-16000/69092	Loss: 155.538
-19200/69092	Loss: 159.955
-22400/69092	Loss: 157.290
-25600/69092	Loss: 155.298
-28800/69092	Loss: 157.796
-32000/69092	Loss: 155.302
-35200/69092	Loss: 158.811
-38400/69092	Loss: 157.280
-41600/69092	Loss: 155.210
-44800/69092	Loss: 160.083
-48000/69092	Loss: 154.914
-51200/69092	Loss: 154.685
-54400/69092	Loss: 160.132
-57600/69092	Loss: 157.141
-60800/69092	Loss: 156.621
-64000/69092	Loss: 156.775
-67200/69092	Loss: 159.171
-Training time 0:04:56.771282
-Epoch: 15 Average loss: 156.98
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 16)
-0/69092	Loss: 180.610
-3200/69092	Loss: 158.926
-6400/69092	Loss: 157.400
-9600/69092	Loss: 154.938
-12800/69092	Loss: 158.403
-16000/69092	Loss: 156.749
-19200/69092	Loss: 154.579
-22400/69092	Loss: 156.441
-25600/69092	Loss: 155.450
-28800/69092	Loss: 155.572
-32000/69092	Loss: 155.950
-35200/69092	Loss: 155.745
-38400/69092	Loss: 156.225
-41600/69092	Loss: 156.569
-44800/69092	Loss: 157.336
-48000/69092	Loss: 156.346
-51200/69092	Loss: 156.521
-54400/69092	Loss: 156.633
-57600/69092	Loss: 156.478
-60800/69092	Loss: 157.656
-64000/69092	Loss: 157.980
-67200/69092	Loss: 156.007
-Training time 0:04:57.181037
-Epoch: 16 Average loss: 156.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 17)
-0/69092	Loss: 166.976
-3200/69092	Loss: 155.996
-6400/69092	Loss: 156.284
-9600/69092	Loss: 157.531
-12800/69092	Loss: 157.001
-16000/69092	Loss: 156.033
-19200/69092	Loss: 156.092
-22400/69092	Loss: 155.495
-25600/69092	Loss: 154.071
-28800/69092	Loss: 158.731
-32000/69092	Loss: 155.976
-35200/69092	Loss: 158.330
-38400/69092	Loss: 157.550
-41600/69092	Loss: 153.981
-44800/69092	Loss: 156.093
-48000/69092	Loss: 155.275
-51200/69092	Loss: 156.546
-54400/69092	Loss: 157.030
-57600/69092	Loss: 158.271
-60800/69092	Loss: 157.585
-64000/69092	Loss: 157.200
-67200/69092	Loss: 157.208
-Training time 0:05:09.402899
-Epoch: 17 Average loss: 156.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 18)
-0/69092	Loss: 138.008
-3200/69092	Loss: 155.972
-6400/69092	Loss: 155.708
-9600/69092	Loss: 157.606
-12800/69092	Loss: 158.033
-16000/69092	Loss: 155.677
-19200/69092	Loss: 155.332
-22400/69092	Loss: 159.563
-25600/69092	Loss: 154.693
-28800/69092	Loss: 153.843
-32000/69092	Loss: 154.891
-35200/69092	Loss: 152.642
-38400/69092	Loss: 158.392
-41600/69092	Loss: 156.441
-44800/69092	Loss: 156.736
-48000/69092	Loss: 153.157
-51200/69092	Loss: 158.228
-54400/69092	Loss: 157.247
-57600/69092	Loss: 156.135
-60800/69092	Loss: 156.527
-64000/69092	Loss: 157.145
-67200/69092	Loss: 157.334
-Training time 0:05:11.412854
-Epoch: 18 Average loss: 156.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 19)
-0/69092	Loss: 175.512
-3200/69092	Loss: 159.676
-6400/69092	Loss: 155.888
-9600/69092	Loss: 155.238
-12800/69092	Loss: 154.457
-16000/69092	Loss: 157.052
-19200/69092	Loss: 154.044
-22400/69092	Loss: 158.530
-25600/69092	Loss: 155.509
-28800/69092	Loss: 154.811
-32000/69092	Loss: 156.581
-35200/69092	Loss: 157.237
-38400/69092	Loss: 155.297
-41600/69092	Loss: 153.913
-44800/69092	Loss: 154.750
-48000/69092	Loss: 153.670
-51200/69092	Loss: 157.841
-54400/69092	Loss: 156.308
-57600/69092	Loss: 153.487
-60800/69092	Loss: 157.768
-64000/69092	Loss: 154.807
-67200/69092	Loss: 154.463
-Training time 0:05:10.181806
-Epoch: 19 Average loss: 155.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 20)
-0/69092	Loss: 149.774
-3200/69092	Loss: 156.927
-6400/69092	Loss: 155.198
-9600/69092	Loss: 155.500
-12800/69092	Loss: 158.390
-16000/69092	Loss: 153.901
-19200/69092	Loss: 157.590
-22400/69092	Loss: 156.058
-25600/69092	Loss: 155.266
-28800/69092	Loss: 157.283
-32000/69092	Loss: 158.147
-35200/69092	Loss: 156.172
-38400/69092	Loss: 154.989
-41600/69092	Loss: 154.753
-44800/69092	Loss: 155.295
-48000/69092	Loss: 156.432
-51200/69092	Loss: 154.009
-54400/69092	Loss: 155.243
-57600/69092	Loss: 157.107
-60800/69092	Loss: 157.627
-64000/69092	Loss: 155.015
-67200/69092	Loss: 153.090
-Training time 0:05:18.014695
-Epoch: 20 Average loss: 155.87
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 21)
-0/69092	Loss: 156.897
-3200/69092	Loss: 152.205
-6400/69092	Loss: 157.276
-9600/69092	Loss: 157.334
-12800/69092	Loss: 155.175
-16000/69092	Loss: 156.639
-19200/69092	Loss: 156.498
-22400/69092	Loss: 156.934
-25600/69092	Loss: 155.024
-28800/69092	Loss: 155.736
-32000/69092	Loss: 156.889
-35200/69092	Loss: 156.288
-38400/69092	Loss: 156.362
-41600/69092	Loss: 157.268
-44800/69092	Loss: 153.435
-48000/69092	Loss: 156.287
-51200/69092	Loss: 154.534
-54400/69092	Loss: 155.425
-57600/69092	Loss: 155.554
-60800/69092	Loss: 155.930
-64000/69092	Loss: 156.817
-67200/69092	Loss: 156.358
-Training time 0:05:00.028455
-Epoch: 21 Average loss: 155.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 22)
-0/69092	Loss: 166.798
-3200/69092	Loss: 155.961
-6400/69092	Loss: 157.307
-9600/69092	Loss: 155.340
-12800/69092	Loss: 154.392
-16000/69092	Loss: 152.580
-19200/69092	Loss: 157.830
-22400/69092	Loss: 155.235
-25600/69092	Loss: 157.458
-28800/69092	Loss: 155.417
-32000/69092	Loss: 155.424
-35200/69092	Loss: 154.403
-38400/69092	Loss: 156.144
-41600/69092	Loss: 158.808
-44800/69092	Loss: 157.301
-48000/69092	Loss: 155.940
-51200/69092	Loss: 152.464
-54400/69092	Loss: 155.455
-57600/69092	Loss: 154.166
-60800/69092	Loss: 154.344
-64000/69092	Loss: 153.303
-67200/69092	Loss: 156.709
-Training time 0:05:06.625068
-Epoch: 22 Average loss: 155.57
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 23)
-0/69092	Loss: 153.292
-3200/69092	Loss: 155.550
-6400/69092	Loss: 154.465
-9600/69092	Loss: 154.747
-12800/69092	Loss: 156.483
-16000/69092	Loss: 154.716
-19200/69092	Loss: 154.990
-22400/69092	Loss: 158.698
-25600/69092	Loss: 153.843
-28800/69092	Loss: 157.427
-32000/69092	Loss: 155.258
-35200/69092	Loss: 156.867
-38400/69092	Loss: 155.848
-41600/69092	Loss: 154.291
-44800/69092	Loss: 155.653
-48000/69092	Loss: 153.495
-51200/69092	Loss: 156.850
-54400/69092	Loss: 153.608
-57600/69092	Loss: 156.122
-60800/69092	Loss: 155.608
-64000/69092	Loss: 153.933
-67200/69092	Loss: 156.125
-Training time 0:05:02.092503
-Epoch: 23 Average loss: 155.32
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 24)
-0/69092	Loss: 148.688
-3200/69092	Loss: 157.104
-6400/69092	Loss: 155.251
-9600/69092	Loss: 157.003
-12800/69092	Loss: 153.265
-16000/69092	Loss: 157.457
-19200/69092	Loss: 157.067
-22400/69092	Loss: 155.820
-25600/69092	Loss: 157.289
-28800/69092	Loss: 154.638
-32000/69092	Loss: 154.275
-35200/69092	Loss: 153.192
-38400/69092	Loss: 154.359
-41600/69092	Loss: 153.652
-44800/69092	Loss: 154.943
-48000/69092	Loss: 154.444
-51200/69092	Loss: 153.575
-54400/69092	Loss: 155.056
-57600/69092	Loss: 156.695
-60800/69092	Loss: 156.227
-64000/69092	Loss: 150.975
-67200/69092	Loss: 158.196
-Training time 0:05:02.910400
-Epoch: 24 Average loss: 155.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 25)
-0/69092	Loss: 151.762
-3200/69092	Loss: 155.785
-6400/69092	Loss: 154.801
-9600/69092	Loss: 153.452
-12800/69092	Loss: 154.596
-16000/69092	Loss: 155.320
-19200/69092	Loss: 154.723
-22400/69092	Loss: 151.396
-25600/69092	Loss: 155.391
-28800/69092	Loss: 153.849
-32000/69092	Loss: 154.842
-35200/69092	Loss: 156.054
-38400/69092	Loss: 153.651
-41600/69092	Loss: 157.530
-44800/69092	Loss: 153.593
-48000/69092	Loss: 156.526
-51200/69092	Loss: 158.754
-54400/69092	Loss: 154.276
-57600/69092	Loss: 152.490
-60800/69092	Loss: 156.267
-64000/69092	Loss: 156.384
-67200/69092	Loss: 153.558
-Training time 0:05:08.903150
-Epoch: 25 Average loss: 154.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 26)
-0/69092	Loss: 145.520
-3200/69092	Loss: 154.470
-6400/69092	Loss: 157.175
-9600/69092	Loss: 153.897
-12800/69092	Loss: 155.593
-16000/69092	Loss: 155.791
-19200/69092	Loss: 154.346
-22400/69092	Loss: 153.382
-25600/69092	Loss: 157.153
-28800/69092	Loss: 155.913
-32000/69092	Loss: 151.357
-35200/69092	Loss: 153.224
-38400/69092	Loss: 155.464
-41600/69092	Loss: 155.946
-44800/69092	Loss: 155.148
-48000/69092	Loss: 155.896
-51200/69092	Loss: 153.044
-54400/69092	Loss: 151.947
-57600/69092	Loss: 154.547
-60800/69092	Loss: 153.721
-64000/69092	Loss: 155.764
-67200/69092	Loss: 155.832
-Training time 0:05:02.145435
-Epoch: 26 Average loss: 154.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 27)
-0/69092	Loss: 145.025
-3200/69092	Loss: 155.914
-6400/69092	Loss: 154.117
-9600/69092	Loss: 154.782
-12800/69092	Loss: 156.164
-16000/69092	Loss: 158.107
-19200/69092	Loss: 150.796
-22400/69092	Loss: 155.807
-25600/69092	Loss: 156.047
-28800/69092	Loss: 154.962
-32000/69092	Loss: 155.689
-35200/69092	Loss: 155.341
-38400/69092	Loss: 154.023
-41600/69092	Loss: 154.776
-44800/69092	Loss: 158.038
-48000/69092	Loss: 156.683
-51200/69092	Loss: 154.205
-54400/69092	Loss: 155.036
-57600/69092	Loss: 154.203
-60800/69092	Loss: 153.761
-64000/69092	Loss: 152.981
-67200/69092	Loss: 153.593
-Training time 0:05:04.721903
-Epoch: 27 Average loss: 154.92
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 28)
-0/69092	Loss: 142.085
-3200/69092	Loss: 156.566
-6400/69092	Loss: 154.072
-9600/69092	Loss: 155.197
-12800/69092	Loss: 155.686
-16000/69092	Loss: 155.226
-19200/69092	Loss: 155.577
-22400/69092	Loss: 156.916
-25600/69092	Loss: 153.739
-28800/69092	Loss: 156.855
-32000/69092	Loss: 156.404
-35200/69092	Loss: 154.426
-38400/69092	Loss: 153.957
-41600/69092	Loss: 153.818
-44800/69092	Loss: 151.411
-48000/69092	Loss: 155.809
-51200/69092	Loss: 155.386
-54400/69092	Loss: 155.290
-57600/69092	Loss: 156.896
-60800/69092	Loss: 155.407
-64000/69092	Loss: 154.888
-67200/69092	Loss: 155.350
-Training time 0:05:03.047716
-Epoch: 28 Average loss: 155.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 29)
-0/69092	Loss: 151.373
-3200/69092	Loss: 153.773
-6400/69092	Loss: 156.066
-9600/69092	Loss: 156.678
-12800/69092	Loss: 153.829
-16000/69092	Loss: 155.105
-19200/69092	Loss: 155.393
-22400/69092	Loss: 152.258
-25600/69092	Loss: 154.484
-28800/69092	Loss: 157.004
-32000/69092	Loss: 154.659
-35200/69092	Loss: 153.899
-38400/69092	Loss: 153.183
-41600/69092	Loss: 154.263
-44800/69092	Loss: 155.750
-48000/69092	Loss: 156.017
-51200/69092	Loss: 156.395
-54400/69092	Loss: 152.766
-57600/69092	Loss: 154.067
-60800/69092	Loss: 154.765
-64000/69092	Loss: 158.121
-67200/69092	Loss: 153.901
-Training time 0:05:03.827168
-Epoch: 29 Average loss: 154.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 30)
-0/69092	Loss: 161.455
-3200/69092	Loss: 156.467
-6400/69092	Loss: 153.161
-9600/69092	Loss: 153.883
-12800/69092	Loss: 156.245
-16000/69092	Loss: 152.822
-19200/69092	Loss: 154.706
-22400/69092	Loss: 155.953
-25600/69092	Loss: 153.495
-28800/69092	Loss: 154.108
-32000/69092	Loss: 155.972
-35200/69092	Loss: 152.512
-38400/69092	Loss: 153.367
-41600/69092	Loss: 154.328
-44800/69092	Loss: 154.372
-48000/69092	Loss: 153.476
-51200/69092	Loss: 155.928
-54400/69092	Loss: 154.817
-57600/69092	Loss: 156.931
-60800/69092	Loss: 154.815
-64000/69092	Loss: 152.635
-67200/69092	Loss: 156.441
-Training time 0:05:03.619466
-Epoch: 30 Average loss: 154.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 31)
-0/69092	Loss: 163.201
-3200/69092	Loss: 154.643
-6400/69092	Loss: 154.043
-9600/69092	Loss: 154.239
-12800/69092	Loss: 158.436
-16000/69092	Loss: 156.100
-19200/69092	Loss: 153.272
-22400/69092	Loss: 154.454
-25600/69092	Loss: 155.075
-28800/69092	Loss: 155.023
-32000/69092	Loss: 156.125
-35200/69092	Loss: 155.432
-38400/69092	Loss: 153.544
-41600/69092	Loss: 154.850
-44800/69092	Loss: 154.166
-48000/69092	Loss: 154.606
-51200/69092	Loss: 153.678
-54400/69092	Loss: 154.670
-57600/69092	Loss: 153.692
-60800/69092	Loss: 158.491
-64000/69092	Loss: 153.935
-67200/69092	Loss: 151.687
-Training time 0:05:04.037156
-Epoch: 31 Average loss: 154.77
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 32)
-0/69092	Loss: 141.922
-3200/69092	Loss: 154.850
-6400/69092	Loss: 153.576
-9600/69092	Loss: 154.580
-12800/69092	Loss: 157.847
-16000/69092	Loss: 156.746
-19200/69092	Loss: 154.366
-22400/69092	Loss: 155.767
-25600/69092	Loss: 153.426
-28800/69092	Loss: 151.863
-32000/69092	Loss: 154.862
-35200/69092	Loss: 155.273
-38400/69092	Loss: 156.388
-41600/69092	Loss: 153.722
-44800/69092	Loss: 153.381
-48000/69092	Loss: 154.076
-51200/69092	Loss: 156.021
-54400/69092	Loss: 152.544
-57600/69092	Loss: 152.952
-60800/69092	Loss: 153.821
-64000/69092	Loss: 154.748
-67200/69092	Loss: 152.921
-Training time 0:05:06.533599
-Epoch: 32 Average loss: 154.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 33)
-0/69092	Loss: 147.477
-3200/69092	Loss: 154.419
-6400/69092	Loss: 151.117
-9600/69092	Loss: 153.667
-12800/69092	Loss: 152.558
-16000/69092	Loss: 152.046
-19200/69092	Loss: 157.615
-22400/69092	Loss: 157.424
-25600/69092	Loss: 153.632
-28800/69092	Loss: 153.371
-32000/69092	Loss: 155.240
-35200/69092	Loss: 153.214
-38400/69092	Loss: 154.187
-41600/69092	Loss: 152.769
-44800/69092	Loss: 154.383
-48000/69092	Loss: 156.063
-51200/69092	Loss: 153.722
-54400/69092	Loss: 155.292
-57600/69092	Loss: 155.070
-60800/69092	Loss: 155.242
-64000/69092	Loss: 154.664
-67200/69092	Loss: 153.232
-Training time 0:05:06.860989
-Epoch: 33 Average loss: 154.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 34)
-0/69092	Loss: 150.105
-3200/69092	Loss: 154.872
-6400/69092	Loss: 153.334
-9600/69092	Loss: 153.557
-12800/69092	Loss: 157.195
-16000/69092	Loss: 154.167
-19200/69092	Loss: 153.944
-22400/69092	Loss: 153.382
-25600/69092	Loss: 153.936
-28800/69092	Loss: 154.048
-32000/69092	Loss: 151.582
-35200/69092	Loss: 150.827
-38400/69092	Loss: 152.395
-41600/69092	Loss: 155.515
-44800/69092	Loss: 154.176
-48000/69092	Loss: 155.271
-51200/69092	Loss: 154.451
-54400/69092	Loss: 155.946
-57600/69092	Loss: 158.292
-60800/69092	Loss: 153.092
-64000/69092	Loss: 154.001
-67200/69092	Loss: 153.687
-Training time 0:05:02.044776
-Epoch: 34 Average loss: 154.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 35)
-0/69092	Loss: 154.792
-3200/69092	Loss: 153.265
-6400/69092	Loss: 152.430
-9600/69092	Loss: 155.663
-12800/69092	Loss: 153.035
-16000/69092	Loss: 152.774
-19200/69092	Loss: 153.099
-22400/69092	Loss: 153.285
-25600/69092	Loss: 154.487
-28800/69092	Loss: 155.288
-32000/69092	Loss: 155.312
-35200/69092	Loss: 151.985
-38400/69092	Loss: 153.029
-41600/69092	Loss: 153.710
-44800/69092	Loss: 154.096
-48000/69092	Loss: 152.608
-51200/69092	Loss: 153.097
-54400/69092	Loss: 157.047
-57600/69092	Loss: 155.492
-60800/69092	Loss: 155.266
-64000/69092	Loss: 155.379
-67200/69092	Loss: 156.074
-Training time 0:05:01.698349
-Epoch: 35 Average loss: 154.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 36)
-0/69092	Loss: 147.266
-3200/69092	Loss: 154.854
-6400/69092	Loss: 156.191
-9600/69092	Loss: 153.243
-12800/69092	Loss: 155.336
-16000/69092	Loss: 156.092
-19200/69092	Loss: 153.358
-22400/69092	Loss: 154.779
-25600/69092	Loss: 151.964
-28800/69092	Loss: 152.475
-32000/69092	Loss: 155.118
-35200/69092	Loss: 153.731
-38400/69092	Loss: 153.870
-41600/69092	Loss: 153.622
-44800/69092	Loss: 153.203
-48000/69092	Loss: 153.439
-51200/69092	Loss: 153.529
-54400/69092	Loss: 153.085
-57600/69092	Loss: 151.578
-60800/69092	Loss: 157.822
-64000/69092	Loss: 153.030
-67200/69092	Loss: 153.405
-Training time 0:04:58.065118
-Epoch: 36 Average loss: 153.96
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 37)
-0/69092	Loss: 144.321
-3200/69092	Loss: 152.110
-6400/69092	Loss: 154.992
-9600/69092	Loss: 154.468
-12800/69092	Loss: 154.868
-16000/69092	Loss: 153.470
-19200/69092	Loss: 151.740
-22400/69092	Loss: 151.488
-25600/69092	Loss: 155.486
-28800/69092	Loss: 154.514
-32000/69092	Loss: 155.513
-35200/69092	Loss: 156.860
-38400/69092	Loss: 152.545
-41600/69092	Loss: 150.724
-44800/69092	Loss: 156.680
-48000/69092	Loss: 154.619
-51200/69092	Loss: 153.913
-54400/69092	Loss: 154.099
-57600/69092	Loss: 156.039
-60800/69092	Loss: 154.873
-64000/69092	Loss: 153.594
-67200/69092	Loss: 153.795
-Training time 0:05:08.408368
-Epoch: 37 Average loss: 154.07
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 38)
-0/69092	Loss: 151.149
-3200/69092	Loss: 154.316
-6400/69092	Loss: 153.311
-9600/69092	Loss: 152.132
-12800/69092	Loss: 156.712
-16000/69092	Loss: 155.304
-19200/69092	Loss: 153.195
-22400/69092	Loss: 154.007
-25600/69092	Loss: 152.999
-28800/69092	Loss: 154.118
-32000/69092	Loss: 155.476
-35200/69092	Loss: 154.149
-38400/69092	Loss: 151.813
-41600/69092	Loss: 153.062
-44800/69092	Loss: 151.518
-48000/69092	Loss: 155.054
-51200/69092	Loss: 156.870
-54400/69092	Loss: 155.662
-57600/69092	Loss: 153.237
-60800/69092	Loss: 153.279
-64000/69092	Loss: 153.719
-67200/69092	Loss: 154.816
-Training time 0:04:59.677722
-Epoch: 38 Average loss: 154.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 39)
-0/69092	Loss: 166.044
-3200/69092	Loss: 152.716
-6400/69092	Loss: 156.488
-9600/69092	Loss: 152.505
-12800/69092	Loss: 154.847
-16000/69092	Loss: 153.333
-19200/69092	Loss: 153.921
-22400/69092	Loss: 155.176
-25600/69092	Loss: 156.477
-28800/69092	Loss: 153.947
-32000/69092	Loss: 153.339
-35200/69092	Loss: 153.645
-38400/69092	Loss: 153.167
-41600/69092	Loss: 153.730
-44800/69092	Loss: 153.016
-48000/69092	Loss: 153.397
-51200/69092	Loss: 153.121
-54400/69092	Loss: 156.223
-57600/69092	Loss: 151.676
-60800/69092	Loss: 156.338
-64000/69092	Loss: 152.792
-67200/69092	Loss: 155.497
-Training time 0:05:01.546897
-Epoch: 39 Average loss: 154.07
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 40)
-0/69092	Loss: 145.958
-3200/69092	Loss: 153.693
-6400/69092	Loss: 155.230
-9600/69092	Loss: 152.551
-12800/69092	Loss: 152.835
-16000/69092	Loss: 153.111
-19200/69092	Loss: 155.037
-22400/69092	Loss: 150.292
-25600/69092	Loss: 151.004
-28800/69092	Loss: 156.137
-32000/69092	Loss: 154.216
-35200/69092	Loss: 155.649
-38400/69092	Loss: 153.518
-41600/69092	Loss: 158.186
-44800/69092	Loss: 155.724
-48000/69092	Loss: 154.573
-51200/69092	Loss: 151.834
-54400/69092	Loss: 151.491
-57600/69092	Loss: 153.863
-60800/69092	Loss: 153.605
-64000/69092	Loss: 152.668
-67200/69092	Loss: 155.306
-Training time 0:05:06.053928
-Epoch: 40 Average loss: 153.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 41)
-0/69092	Loss: 152.745
-3200/69092	Loss: 153.341
-6400/69092	Loss: 152.335
-9600/69092	Loss: 154.571
-12800/69092	Loss: 152.477
-16000/69092	Loss: 153.298
-19200/69092	Loss: 154.614
-22400/69092	Loss: 152.732
-25600/69092	Loss: 152.089
-28800/69092	Loss: 155.235
-32000/69092	Loss: 155.665
-35200/69092	Loss: 155.164
-38400/69092	Loss: 155.002
-41600/69092	Loss: 154.969
-44800/69092	Loss: 155.071
-48000/69092	Loss: 151.430
-51200/69092	Loss: 154.898
-54400/69092	Loss: 153.429
-57600/69092	Loss: 151.567
-60800/69092	Loss: 152.725
-64000/69092	Loss: 152.782
-67200/69092	Loss: 155.043
-Training time 0:05:07.448444
-Epoch: 41 Average loss: 153.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 42)
-0/69092	Loss: 147.857
-3200/69092	Loss: 153.241
-6400/69092	Loss: 155.718
-9600/69092	Loss: 153.425
-12800/69092	Loss: 154.952
-16000/69092	Loss: 153.958
-19200/69092	Loss: 153.363
-22400/69092	Loss: 153.638
-25600/69092	Loss: 151.926
-28800/69092	Loss: 153.577
-32000/69092	Loss: 152.298
-35200/69092	Loss: 153.688
-38400/69092	Loss: 154.614
-41600/69092	Loss: 154.486
-44800/69092	Loss: 157.781
-48000/69092	Loss: 154.365
-51200/69092	Loss: 155.802
-54400/69092	Loss: 152.274
-57600/69092	Loss: 152.661
-60800/69092	Loss: 153.740
-64000/69092	Loss: 153.539
-67200/69092	Loss: 155.345
-Training time 0:05:08.560162
-Epoch: 42 Average loss: 153.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 43)
-0/69092	Loss: 171.613
-3200/69092	Loss: 149.764
-6400/69092	Loss: 151.743
-9600/69092	Loss: 154.044
-12800/69092	Loss: 156.217
-16000/69092	Loss: 153.436
-19200/69092	Loss: 152.853
-22400/69092	Loss: 153.352
-25600/69092	Loss: 154.759
-28800/69092	Loss: 155.015
-32000/69092	Loss: 152.561
-35200/69092	Loss: 154.654
-38400/69092	Loss: 151.119
-41600/69092	Loss: 152.056
-44800/69092	Loss: 152.853
-48000/69092	Loss: 154.311
-51200/69092	Loss: 153.144
-54400/69092	Loss: 155.307
-57600/69092	Loss: 155.020
-60800/69092	Loss: 156.720
-64000/69092	Loss: 152.289
-67200/69092	Loss: 153.449
-Training time 0:05:04.432898
-Epoch: 43 Average loss: 153.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 44)
-0/69092	Loss: 170.133
-3200/69092	Loss: 152.235
-6400/69092	Loss: 152.641
-9600/69092	Loss: 155.498
-12800/69092	Loss: 154.923
-16000/69092	Loss: 152.892
-19200/69092	Loss: 152.627
-22400/69092	Loss: 151.357
-25600/69092	Loss: 152.230
-28800/69092	Loss: 154.684
-32000/69092	Loss: 154.487
-35200/69092	Loss: 152.331
-38400/69092	Loss: 152.898
-41600/69092	Loss: 151.549
-44800/69092	Loss: 156.044
-48000/69092	Loss: 153.885
-51200/69092	Loss: 151.917
-54400/69092	Loss: 153.655
-57600/69092	Loss: 154.280
-60800/69092	Loss: 152.941
-64000/69092	Loss: 155.576
-67200/69092	Loss: 155.964
-Training time 0:05:04.038218
-Epoch: 44 Average loss: 153.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 45)
-0/69092	Loss: 156.539
-3200/69092	Loss: 151.731
-6400/69092	Loss: 152.422
-9600/69092	Loss: 153.158
-12800/69092	Loss: 153.571
-16000/69092	Loss: 151.715
-19200/69092	Loss: 155.852
-22400/69092	Loss: 152.424
-25600/69092	Loss: 154.561
-28800/69092	Loss: 153.384
-32000/69092	Loss: 153.394
-35200/69092	Loss: 154.395
-38400/69092	Loss: 155.487
-41600/69092	Loss: 153.853
-44800/69092	Loss: 152.225
-48000/69092	Loss: 152.628
-51200/69092	Loss: 155.227
-54400/69092	Loss: 152.513
-57600/69092	Loss: 154.089
-60800/69092	Loss: 152.235
-64000/69092	Loss: 155.785
-67200/69092	Loss: 152.158
-Training time 0:05:04.734548
-Epoch: 45 Average loss: 153.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 46)
-0/69092	Loss: 160.141
-3200/69092	Loss: 153.474
-6400/69092	Loss: 152.989
-9600/69092	Loss: 154.237
-12800/69092	Loss: 152.351
-16000/69092	Loss: 153.528
-19200/69092	Loss: 154.957
-22400/69092	Loss: 151.499
-25600/69092	Loss: 152.737
-28800/69092	Loss: 154.073
-32000/69092	Loss: 152.931
-35200/69092	Loss: 156.743
-38400/69092	Loss: 155.835
-41600/69092	Loss: 154.301
-44800/69092	Loss: 152.964
-48000/69092	Loss: 152.606
-51200/69092	Loss: 153.143
-54400/69092	Loss: 153.386
-57600/69092	Loss: 150.341
-60800/69092	Loss: 154.751
-64000/69092	Loss: 153.371
-67200/69092	Loss: 155.081
-Training time 0:05:05.560478
-Epoch: 46 Average loss: 153.65
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 47)
-0/69092	Loss: 159.554
-3200/69092	Loss: 154.737
-6400/69092	Loss: 152.041
-9600/69092	Loss: 154.259
-12800/69092	Loss: 150.843
-16000/69092	Loss: 154.812
-19200/69092	Loss: 153.575
-22400/69092	Loss: 153.562
-25600/69092	Loss: 154.008
-28800/69092	Loss: 153.427
-32000/69092	Loss: 154.091
-35200/69092	Loss: 152.106
-38400/69092	Loss: 158.513
-41600/69092	Loss: 154.801
-44800/69092	Loss: 154.234
-48000/69092	Loss: 154.945
-51200/69092	Loss: 154.535
-54400/69092	Loss: 154.542
-57600/69092	Loss: 153.441
-60800/69092	Loss: 150.218
-64000/69092	Loss: 152.690
-67200/69092	Loss: 152.164
-Training time 0:05:05.756269
-Epoch: 47 Average loss: 153.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 48)
-0/69092	Loss: 134.804
-3200/69092	Loss: 153.924
-6400/69092	Loss: 151.148
-9600/69092	Loss: 150.673
-12800/69092	Loss: 155.309
-16000/69092	Loss: 152.124
-19200/69092	Loss: 155.303
-22400/69092	Loss: 151.643
-25600/69092	Loss: 151.390
-28800/69092	Loss: 150.736
-32000/69092	Loss: 156.025
-35200/69092	Loss: 154.392
-38400/69092	Loss: 153.438
-41600/69092	Loss: 152.407
-44800/69092	Loss: 155.137
-48000/69092	Loss: 154.130
-51200/69092	Loss: 153.248
-54400/69092	Loss: 153.686
-57600/69092	Loss: 155.877
-60800/69092	Loss: 152.973
-64000/69092	Loss: 153.756
-67200/69092	Loss: 153.518
-Training time 0:05:10.223096
-Epoch: 48 Average loss: 153.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 49)
-0/69092	Loss: 137.311
-3200/69092	Loss: 155.135
-6400/69092	Loss: 153.290
-9600/69092	Loss: 155.428
-12800/69092	Loss: 152.749
-16000/69092	Loss: 153.186
-19200/69092	Loss: 153.337
-22400/69092	Loss: 157.355
-25600/69092	Loss: 154.726
-28800/69092	Loss: 152.976
-32000/69092	Loss: 152.562
-35200/69092	Loss: 153.569
-38400/69092	Loss: 153.438
-41600/69092	Loss: 155.214
-44800/69092	Loss: 152.062
-48000/69092	Loss: 153.686
-51200/69092	Loss: 152.035
-54400/69092	Loss: 155.127
-57600/69092	Loss: 155.570
-60800/69092	Loss: 152.989
-64000/69092	Loss: 151.805
-67200/69092	Loss: 151.512
-Training time 0:05:06.435324
-Epoch: 49 Average loss: 153.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 50)
-0/69092	Loss: 176.282
-3200/69092	Loss: 152.492
-6400/69092	Loss: 151.182
-9600/69092	Loss: 153.315
-12800/69092	Loss: 150.967
-16000/69092	Loss: 155.656
-19200/69092	Loss: 154.845
-22400/69092	Loss: 155.301
-25600/69092	Loss: 154.970
-28800/69092	Loss: 152.298
-32000/69092	Loss: 155.756
-35200/69092	Loss: 156.072
-38400/69092	Loss: 154.876
-41600/69092	Loss: 157.088
-44800/69092	Loss: 155.463
-48000/69092	Loss: 153.898
-51200/69092	Loss: 152.215
-54400/69092	Loss: 152.863
-57600/69092	Loss: 153.437
-60800/69092	Loss: 152.373
-64000/69092	Loss: 151.388
-67200/69092	Loss: 150.655
-Training time 0:05:03.710498
-Epoch: 50 Average loss: 153.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 51)
-0/69092	Loss: 158.625
-3200/69092	Loss: 154.152
-6400/69092	Loss: 153.690
-9600/69092	Loss: 152.061
-12800/69092	Loss: 154.185
-16000/69092	Loss: 149.322
-19200/69092	Loss: 153.205
-22400/69092	Loss: 154.816
-25600/69092	Loss: 151.939
-28800/69092	Loss: 156.743
-32000/69092	Loss: 153.360
-35200/69092	Loss: 151.926
-38400/69092	Loss: 156.276
-41600/69092	Loss: 155.058
-44800/69092	Loss: 153.286
-48000/69092	Loss: 154.900
-51200/69092	Loss: 151.956
-54400/69092	Loss: 152.775
-57600/69092	Loss: 151.664
-60800/69092	Loss: 152.328
-64000/69092	Loss: 155.246
-67200/69092	Loss: 151.667
-Training time 0:05:04.672720
-Epoch: 51 Average loss: 153.40
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 52)
-0/69092	Loss: 156.898
-3200/69092	Loss: 150.986
-6400/69092	Loss: 152.840
-9600/69092	Loss: 151.740
-12800/69092	Loss: 153.018
-16000/69092	Loss: 156.755
-19200/69092	Loss: 154.863
-22400/69092	Loss: 153.028
-25600/69092	Loss: 149.774
-28800/69092	Loss: 153.092
-32000/69092	Loss: 152.882
-35200/69092	Loss: 155.499
-38400/69092	Loss: 152.468
-41600/69092	Loss: 152.468
-44800/69092	Loss: 151.979
-48000/69092	Loss: 153.114
-51200/69092	Loss: 154.031
-54400/69092	Loss: 154.356
-57600/69092	Loss: 154.272
-60800/69092	Loss: 152.246
-64000/69092	Loss: 153.062
-67200/69092	Loss: 153.387
-Training time 0:05:08.002440
-Epoch: 52 Average loss: 153.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 53)
-0/69092	Loss: 161.253
-3200/69092	Loss: 155.004
-6400/69092	Loss: 153.371
-9600/69092	Loss: 152.802
-12800/69092	Loss: 152.663
-16000/69092	Loss: 155.737
-19200/69092	Loss: 151.118
-22400/69092	Loss: 154.458
-25600/69092	Loss: 156.289
-28800/69092	Loss: 154.404
-32000/69092	Loss: 150.858
-35200/69092	Loss: 154.569
-38400/69092	Loss: 151.450
-41600/69092	Loss: 153.888
-44800/69092	Loss: 152.719
-48000/69092	Loss: 154.929
-51200/69092	Loss: 152.535
-54400/69092	Loss: 151.346
-57600/69092	Loss: 152.216
-60800/69092	Loss: 153.693
-64000/69092	Loss: 156.593
-67200/69092	Loss: 153.910
-Training time 0:05:06.410454
-Epoch: 53 Average loss: 153.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 54)
-0/69092	Loss: 155.533
-3200/69092	Loss: 153.937
-6400/69092	Loss: 155.412
-9600/69092	Loss: 154.931
-12800/69092	Loss: 153.251
-16000/69092	Loss: 152.131
-19200/69092	Loss: 153.399
-22400/69092	Loss: 153.270
-25600/69092	Loss: 154.298
-28800/69092	Loss: 154.523
-32000/69092	Loss: 151.808
-35200/69092	Loss: 153.407
-38400/69092	Loss: 151.423
-41600/69092	Loss: 153.940
-44800/69092	Loss: 155.125
-48000/69092	Loss: 151.519
-51200/69092	Loss: 154.659
-54400/69092	Loss: 153.851
-57600/69092	Loss: 152.930
-60800/69092	Loss: 151.557
-64000/69092	Loss: 152.873
-67200/69092	Loss: 153.245
-Training time 0:05:04.874587
-Epoch: 54 Average loss: 153.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 55)
-0/69092	Loss: 164.339
-3200/69092	Loss: 153.000
-6400/69092	Loss: 153.157
-9600/69092	Loss: 151.128
-12800/69092	Loss: 154.678
-16000/69092	Loss: 153.077
-19200/69092	Loss: 151.972
-22400/69092	Loss: 154.141
-25600/69092	Loss: 154.754
-28800/69092	Loss: 153.184
-32000/69092	Loss: 154.772
-35200/69092	Loss: 152.511
-38400/69092	Loss: 153.568
-41600/69092	Loss: 152.005
-44800/69092	Loss: 149.800
-48000/69092	Loss: 152.716
-51200/69092	Loss: 154.639
-54400/69092	Loss: 153.018
-57600/69092	Loss: 154.460
-60800/69092	Loss: 154.754
-64000/69092	Loss: 153.897
-67200/69092	Loss: 152.005
-Training time 0:05:04.064776
-Epoch: 55 Average loss: 153.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 56)
-0/69092	Loss: 145.024
-3200/69092	Loss: 154.929
-6400/69092	Loss: 152.530
-9600/69092	Loss: 152.945
-12800/69092	Loss: 155.670
-16000/69092	Loss: 154.351
-19200/69092	Loss: 152.745
-22400/69092	Loss: 155.064
-25600/69092	Loss: 152.553
-28800/69092	Loss: 153.270
-32000/69092	Loss: 152.030
-35200/69092	Loss: 152.364
-38400/69092	Loss: 153.618
-41600/69092	Loss: 153.368
-44800/69092	Loss: 153.049
-48000/69092	Loss: 152.522
-51200/69092	Loss: 154.650
-54400/69092	Loss: 152.192
-57600/69092	Loss: 152.361
-60800/69092	Loss: 155.067
-64000/69092	Loss: 150.842
-67200/69092	Loss: 153.224
-Training time 0:05:05.357819
-Epoch: 56 Average loss: 153.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 57)
-0/69092	Loss: 153.625
-3200/69092	Loss: 151.436
-6400/69092	Loss: 152.714
-9600/69092	Loss: 153.801
-12800/69092	Loss: 154.746
-16000/69092	Loss: 154.916
-19200/69092	Loss: 155.349
-22400/69092	Loss: 152.170
-25600/69092	Loss: 153.511
-28800/69092	Loss: 151.470
-32000/69092	Loss: 152.545
-35200/69092	Loss: 155.377
-38400/69092	Loss: 151.887
-41600/69092	Loss: 154.537
-44800/69092	Loss: 154.658
-48000/69092	Loss: 153.163
-51200/69092	Loss: 152.460
-54400/69092	Loss: 152.746
-57600/69092	Loss: 154.616
-60800/69092	Loss: 151.210
-64000/69092	Loss: 153.386
-67200/69092	Loss: 152.204
-Training time 0:05:00.132235
-Epoch: 57 Average loss: 153.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 58)
-0/69092	Loss: 140.014
-3200/69092	Loss: 156.273
-6400/69092	Loss: 153.502
-9600/69092	Loss: 152.811
-12800/69092	Loss: 152.082
-16000/69092	Loss: 150.071
-19200/69092	Loss: 152.512
-22400/69092	Loss: 151.939
-25600/69092	Loss: 151.793
-28800/69092	Loss: 151.631
-32000/69092	Loss: 155.074
-35200/69092	Loss: 151.940
-38400/69092	Loss: 153.641
-41600/69092	Loss: 154.657
-44800/69092	Loss: 155.468
-48000/69092	Loss: 153.665
-51200/69092	Loss: 154.009
-54400/69092	Loss: 154.453
-57600/69092	Loss: 155.003
-60800/69092	Loss: 149.373
-64000/69092	Loss: 154.071
-67200/69092	Loss: 153.819
-Training time 0:05:08.698422
-Epoch: 58 Average loss: 153.29
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 59)
-0/69092	Loss: 143.812
-3200/69092	Loss: 153.009
-6400/69092	Loss: 153.208
-9600/69092	Loss: 154.279
-12800/69092	Loss: 152.098
-16000/69092	Loss: 151.400
-19200/69092	Loss: 153.523
-22400/69092	Loss: 153.810
-25600/69092	Loss: 155.014
-28800/69092	Loss: 154.882
-32000/69092	Loss: 152.385
-35200/69092	Loss: 152.551
-38400/69092	Loss: 151.502
-41600/69092	Loss: 153.572
-44800/69092	Loss: 153.259
-48000/69092	Loss: 150.445
-51200/69092	Loss: 150.321
-54400/69092	Loss: 152.052
-57600/69092	Loss: 152.770
-60800/69092	Loss: 151.706
-64000/69092	Loss: 154.925
-67200/69092	Loss: 152.911
-Training time 0:05:04.608892
-Epoch: 59 Average loss: 152.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 60)
-0/69092	Loss: 162.215
-3200/69092	Loss: 152.426
-6400/69092	Loss: 152.394
-9600/69092	Loss: 149.961
-12800/69092	Loss: 152.450
-16000/69092	Loss: 153.276
-19200/69092	Loss: 152.965
-22400/69092	Loss: 153.926
-25600/69092	Loss: 153.751
-28800/69092	Loss: 152.589
-32000/69092	Loss: 154.798
-35200/69092	Loss: 151.504
-38400/69092	Loss: 156.993
-41600/69092	Loss: 151.467
-44800/69092	Loss: 152.940
-48000/69092	Loss: 152.895
-51200/69092	Loss: 153.160
-54400/69092	Loss: 156.046
-57600/69092	Loss: 154.143
-60800/69092	Loss: 153.214
-64000/69092	Loss: 152.232
-67200/69092	Loss: 154.575
-Training time 0:05:11.751397
-Epoch: 60 Average loss: 153.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 61)
-0/69092	Loss: 148.478
-3200/69092	Loss: 154.240
-6400/69092	Loss: 154.791
-9600/69092	Loss: 151.924
-12800/69092	Loss: 152.483
-16000/69092	Loss: 152.506
-19200/69092	Loss: 152.950
-22400/69092	Loss: 151.456
-25600/69092	Loss: 154.445
-28800/69092	Loss: 150.913
-32000/69092	Loss: 152.421
-35200/69092	Loss: 155.222
-38400/69092	Loss: 156.020
-41600/69092	Loss: 151.382
-44800/69092	Loss: 153.835
-48000/69092	Loss: 153.079
-51200/69092	Loss: 154.136
-54400/69092	Loss: 153.399
-57600/69092	Loss: 154.339
-60800/69092	Loss: 155.080
-64000/69092	Loss: 152.277
-67200/69092	Loss: 148.640
-Training time 0:05:05.818863
-Epoch: 61 Average loss: 153.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 62)
-0/69092	Loss: 162.908
-3200/69092	Loss: 152.068
-6400/69092	Loss: 153.853
-9600/69092	Loss: 151.146
-12800/69092	Loss: 153.924
-16000/69092	Loss: 151.657
-19200/69092	Loss: 150.882
-22400/69092	Loss: 151.974
-25600/69092	Loss: 154.947
-28800/69092	Loss: 153.533
-32000/69092	Loss: 153.462
-35200/69092	Loss: 152.480
-38400/69092	Loss: 152.152
-41600/69092	Loss: 153.849
-44800/69092	Loss: 154.626
-48000/69092	Loss: 151.176
-51200/69092	Loss: 155.849
-54400/69092	Loss: 150.300
-57600/69092	Loss: 151.026
-60800/69092	Loss: 151.228
-64000/69092	Loss: 155.838
-67200/69092	Loss: 156.099
-Training time 0:05:08.367117
-Epoch: 62 Average loss: 152.92
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 63)
-0/69092	Loss: 158.083
-3200/69092	Loss: 152.139
-6400/69092	Loss: 151.515
-9600/69092	Loss: 154.007
-12800/69092	Loss: 154.114
-16000/69092	Loss: 152.373
-19200/69092	Loss: 156.591
-22400/69092	Loss: 153.921
-25600/69092	Loss: 153.131
-28800/69092	Loss: 153.269
-32000/69092	Loss: 153.428
-35200/69092	Loss: 153.374
-38400/69092	Loss: 154.027
-41600/69092	Loss: 153.133
-44800/69092	Loss: 151.447
-48000/69092	Loss: 153.021
-51200/69092	Loss: 153.346
-54400/69092	Loss: 153.267
-57600/69092	Loss: 153.133
-60800/69092	Loss: 150.994
-64000/69092	Loss: 151.683
-67200/69092	Loss: 152.689
-Training time 0:05:00.343405
-Epoch: 63 Average loss: 153.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 64)
-0/69092	Loss: 155.382
-3200/69092	Loss: 150.348
-6400/69092	Loss: 153.559
-9600/69092	Loss: 151.789
-12800/69092	Loss: 152.339
-16000/69092	Loss: 152.841
-19200/69092	Loss: 153.235
-22400/69092	Loss: 155.057
-25600/69092	Loss: 152.698
-28800/69092	Loss: 154.833
-32000/69092	Loss: 151.222
-35200/69092	Loss: 154.029
-38400/69092	Loss: 150.603
-41600/69092	Loss: 153.714
-44800/69092	Loss: 152.634
-48000/69092	Loss: 155.500
-51200/69092	Loss: 152.528
-54400/69092	Loss: 150.831
-57600/69092	Loss: 156.847
-60800/69092	Loss: 151.564
-64000/69092	Loss: 153.409
-67200/69092	Loss: 154.167
-Training time 0:05:03.212436
-Epoch: 64 Average loss: 153.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 65)
-0/69092	Loss: 139.758
-3200/69092	Loss: 151.157
-6400/69092	Loss: 152.249
-9600/69092	Loss: 154.095
-12800/69092	Loss: 153.313
-16000/69092	Loss: 150.597
-19200/69092	Loss: 155.302
-22400/69092	Loss: 152.118
-25600/69092	Loss: 153.546
-28800/69092	Loss: 154.313
-32000/69092	Loss: 153.620
-35200/69092	Loss: 154.113
-38400/69092	Loss: 155.124
-41600/69092	Loss: 152.480
-44800/69092	Loss: 152.689
-48000/69092	Loss: 152.772
-51200/69092	Loss: 152.237
-54400/69092	Loss: 152.833
-57600/69092	Loss: 151.780
-60800/69092	Loss: 152.019
-64000/69092	Loss: 151.113
-67200/69092	Loss: 154.489
-Training time 0:05:05.074899
-Epoch: 65 Average loss: 152.91
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 66)
-0/69092	Loss: 159.979
-3200/69092	Loss: 151.053
-6400/69092	Loss: 154.034
-9600/69092	Loss: 152.561
-12800/69092	Loss: 156.672
-16000/69092	Loss: 152.556
-19200/69092	Loss: 152.532
-22400/69092	Loss: 153.240
-25600/69092	Loss: 155.443
-28800/69092	Loss: 154.030
-32000/69092	Loss: 153.251
-35200/69092	Loss: 152.415
-38400/69092	Loss: 155.896
-41600/69092	Loss: 151.039
-44800/69092	Loss: 151.409
-48000/69092	Loss: 151.106
-51200/69092	Loss: 151.377
-54400/69092	Loss: 150.559
-57600/69092	Loss: 154.342
-60800/69092	Loss: 150.862
-64000/69092	Loss: 152.216
-67200/69092	Loss: 151.325
-Training time 0:05:00.575013
-Epoch: 66 Average loss: 152.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 67)
-0/69092	Loss: 142.966
-3200/69092	Loss: 152.295
-6400/69092	Loss: 155.944
-9600/69092	Loss: 152.407
-12800/69092	Loss: 153.805
-16000/69092	Loss: 152.183
-19200/69092	Loss: 153.307
-22400/69092	Loss: 150.859
-25600/69092	Loss: 154.866
-28800/69092	Loss: 154.007
-32000/69092	Loss: 153.482
-35200/69092	Loss: 153.582
-38400/69092	Loss: 152.513
-41600/69092	Loss: 152.289
-44800/69092	Loss: 152.738
-48000/69092	Loss: 149.751
-51200/69092	Loss: 154.121
-54400/69092	Loss: 151.372
-57600/69092	Loss: 152.082
-60800/69092	Loss: 151.721
-64000/69092	Loss: 154.688
-67200/69092	Loss: 152.273
-Training time 0:05:03.398712
-Epoch: 67 Average loss: 152.86
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 68)
-0/69092	Loss: 156.820
-3200/69092	Loss: 153.983
-6400/69092	Loss: 152.582
-9600/69092	Loss: 152.875
-12800/69092	Loss: 154.775
-16000/69092	Loss: 151.311
-19200/69092	Loss: 154.312
-22400/69092	Loss: 153.475
-25600/69092	Loss: 153.559
-28800/69092	Loss: 152.839
-32000/69092	Loss: 151.645
-35200/69092	Loss: 152.993
-38400/69092	Loss: 152.570
-41600/69092	Loss: 152.728
-44800/69092	Loss: 155.204
-48000/69092	Loss: 151.278
-51200/69092	Loss: 150.405
-54400/69092	Loss: 151.839
-57600/69092	Loss: 152.835
-60800/69092	Loss: 152.176
-64000/69092	Loss: 153.671
-67200/69092	Loss: 152.518
-Training time 0:05:07.168211
-Epoch: 68 Average loss: 152.74
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 69)
-0/69092	Loss: 154.987
-3200/69092	Loss: 153.001
-6400/69092	Loss: 152.196
-9600/69092	Loss: 152.795
-12800/69092	Loss: 151.874
-16000/69092	Loss: 150.412
-19200/69092	Loss: 152.470
-22400/69092	Loss: 156.112
-25600/69092	Loss: 153.249
-28800/69092	Loss: 153.358
-32000/69092	Loss: 153.126
-35200/69092	Loss: 152.111
-38400/69092	Loss: 151.914
-41600/69092	Loss: 152.241
-44800/69092	Loss: 156.576
-48000/69092	Loss: 153.261
-51200/69092	Loss: 151.098
-54400/69092	Loss: 152.671
-57600/69092	Loss: 150.513
-60800/69092	Loss: 153.903
-64000/69092	Loss: 152.987
-67200/69092	Loss: 153.839
-Training time 0:05:01.142378
-Epoch: 69 Average loss: 152.87
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 70)
-0/69092	Loss: 138.401
-3200/69092	Loss: 155.595
-6400/69092	Loss: 151.267
-9600/69092	Loss: 150.606
-12800/69092	Loss: 151.684
-16000/69092	Loss: 151.296
-19200/69092	Loss: 155.351
-22400/69092	Loss: 153.372
-25600/69092	Loss: 150.808
-28800/69092	Loss: 154.447
-32000/69092	Loss: 154.128
-35200/69092	Loss: 152.911
-38400/69092	Loss: 154.448
-41600/69092	Loss: 153.440
-44800/69092	Loss: 151.671
-48000/69092	Loss: 151.455
-51200/69092	Loss: 151.722
-54400/69092	Loss: 154.920
-57600/69092	Loss: 152.498
-60800/69092	Loss: 152.582
-64000/69092	Loss: 153.175
-67200/69092	Loss: 152.935
-Training time 0:05:01.443628
-Epoch: 70 Average loss: 152.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 71)
-0/69092	Loss: 148.997
-3200/69092	Loss: 153.403
-6400/69092	Loss: 152.238
-9600/69092	Loss: 152.631
-12800/69092	Loss: 154.329
-16000/69092	Loss: 152.442
-19200/69092	Loss: 155.095
-22400/69092	Loss: 148.772
-25600/69092	Loss: 150.420
-28800/69092	Loss: 150.991
-32000/69092	Loss: 150.446
-35200/69092	Loss: 153.889
-38400/69092	Loss: 151.610
-41600/69092	Loss: 157.595
-44800/69092	Loss: 156.073
-48000/69092	Loss: 151.608
-51200/69092	Loss: 152.426
-54400/69092	Loss: 153.357
-57600/69092	Loss: 155.688
-60800/69092	Loss: 152.993
-64000/69092	Loss: 152.860
-67200/69092	Loss: 151.448
-Training time 0:05:06.476809
-Epoch: 71 Average loss: 152.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 72)
-0/69092	Loss: 141.329
-3200/69092	Loss: 150.459
-6400/69092	Loss: 150.223
-9600/69092	Loss: 149.934
-12800/69092	Loss: 155.668
-16000/69092	Loss: 153.889
-19200/69092	Loss: 151.707
-22400/69092	Loss: 155.100
-25600/69092	Loss: 153.854
-28800/69092	Loss: 154.796
-32000/69092	Loss: 150.782
-35200/69092	Loss: 154.409
-38400/69092	Loss: 149.620
-41600/69092	Loss: 152.567
-44800/69092	Loss: 154.245
-48000/69092	Loss: 154.795
-51200/69092	Loss: 152.696
-54400/69092	Loss: 151.767
-57600/69092	Loss: 152.658
-60800/69092	Loss: 151.507
-64000/69092	Loss: 154.653
-67200/69092	Loss: 155.114
-Training time 0:04:59.466738
-Epoch: 72 Average loss: 152.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 73)
-0/69092	Loss: 151.954
-3200/69092	Loss: 150.543
-6400/69092	Loss: 150.064
-9600/69092	Loss: 151.341
-12800/69092	Loss: 155.051
-16000/69092	Loss: 151.767
-19200/69092	Loss: 151.707
-22400/69092	Loss: 150.051
-25600/69092	Loss: 153.169
-28800/69092	Loss: 152.199
-32000/69092	Loss: 153.218
-35200/69092	Loss: 154.742
-38400/69092	Loss: 153.789
-41600/69092	Loss: 152.391
-44800/69092	Loss: 153.139
-48000/69092	Loss: 151.313
-51200/69092	Loss: 153.902
-54400/69092	Loss: 153.355
-57600/69092	Loss: 155.380
-60800/69092	Loss: 154.568
-64000/69092	Loss: 154.107
-67200/69092	Loss: 154.334
-Training time 0:05:03.158249
-Epoch: 73 Average loss: 152.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 74)
-0/69092	Loss: 149.423
-3200/69092	Loss: 151.679
-6400/69092	Loss: 153.798
-9600/69092	Loss: 152.668
-12800/69092	Loss: 153.307
-16000/69092	Loss: 153.359
-19200/69092	Loss: 153.498
-22400/69092	Loss: 153.059
-25600/69092	Loss: 149.113
-28800/69092	Loss: 150.271
-32000/69092	Loss: 151.695
-35200/69092	Loss: 153.754
-38400/69092	Loss: 154.245
-41600/69092	Loss: 153.353
-44800/69092	Loss: 155.702
-48000/69092	Loss: 154.674
-51200/69092	Loss: 154.443
-54400/69092	Loss: 151.039
-57600/69092	Loss: 152.744
-60800/69092	Loss: 151.841
-64000/69092	Loss: 150.926
-67200/69092	Loss: 152.025
-Training time 0:05:01.050127
-Epoch: 74 Average loss: 152.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 75)
-0/69092	Loss: 166.404
-3200/69092	Loss: 152.402
-6400/69092	Loss: 153.553
-9600/69092	Loss: 152.141
-12800/69092	Loss: 154.060
-16000/69092	Loss: 153.407
-19200/69092	Loss: 151.435
-22400/69092	Loss: 153.794
-25600/69092	Loss: 153.962
-28800/69092	Loss: 151.479
-32000/69092	Loss: 152.428
-35200/69092	Loss: 150.827
-38400/69092	Loss: 154.074
-41600/69092	Loss: 150.292
-44800/69092	Loss: 153.294
-48000/69092	Loss: 155.552
-51200/69092	Loss: 151.826
-54400/69092	Loss: 148.807
-57600/69092	Loss: 153.112
-60800/69092	Loss: 152.712
-64000/69092	Loss: 152.365
-67200/69092	Loss: 156.062
-Training time 0:05:00.279982
-Epoch: 75 Average loss: 152.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 76)
-0/69092	Loss: 160.236
-3200/69092	Loss: 156.036
-6400/69092	Loss: 151.301
-9600/69092	Loss: 154.022
-12800/69092	Loss: 152.363
-16000/69092	Loss: 152.940
-19200/69092	Loss: 152.926
-22400/69092	Loss: 155.772
-25600/69092	Loss: 149.718
-28800/69092	Loss: 153.058
-32000/69092	Loss: 154.940
-35200/69092	Loss: 149.198
-38400/69092	Loss: 150.990
-41600/69092	Loss: 153.861
-44800/69092	Loss: 152.412
-48000/69092	Loss: 151.850
-51200/69092	Loss: 151.471
-54400/69092	Loss: 152.056
-57600/69092	Loss: 153.746
-60800/69092	Loss: 152.218
-64000/69092	Loss: 154.474
-67200/69092	Loss: 153.115
-Training time 0:05:03.586743
-Epoch: 76 Average loss: 152.70
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 77)
-0/69092	Loss: 151.925
-3200/69092	Loss: 152.772
-6400/69092	Loss: 153.458
-9600/69092	Loss: 153.755
-12800/69092	Loss: 150.433
-16000/69092	Loss: 155.720
-19200/69092	Loss: 154.717
-22400/69092	Loss: 151.831
-25600/69092	Loss: 152.225
-28800/69092	Loss: 155.586
-32000/69092	Loss: 150.702
-35200/69092	Loss: 152.576
-38400/69092	Loss: 153.101
-41600/69092	Loss: 152.526
-44800/69092	Loss: 151.885
-48000/69092	Loss: 153.356
-51200/69092	Loss: 153.625
-54400/69092	Loss: 152.734
-57600/69092	Loss: 153.902
-60800/69092	Loss: 150.747
-64000/69092	Loss: 151.922
-67200/69092	Loss: 151.135
-Training time 0:05:01.913817
-Epoch: 77 Average loss: 152.74
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 78)
-0/69092	Loss: 150.499
-3200/69092	Loss: 150.364
-6400/69092	Loss: 152.616
-9600/69092	Loss: 150.805
-12800/69092	Loss: 152.270
-16000/69092	Loss: 154.041
-19200/69092	Loss: 151.174
-22400/69092	Loss: 152.580
-25600/69092	Loss: 150.905
-28800/69092	Loss: 151.016
-32000/69092	Loss: 155.241
-35200/69092	Loss: 153.416
-38400/69092	Loss: 155.948
-41600/69092	Loss: 151.825
-44800/69092	Loss: 152.065
-48000/69092	Loss: 153.484
-51200/69092	Loss: 154.511
-54400/69092	Loss: 153.743
-57600/69092	Loss: 153.570
-60800/69092	Loss: 152.180
-64000/69092	Loss: 149.114
-67200/69092	Loss: 151.693
-Training time 0:05:04.301251
-Epoch: 78 Average loss: 152.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 79)
-0/69092	Loss: 139.963
-3200/69092	Loss: 152.064
-6400/69092	Loss: 154.636
-9600/69092	Loss: 151.479
-12800/69092	Loss: 154.645
-16000/69092	Loss: 155.208
-19200/69092	Loss: 154.139
-22400/69092	Loss: 154.556
-25600/69092	Loss: 154.659
-28800/69092	Loss: 153.859
-32000/69092	Loss: 152.297
-35200/69092	Loss: 152.349
-38400/69092	Loss: 151.648
-41600/69092	Loss: 154.945
-44800/69092	Loss: 152.920
-48000/69092	Loss: 153.521
-51200/69092	Loss: 150.717
-54400/69092	Loss: 150.692
-57600/69092	Loss: 151.252
-60800/69092	Loss: 150.369
-64000/69092	Loss: 151.706
-67200/69092	Loss: 152.179
-Training time 0:05:00.712610
-Epoch: 79 Average loss: 152.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 80)
-0/69092	Loss: 145.566
-3200/69092	Loss: 150.740
-6400/69092	Loss: 150.905
-9600/69092	Loss: 153.793
-12800/69092	Loss: 152.054
-16000/69092	Loss: 151.727
-19200/69092	Loss: 153.509
-22400/69092	Loss: 152.940
-25600/69092	Loss: 154.239
-28800/69092	Loss: 153.820
-32000/69092	Loss: 152.859
-35200/69092	Loss: 151.372
-38400/69092	Loss: 154.048
-41600/69092	Loss: 153.518
-44800/69092	Loss: 151.242
-48000/69092	Loss: 150.291
-51200/69092	Loss: 151.278
-54400/69092	Loss: 150.139
-57600/69092	Loss: 153.476
-60800/69092	Loss: 152.763
-64000/69092	Loss: 153.223
-67200/69092	Loss: 154.283
-Training time 0:05:01.484190
-Epoch: 80 Average loss: 152.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 81)
-0/69092	Loss: 152.637
-3200/69092	Loss: 150.512
-6400/69092	Loss: 151.159
-9600/69092	Loss: 152.371
-12800/69092	Loss: 151.326
-16000/69092	Loss: 153.093
-19200/69092	Loss: 151.106
-22400/69092	Loss: 153.780
-25600/69092	Loss: 156.551
-28800/69092	Loss: 152.412
-32000/69092	Loss: 152.912
-35200/69092	Loss: 151.983
-38400/69092	Loss: 153.083
-41600/69092	Loss: 153.586
-44800/69092	Loss: 152.433
-48000/69092	Loss: 153.503
-51200/69092	Loss: 152.919
-54400/69092	Loss: 151.444
-57600/69092	Loss: 152.309
-60800/69092	Loss: 153.188
-64000/69092	Loss: 152.829
-67200/69092	Loss: 152.593
-Training time 0:05:14.836802
-Epoch: 81 Average loss: 152.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 82)
-0/69092	Loss: 127.290
-3200/69092	Loss: 152.351
-6400/69092	Loss: 152.768
-9600/69092	Loss: 152.386
-12800/69092	Loss: 154.187
-16000/69092	Loss: 153.321
-19200/69092	Loss: 153.269
-22400/69092	Loss: 151.541
-25600/69092	Loss: 152.779
-28800/69092	Loss: 152.687
-32000/69092	Loss: 150.497
-35200/69092	Loss: 154.914
-38400/69092	Loss: 151.950
-41600/69092	Loss: 152.179
-44800/69092	Loss: 153.137
-48000/69092	Loss: 152.031
-51200/69092	Loss: 150.718
-54400/69092	Loss: 152.290
-57600/69092	Loss: 152.399
-60800/69092	Loss: 153.191
-64000/69092	Loss: 152.428
-67200/69092	Loss: 153.222
-Training time 0:05:03.126978
-Epoch: 82 Average loss: 152.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 83)
-0/69092	Loss: 170.106
-3200/69092	Loss: 151.821
-6400/69092	Loss: 152.948
-9600/69092	Loss: 155.070
-12800/69092	Loss: 151.771
-16000/69092	Loss: 151.659
-19200/69092	Loss: 150.362
-22400/69092	Loss: 153.987
-25600/69092	Loss: 150.692
-28800/69092	Loss: 154.158
-32000/69092	Loss: 150.786
-35200/69092	Loss: 151.568
-38400/69092	Loss: 155.342
-41600/69092	Loss: 151.864
-44800/69092	Loss: 153.326
-48000/69092	Loss: 150.261
-51200/69092	Loss: 152.559
-54400/69092	Loss: 154.103
-57600/69092	Loss: 151.534
-60800/69092	Loss: 152.258
-64000/69092	Loss: 150.644
-67200/69092	Loss: 154.056
-Training time 0:05:04.365485
-Epoch: 83 Average loss: 152.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 84)
-0/69092	Loss: 156.607
-3200/69092	Loss: 153.684
-6400/69092	Loss: 152.161
-9600/69092	Loss: 151.058
-12800/69092	Loss: 153.163
-16000/69092	Loss: 151.401
-19200/69092	Loss: 150.793
-22400/69092	Loss: 151.713
-25600/69092	Loss: 153.818
-28800/69092	Loss: 155.153
-32000/69092	Loss: 153.687
-35200/69092	Loss: 153.718
-38400/69092	Loss: 153.344
-41600/69092	Loss: 154.692
-44800/69092	Loss: 153.889
-48000/69092	Loss: 151.061
-51200/69092	Loss: 152.466
-54400/69092	Loss: 153.934
-57600/69092	Loss: 152.357
-60800/69092	Loss: 150.489
-64000/69092	Loss: 151.883
-67200/69092	Loss: 153.254
-Training time 0:05:05.027352
-Epoch: 84 Average loss: 152.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 85)
-0/69092	Loss: 144.233
-3200/69092	Loss: 151.305
-6400/69092	Loss: 152.445
-9600/69092	Loss: 152.617
-12800/69092	Loss: 154.848
-16000/69092	Loss: 151.736
-19200/69092	Loss: 154.041
-22400/69092	Loss: 154.408
-25600/69092	Loss: 152.803
-28800/69092	Loss: 152.694
-32000/69092	Loss: 149.173
-35200/69092	Loss: 149.996
-38400/69092	Loss: 150.598
-41600/69092	Loss: 152.484
-44800/69092	Loss: 149.742
-48000/69092	Loss: 154.882
-51200/69092	Loss: 149.077
-54400/69092	Loss: 153.066
-57600/69092	Loss: 153.498
-60800/69092	Loss: 153.081
-64000/69092	Loss: 152.484
-67200/69092	Loss: 155.103
-Training time 0:05:00.247594
-Epoch: 85 Average loss: 152.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 86)
-0/69092	Loss: 141.634
-3200/69092	Loss: 154.162
-6400/69092	Loss: 155.657
-9600/69092	Loss: 152.385
-12800/69092	Loss: 150.410
-16000/69092	Loss: 152.131
-19200/69092	Loss: 150.595
-22400/69092	Loss: 150.497
-25600/69092	Loss: 153.052
-28800/69092	Loss: 153.005
-32000/69092	Loss: 152.996
-35200/69092	Loss: 150.578
-38400/69092	Loss: 154.163
-41600/69092	Loss: 150.851
-44800/69092	Loss: 150.714
-48000/69092	Loss: 151.768
-51200/69092	Loss: 153.833
-54400/69092	Loss: 152.679
-57600/69092	Loss: 152.159
-60800/69092	Loss: 152.186
-64000/69092	Loss: 151.733
-67200/69092	Loss: 152.934
-Training time 0:04:59.334738
-Epoch: 86 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 87)
-0/69092	Loss: 132.613
-3200/69092	Loss: 154.505
-6400/69092	Loss: 150.723
-9600/69092	Loss: 154.777
-12800/69092	Loss: 154.341
-16000/69092	Loss: 152.327
-19200/69092	Loss: 152.538
-22400/69092	Loss: 152.846
-25600/69092	Loss: 152.652
-28800/69092	Loss: 152.130
-32000/69092	Loss: 151.218
-35200/69092	Loss: 151.767
-38400/69092	Loss: 150.011
-41600/69092	Loss: 151.972
-44800/69092	Loss: 152.368
-48000/69092	Loss: 150.778
-51200/69092	Loss: 151.855
-54400/69092	Loss: 151.421
-57600/69092	Loss: 153.227
-60800/69092	Loss: 153.404
-64000/69092	Loss: 154.412
-67200/69092	Loss: 155.687
-Training time 0:05:04.861271
-Epoch: 87 Average loss: 152.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 88)
-0/69092	Loss: 149.474
-3200/69092	Loss: 150.297
-6400/69092	Loss: 152.666
-9600/69092	Loss: 152.328
-12800/69092	Loss: 154.612
-16000/69092	Loss: 153.454
-19200/69092	Loss: 150.684
-22400/69092	Loss: 151.669
-25600/69092	Loss: 154.238
-28800/69092	Loss: 152.287
-32000/69092	Loss: 154.842
-35200/69092	Loss: 154.491
-38400/69092	Loss: 154.811
-41600/69092	Loss: 150.886
-44800/69092	Loss: 152.775
-48000/69092	Loss: 151.452
-51200/69092	Loss: 153.143
-54400/69092	Loss: 149.978
-57600/69092	Loss: 154.368
-60800/69092	Loss: 150.601
-64000/69092	Loss: 154.155
-67200/69092	Loss: 150.809
-Training time 0:04:59.932954
-Epoch: 88 Average loss: 152.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 89)
-0/69092	Loss: 143.299
-3200/69092	Loss: 152.911
-6400/69092	Loss: 151.744
-9600/69092	Loss: 154.087
-12800/69092	Loss: 153.153
-16000/69092	Loss: 153.537
-19200/69092	Loss: 152.830
-22400/69092	Loss: 150.626
-25600/69092	Loss: 149.894
-28800/69092	Loss: 151.881
-32000/69092	Loss: 152.581
-35200/69092	Loss: 154.882
-38400/69092	Loss: 152.432
-41600/69092	Loss: 152.900
-44800/69092	Loss: 151.728
-48000/69092	Loss: 151.693
-51200/69092	Loss: 151.184
-54400/69092	Loss: 151.568
-57600/69092	Loss: 153.244
-60800/69092	Loss: 152.252
-64000/69092	Loss: 151.284
-67200/69092	Loss: 151.461
-Training time 0:04:58.809173
-Epoch: 89 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 90)
-0/69092	Loss: 144.438
-3200/69092	Loss: 151.207
-6400/69092	Loss: 152.556
-9600/69092	Loss: 153.540
-12800/69092	Loss: 152.265
-16000/69092	Loss: 151.794
-19200/69092	Loss: 154.257
-22400/69092	Loss: 153.766
-25600/69092	Loss: 152.606
-28800/69092	Loss: 150.654
-32000/69092	Loss: 151.568
-35200/69092	Loss: 152.547
-38400/69092	Loss: 153.567
-41600/69092	Loss: 152.986
-44800/69092	Loss: 154.000
-48000/69092	Loss: 152.426
-51200/69092	Loss: 152.760
-54400/69092	Loss: 152.946
-57600/69092	Loss: 152.907
-60800/69092	Loss: 152.971
-64000/69092	Loss: 150.503
-67200/69092	Loss: 151.103
-Training time 0:05:05.040677
-Epoch: 90 Average loss: 152.57
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 91)
-0/69092	Loss: 151.201
-3200/69092	Loss: 148.363
-6400/69092	Loss: 152.795
-9600/69092	Loss: 154.857
-12800/69092	Loss: 154.865
-16000/69092	Loss: 151.746
-19200/69092	Loss: 151.830
-22400/69092	Loss: 152.672
-25600/69092	Loss: 153.510
-28800/69092	Loss: 152.644
-32000/69092	Loss: 152.946
-35200/69092	Loss: 152.825
-38400/69092	Loss: 152.690
-41600/69092	Loss: 151.726
-44800/69092	Loss: 151.685
-48000/69092	Loss: 149.414
-51200/69092	Loss: 152.569
-54400/69092	Loss: 150.847
-57600/69092	Loss: 154.336
-60800/69092	Loss: 153.217
-64000/69092	Loss: 156.152
-67200/69092	Loss: 149.649
-Training time 0:05:07.174822
-Epoch: 91 Average loss: 152.41
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 92)
-0/69092	Loss: 146.879
-3200/69092	Loss: 151.679
-6400/69092	Loss: 154.180
-9600/69092	Loss: 152.580
-12800/69092	Loss: 154.908
-16000/69092	Loss: 151.998
-19200/69092	Loss: 154.043
-22400/69092	Loss: 152.445
-25600/69092	Loss: 152.331
-28800/69092	Loss: 152.467
-32000/69092	Loss: 154.391
-35200/69092	Loss: 149.140
-38400/69092	Loss: 154.011
-41600/69092	Loss: 152.635
-44800/69092	Loss: 153.557
-48000/69092	Loss: 151.022
-51200/69092	Loss: 153.452
-54400/69092	Loss: 151.311
-57600/69092	Loss: 150.852
-60800/69092	Loss: 152.605
-64000/69092	Loss: 152.167
-67200/69092	Loss: 149.958
-Training time 0:05:02.091466
-Epoch: 92 Average loss: 152.46
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 93)
-0/69092	Loss: 155.889
-3200/69092	Loss: 151.318
-6400/69092	Loss: 153.910
-9600/69092	Loss: 149.093
-12800/69092	Loss: 152.369
-16000/69092	Loss: 149.840
-19200/69092	Loss: 154.737
-22400/69092	Loss: 150.456
-25600/69092	Loss: 153.290
-28800/69092	Loss: 150.556
-32000/69092	Loss: 153.934
-35200/69092	Loss: 152.128
-38400/69092	Loss: 155.152
-41600/69092	Loss: 151.227
-44800/69092	Loss: 152.402
-48000/69092	Loss: 152.533
-51200/69092	Loss: 153.016
-54400/69092	Loss: 152.008
-57600/69092	Loss: 154.355
-60800/69092	Loss: 151.960
-64000/69092	Loss: 151.035
-67200/69092	Loss: 151.408
-Training time 0:05:09.818408
-Epoch: 93 Average loss: 152.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 94)
-0/69092	Loss: 160.898
-3200/69092	Loss: 152.832
-6400/69092	Loss: 152.692
-9600/69092	Loss: 149.815
-12800/69092	Loss: 150.418
-16000/69092	Loss: 153.161
-19200/69092	Loss: 153.317
-22400/69092	Loss: 154.669
-25600/69092	Loss: 151.977
-28800/69092	Loss: 151.650
-32000/69092	Loss: 151.620
-35200/69092	Loss: 150.944
-38400/69092	Loss: 152.662
-41600/69092	Loss: 152.309
-44800/69092	Loss: 153.141
-48000/69092	Loss: 152.710
-51200/69092	Loss: 149.739
-54400/69092	Loss: 152.727
-57600/69092	Loss: 151.518
-60800/69092	Loss: 154.450
-64000/69092	Loss: 153.961
-67200/69092	Loss: 150.943
-Training time 0:05:11.518790
-Epoch: 94 Average loss: 152.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 95)
-0/69092	Loss: 158.054
-3200/69092	Loss: 154.231
-6400/69092	Loss: 154.395
-9600/69092	Loss: 153.585
-12800/69092	Loss: 153.048
-16000/69092	Loss: 154.041
-19200/69092	Loss: 150.861
-22400/69092	Loss: 153.845
-25600/69092	Loss: 149.978
-28800/69092	Loss: 151.273
-32000/69092	Loss: 155.098
-35200/69092	Loss: 152.181
-38400/69092	Loss: 154.399
-41600/69092	Loss: 150.771
-44800/69092	Loss: 149.101
-48000/69092	Loss: 150.421
-51200/69092	Loss: 154.368
-54400/69092	Loss: 147.994
-57600/69092	Loss: 150.609
-60800/69092	Loss: 152.076
-64000/69092	Loss: 153.247
-67200/69092	Loss: 151.974
-Training time 0:05:19.096335
-Epoch: 95 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 96)
-0/69092	Loss: 167.858
-3200/69092	Loss: 151.973
-6400/69092	Loss: 150.961
-9600/69092	Loss: 153.146
-12800/69092	Loss: 153.905
-16000/69092	Loss: 150.775
-19200/69092	Loss: 151.109
-22400/69092	Loss: 153.245
-25600/69092	Loss: 151.288
-28800/69092	Loss: 149.723
-32000/69092	Loss: 153.029
-35200/69092	Loss: 154.187
-38400/69092	Loss: 152.289
-41600/69092	Loss: 152.623
-44800/69092	Loss: 150.950
-48000/69092	Loss: 151.842
-51200/69092	Loss: 151.985
-54400/69092	Loss: 151.905
-57600/69092	Loss: 154.471
-60800/69092	Loss: 148.848
-64000/69092	Loss: 151.029
-67200/69092	Loss: 154.073
-Training time 0:05:14.758375
-Epoch: 96 Average loss: 152.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 97)
-0/69092	Loss: 147.837
-3200/69092	Loss: 154.152
-6400/69092	Loss: 149.796
-9600/69092	Loss: 151.266
-12800/69092	Loss: 154.179
-16000/69092	Loss: 153.537
-19200/69092	Loss: 152.437
-22400/69092	Loss: 153.179
-25600/69092	Loss: 154.426
-28800/69092	Loss: 151.582
-32000/69092	Loss: 150.323
-35200/69092	Loss: 151.787
-38400/69092	Loss: 151.679
-41600/69092	Loss: 151.968
-44800/69092	Loss: 150.813
-48000/69092	Loss: 150.975
-51200/69092	Loss: 151.489
-54400/69092	Loss: 152.246
-57600/69092	Loss: 153.647
-60800/69092	Loss: 151.336
-64000/69092	Loss: 151.397
-67200/69092	Loss: 155.549
-Training time 0:05:10.379359
-Epoch: 97 Average loss: 152.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 98)
-0/69092	Loss: 154.740
-3200/69092	Loss: 151.913
-6400/69092	Loss: 150.169
-9600/69092	Loss: 150.706
-12800/69092	Loss: 152.045
-16000/69092	Loss: 152.562
-19200/69092	Loss: 150.442
-22400/69092	Loss: 153.113
-25600/69092	Loss: 153.983
-28800/69092	Loss: 152.689
-32000/69092	Loss: 151.500
-35200/69092	Loss: 154.215
-38400/69092	Loss: 151.321
-41600/69092	Loss: 151.483
-44800/69092	Loss: 153.338
-48000/69092	Loss: 151.855
-51200/69092	Loss: 155.090
-54400/69092	Loss: 152.879
-57600/69092	Loss: 152.352
-60800/69092	Loss: 153.363
-64000/69092	Loss: 152.709
-67200/69092	Loss: 152.203
-Training time 0:05:14.910973
-Epoch: 98 Average loss: 152.39
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 99)
-0/69092	Loss: 142.389
-3200/69092	Loss: 151.556
-6400/69092	Loss: 150.432
-9600/69092	Loss: 152.263
-12800/69092	Loss: 152.895
-16000/69092	Loss: 153.922
-19200/69092	Loss: 152.318
-22400/69092	Loss: 151.243
-25600/69092	Loss: 155.285
-28800/69092	Loss: 153.173
-32000/69092	Loss: 153.491
-35200/69092	Loss: 152.379
-38400/69092	Loss: 153.217
-41600/69092	Loss: 153.880
-44800/69092	Loss: 152.068
-48000/69092	Loss: 150.619
-51200/69092	Loss: 152.586
-54400/69092	Loss: 151.715
-57600/69092	Loss: 151.369
-60800/69092	Loss: 152.483
-64000/69092	Loss: 151.930
-67200/69092	Loss: 153.290
-Training time 0:05:17.595488
-Epoch: 99 Average loss: 152.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 100)
-0/69092	Loss: 158.684
-3200/69092	Loss: 153.906
-6400/69092	Loss: 153.327
-9600/69092	Loss: 151.818
-12800/69092	Loss: 155.821
-16000/69092	Loss: 152.444
-19200/69092	Loss: 152.891
-22400/69092	Loss: 149.164
-25600/69092	Loss: 152.786
-28800/69092	Loss: 149.422
-32000/69092	Loss: 150.534
-35200/69092	Loss: 151.991
-38400/69092	Loss: 152.149
-41600/69092	Loss: 152.764
-44800/69092	Loss: 153.696
-48000/69092	Loss: 153.265
-51200/69092	Loss: 153.180
-54400/69092	Loss: 150.813
-57600/69092	Loss: 155.719
-60800/69092	Loss: 153.404
-64000/69092	Loss: 151.654
-67200/69092	Loss: 151.188
-Training time 0:05:03.418084
-Epoch: 100 Average loss: 152.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 101)
-0/69092	Loss: 167.760
-3200/69092	Loss: 152.876
-6400/69092	Loss: 153.562
-9600/69092	Loss: 152.892
-12800/69092	Loss: 151.356
-16000/69092	Loss: 152.326
-19200/69092	Loss: 152.955
-22400/69092	Loss: 150.492
-25600/69092	Loss: 153.585
-28800/69092	Loss: 152.329
-32000/69092	Loss: 151.782
-35200/69092	Loss: 152.113
-38400/69092	Loss: 149.783
-41600/69092	Loss: 152.142
-44800/69092	Loss: 151.179
-48000/69092	Loss: 151.627
-51200/69092	Loss: 155.051
-54400/69092	Loss: 152.449
-57600/69092	Loss: 154.746
-60800/69092	Loss: 153.757
-64000/69092	Loss: 149.538
-67200/69092	Loss: 152.841
-Training time 0:04:51.914784
-Epoch: 101 Average loss: 152.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 102)
-0/69092	Loss: 137.340
-3200/69092	Loss: 153.577
-6400/69092	Loss: 150.329
-9600/69092	Loss: 154.083
-12800/69092	Loss: 151.225
-16000/69092	Loss: 150.840
-19200/69092	Loss: 154.126
-22400/69092	Loss: 153.644
-25600/69092	Loss: 151.214
-28800/69092	Loss: 148.798
-32000/69092	Loss: 152.823
-35200/69092	Loss: 149.150
-38400/69092	Loss: 152.960
-41600/69092	Loss: 151.685
-44800/69092	Loss: 150.527
-48000/69092	Loss: 152.596
-51200/69092	Loss: 154.297
-54400/69092	Loss: 151.212
-57600/69092	Loss: 155.284
-60800/69092	Loss: 155.288
-64000/69092	Loss: 151.360
-67200/69092	Loss: 153.971
-Training time 0:05:01.022271
-Epoch: 102 Average loss: 152.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 103)
-0/69092	Loss: 153.573
-3200/69092	Loss: 155.110
-6400/69092	Loss: 151.305
-9600/69092	Loss: 153.206
-12800/69092	Loss: 152.802
-16000/69092	Loss: 149.800
-19200/69092	Loss: 150.971
-22400/69092	Loss: 151.738
-25600/69092	Loss: 151.675
-28800/69092	Loss: 152.290
-32000/69092	Loss: 154.392
-35200/69092	Loss: 154.004
-38400/69092	Loss: 152.356
-41600/69092	Loss: 152.916
-44800/69092	Loss: 152.282
-48000/69092	Loss: 149.664
-51200/69092	Loss: 154.644
-54400/69092	Loss: 152.245
-57600/69092	Loss: 151.714
-60800/69092	Loss: 151.316
-64000/69092	Loss: 152.527
-67200/69092	Loss: 152.642
-Training time 0:05:07.864949
-Epoch: 103 Average loss: 152.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 104)
-0/69092	Loss: 151.662
-3200/69092	Loss: 151.814
-6400/69092	Loss: 149.252
-9600/69092	Loss: 152.869
-12800/69092	Loss: 151.850
-16000/69092	Loss: 151.858
-19200/69092	Loss: 153.972
-22400/69092	Loss: 152.033
-25600/69092	Loss: 150.453
-28800/69092	Loss: 152.936
-32000/69092	Loss: 151.613
-35200/69092	Loss: 152.562
-38400/69092	Loss: 152.823
-41600/69092	Loss: 153.282
-44800/69092	Loss: 150.677
-48000/69092	Loss: 151.082
-51200/69092	Loss: 153.963
-54400/69092	Loss: 150.317
-57600/69092	Loss: 151.814
-60800/69092	Loss: 152.419
-64000/69092	Loss: 151.160
-67200/69092	Loss: 151.677
-Training time 0:05:03.611881
-Epoch: 104 Average loss: 152.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 105)
-0/69092	Loss: 161.888
-3200/69092	Loss: 151.001
-6400/69092	Loss: 153.504
-9600/69092	Loss: 153.895
-12800/69092	Loss: 150.216
-16000/69092	Loss: 151.263
-19200/69092	Loss: 152.214
-22400/69092	Loss: 153.599
-25600/69092	Loss: 150.967
-28800/69092	Loss: 151.131
-32000/69092	Loss: 151.013
-35200/69092	Loss: 151.392
-38400/69092	Loss: 153.402
-41600/69092	Loss: 154.157
-44800/69092	Loss: 150.464
-48000/69092	Loss: 152.472
-51200/69092	Loss: 153.008
-54400/69092	Loss: 152.619
-57600/69092	Loss: 151.042
-60800/69092	Loss: 152.681
-64000/69092	Loss: 152.854
-67200/69092	Loss: 150.712
-Training time 0:05:04.874558
-Epoch: 105 Average loss: 152.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 106)
-0/69092	Loss: 163.787
-3200/69092	Loss: 153.259
-6400/69092	Loss: 153.108
-9600/69092	Loss: 153.607
-12800/69092	Loss: 152.003
-16000/69092	Loss: 155.934
-19200/69092	Loss: 150.254
-22400/69092	Loss: 152.237
-25600/69092	Loss: 154.861
-28800/69092	Loss: 149.868
-32000/69092	Loss: 151.238
-35200/69092	Loss: 150.747
-38400/69092	Loss: 153.263
-41600/69092	Loss: 153.709
-44800/69092	Loss: 151.564
-48000/69092	Loss: 152.925
-51200/69092	Loss: 150.700
-54400/69092	Loss: 151.824
-57600/69092	Loss: 151.186
-60800/69092	Loss: 151.589
-64000/69092	Loss: 151.741
-67200/69092	Loss: 153.103
-Training time 0:05:04.314858
-Epoch: 106 Average loss: 152.27
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 107)
-0/69092	Loss: 150.281
-3200/69092	Loss: 153.516
-6400/69092	Loss: 150.627
-9600/69092	Loss: 150.680
-12800/69092	Loss: 150.820
-16000/69092	Loss: 154.541
-19200/69092	Loss: 151.983
-22400/69092	Loss: 150.967
-25600/69092	Loss: 153.063
-28800/69092	Loss: 152.155
-32000/69092	Loss: 152.521
-35200/69092	Loss: 150.335
-38400/69092	Loss: 154.174
-41600/69092	Loss: 150.998
-44800/69092	Loss: 153.771
-48000/69092	Loss: 151.923
-51200/69092	Loss: 152.697
-54400/69092	Loss: 152.294
-57600/69092	Loss: 152.125
-60800/69092	Loss: 150.568
-64000/69092	Loss: 150.760
-67200/69092	Loss: 152.534
-Training time 0:05:02.166449
-Epoch: 107 Average loss: 152.03
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 108)
-0/69092	Loss: 162.576
-3200/69092	Loss: 152.626
-6400/69092	Loss: 151.675
-9600/69092	Loss: 149.449
-12800/69092	Loss: 153.519
-16000/69092	Loss: 153.674
-19200/69092	Loss: 151.671
-22400/69092	Loss: 151.299
-25600/69092	Loss: 151.974
-28800/69092	Loss: 151.358
-32000/69092	Loss: 150.880
-35200/69092	Loss: 152.578
-38400/69092	Loss: 151.399
-41600/69092	Loss: 153.304
-44800/69092	Loss: 151.126
-48000/69092	Loss: 153.111
-51200/69092	Loss: 151.278
-54400/69092	Loss: 153.105
-57600/69092	Loss: 152.167
-60800/69092	Loss: 151.647
-64000/69092	Loss: 151.658
-67200/69092	Loss: 153.319
-Training time 0:05:03.899225
-Epoch: 108 Average loss: 152.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 109)
-0/69092	Loss: 162.644
-3200/69092	Loss: 151.071
-6400/69092	Loss: 151.951
-9600/69092	Loss: 150.950
-12800/69092	Loss: 153.295
-16000/69092	Loss: 151.607
-19200/69092	Loss: 155.580
-22400/69092	Loss: 149.835
-25600/69092	Loss: 152.906
-28800/69092	Loss: 151.171
-32000/69092	Loss: 150.889
-35200/69092	Loss: 150.368
-38400/69092	Loss: 151.140
-41600/69092	Loss: 155.550
-44800/69092	Loss: 154.019
-48000/69092	Loss: 153.075
-51200/69092	Loss: 152.970
-54400/69092	Loss: 152.861
-57600/69092	Loss: 152.184
-60800/69092	Loss: 152.178
-64000/69092	Loss: 151.419
-67200/69092	Loss: 150.563
-Training time 0:05:02.399302
-Epoch: 109 Average loss: 152.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 110)
-0/69092	Loss: 154.988
-3200/69092	Loss: 153.248
-6400/69092	Loss: 151.155
-9600/69092	Loss: 152.526
-12800/69092	Loss: 151.358
-16000/69092	Loss: 150.776
-19200/69092	Loss: 151.902
-22400/69092	Loss: 152.815
-25600/69092	Loss: 150.157
-28800/69092	Loss: 152.073
-32000/69092	Loss: 152.516
-35200/69092	Loss: 151.435
-38400/69092	Loss: 150.491
-41600/69092	Loss: 153.070
-44800/69092	Loss: 153.470
-48000/69092	Loss: 152.637
-51200/69092	Loss: 154.199
-54400/69092	Loss: 151.909
-57600/69092	Loss: 152.136
-60800/69092	Loss: 152.336
-64000/69092	Loss: 152.451
-67200/69092	Loss: 153.406
-Training time 0:05:05.714831
-Epoch: 110 Average loss: 152.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 111)
-0/69092	Loss: 162.069
-3200/69092	Loss: 151.802
-6400/69092	Loss: 153.021
-9600/69092	Loss: 152.369
-12800/69092	Loss: 152.280
-16000/69092	Loss: 151.387
-19200/69092	Loss: 152.338
-22400/69092	Loss: 155.283
-25600/69092	Loss: 151.629
-28800/69092	Loss: 152.203
-32000/69092	Loss: 152.868
-35200/69092	Loss: 150.479
-38400/69092	Loss: 152.421
-41600/69092	Loss: 151.306
-44800/69092	Loss: 152.975
-48000/69092	Loss: 152.016
-51200/69092	Loss: 151.654
-54400/69092	Loss: 152.664
-57600/69092	Loss: 151.651
-60800/69092	Loss: 152.255
-64000/69092	Loss: 149.480
-67200/69092	Loss: 152.793
-Training time 0:05:02.300465
-Epoch: 111 Average loss: 152.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 112)
-0/69092	Loss: 156.487
-3200/69092	Loss: 151.962
-6400/69092	Loss: 151.294
-9600/69092	Loss: 152.823
-12800/69092	Loss: 153.223
-16000/69092	Loss: 154.456
-19200/69092	Loss: 153.151
-22400/69092	Loss: 153.360
-25600/69092	Loss: 151.618
-28800/69092	Loss: 153.194
-32000/69092	Loss: 150.388
-35200/69092	Loss: 150.987
-38400/69092	Loss: 154.060
-41600/69092	Loss: 153.648
-44800/69092	Loss: 151.719
-48000/69092	Loss: 150.867
-51200/69092	Loss: 151.067
-54400/69092	Loss: 151.764
-57600/69092	Loss: 150.370
-60800/69092	Loss: 150.257
-64000/69092	Loss: 152.464
-67200/69092	Loss: 151.794
-Training time 0:05:02.461204
-Epoch: 112 Average loss: 152.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 113)
-0/69092	Loss: 134.647
-3200/69092	Loss: 152.720
-6400/69092	Loss: 151.996
-9600/69092	Loss: 151.881
-12800/69092	Loss: 150.558
-16000/69092	Loss: 151.079
-19200/69092	Loss: 152.303
-22400/69092	Loss: 152.675
-25600/69092	Loss: 151.991
-28800/69092	Loss: 151.762
-32000/69092	Loss: 153.496
-35200/69092	Loss: 153.372
-38400/69092	Loss: 151.300
-41600/69092	Loss: 154.439
-44800/69092	Loss: 151.378
-48000/69092	Loss: 149.762
-51200/69092	Loss: 153.833
-54400/69092	Loss: 154.696
-57600/69092	Loss: 150.390
-60800/69092	Loss: 153.278
-64000/69092	Loss: 153.532
-67200/69092	Loss: 150.833
-Training time 0:05:00.977990
-Epoch: 113 Average loss: 152.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 114)
-0/69092	Loss: 147.473
-3200/69092	Loss: 151.169
-6400/69092	Loss: 152.872
-9600/69092	Loss: 151.215
-12800/69092	Loss: 152.837
-16000/69092	Loss: 152.389
-19200/69092	Loss: 153.817
-22400/69092	Loss: 150.561
-25600/69092	Loss: 150.609
-28800/69092	Loss: 151.353
-32000/69092	Loss: 155.208
-35200/69092	Loss: 149.628
-38400/69092	Loss: 152.854
-41600/69092	Loss: 149.109
-44800/69092	Loss: 151.593
-48000/69092	Loss: 148.380
-51200/69092	Loss: 155.033
-54400/69092	Loss: 154.760
-57600/69092	Loss: 153.577
-60800/69092	Loss: 150.653
-64000/69092	Loss: 151.115
-67200/69092	Loss: 152.697
-Training time 0:05:02.626567
-Epoch: 114 Average loss: 152.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 115)
-0/69092	Loss: 166.235
-3200/69092	Loss: 151.045
-6400/69092	Loss: 151.566
-9600/69092	Loss: 153.103
-12800/69092	Loss: 150.612
-16000/69092	Loss: 152.364
-19200/69092	Loss: 153.273
-22400/69092	Loss: 149.959
-25600/69092	Loss: 150.041
-28800/69092	Loss: 152.056
-32000/69092	Loss: 151.269
-35200/69092	Loss: 151.116
-38400/69092	Loss: 153.598
-41600/69092	Loss: 154.428
-44800/69092	Loss: 151.714
-48000/69092	Loss: 154.260
-51200/69092	Loss: 152.895
-54400/69092	Loss: 149.122
-57600/69092	Loss: 149.939
-60800/69092	Loss: 152.893
-64000/69092	Loss: 151.964
-67200/69092	Loss: 153.125
-Training time 0:05:02.931710
-Epoch: 115 Average loss: 151.91
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 116)
-0/69092	Loss: 153.137
-3200/69092	Loss: 154.553
-6400/69092	Loss: 150.445
-9600/69092	Loss: 150.450
-12800/69092	Loss: 152.588
-16000/69092	Loss: 151.747
-19200/69092	Loss: 151.415
-22400/69092	Loss: 151.264
-25600/69092	Loss: 151.927
-28800/69092	Loss: 151.327
-32000/69092	Loss: 152.850
-35200/69092	Loss: 152.286
-38400/69092	Loss: 151.161
-41600/69092	Loss: 152.494
-44800/69092	Loss: 152.301
-48000/69092	Loss: 155.223
-51200/69092	Loss: 154.050
-54400/69092	Loss: 152.871
-57600/69092	Loss: 151.519
-60800/69092	Loss: 152.448
-64000/69092	Loss: 147.826
-67200/69092	Loss: 150.735
-Training time 0:05:03.193442
-Epoch: 116 Average loss: 152.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 117)
-0/69092	Loss: 157.562
-3200/69092	Loss: 152.486
-6400/69092	Loss: 150.864
-9600/69092	Loss: 152.991
-12800/69092	Loss: 150.016
-16000/69092	Loss: 149.548
-19200/69092	Loss: 150.238
-22400/69092	Loss: 153.190
-25600/69092	Loss: 151.756
-28800/69092	Loss: 153.476
-32000/69092	Loss: 151.726
-35200/69092	Loss: 152.100
-38400/69092	Loss: 153.736
-41600/69092	Loss: 151.745
-44800/69092	Loss: 151.568
-48000/69092	Loss: 153.706
-51200/69092	Loss: 151.723
-54400/69092	Loss: 152.113
-57600/69092	Loss: 155.143
-60800/69092	Loss: 153.267
-64000/69092	Loss: 152.065
-67200/69092	Loss: 150.600
-Training time 0:05:04.841105
-Epoch: 117 Average loss: 152.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 118)
-0/69092	Loss: 155.602
-3200/69092	Loss: 153.534
-6400/69092	Loss: 152.894
-9600/69092	Loss: 153.559
-12800/69092	Loss: 150.108
-16000/69092	Loss: 153.907
-19200/69092	Loss: 151.515
-22400/69092	Loss: 150.308
-25600/69092	Loss: 153.708
-28800/69092	Loss: 153.366
-32000/69092	Loss: 149.893
-35200/69092	Loss: 149.675
-38400/69092	Loss: 150.179
-41600/69092	Loss: 150.500
-44800/69092	Loss: 152.019
-48000/69092	Loss: 151.848
-51200/69092	Loss: 150.390
-54400/69092	Loss: 152.176
-57600/69092	Loss: 151.036
-60800/69092	Loss: 151.798
-64000/69092	Loss: 154.119
-67200/69092	Loss: 152.002
-Training time 0:05:10.346446
-Epoch: 118 Average loss: 151.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 119)
-0/69092	Loss: 164.591
-3200/69092	Loss: 152.554
-6400/69092	Loss: 152.542
-9600/69092	Loss: 152.283
diff --git a/OAR.2068289.stderr b/OAR.2068289.stderr
deleted file mode 100644
index 62059a6fde..0000000000
--- a/OAR.2068289.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068289 KILLED ##
diff --git a/OAR.2068289.stdout b/OAR.2068289.stdout
deleted file mode 100644
index 0105d9f495..0000000000
--- a/OAR.2068289.stdout
+++ /dev/null
@@ -1,3003 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_20
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=40, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=20, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 773035
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last (iter 2)'
-0/69092	Loss: 430.567
-3200/69092	Loss: 451.552
-6400/69092	Loss: 438.499
-9600/69092	Loss: 445.077
-12800/69092	Loss: 447.616
-16000/69092	Loss: 435.337
-19200/69092	Loss: 450.837
-22400/69092	Loss: 439.799
-25600/69092	Loss: 439.213
-28800/69092	Loss: 437.965
-32000/69092	Loss: 435.058
-35200/69092	Loss: 438.174
-38400/69092	Loss: 448.690
-41600/69092	Loss: 431.653
-44800/69092	Loss: 438.952
-48000/69092	Loss: 436.764
-51200/69092	Loss: 431.678
-54400/69092	Loss: 432.029
-57600/69092	Loss: 452.793
-60800/69092	Loss: 435.165
-64000/69092	Loss: 444.115
-67200/69092	Loss: 441.251
-Training time 0:05:05.893259
-Epoch: 1 Average loss: 440.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 3)
-0/69092	Loss: 444.272
-3200/69092	Loss: 445.115
-6400/69092	Loss: 441.781
-9600/69092	Loss: 446.416
-12800/69092	Loss: 442.182
-16000/69092	Loss: 433.913
-19200/69092	Loss: 437.256
-22400/69092	Loss: 441.802
-25600/69092	Loss: 431.982
-28800/69092	Loss: 439.460
-32000/69092	Loss: 438.135
-35200/69092	Loss: 439.063
-38400/69092	Loss: 448.086
-41600/69092	Loss: 440.595
-44800/69092	Loss: 437.003
-48000/69092	Loss: 433.917
-51200/69092	Loss: 447.033
-54400/69092	Loss: 440.830
-57600/69092	Loss: 435.229
-60800/69092	Loss: 439.483
-64000/69092	Loss: 440.454
-67200/69092	Loss: 448.095
-Training time 0:05:03.050238
-Epoch: 2 Average loss: 440.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 4)
-0/69092	Loss: 462.525
-3200/69092	Loss: 433.152
-6400/69092	Loss: 434.208
-9600/69092	Loss: 441.110
-12800/69092	Loss: 444.663
-16000/69092	Loss: 446.222
-19200/69092	Loss: 432.492
-22400/69092	Loss: 441.121
-25600/69092	Loss: 441.951
-28800/69092	Loss: 437.930
-32000/69092	Loss: 433.192
-35200/69092	Loss: 446.659
-38400/69092	Loss: 444.017
-41600/69092	Loss: 449.571
-44800/69092	Loss: 439.392
-48000/69092	Loss: 438.912
-51200/69092	Loss: 449.640
-54400/69092	Loss: 437.776
-57600/69092	Loss: 426.500
-60800/69092	Loss: 443.331
-64000/69092	Loss: 443.030
-67200/69092	Loss: 441.288
-Training time 0:05:11.274975
-Epoch: 3 Average loss: 440.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 5)
-0/69092	Loss: 447.306
-3200/69092	Loss: 443.481
-6400/69092	Loss: 446.084
-9600/69092	Loss: 434.249
-12800/69092	Loss: 433.784
-16000/69092	Loss: 445.353
-19200/69092	Loss: 441.356
-22400/69092	Loss: 443.973
-25600/69092	Loss: 439.298
-28800/69092	Loss: 439.510
-32000/69092	Loss: 440.013
-35200/69092	Loss: 443.306
-38400/69092	Loss: 435.255
-41600/69092	Loss: 442.483
-44800/69092	Loss: 445.100
-48000/69092	Loss: 439.007
-51200/69092	Loss: 427.231
-54400/69092	Loss: 436.510
-57600/69092	Loss: 436.720
-60800/69092	Loss: 450.904
-64000/69092	Loss: 439.393
-67200/69092	Loss: 442.527
-Training time 0:05:06.700535
-Epoch: 4 Average loss: 440.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 6)
-0/69092	Loss: 418.644
-3200/69092	Loss: 438.218
-6400/69092	Loss: 450.252
-9600/69092	Loss: 439.158
-12800/69092	Loss: 441.716
-16000/69092	Loss: 447.580
-19200/69092	Loss: 445.912
-22400/69092	Loss: 438.749
-25600/69092	Loss: 436.598
-28800/69092	Loss: 437.339
-32000/69092	Loss: 433.433
-35200/69092	Loss: 431.786
-38400/69092	Loss: 448.120
-41600/69092	Loss: 435.548
-44800/69092	Loss: 445.933
-48000/69092	Loss: 441.889
-51200/69092	Loss: 442.513
-54400/69092	Loss: 435.773
-57600/69092	Loss: 430.723
-60800/69092	Loss: 443.641
-64000/69092	Loss: 438.866
-67200/69092	Loss: 442.804
-Training time 0:05:05.878531
-Epoch: 5 Average loss: 440.27
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 7)
-0/69092	Loss: 501.531
-3200/69092	Loss: 436.080
-6400/69092	Loss: 430.934
-9600/69092	Loss: 440.531
-12800/69092	Loss: 443.256
-16000/69092	Loss: 443.942
-19200/69092	Loss: 439.735
-22400/69092	Loss: 441.888
-25600/69092	Loss: 443.789
-28800/69092	Loss: 443.138
-32000/69092	Loss: 282.311
-35200/69092	Loss: 222.722
-38400/69092	Loss: 224.461
-41600/69092	Loss: 216.463
-44800/69092	Loss: 216.539
-48000/69092	Loss: 205.753
-51200/69092	Loss: 198.170
-54400/69092	Loss: 199.128
-57600/69092	Loss: 195.972
-60800/69092	Loss: 191.918
-64000/69092	Loss: 192.646
-67200/69092	Loss: 189.203
-Training time 0:04:56.607394
-Epoch: 6 Average loss: 306.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 8)
-0/69092	Loss: 193.317
-3200/69092	Loss: 190.651
-6400/69092	Loss: 188.764
-9600/69092	Loss: 188.883
-12800/69092	Loss: 189.042
-16000/69092	Loss: 184.939
-19200/69092	Loss: 187.289
-22400/69092	Loss: 186.018
-25600/69092	Loss: 188.386
-28800/69092	Loss: 185.676
-32000/69092	Loss: 188.149
-35200/69092	Loss: 183.489
-38400/69092	Loss: 182.190
-41600/69092	Loss: 180.228
-44800/69092	Loss: 179.100
-48000/69092	Loss: 178.929
-51200/69092	Loss: 180.279
-54400/69092	Loss: 180.885
-57600/69092	Loss: 180.871
-60800/69092	Loss: 175.996
-64000/69092	Loss: 175.814
-67200/69092	Loss: 172.733
-Training time 0:05:01.248720
-Epoch: 7 Average loss: 183.06
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 9)
-0/69092	Loss: 175.976
-3200/69092	Loss: 175.519
-6400/69092	Loss: 172.875
-9600/69092	Loss: 168.530
-12800/69092	Loss: 174.181
-16000/69092	Loss: 174.451
-19200/69092	Loss: 173.476
-22400/69092	Loss: 177.952
-25600/69092	Loss: 173.038
-28800/69092	Loss: 173.493
-32000/69092	Loss: 169.433
-35200/69092	Loss: 175.888
-38400/69092	Loss: 172.573
-41600/69092	Loss: 171.296
-44800/69092	Loss: 173.126
-48000/69092	Loss: 170.911
-51200/69092	Loss: 172.181
-54400/69092	Loss: 176.282
-57600/69092	Loss: 171.192
-60800/69092	Loss: 171.903
-64000/69092	Loss: 172.167
-67200/69092	Loss: 170.300
-Training time 0:05:02.991306
-Epoch: 8 Average loss: 172.77
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 10)
-0/69092	Loss: 177.808
-3200/69092	Loss: 167.293
-6400/69092	Loss: 171.747
-9600/69092	Loss: 172.320
-12800/69092	Loss: 169.716
-16000/69092	Loss: 168.703
-19200/69092	Loss: 171.163
-22400/69092	Loss: 165.480
-25600/69092	Loss: 171.134
-28800/69092	Loss: 169.034
-32000/69092	Loss: 170.347
-35200/69092	Loss: 171.707
-38400/69092	Loss: 168.689
-41600/69092	Loss: 168.946
-44800/69092	Loss: 166.259
-48000/69092	Loss: 169.122
-51200/69092	Loss: 167.689
-54400/69092	Loss: 172.184
-57600/69092	Loss: 170.305
-60800/69092	Loss: 168.594
-64000/69092	Loss: 167.623
-67200/69092	Loss: 169.057
-Training time 0:04:59.365652
-Epoch: 9 Average loss: 169.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 11)
-0/69092	Loss: 170.726
-3200/69092	Loss: 169.164
-6400/69092	Loss: 168.319
-9600/69092	Loss: 165.079
-12800/69092	Loss: 167.098
-16000/69092	Loss: 164.978
-19200/69092	Loss: 170.563
-22400/69092	Loss: 167.007
-25600/69092	Loss: 167.459
-28800/69092	Loss: 170.687
-32000/69092	Loss: 165.900
-35200/69092	Loss: 166.946
-38400/69092	Loss: 164.479
-41600/69092	Loss: 169.314
-44800/69092	Loss: 165.872
-48000/69092	Loss: 165.364
-51200/69092	Loss: 163.238
-54400/69092	Loss: 165.130
-57600/69092	Loss: 166.742
-60800/69092	Loss: 167.505
-64000/69092	Loss: 168.180
-67200/69092	Loss: 167.454
-Training time 0:05:00.056367
-Epoch: 10 Average loss: 166.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 12)
-0/69092	Loss: 165.274
-3200/69092	Loss: 164.180
-6400/69092	Loss: 165.239
-9600/69092	Loss: 168.142
-12800/69092	Loss: 168.498
-16000/69092	Loss: 167.716
-19200/69092	Loss: 163.388
-22400/69092	Loss: 165.186
-25600/69092	Loss: 170.132
-28800/69092	Loss: 165.804
-32000/69092	Loss: 164.222
-35200/69092	Loss: 167.129
-38400/69092	Loss: 165.750
-41600/69092	Loss: 163.277
-44800/69092	Loss: 162.054
-48000/69092	Loss: 163.924
-51200/69092	Loss: 163.566
-54400/69092	Loss: 164.816
-57600/69092	Loss: 161.576
-60800/69092	Loss: 164.528
-64000/69092	Loss: 165.856
-67200/69092	Loss: 165.561
-Training time 0:05:06.804340
-Epoch: 11 Average loss: 165.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 13)
-0/69092	Loss: 183.655
-3200/69092	Loss: 162.179
-6400/69092	Loss: 166.925
-9600/69092	Loss: 163.074
-12800/69092	Loss: 161.481
-16000/69092	Loss: 165.606
-19200/69092	Loss: 163.444
-22400/69092	Loss: 162.572
-25600/69092	Loss: 166.145
-28800/69092	Loss: 164.023
-32000/69092	Loss: 163.924
-35200/69092	Loss: 163.503
-38400/69092	Loss: 162.495
-41600/69092	Loss: 165.627
-44800/69092	Loss: 162.917
-48000/69092	Loss: 162.868
-51200/69092	Loss: 160.486
-54400/69092	Loss: 162.442
-57600/69092	Loss: 159.867
-60800/69092	Loss: 160.743
-64000/69092	Loss: 167.472
-67200/69092	Loss: 162.736
-Training time 0:04:58.903187
-Epoch: 12 Average loss: 163.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 14)
-0/69092	Loss: 146.602
-3200/69092	Loss: 164.487
-6400/69092	Loss: 160.674
-9600/69092	Loss: 166.910
-12800/69092	Loss: 162.449
-16000/69092	Loss: 159.800
-19200/69092	Loss: 162.522
-22400/69092	Loss: 161.967
-25600/69092	Loss: 160.885
-28800/69092	Loss: 160.508
-32000/69092	Loss: 162.803
-35200/69092	Loss: 162.870
-38400/69092	Loss: 162.641
-41600/69092	Loss: 164.704
-44800/69092	Loss: 161.753
-48000/69092	Loss: 161.745
-51200/69092	Loss: 163.318
-54400/69092	Loss: 159.323
-57600/69092	Loss: 163.804
-60800/69092	Loss: 164.845
-64000/69092	Loss: 163.711
-67200/69092	Loss: 162.224
-Training time 0:04:59.047005
-Epoch: 13 Average loss: 162.60
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 15)
-0/69092	Loss: 180.344
-3200/69092	Loss: 162.784
-6400/69092	Loss: 164.695
-9600/69092	Loss: 163.425
-12800/69092	Loss: 162.526
-16000/69092	Loss: 162.231
-19200/69092	Loss: 158.073
-22400/69092	Loss: 164.558
-25600/69092	Loss: 162.173
-28800/69092	Loss: 162.845
-32000/69092	Loss: 160.427
-35200/69092	Loss: 160.872
-38400/69092	Loss: 161.094
-41600/69092	Loss: 159.888
-44800/69092	Loss: 159.363
-48000/69092	Loss: 162.448
-51200/69092	Loss: 159.365
-54400/69092	Loss: 162.186
-57600/69092	Loss: 162.648
-60800/69092	Loss: 161.662
-64000/69092	Loss: 158.286
-67200/69092	Loss: 161.052
-Training time 0:05:00.164209
-Epoch: 14 Average loss: 161.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 16)
-0/69092	Loss: 199.840
-3200/69092	Loss: 163.063
-6400/69092	Loss: 160.443
-9600/69092	Loss: 160.690
-12800/69092	Loss: 160.661
-16000/69092	Loss: 161.505
-19200/69092	Loss: 162.851
-22400/69092	Loss: 163.128
-25600/69092	Loss: 164.712
-28800/69092	Loss: 160.490
-32000/69092	Loss: 161.206
-35200/69092	Loss: 164.118
-38400/69092	Loss: 162.320
-41600/69092	Loss: 161.073
-44800/69092	Loss: 162.087
-48000/69092	Loss: 156.887
-51200/69092	Loss: 161.298
-54400/69092	Loss: 162.237
-57600/69092	Loss: 159.090
-60800/69092	Loss: 157.578
-64000/69092	Loss: 160.340
-67200/69092	Loss: 160.287
-Training time 0:04:58.618335
-Epoch: 15 Average loss: 161.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 17)
-0/69092	Loss: 179.801
-3200/69092	Loss: 159.282
-6400/69092	Loss: 162.081
-9600/69092	Loss: 162.562
-12800/69092	Loss: 161.926
-16000/69092	Loss: 158.826
-19200/69092	Loss: 160.103
-22400/69092	Loss: 158.152
-25600/69092	Loss: 163.123
-28800/69092	Loss: 161.471
-32000/69092	Loss: 159.271
-35200/69092	Loss: 160.391
-38400/69092	Loss: 163.551
-41600/69092	Loss: 161.165
-44800/69092	Loss: 160.229
-48000/69092	Loss: 160.965
-51200/69092	Loss: 158.097
-54400/69092	Loss: 160.917
-57600/69092	Loss: 159.306
-60800/69092	Loss: 160.436
-64000/69092	Loss: 161.442
-67200/69092	Loss: 161.968
-Training time 0:04:57.306732
-Epoch: 16 Average loss: 160.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 18)
-0/69092	Loss: 149.385
-3200/69092	Loss: 159.807
-6400/69092	Loss: 161.194
-9600/69092	Loss: 161.355
-12800/69092	Loss: 160.187
-16000/69092	Loss: 162.113
-19200/69092	Loss: 157.555
-22400/69092	Loss: 162.597
-25600/69092	Loss: 159.544
-28800/69092	Loss: 160.797
-32000/69092	Loss: 159.622
-35200/69092	Loss: 158.874
-38400/69092	Loss: 159.822
-41600/69092	Loss: 158.641
-44800/69092	Loss: 158.873
-48000/69092	Loss: 158.707
-51200/69092	Loss: 162.068
-54400/69092	Loss: 163.116
-57600/69092	Loss: 160.427
-60800/69092	Loss: 160.234
-64000/69092	Loss: 159.714
-67200/69092	Loss: 162.192
-Training time 0:05:10.648769
-Epoch: 17 Average loss: 160.37
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 19)
-0/69092	Loss: 172.314
-3200/69092	Loss: 159.519
-6400/69092	Loss: 159.834
-9600/69092	Loss: 160.876
-12800/69092	Loss: 157.965
-16000/69092	Loss: 158.430
-19200/69092	Loss: 162.003
-22400/69092	Loss: 158.368
-25600/69092	Loss: 161.281
-28800/69092	Loss: 161.379
-32000/69092	Loss: 157.398
-35200/69092	Loss: 161.975
-38400/69092	Loss: 160.614
-41600/69092	Loss: 159.682
-44800/69092	Loss: 160.802
-48000/69092	Loss: 160.805
-51200/69092	Loss: 158.886
-54400/69092	Loss: 158.829
-57600/69092	Loss: 157.948
-60800/69092	Loss: 161.549
-64000/69092	Loss: 162.151
-67200/69092	Loss: 158.295
-Training time 0:05:12.274791
-Epoch: 18 Average loss: 159.96
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 20)
-0/69092	Loss: 131.326
-3200/69092	Loss: 159.722
-6400/69092	Loss: 161.068
-9600/69092	Loss: 162.357
-12800/69092	Loss: 158.572
-16000/69092	Loss: 156.072
-19200/69092	Loss: 159.042
-22400/69092	Loss: 160.605
-25600/69092	Loss: 160.488
-28800/69092	Loss: 157.250
-32000/69092	Loss: 157.668
-35200/69092	Loss: 159.510
-38400/69092	Loss: 160.301
-41600/69092	Loss: 157.766
-44800/69092	Loss: 163.092
-48000/69092	Loss: 160.065
-51200/69092	Loss: 159.585
-54400/69092	Loss: 160.448
-57600/69092	Loss: 160.693
-60800/69092	Loss: 155.794
-64000/69092	Loss: 159.446
-67200/69092	Loss: 160.260
-Training time 0:05:10.358980
-Epoch: 19 Average loss: 159.51
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 21)
-0/69092	Loss: 139.467
-3200/69092	Loss: 156.805
-6400/69092	Loss: 163.923
-9600/69092	Loss: 156.384
-12800/69092	Loss: 160.907
-16000/69092	Loss: 157.463
-19200/69092	Loss: 159.306
-22400/69092	Loss: 160.186
-25600/69092	Loss: 160.608
-28800/69092	Loss: 157.611
-32000/69092	Loss: 161.119
-35200/69092	Loss: 161.114
-38400/69092	Loss: 155.444
-41600/69092	Loss: 157.161
-44800/69092	Loss: 159.646
-48000/69092	Loss: 157.669
-51200/69092	Loss: 157.876
-54400/69092	Loss: 161.787
-57600/69092	Loss: 161.446
-60800/69092	Loss: 160.716
-64000/69092	Loss: 158.617
-67200/69092	Loss: 157.310
-Training time 0:05:18.605031
-Epoch: 20 Average loss: 159.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 22)
-0/69092	Loss: 162.804
-3200/69092	Loss: 157.607
-6400/69092	Loss: 158.703
-9600/69092	Loss: 159.519
-12800/69092	Loss: 156.560
-16000/69092	Loss: 157.732
-19200/69092	Loss: 157.927
-22400/69092	Loss: 157.652
-25600/69092	Loss: 160.784
-28800/69092	Loss: 158.147
-32000/69092	Loss: 160.244
-35200/69092	Loss: 158.372
-38400/69092	Loss: 160.944
-41600/69092	Loss: 158.488
-44800/69092	Loss: 159.586
-48000/69092	Loss: 158.742
-51200/69092	Loss: 162.743
-54400/69092	Loss: 161.818
-57600/69092	Loss: 160.912
-60800/69092	Loss: 157.601
-64000/69092	Loss: 156.800
-67200/69092	Loss: 158.901
-Training time 0:04:59.334097
-Epoch: 21 Average loss: 159.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 23)
-0/69092	Loss: 178.919
-3200/69092	Loss: 156.956
-6400/69092	Loss: 155.858
-9600/69092	Loss: 158.408
-12800/69092	Loss: 159.608
-16000/69092	Loss: 158.151
-19200/69092	Loss: 156.806
-22400/69092	Loss: 159.397
-25600/69092	Loss: 158.664
-28800/69092	Loss: 159.260
-32000/69092	Loss: 158.235
-35200/69092	Loss: 155.953
-38400/69092	Loss: 158.616
-41600/69092	Loss: 161.979
-44800/69092	Loss: 158.240
-48000/69092	Loss: 159.231
-51200/69092	Loss: 159.557
-54400/69092	Loss: 158.783
-57600/69092	Loss: 158.981
-60800/69092	Loss: 160.020
-64000/69092	Loss: 157.398
-67200/69092	Loss: 156.409
-Training time 0:05:06.096368
-Epoch: 22 Average loss: 158.52
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 24)
-0/69092	Loss: 198.471
-3200/69092	Loss: 159.577
-6400/69092	Loss: 157.152
-9600/69092	Loss: 159.531
-12800/69092	Loss: 156.278
-16000/69092	Loss: 157.974
-19200/69092	Loss: 159.375
-22400/69092	Loss: 159.431
-25600/69092	Loss: 155.183
-28800/69092	Loss: 159.021
-32000/69092	Loss: 156.130
-35200/69092	Loss: 158.486
-38400/69092	Loss: 159.190
-41600/69092	Loss: 161.333
-44800/69092	Loss: 156.929
-48000/69092	Loss: 157.362
-51200/69092	Loss: 159.342
-54400/69092	Loss: 159.642
-57600/69092	Loss: 158.222
-60800/69092	Loss: 157.330
-64000/69092	Loss: 159.937
-67200/69092	Loss: 157.708
-Training time 0:05:01.714042
-Epoch: 23 Average loss: 158.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 25)
-0/69092	Loss: 154.421
-3200/69092	Loss: 161.038
-6400/69092	Loss: 159.909
-9600/69092	Loss: 160.374
-12800/69092	Loss: 155.509
-16000/69092	Loss: 158.463
-19200/69092	Loss: 157.168
-22400/69092	Loss: 156.711
-25600/69092	Loss: 159.442
-28800/69092	Loss: 159.541
-32000/69092	Loss: 158.115
-35200/69092	Loss: 154.931
-38400/69092	Loss: 161.294
-41600/69092	Loss: 156.948
-44800/69092	Loss: 157.822
-48000/69092	Loss: 158.018
-51200/69092	Loss: 156.660
-54400/69092	Loss: 158.641
-57600/69092	Loss: 155.128
-60800/69092	Loss: 158.553
-64000/69092	Loss: 158.320
-67200/69092	Loss: 157.628
-Training time 0:05:02.542967
-Epoch: 24 Average loss: 158.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 26)
-0/69092	Loss: 145.903
-3200/69092	Loss: 155.523
-6400/69092	Loss: 158.970
-9600/69092	Loss: 158.780
-12800/69092	Loss: 157.718
-16000/69092	Loss: 155.180
-19200/69092	Loss: 161.513
-22400/69092	Loss: 160.515
-25600/69092	Loss: 157.197
-28800/69092	Loss: 159.840
-32000/69092	Loss: 160.121
-35200/69092	Loss: 156.714
-38400/69092	Loss: 158.600
-41600/69092	Loss: 155.920
-44800/69092	Loss: 155.065
-48000/69092	Loss: 159.233
-51200/69092	Loss: 156.716
-54400/69092	Loss: 158.423
-57600/69092	Loss: 158.802
-60800/69092	Loss: 157.774
-64000/69092	Loss: 156.853
-67200/69092	Loss: 156.542
-Training time 0:05:08.574867
-Epoch: 25 Average loss: 158.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 27)
-0/69092	Loss: 183.912
-3200/69092	Loss: 159.267
-6400/69092	Loss: 156.931
-9600/69092	Loss: 155.880
-12800/69092	Loss: 156.799
-16000/69092	Loss: 157.466
-19200/69092	Loss: 157.293
-22400/69092	Loss: 161.534
-25600/69092	Loss: 158.723
-28800/69092	Loss: 158.959
-32000/69092	Loss: 155.528
-35200/69092	Loss: 155.695
-38400/69092	Loss: 158.558
-41600/69092	Loss: 158.691
-44800/69092	Loss: 156.499
-48000/69092	Loss: 159.375
-51200/69092	Loss: 156.073
-54400/69092	Loss: 156.345
-57600/69092	Loss: 158.272
-60800/69092	Loss: 159.055
-64000/69092	Loss: 159.254
-67200/69092	Loss: 158.598
-Training time 0:05:01.677203
-Epoch: 26 Average loss: 157.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 28)
-0/69092	Loss: 158.319
-3200/69092	Loss: 155.226
-6400/69092	Loss: 159.075
-9600/69092	Loss: 158.067
-12800/69092	Loss: 158.444
-16000/69092	Loss: 157.934
-19200/69092	Loss: 158.273
-22400/69092	Loss: 158.384
-25600/69092	Loss: 156.721
-28800/69092	Loss: 157.274
-32000/69092	Loss: 160.808
-35200/69092	Loss: 158.591
-38400/69092	Loss: 159.001
-41600/69092	Loss: 158.926
-44800/69092	Loss: 155.346
-48000/69092	Loss: 157.825
-51200/69092	Loss: 154.177
-54400/69092	Loss: 157.157
-57600/69092	Loss: 155.185
-60800/69092	Loss: 157.648
-64000/69092	Loss: 156.520
-67200/69092	Loss: 157.222
-Training time 0:05:04.085619
-Epoch: 27 Average loss: 157.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 29)
-0/69092	Loss: 168.794
-3200/69092	Loss: 157.004
-6400/69092	Loss: 157.799
-9600/69092	Loss: 157.924
-12800/69092	Loss: 157.496
-16000/69092	Loss: 154.202
-19200/69092	Loss: 156.467
-22400/69092	Loss: 154.233
-25600/69092	Loss: 157.350
-28800/69092	Loss: 156.450
-32000/69092	Loss: 155.983
-35200/69092	Loss: 158.488
-38400/69092	Loss: 158.456
-41600/69092	Loss: 158.286
-44800/69092	Loss: 155.845
-48000/69092	Loss: 155.172
-51200/69092	Loss: 161.770
-54400/69092	Loss: 157.202
-57600/69092	Loss: 159.669
-60800/69092	Loss: 156.999
-64000/69092	Loss: 154.768
-67200/69092	Loss: 157.480
-Training time 0:05:02.893539
-Epoch: 28 Average loss: 157.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 30)
-0/69092	Loss: 173.289
-3200/69092	Loss: 157.316
-6400/69092	Loss: 158.827
-9600/69092	Loss: 155.158
-12800/69092	Loss: 157.116
-16000/69092	Loss: 158.760
-19200/69092	Loss: 157.836
-22400/69092	Loss: 156.273
-25600/69092	Loss: 158.301
-28800/69092	Loss: 156.450
-32000/69092	Loss: 158.055
-35200/69092	Loss: 157.311
-38400/69092	Loss: 156.183
-41600/69092	Loss: 157.349
-44800/69092	Loss: 152.971
-48000/69092	Loss: 159.318
-51200/69092	Loss: 157.521
-54400/69092	Loss: 154.562
-57600/69092	Loss: 156.533
-60800/69092	Loss: 158.231
-64000/69092	Loss: 156.484
-67200/69092	Loss: 157.459
-Training time 0:05:03.158730
-Epoch: 29 Average loss: 157.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 31)
-0/69092	Loss: 152.272
-3200/69092	Loss: 154.144
-6400/69092	Loss: 158.409
-9600/69092	Loss: 156.469
-12800/69092	Loss: 156.355
-16000/69092	Loss: 156.064
-19200/69092	Loss: 158.342
-22400/69092	Loss: 156.801
-25600/69092	Loss: 156.990
-28800/69092	Loss: 157.833
-32000/69092	Loss: 157.819
-35200/69092	Loss: 153.839
-38400/69092	Loss: 154.517
-41600/69092	Loss: 158.042
-44800/69092	Loss: 156.666
-48000/69092	Loss: 158.158
-51200/69092	Loss: 159.296
-54400/69092	Loss: 158.656
-57600/69092	Loss: 160.197
-60800/69092	Loss: 155.470
-64000/69092	Loss: 155.759
-67200/69092	Loss: 156.717
-Training time 0:05:02.535085
-Epoch: 30 Average loss: 157.06
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 32)
-0/69092	Loss: 159.900
-3200/69092	Loss: 155.428
-6400/69092	Loss: 156.153
-9600/69092	Loss: 158.252
-12800/69092	Loss: 154.153
-16000/69092	Loss: 155.715
-19200/69092	Loss: 156.701
-22400/69092	Loss: 157.210
-25600/69092	Loss: 155.482
-28800/69092	Loss: 155.486
-32000/69092	Loss: 159.990
-35200/69092	Loss: 159.849
-38400/69092	Loss: 159.775
-41600/69092	Loss: 157.037
-44800/69092	Loss: 153.946
-48000/69092	Loss: 156.716
-51200/69092	Loss: 158.174
-54400/69092	Loss: 159.367
-57600/69092	Loss: 156.563
-60800/69092	Loss: 158.856
-64000/69092	Loss: 158.591
-67200/69092	Loss: 155.222
-Training time 0:05:03.584235
-Epoch: 31 Average loss: 157.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 33)
-0/69092	Loss: 138.630
-3200/69092	Loss: 157.491
-6400/69092	Loss: 158.921
-9600/69092	Loss: 158.418
-12800/69092	Loss: 155.203
-16000/69092	Loss: 154.800
-19200/69092	Loss: 156.910
-22400/69092	Loss: 157.309
-25600/69092	Loss: 156.536
-28800/69092	Loss: 156.003
-32000/69092	Loss: 156.527
-35200/69092	Loss: 156.284
-38400/69092	Loss: 158.071
-41600/69092	Loss: 154.295
-44800/69092	Loss: 156.268
-48000/69092	Loss: 155.979
-51200/69092	Loss: 158.383
-54400/69092	Loss: 157.090
-57600/69092	Loss: 158.942
-60800/69092	Loss: 155.958
-64000/69092	Loss: 155.065
-67200/69092	Loss: 158.969
-Training time 0:05:00.048382
-Epoch: 32 Average loss: 156.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 34)
-0/69092	Loss: 154.280
-3200/69092	Loss: 156.005
-6400/69092	Loss: 157.047
-9600/69092	Loss: 155.668
-12800/69092	Loss: 156.591
-16000/69092	Loss: 157.436
-19200/69092	Loss: 157.341
-22400/69092	Loss: 157.175
-25600/69092	Loss: 158.463
-28800/69092	Loss: 157.588
-32000/69092	Loss: 158.312
-35200/69092	Loss: 157.513
-38400/69092	Loss: 159.358
-41600/69092	Loss: 155.965
-44800/69092	Loss: 156.304
-48000/69092	Loss: 154.301
-51200/69092	Loss: 155.460
-54400/69092	Loss: 157.155
-57600/69092	Loss: 155.685
-60800/69092	Loss: 153.439
-64000/69092	Loss: 156.254
-67200/69092	Loss: 156.532
-Training time 0:05:06.067095
-Epoch: 33 Average loss: 156.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 35)
-0/69092	Loss: 141.958
-3200/69092	Loss: 154.117
-6400/69092	Loss: 157.673
-9600/69092	Loss: 154.604
-12800/69092	Loss: 158.539
-16000/69092	Loss: 159.025
-19200/69092	Loss: 159.947
-22400/69092	Loss: 157.176
-25600/69092	Loss: 154.619
-28800/69092	Loss: 159.329
-32000/69092	Loss: 157.699
-35200/69092	Loss: 156.895
-38400/69092	Loss: 157.851
-41600/69092	Loss: 154.119
-44800/69092	Loss: 157.337
-48000/69092	Loss: 156.373
-51200/69092	Loss: 155.055
-54400/69092	Loss: 154.255
-57600/69092	Loss: 158.908
-60800/69092	Loss: 155.901
-64000/69092	Loss: 156.265
-67200/69092	Loss: 156.322
-Training time 0:05:02.584854
-Epoch: 34 Average loss: 156.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 36)
-0/69092	Loss: 141.024
-3200/69092	Loss: 157.381
-6400/69092	Loss: 154.569
-9600/69092	Loss: 156.749
-12800/69092	Loss: 156.400
-16000/69092	Loss: 156.175
-19200/69092	Loss: 154.078
-22400/69092	Loss: 158.045
-25600/69092	Loss: 158.648
-28800/69092	Loss: 156.584
-32000/69092	Loss: 157.413
-35200/69092	Loss: 155.964
-38400/69092	Loss: 158.223
-41600/69092	Loss: 156.824
-44800/69092	Loss: 154.100
-48000/69092	Loss: 157.217
-51200/69092	Loss: 157.154
-54400/69092	Loss: 155.985
-57600/69092	Loss: 154.258
-60800/69092	Loss: 158.663
-64000/69092	Loss: 153.862
-67200/69092	Loss: 156.158
-Training time 0:04:58.572646
-Epoch: 35 Average loss: 156.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 37)
-0/69092	Loss: 149.548
-3200/69092	Loss: 158.175
-6400/69092	Loss: 157.057
-9600/69092	Loss: 154.916
-12800/69092	Loss: 152.153
-16000/69092	Loss: 155.552
-19200/69092	Loss: 159.669
-22400/69092	Loss: 156.470
-25600/69092	Loss: 155.376
-28800/69092	Loss: 153.088
-32000/69092	Loss: 154.291
-35200/69092	Loss: 154.271
-38400/69092	Loss: 158.879
-41600/69092	Loss: 157.144
-44800/69092	Loss: 156.685
-48000/69092	Loss: 156.017
-51200/69092	Loss: 155.343
-54400/69092	Loss: 155.829
-57600/69092	Loss: 156.472
-60800/69092	Loss: 160.351
-64000/69092	Loss: 156.204
-67200/69092	Loss: 156.556
-Training time 0:04:58.032654
-Epoch: 36 Average loss: 156.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 38)
-0/69092	Loss: 166.897
-3200/69092	Loss: 157.064
-6400/69092	Loss: 156.608
-9600/69092	Loss: 155.527
-12800/69092	Loss: 155.202
-16000/69092	Loss: 157.688
-19200/69092	Loss: 155.319
-22400/69092	Loss: 155.936
-25600/69092	Loss: 153.880
-28800/69092	Loss: 155.470
-32000/69092	Loss: 156.070
-35200/69092	Loss: 155.959
-38400/69092	Loss: 157.210
-41600/69092	Loss: 152.925
-44800/69092	Loss: 156.254
-48000/69092	Loss: 156.256
-51200/69092	Loss: 156.374
-54400/69092	Loss: 156.948
-57600/69092	Loss: 155.010
-60800/69092	Loss: 157.953
-64000/69092	Loss: 155.792
-67200/69092	Loss: 157.263
-Training time 0:05:12.924819
-Epoch: 37 Average loss: 156.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 39)
-0/69092	Loss: 148.838
-3200/69092	Loss: 157.990
-6400/69092	Loss: 155.146
-9600/69092	Loss: 156.503
-12800/69092	Loss: 156.882
-16000/69092	Loss: 156.628
-19200/69092	Loss: 157.286
-22400/69092	Loss: 155.862
-25600/69092	Loss: 154.377
-28800/69092	Loss: 156.522
-32000/69092	Loss: 153.395
-35200/69092	Loss: 155.686
-38400/69092	Loss: 156.584
-41600/69092	Loss: 155.208
-44800/69092	Loss: 155.178
-48000/69092	Loss: 154.740
-51200/69092	Loss: 159.219
-54400/69092	Loss: 156.950
-57600/69092	Loss: 157.241
-60800/69092	Loss: 156.995
-64000/69092	Loss: 157.894
-67200/69092	Loss: 155.692
-Training time 0:04:54.323092
-Epoch: 38 Average loss: 156.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 40)
-0/69092	Loss: 147.868
-3200/69092	Loss: 157.768
-6400/69092	Loss: 155.189
-9600/69092	Loss: 158.650
-12800/69092	Loss: 157.251
-16000/69092	Loss: 156.936
-19200/69092	Loss: 155.778
-22400/69092	Loss: 154.944
-25600/69092	Loss: 153.205
-28800/69092	Loss: 157.779
-32000/69092	Loss: 154.850
-35200/69092	Loss: 158.655
-38400/69092	Loss: 154.072
-41600/69092	Loss: 154.439
-44800/69092	Loss: 157.815
-48000/69092	Loss: 154.913
-51200/69092	Loss: 154.039
-54400/69092	Loss: 156.694
-57600/69092	Loss: 156.639
-60800/69092	Loss: 156.112
-64000/69092	Loss: 152.171
-67200/69092	Loss: 156.980
-Training time 0:04:53.604248
-Epoch: 39 Average loss: 156.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 41)
-0/69092	Loss: 147.705
-3200/69092	Loss: 155.556
-6400/69092	Loss: 155.200
-9600/69092	Loss: 157.521
-12800/69092	Loss: 153.459
-16000/69092	Loss: 156.978
-19200/69092	Loss: 153.923
-22400/69092	Loss: 157.482
-25600/69092	Loss: 154.741
-28800/69092	Loss: 155.055
-32000/69092	Loss: 158.463
-35200/69092	Loss: 154.147
-38400/69092	Loss: 155.114
-41600/69092	Loss: 155.337
-44800/69092	Loss: 156.893
-48000/69092	Loss: 158.580
-51200/69092	Loss: 156.684
-54400/69092	Loss: 154.755
-57600/69092	Loss: 156.090
-60800/69092	Loss: 155.736
-64000/69092	Loss: 154.606
-67200/69092	Loss: 158.278
-Training time 0:05:13.506864
-Epoch: 40 Average loss: 155.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 42)
-0/69092	Loss: 160.277
-3200/69092	Loss: 156.898
-6400/69092	Loss: 154.616
-9600/69092	Loss: 156.852
-12800/69092	Loss: 151.225
-16000/69092	Loss: 157.091
-19200/69092	Loss: 159.233
-22400/69092	Loss: 155.176
-25600/69092	Loss: 157.237
-28800/69092	Loss: 156.804
-32000/69092	Loss: 156.285
-35200/69092	Loss: 154.726
-38400/69092	Loss: 155.144
-41600/69092	Loss: 156.868
-44800/69092	Loss: 156.826
-48000/69092	Loss: 156.344
-51200/69092	Loss: 156.396
-54400/69092	Loss: 154.604
-57600/69092	Loss: 155.950
-60800/69092	Loss: 154.924
-64000/69092	Loss: 154.222
-67200/69092	Loss: 157.096
-Training time 0:05:07.493872
-Epoch: 41 Average loss: 156.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 43)
-0/69092	Loss: 176.641
-3200/69092	Loss: 156.157
-6400/69092	Loss: 157.115
-9600/69092	Loss: 150.653
-12800/69092	Loss: 154.181
-16000/69092	Loss: 158.271
-19200/69092	Loss: 155.148
-22400/69092	Loss: 156.107
-25600/69092	Loss: 157.770
-28800/69092	Loss: 155.937
-32000/69092	Loss: 154.601
-35200/69092	Loss: 155.916
-38400/69092	Loss: 154.866
-41600/69092	Loss: 153.659
-44800/69092	Loss: 156.341
-48000/69092	Loss: 157.204
-51200/69092	Loss: 156.436
-54400/69092	Loss: 155.775
-57600/69092	Loss: 154.015
-60800/69092	Loss: 154.759
-64000/69092	Loss: 157.842
-67200/69092	Loss: 157.727
-Training time 0:05:09.750887
-Epoch: 42 Average loss: 155.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 44)
-0/69092	Loss: 146.066
-3200/69092	Loss: 156.428
-6400/69092	Loss: 154.703
-9600/69092	Loss: 153.493
-12800/69092	Loss: 154.055
-16000/69092	Loss: 154.985
-19200/69092	Loss: 158.085
-22400/69092	Loss: 155.330
-25600/69092	Loss: 154.810
-28800/69092	Loss: 155.093
-32000/69092	Loss: 158.393
-35200/69092	Loss: 157.086
-38400/69092	Loss: 155.725
-41600/69092	Loss: 154.598
-44800/69092	Loss: 154.570
-48000/69092	Loss: 157.881
-51200/69092	Loss: 157.361
-54400/69092	Loss: 154.023
-57600/69092	Loss: 152.908
-60800/69092	Loss: 156.139
-64000/69092	Loss: 155.932
-67200/69092	Loss: 154.440
-Training time 0:04:59.423167
-Epoch: 43 Average loss: 155.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 45)
-0/69092	Loss: 200.474
-3200/69092	Loss: 153.884
-6400/69092	Loss: 156.203
-9600/69092	Loss: 155.631
-12800/69092	Loss: 157.309
-16000/69092	Loss: 153.582
-19200/69092	Loss: 158.401
-22400/69092	Loss: 154.351
-25600/69092	Loss: 157.492
-28800/69092	Loss: 154.397
-32000/69092	Loss: 157.346
-35200/69092	Loss: 154.203
-38400/69092	Loss: 153.720
-41600/69092	Loss: 156.197
-44800/69092	Loss: 153.916
-48000/69092	Loss: 155.614
-51200/69092	Loss: 157.565
-54400/69092	Loss: 153.797
-57600/69092	Loss: 155.992
-60800/69092	Loss: 157.435
-64000/69092	Loss: 152.022
-67200/69092	Loss: 158.247
-Training time 0:05:03.481951
-Epoch: 44 Average loss: 155.67
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 46)
-0/69092	Loss: 150.111
-3200/69092	Loss: 157.995
-6400/69092	Loss: 156.446
-9600/69092	Loss: 154.183
-12800/69092	Loss: 154.716
-16000/69092	Loss: 153.516
-19200/69092	Loss: 152.982
-22400/69092	Loss: 153.300
-25600/69092	Loss: 156.466
-28800/69092	Loss: 157.172
-32000/69092	Loss: 157.166
-35200/69092	Loss: 156.265
-38400/69092	Loss: 154.529
-41600/69092	Loss: 156.155
-44800/69092	Loss: 156.316
-48000/69092	Loss: 154.215
-51200/69092	Loss: 155.968
-54400/69092	Loss: 156.190
-57600/69092	Loss: 156.931
-60800/69092	Loss: 154.928
-64000/69092	Loss: 154.245
-67200/69092	Loss: 155.043
-Training time 0:05:06.014997
-Epoch: 45 Average loss: 155.40
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 47)
-0/69092	Loss: 164.460
-3200/69092	Loss: 155.164
-6400/69092	Loss: 153.712
-9600/69092	Loss: 158.241
-12800/69092	Loss: 154.462
-16000/69092	Loss: 153.172
-19200/69092	Loss: 155.025
-22400/69092	Loss: 156.956
-25600/69092	Loss: 157.186
-28800/69092	Loss: 154.228
-32000/69092	Loss: 155.207
-35200/69092	Loss: 155.690
-38400/69092	Loss: 153.174
-41600/69092	Loss: 154.424
-44800/69092	Loss: 156.082
-48000/69092	Loss: 155.082
-51200/69092	Loss: 155.209
-54400/69092	Loss: 156.691
-57600/69092	Loss: 154.057
-60800/69092	Loss: 157.915
-64000/69092	Loss: 155.094
-67200/69092	Loss: 156.608
-Training time 0:05:06.110059
-Epoch: 46 Average loss: 155.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 48)
-0/69092	Loss: 157.285
-3200/69092	Loss: 155.880
-6400/69092	Loss: 157.244
-9600/69092	Loss: 154.071
-12800/69092	Loss: 156.788
-16000/69092	Loss: 154.833
-19200/69092	Loss: 155.581
-22400/69092	Loss: 155.328
-25600/69092	Loss: 155.566
-28800/69092	Loss: 155.714
-32000/69092	Loss: 154.491
-35200/69092	Loss: 154.973
-38400/69092	Loss: 154.087
-41600/69092	Loss: 154.297
-44800/69092	Loss: 156.104
-48000/69092	Loss: 154.182
-51200/69092	Loss: 156.398
-54400/69092	Loss: 155.229
-57600/69092	Loss: 152.827
-60800/69092	Loss: 157.835
-64000/69092	Loss: 156.431
-67200/69092	Loss: 157.561
-Training time 0:05:04.778110
-Epoch: 47 Average loss: 155.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 49)
-0/69092	Loss: 155.640
-3200/69092	Loss: 157.163
-6400/69092	Loss: 155.718
-9600/69092	Loss: 153.309
-12800/69092	Loss: 157.666
-16000/69092	Loss: 154.540
-19200/69092	Loss: 155.487
-22400/69092	Loss: 154.137
-25600/69092	Loss: 155.672
-28800/69092	Loss: 153.656
-32000/69092	Loss: 155.147
-35200/69092	Loss: 154.278
-38400/69092	Loss: 154.301
-41600/69092	Loss: 153.384
-44800/69092	Loss: 158.994
-48000/69092	Loss: 155.656
-51200/69092	Loss: 155.256
-54400/69092	Loss: 156.492
-57600/69092	Loss: 151.754
-60800/69092	Loss: 154.231
-64000/69092	Loss: 156.473
-67200/69092	Loss: 156.620
-Training time 0:05:05.030386
-Epoch: 48 Average loss: 155.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 50)
-0/69092	Loss: 152.081
-3200/69092	Loss: 154.616
-6400/69092	Loss: 153.586
-9600/69092	Loss: 151.007
-12800/69092	Loss: 153.013
-16000/69092	Loss: 153.165
-19200/69092	Loss: 157.482
-22400/69092	Loss: 155.414
-25600/69092	Loss: 153.239
-28800/69092	Loss: 151.686
-32000/69092	Loss: 156.170
-35200/69092	Loss: 158.453
-38400/69092	Loss: 153.003
-41600/69092	Loss: 156.861
-44800/69092	Loss: 153.598
-48000/69092	Loss: 154.978
-51200/69092	Loss: 157.901
-54400/69092	Loss: 157.818
-57600/69092	Loss: 153.674
-60800/69092	Loss: 154.840
-64000/69092	Loss: 156.388
-67200/69092	Loss: 157.618
-Training time 0:05:05.663659
-Epoch: 49 Average loss: 154.95
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 51)
-0/69092	Loss: 138.055
-3200/69092	Loss: 157.310
-6400/69092	Loss: 155.433
-9600/69092	Loss: 156.493
-12800/69092	Loss: 154.718
-16000/69092	Loss: 155.934
-19200/69092	Loss: 153.202
-22400/69092	Loss: 153.749
-25600/69092	Loss: 155.077
-28800/69092	Loss: 155.993
-32000/69092	Loss: 152.357
-35200/69092	Loss: 152.738
-38400/69092	Loss: 157.730
-41600/69092	Loss: 155.163
-44800/69092	Loss: 155.048
-48000/69092	Loss: 154.018
-51200/69092	Loss: 153.513
-54400/69092	Loss: 154.700
-57600/69092	Loss: 154.419
-60800/69092	Loss: 156.469
-64000/69092	Loss: 156.642
-67200/69092	Loss: 157.263
-Training time 0:05:02.768568
-Epoch: 50 Average loss: 155.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 52)
-0/69092	Loss: 161.086
-3200/69092	Loss: 154.211
-6400/69092	Loss: 154.670
-9600/69092	Loss: 155.008
-12800/69092	Loss: 155.333
-16000/69092	Loss: 155.166
-19200/69092	Loss: 155.091
-22400/69092	Loss: 154.827
-25600/69092	Loss: 153.501
-28800/69092	Loss: 155.039
-32000/69092	Loss: 154.895
-35200/69092	Loss: 155.657
-38400/69092	Loss: 157.103
-41600/69092	Loss: 155.500
-44800/69092	Loss: 151.399
-48000/69092	Loss: 157.694
-51200/69092	Loss: 156.642
-54400/69092	Loss: 154.087
-57600/69092	Loss: 153.673
-60800/69092	Loss: 154.877
-64000/69092	Loss: 154.903
-67200/69092	Loss: 156.111
-Training time 0:05:05.459720
-Epoch: 51 Average loss: 155.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 53)
-0/69092	Loss: 141.273
-3200/69092	Loss: 154.704
-6400/69092	Loss: 160.726
-9600/69092	Loss: 158.246
-12800/69092	Loss: 154.867
-16000/69092	Loss: 154.588
-19200/69092	Loss: 155.334
-22400/69092	Loss: 154.317
-25600/69092	Loss: 156.342
-28800/69092	Loss: 151.124
-32000/69092	Loss: 153.697
-35200/69092	Loss: 155.627
-38400/69092	Loss: 156.727
-41600/69092	Loss: 155.011
-44800/69092	Loss: 152.628
-48000/69092	Loss: 156.980
-51200/69092	Loss: 152.179
-54400/69092	Loss: 156.922
-57600/69092	Loss: 154.467
-60800/69092	Loss: 154.816
-64000/69092	Loss: 155.005
-67200/69092	Loss: 153.558
-Training time 0:05:11.431072
-Epoch: 52 Average loss: 155.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 54)
-0/69092	Loss: 164.586
-3200/69092	Loss: 156.119
-6400/69092	Loss: 153.139
-9600/69092	Loss: 152.056
-12800/69092	Loss: 153.613
-16000/69092	Loss: 153.200
-19200/69092	Loss: 155.015
-22400/69092	Loss: 154.981
-25600/69092	Loss: 154.164
-28800/69092	Loss: 154.798
-32000/69092	Loss: 153.374
-35200/69092	Loss: 154.654
-38400/69092	Loss: 153.589
-41600/69092	Loss: 152.973
-44800/69092	Loss: 155.552
-48000/69092	Loss: 154.761
-51200/69092	Loss: 156.590
-54400/69092	Loss: 153.793
-57600/69092	Loss: 156.273
-60800/69092	Loss: 155.909
-64000/69092	Loss: 154.876
-67200/69092	Loss: 157.661
-Training time 0:05:05.996288
-Epoch: 53 Average loss: 154.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 55)
-0/69092	Loss: 146.012
-3200/69092	Loss: 152.299
-6400/69092	Loss: 152.976
-9600/69092	Loss: 152.541
-12800/69092	Loss: 155.811
-16000/69092	Loss: 154.429
-19200/69092	Loss: 156.677
-22400/69092	Loss: 151.371
-25600/69092	Loss: 157.504
-28800/69092	Loss: 159.227
-32000/69092	Loss: 155.371
-35200/69092	Loss: 153.324
-38400/69092	Loss: 155.056
-41600/69092	Loss: 154.234
-44800/69092	Loss: 154.490
-48000/69092	Loss: 153.918
-51200/69092	Loss: 152.108
-54400/69092	Loss: 154.187
-57600/69092	Loss: 155.906
-60800/69092	Loss: 153.891
-64000/69092	Loss: 155.826
-67200/69092	Loss: 155.579
-Training time 0:05:04.230799
-Epoch: 54 Average loss: 154.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 56)
-0/69092	Loss: 153.508
-3200/69092	Loss: 155.734
-6400/69092	Loss: 154.875
-9600/69092	Loss: 155.674
-12800/69092	Loss: 154.985
-16000/69092	Loss: 154.900
-19200/69092	Loss: 155.885
-22400/69092	Loss: 152.871
-25600/69092	Loss: 153.240
-28800/69092	Loss: 155.101
-32000/69092	Loss: 155.479
-35200/69092	Loss: 154.778
-38400/69092	Loss: 154.601
-41600/69092	Loss: 152.157
-44800/69092	Loss: 152.879
-48000/69092	Loss: 155.989
-51200/69092	Loss: 155.628
-54400/69092	Loss: 157.303
-57600/69092	Loss: 152.704
-60800/69092	Loss: 152.557
-64000/69092	Loss: 153.799
-67200/69092	Loss: 153.185
-Training time 0:05:03.901663
-Epoch: 55 Average loss: 154.57
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 57)
-0/69092	Loss: 154.122
-3200/69092	Loss: 152.552
-6400/69092	Loss: 152.658
-9600/69092	Loss: 153.987
-12800/69092	Loss: 156.042
-16000/69092	Loss: 155.590
-19200/69092	Loss: 153.177
-22400/69092	Loss: 154.028
-25600/69092	Loss: 155.959
-28800/69092	Loss: 154.585
-32000/69092	Loss: 154.518
-35200/69092	Loss: 152.070
-38400/69092	Loss: 158.937
-41600/69092	Loss: 154.355
-44800/69092	Loss: 154.037
-48000/69092	Loss: 152.917
-51200/69092	Loss: 156.300
-54400/69092	Loss: 154.668
-57600/69092	Loss: 155.386
-60800/69092	Loss: 156.333
-64000/69092	Loss: 153.739
-67200/69092	Loss: 152.806
-Training time 0:05:04.243139
-Epoch: 56 Average loss: 154.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 58)
-0/69092	Loss: 144.614
-3200/69092	Loss: 153.546
-6400/69092	Loss: 153.930
-9600/69092	Loss: 153.363
-12800/69092	Loss: 155.139
-16000/69092	Loss: 155.062
-19200/69092	Loss: 154.600
-22400/69092	Loss: 153.238
-25600/69092	Loss: 156.407
-28800/69092	Loss: 155.126
-32000/69092	Loss: 152.581
-35200/69092	Loss: 154.254
-38400/69092	Loss: 153.591
-41600/69092	Loss: 154.453
-44800/69092	Loss: 153.838
-48000/69092	Loss: 155.885
-51200/69092	Loss: 157.253
-54400/69092	Loss: 155.813
-57600/69092	Loss: 154.260
-60800/69092	Loss: 153.679
-64000/69092	Loss: 153.516
-67200/69092	Loss: 151.820
-Training time 0:04:59.879109
-Epoch: 57 Average loss: 154.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 59)
-0/69092	Loss: 156.545
-3200/69092	Loss: 152.711
-6400/69092	Loss: 155.152
-9600/69092	Loss: 153.643
-12800/69092	Loss: 153.460
-16000/69092	Loss: 155.417
-19200/69092	Loss: 155.859
-22400/69092	Loss: 156.568
-25600/69092	Loss: 156.311
-28800/69092	Loss: 154.010
-32000/69092	Loss: 154.787
-35200/69092	Loss: 155.393
-38400/69092	Loss: 154.792
-41600/69092	Loss: 154.848
-44800/69092	Loss: 151.788
-48000/69092	Loss: 153.340
-51200/69092	Loss: 154.351
-54400/69092	Loss: 151.239
-57600/69092	Loss: 154.593
-60800/69092	Loss: 153.693
-64000/69092	Loss: 154.874
-67200/69092	Loss: 153.618
-Training time 0:05:07.218632
-Epoch: 58 Average loss: 154.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 60)
-0/69092	Loss: 156.600
-3200/69092	Loss: 156.684
-6400/69092	Loss: 151.265
-9600/69092	Loss: 151.986
-12800/69092	Loss: 153.862
-16000/69092	Loss: 154.563
-19200/69092	Loss: 156.867
-22400/69092	Loss: 153.331
-25600/69092	Loss: 156.700
-28800/69092	Loss: 157.730
-32000/69092	Loss: 153.682
-35200/69092	Loss: 152.577
-38400/69092	Loss: 154.478
-41600/69092	Loss: 153.996
-44800/69092	Loss: 151.927
-48000/69092	Loss: 152.702
-51200/69092	Loss: 154.391
-54400/69092	Loss: 153.501
-57600/69092	Loss: 154.020
-60800/69092	Loss: 153.457
-64000/69092	Loss: 154.137
-67200/69092	Loss: 156.023
-Training time 0:05:04.719617
-Epoch: 59 Average loss: 154.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 61)
-0/69092	Loss: 170.459
-3200/69092	Loss: 152.318
-6400/69092	Loss: 154.422
-9600/69092	Loss: 152.764
-12800/69092	Loss: 154.167
-16000/69092	Loss: 152.276
-19200/69092	Loss: 157.502
-22400/69092	Loss: 152.620
-25600/69092	Loss: 152.902
-28800/69092	Loss: 155.460
-32000/69092	Loss: 155.917
-35200/69092	Loss: 152.836
-38400/69092	Loss: 154.717
-41600/69092	Loss: 153.879
-44800/69092	Loss: 152.771
-48000/69092	Loss: 154.452
-51200/69092	Loss: 154.147
-54400/69092	Loss: 156.133
-57600/69092	Loss: 156.922
-60800/69092	Loss: 153.447
-64000/69092	Loss: 153.968
-67200/69092	Loss: 153.248
-Training time 0:05:06.522886
-Epoch: 60 Average loss: 154.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 62)
-0/69092	Loss: 147.740
-3200/69092	Loss: 152.669
-6400/69092	Loss: 155.595
-9600/69092	Loss: 151.748
-12800/69092	Loss: 156.285
-16000/69092	Loss: 154.100
-19200/69092	Loss: 158.269
-22400/69092	Loss: 154.795
-25600/69092	Loss: 154.597
-28800/69092	Loss: 154.787
-32000/69092	Loss: 154.627
-35200/69092	Loss: 155.593
-38400/69092	Loss: 155.354
-41600/69092	Loss: 152.669
-44800/69092	Loss: 153.115
-48000/69092	Loss: 155.852
-51200/69092	Loss: 156.078
-54400/69092	Loss: 151.349
-57600/69092	Loss: 151.340
-60800/69092	Loss: 151.443
-64000/69092	Loss: 150.492
-67200/69092	Loss: 152.684
-Training time 0:05:05.323525
-Epoch: 61 Average loss: 154.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 63)
-0/69092	Loss: 139.416
-3200/69092	Loss: 153.701
-6400/69092	Loss: 155.274
-9600/69092	Loss: 154.927
-12800/69092	Loss: 152.724
-16000/69092	Loss: 155.177
-19200/69092	Loss: 155.993
-22400/69092	Loss: 153.200
-25600/69092	Loss: 153.818
-28800/69092	Loss: 153.500
-32000/69092	Loss: 153.379
-35200/69092	Loss: 154.827
-38400/69092	Loss: 152.315
-41600/69092	Loss: 154.844
-44800/69092	Loss: 153.337
-48000/69092	Loss: 154.495
-51200/69092	Loss: 156.173
-54400/69092	Loss: 152.639
-57600/69092	Loss: 151.143
-60800/69092	Loss: 156.477
-64000/69092	Loss: 151.459
-67200/69092	Loss: 156.094
-Training time 0:05:08.764411
-Epoch: 62 Average loss: 154.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 64)
-0/69092	Loss: 150.931
-3200/69092	Loss: 153.194
-6400/69092	Loss: 153.936
-9600/69092	Loss: 155.239
-12800/69092	Loss: 153.442
-16000/69092	Loss: 155.337
-19200/69092	Loss: 155.263
-22400/69092	Loss: 154.418
-25600/69092	Loss: 153.767
-28800/69092	Loss: 152.669
-32000/69092	Loss: 153.968
-35200/69092	Loss: 155.063
-38400/69092	Loss: 154.774
-41600/69092	Loss: 155.956
-44800/69092	Loss: 149.058
-48000/69092	Loss: 153.635
-51200/69092	Loss: 153.272
-54400/69092	Loss: 154.152
-57600/69092	Loss: 155.237
-60800/69092	Loss: 153.538
-64000/69092	Loss: 152.544
-67200/69092	Loss: 155.601
-Training time 0:04:58.135277
-Epoch: 63 Average loss: 153.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 65)
-0/69092	Loss: 149.957
-3200/69092	Loss: 154.703
-6400/69092	Loss: 154.330
-9600/69092	Loss: 153.689
-12800/69092	Loss: 152.845
-16000/69092	Loss: 153.162
-19200/69092	Loss: 153.399
-22400/69092	Loss: 157.306
-25600/69092	Loss: 152.055
-28800/69092	Loss: 153.684
-32000/69092	Loss: 151.968
-35200/69092	Loss: 152.251
-38400/69092	Loss: 151.774
-41600/69092	Loss: 154.926
-44800/69092	Loss: 155.528
-48000/69092	Loss: 152.358
-51200/69092	Loss: 154.989
-54400/69092	Loss: 153.860
-57600/69092	Loss: 151.102
-60800/69092	Loss: 156.806
-64000/69092	Loss: 156.172
-67200/69092	Loss: 152.239
-Training time 0:05:04.264074
-Epoch: 64 Average loss: 153.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 66)
-0/69092	Loss: 135.616
-3200/69092	Loss: 152.446
-6400/69092	Loss: 154.534
-9600/69092	Loss: 156.478
-12800/69092	Loss: 152.469
-16000/69092	Loss: 153.438
-19200/69092	Loss: 152.151
-22400/69092	Loss: 151.988
-25600/69092	Loss: 152.486
-28800/69092	Loss: 154.608
-32000/69092	Loss: 152.458
-35200/69092	Loss: 155.160
-38400/69092	Loss: 152.668
-41600/69092	Loss: 153.771
-44800/69092	Loss: 155.444
-48000/69092	Loss: 153.273
-51200/69092	Loss: 154.682
-54400/69092	Loss: 156.136
-57600/69092	Loss: 154.308
-60800/69092	Loss: 154.201
-64000/69092	Loss: 154.921
-67200/69092	Loss: 151.464
-Training time 0:05:11.196563
-Epoch: 65 Average loss: 153.87
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 67)
-0/69092	Loss: 153.509
-3200/69092	Loss: 153.018
-6400/69092	Loss: 151.510
-9600/69092	Loss: 153.944
-12800/69092	Loss: 153.229
-16000/69092	Loss: 154.579
-19200/69092	Loss: 152.519
-22400/69092	Loss: 155.319
-25600/69092	Loss: 154.698
-28800/69092	Loss: 154.007
-32000/69092	Loss: 153.458
-35200/69092	Loss: 153.842
-38400/69092	Loss: 152.014
-41600/69092	Loss: 153.029
-44800/69092	Loss: 153.387
-48000/69092	Loss: 156.787
-51200/69092	Loss: 155.629
-54400/69092	Loss: 153.123
-57600/69092	Loss: 156.001
-60800/69092	Loss: 153.081
-64000/69092	Loss: 154.751
-67200/69092	Loss: 152.536
-Training time 0:04:59.973290
-Epoch: 66 Average loss: 153.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 68)
-0/69092	Loss: 158.298
-3200/69092	Loss: 152.507
-6400/69092	Loss: 152.727
-9600/69092	Loss: 153.121
-12800/69092	Loss: 150.498
-16000/69092	Loss: 151.056
-19200/69092	Loss: 157.246
-22400/69092	Loss: 155.845
-25600/69092	Loss: 155.414
-28800/69092	Loss: 155.750
-32000/69092	Loss: 151.761
-35200/69092	Loss: 155.314
-38400/69092	Loss: 157.279
-41600/69092	Loss: 155.597
-44800/69092	Loss: 153.331
-48000/69092	Loss: 153.527
-51200/69092	Loss: 152.233
-54400/69092	Loss: 152.478
-57600/69092	Loss: 154.482
-60800/69092	Loss: 153.493
-64000/69092	Loss: 152.558
-67200/69092	Loss: 156.084
-Training time 0:05:03.196744
-Epoch: 67 Average loss: 153.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 69)
-0/69092	Loss: 137.431
-3200/69092	Loss: 153.184
-6400/69092	Loss: 153.018
-9600/69092	Loss: 153.017
-12800/69092	Loss: 154.140
-16000/69092	Loss: 153.353
-19200/69092	Loss: 153.756
-22400/69092	Loss: 155.243
-25600/69092	Loss: 152.656
-28800/69092	Loss: 150.268
-32000/69092	Loss: 154.123
-35200/69092	Loss: 152.991
-38400/69092	Loss: 155.381
-41600/69092	Loss: 152.844
-44800/69092	Loss: 157.580
-48000/69092	Loss: 155.649
-51200/69092	Loss: 152.598
-54400/69092	Loss: 155.049
-57600/69092	Loss: 156.392
-60800/69092	Loss: 151.240
-64000/69092	Loss: 155.197
-67200/69092	Loss: 153.459
-Training time 0:05:07.525183
-Epoch: 68 Average loss: 153.81
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 70)
-0/69092	Loss: 151.003
-3200/69092	Loss: 154.731
-6400/69092	Loss: 151.691
-9600/69092	Loss: 156.213
-12800/69092	Loss: 154.119
-16000/69092	Loss: 156.713
-19200/69092	Loss: 158.253
-22400/69092	Loss: 152.825
-25600/69092	Loss: 153.418
-28800/69092	Loss: 151.424
-32000/69092	Loss: 151.944
-35200/69092	Loss: 150.554
-38400/69092	Loss: 156.523
-41600/69092	Loss: 154.309
-44800/69092	Loss: 151.041
-48000/69092	Loss: 154.112
-51200/69092	Loss: 152.367
-54400/69092	Loss: 154.360
-57600/69092	Loss: 152.664
-60800/69092	Loss: 152.367
-64000/69092	Loss: 152.254
-67200/69092	Loss: 155.735
-Training time 0:04:59.974978
-Epoch: 69 Average loss: 153.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 71)
-0/69092	Loss: 161.774
-3200/69092	Loss: 155.306
-6400/69092	Loss: 152.665
-9600/69092	Loss: 151.905
-12800/69092	Loss: 155.717
-16000/69092	Loss: 152.308
-19200/69092	Loss: 153.469
-22400/69092	Loss: 153.628
-25600/69092	Loss: 152.235
-28800/69092	Loss: 151.682
-32000/69092	Loss: 154.698
-35200/69092	Loss: 154.138
-38400/69092	Loss: 155.426
-41600/69092	Loss: 149.700
-44800/69092	Loss: 153.198
-48000/69092	Loss: 155.658
-51200/69092	Loss: 154.721
-54400/69092	Loss: 154.164
-57600/69092	Loss: 149.495
-60800/69092	Loss: 155.010
-64000/69092	Loss: 155.860
-67200/69092	Loss: 152.009
-Training time 0:05:03.293064
-Epoch: 70 Average loss: 153.46
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 72)
-0/69092	Loss: 144.245
-3200/69092	Loss: 154.381
-6400/69092	Loss: 153.375
-9600/69092	Loss: 150.919
-12800/69092	Loss: 153.996
-16000/69092	Loss: 153.696
-19200/69092	Loss: 153.120
-22400/69092	Loss: 153.994
-25600/69092	Loss: 154.056
-28800/69092	Loss: 155.968
-32000/69092	Loss: 151.166
-35200/69092	Loss: 152.345
-38400/69092	Loss: 154.135
-41600/69092	Loss: 152.586
-44800/69092	Loss: 154.086
-48000/69092	Loss: 156.236
-51200/69092	Loss: 154.236
-54400/69092	Loss: 153.280
-57600/69092	Loss: 153.596
-60800/69092	Loss: 154.071
-64000/69092	Loss: 152.977
-67200/69092	Loss: 154.226
-Training time 0:05:06.396825
-Epoch: 71 Average loss: 153.66
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 73)
-0/69092	Loss: 156.194
-3200/69092	Loss: 151.805
-6400/69092	Loss: 154.363
-9600/69092	Loss: 154.537
-12800/69092	Loss: 152.933
-16000/69092	Loss: 156.908
-19200/69092	Loss: 156.385
-22400/69092	Loss: 153.351
-25600/69092	Loss: 153.926
-28800/69092	Loss: 154.872
-32000/69092	Loss: 154.015
-35200/69092	Loss: 150.921
-38400/69092	Loss: 153.676
-41600/69092	Loss: 152.123
-44800/69092	Loss: 151.742
-48000/69092	Loss: 151.958
-51200/69092	Loss: 154.512
-54400/69092	Loss: 151.513
-57600/69092	Loss: 154.801
-60800/69092	Loss: 153.840
-64000/69092	Loss: 152.705
-67200/69092	Loss: 151.378
-Training time 0:05:00.657293
-Epoch: 72 Average loss: 153.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 74)
-0/69092	Loss: 156.484
-3200/69092	Loss: 155.144
-6400/69092	Loss: 151.167
-9600/69092	Loss: 154.190
-12800/69092	Loss: 151.972
-16000/69092	Loss: 155.841
-19200/69092	Loss: 153.245
-22400/69092	Loss: 153.017
-25600/69092	Loss: 154.034
-28800/69092	Loss: 154.449
-32000/69092	Loss: 151.774
-35200/69092	Loss: 154.554
-38400/69092	Loss: 152.260
-41600/69092	Loss: 153.270
-44800/69092	Loss: 156.584
-48000/69092	Loss: 156.922
-51200/69092	Loss: 149.480
-54400/69092	Loss: 152.737
-57600/69092	Loss: 152.815
-60800/69092	Loss: 152.341
-64000/69092	Loss: 155.473
-67200/69092	Loss: 153.995
-Training time 0:05:02.853466
-Epoch: 73 Average loss: 153.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 75)
-0/69092	Loss: 148.939
-3200/69092	Loss: 153.304
-6400/69092	Loss: 154.032
-9600/69092	Loss: 151.501
-12800/69092	Loss: 155.538
-16000/69092	Loss: 155.840
-19200/69092	Loss: 154.375
-22400/69092	Loss: 152.371
-25600/69092	Loss: 153.850
-28800/69092	Loss: 155.079
-32000/69092	Loss: 155.369
-35200/69092	Loss: 153.096
-38400/69092	Loss: 153.323
-41600/69092	Loss: 153.568
-44800/69092	Loss: 152.036
-48000/69092	Loss: 150.695
-51200/69092	Loss: 152.184
-54400/69092	Loss: 153.827
-57600/69092	Loss: 151.439
-60800/69092	Loss: 153.644
-64000/69092	Loss: 155.684
-67200/69092	Loss: 153.418
-Training time 0:05:00.557330
-Epoch: 74 Average loss: 153.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 76)
-0/69092	Loss: 150.033
-3200/69092	Loss: 153.176
-6400/69092	Loss: 153.239
-9600/69092	Loss: 151.274
-12800/69092	Loss: 153.676
-16000/69092	Loss: 155.003
-19200/69092	Loss: 152.913
-22400/69092	Loss: 153.146
-25600/69092	Loss: 152.478
-28800/69092	Loss: 153.191
-32000/69092	Loss: 154.477
-35200/69092	Loss: 151.997
-38400/69092	Loss: 150.608
-41600/69092	Loss: 155.911
-44800/69092	Loss: 154.714
-48000/69092	Loss: 151.517
-51200/69092	Loss: 153.886
-54400/69092	Loss: 152.867
-57600/69092	Loss: 153.793
-60800/69092	Loss: 152.574
-64000/69092	Loss: 151.439
-67200/69092	Loss: 154.768
-Training time 0:05:01.203807
-Epoch: 75 Average loss: 153.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 77)
-0/69092	Loss: 142.014
-3200/69092	Loss: 154.271
-6400/69092	Loss: 154.913
-9600/69092	Loss: 154.524
-12800/69092	Loss: 153.158
-16000/69092	Loss: 154.462
-19200/69092	Loss: 153.590
-22400/69092	Loss: 152.747
-25600/69092	Loss: 152.127
-28800/69092	Loss: 150.609
-32000/69092	Loss: 151.544
-35200/69092	Loss: 153.632
-38400/69092	Loss: 152.679
-41600/69092	Loss: 154.565
-44800/69092	Loss: 153.910
-48000/69092	Loss: 151.477
-51200/69092	Loss: 154.229
-54400/69092	Loss: 151.742
-57600/69092	Loss: 153.524
-60800/69092	Loss: 150.082
-64000/69092	Loss: 154.862
-67200/69092	Loss: 156.026
-Training time 0:05:04.062959
-Epoch: 76 Average loss: 153.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 78)
-0/69092	Loss: 148.453
-3200/69092	Loss: 152.221
-6400/69092	Loss: 153.214
-9600/69092	Loss: 155.322
-12800/69092	Loss: 153.553
-16000/69092	Loss: 152.134
-19200/69092	Loss: 153.447
-22400/69092	Loss: 154.105
-25600/69092	Loss: 153.733
-28800/69092	Loss: 151.577
-32000/69092	Loss: 155.673
-35200/69092	Loss: 153.258
-38400/69092	Loss: 152.589
-41600/69092	Loss: 152.946
-44800/69092	Loss: 152.928
-48000/69092	Loss: 152.054
-51200/69092	Loss: 153.723
-54400/69092	Loss: 151.409
-57600/69092	Loss: 152.121
-60800/69092	Loss: 153.611
-64000/69092	Loss: 152.776
-67200/69092	Loss: 153.087
-Training time 0:05:01.937133
-Epoch: 77 Average loss: 153.17
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 79)
-0/69092	Loss: 158.441
-3200/69092	Loss: 155.406
-6400/69092	Loss: 152.158
-9600/69092	Loss: 155.231
-12800/69092	Loss: 150.286
-16000/69092	Loss: 154.259
-19200/69092	Loss: 151.001
-22400/69092	Loss: 154.950
-25600/69092	Loss: 152.324
-28800/69092	Loss: 154.063
-32000/69092	Loss: 153.091
-35200/69092	Loss: 153.493
-38400/69092	Loss: 150.938
-41600/69092	Loss: 154.376
-44800/69092	Loss: 153.107
-48000/69092	Loss: 152.342
-51200/69092	Loss: 155.247
-54400/69092	Loss: 152.103
-57600/69092	Loss: 154.678
-60800/69092	Loss: 152.135
-64000/69092	Loss: 152.381
-67200/69092	Loss: 153.750
-Training time 0:05:03.291943
-Epoch: 78 Average loss: 153.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 80)
-0/69092	Loss: 151.019
-3200/69092	Loss: 151.870
-6400/69092	Loss: 152.273
-9600/69092	Loss: 153.427
-12800/69092	Loss: 155.270
-16000/69092	Loss: 154.600
-19200/69092	Loss: 150.932
-22400/69092	Loss: 154.699
-25600/69092	Loss: 153.568
-28800/69092	Loss: 149.703
-32000/69092	Loss: 151.962
-35200/69092	Loss: 153.908
-38400/69092	Loss: 152.027
-41600/69092	Loss: 154.136
-44800/69092	Loss: 154.786
-48000/69092	Loss: 155.455
-51200/69092	Loss: 153.557
-54400/69092	Loss: 154.232
-57600/69092	Loss: 152.527
-60800/69092	Loss: 151.458
-64000/69092	Loss: 155.241
-67200/69092	Loss: 155.344
-Training time 0:05:00.654061
-Epoch: 79 Average loss: 153.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 81)
-0/69092	Loss: 164.827
-3200/69092	Loss: 152.071
-6400/69092	Loss: 154.103
-9600/69092	Loss: 151.613
-12800/69092	Loss: 153.057
-16000/69092	Loss: 153.029
-19200/69092	Loss: 153.164
-22400/69092	Loss: 155.791
-25600/69092	Loss: 150.832
-28800/69092	Loss: 153.147
-32000/69092	Loss: 154.802
-35200/69092	Loss: 155.089
-38400/69092	Loss: 149.886
-41600/69092	Loss: 154.534
-44800/69092	Loss: 152.561
-48000/69092	Loss: 154.211
-51200/69092	Loss: 152.915
-54400/69092	Loss: 154.393
-57600/69092	Loss: 151.915
-60800/69092	Loss: 153.240
-64000/69092	Loss: 152.048
-67200/69092	Loss: 153.093
-Training time 0:04:59.990244
-Epoch: 80 Average loss: 153.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 82)
-0/69092	Loss: 151.023
-3200/69092	Loss: 150.561
-6400/69092	Loss: 152.307
-9600/69092	Loss: 152.909
-12800/69092	Loss: 154.198
-16000/69092	Loss: 152.977
-19200/69092	Loss: 151.994
-22400/69092	Loss: 154.000
-25600/69092	Loss: 152.126
-28800/69092	Loss: 155.862
-32000/69092	Loss: 153.807
-35200/69092	Loss: 156.478
-38400/69092	Loss: 153.013
-41600/69092	Loss: 153.210
-44800/69092	Loss: 153.690
-48000/69092	Loss: 151.425
-51200/69092	Loss: 154.031
-54400/69092	Loss: 155.327
-57600/69092	Loss: 151.086
-60800/69092	Loss: 152.455
-64000/69092	Loss: 151.816
-67200/69092	Loss: 155.467
-Training time 0:05:06.066471
-Epoch: 81 Average loss: 153.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 83)
-0/69092	Loss: 170.955
-3200/69092	Loss: 151.483
-6400/69092	Loss: 153.425
-9600/69092	Loss: 151.804
-12800/69092	Loss: 154.874
-16000/69092	Loss: 153.667
-19200/69092	Loss: 150.724
-22400/69092	Loss: 152.623
-25600/69092	Loss: 152.325
-28800/69092	Loss: 154.891
-32000/69092	Loss: 152.610
-35200/69092	Loss: 154.654
-38400/69092	Loss: 150.852
-41600/69092	Loss: 150.880
-44800/69092	Loss: 154.887
-48000/69092	Loss: 154.362
-51200/69092	Loss: 153.672
-54400/69092	Loss: 151.659
-57600/69092	Loss: 152.698
-60800/69092	Loss: 152.635
-64000/69092	Loss: 153.886
-67200/69092	Loss: 152.832
-Training time 0:05:04.369737
-Epoch: 82 Average loss: 152.92
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 84)
-0/69092	Loss: 147.327
-3200/69092	Loss: 151.784
-6400/69092	Loss: 154.445
-9600/69092	Loss: 154.886
-12800/69092	Loss: 152.869
-16000/69092	Loss: 153.140
-19200/69092	Loss: 151.202
-22400/69092	Loss: 154.594
-25600/69092	Loss: 154.053
-28800/69092	Loss: 152.765
-32000/69092	Loss: 154.873
-35200/69092	Loss: 150.885
-38400/69092	Loss: 154.746
-41600/69092	Loss: 156.010
-44800/69092	Loss: 152.345
-48000/69092	Loss: 154.142
-51200/69092	Loss: 151.205
-54400/69092	Loss: 151.321
-57600/69092	Loss: 152.261
-60800/69092	Loss: 155.695
-64000/69092	Loss: 151.443
-67200/69092	Loss: 151.694
-Training time 0:05:02.456637
-Epoch: 83 Average loss: 153.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 85)
-0/69092	Loss: 157.304
-3200/69092	Loss: 153.795
-6400/69092	Loss: 151.412
-9600/69092	Loss: 153.938
-12800/69092	Loss: 157.122
-16000/69092	Loss: 154.438
-19200/69092	Loss: 155.162
-22400/69092	Loss: 155.787
-25600/69092	Loss: 153.335
-28800/69092	Loss: 154.145
-32000/69092	Loss: 154.408
-35200/69092	Loss: 152.654
-38400/69092	Loss: 153.887
-41600/69092	Loss: 151.372
-44800/69092	Loss: 153.267
-48000/69092	Loss: 151.122
-51200/69092	Loss: 151.413
-54400/69092	Loss: 152.751
-57600/69092	Loss: 152.389
-60800/69092	Loss: 151.229
-64000/69092	Loss: 152.515
-67200/69092	Loss: 150.938
-Training time 0:05:04.469644
-Epoch: 84 Average loss: 153.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 86)
-0/69092	Loss: 155.411
-3200/69092	Loss: 152.728
-6400/69092	Loss: 153.224
-9600/69092	Loss: 153.888
-12800/69092	Loss: 150.202
-16000/69092	Loss: 151.087
-19200/69092	Loss: 151.997
-22400/69092	Loss: 153.448
-25600/69092	Loss: 153.868
-28800/69092	Loss: 154.632
-32000/69092	Loss: 152.747
-35200/69092	Loss: 151.499
-38400/69092	Loss: 152.371
-41600/69092	Loss: 155.379
-44800/69092	Loss: 150.440
-48000/69092	Loss: 152.814
-51200/69092	Loss: 153.243
-54400/69092	Loss: 154.576
-57600/69092	Loss: 153.910
-60800/69092	Loss: 152.324
-64000/69092	Loss: 156.518
-67200/69092	Loss: 151.910
-Training time 0:04:59.088313
-Epoch: 85 Average loss: 153.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 87)
-0/69092	Loss: 160.774
-3200/69092	Loss: 155.434
-6400/69092	Loss: 157.195
-9600/69092	Loss: 152.280
-12800/69092	Loss: 156.440
-16000/69092	Loss: 151.277
-19200/69092	Loss: 152.130
-22400/69092	Loss: 153.580
-25600/69092	Loss: 154.009
-28800/69092	Loss: 152.155
-32000/69092	Loss: 153.223
-35200/69092	Loss: 153.253
-38400/69092	Loss: 151.555
-41600/69092	Loss: 152.075
-44800/69092	Loss: 152.142
-48000/69092	Loss: 156.967
-51200/69092	Loss: 151.809
-54400/69092	Loss: 149.804
-57600/69092	Loss: 150.972
-60800/69092	Loss: 151.268
-64000/69092	Loss: 154.066
-67200/69092	Loss: 151.888
-Training time 0:04:58.442294
-Epoch: 86 Average loss: 153.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 88)
-0/69092	Loss: 152.322
-3200/69092	Loss: 151.590
-6400/69092	Loss: 153.602
-9600/69092	Loss: 151.057
-12800/69092	Loss: 151.128
-16000/69092	Loss: 154.163
-19200/69092	Loss: 153.779
-22400/69092	Loss: 152.040
-25600/69092	Loss: 154.772
-28800/69092	Loss: 153.669
-32000/69092	Loss: 151.816
-35200/69092	Loss: 151.665
-38400/69092	Loss: 153.741
-41600/69092	Loss: 155.616
-44800/69092	Loss: 154.520
-48000/69092	Loss: 151.972
-51200/69092	Loss: 152.793
-54400/69092	Loss: 154.131
-57600/69092	Loss: 152.470
-60800/69092	Loss: 153.640
-64000/69092	Loss: 153.099
-67200/69092	Loss: 150.981
-Training time 0:05:07.376272
-Epoch: 87 Average loss: 153.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 89)
-0/69092	Loss: 159.553
-3200/69092	Loss: 153.347
-6400/69092	Loss: 152.530
-9600/69092	Loss: 154.021
-12800/69092	Loss: 153.439
-16000/69092	Loss: 149.131
-19200/69092	Loss: 150.333
-22400/69092	Loss: 151.817
-25600/69092	Loss: 152.307
-28800/69092	Loss: 154.859
-32000/69092	Loss: 154.099
-35200/69092	Loss: 151.406
-38400/69092	Loss: 152.829
-41600/69092	Loss: 153.314
-44800/69092	Loss: 154.028
-48000/69092	Loss: 156.256
-51200/69092	Loss: 152.179
-54400/69092	Loss: 153.508
-57600/69092	Loss: 154.960
-60800/69092	Loss: 148.960
-64000/69092	Loss: 155.890
-67200/69092	Loss: 152.293
-Training time 0:04:55.985734
-Epoch: 88 Average loss: 152.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 90)
-0/69092	Loss: 136.290
-3200/69092	Loss: 152.589
-6400/69092	Loss: 151.043
-9600/69092	Loss: 155.248
-12800/69092	Loss: 151.427
-16000/69092	Loss: 151.395
-19200/69092	Loss: 151.643
-22400/69092	Loss: 154.406
-25600/69092	Loss: 155.140
-28800/69092	Loss: 156.893
-32000/69092	Loss: 151.823
-35200/69092	Loss: 153.980
-38400/69092	Loss: 151.603
-41600/69092	Loss: 154.155
-44800/69092	Loss: 151.745
-48000/69092	Loss: 152.713
-51200/69092	Loss: 156.490
-54400/69092	Loss: 151.307
-57600/69092	Loss: 154.355
-60800/69092	Loss: 152.788
-64000/69092	Loss: 150.361
-67200/69092	Loss: 151.625
-Training time 0:05:00.287694
-Epoch: 89 Average loss: 152.92
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 91)
-0/69092	Loss: 173.193
-3200/69092	Loss: 153.656
-6400/69092	Loss: 152.859
-9600/69092	Loss: 153.125
-12800/69092	Loss: 154.441
-16000/69092	Loss: 153.359
-19200/69092	Loss: 152.302
-22400/69092	Loss: 153.237
-25600/69092	Loss: 153.937
-28800/69092	Loss: 151.052
-32000/69092	Loss: 155.033
-35200/69092	Loss: 153.576
-38400/69092	Loss: 154.512
-41600/69092	Loss: 152.978
-44800/69092	Loss: 151.260
-48000/69092	Loss: 151.452
-51200/69092	Loss: 155.488
-54400/69092	Loss: 154.502
-57600/69092	Loss: 153.495
-60800/69092	Loss: 151.899
-64000/69092	Loss: 151.552
-67200/69092	Loss: 152.370
-Training time 0:05:07.109067
-Epoch: 90 Average loss: 153.12
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 92)
-0/69092	Loss: 138.774
-3200/69092	Loss: 151.979
-6400/69092	Loss: 152.541
-9600/69092	Loss: 153.044
-12800/69092	Loss: 154.177
-16000/69092	Loss: 151.911
-19200/69092	Loss: 153.195
-22400/69092	Loss: 152.966
-25600/69092	Loss: 151.744
-28800/69092	Loss: 151.799
-32000/69092	Loss: 151.514
-35200/69092	Loss: 154.238
-38400/69092	Loss: 153.472
-41600/69092	Loss: 152.963
-44800/69092	Loss: 153.216
-48000/69092	Loss: 150.231
-51200/69092	Loss: 154.025
-54400/69092	Loss: 153.853
-57600/69092	Loss: 151.647
-60800/69092	Loss: 153.048
-64000/69092	Loss: 151.840
-67200/69092	Loss: 153.029
-Training time 0:05:03.215848
-Epoch: 91 Average loss: 152.69
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 93)
-0/69092	Loss: 150.631
-3200/69092	Loss: 155.801
-6400/69092	Loss: 152.577
-9600/69092	Loss: 149.986
-12800/69092	Loss: 150.401
-16000/69092	Loss: 151.807
-19200/69092	Loss: 150.984
-22400/69092	Loss: 153.995
-25600/69092	Loss: 151.320
-28800/69092	Loss: 151.361
-32000/69092	Loss: 150.865
-35200/69092	Loss: 154.256
-38400/69092	Loss: 155.717
-41600/69092	Loss: 152.501
-44800/69092	Loss: 152.904
-48000/69092	Loss: 155.577
-51200/69092	Loss: 153.366
-54400/69092	Loss: 154.010
-57600/69092	Loss: 153.506
-60800/69092	Loss: 151.959
-64000/69092	Loss: 152.378
-67200/69092	Loss: 153.409
-Training time 0:05:02.467104
-Epoch: 92 Average loss: 152.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 94)
-0/69092	Loss: 137.588
-3200/69092	Loss: 154.422
-6400/69092	Loss: 153.005
-9600/69092	Loss: 152.546
-12800/69092	Loss: 151.804
-16000/69092	Loss: 152.492
-19200/69092	Loss: 149.259
-22400/69092	Loss: 152.988
-25600/69092	Loss: 154.934
-28800/69092	Loss: 154.740
-32000/69092	Loss: 153.126
-35200/69092	Loss: 151.362
-38400/69092	Loss: 153.404
-41600/69092	Loss: 152.740
-44800/69092	Loss: 152.464
-48000/69092	Loss: 153.898
-51200/69092	Loss: 152.364
-54400/69092	Loss: 152.889
-57600/69092	Loss: 150.061
-60800/69092	Loss: 153.786
-64000/69092	Loss: 154.129
-67200/69092	Loss: 151.211
-Training time 0:05:21.121234
-Epoch: 93 Average loss: 152.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 95)
-0/69092	Loss: 159.301
-3200/69092	Loss: 152.549
-6400/69092	Loss: 152.793
-9600/69092	Loss: 154.778
-12800/69092	Loss: 152.887
-16000/69092	Loss: 154.832
-19200/69092	Loss: 151.559
-22400/69092	Loss: 152.364
-25600/69092	Loss: 152.966
-28800/69092	Loss: 154.015
-32000/69092	Loss: 151.286
-35200/69092	Loss: 154.054
-38400/69092	Loss: 152.238
-41600/69092	Loss: 152.510
-44800/69092	Loss: 151.685
-48000/69092	Loss: 151.848
-51200/69092	Loss: 150.794
-54400/69092	Loss: 151.815
-57600/69092	Loss: 154.456
-60800/69092	Loss: 153.243
-64000/69092	Loss: 151.379
-67200/69092	Loss: 152.289
-Training time 0:05:05.718220
-Epoch: 94 Average loss: 152.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 96)
-0/69092	Loss: 148.685
-3200/69092	Loss: 153.959
-6400/69092	Loss: 154.756
-9600/69092	Loss: 153.469
-12800/69092	Loss: 151.996
-16000/69092	Loss: 151.456
-19200/69092	Loss: 153.570
-22400/69092	Loss: 151.253
-25600/69092	Loss: 153.916
-28800/69092	Loss: 151.222
-32000/69092	Loss: 153.491
-35200/69092	Loss: 151.802
-38400/69092	Loss: 151.863
-41600/69092	Loss: 152.482
-44800/69092	Loss: 157.120
-48000/69092	Loss: 153.743
-51200/69092	Loss: 153.713
-54400/69092	Loss: 151.019
-57600/69092	Loss: 152.423
-60800/69092	Loss: 153.373
-64000/69092	Loss: 152.027
-67200/69092	Loss: 153.569
-Training time 0:05:13.770123
-Epoch: 95 Average loss: 153.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 97)
-0/69092	Loss: 144.888
-3200/69092	Loss: 154.294
-6400/69092	Loss: 155.633
-9600/69092	Loss: 150.376
-12800/69092	Loss: 151.350
-16000/69092	Loss: 150.670
-19200/69092	Loss: 151.202
-22400/69092	Loss: 154.200
-25600/69092	Loss: 155.299
-28800/69092	Loss: 153.456
-32000/69092	Loss: 151.662
-35200/69092	Loss: 153.122
-38400/69092	Loss: 152.119
-41600/69092	Loss: 155.510
-44800/69092	Loss: 153.847
-48000/69092	Loss: 151.220
-51200/69092	Loss: 152.173
-54400/69092	Loss: 152.944
-57600/69092	Loss: 150.199
-60800/69092	Loss: 153.262
-64000/69092	Loss: 152.992
-67200/69092	Loss: 151.225
-Training time 0:05:14.512258
-Epoch: 96 Average loss: 152.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 98)
-0/69092	Loss: 145.908
-3200/69092	Loss: 156.202
-6400/69092	Loss: 153.557
-9600/69092	Loss: 153.879
-12800/69092	Loss: 151.261
-16000/69092	Loss: 151.924
-19200/69092	Loss: 155.570
-22400/69092	Loss: 149.156
-25600/69092	Loss: 153.326
-28800/69092	Loss: 153.375
-32000/69092	Loss: 150.357
-35200/69092	Loss: 149.965
-38400/69092	Loss: 152.330
-41600/69092	Loss: 155.561
-44800/69092	Loss: 153.511
-48000/69092	Loss: 155.264
-51200/69092	Loss: 153.119
-54400/69092	Loss: 153.118
-57600/69092	Loss: 150.697
-60800/69092	Loss: 151.908
-64000/69092	Loss: 152.887
-67200/69092	Loss: 152.033
-Training time 0:05:09.046628
-Epoch: 97 Average loss: 152.84
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 99)
-0/69092	Loss: 163.816
-3200/69092	Loss: 151.839
-6400/69092	Loss: 150.942
-9600/69092	Loss: 151.094
-12800/69092	Loss: 152.994
-16000/69092	Loss: 151.583
-19200/69092	Loss: 151.724
-22400/69092	Loss: 151.680
-25600/69092	Loss: 154.411
-28800/69092	Loss: 153.341
-32000/69092	Loss: 152.108
-35200/69092	Loss: 151.711
-38400/69092	Loss: 154.571
-41600/69092	Loss: 152.383
-44800/69092	Loss: 153.287
-48000/69092	Loss: 153.545
-51200/69092	Loss: 151.304
-54400/69092	Loss: 154.108
-57600/69092	Loss: 156.060
-60800/69092	Loss: 150.395
-64000/69092	Loss: 151.598
-67200/69092	Loss: 151.042
-Training time 0:05:17.460411
-Epoch: 98 Average loss: 152.48
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 100)
-0/69092	Loss: 142.495
-3200/69092	Loss: 152.631
-6400/69092	Loss: 153.448
-9600/69092	Loss: 154.208
-12800/69092	Loss: 152.384
-16000/69092	Loss: 152.287
-19200/69092	Loss: 153.442
-22400/69092	Loss: 152.089
-25600/69092	Loss: 151.928
-28800/69092	Loss: 152.185
-32000/69092	Loss: 154.098
-35200/69092	Loss: 152.993
-38400/69092	Loss: 151.704
-41600/69092	Loss: 151.850
-44800/69092	Loss: 153.045
-48000/69092	Loss: 151.880
-51200/69092	Loss: 153.108
-54400/69092	Loss: 149.770
-57600/69092	Loss: 153.855
-60800/69092	Loss: 152.210
-64000/69092	Loss: 152.729
-67200/69092	Loss: 151.185
-Training time 0:05:17.488419
-Epoch: 99 Average loss: 152.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 101)
-0/69092	Loss: 152.357
-3200/69092	Loss: 152.105
-6400/69092	Loss: 151.490
-9600/69092	Loss: 153.552
-12800/69092	Loss: 152.941
-16000/69092	Loss: 148.692
-19200/69092	Loss: 152.597
-22400/69092	Loss: 151.824
-25600/69092	Loss: 154.107
-28800/69092	Loss: 155.843
-32000/69092	Loss: 151.404
-35200/69092	Loss: 154.285
-38400/69092	Loss: 149.636
-41600/69092	Loss: 153.175
-44800/69092	Loss: 153.762
-48000/69092	Loss: 150.530
-51200/69092	Loss: 152.657
-54400/69092	Loss: 150.277
-57600/69092	Loss: 151.790
-60800/69092	Loss: 151.414
-64000/69092	Loss: 152.574
-67200/69092	Loss: 154.462
-Training time 0:05:04.079356
-Epoch: 100 Average loss: 152.46
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 102)
-0/69092	Loss: 150.764
-3200/69092	Loss: 156.045
-6400/69092	Loss: 153.180
-9600/69092	Loss: 150.329
-12800/69092	Loss: 151.842
-16000/69092	Loss: 151.438
-19200/69092	Loss: 149.832
-22400/69092	Loss: 152.585
-25600/69092	Loss: 155.156
-28800/69092	Loss: 152.419
-32000/69092	Loss: 154.063
-35200/69092	Loss: 151.402
-38400/69092	Loss: 154.315
-41600/69092	Loss: 150.096
-44800/69092	Loss: 152.664
-48000/69092	Loss: 154.527
-51200/69092	Loss: 153.800
-54400/69092	Loss: 152.519
-57600/69092	Loss: 153.290
-60800/69092	Loss: 155.294
-64000/69092	Loss: 152.205
-67200/69092	Loss: 152.099
-Training time 0:04:59.508990
-Epoch: 101 Average loss: 152.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 103)
-0/69092	Loss: 164.819
-3200/69092	Loss: 154.112
-6400/69092	Loss: 153.043
-9600/69092	Loss: 153.420
-12800/69092	Loss: 153.918
-16000/69092	Loss: 151.298
-19200/69092	Loss: 153.300
-22400/69092	Loss: 152.069
-25600/69092	Loss: 152.772
-28800/69092	Loss: 153.973
-32000/69092	Loss: 153.526
-35200/69092	Loss: 154.607
-38400/69092	Loss: 153.641
-41600/69092	Loss: 152.778
-44800/69092	Loss: 150.596
-48000/69092	Loss: 150.833
-51200/69092	Loss: 151.411
-54400/69092	Loss: 151.794
-57600/69092	Loss: 152.379
-60800/69092	Loss: 150.641
-64000/69092	Loss: 153.430
-67200/69092	Loss: 153.745
-Training time 0:04:58.759844
-Epoch: 102 Average loss: 152.79
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 104)
-0/69092	Loss: 155.212
-3200/69092	Loss: 150.710
-6400/69092	Loss: 150.372
-9600/69092	Loss: 152.780
-12800/69092	Loss: 154.372
-16000/69092	Loss: 152.948
-19200/69092	Loss: 154.913
-22400/69092	Loss: 154.924
-25600/69092	Loss: 151.664
-28800/69092	Loss: 153.776
-32000/69092	Loss: 151.676
-35200/69092	Loss: 152.477
-38400/69092	Loss: 149.843
-41600/69092	Loss: 151.344
-44800/69092	Loss: 153.824
-48000/69092	Loss: 151.946
-51200/69092	Loss: 152.546
-54400/69092	Loss: 151.850
-57600/69092	Loss: 153.006
-60800/69092	Loss: 150.892
-64000/69092	Loss: 153.496
-67200/69092	Loss: 151.937
-Training time 0:05:01.081316
-Epoch: 103 Average loss: 152.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 105)
-0/69092	Loss: 158.482
-3200/69092	Loss: 155.715
-6400/69092	Loss: 150.633
-9600/69092	Loss: 150.715
-12800/69092	Loss: 151.132
-16000/69092	Loss: 152.029
-19200/69092	Loss: 152.349
-22400/69092	Loss: 149.221
-25600/69092	Loss: 152.625
-28800/69092	Loss: 150.371
-32000/69092	Loss: 152.691
-35200/69092	Loss: 152.896
-38400/69092	Loss: 156.667
-41600/69092	Loss: 152.666
-44800/69092	Loss: 151.124
-48000/69092	Loss: 153.126
-51200/69092	Loss: 152.280
-54400/69092	Loss: 153.000
-57600/69092	Loss: 151.603
-60800/69092	Loss: 153.182
-64000/69092	Loss: 153.217
-67200/69092	Loss: 153.639
-Training time 0:05:05.078701
-Epoch: 104 Average loss: 152.43
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 106)
-0/69092	Loss: 162.693
-3200/69092	Loss: 152.524
-6400/69092	Loss: 152.094
-9600/69092	Loss: 152.530
-12800/69092	Loss: 151.146
-16000/69092	Loss: 151.000
-19200/69092	Loss: 153.157
-22400/69092	Loss: 152.684
-25600/69092	Loss: 152.236
-28800/69092	Loss: 151.991
-32000/69092	Loss: 149.786
-35200/69092	Loss: 154.276
-38400/69092	Loss: 153.001
-41600/69092	Loss: 152.500
-44800/69092	Loss: 150.808
-48000/69092	Loss: 152.246
-51200/69092	Loss: 152.803
-54400/69092	Loss: 150.922
-57600/69092	Loss: 151.247
-60800/69092	Loss: 154.350
-64000/69092	Loss: 154.206
-67200/69092	Loss: 152.359
-Training time 0:05:08.495428
-Epoch: 105 Average loss: 152.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 107)
-0/69092	Loss: 157.806
-3200/69092	Loss: 154.320
-6400/69092	Loss: 154.119
-9600/69092	Loss: 152.087
-12800/69092	Loss: 151.915
-16000/69092	Loss: 151.474
-19200/69092	Loss: 150.175
-22400/69092	Loss: 152.247
-25600/69092	Loss: 155.800
-28800/69092	Loss: 152.738
-32000/69092	Loss: 155.295
-35200/69092	Loss: 153.964
-38400/69092	Loss: 155.813
-41600/69092	Loss: 154.893
-44800/69092	Loss: 151.783
-48000/69092	Loss: 150.853
-51200/69092	Loss: 150.650
-54400/69092	Loss: 153.105
-57600/69092	Loss: 150.999
-60800/69092	Loss: 151.310
-64000/69092	Loss: 152.381
-67200/69092	Loss: 153.032
-Training time 0:05:01.722781
-Epoch: 106 Average loss: 152.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 108)
-0/69092	Loss: 164.493
-3200/69092	Loss: 151.558
-6400/69092	Loss: 153.669
-9600/69092	Loss: 153.055
-12800/69092	Loss: 152.687
-16000/69092	Loss: 150.611
-19200/69092	Loss: 147.977
-22400/69092	Loss: 152.367
-25600/69092	Loss: 152.304
-28800/69092	Loss: 153.159
-32000/69092	Loss: 152.434
-35200/69092	Loss: 151.772
-38400/69092	Loss: 154.893
-41600/69092	Loss: 154.256
-44800/69092	Loss: 148.339
-48000/69092	Loss: 154.205
-51200/69092	Loss: 152.878
-54400/69092	Loss: 152.201
-57600/69092	Loss: 153.168
-60800/69092	Loss: 152.438
-64000/69092	Loss: 155.415
-67200/69092	Loss: 153.441
-Training time 0:05:02.547415
-Epoch: 107 Average loss: 152.42
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 109)
-0/69092	Loss: 148.809
-3200/69092	Loss: 150.910
-6400/69092	Loss: 151.943
-9600/69092	Loss: 152.889
-12800/69092	Loss: 152.411
-16000/69092	Loss: 153.348
-19200/69092	Loss: 152.371
-22400/69092	Loss: 152.439
-25600/69092	Loss: 152.269
-28800/69092	Loss: 152.576
-32000/69092	Loss: 151.970
-35200/69092	Loss: 150.969
-38400/69092	Loss: 151.487
-41600/69092	Loss: 152.641
-44800/69092	Loss: 151.826
-48000/69092	Loss: 151.155
-51200/69092	Loss: 152.168
-54400/69092	Loss: 149.807
-57600/69092	Loss: 155.031
-60800/69092	Loss: 153.892
-64000/69092	Loss: 151.999
-67200/69092	Loss: 151.738
-Training time 0:05:04.695620
-Epoch: 108 Average loss: 152.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 110)
-0/69092	Loss: 158.586
-3200/69092	Loss: 151.509
-6400/69092	Loss: 151.652
-9600/69092	Loss: 152.892
-12800/69092	Loss: 153.234
-16000/69092	Loss: 153.368
-19200/69092	Loss: 153.232
-22400/69092	Loss: 152.319
-25600/69092	Loss: 149.443
-28800/69092	Loss: 150.087
-32000/69092	Loss: 154.087
-35200/69092	Loss: 155.178
-38400/69092	Loss: 150.814
-41600/69092	Loss: 153.138
-44800/69092	Loss: 151.443
-48000/69092	Loss: 150.927
-51200/69092	Loss: 151.618
-54400/69092	Loss: 153.429
-57600/69092	Loss: 153.643
-60800/69092	Loss: 152.830
-64000/69092	Loss: 152.977
-67200/69092	Loss: 151.568
-Training time 0:05:02.439395
-Epoch: 109 Average loss: 152.36
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 111)
-0/69092	Loss: 160.520
-3200/69092	Loss: 153.134
-6400/69092	Loss: 151.785
-9600/69092	Loss: 151.450
-12800/69092	Loss: 153.406
-16000/69092	Loss: 150.892
-19200/69092	Loss: 152.349
-22400/69092	Loss: 151.413
-25600/69092	Loss: 155.517
-28800/69092	Loss: 154.485
-32000/69092	Loss: 154.868
-35200/69092	Loss: 153.424
-38400/69092	Loss: 153.438
-41600/69092	Loss: 152.351
-44800/69092	Loss: 154.254
-48000/69092	Loss: 151.103
-51200/69092	Loss: 152.773
-54400/69092	Loss: 149.550
-57600/69092	Loss: 152.296
-60800/69092	Loss: 151.777
-64000/69092	Loss: 151.505
-67200/69092	Loss: 151.820
-Training time 0:05:06.358995
-Epoch: 110 Average loss: 152.60
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 112)
-0/69092	Loss: 144.156
-3200/69092	Loss: 152.230
-6400/69092	Loss: 151.840
-9600/69092	Loss: 153.787
-12800/69092	Loss: 151.389
-16000/69092	Loss: 154.197
-19200/69092	Loss: 154.010
-22400/69092	Loss: 153.567
-25600/69092	Loss: 151.977
-28800/69092	Loss: 151.630
-32000/69092	Loss: 148.550
-35200/69092	Loss: 154.312
-38400/69092	Loss: 154.578
-41600/69092	Loss: 153.901
-44800/69092	Loss: 150.806
-48000/69092	Loss: 150.984
-51200/69092	Loss: 154.965
-54400/69092	Loss: 152.275
-57600/69092	Loss: 149.143
-60800/69092	Loss: 149.454
-64000/69092	Loss: 151.215
-67200/69092	Loss: 151.462
-Training time 0:05:02.575174
-Epoch: 111 Average loss: 152.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 113)
-0/69092	Loss: 137.242
-3200/69092	Loss: 154.129
-6400/69092	Loss: 152.299
-9600/69092	Loss: 151.966
-12800/69092	Loss: 154.456
-16000/69092	Loss: 154.436
-19200/69092	Loss: 152.158
-22400/69092	Loss: 150.708
-25600/69092	Loss: 152.748
-28800/69092	Loss: 151.616
-32000/69092	Loss: 151.754
-35200/69092	Loss: 149.865
-38400/69092	Loss: 152.191
-41600/69092	Loss: 152.820
-44800/69092	Loss: 150.216
-48000/69092	Loss: 149.721
-51200/69092	Loss: 152.029
-54400/69092	Loss: 155.722
-57600/69092	Loss: 151.542
-60800/69092	Loss: 152.518
-64000/69092	Loss: 154.387
-67200/69092	Loss: 151.074
-Training time 0:05:02.396935
-Epoch: 112 Average loss: 152.31
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 114)
-0/69092	Loss: 165.902
-3200/69092	Loss: 150.377
-6400/69092	Loss: 151.814
-9600/69092	Loss: 153.642
-12800/69092	Loss: 151.890
-16000/69092	Loss: 153.804
-19200/69092	Loss: 150.675
-22400/69092	Loss: 153.077
-25600/69092	Loss: 152.290
-28800/69092	Loss: 155.946
-32000/69092	Loss: 151.610
-35200/69092	Loss: 152.848
-38400/69092	Loss: 151.772
-41600/69092	Loss: 150.248
-44800/69092	Loss: 153.183
-48000/69092	Loss: 151.950
-51200/69092	Loss: 153.444
-54400/69092	Loss: 154.098
-57600/69092	Loss: 153.529
-60800/69092	Loss: 150.748
-64000/69092	Loss: 152.207
-67200/69092	Loss: 151.174
-Training time 0:05:00.621314
-Epoch: 113 Average loss: 152.43
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 115)
-0/69092	Loss: 147.808
-3200/69092	Loss: 153.776
-6400/69092	Loss: 151.598
-9600/69092	Loss: 148.984
-12800/69092	Loss: 154.844
-16000/69092	Loss: 155.733
-19200/69092	Loss: 154.050
-22400/69092	Loss: 150.272
-25600/69092	Loss: 150.759
-28800/69092	Loss: 153.905
-32000/69092	Loss: 155.563
-35200/69092	Loss: 152.909
-38400/69092	Loss: 151.906
-41600/69092	Loss: 149.198
-44800/69092	Loss: 151.171
-48000/69092	Loss: 154.471
-51200/69092	Loss: 151.954
-54400/69092	Loss: 149.824
-57600/69092	Loss: 153.078
-60800/69092	Loss: 149.280
-64000/69092	Loss: 152.360
-67200/69092	Loss: 153.188
-Training time 0:05:07.754681
-Epoch: 114 Average loss: 152.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 116)
-0/69092	Loss: 162.564
-3200/69092	Loss: 152.357
-6400/69092	Loss: 150.666
-9600/69092	Loss: 152.617
-12800/69092	Loss: 152.975
-16000/69092	Loss: 154.865
-19200/69092	Loss: 153.846
-22400/69092	Loss: 150.764
-25600/69092	Loss: 150.878
-28800/69092	Loss: 150.933
-32000/69092	Loss: 152.093
-35200/69092	Loss: 152.873
-38400/69092	Loss: 152.629
-41600/69092	Loss: 151.633
-44800/69092	Loss: 151.503
-48000/69092	Loss: 152.399
-51200/69092	Loss: 154.762
-54400/69092	Loss: 153.077
-57600/69092	Loss: 149.121
-60800/69092	Loss: 151.332
-64000/69092	Loss: 154.033
-67200/69092	Loss: 151.749
-Training time 0:05:02.491970
-Epoch: 115 Average loss: 152.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 117)
-0/69092	Loss: 143.778
-3200/69092	Loss: 151.167
-6400/69092	Loss: 149.055
-9600/69092	Loss: 154.806
-12800/69092	Loss: 151.053
-16000/69092	Loss: 151.978
-19200/69092	Loss: 153.226
-22400/69092	Loss: 152.385
-25600/69092	Loss: 154.677
-28800/69092	Loss: 150.408
-32000/69092	Loss: 152.199
-35200/69092	Loss: 152.255
-38400/69092	Loss: 154.065
-41600/69092	Loss: 150.001
-44800/69092	Loss: 152.624
-48000/69092	Loss: 151.635
-51200/69092	Loss: 153.096
-54400/69092	Loss: 155.753
-57600/69092	Loss: 152.518
-60800/69092	Loss: 153.385
-64000/69092	Loss: 150.671
-67200/69092	Loss: 149.546
-Training time 0:05:04.539182
-Epoch: 116 Average loss: 152.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 118)
-0/69092	Loss: 145.364
-3200/69092	Loss: 155.135
-6400/69092	Loss: 149.908
-9600/69092	Loss: 151.907
-12800/69092	Loss: 148.680
-16000/69092	Loss: 151.505
-19200/69092	Loss: 152.239
-22400/69092	Loss: 151.608
-25600/69092	Loss: 149.992
-28800/69092	Loss: 152.539
-32000/69092	Loss: 155.070
-35200/69092	Loss: 151.357
-38400/69092	Loss: 154.963
-41600/69092	Loss: 151.068
-44800/69092	Loss: 154.297
-48000/69092	Loss: 152.450
-51200/69092	Loss: 152.996
-54400/69092	Loss: 149.902
-57600/69092	Loss: 153.720
-60800/69092	Loss: 152.241
-64000/69092	Loss: 152.892
-67200/69092	Loss: 152.491
-Training time 0:05:04.691764
-Epoch: 117 Average loss: 152.29
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 119)
-0/69092	Loss: 158.828
-3200/69092	Loss: 153.695
-6400/69092	Loss: 154.094
-9600/69092	Loss: 150.939
-12800/69092	Loss: 153.622
-16000/69092	Loss: 152.381
-19200/69092	Loss: 149.955
-22400/69092	Loss: 149.864
-25600/69092	Loss: 153.791
-28800/69092	Loss: 150.729
-32000/69092	Loss: 152.179
-35200/69092	Loss: 150.721
-38400/69092	Loss: 151.006
-41600/69092	Loss: 150.271
-44800/69092	Loss: 149.664
-48000/69092	Loss: 152.665
-51200/69092	Loss: 151.087
-54400/69092	Loss: 153.225
-57600/69092	Loss: 157.378
-60800/69092	Loss: 152.752
-64000/69092	Loss: 155.546
-67200/69092	Loss: 153.239
-Training time 0:05:11.812518
-Epoch: 118 Average loss: 152.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 120)
-0/69092	Loss: 156.434
-3200/69092	Loss: 151.044
-6400/69092	Loss: 152.033
-9600/69092	Loss: 152.175
-12800/69092	Loss: 153.270
-16000/69092	Loss: 154.147
diff --git a/OAR.2068290.stderr b/OAR.2068290.stderr
deleted file mode 100644
index 2c95ab0472..0000000000
--- a/OAR.2068290.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068290 KILLED ##
diff --git a/OAR.2068290.stdout b/OAR.2068290.stdout
deleted file mode 100644
index 37eedf7207..0000000000
--- a/OAR.2068290.stdout
+++ /dev/null
@@ -1,2690 +0,0 @@
-Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_5
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=10, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=5, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 761485
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last (iter 2)'
-0/69092	Loss: 206.284
-3200/69092	Loss: 191.772
-6400/69092	Loss: 186.580
-9600/69092	Loss: 187.553
-12800/69092	Loss: 179.883
-16000/69092	Loss: 182.176
-19200/69092	Loss: 187.932
-22400/69092	Loss: 184.194
-25600/69092	Loss: 180.651
-28800/69092	Loss: 178.819
-32000/69092	Loss: 175.748
-35200/69092	Loss: 185.757
-38400/69092	Loss: 184.852
-41600/69092	Loss: 178.318
-44800/69092	Loss: 180.974
-48000/69092	Loss: 176.737
-51200/69092	Loss: 184.122
-54400/69092	Loss: 177.643
-57600/69092	Loss: 179.564
-60800/69092	Loss: 179.818
-64000/69092	Loss: 178.485
-67200/69092	Loss: 180.491
-Training time 0:05:42.886828
-Epoch: 1 Average loss: 181.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 3)
-0/69092	Loss: 185.484
-3200/69092	Loss: 177.918
-6400/69092	Loss: 178.950
-9600/69092	Loss: 175.949
-12800/69092	Loss: 180.625
-16000/69092	Loss: 179.795
-19200/69092	Loss: 176.926
-22400/69092	Loss: 177.637
-25600/69092	Loss: 182.322
-28800/69092	Loss: 175.535
-32000/69092	Loss: 179.663
-35200/69092	Loss: 178.396
-38400/69092	Loss: 177.509
-41600/69092	Loss: 178.524
-44800/69092	Loss: 180.868
-48000/69092	Loss: 179.206
-51200/69092	Loss: 175.411
-54400/69092	Loss: 175.164
-57600/69092	Loss: 175.484
-60800/69092	Loss: 177.437
-64000/69092	Loss: 183.367
-67200/69092	Loss: 175.420
-Training time 0:05:50.560333
-Epoch: 2 Average loss: 178.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 4)
-0/69092	Loss: 165.081
-3200/69092	Loss: 177.282
-6400/69092	Loss: 177.009
-9600/69092	Loss: 175.280
-12800/69092	Loss: 173.575
-16000/69092	Loss: 177.322
-19200/69092	Loss: 173.360
-22400/69092	Loss: 179.046
-25600/69092	Loss: 179.528
-28800/69092	Loss: 179.841
-32000/69092	Loss: 175.505
-35200/69092	Loss: 173.406
-38400/69092	Loss: 178.157
-41600/69092	Loss: 181.415
-44800/69092	Loss: 177.471
-48000/69092	Loss: 178.392
-51200/69092	Loss: 179.621
-54400/69092	Loss: 179.774
-57600/69092	Loss: 179.728
-60800/69092	Loss: 176.719
-64000/69092	Loss: 177.497
-67200/69092	Loss: 174.821
-Training time 0:06:03.416294
-Epoch: 3 Average loss: 177.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 5)
-0/69092	Loss: 177.347
-3200/69092	Loss: 176.306
-6400/69092	Loss: 174.916
-9600/69092	Loss: 178.468
-12800/69092	Loss: 175.838
-16000/69092	Loss: 179.554
-19200/69092	Loss: 175.765
-22400/69092	Loss: 178.247
-25600/69092	Loss: 173.473
-28800/69092	Loss: 177.255
-32000/69092	Loss: 175.557
-35200/69092	Loss: 177.057
-38400/69092	Loss: 176.364
-41600/69092	Loss: 177.415
-44800/69092	Loss: 176.233
-48000/69092	Loss: 176.041
-51200/69092	Loss: 177.231
-54400/69092	Loss: 177.484
-57600/69092	Loss: 177.772
-60800/69092	Loss: 179.202
-64000/69092	Loss: 177.597
-67200/69092	Loss: 176.004
-Training time 0:05:43.414806
-Epoch: 4 Average loss: 176.76
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 6)
-0/69092	Loss: 192.912
-3200/69092	Loss: 177.919
-6400/69092	Loss: 176.670
-9600/69092	Loss: 176.543
-12800/69092	Loss: 176.900
-16000/69092	Loss: 173.263
-19200/69092	Loss: 177.434
-22400/69092	Loss: 174.874
-25600/69092	Loss: 178.713
-28800/69092	Loss: 174.574
-32000/69092	Loss: 174.557
-35200/69092	Loss: 178.241
-38400/69092	Loss: 174.689
-41600/69092	Loss: 174.315
-44800/69092	Loss: 178.442
-48000/69092	Loss: 178.501
-51200/69092	Loss: 176.855
-54400/69092	Loss: 175.434
-57600/69092	Loss: 176.113
-60800/69092	Loss: 177.818
-64000/69092	Loss: 172.621
-67200/69092	Loss: 176.531
-Training time 0:05:29.381799
-Epoch: 5 Average loss: 176.25
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 7)
-0/69092	Loss: 185.043
-3200/69092	Loss: 172.702
-6400/69092	Loss: 179.136
-9600/69092	Loss: 176.406
-12800/69092	Loss: 175.405
-16000/69092	Loss: 175.605
-19200/69092	Loss: 174.544
-22400/69092	Loss: 172.518
-25600/69092	Loss: 175.201
-28800/69092	Loss: 173.957
-32000/69092	Loss: 178.255
-35200/69092	Loss: 175.895
-38400/69092	Loss: 174.356
-41600/69092	Loss: 174.803
-44800/69092	Loss: 175.339
-48000/69092	Loss: 177.531
-51200/69092	Loss: 173.707
-54400/69092	Loss: 174.617
-57600/69092	Loss: 179.951
-60800/69092	Loss: 176.160
-64000/69092	Loss: 177.427
-67200/69092	Loss: 174.210
-Training time 0:05:32.869675
-Epoch: 6 Average loss: 175.75
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 8)
-0/69092	Loss: 175.536
-3200/69092	Loss: 176.146
-6400/69092	Loss: 182.585
-9600/69092	Loss: 179.227
-12800/69092	Loss: 173.100
-16000/69092	Loss: 177.521
-19200/69092	Loss: 176.860
-22400/69092	Loss: 174.105
-25600/69092	Loss: 175.694
-28800/69092	Loss: 176.292
-32000/69092	Loss: 172.337
-35200/69092	Loss: 173.839
-38400/69092	Loss: 175.045
-41600/69092	Loss: 178.532
-44800/69092	Loss: 178.498
-48000/69092	Loss: 176.122
-51200/69092	Loss: 172.301
-54400/69092	Loss: 173.076
-57600/69092	Loss: 175.092
-60800/69092	Loss: 174.465
-64000/69092	Loss: 170.611
-67200/69092	Loss: 177.806
-Training time 0:05:26.216188
-Epoch: 7 Average loss: 175.80
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 9)
-0/69092	Loss: 185.987
-3200/69092	Loss: 178.445
-6400/69092	Loss: 170.073
-9600/69092	Loss: 174.401
-12800/69092	Loss: 179.827
-16000/69092	Loss: 175.722
-19200/69092	Loss: 174.884
-22400/69092	Loss: 174.974
-25600/69092	Loss: 172.651
-28800/69092	Loss: 172.641
-32000/69092	Loss: 178.871
-35200/69092	Loss: 173.840
-38400/69092	Loss: 175.191
-41600/69092	Loss: 175.336
-44800/69092	Loss: 177.951
-48000/69092	Loss: 172.772
-51200/69092	Loss: 177.344
-54400/69092	Loss: 174.130
-57600/69092	Loss: 173.331
-60800/69092	Loss: 176.248
-64000/69092	Loss: 174.978
-67200/69092	Loss: 175.957
-Training time 0:05:32.889948
-Epoch: 8 Average loss: 175.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 10)
-0/69092	Loss: 195.713
-3200/69092	Loss: 172.833
-6400/69092	Loss: 173.741
-9600/69092	Loss: 177.423
-12800/69092	Loss: 179.955
-16000/69092	Loss: 174.259
-19200/69092	Loss: 177.071
-22400/69092	Loss: 173.643
-25600/69092	Loss: 173.985
-28800/69092	Loss: 177.484
-32000/69092	Loss: 175.859
-35200/69092	Loss: 172.818
-38400/69092	Loss: 178.825
-41600/69092	Loss: 174.300
-44800/69092	Loss: 175.437
-48000/69092	Loss: 175.735
-51200/69092	Loss: 174.531
-54400/69092	Loss: 173.547
-57600/69092	Loss: 174.477
-60800/69092	Loss: 175.797
-64000/69092	Loss: 173.868
-67200/69092	Loss: 174.690
-Training time 0:05:29.560786
-Epoch: 9 Average loss: 175.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 11)
-0/69092	Loss: 173.612
-3200/69092	Loss: 174.081
-6400/69092	Loss: 174.155
-9600/69092	Loss: 173.137
-12800/69092	Loss: 176.574
-16000/69092	Loss: 177.726
-19200/69092	Loss: 174.834
-22400/69092	Loss: 175.774
-25600/69092	Loss: 176.048
-28800/69092	Loss: 176.829
-32000/69092	Loss: 175.205
-35200/69092	Loss: 175.138
-38400/69092	Loss: 174.141
-41600/69092	Loss: 173.852
-44800/69092	Loss: 175.199
-48000/69092	Loss: 179.661
-51200/69092	Loss: 174.070
-54400/69092	Loss: 173.991
-57600/69092	Loss: 172.956
-60800/69092	Loss: 173.462
-64000/69092	Loss: 176.472
-67200/69092	Loss: 173.347
-Training time 0:05:42.417051
-Epoch: 10 Average loss: 175.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 12)
-0/69092	Loss: 163.116
-3200/69092	Loss: 175.304
-6400/69092	Loss: 177.005
-9600/69092	Loss: 173.286
-12800/69092	Loss: 174.734
-16000/69092	Loss: 174.939
-19200/69092	Loss: 173.188
-22400/69092	Loss: 173.347
-25600/69092	Loss: 175.969
-28800/69092	Loss: 173.679
-32000/69092	Loss: 175.613
-35200/69092	Loss: 177.046
-38400/69092	Loss: 172.615
-41600/69092	Loss: 176.622
-44800/69092	Loss: 174.378
-48000/69092	Loss: 172.333
-51200/69092	Loss: 174.156
-54400/69092	Loss: 178.344
-57600/69092	Loss: 174.554
-60800/69092	Loss: 171.129
-64000/69092	Loss: 173.789
-67200/69092	Loss: 174.153
-Training time 0:05:38.281182
-Epoch: 11 Average loss: 174.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 13)
-0/69092	Loss: 167.593
-3200/69092	Loss: 172.577
-6400/69092	Loss: 175.898
-9600/69092	Loss: 173.126
-12800/69092	Loss: 174.301
-16000/69092	Loss: 173.796
-19200/69092	Loss: 176.480
-22400/69092	Loss: 176.278
-25600/69092	Loss: 174.386
-28800/69092	Loss: 175.487
-32000/69092	Loss: 172.144
-35200/69092	Loss: 168.589
-38400/69092	Loss: 178.079
-41600/69092	Loss: 178.203
-44800/69092	Loss: 172.678
-48000/69092	Loss: 175.696
-51200/69092	Loss: 173.820
-54400/69092	Loss: 172.014
-57600/69092	Loss: 174.640
-60800/69092	Loss: 177.710
-64000/69092	Loss: 175.304
-67200/69092	Loss: 171.286
-Training time 0:05:22.413960
-Epoch: 12 Average loss: 174.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 14)
-0/69092	Loss: 180.297
-3200/69092	Loss: 171.896
-6400/69092	Loss: 173.761
-9600/69092	Loss: 176.759
-12800/69092	Loss: 174.684
-16000/69092	Loss: 173.839
-19200/69092	Loss: 174.083
-22400/69092	Loss: 175.820
-25600/69092	Loss: 176.575
-28800/69092	Loss: 173.056
-32000/69092	Loss: 173.990
-35200/69092	Loss: 171.532
-38400/69092	Loss: 177.350
-41600/69092	Loss: 174.512
-44800/69092	Loss: 175.190
-48000/69092	Loss: 171.103
-51200/69092	Loss: 177.047
-54400/69092	Loss: 177.925
-57600/69092	Loss: 173.641
-60800/69092	Loss: 176.523
-64000/69092	Loss: 173.404
-67200/69092	Loss: 172.554
-Training time 0:05:33.331409
-Epoch: 13 Average loss: 174.60
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 15)
-0/69092	Loss: 190.760
-3200/69092	Loss: 172.674
-6400/69092	Loss: 172.813
-9600/69092	Loss: 173.694
-12800/69092	Loss: 175.784
-16000/69092	Loss: 175.043
-19200/69092	Loss: 176.451
-22400/69092	Loss: 172.945
-25600/69092	Loss: 172.757
-28800/69092	Loss: 177.959
-32000/69092	Loss: 172.057
-35200/69092	Loss: 173.982
-38400/69092	Loss: 174.324
-41600/69092	Loss: 173.081
-44800/69092	Loss: 177.249
-48000/69092	Loss: 173.428
-51200/69092	Loss: 175.714
-54400/69092	Loss: 173.761
-57600/69092	Loss: 172.590
-60800/69092	Loss: 175.677
-64000/69092	Loss: 172.918
-67200/69092	Loss: 173.185
-Training time 0:05:22.947126
-Epoch: 14 Average loss: 174.21
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 16)
-0/69092	Loss: 167.152
-3200/69092	Loss: 175.923
-6400/69092	Loss: 173.443
-9600/69092	Loss: 175.274
-12800/69092	Loss: 173.762
-16000/69092	Loss: 176.352
-19200/69092	Loss: 172.607
-22400/69092	Loss: 172.997
-25600/69092	Loss: 178.061
-28800/69092	Loss: 172.353
-32000/69092	Loss: 175.860
-35200/69092	Loss: 171.380
-38400/69092	Loss: 173.802
-41600/69092	Loss: 177.668
-44800/69092	Loss: 175.795
-48000/69092	Loss: 173.208
-51200/69092	Loss: 175.804
-54400/69092	Loss: 170.799
-57600/69092	Loss: 173.943
-60800/69092	Loss: 176.869
-64000/69092	Loss: 173.862
-67200/69092	Loss: 171.966
-Training time 0:05:44.882489
-Epoch: 15 Average loss: 174.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 17)
-0/69092	Loss: 175.757
-3200/69092	Loss: 175.039
-6400/69092	Loss: 173.789
-9600/69092	Loss: 176.758
-12800/69092	Loss: 176.867
-16000/69092	Loss: 176.634
-19200/69092	Loss: 172.219
-22400/69092	Loss: 171.303
-25600/69092	Loss: 171.701
-28800/69092	Loss: 173.745
-32000/69092	Loss: 173.220
-35200/69092	Loss: 172.173
-38400/69092	Loss: 174.064
-41600/69092	Loss: 173.507
-44800/69092	Loss: 174.430
-48000/69092	Loss: 175.702
-51200/69092	Loss: 168.808
-54400/69092	Loss: 175.641
-57600/69092	Loss: 170.829
-60800/69092	Loss: 177.189
-64000/69092	Loss: 171.159
-67200/69092	Loss: 175.589
-Training time 0:05:51.200178
-Epoch: 16 Average loss: 173.88
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 18)
-0/69092	Loss: 158.718
-3200/69092	Loss: 173.612
-6400/69092	Loss: 177.566
-9600/69092	Loss: 174.291
-12800/69092	Loss: 169.936
-16000/69092	Loss: 170.902
-19200/69092	Loss: 177.548
-22400/69092	Loss: 174.334
-25600/69092	Loss: 175.364
-28800/69092	Loss: 173.103
-32000/69092	Loss: 176.042
-35200/69092	Loss: 177.162
-38400/69092	Loss: 176.477
-41600/69092	Loss: 173.526
-44800/69092	Loss: 171.050
-48000/69092	Loss: 175.433
-51200/69092	Loss: 173.217
-54400/69092	Loss: 173.919
-57600/69092	Loss: 173.317
-60800/69092	Loss: 171.425
-64000/69092	Loss: 172.770
-67200/69092	Loss: 171.839
-Training time 0:05:37.227078
-Epoch: 17 Average loss: 173.91
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 19)
-0/69092	Loss: 175.521
-3200/69092	Loss: 169.495
-6400/69092	Loss: 175.040
-9600/69092	Loss: 174.591
-12800/69092	Loss: 173.541
-16000/69092	Loss: 174.730
-19200/69092	Loss: 176.340
-22400/69092	Loss: 170.779
-25600/69092	Loss: 174.685
-28800/69092	Loss: 173.111
-32000/69092	Loss: 175.287
-35200/69092	Loss: 177.107
-38400/69092	Loss: 173.228
-41600/69092	Loss: 173.567
-44800/69092	Loss: 174.867
-48000/69092	Loss: 176.990
-51200/69092	Loss: 176.325
-54400/69092	Loss: 172.071
-57600/69092	Loss: 169.826
-60800/69092	Loss: 176.096
-64000/69092	Loss: 171.550
-67200/69092	Loss: 174.078
-Training time 0:06:00.896832
-Epoch: 18 Average loss: 173.96
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 20)
-0/69092	Loss: 181.706
-3200/69092	Loss: 174.942
-6400/69092	Loss: 174.335
-9600/69092	Loss: 175.405
-12800/69092	Loss: 174.920
-16000/69092	Loss: 174.579
-19200/69092	Loss: 174.273
-22400/69092	Loss: 175.236
-25600/69092	Loss: 172.553
-28800/69092	Loss: 173.624
-32000/69092	Loss: 173.970
-35200/69092	Loss: 174.625
-38400/69092	Loss: 176.944
-41600/69092	Loss: 177.543
-44800/69092	Loss: 171.156
-48000/69092	Loss: 175.112
-51200/69092	Loss: 168.709
-54400/69092	Loss: 173.187
-57600/69092	Loss: 173.014
-60800/69092	Loss: 173.705
-64000/69092	Loss: 172.995
-67200/69092	Loss: 172.727
-Training time 0:05:33.461102
-Epoch: 19 Average loss: 173.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 21)
-0/69092	Loss: 181.324
-3200/69092	Loss: 175.460
-6400/69092	Loss: 173.600
-9600/69092	Loss: 172.653
-12800/69092	Loss: 176.877
-16000/69092	Loss: 173.990
-19200/69092	Loss: 175.041
-22400/69092	Loss: 173.715
-25600/69092	Loss: 174.660
-28800/69092	Loss: 174.793
-32000/69092	Loss: 174.699
-35200/69092	Loss: 170.826
-38400/69092	Loss: 173.354
-41600/69092	Loss: 172.968
-44800/69092	Loss: 171.330
-48000/69092	Loss: 173.645
-51200/69092	Loss: 173.527
-54400/69092	Loss: 174.024
-57600/69092	Loss: 172.847
-60800/69092	Loss: 170.919
-64000/69092	Loss: 173.528
-67200/69092	Loss: 176.333
-Training time 0:05:41.627131
-Epoch: 20 Average loss: 173.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 22)
-0/69092	Loss: 175.522
-3200/69092	Loss: 171.681
-6400/69092	Loss: 174.306
-9600/69092	Loss: 173.824
-12800/69092	Loss: 173.190
-16000/69092	Loss: 177.138
-19200/69092	Loss: 173.399
-22400/69092	Loss: 175.519
-25600/69092	Loss: 174.662
-28800/69092	Loss: 173.911
-32000/69092	Loss: 171.048
-35200/69092	Loss: 172.223
-38400/69092	Loss: 173.460
-41600/69092	Loss: 175.998
-44800/69092	Loss: 173.967
-48000/69092	Loss: 172.762
-51200/69092	Loss: 174.501
-54400/69092	Loss: 174.181
-57600/69092	Loss: 174.943
-60800/69092	Loss: 170.237
-64000/69092	Loss: 177.731
-67200/69092	Loss: 175.039
-Training time 0:05:32.326405
-Epoch: 21 Average loss: 174.01
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 23)
-0/69092	Loss: 169.470
-3200/69092	Loss: 173.431
-6400/69092	Loss: 173.364
-9600/69092	Loss: 173.243
-12800/69092	Loss: 175.181
-16000/69092	Loss: 172.482
-19200/69092	Loss: 172.325
-22400/69092	Loss: 170.139
-25600/69092	Loss: 174.497
-28800/69092	Loss: 178.208
-32000/69092	Loss: 171.218
-35200/69092	Loss: 173.980
-38400/69092	Loss: 177.087
-41600/69092	Loss: 175.343
-44800/69092	Loss: 171.970
-48000/69092	Loss: 177.428
-51200/69092	Loss: 172.604
-54400/69092	Loss: 173.524
-57600/69092	Loss: 175.285
-60800/69092	Loss: 169.347
-64000/69092	Loss: 175.777
-67200/69092	Loss: 173.082
-Training time 0:05:41.385094
-Epoch: 22 Average loss: 173.72
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 24)
-0/69092	Loss: 170.264
-3200/69092	Loss: 175.610
-6400/69092	Loss: 173.777
-9600/69092	Loss: 174.105
-12800/69092	Loss: 173.542
-16000/69092	Loss: 173.334
-19200/69092	Loss: 170.956
-22400/69092	Loss: 177.598
-25600/69092	Loss: 176.880
-28800/69092	Loss: 172.293
-32000/69092	Loss: 174.877
-35200/69092	Loss: 171.622
-38400/69092	Loss: 172.211
-41600/69092	Loss: 172.787
-44800/69092	Loss: 176.438
-48000/69092	Loss: 173.580
-51200/69092	Loss: 173.973
-54400/69092	Loss: 174.231
-57600/69092	Loss: 176.727
-60800/69092	Loss: 172.584
-64000/69092	Loss: 171.992
-67200/69092	Loss: 172.850
-Training time 0:05:31.432612
-Epoch: 23 Average loss: 173.84
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 25)
-0/69092	Loss: 192.459
-3200/69092	Loss: 174.192
-6400/69092	Loss: 172.172
-9600/69092	Loss: 173.914
-12800/69092	Loss: 173.817
-16000/69092	Loss: 175.222
-19200/69092	Loss: 174.602
-22400/69092	Loss: 170.613
-25600/69092	Loss: 173.318
-28800/69092	Loss: 174.815
-32000/69092	Loss: 173.949
-35200/69092	Loss: 173.028
-38400/69092	Loss: 173.344
-41600/69092	Loss: 172.672
-44800/69092	Loss: 173.504
-48000/69092	Loss: 176.420
-51200/69092	Loss: 173.166
-54400/69092	Loss: 172.663
-57600/69092	Loss: 173.213
-60800/69092	Loss: 173.389
-64000/69092	Loss: 174.746
-67200/69092	Loss: 173.229
-Training time 0:05:41.747589
-Epoch: 24 Average loss: 173.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 26)
-0/69092	Loss: 187.258
-3200/69092	Loss: 174.271
-6400/69092	Loss: 169.356
-9600/69092	Loss: 173.209
-12800/69092	Loss: 171.349
-16000/69092	Loss: 176.658
-19200/69092	Loss: 175.129
-22400/69092	Loss: 169.299
-25600/69092	Loss: 176.399
-28800/69092	Loss: 177.179
-32000/69092	Loss: 175.130
-35200/69092	Loss: 175.582
-38400/69092	Loss: 171.445
-41600/69092	Loss: 173.623
-44800/69092	Loss: 173.105
-48000/69092	Loss: 174.830
-51200/69092	Loss: 173.433
-54400/69092	Loss: 174.068
-57600/69092	Loss: 172.694
-60800/69092	Loss: 172.232
-64000/69092	Loss: 170.319
-67200/69092	Loss: 175.323
-Training time 0:05:48.043514
-Epoch: 25 Average loss: 173.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 27)
-0/69092	Loss: 159.018
-3200/69092	Loss: 174.298
-6400/69092	Loss: 172.624
-9600/69092	Loss: 173.771
-12800/69092	Loss: 171.477
-16000/69092	Loss: 176.488
-19200/69092	Loss: 177.637
-22400/69092	Loss: 174.962
-25600/69092	Loss: 173.725
-28800/69092	Loss: 175.619
-32000/69092	Loss: 172.961
-35200/69092	Loss: 169.719
-38400/69092	Loss: 173.452
-41600/69092	Loss: 174.124
-44800/69092	Loss: 174.044
-48000/69092	Loss: 171.758
-51200/69092	Loss: 173.624
-54400/69092	Loss: 172.592
-57600/69092	Loss: 171.208
-60800/69092	Loss: 176.300
-64000/69092	Loss: 174.036
-67200/69092	Loss: 173.975
-Training time 0:05:29.049309
-Epoch: 26 Average loss: 173.78
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 28)
-0/69092	Loss: 160.580
-3200/69092	Loss: 175.324
-6400/69092	Loss: 174.976
-9600/69092	Loss: 174.375
-12800/69092	Loss: 173.432
-16000/69092	Loss: 173.015
-19200/69092	Loss: 174.784
-22400/69092	Loss: 170.553
-25600/69092	Loss: 174.186
-28800/69092	Loss: 178.069
-32000/69092	Loss: 175.331
-35200/69092	Loss: 177.122
-38400/69092	Loss: 173.582
-41600/69092	Loss: 170.883
-44800/69092	Loss: 168.975
-48000/69092	Loss: 171.320
-51200/69092	Loss: 171.969
-54400/69092	Loss: 171.927
-57600/69092	Loss: 175.958
-60800/69092	Loss: 177.487
-64000/69092	Loss: 171.726
-67200/69092	Loss: 173.001
-Training time 0:05:40.474273
-Epoch: 27 Average loss: 173.70
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 29)
-0/69092	Loss: 186.247
-3200/69092	Loss: 172.054
-6400/69092	Loss: 174.711
-9600/69092	Loss: 173.377
-12800/69092	Loss: 174.325
-16000/69092	Loss: 171.554
-19200/69092	Loss: 170.114
-22400/69092	Loss: 172.368
-25600/69092	Loss: 178.603
-28800/69092	Loss: 172.321
-32000/69092	Loss: 175.067
-35200/69092	Loss: 172.821
-38400/69092	Loss: 173.497
-41600/69092	Loss: 170.781
-44800/69092	Loss: 172.645
-48000/69092	Loss: 174.624
-51200/69092	Loss: 174.692
-54400/69092	Loss: 174.437
-57600/69092	Loss: 173.175
-60800/69092	Loss: 175.592
-64000/69092	Loss: 176.727
-67200/69092	Loss: 171.446
-Training time 0:05:54.306120
-Epoch: 28 Average loss: 173.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 30)
-0/69092	Loss: 177.635
-3200/69092	Loss: 176.320
-6400/69092	Loss: 173.105
-9600/69092	Loss: 173.753
-12800/69092	Loss: 173.966
-16000/69092	Loss: 173.023
-19200/69092	Loss: 177.296
-22400/69092	Loss: 171.875
-25600/69092	Loss: 172.370
-28800/69092	Loss: 171.588
-32000/69092	Loss: 174.452
-35200/69092	Loss: 172.140
-38400/69092	Loss: 172.938
-41600/69092	Loss: 171.031
-44800/69092	Loss: 174.442
-48000/69092	Loss: 169.778
-51200/69092	Loss: 175.924
-54400/69092	Loss: 172.634
-57600/69092	Loss: 173.484
-60800/69092	Loss: 175.750
-64000/69092	Loss: 174.191
-67200/69092	Loss: 172.983
-Training time 0:05:23.217377
-Epoch: 29 Average loss: 173.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 31)
-0/69092	Loss: 177.443
-3200/69092	Loss: 172.360
-6400/69092	Loss: 171.361
-9600/69092	Loss: 171.755
-12800/69092	Loss: 174.928
-16000/69092	Loss: 174.394
-19200/69092	Loss: 174.640
-22400/69092	Loss: 171.706
-25600/69092	Loss: 174.741
-28800/69092	Loss: 172.728
-32000/69092	Loss: 175.243
-35200/69092	Loss: 170.282
-38400/69092	Loss: 173.597
-41600/69092	Loss: 175.927
-44800/69092	Loss: 171.773
-48000/69092	Loss: 172.405
-51200/69092	Loss: 176.730
-54400/69092	Loss: 176.713
-57600/69092	Loss: 172.287
-60800/69092	Loss: 173.667
-64000/69092	Loss: 172.699
-67200/69092	Loss: 174.272
-Training time 0:05:40.304543
-Epoch: 30 Average loss: 173.62
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 32)
-0/69092	Loss: 191.708
-3200/69092	Loss: 173.430
-6400/69092	Loss: 173.703
-9600/69092	Loss: 171.621
-12800/69092	Loss: 175.206
-16000/69092	Loss: 173.444
-19200/69092	Loss: 173.582
-22400/69092	Loss: 172.806
-25600/69092	Loss: 175.794
-28800/69092	Loss: 171.370
-32000/69092	Loss: 172.763
-35200/69092	Loss: 173.796
-38400/69092	Loss: 172.945
-41600/69092	Loss: 171.384
-44800/69092	Loss: 174.757
-48000/69092	Loss: 173.012
-51200/69092	Loss: 173.523
-54400/69092	Loss: 177.514
-57600/69092	Loss: 174.484
-60800/69092	Loss: 173.689
-64000/69092	Loss: 175.510
-67200/69092	Loss: 171.662
-Training time 0:05:25.356098
-Epoch: 31 Average loss: 173.58
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 33)
-0/69092	Loss: 196.864
-3200/69092	Loss: 174.341
-6400/69092	Loss: 173.206
-9600/69092	Loss: 175.148
-12800/69092	Loss: 174.531
-16000/69092	Loss: 173.104
-19200/69092	Loss: 174.909
-22400/69092	Loss: 171.156
-25600/69092	Loss: 172.036
-28800/69092	Loss: 173.442
-32000/69092	Loss: 172.939
-35200/69092	Loss: 173.429
-38400/69092	Loss: 174.354
-41600/69092	Loss: 174.152
-44800/69092	Loss: 173.010
-48000/69092	Loss: 173.626
-51200/69092	Loss: 169.262
-54400/69092	Loss: 170.032
-57600/69092	Loss: 178.830
-60800/69092	Loss: 176.600
-64000/69092	Loss: 172.144
-67200/69092	Loss: 172.936
-Training time 0:05:23.495012
-Epoch: 32 Average loss: 173.53
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 34)
-0/69092	Loss: 166.554
-3200/69092	Loss: 174.301
-6400/69092	Loss: 173.805
-9600/69092	Loss: 171.245
-12800/69092	Loss: 174.749
-16000/69092	Loss: 175.356
-19200/69092	Loss: 173.674
-22400/69092	Loss: 171.741
-25600/69092	Loss: 174.273
-28800/69092	Loss: 174.210
-32000/69092	Loss: 171.078
-35200/69092	Loss: 175.898
-38400/69092	Loss: 178.527
-41600/69092	Loss: 174.504
-44800/69092	Loss: 174.795
-48000/69092	Loss: 171.500
-51200/69092	Loss: 173.709
-54400/69092	Loss: 171.968
-57600/69092	Loss: 174.119
-60800/69092	Loss: 175.209
-64000/69092	Loss: 171.790
-67200/69092	Loss: 173.900
-Training time 0:05:39.295017
-Epoch: 33 Average loss: 173.71
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 35)
-0/69092	Loss: 186.714
-3200/69092	Loss: 176.883
-6400/69092	Loss: 172.812
-9600/69092	Loss: 171.623
-12800/69092	Loss: 174.599
-16000/69092	Loss: 173.348
-19200/69092	Loss: 173.608
-22400/69092	Loss: 172.481
-25600/69092	Loss: 175.913
-28800/69092	Loss: 174.323
-32000/69092	Loss: 172.932
-35200/69092	Loss: 172.995
-38400/69092	Loss: 173.248
-41600/69092	Loss: 172.981
-44800/69092	Loss: 172.659
-48000/69092	Loss: 173.360
-51200/69092	Loss: 171.643
-54400/69092	Loss: 173.445
-57600/69092	Loss: 174.796
-60800/69092	Loss: 174.537
-64000/69092	Loss: 173.874
-67200/69092	Loss: 172.268
-Training time 0:05:44.055745
-Epoch: 34 Average loss: 173.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 36)
-0/69092	Loss: 164.509
-3200/69092	Loss: 169.188
-6400/69092	Loss: 173.661
-9600/69092	Loss: 172.126
-12800/69092	Loss: 175.549
-16000/69092	Loss: 173.874
-19200/69092	Loss: 174.934
-22400/69092	Loss: 172.382
-25600/69092	Loss: 171.855
-28800/69092	Loss: 172.607
-32000/69092	Loss: 174.699
-35200/69092	Loss: 170.735
-38400/69092	Loss: 172.636
-41600/69092	Loss: 174.432
-44800/69092	Loss: 171.385
-48000/69092	Loss: 176.124
-51200/69092	Loss: 172.042
-54400/69092	Loss: 175.066
-57600/69092	Loss: 174.499
-60800/69092	Loss: 174.652
-64000/69092	Loss: 173.362
-67200/69092	Loss: 176.318
-Training time 0:05:29.571042
-Epoch: 35 Average loss: 173.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 37)
-0/69092	Loss: 184.585
-3200/69092	Loss: 175.565
-6400/69092	Loss: 172.125
-9600/69092	Loss: 170.228
-12800/69092	Loss: 171.469
-16000/69092	Loss: 172.525
-19200/69092	Loss: 173.128
-22400/69092	Loss: 172.829
-25600/69092	Loss: 173.167
-28800/69092	Loss: 170.336
-32000/69092	Loss: 175.812
-35200/69092	Loss: 173.563
-38400/69092	Loss: 177.054
-41600/69092	Loss: 173.328
-44800/69092	Loss: 173.700
-48000/69092	Loss: 173.092
-51200/69092	Loss: 172.745
-54400/69092	Loss: 170.423
-57600/69092	Loss: 172.372
-60800/69092	Loss: 171.590
-64000/69092	Loss: 175.804
-67200/69092	Loss: 171.773
-Training time 0:05:51.309468
-Epoch: 36 Average loss: 173.09
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 38)
-0/69092	Loss: 173.427
-3200/69092	Loss: 173.175
-6400/69092	Loss: 172.144
-9600/69092	Loss: 173.344
-12800/69092	Loss: 174.643
-16000/69092	Loss: 178.121
-19200/69092	Loss: 173.095
-22400/69092	Loss: 174.251
-25600/69092	Loss: 172.400
-28800/69092	Loss: 174.409
-32000/69092	Loss: 177.024
-35200/69092	Loss: 171.541
-38400/69092	Loss: 175.171
-41600/69092	Loss: 171.738
-44800/69092	Loss: 174.493
-48000/69092	Loss: 173.316
-51200/69092	Loss: 170.099
-54400/69092	Loss: 173.562
-57600/69092	Loss: 170.568
-60800/69092	Loss: 172.148
-64000/69092	Loss: 173.017
-67200/69092	Loss: 173.565
-Training time 0:05:40.488864
-Epoch: 37 Average loss: 173.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 39)
-0/69092	Loss: 186.108
-3200/69092	Loss: 170.907
-6400/69092	Loss: 173.202
-9600/69092	Loss: 178.612
-12800/69092	Loss: 171.577
-16000/69092	Loss: 172.614
-19200/69092	Loss: 173.740
-22400/69092	Loss: 176.534
-25600/69092	Loss: 174.375
-28800/69092	Loss: 173.829
-32000/69092	Loss: 171.273
-35200/69092	Loss: 172.430
-38400/69092	Loss: 172.139
-41600/69092	Loss: 171.459
-44800/69092	Loss: 174.351
-48000/69092	Loss: 173.663
-51200/69092	Loss: 174.352
-54400/69092	Loss: 170.678
-57600/69092	Loss: 170.146
-60800/69092	Loss: 173.981
-64000/69092	Loss: 174.069
-67200/69092	Loss: 171.602
-Training time 0:05:40.008656
-Epoch: 38 Average loss: 173.15
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 40)
-0/69092	Loss: 187.263
-3200/69092	Loss: 174.044
-6400/69092	Loss: 171.880
-9600/69092	Loss: 170.916
-12800/69092	Loss: 172.835
-16000/69092	Loss: 169.904
-19200/69092	Loss: 173.127
-22400/69092	Loss: 172.923
-25600/69092	Loss: 175.621
-28800/69092	Loss: 177.994
-32000/69092	Loss: 172.789
-35200/69092	Loss: 174.507
-38400/69092	Loss: 174.986
-41600/69092	Loss: 171.516
-44800/69092	Loss: 170.562
-48000/69092	Loss: 174.539
-51200/69092	Loss: 173.680
-54400/69092	Loss: 172.400
-57600/69092	Loss: 172.262
-60800/69092	Loss: 174.315
-64000/69092	Loss: 171.795
-67200/69092	Loss: 173.152
-Training time 0:05:33.916960
-Epoch: 39 Average loss: 173.26
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 41)
-0/69092	Loss: 180.096
-3200/69092	Loss: 174.381
-6400/69092	Loss: 170.518
-9600/69092	Loss: 172.870
-12800/69092	Loss: 172.021
-16000/69092	Loss: 172.750
-19200/69092	Loss: 170.749
-22400/69092	Loss: 172.568
-25600/69092	Loss: 175.968
-28800/69092	Loss: 172.411
-32000/69092	Loss: 176.875
-35200/69092	Loss: 171.088
-38400/69092	Loss: 172.786
-41600/69092	Loss: 177.546
-44800/69092	Loss: 174.277
-48000/69092	Loss: 175.076
-51200/69092	Loss: 170.425
-54400/69092	Loss: 172.672
-57600/69092	Loss: 177.248
-60800/69092	Loss: 173.309
-64000/69092	Loss: 170.583
-67200/69092	Loss: 173.451
-Training time 0:05:47.549711
-Epoch: 40 Average loss: 173.44
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 42)
-0/69092	Loss: 166.892
-3200/69092	Loss: 169.907
-6400/69092	Loss: 174.729
-9600/69092	Loss: 174.300
-12800/69092	Loss: 171.541
-16000/69092	Loss: 169.615
-19200/69092	Loss: 171.974
-22400/69092	Loss: 170.669
-25600/69092	Loss: 175.969
-28800/69092	Loss: 173.754
-32000/69092	Loss: 172.225
-35200/69092	Loss: 172.512
-38400/69092	Loss: 173.071
-41600/69092	Loss: 170.008
-44800/69092	Loss: 171.252
-48000/69092	Loss: 170.339
-51200/69092	Loss: 172.338
-54400/69092	Loss: 174.364
-57600/69092	Loss: 173.408
-60800/69092	Loss: 170.907
-64000/69092	Loss: 172.668
-67200/69092	Loss: 173.325
-Training time 0:05:35.665365
-Epoch: 41 Average loss: 172.28
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 43)
-0/69092	Loss: 183.274
-3200/69092	Loss: 172.073
-6400/69092	Loss: 175.359
-9600/69092	Loss: 170.925
-12800/69092	Loss: 174.301
-16000/69092	Loss: 172.649
-19200/69092	Loss: 170.175
-22400/69092	Loss: 171.567
-25600/69092	Loss: 170.073
-28800/69092	Loss: 170.343
-32000/69092	Loss: 166.742
-35200/69092	Loss: 172.750
-38400/69092	Loss: 171.848
-41600/69092	Loss: 171.209
-44800/69092	Loss: 169.259
-48000/69092	Loss: 174.016
-51200/69092	Loss: 171.689
-54400/69092	Loss: 168.837
-57600/69092	Loss: 168.469
-60800/69092	Loss: 169.180
-64000/69092	Loss: 174.771
-67200/69092	Loss: 173.935
-Training time 0:05:54.282279
-Epoch: 42 Average loss: 171.47
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 44)
-0/69092	Loss: 167.563
-3200/69092	Loss: 167.655
-6400/69092	Loss: 170.149
-9600/69092	Loss: 171.828
-12800/69092	Loss: 172.133
-16000/69092	Loss: 171.540
-19200/69092	Loss: 166.793
-22400/69092	Loss: 171.767
-25600/69092	Loss: 171.824
-28800/69092	Loss: 169.961
-32000/69092	Loss: 172.404
-35200/69092	Loss: 171.086
-38400/69092	Loss: 171.440
-41600/69092	Loss: 171.000
-44800/69092	Loss: 167.727
-48000/69092	Loss: 168.990
-51200/69092	Loss: 169.421
-54400/69092	Loss: 171.666
-57600/69092	Loss: 172.731
-60800/69092	Loss: 168.360
-64000/69092	Loss: 169.549
-67200/69092	Loss: 170.794
-Training time 0:05:54.221089
-Epoch: 43 Average loss: 170.41
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 45)
-0/69092	Loss: 173.246
-3200/69092	Loss: 171.212
-6400/69092	Loss: 171.112
-9600/69092	Loss: 171.287
-12800/69092	Loss: 173.460
-16000/69092	Loss: 170.604
-19200/69092	Loss: 170.470
-22400/69092	Loss: 169.744
-25600/69092	Loss: 169.659
-28800/69092	Loss: 170.463
-32000/69092	Loss: 167.962
-35200/69092	Loss: 168.192
-38400/69092	Loss: 169.308
-41600/69092	Loss: 166.174
-44800/69092	Loss: 167.972
-48000/69092	Loss: 167.101
-51200/69092	Loss: 168.082
-54400/69092	Loss: 168.402
-57600/69092	Loss: 167.455
-60800/69092	Loss: 168.489
-64000/69092	Loss: 168.424
-67200/69092	Loss: 166.649
-Training time 0:05:42.435056
-Epoch: 44 Average loss: 169.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 46)
-0/69092	Loss: 153.235
-3200/69092	Loss: 167.863
-6400/69092	Loss: 168.738
-9600/69092	Loss: 170.254
-12800/69092	Loss: 165.962
-16000/69092	Loss: 169.147
-19200/69092	Loss: 165.075
-22400/69092	Loss: 166.501
-25600/69092	Loss: 167.458
-28800/69092	Loss: 170.880
-32000/69092	Loss: 166.437
-35200/69092	Loss: 166.887
-38400/69092	Loss: 169.201
-41600/69092	Loss: 167.544
-44800/69092	Loss: 167.635
-48000/69092	Loss: 164.696
-51200/69092	Loss: 167.352
-54400/69092	Loss: 168.781
-57600/69092	Loss: 169.274
-60800/69092	Loss: 170.615
-64000/69092	Loss: 167.813
-67200/69092	Loss: 167.527
-Training time 0:05:32.692638
-Epoch: 45 Average loss: 167.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 47)
-0/69092	Loss: 157.577
-3200/69092	Loss: 168.256
-6400/69092	Loss: 170.025
-9600/69092	Loss: 170.829
-12800/69092	Loss: 164.074
-16000/69092	Loss: 167.900
-19200/69092	Loss: 168.318
-22400/69092	Loss: 167.668
-25600/69092	Loss: 165.187
-28800/69092	Loss: 164.678
-32000/69092	Loss: 167.627
-35200/69092	Loss: 165.355
-38400/69092	Loss: 165.897
-41600/69092	Loss: 167.423
-44800/69092	Loss: 166.143
-48000/69092	Loss: 165.399
-51200/69092	Loss: 166.400
-54400/69092	Loss: 165.740
-57600/69092	Loss: 167.359
-60800/69092	Loss: 167.019
-64000/69092	Loss: 164.991
-67200/69092	Loss: 165.534
-Training time 0:05:40.355541
-Epoch: 46 Average loss: 166.73
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 48)
-0/69092	Loss: 167.794
-3200/69092	Loss: 166.358
-6400/69092	Loss: 167.976
-9600/69092	Loss: 161.915
-12800/69092	Loss: 170.618
-16000/69092	Loss: 169.478
-19200/69092	Loss: 168.012
-22400/69092	Loss: 168.640
-25600/69092	Loss: 166.508
-28800/69092	Loss: 164.664
-32000/69092	Loss: 165.563
-35200/69092	Loss: 165.242
-38400/69092	Loss: 165.173
-41600/69092	Loss: 166.427
-44800/69092	Loss: 164.840
-48000/69092	Loss: 164.091
-51200/69092	Loss: 165.624
-54400/69092	Loss: 167.620
-57600/69092	Loss: 167.491
-60800/69092	Loss: 167.892
-64000/69092	Loss: 166.079
-67200/69092	Loss: 165.601
-Training time 0:05:39.830287
-Epoch: 47 Average loss: 166.56
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 49)
-0/69092	Loss: 160.000
-3200/69092	Loss: 168.413
-6400/69092	Loss: 166.428
-9600/69092	Loss: 167.653
-12800/69092	Loss: 166.982
-16000/69092	Loss: 167.007
-19200/69092	Loss: 166.679
-22400/69092	Loss: 166.577
-25600/69092	Loss: 165.914
-28800/69092	Loss: 165.350
-32000/69092	Loss: 164.527
-35200/69092	Loss: 164.677
-38400/69092	Loss: 169.371
-41600/69092	Loss: 165.501
-44800/69092	Loss: 165.035
-48000/69092	Loss: 167.083
-51200/69092	Loss: 165.342
-54400/69092	Loss: 168.917
-57600/69092	Loss: 164.038
-60800/69092	Loss: 162.979
-64000/69092	Loss: 163.487
-67200/69092	Loss: 165.938
-Training time 0:05:38.988145
-Epoch: 48 Average loss: 166.13
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 50)
-0/69092	Loss: 154.051
-3200/69092	Loss: 168.800
-6400/69092	Loss: 164.603
-9600/69092	Loss: 168.144
-12800/69092	Loss: 166.208
-16000/69092	Loss: 167.659
-19200/69092	Loss: 162.595
-22400/69092	Loss: 166.029
-25600/69092	Loss: 169.441
-28800/69092	Loss: 164.896
-32000/69092	Loss: 163.644
-35200/69092	Loss: 169.101
-38400/69092	Loss: 164.853
-41600/69092	Loss: 166.421
-44800/69092	Loss: 166.245
-48000/69092	Loss: 166.465
-51200/69092	Loss: 165.259
-54400/69092	Loss: 164.067
-57600/69092	Loss: 165.839
-60800/69092	Loss: 165.805
-64000/69092	Loss: 164.429
-67200/69092	Loss: 165.264
-Training time 0:05:57.260261
-Epoch: 49 Average loss: 165.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 51)
-0/69092	Loss: 181.015
-3200/69092	Loss: 164.637
-6400/69092	Loss: 164.384
-9600/69092	Loss: 166.718
-12800/69092	Loss: 167.925
-16000/69092	Loss: 164.983
-19200/69092	Loss: 166.862
-22400/69092	Loss: 164.006
-25600/69092	Loss: 168.377
-28800/69092	Loss: 164.324
-32000/69092	Loss: 163.546
-35200/69092	Loss: 164.518
-38400/69092	Loss: 163.273
-41600/69092	Loss: 162.711
-44800/69092	Loss: 167.412
-48000/69092	Loss: 166.993
-51200/69092	Loss: 166.282
-54400/69092	Loss: 167.241
-57600/69092	Loss: 162.450
-60800/69092	Loss: 165.818
-64000/69092	Loss: 164.673
-67200/69092	Loss: 167.188
-Training time 0:05:50.119307
-Epoch: 50 Average loss: 165.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 52)
-0/69092	Loss: 198.353
-3200/69092	Loss: 168.760
-6400/69092	Loss: 163.387
-9600/69092	Loss: 165.692
-12800/69092	Loss: 164.378
-16000/69092	Loss: 166.856
-19200/69092	Loss: 165.326
-22400/69092	Loss: 164.655
-25600/69092	Loss: 164.794
-28800/69092	Loss: 165.226
-32000/69092	Loss: 166.955
-35200/69092	Loss: 161.901
-38400/69092	Loss: 164.587
-41600/69092	Loss: 164.124
-44800/69092	Loss: 166.599
-48000/69092	Loss: 163.628
-51200/69092	Loss: 166.996
-54400/69092	Loss: 166.418
-57600/69092	Loss: 165.492
-60800/69092	Loss: 165.077
-64000/69092	Loss: 162.775
-67200/69092	Loss: 166.733
-Training time 0:05:36.376033
-Epoch: 51 Average loss: 165.16
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 53)
-0/69092	Loss: 143.459
-3200/69092	Loss: 163.731
-6400/69092	Loss: 163.375
-9600/69092	Loss: 168.696
-12800/69092	Loss: 165.597
-16000/69092	Loss: 165.569
-19200/69092	Loss: 166.215
-22400/69092	Loss: 167.393
-25600/69092	Loss: 167.570
-28800/69092	Loss: 163.246
-32000/69092	Loss: 166.556
-35200/69092	Loss: 162.497
-38400/69092	Loss: 166.182
-41600/69092	Loss: 167.587
-44800/69092	Loss: 161.856
-48000/69092	Loss: 163.982
-51200/69092	Loss: 165.737
-54400/69092	Loss: 163.250
-57600/69092	Loss: 165.125
-60800/69092	Loss: 163.595
-64000/69092	Loss: 162.587
-67200/69092	Loss: 165.027
-Training time 0:05:40.020361
-Epoch: 52 Average loss: 165.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 54)
-0/69092	Loss: 150.567
-3200/69092	Loss: 166.590
-6400/69092	Loss: 166.091
-9600/69092	Loss: 162.325
-12800/69092	Loss: 165.441
-16000/69092	Loss: 162.639
-19200/69092	Loss: 166.093
-22400/69092	Loss: 163.996
-25600/69092	Loss: 164.310
-28800/69092	Loss: 165.598
-32000/69092	Loss: 165.352
-35200/69092	Loss: 163.505
-38400/69092	Loss: 163.557
-41600/69092	Loss: 165.363
-44800/69092	Loss: 167.443
-48000/69092	Loss: 163.115
-51200/69092	Loss: 164.136
-54400/69092	Loss: 169.178
-57600/69092	Loss: 161.254
-60800/69092	Loss: 165.040
-64000/69092	Loss: 163.431
-67200/69092	Loss: 163.072
-Training time 0:05:34.292027
-Epoch: 53 Average loss: 164.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 55)
-0/69092	Loss: 179.397
-3200/69092	Loss: 169.331
-6400/69092	Loss: 165.416
-9600/69092	Loss: 163.820
-12800/69092	Loss: 164.717
-16000/69092	Loss: 167.858
-19200/69092	Loss: 165.986
-22400/69092	Loss: 162.102
-25600/69092	Loss: 162.791
-28800/69092	Loss: 162.377
-32000/69092	Loss: 161.870
-35200/69092	Loss: 164.394
-38400/69092	Loss: 167.809
-41600/69092	Loss: 162.293
-44800/69092	Loss: 164.169
-48000/69092	Loss: 163.266
-51200/69092	Loss: 164.188
-54400/69092	Loss: 164.553
-57600/69092	Loss: 163.790
-60800/69092	Loss: 163.379
-64000/69092	Loss: 163.940
-67200/69092	Loss: 163.795
-Training time 0:05:52.653168
-Epoch: 54 Average loss: 164.30
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 56)
-0/69092	Loss: 158.589
-3200/69092	Loss: 164.807
-6400/69092	Loss: 161.015
-9600/69092	Loss: 162.975
-12800/69092	Loss: 164.167
-16000/69092	Loss: 162.519
-19200/69092	Loss: 166.933
-22400/69092	Loss: 162.555
-25600/69092	Loss: 163.479
-28800/69092	Loss: 163.457
-32000/69092	Loss: 167.122
-35200/69092	Loss: 165.168
-38400/69092	Loss: 162.780
-41600/69092	Loss: 162.968
-44800/69092	Loss: 162.150
-48000/69092	Loss: 164.946
-51200/69092	Loss: 163.820
-54400/69092	Loss: 164.089
-57600/69092	Loss: 163.518
-60800/69092	Loss: 162.881
-64000/69092	Loss: 159.904
-67200/69092	Loss: 162.548
-Training time 0:05:52.862775
-Epoch: 55 Average loss: 163.54
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 57)
-0/69092	Loss: 150.236
-3200/69092	Loss: 162.965
-6400/69092	Loss: 161.524
-9600/69092	Loss: 165.274
-12800/69092	Loss: 162.213
-16000/69092	Loss: 162.425
-19200/69092	Loss: 163.687
-22400/69092	Loss: 161.616
-25600/69092	Loss: 160.336
-28800/69092	Loss: 166.733
-32000/69092	Loss: 165.842
-35200/69092	Loss: 164.410
-38400/69092	Loss: 164.495
-41600/69092	Loss: 164.165
-44800/69092	Loss: 160.374
-48000/69092	Loss: 160.507
-51200/69092	Loss: 161.214
-54400/69092	Loss: 162.758
-57600/69092	Loss: 163.086
-60800/69092	Loss: 163.382
-64000/69092	Loss: 161.542
-67200/69092	Loss: 160.924
-Training time 0:05:42.539817
-Epoch: 56 Average loss: 162.94
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 58)
-0/69092	Loss: 139.150
-3200/69092	Loss: 159.976
-6400/69092	Loss: 164.714
-9600/69092	Loss: 158.648
-12800/69092	Loss: 163.976
-16000/69092	Loss: 163.032
-19200/69092	Loss: 165.323
-22400/69092	Loss: 162.589
-25600/69092	Loss: 161.895
-28800/69092	Loss: 161.899
-32000/69092	Loss: 161.471
-35200/69092	Loss: 162.316
-38400/69092	Loss: 159.002
-41600/69092	Loss: 161.996
-44800/69092	Loss: 162.421
-48000/69092	Loss: 161.444
-51200/69092	Loss: 162.999
-54400/69092	Loss: 160.922
-57600/69092	Loss: 164.080
-60800/69092	Loss: 163.423
-64000/69092	Loss: 163.086
-67200/69092	Loss: 163.945
-Training time 0:05:46.353508
-Epoch: 57 Average loss: 162.38
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 59)
-0/69092	Loss: 178.841
-3200/69092	Loss: 162.692
-6400/69092	Loss: 159.783
-9600/69092	Loss: 160.010
-12800/69092	Loss: 163.379
-16000/69092	Loss: 160.886
-19200/69092	Loss: 162.199
-22400/69092	Loss: 162.560
-25600/69092	Loss: 168.001
-28800/69092	Loss: 161.574
-32000/69092	Loss: 160.602
-35200/69092	Loss: 160.272
-38400/69092	Loss: 158.592
-41600/69092	Loss: 162.144
-44800/69092	Loss: 161.838
-48000/69092	Loss: 164.109
-51200/69092	Loss: 162.542
-54400/69092	Loss: 158.274
-57600/69092	Loss: 159.163
-60800/69092	Loss: 163.266
-64000/69092	Loss: 162.224
-67200/69092	Loss: 165.458
-Training time 0:05:39.626714
-Epoch: 58 Average loss: 161.89
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 60)
-0/69092	Loss: 166.984
-3200/69092	Loss: 162.239
-6400/69092	Loss: 162.115
-9600/69092	Loss: 162.349
-12800/69092	Loss: 159.904
-16000/69092	Loss: 158.859
-19200/69092	Loss: 162.854
-22400/69092	Loss: 160.167
-25600/69092	Loss: 160.621
-28800/69092	Loss: 158.050
-32000/69092	Loss: 162.151
-35200/69092	Loss: 161.174
-38400/69092	Loss: 160.051
-41600/69092	Loss: 162.315
-44800/69092	Loss: 161.528
-48000/69092	Loss: 162.895
-51200/69092	Loss: 162.563
-54400/69092	Loss: 163.136
-57600/69092	Loss: 160.897
-60800/69092	Loss: 162.557
-64000/69092	Loss: 160.214
-67200/69092	Loss: 163.037
-Training time 0:05:33.048844
-Epoch: 59 Average loss: 161.45
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 61)
-0/69092	Loss: 149.507
-3200/69092	Loss: 160.715
-6400/69092	Loss: 161.707
-9600/69092	Loss: 161.779
-12800/69092	Loss: 160.168
-16000/69092	Loss: 160.552
-19200/69092	Loss: 159.908
-22400/69092	Loss: 161.218
-25600/69092	Loss: 163.683
-28800/69092	Loss: 159.321
-32000/69092	Loss: 159.532
-35200/69092	Loss: 159.671
-38400/69092	Loss: 161.547
-41600/69092	Loss: 158.484
-44800/69092	Loss: 159.405
-48000/69092	Loss: 161.779
-51200/69092	Loss: 159.974
-54400/69092	Loss: 162.963
-57600/69092	Loss: 160.340
-60800/69092	Loss: 161.868
-64000/69092	Loss: 158.539
-67200/69092	Loss: 160.137
-Training time 0:05:40.333830
-Epoch: 60 Average loss: 160.77
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 62)
-0/69092	Loss: 168.603
-3200/69092	Loss: 159.598
-6400/69092	Loss: 160.441
-9600/69092	Loss: 159.780
-12800/69092	Loss: 164.112
-16000/69092	Loss: 163.368
-19200/69092	Loss: 160.479
-22400/69092	Loss: 162.530
-25600/69092	Loss: 161.251
-28800/69092	Loss: 162.324
-32000/69092	Loss: 162.983
-35200/69092	Loss: 163.757
-38400/69092	Loss: 159.764
-41600/69092	Loss: 160.018
-44800/69092	Loss: 160.194
-48000/69092	Loss: 158.096
-51200/69092	Loss: 161.157
-54400/69092	Loss: 159.922
-57600/69092	Loss: 160.651
-60800/69092	Loss: 157.688
-64000/69092	Loss: 159.952
-67200/69092	Loss: 160.075
-Training time 0:05:45.995703
-Epoch: 61 Average loss: 160.82
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 63)
-0/69092	Loss: 164.432
-3200/69092	Loss: 159.754
-6400/69092	Loss: 159.381
-9600/69092	Loss: 161.880
-12800/69092	Loss: 161.369
-16000/69092	Loss: 157.463
-19200/69092	Loss: 161.791
-22400/69092	Loss: 159.944
-25600/69092	Loss: 160.871
-28800/69092	Loss: 162.126
-32000/69092	Loss: 162.310
-35200/69092	Loss: 161.692
-38400/69092	Loss: 162.270
-41600/69092	Loss: 158.490
-44800/69092	Loss: 162.484
-48000/69092	Loss: 158.736
-51200/69092	Loss: 158.702
-54400/69092	Loss: 160.241
-57600/69092	Loss: 160.938
-60800/69092	Loss: 158.529
-64000/69092	Loss: 161.997
-67200/69092	Loss: 161.102
-Training time 0:05:40.618788
-Epoch: 62 Average loss: 160.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 64)
-0/69092	Loss: 154.568
-3200/69092	Loss: 160.887
-6400/69092	Loss: 161.419
-9600/69092	Loss: 159.361
-12800/69092	Loss: 159.252
-16000/69092	Loss: 160.597
-19200/69092	Loss: 158.492
-22400/69092	Loss: 160.724
-25600/69092	Loss: 163.020
-28800/69092	Loss: 159.280
-32000/69092	Loss: 160.119
-35200/69092	Loss: 157.753
-38400/69092	Loss: 159.272
-41600/69092	Loss: 161.015
-44800/69092	Loss: 159.210
-48000/69092	Loss: 160.275
-51200/69092	Loss: 160.902
-54400/69092	Loss: 157.824
-57600/69092	Loss: 161.885
-60800/69092	Loss: 161.744
-64000/69092	Loss: 162.985
-67200/69092	Loss: 160.771
-Training time 0:05:53.095656
-Epoch: 63 Average loss: 160.34
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 65)
-0/69092	Loss: 172.859
-3200/69092	Loss: 162.614
-6400/69092	Loss: 159.534
-9600/69092	Loss: 161.002
-12800/69092	Loss: 162.184
-16000/69092	Loss: 160.792
-19200/69092	Loss: 160.219
-22400/69092	Loss: 161.261
-25600/69092	Loss: 161.704
-28800/69092	Loss: 157.483
-32000/69092	Loss: 159.020
-35200/69092	Loss: 161.533
-38400/69092	Loss: 158.825
-41600/69092	Loss: 158.501
-44800/69092	Loss: 159.131
-48000/69092	Loss: 159.244
-51200/69092	Loss: 160.231
-54400/69092	Loss: 160.575
-57600/69092	Loss: 159.540
-60800/69092	Loss: 160.942
-64000/69092	Loss: 160.067
-67200/69092	Loss: 162.011
-Training time 0:05:34.212499
-Epoch: 64 Average loss: 160.41
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 66)
-0/69092	Loss: 139.824
-3200/69092	Loss: 158.205
-6400/69092	Loss: 160.618
-9600/69092	Loss: 156.324
-12800/69092	Loss: 162.737
-16000/69092	Loss: 160.543
-19200/69092	Loss: 161.895
-22400/69092	Loss: 162.182
-25600/69092	Loss: 158.472
-28800/69092	Loss: 158.899
-32000/69092	Loss: 156.941
-35200/69092	Loss: 159.754
-38400/69092	Loss: 161.669
-41600/69092	Loss: 159.106
-44800/69092	Loss: 160.160
-48000/69092	Loss: 161.184
-51200/69092	Loss: 159.042
-54400/69092	Loss: 156.636
-57600/69092	Loss: 163.306
-60800/69092	Loss: 159.992
-64000/69092	Loss: 160.094
-67200/69092	Loss: 163.599
-Training time 0:05:32.575799
-Epoch: 65 Average loss: 160.05
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 67)
-0/69092	Loss: 155.559
-3200/69092	Loss: 162.071
-6400/69092	Loss: 158.085
-9600/69092	Loss: 163.591
-12800/69092	Loss: 160.074
-16000/69092	Loss: 162.083
-19200/69092	Loss: 160.218
-22400/69092	Loss: 160.989
-25600/69092	Loss: 160.541
-28800/69092	Loss: 156.759
-32000/69092	Loss: 157.632
-35200/69092	Loss: 160.790
-38400/69092	Loss: 158.259
-41600/69092	Loss: 161.889
-44800/69092	Loss: 162.124
-48000/69092	Loss: 159.639
-51200/69092	Loss: 159.816
-54400/69092	Loss: 157.599
-57600/69092	Loss: 160.068
-60800/69092	Loss: 160.466
-64000/69092	Loss: 160.161
-67200/69092	Loss: 161.598
-Training time 0:05:33.207884
-Epoch: 66 Average loss: 160.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 68)
-0/69092	Loss: 154.558
-3200/69092	Loss: 161.224
-6400/69092	Loss: 160.700
-9600/69092	Loss: 160.048
-12800/69092	Loss: 160.292
-16000/69092	Loss: 161.326
-19200/69092	Loss: 158.982
-22400/69092	Loss: 161.091
-25600/69092	Loss: 162.158
-28800/69092	Loss: 158.306
-32000/69092	Loss: 161.938
-35200/69092	Loss: 158.099
-38400/69092	Loss: 160.225
-41600/69092	Loss: 161.799
-44800/69092	Loss: 159.889
-48000/69092	Loss: 161.780
-51200/69092	Loss: 157.643
-54400/69092	Loss: 161.322
-57600/69092	Loss: 159.164
-60800/69092	Loss: 158.339
-64000/69092	Loss: 159.711
-67200/69092	Loss: 159.860
-Training time 0:05:33.566629
-Epoch: 67 Average loss: 160.19
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 69)
-0/69092	Loss: 169.675
-3200/69092	Loss: 160.542
-6400/69092	Loss: 158.814
-9600/69092	Loss: 160.833
-12800/69092	Loss: 163.534
-16000/69092	Loss: 158.616
-19200/69092	Loss: 157.820
-22400/69092	Loss: 162.494
-25600/69092	Loss: 159.611
-28800/69092	Loss: 159.206
-32000/69092	Loss: 163.601
-35200/69092	Loss: 160.216
-38400/69092	Loss: 158.062
-41600/69092	Loss: 160.071
-44800/69092	Loss: 161.188
-48000/69092	Loss: 161.149
-51200/69092	Loss: 159.584
-54400/69092	Loss: 158.012
-57600/69092	Loss: 159.519
-60800/69092	Loss: 160.839
-64000/69092	Loss: 160.357
-67200/69092	Loss: 160.408
-Training time 0:05:35.774903
-Epoch: 68 Average loss: 160.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 70)
-0/69092	Loss: 161.484
-3200/69092	Loss: 161.311
-6400/69092	Loss: 159.259
-9600/69092	Loss: 157.865
-12800/69092	Loss: 160.388
-16000/69092	Loss: 161.656
-19200/69092	Loss: 159.835
-22400/69092	Loss: 157.867
-25600/69092	Loss: 159.708
-28800/69092	Loss: 163.847
-32000/69092	Loss: 161.511
-35200/69092	Loss: 158.605
-38400/69092	Loss: 160.856
-41600/69092	Loss: 161.425
-44800/69092	Loss: 158.509
-48000/69092	Loss: 158.459
-51200/69092	Loss: 157.175
-54400/69092	Loss: 158.936
-57600/69092	Loss: 158.645
-60800/69092	Loss: 162.137
-64000/69092	Loss: 161.631
-67200/69092	Loss: 161.586
-Training time 0:05:45.968104
-Epoch: 69 Average loss: 160.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 71)
-0/69092	Loss: 164.481
-3200/69092	Loss: 159.260
-6400/69092	Loss: 161.784
-9600/69092	Loss: 160.517
-12800/69092	Loss: 159.791
-16000/69092	Loss: 157.795
-19200/69092	Loss: 159.406
-22400/69092	Loss: 158.184
-25600/69092	Loss: 157.690
-28800/69092	Loss: 159.254
-32000/69092	Loss: 160.635
-35200/69092	Loss: 162.649
-38400/69092	Loss: 160.130
-41600/69092	Loss: 159.409
-44800/69092	Loss: 160.040
-48000/69092	Loss: 159.570
-51200/69092	Loss: 160.380
-54400/69092	Loss: 158.930
-57600/69092	Loss: 161.539
-60800/69092	Loss: 158.730
-64000/69092	Loss: 160.679
-67200/69092	Loss: 159.969
-Training time 0:05:32.651529
-Epoch: 70 Average loss: 159.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 72)
-0/69092	Loss: 142.716
-3200/69092	Loss: 157.992
-6400/69092	Loss: 157.551
-9600/69092	Loss: 160.012
-12800/69092	Loss: 159.935
-16000/69092	Loss: 159.061
-19200/69092	Loss: 161.256
-22400/69092	Loss: 159.462
-25600/69092	Loss: 162.119
-28800/69092	Loss: 161.915
-32000/69092	Loss: 156.964
-35200/69092	Loss: 160.437
-38400/69092	Loss: 161.939
-41600/69092	Loss: 162.232
-44800/69092	Loss: 158.483
-48000/69092	Loss: 159.101
-51200/69092	Loss: 157.089
-54400/69092	Loss: 158.380
-57600/69092	Loss: 160.195
-60800/69092	Loss: 161.569
-64000/69092	Loss: 160.382
-67200/69092	Loss: 158.295
-Training time 0:05:31.268910
-Epoch: 71 Average loss: 159.72
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 73)
-0/69092	Loss: 144.982
-3200/69092	Loss: 158.636
-6400/69092	Loss: 159.587
-9600/69092	Loss: 158.902
-12800/69092	Loss: 158.461
-16000/69092	Loss: 160.561
-19200/69092	Loss: 158.414
-22400/69092	Loss: 159.442
-25600/69092	Loss: 155.782
-28800/69092	Loss: 159.598
-32000/69092	Loss: 160.719
-35200/69092	Loss: 160.212
-38400/69092	Loss: 158.779
-41600/69092	Loss: 160.444
-44800/69092	Loss: 160.412
-48000/69092	Loss: 160.666
-51200/69092	Loss: 159.817
-54400/69092	Loss: 159.676
-57600/69092	Loss: 157.572
-60800/69092	Loss: 159.114
-64000/69092	Loss: 164.526
-67200/69092	Loss: 160.948
-Training time 0:05:50.763759
-Epoch: 72 Average loss: 159.63
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 74)
-0/69092	Loss: 145.163
-3200/69092	Loss: 159.608
-6400/69092	Loss: 159.834
-9600/69092	Loss: 160.672
-12800/69092	Loss: 161.739
-16000/69092	Loss: 158.802
-19200/69092	Loss: 161.271
-22400/69092	Loss: 160.589
-25600/69092	Loss: 158.441
-28800/69092	Loss: 160.220
-32000/69092	Loss: 159.768
-35200/69092	Loss: 158.483
-38400/69092	Loss: 160.513
-41600/69092	Loss: 159.295
-44800/69092	Loss: 157.276
-48000/69092	Loss: 157.452
-51200/69092	Loss: 158.179
-54400/69092	Loss: 160.086
-57600/69092	Loss: 159.868
-60800/69092	Loss: 160.561
-64000/69092	Loss: 160.033
-67200/69092	Loss: 159.217
-Training time 0:05:27.953398
-Epoch: 73 Average loss: 159.64
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 75)
-0/69092	Loss: 182.593
-3200/69092	Loss: 157.735
-6400/69092	Loss: 162.623
-9600/69092	Loss: 157.961
-12800/69092	Loss: 156.636
-16000/69092	Loss: 159.952
-19200/69092	Loss: 159.249
-22400/69092	Loss: 161.514
-25600/69092	Loss: 155.918
-28800/69092	Loss: 158.620
-32000/69092	Loss: 158.486
-35200/69092	Loss: 160.225
-38400/69092	Loss: 161.200
-41600/69092	Loss: 158.838
-44800/69092	Loss: 161.555
-48000/69092	Loss: 160.739
-51200/69092	Loss: 157.590
-54400/69092	Loss: 157.939
-57600/69092	Loss: 159.183
-60800/69092	Loss: 161.986
-64000/69092	Loss: 157.023
-67200/69092	Loss: 161.347
-Training time 0:05:26.295751
-Epoch: 74 Average loss: 159.40
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 76)
-0/69092	Loss: 158.681
-3200/69092	Loss: 161.179
-6400/69092	Loss: 158.464
-9600/69092	Loss: 157.540
-12800/69092	Loss: 158.278
-16000/69092	Loss: 160.927
-19200/69092	Loss: 158.889
-22400/69092	Loss: 158.557
-25600/69092	Loss: 159.444
-28800/69092	Loss: 158.354
-32000/69092	Loss: 158.480
-35200/69092	Loss: 159.606
-38400/69092	Loss: 158.638
-41600/69092	Loss: 158.121
-44800/69092	Loss: 161.871
-48000/69092	Loss: 159.119
-51200/69092	Loss: 157.051
-54400/69092	Loss: 158.179
-57600/69092	Loss: 162.269
-60800/69092	Loss: 161.076
-64000/69092	Loss: 159.565
-67200/69092	Loss: 159.024
-Training time 0:05:37.460671
-Epoch: 75 Average loss: 159.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 77)
-0/69092	Loss: 180.183
-3200/69092	Loss: 161.326
-6400/69092	Loss: 156.454
-9600/69092	Loss: 158.102
-12800/69092	Loss: 160.033
-16000/69092	Loss: 157.371
-19200/69092	Loss: 158.610
-22400/69092	Loss: 161.016
-25600/69092	Loss: 158.187
-28800/69092	Loss: 158.732
-32000/69092	Loss: 158.551
-35200/69092	Loss: 164.114
-38400/69092	Loss: 158.244
-41600/69092	Loss: 160.820
-44800/69092	Loss: 161.380
-48000/69092	Loss: 160.957
-51200/69092	Loss: 160.380
-54400/69092	Loss: 159.550
-57600/69092	Loss: 159.288
-60800/69092	Loss: 159.340
-64000/69092	Loss: 159.191
-67200/69092	Loss: 160.314
-Training time 0:05:39.624340
-Epoch: 76 Average loss: 159.65
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 78)
-0/69092	Loss: 154.192
-3200/69092	Loss: 160.147
-6400/69092	Loss: 160.512
-9600/69092	Loss: 163.486
-12800/69092	Loss: 160.083
-16000/69092	Loss: 161.902
-19200/69092	Loss: 159.175
-22400/69092	Loss: 159.717
-25600/69092	Loss: 157.231
-28800/69092	Loss: 156.782
-32000/69092	Loss: 161.465
-35200/69092	Loss: 156.727
-38400/69092	Loss: 160.297
-41600/69092	Loss: 160.974
-44800/69092	Loss: 158.703
-48000/69092	Loss: 160.782
-51200/69092	Loss: 158.618
-54400/69092	Loss: 156.340
-57600/69092	Loss: 157.774
-60800/69092	Loss: 160.375
-64000/69092	Loss: 159.188
-67200/69092	Loss: 161.189
-Training time 0:05:34.005221
-Epoch: 77 Average loss: 159.61
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 79)
-0/69092	Loss: 163.315
-3200/69092	Loss: 159.521
-6400/69092	Loss: 157.050
-9600/69092	Loss: 158.928
-12800/69092	Loss: 159.364
-16000/69092	Loss: 160.024
-19200/69092	Loss: 159.391
-22400/69092	Loss: 160.335
-25600/69092	Loss: 158.621
-28800/69092	Loss: 159.980
-32000/69092	Loss: 157.115
-35200/69092	Loss: 158.873
-38400/69092	Loss: 162.329
-41600/69092	Loss: 161.074
-44800/69092	Loss: 157.698
-48000/69092	Loss: 158.620
-51200/69092	Loss: 160.713
-54400/69092	Loss: 158.261
-57600/69092	Loss: 160.761
-60800/69092	Loss: 161.576
-64000/69092	Loss: 159.373
-67200/69092	Loss: 160.216
-Training time 0:05:52.913169
-Epoch: 78 Average loss: 159.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 80)
-0/69092	Loss: 172.063
-3200/69092	Loss: 160.270
-6400/69092	Loss: 157.432
-9600/69092	Loss: 158.220
-12800/69092	Loss: 157.986
-16000/69092	Loss: 160.562
-19200/69092	Loss: 157.943
-22400/69092	Loss: 160.751
-25600/69092	Loss: 158.696
-28800/69092	Loss: 158.822
-32000/69092	Loss: 160.434
-35200/69092	Loss: 158.596
-38400/69092	Loss: 158.962
-41600/69092	Loss: 165.257
-44800/69092	Loss: 157.434
-48000/69092	Loss: 159.686
-51200/69092	Loss: 162.117
-54400/69092	Loss: 159.919
-57600/69092	Loss: 162.438
-60800/69092	Loss: 158.443
-64000/69092	Loss: 159.690
-67200/69092	Loss: 156.254
-Training time 0:05:32.739756
-Epoch: 79 Average loss: 159.49
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 81)
-0/69092	Loss: 156.964
-3200/69092	Loss: 161.015
-6400/69092	Loss: 156.071
-9600/69092	Loss: 159.688
-12800/69092	Loss: 157.272
-16000/69092	Loss: 160.853
-19200/69092	Loss: 162.442
-22400/69092	Loss: 159.761
-25600/69092	Loss: 159.435
-28800/69092	Loss: 162.287
-32000/69092	Loss: 160.241
-35200/69092	Loss: 158.339
-38400/69092	Loss: 159.539
-41600/69092	Loss: 158.518
-44800/69092	Loss: 162.535
-48000/69092	Loss: 157.626
-51200/69092	Loss: 158.148
-54400/69092	Loss: 156.977
-57600/69092	Loss: 160.558
-60800/69092	Loss: 159.007
-64000/69092	Loss: 158.975
-67200/69092	Loss: 160.422
-Training time 0:05:38.436039
-Epoch: 80 Average loss: 159.55
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 82)
-0/69092	Loss: 166.420
-3200/69092	Loss: 158.251
-6400/69092	Loss: 159.005
-9600/69092	Loss: 159.200
-12800/69092	Loss: 160.833
-16000/69092	Loss: 159.219
-19200/69092	Loss: 161.466
-22400/69092	Loss: 157.718
-25600/69092	Loss: 159.957
-28800/69092	Loss: 158.104
-32000/69092	Loss: 157.485
-35200/69092	Loss: 160.498
-38400/69092	Loss: 159.825
-41600/69092	Loss: 158.072
-44800/69092	Loss: 158.347
-48000/69092	Loss: 156.493
-51200/69092	Loss: 159.301
-54400/69092	Loss: 161.004
-57600/69092	Loss: 161.581
-60800/69092	Loss: 158.647
-64000/69092	Loss: 160.269
-67200/69092	Loss: 161.770
-Training time 0:05:37.385188
-Epoch: 81 Average loss: 159.47
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 83)
-0/69092	Loss: 147.358
-3200/69092	Loss: 158.292
-6400/69092	Loss: 157.895
-9600/69092	Loss: 159.892
-12800/69092	Loss: 158.760
-16000/69092	Loss: 159.902
-19200/69092	Loss: 157.565
-22400/69092	Loss: 159.770
-25600/69092	Loss: 161.968
-28800/69092	Loss: 160.955
-32000/69092	Loss: 159.616
-35200/69092	Loss: 160.013
-38400/69092	Loss: 159.763
-41600/69092	Loss: 157.884
-44800/69092	Loss: 160.106
-48000/69092	Loss: 157.624
-51200/69092	Loss: 160.414
-54400/69092	Loss: 156.007
-57600/69092	Loss: 162.964
-60800/69092	Loss: 158.520
-64000/69092	Loss: 159.945
-67200/69092	Loss: 160.523
-Training time 0:05:26.791158
-Epoch: 82 Average loss: 159.45
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 84)
-0/69092	Loss: 151.199
-3200/69092	Loss: 159.845
-6400/69092	Loss: 159.746
-9600/69092	Loss: 158.563
-12800/69092	Loss: 158.639
-16000/69092	Loss: 158.074
-19200/69092	Loss: 158.288
-22400/69092	Loss: 157.029
-25600/69092	Loss: 160.350
-28800/69092	Loss: 161.038
-32000/69092	Loss: 161.095
-35200/69092	Loss: 158.589
-38400/69092	Loss: 162.509
-41600/69092	Loss: 160.726
-44800/69092	Loss: 157.305
-48000/69092	Loss: 159.656
-51200/69092	Loss: 159.312
-54400/69092	Loss: 157.474
-57600/69092	Loss: 157.230
-60800/69092	Loss: 158.984
-64000/69092	Loss: 159.303
-67200/69092	Loss: 161.517
-Training time 0:05:48.321003
-Epoch: 83 Average loss: 159.27
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 85)
-0/69092	Loss: 167.506
-3200/69092	Loss: 158.734
-6400/69092	Loss: 154.474
-9600/69092	Loss: 158.548
-12800/69092	Loss: 159.065
-16000/69092	Loss: 161.150
-19200/69092	Loss: 156.751
-22400/69092	Loss: 161.333
-25600/69092	Loss: 158.619
-28800/69092	Loss: 159.785
-32000/69092	Loss: 158.721
-35200/69092	Loss: 160.114
-38400/69092	Loss: 159.841
-41600/69092	Loss: 158.137
-44800/69092	Loss: 161.397
-48000/69092	Loss: 157.815
-51200/69092	Loss: 159.810
-54400/69092	Loss: 159.795
-57600/69092	Loss: 162.666
-60800/69092	Loss: 160.183
-64000/69092	Loss: 161.473
-67200/69092	Loss: 161.339
-Training time 0:05:36.990551
-Epoch: 84 Average loss: 159.50
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 86)
-0/69092	Loss: 155.993
-3200/69092	Loss: 160.144
-6400/69092	Loss: 159.036
-9600/69092	Loss: 158.457
-12800/69092	Loss: 156.089
-16000/69092	Loss: 160.999
-19200/69092	Loss: 159.388
-22400/69092	Loss: 160.120
-25600/69092	Loss: 161.818
-28800/69092	Loss: 158.264
-32000/69092	Loss: 159.129
-35200/69092	Loss: 155.037
-38400/69092	Loss: 156.492
-41600/69092	Loss: 161.887
-44800/69092	Loss: 157.376
-48000/69092	Loss: 160.773
-51200/69092	Loss: 159.116
-54400/69092	Loss: 158.015
-57600/69092	Loss: 160.229
-60800/69092	Loss: 160.340
-64000/69092	Loss: 161.229
-67200/69092	Loss: 158.952
-Training time 0:06:00.143695
-Epoch: 85 Average loss: 159.23
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 87)
-0/69092	Loss: 155.338
-3200/69092	Loss: 156.856
-6400/69092	Loss: 159.420
-9600/69092	Loss: 158.050
-12800/69092	Loss: 156.955
-16000/69092	Loss: 161.199
-19200/69092	Loss: 161.122
-22400/69092	Loss: 160.793
-25600/69092	Loss: 160.091
-28800/69092	Loss: 157.460
-32000/69092	Loss: 158.015
-35200/69092	Loss: 160.317
-38400/69092	Loss: 162.705
-41600/69092	Loss: 156.314
-44800/69092	Loss: 157.986
-48000/69092	Loss: 157.577
-51200/69092	Loss: 157.721
-54400/69092	Loss: 160.059
-57600/69092	Loss: 159.799
-60800/69092	Loss: 159.100
-64000/69092	Loss: 160.676
-67200/69092	Loss: 161.405
-Training time 0:06:06.903945
-Epoch: 86 Average loss: 159.18
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 88)
-0/69092	Loss: 149.605
-3200/69092	Loss: 158.922
-6400/69092	Loss: 161.236
-9600/69092	Loss: 159.632
-12800/69092	Loss: 159.879
-16000/69092	Loss: 159.513
-19200/69092	Loss: 159.728
-22400/69092	Loss: 156.810
-25600/69092	Loss: 159.908
-28800/69092	Loss: 158.473
-32000/69092	Loss: 162.172
-35200/69092	Loss: 158.501
-38400/69092	Loss: 156.194
-41600/69092	Loss: 159.270
-44800/69092	Loss: 156.212
-48000/69092	Loss: 159.069
-51200/69092	Loss: 162.970
-54400/69092	Loss: 159.473
-57600/69092	Loss: 160.206
-60800/69092	Loss: 158.938
-64000/69092	Loss: 161.160
-67200/69092	Loss: 157.509
-Training time 0:05:50.139203
-Epoch: 87 Average loss: 159.35
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 89)
-0/69092	Loss: 177.011
-3200/69092	Loss: 160.157
-6400/69092	Loss: 157.318
-9600/69092	Loss: 157.788
-12800/69092	Loss: 159.433
-16000/69092	Loss: 161.363
-19200/69092	Loss: 160.101
-22400/69092	Loss: 158.566
-25600/69092	Loss: 158.240
-28800/69092	Loss: 158.962
-32000/69092	Loss: 160.175
-35200/69092	Loss: 160.883
-38400/69092	Loss: 163.155
-41600/69092	Loss: 161.841
-44800/69092	Loss: 158.269
-48000/69092	Loss: 156.448
-51200/69092	Loss: 157.790
-54400/69092	Loss: 157.862
-57600/69092	Loss: 156.747
-60800/69092	Loss: 158.219
-64000/69092	Loss: 158.478
-67200/69092	Loss: 161.865
-Training time 0:05:43.728689
-Epoch: 88 Average loss: 159.24
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 90)
-0/69092	Loss: 166.930
-3200/69092	Loss: 159.466
-6400/69092	Loss: 159.608
-9600/69092	Loss: 156.597
-12800/69092	Loss: 161.365
-16000/69092	Loss: 158.517
-19200/69092	Loss: 160.347
-22400/69092	Loss: 158.586
-25600/69092	Loss: 156.568
-28800/69092	Loss: 157.357
-32000/69092	Loss: 157.222
-35200/69092	Loss: 159.279
-38400/69092	Loss: 161.612
-41600/69092	Loss: 160.618
-44800/69092	Loss: 159.613
-48000/69092	Loss: 156.892
-51200/69092	Loss: 161.148
-54400/69092	Loss: 158.872
-57600/69092	Loss: 157.522
-60800/69092	Loss: 159.689
-64000/69092	Loss: 162.225
-67200/69092	Loss: 160.018
-Training time 0:05:50.054965
-Epoch: 89 Average loss: 159.20
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 91)
-0/69092	Loss: 163.660
-3200/69092	Loss: 160.243
-6400/69092	Loss: 160.221
-9600/69092	Loss: 159.913
-12800/69092	Loss: 159.190
-16000/69092	Loss: 159.877
-19200/69092	Loss: 157.558
-22400/69092	Loss: 156.779
-25600/69092	Loss: 160.367
-28800/69092	Loss: 159.827
-32000/69092	Loss: 157.915
-35200/69092	Loss: 159.848
-38400/69092	Loss: 162.339
-41600/69092	Loss: 159.374
-44800/69092	Loss: 158.487
-48000/69092	Loss: 157.560
-51200/69092	Loss: 157.324
-54400/69092	Loss: 162.203
-57600/69092	Loss: 159.657
-60800/69092	Loss: 156.430
-64000/69092	Loss: 158.719
-67200/69092	Loss: 161.346
-Training time 0:05:38.412112
-Epoch: 90 Average loss: 159.33
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 92)
-0/69092	Loss: 150.490
-3200/69092	Loss: 158.934
-6400/69092	Loss: 159.617
-9600/69092	Loss: 159.273
-12800/69092	Loss: 158.963
-16000/69092	Loss: 157.031
-19200/69092	Loss: 159.648
-22400/69092	Loss: 161.084
-25600/69092	Loss: 161.378
-28800/69092	Loss: 157.690
-32000/69092	Loss: 157.451
-35200/69092	Loss: 157.694
-38400/69092	Loss: 156.956
-41600/69092	Loss: 157.919
-44800/69092	Loss: 160.401
-48000/69092	Loss: 158.635
-51200/69092	Loss: 159.358
-54400/69092	Loss: 160.336
-57600/69092	Loss: 160.171
-60800/69092	Loss: 160.302
-64000/69092	Loss: 160.705
-67200/69092	Loss: 157.521
-Training time 0:05:28.990469
-Epoch: 91 Average loss: 159.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 93)
-0/69092	Loss: 145.606
-3200/69092	Loss: 157.411
-6400/69092	Loss: 158.385
-9600/69092	Loss: 161.953
-12800/69092	Loss: 162.363
-16000/69092	Loss: 160.688
-19200/69092	Loss: 159.999
-22400/69092	Loss: 160.088
-25600/69092	Loss: 157.191
-28800/69092	Loss: 157.325
-32000/69092	Loss: 157.672
-35200/69092	Loss: 157.772
-38400/69092	Loss: 159.461
-41600/69092	Loss: 158.805
-44800/69092	Loss: 160.401
-48000/69092	Loss: 159.929
-51200/69092	Loss: 155.478
-54400/69092	Loss: 159.072
-57600/69092	Loss: 160.275
-60800/69092	Loss: 158.119
-64000/69092	Loss: 155.665
-67200/69092	Loss: 162.841
-Training time 0:05:38.189466
-Epoch: 92 Average loss: 159.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 94)
-0/69092	Loss: 149.699
-3200/69092	Loss: 160.871
-6400/69092	Loss: 160.415
-9600/69092	Loss: 158.102
-12800/69092	Loss: 159.485
-16000/69092	Loss: 160.179
-19200/69092	Loss: 157.111
-22400/69092	Loss: 159.198
-25600/69092	Loss: 158.266
-28800/69092	Loss: 159.081
-32000/69092	Loss: 159.866
-35200/69092	Loss: 160.600
-38400/69092	Loss: 161.372
-41600/69092	Loss: 161.123
-44800/69092	Loss: 157.819
-48000/69092	Loss: 160.199
-51200/69092	Loss: 157.882
-54400/69092	Loss: 158.645
-57600/69092	Loss: 156.973
-60800/69092	Loss: 157.073
-64000/69092	Loss: 158.881
-67200/69092	Loss: 160.097
-Training time 0:05:51.833121
-Epoch: 93 Average loss: 159.22
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 95)
-0/69092	Loss: 184.254
-3200/69092	Loss: 159.065
-6400/69092	Loss: 159.760
-9600/69092	Loss: 159.856
-12800/69092	Loss: 161.118
-16000/69092	Loss: 158.212
-19200/69092	Loss: 160.134
-22400/69092	Loss: 158.819
-25600/69092	Loss: 159.705
-28800/69092	Loss: 157.535
-32000/69092	Loss: 158.722
-35200/69092	Loss: 158.514
-38400/69092	Loss: 160.212
-41600/69092	Loss: 156.201
-44800/69092	Loss: 160.091
-48000/69092	Loss: 161.874
-51200/69092	Loss: 157.687
-54400/69092	Loss: 160.520
-57600/69092	Loss: 158.559
-60800/69092	Loss: 159.642
-64000/69092	Loss: 157.527
-67200/69092	Loss: 157.909
-Training time 0:05:30.468429
-Epoch: 94 Average loss: 159.08
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 96)
-0/69092	Loss: 158.403
-3200/69092	Loss: 161.799
-6400/69092	Loss: 160.832
-9600/69092	Loss: 159.543
-12800/69092	Loss: 157.111
-16000/69092	Loss: 159.294
-19200/69092	Loss: 158.326
-22400/69092	Loss: 157.586
-25600/69092	Loss: 159.439
-28800/69092	Loss: 158.697
-32000/69092	Loss: 160.257
-35200/69092	Loss: 161.020
-38400/69092	Loss: 158.668
-41600/69092	Loss: 157.037
-44800/69092	Loss: 159.130
-48000/69092	Loss: 159.078
-51200/69092	Loss: 159.145
-54400/69092	Loss: 158.187
-57600/69092	Loss: 158.109
-60800/69092	Loss: 156.643
-64000/69092	Loss: 159.603
-67200/69092	Loss: 161.188
-Training time 0:05:38.293450
-Epoch: 95 Average loss: 159.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 97)
-0/69092	Loss: 168.477
-3200/69092	Loss: 161.501
-6400/69092	Loss: 159.521
-9600/69092	Loss: 158.598
-12800/69092	Loss: 156.909
-16000/69092	Loss: 161.964
-19200/69092	Loss: 157.111
-22400/69092	Loss: 162.194
-25600/69092	Loss: 159.024
-28800/69092	Loss: 158.036
-32000/69092	Loss: 160.642
-35200/69092	Loss: 156.836
-38400/69092	Loss: 158.410
-41600/69092	Loss: 159.573
-44800/69092	Loss: 160.553
-48000/69092	Loss: 159.129
-51200/69092	Loss: 160.196
-54400/69092	Loss: 158.417
-57600/69092	Loss: 161.815
-60800/69092	Loss: 156.995
-64000/69092	Loss: 154.083
-67200/69092	Loss: 158.133
-Training time 0:05:28.475772
-Epoch: 96 Average loss: 159.04
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 98)
-0/69092	Loss: 140.255
-3200/69092	Loss: 156.551
-6400/69092	Loss: 159.354
-9600/69092	Loss: 160.916
-12800/69092	Loss: 158.278
-16000/69092	Loss: 159.341
-19200/69092	Loss: 161.566
-22400/69092	Loss: 158.895
-25600/69092	Loss: 158.972
-28800/69092	Loss: 157.996
-32000/69092	Loss: 158.795
-35200/69092	Loss: 159.576
-38400/69092	Loss: 160.755
-41600/69092	Loss: 160.168
-44800/69092	Loss: 159.245
-48000/69092	Loss: 157.132
-51200/69092	Loss: 159.715
-54400/69092	Loss: 157.385
-57600/69092	Loss: 159.976
-60800/69092	Loss: 161.275
-64000/69092	Loss: 157.620
-67200/69092	Loss: 159.525
-Training time 0:05:40.654846
-Epoch: 97 Average loss: 159.14
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 99)
-0/69092	Loss: 153.552
-3200/69092	Loss: 157.359
-6400/69092	Loss: 156.474
-9600/69092	Loss: 157.425
-12800/69092	Loss: 157.220
-16000/69092	Loss: 160.235
-19200/69092	Loss: 158.997
-22400/69092	Loss: 159.980
-25600/69092	Loss: 159.940
-28800/69092	Loss: 156.694
-32000/69092	Loss: 160.209
-35200/69092	Loss: 156.144
-38400/69092	Loss: 161.132
-41600/69092	Loss: 160.131
-44800/69092	Loss: 160.084
-48000/69092	Loss: 161.853
-51200/69092	Loss: 157.055
-54400/69092	Loss: 161.999
-57600/69092	Loss: 160.006
-60800/69092	Loss: 159.206
-64000/69092	Loss: 157.588
-67200/69092	Loss: 157.070
-Training time 0:05:38.871933
-Epoch: 98 Average loss: 158.93
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 100)
-0/69092	Loss: 173.034
-3200/69092	Loss: 158.607
-6400/69092	Loss: 157.463
-9600/69092	Loss: 160.543
-12800/69092	Loss: 155.781
-16000/69092	Loss: 157.382
-19200/69092	Loss: 160.133
-22400/69092	Loss: 159.512
-25600/69092	Loss: 158.401
-28800/69092	Loss: 162.084
-32000/69092	Loss: 157.081
-35200/69092	Loss: 160.956
-38400/69092	Loss: 156.895
-41600/69092	Loss: 159.678
-44800/69092	Loss: 160.463
-48000/69092	Loss: 160.401
-51200/69092	Loss: 158.272
-54400/69092	Loss: 157.737
-57600/69092	Loss: 159.711
-60800/69092	Loss: 159.560
-64000/69092	Loss: 160.014
-67200/69092	Loss: 158.850
-Training time 0:05:35.589953
-Epoch: 99 Average loss: 158.99
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 101)
-0/69092	Loss: 167.127
-3200/69092	Loss: 158.691
-6400/69092	Loss: 160.346
-9600/69092	Loss: 158.123
-12800/69092	Loss: 161.401
-16000/69092	Loss: 155.992
-19200/69092	Loss: 155.775
-22400/69092	Loss: 157.855
-25600/69092	Loss: 157.884
-28800/69092	Loss: 158.127
-32000/69092	Loss: 157.958
-35200/69092	Loss: 157.580
-38400/69092	Loss: 159.400
-41600/69092	Loss: 159.374
-44800/69092	Loss: 159.242
-48000/69092	Loss: 159.683
-51200/69092	Loss: 161.591
-54400/69092	Loss: 160.516
-57600/69092	Loss: 163.235
-60800/69092	Loss: 157.712
-64000/69092	Loss: 158.136
-67200/69092	Loss: 160.390
-Training time 0:05:58.043103
-Epoch: 100 Average loss: 158.96
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 102)
-0/69092	Loss: 152.027
-3200/69092	Loss: 158.885
-6400/69092	Loss: 159.788
-9600/69092	Loss: 161.860
-12800/69092	Loss: 158.560
-16000/69092	Loss: 159.234
-19200/69092	Loss: 161.745
-22400/69092	Loss: 158.516
-25600/69092	Loss: 157.561
-28800/69092	Loss: 159.708
-32000/69092	Loss: 156.264
-35200/69092	Loss: 158.669
-38400/69092	Loss: 159.436
-41600/69092	Loss: 160.343
-44800/69092	Loss: 156.492
-48000/69092	Loss: 158.668
-51200/69092	Loss: 156.608
-54400/69092	Loss: 159.002
-57600/69092	Loss: 158.732
-60800/69092	Loss: 158.290
-64000/69092	Loss: 160.763
-67200/69092	Loss: 161.906
-Training time 0:05:35.318233
-Epoch: 101 Average loss: 159.11
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 103)
-0/69092	Loss: 157.941
-3200/69092	Loss: 159.008
-6400/69092	Loss: 157.562
-9600/69092	Loss: 159.699
-12800/69092	Loss: 161.177
-16000/69092	Loss: 159.552
-19200/69092	Loss: 158.248
-22400/69092	Loss: 159.358
-25600/69092	Loss: 158.911
-28800/69092	Loss: 159.869
-32000/69092	Loss: 159.056
-35200/69092	Loss: 161.017
-38400/69092	Loss: 157.137
-41600/69092	Loss: 157.186
-44800/69092	Loss: 163.476
-48000/69092	Loss: 157.922
-51200/69092	Loss: 159.202
-54400/69092	Loss: 156.061
-57600/69092	Loss: 159.155
-60800/69092	Loss: 161.382
-64000/69092	Loss: 156.198
-67200/69092	Loss: 159.163
-Training time 0:05:42.512486
-Epoch: 102 Average loss: 159.02
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 104)
-0/69092	Loss: 165.301
-3200/69092	Loss: 157.779
-6400/69092	Loss: 158.741
-9600/69092	Loss: 158.514
-12800/69092	Loss: 159.785
-16000/69092	Loss: 158.431
-19200/69092	Loss: 160.162
-22400/69092	Loss: 155.917
-25600/69092	Loss: 160.767
-28800/69092	Loss: 157.529
-32000/69092	Loss: 157.990
-35200/69092	Loss: 157.774
-38400/69092	Loss: 159.274
-41600/69092	Loss: 160.234
-44800/69092	Loss: 160.363
-48000/69092	Loss: 159.043
-51200/69092	Loss: 159.252
-54400/69092	Loss: 158.529
-57600/69092	Loss: 161.563
-60800/69092	Loss: 155.825
-64000/69092	Loss: 158.326
-67200/69092	Loss: 159.363
-Training time 0:05:38.708248
-Epoch: 103 Average loss: 158.85
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 105)
-0/69092	Loss: 162.340
-3200/69092	Loss: 159.264
-6400/69092	Loss: 158.435
-9600/69092	Loss: 159.761
-12800/69092	Loss: 158.671
-16000/69092	Loss: 159.417
-19200/69092	Loss: 159.279
-22400/69092	Loss: 158.103
-25600/69092	Loss: 158.076
-28800/69092	Loss: 161.202
-32000/69092	Loss: 158.187
-35200/69092	Loss: 161.701
-38400/69092	Loss: 157.858
-41600/69092	Loss: 159.545
-44800/69092	Loss: 161.386
-48000/69092	Loss: 160.321
-51200/69092	Loss: 157.574
-54400/69092	Loss: 155.936
-57600/69092	Loss: 157.492
-60800/69092	Loss: 159.926
-64000/69092	Loss: 159.998
-67200/69092	Loss: 159.038
-Training time 0:05:38.603309
-Epoch: 104 Average loss: 159.10
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 106)
-0/69092	Loss: 152.111
-3200/69092	Loss: 159.423
-6400/69092	Loss: 162.587
-9600/69092	Loss: 160.640
-12800/69092	Loss: 159.132
-16000/69092	Loss: 159.707
-19200/69092	Loss: 158.382
-22400/69092	Loss: 156.301
-25600/69092	Loss: 159.051
-28800/69092	Loss: 158.924
-32000/69092	Loss: 157.140
-35200/69092	Loss: 162.650
-38400/69092	Loss: 157.653
-41600/69092	Loss: 159.198
-44800/69092	Loss: 159.082
-48000/69092	Loss: 158.785
-51200/69092	Loss: 156.259
-54400/69092	Loss: 158.097
-57600/69092	Loss: 157.105
-60800/69092	Loss: 163.704
-64000/69092	Loss: 158.391
-67200/69092	Loss: 156.931
-Training time 0:05:34.796696
-Epoch: 105 Average loss: 159.00
-=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 107)
-0/69092	Loss: 170.103
-3200/69092	Loss: 156.306
-6400/69092	Loss: 160.654
-9600/69092	Loss: 159.796
-12800/69092	Loss: 157.796
-16000/69092	Loss: 157.300
-19200/69092	Loss: 157.026
-22400/69092	Loss: 158.475
-25600/69092	Loss: 158.968
-28800/69092	Loss: 159.848
-32000/69092	Loss: 158.780
-35200/69092	Loss: 159.463
-38400/69092	Loss: 160.543
-41600/69092	Loss: 159.262
-44800/69092	Loss: 158.482
-48000/69092	Loss: 157.139
-51200/69092	Loss: 160.624
-54400/69092	Loss: 160.324
diff --git a/OAR.2068291.stderr b/OAR.2068291.stderr
deleted file mode 100644
index bef21b425d..0000000000
--- a/OAR.2068291.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 02:59:26] Job 2068291 KILLED ##
diff --git a/OAR.2068291.stdout b/OAR.2068291.stdout
deleted file mode 100644
index 8cab011240..0000000000
--- a/OAR.2068291.stdout
+++ /dev/null
@@ -1,3168 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_5
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=10, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=5, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 761485
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last (iter 1)'
-0/69092	Loss: 160.718
-3200/69092	Loss: 195.348
-6400/69092	Loss: 196.738
-9600/69092	Loss: 194.883
-12800/69092	Loss: 190.485
-16000/69092	Loss: 187.904
-19200/69092	Loss: 191.408
-22400/69092	Loss: 192.884
-25600/69092	Loss: 190.201
-28800/69092	Loss: 187.534
-32000/69092	Loss: 188.378
-35200/69092	Loss: 187.631
-38400/69092	Loss: 187.406
-41600/69092	Loss: 188.709
-44800/69092	Loss: 186.751
-48000/69092	Loss: 191.667
-51200/69092	Loss: 183.246
-54400/69092	Loss: 187.353
-57600/69092	Loss: 188.015
-60800/69092	Loss: 183.729
-64000/69092	Loss: 184.278
-67200/69092	Loss: 186.790
-Training time 0:04:47.348882
-Epoch: 1 Average loss: 189.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 2)
-0/69092	Loss: 168.150
-3200/69092	Loss: 183.479
-6400/69092	Loss: 179.790
-9600/69092	Loss: 183.119
-12800/69092	Loss: 181.762
-16000/69092	Loss: 179.022
-19200/69092	Loss: 185.978
-22400/69092	Loss: 183.064
-25600/69092	Loss: 181.177
-28800/69092	Loss: 181.881
-32000/69092	Loss: 184.199
-35200/69092	Loss: 181.692
-38400/69092	Loss: 181.997
-41600/69092	Loss: 180.545
-44800/69092	Loss: 184.930
-48000/69092	Loss: 181.591
-51200/69092	Loss: 183.077
-54400/69092	Loss: 182.514
-57600/69092	Loss: 184.202
-60800/69092	Loss: 175.696
-64000/69092	Loss: 178.647
-67200/69092	Loss: 178.508
-Training time 0:04:50.598290
-Epoch: 2 Average loss: 181.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 3)
-0/69092	Loss: 160.616
-3200/69092	Loss: 176.036
-6400/69092	Loss: 181.527
-9600/69092	Loss: 180.076
-12800/69092	Loss: 180.270
-16000/69092	Loss: 180.807
-19200/69092	Loss: 177.929
-22400/69092	Loss: 178.709
-25600/69092	Loss: 181.522
-28800/69092	Loss: 178.841
-32000/69092	Loss: 180.035
-35200/69092	Loss: 178.275
-38400/69092	Loss: 182.683
-41600/69092	Loss: 177.399
-44800/69092	Loss: 180.405
-48000/69092	Loss: 181.841
-51200/69092	Loss: 176.475
-54400/69092	Loss: 177.734
-57600/69092	Loss: 182.002
-60800/69092	Loss: 180.416
-64000/69092	Loss: 176.499
-67200/69092	Loss: 179.069
-Training time 0:04:58.449314
-Epoch: 3 Average loss: 179.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 4)
-0/69092	Loss: 166.288
-3200/69092	Loss: 180.779
-6400/69092	Loss: 177.722
-9600/69092	Loss: 178.878
-12800/69092	Loss: 176.309
-16000/69092	Loss: 176.302
-19200/69092	Loss: 181.046
-22400/69092	Loss: 181.669
-25600/69092	Loss: 180.611
-28800/69092	Loss: 177.631
-32000/69092	Loss: 175.672
-35200/69092	Loss: 176.264
-38400/69092	Loss: 180.020
-41600/69092	Loss: 178.528
-44800/69092	Loss: 181.005
-48000/69092	Loss: 176.038
-51200/69092	Loss: 178.528
-54400/69092	Loss: 177.017
-57600/69092	Loss: 176.450
-60800/69092	Loss: 178.622
-64000/69092	Loss: 173.096
-67200/69092	Loss: 178.671
-Training time 0:04:53.296224
-Epoch: 4 Average loss: 178.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 5)
-0/69092	Loss: 162.201
-3200/69092	Loss: 175.820
-6400/69092	Loss: 179.074
-9600/69092	Loss: 177.050
-12800/69092	Loss: 175.576
-16000/69092	Loss: 177.369
-19200/69092	Loss: 177.303
-22400/69092	Loss: 175.484
-25600/69092	Loss: 176.561
-28800/69092	Loss: 180.101
-32000/69092	Loss: 175.739
-35200/69092	Loss: 179.139
-38400/69092	Loss: 173.434
-41600/69092	Loss: 181.191
-44800/69092	Loss: 178.676
-48000/69092	Loss: 177.746
-51200/69092	Loss: 177.446
-54400/69092	Loss: 175.045
-57600/69092	Loss: 177.810
-60800/69092	Loss: 176.667
-64000/69092	Loss: 176.333
-67200/69092	Loss: 178.492
-Training time 0:04:51.420617
-Epoch: 5 Average loss: 177.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 6)
-0/69092	Loss: 160.424
-3200/69092	Loss: 178.602
-6400/69092	Loss: 175.228
-9600/69092	Loss: 173.148
-12800/69092	Loss: 173.935
-16000/69092	Loss: 176.762
-19200/69092	Loss: 177.120
-22400/69092	Loss: 176.178
-25600/69092	Loss: 178.346
-28800/69092	Loss: 173.847
-32000/69092	Loss: 175.982
-35200/69092	Loss: 176.556
-38400/69092	Loss: 177.775
-41600/69092	Loss: 176.511
-44800/69092	Loss: 177.889
-48000/69092	Loss: 172.558
-51200/69092	Loss: 174.388
-54400/69092	Loss: 175.100
-57600/69092	Loss: 177.807
-60800/69092	Loss: 173.273
-64000/69092	Loss: 173.717
-67200/69092	Loss: 176.009
-Training time 0:04:44.187596
-Epoch: 6 Average loss: 175.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 7)
-0/69092	Loss: 154.626
-3200/69092	Loss: 175.090
-6400/69092	Loss: 173.648
-9600/69092	Loss: 177.601
-12800/69092	Loss: 175.078
-16000/69092	Loss: 171.486
-19200/69092	Loss: 174.718
-22400/69092	Loss: 175.500
-25600/69092	Loss: 175.546
-28800/69092	Loss: 174.822
-32000/69092	Loss: 172.752
-35200/69092	Loss: 176.297
-38400/69092	Loss: 173.670
-41600/69092	Loss: 177.349
-44800/69092	Loss: 177.002
-48000/69092	Loss: 171.563
-51200/69092	Loss: 173.142
-54400/69092	Loss: 175.472
-57600/69092	Loss: 177.937
-60800/69092	Loss: 177.506
-64000/69092	Loss: 173.922
-67200/69092	Loss: 176.779
-Training time 0:04:42.086637
-Epoch: 7 Average loss: 175.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 8)
-0/69092	Loss: 166.842
-3200/69092	Loss: 176.393
-6400/69092	Loss: 177.910
-9600/69092	Loss: 174.545
-12800/69092	Loss: 175.173
-16000/69092	Loss: 172.209
-19200/69092	Loss: 177.664
-22400/69092	Loss: 174.725
-25600/69092	Loss: 173.448
-28800/69092	Loss: 174.825
-32000/69092	Loss: 176.125
-35200/69092	Loss: 172.737
-38400/69092	Loss: 175.656
-41600/69092	Loss: 173.128
-44800/69092	Loss: 172.895
-48000/69092	Loss: 172.324
-51200/69092	Loss: 172.439
-54400/69092	Loss: 175.153
-57600/69092	Loss: 176.990
-60800/69092	Loss: 173.385
-64000/69092	Loss: 171.504
-67200/69092	Loss: 175.988
-Training time 0:04:50.085384
-Epoch: 8 Average loss: 174.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 9)
-0/69092	Loss: 192.984
-3200/69092	Loss: 168.908
-6400/69092	Loss: 174.075
-9600/69092	Loss: 177.689
-12800/69092	Loss: 173.688
-16000/69092	Loss: 177.886
-19200/69092	Loss: 174.232
-22400/69092	Loss: 173.340
-25600/69092	Loss: 172.025
-28800/69092	Loss: 172.520
-32000/69092	Loss: 171.036
-35200/69092	Loss: 173.630
-38400/69092	Loss: 172.711
-41600/69092	Loss: 173.286
-44800/69092	Loss: 171.935
-48000/69092	Loss: 175.494
-51200/69092	Loss: 175.592
-54400/69092	Loss: 171.378
-57600/69092	Loss: 176.081
-60800/69092	Loss: 171.243
-64000/69092	Loss: 175.991
-67200/69092	Loss: 171.297
-Training time 0:04:46.070348
-Epoch: 9 Average loss: 173.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 10)
-0/69092	Loss: 146.981
-3200/69092	Loss: 171.780
-6400/69092	Loss: 173.784
-9600/69092	Loss: 177.090
-12800/69092	Loss: 170.615
-16000/69092	Loss: 168.159
-19200/69092	Loss: 172.559
-22400/69092	Loss: 170.943
-25600/69092	Loss: 169.955
-28800/69092	Loss: 167.313
-32000/69092	Loss: 169.852
-35200/69092	Loss: 168.104
-38400/69092	Loss: 167.028
-41600/69092	Loss: 162.734
-44800/69092	Loss: 162.262
-48000/69092	Loss: 167.438
-51200/69092	Loss: 164.043
-54400/69092	Loss: 163.100
-57600/69092	Loss: 164.585
-60800/69092	Loss: 162.346
-64000/69092	Loss: 161.962
-67200/69092	Loss: 166.577
-Training time 0:04:47.102107
-Epoch: 10 Average loss: 167.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 11)
-0/69092	Loss: 151.183
-3200/69092	Loss: 165.384
-6400/69092	Loss: 167.018
-9600/69092	Loss: 163.825
-12800/69092	Loss: 162.573
-16000/69092	Loss: 161.033
-19200/69092	Loss: 162.465
-22400/69092	Loss: 163.940
-25600/69092	Loss: 158.944
-28800/69092	Loss: 162.664
-32000/69092	Loss: 161.330
-35200/69092	Loss: 163.406
-38400/69092	Loss: 158.683
-41600/69092	Loss: 160.531
-44800/69092	Loss: 160.417
-48000/69092	Loss: 164.075
-51200/69092	Loss: 163.731
-54400/69092	Loss: 163.045
-57600/69092	Loss: 164.244
-60800/69092	Loss: 157.949
-64000/69092	Loss: 160.197
-67200/69092	Loss: 162.859
-Training time 0:04:51.746640
-Epoch: 11 Average loss: 162.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 12)
-0/69092	Loss: 154.924
-3200/69092	Loss: 163.273
-6400/69092	Loss: 159.163
-9600/69092	Loss: 155.884
-12800/69092	Loss: 162.201
-16000/69092	Loss: 159.360
-19200/69092	Loss: 156.143
-22400/69092	Loss: 156.272
-25600/69092	Loss: 156.757
-28800/69092	Loss: 157.364
-32000/69092	Loss: 158.780
-35200/69092	Loss: 156.232
-38400/69092	Loss: 154.412
-41600/69092	Loss: 155.536
-44800/69092	Loss: 158.557
-48000/69092	Loss: 153.966
-51200/69092	Loss: 155.738
-54400/69092	Loss: 153.539
-57600/69092	Loss: 157.388
-60800/69092	Loss: 155.193
-64000/69092	Loss: 156.084
-67200/69092	Loss: 154.706
-Training time 0:04:39.651515
-Epoch: 12 Average loss: 156.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 13)
-0/69092	Loss: 142.486
-3200/69092	Loss: 156.168
-6400/69092	Loss: 155.495
-9600/69092	Loss: 154.547
-12800/69092	Loss: 150.812
-16000/69092	Loss: 152.557
-19200/69092	Loss: 155.233
-22400/69092	Loss: 153.208
-25600/69092	Loss: 152.687
-28800/69092	Loss: 154.943
-32000/69092	Loss: 153.995
-35200/69092	Loss: 155.391
-38400/69092	Loss: 150.432
-41600/69092	Loss: 152.702
-44800/69092	Loss: 154.048
-48000/69092	Loss: 153.700
-51200/69092	Loss: 153.710
-54400/69092	Loss: 153.347
-57600/69092	Loss: 156.340
-60800/69092	Loss: 155.228
-64000/69092	Loss: 153.031
-67200/69092	Loss: 156.122
-Training time 0:04:47.079566
-Epoch: 13 Average loss: 154.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 14)
-0/69092	Loss: 167.874
-3200/69092	Loss: 153.950
-6400/69092	Loss: 153.100
-9600/69092	Loss: 154.868
-12800/69092	Loss: 153.843
-16000/69092	Loss: 152.569
-19200/69092	Loss: 152.143
-22400/69092	Loss: 156.714
-25600/69092	Loss: 149.704
-28800/69092	Loss: 150.733
-32000/69092	Loss: 148.052
-35200/69092	Loss: 155.286
-38400/69092	Loss: 151.164
-41600/69092	Loss: 150.744
-44800/69092	Loss: 149.292
-48000/69092	Loss: 151.365
-51200/69092	Loss: 153.081
-54400/69092	Loss: 148.012
-57600/69092	Loss: 153.617
-60800/69092	Loss: 154.546
-64000/69092	Loss: 153.127
-67200/69092	Loss: 153.229
-Training time 0:04:38.197224
-Epoch: 14 Average loss: 152.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 15)
-0/69092	Loss: 142.733
-3200/69092	Loss: 153.018
-6400/69092	Loss: 151.895
-9600/69092	Loss: 151.264
-12800/69092	Loss: 148.139
-16000/69092	Loss: 150.293
-19200/69092	Loss: 152.738
-22400/69092	Loss: 152.494
-25600/69092	Loss: 149.747
-28800/69092	Loss: 151.198
-32000/69092	Loss: 150.283
-35200/69092	Loss: 154.543
-38400/69092	Loss: 149.681
-41600/69092	Loss: 150.284
-44800/69092	Loss: 151.567
-48000/69092	Loss: 153.972
-51200/69092	Loss: 153.460
-54400/69092	Loss: 150.492
-57600/69092	Loss: 151.530
-60800/69092	Loss: 153.527
-64000/69092	Loss: 152.394
-67200/69092	Loss: 151.078
-Training time 0:04:39.605667
-Epoch: 15 Average loss: 151.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 16)
-0/69092	Loss: 135.762
-3200/69092	Loss: 151.223
-6400/69092	Loss: 149.636
-9600/69092	Loss: 151.390
-12800/69092	Loss: 152.078
-16000/69092	Loss: 152.049
-19200/69092	Loss: 148.491
-22400/69092	Loss: 149.151
-25600/69092	Loss: 153.019
-28800/69092	Loss: 147.553
-32000/69092	Loss: 153.056
-35200/69092	Loss: 151.313
-38400/69092	Loss: 149.743
-41600/69092	Loss: 149.528
-44800/69092	Loss: 149.730
-48000/69092	Loss: 152.423
-51200/69092	Loss: 153.822
-54400/69092	Loss: 150.835
-57600/69092	Loss: 151.424
-60800/69092	Loss: 151.928
-64000/69092	Loss: 146.308
-67200/69092	Loss: 150.844
-Training time 0:04:41.437413
-Epoch: 16 Average loss: 150.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 17)
-0/69092	Loss: 140.489
-3200/69092	Loss: 152.261
-6400/69092	Loss: 149.076
-9600/69092	Loss: 147.913
-12800/69092	Loss: 151.479
-16000/69092	Loss: 152.871
-19200/69092	Loss: 149.458
-22400/69092	Loss: 153.279
-25600/69092	Loss: 150.869
-28800/69092	Loss: 150.986
-32000/69092	Loss: 152.924
-35200/69092	Loss: 148.119
-38400/69092	Loss: 150.243
-41600/69092	Loss: 148.496
-44800/69092	Loss: 150.882
-48000/69092	Loss: 149.852
-51200/69092	Loss: 149.254
-54400/69092	Loss: 149.813
-57600/69092	Loss: 148.314
-60800/69092	Loss: 151.928
-64000/69092	Loss: 150.182
-67200/69092	Loss: 151.590
-Training time 0:04:41.424319
-Epoch: 17 Average loss: 150.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 18)
-0/69092	Loss: 165.653
-3200/69092	Loss: 150.708
-6400/69092	Loss: 150.738
-9600/69092	Loss: 149.234
-12800/69092	Loss: 150.091
-16000/69092	Loss: 153.208
-19200/69092	Loss: 150.966
-22400/69092	Loss: 148.370
-25600/69092	Loss: 150.041
-28800/69092	Loss: 152.196
-32000/69092	Loss: 147.806
-35200/69092	Loss: 146.719
-38400/69092	Loss: 149.678
-41600/69092	Loss: 151.082
-44800/69092	Loss: 151.379
-48000/69092	Loss: 149.959
-51200/69092	Loss: 150.877
-54400/69092	Loss: 149.647
-57600/69092	Loss: 148.742
-60800/69092	Loss: 151.242
-64000/69092	Loss: 148.770
-67200/69092	Loss: 151.824
-Training time 0:04:48.453964
-Epoch: 18 Average loss: 150.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 19)
-0/69092	Loss: 137.928
-3200/69092	Loss: 145.544
-6400/69092	Loss: 151.132
-9600/69092	Loss: 153.427
-12800/69092	Loss: 152.087
-16000/69092	Loss: 148.224
-19200/69092	Loss: 151.954
-22400/69092	Loss: 151.094
-25600/69092	Loss: 149.743
-28800/69092	Loss: 150.293
-32000/69092	Loss: 149.179
-35200/69092	Loss: 148.198
-38400/69092	Loss: 149.964
-41600/69092	Loss: 149.894
-44800/69092	Loss: 148.807
-48000/69092	Loss: 152.734
-51200/69092	Loss: 148.849
-54400/69092	Loss: 147.120
-57600/69092	Loss: 149.641
-60800/69092	Loss: 147.192
-64000/69092	Loss: 149.263
-67200/69092	Loss: 149.469
-Training time 0:04:56.394880
-Epoch: 19 Average loss: 149.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 20)
-0/69092	Loss: 129.201
-3200/69092	Loss: 149.012
-6400/69092	Loss: 149.960
-9600/69092	Loss: 149.647
-12800/69092	Loss: 151.793
-16000/69092	Loss: 149.258
-19200/69092	Loss: 148.539
-22400/69092	Loss: 147.455
-25600/69092	Loss: 149.341
-28800/69092	Loss: 149.944
-32000/69092	Loss: 152.197
-35200/69092	Loss: 146.482
-38400/69092	Loss: 148.127
-41600/69092	Loss: 146.162
-44800/69092	Loss: 151.764
-48000/69092	Loss: 150.575
-51200/69092	Loss: 150.623
-54400/69092	Loss: 149.253
-57600/69092	Loss: 147.238
-60800/69092	Loss: 149.014
-64000/69092	Loss: 150.219
-67200/69092	Loss: 148.554
-Training time 0:04:45.573469
-Epoch: 20 Average loss: 149.37
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 21)
-0/69092	Loss: 133.640
-3200/69092	Loss: 148.624
-6400/69092	Loss: 149.967
-9600/69092	Loss: 148.680
-12800/69092	Loss: 147.118
-16000/69092	Loss: 150.804
-19200/69092	Loss: 148.523
-22400/69092	Loss: 152.628
-25600/69092	Loss: 150.004
-28800/69092	Loss: 149.583
-32000/69092	Loss: 148.045
-35200/69092	Loss: 147.617
-38400/69092	Loss: 152.470
-41600/69092	Loss: 150.862
-44800/69092	Loss: 149.814
-48000/69092	Loss: 149.141
-51200/69092	Loss: 148.093
-54400/69092	Loss: 152.332
-57600/69092	Loss: 146.968
-60800/69092	Loss: 149.775
-64000/69092	Loss: 147.789
-67200/69092	Loss: 147.252
-Training time 0:04:59.276110
-Epoch: 21 Average loss: 149.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 22)
-0/69092	Loss: 131.701
-3200/69092	Loss: 148.449
-6400/69092	Loss: 151.597
-9600/69092	Loss: 148.279
-12800/69092	Loss: 149.448
-16000/69092	Loss: 147.015
-19200/69092	Loss: 147.292
-22400/69092	Loss: 150.862
-25600/69092	Loss: 151.634
-28800/69092	Loss: 146.623
-32000/69092	Loss: 150.266
-35200/69092	Loss: 150.815
-38400/69092	Loss: 148.912
-41600/69092	Loss: 148.657
-44800/69092	Loss: 151.418
-48000/69092	Loss: 146.808
-51200/69092	Loss: 148.590
-54400/69092	Loss: 144.899
-57600/69092	Loss: 149.390
-60800/69092	Loss: 148.584
-64000/69092	Loss: 150.349
-67200/69092	Loss: 152.418
-Training time 0:04:46.599533
-Epoch: 22 Average loss: 149.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 23)
-0/69092	Loss: 147.441
-3200/69092	Loss: 146.450
-6400/69092	Loss: 147.865
-9600/69092	Loss: 149.093
-12800/69092	Loss: 149.175
-16000/69092	Loss: 148.235
-19200/69092	Loss: 145.462
-22400/69092	Loss: 148.329
-25600/69092	Loss: 149.039
-28800/69092	Loss: 150.100
-32000/69092	Loss: 149.619
-35200/69092	Loss: 148.932
-38400/69092	Loss: 151.061
-41600/69092	Loss: 150.732
-44800/69092	Loss: 147.543
-48000/69092	Loss: 148.581
-51200/69092	Loss: 149.412
-54400/69092	Loss: 150.560
-57600/69092	Loss: 147.948
-60800/69092	Loss: 148.273
-64000/69092	Loss: 148.835
-67200/69092	Loss: 150.739
-Training time 0:04:49.055498
-Epoch: 23 Average loss: 148.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 24)
-0/69092	Loss: 148.316
-3200/69092	Loss: 150.705
-6400/69092	Loss: 145.427
-9600/69092	Loss: 145.590
-12800/69092	Loss: 146.992
-16000/69092	Loss: 151.595
-19200/69092	Loss: 150.990
-22400/69092	Loss: 149.186
-25600/69092	Loss: 148.401
-28800/69092	Loss: 149.080
-32000/69092	Loss: 149.414
-35200/69092	Loss: 150.053
-38400/69092	Loss: 147.450
-41600/69092	Loss: 151.939
-44800/69092	Loss: 146.092
-48000/69092	Loss: 149.252
-51200/69092	Loss: 149.241
-54400/69092	Loss: 147.512
-57600/69092	Loss: 148.757
-60800/69092	Loss: 150.917
-64000/69092	Loss: 144.102
-67200/69092	Loss: 148.888
-Training time 0:04:42.031507
-Epoch: 24 Average loss: 148.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 25)
-0/69092	Loss: 152.213
-3200/69092	Loss: 149.305
-6400/69092	Loss: 147.650
-9600/69092	Loss: 147.823
-12800/69092	Loss: 150.604
-16000/69092	Loss: 146.576
-19200/69092	Loss: 150.881
-22400/69092	Loss: 149.893
-25600/69092	Loss: 148.029
-28800/69092	Loss: 150.403
-32000/69092	Loss: 149.834
-35200/69092	Loss: 150.335
-38400/69092	Loss: 149.817
-41600/69092	Loss: 148.180
-44800/69092	Loss: 148.837
-48000/69092	Loss: 148.287
-51200/69092	Loss: 145.299
-54400/69092	Loss: 150.729
-57600/69092	Loss: 146.837
-60800/69092	Loss: 146.870
-64000/69092	Loss: 147.973
-67200/69092	Loss: 147.860
-Training time 0:04:47.412749
-Epoch: 25 Average loss: 148.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 26)
-0/69092	Loss: 147.533
-3200/69092	Loss: 149.722
-6400/69092	Loss: 145.848
-9600/69092	Loss: 149.544
-12800/69092	Loss: 147.232
-16000/69092	Loss: 146.528
-19200/69092	Loss: 144.404
-22400/69092	Loss: 148.635
-25600/69092	Loss: 150.073
-28800/69092	Loss: 148.495
-32000/69092	Loss: 148.930
-35200/69092	Loss: 151.213
-38400/69092	Loss: 149.984
-41600/69092	Loss: 149.236
-44800/69092	Loss: 148.683
-48000/69092	Loss: 149.080
-51200/69092	Loss: 147.438
-54400/69092	Loss: 148.451
-57600/69092	Loss: 146.744
-60800/69092	Loss: 150.171
-64000/69092	Loss: 148.242
-67200/69092	Loss: 149.408
-Training time 0:04:50.951991
-Epoch: 26 Average loss: 148.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 27)
-0/69092	Loss: 152.592
-3200/69092	Loss: 149.182
-6400/69092	Loss: 148.681
-9600/69092	Loss: 147.861
-12800/69092	Loss: 148.158
-16000/69092	Loss: 147.307
-19200/69092	Loss: 148.734
-22400/69092	Loss: 148.499
-25600/69092	Loss: 147.275
-28800/69092	Loss: 151.277
-32000/69092	Loss: 149.926
-35200/69092	Loss: 150.180
-38400/69092	Loss: 147.927
-41600/69092	Loss: 147.626
-44800/69092	Loss: 147.453
-48000/69092	Loss: 148.842
-51200/69092	Loss: 151.201
-54400/69092	Loss: 149.597
-57600/69092	Loss: 147.173
-60800/69092	Loss: 150.191
-64000/69092	Loss: 148.148
-67200/69092	Loss: 148.408
-Training time 0:04:53.876524
-Epoch: 27 Average loss: 148.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 28)
-0/69092	Loss: 136.799
-3200/69092	Loss: 149.160
-6400/69092	Loss: 148.577
-9600/69092	Loss: 148.877
-12800/69092	Loss: 148.757
-16000/69092	Loss: 148.481
-19200/69092	Loss: 148.485
-22400/69092	Loss: 145.469
-25600/69092	Loss: 147.464
-28800/69092	Loss: 150.880
-32000/69092	Loss: 148.038
-35200/69092	Loss: 150.974
-38400/69092	Loss: 148.349
-41600/69092	Loss: 146.056
-44800/69092	Loss: 152.184
-48000/69092	Loss: 146.304
-51200/69092	Loss: 148.212
-54400/69092	Loss: 147.954
-57600/69092	Loss: 146.696
-60800/69092	Loss: 148.265
-64000/69092	Loss: 148.102
-67200/69092	Loss: 148.043
-Training time 0:04:48.916889
-Epoch: 28 Average loss: 148.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 29)
-0/69092	Loss: 139.670
-3200/69092	Loss: 149.241
-6400/69092	Loss: 146.362
-9600/69092	Loss: 149.768
-12800/69092	Loss: 150.836
-16000/69092	Loss: 151.187
-19200/69092	Loss: 148.298
-22400/69092	Loss: 146.347
-25600/69092	Loss: 147.607
-28800/69092	Loss: 148.707
-32000/69092	Loss: 149.895
-35200/69092	Loss: 149.527
-38400/69092	Loss: 148.237
-41600/69092	Loss: 144.982
-44800/69092	Loss: 151.784
-48000/69092	Loss: 147.750
-51200/69092	Loss: 146.564
-54400/69092	Loss: 146.418
-57600/69092	Loss: 149.342
-60800/69092	Loss: 148.502
-64000/69092	Loss: 149.298
-67200/69092	Loss: 147.498
-Training time 0:04:45.409229
-Epoch: 29 Average loss: 148.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 30)
-0/69092	Loss: 151.405
-3200/69092	Loss: 146.274
-6400/69092	Loss: 149.452
-9600/69092	Loss: 146.109
-12800/69092	Loss: 149.210
-16000/69092	Loss: 146.885
-19200/69092	Loss: 148.982
-22400/69092	Loss: 149.403
-25600/69092	Loss: 150.823
-28800/69092	Loss: 149.720
-32000/69092	Loss: 146.378
-35200/69092	Loss: 151.609
-38400/69092	Loss: 151.925
-41600/69092	Loss: 150.469
-44800/69092	Loss: 148.398
-48000/69092	Loss: 148.156
-51200/69092	Loss: 146.210
-54400/69092	Loss: 147.480
-57600/69092	Loss: 147.065
-60800/69092	Loss: 145.786
-64000/69092	Loss: 150.431
-67200/69092	Loss: 146.721
-Training time 0:04:50.737945
-Epoch: 30 Average loss: 148.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 31)
-0/69092	Loss: 150.116
-3200/69092	Loss: 150.399
-6400/69092	Loss: 148.203
-9600/69092	Loss: 151.006
-12800/69092	Loss: 147.144
-16000/69092	Loss: 150.393
-19200/69092	Loss: 146.829
-22400/69092	Loss: 147.297
-25600/69092	Loss: 145.868
-28800/69092	Loss: 148.685
-32000/69092	Loss: 147.328
-35200/69092	Loss: 150.047
-38400/69092	Loss: 144.112
-41600/69092	Loss: 145.091
-44800/69092	Loss: 147.921
-48000/69092	Loss: 147.783
-51200/69092	Loss: 147.961
-54400/69092	Loss: 149.061
-57600/69092	Loss: 147.789
-60800/69092	Loss: 146.963
-64000/69092	Loss: 149.435
-67200/69092	Loss: 146.020
-Training time 0:04:48.621983
-Epoch: 31 Average loss: 147.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 32)
-0/69092	Loss: 139.254
-3200/69092	Loss: 147.274
-6400/69092	Loss: 148.368
-9600/69092	Loss: 147.824
-12800/69092	Loss: 144.687
-16000/69092	Loss: 147.647
-19200/69092	Loss: 145.607
-22400/69092	Loss: 145.909
-25600/69092	Loss: 147.128
-28800/69092	Loss: 147.337
-32000/69092	Loss: 147.407
-35200/69092	Loss: 147.988
-38400/69092	Loss: 150.538
-41600/69092	Loss: 151.803
-44800/69092	Loss: 146.955
-48000/69092	Loss: 147.923
-51200/69092	Loss: 147.718
-54400/69092	Loss: 149.130
-57600/69092	Loss: 149.352
-60800/69092	Loss: 147.535
-64000/69092	Loss: 149.475
-67200/69092	Loss: 147.609
-Training time 0:04:48.911700
-Epoch: 32 Average loss: 147.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 33)
-0/69092	Loss: 135.456
-3200/69092	Loss: 147.926
-6400/69092	Loss: 145.118
-9600/69092	Loss: 149.077
-12800/69092	Loss: 150.177
-16000/69092	Loss: 148.397
-19200/69092	Loss: 147.117
-22400/69092	Loss: 145.922
-25600/69092	Loss: 146.261
-28800/69092	Loss: 148.776
-32000/69092	Loss: 149.062
-35200/69092	Loss: 149.170
-38400/69092	Loss: 147.219
-41600/69092	Loss: 148.891
-44800/69092	Loss: 147.959
-48000/69092	Loss: 150.057
-51200/69092	Loss: 147.330
-54400/69092	Loss: 147.750
-57600/69092	Loss: 148.495
-60800/69092	Loss: 147.875
-64000/69092	Loss: 148.009
-67200/69092	Loss: 149.262
-Training time 0:04:50.174805
-Epoch: 33 Average loss: 148.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 34)
-0/69092	Loss: 182.166
-3200/69092	Loss: 148.901
-6400/69092	Loss: 145.378
-9600/69092	Loss: 148.315
-12800/69092	Loss: 146.911
-16000/69092	Loss: 147.523
-19200/69092	Loss: 147.612
-22400/69092	Loss: 146.449
-25600/69092	Loss: 147.696
-28800/69092	Loss: 150.118
-32000/69092	Loss: 148.327
-35200/69092	Loss: 147.242
-38400/69092	Loss: 148.225
-41600/69092	Loss: 146.721
-44800/69092	Loss: 149.915
-48000/69092	Loss: 147.828
-51200/69092	Loss: 146.816
-54400/69092	Loss: 148.654
-57600/69092	Loss: 147.533
-60800/69092	Loss: 148.067
-64000/69092	Loss: 148.144
-67200/69092	Loss: 150.079
-Training time 0:04:43.649297
-Epoch: 34 Average loss: 147.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 35)
-0/69092	Loss: 144.509
-3200/69092	Loss: 148.918
-6400/69092	Loss: 149.180
-9600/69092	Loss: 143.877
-12800/69092	Loss: 147.871
-16000/69092	Loss: 148.619
-19200/69092	Loss: 148.622
-22400/69092	Loss: 149.938
-25600/69092	Loss: 151.149
-28800/69092	Loss: 145.947
-32000/69092	Loss: 146.845
-35200/69092	Loss: 143.968
-38400/69092	Loss: 148.796
-41600/69092	Loss: 145.774
-44800/69092	Loss: 147.522
-48000/69092	Loss: 150.373
-51200/69092	Loss: 150.224
-54400/69092	Loss: 144.202
-57600/69092	Loss: 147.134
-60800/69092	Loss: 147.678
-64000/69092	Loss: 147.897
-67200/69092	Loss: 147.136
-Training time 0:04:52.302760
-Epoch: 35 Average loss: 147.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 36)
-0/69092	Loss: 171.568
-3200/69092	Loss: 147.211
-6400/69092	Loss: 151.186
-9600/69092	Loss: 147.847
-12800/69092	Loss: 147.045
-16000/69092	Loss: 147.694
-19200/69092	Loss: 147.207
-22400/69092	Loss: 146.437
-25600/69092	Loss: 148.529
-28800/69092	Loss: 147.193
-32000/69092	Loss: 147.475
-35200/69092	Loss: 149.954
-38400/69092	Loss: 146.927
-41600/69092	Loss: 147.328
-44800/69092	Loss: 147.303
-48000/69092	Loss: 147.689
-51200/69092	Loss: 145.557
-54400/69092	Loss: 149.372
-57600/69092	Loss: 149.927
-60800/69092	Loss: 148.130
-64000/69092	Loss: 145.447
-67200/69092	Loss: 147.423
-Training time 0:04:41.499130
-Epoch: 36 Average loss: 147.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 37)
-0/69092	Loss: 126.942
-3200/69092	Loss: 147.392
-6400/69092	Loss: 149.148
-9600/69092	Loss: 148.443
-12800/69092	Loss: 146.970
-16000/69092	Loss: 147.117
-19200/69092	Loss: 145.697
-22400/69092	Loss: 150.965
-25600/69092	Loss: 150.003
-28800/69092	Loss: 144.241
-32000/69092	Loss: 148.380
-35200/69092	Loss: 143.263
-38400/69092	Loss: 146.500
-41600/69092	Loss: 147.698
-44800/69092	Loss: 148.868
-48000/69092	Loss: 149.101
-51200/69092	Loss: 146.882
-54400/69092	Loss: 149.080
-57600/69092	Loss: 145.908
-60800/69092	Loss: 150.441
-64000/69092	Loss: 149.058
-67200/69092	Loss: 148.011
-Training time 0:04:43.312257
-Epoch: 37 Average loss: 147.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 38)
-0/69092	Loss: 138.473
-3200/69092	Loss: 148.439
-6400/69092	Loss: 146.342
-9600/69092	Loss: 149.556
-12800/69092	Loss: 147.739
-16000/69092	Loss: 147.844
-19200/69092	Loss: 150.256
-22400/69092	Loss: 147.245
-25600/69092	Loss: 148.738
-28800/69092	Loss: 145.625
-32000/69092	Loss: 149.568
-35200/69092	Loss: 144.465
-38400/69092	Loss: 145.087
-41600/69092	Loss: 148.033
-44800/69092	Loss: 147.266
-48000/69092	Loss: 147.949
-51200/69092	Loss: 147.969
-54400/69092	Loss: 151.305
-57600/69092	Loss: 144.169
-60800/69092	Loss: 148.036
-64000/69092	Loss: 146.607
-67200/69092	Loss: 148.207
-Training time 0:04:37.742191
-Epoch: 38 Average loss: 147.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 39)
-0/69092	Loss: 140.590
-3200/69092	Loss: 147.467
-6400/69092	Loss: 145.737
-9600/69092	Loss: 148.149
-12800/69092	Loss: 148.441
-16000/69092	Loss: 147.550
-19200/69092	Loss: 148.744
-22400/69092	Loss: 145.392
-25600/69092	Loss: 147.454
-28800/69092	Loss: 148.207
-32000/69092	Loss: 147.382
-35200/69092	Loss: 148.161
-38400/69092	Loss: 148.098
-41600/69092	Loss: 146.294
-44800/69092	Loss: 147.684
-48000/69092	Loss: 146.768
-51200/69092	Loss: 148.378
-54400/69092	Loss: 148.982
-57600/69092	Loss: 146.299
-60800/69092	Loss: 148.486
-64000/69092	Loss: 146.811
-67200/69092	Loss: 148.951
-Training time 0:04:50.802320
-Epoch: 39 Average loss: 147.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 40)
-0/69092	Loss: 136.610
-3200/69092	Loss: 150.866
-6400/69092	Loss: 147.610
-9600/69092	Loss: 148.863
-12800/69092	Loss: 147.901
-16000/69092	Loss: 146.124
-19200/69092	Loss: 147.856
-22400/69092	Loss: 147.756
-25600/69092	Loss: 146.895
-28800/69092	Loss: 148.882
-32000/69092	Loss: 149.392
-35200/69092	Loss: 145.366
-38400/69092	Loss: 146.326
-41600/69092	Loss: 148.099
-44800/69092	Loss: 147.129
-48000/69092	Loss: 147.240
-51200/69092	Loss: 146.275
-54400/69092	Loss: 150.795
-57600/69092	Loss: 146.048
-60800/69092	Loss: 145.345
-64000/69092	Loss: 146.640
-67200/69092	Loss: 147.691
-Training time 0:04:46.034226
-Epoch: 40 Average loss: 147.57
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 41)
-0/69092	Loss: 130.478
-3200/69092	Loss: 145.856
-6400/69092	Loss: 148.837
-9600/69092	Loss: 148.716
-12800/69092	Loss: 147.260
-16000/69092	Loss: 146.766
-19200/69092	Loss: 148.677
-22400/69092	Loss: 144.870
-25600/69092	Loss: 146.645
-28800/69092	Loss: 149.022
-32000/69092	Loss: 149.616
-35200/69092	Loss: 147.131
-38400/69092	Loss: 147.440
-41600/69092	Loss: 146.554
-44800/69092	Loss: 149.245
-48000/69092	Loss: 150.220
-51200/69092	Loss: 147.618
-54400/69092	Loss: 149.107
-57600/69092	Loss: 147.340
-60800/69092	Loss: 147.957
-64000/69092	Loss: 146.702
-67200/69092	Loss: 147.134
-Training time 0:04:32.941870
-Epoch: 41 Average loss: 147.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 42)
-0/69092	Loss: 142.196
-3200/69092	Loss: 149.834
-6400/69092	Loss: 147.423
-9600/69092	Loss: 147.878
-12800/69092	Loss: 148.993
-16000/69092	Loss: 146.516
-19200/69092	Loss: 147.415
-22400/69092	Loss: 148.012
-25600/69092	Loss: 147.496
-28800/69092	Loss: 148.991
-32000/69092	Loss: 147.641
-35200/69092	Loss: 144.425
-38400/69092	Loss: 148.495
-41600/69092	Loss: 146.185
-44800/69092	Loss: 145.948
-48000/69092	Loss: 148.388
-51200/69092	Loss: 144.057
-54400/69092	Loss: 149.661
-57600/69092	Loss: 149.148
-60800/69092	Loss: 148.142
-64000/69092	Loss: 146.454
-67200/69092	Loss: 147.064
-Training time 0:04:51.137364
-Epoch: 42 Average loss: 147.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 43)
-0/69092	Loss: 146.976
-3200/69092	Loss: 145.914
-6400/69092	Loss: 149.067
-9600/69092	Loss: 147.212
-12800/69092	Loss: 149.855
-16000/69092	Loss: 147.618
-19200/69092	Loss: 147.907
-22400/69092	Loss: 143.236
-25600/69092	Loss: 146.884
-28800/69092	Loss: 146.931
-32000/69092	Loss: 149.960
-35200/69092	Loss: 147.290
-38400/69092	Loss: 146.588
-41600/69092	Loss: 148.242
-44800/69092	Loss: 147.682
-48000/69092	Loss: 149.333
-51200/69092	Loss: 145.939
-54400/69092	Loss: 148.984
-57600/69092	Loss: 147.244
-60800/69092	Loss: 146.377
-64000/69092	Loss: 147.587
-67200/69092	Loss: 148.987
-Training time 0:04:52.995865
-Epoch: 43 Average loss: 147.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 44)
-0/69092	Loss: 147.195
-3200/69092	Loss: 145.492
-6400/69092	Loss: 148.713
-9600/69092	Loss: 147.604
-12800/69092	Loss: 148.692
-16000/69092	Loss: 149.684
-19200/69092	Loss: 150.388
-22400/69092	Loss: 146.937
-25600/69092	Loss: 149.534
-28800/69092	Loss: 148.582
-32000/69092	Loss: 147.982
-35200/69092	Loss: 150.096
-38400/69092	Loss: 146.612
-41600/69092	Loss: 143.746
-44800/69092	Loss: 145.780
-48000/69092	Loss: 146.939
-51200/69092	Loss: 144.991
-54400/69092	Loss: 149.095
-57600/69092	Loss: 146.711
-60800/69092	Loss: 145.298
-64000/69092	Loss: 146.612
-67200/69092	Loss: 147.295
-Training time 0:04:48.267435
-Epoch: 44 Average loss: 147.44
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 45)
-0/69092	Loss: 144.535
-3200/69092	Loss: 149.252
-6400/69092	Loss: 147.248
-9600/69092	Loss: 145.847
-12800/69092	Loss: 147.830
-16000/69092	Loss: 145.908
-19200/69092	Loss: 148.936
-22400/69092	Loss: 147.652
-25600/69092	Loss: 146.594
-28800/69092	Loss: 148.105
-32000/69092	Loss: 147.654
-35200/69092	Loss: 147.288
-38400/69092	Loss: 146.380
-41600/69092	Loss: 150.282
-44800/69092	Loss: 146.159
-48000/69092	Loss: 149.498
-51200/69092	Loss: 146.705
-54400/69092	Loss: 148.901
-57600/69092	Loss: 148.219
-60800/69092	Loss: 144.109
-64000/69092	Loss: 146.984
-67200/69092	Loss: 146.319
-Training time 0:04:46.182034
-Epoch: 45 Average loss: 147.42
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 46)
-0/69092	Loss: 136.896
-3200/69092	Loss: 149.550
-6400/69092	Loss: 148.753
-9600/69092	Loss: 148.302
-12800/69092	Loss: 148.910
-16000/69092	Loss: 146.299
-19200/69092	Loss: 148.390
-22400/69092	Loss: 145.611
-25600/69092	Loss: 147.391
-28800/69092	Loss: 148.267
-32000/69092	Loss: 146.850
-35200/69092	Loss: 147.362
-38400/69092	Loss: 147.291
-41600/69092	Loss: 149.410
-44800/69092	Loss: 147.307
-48000/69092	Loss: 144.954
-51200/69092	Loss: 148.240
-54400/69092	Loss: 147.475
-57600/69092	Loss: 145.484
-60800/69092	Loss: 143.873
-64000/69092	Loss: 148.499
-67200/69092	Loss: 147.200
-Training time 0:04:42.458226
-Epoch: 46 Average loss: 147.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 47)
-0/69092	Loss: 150.699
-3200/69092	Loss: 147.425
-6400/69092	Loss: 147.047
-9600/69092	Loss: 145.380
-12800/69092	Loss: 149.754
-16000/69092	Loss: 149.451
-19200/69092	Loss: 147.034
-22400/69092	Loss: 147.372
-25600/69092	Loss: 147.991
-28800/69092	Loss: 148.776
-32000/69092	Loss: 149.615
-35200/69092	Loss: 147.608
-38400/69092	Loss: 148.215
-41600/69092	Loss: 149.303
-44800/69092	Loss: 146.046
-48000/69092	Loss: 145.386
-51200/69092	Loss: 145.610
-54400/69092	Loss: 146.915
-57600/69092	Loss: 148.651
-60800/69092	Loss: 146.439
-64000/69092	Loss: 145.994
-67200/69092	Loss: 145.309
-Training time 0:04:50.171637
-Epoch: 47 Average loss: 147.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 48)
-0/69092	Loss: 152.689
-3200/69092	Loss: 148.242
-6400/69092	Loss: 149.818
-9600/69092	Loss: 150.796
-12800/69092	Loss: 146.022
-16000/69092	Loss: 146.036
-19200/69092	Loss: 148.187
-22400/69092	Loss: 146.057
-25600/69092	Loss: 148.854
-28800/69092	Loss: 146.305
-32000/69092	Loss: 147.919
-35200/69092	Loss: 147.342
-38400/69092	Loss: 145.379
-41600/69092	Loss: 147.849
-44800/69092	Loss: 145.081
-48000/69092	Loss: 148.374
-51200/69092	Loss: 148.579
-54400/69092	Loss: 148.269
-57600/69092	Loss: 148.248
-60800/69092	Loss: 145.525
-64000/69092	Loss: 143.879
-67200/69092	Loss: 146.685
-Training time 0:04:51.065306
-Epoch: 48 Average loss: 147.28
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 49)
-0/69092	Loss: 138.702
-3200/69092	Loss: 149.051
-6400/69092	Loss: 146.844
-9600/69092	Loss: 146.851
-12800/69092	Loss: 148.108
-16000/69092	Loss: 149.468
-19200/69092	Loss: 146.898
-22400/69092	Loss: 147.229
-25600/69092	Loss: 148.109
-28800/69092	Loss: 144.980
-32000/69092	Loss: 146.640
-35200/69092	Loss: 147.083
-38400/69092	Loss: 144.511
-41600/69092	Loss: 149.689
-44800/69092	Loss: 146.317
-48000/69092	Loss: 148.143
-51200/69092	Loss: 149.500
-54400/69092	Loss: 146.935
-57600/69092	Loss: 145.848
-60800/69092	Loss: 149.408
-64000/69092	Loss: 145.568
-67200/69092	Loss: 146.664
-Training time 0:04:52.656015
-Epoch: 49 Average loss: 147.28
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 50)
-0/69092	Loss: 141.442
-3200/69092	Loss: 145.800
-6400/69092	Loss: 148.988
-9600/69092	Loss: 146.610
-12800/69092	Loss: 149.453
-16000/69092	Loss: 146.489
-19200/69092	Loss: 147.201
-22400/69092	Loss: 146.820
-25600/69092	Loss: 146.664
-28800/69092	Loss: 144.953
-32000/69092	Loss: 150.625
-35200/69092	Loss: 145.450
-38400/69092	Loss: 145.755
-41600/69092	Loss: 147.921
-44800/69092	Loss: 146.116
-48000/69092	Loss: 147.734
-51200/69092	Loss: 144.139
-54400/69092	Loss: 143.210
-57600/69092	Loss: 146.801
-60800/69092	Loss: 149.121
-64000/69092	Loss: 150.397
-67200/69092	Loss: 147.114
-Training time 0:04:52.556216
-Epoch: 50 Average loss: 147.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 51)
-0/69092	Loss: 148.842
-3200/69092	Loss: 149.280
-6400/69092	Loss: 144.520
-9600/69092	Loss: 145.122
-12800/69092	Loss: 148.532
-16000/69092	Loss: 148.949
-19200/69092	Loss: 152.320
-22400/69092	Loss: 147.693
-25600/69092	Loss: 148.352
-28800/69092	Loss: 147.083
-32000/69092	Loss: 143.256
-35200/69092	Loss: 147.945
-38400/69092	Loss: 148.295
-41600/69092	Loss: 146.062
-44800/69092	Loss: 148.280
-48000/69092	Loss: 148.141
-51200/69092	Loss: 144.961
-54400/69092	Loss: 146.155
-57600/69092	Loss: 149.486
-60800/69092	Loss: 147.682
-64000/69092	Loss: 144.341
-67200/69092	Loss: 146.745
-Training time 0:04:52.407796
-Epoch: 51 Average loss: 147.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 52)
-0/69092	Loss: 144.874
-3200/69092	Loss: 148.552
-6400/69092	Loss: 146.392
-9600/69092	Loss: 149.637
-12800/69092	Loss: 142.479
-16000/69092	Loss: 145.334
-19200/69092	Loss: 147.575
-22400/69092	Loss: 147.806
-25600/69092	Loss: 144.501
-28800/69092	Loss: 146.850
-32000/69092	Loss: 146.706
-35200/69092	Loss: 148.118
-38400/69092	Loss: 146.641
-41600/69092	Loss: 146.493
-44800/69092	Loss: 148.939
-48000/69092	Loss: 146.910
-51200/69092	Loss: 148.734
-54400/69092	Loss: 147.240
-57600/69092	Loss: 146.749
-60800/69092	Loss: 148.595
-64000/69092	Loss: 145.173
-67200/69092	Loss: 146.752
-Training time 0:04:46.414580
-Epoch: 52 Average loss: 146.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 53)
-0/69092	Loss: 159.264
-3200/69092	Loss: 146.521
-6400/69092	Loss: 145.872
-9600/69092	Loss: 147.680
-12800/69092	Loss: 146.508
-16000/69092	Loss: 143.673
-19200/69092	Loss: 149.822
-22400/69092	Loss: 147.306
-25600/69092	Loss: 144.225
-28800/69092	Loss: 148.730
-32000/69092	Loss: 147.515
-35200/69092	Loss: 147.099
-38400/69092	Loss: 148.525
-41600/69092	Loss: 148.024
-44800/69092	Loss: 146.560
-48000/69092	Loss: 148.455
-51200/69092	Loss: 150.450
-54400/69092	Loss: 147.113
-57600/69092	Loss: 147.433
-60800/69092	Loss: 147.747
-64000/69092	Loss: 147.956
-67200/69092	Loss: 145.113
-Training time 0:04:51.452545
-Epoch: 53 Average loss: 147.28
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 54)
-0/69092	Loss: 141.546
-3200/69092	Loss: 145.539
-6400/69092	Loss: 149.190
-9600/69092	Loss: 146.784
-12800/69092	Loss: 146.082
-16000/69092	Loss: 146.864
-19200/69092	Loss: 145.810
-22400/69092	Loss: 147.325
-25600/69092	Loss: 143.982
-28800/69092	Loss: 150.492
-32000/69092	Loss: 147.060
-35200/69092	Loss: 146.891
-38400/69092	Loss: 146.113
-41600/69092	Loss: 147.908
-44800/69092	Loss: 146.118
-48000/69092	Loss: 146.011
-51200/69092	Loss: 146.489
-54400/69092	Loss: 147.377
-57600/69092	Loss: 146.536
-60800/69092	Loss: 148.937
-64000/69092	Loss: 147.756
-67200/69092	Loss: 147.634
-Training time 0:04:50.742064
-Epoch: 54 Average loss: 147.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 55)
-0/69092	Loss: 138.250
-3200/69092	Loss: 145.860
-6400/69092	Loss: 145.939
-9600/69092	Loss: 148.053
-12800/69092	Loss: 145.854
-16000/69092	Loss: 146.061
-19200/69092	Loss: 146.897
-22400/69092	Loss: 147.777
-25600/69092	Loss: 148.758
-28800/69092	Loss: 144.013
-32000/69092	Loss: 146.965
-35200/69092	Loss: 148.122
-38400/69092	Loss: 145.971
-41600/69092	Loss: 148.565
-44800/69092	Loss: 146.701
-48000/69092	Loss: 145.711
-51200/69092	Loss: 144.412
-54400/69092	Loss: 147.006
-57600/69092	Loss: 148.684
-60800/69092	Loss: 150.994
-64000/69092	Loss: 148.301
-67200/69092	Loss: 146.625
-Training time 0:04:53.544549
-Epoch: 55 Average loss: 146.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 56)
-0/69092	Loss: 153.768
-3200/69092	Loss: 148.208
-6400/69092	Loss: 146.056
-9600/69092	Loss: 144.783
-12800/69092	Loss: 146.773
-16000/69092	Loss: 142.310
-19200/69092	Loss: 148.937
-22400/69092	Loss: 146.681
-25600/69092	Loss: 145.761
-28800/69092	Loss: 149.047
-32000/69092	Loss: 150.048
-35200/69092	Loss: 146.347
-38400/69092	Loss: 147.055
-41600/69092	Loss: 144.490
-44800/69092	Loss: 152.141
-48000/69092	Loss: 146.734
-51200/69092	Loss: 148.234
-54400/69092	Loss: 146.772
-57600/69092	Loss: 148.011
-60800/69092	Loss: 145.731
-64000/69092	Loss: 147.526
-67200/69092	Loss: 144.554
-Training time 0:04:53.486139
-Epoch: 56 Average loss: 146.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 57)
-0/69092	Loss: 146.591
-3200/69092	Loss: 145.821
-6400/69092	Loss: 150.520
-9600/69092	Loss: 147.664
-12800/69092	Loss: 146.785
-16000/69092	Loss: 148.951
-19200/69092	Loss: 147.684
-22400/69092	Loss: 146.618
-25600/69092	Loss: 147.101
-28800/69092	Loss: 145.667
-32000/69092	Loss: 147.255
-35200/69092	Loss: 146.929
-38400/69092	Loss: 145.768
-41600/69092	Loss: 148.278
-44800/69092	Loss: 145.624
-48000/69092	Loss: 146.251
-51200/69092	Loss: 146.753
-54400/69092	Loss: 144.288
-57600/69092	Loss: 149.160
-60800/69092	Loss: 145.712
-64000/69092	Loss: 147.056
-67200/69092	Loss: 148.634
-Training time 0:04:51.065809
-Epoch: 57 Average loss: 147.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 58)
-0/69092	Loss: 143.716
-3200/69092	Loss: 148.458
-6400/69092	Loss: 147.682
-9600/69092	Loss: 146.822
-12800/69092	Loss: 144.305
-16000/69092	Loss: 147.238
-19200/69092	Loss: 148.305
-22400/69092	Loss: 146.991
-25600/69092	Loss: 146.660
-28800/69092	Loss: 147.319
-32000/69092	Loss: 147.859
-35200/69092	Loss: 147.335
-38400/69092	Loss: 147.587
-41600/69092	Loss: 146.720
-44800/69092	Loss: 145.439
-48000/69092	Loss: 147.053
-51200/69092	Loss: 146.829
-54400/69092	Loss: 145.434
-57600/69092	Loss: 144.668
-60800/69092	Loss: 145.682
-64000/69092	Loss: 146.102
-67200/69092	Loss: 147.807
-Training time 0:04:46.504364
-Epoch: 58 Average loss: 146.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 59)
-0/69092	Loss: 137.024
-3200/69092	Loss: 146.156
-6400/69092	Loss: 146.917
-9600/69092	Loss: 145.676
-12800/69092	Loss: 144.955
-16000/69092	Loss: 145.394
-19200/69092	Loss: 148.735
-22400/69092	Loss: 151.117
-25600/69092	Loss: 143.244
-28800/69092	Loss: 148.260
-32000/69092	Loss: 145.791
-35200/69092	Loss: 148.731
-38400/69092	Loss: 147.829
-41600/69092	Loss: 144.755
-44800/69092	Loss: 146.574
-48000/69092	Loss: 146.108
-51200/69092	Loss: 148.643
-54400/69092	Loss: 148.252
-57600/69092	Loss: 146.390
-60800/69092	Loss: 148.153
-64000/69092	Loss: 145.236
-67200/69092	Loss: 146.518
-Training time 0:04:51.503963
-Epoch: 59 Average loss: 146.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 60)
-0/69092	Loss: 138.822
-3200/69092	Loss: 147.527
-6400/69092	Loss: 146.079
-9600/69092	Loss: 145.572
-12800/69092	Loss: 147.603
-16000/69092	Loss: 144.474
-19200/69092	Loss: 145.038
-22400/69092	Loss: 144.862
-25600/69092	Loss: 146.587
-28800/69092	Loss: 149.152
-32000/69092	Loss: 145.570
-35200/69092	Loss: 147.617
-38400/69092	Loss: 147.989
-41600/69092	Loss: 146.229
-44800/69092	Loss: 147.906
-48000/69092	Loss: 151.285
-51200/69092	Loss: 143.997
-54400/69092	Loss: 145.932
-57600/69092	Loss: 150.376
-60800/69092	Loss: 146.700
-64000/69092	Loss: 148.486
-67200/69092	Loss: 146.345
-Training time 0:04:46.929217
-Epoch: 60 Average loss: 146.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 61)
-0/69092	Loss: 166.519
-3200/69092	Loss: 145.672
-6400/69092	Loss: 147.772
-9600/69092	Loss: 148.168
-12800/69092	Loss: 146.215
-16000/69092	Loss: 146.079
-19200/69092	Loss: 147.056
-22400/69092	Loss: 147.892
-25600/69092	Loss: 146.288
-28800/69092	Loss: 148.293
-32000/69092	Loss: 148.328
-35200/69092	Loss: 143.436
-38400/69092	Loss: 145.152
-41600/69092	Loss: 146.213
-44800/69092	Loss: 148.472
-48000/69092	Loss: 145.735
-51200/69092	Loss: 147.423
-54400/69092	Loss: 148.034
-57600/69092	Loss: 148.200
-60800/69092	Loss: 146.902
-64000/69092	Loss: 147.962
-67200/69092	Loss: 145.349
-Training time 0:04:50.557487
-Epoch: 61 Average loss: 146.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 62)
-0/69092	Loss: 152.315
-3200/69092	Loss: 145.624
-6400/69092	Loss: 144.994
-9600/69092	Loss: 146.370
-12800/69092	Loss: 145.070
-16000/69092	Loss: 147.258
-19200/69092	Loss: 146.463
-22400/69092	Loss: 146.461
-25600/69092	Loss: 146.188
-28800/69092	Loss: 149.226
-32000/69092	Loss: 146.179
-35200/69092	Loss: 143.983
-38400/69092	Loss: 145.782
-41600/69092	Loss: 149.198
-44800/69092	Loss: 145.018
-48000/69092	Loss: 149.167
-51200/69092	Loss: 147.337
-54400/69092	Loss: 146.529
-57600/69092	Loss: 148.921
-60800/69092	Loss: 148.086
-64000/69092	Loss: 148.350
-67200/69092	Loss: 148.678
-Training time 0:04:52.219880
-Epoch: 62 Average loss: 146.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 63)
-0/69092	Loss: 150.422
-3200/69092	Loss: 145.658
-6400/69092	Loss: 148.464
-9600/69092	Loss: 144.912
-12800/69092	Loss: 146.988
-16000/69092	Loss: 145.140
-19200/69092	Loss: 147.034
-22400/69092	Loss: 149.184
-25600/69092	Loss: 143.026
-28800/69092	Loss: 145.987
-32000/69092	Loss: 144.233
-35200/69092	Loss: 148.456
-38400/69092	Loss: 144.521
-41600/69092	Loss: 146.424
-44800/69092	Loss: 146.320
-48000/69092	Loss: 146.144
-51200/69092	Loss: 149.693
-54400/69092	Loss: 147.905
-57600/69092	Loss: 145.137
-60800/69092	Loss: 147.358
-64000/69092	Loss: 146.544
-67200/69092	Loss: 146.999
-Training time 0:04:41.221411
-Epoch: 63 Average loss: 146.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 64)
-0/69092	Loss: 171.182
-3200/69092	Loss: 144.032
-6400/69092	Loss: 149.165
-9600/69092	Loss: 146.192
-12800/69092	Loss: 145.012
-16000/69092	Loss: 147.469
-19200/69092	Loss: 146.261
-22400/69092	Loss: 147.494
-25600/69092	Loss: 147.959
-28800/69092	Loss: 144.652
-32000/69092	Loss: 147.345
-35200/69092	Loss: 145.761
-38400/69092	Loss: 147.931
-41600/69092	Loss: 148.879
-44800/69092	Loss: 146.097
-48000/69092	Loss: 148.339
-51200/69092	Loss: 146.139
-54400/69092	Loss: 145.088
-57600/69092	Loss: 147.679
-60800/69092	Loss: 144.936
-64000/69092	Loss: 146.873
-67200/69092	Loss: 146.842
-Training time 0:04:50.096951
-Epoch: 64 Average loss: 146.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 65)
-0/69092	Loss: 133.547
-3200/69092	Loss: 146.622
-6400/69092	Loss: 145.129
-9600/69092	Loss: 145.236
-12800/69092	Loss: 149.343
-16000/69092	Loss: 145.954
-19200/69092	Loss: 148.716
-22400/69092	Loss: 149.692
-25600/69092	Loss: 144.304
-28800/69092	Loss: 148.359
-32000/69092	Loss: 147.637
-35200/69092	Loss: 144.991
-38400/69092	Loss: 144.874
-41600/69092	Loss: 146.725
-44800/69092	Loss: 149.184
-48000/69092	Loss: 147.321
-51200/69092	Loss: 148.040
-54400/69092	Loss: 146.115
-57600/69092	Loss: 145.868
-60800/69092	Loss: 146.311
-64000/69092	Loss: 147.308
-67200/69092	Loss: 143.867
-Training time 0:04:57.613096
-Epoch: 65 Average loss: 146.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 66)
-0/69092	Loss: 137.107
-3200/69092	Loss: 144.685
-6400/69092	Loss: 146.227
-9600/69092	Loss: 146.986
-12800/69092	Loss: 145.772
-16000/69092	Loss: 144.567
-19200/69092	Loss: 149.107
-22400/69092	Loss: 146.743
-25600/69092	Loss: 146.766
-28800/69092	Loss: 146.158
-32000/69092	Loss: 147.916
-35200/69092	Loss: 143.342
-38400/69092	Loss: 146.238
-41600/69092	Loss: 148.321
-44800/69092	Loss: 147.586
-48000/69092	Loss: 146.530
-51200/69092	Loss: 146.869
-54400/69092	Loss: 148.187
-57600/69092	Loss: 149.371
-60800/69092	Loss: 149.565
-64000/69092	Loss: 145.194
-67200/69092	Loss: 147.560
-Training time 0:04:44.057703
-Epoch: 66 Average loss: 146.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 67)
-0/69092	Loss: 132.834
-3200/69092	Loss: 150.361
-6400/69092	Loss: 146.893
-9600/69092	Loss: 147.579
-12800/69092	Loss: 146.295
-16000/69092	Loss: 145.771
-19200/69092	Loss: 146.264
-22400/69092	Loss: 146.407
-25600/69092	Loss: 147.373
-28800/69092	Loss: 144.665
-32000/69092	Loss: 145.544
-35200/69092	Loss: 146.769
-38400/69092	Loss: 146.017
-41600/69092	Loss: 148.503
-44800/69092	Loss: 145.678
-48000/69092	Loss: 144.804
-51200/69092	Loss: 149.534
-54400/69092	Loss: 145.693
-57600/69092	Loss: 147.367
-60800/69092	Loss: 147.390
-64000/69092	Loss: 147.381
-67200/69092	Loss: 146.191
-Training time 0:04:46.229026
-Epoch: 67 Average loss: 146.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 68)
-0/69092	Loss: 156.265
-3200/69092	Loss: 147.226
-6400/69092	Loss: 144.118
-9600/69092	Loss: 150.272
-12800/69092	Loss: 148.052
-16000/69092	Loss: 147.857
-19200/69092	Loss: 147.257
-22400/69092	Loss: 147.120
-25600/69092	Loss: 147.883
-28800/69092	Loss: 146.170
-32000/69092	Loss: 146.023
-35200/69092	Loss: 148.848
-38400/69092	Loss: 145.555
-41600/69092	Loss: 146.862
-44800/69092	Loss: 147.628
-48000/69092	Loss: 148.706
-51200/69092	Loss: 145.668
-54400/69092	Loss: 146.020
-57600/69092	Loss: 143.698
-60800/69092	Loss: 145.418
-64000/69092	Loss: 146.778
-67200/69092	Loss: 147.013
-Training time 0:04:44.444230
-Epoch: 68 Average loss: 146.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 69)
-0/69092	Loss: 141.757
-3200/69092	Loss: 146.667
-6400/69092	Loss: 148.135
-9600/69092	Loss: 144.239
-12800/69092	Loss: 146.948
-16000/69092	Loss: 145.072
-19200/69092	Loss: 147.376
-22400/69092	Loss: 147.459
-25600/69092	Loss: 147.408
-28800/69092	Loss: 146.334
-32000/69092	Loss: 145.263
-35200/69092	Loss: 146.575
-38400/69092	Loss: 144.863
-41600/69092	Loss: 149.402
-44800/69092	Loss: 146.329
-48000/69092	Loss: 146.814
-51200/69092	Loss: 148.077
-54400/69092	Loss: 147.105
-57600/69092	Loss: 148.299
-60800/69092	Loss: 146.524
-64000/69092	Loss: 143.302
-67200/69092	Loss: 147.207
-Training time 0:04:46.047948
-Epoch: 69 Average loss: 146.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 70)
-0/69092	Loss: 141.410
-3200/69092	Loss: 146.306
-6400/69092	Loss: 150.284
-9600/69092	Loss: 147.467
-12800/69092	Loss: 145.598
-16000/69092	Loss: 145.802
-19200/69092	Loss: 145.539
-22400/69092	Loss: 144.361
-25600/69092	Loss: 147.736
-28800/69092	Loss: 145.281
-32000/69092	Loss: 145.185
-35200/69092	Loss: 146.842
-38400/69092	Loss: 147.779
-41600/69092	Loss: 147.431
-44800/69092	Loss: 145.748
-48000/69092	Loss: 147.031
-51200/69092	Loss: 144.653
-54400/69092	Loss: 147.337
-57600/69092	Loss: 147.096
-60800/69092	Loss: 149.250
-64000/69092	Loss: 146.275
-67200/69092	Loss: 145.122
-Training time 0:04:45.749935
-Epoch: 70 Average loss: 146.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 71)
-0/69092	Loss: 146.901
-3200/69092	Loss: 148.857
-6400/69092	Loss: 145.309
-9600/69092	Loss: 148.464
-12800/69092	Loss: 145.992
-16000/69092	Loss: 145.157
-19200/69092	Loss: 144.117
-22400/69092	Loss: 150.274
-25600/69092	Loss: 146.916
-28800/69092	Loss: 146.169
-32000/69092	Loss: 143.758
-35200/69092	Loss: 150.341
-38400/69092	Loss: 149.049
-41600/69092	Loss: 146.319
-44800/69092	Loss: 146.374
-48000/69092	Loss: 147.975
-51200/69092	Loss: 148.639
-54400/69092	Loss: 145.146
-57600/69092	Loss: 146.491
-60800/69092	Loss: 145.525
-64000/69092	Loss: 148.042
-67200/69092	Loss: 144.941
-Training time 0:04:44.314991
-Epoch: 71 Average loss: 146.89
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 72)
-0/69092	Loss: 136.750
-3200/69092	Loss: 143.544
-6400/69092	Loss: 143.704
-9600/69092	Loss: 148.213
-12800/69092	Loss: 148.150
-16000/69092	Loss: 147.150
-19200/69092	Loss: 145.401
-22400/69092	Loss: 149.390
-25600/69092	Loss: 146.899
-28800/69092	Loss: 147.619
-32000/69092	Loss: 146.977
-35200/69092	Loss: 146.808
-38400/69092	Loss: 148.002
-41600/69092	Loss: 147.236
-44800/69092	Loss: 145.674
-48000/69092	Loss: 146.777
-51200/69092	Loss: 146.922
-54400/69092	Loss: 145.737
-57600/69092	Loss: 149.854
-60800/69092	Loss: 145.690
-64000/69092	Loss: 147.044
-67200/69092	Loss: 144.801
-Training time 0:04:44.887256
-Epoch: 72 Average loss: 146.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 73)
-0/69092	Loss: 143.328
-3200/69092	Loss: 146.134
-6400/69092	Loss: 147.602
-9600/69092	Loss: 145.674
-12800/69092	Loss: 146.106
-16000/69092	Loss: 144.240
-19200/69092	Loss: 146.586
-22400/69092	Loss: 146.861
-25600/69092	Loss: 146.332
-28800/69092	Loss: 146.855
-32000/69092	Loss: 146.523
-35200/69092	Loss: 145.526
-38400/69092	Loss: 147.427
-41600/69092	Loss: 147.800
-44800/69092	Loss: 149.240
-48000/69092	Loss: 147.022
-51200/69092	Loss: 148.705
-54400/69092	Loss: 147.315
-57600/69092	Loss: 147.294
-60800/69092	Loss: 145.819
-64000/69092	Loss: 144.981
-67200/69092	Loss: 147.104
-Training time 0:04:45.578236
-Epoch: 73 Average loss: 146.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 74)
-0/69092	Loss: 148.127
-3200/69092	Loss: 147.190
-6400/69092	Loss: 145.206
-9600/69092	Loss: 146.966
-12800/69092	Loss: 144.832
-16000/69092	Loss: 146.914
-19200/69092	Loss: 146.511
-22400/69092	Loss: 146.988
-25600/69092	Loss: 149.029
-28800/69092	Loss: 145.859
-32000/69092	Loss: 147.268
-35200/69092	Loss: 148.214
-38400/69092	Loss: 146.391
-41600/69092	Loss: 146.535
-44800/69092	Loss: 148.129
-48000/69092	Loss: 148.398
-51200/69092	Loss: 146.996
-54400/69092	Loss: 145.574
-57600/69092	Loss: 145.142
-60800/69092	Loss: 148.766
-64000/69092	Loss: 147.201
-67200/69092	Loss: 144.287
-Training time 0:04:47.385231
-Epoch: 74 Average loss: 146.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 75)
-0/69092	Loss: 145.387
-3200/69092	Loss: 147.010
-6400/69092	Loss: 146.720
-9600/69092	Loss: 145.023
-12800/69092	Loss: 144.783
-16000/69092	Loss: 145.967
-19200/69092	Loss: 147.753
-22400/69092	Loss: 149.264
-25600/69092	Loss: 147.752
-28800/69092	Loss: 145.571
-32000/69092	Loss: 145.894
-35200/69092	Loss: 146.341
-38400/69092	Loss: 150.516
-41600/69092	Loss: 144.471
-44800/69092	Loss: 147.365
-48000/69092	Loss: 146.712
-51200/69092	Loss: 147.938
-54400/69092	Loss: 147.917
-57600/69092	Loss: 145.684
-60800/69092	Loss: 146.698
-64000/69092	Loss: 145.271
-67200/69092	Loss: 146.297
-Training time 0:04:52.850931
-Epoch: 75 Average loss: 146.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 76)
-0/69092	Loss: 134.811
-3200/69092	Loss: 147.197
-6400/69092	Loss: 144.804
-9600/69092	Loss: 144.591
-12800/69092	Loss: 143.718
-16000/69092	Loss: 147.373
-19200/69092	Loss: 148.129
-22400/69092	Loss: 146.322
-25600/69092	Loss: 147.842
-28800/69092	Loss: 146.666
-32000/69092	Loss: 142.722
-35200/69092	Loss: 148.314
-38400/69092	Loss: 145.398
-41600/69092	Loss: 149.611
-44800/69092	Loss: 145.691
-48000/69092	Loss: 146.587
-51200/69092	Loss: 147.103
-54400/69092	Loss: 147.075
-57600/69092	Loss: 146.253
-60800/69092	Loss: 147.973
-64000/69092	Loss: 147.565
-67200/69092	Loss: 144.309
-Training time 0:04:38.922155
-Epoch: 76 Average loss: 146.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 77)
-0/69092	Loss: 161.470
-3200/69092	Loss: 148.837
-6400/69092	Loss: 145.034
-9600/69092	Loss: 146.081
-12800/69092	Loss: 146.551
-16000/69092	Loss: 150.407
-19200/69092	Loss: 145.112
-22400/69092	Loss: 147.386
-25600/69092	Loss: 145.021
-28800/69092	Loss: 144.185
-32000/69092	Loss: 150.343
-35200/69092	Loss: 145.518
-38400/69092	Loss: 143.175
-41600/69092	Loss: 145.601
-44800/69092	Loss: 146.190
-48000/69092	Loss: 147.611
-51200/69092	Loss: 144.955
-54400/69092	Loss: 145.267
-57600/69092	Loss: 143.007
-60800/69092	Loss: 145.417
-64000/69092	Loss: 148.023
-67200/69092	Loss: 148.796
-Training time 0:04:49.948629
-Epoch: 77 Average loss: 146.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 78)
-0/69092	Loss: 132.900
-3200/69092	Loss: 144.037
-6400/69092	Loss: 147.456
-9600/69092	Loss: 147.700
-12800/69092	Loss: 142.977
-16000/69092	Loss: 144.563
-19200/69092	Loss: 148.978
-22400/69092	Loss: 146.363
-25600/69092	Loss: 146.626
-28800/69092	Loss: 143.578
-32000/69092	Loss: 146.683
-35200/69092	Loss: 145.173
-38400/69092	Loss: 145.595
-41600/69092	Loss: 147.735
-44800/69092	Loss: 145.994
-48000/69092	Loss: 147.550
-51200/69092	Loss: 149.236
-54400/69092	Loss: 149.362
-57600/69092	Loss: 145.351
-60800/69092	Loss: 145.817
-64000/69092	Loss: 147.280
-67200/69092	Loss: 148.197
-Training time 0:04:48.329674
-Epoch: 78 Average loss: 146.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 79)
-0/69092	Loss: 146.488
-3200/69092	Loss: 148.755
-6400/69092	Loss: 147.160
-9600/69092	Loss: 147.761
-12800/69092	Loss: 146.850
-16000/69092	Loss: 146.065
-19200/69092	Loss: 148.065
-22400/69092	Loss: 146.303
-25600/69092	Loss: 144.103
-28800/69092	Loss: 145.871
-32000/69092	Loss: 145.392
-35200/69092	Loss: 149.758
-38400/69092	Loss: 143.850
-41600/69092	Loss: 144.490
-44800/69092	Loss: 147.981
-48000/69092	Loss: 147.345
-51200/69092	Loss: 144.965
-54400/69092	Loss: 145.190
-57600/69092	Loss: 145.986
-60800/69092	Loss: 147.443
-64000/69092	Loss: 146.229
-67200/69092	Loss: 147.378
-Training time 0:04:48.934611
-Epoch: 79 Average loss: 146.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 80)
-0/69092	Loss: 157.176
-3200/69092	Loss: 145.926
-6400/69092	Loss: 143.998
-9600/69092	Loss: 145.831
-12800/69092	Loss: 146.750
-16000/69092	Loss: 144.284
-19200/69092	Loss: 146.421
-22400/69092	Loss: 146.518
-25600/69092	Loss: 146.410
-28800/69092	Loss: 146.470
-32000/69092	Loss: 148.159
-35200/69092	Loss: 148.378
-38400/69092	Loss: 147.588
-41600/69092	Loss: 146.371
-44800/69092	Loss: 146.708
-48000/69092	Loss: 146.941
-51200/69092	Loss: 148.051
-54400/69092	Loss: 148.573
-57600/69092	Loss: 145.871
-60800/69092	Loss: 145.712
-64000/69092	Loss: 144.300
-67200/69092	Loss: 148.144
-Training time 0:04:52.228795
-Epoch: 80 Average loss: 146.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 81)
-0/69092	Loss: 153.261
-3200/69092	Loss: 148.666
-6400/69092	Loss: 148.354
-9600/69092	Loss: 147.904
-12800/69092	Loss: 146.296
-16000/69092	Loss: 143.740
-19200/69092	Loss: 147.392
-22400/69092	Loss: 147.917
-25600/69092	Loss: 145.985
-28800/69092	Loss: 148.436
-32000/69092	Loss: 148.712
-35200/69092	Loss: 145.638
-38400/69092	Loss: 145.446
-41600/69092	Loss: 144.139
-44800/69092	Loss: 143.804
-48000/69092	Loss: 147.053
-51200/69092	Loss: 145.991
-54400/69092	Loss: 147.518
-57600/69092	Loss: 148.761
-60800/69092	Loss: 146.601
-64000/69092	Loss: 144.337
-67200/69092	Loss: 145.645
-Training time 0:04:45.350943
-Epoch: 81 Average loss: 146.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 82)
-0/69092	Loss: 153.126
-3200/69092	Loss: 148.162
-6400/69092	Loss: 143.942
-9600/69092	Loss: 144.100
-12800/69092	Loss: 145.566
-16000/69092	Loss: 147.425
-19200/69092	Loss: 149.394
-22400/69092	Loss: 148.007
-25600/69092	Loss: 144.938
-28800/69092	Loss: 146.931
-32000/69092	Loss: 145.399
-35200/69092	Loss: 144.522
-38400/69092	Loss: 146.210
-41600/69092	Loss: 148.657
-44800/69092	Loss: 147.164
-48000/69092	Loss: 147.403
-51200/69092	Loss: 145.348
-54400/69092	Loss: 143.764
-57600/69092	Loss: 147.150
-60800/69092	Loss: 146.995
-64000/69092	Loss: 148.026
-67200/69092	Loss: 145.771
-Training time 0:04:51.941539
-Epoch: 82 Average loss: 146.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 83)
-0/69092	Loss: 176.068
-3200/69092	Loss: 145.124
-6400/69092	Loss: 143.828
-9600/69092	Loss: 149.005
-12800/69092	Loss: 148.229
-16000/69092	Loss: 147.771
-19200/69092	Loss: 144.125
-22400/69092	Loss: 147.251
-25600/69092	Loss: 146.498
-28800/69092	Loss: 146.091
-32000/69092	Loss: 147.282
-35200/69092	Loss: 145.029
-38400/69092	Loss: 146.293
-41600/69092	Loss: 147.910
-44800/69092	Loss: 149.290
-48000/69092	Loss: 146.987
-51200/69092	Loss: 145.287
-54400/69092	Loss: 150.488
-57600/69092	Loss: 145.710
-60800/69092	Loss: 144.541
-64000/69092	Loss: 145.557
-67200/69092	Loss: 145.058
-Training time 0:04:48.348697
-Epoch: 83 Average loss: 146.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 84)
-0/69092	Loss: 144.708
-3200/69092	Loss: 144.832
-6400/69092	Loss: 145.334
-9600/69092	Loss: 146.718
-12800/69092	Loss: 147.947
-16000/69092	Loss: 146.680
-19200/69092	Loss: 147.667
-22400/69092	Loss: 145.028
-25600/69092	Loss: 147.608
-28800/69092	Loss: 145.457
-32000/69092	Loss: 145.508
-35200/69092	Loss: 148.174
-38400/69092	Loss: 149.388
-41600/69092	Loss: 146.454
-44800/69092	Loss: 147.681
-48000/69092	Loss: 146.904
-51200/69092	Loss: 145.659
-54400/69092	Loss: 144.355
-57600/69092	Loss: 148.931
-60800/69092	Loss: 144.741
-64000/69092	Loss: 147.586
-67200/69092	Loss: 144.604
-Training time 0:04:47.092381
-Epoch: 84 Average loss: 146.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 85)
-0/69092	Loss: 150.844
-3200/69092	Loss: 149.226
-6400/69092	Loss: 145.229
-9600/69092	Loss: 146.837
-12800/69092	Loss: 145.042
-16000/69092	Loss: 147.181
-19200/69092	Loss: 146.465
-22400/69092	Loss: 147.421
-25600/69092	Loss: 147.043
-28800/69092	Loss: 146.730
-32000/69092	Loss: 144.857
-35200/69092	Loss: 148.278
-38400/69092	Loss: 144.500
-41600/69092	Loss: 145.502
-44800/69092	Loss: 148.351
-48000/69092	Loss: 143.943
-51200/69092	Loss: 147.422
-54400/69092	Loss: 145.589
-57600/69092	Loss: 147.053
-60800/69092	Loss: 145.999
-64000/69092	Loss: 147.959
-67200/69092	Loss: 148.060
-Training time 0:04:54.056603
-Epoch: 85 Average loss: 146.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 86)
-0/69092	Loss: 150.501
-3200/69092	Loss: 146.975
-6400/69092	Loss: 145.075
-9600/69092	Loss: 145.210
-12800/69092	Loss: 147.565
-16000/69092	Loss: 146.472
-19200/69092	Loss: 146.963
-22400/69092	Loss: 147.741
-25600/69092	Loss: 143.369
-28800/69092	Loss: 147.038
-32000/69092	Loss: 146.497
-35200/69092	Loss: 148.039
-38400/69092	Loss: 146.521
-41600/69092	Loss: 147.316
-44800/69092	Loss: 144.388
-48000/69092	Loss: 144.874
-51200/69092	Loss: 147.348
-54400/69092	Loss: 144.612
-57600/69092	Loss: 144.866
-60800/69092	Loss: 147.650
-64000/69092	Loss: 148.534
-67200/69092	Loss: 147.284
-Training time 0:04:42.164306
-Epoch: 86 Average loss: 146.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 87)
-0/69092	Loss: 130.774
-3200/69092	Loss: 143.932
-6400/69092	Loss: 146.004
-9600/69092	Loss: 145.332
-12800/69092	Loss: 147.397
-16000/69092	Loss: 149.202
-19200/69092	Loss: 145.596
-22400/69092	Loss: 143.158
-25600/69092	Loss: 149.671
-28800/69092	Loss: 148.668
-32000/69092	Loss: 146.308
-35200/69092	Loss: 147.665
-38400/69092	Loss: 144.408
-41600/69092	Loss: 145.956
-44800/69092	Loss: 145.521
-48000/69092	Loss: 146.520
-51200/69092	Loss: 147.369
-54400/69092	Loss: 145.813
-57600/69092	Loss: 146.935
-60800/69092	Loss: 143.657
-64000/69092	Loss: 148.843
-67200/69092	Loss: 147.984
-Training time 0:04:49.511242
-Epoch: 87 Average loss: 146.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 88)
-0/69092	Loss: 172.170
-3200/69092	Loss: 147.932
-6400/69092	Loss: 148.160
-9600/69092	Loss: 146.456
-12800/69092	Loss: 147.134
-16000/69092	Loss: 145.960
-19200/69092	Loss: 145.012
-22400/69092	Loss: 144.202
-25600/69092	Loss: 148.634
-28800/69092	Loss: 142.529
-32000/69092	Loss: 145.319
-35200/69092	Loss: 145.394
-38400/69092	Loss: 145.681
-41600/69092	Loss: 146.299
-44800/69092	Loss: 146.569
-48000/69092	Loss: 147.196
-51200/69092	Loss: 146.142
-54400/69092	Loss: 145.017
-57600/69092	Loss: 146.816
-60800/69092	Loss: 148.059
-64000/69092	Loss: 147.033
-67200/69092	Loss: 146.888
-Training time 0:04:46.596728
-Epoch: 88 Average loss: 146.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 89)
-0/69092	Loss: 141.474
-3200/69092	Loss: 144.988
-6400/69092	Loss: 144.828
-9600/69092	Loss: 148.709
-12800/69092	Loss: 145.847
-16000/69092	Loss: 147.807
-19200/69092	Loss: 143.096
-22400/69092	Loss: 147.022
-25600/69092	Loss: 145.785
-28800/69092	Loss: 147.062
-32000/69092	Loss: 145.481
-35200/69092	Loss: 146.118
-38400/69092	Loss: 148.299
-41600/69092	Loss: 149.001
-44800/69092	Loss: 147.231
-48000/69092	Loss: 149.250
-51200/69092	Loss: 145.316
-54400/69092	Loss: 144.862
-57600/69092	Loss: 146.098
-60800/69092	Loss: 147.844
-64000/69092	Loss: 145.150
-67200/69092	Loss: 145.787
-Training time 0:04:45.924385
-Epoch: 89 Average loss: 146.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 90)
-0/69092	Loss: 150.736
-3200/69092	Loss: 143.700
-6400/69092	Loss: 147.926
-9600/69092	Loss: 146.266
-12800/69092	Loss: 147.853
-16000/69092	Loss: 146.538
-19200/69092	Loss: 146.596
-22400/69092	Loss: 144.553
-25600/69092	Loss: 144.404
-28800/69092	Loss: 145.696
-32000/69092	Loss: 144.545
-35200/69092	Loss: 144.873
-38400/69092	Loss: 148.271
-41600/69092	Loss: 149.252
-44800/69092	Loss: 145.313
-48000/69092	Loss: 146.939
-51200/69092	Loss: 145.722
-54400/69092	Loss: 147.297
-57600/69092	Loss: 146.017
-60800/69092	Loss: 143.556
-64000/69092	Loss: 147.418
-67200/69092	Loss: 149.259
-Training time 0:04:36.654075
-Epoch: 90 Average loss: 146.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 91)
-0/69092	Loss: 130.866
-3200/69092	Loss: 147.000
-6400/69092	Loss: 146.036
-9600/69092	Loss: 145.496
-12800/69092	Loss: 143.556
-16000/69092	Loss: 143.745
-19200/69092	Loss: 146.638
-22400/69092	Loss: 147.189
-25600/69092	Loss: 148.213
-28800/69092	Loss: 148.934
-32000/69092	Loss: 147.896
-35200/69092	Loss: 146.729
-38400/69092	Loss: 143.678
-41600/69092	Loss: 143.533
-44800/69092	Loss: 147.984
-48000/69092	Loss: 144.601
-51200/69092	Loss: 145.526
-54400/69092	Loss: 146.910
-57600/69092	Loss: 145.254
-60800/69092	Loss: 143.548
-64000/69092	Loss: 149.972
-67200/69092	Loss: 146.744
-Training time 0:04:45.640072
-Epoch: 91 Average loss: 146.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 92)
-0/69092	Loss: 143.790
-3200/69092	Loss: 148.452
-6400/69092	Loss: 148.212
-9600/69092	Loss: 146.093
-12800/69092	Loss: 146.753
-16000/69092	Loss: 146.704
-19200/69092	Loss: 145.288
-22400/69092	Loss: 145.378
-25600/69092	Loss: 145.909
-28800/69092	Loss: 144.579
-32000/69092	Loss: 147.110
-35200/69092	Loss: 149.035
-38400/69092	Loss: 146.199
-41600/69092	Loss: 147.460
-44800/69092	Loss: 147.125
-48000/69092	Loss: 145.227
-51200/69092	Loss: 143.031
-54400/69092	Loss: 143.526
-57600/69092	Loss: 146.274
-60800/69092	Loss: 144.178
-64000/69092	Loss: 147.213
-67200/69092	Loss: 146.719
-Training time 0:04:46.616076
-Epoch: 92 Average loss: 146.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 93)
-0/69092	Loss: 131.844
-3200/69092	Loss: 146.233
-6400/69092	Loss: 145.560
-9600/69092	Loss: 145.973
-12800/69092	Loss: 145.216
-16000/69092	Loss: 146.969
-19200/69092	Loss: 148.277
-22400/69092	Loss: 144.590
-25600/69092	Loss: 146.804
-28800/69092	Loss: 144.767
-32000/69092	Loss: 147.660
-35200/69092	Loss: 148.570
-38400/69092	Loss: 144.681
-41600/69092	Loss: 146.550
-44800/69092	Loss: 146.291
-48000/69092	Loss: 146.049
-51200/69092	Loss: 148.134
-54400/69092	Loss: 145.314
-57600/69092	Loss: 147.903
-60800/69092	Loss: 147.337
-64000/69092	Loss: 147.311
-67200/69092	Loss: 146.239
-Training time 0:04:33.958303
-Epoch: 93 Average loss: 146.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 94)
-0/69092	Loss: 159.987
-3200/69092	Loss: 144.610
-6400/69092	Loss: 145.484
-9600/69092	Loss: 147.181
-12800/69092	Loss: 144.933
-16000/69092	Loss: 146.598
-19200/69092	Loss: 145.728
-22400/69092	Loss: 147.576
-25600/69092	Loss: 149.163
-28800/69092	Loss: 146.879
-32000/69092	Loss: 145.968
-35200/69092	Loss: 143.184
-38400/69092	Loss: 143.644
-41600/69092	Loss: 147.400
-44800/69092	Loss: 150.723
-48000/69092	Loss: 145.739
-51200/69092	Loss: 148.812
-54400/69092	Loss: 146.706
-57600/69092	Loss: 143.072
-60800/69092	Loss: 146.473
-64000/69092	Loss: 148.354
-67200/69092	Loss: 146.095
-Training time 0:04:45.355013
-Epoch: 94 Average loss: 146.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 95)
-0/69092	Loss: 147.164
-3200/69092	Loss: 145.659
-6400/69092	Loss: 148.269
-9600/69092	Loss: 145.315
-12800/69092	Loss: 144.934
-16000/69092	Loss: 147.971
-19200/69092	Loss: 146.946
-22400/69092	Loss: 146.300
-25600/69092	Loss: 145.977
-28800/69092	Loss: 146.625
-32000/69092	Loss: 145.866
-35200/69092	Loss: 147.237
-38400/69092	Loss: 144.933
-41600/69092	Loss: 145.057
-44800/69092	Loss: 147.038
-48000/69092	Loss: 147.101
-51200/69092	Loss: 144.668
-54400/69092	Loss: 146.394
-57600/69092	Loss: 145.030
-60800/69092	Loss: 144.753
-64000/69092	Loss: 142.859
-67200/69092	Loss: 150.341
-Training time 0:04:49.958558
-Epoch: 95 Average loss: 146.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 96)
-0/69092	Loss: 158.442
-3200/69092	Loss: 142.351
-6400/69092	Loss: 142.983
-9600/69092	Loss: 145.565
-12800/69092	Loss: 144.412
-16000/69092	Loss: 145.774
-19200/69092	Loss: 146.258
-22400/69092	Loss: 146.872
-25600/69092	Loss: 147.029
-28800/69092	Loss: 147.865
-32000/69092	Loss: 148.307
-35200/69092	Loss: 145.273
-38400/69092	Loss: 144.069
-41600/69092	Loss: 145.431
-44800/69092	Loss: 146.413
-48000/69092	Loss: 146.679
-51200/69092	Loss: 144.460
-54400/69092	Loss: 145.622
-57600/69092	Loss: 147.939
-60800/69092	Loss: 147.975
-64000/69092	Loss: 146.828
-67200/69092	Loss: 149.784
-Training time 0:04:49.432118
-Epoch: 96 Average loss: 146.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 97)
-0/69092	Loss: 150.812
-3200/69092	Loss: 147.672
-6400/69092	Loss: 148.727
-9600/69092	Loss: 144.173
-12800/69092	Loss: 147.766
-16000/69092	Loss: 144.169
-19200/69092	Loss: 145.384
-22400/69092	Loss: 145.715
-25600/69092	Loss: 145.146
-28800/69092	Loss: 148.175
-32000/69092	Loss: 145.735
-35200/69092	Loss: 146.501
-38400/69092	Loss: 149.295
-41600/69092	Loss: 146.113
-44800/69092	Loss: 142.665
-48000/69092	Loss: 146.194
-51200/69092	Loss: 147.126
-54400/69092	Loss: 146.652
-57600/69092	Loss: 145.176
-60800/69092	Loss: 146.656
-64000/69092	Loss: 146.244
-67200/69092	Loss: 146.630
-Training time 0:04:48.152766
-Epoch: 97 Average loss: 146.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 98)
-0/69092	Loss: 137.869
-3200/69092	Loss: 144.554
-6400/69092	Loss: 147.447
-9600/69092	Loss: 147.078
-12800/69092	Loss: 147.414
-16000/69092	Loss: 145.274
-19200/69092	Loss: 143.583
-22400/69092	Loss: 146.877
-25600/69092	Loss: 145.375
-28800/69092	Loss: 144.806
-32000/69092	Loss: 147.440
-35200/69092	Loss: 144.985
-38400/69092	Loss: 145.597
-41600/69092	Loss: 145.825
-44800/69092	Loss: 146.902
-48000/69092	Loss: 146.497
-51200/69092	Loss: 147.173
-54400/69092	Loss: 147.590
-57600/69092	Loss: 143.967
-60800/69092	Loss: 146.571
-64000/69092	Loss: 147.073
-67200/69092	Loss: 148.854
-Training time 0:04:50.807013
-Epoch: 98 Average loss: 146.28
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 99)
-0/69092	Loss: 154.239
-3200/69092	Loss: 144.396
-6400/69092	Loss: 147.155
-9600/69092	Loss: 144.404
-12800/69092	Loss: 144.719
-16000/69092	Loss: 144.030
-19200/69092	Loss: 145.726
-22400/69092	Loss: 145.985
-25600/69092	Loss: 146.530
-28800/69092	Loss: 146.298
-32000/69092	Loss: 145.471
-35200/69092	Loss: 146.877
-38400/69092	Loss: 149.247
-41600/69092	Loss: 147.390
-44800/69092	Loss: 146.625
-48000/69092	Loss: 148.406
-51200/69092	Loss: 146.172
-54400/69092	Loss: 147.904
-57600/69092	Loss: 143.994
-60800/69092	Loss: 145.696
-64000/69092	Loss: 144.117
-67200/69092	Loss: 147.643
-Training time 0:04:49.392991
-Epoch: 99 Average loss: 146.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 100)
-0/69092	Loss: 138.864
-3200/69092	Loss: 144.660
-6400/69092	Loss: 146.022
-9600/69092	Loss: 148.185
-12800/69092	Loss: 146.598
-16000/69092	Loss: 146.159
-19200/69092	Loss: 146.482
-22400/69092	Loss: 147.925
-25600/69092	Loss: 144.232
-28800/69092	Loss: 142.620
-32000/69092	Loss: 146.098
-35200/69092	Loss: 145.490
-38400/69092	Loss: 148.119
-41600/69092	Loss: 148.468
-44800/69092	Loss: 146.462
-48000/69092	Loss: 143.704
-51200/69092	Loss: 144.804
-54400/69092	Loss: 145.402
-57600/69092	Loss: 147.141
-60800/69092	Loss: 148.049
-64000/69092	Loss: 147.209
-67200/69092	Loss: 145.067
-Training time 0:05:02.259688
-Epoch: 100 Average loss: 146.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 101)
-0/69092	Loss: 139.731
-3200/69092	Loss: 146.653
-6400/69092	Loss: 146.633
-9600/69092	Loss: 146.183
-12800/69092	Loss: 146.290
-16000/69092	Loss: 145.528
-19200/69092	Loss: 146.658
-22400/69092	Loss: 144.775
-25600/69092	Loss: 147.836
-28800/69092	Loss: 145.933
-32000/69092	Loss: 145.502
-35200/69092	Loss: 149.519
-38400/69092	Loss: 146.157
-41600/69092	Loss: 143.665
-44800/69092	Loss: 146.125
-48000/69092	Loss: 145.846
-51200/69092	Loss: 145.099
-54400/69092	Loss: 145.854
-57600/69092	Loss: 149.682
-60800/69092	Loss: 146.248
-64000/69092	Loss: 145.447
-67200/69092	Loss: 145.757
-Training time 0:04:50.492272
-Epoch: 101 Average loss: 146.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 102)
-0/69092	Loss: 137.845
-3200/69092	Loss: 146.728
-6400/69092	Loss: 148.161
-9600/69092	Loss: 145.300
-12800/69092	Loss: 145.649
-16000/69092	Loss: 146.977
-19200/69092	Loss: 146.316
-22400/69092	Loss: 144.493
-25600/69092	Loss: 148.020
-28800/69092	Loss: 145.930
-32000/69092	Loss: 147.541
-35200/69092	Loss: 143.148
-38400/69092	Loss: 144.819
-41600/69092	Loss: 145.984
-44800/69092	Loss: 146.177
-48000/69092	Loss: 147.886
-51200/69092	Loss: 147.379
-54400/69092	Loss: 146.163
-57600/69092	Loss: 145.780
-60800/69092	Loss: 143.685
-64000/69092	Loss: 147.160
-67200/69092	Loss: 146.238
-Training time 0:04:56.379840
-Epoch: 102 Average loss: 146.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 103)
-0/69092	Loss: 146.581
-3200/69092	Loss: 145.429
-6400/69092	Loss: 145.708
-9600/69092	Loss: 147.823
-12800/69092	Loss: 145.072
-16000/69092	Loss: 145.139
-19200/69092	Loss: 148.050
-22400/69092	Loss: 145.983
-25600/69092	Loss: 146.083
-28800/69092	Loss: 147.766
-32000/69092	Loss: 145.270
-35200/69092	Loss: 146.375
-38400/69092	Loss: 146.013
-41600/69092	Loss: 146.810
-44800/69092	Loss: 144.908
-48000/69092	Loss: 150.633
-51200/69092	Loss: 144.139
-54400/69092	Loss: 147.514
-57600/69092	Loss: 146.007
-60800/69092	Loss: 146.419
-64000/69092	Loss: 144.330
-67200/69092	Loss: 146.160
-Training time 0:04:54.375537
-Epoch: 103 Average loss: 146.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 104)
-0/69092	Loss: 130.534
-3200/69092	Loss: 145.072
-6400/69092	Loss: 144.192
-9600/69092	Loss: 146.945
-12800/69092	Loss: 144.152
-16000/69092	Loss: 146.369
-19200/69092	Loss: 147.721
-22400/69092	Loss: 145.291
-25600/69092	Loss: 148.231
-28800/69092	Loss: 147.630
-32000/69092	Loss: 146.201
-35200/69092	Loss: 145.965
-38400/69092	Loss: 147.652
-41600/69092	Loss: 143.750
-44800/69092	Loss: 144.310
-48000/69092	Loss: 146.166
-51200/69092	Loss: 146.873
-54400/69092	Loss: 146.049
-57600/69092	Loss: 146.260
-60800/69092	Loss: 145.330
-64000/69092	Loss: 146.802
-67200/69092	Loss: 146.804
-Training time 0:04:59.427512
-Epoch: 104 Average loss: 146.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 105)
-0/69092	Loss: 132.117
-3200/69092	Loss: 146.253
-6400/69092	Loss: 145.019
-9600/69092	Loss: 148.625
-12800/69092	Loss: 145.470
-16000/69092	Loss: 147.295
-19200/69092	Loss: 146.672
-22400/69092	Loss: 145.614
-25600/69092	Loss: 146.372
-28800/69092	Loss: 144.464
-32000/69092	Loss: 144.707
-35200/69092	Loss: 143.969
-38400/69092	Loss: 148.209
-41600/69092	Loss: 147.600
-44800/69092	Loss: 148.195
-48000/69092	Loss: 147.528
-51200/69092	Loss: 145.292
-54400/69092	Loss: 145.971
-57600/69092	Loss: 143.792
-60800/69092	Loss: 148.743
-64000/69092	Loss: 147.708
-67200/69092	Loss: 145.900
-Training time 0:04:59.014296
-Epoch: 105 Average loss: 146.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 106)
-0/69092	Loss: 145.947
-3200/69092	Loss: 148.659
-6400/69092	Loss: 144.583
-9600/69092	Loss: 147.626
-12800/69092	Loss: 146.635
-16000/69092	Loss: 144.842
-19200/69092	Loss: 145.490
-22400/69092	Loss: 144.518
-25600/69092	Loss: 143.298
-28800/69092	Loss: 149.115
-32000/69092	Loss: 145.910
-35200/69092	Loss: 145.557
-38400/69092	Loss: 145.652
-41600/69092	Loss: 145.566
-44800/69092	Loss: 145.848
-48000/69092	Loss: 147.078
-51200/69092	Loss: 147.832
-54400/69092	Loss: 146.577
-57600/69092	Loss: 144.249
-60800/69092	Loss: 146.791
-64000/69092	Loss: 144.408
-67200/69092	Loss: 146.397
-Training time 0:04:50.408624
-Epoch: 106 Average loss: 146.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 107)
-0/69092	Loss: 151.039
-3200/69092	Loss: 148.167
-6400/69092	Loss: 144.562
-9600/69092	Loss: 145.521
-12800/69092	Loss: 148.811
-16000/69092	Loss: 145.789
-19200/69092	Loss: 146.616
-22400/69092	Loss: 146.180
-25600/69092	Loss: 144.805
-28800/69092	Loss: 145.103
-32000/69092	Loss: 148.776
-35200/69092	Loss: 144.775
-38400/69092	Loss: 144.048
-41600/69092	Loss: 144.765
-44800/69092	Loss: 149.169
-48000/69092	Loss: 147.047
-51200/69092	Loss: 147.648
-54400/69092	Loss: 146.018
-57600/69092	Loss: 143.473
-60800/69092	Loss: 147.100
-64000/69092	Loss: 144.868
-67200/69092	Loss: 145.224
-Training time 0:04:37.447307
-Epoch: 107 Average loss: 146.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 108)
-0/69092	Loss: 128.266
-3200/69092	Loss: 145.199
-6400/69092	Loss: 147.147
-9600/69092	Loss: 149.362
-12800/69092	Loss: 144.580
-16000/69092	Loss: 146.901
-19200/69092	Loss: 148.808
-22400/69092	Loss: 144.811
-25600/69092	Loss: 144.553
-28800/69092	Loss: 146.868
-32000/69092	Loss: 147.421
-35200/69092	Loss: 145.371
-38400/69092	Loss: 146.525
-41600/69092	Loss: 145.474
-44800/69092	Loss: 146.642
-48000/69092	Loss: 144.745
-51200/69092	Loss: 145.890
-54400/69092	Loss: 143.847
-57600/69092	Loss: 147.177
-60800/69092	Loss: 145.012
-64000/69092	Loss: 147.952
-67200/69092	Loss: 146.501
-Training time 0:04:49.045111
-Epoch: 108 Average loss: 146.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 109)
-0/69092	Loss: 148.765
-3200/69092	Loss: 146.100
-6400/69092	Loss: 144.642
-9600/69092	Loss: 147.783
-12800/69092	Loss: 150.626
-16000/69092	Loss: 148.139
-19200/69092	Loss: 143.067
-22400/69092	Loss: 143.564
-25600/69092	Loss: 145.103
-28800/69092	Loss: 144.103
-32000/69092	Loss: 146.391
-35200/69092	Loss: 145.805
-38400/69092	Loss: 147.241
-41600/69092	Loss: 146.699
-44800/69092	Loss: 144.942
-48000/69092	Loss: 143.257
-51200/69092	Loss: 147.046
-54400/69092	Loss: 145.775
-57600/69092	Loss: 146.831
-60800/69092	Loss: 146.036
-64000/69092	Loss: 144.623
-67200/69092	Loss: 146.934
-Training time 0:04:50.016618
-Epoch: 109 Average loss: 146.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 110)
-0/69092	Loss: 130.376
-3200/69092	Loss: 149.106
-6400/69092	Loss: 145.386
-9600/69092	Loss: 146.282
-12800/69092	Loss: 148.713
-16000/69092	Loss: 147.315
-19200/69092	Loss: 145.703
-22400/69092	Loss: 145.796
-25600/69092	Loss: 147.294
-28800/69092	Loss: 147.374
-32000/69092	Loss: 145.776
-35200/69092	Loss: 146.005
-38400/69092	Loss: 147.978
-41600/69092	Loss: 143.488
-44800/69092	Loss: 143.420
-48000/69092	Loss: 145.115
-51200/69092	Loss: 143.473
-54400/69092	Loss: 144.648
-57600/69092	Loss: 145.152
-60800/69092	Loss: 144.988
-64000/69092	Loss: 144.863
-67200/69092	Loss: 148.045
-Training time 0:04:50.847158
-Epoch: 110 Average loss: 146.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 111)
-0/69092	Loss: 165.203
-3200/69092	Loss: 145.252
-6400/69092	Loss: 145.382
-9600/69092	Loss: 147.041
-12800/69092	Loss: 147.485
-16000/69092	Loss: 145.525
-19200/69092	Loss: 146.576
-22400/69092	Loss: 145.825
-25600/69092	Loss: 146.910
-28800/69092	Loss: 145.976
-32000/69092	Loss: 146.487
-35200/69092	Loss: 147.970
-38400/69092	Loss: 142.838
-41600/69092	Loss: 147.194
-44800/69092	Loss: 146.962
-48000/69092	Loss: 148.049
-51200/69092	Loss: 143.582
-54400/69092	Loss: 144.774
-57600/69092	Loss: 145.327
-60800/69092	Loss: 144.627
-64000/69092	Loss: 146.615
-67200/69092	Loss: 147.865
-Training time 0:04:51.248216
-Epoch: 111 Average loss: 146.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 112)
-0/69092	Loss: 136.520
-3200/69092	Loss: 144.773
-6400/69092	Loss: 144.679
-9600/69092	Loss: 146.260
-12800/69092	Loss: 147.670
-16000/69092	Loss: 144.617
-19200/69092	Loss: 144.163
-22400/69092	Loss: 145.293
-25600/69092	Loss: 143.857
-28800/69092	Loss: 147.111
-32000/69092	Loss: 146.718
-35200/69092	Loss: 146.649
-38400/69092	Loss: 145.887
-41600/69092	Loss: 147.043
-44800/69092	Loss: 144.844
-48000/69092	Loss: 146.134
-51200/69092	Loss: 146.961
-54400/69092	Loss: 145.410
-57600/69092	Loss: 146.247
-60800/69092	Loss: 146.507
-64000/69092	Loss: 151.692
-67200/69092	Loss: 146.187
-Training time 0:04:45.679753
-Epoch: 112 Average loss: 146.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 113)
-0/69092	Loss: 146.427
-3200/69092	Loss: 145.019
-6400/69092	Loss: 144.179
-9600/69092	Loss: 143.454
-12800/69092	Loss: 145.496
-16000/69092	Loss: 147.107
-19200/69092	Loss: 148.987
-22400/69092	Loss: 147.540
-25600/69092	Loss: 144.192
-28800/69092	Loss: 145.857
-32000/69092	Loss: 146.907
-35200/69092	Loss: 147.025
-38400/69092	Loss: 147.464
-41600/69092	Loss: 145.127
-44800/69092	Loss: 145.134
-48000/69092	Loss: 146.232
-51200/69092	Loss: 148.749
-54400/69092	Loss: 147.042
-57600/69092	Loss: 146.374
-60800/69092	Loss: 145.059
-64000/69092	Loss: 145.683
-67200/69092	Loss: 143.474
-Training time 0:04:46.129673
-Epoch: 113 Average loss: 145.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 114)
-0/69092	Loss: 144.778
-3200/69092	Loss: 143.392
-6400/69092	Loss: 147.666
-9600/69092	Loss: 146.264
-12800/69092	Loss: 143.568
-16000/69092	Loss: 145.713
-19200/69092	Loss: 144.667
-22400/69092	Loss: 144.799
-25600/69092	Loss: 147.714
-28800/69092	Loss: 147.228
-32000/69092	Loss: 144.913
-35200/69092	Loss: 143.135
-38400/69092	Loss: 145.958
-41600/69092	Loss: 147.487
-44800/69092	Loss: 147.618
-48000/69092	Loss: 145.319
-51200/69092	Loss: 147.119
-54400/69092	Loss: 146.600
-57600/69092	Loss: 146.191
-60800/69092	Loss: 147.204
-64000/69092	Loss: 146.261
-67200/69092	Loss: 146.122
-Training time 0:04:51.105844
-Epoch: 114 Average loss: 146.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 115)
-0/69092	Loss: 133.509
-3200/69092	Loss: 147.741
-6400/69092	Loss: 142.576
-9600/69092	Loss: 145.737
-12800/69092	Loss: 146.453
-16000/69092	Loss: 149.904
-19200/69092	Loss: 145.035
-22400/69092	Loss: 145.878
-25600/69092	Loss: 145.561
-28800/69092	Loss: 147.577
-32000/69092	Loss: 148.763
-35200/69092	Loss: 144.254
-38400/69092	Loss: 146.629
-41600/69092	Loss: 145.588
-44800/69092	Loss: 145.786
-48000/69092	Loss: 144.087
-51200/69092	Loss: 147.574
-54400/69092	Loss: 146.626
-57600/69092	Loss: 147.096
-60800/69092	Loss: 145.142
-64000/69092	Loss: 142.579
-67200/69092	Loss: 144.149
-Training time 0:04:43.645364
-Epoch: 115 Average loss: 146.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 116)
-0/69092	Loss: 161.732
-3200/69092	Loss: 144.177
-6400/69092	Loss: 146.406
-9600/69092	Loss: 147.298
-12800/69092	Loss: 143.329
-16000/69092	Loss: 144.917
-19200/69092	Loss: 146.169
-22400/69092	Loss: 145.983
-25600/69092	Loss: 144.672
-28800/69092	Loss: 146.303
-32000/69092	Loss: 144.998
-35200/69092	Loss: 146.761
-38400/69092	Loss: 147.210
-41600/69092	Loss: 146.413
-44800/69092	Loss: 145.364
-48000/69092	Loss: 148.832
-51200/69092	Loss: 144.940
-54400/69092	Loss: 144.519
-57600/69092	Loss: 145.309
-60800/69092	Loss: 147.307
-64000/69092	Loss: 148.331
-67200/69092	Loss: 146.517
-Training time 0:04:44.782513
-Epoch: 116 Average loss: 145.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 117)
-0/69092	Loss: 148.347
-3200/69092	Loss: 144.033
-6400/69092	Loss: 145.816
-9600/69092	Loss: 148.012
-12800/69092	Loss: 147.761
-16000/69092	Loss: 143.092
-19200/69092	Loss: 146.285
-22400/69092	Loss: 147.739
-25600/69092	Loss: 149.156
-28800/69092	Loss: 145.611
-32000/69092	Loss: 145.875
-35200/69092	Loss: 147.979
-38400/69092	Loss: 145.146
-41600/69092	Loss: 145.820
-44800/69092	Loss: 144.963
-48000/69092	Loss: 146.284
-51200/69092	Loss: 145.179
-54400/69092	Loss: 146.234
-57600/69092	Loss: 144.831
-60800/69092	Loss: 147.571
-64000/69092	Loss: 147.710
-67200/69092	Loss: 144.079
-Training time 0:04:46.924920
-Epoch: 117 Average loss: 146.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 118)
-0/69092	Loss: 157.480
-3200/69092	Loss: 149.274
-6400/69092	Loss: 147.107
-9600/69092	Loss: 143.046
-12800/69092	Loss: 144.197
-16000/69092	Loss: 147.376
-19200/69092	Loss: 145.885
-22400/69092	Loss: 144.901
-25600/69092	Loss: 144.866
-28800/69092	Loss: 146.456
-32000/69092	Loss: 148.189
-35200/69092	Loss: 146.113
-38400/69092	Loss: 144.089
-41600/69092	Loss: 148.923
-44800/69092	Loss: 147.606
-48000/69092	Loss: 146.035
-51200/69092	Loss: 145.660
-54400/69092	Loss: 144.232
-57600/69092	Loss: 147.091
-60800/69092	Loss: 144.818
-64000/69092	Loss: 143.162
-67200/69092	Loss: 146.966
-Training time 0:04:45.661094
-Epoch: 118 Average loss: 145.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 119)
-0/69092	Loss: 153.837
-3200/69092	Loss: 148.322
-6400/69092	Loss: 146.598
-9600/69092	Loss: 145.814
-12800/69092	Loss: 146.202
-16000/69092	Loss: 144.343
-19200/69092	Loss: 145.251
-22400/69092	Loss: 145.708
-25600/69092	Loss: 145.235
-28800/69092	Loss: 145.780
-32000/69092	Loss: 144.486
-35200/69092	Loss: 146.611
-38400/69092	Loss: 146.383
-41600/69092	Loss: 148.458
-44800/69092	Loss: 145.451
-48000/69092	Loss: 147.772
-51200/69092	Loss: 145.517
-54400/69092	Loss: 144.958
-57600/69092	Loss: 142.384
-60800/69092	Loss: 143.981
-64000/69092	Loss: 146.866
-67200/69092	Loss: 145.221
-Training time 0:04:48.385159
-Epoch: 119 Average loss: 145.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 120)
-0/69092	Loss: 136.371
-3200/69092	Loss: 143.163
-6400/69092	Loss: 143.475
-9600/69092	Loss: 148.267
-12800/69092	Loss: 147.337
-16000/69092	Loss: 146.614
-19200/69092	Loss: 144.409
-22400/69092	Loss: 147.758
-25600/69092	Loss: 147.001
-28800/69092	Loss: 145.738
-32000/69092	Loss: 144.724
-35200/69092	Loss: 144.732
-38400/69092	Loss: 146.099
-41600/69092	Loss: 145.078
-44800/69092	Loss: 147.099
-48000/69092	Loss: 146.569
-51200/69092	Loss: 146.935
-54400/69092	Loss: 146.290
-57600/69092	Loss: 145.528
-60800/69092	Loss: 147.599
-64000/69092	Loss: 144.916
-67200/69092	Loss: 148.928
-Training time 0:04:36.875365
-Epoch: 120 Average loss: 146.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 121)
-0/69092	Loss: 131.305
-3200/69092	Loss: 143.638
-6400/69092	Loss: 146.782
-9600/69092	Loss: 143.325
-12800/69092	Loss: 150.015
-16000/69092	Loss: 144.729
-19200/69092	Loss: 144.394
-22400/69092	Loss: 145.765
-25600/69092	Loss: 145.712
-28800/69092	Loss: 145.295
-32000/69092	Loss: 145.650
-35200/69092	Loss: 146.135
-38400/69092	Loss: 146.447
-41600/69092	Loss: 146.660
-44800/69092	Loss: 148.607
-48000/69092	Loss: 147.215
-51200/69092	Loss: 147.149
-54400/69092	Loss: 144.786
-57600/69092	Loss: 143.834
-60800/69092	Loss: 146.769
-64000/69092	Loss: 143.324
-67200/69092	Loss: 145.913
-Training time 0:04:52.196409
-Epoch: 121 Average loss: 145.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 122)
-0/69092	Loss: 155.197
-3200/69092	Loss: 147.635
-6400/69092	Loss: 142.454
-9600/69092	Loss: 146.415
-12800/69092	Loss: 147.256
-16000/69092	Loss: 144.683
-19200/69092	Loss: 146.449
-22400/69092	Loss: 145.164
-25600/69092	Loss: 148.890
-28800/69092	Loss: 144.380
-32000/69092	Loss: 144.353
-35200/69092	Loss: 147.569
-38400/69092	Loss: 144.548
-41600/69092	Loss: 144.247
-44800/69092	Loss: 148.184
-48000/69092	Loss: 146.054
-51200/69092	Loss: 144.699
-54400/69092	Loss: 144.041
-57600/69092	Loss: 148.090
-60800/69092	Loss: 145.390
-64000/69092	Loss: 143.471
-67200/69092	Loss: 145.281
-Training time 0:04:43.886909
-Epoch: 122 Average loss: 145.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 123)
-0/69092	Loss: 148.461
-3200/69092	Loss: 144.364
-6400/69092	Loss: 145.360
-9600/69092	Loss: 146.712
-12800/69092	Loss: 149.114
-16000/69092	Loss: 145.473
-19200/69092	Loss: 147.030
-22400/69092	Loss: 148.086
-25600/69092	Loss: 145.227
-28800/69092	Loss: 144.656
-32000/69092	Loss: 144.907
-35200/69092	Loss: 146.060
-38400/69092	Loss: 146.030
-41600/69092	Loss: 149.171
-44800/69092	Loss: 145.563
-48000/69092	Loss: 146.399
-51200/69092	Loss: 144.539
-54400/69092	Loss: 143.456
-57600/69092	Loss: 142.815
-60800/69092	Loss: 146.142
-64000/69092	Loss: 147.865
-67200/69092	Loss: 144.077
-Training time 0:04:45.941821
-Epoch: 123 Average loss: 145.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 124)
-0/69092	Loss: 133.072
-3200/69092	Loss: 145.802
-6400/69092	Loss: 146.011
-9600/69092	Loss: 146.894
-12800/69092	Loss: 143.769
-16000/69092	Loss: 148.883
-19200/69092	Loss: 145.309
-22400/69092	Loss: 146.619
-25600/69092	Loss: 145.833
-28800/69092	Loss: 146.381
-32000/69092	Loss: 145.016
-35200/69092	Loss: 147.641
-38400/69092	Loss: 147.790
-41600/69092	Loss: 145.403
-44800/69092	Loss: 145.743
-48000/69092	Loss: 147.073
-51200/69092	Loss: 146.143
-54400/69092	Loss: 143.506
-57600/69092	Loss: 145.625
-60800/69092	Loss: 147.074
-64000/69092	Loss: 144.900
-67200/69092	Loss: 147.176
-Training time 0:04:42.112605
-Epoch: 124 Average loss: 146.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 125)
-0/69092	Loss: 148.691
-3200/69092	Loss: 144.481
-6400/69092	Loss: 145.141
-9600/69092	Loss: 146.340
-12800/69092	Loss: 144.990
-16000/69092	Loss: 148.193
-19200/69092	Loss: 143.628
-22400/69092	Loss: 145.318
-25600/69092	Loss: 146.684
-28800/69092	Loss: 146.355
-32000/69092	Loss: 144.701
-35200/69092	Loss: 144.713
-38400/69092	Loss: 146.332
-41600/69092	Loss: 146.015
-44800/69092	Loss: 147.595
-48000/69092	Loss: 144.976
-51200/69092	Loss: 145.766
-54400/69092	Loss: 146.489
-57600/69092	Loss: 147.861
-60800/69092	Loss: 146.934
-64000/69092	Loss: 143.582
diff --git a/OAR.2068292.stderr b/OAR.2068292.stderr
deleted file mode 100644
index a65b71902f..0000000000
--- a/OAR.2068292.stderr
+++ /dev/null
@@ -1,3 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
-## OAR [2020-06-25 10:08:28] Job 2068292 KILLED ##
diff --git a/OAR.2068292.stdout b/OAR.2068292.stdout
deleted file mode 100644
index 5e37e87eac..0000000000
--- a/OAR.2068292.stdout
+++ /dev/null
@@ -1,2903 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_15
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-Tesla K40c
-Tesla K80
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=30, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=15, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 769185
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last (iter 2)'
-0/69092	Loss: 164.068
-3200/69092	Loss: 159.062
-6400/69092	Loss: 157.224
-9600/69092	Loss: 154.582
-12800/69092	Loss: 154.183
-16000/69092	Loss: 153.739
-19200/69092	Loss: 153.701
-22400/69092	Loss: 150.246
-25600/69092	Loss: 153.596
-28800/69092	Loss: 150.894
-32000/69092	Loss: 151.965
-35200/69092	Loss: 149.944
-38400/69092	Loss: 148.097
-41600/69092	Loss: 147.112
-44800/69092	Loss: 147.547
-48000/69092	Loss: 143.439
-51200/69092	Loss: 143.876
-54400/69092	Loss: 143.881
-57600/69092	Loss: 141.629
-60800/69092	Loss: 141.141
-64000/69092	Loss: 140.164
-67200/69092	Loss: 142.035
-Training time 0:04:58.146411
-Epoch: 1 Average loss: 148.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 3)
-0/69092	Loss: 152.479
-3200/69092	Loss: 142.726
-6400/69092	Loss: 144.389
-9600/69092	Loss: 138.407
-12800/69092	Loss: 138.264
-16000/69092	Loss: 140.209
-19200/69092	Loss: 139.579
-22400/69092	Loss: 136.847
-25600/69092	Loss: 134.427
-28800/69092	Loss: 134.863
-32000/69092	Loss: 135.759
-35200/69092	Loss: 137.380
-38400/69092	Loss: 136.066
-41600/69092	Loss: 135.911
-44800/69092	Loss: 135.465
-48000/69092	Loss: 134.008
-51200/69092	Loss: 133.120
-54400/69092	Loss: 136.413
-57600/69092	Loss: 132.427
-60800/69092	Loss: 135.123
-64000/69092	Loss: 136.686
-67200/69092	Loss: 133.240
-Training time 0:04:50.508829
-Epoch: 2 Average loss: 136.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 4)
-0/69092	Loss: 137.475
-3200/69092	Loss: 134.191
-6400/69092	Loss: 132.651
-9600/69092	Loss: 132.042
-12800/69092	Loss: 134.187
-16000/69092	Loss: 133.448
-19200/69092	Loss: 136.283
-22400/69092	Loss: 130.460
-25600/69092	Loss: 133.009
-28800/69092	Loss: 134.494
-32000/69092	Loss: 133.096
-35200/69092	Loss: 130.866
-38400/69092	Loss: 132.377
-41600/69092	Loss: 133.557
-44800/69092	Loss: 133.696
-48000/69092	Loss: 128.877
-51200/69092	Loss: 130.718
-54400/69092	Loss: 130.170
-57600/69092	Loss: 131.031
-60800/69092	Loss: 128.449
-64000/69092	Loss: 131.945
-67200/69092	Loss: 132.108
-Training time 0:04:49.348248
-Epoch: 3 Average loss: 132.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 5)
-0/69092	Loss: 112.655
-3200/69092	Loss: 131.264
-6400/69092	Loss: 130.131
-9600/69092	Loss: 131.474
-12800/69092	Loss: 130.229
-16000/69092	Loss: 131.610
-19200/69092	Loss: 128.390
-22400/69092	Loss: 130.507
-25600/69092	Loss: 131.762
-28800/69092	Loss: 130.924
-32000/69092	Loss: 129.825
-35200/69092	Loss: 130.224
-38400/69092	Loss: 130.196
-41600/69092	Loss: 129.426
-44800/69092	Loss: 130.307
-48000/69092	Loss: 131.456
-51200/69092	Loss: 128.890
-54400/69092	Loss: 130.250
-57600/69092	Loss: 128.794
-60800/69092	Loss: 131.355
-64000/69092	Loss: 130.152
-67200/69092	Loss: 131.066
-Training time 0:04:50.908864
-Epoch: 4 Average loss: 130.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 6)
-0/69092	Loss: 127.888
-3200/69092	Loss: 130.891
-6400/69092	Loss: 129.799
-9600/69092	Loss: 130.955
-12800/69092	Loss: 126.172
-16000/69092	Loss: 130.069
-19200/69092	Loss: 130.856
-22400/69092	Loss: 127.463
-25600/69092	Loss: 128.853
-28800/69092	Loss: 128.933
-32000/69092	Loss: 129.473
-35200/69092	Loss: 130.088
-38400/69092	Loss: 129.832
-41600/69092	Loss: 130.128
-44800/69092	Loss: 128.135
-48000/69092	Loss: 127.895
-51200/69092	Loss: 125.976
-54400/69092	Loss: 127.525
-57600/69092	Loss: 130.168
-60800/69092	Loss: 127.672
-64000/69092	Loss: 126.680
-67200/69092	Loss: 128.760
-Training time 0:04:49.413921
-Epoch: 5 Average loss: 128.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 7)
-0/69092	Loss: 136.036
-3200/69092	Loss: 127.881
-6400/69092	Loss: 128.480
-9600/69092	Loss: 126.520
-12800/69092	Loss: 127.070
-16000/69092	Loss: 127.472
-19200/69092	Loss: 127.496
-22400/69092	Loss: 129.317
-25600/69092	Loss: 126.693
-28800/69092	Loss: 126.789
-32000/69092	Loss: 128.037
-35200/69092	Loss: 126.847
-38400/69092	Loss: 127.274
-41600/69092	Loss: 127.458
-44800/69092	Loss: 127.357
-48000/69092	Loss: 129.112
-51200/69092	Loss: 129.610
-54400/69092	Loss: 127.765
-57600/69092	Loss: 127.420
-60800/69092	Loss: 126.488
-64000/69092	Loss: 126.994
-67200/69092	Loss: 128.856
-Training time 0:04:52.057289
-Epoch: 6 Average loss: 127.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 8)
-0/69092	Loss: 114.712
-3200/69092	Loss: 127.520
-6400/69092	Loss: 124.320
-9600/69092	Loss: 126.230
-12800/69092	Loss: 129.335
-16000/69092	Loss: 125.961
-19200/69092	Loss: 127.808
-22400/69092	Loss: 127.900
-25600/69092	Loss: 125.901
-28800/69092	Loss: 127.676
-32000/69092	Loss: 123.257
-35200/69092	Loss: 125.715
-38400/69092	Loss: 126.342
-41600/69092	Loss: 127.061
-44800/69092	Loss: 124.434
-48000/69092	Loss: 127.263
-51200/69092	Loss: 126.219
-54400/69092	Loss: 127.302
-57600/69092	Loss: 126.033
-60800/69092	Loss: 126.737
-64000/69092	Loss: 127.853
-67200/69092	Loss: 125.695
-Training time 0:04:49.157151
-Epoch: 7 Average loss: 126.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 9)
-0/69092	Loss: 144.076
-3200/69092	Loss: 125.569
-6400/69092	Loss: 125.122
-9600/69092	Loss: 126.678
-12800/69092	Loss: 123.121
-16000/69092	Loss: 126.292
-19200/69092	Loss: 124.290
-22400/69092	Loss: 125.286
-25600/69092	Loss: 127.713
-28800/69092	Loss: 128.740
-32000/69092	Loss: 126.587
-35200/69092	Loss: 125.263
-38400/69092	Loss: 127.627
-41600/69092	Loss: 122.766
-44800/69092	Loss: 123.776
-48000/69092	Loss: 124.783
-51200/69092	Loss: 127.640
-54400/69092	Loss: 125.066
-57600/69092	Loss: 127.092
-60800/69092	Loss: 126.302
-64000/69092	Loss: 124.086
-67200/69092	Loss: 126.229
-Training time 0:04:51.763548
-Epoch: 8 Average loss: 125.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 10)
-0/69092	Loss: 143.115
-3200/69092	Loss: 124.100
-6400/69092	Loss: 127.471
-9600/69092	Loss: 124.016
-12800/69092	Loss: 124.874
-16000/69092	Loss: 125.503
-19200/69092	Loss: 123.509
-22400/69092	Loss: 123.893
-25600/69092	Loss: 124.253
-28800/69092	Loss: 125.839
-32000/69092	Loss: 124.033
-35200/69092	Loss: 122.995
-38400/69092	Loss: 126.921
-41600/69092	Loss: 126.131
-44800/69092	Loss: 125.028
-48000/69092	Loss: 124.421
-51200/69092	Loss: 124.513
-54400/69092	Loss: 125.414
-57600/69092	Loss: 123.846
-60800/69092	Loss: 123.672
-64000/69092	Loss: 124.252
-67200/69092	Loss: 125.823
-Training time 0:04:50.687557
-Epoch: 9 Average loss: 124.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 11)
-0/69092	Loss: 132.530
-3200/69092	Loss: 124.715
-6400/69092	Loss: 126.497
-9600/69092	Loss: 123.316
-12800/69092	Loss: 124.901
-16000/69092	Loss: 125.205
-19200/69092	Loss: 122.765
-22400/69092	Loss: 126.498
-25600/69092	Loss: 124.976
-28800/69092	Loss: 124.783
-32000/69092	Loss: 123.165
-35200/69092	Loss: 123.086
-38400/69092	Loss: 124.304
-41600/69092	Loss: 122.915
-44800/69092	Loss: 125.451
-48000/69092	Loss: 124.571
-51200/69092	Loss: 124.476
-54400/69092	Loss: 122.600
-57600/69092	Loss: 124.240
-60800/69092	Loss: 123.787
-64000/69092	Loss: 122.615
-67200/69092	Loss: 124.837
-Training time 0:04:52.461847
-Epoch: 10 Average loss: 124.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 12)
-0/69092	Loss: 123.180
-3200/69092	Loss: 123.575
-6400/69092	Loss: 122.534
-9600/69092	Loss: 123.632
-12800/69092	Loss: 124.860
-16000/69092	Loss: 123.442
-19200/69092	Loss: 124.136
-22400/69092	Loss: 123.966
-25600/69092	Loss: 123.843
-28800/69092	Loss: 124.526
-32000/69092	Loss: 122.504
-35200/69092	Loss: 124.491
-38400/69092	Loss: 123.499
-41600/69092	Loss: 124.616
-44800/69092	Loss: 122.246
-48000/69092	Loss: 123.037
-51200/69092	Loss: 124.100
-54400/69092	Loss: 126.530
-57600/69092	Loss: 121.947
-60800/69092	Loss: 122.122
-64000/69092	Loss: 124.514
-67200/69092	Loss: 123.882
-Training time 0:04:51.755454
-Epoch: 11 Average loss: 123.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 13)
-0/69092	Loss: 124.780
-3200/69092	Loss: 123.718
-6400/69092	Loss: 125.246
-9600/69092	Loss: 125.144
-12800/69092	Loss: 121.691
-16000/69092	Loss: 121.736
-19200/69092	Loss: 123.536
-22400/69092	Loss: 124.053
-25600/69092	Loss: 124.311
-28800/69092	Loss: 124.009
-32000/69092	Loss: 123.313
-35200/69092	Loss: 123.694
-38400/69092	Loss: 123.137
-41600/69092	Loss: 122.437
-44800/69092	Loss: 122.643
-48000/69092	Loss: 121.283
-51200/69092	Loss: 122.192
-54400/69092	Loss: 121.984
-57600/69092	Loss: 121.845
-60800/69092	Loss: 123.966
-64000/69092	Loss: 123.677
-67200/69092	Loss: 121.343
-Training time 0:04:49.593080
-Epoch: 12 Average loss: 123.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 14)
-0/69092	Loss: 113.463
-3200/69092	Loss: 121.899
-6400/69092	Loss: 122.716
-9600/69092	Loss: 121.791
-12800/69092	Loss: 122.534
-16000/69092	Loss: 122.608
-19200/69092	Loss: 123.967
-22400/69092	Loss: 123.682
-25600/69092	Loss: 121.969
-28800/69092	Loss: 123.313
-32000/69092	Loss: 122.102
-35200/69092	Loss: 124.053
-38400/69092	Loss: 121.807
-41600/69092	Loss: 121.690
-44800/69092	Loss: 123.093
-48000/69092	Loss: 122.188
-51200/69092	Loss: 123.149
-54400/69092	Loss: 120.774
-57600/69092	Loss: 121.591
-60800/69092	Loss: 125.514
-64000/69092	Loss: 122.014
-67200/69092	Loss: 121.635
-Training time 0:04:51.107930
-Epoch: 13 Average loss: 122.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 15)
-0/69092	Loss: 141.649
-3200/69092	Loss: 121.660
-6400/69092	Loss: 124.211
-9600/69092	Loss: 123.860
-12800/69092	Loss: 120.946
-16000/69092	Loss: 120.423
-19200/69092	Loss: 122.185
-22400/69092	Loss: 122.621
-25600/69092	Loss: 123.143
-28800/69092	Loss: 122.857
-32000/69092	Loss: 122.491
-35200/69092	Loss: 122.411
-38400/69092	Loss: 119.921
-41600/69092	Loss: 123.385
-44800/69092	Loss: 122.616
-48000/69092	Loss: 121.728
-51200/69092	Loss: 121.045
-54400/69092	Loss: 123.097
-57600/69092	Loss: 121.515
-60800/69092	Loss: 123.073
-64000/69092	Loss: 121.583
-67200/69092	Loss: 121.666
-Training time 0:04:49.451576
-Epoch: 14 Average loss: 122.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 16)
-0/69092	Loss: 124.186
-3200/69092	Loss: 120.439
-6400/69092	Loss: 121.248
-9600/69092	Loss: 120.874
-12800/69092	Loss: 121.578
-16000/69092	Loss: 122.464
-19200/69092	Loss: 121.549
-22400/69092	Loss: 120.158
-25600/69092	Loss: 120.951
-28800/69092	Loss: 124.429
-32000/69092	Loss: 121.813
-35200/69092	Loss: 121.571
-38400/69092	Loss: 123.013
-41600/69092	Loss: 120.008
-44800/69092	Loss: 122.563
-48000/69092	Loss: 122.886
-51200/69092	Loss: 120.782
-54400/69092	Loss: 123.421
-57600/69092	Loss: 121.868
-60800/69092	Loss: 121.298
-64000/69092	Loss: 119.484
-67200/69092	Loss: 123.969
-Training time 0:04:50.416095
-Epoch: 15 Average loss: 121.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 17)
-0/69092	Loss: 147.280
-3200/69092	Loss: 124.071
-6400/69092	Loss: 122.413
-9600/69092	Loss: 121.878
-12800/69092	Loss: 118.349
-16000/69092	Loss: 122.346
-19200/69092	Loss: 119.379
-22400/69092	Loss: 119.008
-25600/69092	Loss: 123.249
-28800/69092	Loss: 120.557
-32000/69092	Loss: 120.716
-35200/69092	Loss: 120.112
-38400/69092	Loss: 120.230
-41600/69092	Loss: 123.128
-44800/69092	Loss: 122.548
-48000/69092	Loss: 121.832
-51200/69092	Loss: 122.497
-54400/69092	Loss: 120.060
-57600/69092	Loss: 121.200
-60800/69092	Loss: 122.492
-64000/69092	Loss: 121.126
-67200/69092	Loss: 119.935
-Training time 0:04:49.960933
-Epoch: 16 Average loss: 121.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 18)
-0/69092	Loss: 124.367
-3200/69092	Loss: 122.409
-6400/69092	Loss: 122.262
-9600/69092	Loss: 119.387
-12800/69092	Loss: 121.039
-16000/69092	Loss: 119.182
-19200/69092	Loss: 121.419
-22400/69092	Loss: 121.514
-25600/69092	Loss: 122.545
-28800/69092	Loss: 122.114
-32000/69092	Loss: 119.501
-35200/69092	Loss: 122.873
-38400/69092	Loss: 121.808
-41600/69092	Loss: 120.921
-44800/69092	Loss: 121.306
-48000/69092	Loss: 120.496
-51200/69092	Loss: 120.772
-54400/69092	Loss: 118.943
-57600/69092	Loss: 120.649
-60800/69092	Loss: 120.235
-64000/69092	Loss: 122.692
-67200/69092	Loss: 119.990
-Training time 0:04:49.027354
-Epoch: 17 Average loss: 121.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 19)
-0/69092	Loss: 121.317
-3200/69092	Loss: 120.732
-6400/69092	Loss: 122.482
-9600/69092	Loss: 119.718
-12800/69092	Loss: 119.866
-16000/69092	Loss: 120.726
-19200/69092	Loss: 121.990
-22400/69092	Loss: 119.675
-25600/69092	Loss: 121.545
-28800/69092	Loss: 120.568
-32000/69092	Loss: 122.772
-35200/69092	Loss: 121.967
-38400/69092	Loss: 121.649
-41600/69092	Loss: 117.995
-44800/69092	Loss: 121.247
-48000/69092	Loss: 120.534
-51200/69092	Loss: 119.402
-54400/69092	Loss: 119.726
-57600/69092	Loss: 122.539
-60800/69092	Loss: 119.981
-64000/69092	Loss: 118.654
-67200/69092	Loss: 119.318
-Training time 0:04:49.797799
-Epoch: 18 Average loss: 120.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 20)
-0/69092	Loss: 118.134
-3200/69092	Loss: 120.396
-6400/69092	Loss: 120.969
-9600/69092	Loss: 120.209
-12800/69092	Loss: 121.274
-16000/69092	Loss: 121.006
-19200/69092	Loss: 122.580
-22400/69092	Loss: 119.853
-25600/69092	Loss: 119.243
-28800/69092	Loss: 118.694
-32000/69092	Loss: 121.411
-35200/69092	Loss: 121.019
-38400/69092	Loss: 120.749
-41600/69092	Loss: 121.177
-44800/69092	Loss: 120.289
-48000/69092	Loss: 118.386
-51200/69092	Loss: 119.777
-54400/69092	Loss: 120.387
-57600/69092	Loss: 119.084
-60800/69092	Loss: 122.402
-64000/69092	Loss: 119.486
-67200/69092	Loss: 120.203
-Training time 0:04:48.928545
-Epoch: 19 Average loss: 120.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 21)
-0/69092	Loss: 132.927
-3200/69092	Loss: 121.500
-6400/69092	Loss: 121.023
-9600/69092	Loss: 119.467
-12800/69092	Loss: 119.294
-16000/69092	Loss: 120.119
-19200/69092	Loss: 121.221
-22400/69092	Loss: 121.108
-25600/69092	Loss: 120.540
-28800/69092	Loss: 119.922
-32000/69092	Loss: 119.803
-35200/69092	Loss: 118.895
-38400/69092	Loss: 120.113
-41600/69092	Loss: 119.533
-44800/69092	Loss: 120.517
-48000/69092	Loss: 118.937
-51200/69092	Loss: 119.558
-54400/69092	Loss: 118.833
-57600/69092	Loss: 119.291
-60800/69092	Loss: 118.990
-64000/69092	Loss: 120.532
-67200/69092	Loss: 121.909
-Training time 0:04:51.148482
-Epoch: 20 Average loss: 120.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 22)
-0/69092	Loss: 118.307
-3200/69092	Loss: 119.423
-6400/69092	Loss: 118.216
-9600/69092	Loss: 119.984
-12800/69092	Loss: 120.158
-16000/69092	Loss: 117.909
-19200/69092	Loss: 119.399
-22400/69092	Loss: 120.739
-25600/69092	Loss: 121.521
-28800/69092	Loss: 120.108
-32000/69092	Loss: 118.571
-35200/69092	Loss: 119.629
-38400/69092	Loss: 118.709
-41600/69092	Loss: 119.575
-44800/69092	Loss: 118.780
-48000/69092	Loss: 119.657
-51200/69092	Loss: 119.952
-54400/69092	Loss: 119.715
-57600/69092	Loss: 118.939
-60800/69092	Loss: 117.817
-64000/69092	Loss: 120.944
-67200/69092	Loss: 121.950
-Training time 0:04:49.804652
-Epoch: 21 Average loss: 119.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 23)
-0/69092	Loss: 121.398
-3200/69092	Loss: 118.355
-6400/69092	Loss: 118.077
-9600/69092	Loss: 119.630
-12800/69092	Loss: 120.356
-16000/69092	Loss: 119.896
-19200/69092	Loss: 121.023
-22400/69092	Loss: 120.690
-25600/69092	Loss: 119.712
-28800/69092	Loss: 121.213
-32000/69092	Loss: 122.260
-35200/69092	Loss: 118.701
-38400/69092	Loss: 120.645
-41600/69092	Loss: 118.089
-44800/69092	Loss: 119.693
-48000/69092	Loss: 118.592
-51200/69092	Loss: 119.260
-54400/69092	Loss: 119.355
-57600/69092	Loss: 117.261
-60800/69092	Loss: 118.825
-64000/69092	Loss: 117.297
-67200/69092	Loss: 119.719
-Training time 0:04:50.067787
-Epoch: 22 Average loss: 119.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 24)
-0/69092	Loss: 111.638
-3200/69092	Loss: 119.813
-6400/69092	Loss: 118.761
-9600/69092	Loss: 118.287
-12800/69092	Loss: 118.752
-16000/69092	Loss: 118.375
-19200/69092	Loss: 118.758
-22400/69092	Loss: 120.132
-25600/69092	Loss: 117.772
-28800/69092	Loss: 120.166
-32000/69092	Loss: 120.307
-35200/69092	Loss: 119.838
-38400/69092	Loss: 118.112
-41600/69092	Loss: 118.822
-44800/69092	Loss: 118.199
-48000/69092	Loss: 119.910
-51200/69092	Loss: 120.456
-54400/69092	Loss: 121.213
-57600/69092	Loss: 119.889
-60800/69092	Loss: 119.915
-64000/69092	Loss: 116.545
-67200/69092	Loss: 118.453
-Training time 0:04:52.012971
-Epoch: 23 Average loss: 119.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 25)
-0/69092	Loss: 140.434
-3200/69092	Loss: 118.041
-6400/69092	Loss: 120.979
-9600/69092	Loss: 116.782
-12800/69092	Loss: 119.718
-16000/69092	Loss: 119.394
-19200/69092	Loss: 117.417
-22400/69092	Loss: 118.923
-25600/69092	Loss: 118.774
-28800/69092	Loss: 118.152
-32000/69092	Loss: 118.696
-35200/69092	Loss: 119.377
-38400/69092	Loss: 120.148
-41600/69092	Loss: 119.314
-44800/69092	Loss: 120.440
-48000/69092	Loss: 118.426
-51200/69092	Loss: 119.611
-54400/69092	Loss: 119.685
-57600/69092	Loss: 119.266
-60800/69092	Loss: 118.629
-64000/69092	Loss: 118.080
-67200/69092	Loss: 119.973
-Training time 0:04:49.487557
-Epoch: 24 Average loss: 119.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 26)
-0/69092	Loss: 124.300
-3200/69092	Loss: 117.881
-6400/69092	Loss: 118.144
-9600/69092	Loss: 120.593
-12800/69092	Loss: 117.324
-16000/69092	Loss: 118.725
-19200/69092	Loss: 118.808
-22400/69092	Loss: 120.655
-25600/69092	Loss: 118.664
-28800/69092	Loss: 120.388
-32000/69092	Loss: 118.245
-35200/69092	Loss: 120.707
-38400/69092	Loss: 118.805
-41600/69092	Loss: 119.746
-44800/69092	Loss: 119.556
-48000/69092	Loss: 118.753
-51200/69092	Loss: 117.709
-54400/69092	Loss: 118.975
-57600/69092	Loss: 119.539
-60800/69092	Loss: 118.077
-64000/69092	Loss: 118.615
-67200/69092	Loss: 118.794
-Training time 0:04:52.128706
-Epoch: 25 Average loss: 118.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 27)
-0/69092	Loss: 113.090
-3200/69092	Loss: 119.358
-6400/69092	Loss: 118.229
-9600/69092	Loss: 119.189
-12800/69092	Loss: 117.514
-16000/69092	Loss: 118.845
-19200/69092	Loss: 118.498
-22400/69092	Loss: 117.974
-25600/69092	Loss: 116.578
-28800/69092	Loss: 118.265
-32000/69092	Loss: 118.847
-35200/69092	Loss: 121.428
-38400/69092	Loss: 120.392
-41600/69092	Loss: 118.957
-44800/69092	Loss: 119.120
-48000/69092	Loss: 119.334
-51200/69092	Loss: 120.669
-54400/69092	Loss: 120.009
-57600/69092	Loss: 117.227
-60800/69092	Loss: 118.158
-64000/69092	Loss: 119.327
-67200/69092	Loss: 118.300
-Training time 0:04:49.223185
-Epoch: 26 Average loss: 118.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 28)
-0/69092	Loss: 116.295
-3200/69092	Loss: 117.970
-6400/69092	Loss: 119.817
-9600/69092	Loss: 117.504
-12800/69092	Loss: 120.582
-16000/69092	Loss: 120.024
-19200/69092	Loss: 119.205
-22400/69092	Loss: 116.581
-25600/69092	Loss: 117.436
-28800/69092	Loss: 118.478
-32000/69092	Loss: 120.577
-35200/69092	Loss: 116.665
-38400/69092	Loss: 119.224
-41600/69092	Loss: 118.680
-44800/69092	Loss: 118.032
-48000/69092	Loss: 118.059
-51200/69092	Loss: 118.905
-54400/69092	Loss: 118.619
-57600/69092	Loss: 117.789
-60800/69092	Loss: 118.975
-64000/69092	Loss: 117.807
-67200/69092	Loss: 118.468
-Training time 0:04:51.033925
-Epoch: 27 Average loss: 118.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 29)
-0/69092	Loss: 107.462
-3200/69092	Loss: 117.137
-6400/69092	Loss: 119.733
-9600/69092	Loss: 119.552
-12800/69092	Loss: 118.056
-16000/69092	Loss: 118.923
-19200/69092	Loss: 117.516
-22400/69092	Loss: 120.202
-25600/69092	Loss: 118.220
-28800/69092	Loss: 120.580
-32000/69092	Loss: 117.011
-35200/69092	Loss: 117.457
-38400/69092	Loss: 120.626
-41600/69092	Loss: 118.098
-44800/69092	Loss: 118.663
-48000/69092	Loss: 118.516
-51200/69092	Loss: 116.312
-54400/69092	Loss: 117.661
-57600/69092	Loss: 117.157
-60800/69092	Loss: 120.903
-64000/69092	Loss: 118.162
-67200/69092	Loss: 116.963
-Training time 0:04:51.592031
-Epoch: 28 Average loss: 118.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 30)
-0/69092	Loss: 102.629
-3200/69092	Loss: 119.291
-6400/69092	Loss: 117.435
-9600/69092	Loss: 119.788
-12800/69092	Loss: 116.903
-16000/69092	Loss: 118.794
-19200/69092	Loss: 118.863
-22400/69092	Loss: 117.916
-25600/69092	Loss: 120.067
-28800/69092	Loss: 120.635
-32000/69092	Loss: 117.094
-35200/69092	Loss: 117.373
-38400/69092	Loss: 118.355
-41600/69092	Loss: 116.381
-44800/69092	Loss: 118.091
-48000/69092	Loss: 117.962
-51200/69092	Loss: 119.181
-54400/69092	Loss: 117.127
-57600/69092	Loss: 118.752
-60800/69092	Loss: 118.904
-64000/69092	Loss: 116.458
-67200/69092	Loss: 118.868
-Training time 0:04:51.587348
-Epoch: 29 Average loss: 118.27
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 31)
-0/69092	Loss: 117.959
-3200/69092	Loss: 118.615
-6400/69092	Loss: 116.865
-9600/69092	Loss: 117.357
-12800/69092	Loss: 117.407
-16000/69092	Loss: 118.332
-19200/69092	Loss: 117.742
-22400/69092	Loss: 118.900
-25600/69092	Loss: 118.546
-28800/69092	Loss: 118.227
-32000/69092	Loss: 116.875
-35200/69092	Loss: 117.978
-38400/69092	Loss: 118.425
-41600/69092	Loss: 117.657
-44800/69092	Loss: 118.104
-48000/69092	Loss: 119.604
-51200/69092	Loss: 119.600
-54400/69092	Loss: 121.515
-57600/69092	Loss: 118.742
-60800/69092	Loss: 116.864
-64000/69092	Loss: 115.990
-67200/69092	Loss: 118.275
-Training time 0:04:50.048876
-Epoch: 30 Average loss: 118.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 32)
-0/69092	Loss: 106.593
-3200/69092	Loss: 119.711
-6400/69092	Loss: 116.807
-9600/69092	Loss: 117.608
-12800/69092	Loss: 118.867
-16000/69092	Loss: 117.906
-19200/69092	Loss: 117.232
-22400/69092	Loss: 115.240
-25600/69092	Loss: 117.749
-28800/69092	Loss: 118.540
-32000/69092	Loss: 119.195
-35200/69092	Loss: 118.320
-38400/69092	Loss: 116.502
-41600/69092	Loss: 117.607
-44800/69092	Loss: 117.263
-48000/69092	Loss: 117.957
-51200/69092	Loss: 117.742
-54400/69092	Loss: 118.916
-57600/69092	Loss: 117.189
-60800/69092	Loss: 120.184
-64000/69092	Loss: 116.788
-67200/69092	Loss: 118.234
-Training time 0:04:50.015429
-Epoch: 31 Average loss: 117.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 33)
-0/69092	Loss: 128.475
-3200/69092	Loss: 117.685
-6400/69092	Loss: 116.569
-9600/69092	Loss: 119.111
-12800/69092	Loss: 117.263
-16000/69092	Loss: 116.626
-19200/69092	Loss: 117.213
-22400/69092	Loss: 117.793
-25600/69092	Loss: 117.037
-28800/69092	Loss: 119.234
-32000/69092	Loss: 117.317
-35200/69092	Loss: 118.113
-38400/69092	Loss: 117.912
-41600/69092	Loss: 117.433
-44800/69092	Loss: 117.601
-48000/69092	Loss: 118.597
-51200/69092	Loss: 119.003
-54400/69092	Loss: 117.660
-57600/69092	Loss: 117.688
-60800/69092	Loss: 117.206
-64000/69092	Loss: 119.188
-67200/69092	Loss: 118.233
-Training time 0:04:52.524545
-Epoch: 32 Average loss: 117.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 34)
-0/69092	Loss: 108.132
-3200/69092	Loss: 118.912
-6400/69092	Loss: 115.902
-9600/69092	Loss: 117.341
-12800/69092	Loss: 117.619
-16000/69092	Loss: 116.339
-19200/69092	Loss: 118.875
-22400/69092	Loss: 118.306
-25600/69092	Loss: 118.466
-28800/69092	Loss: 116.170
-32000/69092	Loss: 115.511
-35200/69092	Loss: 120.453
-38400/69092	Loss: 118.390
-41600/69092	Loss: 115.965
-44800/69092	Loss: 116.297
-48000/69092	Loss: 119.445
-51200/69092	Loss: 119.516
-54400/69092	Loss: 115.973
-57600/69092	Loss: 118.658
-60800/69092	Loss: 116.730
-64000/69092	Loss: 119.248
-67200/69092	Loss: 116.062
-Training time 0:04:50.447285
-Epoch: 33 Average loss: 117.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 35)
-0/69092	Loss: 121.678
-3200/69092	Loss: 117.583
-6400/69092	Loss: 116.046
-9600/69092	Loss: 118.373
-12800/69092	Loss: 115.075
-16000/69092	Loss: 116.979
-19200/69092	Loss: 117.002
-22400/69092	Loss: 116.698
-25600/69092	Loss: 118.600
-28800/69092	Loss: 118.987
-32000/69092	Loss: 116.339
-35200/69092	Loss: 116.992
-38400/69092	Loss: 117.991
-41600/69092	Loss: 116.828
-44800/69092	Loss: 118.113
-48000/69092	Loss: 116.288
-51200/69092	Loss: 116.670
-54400/69092	Loss: 116.627
-57600/69092	Loss: 117.844
-60800/69092	Loss: 119.019
-64000/69092	Loss: 117.406
-67200/69092	Loss: 118.033
-Training time 0:04:51.258306
-Epoch: 34 Average loss: 117.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 36)
-0/69092	Loss: 122.526
-3200/69092	Loss: 117.809
-6400/69092	Loss: 116.431
-9600/69092	Loss: 115.905
-12800/69092	Loss: 118.919
-16000/69092	Loss: 118.223
-19200/69092	Loss: 117.447
-22400/69092	Loss: 119.590
-25600/69092	Loss: 117.410
-28800/69092	Loss: 116.450
-32000/69092	Loss: 119.641
-35200/69092	Loss: 118.163
-38400/69092	Loss: 116.956
-41600/69092	Loss: 116.597
-44800/69092	Loss: 117.110
-48000/69092	Loss: 118.238
-51200/69092	Loss: 116.821
-54400/69092	Loss: 115.176
-57600/69092	Loss: 116.725
-60800/69092	Loss: 116.664
-64000/69092	Loss: 117.485
-67200/69092	Loss: 117.773
-Training time 0:04:50.190005
-Epoch: 35 Average loss: 117.37
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 37)
-0/69092	Loss: 123.229
-3200/69092	Loss: 117.976
-6400/69092	Loss: 116.481
-9600/69092	Loss: 117.942
-12800/69092	Loss: 117.082
-16000/69092	Loss: 116.883
-19200/69092	Loss: 116.089
-22400/69092	Loss: 116.840
-25600/69092	Loss: 118.900
-28800/69092	Loss: 116.752
-32000/69092	Loss: 115.466
-35200/69092	Loss: 116.356
-38400/69092	Loss: 114.889
-41600/69092	Loss: 119.188
-44800/69092	Loss: 120.328
-48000/69092	Loss: 116.525
-51200/69092	Loss: 117.148
-54400/69092	Loss: 117.533
-57600/69092	Loss: 117.055
-60800/69092	Loss: 116.720
-64000/69092	Loss: 117.952
-67200/69092	Loss: 117.484
-Training time 0:04:50.280765
-Epoch: 36 Average loss: 117.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 38)
-0/69092	Loss: 111.605
-3200/69092	Loss: 117.366
-6400/69092	Loss: 116.807
-9600/69092	Loss: 114.905
-12800/69092	Loss: 117.049
-16000/69092	Loss: 115.857
-19200/69092	Loss: 118.030
-22400/69092	Loss: 117.065
-25600/69092	Loss: 121.040
-28800/69092	Loss: 116.276
-32000/69092	Loss: 116.552
-35200/69092	Loss: 117.029
-38400/69092	Loss: 116.262
-41600/69092	Loss: 116.357
-44800/69092	Loss: 116.982
-48000/69092	Loss: 117.109
-51200/69092	Loss: 117.132
-54400/69092	Loss: 117.274
-57600/69092	Loss: 116.951
-60800/69092	Loss: 119.223
-64000/69092	Loss: 117.742
-67200/69092	Loss: 118.431
-Training time 0:04:52.490880
-Epoch: 37 Average loss: 117.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 39)
-0/69092	Loss: 115.327
-3200/69092	Loss: 117.210
-6400/69092	Loss: 117.962
-9600/69092	Loss: 115.766
-12800/69092	Loss: 116.867
-16000/69092	Loss: 116.569
-19200/69092	Loss: 118.385
-22400/69092	Loss: 118.070
-25600/69092	Loss: 115.436
-28800/69092	Loss: 116.705
-32000/69092	Loss: 115.048
-35200/69092	Loss: 118.282
-38400/69092	Loss: 117.069
-41600/69092	Loss: 115.870
-44800/69092	Loss: 117.483
-48000/69092	Loss: 116.781
-51200/69092	Loss: 118.254
-54400/69092	Loss: 115.811
-57600/69092	Loss: 116.128
-60800/69092	Loss: 116.566
-64000/69092	Loss: 115.452
-67200/69092	Loss: 118.371
-Training time 0:04:52.498969
-Epoch: 38 Average loss: 116.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 40)
-0/69092	Loss: 125.033
-3200/69092	Loss: 120.041
-6400/69092	Loss: 116.207
-9600/69092	Loss: 118.136
-12800/69092	Loss: 116.748
-16000/69092	Loss: 116.243
-19200/69092	Loss: 116.841
-22400/69092	Loss: 116.977
-25600/69092	Loss: 116.668
-28800/69092	Loss: 116.521
-32000/69092	Loss: 117.136
-35200/69092	Loss: 116.983
-38400/69092	Loss: 117.618
-41600/69092	Loss: 114.372
-44800/69092	Loss: 115.211
-48000/69092	Loss: 118.201
-51200/69092	Loss: 116.028
-54400/69092	Loss: 115.890
-57600/69092	Loss: 114.996
-60800/69092	Loss: 116.487
-64000/69092	Loss: 116.983
-67200/69092	Loss: 117.058
-Training time 0:04:50.387457
-Epoch: 39 Average loss: 116.77
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 41)
-0/69092	Loss: 110.258
-3200/69092	Loss: 117.252
-6400/69092	Loss: 117.309
-9600/69092	Loss: 116.297
-12800/69092	Loss: 117.236
-16000/69092	Loss: 117.996
-19200/69092	Loss: 118.234
-22400/69092	Loss: 118.257
-25600/69092	Loss: 116.130
-28800/69092	Loss: 117.185
-32000/69092	Loss: 115.816
-35200/69092	Loss: 115.462
-38400/69092	Loss: 117.363
-41600/69092	Loss: 116.068
-44800/69092	Loss: 116.302
-48000/69092	Loss: 117.931
-51200/69092	Loss: 114.693
-54400/69092	Loss: 116.760
-57600/69092	Loss: 114.889
-60800/69092	Loss: 116.937
-64000/69092	Loss: 116.777
-67200/69092	Loss: 117.384
-Training time 0:04:50.472581
-Epoch: 40 Average loss: 116.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 42)
-0/69092	Loss: 109.066
-3200/69092	Loss: 116.320
-6400/69092	Loss: 116.240
-9600/69092	Loss: 116.514
-12800/69092	Loss: 117.777
-16000/69092	Loss: 115.869
-19200/69092	Loss: 116.254
-22400/69092	Loss: 116.256
-25600/69092	Loss: 117.526
-28800/69092	Loss: 118.255
-32000/69092	Loss: 116.091
-35200/69092	Loss: 115.097
-38400/69092	Loss: 114.364
-41600/69092	Loss: 116.590
-44800/69092	Loss: 118.679
-48000/69092	Loss: 116.334
-51200/69092	Loss: 118.734
-54400/69092	Loss: 119.049
-57600/69092	Loss: 117.248
-60800/69092	Loss: 117.773
-64000/69092	Loss: 115.110
-67200/69092	Loss: 114.249
-Training time 0:04:50.321341
-Epoch: 41 Average loss: 116.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 43)
-0/69092	Loss: 116.922
-3200/69092	Loss: 115.485
-6400/69092	Loss: 118.106
-9600/69092	Loss: 116.983
-12800/69092	Loss: 115.947
-16000/69092	Loss: 116.718
-19200/69092	Loss: 118.177
-22400/69092	Loss: 117.735
-25600/69092	Loss: 116.123
-28800/69092	Loss: 117.093
-32000/69092	Loss: 117.513
-35200/69092	Loss: 116.709
-38400/69092	Loss: 116.535
-41600/69092	Loss: 117.350
-44800/69092	Loss: 118.415
-48000/69092	Loss: 116.725
-51200/69092	Loss: 117.575
-54400/69092	Loss: 116.148
-57600/69092	Loss: 115.328
-60800/69092	Loss: 116.508
-64000/69092	Loss: 117.187
-67200/69092	Loss: 115.227
-Training time 0:04:50.882292
-Epoch: 42 Average loss: 116.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 44)
-0/69092	Loss: 126.416
-3200/69092	Loss: 117.159
-6400/69092	Loss: 115.931
-9600/69092	Loss: 117.318
-12800/69092	Loss: 115.581
-16000/69092	Loss: 115.776
-19200/69092	Loss: 115.857
-22400/69092	Loss: 115.716
-25600/69092	Loss: 115.505
-28800/69092	Loss: 117.308
-32000/69092	Loss: 115.968
-35200/69092	Loss: 116.318
-38400/69092	Loss: 117.705
-41600/69092	Loss: 116.935
-44800/69092	Loss: 116.748
-48000/69092	Loss: 116.868
-51200/69092	Loss: 115.906
-54400/69092	Loss: 115.920
-57600/69092	Loss: 116.019
-60800/69092	Loss: 117.345
-64000/69092	Loss: 116.749
-67200/69092	Loss: 117.800
-Training time 0:04:50.692964
-Epoch: 43 Average loss: 116.44
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 45)
-0/69092	Loss: 113.226
-3200/69092	Loss: 116.414
-6400/69092	Loss: 115.403
-9600/69092	Loss: 114.424
-12800/69092	Loss: 116.078
-16000/69092	Loss: 118.299
-19200/69092	Loss: 115.333
-22400/69092	Loss: 118.434
-25600/69092	Loss: 117.068
-28800/69092	Loss: 117.351
-32000/69092	Loss: 116.913
-35200/69092	Loss: 116.053
-38400/69092	Loss: 115.261
-41600/69092	Loss: 113.541
-44800/69092	Loss: 117.611
-48000/69092	Loss: 115.486
-51200/69092	Loss: 116.020
-54400/69092	Loss: 114.984
-57600/69092	Loss: 116.429
-60800/69092	Loss: 117.387
-64000/69092	Loss: 118.603
-67200/69092	Loss: 117.236
-Training time 0:04:50.906052
-Epoch: 44 Average loss: 116.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 46)
-0/69092	Loss: 114.154
-3200/69092	Loss: 115.486
-6400/69092	Loss: 115.256
-9600/69092	Loss: 115.306
-12800/69092	Loss: 117.701
-16000/69092	Loss: 115.663
-19200/69092	Loss: 115.530
-22400/69092	Loss: 115.508
-25600/69092	Loss: 116.523
-28800/69092	Loss: 117.027
-32000/69092	Loss: 116.623
-35200/69092	Loss: 116.793
-38400/69092	Loss: 114.976
-41600/69092	Loss: 116.407
-44800/69092	Loss: 117.925
-48000/69092	Loss: 115.193
-51200/69092	Loss: 117.126
-54400/69092	Loss: 117.248
-57600/69092	Loss: 113.484
-60800/69092	Loss: 117.698
-64000/69092	Loss: 116.944
-67200/69092	Loss: 115.727
-Training time 0:04:49.102354
-Epoch: 45 Average loss: 116.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 47)
-0/69092	Loss: 110.757
-3200/69092	Loss: 115.191
-6400/69092	Loss: 115.617
-9600/69092	Loss: 116.033
-12800/69092	Loss: 115.286
-16000/69092	Loss: 116.425
-19200/69092	Loss: 116.590
-22400/69092	Loss: 115.571
-25600/69092	Loss: 116.207
-28800/69092	Loss: 116.555
-32000/69092	Loss: 117.130
-35200/69092	Loss: 114.536
-38400/69092	Loss: 115.110
-41600/69092	Loss: 116.440
-44800/69092	Loss: 114.962
-48000/69092	Loss: 117.549
-51200/69092	Loss: 116.202
-54400/69092	Loss: 116.490
-57600/69092	Loss: 115.999
-60800/69092	Loss: 115.435
-64000/69092	Loss: 117.503
-67200/69092	Loss: 117.120
-Training time 0:04:50.815465
-Epoch: 46 Average loss: 116.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 48)
-0/69092	Loss: 115.975
-3200/69092	Loss: 115.669
-6400/69092	Loss: 116.485
-9600/69092	Loss: 115.950
-12800/69092	Loss: 114.916
-16000/69092	Loss: 118.731
-19200/69092	Loss: 114.510
-22400/69092	Loss: 116.273
-25600/69092	Loss: 116.265
-28800/69092	Loss: 117.772
-32000/69092	Loss: 114.696
-35200/69092	Loss: 114.409
-38400/69092	Loss: 115.990
-41600/69092	Loss: 115.251
-44800/69092	Loss: 115.582
-48000/69092	Loss: 117.679
-51200/69092	Loss: 116.516
-54400/69092	Loss: 117.912
-57600/69092	Loss: 116.147
-60800/69092	Loss: 116.550
-64000/69092	Loss: 115.431
-67200/69092	Loss: 116.913
-Training time 0:04:50.529880
-Epoch: 47 Average loss: 116.19
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 49)
-0/69092	Loss: 118.941
-3200/69092	Loss: 115.989
-6400/69092	Loss: 116.560
-9600/69092	Loss: 118.031
-12800/69092	Loss: 116.526
-16000/69092	Loss: 118.645
-19200/69092	Loss: 116.125
-22400/69092	Loss: 116.495
-25600/69092	Loss: 116.235
-28800/69092	Loss: 116.240
-32000/69092	Loss: 116.055
-35200/69092	Loss: 114.656
-38400/69092	Loss: 116.154
-41600/69092	Loss: 117.614
-44800/69092	Loss: 114.164
-48000/69092	Loss: 116.587
-51200/69092	Loss: 114.979
-54400/69092	Loss: 114.746
-57600/69092	Loss: 114.571
-60800/69092	Loss: 115.249
-64000/69092	Loss: 115.959
-67200/69092	Loss: 115.955
-Training time 0:04:50.316161
-Epoch: 48 Average loss: 116.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 50)
-0/69092	Loss: 118.445
-3200/69092	Loss: 116.011
-6400/69092	Loss: 115.451
-9600/69092	Loss: 116.933
-12800/69092	Loss: 116.725
-16000/69092	Loss: 114.365
-19200/69092	Loss: 116.176
-22400/69092	Loss: 115.867
-25600/69092	Loss: 113.811
-28800/69092	Loss: 117.353
-32000/69092	Loss: 115.446
-35200/69092	Loss: 115.863
-38400/69092	Loss: 117.233
-41600/69092	Loss: 114.420
-44800/69092	Loss: 116.427
-48000/69092	Loss: 115.379
-51200/69092	Loss: 116.464
-54400/69092	Loss: 115.967
-57600/69092	Loss: 114.872
-60800/69092	Loss: 116.183
-64000/69092	Loss: 116.950
-67200/69092	Loss: 116.495
-Training time 0:04:51.000314
-Epoch: 49 Average loss: 115.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 51)
-0/69092	Loss: 110.965
-3200/69092	Loss: 114.970
-6400/69092	Loss: 116.543
-9600/69092	Loss: 115.009
-12800/69092	Loss: 116.755
-16000/69092	Loss: 114.706
-19200/69092	Loss: 114.190
-22400/69092	Loss: 114.569
-25600/69092	Loss: 115.313
-28800/69092	Loss: 115.033
-32000/69092	Loss: 116.078
-35200/69092	Loss: 115.569
-38400/69092	Loss: 116.802
-41600/69092	Loss: 116.311
-44800/69092	Loss: 117.974
-48000/69092	Loss: 115.641
-51200/69092	Loss: 116.793
-54400/69092	Loss: 116.699
-57600/69092	Loss: 116.751
-60800/69092	Loss: 116.524
-64000/69092	Loss: 113.234
-67200/69092	Loss: 116.150
-Training time 0:04:51.109183
-Epoch: 50 Average loss: 115.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 52)
-0/69092	Loss: 108.017
-3200/69092	Loss: 114.934
-6400/69092	Loss: 114.856
-9600/69092	Loss: 116.531
-12800/69092	Loss: 113.770
-16000/69092	Loss: 115.197
-19200/69092	Loss: 116.244
-22400/69092	Loss: 115.346
-25600/69092	Loss: 116.879
-28800/69092	Loss: 116.504
-32000/69092	Loss: 114.772
-35200/69092	Loss: 117.467
-38400/69092	Loss: 114.945
-41600/69092	Loss: 115.933
-44800/69092	Loss: 116.462
-48000/69092	Loss: 115.551
-51200/69092	Loss: 115.669
-54400/69092	Loss: 115.515
-57600/69092	Loss: 115.213
-60800/69092	Loss: 117.749
-64000/69092	Loss: 115.684
-67200/69092	Loss: 116.791
-Training time 0:04:50.668655
-Epoch: 51 Average loss: 115.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 53)
-0/69092	Loss: 117.423
-3200/69092	Loss: 115.116
-6400/69092	Loss: 116.887
-9600/69092	Loss: 114.589
-12800/69092	Loss: 116.855
-16000/69092	Loss: 115.924
-19200/69092	Loss: 116.141
-22400/69092	Loss: 116.903
-25600/69092	Loss: 114.613
-28800/69092	Loss: 113.224
-32000/69092	Loss: 117.233
-35200/69092	Loss: 116.103
-38400/69092	Loss: 114.733
-41600/69092	Loss: 116.245
-44800/69092	Loss: 115.208
-48000/69092	Loss: 116.370
-51200/69092	Loss: 115.745
-54400/69092	Loss: 113.581
-57600/69092	Loss: 116.676
-60800/69092	Loss: 116.732
-64000/69092	Loss: 117.132
-67200/69092	Loss: 115.330
-Training time 0:04:51.758798
-Epoch: 52 Average loss: 115.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 54)
-0/69092	Loss: 107.363
-3200/69092	Loss: 115.455
-6400/69092	Loss: 114.363
-9600/69092	Loss: 113.316
-12800/69092	Loss: 114.088
-16000/69092	Loss: 115.876
-19200/69092	Loss: 114.352
-22400/69092	Loss: 115.823
-25600/69092	Loss: 114.822
-28800/69092	Loss: 116.164
-32000/69092	Loss: 117.430
-35200/69092	Loss: 115.201
-38400/69092	Loss: 117.835
-41600/69092	Loss: 117.573
-44800/69092	Loss: 116.864
-48000/69092	Loss: 113.686
-51200/69092	Loss: 114.353
-54400/69092	Loss: 116.330
-57600/69092	Loss: 116.880
-60800/69092	Loss: 115.311
-64000/69092	Loss: 117.652
-67200/69092	Loss: 115.619
-Training time 0:04:49.333246
-Epoch: 53 Average loss: 115.65
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 55)
-0/69092	Loss: 111.250
-3200/69092	Loss: 115.047
-6400/69092	Loss: 116.211
-9600/69092	Loss: 114.196
-12800/69092	Loss: 114.638
-16000/69092	Loss: 114.877
-19200/69092	Loss: 117.125
-22400/69092	Loss: 116.822
-25600/69092	Loss: 116.239
-28800/69092	Loss: 115.250
-32000/69092	Loss: 116.520
-35200/69092	Loss: 116.383
-38400/69092	Loss: 116.305
-41600/69092	Loss: 115.319
-44800/69092	Loss: 115.305
-48000/69092	Loss: 114.337
-51200/69092	Loss: 114.042
-54400/69092	Loss: 115.618
-57600/69092	Loss: 115.546
-60800/69092	Loss: 115.192
-64000/69092	Loss: 115.025
-67200/69092	Loss: 113.886
-Training time 0:04:51.174373
-Epoch: 54 Average loss: 115.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 56)
-0/69092	Loss: 121.345
-3200/69092	Loss: 116.380
-6400/69092	Loss: 114.931
-9600/69092	Loss: 115.219
-12800/69092	Loss: 113.502
-16000/69092	Loss: 115.090
-19200/69092	Loss: 117.525
-22400/69092	Loss: 115.704
-25600/69092	Loss: 114.509
-28800/69092	Loss: 116.143
-32000/69092	Loss: 117.079
-35200/69092	Loss: 115.237
-38400/69092	Loss: 114.852
-41600/69092	Loss: 116.465
-44800/69092	Loss: 114.581
-48000/69092	Loss: 115.045
-51200/69092	Loss: 114.057
-54400/69092	Loss: 116.492
-57600/69092	Loss: 114.078
-60800/69092	Loss: 112.629
-64000/69092	Loss: 114.679
-67200/69092	Loss: 115.498
-Training time 0:04:52.204344
-Epoch: 55 Average loss: 115.23
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 57)
-0/69092	Loss: 105.918
-3200/69092	Loss: 114.693
-6400/69092	Loss: 115.644
-9600/69092	Loss: 114.654
-12800/69092	Loss: 115.317
-16000/69092	Loss: 115.527
-19200/69092	Loss: 113.368
-22400/69092	Loss: 116.289
-25600/69092	Loss: 114.841
-28800/69092	Loss: 115.621
-32000/69092	Loss: 116.214
-35200/69092	Loss: 116.268
-38400/69092	Loss: 116.120
-41600/69092	Loss: 115.684
-44800/69092	Loss: 114.851
-48000/69092	Loss: 117.124
-51200/69092	Loss: 116.559
-54400/69092	Loss: 113.316
-57600/69092	Loss: 113.417
-60800/69092	Loss: 115.656
-64000/69092	Loss: 114.335
-67200/69092	Loss: 117.134
-Training time 0:04:49.365066
-Epoch: 56 Average loss: 115.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 58)
-0/69092	Loss: 130.230
-3200/69092	Loss: 113.360
-6400/69092	Loss: 115.075
-9600/69092	Loss: 113.792
-12800/69092	Loss: 115.990
-16000/69092	Loss: 116.490
-19200/69092	Loss: 117.062
-22400/69092	Loss: 115.459
-25600/69092	Loss: 112.523
-28800/69092	Loss: 115.314
-32000/69092	Loss: 115.161
-35200/69092	Loss: 115.395
-38400/69092	Loss: 115.698
-41600/69092	Loss: 115.437
-44800/69092	Loss: 116.958
-48000/69092	Loss: 115.300
-51200/69092	Loss: 115.323
-54400/69092	Loss: 113.655
-57600/69092	Loss: 115.774
-60800/69092	Loss: 116.198
-64000/69092	Loss: 116.066
-67200/69092	Loss: 117.171
-Training time 0:04:50.333766
-Epoch: 57 Average loss: 115.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 59)
-0/69092	Loss: 110.380
-3200/69092	Loss: 117.242
-6400/69092	Loss: 115.368
-9600/69092	Loss: 116.128
-12800/69092	Loss: 115.609
-16000/69092	Loss: 114.974
-19200/69092	Loss: 114.545
-22400/69092	Loss: 113.922
-25600/69092	Loss: 116.304
-28800/69092	Loss: 112.777
-32000/69092	Loss: 116.925
-35200/69092	Loss: 115.065
-38400/69092	Loss: 115.531
-41600/69092	Loss: 113.043
-44800/69092	Loss: 115.650
-48000/69092	Loss: 114.513
-51200/69092	Loss: 114.802
-54400/69092	Loss: 114.561
-57600/69092	Loss: 114.275
-60800/69092	Loss: 116.770
-64000/69092	Loss: 115.084
-67200/69092	Loss: 114.219
-Training time 0:04:50.861188
-Epoch: 58 Average loss: 115.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 60)
-0/69092	Loss: 120.938
-3200/69092	Loss: 116.526
-6400/69092	Loss: 113.273
-9600/69092	Loss: 114.060
-12800/69092	Loss: 115.242
-16000/69092	Loss: 116.480
-19200/69092	Loss: 114.736
-22400/69092	Loss: 115.080
-25600/69092	Loss: 114.591
-28800/69092	Loss: 114.889
-32000/69092	Loss: 114.226
-35200/69092	Loss: 114.526
-38400/69092	Loss: 114.164
-41600/69092	Loss: 114.240
-44800/69092	Loss: 116.406
-48000/69092	Loss: 113.433
-51200/69092	Loss: 117.690
-54400/69092	Loss: 115.850
-57600/69092	Loss: 113.394
-60800/69092	Loss: 115.963
-64000/69092	Loss: 114.316
-67200/69092	Loss: 116.932
-Training time 0:04:51.653567
-Epoch: 59 Average loss: 115.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 61)
-0/69092	Loss: 129.070
-3200/69092	Loss: 113.538
-6400/69092	Loss: 116.309
-9600/69092	Loss: 115.728
-12800/69092	Loss: 114.899
-16000/69092	Loss: 114.760
-19200/69092	Loss: 116.447
-22400/69092	Loss: 115.839
-25600/69092	Loss: 114.601
-28800/69092	Loss: 112.923
-32000/69092	Loss: 115.536
-35200/69092	Loss: 116.740
-38400/69092	Loss: 114.354
-41600/69092	Loss: 116.054
-44800/69092	Loss: 114.711
-48000/69092	Loss: 114.170
-51200/69092	Loss: 114.636
-54400/69092	Loss: 115.156
-57600/69092	Loss: 113.717
-60800/69092	Loss: 116.622
-64000/69092	Loss: 115.291
-67200/69092	Loss: 115.842
-Training time 0:04:49.531087
-Epoch: 60 Average loss: 115.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 62)
-0/69092	Loss: 113.572
-3200/69092	Loss: 115.474
-6400/69092	Loss: 116.251
-9600/69092	Loss: 116.395
-12800/69092	Loss: 114.333
-16000/69092	Loss: 114.263
-19200/69092	Loss: 112.245
-22400/69092	Loss: 114.744
-25600/69092	Loss: 115.087
-28800/69092	Loss: 117.191
-32000/69092	Loss: 114.861
-35200/69092	Loss: 115.426
-38400/69092	Loss: 115.288
-41600/69092	Loss: 114.900
-44800/69092	Loss: 114.223
-48000/69092	Loss: 114.517
-51200/69092	Loss: 114.747
-54400/69092	Loss: 116.455
-57600/69092	Loss: 115.121
-60800/69092	Loss: 113.595
-64000/69092	Loss: 115.817
-67200/69092	Loss: 113.993
-Training time 0:04:49.861094
-Epoch: 61 Average loss: 115.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 63)
-0/69092	Loss: 120.034
-3200/69092	Loss: 114.612
-6400/69092	Loss: 114.035
-9600/69092	Loss: 117.415
-12800/69092	Loss: 115.067
-16000/69092	Loss: 113.959
-19200/69092	Loss: 113.977
-22400/69092	Loss: 112.873
-25600/69092	Loss: 114.675
-28800/69092	Loss: 113.659
-32000/69092	Loss: 116.643
-35200/69092	Loss: 116.369
-38400/69092	Loss: 116.391
-41600/69092	Loss: 114.723
-44800/69092	Loss: 115.430
-48000/69092	Loss: 115.085
-51200/69092	Loss: 113.667
-54400/69092	Loss: 114.991
-57600/69092	Loss: 115.769
-60800/69092	Loss: 114.969
-64000/69092	Loss: 112.662
-67200/69092	Loss: 115.065
-Training time 0:04:50.082754
-Epoch: 62 Average loss: 114.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 64)
-0/69092	Loss: 107.914
-3200/69092	Loss: 115.811
-6400/69092	Loss: 114.845
-9600/69092	Loss: 115.219
-12800/69092	Loss: 113.002
-16000/69092	Loss: 114.682
-19200/69092	Loss: 114.980
-22400/69092	Loss: 114.454
-25600/69092	Loss: 113.652
-28800/69092	Loss: 115.837
-32000/69092	Loss: 115.660
-35200/69092	Loss: 114.064
-38400/69092	Loss: 116.172
-41600/69092	Loss: 114.529
-44800/69092	Loss: 115.625
-48000/69092	Loss: 115.497
-51200/69092	Loss: 116.070
-54400/69092	Loss: 114.471
-57600/69092	Loss: 115.314
-60800/69092	Loss: 114.247
-64000/69092	Loss: 116.192
-67200/69092	Loss: 113.941
-Training time 0:04:49.957412
-Epoch: 63 Average loss: 114.98
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 65)
-0/69092	Loss: 116.641
-3200/69092	Loss: 114.474
-6400/69092	Loss: 112.499
-9600/69092	Loss: 116.596
-12800/69092	Loss: 114.035
-16000/69092	Loss: 114.961
-19200/69092	Loss: 115.245
-22400/69092	Loss: 115.777
-25600/69092	Loss: 114.787
-28800/69092	Loss: 113.626
-32000/69092	Loss: 114.013
-35200/69092	Loss: 115.915
-38400/69092	Loss: 114.022
-41600/69092	Loss: 114.241
-44800/69092	Loss: 115.958
-48000/69092	Loss: 113.939
-51200/69092	Loss: 116.508
-54400/69092	Loss: 114.077
-57600/69092	Loss: 115.458
-60800/69092	Loss: 113.704
-64000/69092	Loss: 115.936
-67200/69092	Loss: 114.465
-Training time 0:04:49.658180
-Epoch: 64 Average loss: 114.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 66)
-0/69092	Loss: 112.635
-3200/69092	Loss: 114.548
-6400/69092	Loss: 114.231
-9600/69092	Loss: 115.587
-12800/69092	Loss: 114.641
-16000/69092	Loss: 115.595
-19200/69092	Loss: 113.876
-22400/69092	Loss: 113.440
-25600/69092	Loss: 116.155
-28800/69092	Loss: 114.903
-32000/69092	Loss: 112.486
-35200/69092	Loss: 113.886
-38400/69092	Loss: 116.748
-41600/69092	Loss: 116.410
-44800/69092	Loss: 114.976
-48000/69092	Loss: 115.530
-51200/69092	Loss: 116.601
-54400/69092	Loss: 114.131
-57600/69092	Loss: 115.115
-60800/69092	Loss: 113.630
-64000/69092	Loss: 114.185
-67200/69092	Loss: 114.594
-Training time 0:04:50.297879
-Epoch: 65 Average loss: 114.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 67)
-0/69092	Loss: 125.901
-3200/69092	Loss: 115.050
-6400/69092	Loss: 112.895
-9600/69092	Loss: 114.888
-12800/69092	Loss: 114.904
-16000/69092	Loss: 114.360
-19200/69092	Loss: 114.818
-22400/69092	Loss: 114.196
-25600/69092	Loss: 114.682
-28800/69092	Loss: 114.934
-32000/69092	Loss: 114.733
-35200/69092	Loss: 114.040
-38400/69092	Loss: 115.150
-41600/69092	Loss: 115.889
-44800/69092	Loss: 115.538
-48000/69092	Loss: 115.784
-51200/69092	Loss: 113.973
-54400/69092	Loss: 117.135
-57600/69092	Loss: 114.236
-60800/69092	Loss: 114.949
-64000/69092	Loss: 113.168
-67200/69092	Loss: 116.649
-Training time 0:04:51.649768
-Epoch: 66 Average loss: 114.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 68)
-0/69092	Loss: 109.445
-3200/69092	Loss: 114.568
-6400/69092	Loss: 115.636
-9600/69092	Loss: 114.090
-12800/69092	Loss: 117.041
-16000/69092	Loss: 115.497
-19200/69092	Loss: 114.000
-22400/69092	Loss: 114.204
-25600/69092	Loss: 115.507
-28800/69092	Loss: 114.216
-32000/69092	Loss: 115.093
-35200/69092	Loss: 113.535
-38400/69092	Loss: 115.401
-41600/69092	Loss: 113.445
-44800/69092	Loss: 115.084
-48000/69092	Loss: 113.895
-51200/69092	Loss: 116.076
-54400/69092	Loss: 112.761
-57600/69092	Loss: 114.978
-60800/69092	Loss: 114.853
-64000/69092	Loss: 113.223
-67200/69092	Loss: 115.037
-Training time 0:04:50.448239
-Epoch: 67 Average loss: 114.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 69)
-0/69092	Loss: 121.913
-3200/69092	Loss: 113.246
-6400/69092	Loss: 114.522
-9600/69092	Loss: 116.150
-12800/69092	Loss: 114.766
-16000/69092	Loss: 114.983
-19200/69092	Loss: 114.599
-22400/69092	Loss: 115.377
-25600/69092	Loss: 114.733
-28800/69092	Loss: 113.788
-32000/69092	Loss: 115.150
-35200/69092	Loss: 116.280
-38400/69092	Loss: 114.409
-41600/69092	Loss: 114.290
-44800/69092	Loss: 114.097
-48000/69092	Loss: 113.125
-51200/69092	Loss: 114.332
-54400/69092	Loss: 115.385
-57600/69092	Loss: 114.851
-60800/69092	Loss: 113.286
-64000/69092	Loss: 115.712
-67200/69092	Loss: 115.736
-Training time 0:04:51.138483
-Epoch: 68 Average loss: 114.63
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 70)
-0/69092	Loss: 125.051
-3200/69092	Loss: 115.102
-6400/69092	Loss: 114.087
-9600/69092	Loss: 116.201
-12800/69092	Loss: 113.721
-16000/69092	Loss: 114.431
-19200/69092	Loss: 115.753
-22400/69092	Loss: 115.861
-25600/69092	Loss: 114.995
-28800/69092	Loss: 113.949
-32000/69092	Loss: 115.319
-35200/69092	Loss: 114.642
-38400/69092	Loss: 114.189
-41600/69092	Loss: 113.771
-44800/69092	Loss: 113.618
-48000/69092	Loss: 115.785
-51200/69092	Loss: 113.695
-54400/69092	Loss: 114.677
-57600/69092	Loss: 114.020
-60800/69092	Loss: 113.694
-64000/69092	Loss: 113.486
-67200/69092	Loss: 112.500
-Training time 0:04:49.815245
-Epoch: 69 Average loss: 114.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 71)
-0/69092	Loss: 118.067
-3200/69092	Loss: 114.432
-6400/69092	Loss: 116.424
-9600/69092	Loss: 113.103
-12800/69092	Loss: 113.420
-16000/69092	Loss: 114.150
-19200/69092	Loss: 112.896
-22400/69092	Loss: 114.493
-25600/69092	Loss: 116.477
-28800/69092	Loss: 114.754
-32000/69092	Loss: 113.572
-35200/69092	Loss: 112.137
-38400/69092	Loss: 114.255
-41600/69092	Loss: 114.041
-44800/69092	Loss: 114.902
-48000/69092	Loss: 114.853
-51200/69092	Loss: 114.115
-54400/69092	Loss: 111.929
-57600/69092	Loss: 113.867
-60800/69092	Loss: 115.578
-64000/69092	Loss: 115.253
-67200/69092	Loss: 114.495
-Training time 0:04:51.925960
-Epoch: 70 Average loss: 114.37
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 72)
-0/69092	Loss: 110.626
-3200/69092	Loss: 115.597
-6400/69092	Loss: 113.847
-9600/69092	Loss: 112.283
-12800/69092	Loss: 114.362
-16000/69092	Loss: 114.564
-19200/69092	Loss: 115.204
-22400/69092	Loss: 114.233
-25600/69092	Loss: 114.334
-28800/69092	Loss: 114.784
-32000/69092	Loss: 112.240
-35200/69092	Loss: 114.379
-38400/69092	Loss: 115.718
-41600/69092	Loss: 114.241
-44800/69092	Loss: 115.565
-48000/69092	Loss: 114.088
-51200/69092	Loss: 115.310
-54400/69092	Loss: 113.681
-57600/69092	Loss: 112.798
-60800/69092	Loss: 114.490
-64000/69092	Loss: 115.532
-67200/69092	Loss: 115.908
-Training time 0:04:51.263301
-Epoch: 71 Average loss: 114.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 73)
-0/69092	Loss: 126.524
-3200/69092	Loss: 112.766
-6400/69092	Loss: 114.966
-9600/69092	Loss: 114.645
-12800/69092	Loss: 115.025
-16000/69092	Loss: 115.586
-19200/69092	Loss: 114.933
-22400/69092	Loss: 113.922
-25600/69092	Loss: 115.301
-28800/69092	Loss: 113.919
-32000/69092	Loss: 116.193
-35200/69092	Loss: 114.761
-38400/69092	Loss: 111.971
-41600/69092	Loss: 116.336
-44800/69092	Loss: 113.653
-48000/69092	Loss: 115.769
-51200/69092	Loss: 112.701
-54400/69092	Loss: 114.297
-57600/69092	Loss: 112.923
-60800/69092	Loss: 111.982
-64000/69092	Loss: 114.084
-67200/69092	Loss: 115.607
-Training time 0:04:52.005985
-Epoch: 72 Average loss: 114.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 74)
-0/69092	Loss: 112.065
-3200/69092	Loss: 114.408
-6400/69092	Loss: 114.604
-9600/69092	Loss: 114.376
-12800/69092	Loss: 113.403
-16000/69092	Loss: 114.143
-19200/69092	Loss: 115.974
-22400/69092	Loss: 113.870
-25600/69092	Loss: 114.257
-28800/69092	Loss: 114.431
-32000/69092	Loss: 115.319
-35200/69092	Loss: 113.325
-38400/69092	Loss: 115.692
-41600/69092	Loss: 114.905
-44800/69092	Loss: 113.285
-48000/69092	Loss: 112.058
-51200/69092	Loss: 115.133
-54400/69092	Loss: 114.319
-57600/69092	Loss: 115.527
-60800/69092	Loss: 112.734
-64000/69092	Loss: 113.817
-67200/69092	Loss: 115.289
-Training time 0:04:50.372596
-Epoch: 73 Average loss: 114.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 75)
-0/69092	Loss: 108.900
-3200/69092	Loss: 113.069
-6400/69092	Loss: 116.169
-9600/69092	Loss: 113.440
-12800/69092	Loss: 114.160
-16000/69092	Loss: 115.020
-19200/69092	Loss: 116.341
-22400/69092	Loss: 113.578
-25600/69092	Loss: 113.593
-28800/69092	Loss: 114.390
-32000/69092	Loss: 113.834
-35200/69092	Loss: 113.907
-38400/69092	Loss: 116.457
-41600/69092	Loss: 113.770
-44800/69092	Loss: 114.490
-48000/69092	Loss: 113.662
-51200/69092	Loss: 114.060
-54400/69092	Loss: 111.935
-57600/69092	Loss: 114.180
-60800/69092	Loss: 113.947
-64000/69092	Loss: 116.748
-67200/69092	Loss: 114.355
-Training time 0:04:50.022412
-Epoch: 74 Average loss: 114.31
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 76)
-0/69092	Loss: 119.328
-3200/69092	Loss: 113.290
-6400/69092	Loss: 115.541
-9600/69092	Loss: 114.173
-12800/69092	Loss: 115.024
-16000/69092	Loss: 113.129
-19200/69092	Loss: 114.460
-22400/69092	Loss: 114.829
-25600/69092	Loss: 114.816
-28800/69092	Loss: 112.927
-32000/69092	Loss: 113.915
-35200/69092	Loss: 113.821
-38400/69092	Loss: 113.344
-41600/69092	Loss: 113.747
-44800/69092	Loss: 113.595
-48000/69092	Loss: 114.600
-51200/69092	Loss: 113.716
-54400/69092	Loss: 116.395
-57600/69092	Loss: 114.278
-60800/69092	Loss: 113.421
-64000/69092	Loss: 115.272
-67200/69092	Loss: 114.376
-Training time 0:04:50.965335
-Epoch: 75 Average loss: 114.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 77)
-0/69092	Loss: 106.325
-3200/69092	Loss: 114.237
-6400/69092	Loss: 112.202
-9600/69092	Loss: 114.797
-12800/69092	Loss: 113.953
-16000/69092	Loss: 114.647
-19200/69092	Loss: 113.164
-22400/69092	Loss: 114.101
-25600/69092	Loss: 115.652
-28800/69092	Loss: 116.110
-32000/69092	Loss: 112.867
-35200/69092	Loss: 113.098
-38400/69092	Loss: 115.475
-41600/69092	Loss: 115.695
-44800/69092	Loss: 115.099
-48000/69092	Loss: 114.189
-51200/69092	Loss: 113.810
-54400/69092	Loss: 113.467
-57600/69092	Loss: 113.638
-60800/69092	Loss: 113.796
-64000/69092	Loss: 112.408
-67200/69092	Loss: 115.216
-Training time 0:04:48.314100
-Epoch: 76 Average loss: 114.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 78)
-0/69092	Loss: 111.949
-3200/69092	Loss: 114.600
-6400/69092	Loss: 115.056
-9600/69092	Loss: 114.120
-12800/69092	Loss: 114.041
-16000/69092	Loss: 113.095
-19200/69092	Loss: 115.825
-22400/69092	Loss: 112.967
-25600/69092	Loss: 113.657
-28800/69092	Loss: 113.907
-32000/69092	Loss: 114.831
-35200/69092	Loss: 116.393
-38400/69092	Loss: 114.758
-41600/69092	Loss: 111.627
-44800/69092	Loss: 113.137
-48000/69092	Loss: 114.459
-51200/69092	Loss: 114.188
-54400/69092	Loss: 114.140
-57600/69092	Loss: 113.776
-60800/69092	Loss: 114.968
-64000/69092	Loss: 114.500
-67200/69092	Loss: 111.762
-Training time 0:04:50.516608
-Epoch: 77 Average loss: 114.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 79)
-0/69092	Loss: 120.149
-3200/69092	Loss: 113.093
-6400/69092	Loss: 111.723
-9600/69092	Loss: 113.978
-12800/69092	Loss: 114.171
-16000/69092	Loss: 113.628
-19200/69092	Loss: 114.345
-22400/69092	Loss: 114.132
-25600/69092	Loss: 114.419
-28800/69092	Loss: 113.464
-32000/69092	Loss: 112.627
-35200/69092	Loss: 114.483
-38400/69092	Loss: 113.634
-41600/69092	Loss: 116.167
-44800/69092	Loss: 113.841
-48000/69092	Loss: 114.498
-51200/69092	Loss: 114.056
-54400/69092	Loss: 114.758
-57600/69092	Loss: 113.521
-60800/69092	Loss: 113.663
-64000/69092	Loss: 115.677
-67200/69092	Loss: 115.055
-Training time 0:04:51.375221
-Epoch: 78 Average loss: 114.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 80)
-0/69092	Loss: 112.982
-3200/69092	Loss: 114.917
-6400/69092	Loss: 114.844
-9600/69092	Loss: 112.990
-12800/69092	Loss: 112.300
-16000/69092	Loss: 114.665
-19200/69092	Loss: 113.423
-22400/69092	Loss: 114.391
-25600/69092	Loss: 112.353
-28800/69092	Loss: 114.761
-32000/69092	Loss: 113.442
-35200/69092	Loss: 114.386
-38400/69092	Loss: 114.219
-41600/69092	Loss: 113.040
-44800/69092	Loss: 113.246
-48000/69092	Loss: 113.242
-51200/69092	Loss: 114.584
-54400/69092	Loss: 113.588
-57600/69092	Loss: 115.343
-60800/69092	Loss: 113.627
-64000/69092	Loss: 115.992
-67200/69092	Loss: 113.429
-Training time 0:04:52.295794
-Epoch: 79 Average loss: 113.96
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 81)
-0/69092	Loss: 114.161
-3200/69092	Loss: 113.462
-6400/69092	Loss: 113.622
-9600/69092	Loss: 114.331
-12800/69092	Loss: 114.920
-16000/69092	Loss: 115.949
-19200/69092	Loss: 115.160
-22400/69092	Loss: 113.351
-25600/69092	Loss: 115.150
-28800/69092	Loss: 112.688
-32000/69092	Loss: 111.680
-35200/69092	Loss: 113.813
-38400/69092	Loss: 113.434
-41600/69092	Loss: 113.293
-44800/69092	Loss: 115.529
-48000/69092	Loss: 114.092
-51200/69092	Loss: 113.028
-54400/69092	Loss: 112.844
-57600/69092	Loss: 113.923
-60800/69092	Loss: 113.820
-64000/69092	Loss: 114.425
-67200/69092	Loss: 113.621
-Training time 0:04:51.764568
-Epoch: 80 Average loss: 113.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 82)
-0/69092	Loss: 107.403
-3200/69092	Loss: 114.295
-6400/69092	Loss: 112.806
-9600/69092	Loss: 115.963
-12800/69092	Loss: 115.544
-16000/69092	Loss: 114.910
-19200/69092	Loss: 112.273
-22400/69092	Loss: 115.473
-25600/69092	Loss: 112.662
-28800/69092	Loss: 115.452
-32000/69092	Loss: 113.634
-35200/69092	Loss: 113.874
-38400/69092	Loss: 111.303
-41600/69092	Loss: 114.504
-44800/69092	Loss: 112.888
-48000/69092	Loss: 113.844
-51200/69092	Loss: 114.398
-54400/69092	Loss: 113.549
-57600/69092	Loss: 116.015
-60800/69092	Loss: 112.868
-64000/69092	Loss: 112.874
-67200/69092	Loss: 112.393
-Training time 0:04:52.298415
-Epoch: 81 Average loss: 113.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 83)
-0/69092	Loss: 107.947
-3200/69092	Loss: 114.589
-6400/69092	Loss: 114.348
-9600/69092	Loss: 114.530
-12800/69092	Loss: 113.244
-16000/69092	Loss: 114.148
-19200/69092	Loss: 114.319
-22400/69092	Loss: 113.858
-25600/69092	Loss: 116.558
-28800/69092	Loss: 112.606
-32000/69092	Loss: 114.654
-35200/69092	Loss: 113.615
-38400/69092	Loss: 114.364
-41600/69092	Loss: 114.591
-44800/69092	Loss: 113.994
-48000/69092	Loss: 114.206
-51200/69092	Loss: 112.193
-54400/69092	Loss: 111.868
-57600/69092	Loss: 112.703
-60800/69092	Loss: 113.730
-64000/69092	Loss: 113.579
-67200/69092	Loss: 113.643
-Training time 0:04:51.209246
-Epoch: 82 Average loss: 113.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 84)
-0/69092	Loss: 107.467
-3200/69092	Loss: 114.237
-6400/69092	Loss: 114.535
-9600/69092	Loss: 112.398
-12800/69092	Loss: 113.000
-16000/69092	Loss: 113.300
-19200/69092	Loss: 114.881
-22400/69092	Loss: 113.460
-25600/69092	Loss: 112.801
-28800/69092	Loss: 115.524
-32000/69092	Loss: 114.338
-35200/69092	Loss: 113.895
-38400/69092	Loss: 113.508
-41600/69092	Loss: 112.388
-44800/69092	Loss: 115.688
-48000/69092	Loss: 113.361
-51200/69092	Loss: 114.276
-54400/69092	Loss: 112.706
-57600/69092	Loss: 114.713
-60800/69092	Loss: 113.868
-64000/69092	Loss: 114.698
-67200/69092	Loss: 113.222
-Training time 0:04:52.280438
-Epoch: 83 Average loss: 113.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 85)
-0/69092	Loss: 106.944
-3200/69092	Loss: 115.518
-6400/69092	Loss: 115.470
-9600/69092	Loss: 114.716
-12800/69092	Loss: 113.934
-16000/69092	Loss: 113.233
-19200/69092	Loss: 113.723
-22400/69092	Loss: 114.237
-25600/69092	Loss: 110.741
-28800/69092	Loss: 114.205
-32000/69092	Loss: 113.444
-35200/69092	Loss: 113.357
-38400/69092	Loss: 111.711
-41600/69092	Loss: 114.080
-44800/69092	Loss: 114.114
-48000/69092	Loss: 115.278
-51200/69092	Loss: 112.557
-54400/69092	Loss: 114.194
-57600/69092	Loss: 113.822
-60800/69092	Loss: 114.116
-64000/69092	Loss: 113.442
-67200/69092	Loss: 114.152
-Training time 0:04:54.264285
-Epoch: 84 Average loss: 113.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 86)
-0/69092	Loss: 112.850
-3200/69092	Loss: 113.493
-6400/69092	Loss: 113.656
-9600/69092	Loss: 114.496
-12800/69092	Loss: 112.854
-16000/69092	Loss: 114.891
-19200/69092	Loss: 113.072
-22400/69092	Loss: 113.396
-25600/69092	Loss: 112.900
-28800/69092	Loss: 113.637
-32000/69092	Loss: 113.876
-35200/69092	Loss: 114.509
-38400/69092	Loss: 114.604
-41600/69092	Loss: 112.058
-44800/69092	Loss: 113.134
-48000/69092	Loss: 113.515
-51200/69092	Loss: 114.492
-54400/69092	Loss: 113.979
-57600/69092	Loss: 114.504
-60800/69092	Loss: 112.922
-64000/69092	Loss: 113.027
-67200/69092	Loss: 115.655
-Training time 0:04:51.105966
-Epoch: 85 Average loss: 113.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 87)
-0/69092	Loss: 94.388
-3200/69092	Loss: 111.242
-6400/69092	Loss: 112.348
-9600/69092	Loss: 115.769
-12800/69092	Loss: 115.243
-16000/69092	Loss: 113.438
-19200/69092	Loss: 113.098
-22400/69092	Loss: 112.425
-25600/69092	Loss: 112.287
-28800/69092	Loss: 112.773
-32000/69092	Loss: 112.341
-35200/69092	Loss: 114.409
-38400/69092	Loss: 113.970
-41600/69092	Loss: 114.154
-44800/69092	Loss: 114.033
-48000/69092	Loss: 115.759
-51200/69092	Loss: 114.301
-54400/69092	Loss: 113.919
-57600/69092	Loss: 114.798
-60800/69092	Loss: 113.820
-64000/69092	Loss: 115.980
-67200/69092	Loss: 112.752
-Training time 0:04:52.219598
-Epoch: 86 Average loss: 113.70
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 88)
-0/69092	Loss: 121.401
-3200/69092	Loss: 112.879
-6400/69092	Loss: 114.243
-9600/69092	Loss: 112.702
-12800/69092	Loss: 112.158
-16000/69092	Loss: 113.485
-19200/69092	Loss: 114.173
-22400/69092	Loss: 112.978
-25600/69092	Loss: 114.152
-28800/69092	Loss: 114.511
-32000/69092	Loss: 112.840
-35200/69092	Loss: 113.681
-38400/69092	Loss: 114.121
-41600/69092	Loss: 113.551
-44800/69092	Loss: 113.046
-48000/69092	Loss: 113.967
-51200/69092	Loss: 112.369
-54400/69092	Loss: 112.924
-57600/69092	Loss: 113.448
-60800/69092	Loss: 116.035
-64000/69092	Loss: 115.074
-67200/69092	Loss: 112.418
-Training time 0:04:51.213202
-Epoch: 87 Average loss: 113.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 89)
-0/69092	Loss: 111.812
-3200/69092	Loss: 113.849
-6400/69092	Loss: 113.464
-9600/69092	Loss: 115.864
-12800/69092	Loss: 112.305
-16000/69092	Loss: 113.882
-19200/69092	Loss: 112.665
-22400/69092	Loss: 115.261
-25600/69092	Loss: 113.349
-28800/69092	Loss: 112.552
-32000/69092	Loss: 113.600
-35200/69092	Loss: 114.422
-38400/69092	Loss: 114.059
-41600/69092	Loss: 113.211
-44800/69092	Loss: 113.649
-48000/69092	Loss: 114.113
-51200/69092	Loss: 113.820
-54400/69092	Loss: 112.448
-57600/69092	Loss: 113.484
-60800/69092	Loss: 112.836
-64000/69092	Loss: 115.360
-67200/69092	Loss: 114.395
-Training time 0:04:52.346897
-Epoch: 88 Average loss: 113.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 90)
-0/69092	Loss: 123.009
-3200/69092	Loss: 114.672
-6400/69092	Loss: 114.283
-9600/69092	Loss: 113.250
-12800/69092	Loss: 114.013
-16000/69092	Loss: 115.927
-19200/69092	Loss: 112.359
-22400/69092	Loss: 114.315
-25600/69092	Loss: 113.557
-28800/69092	Loss: 113.454
-32000/69092	Loss: 114.627
-35200/69092	Loss: 112.778
-38400/69092	Loss: 114.176
-41600/69092	Loss: 112.950
-44800/69092	Loss: 113.211
-48000/69092	Loss: 113.908
-51200/69092	Loss: 112.994
-54400/69092	Loss: 113.669
-57600/69092	Loss: 113.994
-60800/69092	Loss: 113.695
-64000/69092	Loss: 113.448
-67200/69092	Loss: 112.353
-Training time 0:04:51.132729
-Epoch: 89 Average loss: 113.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 91)
-0/69092	Loss: 107.751
-3200/69092	Loss: 115.992
-6400/69092	Loss: 111.825
-9600/69092	Loss: 115.858
-12800/69092	Loss: 114.290
-16000/69092	Loss: 112.762
-19200/69092	Loss: 112.139
-22400/69092	Loss: 113.851
-25600/69092	Loss: 112.673
-28800/69092	Loss: 113.076
-32000/69092	Loss: 114.495
-35200/69092	Loss: 113.640
-38400/69092	Loss: 116.184
-41600/69092	Loss: 114.355
-44800/69092	Loss: 111.952
-48000/69092	Loss: 113.720
-51200/69092	Loss: 113.271
-54400/69092	Loss: 112.506
-57600/69092	Loss: 110.996
-60800/69092	Loss: 112.843
-64000/69092	Loss: 113.444
-67200/69092	Loss: 114.445
-Training time 0:04:50.625156
-Epoch: 90 Average loss: 113.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 92)
-0/69092	Loss: 112.598
-3200/69092	Loss: 113.812
-6400/69092	Loss: 114.151
-9600/69092	Loss: 112.680
-12800/69092	Loss: 112.075
-16000/69092	Loss: 114.050
-19200/69092	Loss: 112.628
-22400/69092	Loss: 114.042
-25600/69092	Loss: 113.074
-28800/69092	Loss: 113.462
-32000/69092	Loss: 114.582
-35200/69092	Loss: 113.098
-38400/69092	Loss: 112.913
-41600/69092	Loss: 115.821
-44800/69092	Loss: 112.552
-48000/69092	Loss: 114.369
-51200/69092	Loss: 112.121
-54400/69092	Loss: 112.954
-57600/69092	Loss: 112.156
-60800/69092	Loss: 113.913
-64000/69092	Loss: 113.602
-67200/69092	Loss: 113.076
-Training time 0:04:50.194425
-Epoch: 91 Average loss: 113.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 93)
-0/69092	Loss: 115.386
-3200/69092	Loss: 112.377
-6400/69092	Loss: 113.867
-9600/69092	Loss: 113.624
-12800/69092	Loss: 114.453
-16000/69092	Loss: 113.860
-19200/69092	Loss: 112.540
-22400/69092	Loss: 113.809
-25600/69092	Loss: 113.196
-28800/69092	Loss: 112.945
-32000/69092	Loss: 113.234
-35200/69092	Loss: 114.203
-38400/69092	Loss: 112.276
-41600/69092	Loss: 111.515
-44800/69092	Loss: 115.496
-48000/69092	Loss: 112.570
-51200/69092	Loss: 111.446
-54400/69092	Loss: 114.333
-57600/69092	Loss: 113.735
-60800/69092	Loss: 115.819
-64000/69092	Loss: 113.408
-67200/69092	Loss: 114.424
-Training time 0:04:51.056869
-Epoch: 92 Average loss: 113.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 94)
-0/69092	Loss: 115.292
-3200/69092	Loss: 112.917
-6400/69092	Loss: 113.135
-9600/69092	Loss: 114.095
-12800/69092	Loss: 112.343
-16000/69092	Loss: 111.457
-19200/69092	Loss: 113.123
-22400/69092	Loss: 113.382
-25600/69092	Loss: 114.794
-28800/69092	Loss: 113.786
-32000/69092	Loss: 111.974
-35200/69092	Loss: 113.622
-38400/69092	Loss: 112.727
-41600/69092	Loss: 113.396
-44800/69092	Loss: 114.468
-48000/69092	Loss: 113.996
-51200/69092	Loss: 112.353
-54400/69092	Loss: 113.359
-57600/69092	Loss: 112.007
-60800/69092	Loss: 113.062
-64000/69092	Loss: 115.791
-67200/69092	Loss: 114.567
-Training time 0:04:50.570403
-Epoch: 93 Average loss: 113.36
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 95)
-0/69092	Loss: 109.136
-3200/69092	Loss: 114.790
-6400/69092	Loss: 113.016
-9600/69092	Loss: 113.913
-12800/69092	Loss: 113.639
-16000/69092	Loss: 114.177
-19200/69092	Loss: 113.522
-22400/69092	Loss: 111.878
-25600/69092	Loss: 113.327
-28800/69092	Loss: 113.775
-32000/69092	Loss: 112.777
-35200/69092	Loss: 113.935
-38400/69092	Loss: 113.537
-41600/69092	Loss: 112.504
-44800/69092	Loss: 112.843
-48000/69092	Loss: 111.545
-51200/69092	Loss: 113.418
-54400/69092	Loss: 114.000
-57600/69092	Loss: 112.889
-60800/69092	Loss: 113.918
-64000/69092	Loss: 112.917
-67200/69092	Loss: 112.881
-Training time 0:04:50.509614
-Epoch: 94 Average loss: 113.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 96)
-0/69092	Loss: 120.211
-3200/69092	Loss: 112.835
-6400/69092	Loss: 114.498
-9600/69092	Loss: 110.539
-12800/69092	Loss: 112.930
-16000/69092	Loss: 114.047
-19200/69092	Loss: 114.101
-22400/69092	Loss: 113.367
-25600/69092	Loss: 112.753
-28800/69092	Loss: 114.776
-32000/69092	Loss: 112.135
-35200/69092	Loss: 115.300
-38400/69092	Loss: 112.598
-41600/69092	Loss: 113.166
-44800/69092	Loss: 114.484
-48000/69092	Loss: 112.204
-51200/69092	Loss: 113.411
-54400/69092	Loss: 114.884
-57600/69092	Loss: 113.061
-60800/69092	Loss: 112.235
-64000/69092	Loss: 113.967
-67200/69092	Loss: 113.788
-Training time 0:04:50.899388
-Epoch: 95 Average loss: 113.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 97)
-0/69092	Loss: 111.181
-3200/69092	Loss: 113.883
-6400/69092	Loss: 113.542
-9600/69092	Loss: 114.806
-12800/69092	Loss: 113.439
-16000/69092	Loss: 113.058
-19200/69092	Loss: 113.155
-22400/69092	Loss: 112.833
-25600/69092	Loss: 112.554
-28800/69092	Loss: 114.190
-32000/69092	Loss: 113.610
-35200/69092	Loss: 111.993
-38400/69092	Loss: 113.532
-41600/69092	Loss: 113.269
-44800/69092	Loss: 114.041
-48000/69092	Loss: 111.756
-51200/69092	Loss: 115.580
-54400/69092	Loss: 112.936
-57600/69092	Loss: 114.655
-60800/69092	Loss: 112.729
-64000/69092	Loss: 113.405
-67200/69092	Loss: 113.330
-Training time 0:04:51.675494
-Epoch: 96 Average loss: 113.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 98)
-0/69092	Loss: 129.512
-3200/69092	Loss: 112.647
-6400/69092	Loss: 112.876
-9600/69092	Loss: 112.423
-12800/69092	Loss: 114.425
-16000/69092	Loss: 112.080
-19200/69092	Loss: 113.824
-22400/69092	Loss: 114.857
-25600/69092	Loss: 112.271
-28800/69092	Loss: 112.538
-32000/69092	Loss: 115.135
-35200/69092	Loss: 111.871
-38400/69092	Loss: 113.502
-41600/69092	Loss: 113.204
-44800/69092	Loss: 112.465
-48000/69092	Loss: 111.558
-51200/69092	Loss: 112.963
-54400/69092	Loss: 113.559
-57600/69092	Loss: 114.097
-60800/69092	Loss: 111.680
-64000/69092	Loss: 116.714
-67200/69092	Loss: 114.457
-Training time 0:04:50.365147
-Epoch: 97 Average loss: 113.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 99)
-0/69092	Loss: 118.832
-3200/69092	Loss: 114.116
-6400/69092	Loss: 113.636
-9600/69092	Loss: 112.787
-12800/69092	Loss: 111.858
-16000/69092	Loss: 112.529
-19200/69092	Loss: 112.109
-22400/69092	Loss: 112.187
-25600/69092	Loss: 112.936
-28800/69092	Loss: 115.427
-32000/69092	Loss: 112.267
-35200/69092	Loss: 111.076
-38400/69092	Loss: 111.865
-41600/69092	Loss: 113.033
-44800/69092	Loss: 112.791
-48000/69092	Loss: 114.817
-51200/69092	Loss: 113.882
-54400/69092	Loss: 114.492
-57600/69092	Loss: 113.355
-60800/69092	Loss: 114.096
-64000/69092	Loss: 112.991
-67200/69092	Loss: 113.376
-Training time 0:04:49.462065
-Epoch: 98 Average loss: 113.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 100)
-0/69092	Loss: 108.530
-3200/69092	Loss: 113.168
-6400/69092	Loss: 113.990
-9600/69092	Loss: 113.376
-12800/69092	Loss: 115.051
-16000/69092	Loss: 111.984
-19200/69092	Loss: 112.483
-22400/69092	Loss: 110.864
-25600/69092	Loss: 113.915
-28800/69092	Loss: 113.825
-32000/69092	Loss: 114.106
-35200/69092	Loss: 113.509
-38400/69092	Loss: 113.246
-41600/69092	Loss: 114.283
-44800/69092	Loss: 111.216
-48000/69092	Loss: 113.894
-51200/69092	Loss: 112.492
-54400/69092	Loss: 114.035
-57600/69092	Loss: 112.132
-60800/69092	Loss: 111.788
-64000/69092	Loss: 114.670
-67200/69092	Loss: 113.927
-Training time 0:04:50.711497
-Epoch: 99 Average loss: 113.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 101)
-0/69092	Loss: 104.715
-3200/69092	Loss: 114.996
-6400/69092	Loss: 111.712
-9600/69092	Loss: 114.057
-12800/69092	Loss: 113.130
-16000/69092	Loss: 114.854
-19200/69092	Loss: 112.510
-22400/69092	Loss: 112.570
-25600/69092	Loss: 113.299
-28800/69092	Loss: 112.590
-32000/69092	Loss: 112.673
-35200/69092	Loss: 111.300
-38400/69092	Loss: 111.996
-41600/69092	Loss: 114.006
-44800/69092	Loss: 114.334
-48000/69092	Loss: 111.544
-51200/69092	Loss: 114.231
-54400/69092	Loss: 111.873
-57600/69092	Loss: 114.207
-60800/69092	Loss: 112.306
-64000/69092	Loss: 111.566
-67200/69092	Loss: 113.902
-Training time 0:04:50.773052
-Epoch: 100 Average loss: 113.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 102)
-0/69092	Loss: 103.241
-3200/69092	Loss: 114.012
-6400/69092	Loss: 113.032
-9600/69092	Loss: 111.289
-12800/69092	Loss: 113.076
-16000/69092	Loss: 113.746
-19200/69092	Loss: 113.834
-22400/69092	Loss: 112.645
-25600/69092	Loss: 114.432
-28800/69092	Loss: 112.254
-32000/69092	Loss: 114.221
-35200/69092	Loss: 111.278
-38400/69092	Loss: 113.230
-41600/69092	Loss: 113.947
-44800/69092	Loss: 112.927
-48000/69092	Loss: 113.256
-51200/69092	Loss: 111.359
-54400/69092	Loss: 113.623
-57600/69092	Loss: 112.886
-60800/69092	Loss: 113.248
-64000/69092	Loss: 113.053
-67200/69092	Loss: 112.776
-Training time 0:04:51.880454
-Epoch: 101 Average loss: 113.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 103)
-0/69092	Loss: 104.510
-3200/69092	Loss: 115.825
-6400/69092	Loss: 113.438
-9600/69092	Loss: 113.008
-12800/69092	Loss: 112.949
-16000/69092	Loss: 114.365
-19200/69092	Loss: 112.928
-22400/69092	Loss: 111.763
-25600/69092	Loss: 114.226
-28800/69092	Loss: 112.180
-32000/69092	Loss: 111.872
-35200/69092	Loss: 112.966
-38400/69092	Loss: 113.134
-41600/69092	Loss: 111.910
-44800/69092	Loss: 112.458
-48000/69092	Loss: 113.513
-51200/69092	Loss: 112.349
-54400/69092	Loss: 113.011
-57600/69092	Loss: 113.556
-60800/69092	Loss: 112.649
-64000/69092	Loss: 113.863
-67200/69092	Loss: 113.112
-Training time 0:04:53.868210
-Epoch: 102 Average loss: 113.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 104)
-0/69092	Loss: 112.749
-3200/69092	Loss: 112.414
-6400/69092	Loss: 112.463
-9600/69092	Loss: 112.118
-12800/69092	Loss: 111.886
-16000/69092	Loss: 111.227
-19200/69092	Loss: 112.808
-22400/69092	Loss: 112.538
-25600/69092	Loss: 112.087
-28800/69092	Loss: 113.498
-32000/69092	Loss: 112.696
-35200/69092	Loss: 113.405
-38400/69092	Loss: 113.021
-41600/69092	Loss: 114.543
-44800/69092	Loss: 114.788
-48000/69092	Loss: 114.305
-51200/69092	Loss: 113.947
-54400/69092	Loss: 113.979
-57600/69092	Loss: 113.925
-60800/69092	Loss: 113.345
-64000/69092	Loss: 113.074
-67200/69092	Loss: 111.675
-Training time 0:04:51.015212
-Epoch: 103 Average loss: 113.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 105)
-0/69092	Loss: 113.049
-3200/69092	Loss: 112.966
-6400/69092	Loss: 112.076
-9600/69092	Loss: 113.396
-12800/69092	Loss: 113.117
-16000/69092	Loss: 113.435
-19200/69092	Loss: 111.830
-22400/69092	Loss: 110.879
-25600/69092	Loss: 112.320
-28800/69092	Loss: 113.011
-32000/69092	Loss: 112.395
-35200/69092	Loss: 113.857
-38400/69092	Loss: 111.612
-41600/69092	Loss: 113.616
-44800/69092	Loss: 113.028
-48000/69092	Loss: 113.891
-51200/69092	Loss: 115.016
-54400/69092	Loss: 112.686
-57600/69092	Loss: 114.493
-60800/69092	Loss: 112.483
-64000/69092	Loss: 113.863
-67200/69092	Loss: 112.239
-Training time 0:04:50.883705
-Epoch: 104 Average loss: 113.02
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 106)
-0/69092	Loss: 117.649
-3200/69092	Loss: 111.403
-6400/69092	Loss: 114.627
-9600/69092	Loss: 113.497
-12800/69092	Loss: 114.286
-16000/69092	Loss: 111.266
-19200/69092	Loss: 113.161
-22400/69092	Loss: 112.569
-25600/69092	Loss: 111.745
-28800/69092	Loss: 112.846
-32000/69092	Loss: 111.716
-35200/69092	Loss: 112.420
-38400/69092	Loss: 112.767
-41600/69092	Loss: 111.755
-44800/69092	Loss: 114.990
-48000/69092	Loss: 114.644
-51200/69092	Loss: 113.324
-54400/69092	Loss: 112.092
-57600/69092	Loss: 115.715
-60800/69092	Loss: 112.178
-64000/69092	Loss: 112.530
-67200/69092	Loss: 111.036
-Training time 0:04:50.722033
-Epoch: 105 Average loss: 112.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 107)
-0/69092	Loss: 110.335
-3200/69092	Loss: 112.968
-6400/69092	Loss: 112.965
-9600/69092	Loss: 113.754
-12800/69092	Loss: 112.037
-16000/69092	Loss: 113.292
-19200/69092	Loss: 112.486
-22400/69092	Loss: 113.055
-25600/69092	Loss: 112.109
-28800/69092	Loss: 111.938
-32000/69092	Loss: 113.729
-35200/69092	Loss: 114.021
-38400/69092	Loss: 112.244
-41600/69092	Loss: 111.851
-44800/69092	Loss: 113.689
-48000/69092	Loss: 112.606
-51200/69092	Loss: 114.633
-54400/69092	Loss: 115.295
-57600/69092	Loss: 110.716
-60800/69092	Loss: 112.370
-64000/69092	Loss: 113.886
-67200/69092	Loss: 114.530
-Training time 0:04:49.583058
-Epoch: 106 Average loss: 112.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 108)
-0/69092	Loss: 109.728
-3200/69092	Loss: 111.651
-6400/69092	Loss: 113.660
-9600/69092	Loss: 110.784
-12800/69092	Loss: 112.393
-16000/69092	Loss: 112.028
-19200/69092	Loss: 113.139
-22400/69092	Loss: 114.301
-25600/69092	Loss: 112.913
-28800/69092	Loss: 114.420
-32000/69092	Loss: 113.733
-35200/69092	Loss: 111.859
-38400/69092	Loss: 112.927
-41600/69092	Loss: 115.408
-44800/69092	Loss: 111.712
-48000/69092	Loss: 115.124
-51200/69092	Loss: 112.678
-54400/69092	Loss: 111.074
-57600/69092	Loss: 113.910
-60800/69092	Loss: 112.468
-64000/69092	Loss: 112.889
-67200/69092	Loss: 112.525
-Training time 0:04:50.873563
-Epoch: 107 Average loss: 112.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 109)
-0/69092	Loss: 100.595
-3200/69092	Loss: 111.699
-6400/69092	Loss: 112.685
-9600/69092	Loss: 111.818
-12800/69092	Loss: 112.431
-16000/69092	Loss: 114.224
-19200/69092	Loss: 111.799
-22400/69092	Loss: 113.780
-25600/69092	Loss: 112.470
-28800/69092	Loss: 113.491
-32000/69092	Loss: 113.645
-35200/69092	Loss: 112.084
-38400/69092	Loss: 112.113
-41600/69092	Loss: 112.947
-44800/69092	Loss: 113.417
-48000/69092	Loss: 113.985
-51200/69092	Loss: 112.549
-54400/69092	Loss: 112.278
-57600/69092	Loss: 114.006
-60800/69092	Loss: 114.476
-64000/69092	Loss: 112.118
-67200/69092	Loss: 113.907
-Training time 0:04:50.246159
-Epoch: 108 Average loss: 112.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 110)
-0/69092	Loss: 109.749
-3200/69092	Loss: 111.728
-6400/69092	Loss: 114.343
-9600/69092	Loss: 115.068
-12800/69092	Loss: 111.811
-16000/69092	Loss: 112.032
-19200/69092	Loss: 112.554
-22400/69092	Loss: 112.011
-25600/69092	Loss: 113.259
-28800/69092	Loss: 112.044
-32000/69092	Loss: 110.983
-35200/69092	Loss: 113.468
-38400/69092	Loss: 114.091
-41600/69092	Loss: 112.747
-44800/69092	Loss: 112.890
-48000/69092	Loss: 113.464
-51200/69092	Loss: 111.830
-54400/69092	Loss: 113.043
-57600/69092	Loss: 113.324
-60800/69092	Loss: 112.852
-64000/69092	Loss: 114.433
-67200/69092	Loss: 112.236
-Training time 0:04:49.864885
-Epoch: 109 Average loss: 112.90
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 111)
-0/69092	Loss: 108.662
-3200/69092	Loss: 112.250
-6400/69092	Loss: 112.018
-9600/69092	Loss: 113.160
-12800/69092	Loss: 112.030
-16000/69092	Loss: 110.437
-19200/69092	Loss: 112.932
-22400/69092	Loss: 112.913
-25600/69092	Loss: 114.639
-28800/69092	Loss: 111.360
-32000/69092	Loss: 114.006
-35200/69092	Loss: 112.941
-38400/69092	Loss: 112.100
-41600/69092	Loss: 114.785
-44800/69092	Loss: 111.514
-48000/69092	Loss: 113.532
-51200/69092	Loss: 113.963
-54400/69092	Loss: 112.818
-57600/69092	Loss: 114.311
-60800/69092	Loss: 115.810
-64000/69092	Loss: 110.706
-67200/69092	Loss: 113.092
-Training time 0:04:52.403239
-Epoch: 110 Average loss: 112.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 112)
-0/69092	Loss: 117.085
-3200/69092	Loss: 112.570
-6400/69092	Loss: 112.889
-9600/69092	Loss: 113.498
-12800/69092	Loss: 113.033
-16000/69092	Loss: 113.505
-19200/69092	Loss: 110.694
-22400/69092	Loss: 112.606
-25600/69092	Loss: 114.135
-28800/69092	Loss: 112.351
-32000/69092	Loss: 113.568
-35200/69092	Loss: 111.569
-38400/69092	Loss: 113.105
-41600/69092	Loss: 113.619
-44800/69092	Loss: 113.033
-48000/69092	Loss: 110.961
-51200/69092	Loss: 113.473
-54400/69092	Loss: 113.197
-57600/69092	Loss: 112.174
-60800/69092	Loss: 114.522
-64000/69092	Loss: 114.344
-67200/69092	Loss: 113.659
-Training time 0:04:51.452453
-Epoch: 111 Average loss: 112.93
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 113)
-0/69092	Loss: 114.975
-3200/69092	Loss: 112.918
-6400/69092	Loss: 112.470
-9600/69092	Loss: 113.404
-12800/69092	Loss: 112.227
-16000/69092	Loss: 113.907
-19200/69092	Loss: 112.203
-22400/69092	Loss: 112.680
-25600/69092	Loss: 110.716
-28800/69092	Loss: 113.804
-32000/69092	Loss: 113.425
-35200/69092	Loss: 113.265
-38400/69092	Loss: 111.771
-41600/69092	Loss: 113.441
-44800/69092	Loss: 113.071
-48000/69092	Loss: 112.056
-51200/69092	Loss: 113.299
-54400/69092	Loss: 112.062
-57600/69092	Loss: 113.936
-60800/69092	Loss: 111.318
-64000/69092	Loss: 112.291
-67200/69092	Loss: 115.086
-Training time 0:04:51.975763
-Epoch: 112 Average loss: 112.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 114)
-0/69092	Loss: 102.922
-3200/69092	Loss: 115.186
-6400/69092	Loss: 111.882
-9600/69092	Loss: 113.402
-12800/69092	Loss: 112.680
-16000/69092	Loss: 113.579
-19200/69092	Loss: 111.947
-22400/69092	Loss: 111.836
-25600/69092	Loss: 113.005
-28800/69092	Loss: 112.644
-32000/69092	Loss: 112.913
-35200/69092	Loss: 110.705
-38400/69092	Loss: 112.131
-41600/69092	Loss: 113.813
-44800/69092	Loss: 115.153
-48000/69092	Loss: 112.444
-51200/69092	Loss: 112.657
-54400/69092	Loss: 111.252
-57600/69092	Loss: 114.383
-60800/69092	Loss: 114.278
-64000/69092	Loss: 111.896
-67200/69092	Loss: 113.764
-Training time 0:04:50.679658
-Epoch: 113 Average loss: 112.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 115)
-0/69092	Loss: 112.672
-3200/69092	Loss: 112.993
-6400/69092	Loss: 112.206
-9600/69092	Loss: 113.897
-12800/69092	Loss: 113.445
-16000/69092	Loss: 112.395
-19200/69092	Loss: 113.587
-22400/69092	Loss: 114.301
-25600/69092	Loss: 112.975
-28800/69092	Loss: 113.426
-32000/69092	Loss: 112.050
-35200/69092	Loss: 113.016
-38400/69092	Loss: 114.072
-41600/69092	Loss: 110.919
-44800/69092	Loss: 113.175
-48000/69092	Loss: 111.370
-51200/69092	Loss: 113.587
-54400/69092	Loss: 112.240
-57600/69092	Loss: 111.858
-60800/69092	Loss: 112.010
-64000/69092	Loss: 112.690
-67200/69092	Loss: 112.855
-Training time 0:04:50.348314
-Epoch: 114 Average loss: 112.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 116)
-0/69092	Loss: 104.999
-3200/69092	Loss: 113.136
-6400/69092	Loss: 112.056
-9600/69092	Loss: 112.611
-12800/69092	Loss: 111.995
-16000/69092	Loss: 112.782
diff --git a/OAR.2068293.stderr b/OAR.2068293.stderr
deleted file mode 100644
index a9c628a29c..0000000000
--- a/OAR.2068293.stderr
+++ /dev/null
@@ -1,2 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
diff --git a/OAR.2068293.stdout b/OAR.2068293.stdout
deleted file mode 100644
index b7f0ce4388..0000000000
--- a/OAR.2068293.stdout
+++ /dev/null
@@ -1,2050 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_20
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=40, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=20, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 773035
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last (iter 5)'
-0/69092	Loss: 123.071
-3200/69092	Loss: 129.671
-6400/69092	Loss: 127.398
-9600/69092	Loss: 127.951
-12800/69092	Loss: 128.455
-16000/69092	Loss: 129.429
-19200/69092	Loss: 126.305
-22400/69092	Loss: 128.984
-25600/69092	Loss: 130.783
-28800/69092	Loss: 129.975
-32000/69092	Loss: 128.062
-35200/69092	Loss: 127.186
-38400/69092	Loss: 128.455
-41600/69092	Loss: 128.958
-44800/69092	Loss: 129.323
-48000/69092	Loss: 126.212
-51200/69092	Loss: 128.191
-54400/69092	Loss: 127.190
-57600/69092	Loss: 126.934
-60800/69092	Loss: 127.484
-64000/69092	Loss: 128.661
-67200/69092	Loss: 124.744
-Training time 0:04:50.464730
-Epoch: 1 Average loss: 128.18
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 6)
-0/69092	Loss: 129.943
-3200/69092	Loss: 129.051
-6400/69092	Loss: 125.219
-9600/69092	Loss: 123.455
-12800/69092	Loss: 127.291
-16000/69092	Loss: 127.190
-19200/69092	Loss: 126.336
-22400/69092	Loss: 127.079
-25600/69092	Loss: 126.929
-28800/69092	Loss: 126.119
-32000/69092	Loss: 126.972
-35200/69092	Loss: 124.950
-38400/69092	Loss: 125.826
-41600/69092	Loss: 126.043
-44800/69092	Loss: 123.989
-48000/69092	Loss: 124.989
-51200/69092	Loss: 125.214
-54400/69092	Loss: 124.362
-57600/69092	Loss: 125.383
-60800/69092	Loss: 125.831
-64000/69092	Loss: 123.904
-67200/69092	Loss: 127.904
-Training time 0:04:51.734344
-Epoch: 2 Average loss: 125.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 7)
-0/69092	Loss: 151.090
-3200/69092	Loss: 123.873
-6400/69092	Loss: 124.226
-9600/69092	Loss: 126.185
-12800/69092	Loss: 125.767
-16000/69092	Loss: 124.022
-19200/69092	Loss: 126.055
-22400/69092	Loss: 124.320
-25600/69092	Loss: 124.870
-28800/69092	Loss: 127.822
-32000/69092	Loss: 124.268
-35200/69092	Loss: 125.595
-38400/69092	Loss: 123.975
-41600/69092	Loss: 122.331
-44800/69092	Loss: 121.933
-48000/69092	Loss: 123.773
-51200/69092	Loss: 124.910
-54400/69092	Loss: 123.662
-57600/69092	Loss: 122.927
-60800/69092	Loss: 123.387
-64000/69092	Loss: 123.426
-67200/69092	Loss: 125.656
-Training time 0:04:45.516245
-Epoch: 3 Average loss: 124.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 8)
-0/69092	Loss: 116.913
-3200/69092	Loss: 121.551
-6400/69092	Loss: 123.757
-9600/69092	Loss: 120.772
-12800/69092	Loss: 124.840
-16000/69092	Loss: 122.135
-19200/69092	Loss: 124.674
-22400/69092	Loss: 124.362
-25600/69092	Loss: 124.429
-28800/69092	Loss: 121.847
-32000/69092	Loss: 122.697
-35200/69092	Loss: 121.337
-38400/69092	Loss: 123.855
-41600/69092	Loss: 123.472
-44800/69092	Loss: 123.395
-48000/69092	Loss: 123.456
-51200/69092	Loss: 122.075
-54400/69092	Loss: 123.076
-57600/69092	Loss: 124.115
-60800/69092	Loss: 123.259
-64000/69092	Loss: 123.464
-67200/69092	Loss: 121.002
-Training time 0:04:52.057476
-Epoch: 4 Average loss: 123.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 9)
-0/69092	Loss: 99.405
-3200/69092	Loss: 122.589
-6400/69092	Loss: 123.487
-9600/69092	Loss: 119.019
-12800/69092	Loss: 121.564
-16000/69092	Loss: 123.554
-19200/69092	Loss: 121.925
-22400/69092	Loss: 120.459
-25600/69092	Loss: 121.809
-28800/69092	Loss: 121.263
-32000/69092	Loss: 122.560
-35200/69092	Loss: 120.117
-38400/69092	Loss: 121.506
-41600/69092	Loss: 123.250
-44800/69092	Loss: 121.267
-48000/69092	Loss: 122.438
-51200/69092	Loss: 121.474
-54400/69092	Loss: 123.530
-57600/69092	Loss: 122.750
-60800/69092	Loss: 122.617
-64000/69092	Loss: 123.213
-67200/69092	Loss: 121.717
-Training time 0:04:47.144073
-Epoch: 5 Average loss: 121.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 10)
-0/69092	Loss: 116.159
-3200/69092	Loss: 122.455
-6400/69092	Loss: 120.286
-9600/69092	Loss: 119.735
-12800/69092	Loss: 122.867
-16000/69092	Loss: 120.996
-19200/69092	Loss: 121.540
-22400/69092	Loss: 122.140
-25600/69092	Loss: 120.710
-28800/69092	Loss: 121.041
-32000/69092	Loss: 122.114
-35200/69092	Loss: 119.510
-38400/69092	Loss: 120.339
-41600/69092	Loss: 121.481
-44800/69092	Loss: 120.913
-48000/69092	Loss: 120.790
-51200/69092	Loss: 121.752
-54400/69092	Loss: 120.170
-57600/69092	Loss: 120.647
-60800/69092	Loss: 120.284
-64000/69092	Loss: 121.987
-67200/69092	Loss: 121.628
-Training time 0:04:53.401766
-Epoch: 6 Average loss: 121.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 11)
-0/69092	Loss: 129.555
-3200/69092	Loss: 119.839
-6400/69092	Loss: 118.692
-9600/69092	Loss: 121.241
-12800/69092	Loss: 118.470
-16000/69092	Loss: 121.128
-19200/69092	Loss: 120.905
-22400/69092	Loss: 120.691
-25600/69092	Loss: 119.656
-28800/69092	Loss: 119.566
-32000/69092	Loss: 120.417
-35200/69092	Loss: 119.614
-38400/69092	Loss: 119.080
-41600/69092	Loss: 119.992
-44800/69092	Loss: 122.269
-48000/69092	Loss: 120.826
-51200/69092	Loss: 120.305
-54400/69092	Loss: 119.281
-57600/69092	Loss: 120.017
-60800/69092	Loss: 122.424
-64000/69092	Loss: 120.654
-67200/69092	Loss: 121.758
-Training time 0:04:53.550179
-Epoch: 7 Average loss: 120.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 12)
-0/69092	Loss: 110.400
-3200/69092	Loss: 120.276
-6400/69092	Loss: 121.587
-9600/69092	Loss: 119.223
-12800/69092	Loss: 120.454
-16000/69092	Loss: 120.013
-19200/69092	Loss: 117.803
-22400/69092	Loss: 121.672
-25600/69092	Loss: 118.489
-28800/69092	Loss: 120.078
-32000/69092	Loss: 119.809
-35200/69092	Loss: 119.278
-38400/69092	Loss: 117.270
-41600/69092	Loss: 120.507
-44800/69092	Loss: 118.501
-48000/69092	Loss: 119.447
-51200/69092	Loss: 120.600
-54400/69092	Loss: 120.683
-57600/69092	Loss: 118.504
-60800/69092	Loss: 118.999
-64000/69092	Loss: 118.737
-67200/69092	Loss: 121.232
-Training time 0:04:49.394686
-Epoch: 8 Average loss: 119.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 13)
-0/69092	Loss: 104.134
-3200/69092	Loss: 120.123
-6400/69092	Loss: 117.816
-9600/69092	Loss: 117.857
-12800/69092	Loss: 118.330
-16000/69092	Loss: 117.953
-19200/69092	Loss: 118.829
-22400/69092	Loss: 120.242
-25600/69092	Loss: 119.360
-28800/69092	Loss: 118.183
-32000/69092	Loss: 118.660
-35200/69092	Loss: 116.001
-38400/69092	Loss: 118.471
-41600/69092	Loss: 119.110
-44800/69092	Loss: 120.752
-48000/69092	Loss: 118.350
-51200/69092	Loss: 118.216
-54400/69092	Loss: 119.695
-57600/69092	Loss: 119.219
-60800/69092	Loss: 118.008
-64000/69092	Loss: 117.196
-67200/69092	Loss: 117.916
-Training time 0:04:53.527974
-Epoch: 9 Average loss: 118.63
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 14)
-0/69092	Loss: 134.504
-3200/69092	Loss: 118.385
-6400/69092	Loss: 117.437
-9600/69092	Loss: 120.115
-12800/69092	Loss: 116.593
-16000/69092	Loss: 116.214
-19200/69092	Loss: 116.874
-22400/69092	Loss: 118.624
-25600/69092	Loss: 118.921
-28800/69092	Loss: 117.498
-32000/69092	Loss: 117.532
-35200/69092	Loss: 118.473
-38400/69092	Loss: 117.333
-41600/69092	Loss: 117.636
-44800/69092	Loss: 118.679
-48000/69092	Loss: 118.222
-51200/69092	Loss: 116.884
-54400/69092	Loss: 116.768
-57600/69092	Loss: 118.938
-60800/69092	Loss: 118.071
-64000/69092	Loss: 119.501
-67200/69092	Loss: 117.280
-Training time 0:04:54.806029
-Epoch: 10 Average loss: 117.98
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 15)
-0/69092	Loss: 109.254
-3200/69092	Loss: 119.447
-6400/69092	Loss: 117.376
-9600/69092	Loss: 115.992
-12800/69092	Loss: 117.909
-16000/69092	Loss: 116.937
-19200/69092	Loss: 116.312
-22400/69092	Loss: 117.740
-25600/69092	Loss: 119.293
-28800/69092	Loss: 116.433
-32000/69092	Loss: 118.364
-35200/69092	Loss: 117.022
-38400/69092	Loss: 117.941
-41600/69092	Loss: 116.341
-44800/69092	Loss: 118.821
-48000/69092	Loss: 117.934
-51200/69092	Loss: 118.055
-54400/69092	Loss: 116.848
-57600/69092	Loss: 114.801
-60800/69092	Loss: 117.061
-64000/69092	Loss: 116.393
-67200/69092	Loss: 117.030
-Training time 0:04:53.313837
-Epoch: 11 Average loss: 117.39
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 16)
-0/69092	Loss: 124.562
-3200/69092	Loss: 117.708
-6400/69092	Loss: 116.378
-9600/69092	Loss: 115.341
-12800/69092	Loss: 118.288
-16000/69092	Loss: 116.312
-19200/69092	Loss: 115.873
-22400/69092	Loss: 116.824
-25600/69092	Loss: 114.939
-28800/69092	Loss: 117.201
-32000/69092	Loss: 117.600
-35200/69092	Loss: 114.187
-38400/69092	Loss: 117.203
-41600/69092	Loss: 116.734
-44800/69092	Loss: 117.038
-48000/69092	Loss: 116.328
-51200/69092	Loss: 117.843
-54400/69092	Loss: 117.899
-57600/69092	Loss: 117.246
-60800/69092	Loss: 117.224
-64000/69092	Loss: 117.388
-67200/69092	Loss: 117.255
-Training time 0:04:48.196398
-Epoch: 12 Average loss: 116.80
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 17)
-0/69092	Loss: 103.586
-3200/69092	Loss: 116.581
-6400/69092	Loss: 116.557
-9600/69092	Loss: 117.937
-12800/69092	Loss: 117.568
-16000/69092	Loss: 117.730
-19200/69092	Loss: 116.240
-22400/69092	Loss: 116.533
-25600/69092	Loss: 114.281
-28800/69092	Loss: 115.136
-32000/69092	Loss: 115.581
-35200/69092	Loss: 117.259
-38400/69092	Loss: 115.315
-41600/69092	Loss: 115.175
-44800/69092	Loss: 115.283
-48000/69092	Loss: 116.809
-51200/69092	Loss: 115.756
-54400/69092	Loss: 117.455
-57600/69092	Loss: 116.416
-60800/69092	Loss: 118.661
-64000/69092	Loss: 115.042
-67200/69092	Loss: 117.673
-Training time 0:04:49.374363
-Epoch: 13 Average loss: 116.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 18)
-0/69092	Loss: 114.152
-3200/69092	Loss: 115.526
-6400/69092	Loss: 116.044
-9600/69092	Loss: 114.991
-12800/69092	Loss: 116.347
-16000/69092	Loss: 115.274
-19200/69092	Loss: 115.281
-22400/69092	Loss: 116.965
-25600/69092	Loss: 116.550
-28800/69092	Loss: 115.085
-32000/69092	Loss: 115.061
-35200/69092	Loss: 115.124
-38400/69092	Loss: 115.807
-41600/69092	Loss: 115.448
-44800/69092	Loss: 116.142
-48000/69092	Loss: 116.700
-51200/69092	Loss: 116.097
-54400/69092	Loss: 116.449
-57600/69092	Loss: 117.906
-60800/69092	Loss: 114.443
-64000/69092	Loss: 117.303
-67200/69092	Loss: 116.183
-Training time 0:04:47.466840
-Epoch: 14 Average loss: 115.87
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 19)
-0/69092	Loss: 115.756
-3200/69092	Loss: 113.816
-6400/69092	Loss: 116.148
-9600/69092	Loss: 116.477
-12800/69092	Loss: 116.312
-16000/69092	Loss: 116.970
-19200/69092	Loss: 115.761
-22400/69092	Loss: 116.004
-25600/69092	Loss: 114.904
-28800/69092	Loss: 114.584
-32000/69092	Loss: 116.777
-35200/69092	Loss: 116.189
-38400/69092	Loss: 113.972
-41600/69092	Loss: 117.633
-44800/69092	Loss: 116.672
-48000/69092	Loss: 114.872
-51200/69092	Loss: 115.771
-54400/69092	Loss: 115.499
-57600/69092	Loss: 114.661
-60800/69092	Loss: 115.201
-64000/69092	Loss: 114.100
-67200/69092	Loss: 113.874
-Training time 0:04:51.327746
-Epoch: 15 Average loss: 115.49
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 20)
-0/69092	Loss: 115.941
-3200/69092	Loss: 115.412
-6400/69092	Loss: 116.467
-9600/69092	Loss: 115.764
-12800/69092	Loss: 116.308
-16000/69092	Loss: 114.297
-19200/69092	Loss: 114.467
-22400/69092	Loss: 114.919
-25600/69092	Loss: 114.402
-28800/69092	Loss: 114.454
-32000/69092	Loss: 115.140
-35200/69092	Loss: 114.877
-38400/69092	Loss: 115.791
-41600/69092	Loss: 116.370
-44800/69092	Loss: 114.254
-48000/69092	Loss: 115.377
-51200/69092	Loss: 115.315
-54400/69092	Loss: 114.060
-57600/69092	Loss: 114.105
-60800/69092	Loss: 115.245
-64000/69092	Loss: 114.178
-67200/69092	Loss: 114.546
-Training time 0:04:41.171591
-Epoch: 16 Average loss: 115.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 21)
-0/69092	Loss: 141.782
-3200/69092	Loss: 114.003
-6400/69092	Loss: 115.411
-9600/69092	Loss: 115.911
-12800/69092	Loss: 114.007
-16000/69092	Loss: 114.354
-19200/69092	Loss: 116.028
-22400/69092	Loss: 113.100
-25600/69092	Loss: 115.666
-28800/69092	Loss: 113.996
-32000/69092	Loss: 116.153
-35200/69092	Loss: 115.098
-38400/69092	Loss: 112.231
-41600/69092	Loss: 115.095
-44800/69092	Loss: 113.056
-48000/69092	Loss: 113.455
-51200/69092	Loss: 113.613
-54400/69092	Loss: 115.574
-57600/69092	Loss: 114.387
-60800/69092	Loss: 113.743
-64000/69092	Loss: 115.058
-67200/69092	Loss: 114.973
-Training time 0:04:36.060267
-Epoch: 17 Average loss: 114.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 22)
-0/69092	Loss: 107.420
-3200/69092	Loss: 113.793
-6400/69092	Loss: 115.466
-9600/69092	Loss: 113.951
-12800/69092	Loss: 115.332
-16000/69092	Loss: 115.308
-19200/69092	Loss: 114.394
-22400/69092	Loss: 113.850
-25600/69092	Loss: 116.228
-28800/69092	Loss: 114.637
-32000/69092	Loss: 113.228
-35200/69092	Loss: 113.624
-38400/69092	Loss: 114.285
-41600/69092	Loss: 112.589
-44800/69092	Loss: 114.494
-48000/69092	Loss: 112.654
-51200/69092	Loss: 115.949
-54400/69092	Loss: 114.853
-57600/69092	Loss: 112.992
-60800/69092	Loss: 114.541
-64000/69092	Loss: 114.248
-67200/69092	Loss: 113.553
-Training time 0:04:37.523009
-Epoch: 18 Average loss: 114.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 23)
-0/69092	Loss: 115.435
-3200/69092	Loss: 112.490
-6400/69092	Loss: 114.217
-9600/69092	Loss: 112.386
-12800/69092	Loss: 113.442
-16000/69092	Loss: 114.289
-19200/69092	Loss: 115.442
-22400/69092	Loss: 112.385
-25600/69092	Loss: 114.455
-28800/69092	Loss: 115.032
-32000/69092	Loss: 115.131
-35200/69092	Loss: 113.942
-38400/69092	Loss: 114.186
-41600/69092	Loss: 114.002
-44800/69092	Loss: 113.893
-48000/69092	Loss: 113.659
-51200/69092	Loss: 114.449
-54400/69092	Loss: 114.045
-57600/69092	Loss: 114.498
-60800/69092	Loss: 113.359
-64000/69092	Loss: 114.983
-67200/69092	Loss: 112.828
-Training time 0:04:33.872554
-Epoch: 19 Average loss: 113.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 24)
-0/69092	Loss: 111.737
-3200/69092	Loss: 114.558
-6400/69092	Loss: 115.141
-9600/69092	Loss: 115.882
-12800/69092	Loss: 112.989
-16000/69092	Loss: 113.441
-19200/69092	Loss: 114.143
-22400/69092	Loss: 113.532
-25600/69092	Loss: 114.813
-28800/69092	Loss: 112.059
-32000/69092	Loss: 113.061
-35200/69092	Loss: 112.920
-38400/69092	Loss: 113.187
-41600/69092	Loss: 112.812
-44800/69092	Loss: 114.557
-48000/69092	Loss: 112.577
-51200/69092	Loss: 113.078
-54400/69092	Loss: 114.110
-57600/69092	Loss: 113.877
-60800/69092	Loss: 112.964
-64000/69092	Loss: 113.965
-67200/69092	Loss: 113.553
-Training time 0:04:39.906828
-Epoch: 20 Average loss: 113.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 25)
-0/69092	Loss: 123.589
-3200/69092	Loss: 113.380
-6400/69092	Loss: 114.676
-9600/69092	Loss: 114.405
-12800/69092	Loss: 113.494
-16000/69092	Loss: 114.177
-19200/69092	Loss: 113.390
-22400/69092	Loss: 111.949
-25600/69092	Loss: 114.273
-28800/69092	Loss: 113.334
-32000/69092	Loss: 112.502
-35200/69092	Loss: 114.189
-38400/69092	Loss: 114.932
-41600/69092	Loss: 115.119
-44800/69092	Loss: 111.780
-48000/69092	Loss: 111.857
-51200/69092	Loss: 111.502
-54400/69092	Loss: 113.287
-57600/69092	Loss: 112.345
-60800/69092	Loss: 113.466
-64000/69092	Loss: 113.066
-67200/69092	Loss: 113.099
-Training time 0:04:39.348429
-Epoch: 21 Average loss: 113.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 26)
-0/69092	Loss: 110.674
-3200/69092	Loss: 112.143
-6400/69092	Loss: 112.617
-9600/69092	Loss: 114.939
-12800/69092	Loss: 113.844
-16000/69092	Loss: 113.021
-19200/69092	Loss: 114.569
-22400/69092	Loss: 112.865
-25600/69092	Loss: 112.809
-28800/69092	Loss: 114.086
-32000/69092	Loss: 112.677
-35200/69092	Loss: 114.229
-38400/69092	Loss: 112.291
-41600/69092	Loss: 111.985
-44800/69092	Loss: 112.205
-48000/69092	Loss: 112.236
-51200/69092	Loss: 113.672
-54400/69092	Loss: 113.601
-57600/69092	Loss: 112.585
-60800/69092	Loss: 111.314
-64000/69092	Loss: 113.152
-67200/69092	Loss: 112.903
-Training time 0:04:34.061168
-Epoch: 22 Average loss: 113.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 27)
-0/69092	Loss: 109.967
-3200/69092	Loss: 112.520
-6400/69092	Loss: 114.405
-9600/69092	Loss: 113.686
-12800/69092	Loss: 112.579
-16000/69092	Loss: 113.520
-19200/69092	Loss: 113.800
-22400/69092	Loss: 111.771
-25600/69092	Loss: 111.360
-28800/69092	Loss: 113.635
-32000/69092	Loss: 113.484
-35200/69092	Loss: 111.351
-38400/69092	Loss: 114.812
-41600/69092	Loss: 112.548
-44800/69092	Loss: 113.236
-48000/69092	Loss: 112.303
-51200/69092	Loss: 114.013
-54400/69092	Loss: 112.735
-57600/69092	Loss: 111.526
-60800/69092	Loss: 112.256
-64000/69092	Loss: 111.369
-67200/69092	Loss: 113.282
-Training time 0:04:39.859457
-Epoch: 23 Average loss: 112.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 28)
-0/69092	Loss: 119.190
-3200/69092	Loss: 111.744
-6400/69092	Loss: 111.066
-9600/69092	Loss: 111.289
-12800/69092	Loss: 111.358
-16000/69092	Loss: 111.865
-19200/69092	Loss: 114.916
-22400/69092	Loss: 113.265
-25600/69092	Loss: 111.379
-28800/69092	Loss: 112.894
-32000/69092	Loss: 113.767
-35200/69092	Loss: 112.440
-38400/69092	Loss: 112.766
-41600/69092	Loss: 112.426
-44800/69092	Loss: 113.225
-48000/69092	Loss: 112.531
-51200/69092	Loss: 114.364
-54400/69092	Loss: 111.020
-57600/69092	Loss: 111.747
-60800/69092	Loss: 114.497
-64000/69092	Loss: 113.869
-67200/69092	Loss: 111.078
-Training time 0:04:39.936371
-Epoch: 24 Average loss: 112.52
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 29)
-0/69092	Loss: 110.290
-3200/69092	Loss: 111.822
-6400/69092	Loss: 111.413
-9600/69092	Loss: 112.422
-12800/69092	Loss: 111.954
-16000/69092	Loss: 113.762
-19200/69092	Loss: 114.692
-22400/69092	Loss: 110.497
-25600/69092	Loss: 114.033
-28800/69092	Loss: 111.619
-32000/69092	Loss: 115.025
-35200/69092	Loss: 112.577
-38400/69092	Loss: 113.097
-41600/69092	Loss: 113.049
-44800/69092	Loss: 113.574
-48000/69092	Loss: 112.155
-51200/69092	Loss: 110.795
-54400/69092	Loss: 113.053
-57600/69092	Loss: 112.099
-60800/69092	Loss: 110.614
-64000/69092	Loss: 111.320
-67200/69092	Loss: 112.674
-Training time 0:04:45.041794
-Epoch: 25 Average loss: 112.47
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 30)
-0/69092	Loss: 110.546
-3200/69092	Loss: 112.299
-6400/69092	Loss: 112.430
-9600/69092	Loss: 110.809
-12800/69092	Loss: 113.117
-16000/69092	Loss: 111.603
-19200/69092	Loss: 111.411
-22400/69092	Loss: 111.766
-25600/69092	Loss: 111.472
-28800/69092	Loss: 112.941
-32000/69092	Loss: 113.351
-35200/69092	Loss: 113.431
-38400/69092	Loss: 111.543
-41600/69092	Loss: 114.145
-44800/69092	Loss: 111.926
-48000/69092	Loss: 112.800
-51200/69092	Loss: 112.201
-54400/69092	Loss: 112.540
-57600/69092	Loss: 111.984
-60800/69092	Loss: 111.264
-64000/69092	Loss: 110.867
-67200/69092	Loss: 111.477
-Training time 0:04:43.517833
-Epoch: 26 Average loss: 112.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 31)
-0/69092	Loss: 116.476
-3200/69092	Loss: 111.689
-6400/69092	Loss: 111.937
-9600/69092	Loss: 112.337
-12800/69092	Loss: 112.217
-16000/69092	Loss: 114.211
-19200/69092	Loss: 111.085
-22400/69092	Loss: 110.283
-25600/69092	Loss: 111.542
-28800/69092	Loss: 112.261
-32000/69092	Loss: 111.289
-35200/69092	Loss: 111.992
-38400/69092	Loss: 110.785
-41600/69092	Loss: 112.940
-44800/69092	Loss: 112.285
-48000/69092	Loss: 114.579
-51200/69092	Loss: 110.708
-54400/69092	Loss: 112.470
-57600/69092	Loss: 113.620
-60800/69092	Loss: 110.872
-64000/69092	Loss: 111.970
-67200/69092	Loss: 112.708
-Training time 0:04:43.768186
-Epoch: 27 Average loss: 112.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 32)
-0/69092	Loss: 109.204
-3200/69092	Loss: 112.435
-6400/69092	Loss: 114.026
-9600/69092	Loss: 111.097
-12800/69092	Loss: 110.929
-16000/69092	Loss: 111.349
-19200/69092	Loss: 110.908
-22400/69092	Loss: 110.745
-25600/69092	Loss: 114.152
-28800/69092	Loss: 110.816
-32000/69092	Loss: 111.625
-35200/69092	Loss: 111.684
-38400/69092	Loss: 110.873
-41600/69092	Loss: 112.146
-44800/69092	Loss: 111.570
-48000/69092	Loss: 111.101
-51200/69092	Loss: 110.831
-54400/69092	Loss: 112.227
-57600/69092	Loss: 111.256
-60800/69092	Loss: 109.046
-64000/69092	Loss: 111.628
-67200/69092	Loss: 112.160
-Training time 0:04:41.229393
-Epoch: 28 Average loss: 111.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 33)
-0/69092	Loss: 104.209
-3200/69092	Loss: 112.197
-6400/69092	Loss: 110.449
-9600/69092	Loss: 110.083
-12800/69092	Loss: 109.298
-16000/69092	Loss: 112.898
-19200/69092	Loss: 112.408
-22400/69092	Loss: 112.143
-25600/69092	Loss: 111.547
-28800/69092	Loss: 110.064
-32000/69092	Loss: 110.612
-35200/69092	Loss: 111.170
-38400/69092	Loss: 112.284
-41600/69092	Loss: 111.592
-44800/69092	Loss: 110.504
-48000/69092	Loss: 112.900
-51200/69092	Loss: 111.123
-54400/69092	Loss: 113.507
-57600/69092	Loss: 111.303
-60800/69092	Loss: 113.287
-64000/69092	Loss: 110.679
-67200/69092	Loss: 115.029
-Training time 0:04:43.681844
-Epoch: 29 Average loss: 111.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 34)
-0/69092	Loss: 121.056
-3200/69092	Loss: 111.290
-6400/69092	Loss: 110.832
-9600/69092	Loss: 112.305
-12800/69092	Loss: 112.942
-16000/69092	Loss: 112.884
-19200/69092	Loss: 112.636
-22400/69092	Loss: 112.394
-25600/69092	Loss: 112.482
-28800/69092	Loss: 110.956
-32000/69092	Loss: 109.826
-35200/69092	Loss: 112.321
-38400/69092	Loss: 111.822
-41600/69092	Loss: 110.904
-44800/69092	Loss: 110.287
-48000/69092	Loss: 111.784
-51200/69092	Loss: 109.850
-54400/69092	Loss: 110.845
-57600/69092	Loss: 110.811
-60800/69092	Loss: 111.698
-64000/69092	Loss: 109.814
-67200/69092	Loss: 111.012
-Training time 0:04:43.069539
-Epoch: 30 Average loss: 111.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 35)
-0/69092	Loss: 108.077
-3200/69092	Loss: 111.317
-6400/69092	Loss: 110.567
-9600/69092	Loss: 110.230
-12800/69092	Loss: 111.407
-16000/69092	Loss: 111.366
-19200/69092	Loss: 111.396
-22400/69092	Loss: 111.792
-25600/69092	Loss: 112.813
-28800/69092	Loss: 113.976
-32000/69092	Loss: 109.683
-35200/69092	Loss: 109.564
-38400/69092	Loss: 109.532
-41600/69092	Loss: 111.487
-44800/69092	Loss: 110.475
-48000/69092	Loss: 110.605
-51200/69092	Loss: 110.499
-54400/69092	Loss: 111.540
-57600/69092	Loss: 112.921
-60800/69092	Loss: 110.256
-64000/69092	Loss: 111.300
-67200/69092	Loss: 111.619
-Training time 0:04:49.022954
-Epoch: 31 Average loss: 111.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 36)
-0/69092	Loss: 127.145
-3200/69092	Loss: 110.557
-6400/69092	Loss: 110.201
-9600/69092	Loss: 111.831
-12800/69092	Loss: 110.124
-16000/69092	Loss: 110.563
-19200/69092	Loss: 111.827
-22400/69092	Loss: 112.174
-25600/69092	Loss: 111.700
-28800/69092	Loss: 111.491
-32000/69092	Loss: 110.017
-35200/69092	Loss: 111.848
-38400/69092	Loss: 111.125
-41600/69092	Loss: 110.740
-44800/69092	Loss: 111.447
-48000/69092	Loss: 110.298
-51200/69092	Loss: 111.226
-54400/69092	Loss: 110.337
-57600/69092	Loss: 113.737
-60800/69092	Loss: 110.593
-64000/69092	Loss: 111.048
-67200/69092	Loss: 109.999
-Training time 0:04:34.240853
-Epoch: 32 Average loss: 111.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 37)
-0/69092	Loss: 107.446
-3200/69092	Loss: 111.796
-6400/69092	Loss: 110.517
-9600/69092	Loss: 109.203
-12800/69092	Loss: 112.325
-16000/69092	Loss: 111.188
-19200/69092	Loss: 109.881
-22400/69092	Loss: 111.257
-25600/69092	Loss: 111.082
-28800/69092	Loss: 109.237
-32000/69092	Loss: 111.067
-35200/69092	Loss: 111.960
-38400/69092	Loss: 110.869
-41600/69092	Loss: 110.585
-44800/69092	Loss: 111.741
-48000/69092	Loss: 110.282
-51200/69092	Loss: 111.195
-54400/69092	Loss: 111.672
-57600/69092	Loss: 112.134
-60800/69092	Loss: 111.049
-64000/69092	Loss: 110.333
-67200/69092	Loss: 111.257
-Training time 0:04:43.764296
-Epoch: 33 Average loss: 110.95
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 38)
-0/69092	Loss: 115.077
-3200/69092	Loss: 111.501
-6400/69092	Loss: 110.084
-9600/69092	Loss: 108.942
-12800/69092	Loss: 109.901
-16000/69092	Loss: 111.592
-19200/69092	Loss: 110.374
-22400/69092	Loss: 111.268
-25600/69092	Loss: 111.209
-28800/69092	Loss: 108.915
-32000/69092	Loss: 110.874
-35200/69092	Loss: 110.405
-38400/69092	Loss: 110.662
-41600/69092	Loss: 111.986
-44800/69092	Loss: 111.237
-48000/69092	Loss: 111.136
-51200/69092	Loss: 110.622
-54400/69092	Loss: 111.210
-57600/69092	Loss: 111.007
-60800/69092	Loss: 110.189
-64000/69092	Loss: 110.597
-67200/69092	Loss: 110.604
-Training time 0:04:34.058617
-Epoch: 34 Average loss: 110.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 39)
-0/69092	Loss: 114.591
-3200/69092	Loss: 111.557
-6400/69092	Loss: 112.004
-9600/69092	Loss: 110.475
-12800/69092	Loss: 110.930
-16000/69092	Loss: 110.553
-19200/69092	Loss: 111.408
-22400/69092	Loss: 110.119
-25600/69092	Loss: 109.701
-28800/69092	Loss: 110.129
-32000/69092	Loss: 110.820
-35200/69092	Loss: 111.306
-38400/69092	Loss: 112.009
-41600/69092	Loss: 110.124
-44800/69092	Loss: 110.473
-48000/69092	Loss: 110.975
-51200/69092	Loss: 109.217
-54400/69092	Loss: 109.901
-57600/69092	Loss: 109.916
-60800/69092	Loss: 110.830
-64000/69092	Loss: 109.267
-67200/69092	Loss: 109.708
-Training time 0:04:41.568257
-Epoch: 35 Average loss: 110.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 40)
-0/69092	Loss: 107.984
-3200/69092	Loss: 111.464
-6400/69092	Loss: 110.381
-9600/69092	Loss: 108.964
-12800/69092	Loss: 109.341
-16000/69092	Loss: 110.254
-19200/69092	Loss: 111.665
-22400/69092	Loss: 110.508
-25600/69092	Loss: 109.982
-28800/69092	Loss: 110.859
-32000/69092	Loss: 110.971
-35200/69092	Loss: 109.513
-38400/69092	Loss: 110.977
-41600/69092	Loss: 110.812
-44800/69092	Loss: 109.692
-48000/69092	Loss: 109.992
-51200/69092	Loss: 110.592
-54400/69092	Loss: 111.265
-57600/69092	Loss: 110.588
-60800/69092	Loss: 110.761
-64000/69092	Loss: 108.940
-67200/69092	Loss: 110.958
-Training time 0:04:40.277525
-Epoch: 36 Average loss: 110.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 41)
-0/69092	Loss: 114.775
-3200/69092	Loss: 108.106
-6400/69092	Loss: 111.209
-9600/69092	Loss: 109.911
-12800/69092	Loss: 109.625
-16000/69092	Loss: 110.445
-19200/69092	Loss: 110.535
-22400/69092	Loss: 111.299
-25600/69092	Loss: 110.666
-28800/69092	Loss: 110.410
-32000/69092	Loss: 109.227
-35200/69092	Loss: 111.651
-38400/69092	Loss: 109.915
-41600/69092	Loss: 110.830
-44800/69092	Loss: 109.736
-48000/69092	Loss: 110.278
-51200/69092	Loss: 110.908
-54400/69092	Loss: 110.394
-57600/69092	Loss: 110.202
-60800/69092	Loss: 110.999
-64000/69092	Loss: 110.175
-67200/69092	Loss: 108.871
-Training time 0:04:37.605560
-Epoch: 37 Average loss: 110.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 42)
-0/69092	Loss: 104.960
-3200/69092	Loss: 108.889
-6400/69092	Loss: 112.234
-9600/69092	Loss: 109.699
-12800/69092	Loss: 109.142
-16000/69092	Loss: 108.497
-19200/69092	Loss: 109.407
-22400/69092	Loss: 110.011
-25600/69092	Loss: 108.630
-28800/69092	Loss: 110.500
-32000/69092	Loss: 108.327
-35200/69092	Loss: 109.930
-38400/69092	Loss: 110.265
-41600/69092	Loss: 110.566
-44800/69092	Loss: 111.602
-48000/69092	Loss: 109.075
-51200/69092	Loss: 112.328
-54400/69092	Loss: 111.355
-57600/69092	Loss: 110.336
-60800/69092	Loss: 108.419
-64000/69092	Loss: 110.706
-67200/69092	Loss: 109.177
-Training time 0:04:42.874293
-Epoch: 38 Average loss: 110.03
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 43)
-0/69092	Loss: 101.099
-3200/69092	Loss: 108.840
-6400/69092	Loss: 111.816
-9600/69092	Loss: 108.919
-12800/69092	Loss: 111.016
-16000/69092	Loss: 108.929
-19200/69092	Loss: 109.597
-22400/69092	Loss: 110.688
-25600/69092	Loss: 108.692
-28800/69092	Loss: 112.614
-32000/69092	Loss: 109.458
-35200/69092	Loss: 111.066
-38400/69092	Loss: 109.306
-41600/69092	Loss: 110.359
-44800/69092	Loss: 111.017
-48000/69092	Loss: 108.748
-51200/69092	Loss: 109.679
-54400/69092	Loss: 110.205
-57600/69092	Loss: 110.115
-60800/69092	Loss: 109.525
-64000/69092	Loss: 109.737
-67200/69092	Loss: 110.562
-Training time 0:04:44.660730
-Epoch: 39 Average loss: 110.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 44)
-0/69092	Loss: 113.374
-3200/69092	Loss: 110.626
-6400/69092	Loss: 110.426
-9600/69092	Loss: 110.897
-12800/69092	Loss: 109.861
-16000/69092	Loss: 108.550
-19200/69092	Loss: 109.533
-22400/69092	Loss: 109.485
-25600/69092	Loss: 111.144
-28800/69092	Loss: 109.704
-32000/69092	Loss: 109.563
-35200/69092	Loss: 110.768
-38400/69092	Loss: 108.485
-41600/69092	Loss: 109.076
-44800/69092	Loss: 108.626
-48000/69092	Loss: 111.067
-51200/69092	Loss: 110.033
-54400/69092	Loss: 110.220
-57600/69092	Loss: 110.535
-60800/69092	Loss: 110.658
-64000/69092	Loss: 110.981
-67200/69092	Loss: 109.433
-Training time 0:04:42.924883
-Epoch: 40 Average loss: 110.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 45)
-0/69092	Loss: 108.721
-3200/69092	Loss: 111.064
-6400/69092	Loss: 109.979
-9600/69092	Loss: 109.450
-12800/69092	Loss: 110.368
-16000/69092	Loss: 109.995
-19200/69092	Loss: 110.070
-22400/69092	Loss: 109.947
-25600/69092	Loss: 110.112
-28800/69092	Loss: 109.921
-32000/69092	Loss: 107.978
-35200/69092	Loss: 109.070
-38400/69092	Loss: 109.520
-41600/69092	Loss: 108.034
-44800/69092	Loss: 109.744
-48000/69092	Loss: 109.552
-51200/69092	Loss: 109.638
-54400/69092	Loss: 109.456
-57600/69092	Loss: 109.720
-60800/69092	Loss: 111.156
-64000/69092	Loss: 108.989
-67200/69092	Loss: 111.889
-Training time 0:04:51.701796
-Epoch: 41 Average loss: 109.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 46)
-0/69092	Loss: 102.802
-3200/69092	Loss: 111.136
-6400/69092	Loss: 109.180
-9600/69092	Loss: 109.834
-12800/69092	Loss: 108.788
-16000/69092	Loss: 109.064
-19200/69092	Loss: 110.622
-22400/69092	Loss: 108.998
-25600/69092	Loss: 109.969
-28800/69092	Loss: 109.226
-32000/69092	Loss: 109.222
-35200/69092	Loss: 109.802
-38400/69092	Loss: 110.785
-41600/69092	Loss: 109.166
-44800/69092	Loss: 109.259
-48000/69092	Loss: 110.716
-51200/69092	Loss: 108.746
-54400/69092	Loss: 110.182
-57600/69092	Loss: 110.703
-60800/69092	Loss: 109.418
-64000/69092	Loss: 109.296
-67200/69092	Loss: 108.989
-Training time 0:04:43.843168
-Epoch: 42 Average loss: 109.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 47)
-0/69092	Loss: 126.465
-3200/69092	Loss: 109.168
-6400/69092	Loss: 108.719
-9600/69092	Loss: 109.867
-12800/69092	Loss: 108.087
-16000/69092	Loss: 109.965
-19200/69092	Loss: 110.314
-22400/69092	Loss: 108.599
-25600/69092	Loss: 109.118
-28800/69092	Loss: 112.310
-32000/69092	Loss: 110.493
-35200/69092	Loss: 110.416
-38400/69092	Loss: 109.973
-41600/69092	Loss: 111.803
-44800/69092	Loss: 108.155
-48000/69092	Loss: 109.102
-51200/69092	Loss: 108.966
-54400/69092	Loss: 108.444
-57600/69092	Loss: 109.125
-60800/69092	Loss: 108.695
-64000/69092	Loss: 110.524
-67200/69092	Loss: 110.741
-Training time 0:04:50.546091
-Epoch: 43 Average loss: 109.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 48)
-0/69092	Loss: 103.647
-3200/69092	Loss: 109.899
-6400/69092	Loss: 110.280
-9600/69092	Loss: 109.248
-12800/69092	Loss: 110.468
-16000/69092	Loss: 111.977
-19200/69092	Loss: 109.311
-22400/69092	Loss: 111.485
-25600/69092	Loss: 109.807
-28800/69092	Loss: 109.574
-32000/69092	Loss: 107.953
-35200/69092	Loss: 109.336
-38400/69092	Loss: 108.080
-41600/69092	Loss: 108.483
-44800/69092	Loss: 109.126
-48000/69092	Loss: 108.139
-51200/69092	Loss: 108.291
-54400/69092	Loss: 108.933
-57600/69092	Loss: 108.613
-60800/69092	Loss: 109.202
-64000/69092	Loss: 109.614
-67200/69092	Loss: 110.292
-Training time 0:04:49.733684
-Epoch: 44 Average loss: 109.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 49)
-0/69092	Loss: 109.167
-3200/69092	Loss: 109.525
-6400/69092	Loss: 108.399
-9600/69092	Loss: 108.729
-12800/69092	Loss: 108.766
-16000/69092	Loss: 110.111
-19200/69092	Loss: 109.067
-22400/69092	Loss: 109.113
-25600/69092	Loss: 110.619
-28800/69092	Loss: 110.376
-32000/69092	Loss: 109.246
-35200/69092	Loss: 108.491
-38400/69092	Loss: 110.233
-41600/69092	Loss: 108.926
-44800/69092	Loss: 108.867
-48000/69092	Loss: 109.026
-51200/69092	Loss: 110.182
-54400/69092	Loss: 109.406
-57600/69092	Loss: 110.103
-60800/69092	Loss: 109.449
-64000/69092	Loss: 107.732
-67200/69092	Loss: 110.404
-Training time 0:04:53.380546
-Epoch: 45 Average loss: 109.34
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 50)
-0/69092	Loss: 102.441
-3200/69092	Loss: 109.258
-6400/69092	Loss: 109.261
-9600/69092	Loss: 109.454
-12800/69092	Loss: 109.680
-16000/69092	Loss: 110.244
-19200/69092	Loss: 109.354
-22400/69092	Loss: 108.090
-25600/69092	Loss: 108.010
-28800/69092	Loss: 109.430
-32000/69092	Loss: 111.084
-35200/69092	Loss: 108.300
-38400/69092	Loss: 107.124
-41600/69092	Loss: 106.001
-44800/69092	Loss: 109.506
-48000/69092	Loss: 111.813
-51200/69092	Loss: 109.929
-54400/69092	Loss: 108.852
-57600/69092	Loss: 107.228
-60800/69092	Loss: 110.214
-64000/69092	Loss: 108.539
-67200/69092	Loss: 108.468
-Training time 0:04:42.198571
-Epoch: 46 Average loss: 109.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 51)
-0/69092	Loss: 110.935
-3200/69092	Loss: 109.027
-6400/69092	Loss: 108.949
-9600/69092	Loss: 108.656
-12800/69092	Loss: 108.127
-16000/69092	Loss: 109.599
-19200/69092	Loss: 107.615
-22400/69092	Loss: 111.287
-25600/69092	Loss: 110.431
-28800/69092	Loss: 109.253
-32000/69092	Loss: 110.841
-35200/69092	Loss: 108.992
-38400/69092	Loss: 108.798
-41600/69092	Loss: 110.392
-44800/69092	Loss: 107.892
-48000/69092	Loss: 108.384
-51200/69092	Loss: 109.177
-54400/69092	Loss: 109.331
-57600/69092	Loss: 107.822
-60800/69092	Loss: 106.257
-64000/69092	Loss: 108.215
-67200/69092	Loss: 110.373
-Training time 0:04:49.803242
-Epoch: 47 Average loss: 108.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 52)
-0/69092	Loss: 107.273
-3200/69092	Loss: 108.980
-6400/69092	Loss: 109.240
-9600/69092	Loss: 107.524
-12800/69092	Loss: 108.102
-16000/69092	Loss: 109.265
-19200/69092	Loss: 110.584
-22400/69092	Loss: 109.721
-25600/69092	Loss: 107.613
-28800/69092	Loss: 108.611
-32000/69092	Loss: 109.184
-35200/69092	Loss: 108.064
-38400/69092	Loss: 108.106
-41600/69092	Loss: 108.937
-44800/69092	Loss: 107.993
-48000/69092	Loss: 108.745
-51200/69092	Loss: 110.025
-54400/69092	Loss: 108.768
-57600/69092	Loss: 108.040
-60800/69092	Loss: 108.474
-64000/69092	Loss: 108.278
-67200/69092	Loss: 108.626
-Training time 0:04:50.519463
-Epoch: 48 Average loss: 108.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 53)
-0/69092	Loss: 102.906
-3200/69092	Loss: 108.175
-6400/69092	Loss: 110.078
-9600/69092	Loss: 108.896
-12800/69092	Loss: 108.041
-16000/69092	Loss: 108.613
-19200/69092	Loss: 109.001
-22400/69092	Loss: 108.239
-25600/69092	Loss: 108.157
-28800/69092	Loss: 109.316
-32000/69092	Loss: 108.273
-35200/69092	Loss: 108.219
-38400/69092	Loss: 107.372
-41600/69092	Loss: 107.124
-44800/69092	Loss: 108.016
-48000/69092	Loss: 110.386
-51200/69092	Loss: 108.787
-54400/69092	Loss: 108.155
-57600/69092	Loss: 108.254
-60800/69092	Loss: 108.866
-64000/69092	Loss: 109.982
-67200/69092	Loss: 109.006
-Training time 0:04:49.696891
-Epoch: 49 Average loss: 108.58
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 54)
-0/69092	Loss: 104.153
-3200/69092	Loss: 108.018
-6400/69092	Loss: 108.156
-9600/69092	Loss: 108.956
-12800/69092	Loss: 110.080
-16000/69092	Loss: 109.224
-19200/69092	Loss: 109.280
-22400/69092	Loss: 107.590
-25600/69092	Loss: 108.249
-28800/69092	Loss: 106.179
-32000/69092	Loss: 108.142
-35200/69092	Loss: 108.132
-38400/69092	Loss: 108.733
-41600/69092	Loss: 109.026
-44800/69092	Loss: 107.957
-48000/69092	Loss: 106.913
-51200/69092	Loss: 108.879
-54400/69092	Loss: 108.485
-57600/69092	Loss: 108.608
-60800/69092	Loss: 109.192
-64000/69092	Loss: 107.740
-67200/69092	Loss: 109.164
-Training time 0:04:42.383065
-Epoch: 50 Average loss: 108.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 55)
-0/69092	Loss: 103.210
-3200/69092	Loss: 107.998
-6400/69092	Loss: 110.100
-9600/69092	Loss: 108.056
-12800/69092	Loss: 106.873
-16000/69092	Loss: 106.977
-19200/69092	Loss: 108.452
-22400/69092	Loss: 108.645
-25600/69092	Loss: 108.029
-28800/69092	Loss: 108.975
-32000/69092	Loss: 109.396
-35200/69092	Loss: 107.864
-38400/69092	Loss: 108.605
-41600/69092	Loss: 108.646
-44800/69092	Loss: 108.115
-48000/69092	Loss: 106.863
-51200/69092	Loss: 108.656
-54400/69092	Loss: 107.829
-57600/69092	Loss: 108.720
-60800/69092	Loss: 107.200
-64000/69092	Loss: 107.129
-67200/69092	Loss: 108.928
-Training time 0:04:53.753077
-Epoch: 51 Average loss: 108.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 56)
-0/69092	Loss: 99.226
-3200/69092	Loss: 109.379
-6400/69092	Loss: 107.912
-9600/69092	Loss: 108.517
-12800/69092	Loss: 108.567
-16000/69092	Loss: 107.621
-19200/69092	Loss: 108.156
-22400/69092	Loss: 108.049
-25600/69092	Loss: 106.849
-28800/69092	Loss: 107.496
-32000/69092	Loss: 107.815
-35200/69092	Loss: 110.221
-38400/69092	Loss: 107.563
-41600/69092	Loss: 107.106
-44800/69092	Loss: 107.033
-48000/69092	Loss: 109.990
-51200/69092	Loss: 109.967
-54400/69092	Loss: 108.879
-57600/69092	Loss: 107.200
-60800/69092	Loss: 108.082
-64000/69092	Loss: 108.172
-67200/69092	Loss: 108.027
-Training time 0:04:49.744157
-Epoch: 52 Average loss: 108.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 57)
-0/69092	Loss: 104.733
-3200/69092	Loss: 107.449
-6400/69092	Loss: 107.652
-9600/69092	Loss: 108.413
-12800/69092	Loss: 107.699
-16000/69092	Loss: 108.465
-19200/69092	Loss: 106.801
-22400/69092	Loss: 106.146
-25600/69092	Loss: 109.091
-28800/69092	Loss: 107.616
-32000/69092	Loss: 109.353
-35200/69092	Loss: 107.828
-38400/69092	Loss: 107.516
-41600/69092	Loss: 108.168
-44800/69092	Loss: 106.649
-48000/69092	Loss: 109.267
-51200/69092	Loss: 109.144
-54400/69092	Loss: 107.902
-57600/69092	Loss: 108.065
-60800/69092	Loss: 109.866
-64000/69092	Loss: 109.355
-67200/69092	Loss: 106.590
-Training time 0:04:56.545482
-Epoch: 53 Average loss: 108.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 58)
-0/69092	Loss: 103.578
-3200/69092	Loss: 107.679
-6400/69092	Loss: 107.674
-9600/69092	Loss: 108.424
-12800/69092	Loss: 108.361
-16000/69092	Loss: 106.618
-19200/69092	Loss: 109.062
-22400/69092	Loss: 107.414
-25600/69092	Loss: 110.398
-28800/69092	Loss: 106.737
-32000/69092	Loss: 106.625
-35200/69092	Loss: 106.643
-38400/69092	Loss: 108.122
-41600/69092	Loss: 107.716
-44800/69092	Loss: 108.184
-48000/69092	Loss: 109.113
-51200/69092	Loss: 107.916
-54400/69092	Loss: 107.116
-57600/69092	Loss: 105.350
-60800/69092	Loss: 109.847
-64000/69092	Loss: 107.041
-67200/69092	Loss: 107.282
-Training time 0:04:49.920582
-Epoch: 54 Average loss: 107.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 59)
-0/69092	Loss: 109.314
-3200/69092	Loss: 106.938
-6400/69092	Loss: 106.937
-9600/69092	Loss: 108.338
-12800/69092	Loss: 106.591
-16000/69092	Loss: 106.293
-19200/69092	Loss: 107.046
-22400/69092	Loss: 108.085
-25600/69092	Loss: 109.090
-28800/69092	Loss: 106.335
-32000/69092	Loss: 109.177
-35200/69092	Loss: 108.154
-38400/69092	Loss: 108.860
-41600/69092	Loss: 107.963
-44800/69092	Loss: 106.935
-48000/69092	Loss: 108.159
-51200/69092	Loss: 107.759
-54400/69092	Loss: 107.512
-57600/69092	Loss: 107.193
-60800/69092	Loss: 107.152
-64000/69092	Loss: 107.224
-67200/69092	Loss: 108.543
-Training time 0:04:51.018882
-Epoch: 55 Average loss: 107.69
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 60)
-0/69092	Loss: 91.358
-3200/69092	Loss: 106.304
-6400/69092	Loss: 108.153
-9600/69092	Loss: 109.371
-12800/69092	Loss: 107.301
-16000/69092	Loss: 108.816
-19200/69092	Loss: 107.875
-22400/69092	Loss: 107.227
-25600/69092	Loss: 108.243
-28800/69092	Loss: 108.738
-32000/69092	Loss: 107.627
-35200/69092	Loss: 107.309
-38400/69092	Loss: 108.692
-41600/69092	Loss: 108.226
-44800/69092	Loss: 106.392
-48000/69092	Loss: 107.722
-51200/69092	Loss: 106.610
-54400/69092	Loss: 108.167
-57600/69092	Loss: 108.127
-60800/69092	Loss: 107.082
-64000/69092	Loss: 107.069
-67200/69092	Loss: 106.531
-Training time 0:04:43.520874
-Epoch: 56 Average loss: 107.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 61)
-0/69092	Loss: 110.477
-3200/69092	Loss: 108.627
-6400/69092	Loss: 107.287
-9600/69092	Loss: 105.823
-12800/69092	Loss: 109.205
-16000/69092	Loss: 106.500
-19200/69092	Loss: 106.957
-22400/69092	Loss: 108.999
-25600/69092	Loss: 106.936
-28800/69092	Loss: 106.688
-32000/69092	Loss: 108.377
-35200/69092	Loss: 106.603
-38400/69092	Loss: 106.404
-41600/69092	Loss: 106.618
-44800/69092	Loss: 108.963
-48000/69092	Loss: 105.955
-51200/69092	Loss: 108.686
-54400/69092	Loss: 107.060
-57600/69092	Loss: 108.829
-60800/69092	Loss: 109.190
-64000/69092	Loss: 109.119
-67200/69092	Loss: 108.589
-Training time 0:04:41.173054
-Epoch: 57 Average loss: 107.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 62)
-0/69092	Loss: 112.057
-3200/69092	Loss: 108.878
-6400/69092	Loss: 107.226
-9600/69092	Loss: 108.297
-12800/69092	Loss: 108.657
-16000/69092	Loss: 106.209
-19200/69092	Loss: 105.882
-22400/69092	Loss: 106.071
-25600/69092	Loss: 108.803
-28800/69092	Loss: 107.810
-32000/69092	Loss: 105.625
-35200/69092	Loss: 106.806
-38400/69092	Loss: 108.175
-41600/69092	Loss: 107.626
-44800/69092	Loss: 107.604
-48000/69092	Loss: 107.837
-51200/69092	Loss: 106.685
-54400/69092	Loss: 110.453
-57600/69092	Loss: 108.153
-60800/69092	Loss: 107.209
-64000/69092	Loss: 107.714
-67200/69092	Loss: 106.547
-Training time 0:04:43.993388
-Epoch: 58 Average loss: 107.55
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 63)
-0/69092	Loss: 123.563
-3200/69092	Loss: 106.403
-6400/69092	Loss: 107.181
-9600/69092	Loss: 108.489
-12800/69092	Loss: 107.953
-16000/69092	Loss: 110.204
-19200/69092	Loss: 109.196
-22400/69092	Loss: 106.157
-25600/69092	Loss: 107.468
-28800/69092	Loss: 105.458
-32000/69092	Loss: 107.226
-35200/69092	Loss: 106.051
-38400/69092	Loss: 107.864
-41600/69092	Loss: 109.366
-44800/69092	Loss: 108.387
-48000/69092	Loss: 107.860
-51200/69092	Loss: 106.375
-54400/69092	Loss: 108.123
-57600/69092	Loss: 106.196
-60800/69092	Loss: 106.480
-64000/69092	Loss: 106.830
-67200/69092	Loss: 106.591
-Training time 0:04:37.546204
-Epoch: 59 Average loss: 107.51
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 64)
-0/69092	Loss: 95.213
-3200/69092	Loss: 106.027
-6400/69092	Loss: 107.618
-9600/69092	Loss: 105.784
-12800/69092	Loss: 107.630
-16000/69092	Loss: 106.266
-19200/69092	Loss: 106.681
-22400/69092	Loss: 108.355
-25600/69092	Loss: 108.582
-28800/69092	Loss: 107.247
-32000/69092	Loss: 106.418
-35200/69092	Loss: 107.866
-38400/69092	Loss: 107.643
-41600/69092	Loss: 107.719
-44800/69092	Loss: 106.770
-48000/69092	Loss: 108.965
-51200/69092	Loss: 107.024
-54400/69092	Loss: 107.825
-57600/69092	Loss: 107.277
-60800/69092	Loss: 106.770
-64000/69092	Loss: 106.849
-67200/69092	Loss: 107.868
-Training time 0:04:43.409421
-Epoch: 60 Average loss: 107.24
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 65)
-0/69092	Loss: 99.140
-3200/69092	Loss: 108.373
-6400/69092	Loss: 108.361
-9600/69092	Loss: 106.322
-12800/69092	Loss: 106.600
-16000/69092	Loss: 105.737
-19200/69092	Loss: 107.075
-22400/69092	Loss: 107.897
-25600/69092	Loss: 106.637
-28800/69092	Loss: 109.254
-32000/69092	Loss: 108.755
-35200/69092	Loss: 107.586
-38400/69092	Loss: 106.973
-41600/69092	Loss: 106.574
-44800/69092	Loss: 107.630
-48000/69092	Loss: 107.069
-51200/69092	Loss: 106.450
-54400/69092	Loss: 106.582
-57600/69092	Loss: 107.387
-60800/69092	Loss: 107.566
-64000/69092	Loss: 107.241
-67200/69092	Loss: 107.083
-Training time 0:04:45.168993
-Epoch: 61 Average loss: 107.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 66)
-0/69092	Loss: 108.632
-3200/69092	Loss: 108.459
-6400/69092	Loss: 106.302
-9600/69092	Loss: 107.831
-12800/69092	Loss: 105.810
-16000/69092	Loss: 105.939
-19200/69092	Loss: 109.040
-22400/69092	Loss: 106.610
-25600/69092	Loss: 108.444
-28800/69092	Loss: 107.125
-32000/69092	Loss: 105.910
-35200/69092	Loss: 106.708
-38400/69092	Loss: 105.734
-41600/69092	Loss: 107.290
-44800/69092	Loss: 107.097
-48000/69092	Loss: 107.371
-51200/69092	Loss: 107.602
-54400/69092	Loss: 108.115
-57600/69092	Loss: 107.538
-60800/69092	Loss: 106.859
-64000/69092	Loss: 105.613
-67200/69092	Loss: 107.768
-Training time 0:04:46.909384
-Epoch: 62 Average loss: 107.12
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 67)
-0/69092	Loss: 96.787
-3200/69092	Loss: 106.211
-6400/69092	Loss: 106.251
-9600/69092	Loss: 106.681
-12800/69092	Loss: 106.072
-16000/69092	Loss: 106.618
-19200/69092	Loss: 107.220
-22400/69092	Loss: 108.668
-25600/69092	Loss: 106.418
-28800/69092	Loss: 108.128
-32000/69092	Loss: 106.958
-35200/69092	Loss: 107.550
-38400/69092	Loss: 105.766
-41600/69092	Loss: 108.187
-44800/69092	Loss: 109.119
-48000/69092	Loss: 106.322
-51200/69092	Loss: 108.572
-54400/69092	Loss: 107.911
-57600/69092	Loss: 106.371
-60800/69092	Loss: 106.815
-64000/69092	Loss: 105.432
-67200/69092	Loss: 107.124
-Training time 0:04:45.988190
-Epoch: 63 Average loss: 107.08
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 68)
-0/69092	Loss: 101.009
-3200/69092	Loss: 107.848
-6400/69092	Loss: 107.981
-9600/69092	Loss: 105.931
-12800/69092	Loss: 105.062
-16000/69092	Loss: 107.260
-19200/69092	Loss: 106.238
-22400/69092	Loss: 106.388
-25600/69092	Loss: 107.564
-28800/69092	Loss: 106.940
-32000/69092	Loss: 107.675
-35200/69092	Loss: 107.333
-38400/69092	Loss: 106.242
-41600/69092	Loss: 106.396
-44800/69092	Loss: 107.305
-48000/69092	Loss: 107.249
-51200/69092	Loss: 107.218
-54400/69092	Loss: 108.159
-57600/69092	Loss: 107.802
-60800/69092	Loss: 105.884
-64000/69092	Loss: 107.416
-67200/69092	Loss: 107.177
-Training time 0:04:50.115311
-Epoch: 64 Average loss: 107.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 69)
-0/69092	Loss: 99.700
-3200/69092	Loss: 105.408
-6400/69092	Loss: 107.577
-9600/69092	Loss: 107.187
-12800/69092	Loss: 106.684
-16000/69092	Loss: 107.859
-19200/69092	Loss: 106.757
-22400/69092	Loss: 107.083
-25600/69092	Loss: 107.706
-28800/69092	Loss: 107.304
-32000/69092	Loss: 106.535
-35200/69092	Loss: 107.133
-38400/69092	Loss: 108.241
-41600/69092	Loss: 108.464
-44800/69092	Loss: 107.018
-48000/69092	Loss: 106.956
-51200/69092	Loss: 107.139
-54400/69092	Loss: 105.645
-57600/69092	Loss: 106.116
-60800/69092	Loss: 107.512
-64000/69092	Loss: 105.906
-67200/69092	Loss: 106.503
-Training time 0:04:50.923955
-Epoch: 65 Average loss: 106.94
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 70)
-0/69092	Loss: 113.871
-3200/69092	Loss: 106.510
-6400/69092	Loss: 104.945
-9600/69092	Loss: 106.325
-12800/69092	Loss: 104.192
-16000/69092	Loss: 108.807
-19200/69092	Loss: 107.005
-22400/69092	Loss: 106.568
-25600/69092	Loss: 109.132
-28800/69092	Loss: 106.207
-32000/69092	Loss: 106.092
-35200/69092	Loss: 107.904
-38400/69092	Loss: 107.723
-41600/69092	Loss: 107.919
-44800/69092	Loss: 106.389
-48000/69092	Loss: 106.156
-51200/69092	Loss: 106.327
-54400/69092	Loss: 108.188
-57600/69092	Loss: 106.585
-60800/69092	Loss: 106.378
-64000/69092	Loss: 106.329
-67200/69092	Loss: 108.926
-Training time 0:04:50.597860
-Epoch: 66 Average loss: 106.84
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 71)
-0/69092	Loss: 106.674
-3200/69092	Loss: 105.739
-6400/69092	Loss: 105.293
-9600/69092	Loss: 106.417
-12800/69092	Loss: 106.795
-16000/69092	Loss: 106.054
-19200/69092	Loss: 104.626
-22400/69092	Loss: 108.555
-25600/69092	Loss: 107.928
-28800/69092	Loss: 106.134
-32000/69092	Loss: 106.989
-35200/69092	Loss: 106.796
-38400/69092	Loss: 106.665
-41600/69092	Loss: 105.272
-44800/69092	Loss: 108.432
-48000/69092	Loss: 106.274
-51200/69092	Loss: 106.274
-54400/69092	Loss: 105.491
-57600/69092	Loss: 107.484
-60800/69092	Loss: 106.835
-64000/69092	Loss: 106.077
-67200/69092	Loss: 108.613
-Training time 0:04:50.856114
-Epoch: 67 Average loss: 106.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 72)
-0/69092	Loss: 107.316
-3200/69092	Loss: 107.972
-6400/69092	Loss: 108.050
-9600/69092	Loss: 106.102
-12800/69092	Loss: 106.441
-16000/69092	Loss: 108.152
-19200/69092	Loss: 107.119
-22400/69092	Loss: 106.215
-25600/69092	Loss: 107.264
-28800/69092	Loss: 105.527
-32000/69092	Loss: 107.794
-35200/69092	Loss: 105.042
-38400/69092	Loss: 107.403
-41600/69092	Loss: 105.311
-44800/69092	Loss: 106.848
-48000/69092	Loss: 106.986
-51200/69092	Loss: 107.933
-54400/69092	Loss: 105.659
-57600/69092	Loss: 107.058
-60800/69092	Loss: 107.427
-64000/69092	Loss: 106.436
-67200/69092	Loss: 105.850
-Training time 0:04:42.894581
-Epoch: 68 Average loss: 106.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 73)
-0/69092	Loss: 103.258
-3200/69092	Loss: 105.467
-6400/69092	Loss: 105.508
-9600/69092	Loss: 107.575
-12800/69092	Loss: 107.472
-16000/69092	Loss: 105.982
-19200/69092	Loss: 105.868
-22400/69092	Loss: 106.597
-25600/69092	Loss: 106.147
-28800/69092	Loss: 106.502
-32000/69092	Loss: 106.497
-35200/69092	Loss: 106.906
-38400/69092	Loss: 107.811
-41600/69092	Loss: 107.281
-44800/69092	Loss: 106.072
-48000/69092	Loss: 106.723
-51200/69092	Loss: 106.482
-54400/69092	Loss: 106.787
-57600/69092	Loss: 107.622
-60800/69092	Loss: 105.791
-64000/69092	Loss: 107.319
-67200/69092	Loss: 106.772
-Training time 0:04:54.501528
-Epoch: 69 Average loss: 106.62
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 74)
-0/69092	Loss: 107.553
-3200/69092	Loss: 106.098
-6400/69092	Loss: 107.191
-9600/69092	Loss: 106.159
-12800/69092	Loss: 104.771
-16000/69092	Loss: 109.163
-19200/69092	Loss: 107.074
-22400/69092	Loss: 105.869
-25600/69092	Loss: 106.491
-28800/69092	Loss: 106.822
-32000/69092	Loss: 107.059
-35200/69092	Loss: 105.834
-38400/69092	Loss: 104.738
-41600/69092	Loss: 106.728
-44800/69092	Loss: 107.754
-48000/69092	Loss: 106.263
-51200/69092	Loss: 105.967
-54400/69092	Loss: 105.614
-57600/69092	Loss: 108.203
-60800/69092	Loss: 106.293
-64000/69092	Loss: 105.167
-67200/69092	Loss: 106.777
-Training time 0:04:52.868330
-Epoch: 70 Average loss: 106.45
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 75)
-0/69092	Loss: 98.173
-3200/69092	Loss: 107.283
-6400/69092	Loss: 106.688
-9600/69092	Loss: 106.175
-12800/69092	Loss: 106.923
-16000/69092	Loss: 105.406
-19200/69092	Loss: 105.920
-22400/69092	Loss: 107.011
-25600/69092	Loss: 107.188
-28800/69092	Loss: 106.831
-32000/69092	Loss: 105.050
-35200/69092	Loss: 107.188
-38400/69092	Loss: 105.814
-41600/69092	Loss: 107.216
-44800/69092	Loss: 106.493
-48000/69092	Loss: 105.505
-51200/69092	Loss: 105.077
-54400/69092	Loss: 105.549
-57600/69092	Loss: 107.144
-60800/69092	Loss: 106.992
-64000/69092	Loss: 105.153
-67200/69092	Loss: 105.536
-Training time 0:04:55.646175
-Epoch: 71 Average loss: 106.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 76)
-0/69092	Loss: 104.828
-3200/69092	Loss: 106.681
-6400/69092	Loss: 104.585
-9600/69092	Loss: 104.697
-12800/69092	Loss: 107.388
-16000/69092	Loss: 106.748
-19200/69092	Loss: 106.904
-22400/69092	Loss: 105.430
-25600/69092	Loss: 107.294
-28800/69092	Loss: 106.562
-32000/69092	Loss: 107.229
-35200/69092	Loss: 104.755
-38400/69092	Loss: 106.461
-41600/69092	Loss: 105.027
-44800/69092	Loss: 107.103
-48000/69092	Loss: 107.121
-51200/69092	Loss: 107.508
-54400/69092	Loss: 106.154
-57600/69092	Loss: 107.660
-60800/69092	Loss: 105.422
-64000/69092	Loss: 105.391
-67200/69092	Loss: 107.187
-Training time 0:04:52.971490
-Epoch: 72 Average loss: 106.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 77)
-0/69092	Loss: 102.193
-3200/69092	Loss: 105.875
-6400/69092	Loss: 107.181
-9600/69092	Loss: 105.227
-12800/69092	Loss: 107.922
-16000/69092	Loss: 105.979
-19200/69092	Loss: 106.287
-22400/69092	Loss: 104.530
-25600/69092	Loss: 104.866
-28800/69092	Loss: 106.620
-32000/69092	Loss: 105.745
-35200/69092	Loss: 106.743
-38400/69092	Loss: 106.674
-41600/69092	Loss: 106.348
-44800/69092	Loss: 106.103
-48000/69092	Loss: 106.401
-51200/69092	Loss: 106.476
-54400/69092	Loss: 107.128
-57600/69092	Loss: 104.708
-60800/69092	Loss: 106.286
-64000/69092	Loss: 107.405
-67200/69092	Loss: 106.975
-Training time 0:04:52.079726
-Epoch: 73 Average loss: 106.29
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 78)
-0/69092	Loss: 115.106
-3200/69092	Loss: 106.613
-6400/69092	Loss: 105.516
-9600/69092	Loss: 106.279
-12800/69092	Loss: 107.035
-16000/69092	Loss: 106.901
-19200/69092	Loss: 106.259
-22400/69092	Loss: 106.482
-25600/69092	Loss: 106.685
-28800/69092	Loss: 105.713
-32000/69092	Loss: 106.677
-35200/69092	Loss: 105.898
-38400/69092	Loss: 105.959
-41600/69092	Loss: 106.056
-44800/69092	Loss: 104.058
-48000/69092	Loss: 107.636
-51200/69092	Loss: 106.408
-54400/69092	Loss: 105.510
-57600/69092	Loss: 107.126
-60800/69092	Loss: 102.794
-64000/69092	Loss: 105.883
-67200/69092	Loss: 106.210
-Training time 0:04:48.463217
-Epoch: 74 Average loss: 106.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 79)
-0/69092	Loss: 108.485
-3200/69092	Loss: 105.781
-6400/69092	Loss: 106.366
-9600/69092	Loss: 106.327
-12800/69092	Loss: 106.386
-16000/69092	Loss: 105.807
-19200/69092	Loss: 107.269
-22400/69092	Loss: 107.495
-25600/69092	Loss: 106.904
-28800/69092	Loss: 106.073
-32000/69092	Loss: 107.340
-35200/69092	Loss: 104.801
-38400/69092	Loss: 105.712
-41600/69092	Loss: 104.574
-44800/69092	Loss: 106.045
-48000/69092	Loss: 106.166
-51200/69092	Loss: 105.577
-54400/69092	Loss: 106.264
-57600/69092	Loss: 104.153
-60800/69092	Loss: 107.094
-64000/69092	Loss: 105.029
-67200/69092	Loss: 106.907
-Training time 0:04:46.581238
-Epoch: 75 Average loss: 106.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 80)
-0/69092	Loss: 133.000
-3200/69092	Loss: 106.878
-6400/69092	Loss: 107.797
-9600/69092	Loss: 106.549
-12800/69092	Loss: 106.853
-16000/69092	Loss: 105.499
-19200/69092	Loss: 105.092
-22400/69092	Loss: 106.505
-25600/69092	Loss: 106.679
-28800/69092	Loss: 102.969
-32000/69092	Loss: 105.854
-35200/69092	Loss: 106.818
-38400/69092	Loss: 106.764
-41600/69092	Loss: 105.524
-44800/69092	Loss: 107.438
-48000/69092	Loss: 105.218
-51200/69092	Loss: 104.353
-54400/69092	Loss: 106.234
-57600/69092	Loss: 105.975
-60800/69092	Loss: 106.486
-64000/69092	Loss: 105.349
-67200/69092	Loss: 106.522
-Training time 0:04:52.247822
-Epoch: 76 Average loss: 106.09
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 81)
-0/69092	Loss: 113.320
-3200/69092	Loss: 106.065
-6400/69092	Loss: 105.636
-9600/69092	Loss: 105.594
-12800/69092	Loss: 104.921
-16000/69092	Loss: 105.310
-19200/69092	Loss: 106.557
-22400/69092	Loss: 106.530
-25600/69092	Loss: 106.007
-28800/69092	Loss: 104.959
-32000/69092	Loss: 105.296
-35200/69092	Loss: 105.649
-38400/69092	Loss: 105.838
-41600/69092	Loss: 104.787
-44800/69092	Loss: 105.916
-48000/69092	Loss: 104.483
-51200/69092	Loss: 108.540
-54400/69092	Loss: 106.935
-57600/69092	Loss: 107.094
-60800/69092	Loss: 105.542
-64000/69092	Loss: 107.094
-67200/69092	Loss: 106.696
-Training time 0:04:50.465072
-Epoch: 77 Average loss: 106.04
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 82)
-0/69092	Loss: 105.775
-3200/69092	Loss: 104.143
-6400/69092	Loss: 106.376
-9600/69092	Loss: 105.853
-12800/69092	Loss: 107.442
-16000/69092	Loss: 105.974
-19200/69092	Loss: 106.224
-22400/69092	Loss: 106.614
-25600/69092	Loss: 104.898
-28800/69092	Loss: 105.351
-32000/69092	Loss: 106.364
-35200/69092	Loss: 106.209
-38400/69092	Loss: 107.988
-41600/69092	Loss: 106.163
-44800/69092	Loss: 105.920
-48000/69092	Loss: 104.891
-51200/69092	Loss: 105.154
-54400/69092	Loss: 105.039
-57600/69092	Loss: 107.874
-60800/69092	Loss: 106.659
-64000/69092	Loss: 104.838
-67200/69092	Loss: 106.004
-Training time 0:04:47.906519
-Epoch: 78 Average loss: 106.00
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 83)
-0/69092	Loss: 104.938
-3200/69092	Loss: 105.438
-6400/69092	Loss: 105.059
-9600/69092	Loss: 106.616
-12800/69092	Loss: 105.004
-16000/69092	Loss: 107.055
-19200/69092	Loss: 106.784
-22400/69092	Loss: 105.539
-25600/69092	Loss: 105.332
-28800/69092	Loss: 105.271
-32000/69092	Loss: 105.947
-35200/69092	Loss: 106.141
-38400/69092	Loss: 106.491
-41600/69092	Loss: 104.884
-44800/69092	Loss: 106.111
-48000/69092	Loss: 105.816
-51200/69092	Loss: 104.976
-54400/69092	Loss: 106.576
-57600/69092	Loss: 105.387
-60800/69092	Loss: 106.023
-64000/69092	Loss: 106.223
-67200/69092	Loss: 105.289
-Training time 0:04:49.954373
-Epoch: 79 Average loss: 105.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 84)
-0/69092	Loss: 111.414
-3200/69092	Loss: 104.501
-6400/69092	Loss: 105.996
-9600/69092	Loss: 105.728
-12800/69092	Loss: 105.972
-16000/69092	Loss: 103.711
-19200/69092	Loss: 105.339
-22400/69092	Loss: 105.824
-25600/69092	Loss: 106.456
-28800/69092	Loss: 105.027
-32000/69092	Loss: 105.114
-35200/69092	Loss: 105.825
-38400/69092	Loss: 106.253
-41600/69092	Loss: 105.802
-44800/69092	Loss: 105.359
-48000/69092	Loss: 105.120
-51200/69092	Loss: 105.310
-54400/69092	Loss: 106.832
-57600/69092	Loss: 107.461
-60800/69092	Loss: 106.991
-64000/69092	Loss: 108.579
-67200/69092	Loss: 105.452
-Training time 0:04:52.101022
-Epoch: 80 Average loss: 105.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 85)
-0/69092	Loss: 118.695
-3200/69092	Loss: 104.423
-6400/69092	Loss: 104.555
diff --git a/OAR.2068294.stderr b/OAR.2068294.stderr
deleted file mode 100644
index a9c628a29c..0000000000
--- a/OAR.2068294.stderr
+++ /dev/null
@@ -1,2 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
diff --git a/OAR.2068294.stdout b/OAR.2068294.stdout
deleted file mode 100644
index b48bdf14b4..0000000000
--- a/OAR.2068294.stdout
+++ /dev/null
@@ -1,2052 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0005, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_5e_4
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last (iter 1)'
-0/69092	Loss: 159.842
-3200/69092	Loss: 169.274
-6400/69092	Loss: 166.739
-9600/69092	Loss: 164.403
-12800/69092	Loss: 163.047
-16000/69092	Loss: 158.285
-19200/69092	Loss: 160.616
-22400/69092	Loss: 155.277
-25600/69092	Loss: 154.275
-28800/69092	Loss: 151.988
-32000/69092	Loss: 149.324
-35200/69092	Loss: 150.873
-38400/69092	Loss: 151.049
-41600/69092	Loss: 150.226
-44800/69092	Loss: 150.034
-48000/69092	Loss: 148.424
-51200/69092	Loss: 145.290
-54400/69092	Loss: 151.523
-57600/69092	Loss: 147.486
-60800/69092	Loss: 146.221
-64000/69092	Loss: 149.535
-67200/69092	Loss: 146.699
-Training time 0:04:50.557788
-Epoch: 1 Average loss: 153.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 2)
-0/69092	Loss: 143.173
-3200/69092	Loss: 148.837
-6400/69092	Loss: 149.340
-9600/69092	Loss: 147.622
-12800/69092	Loss: 146.403
-16000/69092	Loss: 146.955
-19200/69092	Loss: 145.442
-22400/69092	Loss: 147.009
-25600/69092	Loss: 145.950
-28800/69092	Loss: 143.687
-32000/69092	Loss: 145.683
-35200/69092	Loss: 145.375
-38400/69092	Loss: 145.855
-41600/69092	Loss: 145.754
-44800/69092	Loss: 145.672
-48000/69092	Loss: 143.268
-51200/69092	Loss: 143.225
-54400/69092	Loss: 144.677
-57600/69092	Loss: 145.922
-60800/69092	Loss: 146.299
-64000/69092	Loss: 143.574
-67200/69092	Loss: 143.527
-Training time 0:04:51.692162
-Epoch: 2 Average loss: 145.81
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 3)
-0/69092	Loss: 153.519
-3200/69092	Loss: 145.651
-6400/69092	Loss: 141.828
-9600/69092	Loss: 145.531
-12800/69092	Loss: 145.265
-16000/69092	Loss: 142.549
-19200/69092	Loss: 140.299
-22400/69092	Loss: 147.157
-25600/69092	Loss: 144.192
-28800/69092	Loss: 143.237
-32000/69092	Loss: 141.736
-35200/69092	Loss: 142.677
-38400/69092	Loss: 142.500
-41600/69092	Loss: 144.968
-44800/69092	Loss: 140.901
-48000/69092	Loss: 142.025
-51200/69092	Loss: 144.095
-54400/69092	Loss: 141.622
-57600/69092	Loss: 140.296
-60800/69092	Loss: 142.888
-64000/69092	Loss: 139.783
-67200/69092	Loss: 139.524
-Training time 0:04:46.026650
-Epoch: 3 Average loss: 142.71
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 4)
-0/69092	Loss: 153.974
-3200/69092	Loss: 143.761
-6400/69092	Loss: 142.291
-9600/69092	Loss: 139.206
-12800/69092	Loss: 141.900
-16000/69092	Loss: 138.278
-19200/69092	Loss: 140.812
-22400/69092	Loss: 139.452
-25600/69092	Loss: 142.395
-28800/69092	Loss: 141.577
-32000/69092	Loss: 137.828
-35200/69092	Loss: 141.852
-38400/69092	Loss: 142.464
-41600/69092	Loss: 140.110
-44800/69092	Loss: 140.493
-48000/69092	Loss: 139.024
-51200/69092	Loss: 137.492
-54400/69092	Loss: 139.615
-57600/69092	Loss: 139.125
-60800/69092	Loss: 143.667
-64000/69092	Loss: 139.027
-67200/69092	Loss: 137.685
-Training time 0:04:49.303581
-Epoch: 4 Average loss: 140.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 5)
-0/69092	Loss: 112.383
-3200/69092	Loss: 137.454
-6400/69092	Loss: 139.073
-9600/69092	Loss: 140.830
-12800/69092	Loss: 139.548
-16000/69092	Loss: 138.777
-19200/69092	Loss: 140.528
-22400/69092	Loss: 137.749
-25600/69092	Loss: 138.787
-28800/69092	Loss: 141.040
-32000/69092	Loss: 138.785
-35200/69092	Loss: 139.628
-38400/69092	Loss: 140.765
-41600/69092	Loss: 139.658
-44800/69092	Loss: 138.988
-48000/69092	Loss: 139.052
-51200/69092	Loss: 138.653
-54400/69092	Loss: 139.797
-57600/69092	Loss: 139.011
-60800/69092	Loss: 138.346
-64000/69092	Loss: 139.014
-67200/69092	Loss: 140.627
-Training time 0:04:47.368582
-Epoch: 5 Average loss: 139.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 6)
-0/69092	Loss: 130.235
-3200/69092	Loss: 138.492
-6400/69092	Loss: 138.328
-9600/69092	Loss: 139.536
-12800/69092	Loss: 138.059
-16000/69092	Loss: 136.499
-19200/69092	Loss: 139.865
-22400/69092	Loss: 137.590
-25600/69092	Loss: 138.390
-28800/69092	Loss: 138.681
-32000/69092	Loss: 138.109
-35200/69092	Loss: 141.501
-38400/69092	Loss: 137.944
-41600/69092	Loss: 137.168
-44800/69092	Loss: 137.908
-48000/69092	Loss: 138.282
-51200/69092	Loss: 136.059
-54400/69092	Loss: 137.297
-57600/69092	Loss: 140.392
-60800/69092	Loss: 134.949
-64000/69092	Loss: 137.993
-67200/69092	Loss: 137.138
-Training time 0:04:53.281922
-Epoch: 6 Average loss: 138.11
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 7)
-0/69092	Loss: 140.970
-3200/69092	Loss: 137.488
-6400/69092	Loss: 140.878
-9600/69092	Loss: 137.161
-12800/69092	Loss: 139.734
-16000/69092	Loss: 137.984
-19200/69092	Loss: 139.772
-22400/69092	Loss: 136.809
-25600/69092	Loss: 139.014
-28800/69092	Loss: 134.192
-32000/69092	Loss: 140.247
-35200/69092	Loss: 137.572
-38400/69092	Loss: 139.433
-41600/69092	Loss: 137.778
-44800/69092	Loss: 137.263
-48000/69092	Loss: 136.331
-51200/69092	Loss: 136.103
-54400/69092	Loss: 136.096
-57600/69092	Loss: 137.410
-60800/69092	Loss: 136.121
-64000/69092	Loss: 136.672
-67200/69092	Loss: 137.533
-Training time 0:04:53.955557
-Epoch: 7 Average loss: 137.61
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 8)
-0/69092	Loss: 125.774
-3200/69092	Loss: 139.187
-6400/69092	Loss: 136.501
-9600/69092	Loss: 137.414
-12800/69092	Loss: 135.825
-16000/69092	Loss: 137.348
-19200/69092	Loss: 137.275
-22400/69092	Loss: 136.744
-25600/69092	Loss: 137.035
-28800/69092	Loss: 137.127
-32000/69092	Loss: 134.687
-35200/69092	Loss: 138.643
-38400/69092	Loss: 138.699
-41600/69092	Loss: 134.890
-44800/69092	Loss: 137.422
-48000/69092	Loss: 136.792
-51200/69092	Loss: 137.172
-54400/69092	Loss: 132.974
-57600/69092	Loss: 137.482
-60800/69092	Loss: 138.539
-64000/69092	Loss: 137.681
-67200/69092	Loss: 137.094
-Training time 0:04:50.852102
-Epoch: 8 Average loss: 136.97
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 9)
-0/69092	Loss: 128.512
-3200/69092	Loss: 136.849
-6400/69092	Loss: 136.887
-9600/69092	Loss: 135.035
-12800/69092	Loss: 135.584
-16000/69092	Loss: 137.715
-19200/69092	Loss: 136.939
-22400/69092	Loss: 138.728
-25600/69092	Loss: 137.430
-28800/69092	Loss: 136.728
-32000/69092	Loss: 136.111
-35200/69092	Loss: 136.315
-38400/69092	Loss: 136.075
-41600/69092	Loss: 135.117
-44800/69092	Loss: 137.334
-48000/69092	Loss: 137.614
-51200/69092	Loss: 135.375
-54400/69092	Loss: 136.036
-57600/69092	Loss: 136.917
-60800/69092	Loss: 136.521
-64000/69092	Loss: 137.985
-67200/69092	Loss: 136.001
-Training time 0:04:53.617479
-Epoch: 9 Average loss: 136.62
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 10)
-0/69092	Loss: 116.711
-3200/69092	Loss: 139.440
-6400/69092	Loss: 135.457
-9600/69092	Loss: 138.314
-12800/69092	Loss: 134.946
-16000/69092	Loss: 133.214
-19200/69092	Loss: 136.892
-22400/69092	Loss: 136.203
-25600/69092	Loss: 137.560
-28800/69092	Loss: 138.216
-32000/69092	Loss: 136.824
-35200/69092	Loss: 138.758
-38400/69092	Loss: 135.570
-41600/69092	Loss: 137.090
-44800/69092	Loss: 134.380
-48000/69092	Loss: 135.627
-51200/69092	Loss: 135.116
-54400/69092	Loss: 135.653
-57600/69092	Loss: 135.568
-60800/69092	Loss: 135.086
-64000/69092	Loss: 137.637
-67200/69092	Loss: 135.876
-Training time 0:04:54.556594
-Epoch: 10 Average loss: 136.33
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 11)
-0/69092	Loss: 130.440
-3200/69092	Loss: 136.629
-6400/69092	Loss: 136.639
-9600/69092	Loss: 136.358
-12800/69092	Loss: 137.923
-16000/69092	Loss: 136.105
-19200/69092	Loss: 135.169
-22400/69092	Loss: 136.566
-25600/69092	Loss: 135.791
-28800/69092	Loss: 137.898
-32000/69092	Loss: 136.301
-35200/69092	Loss: 135.944
-38400/69092	Loss: 139.066
-41600/69092	Loss: 135.071
-44800/69092	Loss: 137.581
-48000/69092	Loss: 135.287
-51200/69092	Loss: 134.512
-54400/69092	Loss: 134.847
-57600/69092	Loss: 133.324
-60800/69092	Loss: 133.098
-64000/69092	Loss: 138.197
-67200/69092	Loss: 137.772
-Training time 0:04:52.905411
-Epoch: 11 Average loss: 136.22
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 12)
-0/69092	Loss: 142.560
-3200/69092	Loss: 138.019
-6400/69092	Loss: 137.816
-9600/69092	Loss: 136.478
-12800/69092	Loss: 134.968
-16000/69092	Loss: 134.737
-19200/69092	Loss: 134.154
-22400/69092	Loss: 134.689
-25600/69092	Loss: 136.335
-28800/69092	Loss: 136.210
-32000/69092	Loss: 134.062
-35200/69092	Loss: 137.574
-38400/69092	Loss: 134.143
-41600/69092	Loss: 135.749
-44800/69092	Loss: 137.421
-48000/69092	Loss: 136.107
-51200/69092	Loss: 136.956
-54400/69092	Loss: 135.313
-57600/69092	Loss: 134.547
-60800/69092	Loss: 137.678
-64000/69092	Loss: 137.972
-67200/69092	Loss: 136.143
-Training time 0:04:47.934248
-Epoch: 12 Average loss: 136.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 13)
-0/69092	Loss: 138.820
-3200/69092	Loss: 134.840
-6400/69092	Loss: 135.779
-9600/69092	Loss: 136.047
-12800/69092	Loss: 136.017
-16000/69092	Loss: 133.767
-19200/69092	Loss: 137.659
-22400/69092	Loss: 136.069
-25600/69092	Loss: 136.581
-28800/69092	Loss: 137.223
-32000/69092	Loss: 134.748
-35200/69092	Loss: 137.429
-38400/69092	Loss: 133.493
-41600/69092	Loss: 136.301
-44800/69092	Loss: 133.949
-48000/69092	Loss: 137.032
-51200/69092	Loss: 136.085
-54400/69092	Loss: 135.442
-57600/69092	Loss: 134.689
-60800/69092	Loss: 134.591
-64000/69092	Loss: 137.789
-67200/69092	Loss: 134.512
-Training time 0:04:49.043560
-Epoch: 13 Average loss: 135.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 14)
-0/69092	Loss: 138.798
-3200/69092	Loss: 136.422
-6400/69092	Loss: 135.985
-9600/69092	Loss: 133.135
-12800/69092	Loss: 134.340
-16000/69092	Loss: 136.762
-19200/69092	Loss: 136.748
-22400/69092	Loss: 134.862
-25600/69092	Loss: 135.796
-28800/69092	Loss: 136.190
-32000/69092	Loss: 134.759
-35200/69092	Loss: 131.705
-38400/69092	Loss: 136.131
-41600/69092	Loss: 136.145
-44800/69092	Loss: 134.797
-48000/69092	Loss: 137.117
-51200/69092	Loss: 134.780
-54400/69092	Loss: 134.688
-57600/69092	Loss: 135.539
-60800/69092	Loss: 135.482
-64000/69092	Loss: 135.210
-67200/69092	Loss: 138.155
-Training time 0:04:47.415866
-Epoch: 14 Average loss: 135.48
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 15)
-0/69092	Loss: 134.309
-3200/69092	Loss: 137.721
-6400/69092	Loss: 135.463
-9600/69092	Loss: 134.279
-12800/69092	Loss: 135.122
-16000/69092	Loss: 133.930
-19200/69092	Loss: 133.664
-22400/69092	Loss: 136.379
-25600/69092	Loss: 135.420
-28800/69092	Loss: 134.670
-32000/69092	Loss: 135.000
-35200/69092	Loss: 135.351
-38400/69092	Loss: 136.120
-41600/69092	Loss: 135.211
-44800/69092	Loss: 135.834
-48000/69092	Loss: 134.783
-51200/69092	Loss: 134.572
-54400/69092	Loss: 136.132
-57600/69092	Loss: 134.998
-60800/69092	Loss: 135.242
-64000/69092	Loss: 136.464
-67200/69092	Loss: 136.273
-Training time 0:04:50.106540
-Epoch: 15 Average loss: 135.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 16)
-0/69092	Loss: 135.949
-3200/69092	Loss: 134.864
-6400/69092	Loss: 134.832
-9600/69092	Loss: 133.051
-12800/69092	Loss: 133.823
-16000/69092	Loss: 133.778
-19200/69092	Loss: 135.979
-22400/69092	Loss: 136.273
-25600/69092	Loss: 135.099
-28800/69092	Loss: 134.681
-32000/69092	Loss: 135.605
-35200/69092	Loss: 138.182
-38400/69092	Loss: 136.193
-41600/69092	Loss: 136.388
-44800/69092	Loss: 135.354
-48000/69092	Loss: 137.457
-51200/69092	Loss: 133.089
-54400/69092	Loss: 135.397
-57600/69092	Loss: 133.427
-60800/69092	Loss: 135.073
-64000/69092	Loss: 136.909
-67200/69092	Loss: 134.642
-Training time 0:04:38.435256
-Epoch: 16 Average loss: 135.30
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 17)
-0/69092	Loss: 138.000
-3200/69092	Loss: 136.111
-6400/69092	Loss: 133.658
-9600/69092	Loss: 133.701
-12800/69092	Loss: 135.034
-16000/69092	Loss: 135.448
-19200/69092	Loss: 134.607
-22400/69092	Loss: 137.125
-25600/69092	Loss: 134.265
-28800/69092	Loss: 136.148
-32000/69092	Loss: 134.616
-35200/69092	Loss: 136.364
-38400/69092	Loss: 135.393
-41600/69092	Loss: 134.187
-44800/69092	Loss: 136.165
-48000/69092	Loss: 135.929
-51200/69092	Loss: 134.787
-54400/69092	Loss: 133.402
-57600/69092	Loss: 135.915
-60800/69092	Loss: 135.325
-64000/69092	Loss: 135.651
-67200/69092	Loss: 135.385
-Training time 0:04:41.886585
-Epoch: 17 Average loss: 135.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 18)
-0/69092	Loss: 143.136
-3200/69092	Loss: 135.909
-6400/69092	Loss: 134.992
-9600/69092	Loss: 133.596
-12800/69092	Loss: 135.802
-16000/69092	Loss: 134.036
-19200/69092	Loss: 133.975
-22400/69092	Loss: 136.420
-25600/69092	Loss: 135.745
-28800/69092	Loss: 133.899
-32000/69092	Loss: 136.081
-35200/69092	Loss: 135.021
-38400/69092	Loss: 135.222
-41600/69092	Loss: 134.817
-44800/69092	Loss: 135.857
-48000/69092	Loss: 136.124
-51200/69092	Loss: 133.457
-54400/69092	Loss: 133.075
-57600/69092	Loss: 134.068
-60800/69092	Loss: 136.092
-64000/69092	Loss: 133.002
-67200/69092	Loss: 134.536
-Training time 0:04:37.640146
-Epoch: 18 Average loss: 134.92
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 19)
-0/69092	Loss: 136.190
-3200/69092	Loss: 135.955
-6400/69092	Loss: 133.368
-9600/69092	Loss: 136.835
-12800/69092	Loss: 135.033
-16000/69092	Loss: 134.636
-19200/69092	Loss: 134.387
-22400/69092	Loss: 134.776
-25600/69092	Loss: 135.802
-28800/69092	Loss: 135.218
-32000/69092	Loss: 134.476
-35200/69092	Loss: 134.542
-38400/69092	Loss: 135.400
-41600/69092	Loss: 134.663
-44800/69092	Loss: 133.927
-48000/69092	Loss: 136.387
-51200/69092	Loss: 133.757
-54400/69092	Loss: 134.504
-57600/69092	Loss: 135.201
-60800/69092	Loss: 134.295
-64000/69092	Loss: 132.394
-67200/69092	Loss: 133.272
-Training time 0:04:33.461645
-Epoch: 19 Average loss: 134.74
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 20)
-0/69092	Loss: 141.672
-3200/69092	Loss: 136.147
-6400/69092	Loss: 134.504
-9600/69092	Loss: 135.077
-12800/69092	Loss: 132.699
-16000/69092	Loss: 135.500
-19200/69092	Loss: 132.953
-22400/69092	Loss: 134.542
-25600/69092	Loss: 135.023
-28800/69092	Loss: 135.674
-32000/69092	Loss: 133.153
-35200/69092	Loss: 133.527
-38400/69092	Loss: 135.516
-41600/69092	Loss: 135.942
-44800/69092	Loss: 134.288
-48000/69092	Loss: 134.031
-51200/69092	Loss: 137.359
-54400/69092	Loss: 133.247
-57600/69092	Loss: 135.630
-60800/69092	Loss: 134.472
-64000/69092	Loss: 134.720
-67200/69092	Loss: 135.098
-Training time 0:04:40.036596
-Epoch: 20 Average loss: 134.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 21)
-0/69092	Loss: 150.207
-3200/69092	Loss: 135.195
-6400/69092	Loss: 134.344
-9600/69092	Loss: 135.940
-12800/69092	Loss: 134.407
-16000/69092	Loss: 134.870
-19200/69092	Loss: 133.250
-22400/69092	Loss: 133.484
-25600/69092	Loss: 136.036
-28800/69092	Loss: 134.513
-32000/69092	Loss: 134.567
-35200/69092	Loss: 132.468
-38400/69092	Loss: 134.329
-41600/69092	Loss: 135.064
-44800/69092	Loss: 133.131
-48000/69092	Loss: 134.148
-51200/69092	Loss: 136.914
-54400/69092	Loss: 134.930
-57600/69092	Loss: 136.108
-60800/69092	Loss: 133.987
-64000/69092	Loss: 136.280
-67200/69092	Loss: 134.166
-Training time 0:04:39.091547
-Epoch: 21 Average loss: 134.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 22)
-0/69092	Loss: 119.053
-3200/69092	Loss: 135.355
-6400/69092	Loss: 135.607
-9600/69092	Loss: 136.246
-12800/69092	Loss: 134.407
-16000/69092	Loss: 131.474
-19200/69092	Loss: 134.511
-22400/69092	Loss: 134.013
-25600/69092	Loss: 133.152
-28800/69092	Loss: 132.573
-32000/69092	Loss: 135.316
-35200/69092	Loss: 134.359
-38400/69092	Loss: 135.460
-41600/69092	Loss: 135.286
-44800/69092	Loss: 134.391
-48000/69092	Loss: 135.731
-51200/69092	Loss: 137.241
-54400/69092	Loss: 136.328
-57600/69092	Loss: 132.285
-60800/69092	Loss: 135.411
-64000/69092	Loss: 134.402
-67200/69092	Loss: 134.102
-Training time 0:04:34.055154
-Epoch: 22 Average loss: 134.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 23)
-0/69092	Loss: 132.497
-3200/69092	Loss: 134.809
-6400/69092	Loss: 136.661
-9600/69092	Loss: 132.698
-12800/69092	Loss: 134.736
-16000/69092	Loss: 133.905
-19200/69092	Loss: 136.538
-22400/69092	Loss: 135.342
-25600/69092	Loss: 133.752
-28800/69092	Loss: 134.078
-32000/69092	Loss: 135.883
-35200/69092	Loss: 135.296
-38400/69092	Loss: 135.743
-41600/69092	Loss: 134.805
-44800/69092	Loss: 135.000
-48000/69092	Loss: 133.954
-51200/69092	Loss: 134.722
-54400/69092	Loss: 134.012
-57600/69092	Loss: 134.085
-60800/69092	Loss: 134.561
-64000/69092	Loss: 133.512
-67200/69092	Loss: 132.733
-Training time 0:04:39.774768
-Epoch: 23 Average loss: 134.59
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 24)
-0/69092	Loss: 139.944
-3200/69092	Loss: 131.760
-6400/69092	Loss: 136.860
-9600/69092	Loss: 136.123
-12800/69092	Loss: 135.383
-16000/69092	Loss: 135.544
-19200/69092	Loss: 135.580
-22400/69092	Loss: 135.211
-25600/69092	Loss: 131.185
-28800/69092	Loss: 132.956
-32000/69092	Loss: 134.480
-35200/69092	Loss: 135.644
-38400/69092	Loss: 134.626
-41600/69092	Loss: 132.784
-44800/69092	Loss: 133.034
-48000/69092	Loss: 135.432
-51200/69092	Loss: 136.171
-54400/69092	Loss: 134.883
-57600/69092	Loss: 136.160
-60800/69092	Loss: 133.469
-64000/69092	Loss: 133.819
-67200/69092	Loss: 134.401
-Training time 0:04:40.808800
-Epoch: 24 Average loss: 134.60
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 25)
-0/69092	Loss: 145.018
-3200/69092	Loss: 132.701
-6400/69092	Loss: 132.960
-9600/69092	Loss: 134.206
-12800/69092	Loss: 133.399
-16000/69092	Loss: 135.152
-19200/69092	Loss: 134.454
-22400/69092	Loss: 134.089
-25600/69092	Loss: 133.050
-28800/69092	Loss: 133.241
-32000/69092	Loss: 135.133
-35200/69092	Loss: 134.018
-38400/69092	Loss: 133.902
-41600/69092	Loss: 135.801
-44800/69092	Loss: 136.048
-48000/69092	Loss: 135.188
-51200/69092	Loss: 136.588
-54400/69092	Loss: 133.573
-57600/69092	Loss: 132.799
-60800/69092	Loss: 134.888
-64000/69092	Loss: 135.027
-67200/69092	Loss: 135.773
-Training time 0:04:44.718572
-Epoch: 25 Average loss: 134.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 26)
-0/69092	Loss: 127.012
-3200/69092	Loss: 134.702
-6400/69092	Loss: 136.845
-9600/69092	Loss: 134.568
-12800/69092	Loss: 133.714
-16000/69092	Loss: 135.752
-19200/69092	Loss: 133.098
-22400/69092	Loss: 136.472
-25600/69092	Loss: 134.800
-28800/69092	Loss: 133.131
-32000/69092	Loss: 132.874
-35200/69092	Loss: 133.481
-38400/69092	Loss: 134.428
-41600/69092	Loss: 135.679
-44800/69092	Loss: 134.405
-48000/69092	Loss: 134.641
-51200/69092	Loss: 134.593
-54400/69092	Loss: 134.779
-57600/69092	Loss: 134.973
-60800/69092	Loss: 132.792
-64000/69092	Loss: 132.360
-67200/69092	Loss: 132.379
-Training time 0:04:44.102291
-Epoch: 26 Average loss: 134.25
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 27)
-0/69092	Loss: 149.808
-3200/69092	Loss: 132.259
-6400/69092	Loss: 134.341
-9600/69092	Loss: 135.164
-12800/69092	Loss: 133.393
-16000/69092	Loss: 134.844
-19200/69092	Loss: 133.896
-22400/69092	Loss: 132.075
-25600/69092	Loss: 133.649
-28800/69092	Loss: 134.832
-32000/69092	Loss: 133.606
-35200/69092	Loss: 134.642
-38400/69092	Loss: 133.741
-41600/69092	Loss: 132.305
-44800/69092	Loss: 133.431
-48000/69092	Loss: 136.227
-51200/69092	Loss: 133.519
-54400/69092	Loss: 135.129
-57600/69092	Loss: 132.867
-60800/69092	Loss: 132.726
-64000/69092	Loss: 134.911
-67200/69092	Loss: 135.453
-Training time 0:04:44.718513
-Epoch: 27 Average loss: 133.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 28)
-0/69092	Loss: 140.091
-3200/69092	Loss: 133.067
-6400/69092	Loss: 135.230
-9600/69092	Loss: 133.767
-12800/69092	Loss: 133.414
-16000/69092	Loss: 132.176
-19200/69092	Loss: 134.166
-22400/69092	Loss: 135.205
-25600/69092	Loss: 136.393
-28800/69092	Loss: 132.047
-32000/69092	Loss: 131.969
-35200/69092	Loss: 133.022
-38400/69092	Loss: 134.558
-41600/69092	Loss: 133.753
-44800/69092	Loss: 134.982
-48000/69092	Loss: 136.384
-51200/69092	Loss: 133.967
-54400/69092	Loss: 132.168
-57600/69092	Loss: 134.359
-60800/69092	Loss: 136.309
-64000/69092	Loss: 134.633
-67200/69092	Loss: 135.702
-Training time 0:04:41.116094
-Epoch: 28 Average loss: 134.14
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 29)
-0/69092	Loss: 124.378
-3200/69092	Loss: 131.196
-6400/69092	Loss: 133.288
-9600/69092	Loss: 133.099
-12800/69092	Loss: 132.631
-16000/69092	Loss: 133.875
-19200/69092	Loss: 135.789
-22400/69092	Loss: 133.333
-25600/69092	Loss: 131.898
-28800/69092	Loss: 135.044
-32000/69092	Loss: 136.767
-35200/69092	Loss: 135.353
-38400/69092	Loss: 135.699
-41600/69092	Loss: 133.328
-44800/69092	Loss: 137.368
-48000/69092	Loss: 135.211
-51200/69092	Loss: 134.633
-54400/69092	Loss: 131.426
-57600/69092	Loss: 133.014
-60800/69092	Loss: 134.384
-64000/69092	Loss: 134.334
-67200/69092	Loss: 134.622
-Training time 0:04:43.813486
-Epoch: 29 Average loss: 134.17
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 30)
-0/69092	Loss: 135.568
-3200/69092	Loss: 134.305
-6400/69092	Loss: 132.871
-9600/69092	Loss: 132.481
-12800/69092	Loss: 134.599
-16000/69092	Loss: 131.658
-19200/69092	Loss: 135.084
-22400/69092	Loss: 132.367
-25600/69092	Loss: 135.661
-28800/69092	Loss: 132.998
-32000/69092	Loss: 135.432
-35200/69092	Loss: 136.519
-38400/69092	Loss: 133.184
-41600/69092	Loss: 136.257
-44800/69092	Loss: 136.150
-48000/69092	Loss: 131.348
-51200/69092	Loss: 132.628
-54400/69092	Loss: 134.070
-57600/69092	Loss: 133.399
-60800/69092	Loss: 133.182
-64000/69092	Loss: 135.141
-67200/69092	Loss: 133.544
-Training time 0:04:43.219094
-Epoch: 30 Average loss: 133.88
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 31)
-0/69092	Loss: 124.188
-3200/69092	Loss: 134.833
-6400/69092	Loss: 133.584
-9600/69092	Loss: 133.853
-12800/69092	Loss: 132.266
-16000/69092	Loss: 135.120
-19200/69092	Loss: 135.788
-22400/69092	Loss: 131.430
-25600/69092	Loss: 136.732
-28800/69092	Loss: 133.887
-32000/69092	Loss: 135.501
-35200/69092	Loss: 134.410
-38400/69092	Loss: 133.129
-41600/69092	Loss: 131.547
-44800/69092	Loss: 133.732
-48000/69092	Loss: 134.267
-51200/69092	Loss: 136.209
-54400/69092	Loss: 131.541
-57600/69092	Loss: 133.454
-60800/69092	Loss: 132.622
-64000/69092	Loss: 132.528
-67200/69092	Loss: 132.466
-Training time 0:04:48.333091
-Epoch: 31 Average loss: 133.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 32)
-0/69092	Loss: 129.738
-3200/69092	Loss: 134.777
-6400/69092	Loss: 135.615
-9600/69092	Loss: 132.873
-12800/69092	Loss: 135.517
-16000/69092	Loss: 132.053
-19200/69092	Loss: 133.392
-22400/69092	Loss: 136.432
-25600/69092	Loss: 134.465
-28800/69092	Loss: 136.804
-32000/69092	Loss: 131.439
-35200/69092	Loss: 135.418
-38400/69092	Loss: 133.925
-41600/69092	Loss: 135.465
-44800/69092	Loss: 131.826
-48000/69092	Loss: 134.965
-51200/69092	Loss: 132.440
-54400/69092	Loss: 134.992
-57600/69092	Loss: 135.859
-60800/69092	Loss: 130.496
-64000/69092	Loss: 132.862
-67200/69092	Loss: 134.359
-Training time 0:04:34.723577
-Epoch: 32 Average loss: 134.06
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 33)
-0/69092	Loss: 135.288
-3200/69092	Loss: 133.811
-6400/69092	Loss: 134.418
-9600/69092	Loss: 133.275
-12800/69092	Loss: 132.395
-16000/69092	Loss: 131.969
-19200/69092	Loss: 134.218
-22400/69092	Loss: 133.016
-25600/69092	Loss: 133.718
-28800/69092	Loss: 135.349
-32000/69092	Loss: 134.404
-35200/69092	Loss: 135.265
-38400/69092	Loss: 133.873
-41600/69092	Loss: 134.478
-44800/69092	Loss: 135.259
-48000/69092	Loss: 135.084
-51200/69092	Loss: 133.549
-54400/69092	Loss: 133.415
-57600/69092	Loss: 132.021
-60800/69092	Loss: 133.636
-64000/69092	Loss: 135.127
-67200/69092	Loss: 132.057
-Training time 0:04:44.494181
-Epoch: 33 Average loss: 133.83
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 34)
-0/69092	Loss: 142.448
-3200/69092	Loss: 133.348
-6400/69092	Loss: 136.045
-9600/69092	Loss: 135.147
-12800/69092	Loss: 133.005
-16000/69092	Loss: 133.364
-19200/69092	Loss: 133.808
-22400/69092	Loss: 130.967
-25600/69092	Loss: 134.049
-28800/69092	Loss: 132.894
-32000/69092	Loss: 131.265
-35200/69092	Loss: 132.280
-38400/69092	Loss: 134.631
-41600/69092	Loss: 134.471
-44800/69092	Loss: 133.223
-48000/69092	Loss: 133.106
-51200/69092	Loss: 135.413
-54400/69092	Loss: 133.348
-57600/69092	Loss: 135.116
-60800/69092	Loss: 131.990
-64000/69092	Loss: 132.751
-67200/69092	Loss: 135.112
-Training time 0:04:34.204443
-Epoch: 34 Average loss: 133.63
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 35)
-0/69092	Loss: 123.990
-3200/69092	Loss: 132.792
-6400/69092	Loss: 135.419
-9600/69092	Loss: 133.988
-12800/69092	Loss: 133.357
-16000/69092	Loss: 134.003
-19200/69092	Loss: 132.330
-22400/69092	Loss: 133.200
-25600/69092	Loss: 133.000
-28800/69092	Loss: 134.942
-32000/69092	Loss: 132.583
-35200/69092	Loss: 132.112
-38400/69092	Loss: 134.837
-41600/69092	Loss: 133.017
-44800/69092	Loss: 132.499
-48000/69092	Loss: 134.986
-51200/69092	Loss: 134.932
-54400/69092	Loss: 133.095
-57600/69092	Loss: 133.156
-60800/69092	Loss: 132.966
-64000/69092	Loss: 135.842
-67200/69092	Loss: 133.402
-Training time 0:04:42.218022
-Epoch: 35 Average loss: 133.62
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 36)
-0/69092	Loss: 133.238
-3200/69092	Loss: 134.758
-6400/69092	Loss: 133.690
-9600/69092	Loss: 134.546
-12800/69092	Loss: 134.473
-16000/69092	Loss: 133.391
-19200/69092	Loss: 132.560
-22400/69092	Loss: 134.921
-25600/69092	Loss: 132.042
-28800/69092	Loss: 131.305
-32000/69092	Loss: 133.672
-35200/69092	Loss: 134.956
-38400/69092	Loss: 134.512
-41600/69092	Loss: 135.354
-44800/69092	Loss: 131.522
-48000/69092	Loss: 136.540
-51200/69092	Loss: 133.360
-54400/69092	Loss: 133.874
-57600/69092	Loss: 133.071
-60800/69092	Loss: 133.754
-64000/69092	Loss: 135.372
-67200/69092	Loss: 131.328
-Training time 0:04:40.897872
-Epoch: 36 Average loss: 133.79
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 37)
-0/69092	Loss: 128.988
-3200/69092	Loss: 132.509
-6400/69092	Loss: 132.893
-9600/69092	Loss: 132.500
-12800/69092	Loss: 134.516
-16000/69092	Loss: 131.733
-19200/69092	Loss: 134.720
-22400/69092	Loss: 136.080
-25600/69092	Loss: 130.821
-28800/69092	Loss: 134.869
-32000/69092	Loss: 133.506
-35200/69092	Loss: 133.271
-38400/69092	Loss: 134.171
-41600/69092	Loss: 134.311
-44800/69092	Loss: 133.292
-48000/69092	Loss: 132.155
-51200/69092	Loss: 134.171
-54400/69092	Loss: 133.322
-57600/69092	Loss: 134.706
-60800/69092	Loss: 133.661
-64000/69092	Loss: 133.638
-67200/69092	Loss: 133.638
-Training time 0:04:38.412299
-Epoch: 37 Average loss: 133.46
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 38)
-0/69092	Loss: 124.622
-3200/69092	Loss: 132.056
-6400/69092	Loss: 135.011
-9600/69092	Loss: 133.184
-12800/69092	Loss: 133.030
-16000/69092	Loss: 133.174
-19200/69092	Loss: 133.255
-22400/69092	Loss: 133.345
-25600/69092	Loss: 135.452
-28800/69092	Loss: 133.048
-32000/69092	Loss: 133.322
-35200/69092	Loss: 135.453
-38400/69092	Loss: 133.312
-41600/69092	Loss: 134.087
-44800/69092	Loss: 132.115
-48000/69092	Loss: 135.058
-51200/69092	Loss: 134.513
-54400/69092	Loss: 131.484
-57600/69092	Loss: 133.567
-60800/69092	Loss: 135.834
-64000/69092	Loss: 134.272
-67200/69092	Loss: 129.925
-Training time 0:04:42.429171
-Epoch: 38 Average loss: 133.53
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 39)
-0/69092	Loss: 156.193
-3200/69092	Loss: 133.821
-6400/69092	Loss: 132.816
-9600/69092	Loss: 130.703
-12800/69092	Loss: 134.637
-16000/69092	Loss: 136.554
-19200/69092	Loss: 135.034
-22400/69092	Loss: 132.533
-25600/69092	Loss: 133.841
-28800/69092	Loss: 133.199
-32000/69092	Loss: 133.368
-35200/69092	Loss: 133.641
-38400/69092	Loss: 133.051
-41600/69092	Loss: 129.854
-44800/69092	Loss: 133.528
-48000/69092	Loss: 134.050
-51200/69092	Loss: 133.928
-54400/69092	Loss: 135.090
-57600/69092	Loss: 132.527
-60800/69092	Loss: 131.953
-64000/69092	Loss: 136.588
-67200/69092	Loss: 133.985
-Training time 0:04:45.375654
-Epoch: 39 Average loss: 133.62
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 40)
-0/69092	Loss: 121.759
-3200/69092	Loss: 135.346
-6400/69092	Loss: 132.908
-9600/69092	Loss: 132.013
-12800/69092	Loss: 134.725
-16000/69092	Loss: 132.235
-19200/69092	Loss: 130.104
-22400/69092	Loss: 132.965
-25600/69092	Loss: 133.479
-28800/69092	Loss: 135.865
-32000/69092	Loss: 131.262
-35200/69092	Loss: 134.122
-38400/69092	Loss: 134.475
-41600/69092	Loss: 134.452
-44800/69092	Loss: 134.810
-48000/69092	Loss: 136.456
-51200/69092	Loss: 133.344
-54400/69092	Loss: 134.291
-57600/69092	Loss: 131.519
-60800/69092	Loss: 134.138
-64000/69092	Loss: 134.223
-67200/69092	Loss: 133.954
-Training time 0:04:48.930774
-Epoch: 40 Average loss: 133.73
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 41)
-0/69092	Loss: 144.336
-3200/69092	Loss: 133.839
-6400/69092	Loss: 133.075
-9600/69092	Loss: 132.904
-12800/69092	Loss: 134.981
-16000/69092	Loss: 133.528
-19200/69092	Loss: 133.937
-22400/69092	Loss: 131.403
-25600/69092	Loss: 134.301
-28800/69092	Loss: 131.515
-32000/69092	Loss: 134.074
-35200/69092	Loss: 133.805
-38400/69092	Loss: 133.653
-41600/69092	Loss: 134.400
-44800/69092	Loss: 132.125
-48000/69092	Loss: 133.792
-51200/69092	Loss: 132.654
-54400/69092	Loss: 132.679
-57600/69092	Loss: 134.043
-60800/69092	Loss: 134.716
-64000/69092	Loss: 136.102
-67200/69092	Loss: 132.645
-Training time 0:04:47.339056
-Epoch: 41 Average loss: 133.54
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 42)
-0/69092	Loss: 132.451
-3200/69092	Loss: 135.299
-6400/69092	Loss: 131.848
-9600/69092	Loss: 133.216
-12800/69092	Loss: 132.636
-16000/69092	Loss: 132.065
-19200/69092	Loss: 133.161
-22400/69092	Loss: 133.787
-25600/69092	Loss: 133.244
-28800/69092	Loss: 132.750
-32000/69092	Loss: 132.239
-35200/69092	Loss: 133.696
-38400/69092	Loss: 129.928
-41600/69092	Loss: 134.737
-44800/69092	Loss: 133.275
-48000/69092	Loss: 135.322
-51200/69092	Loss: 132.460
-54400/69092	Loss: 134.073
-57600/69092	Loss: 133.371
-60800/69092	Loss: 135.080
-64000/69092	Loss: 133.444
-67200/69092	Loss: 131.956
-Training time 0:04:43.830576
-Epoch: 42 Average loss: 133.21
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 43)
-0/69092	Loss: 135.158
-3200/69092	Loss: 132.319
-6400/69092	Loss: 134.570
-9600/69092	Loss: 132.404
-12800/69092	Loss: 134.118
-16000/69092	Loss: 134.321
-19200/69092	Loss: 134.189
-22400/69092	Loss: 134.232
-25600/69092	Loss: 131.641
-28800/69092	Loss: 132.989
-32000/69092	Loss: 135.760
-35200/69092	Loss: 133.028
-38400/69092	Loss: 132.821
-41600/69092	Loss: 132.379
-44800/69092	Loss: 132.276
-48000/69092	Loss: 132.132
-51200/69092	Loss: 132.759
-54400/69092	Loss: 133.374
-57600/69092	Loss: 132.124
-60800/69092	Loss: 133.663
-64000/69092	Loss: 135.621
-67200/69092	Loss: 133.664
-Training time 0:04:50.468097
-Epoch: 43 Average loss: 133.35
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 44)
-0/69092	Loss: 139.048
-3200/69092	Loss: 133.552
-6400/69092	Loss: 133.540
-9600/69092	Loss: 133.927
-12800/69092	Loss: 132.372
-16000/69092	Loss: 134.623
-19200/69092	Loss: 132.679
-22400/69092	Loss: 132.230
-25600/69092	Loss: 136.383
-28800/69092	Loss: 135.167
-32000/69092	Loss: 134.343
-35200/69092	Loss: 132.917
-38400/69092	Loss: 134.341
-41600/69092	Loss: 132.956
-44800/69092	Loss: 131.317
-48000/69092	Loss: 133.880
-51200/69092	Loss: 131.834
-54400/69092	Loss: 131.631
-57600/69092	Loss: 133.360
-60800/69092	Loss: 134.007
-64000/69092	Loss: 134.175
-67200/69092	Loss: 132.231
-Training time 0:04:50.108150
-Epoch: 44 Average loss: 133.36
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 45)
-0/69092	Loss: 135.992
-3200/69092	Loss: 131.969
-6400/69092	Loss: 132.230
-9600/69092	Loss: 133.682
-12800/69092	Loss: 132.256
-16000/69092	Loss: 133.592
-19200/69092	Loss: 132.326
-22400/69092	Loss: 134.299
-25600/69092	Loss: 135.507
-28800/69092	Loss: 132.121
-32000/69092	Loss: 132.063
-35200/69092	Loss: 133.704
-38400/69092	Loss: 132.375
-41600/69092	Loss: 132.320
-44800/69092	Loss: 133.848
-48000/69092	Loss: 134.989
-51200/69092	Loss: 133.256
-54400/69092	Loss: 133.317
-57600/69092	Loss: 134.129
-60800/69092	Loss: 134.256
-64000/69092	Loss: 133.321
-67200/69092	Loss: 132.003
-Training time 0:04:53.508367
-Epoch: 45 Average loss: 133.26
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 46)
-0/69092	Loss: 130.517
-3200/69092	Loss: 132.984
-6400/69092	Loss: 131.636
-9600/69092	Loss: 131.881
-12800/69092	Loss: 132.526
-16000/69092	Loss: 134.043
-19200/69092	Loss: 133.470
-22400/69092	Loss: 132.409
-25600/69092	Loss: 131.709
-28800/69092	Loss: 132.902
-32000/69092	Loss: 134.319
-35200/69092	Loss: 136.253
-38400/69092	Loss: 134.041
-41600/69092	Loss: 130.727
-44800/69092	Loss: 133.832
-48000/69092	Loss: 132.790
-51200/69092	Loss: 132.107
-54400/69092	Loss: 132.977
-57600/69092	Loss: 134.921
-60800/69092	Loss: 133.574
-64000/69092	Loss: 134.376
-67200/69092	Loss: 133.520
-Training time 0:04:42.061703
-Epoch: 46 Average loss: 133.20
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 47)
-0/69092	Loss: 133.775
-3200/69092	Loss: 133.730
-6400/69092	Loss: 131.377
-9600/69092	Loss: 131.189
-12800/69092	Loss: 130.373
-16000/69092	Loss: 134.994
-19200/69092	Loss: 132.828
-22400/69092	Loss: 132.458
-25600/69092	Loss: 132.872
-28800/69092	Loss: 133.617
-32000/69092	Loss: 133.669
-35200/69092	Loss: 133.018
-38400/69092	Loss: 131.874
-41600/69092	Loss: 133.839
-44800/69092	Loss: 132.748
-48000/69092	Loss: 136.165
-51200/69092	Loss: 132.377
-54400/69092	Loss: 133.373
-57600/69092	Loss: 132.232
-60800/69092	Loss: 132.530
-64000/69092	Loss: 135.841
-67200/69092	Loss: 132.767
-Training time 0:04:47.580389
-Epoch: 47 Average loss: 133.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 48)
-0/69092	Loss: 128.723
-3200/69092	Loss: 130.819
-6400/69092	Loss: 133.273
-9600/69092	Loss: 134.754
-12800/69092	Loss: 132.760
-16000/69092	Loss: 134.709
-19200/69092	Loss: 134.013
-22400/69092	Loss: 134.015
-25600/69092	Loss: 132.572
-28800/69092	Loss: 134.936
-32000/69092	Loss: 132.879
-35200/69092	Loss: 131.608
-38400/69092	Loss: 132.359
-41600/69092	Loss: 132.794
-44800/69092	Loss: 131.539
-48000/69092	Loss: 133.287
-51200/69092	Loss: 132.672
-54400/69092	Loss: 131.857
-57600/69092	Loss: 132.390
-60800/69092	Loss: 132.856
-64000/69092	Loss: 135.911
-67200/69092	Loss: 133.497
-Training time 0:04:49.268835
-Epoch: 48 Average loss: 133.10
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 49)
-0/69092	Loss: 129.483
-3200/69092	Loss: 133.579
-6400/69092	Loss: 134.122
-9600/69092	Loss: 132.421
-12800/69092	Loss: 132.922
-16000/69092	Loss: 133.830
-19200/69092	Loss: 135.214
-22400/69092	Loss: 134.288
-25600/69092	Loss: 132.616
-28800/69092	Loss: 131.659
-32000/69092	Loss: 134.710
-35200/69092	Loss: 131.626
-38400/69092	Loss: 131.865
-41600/69092	Loss: 131.776
-44800/69092	Loss: 135.127
-48000/69092	Loss: 132.649
-51200/69092	Loss: 132.262
-54400/69092	Loss: 134.266
-57600/69092	Loss: 131.577
-60800/69092	Loss: 133.486
-64000/69092	Loss: 132.942
-67200/69092	Loss: 134.161
-Training time 0:04:49.351053
-Epoch: 49 Average loss: 133.16
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 50)
-0/69092	Loss: 147.384
-3200/69092	Loss: 133.079
-6400/69092	Loss: 134.019
-9600/69092	Loss: 133.171
-12800/69092	Loss: 132.717
-16000/69092	Loss: 134.023
-19200/69092	Loss: 134.378
-22400/69092	Loss: 133.032
-25600/69092	Loss: 132.334
-28800/69092	Loss: 132.942
-32000/69092	Loss: 134.698
-35200/69092	Loss: 133.306
-38400/69092	Loss: 130.680
-41600/69092	Loss: 131.174
-44800/69092	Loss: 133.474
-48000/69092	Loss: 130.451
-51200/69092	Loss: 135.306
-54400/69092	Loss: 132.507
-57600/69092	Loss: 132.798
-60800/69092	Loss: 131.816
-64000/69092	Loss: 133.174
-67200/69092	Loss: 133.875
-Training time 0:04:41.682554
-Epoch: 50 Average loss: 133.05
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 51)
-0/69092	Loss: 136.488
-3200/69092	Loss: 135.509
-6400/69092	Loss: 131.770
-9600/69092	Loss: 135.026
-12800/69092	Loss: 131.669
-16000/69092	Loss: 131.227
-19200/69092	Loss: 132.927
-22400/69092	Loss: 131.692
-25600/69092	Loss: 132.917
-28800/69092	Loss: 133.707
-32000/69092	Loss: 131.803
-35200/69092	Loss: 134.959
-38400/69092	Loss: 133.376
-41600/69092	Loss: 130.779
-44800/69092	Loss: 133.152
-48000/69092	Loss: 132.008
-51200/69092	Loss: 133.650
-54400/69092	Loss: 133.612
-57600/69092	Loss: 135.377
-60800/69092	Loss: 131.977
-64000/69092	Loss: 132.687
-67200/69092	Loss: 132.218
-Training time 0:04:52.903941
-Epoch: 51 Average loss: 132.99
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 52)
-0/69092	Loss: 128.212
-3200/69092	Loss: 132.653
-6400/69092	Loss: 132.919
-9600/69092	Loss: 133.486
-12800/69092	Loss: 131.899
-16000/69092	Loss: 134.405
-19200/69092	Loss: 132.317
-22400/69092	Loss: 133.405
-25600/69092	Loss: 132.550
-28800/69092	Loss: 133.849
-32000/69092	Loss: 132.646
-35200/69092	Loss: 136.405
-38400/69092	Loss: 131.433
-41600/69092	Loss: 133.545
-44800/69092	Loss: 132.170
-48000/69092	Loss: 134.529
-51200/69092	Loss: 133.212
-54400/69092	Loss: 131.058
-57600/69092	Loss: 134.522
-60800/69092	Loss: 132.641
-64000/69092	Loss: 131.853
-67200/69092	Loss: 132.450
-Training time 0:04:49.937765
-Epoch: 52 Average loss: 133.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 53)
-0/69092	Loss: 154.664
-3200/69092	Loss: 131.569
-6400/69092	Loss: 133.267
-9600/69092	Loss: 131.108
-12800/69092	Loss: 134.072
-16000/69092	Loss: 130.141
-19200/69092	Loss: 135.100
-22400/69092	Loss: 133.228
-25600/69092	Loss: 133.742
-28800/69092	Loss: 133.085
-32000/69092	Loss: 134.728
-35200/69092	Loss: 134.777
-38400/69092	Loss: 134.701
-41600/69092	Loss: 132.244
-44800/69092	Loss: 135.134
-48000/69092	Loss: 131.380
-51200/69092	Loss: 131.166
-54400/69092	Loss: 133.751
-57600/69092	Loss: 130.564
-60800/69092	Loss: 132.434
-64000/69092	Loss: 133.248
-67200/69092	Loss: 134.456
-Training time 0:04:55.322000
-Epoch: 53 Average loss: 133.13
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 54)
-0/69092	Loss: 121.583
-3200/69092	Loss: 133.230
-6400/69092	Loss: 136.075
-9600/69092	Loss: 132.229
-12800/69092	Loss: 133.163
-16000/69092	Loss: 132.531
-19200/69092	Loss: 133.423
-22400/69092	Loss: 133.894
-25600/69092	Loss: 132.111
-28800/69092	Loss: 132.092
-32000/69092	Loss: 134.509
-35200/69092	Loss: 132.290
-38400/69092	Loss: 131.369
-41600/69092	Loss: 132.263
-44800/69092	Loss: 132.489
-48000/69092	Loss: 132.776
-51200/69092	Loss: 133.100
-54400/69092	Loss: 133.091
-57600/69092	Loss: 134.334
-60800/69092	Loss: 133.931
-64000/69092	Loss: 134.194
-67200/69092	Loss: 133.505
-Training time 0:04:50.053210
-Epoch: 54 Average loss: 133.15
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 55)
-0/69092	Loss: 139.116
-3200/69092	Loss: 132.280
-6400/69092	Loss: 131.085
-9600/69092	Loss: 133.199
-12800/69092	Loss: 131.715
-16000/69092	Loss: 134.194
-19200/69092	Loss: 133.526
-22400/69092	Loss: 134.003
-25600/69092	Loss: 132.579
-28800/69092	Loss: 130.548
-32000/69092	Loss: 130.813
-35200/69092	Loss: 133.355
-38400/69092	Loss: 133.445
-41600/69092	Loss: 131.297
-44800/69092	Loss: 133.953
-48000/69092	Loss: 132.609
-51200/69092	Loss: 134.504
-54400/69092	Loss: 132.477
-57600/69092	Loss: 134.692
-60800/69092	Loss: 134.461
-64000/69092	Loss: 132.301
-67200/69092	Loss: 131.675
-Training time 0:04:50.185496
-Epoch: 55 Average loss: 132.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 56)
-0/69092	Loss: 139.767
-3200/69092	Loss: 130.033
-6400/69092	Loss: 136.771
-9600/69092	Loss: 133.974
-12800/69092	Loss: 134.293
-16000/69092	Loss: 135.151
-19200/69092	Loss: 133.709
-22400/69092	Loss: 134.872
-25600/69092	Loss: 132.963
-28800/69092	Loss: 132.037
-32000/69092	Loss: 134.976
-35200/69092	Loss: 134.066
-38400/69092	Loss: 133.453
-41600/69092	Loss: 131.751
-44800/69092	Loss: 132.321
-48000/69092	Loss: 131.545
-51200/69092	Loss: 132.053
-54400/69092	Loss: 133.989
-57600/69092	Loss: 129.672
-60800/69092	Loss: 131.938
-64000/69092	Loss: 132.031
-67200/69092	Loss: 131.946
-Training time 0:04:42.928901
-Epoch: 56 Average loss: 133.01
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 57)
-0/69092	Loss: 144.037
-3200/69092	Loss: 132.071
-6400/69092	Loss: 132.160
-9600/69092	Loss: 134.628
-12800/69092	Loss: 129.619
-16000/69092	Loss: 131.743
-19200/69092	Loss: 134.225
-22400/69092	Loss: 132.648
-25600/69092	Loss: 130.468
-28800/69092	Loss: 130.525
-32000/69092	Loss: 136.156
-35200/69092	Loss: 134.091
-38400/69092	Loss: 131.885
-41600/69092	Loss: 133.657
-44800/69092	Loss: 134.782
-48000/69092	Loss: 131.491
-51200/69092	Loss: 133.445
-54400/69092	Loss: 133.638
-57600/69092	Loss: 133.323
-60800/69092	Loss: 134.983
-64000/69092	Loss: 133.721
-67200/69092	Loss: 131.053
-Training time 0:04:40.165173
-Epoch: 57 Average loss: 132.86
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 58)
-0/69092	Loss: 129.738
-3200/69092	Loss: 132.425
-6400/69092	Loss: 131.857
-9600/69092	Loss: 135.928
-12800/69092	Loss: 135.517
-16000/69092	Loss: 132.770
-19200/69092	Loss: 131.028
-22400/69092	Loss: 133.902
-25600/69092	Loss: 133.489
-28800/69092	Loss: 134.372
-32000/69092	Loss: 132.467
-35200/69092	Loss: 131.959
-38400/69092	Loss: 134.314
-41600/69092	Loss: 131.457
-44800/69092	Loss: 132.516
-48000/69092	Loss: 131.558
-51200/69092	Loss: 133.222
-54400/69092	Loss: 132.404
-57600/69092	Loss: 130.771
-60800/69092	Loss: 133.937
-64000/69092	Loss: 132.910
-67200/69092	Loss: 133.500
-Training time 0:04:42.612048
-Epoch: 58 Average loss: 132.91
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 59)
-0/69092	Loss: 122.984
-3200/69092	Loss: 132.611
-6400/69092	Loss: 135.339
-9600/69092	Loss: 131.863
-12800/69092	Loss: 133.527
-16000/69092	Loss: 130.291
-19200/69092	Loss: 133.049
-22400/69092	Loss: 135.233
-25600/69092	Loss: 132.212
-28800/69092	Loss: 134.731
-32000/69092	Loss: 130.560
-35200/69092	Loss: 134.372
-38400/69092	Loss: 131.422
-41600/69092	Loss: 130.815
-44800/69092	Loss: 131.701
-48000/69092	Loss: 131.929
-51200/69092	Loss: 135.147
-54400/69092	Loss: 132.449
-57600/69092	Loss: 133.829
-60800/69092	Loss: 133.501
-64000/69092	Loss: 133.877
-67200/69092	Loss: 129.602
-Training time 0:04:37.324057
-Epoch: 59 Average loss: 132.82
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 60)
-0/69092	Loss: 122.513
-3200/69092	Loss: 134.482
-6400/69092	Loss: 132.177
-9600/69092	Loss: 133.577
-12800/69092	Loss: 133.506
-16000/69092	Loss: 133.168
-19200/69092	Loss: 133.895
-22400/69092	Loss: 133.565
-25600/69092	Loss: 131.319
-28800/69092	Loss: 130.678
-32000/69092	Loss: 131.773
-35200/69092	Loss: 135.546
-38400/69092	Loss: 133.470
-41600/69092	Loss: 133.065
-44800/69092	Loss: 133.927
-48000/69092	Loss: 132.890
-51200/69092	Loss: 130.915
-54400/69092	Loss: 131.842
-57600/69092	Loss: 129.366
-60800/69092	Loss: 131.157
-64000/69092	Loss: 133.777
-67200/69092	Loss: 132.089
-Training time 0:04:40.821442
-Epoch: 60 Average loss: 132.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 61)
-0/69092	Loss: 149.925
-3200/69092	Loss: 134.578
-6400/69092	Loss: 133.580
-9600/69092	Loss: 132.310
-12800/69092	Loss: 134.810
-16000/69092	Loss: 134.253
-19200/69092	Loss: 133.320
-22400/69092	Loss: 131.336
-25600/69092	Loss: 134.131
-28800/69092	Loss: 131.634
-32000/69092	Loss: 134.895
-35200/69092	Loss: 130.358
-38400/69092	Loss: 134.110
-41600/69092	Loss: 132.002
-44800/69092	Loss: 131.523
-48000/69092	Loss: 129.541
-51200/69092	Loss: 131.935
-54400/69092	Loss: 133.334
-57600/69092	Loss: 131.391
-60800/69092	Loss: 132.812
-64000/69092	Loss: 133.295
-67200/69092	Loss: 131.466
-Training time 0:04:44.859402
-Epoch: 61 Average loss: 132.78
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 62)
-0/69092	Loss: 131.649
-3200/69092	Loss: 130.858
-6400/69092	Loss: 131.698
-9600/69092	Loss: 130.840
-12800/69092	Loss: 134.111
-16000/69092	Loss: 135.759
-19200/69092	Loss: 134.759
-22400/69092	Loss: 133.252
-25600/69092	Loss: 131.654
-28800/69092	Loss: 132.767
-32000/69092	Loss: 133.286
-35200/69092	Loss: 133.181
-38400/69092	Loss: 131.110
-41600/69092	Loss: 130.842
-44800/69092	Loss: 131.715
-48000/69092	Loss: 130.865
-51200/69092	Loss: 132.387
-54400/69092	Loss: 131.835
-57600/69092	Loss: 134.237
-60800/69092	Loss: 133.573
-64000/69092	Loss: 132.774
-67200/69092	Loss: 132.712
-Training time 0:04:41.388189
-Epoch: 62 Average loss: 132.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 63)
-0/69092	Loss: 128.223
-3200/69092	Loss: 131.041
-6400/69092	Loss: 133.689
-9600/69092	Loss: 133.526
-12800/69092	Loss: 134.404
-16000/69092	Loss: 133.655
-19200/69092	Loss: 130.344
-22400/69092	Loss: 133.791
-25600/69092	Loss: 132.568
-28800/69092	Loss: 131.957
-32000/69092	Loss: 131.541
-35200/69092	Loss: 132.421
-38400/69092	Loss: 133.257
-41600/69092	Loss: 132.507
-44800/69092	Loss: 135.825
-48000/69092	Loss: 132.617
-51200/69092	Loss: 132.709
-54400/69092	Loss: 131.571
-57600/69092	Loss: 132.242
-60800/69092	Loss: 132.903
-64000/69092	Loss: 131.835
-67200/69092	Loss: 133.631
-Training time 0:04:49.618462
-Epoch: 63 Average loss: 132.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 64)
-0/69092	Loss: 141.970
-3200/69092	Loss: 132.906
-6400/69092	Loss: 131.589
-9600/69092	Loss: 132.945
-12800/69092	Loss: 131.993
-16000/69092	Loss: 133.720
-19200/69092	Loss: 131.937
-22400/69092	Loss: 133.572
-25600/69092	Loss: 133.384
-28800/69092	Loss: 132.476
-32000/69092	Loss: 134.767
-35200/69092	Loss: 130.999
-38400/69092	Loss: 133.096
-41600/69092	Loss: 132.213
-44800/69092	Loss: 134.635
-48000/69092	Loss: 133.338
-51200/69092	Loss: 131.336
-54400/69092	Loss: 132.595
-57600/69092	Loss: 130.424
-60800/69092	Loss: 133.307
-64000/69092	Loss: 130.981
-67200/69092	Loss: 134.853
-Training time 0:04:49.486074
-Epoch: 64 Average loss: 132.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 65)
-0/69092	Loss: 142.410
-3200/69092	Loss: 132.879
-6400/69092	Loss: 131.708
-9600/69092	Loss: 134.260
-12800/69092	Loss: 134.587
-16000/69092	Loss: 132.342
-19200/69092	Loss: 132.129
-22400/69092	Loss: 133.000
-25600/69092	Loss: 132.074
-28800/69092	Loss: 131.301
-32000/69092	Loss: 134.566
-35200/69092	Loss: 131.667
-38400/69092	Loss: 133.092
-41600/69092	Loss: 131.948
-44800/69092	Loss: 133.808
-48000/69092	Loss: 131.241
-51200/69092	Loss: 135.670
-54400/69092	Loss: 132.278
-57600/69092	Loss: 132.134
-60800/69092	Loss: 130.886
-64000/69092	Loss: 135.610
-67200/69092	Loss: 133.141
-Training time 0:04:50.348031
-Epoch: 65 Average loss: 132.85
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 66)
-0/69092	Loss: 139.822
-3200/69092	Loss: 130.727
-6400/69092	Loss: 132.551
-9600/69092	Loss: 134.175
-12800/69092	Loss: 133.198
-16000/69092	Loss: 132.715
-19200/69092	Loss: 130.373
-22400/69092	Loss: 133.920
-25600/69092	Loss: 132.062
-28800/69092	Loss: 133.211
-32000/69092	Loss: 133.075
-35200/69092	Loss: 130.958
-38400/69092	Loss: 131.023
-41600/69092	Loss: 135.211
-44800/69092	Loss: 132.886
-48000/69092	Loss: 133.733
-51200/69092	Loss: 133.364
-54400/69092	Loss: 132.806
-57600/69092	Loss: 133.334
-60800/69092	Loss: 132.378
-64000/69092	Loss: 131.962
-67200/69092	Loss: 133.470
-Training time 0:04:49.848154
-Epoch: 66 Average loss: 132.76
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 67)
-0/69092	Loss: 122.181
-3200/69092	Loss: 132.670
-6400/69092	Loss: 131.164
-9600/69092	Loss: 133.716
-12800/69092	Loss: 133.805
-16000/69092	Loss: 132.016
-19200/69092	Loss: 133.238
-22400/69092	Loss: 131.701
-25600/69092	Loss: 133.658
-28800/69092	Loss: 134.396
-32000/69092	Loss: 134.192
-35200/69092	Loss: 133.033
-38400/69092	Loss: 132.378
-41600/69092	Loss: 134.240
-44800/69092	Loss: 132.282
-48000/69092	Loss: 134.094
-51200/69092	Loss: 132.881
-54400/69092	Loss: 131.479
-57600/69092	Loss: 129.058
-60800/69092	Loss: 132.371
-64000/69092	Loss: 132.129
-67200/69092	Loss: 132.735
-Training time 0:04:51.138665
-Epoch: 67 Average loss: 132.72
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 68)
-0/69092	Loss: 124.340
-3200/69092	Loss: 130.412
-6400/69092	Loss: 132.574
-9600/69092	Loss: 130.767
-12800/69092	Loss: 131.837
-16000/69092	Loss: 134.062
-19200/69092	Loss: 132.242
-22400/69092	Loss: 133.401
-25600/69092	Loss: 131.134
-28800/69092	Loss: 132.820
-32000/69092	Loss: 132.169
-35200/69092	Loss: 131.609
-38400/69092	Loss: 134.158
-41600/69092	Loss: 132.800
-44800/69092	Loss: 134.012
-48000/69092	Loss: 133.530
-51200/69092	Loss: 132.636
-54400/69092	Loss: 132.712
-57600/69092	Loss: 131.364
-60800/69092	Loss: 132.467
-64000/69092	Loss: 135.751
-67200/69092	Loss: 133.907
-Training time 0:04:43.856306
-Epoch: 68 Average loss: 132.75
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 69)
-0/69092	Loss: 131.655
-3200/69092	Loss: 133.725
-6400/69092	Loss: 130.032
-9600/69092	Loss: 132.432
-12800/69092	Loss: 133.568
-16000/69092	Loss: 135.816
-19200/69092	Loss: 131.504
-22400/69092	Loss: 133.019
-25600/69092	Loss: 130.538
-28800/69092	Loss: 134.134
-32000/69092	Loss: 131.309
-35200/69092	Loss: 131.254
-38400/69092	Loss: 133.626
-41600/69092	Loss: 134.476
-44800/69092	Loss: 134.004
-48000/69092	Loss: 132.131
-51200/69092	Loss: 133.296
-54400/69092	Loss: 132.150
-57600/69092	Loss: 134.057
-60800/69092	Loss: 132.065
-64000/69092	Loss: 133.015
-67200/69092	Loss: 130.422
-Training time 0:04:53.279530
-Epoch: 69 Average loss: 132.66
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 70)
-0/69092	Loss: 125.589
-3200/69092	Loss: 131.118
-6400/69092	Loss: 132.382
-9600/69092	Loss: 133.215
-12800/69092	Loss: 130.796
-16000/69092	Loss: 135.467
-19200/69092	Loss: 132.306
-22400/69092	Loss: 134.098
-25600/69092	Loss: 130.094
-28800/69092	Loss: 132.910
-32000/69092	Loss: 131.109
-35200/69092	Loss: 132.451
-38400/69092	Loss: 131.878
-41600/69092	Loss: 133.722
-44800/69092	Loss: 132.581
-48000/69092	Loss: 133.228
-51200/69092	Loss: 132.824
-54400/69092	Loss: 133.179
-57600/69092	Loss: 132.546
-60800/69092	Loss: 133.130
-64000/69092	Loss: 133.600
-67200/69092	Loss: 133.109
-Training time 0:04:51.803614
-Epoch: 70 Average loss: 132.67
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 71)
-0/69092	Loss: 117.361
-3200/69092	Loss: 134.069
-6400/69092	Loss: 132.470
-9600/69092	Loss: 133.053
-12800/69092	Loss: 132.501
-16000/69092	Loss: 132.771
-19200/69092	Loss: 133.054
-22400/69092	Loss: 134.746
-25600/69092	Loss: 129.443
-28800/69092	Loss: 132.636
-32000/69092	Loss: 130.268
-35200/69092	Loss: 133.105
-38400/69092	Loss: 132.794
-41600/69092	Loss: 133.814
-44800/69092	Loss: 130.128
-48000/69092	Loss: 131.660
-51200/69092	Loss: 134.778
-54400/69092	Loss: 132.476
-57600/69092	Loss: 133.365
-60800/69092	Loss: 133.058
-64000/69092	Loss: 134.067
-67200/69092	Loss: 132.029
-Training time 0:04:55.168694
-Epoch: 71 Average loss: 132.62
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 72)
-0/69092	Loss: 136.164
-3200/69092	Loss: 131.908
-6400/69092	Loss: 133.864
-9600/69092	Loss: 132.912
-12800/69092	Loss: 132.428
-16000/69092	Loss: 131.046
-19200/69092	Loss: 133.465
-22400/69092	Loss: 132.551
-25600/69092	Loss: 134.417
-28800/69092	Loss: 132.658
-32000/69092	Loss: 130.542
-35200/69092	Loss: 131.479
-38400/69092	Loss: 133.827
-41600/69092	Loss: 132.156
-44800/69092	Loss: 131.939
-48000/69092	Loss: 132.566
-51200/69092	Loss: 132.774
-54400/69092	Loss: 132.511
-57600/69092	Loss: 135.735
-60800/69092	Loss: 133.289
-64000/69092	Loss: 131.164
-67200/69092	Loss: 133.477
-Training time 0:04:51.320410
-Epoch: 72 Average loss: 132.64
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 73)
-0/69092	Loss: 137.239
-3200/69092	Loss: 131.684
-6400/69092	Loss: 130.119
-9600/69092	Loss: 135.505
-12800/69092	Loss: 131.383
-16000/69092	Loss: 131.100
-19200/69092	Loss: 133.959
-22400/69092	Loss: 131.316
-25600/69092	Loss: 132.879
-28800/69092	Loss: 135.066
-32000/69092	Loss: 130.489
-35200/69092	Loss: 133.174
-38400/69092	Loss: 133.194
-41600/69092	Loss: 133.004
-44800/69092	Loss: 132.902
-48000/69092	Loss: 133.927
-51200/69092	Loss: 133.512
-54400/69092	Loss: 133.162
-57600/69092	Loss: 132.015
-60800/69092	Loss: 132.341
-64000/69092	Loss: 130.212
-67200/69092	Loss: 131.414
-Training time 0:04:50.639351
-Epoch: 73 Average loss: 132.50
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 74)
-0/69092	Loss: 128.461
-3200/69092	Loss: 133.643
-6400/69092	Loss: 133.056
-9600/69092	Loss: 134.341
-12800/69092	Loss: 130.799
-16000/69092	Loss: 131.329
-19200/69092	Loss: 132.097
-22400/69092	Loss: 133.080
-25600/69092	Loss: 132.457
-28800/69092	Loss: 134.632
-32000/69092	Loss: 131.857
-35200/69092	Loss: 133.437
-38400/69092	Loss: 134.191
-41600/69092	Loss: 132.604
-44800/69092	Loss: 130.977
-48000/69092	Loss: 133.419
-51200/69092	Loss: 132.324
-54400/69092	Loss: 134.801
-57600/69092	Loss: 131.169
-60800/69092	Loss: 133.855
-64000/69092	Loss: 130.546
-67200/69092	Loss: 131.256
-Training time 0:04:43.400141
-Epoch: 74 Average loss: 132.68
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 75)
-0/69092	Loss: 129.280
-3200/69092	Loss: 128.060
-6400/69092	Loss: 132.713
-9600/69092	Loss: 131.357
-12800/69092	Loss: 132.191
-16000/69092	Loss: 132.008
-19200/69092	Loss: 133.235
-22400/69092	Loss: 133.112
-25600/69092	Loss: 131.919
-28800/69092	Loss: 134.392
-32000/69092	Loss: 134.172
-35200/69092	Loss: 131.547
-38400/69092	Loss: 132.146
-41600/69092	Loss: 132.063
-44800/69092	Loss: 129.239
-48000/69092	Loss: 132.211
-51200/69092	Loss: 133.981
-54400/69092	Loss: 134.989
-57600/69092	Loss: 131.962
-60800/69092	Loss: 133.478
-64000/69092	Loss: 135.140
-67200/69092	Loss: 132.177
-Training time 0:04:49.077664
-Epoch: 75 Average loss: 132.43
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 76)
-0/69092	Loss: 132.039
-3200/69092	Loss: 132.490
-6400/69092	Loss: 133.999
-9600/69092	Loss: 131.021
-12800/69092	Loss: 133.773
-16000/69092	Loss: 134.095
-19200/69092	Loss: 132.457
-22400/69092	Loss: 133.266
-25600/69092	Loss: 132.737
-28800/69092	Loss: 131.414
-32000/69092	Loss: 132.399
-35200/69092	Loss: 134.236
-38400/69092	Loss: 131.446
-41600/69092	Loss: 132.047
-44800/69092	Loss: 130.692
-48000/69092	Loss: 132.875
-51200/69092	Loss: 134.827
-54400/69092	Loss: 130.094
-57600/69092	Loss: 132.695
-60800/69092	Loss: 132.648
-64000/69092	Loss: 131.729
-67200/69092	Loss: 132.372
-Training time 0:04:50.271656
-Epoch: 76 Average loss: 132.56
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 77)
-0/69092	Loss: 138.312
-3200/69092	Loss: 133.760
-6400/69092	Loss: 134.814
-9600/69092	Loss: 132.228
-12800/69092	Loss: 130.811
-16000/69092	Loss: 130.341
-19200/69092	Loss: 134.031
-22400/69092	Loss: 133.910
-25600/69092	Loss: 128.844
-28800/69092	Loss: 132.982
-32000/69092	Loss: 132.897
-35200/69092	Loss: 130.602
-38400/69092	Loss: 133.486
-41600/69092	Loss: 131.232
-44800/69092	Loss: 131.308
-48000/69092	Loss: 130.775
-51200/69092	Loss: 134.724
-54400/69092	Loss: 133.027
-57600/69092	Loss: 134.760
-60800/69092	Loss: 129.936
-64000/69092	Loss: 130.772
-67200/69092	Loss: 134.359
-Training time 0:04:49.884341
-Epoch: 77 Average loss: 132.40
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 78)
-0/69092	Loss: 136.987
-3200/69092	Loss: 133.288
-6400/69092	Loss: 134.047
-9600/69092	Loss: 129.458
-12800/69092	Loss: 133.686
-16000/69092	Loss: 130.544
-19200/69092	Loss: 133.436
-22400/69092	Loss: 133.693
-25600/69092	Loss: 131.974
-28800/69092	Loss: 134.353
-32000/69092	Loss: 129.646
-35200/69092	Loss: 131.835
-38400/69092	Loss: 132.434
-41600/69092	Loss: 132.363
-44800/69092	Loss: 131.716
-48000/69092	Loss: 133.753
-51200/69092	Loss: 131.988
-54400/69092	Loss: 131.147
-57600/69092	Loss: 131.306
-60800/69092	Loss: 130.084
-64000/69092	Loss: 134.025
-67200/69092	Loss: 133.127
-Training time 0:04:47.500596
-Epoch: 78 Average loss: 132.32
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 79)
-0/69092	Loss: 142.447
-3200/69092	Loss: 132.908
-6400/69092	Loss: 133.935
-9600/69092	Loss: 131.297
-12800/69092	Loss: 130.220
-16000/69092	Loss: 132.283
-19200/69092	Loss: 132.330
-22400/69092	Loss: 132.251
-25600/69092	Loss: 133.363
-28800/69092	Loss: 130.896
-32000/69092	Loss: 132.771
-35200/69092	Loss: 133.911
-38400/69092	Loss: 128.730
-41600/69092	Loss: 132.264
-44800/69092	Loss: 132.691
-48000/69092	Loss: 132.675
-51200/69092	Loss: 132.761
-54400/69092	Loss: 134.194
-57600/69092	Loss: 133.052
-60800/69092	Loss: 133.198
-64000/69092	Loss: 131.895
-67200/69092	Loss: 131.477
-Training time 0:04:42.610289
-Epoch: 79 Average loss: 132.41
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 80)
-0/69092	Loss: 133.878
-3200/69092	Loss: 131.946
-6400/69092	Loss: 131.534
-9600/69092	Loss: 134.315
-12800/69092	Loss: 131.719
-16000/69092	Loss: 133.018
-19200/69092	Loss: 131.079
-22400/69092	Loss: 133.072
-25600/69092	Loss: 131.219
-28800/69092	Loss: 132.463
-32000/69092	Loss: 129.932
-35200/69092	Loss: 132.161
-38400/69092	Loss: 131.843
-41600/69092	Loss: 134.582
-44800/69092	Loss: 131.029
-48000/69092	Loss: 136.120
-51200/69092	Loss: 131.440
-54400/69092	Loss: 133.946
-57600/69092	Loss: 131.097
-60800/69092	Loss: 131.184
-64000/69092	Loss: 134.055
-67200/69092	Loss: 133.600
-Training time 0:04:50.732455
-Epoch: 80 Average loss: 132.38
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 81)
-0/69092	Loss: 147.651
-3200/69092	Loss: 133.330
-6400/69092	Loss: 132.364
-9600/69092	Loss: 131.480
-12800/69092	Loss: 134.336
diff --git a/OAR.2068295.stderr b/OAR.2068295.stderr
deleted file mode 100644
index a9c628a29c..0000000000
--- a/OAR.2068295.stderr
+++ /dev/null
@@ -1,2 +0,0 @@
-/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
-  warnings.warn(warning.format(ret))
diff --git a/OAR.2068295.stdout b/OAR.2068295.stdout
deleted file mode 100644
index dfa55f8083..0000000000
--- a/OAR.2068295.stdout
+++ /dev/null
@@ -1,2193 +0,0 @@
-Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_1e_3', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
-creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_1e_3
-load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
-use 2 gpu who named:
-GeForce RTX 2080 Ti
-GeForce RTX 2080 Ti
-DataParallel(
-  (module): VAE(
-    (img_to_last_conv): Sequential(
-      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (1): ReLU()
-      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-    )
-    (last_conv_to_continuous_features): Sequential(
-      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-    )
-    (features_to_hidden_continue): Sequential(
-      (0): Linear(in_features=256, out_features=20, bias=True)
-      (1): ReLU()
-    )
-    (latent_to_features): Sequential(
-      (0): Linear(in_features=10, out_features=256, bias=True)
-      (1): ReLU()
-    )
-    (features_to_img): Sequential(
-      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
-      (1): ReLU()
-      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (3): ReLU()
-      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (5): ReLU()
-      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (7): ReLU()
-      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
-      (9): Sigmoid()
-    )
-  )
-)
-The number of parameters of model is 765335
-don't use continuous capacity
-=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last (iter 2)'
-0/69092	Loss: 375.625
-3200/69092	Loss: 446.785
-6400/69092	Loss: 440.296
-9600/69092	Loss: 442.574
-12800/69092	Loss: 432.406
-16000/69092	Loss: 444.233
-19200/69092	Loss: 435.788
-22400/69092	Loss: 440.217
-25600/69092	Loss: 443.591
-28800/69092	Loss: 444.238
-32000/69092	Loss: 434.090
-35200/69092	Loss: 427.514
-38400/69092	Loss: 439.384
-41600/69092	Loss: 434.977
-44800/69092	Loss: 449.689
-48000/69092	Loss: 446.574
-51200/69092	Loss: 439.118
-54400/69092	Loss: 444.995
-57600/69092	Loss: 434.926
-60800/69092	Loss: 441.292
-64000/69092	Loss: 427.845
-67200/69092	Loss: 432.656
-Training time 0:04:34.051671
-Epoch: 1 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 3)
-0/69092	Loss: 393.832
-3200/69092	Loss: 438.616
-6400/69092	Loss: 431.874
-9600/69092	Loss: 455.541
-12800/69092	Loss: 440.252
-16000/69092	Loss: 440.665
-19200/69092	Loss: 435.808
-22400/69092	Loss: 437.461
-25600/69092	Loss: 444.880
-28800/69092	Loss: 435.920
-32000/69092	Loss: 447.494
-35200/69092	Loss: 431.046
-38400/69092	Loss: 437.620
-41600/69092	Loss: 442.615
-44800/69092	Loss: 436.568
-48000/69092	Loss: 443.203
-51200/69092	Loss: 440.405
-54400/69092	Loss: 436.639
-57600/69092	Loss: 432.852
-60800/69092	Loss: 432.166
-64000/69092	Loss: 434.953
-67200/69092	Loss: 441.264
-Training time 0:04:31.395650
-Epoch: 2 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 4)
-0/69092	Loss: 422.917
-3200/69092	Loss: 431.748
-6400/69092	Loss: 447.314
-9600/69092	Loss: 436.361
-12800/69092	Loss: 444.990
-16000/69092	Loss: 442.628
-19200/69092	Loss: 444.761
-22400/69092	Loss: 442.232
-25600/69092	Loss: 438.262
-28800/69092	Loss: 431.871
-32000/69092	Loss: 439.934
-35200/69092	Loss: 435.968
-38400/69092	Loss: 426.521
-41600/69092	Loss: 441.102
-44800/69092	Loss: 444.118
-48000/69092	Loss: 434.464
-51200/69092	Loss: 430.311
-54400/69092	Loss: 445.226
-57600/69092	Loss: 444.504
-60800/69092	Loss: 438.852
-64000/69092	Loss: 440.893
-67200/69092	Loss: 436.566
-Training time 0:04:29.906735
-Epoch: 3 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 5)
-0/69092	Loss: 415.262
-3200/69092	Loss: 448.800
-6400/69092	Loss: 437.634
-9600/69092	Loss: 438.002
-12800/69092	Loss: 431.911
-16000/69092	Loss: 442.412
-19200/69092	Loss: 435.215
-22400/69092	Loss: 441.085
-25600/69092	Loss: 445.418
-28800/69092	Loss: 448.736
-32000/69092	Loss: 435.353
-35200/69092	Loss: 439.455
-38400/69092	Loss: 435.531
-41600/69092	Loss: 437.956
-44800/69092	Loss: 446.065
-48000/69092	Loss: 444.811
-51200/69092	Loss: 431.132
-54400/69092	Loss: 432.654
-57600/69092	Loss: 433.304
-60800/69092	Loss: 436.254
-64000/69092	Loss: 445.370
-67200/69092	Loss: 438.517
-Training time 0:04:26.361455
-Epoch: 4 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 6)
-0/69092	Loss: 449.209
-3200/69092	Loss: 440.689
-6400/69092	Loss: 436.107
-9600/69092	Loss: 434.786
-12800/69092	Loss: 437.954
-16000/69092	Loss: 439.338
-19200/69092	Loss: 439.716
-22400/69092	Loss: 441.164
-25600/69092	Loss: 430.412
-28800/69092	Loss: 440.419
-32000/69092	Loss: 447.638
-35200/69092	Loss: 435.944
-38400/69092	Loss: 441.802
-41600/69092	Loss: 435.020
-44800/69092	Loss: 435.082
-48000/69092	Loss: 443.907
-51200/69092	Loss: 427.800
-54400/69092	Loss: 447.827
-57600/69092	Loss: 435.002
-60800/69092	Loss: 445.449
-64000/69092	Loss: 431.835
-67200/69092	Loss: 452.837
-Training time 0:04:35.682005
-Epoch: 5 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 7)
-0/69092	Loss: 413.826
-3200/69092	Loss: 443.325
-6400/69092	Loss: 437.337
-9600/69092	Loss: 434.842
-12800/69092	Loss: 435.281
-16000/69092	Loss: 444.859
-19200/69092	Loss: 438.488
-22400/69092	Loss: 438.252
-25600/69092	Loss: 441.747
-28800/69092	Loss: 447.335
-32000/69092	Loss: 447.572
-35200/69092	Loss: 435.608
-38400/69092	Loss: 434.339
-41600/69092	Loss: 435.066
-44800/69092	Loss: 432.960
-48000/69092	Loss: 435.379
-51200/69092	Loss: 431.384
-54400/69092	Loss: 440.550
-57600/69092	Loss: 450.134
-60800/69092	Loss: 431.891
-64000/69092	Loss: 435.316
-67200/69092	Loss: 446.095
-Training time 0:04:32.055193
-Epoch: 6 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 8)
-0/69092	Loss: 410.914
-3200/69092	Loss: 443.680
-6400/69092	Loss: 421.163
-9600/69092	Loss: 446.949
-12800/69092	Loss: 433.857
-16000/69092	Loss: 436.575
-19200/69092	Loss: 434.585
-22400/69092	Loss: 435.087
-25600/69092	Loss: 449.742
-28800/69092	Loss: 440.855
-32000/69092	Loss: 443.160
-35200/69092	Loss: 437.213
-38400/69092	Loss: 443.910
-41600/69092	Loss: 438.458
-44800/69092	Loss: 438.994
-48000/69092	Loss: 441.874
-51200/69092	Loss: 438.175
-54400/69092	Loss: 430.585
-57600/69092	Loss: 445.506
-60800/69092	Loss: 440.340
-64000/69092	Loss: 440.323
-67200/69092	Loss: 439.424
-Training time 0:04:24.081298
-Epoch: 7 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 9)
-0/69092	Loss: 422.780
-3200/69092	Loss: 448.578
-6400/69092	Loss: 430.252
-9600/69092	Loss: 441.269
-12800/69092	Loss: 436.205
-16000/69092	Loss: 443.399
-19200/69092	Loss: 441.904
-22400/69092	Loss: 444.786
-25600/69092	Loss: 437.944
-28800/69092	Loss: 450.518
-32000/69092	Loss: 432.025
-35200/69092	Loss: 432.558
-38400/69092	Loss: 439.379
-41600/69092	Loss: 446.042
-44800/69092	Loss: 436.374
-48000/69092	Loss: 451.215
-51200/69092	Loss: 432.161
-54400/69092	Loss: 424.488
-57600/69092	Loss: 434.085
-60800/69092	Loss: 438.740
-64000/69092	Loss: 440.643
-67200/69092	Loss: 441.024
-Training time 0:04:22.898986
-Epoch: 8 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 10)
-0/69092	Loss: 442.409
-3200/69092	Loss: 445.771
-6400/69092	Loss: 437.414
-9600/69092	Loss: 450.510
-12800/69092	Loss: 441.865
-16000/69092	Loss: 429.933
-19200/69092	Loss: 434.439
-22400/69092	Loss: 436.837
-25600/69092	Loss: 443.226
-28800/69092	Loss: 445.913
-32000/69092	Loss: 435.719
-35200/69092	Loss: 436.262
-38400/69092	Loss: 426.778
-41600/69092	Loss: 444.944
-44800/69092	Loss: 438.147
-48000/69092	Loss: 437.067
-51200/69092	Loss: 431.721
-54400/69092	Loss: 443.098
-57600/69092	Loss: 450.341
-60800/69092	Loss: 437.374
-64000/69092	Loss: 441.980
-67200/69092	Loss: 429.471
-Training time 0:04:25.848194
-Epoch: 9 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 11)
-0/69092	Loss: 464.626
-3200/69092	Loss: 432.685
-6400/69092	Loss: 438.780
-9600/69092	Loss: 446.017
-12800/69092	Loss: 434.559
-16000/69092	Loss: 439.762
-19200/69092	Loss: 439.569
-22400/69092	Loss: 438.673
-25600/69092	Loss: 440.022
-28800/69092	Loss: 444.908
-32000/69092	Loss: 436.992
-35200/69092	Loss: 442.352
-38400/69092	Loss: 441.576
-41600/69092	Loss: 436.198
-44800/69092	Loss: 433.849
-48000/69092	Loss: 440.041
-51200/69092	Loss: 437.511
-54400/69092	Loss: 440.434
-57600/69092	Loss: 430.454
-60800/69092	Loss: 441.230
-64000/69092	Loss: 436.647
-67200/69092	Loss: 447.057
-Training time 0:04:28.407033
-Epoch: 10 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 12)
-0/69092	Loss: 451.777
-3200/69092	Loss: 431.351
-6400/69092	Loss: 436.055
-9600/69092	Loss: 441.894
-12800/69092	Loss: 443.788
-16000/69092	Loss: 441.224
-19200/69092	Loss: 442.755
-22400/69092	Loss: 429.945
-25600/69092	Loss: 435.642
-28800/69092	Loss: 439.928
-32000/69092	Loss: 436.072
-35200/69092	Loss: 435.795
-38400/69092	Loss: 433.844
-41600/69092	Loss: 438.198
-44800/69092	Loss: 442.656
-48000/69092	Loss: 439.857
-51200/69092	Loss: 437.720
-54400/69092	Loss: 440.369
-57600/69092	Loss: 439.407
-60800/69092	Loss: 445.087
-64000/69092	Loss: 446.632
-67200/69092	Loss: 446.490
-Training time 0:04:36.721568
-Epoch: 11 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 13)
-0/69092	Loss: 445.309
-3200/69092	Loss: 445.610
-6400/69092	Loss: 440.409
-9600/69092	Loss: 435.306
-12800/69092	Loss: 446.171
-16000/69092	Loss: 428.434
-19200/69092	Loss: 435.219
-22400/69092	Loss: 440.951
-25600/69092	Loss: 437.595
-28800/69092	Loss: 445.892
-32000/69092	Loss: 444.479
-35200/69092	Loss: 429.088
-38400/69092	Loss: 439.665
-41600/69092	Loss: 439.643
-44800/69092	Loss: 437.927
-48000/69092	Loss: 436.874
-51200/69092	Loss: 432.499
-54400/69092	Loss: 440.864
-57600/69092	Loss: 434.907
-60800/69092	Loss: 435.699
-64000/69092	Loss: 451.284
-67200/69092	Loss: 441.631
-Training time 0:04:31.425226
-Epoch: 12 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 14)
-0/69092	Loss: 391.987
-3200/69092	Loss: 439.455
-6400/69092	Loss: 438.929
-9600/69092	Loss: 438.123
-12800/69092	Loss: 438.160
-16000/69092	Loss: 436.873
-19200/69092	Loss: 432.016
-22400/69092	Loss: 443.506
-25600/69092	Loss: 442.866
-28800/69092	Loss: 432.541
-32000/69092	Loss: 439.689
-35200/69092	Loss: 432.838
-38400/69092	Loss: 438.098
-41600/69092	Loss: 433.655
-44800/69092	Loss: 454.539
-48000/69092	Loss: 433.450
-51200/69092	Loss: 429.925
-54400/69092	Loss: 435.827
-57600/69092	Loss: 443.370
-60800/69092	Loss: 449.191
-64000/69092	Loss: 437.884
-67200/69092	Loss: 442.179
-Training time 0:04:31.222503
-Epoch: 13 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 15)
-0/69092	Loss: 395.253
-3200/69092	Loss: 443.331
-6400/69092	Loss: 451.115
-9600/69092	Loss: 444.352
-12800/69092	Loss: 434.585
-16000/69092	Loss: 433.416
-19200/69092	Loss: 439.680
-22400/69092	Loss: 434.093
-25600/69092	Loss: 434.002
-28800/69092	Loss: 432.102
-32000/69092	Loss: 444.747
-35200/69092	Loss: 441.676
-38400/69092	Loss: 454.103
-41600/69092	Loss: 454.494
-44800/69092	Loss: 438.996
-48000/69092	Loss: 434.560
-51200/69092	Loss: 439.567
-54400/69092	Loss: 432.892
-57600/69092	Loss: 437.043
-60800/69092	Loss: 430.473
-64000/69092	Loss: 428.671
-67200/69092	Loss: 439.237
-Training time 0:04:29.380603
-Epoch: 14 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 16)
-0/69092	Loss: 400.240
-3200/69092	Loss: 450.573
-6400/69092	Loss: 442.114
-9600/69092	Loss: 442.227
-12800/69092	Loss: 448.687
-16000/69092	Loss: 428.751
-19200/69092	Loss: 439.393
-22400/69092	Loss: 439.926
-25600/69092	Loss: 446.699
-28800/69092	Loss: 437.067
-32000/69092	Loss: 444.480
-35200/69092	Loss: 436.639
-38400/69092	Loss: 441.261
-41600/69092	Loss: 442.127
-44800/69092	Loss: 427.793
-48000/69092	Loss: 432.717
-51200/69092	Loss: 434.227
-54400/69092	Loss: 431.206
-57600/69092	Loss: 434.003
-60800/69092	Loss: 436.200
-64000/69092	Loss: 437.519
-67200/69092	Loss: 441.965
-Training time 0:04:28.812572
-Epoch: 15 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 17)
-0/69092	Loss: 498.240
-3200/69092	Loss: 440.474
-6400/69092	Loss: 443.826
-9600/69092	Loss: 427.633
-12800/69092	Loss: 432.060
-16000/69092	Loss: 437.623
-19200/69092	Loss: 446.722
-22400/69092	Loss: 447.293
-25600/69092	Loss: 443.333
-28800/69092	Loss: 440.026
-32000/69092	Loss: 431.689
-35200/69092	Loss: 445.803
-38400/69092	Loss: 425.248
-41600/69092	Loss: 435.430
-44800/69092	Loss: 430.713
-48000/69092	Loss: 449.797
-51200/69092	Loss: 445.763
-54400/69092	Loss: 444.885
-57600/69092	Loss: 443.544
-60800/69092	Loss: 442.726
-64000/69092	Loss: 433.580
-67200/69092	Loss: 434.089
-Training time 0:04:27.019803
-Epoch: 16 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 18)
-0/69092	Loss: 466.280
-3200/69092	Loss: 444.208
-6400/69092	Loss: 430.691
-9600/69092	Loss: 440.609
-12800/69092	Loss: 444.150
-16000/69092	Loss: 433.251
-19200/69092	Loss: 440.078
-22400/69092	Loss: 434.438
-25600/69092	Loss: 437.736
-28800/69092	Loss: 442.102
-32000/69092	Loss: 448.164
-35200/69092	Loss: 429.432
-38400/69092	Loss: 452.784
-41600/69092	Loss: 442.916
-44800/69092	Loss: 437.249
-48000/69092	Loss: 440.515
-51200/69092	Loss: 426.367
-54400/69092	Loss: 437.090
-57600/69092	Loss: 442.061
-60800/69092	Loss: 436.515
-64000/69092	Loss: 439.174
-67200/69092	Loss: 436.353
-Training time 0:04:19.161998
-Epoch: 17 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 19)
-0/69092	Loss: 387.399
-3200/69092	Loss: 443.479
-6400/69092	Loss: 437.514
-9600/69092	Loss: 438.330
-12800/69092	Loss: 436.930
-16000/69092	Loss: 438.073
-19200/69092	Loss: 429.599
-22400/69092	Loss: 452.687
-25600/69092	Loss: 442.682
-28800/69092	Loss: 433.250
-32000/69092	Loss: 432.935
-35200/69092	Loss: 443.827
-38400/69092	Loss: 443.910
-41600/69092	Loss: 428.557
-44800/69092	Loss: 435.339
-48000/69092	Loss: 439.639
-51200/69092	Loss: 443.590
-54400/69092	Loss: 443.773
-57600/69092	Loss: 443.634
-60800/69092	Loss: 433.950
-64000/69092	Loss: 440.524
-67200/69092	Loss: 433.771
-Training time 0:04:27.899715
-Epoch: 18 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 20)
-0/69092	Loss: 517.758
-3200/69092	Loss: 437.515
-6400/69092	Loss: 438.680
-9600/69092	Loss: 430.177
-12800/69092	Loss: 442.590
-16000/69092	Loss: 444.649
-19200/69092	Loss: 439.902
-22400/69092	Loss: 434.947
-25600/69092	Loss: 446.782
-28800/69092	Loss: 448.020
-32000/69092	Loss: 449.653
-35200/69092	Loss: 436.316
-38400/69092	Loss: 440.670
-41600/69092	Loss: 440.831
-44800/69092	Loss: 433.954
-48000/69092	Loss: 436.466
-51200/69092	Loss: 433.538
-54400/69092	Loss: 446.983
-57600/69092	Loss: 433.267
-60800/69092	Loss: 435.412
-64000/69092	Loss: 439.729
-67200/69092	Loss: 433.043
-Training time 0:04:18.605166
-Epoch: 19 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 21)
-0/69092	Loss: 468.855
-3200/69092	Loss: 435.587
-6400/69092	Loss: 433.519
-9600/69092	Loss: 441.110
-12800/69092	Loss: 448.535
-16000/69092	Loss: 435.916
-19200/69092	Loss: 442.000
-22400/69092	Loss: 432.518
-25600/69092	Loss: 437.813
-28800/69092	Loss: 440.261
-32000/69092	Loss: 451.433
-35200/69092	Loss: 432.196
-38400/69092	Loss: 429.665
-41600/69092	Loss: 434.087
-44800/69092	Loss: 452.219
-48000/69092	Loss: 441.694
-51200/69092	Loss: 443.547
-54400/69092	Loss: 428.570
-57600/69092	Loss: 434.825
-60800/69092	Loss: 442.841
-64000/69092	Loss: 446.499
-67200/69092	Loss: 435.330
-Training time 0:04:26.089858
-Epoch: 20 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 22)
-0/69092	Loss: 399.025
-3200/69092	Loss: 439.286
-6400/69092	Loss: 437.546
-9600/69092	Loss: 437.893
-12800/69092	Loss: 439.831
-16000/69092	Loss: 441.731
-19200/69092	Loss: 435.240
-22400/69092	Loss: 446.213
-25600/69092	Loss: 440.672
-28800/69092	Loss: 436.112
-32000/69092	Loss: 437.153
-35200/69092	Loss: 432.120
-38400/69092	Loss: 434.109
-41600/69092	Loss: 448.263
-44800/69092	Loss: 444.124
-48000/69092	Loss: 443.655
-51200/69092	Loss: 439.393
-54400/69092	Loss: 440.949
-57600/69092	Loss: 428.376
-60800/69092	Loss: 444.703
-64000/69092	Loss: 439.446
-67200/69092	Loss: 438.540
-Training time 0:04:24.569566
-Epoch: 21 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 23)
-0/69092	Loss: 447.055
-3200/69092	Loss: 444.572
-6400/69092	Loss: 442.419
-9600/69092	Loss: 446.406
-12800/69092	Loss: 429.402
-16000/69092	Loss: 442.351
-19200/69092	Loss: 435.744
-22400/69092	Loss: 435.037
-25600/69092	Loss: 432.900
-28800/69092	Loss: 430.895
-32000/69092	Loss: 445.457
-35200/69092	Loss: 443.495
-38400/69092	Loss: 440.882
-41600/69092	Loss: 439.615
-44800/69092	Loss: 435.154
-48000/69092	Loss: 433.825
-51200/69092	Loss: 442.148
-54400/69092	Loss: 441.451
-57600/69092	Loss: 434.547
-60800/69092	Loss: 441.309
-64000/69092	Loss: 435.940
-67200/69092	Loss: 439.713
-Training time 0:04:22.992704
-Epoch: 22 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 24)
-0/69092	Loss: 389.986
-3200/69092	Loss: 437.453
-6400/69092	Loss: 428.187
-9600/69092	Loss: 437.500
-12800/69092	Loss: 440.849
-16000/69092	Loss: 446.903
-19200/69092	Loss: 435.664
-22400/69092	Loss: 435.958
-25600/69092	Loss: 437.770
-28800/69092	Loss: 439.976
-32000/69092	Loss: 434.114
-35200/69092	Loss: 450.093
-38400/69092	Loss: 446.469
-41600/69092	Loss: 423.855
-44800/69092	Loss: 442.047
-48000/69092	Loss: 445.983
-51200/69092	Loss: 439.791
-54400/69092	Loss: 430.888
-57600/69092	Loss: 446.467
-60800/69092	Loss: 430.531
-64000/69092	Loss: 451.369
-67200/69092	Loss: 440.697
-Training time 0:04:27.871353
-Epoch: 23 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 25)
-0/69092	Loss: 534.593
-3200/69092	Loss: 435.368
-6400/69092	Loss: 443.011
-9600/69092	Loss: 443.323
-12800/69092	Loss: 443.329
-16000/69092	Loss: 439.366
-19200/69092	Loss: 435.409
-22400/69092	Loss: 434.417
-25600/69092	Loss: 447.081
-28800/69092	Loss: 427.311
-32000/69092	Loss: 437.893
-35200/69092	Loss: 448.450
-38400/69092	Loss: 430.901
-41600/69092	Loss: 441.879
-44800/69092	Loss: 433.479
-48000/69092	Loss: 431.285
-51200/69092	Loss: 449.887
-54400/69092	Loss: 438.692
-57600/69092	Loss: 439.121
-60800/69092	Loss: 438.396
-64000/69092	Loss: 448.568
-67200/69092	Loss: 434.511
-Training time 0:04:20.548591
-Epoch: 24 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 26)
-0/69092	Loss: 476.164
-3200/69092	Loss: 436.696
-6400/69092	Loss: 446.213
-9600/69092	Loss: 450.422
-12800/69092	Loss: 432.899
-16000/69092	Loss: 436.943
-19200/69092	Loss: 436.398
-22400/69092	Loss: 436.425
-25600/69092	Loss: 439.782
-28800/69092	Loss: 433.574
-32000/69092	Loss: 436.817
-35200/69092	Loss: 446.180
-38400/69092	Loss: 443.506
-41600/69092	Loss: 439.607
-44800/69092	Loss: 440.577
-48000/69092	Loss: 438.207
-51200/69092	Loss: 433.010
-54400/69092	Loss: 444.056
-57600/69092	Loss: 439.147
-60800/69092	Loss: 440.633
-64000/69092	Loss: 440.489
-67200/69092	Loss: 436.375
-Training time 0:04:19.057597
-Epoch: 25 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 27)
-0/69092	Loss: 374.643
-3200/69092	Loss: 445.066
-6400/69092	Loss: 437.406
-9600/69092	Loss: 433.901
-12800/69092	Loss: 445.341
-16000/69092	Loss: 445.741
-19200/69092	Loss: 427.750
-22400/69092	Loss: 430.690
-25600/69092	Loss: 430.201
-28800/69092	Loss: 432.028
-32000/69092	Loss: 450.946
-35200/69092	Loss: 435.227
-38400/69092	Loss: 446.144
-41600/69092	Loss: 438.084
-44800/69092	Loss: 432.434
-48000/69092	Loss: 442.399
-51200/69092	Loss: 442.481
-54400/69092	Loss: 438.879
-57600/69092	Loss: 442.300
-60800/69092	Loss: 440.708
-64000/69092	Loss: 433.623
-67200/69092	Loss: 451.991
-Training time 0:04:26.867117
-Epoch: 26 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 28)
-0/69092	Loss: 411.831
-3200/69092	Loss: 438.035
-6400/69092	Loss: 444.905
-9600/69092	Loss: 433.037
-12800/69092	Loss: 436.386
-16000/69092	Loss: 443.999
-19200/69092	Loss: 430.444
-22400/69092	Loss: 440.358
-25600/69092	Loss: 430.060
-28800/69092	Loss: 429.699
-32000/69092	Loss: 440.840
-35200/69092	Loss: 432.152
-38400/69092	Loss: 436.628
-41600/69092	Loss: 440.554
-44800/69092	Loss: 455.091
-48000/69092	Loss: 442.408
-51200/69092	Loss: 450.611
-54400/69092	Loss: 430.677
-57600/69092	Loss: 447.235
-60800/69092	Loss: 442.394
-64000/69092	Loss: 437.629
-67200/69092	Loss: 443.945
-Training time 0:04:19.868080
-Epoch: 27 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 29)
-0/69092	Loss: 463.077
-3200/69092	Loss: 455.815
-6400/69092	Loss: 431.184
-9600/69092	Loss: 431.235
-12800/69092	Loss: 440.467
-16000/69092	Loss: 442.644
-19200/69092	Loss: 450.845
-22400/69092	Loss: 444.505
-25600/69092	Loss: 441.152
-28800/69092	Loss: 433.715
-32000/69092	Loss: 437.446
-35200/69092	Loss: 437.977
-38400/69092	Loss: 442.337
-41600/69092	Loss: 428.539
-44800/69092	Loss: 445.475
-48000/69092	Loss: 427.866
-51200/69092	Loss: 440.335
-54400/69092	Loss: 423.947
-57600/69092	Loss: 441.449
-60800/69092	Loss: 436.196
-64000/69092	Loss: 443.439
-67200/69092	Loss: 439.903
-Training time 0:04:30.814036
-Epoch: 28 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 30)
-0/69092	Loss: 405.135
-3200/69092	Loss: 452.535
-6400/69092	Loss: 435.374
-9600/69092	Loss: 436.959
-12800/69092	Loss: 444.434
-16000/69092	Loss: 440.027
-19200/69092	Loss: 440.817
-22400/69092	Loss: 444.350
-25600/69092	Loss: 441.136
-28800/69092	Loss: 438.674
-32000/69092	Loss: 434.921
-35200/69092	Loss: 434.902
-38400/69092	Loss: 444.388
-41600/69092	Loss: 427.179
-44800/69092	Loss: 435.924
-48000/69092	Loss: 436.628
-51200/69092	Loss: 443.645
-54400/69092	Loss: 428.798
-57600/69092	Loss: 440.182
-60800/69092	Loss: 436.767
-64000/69092	Loss: 442.607
-67200/69092	Loss: 438.407
-Training time 0:04:24.017043
-Epoch: 29 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 31)
-0/69092	Loss: 476.353
-3200/69092	Loss: 433.756
-6400/69092	Loss: 440.207
-9600/69092	Loss: 448.995
-12800/69092	Loss: 444.782
-16000/69092	Loss: 429.639
-19200/69092	Loss: 444.561
-22400/69092	Loss: 447.386
-25600/69092	Loss: 438.468
-28800/69092	Loss: 433.601
-32000/69092	Loss: 431.844
-35200/69092	Loss: 450.702
-38400/69092	Loss: 442.945
-41600/69092	Loss: 443.027
-44800/69092	Loss: 434.272
-48000/69092	Loss: 442.576
-51200/69092	Loss: 433.732
-54400/69092	Loss: 437.670
-57600/69092	Loss: 434.728
-60800/69092	Loss: 440.396
-64000/69092	Loss: 431.227
-67200/69092	Loss: 434.757
-Training time 0:04:30.715730
-Epoch: 30 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 32)
-0/69092	Loss: 481.012
-3200/69092	Loss: 444.196
-6400/69092	Loss: 443.710
-9600/69092	Loss: 437.834
-12800/69092	Loss: 434.136
-16000/69092	Loss: 438.710
-19200/69092	Loss: 449.580
-22400/69092	Loss: 434.762
-25600/69092	Loss: 437.236
-28800/69092	Loss: 433.502
-32000/69092	Loss: 445.858
-35200/69092	Loss: 436.958
-38400/69092	Loss: 432.003
-41600/69092	Loss: 435.567
-44800/69092	Loss: 430.610
-48000/69092	Loss: 438.893
-51200/69092	Loss: 438.334
-54400/69092	Loss: 448.751
-57600/69092	Loss: 437.368
-60800/69092	Loss: 437.962
-64000/69092	Loss: 440.413
-67200/69092	Loss: 447.322
-Training time 0:04:26.265103
-Epoch: 31 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 33)
-0/69092	Loss: 400.108
-3200/69092	Loss: 437.015
-6400/69092	Loss: 437.442
-9600/69092	Loss: 435.463
-12800/69092	Loss: 442.450
-16000/69092	Loss: 439.221
-19200/69092	Loss: 438.020
-22400/69092	Loss: 436.137
-25600/69092	Loss: 436.487
-28800/69092	Loss: 427.598
-32000/69092	Loss: 430.596
-35200/69092	Loss: 437.139
-38400/69092	Loss: 445.967
-41600/69092	Loss: 445.456
-44800/69092	Loss: 435.217
-48000/69092	Loss: 446.861
-51200/69092	Loss: 449.337
-54400/69092	Loss: 441.523
-57600/69092	Loss: 430.402
-60800/69092	Loss: 443.866
-64000/69092	Loss: 445.363
-67200/69092	Loss: 439.684
-Training time 0:04:25.301353
-Epoch: 32 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 34)
-0/69092	Loss: 448.684
-3200/69092	Loss: 435.749
-6400/69092	Loss: 432.473
-9600/69092	Loss: 435.465
-12800/69092	Loss: 435.356
-16000/69092	Loss: 440.362
-19200/69092	Loss: 444.648
-22400/69092	Loss: 435.983
-25600/69092	Loss: 441.671
-28800/69092	Loss: 435.129
-32000/69092	Loss: 431.571
-35200/69092	Loss: 440.624
-38400/69092	Loss: 437.530
-41600/69092	Loss: 428.413
-44800/69092	Loss: 432.629
-48000/69092	Loss: 443.885
-51200/69092	Loss: 444.145
-54400/69092	Loss: 452.289
-57600/69092	Loss: 444.870
-60800/69092	Loss: 436.989
-64000/69092	Loss: 441.231
-67200/69092	Loss: 444.663
-Training time 0:04:33.404934
-Epoch: 33 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 35)
-0/69092	Loss: 436.446
-3200/69092	Loss: 447.517
-6400/69092	Loss: 440.830
-9600/69092	Loss: 435.077
-12800/69092	Loss: 444.663
-16000/69092	Loss: 438.343
-19200/69092	Loss: 436.011
-22400/69092	Loss: 444.873
-25600/69092	Loss: 441.715
-28800/69092	Loss: 436.985
-32000/69092	Loss: 440.298
-35200/69092	Loss: 433.009
-38400/69092	Loss: 437.177
-41600/69092	Loss: 450.954
-44800/69092	Loss: 439.261
-48000/69092	Loss: 437.136
-51200/69092	Loss: 433.217
-54400/69092	Loss: 440.091
-57600/69092	Loss: 435.368
-60800/69092	Loss: 436.326
-64000/69092	Loss: 432.034
-67200/69092	Loss: 439.265
-Training time 0:04:16.514513
-Epoch: 34 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 36)
-0/69092	Loss: 403.806
-3200/69092	Loss: 438.807
-6400/69092	Loss: 432.434
-9600/69092	Loss: 443.323
-12800/69092	Loss: 446.873
-16000/69092	Loss: 437.214
-19200/69092	Loss: 434.220
-22400/69092	Loss: 442.977
-25600/69092	Loss: 437.363
-28800/69092	Loss: 431.058
-32000/69092	Loss: 439.841
-35200/69092	Loss: 437.261
-38400/69092	Loss: 437.091
-41600/69092	Loss: 445.562
-44800/69092	Loss: 447.495
-48000/69092	Loss: 449.808
-51200/69092	Loss: 437.370
-54400/69092	Loss: 443.357
-57600/69092	Loss: 436.630
-60800/69092	Loss: 435.718
-64000/69092	Loss: 427.944
-67200/69092	Loss: 438.632
-Training time 0:04:22.187666
-Epoch: 35 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 37)
-0/69092	Loss: 454.148
-3200/69092	Loss: 430.643
-6400/69092	Loss: 449.694
-9600/69092	Loss: 444.262
-12800/69092	Loss: 435.892
-16000/69092	Loss: 437.207
-19200/69092	Loss: 448.424
-22400/69092	Loss: 433.562
-25600/69092	Loss: 438.894
-28800/69092	Loss: 428.642
-32000/69092	Loss: 433.974
-35200/69092	Loss: 432.721
-38400/69092	Loss: 431.000
-41600/69092	Loss: 443.778
-44800/69092	Loss: 437.898
-48000/69092	Loss: 437.710
-51200/69092	Loss: 446.022
-54400/69092	Loss: 442.456
-57600/69092	Loss: 443.119
-60800/69092	Loss: 441.017
-64000/69092	Loss: 438.171
-67200/69092	Loss: 441.328
-Training time 0:04:23.534664
-Epoch: 36 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 38)
-0/69092	Loss: 503.709
-3200/69092	Loss: 452.426
-6400/69092	Loss: 433.778
-9600/69092	Loss: 437.960
-12800/69092	Loss: 437.121
-16000/69092	Loss: 438.996
-19200/69092	Loss: 440.897
-22400/69092	Loss: 434.344
-25600/69092	Loss: 434.731
-28800/69092	Loss: 442.679
-32000/69092	Loss: 442.099
-35200/69092	Loss: 436.466
-38400/69092	Loss: 430.395
-41600/69092	Loss: 439.344
-44800/69092	Loss: 442.088
-48000/69092	Loss: 432.574
-51200/69092	Loss: 454.989
-54400/69092	Loss: 446.804
-57600/69092	Loss: 438.708
-60800/69092	Loss: 432.784
-64000/69092	Loss: 432.696
-67200/69092	Loss: 437.383
-Training time 0:04:23.355301
-Epoch: 37 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 39)
-0/69092	Loss: 447.649
-3200/69092	Loss: 438.415
-6400/69092	Loss: 437.275
-9600/69092	Loss: 433.935
-12800/69092	Loss: 444.876
-16000/69092	Loss: 436.280
-19200/69092	Loss: 442.748
-22400/69092	Loss: 433.677
-25600/69092	Loss: 434.464
-28800/69092	Loss: 436.915
-32000/69092	Loss: 434.070
-35200/69092	Loss: 433.907
-38400/69092	Loss: 444.981
-41600/69092	Loss: 438.346
-44800/69092	Loss: 435.798
-48000/69092	Loss: 439.504
-51200/69092	Loss: 449.858
-54400/69092	Loss: 438.362
-57600/69092	Loss: 435.984
-60800/69092	Loss: 453.773
-64000/69092	Loss: 438.298
-67200/69092	Loss: 443.329
-Training time 0:04:29.106721
-Epoch: 38 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 40)
-0/69092	Loss: 391.537
-3200/69092	Loss: 440.161
-6400/69092	Loss: 446.423
-9600/69092	Loss: 437.502
-12800/69092	Loss: 442.225
-16000/69092	Loss: 446.088
-19200/69092	Loss: 437.018
-22400/69092	Loss: 437.129
-25600/69092	Loss: 442.543
-28800/69092	Loss: 425.001
-32000/69092	Loss: 455.314
-35200/69092	Loss: 442.058
-38400/69092	Loss: 437.978
-41600/69092	Loss: 435.451
-44800/69092	Loss: 442.741
-48000/69092	Loss: 435.259
-51200/69092	Loss: 441.030
-54400/69092	Loss: 437.358
-57600/69092	Loss: 441.818
-60800/69092	Loss: 430.050
-64000/69092	Loss: 433.974
-67200/69092	Loss: 440.024
-Training time 0:04:27.133206
-Epoch: 39 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 41)
-0/69092	Loss: 437.809
-3200/69092	Loss: 445.816
-6400/69092	Loss: 426.942
-9600/69092	Loss: 436.363
-12800/69092	Loss: 442.467
-16000/69092	Loss: 440.726
-19200/69092	Loss: 433.769
-22400/69092	Loss: 438.185
-25600/69092	Loss: 441.295
-28800/69092	Loss: 437.113
-32000/69092	Loss: 424.040
-35200/69092	Loss: 437.843
-38400/69092	Loss: 446.272
-41600/69092	Loss: 449.939
-44800/69092	Loss: 436.133
-48000/69092	Loss: 432.491
-51200/69092	Loss: 435.159
-54400/69092	Loss: 445.164
-57600/69092	Loss: 442.093
-60800/69092	Loss: 445.885
-64000/69092	Loss: 438.135
-67200/69092	Loss: 441.220
-Training time 0:04:30.637297
-Epoch: 40 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 42)
-0/69092	Loss: 409.611
-3200/69092	Loss: 444.389
-6400/69092	Loss: 440.365
-9600/69092	Loss: 442.838
-12800/69092	Loss: 449.627
-16000/69092	Loss: 436.579
-19200/69092	Loss: 431.977
-22400/69092	Loss: 434.451
-25600/69092	Loss: 436.311
-28800/69092	Loss: 440.259
-32000/69092	Loss: 441.167
-35200/69092	Loss: 439.849
-38400/69092	Loss: 441.058
-41600/69092	Loss: 438.793
-44800/69092	Loss: 440.302
-48000/69092	Loss: 435.157
-51200/69092	Loss: 439.652
-54400/69092	Loss: 444.732
-57600/69092	Loss: 435.939
-60800/69092	Loss: 434.778
-64000/69092	Loss: 439.681
-67200/69092	Loss: 432.230
-Training time 0:04:26.600357
-Epoch: 41 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 43)
-0/69092	Loss: 507.415
-3200/69092	Loss: 438.228
-6400/69092	Loss: 438.391
-9600/69092	Loss: 437.827
-12800/69092	Loss: 437.751
-16000/69092	Loss: 445.539
-19200/69092	Loss: 436.618
-22400/69092	Loss: 443.044
-25600/69092	Loss: 449.848
-28800/69092	Loss: 434.835
-32000/69092	Loss: 436.210
-35200/69092	Loss: 440.821
-38400/69092	Loss: 430.715
-41600/69092	Loss: 443.028
-44800/69092	Loss: 442.057
-48000/69092	Loss: 442.289
-51200/69092	Loss: 435.588
-54400/69092	Loss: 436.053
-57600/69092	Loss: 432.229
-60800/69092	Loss: 447.308
-64000/69092	Loss: 441.927
-67200/69092	Loss: 435.013
-Training time 0:04:30.007899
-Epoch: 42 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 44)
-0/69092	Loss: 407.972
-3200/69092	Loss: 432.577
-6400/69092	Loss: 440.557
-9600/69092	Loss: 433.031
-12800/69092	Loss: 440.819
-16000/69092	Loss: 431.605
-19200/69092	Loss: 436.227
-22400/69092	Loss: 440.783
-25600/69092	Loss: 442.717
-28800/69092	Loss: 444.362
-32000/69092	Loss: 436.995
-35200/69092	Loss: 447.956
-38400/69092	Loss: 449.645
-41600/69092	Loss: 432.915
-44800/69092	Loss: 443.741
-48000/69092	Loss: 442.266
-51200/69092	Loss: 436.813
-54400/69092	Loss: 444.252
-57600/69092	Loss: 427.523
-60800/69092	Loss: 437.849
-64000/69092	Loss: 439.495
-67200/69092	Loss: 440.288
-Training time 0:04:29.266357
-Epoch: 43 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 45)
-0/69092	Loss: 398.038
-3200/69092	Loss: 431.172
-6400/69092	Loss: 441.445
-9600/69092	Loss: 444.381
-12800/69092	Loss: 440.471
-16000/69092	Loss: 433.104
-19200/69092	Loss: 453.816
-22400/69092	Loss: 439.002
-25600/69092	Loss: 441.156
-28800/69092	Loss: 437.415
-32000/69092	Loss: 438.586
-35200/69092	Loss: 430.243
-38400/69092	Loss: 441.148
-41600/69092	Loss: 446.183
-44800/69092	Loss: 442.891
-48000/69092	Loss: 442.371
-51200/69092	Loss: 440.565
-54400/69092	Loss: 438.831
-57600/69092	Loss: 429.123
-60800/69092	Loss: 435.269
-64000/69092	Loss: 435.936
-67200/69092	Loss: 439.151
-Training time 0:04:17.281301
-Epoch: 44 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 46)
-0/69092	Loss: 385.241
-3200/69092	Loss: 439.788
-6400/69092	Loss: 439.399
-9600/69092	Loss: 437.780
-12800/69092	Loss: 444.044
-16000/69092	Loss: 442.072
-19200/69092	Loss: 434.022
-22400/69092	Loss: 443.063
-25600/69092	Loss: 443.804
-28800/69092	Loss: 445.599
-32000/69092	Loss: 437.145
-35200/69092	Loss: 436.727
-38400/69092	Loss: 437.106
-41600/69092	Loss: 447.407
-44800/69092	Loss: 437.015
-48000/69092	Loss: 434.691
-51200/69092	Loss: 433.837
-54400/69092	Loss: 434.865
-57600/69092	Loss: 434.589
-60800/69092	Loss: 436.302
-64000/69092	Loss: 442.040
-67200/69092	Loss: 440.525
-Training time 0:04:24.839865
-Epoch: 45 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 47)
-0/69092	Loss: 494.956
-3200/69092	Loss: 429.617
-6400/69092	Loss: 433.782
-9600/69092	Loss: 443.090
-12800/69092	Loss: 433.299
-16000/69092	Loss: 434.624
-19200/69092	Loss: 440.676
-22400/69092	Loss: 444.434
-25600/69092	Loss: 439.572
-28800/69092	Loss: 430.997
-32000/69092	Loss: 442.559
-35200/69092	Loss: 430.993
-38400/69092	Loss: 443.031
-41600/69092	Loss: 437.318
-44800/69092	Loss: 441.607
-48000/69092	Loss: 439.600
-51200/69092	Loss: 436.554
-54400/69092	Loss: 445.179
-57600/69092	Loss: 443.965
-60800/69092	Loss: 440.311
-64000/69092	Loss: 445.184
-67200/69092	Loss: 435.747
-Training time 0:04:26.880554
-Epoch: 46 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 48)
-0/69092	Loss: 412.232
-3200/69092	Loss: 452.045
-6400/69092	Loss: 446.762
-9600/69092	Loss: 444.849
-12800/69092	Loss: 437.523
-16000/69092	Loss: 428.655
-19200/69092	Loss: 440.258
-22400/69092	Loss: 445.879
-25600/69092	Loss: 435.195
-28800/69092	Loss: 436.907
-32000/69092	Loss: 429.976
-35200/69092	Loss: 431.490
-38400/69092	Loss: 442.729
-41600/69092	Loss: 443.433
-44800/69092	Loss: 439.090
-48000/69092	Loss: 444.125
-51200/69092	Loss: 438.630
-54400/69092	Loss: 429.891
-57600/69092	Loss: 439.128
-60800/69092	Loss: 443.925
-64000/69092	Loss: 440.835
-67200/69092	Loss: 438.906
-Training time 0:04:32.843146
-Epoch: 47 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 49)
-0/69092	Loss: 426.367
-3200/69092	Loss: 442.251
-6400/69092	Loss: 436.144
-9600/69092	Loss: 444.448
-12800/69092	Loss: 439.454
-16000/69092	Loss: 442.244
-19200/69092	Loss: 437.906
-22400/69092	Loss: 435.093
-25600/69092	Loss: 430.616
-28800/69092	Loss: 441.967
-32000/69092	Loss: 436.438
-35200/69092	Loss: 447.880
-38400/69092	Loss: 434.073
-41600/69092	Loss: 440.352
-44800/69092	Loss: 443.125
-48000/69092	Loss: 438.794
-51200/69092	Loss: 434.574
-54400/69092	Loss: 434.909
-57600/69092	Loss: 440.548
-60800/69092	Loss: 447.929
-64000/69092	Loss: 433.344
-67200/69092	Loss: 432.947
-Training time 0:04:32.968524
-Epoch: 48 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 50)
-0/69092	Loss: 426.598
-3200/69092	Loss: 437.581
-6400/69092	Loss: 447.624
-9600/69092	Loss: 441.424
-12800/69092	Loss: 435.978
-16000/69092	Loss: 439.993
-19200/69092	Loss: 440.253
-22400/69092	Loss: 441.978
-25600/69092	Loss: 440.757
-28800/69092	Loss: 438.010
-32000/69092	Loss: 436.918
-35200/69092	Loss: 437.191
-38400/69092	Loss: 431.716
-41600/69092	Loss: 443.954
-44800/69092	Loss: 446.419
-48000/69092	Loss: 436.451
-51200/69092	Loss: 444.939
-54400/69092	Loss: 435.050
-57600/69092	Loss: 441.813
-60800/69092	Loss: 430.161
-64000/69092	Loss: 432.653
-67200/69092	Loss: 439.996
-Training time 0:04:28.575223
-Epoch: 49 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 51)
-0/69092	Loss: 422.456
-3200/69092	Loss: 435.311
-6400/69092	Loss: 436.360
-9600/69092	Loss: 437.095
-12800/69092	Loss: 436.947
-16000/69092	Loss: 445.358
-19200/69092	Loss: 440.554
-22400/69092	Loss: 429.427
-25600/69092	Loss: 436.670
-28800/69092	Loss: 429.370
-32000/69092	Loss: 443.846
-35200/69092	Loss: 438.409
-38400/69092	Loss: 437.534
-41600/69092	Loss: 432.698
-44800/69092	Loss: 452.084
-48000/69092	Loss: 448.768
-51200/69092	Loss: 440.683
-54400/69092	Loss: 437.061
-57600/69092	Loss: 448.541
-60800/69092	Loss: 429.059
-64000/69092	Loss: 443.735
-67200/69092	Loss: 437.904
-Training time 0:04:27.925841
-Epoch: 50 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 52)
-0/69092	Loss: 550.071
-3200/69092	Loss: 442.956
-6400/69092	Loss: 438.831
-9600/69092	Loss: 438.188
-12800/69092	Loss: 442.906
-16000/69092	Loss: 444.248
-19200/69092	Loss: 442.256
-22400/69092	Loss: 441.740
-25600/69092	Loss: 446.092
-28800/69092	Loss: 437.966
-32000/69092	Loss: 432.234
-35200/69092	Loss: 442.237
-38400/69092	Loss: 431.455
-41600/69092	Loss: 438.076
-44800/69092	Loss: 439.315
-48000/69092	Loss: 441.768
-51200/69092	Loss: 442.594
-54400/69092	Loss: 436.191
-57600/69092	Loss: 433.962
-60800/69092	Loss: 438.392
-64000/69092	Loss: 437.155
-67200/69092	Loss: 431.720
-Training time 0:04:29.821254
-Epoch: 51 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 53)
-0/69092	Loss: 437.337
-3200/69092	Loss: 446.035
-6400/69092	Loss: 442.904
-9600/69092	Loss: 435.249
-12800/69092	Loss: 439.279
-16000/69092	Loss: 443.838
-19200/69092	Loss: 436.515
-22400/69092	Loss: 439.223
-25600/69092	Loss: 441.838
-28800/69092	Loss: 442.334
-32000/69092	Loss: 440.988
-35200/69092	Loss: 427.747
-38400/69092	Loss: 441.443
-41600/69092	Loss: 444.276
-44800/69092	Loss: 445.065
-48000/69092	Loss: 439.623
-51200/69092	Loss: 431.319
-54400/69092	Loss: 441.970
-57600/69092	Loss: 433.791
-60800/69092	Loss: 442.944
-64000/69092	Loss: 437.015
-67200/69092	Loss: 428.847
-Training time 0:04:25.797223
-Epoch: 52 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 54)
-0/69092	Loss: 417.672
-3200/69092	Loss: 443.598
-6400/69092	Loss: 437.574
-9600/69092	Loss: 438.813
-12800/69092	Loss: 444.055
-16000/69092	Loss: 437.293
-19200/69092	Loss: 449.733
-22400/69092	Loss: 441.537
-25600/69092	Loss: 425.452
-28800/69092	Loss: 444.374
-32000/69092	Loss: 435.388
-35200/69092	Loss: 440.291
-38400/69092	Loss: 431.105
-41600/69092	Loss: 442.119
-44800/69092	Loss: 439.724
-48000/69092	Loss: 432.880
-51200/69092	Loss: 453.698
-54400/69092	Loss: 433.217
-57600/69092	Loss: 437.590
-60800/69092	Loss: 442.609
-64000/69092	Loss: 438.135
-67200/69092	Loss: 439.851
-Training time 0:04:22.740984
-Epoch: 53 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 55)
-0/69092	Loss: 381.935
-3200/69092	Loss: 428.765
-6400/69092	Loss: 443.327
-9600/69092	Loss: 436.975
-12800/69092	Loss: 439.071
-16000/69092	Loss: 437.715
-19200/69092	Loss: 433.178
-22400/69092	Loss: 443.541
-25600/69092	Loss: 436.405
-28800/69092	Loss: 447.054
-32000/69092	Loss: 442.356
-35200/69092	Loss: 436.860
-38400/69092	Loss: 442.425
-41600/69092	Loss: 442.004
-44800/69092	Loss: 430.222
-48000/69092	Loss: 438.636
-51200/69092	Loss: 447.515
-54400/69092	Loss: 443.500
-57600/69092	Loss: 437.393
-60800/69092	Loss: 442.845
-64000/69092	Loss: 440.101
-67200/69092	Loss: 436.235
-Training time 0:04:21.278154
-Epoch: 54 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 56)
-0/69092	Loss: 413.646
-3200/69092	Loss: 431.481
-6400/69092	Loss: 447.569
-9600/69092	Loss: 437.780
-12800/69092	Loss: 433.669
-16000/69092	Loss: 438.410
-19200/69092	Loss: 445.867
-22400/69092	Loss: 444.858
-25600/69092	Loss: 445.017
-28800/69092	Loss: 445.177
-32000/69092	Loss: 439.514
-35200/69092	Loss: 431.732
-38400/69092	Loss: 439.518
-41600/69092	Loss: 431.592
-44800/69092	Loss: 444.482
-48000/69092	Loss: 438.297
-51200/69092	Loss: 432.212
-54400/69092	Loss: 442.138
-57600/69092	Loss: 438.929
-60800/69092	Loss: 437.359
-64000/69092	Loss: 436.536
-67200/69092	Loss: 441.419
-Training time 0:04:27.817203
-Epoch: 55 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 57)
-0/69092	Loss: 427.898
-3200/69092	Loss: 447.176
-6400/69092	Loss: 440.106
-9600/69092	Loss: 439.614
-12800/69092	Loss: 429.972
-16000/69092	Loss: 446.450
-19200/69092	Loss: 435.340
-22400/69092	Loss: 439.818
-25600/69092	Loss: 436.800
-28800/69092	Loss: 441.428
-32000/69092	Loss: 440.438
-35200/69092	Loss: 431.536
-38400/69092	Loss: 442.916
-41600/69092	Loss: 431.127
-44800/69092	Loss: 439.969
-48000/69092	Loss: 438.947
-51200/69092	Loss: 442.249
-54400/69092	Loss: 441.265
-57600/69092	Loss: 443.976
-60800/69092	Loss: 427.512
-64000/69092	Loss: 436.935
-67200/69092	Loss: 445.539
-Training time 0:04:33.632200
-Epoch: 56 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 58)
-0/69092	Loss: 411.760
-3200/69092	Loss: 433.892
-6400/69092	Loss: 439.177
-9600/69092	Loss: 432.515
-12800/69092	Loss: 437.680
-16000/69092	Loss: 444.365
-19200/69092	Loss: 438.557
-22400/69092	Loss: 445.234
-25600/69092	Loss: 440.781
-28800/69092	Loss: 435.052
-32000/69092	Loss: 442.516
-35200/69092	Loss: 437.830
-38400/69092	Loss: 435.828
-41600/69092	Loss: 442.848
-44800/69092	Loss: 446.832
-48000/69092	Loss: 445.540
-51200/69092	Loss: 436.871
-54400/69092	Loss: 440.483
-57600/69092	Loss: 431.503
-60800/69092	Loss: 435.062
-64000/69092	Loss: 436.744
-67200/69092	Loss: 439.370
-Training time 0:04:33.756435
-Epoch: 57 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 59)
-0/69092	Loss: 438.751
-3200/69092	Loss: 448.455
-6400/69092	Loss: 434.567
-9600/69092	Loss: 438.998
-12800/69092	Loss: 442.327
-16000/69092	Loss: 439.686
-19200/69092	Loss: 439.175
-22400/69092	Loss: 443.437
-25600/69092	Loss: 434.127
-28800/69092	Loss: 434.975
-32000/69092	Loss: 435.085
-35200/69092	Loss: 451.537
-38400/69092	Loss: 438.002
-41600/69092	Loss: 439.895
-44800/69092	Loss: 429.652
-48000/69092	Loss: 450.670
-51200/69092	Loss: 426.567
-54400/69092	Loss: 432.979
-57600/69092	Loss: 434.381
-60800/69092	Loss: 438.850
-64000/69092	Loss: 436.625
-67200/69092	Loss: 443.626
-Training time 0:04:34.159196
-Epoch: 58 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 60)
-0/69092	Loss: 481.370
-3200/69092	Loss: 443.856
-6400/69092	Loss: 438.814
-9600/69092	Loss: 441.666
-12800/69092	Loss: 437.547
-16000/69092	Loss: 434.459
-19200/69092	Loss: 431.864
-22400/69092	Loss: 433.989
-25600/69092	Loss: 430.929
-28800/69092	Loss: 439.915
-32000/69092	Loss: 447.245
-35200/69092	Loss: 447.208
-38400/69092	Loss: 433.403
-41600/69092	Loss: 438.187
-44800/69092	Loss: 435.722
-48000/69092	Loss: 438.726
-51200/69092	Loss: 432.387
-54400/69092	Loss: 439.987
-57600/69092	Loss: 440.465
-60800/69092	Loss: 441.431
-64000/69092	Loss: 449.919
-67200/69092	Loss: 450.584
-Training time 0:04:34.858693
-Epoch: 59 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 61)
-0/69092	Loss: 429.961
-3200/69092	Loss: 429.342
-6400/69092	Loss: 442.421
-9600/69092	Loss: 435.096
-12800/69092	Loss: 441.566
-16000/69092	Loss: 442.757
-19200/69092	Loss: 436.914
-22400/69092	Loss: 443.071
-25600/69092	Loss: 442.141
-28800/69092	Loss: 448.962
-32000/69092	Loss: 443.628
-35200/69092	Loss: 430.613
-38400/69092	Loss: 427.441
-41600/69092	Loss: 434.592
-44800/69092	Loss: 436.874
-48000/69092	Loss: 447.286
-51200/69092	Loss: 429.857
-54400/69092	Loss: 436.978
-57600/69092	Loss: 447.167
-60800/69092	Loss: 438.259
-64000/69092	Loss: 438.108
-67200/69092	Loss: 447.906
-Training time 0:04:28.926358
-Epoch: 60 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 62)
-0/69092	Loss: 453.265
-3200/69092	Loss: 438.843
-6400/69092	Loss: 432.844
-9600/69092	Loss: 441.518
-12800/69092	Loss: 434.637
-16000/69092	Loss: 441.445
-19200/69092	Loss: 445.523
-22400/69092	Loss: 442.913
-25600/69092	Loss: 438.194
-28800/69092	Loss: 449.389
-32000/69092	Loss: 441.307
-35200/69092	Loss: 437.638
-38400/69092	Loss: 438.045
-41600/69092	Loss: 439.874
-44800/69092	Loss: 419.166
-48000/69092	Loss: 439.177
-51200/69092	Loss: 438.055
-54400/69092	Loss: 454.875
-57600/69092	Loss: 442.716
-60800/69092	Loss: 433.500
-64000/69092	Loss: 442.145
-67200/69092	Loss: 425.070
-Training time 0:04:17.812471
-Epoch: 61 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 63)
-0/69092	Loss: 435.152
-3200/69092	Loss: 425.168
-6400/69092	Loss: 436.629
-9600/69092	Loss: 440.108
-12800/69092	Loss: 440.200
-16000/69092	Loss: 441.054
-19200/69092	Loss: 442.874
-22400/69092	Loss: 440.906
-25600/69092	Loss: 437.788
-28800/69092	Loss: 439.653
-32000/69092	Loss: 450.036
-35200/69092	Loss: 447.640
-38400/69092	Loss: 440.043
-41600/69092	Loss: 431.116
-44800/69092	Loss: 440.889
-48000/69092	Loss: 439.093
-51200/69092	Loss: 444.772
-54400/69092	Loss: 432.654
-57600/69092	Loss: 439.986
-60800/69092	Loss: 434.186
-64000/69092	Loss: 450.730
-67200/69092	Loss: 429.098
-Training time 0:04:24.809857
-Epoch: 62 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 64)
-0/69092	Loss: 440.093
-3200/69092	Loss: 433.018
-6400/69092	Loss: 429.474
-9600/69092	Loss: 441.433
-12800/69092	Loss: 442.660
-16000/69092	Loss: 446.788
-19200/69092	Loss: 441.570
-22400/69092	Loss: 441.901
-25600/69092	Loss: 439.729
-28800/69092	Loss: 441.023
-32000/69092	Loss: 433.298
-35200/69092	Loss: 440.624
-38400/69092	Loss: 433.511
-41600/69092	Loss: 441.454
-44800/69092	Loss: 439.079
-48000/69092	Loss: 438.031
-51200/69092	Loss: 442.159
-54400/69092	Loss: 445.902
-57600/69092	Loss: 430.249
-60800/69092	Loss: 440.677
-64000/69092	Loss: 432.880
-67200/69092	Loss: 437.562
-Training time 0:04:20.804945
-Epoch: 63 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 65)
-0/69092	Loss: 436.817
-3200/69092	Loss: 440.182
-6400/69092	Loss: 435.733
-9600/69092	Loss: 439.587
-12800/69092	Loss: 431.296
-16000/69092	Loss: 441.980
-19200/69092	Loss: 442.104
-22400/69092	Loss: 438.614
-25600/69092	Loss: 440.386
-28800/69092	Loss: 434.225
-32000/69092	Loss: 442.410
-35200/69092	Loss: 437.588
-38400/69092	Loss: 442.037
-41600/69092	Loss: 442.591
-44800/69092	Loss: 436.520
-48000/69092	Loss: 438.737
-51200/69092	Loss: 434.122
-54400/69092	Loss: 429.386
-57600/69092	Loss: 433.496
-60800/69092	Loss: 442.233
-64000/69092	Loss: 445.463
-67200/69092	Loss: 448.857
-Training time 0:04:19.942842
-Epoch: 64 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 66)
-0/69092	Loss: 398.998
-3200/69092	Loss: 443.840
-6400/69092	Loss: 439.399
-9600/69092	Loss: 435.081
-12800/69092	Loss: 445.893
-16000/69092	Loss: 431.500
-19200/69092	Loss: 435.736
-22400/69092	Loss: 439.064
-25600/69092	Loss: 436.566
-28800/69092	Loss: 431.796
-32000/69092	Loss: 431.160
-35200/69092	Loss: 435.912
-38400/69092	Loss: 436.780
-41600/69092	Loss: 445.401
-44800/69092	Loss: 434.821
-48000/69092	Loss: 438.186
-51200/69092	Loss: 434.963
-54400/69092	Loss: 441.965
-57600/69092	Loss: 445.562
-60800/69092	Loss: 441.051
-64000/69092	Loss: 440.830
-67200/69092	Loss: 454.219
-Training time 0:04:28.375923
-Epoch: 65 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 67)
-0/69092	Loss: 481.965
-3200/69092	Loss: 444.284
-6400/69092	Loss: 430.930
-9600/69092	Loss: 439.995
-12800/69092	Loss: 445.742
-16000/69092	Loss: 442.147
-19200/69092	Loss: 433.298
-22400/69092	Loss: 438.165
-25600/69092	Loss: 443.967
-28800/69092	Loss: 437.553
-32000/69092	Loss: 435.797
-35200/69092	Loss: 439.222
-38400/69092	Loss: 441.535
-41600/69092	Loss: 435.819
-44800/69092	Loss: 437.121
-48000/69092	Loss: 432.600
-51200/69092	Loss: 442.415
-54400/69092	Loss: 436.416
-57600/69092	Loss: 441.440
-60800/69092	Loss: 441.323
-64000/69092	Loss: 431.728
-67200/69092	Loss: 442.462
-Training time 0:04:25.304930
-Epoch: 66 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 68)
-0/69092	Loss: 485.893
-3200/69092	Loss: 439.189
-6400/69092	Loss: 429.988
-9600/69092	Loss: 435.731
-12800/69092	Loss: 437.687
-16000/69092	Loss: 436.549
-19200/69092	Loss: 440.563
-22400/69092	Loss: 443.955
-25600/69092	Loss: 443.521
-28800/69092	Loss: 436.155
-32000/69092	Loss: 437.393
-35200/69092	Loss: 443.298
-38400/69092	Loss: 441.077
-41600/69092	Loss: 438.236
-44800/69092	Loss: 438.087
-48000/69092	Loss: 438.055
-51200/69092	Loss: 444.033
-54400/69092	Loss: 443.158
-57600/69092	Loss: 440.457
-60800/69092	Loss: 446.044
-64000/69092	Loss: 426.677
-67200/69092	Loss: 438.979
-Training time 0:04:33.185552
-Epoch: 67 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 69)
-0/69092	Loss: 420.831
-3200/69092	Loss: 442.669
-6400/69092	Loss: 452.660
-9600/69092	Loss: 431.214
-12800/69092	Loss: 443.841
-16000/69092	Loss: 433.611
-19200/69092	Loss: 436.799
-22400/69092	Loss: 435.424
-25600/69092	Loss: 440.612
-28800/69092	Loss: 444.618
-32000/69092	Loss: 432.802
-35200/69092	Loss: 436.876
-38400/69092	Loss: 440.315
-41600/69092	Loss: 438.914
-44800/69092	Loss: 447.854
-48000/69092	Loss: 439.244
-51200/69092	Loss: 444.912
-54400/69092	Loss: 439.080
-57600/69092	Loss: 433.689
-60800/69092	Loss: 435.428
-64000/69092	Loss: 435.146
-67200/69092	Loss: 442.037
-Training time 0:04:28.518043
-Epoch: 68 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 70)
-0/69092	Loss: 393.491
-3200/69092	Loss: 432.490
-6400/69092	Loss: 436.490
-9600/69092	Loss: 432.180
-12800/69092	Loss: 437.639
-16000/69092	Loss: 426.939
-19200/69092	Loss: 442.415
-22400/69092	Loss: 429.092
-25600/69092	Loss: 444.033
-28800/69092	Loss: 450.195
-32000/69092	Loss: 436.750
-35200/69092	Loss: 439.721
-38400/69092	Loss: 435.390
-41600/69092	Loss: 438.870
-44800/69092	Loss: 445.929
-48000/69092	Loss: 439.922
-51200/69092	Loss: 444.181
-54400/69092	Loss: 446.175
-57600/69092	Loss: 439.737
-60800/69092	Loss: 437.200
-64000/69092	Loss: 451.240
-67200/69092	Loss: 433.368
-Training time 0:04:34.362609
-Epoch: 69 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 71)
-0/69092	Loss: 486.449
-3200/69092	Loss: 440.920
-6400/69092	Loss: 436.375
-9600/69092	Loss: 435.286
-12800/69092	Loss: 440.093
-16000/69092	Loss: 444.735
-19200/69092	Loss: 437.497
-22400/69092	Loss: 433.487
-25600/69092	Loss: 435.702
-28800/69092	Loss: 447.285
-32000/69092	Loss: 433.168
-35200/69092	Loss: 444.765
-38400/69092	Loss: 433.999
-41600/69092	Loss: 435.072
-44800/69092	Loss: 448.299
-48000/69092	Loss: 438.131
-51200/69092	Loss: 443.913
-54400/69092	Loss: 440.995
-57600/69092	Loss: 444.716
-60800/69092	Loss: 436.394
-64000/69092	Loss: 434.067
-67200/69092	Loss: 444.127
-Training time 0:04:23.119485
-Epoch: 70 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 72)
-0/69092	Loss: 456.388
-3200/69092	Loss: 440.627
-6400/69092	Loss: 434.655
-9600/69092	Loss: 425.941
-12800/69092	Loss: 442.158
-16000/69092	Loss: 438.968
-19200/69092	Loss: 436.301
-22400/69092	Loss: 443.149
-25600/69092	Loss: 443.818
-28800/69092	Loss: 441.077
-32000/69092	Loss: 437.158
-35200/69092	Loss: 441.001
-38400/69092	Loss: 436.902
-41600/69092	Loss: 450.161
-44800/69092	Loss: 440.306
-48000/69092	Loss: 428.515
-51200/69092	Loss: 446.683
-54400/69092	Loss: 435.140
-57600/69092	Loss: 448.877
-60800/69092	Loss: 433.218
-64000/69092	Loss: 439.427
-67200/69092	Loss: 441.373
-Training time 0:04:28.330593
-Epoch: 71 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 73)
-0/69092	Loss: 458.070
-3200/69092	Loss: 444.052
-6400/69092	Loss: 442.543
-9600/69092	Loss: 427.966
-12800/69092	Loss: 428.694
-16000/69092	Loss: 435.232
-19200/69092	Loss: 442.810
-22400/69092	Loss: 440.732
-25600/69092	Loss: 439.676
-28800/69092	Loss: 438.011
-32000/69092	Loss: 436.440
-35200/69092	Loss: 436.617
-38400/69092	Loss: 440.179
-41600/69092	Loss: 435.382
-44800/69092	Loss: 442.662
-48000/69092	Loss: 439.867
-51200/69092	Loss: 440.253
-54400/69092	Loss: 435.741
-57600/69092	Loss: 441.780
-60800/69092	Loss: 444.592
-64000/69092	Loss: 442.122
-67200/69092	Loss: 441.525
-Training time 0:04:22.613738
-Epoch: 72 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 74)
-0/69092	Loss: 469.953
-3200/69092	Loss: 438.776
-6400/69092	Loss: 435.868
-9600/69092	Loss: 441.209
-12800/69092	Loss: 441.959
-16000/69092	Loss: 429.666
-19200/69092	Loss: 439.287
-22400/69092	Loss: 436.681
-25600/69092	Loss: 444.585
-28800/69092	Loss: 448.134
-32000/69092	Loss: 427.122
-35200/69092	Loss: 433.999
-38400/69092	Loss: 440.035
-41600/69092	Loss: 432.372
-44800/69092	Loss: 447.241
-48000/69092	Loss: 442.884
-51200/69092	Loss: 444.846
-54400/69092	Loss: 438.735
-57600/69092	Loss: 439.255
-60800/69092	Loss: 449.132
-64000/69092	Loss: 432.687
-67200/69092	Loss: 435.702
-Training time 0:04:20.623353
-Epoch: 73 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 75)
-0/69092	Loss: 427.240
-3200/69092	Loss: 429.469
-6400/69092	Loss: 444.833
-9600/69092	Loss: 434.928
-12800/69092	Loss: 444.967
-16000/69092	Loss: 423.495
-19200/69092	Loss: 434.935
-22400/69092	Loss: 449.202
-25600/69092	Loss: 423.320
-28800/69092	Loss: 442.072
-32000/69092	Loss: 447.337
-35200/69092	Loss: 437.285
-38400/69092	Loss: 442.135
-41600/69092	Loss: 446.631
-44800/69092	Loss: 433.983
-48000/69092	Loss: 431.751
-51200/69092	Loss: 441.727
-54400/69092	Loss: 442.096
-57600/69092	Loss: 437.589
-60800/69092	Loss: 448.595
-64000/69092	Loss: 441.812
-67200/69092	Loss: 436.986
-Training time 0:04:35.874284
-Epoch: 74 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 76)
-0/69092	Loss: 431.358
-3200/69092	Loss: 443.052
-6400/69092	Loss: 443.236
-9600/69092	Loss: 433.132
-12800/69092	Loss: 434.050
-16000/69092	Loss: 437.981
-19200/69092	Loss: 441.862
-22400/69092	Loss: 440.291
-25600/69092	Loss: 429.166
-28800/69092	Loss: 441.906
-32000/69092	Loss: 431.980
-35200/69092	Loss: 447.021
-38400/69092	Loss: 436.277
-41600/69092	Loss: 452.453
-44800/69092	Loss: 442.244
-48000/69092	Loss: 442.442
-51200/69092	Loss: 436.932
-54400/69092	Loss: 437.544
-57600/69092	Loss: 430.479
-60800/69092	Loss: 441.225
-64000/69092	Loss: 439.020
-67200/69092	Loss: 437.369
-Training time 0:04:28.609695
-Epoch: 75 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 77)
-0/69092	Loss: 430.895
-3200/69092	Loss: 429.181
-6400/69092	Loss: 436.251
-9600/69092	Loss: 434.145
-12800/69092	Loss: 447.277
-16000/69092	Loss: 438.238
-19200/69092	Loss: 434.316
-22400/69092	Loss: 433.676
-25600/69092	Loss: 449.608
-28800/69092	Loss: 436.183
-32000/69092	Loss: 438.880
-35200/69092	Loss: 435.693
-38400/69092	Loss: 441.719
-41600/69092	Loss: 441.783
-44800/69092	Loss: 440.828
-48000/69092	Loss: 440.520
-51200/69092	Loss: 449.355
-54400/69092	Loss: 441.894
-57600/69092	Loss: 443.175
-60800/69092	Loss: 431.229
-64000/69092	Loss: 443.335
-67200/69092	Loss: 437.127
-Training time 0:04:37.820950
-Epoch: 76 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 78)
-0/69092	Loss: 430.771
-3200/69092	Loss: 438.633
-6400/69092	Loss: 444.544
-9600/69092	Loss: 444.716
-12800/69092	Loss: 434.922
-16000/69092	Loss: 437.631
-19200/69092	Loss: 435.571
-22400/69092	Loss: 441.155
-25600/69092	Loss: 437.357
-28800/69092	Loss: 445.235
-32000/69092	Loss: 438.067
-35200/69092	Loss: 433.339
-38400/69092	Loss: 437.645
-41600/69092	Loss: 439.892
-44800/69092	Loss: 453.014
-48000/69092	Loss: 436.742
-51200/69092	Loss: 439.820
-54400/69092	Loss: 432.332
-57600/69092	Loss: 442.311
-60800/69092	Loss: 443.235
-64000/69092	Loss: 434.287
-67200/69092	Loss: 434.622
-Training time 0:04:35.927628
-Epoch: 77 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 79)
-0/69092	Loss: 446.499
-3200/69092	Loss: 436.133
-6400/69092	Loss: 441.444
-9600/69092	Loss: 427.256
-12800/69092	Loss: 436.374
-16000/69092	Loss: 436.849
-19200/69092	Loss: 441.694
-22400/69092	Loss: 440.956
-25600/69092	Loss: 436.733
-28800/69092	Loss: 440.706
-32000/69092	Loss: 439.587
-35200/69092	Loss: 432.551
-38400/69092	Loss: 443.022
-41600/69092	Loss: 437.109
-44800/69092	Loss: 436.916
-48000/69092	Loss: 442.528
-51200/69092	Loss: 443.058
-54400/69092	Loss: 440.018
-57600/69092	Loss: 430.461
-60800/69092	Loss: 452.985
-64000/69092	Loss: 448.857
-67200/69092	Loss: 439.490
-Training time 0:04:32.511036
-Epoch: 78 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 80)
-0/69092	Loss: 487.504
-3200/69092	Loss: 442.350
-6400/69092	Loss: 446.787
-9600/69092	Loss: 441.357
-12800/69092	Loss: 432.835
-16000/69092	Loss: 443.573
-19200/69092	Loss: 444.299
-22400/69092	Loss: 434.448
-25600/69092	Loss: 446.956
-28800/69092	Loss: 449.180
-32000/69092	Loss: 430.925
-35200/69092	Loss: 433.882
-38400/69092	Loss: 446.180
-41600/69092	Loss: 441.777
-44800/69092	Loss: 434.901
-48000/69092	Loss: 431.769
-51200/69092	Loss: 439.595
-54400/69092	Loss: 437.004
-57600/69092	Loss: 430.203
-60800/69092	Loss: 443.179
-64000/69092	Loss: 433.426
-67200/69092	Loss: 434.029
-Training time 0:04:30.890610
-Epoch: 79 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 81)
-0/69092	Loss: 481.668
-3200/69092	Loss: 437.355
-6400/69092	Loss: 432.293
-9600/69092	Loss: 434.117
-12800/69092	Loss: 447.442
-16000/69092	Loss: 439.925
-19200/69092	Loss: 434.140
-22400/69092	Loss: 427.423
-25600/69092	Loss: 442.359
-28800/69092	Loss: 439.085
-32000/69092	Loss: 449.415
-35200/69092	Loss: 435.332
-38400/69092	Loss: 433.305
-41600/69092	Loss: 445.405
-44800/69092	Loss: 430.264
-48000/69092	Loss: 438.950
-51200/69092	Loss: 446.735
-54400/69092	Loss: 436.979
-57600/69092	Loss: 441.830
-60800/69092	Loss: 438.962
-64000/69092	Loss: 437.526
-67200/69092	Loss: 447.985
-Training time 0:04:23.198038
-Epoch: 80 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 82)
-0/69092	Loss: 378.888
-3200/69092	Loss: 431.912
-6400/69092	Loss: 443.355
-9600/69092	Loss: 437.282
-12800/69092	Loss: 435.850
-16000/69092	Loss: 441.770
-19200/69092	Loss: 425.460
-22400/69092	Loss: 429.830
-25600/69092	Loss: 434.771
-28800/69092	Loss: 428.194
-32000/69092	Loss: 448.500
-35200/69092	Loss: 446.295
-38400/69092	Loss: 455.919
-41600/69092	Loss: 437.209
-44800/69092	Loss: 444.666
-48000/69092	Loss: 443.734
-51200/69092	Loss: 442.007
-54400/69092	Loss: 437.688
-57600/69092	Loss: 448.615
-60800/69092	Loss: 442.213
-64000/69092	Loss: 437.041
-67200/69092	Loss: 429.636
-Training time 0:04:30.661318
-Epoch: 81 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 83)
-0/69092	Loss: 449.163
-3200/69092	Loss: 439.526
-6400/69092	Loss: 444.871
-9600/69092	Loss: 441.900
-12800/69092	Loss: 439.481
-16000/69092	Loss: 442.925
-19200/69092	Loss: 448.002
-22400/69092	Loss: 434.180
-25600/69092	Loss: 432.900
-28800/69092	Loss: 436.394
-32000/69092	Loss: 437.555
-35200/69092	Loss: 427.933
-38400/69092	Loss: 442.859
-41600/69092	Loss: 442.253
-44800/69092	Loss: 430.309
-48000/69092	Loss: 438.446
-51200/69092	Loss: 429.865
-54400/69092	Loss: 455.650
-57600/69092	Loss: 430.378
-60800/69092	Loss: 443.486
-64000/69092	Loss: 435.465
-67200/69092	Loss: 443.477
-Training time 0:04:19.914743
-Epoch: 82 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 84)
-0/69092	Loss: 406.290
-3200/69092	Loss: 444.287
-6400/69092	Loss: 444.629
-9600/69092	Loss: 437.308
-12800/69092	Loss: 438.079
-16000/69092	Loss: 441.510
-19200/69092	Loss: 437.281
-22400/69092	Loss: 441.529
-25600/69092	Loss: 431.017
-28800/69092	Loss: 439.013
-32000/69092	Loss: 437.763
-35200/69092	Loss: 440.027
-38400/69092	Loss: 442.800
-41600/69092	Loss: 434.031
-44800/69092	Loss: 442.341
-48000/69092	Loss: 445.696
-51200/69092	Loss: 441.060
-54400/69092	Loss: 442.858
-57600/69092	Loss: 441.939
-60800/69092	Loss: 431.163
-64000/69092	Loss: 440.905
-67200/69092	Loss: 434.195
-Training time 0:04:23.488505
-Epoch: 83 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 85)
-0/69092	Loss: 441.828
-3200/69092	Loss: 434.512
-6400/69092	Loss: 434.845
-9600/69092	Loss: 448.229
-12800/69092	Loss: 436.518
-16000/69092	Loss: 446.633
-19200/69092	Loss: 429.827
-22400/69092	Loss: 431.421
-25600/69092	Loss: 433.879
-28800/69092	Loss: 451.642
-32000/69092	Loss: 438.861
-35200/69092	Loss: 436.175
-38400/69092	Loss: 441.431
-41600/69092	Loss: 442.288
-44800/69092	Loss: 437.448
-48000/69092	Loss: 441.520
-51200/69092	Loss: 443.343
-54400/69092	Loss: 448.508
-57600/69092	Loss: 437.061
-60800/69092	Loss: 440.716
-64000/69092	Loss: 429.753
-67200/69092	Loss: 432.530
-Training time 0:04:30.260231
-Epoch: 84 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 86)
-0/69092	Loss: 425.748
-3200/69092	Loss: 438.217
-6400/69092	Loss: 438.140
-9600/69092	Loss: 442.356
-12800/69092	Loss: 437.696
-16000/69092	Loss: 444.825
-19200/69092	Loss: 443.557
-22400/69092	Loss: 436.350
-25600/69092	Loss: 439.677
-28800/69092	Loss: 439.924
-32000/69092	Loss: 443.346
-35200/69092	Loss: 430.511
-38400/69092	Loss: 440.147
-41600/69092	Loss: 442.451
-44800/69092	Loss: 434.681
-48000/69092	Loss: 438.830
-51200/69092	Loss: 441.980
-54400/69092	Loss: 441.627
-57600/69092	Loss: 436.089
-60800/69092	Loss: 448.313
-64000/69092	Loss: 434.959
-67200/69092	Loss: 429.999
-Training time 0:04:26.453752
-Epoch: 85 Average loss: 439.07
-=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 87)
-0/69092	Loss: 437.104
-3200/69092	Loss: 445.228
-6400/69092	Loss: 447.248
-9600/69092	Loss: 436.153
-12800/69092	Loss: 427.372
-16000/69092	Loss: 450.446
-19200/69092	Loss: 443.578
-22400/69092	Loss: 443.433
-25600/69092	Loss: 433.324
-28800/69092	Loss: 430.439
-32000/69092	Loss: 434.079
-35200/69092	Loss: 434.142
-38400/69092	Loss: 441.583
-41600/69092	Loss: 439.060
-44800/69092	Loss: 434.916
-48000/69092	Loss: 434.462
-51200/69092	Loss: 441.623
-54400/69092	Loss: 442.552
-57600/69092	Loss: 440.673
-60800/69092	Loss: 438.891
-64000/69092	Loss: 447.394
diff --git a/dataloader/dataloaders.py b/dataloader/dataloaders.py
index 4e2d5fc700..c3b32f415b 100644
--- a/dataloader/dataloaders.py
+++ b/dataloader/dataloaders.py
@@ -3,6 +3,7 @@ import numpy as np
 from skimage.io import imread
 from torch.utils.data import Dataset, DataLoader, random_split
 from torchvision import datasets, transforms
+import os
 
 
 # Load data
@@ -108,6 +109,10 @@ def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='../data/re
     """
     Chairs dataloader. Chairs are center cropped and resized to (64, 64).
     """
+    path_to_data = 'data/rendered_chairs'
+    if not os.path.exists(path_to_data):
+        path_to_data = '../data/rendered_chairs'
+
     all_transforms = transforms.Compose([
         # transforms.Grayscale(),
         transforms.Resize(64),
diff --git a/main.py b/main.py
index 2e80eb9cff..85af9d178f 100644
--- a/main.py
+++ b/main.py
@@ -17,7 +17,6 @@ import json
 
 
 def main(args):
-
     # continue and discrete capacity
     if args.cont_capacity is not None:
         cont_capacity = [float(item) for item in args.cont_capacity.split(',')]
@@ -62,7 +61,7 @@ def main(args):
         file_path = os.path.join('trained_models/', args.dataset, args.experiment_name, 'specs.json')
         with open(file_path, 'w') as json_file:
             json.dump(parameter, json_file)
-        
+
     # create model
     model = VAE(img_size, latent_spec=latent_spec)
     # load dataset
@@ -98,7 +97,6 @@ def main(args):
                                                                 args.latent_name + args.experiment_name + '.gif', viz))
 
 
-
 if __name__ == "__main__":
     parser = argparse.ArgumentParser(description='VAE')
     parser.add_argument('--batch-size', type=int, default=64, metavar='integer value',
diff --git a/parameters_combinations/param_combinations_chairs.txt b/parameters_combinations/param_combinations_chairs.txt
index 0abd899eb8..700e38e30f 100644
--- a/parameters_combinations/param_combinations_chairs.txt
+++ b/parameters_combinations/param_combinations_chairs.txt
@@ -1,12 +1,12 @@
 --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True
 --batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True
---batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-3 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_1e_3
+--batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 --load-model-checkpoint=True
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-3 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_1e_3 --load-model-checkpoint=True
\ No newline at end of file
diff --git a/reconstruction_im/charis_VAE_bs_64_ls_15.png b/reconstruction_im/charis_VAE_bs_64_ls_15.png
new file mode 100644
index 0000000000000000000000000000000000000000..6da0b5f5450a2c0385aace15464b1773a5835075
GIT binary patch
literal 122818
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LtXVv}V`mKl^mQacBl>
zKAjgib?VHm0o+$!H6`lb+7ZDk-*d1x^R{hna*ng~n?mEf-IBZQ&sLnN$hlLtefe$f
zxEsfg^)fn3C-b;6ZVhnNof#VPbl%D<`;PsaW?g^hdtA$uNkM{KnogH~*4c$hPD<KY
zc)#}hz2ful=P0x7Qs8KUqAv_d3%Fq%4kvzvktBIY?D3<Y#WjEW{~1pfe(dAdBm6^7
zW9ffk7DoXVM}aD_-M4uKT6zx@zh<cUU(LVy{|VkNZ)IK-b+aV?-C<EPv;M#QKYl-(
ze;N$?5)1GD&1ZVR9{>GUo|&%zi(^FktFKmHt9nz6SQ{Q&#O6&@;8?35R{}N|Z2Swx
zBh7j_l{VYY+5bHo&+wso|M%)Y$KL-p)ED93wc+T@^}GJOOt)h{aODh-sW$I{{X71b
zO0-=(yDZmp3fGEWd-n&^7z#dBZ`j<-ATh0CJ&R*R{FERcUq7aTcW*Sco*JE;@@>KQ
zukTZypPS3@<P)n<CriT`R#}JEg~{jbek$CIk+0^LWk0Y@_-@X$4JQSeV{dG7+4Qac
z*PHlHAMO9;Go0DQwlZYb?6bGN`S|)yJpY_=;@!34jsg=-F8TR1{+B94-ShuH@9J&O
zc)h4bykVvK|F-V<f2LWgdma6rw7szY6vV*x{+H(__BfV?#FNW>1zOG-+nOHjT)vOp
zVQ<*+EeH6YFV9+f=*0<D2BA)soi&UN|NhMt;rdl*HeI-RFYgpChKdLBc4t>E-*<BF
z`YR7p)>mDwKJoSKtF+54zC9jySmB|#kX?X(*9O&(cdX*MQ{UGAJO01-pkr;9W#}#!
zD`mMay~j#p{pMJ39#HPLIb(hABcFrKi`TA8gAT5q^5fn0f9ecZizfQ0F?TH4I9cO<
z@|%hF><_No|I1|@{5WLm;Vz$~NvCcYGn|?8$EJ1nef9$n!}s#v_AFbvcXnsh-Ztq~
z3pU-XiGDBW=|44S#<CyE*JgWdb<@(k^s@KZXB&ojb-y^>+}s&FRD)Gy+FgSBtCz<3
zIOqSo8#R|ZIGypwG4p-re(VVQ`{%;n^^g0k-`#j{Enk-DetJ<+%lg`nj~P<9ocH|l
z{m(Yxw_}E^;e}S+lZWruO}PK}#&HIVx+hWley+`D4DjPU66xFeRrQw4e9Pi_=WE|}
z+kCrmnBmV6|34KuI$W<0pE<)bFY)u<%i@eP=FI9m%+<10*i-8G{68}Of6ulv%#e^@
z9>HwCCdHiL$)sQHn@mr<JFL%mVAIopELElC$Nm2vERL}#XKRT6xwZd7_zU(6ZQr<N
z-&MG9eOcJ*Pe+pZ84b*e8n6HVu%9Jm@g6yrM!Dzn|F-9Ua@OC?-5^_QbU%m1OEYcR
zaz=~dXFPea@>y3Wl?rjThs4UWsR?`LxW_Ng+Is4-e}?9t>-+yPEcbu?d(FEl&;(J#
z9rd*jc2%9z67#N@w<u&CL&3i<ofT^hcvfe>6*f~(TEHDW>GR>mbEGdWKeTzWaLxBK
z5)9k-zF;`Hq+<QG*+DDMgzx{w%kb~jdb@+2!uKDCuCHQc0BynDeQn*_LmxgERI~s3
z+4_ASdjtQ!-SMg4-`$PPyL!!mm2vv~Uq%f6HJ_S$`1+XwRyDsi&pGbU7`{WUA=&=V
z{F~K#<-TwF7&~)Cb<oYZH4nZ2%Qgfr|F7E4FT?cUK;z#xQZhMb9&0IlsAV{{wDMf6
z75jlZcX-nM<}*ED-G1-v>wABaAO80KUp`CW!r%IThg{v%)-fM($ZvgNV9inU=R?D)
zxb=an!!)LMF^F`3K6CaQgMq2($s<QB7#=@P-m$K(R%!0hZO-~TpHEz2eI@%=g1<`E
z#~c6ueO~_KRQNuw11~S9->_UT`PsgQy!jJ;FXmnJ`gxV!y!8e?xjoTkOos)Y_Fa%O
zDgu{0pt6kxnsZi$XwBKRB6*|D`Qu-=p3#_o`sh>FmUBWZjQ#fiEEwkhJd^(ORrpuV
zzcY=`Gk0y@_jN79rT?!zN+#96x}vEUv**O|f9v}h9_-X>=aYSvcG=8U>x)oa#h-4Q
zFXHdn6JC9i)Ji<FbNvB^H5V9Dm$6%ZaQ@HPP;0&?!X|k2kxgH=J$aj7um1n@>3F6G
z8{PMxe!hRr^T`K3Z_p7o{t`6P_pX(J!GZ3$FHQ_~U$58A6;?0hYk1f#zU2S)iJhIC
z4Ez3nc^tFvD;q=Jo_7W2v#(5^(p}6j$NsCxX5)p2^3!I$)O^c3f8MN=sw}RCl`l1y
zEl-~@ZzgL(-aem=OS~<_yhB$lOuzHBCU5`eIEK9Hi?W4NXSp0Y{=Ft9+&`f7dUBdu
z^#l33ABuXhmn82pi+(uBUnk)3==^P!NgJ=fE{)MYu;uHWl!!&wL~gnBlq7lwt-ro<
zSCzBuQ5B{qpMOR$scmTw;yQo1_Vunf9nZh-%H^LvuY32Lq2k-k^v4lF=Rbq`(mP)+
zo4xDOy|*q~BzG4)WYVwwsU5g*PhQ2pz;EyF-afl5*Y6N>|EWJJ%lCifWZ3t8XTO1=
z8IQx+%WjqpsjvReS#oZD!Ha$I4{uq=@pr7*C2MnkvHg1U9Y38Kf8FF}(BR;Y*{dBF
zyvyQDcKwSwhPWS#talVR?pK@dd&)GzJ!`8JgRt^+iJdhoPp^F$drWUW>x2Hf@7FD>
z<E#a`rdmynir`xNDrl{{P<j8Z=a1X6*S=@{k+`OQL5R$EezwL-$-5(Tj&+I#pA?BR
za#ixV6~6YWMR{EPznPn#uV}mercFBU$=3C?x(zBpIg=Ik={;Z%Sozxa`Alx*D~IPW
z2t{db>AKSkZ+0|YVD8WkyfG<c_0@=Xw|y1{2=G@)Yp^OSM^$~ldA@G)`x<o}c~fKW
zg$w+D%&&OlZS(bt@Byc*OrWb=Jmcf<vu&%W4&qXsaCo}jCHLMx59A!Y>&xHXx_Wk5
zE?3Bd;JKGQ?=RDvm-6FgK6AmxPJP3=Ux5s#=DDt1c7B^LQ&3{iw<XMtMmNj1pA)M)
zo&7KT<c)o7UQ2~uZYW;A|Dl^){in>o?b^$~vb7!D>fXn2OFE;)|6IzFqT^MQ{IVlU
z_Xa(>)LI;y=leeC)~(sLW}#0`KG$P@P<61WsNv!^RSqVms}bJK4o98iS+frQQw!QM
z)mya2-`;-GcJ-LIJ9+;!cu(K*DZQ*rFKox%s@J-OH)aNTO;O7g_<H|r`QB+hYUdC0
zzh327Y93J}uf?(2QAac}I8gKK;--cWHSUH?UE7w^Pd_zv8g>QWxp-gQXq}km)Kz~T
z+uI$J|8r2Bq2kTP^kmJgi5fwgdoN1J)_&qTER%45U+te0{eL*7siwMJoBi`=CBw4x
zv;yPIeP8|K*&n>Cj(1uZ@FMMU)w~01i+*YEKl^?EPfZ5BIriRLgV+>izD>V=HlOXm
zJoyUl|6i8x=V`DmZp)bwba2~)l`|FNzMh)TrZ9D)&b91?A#;v%J%6PV_vgmv^>dPy
zbS^KkSowVM{{OG{Ke_n6hP~l+{=Uk&(YyC{@`$XDdwi%ecLBSjLiSrF8FzUR%{39b
z-c|N~T$9kaQI3VTIaX6QxBtJGoteRh#h04CTFnzb`P8>Wqa@<h#*nl(oA`cu%+l-J
z!1ClU|3BsTe_w89*z>ae{;}8hKOFvLscCs7OO2zcqW<x3yGHre4?8R7P22eXUVTgW
z{|B=xPfp&o<W2d$zYFd#JKa8ULJ(d=w#Yfyyg0Nh!N}(4-`V&7^DaBycC$9%v;@D*
z?#{i}Uqu~e{>?Y(z9EOh)~L?-Y=)UF-|oGWlo8;(u2m2_|G4~h)0Y3Q>;EeK|G?jG
zU?0!*|CYr^^Ro><D{FKAY!KV{Z|})}e}6OnID7w(@4LO<@AYQ>FjGHu>Gf~M{ht=b
zKRqn}&w$~2Ofj$K$Bs2UnT7wpe7F3(hwuIg*-F;-{@1sj9?z@i{oTKpqoJyBR{Q3t
zORKYv2z_5~%YJa;|JLmOdpjQb-tU^?_4$n7i-P7yKSW+GdH3RHQSQy_5z`I|^S{b@
zFFx;&SxOm0!R@)_>x#3to8Md$wnf&eWWvpvnGQBDyc4Y#-jU(He_ifPnrlZ{*Xkb|
z7in@X&7H)tw4pCIF?v_Na9``omzDc1UOw9S>)(p&S-YlH&3L;vYHc95@CD0d{<=Pk
zs^7h-oLBvihr!?WCrf+zbA}y1&rP3vD#!k6=!4xpu@yWGJ5Ls0(W<&%{PI!es?@as
zpI@i$*%cOEnJ2n_-S^p|p$Yf*#Xol~-^bDryj=B;bB4U(h1PlLZw_VJ{k8rt*D#sC
zRyO3o&dIyxTt6KDGkQ)-+!v#tb!9v+eXjD`R@&9o9x^+*d<%>I)Vp=ue%5m=3cKR}
z9KFx};K|8umd5>Oj8|XDD*oudb57hH&>0TJZ*CYefO_jP?n#B$rI&`pygOmyTeLGq
zW^&z^7lE9HJGk01i}!^jtXcB=Wt()|nTfaK_#9H}dffMYXlLM=|08{mWNk(0x`X!i
z%j5s|UjDGHn*W5ON4v(k^M=yX=6Ky=ySX7g+~|Vr=_6ddGeWdZ#%O$>x<~o7x5@tf
zZ&LNUPiI%nQ~$e<L!F1!U`>jScR1IZ4Q9!T)0JjltDWhoej@$yl1Wu|n|y_Dn?1hn
zQj~rD^UB?~3g$@6T_%;*q8}ccRjO}xD)#(w6D8*RY7bw0KbtP3B3$<4#)JO4_x4N%
zC1;=iI9mUG{te3wdyA%DIUQ{ClYc+!fio{wE_=O%<Ix|6-s5!(J{&qcZCCckJHqkl
z|NoUUUf7<TadLybV+3!}9!+?Mk;Aq@CZEgp^oz>3OMgAdukT2gt5o>6H&J5aDJzbe
z8h`KJtfySYkE4VvYx3B%ZFKE!%zyNNFLrjt`v>QGv;HkpIrZk(onrrj&u6QuJk)+$
z7N^a-8L2z<vZ?*yUGopxI4<yi(=TIr==QyDW(@cKzAOKH!I_`Yz}#G2@<_A_2a{gh
zt}|z11RG}FtbF$T>*JqEojVQgEQnbbz<JoR>!{K5b6G2slx8jqTOFwPy87|0?DcnF
ztlyxyGTM6MZ$8EkAJXj)ec$&X&_SJPmj3I)x;ihzRkC4UmOo_uy+wW1j9qP~pU+<&
zwU(*(%r&R#7`c5%-s;z>GMu;jsj@PF_3HHVi8uKgvr<;CySg=e?*!k?>E8ty{_g%}
zP*%vpaD1ZF5oyr9Vkgz@K5{a&wYOUerCkv>*|zw2fzr%p=fq_g7TC}4vVB~8Qzh($
zZ+Wfj(pP~iUz+ZWS!rw=-Y4(A_44aHf$I;=cs7)#SqN?ORGY6f@q%2XGwY5-r(Ho;
zmxf$?{j*}D*Um-vR|kFm@yfaCe(7J{&wuW)@BR9!Yu-`M@00H?Tz~e<iDH+XpJy-P
z7fZOn;k<#jzuUido-ljKj9{aweb*BL!#LL}vF*ArImYg@&ir35)-x46JK0|7RGG)1
zv2{a<tMalvg3)p;U3V+@O31zOe<=Oy>&Z1KVR4-vlPnAj7%~pOH(kH8F@2up(Hk@3
zGSt+vHg3$ARq*}pdbS74>s~FdII0~dxc}c3&Ak`g3ojmeHFMs)XSVNa?U%Qg{%Cl;
zdPhy)^Xeb#?!~NhwQhS6XR+Zq!{TJ&kLLsJ7!p%A)$Xo1+F!@faQy!_^PLjYdS+==
z&6#=S{6=4kEt?fRWl!H{J)r;ZHvh+s_kZfDsecvbm$BGzaP565m*U@NzKE>f^L{JC
zoiB^3HQ)R+Vo>9{|2d#gEVVz%SNer>^|yliwd)xd)L$3a|F!-f8$;(3i5JobA0BQ$
znerv^hjPEop?}Qmj2fX?;ZtUJZJO}<Q)1w%Pi=Rq)8p$-AKh>}@uur(KcgMN?agnc
z&jj<QzL@vExH4w_+H^hN<DW_xZW|>(woRP<<_)*@%>^HvnfHd2YEJ!n%OG$~(5fq%
z;fL3}E9JkRf8y18w}k;WrnUD>o15|>YOe9~PsR5eG~639A6HGBa#tas%KxRbnPWvP
zv$|v9zEjTke^~$BenqiQ-k$Hkxw(&IgrbtO&(<N@OdC7}`FC9i7U_<%{$>6DqkX}z
zi}_3wihC@$cc)58L}(b>)P`$)n=RcY_*=Mk=?zga4ZETO`^l1T9nU;F(!5VfYbsZM
z-R5<_K?A<C9zIO`_jCS#$%g*=Kj$T6t`x0}Z8rb#djGfA4d3RORNHJ3kF$C4cEb7R
zmNg0H{C0nA8H`#L*T%DiESR+?(6_RVHz3hz*6GEU|4g_4r?PD6@*n^H{p-#7x9q5=
z%Fd7TeluE>{Bf=M9nH`5;d=eY_C24bMrlqundXtU)jZ|?!R(4xoVC4ql@I5>xw+SR
z9kZ_7mv1YsZ)N{*<@5PZlcv8?sV&nw-~Z=@HN%eA@2WM#y017#?oOPM;=DdrZFX;{
zgS!8`l)5~#nsaS+t-0QM(;uHRNdBj8_xHL@g_m~2zS>VYI_vWmJU6&(pn3i7hw!c#
zr}c{af6m+fY1Z_6dllc_(^%v(w{7mDM=RuJGuOV1FbybPDC2c2_w<5%ce80b#7~>1
zJ^MOCf9mTgt0wB)Jz83NpKWzv@A^sq{?$#o9a6dJ`Hj;I1+Pob#Y(Y1XcOPl;Vxe<
z)zJLAZ^GHHj1zoPJ(q2{bii|oMdc^Syy}JPei)jW9lLYq&ZF((Euo5RyDkK~2(3}q
z^ZUGM`#&Crr#Cgv*?bmZxIF#bgB_}6OTIcy-{w0jv_PxNH{2lNg4>h3>#MEL_hu*?
zo-)!~bLPz(9ru1Y)-7-TURdb7=cR8x(}V2z-%)?IPv7@t>FHzU?rsmCPMpY_@$s6{
zM2`=brtfR9|ND7A(*e(C8-x>iW-D#8V7lM?_z~0ntM<%Gt6EoH<Z@ov6ZGi*y1pRB
zX{i%D+S>h(=P%ArFlX?$`@~@X`QLxphQ?(zT#f<;hRZ(3P0<dGD>)u(^M8)s<+AtP
z@tY=|y>H}F^!4RSNh3+yI_9i1t;fo=rbd0O=(~5?WNFhuw*(0`{mM?c@AcoN&wu0+
zxt{U)^3_-FEPXuF_i#i;L|cFT<NY;Vv-@9fO@06FU}?_RV}i1BvOC{N^w+(XXOx&Z
z<N1ZSyZ)uumkUYV+k8~2-=>yRTW9$+U-d^jJ|<}-$MY}Ru;T9S^8DL6e_l4NV=H+(
z*Z$PY$lAG=nzvurAO8L9Uj6Eyo1RvsKkrgGl=F9Y`TJ)(pU=D9AjTa%@onXIPFwGg
zb*l5ve|~lSj{-ya-O}(HuAl1lpVV!B?mcd~C!e2Txxd}PJ00I5B&S+VYP-jBWlzJx
z$G=2Af3^RWSND7Ie{%)4Us*Hf&fR<Hb(F>nq0;SpKeWbJtUrB2)~Y1q=Jy*Lov$m*
zn?KuGQ}yffXqCw)1$HFXUfpRpXG&N-OP#F!n$p)huint$ui+P+cKC9o6w@2Wzq2w9
zE3ENRnt7~H>U7eBm;Zd0Z1$FFU6xt&cH(OW32E7f-*(5J5w~Cen13l>N%f9(a_6}`
z(o5#7eVv^jrak3!s#j|5|0O}U^`~u%hRmscm^ORIn+*NODXzNN3*sMs<-OjSZ(rT{
z|9kL!_6N@Pzt`y|>bPY;s9j&9`Tz0ddY%KV6C;ZxZMR>E(GQdQQP+?<OXk+%-y4Fm
zRmxubL_c!h$W{10fzQ5YZQWt%dmB`L)#(1%=Wn+9`GSuhKUUbqXX;NroA&tAGG=Dx
z!buj9{4HS<FDfB5CJubFlM}A$JJCGvWQvB^VxNa;Z_e6Qd{F3n{9&{G@68NTyj0uT
z^%+0BF+Ts{hw`p1*M;Z*{9kd~Kcn-{fprHh))}5M(AMdFpWUChGp5h>S@+I&Cj^%r
z^0~UZ{C(WFy-Hi1)`lJa{x`Q?>b};>5U$Ht)W0shDLCWmLMFD}-zszc0&lE*-z#ff
zcBHoE-=E4pIonf5jvP5=UL!o&Cw=3ZV-{bT-+n!v!fkPSg#cgt;?y1K=jJ?oxBK0p
zwXcn`k3O<#b-Hi0z2dcC<ptiu9aH63PN{bl`>^_9bzIH=8;cZf8Z4SL>v~-AjOFr{
z+zxk7Z~J2>CszMuyVd)XtKaXPJN-^+^zmCaa{FTIg+cQh4E#1fbc<$g_%kaxnAdo_
zHfvj^f!Wf%8-<OZPP22iuH-$V;o6y)&|+`$yMA{5YUy>dDM^0SAC{UdUnd~=)>e7_
zkE<u17Ww%5GjGVhzwgHFxb@dnulQte-ZbR4b)Dj(I{WM~wkqSDF@5{??TgTwa{l?w
ze^t6GcmMk(U2%5*g-t&upP%39?fr9~{PpkCIEzvjoh{tFCEM_NOfhf2?Kg=F1|rjy
zUS(f4Ss9}B<nyEj>qUh+U2M)NzqC5=@%8%WpbpD|^{!KT)~{c$ub2D%-uHdeL6;(c
zmXS!`d3Cm%i%I8l*K>si1)B}0#C}b)O}Mo={J8eKieH(Velj`lF8y)##8W}T3%3=#
z{-w=Ki!rY{KX2c(!;{P2+&Q=|)~d|%VMpV>K$q_){r^4jH!}KK%@E=rlW@O}>2KnV
z$(d0r3~G+BwJqP`xR}XR%cn##!pzhCeEt8w=j~7W9_QPf+^w?vj-kPc+xI`}G04^Z
z5Y+2`{bWaLOjlOK{X6-qa`%Z$e3&j_)o1@JwnQUUVxr<b4<#vE{iz!sJ2yJ5&~Q<M
ztp(6?tdFzSTX*xe|9`)~zxVB1%Ku`!@V@uQJ3mc2`J~BqW!GsIwvYcVeYUYV-<|rl
zE%C_j6-gU4e)}&}b$O(Rl<XTSF0{^5vJ!pw`gQaso1>@Wz8N(o6z-hHc5&shM2U|l
zm%rZi@%>Yl;?z~4y63m*WZx9huKxBWu`X`@k8rK2skUz?sxJ-D=wRQ=JL%*Tru@7k
z7cK~VzrWtQQTN?tFIV-WUMfO2w&{9iMmaF9^vQFa@7gt~Ch_>D+L>pw&cAzbL1Ewf
z;={e>%mp70S@y-(|NUiF#VypTd~;iGa(1hq(afBkPc9#9ZnvoTpm3mR18ZV3=(ORV
zOTX`BZ#X>vpGoz%cTeZ-e$V*e#m2<~VL65k`t?t>8DjR;%shC(`yCtO_q*lt4C&|R
zFSoGYpK9|Wq2TshtJ{D1_kP>@=j{IrovOC>9g~k#?(0vLx)GLqZ==)u9m&zXE~#$L
zo7T;mH`(ik$R^KUTvm=rijx)QUiv=yz4kM&s<rdyt^V*PQkLuMiOb@aMRyAsjAmXt
zEVNB(-+N<IQ`Q%@sVcGdg^yhJ@SE}|-+OJ**PMG>#;(Squ7981+C^Go-Gx8e71ppt
zZf%*T6jk!;_is=+{pfvow_?BASp^O;i5C~2Rqej^HAZ)0i}qYUeeIXJB3y;`e!jlC
z*$dqFyb4_}^mq@ilJaiRMHM^u?b~NDpTUI3H<48&<#R2!(HFPBVJ~iPd~<ry^ZS+8
zZEtKlTY7wJ;J*jv@(~3I8f*Gin9Q2&k+4=VzxDm^6&v2ADQOCQ&l8Y+^6u_#@za|$
zrhfT#X}iY$lOG=+XRxUL#`Bx+^(h6=3fh~y>*X1K^S!yhLM>mydH2`y-!tQXr25$v
z3pE^{XCe7M^jTM^P@k*a>g%^o3m=VmpLbhr<r1@P+&5XQKi%SZe|oux`d8b>zZr{{
zYF$oz`{m)r$Y)-^KCBM=&e62A*y_oltyXiVonmiwYD_-<<%W!`Y%l+xJ~>+{`FXRK
z?R@k{?rm*aTH3XpTMvaf-_b@iJufhKu*bge1O+0GaqD)c&3|mY5~iJgT5)}MiPN;z
zmDSs=10x*k>;G?BeyH#9k(;;M+uI)pKYc0?8D6a-)TyfaPCIpTpNN`!zueLoz2nyl
zwn}DfH=dSS_+-~&?mBVR|0mZg-HbN5|K{G}$;Vjt$yYb4Zb|!k<&eSb6s5-0t?!*V
znixc@ICHaqrc68ZOYmefI~$ut@iQM8r>!$GdS}d@-Ti*5_jJ9ZS_{_3Fh04k_4v<l
z`;Wm4HUFLWpSrRpO!7yagWco<8>O=k%wv@GEB?(}&EfR_)|;4_D=Y7=pYGRh9Db#L
zwRXkHaHXKc&RYTfyEQmpzj>3hM@~Iz1(#suh4%J#>-!Fg-kVF)Z4-kp-@ku;rg1t$
z?u0dAO1EUhMRI2ZuM`1II9y-8FuF%0?p2@lyNHjKpptaK>B_ss=WSo#U6bo+H8(AP
zhT<I)-($y)HMrf}wY0-*)BEcCzbl^2O#k5}ar@@E#Oq~;4Scz3xszj*nQf=X*P4Ax
z36hpz=a*e3($>?_xUXte=v;TjseZ|`!sP<iirJr8!L!CwOMi=h%7XWIcTaDZud|qz
zAFef(Rp{Y~j*qqW)56Z5J$uyBbX!r!l+0Oser?TXe89f{m#E#pmFF2R#CsIJ-e@~V
zI?rRV`m(Q%ukGzh)bx&D>l55JBcncbmRrt*bs-B=tshm!Mb`?+&I(_BwW3~YXJX4$
zg~cx5Nd@q{Tor?5m{`@MzrVj1|NQiHTD*9r&y=7draNqbZ-1;7Ox65*Dtw<(=Z0&Y
zhuir-&pcnlcH!@zf8Y1Zb1dDhec}#dpRDz<3l{?3RPL(y_~@5eS+~&F;$=sr?l6@9
zKd^U_?H=Ag1$^&c-`=>)^62N<GXYBa*^cEMo8siH%X*SFO2nV<7T4EXp)9M}#B;b~
z>4B?RrhGeZosuhQaQg4ZaPRBn_YYt5+p!$@aKeJW?!Ap)@C^5}yi<eUUE*3b)qqEN
zTH5<tTeZUu%I<v^<#w)yzrlODyQGW^ON7y$EbGU+@}j*~tdQqD+@T%PvB)cecT=@M
z)uifoJJqK}Zr|kDt>UsRH~;01t$CZ%&&xR+Pj&6?JF=#9nv2rGkB@gfIV<dMbMe#b
z;+-=2HIJnkHKw1I&AnZwIH^Cac<u9b9ZTLhW#9RB=r*H8)teu)cuG!hvZxA4zcM|0
z<3|=p2gNhj=ABLZSUW#DZzt=8rAo6qd%kYp^HjGm;ymb(MK!gOpX;y6$>f*i?fuLC
z<7NHdJO;b(*XxfetLq*8-jH}8^jvCVTaDG^lN+kPzpLQg`S;uHouAKHGsZII-?y9V
zYB#gs$EWB2m>T+P-+X_(ZyNLW)+?{S-ng;u`s<JTmdC9>zSAvh>#e5wufJBsaH>o`
zd178j2B)O1lm8<Nzv#IB6V3Nzn)OQNJ?jk*ndQs#<*V{kudOoM(;~&**S@c2oaTE@
zWlfLZw@R(OMV0Ogi$xCENL<|i_R{_P=lB0Tu%2PUgq@j(4SgqX-~ab*!@B&u$ZMNC
zqm+|B^jW{_=>58Ip`x3c8^eyb+isgJIC}TEr%L7H=z5uk=l(XQ%I8bQnH{q+68rt@
zmqoz?1_txHCBZo@`#-emKY4L+@kV!>xqkZDCHMbNt7kp1_4@sj58myS{cRWBnPMdQ
z+*L|mzQ6aai;|$Wu*`AA>8Fp{n@{)Js^iUP+cIr}1jbywrqcSK8<US8Y2Mf8qJHFk
z&2#JI{9POBmRx>$LwHmD|9_#!+1(^3F0OCA_Tv7^-!{{y8}7Slz|*|sNLAU?jC(WZ
z&Q+a!a*bE2Xr<)$_xI1Ya*JQvTD$keJZ7u?r?c;U;IsRDlznCB)|gud5;C^)@m74E
zeP1Trf9KC<vn@+r2ryWezst$K|Jb6+cE2f)zTmni$E5RnuF6hojlIEf#6f(UNMPp#
z&|b&FO76tJ9gl9be0}<E_xop{MRyF%&CO44c|@sgIk%6w>aq4E7srhG8#fxVv9U#Y
z*_1svzzEtFuwZM@>e;e~FC4qSSAYNf|8MX2e*U@tuL?u_uUFf5e!UjW_~V7U{jQuH
z4IAtv+BW7MTW~@8gy96}G7^p^g)a<`9L2YZO#I^EH@$VOi{1SGz3PXKDar{uMp!E=
zE5Et7clXlYndj%(`uO=V?K%=F61Fw=g!r!?*Z)6Dw<!Izo1y0C>id1a{Z+0tZTLEI
zcMPONd7<H@IVGs4xA*AN%VDR_&9z<`wmM{WsMpd<R$Di0H}svHV&rKwbIM^S#~W!K
zjVMhl59mUHmOddCMuyLyKlAYNZvAqr#!g;+>g<^_6OZ@F%I3$fPnJ?+=aXlAaO2}+
z(Aqf$UDeydEQ!TRu!S%e0vAQRl>fa^K6~dQcdNO5yqDf~CC=LO`FOol!}b3ktRFk~
zy%p=%=eR96aR>5BngordA={-DOWJqtwEXq!*Q5EV8aXy+JL8x9H<x?)|DDp``>~7u
zP2YFFBIQlI?D@|Ox-Z|AOfrGWh~4+!ym_+-SF7Guw+Jq{!M3frr^P}ATHbcTJO`St
zSjaBG919695Lv}wcmZXJ#PE^au=_5<!g2$i#kYNLT=V!}E)EGU+a>RJcYmobpZM>+
z-lhLd1*(r6#X$iBu8+X;I8Ht9e-};K>8P=kVS|qLzqw!jyDj>C-(>0k-JO|c=Q?W7
zA2%@f{J;7`{Nh4=caydWjH_OD+J3nzcHZ7mpk%Y<ZNAn+S+lB_{5Ka{dZlTr`G?xS
z4$uDcF0Op{-R6DQea_e2UrOIAhkJm6A7XJ8!^Z{OhL3FTSWJ7B{qldW%dh>{Z<yRG
zjxeYRlQFloS{9a7y!v}%P=ds&mmjm@?pORPJMu!+@~GL9F2h@kzrQSV+_ST(Ks5=p
zIBN~_F{4e-j!t@Uws&Je{^~6?;Wy@NDfU<zpJZYicXjon|EDW5WtkUio=SQtcV)Wj
z9)+TKuGNPkKFZyT%D$eK*ts*b@apgQ8-Gr0oQjrRTT&xV%~nxAA>IGYWwq+l4W}#r
zn7y)+bUQrx>YW2uy*jFMZFD^fw()qae7b-B#w|75f12+7Hn&wzsBe0lr10uM0hip~
zxtFD{d^wtHJWDQi>s8xp=bg$UvL&vE#;-pz`!?qz>#Cja%)<8lf4o{jJUJM&^em^e
zr+}&d`J1yw+2;B|y{;LiZ_Rm<9hu&qd$(w-f%!kpe{;&79NfDtbKkG>41cy<or*ir
z_ak3OWlxAJf43kzHS)dJ{MGeoC!MVlb9LUO&onk;Y*YO1pdOLz)snG&$*k{o+}m{z
zsX3^;Lu;@KL?sH(7s%fgrf=ukC;RHyD!qeD>}QOEzI?kaHZMT`-<)svbpCAL9qwV|
zogcp|^kBm06_sIX`<l%^{<?75qra>zE%4^Ai*Ht$is|MTsjl~XzOK*FLcQ^f_iO>f
z3$3P?Y#8&`aw>$et+j}cll*(RSVPqBlI@LcQzM=+ZLvOc?J!T=l!&c+mu@wGQ!L`u
zQ<CWX;z&R^cT&W)BH@+GRxT5MT)#Jc*3`&z9Jf<8*GFvfw|{r`YWBxB`#EoLaPM8Y
zih0$~4_d$Ci=A7v12wK@h4wtX=Xv8y#}SmA|8W6#_M)FH`LE|*i><t~XTi2NLF-?v
z^vjrYC{I*VbIsq7opV)ESASfy_4b;$kD4Xk&vbI^uNggCe2UY%_u96rrm|AMxaYLb
z-LbIOZSRk1w>F%4zuWfsmP3zL@5wpJ_u|x{+aXDH!liG1?Y_{PTKD3|-i=FNo+*u5
z@$p8Eaf1Tet_w!DbCvJwY~3y87M%0x*IK95XRPl0`FJYg8ULZ8oIe)tk1^efV#`hx
zzK~*Ra)`hB^Su4P5^r7#I-lBm!AzUQ#QpM$W%Aed+2-xPe|u(q$?e&_x1R0adUwjY
z1z|V;pKX5@9{2m4T)keYuUY@i%YS#)6@R%bmc04y4=2o3VHbpMpRHb(soWXR?yr0M
z)3TV4LYAIyQ^UL%_AXerJH|cH(A#t2?59iTu1mV0cx|!ju}$}`tls><bgjqoS@)AW
z-QO;l67_Y@{tv5HrPl2~*)e(cHl;7I?Db{RiEOrqo8ASimgb-R^LL)%EkB#xFKk=R
zc1pZBH0x#P&nLewbZTzi>%a7_|GhWYms`i~d$^`Ve(inRZGRpHYqK?7NDVV|{1T+O
z;c9=ns9pWn_9?OP{Z>CdUM!D%xx4)D?{(@A%P&9G=}m3_`Kev$^?h^OyMJ><O(SkR
z&#lb~Ze@*hy5=C=-om{ormCudE8Ll<WTEP<60ID?U7w%!UcFiqeL`&JoZUhHvYFW{
z*XL}Qo^?EnrzO|7c>dAalBJRt?`(g4ar)XlsoRs&Zp*&EE7AS7CQbR>{@b>D3)i@A
z-B2asR+BB+{eMedOzqpda@Q-i>R76}*}I>=x#1eep=Yj1s5J}!t_w<9UwB>|KjbCR
zTR&@V*4ra)dNuBeb8oJwdnfw-XXwifC25<jpFDoOEadXuofcxrFSBp|ywJFHfA|;O
zYr!iwWge?)H<<OxOE+ZhI$g7S9L^%!!t>oO-F^CK@$}cdt&(qVzxut5tz*)QS0??{
ziGL&ayprgyi`en?PTuBY&)j%Q7V<t(+i!J@>9@_g|2vPB-&K2f!>RwGO`f&kzbm_X
z9z9hKw(bn#TFS)0WFK+EylvwfH9Mm^-o-Bu<n~I}EzX=5`T2K_P)J3@mM4KHta2T$
zSFO18Z0DOzxi3x4mieCUzw}h)+uUu-#iu=f{igc6-0XC}8|Px)YMl(dvj;Qd9kSYR
z=j7h7-Rl)AFK8`27X7xQezmIlohj3o&vj`%z2RDU#HrbmE4{B}zj42}Q-R}ytvJK^
zuOFE0b0&8t&YUrkXZy+7_x{{4S?fCKi0PMOYCF}f>O6NTe2m-Ol@fgKtL>4ir{|hY
zUmWvEvzMnXce~^M8fz5>k-c&H1zS(Cu8mpP>-kKhgv;;(>q1tmO)0rYZtZ*ejXyeP
z^M<ACeDf1@>MlGi3U6G`TX?;AWq3A2NOq{rdFBHq2R7yCoW69{fXC-Fk9>5*wtssc
zTg+HiCu6%k)GSu#P1p^AbyMc;YMsvY`n1~}soTzv_W63}u5$D1({@(tVf~-yQ$5YH
zu<O)A$=R9?o*At0mP(TXXfd%|$-?x=_qPt_UgUItC*^l9ygF>xJH9V3zLa&Izshe_
zy|?Pwukwbo+WN11vkSIvyil-U{a?L|X<K(MT(dVw)7aXW*&%bC$I>vy11blMd?&5s
zVJJIvaGNZH&TXZc9*h%Crg^G-O}=arEqD8Mp}xo7-`65~(*w(2rtQ66J=L`Dyy>~U
zXRp^Resair@BTZ>=enA{O)ue?9On9Sp1*(^iz%=0?Tc!YQ*X|AcC6}hsr2*-?YV}9
z3okhElq^iYaC2hl<;Mztx*IdIHoAYw|Ni1Y&JMBN3%52X|9vlI-gU7wQzwawNvdD^
z{1F2s&-a%;Zoe&B%W3vIZEx|>f45$CUE{sEEazkPo8JzaukvIYR<6|4o423iz>OCM
zM}O}8plp+KSZVS(rU~a#J(q9YIL}Mf^ZQrk4e15uf33e<%Dx?4&3W&Oa~<n6>nj1?
zHbPcMrJgS^J+dHwjp8!SCWia`+HNZp?){Hg)|y&ct-qx*^WOOeC5|u2=RdCq%|0WV
z&Zu!t{A1Ryglk?_B3!i$Uqrc<T+aMkefrjczh{FUhfTM;_bhsiZs(nc$W>&{+sD<3
z!3&y>ac-3M>fW=fJNmku_GKf_WnVH=l_tK}C0@Js((m3=_qR=pi9D-*rt$sbs<=5S
zr@z-W85D2jVsJh>U;Jx(YUIW}*SD+<5W4nZ9e1{Jn4ZqQ9cQ)L)i$=j`+UyhlhtI4
zjO0Dtb5DscXKH=@%Fy22`uvBbpBd)ZmUg|g)Gh!1T5sR`iC!-X=bsim@pP;CUC%TL
z37ISJOPiHupJtrkqZ*xmy3FU!mYFxSHZ_{69F5N3cFA@_!dhOYrULsXzwN$8^%l9d
zU-&Uk{=E3kn0YBij9;2o6%=pSG5_zfzdf(B^eb0JBo)<6;TG3tFfg=o+8M&6F!}7}
z{|6iy*6n?#vHSa5R)x7<N9SMMYq--Y^|{#0ncH}i7I4S9vU1tSOn9|b>vM6Go|Un&
z@75p|g{kKZ4J=q3;urECF5GtJ(VnPlA)PB*dp2+EvE}$sQyUSqHe|&V?-1=!hC5Zg
zQNH$k45zm|<}W%VvDQV&(Ma-C^<~eXl_q`}J0il~`&qv>U3bfJN~A#bjumS{{%l`%
zUwi4J!+Q6>e^oQ<nQY8!d`=?o=C^IT>u=eMbsN3V3aPNKh?^U=BXhQ{*vy$1i%w*%
z?JIh{agE*FdFs<Iw(Xc&u%hMrnF|l%UbTO1+Yp|!^Q$zU?I%|Aj<d7lm1cdvx`^l6
z#f5PZZUvjqOV8b7mtC_u&3RAQRkw<rF^ht<n5*v2ojI$EpTX9DV|BmXliklw1j?kV
zE3p0YGI`z@(0J(Umdne7^nx|be^us%y|;GPi+^zF=jRxUda;I$r;{rd8Y|tue*DiL
z5r&yLU9!y93?6DiA8)M+Sba|TO6D}Kotb=VjkkHfY}9SJa}zlYep#pOeM3w`r0&H`
zt!Z5`y9)Rkiqp>-$g91&5qRSy@Af-f4pvjIP0C!n_t(L>X^WSXot}Cq#&orfZLeRV
z?fvCaUayxeQ=2I#zu02E|EKPwMpswa)qbnpAX|Gb-P&_f-?vH2H&=dYwP9%e$N1})
zh-GlKuy3*Q<W)I-Q-Zjk^jQh|e7^tZ#r2QL_xTH6@3Pw-z5emfxS0Igg)&An11?TD
zX>#@cyK|*CUYy<^_PnvN@#35XnrBYDv*4Vw%q4%_MUI<>I?Umj{k`GeXXw8Cz4B4m
zqqzLDw=aE2E1P9{USE69^H=kB7u~p!WqY}M{`M5M93BI!@XHmStIkTZ6j}retUo^Q
z{n5Cj)7v)aN*m8H=Q*6wb63yzsdQ{*!cCo9x%=nOQ_tF}m8`s&VUF!*o9TKjpI&ta
zE>la_5Z@Yg+)riayB~!NMmw2y&WVdRH}kxi=Byi_CGz|^qlC0<Vv*DLpGS^ZJYJm4
zz%$?a@Y2)MB{|n0ui4lls<!W}DA$Zci~INfvRl@i6=c{nGe^0GUzz9U>w8}#Ec|BI
z?LT|PCz{dlLhCx=RL!+hykmCR@Eo|TK5vo9a^5e^zrSt%e!z}_t^B>B<dT46$Mnu=
zUwrkf%yzlw)jta=|6h5;cD?xZnYK;qJ2x60JLaZw?$ztSRZ~B#Uf7tS>7#6P!8b=;
zM>SM0aBX(;k<YO@&PNT4%cK>#q_;kC?T%QUnzefWvt9|y^Ti+c8eEHC`9q4WP3gm8
zlV4hVt}Cu;O*tLq7CUSH@+i&YOAi`#f(FiiSgOzL;{Bd?*KYQ~Wr4o!N*88i=iFAC
zd1d1Q>tEa~3v(`gea*5@P<}?lG}k3|UzuEwU3|QM!s(+wC8Kun@3OzT^~9^^bABjz
zt^84~wKR3*uer0dYZx3I5=@q?Zdw2R55xKE$#x%VW6X7?KiNGaQN!=hM$ctIOAhh;
zK4-==Gi%w-`LFZl?hFWu)thE`xL}EonXlR0gPh0rnsF&FUgD_#Jvsf^oO8Z0ff_z*
zqaOch-OOO~WiET=ua&|KXMFlz-qCNYi!+;ke8bm0wSRtz7kqf2$S~>TlU?7cA2Y0a
zY20&fUf-<4CX0414bm(8`AL;wUfnBBy*YNw2VR_DRa^e$URqjO*UgufUWpvRcRzcy
z__6aG{qaME;ql^Rk!~xN&GpCq)_j<7?LdcJ<<W0z|JQChVtSh;d))?52WH+u{*p<2
z4IeiarY--Hk}*pxSy`CjjeUsH+><&TyI=iVrZ8(#c>1-qs-Abe<bG>=S4#S>jsE+a
z`AY0`FW2gm-cwht<IZ~d-TOx7pPqX^W=RzKR9-UM@TPz{JxarWfB4prg)`<Yzp(za
z&(f1yE-c!S$i46QuGr7ZN_|)INo`ntj#1$6>JKse`X(2cpB|M?68SNa-8Mrb;La@f
zy^CyLTn(D|@}_0i=BmxP>M})tSs8wn^OQW`&b3)>%MrawAUJyV=T=RIN4#5eZ(2y!
z3QYA%J&{uU@VVxc#3R=ao9S|_58nA~(&<;%Q;J!II*&~4-IG;4YkS@6=f3gUZ%ayT
z+Fs|`JiA+EdagQfW%$Rehs8DG+oKkW$=R(`P~ecCt{s~7IngG+w(sZ9n;-W6xxsPQ
zbW8hV^F0m9?)^*&&$%VS_{*NOT{KAYI;y1ZXTyBp$O(;|O>(z?e}9{P{ei$wyVx|X
znLbI8yX?cInfJyOe|z=(<-JV-N%4Dv&YXL3_`~Jp=ZoImiDc;d{8{4wk8<GZ(&-mZ
z-`ZSV`9*2!sa}Q@qnUjx9mCvoYi@K;_IC*mR%Q=a8T0HB>)bn^U#ic0^5x}o#u+m6
zdx{x$e3iPIH8rbZgZPiS8i~AFYMYHOGsNtwn0S(Nulik6lNMR2kEggMKh-nd=zcx@
z@g$jV*Jg-EIb*i!OT|)VnSJ$4xw_WSc)kDBxf=`Bo_)zo-5Ij%!t-N>Te|(<&sIKS
zc58E9$(5(Kjy=Ep;gjk7IoqZ>-pTjy@(oT;?LRfif=}Ss`I*y1=gUb;toZO)H`R30
zR%x}y^-q^y;9U9e*q6d|{nYIEC|1VCpo%)%Kaq_O+us^}bnaL5dT4gE=UU9$!ZkY?
zzgF4mU7XC*w8JNY|F`YBLqYpKKApcz?1aJfn2fcB=`$1D6J<Hst=ISo{E(ZLIBCP;
zPws5%R*UlXy*~EcQ*CPB^YvxVSHzXYZIxQO`a+gqL(;|*cjkNx>h0|-e0j%}L9ah9
zNi8Jg?71@r=Jx)UXUf*{Fi(-YJ@0iOzjOAhdHr1X#Sbe?y>|WS1JmOkPm5%1YAST&
zH>--pKacB;UVr6v&HpQz41RV$C2qFp<yXB~_Il^L6NTSo@9-b!`zKpisd>B1U~Pu1
z*`tk;M}L`b*2^y9zt62L__cL%!J`lQ_dl;_Sv9d}Ya8drnp>+vX3V@AdBk16-@tV7
z)xg@;eX5~6ZT}{G&HD3ePkwvEi<NmN?ygRhoA7dFrXGJkgMqcR?*$RBYcag6tXgxT
zYpySqsk*g%xw@p})%EwwA24vHC;o`ryh!og%4Nsh{52g~<6L=47Os|PyC`yaPKWu%
zzNY~zGnG^F^7<}%R~gNjH)~OSy7IH-mX2MS5>=bUHpK|dES)V7{&QdU%{j55F7ogD
zdP8p;d+)uorN_eW=C&N3(+3L=xt=z7l%l!pt;v&Js{*4#Gz}K-(7AkI%iAAT+ua{~
z=NzfJ_H*+zvp!D|7DwgE;KvH96+L;UD1DGV-<frFcir5qwQj0w-p}$$Etqp`VOaHd
zhwZ6Xwd+5KexI6kUMK&E)oP20!oHRav*e{EW?cM}JS#!s#=?zB5oLRJ77KS;<lXgD
zyRFlE<?X-xsjQA{r|o?OkN2KG>sR=2&$NYhU%yPY`FUe9LySfJw3V5;JH(%RhrBM8
zEn}{5Y>;e~lyv)J5zxCp`Lx-|r<)!gpSkNuP)f+QoAWPL>(8$_c|+v-s+$Wo<VfqA
z2%Mj9?Z0=Ge7uxwT1m;A&r1V7!`1>wKhI-)a4UO#YC?iI!_F8s^)o9IX1U39CC^e@
zcJW8g*H=AP_pMHp$hMP+^kzEz^xo-hvYRSpttNP;d#W6s@qCeEgH!9V<h!MhZ@l<8
z(Qw(Zt(TMDUl5p9yY%oOgC6ZUY;$k@&S^^IeepiK_4kYvB~Pun-T$ApeRkjb?AYs-
zaZ9DS+nogU4puli>|Mrx=6Tw43Hk1COC~P~`lX;f(@W3f!tCb_YRq@bWOB4`$<O4D
zQ|1s<DnuU^z20fl+?PD@Z2Qt3LVQ<ueOq;AdiNQ>Y|HC8h4Z4;dTC9$&bX0X+o0EC
zp;xh_?A0mz);`{(pIj=rU;5_N>l(Q+YnkUBJ6Y*1FFE(mEVZx~iJNq1x4boZ64}-$
z8E1TYqo>u$A5Y^dwBBmRtDjVw^uhAu@2%xQdjdT}rRHCcw0G>je%IiTq0G0LE0bKA
z1?<Bb@2e~~Haz5WwQj)&Tk~&nPd@MbG39>7>FV3H=idg+zn{6XVDohw4zX!33J(`B
zU;muMnIiC`_sy@yLt8qgDz)95a8zAbY~`A757dHBR-DV;So&~(_HF^~uaW7K#n=A3
z#ggcB^5soSzxkI=&i1n_os@q5#qq_{^^C=*d91qr`bXUb4PLPoZEJ32e2Q3k>{h}p
zv4s~}cK)>Lo2&SA%S6xpGsCw2vGsXUd3NcgH!?Cz3&M(bRs^<7^z`-^8C$xlet97D
z!)2<UFPq0Qr_zqe2R1GKc~q%rq4bOys|xK)Qj9V`>fV~CJxlfXTotL=(>%>q3on26
zi8Um~DJ*fpBU6WkN$c~MMlA`t_PzOa)yAUShqv7=k1nnacx<(O`GcD^5^lkjKF8H&
zUi*E_MM*H+V`a5oi<9Q<Z3{F_4lh_}7VPz~ZN26+@1FjbEw#yum6sgu61Z8@w=7m;
z24h=R%>E1>%atlGLn2(2CLY+b=7;GcPjRIq4&uAIrtNsmsyWeT5~uk_&f^DrUbS5N
zyQ3y#Y0R<je=Ca9v_y~F3OD%g2#`GTReS5k%O|$vm6ZtJYAW1!PRB$uTvI=m?Xp4g
z%POUb2fUXhNzP4_Dm;^T$m@~IBpYTM^GR{+h1@#F4{a1K^r_lyd%t(r_PbF!yoai8
z2k!mkaI{@XqqWN{iYsJ>@6AnTZxomt21FG0zKdDsV6~=spIBw-`VDf1d%CmFv+wg4
zIOjO;`NQ3TWgo2^7nq;Y;&{Znpx2B=S6$|Ln`1)TCC|fZbFZ+gbec~4npGaNEy}y*
zZF2qBMA^WV2WEB_o}0_xduSu)sm;5l1g?$i_g+@HZ=c&msRgrmN{S~=vFeBtTCqY%
zT4KWarPpobU3K*5zWbth|CeCwYZs%FjkUKN?oZS%Ff;Oa_I%||xv&}eiW5DKKg{@N
z*YC7{-O0J0>5nU3r6_fF6&;O8SmDMI<zD4_H0;W+O@8x**Y__IJ%9G6lbzl{iK#of
zm(|+lw}19rFso>n2_I)@@Jy%X6~A15*u*bf^FnRI_Nf#362JBq<fu)W>9#WP%&~oj
zb#)f(v(y6H*;eex$=n*0s&wX2UF8p<pEVM8$r>`Z`>tp0eS78o)8ATg{%g9LXY+b5
zNc+4bh;zdt13|+}tY^RNa7LO5Iu2SeT)OD8+wo10&uloEqGsp#t+s#FYFo{`yS>J_
zOd6sBEWIr<XO%7}6fKy|<|WB(w>ns2^@m9kSxa4<=H_@`PF`$lTI;Npbxi%uwA_a(
zIUK1g+JZKk-z|H?Dp@0IJ*8PP?9IL+8ENZ@88-fY?ct6~er5C&Z<m|*X?5H83;azM
zk<(uP{E--Bp?{%tesJd7t!Kr!EI4(YbDx*&6W6<0mA<df=EcUCFI|;tXPVYGc}!@|
zG*eYI-ddzMDKy(Le@cp;g6v7{>n|Mhr>CuamNjpC8Giw{(Dx1b+Eb%qvUh~cQ~a<<
zi_P)yWC=Cq+!G$s?>AfA3@Xw6V!!Z}R^r4nsRqiWUhL~!Kc}yH=9)2Cpt?A>ySAF2
zVZ-kWb(8Mfb2{vdSs1j|z;KapvTgaNOdscPjT!rDc$pXK)FoW^D|>T`(_!HS`SwMs
zlRSNnXY6RUzGS)j{fn(<Wy62VBp)nZv~a<!J<GKdXQ|Cx@@>I#<4hUjpa(Bh6@mh9
zPIEO1(VfxftHSxw#(v$`+!<_bUDp!snuxl*I=F1jOxq~e1ltUi$D2>4Zn>m9{q%&c
z>(0W;L242Y|7;2gy47I8nY}eCH7)3Tu=4b_ld0UlESGtzP32wssj9Z)Q%}`CZ(Sdw
zbjg7A&mN!OaF!`eiz_#yWfSLZX;7c-@*GDq;j~-2B3w5(Z38P+<=2Z%ySQ>{!Ryi(
z^IJP^9&z)za3dgD;B>X_?N0OLx%VX2XL0W?_!~F**<RJk>}bPDfiZI~PH33bruS3y
z>&~DVbsE1vHQo4N<|}OP_a)CP<wIL@YE<@_NB4MlZ9g2Q(c}=wdwSQDZqZkXoTg9B
zllYj=ALljCS{J=oWZJ})BHb*F-A`Z4;aeHPbv&>BVYsj4M)S!JH%f`6<>t$D>D2f=
z&StMW91*_HKje|NmUilq$1#Et57TZMCokToTztVws*#tucx~WzU7xbV`4y*@M_p};
zUm3DE=5q4A(z`nrH6}KsN^GpD{iv>U)pXg#6<!lJ30q9td+hawKiSm}4OXWvGQDAP
zQuNE5!n<3KTUajH{9^aIcKIJ?&b{36{Q129c8ecRXSi|kyKUK*_Y4Uc3Fhqm8O;A@
zWv@^EzfhTh=glowyZQN1?bqY~trx35VzqYfukh3V|7Eo^FUy>C=2i0*r~iDDZo2)n
zViuKt;in`hKkNExQ?)}nj~*v0M+9~_Y28e@@cQuQXa45S>sxQRnI-Jmza{5WZB@>D
z83~oC-tGIhOTErqQ1VV-vthgW@el6jSBI|lIiJN``{NU<5a-_TPk*FZYv!fQc&|Fu
zM_{hPu66D!m%Nuhzc%>Ab@s?*$&<a7Z4eHuJXf}Q4M%kE*=@;Ukhw?}M}ZdI&Wa1I
ze4Dl@XI<X(=*+a4Iekmks(P%8TpD-vX0rORW0HGI1kYcN6FXk^DA@OWG3OqIy7eJ5
zDpcp5o#5FnIc4(7zIg#sry`~*FHqEP?e&trK8@M7YHi{X(>d8wrHVIip3<Fo?M9U7
zVV<XpX3R*u7I%6}X`Ao?Pc;vfFPfXqZQis~rSz`V!M-`Vbq|6yr%T97vL__{F*<4)
zdvZb0oa5Y+ul`uqF0ab?=>UI!4D;b5CU16VIVnxev97MZv+cwEwKdz;hX_>fX;SDg
z{(CJe)a&67{j=wTw9dY~AKqOU;kd*k&`<eiz?8|JH`CrI8v10vox3ya`FpPI$?l)i
z*L~X7FH{w^tXKS7<<h7=)rDsxSMhGCxt{YW$29z8$LxHG!lxZ+rVdIo4{Q|9-f`UA
zz4mjN0gv*ue{%c230#j^Zu?+sRqxB0npugPuD$%Fa`a~;gPQws&$g3~jc%GSpMUl1
zMLWOzvo`TNTnEl>zjN&2WA~S@Uvt|ZkKAsTBh+A0zp<2mVx~N^ddTY3V#`aMd-FXl
z__`WgUI_ZnP;*?7G+Rdg*>8V)R)+_nGj8mcZ>U)~-^Xl9;q%{~%Ys!7X=zV;e55m8
z_jcBfi`!pB#Pwv(dQ!A2pRJ8ev!y@x_L8vfNw;T7G#=vmZhmZ0^<AFh6Q1vyviPI@
zv<}{tUYYZ17CLCH3>A18GRwtiP0`{75q#HstENV|-uK>FGjHEM*(FUSKlGBOaY{*Y
z9=err>qmy+g;$Sc#P_*6$4%#YZ1Vdz*AnN&yJF@o54p(p^TSf^CBkaf?#`7H5+D7n
zYL3yq{^79C{<g;xPQN~TVBNyIZ*J`lx0jPqO8;s)by?KyS6jS(+bp|#<3q0+hsf6z
zXYStN5mpwTIdc}%fwkdDo$FI)6`s^MoRQMzyUZx1=$1u@R>Jjl3;T{f)V}JdoV4@&
z0_)$?G@2{cMkOcZ^aP)u%aHKoPvo-YYK$wwy|27V+`*{TXZU5xLVnMN6f5t2`}>_7
zj~|=4!tLk!ZPDAe`j#v$i9g0(_tk1^K$5Mw?a?PYrcLqdiA%~0lAjaO?YhUn@0LkU
z&FKUD&y{Z%emKPJY&}!$q02&rV^Y;cYY!DCA1+E-^DLO>@Bu#K`|6X-yk7nbp6CC-
zyyZ>cde@~_7FCAma;@!sR<c=B?yiY+|Kw?|N}I))Yd@!?=Zh}wSS|48mg#|m*;^Xz
z3~l?OS1&lkEUce#q~=GXzwMd+M3yej`18U0<O9~b{xr0?^wTHi)kTvv7X2rWZFKAX
zZ53O5Sm9lFjGepLlpV{1GMf$@?XwRH<UeemroP<b?OYD|{sOHtO7lFIYkuKpFxZf;
zZ(YVak(=N37dxAz#D$$qzt;R)ro|RrtfPO-gm==yjW#>7C+u^wXYe!POqG>dHpR)*
zQkbXt#{~c9n>oI(Vq*zBxjSfLrtOoJp<YXbI)50LP4#=+68SUt^s*@a!&jI%xEnVl
z7fe`aTm5+Fx^n(WExm3$B@1)K@(X%e>vL`jner&lJM-yp?UO@0*4&g7-XF)7ko3kV
zEg(6`L`O1p#*c?S&#%V*S@6)&zlC#?o8H?e2e#bHD0s~6p)x6AS>4{mwYifo^e$cd
z)yR8oz7Ny=<x$sGwXQrFsOF|0IPZGruT@uz9?#X4);76N>YMSmT79O<%uBP`P8;3W
z|DWODxyEU?HpoO@t!6#4s?}@dkrPY1=hzo>HC%l7Ipox?`+uu!{e;>Rk1UOjIiIca
z%v){c?$EZjE#{}c|2f8yal3E_t99JPCx+iY+Dy+1?Ef8<*>_WN@8?;wBvQ3}CYTx)
z&D<GqHemhk!vC{1n0$P!_t-ND+t<85bU?4Cz&U5;wOM>@*FPJTWN((6I?c;cv*$%s
zMQH~g6YpGcW+}FvSyC5zCuR5kyU6LNtZgUuJ;9PQNBinG(;K%wF6=E;n*RFnEar9w
zjk7)vcd#u!m&%|um8-16Hs|z}RTDlGh6r0t^n1`+YZ^T#HK}OULfcyoo@$e4B-Xw#
zm7k;^#Xr4z`_(+pU4^xe|8V$enJLK{ANVf%(b7%eh~dh8(F=pFd_FfLI<-#Agh_U`
zOVo5tofr#Wv+M3=HcMo0l~0(RzuUXs&#G5=l^jp<Zk8qHpI$B56#45=bI+2wIV#^m
z>@EtbWw5)b94ho#J<;WQh=gNE*=8?SeaVWv-lE{jD<xXJvd^48UG(f@^f`WzQ~2N2
zRiPmQIT4m|iJuh=U&KD(|Nns>v}{aMgiC~r_1)g@asU3k|8MuNdTrR_=k@=d-`tul
zelus9`M!_6F?%Ws4_42yub*eW=OJ&(=E$<Qw~p%nIiw%Jzc&j$J8<Zkv(1ax2L~FN
zYn~{}KYVd<F~gsm^Z!cbS6!Z6@n+-kii6y72Y%oGU-$3b`+t4@b)P2l@bG+S<gaPC
zzW?7>n_n*$7alu#eeb(c9zMQL2blQ{EG<v&zW+CGN>I(4Wck+>)wi`yyM&~1guUK-
zRj$NVrFf;zOoO&NhmQ51{va}Q{^k|!L5h>zI^~)e?5F&mHLX>$s^)q6vlXp{y*Fd}
z_8sCA3heCVJvHN|=gmu1+sw0;Kd%-!+_N}XSon;OZy>*M*Y17yH7Zl0Hm;egaG>|p
z-jJ+_zI|>lYvhjx8BXKdzK)^ehQoO`@sKrMD<htTt(!7)j%0dK4Nt?(nKLb}MVgwP
zGmzT!<G|;wUqlN2GF;XSUUlv8{JsC@?=|n-sJi>q-~D%8%5S~N58i$%G<EhdBLf5B
zZpDOd#$f&lIuithmsKzsvrSW#QhdUw?CoLjfyI#Vq!G^pdxm?zAAkR|L4Iv)$j`8=
zd(HE|&0OAlqk8|rdmEMgwk@|WG`fDi=;_Xx%R4tKCzZdBzOR+pWO%iFcYmSt>uK*r
zI1VeGJMULek#PIZgR93a$^t)6p3Gb_chQqCKUieHTbwreWM$Q3n6Wgm$h|0aL9u_^
zlDIAZr||BaQpc6{GO*;>jPLFOK~6g|b|tnlZ`D(s6}?ciS?_t<v-8^WRWGg5c^>Hf
zRpw!CDUuRBT)T&P-6Z$_v(}2;`#B|a-boFY#W$T^@0Dj@;EUV;DS3myo#z4Vfi24>
zhrEAhcj($ZWrhRa?kT%$y>)0-K}tocvi+O;>uoYCdxGy7tgjGiQ9N|Qb=yvs=SL&5
zBLdAPa5KJp<`v|{@tiq%i{t&1TiN&8#nt@by7Sce{XQ#)n9Z5#*45P>cm8y3{P^7A
z^%}X2wGFi~-PsvAw_cn0C9P*L^lEN&+*QwgPSHE{-46ff$*wcq4)ou?X~4|H{P@|D
z*xWzW>0Uptm`J*;xc=tPs@pGjR%#!;&>5J~xR0ss=k)r@C->w3z6$>c+HCe?dHpYS
zo9b^o_kSES|Bzn)E&WGp{0~-!1M~m?od5W&`TZmJ|Gm8rKEH3@-?#aX<Ntq+|M=%;
zu}$qS5rz-#^*`EwY>oeITJv>v{MX9mtB+l0KKi5R`<`!=5#9njYf27VusP4JE-k#*
z{)ERfOZ-Mq!F@}kXKF<onB(?Er2kc{NGW!U-+Sly<n8A!l%yuM%-MS9+@_gDsiukd
z^Lq|ncq;vk&6y{tcj4;hd8u46JGO=1(!a3Ps80E)MBf2kpG>P3skBy|YTXFmd6^Tv
zvlkfgKD{Mi)9~z@Re0nx-(L%6?td1{D)IeKfLlkF>5-k90Y7)Ix%zcqM9#gPx!3<K
z=x_cz{l|OxKkN(-j(&b_VY{{aYhC#R@lTPnl+OD8GGfmCG^u>swcL4Wi?=wgdi(Q6
z27mXb?CkKo0<mMamwesY)x7A=goiT6boUn5GyJ~e{XWzy*x;7P)@_oXx#cyPk8G4R
zUbLf6Va79=kTcDRTONFyb8k|m|3sC(4^KA6CTusKRq^MA;k~NwxeNzRKbL>><VMw`
zj9dY$oh6fw+_+cE!%(s1H%G7U?B~+0ie|T@Cpf;aPv18~o1fQ<&G7NIi(Y=ZpZ_T&
ziYOLoGC2w;8B6^%o9e_iHJ>fb)i-ac3ER)F{EshZCGbp1+$N&JP*>LF9KO4H#<G8P
zRUS`fmlWC_e0ENcK_Sybz$*FtLhtE1Hda20+39D_m-1+@OI+Lg{<CCyz^)h3Z7&&S
zTFZN-O7Ok?-R-dOCC~pg?Liw2cg1}UOqyu3WTum9px49M_y4F_&E>QE|MUD~>-#_X
zE}0w^-}iy_|D5Ii^B--V|5xYVL-~J<3?KUc|LFhmCf)wE_;ZF2NA>Fjn-4PF|9P%_
z+CNziSkc>Yb0NpCt{?Zl?`uC_|L^mQ@4qulq<);<|Hr%LneqIC<@<lfwj_3(J$rWI
zbNi|<9Qt$be0q9%dc~I)7f;+bH#Zk-TUdXtl!uL(hmHCF`^}p-Th=X(mMC95P1Lbb
zqbHy^)u743;r*RcFMnlredcQ}i#iriw7)vD=k8e+2DKa!afXTof^(xEFMGV%xJ1wD
z#2n^yljJXnGVULLp1Qrf;-ZUuywUB%ZPgr29D#copDkIgB>OA2*5Fxcyce^Lzd3`u
z#7+-~DGlt6=7(lh)mN}i`n>dg+H{qkt;g85mA|RgYjwH5RDy^7@1c*Ps*{bAMHLw?
ztk}L`=jQfa*=!+km&A!(23HgB-jA)#-()V6RR3SJ?n8XovEBbawx5WJVqCB{$T9or
z+0&;^9XXiL@X)|@miw9=4TYuGM0(6M9_7q3iv7O*Z{wq1U5glIN0+_1ee=$-qpiNd
zo4Q!Vmo^oqDtum{IAMC>6V>afiYi%tt)gmzX1B~{-M(|nMZh;-D4bI-)PJV<F^PPW
zldSG*pWQk5+IPz==^OX99*a7jzqk3aaQ2iHA#DmJ6Hl&a3p?%AK6@?O65~Tse8Db-
zJO{axcN|?FG^0~GT~w{JM|9Dw0I&Cl{=GPvyrQJx%-7$~@ACaRr?F+diOZ{B3ey^A
z*VsHrIJZZ?C+SL-p~Uu66QkC49&ml08Zar_zhKQz+wFbd`Ls2&vI=E$!~537`E$8f
zr}0LFX4a&h2yJX|IT>)CTeM4~dYP$H?w&=CE0x}!&*)v~y_IKX%ekWBAhw3dn|gOJ
z>0Ssw0!ng^ci;c3=jZ45LA?H>_>Zgce?$NLz5oAj@A>_YLaNT5t-0RxC_DbQRNeRT
z`tmi8XQ#8<Y^&Dds*Dvmw!%{UL)GS&Ph)r*5`|_Ka!YzVsa<x_A??kf=xpYPVl$kM
zU8t0saPdOaZ_k~zvtKUlej}z?lFE`I>~Uu=v(b+88@sYhb8_E1?)2q7>=U>>LWH^d
z(y`rB(q?`WZqUedICbIqdD}CMFWyZKn0BGn$Zhe~#<|DC^mc9B`Ly_g@l>aspJL}2
zOO)$oi{zauoTK2GbS0~7lg^P{ON(?S+PEed9Qb)tl8<jq@$ZvAU03oadc>Y$@6lT2
zTJUb^qP-@YyNj=%bChWGp57(gc5m*@XVLy;decf@J*(~QS$*i7eJGpaw(V=blze}g
zToMzhsmS-YRBxw)0GGqlr>xxN+2<^nrWZ@AbC#98U1Y-}#F4qW>dm`%Kj*wWxz9WF
z-F)xUCp3d*=mqB}iD!DfEO=lZdf1_%`$j&)wJg(|{M$jxy|O#*9JLkbi0N{YaIHHm
zWA(jCgU>`i{cFIfn!9YppCtvoa&~@NQt>=?i*)Iiplbd-RXh9p=hrhZSXkSC=e+91
zav~)0!i3!~?5qAr^v|<v3;g-x%*C?VAx>`hzCTp#J^qs|P{3=;t-QLKCW6nTJ(>G_
zG?%Q4S?|fa$;Q{s<AlQeoM~oEI~`_;&R!qG5#Q+~$(+0HT=k9zc2nJt3AQ}oe`z9+
z>?HJERIp9a?(0hbhoH*u<JR@Hy!M}s?VIiYJ+?pg_;|me3}0bQjm@V&fB)9Xo7VsN
z@o}oh&yODsFPZEWiq!vnd;j0t7Phuu|JVQf^YhPs3GgCt&_IZxsEFfwj$;x$Y|J(9
zisw5Eu>6?4|EF}#OYe9lhCLM@nePAp_x&U297cu)P&xPGRrvlcas9XlCnu{jH00O+
zzTL5iWB%_u&-4EDXmr(xEMN5`O*8CO#^U;Zd0WTbnex&S9un_MP93bh607<2?2|2S
zg1tS$uNAnng_2TV?%Z>_ipl@<+OQ;T16S>A#&y*;dOgMmBqz2y@?4xIuudUc#FZm<
ziWZmi{b`3wI^vF>`lx61{KT9&tHZqCtoy_xl-<zit6wr>o@MQ`9a@uOQWco`47e_2
z-Rfw+^FY9F*NIeycPYwB5AI1ChO$|mPVMKCk@*_+$Zoz$$@Rd#F0Et(iDmZ`I$RZ%
zre8bAP;a}u`O399?Z%&j{kAf*onuWBKe+0;^aDMk;ML}eOyZ9969f-iS1r7w;>VR^
z!F+!E{l6lw{9H>bO1LK8*mfs7Hz7TrU9mi^=um^9c&zxuejnDvo?X>vFJ3g{>wmNC
zds_A3t7>tNKL^NFJhM0>!5p8fe0s|IgSkD8518C;@pms`klB`haoL=G2L;{E#m0E7
zH<9Gf&eUICZM)<5gKdrq;p+_BcBKC9PhZP+ukyEW2U9iw8~K`^`rrHSvoqBE_~XpO
zR<=eo=0~v_%kgu4p|N{^zw}T3{xMlPm%X5_sKa90<1zuC;G+qDKdv-M?1(z+btihQ
z7*o2!$?8~#%oHvEL@hb*b%GhyxzZvRE6#};P1Rn-aIBld>iMPRGA9&1toNKG6_uO)
zET%h|#ppxv{q~Buj@JuWe{ubod;h2GpG*3Gh3?gS_MJ0-{$o%@3+i$3-T!rM`-Qyi
zA7AhP_xi`$`@eK^^7E6kv$^Aco(lgEZ2vX*-qpXL-8goiXP$p>I{u$g-T&|P^6u{L
zKTd`3Yr6lV_x_5W=IWW5&-k4R=AZud<)!q6ojD-}E{Po~+a@#Xwdi*)JaFOdjXl2}
z8ho9U6FO<j^(<bNzz$d6b9;V2@A~rgdhKe@q6ggv8yl@N!z5Y~3R|j@ZtuC7rC9hh
z>X1f5!nVKcF9pQUU4QVx!ex2#=ch|1)Cs3n_2|c&wwKR(uruOQ`ZK?EGK`Ns?zCw2
zIUmUjR_Sr_c=@ET@q_T)#A%5yY}DAA6)z>e>W`K-4%ct_?XvSoxWH8fr|k#&c*|n!
zOwwhRr<XOB7nN|`-JW`F$~EQhReSF_RG)q}!7N%=LtQ`jh^fbOnSTp>?$~aRul~7J
zQ^h@I``<H*-`Z}8-ZuZ|M}tF`k6#n{di>sBk!|0~_O6LCVBF!k!SL2^HjSkQFK)V?
z+5h+U{>AtI%Q5^o#WuA#RbKk~Y@G*X+wAmqF7G~h`QpMUY|lT4@-GO~(RzEy`oH_h
z-dWB&>f(z!eO^!W>VJLfS8#Fk|L9-A^TICVZTaxzrm=~1ncSAW+nY5uem}f;x%`6S
z#NfOw=V~}Z<Tz}qzOXSonCri<*==uUxO^=SgGY62{7HrV<!L{)Uhn8jS=xKx#?Rm@
z(Y`q*Z}wDPkUum-ukBdh;+qP(UgwM6{&h{@nc>a&Bw>QzyK}9+yk~Bk^GGIbH<WH$
zcz@5`8@CQklUBd=)|VyGfxGw-*A|C(#`SS~4^7|yClyo-y)Bcr|9jcKH^26E^pB(Q
ze_R<3$p5`4@95R3U;EPg#n-AIKj;6i{PS}Dzm@C#wOS5<IslK&>pz=+EVln%>@kUD
z|0nJJP4+*U?IWIEN1U~g)*$vm`+@ZRAIH|#_dk}1|Nray$FJ+_{~mk3=j*lTAFKEO
zT3snWYxy2$`_ISju}rjnY#*#pn5JpnFQ-`cHF$CrZ*Q9L*<F8UPq=jY^#L9$akH%3
zZ_6$e3*O0l&lIb^H_zl1$Dv7yH)SHyQa-Jln;l$da5y}r$FXf)UV*NoimH^}tg9Kh
z3j()qvX&IF-rpHC;a^OFM8sxYP1cH&OLAV#eKaZiv(N6cX+jtO&v|5%T$lDwbB^H&
z1BWL;mXj<TA3b^HI7NY{=(Ev8YgwgBY=;lTJ$E!Xa`flU{%cX&zf1DnpQ5KxR=+4N
zHF=*#SD=4Z$7{1w7uQ_>@Pk*nca^ImAOG90b5zzB6lKY-VQ*G!(_8CS(CD_h)i#`c
z*S(yC2R_2hZo*Bsi)YSX&wf<aQqDC++d;SN?f#oi&C#sRt1li?xBqFz@SxXx-omRH
zzpfX=Ey=%^$TW|EL4m>3#W6%;?cS4-(=<zVhrQhJ^OGu*_(`Ln=3+m=)q*#s9)D_<
zRFL=B&WcaoV1sPYNs}#K%<hR#F@CWoVAEQqzpGC@;aY8Sc7l1Jh}V_LR<F+G+Hg4U
zc|2?F&Ag-=+XYLerb&Ex8{=;LZnfx}oVSgfeJUG^ms|8r+_7Tggw3<s&RHB>!4Q~o
zJGDBSd97@A#SEv##cCH{-l#h)@tF7Vfi;4938I;IH2zoTN3F47;#ANHiQE`0mzR^f
z=x$l&Z2x-)-X+hTcPq#Ajm)%P%8!J$IH<2{{rTUgJ@$dWF~@W5lI9b>E2Op_;SX9H
zCM+#Id&N%A5(&3^xpyR*>uyg=emyUK!R@W8Rek-;^Y_cJG){eTb_)MquRM7P_e(<Q
zGnfs}9k`RC-RHy-q~IBIa&8pw#L1^vjW+x|%P=ME-q!LNOZP3A&nD2p^>mN#lPvr7
z$#UPB@A98hY-X6~{gmU-f!)FFi5!}9H?NtJaPGD7^kuuu8%`PRj}WYpTm9<y%UyHk
zCm&Qzkx(r8`L|H}nDn{Fi+679oNJqX;O4!I#|icF3>V&hy-;qH#oBzfSNDz0ChjjD
zZu_RB?iH)#Z?C>qlU#URclzn7#ReZ&`X=zKjBYW>o;bZrEs;giWB<lO0aMmqp4B{i
z((X;$CcjqbGAQ{QVwPgS|54?R*TYBi)(fzT>xIitXk>Z3C!?6L<IL2vDIeaRwESMV
zt&Wjjfx{^y_s_A4)MHJn9(b1-dQ3M;lV}%UGCJekz}UM?wz)U#g7i5}o8T8a?L4x3
zcWL|2zLF%t(0KbpS9a+Uz1sA!&fmKZOE^C=+dsQkY~Hil>cy@9HuMXpU#h7oY3VMu
z?hnyAnlK@J<;g!^uJvtnjbgWG|H8P`s!Z-JBg4I#Z=5;rZ*qxBOV7Shd{t}Gl6S`n
zn<P?W!!<$8AV_<taQy-ft3umgtr=-ktEJ!9ofJH_^Kp%AZ`<9Uxm#~#n9ROs(Cz)Q
z{LR6LlNKG$yJTx}XOwT}TYThQ*t)lV|K1*t-ts@^XrW|s+(CikhKCGX_D*xZApGB4
zZHYO@BR3_k;^*I_*w*E3G0bw|+Fx`mZ`xD&_5L3p@C1rDS}#6q&?Wd(lRfZ-a$iix
zA&xwg2EN>!C9E4RJ?z?2SNhN_NaA^|@7~7Vv$6~ao?R1b)7vC{yfpt#$wkZWfknAI
zW>LBMLh30GWNQv9v^}`Yzx}jPs?o7EPwbwa^U+y(b;HKo+x~1qce!6X$hHXuzF1dz
z@}Q*j#OP+x{z|#>2W*aU-z_)<SSxu`0%yz;RF+6S;Cj!mvA?NUFGu*fP?_?=CB^IX
zLOUKbgvW8})re~`XJ)%hpOVeL)LtsxYsuZOGgk5#m0i59(l%wGzqD}AZ>i^AsjYXS
zG@ooVTN@PL9(RhN=kRj3tx>ru>+*$*OuM#SO*h-Ilk2hF)1_N49{aYgx5%E0*(H!^
z>P?TICm$-t?cJo>tFL#iHf8VSw}}>8KF>Z_!14B2WP>6P^A+i`bzgpb4BqqmWH|%F
z{9jM{6O(Uyy=+!E_H3E2>x%1H6P!fccD<f&>u`oMYJsr%hCgwK4*c+(F2dxyUEvLP
z+?20f$}WLD2Y8+46x(+u^h{MLX((H&zo?Es@sZf<K$A@l@#gES-y~ho?yuY2+tOob
zf5H5fE{o&CDyb6!m!|eVTH|4ICF=J{7ZJA=JMU<pyXj%M?ds+^kxes|&MV|A9h978
z@$ny5P)E`uQ5L(khvVM2Hg7eol$2<;&=Ru?6ghjo{NX-7g(*|NKU;crl8W11PcP}S
zY*SwQryLNpy7}_vNy8=Du`7dm(^fy!&g@Wdm=~>_${=}0Njvtv+y2*jCw{j@2_<JA
z_Dd?ArdXP3^x({HwZk(6BX|35EPN?G=V!0hv91)J#D)X86FAQ1xOT9oE7x)FRJMLT
z;oYz2do+4aCWyaxd!G09%=9XmmtkJr1;=LCuTK<UaBR5XS-;v?OsDzdUiU>2NvogM
zh~JvcvG~CD<!m+k^-~#A&gI54H-1)m>CC+De7cju6PdTY+p2pHxLyA0oAfidKKR%B
zS0{oEXS_e0EV=OJrcB1!(YJ5hz3u$qnYowdoZY-PCO>xGQ}dIHp`fOq<#O@w-<uyN
zr>wiO%;;Opmbv@~)bIagxmWpJoq@ssUd5YWV^;ADleg*Dq)Iy$c!)0f*KuMYt5u=y
z)4Y<%zpTuko4rMjW^Bo2SKB4ybc4^B!>QohU%mYaNhyu<<ab`X#2-}{<h(b(+~x6&
zYfaCyXE)oOGU+~0_#j51i2IY<X2x@@PT~heo0?DWIl>`t$aG3vv5{-S6Yi3OYr`Ev
zZ`Isc^u$=FYni?Nx6e%qE^FhQAMj+&NSv^#L*ZBUzeziT^9~)E(JS=iyXT8{vnvDc
zdF=KtI48)WD75{+y&HGjZrk=flG>t`H9tH4P+;PVE0!}at++0=Z{Io&ru8o-8o4|X
z`^2AJXe4(}MQ?(~oFXkQRioVBxjejW>-f#Rc4r&Jb1)rM3k^JQdd8w13)4QNDoqZ%
zyK3DFlZqMfI|^FzlsCM|T)4IE+NzLOlYX9EuKlD|yS<-_O=rX7<};sH%DX-8U#)RQ
zG*DXF`oWoPft%ypC5|rk63m~ns{5=^@~2GU9hzPbB~uS9X81bm?cqr~+Ga(I^v(F`
z`}^*l^Oq7u|7*;RFZ;<V+ECo6QS>Z#_w5(yW>Wk1Ztk8tSN4csse;6WUH|r0UpyK;
ze}mwc#fzQgeeG>(c&GOB-fAfBE4!VyY0t-JvnzgGnbw}OHQMfiNDGtai(iYEuoa%1
zFj0Zwl%qOg{LITiu;fux*w(|kdx|SsW}V*NWY+rS`qNiG?z$cPqi3tVbF;UmV9U-m
zwyi}%%QOV^+Q096<9oI|`j-2q7Kb-VkzQ97Ex00gi^N%-jTCfjPZKbjzN0;CGCRW=
z1)kNHpKVTke*cWk6`so7ZHXMoJWI|j-nObk;**nGR{gFQ3$IPs^r2va6+^k@1xJZ>
zg-@G~K8n4w)M4+n1Mm9ITHn8sQ~kU~lQl%|I<M%V6W@FtO+LIdQ#&o-!q{|SW$mF8
z?#@jL4iA<b4(*fEdv)X8uIHzoE1ciVdzj_Kr+sq|Ydl}@=1{4*?5ci?PlqO_WG4%s
zpLZ+f!rHyM@+W0~|In^E_lz@n&6M(UwJbY+{HrVp`+a}v>A0xn-<71|-z~qP`qMga
z!s^A_%*+FeFWwIDn%y_O{kW)h>}OTh<^%&RdFht#yCwuVa0Py`zN00~C{pxFQlhtK
z_NC+>6RLjN^y|h%E9^5_oUrf7op<N>n6CSqm_=o5HJk7xOFhtKTl?FE=cVu8$$9+Z
z#R=PcEalIYE=xsan#}!_m0m6$9c`AX?v>P{_deF^;o_G@6RvqLJ8?5IhFKt+Rrf-t
z*TK671dj=3&0M?tEKf~ezlh8nMw{tR4BxTOR+7HX=U_B_$8pXb(n}s`xQM9Vi^#jH
z#&z#V=0RmyahZ+U=MNoR*!yv|x)T?N`r*e-;!{6XOl<CBcu;w6`2&vUbHg@F`E!x;
z{+x$Fy{}K6pBTS_qfw))rdn$)cd~Za9rdSwqJt-$d^-8r9gV;f3yh>yLS5S!rQWK2
zo1#1U+Pw@#uGqT?iU()J&Pj>PZ03@w-0XEsG39}HeV~ZbkD>}ir|kv%`(HACZZdx8
zZE@`t@0B?>gRFf1t_{^%SN3=IkLQK^EpFbpcks4-;{OYICbfMpSFL!p!+6(%q@{B{
zpDxOM>78XXW8$Rpr>y^;)_j>-_ulpGnRAVM&Q4O1^lTMe${TTZOMOp}R(k@^vEH*$
zT=Q?KFLe=MxwqS~;N9`bm2=pO&n|9?yjNeSeoFtsPKTJypJ%__8*37qxl5r-;ONHt
z28nGy>(nQ>X1Y)1eYj~(4)5<jTQpebX6jGupUkn)dVZnA&rK_XxZX1-9G@n7U)n`=
zp`<jV!2%*f7`he+PoI%1e%}4VvW^eaR0|vh7R-|_El`ksCRoC#$)vw@+obP%zI1;K
zj5cU>*nRg=i(=7nVU~q=L+3Rg$zHnQli#mD8`B)kPN}fSTh5;&x{~E-Y<x18sk1;^
zo$#DuGp&cS*tzfJ%zGB$9T&=wW^FoMb>XEM6Bjhu+nD`o+{tVlG4InvX`YMk{`gJ_
z<&K^`dxg4Lmb8nIV~9o6^J&Ruw;nFp?exR$_yYd42fo`LX?$D7E+|$j#(E*YZQ~)2
zHCJ;UU6l4`U}(-0?~QurrW>dgm!Q1&=j%dKE*=JHY2El$!KV^b^{%}><Pra{%`-9Q
z|J;6Nx9N-8RQ)%cu040@)XZr-+fKEmPPf0RW7}dEXJU~*-{F+@`EN_pOBeceEMhS#
z`8&}t;FMk8C6PlrCv$5mwtP8demneZ_PyXs>tn38Z;x8N>C)tNzl#kwh`!(6VA=OJ
zJ?H+tHRcN@-HDwWeR$ucLb2;Tjt`VxC(0;xRWmf~5LYZsTc;_~GI`DI=?3e!O>zwU
z>&6urlBB75pJNeEZ_tsZ8Gg$`e5R=`+A%?S>A?&CW4$=vsYOh;Hb3@x)}1q_8=5Z_
z-eB}z^Hrtth)QWnW1BbggB<4Dr8_$;&3QGh`!c+7$zA3g8Jsrx)zr_9`SX@+kUnq8
z`)jgdtHauR4l>c#<Br`t;dE|>O{~MOqh$hZ9g}R*O&s>#`*4rfbJCA2_DS7aPdLWw
zl%F}5xO?*+e$OmUx%W3%tCj`rkDRppbkCRHPt7$Z`ZqZr6Zjz%-+KM<uT3(0%O;9*
z7X*KKyDY|VgNee%*KxZO^y<&$%3FIgBuc5BbxWQTe>dcWxogXZqRic#la?Dx&X1b9
z^33$hJ&P|aTl{qP%i@SR{l$Ly)oj}GpGD?Z)_UGNsd<T=LCmd;`Oe=u70<I08qd4V
z2YjkyY%Y=B++%F;{HxNIyDXheHIvQ0EM;BG?>SE@f<@=rUUen0<FncYIbjnm9FOW8
z1WS@yD&IcyeVuH!Y4wXarp*_mChttQc$u#^SNpBS^d>I0JMTY9Cv$za$a}hyyIA|%
z`)sjikB@mREHeAmKJobHUw=G#e5MJSMo#B=Vzc+pv0vw=n||X?ioI1I!zHQLK844v
zL%UvEm`!ogjakPfbN8HbT<Uz~)z?F<HeEIQkItN-*|fEw^+VGAdv$Ir7w^+;dU@HZ
ziNRC1zrxK<N>6RVE3v<J-@iZF6~AwK>VebUZ1IaDHq=L)dLExP?{C1=-&=~f{OYCz
ziPc`|=-hSD)wfzx;m4bmsi9f31;u|01uqSGcJagQxa^+(BrZ*bkidn?9BWq@ue`3v
z#>{YF0<Yi+0nf9`JXJkqH%jw28GJ}~jbz*yAfesKtMzJv#~lvc3!Q>B^Pa|7_3u{g
zHQzs_a^<wC%CXZMs?R<+=w<&WsrKKdc(YHA<~EDh*v(HAGJR{PAAN4S$0`%g87-w&
z>}yn}@7M31>6xInapuOL`oO9qf96E|@)Q@ow3{(|sv=jCOQ-fy;TGk0*K)WbziyJb
zKRrlf;Sr1Ptq){u_Pp9=S6gp!Hao1ExkpuV-yG&WY_(^%=)9_l(N#CMcT>G(yv*jQ
zbe*y#o2uI--WzAkzpPsSzi{T&-!II%&N_4+c>34f%I)yqFptK%`_C4y_GvWkYtw#x
zJ7=rl(aM#6J1+z+H?QmewCtE^anhn)6OPP9oYbMk;Ci96)o|UCkMF)G2DjONlIOm`
z8rR>O%24ob_W>)<IoDF3*Tt-J+4-kgbiQ!e-@Aq9XVvSxu{2`PUggyD=kD9|;&-b=
z4qTgl{<Wj@<i_HM*}TQ)_69yJ`Fr$@;D(L%D;KHnS#>-#)lF&JKgO?r%WGa0*`=nr
zhOX1v^O1R3&HYc&7i^~&?-X*}8RhtnX}*i0QEKcR_LmGk#z#t5uj-n7WV!N()~&Bu
z)b<#6M0GxO<}OL{yt8~>;;g>1t@r0o{WN*CT4POza8u}gUjB_|k0&mP&085V!M=Zb
zaK6E-OXqIpaOYULu6}BFNBO9n<?axpRZ%@M&$aC8|N4K8iTIwqFNUi?@cr4n`a<8Q
z+LQ=5Nx%Lgx16(wvFSkQPmSqcVrRU+=yY$|3I>%zq!t$!I3FF|Is5i}QSN(vM{RB`
z`SH)sZMT!y&eJw04MQfT%3t?7=W05;PD|p(rNvFkdDpg!$Ig4XxASU2{&_}e-|tah
zB@7PL=6;r5aY!QOnO*GX?!HCO?YTuozt2~1X)#>3V*0u1frcGB)?Z+n8=(~{J!9Hg
z8}IzH$5y#sI}$VFQB%}3;~zm9x>jq>9{S|%C-}WRYtD7+Pd)EB%fp=_pQH<4-Er;u
z^iN59V^|MJIOlqwVU1cKtbAtsnOnX#caA<xnJwIH&AvL!L}&M!;H@*C)$LFVuR1e1
za@CRI^&8B%uS=vbhTat2J^6Q4Uf!dH`8VQ@Z#wt?l()mW4_51sh;F~+_=B<3$UC9L
zG0tdmwZ~jb!*UIF^duGNwa|C}<~nE1Wtl63?7mq@tjXH{Q||ao@9ScQyvx2MUowli
zD{5>1&hFnQW1ee^*E62+aOhPsIQ`V_j^yOcdf$)zS#iiRZf)O&S>aWB{PRnz9$Z!Y
z=KH)T=W(50>CGd1Km!cQXa46qzTdAWds9m#<6KM1Md6YthBb1>)OL%%u{`~s|3>DC
z!?P0nxniGPUFubPVO4*MXl~%bXYo?YoZ@$RU9T72(75ntPbN>qDVr=yk>W$YKh}2a
zUchPvY7IaR+X-Qqv_ts1li!rjsX@weVZN+V8=cl&-!$dvN`BW>R&#p_o-T_x5~Q)a
z*}rO?@5=kN5qIBLG`)T#r}h8ar|fG7SiW5<4J><D$Fb)0_c_Zm)wDxxR(_aT*;;BD
ze&i3RBc{xsdtsH>7N>aD(0$K*D<3|1e&Fd!x1S&1c7NSkW<KN7g6oBe`>s9DbnV%4
zbBW*09LwC=&s%rQs{8*gO)6L7nAhIZ9@`Il#a?#4X)uTV^xZ2F^BK;}dCy+I@b~|a
zS(Wn_m&!298)2l~M}A^kZ~qD?`@HPuywvX(Tes}3-*Brq!E4r~)A7Yq-QJ(>G3cqS
zee!9~#1B_{{pH@DU!8G#=KX}4yNh?4o!Radz){O}r`G7KX8gv2%z2aU{Y+vw>=tTs
zed~I|<olW3tAsYsTa)>J3(JZJr)w%SKEM6VqI;op>E{BgF3Z~Uu4is(mGX6Qe$D86
zoD`=1IIjM5#1j8v{SBOI2hH~#_X>YeyyM%kd0RtYTFsy18dJx={Qq2;ZAqW|vrhM&
zRh94I>d!y2wrAV7PwRfZ{59`qf9TSZFV*~CzrW`8yo0Ff7BK~|%$4YlJiA%$jNUz_
z7^mkO_wVg{Ykxi?=<2@zI>(Ls^EbWu@pI4ZdK1@V-k8P9Q{tAjhVK5i`jk=A&QKfi
z$LTji-rwjvDf!hy`^=wJb53RWcpfZ#&ng~V<7od~rTExyCfy62t;O<eUyJtL(b^KY
z+2_jjm48nkk23lBN=*HGZDYyh!n4_nw#|7Tdv@DerpLdfcg+7@_o&*uJFBbkoU7_y
z{b>g_tx6AhY5n}nybUIQ)#HEqX0~U^r6>K9-mF&tAhD;nqPM4*H}s>G#M8dG69=w7
z+Iw!ozE}5qCB!G~fZid;;wa$4x`4yVQ1JRY8^5URvbif;UjID&sHo&=k@TG}zjw+z
zYi=_56#4zbul*}~|K9Ib@B8ysF>e0p1vP(lA6cDN4nF<u^13Hqi+pEYdSPn!>-ue_
zvf$7UJD!=AyRy0m+g+Q!``6scz3<na-(504H1gYC0lnD&lk5Jc)^9&Ozx?Uv>lVzf
zu5F7s{NCAzP4`0Q&6S@Lf<srFRC~7UU{<DZ)9gR2atFTFM@ygAJsyy45EmO5u4pB5
zUi8q9=Sgdx-~Zdzz5kq>`Mf{%&mJ@~t|?x=z2|lPt@HcOuX$2^f7^rPaJimex9%VQ
zyycF`Qr9VKXZ(*AI%2ed)#~9x(RniVEGzzob8r2hB{->Vaj4_<e_0E^#p_=Ax4N}>
z<11%{j#G|%g^;sx)B@x%Q}9)M80e+D_6T>PruXYD*R*XWwR3L$4>qInclOdZ`YZm&
zb46);NQ(Sl_AOrPm;^`QiB&7#N9s+#U4P*{Gee5PL5ZWh(;1hRhR9nvBL+SL88w>x
zDm1G61U@g-U}T>#S0^xX#rt@zaG#AU{!Tx&rFibdqUy@}I`8f0Bz8|f_il61&cCh-
zci(HKc?ei;aZvA&)YMwvbL~{>nIFfGq!=)?-Hm;8k|Du-s(rL(PRhBnUaG4beuwn6
z$3{l4`L}!OtE<27ul+Sc?D&iCDjZ4k?rfQnURhsvJZk@qB};dIQM1rJ!}*A-Bpgzf
zfk<$2*=Ue=t8$;e^-1%0>!vF$yKei`ZtFpl9%Vxr_m+&=KeLw98osUm{BzEax$7z?
zYsCpGPdaz$<K41<dB5^bcc{ev%L%J9S$HW)O7hL3eYan1l!)19{m$x=R$MfTq26`R
zqvD49BT{C`pS;^ySv0rExP9H`-;BB!I*%5dwwUgH_>2^%@%4{0<c)aVyxMtc{YkI+
zhgQiv34QrXXY%z=+2W>wdq4m9w154@Cr^L9H~Cq)BXe=9!YZD_8T%jZRDLhL;Po7a
zccn}hBxXOk_UqZay8rA97}-98r|quHi^QeR*PML!?CJ^2o$t;$-J8{&<r?f~xZ}&r
z;P_&0`=?iT%3nJbQgx<z?v~Wv(yA@;g|Dmcy?y2*a75&eY5R`1OGSfwLmo<q9qQP$
zQ0ac5&(@>0%X79x&n$NC;nlssnWQDQ_sE{-Iy-*miL!;8iErpSzJ=|{^H1wqf0>+(
zKFP(n*>UHFBhAf*Q47w@%--v^YSYP>M&}h=p`Npp)!J3wp`{p|mco$bulKCn>#_ZM
zJ43WM>miA)H=chFT-~2@@A>IjQ|eeg8f+}Q+vQSzz2_pwo3~SaKD{yxl{)?|x!(Tl
zpUqsKxs!}C8vT6E9*$Zv?QTl=hnLFdwtP=m6!<gy`Ks=pSsH3C-EuM0w~KDfy7u&6
zCCBq7g=vSa*je5s1^)b|eAQg7I<?NE*m~MV`<+tE-(@1--kBUByTw8MSaRpYBUwRm
z8DZDCTz~d_<zs&~xg(Tk+2bt{rRzT1u+K_Nx%Bw(!K1~`K6)x&UUf--)n&QjgxG7(
z4gT5f4}a?~pq&u9{m&uuF#X<zS2c{c?>cXG?9OJ_D${54j(l1uQv&arG_7C|aa2E+
zB>21R^(_9)U9z`|j(wA9UZ(y0m1#k!lzDFS{Vnfp{1~nt)0<w?m%m$H@Bi7D$_+D;
zcWi5l2z~N@aZhdhy5RlA?cIM&z8{mSt!|njy;{R^>nY1~tBU$oU)U>lIGL3%t?$et
zn?3Qm9}Pg2{2FFu;jddSzVJIJv;X>xtJ~Kt{w1_C^tAZudv^TIE7fwo=Unm<c)aP%
znHN*p6~g}hT>WHT{rAi!m+zI=D&iG8t&xkDt_8y0=})as8yi=DDcHvFcGvd%6=$T5
zuB#Eav+>{e!%x;cx^w4wnO^<&SF7zgnj%bAzk0hSx^5@G(Np_1PiDMRUTtzqbsDqo
zg-+=RpLs89U(A1gQLjzq5X-yoi$0c#75}}j^0(UKZOpgT5<mYsXEp~}UHCh1&$@L}
zL<@~i?>oEdSyW!b#8>jJM`w!4Ua(ES(_)<U?`tzgGK)FA$2{e%Y5z6R<h1<xKTY+u
zS%a?a&po}y<xuEC4;DjNezl+)Ve{4t+8t{>3Rk)vIKstIoP6EfPd;eri^n^9<czgz
z|FhS<wGa67*Dzi3r%CbL)Bfsnk2e{zwcU*^Zu5C`jUUv|)LFCTN|V}IWnuGRq2E*X
zwaF$t+o7`VK+U^bo^QDN9`D<@CfNIVSA@*YBh@!snU)`rkXW2pvhRS#u?3$V#b)!a
z-CEBVpyP7t{N~4wh2@2cZ@eX#)9=``F-vH(w7lNpvH#r~y`5DO2|1cx^)}qI&DJE(
zd&^b*eP=ww<<K_~i)|0>+$>~2q0*(d<CLRNIa(TXi@c$B$EMYf?UrlImY@Kyo5!Pm
zo_{!}x$ygpk4fs24S#Q6SuP#E-@EeiM&n~1_pJ4_3kARTPy7Gyh}VwSbuk$&M`xUh
z%UmWRd43bm%>oXF0Iko**KBn%^I>GjTxH<H{xg1!;k1nx3lB5QsNpeKx<Xr^g^@vl
zOPM8*iGgFWK#&JV=5l+dj-B(`|Lk@1|7&yZNNDK|CC&KVZqgZxYp=-c`m%k}LLKG<
z6$?WiEG;aTy5_)K^nRw-(Fc0`)%jst#b=4TcKNPj`}9ianESg%*KgmS>aahmbKovX
zvOH5*yKc&{3%)OQ-Q_#y=g-J6_nhX0o6lW5n+*EiJT`E9pq6aJH_?SNB|$xJj=!2x
zWa;y8)|K}yW;1-YJm;zxm-nmGbDQP){@vdviyZ1XvF7dhiT8I_H%%2c>1p1Wb?5r&
zMR)Wfr!6Y3>$~pG&d_k~CFd@2Sq6vg)s5#|uiN>jzWDkkc`fe((+T+poEXlWx?j4C
zAy@ph4Ud4UDZ_zhVbZs)`xzN_SN8|xn+AHn`c^qd-^0sxe|6oP$FrRIHkobHof_nE
zm+fSN!I6Rs?yKJHFJ1NL>lsUDyB;q&g`PV*W~*>~E-bs{JE6TeIz+Bmv-QKb;AFSD
zJMO1ycb7RX@<|QIeD+>ZPbJ0fyGT;X=d6FVb#*olb!9o_1^xbqY}>_N9EnQoX$<1J
z+c)<}?VmsHKMq#gvoP4y|F<pCKgY<hRmE}hO(upb(Y{AE&Ry~Ljm@Fk^M8qym6tOz
z*zipME6U(w+`enK@%(->#d?EXI}957XGuuR=g&Hmad3yt^I#6ckI#;ah8bAS{(q=u
zUB3Cj=l62=nD&34|E>1@={X1M`jw<|d<yd;O8cwVh<*y~c_QO;<9HMI@^6L0+b5RC
z`>Z^zHDUY31cL()U)R=rI4sYwq4r02e>?+2ob1V0>suM1YXSDVy}$GA^Gv20w`<RC
zX$)jjidW$3+w*2qkfcxAed{h|mCoK-`S0I6dRuPK%kX34{6C&Hm5(J^w%1POX}bA)
zmC))r0_U?>mTq;Nb+hbUOw5B1SG5@qyk30$#hkbWxA!wJENNC;l5MQ0+Ok32p^dT3
z?Cp(TFK*7hapMLP!;!5LbIymabXe1r^ziNHGx~EcS6|wCzsr#A*w;iaZ65ZpyO-a8
zz4*FxLTcGTITpr8H@-PO<<&m6^L_D*;L>wHIqnvo`<dIh)XDM%diB>DDf-UtxO=v=
zqrE*dgU$aJmizwi{m;u#@qX|33)Y(j#S7Ywc)ral<h9w-Z~yU|u|&a^TV}iTniJN<
z{@wZh_vVvPO+TOCFH$MKp=+x5X!<H1t<s<K4=Y~Makbiz$vRUi>4jW&vck^OPkB@(
z?V8$a_KMeK-CxV+!B5%NRIf?BIdO}iXX(7|XuoJ(&!E$M*H$O)-Tv+LE1~y|3q>yJ
zeEsgW|N7wrOCMz{t({`i;dG=i^j(L8!i2{2?bB2>4Ib~=!R{3}?Q6f2m{xP*{{GFM
zgZKP;Vaf1d@Bcdf_xu0fXJ}ZwSolk|Ekna4wllHDr#!trYj;e)bxecz>64{R#qy5#
zZ7dEcY<<4+TF!#2w;cA~V_;C}WNMkswYKu|xm!;q7GHdSE2QbVe*B~R|KIOtV6gl5
z!+Fl!xxY=Cbz~1&+-wq%IkPohdF8|2@_TFy8w|c(JgmTV_p41E^ZLi7cD}!-|9*Sa
zWB&9rRpoED2YvZ{>-+D+j`HHNtMAy@+8p>;crm{<uqACbFGEIt&Z1|(<~U5VF-U1x
zu;fwX@6Y~cc%v2wXFDmb57Ro_`kEnrZ$+cH{VxHA508#&e~J0G$S~6LkcL2uA;SV=
znFqb)_YS7F&EJ?GE&uuP^E;V-zw+)eJh>)*-poiUc|uxQU|m&FQ}f|kh6De)r(4{s
z@4dWPn8ED5{oC7R*L;*#?)3a{&1{}+H5)_4@4NoV)%pAk0&RhbQ-TD=N=;51HAx#5
zXi4Yo^qs16dO^su{Tl4wcNRE`RC>NzrN(@9r;J;6#{Fw@`_A@iekw6;P0SL1c=#a0
z-8gaa^s-H5b%kB$W=>`KzL{~xroVw9-U0n@m}1))n+!gF50GiSC$Bs~F=c}PBNe9Y
zE2anin3VW>=K>vFCkyvgCcm7uSKHaz9(~z)x5n1e)_H&a(#3A81?xF-yL?X<ahfjO
zYRtX$y!YHIAuK|3xnGAG$?#2Bd1n88+c<xp9z(Xn3v)k*|JMH)Z@=Ybvi!dPa_7#U
zzfk<#dG#56jU5jryt}pL`l}1;T+7S9eR#3)?C<s2wz)^wnI`{Pee$=#l9~S60!_}l
z&i37TVzzu$_xFwFi>@yb`0g>&q(`pkpZQV~qwDX#SIN$qC&S2K_v?kT%$};w&BeE`
zbI2{&n|j$s&bF%S+A%f;1<*v)-c8f4T+G<|XTPRs%ZbQRiB`l2AV&bp+z94V*0Z9d
zQ&u{yPgV|2U#@OZCb&B9`5pI|kZDzxvf?~Oo2;)$&n-6CTh;k~OOQ)(tVEJuP*!r!
z^e1&6{#gF|`2V*x!-3!SKgwm~<QG4enc9AnA;9mRgptZQ&C2%|h3EWR5~^l0E7xSs
z7VQa)b3(r!InJ!3c53&I-akM0ex7=wWvAMsbe<`bxtAYitlDeG@ZirM8S&@h5<F`z
zxfFHYJsx&(!_KXHi!ASIoy}giWA*eWn%lo}-}~b$esS`_ga^MDecl{AXU@DwFAi8u
zl9!i%_~V9K*tzrlhA*N^osTeIc@=h1_?Tgng45c2EDS21O=Y+3^73;QT-@?KVC}^N
z$DVDoJ)^=nxmEd()uj0PM2SVyOa#r=Owr^>da`Zu%u^F~mFcy|OKwgopU;rMV<e(?
zs*=<1pyd?p{b>gn(nNU@1(YT%>Im6nt-CV3&oJ#wb?G;0?dj{jSGAUWfAL0U?&abo
zr{?jeNqmZKWfo}sZOgpNPwBq&mj$I!R_k81`%jmAa{l*%gA4i(FTT#ea8NbNv|8V#
zkmaE24&y0LruQ7Zrgtjp>E(E-=(8)9tokAntMz`iQfb!Kxb@wam2aPymwWU0X!moA
z@>80;4?f(Ocl+{UXOmc#y<+MaTXOF2+xeR##;aiY51yvTQw+l2LF+iO8{bQ8Z9CQW
z;_F+dCAZ%uT5RcGIAi*}tlS5pNwbvYWt|i+=4=(T=zJMf*1{cg_sP@O^Y;H|-1mR)
zdq#$P_3ztXlvx}2S#cHETXHuse4Qn`Vu^@FRjzpBbM^FnZ5!8R7Idssw_C~;%AGzf
zYSCvK-JeQDM?(M4;x{_xU|IR3V8*XkZ0_vqKR$Gqe|*(@_P<1v4>#xklVosM8}_|u
zSG!YX;JPWFel~lh);&65(f;7*lNB+pG1|Rnme%vMF_)ZsduVBKVWaSLu1}AiYQNcE
z)!1BXt!Ta9;=Azn%aeuY@8>=ixH_`F&7en-xpPULt)bLbiP^Ki$=#~m(tX^29utF{
zZFSp;sjS?KG8WDb?_RcN#{?sX&5_5?Et}f7ZI*BR?wBciw0jKW-W``<KAzEe#^$}u
zvMn3g9Sp3GdOl*2K3BfvYL?Qvs|qnkJ4-X2>u<+zo^P;zUArNh;@xMSB93ilU!6D@
z)ff}+EMx15x8OP_xN}R7g^vJ7`M()DW_x;O{!lo6f65Hyr3cd{9sL!u^ZC2<{0qm~
z?KiAsS<laZq2Oxzy^3EfZ+msG%vtX(;b!-DX^iU98vCiYvt!r24lPbSye%a#-{SMt
z>@9{DR!L<4uHF6f?(P>4-kkBe<=^jLP*&Er?)H|eToOA<&eSb$|FBh7Tjlu*(>s-Q
zzhkdt@w%K-_w?F%?XR_=y~iUz&~N~x9u{p-df}2Px$^Mb*+!bJbyhChlNUex`|p7J
zb>q2};zb87nZ#979(2rc4BNf4bMIYS?cHkY9xQIR`dsufZvX2bcCMEh|7_Own#;dl
zE*1MWZZdBdM~ddE(0@H2BO5+^@LRlBGv@hCnZ++ES?<Pucawfm^kh#+yWMog@4s#5
z%#&eeh<m&LSifC`{Q3Fy3<s=^+SO+9{wZ4dt@*(3U71V#E?%_U@31^uS*H1+z@m`J
zF<kFd_ql1OoZ6RWA+g~0)>kc$CnwA7t>R>`u(3Pz@u4EagR84+_t@3+PF9xoefjm*
zi=EfM?5bVzZf`<Qe~YK0APZxb>1?%0Cej((bEZ7)UA$bv!o6bVl?}VUvoKsJxpd;s
z>$S-}s_&UCo_9=QIr~kGVZqj&oo$nUa4C8{o5XX;b<aUb35gxQw<nyLo%7O1ak`(U
zrU1*gJI5xv?49S`u7CYW++?v7W&3r%FPl2P;(Wc_;Mvk`o<YuwCx$;=q3qp$BIVV+
zsg2f)PipA&@Gg#O*^zeHe31e}v7v&r!}?9feripQ5&gN;#Pk3A^F7xpe!fa(IPm|6
z{QsVL-r5y^D%kVuA6>5a^@f+hVfEh5CGWH@tC$`sth2o?=(f{lmq_Y!rk-$juJaPn
zRjHG2Yn<2rY<Mx_?eQ3f2CbFmp^4ATUz8TU3)1H2<1eU4`2FVbW92VZwM*6|wInhG
z{r>g&4bQJDq3b<@J(imU`aHO~**_uq^0&r`*SJ@7`>j#l;-KypF=b2IrM{gy)|a9j
zcea*KTPpGG*Nbm=Sa#q4J~un^)zO_Ary@A|Eao$8zn!t=R$Y)C-_<jpb>uJCu-P7y
zU^3rv{gv;L&SKG2#vML?)u+kc<jt8U%8+8!Dz{@&@XSq<Q*W>;&d+Sz$M7y=Q|hT#
z>;Kj~5pGx7>O5WS>CWJ-VYha7lv~Nl?40ww-~OL~ebqn4IBU<l*Pe-`yoou$Y`J-L
zo$33|z*DLh*qRyn?x?(Sf4{f=@Aa^@yeUk@+`NfACCdyv*7hI0`Lgr8{`<1_7yNIM
zet*3vcy3O~-rMp?FD~U;?Uk$AE60|ntl%5W!}e`2+u<wojguc}`xqP)IK{Aa)>Ox9
zznOXF_Pfcb-td0=WY6W7O2vN9qh2RTXI>S5)l+azp{0Q*<|r?tLEtBM4c$eb-|Nh{
ztMDXG@toxMZZAEH9<ADj$q~hDCv2Xdycgpt9k%Od(aTRN=jSI*7Ib~(AkfmG^nB_B
zl@+{g9?e@yZ1i$<I0QQ$nf`3koz8S@E>G?j-M=SR>))NLdNxz&lNm=!L)`g$x8?u7
zV6OS{(Vd~8{-?dv+Gqd!@5;{pcQM2CVo{vv*(z@9{+wT@pXEvK-rdi@U|qfY#+_~b
z(r2w6S+r?X>&7rY=Qnu1bIZ@Usggm{Z%t1<_3iRf*Ik9l1*?LVth3+0!{YGGm21rk
zD+(GOD@Q+k_T>%F-?;nLQwq*4jC{D#u)wjuJ5T=3UG?6x%yZ_>cYIlN+*LpYd9KV0
zv^uFO?TTMq*(|x=rPn1aGuKYE%nZ!GaQNm?NxeJoQup8geD1MX((LT0Qq8RM0y{ho
zT=V1p>Xxe{{(aR+k7Ds;hGO%c({p>Xzgj)IA;sdlRiaHYK6^%Sn2YSp59>Csy~Z{v
zikU&6#j#LtE7SE>=Cy`bC*Hk#=1KbA4a>CtnSNY8EiUbp>8|w>hj-qspQ}`A^dfF~
z`{!cmk9Y6iKYs8a<F9j;djjttIQLAC;q@Hb;))fomh*4Be?s}jdj4-8_x}GY%W&ZT
zpX2{K|6UIZ(ozsOvMv9CnzPx9M_&%PojTul?&8ba$D0#hJ?(vIaQJ{^uvX|7<7+M+
zip5#-Yem}pTqmW@G~ckL^uXt+yAE31&kK`HTCC0Ip0jMT74LKm+r_p@S$M7}^L4*<
z-?pvwm~h{7O-IViM{y_SevegS5;0!7@7@pZ*@kJo&ln5@dt5eMT9Yq3r=jy|tas|6
z-#I2{(@wpgI(<cYLrHC&#?q;N&(FP$`N7ZS6;yVNb%wXCfq_Jtp3zDXrp1cOtQV;o
z?`299`ebO(qm=XR1{d#Poul2?w{f}bzs>rbsW5Mr1jmte_iBQ=H||YUy%>Facg451
zwdVhY?f*&c`FT>FnZc&+kI37zzW=2T_x7_DEAG{dlyG<bb>h$drS&08fBQ&3{{8vh
zQPy*FU#45hSj?=BeEBd)WAmBs!RhJCEiAVMem>k>D`V*z`uq>m-Z*iu+uze-9Cq1d
z7)UI5to5+uH?xc1#bs9*5{`ZUeRaOH;OQo@7e}_vm^Armtn9Ij<JNzfj!HD2@y)nw
z@^zDP@|O5D%b90O-+g_%)nomA=Ve7N(-k?*&NM9l_PvRlLw#Y+H7SopDTn+vM0uBN
zUT}Ehra<c%DuFFkr>C)Gn#|%@%+a_dSHgAS`G@?6IZCH5-?4RTqkI3_J$imZ^*vG9
z+b5i~PcQPkt2Jd$@J^23r|WP1UhqUM`qbU<C~;A)O*|`iKih2bb<&%E8@kW6YX2;)
zYjoWHe(tL6-^(_<Trw%>1iK-p!LfuFVlVXV>N@{_-T#K^@BICr&s$h+nVg^}nU(k1
zkBf0?nnn4hZ*klE8z*Zmo7rZz^K-T0T>Zl{Zijr#_TmjKWB8Ws(OYEyvP<`7ebKYn
zGu3<bf}a18W1BetLg6{@?f<Lhx$j@O(4?)IkuC4hEZ(-GPiBZ0Wlz<t|7)E4ep1n`
z9=%G_DQom=mMgM+-yi-`Kug!G*1gDY^|6qu*Do*6_pwaxWIVH!)!>{U3*!!*JKtwk
zXKS|pKcUbg=utg4D|f=KUYDt97aH3pPWHSL{xZ$h_rLwDblZCp0xXK#zP;HYdDL|N
zsg%n}Y%jjesNa6a(w@(G&YT@GFa9RW$Va}P=(xRq-{jNZtz_T4dsnr-&G9?a-^RNU
zK2o_hwcpej67t^%Zk%ZPy=>jNMKT&y(Q8fF^rpUe@<Ze}`+5e3%xSk~J3L!ycxRa)
z;{~_M&R;)&a-Q?g{XKu~+(&P&=v~vdN`LW{En%I%U}H;}WB<W~hJDcwmcJA@bavqm
z!3QzFrubCzUE3V5{tR<MaL446i>6<GKO-twJv_bW!gnE+xLZ@t8L_SvnNl=Sbm@UR
zef!g-b~>6SbImNeD4cs>Ypsm=ERLpvMGY>Z&AmU@z1#DB`R5K#3H2KVf?wY5jpfh_
z@L%&}Z=gSy_$vpcGNFeSJ{Phgg=agQn$*2}<GRN=w^nSb^%b1H;sGaP!>3xKrHgl$
zPrG`JLvMYdodnMWE8|TMH{9ryU*;U2{`JcX3GwCE9QWLR?{s)U==NtF)w_4E*!lUm
zT!*txGS4y3lHbjCd~<m|e)wwFH^)ZMfJ0gOBX?_y85{HUbAJ=Nbf!CMzm5G;s%aG0
zS9;@$u(8yB9oOR1;rsi4SiLN>%&I9&RE~3RSHJfp-{49ducFIChq$BrGHvD<shqy>
z{(Hf@plN>R&)1w{Gu8;2IOEf&J7+WwFzotr_wP<kP3ake0+lnaXXyLC{Z{qj`>wdk
z)Wz?-i`b%>S{MHikqxknbr5$_&}8axP)gW#|NPaEZ=WT2iqE}I>@e8)*ipcRqe8KK
z`}LZwN~^jb6p8#=cUghuc-igVt+U@cy<E7a$Uy$51jEB;w!5Z8O<t;LbmO(1fRJ<Y
z?LRw;+xE`QUE-HlTlnGD@;h71x9thcs7}7T%r>_8&3C^0vKc(=Wp`}s?GJ4X4$;&w
zP+OzL!tlJ+b50nSZTRm$i!LAh+4^?#uDN_|@4o+ylRy0L!2H<(*(rCnRqnU{P&+%w
z>ihbZo;P>2-rrw)^W&kYh6v@1M!%keXJ@^tTqY{X9B=29`Sg?E+DGU9+es(gkXMk6
z@Lb{<e1O-lsW4-ve@tunWZp##6Qf<+5+9vD>{AqT^_78m_y#rkEw8^yZTtR>fnl$s
ze4<L=>EdfljWy~nlD##1mtSR=%dP#}%HG!X`cvoj#2$mBr7|VIWp#v2-V_BfyW1Br
zbv}K%+$Xr~tpBblr407gTQ41L4qsomBVRmwdHV4acUlxeHH}i^FTea+P&30@b~lHr
zd-CCFPqOlJ6}#k4sGK>-;4yJ|&XohPY&rE2J63D2HSoxtx9<s)!^E`7nxPiY7jLOd
z>SB$Jbemgz*D`(CmJXe%XN-?I7@I0}KRuJXBWBLyA7}D*$jHbjlxkXkcl;OeWODYG
zU9vKBZv>U5A9t77k$roCMZH_Mpyn>UuMIth`rD6n9N8hUeTQM)=F@%hwg2;j%Sz_I
z-X3Ew5fNBsAYkWj*}>Ej`JmQ=<@p7z^P5}cgIyI4M(o?6`K#vKn{BVQRGtW4Dt)$j
z=aR{H_ZgnGbkDx5ccFZq-B;<h%K6D&v)wEAAKY^6LTLAeC};Vd|6DTXl)pLjG2uU}
z*==2(_R0&3UyC<J-|qkTqqDTJ{`Xz~h3{6~ITLlSyD@gNWo*yF)#shh|Bmg|DNZ%l
z*DH9X@~XLnL9=E5JWGkT$T+#+<O{`m@18$@u`6W7xt}ZL{d=U1KNUJ_J`66LqV;Uc
zF$wc~Hx9Uo9No8x-SNo<rnxhCpZzb+{4-O}YZkvl<gy97I-{1EwCR<<`tiZk?%#{r
zH~Xs?4?J7&yz==RLl(XJ?c9w9<{_Q0Rva&5$TE}KrX2HGa_0K*y3~!<w;5*a&lhRE
zk+q$HVfk@WhNDh4vfpYXCq6W2J=Ya=apCFtzU;Ocx%K~beyf<7Zx2`<&1|X2(sRCY
z_R9kCQ=8OVo>r~dTPOcpKkmWa|9|)y4)Fhf{JY}kA*tDOW#%jSc6&O{Td`zoLs`G^
zS%KrGIlF#cnk}t6zxzi*!WnJbThhKcdG8oDSkC_$yJ#!pX>W_H-8Vj*-de=BPV;W$
z(#}sy`!_2dzm)n|{Hy9=``<fG_@=W3?BvlnZ6I-La>d1+2M#uN|9ZdQ;lAYMyX_h&
z|Nge$6i8pbyyEMnYg6s5t&d-*>^BH=$&xe(O1mKOb}QF4>%+QCo051Edzz;!eVzMx
zkIp6SoV+a?w<h;)-E@}cp=tLoEyJs7A5E-VG(^lAb*3hpFqogwKV^D3U>$!Fo2zFq
zTgp0_hYRjIzVdn0^P8`AMV2e~JHroLYg1+Av}+8^%*_OL$<$fT62ES2-fGLRpm9w|
z*~Tr2Gj^KU+rNL{D)W<9I9X)TfqCkzjq6S?zqWbW_oQ&s+{MecSv|LWZ@gur^ach4
znQw&;Loy<7F{j_jXOmhxap#KiRYqTSf4jBsMajk2w-f@`-~aA*)GawhSu0rbLE9^x
zvwO-plbH(7&ij1r7~7(%pdM4vz4{$bKO1c6gLJDwWMH92li!&mq5E%~EPqpL;+egq
za^8cZtbYD$-mJL(dckA4_xt}yyx;#nzT)pE<=@-iS@xV#UA0GpS(#;#M!A&u1iwR~
zY(-0aZr*wydT&L-3|>v<6DP{}Zx%G<J?A;*dTK5AChgqip(hjTAC%Xh_dj3oFeTZ&
z-M!-R+VYRj)bBAdaQx&b)V!Y+G)?qzR9RNDp;Ya2o$3!+^8Y{T|8IK#SN^rlzlZJe
z56(RG<!5(J*}2$y%lV1Hx2BzEY>3+1n6|f5clzxJ|5y83?m6FFnBMdAljGVjZvT09
zj0`4Hr8082wi&qfpDK{tbID<f($ncvwRVPF4El3#M$p!#PsS3=pMPFh>?Iyt!!X6r
z&b-RvjKPcB8opLRyB^Bz__J&M{H0vt%hN3i|1sQs$2#TpdCPzu-rfxx|NPo|id|mj
z8PCqrx>-f*S8z2S(AL;;?ZqxG_T%j9H{Q=l%)V}wp8qySxlGXKT%~KM?d0!OmtU^r
zirlrf=FyT}&3eD~7E4T>zAQK(Qm)ce;Lz61UWKnd&E)?+`^L?!tERebZZ+UZms&J!
zS?-MQ?ROIQ9%6{!nfU&qvdOD!+Adt3CZ`YlIkRfQM~PrNpWup18Lj^m^sQGLzWM%l
zvjj7nUh2ZY{U0=q(~fc1E&9b2_j9|H=mh()a3Nuaw!ezM*5zNw%6MOYeSf;v*K=<(
zr~UdeJ8$`O?V1@n%;mM#kEMEyS?ta>JOA9cD?qEI(PeMi->O+_#hfH<W)#kpkdIm*
zoLum`Y1@Rlq-Cy)!np4CO%>Q%^^-~8zJ`y%!m6fobMoxPKYl&cmXVWraARg7Z#DD$
z$I2~?J+osx_~Ng7Xt%7(ahq`DLDDCq_|ViPC)2}sh`&F*c8MTE)m`p6^0H3a)(VcV
z7quBk-%U8Fo;&l}i92bhU6(iKJ?FVJw>fR^)6WZ+3x3oIth5lGJdbN}?|g<g@An^J
zm*3MKzCQQo^m9jB&2=U-wijHlOfxYuzv$J=RCCgiRj}a79M3sC%~{Wdbvk0!Nw*np
zn}37#*RgMWaeFsS%F=c(dAeJo`GM=(oMtDsm7x>AuGuQ5IVo(O#&q%9yT06udOb<!
z-=(R6ry9+ooGpvJmrj{~$26Mv{o+D-pO&J}hKqUIw7!-;-JJO9c5neh+#|i3e>&yT
zYo3}k@8R!qYTeV$vBc%<cVjl@@J;VNe6>4dap+$1?B?H3ZmM6%5c~AgtB=?F^%t+#
zp1B4k&zIicd*H((rc+CGpVprbymNBtWxI1R)BiaYm}G5ZNw;08%%$uS_#`gyY{_ib
zIlry1J!g2+X2Gx}EB8w5Y}TNJ8AdCLq8h60+%K{hoZA!5+|F41xTVdJ?XCHmDTc0@
zjtc|JlbtmduRL{ft@_clcCX^k+w^wDzMh+WMZk%}K0ZXNwdnJ_5(9^4!KaPp+Z|r&
z^5j>hsM~{_h$+8KKS=kvNqVR!^FO*U`<>Zr-{;ex+?ADo65$)uiZPAf)2Qhrw>{^L
zuk?Yli{&$?J$iCvSAhNhi}jD&|NorN&~P|h|3b0#oV$7Ack{$;(@!ldd3N8uAaKSl
zgE*H=3Fik&nt^lHe0-PBxBFxKX0{8Tw+T8qSUJyh@F>t^c)KWaQOcyF50oF<BwRRG
z;9bb~tnBM%ouie@`!5G^ZfMKfb$;fH7imAUPNzFb&UaJX?cJ_vwCr#AG{=CVDdsyD
zU0*7@<34ww$DPSiS-otJY?|cG_&bH)G%COTVDUz$1!A{5Ty;AIEnXJSN;Ozo729LD
z;m@Kgx9$f-W$R~$M@?5!X}vb3(NWq~DDsMGY3IIYMLTr9>ZGq>aqQ@w8_RIu-n(QK
zyC%Cp;WHec|9{n5m2FoabTaE^>0Cp;rA5I@4_%yB$au1-G$ins$B8{>ViuMd{Ip2u
z`ClvHrQ&x<`|yF;248<W&zV0@^xWCKdQ-Zs*o14lj~bu0wN9OCT0d{I$>*+ZdCQyQ
z_L~cB)m>NId}nUa0ycwn^Unvh-nd&Vz1w<)`E8GwRWk*OKCO8BBz}3)9UJFUm$_c8
zHJdg2+8om!C!RLu{Jw~~mF9Pg{~J85^Aa^Gx}7g7_+`&~vo6IGy?<Gv=iAMVecP|L
z^TOW1<wg=#omK0vJ6~U!U1GIC@7J+&;#*JEuqqylOnh=|W_fJ-9L776Le{K)d3&a(
za@m|dom}+9Z+D@{;%gheI|;eJtCRTK$KuFclH`*ow)6aI>x;({9(-Ev=XdVIr=_K9
z?e5ffE<AlU)JySn(0t~#TQpzoYwCZaT#+6rn6NlgyhZx$wCP@bzDKRjxXSt2WpXuf
zL`R#|e|Q<4zwlm0!V9*IdEc3Ar%Q9^#;jX3SL}Ie#iJ#CM?7~Ns*>#u<Gyq9hsoom
zCy%NWt$S+4t`q(4RKn9D1_5=`H*aj(PQ7{Z;LDE_&rg13cb3>*;CcDX=?#{TJ7Q+%
z=h`0H?7ydV?%Z4k2LT^D#eH8Lt}`C<y1x0yxv;qGiqqd2-7@!EJmxWo5zBiRbyz`v
zbC|_??X?T194qaa;>z^LDQ>#X8sAL85WV%!_-@{J4wQNLab2lY{kLPnM^rn1e>!3Q
z=-sSC{mM`FK6}}tsO|md;K3cYC7ztoKgF#1r>TjXPmg6sbVqjbAGh3{WxF06+I^r{
zvBrGzGTS-x=03i%bJusazk=;Qv<$ub(|zwOx6x<Va?#_rUaeZNM4Hs3=RddH$!{}e
z*7*L<D!6X5>QyQIn9LK$*MIx?<7IRm^LNFf*(>Yry-Ac<cz4_EqP1bdk+Z}YdrUry
zs`Z#%u+e{-df~kJ)&mMLD<e;`wmjgtvqO7nLqY%KD%sv?Yd;9KER3%Rn-wG<@=bY$
zmd23>=6Y6p?W~@gF-%F-d}Pw<8Dll`3B&o%YdTsl!`1?v?7h$M+=wN@@ZF)e{91~N
zt%ol3YH9`F3wF`web*!w#Ij=dDzmL=!j2lX`&|VrOI!s&Z4&UhCGbK(L-RCVI}W`A
zF;kA5a(yee(#-4>(~Vg#GM7zwnwGMvAaUDAaq+@Vr7Ls1pB?+gS0*3XydrG#Tjh|)
zK}+{Oy}c;?GtWN{%?nxE85#2Tebp-~|9+vk==kN$!gJ<ZN<KDdEeNVOnEN)DAtOI;
z;mbJvR+m+hi;m2?&k^Y7I%7|%cJ`ByB&|x#$M;HiUCerPa&~@V@@2OJzxVR_%~2`0
zka_Tb<99XxNvh#{|6gynK02c~HMO)fv_H%D#mmm`k3E0w{Vq1Cv$a8$J4J%KhgU+u
zIP-A)0@f1-&9X*kA~F`*9&_7pkcYX>{~E`IhGTi9;pNxoB&WC?k-byT{r&ZKx3HA7
zGlj~pYi{k*(lS<hx7Tj>{NjD;8<XrKS51g2t+nsCuw|ao>(|i{w<C`KYFo*C@aUOa
zAGM~~Cu}|Ettf5!IxafjG-kK=r7MvaSRXf>xwGT&7N^KHcXzsHO}TRStHVydC+^o<
zUBjlYIpWsy^AX#m=*?MyE#hUprf-kk>-I~?mQ1y;W_{}<pm{ndoiTiuM#0HeZr2Y>
zO0E?swgx^=ckL_r{!>R=CtK=7k?1EM#?H#S{lXe$ZRZw>O1=FWn{o0?h*^3ow`x?v
zTx)%k#xq*}>1MZ-#dRhNock(1XXouRIkij<w~{Tk7P~DkZnN;y%l+P+@N(<vt}^={
z#h<4?_r9|y_nMZxRgLWXYwsRD{QH}sVX~iir|j#kZQR9PGs_mOO=#G{v?$7`C9uQP
zn!o+)tk=e`qpff3OWY*kaXwm7{QIWE7gg@*{k##mElj<z=d!VK(F|4FC53N}gtb0*
zzVXpQmZSL8oN|$hhk;X<Xg*SL+n#M>^LR)5Jki45%OY|;+IyzhEo$RTU2$DXxV1*$
zy8NvL!rtogGc3~e&TYDvl~{XO$M3SwL3`78d*`0xoD$UWc0qbb-`VHQ3QiKUTywH>
zWu^7%KC69;t2nqvoh$6{+-xSj;)T+`cON*gHamRtRhR0$Z-cgN@iV_*X{MLxmFoJ}
zuyI3L%$nQT*%@YMS*D~(?wTw7<J#VH-))qI_p2P6d82#Bd%@d1b<d8TFgWHjN2=jK
z_k}oZK1&vhU1moVd?!zOy~Qcb{B=;px<7{vnx@E{(K~TU>&bc5o}ClK{VVhiJI`8r
zG*Ld;WAmA{3)#2G=GZK+Tzlu4%iL`5=eMVI^V;q&w4Xj@)15t^jut%-H+=E>b?)<N
z`+HjNTn(4mUiwsTr<7ILi=%0eCoY>Ayw5+BO=YKdKHFNKzdy}__Qdd1-d&RUO6+u0
zrud=>%Z@&>@(ptED9N4Hsp8G{sB*oq_*-`U=G_*Ct#?ia{Sva7n6R{m{Z{Y8GfQ7x
z;;B>;ZSXdDEyQ!~;0}#PWz(m|eQs)s2${d@g6{2q2PVtqy}if8u*OvChs%HAANRi3
zb1?ik>0jUF&hLA|VbZY+mDcWpUdk-)8KvU4vVCjb^zuKPdi|ck{?9COHWf?^H}3B3
zY`d#abZ&KO>yC~hi#t=eWsf~DyBEL{D;+iSOVx``iN80_temGFdt(Xbd4p8B<0lW;
zK4DkCyIF77Ub$bf#@mi~HmRI`&b5PC=w0CzrPYh%S(v3uZmkfue1bYhsq^AU#FV?y
zpRaG;bgSst+*hxE9b2}!%6t}YNndaE`-7L6Z7Tl=bV)YO|MKQc<g{6D&8}@XV_+~Z
z|GpvHf6?pLxjE6<H4j*KtUGh*$KsG@MfbQAAN;Oc_)DwyN8?KMb0#gKrAbZ76Lzw@
z$Ob0FeSa)bc&GhDv6L~N-BR(xH>SO1HC)TRTzJPPi<<lG8`R&;(+}8ut&o*%-s+Ew
zHY~`FxE?Q2S`!=eAv9~+BcH2UpHCO)y^B%UlDlo^wIWF_hG(ZZE-*hma$wG#9oJkX
zwU%<1e%tg&+8{wZJ%Kszqxjc=woPeL#ZFGWVY2#n%#vrkZ}rZ7J-yY`N90`M{0Pn7
zx><|Ludy=B`TF}@xw&ua>GwPm)5{q+4l~TtKiGOT=K85#_RMKY8xM75%1poVa5AHQ
zn?|-+-rlFXX71=%K5@+~dEvXgx<$u!oId}y+U}Bpv)pIJ){;lzKH1Ct&TehmqUL^{
zKOkE|ag9Qk!qORj9NFIr#g?wu`}M}?#NXMQbX-^G>fA1m+td4YZSJ4`_@DO~8qD|q
zmaX|7|6iZs!N14t7H^*%N?Tc6o^SGcNAY((h6j)3|EvBvwcNhfSNq$qFCT^f9RL20
zm*GNAo<+X4-N_wB$9L`cvn%-A`fvFMTeEN5e7O7l+hrD=#?Kd~1X=K}*3mtbK1ruA
zE`saU*@J~Li?8=jjOeaewT1h3Vhls&zN+)h;x~DO=dnEBQ<N>4^z#DST#4D6q?gMT
zSkHP_J@Wxaj@1^oy^X%RSLT^tpP+JV@2`)ylq>2O&h;L$-ccfbeD2)XJr&RUDr<}R
zvtOIB&8p^jo8aLzbMe9{P20Mo4@$O7IA<Hke&*;$?vt@|G{l+am1g!F64=)}Q?%*v
z6OUbGhmIC$EzIINdp=;+{H>QBBz#!owC{c8g)+y53lF~0nq}B~=GggVOSdG<DNfOH
zohEvd@5%<7`171j1y`if9IL*clg(K(yLnH0zntPWP3fsY9)W8Z&(BwUd1=|6IcdK9
zmHsc)&+qA<>%D!+`L!jf^R(9QYuoB8t**s7t=7Qk^1o#HR_;uZp0)8Mclz%pnNK!~
zKi|aN*CM*=ZJZKg;w#_PNzHt`&x53nZ#-QvVd>0h4Q{;!q5{{>FfMw}p7zm3^y=&A
zXLk}O{VqE0>i5-pg}K0$SMLn&OrIxR9-$fSG)wiw;h#%IGE94eDr|WkR?E$Zm?!-{
zRdwSVi8nT>bH7;3GW&b&+c(}jyY{wQe^YpMjobX=LUTJFhKl!p%RfAMXveVN{_CdO
zA<J)D@2>b8`uNhnTkUa2k3F-RVQaARs&mbUAB+qNFTZzhy|C#J?=;7EZs#PKsuOOn
zFb`ZU{dU@9KlZ<I@{wtLJf+iiv7a@1+U1qX^)ql?(5W4Jm`_|1`D-C(@#U<umgS7q
z-1k2RZa=1R{_`2O+PL#RYjn26Dk9EA;BpWvNvc{V_U44^u^pS`JkL94#4ZtRn{a4H
z?MVfPS!ypL8|PaDf2jRD^I4Si*J+{0c$AjESQpY|VtD+QR_t4wHHZDyamQ|Yxz-|8
zTe19_cH$lH%6A8%cRc*HkNtiduZQN`*BhQ!p1T`m%&WLV^vhwNUf<-Uf%9Kkg=<gu
zkN(4RW~%QyQ!UqZPH`P4GBzl&8?qbS-d4G6!OWug32M76{)W%otme1=&_1hglbsqS
zEsiseWQnW#8hWSh;*P%kpWj)(_{zn-OE3EPdCu)m%|2}EwhmbL-7(v$+3xwHy!g$V
z&d%W#QB6McRCnLbTH)x~$81BZ?m4yYdG5P#-FZQem$!1KrM|H4Z@W_Y*5hF8wmu)t
z2Jvee+SmCN!nd2X&Rw!HSj7JlPv!GZw(<>4>OI@19bZ~_d7VMG)boZzQtvA5oM!(_
zSbMRBqjt-h59tru*9AVWe95@re)q-g#l_Q7SKPF;;mH1AQ~!oXt6Ai4=Aw_Q4~4#Q
z<2&~7=e9G87y<<jZa=g$#;c-i-QK^CxL?eXxEL@sHDO!+mT28I`4a0}d%yBl?Bkz$
zQ%Amz<$jfh7h8DxWYg7GXEL`PlqgT#xN&3SvtLpS3yN<!&RX{3o6pT}ziQ3RB=RrT
z@SOVeLOo;I#E9uXR6HjxT_tgUNkP)?L!Sj)mgz<Jww-Q%=Y4<5lTxV%oiiPzOBMw^
zDbAR+G@$I_vue2->x<VX^EigIe|h8b*z<YY@-1w|cKgmOoquYR#By~vR=abTHkxZp
z_0l#iS!(usDtkJQO}~ALOx%O1W|ERiZ2xdD-_O0Ub4p(EL2vG?dCM9eJSZ;Q7<a}g
zam%my|9*aY{bOEBklm8dCtqzWU$kZCyBoCW^jrIfF63KhA|c@twc|wm<tMDl2PK-*
zPk(yW8~x+M@&D2c58Ca282VYMiH1yD>h|`YY|z16C!f7fq`y2;SbgW$m!I-HcN{)m
zl3Dj;-M(l2e-0d-ETmg~qT>10-5FcY9tzaa)JeHl5wt*z)s;gi`JAY2pD{-of0*sN
zFA_r2oHF0u@rcaa+<58yW*^6!UxK|>I<em0{{H;#)d{X?{XuiXvkuxET)W}YeC6!q
zDg50m0h^_}suuUHxOm{(Hcso+rcx7h?0u%cyIox<e^>bO{9SjA&Do2OP1`qrcIvdr
zk(0mwkGgT7>U7I}mO6%G6%%hB{(dp%%G=+fuS_=|ygak)m!6}*g2dq5U;FqKStiAV
zH#1JW+7TGXkw0sVK<F!J;RBY=8O|TBUB6zCeg1_kXGTSk!q!ByyO$b;FS|;It%?vf
zIyc8^_Y@u{Bk^zIZTq5Ev(+_RYm+=5{kGI)+rK5xcQcDMX*h%8c!iEQht~wvvZC*`
z+dqD8W^jC|V!`25vG1&`tZT=cCZ!&x>A`!;XFc4K?%H9ce&W{Kpm$%g5BNAc7oVQy
zkaD?Ui6@id(%Vxw0(qqC1Qa$*o;bmE&aRmSUEhmO9-RC6P)@k#;x)^k?=+a5o3mTj
z*k2)`QFxQ!CGE;tQ&NsfFmGl(J+n-6)d3&bs#9Nt6}v>-&nx#Ba@>AC`z%{r_1Pmu
z_jYV;cklOowaCKrz@;;sW|^_8Zg*cYo~rY}wfp?~&PB6KiVt-(P3K#G?ysz?V%{Bt
zu+P`yYFXE&9ll$i%Ex)yXUFTp+(-_VuU1)ga{ZbIt6LjlvTkqo5^4GRAaM@=3kC)$
zrTbH~-<mzG+_m+O*=HlMOLDJv?FwW*ACSQs((d^#Rq5ltOX(Jq^>Q=UUOZA&&6^!o
zuqHC!N?&Vnf5Ne8JMKFlmuq2_z2EWg;1tU#>(=m{SmffaU-j?LE~5_uThHu~W>egu
z(eic4gLBTh9ZnxC&IitKyt#DGlzGCzPkI^+cN|tf|M|j($DA`5o=?{Qzxs-~+CiBc
zvvwBNW*_H#eO21@inMRR?y@H_4<1}N@@sX-&Yg{ne)-3_YbINXg#|l%xP-Ych|PDr
zv31pZ&z6aj&&|rV3EbNHYD?43BVV6Ny$ynw=p0F<iriL#k|riwt{xLfSaDNg?zbrE
ziMEwbViJ<GW&hq-mXK|tkgM}>t$5zUW9Rf37VNy&^yJy|^oxawhS%3@TK;2kQRJy*
zD^Dgbw|TioFi7*@ftaYdKB)<nzw|W~i@A3RFpD`Z_t93(N<4dalR(n3X<dgNS-y#k
zcxk&i?OLwpcR!9MfuJSFKCxu~)vn}vqF1PPc46rDXOf$A`gfYu9^HQbG;4X@gwtt}
zd-d~+9VH(0n#Zv+{5gOAPq|HPg*?NABb=8^n!Sp@e?4fOnp*xa=(g7Or$w8^=IpLF
zE^ujlss1&J*Kxw~>XZPP3t>NZZQa>+-R=)3!vXE}d)p3Z{SCWR#m7(?IpxuZ<BkQ5
zQEU6&N|)W)_kG<-HwJ}w-zTc>boU4=Vm38B=(@0P&iA5o56|$$c>IXVi~JJXHlb>7
z-`TUWTdtciGSo>lJym20)qU1E<48-~o-a#W)~4NAI(bKX+V0k{!zpen&7}o)Ztwpx
z*VOi1>$$zxr`tJ6pO$uexS+C*Q>Xgg{x_d0e;kck&8eS%dS8QpYwL=jA3W(YmCHQV
zwMwV&NH{8yGPk<ud!?r8wQD{#RX0}b{<pznS}eOIPr*HowPD=)clI$eWNe=uasNii
zOUA=h%nyIRXJ+{I*Y1<u(VZoljkC|Py)yfv!1L+@b7$G<DaDKLGF*RV<t4sS?z)+|
zV5F}|@b~Lk4;0f_axZkAI&k2Qi|AG<jvT2uTeogiIyaL$<)vO$>0>96@4xbdH*ee7
zxpi6R$Ca*I@4V*g-F(5fFYdwGnm<=;wp&zQthiJx9H1qf^7KdA+Spw(=XS0(PAqHv
zRz1V}@uNzi-YVgqrz=zT?7aJ*VW~yp9PivvSBd0nu_7IdP8>bR81_Re{=u|6rI9C(
z-sqUL@{g{-B7x7JTi7#ypWI|#eR>t=b2ly9oZOjTQsw`j_<tbU{+A`gg3B)z{Di-}
z`E9&3=0vZX=CchtACGlSY3?yDU=#NeV3Bju{vqNj7`JCHJHw9B&tkWt(-^0xaHY=;
zo^!+I!E9;s4>SG$`!gJP*Sj}p-?uKq2~ownZslCby0I(O>_s*Iw+A<8oK<<J{BHIw
zk4alH_BT0eJ~fk@Q@A0>CU@UN@utOB4W!Q~tUCCa+x)?8{d>oz@v3q(6>RWZUN!5f
zv2U(Kr||0Lhrc7DPn!y`M4e@Ob<K6x#f%+?UE;WIe)wy*C*an3kCxKSoFDfdICAS;
z#v92{@nu{Oxz4ls+jt8;5}JBz5tI0$3%f6HS)D&QSM|iN%DP;(YB%nq5=K*ReV3ki
zVb7dH21ma68oy(0eE)1#<vI5AUPU|_Wjg%F=2S%Mc5T?0%J({JtJJHtW?5!-Hml4x
zZcQ{{tlE3yC8Nj7g=x3TR$q0x{A}HNS6-H_9K64OD)21Gsr^!2`z6<ETa~TL?W|r8
z&G33puQRMg$V<<-0xmwTd{o&|{4Qv9?wVYM&0<HQ_C8y)#Y=OAPN|-&+tVv1k5`B(
zZqf9#S-)XQwUgCBh4?Cg^G6Gxrj&V2muunv5mwW0$aXF`<8{@nRaYX{v$3paDQ_}+
zcKzEHNr%00#p%zV9jUlj8j$<C((m56V%E6jPIFf_UWwB?E0uiVXZG5I#frMe6lOGh
z;9C8#;p$(@mZ`ULB8=}TmdEYtHn;m%$Z&w2U+&Qw@#eX67#Jq06h3x~WR+1pXnFp-
zKt$jgx3e7~d21z4zqxl$F7K{k*yp!%qj&uN<;~C_Ep2{qt?BmbuOFT~tX}cyiz35<
zz1tei<7yA@$=e>Y>d>jHGe6%-2>z<WmV9^L=JZSVO8fgaZr++*KXa!@)89It`(0L?
zCl^j_61XPp&aAY(kNbS5{m;Y(-_^5pQXAsVb4*j!I(qFHpV_r?28Ma^BAUx3;%oU=
zYihMj)mi5ja%RVtV#X_rc6kenwk&+je@rM+<CXF973US!Sgd}}{=xR;v9+!Rb`Lu_
z*>`y?$vtOY#QN0ed|+f+zRr2Mg>y2JW@)MaTehR@v4}9!omH=;{e_;{RMp&fzrF0_
zXPd~L^x_2_6_)Xw&+l)rIh7i>`6Wy1gbACbSY6}aurW{PMdmDrCr#CL503q<+Wd^A
zH2bR>lYK+}QBliey({a*zfXwd=Q!8O{V?WSRYwGCMzf#Kff~2SV-hvevv1~YpBPcD
zaDMW;S&kEwJe4ZU<f6FvFX^4Dk=$`~=1KcVofDsZlmkU}`aUt5dB0*#{+(sPdg*g^
zHuHbB<vFyuUFKH#yTqWXJjMf-<+{y<?_$3Cbjil8>UTZvblcUhRg7Ic@Jai$2XmB9
z=iCdO*0`JNYOC~<hVJT*>f(3w%yND>ddfejY%k=yzv}V&{Jcj`cdut;sN3>AzT(RZ
z&Y;~LU3-tn3S}*g-PREm;=VXHW_kIxyoC4XVi^v+UcawJJbp*--Pviu`!-h#2i{$k
zP;K|;fY#LC^G-hHRd}mzv1@Dl<i*MiX^%H=&Nb^x6bbtmkox3HtoQ*IcY&508_w4(
zzkaxPcA9c*zNw%`aGlrdq{p%>54hfa=q%=&+g{{w=$*epi$lWQr<Zk(e*CA%u;8+7
zqrBUS=%uNesus})98WAdHeYl7<2zTI8QxC2>%zfjuMu*$_NDmK^AUnki@nVSL|^W=
zv2T!X5uH)pE`H9&`1RA=tSLXT&+WXuBt6DqHP5NL(#27tk|sN3oh6b5&Q0GxBi%BY
zIeFjt+V6Mgd_GxpsXyA``Mvn1nmbOY9GuH#op5N%C+GKD!<aJjt%5mcT(#!<%djuD
z{MxHhaXtwa#g-{cKQO+N3ZLT2e3R)DkM5<<J~RAWk5?pB>Qrx0K{OheQXJLQ68(-Z
z=rPRJWtaMDm1Mv1df*AKt_SnfCqA9#rm47g_2LgZibHjxd053;ckg~~d40pg_t|<v
z#>RinF>d{oczwp1t9v(0ihjN0ua%~%M3H!WWKro8)zf)5iw-;}ewdej=ac;BV`uOG
z`t#6M+H+0%ht<={7oFW1n69t$>d?+pFF%WYnN$(~vt^&oy)9nLKR>OW+x|*F`Ap=u
zs9v^rd;S<PJXkFM*TT=w>O*ezyDz&gRA%^yB;H+BxBu6}>mOgOUeC<%Zr>NHxIM{6
zUT^Ypl~%Q$`+70Lt*ffY>vYfV=ck-n7l<X?-6dpvOyF9tY1+4&e9sP+OsaR{aQSL=
z>$RInf9BI70rOkB6-M7XCULA`Z+c(N{PQ{M^mkjYRXr&Cv_@fX+?zXo*>lw_(m$->
zSo!6t%wF#s2jYLmo}HYz{JE3Lx#C3yF<czS1gl(UK9vjODVV8pKw`(4=e!S{&Yjuw
zR@bB|;l|cGUkcV0JTpGt?{Am)JmcJ)=Tm~@npPCdO`A7Y`oP?y<{xTUw$0^MT%&&b
z!)u>{V&&;Ure2?m=CID?R`)r%qu`-8!-Ox+DYw=+hdw!!v*h`~&0-%kRvqL&d*1eC
z^n2fINBvm;s(S~1o#>3=+9<{9rXzD}fpBt=)Dr#9m$RnSBz*ppB)Hb7)x>yTY*ePk
zQbF}&yg^(q?>#^5G;<2K;R2)AW>&&Se%q{e*_GlpM?*iVr^oA^*6|q(=||K2pMGRI
z&^r4-cij2Ojjws4=ZNO-*>$(C;=I~A!~fUcINPz^Q9gdhIi$Y$yUz3Xl``Kic&-y}
zQT+C;$NQJN{YOrj`DF?=!55YvkLB3S5q&%6aCTYnzlr_zOy%!qRebvTm3Panu#MNh
zD@d?==`CaCEj$sYd%o$xZ`JavJLOmTY+uQC?*8o`wF~xG^c@m-ZFbK13zPUWkt<mf
zekRT2{t>s&V%jq89UoVUn6I0%TYRnQl)DRl*X^I8xRCpt<*ThRiF+)z%-wh9^y7Q3
z`I5=^Vw~j99WT~YeYN$@(YwqG=609JH6`b56iGYWeOTRJ%*vqY_TkT~`aHRJtPOnL
zwJ3kar?aOof3N+%S%+utq8%q=60X~>Infe4&pxf_zwz&7S%G!}A0;*`RzAzzY@&V5
zHtO*9l`oe}&^z4rUVJ61ueJU9qs0ezWpo%eE1a6pjj|bj(*oh?6QV`+Dv!&od2wLD
z)!D^wW3KmhbUDmodG~9l_Y#e#PtxXy=ehk{si9W9KJMDXXK(yMmv5e7c<cZR^W|ps
z-|x!3?f%X^{`L6JV~;+mUe8Ienz}E2UEo~dZ>e`qyI!AD@<y|0k+;cgw-0ZpPLFpL
z`X1Qdllt{Riu}ady_fGDyn8*4m0?fCcRsUgy;c<>S7Wv{Z*pB-qWXJt_xr;u-hVEh
zKZE_~ULREj%O{CyU#}THWSgg*uBpN_y>syfi6%pinbj_a1|pBoxhe`ioxp#P#ln0(
z|6z`(%=DGtQw)s7zuzqBUH$y-#C@r!cFrt**CN>Z;MioH`I9BJ&n|6s7iVXaX4IaS
zy6oB=uHN>?27dO5IU8gR!nlrJ*ric_j4kF%daPNu-s{iTXCMFd$>v<NV*L3h-!J4i
zJYy<ay0uRrNkRRW!;Je4-xUfbvd&dl*JSqMNNbPPv@_aiS9}8+yzd^eY@fn(ihtt&
zOFNV1$8X_{JP=#y`+Gav?2Ad+L1{Z@7#2R*T$H``kV<fC^$s3m{qxU1WJ!i>-Lst6
zFrmk?^uyP$rh9(9YLA)o@Zm|xC4bLV?d_Yr+nj;nY#8%GU-PHaO(Z@Yy|Kgf=&_Es
zbJ{+xF4&YVx%}+&DDj_ZkzSn#_K5{eiE;JbxbsXNr}t-PKTEdQ+y5Dazt3-X%3QlJ
zv~Yovtz{rjQRr`%nVC*5r&8_SFeJZlJbNQt@^zoqYejp#$6qHWEw(#<B_lL-P2IBP
zr*#fWFk7_itSv3t`nAUIe0?0>M~MqkntSu-JxQKc<~ZYe@>)j`%mn5<^UI(78=23q
zyxXVB9sDk+_M+n_gYw6P>rIa?Pd~PXKjHMcFsWUi+Sjg5m@C!l_+IFHmgaXOuGJCm
zChrQLeO_!)PNGOsZ8ERdeh!8kZ@$mrs#tx^X>DrEL+L=?eWDyjH<eb!r%k@P`lL8R
zkMt+Qc~_@>R;q5Fc4%j4u^!j=dz+5_nRENagRS0{Yfmex`!pZ+le+eG?o`)vY9I7w
zh`a9Vyt%8zKg)GJQ|QkA=bck^ip$pBXHNF#StDbl5U^s`eC}ASo@d?~%M+7|pFZEG
zHm~};^%h6<HY4w+pEjL7ufx_?$=jiAsp!ivTjA-AMG<wfX9^$2+SzFBd>GdHbo$>S
zjYk)4T@qWuZZG+hrJ`wbKCOd8`Nz(n^;5);%#L@ylUHse{^26u(ixsp*)Gc$y%mV_
z6AZOlqI=wlfA`(Q{Zc!`m(BlqcgF_HXWwT0{dTABK3ChFnCJgY*Yk*8E}DC)Ch2&7
zG|QZiJHH;!Tybfyz~^SO7e@k~?c`i{rDe;4ALj!jW4w$$mv3E_^wV_XhUgRi_f4Zu
zsqN)TwXIf*?wfj9%JaOtu2ERAsMhpV7r*ZbveDB{TC8nab*Af6SjDOQT}g8cH_qXS
zv60TMOT2Z=dwu!IeEo_wp1%(5+4lVNyXm2KMfe_9^#xu{yP0Yye(<{H?HbYOh1Y&v
z+7z|4&M$`NDC${0+*XDMlysazt?sUV^zubgWZ$pn4%XH4v>T6vr@LAHs|d14pI|n3
zdeAA&dTvFwJ=&i(dix9Q+vA|tYa6ffd~?1?;qw_Qy-z!|bjtnUbhJ4hBVStcNM`d4
zk<O)#(j`d@v2ikIWpB;ZnVs5uUvFKv7~71c-iC&jJFB-ozg>~RJKb*ioHVcOTED{!
z7xnINn)`aw1+`<6ET>k@_p8l}D`$4_kIfBkd9FYARO>83@5Nqkw;x)Z`Sir^_e<Bk
zYY_gm<m=H_j(R8u!klRG)9KZ!xIZKK#3qT0pWdZr>bM%N>$<h#bfV<Z{an}f7p~R3
zJS{$QK|$%yX|S~bYyNEhbpM&vX~A#1&plaGec<UMcjMGoeh$euY<7Bay#BR8#s84a
z6#>z#gHh7@=Yk4t<Z}~>w)n;xu9<R1z`gkDDktfZq=x6k8ZwhgeC+KDBcCvAO*-=+
zW%a7u>JJBeraLLR?R<E1Nr6uOrS{nGn{4h(eY9v!viBpSw-XyhTDo^kKN`Dg(-ZG1
ztDGpk&n6);Qc*_pz5V=umT8;Rg-VtkjEHAdmN3LJsmHLG!~e{rQ=L~u)Jihu?%uBV
zHc#x#igjh13r<$&ah0a5d&QlqZe|-$cYfEcS(86^?_YgO@7?)(-&5bM+bn0luGjmi
z&%9*2%FgL_&(1H%3EMY!!s{zrkDL|u%ibt6Z}W|>cdvw;`oGW1#$ImTdE+gP>eIZo
zUT6E<Z5Z?ISBZr3Zs)TqDSeO3k0%?<pWYo^UOz*enR~srcFEUM^<UprIDOjj-TR)=
zDYoy6&i7w0oj*HhJ<ECjJ6|(w?APYEEmxf`8YcSqoPO#r>)2n34|F6G^E8Ur&iiZG
z5`%IW*#y?P5?()_<i@H0I`-@Po_QbEekeY_;oPZ33Fmh|eDNvi>bbSG3ufs3xUfR~
zxpwHkZ!=47&Q56EeK9~U;PG6|sS?HEYniyGU)qy@_H=ATVBU$<0iQzUC#4--V^lfg
z!^DH{WfB}3a(89xc4huLymhm}Zp#flXUpn3In+1Ky1+Jf$E2M*?}pYWD25+)ov2?i
z|GUxtMfN=c7IrtE?8$n%K0LYHknyw5-%PQ*&GVS2O}bggrC0r>@@#)`d3pTQL+a~N
zHq4C?lh|-aqU4s%x#ok+&X0aMV5ZoXtJZg;S-l_SMDEm@H9>3ZQO|cvy}sLXuCDvP
z`h?D@J-1H%|NMNDQc2#915;T;TEFf8V;#XKKK1XZm9yukAION?VKqJW-s!FTPFz?P
zx%E3^|D@u|{i`o5=SaE+n%|pv@@q(V(T6#!(-XIzTI}`R_<ZXnjq{e*Ur+xX(0Xdm
znLUrQI*%IuHkz*|lJp=iY>jQtnwJUpa{d_>MfI#+Z{7WGM^|k@*!lfk=k56N@+`m4
zm~LNwaenbCyLbFG_f6LaH!a|`G88)Om$=?^*Os|a4<5Z(^xZa}d&}qVRsVh-kKFO{
zU`&c|Y`w_Gb&2yO_jRnOvwiVNjd}9?@U=m+S2Ha>A{)NY=X`eu-|ppJPpsqBjKwa?
zWUe`!5WiRN>H6aCmlo%ZCzmYvyxgm_<m#T+_n!Ydv3jZ1c?W^(tX;@Qd4r~{nszj4
z&EX4wC^zk7=*DL59gQD*4X-ae*S4%w@!3hEU%zaEByHa(Ut1%2`s_a|qrB=_3l#LU
z9|!(+vy=!}UvaGS;-N!nMT(!lugYRrBVl5)o^6Yxy3Cx(&PR<Feu~!%`FFbYRDC6f
z;<Q@s^QKq6P3NBazv!XKKY=607go3+)(43;n7#0RmL30FN+S8kr|J9O)Lnc3{Uhl9
z#~Zh9Iqi)*p8w}q{)4^W?@9l-v-|zN?)d*-<K6eh9lv%>?B9$2e;kD}`oF%x&*STm
zbkuw2{RDJX;J;Vv|8edA;=SMG!)N{apQnG^-v2kc=5_S_L(iV6?fW!!{e$auZ?AuN
zHap*mqfzHH_}0MNw{QOd-&<MxOJx6N>;24YP5*t;|6lazcc7Q=Z;vB0ro_Hp@kgA0
z>i?pJpW^u{b28uE@=M(xvE>?bB5UL{#)yYDceLBtp1b}G{vB`9{B-_OO@@ZR6$hOx
z?EeW|ZK*mu=|zdvk4w|{wdB`4mX3&zFSob1vN{Cv)8p6i|E=sm_Z&{1|3_ut&$IcD
zs_*}ngWhlWHosol{?9}Hk7x7igy;WxqW<yc`Fc6<<u|?gHO$A4A3t5C(xd?GkS1|u
zH1AXS_kjN&L;Rmd;vltk51!}m`>8fb<sj((#P6H;?zIKo7kk+L|7Uw<hJR1v|FO#d
zzHxlR_U+H_eFj~k^WyvOiqB`w#XmE+EKTgO{rvxPLv`4(gpv|T&ci}SEaxpZT-Y^7
zzj{@_t8?n!m~&g}&z-E==a8``lJ~^XT262{gKj!{Xnp_ZIph7+A09B)+?U_5iupjV
zwE2ez2bsUmlQz%e`BPV0E4%Og?(aN{@4sJs|NZXz^S5ukYilTOW?XuIrt0E+httiU
zLQ4-wXfJ)VqO6v8cFv67hxa6``66=VA4ihcsoK6@!j3WGdQsaMcb#ZsbGTh@)HXFz
zTi}S6qk9<lvwM51e>}GTmt6CC_I($LHsyN1Y}*ZjlG`*b|Ihne^ENx)dH3D2|M&OR
zR_~dOICk|JTkZw%Gqdyeb-MS<Jq(`zOJvEE2|<tK|9_PK2)gKRLeQgQz0w_zCD_^7
zndeu3c`<SGtoQHU*(Gb*TUa<uQaK-S?ew3M^Z#)6_4VEP|NY(F*?*a%=FI+R@OoMC
z?s>PLiXSrw|8(fARPo0p(tFP7>`UHZT@%=PwRFGC^L=wJ|8|<MTE4k{pA+x1lc~Ai
z4t-zS;r%+ac9Ye2QwzJ84=YdEvTuy)xt6!;_O?|wrZ*<Z>HI3HylYf**DT=NQbPub
zRGkREQ0?+23HDnH^k<x}eOLVB-uHd&_5Z)um;e9&N&mmmzAsDlcV3_O{Nelm|K8tC
ze|LX>|NHv?zki%bw_|4b@nyMvFNnLN{{Oz}^V|3T&1G?H@UMLpEFNdg!L%i6ZR7vt
z%R9d69{=0-@8&CGiv#_e6}SB7J>q;m^ZGskt)lm*XB4R0aqLW3yIH7b`;N*q#a$0t
zjji`b$^3Zgl$W@UN4EK#?z-vUXB<A(cD1a0>CwMMl48s4e=v)j?z`0Awr^#T&d+&l
zr;4_H4~ly~M}D=Kd+6(08!_8<p{q?v7sP!w-#l{M?%T%3`Bz_;=H%t=n*aaZ`+s_%
z44qJ1EG#W8{o_^m{;vM|Kac$a-f_qOV6yu(vH!vL`rq3>F0cQ!{KozJ$HVvk3jK5M
z{oi{%W_KSixSMdE;YHzb!DC@sYB%n@`_cULfKt*{xt&Kg<<FY>Z_ekb5pvD*?Trs_
zIluqSCF$9pUnkz~n15A&#{xIDTYuh|@P0WOzGd#~Pq$aeJ-)l5@(A}Yr=LI7b)MJE
zw(tICb)h;e=Ysb3%~yAQ4t@UUUqFwe_@37>|Mg$#|F^uVQgBqlika>E<fk7~Za&?g
zWIL<3YWd~${vEFzrN3}}0^Kh?A?T5L{b%!wZ_7UJJYUOK|Jl6$@h34Z#Si86-^+je
zz5l<q=G*4^t|G4ByV^iEN#C6Geh#c4Xqq9iEc|W6>=}~Bj~~z2e*4{huazJ7FR2NM
zvYICQyky%e-vWofG8>+~SMsYC`jq}`=@q5LQ~&=-`p&L%?78m5sjC*hJpJI*C;NH@
z+m)$B3+h8w^0+@%GCWnBZ&cs=WA4-Q{n!6>AAGtfdv5+A@!0K~&K&TqeW1C%;@O@*
z?bB_gD{c1g$_c-G=<}Hy{Abq4_uGH7kLQuC_R`mz#r(zf@BTmDIxGI@zc}A~FEThj
zrRjatI<^VdsvbVA-}f)Pxkxp(<o)E{wSQuwb}wGMSheDT&~!(!k|Z0wXa_%;<<%2k
z=X^~#5YybH9{7Cz-L2lA!*}Xwh3R%jL~Kah?O=Y{_(dSs)0p^`5r%#~H)Crj?J}4z
zztrSdyo=HI<6Q^1rhk&GTk6cO=kNaekBjV^Rj=37y)IvBw5F!y-}P7a=~ENW?~(X4
z&s!<4<lkw@HKuNn+ha;*Z{{eLezCmj!FoYE>$_XSTR%_yw)(oYzT83f*Y!VUr95aT
zWW9F%h=PicJ8}i5^WuoA&+}uou^Q1EzN)S({hSoYHLv7=m6CXb?dhlHYfgoo41S`u
zEOS!0{ok%W>*N_n*Ui^@|7!co&pn~;dLj#QHZrYC-nqskIsEw5IGdi0#Si%xZ=HQ{
z&1~f=LCf<D-;Woc`zjgFp8G=lOs{f9Qt!K+ZXv9<76^+M)wb<;DJgT~S-8>8*_Voh
z)Ycw*u$N={f6sM=S8s<G7R~8a_$B)Ez_LB7<gVW@jyh%dLwVKJ`T5+RGtRHReoO61
zjmF6}n^=7;&aFwZU$698^7--Avp4FWKh<~T^8Md86zz-)=I$4pa$dVAY+J&Y3D?EV
zd3bH_G<^7ThT}RL>I8{{Sji(NvDCA%rrn2Qba!Y^KU`_~BsXo|v@e0Le;TDejMTQ*
zpObmzf!f|Bf2${H>n)y<9%!^H<lMQ1g|`Z3adIc$*|+u0GGFJXUsDAi|M9tS*j=~x
zVeyGQ*K8KoWmo3REcg5Jv!M0K?M>`UEsI~?a$&BD_}2S6R^__Ttp&m^tr5qZQm*oO
zutom+w5UTsx=3F;cH8N+GrQJ${83GQCa1QtYT4JF%w3tcz9n=mbUIKqWlF}oVC9(f
zpQ&+aZBBPxQfHjCuwTb_LZf}luS4}uA0K$q&LefJ_Nj+tirdu#8u!x+J73ASSga_v
zKP>9%WcXq=`_3K0Ea3Ie;G=UDxUC8exh;HSuL|#-TDW)jvnj5{>2rOnY8vOgzAd&z
zkMq3G&lx=7Pbba~ky)qJGr!tKonK4p$1KnHi@yA9tT~_@71ZX<8`}S~RmS(%+@sIi
zmif%TIA{9xbDtIdZRvTVxj1RgTKCtVlf(Dw#q9jLG~OWYVa$`9CEmhWp{Hl>Xi%J~
zGOzaZXXCUO_Kapfo>alvy`gvK#H+7!l|7^AS0xr-D%-W~%o-C-uk3RReWJdd4l=Nl
zx3~Lh8<LV3Gx4@WXOZlgb%H+6!fI20&%J1yRW3W}U7VS#jk&als;1$D#@r{bq%2p}
zT+x^LxjXD>L!X4KZP{<-X`C2=U^pc*{qMZcyr?A83sL>kUe7$M=Y8PQ(??uhex29*
zGVl7XH&`(J*4ZD4Y~HTtPZS1-uT8g16c+EeGxhUc{ym$W&fJ(}(;u*G^{xLe?mOu;
z72axCdAmDnyUO~#Tp7G)PjtnFs+}xzV*7FxJeYN+EMZ@o^C7RdGGZ;)0-_ihHkmjt
zGy0sobb;xCorO09op|)Vz0E%N^MdPz6Wx!sSheCdKZ{Gdr6jjCV^z@9(<wKj#F<xJ
zcMfX_U&$%(*=hPC&-wh*iWsav@0cmNdTr&|l_uN#c|{+7Z8v*yq#(^gI<DK|dGVS@
z4=mnS1w<+LB{Mj@|H6}gH<-a;`)$`-{RfvYFkHzp^{{7Q@X%AVG3IGaWXOy!K6Y@%
z%?s<FxxM|h^`|5s$L61MNr?u>^fE4O-pC$4_b2B?U$>ue#{@N_Q>O*~QeJ9i{ePxm
z@J`$Qkmc%Y)h7Qk4VWCGtHFkHDthFF&V?H|eP8T)!{&LsbZX)}(}~esn{-^47lW41
z-TnUI;NI<w4E}QVZp$yXK6qApHjVjfnl!_OsM`mg9aCdScz#Xp*0<;L<QqPFE?P5<
zJJPqKa)S={y9TGfuS%Sgj=d<Z+^Hx1ylrXnnn~Xe?kQCL+;jaT*E!zeRpxuWHvUkJ
zaX4=rTDdjrvd-^@c@fF=thXN&^W<LWTsWmTug_`&kI${s66|^cnOgV%uW?#6O;*~9
zZ~Alpxd*@Be((2)#b3^rm7(Un{r+zG{}0$18otZdG+dr+{6dG7;m5pwx6Nz}H}2dz
zcz1dn8^fPd>Hqn&^sh5A%zK|)!#-cquR-|A`$gZLJ*_LdX(**#EkC^|-v3V8%@TIC
z$8vE#+cf8{J^j`7`yQ^pb<1KdT$s1~X`JD1ooI{f8&}igg;N*$FEw2-<@ffswyDyF
z|BKiyUGG2WX^y-*F(y7`R-N(BWhn>e$g3^yv6C=k<6U$9)czTpdd?f~zqIb#iNcFJ
z-rxFPDR`%7zsA{U9-ba?Ud8JVBVQ$IZ#2RjR1^=0ShQ|aitgtWzii&6pMHk~c<r2D
ztZj7c=mSd;<~t|<m2Pg)RX(Di|9SJ~;61;uMKd(K|9|}Z$7cCI>I@106Xf@9wwt7~
z?fVJ=Hb#a8cjFFEUhK?p;H-H3!Lxg3Gc>Fa>#ddlyyDcyHRnEm4LV`8xNCl@<fS7O
z$_<$t?!-<I-)4JELgM*@pS9C<v{Svq>K57G@;wk+Y;^n7k7Y|fuKjoUYNMoom!Zo|
zqi|KxVnquJ^QQKm%^yz{oT@$@`DaJzM9$h{xphq;rQF)xMXN3>Jty5<YWVu+^~keR
zou<tyRPzm9;@Nbj$}u&QZR&b{kp+prc#?U7W~46tVp9?JCD@DKscX@FpP;&3ACe+M
z=JvlmTD)%dl)W?D)-K&NH7u3uRGM?(%%aGkPxEJH7ZhYK6%BH_Vf4%?X7|^#N*d9}
zeZO_3uYKkvn(e#Pq-5S+x73D9d9|7?4FWsGI~gXIoi24eHmmZG#`9yRK%;7^C)tnd
zoEA7<%iwV5{o?DU>rGAm9AIboQ5Ud7tkJPb=n~(Qrq7{MIrldhhBIG|^UdDgQN8QG
zi2aX=h1vg4`q%aF+wI_Iu&}jtw(q>l7Ocq{|BZoRV^GBJ2Zjs@_5U?5T{_gPajSCH
zk{4y?85r8#+bt@RoH(ogN^E%laFX+_qcfjZe^@-rn&V@wd}6|s&xfN}&VOb|P}+Xk
zQ^vRS<@uvVzZNzGaTVITy+1RhSpVgs`m9?knG|xxniP5juKIMiJz#(LJg2dHU24mX
zDeEn_`z9{ClN8Q)Vd>#XkM=U?%l2^S&5_PbHP6#_`q`l68(gwGmcilsmgaXiHFw#5
zeqXn~U1e*g$>u9dzl-%K_ndi{wKmRu?L8KTE3bK70$HA&eU`AtOVado#*|BfO_A9R
zzn@;6A1>uNi-F<SUpXsv*%E76h66Vv+5gUy?BBG6on!MpPA2)plw*t2HaAu+W@YGj
zRqFAQSLRILe}~VSFSM@7G88*RykhoBy|AhzA@#a?W)j~T1_fW?CEp&by5G&1QEu?`
zCnMASGY1_dnz)U_J7(T_HA8WQkA6CrnpzviP}YuygNwIy`@I%>dvD%u$*0$D)a~zg
zey#NP$HQ6~JHz$HOBI}xRi_+k-=aP}Tl)2ln>!oRHZvaRy6#hIf7OyV&TUEKHL1Nv
zDs*isJ}|uB^LJf!ZAp&E-QR^dF-q+_x>yUD(q6CJyOq&jY}(z8?^!<!Z{2w!$;|)s
zhM-ehKcBlPd9VI`EyIES`X9A>zFwA}J%7H;qU*-$Kby3F{N${aQ0U59as4_2!|mI*
zD}Fl5GcnxRSuMVHTHtB%q^8Y(D#gB>*|{r^YvN%E|L^l3%$@(2hoRvA!`~M+YDVwB
z=CC?bCwTVm+c$3AU}V@(#@!>y&6&=iKey6<l5?f#jJ;oF*3JE1WjklCRCnU``|VzD
z_Z$u^y8HBl4Zq_%*+)MoTuVB-v*6vn17EolPtCl(Cwg9V^<Fuv<7sxapT21N@$na2
zvSeiVQeCUEk~7llG7rx)W2YY<YLjo~Zi$MBj%R1c$$it1pYMDkQrA*lx@DSRpZPh{
z;HeK^yx?H?@GaW@_}}XH4_+R$V|ei8g~Z-3A`A*!`R$F0Q+2Zz>`gqj?Csj<8@so%
zGu${}mSvjk%FeZL-^O=;o9caTuU)k&d|9H?hZu{<S<{?O3oZFpDs<c<>GHqozjnLQ
z)6Ts5+Os?%PxE^XfA57grsn0_9{gOU$0E)>+xe@pen)7d*^46)Gft*?MPAyt?(3WL
zQ-VC!RA0P#Q}Ua<EhEF8&)=+nJlI>!&~SM&UzM5P_S<h2wtoNftNq@A|G(n@OPfkR
z)>$5BaHec~(5b91JrZwH%M1Qp-J=<_I`u`Q`2+QSxyKI|vokb2o-F+3aT4S7-94i7
zP5o6{+qYg5V@Rk@W_QdGyW8XYK+op+<w>r3?>?2u-8Q;&zrIWU_J_vze_q=^PPhN9
z$?)LG4~fXMUrf?F?D<}LKF`~=w_5mr{{5Qkzn+QBD%))N@b1)GFFT&vrrzv*6l9b8
z^~+<sd;7oZ{d@oayFNohwfr9D^Lbp?Z%5zQoB2ghM55;Yjww}+90zmf=-y~}uatb)
znQ`6gWram1LDFiUpFC9l^SoZ_ZC8809D~`_M^TG=qt5D-WcOOVTB|mTxA?@CZP(n+
zZY#Fuxs#Yv>1?#N>BooNW--feU5QfOs&{SgJ4rvQH0O$%4gH4~JI{$Ke{JE(CCjt+
zz{Ga7uNOAgs=YhvvBrB_7+2ulXU7(MnsuMQv-)rKy{GnF+8<q$&+jOFo;m5kLuTXl
zy7%_~WZ(aLlv|#Vx@p0TO<$Gy7v?)ndsN1z5iG9AUzl^+qAP1cOhfB8rAxCvIF#K8
z_6dI#D$BI>T7c@?i6*Bf+z>cra(cqeeS*h3Z!b80cOLiJH)Xp$s%lk!R=KBJteJhr
z#OOo7>e+@qT{lxzb`-HjUA-*u$m_&W^kxm`jQ^c?8miQ~grD7cyFLAAHsAbrkMHf?
z&%p5Kg}VKr>M++oA6~F5|Mq0(WlQGGPJVWif4o_4Z+*CC%4R#RbMq@hPN#gFxw9}X
zGV*ZeQkBA{bDf1Jt9Sipxtsji%KNfYY`o;d<$Kn!ru*GA;bMNXuYj3h!{)7)Q@ekc
zE)Y0<YQj>@UAD>*-+nx-{qtjg59?od`(J|hs_$2Hm7K2%xK^dKqvcZT3AyJoTW1Mo
zo)Rh8kRPKuv+Z=jh80Eg!Xk2}{7!ijne6y)=frhuMSlI2=$E%;V%Ssvp1C0R)XR*=
zJh89e%`0R)&lONLuf*$T-2-Q?moaO03Oo<_ayK@%R{y-@PJ=s+&n52veOJ!NVE^-F
zz2n!OsjEPT`I?A*uG-w#dzSajn>S1hd3X0U&y5u>+OTn7W7XXX^B<~=_U9xF9-ooD
zzEbS;s;e`%_NaUI#GQ}0@VHL??&jbxYdm5u^-p~IXv!SN=+!&ZB$t@3S$x0!&CI$>
z?~ipnK2mxia?0IBr|Pe4WS21dm$2t%<l&CPj1KE>ACJ7`dcVp}bLzpYYNw@4E4Qq>
z9<}hi&(HZz3uiz3I$hzk$fh&bCa>sIEq(I!Y?Fk*!ZRVB8ir*_1%;k3%-(&U%er^|
zmy6rqzdUMt<gduzBUcioj<1L|JX*IsJ|?}bKYr~bl{C)W3!PqpaT+{(w$0w_liD#^
zLROml`-h9Qd#c~dG8~Au|0{WKf4Z5Ty1Kf>=I%}t?~5y>r^l_ATX-|i@7XKUmYr|&
zPYEAmUAKuLZJt?j#LwycUZ3tS^~>DWJ+Cy`=Q2yxi8ht^Njuj!7bdbdC~y@fKNn+I
za5KxX>ilQ6y-OC%N%fc{k$!FImy?U#E52N4DS9LSX7Oc1>F;&>XMC~rf0)&2Sa3{%
zdG;;7hJ159N0El^RkA*@B~wqXH-4ACbHax|42R4wKZ>+>yJMRBd&~XOSEqamT*6Ev
ze=W>D{j~}-^0`6MKRaV$J{R}&xO2<H8TR}AZ8m&%DgS5Ulb|x&+D{_w-vT_H6}fz8
zwg<MjEp9#QD=f9S{CV!4U#DI(G=#@hO71rI<#`vi`l(ae5`lBE1!C{6UayRt)BjmZ
z+v#N0U%5*v&M`sj&b^uQ=I6ZbHvwE4q9!x8XfCsvoW{HKXQF7t6GpX!O{ac@eZ9@i
z(lRZf%<s#CnQM$0W<1GT_teSZ8T-1KMJqo{GI5=y_F;;pist#3k8P$~KRM#l{4?#F
z?`D_iWS5PO=VN9>PEykoS$_TX&Mg}Y=O~=LFMPb?GRsEWCzpJhqZc=epIG!SY{_5Y
z)2$eF{0bFjv67_=Ki%2krPwJv=T^+o-|fFGDzbFCkF&E|Y&-SP{kXf|5})RU7frG@
zRo~v7aYg#v(OOjrr8=|IpPz5Kx@S(j-TC}=Qvw6a3?AR&V_2RZ`$k@dfuWC|Z|<qg
z$SIoT`DND=d4gsHKMmX5JG=Urt!Wn%$M>0%b`QE1lol4vSE-#dxAfvk*I9m67S^V5
z%ARvX<_Ys?JXb7u>y(*sZh>)j>~uS+FdK~ze_r~35PueL_3XCf?gjZVZ*pc$Z~bDk
zX6@R=7jKp9?_L|U^_7v#{299}Y^)Ca+b3DPt!&$ct&)l@56nsqOtYM^nXOoj?NrSy
zf!R-^<0CxPOU#r5-(B2tF(<k9aLXPQ&#uG5#`DzwvINb#o+z;(%=*a7nJ@YG-jhsl
z&dW;dIKkD>Ht+c{-M2plzQrw_5*&STdK_!9ihT5xpc7l~OIWnLSM=z8B%$AWndK7m
zcBf7+ZG+dQLM(PR*?)PN?{iE$tF>prB2fc@Q-_buUv4RW&U*R92<O#T+wN~av@${9
znzADYqrO2ZXn$1p3_}eb=?P)3^BWa|XGUAUoD}d{<;<2Nt1}(gCvYFV`8Dn2-PoJ;
z%w@7!*R8aC7jE9u<12sSxbm?^4U^hq-)jmCcbBGz{$?<=&S>@v=}Me^wCL4zpQRp;
z?9QD#leDwA<dNCy!fCsBlcs4t7kmHH?pE&OM|GcDXLI~Xcq$`udR?a4n;J9YJ3l`(
z-f7kL4f?XSYNeO)<F;A;dOeC8S6=n&x4yAGZ^dzT_7_j*2d;XP%X@C8_vT|e9TJi&
zu5T~fusK!i$)(Q+mRVWsd?27~|3Jh0Nw~mL?&+86^xf{fxBPB(?7^M?%^EIOPHz_A
z2(Rzic!{xl)6*O=_N`SdZtK*vk9^_UB&v6MVY!Ku!HNk&y=lVHv!xjt()RYQ>ur3t
zhT~#DWZRPb*!t>?s~78>o{+|wW3l4qfs|#ouY)#E`}X@xt?x9gtexG)wx3zc>JkK7
z7`K`Gtf>^a7CUo!WK>F10#8pNN9G~>nwQq$KNkO8{$k$D8(&m<A1>eb*XNPl`L_=h
zbqlypxlZiob>etDjZcBYIVH-OYqwzdsb0n)ukD)tk9p2y8T{DSuc5=ox>S97)HCkW
zhbGD!CI88sWvIaM_RfxL$1ZO*b@?fyAW<W2ceu4=z4ThKS-Oi&gVvkIwn;toG@kz~
z${^VG%4gSm>}(~zTgsv&r5H}P-jZC<T7BBVvHFm60>955g@Rl9-AR&}terO<rArnW
zO)>A*I_>pS-T401eskDbfbE5yyJKZ!Y>qDG_wjpiykCAnzWIwu#x8*w_Q5&V4jUZ0
zw=Qx^ZeEU5_Sr7IbI%MPJX?M=a^;!FDuqd=JGa`*j}bAcTE6UzyiHw0b^c!_Pz#y4
zWDUEs&~ZPHb1(ji#xVqWncPkjtoy!n_l;XO*%&H<{I=%SEb}^@y0m+XTIk#@TP~eg
zv%p8@`$QGZkUAlKl~-XO)?UpKO)AQainv_*F(-3cV{zj$(Q8rh*^BecUpQ5DXa9e9
zO-=i=XOddGVOPZD1Rh6;1$)zqj+;m8maLf?mVID5yUHZ)lxv&rS=$~wd2!)yn<-6U
zX^m%0nx98bG}4V(vrEi1bImgilj=|VG?yMZHcgU$R(5Vno=y0<U>7dVWsGx|+q|0p
z@W``1J3Ff*FE_5-{O;CF;m*&c9C_bgrA@T`zolN=b)`kb%MTs5d3Qel{UMa?d{lv{
z$qd`hB%VB*KqJ?@<xgX*Y}wvbKj=B1b7SU`Kk9<3=De_a{@?JJs$}v9+hjxjMOLrA
zN=^A%Gs#J5%P)xs1utcr543MtZ+p<EFZV{XhCzckJKGV_h{B}pg4a)-J(y`<rg?qS
zlKwMYn^)-+m+DwBYs)5ZoqWjJ%I9`-bpe}s_W!zXyI1Wxrg$v5^-m3aI+f$mFDJ2*
zMMf_sb(PLJ;wQW3vgNUl`!)u>wXf~^Eq~{*wf%ofh6jItzkhrpDmQf5g%gkY4`0}M
z>#CIQo4Y%C88Ws;>+uR1N_b6JrkOPR($d?uhdX^|mX%etsrXK)-tql0i#z)=JG+YS
z;uWu-+p{s){CL3VmwTqfzHj0(*Hik(W^8V#oY%fKckzKgzh19T%szeOkC$S4&Q0C=
z>3T=c_Rap2wohdF-PZa!m!v$WEvim468v(0mxocXc@S62w~%=^0~imq@QLKkcCKJr
zyKN)e`#0|v<?a=0dC<Li*_6{Y#|lqxZYyNF|2Z&wR>6!F_Z%`rry9@Qd8OfQoOr+d
z?2w$yTgMOnOJ+Fm?3dLw^KBR6%v0}WtzCH0=)P#n#O~vwUOu60*H0DAPL}uddblTh
z+qSX|*UWAy&MABz%R1x3%((jzn+p~_wBN(eP_a79S>S1{Q}X+3+zdU^2G5T*ANk&_
zRr){c!JSPrxy=QfX3gngFj_icspghYj_Xm4#@72jAIe(oC6<1UE0<BR<!4+i@9lT0
zJ=T{Ejy?F9HfP1vY>vYmGrx)$$^~7Ub=z0q_VvBSeHQ-h;@j_hWfA^RvtJ@hP1by#
za=E-QbM|zlZP(u~EKYLDJa^8jBlp(j9rD)vzO71gj68!Jm@ie$s)%EFIWu?KjE(OC
z4O?&6g`b+_9K#PPyxG>8Bw0(!%F9058$aVqX8!)K#&@=_yfV+Gu0x&uw?$2oS%-Rh
z`njo5nQ!j|NcXBm>23~Kx81zp`B8Dk0~{Q&$64Ra5RtsHMSFkU9d~o_`?u@6)cfri
z7-VE+lzfd<$`03Fd->pDt#DGo`@i2myxaYrkwMO`s-y33&7@^|y!{^=uJ}Dr<6*jU
z!$^_6{N26Mb=Px_v8y*<jS=EseeK_!g{Bj3c6C0s`zCLH@OJ)R5rz++<^MDE-!s-^
z@%QgrP|Rq5F4ksqnB<mNmI}v)stD)Pd1mEh+b*0ie^K;NQEus1=hj4lrp1xl7qYD7
z=zsG_>-EtW^Jlh3-LgG=F?h3P{g-_u?W(<Qyl=Pi=G<alKKE|)j-O4I5_j(1b1lA`
zW9I6-!&TalBUy%5d(zg;n_IWpCY+ii@we_>+$<$;?(kQ6vmRv1`7Jh5G28p>;y>Xx
z`*SX>zgziI_06qaADS<`v=nG_Of;5Oo2>R?-c09DlOHF~nOnACv&|jO6Kfb$ceJI)
zKAb5aaLx7h_p^$NEA5S|i)U4>ce&-<dtmZ~D9geNCY=*+ZP;w_Qt@4sV9eZun^*41
z>b1IN?$dGN+dJQsU+b(TzSx{^mFX!y5zcpF=en!m*X+D5i!2X&{Nlq)#(8#z?HkqA
z-Cx}N>N`#CM36C)VW3Qwq2hrZ&-s?^5cp7h(eB)Hv-epGN*MYcS>5{UxJCi(n1sHM
zol7Urk4uYu#!`2$^0)4v+x!1<Gdy^1|5KBXZ$1-4)$;Tgs+{MF7>%{%!fX01Epv<(
z#F<Z<ardonPTq`=xI}@oS6oX<k2ZO!AFDjIWwNl0jp5Tj5B}Ni`F!m*LxcM7{)yjy
z>Ak&m@}#1it=aqPA0G_A@%L)~IhlF<YJ1^NtttB?wf$yhe-)_KzsJJx=H8B%em|D$
z9$)mWz4+Y2y+s*oC*BZfKHTgK8oPPOe*bSd!-3oH_p~nGmgn=LJ@kmU>n;u9RS9wJ
zTFuXY`dwKmxixU}G|#r1nz!OZpQWB+|FgI*>0)emapQ?L-Ybha4t22}-D|vLTVBaD
zD??Y!*5X?JB`&&Lf$OE$w{Gp7pZtB=$2&X!UOHXzwAY-0;ojTn4<c80nQjqKwOO5X
zH{+TB+s?0?=k{9p*Q%^J-rH96$XDIneMfq*+}t@bk6$WJ=6nC)gTR@nO6jj^HTyj(
zOKRUXJzhMeXrbrbJaJj+XC+ldE$?1tp5$LCa6Tx?dbPf|+>&(TN*B`~*LJIP3Ty8(
z-953~==|%C?h9S3E3&Iqmx@-+<>Q-Y!@^L~*LR^@@0#s&Gu_Kvhi=`fIe&QaGiHVZ
z{~o))DBtZmqj5^!y15!>-%Kc3f4#AY>xPN%#n;~oQi6}$Relj@XHVm?d|NW%Nt{jO
zqa&q~&)3=P{P3`n@zAW9*_P=`Qv+7MIX2V6y{co<#XT~<$3EGA>K0lJ+B5fbvUX6q
zrr%oY>xbL<Kcw8}nRGYq`calt9tM+^P?xlM@7b2|$OOL2yOonzdv?c^yqvoZhnFdy
z49(<hJ|!X~9d^Oe?%-keV{8Auo&Q%Re}C$uKl1i99d-MkhunQ!*TXzL{~t?w?Bk$Y
z-NM^<T)yC{rOA-s$`iIW?)bZPy}Y?*>C-0HU7gMsmA(C<g-t~lJHOn6jiu{f%gk5U
z`t``^Sud=@m$F^*+09xqORK@KrIAyf<CS8?KIs(W52m_Hg=U$0TYuQZ?irVIOrYQU
zOY&;Qf~u~4rE}9Xiq2;ro%r;v`RNHNhUeb=?(^sScxBmtD~k%Ah~;m-eq)m|%m4T_
z^2@nA!5Qs`t}M37DqXA@^x1jIr5<}L?}J+!rkGuuS!}*e-LtE&)Ss1o#)irr(cd?G
zf5FF)@cvq^iPYDXWpS%3HL6XY8m=g>>RLCqfAbFZ1t;F~Oy#{&GEaEc(wTu<+XA<L
zvnf6>=}2wL&63I;=ZzzId#>9}4?17T_fEz2`5TG$GCm7iOSh!pb(x`3<}=)~t_S>$
z6W@E|%jCTE+)G8XcsEC`xh}opwsVwj+Vsi)q9#apUJ^-PE?aI;dd;#hb=?-GoICr^
z8NG<fW^}l>WvZWoh5NL6wX=5|yR@Ds%&xpBZvF35c(}=|ehEReN#18JNiRhn#qwP0
zn!Dw?dExh|yBT_Bz092V{M!?W<Hy}CHYdscRcXx+^*<cNJ6qaKw&wj&@xs^BHqO{$
zZZ^j>*2^+j^rhz=<>mYT7<2Ad|EI>=dS%zT^53y<>`j+{^`B>RWU>0Ot*=l1v#Yur
z{H5yHrb$OQt#)4BbKQB)lT-VS)*39>u*rx`ktNG){_At!%)aH_Wnj3ns9@FPKd;kR
zPt13(vU}Cb79}ms;A6>t?d$a&;o{Hs-<h{=3fuO-%Wvi+mA_}bv#mBGxtM#O4)6CI
ztK(;1hrVL%5xrK(+Ph@_^QHY0kA!{jDwzCP#^7D^HK#>Wot8Z~BC`9go!{CM(~@{*
zoA=Ck)ZWLxadWnd(DBbDYy4Km-*|6wc!}kEMrAcI7Pap`zn$Z~v#<90pBU{Q{XW0#
zZS9=aUvJ(f$2rIFdD7V(1rM1MMHX&MJH-2{S8T_L)`#o5uOE`RuuDK7m0^2Q+q~z^
zg=|yXB{leR&$ji5>h1H&Hdy`QTno#a^IKo*r<~s{6dfknBWk<xbMdsa09EES+mbEP
z&s2(NEfrM1HhW=p+u_H_Z|qIyb*LXde&db_)3kZ-{V%Yu%b$PpxXxPNZPV}EKGV;X
zvhA!f+n1vEY#C3cDlTC^zpb)>@8Qo03ndTR+;2Z|m@DF@oK>>?ckkDee%)CGTFCoy
z!zDMpe)~H&ZaA#{#>sFXTi&mrDkbLaJiD5n-~IBBPArRkeblh&1W%iJS>A(d+}jx#
ztj)h|*p?>JFf--DlAm#UX=|2PUJO5LcJxw7w%p?l+zby6=_Z+8?#P|B``%5>K5N-8
zZ`o{vPc2REzI>%s-av%=X^)|Swc^ixE+TF>_GX$rmH&If{lleheMW{u20O}Tzwu1$
zalAF-cG~7%@%Q`Q1l7H@uWISDUE)>xOe|$qv5M!Lea+mTe}4UH`sUu9!`J#Q#@*Pr
zk$2|mljjZ{tySH5hj;eDBMYj{w$2iFSrPs8x5YbWV`H|XfA^J!vy?2m`%I-<xPfs}
z^wlR0O}EdgEoraWb@sr<Q%~zN>r>zLcZ#$~KKJ`t@%$KX&7;Zxc^L}6zmv7ul^?Wn
z@Bf3gGIn>}@Avty44YskH<$Zm5cj=1cMspoUCg*)@7~_CzQs45wm%D)aBOaR;+)+#
zYVLDi$eD4$;Go2$x;KY%rktB|de^n1ZEc2mmo_tg_`~qk?e4yB&sHVba!o$6|GZVm
z53Ns!a~M`!eU*`)xA?N*O=TPXl2?zsmY%avNU_XSZWc-V!}VG)YpvOi;JoJ-%GSky
zDGr@?CpMOYLsRgo&+gdUH=I%)pZuL}Te3D$$?un6`;je`vz>yuemFk)61T{W*HL1}
zdp)n(X-ogFndxEwxhcXGb9DC9f!2mC>JtO^cJA6LcddzIrR`dqeYGvo?d^UScin!w
zD9ztudpW3wUesVF<y$e&va@fqNa6K}=xJ}0%y)LZ{UCfjQ@*{B&wl%@ZPzwz%w2OQ
zx_{n+t!a1ee&^?7sAHQOojcR4v*7dZP3u!nehpu|VU<a=?wfZxk9*DS*cg7i|9?Jx
z!|x`+&d)WQ7CbLF7i)LhZFT4DH)h-NCBk1kxoWp7R`?p@u{$$&UMk32KC8H3^$n>O
z##w8ZZFXaGWH>loTXLV!y|rruG;iOyb*Nik(!c-fS5uqHlwXH0K4knA*3p@nTxu?V
z^?{Sc>cri9+j>otxANY~-D2kZ!&kzswdqGhZvDloOU*qs>!041*?R8u;m)rf879&d
z7tNpQ$Jengzc%T|kB`bWH3jnRVVRbm!pmRC{ZKU9)^q*DyL)=K%(i%PynH6?f69^Z
zH0#3fBWtGi-@f!cFn{K!?yOQ3&!#KS9K&ap6>qx6H78nIH+{l4Q*oxcjAO?4KPy_q
z&$?RnNN9fN%1Rr?qkH~je`PDn-^Xx1>VWm};}$O^^ykIB*SS8Y<;#-S#+N<|w5HjH
zWSa!8zIq|fJX=YhC-zw9$!9TdMV_s{-7|OheB*P9w(|RUk4JyD$w>X>VE;~W8&g-I
zec?iOhn43!IuGzG<YshyQLTCXNY7&a>8R(Q*01>%;T*%4d!h5yg3lp=4%1RPW~D9S
zd_A%FCGTQ}tx>|hyKlTI-JK`AY1_88Wue*pUWQ?j;fkk&51ondEUQtwe05KTz`U5H
zmv@yIK0B4a_iod^<VW9Z6&Ysc+gLndfB*2uksT4=t2YLhoG&?kRMPCV>6M%vjLA$3
zYiqxsi{10_V*jJ9*X?;2Djpw}cf6dJWbs^tFG`DHo_twBXVl(jcVtz?{c`6UGwQu@
z^jLYG!C}_%(+73LV$LW%cHK5r)zC}gl?{Kk+unT%l~(J-;;R4he*gTqwpioG!RGI=
z9lfV6Ir&H)v#l<^og<L{=G~&atG7a@CDq=|x$yeyF7E#kqQ_QFJy;}HSR8a~&$EqZ
zy;4_P&k5^u<Ib)O>pPqK=57_Ey4hrxNk`sk)rl;KG%t3@&OIwT@5tV`mGf>~S$A#q
z?6_i!cQq}B<tLVJ(b~ED`a{;N1@E8SRNkah{MPcnB!j`)xx4JrnR@)=-w7LkeEHzf
z+=HK!c@DBltyOb+tt9)sO3&G4|MhZ7>m?!yXO;zhwry#=8N=4dzO>;&+P04^bN)>z
zb9-sInkD&+q~DI*|34Y!zT0|4r_Gb!p<_DJD|TCxPOw@HbJ{;KCmtCFqwPQA6K-9Y
zYQd|%E@^8RCwvVPOQEkKx7EgyJ1do%h2y<8Uy%&85O(8WZCEbaq~NT}`?+5twM=65
z&f@itnRZ6HWl!<5n|jh)bK28));CY4tuv~M<4XxT`ee@;%jfI<EYdhMjaRT^5y#g5
z^Y@x}PF3Cgs_y^p&W;?v`rW&(Uk#Xh`rnT=-|u~&7qU&=fU)sQqkyqaWX}O1<`w}b
zC!eeY$xg<k11yzIf(p-ke2f#5crK|kZqt0TDfa2A=+NzX<?mi@>h9QkKVf^N-!sdb
z?kV%WPJU-w`N_r2?akig^6a($ZyCjL-M(%8;~#%rL;HM*iOVK0R<_w(>2y=Qe^2$@
zySvK^A5SZMnR|-uTfSuX!{zrYnDzJn(aMvVQGDOx#`m9v>(?hlD(tIXzkrAL9BYtv
zo`&$t*PVs$bl*ntxBET`3yhz-b7e|?Z%D$wCtG&g@hvV)yILvSH#^L=zWhI1mv|fl
zgU$a(r!A_|bY3i#a=5wAwYaU#XJh^4nr8{`8Ctix$;sNfPGb#s|9<97LFrY4)|ct?
zt}PX<3G1{ue{sXxc#lq#jbT~`6<M4wM~Qttc%VC8)yQ#m?y<J8%`XoZol@%8`JMGt
zb!EE1nP|<xzgiX_&3WJHZ0>AvdGhwi&i%4$x4v&awa6j!?t{}otlheg6MD{1`I_=}
z=DEXn<yVw&o@5nLx44$GAXMU_*HSN!hkMqtctsmJ6?a_OQhCsVty$<+SmOl6??2Tl
z>vg2A|6^=8+;NOC%};a5*CQdF-^C1-c1}DxC;Np_nQ7<gnx9YO9>=xK5Q<tLY^t#0
z-?VG$<rm~x%1gv{KPY^COSHFYoBOHmL%TP5>n;r4qEPtm-Kv&LiIKa_4qw^HJ<oR9
zUm2Yp#j2i<#Osu1HB3$Ao9S_9PjXDTwYqx6kCV>7f6D*Z^!H4<UAK6=k>O%bwT-#4
zLGe`|RqyPqJ-&PY^4?|f3(i;t-nhcqwmLL6%b@Ln)$xc63>UaA<XvKTaY8k8r)TrC
z2Ccwd7M2GCHNJ1JTwk<p)B37M1{c4-ei5iGvT0hR!n=2GenecjySKK)T1_r$s_K-v
zJyTb?Oj5g%CB6My+UnMISNFY`H?P7p)iStiaRK|Tcc<s<Oj^4&|F9E#E%!3h83nb%
z&Pu8!uP%ujPT7`Qd{E(y+FAk68#k^@tTugYH?1u7j9mAYq#5$&mNWX7ie9t5)yv=0
zz2V`)Df<6yq_St~Emq>crSdF#onUa^)w)|j(;o2DHEOiFO#3Mt!*TM@Z@u2RdQ;`k
zOG<2cw@{<$R^3(B{TnJzH+4Q2Ud3a(W`a`AvLd#1P2akO880j~%e<c8q#-FDP$svE
z(P2lS^_~Al&-6=mqm#-q8vU-Y9h<TJ(^RV?N}m?a>}7j==lz-V$iv(<1(T0RG`!S^
zofpIUG`NxX6I1HS32QQSt}e1pY%_=`IJO`rM~Azc;h@B==-U<>m}@7gyeRX{TCbD+
zBU`AKO-gq=$N39etp8_Da`Jjte8<~xHEZGKM1#q(2XwaiYOR<s-}H)Yx7xl#%T2Cx
z6<l5ZiOFl_Le~A8eX`b0vkH_rex+@RtMNhcY?jyU9!DpXd!`)~xvb-yCf@F~a>K+G
zrYTA_a`~FU`b$(TzCS81?oM^>UJz=SdFHFqujK}o&*~D7OMc$CV8Y7I{B75b4;<h&
z>zv}qvAsj)TA9Y5pN+0t4w=e2tviw%S8#Bm!EB=dj}tDxWS-9{e4n{!>NjqobCxZi
z8xnTLUpRdHXWVJkUp@tidv4D;5iv<^U-R_~6O1?}Tdr-5U|yi(H6?0cNZRCpmq%Z|
z&zZ&M+%xgqhS~`a1g>?r6gu3j?B;NH;(lA2Fl9^fj`!@&_Q86d|2xE<&E`Hk2{F{V
zh;0Jv+!ee%hWQ(B<(VnIJ!dGv9TumjAl!N8n7rCjo>SM2zV4nIQ}A9(&B8sYd^YQx
z?hU^$-CSRK?fli!<H5`tYq=`cUq09wnrm-qdGO^;$z5SP|NeNv;y>TUtlrx8n_h|h
z-v4${+s@_P*~zTfbM)hn9~_a>oT6OsZ^}6n$~JpfvHa{uEf3WG9Efsj5lQefcT7GZ
z_4<~PKI751#>%}%@3z)tEIpj}X3pFEdym$?licyk`tg?r&s$ELGk?uA@tqK5nxe>R
z5~Gv!!rN=9Vyi=v?%O7Am2GF$&$31NKK`ZGa_5ejjrKX$aQ5#(GgD5?VJe-bw6V7P
z3RC4FMYf%`en|!fa<+4dRWhI5FE5>JD&?_9`cKm(S>M7g(@zEbT-RcL2+UUToS?EY
zywtqiirXsSmP5LtO3}Mbz6J5?gE-bKy}GCA`IXm)Pq0L;?!EHz{SwWl|Lt70-jjY*
zG0pg%rqM05RBPgG!@27tpLJ*@^e754E#+Cs6ssnB%yLdq;F{!xTfg1%Z1{LjXHm)K
zL#>}1*W5i)a)D{?3Q<3vbvN^V{JGOp{QlO_8BFOmC9`^3LqeQ>ox9*;l#>@QQ{ub9
zj43J?s@A-?_3OZ)e%8`oUQ;E$_|7}Ocyh8$?H>+?4=+9#&a<s;3ZC8m<K^Vz6;&xN
zo2t@npPcex@bmBc_~phEHNV->c4hA@d=FYOUp{y@{MfsFQ#rp~?N&4|OA{B$D|pUy
zXqSf3F~yi)N(XEI8XpVXb?3;03sM57rmSuHG&}x?YQ|f0`)#*$O>*R?sC1qW)Mx#^
zki%8*QO;DOdheWDPUkGSX8V_CS4+Qb^VHRF*(&@rva0*^uam7D3tVd@rt2+DWA;oE
zzpeB!cb=iP%qx~NDV&Nz^>Wv*s~de>J-02)P9!Dp>Hc-f$CqZjHQzJY<m2DKNlPXK
z{n{AjZlyO%)8Or|nMypqK0A2kOz4cM+#T<-dCvB}^r~wyv(HLtd}_QNG9jpiSBUq&
zjfdvn-#*N@%)Th;FI*USt5DhZN!qrXtja=-F1LNJWi-mQ|6OU3zVcdu>guhVq=WMU
z*Bx{b*sju%xj@Vrv8LX%!AHv_H=(C;Y5uuy&8ab7`3D144=mW@!2A4Q?8L%~ZqDa6
z9qF9CVTU6&rA%@-!CPSXb^3mejmo<p$BDcsv0`XQZ}0#3V&%rRa{sCqCBG#!)Z32k
zDR-{Um%g=ZX4aP56U=mjl+R9x48QE8T~Z}$W4meES~upi(*!4+-t_Fw_5GR#$7&+n
zH(zXNb4!}fc+PSQ*Q4-rQb%`w__|#Aqro{AktWj_hJ7ZR-o%MFE%=dgo->(er7z=-
z&AVS8ebD1DZSq>aruLqV8dKbwIT`h0=W?2?O}KMb+WbO6qNQh0?tkOv<GpsvW$kl!
z`f)v%S^3tSp~XzwsZ0OZjE`GB<t@2oFYUE?f|w@<NBYSulf^lrFHfDWkClm*OulzX
zyjnr!TGhK>e7y=8D<!#=B4<^v?w@d`dW))&q}1x^o;u5Rc1`Nv-#E9v{?+s5%JnNv
zd@tl|`(x>=#$O%s#8qR-ho?C~_blE!<gGtcqjCDu3DLT*XJ!eNO)WU*tI^9XEv#m%
zzz{us;*P9>GHwH9hF7|;98AL2FZ(Mzn_2fl=dA;h-}QQXx(y5p--X_gOi$?fU9l=?
z^=I29{~sn_-ub0)X;9mqX;Tm0c%-(C+rl?u!SomN<}xz$^`F16{oT8rrzV;jb4c^w
z%F9oFzwBh;zTM>wiwq3gt*zO2l-_=3wZBw2+WOd1b7!uC1?j=TbLVU;NIrk0M{DUb
zzn$AO4UX+iTA#Ib!QxGgY$Ez^3mq5U(%3uOc}h~j+jz&Bt$VyLDhI!>I{Pd{aJ}QU
zc_(LnvV1&e@m;gGVmd01g_J&W?^$$3(b;9?-l9$Gg|{c9%N#nkK|S+Tsqvm|ZmDOs
z6-b_&x9vfWP~e^7%}>pOT}3t>(a#asQIg>1dgqGc%7@7XjVx#K0+w>DTjkWz`o;9}
zi5Y9Wd3IfFH2mvwO=B^S{GAp}*O!;J6un$*vLl$IU+nc9P5E^bR5A-h<CqqoF59VU
zS2S5GFWk7sHo3#-%8Y-Dbmsgj_gH*V;&ZXW!JY9e$6hkeOi8f$yzWEflzUsaBqDOf
zUoQOru#EZqS<jwhO^RH-S8nZJzqs&FZ|}bPhYeeH8FarY?|6OqtKm{a&T;7loo*)|
zQNW(0W8&Mpz~Su7jV&AQMC8uAlwi}5QYcsU=dPZ{a|U6(?b@sFT+I-?Ci2XG!;aX@
z*lBk8o3AYuU!G|medFFe*UN33TcUg;`h(`oo2&R<(tCFjQ?B%)4VyPNt8C6YFl(X2
z6pbkxXL+-PpIjMIWM1=qX7RJBt7dL>vCN(lcIx@_w21}^j}NoSyf;-^^3}uex%cHO
z-A4+~J=gNyre^jfa!!cF^LwIm4S#&<k3W8>r$=#$>f;A<ei!u}o$cbxGyVS@pGn8-
za&*t$VqELc7{Srk_VvqzCjO^V<?FXzQ@eKZUdtsdF5`rK_l06AvQ?fd_3(CYQi_|%
z@wevZ?p>=kPclyC@qBdbUd{_K$r<|<*KRG}-gYg(s^!v;3DQgV9<}uqR_54s!mcLd
zafGV!KI1N<Lu(fA;pZ;67jmg%gP3dQA+1fuVyT}5CRWHaxlg^u<fM7P&i^HsbM~>S
z=`G#SCrf>}pWkUqZb`pd{mSLhp(srav3HlMzgzU1$#*ZPwGfHC(3!cA)hbXsDO}lp
zVrQDwy`y(`o!0D~(B<W#H!(2%#3Ga2kFP6dq%`gE5nJi>{+**o=d#eb_wL=|>vrDT
ztK++2^LBQI8@KL#oczE>e!>0sOboyF+8jBb+UcLW+$2D(HC!S;-@Ip*T@Uy9BdHeY
zS$j$k=*lgbqE_3jyE$m(!w7e=O%glI6k0gE9tSlQH=2}AW`23P=APMVQ|aw$E5(g<
zTpow?&-uLK&sKlO6;s?a54lZy&E2zl<(K*XmyRr(Zlq|PcWJxPu{B3y_6oq(0$g~0
zUm<4R;ccDz+q2$YlvrR|qtU44t#M3AJh>&JSj^0+g(vUr={r-dM)li$KUD59&3}$4
ztA~4zTFb8w?=yHGnt6N4-ZgH1keCx$^5^r0ZcFR`?__*#`7L^1^10i!X1Bj|_Libk
zm$p7+TEvsc^v+T+rh$9=2i`=EMCYTu{HHblXTGbPxOI!pjt32<0+~zyL`6Hd`Z_H;
zcsG{E_J5AY+PTJT$DHL|1TH)1w!!zuDP%E3Ug(TUDpQ$z)%r=h*|muqv?W(_pFWYK
zw1Z>S=^6L4EFN)**X+~W_w&%+AG&cqyUk_0dpI>O<Vcr(oqJbSBrK=Xaq-n#2fw}3
zV_0zYOwGNAn@(JKJu@%m!im5s$4*W4cxWpvk$&v%#XA4hH~B1gE?+Ty>xNtBI=`nq
zIJ71AdElb0;=em}%jRr;aCYI&@|Uc}3uP2jQf_po?8~0>`muI$nDx^2%^q8$GI&GT
zreC^JrKRy=!L!r71(Ubv9s2k@`TAv715a7K)$<}!rgB?e5KouxW_|qVbLMNewHEA;
znVe?qbK`hv+x2Jz-(%NJGtBCbvig56o6Gxxp=oKqp;?Nf{HA5|R~N~riJsM%{&1&R
z*Tc_oa-R%4v%fBxF4-p?{y(RM{m_#g0V?l9RhNi&Hut^i<e&a_M^RkG&-f&#_{oZo
zm=4$SFR*krnDY5URL{H5G1mNg?;~#P@Q$$ubt$F=GB4<S{P14v^@{DSCnMMF+j)j>
z<EDLON5p?8CLQaXUp(D!lE~U+fgA4Kz5BUq!zzu78QW@3t#DbEu<cB!NdxDxhu7MJ
zyq1LVMl91j&}5Z6YpF+&_;c^(YaTggme1B;kh+tl%Ts->%}cyMnEkU|x?<Xvyr+A1
zy`Gu>&?2kxU~5BB;jUkQHYO^blZ-#-vvt?G=Z~!4{Q3P^*Gtd3JVv~bV~WoqlVdi<
ziauGQKGD*q@$;)6ndK*~UcUd8mYLfzIl0<p=d2hE=NLNdIJ&5<!Ptk#RY*tWN^Vq^
z*%F<e8yO3~7RbLdUv$hw{=T~__m`^&_4ds<nBjbd9c5xf3Uo%aZb$i}-b9rMvE~`C
zKizq;D&bc3%&Sfhbo`t+mY98i_3av8g6`{GI*OB3o?J}hxwZ17Q?sRG*;2*Db5^em
zPWBV>(5vx_v20GbdFXYi?=8<au14#4YQ(Oc`1*HI>gTFW9v2@da<A*tRave1JoJ0+
z=DPcvuAYjue}At2-l+{;MYom|rU|{eHecs#Y~97@voD|h`)B8$*R693%hq}Swy&Rm
zHR9O%w47Q4<yTn>-oJJ^a+f^vder`ZPtw~Zg|Vl1&AYL*<m>&|`|k~fnZMso`I;Q$
zGV{k-x7AOle%c!3)_QB@<gC_38>CfiR%nV>_Nf?h|Ix`-*vR#$bBbA-$q}<-g?*t0
z|F>UDzrdaSBekvMN{*Y6YO=X`+S}b`Rf0Qayq~+2f7Z7@tCQ~D{-3tt&&IgTPjxOe
z2Hrb%wO@Anp;ZNQ)YTOIDl49D<i4{+EsR_DLg&VwSyN)}1g`mOU~K%_PP2RM`l_Y~
zmCXfa>nE#x?0&IHN54Y7<4DKV6G6YO#JR4lu~{+2^8|Zt@I7Cp6ytZh#Lgbcy>@&`
zuWdr^Bgy5dcW?iX3OMZfA?fIwKdU3&t-aRFw)J<`%`2bwzi0_4wD~hNSvt`CS(TYt
z<)(cL19+@p8~a!suP|&{Ae{X1<?MAgwsyzvaFey{{JKpq=gm9Y*=LSsp76?xy`#TE
z(bz#F@4uSDjF)afFFYJAm&|xH=lZ%Bby1ahPgbSx+<q(S?)sUbsS^zsU9Njys@%6g
zcGI%!4QE&N|A>1PxGy|#`lt2t?N1l2@U9dVkBqxJfwT7R0#+--Ns(5ah4U@+4T7&9
z^^|2>J9Wv@nHu6c+}&FPkKdjW&(qLnp5eA+=_==)^W5WiI>oQu<|w;j*SuB#{)GlU
z{~a^;SliFYrvU-at7f#ETvz{NhE?z0*Kz;4lcvsY33>K4^=7H_>Ca!AW021m0d-L$
zEKmC#Hr5S&qZPh!qV3vuKbF3FaF2z}!0=VttK7zYr=}L(ydJkaeSu!s)X$PiX1%`q
zw$Get@-6LQ{O*0FhWEE#SN?s(YI=R{j7z+&r}nJ7QoYV4gkASSXYra%%U3jB_I0&g
zyw2!aZsX)fPoEu+jg#!%`}?(7(6twJtNpdN-Pw0y?p{09INQ)(hR0umvd%Ki>))_!
z^}!q7XAZnLW2HFz;Sa0W(`NfG?hrW8rQf_l7iH0cX@l5{BL+OHZ>Oz2d2ZpcSGk;z
zyDaxjON|Y`@N%6eYfoyW>EQ+KTb3ODy;^VTuImS%3BOd-6JN`?_GDgVBiFn}sg`Lz
z?9ttF)j`+R{dmpP{m<7razib@Xl<;)){UzS%&VSV<BwV(?7XI`Hm)*e%C)VtejK^J
z>CEe>n~Rn#%h>I*e%7hi4Qy{EXKcQdvCPEf>G=av8(tW#+IQxq<P5Q6H!l3Lkvn`h
zTP&`}uJf*n%B!PVSxbJU&zm6@g?tVXufjx&MMbMZx2(&GE<Ce$(xfY_TjCDA%kN#o
zQ5saTeo|>*;eM~=i|HI4c}K74b~0UU|GJ_j)sBDjSL?3<jrUF5t{=_$d-UfU?T?n%
z7uN5cHiy49Nl~D%Fy8U}8&Jki;`lBQKDnwV^g?IG`&WBTS<98rUN?K67VnL%k7kLu
zhQ8h3#kB5u%tNiz*DL1ec@{3wUw1w;sYWz-S<kLVDG%KzY_}`t$&5O`r0u|#-yfLv
z-Je(VFF03Ya&AQ2)k%LJ$%j14Zhp-!Zjg83P)#kU6(p_o+T+dltSjkCzPs-=zOMa#
zdigBhomPHQ>p~(o{oj0=zx1zX$UGkIxy8A1+;4x2Z|_($t8%`tZCP{DHSVZ0nP+w$
z+F^YvX-ALll+tXW>1UZA?SJ`V#>T%se|iGdw}`Fj4wu|0gR(;sT<Lp9Y;&Gs_VK8<
zm9^s<;U`^TyusqXm&i*bJ~Z0DA<Nn}E1lumS?`xc)tk0&VOCD=&-PFG7W-<=;$^8u
zp0U13zOtKEy<Xj1)^Rp%?JtH$Oj{h(^%8d}1~Jz$q+E2UzPi98_QcZ(vo9w_zFhEh
zZ?60G#JOx2Uf(_!7R~PVby3rf|FgbrxoXe6dTn>)yYG7fp6w_;lKjC+s9RHSQ`D;b
z<nF{<za^?mT!naM2k~pC9_hOpnru4tbD9Inc{t1`n*4f><Q#~7%VbfeUhiA}q2x){
z_Bp(1u{#@+@2=I^Y>-(!Cw@xipYLm48*j8&qY={EwQ!YH=kJ+29Hu=z7|^~=T)Ih2
zFV0MSp?};m_LF-`1KO=(co)u}vEA-fR9a~NL8+=Ii^HFPtB<{SkT?HFt=9S8cCi;n
zB--Tv6$+o~RXyjuv*GBkLu%=ID{`j1dOO2+YU%qE?mLThf6sH9yZ@cutL_JX{_12M
zGP}y=Ij1Pw@n^zuUk`2f{+H>p#drSebT@QA&DT#pq%HC5oME!7?COIXPkb_e{&{`c
z-X+;*18RF_SL+n`8D;Lbe{cEv)S}=2KNkx%DX6t$6iPGtOmFeVN$hg_<n_+!k<6yY
ze0LY@T6K8um4{MczN+74>YuZ`ty#SC(ZBXn_y5j#$Yu7hGBWa~e(3HRV~OkYv_34`
zrMKqQy{TG^40F1t*2p`qVcz1PZZl`Hv+LA=pW)n7>$e8{3}>HOyY<4MB~dH>hIdc#
zygJ=MU~6-gD*V)yrWK4^91y37bVxbqy=!sT4E?GaW1V!}O6&hs=cn<yg+HgK?!01R
zf5bKBXYlQK+vm6KHrz1@?>=x`CA)`bdV0cF-o^b}Qo4-Xr<whke{Ja>bJn${EgXrm
zA^%plAF_JIe^mgj`YAR%-S=E=<)U>~_TNix$n4WwYpC>^-SG;~rg;L_r<P{^{%3Xl
zaZ!8XnfPrYCwJPfeayR7|M}_Jr{*i@IdPXHX-No#)oh-p{BKX6(3v^bxe>3g<-49d
zb|#>WU268Cbj|7K7lkW|PT0S$@Ll`6{Lf4LS4qAL%Pv)alf=EUxLU1aHAk%U>>axO
zvnsA<3s2tBccJOSt^-YtPRu6XgkH1gUg+$MxYbbRc_PY2aZgXEPEFhT)JyLrw<R3+
zvG(MRw_l}m<AY)F9D_Kwb&ro&=1mtDKjNLkKRu_V=kJ*dOzD45Rf%kkYv{e9!kAT3
z8*Z@feDC`Io9ZgB{pNWtBb?FGUHf^(d#Uo=p0)A6=P$di&ao)U?W^sxwIBb6%I?f~
z*ZHrku5OQ`oA@CI!xxCjtUz$aNtwGw=CGcRw?+LId%Znzf}%T~?2LW!>ej)X62Dg3
zswPdZlP$aYwPyF3?vH9KmnQ#n;&}Tk=I+nvxU;tX-_NWpzh4&md)Aj<>KhNl|2U(%
zzxVN>muf#EzSf>j;b~94`a7y~mcf&TLo4pCnc;ctd8rKZjn>N3JCkd6cmJ(D@jZR+
zLRKroBNI*+m|Wa<?uFsHO{ZHLL*K0m`N>dL_h+WT6Go2W#e(wls?W?yv@L2(&DRP&
zso~3cEX>|l;{5{NgtO)z&u*&hDk-vhT3Pz#|4#Gk!5(jf+KxNd{_F4fC-MK_znJr7
zZa&^7;VTxLS8g+JGv^YEx<2(Yo7fqzsuQg9qMlfxo(2aBk{HjsWy)VGFW=Z?&bpOv
z_k`&kw{*W~pETCY5svprEiauNlO;PhyME*Ize~=aI<@v>RKEyYjOxY<iBIoIUjO%S
z)wENq>+{qkINDfrZtkp(`^}`_wrJtkqdA%^hP-(-duALH|MvH^y}g#g<ujTm7pKo%
zz-qOzEXL#bwn^uXd8X)PwAwwBd9x?}gI46^ik(+QxTU`)FY5OxebFVhdbN*s$n?K^
zPOn?M&hSF%ZJxbdk=GSo%RDN~l#Tu5&XvAjZbR|v#jj(ppT50R;(ELPt@f(&kET&;
z{EG4)_jS6wSzkFjMjmC!LKdj&_tk~}Z^TFO^ZC!DUZ>ft<i9MmVzv9cZCr0w>&z<M
zoU(4-Rj~^jGL)nv?fv#-Prb*~oi4k6?>bv{$2GG`YwE;(KNxM{40&c9ouVl}_kPVW
zBlZ0JMb9oU&5iJO((q;V{=&MVrEm8eE!GLIZTxt5Z_GWXvf^B7o#tx)?1IuaHE#~P
zpJ@raJ!2b>`}RktH_2Yn-I6eM&17#~L*0pSyal$koi}xAPu!T?8qR&MBDQ_j%H}ej
zKv}dljm`^~wGx?;k`vqaM7>|~^X{GX_juxZwEu>zIhpt0B7A%4ufBjQuLGZnuP_jK
zY_m|~tg*3|%g;Zd*RD2I2Y$%7TFW4I{q3CH)2pWac-j*jJnv=9Kh{>3923*G(P3^^
z+Rwy`OfL2KSZsAt{nf4i{YTo1+p^={8|WnkfqHmt8|S9|sq?j3_H?~}So!>H(}+kh
z%R;%MI?w0k1@5m)jf+0FbbV4;>pIB;ZNK=ck4TCB-E{kB<+9SnG0QitnYCf1Ppeyu
zc-ZZ0`aK7w7`nG-zPzb?4NLclHzMHO$JU^wb8bJ1aDQESS3>KM=PXvypFx~VlR8*t
ze~Fs@TkDV&!|PImyXw<QR85l`*Zo&hK5D9I{wQkGsc*IaR&U|s*Jf_pwW7E3l~zZC
zN*KTHh0czwc|TTL7xU((-!=VM5U(U%-^`sV*!9c#Op(!kHkrP9JAc*5MZf1dKmKWD
z=Q7>L<Ivk1AvMoq?wPkrwf>E_HraCj=fY3w9ajreXPoyqUn=|8{?9!%hu5E9GwNR8
z^xvy4x9#xVId)|{r#GKDF8t^0#s^n2S8#<z<rbHQN1lty{{MF)>on%l`WyNNg}>JK
z@)?&*KBua7XJ*0i?BrejD?5%Y5InT>dh_YyiI<=ER{gJ<c5Um?tKXTdyIS*)3A>zK
zC{co3`=mIkcVs){oZLI_+WM0bPuOawK3%i5EsSfa)|vNQ5AN)G!4<jJHM?#7{3F|2
z6#E?SpJ|J8J$qF3q~4z5zdNS2+1ReJe;?cbxBkPz3~_s_d%l)(vwdpzRolL26`s0r
z%D(M>_lmAMoj>-qLF|Rg(wx54rL_x{;`Ao+M7o%^zMH2WI!&WXrqb@ie(#wK442rN
z6ZGb7TQsrm)uWkrmR6M1<}j^Zx%#tZ>)F|dr$4;K`}Mx`p&57A7k*v6RqoRE8E;nZ
zR{59mBIe=RQ|3aQzno(QHZGiieA+L#r=^`98YV6)vfJjEY`$^%Q`3St&UL3wM|yAB
z&b~HT`eJ|=BLiDy-?^Kdetq+2?tkJ?oiEL>L7BxuoWbm}lc?pHq|IlvSNp!L*f^i>
z{%+5uRd*#<J-^Xi;iB4qN+Z+1=ws=d-*qp)^YfpaeO+0%Js`ho(ZYF#+wT4S8>01Y
z_SsdJ@`SE}s?4QpvI^HtY0~okf2;Rbk0FQN0gLbZuTNYUGcP<QslZv*&{JvI<4rc1
zrtaB4SgY3GK6sdY{)6V<@0l1*-DBAP{w_1ao<FBvPw?bocu-S3XNAw?c*ot>FFw29
zqO)oK%Bmta+tW3r0n<Nq-~KS+#kUTV*2#S8h0i!#&MSZJ{#r3vea`ITm8-L@)UG#H
z{Co22*Fq!n{2BB8CLBIrTX8`#^6=5Bwd>1VI*w^vTYIK6>*k!Bl86Sw8p9Mvbu+H*
ztLN|+mF!A?R=S^i>g?~S(-vLLQqDDDU~uY~^)8ET|61*%MOhiT@=rAj<JOx0ixkf)
zvkYFi)h$xu>bG-|?DBOr^7b{qWf=~<JSiFXu7rW%_iyuy_srhC`<naz@P<y28u8yU
zJn42Ft{Y9Zbj4Ns2iulR?J0i0@W6q#Jr&m$p3#4#v-tXj<s}oZEZA>%-@bqMlF#q^
zee>VW<6XOO>!$aLLFMJ=9a0?2o2E_dw-&#neen4C6IFKl(~GB?Km57e$Ne3zSL?og
zI^G%9?=?diL#<BldO1Hveu|3bq$?GElKO{E%zC%Kg!gnM=lRP8cU|NZFESfw9dXX)
zUHUbk^4R*yv$p1)RgT;xNy!(Ys;|Dfd^y<W&y!?^0}mg!TUc8%F}!(u_ein+o{rhu
z^O+f1G8W7`7rfZ?;Q9E>xgk@w@)=%;T3K-RjNhF%dwRL;o<!}nY!3a(J$;eM<ZYYJ
zY0BAFbbP;OuJ`V^y844lQ+}?_uMsQHwOz}-+GoS!zbW1ew@i)|HcCFVO~dO+B_9K5
zTC#Tk71ffJiY=Y*{iP*?tQGxIm=w<zXt&P!ou=m<y|pIn`muJiuYbBvzpo6LwJvqb
z{Ht0_YbJfnd;2jhq^3qD&9tP4&)vX9I#?%XnfB6!Z+<f^^esNt&?}>^C#ik#Kt+Y@
z>r*q1&j0BXC?fIY7em9p1^tK4RkJlSvi;p>d+$s9y8D^iw{O^*YL>Ryjrr2P^Q|1*
z$BX&B<~s3(iQZZ~)o8YxMZEb%!{`0mOCzV0H6M{XW68c<RBI`Vw~yLXflr3VOT(<#
z1Xed-w8|r@x0L@5I#HZ_w(8Rt&3iu^3*Y~Jc>Dgr&5wl{4s`3=^54u${C|x1`$I`{
zqwqc1mFILq%uib;#Jru8T4-=$qPt$j(FBH>v+h1F+uiFnjj>_7*}1QOzolROeIk_e
zIr~Oc-qhIjyYK4Flaqb)@v%BX!{f`wclH)b>23LRDN3fhMl9)cSfGeTO!YZ-i7!<Q
z4Swsp*YS$K_+Is*toNvv{2WJZK0V*rd0TE}<ZoqUuzs8SMplM_A!@A{%d`CNvpsYw
zmTqASdGUSE$FD-&7gKW&MyH9Z_E?+>v43~r#}BE+3){~$FFrKsOyNhviPt^9xUVgp
z;_2#~7@=@)XVU5uMysYUi7%^T5kJ<|m*5#yo}KtXN@F6w&;3cycj~Kas<xCjo7w;U
z93ZB#=0ooO+Xr8+oO!wAoZrRG4{PSe$?rA(9F^HxGr?KqnN9Rt**kl_$}lA4*UO)s
z_Hy<lo#rWNInN3s_>!Id5({Veg&s-%YxK<FocF=A%5yJlINZv5guh|tcM1Nse+dna
z^$%W4`X~z?>&~i9m)3oFDlF{L41={hGy`?FIH+HnWnmVg`SkAYd3JR@^8ZfgT-g8l
z?)wK%Ztz6y()eKi|NVdcqOH;E8S6_mUm1LCx#YX$la2dvy_mj!zk(lUT10Ise{r<;
z&wuo-csm2b{JO`+9{gw6PAZALxa>1!z0K6WmZxXxO}l2Xd<UzrZ^u+4;jWs12Vb6u
z9Cu&FcW&3t{j<^*KRsPLS8dNm@Ax-CyKm?-dd0UffBBX6=<4fvkJemfWtcN}-lI2H
za>`21oxAXUmf8K+<$+?V51cF~v8=p1<(8$zf$a5r`4~JdPe~FyzF^9+goL}L)wUwr
z3|OBFoY@koclJ<j#=#8nPpVtq_ctVN|6yW!d9I4*-$VJ5Jo-xK_D2^V(>Zr`S1fPq
z<G2eM4OdefzTDc)^_u&5J8#U>t4CV}9xRm=p7fz6L$6IQPj<faT2rsx4_=p@E2v8Q
zHNkQH`}gYEDIRNH?=1G!=QiK>?c(d1`<^{{!O?!+hwJR*!|E2VXYE^g{q2JE*!z~x
z11kBxi{#|yFT7tqyEAr6`8NiJwPn)1%VO84uauWwGUdUX_Qb0z4=p~FdATL)<>vWu
zi$l0vQ(_8|wUTWvonwsIxoXjY1O39WphWU^=Kar(=ksseJGy*=X-{I)=dLaBG1F$1
zzU*ITiP1Vd5@nFJ{ocQ(OS^=5*_h`<bU$onmw&8oU&qhz;i3Ed1-H%Lt<;~hhe0!l
zBXQQhHPth+cQo3|K4+=Z`)A3ey<uI|^0~n_zkUca9Qgg+{>X0oUxEw|_I|JHITy+P
z|NQ@7@eB>&@s+s;pKjkVd84Jzi$Jyb__XBE{^uz#Dhu)^FLg?Mz38&#;ftG{=S23m
zEegpn>6yCZ?!9@p&u%Z`zBb9m)5PS|ou~_+W$w=VxaVc*E{m;Blb0`FZeeG`!Z2rU
zsey#V>X7sc?sg{@a=#bOVtL3Q((3m7-REzYPF5N6E%llsBhSn*&!(p3abMx%r#=cB
z^L7|bo)E(lo}k!V5f-<=e#5(!QWFksxm>onH+p;T^*#}yh?eK)Bp#_JN1p$`$w2O`
zRaLIU%U^QsN-oEHH_g%xWz)8K^C4;N$<#oHNbX&iq`pmTyb>szd!S<V6sP^^I(Pl$
z?T;-!&d<p3H%|Oalv(szwn;~JxOgiDEc%jEaCft@&F0z*m)-k6UWvM}TRr`RclJhI
z?kPJpKb!alPP5#x^{^~Y*}=8qUWO+wX3Q+k&CO3fU$tfHw(S>B__WP-Tiod4_2ES%
z=iPs7AtxkCR{ohW>v?U)@~-nu$LC+Wbv<&W*B9>Ke{<v5)tAT4nK#pJ&2?L6<!mN~
zJefP6=Glc#y|?SD`*qo<1;X<}SEl%#TH(4gC`-dnq#-=;UD@u6A3s2GC;wkUzOF)^
z;lrCB5|_%>c&={!7AEavvGU5x_uKtaw`4Rmef_{>+sAwL){<hzGc7lEZms|GfbrhX
z_3s%O{(ZLp&uw3Iy+y*N>JMjBui3x#|F7#@kY3v+|3y4-TKAeh1IxJ|m)vX4*_fMh
zhb=Tlf2r1m?cGN=PZpjtw`9WfXZcRcGTy&qVz`vEQ*Ynu1H1Pfb6nr;aCmv=sn1Nc
z(&cq!WnJfHR@T<kG^Lx>Jbv<prFHI{(%rUCnq~B|CKh*oD?9y1Ng^dFc8lfx7j`Le
zyUGMV-~0Rh!@=tJ%nW|kvj693^BTwo-R*R7Ni?gSV!%CTi(=vDWt^)kAGV5b+?s5@
zVvXK`JwCzh&hLJh&XARE{U9j4{@eP8+l!C$EDi2H*5$!|_-gm1Q`fy$c5yG)`kQ1M
z^+)^Z{$@k5pvIl|#lPKIvyQK6nd>{}KD#~t?d<-&P-ZxA@uH%a^tFi|oD(Cie=~Bw
zcmCpAtG(TN^KPA8y?L>43A^58mv_g5&oLZ3`+CjAhA=L>oG5X-*1H!^a<*{qzj^oY
z+jTE*^YQU**u0sUAt6UThQr`~TqG}#ur`NuvQEpHDW{fiW}b1qqVwwAtw9oBn!10#
zylL3C=Gnv`=9IF=c}tXX%5+lh8UMA+y6{yX*nztwN!91J{t;mY1+nlzv!@gP%5tT?
zE3%*e@Z{s;3=RD6?jLv7o^bU&|Af4m6{}~Pf8V%wGw-?d%?r-#DX>0nRWjw2?}90j
zTaF|Z)JhkZUb8*CS$)}@`Y(UwAK35zEX#19zV5sIhl}lLOqbq&|M-Yo|KYpd-3$$3
zo3|P)TsD(!C1=#*HM2vV)6+itD}L$V{P^>GY|P_?35%1}qx|{iKm54a`ODkQh1IVa
zw&&kvVK9-pIY+p~^77#`UtfNH9`T`B<m${zT&eHWu4~!wFZGm4-51MTCd|_1*!=Uy
zQJ13k6EEhNO}sfJyF26e>|F<*>nu^Vva&h${l4Ms8u_{c`Q_<pg^Sr(y+R#sCq0?<
zyVKaDIcHYp*>m6Q>RxTV&cLwyt?Yq5$*ZmBudTS;fA%p$+x!(L^5k+)&6@wN{ORdC
zIkVb%KX2HfS#v)`<Y+-%#<@i`cco%xevB~eJ#ze~p8uJm&``nWt@2-fSNymjAyD__
zu>1q{_p{C}-+a!H>vn$ex`11sUYGuQ!CUp>rthJksVC-^`%mOws#_W*9^~bb-FV&0
zvAE%OwXLP)r_bUOZ9ZT7GCBRY#Etjw=g2%hcJ}ta7|%&Rqy(5Q?8<uEBN`&(%<=E4
zj?MO-pIc@}xjuFbtTMb<lVEmo?gEX+QfJ#D7cBP-V}3hP>Z{|CshE>es}m3Dz77;~
zUfaxicjxxqGn|*2c*(|`xRY1>d`t7CUGtb^UQP=<zh`4P_gc5xtB?8BN?+jKwCH-V
zy79ItFHSfGO<Nki{oVH}3p+!uE&g)$huqDkJgCmE7tjCyy`GuD?#}~fd2g*rEW3AG
z@Ay1v<AUX$PmQOUF)%1Fc)B=-1Z`yf(DXAy<#N<T{fHA^QtlVu{8{p)>c`&?IV|r3
z-d?^_x=Z$pRqTsP%QUmR-@JLl9O3da`%Kc!E*sV7Ne}bhIzQ(Nvpcx+y}AW|7{8*V
zOOj4l<fNnoebvW2yH4*dcTx)8GV9pU+SOOxt{H5cJ3H%doXEMIosJKG%zWu=_v;0-
ze3*g6m)u{ACp4WtYEaC(WZRtlH{S~%Pus{gEsH_zq})Tvw>#}bqVt0MUM}Q6vM}x3
ztQ8@WYaU*(OWPj8%64wk4fzEjr;dLpQv91P!Mx<kx4$O4R=NIM9h)-s9?!X*i|r*I
zoD_ci@cX^p_6OPJ_pmcqSX+LLYv_@lUdnKS-IC4qovG-fj~&g8k>Ni?I=3$~KIU|0
zi(Z4#l2zK>m)aM5>P@`;anJ473vZhzs;bX5F8S?NzIf|Zx6P79bvi1KPe~m(P}607
z%xRib0dM#P*OiNY1~%>~d70`v%QQXkywpm6&Dm+0OKa=b+EjFOE&#0~X*$sJX)^P6
z2bKn-^MO;IUTCu2&K$M=`e!Ab<~`42KeRl#k(<lNkauTq@0yD<s$T5pd!)hehaqH|
zDp&NnqYCcZ@4LP~p>t}!oZZ28`Fak99seKxuBiCW$nfB}eI<Xty`fU!-FGv~8E<Eq
zeZ1tY|M=OyNQF<U*ndss4f(8l?rryndD)+z_Z17XI{Z%Fl`hNkt5#!%@2a<3I`=XQ
zH|wREN~^>zNPB0jyZc{EP4x{9O|I5EZKXWFYBRJ?v9PUASKR8L=56rWN~_i3u%4Lo
z+il`Ki&=lE8vNLE&?x(WEAtaq$sozERT`(2ympHhxfLI)*?(ESWMPi{wXE$ELn8lK
z>6pKs*j=%u?`VLA?~{45%ZpeTVyDIVY}6>OkBQV;ap~pcCv}bY-hZ1Qt~%*VUe3~)
z;^j{nwiuNvw|0EG+rQ(LhFz^)SSb6M_MHZ7Pr{U+ytrv>^XJHp-Sg+o`(cr<x%B<v
z(~Dd<pNij4_;9GhM)1U(88KQ1?>-a0{NUTYQ%=k$0&o5EDE}?-<IlZY&)=o_D4aZV
z?BK(P!gJ=%^4<9NZnVXX+s=z`@{||L{?h9;;162r|2smgaz^_qqci@eg_u{f8@wo;
z$X{ib7kf%=Q`qT!>#i9blvwQgYnEg5DYP-`D{U3u?ew|ct6h0pdePGK+U?Dgg-dqH
zzBu$I#pvL|w|18wURM8cL~HT4-LVd{lZ9p`RG*LF&%d*WdFF|guABDwb^On_d$mJQ
zcJ*U^w%R#!rBpAe_sc(A%>V9j?QFBRcgyb|ZSL=l{(U*U{l!fagX44M&iS2xbF#rL
zt?Wnsy?w3XakZ?`VYZbMcc0kYxzqPum0jo2w8+_)3Tsyc%?xoZ5ZjT^SN48->chLr
zfzuxNC?_6Ex|*|n<KE<XjC!l?PM>@JV?C?E^PP(euNnS5w|Tk$hZAWX7IrmF=VoR;
zueAHn^mk726s~(qLzeMGD(^5q#ah*;b8b?EzJx?e=<fU!$rh7f5k;3PPkLW(-E1Po
zz3Z=y_`X6zK9gAs|G2ikjoX}YV};}6>k{IAV$o-l-^)lay3RLrTDT!^Z>8Obckf&c
z8#X0>R*+YCKYQcDEyZn%E@VtOw%BFrsrF@t87WIws%r)>G1ZvwdQf7I&|U$}C8EW_
zsqgmw^*iskcdE_ABoCLM0y&XemhMS+Z%tNl%yLz46`8Otm;2;HYn8PD8oirLN-w-W
zcs+RiW!K}^d{<8KPrPyO)}fcim!IF=SIqx?UOnSm*<{|b``a&OC^tmhFsrGm>N)K0
z&p5+JuDNmLW+Q#48Ilk7I#%7atJ*8KMRs!PB&Cg|dMx)#{(C1K1TREB*Sg~R>qjS*
zC#!$?_gntKWd1rHhKesA6#M$;DQ+)}jFGyo$nc_!z2d`#9a*;3->&e7WX?*gKfhwf
z`!{)K#l5#KkPExMVfD2r<?T=Fi)vcr_x&|vc(D8aU;aJc&)u&0U;FslzXu<a=gghK
z>a~47bHTfWQ~F_(O%DItcXI8oKg;6|b)T>2x^(Pq*!d;K2Ts1y;H&?TKF`qa*71t0
z)=e4{qrdMunD8Kewut`0z1ugGUVB^e;YnwtOW7{<fQI=pIr;fNk3QPdy~{UR#OjXI
z(UlwK%g8@`%zviszW=>i_W3qHBp3>+ik^HvE1vrD?grNB6MA`i+c=kdUJ_XvS~0yz
z-|F){w?%?GKXSdiJ?n{$j*|qlg>xeJl{NKuJ}>zDTv%@**K4=6R}L+ntW@}1du9FA
z*Twd4B}}JW)oQ6(p;7HJPyAl&uG=q_wtqZx_nu_c+<CSCd0H=JMESO*Ri91|5^Qpu
zUAo(!H*KFEf4<9EwOYfrt5-Yn4+kY=A3x)K>$bI>&f$(XH<B%#lgyV^9Gb|%$v1n_
zlwyvDV!sb9_fM9pb6ioxcA!;G;|qHw$63u{d9|WzFMsrY4a%0Un`~=cc9QSIM|b(h
zKfXw8@4DTsH|f?x^A!sMr?C3@^%Opu+%NZF@$dJH41Ij_tDFNP#TK4ZVJ<#*BFO0k
z&)F~oHxJ2Yv$-cFZoHmzKJ@>&))|6D$d`|TRu?TY(^z_8yVje2`^tv@zxwOh8UB2)
z|EvCP|93rx2R9!s6r8is$;3;0zp%ZAX;tm#pZ6AQ@Y?S%DJS`O)P>t?zX@$kRA2r}
zo8!pOv%AyXo_>AY|L*bq|L6BJGTi(3uKwX<_4yCJ+%#rz*nj!+v@%{%PL6}ukDd#Y
z{{Bwt>bL9h)x6vD?zIV=ewnxI?$miPI;wVQPT9MDt9<_NTM_!Lc;W}2?Y9qZc77aJ
z{^y6FpP$dq>1JP;84g&^_}Xvt^2>)8jT?X1)qWDt;8qFq$Ve|2@9haWvVM_{cgeXP
z)(;Px`#=8chtx^_AKqLPW>EWcIMsw<%KF4}tdruHt8V|fmtz)a)ws|xko)?xU&2La
zxY;;v&sSOLa(OqqdEm62{QnblD%KSoySQml*jYE`nWdb4J#V=8hP7<=_pv=X>yYh{
zyUnk)w_JNBaQ%()*7BuZJZpBBY%lIIzU@DE-n>Uw+C1mV$U0^&NMzl-ZF{+5(Bq4n
zujc$JHjVa`zqQPZwZp@9o^J5<+R7hq_??ofPnYnqo98XKYxMTZ7oE?iUY~Vi_FesJ
zt|w=~v-#|w_XnTjPpSz}-D0|&|J1(k4gpJ@w%a?b&;GT!ZeI23%I(+P?`s}6uGs#|
zF>pa)%B%M;en|X{+pe~#ZS_J8uae!iHd`P1$k%?@$N${gvgX<8pqECUl9JWtu{BJP
zj9RO^<XZHEOcu%it=sRuJa7HQMtEzx*bA53fYi>(!iyDtEiSL?c>m}3e@2Eqzu#F`
ze0w6maN%`%qtTI*qEU;te019D*mq~2-d48l+=twla<=!Lp6C-KFYLy%c&gL-Y_S*Z
z{__^RKE%=Dvim02OShJmH#0p$R!*6JVJg>&oI5{1&##ipulZKbz+m@x=J|x`>hwzP
z!%KfwZM5{a+}&Nh-~7O2_x=x)<!5dwm9PJx=a+kHSKW4Q^T5YWKLYyhDIA~Z>;3i1
zLuZk{^X3cWZ@n#W?P}h&=v!Y}_ZH{dTN|fVe0d`vE8V<~&2mPm{?w-G??DEP;pe+L
z7gl7fb;>&AIPrG?%Pg5*C7mN)yFYkrX3M*6l6n06yTsLrVkYTxjYV7q<*NB^EMk3r
z;N7-Jmb*I&xy|$L8oob$<#=aU?7z~Lwfk@MCY?SzZBeYiyxUg;wEjpfPY6!sIQp{8
z%EE42_ov6nGB<tiE?(?B#kKQHp3uB4{d=Sf@~dxOubh;Yaf^4FoAT#fj7$taHXMGw
z>#O@5<NE)*+1YR0HC9YGzFfU7C)ZReV{6W{b{$reJ)f!qMNY7rUCp#}NDTe*IO#<9
zo%yRlgTamKOryRm{&`VBzowq0WrNV!8U6dOc{Ou0YC3;wF1@2Lvt@%}+=A+|uF1)l
z^UnMA?G1BS>1`mkN$SUx@;S=ey9?&>2Z+^*?7Ycwag|I^UHqx7$)61O>eccaN@9!&
zxjfx*_w*u-f*(gZ_U!%r`2FL%^Z&3ge0cFNnJ4F8K&)25!9(wMa$PG~{*F6hYf#?j
z1<N^S`EJ&>T|Md3uD93x-32@f*X3FNHvjNSdOah<t+!_L?CM(7`+e`))O})E?ss&T
z#zfPet9x!{J^r@#IRnG`x?iSyKE0A=Xs|wS+x~X00#}IX<md~}0#s)m^jf~vEpe@?
zy1M(156$wA+3)|>V|Z||{r%$f@=w42?kj(9`u66YbD{-Vt~2}i`Y*ozJ~2W&be77(
zxA{fE^TgNITIc3%-B|y5S*5g;@9W+Rugd}=0@pasYqp-6Hq&XD<g92nmAvl{*tV7R
z7S&Bk4U~5(>-qfSxNEjN*XH_yhU@>2r!z2E@4kIc>h{|bgBRr&x39Yp!!<uUN`<qm
ztc*c|`&aS&Um^?%<@x0vveg^K`(MsmDOC|*V2}}>aq(%)j!lYhcT5Ofq|t0}C&A!A
zLc*`Pj`z6rUU^lXuBe}oeBreezXikHJn`PN<Ms1y$K35r<6gV1vToMdY2hE)jjt`)
z$r7i1jH7L)*^aCC4qjWAx%{kp?w7SwXBYFOy${rEU8J*jL$v+-#n-ng*8E*CXZ_Z1
zU#E!gtdCzQRJpK5@7E%ozxPiCRrXI>xJPPMbs*?gpEqyb&R%0)u<lN`-qc+WY$`;i
znB8n-P&g^H#7yLHi_fgb6@foK2?sevMK6CQqh$D)f#HM7$LC4MLQ@}x+l5ZOvf#a<
zTD#bbBLa5omNm`W5y0yA=Ft0_4-L;*r5T(*ZNQw=vrxx$hIea-)|9#et=b*^K0+qB
zQR~;fmEE$oD(9-^GMUmh>XH&JS-V>1&XwKs?N&M?gZ|z>Tz-9hAAcmTUiJS$vW&bO
zBg3blg_(!h-`&~Q>u+0seox&yxo<gl_WSsH%~<u_B2Dwt&C8Kz#p>sYrx|_w@>2QF
z3-<rL@_RlrGdMi|BC#}fPw}}0xds~S&8IJ3md+@7>lU{CKJyHxB=zdsYtx=^@7%a~
z&CZ8T3L9UxeEXj7G}~6|&aPVN^yA0w{(bUAg4ueZ98b}Io#nkenX?w|O%;1u{rmTg
zd&ZMLl&u!k)mx?ee^u-rebp$IEm6KU_2<8+o9Dk<th2^@Wk3U$q`gFU(1w+lmM`_1
zEV8n+JAYerMAT0Iid#`fKh1kR@6kWqJo%5mVzhamnjN0X*KHfRs6=nygMe)gpKRRk
z@7nkLFXOMj``$PIYL;m&&OUEcQl0nkrhDG+4F?yzH?G%MI#EqAtZJ^=ndI;nXY}sO
zTFaA}bt|(|XsK_cxx|6#hUseO?6?1|TYumEc;10;pYI%BtG%}N)UHh$f7QCK9Xq?X
zfa|@M*X@;|9t)5EsTXKc-mJ*>+dMCE_0_g5($ijtJllL|M}rSbl&`Sb=K9y$_<3K?
zExWLNc2H`ho8D_4ryD$`a~58`bLb$i@V*V(w?Dsp+3=jWbennZss~nI?T@%zN#0u2
zTk(4Bb{`%8FYk9gpZB@`deq~!+wUFPTmAh)j@ie}_P;lSE*mm0={tPbx#s8T_+#(h
z>6Mk2e|)N6FL{1VX(N2$eT4ssrZ`6XznATM>whh;|Fr*jUUdDR<MloEKPTHCjQ?{q
z{=wz>|4jD%y1M?+^SXD>Km2`PFMm7i&ol4%UqYZ8i}LF}&t_=2|L5%eBh&Z)N&R#8
z{@=TQ#J95?JlVO~&-mT`8S0YTzLmZGEoGbSEB}O9;rwAe`^y(j?X+rp^C&v{_Kw=y
zIW>DetQ5bvDfM{vX7$kJcYR*ZJ+L#}_nee&3h(362}?CkS#y=!e^p|5(E3<dMn3Z3
zrh^Q+*-LNTzJI*8HaLClHL*!YqByoRX?baEol`w8CH;Oy#<_ogFI(?E|Ll?7hM!yK
z+thT;ulb-T7xnbRp8H?dUEy)O(r#FB^`75;m+i@)FY_0z5UTrb?<wrzclU4V4&LDO
zt=V~73y*7QJ-$}_;+H_P+^;a+$_dZ!38`Kd$(*zxaelkbX@%hQv%WRfYrQg7UYl0j
zU3o4?{%ni5WzPFIRi)W8mwBWLt<*T&ZYKJdv1t0@IMI7mE4-hsZSQ_vrM~`nl=$BX
zrnW`N*Q_|?UOh~@++lxMS$iYP_VwJn@|%LSSeHu9IVLulY0k}>`++YSuifgNE?W80
zo_}pX!L#3+cjkJFhHxaG+5Lul;-VL`%Wl2ryYPC(Kb7g0F88B0C%W98l6!b>-MgvR
z*_&;4tjK<AE77&+!}n#0SMSX&ch-5c{Og4f{g#&=Ik~q5=H87p*>t9QNzNA5xvb}T
zW-ht+`_r?xyKmezo!9X9AH&j3H=9pAa9mWvnRYzvoW!Orjmtt`+`o6%N$G6GA<Okk
z-d`7w6L`&Z_J)>&mt~4+dB$4s%}zfK+y8O?^J@J+Ertiu_kXaxyR)--|IgX`4~Fmi
zB)aGCx7$CSneXq+um61;bg>yD1Nio|R{a{r`~Uxa|9DI~|4eD_=@)itrQcF#{oE1|
z{WkZ`W^Sj_*LqfAv47q?5!qXJynp?y!~WBL|Gkr6c4t?qbou+e3=BI8A2Xb7>vUwF
z|4+`mD#5B<J3LfNK6;*+k%!)dn->4pu8l4E?)+y#aAoe+=(tAniI=9&mXcu2-l`&c
zxpPLb(=oM}Mdv@8x*fbVC2;xu<0n1Emv75meeeMPyC4pOuwC4rKW^V^<9`2GwaBd_
zkImjD1*Wa+Z=K!x`V)u2u>(_La}4C>F;4t(G$~L+!#eP?){&wjwF4}Byfqj^>V(AW
zPi}gjB=cH;d3~+Dp+rgTn)+Ew?8LU*z2`KG&p-CgGiUvmi|-rP27h1Ua$YZ^NblUv
zFXzseoOh``J?Ch5k&AXATZZhdo@-V;yS;wzH$12qWNfDLl0nJv>y!?b4OL8;vm8$y
z(GQqx;;8Mlb6VunqJx$@`q}krwKg&_#kl3&EN)vA9w^;oC|{&v>7H4x{plb>y4kil
z%xa~YXOjF2-py}c6mo)l_X>Ft=XGz+>F(3;w&yT3(8%}^P#oR<Ewv`KPVinv+Ks#S
z*cslueXHa-c|+r-gUJoMP0v}fxP-|0&fgZODQgyK*?zfBlUwweZ@`0u#KX<4ZKou}
zqS}P#ue!Fo`AF&oroBw}Dxb^V*<H>bIql(D^ZQ4x@B3!D=hG?eitl&JKR!6f{O8a4
z|9kAsP8<C>bN&y{zOQTZA8N<{<N{xdw|n>Qx<WpN`Tzes-?)2scYf{b=;?YFe*fLq
z$-G(S_7-2m)2D7&aP}B`%zj;#ozK1~aaQ{7n_s5A_uJmQ=fvI>JQAN*-aO}L_261o
zb-`mczHh!V6PzBdO^SM1xn#eXTdcTEUi@92A9)Lt*w$Q;TO7o?_H6!~_Jg)lJGUPw
zKKJ*)f+<dMBF@%7xszR4UtVIE{eI7v6Fc`EkNz3LdDc0u@@S<8E3?B5*?LjmT{{H+
z{e0-zW#T(Aa-xOiCd=D3zS3`+E;jT(zj8sKtV5*p%iEY!7yg}HboAL{HuJYFmWs=m
zVq7cJwe=5~&RFqsf^v)|@3XKZnYcY(9&CC)0t$ESYjxfHAZThp>s<xU5>>`p;nRWV
z)|47rFD_D=J?B%Np!l|HbIUt_#~Si3oy*4Ho_75DqKgNniF)dE9XkGI*-Amrl3#q0
zlNKee?TL=QopFQri%xFC?u}9HGs@Sk{aWbwH2CD7w$`6#znzoYb~{Z`XOc)B?_BZb
z3)8lq)OlWKzNk7;QSR8~1Xca1pL)+-U2>iG!oqd!k0wTDaA)2+a_`@^y~o5ZsjR*8
zIeqI4+5EiY;hIAFZ;nfRW>YxlYTz)%@%IW1uZ&m+(N=pso4D%>|8%$piPzuHJ`B3q
zZ~vdu`;XlJ|Mx!l-bFc^iU$3<kKGlYo^Z<9R4_2?D1LtKLi)QqJ0Ji5_TV7%oqe^x
z4^`&h-}km(^0@rpi}F8re7$=&cF%`H+}yjg;cKvx;!ZT}ORD=QUVm}_zdO(E+VyK5
za#wu48vYS<Nh2r)F~;0+y&lEC*F0<b-#><ne>B_wVE*&&{l9hp|Ni)~L#+Et#M3KB
zUvp?~xNO9AV*C5Mhqn3dUF5Z(<<q;qAdWfnBubwyKi{`t>&=~KHn9cmj;<}KU`hMF
zBGh+{N9k9qP10XZu(NK`IZ|OXqr!qAVdCn=m$=q!S+&=dPwy_D@n`FwUfBi)>#J66
znRng!qVdmpU%sq*^_+9s(jQy8w`%{8{iSm7+ch!1yn9RxQ(XBnV|g#TI7D3!EO?lF
zp*v`?`G%SNpM-k2Wn@5$B+lln<E=?%<TLy*yXTwUYZ)cZjjgxZIWjWd-mx=XaOSm;
zl*ZJnml$?*Ds4SpsJ<=UlRxD0J2e4Si30zSS!o(;GQB=5xN<J1Ug*(c)25}@H4JB;
zSDDbM`9;MyENgC=k5ov&Ph-)ev*y3Qf5`jU>$c2i&S@%-1<v#wmpWBFWs1!ax9zud
zGuB?*@b1vrH0G5iVV~WMziQoxyylQ}_kpCi+d_E;3-<J!cUC=nC#*VfHu~M2-Ob_g
zwUP`U?p42ER9wWwVDakvo-FGHzCR|N4-l~7dSsGWIA`ajiL7%Cg|pW+UA4*UzxSEz
zO#gEkhgVzDH+_p*zI8Td+C0YPixrlBsM2@x;K=qBk2zHNPg}J%)?jU5mZa1SzR$~C
zzaNZiTlwi+bA;FyhxIeccK3oVV61pPxBP?l{!iKrJyZX@ySw|}jCOwcs@1=W&)c^9
z+x>iUs8Y_hs^s9Ox_LUMCs<xwti3`hWs>nTak(HB52<Ifx8J&b<F+|B?>W{3te1{(
z<{Qj6H_bMwofmqrRldQcifiqeO5Z&fN@7#DnBDZbbEw-;I-7UOG5K@<D?L(r4c{|O
zJEd|&^VJ5%AU8{AQxUJV1}Eko=xP${E_^8yZZ3XE;#vIs{+$dw{&~+Eir?L?H_lF~
zFPC>sG&9|#;&?fWVaxXI7tX9%#*}>TZQ+FH7IsF$dpB<m{_>ge8^6yC_sw_b+4I+`
z*lp?D#nWTB;h{hbhuou!hl?liv|8`rGzjPN%8)Nux3#TBIO5QR6_-~<hJB6~se8!&
z%>1WRZ`;du1{Ix_(uU#!Io)d|8U3D<etZe8RAv<}TQoQADwj!YWz5mp@%#A0m5<l)
z?zqeU+3tB<_QDoUW#%)>JhH@ZuU*rcbo+?UX_p4$ccxym){0#^^U7MKvtDJ%1jmAI
z@A+b(9+{8pmhV|>cwTC?hswE^Ti?9De?Z$z=HuP(_YO~9-p|0W*YSS$la)>juiVlX
zYxLmJ6S58Qs{FWpVFBy!>X*(1PS(;<KQ}7~sV{XnytFCX<lxd9C-(ibDU28D&ktgG
zct>UGgKfE9lFQ4kJjiQ2C)s85efFLn_e8~~i?+A6F$Xzcb)US*s{GfHsS~=ZkAC@G
z3u=h$sQ#`OSNAj3=KG!EAIIzexc~otFrlIT-}Cxo;`@KNG8_=!_kmSLR`%ije{b*q
zG5r5){r|4Ti<Rqn;0yUS)=gloJqo(RQm*dh^g2%ceLs}s>}opJ*L_`WVP|)2{r_L<
zn+@CU|D1dOAh@#o_v>}V->=s{Ze3r?yEcqF{@11H3=H%CzDfVcz5fIEkKX$~c>nyI
z|KE~fa@yPa|L_0XZf~mgQLSFq^V>vg<%0w>Uhi2d9<g1rGbIdlc5jyJp7^wq@45S_
z)`o4?7kgEh=cwi^(_LwG;*@TG0&hy)_8oJV9=tk1^1D+mx4+t@dXK3}pB_E+hzQZ=
zc(<}spw9flP6xdww~mLL{<(d6s$<NS!h?~WJDz0Z=0EPs-EMvR_Kl4%<I293U&xU%
zcR47${@3l7WrY<L91IpUe^}1*&0lzN+p7~wvSMsXZo-jSz21vOJ11Y_4t{mw%sGMf
zYKis2={JRfDzYWEyl=XubT@LU#n0_7rzS-C7QO#F)gw9b=|<MOQ4PVoFRo0f4>rB<
z-0^{D{{|zy*`2X>wB_O+m1J$?+Tky_FgK&od>7m4b)E;G*|-+TCrwb%yp^kLG3^A8
zr_zNji>9tkJI%e!aBaKIdZ(G1|GzdFPG0uvR1??vXQ`>{w6*e=cihX_`r**>I3|WY
zA8($2aL`?ziNVj`|KfY;#JzEGi*!V%=(3z^3RrPcE-{$n*sEX9Z+-iDKUSVa?9xq+
zb7yDpE!cbY&_3SoQ?qzE%sgl2^YzU9RPfi1!T!3>B^{y8?mvYk0%D>|8xrnRODKKf
zO3k^MG$AndvczV=3rw{~@9eLa-~TOpf7|hX`N!ARM*sNp+`b>&_<gB*Ir9I%_y6s7
z-PNmmy}gdRy}cdOBL2w#{{z1ryA{Kqukrs)>wa&qzrA`d_`=wKZ_fYAS$I9NHQGEm
zk-<AkH|5*!%R0_km)D<EX%slLdtMXg60@*f6HNo7zMffN#hv4xwQu9=-zFgoH|@@n
zaJu(q%~gj<mP^a{j#)&Q1Qxuzq$W1S_5JMYP40RJ&F*>!724d^xcaE_yy+RHbKK#_
zc#Ixqn4MjelASJH&2IMh>_Ns`W_}YqIdj#s*2Xbrn##nS+3(@((OtZ8w#)jYnOABX
zPc1FYZ~5{!aLujLlJcMQzHFRxE648Vc@0LzCZ#>a`D<4_5x@CwI&1T`yoGL-_fz`>
znwq1_OBK(s%=qbPpiq;wF5sM}kdvU-3xl+fC--D*0^Do=Z`l26m1Lgq!LOEk*5=$P
zdf_}L+LVR8oLfY3&o}Prcl0wh>9|f?b|UB2ah1+X<(WT@s+rW}?0#@3-S0sRkM4!z
z-{W;|iSAr7PrHh(Mx)JVL-l2ymiW4-rF*_V{?5R_FIUrZd9pEs!}jauigIzn$~ha^
zmY066e{=Co^rW*H3K0^)Ed|nHi8a%L7UTxsdwYLR<LvD|5h1H@N}LL;kA2Xj=o>qY
zkM&^eyQ+uAo;QNFuQzQe`@E2;XQP3AlG<I(hM&%7&TTwd9C*lq`-|vj(Dk>||IIaQ
z+kUT#JAd!jYd4bl`1n4A*MAM?-e&}Fz%260X!PqztlR$Xv@V-?V$Z^h24efAcURw&
znr%9(PCc%GPqStF7bc#lnX;$cln*aB@pk8y`y1~}KeU@Ky|<@K?)U)-=fk@u8u2`l
zYGz=NtMGJj3^~?RwQ@?swS;@dv8>_l=bD$ZHj4`yJ+eD@>)^!%n<s|rPE6XTA^zTb
zt@-D=cH8o4DjDg~FQN}Fb=%w-c6&$rw&+}w*}3&QHrJ_oc5X6}Q~8_6KKGp2j?)iM
z?G#_9c<gZNhleITAd_9MNM~i#1zz!vZq$9ZHl(3o-F_Pmm$OP`TRE;N9cg4;z4D2S
zmfrIlz0+Am%NZsHm6m8J?1(mg_WDxvy=>Ronmfs*HE(T&bAFc{N{M0>&pgIB`>KQb
z#HkUQ`p;HvZJKgv^^D?UdzmI_O$k>we^i`zM{u96fn9gg?-l=U?CkKbT*a!);(ohL
z^X}g7ntQ$-OJ`(|udk4AKkoM8^Onnw^%L5E3a39jl)ST6Y`2wx#cwP2=A>KgoJ%HE
zpWYxKbZ1xG_H9u+Di5b{@BIGf^Nz~LmJDu7CKkq(o{rHx^G(>Z=;Cdk0=X8o$3+(x
z=3kxTydfd>`9y;S0^Pjg1@|j$KV6RZ2gP0L)x5iDjd@9F{CRQ}+qau^&eG&QJ}Z7_
z`Rz%Qepe_i6&3nzc{8Iz{HIR#nF{;a_c@J@O}xPwx~Jnof}7?w-)W-k>3L3T+L?71
z@6`XE$dNXo=&Op0>8TBQ3bV@>8r8kd`o}t<STko!)Qy|>UGJx<W^6CNkTJuxa+c{H
zrcDnn`R6Uwx+wMK>__YB8}Ilg+~AB{eRo!9Lt^5U8=G$_Teu(I_0UW4{L0_Eq&tMf
zj+!5x>1qEo=3(lbF0UUVle#m0Z}vIm^qc?xb>4F`ukQ=Ul)B`;azd^1?TG&o>u+7}
zxppviHlxzU?%IiNwb7=vm218Rt~Y3&u$OtF_P-0uIJR6=+Q|LPB`t1p<4&773@MRL
znzM_1-Mt<!?TnQ7iq1H_z~$xLr<Un<PiF~qUUw0Ukr4c;xhgN?uGHP^KZ~sn9m*}w
z7uWwcg|o2c>DTKYPcA;r(6ITkUe_LncfEW%EB+d@rLjk|Jv$!D_Vz2ol30OV6))bd
z729@K?fpHzThVI2&;I+TJOAA0&GUcG-|>A;<y@7OR~1+6*$~E-EVFWVzJxE!_MgWs
zzSpvMUpjG&_w14eo<u310{OCS9|{^58mvA#Z`KO-(mP&i&`aE#6gslmBQJDL)H!m<
z^656Y{x#vh+08G!m(E@w;8=5pW1?%4;j^T>l7GAxS_WmVebx&)eY#|lit)YZtx9&Q
z6~tano>;x$nv@Jr4C_IiwOs#qPLP{hnHn#rInyZb)tR}wKM6EnTsHNj{k{X<l6Lx^
z-~C^EO>A3vnc_Jg@wui(^8Y3-(M%C4d%D-b_uzzEW%qK-HtycbtTy*_%`0cIRY@M2
zyOtH4+Z(;^furfo6`QSZZ~hb}Y9RJh!R&2(g`&3HCkt-Lo%_z;Z+cdkKWFn#eNnNM
za<5Gy4u=L-@CzK<QF`=SrDDxvp*hUwbfcCxh)(mKbj3b;>UVq7$2HX*Ew^p&%v#^N
zcD9Sw`w54YT?<rG1SSQa+OOwrs<S{M^=HT7k_B7&<0m_@1RB3{TDENU?i<-!Wfkjp
zaUMy|on~5an5)6=fAIQ8%kBQLFccIOH7(L9C@agdTO!G2{ch8Qw%ci23s3zNT50fk
z-rBilQD@o8zMa__U-hx_&fZFXh6^`tf8+Yy>n81axaQxxxz!ds3fUV3pR7G~dx_Q#
zUe}_xi*+7fFc6#S&av^L!-fUF-O`>rDph#-OlwW3Ium|<i?jN(CeXxNLQkdnk+N#;
z&e#NJZF|efhmI^gnyGW=kn^brZd@~3Eg7~%@t#omeEb4SuFXB$>HPk;Op+B@XI#5b
z=CmNhqxEoQ!ScsWJif=0LjSHhUC%i2k+aU3*r^A%KMmX6`F5`Cl5Mujd(X7jr$oLo
zpTC2n`$WXyg>$zbTol4{woLnoL-6nYQ!11-kKAGE*}cPs?`-p8i|^f~-+xZ%YIpDU
zsynN;d-Ef;gGOGZA*Wd0trU&n**SaO{bdE*<%(PN>jm|{t@zuYt}#Wq$?);Lcc=6`
z4@}K{9(X@)+S7m?jYZsEPXer37W4jm$|ZNHWhz$;+tnQVHUqQhHEX|T$Y1MuApBC`
z&;Pe~qjO}g{yp&V{+pw(z2Ef8s^9zZe#)+ZsI5CaOm!u;vQ9J;Q58Ajy)dxlin^9h
z=P7S}{wE8A7TGCmT_hg5cGb6~@0gdoa_$sjnc?PpYr>I3E!`6qa4u+>VkVy4A$xoO
z|HJRjoLf`=cJG;Uma~7>Em4_$_vTIG&FSaQypK7&FKEh}yPD66%Ws~!cXf5D!gP7&
ze+U2DP58Mw{Aqn_vDy9&FL)jOm&lwH(Mq-sFZF)^YE4JSm$fgan%?}Q^Tv7puPHoF
zuATb7_U!xh^$B~|L{0rar!v%2?}>fA-}<WOOE+&0uB!U<+iUslr0>y%GU^5_=L?16
zj;`@&z3LybCu;4HB&Q=EO+{3N_Puu8taXC(-1<<K7aSa$9oD5s%5R^#c<<i3+}Ffw
z#cRK(9r$?HW%vBcdi$2@$b5`Cd;8X<qbJj(Z1x>nelDB0@$-`o71{en!JRGFCn-Ie
zzuJMxv2xLw@)BRJjhQ#jE}ttadujWwaJy4G9vcS7wFXCPy<Hpqddih0DR)w@R>{1~
zIA7uDlODeOqu7_QhwD9p%+Gt<8Hg7ici1gGeT$vd!SB=G32T3zZv4(vVXoFphI5?r
zg7a7Ib}_thdi{>4Q|`)%{x~=Dms-!~D3-fMwo|9LEPU>lxikDt;3B1WW-DusuB*>9
zo$C6&(2IMo+N4L(QD@6}KkD9=JXaWYFWg|hN&Y^D{7)NGf~>es&v{z(`pMzf_L@pc
z#`6BB54~BlrTqEv-qTGU?&Wp6L+9Szl%{b1(%!m+0JEGE+k4i(d^_1R`<JWBlI`_t
zzm$|$34dOCNi*N4e&44fZ|@rD?~3s7)>3@AW%r&en|l49sh4V|ZV}yI|NW0n?cI9b
zjufHo2YO~M^;B-i552RIk%57MA%QXKLZWE>+D*~jD_4dr5Zk;(^~nEuN#f<YeSbZF
zP4ieJx-{!(;lI|MiM6`Y|5U&HS^SyV^thqr^{KBfX5Z=0-{GcqS?})Z&G#n7uj-z3
za)++s)9RKbHT}XXmv}6*{lC6rN$|@@5_i}xOR7JOI`}u4Z+cmCsgh>WqYt-NE#>Jv
z{IkRBL)6Rj|BvSE*YM2GXt#PbyTfJAeCI=jM>MC{pKA(!aWo)j=9j2j;-My?5_U>Q
z#g3;~iDvkgXU#oUyEA#shS^0wSIpWIy2p0qKP`a_NBxq*_tBU2rPoP|2~OO()75k7
zu9UQAi#j?=%E~<d->O+%`TthwrThE!{#PuBuiCu&^X(L)Nm^^}Ow7!l>|*rrEO+p)
zYOQr$0WxA4mjg^DGwodw_Qo+Vejca4r}W<7Upv0dTeE?g(Q4MZT~6!%{ND3j-&k`}
z{r!K1c8PHrPWlDWZ*GN4tq_@Rq*bqQcAtaf&dP|F#?CWpPrscs&u8fp+skoprmcIl
z_VFB^lD|6lT%PZ45j$q8w_|GXzDkBWwMTy()8_eEJx{gV@nWrA{QN@R>Gsp=+WVA`
zF5RQG=iT4evlpM=Yo{)Ay!xK~xoBb4!#p*qOT$(?`5J!dIrDJ=z6}*BiSKj_L>64D
zmOWm$=j+MpUDYl{t<`f=f;MG`oqp3^{PTKMxcB{8arwLZ&edH1er}!L$t|Mlyt;FL
zAN_B+biQ^_)ZUJuZDAo-X05Awe>jmZ_6|6eY+%rR(cxk%e2n$pexJK}GbS5~Ue5IQ
z4t+4=)S004MPXNb))o~WTE4<={j~F1Z{NhcPw#rtZ#dQKXPCCY{Y|C&?mK%j?M+lX
z`RL5Mcl&$m(*x(%$J+(}zjNu}dsV)*Oxw0T`f>WCg^!cSx1aqfk5)*9)Zf+qa;;Eo
zFQ>@o$p=N{tT{b@eUJR}Gwe;$-21De=ZVT&cZ$iXg+5-g@ZFh*N<XKj@8aIS-1Ydx
z(6_Nh=JV%s?q9w;+G<yLXNO0%nsRRI$vc-`hTJUL_v)cyXfEsQEl=JvnJPQDFZp!$
zD!0zQjd@i+!;dbUuG@0jHnc1!=e2RY;Huhl{~nY-{2OXqu6DC%s{iS^(=T;x*l=#)
z$M=U;%3RW!zAa26`%lmO=Uz39!4ERGdzZWn`6l$|>6S1B`C8X0x~tCBce<SXzPhn~
z_09ODU8ULe%%NJ}%F0)r`~L32k`$wty7RYL&7Sb>ThI2MOsmU!xtZmm{Vhv^-u?Kq
zWc&Ou`*ID9;I_8S_Ydt~8zgdE200#LHVWy_@jIBfaqYLA*TOC=og6OuZSwudjF(wz
zxA!$yS+?#EdA)v9-je8Frk9KEDb#0Ai?`jZXFhrD^PRKS-I#i6?g6vD?Mpjul>dv}
zR>!|Ba@%#UnXj*TJvV*#{O;emszRLkUnP%wdRR^UrpD*1GAYix`eoGJj~lm?d;e7Q
zTYEJ`=5G0osOPHhI4(Tw+_iu|@zQI7O9{`9>Ygc?de7muRoeA)?+@AUFL;|J)0ZK7
z`M$fc{k<>WlYZR^n>%;*6ran__fPrwe(}+%vGa8PJAL@SZ{ssJ*DpUq??3*r%j7rn
z`=cp^8jX)tYBs;v{^G|Uwh*g(PtQAN9$ll#+Sf60KGVa>?1kOdppuJ0YyqpRTxjpU
zuxkOvyI$T(pDdq$-K92heZKTM(P`D|8)FY!Y8n3B-C@OB7%RPPRpb%f6WnJ-@1J}y
zEA?an`}(OD)=icPt&-A=k~u!H<^Qi8XIy5k=+j;8f1_Y->tBuw4-EtV%;t(d#JxxA
z_n)PUJSXVJ&V5ugcT=JT`-3PwZMUk=86VmOr*BdZ+NTf{x|aLQ;wAg`X9vb`x~LZV
zrUXU5Gwbq+@6V2xSKD*m_4NW|M+a}MTAFR{zIfxw{j=0Q39_Z_{xR!R@z$)VC1$Ip
zmG(&AEsu1I>Uov<@Z<jD`@|May)kLJFW;XHU$_d+W*p7ivualgn{)8-z&EuI{1le!
zh8)^4N1*HYwbSm}pPp~#*m`fO);*334>J$G&V0S9VBO<j$4gO%e#HHW6_0+(75O@-
z{`5+<`7=-c|5+b?>fh7z2e+EG-E}cY+BHdl!(fJZ_^gS0MDs81F}eQJIzMdUky`#7
z_XfWHiJp&`R%QF|RLgs@#%EvSH=Wb7m(BiEz2Vbt_spG>{_p=?@$-9VQnuyQuH3=~
z&eHIps9(4HgBDLeANHm-P*>QtB4@AMLYrd?m_bnou5@}|rClqTevET@^`u<h9eJmx
zO_cm9D|mH<yXMVryezFZk6ORmdi|>G{)c}aSj1fmU%8GoW9PI9UQa`2{9L6sE!9=|
zw7g`@DdlIbjfG$5{Ga8mb~(6pcE~gH)Z1UrS7dQLcUF$F>yHaw+s+_+ZN<7jd_URZ
zLa!96Cr1AAd^#^*>#?!8YkbG*_ii_@1?;^TlYVor=aW@?Esage{R|lIC4UqO){K31
zTH>96V*Q=%mlAhR4!Sw({o?dRe+(x+Pl{8J2={MUw<wO;@#kJvw$7t_FHBGP8FByj
zVd=7!jYlHB+|77;!SV`MOgEq8Rpj(4W*BhvdHyr4m1|8lKM3x*eW}NMzTV=8TaIr2
zwd-15uUYNycXNI(J+Jf7+Kty{-KXZ9bKf^6d^eD8S^w|dwbs0oQI~eTEDO&wh&5Za
z`s~gv>Oqq$o!kDL-sQRT{m-aBZPU_kUtkL9XOPuZKa;vjX5xwbzUkTqzTXO#E5yhB
z{QP*zodY7r#oVptnPrI@WvxET8JKrBxjyPo{Cu`w>)5w(smlsooKeEPdCA93$A4T<
za?$KrzjH?V`m;Wd*JcI2wVL7^v@T~&NZgi7Ld&jZZ0X+ru}G8`*?VqRLl285Elo%W
z_l;rS_v>-any`H_`L$p7KiHR%c{Zy!TB!T3@Zme@JMYG3n_mAn>yN|v1~s`fTigB2
zyms$|ukKlSjX!gefx4^K_WWS2wfgzq#nVq-H5S;*8p~6dU-snThMoH(qt~TwTcVux
z^c~0N>ztf>774~o7Sv@bVVR=K;yfqS!eZhwR#nf|r~QAV_9m`-ekkar?b6JZH?C&y
z?BDWm&w2-MEfJ}+^@V$Pv}>*^j>wcLU(lVrlUK|BYLHj+%?;moJ}UcXDBXHo`!7>A
z=Z@Tey3>}em7J>jwD10pP1U{^dTQ=yn0xM$NNeCT32gnzo3r|f%a0e2_&~|Jfi=VN
z_^D};%Qx=(+q!e}v&}1y9$&V_MeWU>@Q=x}uJ4sleI<EQ=<uHWCo@W4KF+9X{MPyE
z&-wH5qJk4cv|_g{_b6E!RJb-@kk_Yi=be=r*Y{q#FMT*reTT=6;5Snj?pr6-7jpfU
z+>8mEQ;thnWFIYAx$1lEx%gO)ckiX%9J~;<?k(r{hAM#thbMbnSa?X~-2TXuDVIuw
zl6wE-^F6<}#%I}G5NFf<H7-q``KLTu#RG9O$Ax6C(5IiCo?bQ?RM#JvV8N%jS(dTN
z$JgKgbQ`a<k2)yNHYi@ce0kaA2BE&7Tp{mOTJQJ$URU!-c>V<A^m86&vrXr!Y*}%7
zx;{w5ley*hCeE8Dclo3vw-W!tz$c0(T{bNSTY~I@LTApKH|^j-$7f0#c_tq@I_0rN
zT)@1uX>0Xe686uVC-+HE%1O>?@d@V)kxGuljHxv)%yZ|i&;vP(;Q$lM3y^~uA{2I}
zpPy&DOqj8F(#a)v>VChS<Yjn^@vE{t%qq8u?E-9{1f`Cu6hd?~=)Hq77-Yc=ZUI<9
z#8d(n&~a#xOWyzIseWojMZ~S!w^LJ6T>kz0zJIo#kj}?P-TJ5QmfzQHZf<^L(f8-6
zem&=&b*na|pO=%Ak(tuh$G7wEx7$yztPF0<)r;Aou)FN-q#QHtn>k@+Z*QrJ>&Nwc
zGDx^^Z*TR}?)X28O3KSm?<#%$<X-jrspj`8lsBAx^Jb0BrxVJT?%&ssjg9?uHoq?T
zUhVh02h7sX&6&9S{l4g3yLK(vzdwH8_r32=-nkPqrJc#S?(6FKlh4l1Ub=j_dsS6c
zN=Zq`yvk>i?@K@NXKgKiA6F>jUiSXpTU&R#LtfwB+*Iy+%<}I^k>&f+cbx)eOkZaF
z`aJ)?&hGN})8zmEI9~MWiRaH#;ro=z@0L!VV_AHx<WfT8%$brmH>Gyl{CqMwHU9rg
z|9UNdn~yCZZqb_?h9{pEefqk-K6csi<$H7Y{e7E%`pJ_eG8P36d@>dalP6E!lzn~O
z3O>d*Umu?nhxzSw-23IGI=Azk{PSl|&h2f!X=!PDa?9S|)BXMZ{q&C?3oUDYY^eG1
zuzgeValXii2m!%~t*xv#_tow`bLPy6hlkr!YieTVRlU-ze6#VmkF1!IiHV8I?{9A>
zPminejH`O7y7O_L^^<wk?>^?$oU~tYbYt@IC+7Qq_U7E%WBI}6C&yLLFu#8K`FUUe
z`S|))t}pa&xuBW!(mVdwB)cycoEx9p{l0nr6@T3aW@pW&wJt8--`{`#x4y72uz2U3
zcel5nuYPxGs`jk2X<x7J|F?D3s(rs+t=3Yi`tl+$f3~uF--?bGuh;LFi+z;X`}z6#
z)g3R69BEm#DsE3j;N_QF`uh8;Z}0hjuX>h;%9jI;%&S)Y+P?p<uW)C}zVG*{@0r#A
zx;)=x^2rxVy{9j-Wr$d~eS3KQ@7wn$)dx&|`7-nGm*w_r+xcWK-Ok(XD_{F1Fm$Pm
zQ>k42pTfJFQoV0p-=Xege4$CsxwyEv=+BSBo7-}uAN<U{z3rs^zmNRRE1gzX{C>Or
z>7AX$jejPeOnI{HcHZYt=O-$=tIR%o>a6+wH@U^9b+>z%%~tI{dS$8ibQhN;>(~3c
zxb(@}>xHk6<9)LD;6cZmI|`E(<a6)r2xMbt-<$hx&u71xbLUQde7xU%M%9dM8#X9B
ze*D<T*jRb-;>AzouRM9!E<f$<?d_+p@B6m(z~?8*A+OJx-=A{uprfRm+_c~C_s8F>
zdaWz?a306miAHl7T;4bH+f8U~WtEhW;IOebFi?1YZm#hZtu0*U{ZmfcFZZASZCm8_
zyt|XWuZ!N^XCvmkN(;0w>FMeCf17gd><D!ERJmmBTHmVbYUbO&PA@Eeeopsf`rf^J
zFI~IlX4loZa;2uEtn5_n@O39vg|1Hd|L^aoo#$)))YR2a+OIhE<HwFU7KKiIvew(4
zn4VG$dHig4{xti4ANz|Q_nM#j{eHi`{m+yBPp(DhPYqt~SLoleOu?bw@OUB9|M07-
z=NYH2nNol1sp_W)o8I2ulc)9f>$LOB#}!6@68vNLdFJ^OPo6A^*;5e+PPiWqvZp2`
zEqe6riTsbfpU+u;da=0w)WK%<rF-}8ef51}|AX@DvE`Nh=DD|27B600^!Mxa)AIj5
zu<v|2E!w4}TB)U5@15b5`}g%vrWARuz5Da?^XXR@n3mp|={^0l{mvM_d-ebSs=ohw
zzW$%HT=z_Oxk{IRzpn2;_4&NLzO%FQz0W&i{GL5~_T*42cjH^{&w-hCy9*vR#q6z`
zS|cKyo10s7nAiM-ulZe->hJHS>PBxnalY=G@hAROphRU^|8GxEPmhPz)JY*)s=~s;
zpFYq39}~243J(v@g#Lid>(=Sr+>$wY&(CMG?+7o{<hYQ$V(nUAH#fH@7Zy4<KIfOU
zQrUj5YW2d9g`qtB{N8%gxu4A6xzlpyj2Rz3oqzFSMa-@e&wpRn*H_;D^LhUNDc;ld
zCLT|63Qf()@tIfmE3@+5&gUr=6&4?UojB34<nl`gJFDt%Ye37C8f(6s(q4b!=H~Rh
zxqNaq8Z&*|+}zw2SqenBhNhO4P5aZlD(CL5&}GY(r4$ui`dxh4*ZkzUxz>A+KT*Dt
zRaO=jSN+yBa(|uecb5!4VdKjO_k8?V=)3&#uif|m`o-6N4ZXX!dV5)E>C659|K?xz
zY-U}yeEHWWCnr~Zdg3W6So^3`{R@cq>q};6=-uu4^V2p**8Y0AyfiDzOTOX(W9<IA
zy>a_$Zr(m_zV9RN-943?<t&R_`eiH^%{I%uBx_wZ!%D^F&F=eu*MT%XY!(0V=H}*m
z^ZV_7ow)sMVY}R=g$osHzuip#dZbgh>bPwAi)p&iC3SUip`p*8KQDcJtan%G>oD8G
zM=f^0-)y!rF<FwFoV<*WTkzLI{`wXA`+h9i_xIcFU!P9vzwWR5qU@_8RQ2J3W2ox?
z1$O@;?}VOokGPrKZ@Wx?&xfXcU#~@j3bVT#liSP6%d5Yixg)HY!}7xLTX*~)r}ewv
zS><MDUj{AOx%bKaz~}S!>y<V=Ip550w_?@LR98@8boOb{tdl8UR>%Kc<>%|m`t9TW
z|Np|v-`!bx_wL<WckiyXE`N80TU<}VLTW~U-v5pcP|f;%+s_}5`%80je18A>wPo>Q
z=khl<7N(z@!};d<mzS4!)&4Gf`{Kogef#WWrKK-xhp%&~F)?^(eg9`)d2iJ2vbA}4
zcU|Q^7kbiug@0y)pWPuZ(DJmGzrMaUo$L4d!Gi_&%J0`!y}F_asqx%Huln4!WdMN!
zLpI!P0BAFg;{v$Jv4Mfn3Z#WWOu>O2#6Yw`8t^nEMh(GiT#bgwK!?eL|BUy~XZ`xK
S@<=l%DSNv5xvX<aXaWEdImP(^

literal 0
HcmV?d00001

diff --git a/reconstruction_im/charis_VAE_bs_64_ls_20.png b/reconstruction_im/charis_VAE_bs_64_ls_20.png
new file mode 100644
index 0000000000000000000000000000000000000000..75b85cb51c300b4027d43e0ff391c2cc68445690
GIT binary patch
literal 116835
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|b}fx5ehe-}gCNS9@*K
zIlcRKUjE%L`<Bg4%vW2ou<<~<zzG4hlXpBhJQJ8so-HswY2ayh_$;rvxuS4dQTnC{
zt#8#*I0R;taCl!XsahER=3UwCO{tNSw(4)a9{EoGeYM}zl#|!OmIl52`RQQnB(F;s
ztIt)Q-)-~$vln|ThhmF>6Nh3;2J<CHaS#K<yVX!~p%uhv5pe1-Q;;ozDiT=4>oGL7
zEIQ1?H|Ke9{g?O|67tDOH9Yr=6*;c_2Yb@x_9pXR3@sU~+rwBN99=G-{QjZvlWpH~
zJ_vGNv}txe{HOi@kNFlquLv_#v>mPezMr*0zUJ|4vriXV1e{DFw?-|ES}V}6&QKte
z-rVoOu~EpVSq~DX0!~{PXF7_@o?jdKbNT+C+zfU9zt_*d|D)OdnHWesZ(Yn|fBXNg
z3~I}luZ-|y`1ka0{t<(oUYjj_A}n@OH(vg+m5IUcy55@-eTFvG&EZZR&$yZzPIhuK
zoSSd$yfQ*%UV!n7o$ub}+}|hL;1fPALWfP^d{e2wi>1l>HopyC`t;pp?_*53y|LFu
zXX8mv_Slj&25bJ#-}hm9&8z<Z)(pm`%`QqiC$?{W>g(rs>FQNhj~lU@f9&(un)+mV
z{mbbLKkoj2{@v_HhgJB4s|+)0zU52&xwSq}a|K(G&gRK?9)>eqsDAE0>0Y@uLz`-^
znc|UOvuDkD@}$_GIbdywq3(y0zae^4cbF7`RyFx8)8=+4|6aB!@~hR{lOFB0qD=?b
zA1ti@A(KAuH{bU?Zo2B#Z=>(It8GtK=J(A>5_*Idh9}pC{%qsR{{Pwj-}^7$Rt26p
zdB}B==1j-@tx;=_ot(TJysWF@`tEzICwQthPw`T{6V&*=_HjL9fZj9Dr9llXChL|T
zD3+}KbDq)SbNT*5U!F*$nkKqxnK@>DsbpB@U)%X6R-WO(gKYbTw@1vMRG3fB+Un%%
z?zr@F?CM{Vi7zq*SY|9c<8BhYGDcBw`h}Na#j)ZI@9Y0dy6N>YOz2SWu;kmgW7oUp
z1#Out)aus;Jw5cql40N9xA}%<%NEtuz4&Kd^!x4h?LS^vx4*CS@#*={yS|32A*4)w
zef8=6tWW9$wAE!xE>4uIev(-CUU)vkgBuT>Yo71E&$?j7i_T56x}I@KAOHK88FVPj
z!;|Xr%n#J-9vxqNZc#?x%a@rkho8ON+|1zP<L7>w>&UHE#opxebrYZed#23L)89LB
zeZ%tdO|Kb^3cosDe6{rbgVT%~awMnhnzUi_NB8<4g?e+|vp)#0dz<`Z(_MyDi)&kt
zt$V+^IC$lh%4a9t86{+Q9++MCBcAb6Kpxxu@asRt|2?$+b3yw(OG32YtJz^3O${$s
zYBK!#{d;BT)dgXyajIg)9wAo~5^ThdmtCpUnts~mYY$iJ|7+Xj9=(YyogbR5xBYIJ
zw8Hn3URSbKojdiMdq<wb!U(2>2X9Wkh)k5Y)+Rgu#+)V1dRCVXTu?pNzasGA%+A7n
z*X_9uoZbFTS#J8x)oI!yT{VAS-)DQU{@<(1b8LQ^tgn5$nsLYXd)4M|c5LffxKOd|
zd&y_+_x17&^8dc?_ll3d&n6$5&QUY};q!fL2aM<cG??C|#~84}>Fnz7vVR%wyeVYp
z`}d(f@q1zEUGKx+PaS&Xxn%q2r|bXmGn||AH(cgUIYUG3?{AwHZ{Hr*&u+KxIb(p%
znZkdMDjCw!m%p^HW^0&!w?sU@=5_ze`T9@y->ZqA`u{+yqua6dtV^2r2|Y~M_P)BJ
zs$o^s+5pYz8e*Rqo_sDobIym^z|!*Ij~@~Y$;peaWWD;Ge9~mw+VqpL(<81fj0%+f
z7O_Ss_P74Nk~VhvKUNIs=f7><>#lmX_CX{2lYbGdAO2juBehOEVa6)syqktR&PwG+
zUY(e#j9T`r4ACk~3s`%!D7Jsr@<TmFGkvz~?TCoq_x|&hV1LFBKhM`UuCI^nz3~0}
zeioKJf8XY_PxzF-s6gfanVH5h5;9MO|6f1OP>^lPCu6Z;V*9q2tX0!K914zqcya#^
z1%}Co|4#Wb3$)N|!xxq*GvB1%=l`3|@NLeH@U&&qPHqa>{ABL?8uS0Jv*TGGoK)X;
zeEPm+uY~WHZqyMDJ|8rb_vo$5mk)y$JRMm7@7DU_Pg71Y8kkf#p4#7e?D%oUijTkj
z4QnoQGOXME?SY$IP_)*wbVdn_&oaiBtq$c^b*=O?m9{grJb2}a3d7{!$v(cm#-_H+
z2j0X?tZ~eJI75Gm=IfasXT2`GE&H9J;Pcw;?z^uXNs^oQI&k$$u2oURGv|dFf9SXU
zrXjAss^?wZgU=87>m?kn&0ilRaV&0a*vg%D%htY9J3J}FcVpEhM{(JeQEP+Ntz;|R
zp(eOs^=fS{M&Z@MER5?`pV}5yym-Qu_qFdi>)t)D<7*I)t5A&cezi-l{BEiE_4xX~
zZ8Gn}gv^fV#q2ns9rsm=NjA>h<U7mm^7r>nINzT0rNKQjuW9rBza|X+^&gXa`uP|G
z3PYF695A~2f9{S`>kA(2i+_0GZ9bFAnkv(n^GkPon-=We6uIiT9)m!GTtTV+?|FwF
z2;~1*_?vOZ(`&bP7C6@Whg<1AU(l&Fm5brAvbdz=z8weMFYj|}KhOBVegF5@bEE@=
zIerFB4RXzI4O<tuu1)csUg-73%jR#L_xkb6t^eu-Tweb>c!2-P*16}OFFw-MS;1sJ
zPhr{QZ&S5J&+)Igf4}~nO=|5qzd1Yl%=bLxWtikqIQ7qqJq^#DSFXA>=dZZiidS<O
zHf;%7Gv!V%tVQ7>Jz=HG#fhh$7KyyOtug!TDV|?iEQ~!pD=zHTuX$+w=d=Cmw~Lph
zpGdpP@!$A-&D7`fs@Z19Z)GSrE?Yj~^wX${BhkT*?GAjgGAiz^>+Z!iaQ(fzG5NTg
z+^uB-KjfZ9PW_Tw^g+Z~--hYH1LOGAH*bU)L}I(0Tzhk8|4=Cj`nH3)E@9Jiy{Wo?
zj$QwsKWSqvFIOv*XY7vS{xQdc&)3D*KKzum_nd)6$q$1CY0SKTpM`jpy~|jZ64V+R
z?#-$fXR#j?gg(({)B63MRet+oz+ifP{&v}f8#y0q<?UD4d)L}`=>0vw|7>gip^j}y
z3tOJA`riKV?Z#QNc7C;;-z^^c<oua4IU*0sF8i9hoj%v3Fu`MTD97pdZPxc4w5}da
z?q3<(yvnrxV%Z9T(~7pD8&^)@DrVW|uQZkIz!tInE!{^S?ddX%S-xYfwR&QVc8JE5
zpU3NKCfWZvtk3-6$z*+(g;&}HCwQ!AJGRvOeB3od_8Xhi`RzX`+c%}2G*donW^T@Y
z;K~=1ts#@%|GT`MVaMxv(<h%zGyinq*1UM_;%^7<KRo)rMy!FG`MJjQE`}qQ@4ngb
za4o}~zs&iM=l}aMopFWl_sQ2ZMRU04&AxXsJO1-!29=;mN2_$Xep>3ph956ne0^Pc
zrL6EKpUHn(R`vh;xBmYm^?yI-Gg{Og=JmC^wO04df*n`6#MwgF?|!eXyr%cSB5Q%h
zfi9=(vD@ox*$vije)sz;U$wxB3*TO3|JvHvD4wSqvG&of#2tG&qqx>?uhJ2blnwK?
zdz98Y;~vwejqU#@e*gc)lHuN`!|xyX^8eXT<?qC{RqE$H`K|dj=MR5Bq*`Md6W+S<
z`&-*Huj@Xn-Sa1M>(V#&_MbM~VNSaG<dh&RS>9?mv!L5I(W(E>zq9gx*n$^3e|a08
z*z>zD?)*FFto0A)+5Ucc>l(Mi&X}%!*BOEgO{;gW-tO+SW7@*7&lRsUx3+(%|D7NI
zQ2yV;!e`I8ey#p0SbzD;%-O-uk6o@7Tz!7_o4dQk8}9!(d;iJ2>UWuE8}kbjr^TKB
z{BvsmA1&}s$Q{pSWqX|HIWcvn7;}33lK-k(Ym|$BT$Qm|_D#>e>h|lK)nCFGR{hkJ
z^IkpS-U26)NB?>+Kal??E@M>`dzyc*uqapYnV!{8*?w;HoKzTkq4?;jN%xZ@+0NUn
z*|ayl;+vpHF7tzD*6%VtUChgUxuq+^x*);c_;PT=nFadC%1U-vip^V|wn19i>B^D{
zfxUbg9!{CFkCbRENRGZSP3!iI<iuU8?w$9)Qjq=X--<A;EdA2CZ}-Nm3%JPnLgw<~
zMU!95vo}BRa{4dEig!2DEpAL_e9&ec=c=^z>!Niv>yJHYRcD+r*TR44l3TXo?B|2@
zR&kiFk2<n;)eEidVaL|4`j)17VpID0^~JAc_1PbsiHv-w80K&FV$s{)IE&NI>%QAF
z6ui2a@A#nj-;`VDUT<XoFQ&dsu4?7FylrnoX0DR2EmQdQZ$|E=sR4==onNk1KUj0@
z<mB`pN8|r6Gx*JwI`Vz5>b=NiK{I>pPNiHq{5N!cm8g5a9P5LBzuzA(OwrBT%<3qR
zTb?pYZKjV})a1G+Cj=vt3Pjs7jRQ^?MFl)9d30p2%)XzY3{#%DRsK0WpC#eN6Z695
zS099KWV&y&cHjTo=?`VUznR=Pp>)#x*{N>%mZIBvFYSt1f5ov}N7%bONvP9ev(=sO
zPkkog5&QRln!3Jc+x3#z@Kd#n?)t0-Ybr#h$+0B7-YdCzCd<nuTBk#d+`_FqmDasd
zzHPEG*Z9{wgFCyPRfS})dTddb*|q5$N4(DU6(M(51jiNI`Y6A7aQleN*W%qlhK~%R
z_nZA#eE+{LLs{Hs*Se4Q|EF*Jp0oCj>eWXo=l>nfXEvyP>2tV}>%-zd3}3I$lYj8)
z;Iyo>kG>e+PkMjvJHv$A+lnuy);sC6^W<~E`gyqyZRW1GcbP0mTWR;%TK?hB<MLg0
z`4Vm-sc(PF&0Fo%t94Z9a<Z06(ThJO)8usT-JhHA-)yV-$9MPMuC@B(t9j;4)vqtc
zcM6(U$vyg*_v`ob88ZVH7G<6H-}`>Kef#^>g1-;9^MCFu-^1MSec$)JHosmhW;k>1
zoEO_i(NDGW4|X5+Isc4t#=M!yd47B6ofe;Q^)zqSQ6bg6bCl=n7yX;V720!ja)_2_
zmuqRhj8(~stM!MLg>2oH{G5;B!wqq}W0&LqSu7A@JS%#&)XqS%z|%M4;@p<$Zv%}3
ze;zUA;osx3GluQe%(X{f@$kn!*;XCTe1QABowt*_<I`P65!;&OuWSwtUzHVRJKJy5
z>U?#EyVhlfRu)_hk59-QSqrL>KD_j=mugtJP?7I-&o8HqvZcJoA9=p3xM|0*Yq!wF
zGZlKW$1iPuX{x^<q)apPit)~fRYs=KJ#p>T%fqwlw(xIHY*=e_Sa7p%P%LMXp{a5{
zi=FA*3F`vZ1!}B({xf2q&&DNnVJjbf`syCK`}L1b%er@m^EP)a%C$V1cj@+(oin8@
zeP>wjPyBk&hV5%A$F_$?KkiJo*y*oZ+@(J0qH%=M>LXsB?6F&xKKv*C<IVAU(T0EN
z@`o=z+-WDk@_GBZ73($Euh;$lw_%^&SA#qE=N>S=^8NVbNs&Lj4ox^RZ=Re(>7Tg&
zzl3f6|B-ZazuKHuvqz{@%vbo`uGgguf3Eod6<J^Rb@k%+_Qh_tFAkSpO!~QO*|LiJ
zzwJ-lRNPv#;2G=1Z<gzxKe`(7SS#W}636@2+TGs@GfQlKS)5^4Sf?}h_QBQlUz8ba
zzHZ-ta=|^LETi|A>=)iko?VboZL3nc<+UF}-N*a2E&hMr<r^C=ytgC&{ys7J+H{WB
z-(Iftj4Qq`&9LL&wdxb^en~N?G0uA}<Pte0R!j7%<Ncl4;@|InuVUC${^rT{|L5;B
zD2PqxtJ0RSshAMr#oK28@5kdecel$oIIS$YSr(iqR<yM?V#caHa_{!qUcXwHeIs}8
z+eN9zU*26et@-WCw~JOCz7Tspxx&Xb`nSHH>%*4}+fv=;exH%M$#!}9CdC7nWxqJ>
zbX&M$9`ECyMy)|plOoeg*YB!`vt9EqYtzj)(_~V%ys_BZ9&&EZ!^`*E4BQ(sgNqLb
zlrh@}<a(Xo@bPQq*SQiucN+EA{eFMtx)8fX*&7Ll+uKh+nGiAa+^WB@HhhP#SK0;F
z=#$Sw-@JJL?^^wnH^TQB6&_0jij|!<G1$Q2WBW^v<>H>5i4qrU7KyXGxgaefe{cWv
z&MC7TebQ6dYAwB%3gy?XzV-cQ>H2C}XJ=>7>LZp1!SjC^S5=4ZxYl=1_|LEPf2|gz
z`AenST+!KcX2E*5@NjYV?_WQDNcLx*aOz#i$8LuQ?7W);c`NI9IZB*nJ@gL#bKU+Q
z&$6Yfe!P44E==y<vZqHL#gu>l%OGP>rrlrjJ(1zxFMYd{*>Q`NT!UVUeB3gN_vYsR
zQuC_a<}Q}b-`N~nTYJ&&f>HB6tE;PKG1`2-#J%T_sFvsaxi22M*L{g)xKnxk?vu}z
ztE|@CHSoDqb<J$5pL?Lga=*Drd1Y?<moKe9G;Qk1lpW6LXa0YA{%=<M`4t=s-2LWu
zA6or7L^e%I?P!*7y_SM-@c9Y%Ywq8!{Hy&g>tx|}uNf;YZxH5*3%Z`>uP5os8<G`p
zMe*&n)Csqz^*P=7e3a{Q@vB+-BCADCB}P>BM)^)%yMNBgkEyTTy;Ixgs_b7TTdT^j
zHEZf;@#72@A2&r;K3e&nc|-mA#7i?}7(Tkps&I0Zve?M7+|Ty>+3hQ2?cLnnXU?4)
z`{QwIgxJdk-P?rP5^Rkvj%wfkXUrgyuJ*G2pC!XGy>E}NaOHTfVvoIKmf6$9eQ4`T
z#xH51>Yvt`@0)yCdDUczG)eJrGh^e!6P4W=M8DNNIKX)C)3ogjpkqChf87FI>!y0$
zynXJWhZ84?$rPq{9!=WwNL2s1|NlSh844arzL^nsSWMunMa_D#wcVfh&iW;x5#sF=
zr?oM-J@C}8?W?(&<WC!Q9R2#>^2XUGzkXr-@a8f9M`QUv_6#pFPb`1%+wSpVt@o}Q
zL!Mo`{r<_)%UQFxRllpP)aKux-16{MaPZ|NL9c#&U1_k|`gW&F(#`9|KQ{XWml<TR
z9yX}>dHQPU|MdEwk$z%VjS~`9`7GV`qblvP!LxFmudna_SU>-1Tk@-$n|80?-syhV
z>fwWn53~C}9V!1W*f8;<CEuH{ry*-Ar<5G8R*Qf5@qPS}OSe}poxCyQZbe-CMsw#K
zI;+;N&p(~^&_C^Jo<sY)AA#r2t@u3U&EARc?ykytSNU}Hv^(p{)6D#R(qF%S{rd5j
zmzQ-dk}h^`dv;g-R@jbM@9=Q(_0@m*nLsD^xGkPg|4F_6&}M)8qX%twGgwr=l1y{I
z(la%1mTKM#H;1ENZ&v#BChdFae*g6Qnm_;9mNf5+F*Y`yes)*d=B(~rv-5Yhax-U1
z?`CG_)A?z<EjPGY;QZNhLM)AM?DspZ4B^_p?0fiJ*`uB-Uhv;v{pjW1yt`4BucrK-
z=e=P2;owTCnm2J@Z4;XvV<L6t9VvX(?|MJ<sigNZ@wXzgmYrO9_&Sq8Rc6cWce|#q
zukl=KKc#j-`0}ve>%|Nz!C7;2&jxRf)DF}U(-gV-cd|#$-mP1tpC0KHX1G)I_$!Zf
z*0jP!B04u6_vc&-w^x^|e5myQefoZu1MYR-Y-KM-^2~4izW15vpY!Mc8ZwBxrJYz3
zayMw@&cG#&&woZNJJ}e!ipP6uRnqpameXE@inQ+7ZQi{6dYJu(1I)64&$1s@%DvpO
zs`=QlV~c+M@yeZ9VkMiKf9vvPVb#vb&l@8&cSga>F|!R@+mE~4=1jj3yi(+6%?!;u
zJ!!??-{0?lZ1LyK`F}bLtxk;#7j`r3`S9nn&DR~bZoQs){(t?R$Lb*+HRt>8WyB`W
zNDR|C_xVas;>L)cv@_znzI{kkD_!<#-@bjS^<ffg16GE7u*pB&e{6k-(!>KMS3PPI
z(^%531Ti-Ms-5Jcb|NqQ`>}1gw-*`7Nk}|6F;TgvzkmC`1LhkmjCxbAt`9yRzPWB?
ziCB84MoaVc6$W?y{i}Po>$6{0=+?7QcJ}UOv$H=5md`6-yKB&+@kx2&2ffowb*A%P
zyM6E16;#m`&RbdeVpem_|BuBCA$PxY)%SHDmH)f;RQ0D_)p?JfmfzcxcYMdiKDqt#
zr1SR(HnhwA)0;WvUftP^ny=5ib!2GEG_YEkmVA79xArgDtV!1o@B~khU~Bugpzz=J
zkK3#YS4{sHY1*tGUA#(G>Cm=x3++17nLceRS86hRdvjCx?6&aLp^;f?VJ=Z;7OidZ
z47v2O<ceedl#?kZo)!hJ2nY`sKi<E3!mh{1{XhJwUwP<}|K2O|xw=m)<F@SI9x@?Z
z%&bq^dAHcEXS1>^KAlu=ta2|jOpKhp%yVVPqSf9)U)H+lh;^^~Y)~Tm;Ks+tHD4CX
zvtHTBG5O=uqMaGpyT9-M{};5-ujXCx{Opf``EiZ!lV^s7urvOsI-oW8tghvOE!o?n
z)>nM`eP8|V)YSC(QFX>fHcGNzLOCYyk6b4CR(fxCc;3;|legvGKh`Ik^|t8DM82xk
zE#FW2|9j$ZWc2el!xaCxg!9{U?pEELoEgPZ^|OPQ$9EN<?*n#~l11M4H+5RC`uAJD
z{-5MJ`>F}KvXkBvMf>Z&uen~$Q1NEtaY?!0lZBgSvZU_azw`Qr?LU(a_03OQQTpfM
z^FxlBhdHbteN|cX@VAhmwUo$-w4{>qm7U$$W#yOm#@5<RkFIH`)Bb3q?=?ld|M>H*
zp3NDoOJ&1gYXN3E*k{G>TG#!0S75~MM2SFat@-D@e+RGWXxYK72u=984rv!$qdDDM
zi+A2xbUS#@r>X0Yd>7BV9wgqECDkU_TXQXI>x<7uO_ixnH*uZcs*`<EH>~XKt)qA5
zNPX0w>g9cIOS`e=&782b3*m}#{pV+&<$Zf+=j7k-!=oE@buI^asvhk+nsj5Eu4iVL
z0)x=XGkc7<mA!Utx;;(jbV=0NH{ag9Ir`bgFQ%NCp;`P~@tYqXpUIW5b4^#ixve*O
zHOJfvn|+UT=YM-|f8gKW-;B?6qXpI${`pZ@_mcTN^MeP^?T)XzyL;#Fb-NiYioS5X
zkd5Yfkj-z$ap1!TgS}PL_B{Iyig<=O(h>^x=GP64UnCTKmesobmw)d=-alvmhjgmO
zp6{P@Waqs0RH++bd+%-h@@7YJ^jDWuH`^53j0%6Hw8_55Po{=89m&yhGg|mg{XF*!
z-4*G7ujF)!pIf;!pufI;!r|+3%nDPZer{^<dt50udGh3jtl+kVuhsqM_1s$6mgtfz
zd%SQ%?(AlEem8sN>A`^^KWprw{wW?QIuY!>W$K58m+#&^d*;lU)cF0kq&{u9^rf~w
zj@>pVCjV-!?R0IPhhA!vz1zN|ZN9leMqOQf`kMvqalda}_j+C<ddTmaSIg_CMLT1r
z_%pnc^(|y&T(Z09v(cBfr_;{nMt{0}===S`=XY;xJG=FG$nrlA-`kkv9|+L#-(fmS
zxI1yJVt(uMN|vhoXCq>q?wC7SOxRuhJx}NKqJV(&)9*C>Q9Irz%lhEX&bn_hA=b?`
z@2l@8f4^tT@aE?B?V;^=jI4iOx&O_0|A*6as{V;E_}dk0WvxE*?DP?t?sZ$LuJQFh
zUtCds+syMwXu9?6zKv_WOAi&ta!x8NJzp{Je9po%Q|?*UW|XwuY?Au3DkQe1{^J}z
z$-is-)KZ@}=a`+oxcJqrJtZ%LOdga!IWaNg!yS{e+SlGE-cGNo+I7-h+p5=RJ#11?
z0Fr)Ry?dADl+G33dF;b?gT_d;$q#Mc2XaQPGrPU}YU^pPUAuQrmk}+KQ9pIh&csBd
zS4-dZ(5^6bv2I<dM|Dect|hjdoT%)sA=Z7-GA57h*4i_hbok<{Q|>)K^u#{)w8uBG
zYv#4PLoQj||GemCLS)qD8qvLH)a1GoBUjIN{!lyL;k?kTYnM*yxPESVc+l3?_RIJ0
z?%pfJxaJFP-n{wZ-lC6>j%skNm|V_aS@1&Q|1b4At_E@YPpf^-t<YdT|M{iY(SkR>
zj1$89qx_0*cgFsxs>@B=cH+q#t?S+C$7h^fef_ESnMv`U60NEi+g|PBp1k4QnKLfu
zAK&0AYvoA4(B9T|?LUL7`|CSV{yAB9@813L{X6q2=S_D6E*>j&Ol-EC=uz-~?{~B3
z4%R+9;$D5boxlIl?{zz$Njc;`Fa3VE-2C^3ZA(&&PUg*3ykp|)=I-A3Yg=hIr}QTI
z9|zbg{{4Jj8L<9s%-MwNVaYSpZr=H0x-OC3_VU(0Id4Ahc$M(RzF<OAoRO03m#5m(
zL*-gsj5;&p>>Ren%saP&XN_h^+?u!>j`#OgoA=v(ixAltt2OmmD@XfWiSwTqU3hi#
z=1q;|ZtD6IjeI9x-}^9^;m?EX@=t>2|5akRdy~an_U_T23#&4|{Fow@@%Om<@5OI#
zgk9#0*T{*VxlFLsWBnHA(_v3`y<2rkMaD#b`su*mAw`Efo=#Zp0!thj%tmW;Ze6;!
zw^~w8F7D&^R%10sffF1bv|6f<$NSD$`sE<I{1lf6-=Yr>9PR%9JkPvpj{T2={7hCQ
z-?<XsF}U~3r9MA5_u`q$4;~~G^KWx*eL5%Vq1+vY^1lacC)w7B+Qha$FS>m#WciMH
z?JJ$1JdNC7cxcUa_kKCm`RCoA7Z(&1+_Srs=rSQuB2c4XXH4I;n9@%?Ru0>$tr_0`
zJo)|O+ID%?gp8D)_W5!LG9#V^u6%i7<*i48A>m09ZX&bxCLiz9;CgprYrDkDdZ~u)
z!_!~9eajkAQh7BjZ1vSJQBKimixVX-@`(xss!nr`;$Nf-T5%CL<ExicW+KPL+}pBy
z^Kuuzy|tA);Ps|M?R{$^qvJP5^duj@GR^$F&F3>+`|T&6{P4_tzhpzw#vSX9ZwqaC
zxcKFnQ^nye3*RNB=IwiG#?U8YyKNcYuGB~w%SA@7PVdaHz5o5>tDLtlOQg<!-tqC6
zG~?FLl*Jo1|J$~GuWr<}&sW#iP5oH7_3!l}_CE97v-5s4*8RG_N4!D*-`Dt$KTdXE
zv`vsGm|7UQK+bNi*U}fSUw6+_1kJUT-zj8Yu<gL@&F-la`;W`)`*w6c!vo>@Kblvp
zNj*@zFKeq*>9*BZv#z{b8MZob-9)dYM(-bIZIyb<GRbS{5?`$_mvv$nr^y_Tyt>BS
zqWRtqw%9fMkF|yGFr8g;VYd22k2Mu{XQf8&`TzGldxVkY<Q+!N(<_xKpT3nn`s?H?
z8;OVY;j4G=o?ZWaVLYRPT50g<nafUE-~Z|7@HRg$^4cWNsKe(Tyxo3ZuJl^@yE`XO
zoZw(Ezh6_#-B<D0a-&6l-S2+p50_4=|G4+r*?XNKzjgP{m_E??!v%l8UU#4S0kn`?
z*}c!j_|eIfqLY5#|K|U`&LCq|$G*3A_w~2$U#fhpusPLjVrC{*x-EHQgviVX7JM^(
z)PC(KTpe<HQ_2PBH63e^7e1U>(A_6=ZkD`lRY=-}*%~s6b>Da2mp!|z`<bWO<cmHh
z?(MCfzSqv+Ooz<B@HIZ)%R-;c)Z2N?T>7v<$LXl^yrS2vjg5_$1g%VUjcncAQ~mwj
z(?hM?zP9_ywq(yg_5RZ@_IpR4@Bd^lbraWgGlLs9mrrBc^L1^0Z<+tjhi%dp1rHcN
zM-;?|?mk|4<?|o4y?b0@-tBt5u6vQS3is{|)|VjH<q3jLE6})g&&kApN1w0B_1N;e
zN2l-qlgdz4U43$mQs&HvowmP24u?Alw?^!}crmc5sw!+sMb7<wwKiWaI3GB*E$Z$Y
z9_P}3?<%kU{qz2RU620Xx9JQ&UR{@exNLSF(}TzI|9?z6&FWGt(Y7&lo#REh6bTQc
zT;Hr`<t0(2viS6($t9(wuA9{tm8KkX>DVeQDY<a{`h3^#m)FJao-tzv!xgdchnrTd
zU8Ftx@%=xy=RZ8N@;&2+t?TWDrp|AP;J*0tiJmxkApW%$2UC+mLP?3qExX*E+w$-G
z?TlF#qZh0pGOMKJ?O7AwM;|RdR>ZJzx86uvg1oqbvk+>)sqeK6&z?QIv9tJj*S_tm
zS8ID|ncLc)-Ija%+TS0y=4Q@#V_hN9u=sdi;qSNGnb&CCoF|Y}Jc(}?c#TU$_`|4|
z^1nCAM}O>-Kbd0mYC>LUTjr;C^8Yg#?tMA@zK_jv+pVe^#cfJ3`<yrwZ#4+AIBvMe
zu4s1b%^RJaF?zou^jfcF`}|RQdcP{@pS1U>`sCK9`l<J;ir&W0eZ8xJ>t)<~l}xCN
z?w<K+X=x|YHcOY7BpJdMJKXBZ^%f50*l6n6u^a3%0Vj@&Y$!f{xd5qcY4rjed`=vS
zF47aAo*CR)-t^irT(sjkeB*`ljY~`Zm`|JX|JbBY_br0HfdkC*XTFYRy`rAFF|yAj
zO9VgG?ti&oIin(1=TA()|0iLR{-$StNz8n`>$9EM*~jd!R&CbR{x#=$rO~AON)K)G
zPk!C6_~mJT>dH@fu6OsFN}Q=brMvcHRQ}1$<}>PJqIa(2o)Q23#Mk>(Yxn(gy?f|&
z{1$afXQZ%{EV&re-Fs6y{MREfrOoYYll6?Mw@gi+5|z7g(zMt6OP>VA`yXriv}aF&
z__?_JmSa2ru8q6C_TBpUf_cp!?4|4T%r7Nf4+_wix!AVt+ui+@&_z>=CQG{2<~j?U
z&^VjKvv}W^cUi7iEH+<YV>Vb@w$yRn29f5r`c?sL<zO)+w?N|ch?Y*a(k+7(|MMT8
zob&9F)cLbT%sjUq)@-|1^gnCorIrX?&O&kR<@00M-frCH2U^dybn2SNW{c{-bn{l_
z<$c}yJSjJ<>aRrG#SPx)t>Qi(yA~6sunn{d31$^|Dr|L>MV1tAOy0qR6^9L;srE-^
z<wthv2sm}Dj?B4VAiFSi!?K&(E6=Y@sNI}<+GooPm5YbClV5H-owfdF)dP>ezpvl1
zoAhn!4W=c{dSN=R=H$Ie+;Zj+d+_6SZ`&<Br{&zfvOoA`7bAA_yX%$-2ls5*AARW0
z+qM*gRbTbi$D6G$xDd?w?E3nz=4XG)ef=j|q9T=iCOk6kl4kz0vwvl7*L+{RF~xeF
z-ARScf2}t>V7aCRy3A_zwupkH^vL-SAD?#Cz5Yj7T=wQY5$5l*NgpG3si_{xH0J*Q
zWoeq2`Ej2~H#{CL4c^}}E&RFE=gsR}uiu*bJ?+~2*o%T)&!QzJZr*wRN?OFTZ5dNe
ziQZFg$*_I7pxgA-mAqe%=04c^|HjsD7pB{-J1d^Hy-NBfM^v2p0^#@FqG=zFW<-3y
z-T8E*p_THLs@nf;qNyR~J+7~M({vr9Rv)!mJ-1Xp*6zXbf7M4XD@5)IUuyiSPd6n_
ziBBvfxae=W6-wE1W<j^<%QYMSe7!31E=GRmJp1(;R+rP}Jcz7G+j#NRw)_`&Ecf?b
zl{`87%GC`wo^CVTT=UDJX=(lUqC+pP-%l#{O~3DXdX>3(^i!=PS~?LYH$Ujk_O8;r
zHNWJ-(OE3A*FMFqKX(0(Rk0)6Bhx82Kk=_W?01GqTKL}9m({M_**jKTD}Cv3SXIJh
z{)&2)u+@p-9eh_R-s*0*+jr~2#i^V2>HnL&?n7TC^SZU0c5a@dzpi+F;?leG4$h6c
z7ww&{zg$>Bwq&E*s;n1t+R87ddq#!0%#BTz4wtaWyBELrXS(kCJX?0VXV-ZzoD5IV
zj*T-feRp@?oO4x=tD{T>w#;&DG5vQ;>`z}<bWOz5F5zaQY>gu}iHFYoJfBzju8b)X
zx%{8$DDEBg?u^4@G0W)0*(;w$Y<j`7m#dcb>E>0Ev-;+Q1V1&%@1AkGYuVrJJ8rHC
zE0&e&=6P~@X5`wVr{h(B<sLhel)U8BvH4q{$~$NGmnJ*io4!GEa=cDv-P1&!6+do2
zoV90CnYHNKqRw@`&t0<PZf4Efy6bK6&2sPA8Jj0bmTb&xatLLe`$1;HsWrT7A3O@;
zU;WEmqU}}Ank^HB{!TfUaaTu=LxE#f{n_=;SUOHj?OJbnJ@fEah39X(zUXdw*i&ZF
zAv$Zji{o|YSH->mucw}Q_Hx$NXz4|F`_i9o3zFUPOS|^voTBKJf2^8Ikk?}>zDx4d
z_MLGpPcb%otKsceYx>XHNA2VIYtGuXam~gr$CiqJ{=fUrrpTMel4Sk39ve9doQb}+
z`AS%+_f^HSE25?9pG8fVVV%BLAp7c>U6q^XEqglEQ{i;VwItzf$x^0rb?RpMEfF48
zFOu%+)N9W^o0|CeU;y_?^C#cq*E-&xDEqnf&{mNHUVcZSPNgk<?PLAX#wGURfr!xP
z{Myq?zGe#^e$3y*aQ{2w2b=i{0qdFn?p*Nj@3NJBmrd5b_+`k;d^qG__O#TsKfbSj
zVii-YS^A*#j!d}x-d9Jg9Annyo-cl!@W{q(ifzWj>$kIt7Pap7HoNxq;mZ*3o>$(_
zqDp06f7^ZQ%O(-;$pYoDQI<u#CwO-4Shf1x12a{=O@&W3^|}>aH17QTNj>+&N7uyq
z==2Vgj2+L`$%P)+)w4(6viYV#<u=oE2ZMgE-PXnEmYp1Xb<Iw8hpkadLo}EI^u#r%
zdof&znSS8=fl%X@`yNjAP+=@cDoonAqiSx)M6Wak1K~oR#g&hrL_f^RQO~um)-qdv
zEIUhdV)E%9tlrmzwL9-+Z)<(KZrLBc*z?u%R=u{pe)MxlZQd+5k&h|2`Ign)eNz;<
zzIcP_Ew#C>RxgrL#a_NybG<kI{5>uf#(j0Uv(ipGcZV%9WYPK+^QFIPW8Cq*5hsE-
zYu!67HM^UKg@vU>`%p8(nT(y~hpj#?vp*pA-}G}|y==Dzht$8cS)Z+M-7RACn6>@M
z(x1FrUzoqNzw+HSYpNE*<zQhRK0XEmGpkcyj#x1K+-cJo-z`<x#<|mnuffI2S#3LS
z!`r>qmKA3e8InH!=*sVZ+Gbn!YLc?zt!q~H={4sMU!8kY;e(-X=yr>~%b&IdMCYpS
zaC1DojhoTMds@u(r9qm(S|SV@Vq8;7_r5=pb7`g?L($GWAx_f=w|3O5R6Tz7)wIa6
zsJ<0z9h~lf7v4fv7aPAwI(#*K<)5mIiO(OszP?TNaN(7uS!)zl2EA@k-pIYVdwbT7
zqQAmvrfP?{YDB+1{r&2B^}hD^tBR9n9NQBwe@-rHTI)*TM9F2A`do{IO<3k$d=+_W
z>7k6~1&L`lIiB@So87kZT&TC{=9sA2DtaH7wVoO=ES|1c_^ef&Q9^3ZffFYL7&dP%
z{;|*h&ZX;npFTK}%y2}Q&$f0qqeb1Hs<O9X>y2OPNvetGuAb{O$GrKf+h*Nq4V!}W
z46SXCp7|oeFi-x%?c3Z3w#ix-%B0KoRlLsVx$wo7-+%h%_q#&0L>ai2G8qeB?&;-a
zHZU}F+q&$Q)y$GMX7=yQ0@)dp+X8vliU=gI{Hoh?DmRk9EW0+^bxm){g`-_-%9YL@
z^SWFb+vO@6HD&(k$G`O$Vt3{lEsNUxa!a9m{=Gom7cQoyxk<vmv>N3f>@sCI^_1&s
zmSlK)RcP$=s8HJre-8Bj3%PBwA(@jws8gcw@2$S0o@zq6(VMSwecoP^8JE7X?(P-q
zJH6j~eyy*2%YKnz`uo*y9yRW>NZJ^2WdS$4pV{i4*ZU3i@9c|gI<WlN%HInEbPTMG
zc@O;fA|f38s&u1Cd;IG4q5el?dDIv73u&2NRk&0CKw($zj#Z~hetz#aId<ffPK{se
zwq{TED|gRsnD%`4``<fEuU^xf-hJlmImUv_lnLVT74s%4nleZf3*9L^zn5XjrkxoE
zHJh(LUn^oKfBLD>RD*JlwQhFnPt|0lP3nHm{^Gqo_kkBD1lU&1DgW}#C3i-y^)HX=
zRlZrbrHwm8`PgDhFGqG}-{11&9J~z$ZrF&<vTxt_Y-XbK**}e^W>^|8J+$-J`MJGm
z1?w$qbUEEyyP~G8oK)m;fB#42Uvo`X3(WIB|6M~YblIz!CpAA6Zw|@II<hlpWx&<N
z=jXkDxbk4V&ux{5EygeSI=6VOxU_dI`|9n}T`Vr$Z~By#XZE!1_5O$VzlyQcZCRu6
z;cv!~JKz8O`qbR^=F!%u-mFMhvnk%LT33rqe$9V<)31EHSI{;+&bFwMv+c(vbtZQ0
zzu9@=)#?0KPkWvxzxt)|&_YG%)vWK?p*EL~U%sDw+iY6h{O3QlvSl7b6uv1q=_h=u
z&^S#f{?m-Z8s`$8dQP17+uCa7zqqv;O2_#>G*{gX^7mp*d%Q_ibF(S;>1|=F4NdL1
z4&0o6uHf0y;8$O}&lmqXWBJTWYn8#=Qy2H@avxZDxZU%WtWs2Z@x0F~`1t><@SQpT
zw0mH{(MLKz_h>!dIMI8K^>3lS&wn${keGjD+f~!}Ra0Kvy|{Q^`n#w-@AAGD%d(&5
zdTtdR@8-DS%i{`TJ8qY`pya&vxo^Hnh~B#QhK8n`2VMrB4_>))!m9|KbKBm%Ww6*d
z<JL5dKg-NG4&MIYwSja0{m(XCR+C@;IAU@6a&U-t7H{6xuwJJ-dle3>ebv{^*jG10
zHHkCmW#r$w{tz{1on`Ei*ZyW4E_h%1|DgB3eQE#KDR6v{vU)V{xnRprNhbdI{J)QW
zGOk<g=Akv!=;t1-&ofVYrY&2(a>`YO)ARnad(PV-7a)6l>pk^e$G@M;7>#BX+e@?s
z-gixiYhJQbUFnZ)TcV5Xn+Pq(Robi$Ww*_;)~#ATiId&_!^)Lr3r_7`U~SS`G_hsh
zzv8=*lRl>WeZKBXg4LNrs?wjQ=WD$3&%bjr`CwQzZ?vV${reN%#^3dSWmj0se|p2K
zuM@BC(mC^1Q{lo_pQ~#F^;TBhTN}1GTW?;6VE56DIagD*NL{;|_jXfsZLN4+{L+|*
zt<UGPKbXz`&-QP6=<|Z2q$!=9kzKp$UY<KwwCleNgT2A@<<+yZgd>+-T~zn5O1~gS
z_x@+i*EULzla+bq%CjUaOZ=3WlhV@NEH1ITgtKAiPMb2H=T{A7+T5=`U#_<N#ml>#
zE52pc&OE3z^WEY-2EM-zmsF?xOW5{;<&vYg^l5{VPh1Kd8s}E>9eZ#=;pwJTCe`KN
z3SV5<+TgV+CCYpK&zoGHxl;0z&#vmOy}x{s^~0Y|jZPaI)>}W?_wwQISB)u>0x$e_
zHnu0O(mMLN=2Vs0_JA2ngY+JkuaqoZtt<R@>vV(239Bc6tlZcAyv_6Xo{ao3`wuH$
z^6h%QYlqcB-=!gGMM-mBN{UVtk`Vj-EuPsyYi?xw<L)@!k3ZFBY=5`k_2fgTUkz>x
z)>ocZoO<Q<+mzE4RbgsVeVQd7w8@s-Ui55b^??};E?%XljAy=Cm3CqJ=W}OoSOm{~
z-licicf-mcEtk>>@+&@t+)ub*5a;~hcSRNN`qx(%U2lB&xY9~#MO3Qa`AMvf2iEPg
zeRFR+e?y2`@70CpyPk3|Ez<Qpz0~MAyB>pqv8B_3*&Wv9-!?AZKHbOdy6m}A*X_z*
zeXdx$>MGaY^mwKRPmGsK%naH5a;j6K*H$;z>+e~u{py0Y_J3OHWU}JYj;kwo#E6K#
zs5*1*48w;@CnwLb`K!ZF99-#Bn=8gu?9=OSxcW206fe~?UGEmmHumXV#kr*Oq~SNw
z(!Ue^l3z)F(N^n;*7C@Z-TpvyuIn}A@q)AquD1;gR=zYi@+W5AOij}$o2tx~otCDH
zcJ5uyetP}-R_>;Rix=dWlka^9cJIB%-rKzKtfZ+akF%~SgO88Q?SohMpE`7;>ova*
zv-kSQEe4C%Je-y(<bUjHv<~}y{*;#TR;lf>A-C_Wyx#cU{o$^8?}c0D^S@fSYTf(5
zve;*zw2s)uYq)27Uq8+^@3h$8tgX4Rw(Jf4TK2a$ZP5MtqUWfLkmpu5+h-9Lev9n7
zlV(mS*-^0c#iR?_Zj)C&S!JZ}{<?8}#Pr;AYfBEj-ZNo-a!mU~zB%#<FPdhZm6er0
zymsZyFG)L{0@h7fzbb%LnBU)h)|FGHUhA}qnYYeiZeYl=dX@6~TkfCk@O`u1luezi
zIMeHp*twS6gfrD`eJ?-NKf0*CA}r)@;iFxzE$jXk{`wNuIMavicw|!N0i|f$w)poe
zo_~;PO-+n)EBSkV+A|IDLmvFo8TQNRKD{<$mK1YBQc=??zN;Ij@4S1fYRcbFuNJJX
z|L^v}wtuGN-j+{G#VdbxK4+M5_POV)w+4naSy!w6%`Mv6CAzKoOysg<#~625n4D;A
zW@q$B-L>e`hTJPTH5Gd|D;(Op@XnJsfpBHnl8p}+mCjR}(Ux_G&2Ea<s$e@a!((gi
zac>E_*PDBj<>9p0i}s0|c79lxp2U{8_(06(=B0a0{wt<OiEZ5RszSxsGv@x`tyiNg
zF0X0-H*4C}4-BiOukGw#D|~F}Bu}06)$2dU%q`%pnxVrdHs>$HtC?G**g}1njSV(D
zUiDF|-}<6i_UwN)TUPK(u{drCU-x>~#i;u0rJRRcqOQEwIc?afE_}oAs^E4V<5jnl
z46R@3Se31*e4Zfu?Y#8$c5yCNHvKr32OrhtpYKec&-UQa&x0B+dqcDyR>u9k$MNSy
z{<?e}4hgnCIUPe?<EY|&#n=7#WG&m4pMSn=zx=gR3l=sfCeB<nPhyY7iK7b{8PtyH
z2c9@zc=)V2^M&i%+t;n(D(^p@bn#non)AB0V@Y>SQuj2aUVDA@=9ae-+ZMBJ=G|_$
z;^9s!{?30pp6&8^_4a_8es8emD%A!<^|s75W}VN$Go;)OZ`;yl`2OpvoN1qTaOi)~
zd}*}X#O%~kPSYEKGtN%FFqyOP^s(d1gMykHL$`M=Ot11eol@lHE7i;2UzAzF(vY&L
zJ8!RQfzGreMrYg1)=Jt=zPhCS*PhI%zzCZy@2?$9O3uBTm<;c)^q%0^mBDPKb8D05
zlF+i0(`FhkdS+i<EX>otB68~8-`^fv_)YP>mLnmWcc)PEfcl<2zQuJCdwRm+=5{tN
zo@{h;+uFnBSI;cSoE7LXFE#4(Hi^z{OrKvr&9O8zt=4$DFDdcUtObc>F|I8y%q8Te
z`Nch}jte<rYQ7+<bn%h2l`&?s9PfwBtT_C;^4^((;^iHOZx-JFyyE4QH&?T!dTHJ{
zx}fcKn>Q!ZodRKIW}!C8)*Z9k0{K5~&3$B5yjwQ@HqWo5(i=gZzs;DNt6EOniJ8a!
z{2X(^KOcMM=OG=xTe+R5lw7(n>-DPd?l*6VpSjld-?XRdliFbwvEb|VI@1n(woUq2
z@nzpyJssxbotN(}-rRg#=a~CdoyTX6uuPrhZnJdW`DM9DvuYVwUVhnAP=5K#*YhUN
z|Nc1}aBi*7jxhb=_T1a$3|Z<OS%)X7HZugPCw^sK@zN?IEp1j4U#tI;pc__Aj;>R$
zB;WE`ZD*Y=_3V#F`_+sax{0P{N|!4t?5?iankD=!{gaRX%9g^TNi)0rd~QzlOp;V<
zT&VrEAwz0&*k=vVkQcv?T#=Zr$ICq7T-n3dl3yy6`tD8$y>F7MQ~U4ACJot@k1SM<
zU%Cfd3vlG?w>jJ1u8_4iJNQ>I%G>J2qTGmSo^J2w&h=TwS>pC;=1s}8V^?l14BFUm
zd+OT!&q=dcE>6q7Xusm=;_lq*%2OXqb;)M+WxgH68+E+Q;H`yK7vJrT4&?znx1&n<
z1NJMjT-_EjWBQaorzF}0b1$b}+VJl@i~ICt&u3q}Rdo9EVm6M3d=?9<HRiXc9^IJy
z>-n}<`VqSm;`sOetl7VBYwX$5t6{+nuYXq5?X}~)zToz>-lr|8>!OOc$=xvWneFgC
zD`AFNm`%)Tx%gt+D_`bTN9kNpe7AXXFi%X#ZJ$_~T_>(AxwU#njAroatJ^(iPnT~v
zditP&ug_n(%RC0LrTU>U(<`)8WxufXD!#Mcw)*ef@^4=RUg-QV{%Ogk$MfNmw?5MZ
zzw|``Kh{Jm&kd3N9-$-m_EMs0&hs6!=5W8wv9+EtEpyWAz~8f@XNpX#yHFJ>@56nX
z`+mlQ8>{#XdF$^ncwA95Idgi|se%vM2Uf4|y{E#g_F5@tdxTnNOC4L3+m!W3KWDvI
z)ta@mEBW@0xEbqJJLavQ_de)i{+Z|8K7FgrGQWS@nDP3Ci%zGg@#4G6ImeHg9J*_N
z=0!}zG~aMNb_cWTzBco2SUq>viB7*d3pOBnL`@akHFdwKd&#OrZ}M5Ula{BZaxGoO
zr@uCgld1lnM&V(fN|Vzs&dV#tSv2V{o*JGe!4_sBobhl*g4L_!<9!cjSDm<Nu=s=3
zVUtClzVj}6Vz%vZg8rE=yH}dp3x|vRec0~JR@0=wvzvR-nSJx*AGFWBcUNj&{N?%O
zoHo-de9rE8vgz*XTh-N%TaE2L+h6YyIC+5o`@HLtpKSH5PA^MzF>dY?K3;T4Wh&z|
zJG0ZB4=wy`ml%DxAbePWWl71h2N5}M`|q}<8*nMzsu6tWP%Hm#=E_Jtz7-cPcCO6y
z5)FM{Jx}~>N^5!i<5HP@T+h}QckO%dx|sVxgxcMmZ!OB&ReWRImt|hMx^&WhS*sG>
zyS7@FYhNZ!{By?Sul}mPyM(8?u3R9LmV5u6tn0p`!IGO|GZ`+;)cI)Or8xJXi4V`}
zzo&Oy<xJ(htaAM-w}aB$qrBU_4Rv*HD{Z)P{9^>q@r!RIE+1LGZ?(I?72%1dZR=kz
zZ~t|j-{6bwhCs!u(i4yFl@rYn>R+90Jo~noZawE8g{V!>EA_Uex)@Jy42=IEP+=#!
z_e@$|)hzGBSvOOS<{r3i?X%>vWX|o*RSJiV7M0~Z*d4OED(&8foBL|j8NMa5AMY%U
znbH|y4O)$vD8aU}XO%;BRaM8*!=~pML+=J?PxlI09okc%8+x{5+x$;9=2-#JZIY?J
z+hmvTb33=KBqQRtxro?uqeipej>`|NUhFPxdj9yA*RMAndUMU~!DFefI?KNvkF@>0
zCUeH@^4`$HpE_ITx@5eo{9x1HweOwwRHLn{vRHoX>tB7|b!|}Zw#d)S_P6Agh3O{G
zQuCa9S#hqHi|m=RkG!s*u3DGc!#1^s|9t7|+c!<We7K^0w}8LqP^c`U<BfkuO|DMj
z4_^P3pGki116g5Zu9e%?Y_%<0AEq}u&)WI$ihSR6sViR?JlDo_I=NoG{VH1A^q;s`
zo^_=B6+<cZiV|B<Z<U+Z=H^Ds+Po_{?u|~)u1)a=40s+@X&&46m;L7Ubbbco;L8>J
zPCr<1ihsiVxsR4!Ue4g5Vx;nQtE|83&E4K>eec(Q5ctg}$CU8>-`^*jEO|EnWp|xc
zob$SJ{>){bR*PS~To)k|%rC>5=lhn$aff$H^J@1$YR8Ywl#yjsNISl0t(@=WE~8!2
zZ40eyzoypj^536$zNt5&S#FchWEZckn!9)HTKqIV>up@E^;rcD4)G^HS$<TRo#3xI
zWu<@V$rY26idP-YeKpRnT554Jq%FcoZm#j|HU1)@cez>@$rY@rd}FtOZAVpA`Gl9J
z+@3F)`=0k=lu-)mu1M`IKlU80GVpC~Iaji0alZP?B~`InPiD@MU{9zhXxNb~)V*3T
z-KKxjyvQ$ivP^Ex^f}V;vS3+BxcJSysXx>vdc0UOb9Q=s$zcOMZ?3Cd6JKbYIlVe?
z&g_G0SGGh>OMVzys!{sj;mZj&r%e{!bkxohzFxh1*(Avf&m&H?^DlnY5`Vl&{A?(H
z?)Q~pT0TATObJCfO_sJ^@oT58d^zz?(NZDRErl}D@%#05imrOfWL;JAB1LKIy6e9l
zU60RRWGyClyz1{h2HC8;0zU<3SXmuhAE>wbMa#~clF!mY*dAnA`mdb9eqim*2)hM~
zy*XmCTur?n-B9~DW0!oGtna2X?{A)nTy@oehuJ+n;(Urxpo_=Wpo8U$O_{z11V6jq
z*T(3!g}<s+owJEyQPsU8R~}w{nKI{HO!<_HRiVdgTKA`Jp7J~Bkig4#xwmiZuD53p
z*W)oTG&>g&m%dSMzDl8DkH?0MJqF#oJ<XO2&3k)uZ~J2Pb?gt`P2b=2_<F4St&oSG
z)7W(?jTXI_wRLX(WrG)&CN|&QySwwHOIqC3McPlVEN1l;J|6J>@Qb62^J+hFGAvV5
zKaqO%yY)wxkn<L0b6l)i*D6=}oDO+-eZ}4ILla(Io7djE+nnd}5^wh@Z*Sdp4@wU-
zH(2ykf1bQR1>>?fuLM@Lu)|%F?$;Ib)*d=?gk^!!dahrU6HYGcJUaQvm!eG!#$7IJ
zrfE<4`tOxqok(V=ju_{nB_&Q*JlSJ)g0-(TNnH#J*tsq*iSuh!+OlIyA1X4$)%^SI
z)8Fs%uruyK;MJ*d0y`?Kc2{UkRhk?8`gz&=o2TzFw==%Dd2{*U17`joP6S1E&DM>1
zZewkH`on`tuU1Qk)?d4-@-?ro7u4%5Tf@L})uO|a%`^7j%96bo@A7n;8_e48XY=Ro
z*^CLh=N<p@MI}AHg0Z2SIen&7xMJ_ruBc~>0jqab?0Z*ngttaHr{qUOr%E-S3`@xK
zy^_2ekJhEVw(jVS-M*ExsbQ9M*(uvqRc9Z5`J$qHIP3KKZszARXNB}`{&U7>%bEj)
zIbA<_R&L2kU~ltH47+Q*E`QZs{)DRwuWH*?_dZ{C*Sa^cR;K^>1@E(8cU}0k>+^=k
zFWS9%rRp7K9G&$u+_BanSht#K!(5g!n|oWVN{y%fPC7JK+32Oo?{BgU3(B8oK701*
zVp+((=Rue2)7AzYcB!>{cH?Wh^G>^pd0tCzY+TIlUM}}Ich8fRb?17t`#U8s?!Hzw
zkGFZsJBxRgJNk3NY|ZZm%?k-{Yk4P9)hPcqr699{;eKdp^~*<=k2v?vIbU$%g$%<<
zpT2kV<R(d)CQR~LezNqn?w2ylz~i;1&l9)azMA*sZGr?_UtHJ5<l}t1N-Qn6Nj~NJ
z*vz2+!SHXDtn9N#hP<zSmeuG-6@{HR-*hi+ZIG6rx5^?$_uD2MU%v0ys@1xvYF<Q}
z@4^+^POjdub%mesqKPFJjvDE1-FW_2X$w!!iiOj>R6Sp|?+n*8v|g)qU?Jn|Lr)^U
zSl8ZPyzIK>F&$;E8L2nbJ}!}3JAdXZmborRJJk!`{CF1iUYO<LpTO08<{V8K{4Y8?
z1KZAj4c1sO^H9Z^BVR+<1rHy%eq3z3&z=p1X){umEoXS~^6lZTep@QiN^7N<*ZN6_
z{M+ZX^2m)7s($n9_!=($t4sUJ(3#6p;W$G=Z-Ll~>cuIuSaxlWGu18HDI;ooIZtAC
z_Fv02O9Xcu6P7)<@0Z=ytlmZQ1ofY!&%Cx-<*+kz%pL=d16O_+{ERd;j$0YB;suK%
z=j~-i=B|<J*}vXt*x6-eJ~PL>v%;cTum7$an@hBt<g&(vi^XELOR44?1!UVgsxo{{
zxW{|1Vx~*9sqz2fhqvyeDES#}{I>SpwB()5p=;NruT!y^R-ts#l>I8h{U4>*6Il!L
z9C(97yIpN+@7|VR*(IEL{LzhvRbNu(v@Blq;M7&A;#Q`;R!T}8N3ZQ!UiNuwTE-m%
z9vRu(ZL9OmC2eQNEpj`x&Et6KBtvGKzdn3fq07`mN<vp!xL>;XmifMd-1U<VZ&_BZ
z<0*{(`=-QS-@PxM-68Kb-=&vlX7yDsz5d3HKTJ}>qU!aHdGqXwsuYftC9zaBoHRQ8
zi{tOc&fK=&GiC=Kzir~<^Y_7rRi;_nUR6xz<S0<Q@Y8LQVNLBht)oU$7s)*^^4aqt
zuAuqbUe+URw`?wV$UXs`m}7poMEGXTv>db3w%_j@zW@L4efRkFAzFX_od0iQUG_#{
zuHWZp=KE(JJb19uJ~<(wfnBbmp~UKJpRDzd*7zT-8DYL0kgnp9XUfh$r4#P&tF3vH
zEdTh#L}i9QH|PJA%&$Bh4O**RdGmDKF?RbOj{n}h|JMgPkLb&nFCP~2*LIlied!B2
z!YN`}>+{MzAA9qcY~MZ|bo6UyC+EH2_r43UFwXyRL_O-)_BGdimi|iodhteuPTSJW
z8-DL|U%A9d_IX-5=c=tQrvIv_u!`N0Jd4F~M=!^W%~~xhLNo*~&&)Ko+^XthBD5>h
z>F)Hdgp5o1+%>DJ&i=gf#w7T%@f7V<Ho|4jS6VXNHvcwdvI*}MyZ)ykE3{YOyzlvd
z)uGY5{^aa+e?5KH+1U5@h1a!ehkNz(_8D3&Idtpz^5uo49&_KicxQiXZdlb9rSV(t
z;lJi}i3ygRe`fuvWPH8*nC=Yo>Yas$|GyTvBA0tVbamLwne(1pQr$Wy?Z+d9>1}Kb
z67q6sSwXHXJFW^%&DvphYw?=ThF8`w+}@=5^1{(suY&@X^W5%BoRQ647(cmm?TYJ>
zhrcFA^G#d&>eT@gse6|;+?~kT7=AzOU_)E3`D@7;SFc~mzHG8M;Hpo!_{x%HTd(I@
zPyf%9xKrg(VcAQaciZn2s>kk>xxM{6gMm$5=gyarfBz}mGE^1xo^*0$<mcGk-!_+D
z=VSQx=B~fd#I8fnc@Jkip80uK*wy01xfiCMop4Fe;%8((Xe=o9x#N^p+Ybl0otJBi
zYE|uReE)k&Y4pjjOnVZUo!7UY^X-}Ju`=>=^7XrSw(MV;EBW=Q^v!oVH|L!47U{P9
z@l~SyY8%gD=0){iHmmXcGLZgs_knx%iQ4n3A98B$@~xWIlyQ8v(?W+p{o`Mly0cX0
z1aL>)G83BJUUI?w05iXh!TZPef33a$2$X{RZ9Z}Q{`U6w|C`m5<!?^g{N{US$JO-k
zyX*F5mp{Mp{KoO?vb*LxhVQ#0nb2K-fLVoG<w%R>yaPRrshw^dl{uW8Z1WV<6e8Og
zeH?aukBYc)Lt^&j`I~RQ+8picQq$Zanw?s@d)21s$glr&=Fgovb?Q!|Yf%^Xp8vh)
z$GP%-&7jNHkFEdzYdtf=zi0XX*!tyc583~{Z2xd|{9mno|Np*!tZx64)9%Lu<~!S&
zU(EmibN=J<y65E|&gRz%-_0w}JHF0;>g-v%dg6v%g6eLsmL8ZGReIp!MZqqcV$-?I
z2N&eB&v16$_^Nix)alPQ9dMW5!_9DG$L{8{Z)H{9Zu@I@{q)i(v2LrlwGYqS|KyVx
zk|J^Q&*3!>&at#=KjoU&pZf60z9^Q2GGB{xMbW`kc8f18nldT<x!O7P>#<%6x<)-~
zkCf|(ddbhc7~wQUICgD7#C_ICjVV)iH>)_#*&=YmWMYuho~$`03yc4kuHO3cR$TUu
zf5|2?k50P3f4uzv$M*~k>hJgV|7BJ#l;`_B;Zn@)7_op$d0v^kOMUN8>1$lL%IbuU
z{)A^s)!n4$)y8%F{J|J=BuPecU4J(JvWJz=3LpHuT6%hk^;NIwUpu${zNvdZd-k4V
zHRpaXR>UZ5Sr*_aq`V>3{JC#wW!#-#zA{Y`&ojz>YCm6(`>k^Ax>?N4EzAAqJ$i9q
zMwpRCfwkP0MMuusn{D5I_pt?!pxQ^5-n>PNZi#e0xP6vytwoXM#AVNJX?|il^fSVv
z<Io-HF2f~d%wbu*hx#O4qZTBD@@@H&#IyFuEZr4nW?hp?7gveld+O#fX^TLlaFVL&
zrz^|&3fPv4Zkc<z!bzdwrS^{H3zx{2FO1bR<?Jn5c{X9+<}GoIT?Z>?$?&&H+&-VU
zuRky|Z%v4?HAB+NHP6<(Wm8;wq<sJHSROX!nxCiRkMY-iV182Bx4!17_B+$>@9!Uf
zZvVgX&+GmFv>6`U|M&Jj=(Ll2y5|@lfYQ+=lcW4~ADUb1*_#wNASkIyqiLT?-IvAk
z4^PMcGdlLz@YY*1P|?aa|L>dhkB8;|2{;NQ)YjHM`da?}-qFj;{TUhj=i42<ySrSy
zZvVc0eF_|Rvd<~`20uT<H6!CosAcuy{4%{$PyLDn+B()may_<FIdkr@hVFq1zWr0G
zDtUUQep2GyeULMjAuNz<t~f{B9tH-R>Q6k){<4lMt-lHXUD;nb^UU@&{h29iO<Uv}
zxU*{>RdWb!{{7}^$_k^?3yMEWowcxu=JK!R2|77dcYo=xv#;kHM?cM~{9CLjz-G7T
zgobTYwzP&@+Wa_YOIFTcp;OmpT-sT}HEG4wL%+V+y2wWN2~^c_-EK{dzwth@`{bEN
zHrncrZyq<7*EjzEw_cu+VV-?u+nH4bGfu6()FYJ;rZ-oV)$8_0ld}`VxYi{wG9L?T
zHS#*%VBUJ9_7unIt`(~Vx%lU<+xzUcZqJ(6A1zj&6Q03zd6yP5=Z+vZ9-ceXs=n09
z@9pb+z;)hz%8Y$0@4oXbJsactH(+XQ%~S35wKkhwvTZM#EoD;YQQmSZcTKKT=kLGl
z{Dx99Ua|IMSCnnweatd3RO?9LlMue0Ap$+-QAZ7VFNdwu_`gro{hW$k=Jp50j0@Km
z>B=j~&aRx0AaiDxuh+>1Z)H|!h@3jrGEe`(@rlLf-k0p^*qvr$pvl?2<JpZnQ;M%2
z)D&IBF>&p-g9|3y_S-#y%gIQ@jOpD^rkzvwv+r|w@bp{d{jK}eC5i%<ee>)vDSy2A
z5?9!ThKm(FI_CB+HU&k$4{*<ERCT<vkoDK3iq~tme*h&Fc6Rn3xA*^z{_`#WzuCX1
z@&BIQxjui2+5GAJ)fb;UjK2R%?B9?6|39LRS6}=cS0_}|d4A*ns(B9UFEcZIF}qe+
zlW{+WX%>6KR1GnigtA9r22Wo-O!HCP(4BvbHE4H{yg2J8CH>Hw+Q*ZYZVa3Bnv=zm
z=bG`|qqlCU-Lf_A%u_d<GPR)hm~yzhRrsl=e~q6VUMutb&`Z%rHs;KJwUZ_9G2}I$
z`Yw2s)6Cp=Ud$D)yN8rHlv)<<{CD_3vHa}kl5WhK7d+hOu=;NE2EKh&^HRg6TW+6m
zFf(i$<7Shio1dTm@NKsm``;G@^7~>delR`QR{U`$)9E#PCK_`5{(d-+>#RlBC06U6
z1*g6+KeO~y-QD;8=#{ohXWxA|wO-9eUV59&<7d~bcC58Ckl<aA)7So<^+J>Ll&9BB
zoCT)W^17dXb~A6?`o{+!vokbYv^f0l-Mq@WWL|;p%!#Si;qjttO}Ta-n(X>;kG6$4
zhx7fZGr5@LXHMOpoxw71ZSy<sj-qB4j_+}mb}qBR*8MT>jhvf)%(i7?q|5$qzh3Vs
zelEw>uFuFIU-yNFefP7CDGWLH*X?0oj()ZAgvge=40~=z9zXZk-D6Gk?hnd2Yi1v4
z`LKs|<*M0bf2TiQ-JZ8Qeg0!T|2r0|vpb63O)mOjwpQW8-dkVw1>4f<G+En=RVGU9
zo4<I%v+`&E44*4c-!x0Rg6Zz2Ke5~2{<3UZ;VkrBRgi`8Ud?CUKcDpf8}0kLHvi%D
zx|h>GOt1ereMk9wxlKBU|NZ-S<n?^}`ge<-eSde?T2%A?{rm3oo-bE=UHb0>|9^q@
z_V#!G<!e41e6wG|QGf-43UxJ_?g?zU=5bjh{@11H4}RPI104n*|NGW;1_u9mHV6Cb
z|0Mr8IsXqQ!vj#^2D;$>(aFi`H*Vf!WT^T7`@XwG8|c=Rl6UDXi5(ZNY3!AmzIw0i
zWsSza2L2T<A}SwUyJmJvcXRZ6_IaIpQJ>{M%v!wlQh>(NxXMuLn1hlmt%)pbercxb
z8w}a>ybkYUk&d1%Fz=@5zT)S4X6C+AwDY#k@w}5^aiGzZ&*~K@e`a_p)MS{|7w=x`
zx;pL0&QxhmMFAE;t8BNRTTgl3ZrjOzYc5}u?(8Iimb~rur;kZ|@l{DRkXmp;v_|@7
z(2T;hSGhx&Kil(f7WK8NH#)dbVS)GduL>>+zfYfFz7&)fD{^9~r+LDx-5QBe8WnX7
zM`lGIdn=YBnNeaLD}Hj<ESFzpUxNLrZh37ed@jfEKzRNB#<#l4@4qtl9qD5%m%rm~
zp1FI)&iB<FQD#$>FLS)zdog!=?Ee3c9;g5KE-(Fg|JvT%ABXmDQg~SPe38-m=$SUn
zoAzy<qPMo8d8X1uvn7wKr(Rs>slDMl&vVnm_F>gA%a*OV_jON4a@p1FM*?@Z1^TM4
zm6-qUjd%c8-o5(oxqE(hmoqS|lvyZxQ^ZL1<Hoh$3a{8Z$;>RQdi^iC=F#N*9fj3%
zmT@o_+gDtkb!20A^wO871kdwdc$>?>(4<lH>_||wXy;ybuC;Rxt(w3!Z?5pu){-m%
z#T~`B#4Gs@+J3h>W@&TZ?ef;ZMGR`CDjT0$@;JTb+F$jZ%`iTraUaXS7ybV@_Wzu{
zztg>6?%|Ig68HbUEB|=@|DW?e?tS0a9=E>z{@=UzkIMf!D4$SVEG#W8{o|PVzDE6;
zhur6`{?(5E$z}KZ=J`jj<NsUz`{Ms!q`JBqtl<9dz4vFYZ2n#Jo4YmaHjhL3`+Keu
zH$B6bcP|lD-e`GY4kyR?lD0#SC+v*X=?msLzU<D$4foxr^)oWO4HI{i@U!^4P9)en
zR^LB#k%xj`RK)h~qjTH&H*8E4dl7i2Xubbs!zkUyRd3(#J8<#fyjtaFPga^YR)!lf
zFdXw$WxBttXp6OOPEH;(L)BirNk{HT*9AP?^fdF;oT-N&D}VXj?st3L(m8JzU9(N_
zJG$dS%wfq|5ogm(uEP>*-&tKV_sLxGElOHi*0}T2j6?6{eSBka>%Qx)_sk4S&P}}K
z9c?84HjMkbyp2)){aEMy`M(zIxZIepeyaOT@hrPQJ<Z}1iwzDP+m-p5y<blG+u5c^
z=f3g1vo|UFTFo!FVEet+4Vwb=EOwMuhp*C_eOzMB;?g-sD!wn~Kl|8^=luRzlmC^T
zo4M}q^v2Mqv!rUgURl1F^LbYHzOQi`?mHSV9zA`%GfQyw!?+_B#XEQG6L-km>Xhos
z`}MQg_4As{!gt)4=RPyrYkj-o?Z@mF-_Fc=_wR3eMM~_KZYAg2%ZhrADew7fpZ4(I
z!Rq|oT=MhlUi-eW*}<RszOngma!Xlocd^}7g>9?4KUeYny4DuCpuF1ljeOM6Ro6}|
zEy=9j6wqMMU%d3e&5)Bi)6dO~z4A+5Pr~M0tlv&?mX4h2A9Wmg;;*H%V{>wD@-`Vn
z?XA?<C;&=f^K7fzK&P8me0suJwO4N6kE8mJs_*}nt9xu-$IS3Sy#Ay32OEA+ab+OY
z`yqS(x9lIQ_y5xFD4HI{@#nDpALhFM-|OY~|60Aj%cAdN^!~5WKQ`O{-ke&e3u(JG
zDR3llfh^khdG7m|AHOxaKD^DZm%jh++xGLdXCEK$|M<QB|M$&yTb2gD+ozS9;=!<C
z<IcXXrNVpf-n!*fp3A$@H0G1d`Kwz}og6fk&1L(Ky^xn@X886kE~);!OY!cxW`_*o
zBCnreWxEiYV%8;GvdcE-j-lY4-d^4>*Sspj7}As@E9G`JpAO;6yzBp1W5!{}^XrNZ
zT%GwpG9lqZjr_)`@3!5_ez8_Ec(&i}<`q-ESIx`*f9U%hm8}<8kNv#i`F={6G0)wN
zo9lD(9z3bZGK#s+zhURbhnL!#ERHm@^D{EYS$zB6YxVH&_xndrrypZ}Qen_wZ}e)8
z!l#Y3@8$0Oc(R;<VXYs#f84C=t~N~(7o)y(ADm^*s<>@!|EU54rzFutYwPbDJ|A$o
zu-)vvLRYdl!;?9?y`!CX@A?*`^~CJ&0@2b78-*$rA03@x^zv1;<gEI|Gt9PjnLG^5
zV#!<7vXp=KGpRKiPhZQNn=5*TRcOb9b@R4-uz9g4W6I+1OCzo%tUld;`9p5Xp35&6
zZolSuebz@+&mO<yfBdpK4`|h2GI7uOuf|iGvhrpByPW)m*CUI+I|LdW*{0PYP_t@%
zSrN;cwrOqi?*}m|+2rKStb2BDZ?24-MDgv3_71bsByMN9SI#?JtG;yZo!G-Jw-{gl
z(OYvQwlcuUI#kSt;nW@f!buCZr!9K+J+7M9`ukZ6;cFsuSpwU|UL5(Uv!*8Kt@3HU
zfb1hn*VNX^&Yrz2Ir{z$hvk<`m&VlGFSfK>7Q7`jHi}j0_jfNbkJFwdGKcv0c<tI=
zl#y{ZOY^{IX#sD`BmsAiTe{)@mfn52vsk(2{K?%miW8zWe-~J|rFkE!n3wtfrd;;l
zM=^hvB>Xe7Yct@9xmUDWc;}yk8hsC<`Pt5C+q1R_1SY8^2VQf_o^tr}sn!!Z-ZFDH
zI~u;8Rm|<i(O7oL?fkSIG52pBnw@{^XxW?v_C`ftx31-_NqKsydbfUILBf*vi7y^s
zTzvh*G3opn^B>=cowf6tfF1Al^-aZnrrNf9jb$36*`JmzfBdf1fa_spl9KPrI{U2U
zCc*3G^C<HdX3YP-CDJ7>G3d`KE=~3L>R&sbehHqw?9PJ=p^^^gzuzfO?2$Zay^7af
zb=B*gUe@V($<rCv{h2PXNNckD9H*PY1~SVUc#T*bIqvfd+~|_6d$9We6Z0JzwbR8t
z$BtE})Nk%~yuZiJYnO+WtjJ8s_MIO#Zc9AP*QNPeX>U=qF2kxVwu%<pw)tFm{_Y$f
zTUp~gan>o9EVdn-yLfT(_J@HYt==;OSDo^0zm~Ud$pXf+0v}dA^4gtlcJ2LJn<M9H
zH$VKn(|>>K+}zC$=Bn>G9+|A(<)sMivNb7mNVDeN6?nec<!Z0MA(sUVCEb0+AABFN
z6pDoHK2`UiCqrU&O0-kOxm4r6$6Ak8NLqy5H4N5Q35eX5z5Y6*$l+O2XCF&!IIv2r
zCH(Cx@j1#9)lS`hTXN@|F?0Kaq-DA1v^X1!U+0&!yy_}AC#cprdF%E`X1BuL$^B?7
ze)x3G?vANRTno9j{r+_Uwie*+YvCuAe1WGzf0j%-#(B=N|IEL2C)FI&1LM473=HNg
z3p~5^uJl$!yz#{^e#^VB-Eb)g4YZhkPoqQd=rIYyKBYHz?jO9iZKB^V$A(7J$<oU;
zn>KwqBD!Mx)6n<xL#_Bj_n*DEaalz6Uq!A|ZO0ZxrtD4XEgRU<p1WM|78QGJTH4=#
zi7#4|^@i!5{jV-QS$+9UabSP@w7xg{+|CyC-_%%`%Y5{}&UO14-*Cs8Of+=ZXjFR8
zJWKxj?x%hGjcuhjR~X+uS7}$4Xxz{JV;=u{lj$sKQ|eQ>i_Xo>%((Q5@z$LEDqVu^
zhEvu~mpjUNYpqe!KBdy_&zGEfwC7d2oP7mvW!kTqWfDr6>Jm}K=cnt(KPtHY<$d!(
z26uP0P50#c0#e-A^p~<EPyG~J!0(v!>(|z=rZyW^TF$R}?Q64zZ4rN5_1&5OEAL(9
z(eAv>tb3u;E%00LzW0kmr=4STPV#=vGI3&U<+hqB&nrKyiRu1WmA>xb)OYWk9B#}}
zc=mDX^hbJ3$7amF(-z2mcU_Tccg_9w4csN?KdZ^?ZJoNrZDD^|WEhv!zn-UiCwKSH
zF4x=npriRhuFuhl{CQ7b%?qEJCuka;(z)vI;RDXrnLCAS=jo?i_v+rTF`g+Z^GRfz
zQ>5pLuygm7x|E)q?Ax}lbJ2#P*t4r+UIZ+-{dPh2X=k>;mW8ovp6@JCz5VQ;ZP><q
z?OKK=2G5LNzYKU5tSK=+U8K&eXWsN`@~zEkJC<!(T)Ae!g2Z#HLztpYX6x_RdhPkH
z>h&qNuN(Z`_cLjhaY3x^inDGWKX(bo9yr3ZcT!^W^hrsK=Y`KkN}T&(bJpoitX$uR
z#v|9#dYFP2wp|ZmJN1S6*bSFmjuNvrT0W5Zt-QHF<j$99JqtyfEw|Hr;v~)gTHf`W
zW2n-Zxw+li`rWMk<@xNhqop@!K9%_He#6@6)Az^!1k2{nE-I^L|9#_rH7CQ3+J8*$
z$JNeio;6~b_ui&T&bF?{zxI_c!-3`Zf5~inCl&ek*)g-Ir#l6-i}X5Low-XECEj4X
zE4*$>)I@FZji%P84n4hAweLAwEnC>zAK4B!Y!vQ)kDa;g0)OtmhmZDM)H)<loIB@;
zAd3l;HK)M5=VEPN8{-U~mHlouC}CD$cNh3kd`orR)5px_X^&kw8Z|m6Mr@w7p=@rk
z-khJ(&+qsOSW37A-V?Wbw4-YZOWgxC#UnQjW|)0>TPnBJibHv~pahFv)l?PENtgDl
zzwLP1?PTqI<<46iO41v<lycV1uF2wPJhAV6>HFrFN;|GUX{!3Z`R|ONqY5$W?4IAL
zjMA97vncQY=j*Le)pKGLra#wtU>Bvk*zMsg|G%XsCAl9jeE9RpJ0M(nN^RBNC$oOv
zd^T~m?XFwzU!`6<^?XL4KVzEm^y0YQtJ)XEb>B&xe)giw?85`zV6V65_EvNJNm#VD
z!nP@{?_kgFIYlQer<kpu9(4F~txD&|KF%hFg?CkAdcV16rUX<cg?%-Zbh^Lg=-l16
z1?K(i`OPnv{Q8{i^THz*&J(5m8%(?lbHpG0ZfCzyn<e(*|L5-i$BxVI<7cpVCx7^R
zZBDfFUH`gQynFt6Zg#kTbLV@r{KqPe0yEA(?^%EDr-B$)?p;_9(ow*Lc>#x&A#>V%
z<~N*;)9(HZ^-|ujd+xmFGdb3Uy9%F<P33KP`6}X+S5~6HqU_Jh7pt_rXEzU8WSxB~
zqeABBg9N?z@f;67iTLWRsN6e=Yo4#_hh~Ab(`w}v1z0|7ss`12hgBzqE?oxd=}kDo
zx#aHN>kX5mxfKuO9BJWxw`jJH@pF#Vf(O4deJ>VZ;l8~zUAu~J#siK;EVi@D<+kts
zz#P5Sf#dpV*1CYFHEc|Qw{5<)Fnng>(AMNVBye}$L@TcQ?fIb&+&|R5-G9CH|IF(r
zSp#219tsG4$f8)1cUt!3DZ%*Hr&A*hzRN3gFyGl<eShykou${-d~;k~c6R=fx_7Q?
zeP&&gnia}r`q_5%ir<l4Y{wq>O?tr8v-z0EYW>T?dPQ9U)1KbCbIUCu*rv(hz<2ej
z>B3vRLrV2p=Dztcr}=iqhDQv~=goZ2z;P&{kE>1cJY#IC&>V}%&AZQg_0P4w9o><8
zq$W9=JNvcmk%=!a?-cOMU7XVRv2EfC`x8NL?wh8XSHHH+$;)SC_*VX1;0M#}+iFe!
zeq7AHv8jLeUehgW)&~i+<>f4UVOc1*#X((dhhMs(w`huG!*9oq6J?V&1(*g~$U9Z|
zT~f_DW*n8B@jD{p;in~wRSwRw-KNng*mkfbBqvHub=td&XYSQYN_6hdd|bA>*MQ>z
zd+01j%L}tR!+)B~JQY$&<XJeipz@HjM4R#4IeULu#pd4Bd@hqH;S}vT=h~{Q;$yLP
zR_S+q6D+Rl`R|J1nfCqU$<BKwG2d$a_N`mlJ^hnKv%-P7*0=RU6N-}$OYW{b<gB@Y
zkBNU`tzFL6i*gdiE@v&B;tv$BG-Ygw&H2^1e*<Ua*Kg_d=UksZG&){3aY;>-#q)J%
z7hANYUuLaY${0J3v3BKA;m0zE<l<!1Z&X(BGX$hus<QAYl#{UDTy2>dQJ$7p<NTg^
z!6{RApG=Eb<NcSSteK4#XeAz(C>AO|H{<pm+n0hDmb7-*Jr9^x+Vk|rjlAsw$I~`)
z<OcnH^;!Bkf5N;C>o04(*}L$dz>RO;XPo@`{d9?g-m^`PMmN(g&uocH&6)YlPRm?x
z*WS{Wg)_6ucF7(I4AM?M74S{iD?Br8=lk8+85S~0CI-uj<~?_0xbb4<m1SYO--<mA
zlsKgS+@<b<#9^03J57?UC&PxCn-uaaMI6<o+HU%OvEkQUJ@FfJ{-F<ROIlcaOwM?|
zDtWs6RF?HotH6#mmR<s(s@Ip<d(F9YQ1?V|<~xI9F`DbccC)G`FSkmVV`(1Qa9v4r
zSCB(RU25F1nUg>0zWdP_I&H4eu?N5Fo_<*MKyTONiz{|5*;7(z?t6YtxAp9WNl$i}
zg#LP`<z8WDw#`iNc9&q`gaiD!oyzA9u35bGLv6Z>xVvDK>}CI_k&J=`EMZnJ+4lt-
zRLnDHj{N#YL}0TO`)0f4bBbHSEVpjl%DL31tDVVRAZ*j+&q|vn3nuX9X;-=wwpic(
ze&_SP=f0|mcDj4#+O%>1FKc^i?|<%9@|>CRZ-1ztQO|yR|H%o3*%$Y+ocUI>Z`FK_
z=cZ?t$uKZ{ubIwtBU4o)Xz{LBCA&N(oe2Gtz#X(f_tmd?%ie1q4?i%aWvW@KCWq4x
z#|J(Iy;esKEbKM4W60oNIM;ofHRr9ebyjly3QY17eb0Y!c@R`q^ZTAd>a2+Wa+d>*
zPscXyYuzCO%02~t2cJ)wxU-{5a$5Ft`)R3>HvECQ@$FaZ&fiF}4ZVKwYSF_j*YXm&
zvP~0P3^uJ_X?;}Mh;w&Gk;C_y{JIS0A+ZLQdKdpB&3vwu7}jUiU1ZUHBxlkMy;;mF
zw*IeNAI~b0eTyyZ>hlt-Se0$}A0BFsKXu8neH(Yld455bw1+pmZcW&ElJ)E+5zjlV
z@p){&7+e1S-c<Iz<ce{??4xVMUVXhX%WwH>wJlMaEsblH3Qzvq9oN;x*=MoNvvs+J
z`0AqhXPYM9|GK7Zb$;7AKI3-{X*-PTFMbVO#(%}W-LTE?_>{+c{=X<)lRvZO#n-LA
zE`fVQp8xr5mn~Pk=$F#3O>fUj6u%WZ+WFgBkA>xVo?O<w%{2#Bm)NaSY?&F~=Ganp
ze#`zaE=P%7LRoM9PA|=3YkYr9Sg%Ff-9lIWcGWyhk0VKubrG$I<jm2vKsY^k{pYH!
zbFXVEYkZ48Co!Y^-_xI7lCsP!tLGd$U2b;p%h5L~=Yucp_Sm^0P?I6NbCQYPDU;;$
zJ6ca~l@?jLtEc(f>VNw@EpF;P?>Ho|tLN4=rL{d9XHA*zsBV@Ox8<S{zo3}ruDg1R
zPPja<y&u1E*LmXvwoe>!##TDPHd`(Qdph~<_y5?DxzqCc$JNSv!hf#w+i8AQaqlZ*
ziPcJ3TazD~F1}-ZyF5_j*a966AJP6$>vXAKr!+aPXVxzlSQC2PLc6rha`BN{pTjyi
z83LyyBp+TOHc5j`Tux~=)77l40&c0SO8ZyU9oG81v(o9}m#b}JFOKBQoOmTW>iYFv
zF7;R0R)in+vsu<RJwhe4bLs3OtAEWod9<wb{M1Qhu^uXgK~oPuu37eT$Lb6HXE&KA
z^*BzsCtCCA=h4H<ZcR}N<6m3)_}$LWeaqj>KD6P~+Go64+2x|kKC<ud%1W$F{<h}1
z_ZIGug{%H4KUn3v#VU9E2S4FpzD+jli6Y7y9v^ne@;kgvd(q4__wITl>T`2}t_8xz
zse(c4)gGMrGHsJ^l&it)^c|(%3(WSL`I-jod9(M7Wx1fxu^GmTLt0$~eh6$k#IoA;
zLg(v^Z@xu;doFx>X=mV<?gx9~LR0JJ7vC+*Oj7MX9THn`V}jasnGKpV0)1Bsv@(Y1
znx6V>n_hKtx`A9q>{9LvF@;|juv!@g=biq$->cay&}jEt<>$-qUO1{|X#a}uz?@=p
zMq}a4Uejuq+AW%LXnt^R!n?m`dG6OMy)S&kcvt<1Z~9Nobncn6Oe+2vpEuk&Z_^W%
zPd$z8%g%?Zd;KtC3r{MGEOxUE{M-ENL1>f8JLm|wqX5fA28|}aGh$t8=jL8k)7q}O
z@xiYbx9Za!o0&O|Fj;6%Qu6!rj_ZBc-HSO^lb5_Uo-g$}=aJ**Cu_wWwKN~ST61ix
zt?u=`#$iwI?dMrn|3GGuUTyol8Em^ZCM~OdZMx{8`HHvs+*=&f&pllwJmq%5Z}X%}
zWv>MCoKJ_xXn*J3oU5uXeVKQMoS2XDyGAy{+-j4Bmf|}#9WoV<^gd-%{}r^q-fWq@
zwmh@2sQfEa&-4p5lb<)7JMIe_sCctuA@k&gmUADjlDuxxI#cS(i(r0^rX7qr?gt%A
zCceJ%cweRRp*Mdu^KP-ln#vk?mu|O9-<-WSGKb~<hP3@31Nf{U(*PjSgrRGJ@DbIF
zr~^^KEYl+_cz1K=F>DXze5{n|@cEF{_RmuU(hHAfFH8*o<P&jJFKgz+Usct*vAu`=
zWEi!BKTj((I1;*$!>Uj(>b11G>n^>s+1$O+w@=4?&%XaiZ8ooQ)&aM>?%Vq}|Js=P
zHGj>w`)UQz<~|*pGq26qFC%u-e8>4&HzR6yzkhE0w(G^DILVAgKSYw`Z4i5L#AoFx
zzPo4Udfy7nXSlv+%a*_Lg?!vya_2ttgw&ot`=)-`!b&X#XW^!6UyCYP3>&Xa5BnSQ
zk84r(Tc@-ut(SFeIXC}T4r4y$sJ`sk8PEG?w-~b)REmF9^J~jz3NPJwJ?ip;5=p(v
zy=Hs694a$bSN)#*T)%LxS$wNqhG^f!9ebyQKd&sm|8?E{tGl0x-+Vtk*Xr%_yG!<^
zs=a;x=IL@fnIy&lmbr+MO^U(wLT7l<#dCKnt*4k<H1IvRy8G3Unw@9(s{dY6$^2au
zk;1U}WZ>V=7Q6FpcVAp56&lt0;v$!fk|V>0?~^A#-|=6dH!U=6(O0`#(Z1;sEL$AZ
z^;}JFCT}%-rDLA(Jwvd4tIa9>s-wN!N!xr*TtB}>NA=mkr{*3nWcGCZ+VlUL<8}6p
zEbFZ8F7L3D?atdjHDdne&VTW*H}hACNnbG0kJa^fgc86?FOIBET(j--O8t8*sk>@!
zo;~(1&FrqhYqJ0?%U5m%TY~pUoZI#9t7L!2X~XW<WlPun?cA8!d3=LI*sDKx0$%XM
zG)KA==>H8g-lH!4PO9qD>RI!jUsN~!{9E|BGk3|Ot8?Dm&?{=%!&}Q>{hhsON9vq?
z|EBMCzkZ?e2J4=r%b$C$-=9*qT$1a`?9205E{06oXn54`&yu@$N`LM>w`gZ;eC1Qc
zPHRvyg(M1aVhw-3?fsFt2Kz6SMPFNCnqU1`hrc*##b5F6d3*l7E%vsY6kYVrfA;&0
zvsPv9GK&Z~<+u2ZOX=AUQ#StW@QyExTcLGgQRact?O88o>3&dsKlydvN#XC^Z~OIr
zS1!*=y7F7<?jGwmDfbOd|NFkJr_)?CYJu>PD>qV4PN`iOBs8a6Qs%sF>M7v`Q<$Es
zXzjAvyz^h@>qYDL-P`dXWp1?9X0yUQ8-?xn&S~m#oyg2kbKbdl+RLxL8K3h@IX8sI
zGv{0qKeFe1Wqt8c-7e#Mzt5Dft$cpvzvibuXRc42e?~R(N$sNb+um01T)W{}QS$Gw
zN2e|@%`Ld_C}n5Gy!~&ScU-NID{VjB@@xK6$K3rfhZJJIDc;FyS<w42)#)$4<D9m4
zT=4PjrVNHH4(f=3FE)o+euow=iK+0taoaEU*3v0ak0##HJEfx^nEii|hDX+Rg>zZ;
zyZ(u{Z>sE@H}zZ4ZGEwoQ_h;32mIC-<9$_~=2d&I;-pO0tlv8Qlds!f^m)M}2ro*(
zUBN)di^Y$o6<nL@ck%O4Ltp>HS*b@)eEe2b@apw+F4y(bxMTlbPV_nz_SDq>?<Tgd
z7tc1Y`+v1T>;;RXfQzz4<g*uNif(S5KBwyMN~wn|jsiz?E+&YaSM0EKzP$r(5v0r(
zU~x1NDtmQMJMO&R+rW}@%LBj6&9Ezd%Hi43=~_JXL1pFIOQl`{;mt}Q!&w}=KYJfK
zAYnZ<&OxVb^4mJ?^M_v^NuP3EwUAeWS)%&sq3T(`_x*{sa%U;DL@Rz&-mw@u$EiM_
z<=0gGu04$Z?S2(?<vi{6(?YH-ee>K_&F^v5^jpbUn~yq9Jidun!ocv|)%>qUd~06r
zvT6QhTl4GYW_69{JGKh57>0vP4lbA%^IA!Ax+L@Rxi&F28AiuuZTHaUFMG7%S#i&l
z#h!DTLMQ*;<Z@x<bHjewEwc|q=KVadHg?YZ3C#M7`gdkDJ~3N*=HQvX5z`K_3ccyv
zwo*F$&XsLDL?-*ao_yUcbk(Pl*?xMDG86p-PB&sybS6EURU>?pXS%7c&e&vBc;?NV
zU)MJOTp+n$apS5hp(@LJx1Res`<A|EW#ID^#b3AYnyv4$(&J`xuwHuUtd)EC+nf2n
zL#sCR7jr2du(R_2n;u^{Te@FCib3~6XWK@u#Z0>AmZ!dY`DW*4j@oaRkE~6Z^*dF`
zm&rmgbKU>6k2>2+F23Ej^W3gwv$m|rJQn5{ykcq7%goJ}{5_7%F4(l*qx8@8x8nK7
zY923h)U4Ug49as;EiGf!<65u%n%b?(#x`B*&nm~~d*UxgxcWH$J!fb7apsP?mrlFa
z&bj*g^3@GYSBh?=Z(fo4E$l?({f$N!cF(!-rtJuGp33ySuU1t~&pX1VR9LCOj#f}}
zCaFgJU7HhIKEXEo|MWy9=e$LKM6CtaFPNK<6!zkieC+>^UrtMj)J5FbsI%eIp;HUK
zuDp=6IeF!3htJU;Lj1PxHVr$jTNm`?|0~O*lGCj&GU(m^zxkHVt8KfD)_^+Q9on0A
z*nF5BRsZFU<D)MNiobnNzq&qW=bG+UvDdwKUwTk-+oD>@S$OK{f=f3x{&SverY&~9
z_3OE3n<92=-cx>VyuN65apmok=MVV4^}UgL?SsqVnYmHy8$B?}aF#+=G0~GdehN+w
zFRm1xeOcco^GQg(>|2%d4Q)5V;#CgX{I|LMbAQL_FSe&kC&ufEo1WKMywZeCXa4E=
z&Ck5Q_y^tF^?cf#C8zVB&J=Lmczaz<l&waSpMZ<<#i;mdhn*RDj>7#f6EoU=O*AxC
zT^Fx<>tFv4tLInU?7n|3F`nCGn07mL*S3WxOXfa{OAq~ZWz}5$;xo&+rrs)?zHYy0
z+eTw`D__a&ou?hSOOOjFl|uCnHK%VY`-;@>yMA90In8hKB5mR6&c%G$suwR@?^>k)
zyQ-k}2-B}Kr_0W|-3=^17+)fNSLOGn&8yCvw~FQ`*Y3M_;!e2v)ivMR68$f@F3&u=
z{z^2v?gh?ATp4S{jX6!^*&b9)K9}l0<9Xw3w>dwu!gJ?K-!R!eEp*qp^VZjvojfAG
z^Tt}cEq|70Ev~A*`up&w@^|0A9$i0qdbFjwzPNZz+kN-juD?|8`OmK^*y_LQ*v^Qh
z)sM7vvfkMKoVmqe>r?gY>7kc@=`g)xxqD{!|1u|`a%BIBII4$DGV)q5r77%`4Lk3-
zQ?}}1Z!4}Z(t2h-Bg?wx)!aYYd4<=MmBj1T*`5CMR4kw__12aB8`mU-Y><0;_1Bvd
z2I(>n&h~idY9+0l(xk)1;4m-!#AhA`1HWJgt=~0#VfS7%IX>lTJ#+THH>;Y@{__&;
z>MfNs1vm~1FbEvg{jo29-gldVg9mSveC!N&+n%nG9iQ`MhnS(Q<kZ<eety{zl7G2U
z=6%o=*{$DJTw3#GZCFxlm0yvxWo2T(Z-MJAVlR%ITDaA1;_Q==^%ss;m@qMTXg;i5
zX8hz1^LF8_2e==y?yH^GT+A0Z`$+6}iH6g>exKuFbc#O~ecC+TFk<>_q3LJmrY3AJ
zR!(M(xU$uzpL5wYsS6F4$_{V%7V(UAiAi?=FI(Qy>+_x;{A^PYr)MzRbmnd!Yv1B?
zQ-V%h5~<$3o1vlK?iYjnzVCVr4_><a8=PxnXh@pV%>CIi?m@F>U*W`A=9(%AzYEtk
zT=@3YQ6%B>Ia`JUhu!-N-#=t#IB@G0o7LTQ(Hs14KYOk_Fa7TE7?WpbK5d(r7rdlF
z=Zr=438q~WPAuIbze3?{d(pWAJ2U?qa6GI`i+cG}&L-b1x28*V>5}==(@JOWTw7-O
zwa$O4<09ib?_bycc3JSk%uK3KHKWmQjYw3shUUfh-x(R+@B3S9Q~ODf;lYm|5<xT1
z8Gfi~NlcMbH;nR>X1MUW>|%8M@oU$_7!-Pvt~Z{09FhKi*^Jjmj=25_SsOCdbYh|A
z{HVFJ-#;<4vtXYcynEiWF5aTadnTV-$SJMv>#F%wE##}GFf;Rwub*pApPad+TVm;!
zZl3hYwuN^+t^^$xer9|~!%f6JZ{vxdmOC$fb$!5VF+Fv+r)FVIMZ^66Z`2tY>i-}7
z-!1?5!*Pa&^z-u-yw57dG&g5np8uht+0j{a+1%8H3nQ0?aJ*r%{i2-nK8Km%Ud3nM
zKkMWFi835exBDs9WH6&@^0zhbH?KLjbdSn1+2SqN)}8%c7XRq!XK{vxg9Q!$4hkA&
znja2kwKurzE?D)Uf`K8UboY%rG3*REd3lR3zh-RMy)XUPtNToSSKqJJx7XaMd3fEm
zTfK^2UMXQ;C#PFZnY7{erUaP}Z`G!Xht&G*ov(j<!By+`NA@g~K`Ayw9M$z4ZM6=h
zZHung-QpG~VsYa(GsB-J>h{OZ|NFe0p`m%P?TL-O5t^L_M$^k5sCOs{`^MkDb>O+(
zch^7b<A3gFU?|U-Qv0pla{0EIkJVNO-8xzD*=GGGr*0-MPm!5FBTvb+{*6`SHrRds
z`A?>|W#SAIwg~;$*STtrwCEhc@VeL1b8I4h8EPy&V`{O{J70OipKoukTwmHA<fReW
zW}(HYl&<zSbyl^HHg9UEO=X~hbU!1*-#Ynf_TLN*7b_SNryg3H$3M4>`)yy~j~|W?
zo*Y^uHuKS(!~AFds<dQ8Y<c=CFnO)WvB!qrzQ;2$+^c?HyXX7E-3$$T@76Av+4+p?
zT<mU**INU>h4S!3&Hi@b!iOBYDgm|=Yi23>MOEDGll(5vr^s#jkl(<&{rj^3>D7(i
z->Wmz7B$M({$Tv~`M5m`!<)T#jvjod7*uU*yz;=?uP=Ve9XjE{x%)0}%_HIU%nWv)
zcj_y7C4H7UpMAr0cg?Ho^TR?#n|6K3iP}F$ZQ=Bwtb(#D#|4&(aLxWVvCsX5yeu<A
zUthmMH&g4GH}ZvBqGTBycHefBx%pd>V@~{}4=gr;OH(e@I!(F2G}mJK$-YM=%Qv3*
zwS8Uk6{*U34<8(OqO<S+x!V=L-^MdA#O=G`oM(M(&x8lxelXiRB#6I=F5f25%K5Kf
zzou~2V@q@S;#K9bdQsZujMg@H4&Pfh(?niYCb8g-`z*=I#}?ib`+f2<W<CF4lYHdL
z%d!t29wsv!XlCcXaC=K8OQOkVS1aBm(XXBJHgQif@tyd5=I^=h**WgC+?pR9<sQ7!
z`}}8{^8STqSvU>2;~5$IPCsw<_qnyDX^POyug6bZ;$d%RXK2_fe*WV->-^crtE=_Q
z_e!gJSlO!R&h8U#<@g)K_ENFu%-*fr_I1A9tv25(bE|aO-}t@Pi$D3D^If;;?wMwt
z3Aev#f67u0Fl0P;`mFloy5METh6zef-L$p$iV0onW1p4Dk!YS{EAR9{H0JxBUk$I5
zi~jzOE#r30=3RMa@5bG~na<C%G3}4vcjVzk!=l}Zi?+H6OylliX!N})@x_f}&64u$
zYWCZ=tr;3LW?fY~k>r0%>6wL>m&i8zq=a?$MzdSb#NIx;>$$dGb<FA)e~OG+Jy#m7
zUFKl6Y4-Z#?iHWDBr_a1z1-hWir-Lb#?Ogt7ov?d<)d$xUwk`@!EH_mV~>TO!1kzf
z7bbmPmU}?x^rNz~m*71NjztRtSmy39+7*<n`)~79r$CV#_EszmZ{Er$<)8O(?`J=L
z?r!X<Lp!UM&vTeC`|e4VzJsj}GBY}^>d4gOb46wM97}ut{crjGgZ_12lo<{jm#^(e
z{4bH2w@AHGYhi#_i>lK3H!Rz$ZDnNN-7Zh&IK;xB(87NId-iqiw|w#4n|pqih)xag
zvaEb{@Sz=F*>?jesh6==UOl+C_cudB-g<Lm_SegTPu>zWx^32ckm1rd;aQpKj~-Xs
z?Kx0>?(#f=gguuyrt8M;f4VhDBPV33hcVA(!M49a?<zX_?^Vh(d^l(Q{y}}+M`MNq
z2R|B?WGNl4JEG{qasJfyt<%oM7=EeE$-B$Su;=Hs=pR%6|NhU&V8f%lfpz}=%38j3
zo;m>q&nSili#~zhX;DTWEV>RI6PU4X>e(%m9$d0BJM<s67Ql5*=tj%XZU*m_3U5Ep
z6A-xLcJ1$hQ=Z|kZ|(ncF=}W1U#Gn}Qzjdl=V`5-7^!T>+Ic`&qo~-9>&b>kY#bAn
zHwT|wBcZGxyztW@*S7TIysK7bp7&SemXVwB(<ktWhmdieTOiN*_2CsOR$jP~nmz5z
zeDCEQYbIE}c6qYr*@ZZ%!%r*w0@IXUxF4^5^M2Nsnaj`5ODL&nIarVoH+^YGlJWJL
zpMUsv?d4@~kf`cdQ~2@P+}u02D>*i9<Yf3zyRqq&T#_6phfnU__22dRg6vq!F7Kri
zmr5QB>zdmayj?@{)0wA5hHLLcC@gI|x3=f%;}<2jI38W7oBsN1i*MwN^WO|iHf@Y-
zssC`#`p5eDGgyChKi}=K*|6)*w9ZRHb8frxqzha-yM6w%j@!q!mZzulmzVdb*yX7n
z+dC!l<-JMl^V8<+JRLaq{^r*i(w$o?*DNXFJM(+@?uy^y_Qy{@KhMYzsNJ|JQnv8Y
zti7v?oC~>2R1KwO*(KNK^E*egI;~=A%>Tt?|3N^NGs$}4r@aS!`=+k@bZzOBcSn{)
zcID)(`z*e@y5i##<(fYig&7Wfe5iNt|ACMh75~0y#@z@?dTcU#N516xqSo#;4cq1`
zH!(y<r#YER@P2%8F`J=bclmp#8$n@bZzRlAVxMbR@KAXh_m@0d|I6PWOqE{ewR?)H
zLBxB8-^%P$HchHry71H#<_v?~{V%xt6t+nlHr}65wp%IO?#ZpnorfGA1|5EM;^~Cb
zNxY5o4|SilU9yR3&7CDr@ARJcoT9Md=Zksb4jrO7&!v{#JoVn-^~A$_*6XOm*%{X!
ztCp{6Sdx0H=J`9mU9Yn_nvMRd7R_#VDwuw_Chp}r*SN>i3m2K&37(a!^{?Y!oBg*l
zD332hgthC;7vIGf8Q9s=8u#tr-o3cFwuhbh_b!=3Wg*qS**TcCli8c)XWPC1D4nmA
zv-RT3wTuik^`53IoyQz8n!@K?oaals#)o{UIP^4R`o+~UnX{5iOafQy$S>CD%?@E)
zt5rF_z%AmABv<7j_wBcft!J)o%M=cq>~Qv7ih)6TTxo^Pp@$PYjriP|MIyN(Psz?~
zN(eiqA>op^OHi-o%WrpvhJOhSdp1n^v8Z9i&L6KNC60x<d4#Www7u%CH)rz1Prn{-
ze%HH5BWCSeas9XlZ{zoLFZb^~QdRqz?_R~{%TKL!9=w>{*u6l!b+?)QpAWTrYJTxB
zOjxFDaJz1v{sVTwU9rlByniI-ndV6MA3KqAMCE+&66NAtc|JA?{vMmJFOQ%9@Nx3;
ziah0~e;+5y$j|ohnic9LuRK{Ndp&b%e)PX}JvV+hDQvfTG}qdHV|B_U_fI;`8NT}I
zuN~@Q*VWq^u01IEAllVIqV+?LZ1KUC*M}`H`<-1dlP!62?uv6gBH2@(-DtfgaAp<X
zj!rwP#k)j1!(#WHpZ)Hi-r3c+JjJs+*CwB1y;R6`ewFJdo#KnK$5y>I@4B6F)NPma
zcIW4N?6Xf5Ua0vu_1}k8^Gl9ik7t~|>EMR?j7v%X9{>N%$j9gVe`9Gr`+D1&hHbrT
z^73*Q+%;}X_PpelqJ5zykmbD8>B>3=|Bz+Vm*uYVlIuRy8!kNm=AFXjcJr?N5B0Ko
ze09+Z9v%0^ifv)X>PmL>$KHN!U;B&a@ndC?OMCj9cUw-ivRkKBbAoB#+ry8Sv_2}n
zd1t@!#;OZUb9b<Pew}f?XvsSNsLeV@3vRgoKj5>i-M!Yla9WV>lZ>nVo95j4xv*cw
zQ{l+dxwB@s&pV$q*-(8U_aTmbrJ|zq_;tIpq)yu^N4C#=Zy}zecPAxWtJh}xbAPc3
zn~JWcH(XvGxBc&W^Obq;SRU%U;{Nz4{rjG?t&_bh({C2edQ@=V<E>rI|Jpsj-`&2k
zy?fV&tF8i3FE<EiZ&I1rS9LC7+S7`>&n)%-?%N-)z7|+pP|<NFOr7D(B7dJJHM921
z^SYl1x_n-P@5G^JN@<qIR!;oO$L1`<|N8}h&M)6tO68e~r+m)^oc`RZyY$$pt9?v4
zM-4a>AKa{YqtH2Vir@1`Y@GKcm>=Kysu*M#e$G(8Xgc#*hK^fH=D)mk_e{X#t;}V1
zJgQT*k1ku{8O-4G>+%ua0_ME7$fYrcVLLmv-_BLZc57Sxn?YD^$K4I5KJ)C+$vrMP
zqgH17EsopQs#_{UqYlMXxY|{nHBXu-ny%+<`Hl0SV(zX3?f!O0>i=*5xaz_uc8^IC
z6McV1L`NTfb~pF)j_s{;WrMFiJhwOZ&Rw&9^KI`I+%<Zx)8)+ZaQDVpSGCG#Y?}S%
z%Hx^Aw>>iDw(eZ^cJ@|X|EO=$u8Ip&uF5anwqE|*Z;LzT$*<pa$G+KH!^m*s_T8fy
z1#h0MYkaWIetN50*o@X61ydBaWZJU39}g%BeZJ_3%}z&UTf_+O8a)w5^>a^kJn!0+
zFMM69)@@VnRuJSRZYcM){l@M4$GgRsxqVN#QC`~K9dk%q`LW#kZ@DweCazHNyYQ~;
zx!T_7REgvdYbql|THfucZgQ-Yn=y4E+dlq0`RYUEM%y&96nW0BGkDHZnfTf<-O}Ru
zyIY(R&E~1Hd9mH|_5^*n`6BkuX3NuS(wt(0ZvUNrEksAQcVoQU1^a&-@^+P6OV7Nk
zpP}-i<n2zuBuiBZv7T#Em%NU!|FxTEXSg-1{@dmMN9zAR_h)4Io4CJglbBFcriXN?
zeoCO^VbRv=IOCACDLp%9y=o0Q@p;iC7p=(E6XTZh7#=&|Z=q@wd2+ku>UX?~Xa3%J
zwMKE{r?B@f_qTG){9QTUaPmioY>m|>6C(SZrcVlb=`)joEp@-ya~ZGjw@U(J&wV|y
zE2Mz$cjPps&7m4xD;F%8wPSvmW>u)%`#r~!-u<c#{JP2OAb$<VYK@Ct*REvAERCNd
zU!gZk?{)39JE7%M@BCd;mKpVBPoKKYnn=mr(}eWD^D{8Gx4U21WVHKhE&toTK=m)T
zZ13z&*Rr{DyRzYY%`aYt1BcD+I@_)L85!n&)r%@Tt*IoT)oL%yG;wMKyJLjw&F4k(
zChOn6e!OxDE0?w3iA4>Uq+H{q_`R>cKW%f|!Zd4j^I_*bTQ+^WE3RL-A^qIV74}Cm
zOk7spKT}$2FM7f6ZKaKj({wM5r2=jj=bUHU*mZ$vZU#?O_7gMz&Gj`eiWb-&Q&dvk
zZs+GN!N(?%zDy=!-gCc88e5y@-gabI$DG1-;np-gFQF}y%R=osS0touVqkE5qTF{j
z#bMj-3v&){-`_o%!||ottJb_L-<jmIw}p6EXYP)%(Bw{u486AEjQL#7sQ99dH}`lR
zYJG9p{Y^?mKwjgDt!|0pGai5BU~f-bwBdJ={Ns|I3(GWf)~sKA^%axD+1U@D1^cc0
z)vRn&`%8r3!$Wufk6&5~x6Ajs`Tf%2P8I7e3!E-~X{nIL(m644vqKpgJYTN4wCvCH
zb-D9i+&U(ZoZ8CiFm;!E^*l>`@1G1!;YDwY4(H?+%Vxhmb}{zHy(21lfwnWFA74rT
z6}*4BXX>e`zQIn7MumGWNV(oT7sZ(8xNd=n!c0s5IhOW?#%xnAWvkvjwDCmolG@ko
z26780ur?Jvh;USVXmfq`Qjw@1b}h2%+-wyI0gaxUIX*LO+NPm5!~0vihWzS7OXVEm
z7p~qX_SClgV)m?;O6M%ycc*H*w-`>@D}F4qYmvsB@7y~yU$QdnzNlE1o4M`zZhb=w
zv%mjN@3sA6pZw`&`MY-uF2CL7d+gr>j^x*h7x<EL?9I4;R)3dQ?CkCNw@rs{>$SYk
z`8IM&+RctpH+^q?vI=~cU!*zl=KhnPWFAkP+05t0yuHAGvxsY)!}R*)TVHRVGUY_h
z1*d0H8y<T~sCP`hu{2T0g)<g0{{Wd5m~(njS#T_im)DYQeV-HSAE>+w6gbE><A6!P
zic>1x#%%Tm6K^?jhJO#!;tg|K6q5Q&aYutZoA%>7yFDbdEW<=x{nqK3+2*XtRmhr|
zk)xfbyyci_kMWbIeD)%{VwJDHUb|j#%SAEaiGk`VZR-tw%+x&FGiQ!#tk9~dMW0GF
zmrlN`8R>9qz4Fo{7u?vs$L~AxjypNbSnm5n;{|t(v^sW2mkZwfb??ozH&<ToYP?s_
z@%VA=?;kfp8zq)5=4@6-_Q+iPEXeuR{_DFYnPgl!v)n*(>*W>mR(P*3d{nw(Zu)^4
ziy4>M<^5E53V;6o-dx$7HMgyH&a+Sau*D*+{QR}pNtZuL)JpTp@VA}Y8Mk`YzlPA<
zr6G}z?^xacJZqOrc)w)uyLpy&c883!pKSSEB%UoT?H7A!XT-`A3s<)-e0|(z_rJ9@
z_4mIoJbk6xguS1+;>@>~6I}wg8H;~-Q!AvZ*t99HT!7Kk)HAcgB3$pyD`_h>gEos-
z3=DtDxHGeOPkmwv@|^Cpcu8B*)J5$(w@tlJ#v|A3rdMTcW#uBW-9TdI$A?cZKew<m
z>c9Rz=i&b?-yb}?X0~PO?)xRH>f9B#2EKoM*qNu@tyH0f{TOS++G8~<w@umPkS5A;
z_}|9gvrS|jZ+4l=aPe$<b$=_9cJQ(;nM+d7msP%dcYo_vy+s;vLG%4gB%>Ax_c~@i
zEozjI*r9Q{oYUO$@dbe(E6WKVYFM`E_$#KWt_;4KaHitvtTUF(^BrfdpUv64;nQco
z<?X%JZtK>CHm+Tpd!$qH$YPD6OVObkDSGkRt?B>cRv*&sn{llnxBN59;Wuho>+9xk
zy5ckWvw-Z@*7A9&61=@V?>-dByNB(wljBuf`~Hx{WQiM}5}WJf{q24*G@Nw*&cwgh
zbn}YaJ2pQ&_36$m?fHh+=k*kBxO1v>X%Tn6>guz0yt&1~r_E;wteAb*aZ2~6DD7+B
za(-)0eVv&b`=2NG|FS9jvya`CZYykY?|;Y4VE6Ue@(WqBKZS07v47c4;WKYT^n{l0
zUcMwmqTk)Z%Ix}wz_nWLe>Egm6|amD<^JxX%RaYp^Q-q>?9WOp4t4kUvL8GyzpsDo
zT3;2j*5jZ5WKYeFF;VZ&P5Qii&!w~r$EVI0Zd2TILGJ`Bd-9>B4ks0w^1VG9xqob!
zYGWg>w4u8yuAF0L`Tginj+tl5)34fx=Si34`Tf>O>`~nC_D)}N!L#``JfHj9Zre=R
z<dC)6tH6w5bN3IM(|48rJ^eiW#TFr+wV!|d``5_b&~r)A?&C{y#u<CQ-*yTu3*NP{
zwEjEmuiDKw_zp2RO6(45J`*;R!H4VSM%m_m{_h2Q^0hg?{(cve((0mUx@ENlV>suM
z38%j1MrjqKy_>n?s_TQ_z3-|!o;q-sJd!#0PUl&sU$WPp83#4{k~jjdt-Y%8=~98t
zQ44>?H+<>aZx^Z+dQRHKS{JCHk=tvp^58b(h3AYcl1JupI#2z4EB19#@!c6gy_W?K
z9VlMr<2uiA*Q|3wnVFZS_fG6Rlj7j8>+^Ea30rP|c)N4%Q<YE40{sqr(mC4wT>ry4
zeV>zazt{camXVpY=jF$Oo{ha-DUp1c#bU**;*#e+%iPUlx4xYkIj=OCkNpl;v&DfG
zj;DB+TjU+wEbX&rTjb(Iv;I@h1C5J=_v{L>yq*_$?ncUyZ7n-{mm4XqkL{d$`E~QH
z`{CLC25jNgdvCvdAiTboi=p8CKfb10OA51=?O;z&UX`|g|CATs`#&C$`XMVPvx8%S
zK++-og}0WZsx`g4we8lQ$2FJiHhoE)q;-6rX+X{QxA6(d$;`Q{zi}?+n8O}iH{bGe
zmin2SwIMql_?c8DW=<E6Y}`00VPfop{-E&Jmghq&xgEC}rL62^TWwRW*4uqo+IFqZ
z42{#}nO~l`-I086%`NfZip<`xr3Q(MpG5iRC`c{#ym8zi?RY}3%$Yt$FENcA&Gmnu
zpPyJ_b#8*GuW^K<*tII#AJ;6zw_oUYcMi=u``B4VR+`mcyXT?%%-bE8ymp$s=kF^F
znHE<4PlS2(iJ+exhxAU=@@bq~_1bOr&*ha1*YNyj>hn9VA@V+F&0+o~Y3t>R>(0Nu
zU?l{fI(9h>TBXAG{CW3A$&=FOtL}f=>w7MD=Wo5ayMGs$I81!bku2PM_r{*bi{3>B
zF4(aCbZFn1XGOhi$t(*ieI?r0J-L;2$dA<_y-ZG`d4u9|3on6)=YI}9;5hEyu4g~j
zF|=~t9<9%&a{aOE{%@%7D9KStS?nmEUA}F@()SDo7n$x~t&W^>{-BdxnwHN=lg)SQ
zDmL`b|NF)M!{Yz{*%=zd{qG;&c=qzylr|+@?@CdPQ!ORB3*VgE|Gf3ZotKGk&xtWC
zxSF~9b9r{cnU!WybM@ZkNt!yYzFR2d7Ac~4D%NXhEa%o;J-ft8(|dOQ@n0z#Vf!a`
z_XU%zi+QoGHU4gwdUtQ_ePrBrK<;zY`gZ?4AFUV`Y~T3ol&Wcy=KJNFct0r}fB28_
z+q~J6T$?{~>^gJ&drR<_DKq~!WUjt6bC(Op^queLCHL(7{H9uFXXvjt@Ae&Nm*3l8
z{av1cp(;E3L(Xh-{jQ@~|M$K~HJ-9#`pX0-hnshvH8+c&IIdi=ZSG|q=V>!JmQ3Ng
zb&n-*f<x5H0ui?xH%$KeU&?cQee>zB_%C+pKka-Lid%lJO`l~Hs-3@U=iXiegO%cQ
zj86zVR)6pGS*#Pen7gql^67#T2Ahg<r!JL{`7Ri-UxL@dRZv)N(hZja+xOp2uHM=f
z9M{*D%){q9`{WLXInUpvXlpLaU3ux>N5Q^+@6O+h$Cwu<O|E>V)mU)sL8aW1O_pzD
zCOi(h8?e;qCuk$&x#H?v-g(dO?kaZJGb=Q1r9kns(8|iq({^X`s;A2H^%YcPh^cJS
zm~hKx)y0gKhXoH_%_!d;%hI^B=d+D_;FO(9g$^%#>G1uB;Ewct&dcwvTe464#LVSM
zZId?_X}#d&zr&To*3SMw#?MXaiX6AU!?f$2XAZpiX?-rJ$K5TjwxXit>|*Ba6Ee$p
zapc&2*?RuSRPi6$8=Txr|GwW>)5(ATKg0R>S(g&pf3th!Mv5O>5}i}5tC*lBaQv~%
zoap;)Wi4Ua$DUR3Gt9C1Wp+@4dAqdVT9sqVzJ|P5TP|>;GwWFEYEAxiiYDc|jFvvI
z(VcN^*&eAgDr+{Z<cKleZgKHj{nVLr%0jD3BGb7hTfR{Hzh|3+IMY7e#2>$2&p+_k
zzfP**<#s94#@T^c8z*r+4wQGVHU6l3N#yCjOqsTITNVd}p0qwUGg9Q*t;x4rl`o%>
zog{GR=j4KiyEi_3dfK+;$3OOpzr2&}3jRM#4j0~48FOhyzMS<0DT$kQ&tJOBCz)8d
zrQ9|?9UNY^A%JV1?Y`u5hJL@_@mg)$SAHqWxnvdVuPbs~yY>~>{oea*uV!>!%9%yS
zsx9Yds^_X~e7V{(`NFPSJmFE!SDKaA@ds*f^J+yph+fNPmU5n}yj5DWtB|EkSwVXF
zxydeTKGeMUl@Z(~c<jmAeDQlm^3Kl|dN-fp?z|#(_-jAE;kM#a7Z<#LHr?p_gWEq-
zMOZ(muD>L-V8JO7hqVjdq*;mctlcI#yLztP)ClEsE$dKL+<<1L8rQMvJQqJ2xamMa
zM%n%OwSNrl>b|isC|uqmrptIKhbQ%Ps6m{h7;7TK!$^0&m2)Gz9`MXF2wb`3vfGA3
zll0d5v-duKIQg^%L)^)V(uE6mP7O8QaY;Gqcj^QIpMz7?8?Wi<KFp|>PhgS`OPZ6a
z8MVvy>c>#G+w0BNL~(vE^YOa#*~VE>HK5r2Th1)D^gUY4lf@rgn|p`fR=vM(H|MRr
zyj!BvrtkBK-I2RvQeb2M)^)uRTXvbQRBw+rE}cDLVis@XsfTl~&TH>oki9nh>Ham`
zd#Yn?cZK!Ox}KaT#lXJ(`(%BVU9riVzRo;f$GCp~zY}uxn|)fA^-5Wpr|KHYEcb9<
zw*Ev;lrTd}Bm4d}TnkrEYL<~|U32PT=GwW7TnZR-^-IsOD9v6b+^XnhdAQ)l@z2lC
zZ~T5~#<8c7qP%%ot^GG8KF5CA9P`q?bD!yXD?1CP`YY~FW*(cmserjZL~75PmIVz5
zPq^f4E^OOznU&$r&0XCF90wO&I+HK>*5-EI|0_4F4>xYFx$n2U_gqwFoP>iH=i1Y^
zHkKy4TnRe&U|oEq$cakP)bywWTs(m<R_*Ye_gpX4ZB4|?gOLkNV^sU={&Vc!rvG85
z)1@rMO>K*O44-Ukxs_qzH1AfIsh8DGD~UNP=e+kWI2U8pdxraoYh>D5hl#U~J8B51
zr`cp}y$u?@08N~0&s_1@dgG0mfy?8rEnD-H)wX(Lclo_KeufFWY#q^V->!1iJbsXE
zy?4)v1K#EF4=p{j_uD(gO_}V_7MAmA!?kPIA4VU)a`j0~enVt{ZiZ9ITARY`-*#O(
z&RMT7Ex&o;<khK{)_tp4_h8QL$4hz-Y}+h;grnxZ?}qS{y?aDXP138Iv0(egzTf=v
zObox~>isJFyy}G8ikJ<eQ}&8i9de&DW6!qUx78J2ei&Xe>k-~BaL;GSjMZ*aZ=Zb_
zS-Gy`PnKYi#uKyp3(3dsFPx(#dSU9Hy+JFSogJrb3SN5WvzNAV=XxR6*vxI6n-aEm
z?pwECtl@)gPVUS-cl~Q#`EH3$+i3UtlyI>BiRF8yyn3#BzNjbnYx^RNJLO+%?|&`%
z%DPiaWXFUFr=IffFi}4*d?D(_al1!Hp4{YmxHHdqy42r;hH>v^uHtBZD6n_y*O&V)
z@Gd!_+V^YOdC9)x63dedQg4MlWt|eOqcvsuqJ~2i8JEw*W&JsSzK)Bb;_X)dMZ5R)
zneJ{p(R@?a<J_$+^Y}l@Rx@rsxHs|m-QKOG%8TF6KIR)5_`2W3CHG#)uL&Bu6L0SG
zEMV0CurT+gS+LRhIr|m51YDloOW2-Kc;b#*+}4w|6*rD|tDk3Jkg=@V%lGKUm)(gP
z3r=lenyI+?-1|)$0Xu&3FmHeRs@jf)d5Z4xY5l<|k2h_JeHXM$=-`EyvlLpze{3yk
zVF@g(e&>U<HpD>0QGMBxRlluu=M-1W>zu-U-aWBg@%LfIPlv3Ue#<%eFW6u`@n}WQ
zoom+OuA-9KOPDqbty^*T*tc)C3<u8bm32w1c&!o}epFa)m+a=r=i`zCgd}7nm8bq~
zwoPwh3i%Yo+k4{OsrBpEFT8t~fuW#3(LzR%=XCLHAIVH%jiu)TC6ZpBtKAairnG9S
zTN>}|w#9}sHe9a^v#3md@Vn#ov#;5&rC*d-o%`cu{PxbteB~bFE#9REZ?XM3U?sg-
zdBvewKME2T$$!gV5~O!TcWcr0J=cD@u<Y%c^tw|c`mDjau){lQ)>gVc_2Zktapu-8
z!_B*^%Wq$G-&eS`D|Y@tAC_&)R1(6jy}N$NNJ3v>?b5AcOiq>OY`CL#?^FF?YaqQ;
z^p5lH)N_>*?ixk2Ke6;KVhEDnIz4QwtIwjXM>IA+Tk}$&a#m8v48u@nzpAsA%sDLK
zMh;rpUTUKA?2IR#-2VUh@`^vtqF>y)^*QSNxvf<<olokVEsEaP&(7~t+UWGG;@d~#
znhzJ-85nA7dUUkcU%h3!xaStTL6dBFXp?cvzW#S@nV-vcKTo+kyL|gZm8H>tbY=Rp
zpX*5T6;zb4FlclMUea-1o~tc*gtNu>>*+40<ku(WiSL}eQ9QEIY1Z+_O70VvNh~`S
zk!K*4JY(8R>r0+D|0=kp-|e|tD4_pWN^KUW?uE|m0IQ8jM(Lk#<)^2*J1xlm>{9;D
z{=jB+d1eF4rpz=M<I5KXl>M8cB_DtMxN-KIPY%jFXPS<Dwp?_>@5FYcJzpgsx7EDA
zSNmgK$@y0s4KziPJ8~<hDR2t>Qta!`&5POHd&jTL_T0mD4970!&1C&`?3kF9*>tnh
z#&6!gvs@l!m%Q_xZ{y$mZ}*;fZhNxo^Z#E3?K6yv&ebIMPVx#}q&jsLTip$Q<CRC9
z4oqS->R~;`#xr5&mWTQmm{MjO<daO(*>XWHSvkVw?iK@|*dS9aPY(~RmwT%|PtZT!
zVZHPFp})WOPL%u^mvXFE^K;FqxYU%CBfZjfe|P=<_}TWk0o%Ev&fWcfyPKD$8h8G#
zTg$<Ea*KEUdSivnsR;`h&*ynnCUTtI!7Ul+sd#i=Q&4f9#wNGomeR}fubZu3keAG}
z*~B@^nMH!xME}@k9qp7WTEXuMZ#rC$vc8$5muw%`chaW%&7L>@ylj0+^GtZMc4Qrv
zx)y#dcFv2MSiLfzMfKk#70z$fvtXYtmta0eB6%JE?@7DQs%P-Mi>%yw>B5|wGQ4S@
zHP^>6JXAixTXNrBBFb|s+aepk@Y{D(e{N8HX3zHh==1PewMizy7Pm~>j@?Ua((zmP
zIpw>L1@lDhr&@IyYbQRD);#gyM`vf^{|E1wW!&5sKU=cD=1KDICgVBxf3^N^GQSt_
z<0Ah)euf|S`0G2|`F$hYL|g-|-MH4^E5*!l-+6cHlFO^_s_yyrYIVim<a|bh#BBMR
zgli$vx1(3wJbU}JO5yp$H4*J82`@CWE57^eTdZR!9sKW~-5#6o-2!@N^g|tzj?dRQ
zd13of*6PBh!-t(^Zr$hS``wZJ+iLBDNcIp3wura00@Unz()OQrIiouL{W%r*RDOqL
zi_ME85g`*RPO0)dl1V)4VRhZ?TH)iV(-|3zK79D{QJFzaxk5-*@np~S4=+~m&tA=}
zyPoZSRju{cU8mb_WtJCwo*I7U@jIa-Ocg$UsZq<<Ze9Ierb;oZmu<(1%^lg#_fB$h
zx*=P!wsF?fDcff0K5u;QZu_R1y`gsQNvF7}dkP)bKh}J5kLMuE43Q5xfiDc!?5x__
zbFeZjG;GN;-_WQ#-U$Ix4_5B<H(HT2`CpRhO%INPf-KAI%fiC~Kl|FJ&JmR>n0m-+
zDT73Qf?oD{ub{G}Uk^OKyjgDAp?a^Gw@=qjJ6Q33>E3z0X|myY68u%wJB_E`tUbM5
zCi%JVuZ-U-MLyW@-{O1pSEI-%=B>B*w1wU?4@@yS#r)i{y={xAn!xdnHD98Za3(BW
z-ede_?f2F5Qv_lb&G)|TzG9`Vc3PpG-o$BBPGoJW@GCGl-zMb2sOMF``F-bOjx%cM
zsTbDWa-Sx4(&g=JEz9GHI$l@%7(cy#Y`A4wPnI12j7->CfLE`+iR!G+d-T@7mWkoR
z+W(*V{=J?3pN-+igL}DO_<MFaIy?S)wo6A>_hE2;y$r*Ljs3MU`L%C!*Q{H|$RPLj
z&4b<V_i!_;Fnz6;`K;#akCz7|$~|+MH?ZaTF7(m-^7u&W;f$$@CpO>p4y-sF`Ya@5
z<|PXoqw9;VTOSJ4FY?rXY*MTkJcrY~oxRseN_Vl?+2eIh7JQN~j#!=$pL><>ZI5C2
zx<z-hl8S2&*Yuov5dG3hoQeJXyu|wJ9?uu4xQWbc4O_jtWtXYI^zdsNw&Wx&h+b<p
zZMsj)^7rhnng)+pS_PMPC&U<doKt-J<Pm%6lgbZ&4GPXL_v|t_p&C<KVYazwmg<Bi
zYsoB8x8oYz*IlDmNG6}P6O(c>{%~i4=CuP8Vw?=J7kGzG>FBbYVj88uav((UW7ry}
zkFOskilr>e*ITc%cxOt=f_dtKU)KswObxj8)YI&*`uPiST9d={*0S07hs0E!|0w=x
zk&BQx&m}3lw@+2??5GlE2v~ph`I!WrC%;@z?)=!NvBM!E|G?(^@eaG^Fa%C}a`nxE
zElk@V_jJmq>UA5X%S`P3oFen$Yccc0okqDU&k1}zn>O_tPnV&L+$^4_k(J?TeHOR3
zu7CIL+;QK77Pro{==|JjCAFz9G+L{;I9by1?6iUuo;kC#H}2luf0)_WTwdnug4|W*
z_G=tFPEIwSdo5yqz2DF3kdG&Semtb$usritX=bLVdH%j9p8|4XcQ(G(mt21I`~Ls7
zGH++hF_>lCV!GLGSJ_*&f3I)nGc&Bazo)Zo`P(IT>Lear6qP<d&#=RL2cJ{{+s(4K
z>vR_98n06B6nM?TUiSI%iw^=@ZT`3wm_KtVoOo0=;KfbT7lHO}bB_4^J9i+qGuZxv
z;H?j>Q~lU=rO%zzOXg!pQqj9F>jl}90V0bzDlc>v8+YzHb(C*;!<J9?s`mDk9j~x|
zw4+}qRFBhrQl?7h&9yy?IXb6)VY;Jcz`SFMUzEwp&-*G23U2>%Dk@N%s6OS~CMU00
zZYPe{OHVb4Tsrk&?}6g4JxjkR+T5>f)?dCNk42)`lR<Lwgn1=FWs0>Pku4lgv{;tS
z2yW4s=y=;UT+L#Fs9cF&*O#WttEFx14bqI3FdukziYxDq$-EWc>pvN*Y}>XrNODt%
zwQJM0X605rTMeOib7j2enCC~_`u3;hPU*7=PD&d%XI~4uzHwWwmS07&TCL9anT75F
z>WjsgdaEv1PBUrtc364oOy`y<mt5z!3x0pXr*p3RNtcxCCA$|%Yr;L-EVjn!Dk|9U
zw^yg}oeV1dnb+|=s71adw>Z{H+dG4mx8{ww9S=jr%d7m!C)IX-vXS3-_S?S~AC+zP
zWbfI+FK6fU|HKNBuxnw0Z3hpS#-y+vyTG;g`_~O^>q7a;rtQkuHjBgA_~Wle{><YW
z&TiFpndmv^^h}4fX@|<q%*;1zOuTnLXRE@}lAGUZ^&KQ6*5}H&>-~9PRFyB8{Gs;p
zI&JOOH#W`uy!U|fmivbvA884Z`&wnOf%9>Qy>r_2S(&pGH!@GSbgT8W%F0cTC(Ye%
z+c_(g-PB4~M_)4Z`LV0n5wB(moQdIe7dWoSJa>lnr=x{e-akyZ?&ILT*KWyNpRBD`
zDG$U`uT460R7p<mYvGpsQ>jP1PkSV7{^0kB<L|wNwR3npLY7Yxt!)a?e6Q^#elWH2
zE3^E(@FTM}&zg9ZvElu1Jsn4F)|t~iKG|%~m^QCPplHX#BEL3IUVWyWg$E_w_Xf6a
z5oP~#pj_DU`5n(Cp<z@03oV-RHL75RN^3&r-{{H}@n1~drR%>vAyHhrdH0or$M5}O
zWjJv6_V$af-!d~SvT$4@loBbZ6K!@e((_U5lrU+Venw4e>woQ+K5x74r5V8QyheYv
zz?|^>eJxv4lYg8^{!{5U(YR*M#&*ND1#$<@oBuRwUA#Eyu!?*3Ta}%iMvu!4**+{X
zVsT!{l9Fh>H1d_$m7t1_#~hwgbARxCE=kW=n=aCvS66iI;=36YFZ{A4XG^cH_<Po$
zks+@7YpO}~GOu<4nNHpRTX$}4Rev4L&=6hz{?Wa;(F_es-)ZgH@a&XF*nY*JTCv~H
z7q8xOS~f1=@V8}#8=~i$G2Jf@O}BXdLa+3Vw&<dL6BCV(#k`wWR?TU;`=;trmUNx<
z4eSnww--K-Idt~+^r?3?ZrHW2ZF>Aq0fvOsTITlM)gSVor&_Siv)RSZ(6NYR<=I-1
z<tuOAU}oUGv4vZ}$>En!>FoODcjKIPC$Ed#efiiX(^K*Ls+i|4+gX3ZRePal$g!vU
zoI7_qX}7AF-J87kuI-x}yKZO7I7fY7`<{ITyQ#@*wX_xYa-1U8=Pr(O7nm`_GI`C6
zM*X+PEpC{1e~5d}ur_S-hZXuaZdBa)ZMpJ>wc^s-iQjDH=ZQO<-XkMg%<ZmeyS(Ir
z*Y2{ZhfZtncUU4cPkrI0B&XF~m&G=Ai`CDYTrd36lg07DqdeP(yegf=rAsW!@0)sW
zPI}yFn6l@?mgmP_x*n)0{r%T{&$%8$aqfuq*FSz*t(N)3{eG1&zx-Y11ff4Fg)KHc
z`{(ei`w=te$DKyw3cr08&rP4nG{%;+CwAnOONQr5@SnT&%}lEI!rafU?Zu5zHyXBZ
z-|{(Jxoh*575?i=A3FLQ+b+m^u&1Lj?Lyw<iH^>Z;x(%_J-Wp4St?v@P0ht;9&tvW
zzRtf8pl;hK8tq)2Tq-L4dUiy-skG-@KlZO}Gn*}+pLpZ@m|by+uIkh@$)srhUDvV{
z1&WfSA2p}`7wg}XZywF-Ai-?=CF{eUPdnlz9&L>~o8sLf$yu9t>(1o3z;jp5UH<82
zDK50|Zb`UKN%5gniS)i?n-^y4p5?69^X{=Q<Qz5R<Kw@OHEW;l9)?qDv+g`Se_?Z<
zoB^L|chE%M+s|w59adjHI4jgJW^WO%x7o}1#ewcGp8sT7xA3CQJNYIFwy!*hZtDzY
zy}szyhy<>k8FKYEUduM#G<j6Fx9vh&VS0i`(Bxc6gUGwT&E)o8j&<6dT=pkCEbL;|
zthwH5GqkU7t}p0Vx|C(!UEA0_cORehcwO}A+Xox|ue&~Gao%rMXT212oRxQ4dfV5f
zle-*^)vpURiANq^>LAf_?)3@F^;h~gt%#ePSTJ4Fo?(mLsdbzW<)qoG=CSUPDL%bm
z!s!ajmP;op6qm;B*%zm~bNM2%YXzU5@iH9vxBT9*yVh!H-#$)Gx3I7&lB}3G)%Hc}
zntxw-&haGd`XKbF$dA!tW!3}Mh*z^VX4Y1+UeCXGpxyqL7{deS^|c&p-F_c=eumHN
z!{SeijTLy9b#4~k=FbYavtsTe9=)1Q#tS;%B{nhoZ$D?U<oKQYF+Ui+<T%vkG%@u!
zx5#B(lRmj*j`z{CD}=s#J`E8}c(Kj*%$r-sw8ExM57@r(T%7=)$NJ)Yo##A<`W*k>
z<C3#8cqKAb#UrF_;jvd*C)XEmzF8nwe9*E*L~jevg$FyijtdJ+44tw<Waigpt94qX
zrxso93*POyWzCUU&Z3Em)2GzfWtd7w#G5aDQL^g7`|lUFWY4eK+`5kU>5kIh=@oxI
zY^;<GGKijf>^ajy-I?2VZEIS4cJ+;Yn|K)_;vyXb%pdn899qfoy0=Yx;jRoVzoe=O
zjeck5C@t^T<H^^&kTbJ&)q8f1w}%$YP084LJ0jM!aMtbH;S*KVrWvfcDiE<UMS^8r
zkJ~b%=^J<wPJ}!YT0Ws8WkSs*qfhIV<mMLI1*CO7&1TSR^ZSyPm>|ckcrk111bao>
z$dx@;PD-CW8CrHHG9a)1*aNd^7TTwlY`pZp_vxf~p3qGak}U}j?&vI9`lU;TsW|b+
z+_{D4Z|B<ml$#db^YG(C{=JRX`!kYw^6&3%zB^aFLs&R{MaZLj#haq1u5036o%+CM
zN45q_`-X0V_^OC^WsD4`wPWw>`6$Hj;Mmsb1y7&8uK2p_=igIXXRk2Lnp$&TYsN86
z54{VU3TK^Ns`rgAw>G_&!z^I+9bPNuN#zdW$CMuD<)kM(_*Qvv=IYyXHCv~aNqd*^
zasElryH#~BVb0=vTT&P9I?WL+%c0MosC6ja;`uwai$PA2lBJ996@1>9v~p@nxUrqT
zcKCshb%rZ@=lm)5vAn4?Q%hg+hF7M!yus2tX*;|`j1tW@P4bz_ru{k2d^rnaSnkWn
z3=y_Rs;c?o=lL&W&A4zvC-{T&{i)lsO{60>6(9X|O>Lfy(aFa`Qx!Kn=A3@%DO*I`
z{Ug6_Sy{;%U;CZ-;MrXj-x!YN?|(k1>|l(1aYS=MsS~Kx2ALZxKJfIOlkzie-su;X
z1g@WM6UX>!>#o{fC+keb&|{~kPJQw&>R@W;*P8Pu4^C1kmHxggrBko6`MH|<g_wY8
zJD$H?G-cwiu1$BMMD9gAPt`D8R(Ve@*yGA;-tCX|U8i2MGW&6&(nkF9<af93r#(2U
zTF5+e+193OuCt%N)rt5R!NnM+Wv{xVB$0En)$>PxR%QNX)cmP=Jf&yu&(9XmIdVEq
zpE_l9@81)31_u83_l})A%<l2IV8-9t@NI_QV;I$5>*>pCzdwKJvmhIz6t8jE*6GtW
z>`I!HwRYW_N6)6tW@vc5{{E5PY`3KN)xR^gSw*~)()V3_vnhY?zRllW^?myJJoCRW
zM`PdA9r63CSR23Ud|kw{^6P@^xeYf{7VxC4;a_8Z{WHsw{KJJyS`y3>XT~27x?Xim
z<oM;|{tOKK^0tRw-BQ~Y=4-ioLD>AtX#V6c#a7j!&4C}+7OlOOaq#nu$zPj3DxGPY
z>SCjD%8o6uV`}K-^@}x{KKwnUcKdQ)kZXNS-0prOwcgJ&oj9h?30;|^kixucOP;3Y
z@{(l>bB{6~Y+3!`;G6o&<e&4{?`7>eucJPHch8Q>V6Td8XDg>UdNdwr3u*gm^~&tY
zirX(A+?>a`|DslD@#^QlSKR!Xx%;l;>dTI2wcHsTUN16<PJ1q_cy#IcMgDsvUMU{A
zbHJiqen#WQn;A2s6byvD<J4z39`?SxC~RX;-lbC^VY6N=iPrd0_e#z9{&&S48a>Bd
zXUsmOt?-#eZL5N|zR0KJUYZ(9=aht`ODde2nRK?gRPSW-&5XjQ&JqV$%V(?qES3E1
z^4U3FBj#>Vp4fq|=WJFn@&S=AqcVco#Ti5%pYSbs=~>+q({`#$$bIsEv2V|R{(7;2
z^|40xv&}j)iYt=^*lxs_x7|{=``W#u{yn3_K4yj;wa?A^`g-nIoi#F$zOLBPupv2k
zah&t<X^Wy_?;p7KOf0VcuQEe}w*K7%Mc1WX+~wO98=bfOD&zJ~LCbt~GBU(VF6nPF
z3+L4CRXm@)^s~;j<EC9K&pC3=Jb(5~>XoVSwd+#8*Y)0(iI?vF$awIfXQ$t73F(E;
ztzViZGgX$Fsaa(0%Y3f!>an~1FGYq2d&~E;%dxF6&z)^-=57>R_RR8R%&m{_c0N3w
zx}tJfZ`4}09S<h_RMXX$ej&5ru}JtCNx7|6%-Pb*o<vPrmT^To_+&)wypIolRIC5B
zJa7H1;o+L@vysOvT{Mq-*V!A-Ys%dGP-AJ!6IVM11BLTH4z);R{9m>1Xy+Um;X5+x
zvzm`s2;{U1D=vJ~wl-i{PNv-D^Oog1<1HSqYl)qe`p)X-rS>iF*I$3V;_53s=RKMH
z#cO;tw_nt5X$Vgh`zxI7@<_=6d3p8><`d0+XXb3We&O?(bIFVEmhGM-b?Pmb_S!X1
zZta=w-FGKj!RXzS*m>&Q=NC<S5H{&;rJc?F^~bucb=%(b_$7V+_v7Pd*|KAnJAzd6
za~{qVb+TB$^Vox}Hv5cYmQKlw`x84^iC<RYi^Poim1omG&yl+&-nae#l9Zmqd++|-
zIoJJV;lIx|-RkD{`I;89e3hH)o<0r#`11e1$SrH`{JLBIk6-SNG3OJdsRuUCJGk_l
zP}ueBj11xH<Bpfk7X0^YtMrXKw~lN&%W)^`%E7lgM1Kig^18nCx#-MeQ`scEA~*Qo
zGgq#w{=L_$=<(xr&6R$u<jl`m%NZVf@KbJD&e7hya#`=#$$N5hbGfCXk1_Awv#o8~
z*9Fya9SR>5miRKLTTCgPU3_-Jt_jP}RLVcDYjL}slH6zfAfsO1clO-KihmA^_In2Q
zu~gm5W}ECd@9hl-Rz-F(O_o_<OE1L6y3WeFl53=^m}+Qm(01qgVb$j8?UxL~QjUi?
zL~t+HS}yl1Qh9~PxzCoNZC^!Bv84UVx4YwgV7u3$S=Y{;e!bN6`Np-TSpt`;9`viT
z+J=cPShZv}^ZA+fJX_p9?)s>8A>?lPoTvb<A7|7=&KYGaRd`b|sfcZRNXWDNXNg>r
zv%Y(1Dy}K>^*Y~jb4qAHnXH!gceUqdVwbPlcRcf9?PRXg3Tph4FOJ+fAkn;~IjpzU
zk7>#>&5(I#qa-VLpYv9nnsU`k?Bm&>s&#Al9^X0nu0<s5U);rn^K3^aPL^Xx-*_OA
z!9-u>eGJRePk}iO7h>k=q-DB<@64E`+RVM`PoUvO`+TE$rpInb9MqbrIEQ=tj@Wl)
zACI};Ye;zZJ?+8cYoKn91>-L5V+Hjur-m2S{<dOBsIER8I%UOGXO=p}a-HW<32Qh$
zYNS8WpDwp$z0GG+o1KDX%eM0yWM!^@KKFFwJL_W-HV+pjpB7o0pLbyU$0y<I;t&2>
zb(15rbXrVWs@{<WN2JzFS?subCzGnO8gFoT--oBu%L)oMbf0~z&A?#)L3>BO-^3aG
zoJS33YaG74;?Ewt_B(sIxDFq6PCuElIIYQfsif4;Wp0^#vNM<^ig)=OyV<Z%>FJNp
z?`~XQ`OAZ$_y*_6yOI(n+xa-uVphx-ICPia%KPA(UuryugOg8d-&LqTxUud3-dh*;
z6yDxb(^omW@LaA(d}i@sxqJK~LDJ6iRAlyjdHcC;qTs#H3QG(46yr`^O~`we^jmj*
zUGcxyMt^G0^RpY<KQFOT>)Ys%=YnX4@7OVceeMkHIbXJ@ES&7L%jd0E<pU>$t@pm#
zM9L)C1RG7a^?JFfulU?S@7<@4FFl+*_r2zGd)@bMx7Zx*Ie7BcOu2h?pC9iw_4yrj
zrm6DN4F0EQa_!?<AAhbWD6XtreU;_;p^#dJ2fw+lzmxQ@JSDNs%$$KCeBJ#cU28Mr
z)?ep3zwYa+X@_n4>Zeu5RMmZuKL4+ZZ~AgSwqp`|6b_tf%Z%2wuz6j3>&7jo%U<`J
zC#6r2pZ;#vWHWn)Cui3!RD2UYF=$b4_S*Q}Wx|C;EnBDZe&7CaU;53<wl7qr`!hp-
z%ke$uS?GI1eJR71nc<AWVFnk{oTo6&;a5|g{d?moCN)EOehpEtWN$g6<bN4;9g{BQ
z%FS$PNW5dFzdd`Mg4XKdPn)0h?A~zF<m`bZUuSvC&pUH{R+7UbJBdvUJUw5M<Chn+
z9+s)rH#|R~(QnRdPwDojtrFLFhWI&iJzUa#+<yM&qB&nqcCLMOGCRieh0>;q``e>3
zWdj3B|Ic^5Uo<IBF<>=o#I{ML$3&xYm9xWVEzVB993D39;)abo_Pw7!VG7@0zVqBa
zcO)dAxM_B5hUvUs#dBV5@oTR&<eS^OXfl7ze4E`DW>=(G`+Sad<%e6(q#ju~-AzlG
z_Pp=+dCNSH_@3;O62-IcocZ3nvZ$@{%MM2)d7W*IMmv_BOy+#HeyV@!In!&$=bHB%
zJo<?{@`>QdDMgP1E&2I3Cwm4OF11P*DEz5_d}PWQ#wU*I&*V0*ep$C!?(1ah4XOF}
zOpGF?+h3n|^T_s1TjlgQuectpeD3DuW<G!SSMk=%o7(ifG8nZh?Uzi+*t(`XCU4PI
zgH117(pN<D=j;tj@tx+>H1*YK>E#bAJnuc@G~ed?LPm0PP}c2jJqNeOTmHOMX}|x^
zKAX(=#ewbms!P_o+FxgWwNmrv^5)>_XNsj`gVHKJ^>!5*$d_+POIQ=|@P*AAp`&{Z
zb$T8vZRa(#J>j5!?(CXt_m>}?a9%H|pZCuU9p`;d=bS#KcGAN)?~<DTuMj=m&)Y>T
z=l4uKsI#p`JNZeE<1e#w#+UW}UHfb+zCAA0uDh~f>bt2Q-_N+{<Sn6n^zyWni$T9!
zRr?HY-#p>h+bH*gQDTSg#mKWsRY7H2<dp8#8+PkHw(E7>dEU?Zyz9*kF)nIT^V?=V
zv3|Dk+PWTn6X}?5XG^xTe74{e7Ik2=D$M&NvAJ?)MVhG_FMsEpkll0sZ0O!8vwDK%
z%lYEdg7f#>Jo0aT`Tkcs+>cDYbW})-HC=~GG3}M+%#zsKp9GhG{rf2*og>n#BJ{}3
zutK?~G0gk=lOEc>+8BGh=)d*H<*O|3CuZ)M?S5vK!vEZj>n|?KnHJ)xcrWEZ$Xr8Z
zBmd`4AzVin2tyk0po3Cm9OOzK$y}Irx4UeD`qM3YU8Jv{f9hlX<4jeN`0dP%4LWJf
z&m}8GpX+^__F3uKr1Kuv?6z!q$Z~G+uH?S5zmmy%ee<2C{13QTDf8Rr+`+<YJx`Wi
z_X)5J3yX_Y(|?*7v&Br~itXk=@!r#}yXCssw*G(G#8dJ}CM5KEY2eKD@Ap<*{!?;t
zv4!bYk&jFfp2tqiEIT&onv|ZbqV6QERztRV-Zv`?r~By{%3235{#Uua_Tl|iGGSiF
zcfIJ`(Qz~>&P;Xw?_b?E=PySTyu?hoZcla`S^sDG>8Y+YOM1_AiRL`<)GR)?ZAZ%A
zFPn<rx%BGs2R!sW@BNl%PeX-XdS?B!>MdL4GVXd-U0iJ)QQE$1!@d2*g@x~pgLM)e
zFYVU5bSv3VncXd^aUD~jV9Ekv<)W&XJ54^uQw=A5*^s3CVP|TM-rR$g=XNPgUpKd-
z(0%!%y4^CT7e8kEdZX=)r1{ZjrOH9Ci~MKJ`|>B|;|uXL<xff1`=e%@Hd!gvq+I*u
z=DV$x`KJmOOqhO}-SZA7yu?o8Q{cDy=;U^HtM$KKl`H$}3?=5xcyDB8_*O}HanQF0
z{c{x|S8mNs^<V$UtT--x@k`nN4Z*1!^1d#bW2<c&)v~$n-mZleXT-cRYZYfUE_nFH
z^O4>*@wq!<CN%o(nQ*W*H}hBe&--licZ<CEbG&5#|3?y%lOLbiWS+bJbZYm}8A8WJ
zCw#u*KG&s!ap|VbcFE=ULy9(Z^%;lGE4~zL7IscKKbGaOjKtRYu{t|{%kWNAUc7L*
zUEj3llb(P5UpcGznRM22SCpgE4B02J&$Uoa{dsfabG_c*e|D57Ma&l1ysRYj#V(&I
zd%}M7_&>JP=`#Olq93^Q-Wy{Bn+<7mlw)~JN-}TFzFe8Fc$h2g^b+C1v-_8qe{^|N
ze1AzX%hsz&j%-$elEu4x6!jF8Q_Yv1?AW0&=h|8Ic{i`$OP4Cn={Psbc-8vz*-K>Q
zKcD(|(~^05Mq=3GTT^9b_X})%wQZ@`<da96dN(^3)~vC9sGv0O^q+h_!Q+Y;rJ)+r
z+iQZCADHkfeYIygu)sU7@AnaldoMSu``S2LPnnzPEYq$3>y2gJCvl?}YprLld37e)
z$F;ZcQ?a=Hk*s}3Bqv+WblqXnGxdD&hJfEUxMp!#EtmWB;!?r6Z~I$xOA{5C=dS1}
ziji~l>3$q}<Zb?fa~?cpoY@hKpHolvY<xF&$D5e>H5Gq^w_bBiwOHJ`{k**Ofkg&O
zeA~Bvo@wSPwo!Ijr{4b=J$Gua@J{vQyd#;j)3Mk{RDQ42spU^^?O((l_|kmd`De2k
za!xG1xX|=xk~5oCpsb02fbqhJpo!0GHqNZ@`Dzms<s6zfWe0oc9r5!!&!1wu)^xu)
zhlM-0;$h%#^R8Z7<0_ACyY;>9_Idvv@LXRsrJQliu0u)PhUT{Zy@9vB$Zd?(`hSl5
zVq2)uA3cq5b34O-JH!RL`7jEerWwLh!XET|J9F;zj@@4~r#W#+2`xYPdEM2didn1D
z{&`=08uR7#V)n1sl=sxtObKIfcx=zWllgz<R}0^RoUBi|gK~HGgiL)p>2u6gp+d!l
zS2Z3!m?Or%xuxgu%}3S$*7!dRa(;aN&4O+7bxppV7kl-8vnz+;>tKbBoy~5l@a)wz
zgZYHRe8c#EpQay_I4r*J1MBw~5!WA&?f)gOS+{P{#f%5r>t1jFaFAV|XV3d<YomXh
zz5mD8M2dIKx^<8I|2^>+IR0^q|9to%ZYwx0g`S;|U;8@x$L#$-r9rnTN>}{jj{m{*
z@8A3Xa`FFvUEjEAQ<Hw($L=4!_kZy2`Fze=z)9h>QO&#J`G;@alKS^F{vRvo8lCrl
z@4a`-?%n_I^?tkWKUF+=@|Ko~aGJ=Tx@5KV3eWi`ML~J>ul`?d|MfrT<n8&l>UL!?
zEV}ajvI(n0(Cf^FrV1=u|E~#%a-Np*HggsOgN6Fa-zFAz{{%jB#x9gBEGTF=U;pp(
zk5}RQyYjZbo_GK5-J_t3%N~JmSou8j{Da5x|1I`?+q(YY?)!iB{=J<4kCWj;Z+;E)
z{r~^If84shmRJ7&kK-R_p08nx|9L9>!`1b5qSe*an}2yBDi?_fjdsfaUiAOtnE(6E
z^A9u6*Q7o8S$?mQ-E-1|&GY}Rsm`memd@YzQ*GbRv-wO6|Gvim7X@**ZQp)3yYBDx
zdf7mchjYvCS$?<VR6O8t@9^hC64Jl=BY0TmJN{2UUcdFfZpQw|E1%;^GWJC3^u?>5
zv#iWte&XZpmRt3^J|v4b6g%Ggtm(A*NRorlcgYW5*VoH}Zt3{AHox}uk^ArN@8`e&
zoqf+Mh7B7xHvazpe)sj9oE)A%dvCuz^u6}`tVEZ<7LBeu@74FdExGN-#-`O~=<SyC
zKU2zl>G@OgS!)-H{}MA%pD*3HOpE91?~}zf(~p;~csc*nQq}!zSDt|?*B=+AJ)E+$
z_O}`MrW(+VBLZy?PrSbz#b4pxR_WEZ|Ct3S*<E~Da%X?`^>uUKK7p6|9i5JBzot|^
zpIiRn!$aqqPm|}jOc4t5`t#ZTzwy6U>;G{DdFABfDD)-2dGm&6&-;gm+s|e1+qtvy
zQ1HIZo0o^U7{b;9G^=>}Ra`s$2XvWdS$X;0{kOO0hyQ2oRGbi=y6sH-@6DI&zsn>a
zdp+}iw1G#gZEeq*zc-2%bgz^cUO(_>@ifpOaL3wtzG!}a>0d8(A9PpGyWQ`1)#va3
zYi9TV=lR{o=RJQY|No=>-RgIDcej7PSIxiw&*}X<3_q5}|5Dxa{a*Es^7r$q&zkT1
z$jjo`;9vJ?^76Ve0hWyIx0(NUoLsoIEzZID^`e3(zlKQtMd^QkUQRBm-M^!6`chr*
zGoJQx3pNC#*Q)6+dsH0LknbbF;;17b(rlL+wN~t2&F8a?&!u|V!otGteBS^6_x^rR
zrizG+JoxF8(Y`NB^&hU?ey@o0son3J=O6W&-#hUB-@EsZKsOD2{PHrm=B0Q1A<!*D
z6E51ii)`Gn>&qP{EBEJfCV#y1`M9V5^UU?kr~alCT6JG*etTX*`|IC>@9pm$yZZ5U
z?I*k49doWK$mjg`EZh`-{&(mKC1nm~>#IicX77Z>C62|k8$C9QEpJi)g`4FQ{r{iz
z6_*~#|Nkw2@%7gaFVFvH^6%aIe|(3o^@=z>kpK5k{zH5HkM<u^<9~`?$uj+O?)@LW
ze~<M4B^^sg9JV+|d|Br1_m?(p-`?)G{Bd2l*Vzv_V$(l+_<p{<F6LJ2t@@H<Q@{J|
z|LgvB0sr$ihfAi)y%w}DjCkZ#Zgza0{MNs34c&9Cl&vC;Xs-Rk+djuWd8+5i)3u8E
z|2Kd88~ASj&gdwa*WO28X71VW_w;+4yOniK&$k|QIW}*SdHKJsJeyP3e3O4zH)r=h
z`}7O9(znUzYwy^-+nei-WwXtTBQhH*RI`p531mLnS2JZv|MQpD$L}wW-@su%(V}Og
z_`Y-@p8v}h*Z+%*K6PTcc&?4*zL`az{%9MXJD$_G`TOmkTKbiL-o%<(@km84=RN;f
z+OGJ`t$?X}IgNg`JuGqZ;b_{iB4CmQN^#xncZM-l@y(t$7W3=$lGFW{`4ozamv#MK
z^=0?9syB8ad*)6RS$llxuH|#2R=unL{4~<`t<V{9SEB>M^@Y#t*>u0Ykgr^}Z2oGW
zkHU|hn6GhbG+g_y{Fmvh<v+h96>#RUHz_=0F}l!cnKVyKc=`O(k-Te!*U!&C-6+v6
z8FMS~*^!SuuO^@6SnoaGGN#L)`*zc2m&yINbCy44n8Eki^c-)?44ZoW*D}Z3Y`=X;
z?(e_<dg*?juQnZy8MD+ml4MZMUn^#)yukTrje*$&jq(}aAMH3^bl|Yj!^^vQ&RjFL
zuzRf1V_mo=xNdeUd-{dy9V^1qH@&#D;Nu>#Su<WGM4ftW$@{dhHiVzwSVB(e<Dofs
zo$ndTddxM_J$K`RNTP$l5s3+negf$aS{zGX&8e+Pn|GJ#os!Z1>`R+tA8c~0-d9wc
z{{Kv-(TCom-5Ezd%Ub)%=R7$-%PRQNzy8HFa{K>2-<i&IbVf}S=Mg3L1Km+d`KvRh
z8P9pYZEwY#uVpj-|MM3(V&jZ46ezGfAeHTLW>rLoq>&rbi|1c^g=-6=OwS(o?5tb#
zVawm2P0pcZ_a|~^Yn)$wzD9D>w)rU)$98-+Iht@=ZhgLeT)ItNuHNIRv&^P{u8VNc
z;M6Z<RAip3;J5ISMdB<IJ$B(;XQHyF|GnLE&TplC?`OkZQ?wV9aNC~G+n2-rNXzS;
z;N#$@ZAUZTTb@_THD$fu5m_+t`Jd;xpXOHN+U5Ih5}$r8OMLs)&eLodZEVMo6Rh`4
z)YE$OHm&jf8hku4qqX^Y?Jd<W8q)q(3gTZXZ9nQN!FAmCk;S*?;`8g~nF}TtRrUTn
zeb)2+&ktQ3QU2Sl<5I3N75-FUo~sadV8h85TRf}hOt{<K61FQPfKSZz@`a;ClQ%ZD
zzF*P(pzsiXhR}RIb@A-QTX*l?wp8cV^TdtoK7S~lyRETe&)IYFkqkRBraiimYaCY0
z(?7Yqe(!=@yXuma4-VaYw(K;|SNA3fd7}%QkIuYcWUiUGHzst^*0vxnh6zUuFPUuX
z7tUCE=a6c!<PL+2rcM<fngtjh{Ipvlz>qV$FF?CWq(A!|>%!K{C6d>Fr<fIGFsr4D
z-Mcf<{&SD&7d@u*yDBo<bNlM=xxRh=`P9nCGxx>({pT96U!@~!fdtZ7THt|Sfn+D^
zV{A)B`1rmvGJLn+(fynMJtITkw=zLj+a(h}uJ~SMd*VRFsp-3B?<jiA#*k3`TkF<a
zGX@6^&UyLr`z|=wZCZ2jW46=u46zp<Z`T@FJ^HD?*X8<-Q(VH2>z<{`|93k(J7DVb
zYPs9HCp4b_W~0{KcFlFoSDU!@n~Ap`Z8Gx|UFgVCC}VV?^XT)|Pp1wZ@-wLj^R}~G
z>e=+W{5=!HzvuS<h5vp2ZO_7BQ&%MK?ryt6hne9^->(n0@(dgH>}&J?w>_Sf;ZObk
zU#mIR-mzW7Imeb^CsXr;8T#jHR)<|@Jk`A}P<UtTwvDZM<_{Kys@Ut+MP%2m3XHn9
zM>DTcX+MW?{hD7P=?<003yfSp_~q%z%eQwKOMH8|?ri^Gl~s#t^kw$z`xMX5sV>vG
z&*!*@W6}<^-gnYMO?9=)QI4r);lfgLX8u(_c6#?To;k)JYScGhl0EC_|2I|fzHQ%Q
zj_vpVTQWR|{{Kz)&ky^07KR(Q@4E{ve{sB)!C_XKz#$%6Z+`hj_oCPsYMw04fAnhW
z>YstjfAESmFPbl2E4S-HFVCAhw|QP1E_-v@`se4pi|fl+k6OrlZ;|;viRZV@u^%}$
zVa7Z2oPP<e+8gXXnU`PxrHQtiZNKXT7yd7mOBcLJUTTz*`Rtf%sMoJdm4DCv_IwOt
z3gAqfT*sw&K$7`!_d8*&YL~O;we(kClZv`&c3pClk7({Z(YNcTTCK}xU?|X2Sdv++
zsj@@hoz$7{5%&9e&T;<S8gOEbl0mTKmfiY3`%he-Gl!ew_H#?|clQ+Xtqi$R76@~9
zP7YnJIqAp|Gxxt7e?dDSR3w+oUGYbuVal@A-ii;|?QG672W+({{3o6;Sz-Q`K0f}!
z-_7$G7~b94+1%bQH~V>Y?UKw_Y9>oXEVg%ZoIiZ;pB_WQ%PYDMGMJ=QP8+#Qy!qh9
z{rk@E9|$lMR8+hW%e^#x!kI6{yu6C4O&3~te#~RP&(FZ%s9Vzi`RHvMqqnEmZ{i6Q
zab9`l&$`f!5n&AiM;CSPb`>wL4dckWU3^IW+_}lO_Z^AU>6#>Jbn^8>Et`~^4i1~8
znY{$rj_xq1`J5RQv*hDSgHxtPxBox3a1(N6Xt)>1zxRc}-+hwJn>5@eJ^S9-w&nB6
zCztN3JFe{uTg}XnVKVzejr`Ay!{S#1^kYAHp7|D)sj}^t=l=W7?>}(tJ*@n>x~9d#
z?7Fk6=B6`JuM;Nh%lv<VUyx0$MkmMYV$Qa})z=wj@J{ah9w|J>{^t1^7OpGiT)R~(
zztnWonJ+(0`tI%(I4T%at)H=b;Uwu7bplE}zQ5TW8P3P4YwqPXtrM7>=;-c=sDF1v
zOkkfIVR1_6zD3{0{pmIv_~q^#pKHCHfuY*^{DPp(pCj|HZ``wokKx9xTZfKaoA!Cd
zWxZz=8EYplJ7&CZdws+Fzkkda9=v>f+`?*;^%>6=ld}_|_;+1v5C~&jXw<UsW@z4(
z+aF%+;+gRMvqo3J`*X4k2l($*i`)Nyd7gpc`@8$jLbLByXFRo;$He0(vEZg*<VSO}
zZH1q=UT0)jzvr9OwXo|6@jE{B%+;{tzvv-kQ}>5qx3xbb!%DA*oR52jf(~r%<ZU)+
znZ8=EM*hyX$n&2cG#^|g;VVDS!9Fdu{F9}HclAz}kRIN%E8?f-SchMK^Zxzg7Y`U3
z0$W(-Wv1)7E)02a$fJB`@k-_EA_eCT{(LF-ZI#9OA10ihC08}p3LHPyTwSoC|8II)
zUhS73g5S!^3kniem3&#e@3Yh@o#Okw+<gACvae;8Z`ikymEp#nTW;l*H!Fq3uQkW{
zg~vZ^y>iZbwLs+6LzmV4KmK@FYg6+>fT5sdLwnu*Kf1w^MH8(r7jU&zE$;Ix=47}K
z8+q{8GqD|^o~?@Q8%}NQyeswj&QA9OvF$|`GlT!7`k7vO{k0(B_{!$JwlXrajt7=-
zOwE|SVMpBh#W&5gCQZF+T4MF=))U1#mX9_orVDVlc3uq1E4=Xj>&FvbE9-w8{(s>6
zy}x`658ln){X%x;$upl>ubG=MFzo-Z@_$?W@2&skd)<oJ((4N~j>|v0{^;iB^ooN2
zb_@yS`Sl9VVzfhNeR;rBc>nW;T}kVF)3<Uvvh6yo!{;+w_Raf;?EgP9GaUH;Oa8y`
z|DTiPnHkE;%LH!<@Mo~*#-Crn_;8_^)Z(J#TJHTnR#!7Ld_C*CX5Bi!&#UKjPds~}
z>sm|ZtOxJj-mZARx88jJaoa6Xu?!BIFFS3{e7ftc*sHBp3=6_mFAh5|fBnEKo(<ip
z=YAge8Gd#7)_L>(?2kEAFv<J<6)*SvzkkH;{rzVBO;}k+fA+?OyZ7|Co$k4rxVAHD
zZJUBY+k)rSd529uFpKXyVmW_xp^E-R)AI`hqO^|`GBH?KSsa+WJZ<x<i-*~7RDKd^
zw@vQ&Qf+&ntzIRP?bsCSHvKcDmEUsCOU_Q<nfHG8g;{~#m(OZXKBc~3tJ@Xx$3O4A
z<9l~+cR%}gpVTRbo0*ranh^BdZ64Eu-_HuyUvIDFoH1dA>Ff-XXofSjlk$6dBvpzR
z272w@uvaJe#1z8|mo17PvIp85eP?L++sypt?K=j8&m}_Y9&gm9i&tcr`TSm<`O0iX
z*4Bcm_>PDOu@dRY3h=f0dSamQ{CSUOPBjia@nPQEcMq<ezsJt-=fVB`-SzeFs~H;D
zzrR!N>QQ&#Xgl8DtN!5F>h(Hb&i!4Zk^VhZL$x&Ml&XI9r!R`{Y%5q8UVQ)Uw{6u{
zr)8#7tX`IK92U5~E}oHL%PZdLAHQrex^O+zbMA)UJodjPew_9Hfqh*A|C&3teN`Tp
z4^@Xwdse8YuvW*~&uCBH(%W<NJ(%`Qj6M3ea`UHc0*4MK?(diXe<DQQ;?>cJcw@OQ
z8}2!*zRAE~5|wKrrB<@w=9<O3lMb=&IvqRt>Rq|(pKX+Rk1zOM6P9Z~@A~>Laj~^q
zxz6=`Df^!wfB(<@|J)3qgB(kukNv(9`EtSLlv{gtZ|U({-F<D+#O`%#bdp!@W@3oA
z9dmrr)QN451`|q*me2ZT??2<9P4&6r%=K=wW>jvLKl<W(&Ws?Dh4QX1BG)JGzutcC
z%<GV42Xmdm)|yV)@;&&$;}z*bb7bGiD|9|?J&|Ic{mINLs8ywF;*HmW>YPHipT!ub
zXoY(lYG^0>8@H-#j4RVf$!s$@yMFQ_(f^rKCLeO#%~BINZR)12>L(`IG$u`)u%o=B
zp}AK0*T(I;`z>CHXV0DIcE$Yd{ym#sZQ6S|*P(~$?z$r}MSG3}evDA;6c%6p<H5b!
zJ^zCzTmG@H|CD@ZcQ()TxpQNelo@<smOou~AU5u%%i@bMcO-Ub2K5~eihPz5pE^n9
z=)ZXr{p@%BXK+7%#$~F;Q#DOxN$oV1bKOPOi4o4_nP=_z#FqTI{zPNb@mXf?pU;->
zpZDONtnmH+A1(&VyqVpaKTGYx3Ga1`r)<+6-1*xUl6sC~(&ZD+tW{UVd?-HmfRle>
z?1Z;(ZJD=3#{8`7P!F3Ioqr{8`=+C1%X{Zd{g|~>ki}GdU*e;MzV_GGgxo4Tx8!>I
z@?Td|<;>rCb~<NYxx4Rc@tvlfV*5Tki1e&pe9>X=wIi>(ZrViNjXB!;dOZV!-JfUf
zA8)N*KQp;(x8JWkv!z{z^?$y_KY3kl6(#<0b5yqYbDm?0OIiffY7TrCU2ry;cSmpN
zQ4^crvlLbwo}Sh`;c2Jj38PBIN=?0&KR;wC)@XNsn=GQVRrRuk_M?+K9R#L)PJWV@
zB$VUv(&O{??wj@JyN@MEKb5|lIcu61cbcAvdatnfKEb1$NxLV`d&!fz>`tw+@s6#1
zUuw$d2mBUZ>=4F<IGYMGmBzMtXY{9A)1K_w`8_O^D|6C<blYzCkBal&O7p+F_s;lB
zRa*FF`J*S+u!nmzrrlPN*j4#h>yW_`*)xe5JQe;$nc=fkJSH8fJR;e?nqSscaGssf
zrI)+6zu%FwY-Z58$VH!GYo?dX++DR`_3G0Rw@u_qUdFz=wIJ>Jy;CnQi9~8jCUx-?
zPP;C9Zb2+tcErhzCmGhn%+{WK<YZOkluI9S4_UnIZ1oc|(Nv!^Md<B2A*R<~y)Q`w
zrrgr^3i=Rp@3#GchZ8@3N-KP_Cw#3N``;D)RY|Y;ycyT6J<i>5%2sntlR&eg<kj|l
zXIht@`Tq6XRJOZQMNM9-O;PYm{?g|&TYIWy|3di+jz0qa^QA-&KUViIC`mZ>*KKv{
z+0w}o>+WTU9M|8vbBd5pPx!usD=O*TYA>(tT2j;0w&DK8&ox(GEt_V^pi;>4Y|iVP
zggYnWh1p7fEc9%9`cuwf)mHICUS86Q5-Q0ba;vY+_I+}AUy!7V`RQ`S)?l-WeeDW5
z$K=npN-K-4)j!vCr~2KMCaI&3CpBES;$rS!AQGz5A~2z`|BvpR>?=}gof#499X*QY
z>V39qmyk8O(0Ma>mc^Vc8lExVd}6y|`!0(V?r)EKFTk*2|K@Jz>;>|!f}3>u_g~Vh
zxjLP3+qU&g3}$BA6_3Zvi48H~vW%G~x-mO*meT1U^OsYS11_5!Zk)QruJRkt-Wxho
zrUtcUoSBw!YPpJ@#j7&Gy05=Xb8>T;4GecruY9DH-{lg>vUF;9<>ROY$*EV*ma(sl
zm2vrNcW3Jfqv=O&L%F=Nf0(h^u4!Fy^XMj#qC}Bh&Tj)Ivn>2{{?VL;H!}{bzy0RH
zq2}ka%^qLUHu|l_mTK-Nv~=RqO38U5TE24|7f)?-`nUbi0_}8h`~3Rz=9l6!DsDfX
z{cP5Kokx|{CeplHcB@72d;hazhpfL>(QA{?2Re@T)1>X+$UZE%pTqO+?Yo8YGykYW
zPE+#k4V*E}>6qm6XZJ&n&H9=9InlttJiqFYbH?$P+b*rRnswoXxq$I@Lk$)8u&zY$
zuo)+9U-EcqGJBjm_@jx(CRi=M_}GI}i+;}I*XIb>EUL_8-|*$_E!WKSDcmRL_RK17
zywDe!m~g8mk?nV-<LjiV#G^Nsct3WvJmT<6&T014*i6=g!jF$K9GKy>H*b#f)(w0w
zpFU*2{6p!;B4;)$!{SdH12jz&7N~5i37MspQdW4!-saH7f5vxq=X>?v`TIbuOm60p
z6f5tTGYh9M9eQU_zB_i$w_TmyIoogN87cETjrgyW7c+IzVvURqN%O*I2CJ)NHaSO2
zm)F;yudMMknvxWFDk5;%$;m>mx1G7}e!oIkTU+hmWPwLTelbf~Oe-U|T68UBoUY*E
zth`3@{E1_)jIzQSC%Du;S)H)dbV{s=`(KI7S-XO4?mi9OVttx{A+!9W_VP!!4jlNf
zbg3Y(&!QD3&7h^TO*2k2IA+LgpT(Olq8|9@k;~3=6K)o2`6&r+UQztCzv<kW$~3Lw
zV_QDibaa_<#y>f!`)WqA;-mV*2aZqGPBY$m_tg$V=k%k;+8^-5c>S1{>3mSa<V~BW
z)Ixd5_0=-2dBx!`d75rs>f6`<S+!C+WlF_8*A=yP1x2a+>qI!5H%F>kIM2EoAhl+K
zyN6MnQPPyMjsH#^d(7mZ`$4gVW$}tr4|fRFoayDg^!Y)xom8c#-oXbqdBc~P?$9WT
zeezP&;_-)K=Dp9Hf5{!SozEH@^ylE3<dC%E6LgAAFD{%a+`@5AFk&k6lr}!+jMp(t
zk5}A&{hYl{^SfXy_oJg1GCYyin=({h=$sjJZpO@1$t3A$&_O86t^FAo&d;+udQSLr
zMR_{=ZtMQS_so+o{<_!P{^P+tW(J4<EAnmjGBDY@>`g4wGv99Z@shVbBSY5Kf_IM%
zm-|mtwC`{9yUfx#wd+`BkB;vgbFI@s;$9!VykwNKt>ZXw!aG>|yKP;?u^G2duD_bS
zqwcK~!-K8Y?cOB0{#2d%c&hOUtM}SIng?U%ZutC!v5)U;@;Me8?Wx><#cE#rez)P@
zaBsRwpux@*-|D>l*n_{?I=_Ce*&mdD>cB>c)jHP-Rn8Zv&JU@XC;ubkickHNdF=Wo
zxzX#lA86TW=Kkiy)JmII@{e8y8=J9iW#~;?{bAXQX~EhWYv-yI1;iT7{TEl8xFzdk
zwBs+ku<+}Q45wGG{=l@`<z$1(=B`yLrl~A%cW*K|x=vTI;`#IKA2ypti#mC2v2xQp
z&*H9Yz%^yhm5Vo?*R)l4gjU3d_<8<3l#p_%;p4Gqa`uX<5uWd&r&&$?E%x|M<%6l0
zCTv@~*TCR0-~KzHR(?lKvrjhbskVsd#WOYURBL#7{+w}NP>p4B!kQIN6uqub(69O0
zaWZh7(2}iX4{JT=ScpbXa_PvCo3!G7@%hy{#owI+Ry%UMd#BDDc4Ptj!KM1j-g9`3
zE_BYEINkp=`*9QBjp^QHclZ7+u6b_#o{6FE*Wv#M&Mp4U(4b*;=;B4evK-6x>A%@K
z-XvLu-jbYHC$J#*^}~BR>Udvgs})X&Sn%Wa%7CuzK{GWI*%{p3+bhz{UCZX#wt590
zvAulGQ*7~dbHn-l?`#hE*X5kLW4o_j{FKx?25qmlgJ<F^e>iTwcjRn%92-MU{N7jd
z)E}66ELtr0&UQ!p{Jr^E^Y?$BTmJF${68WL8+PwzP8Ao3@j4*+)geK=cx{;MrSA_p
zlXdcPa}zR8wg`Dd#`3j!>iux@JQBL};bDn@)mJaRn-THfflFai_vRN2GuJxq`Ts_e
zkN=ZVxnbEF!TK$~Iokc_KS($}<xf=neYeHAeWGoqSKhdV2(W0ZU4Go=rSYCEMmxW<
zocU`bIrGbfSj|_nwNr1|bStH_o5|VsPF$)fl>JBbqur((J?<XCD~{+a`d&USq4xHZ
z?GbU2ho5~DWpLPhv*p^sh}`;lb^8U1%EMxA>-gSjtCVrS;3aDKWEStS$>LXU#6<8W
z@9~&-l*K}s`J=1B6ek`F=F6vA3>h1)oiHlqcQ7;vY!S_vd-MBeCAnQI1=+SX%Ge3p
z|F68)A;q{<^pc9(`x8$rtgLLD&Of`+`MdT@a<T5Oy>)@}?Yd$sgEd+9EMPnK$ycxK
zz~)4yM@7$XD4yfXeU8ZBM`Rq<X(v5<V!fwO=HbJ;{0t2L|Glk0{Quwcd?p6Ddpnyg
zOydMoqzc89UrGDFO%ze|?LKq0^3$?_D;qBveLD6w`}&2KQtNq^>uh4qNN_kf;k}Ig
zo^o;fe-HT?7|QK_aQ5->UEDl#68|E(U%#J~`pelLUYzb0SM~m)@RzkLXQrxc+z|9>
zc9iasSHIL47F^7*;=Gr7KlWOba%WHblYe{pKg@k!BW?flUNu8Q^!B>8<<`3y8dN&x
z#@yl-QF`t9=J>|y{a(Q)(!3|8eOzYps`Se1%0tVwY+hX68Me4$R&3L%jke}ImnN^c
z-gDjB_t%ZB_in7%-n}FLR#|=d^;E9#$Tv1^?dRt`e7V@Y;?n_@4R>zbI(Dhcv+YJy
z<l%3k!q)^_7@1}V*2lQ<UB4LmV^48q(Z?NG`I66N)>cU~2wY<-Sgm2%Rb_F;+v3<n
z-q{-;T1XyGoHX6((uum1XKnvB+v=>9zIx)@*Xax1?9^MoW<guk(&x5Zw^W&C+w&(!
z?woh?<C5#|6Yp!?TC^fxIQePk!x`Re><a=uX0RoS2F4V5<T<-Y@t%47eV(;M%<e4S
zFMU-NY0iH`qErrU-N^B5p&4fpqe5`OL;tns>{!zC-Y(YSdMi<NtJ|hLn>YNPd9d5U
zpI6po@_qYOc*Q(>?uz^F(`H#J^i5v$C}5VQ|MG9WJ+}I$D_ToDJ0+WUUliN9v*V>B
zo0XyQ9GO#mVUd#_Hl984Z}Rv2$0s+ZGc?Q#>qs`1Fq*39X>_Ert&msvGc$wJjvwc*
zJ{8^b<r6Q%fz#%B3-XK;Chx1|Sb8ao{kK}lgXY`sAOGL?n~&kax8L?h&z<9|`n%^?
zP0I;8yH{T?Y(D0t?=|7s)?MC(+gvL(rI(AgM1Zz@Y>mp@sQz8+;;pT(53}<Z{Jy4p
zr#k0d``%{d?Ft`k9%en}dbxAPMVn+JhLo92mt=aE8M;ifI?a*8lV=*r<JZ4%-MIuk
zJNMTwb(kzAYNWr<Q8S!pTgk)lA)@U{pQTo3Y%B9xlPMc+-Yu1H&*c9u9L-epT`(o1
z=j_s_rs)s#*RNTaYR-TBscRxbsMLkScFVFnwUc>zcfH(fYOiyO^V_eEw-(IS$11`e
zou26U<oPt!7hlgxl>IMkyStCqwc)_Gudf+=VqX4OUb9W-!)LwUr4K#4l(#A-?~RlH
z{X31%Z!w3@he?6!4zBG9H$Kp6o6Y*<^TxClSI@eIsK1@{F?-+aM7<NmlTv0LI`~iS
zTM@IZ_uXG^1-$dZA1BD%x+h#HqZqs_UQSNVsmd<Qd>aG9Tb<TxX52PscdB+3>@o2!
ztk}>$SN8II{%_?AK1qBrDP3B>*~F~d|3;VjH;<ncbHX=sW+i4$x!{_!OHFxhg`r9z
zXtEhHR?%VEVDsY08H3rKYd&n?>U%cn<C?tK-HkWi#mIfFy0LZUr2cQ;FT9q0v>|^|
z>5soxRQGbd(k+?ZGw1c;{C$o7HIH%`4xF7H?|L`w(vrE4CyQ8r)2y2K(ZaU!k4Smm
z%!20V?eCNRCx{28l(k+~am*?22n|~yIZ35B@=mCxA#d`tTWyUu_r5Q)exWD*a^-v7
zj7L*AQ)(_nDW7&`UgEI%rc?RNlqG3W9yv`?4vxRlUWmn5@$b5HsIp#qt?HUJYZ7x0
zryPm9d#m6(L;9LcX7bMt&Yik_gHXO+`iHeCwx^8D&vDFcihR$Re5=xb2E&$GndOo!
z{sko&HZKaNI2nK5A$~mKrU~b1CFwSU%vJmN7GL=*Cw@%A>2>Mbb?Xu;OOMu71eRO$
zRe5aYsa(Kz{nlB=c_JK4k0aMymC}0{zxi&9{EWv%ipT!(Ez^v<BX{Na#M!X50F!r$
z&bVqCUZ1kG^rZI;1>c<7pFYj0D}{Lr&c(dV<z>s8oRYcpz}u;TTpo{NUQSEjswV!c
zThpj(d1Q~px#zczY~4JG>Cn&XQ$8<9&wLf4?#0~xoBhT2>TiFu-c6O+?6BA)WX@8_
zM=Fk!o`@<NZJ!o6Q|s02>;*Cg6STd3M49=HeLnMB#z!RbOYF9Pob~FDk{m$!`^>Io
zGYnd$M7+{rX0ZEn%>Co3cDs~$=No>Pzh`84cV}ns@BVj*$G!YFtGHg4l9Rrk|L7TS
zu;1IM;c<tri7LO%GMV+k>uF!d;~P6P^b~d&F51a+F+6QjW!V+?{o*^<ERCGC)74>>
z(R62r#T?-mF63Q$)O7fJZONNwC%;`YU86g@cZQ8#?Zp`$CYs3)u36-mP5<!9-L6SH
z-1p9>bC1<;+%`6Rv9im@)0AP~1lOF^>JPn>Th^>wzj*hip0e8>YogckEqT84{7Rwp
z9gSyeo*J&3cuulC-<dIMD?=l1??un1y1a<=nY+dR_&DCUz&q8*fV1GUdW+Km{<Alh
zDE5lon3p`&ZQZq99j@u0^_SPl^)T*B|Mg+(?CXKskNrA$&Q9)zmt4QxoumK$*-ct;
z!h6zlxy&oC@`AIne{-3wpP40iwv1ah`l_?f)~q8c>s+rMtIRYOWq7=-cFB9?EvoF2
z{R=l;NnQQSNkqEY%Te>$yy<m{i>EoxJ2-1{p`FoBi-U@Lt#+gzS135Ljo0~|^Foc=
z63fl{eU2&A7N7UfZ%Epsk-Yk}B3nB5#R|cxp-X2NN->DbIa$9eJ~r`&@2Yzj1s~aT
z*Uf4wwtlbq^xe!2VhgTih)cKa>%VYL-HhXI?YSm%QA1XY>F!R+;9Kq~JdPP<_ph6q
zUCg*qb;ML&fB!!#h6f)PyYDFf&U~jnVUK3v75CfMr1lm5Rn55(wf*kX)GIm5Ql_qS
zN?I<W`a&a7sC(A254QZd(n$qxpRL|eczK23ySf7I!v7qnyxtn|YN&U&-+rd8{z=Hm
z$?G$_{hGw&R9^Ytt=kzG=KnhSzbke2(Yg97*zX>UXtfGsODx^<HH|sE>Gg-~XLTNn
zB>p;2{-f0;RPoJD&}T=_PcPA}&u)9mUdeV{mc`1pO#RNw&xg-%c<}i~<sC_Zwq?B2
zuW!4MGb1H$4)>dzI={}B$tC7rUnRMTL+kzLpr+rYTW-6tZrQf8Gwk}l_==3u-dP8~
zs~fzXrvG-z?fs`*3ZEG)v)3;V+n9QoiD`dZ?QD}T-{wYF{CHp|XIH_&5TMnXe|*-t
zOI&evFVz?le!ueFGVRQr3;sbSZ)y(wbX{>gHc|K2r$mY7Ey<hSw`WAL_Q|UTL^hph
zGhn@!ARiVM_>^^D@OOiAv1R23ew>foRKgDzoD;Z~m9gcl#G=a*8?xqBY3^Kg?Ud@b
z-~@qhaT6}NN33_;{gGj5;i5<X_CMG@*}L+T#1avXY+nY4y%$?HDf;Zar^wgu!;vse
zEx>FI1A|TGv&U(>Tch?eW{S>^N*DO~H(*uOh7X7N4Mk5ls6S&{E0UzGoXV52{fvTS
z3u6@T=N%U_7TnBBt~`6>ncSPV$~h8}cfWn()zO!hOqRGdXXEAfUj=VQ1fBn!!<HkZ
z$jG3&bL|%!b?5r8U#AzAe8~n4ddKehUB92%#%!tkuR#6{lXlhJGTs`Spi+8C?@rBq
z_tlwV$FHx8J6`|ui2BEGx96K2uX`)HX6>wA2F>IB?6N=fzAZGAPz%1cqGq3{-eh(s
zJBh~`TVG}9&SW)W*LLEW()9keXS}h-ZVtamB3`%OY^>{0_%QLvGuyu_`c-s|-uN5M
zoAFd~p|<@ej-H<jdkiZUPW-xV?b@W;TxNz1yEe7$WezTSwfz52<vss5e`jQ{_Lq0O
z-Mcz!ao^duzIXQg)M9w>s#jX?@~3;}jIX?URySc@eBo|+>uXHXPEpxQ!X`y?XGh#O
zdV4>wbi%D27kagC-?&-XwY=XqZjwglgUZUfZauSWXRD`8v(lUQ>*Zs0J^N!y?F>(5
z)E?|Qw*8Wtax%{usm6H|II_}$l{uJGW;(?_-6<|%Bi*++<k=zf77>m$Yh*P(>3SSn
zTU%lHEOxWz)c;|H>)6X}`1U_rygP@dWa-S?e>k!kv&@z|O<S6m=kbVTUi#ztJ53UU
zEA3}439YCK>~CFgBRcKD9OVt4SBw8xw<ST~7e~&CAp3WYx9?adIJ}tsT>7k4)>o??
zxvw?4?pSTHd6#kagok<@2gZ5}L-&m7reYc;FPgZ&TdcW$Ay9Yw?-%ThOcUR0wfkkM
zSd_m{<k7P(n|HG0qiWyPiSGrT?>^3O;bqB(Yti{k42yIeZ)7}vZvWem;lazr$8T&d
zdd>cQzQX39^-Gubd4DSZ`^zkDV<Kn%o}Y$${+-gkal>HV+OXA6g{GbK5;EI(>Houh
z-hCfU&aS`SGxb;IJgLZRR#x7``swq+RVpt_?K|7S&-?su*CdIRUzZrno}jkgcKt!M
zX-i(Zh<%UT_I1bfS%w_13$t2$V|Hd`rN{5DlifIV;yS(Zja!nYsLB8NqgUn5&d?CH
zx$(9B{-){il}GpGiPp}pj9<R$#Fyxg`+l5Um{a%rmqtq1%ZaO4E~&+H9b%X_U)}P`
zhnmi+yDITPD~sapr>*WyJFOvlNWo>&t>2Cu)6Z;Lwei2}@tJ#;*Et>E-X3~k!Xk;~
zl8^n?Dlcu=AXmb+!zE=-@$?_T+PqV5v83+MD1P^3zw<hy1fCD64Q{6^F4(?2xV_k6
zab&p{D_fh2nHOvD>f2gNgL+jw11&DB_Vu&uaSdI*!%{*`OZmT8kVi%3+e$^noKNQV
z-@5Gh+0LIkzBNj=F<xWIl%NxDUb9Up7k?P0pvEWp;)svtaR+9HWxY8kgoPHR?0C{$
z$L7Gn-<Ynp`~v@+jY>Nm0vE9){7hyu2tAT5cvv%@-QR0E<DbRyzYJPF6n^hBw3%mD
z)ndK<Jp;qNzu(I@)+g{x36HB3mH&Cdoq<7r{~w`sw|jogo_#waI@)n@UP?mT$}P7l
z#d-bioOBcR-NeOv<z(&$gK)1dW8QT;t&?LXE%jDBvn=$Z+2@*N6JOX|uCofb=9<y4
z(}pK>`hBgrr`CweJr0Xxc0Tr2O)*(-cK+_mg>T<i$~7H0@gRJ6_Kmy78!vuPiQDx}
zXxsL6Obl6HrEaYIDg9h(9`Anv(J4Q*oIHzHzI`KhEOgyTNrv2Hl^J4s&!!pgh=@A>
z`635n=KpDFT!AUS_G(N$`8bGSrtix6OFz7MWOctq=C#fI=&0OJ*B8AyuOY2b+0&IE
zbEl23Vqd=3>YLZ6Z{A^i%q!U|aIf>rE0QKPhHtkiPT6{A^3R}KQ`Z>hN=7jo@;J4W
z1+NNRfB5uiHlt@|X_GD7vX)-Y6nePgdhzQ8oU@+^+x}8XTx!blm?tKq;CIi=?6(z)
z7F+hpTd+)tU0rnUuG=D!LwNyH&6u_4<#(QDmV9v}M^iFmj%PuxdU;2(b6w&EPsLcx
z=}`h!=ar_*Jk4COB7WuE!ew85io$i(Dsy&yx%hI6!1o^ZJ!;M>D?h54-Fv^o#^Ll_
zvumGzoIl5vb#2GQc{88fxX}91aysu*)~6ZzrG=9|@0yX&<5+NcdaHQT^v9ni^-t~M
zh})IkWhOe0slWKJtv}C^yValCR_wZxu(L9~GXLeJ|Hl=-`0oFDSYY3o-mI54&1<I>
ztr9$EI_rGTaj{9sm8q<}(cdn9uKjWCwCI&r9B&Fg2UR`(@c%~jW{K!Yo9}&>clOI(
zb1Ss^P2%qK?HethbF90y?VV`M%LWIgmWsoZjtWOSVpMFIAfW#@L9&zm2($hPeF?@#
zbH$Bc+&jJVx!JMjMKyeKw|sZsy<GNvUY6Xo2{Q$sD=H}~hp$}~dpK&fQFyKW%Ift|
z$!RGmE;S!(@BhC%b;ZP^X1^{9Id0x^LDDJnmXBNAIy?7;>ML7Wl6a5#R4;pcrE)Wi
zaGBhO+52~0x&EL`@T|oA*&8o?*?ClEU#7ic>um#`#V4lrG4%u<+I#E#(Kg3ISq6pk
zl1)lZr=%Qt^W~1)m?y@ZG&(2Xwose<M&4F|Xx|2lK0&sn>Dxcd>UT>{G0RFZ5ele$
z*Ak&${eH_ei*`o#WFe&u$F@K4`*1d=Li}Qz<`!LN?UsU6xusJcIPIu<DKn3G(aUD$
zjRh#z+Ga6SUg(rcDA#9g-Y~CF(^h}s`$|!!D6f=>p&Q+Hhwx2b__?U?ocDUJ=fY3-
zWT+QQMP)yi^tde2TpJvel3gy%zS~-&mydzrw)O0aA0Gr69u(yBv$sF{+1_vd@y9`C
z28Z>x-9&C?D>hhg#O$-|Uv%lWQs1w~e${IZM1J;6FTeYI*@J9<^*$vP&nAs6m2EM*
z#g_`iy|XJ;>``ROkls3B^_@LQhoy_wtMqKz{oC03*)ESC=MFe8+)}o1x7zv3Tb2vR
z9IEncQgBGRY&t27TUk1e>zF{>#O`+!jT}~|Iz9ZoH`IKasMcxm#XTHR7R76VS57Iq
zx596GtBQ%7vm}RjnU+NJi6y76hDvedR=XrVv59l?xY4idckA5@%XD$Oy8F#mGox>%
zxX-j_XK{S6NU$kDNkFJa-d8w5jh&ZaLCMUn!;-~6cYBFHc4?MQXZ-Q@Jgd2;nb{Pp
zP9c?TC210^PiszDF4@%IdgMl*`<%jzrKcvvbK6c%TeMKI#UbS~`=JdzG8bo6{$k+K
z`o8ClnU)q0Q-S7!Pm5MHmV|2l$@aGLIFhNrJa<P)SD_b2-?p<GnUeDy-#pjMW{7#h
z(Z%Yd5X&*+!JW>epIh^mPSN1nf1+X6AHh3I78-2ZIj6eXy5h@;E0Xsr3gl<co_*t%
zL29p=+4c#1y&AnuPIhL(7ZNt~_qz8pGHBoJ<JLcWnaAqv#AwCY_fByo?Y_{Flly4%
zr<6uD{V!E|Os=0J--+zvPLxrcaOrD$+onGgIrYCfed@CMl8`!Y?W1RZSBbdmu*`e5
zJ7{-H>I0qnpllX1oxRs13%5R5sxGi(tCNLMo4bT7N2+4nF$LEEu54CDrQBcT`Kd>z
zGEG*>`12?yPH|sUwtnr(r^m8SE;YW>9Wv8K|C62Ziaj&5D<a*aI6Q8jds}vVNhL#`
zq3!PEb&cN+wSMGbzrC+6s$GP!Wy;eXha)x1PMj_=TKM-Y*Rx+W^Rzc>dWSs{);z|h
zsQO65W#fD)*M;7a97|dXqyv{4Hx)kX3>1@&Tl8t~k&gxjClneUT-&L<MA-St2i}}M
zrJ2p#@66Wh5D<uI+PLUT&VzTot0s3S%;RZATFU3bt5B{KD6KO6#afA{1yeOW@}F-P
zIm+~)^;F?9@2NrO?!4Ro(I#qrwZ>ej0tMB#D*gd)xSm(`F-P0IefXFCMn%q{8|B~2
z49>VEY*31PEB4__@UyKC1^Ao$85y!yXM5}llhEsnVR2bk^d{$hf{oFkqU*;s*WKU2
zcc5j$LmBDQm!0mc_S?I7*4wM!ubrQISi(6W*!-3!)4|s5uh+%8Fg)gItrAXO8f5)^
zSB-t}vzqP~A}19Oo<4uRxpMo<DIULOu8!pH^Sj-#FLr<6xAceH-x?VY*_|^riuTg#
zQ7T{*|C->W+G}2yn!1!{@3beLmVAm9Q5!p>61;Z)ZVdmmrY&ua#HHR0S?ynY^|TcW
z;?61F-R2!TqxN@p^r?*&v($pzo{PlYvf+t|W({ii7!-3}ywh0z`n&sHrUKDY{m*xH
zHY`~A-9<wCGCPx^fQ#V_-a_%9X@Mb54qWv%;#1!<FuY)};<`Jlqww0Dcb4g=GQ1lt
zx?)_M1U$-Z&lIP2RBzm8xRmuYm#kAk_*MlD)h;*wB?n$+ofBwj<SBV{Nz-{3%dO6n
zH$%KaKb_>>V)oR1i|*`csg^Da6||YdFF9qWA9g5U6cjnNC1t_yjJ0!Dm7Do(+@H_$
z<@oIWjoWuKGu*gu%~G`By7_GN>+9}2Boqs;Uwh|JwfQ|}hA+De!+tHZ`*Q1-R8{Qf
ze-@dJPo&tl^_9F%kl(v-<=a(NoAs)%-x1|V=4lMw(3hO*{JHx_>Ha?q#jg|X*|Mtk
z>wUU*x=w%Ds+Z;sU5R${=RfFKeEt2c`N1AJdP>Dl&%9Z9Bk%Oml2^axWM+h|dRlz!
zz}mojFFQ^t_08aW&eR#Y>RF7k#-WRr--8Nse&4Qkel0Uoclk1g_3sKK!=$(kP3x<|
zbh-nKpUW)tHT>}P*G^sDh-q)MKL3!^Zdc?DTeim0Vre0Z+48y1?x`P$`OmYM!*kly
zo#$evXx3;1+e#$o@ffil%CYp*Y|tqB-Y}C{tWxi+Ge@U}lWFRLf-f3xeI1`ZGk-1<
zGo@|!PX9NiJWecerzZcmYpM|9ja`YjVCP7Yqg=@%GlOGy-tE1%Y7P6T8OwQ2zs=iM
z%PX_<>$250`uC4N+|%zg#d=!Z4x7Xe**DU{RP=m{HA0uLvb<RTWy7YdJ@@XGi96=3
zyKH>^-cjT8_ZS&cZc1Ew_iFu`Z-Sy-n;lu!n%oL|tJbBwoX_TT$NFX38q5V<8w*7g
zPZz&XQerv9oo&DD;+Fg8-`1D$U*otxr8HXlu;Ftn{eIQQcQ_Ao>cz}1Tz}2j`K3`x
zRC8rqT;C=&J@G@8htKQ?ZgV;JWyaqtybCUxGd`EuDB36Dv?GK6S>=V9?>Du6lzO%2
z!>sJ<`+aw0&QyCE-yIngTA04oXMUxSUaJpBi<!<{d+}qd4(@cDb4fazYog_gPxn$%
zx9}y)1bIFGI`=T=4f))-+rMXA$h@3>_`;dlnQ2-D22+yR#W!7=U%F7_+>CCW#Gt4`
zZ|!9oPi3z1%%1z`;iA(yOFSMrwy(BhaL8Cb=Y9X?v^o0EIqPf8w_dJ&nDnVrXn8wN
z$s)5KmYaR5-CEd8wAt%Uwi<t^IJf8ej_Kkd&w7mXWmdjB_A|0SUyZv+-16*!?m5nU
zCr(H_+*{T%^=fHMd^~f4$V6_{CxKQ)++EGhu|3C+9pGQg(&-!Su}Gq4dUuBbhwnSf
zfV0Uq%*VG*4*q>Twc=T&zGd>7m^__~htG>1HZh#h7F`h%xv%4;QU9Es|7X^pZf#o=
zVwB*pvgz!Pns?2T?<d3@+k2|P>!;Fn#y$VCPu;n>;i!Q_j``}Ajy0Ex7Ou0&TyVa^
zoXh?Dc8Qv;P0w_vNhYuR%PRiwLWq`zHtSlEO-fUu7-D8+3mo03?W^JX;8)GZyWLjo
z3+7pg`!^Z0sc|#U-OYPwllRWp&z)x--o}-?bzHyGW5{7Qzi|1dxx9B3J{DTOFk<MI
zWZJ!P?UtgIzK4u2SSAOYOAeI!v0=8>(cfH;i@zD<_vM!T7MHI4XS-(a^<{Hs3mjTq
zlTebpOl|hW;tmVtEpwd_(^jSpHZNS(7BrSjt+2947kDmXG{qy~%G73s62<*71t$)y
zI##7vak}T@f_e9o4@(r6ZfO<Zn9Rqp;BGW?Hy?vU|D&x}L%*zLh!Ij>DsZ7AIrV5q
zmgDmaXFATXIw|wy>?jj*I%RYuimj15d2V}xa6s=Y3;m`1b%py*oDAVv+imsiR_iUv
z{;L-YV$&|$H(WYxCs}75p7zG_;;)lmUq2TNded$_?RZnrPFohC8UJQ~4;P41wA8cM
zb+=FW*sS@-Up-lOw<LesZg!WiI^D$+9TQq-p82HOlavxGy;Hcw&vJgZrE8au%yZB6
z=4=1f>dP}Xi?ycT`Qz`uXZr!)t!Ly-``i8tFK_4OJE_`Y^mxMk=~~x24Gn(ZO8GU3
z(@SUX>(2={^;X~CRyR9)|NiQ?Z>sNfAHQ<FGtz<0>LSOVfLIPrx!X3nOSK=q{(Q<f
zhv|8&fY`BlJWOAzj@>x-Nm_!pw{hK8hxON;lX_n{cx?}v9OU##>3ncw`nT_@&H*bf
zwi!Os&~gq>U72CK{k2K=`m4W!!sXKz>EGI>qnqKx)h{>w+AblXtvjj@+z#2z(wriw
zc=XI^RfDIOyKFK$_v8jy9<V&5u;PhryjiKfZiU#NUg2{)Pp`dd^<|6uk2_|6)%u>5
zyf4~$@iLeFwb@-wTYV*0JzFUMHoE)F#<hq4n&w+PUe^?L)PY^A`0~;v%(A~{&vRe;
z&}ZJ__4yC)CEv67`j@3pP~*s4#2QR+BRlP&gvIA9p<>&QMsE}5iQ2zfu)=ZAx$6cJ
zQl{A&trngFx4tkMJbQJPxnQg9VFjkDXFtR4xb05f^U+gCnaBD3<`dGwFAXHaIDA_6
z>4(_7JE^#JdgK4ioAY?%U3cmI@H#!G_{F1r44jO*U8nP&8~-mkJhy8(=kxX4zG5$}
zJFT{U^gI)xy~Ql%+l*o(UipNMl@l8MOoZ&uPtw?V;?a_TTdWNRJO?5J>wJ|tn!N6X
zPV5(DVVpGWWORCr#nq1r90IpvE*SJE*e(q|H$Nxmnq=9N^{Z_S!%p>|{b>GbhsCPz
zi*n-(>f2uh^*`CPBD-Ft!}THOFJTr#_7e{39ETo$vf0Uyvr~3$Z=kL32Y0W|upo|a
ztO46pc+zEzG+wRmQZ{wa-?Kya@<#DvTUbwSs^UK9e7PuR_L)j0?ii~tt@@MAT-U9)
zDD8Q-!z<u-yxDXEPT}JY#qW)rEMLI)p0WgjjwKQ}BIqOWE9K<0#nw+_I)V;PDHeZp
zZo%9j>*t529Gbmwd2(X)_jz2O3)}avvFtzFe2LdDt<05qcHF7livhxC=T$DdA|T%U
z%%y3EMalwU7Q?AdC(b^JW(q!=xHk5lRdd<<gq}w3*~NCrkMH~|_~>o?@7|<SZ7ge9
zv-y`w&pGo(?DS-F=G-0|$*lP^KOZri`AfCXG@)mz?Oe5kOB<c;aKhKrFJha(K38Fy
zz_A+>g%Y2CT`*VW(Bu8bcCO$!`0>%!%8nmDv@R9@s1uUQ(g;728Ma&~Io!19p-K1y
zF0<1~7NP&=C%=xr>gRuD+D%mh!O}*alBS3tHSv$1&v7T8In6a^Gvh%n(U+3{&m85M
zubm{TCvbhSUuEQsv?XfwJmP!*Yd$Y;3hoizk};3p=W)^Hz7rP9e`T2_`PFefnzT@$
z9PY@b6`;dFI<$|=*zWDVb!_d!yp8%x(q(kQ51xJ$-*I#P`^cpXUsvuf6Rw^8xl_vW
zs{Z8aWrrefH#aI-r=40kYrfK~XU8)iXTFd+BcEoZr}x{SW2Q5km1B&dM(w+bt`GOS
zrBp75ypPS;Xg)h^y=$@FsV~oFx}RLTdFG4d@qA{>*Ls)yJm19o?5CT^=1sF6ZpzD<
zIM+!>bo$(62aye(wb4>()7ZI?XAq?v<Vu<pI#>&0V!y8XzCqLH`@EPXQ3pEbII=#^
zNy^|Y$(?t-x~}o{p?O#SeKT#l?ABuNKY8l<iy2RN9k1}cvj6<(i(py_FUO-jpj~vP
zNnwiDmjC2^RI%k+@ou)d&$9)}cggubTGDXp<Tsn&=H@-dIbk82wDbg+U%Jl=uZvnd
zEBdV3;j8|CjxF7GaJpH{ezqBg#lO_f2bHgywP3Gd#w`z*;#-e2-my;NjI=x9px$9+
z^jJiHb6Ctg&tgGo$<1lA(hEEFI2(S>QodaDWA*+UbM_Skelba|{AI2Ee*c5@a{ps5
z^QCki)$`llxP8v^IQg!B5vG1Cu8JQqY!=x1KXt+M(iM9z1@KuRmY`l?FuK6GsO`)i
zmGhJG*3VO)k~i&PdDQH=uQ%5|z54OXIo7p_e@rI#)=lM#ocY;)rM|w=nJEu5)~6lc
zw@GG3_5TcM`R_J{`lk$M+^YR3lUclrjm1zHRJ6T1vBr7(bc;J*woKiTmNjGkV}@0U
zGvb^In)SP{?OM|j&2H@zuc};YwbdwSox@vs`#W>1?x#Awt($4GF+{`hitHz(14&$X
z75J?juS_)7FrCj9?2~1AH}V%JUrcSD{@0IQwW;2liYxnO*QuU*oHq4a{Ij~S@V;-C
zj&84iXqk3zVn|>2#--mjS)Tv-X|9yx9Hv)4SPZj4K|9MxH>5PkvZAPP-QJAXomn0c
zw>(R{T7K#rs!>0!@-sKy&}`Y-vy#?H+r#752TOdays)p+?xr5E{q|)Kd6}k*-Fx@0
z@#RT*@AFeF1Dg~$k^}=ftdWED(*ohX%U8=((+*kM#s-HrFW>i3%d#{r^7YS_c+1oL
zF^U^EMONl!{;|{-U*8xV<DB*Xv|}bK!-Jk0wds!Yo-;5g9#NG)d9~%(eAdffIQD5X
zNxo=lR$G3$wK!@{tlE`-)46-?r?YSU`&5Zl_o&`v1rEL60_#jn{s|lj%y30IN!zr6
z2Wfxa3PzD|SBoh@(`z}x`RvzNoi^gy9A{8h9sGa4!Wqxb`M;Fwe)G38pHNsc<=H3h
zw!pGSZ#33T*zk6Kx+Fux#UGmmOipcMXINVFyQAu-lEtlmCg1cYo&0uwlL*5B%hp}`
zOluhxGuEuPE@_2K*@H+(L6*kyxvPJ^`^{N<p1TNFEV`7pH15yK_stG$$Lq|0il(1V
zsh;$_W~0p8^H&awb8h|i)ad5FCzkO#D%0-sWQ3`8L_XxNGGP*8IpbS+s=D#AEwq^>
zSJGs`F6w_@L|t)rQ0a;FMm*uqz2+Zpu&cdo@F`o6B`|rJ>yJ6=QGE&=k32!;Dab+K
z(kqKW@&!wwTi=^S{+*Amh96s9Wt!M?^Z&WOybL!cf8LqRk}Q7W&W5fxJj+ics&h20
zVEh+Ry2g&JH=V`t3?o;ex}GT8HI3wNOHM|-zSNL;t5Q(>fy~pRtK`$aJuZEx|2(=S
z?45Yj2_cri@;4So@60#J6J*&~aiSTqds_h1JUsIB(5goPU%x5M^GRKN*IK{W@62BJ
zW|1ee{0e{mdDFHz=2E7g<gtj{-}aUhJ1!SabrJ4ddZh25RJv!P)p;EU0hU6Wlm)_D
zo91qAE1GL5q_kaTd8qRY@m#y-Zr^mj%yi<mU9@w?@AaIT(kvfUPW66OFFdHToGs8w
zitCJ}{@+gFBZn5My{T@3tp&g++4Xu?YwdGlD%$+)#kzlgHYQFekp$IHBAH%C<2TQf
z(X*~isXDRW^Y(5dMHZHg1}7ZU^?28Qy=rnvzj|J*)wIJA%O)fwNiK-<iAjAX{x0sZ
zb@wy9rWuwZkI=%wB{!qx#)+4u$$kI1ZsqR#BvQLTN+>dZUCtKn!ZN7~^Es3L=|r!%
z<0@`{`kEYzVLZs9smml+i_cv&t8CwqnuY%ybfm-GFV0f%YszcTx+2F?C<ZEpP@?<D
z(o0)5+-#H8+vsubqUEeh|7RD?Iih-S#_Ru4*<Cz}QvAJ@p?+EX$8LOFU!BbCC;;j;
zJ^HlMiP^&Umv_h8{m=JqQrFAlSj3r;`+xTvX2p)11u2tXp8A&Cc3JJ)%*r*t;+DOw
zH#shNWTpc1+!>NjAJlAX-0{cdFMGi!9>K{!Z2w(3_HBx<X4C-zU-$S}?Y0P~IeBj*
zcYTe#A76d0%qdMuJKeQcHAko^f&tXBfE6Y#yb7Y_No8{u`$P%bUJ}=|yn5ub>NAIn
z{8Eohmm6iXIL26haq&4JI&a_Kt*0kHXR7`3Q8drG$$~#+fv|D&A?f9pJAS=8vh!p1
ztn-hm(;BZyX`PQ<FFdFDBR89mXuMmQm7~CssZUjs=Z0Ca7)qmsTIGe#rAr?5UMYy%
zAKCgcZ13E#M}4y2tqMgi{CXq!dh<K=qu+avJHN?)pEzR~L&HBWe$Pux3>=E*zTdrO
zUR1ZYs!8G1u_qECGnHdYHkp0@E0b62HGih=<m}0n=DKT3Ig;!qH2UeNdTBnXd?#0&
z*5umqB*CZQbL6?GTmR+<)?61&x%FsL<IcE^9$SJK8s?t$t$BX`pS9h-?}iKy-g&Qo
zVE^a%e-?&}@?FO7{-@g<OO3ct+2;N8&dFU&DJ=q}k9Pbnc=b8T*?31?e#@@qU(<Uh
z=fB?+*IobqjF#^UEyK4~nM)ULDXRY+>bhdi^FJ2v;ud{V(_=y#!sEBv7$RalvvS(Q
z4+-)N1`@po-kz(yl&9R8yx~Ae?Xk4&?oTZxI#&B#l<boI!pg}ic5m|Dy|Oj$ci%r~
z{{MeHGsB)Q4{h(%{o-SIkhhxm+<Eb5bz##EMcXxAyXC5-v35bIpmyL_xuRnSe+0f4
zt=!ac%g~o$)1riRjIsOHNEQn!pQ(-swV6MqH#OnSi{CySyMLdUy2E_SwbbDG-)huv
zZI+1s`%&YxQHohnKsN6=%Oxh+vWiQ(=PWXO@kK^DFsSy>pZHK^XNlxgFNx%W#_TKK
zj%X?{&yCQUGIvGWVeo2ZhKe5_nU|DZ+Ex2nE$?0>*WEmRhJte?ce);i%4SbLuVBd^
z^;-DwzG>-&27hhtto+S=-?E%{?N;yC6<;d2?JIt>|9HrMpOxXs%0tH%A7^MtpZ|}g
z;i$xm(@if=KV#BbI$^0KLxPQ*vadTsgU;!R={u#HTSPh*aWDw92sSA&FnDO5U&~w|
zx}f0s(SR-MukAAG@tx85&6XiqO<1<U_rXWI_xIvVU&UT)|9ijicPZ~`tIE8X=u8Jo
z-+uMF6+b+VYJ^vA^qiqA+t0{w_@E*m`{GB<69QYpM3@;CX|(ZhCC{~f-cmpRqHX$x
zdn|F^BHwS^zVG6NyffiDou;K;C|f+Im@(1ZV~IfC!IPHp|IYcvNMN)WlQJ(vIcq+4
zykl>1VDEQ(28KVs%m1sJm6tOztgriY{KBhm7haa=e~CU*{owtExYR9ew=K_2{iw#|
zFfTp8Yq#uggDD(M0tbxV+^AM%>a(f;Gyn6V8&~h&zIm`(zNX{2bUy>bT$O_d|E;r~
za#Y6W@!{LH`3vl~r9`$}yil?7+xPDqckkw9xN-CD!GHJ6HZA<Pj$8A>%UOkKrEjgS
zt&eAC_)=B-*zuszm;W~xP0_M_k)Y?wU=bTV(`VA;-?CdPMUTyRK6CB9u#XbI6kk<U
zc}y^y?C^8@|Mx9Xzdg5Z>9;<&EO^f5OIeFH-kjpzdVSBAb7J#u#XR-MZS6DhE!?r4
znc>F0d&mCm^L+a_Mwugd%iE~sw_hsd&GeEBlu+jIb?FyiI<(Bj@Z9<>?ssG5Z=bu6
zdTYi`_EXopuPlqve6myWbNgXMwsv-p<C!0OJ07txTzI{HLF#S$2Y*gZ6h1N)G%WRT
z#|p!>6C)QF<d^fmum2&(@Zfj;Uu(1NXO*nFqJDg-|HIj(w@V{9WX;rTdSAX56g140
z-JEfwVn^e{4F0$0v=|=TOrP(#KfdLbsr{AhyH@OtS!}YMyZi3mT$y+870-9M-VtcJ
z>3U<1b^T@DV*5RTqCcNTDSMy2VI<dISYg4y@aFB?haVsNG8|akF8}bLyZpls9|RaC
zq;q-R);X7VZ&z=)-B(El2bt|LJFF86ZYl0ORFL9avh~xa^w!%~G`!q@{#`SvKe{p}
zPJB+|?hltD!#_sI-7rjian$U|mVlD_V3*aGIzE<~_sF<!J^T0dlh?*S*bnc0K0B`O
z>=K2UA1!^4pLlbFr?)Gt^*dt*?~<9E@#i=3Jf2u-BiFwn-L&k|MS<ut<!=}Nw%^#y
zwrdL0+8wQN=Otdey_)@Eixopd-2V0>c74&hM_jf11a?^N{IUIHZe5rO!`f550`-S4
zyuYm#ey-qraqF45#eerQ=j7)m9A9UC{ITGpBTFP~zMhG_v-7hEgTjPKPIo%hofO}p
z^^;8|W!@8BI)(f9t=o4G9haA$xP#yBhag|OGsA%d3kGqX<rC5>FA3hLpB}$^@0WRV
z-fTRz>CD@E_ji}`=huJNWjL_=eGU7{Qy*Wgw&y#*@l{v+>yCd>*-y-x9wyX_KlX8c
z{_Mt~6|LvI<PRLRRXSd|NlYcgK75P(wRJWh<)<odmD7LhX#Te*J)L`YSkI?}$G?AE
zEMMDVJKJyZ6gPpHnr5<3E55x`e`7wqw5wCAa$a)r;SNc=st*E(mK`d&&AI4C#m^;E
z0=$xQep_8W6}#C-^Ti$>&a_KkF4yhvpU3;P_mM=@XYHqwb66*5y}rjC_o8g2Mx5aM
z%dS64es2Hde5ZT4<eXQg$vhhZh3~Y*nFl&th@ancT+J$_yjuEqHT$=(B2HqO`iC@Y
zvu6Z+yLezt?6>dVHkKzGn>Kf??wdC=jz7LA5FH);?B`kD9=EhPNkScm#D1-I6DZG3
z<$dcX4ax<J?wX%pzb?l4{yE;adHidS>`~`o^3cDu+%vZ>%<H3FuCnZz8$m8MGp0{j
zK5f48c1`~%&7QR$_YWS_Gn2DFcI+4%LxRN}_uaX-Dr^5%xqis6jGjD0G-ZKsZ^9*u
zFINM)W!CDPH`wrSsq}2?ia#G~84f%<D7VAt@WLsAhYaR5PJAR6`=a_)*S6GBhWi<s
zpGCM?Z<?Hrskr{`p4`3a@3IUB>i_EJKd`?4ON`;c$7jxK*2N$1)~}ah5NN#^<p1sS
z1CzwZQQFfVEmSxl+1%6Hc=`SJi|^x^8T3PbII*Yv+xf%%YFp9el^n5WVj`;NJ@+u)
zyhDzU-Qtch+plle%(iXw>G*x@n%cJVZ5y`dik-8RxMg<4HeIUlv`)>^1)1M1rkwil
zVd2dWKbF`3s{iof;c<or4-OTx`e2X7k{L={kM#vv?l65)%(g}8^0UH83Au0C7#;-A
zuM|CR|DB0JVavlkE$&;-&8&Wte?&~5+3o1v^CsUz*Zlpx;?A+O2ltN6v)|va@zgSj
z&5tK1yz!7I5Pr^E&%B$Xw(fcR`-JBYnHe0`9n*X2s@bb!d~Bhoq;z6=K0m{TuNB<4
z&DPZBr;E4$K6c>z<||8$crP24Ty){;SS(QeTW#x`gnIeFj6-W(1(Z6^*lsTRtoH6s
zl@vq4>u0$!`xCbqS?!gR5Epoq^)fZ%z)~|wSy}(Jw%<?PylHm+^PQznW!}6`PEVJ<
z{mtt6O^!~}3(W>)Pkq;WMGJ{HhjF>QwVV}hv9aKT+JT1$p0wH3{So*sKYP!bgZ~x^
zKYvjY)$yoX`o-x}8{>*H)Vmf<DVlt_z~s<8)3AHh&t?Cdw*Mc_aNz&n{{P~3e=hc)
zd2TtOWLHFdJTpVqf8z(w4~fczFY{X&#GFw6U7-E&#LsSDtF=9%CjS288mV^p&hnsr
z8rSvC2P_n^4Vme*%-6bE^Ev-{x8xNz$4}_qX|OQNz4xm0;_I2MQsR?-{oiOH!*fRM
z_3ih681n0W-)87}k@&Fisf?P@k=rVh7Dk>bICk;1Smn0W74KT7GcagpudaBdncQL$
ztDLCkGsVmJf5p7QrCPONnfw2GGuxgwTHeeUde1)L*{vyTUO$W7TTb3tSg>K)_4v=X
zG<}0@s#4~#-T!$#|55XIdz1Hqr@lrq_Bjf!EVejQU~u5U0f|S}zjxoTHh4YzVZn=*
z6I1lo^Cmke^gh&Ga==1XQCmi0G0!2Xr!mG3v!4Hso^5f%bT&it;lrP174n^Awcvld
z(j=Ps!IdAgIOaHuEAMF%-ZeMmllR(2J1Jg63Enw;ofBkqrMFJlGI{BRJBniLPtiv!
z0=@gVGtC#eU;U(WZ6o(m6Sgw-;_~$KPc^a(T*{vB*nDZZ!0X_E&Y*x>Q%W~3ERVE0
zR*+HlY5VqVA1?mwXJEMh=l{I}=JzU?89u!G{r>TT18<bJN9mSW*WTGt$;}|pa&Xet
z{nH~Xy|;)TeNbDw^`#dt%i6|}nI+AMc24UgEX<v2vX?d+bfj0;cz1kUaC<}9)Sbt@
zG_U`6zbOzIcZXYY#@7uqE(AT>qhs_S<K~8Mud}aT%#7Bbx#Ir59qU&VN{T#Y6qiZN
zIQFW<qG;iw=-JUH_RKl&rD5iEH1nk8x11O6{}r_SJJnUWXM2B4==0vy=U%S+`DIha
zzvol6-p|xI9a}P0Yn?E|(z9E2FJ)V3pY}047&}v6ucA~U_ebfaHD|WU_q$bmIj|(Z
z=Kt^fNB7!~HLtUDUY}ib;IT!Mp4U-1zKMM75<F*ZtZZbGV_dYBXcp<8UGEXYZ_&(g
zraFS{g+Ys1e0!o5)8^NU=V(4j{(R`%JC5JZvzKk#+&(e1>v^M#(D4b4y?!%YvqF3e
zSBeWuvClEq2wj$Hk-uyD!ildpor#(@yG(aiu0-35GM^_QLfhBH>|!W1JmH}3=PBtF
zYH&W_U}oamhLhhJPtCf;;G8FZu5wo8Lbu-+%-km$EA*Xps(gEE*6RPBGW|iPuGacp
z=2?7^<F^@4Ui#;WtJnYic>MdvbNqD-3_reo-`C4;Z<P49z1dkLIAZtRW9oK=;@R11
zN9Jx$^ZOFqdQofpfgDz5(^E!)?%X1`lN0yJIq%Fm(bnE@?(U+j)YPM2tD|H>X3C^<
zJ+_uzE^*u7l8N`meAk)Z%FH(I&HZ$azihkVwue28*E3WFFI~B|i<jw6gt_H~?RocH
zL}v3&irQB1>(se)!j6sG_!uJM<BQwM*A=IPF-$oqVe9If*S1M!`XipoynD+(pQ*Lu
zVsTkIMf9YJ@7m>US^rCNb7r5>U-<04d1c%b1sTPyO_4iK&3(uxvh>rQs@q3D2knr_
z>0GepWbE<ZPkIbu=Q&SHx42<0?KeC6cEyhy9g5GmBxEEMca&MPZFakJ@SniTj2Auj
zOCvR-j#)ZcZ!<m@SfRP($%GAwS7ZV*+Z4_3ubtAi?b@#lgJT;a<T*R<<|=1xtNpKd
z%z5*{t=n!LUMp=rQ6<eL`kBCY&-Q?sn<no5so)<R{z*@E`8h@tx!!_|%L1D|N;n>v
z81Z&`+4k<d>m9*ui7&p0ay&8#$XA4q0(5}Je;={*Rh`vdUzO^g)~fFn{N_}8X4l0N
zZ<zYq+8Jhq|8urry?pTlL$!5U_^*QZ43=m3mQN76+jo;SE`GnEu;^1Gl~eo$dE0(W
z*k3$nsU}~J=E}3~{U09we*ft2_j~LNH9y|*e^^}o?Blg_jB@#J85sEZ`8I6N-qSg!
zkY!`$b7}MSkEe#m7b->en5T>X^OS2oIX%77ddBO-^7po;k$NqkdyJ3meKASo)IDyW
z!V?Y-PoCBOjgt>_n5eA2aI4$A)N{-`wr_tea&!B3^NpFV>gMKh$=QcnR>{f8C0Q8E
zTTwVm>2%SNi65tw|BhV~>H6fKmwaNcvc#(*pB}?-u2;XlM!$%DfBD<BX~HY7cuBI_
z<<}+MyK#CZ@APk{stOeaZvD$wsz|HeSNGf0wPoES&F}NR_wN^xf6U+<>2$XHW9TlQ
z{~pJad)B0zc?b98UTF@Kaw_1+eAePHrK!+SWM|_PLq5g5-?W)pvo6`6?+G{SGv+f;
zmYSJr$;K?5IYHY)`lX`99QN3y$xpl-Z+z`~;&7tdPUn;dGh=~&>i!>lLza4c7Rky8
zE_2hobmz~rhYwFIUHP=@V4bMhAzq#}7v2@0-`^8%XR77DbmjF2JR;c(7RlUu_>Yl~
zzqh=mprYY$W2KE8pMlJ*eRESIXZ|yhQ92#WvTc>i^2@HPW8FexTg_C`*d<>a;k2>z
z&b{VVm8h`nvEa8HkFVE`IoH&jpK|-=?YbTrDMtO%%R~d?ALq3E{_bP<<+yxZ!^MR&
zGb|cZ440N$&Hd)Xd!$S1E$7cF-vjIa@7%w=`+d#x-3$%+`##2h_;))$G5d1M!Q8z3
z<jZZp`Ph`h#ndiKow|0{Z<4@YQQ=GfPMy|&{BHC4(5zKL{s*2p$=}*!)qI$F#hH>4
zNsjB&mZ@#|c_O2rL;kL@CY!ajbihux+uwdmXPY1JaQx=7<(kK45%z6sE>^$a*Z#f!
z$9sl`<MQ<_cV&g=?b^M$d9Ur||Luzx2G6<{q%cA8R&DUL6}MkMzSUKE$LrQP1;xI0
z!#0Om`}XeI*5r5o$y@cpjyri_OINZnua|gwbjCTxhTE&;GGD!$Z*n%q_w7yhZTjaI
z-JZWqV)l>Q_4BtkuKRRmseF%{GS3>W{}m=~v!ar1&mWL1zV7)+ATg<D#<X*HYBYDO
zxE5G0_;oYy`nV^5Vq~`Qs8q$Selb@iwYlhRiOzzp(NmVo2+UC|FukO@W6Rs;{ZC_d
zoDvR@3NX`6pOIuCH~sC(Q(U5l3%fS*UJr|MylwM3b|1gmna98R<q~Y9k}I>zWL&jd
zOKc8JTbo?>e{uDVTLymf|K5$2iCTU%qoQNu+E)v=vXx8gFgeO7Z_=FlHjKM4AjE%R
zL+YcPfPO{PQeaV-$ReZY+0j29-agj+``q{YN1ChMK9-bMbI&}t@U5SLaAR;`y4B%x
z^FGeX&$BypVpRvX;)RW+ZjV)V?vQ#psa5l5l6|uFrt<%ftA9K*{}<12;Qx>O|6On2
zx?5~9jo@!%?pgCHdseESZ&-HQg=@<1zJ`6cb9XmGLwMX@k!$%e-w$n?zWOg$+ROBS
zsAL1sutFUN!;b$K*(IV&v*f(hSwzaL{Fa8NI@f$S%+J6uo8OM<vXt%Wq}tCnXX~jH
ziT%)&dpdc=sk7!ii~ieJBrGc3_dWmqA^!dU#TXLu^O=>Ue_2ZLPK;uGV&Wgz)ogrZ
zt=OU)F1jsql=Eg5d^g~ko_k}4^rbe(_3PFxxWAR_#9FZ+YjcsfYloWGF>t(|D>TVj
ztd8CPL{D+U`8$_wZCP`I1b2Cc?0t4-uJmU84WCq}Uz+-Sl}Ogvo&_2VGBR=rDXb#y
zhZQgB=pH#H$i_J7$P)b}t7{_`W^*XUcx<0=DEM;TyE}muev1tb{W?3Fp&|X9T{pj-
zNoG=WGow@V?wGbqy_XZ`DTkhV*;usfz?PruY|c)I5)5Zdm@{={z|39~Nf{mkncj)3
zHwm?FY7SjD_46|A-Xh+k5`1eO+<f>?&Lp@v>+`O=(%WLE96ET=&hFodHRkuLf6M0N
z&Aj!M-Fml2@a6fJ6Z@RH{WJLzf2U8_a^ZE!gc~O6nmfHC6Si8XFM2nj(eDb|TGL}@
z|35FTe*dug|2JKR1J(ck)ym}LGcp9ty*VLhx5a6bHna6wzQsLmYJ0NZC-59Qb3~+r
zWA)xeJ)TD0%(aUq+V%hWQyKV7(#X6~UWRAFEl!(vr2>5X6P`Y+O=i`wwq9xCoU*^2
zozW^+_}14;pY<Od|9`oknZfSsEA@+cs=YBWb2}yD-rJnt@U?>Z{=e)0*%&I`uQfN^
z_IHjqW2Sg*S7G=u^)6L2vo&5Ho|&<n-k9X9bv^9b^UMEolnzWksCmZRZ?dCw>AkhS
z#@BLkavv+0-V$$b77Vi9_9T+;XqTw2dxm(zOwcY3jx~*PZW*`#I4@Sqd%xLruD`S9
zugvAyAxjt&>dV=i7p2@vXt6mx=a9wqGrCP%*_g5)94~xgcmL%#U(WS2i*6o$`Rs6^
zG*8;KuU`4L1n%3Mzq@DRvSgk$f%|rEZod0gNjF8foxNReiZzGwm*2;<;-&96Wo<Rq
zI?mXzwQJi{0Vf&F=F&Pb3o}bumd>gFOc@T$T|V#dt5@F{7#2UQePWP%a*I=jce2*W
z30l0Vm)WPJKUy03Ov{I%ATw=c__I6<zllp%db>7U%UgFLPLTQYjcNNIACi0>DAQaR
zxsE^WveY;C^q;BX%U`^zoR(N$e*Wy@XzSS)8(!A5w=*A@X4rZyVcE%p3^!IXMrrai
z-?%G1$9Vd$h|R%jQVgxAYd86=KDsPhxy!FQS8RW<Mz>wf2Zrx<22J7L-`h8xJNubQ
zMu%a?COMZUCvtYYEU-9oqpG%e>P}s6Nw$u)>V_PLB;V}QpMLzvaslg?Yu7vqUSG$?
zu%Yg)m0YgPfoIH%WA<*`*f`foC)J>A)er6K*9w1M(`7iY{Qu$f50AL@XP#fbUO98C
zmQt1P!zKId-`Z~ewb#V=<41S-hrjRtHDh>inE#$@T*nd59RcoY7D2B!=D9O|<3Ahr
z@8LhaOIy}3%c@<hv3YTMk>{yRY`h1nrY=~pQ1DjOQ}eugMPIjmud?mQnJ?eZXSgYD
zZOI(P4Y_BUSnifdU!Pxfs^;H0*)O|}z1C)q{JHhnUC!>s0z%QTFCQQE-^ax8V(nU`
z?Tf;i4=c7kUg-TcL1x0C7LM$x%^w%3m9(Vi&N_SR)~Q3UvdvYCUX^5g&tH1VeV*m{
zoO$UU!Ns|4hZVoAHMsxooSB@R$xEf#{N@D}8@QLAeZJV>fZuVKt+G7rCvqgrnAu}i
z=06O%A9-Z0*8iM!ca`)53(q(eh#%a(>5_ZO(ZfqpG^W^nHgQ+$%?{IUt(lRSWBbVM
z$fZ5`bNYHeEd0r+t}sjUX-nK?9p`CJ-&y%y`&E{E(qe~3kfX$-8#32V-Li`66#r@F
zJ#pVI*ULYzHkZ5$(pqHUc+G63#4JXw$M0%az1Zx<ysP6@r{H!akLtP1f=yc<c6@eX
zvno{6VmsY4eP&d4__WmWbb0GA-=7IKZQCY`upc;fMzi;oPWjL9!-Z{Y0;aJ#C$OI^
zTit45X!&BZq>lggBYA#$i^3P3@bg()CS4w1A;<9H%;s`Kx!#Q%Gf(;0-nwz1FLX;-
zW}Awk@UN|}%?p2DlVvz?cJ}rQuV<Ty8#PQ}oHF@IZBdtltft;$CB9l4smF)EzkfKF
z-zT(bZ?A5~?xNl$8<sBON<Jp_^*2wo^W^_Kch)xOoHo=uwCVD*t>2R_yxWy^_CSlv
zajC2GD_*+V{Jmn#(9rz1HYY!qiJ|P<HiHdr97U}Mr0y4%v+j-KH_yMz#t^f6UtivJ
z3B{&vwjO5Fg&Z4slWnTM3o|tM+k9Uno!%mHLFz>CYQM8SocafHX7n6W(@nIH*m2>z
zM&8btdo$(NiR<5)k(e8_?k{KlWiRLKr&CLGc=un?Ha3;vpL^-+y>onKa<i+`vXhw?
ze^lJDcSrl2=+=USHB+R|Pr0Nwe{SKs66P&z6^FE5Mu=Pg@2>r0V{k0tyR-nyp{@4|
zCO8>fp3ZI%WyN6NWz2JVW45~RzP#I&Q>=X1*q)i$ZHlqH`Yk3?W2&;g$UW_)9NN+P
z0^fF>GH{WZxn)k?@@9u~%S|Hg=1mSNYjixtaaVM5-NLVzC2nPzRR7*B!E<JoiFEIs
zWnI@8HcK(REtA%MeSKrq*(F9>s%$-?r#2m{f3)Vpy>m^Kf4^QoD6#ra`ROWI#$w_9
z|9-vRQT&{5lFC8<|6lwc@4o*x@2T~+ZQDK^)vpu$TPOdwPCow6Bk_&7#d{I$kTfT`
zFWwK1*S$IZq5uDn{&)EguWtFX*#4LDpO5nY4gdW)|6fLb{~x1$f1c_;POp2G4%*|k
z@V4nfv-lr}#0%cvv#t62I-Z^3&$0YJZ2Nv3)qey!Ph7l8E^HmE@$J4ep4M+c=R|j`
z{i@T%a`f8fbHPuz{CL9(89k(Ttzc;}*nKK-!h+<z;dA5UbEEys&GM#fu64i5`q+zq
zQQ7YIbBe#@{%$Q~ImnuK&rsU)H#_^fYim!59=Z^-yli!E-u;?oQ@1F*DLomy`L?{+
z!ZOEz-LhXU8^(%cO`9lmw7ln7a*oX}j%aIZhK9q<ic3UoeOe0=4`^Lia}hdr+H}()
z$M(g7Q<6?}O{g@T<1KG<a(B@8I)0hZh3O1R(vK>W|B5k1PjyJ;`d$4jDknF;@~^#n
z!tcu6R~?t{Z;IP5u%zcM{}VHp85KgQ5?h0~)^3yB9v&8c;r(={`JxwX*_M0EeJ075
zQ*!v*H8H;2y;W*Q=LF}R@)GNP;IjVbl)6(ATeRMbpR?St+V=dNnlqB^r{2z(y!1q_
z?3coMioU_>#mkC!ypliM<9N%mrCC`+<m}=Tn!mD-DKNhb+HlT);<-&fswWyg6M40G
zMXSQL=gZtTG&Uz#xzC$zf2^{vWKN=miJ;=+!k4D<>5`j#cD^rrl<#%$=jo}E#a(4-
z^SJ7Ndd@hp?NI1)$&`#+_L=2AUpenhu&a$Tx%2mcL^BUliIrN{s;jSdWY$|)9Jsen
zGJ2CvtCo_jgmcFARi4Yc{kEsSy2C6mXZrQ#WA%@ECN$P@dT46LeP&u~`tOPVKbHCr
z?DY-tKc~hsGSs}yjz4^Mw)w~F^?$GbxHNrVi~0Q;;rRc*u73nw*|2`^Hz|e(tK<J_
z*?r%6{^8o~_YP^>GAn<Ftp!-WXVVVhM25?oyTy_<icKf4=)Jd!Q@3le*rhW*U(!Av
z6L3irdN@aM`_72nzki=t(|GA+`Nh}kXTMKn^1QLBU*GPgiCWJ`nH?LBnv`}gG~g2S
z;M6=_WT+gyP0znr<m&Dy&*M+mpIi_l(EnMc`65SS?3^PP=X_c?z2VZ0^cz+dN9q=K
z)EKxVh<gPtIFS2q(Iu&cdl^L~_;NL>m-%kg41BUmJ4(jq@O>AJEoI&7W~y)sMXU7|
zH!evPi}l>yJ<-%AWS;e76)s_ww-TO7$D~fSUcPeT*t}Urg*s8QgWMSoEL6<VnmmPR
zqHgRJuc!$N*GS#@Ce?S@FyU}*dwaWt%#DMZ^UMF|&-rj@@=S}VN{`OlJbO@P^W4Z)
zV8%}iu4s=axA(4XhAtV!h0V1+$5W?HFbTiV`o&Z}`TVlYTW`mfurE6k{=c9h@OVqP
zx24;pr5tNNR$Mb#>G}A@rnLEs&L$mPIK{H-qK5M{vD8Zv$5yW8n)v*LQEQ`bwA9j-
z#;1&z-mO@)WnIoD@r)N<D;=Nx3*VEM5cib#Tx)S!%>FW2BMzyRvc+m|ti&|T0xc$;
zIJ4fyM}Q-_W_cw4U!_!^^mS%)+uAmq`kg4D(3R{lTgyVK|L%>&Av-<2U&}u-0i~He
zf4|)Zl~;>24rQ<3+qS;usdmM`pU*$O+x`C0zrVkK+?@Y6^7}oFt`EWXUxO<i_nLoL
zs$a|b|IhjVJ$3uv_Y^byc$045UAMpA{9eUl7v@?Mshv_w88+<RUA^%0jD_#-)W|0b
zl&Kr_3CBbmvzhG|Trl^>u1O1Bgj6$bwi>q_`EWs}sl0rf!G_&u3uT;d%>D8AZ*6$h
z^G#U`%$4P1cgJkAIn59kQKxo%Q$$RMgQ8d(lXvB_W%<WuX3MYLa@z9zXPHd1GVb@w
zHl6Sc<!FmxyHNJ<bOeLs?CQnkYy0PY)nN;4+2E0r!ZW*U;qH$K!iPT!ycON-Fzw(Q
zGuLyUY<*vRziQ-^8YyEi#dKz?i^S~WjF&QrS?gS<rR({JwJ{zt(0hH>_}M<w>y<Cp
zs!!dKoXE3onL$P5&X}i`F=xcm1!4}Ich}qV&PIIQyDd!452ZpHs^?iqmY-jAr}leq
z@n`cn?6GVMjrUB><KEl&(Qe(l_sRL!UFPzzv7flKQGDT4=UXQxYxD`+D(vfKFq4(m
znUHtbj-%<6sr_dgn~f1WdoFeuvL$|=XnlR%PSc)iYeeSyd^VDg&wjGAXqQdox;e}D
z2r)m9e7H}pX<PkoHml;WoxkNJk~Q*nI&gidR{LL-`d5lcbNv*<lQSg$a|>D@R9*6R
zwww2H;omy%c+Vf29u##kX7|H`M(PbaLS~mAaatgmeQ?jWTiHLl_y6GjbNBvV*?qsR
zt_P=rKhN#^dwY5B?5~$+DER#B?5Xs;dwX8S?XLfCmv?7J;gjn8J3AiUE0(GM(O&=J
z)3x7!?dDZJn<+V06t;AQr7-YB^S*?-f6wdh+5S6|Zr6Oi_FZws!&dPRTi4g}&j0%+
zozX`>HSF$QyIqSdf6mMN^Y8tCySnG)b;tki-Mzb7QMpzw&M-5yd}oSBlCajUUAy|E
zx1U+&vih!@1Y5>!1FLhEY-U;s)z#9~(b3Ot%y3)hQ!(dUF-K(8(Q~dxPnXrbnlU~4
zoAk49Pj@~zCw#(^eM?)IYlT?()8#DT31z?MW;)!C31H<5%eh|6c9Lm_?31dw|6b0V
z*JLLyksR^<%Z2{l<u*HY3qM~gWjJtJzg|jz?++OUg}!RPl~K$;9yIeaGTi?+|G%t!
z%@4UrC&Kgt-W)o+@5?-qG#ka%#i2zH_w1Be`mR-gF(H`UB3)0krFpiNaNUm0fAyA0
zZ0Ys8c;U3XSyi6Ij<@F%1(dkDM3^(9x1XrjtK~k%obgZ0$-=imV@k)`Pt_VtmiM>&
z%3kq1cK35x?ZbY?qb6!I98#RmM|(E;9q+MReLZaB_WVU(E|v5+oCso#dzxxjHYp)B
zRg~ev+iil|eXsb-Y>$mJ5*944%g=lGbkCWU(+!_#+1=SuD(r9jorz(=?`Pi&EsQ4C
z|E%cQxGC|<&d!X}Aumn!*+h;#c$Ofn`TqRcxUC{<)eqg{eYW}DXV;G1DKEC2y|wCY
zmTvvOolAR;G45#K4m2-r$W3Pz@8pc_>@H7yGpDdX@6N4uZog#P!n_j>`%`YcHM0X<
zA@p|p{bQi(PnZqjKHc7)zx%sQ&5sL}SM%@gYGvn_lleK%y<blD;~sw@S3#xO(ZSvl
z2Lhhhx^ukU_$_RA#NM<|7p?D_H7U5{#3wU6+IaH5(46Mmooc7sEo@T0?RIK${P^!P
z&$RI5j?|t;<IDe?TJns9oFtT&WVFa!xWheL+v%x`<fC(Ytn}u1a?ITQJ+{r^yidf0
zM7|kj@7I015N~`a!e&pOzwLh`h6kVjAAkPwOKkFj_C$`f^*0Ml9O}>NlzjibeZ%(c
z-Aj_iqNASdxbW)Bp<_SS2q&er%WIugJg`G_jnE>ILywpkyNWCw&gI@%H0ddusQJ??
zJ4^+(p4waWmD_r*TXN4^r7xCc4;Ok~a*B8n9pSuoQ)cdeQ745B#m++N68yazh1+~Z
zm+gs}Q+rM_BJQ5{9PR>Z_Kal*D+Igbl(bIGF54XuYxs28ClhBO^{0E8o(1uxNG!N*
zns{|>*zKumIoqQ>_FUP<y?puA1Rkw(4{zO)s{2*{Uz6d$VfosY{~y=Zvohq^{E>Kh
z!9uKPs&cs0OkeH<o^u~A*G25^Ec`Ba*w(B#_vg$<Y6hBr+~?Xgv2*0iKK`)AYt2>3
zV-^yV^{xhaJPcA*z3kT$l*zj6bft55P)xYT%OFb@@zc6dE@wo!3iqeDEf&02^V#>#
zzFO(?w%=v)?(S*@l@bN(`;RC8xorPe7<5k%GXtpUk(i#&e*e!i^SjmHTdu6Ft>4+Q
zz)BF8&kFp%nttBB|2Ou}BmI9$^J>3E+SL3I09}!^arf@-_}^ROnUi_;|GmAx7hH?I
zTsr;3C2#$Q+VMZRqSlJ-`_QV-zz|paHT2J&^M7T)_ea%#ORr};FeUPLYy6Maqgp%8
zGlpHUWD;N#w2~EmbT6;`;<o<D7LEce9B=rR|6CBdUG8{?koGFmw2tD>HS4D@ylt%d
z>YVtdQqz#Re`3F?bjC_c>+3e3>fWH=yNBbt=%rkN;$yKDTH=S^DrK)-P_k1xely4a
z;Kh48wpA*(xLkU*Ai1?AYOkox_b$%PJzu}X#_UeB33l?jZXBKYXi9DV-CfP!tKKVa
zn5b;EKcVBdWa#Anf}iJB2OnUFYg^cs_~Ob+%k+8XbCoA=%h!IoCuz>i?*`JJ))n;`
z=p4Fr`rG>GF7LS?Zmab;sq4&C*(fX|>~zEIdl2WG2UE)yUUn3)R9xp!^_eyB>5=N&
z<vXWkmhhxTHEN#Eym!pfU1G++`7RT+c~^(_<t=YD*m709sP{~r2Uq8g4^!9`Z*6l4
zm6^II#?9jGqwl=4e|%pv|J&@BHs1>`)~!`Js2*P{%J5<S|IhzBKOUI!{@1mKc9%+|
z873@~ELu9}`m~KktY^jRFE<Fk4363vvL)$^E_X$Se%IQfsJxtRrp~ye&>xEh!V~X4
zUc80v`5o6h7RLvtjvDc1BnF#oS*OFnW$CSFA@Tg_EqBcTMp4k>`+W(Zo2BCaUX4Hc
z_;`Qe-(RIQ-!{)b3c6A1&faQqh7Z;IzgJ7}uz@dT%gN1sxb=G6;rsvp-rwEH$MEmf
z`hQ&ezeewWdgWgI%jtET^}m+aS7|;s&fZ}x5S>wa#&Y{4u|*f!VqFcFOo@B@qi6xo
zVFAz65}zC=>^wQwQMvE-yWjqk*V~^A)#yJc5wm+%kfQ63-JF-T4hfgevtAl|c6Dx0
z&Aej9w_*hh2j*nG-?a5X%@zrkU4Qw)*3X>q_3AyTyg1{flE3e+^A3Hu$H(@;o{$H7
z|6a+B*}d)EtBp<{yzfe8Hr1Y!P>?8II;Y8DS3&kUO9}1O0v4A8rerEML@p4WA2=uc
zSKE$)j(4I5q-VEI$lL7Fbs+bjZ`=0Yw<LQi-6WFZG!3$TKeovHy>rrj8_BTT#5E_H
z&DyFLhR7Y|++`*&+tc`RpY--kI)^i2rugZeUdF_8C^TlG-^DvI#dRNle)rM(a7;n}
z`M>VJTYmN#wXRH_%QnB}>*XI8-Q6C1Klt~zM88kRZwudrm$!uEUEj5){N2-8uZ>pS
zy<(?dm*ZsI+HB3<8h_kw3ge?2c`W5t5s~r5=k-4prEBpt@H7P_yPw*m#h!k_?CCN6
z=u<PMpG!CA=XSm)@xn}g?&n|rO)hH{m}?LIIeY)l+0OOG$3Faez5emn>+$yAY_G42
zJskh<Y5ch#ClKA}(=9wDi^4=6y1Xru{=4lX+cD23g)NI@8(VZ-PV2b7eP_UP_xFsT
z2W8vi3Ksw4J5ag(+-X<k+Quraoy^C62exdL?oU+wk#>l?+u+!ogQiWIwQ()er@cDm
zRB_Mw<idler55$xoocW3*lzvn6Bf>goLdf69H<moc-8pc3JtE<B}~b8SpAJP=T5lh
zwY>f7J*{K6Dpr0nDgA!3($c?U|9?q;fnC!KjtLwUELnK%oJGs?t)Z>61)eG>*i6?=
zXYw)d|G9UMS=8a(X}x<HpY<<4ac;rsZBy@69O=t<K6WaEMbd+1WpBfWb(brZR!p0x
ze&<fwoX;#L{><L7$LGNu#Vy4hebE=R%kuh^3=W*tkDQliVRGu}<HA>U+gC6p?Y~z0
z@#2ck?!sN~jW)8Xe>HtjQ_PTlNAv#uUA5BoKPUf}W_a*#uY6K=IWxnCz1!P;4lb?y
zv5@c7=LcE;BYIBnw{Xy|$<)X$VNMiL*z&n>_vK?=_m}wW{qo4W;^|ZWS>KPCiiyk<
zcH(GpY?vdSJwNDZY_@~t#3Na|oG+e=nPItjhn>}gbIp3S3uBusSW^}VZ(S5nmb*3D
z;?2#N6%IQ#iO(q(b_?<G&<L$>eIO9VYA1fDHG|!;!S8m<WL9yFt4zPUy{%6b>ATGR
z=p~V?x+id|>UERLd5$^j?gpktoMS!IP<?-|&s+2P4|2~*G^se<*?f!Jvqxdes$W67
z%u?n!ivP^_+F7tCOxrPiYxlzgc@c)K-Rg&B?=Gkiy6XM*InQ<eV78TKc3-)0dFo=*
zm}srIY4OHSFMBypGHy7%=x^lAqRk<H>$m+-y*xue&n31XP?Np#N%2zE=W*gq*3AYS
zDlOuAzEcbyd{MlAlugIQQa<CY$lAjiMYEp=v2iG8PuOm}+cD$)Y#nEbnHyd`%;?cE
zo*J>qr1W!Vo7Ume8yCDjb}n$^QS&bUzcVjIPS_Gv@oJ_uLqoXT*T)sF&&o3})P1>_
zY+z^fbuYt@$IIsTpWEZh@-R20;Mf7?mu5a;)wLzN(|otq{bjqgF;X~o_ujUzTT2-Z
zbnEZynVy?hBheE6EbilVEk}u_=)JP_pFMqZyr#}?^_JBLGVJ1F51Mw%T3l1uBgR+5
zup4a?VpL#-ztvm4O;@gLc<RG6FKE;L$LIGHxSpFKEHr7A$RzG24qfdqWskGpBeYKK
zSrgJ}I<a@v9=16<1@wwdyCz(@H2X#S6eG1Wdi%Mhv!CgG+H&{(XA6J7pUD~Oxg~2B
z<;^*g`it#x>i_S24vg;#1=@C0*7E)~>oMsPYPgzgzipeQT#sYNrQp?5R{i?(R#971
z&FOphgtCU_P$jP}we&qc{}uF4eH6LQVDM-`qmIZ;?~TiXp0D0x^{#4xO!FaymM!86
z9ZJjJ`S}!d{mZav-nV??o_5ny9a`sFcl!l#u$=0NtemEJ)<}KR)NY1D*ZigjDQ#{l
zRMu2@YoV^KRM;)K`-UaclRsZOB-Q=Qw~3zBOKr%zeWkAc*UjA(&)yX?G|2DyugG@T
z@XEsjHQU4P?K=K{Ps5h2yA~U`?9RQk$m*|M-u*qDUtgPpZk_pHH1FRLV}=In@_9_n
zolyct+q&L5?7w}u_w}*adPk04Vw}zKoQLtVl8Nosnq#ID#EaKXuY2sSYw^+cwdwOk
zN@v`Y?F+>+jwzk%u|IL9YGJHS(&R9vrDv8bol?ea3fhgzbf)FSDS6Ju0I}4GEx`<Z
zi*Kx)!d1A@vFIjy#52jdIu2!p18cjs1_*i0I4hiS{@v#(_ij!(nGt#Wozl*Z<BAsU
zcl<VF6*Es(`SPpGRR7ZcG}nK{yYC)7yL|q!UpHblU!9t*H-DCeT)p7a)$g)0-dml{
z>PSwU(CqB>kjK&9rtX^MmeW0}RRoW&vzfKN&))aw-H5Pb8JcE^tvc%`3vAMv?sEO%
z6`yUzE0q`8T8B9A{-$qUX(|4oGR;2oU-*<)Pjs{|m#~z(+42XK&uw<tRZyu{aa3T|
z!A{xFe^~d6E%$%$@%YT7;77N%W>>tLxtx(<d*0nc1r{ZV>%6qL2Og9twtVxqj^8|g
zCYQYb-AXb0kHYqx3>EL5if^oYY<4ZIr+Crz*Ghdkq5S6-<a(adIUhL3Li|wZzlbZ#
zJmwlCcQ<hBUE39OYn?|!fR4WX;Yd~X+Dii8pQkrjaHlK~7Eii%Z$nZM|6z_j>2lio
z+owe{-(J5mR<Ffdf9<)gr+-dq)Oo!!XyxMI;v*6IVkZ=1`lj7f&=ljHXFl=cQs1lg
zeUbOLeK^*92`l)1RQ!#w)Z1;58J?QUza`f%y#DrE!Sip%8>&NIe6KQo@jLu+Q`oQC
ziO*L?KK;2!MC3uHmceVy<uT8>1GhvAcw}hy+1UTQ;m+~$lfC->$?J~a{BV48=IjZn
z#naxNvMf$o^nfR-x~*I9^R<~`OVt_#QZ1cT6?b0c<yhP$@$BWNC;pXr#=n<!2WQ1I
zWM^Ohc*uJ_1H-+l*S{rX<P^5a6>6%4t(oRmUMgyye~*FTPVGb2nqQ)m&Hvr`d_MW_
zw2w2&C$YqEDf_i?@~>O2xp>Q}DQUv@YU)BYO9dom+<)Hv{Hoz&q37L~y%na(Z3=@|
z$Q+A6TUU1&6mxzQmFbxsn;KH~cJ)K2XXa;<C0V9^%5F{XE~?k#`&@Ktr=G1`@cr#Q
zIzRSUBxiizRq=7@^s~ZR?(5S}@o_2ITz&QG`4Zmux#hPy9-Zj+*lE?ZXY-N#=Uwc7
zXZ-QWdVI4`Z2kAlJ+F`4w9L!1w>#TwDcBG+mqmcVhifaZ;ImV%voaWVp7m|Nl%RLS
zwj|SXa;EKRmgF;2?O&HvRs71Ftp0DM|9^=^D#vat(_9-He^@=vNHBDJzD=vO*_yxC
z&dz>O;#(3bb6js%x{>OG9p4_$@^^95Nw=QQ9v{!Zz+zmx+2iGmZ}Yqp^O7u%q&l%#
z1xBB`aPcv_eVC+8<kA*#Uz5)dy|%5s#yz)1GMQuPkyo#}e*g8Fb!>`rV$aN7cNiiB
z9I8@d(~8fYi%ZLu+&Ss*{2iA>9=^NG^I17cxwVW_|5N3|BRW$}kIY<?w=7#+{Cv!;
zDHB5PHZCiWYj;)5lRj#A?b<a4hV}b?Y2Jy5Y~RL|ci!$ZPo8~p&-c3J?G}c+tO}nj
zXPQ&1oNSc(!N#|COT0+^>*B5McUQ*N$IM%%YJ+8~&!RHx*+;G}nqs-{LwMmiK{mCN
z*u^~>mcH`lsqfON^)Kvo6(~KhOj`GbvgJ$FxmI!+ys<sO^IlmqH#j)mR$X3sR{ng~
z@u!&|wL@lI5O;gCb{!Lg-N!qhBX-v@J0{pX&0c-|!rR#<%Qg5;bFmxyJe<AP<6lwy
z_FoQqUs79mN}4K|PVci&NOPCGVJ<yw`zwaK!7PP#K0BA6j+x{iwx*z1<@sfEK8x~~
z=I{Q_6Eqi8d4I3?>a)0WmQiLUwY6{As`iQ+%)WKSFRG(U>Z6gyY3pkXdiz%W-5suG
zmh|PwYZgbD<D1s~LrSNC6WHg@P<+al`8n~)6XlLd$M0f}F%u$>zn=5)dcR=L>}MCR
zM$KO#V)xd#^aD?P&*t^*63Od?+%M%R2N|}Ao|@da=1S}O^3Oiv0(;)rc?<Z0uCYHO
z^7+k^8@qj`%DuAvDd@6!;q7jPbMBHxIseujo>N_ObL-;u^Pjz6&GS6fZdaI0kNDDO
zKPG0!i}x8H*{aT+uQmDVg3UrM&I>TM;+<o>>a5nW`oJEW=qK)q9l-(W=07zp^^W{~
zReAP&-C2p`by4gV?P;M~f2VDkDSzudH-p)7eqk3`1?IUkG>;ank+zaBPi9ilYknML
z-BEnu%)>?nF)z)MbEm4^78h1OZhf`e__|ctAMT@m1~NReGG*qUudNIT{iALkck20>
z>KXr;-f(}mb7{)3!PvZaWaq~(_FhuDmm=rOW-YqubB!}k?(@2&3s1HwcCZ$>w0^x|
zzKHXC@LZb%-4FH@H>_4YXEGyg#pPW`_O~tHIWPR}Ea4+Miu_iF;<GFa%s))%l)8MR
znxW_B{|haq_KrIG%T3<RvN&_5`&aMI=k{`J&pw@dJ+Z#-=6-*HaPChFgrB!(zIL5&
zSFn5TgUMo2r7O;sy%d(e$a3zguav^4k~fF?^SGNVR5$a>T5oj>yT35ial@$_HLFUG
zFUt7imR`xU#Yd^*s1s;cI4oVPU`$yc{QUSkp6s>D--XG4|8r#avx0>5B_dvH?be<?
zY<+d7fcM#*zZ&j$O0`(Nc_wS_7{hnmM@jtWvEY04zH4U~S*Ml%GnW4>W!Lu0?{nLH
zE=LnSu0r)^9?l|<`*`mf9rqO$ei*DN+r0Q|?R3uigS*Z=_Y^2?dAHxY;Z>$p-|at!
zz9rxGdCuO)QdottVU#5>=heI<;fk!xotyv3yj9X?JYCBxy*}4Pz}w9*|B4sO+P0W2
zk>@tZ>^Kx6UAZaWuU7qQc$0;2$^zlyC6dgaKC*qkDDb!2eXr?a-;VCfFIY{A|2uyb
zbQG9=GNr=M@bShnw}o$e<^F$c+3+=a)%!UqD}-4J%`i)f?&2KT)bq@-kIz1F;%Kd`
zbK?EKC2hO(oe#dHiynl0Jv&=Kqps%uyy^T)Ud~f(+7S}5_xa^x#eoxdEQ_BVJm>qw
znZ2U_H@qt9KUURbVGgQskMkXJZ-3O*Vkx@xirVK@%X~tfTPh1r^bii6yJN$|7q$O>
zyw7s_e?55jvo+2lFXa?EBptV3bh60Z@oiIY?sCbWUt3DgX`R2!CggaA33CHipGl2$
z=`4;@GWB}lmMr4Me_AUaZs*dTpHzD3@YSj9TIZMVaSp#EllE&i?_;Aw7iQo7Kf66_
z)u-}xXZ||8-7lebTwdt<D*dmXColeAy|<cs<EB^t8U9Jnl@z_)n`Ffo<&n>RirHjZ
zUr5(9)ht(YS(lb|JjZ1|Ej!#A$KoaKl*qoQV^`*`fW_THQ%iiLPG5eoLbT}_C%>qi
z+UdaMU-wsJUS9Fu-goxi6g&AF2A^%R^RF4#JfHdXZhQJ7<A2lQetwMm6&n%0Xz$+|
z7nhRv>n4@7ai9PH<YYdx>)l<I&aRrFQ^KcIamCIm3X1v^Z&mkg>D9fvi~Thte@_W>
zbxmEloZ)6+7!w0S1CPdw*bpyGzqwYSuQC}J7*r>nceng8x#^zk)@|F4U0CSsZOhBR
zu)rlMI@;ToRWD$gP3|StrBfa~IM`fx+1LE&zrVj12WU*G@`_pRH`hwkxt*_<nVrw&
z{=QmoTiJEaMn|qrQd~EUr%*S>-_lFdH9I>yBs_e#m~&c;%DQeXZEfvopPUv>`0Ls7
z=j+?s;e9)_kaXx<eqxH9XA{fBz`!6GaDkD5L4o<MxL(YT4Ob>FDA`s1UQSrer{h!6
z{IUo0Co6+&*_zU^TGcs*yXeT(qKOs^3=Ah4w(nqOU~pg)DFO4E_>j!vsuKTpEjs_`
zhQz~*($CKe3=S5Kul*Xja=DAzwe|7xmzVqZzk2mbLtDGs-~R8G!~doP>BQ_XShaff
z;_&rxhKYw-ZtN^hZ#O*NFW*1YINfbwK!?*p0ps*@J;LgKCC?HAoVvwyyQ<&qRR8tm
zr7$x)U(a#*dYif*58L^YZ{50;^zP11!-NA3FYfLxxB2yAap8vt2l<k}y}u8(_}<>?
z;|+|=kA6O%-@iHieA%;w0ZRG%|CaU0SQ`EM_Ex&~_qX0#w{HD-)UDt3`)RxO){Kjb
zKra3D>(?VQ%SZ1)E<JVXl+~S8t5$XWUfa3jn#dQuSCjqiI)DB8Rq=Fcc+%}{xrP7#
zem_1%GdSu0zrRc8Nl9AN{wnE_GS!-<7h84m@A|#pqI4oRsZ7(0m6~mq+qG)ds)`p2
z+ZS!!y4B*@%=CGk&z?Pt*jbdiCT6G6tl6`ZpPiXGx0GW_L~?TSnVH7wW_focR)??e
z`~3X;@h2xIKmPLa@=?RDU%zflI@*<yk<q~`ZFXe+{(n-Jm-%*o`}VD)BO^b*e`WCU
zV=pf+Pd?nnd-1{rfz#7;yMKOuKK<2(7cS0iJe^0o#g9KbJ3IOFv$KYUkB(Hl*?7E*
zJO1ZGubf+3H1E}Zzbj!`l+ymT=*ZI@uh;E<^x@&*qtV{p-i7l`1+T{}^4|6RUiIZS
zH#b}7?0(#5eW_c2U&JEGiK{z2w8PeD)crp$U%zD4s#RMmK0bQ1%{cws5~qa|?o~dY
zJ0-|#ciCGn!HH&hcOqmiU%4_xNvZb#-|utHD>oIsxv^11aOK90hD)bh>J(NFa&>jh
z%E-{@vn+WL@ao#y=%}4Vsa~2(&)fgEDSdrSSJtXzg~hYS{q}ygRbM>R{pY>8!>qvl
z_t#hN_j|w3`%~Z=6&-zf?e=@K!q&&lJ=QNj|Jm8u(}RlS9(~e@*r3oWW%_E;?=_u2
z%qv*;a$8k@%gMR9Nmb2%-krqXpfG;De!t$uH9O+o+}&;7Cu4a@(cZS|OUK8@$HhNi
zzH&vR)k*PKk7TfnaoL+28X{aq*Ieh?R2nHM{rdi1UQjT4TTW;3^K+#q0!vFvdF1W(
zIQO;j%gbH8diAIwzx|(rEoX|E-!m|<OM1FEhHTw>bee9oRpGZOQPtJeCMG6FUS3|l
zc-ywHx*bZz&(3s$BC?s^?ndHnnZliA@9)W8y?WI!=f;MLS1Xq%ou6kbnCN?C|KdGY
zgcp4N`{(odi}&uyHM8-)+E9C8fn(v56BC8bcD+72Uvg(i-M6>5!)1&M9vtX?XI=2X
zLGpD|kk`jU-1<jqzuy%<+|J+M@jq?JrcFk_zP`Sm_$L0mvwNS+PL1@xzrJ>#I^|{g
zN+~KTYSFfBX6NQu3Y*_4a9$I!QR&^D&*w7o@}|k_c{@8h=iJ?8YL<Je<f7ekMZM!Q
z43i%%?zii@owr-JPtI0q{k~sWJ<{fSW$*4}`X1Tu<oNy&C}Y*k589O>{YSrk`h4$H
z&ttom?b@~L#=hF>oEsY+<{v*LSYP`4?RNL#;^H|Lg-X+Oqs2C-o$Wey?AU+HxVj&!
znc4Y{?5X^mbahqe#m(vGPw$&A^D#VlnU7|jZPJmB6>Hb_M(6ERwfpnou!MD4j!T4a
zVQyu2wYUkWytudbx9j;^vesp97Ns*hbgGZr`Q`s<|IpA-8QZEai+=z6a@pVL+R-y}
zt<CLzzu6qIyDXPS(rC$!y{lGfottMXeY{`(y}`djGO;r@KR(`nd}s0VCo8&FtXb3Z
z|Ic%K!>TVYBDQ1%f=Yq7`oE<=A8rDrus&I9F;i31z_>WMr%#_=ym3P!f6qs^DbuGP
zU*OpMq(l4K?(+8%hDk1O?(MxjtE0ZP=^krnSeToyukV_;y}J&7ySh63_>RKIUMAY>
z#1FUecCT8sitndo^|u@oGc&Qz!O_vu>i+Y3^7sGUX7Oxx{=Ux1>i(x9#3u%I?b@{~
zVqZ;V&CjRPL8*uDcXn3RqD6}qIrs6&+sRm$y?HTVv8;93k%x!dyOYD#Mu~#b`>a{B
z&RGg<niSNvZJXK8hnsw6nP`F%!OopKE2M3!O3utMT>N9JOySa7w{AV!{eEBf!DjYo
z;g9b%j!u24vA3<QEhI2-;=TI+f45{`Ul$S|KfmhxySa6LJ{}M9@8#LDZQHWk+uN3c
zaEFKYG#$^|+j6~se|zh#xfE1#glLFd`t<a4u(!8&)vuS!FF!cge0gQ?@~-}mCzSh_
zOjLGXwrtt5D_5>eaqE$oxXgEU*ed5mlWo7>DP9?%v843%wWWvK`Ni}1|NRzSc;?N`
z&6g)AI$xS)ntkco+UUziI)yK<2wZ&W=jZ3aUYc|5>+N{u?QDE!nP}$T-DSEqa<dw*
zq>;+it5>Ij3QYaIUxK3c*VW$IU7mkyUu|{O&!^Lax98oxv?_FUkk_Zf_Mfk>-mzT8
z{m<T?pPw%WS#4YWZAq`R`LfK*%a+>J{t~%<=9)`PHmI6>HamaW?EHO}p<!XmcE8`Z
z`^WqKgtxc0YAWgNIy=i$d+C?^_1c>f4mO2^hEA>e@?xS~#e>Exmo8m;Xju32>2#Ci
zV?9@v`_Bhq5WD2hkB>q!yh{sK{&8{n^`M!*E4l9f-|r#e;nRP8e?PzK>#M2Dd}mMl
z_Wu6;hlStX-k!e9Z|*FRC`k6zt5=t18mC+R%+P2}pI^J}hxw~x()m7<)qJ(4eV+29
zz5dyuCO!8*bJge981c&4ScHazEP3_n)t4i}{!8Xsmy3Om7A{;nb?KC#%(&g`3=9na
zo*2JiU|^WQ$STXgz+kjs0q*vK6$1l9ii0CNq}?>CX*3{^Q^X(nrE{(yy1M3G1_J{F
NgQu&X%Q~loCIEw3Z#e(}

literal 0
HcmV?d00001

diff --git a/reconstruction_im/charis_VAE_bs_64_ls_5.png b/reconstruction_im/charis_VAE_bs_64_ls_5.png
new file mode 100644
index 0000000000000000000000000000000000000000..bb5d36d5a242430d88307a292acf6f4e00d32359
GIT binary patch
literal 116789
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|eM#wA$*!pZB>N-BYgZ
zTM?q#spZ*lK`-&(hHf*l)eoBucNpgGUY^^Nn~_|7r{{Lwv3LH)a>jDf+wZ=8`K?KO
z+s4A=0~d}-Gz&y<3r)JvG{I}t-c4HDPek0es=xF5UG>DNk*m&}I@58+=Kgv1DWZ~+
zKR+Go{(W!n^E<_<4SFpCP8^CY0!}>)k_)&&3=mJ*f$arEm_zXh#{|Y*P(>VuOesTC
z%f^E;)}MIf{~rE-=E+TCpLw><GOZI-Ue$wrnUu2gupNWqH7AK53^m_xe=j&G8g9I;
z^!9{)kB+OwZ;p8W`&<9RzT!#aZ-x$?_S^3(lo{^-zjdAW^Mw`xr!_|RzkmE|cQlEU
z;r!>e8W*RIr4u-i0!*bz&uovuho8sy|0`yw`(9o@J^ue*`$tus3%Ysp)`@>mpZ|-8
zA=udX%UmOd|Bw2vCq-T};LmmTnl$6zO!batGlsZY^Sn}ahH1(dwH1%N@|x7L@}wuj
zyvkpmyXNv8oz%6Uzc)Yi^|iGOS6=aQwK6rtaECc8n%-yo??P-ycJiB>^{Nc(q9vXs
zc9#0Fy+}Ijb@|r+kC*EYy8nN%pV2@%Vv5((M7e9r%uP*Q_r|fSyv^Hsq|j$+(6i}v
zAH^Aey#4>YysgGXI$VgA!N>N?b(!Cf)?dnBE&aqPS3Nm=4@-mW_CFR^Yt0!FEQ>Cy
zwM0~24i2{Y^kF;Whu?PFm?yrQUv*b+xxXy?f&h)6)#eNm^7p+KFWk58T9#2le49!q
z<Breo?N3hTub+E6ZsD}adq4HQUuL$gc1F9}HABxrad6}~aVWYqxLi2eCc<VHe=+lI
z{Wtgjy|UI<be@I$ws_j*a^ZTE0E^A16N?${RKK^~^Y?8&yGql(s9ksU61Sh-zVDMg
z<BQU$5G_%MAgS;mp;n(eztb6Pes14?=FAnzDy;<9r3Rkmj|>^o<o@dPM&IW?&=|f?
z{JJ*Z(~9fD_umV@&{>hSb>Eun9>M;TRSs@bmD_l0*Iv7&i<bDU-)g|a_~Tr;+><LW
zgBhlDsdCM8U%2AjZxzlBx}~S(ztr~m+43H^zVBP;xjBK6_VxwGvv<B+Hv8I-7v_By
zT{Gs`91XYoAIPB9J9p2k-v4Y9&NoL`NiOK-eK{}x-qH6pPm~#ADvv&``73>&VL|Y%
zv{kdZu1>utBX3vJa=zx-=R5WPZ5jUD=>NMyQm5;xp|P=Z#?G4GE0Y;~{LaouWqtH$
zsb+7w+%F#f|6kb|EUKUJthIBgQs15Huy)12i-lzyULWXYEQpyo#cF=ZhL7$0|0nj@
z6-zY4|GUa>cuj&mfcfp`J8zC{tjhoOSC0Q)y*Y#M^1e^I<o`@>xTCSY%_8ji&*lIB
zz5a8+JD)M(^o%d&*@~V*Y0H)~TGae7Xk4$h^_S~>r-O^1tUh@lX<^6fmETuhfBo@5
zvzF+;)$w~LFP|4Q-`JjG=f`8xj6dh-xC*SWTYWW4xQ+9zpLm0^zirYw(P>Y4-u^i9
zONF^)qoS;3;jDDOm5~o`p4?pX`U4BY^}8GTlL8louU>oi-G`_8^}G%H|D5jsctZL9
zv#INAEE)8xE_Sz-#mqk1DXe~DbMBn^)#rCJ{%EcLuKniL*6b7RTMbnT&zx-E&vBqx
z{y(eVd<$NO+wBUcj`bBXB|g?-;QRZaKJ9$yt3A`D?|=55y*%XZsptDX+-I!#w6gwW
zW9@Io8{6LtZF_%X;@8KXJ~FNhCAW%givLJ5%sMN{Xa7}&;r#w@VR65g$zNQr|91bS
zM-f~9Ph5Q5qV$_(1J8x&N^{TjJ?`-E5BOO(ziz$v^1Dn6uFhI)Y0Z4#$`zIL^Ya)V
zoSDhl<nXs<Va(Ce(kV7Pnm^>~;(2dyx9+q2zW?`L^`Dof@8dZT>@S=4+AP%M``7jL
zdu!~bDc1gPGEnFd(uw9hCcC{M)$>_jgq&qDtZ?rTR1hrLs93r?cAm|$Ye}t%E&?k}
z7Dug3+a@lkt=*Rl8VqEx`?}Kq^HcrRlD`hO?`K!p^HevVal*HF*Oxy3Ci~l+yqJ9a
z$BF-66&VgGB>eyP_pr^DQvHj8hZghK%-j9{Pc4JbTpOS8^_KlY8yMW#7rgnz_wDb2
zdZvW;SM?{IxWZZ_QyTqg+xET9|9>9UXDIkzd;ihq_>jMzGHn)py=xbTl&y>0o_qTk
zuXzmrf%Si0t^asp@hY|hoyqP?|At?@xjCKj$GdX52T!(!Gk>`ATt?!VV(${a)tm<=
zs>`R9xuyR&>tk%YbkW1h!IORbeHjf*ZI6EW!gJYpGlR)<t1Y*(xQ~bJcK3Hb)@<<T
z*zA1f2fL*6jCNlU;Svm#5M)`^{Hb}uOi9tk{m<v^wycW@E$N>;BmPHgJi~;q&reTT
zw(<8qe}Q8+*1ejo<G#uC=%<qmu{j?5-e2av!dtpaO>jZn`q?4|8*Mx%3AC-sZB{VR
zTzUW3wc0;t&i~<I=(qp3Bhp){O>z6ZD(&;t_dd53?V0UaWnA{<MPS^gP2m$>eAy*j
z{C#8k`FV+Qw|*^Ax7k%Z+2(6+KjVkD=W9AP3#&7{XwM4ZdvN1beO%zx@Ei5N^^1S{
zu4h(RTV;7jBW2IJyn@%gZ2vC1GkQ4q?`V7e$LIGA&bZIa<qQRXdCd#ItoSvvYOBWk
zgIce?|7MtDTRJCLy`TSQhTHWcCzmt+IDG%7={&ndOdM<1`EOsp-RU*!mp>*)ZIAFP
zGu5u`Jv75({n!4<N7npi@3shhUbgzGQLCu;QK7_*E{@`FUw{2=Q|$8h-(i1yXaD`_
z;qiZC;y%y1&fuYVG_~vOZ>B(=*!a7}a&}c*@z+@<ES;LP^2uclSc2?f;8gA6U3vZW
z%#!<i+!iYeeo6HZvMBXhdaw4^<@o3G|3~J_n;LsBUYPbnzUBkB&7Tj=2NJF^9XM-#
z|ICdWH>Bh~KD%;FbAo!Gd~%Q7SJ~Z+Q-AHQ{rxRb?$)jeM+EmS)B0sr`X<oN=ASP^
zpY0FUb2g>&40A6myc=G8+ssfkcFNutj&p9j*&7<lU4L-(|L~PJ>I84SHA}s_BRuwR
zj9kSF>sQjx%U(;Ke)LIu9Ycu8g-ibHLQ<ahT@BG&y(Me^?PotOrnl9YEIwTpYEqrF
z>Zr5-92NzR$Bl0pF5jMJ(bqZoO_bE}PRp;8EhKmB_cXp`^;R!%#k~2;wu>`~?(AJW
z<MHv(XXoGKTu#{$Tm6>%%%;sMo+_79Brkp2{cPIxfR$HvK9}2?Jwg5m_q}$mLdBFN
zO4p|5Rrjg%X@;(1xN+{#@`B};C0|HfF71jwc3h=5yYtptx&I&dzkmL{|Gy=}yZ!$Q
zCwt{aaxR^;>!L;NuZ6{I&lsw|zkAwV_oBT(=4M*T*0X2NG8)(#I|pcf?ydi$#jyR}
zw<M|FV+Q=WPmVhFFW>hiy5{@q`3w(UOkDo5)S5wL_2ZoV&wLs7eE5CujQzip`iuf+
zWR|V+*4n{mW3zd3_`XN#j2fX!y1pLG*#4}bBtBNfB)<LP&RU;S8*`&3ud@HOd;c%)
zcfX(4vpraqy)N?U;=6Y)F?zlDZdv8Rd*QLgwCuMw^Omc13CT>}CD(TI=bQrv5^Vc6
zGgePpai#3D?cc4fu2b@KU;J)KoTZn)c$(AewQ{#*)%;ee%DY-GSg^fe&+~Ql4{Ys!
znlR-5Ik^4PuIv97RQY+TZT<Af!tA?wpopOROQC%Y1|gYmcI)kI3a|Y?yW*pBmiNv2
zf6rn+NeY}+OYcLpZ&jM~uC;pFe*S%Z|M%BE{&NzpFV*TTyua}I#^*&_uYcIKcY4tM
zP0S5(>$B^wF=?@i?!CJ=dG?Zm*an4;iU*8a+dtI*T|fW%`~Uyqo;|zuYxm8b{kg}_
zoL%`{?NYVi>f^cKfxWuN=5@`t^LFRv^3_cCUj4-_@Qi-_gYX{@*zGwEq)v}@^HfrL
zo^CBu`D(Y!zj;yn0(U=pDzhW#ZEW3(W8uXo7fLgHh`xL$I8<}5r~Kqc|E8)d?0Z!I
z@Kf{o*w4=QJ8r$TOgq2oDcf4(;3?g!7CyK7>so)TP)BZ$cWAZ!uM6f2H?cOn&f8Zx
zwZE)*by%p|?SFr#8(ACkda%?gu3LWjY+;9z=)rU8Eh`pOB<=G%A-b?6m&;1@La}U&
z`_|lp#T%TjzTd9Ke8{2J?oVC(+okJP@BLm?`)e1&+;sOZrGj_U=h+<+zHiNQ;4r`K
ziN;t{hIKoCrcTkCt^Zo9k7-%oJ${GcPm;f4OYax|xe@%uO3PXIlXc6!Q|q{z<rc1g
zXTICBd2e-nuXJ9WA%nl2>S@~}paQpNPv>I)k0<Z{`_5of^*vm%v+`Ns*16Yh<9|u-
zY1;K7^wr~>n=7?K@Bh6Z`1v#I^<{BEniWf5J=^_2=eTme&B^os|Ga1X@M7`tj>j1j
z)4#p=KKohx)>*rD?0=K0|M<c}XYkg-ig{~}#^!oXn(?+T=k~I&)iX_Bvh&MLQDr-S
zXj5$87HOX?q1LgrU%Pia+BKc=!ra*p?w$Y3$e=FwQ~i*nY30?IhwW__*8R)&KNy{V
zTU}UDdx`1wl(2lu&=TEMyJF9qJA9XscIQv>TB_tb_nmgBdsz6b{rkTx)i=GJ-Il2F
z)~<i~bfyTui%XWObMC0hKjya9W$T(-n}YNL)=$$E4XuB2%WPft?D?LT*ESm*;=gj>
z<C~Y6RlAgGmWyBb?rf~Ve~9C@7yA!AR{y<udxI846nwodR{vx7f5C>i(`(!2|1baF
zx%ReM_*<d<#z&p&|IcPPGpEkzyPfKhWp)nVN=4LLsx}?vmzh`bVRcN=Noz)l+nb6H
zrq(;faLl|Xf@p^O<abRh{ngPGRQqSU-GSuq_cG<S>zq!BJYMJ`vMOY8-SX3CB&P~h
zKAI^hV;f!bvZB*_`-;7t-{0KW71q9AZ|T(7`4x{G*X?vG<v;q!qMiS|q4nyZr&s39
zueyJ}qR%4C_*-~PA!~l^>uAP`>$~qAy<2{t*J1O`DO``dMUERD@0*{p>?Tt}T3O#t
z%dcN!R{I9)o4+X8Rr0l{FKqQ;WB=75N1ZnM?7zSKa^U>l)B5{s*8XoPJz2i(QQuqk
z2lM>vJM!z_9d6KKF}WW2{O81#Etj<tj#fy{+aK<_C~E0xi^?a}U#e^sR_EwWd;X;J
z@tq%w!WlmNaOMxZ6d92GRjTi`pnBxiSNqm4dexgX^X~34CWC#o=EBF-7(UqCY_8C~
zQ}g+3&6{L-<_AYQg<}?Kzv4dn^@?ST#<ZP3fBt5WSU=q-rDjdkk&73<D0sd2=CrG}
z)c0LU?XuajpG$X@?~*@~CZBhjDLk}o@q=3-uT;5MMJH~bG{ZrBN%nW9Td}3K_LpB>
ze7WlSt8dQxYPRoszw6a2%erUchpuLIO?*1__{zM%_h-MXRQJe!{ya>cXTynUiaWwi
zY;3nbt^E6n(ek8~IqMEiid3EE#r7geWv<O1i}^o3tY;|rv9S6>NmU+?%E<@UL~qXe
zl#^R2qyA>q>h6b2AFC>P|E<}mHFfHFbzjdr+j6BBu+^=v`+C*p+l|RSJ}bD--rQVk
z9I+*L$JcA&j30#UKML>p^Hks5{{NH7ubk$u>lPEwtE!q+zW;fxO{tTvJjbFVIrD|x
z6ayFJt(#O?&hs)o@&3EoIrA*C|INL|Ebu&B_V&5c^*@*yY(ALpKWMl&^-75LlMhR(
z`mzuITN~;1%H^*ZL*2jobq)Q0zU3QPuAH|c|NcHxyI;MEZ*QkBTV8SW?Rv%smF9Qc
zlD~^HZt(0lG~q}{Am7XHR~c%bzq@;<?)Pd&iTnE|-~VG@FWcZ0$o3-p;ekfx5Unhu
zKliHNKb=%No$126Z|863X{~iyw~gQ1dusa2d(p>VN$2tIUcEiG<c^Z{wpC9Ps>`o@
zES0K~aGhhbc-`9ee*f8DN*JzhJo{kpgIhVWm#uG35O~R0wOjncyA|1oZ-(`kU0;6r
za_HT^6Esd;dNtp7@x>ccCinD3ryPH}D(&1!^?huay$rWiIWC8kbz1~}pEB{O(ChD}
z-?+9stGe@d>;BOD+Haqq(q7M!@H&i>uXE|mh`sY+Rn<m6PnOu8DPi7E`~H2a|HE%n
zdjC4(ipps#552n~CdSvfHvRtOBS+5ao;Lb;M8osOI&+PEk1l!7ShIp7X{(yx7w(I1
z%PKF=zOwK9`l_p|Eeap8{Qu(rpXGqN{jcS3ZY;dCb=&(Lv*LeWjb{$|q9Xq>Ah4oy
zfxi3RxaSA<#oj4BznyV~N!hADt_q!#V@$NdpI>is5np0iSvBkbCwKYdWg+7Bc6R%w
zweQcXY*jj6`%sqQ&Hhhp`+oNBX85t%{y%fvN3N-wK`X;F!a_|_-Y=d0@k8?~+p2?K
z%{NzH*W1j$#pS~E<KIJBKAe1Sd#*cvQP-E9ORem`9L{HdFfBUXWA)WT*E8QvOAWpn
zc-w1h)}{uz+Ao36W^Mjunf*&WCu(a{@9ff}fBI`bt>5w5b1LJPv+ncFUS5^F+J1AI
z?{WSw&YWADcD4OEw)_5})$v8IXUTkz^5ia!%Ii#Ces$;0+%-9y*nTmVlz8oa9nq7!
za+b*Vu;u5^%&~fYTXue#zOOew2h-JUA6r|F>0kKq!{Vs#tjbNlFL*O@)XY!so6q>*
z)${uYYWZu}8@#{AIc_y$bJ!TNG$LpwTin7Ui~H@4m0n*hYp<rJmSHygb9`I}w-R%S
zVbCR!HSGPqpD%6yBf>EErY4{LHv@*t$N3+#=5CvEwRPQ_TTeDWm{gKm#bhm&B~bY~
z`~ETE<yRC8*Ba@a%P%XN*38b&r1iG;|G&R`KKACbJkXB++4b|Dcig8*uGh_%Hy@h3
z+;8nc!F-)or^e}fo*eyia{gachPaJw(HF9B2%YIr?qk}lr`N~yHGjd|@|jk5Q<wWK
zp7J&Syq;&0%<)A5S0?+1#~r`1EtbKi<o(<~SAPF1XV~`imFAJcGdDRyzc0G{w(zj;
z_78j2ubAa--}~ZdcI6Lgw^{4#Y;B#FE;@IAhMlkN4ZW#e;x%^5*Qegz)O;{%gHE^j
z{)oBX>wk&Qe=xCc7n{t?cNh7^;?CzpUwd#MsQ&Nk|4)TuikI%%_U7i+WYPYrw@W6w
zhub_C_+I;1p24EDtnY7ii1klLmvH_)>Cv_C{+=t8**iCCYmC9`W6@T<wWdo>FDiR`
zYis7}57VWy%om)_|Ccy#R_OcS%H!M;_ZQ!Kwr%>poQrR((r4>(?TY%pE_OF)R`c3}
zj-zf{EbVKPQkLG{dgXO#+}Bs{K?yF;aPtJv-0>Ob`*jV>)#c0|t}N!iWV2K$ENr{y
z#UOLWzXoZ~r)G(LF17!oSNHnxe{%)qFWjcq*42Jjwq6W~z7kvh_p6NUqHP;*@2~&A
zX#K|2?pw_j>u#!e3f-))>(rXcRk+}Lc&^`rsUhFoWq!I;t-o#XVy0uIOsh(jwN2=9
z#bb9D)~W4H6nGx4G411?H=88dSJ`quebv<LbbH&*KV8om3<`gVnBV)QWcNRE>%V|+
zjdAl70-hH$P0`Mpn=7y~<62OOmFz9quRk@Xn%$4OmALcQtJRD<{;{5aykz;Jp2>Gp
zE;9bI42-Xx`{UW;<3H=|KSnaxeYpJojzII#FH#l1wc`%`|M5hgvEa)UovmH3qJKGN
z81XLBIJPnO+xxKG8*kHF?}j~#I1{eMU3k7vYGPdU-(T1F*Ew(bd9-6uM^@-p$Mkb^
z4FCT8`7U+U)m1m|mE7KzyUb%w4F8d!lQ)%GpygRl!&zHfH8(#g$MqpvTcR?T7Tk6z
z*5CUj$maax<@LXoGiGeRJ;$O@rs24Jbr1Wy(CBL0A1nX&Z~r&LYvTQFwe6ADXN1iV
z<?dDzHGETIrIuuOzj)n_Ce7HDRoB<WcJB+Dwf4gM@12V>E}uW9AG$K+(6*~SwbkE5
z&a7I>BzE)pk{G><H&)q6M{mn9%&mEHLXc0+=ETj->DT`qxV|xIXV>GD=b0j_SHv&9
zbs$=W`{999E#B`R9v;3^by}BY->tN@S7$B0C=vZs`Ci2(j$NsdYM&Q}be&tt^e<<T
zfysRNa3havKD(AadpceAf%SJg-Uj)w>3^&g`Rad|uX=ZKb>8lY;`fX0cF8{8AiL{T
z<(>zu`V0@w?cV3OcG33u&oNcIimE3yq(=Mrtju_GbLP28b?scAqHbh%3Y|W5>Hmr2
z^`GTeuhzeR@aD3v2dA&i$!hQTa?iN8%YJs$+GAh7n1H%|rWecZe@|UGGeT%*vY4`}
z?xLWzVP_d^*N3e(G&4&JYJK(9Dm->+(5rR3US-Ao)enjKv-rMs&bDb?i%z_GuPgiH
z=Th_IKd-F&ski%$5ojVyL0UskB{%!_wwGnQue=Ugkgv(r+GKhD@|DsC?e)95`0GA2
zH&p3gN~%dtPEO0-{e91K+dFl?-`0GZJU`~~;<){jERJoIz0A&dr0USBTN2SFO_|^2
zw#I#&_`aq+Ywy8xu~|RQuAIC)rC}dW=1246+s^L0xVyYxx3comw6)PU_QkG^)vGXa
zh}VAk{K@h9KgTUizwT!EB4>H(o-XgPubb3wmw9~oBq(lSxRlMrb56jeR=wooOJA(~
z_kREXo5w5fEo9EQsc=+pd(Q2Hx9|P)V|cgod7R(8z@vrITZL@*?ysD3`*w}u%LC^(
zU9tN2Wn)RusZEy}E5ck%YU8TIg{Q;T0<3&6%d^pK?SYC|Rz1Dj#^-*7ef@Fc#v$P^
zvpq#zmj%RajF8!(?t8|papTVYJclP3@c2gUPK|tKx9V!v$-m1ZgwTh#Jv`G}j~_cG
zc4ywBrTVp+g*NrOr}<c|&WxNk^CwT!0UJHz8PBi3Uil^Fc%j(cq*Tz&P-j<4{?FUK
zJ7bA$?-CO!-p&R3&Ko0SI-V^ndw1ugZ25|{2cB)u+`hUiNtBB<=K9n{Cf*YmmU`tb
zID4sQQdRQlMY)k{SDkp*H`lsjQOD}})w~SH`|J)+4UgTri+wNS($f=Tt{*K9ZS&h0
z5%X!9|Ma+B^S$-=iX<f5Y>JQ$k1ZA5|KnacbHRhj^HaXhv)%LInmALzhYOAuthYrR
z5a0hrmBDYG%}G94RsKgaZs+fpZCKtfv(VIhd!o{dgu=ULSKa!{zvr3hpRfM|T2&8g
zn7KYWq;Y7YZjActav53K?=kAyA!(_auRY&cE^YE&9F?+WA(x7o7V9b1ua#YkTGFCp
zUoW2>D_0+-+q&z!_3<5#EW?=sR_fG79&!_Q6$}mzZrHWlC-}O2<rBeT`K-ukJFkDV
z;lEyLS@58tvUj85RM)FnThDyrSJZ2X*?PpoQ{U?G<Hu*totyXhZ+f)zys}w^GW<Lj
zF3)~_cGvpntzN-9PCfm!NONzm+u<#buUxsZi22JE?f9Qwl5_N(txm*smF&H9<Hn4Y
z>I^p>g6Ft1UHx^#q4nODyHd%~Vt+S&`DuRtlT*y~r<UQX9Dl~f?=Ma`6c96`B-><t
zz=53|yF>#;CcdaO=XUihly56hDnCEZ)}qgO_u6&($)8`%j;VaA$S|+&mq9iEin)&a
zzOK#R_<Yh{hBtT1Pe#dpnssxh_upLmuf_Y1Ebh1EI`Eg@F6&+BthI8i=NHC>UcWUt
zJzDMl-O^kySJNALA>27DS3CZQ*z2-$g`IJr$mN{xGp<!HpFd;9(wkwE<7@3z`o!10
z47hy#RZ(P_U51I2jMb8JXD=`JpUt_ynVo;u$>Q7F&fng@{JWj8vGMAfElG<fe&~Xh
z-W-NZDouKBmwx=Pn7k|KN6?eY_b)T0ZH?+J-xn;JQn@YTecE(AZ3%h#_>!<2pKXHo
z{yowuoEBDTIO*C}n^vd9gCgHQhi>*W_TiJW@mPM@@cqNqumyL|$Q*yz^;|}#LPz&s
z@cxFR{LK2z+1s_G#N8)$vYoy(i~IWZ(>YzOOnsaGNI1zHSF!SXVbv|ZS!A`kFaN!5
zxzg?Y@@C#Eo_VhqJezj8Cah21K5tWl*(W}Q-}?I})qhR4XFO1D|3Ta5>?)mRjjom9
zTorj`yf^mx>Mq~;@zvcUR{P9uzcDafe(URx;Pi}bSFZ2<>~iwF`q@L1a-2)=Ep?4Z
zPftJlb;pL5Sj9^mzdD80!~QWGZQE8@ZM$(@Z-0OBj}M6sydHWct|t5SH1;OyP4(LI
z!c{+NF7w@lOJ9S`@0MJyoL>&QggDE3z4*Qlt*dJzW(VzzN$X!HkaycmSXkI$Tkc(_
zOVT&L@B6;j=G%?r8qf7_W6q^qPfNaO*1Peb>AIH;d&BmB$a-^hkyJv=uKx_VdsAH4
zUWl)|9$YHo_0(uv?K_sMtz9LqsSg$fJw5tqDf1WG>Td<-ZNJa>@-}a~^#r9kd`XKm
zj8<Mfn|Aril^Z9#m*m`j7P`LDnBo5ar}`f+`q!{Ee01x~=70Narf_7|mz$ZU7k}}W
z%bVTasGBZe7hhGMdV8AWgn9Yx)6Qz}98TTpX_a~J_180hS6*oo6n8o&1e;J!VmYy8
zlZ5B=m?BPf|9LT=&My_5tm2u%Rv~$5@8kKtQA@vg$N!onawtlboloWgXa&Q9TR&^x
zSIaL5E<Zo{8DGJR3yNj$?qn+YAMcZmzT13v!KJcwI)(gs4bl7Go2``F$20NW;p4})
z#e~ckaueL<H*tFQ!Ga~B>-lA^TvlH-djEW5@^Q9r6a9>vbWR(sJg_(Jyw1*BCj?6x
zj{OK@xcBq%`)8}m@A4k#3{Kzi`nLOrqSH3N8qdw)5<9oRO8)dFpR8}+-rn{VyL0e)
z%(<0^@3TGlaq{w;8ylGu4n7T?9Vx(a`c#Y8?TedqHaoYbgmiK%mh&g6?ETQHZ<2Y<
zd#9&&a7WDbyBA(xYs>xq?ruZW^r>+rDQ9n;(h}i{sa$&N)3bx@@-d&zU(YhV_o2<4
z;lj(3urD{vx=m`gL`7G<?J~I<t8=#W`hAWA2c5&?t}xs!l;M*L5&imfZ$x#W%;gJL
zZ>_$n6)5ttNqi4OK(y<#rOjW>_y0Vb7I_|Y?Zdfwp||T}UmW>ZRsOd3{&D|*uge)f
z%-sLW`(5pm9Y1*@#B5IQ(V4K+KU_<+?Cq`8b&BTqDwNId*BCF@cHs8z@X(3+VmAAJ
z%(Q2Jpe+B>_VP8Ohju5v*BamWR(t=>_aFQ6vwFY${@YmpdtZJT)5;L7B7d!EF6YDy
zC)u2j4!fe<yWsit1>IAp@BiqvJ#8}MuUDE=y}aYLKeOO_UwOWoK}`3Y%DMBGa^tk-
z*H^o5ERx#A=l1LVQz?1*=lA#hpU$Y^aevFRoZHWG^Q)y7d^0bXNx!JH_GQ9{WwY~)
zn!nDqE-!j@MU!FO?svOPEgn7m%;kFT!!&u;2i5&|j&GN<-uOc5bIAq^GqYp+YJW3S
z-1|H)o$cZE_<CD*emN7tk3~E8yjbwN&-}kOgWmpEX=QJ2ZBD8`?-ryZ<{P`jIQ`s=
zgJlZ?3}$l9dmgy@>Y4qYqnBFsDNmM5@=W1Ho8F&dl2!NOf@0@_^@~c{e#pMBXzyIs
zeKlBby06NUN#1%pAAD`hbbaz=e^TbL?W@ezUwtYQpRaRzkw&&{yVl$CwDk0qAzI>7
zQm48}>hF9a)F)@VYt?b{uCn*RUt{C`{@VU|<@x)r`<Gu@s;g7>F36kt-j`+OGw%kk
z+xblD+xz?Ab8V)V-hW*As;X{nT%6LmuXmo?T~8_Z5G~s%meQbSHl?I{!uS3E|E5)Q
zZ>+jhnv+y|x9auUns>$XnL$T*UzrxT#YgAvz1mmD!h?icBldN6a&F7Ly=}>%<lo=k
zK0asto@Ls$tFNlkBeOn~-#-2BLH+OY^dE2T*T^*J*ZiCfT9(F8^W(65T*=Oc2-#_=
zxwDD`de~;N2_eP}LDTn>mdTxbv+0J%tFOB{=XGpV78F+0ySFlU`HijF*C*Ne?=F9z
zR#YSu5FNAh^eVINs^p&fzxj1t>hgcZ7~=nYGWY%M*|k+bdVbBRR#2UDq|0kki;Cxr
z88ZxSFOOZZHhTM|*I!?Jt=e+?ZK&0ui)pvbjwVe^+Nd$P)hWlw$N_07!IB-|WiB0}
zqQ?yxii?Zi+}T;|X&=4*x^LjlnKLD~<=ou#=(zc-oYQId8?_lMN}f)=Q*zmt!CPya
zdP~H7*z%XKkX>QF-0PmWPuug@eP@gr^QE(=Hs#*?xY(Za!0WmXvT2i&H?KV|o@6{p
zq#RKQMtDwAIc&#aD04P#^2UvZpYtt6uf^^A(7omVt;yfy^)mlI^tv5?tM2W|o&Vn)
zGGGbu`tBv}36+`kzjD^xxl1o*@Vv}8;-qpkmIGvNkI40@(IJXQo~dZQgN66-Sg`~0
z9ccAYL3=GjQc1)#(>KmHt}OZ6?tQC%$CAJ8?zied6ol7mG2P_?I9;>|IDsd-6OR<y
zym5|5tO~p4rEt=A*6g*ulN$4v*c*P>ks7J;lKaWLy22~mH@79rMF#zzy+83ozPJ4L
z8Q-_Bbe~qd;Pkc#>-Y<gU(IIj=l^G`eR$hu%Tr6|{@?j6{>8`2=XVTvwxu^sospl?
zZ}0tE|5s$B;_6HPu6fmmh0mD!TW3~s&9u*%Q~%A_^4C1>zWuF9D#r>p-Cn<R`+uds
zKb5X;Sor<_FRRjnwfn0Mt@>tv`hE4ajZ5#D>)Z%m+f(z~Jusy%*66*B;A-Xj|B_5j
zTC2eO#|)hdy032hCj5>2f?&iZjvqhM(mvmx`G1dz-o!OG<hLG?eDtN_(u$&YrJs&(
zxv@G*OoeCPv8bT-{U<K!e%LVe?}g3#Kd}C@)t2l$&v$l~IOi$ba}OSSZrXM6!so56
zty`Cr?R)SozDxAaXWhR_C->~Xxk>1A_qp8v-T(J`r_KF6b92%E{9jAIM67K+zr02C
z2XolZFVXrs=WO#g<wtSv3D>@#GOe_5<HVZ!Svm!KxNYlQ&n<N2_xN8vaeDlk|B^p$
z{`_CF?O*!J{Bs_6Ca>A}=cmmFF`c^m6ZW?~{a=0YyWR85|9}2YV>uswGR@}ybxX+w
z-B%5rWF7ypJ*!#y%F}MC-_uClA5zYS@4xGp*_^aw{_)wq-t=j|s-mpTOZQL5lkZJR
z`N%otXkR^N{dKQx2QS^05Bux9@qndKfeiPSw-17tBEINVsq)pb{{K@W_2$51&%6!R
z?>{b#cp$D{@=oX9_cd;dbMt-{|GSfaF8hC|{j8^!@&7kpP_MZ9`~T5(%YU+qy}hlt
zans2!-9P7Q|N7ILaIds%qvN-x>$-pEt+}zXc;0ox{qb(kSEn1#`~P|lw1ffWPh|(C
z7fHpH(;|;FdK})c_?dX(ls+5VX=^OS?RPCq*IF|n@TWFg-{Z(z-|lGq|8=G_y53#q
z$SKLCpZ_=go*yF?npXSG{&nQ07xrN@UCy;ywDW*cxsF3#U#q}jrN8IX6b~0Go>L_+
z>-Pwqp47F>iDRRr=Y9Pa0j8CY^p0fQRJh&4sn`;s^zwhJfRln?2_ze~2qdYTV2C}F
zthhUfuRk?1V$w4Um!f~%ifzun>J(c96g1yGl9`lb?sMtaVYT-S0!bE2z6&~WFd8|C
zCv7<)<)YYfW6qNQ;!Yfm$bsX?hP=uUR#3L-%-nt^aj^*B79F37trufYOkB}?TOn8P
znt3Pk3Pq(CNhztuC#U&ja4BA!t`cbxl+vgg{gYF1OU;#<I+j|+*M_U?s=o4HWz?;R
z>6Up@l~ca4?j%EOPv0Hhw+~#k{%@W7yZ&0N)}+*z`_nFVhyMEBbLXm$j-%de|D1x)
z`76%uf6jY>{g;mR#dt5F*(Wxx36we65jsVs^QG~p_{k~>Pn(6WEn+_M)u3RDj`nN*
z_L@HaEyhpuuKnV^JMWeKwFBpMQ*5{FzcXcxeNnjrN-mx#sBbpe$ILnN<(CUbW{G>w
z|GsD9)QAY3NxxRj+t9{dELZg{PG{=WzwSzj(qa4NpORyqG^1hxfA`t%m$#Ii-nOCi
z$(=Hlt~y0MmABt(-2UyFFv%|Y@`>+?g=>CwT6CSc{_3~bw#oNiM?`FUXRafC+V1<D
zdGa4+O~Zbf^S}JgpJM*>_lG-$E7g47n{VDw{O_a9=}p(%6YXC{U6Yku(7n*xdb>qm
z=OT^<4W6@Sb0?`Vi>uw<wo&$P{_VIAY~>rzmAueVu#8`K@k7uZ_TYWze78oQIKb=p
z?|JdcS<mCX6xnZnI43>!c2HcZrT&C?>xKDJo5Hqj+SwfVCuR*Z_gZ1!M>!61?t+OD
zY38>J%QojGCcd^i^U)^eIOBn%N6W<gWAEmO#p*5iH?el+|L;z<ygX~Z`mZ@?CU^In
zT$tReoqw-6)n0H|t-F!e{o5>?ltLL{7Dk4B?}cBje{6A#DJT59XkYW=713qaOE;Fv
zC*2lP`6YMa9IuA^rnT*r^~M&OlkR07E1a_XdZ6%%W%m{AH_qY~N#x~u#Qu9)&2<y2
z_l>FVY%TLUJbL(M?m}uaxLi0I@bvQTCWQsJUou>HUDo+1z@AekeD11w;Rin3*qmp6
zc3$QAv)OAdu9=+Ebg|nnfzPmLp238z0?(CS7)Z=IRloIt&c}pT>r*3les^E>Nk6Tw
zabs(js-9GgyoT4b8M?8IIoi|ZGH)xJZr(4a@{?&=VUC@8poFmNs`*?_^Xs<z+kXJ9
zs4NtDF@O69o2%`it4mK^<zm>DoU9tTe{1CZ>8#Uvo@^4HWFe<vF!hQ5yPx*!Z(rDE
zq5hd`({Z=WYuklydd;@&dmIyeOr>zzQiB;kwiH}D{^!Yx8kLKia@I`jd$(@xAEA93
zT`x*^Gn_eh?n36)D~~-}dVLp0uq+7C3f5V<zI&+<>w1QU$5s}Z;*)w3?$5KIr^s?a
z{8UZXp$Q5hwVO{>d0oCCtaI8-@Y$cAInn1Ft~J?ixTA1?c|=55*;=`&-<2)vOOp(n
zQX2Hy^!h?q1#Z8b_UMWx!>qHBHSwhjws9X#l5B`t>$o*&VNBTnZ(Od%5#=%B?&S+A
z7hiHbl#%{JHKqBJMPH|r>4%Q5Qo7ppg<FeP#x1+NU7{lBT~va#naWKUuPR6Bmu!*A
zpI85UmOt(60+uVj#k*E1_?=*T_tWu70x$dV!h)|V;_GJfhAsK4f5)L}$-EGrTBdm3
z6V-d=-iFQg%jRoHTkX32ZrFM5n&QQKtDozYy}8N!g46Bx%`5K@J3Y5u(dfNK-F}gV
znx8uV;)t)Ig}e6IAJqA}eN)}>O*zH31-9qs{O^0b;`mczh8N$=PaCmKpSd*GZ_=`$
z)%8(+)7aLqz5luXe5&=fc?KuvZGYyrrmM8-TzleyGiOW~+~?KJN-JgycwV#cMbNq{
z3=;CUofaD|t268K^m_H2TjW6K+m}yn*(XLk-<GPDB($mYdGq_9w`9WWYAffc+)T+5
zxbSktzMc19&nmvRDR<2gFXMxSbJxUmr0!nE|8dX30|B?r-{@OBZ~n6Vx1Z$ox7|M9
z6C_$&m<Ve|awxV)FbX+}J5P4=I}~vC()MRj;KBCb<$f36e`OF|v-a96hMe2`Ca;Y?
zp4qc<<`b{2Zj+`kXhhuXDYWY~_ndUGYf{gRH>qMvdVNE*c$j|G-LJ8oKiBO-G3zfj
zE|aH=c1}xOoyy5Nb<*=^X+Pax#7fR%4Jv(Xp~mBE{CNHmPcg?H_SMblg2!uKm9ALK
zw5qjxsnXL;UaR$(rk%5rTzUQ|M^r{Qr)cVxi4yh;mj7P4^O;WY<Y1q9w%iBayiqX@
z){?sRwp3Fr#Qy5rGR@E{)qyLge2ls765b~MRcf8iU2_$lklVlN_~X;nUFtj*Oy_nf
z<SER#6ePT9MZQdGr24kE4_>9RE-h;9I=4$p#9O56sL6|t*3CPu7qLvX6m=D>i~st2
zZ(R9;_vhn-bB`a}7J4N>^y;Zif^6U3Uc1hD{p*LA4LWlln)PIV;)pH#JX5L8J|Qj0
z^}_thUk2&t=3G4AsaYlW^<yE!F6&(`RX=?uxkO5BbKR!hk~{H*ncOwax%!jR<SdTg
z+ADeUQ}2l{>T`FBZT7wTZ0%05z$y1wToZ0)7V*w|9`qsP+2qGNcDR<_)e-Bu`L}2G
z>2sb!F~<*Hn$H_u`r?^G+pX>DJSk=!7uA_d3`1TW3%?ulbKm*M+T!0&g!?b&tO~j4
zwDH8X+*e9h`G2Xs6_oJc-<oT^ddJJ1DxP7f#cNltHNRBfn^(RfFKzSJppE-3zWrXk
z<ypw@?^Ri~b0&wK+b%QtQmW<7uP-)E<yAVlJR(}eTXmIZ=-)lLGa2oA9?aTlI$fUS
z73U;_1Mk1SWPg=r*}16kU{aOWQI%)5-Ax?v_V>Tn{yCt|clEp1Q=#bXZy63q$(z5d
z{H%SUtCcsWRm45*r@O$9lHIHFj>W7#np50nEWDi2qVkhUy5Ibe`?IqHSFZMS+x}!@
z{(nY>ZLY7}thall1bd$US<-O#{nxWca(3TcGFMOV#rLxeww*$Y42(>@u0)l7t!jKf
z`*r8zie*e?OJf!p?vri!_|b3y-wICQ^IOe+hLuOg%eFDT-4?}cYi#Qq|NZZ_+=pUZ
zA~CVQk7_^IvGeQSYYBg+zw!QBu`uF@*7UOtcOBPWjrCTZ_Au|)FAKhxFYKOtd3o8U
z_J=3KA%#Uj>o+Xk8*6WGcs=3z*AJIWU-V_K+8tfC&tCqX5Z`C(=jK18_A{=U=4X{D
zJ9A%ER?#Hk<9$p9#<rdUODD@3wk9<?%{mpQ5qQaaGS^ZgR$B*sQSB*OS%=oIQ2)cQ
z_0A>jgxM3P_U^noGyG-k+Vk}*@9g_`f+4o2r=?|^o{+g=;k1*UrV;v6Pq$P(yRp^w
z)X_;VWxStqt?Of}TGzg|+U<7d=F-A%1ziSDl{r^--#uTxly{A{QuncMRkqKb&0;9I
z6`ON=QNV?_Z$t}iZ4Yo4Grx(MV%VdsB+J=dVq&5D<+&Kwjcrx;m{ggsE$m)XGdbVh
z_7X=^L)?D%?YA%A?`EGje_wXtoLq5X7RI`G+x?f{UV6Lb<@YPkmj&oFEWWqDXld3W
zrXYj7!q3;;)OT*Zm^j0&vi8?6+gDp|nLMB6^U`#Qv2nU(ahg!T>x;*oW%p*5Zth%@
z)A?lC5;Z#^;gxSotIuprW1KN}UfQ~qzZT@}_r7uc;$aI#j^8brF18(K)i3Zfi6*k^
z+&*}9;+mk9N4CAS{cD|^b6fVts>>VO%x6}A)XRG@Gvem0PZ~XE8EUhtCgnwMo%z}_
z<do>-*5HohI~seh?Ygn^n{n&kMIBqNcRli0`}g{FhEmVC+f9XwzZss++MJd>&w8)i
zWUE>C-j=M``a0s*>{h4FC|BR2@YklNOt+fd)fUry@$W=oOp^6k1<A%U2OFCjv;Xt0
z$f&FG<$by3>))q0jcxv(F=m)!RofJCf3*mApH#v0t50HAh8W)Tdzv(JlHR58mDg5W
z3;i9g6?*FFs=B&P70(Z61a~BS+bC~gbnVw4@z>|m=9!7Xdiri{E*Fj#JWUIYy>1%a
z{^id)&yC-H@9VrVExR<!cyq|AtYe!ZbY_=iA1^El6y!ebyZ!b?wncjmuUIzo+@n=j
zzJETevi`4~idx$|Z+7lO6XJG>ZM=Q7NTKiQnj#*RU9UIjTwk*K_|B4_20WZ4Av#>j
zIk(Lw-fNuj@Icg8!5N<C=BsC`p4?u)i?=6AU;Kp?1E=S@prW#AE`d&Kf@^=*&ad0I
zsA9YG@})r`+_lqnZ<nr0nX@A6`m^i(7kvI%a!Xvlm-PDF<rS3=et)TYRr|8cYRjc5
z51#2<o_zU?j~`<}SytCgOHtl;CAURNrBv26XMb~*YBZB?YFza;Fy&X5-}bX>)@9T_
zJHujpd6n+-S-z9=-m)_~3JAGbEs{&U-PoEqU*l5dmA>B9xAz3Cyl~xnao1I&sa{i)
zJin%|lb*?8aQK`?<h7smh4aO){$Kvy-6#J2yi0lIFScC~VqX8iY0iwh)*FN_Dg9bE
zJ2XA~`t~(yZc*w7Hs&s}IJGTTdQHTpMW42&v&qX>T{luVU9(N&#n&_QQZIiEowEII
z-pbM!sil13(xqu7VbOany(8T(+a3=s)nT|@y6Km}i#Hv2-b=P|@BbcoF@Dxx_32ly
zU%Y+Ocb@I(z`2j=em&t-s$KuM!fdM7w0&`!*L_U(2CWOa)*r5Is%6y_xBA-3ep7~w
zD_J3jw3aUV#Upw;^}=bVoa2V`C)X_fe#IlE{;0=9#$6J6+S&$>E9I6Jg-uZ2tH}45
zBj3-~?)se6bvGBRv_4+6Gb^uVZ{yp=oA@rAEv?y>yE@lCY^8C`hRMESKdT%M?`S@e
zJ25%+?eu#-KLa~Nn^RxrzMoUGQK4YcmJj|uQ=}g(H@{mbB0PD<cT4*NF?(-sNsYS3
zd&G5L`n0LP^S_nK9B;||xLU>R?eyDkJ@VU^&l6^I412Kh{^Hv&XLyQj4>){va{M;y
zLz!=t4J_hwPOn$+QFr?F<xAADu-&fS*H2}brO(VgcVSLw^QWE9WajqmQsg;&V9m|7
z)3ijmUb*G}6KbAV8z0u4_qfFWk>B#eZ?;4!85kCJ88263m@#YKqQ%!2ukKvUAY{uZ
zk;;5Vf#+=cu}wLfWuM>pVKHrA;Jt0B($U*<7Kiy?-!S<dgXN!n85+;`PtCPVzishy
z(gurV^Zhod8TLJX_>$A%c;Q#MpoY|kOLlLJymnw#eDI%sCY3NVLyMk1d&!NVFMe%)
z7h&eQw`NU<=B%%O93?KiEYE!DIceuJnPTHtn=h`pt{EQU%N@GGho7mqwBpkJ#OKq0
zoc(=Q`@j0x>bt6Uf3M*)RuwtEj3IUT-NYz=mU&jST@L!Z#kt){JAF)bH6rz9fBEXQ
z(<L;&GJNG!&9JN2d!w3<&C!awbJxgkahQ4Y_bQudcjs3fUDMZZyyNQ2W&7AVTs^yX
zgN8>z{Y~(cT-zxn@BU)j{wm+4T%z5oLbkWxeXj|=v)K0fvYR=9>sN=YkJ{?Db5_{p
zFFvNhw+q>|I<4}edUXzNdeiu2)6_3-UdEg^>)rEB^Bwbk@BdZm=C9>i84HCbZ=3bn
z;^vx~rhDEltQtNh*ZD)Hc-x;$S`Ze$&DBS5cH-9Uhj&kS^Y!Q@<?zX!H=YIgUT!MP
z-1<SIZxhF^xvou*RJ4V}-3<5j34E!x-8EOPHa4d4jMU-<)0>_sYh}N5I`_uZw|S0w
z@4WP@w;nfUy{)s4wYy+`wZVF>UhZA<tx>tp($Z&M_AY*ACHvW!Q><^blIGJaR`YOI
z`~UaP9@3HZ5Na}5a69lcOWN$qbL`fxdNALrZdRx9a)udJ)}G<v<=_9>C5p`AnQzh8
z!Mt~}qma<j%qyL)k>aJFe%mcwr1i~YbFul~yz?S*y^m&0Tp4P)#O6)O%*m<IJFG4<
z+*aedtkcRc<8t_3*jj+&g+5!euJaZNI(WP>>Gs+yzhIN(nMhgnh|klnKKXZUs?C4#
zxAtpNG6L`X)Y<f6#@icHN<Qwbs^tm4f7qqa=g!;NXC{7&>6V<kHhBKrrBR`RU%b}3
z1cr;3zsc!dzvZLwZL|HyQ%-EOs`abljsIX9arm4357U<$Bc^43G5F-W|8CB?r`x{x
zYLx6Mxs+7!)aY%~tJz&sjiz>G{m<I%wQ<Qi$JtjSkA3}pX<qh4srydJ-Ceub|JtR>
zX08v*ezy7PuD+X|M@wyGuFK9%HA_l4!4S*S8>KuoR>S7{;;_r1UfQ8s?R6&{*%z5E
z?ZTKSkn;PUnqlFTyKj~<@3-hX)9WM>`Rt=gVZoduZys{3E?*e+;bZ#$lT+=cr2p@|
zIpac#!mVw+*=nXb9h-CyOuA#6B6FPicDYL7uYD=!%VqeFe=K7DxF%{(>g{Jo!+tL+
zQT)DF+}J{9MaTX**FB&8t>fNY8zOToVq0agLSVU+r^xInmn=FxzF6Hh=-@mg5dFUM
zwOF@>74M}(QZ?tVzleL_6qO<oeeg^?|J*Rf{>2>zx#u;Es^_~0dPt=HKFeMh<$LEi
ze^OJ)`XqZbqv*PwQ@XM`9rwm9jqtf{zuS4Xfh4P^kT4slIml&TY@7V8ao#Mu(`UA<
zdtqmuUS`7a$F6YBjL&9%Nt^9UB#yt(<Cr87AAYW1w>>L#>6UG`b^j>H+;FeG;jP`1
zD(7w{zIP8}-7eLYxi_;`Yb<yny2<35Mo@EwcKCe7*nfiVDT@ytsi~W!a;)sqmF)H-
zo6e+(Y@EB~^DgG8+rmFf8EEAjE^vR5xt66p$dgr4>T&Xvuh&<tO>(mJyu@F{Qguk5
zqo$Z&g!N`r{noe3UM+ugLQ%!!Z};3A7G-&p%%&&pog}vRyJXn!<&Ny94|%^9-N|~P
zn&(HIL-=}Mb<Y>ye}5@`J3Vi`zvF)SrFG|XEN{PMo#Oq<a%oxrynDJ!FTa1}9@|tf
zyUvz7o?WX+;lSrB6IMT%dS+9L)5;EU@y&a$oK(BG_D_|=#+NzwteN3Mge@K{u{`~J
z3zu(hUH3X@<;pE<kKM3PjZNJy|7D|2tf>t9=_U<bJK=P})ff0VZA`1*R4Fd3yQ{*e
z-aF~2py!)K>e`{K6`tysl8mFXZ=3b`9WRn;w>ZW1??|9a#_F5Z)_p~pyS_PmF`Rp~
zTz2ZT+~=2GZ%WE|;<S2o^u@bN)*tTjdp=wF?9vzdudfz|eo$20f4@@1{bh@NS<dWu
zsrH4MXWV6GckJ%sTD4S;q1B1;x}Wy@=$+qlEZKM2>=ae+HoqXSNQZgqt;HwaoLsx9
zVAJQDZ=3|uLk~~3IF^$%=g6vErTcE}o9mV%)3wZ~V6Ky)_Ny(LGyhpA@+jBH&YU%S
zW@6PV9R}meo6jr_{a~FN%y5z4$wTOk$zgRrj!PLyQ*^mKCmnfn_-%!3+Sh+y)}~F?
z;MsJhvton6gIzxQXI&RRw=H3`pPi!lZd$6*@;yn6{_p1rsc?F(;i_wT)qm-A-W&@R
zzgfKvp1(UEOC0YzTX^&Hx9s!ZXJ=m&j4f%q+;xg;)2+T_uFhW5V=GNV4jP{S{DJv?
ziusYiFh%<w;mhya6BD>LwK;k`d3C-?c7+bxUG_-9BWi1J9o=}TN6YMvZNR^%$@%Hw
z;ivV*xYUA=YzkFOYOvtoU^*Sc{A-@SVQ<6lRHnTxIvmPOu?834Z+ppZ`?>VZ_p_yk
zw}s5Ic36Mgur}<Vc7Wga@aw-<EdRY$yt{P`|Eb!PYpMHH^tyO19Q~luoV`%yx?yPf
z>t42baqLe@Vm2MxBv^N2`Sf-2vt}Baizhw^e*JQ-ewFEF(b?e|Gtb>9l-c8y_jY-1
za{nc>;Ov}@B_^l0otd>lrE%Z=<JU9e>-M+5T_&s+$rWbBz#jV5Dz^B=jc*Q(pYE)c
zDV#K8ZneZ3``w=|ao^=q4^r>`m;7@5WPjWK!yWtf?b!Zo*0W`b`%Po(Ivpk4mPzGq
zzpU8DG}$d&N94>eb8T~tGxw#}e|wPf;`<TqQ*7yhYc8$5{Mn{UDfsJk{!LpK+zspA
zb}uToY}?5>azD1-&ixZN-{ZfJjQg`%tqNADUu<iFRzF%Q`qlh#)!{oqOMc#7^YvHl
z<Wu)vZ9QvsF>ibG`{%C=RUW*0ST3ZlGV!O&3{`ngnaOo2O83oI9;y=%ICe9tbgNud
z>HjBJr_K3%ROsn3=Cs^3kCR@i8YSLXdfC(C%cS1C?cLew%<`M}u1uZ%??|DHR@K~+
zMfX4dVX(X#bZJ}I&im&3jia;ex$?_@nctq4dTF-yRj$z5`;Ww84r!dxecHjHWLxm2
zY-aW<(+l&m(_jB<wrgBpw=YEN@v~pGTXW7D@3)<6vqdJIIV~_fv0=@<fUxM}x>X`y
z{iN1CPo1pr@)J*O+YZi~mu$3ew;tG}b7`wd<MT`3zcTE-tj4qHm)Ksv*_-~^KFw-v
zTHfRrcX8>W)rZZu<s`q}_BO(A*AvCnN9M1Wp77+K*hb5oOE0V8rN<Uf>2ZD!*RgH6
zk3~1Vnwc8wvGV1OWgk4Zn;yR+*>UMaQt_;)(B)iHPltT{H#xbNt@ooYL&)poE3a2s
z)$9yfd@o~$)~S;YQ5(<rKU=kb=FKN{`@M_HZiys$J*rUHm8bNyFFmMCm|I3xv}60R
zp5FeMi=19@zOrA{RsHLM*7o{3{(GUD=R7Kiym3b)j?1}fuij<jV1_xCrA+beVuuX^
z-nK=(nz+n1DkANryTC6O#mK}REII1G_oN24Zk;_{{@6d3^J*tWpLH)5xc~n0wcmW@
z*11->p>wyJT6-6VE%(?yYfF??)4i<i8E02M_xJU`JZI*@>$$V9d#4|WJ#T!qM*Hce
z&KWmn>sFoH<0CkiQE2v+yAuM$%ebrTYU7vgWB)tPbN#kSEf$Rd?!}>nM@_z3o%=Pj
zWy>WoPnp?sZMa&Qw&f<z&WQN+q*o#G-gBM!*+wUCslNSud#&XojRdv3Cl7Bud;W%B
zSk0M2nal61TbUk5Z)bjWD`x$5cB5@;So;e^?fI3%j@q6~{kZgb+QyirtA2MTE$q1e
zezw=Iy<y!qPkJ)Uu~2*QQs>Y~snA;f5NYY;HS0EsW%U|*P2JUbLfkubRTbyL*A~x;
zCp|G*WtL*r|8w@H&s$!EYP{e%+w^*-Y*x+P`WuD2Y>al>Z`|nded$Iag`miQb+0G9
zxboA0qr>UG&heSq=K?Oz4368FVkE(}ROst33x?SJ{mC~YFYa)<_{J^esnH#?2iD5-
zT6r!Uy)ct;*V7qV)0Y;pu3y0RB5abtGUiVQj=w)=XueqMQ`qU7V#@O#2VHr6E&Hle
za&#!W#lBSQ=xuKq60WOGe^jN%YAg6a%~S7d+1z#Zdm_?w)za=(EMV_oSo=(8^W^lG
zrB`?zWsXN=R%O;T<XJB>TARCD<kYLZ1v1muMq9HaM#Y*bUDTWyF>R&Do?E{At2D2P
zn}0cT>FU+0n1JlO^kvIuSX2r%1Rw9an7i^|l1yvD(zp4^OXH6VEDxQwvCy`EQ62vw
zi!*tB?0m-AUqaU}+P`Z3zM7XVArII~qH@p83%p%3*Rpof%97dZJ2#&(EfxI`)}0r>
zJnnnVuU$>~yKgVP{rb|Y7bVB*5-zoNA5~J_%eFV*#CpRmA!{4Y-gv)Ywcqi=ZLyA%
zQlgjrtevbS#kSD%acJ_pmLuoXIE6P)b__ducT>?<Uz_Po^FFK%SuJAAf7&y@{#y0z
zbnejUn|&WXxHM}GSM`J6TfT1U+d0#-YVNws=QXdE=BnTPq;~t*)zju(Pba-RpLNwL
zIr`YycdS~y=HV-=c<(h&j7pk3TV-qRX`U0OmMV$veLCy4*anY|FHz6+ihW$IN_W{F
zztbbNM%>%gtEwPeD}2TED-8SX?9To85%$U|U}Nrexw6;ioeyfy_<G}8)!N+~T(;#t
ze6_Uisn^6T*R7LZSEk*Zek;v*wn0ek=6k)z_&8&0&#_IL`Jh|*xXp3C+z#i<`K7mV
z)4tf|UetZ?Viw=gpqU$Wb3a?Zx@ws9t9I4ZM~$;2m~S8H^mS!>ku+~>Z}HRZwOez}
zw62QK2+(?Q+1T?#sbHT<&xhP@hxNj|Rr4alpX}uGyCqr0s&;P0?8d6x9$oA5)z8}*
zuV(djy_>VQDLrqI`=Z~wC!F0C?rAqk)Kzfbz7s$8>h1NLJ@4M{nHHyX-<+zm+g~fb
z&Dl|(VQt9s7vFY$`SR;U(aN6JsqfcLt#7@$ha>jH%Dr>Go!_4)CF(hC-#J^)B&WT{
zHe7#wG3T6t^~!B?X3e$qUhq9DRM_+8`ZG!g3b(PFh_wdYeDhwa&C$$p(h+6rh`8Og
z3pPtHFq!n^cWv72%QE(#z;g+cIwv1zoH29WqV?M!eRQ6G!T<WQ_O!nx%b#EV&Rk=w
z;W_EZog+KLoKA{pXwB-lIcx2HS<9OZcMch4&(&RX=i3a%!l)0reP=2YqgR+N{`pxY
z{DbcOd6~7`*SBfBn*F%xabmUJwz;P@B&W{4pE~FNs|)AnX6(MuSha6Ws?)bhj>jDy
z>({<5zx8ET?1iI0bdLW?%30HxXRPaU^ZoY^Uw+-*c}?eS+37XAeHXVn&HemL?wEGa
zHQ~yoi@I6W7OU{pE^@ejoTHY>*7JoGpX=Ruc?VDbnprfnDz|6jTP=%?`>!uvqV92O
zs#dE9tEQ0p?V>W}Q{o%9mM*+fwDZu9in}#$tzKH?cUve**BtM>X=T=xWBib1;mha{
zw}tPX%TCXmbK&~!hd0Z_uX}IbR(z)FQ_xPQ1;$NYOO0-Ce{baa{E&vpSIL;t2ikX4
zlIBh@ec}9pz5W9`XpxhN6t7e-+xEL<()HiV>(lq$fB*gG&G~;Lx8>jW+Zy$hH@|}U
zc%Q6vMX$1Z--ln<_s`4Pdg|NT+dp^C|7}_Gmk~CdxbdF{OD)H@x3`bC+kH{wle6JC
zF#q4n`JaxN@0<Ah{r>sS?f?JW^S<`|<NW{M@_+s~ZhvlD?(K^Izwe)a9rxYp-R}2x
zGRGCWl;VEhy1ps-IN!THpZ(O-)hn;>zUMkgrRIsU{LT}LqhH^Mva>yJmTm0))adA<
zS)64#>bLK?o_}DyFz$1jW6JW|6K>qFdUWaiw~b$;E`{xOj(6X=YAf6BZ|~A?_sKr{
zp0h+`QH{!rreN96^<{Qjwa$Lpq$_jXG;qJhnf-Z5*D5F7H#$}3qjGeUtcT8K7Mr_q
z`DfQ&TbaA+@bk-@(}X$CEoygs@%a0%mW@{VxmSKOWF5Qbv{$@PC^fo{_ljp($<=#b
zij!uSmR-|u&%LfutTO-7?6lq=bqC&@(NXuG$ME2VvA=O;8B;*!+dwJXlS>)f6Elp2
z4=E_{I4{yzyLCcB^vidG>u$Oo|H`E{X_MfuIZsap73grw%(Z%DDYxyPRo~=Buh&2S
z>1-6b+^(XMmdRIDyQ}JH%qp#Eo%15!{Xc(i_TgL8?tI;UU+UVHcH?{1)djcx{rNdh
z8VSreqQsITIKj$clY^7W5{t&31DlR0w8#iVIyD{ORAM}7#4>@QQ`K8xk^0~Hcem}%
z|Gqc<)?=wvuUJjj)t=v3`)uzy%l-XVwtv5Q_*VAysMTSifA{Tw@895jWK;i~y${<z
zElF5YFZXLx$b*GCQzl5ZtXU{<+xW?MW8w4Z%>ii>HbyLT$Y#Fl`cg0G_4MU@$&N{}
zVwE1PC+CDaJ+Ji?a`n5-W#KKTanO0*t_+s2e?R7)D~LL4P=0E=j`qg?Z&(=;{(lg-
zdSd5M_3PJ?t^Y?ZI`!CQn!p-2WuNj~t|uv0yqS_chSgc>nf-RN)^2Spiu0IbxFhfW
z(;GXIRYZ3PB(6DZ!JJ*g6)z)y)mQw=y!6ki(_SytUHZyQJhyVvM;W$7pH$xQ&RUS)
zc>mwq`|tk#1)VEe|Jl60`Twu={|~Xt*EGDZ`@Z|f?)|^5{~XKz!^ZI7{r`XOKmI&l
zF9%Z5wZ8Uk_K$=7bq)Xj-v58JUB0g4`~7-(h7Z&0e@_3g_x^9&n%B|y51l)AZtM5A
zt3K_x-Jsg6{P0OwYUrX*&(uOYm&NTYzkP4@=QhVRyp?UU41dH;-kh;#(KMOJcRZnD
z+&a^{71WIq8O(X|rX>{YeYe~GZXa{{{kl|BC(D^kd57*^E1h5^#r7lXu#8aRJw@Xl
zw|jHaa*Fr=DfBBh-O0%N@Y&>h68h!5M_8B5_TM(ivwh>z@~%r$&&+(+p!?SJLaDFO
z;VBzqCbBKjkDT#zhEG|5Z;tO>8~sBEs*B^>O*D4<@x49UF?sj8><x4D3yM;T&-VNK
z6;@@PeGqc}z>i`%!>J2$txMkhT$Vl8bLMYdn^{7sk$n@br$tWt>Lp~CYT>N$ouy*u
zPUGn*4$nVbj9xk^aPwZjq@S8Dl377Uy@hPgPOZ;uHc&YCNhWe4yRq@Pw%}LizV%Mu
z%U*xYPQCVW^ozZRH*C16GdWQx{OubCr$vR6%1bu3D9ngu_#!WUjw9P-=7JBC%4S9e
zo9t)Uv+=ic=KtT`8$I_MdEH5!mi**(@^sM|0vx=lCRW??eQ&eLOB}ScQooqS+s*CY
zlz6x7LY`rHRY6m5_^h>YYZp$Po~?c-*!NfU;_~V~ZpF&LghxHi>W?!$b|##eEq`o_
zp`6%Ek&x+2N_VWk;N`fpaP>8*Ihsd`a%^;F-L7u?8*;Z~f*!-x7`=;Sx>NK;SC-lb
zJgUq&-uA;MW6FlqDM3H(ec#u9G^ufY%~S0k5Bcjmw&i}jy1veI&-1_E?;i)<B>(4l
z{U3IQ2loFz+kXUYmhm~q_#iv}x74d$$N1}i9IpP)%i<^iK}XIm<oGr1$NT^P@@t-I
z#~-ZPdo0E1p#8tc_TY05>%J_OS3F<*=KcHc_x_)=e*fTc|JubLj?35gl;5jd{{7d#
ze|Dd2_}^Rh?^+jVZC=7)QM`Jk=IxNVhQ}0Qr<B>uOZY!i_hQkHKe8T~;e6toRd1=S
z`&TxL_2oLxFb`gF4WsOiNz)f^m^44#vgM4^l{Q|TNu_hY?JxYIxXSslnWghHS^wj^
zZ<w>4y*1A|_BxwqY}ToirHk{v#(9M-o%+hRyj*d!O{dhc7vbj@WIC)qJl!nfmO;j?
z3ej-OMQSz2rfHvA&1GHP&cL9jn)Q6q{cX7x|4WtppER{^Y0^1uDCfU%bA7^pz0(W)
z5<4?LB`AgW{eE8`@h9l;0v~a&tA=_9=YHAv+Dc=G-EwD-ohze7FXc^P+VaqG(cI^i
z8rfU6@9#gkuJ?wArqixN7jFIE$1&aJ`L;dFUT1HLX}h8}Q#3*E)!C?dODr=PHvVEu
zHhaOcgiFDpNbq!--!h4v$$?>_n{>FZGe2kE%^tJzedX`h({Ej2o$9m6=6Fiham7;-
zYo@QxICpE?L7zTDv2&GteDC_6R+#Vwo?4@^c9zP@8xysjvmF+j(tK=&#LctDZ{FT8
zyI)(@Fn4jXPHg<eHQ5<&FJ*3F%$`%^D^c+Dw~pMo?m4LsVwyV5d4KYBdv$&>w|A2)
z%@TTk`t`KPww2l^t?$lVpz$Wc)uVA)@6{X$o*7;xz5Dj8yfk5*{i8XolXtHB>{fDb
zi_x^zZx1wYoMR;8``FvL%phT*RA1s>rWQM<|03Q+cBL6j`&8>biq{L;|GL;;P*l`Z
z|D(PB!25si-aoqk|L=YMn*BF5S_|*_=6<%FUGw|){bQht{a()T_Y;;p5<9i%z{7oW
z7u5gbo`3vZpKQ$BomEG)!<p8smNuB)qiVq~{AZEQ;dC|Y>V;~*O7i(rC$@j*%_=D1
z%`5(Y*>SS3;0ETW7b{rKNuD{focYCs&J|O;EW34PPM8&OX^Do{lS;AtDRXjD3(6#$
zzeUT=i{1E6uX%0?vswC14ed8OY<6y1bHOUSc5TR|f3XsQg?fjUICFH`oDQ54rk9y*
zufB6(f1X5H>>_2m9=7K~ODBJQXKT&FU75c8_`)Ys!c3zct6t@~WjW!qkJ5Rg*V&8-
zRyPmcYm8N>{9Y`daQv$Jw4l1Q_<u7JPjU%9mT~%^(7n!0_|0zDmCb*db?z>j5_oMo
zBSTA2z{vyR2`Bb=&Aa)QaUI|G-F0y`^^M|s|I2J<-ij%gJ6*&3R3az2@s8f4Hv2;^
z4c$DCPu{Ri3kVif>o_G*vesMuvCTK#j-PK_<62lJUD6dO`j}StYr~FPi(aj*Nxt+i
zrod;}w)1u0e^##u&z>WDdw+U*dc;rHTk9IXT~&%$({x~G$5R$}(Xz7d8(;rgaPnQA
zMzOl<v@QPy`VYT7Jb6L$nQj4x6>h>Jdhg@YEGzChS-uxvYa&&C&iJUpj-uO-CTJ}S
z{>8a#uh^{!tI(GdnvPX`IXIz``{}l9g#!|YW`uCaF}d?Fc>k@McWj}O%;6}jI;SU<
zeV}8c4y^z8YW<_z_y3vIJq@p8t^a$yzPJ2-t+?;y2S0x7`2Nq|?x%{&+55HM@0u$;
zJ%0Rn#_eytC#p`#|Nkie_{$fQKi?m=%isIQuguY;072_mT`#aV8M2keK0Y1)&uEj*
zVbFyf4_?Rrw_<p(xZm#3|3BydKREyI&3Oif_@Af3KY(g#`Pwgn_p0C9G92Kq`@k&X
z+NfXu^R#%Kd!UF$*Q3p4Ps-{pZ0(rXv*yHx*RMjfzB10+zu{v4=Euo<?CN@NuAKUO
z{j}8^s`OLZ7Jc}%i<57zOI><8ziZ~=gO6YGom#~;Y0p7jkGREun=OBB{gS!zo~75n
zodPH3c*ab89(L?RP04gtP1A^wT!Re(>LJ;pbzI_yBn{_&p8Ng8(<k$`|7;DfsaN_g
z9;9@hE99KP3XRhmsp)J9`(B4RUegxJoKvgME%<Yv;I#+mex2C+-QMug@m80>-hzsZ
z-@KYEWpj>v|9Vm6`1*KehI47gSNskhejRaZla5!&V=b2k{`vNY&#n9W=d-we)1BB8
zISVcx{;iz0wV*(6!p>V~7oTKdKcD-1|Mnj-6Uv{tc2=eGp4zppHAr@rnw8e?SMp9=
zPiF2t9y*z;ojou5eSJf-bNJ51ItNo0DM?;hxFhFb?`^yKOH-8db2MBf^bPWaPyX2}
z=5t`j6#iotE!A<FvUgTkcCVCiiaP3Kzx2%Mj&>3CTi1T5YhB;N^!#RbdIC>`-S*`9
zi?6RQEU95(h&cN^V*T}Z#w(+A4<C_iekU*U;K2jSV|q&VGvBd14x8ASIPZVC!>VhK
z7v9^$^J>${l&+UIPTgI-$>n-kMCN>_WzJgc0>POQj~7O<KbM(neg3Vb+<Q#}D-9mj
zlz<5gOg+1|$Y~y^lv_77<mkj%ns&#&Fh6>Gfu)xF&&m0JIO|?-uj8Ko|Ic&7*=Ik1
zuJ!r<E&qQT=p5b~ckdnrwc{T5|9jD2P*Ks*+{|3_dG`Gy`hPF!vxa|PU-xzOk4NJB
zJMwEDOaJ(6|G!v9R`%iS`+wB_J>dWMz>V*ngT4N%p!e+FUe<SI>MuWtX=}W8@7<MM
z0n8RQ76<-aR7^9rc8u2%6Y#q~<Frg_s%p&RlPuQ3)r+-G8J+0aq~km-{J}lT8T_kH
zbHD9BeR}atY5sMeYBzFL7+pv*a5Pij%;VExz;SK~PyfUdj}j%OY`U~zUGPGksf~=n
zHYX*0Ro@++^rLP5rS)5j&gRCRn`m=Fy0YZ+*2-L=rSSoe19xc)Y3??&nxj7FW56=s
z%-(fxon~qtdu)0(X#Ky3CV%%%;%hy$$V1I=mD`MWH|rL!akHq%Q*Zozp0DuBExx|=
z^yM>l3-xs$WvYuzv6+|fK7s%I{7BKu@9yOlaOr<C(y3S)doDQlzd~X9x%`8^7s{9I
zR@8mayp4P3LiYCa&3m@Lj@shezEoTOsO9k^x+$ryeLCge8$NPaTjy=sw7>r^vv&FV
zId`l=<~VFh*zi=b;8kYf{Hr`oYvz7la=$w?l<S~ks@ShuO_w*(lZ5)b$`>B$@>G8v
z^yQuCp69kj&+XrT$~k!Su2AubrT)6Bk4<=gr1k3a^Yb5nT^-KQFnMyY&NE|%vOuk3
zO{K>tS$6OKH^=@!NxHeupHDjdJFms42p>AJ?fn1UDVKHaPruz66Uyo)d|S^oGHGj6
zd*_~45gO7N>aXt2m0fsc*@HV_0!$3g87FL8{Nbhf9fi-2qZJim4Lqlbb{X-D+8<Jp
z_y76Nfx*P_K9_#{z9Z)QKJwOlx#$i`TKfM#=|BE`|G!<`XY+bth7aNOU&AK^Jpz?w
zVXH;!{$8(_t^d8fe)f~;Tz@{>|2O{kf&ah2{%_g)+g7dmV7>pd^^flTKe}`O>A(s{
zjz?^uR1G@MxAyhx)W}EH_kZ&3`#kr3%#V5cH4nLeEU*8y{Pw-AtB)VLeAP)<R(<_e
zp}D&{m=hh9^tGo<o%}0Ibkm*#8A+<1udi}d3Z6aTmHsDCgjGx2H@#<JS&@gL#V4P(
ztEU#uygI{NE@r;>YQ><#+b)P)?6o>=<dHkU(*5<G6AF8^CqG>2B)4kw`^?>Jx!H?f
zdP#HWE!GUy&$64d?S0|;K#}!P4?J5so70&rHw%^=WL?rd>4cBdj^t$K7k<C^#HJ|a
zUS9C5bj8K9J72iFx83_!?i*yOa6&G%ZP6-&GNTJ>?-lN5KmI5Yoc?Lsob?9rw_aR*
zlOuPl#z-=`KHom%fyQc~wZ@l{npi8>8!i)HTGO@U+$kpx5xu6ku+)G?Q(x&N@7vki
zS43;SyxO%en0H#Sv}3wc!ttg2BB^V{5`Sy{{+VUM)%PgWv`nq=(0iV$xi_Zm^mV=U
z^oED!r{iuPTr`gcq_7%I*HTk$znD4Yyxp~^#jodFuDHIiv|m;HK}?Is-cnt8hvfWC
zYen`yIrjcC$EG`4VoO$EjGZFtrGNUK<<Uzs!@M$iT^SR~tvHhxzf9@Unf_weg42DX
zLQ8m_+e@#S^-%AFV2NVDw6dCt4g33<r*m!I{97pZ@}knvtSyWW<g|}$obvYYTQyVf
zbCPS{?7h9Zcn1gH-=MS;-qrT^Z{9q*aJRqAyZ4DEQtc+Kby^-a3eHl?g}yWUUg(tD
z$8B(ZM#6VCvFoRnnw@01-*RWJkJl8xN9Ph0W;i@!<NKP?b7$(Klb>W-Uzc?6;W%%e
z+kS4U;=~}Qw8%-bcgwneEKWQr@@mqj7tw#KmT0mWt~WkkUDxOaTMNMb+UOPA?wKNv
zySOLwY_n{h=J)ODM+1g{D8<v8Kg=|due$AfFZpof?|rxJr#4jGTwgf3NHJ-)_rb$U
zg0h9#_ck5g@yWocz~I~=mcUaL=lEA&{GGG-?%_opA}5R_#TK!MCte7dCi>|^MQc{7
z`p3l=l`NvCKjpCAeOY0(SdfGM8<n7JS(SrP_y3E$xpZgqk?9BhuDN8~W|~?YGS6q3
z<F9p7xGZ1v7?-Sa-hF>ZY?{Q*qmyk;zJET4l|3c$N#et$I@~90xP=!wPSN-JEvLV7
z@AAzme}9_!U;plCWYNTZZlb8G&t(CoLfv_+JGWd^o4H`Sz}n!yJGZRZ;bATF{Ex`(
z|3CJ>du`S6SZ*?lrG!Nbi<{rHxB|v=HPu`_$G^?l{`1N=3tzRzFZ|vG{pN}J%6x9Z
zZq8jdEX4d-{|C1|k=R+6mR~Oaeoyx2KhKw^Pw04=lD<4W;_9~h8=v~d%IEcbZEE!X
z=)oi%w8`Mx$t67Jel9*KvAf#r?6be$?;U2J|C@oK;KLisva+Q3>A$`je48<uuj71@
z$2%EFR}e&gOj*cbRcLp;Ymv+MliAaSc~^h3S@X?kM#8^i7Mm~W>vz7nb>yJA^GmzQ
zsWW4rvLC1rK9j{F{=muRN9g0*YwP8n?$ha=w`0Y$i)Bx5&R*rA=zN=rV^WZTL$U0(
z%o>%|mnRsxUD*3XyXFOB(dxJIJewn?98Q(&TGUV`Sg2W%VIQr2b=!W!K%tWo-0#!R
zUA(*d?ej{;nMc3LXRXe6z4JPhyT`dp!qi;pWit=|L-Bd3ikl*)uukz-*63z>{88fZ
z#@;JZ#|~xZ-fr!f`v0C|(fd_`vy&7KSI%OWd|z>C;iYYJLziFdjlG+|=b$JN)U<KJ
zEfv;wKcxk6y^0p@FO||NBb~eiQ<w1ni7Sv^qGhDGXJevVocJ8;lUvQLdj8r!*7=ec
zHCtllQ=Wv2=I&`li{Hy@eXrsDvSycW#%Y`FD^vdMF;#2-@OZY3^W~c-c8Ek8T$JrS
zC9v`ACLXVq32Da~1a3a9aX59b`jFe=*!c6TTG#!m+s}Wful@IbTYeCm>rCb1XKP&N
zJ$`aVO6Yp2?4@s8t}W#E7qxIQ;Fzdb{5`7Le}g7_`}z5gj}}LJKDzt;-oftkwTuiO
z9{nutS$=uKxy$CA$ye-c6Em9pT+Ei_O`kX`?#DdodykDYH$E<6ljJE<f7rxWGR^tf
zxwX4qFRGk3Wx^rre(r+sE-$r82L^?u5=-{H)~Xhg*_ogC|M&3=maX255AUQDCtv1m
zk)FeO?y!R1S#|S-1RbmGzaP#`lQQZ)-lopHOL61cZ~pqzBG}ZN1E*ZDYmezr2o&%6
zu3nwkbnfu)zj2<4|IdBqY1%E)e9yX#mHE)2b9;Tnf-^T-uRnch`l1xavK5I*|B}=e
z-f4QcV%>tf3>M|7I<<L=%|4o&<VxR}`Fr`916|K^oFAPN2=1HIdhlX~$kP3{T8^rp
zTl>B>>|egvrTnU*L|%#Q2Ha_}YZ$E~pRC#MvHR`q0}baIF8HVGZROmsbBj~ggOdk#
zzBpO%S3YW`fhPN-N4nxnK`9^iS+9uSbFlWCeMRw#C(L}8UtalTykk?goAik@dO@j`
zje1M;JyZ1jW4nG>Ot;(;X870P<%d}h`0YIkWt)!7Ef&cOOwP|||N8qq(}u^#=HAs*
zvo@=J@R)!3k0)Q%85*7zH9kEw?Rv;6-oJten#3ZD8W;6+_k>11{BR*`>5n_V<sTfF
z`mgripU4x{_w8%iUZzNWb3d`XGN;3QA*Yp~=drHu^Xj=7JR_%XT4ivzaI$Ugq0bBn
z3!K-jy`(j5xkpj)<&2bR-UZW7pOy>|3GKLH^Q`Z~tJEFI{}xU$k~n3+cHqc~j=4I^
znm0%^evj8;IdnI`OIq-oTKb&s#9j~C?Y5!2N`5cDs9mo2ypk{3XN5NZk(gpV7Y*^`
zhPZ#xA0`ysp8C$}Ue5yljenV=PdRR%{Ml$m=fNWfH(k>DBI!2u!_>mi>uvjjy3R~f
zC}~c}T{BaRp=7SxQ?^@99Vu=W8<-3IbLUshjaY0U?s(oPWL?Uv36VS6dM+kjZ!r$!
zde*_SF#lpyyUoRO{^#zR|7x9n=BHtcMreM&9NV!wXBRO&xA_>Wap8kS<WrkS6%i(m
zxANTPo0fDaCtpnI+ufNQ5g}7loS*pSaKxVXeS4UW-(cmtpD&%fV9NRT`ps7E92Y;c
zb$rjvw5?A0Q}goE%~Y|yQgWXqUij{@XLWyerd9p1<}T*j(`HVP2v7Do{!MPf=FQD>
z`*ZI7IQf$2^v>R8>tD02$~~;+{BxVl;T1B8Hd_Nf@4Xwlry}w5?fLsF8t?9PW;pQf
zoJeqb+s@s)yH~9_RQuRa!>050L&X=pkUl7ge00%Suw>D3v%9U9{Y$T&+QehMcuLpA
z+T5lkA{+8%9eOUrCAPRH!8UUDbn~Kfxtel<t^1rK*P0xQ*=2I;>9?On?#6kizo=aE
zNVyZXOCo&!-qV@~swc`!4`o;<+0vQSrgPdk?plCsP2!oQPp?j&oDugnE2*dT^Cj=q
ztmT#4)#iO(bN%1S-^K!$v(`!}O__7*Gw;<C47cTP2fjP<LexEQn#696skLW!J}sBs
zB(OB}p|O|tfgi7(95}9d+n;c@bXribsY3Co!TJBcRXXEtcL~N>1}$1u<LT3>a!qcX
z+PN9sMmv2~PiZIfgakd)o|>^dmFu$2`L(ZaU-X~3^NeZ1?cHZ4?YkT9VOS|R@4Mx8
zo50nqZyh)3tG&Fv_2S8`QzPSNFfN<6G{@Ou#y$SjX^C${Rqp)K{P1AH`iq*+`4fCj
z=!$o4YAj~slXu*H{KWEW1;?7E_Y2I{lsjxAx7~M*#bL$PxBRODMXSU$Syu(Ne(dXQ
z@c&j`@M6geb@g<M**7_=Zm+puqSutiv*h!0$*H2JHXZ7le8T@b-^Ts<tE+n4lzrxW
zt}~TNeA4$h!^A0a>cd^qA*qT<t1qz3eX;o{<0iwx1yj>2Z-}l9k=T;4wpzI40L$Su
zCi1uJzNr-!S{-e5(EIF?Wxj^*!zSS=-l2i}+yZ}>6eZ5NBG}`YE&J`P)ESkPEDPH<
zG+xYen*4|FT~T#1-!F&k2TarL{`=05+4I&n{7;_P?RbyQJ4fb}tSyZ(@Vsq*mz%Ai
zJU1gxL6H4OkQ$r+9R9ak?n}L7l6}5SZu`Zu2TOcSB!lN1-xex0=XlkQV=kWS1#}F3
zQ}*t8dB}53Y7ke?hPPs;gj7`*ONc+5vwfw^I}1Zb#mA--;>^`n9@Y(=vV&W(Ib?@M
z*FBb0kDnKAd+K_xV?34+W3SlD8QcB-e{$xoj9DiRFg*MG@27OF{ex33YM)*|EOWS>
zTd(P2@&DkC)!Su{+kKqV7suVxIU#-Cv=@)o%=bDrdC%*4f;VOVty_3Vf_t9T&XW)O
zcNhFE3B763oE4H76sh^E#`5r`sb_O`OU2GuusLBtbdQ@xidYS^+G9gCzjyOeExoqi
zb?Q3OvCd&yYT}!0-<bK20u{{^JFQ`3)GUrX3|$L^n-}K4ndUCJGDtCN-Im^EzeU|9
z&zR0=cq+*(#p%#`18z=5*YzgHoS*1@o0q#~W`6QH%bsg{Z#d=HU5oBC_dKFK<;-K5
zrsK)k`=9gG9bi80b*1?lv(043T^W-y^fp}l_mXYTt0NK$od>@2h`j$`ZetO#XkFpb
zB{jFp=C+l&C3hKW)aSj{xcgRCc*o=EbG|zsRB+MYwY;JwbX#F+7<1U8=(db$FWi$C
z$K733Q8S-UZtkkBd~L;1$G6BRR&)e-YW^0wzr2>C%HW*h9wnD=Q#td${eOO<z}LsM
z!EoXE=kKB_P6giX_ISVBiEGNbKjP_omP>?09n5%WFVa&~{doQnhAD=(?;Uc#vXmz?
z?eFLRFJ*c|G@0K0X8tn8s%P^AzR9UVm1+IQ^Nd}CcYl$*dUT8N;U=qq6Fg2E0u~wQ
zbBRn1_A8VOy1q$=pRH@#q24#EAI&?bsCbXb_d@5v0}=5_vh3%St{GlG<heVEUrg=k
z3;#bg?Z+$ctdrNMc>TIvOZC&^YuoQe>(4%4cQM_0o?WuRp_b0}n?LS-R+IdDQl(gv
zz29R)ai>i4>1UJkYPcF~(|tE3q@FqY_Wu7h(pz%p$lKf$yQt20%R(U~W`@wN=TqLW
zpDIgu7W;*FhW=~TXEAG%?Kb*r3plyCXL}jGIJ_t(_S>y^wU<5{&p&_nx6p9){p*Df
z`-5Y09-d6<oUdW`_2|TIj_b`GMr9pmSr2V_`>6K1-Wj#Yvfuf%dzXLyr*z3gTJ!Ma
zZGAiSx2|kiE6WkzWmI_ad-B}gJ)f@VAFE2SX)xLRTOo3WuQp5LO%YYiz5HzadOue6
zruv&oY_S%bbM%#YPq75^le(t)=?CY=7EJVclKMX4#un54-2Ojy2-s#Eaf8mEus8}Z
zHz>Vu>7VTqn?HG;OkZ}vTo<9lD#0@uLDSaA-4?%dS^Co3D>rfizKAm9TeE%NctYxy
zkAg&E?X};*=8ryaGcCFFx8}ELf#&Re((g}SU4Q)Z_vZ_@*h}2*n`$KRYtof9>NCD@
z3SKs^k#G62e@AaGM_7kjm%vG>P2F|+{*UDL8@5GBwithZ(xz?{l=J2N$M;*-n;-k4
zob>PS^E=FKt@pS8IFoy)Ie*onPe+x`sGh(6WyhTD^3CbqfBk)elQzzOAldTZ!l`-Z
zZ@o~+Ht)!+>p6Ps^PIhw?{0?l{kT5QC}*=iXJ}wfEBjT;pSve0O5IakHd#%w`P;Es
z3<oMqQbc8JI;U{Qvo?0~9(J`-J2D$od=@^A4!*D}HsAYsX;9PgIcGn!OYJK+5%=38
z@8UVp`j&1r^Ko7_x#{O6<#TSw34WFgKa^Vk{Hgk%>G#hqPV0W%G~03}liITL1$FP%
z?XC3rJ&)nJFIRi5&i2<yduNIzopDv#-|JX-D*efSp51@nx4m9^TOpD~@!gb^J5Pcq
zwrKC371r}YpJ)Ddk3BP=9hW<HBb~eDsJ24Ly@Uh<&!`67*RNCFdd`x(7jeAv=L;Us
zDuwsqUp+4Cz1$%%pVjjYCw!PBi6MYx?u&_DYu6<glx{wspVO<VD75+Got-)B%;)NF
zm(!Yl_w?%%pWnyt_{DJ3W8#lB8dinB4W`Xm9-Z-T-XlhyGp_3;E*S6s)wA}9uFVFG
zlUtS7Zr{WI@Z-_^s@rUNrS<QcSHJyq_;)RTYwmq@^WXC4f{HJk<@j}VTlu~F&B@%F
zY<tZfemi%5PSNoK-n=9e+umLAGoDS!nXH=0>QG-}`y<&gM|Rc%;patD9d8|#^_5w1
zZ_4Y^H2&4hZ>lfHvs7o;cPr@mM$LO~^ksMJ>*u%U?S6Y!-y?N}_^Z{wqjyv<Z@QgY
z;2q?jB2c~a^OLhSrH{%aFa12f$I>}p;%j8`T3-3)?KMdga&ij|;-ZfoF-z$=9-Fiy
zCHYv`{){_blZzi2O*k?aI^53Dq`=1DdZAM;Tx{$9RMiQF`FTanvQ=J7ytj)xa<4CU
zzw|HPIz97iwa1=Hop-y0j)wOAZ?+CzvH2d~%8hqh+aD}^X(*>)?t9wXymYf|W%2Fn
zJKkTISyUQP#QUwwJ!Y4od{~sQVN6Do-<O?N8E?JyyfdH6@c%d8@)tk!3&Z!+2Dz`T
ze|~{wV#T37XP-8({pN3|o4e=jTlPX@CpO{VYZeKx6sBKbnXABd#8s`jq<DvXm70Oc
zfvOuhw?B3&tn+wPy&-qA-J?kxUf<Xz#Lp^KEqJ@B=mJ_oP>^G=o8@G5eD~2gpI@8}
zUth<gAy)Q3V5Loy!aJ^A;=(M2(?QAQ@Qt^bRXvI`KZNc$Ed9@Uig(<uRVQU@p0Di|
zlTY}a&usl-?_A~o0_T6Ob)MY!wqWM(cf9YGm*~b!x^40Qa?w*3M}g}tYA-+?aY)@~
z$l&qF@5|1kQ{$st)bb7moR?2Nv-D}N$j)7S=DEgMpR=8xzb@P1@{LC{ayR?Bf`9Yx
zZ=Y<e>L{=sJd#s*@1UOP&IOz&-WJYmyk1&#@ufs;-|H<eZ`(P)t#gfuj$7Jix%K1Q
zLpPrOs(n<pvuo2VF^>0q$As>8Wt+-w{eE@<D__$G%y=$V{Qfx6S@2Hch4rE5&(+RT
zkmD-3X2+8wa`*q${p>S-EUUh=*qz1nw%EdB>Ky!_AtjTIH{@29eB9LD*mwPHVozt(
z<?Jomvfa{2JUq!J8*ivx`4+7hTd+6BUg*Bt@i*HR*v(PsSm+>B4$q8D5)2}a>K%-Z
z+CQS(Zq@G&_$}-&@#;S)k{Z-r98rDgy*~M%__P^$QaL+LtDP6V{#@(bqvwUcoA=GO
zUfXs*<<ZZLKdm3v-TwSWYyV@Ll`noi|DgKa_^$q(_dDwEeJ(eAux-EY-)q|WiqF=^
zUHO+5as6#t-T$M1d2XKwk~o*YLx%tU(HT2eCwM$R@BH*q-rIkFXP>`c^uIXzc-dzD
z-){;Jo2~C&ve{>T?d=&SY+bK2I0{^ERe6UTjT%jUF<iyxl#l(1f4*L5cFDt^Y|o;P
z`0lJ?`L*b6M4n=m(7&qN+iGIpe7;vYbA{Xd+g)n05|^#ax6J#~HoI>B|J;-NUw)px
zciXSGl?T&f4!qJbJ^A=p{zoZ$^QIXtmnYXBzMjA5m%)y?*{}a8^@_jMU%cX>*ba+x
zb=`mYZ=5}UuKU-9f7cJ}-}Cj~@%JYz?-$SOdim$y^KI*Ln-t~=nK-KJ9k(>!`#Eox
z_&txzq<hb~&KAzwU9sb7youa>i4}MJKHooQxaWn;&L2NdzdxPpZFTsYp5=SPmov`H
z`TXZ>*|V(k@jGUo-hOxL?a$lR7Z?8v`1fd8#fraYa^HTh{rj(b-}8mr{@WIxOzZmV
zzu!LnMg)VuW%|K9jlch|{{E-?-9G%!ywBgKuj}-c%Q62OvEW<1zy+4M90h)o{I^@c
zah)%o_5ZD7?*7;nf46gQ{a?25n|g=&!qte>p}@xAi;`m}9GT0Jv3C8B&d)-{vHzrv
z51%c5dA-d$e#7tDd!Ng{BnM?)zk2I`6U&jfowMFfTlsS8F((^&Gw-yy|Lcy_{9Y}^
z8r!%#`~Tbd|7X8_@1Gm9@UOmA*!H7eZ_nQ$)N|C>%(8Fa->KQvx4kRoch8<$u5z!9
z@ww8UuNvq77N6Vc{q^tkihs{+8o$|3Pn5VOxmF=X?BBkk-|+@**7a))dhXkpXsk{6
zaY0ZC)JFt+qJz;vu;kG#1Bn^tcT#<SWqsO{s+~RKxy6HD^}l~-{5rq+N8RK95*>dt
zcyu<@9Z{_8zgh8r?*F#!Q+6aKh+ku}T0co__lwrq1>Nco)3^UW_S62txBV;Tw%_}g
z|94jLB8~6s<!>rI-%+vo-sv~J87c2eyXM?y-hSbj_>}NH-bXKnCd}^Fzd3)y?RVwp
z{!gp^(f3f$PjXKE`WtVg->tfz(pmK|YQFzJ+x2T6S3bYsy8q|Og1G(uJkqlk2wzv5
zs`!0g_3h8M6N=;Yv?gx)d2hi2skr6eB2zQX^8LSGGK{})PDku&-Rt8L-P|hWo9nml
zSgF1JzwY}3KjZ%$+xO+$<2#Ptf9BNwZ2Go;s!`$g4ZWvp&Q?Bs^zQlU_JgfYKh^lY
zQNJqHKmE3rZ<+g&zx}qqC;j`osQPH@_m0Fr%i7PSZ+-miwR7&*?RV=VcLmf29(ly+
zbp68NW{k`y&_6+O?Nm0_L+R`8-7aU>n^0iK(zfaN-oHDte%tFN{#dL&b-SH!qkiH2
zC3}yjhPa44RnGHzFSF=!XT<?f-O-Wg)Vx*K`R)H19jneOs=Wob{vKlXQCJ)Wjx0W|
z@?Qv)`3*xfn*6{j!KFEK18UKp(c~xK+_aJVb*nH)wW9#b#~ll0N}42up2Wbk`HOWe
z5I)k7(9;;mQrm6tUEWdPh^=$2y`umN<E#ZReU1W06cjqG9eFr}cH~Q2F|j!2aC#Mj
z(wBp9Nt1+_iGwmEt#zn#qqcECeuGGXYjGsWJkHHCH=VfjKkz8qqqhMp=#~9(|6N_4
zrD>oNxJjYo^`m1`^EZF3Rc@O1Z>HPj%owjZpc;t%y!6}!wcl!-OTMcV%PL7n9e?q?
z{mvbE6P}O_Z&yC}EpLCpYQOy};i|a{zuL1n=1krGRsKqT4zuw8=eKNa-Hy#Di0P@<
z^||N!{;}p9<L~u+GZ_0^JJ&j6)C_Vev$bc;?yp`wLt3c(7{j?cw?v*Fj@r58#7}1R
zi)$}#tVxiFIk#i^`g5GMd=d#?q|fIcVvrEaZSr_jQ5XI7S8B4}QV-AQiz@yGMk%{Y
zrUy0HeEj@%+s+J|&&Pg0nyqKUw&uNy+ntuPb;sqUlNVf07K<~x5Op}??Z0a$-F+(5
zlX;wWyqwNrAzpa9Bv+7c)&gOEuFZxo&5pI43&`eO8d9<5Zo<tB*}SMZ#RZy*tsCl@
z1@8D>W4~y)ENSKM<0|G0N(?4!^Ibo6-Gwy&<bdbrPfO=LwURdY`1|0EV}2VfA}fWC
zKP=jF^W1F9=I75P^S(L%+k0!q6VtoD6&}|GovYF`vx!x?V`0|+H)8JfKAp<7*V&iO
z_m<nNGXF@6`km~5KbJ^mIzI8O`hK}sZ0Es<^>?fK&ClQbkPwmk$8EZWKvnL#()EA8
z9xI*rO?V@}qs_s{N&BXIY-&7yfBGHPGOxeO-0u1xxhwy0hUV3UuSKSmJq}p9;O>ko
zDvvez*k(RwXxOBqsCwXzg^8`#wruY{<Bv-ga9Vv-@L(^n+S$2s33JYFv9r7Q`fo4W
z`u?KqjML91%ybFu4Ga}!P<YOBY)4<Afb4^BZUQfTk7vlTv%4L>`;&2xrN!<Hhim^Q
zvvEydxZR=X;H$s4A8G$(%=k0gSd5LKCS%pa>NMl1(vL|UH)rfvGXLXs&;PbB4=MEU
zF_uo_Sz-D7;UfX38?MgV6Er4WmykHuEp6Y%`K(gd>3?~C)4RCKo?kd$oZljG`_1e>
zyMJ*jdZ?M_cRSdb_H2A^$WXGX`IQwz!zC@9I^$ypcXCv2?lCS<JM_3@lZ2Yc$#R~B
zYuha>+22&YW9E*%-ukg8Xxrbd*6&%LZ{$zE^G&(nZU2+HH^s9h%a6DH*01{T_gL-4
z_=?{1t^Yh;8-!i5l5959owd#J_O6ZT*N+}w#ahg*>EqS2%BW`FDz^zU=k^sI`&}D)
z>%E{q*C|JJc)o;G4~`GR4gYo(&t4OD?X_vxX;p@Vtq}?PA{ZF1trp#NZlAh7*Pe=x
ze0=lwGca&ivOc$a^wmVU`{k+)`QcYfGh$VadYA4j(Ei4jaA^IL<1ad=-gTWB_RA)n
z=Ru)uf%ID$o=@gV1<r}VajVRq^f}tC_l@v*U#+|3_NBcm)=ywEda~!FL~W(h^WV#?
z7+<U|blP&Ol>OEV0nO`C&ObXkFDah7QJT9WttZUv*3vh>r(C;m%3XnVMoD1tF-0To
z{4++Jn#Lz|HrIP|KD?Y?b@5BZ8lOd1Ydem=KkG5&mPe#lobkHcscl`I^B8`8%03u7
zo3roi7e<B$F>Np2r`3NExc#BbFyPd@^RKURz5dF@5U@U5BJF(qL6%R8IG!)_IUl^7
zi7`h{*MD(6^P~vlV|qR_Z?L^Iy<o=6kgzqX?YQsd0}`T7UOS~tFxpnXs^imJ{Y%M;
zEG*&$?I(Y|4Vd@&>Wh^XCOuu>o6p^64rxEv>v(&a<KDQ%>#j32e68x;w(a=lyjKf6
zCPp?^SurL|73wLRqH#CdXhm?xa$eBjNwS&M$t}e>v(0!ko^3Xkk(Xs==!@Hb?B>kc
znzEv{U0Y?-B6|YXXN&kfiVJf+;a<O~HYs4!@v^nowRP?$xnDOa6L^!l!|BNJponJS
z3dt0iFKjDix4)mBdG3zclc>13vULR&-A4kG^DkU0)eU+6`MQv2>@4Y5_g?>h&(7eb
zX<oQx|4t3ADeva!A2_h-^JjN??R>pD7s<>S3DOR$Ly~T}`g4nluYa}8ZFA8|lU!l3
z|5jHWw@U3=efK`ssl9A7l~2DZoph2ZGLC_vYmY;mhz6In#cDUzuA-Ft(>*y}ru5Hg
zHId!7_Vx3&AFK6zmwprqcq(qXOYP<D*9L`Gw3dl#NbL5Qv4rObtMkE%7qcavPq?I8
zBjP&aPQg2My+Xw&O8gDW8!oEp9McoymXY7f#xQ5@T&La7H|reEuyKvN^?BQxQw4nK
zkz%(Zy(BN0Ug}il4!WzmZT-gD{na}{FPY3-_j*IrO~W%EFA7f6+pr-@cfnMywr!Px
z3fgZD#Z44X4D|Pse0R`j@`*be1&o}hJvW@o*3lhQ{$E&L=jDq747P{Or=GZFecgQP
z+PPDh4`gjUl(p|bktsWaP8zq)wQm*IUQ5O1zUQrsOZ=Z8&TwHXuf_Det*-lL+%`A7
z_vx$i9cz_Bj7&IT*PK@>MpsQt!@PGpS<XINP?WX!+5A0!B=qh7NickPb$R*>-5isO
zUAvoWrab<8zMg?0;FUt8p=oE<C(X4XZpzEnZ7o`J`Esz#-d`dOzOoOR+BtF}mt36e
z^6G?;u%hB5j_D55o)^9~pZvgc=fvvfyM2d$y%qj`di}NSx!q}d-R|BJEngg>bg)nR
zrIeamjdklaS^NBu$I2f<Llgf$5MVgK+WnF%v+I!ZlRa7db6;IB-S<D^!WFZst7Wpg
zmT?A7T9+4Ky>sO?*<IIGdfze)E0#7~`C4ji_mYxa_R#AqrW&(mMXj;^{nMwY;r59z
zJ=IkcdnY}2?Oe6S;O0yw2DQhW%XV8cG<-~HT2!#AeNV%QJwd8*(fnE~9{I<wZB{AS
z8<)5>CSmKA;|Y7C+KP9q%{F;gYwKQf?5*j6y<es~7pymVAfOi>6%1Po5XUwrb%I}G
zK-l61K_`qlbx!A&2s+Gr{y^{V;_0(KpYRN}4(V8M{^Mo-dM1V+KNin#-<N74m-zpK
z<hSzg3^$66=N)D(n!ah_W}Zv7VnGaQe1>a-9?I3-aGe@(V_E03ZyPeJ?3(T++0ABT
zu>1KVc~9L}PKJbybDAajCf@$MQ^z~RFE&_Am1}w0iEgHu{mZyJ_vqaHtjcwj@z^)T
z6Q2bpR=;vvD84aM;#ZngpMP%9N4cQu5j#14CG9*?WO(>yr|mrT^z|DpHusCKR-MKz
z9eKWsYx7Uz-<3-P`i?EMKlO>{j-+_;<a_g9R@j<mH2LvN`#h&^tJ#YwTt+9Bt=t&5
z^IYM+12=C<GCX+kMZ#UZtm)^cr^{zp-i)|z8gb_O1*@4NN3UFAUsbRt!J)`gsMR#e
zoYT_U_TXv%cqWExr=?scCR=Tt%wcP$ap>cT<|}>$vQOVdeJ^t9HQYPL^-iJH!OEX)
z<>nT<6Mwg#4AWVCxs*5TwdgfJuiOQPx8Jb&Uy;kg{$QK)Ws8+}t9q{%H7+Z=$6d*`
z!_&i3O7ZlY2k%z$T<O{PmyN-sR9I!{=bw^d>17wLm}y@r<z8HKE}?ts>*#B5rF`Ft
zIbHK!bLY^>s@TQR*8Dwrz3YrK?rzHtZSP$1Kq%;l&BaAh%o`>jE;2cE<f-zz_p*;Z
z{4D<c<AFj<v9-0Z$eFrhamoK~9co_jaqhEe+DikhS3bY_QnIf<?(v%=r&c}RY&mOd
zyg_F3mncc*XKZUH8B4SsSsTT|o^miXqUKZ=Q|p%JKQm$$mE^|tc};oBarJ~>%oe%B
zYt7p@Z9i;Ld$sS=fvlZJj?34xF#P!F|Iglno8is-_lGiCV(JSRr!6x(sQ-hrp}g?%
zI!np(zm|S^w;}iOvYT$L4c5O;Wk0-Zb8FerL%w(HetuD{`zE~G!D#k;rw$#TBdZr3
z%6M|_;i@AUN$Rg%0~hji`&*t0e0%S*W4TrZlfkh=d#!T+FE5%G-}>3>ZsyX%O1ZbU
zB!1izcir*PzB%g)tY$y_aphb3a`)pFww0;!^UoU2zxh~aGtcXtyi%QW9^ZV(?W4Z?
zWchI~xg(cbG5RrIJQr2oexek-d|mcMGt+DLrX+7XbZ4#I{5f-3ChvHB{rHbBUj-Q+
ze0d|X`qsLzzGKP;Cl!x4Twk{C>c8!!YZeur-IZrhJn`t)q|RkpNozyTIkVV=Dr9IX
zv=pxm^JJ0caZ<^<KHIeSeaG1y-<HlQlYai+^4+7@<rlW-&RSNMf9ay){NtsiOBWy6
zn<-`DH)(I&`i(K`H_W-6krJ13<NNJPnZJ)`98B(Bl5<M9Hu{{H@f_LP`yRgdYWQrq
zIzz+PqE0{UE$0G?cCOnv<92q!&IlG$=eui~4P)+VmG~_UFz4-g=Tx#IH%jAreqlk%
z%<|YYjhGYDPRgW)KKd}Tch-46@fo{0{$%Ytu=)GFt?wVp%&~sCp(9guU)V2ai!wV`
zXHC&x?<ZeQuKD!odBxL3+d#{kEt{8?UOxCEOE#AMsnUm@=<8+AdbK3mIRr}@b|?DA
z-Pp$3@G+z5WS_6>jCVeUbKfMCzd!J9`aAcs%iC(T7}s1`aB8(%U%&ssnBUEkDXyJo
zPA)e;>uB4ixI`#Y-+6sefZ1F%v6cJFCp}`n{dmq4>7^knTsFt(eR#P%>``4!4bQoV
zjs?>fbA@Jx%7>ady<GHi@kI@r_-T@E%IkNnT)6!50+W|Z=NgKwlUG{%;o<7?A1f+n
z`Q2Pp_A<cta>CXx#|pf4<}7^o<_k-@`f-cOT;&(X-H%(?ZSp#I`SIlo+lv(ssctAQ
zXjm5MtUPP#vg;?EU)=88-Kh4$Wj>?NnZN%ZKZsiRx+c=pn&F#e_vfcF#nT@bmsN=s
zT{!ROZ(v`#)Bd#Tl+)Z(o03C%Cd^m<DC=VPPVAQbpSp9+Ie`U?I~b3w%3Lth@m<l9
zu3Zf!{g(Zyu@XEz&*~QM?VNw9^T@>|I~%rJ@3g3oKIeEN#;L1r?YI3m4PQ?^-*rAJ
zy!L%kZi&X;L%ECA)ZVK!VsN;=t*|NX_M~RJ_9!tSr(4O>_^!xVuZ-TIf3V`yD-Qer
zH~kqI<oEuu^qae<$~L~KFkx$frg67qTJdbD%`sOas$W(Gw~I(8i&%yKU!8j^?xafY
z6y2BX4hAhYf#)Q8gx9CeJdm-g`PNh8ZEKs#Zch$MdZO~~^hb-3c_((;#1yy9%s!>?
ze*b(=_Pt+k=}tRy?!(E`{U0{-*RwHL*!?tllC$pBjdOF&0_H~lX>Lr^S;Dhn$rf>8
zn?GB0P8-TbOMa-ZI#^OK&rq<Vyy5U+@q^h7-h#3lH@^|P^)2z>0U_}ZHYfg+UQc`}
zHv2|R<HwA)r#F@*g@j68N=ccfxTbvbmZK7XeC8DMtuyWExW`$3k$rFJ>|@p^`5A=2
zA9)dRb-~Kr6Z*dY`oXd5wbTB<Fjcj<M{&~<o8o$pt+=CNr|sqAW_C7zXH>%e%)_;<
z+>G;N`Y(j}tDJqQRCQ2c?ZWC%wMVw4TjP@V_AISV&-=J7PQSV2@7IfheR2B_t@eMr
z<j;$*+H+)XvpzUlBzkK7)6~YRr}DxxS$U(mgf@I{H?Xfibi5TbbO0Zw;9=@oAZ+Vo
zlFvQyj=8My-ZgujXIrGLyKZ_dTbegoFFeAc{oBu^#+}BUv(G-8v3A-!<KC&M%nu?v
zvqD@YA72pD*ghxe!EIIjZiU9nt6XEV*UUMxT}L`)XZIPdnOAnP&Y0f4NkjJOoP!#?
z7C-kmF6!R@lzD>N+xr&n`hpJkkNup#OLMvP^3sy<u&733@sE!STkl?bS9ZPgT832o
z@qNd#wz@rDH+$|}*_4HLg}0u4PiL+(*4}&ia`?R)-#nD%^y6!L=36X(#b5tNF>dd+
zNtdoB^=*6W#Ih%DZIfio?x@9uf_Ij!J-jn_hU0bDm8%Tdc=m<qace5~9Pe0fXn0Cv
z$$^Z}#o4jFU;Pfxv{qh!?1uFQzx}(va`jF>H(j))>{H0GxeiZOUBCQS=JRKfz_~#g
zF}wB7J*)WoQn2pZ#q*2|^Y_(s9zArOH_rK|o%70s$r&-b+&fD0uWbKTy1-I=h1O~*
zN#A2PeqOPfApc(O@teDqZ|1x79kPyp&bnl`-<fHuH@~xW*E+>LIXHK2;eukp{a>{X
z*X%rWLw0tSiBqJ-<V{7rVZW*!_FR|R@FMlZjBXw)SI*}P<#(LbNX*($I<NcpHs%)(
zUtfO1nRZ}@eSN9N|A;f<E3R+V4{O-8W`j($==ls2r>F0ZU#;rhSX_Sov&{<b=&Md!
zt!lQ1dhIBj&=FW{$nrGd!M_l`m$go-Bksp!%LdPwrKYhw?6hi{UeLa%vxf6^?|v>m
zv-j1*$^IXH{g7~9zt-^1$Jfed?$)Mnjbm3`At*F={rYpptC>DMa<*IY*fB?V)&gPM
zGh$2okEy6G7J9kvmB^IIzqC^2e+#MZdVN7so%vmq$y)u`O9yrwm*TqQ`NJ)=@nuQV
zo(+=>6rXIcIxOwOliPRKcbOy4p}VSGiyWS^t(}ve;MOkfVHIH-#cny{niY>)&a9o%
zG8<$b7^>fuU`Y?Db3eE5`P}2vXO`SgNvfMy{AcQgm&bkb?=7{K{q#>#+;Lt0mbRj>
z(^1(H;cRZD*9y%%!ap-9eP6nyV$!#B?{X);va6bQwu`@R)7}~93!fF8jj#QrY4_)4
zJ43_#njgtBJLjCgS;Tf(a?8H^fo!WbH$PYxoOp0UZm30l?K!0f=U%34;+QcbbYbJH
zqxOG}tBPk>@rtHt%k0!%Yi3#1TK@d~&G-4c0xFwS|MS&8n(@so@X@_RE8iAIt`oDc
zvpu?e{hNkwFTQ5$%<ZnetR?aGJ^RT=QyC9byjb0nTf*M{q^#+%#o?@6^%tjIdvBi6
z<<gn9BDD9=UFK!g!Ea<E*q>g^km=JkW>b3-%)e)0K1cCO<H~8tGAVD8&zyU+aYNGA
zkm<Pzcbr0^7|-vxBJ*2J)<(i=slpVl$=?kU_Y0qUpSf*beP6|_Z<A(9uqPjUCwHop
z?dz_>r@LdgdaqqrcQ#j&`M)IFvtJ9`L|-JlXPh~OVe+=DuHWa*+-2UR(_9d0yW>IP
zoeh6CUa<8&H@VRJc4@%6qV{(tQ-U&LD$i8KCco6Kn{&3n%$k)!NBs4JsT*U?Y%EFr
z^z5|dxwPdo=HBG|ee$K`w0E_>s}J1qoUxK?pNo^CrHZ(~rRiNYR+<?{ZexzO)^6K)
zYR-vUp#^Vqt1p(w8-{x^Mzv>5GP9ahFUgy)ksT4!ni9h%yr9VB&<ZK{!^@7ROh^)H
zeQkQBhDXg}-?Jd4@~xq%#}-;2VYqgz&};u>bwMHi=eJzNCV%)<`LO4<j!XTyXU#Qt
z>#ye~`~0_F_v@p}qjNlKq~~PwtqtwC5_Qw0`f+6j>-@xoIgT?6ju}_ZbKZ5l^U{|4
zcedaB_gr9;`62sqm!uzy=PXLNdc~snrM~)dcZ<5GF=g@l4}I(`E?gfTpmj<%*W~oh
zh}jZ_fvcQ_9QcDWdF$sL7vDSS@Vrlko8B+p!ka$9>!yf6g!`wWl=Zu>{<8~P=hXU6
zq-8qy=M_~QMmHP3C1%z?sjr_jZ6l~bc4lLd(8Zrwl1u)0NtWE&UT>1~dEM7r-c>wK
z`&k*Re)_%jeRfOCH+yl?vTQ|_<F8|-P3^1x%AB9KpPAvt-J9IUBRK@mtMVxBs@Q!b
zLyx)Kt5IjNgk@*7sg$zznwP5{T)H;He_f*JD)%c7>#|a>bO!I39;lsoxuj%GiojFV
z9rHhzbI29G^#AtmmCnR@%oqH0Z>$n44Q4N8PL|DjxcD)z(Q>{=299f|ZI?PTdv_O)
zk?;)8^>d6gVo$k8hMX{p7j^nF=ZF05%6XHP1ynu%Q?-}p>)GAwT(6g|kY0T#^E&S{
zJtn*PXAR1y=1$ved2OB1g{-YS$LhLo%ACF_^Lgjq>pIgu2Z$cbkPYF!z;$TpBaz6y
zO&U#>%CBR^`oBjA%m)qGtespo%PxIO=Bx?zx3|g8I%chXe&ejO8#$I<J!fFOdDG&f
zMV;4p-<8}x`p5rRfXKJBEyi+-WqK!{`|z=(!F=8igBIznXEs$ZKNngXm-I5vWX|RX
zIkQgkT$*YzDX2xJOwmPROYgDZ9=F9QO*6GrC(EXl>!^Gco@4FxWJhmj`mFxEDO{7M
z{;X*`$EzXn=tkIUjhA6w3rnw`%-Y%ZZk9sknawhncsbUbF?n`tc{f-2&41;3hQ4aS
z40EK{S9`9!V7_Iwn6~=jxV2&tJ1<#&-Suwjokw?Cyx4SNZ62NppVZ`+a>30yvSh}T
z*)Cl9PBRUXd90rPR@1+~O?Up<XEWyS+?TiY*sZBG*}M2|`PUq%*48=v?r@b-`R@}F
zTk3=^nPuD((^jv1f6Hu{{!;ErHUppU+a%TA=q%$YSR!xexN6lFzIAUK94)mAs$PlZ
zoIAH6>Q?dM%xsNR^%X%JGhF2UWF&H2D%LdiiFw*^F{R07bGPe*V{+=xUl)~CNr^{>
zdF$M1QPJn>i8;CcVnt7u31|FaR(?(MImb6m{Il+N?fGr$&pE$!^$VBGU#GZ9XG+7>
zV|xF7e%=?#wdr%HmCB9{$qTkkUD%Q`&%0!<Z9Qvxnc#u1)?8eZjia*)Z00U5IPQ7M
zh0XrOz9(rjj?CTr+R9|z{dgU*h~2*(qpxS|X4`uDeZ1au#iwaIZ4UoA;(OuxYJ<-B
z_1QYl{T|uPPqee<eSCRW-i2K?Wetsm+b1X)_Z<6nOX{spU|6V;nrfnP;zCZVjiHz3
z1TNiGusHI}vk1Mvr=Ds)(>qmKR@8L!kIs~>5jx@rRo*@MBC<Sh)4sT~&iAa+b*8ke
zJSIFPbmEL7sux$d7Z!I_uDX8O>HGh5fkW<@*0a-}vL$X7ZnWu+Z7*SSbUI<cIVG~~
zkn4l*eDfW>8jGHsa(Qam^3i<Z?s;Nr8!T?@w_dmL<CZ^jq<u<b+rL)zP8N<{|NC;k
zz0>0}&2J7(oqt3jvg1*r(~UCTElC23n^F(B$_RWbR`h+pe)pqwzK@!Wl-95uIl0M*
zEw-aXn&X*wW@kavjc?h`^Au(@KByBqp?KHwbPw0FRHq{`QH-p)5jyveMx0o9P0BMb
z@6!xM2llJCa@S8YJ(u=v#{7A6kABKNcA!F8^Pj`-RVwv2*Bfk|yREzS-wl;#3k<f|
z$TCQrJMiGN<*k_X_+vLE_~g|7^W3t1*5NiWcDl}utlp<Zja#*MZ(nzPMYc3!_H8|$
zN9-o^cT4X%q!YPBIB3C%w|k31LMP13{am&8(3>x&QP=%8PgYKe40+xnG$*xj;_NB@
z%dKx%ZrJ*4zI`=&bvygE8ud4i*emw<2_N6F`}f}F1<w^259q~kl=Dwjx;Fj!J0EjB
z`&$OR>&h+`E?scv(OdzUo#*4HF)5eN&wXtgwp#VpUaOj~x1^u1%Pv_Pzeh{4G=$go
z)>Vz<rdNyCU60ryGz+xbx36+@%%a?A9r23{c@J-`iPPIy@cqHltk$x(r}NAbqd#vJ
zUL)qc=B~xH6?!Wc^DsPHH(5u2gYh=5d3*2LPDz!#lGm*9-J6FgYLz1D=zh}cA1mUo
zmqqNFdLn%Oz9Xmm>(b=+|KV_-U&F;<VQqb^$gY3Wm0g^H%dYM^c<c1EFkcPJqsE<!
zwgfg7g(#l?G-Lj`HTG{0s~uBIo@wy=`&5IK|4Yv7j9s5~#=k$%y3^XHN5_b52Wx%7
z2ZgC;J}J4J34bkGG&A|llF6=eqC9u*-0%8(*K<w2m^9y{oLnc#X;-s4CqGuM`SkHP
zL&J3Y-<o0TV!Fd(1DGSk%Vf=#{QWF2A+qhx-0!j1+3vT+IjcPXAG`k6eRr2j3jb_g
zXT4Y2tQDpx5Gi&lt9KO_x47YzV-1p`c84RrFg$Sh!Ysg}wDX+PIpgOI7ZnXMd?tAv
zED>_xi#roGiB~LGtf!4%p?nqRrOQg%6TNrOpYxGjGSeh+eq_fa<K&!Q4ct??`JOxG
zHopnHeQ?pNgVz*0o@ZY=*Ou9G%+*F*!u!-7$<}RaH?FFkmnpl>`mXJ-9Y1HQJbhvz
zexhjgu9KT|ei&ZqW(|w&4*o8v>7pU6QQUauE=$Xq0IR20D$3c}+w~b3y7|+7F#WD~
zx)n0bQ^Nd@kM?5QJ)3{cG7u}eVEO#SlGD8My#c$l_?);TBs9wNoL)azso=_c)v8qF
z@xn8*;x;a2x4%k#t>S#Da!u*<#T_P^$tCaiO<oped##JrYNgPYxa$_h-!D&IEIh|*
z>8&Ee=B(&7)40FyvrO}zUKe~_(R5YZdS}Z$+j5&P|9+Fx_O+@rFW3IEmgup-n6zt=
z@&_tn622c;Chb$UOyiVL%$}F`oo#Z#3!|P}-N}p#xO~OJcB|}D|N1}mA0Gez{GVyV
zWMTcUYp-W-iEX~-yYIGN>zzBHcNb*-{rr*bh{b~`RT`g}T*DepH$IDr-TC*jQRK(%
zHzs9=|NZoZIZ$rZZqr#;g|frrMWY%|A9<kmMCjQ2Cr(LEv#vIK`;?b$EYEt{_xK{q
z%*j=fh8rAjmY(}xQaA5}+xlC7*rdEFAJ3B7d{gsWU(U~!n<rn-xVH7TmFyP(V;d3#
zmTcuztvVpFX_L!acEMQbqK8}Vxfvd<UX<RDzI;D}P@#!JE6>(>#~%xd6<aHqdF|dJ
z(fi|D%Ev?b;nFLX%t@S4R>YSfR&;dhwS+U?+a-InS10ovn4CSW@#vlM+(W;O6c0XB
zx6^sDtVplw=W71eD;M-;BzZC(Q<;(NKUe3|S371gwIAE&lzs`^aQxVI`GyS%Q?E?-
z<2l)5^g_gmYf4z|j1H+Iu5;t^E8^eQ?Ctw4w(okqZMU6L&*2^aRz&Krk#93M)=^n<
zes&zEN4--q+rhU-K7M(_ve|g{?Av9srvh7F9`W-!wW@1V*1s<;b97!tTRc8^WSfT9
zl)R4y=htY)YlJTM%_vSyc@b@4AtkH+`&4h^tX;>7b~;_Zbv}Htr^o9TA>v{u<v!kJ
zaClUl%(F|OFrM}OqQ%$eKe(!{&lusk+gHDMsoeF|3g!8`#nyg4wc<8gw)lnsuXdZS
zSCd+o<vH&R=4<%bs&g=K7whMXDP6MVx;^g6Pa@@b%i2wql(wC?{8|z+YY!@ck{UqE
z){576ue^5i`t0vpa@#Kl?|$^}(^K~!Fa7J77%Kk0JpG_+rPWiJiF2iwziP7Cm>a#t
zu4!F~#`mNN?8UQ+LL5^rSt;6=ty{In@9bd-epSboGYTy&1%buV6<$hb&$!Qz@CY}!
z<<Ryje%lhy$6@oQzN$Kw!9VW--~HA7MPKiyMFdR#akVPdYP%)dvy=mFGX)~Ax_zH}
z|6zYC%kxFzyr0w3JPm#XK72d9X311zv2%$tpPpzjHkhJg@vKY7J@95n=w*|P=)P;N
zkz0%wrp$V{NPXRh^U>_zD)h2t``zE)nDN3SPbgUDSWc$1ylna;cjwa=B_6Nr{qj6j
z^2xzD%U8{8cg(6eBH7L{Ro*DYRkE+WG_gPLy`gKv@hgn0Ejjr9nr&C!$yU{W_jqDb
zq*+?RmbQ<l<n^3IrgzV<+b~saUuO9Uq3R3ToefDpjqB%44dr~e<a%7-Q*AL0SzZa#
z-~hd*Y?BMS>^w4gpRL<@^ChRB|M?ANK?!#?XFS?v|H)8bed4*wjL(IpPL_UmuI_vh
zYV&bwz>GkHQ+NAka&ZZs;}wbd<#Bw$7RS(=Z?F1xAM<=tDt`L1k<BIPLu_muqDrrJ
z9n48PK5PEIUn27V{|Nv7^Gjk^@Io)&So4D)e6>ZrHkZ!rdMvp%VE1v~?AQmjOYTVs
zUs|}y#{KD>&+3ykmswXcG-QQ1p3vzDpMPkhf*w0)wchuY1?G7<(sNdaN~=UHS5LPn
z{<Py}jp(WMlFyIbZY`43DrsB$s%f_oGxt|#W6g;>Z7#2paOAqV+R;kl(r=Y+q0igv
zp6KqLe~ovaPN4%&%FNvTA1j(Z-qV{Q?Q;FA)Q7JN8)tYQkBImtV01Vm=Wb1R){{GT
zlkesInHMr`|KH@otKYuQyY$c4T-B@at;!~i;|vX1yO^H^@$6d1xiv2_h*MsnxLjwG
z%;b|IQzu`%`T4$oKtz2!`-OMg4@q|`y;PXdYLkB0C4%GPt(H0YS2In#T3PMW1Y`~_
zeAHkzH|KSTkgVFXclk@5@9n?T@$SLi%Uw55E;?U*{Uh%j<t0r$tBg)Ww-?Nf;kN(y
z)J9L{<Q-YD>+_|B*)EnHJiL`V{DQ5g_3QhqdpP3-#W^qUsdwRL)V!!6D%N(8HRajq
z`pyY;8+z0BtvqBK8?|FniKXYx4?(vV>1^1XT<d)8bZx=Rg>UC5@9-*`;T!YEIN?EF
zppJHTfGbmsgF5$XD^2$wA)J|7HrM*5&*Tw)Wpn<{TGe~z$t&G>CBpZ0Z(L$myXnL^
z%P9{duI2^JeB#{vSz&LTjGfK=UPHAjGuFQ@UEx(+Q`B_*__fCwb!9wvS4~J;GL`FZ
z;B1!WEnzR_e4ltpYHRV4_fwhzSC#93xIS6LreeO&vg#Q-vbE1^a~!PZ{=>hmUp;TC
zx`3MssAPaFOnV64!Bo30^Z1R$@&8gk{5#ghcxUat?nNAKnq8SDbK45jB1%_J&X8b^
zxf1ilXvayv^0JNZUv2bT7VM!}r9GuNa;?uIo9W&6?#cETKJhCxxNF_ebnukro9kbt
z)=qB7TpYVMtfBkJAI;MSk~c*kT}+wda&heu)3vttGrsxn$oaiI&HnkGuGKMtoyTP?
zo}U08=kqOJbMZm{+id1hxr><f#qXRdO;ldL_#%t-@893vD_K2XUOoGoOTA7D7q5+!
zL|0GyuXC+u78UY$mu}v=jqhFDMCQr6q>q<fI=M4((yrHWm)_+*4(i-}P3oeHecim@
z83hyO6`WA`FE*oZ?#ckewh8<E-krUb9__Ncz+u;v#j7?=WvkI*@-aDj$;;hyeP8V{
zY17S<GjzOTn0h^9{`4|_eyTR(ea79bN|7FokLD=L@D%^&tz8@UUu=EixujpmQ>>0Y
z{9Mi$;r?;+<;ww{i`GeNyuEX9X2S<jp(PDxVy6@sxxT#QzUm|2r#(E!XBNt>JG-32
z`OWf*Nq%7>tZIH=O>W+GF0GN8BIkRV&Alv_XVy9G+z6rG@6qf_61F9^_MZq(4S3?A
zdAR(OdeWtIo&{F<3$7<Uy`(F)ne~~mw6DFjo$GQdiS=boe5=gXiiSK7)(#CQ&06b}
zm3nzwfL5PpB2SC==M!B_Pj6^F`c}4lhEENPE%z#g1c%3gNv|)k%)KGyxcBK@kICoO
zNcnE~|HqQSp@SzKG`n-NhHcsP4_6C#%oV2_oUWMC(s%qup`~3lJA1|Rz2_Mj)P$`s
zr1I}E-n05I-&-cOcYQ}wtQrNF-u9i|nH61f&wN4VqTd?niJQ(z@N=seX&XrSHwEiX
zzhjxhe}3bau<5Qdc3xtWbS~I1El5dU%cs1Ik-;@`QFbj~{gmld>RAi|PDeW11Ws&{
zaeeu8Qssm|BfB%M6K^-DTJGpM9^}?^+Tx(7%%P_rq?;8Mzw251@4_y}85d8o2wq%&
z*RC&<_3xa|JM^QL3zgqJ-TUqBdfo%cT&67I5|xrqD%dY~+Wvd0p|`;%#B!CrnA!U~
zdNwJW8qO3Q(7o6Aal-jKn!KVxnN})#%w-2vd~RHB-Qe=8Pi4MrL&1FUW6%HIdVi+d
z@YAJx=0%!|<qsTKKl%2p?e~;qonNST)wHDRzp<^bkxS06Z@am&bYI-s@M~9Px7~l(
z8C?2K{l#Tjk#`>}b~UeBHR0*G-;JN2#C<M!fB3rE+zEwZxAgV7WMpo*UM;_0$?qHc
z_{P)a`qQ~h)@ivf-eqvp<<Xw=7VRbdpOudP`^PxXzMh?-V8?%+&{Xw~nP(LLBv~b2
zod3kH{!5wX`}J*-Th?7(``T1&oztnBtxmVM8d&|Buw<UZz9(}pt(u<xPW^T4@@myL
z7UCyj?TzJnH|$UEe|zsA<FUM^d8w8y0{-u%6znE1-&lgYAEsUDh0FZvDPg}?gmf(P
z>MTl8u4_L(ueIa)zjum#eYvt<7GGaqP$qUaK{aN}WY}7Oz13<AA*rG<{runNKYZ}h
znBhRmre<gH-t}(D9~jq%<%QnNbCzUS6BG6C|C_z1`%_Pbe*1eQ_5L~4{Ha%;<|W77
z%kSWsl&W^%!Zb+<38Mo}JOaWOxTn40tZ!sbP&~-P-Py=KPg$*vQ>dx&D#uB&&Hd-+
z-!9vJ`)=&i>BYCFca#eVYA2=7J7cAupPv5om*?HmS66nv*<AMK#>OPuY~B0X`*gHC
zmQKogdhNR+TTkxGKc0#jk1~21zZGR`H`ts`PVqXCvfS?CSN_J`HjL&!G#sxkG5ut-
zyzXvg;Fqp;$F`N$VIM++jyy`e<`BWTa_^Do6Deo*zx=(ajz_(?JETkH-QujCHJ=3U
z*f`7OsKl1sR@wALp>&Ul%iru>A#C*v>$h$F`@&nQwEt6B`Px>Fh{zO;KbG^~yib0j
zI??O(iUx^{s1vU_+}A8okt_}DHCVOEC3o`9ooo#&v$eFIc|Bhq`moCI^S}Em5+e7z
z*J?<u+OuoPni#>;CsSIK%FXWo+?yC~&hYCjQ&1bnnnNY8o?Kh}QR4Skxo38%X&cvE
zTyw`Z;*?6$I@OgA)E;Y2;WIlQFom`Dn{?!oBJE3`b%bX>zj3>K)lC1rpUswpSllQ#
zv#<QhmHvEPLEhe|B*XHHC5nwc?R=se72ajo9QyqDdByACd}fBezWK>A&nCxQzH>uc
z>esRP+^3Aatd<>l^=59N)`}|8U5s1*mKgn?w{COiF7_`wHv0+5KYJCE9mMUcRz2h0
z&)1noj)6NY-7{Uk*S2{kvd_IK%hb@@t+Ceh)Fpkt@81GM&PC?WmzI&UPXGPlheW#i
z@)>7i?7rmKE&lF*ELg^_c+<DXkHu&BE&pPxI6q4J>7B`q+rD>wKkmD_<Nn=pE|-<F
zFSl16_xGH#tK}QF{!-DCkF74ds&g<M3%Ad;cHVV&TlT`wI{W-iRX9t{*eodieaBY`
z!RW9@(}Mz*=6#P?{6SONLp$Evl{-HC?DhRF9umTD?{Cxf{Hn0{PWY1U!w+ZtJ16Mm
zvUB;h6UNV3#9TWsp76HqZjv$2j=fhL{ku<aoA;-)$-ng!T^_Z3Pkp;mSuT#h#anTo
zz0EcOgIM;*>vbbo-$qCGx+hPGd$(@tkz~8by=K{+du&c`oqT&$0Ut}KS6*-7=Z@d(
zNABl84*qg;LA~%xnP>7@lB(Y#rzz`uO|jc=ukS6=>c4;D?$QgFH+~KHeE#Tn7ZoGX
zEY=W#$(+lApWAH9?Y^~r{-h{H?!N6)LXO&oTa`Hq2t~#@v|6bI?fbd!!B!3qL2LdA
z&eO#;w70Wa*;%<wd|L5uTJ-NT=g$|)U9){&JZJ8%66TdETKf+!{WNFY+LI+shnt;?
zek{Lid+Wp5Eo~u9`~GVxC@eU9L#OCT<cZ_@3R7ouw}cq<Iu`7WJr%sBGcotgzlm|t
z8z*)(1vI^S`{e12bu;%iGoP}S?^ip~9q`@h$F=4DPh1S758pQ9Icxw$#tars=iUe~
zI(*?uZnc}Z_@YGVvlRE4K`Liw`7NJu{@IMPcl|!yylMG1#c#Q=%$waDpkoX-9eO+A
z+G?pQ8X}6POmp6S`VlAZ+1dKA>ijR+vZbO+dW0V8oL{)5-$c5~nnk77|Mr%QTE@-G
zGGiHyMaz3uYMc$&{$4&LQSgoaV%^r3Ga^M6v$a=dgvUMKIAN-<^5zMF+pb@USevDl
zqP#TfcKTP}J6rp+?nc;nKDX>TCI0&6?1cN`6Xy7Q5BS*;I`6sPD($9E$`f}md#2v^
z(C=!hyK+ZOF(y0LKBzSDPJ2dJSlWtXewHTl`~rR|)jPf5zV0=p#9l0^wAM3u=c;2j
z?5&PGJlOcZy76=IcAdzpi`Hj+yb%{@k)A#~BqqE`MOENX_^NN4$`~|O3swJSxA^kC
z>txC!uB(bJW#u;JxklgbT;I6#yPKlMT?K!o&F@lWXB|7Md+WYD!*sg|VK<jQii~a7
zIjzz3vg?TL*B=2oXT;vMductXlvpm>GG#_f$*jZ5CUJK+N1Q7xd!_ZtTh(xprOx6-
zYePd9X=qQEV_n`P(H|4luI(eX%jv|!d+qOq(lZzu!dSiRxBGqnzG46SCC`_|CN30z
zA<$KQ?DR%q*<E@f+uvT=ow=q(pJhwfiM@*w>;E@g(w=W$-<W>B=Hk(l9p}1(>hk=j
z^zblmXg(LyAm+lay54VJuuA3msLWLy>o)hOU5?2XarF#Zdojal)4fePhI4mGU#PHB
zoxdk{*9_^oPvm&}wtSU-ch2+vkC0>4EG<22<3BBG37eItF*B^hd6SrDUQWq{-D{Q}
zof*Wdpi&|yb}(zku3g+~zsv2pI+sB=YHAU;Y19QRS5wI?U6$P|AFD4>;+z+@t~c=Q
zdB<hOr-WsfynR0<VZw~<Z!R&-X%2j%`fcx<&mV3Y@A>sYnc=|d$$}+e4jj{?vwN~<
zGB3DZ#QS1*`<D~9?zMGVx4Go?zW8zT$&M}4W0)NRLoL3n{W?!xcJdw5oD(s>Zn;-z
zwF-QxUbX7T#e<A}f0e$ycrl|Wd-u77r`oOMYMHStx4k|2=X35jn!DzZ+-0Y(JqM25
zm!2nUfB5$ND(>UQ&z+n6a!L^Ao!7rVe>hxF`T5PQpU)RD=J}p^%`d+?<c@)U7gOXk
z)zAA}=Sly!@;tx%+vaNtJHMDFx$w??UQ#dq>C<~z7AKpUU(u78^`^Q^I~q3g&~hur
zb*>Q}J0;DPSMe*fEGR3B%Ji~7ZN#f-I_3YKKvTD;@zd3F&6oC=Cf+M~Zm{Ls>C-&H
z@2AMi%O`IuDXt5AHe>GDfL~u4H(!<v+q!<veUpsY7oM#X|Ew7O%*xqPD$%6y^S6Kh
z6z_eSD==^WSDD}Kb;_I8EI70`&Z}cd*)i!lt{J)s>~mj!d@%8;iFu&MuAMJ@4!4x)
zr}Ak&>WzISDe82xyGiDYlD^?5*Jo~vyWVZ~y&a^t_;vB`EoleVUXwXk7{Jw9eu8oO
z?)lFb3iLX?Fz1ih^^#LDgK^<5mGd&^o+Ums?9jNXyYuv8zg$5j&8T#ZPffQ<G*u@z
zd2f7h)%AD#q9`FIH-<%p>ra1b`ju@z_e5w<j>cNe=Ns0z-S{kcd;7fo2Y#-6-B@il
z|KXP}EXDJm@BC!Bt)c(YzPz$MFXk*i9V^)Hs?~WWf7_GFzK<16&CJ^qKm7S2k-ztG
zl#^ZkZ&u5`=}~pImtM2IxXvaqRdk+hJ@@_}`|CIv3aYBS_Reda6vDG5FG}mklV{b^
z#|wi>{52gd|9BmZ`MzpR!IRfB{v29<|6qFENAVATTD9kGHNU%f#nO;X+dtG<SRa?2
ze)d(^ov(#QYo1(KwNa;g$<wHZvily?G@I?6+ViT<WV?;X9j^Ja(<NOp*v+o2czZ7E
zi)*@W&XH-MoY_UI{wA$iXt^TSYRlaHehMD4i$Y`WXDqGVU+FkMd`jJ9+nYI_)dl-!
zo=YsM=QS1G#PoY#!tKxE`Iq0@-?cyR=8cGc{5}?jIrHZ}{BlQA^i^oD*_VapbA$IV
zGUUujU&S@~rAYAnY`dB79=^CK$nfCD&*+M8XU;l4K525!vS`6|rp?9kPI>hvO0+={
z8?XC?nQ|fO<?KQFn#tYM7U`_)s)&2C<*??S5YsJBGhcP3?2Qat@S*a#>%7H_rv*=Y
zaxLn4^VGt-*8_8vuZnH?y>7*)y&{L6_a6Im@P?kcTY(}=C~to3yQcd6{R`AZYuZnk
zeOuo3qI}b5+4KGZvQH}8w&|`o+8wfS>O`SU;(t3VuM1te9nYY_vS8`&>bR5uBbN*J
zYc!J;+`^{Lc4wHfSm<}P-l2^ZWi8?QbFch-+;4X*<BM^Zk?wTvu3O*q6nEQQ5Gy*j
zIK(h2(#tdGvd!riQ7cw)Rk#1PsQM<x@L=xt`v>*wo&_^BEN)g#skBJXzwlE?!Suw6
zl8I~l_r9(BoMpQFmg403|5!E~i|?Iv{#-zHW#-;B)md!flAo{lUej=YcW*+f>Zv=n
zb~o-H=9V|C|8~vrUgd9DncveA7k_NI;^=jBnmd2y=P$d>ChpjMW!mfh_i5$%j)HeC
zX85cUUb;1#ea4n#?&H(To(i0t8F(yc)~r(|pY|v`JreMI{#=ba6IZNQ;xetIuwla%
zH81`%QPQD}O7o1feSHE2X6B!i3=y!r8g;=-{riO9e@b_^yRGS1>Es&v;DGzi>F4_=
z{(R2Q$G2g|`3>)%x7~ax88_E*=Wo#PXv>t|6<ZA1PJA+$-)nGpev(Pi{JrLqi$AU8
z_<gyy=lI6ltQpMJTx@Ng3G8zt&pUr}_7}V8c*%0^n~VFi*LogXH`VE;=#_m-Uq@-3
zSrY2zx8z*O6!vV+$9uo7(o($oc)G~aO9yu=TZvnp4)_&!v3JUb4Jx%$w3aDF9FZw;
zIM7l&^UH#=pxrM%td9LIwXbQ*#LKa@_tIQA<2Dpdd#=&Da9Xh6DY;J~$+NAslNuGb
zzxmo-&AX$?^qs~hmq+g|+2nmZEXV28aihu4>&ZP$IZ@WA{Q<YEXFT|E<0;3!KTlNa
z{#`t8Fxxt^G<dy6>f&4n%L~VD1-QRE^j*{8h>d&s+#g$5)&@@7_~Ww4l?yX`3O8);
zfBamZfnom7FX<;H%Jh3z?YEBa|Gng>P2q(fXHPR-eknJvHRkg+*O$MU_kVtrJLk;Y
z=DM<?uFW@P7y|UeHoVYi57uaOs(zWbGB8!|tfx5ZG2!{;btNq?_eGod9}kv!^FHza
ziKUi3tGlvn-+1L!>8rBl6>v{?n)Id2L~7y6yURFQZcFgQbxskN`SRq%Vbf&BUGnM2
zlukcBHf2vlaH7H+mxuF~>`$>0>ny4K_3?g?yBx!=g!&_|PewSumQ!qby|H(OnZ%`Q
zCDXp$tGo00RCZ_J@*C&$P6zy)CE`AJ;kRXvpE9kkl6T+7cjD$Bk>&d&?$_*O`SbV2
zsfzrK*Dm}C6p>t2<g(RS?XuujzH_IA7M~Ke*6W_bmCE(A?e_eghKJ{<O2SG4iD#V$
z1xuD4*Lxc4<+)1A`kk7`ZTHfBsnajbogDc4yTs**BKJI>sM_*b|EXN|@~dkopLx^l
z6Jqh|-uwFxiz}TvzxA3%^ATC5V@I+c2Axu2Qc@H+{4>!wLXGwDoGm`Vic=4Yxo(`c
zDtrGsryD+tcHTXDW%8>u$(F4dDX;m}%j90%wx4)R>D1lU3;X8APB?SC>qGOFzqJ#4
zZVE`QaZ8@G?)qve_VY0*-!9Lulm2|uQow~f$Z1tSBSZI3Azo1quUqRoHC}}}Ie4|+
z>Hn;Ae#Pg5D^_eMm$+T^R@S2RLW$MU9WoDh_CNanKK_@gP5rwruHIvhC2opt{BbSd
z>A~4bE|(OQ^bKb96lC1ZpBD5e;k@XX=xw^M&beL_e{Ou{T&(HS(6>r2R(2_dY}D(T
zvnuYn)$tqKgQR=4TV5MpW?gn!&~4w-kjT*N=gZjl`Z-<ssb_NS+ok5~POkT+Ecuvy
zs%uqnboSm3<=zFqzbko_u=3pPU%SC1%(*K>Cq%Q&vQIw9QsSS_E~%8tzK#9+vQ{Rp
z@$C{*V=Z0U^F4e?reNEZriRjNSyAi9M?(1SW|#gFdB=I^{CS22o0&piUJbl_LvW$S
z>A0<b_Wt5%-{)~B>*|3UGn~Y(Eiu^WyG%PMGQj)R#S9kNXJU$(^R!M+>UySSdFHFe
z=IR@c>3SQQ#gtX125bD`Ju+j}_3|CLe_1j_cAdN6tG&(aQ=j*Q2b~dTuS9Ws3aO~;
zb_qY)pmvNs|LxQVt2&OCS(<&>D|*OMwPfC+n!VGlIS)*_qW6#QW%0GrOV?62<YfH6
zQ1<iI#m#S5`Yh>-$_}4vb>s4pwlzvy>#JCpCLHs=zqHY9T1}jrZXerj$D;Ernu+U7
zx$bW(w3+$n$Ay!Uv#$!3-aXR0!p8aK=Y{9}{5F0ny1y+~^C?@0vzun?qB90xjgDm*
zy$t<qTX%Z<S1JDu@1IUxyjOGCRXM)D`}bD7w(RSRS$hA@_Q+4}^~<;2P(5^g3qy>S
zZ)o475SG?s;o;lF3<|m*tSj8Rh4Fxiu7dTXPfS8P&tDCn*~TFhzcNs4;q7*}>#ZRg
zy*k~w%CUAClm2b=&NKKQ&7gF$a@Sc|7q!qMpATJfTkvw1cjf=WcY-E1tPbnFwYPfT
z-xj>m<o!1>_FrlfmejQTw7I--t87b&^yY_G)TGx1sa2l#%$xR-C-izdZ`t=uvq-nA
z_vXK`ZMf7gvS~wN_9HcqK#>=_#E#v6;C_~C>i+O8YYRD_Gpxx-yfxvIiiU^cl2)Nv
zZ{~<wZv8$bD9MED@2k@{+V9QpUS450<F(`mubI$#U7{^<9-oY3dYRuXc3Y1JT7io`
zvszkRo+xv=f>S*7Ld#oM!OM1Q6@M*hS@dGzDdUW(rzGD0JZ@_gG@JFZhhi;%*ng=d
zW!_4fOo6L9e?)LB&k@jCYxD1!bY1k;RSr=GZoBp!zL(~wImvCqqutkT+G|K$YD&%A
zxKN$h^Ph03)3k*gS8u8(OFUk*Wmz^Or--unM+yJs6?IQm{jB@)Q9a|8!p6LdEnKHw
zyzuVYbfhBW;f3!J_wV06e9>4vR$gA_!HLsrPiwh9+a2KZ$#B(4j>#*#clj^>E%BRU
zPf*ogo3AJQ7dTAvT5R&^P}8NEQ(T@~=k5667@(!m6%_fuL*>6&XAQT)$sL_nk1k!1
zw8%><W#=*_->BuHYvrHcNok%U<C#!8d#C!(vx<+nTy{q#$0S}mvTaGs?u_+M-e(>O
z*Sh+C?^%JwyNk9g<1-D?P+z%BIzRrAU-9hT=6g}ydQ0v{ybk96bIUz5WudV5q-Wnl
z&b0<}1f3IJ(7ej%oPALCjBTz0&r4=5IrZHvP+j8o#lJV^E)s}j-x9FIDbOq6S5J^s
zXz0)PXMSf1wM8;pzc_PlA*UCUSBs+L=hl?#jz7x+k3}7jike{IKgUipY@^$m=V4x7
z^Md?C?``GPleY?)AQliH{^a{>GmA-A4S!92mU_wSN$-ZgZmH9Mf4kA6a@=?#Q?#`B
z@s-7w>eDCj^VVm!cx(S$v)pA@<-}$DEqzQ4w;5O(w&f)(J+h+U)91&Bw|_W!Qk|h8
zT;G2~)DAK0*z^P|_44i495n8WW!fD2cTYt4{-Io(SqU~p+?zJ73ix&0HO_@I<)v11
zds#xIWVGuk^R2tqd)zv&*~;_LMsw}rX1$B&RXt_%Po&swJh?}H_1on;cY3VS^VX~?
zdTnC*%J7_T)4y`|`BQUJc4}Imu|Kw5e9xV@AQho<@BiHI`DedxTC&GSK7I0pD6#p|
zgBE!Qoxb!@=g2QVnQKuQ!tX7ex>Dw>cHb{pn%(qwiOSCcwg6l1r6N&R6?h&k6P!@@
z_GOUX-ex{e-PE;jCw*NpdxewL{BuSt46bMUmIjne`?xb9?)2s8jfT+ikHZFM7#?z1
zU4E|iYsc<iub%u4RcfCcbf_h3(}s1ow(b337xN-{?x{CR-qc<zD1E!AJfl3+z>lMF
z@%dLLUz*il-#Xv4<kI6k_tL&!+WF(s#+<0D^Y48=@wVRh>Or>ovs~ELZauL{L0_lp
z>VeHh$1C2bJX?L0$^CrH!EM{}He^Xv)jw8#aVbjc)t2qs+ZUag__L!b@W}<mq(!PN
z;Ve%h{rZj9Dzr8!wfes)v_GMBz5Ix)XKBw0?+AU{_oAxB`9<pmnLMs2DRrKR&aS??
zwtCilmxGh<3AdHxc5FFuTle|@kigAv4J}l*a9w)2y8C==`u;C<HY(QfCu2h{?mv0`
zmwl{%W&1>-Q?s_VPmbfiJ~w^3S*c~vZ;f+DZ58y^aChE0FF99xm3UW!m!jw1nddy1
z7EF<3FkE|}o?Z0W<y)dPt+StB5@}XEXMbix0{dJ^zD4_0_U>5Fbz|R=z5f+I{y*8?
zdMB>YeN(`W<h)l)+P~ZJ3O)Z*y8g}uwb|Bx%0Jik&;K1S<E_c~dg~G|hJ6{ILOerU
zJ3k)T`fb%~vAOH7+@5(Y^rLIRpQPDaZHkM2t_qkCbUf>)R`Zv8`-7OAT3n;uylr0w
zSGp)|<Xfq_E~;KhwT}6?L(Y5Ax?-dA@wZw<_wGM-<<5(c$Ow<!?@Yz-&9~C-bg34&
zGqt(m^j^J*OH>cuGF6M3{_M+%o1x-Umn^dWWBTCIlsx?+U+Zgo0-wJUiz&O}EY5y?
zmfjZAw_Dnl&5{uRlryQy`q*`qjn}?uJ@*!k_FC5Wd$z@N<8prQJBUV98bblg+?S3)
z2W36?zOc}HV{otPxZ&M}avFP9?n-v~|L~pL|I1I!y!w6ZtOZs*-u>M9i;F{c>zd+C
zU$z;q+hqNK&E@%X0o9eCb_aj|vG3wcH>na4r>|Ujfky(lRtf2}H25e-JGC)H)t{?g
zaWawp^S`evWu|inulpNqwg0=)`|Bsxx0^g%7wC28XlX(Cd{d3+yUO1!|K}9*e37_*
zr~S~3_fNmsmdU+4w>$1#o?>gm$5X88h2h!vdQ&#$TvS~(cgv1PM?+?Xi2e#$r}^yJ
zhURl$ZkYXlyUX*LUh#_gOtbH$&+oFGvHZBR&e^J;XS7zb>D^5_lTj|RbEDyF1F?(k
zK}LT4*Cyq=zFnF0C^zS|@}$<~r8{3g{AtquD{0-k=J;34MSg#b&3{aY-cuf)6M3oW
zJ>&Po56n`JvQ5>vw_@Rj=0E@MZB=2&to~fAzqjb^ouq|T)lK0`F70{v((BCK!+ci7
z^%wXa`}IHiIN{sTq}jGMoqyMV4*v11s^6xiS;J+Lmxe;>8^s)j1y25nlGW$A8<(Ws
zt}5;4n6It(fA)XrzlAq>MfXmRsng$V*?%!_<MH3?%suCslrJ<{P-|h=-`^UNc`5jd
z1h?X%&HFw+Kgu8X+m>fD=bYwqu<_Ev2Fwl0FMQ@(-`V?|;nz2p&+!+{TFVpOPksIN
z{I+^w&&AjM&Q{dkd-wF0#K*~c*9>=by3JkxQJu&AyuAIM50zVD*4$KB(y-P1eVD-x
zKEX4Kn`BF#$vw2bx@}4K-&pb0m0d@8n5WI!ck+u^(v$h|%I;gf*gLFw&na6K@x6Qc
z(er+vZ~mUYH!{$;EwSw++ssF2lpiH6v^!w_{prt{l@1Y)(A>#$*g$Ugvx`sb@79UW
zP5yZJNm8`x#IR`pbDQ@HNQ;N}v}$+nU)ry~w_~vp&*zMXufLyt#?>l%_>TFT1;)0E
zz6kGF8+}md?QZoD$-O6k&$xcM{NTF_X*vJT-UyV>Q`qaK7awn)`TuB<M_RPYEW3ln
z#|{@y{&~D;?>FmY_Rsc*c|@n}Fh(k8A8=R|v+n8s`Jv#*Tf+^#U5(9*(VLu`*S=1!
z6U`RYjFUY-vG`foork6ePOa2UtbQxD&Hk{!n+3)bw-hbCv8KyHpW$7f@Aa?OZoP2M
z`JiU!K6_(tvTJU{x=Q}rwbf>G%iq0cFsr#4`uy+3-_J7n>^=u{aDR_`@ayN|?Vc4!
zmkFJ>zrFeM&*z<wgKTvC9eJ2h9H;Pr!|Je&(~3D$w`MPXA;VfBp%>1u|BuaP%bcyT
zhtm_p?<}!*$?to3xlDb7Bs;@=mNv!%d{&c_bahTXtC&`k5p?s>GQN4*+s;3KrMKZ_
z+Hu~TQ+_{XHzZ5n+v3f1_zsu-JKgY&_jGf9&pq@#psjPmk-3Og8XJTAg_(AHns)|Q
zuvZ@6@OQq>!&|qPFen_p!)@~)l<*SR=iZ!9`g7}EtxXN9_r2Ww;+NOn<6B;E>@T)B
zUUM;U$133~Q_tW3xXAxNc+}pr=@X{Nb8LI}*RMOe{&?($bDp=4{rkT0;Ug{H<@a}e
zRX?(cwR5h1?`HL9IvbqN@$^^N^F~B)tl1wXf7-MrbnBPf=W}<b-!?IAOPo=<q50gN
zdEVUDyZILH{Sq|$&;O4fETVW~U%JKIJRJFhck=CjW{&Zj|8<!CuDR}|y5XO#nXPE_
z)6{$a*-n>z^EY3USLvg)b^qQkf0mhXz1>&%vH04)veQS^o?m!3<G5kFq4cIQ^?)z)
z?!U<4f4XZ=mfg;*Jn08*J0EwwUbFq+fjjax=VQ}WT<0ndwqQpOuItIyyL+#{6|v8Y
zyl&868(Ug<OMCBzi8<>#tnQ!9-1*9R+wTvnkDZvBoW8nw|LtOr<69D0v~J12K7aZx
zU)t{H>;KF+`*#1=uYXpo|8L&N`}X|u%<VZ@{{zGm|6b0Ht1~Y?vUlUxkGxNI=o=PT
z^UsZ*-TAgga@)z-Y}PM$6jiyk$~bS=Z{P5@ocnft`G&V33c{P8sCPJ=6+XLin1`Y4
zLiri<eII!_6hB;DUpIAL^xCi=_Wz&%fAHgn#N&?=`+x7=-!1?D$ML=2|GsdyKlJ|3
zx%UY+a*u!fkf{HbUf;HBo&2v4@VaG&b(88l>nGLsf6M)Q_x>N>{$H#2->Uw%I{vTL
zzmM|&1@HenSN`G6P2-xk+3|-#cm6%TTYkSah%5H`L(uIm^X%*UKsO*923<;J|L3rM
z%T_TEzxwfG!((^8sq=Er->!S%{MqR1M(-|tUibgX*7f_jgEFt1eY^j{e93XEDO&rO
zA20j1f7Zj0pu1%~Uyj=|WWO(c!~8w*KjX#My`_8qZr?XAzxTI}rf7rtg>MWBNyeK>
z&GwePE9ZZA_20p72YBD;Pf`-!_W#eW`+K@qT{o9|{*kqL&v&L9m;UYEslKOd&i;en
z_S<~Z-}j+zXLt4c()IhfE!HOd_#k;p@cHxSKTd`3Ys#;E9c^J_v*fwIpWlb?_5Z*B
zcxJx8Q@`$G_m4Zz?b`F}f8YM`@B9A#`k&M585uxVHyo}1|GoY(=*}Fw?>o;w?2iAV
zwD0HH{72FEe~J0|`<H*63?B-e5q*H~SKp7z_J4zGex8m$Ccgj2(R-iY@B6JcYuQ22
zZDCdK=9b?(m~Q_&^3U)6|E(DwfNuZ#aPxef*!w-7`Sw2BUiW(YhN!h4KvyfC;cvJ<
zea{8u*p~l#U;XMU4sB$3XK=SZyHC4T(N<NVMdHYNh6~oyeEBu^xc`WKs`z(atUzvI
zwe*DvJ5Bzr{hcpfw(ptt;T!jB{_sDRs?&YVXBhLw+AX3wk?)Uvq$X@Fz^ymGyw~5Z
zwy}z_PB8m7!}Rn2S;_a0-t^f2`PRq!m$gmL{{K!seLk*w{$88uv0qm@#r*4Oe{!l?
ze?#57gKVGAPrLrJ_x$tF&yU-_EkAr`;@^1d`8@ajP2c~#@aBKE$MutUzFPR^{2QKW
zJKi_EuX%3$<NW_W{x$Eb@9+MSFJJS4@srJa*Q<;Vj&_Uxc+kxM!c;$Q&x^mmA3jw4
zWV8JGn&hofiCd#C-p`lL^<QeS_xUxO{oEd5?G-Uj5izp_JvB>vlea#;Kl#+`JBRCb
zZ|z<m{oPuwoO{ph;_3VUuPWSk`D6V<?X~3shwXQ6<hMEYv0iodxB5Gb)1SNV{<g3>
zvg&S}oqzM*vg^J7OW*#IdzSI*{>+|w1_!Hu`f}e*KQF64I9L9DSWMxb>G5gTtu%K_
z*uQ=*FZj=}GSNr-#;JehSK>Z>&A;<!^R=7x;n&|i{pkPy@X?(wqJG~mu0GFuZ^y@U
z-lPB4$5yYC{2zVZmOr&VExmx{Z)4^Az284PumAV_$G7eKdpGHr*UjHMfxl!bbJ<<J
zo1l#T=KcH2_49w8N#AB&ff!i3m%#qFvGV)f@{bSO<sW^X|KDcIwF^;?<Ntq+|7c$S
z+5AG(<D=c;D_%?K$M1Wy_x)jh`z0%WF1P!-(tF~k>H6`DGG}>D{5oa-kM8{kPM+la
z`~6<^`@4VnWfb;GOe>X^e7N6xz3;!Z-{r66EqOm@bzkP){DgUOFL#tC|9|#){!ZD8
z|8^AF6@IJxTbX2bc-jA@WqV(J%|Gx%{?gu8pZ*l@wY~YT{Pfe0`I&u@zkj)J`L?r5
zQTFxJ?DM7TYg4lQpZ!Z@|J(TUkodj^&?P=U*8l&d|Lgtry0_OqOkH2oDwiJFR{!sL
z{j%?S{{Q>^19U0l{U5#e85sWjTL0gw?nATugTLSJFTW1TimrhoKmI(ouYX!D?%KF_
z@7{a$h~|O81DP-EX;yO|ZJz%(=l#x)6+P+a=Ux0<|HZw&Wqs}2?22!1B>VdMK73tY
zFT4Mf_I@YUr~AGv)qe=O^6?|+UezC`_y6&(`E*kK$FJ-A`#>2pZTW0iE&FWZA--P>
zKVR?vmz}ZpWA*;;)e$;kKR|w}|IuFG5VS6TRS?(zFaG~q?0-(SKbZgTS^lC`T7Uk%
z|8Mv2)%t%~$K4T4t2-izmIvRSEUK#N`un%`*KWhKcK6RF6OGblZul!Nx9xvk;_vs<
z66&}8J$yJBR!eMO@{PS=@?_z#2Yfu|9MeH14%_aR5$6Q%tge7n9UNsB;3d688p8%?
zt8>S~^L-C{4&OcW?Y?eKeVgJ9u=X}aZ<+G0gx~K)AQpleOD+&8kl}5KGe8ZL!v;LY
zJQ0s}1n*dRIxq3{doi$LW1p7a3ygV+*RP5GGI>I;YA(-V1HO9-H+6IV-#zp#U7|_(
z1w3AOz$*j{&fHDbJ$d!osWj&YcZy(v+QtcT<C(1yDwDo^@nraxbZtiYF<pl2-s+rR
z>xGyE{t35=a5%}8U4eLO#&SN4ep2EL@0ck|<0E$+jgs(wSW-2AW1G^8*xSGA`6d=|
zzg+y(D_cWU`MHcMIK<i#=NY|OV9c|5+5_$N-irKvJGO57eq#n7!v!<msP{9<bD6VQ
z*A%Ru?Bw9V%AnEJG^gn0{Nnp(`>YP%(e%8_p0<MH1LrMOh$m+-Sid+kyWe-yikt6m
zckFAHk@@hUf7(3bV+UqT$j-a4g_mJL+|?DYr`GRj@%(gQD$|y8FE&ptKjW(QvidTI
zo%QSOjefWM`X6mfSo`*BAjb~HikofySvhu-O5eY(+GwveJO3<$U(kmC(z(x9OEmnQ
z|7DIX!|&+dF30VRO)y(C50iD@e67m<e!R6lemlQz3qwoA;l&2uTeq+1tbBe<;*??j
zEVk~SJPZcWIxjx1iaWTCE%y17_g3c()*XAdxy5N&F+;<Y!u<hDp1<IHpRr$W){FQj
z|8_j8WSD-;rvLxxi0p(ORacHlUwW_9J$m%`1LMhJ=N7)xU8nDgm+{=R^quKB?|pCV
z_amyizyGT}`+4`XUC|MrwB9In-I$#|Y0A>qi(Y=zEX-WTIsfu*cJ7Py=M^L;{7qcH
z=lfSy+m(M^C!I>FWuLY}PUh7e5y`f{mw&!kRr%!B$N6UxU)GrX`FNg(v+TmmgO_HT
zH1|mTZEfDV@#^%gV$<T%tBcb#yws*PO%j@L=T>&~ubt1%om=+$f{EX?eG%shtID_-
zEG#V#uAaW0fnoJip4Fl4=Pca!o$!*et!HDH5Vi2cqUL$6j|zh>+UDfW-flkc-w)sQ
zt=Y%_ySl5dIone5Sniz^$A=&N+um9=Z_CWEDUapO-qWn1I;Cj4_fnN5McYDx994=>
zx>oa@+*ioKd)kuyQt^d_ukY9-_H=#|Z!-JPH23<=SdPN4$KLeaOj)0sevZ>uT21py
zroM&T7yB=Av72(O!ds`ed{)1<Kh@yPp?@zQ?`W&s`!|02w)DOAl39Dcm>+0AX>e@6
z=exy6c#qfL|K}|K|ICDhPHW`GVc!Dd<|j!Tmvvvfec{mQk~XdO-A$==-}k@1P~~aL
zkn#50qD^ZY<~_eKQ#;7)&fF)7g@#SiZ|<uJetDYI`E%#wt@G#30bSC^#IUF8Cudsv
z@{FwSyFRXPy8K6<;lPSj2CK9f90I3aaAZ_eWobQhWb(wF@!N`p1o>NkT3xQrStI{H
zwr1~3tCD4l&(<szHCi8X;<HTD@0I^KZ+t0bnY}f)`SWJuGilEm8m<<xYTv22V&xpV
zt8ms+%TIT125IuHovY;N#kx{tWoe7ZUXDlWJo^(DU+H8&6y^O=fAv$LucySPugR9M
z`0cGY@uy|9C+k#AkB4v8O<9t$Yf4tGmeY^ldJCCm99Z`73w!gk$u6>2x8~|k(g^yx
zQN*xmcGjFr;!C;AR2f$<;&SquSKX0v&y4L@Ja_E%gAvYUdvg9yS^ZZ2irt1TIqnUA
zgZ29UPuMnnmBcow|Ki8(4m_TJQ>yI3Ovi~<Dw*?&C)Ac6duk-D-<)%sFZa33{$+U=
z*wPDkx&&YUGSfAXfniy7^^7-fC!Z;wt21?HSIK0RIkPkVUoC1he!pP<pC_tub${#_
z9vtSkJ9K*T^cB<d9>z{nol-8)-_KuIQNeIv?rERjtUI@E=#+W0^5mW7D-(k_CmoM1
z*vD9sJB7vESLXlMtkzvC8DFmno5HGgS(72bXyzp6#q)mr@IPL(ch$#NSG8+?JY;8R
z*nBxSBLDWHH5<0qb1=;CIVRET&d{)F%>>bNk>@wvxf}5Jj#6*&rN+kI`wK1GJDc}K
z=oS8YrONQ&%NLPj<*gT@7R&71CF(j)S)VJVaznM)W&SOFD`kwVR5Y!n-yggv6~W5z
zy!l9_+8M>wRj&Q|N=q9AE^gbqrOD)fSWE9mp2&I5?PrB~UR2#Moc`wh+{0J1I=5wB
z{QPaw+2tDqJGwJvJO3`7Aky>VX8gv#%&(9AKUKb9=gS}c8(Vj5Jn?w`O)-?7G{XZ9
zD`SbE$lV*KEs4v${w*aw_Vy*c;@ijWp1YdV`t#1o;PdCt7rtA(bM;lGrTs;FD}EdQ
z*b;W)@497EK6$zen5$2WR<`s%_9M1#L7tS!Tx;>}pG@;>ir5%_d^pVi;p6f72~S0N
zUFRk4dcNq{{)&ALkI$>>xlLPi?62pX#UYpEmh`Rde^8b?+vRL@N$wuA75D#aT6XH^
z^UadaK3l%3;$+b1X41F&n#thzZe8Uc_nI$DGNtFt*>i~h|MUN>3^gAPvYW6hXAj=<
z_1ba<hU4e^E}G^2nPuCo6jE#ca96>$)}RSyZa#8empp=AHM*X<F8HjbYr*;SivP>)
z85#EczdV1^l`S$;Eo`iq7~c4PH<aoP?2S3)IQ#jDE&V~Mk~tE$PdVHahz#d9JJ<Z>
zYtWpSBZvB&73Q8l?0mU2V(pzdg>_|ZPm3JahkL1IvT`}8zGOaTYi73W{*LqfT=RsI
zt=pz7Oqk}-!EgKZr~83JD&OMu=KekJ=f5#VSK!fOFU@cpQN68dD~c6_eye|f`5`@U
z8bgEOjenZgd;fnn-d+ZZv-!G<{#O1mjy}X^Wvp>%OInX&`;uJis1;jto7Wk?*z;v$
zUe+41bB;65KUdjU_w|!%+}=Mdpye`rPg9q>Wysi8x1Bule43h{p#PNGORQ;80oNqD
z&mECsh<*O~;%%|dt;L7Vi>1$)JD-6eZm-qhlP@L1w97ZIKE?ICxSToWO!yXyjcnpw
zJM0dAb~H1~*e&M!R`$!fh1m;U`zU3v-}uRL_vxcd&yDT>`Nuta@>KiQl1ovCJ<RXQ
z%g83$%-XU3@~@Nq^-;?tn{U36dH?^*a)yTQb${e^Pt4QhQ&>Cw^(r2%C(h3;QznFa
zvuc{Qlw5DlKKLwmS2Ncsr6+9+;$ppr4>3(Sv?WI8!{+%rMVjUJes?bEwSLyzymv!C
zlV;4*8b`C<GBGE{OLxtuu&ym=sXS0q@@e*w)>%T|zfUz^I9>R?;V~EXk8eai&z!w^
zsmO`XJdw|Wj+QJ_xOL>9$DBiEIVxtlchzrgYrQ08#V>2EGbv5TUut&D^0|gjMCQ$%
zpHR22;Y(k_#OIxVc`d7*PPkmlds%m9E3Z|u=8T0~+P;-~OxYsff9K!z-v7q;d(-Tq
zC(PY0`F}2dREg&)rvCc0XpG@KpZNljH!hadYkkaZ?%AHJnRIWP?yYr8Wlvq*bnKG5
z!1L3rVxKJ;63k{l4t;U*?<<j0;Zb$j8yjBwD9x9X%1pg*cjLNQ6*@uJf<8`Jw(cTJ
zXX)JqA6p-!JvZL-$!O!vKRn$>EpLUc>9}k1?oL$61P<4^E<&O&zMIt<l-d5fDE~iK
zy1Hn)h-1Id_p7TGa{Q{<c_iuKBK^-lnbe=BTi6y}Z@4CP{_p;o=aQ~J&Nfha9_hup
z)>x-@d*kHE!M6@h^IEVXCUHlSiBs4vj$PL*r*KT2*gARcFLO=?r`;cywA}E#8mFz%
zVwdx>I%(F=JFW%sbwy0CkK4C6KI5)UbA70?OiAR|l)vXW_eUN-#~)N;vYlbK=j$71
z{$;Lw(eAiJ)B9S$sf$Hh4_!Jh>BM+!%D!cG2@4flqV2pileU&0>BzloV&d<q87t+y
z|K;}j;|*7=Jx#tG+$Z$6(!R_!GI8e&=O26~+l)K^@-E@|*1z|)u8!tfsrg)@OFo?Y
zH+}#8C~KMD{3(C*g+rqPq;ib^9kzUPt50jYeb>kHJX~cLX4*MN?pZq3bn>*!+}jIt
zqf9!F?0x516U+DO=1s|Sdy0)_pAGcA^T_Hn_Y0eL5oghUp2LRkEnnEl?|S{H&GWK_
z=I^Af3taCc*&WV#mh$%V=3<>ad#ZNEEX<6G(7$>)YVjH8a~XcK)q_^XmHwUUai`qo
zU-0kf`x_ZPbgvC)U)VYI^XqMHZ)HziP3oL^e}R>~_3@uKC7%_S=N+4DxarW-LoaQb
zzwGSsuZx^;;=<Hx8mGB-%FkYwyYa*49xLnPDQ})nekphEe5~uoO%kfQ*Hv0XOty1)
zM9FY#YRKQMefu}!-=*ibwB`6Y7%x<WMDoqunc8Wpd+u-Be4F`+CPmV9lRvV2UZt{g
z-8rKP?{!&9>o<sfiSXjgbkbYD*L?YtPw8sX>!feii>qtq$#E)X9zHD9eQWt84rY#v
zN6ccK4$L>wSiPdpdAh|9-^)AB7VNl_as5{JzK!uet2EwZ{NsOo>?%v(zW|<B+m`-G
zW8_@<c-fSw?0WCU-eq|)y28KsZgTtZ7;nv#cznO@oLnsT{mkOkALV6AE=x-MpDlOv
zM>^ZlfW0E{Zh2c}5NNJuqqk(r`mU{}8-q%ve_L<QZC|!Bvwc%$)|D&Uw;nqszGJ3-
zT7=HCe?L{fU6Es0pyl;srreEng(>FW{1<QgXy|#XSNqcSmaMm{MW?M6FpW=mru;O0
zv+<nyzaD9QmV6d>^TL{#Dd9hKpX*$f_^I`7ai(jn)6}j@!Rm$k@5k@$o7?}tK(FS@
zo~2j%*kWIE>zS6mNeVD8(Y@m9EIQ+Px24!;%Tf!AfZq~N<CNBjy7DB=eX8DL-Vh{|
z8oKDy-)(C*MCi`36}LM4Q%59!R&vp^V}FuN94(7Zwb)z_*y{FHyUV#NBbxidWuq|m
zU9T%OdU@id4tL)9n<W>Pq{R@?xI`ehZ{qg-0YbTtuLiE>G1jlOpMN$mOnJ)A)sN<h
zYiH;)i<JtizV}pXpVahgF}LD^lv}HRygPR=dGmhdpLUF!gc-bajjuU4IsD$Rc8bwH
z-zb(skLzU_uP6Mwav|M%s>`olF{K;s9qgUY@|MKiZ#?o>scTg;cS&xy0P}Q#6D1Qu
z)kTl3DQtcA;H`hQa(eyC`o7&qlG+=$RR2nNV}Iade$JNv%O3Av>HNRM`+LLn-v7Vj
zCi5j^fGe=ekAt#jwEysv7S~%iYrSFYq|Y)-_bto57|Hxt*7NeQtoL(YUTEujwAC@#
zJu`5{zQ`Ugjiv0br@l%0x8;hemetdBXT#S>-75>+wslQ-gx=gEwOeBn_7zDhp1#TR
zS)n}s+{LwjUf-6=y&jmod(Vmu<};ZXRuy$Ag_w!%&i}df^v8VNjOHT|kIy+8ojd%~
z;N_3^JXW)N>fawJ?{&N_p}v}V!Dpe!r|TL6O79q6;C{&1`6{DzlZL@JzNC5K0*AKW
z6cjV-aP3{_y18}fYxN(^*Uq~i(^!?!t9MFc>%MyR+P|Nr_x|?lf4Y@}F~ae&$$6um
z<LeF|STXBC$gW<2%*G|FMHsv_1704>ixRvS<=p*xUH5m+OqCvi3Exew+i3k}-peO@
zsHrGzYuJL-i;KVU^>u7rQ0=<@cKb^W`Rh^4OAkHEekLpU-748<&7uDemKUUN)~7de
zeve?7^33(y`=q+ctp5h*cBk-dKe_8<1oK)WkM~!ck7d0-b|Zzk#^Ia%i67Uk&YbW3
zyItacVqTEe;_L^3J@sh;py|S!4_$K-Up~v5#5&b5R>(L1;x*o{SK_XE7s<4iKVsa@
zEh{D!q$#qrn5lTK<H;H6+q2t02=Uu=M`b7G-1uYgci-)UiY8*Qj~2{ck`aIT%9iLo
zQM!Ta?^LdwZhGsQt=O@r@ojVetkN-<X`!BBB&&Sd`TnCDt1HseQ<s}>Tyn!-T&CoG
zjk@cjTgwh=xtx8i>gtp5=*RR;^Ow&Mm;AIL;+^P&-QVR+Yc&1~pZLr)d1bkPyYig*
zzm=-B+P{7CmfgMX^$I!XVDkVk=k124gpw04Ud#Mwad2-LgUjuVwT7Smo^^k0xap8?
zU`xoxyrzQBVKY|0y2>@nZ0;qe$sc1R7e9Ws-c%s$+w)uOI|RyN>OYybxZHlRKzr`d
zZ%bmIzY|@^*ZD@_Z_VQ?e)|Nbtq*6~@!Rb~@sjmtCxj%vSo(Z&7x(w*`HepIJ0=U*
zmQ1}Buf2;sLip|dm11ghj5JrsrexJ;^DNN0dSt@&d!dijK3?8ZU;js2)@)kHmgi!R
z?Q<4ni(YkHFa7`f!WW*B+y2fhE#R|4?`$4ayR=|k_s*Q|pE8?o&aB^apvds}Dfg`D
zt5u)A)DzRz`SW_#uC__<Hn*G$_$lU@YTD$XwAFvwlBf#tOH8-SGG~Szzg9Na@wQpS
z&pn^3HXbT^xw`fIGmGzL^Ut1J+4ZBw>~Pl0xceo#EgM97CBsF(EpvPncQJ3P&*Uxh
z9{el}+CAZW{slAN9O;TWH{C0*o*G??jaYj@^1fK+#zRT(c1c`WJvCeRX>RmX(XLCb
zYL$P!dunT>yY{`jXUC9WGgqm)^wEFb5ZTH|{erqz$M#I(%6*YxFn^&`sLDk7{^J^}
z0^aU*iP~-+RxZC{((^{nZvj!sCS_*Qz3L}w@3KTV-{lhPmb}ub^z=lM-QmiIQ}`+a
z7iitBc3W(C>eNcbIkQwWq(zn(7+h)cwdqJo&v0D5ddUwbx7{t%*Sr#aRn>ay`i==v
z!QYuVzU*4mQevW*GwJ*Lxal2@p1RYYx!r$VxnaSc*N$_#R=?3tIwH!DRqtP>>)ZTy
zvx=$uOn(KT-@7;JJ>vfDD_eE{KSS55#+(0leUzVKey!=%jvV8Et?SJnUYWJvdaU`s
z_qBXdGycxJewfc{b9L3ZMZ0%iSuN`47thFG_vhyCA3xdOGc%+uPmj=f_Qb<1H|PJ=
znSCiYR#&xFJ)NhoF5KhH|M-IQ_r|(g0i42He2dQB-sUD7#2)6YlfLi7y{yKoNsfL$
zlMIg^5`P?h=DEe^bEi(vukX3J+Mj{p^wBwUJR~khD?Go-arK1moYR|{zF8J!zW=O#
zRP^!xFK<}vKR^EWT>g*9XXEEJ`eNKAj$wC8_a@aXJQ^tR|LT>cWg)Jedpx>6+FtON
zw#s}cqsX%5+KNAJ$0|&m=2gGUxSmw^?AhY^<=Q%XzWkj$fBFioaFul$MN<|FF59>7
z(7k_*-}w3%7~I{@8{92#6+C`fQ&f7>wSefQ%e|`ZYO4lTEZ?)rOY5K6eBFXyuaX%Y
z_SziJ{JC+pDpU9z{qMThKP_6IR6qG7%WwDd3=HSz??3QxbNWB)Df7EC#C*Q_&HFL+
z;iPQF9X2;NXjWH!5{eBDp5^dr&+fC=cbt^^R5JCNf&06!zuA9(iTiHr(Uo%X|2y$S
z_NOy%l-7H{){JPrTGV)1*!=yLT;Jzzo{YlTJ&q?6{ztra%IrN?a^rqEYf<hbrl)>!
zcMNI-*wX%Q{qa%$-OANhnU<^TGbXJ5xc<+qV=|I&<ahAK%l$vI4RhvquCUoxpY#<c
zZk${_{m04b_lykpen0&Gpm{#1=T-NKD_1ym?=hv7K3NHWmY1>#)P-+eq2&?3){V6?
zUq9&6mqluc)At#--CC~uT>DI#o|m<?{n5_;HvP2c7M7Mrv)*0iNi)uRzBNM6;QPdH
zlP?GFsd`y9JN$HU$-m;Y8z(pg81DGE<4DDuMN?8|PTul&CENOpKhn*|!uQ$R*0z4H
z|0Mk9Mf-ndh93`(+aLS6a&q+cvs}me>$wY`{+Mp%{*XJ*Q+4vGhc^F|H_n|eAmpX>
zBu;7Wb5>W|SwCgA7C!#}M)X6_?vC7v*(p1B_ojI{rdzt%G1*(*IDYYCG(&@Ue!bNG
z5BvYiGc=qtDK*&;R=nDpAuvgMVM)gE83%uSnSJ$*O!538<%ES(+dgfIo2&UEKp-St
zqn4#^kNMGuAGsL{vJ_VN&2!FX&1~*!-1jeY9=o))phU7~>*g4}jB}Phe<<rbFYeOe
zno-AMct$tK!E1fa3a=nb8QHTJx8&;VSeg=K8fbUoj{O#q<}Gd!S^oogO18#4`13|Y
zeSQrKgZLYH?|$ygl^!xn8os=qw?{`|>Y+auG~M-X&S$H&V!wC4Q)1TNPSeNrFE4*S
z=kH(e>7&)}c>90F>sJMNJ$`XwZGXid<J*V$tS+aEFHJjn@I^*a&Cip^EB>q7Gco-6
z;{IRW?$--v2EG4c*8<LZCnw#@yInTLKUZ<$^t?$XvC_BGVrFn$es${bg790P;|l(s
zb6!{P9l9d@v+<sqmw9gTwLcX7><Z27?LmX2^AleFK4o6&D|&DG>8aN041VdwbLQ{9
zex;QA<>w7^-tcK~KfmI0EV!pu^t;XJ$u>tBJ=T|7{9F5S!zar&_4RR&(%=7=kl*wD
zKQlw!zt8*u`r-e+vL)8cFv;I*n$g^Ij_XM%=WRKrf=dreb)T@A|0}<-CiKA5mUJzv
zJ7ytV@#ijH*{JOpw(I(uX|s;yFH>omWD%M-CtctE&~bUo$Zs!iN^bR^)wg^_P2R3^
zJPA(={0{ZKng8rEo3*E6g7y8i36_UX_19mNT;UWrt6|clIi(zpGpGNaH*fxfJNa@^
z*@1nrvo5FDI7Utju=;oI;F4=^PW&se-@0*W=G`kR{{F47oWJv@{fQ;Dew7L-7oxZi
zSZh~aPB8g4d)H~!X{%M2_P_9PXE*-)zjhvb<MsPt@)!QSR(W^qnAV%p%M0T4Hq6-_
z);#-`eM#Gj*G!8qigXw7P4B*b>wlc&4Di6>F3!6d+qT;;ae8<8x7*{*8UL^M{I8zh
zY_`$fSOcR!erB#v8Dnl##dE8ip4XDunzO3ytPlU}oP7PPSn;YUcgl2Kf+AKLt9{#U
z%680M*jYxl;NoGOFJe>u9@$N(I4LEU)@}T4c7N?0e}BJ^|NQH?z`5>_yZwI#1_NvB
zgE?l-uem>$&Rxo+?tA;f@9@&@Wrczdw&iLFJ+9iV6*Bd<?L5CEmcUHkscY_Lw^yf`
zDc)t>zsl>4>!Tm+qLy>cr_Y!>H}M_!=h9r~OxZ&c9F>)S%FV=jHh&28c$&I5XcEu*
z@*as9Ys#lv|8a8g?A%juYW60rg*7I3qAuKFN>tc=A$mvmuMq7<zXfg9{;T2^zP!VK
z>JyXv{-=vxZobLW9(PQt%|k-Fx%0`r3A20Z|GP2hWzG9}j@dQR>1PO&;u7s5mIGep
z`3o!K84m6EF3r6~@$BKK6=!1Y)0Zy~Ia9PXX3^)`z4~&mCvU0$HF>g9s=<rU>)}xg
zv#U!F{FQIJ#Lf`F607C=S!7MY@_v>i>kXf6&*^5m=KtEYR_Wl!UbUIREg~TWXKvbi
ztYOW0aW^+tgY})Ad(4LVAnuQhELGv38SZ<&KEL+ayeEYc|2_ME?)z&l{r}SH4Rik1
z_Wa?M`+w%|0Y0nC&C7Tdx9vIj<=)$Th3I|vqa^k($hBtvaZNNbPU$<}+^tM=UuG1l
zEotKIw&vi7{~G?B_1m&_RnJoXH;CO0I#tK_>ws8_`L2UGp6lnv-VWmXsXo7^gTL<0
zC9ZqFAM$^EwRG~1_0zl$NNkCnz32Y?<;#{n56|sB_Ple}w#JV|2A4}OXgLS|xO3rR
zOH`ewY;+xOV&R^@Km1FR%`N{uv0l?^n)oN$!6T)0bFkekh7aeeu3!9_kR4eGTMIDR
z>5#{KuM3_hxF6T=dav@XGSEt${YB_mxu&zhWh)AnS1N|^t#?!Q`5v>qv1%*(#scp6
z%UcVBk3@vCGcdHAP7Tp|;+)-Lcu}(X*7nToSvx9A=U@NnE8uahFZ$>8a+AJE8zY}s
ze)|^d`se2xj-qEW-<L)1RO0?3=gQaBu;6H6<W!UQ+G`VE#N6;MlRuSOP%QfDY`w$%
zryaLqmx`XcFt5ajb&A{OPnl-1?vIZga!|5RY4{+mv-qNft7MR+QF-3w!=f*%5+&|j
z`Deb1S><I&;@T<KoG(NzUgLJ|Tf^r4_f_0)AN|fzz4h<vjhkzK*jWV>9{hLMg4tQ}
z|3bcFs=xCs{<-g)>=O9xt^Jpe=Xtm>Mx{4T^HsLq-Z$sVlWm3J;jd+`UU?hy?)veN
z54nYQ&awI{CwNKm3OYGF^%Js`>s|T&!^O?dLlitTZD(Yhw35?WB(`svvFtQ%b#Hrn
z+vBUJ`?dZ4boIDJ?NgP7xz~4?N5~7B2gcpnV%T)gM0Z;0l-=!3wM<Nv^A<|&&PXwx
zyWj)s;}xsy3^ewBefC&>$6d$oPoEY3Ntf_dw}`N1fAD1A=i=}+%QC}WAGc=-kz1^O
zd2g+ZUGaN;cjXrfyQMpNuNTg~_@2q-cKd_iVh_cMzqKA*ZmyNtUm?vfA(d;n`nvBw
zi|h`cDxbY!S@V}uESj-jVxH%%o8_l=qBiPyMpc86OY!EOOIB^m5*Rkz^%U6Nzps<K
z-#N<7RPOPMAHnY`R~9_e?$SS(zAj*?|IZ6S6Ay)CvWlL&U%}tHepyWK_kbsf=Pn8u
z>7FWC_~<g<&XYg(f0fwu*IVtxt<5^lre#`NoU;S<!!!0et;&`T`pv;`$X!NNrDZxx
zcxvm*ebxKV71hsWdCK=oYhGgvd-TouA#csCzkSdv_B<>2)_&HT$0z<*XZ<e|{v9s5
ztorwbnY-ndOz1qTf9t=S{ljyTr+%ETxw2d8{o{h(zwze(oDFxp{AXA4?AhGo2LEOz
z9^|vS{5b60LtR-NO^2U$u7L@=p69&_%G}bMExIY@+{P%qxh!&Vd9V7TR`cwf9vJ@E
zaMhvHpWT$BO0+d&w|;2!s*&%D*t#WiZ?Ns`<b5AR-EWKaP7l29%YA#R%IUYa#O6+4
zzdiTN)0|s;zS6SCAGAzyZF^bLb=X;b`@Q@24)cCaX?_yJlQ?n1ZIKMdr`jK$RrY;M
zng5CN_A>$Pc;2$m^%qJPwmCQ-Uo*w+-P{R_Rt1QPdg*UH{Yl2F)o^~#e?^JEVLMW!
z4ul){Eoq+p{K2uE4jc~E?1eGDAHP|ja|G>&SXnOMAHVO&opO^E;o8@iG8BkD*y{8&
z^<Z^1yNaNk|969VJ9t;woL<57^TM-*Zzs=MXZg<e>#9ZZ2Q9u7o!Bhoe!h=^Av7|n
z?t$F-bLTg#3coVR_%fH$%B=!2lTKE2or&jPT<Ej<;>;$IRnOPhxV<Ynvm|%hp|;7F
zEZypoqrDid4LMHkWLx0t#KGx#JW12tDP59lzvk5EGk5Pxsak8h=HYv*+GpR2(=WLm
z_^;Xe=61cwqMt{7eBb<F3{V&4@Lcb?e!GwL@8@-wx26AYUm;c3XubWvZQuWZ-$^EY
z-|naVVUPSh^;<pjG5g~Gm@Q*F^BYOKeLL6OvvyrGBQi`>ZJ&kvwCP(8-!$XBwaqbm
z633#_-#$Ah1<b78f6gf5X}R81muL3jtGJ8YxOUqbuBh44QB)ogk-vGB%)+=ItKR0e
zhXyasyVF;D+azOGM2g;x^Chw?N+w@9@n`1@AGI6y7DpaVoE+W1JotspiM8z8+$(15
zK9kn=c(ktS1!L?KRky{4Q}}kjzjv)*;^csr*Jp?wb6;bmskrxwpC<3pk~NRkUCR2o
za?L$H?XG=m|2D6Y-68$6nW2SC=pqlhUDodH^$mxWmor$}S}pl^>uZu@*;Fs3^Tt#5
zZMgsMpPgp;l1nT0%yP`Oozd}A)ok1U*Zu$9Sm(Dausav2W+-QQ)iE$^#=G~746m*-
zhLyH&`&fH%=_0!qLEawgtt3O0H*F4*bltQhNaUoHjQO7bU9&?qyX!CMMqHAalIfbs
zC=&TaOJ=1>?aJ3(kLKmy?(1rf>Rz&Z@16;KUp{=he_{*2R8ov`;k1u(3${81ig;T2
zB-O8EOnmWE;9&0Uz99Pq)+LiB?0qL&xc2LXJJbKZPyUns&o1hT<ypnsJ^w!#F9}-G
zQ6chpzN83f(eSps$!#gCc0Qcr{9R3RV(aYSX$!whI%1>mVU&`XxJ%>ft4Svfg0)VC
zE?pw?VqNyj8*6qJ%y5p?xUcNT`sQs)Zp@K1R<}CGJrepWTt!-(vRPXSg|a0Wf4I&#
zv8Z`%Y2zj9r;&k)CPkl4oUGtycmHi+Q^Nhm=Jbm;wK6TO{bziS)z^IX-GBM7W^2Q>
z#AeUM8eFGZgQJd%tCin6S5h+PmDBEB>t1W<I-XcEHAHKz%#9!7N-zIyX#9J0YW>cK
z-<9>YwOrBoq!DVePwiOBruJLmpJUfe3;AdsETwh&gr@%Ird8e2$;o$Hb>2T+!2eRl
z;&=7B$cwpUCvNY4;dJEv)(KB4p1ZPY-eqey{B5ANtv$r+=tg~(6~EiByvT7spDkN_
z;pu@layQEUFxTC<|6sX_UE-9`(=&{eS{D6Y7r+&jee1=wD0RPHg~;mbrWww&f`c++
zG+ur`^!ugCmw$}~!oTBxM@m<?IyK1Ts4n`ubV8o7e$J*>YtsKmOo(+@^6h=lZ|Pf0
zc-Jre&U5qM?UD%#{^$OVeRsa}vHg~hS0mk|+iv&#KNrs|HtpQ~WQqUaJsU3*^=)^s
zX3KQFj@Qe0xN6Fxj0!zbqxcMGPtMsn7Q6Q?_}C_<wtHQ1U_3*H)CE1Gh8y-@Je_wd
zo%pMiW23jR{K2A@Yf@S}!l$r)vN^t|#P!sxU5;;mm)>4t8WATlh1vGz?c)_sWIkOi
zY1#Wyq`G?F)9|ncrsvGNE$=@4alfWfEbms~AFq`QHcNaxSK{~cWv1Tjmpr}coSxs_
z+!9;8Y}vk7PA6_`D@~ZKq&e+hd9~Tr|4ZNd^C@UleOjdOTimtt+Iij5y9%HE_FR*S
zoOU^8@suUJlS1zXu$TwWk~x*AcdpFBt}46O`{EIs^AmqpH%t%`XsdG4R#iMXZ&mrZ
z!!}n-Wi4k%t-O&ZeAtTJTJrzPv{nYEXN#{)GUM2~@x&&X%7_2wX&&&Z^52kf{aMK6
zC7Dts|L!eV^3AOO__l71M{YJhKJ?G_I_FTQQ~mq3K!eBI^`eW~If?{)r{CJ|n(iay
zD8KLT`>a3tSJ#!D{lWj%YqL)Cx8#c1ALZZep1U#N(rR=0(?8PL4j=fk6tUXsv&lma
zD`7!Tvsb)}{HNd86gvBKadH3FBBA>qEW8(~I~|#`IIJ{q)sm1+lW$Jk;?3cxyUgIr
z+|#<D?B>7u0$9SdSl=$bcQr-c{d~;ntue>v-27R=zxk!zx%08Nw;oNBj9#JHa%kC!
z%{)`{vrX>WA4-v07503B*FufEKSiuoE|~M@$=u@OkLzE5=MFd;VgAosLvm?ZqRnZQ
z=WC7C(zdRYP<?+(EQs^e$Lm(nvzzTq=EM|szc^l+BW=4~tU>kjj#WSM&OD3sd&%w^
zx4`(_&t)%bOissoS59+X%G_}DlIv!x<P~@Oyru{?Pu!t?T;SL>y(wa1AL|yBv>n=h
zUFQ?iOn<=(L5zoPihP)B=_K2*WLc}B?B8|EG8b$zVUOiI{H`&@ZqMeA`_Ep#JYVUY
zqg7wMV$A9-6K1d8vTWzF<u5L>t>VpP7cKpL;uDY8YZdu$p7eX{zaH0%f8+morsMmw
z8&i+{wLKmDTf1x4?lpYr;g?;1Yd?MR&QWps=I(Fu7dUqq{FA@*?aSVd$M$EwR>obp
za3k#x`&FlOtDp$psz1ifEwUwQlSFpjYCRFi;TYsPH&vs?K5?n(CmoT>;DSi6f2GGJ
z1ix3QeYd$MOY^_5lhXIMaV5)Y1N$34DVQ&N@gUVJ@b|)(DNVb|c5d~`oMP9$=U#N8
zVSIv}Jv+miSz_1p_gpdze!}|o{~9+@uKUclqMEn8U6C<=+F$9=9}RQoPgd-ypV;$%
zQNhs+hLou9GG7W79Gf*y*V#XI@f7L*N~boJE_+$ZypPH3-0eFrT%%+B^`;vvJ1mka
zSY0$-^yw__h>~NL-IW&|e-?`rxrLsvWLYs|e(S>4O(9tk-N_5WUlvd26kzfQ;^dNA
zS~*YobF1pqDH}SvD^w@*+Do3VOy`+fr+8$;+x@ELx0AG<^>Aut*gTJ9yPqlS#1OeI
zbFuXjIflC6Bl3L{)vR_nIs7tVSv$8`?~;`y^StJ`<8yD%e--Dksc>GZLy+<_wQu5U
z8?PO73=x0xzhdY6kMhsBvLEeDlm2~s!m4YV|Iar5H?#fW*&R`kMT4NljL#+>7A$G=
zFjr-jvzw&ka%Zpp-YtR!o9<u8^E%|c%VkB6WciHPm9H-R(>^7)^-`eR%98x!RRuOJ
zM`Q!tmM>XUmQfiP(5)fSJ#qSu!%{k7+&a(v{@p9(UD9jh@c3|x)%n05bD!_g(0p`b
zoA;V9-XbgZz_{lrTNavJ&wISfS>nHu<o~>!-SwBPx>=vBllbrC6`}t-cPY!I44=RY
zTTO4gc-Xoq_PXn(<diS3`ftamWj>y-bV^$NvF5IGqQ5<ZSzL@Ptdcd7^jb<nXE<L?
zk$(CpXm!NG`Ub%}-O2Jh>iz_~H|+i=>lDDUca__T(w>MwZpVi~=7$VVxIE&^_MD~f
zJ0~z?S>O}JR4+b1$4zf9etB2DeM$XXk6GKNo||~N_1V1ekRzerx#C*G+MSM^dTYt>
zIJ)tr&+kVyj=D#``P;2YKb=rN_vyayx!Zq=e)GTlZOMxlyLi9xpVCw<4UyjTw|c(l
z$H#ZdYfh|n)p)S|?2q$*moNP$|LI418>jUPo{1VY?;mX5R-W&&$zt6qt+2T57dyG9
z-aFiTY{CuMh7P{22}}#>b}3HhKC$OW?S{{fnV-g8+-qC-sB4qU)6Yki3Iyz%w6fvI
z3faZ;tkPLyV^}1z6Zf3m8WJcM`Q(X<*;%gDyO!0s&3#(3_)}#0_ixtQAL<?d?<?RG
z&=(y!?Hs3}W3p8AM-IuQAH-fdxgPoWe!cMQR<lIb+#?>E?Ma`kAAE|uUH7i@+vK1i
z>n$HsdbSnXw%%Q)u=YeoVOmcwpOw?O{r3xmnpPcny~bf$Yu6Lk^-BK*JVf4=f1hbS
z<J1y?E1XFtt1etA>~!jm)>KUONiSM^<528@pjqu(r@dl+B0C|F^$m{`pY_?tdN+>!
z*;wtehh5xNZmvVNV(OcT_on}F>om~0TlP0?di9FUJW=T%=lx5YU1#00pr%NZrBqsj
zD?VQRW=GZBzt%3lxfvarRjx%Yd;I%e!P__2${V;J+uvc{w$;A3{(t#e!QJj3exz@E
z!n@xGDcKhu5G+wk(iPplqg185d;9XxJI?Pv9}-bfe`Uq|dg<$hr}8_NEos+exDjx6
zyKsQk7kBX!wFfP?cc1(nv{9pLiR?Y2^BX^`WL?N_{vhYtR$Z%lKA-D~a~`bAW_*0S
z=h6p8ZE?#lm%eX18)%|i>mT<-;8PJx;q%$2%B}uw*YRsp$mhAZnknd*-7T}wi4FlD
zH+jb^KTh{l)x0!MoYly-ptE|z|FCWTb=`aCvN>^xt9A;;bT2DgCCGhw_T?tt-mOb=
z8m3Ihbct69I;P~N=6TduC8y`t{kdJ~zq1{@JRfh-N)~5Mo}9-TC+qaS)c;bsme!ea
zN6jbp;V&PqTybei<Jm5iyrK`cO9DFs4_)|eqZ^QB6)qS*=}36fuhQi&1*InZt6Pw>
zX3G53%KSV0xqt4r|J@$=>B5h2uE-z%Y|2~h|Jo)f|5nyo+q1p?+0$E*lhjO2zMi;y
zyFU7Myu|;LA9GUc?f*^fZH;zjU!>SypEd(DdAal8qc!FW?<GAFbea%6@42OKTkQ3T
zJ-4E6NB>ZJx!_%4M8+~9m8BUM7jA76V9wsS+4<6`pOy2HV|Jc;>wE3Ut1Cf^PM5?S
zk#_KSzebw-wQQlH=@g#XN|UrA%zc~pY$#c*wYp2}p;2zRNlS6j>5uZoueYnq{*Qbn
z7W`y^^yTOeolE9kY2{{MPzYU9z{}FPa@lvjvOo7%m`1&y8C|n;w^);k$$8zm{K<Mb
zLf`I*iDxlg{3twO<J?58^6SiTEAC#geBXOedXN201D>)|YkY6HAH9>7{<zNj$PxSZ
zwP~+@v~OwJ^6K}68(Z=YxkU#?&u!08ud1GQv9j>-{bMH0DSU;`mG4NaER|R?e|g9W
zNBOeV$9Hf2FDCB1%k%Z|%nkLszU}P%d${(`|4rq~H*S)7D*NGo=-xADBH!=bw{PD*
z!w*(09!$rAd>*-aIw)Ew@Hp0ZGDLbz6!I`ga1?3%z*z4f@sUwgFw%2M!zK&)291eA
z$K4o(Th8Vs@;v;iEh8-*AAkSto6RNRd*!oUzOpoae&)=~rRQh<=l@xBZcb#?yvk*}
zSHE7lN~7n0;Q9XxzdJttQ|^5DnB@P%6aI(jzVT8~0)tfy-xgesXuZzrK6Az4*hG<o
zOCl;oL~S2OO;6i??V!)eME<1AI6q0nvTP6cO{>KFmmixl@$J5(`A0ORxYNYG&+=Lj
z^U_KrMXzarSa{FWu!c|mZ}fk1hEDl+P068)W23I@y6cw~n1AP}k+7|L&vN9#<f)v&
z$-E35tus0F`n!a_*X`xrtF&Uv%<yZzUc#=I>bE};<oKzw<8S|I-ve)|87?=kxU=ZO
zt{Jj-cy}@;EVmZP+ovAf^)`)R+97`(k<bFM@65usb#iGlCjVb}L!QyKf7<JVyzib_
z|4ub9od19E|BKJ|@SF->YVqZx{P%0^qOytS7rYM)S+(2ZV16sdD#<N;->RhcF)2+-
zi*WjAm0ZUhY<A)qzj2g`OxH!(dh?IZS9~nryKmE%JMFiZe7?VapJCRYzmM22`6YEK
zPyKHqo3r3@<5!!Tf{D#}KQ>0B?c}~4@!rbvwOskV?EJOOA6Mk%tgQZbxUR^IZ)xHA
ziL+y^KJva<Gx;amvQxz#E1L=<rMz|*=2<TAQNE<}IkjE&gv><VVwvj#t}Eql&t9@p
z-dXq1rz_5@N*Y(}DBL0B{(ZxPCq74*oJ9Ster!rSTCSqAaov@Grj1%rEzNz2Z+`n6
zbUkFz_gA8BX>)Brcx~$cznvU@eci`??RnGew$CHARotj7egT*Foxk=kta{59^XL2%
z|7iba%f0{EHm}MTO7O>;Xp}5rl<i5mq5Qv^_ov{Z9T7z$JVO5iOOMC1Pu6-PUjNo?
z-H*ll6|@UV!rtG||JST@b?5cu!=EQ7KDz&R*2AA?15ee@;!EQZ1cN}<4eWEhye7xU
z7MR`Nz*BqWEyF3{>pRr1)V{m@x+^nt*@si#=k)~0S4{{PKD7Svnnw~Vd;L|E?QeFT
zG7e69waq7Ue{Iy!f6rqwJ8sz6iLUG~6*=xPX-7oAX$1e3JIk%+pWN}e{>gHIr$U$W
z>aIn9ce4F=Z|>`>=WDOOeqJY?XBICzMTTkd*Lf}d{N7GWr~Pf0cq4ed=;f0ArAyw<
zYWw?b>0w(*w_CkmwYJ~es>@uKC^xV6|GP`q_dc@k-LBNq&~azmo4-vDpI^~FceT$p
z;OUR|(!Ud$OZwlteof{tIbOfN_WY9jlkT(g3jF`@ul?%|@2f}HtiGCUTN>9e@%)uv
zd;JWarGLp?wd$qm8O9q+7xrlArTI<^e3HI4tTH9tsB~lKhpmgFe%`#b^;GxGuS<1~
z$-6NHiu`ul*`u}NOvv_He*w1J{|eT8(wLvS|N71MU$y1$+xFhr@a|tN&(n8%>*T&#
z@^v>(vy}Rwboij2MOfLk--WXac7AywE>mtE!(O@9IsMQ_cDKC`Oz#L79NYgovz5aw
z%IIIojtz}|t?Ps@F@Ims;=lTC=b;j*1?|@yPw}}`T8glX8b7=2t1`{`pznvpUb7cp
zEIpL=f0@Yx{`MdTHrrW75lJdC{IM&UZ>fBW7x{0#wExS8SEo7)-`4Xj3i@g3X{+b<
zM)H57bj~+++dmawDvf-m^=@kWdQfkod~I`l-mJ-g4^Htl`geJ)r;3z(pQAds08#>#
zK*5Pk!IQJ%j>(+aQq9}^kSUEVd$*)g(}&j*o+a^*@8xIi4m!Wsz+3UFTz|CU<T<mZ
ze=~3V5x&yAZeH((1qWk3ZgzfOsc(2<ZUzhU@%bC)a~zwWVQzL|<&%WRrN5GY@7Z<8
zbK{|}&+fJ_z56Bluav)|<mwk+Im@T&h40L%2>R*YELpN9XKL|_fTH`qna}3jkiY%>
z_lMU??<QXN`FT=O<=@@c+LwM9{O>GF?6d|aZ9#C_KBac0_ypfc=LM_p?2S0Jy85O-
z@#}ZT7e7yFXkYmJPV&F=*Jdyu-NE1a(?0mGwugo7O_MKu{|k(7UVibd=l>S-wv1yp
z9G2@fi!AQnwEBr;)YaD1H&NLh){CpZzd2oPw&nMd^9wWPFiU9s=RaG$P*cCFfQ7^1
z$41@ScZdGWpYpDD!~VI7^Sk0croUN!{OJ6h{zrt$AtAcRD}mptG%@^gVv<_C)PIqh
z#QyId+5K|2PTylbQm|xa(~rGU%MYggUHb6l-{7gmslIcs{StT|%)fn+`rME6S&z+s
zCMx|RMCcvMZ++h*mmhm-PHSai%f3=r_oPtD=Ksv!lM|lV73_aI@jCO_U1y$NZ8P2Z
z=lSyu%Q?;M_#S^xSmnNr^VolbV|A}2{tK<Ea$)ek)7b$AT8*|Zu3WZQZzXq3d&cHP
z)ql2p|0{XhQzHDF(RX*l16D7BZ*)~2t+fwjG;V(;T0Eb@?1E;1RQVm#$!Yp|F){lM
zoop<ngEpLr{O+^Nr1J2Sdd=s*dwx84ZoXvQ(;we@_E&f4=>-=4H{SK`4*R#x{|t|v
zB>x}eEjqZ;X7ksC=_`In^0a-NuM0^VFC7laDwMaG<a=43|1y7<!IL}xd-ASCx=MV$
zDUou?qRwn`@}u{4um4&a{F}Tv{-5!;5|IKPE2PM`SzBs2TW!6A-~4MAdj6j=_@92}
zseQ72t=Y4l|2ZwrY;3&t)ttxExBU1$Uu~1`=a!%TTco95gdCfDFURoT=A%E(i#@iF
z?)mSt@uFdL&;K05e=e-kb_hc(2xX|gkQu)_&An`U`Q7#RkH|jWrxm5wEcJG0_sp)t
z&jpSi(ccy2J)^bI^ka!}+;_dL!ZZ30?Jj(BsP6pzwH<Ze-%2q}p6@y5=ly#7;)=8)
zekR#_Q5&yHvz@J<u6_B$|H2pI&pqG!x0$}kx%#)q{@>ouWiQe>!}ede@p_M<%{kt0
zv;KxDN<7_cd+H;9^2Y0xw-r`fy{UT_cYp0e?vlQuKi^ONPuks`{ORE1__ejtZ~J*m
zq;9>NyxCFCWZA~OPB*S|&rd%wcUgVkr{qJmOT?@)wx6kpNxNZTXfE=Q=ik=yZQEs*
z$`-6Y&AV4>#*9-EpY|>1iTd*Yu|?5|xf-nhr)|&ZVBYaRcmALGUuXP@-N|3VUisj!
zf2dUV-fc@u4n7gM^v(F@)c*(HhE^8a9^2VfcYkf<^Z$*!_Yd6tz4O=w1IP8X5$~^S
z%Rm2if7;$-2Irq8UHrhiX79Xgv5)U-*W2CRl>UeP&WVjyYd-St+s>TVedD=A(ADmx
zSL6}Nw88epmi3A2_I%y@e#g3dUu)(m&fk50n@`Pc_oe0E+rQsmvbbVuNyqt`GxMjO
z?_|`U_r3OKVNUpeb@@-3Z72S7J+a&HTbA#xx54Z0f~%b7u-EL|xAW5Xf9%zJSH9Rd
zG4$;0r2oO|b_r;7iIs_qzkT;r{`_r=ACq~uzCZZk_|C%bLf@iqCeQfMpFeq({Qpjw
zdiT!%H;VUP=kEQ$Biv(OeWG8^?83>(lUPMJAAu#JHwNF}Da!t0-k&f5SUQq^;Q|4o
z2ZYK$O$pk3ujQkbuea>Eu)BLxZvNZ;`VoKf-6I>eWbgR#U9urGPCa{>*T<H&3;+0!
zzWw_s|6jzeTA}1MZvFN4k0aYsZCGk9cnb%A@3VK==y7eGYMI&;f92!*<L7;^;Qz)y
z<6FAXnYy&_ceCxk{a<tJ$kF;2ckG!y-Y>qN{LbLw5BZGy%1sq=i+=EbnXB<G;O>vh
zjlM?z%b(YMmsQW6QtVT|`{(0%-{sl)v{%^GIYC_QB6>is#A=4z=F_`wr`xVx!jX1B
z*DC+_x}?~;oa=vAUD4-inS0@>MfZc{1@Fo?&wJK#{mb3twV93gvRk;n?_kWgpI}(m
z@o#0>)A|X;#`8l%4}V>r`J%Si{?F>2*)x2f*38<qj_<&}%6so0UOw^P_Kjrq#pl-@
zKh<}9y~`icc`4t%KI0Mpm%F<HAKO2Xdil7&KHzT9uD$0E8&<6Ai4J{aKehJLgxjY2
zE*n;S4>&%_Zu1WQS^xh%G(PqJL(JOmvQ>YqUhI=!5%=%%jSY={?3cf`&JWT2p;49Z
z-M>kre)|GJVZHZ_uXGbP-Y=59ySu#jbIX0_a=ns#@BU`LopV-~y#FZu`1bqh&qGhu
zFPNkLa8lu-_<!vm#UCcCZ*66MRrPo8r~Tn<XCM9EogMva?uwU>R5s^3*YTWgkkw$T
z-FJI$+~Tf}*BM+4k1hLC=hpjw!u!sT*FWs6zwyZa4!7^~QoflJAKM?<)Uo$deb`R^
zDeJZ0Pyavp&iD4)F752nFHFL}-FBZ^megL+9=23he#^yOzm=S>z7p%>xNE;?>AYTN
zsc%}j+ur^3{;zApr5+es#lF;gbI<=PZ~Ok&9dFRewUu=XJ+&b5)BK(OcP-fFf{Xu-
z6-+mp{ai$kYM%ndu1P$I2V%K|Fy<_P7kx-cmd#2~F!Zp(>;0FW7=X&m%QngXge%e1
zhVaI4mu-{ye>3S%<~+myoi=6{I<;JH{O@?ypV0Z(2VB^KHHzMFfHgT9Dy~U8xa8Va
zKY*<TP@GnA@lVn>NU3ap*7%uyV598|7ncxTnPv+}0c~=A#(x(%H0OabS|IC&MnAAe
z@c87Spi0_a#t=rSsM-Jd&cE4l=FZKeKk3~cmm3!TuI+W+QYZO&{)vZHFG^m#td*9R
zx@%ph*!QZ@LF9jVhE%G_s(m}xm%g0ibNe=f1Bb&8o0Ye|FW|C#y=`IE#+hwgNA5o@
zd0JE~B~gFt{=eroAC5QF%}+8t->5a||I{Adv(n!Xp<8|7Wx+*<8|D&mp5LDCc{csh
z-<bY|6PTPtt}k6xDf(04OtoFc^U9Z8f8(Y<EVsY#XTLyQ^qI%q>K0Xo^ZR1wbDk+b
zcz4~_wy;zGBeS2r*Hchfa<W>ohMi^Aw@Q{u<J5=ym^I#~@A}!%y7BV2Zl$jK-TQt#
z`j&Nc_wAfV@#o$u&Hw)DtZtsrQ`vdHoi+a*ef#YHs$Y^aZ+}deGk(tYiq*W_<p1^3
z==JX9^Z8p>>a}Qu`?1c?E&b+s^~C>68yEQJd^_|1fiZW#=$U#cHt8278gKGCW*=)m
z)jhv>>4Hyp?yM6H$&=P#ny}4L=&0c&3pWw*mGN_%FZZyD+wamZE4jP&z3>;i=NAMf
z2wXZ6>2-1j|H>)<y_|Rc2|s0is(7mM>y&@rY|cNl(^XVSn*BL*mXe<kgM)}?$m^6u
zHudy}=MV04UH!oN!qoLje=@^=9IBmKy`y1D`@=&Idi?tSu5<f2WA(e8!n^$Ps^e4)
z&kNaX-|a0?fARgC-At?G>I46YN*MiH^xgSc51+NbufCv5OOGw$>sx>KbJvSUj=SfD
z|KJWjB;VXB@NbR>2jh<0ifMlyhA96JU0*z3@bmqn^MCpuPC{vYYU%HZTC;FrQR|(r
zQfZQ(?tGC-i)_;|wlBYxyXCelLqm{dO3FIdt697{x_XQ5WiT|n_gr%K=_Rk5Su9se
zx5j1H|J?EA=9E=On(n#Jn0HHK)9%?8-}Xjcee1cV?cFKC15Y-e{=eq3<FiluFFWqO
z%f_%}wy#Na?vt56`8X5<R$pgiSiSoAh8<ft7$z)YQ+!?%v?A!7w#N4Slb@4jI7F;o
zQ95CJtm;gsFK<{T1v$A3GAK;C#BV<1_Kfnvy>+MR*cxtbZ?}!K3z2HzIaPX?e|dFA
zuc|U<hH(AMN9S);GatWywB*Q--+%wjIkx|K!IDb_dluP5X|k?u{yXu~g>_B=noqQ}
z=NZ4z)#tq^*s;X&UDpbY)c!>hfp5OKAAPQLxK{Yt^B;HS{@-ca&$HU2?bQEwci3nA
zH!(50uyT_Z`{oA=rl!x#pRy%7x5R2$;HJ%+o9DjGWjOHc7+cx4?PqFl<<=WS#oG1-
zhsVD4zLP4VxJmuoXDyxCp9{|wm*hOwJ6}}2NTA1;r_W*4@dD<l&$k_sY7khl)U-ZO
zh4<K=v!^)^IA$*WbFygK^Am5<FXwH&n75sQ;r8v@H*VcwU|6$$ZDMw@@Y%VtpIMk9
z;^J5t=Ing-vqNa||G+svgg5Q{tJ3r*e3yk~_SWbVR&yWJ?LMB<_Vaa{_AjAIUi)kI
zp2ABqv*af$<lH-NUCbB5bF;wkzUcpkH?zE#m|U}z`Tz3Kd=-zJKgo%HYbC3bXMOCy
z`<?Bx`2X1FhU+%YeZI7NeO^Y~w9*OBXa2W6U%ch6;m*67a_dD+?re}@_*SNCvVe8b
zl@g~Tg)JIJ_RBMQw{A(x^AEQFqv<JJuV^bXi8-Y9UE9U4r~Xf~UDh}2|G#p@i8uTf
zRGzPwl0#`dg?K)_l=)V@{`AzBwr_4|&wg7bY;C>ndW~>)_H;%D@$>VKAMKw0=I!f!
zvtFz+zOJx#c|=qsQ-a!=OU3bdvR~S67wz&}-W;}>lObd4><eC^sTExNY`m2<TF*~e
zpZ21}Y9D*tQ_ELh+4^Md85ts`t?tM<Q@S*5!dkw`za0C!`Kn`#>QndM%}cr+)|Im+
z|G}lD-3$$%&(AyjlUsa4-OWGqo?80Fl}a%LM6Y@HL-aTU19xw0(D@HFT;Gkk&Q3e|
zdu=c8f8#CRmUc~?Fk#ztPY;oJ`M0NnnmxCziQ3z@)OGWDL0(SH*fr0q54nW*K6YCA
zNk&)t^VwcrliAk)_D$^FFS6{Fr^~?>-&22bs)P@F$ro3zjXS<*+hMCE8$Ql||F_Pt
zChfxy@5IxK+<W$a5pF%_|L3rm!*>4jhaY;pRkPZbrJlWg;_b(o%WpcZzUnsbcHC#1
z@6JD>&Tg}34@xYJo~C$xW^Lkv#YRi=oGw_n&YE$4{ly5Uvte6w^>mU7D^K3r*AR90
z&O8;)l#nT@?+q9JT(~9tUw+;UuPuR}_gB12%DB1bnSE~`Z^^1D1!vZNN{zRYD4wT$
z`qP5Odrrl-=LF>B=OxzG$}$xEd&D}&{<{vtgF`>NPZ)iUv24hm_ub~nOs=@~Aqz@4
zT9X&@x!q>2RnJa7E;pxa+iZp@_7>cNtlBR{c)zTf{Bv?&+Um|_dkZdQZ4F#~RUv2b
zvV9vGOg28<H|OGB{=1<<E1NGJH~4=$<K3Hc|GB5@J=*#F+@n7`KQlC>t!_S3*ZyyQ
zc6^5oe_Q{L=~q7gjAVHq`Seu$j9WME9QZcvC!dGrgj<P>g_D%}ihl=0*8H8KIrU7@
z_u3af{)R2T{PA$sBa^R(v!2zI@U{pn-8(Ia%UAq=@7JO~xhwM~T@g?hbP=2LfUS3d
z&rY|1urpUDq%Qs8y;8Eee&W^*@qZ>CndaIr@&5*&@r>m^et$gc^^>h^^VLJ!Wc#-4
z+}K%mT26a*?utFB?=K%a=O^qNo_F`$LgU*j&Rb>dW~*{ny#DOD&gBzt4K1Ac=05Lu
zTWG#b`v!wUZXzc)_p*mO_7w3P_n*=IT-|TZkyC}$AIl0kIlJ!8p5VUvLD~90_iq>+
zzxZ~o?EMvTYX6IO&+?M1dG>kMf0JE{zxFCadiGXJZZ!L)x?X?bWA3~%;gI3drkS^_
zUz9{;Y(EqFbnaWRZMpt$Z#`qXrZ-#Y`_|L1E$UBB*%801M)IB2%WvN_Gji7@9J&{^
zlIy<YvHQN0SQ#SK^`|~)%|6LJ)A`oxS39p=*miu$-FFLez3)V?726iW|K}Rtt+!@<
zv4yRbvY~bP>!$Az+PmHO-2Zo-g58`=o05`tlyU3M|8ITcmXYea>E_o8Za(|-)O&j2
zzelbyTb%7a*&O!!yrfc)@keLs@=xp91irZW%su<RPhUBAVXFE~VZjAOm#Zgb@var#
zy>sIG#6T~{my3=sx%~1+>C09J!_1@~-*Q-;Rg2^gtc!fP{8QJ_f@KE(&W4@#FVawQ
z(7gP3IYY(~fkVD&s!b1Bc8UDAIsLXaMW8<RSN*a24?k|3^1AicSFYs$-Jx}~e$Sbl
zx7(`p&;Nar96kH>j*5dk_P2J_2u4fKW@so|-dcA1NKN+g*12zU?Qg#I+uYmt)-k-Y
zuWxNr(A*@a@U=!;qVqB$*?1K;rQR&m5m>(Mi0#_N*CN;$*2qL3o0&b2pW($5u2cR}
zT8&3p>+eio^y7`%_sUS^|FggSxOL}dBk%oypYOHqeA4;u%<|0e|I36M4$C)5nx8pb
z=$IEX^^|X<HA9KjGlnP98fRtS<lHoTF<W}ao^5OlJ8FI!UDKaE-`w0x@b;$@8eIXa
zul~(hwkRukfqU2ggLcN-V>~p)oPK<KF*7#L%WJpKL;-<yfkI|VoB6D4z3$vz%lF8{
zQDpXv(;BNzT%917Hs^m|^rzFk?q@d1y!G2y<aj#n&y9OGk9}Jv+q`e1_5bZ=XYRYG
z2;L5>+<VO-=ktCE?%0WwTOyC$f3|=2-0;k&>AqrI1+3{tlgd6=Dk$@=e0!BIbz1!!
z7H`{U-*zW1%PsI;Evmor^!~5|I*;`K{Bz)V`FP1xx7%?uM7abG)rc7x9Zq`lj$>lq
zn=e-#<V*~#=l0z<*UY&5pg_NU6<^M(vOjlic$AOF{|H}`@#na<%(5w|lCy57?XP|L
zNOex_x8n>A+|SP?{hg$_GB4ftP0p;x&%Rw#Guys><KAEsvAeFt#y!V$_pALWn&qWg
z&vWg<1Sf?e@6}5^1K!O`%FJYBD9HKjwIeKJ(zUaDR2am>!~#xd|C313d*fGCc_Qn{
z{@p7soipD3US9A2-#-jHn>M}Al>0oNuZ_1v>*M31v@6ZhdY_+G+4%TRnO(D{H*ED&
z_53W;**CT&7tFSHU0je}&3=2E;Qe<ce_UjHk10ugy|qr&WmS^cM}GCMoNg-O;r}-C
z>^vuUQ+aBn_SIbVKP+`~V;0}ltCF96+x1WQ5hJ1N2c|!Km|5jJ#nJ86dAt92i!4vY
z%-F>KYt7|v>TzqsPWKDvz7zSmfAikvxw@ByH}BoryEg4|e{jwb-YZgRN()-uWDm`a
z4SD+|VVdoWZ%+?*i`Ci2XmGr}CeYVp)5#cVa%i)T^R=?6e6k1T&tZI*c{XULqy9R9
z;FU^}Yb;WJ*+wkA&MnR8aPh;1Q{iuq<UP{*Zm=@ZUdq_Lv$uY^^}mC9@y^aHOM`pr
zKYpq{YTwtj^$CCSpXEEV3!fY3$zRIbzF}jg-hz4d^>X%gpE4N^^w<9p(Tg)EZq3Qf
z{pnV-d1rIl^4`9?`?qhFdD~~XEGzWPjcJ;!sn!NtuI*bMt<9)A#s0eC{JGKJ^p5>%
z%j__>wv;OU{Q1%=&NXtzk1vMzZM~4Gqu_U^M*1jgjpfFlUaO}6U$?4Y#-I0F?taR-
zC7<~H^ncHIh4~*BPIU`78^#6dk_if4oRi3JHT8w$6p5+F?(VvItGV!b<%QYvp6`qd
zJJP%VRPmErdiG02i+0~>4YN!Lmu_T8vS$8#Xi}uxk+U9ATW5OmUn-8CC0IG-`9+2)
zuRmVcR~(wXxn-7gx9Spxm^oXUnq~{yw}*W*J}qMO`=_U*qTlO|pzXT_9oZMnh}!yF
zL2zd2Kk?*q#VM6x=c>)Ei#Dw3I~6+dzn5b1>Afq?=tL$|2QRWXc4<<i-SUka8Z^x0
z)1IbXoFDkKsXmkU{$r7oC%)Ieh;de5cP-F4d;9#rI&<dSZ`OGk9hbN^npnyo?Yw_I
zgY~|)@|Gi8($354Y}wpVZ@}*%@ZX~ELAg_9Kx|TVQ_P&xq4qoF`B!cI<UDhc#z)(}
zcN^>OpZ~!xQ!gtg?AEbA{@kifALXCF&a^Jx{n9trH2TH{=Lz#{zw6ZfNe+JW?@E7N
zOY!rwUB+wI%9`Z9&z|-??Zyn*TOxd4gAWRoJ(GCDw}R<X=#ibtJ8tK)PR%yzyRa$w
z>edMnagnSHb7JgUea)ZMrn7sWJ{_?0H_!6G{LtP%{f`$M($W7^dErm_?^POJf65c?
zeVWhL$6KN``{DE(vKJVl!{&-+&li6@r})X-zWDszcQbzrWiR}cH20*%$Jfu?0$WT>
zg>7_Aq&y}cnQj=mBD1I<*7{eX{i&kIAtK_2EtZxVrYSCkibqV%O6KkUwl{N4cK9SI
zW#8cY5fc}6RKMI|@~}0mwo~)lim$T@|FxeMn#opGIPui{IjJ+}cW9ora;?-Taw*FV
z6Pztm{<?H|=Bv{Z*_mhS&HF<B$<MG{*!xD}jz*v0@n_G=<oJFDOt>`9MEi$=m&cP;
zH`+6oGXAdgQ2d+X{cMq^fyBkVW_Q99jOKe~MlL)xckRwFmx4wWzduDK5C6G8wKSUP
zylTUjYko&k+S?e?76q2i(_N~ewzK5_v}1cR{wqJeZ~sqk+u~#PGd?D%eYC&8`o@v<
zeD1fG&%TH4?(EGqX36|}NlGtv4+F!Fl9xhe*Sb^p#x%z{E1dt7uqo#4br*B}z%$H`
z`|dg^XROKItyaEK*EMwO2k*088V8?trx{)R$}PTeV`AMotMmm%^*=Ahy|!KD-c$5%
z_s^n58lQgJ`25?={h~00XXY*a|FPF(e*Ia#ab?(dMOdy%;<q{*7w|~>o5HrYlT^;8
z8UDO|?U|a{_3In==GNW6am#6QW?fwTeTUQk)>z5zpAs@_NkoK^aEh+(S_Q93r>1V}
zcfKH4*zjEA)Z;B{qcXPNzH#f;m%ZDVII1p8t@oLyol+(=`|Vq`qUfg+mT*o|aTK|I
zw|9c$&di<Wg_Ev7@9sW!bywA!YPQmgzptD;<6@j^Et#}=XS1#~<DF~2*tX?LKDu>G
zZCmd8Gsliiix>0RZY{u6ckSM<Bxdi^X_0exgnc&t6uxRttytAp6&72$b?Qs5W-WTE
zzU<D&shkhX9dATd7;T>;zGZ#LgiSLvEzW#O^60Ma+qh@-y_okmeb|b=T+8<8|L{@Y
z%PIQpG<&%%(Y_}vzOD9e@pfQ3T2$urVo{LS0*Ot@|4WzNc=ohr|F0(@I{*H*1-})o
z-)=8u`p@zHC!a_9f0o-{oUZx*-MP$Ll2+EwX6)FxxAUy-<?MY|?;QHJ?e6w1QTu}2
zJ*+F|y=OY#UF-YdkCXUDkwnub>-n4NPlsN-yl!hl(PTZd?HdxOSMJ`jv+r&1vb*>A
zM7lbwOFzh3aeX^gFUiwh=>3>?^8Z7;x|26;xqV;zzq;Hl&8POg{L(K>iu2MFuL+o`
z##rCJ9T9DuZ56+#LT>tbdv=D1-6fK*Ur*ndEd63_+3j=Fa`^JB^WMIlyKFwAbzid1
zt)<SdxOtBhzL8dQU*BkSXr1|tK&v@B@0xmCyQcSW=jQVZa?|<Fe?D{GVO4<4ix!P*
z%x6FGoa$@un<U|+ZQs3B<mf>UhJOiWFBjLZT(qWXOHiHd?YU=l*W|Bxcu6&wZD-j-
zn``<vjgEXZz3-5}Eh@w8tmpl6=ghXfd3*cz?Gu~(@)gW3vAyCoX0!E7s%J8KU-CWw
zppAsr(~MhxPu_akU01(o>L>C4Q}jM*btP3lJm34-r=~LN_l?5;#XqMubB9cRwl6*O
zFB3yvfjWb+-{z}EALHY9Khgh@xzwxIU2%*2bIqk+9=j~IXtPS3m;Lp|s{b)(Co9Zw
zz4_lb(p}-7UR%4_zu?}znF8X+k0k9adcsw9M9AuGpZ&Y6slP2aT{=|%*hmB&n~=9+
z{w0A+rXN(4?BBEgadlN>X=&5n7#=0Mo|!j%@4d|On&ZcwedF8q#%}%1ZS%|fi<d4g
zzn60JPx;{~QEO$_-2Qwa@zecMw-v%%tB;@g@$cv9daD(SulIUDh8IgXHnPu6J2(AD
z8kg?wXU|(dpMU7?Z^Oq>@yq>xJNNlna$mll7QcAsrqk(ZLFttSh3?BHWEMy6n4FoB
zy3YRUbn%JHo^hqmTDI(s#+?S|dea{XwTJgLIcC}mMi!^DXHP#n_3`s_cHQaqe@x2E
z%-{aq^dRt{$;K#$pZ7j+6wYE|$oeW}6{$YsuDQlXo-BX$zlI?nA8m}*7H8O`<6eCF
zOWYj$dOm;Kk1X>le|a(-Xf1yJXX>B1Ykf^_Z{slxuQNJYrtYr3J$vbP(N8hTu?Bme
zW$tZ@+RJxfO?!2Twujq;PeC`|H@wxnfAi+I&3f_s3gmpFw=SO2^g&yk!Rdx%bt;Q4
z%aXUgp07>qPhJxZ&-tyWq!oT4(9nCs%#;)V%nqJkyy-JjCU1Dmf+=ptkFC6U=iswl
zo&Tfye@w61uw-_xkHf8#8kgN<C(3peJUX(iK5pvs3xS4b*qr>H3KWPuT3_@2UB<`n
z!g*&M|J+?Au<yFnngtV?HcJ0fQnG*I=k-uMoOMg=(<5(Jn{JtX!2e0X-)t|Iy>~7g
zO<D2H;<fgbDR&iqFD^0Hj`h)*{&K+u=b7h?Ey83@K6dT@Q$96#_Ur73&DmG@C;!hp
zER(%h<5;I~+J4jgpZ@H}*{r6DR)1f)C&uEK)@iF7cWyB-%=!B<xZ=<M-}Q_P{`Ma&
zu3hteyyR|<V)#*>_mS)V%-CMG`|<I5EmoJ#Oa--Gk<28&S(7aqdz9?YZ7DjuichM(
z+~Dfr{^BbEC*B%mt_|aso}Jcn=h##3i1^(vyzjJLTY5{{-c48knZN}nrLDY&o}Dwh
zHP`Icwug_sK2+uWnGkKm7<{f?L1OWZmkG(2=Lr1&;qL#az5lQNynh$}GcsJerpNBg
zWA)F;OI>@KLe5s}eS$Nzjs5htdEdVJh-2%Kvp&+l|FCOa^Vt4)$MQdm7<_In4?6g7
z$z`|O)9TE&n_t}W`1it3i(+<ar*CCzv5m|we-#m7BEGe3mUYH0MP=?@)+4t}FD#yS
z-dM0X=J;&SKixa^r@ZUiue<&3y-%Mf%=ocb#K=6uEt|pYU*_`WR@Y)1&d2vxn4j4+
zyY6fAgZrL!;(bnk-k!O-_}KnHb8((@vHvUEw`GWQe|Qud<s4<KeR_%K#z#Ff=O48T
zS#YJoc<H-$f82hwZEt8O=s*8Ze*KoF2@SCvM@(+K-5AbxI(t?n)0@Yte}v`)&Y3au
z_+J~Q%QxIZmH*$)o4Vi`->f`~n*u-Q-zuKldX(4xP0{{8^DAo7C;cxG&?$sXG%$Qy
zaQV#6?y8+ZH*T7ROY6s4^>aTz&&Z&+KK9tTzMWk&w;FS-jR`c}r1L%7wS3c}bi-f=
z-5r0X+*o}mQ`a=S-+TH>{@stfc9~zAn(@$k$EG#SYf{%SJ-2EXVY(EzG`x~6v-;nZ
zu%iO3g45P{+Xq*O9PMb)QB&h~wmWLMY1OIc_4AUmFF*O&%Kg0H-OcoZmycW-4xBru
zwyAHfY^3%R$H+bL!h0_}9)G^yjp?nrMAzaI(|5QV%{n$`qp{#Or!TXYmVa+Pw6oN-
zrm_9f(VlC8Jek*B&Kt8nT$lSgNtAiJ*t*w_Q;f{6T5Z@Hv-Ipt$3M$2R2xP8X`bJ#
zC?D|QWB;QY-`_lqv^Xet=0;0FD4+O$jc-?ZE-Z@qvOx0xBgcd1e;?W3VQUcdr&jdf
z#h&^TYy01RW1QGi8(BSRSsh2jtqg^YzyEH#;dcD%vu9F48X19K^0Z^0?E56V@1Xyi
z<x|^=UN772`LJnW>bfbhi+-F~WZ{&hz4lTSZ!hcSN4|?MI?PdN&*E5c`hR1w{ENB&
z^CC+$|Fq;EezHIQsk58i_2;_(Up~0uuzXU|f5W{&%JE8TMK<-x{=fE0;q=?LN=*|w
z_ZIj0tW2;pYt_*|)_mxl#AOq=yXWrg+p?$WsB7^B&&g3c8{;-6_urRMWV1QJQtJJ<
zLci|MOoP-2hODoySEh$6yg52qC;PWB)57la`j?mtp36+|>{{x&c};k7A*<)4U%Wb@
z?V%?BE}#DYs3l^hjO=cugWvpw*Os-Fz4Lmn67sH%BjrTRzvp)Ui`On#nmysTM^>qc
z*qQQ##6r%kS4=LXhD<RJTeU})eeEIXw|l3=`E&m_36xnJX8ti-NB?)N_wu_<1<siP
zQ{24-9XX7vtrL>t;#nGE)psr3(EX~0Z}IW^FK_kde-f*1*Xa9Ww`ZTok^NVhKHZuB
zI7`E0hj5a^jvx9u-+J~J{BN0m{6w^UTxfs&^3-Q_lBWNb{;gwuY|ppv&dq=4%UNB7
z4m~s2Qq&&sLPsKO!t;MJD>O37Pn)sv`t#nuVRo41ukD|m6Hkdwxpw03nfF>2OIBWb
z=*zJ=miwz~eA`?#!zEKX{%lP8^n2y1C;N9xMC9wtxWnFd>VGTi<nLR5Ejn47koRf+
zv3AvW!DZKD%YU9UyHmg1fBv`n>rs!_?S6M?rg8d(43iJ5!uN9Z+x^OTX{i^xtL1k7
ze%aNlS4YIg9(}w0e&6Zo`u@MyLZ-woN^E4WWsCcDY5Jqj^Z)PpZ~Mvk7nA(&8^=F<
z?5~#roqXO8I>h|Phj#m(>wBJ={y4~A*YGs8SoQtd{95gKRj)MfRKMTL&~X3f-1`SX
zhJ&=o-*@Y~Q*Cj=$D%gQsG>q-`3n7+t0#D`P2RUhN+7_OQSnV^>RjhrLK`&JIo^u9
z|Lc%YSlF3glfz>wg}lE#H}O2wd00F9f{^aR-OW}1uG-#iSRZMl)}>^B^7g5X!V?Nx
zmc4d-zvZuJy=ctd>4ApL`E!;<WXw39|MW+p%2p|*-{#et_x?p(oSC@XEYLS#5*K6c
z>w?rNO0gLU2jlkM7j&&m-W|#F@x<0|_U?hNzN>Ei#WZdDw8B46L>U^cCLa&nK7aX?
zMVo%wdtKq5W4|ugYj*sd&#InHtxH824iv84up=Y9?}XI}<LzozH9Dy}iUN+e?oD^A
zWjwt)ZNIR(sfXa(TXBjmOWUN+X#HDy&nEK7{*4)r%44#(%zpY~H|Kg5hQwq&Ma3M?
zti|^@9?k#txMk)9&Zk<Fy52OelKX$=+20o*@86Y<Uizcowcv)Rz&>f6E+v(+|7%)Z
zQr<6bam!Pe58nAn_^#9Jdp8%!`?AjuHkhNMk!^0geYSd-R(sg3@aU&pN7;25c+G##
zc9}HeZCAG7rKpYbyOw;Ie8l(hg21VN{BzcqCl`ty|65r8;ZJ!e$LZCpJKm-oEuQ?}
z#4KmQc?X%}OXG^&vwQ9TJ+?o_ZvVq^&(E{@Yz#H8g6AI!4UcWD|FyjSkoCQfd^P`n
z-#@<h`@QaVxhf9xdlkwI4<^t5qmsApXWE|!?Dhw|<33Gd&b@tbw(4Q~=G*3;ihs_n
z*|?+QvHCg|1{F_c>)Xc}7-mbqzH#f8M%u=ADRp;BCaJ8row_uvPxkPsPlXHz4t+8b
z3-@tW?^EUooU$YQ<r4{s&jt&V_D(tYPVa$!i%Ve3mNcmnZ|&6{*`_Jl>yB7`S7*%o
zW6$6rc~dfxQPR~TXJzu*jSVKgzJ~>_W>0BJGxS+~qW;E0h69H#Df!K@X;m?tfAHEf
zwrg)ExqrN-X0?sSD69O>$;e4dR+!&$othjGYuTt;-L$9b&yM)40ItZJKlooSP)}d#
zRm{ktS<B~M*wyM<JkisObMG6!roW3^PK3To)=b^0pxY^YC1z*FtSNpc?o^a2F8l83
zlhoK$7#qVqeWteFj%5)MCaTwhxL&B1Yo3Z(P~<J9IOjgot^W5tlUYo6^J^cC7rUB$
z+2q}i{^H;4{rh$2AItbC{?IUi?c@AsEDzV+Red-ufcyAj_kE4ai+H13`*gzV<OJ7l
zjSVU=FV?*{b%%1s0`c#GQI0DYJ+b|>*kz)9;3N^%yIV!R9yy~oe+lQJ0?%_@vc_sN
z{|DyuAMWP<w<mSRpYqhVTchsEmqROo`Hf#z9u|YG1voBO&69p^j^o;}!@cJBI{Is#
zDE~M)|Bt85zaNh+s=w*v?fn{7e?Mw%Tll_DQ^B_^l<#>gTk+u_`^H_nUP(V^D7frv
zo>*Ec8vpZD__v$|+oN>1+>wxCc>VhI?)N5>^EX%*PV&e~JHBJrrmj1Fbz8R-$wa1Y
zt1eDvw!S?(<Mzf~bHk2*H@kjGO3M3LOGRcSYxlPAfo_6Qrp47F$Dcj9(Jz1Ls?~=c
z<A2IFQ>`;jXt=%7n`R>AarsLA>?w!*|0S>caGQCrK;0uL)~EhgQbcAJ{;$hi|LWU=
zb4LG{_S9ZIv@uzI!PH}?UU7oj0@LEB*JT$A>+Vho$zJ|8IdZ-Eh8=q{<m+X$S05L+
z-L2y7?fq|w;|Z?*oLNPG4jXRI)7f$Qtx8|OW^YAL%|Ay90%JnD95U|Tn0Dw)=fi1Q
zEqZEUQ+7}D=JI`h+8`jqy<<PyueDa@4AS-WO)(}(lPsLh`Yj2~vT!@(bLh#mnOu55
zQX~16#xS%0+j;1R@}D!yS5$qxzt{er{=dKw8F{zv`VX^$&Hl#jK52Ykpl?b1J5yg_
zm2D5FsTn4jPnYZR(wzEy-{*z1uUXA7;5!=i`r-atHq-g0nSK>-UVOrTPPD(U$(tBv
z?w3rLX5Cz8;iZsz(P926_pph7$~UfDnpx;);_`3zcE!af-fw@V|NrFzt(s+JCU+|y
z_x|{@+`jk!ul4^AsoVeboMT%pw*5{Kw_ePShRx~cnHbjXdbR3O^15BGwEl13oPPe%
zm6gG}=Y7AjGWeg}-#fM6@7CS<_3D+@yzhIS_r8pU4xBh{WUoCH_kGv(pYzx6erI*3
z=JVN#hurZU{<W`ycf4FSo8gV#-HTDv^InHaU9O!UXZN9z|3U5h>iPd`Yin!6m1~!z
zYVm38ITW*b@3zdnZBJ8;{}pGlPWaZ9{JKkQ)>$>9+s*f~wm(=Waeb1M(Cx=pGjx7@
z+%eaWeWLW?b&QR7!>6o1bX?xzgX(!ld+++t*set`v0V0Pd!{XG5ZGs~(x)VU`@_zq
z6ZU;KINvS#b848trWsTBRkOYJn&~3@VV}O_llrVr+xJ~KU|7qf?U;Y+nrPaI<KMoC
z-P*=pyZq)S#h4781&Q99rcVnG@D|=;{j7SDN}=iTU*&>MB8#>8e+hQ{o$t(X`7`f~
zKc?C?JNCPJys3zi^gL3=_RPZX&kWz(<HpPl7lb0?biS_mbmn_e=ZYO-dft!u16RI3
zpz%?^l!y0km73hX@))lD^<qj|tLzqWZ2YS;$->N@J$2=}D0Tiv^V2Igvc#!$Kipo|
zbnU@MQNy!8+MTo6diVdf>yi5Z$)NwiNB0R0wtc%2lZ`%#`hIm|?wl{I@-5UfDl;Xw
z{LYz)+HdXoi~s2Ky|nTXm~V8{qIADi-~D+>HajoeS`+eUTgZ;3AB9}Xw)SiE<vhLc
z<;NfSr2F=rf5gq?3MV=2_&iVXlYRMNkp+ME)!zdTX?~H6j)^%^dOfxsRG8#fU7pP_
zBkt4c_4{t!e|~3Y@xJiCUtV6W_;xeB-1dC&dE4!)pYM%c8}?as_TLwZ=ey4GUA3*4
z^6|OSjX<}$vnNe_FK)aorOuhOdvZ(&*IPe!+1np7ws*04O;Yj5@r)BXdgAR4oi`$>
zd#z%gU(Gpq;kJ!v@LKnx<TFd`vp5wMbCp$Gd4oLaH;JhmCPg!)IlWQy*7Uk#J=ZMi
zlHaQ-&(k<pDO?Mcy>8ZRwIM0OQKTn!wc}H+&beO#91;po>WJRRGQF6y_3U|TYr9tI
zue;<w$E?4~pr}x`?d;>lD=ZQ(yWUK>>c_X`|MLfDR$gQ97n^6I_`@dYr8;+4siD0?
zly}X)>EGp<D(5K_|6b<DzVol0i;-5pHNStKcFLNM;>>!YlE<7G)@@iXQor={M}H*;
z@Bb3wM{T?>o;*{&IJm3+&2tV7wTx9^ZyH}6zdzl+U*dn!;w4od<+ZJ^w@g{LQG8+A
z^AnLV5r;O-Z79lI8F5RePr3f6!F!GUE>Zz@<(&Et+Mg#Zn`5g{%b%o^T4A^&Bgbu{
z%ig^6yQMnqpB*VoYG?L)Un~{=kN@h$E6V><bFQ!U7dm3r-hQ&ayl$5ETWhOldjDS@
zh<Id|yf%#c{{Mg93%_0se|#%@{n3|~mlyv3`~CO+?YDDnJ{(})@pM`=1B3bf8slr%
zu6@|LzV__>=d0uYYF)c_?N2Ra3EYbhiTuB&{QdX-zumnLZRQVtp0Bq%H`ltIzy8PJ
zi1_&9x9|Te<4`PkKDYdlviwhuxG#&uAG+#S3EF*{*q@M?$e3UII+~He{<E=t^Ywk-
zw*Gi~|6lH(tMPwD88)A}mAn0J*#pTtjSJj^dE%bETgTj2_waJ*LiX^A)Hmy&Ec1Mn
zE)uTgK5N+tt7R=K=3e`weOklmm3L6`lbv%t^iJ1SZflwulX}CeapeoCV+Lmv*`B$c
zetK=?TDOiRnwkA~rhZ-VLi9q^?}zM4lj@viY3Ql7zD|*Rr1EjT<JGEM=f^Th2B)%j
zOC~F4o?3m^rPedZIjefvB^5{At<E-CrTgaw3N4<uEAE)pmUDkox`I67^VU|Mw>GKH
zbNejGvsp8@`E6$J<D~t{EPuF!J!M$EliQYd33+Lz<R$I!_$9YNWrpU>vr2h#!4uy%
zt<N~<^C<p`u*m&Ji@u4s6y<k6l0W{hLHJzXnxs~Z;=?6M`)ficsqM2m?GvH4?55$4
z{mw%5=9Sl0e4M^iYf|Q(%{PS)o>I%3wBzVf)iv`Bgd5haTlb4IH=Fx)$M!QHmX_^i
zUb<y{1=n;F-tOzJ2DaNT9n5TDb1CpsUHawsS_|JlUGm)B-WfVKuIHNsc*o}NTU|Bd
z(7sjL|CjH5|Nh+n8{tLQYHYyCXUgh3{%jWOfBG*@X0AO2>OJgvs+)iC=jZ2zPp5`I
zS~ffHkTbt+i};=gtPBnIKbq|ioIA%?_x^hw|8%|BL!h?D?{~Y;uW#gI`2VB-f5-Pd
z&u#0reK+6tvG>OjbvwgrZ)GajBYC>53>Z64%#~3woOH(2ENjKhn|DpmT#Bnq@~`=9
zqA_v$(UV)Jym*qQzVhsv*#?ir52s$^Tm4bbFi55$^@2sA@sDQ{-9$X^ALv-DAz{>T
z=~Jdw`O|ktS*4AYYtBw-?XA46p5~>_k+`$CvQxRZQEO}E{AHR+v(E=kQt&%#an$7X
z4+n2eLG`117$fH`&O3gHQ?YB)n^ni^J8DlJ`4rFL5?GjMprh;?RNkod&3JEj!XKrU
znbim5p9nHtGQ03t<*Rz_yN&HPZ#;f)#~j(WfA<U(7O#)f0|lKW*PL3I68^_n`u~oM
z1^&gc&pl^`f~JTUAKSmD>Bz(0{|gQ!X9*qmxRf+?ruN%8O49Zpg>U4&V_?{}&1~b|
zt*i_grBNqB`POzFTP=UNe}l0r%V+Hu3H513clXxKTC(E$S=Q-CkFtfm5t<V&W8bLl
zHzPG?y7;t<89P$1U5fQ~4?DW#^Zi(li>oYR_$L3)tJ!~M%KY*K$fWQW&E3!ERe$@l
zTY#zjZmIaYU9Z>e`)*nIh~?iy`G1LLqTL{awVRKyS&6!7Y?LcIc6RR!N&mMx%fDJF
zZI>&QQr;A<xX>g-#(DX->o(tS=cXm<-E*FDQ!>L_c&p0Pw+=FCn@cWiE-!ev=G)OH
z8lAJxnw~#XH80QXR>Iml1wpzTjJn0YeLDAd$+%ixGWj@pY0K-juv0zl5*&&(`tf_?
z+=bLVYAa)siew$;JXvwo=lqnJnm0RAS~SW;RRpan<!pAk2+h{-)oHEkQ8i#U@zLrx
z{_j1%I3P2@YgO#^kU&Qv&zIL7_0?pI_j64AeO$#uz%%@j-0x38kq7_Cmu0Jo)w2}#
z1uxlE{%5g<p6`w)YKMgu&9Jm#UC^>Rq2sU1;<U6^hvoklepTWVuHSy@_==C;uZD?s
z|5y2$m|WNrb@$Er>C?q))_?u=YwC@d`wR>*`)UNEt(URyy_@Hp9c;+K;H9Y%J#lgK
z-)#a+8-7bl%FJFmrK~7?^ZKX^lMNd(u36h}+td^sKFhOp{jbi|g^#>0&)#2^!^++L
zY)Aeo-sPVyLv{ZvSFiEeDyz=GGxh(sFCtzV^8YK()=SBPraxRgr+wj_baZLz{wcFG
zH*-ywatsVw(lyDdaZyYJbH}6yPZadhj<3tQdF_n|dsR7u*CmnC)JM}(4H<Y}>b1B8
zZp@KAG`WP4)x1t{-_fZ@(#mSf7fcG`t9O~#wqUJQw<Xt-o<By}-ltEW*nB5`Nz;XZ
zQ)lPI=R~jjln}XL(VRf9&WM!?&nD{UPchP}O>@6`V1B}N0sio=xYeSE(-)Kq-qw(5
z=KH^wfn`DCBmYD4iIY`68h`QDylZ)XqS+bq6%y*&Y+d``^zHu;e@E$`(*e7wk(?@J
zAN%`?ZdFh2*q{HWSEByq_jKhw3!OD&4vBOo_04hH+c-6Jv&yrT+Wrf7=7!zAaVyGw
zck*#jjR%jOp3b=W>ARo0bDI9Htkk}3-(0&yxt6#{iLYL}B$Kyv_nh0GUKxdj`9%H>
z4UcKOT-JH_a`?PMQ<tA(VCa*#Zge|r@@TP#-`YmIyu)&PcYnUmyHbRyZpP(+pZZ;&
z754u+EAz}=_KeINHOSbDV5ofcg_R4o>U+;ST6H0a>quGBrdBuRoqIoJr0JX9o~+H9
z5qoCV%C7yKir(RW{<dgsy>gx*X0!18kdLP}TstVT=J%2M2|_CauWcz$eUmxK;YRKY
z7s)MJ%l?^#PrAEx@1k9f4nIC+DklAx^i-U<%+&s%muPbSi=?|ZG?&#^e7)z(wS9)Z
z(^J=<yTVRA+4py6h@()5LyNOb(gFW3;>SDZPmFZCx<~KzDKU1*D1!(--tAnhEhlrg
ze>2|lE#7^q_-59bHz#!e;Wu~XaCmm~@15rpRaVBA@94^Y(5Cu2xPSl4WlR^e|CQOx
z^QC_JsDI7$`*~63OMa_FUnbelS6LY^x?~Sut*OkkAKvkgtfT&DZ?8HiG9}#2@b?2Z
z<>Q|wX%^nMyLas6w@ikHQ^qQJGwvT^nl`VNO<H={liKQP>D=A>wuSAK?_(1Y)>u~9
zwbb>p@%@OL1sgZKsJAbBWDyqD$IRe2&#G~<y8q1E)2IJEufE>qrS{sS=tp+F=d=F&
zwEw}lC;cD$?Z<7?cqjj#sF#-Q|Hn(`^UVJyR%RDg=CJX8E?7SG#wEqr)r#ABcg1LD
z?4H~+rRmZxi@m)jTekI2f7+IP@k3|L%)m)3scxYr34gX`bMO}}cjOOKnsd}P!p&vY
z)5U)ry}9a(6coIq7f#jQ7}gOu<;$_cN5{W$1)k+rVMv?wzi-MV^GC0~T79xHFKoAT
z?7MT`i}iZpsh{ts7cw$Lp5c<eoygXpd46@)A9mUA@84}L|HuFPmFqv|20x+tZ%d1w
z>Q|gJ_<#806DMbFPSKgak2(}MiT5?G%lmg;@1N`A+x9j+`-AFk$NV|G&{rUj^I($Y
z!4E%oJ&xbXt#Z!b<NfclJ_`SicF8V2y1(LI*0K6UEgvjrTnpAoS@y7IPw^s+#eGUk
zOsy~f{`k1!U6=5UZM<L3uGQT#D~)qo%+opxsTPN`W~-#TdFMnJrM}@_y*grr`Gy^v
zQs(7na&mWTGc+W3^XkZ(_kLY^R8&Xac)Py7-mk>4%@SM|+y2NW-scy2AGy0b#OX)!
zhZR5Hhq=!9{b%{Yjg5X&6RQf|GWsy=%=OTo>#R9>)jOAiZ}0ge-+gPc+iJnxso9c0
zk0pw@e`9%H@LqxaX4OMJspf6x8Ta#aFeu#l@zmp1TY|;Rn2#$KH3sd8c&VW3)4yBZ
zxoU^AeOaQO*X-q{6P3;v?eE)gYH@<>=S8y=*X$BFSe*HLv$bN+V~I;<{}yw7Q{c-M
zihf_!eMnfp{?M|Jmvi#h|M~v?^3m^}rxND8Q0%ug`1hk-Jd?e@{)0sI?svlfJ;Yw$
zmTxuf;LrYZSoOfO-YJ*-nPzG6>WF-P#UZ`bqH|-0dXaVECzW~sh3y;9>Kfbay?e)L
zb#5Q~PO*;U+bhI{OmDA<kH|>KJZQ5oZoTr_>l1I?m(DyJo^kbcsm_%*f5oKge7{6R
zeg2#svhmW9nI->r_e=}=_4sYTPx+F(9ZQ>^+y2k2xVokkx_^C^@f*kGr#RNfaA_(C
zg<sOHeV==A^6k|%)*9RSs;+tO-7c!9FWWZ%Ox^kIMk$@uKRh)5zPaLb>&NRyH>>vM
zS=8ygx^--W&WtKyCx=~yxf465Z!zA!+GFZI=D6~;@c~Xk=QIUQF52TK(<s#D_^JNN
z(ocUb%t#PRmi>DE{|5Hhc4_u0RX%+||H8HY#Y!)HuJZ4<>@hXLdiyPj=N{Yl1hr0)
zcA9piZvWbaif{EZ_x7bmx7B@0VV}FEHElC5!wD<Nl6PJYm(JH$?OVL4WZ$%3lU}Kq
zeLk?`XZa)xJzd3@VP`y>9;PolwBgtM%XL5Be=a-nr~J6DV#~?egeQN>>*rnnv;5-5
zMnBcV?{1utnlSC!zXi%$Byv}3?Kc*laBHfIxVlu`r8RQujMcf16KBp*zO!$yeRHE*
zBgh$+7hj9tUv>PhcJD-q7mO0mdx{e0EK0Z=vNq-Xo$}}gx#){?zh8}yS{qZfC;XhR
z^4t~yfr+=L{f)m+?_ZS@^YwFm`OBw?UG)`rUWsNOtFQPh`v0Wy<ceKxv)USFZ`ts0
z`emP2npV8Q>*l4(X2kMjo(iov7ktE|FFAgiUTWcst`ruIK%WfFmi#^5nx~7C&g@}c
zJm>%Kx%oa-!hZ{mrE2c;e>qqG%&xa<dI_ZC)S=a2`y#~1D}KR?kCRuL$?rYG!LiPU
zEAWhh-6dn$X{%>AzW-VGUFOkWnI(6!r(B<{?wED!KKt5+8}BRce%>+Z`=|S-L$wpv
z@1OmE^XdA>bL#5Y|J$_9zViISu}Y`evVKt(x41Za{x{B>_Hn(6qDo3i^#Rw7HffVo
zPP{Ht+F{e)z@fFAVf%A&riOyU(^Cr8C;aG~A`qal)<SSiLhza*VZS)D#aV|rpVhyN
zu>51pb2a+>pXG%~%yYf|yi1+(F<bbK`Prj=>uYM0XL%P+Hud`VKJ;4s1h-%F&d1(S
z-1E6HF8dnW{Xd8Q+O5u*(a|ON==|TC_ay#zz1a82>f7@Bcjqc9Me?L}nIxIN?_gUH
zTEHl_PsCQnFGFhLK?n8ye-E8`dbu{~p`4uAsczmmClgaHOqVhJ&iKq;)(&+hl98v(
zv{=TrQzVK1(G$b?<!h^*e%)=;-oEr8ui4Wj5>Nb0n2zmNT2?YoXj)u*?VYHMjOa;u
z;S1a|1riJ0cdWViV%3&Urth{L-+6t0lVQN_?hVW4Con&^FP{I5L;6LC(U}U_c^dtZ
z2J<S`e=vSGd2#vQ3%6r<cFx#Vd%bVgpHr;G*$YZ9FWanH-1%|7_0pe)cW!)I5VLpB
zoHet<RrYuYpD_=rdt@88`FQScn>4K%|6O)(ID))$ELB+JV^Znw2VeHZ?%2~~6X<ho
z=B?~)nPIv<asPkx8`%o;c7L4jzc(yO^0=37d+z+3*8hKpa0$p3<}A4Ug!8Q8US_Sn
z<ucp-Kdb9(*O|NK)0Z5rU&rP@oX>Tve&5@yfY${H{qH7AFM58yed6i*XLf?#cRC?y
zPpgr)WR}IZI$l5a|6lhX&p7Y>c=Px45CJEdUva%!7tTDGnPhrC$M9dV*9^H7#ei2{
zX4}sm-{_is_RsR2M}*3?G|%enI`0>lZF_;S$@==i){8RPSAIzH9O-|`{H^b%!sc^L
zJME`%&dZTIc79=mN2Zj%*-hcvWA*#RlmG1YHU0O`^{Ap{nB2xT%kO_x>rD5~%ws((
zRefRQa>ueP_csEC89dbo9{Sa>BwMVIKPKF)CA}r<;ffi{zel<D{LeY7^6yT1FzcDy
z8~dt~nc=}1@yIXkd(ML2({?b&hR<o8x$*A*iEV~wDvZA0eDhP{8yipRjX&%+yzTsc
zr|s|EdhEe{(K@?kNtIcPbr_HS;BWi5zRmIbZ<Dw)^^5M_a8UPuydd>;j9>1pU$R>&
z5~S`O{5*fz(j5-0Uw&WtAv<G^qn?1#zsbfY{^<Ao|6n2c^x=m1f5zWmY9yfSXX1)-
z-o1L#9wy7usMkqmmjxf4Uww@I$e;O|*R_p&UYxD{87UibL)k9okL2${3Dti+e_0Hc
z7$5wjeyf+aMC-9%K4c4EdY5`EWG}4$=boSbA*gn+DF~c9zVPqb)ZJ?DJ_zsX|GjF(
zfrHr>@03lOe>}H-s#p4Mb?2AnGb8WcK3)^LE2hotR5AO{CEb5+e6`aqG`*V>Y`NCd
zrQhTGssD$~UItA3fAz+@#4xiLsY36a9b|qKe|>-YnaBF?ncMcB*zb7Xd;j@@DHo+f
zd;VK|`|s3o>0_qVNBMs@g7*ISZkNaRSI4;P|G~a!libg<{vR#tPS|f-@$dUC{m=hD
zBr?zawl!P+=2fTnzeD-IrzT6^wr)GN)AH8$9g!^O?`*A!X)VjB<&Uggt|;z2_raI?
z#E0?AMEVu&Z$G%v;`qqw$|dt;Ip=$y|2T99&G~J5tz?E-ZBd@tuP4RlKh{6CRGc~Y
zq5p^P)$5q;z3=}$^X|HE?e~qfcGGQ-6`WK1drba+;T)Owx7xo}?%n%%|9#Jbn>l(_
zz1II8?=&#A|G507)V{{u*Nc7i|2MyX+i*K*AHxo5kegBB^4rz-r=r)-{vEee`u5e`
zhBp59zh8d8Grjt0;f$Min@_E{l-95MC;3;-@8_2{%s+i_d+Pt?(l+0}@2W4YI^VeO
z=bd6{?FqjRtm9(2KmFF~;Kj$wQ*9o~`|DIaJ+YzE>`uCc)v@{=xsv7jSK~fj|I5Xt
zCG-E`_rHg8xvM$(I~nbl)jhZS{S2{d`b_<^e-{t4SycvYT97miyi+v2`{R7sV|CCp
z)BREXR_}c-$R3MDTnWszewk}G?%QYg`m6#-aFJwUXU*3Qjdsh;%*;OQd2XA3ZMLHe
z2pDhLxY6*n?*cui&znxhT#9<Ua{0VNpXdLtvHAIAazt$G+^=dE6}Rr&*Z17^edUjf
z{dFx<r%sK`=aY3hqiCh^Oh8toxZ~JEgQpX(Nl8mfTNFRzdCs&#!cWM2d5gflz<s-R
zMg5%15qkgBDXz~Qd@YtP>_=r5H7D_1w2+x*lf)it`mu;p5DZZEpk9nEzgv2Jjd@d=
zdY96kSE1{jWQw;i_x4r7^*b82XUNQOFA12V(g!KzRxm|8BDjeaY!&G6i$=TS|Nfl+
zFLOPvTKCmgtGpc#+5VjW|L6P~^G>Zt-toVLz@wXIW*Q4PJpf(W?2T)}-VQX<1)4~|
zdNp*-x^<7f-OfM$^z`)QKg}}Q-tGIH_vg>~|2EU6PcM9RMRU(f-~2=Tbsw59)kduq
zyZ859`Qs-iCr8A@9Fe~N!_DUFmEfhnLE&C;So&VW(W9<&Y$}D`SDvrFkhgvL&#(-)
ze~<M4G3nR;JiT$#rlzS=ML}~g;2XOCmp|j@ef@6t`!)fl@_Uub_xD!1{NDL`-EM^z
zjlbo;zGVI{pC^2A$Hqpx<^P_>|6?t`SE+9I;~@Vd&@Jh8FQ?aWuCKoP`oojS{^zPL
zuVC7?ZCk<Luh$<7&;Q|aet-R&WckC#?f(_lJQALN;QIc5rE~0RrPf!T&EBwa<HPr#
zuWjEa%5VS2;N9NuaiGNo6+a%f7yf>`-T$@jg&x}v2be3a@4nXxnsfeszutb6&f&G&
z?{%$Rt6M+c`u!f^`M>WxFF0@e{lV$@e@15J=7qO&w=146W^kDIyyEZc`2MwPb!$LZ
zv)g{Z(|o?>nQ_Jc-}miTZ+8tYIcs|T!D9Kp8v8!>=0A|W|AVdWX?Pv${(rCczw@t|
zX>ZcAzW(p)AD|nc_xyRPuYdQP%_7G=UzX}0H9l|i_<!}2iSB>ySNORkFVEEbdr1FJ
zQ{8jx`;oieF0cQ!{Hy%Ghw|q#x>u}XcyYe=UGcy2rBm!`e{K2q!rlH=ezw`{s?yTX
z|4-xpExi`?`hD&DYN>|07Yp0})XLR-aO8FP|Nj5K_g~EBX+6HPvskL3?m;8_mTOV*
z`)VT9Jr}*-`CP7k{_^>CQQn$g_kO>(dh4}cpsD*UQ-bXOe!2Y5?*E_j|JP)1ofQ`y
zJ^P*X0xyfYKRf=--v3kj89#4oa<cRO7q0r3zTdCkU-wiye&zk&_r7PX-6_B5V9g6>
z`AgU1>ub;N|2U^Zt<m;H@rt{7k7wWiqn5Y#>$OX7x8JMM-uG$h`ZF1;Uu>xO^YM7$
zw>LL~{$0s3-ScVc`Y%5}KWOGpDlHW?zgMw%|9M~YyDe9*hCaJ7Cn`FcnPHAaArr%g
zv-x$xbN!Z2aZf)t=iuqMZ<~VT_P$BgKRnYo{ZDP(+v|0_pgD#=&&-$a_-c|}Iq&hj
z>URgPT@wSXF?hz$`!x1_m3Z9$U)LXp*MAN7-frBV5zue@P2$`f%jWF$d&TzuoV~wO
z{@;goh6+EI$%5yrm@|Hzn{VH5bH4CuX!z8;{jXN7F8KE5rev<DteBpA)zkCB{x%Qa
z7r(l)GPd8g^p!|)4qxWlkNdvw<=_9Kdw<9Dy>C((eEODTc0E4cKmDEbyY_SQY<Fv)
z?~}LhGx442Ui@gHyWGLE=J$KjHg_&vs#^1|c>dw@|K6N`^srq%?cW85cRQcU)x3_r
zf9U%De_vzkAJ=uT6+Z4Ye{^~NKa;pWkHjC}OrL+W-TqJFoubpa6<;p8SNgdKA7uL_
zBkVM#?t0YwUA-&j|NXQ)T+i_Mv&*vOcN*W<Jh%SwY5M*>?`vnei&UNTj%#X{ualUr
zAAc;}?z7~czi;!8GxOVA`2O#VJlEeB?)HbO@BfawQ+~g8#r4<B_I;Hu3$O2eSNiYy
z>vg;NKr=OQKMsjM3ZDN<ByZPCH3l2?MIVzoQ=K)ZFfg#a_H=O!`7L8r`AKDw#;ww;
z@9yj@-o1`NsI=I4`n#$2%l+pc+kD<`_v?-4ZNJMD=bYQ~`|kT=`~TkF|ByTW2h+Np
z&!p;qzr4KsV&3+`mzS1a`n&t{3hVQFvAbIQmLIm6C7e0y(ek=i%Rh95?_nyxUu(W@
z|G%m~C+Gj+{M^p=36xNtpPPG_*ZfX{MW5htL%E6vjDKFv|EKxL;#g>S>`|LV3w8DM
z9_@O)?r?Iy?XhB|SsZ2;o(IfYw&P)&bix0>->2v8|NrlI;c4CN;PkrV+pX-vUteAZ
z{o4YWtg@>IC8{-R*FMaS|2=E}`SAU}Lf5QaYk2%w%QdO;JB93azi*y@wEzF_{e^G0
zUZ3`_?l7;pg6E_lIor=?jDNf<-yeNy@%y^(yDOf}O#f5+Zufh;D_N#@3J&vLu2c@u
zjLO~;rTdJZ_sP}ub*6HaPXulLd^r4XfB2q9q7}Dq-+NY{CU<c|)LOB9|Np*!{A%_3
zXO@D#$8^$`ExrjFS}&QT@+<%UxBRc)_kFjmeLlDR)zPD_e?d#FHs3Q@)zI6^`}b{r
zeRTcr+xM?Ad;yiMV7~pwBf?SHYwdqs?0<FjYUtma=j+1kKb=tirJG;bz3<nn)n9-8
z+Ew2NnmGIQRKI>_-G_thUz_>uR;=Is&Z_oy?)I~<bT3Z%`|ka}b#bw=SL6RY68{P=
z>~7z?_w9S-bL;yn*YA8L_4nub`ndYn(f2Ry|D?Tt(fa-Ws^+H7ycYFZ=k%A;ao>#o
zz6#$T1(u)x|IhQUrq^Q@zu)n=FLJN$tVR4a514;>$N!pC_vhpBujTtb%l>t*|Kc9y
zwetP$_jYSdKexLHpL?{<^mE6z@BhB<kFWpO9e>6C&qMyN&iuAZ@^`;A+q-AaoAWa(
z{ahX&WBVoZd$av-<G)SfdmNT$uBw0cyzZQSy~~$Y{TfH+8(;5(W)s(LjSPF@EdOf)
zr~qDfHS5>(`k&LkD)-w2RrPU;>%G{%_ib)fWo4wkzW!?v``4wV-o_Q?Cfs{Ju{ZqN
zz5lm${rtIeWowVimcI~I_j}>Ccp=Ccf1gbDpEmD#r~14Lpn9To@x=@3eseCA-zjX*
zGn*Y;XKup1|7-OAr~QH9ag|H!zOIgcEB!pmxIV+=E^o;*!MD%N>mHkbxf&k7cCyOF
z^mB7A=GT3m{dIA_-K+oSij}0y7jC__`Q>itGFqkf<O`jUW{Oq=ZwaVLrlbUFr@{L(
zh@(9i%tn=thQMGCfq(zMy^dgDU|>j?u>Y$`*%a3%J_ZH`=7Ay^+tMWe$GT6P3UZRC
LtDnm{r-UW|rlM_f

literal 0
HcmV?d00001

diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_15.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_15.png
new file mode 100644
index 0000000000000000000000000000000000000000..c7cc462ee8c9fb52b0645b250f7cddfb79556ef8
GIT binary patch
literal 116042
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|X#DY4g7Kf1c}<$FHi&
z-x{^HHP16gC_}l4k*A}9k#SqRS=^%ss>1pfW`=&p5@oFAW{1!4k?`*k7V>{{r0s^p
zG4Bl<4^A^YreH8>!UP8)j+IOA?cTNf+U|L!|0>Q^zFYb3Rap7zY0;tgx5r0p&$cZ+
zxAT1EwEOSBXTTN$8nKzc7OzP%OTpFz_Av6omb@KnV1q3WOm<){fkf#<!v(OFf+r*{
zz!t)#@X+1Z90PYg+r#hwJ*$6m=4J34%i1oLJ_X;i|3R4|CFf^$ErZf(MJ{HBeLt`M
z-tlRd^voN(a(nwdQl83Kmd&aEoBxkruJ#2ZL(=ib>&*A^Hkj}EsheGyp`^6wP?LfJ
zM_Y(iD1+D1OH%R^J7T!jB0^{Fg41o{t&H`b-Q^j<*RTAXdjCgm+#=DEn-9d;6#xHy
zJf9(<s%+ZAaOMZ{`(B>4=-WK4eVgLa%tIfp2&*KDHw0yy*Cn$v^ew-tEf^V@Im@W_
z84tsGo4+c5<NCd>u36yklb8DX+FAya=-g9JjT+{$o>n*;bbQ~(6MIc&3CC=FU&T<f
zf6ugb)z@>_UTjKyn)tT<^YQ=9_y4~A&vhW?MZnr?*FJ49+xzlmX4G1-1sirxoutC~
zwW_!Nr~W@yhW+3E|7kb1Thy!F>&&oB{-<(Z%`b7uGGF$cckY}#Qo5cc;rLs7r{wqE
zj0HBOw_H+wp7rtn{NnmPE(Zgi0^5$w-!d<}FaC5Skm1x*uCrm%4JS{o-E#X`>EfGL
z8vYtB$z(e4{Qs+Do1a_t3!Z2DSl!IN|4rCLecSq{3r|`t6DWr#AkmVW6BZdf*c=)0
zyS@JR{!Pj4Gmp-BC$}{0I@hl(?!yz@<!gBwe!t(}|Ni&B_sm<G_67a=YZtixbhzE`
z=?pwovah~cEtqiZ>6BxF!Qbm88r1)Pc|LQl-O&R&5rO*i7utWdVA$OMSMsfO9b3cd
z_}|7qmY$j=^S(-m#rcp9*Q$#dvDeO@aQ44!a<p`-+{R14nia2hIV}&57I9^$`TLr`
z_|X$ihE-Fwo(6Rm9li5CQ|gh`veWW>%zXa#ya(?8z5Cpv^pwlrn%}eUomsp6-mX*b
z`wLYH&&)Jd|M6!2e?5k;-~8gfZ>#5e@mFEGA9Kmg3GaSi+WV)SzfPdx_4?h@^lLtL
zGkjTfJ0~<aGP3gdj|T^xYaR*LpKIp7$9{nS{|EbR&90G>n>TNE={p}j--_wL%$Jd~
z!xYZP%3Z2>HPQdWR{JV_hUNZq7a6x$+&-BnePPXv`Y(HA-|YG&%22USZK<A$e9oU|
z^}iU}=UZ|dIRF3A@0l6?Ofwq4v0Cl+Oj>ugz~aF}_We8uu5=#W^VIsE;DWwSULHcl
z^Z$R0uWih)zxtLTXJ$b4W~oaisby(w4bANQLTqV4*%6!?)4fBOjU^*A!#{XGv*KlA
zmaDqaa;W}Y@%-m2m!J8q!=Vfssd0Ee*;}w}+1XbmyIcajwqIv|a3Q$=R(k8>itMtQ
zO?H_LdeWB`CaYIIYndrJ&$@WldYL&)51vhbw>0SDtE*nG%c^Uh8P~HPc>nj_`_C^H
z$3NY={;wHB+`muL*WWD66+7N1`?xE2@}Doe>zEqm{|?`OU|sC)Yd=<)wV8NY{M+i!
z{NaOpec$BceoPm56?)v0kE^t<sAXng-}l(Q=qT^Aec{KyANq7TI5+3%<oUmJ8Rpfz
zk}v#vua@D>-D=g_<!>amKF)L!I?nKA7q?CE7fFU^&(ke`T$#+U=fg7ViqE&}6@LG;
z`hQy2^UP2Ck{=xEe)jwq82$!5nS9ezNH|?M#L*zd;>G3HWehJ$#AeK&&6-g4i)Xq2
ze5MCiR%#x)P*cD2+JWzzLqBOOl9|HMmUbXckN@r7|7Y`UPuhO3VQW}E&+5dr++`W>
z?v~$Q`~7(8iS_XktuBRKk7pg+@qBurjO)7-PcP1e_LYp-wlwKU2kpQA{G_s)xOP|4
zp&Kodrn7x_@9of8ui{zpVqrVOj~~bX&p2Om?92sun;*IgPj~Noy_=!rUwDAs<o{15
z`xpH<A!zrbey@Ck2G7my`S+vbZta?$wz{QV{#Wt7KNHKD4Ql@={MC7G<9Cp8PY&a$
zwQm#NZ~q_7@a@izqP0G;D(8*wPAcE?`1jA#{`Fi9?D9Xj>c3@Po~IJn@_grxn_5$&
zE!N)Nmiu_Aek~`%{tw;zk1Xz=DaCNSPv+Xsc*o`b^VuHEj<4@{Y<`#Hz~}kpU!&wM
zMZ79~#%S^7$@Lkt&no>%OP?{*Z1qFq%jq*_&SOicN}DxvW@K90bA}o5FD|~Er7L57
zm$5k~)utyYZ|7S-hP=9$Ys;q3Dza4TOFDGHB*0O^&^kNp!Ta6sPs`Y5Y3)+aJaqo=
zo%4(u|Nj_0O?=}hAmGNiF8`L=@!&1XV(fS?q&jmoH8^HiU8(d_a#($JlVU<q<s}o<
zt}{D%51(jTQukDw|3k3-*I))vt6;;<C4nM^$7RbuG>Pv?@a-!%K53oY&M*IL>iRm~
zOtHA~oQI6-c0B6ZYP035=IjqI^yfTWssGQ8A^z`?-<GzeJPnB{Y)={HW&aCbHRBi8
z?{~i{*X{kP+i+-=zPpIK&o&?S?N{@JZE7VNL^g3=e=+C%OF7G9()<7VGVFP>bbHZ{
z4L|3FEnbwpp{eb#BExcjnWslSF3zqod7S;~$7O~;&+31u&a+Dq6R`T*@Xz2jSFV5&
z$0vdB9SU8Xo6~b;RF6citDm&Y?7h6qq$_uB&-FVl7PcmAmCIDEr)x6qCs;h0>HO@w
ze9bROwwtEAKOTGj`Iz}WL5Efm{otha+($USFkgOdQ}KhvF-+KD<<z2;U-F<+6OznP
zUQ>884J2+9++S3-d#&h~(-W2zJZj<G`}?u|Kc@Qs-*0{k++4inc3Rv2hwb)9ukZV2
zu)!jW@xiv+dC5shNuvD~#jny7CmipSOKehHE4!Of_}A{*-`}>{Y$;XrO=A1J?8WUb
z6OUVb>(ys0c=FJ{@YPCoh8M1KcNfmQUFNwW&Gn|Xsz=at+wvJ%5B2N*{$JJg_Ppcv
z+e@d-y(67hW5;j%sq}Ma@$9dH#~<E$y^i@z)`H2kg?rb{wGInfn|5ebbKUgC?eila
zFP4m7mmjuy`7&#pPe%$F4rxSgkxjUl>p7`KMb_4PvdY%&b+eXq|1z(1iC%wOz3<HR
z=MUdLy|CtvTH&FKi`71*=jGjV+i|z#a(C{n$XUy}Om_18{8@eRZT^zD{KEUSY1bDh
z_)L4#-W9{s8<G<HvRvF_a!b};#)j9rwcOvU_PX*W&s)ADwa6(kX8MZTvLCM3|5f<^
z(!N%xfnEMj8}HJxIa9K(mYDd>t9de~(el7N+v*?l-v5-d@xR@(W=m@;D??gZI_GQC
zeLu|SGe79Fj(6OBH}15vbhW3&gO%0)Z14X$B+pRr<HBX0U$zWdy`J0lzj({A=Z$=g
zdj047|5X_tzHyX_^klu?y#DOFCtKJ5G-Oy+8oIGgZ`WMbJ!{sk6S#RjuqID>^5>Z8
z=Oi!7{XHuGk6-S`@BQo#+Qj!}wDy-3pJvwxG<fns(b&O%lFRv9o2PiCEz&r;dEx6o
zlU?(JBTORvCtYl?_4Uoz{Ws>@t%Hi^wu|vFEz;nhUT(PZ!p*S$yK=$DeNVX`<<(4&
zcDPsmKK}DM`D&?#?X}0tKTq4e|8R|O=;SC@&q+7_`N|wuDV%pmT*y_er}p~P>mPTS
z@0lBJleBHh-{1OoSATDaF}rIC?Exn{XusH`H|Jzp-TxQnb*(d3CcoKrs>Se~?FXiH
zJFdMk-IIGhbj!9k3<(A=Zoe;WsJgl4-n)AneHCNG6?u~7s!qI7{1gB0^!(4^^`-XQ
z+;`t>UMyLE-8Uk_;JVtmZ%StJ<vTx}(q{Z|HU4ktyFH)JUA6q+tGE7=^l?u6|M%h_
zOt1eropHyrS=lSHT%R0@>38<8o!ori=%w`8*ZX=`uQ#urF2CdH*O<x&OBq<^O1{gU
zG2vcG2XEp3H^LKQzV9!1`|tVsUkmeH?!IFxUhccg@%a^#tzDKEx%WP-+<*MDjNHEK
zA=UPOPE230kF{ZT{_b2*G-R9jxZK`X8*XTB&78qnt68VXZGK$2?<`lDq0$kZuI1lK
zy%usTeIInriP3vs`}>*2(R!6TCT4!OPIp>#VUK;&!wYYg&I_%U=V{~F%v7Rko;E}D
zV(qh+&Nd&{HZ#<`o!Gv!DqOfh{O-4`RbS7FmrgyRc)4AkCE?#0W1ip3?iYVK5zJGi
z=A_G4<<i)>uImtEV8XB2f47{SXS@H1cYZZ1gTLL<68@bvQVUMsm~Hh(ME>{Idfo%c
z@&9C&aGtkG+xB_a`+4>YL(KU1R%K7pwf0^5O5eWdL|y&O^2|_Qj<~HGf67@*e|*t>
z{*(0jZ{`dYZ#F8cc-G8YFJmBc?smQD>}L=Ey$atyi<zB|;lncXy`4dxJ9lX7`Uda5
zJMr}{li9wrC-1BOU$<1khWq$e%PYCYS52S4JSH7~uGD<LRKveRBH!yjIWx#qf64Dm
zJNqOwpQHYF%g=xNtGV|5KDT!kN2J=^*2-s_beC)Gb5^!qFD|uUx{bKL^pTL&qR%!L
z#9x(-jI8|qZ&mo-Q+ewpT_>LV9qARR)$lkpC!%Ur)BLw*Z{&q#UOBUK&Gl1Tq)b<d
zUY7g0uKWG&Z`Gd)UK@0AIvE$()E2clh6(O7=a6KZC_AM+u;=v?=9>9MC;!|D+v~IR
zP5OG-y3g0|vmZE@ZFlhezt#1pujS5OUFLaV_Oprmf0Z+wnOC!^U~Z65w0y!BE5D#c
zIh#~DZ0A+{D2}Oo%Fkr5G4=VR%z7np=gYI<`Q!3zqiue2Myo^Q|9*e}^y6>)eEWA6
zeZ8CfCe5%gTIhB-ZvM?+HI+{{j5k-@%=s8PIdt8vq;G2bl8#@yYW1g7bN!oNM}+x5
zFA|^mY+=yMCl3y?K6~b~V$RLa#<#y4M=E%p>G@lFJ@$Bc{r7U_59iAFP1djfd79zO
z`SYureyDm)YEgFYH@3ddm{6A2*vk63YT@NnJ8$zBUw?hsT+-*a{J63I?0}<1OOF*;
zEV*v{zBhaQ-m<O#TS_%QY<uMYhWWuh`#Sshzfag1f;lo4roa2_d|6ZdY?J6@(~5_3
zn}x2fj63|%`F@gt1jFJ}*NQ6p<gHKX>eur!+^={dxGGZQip%QG=hHnd1#W$nm=JdL
zcCXa#^0zDrMZfcw_4zOcXl3$0x>|5Mcl*cR`~UxDkg+c7dA+IYSJDsFV*cscrg_y5
z;~3PULw6h5U0m@Xb@j`{IhW*JzO+A^dFM6znKR$tysmlwMZxEd-JL$>eJgp~Z<epz
zzG}+pG}n8c!iUx<#Fh(OdOQ31&z0vI;_m-h^UvUsalF~zb<%k;50=;IMXd}r+~&2_
zQ!4t*)|r+cSt{TDar$;piEpt9%l%G^Ph0IDU)-y9c4g4oo9P>rRzC^KY|u-7`Qu>z
z2X^@%tPFg1Me<8^Y|I%im3+J=x_Hi~z`V*yOWtJ7Y=0O!IW*~bP5sh^r%s7aYFEj-
zy^Ys^dH?nO|J>y2|9CE2cBc8+mzN7=b$039DLnp~;m1Y!zk&PS-rje%?*C-}S?sm*
z#C65<)6&}JS6ts+`D%uzJjdfJdGm#j3KnKqg};onZTqu#L;3eOKfk%#{-1lzc%s!*
zZQJME`@iED<bF+#f9kO<^-78QqX&|oP4{vC-qz<7v^;7%^M}p<|Lm>#aQ&Zb`nehU
zcXpS**OLExY{K@pn~g8;dA81+=|j`>d!E(bmopZ4b}sI?5*FAe!FQIS_W8TJcS^6n
zW}I<n-{ku5_5ZjSo_4XlSpD$T>h;Uw%qKtme!t#6{M}xzhP?WUb7jGmqD7l)BjQ%o
zh`ifdx@haeq8op6Zo8gezae?GC;RQqi(MzQE_5$E^D+3@&8iPCdU*ZWKiFR9yLWou
z>1&-i>e4}vavJW*wv<#qyIHWyc)@M{7rdKRy>oPt=|A*pzVGh4_ohtlnHQgUeCx8b
zb05|J@qLnFT<0(Gbm1F5&#YflHa?!5a@|yO>PsD-AD{03UHLPnRQ`H=y)8rZ_N+n=
zy|c%%{(^=tTwGkPX|7#xI^t!C&zl$P_rAaX;R<s+!-B}79MQ7#r3D{6?&f^6^?kc*
z=VOa9TSLF#ZRye?@#R;i&RIEI^oU!q_6zaF_uqg1wtaT({P^#?t{1+!VfgP`{(rHC
z`+x7=Pdv^iyl!jl@!mg|^#2JZg!y-A%cY6NX}_4h_-a<+*L$&ds_%z0uGn5a>xZj?
z@1;XoAq&r~XU+_p@a)G)$$y{o>qV{``~G?I<Vlv?zg?kP;T8W*-(xwj?{)mC>H8}5
z8R~yb<o`J9`V5bWRg3+WCWbkGiz(%euf7qpSbYBzv$FTMQolD|<NEcKlW8;4k0;yr
z9n_A??E3Qas@VO{d+)O!cw4@w$8Wjwgx0OrecsB^Ti2RPnQ^_?cw8<yu}<&ztkA#0
zW^2<npUjOs`se=t8}dc(C#x~N@b0(GJ-pi8NBWtS-d=?>c2h3t%uYYC{@;=EkH5n2
zZPYrxH|mqq+`jmyCp?Su^JcHOxuP+VW3SGVyWeHhwwdH~R4+GADLZ)Q^W8Xy@(Jxr
z+glb|Za;Zcr#F7d$&;R1vrRswd~XbA6kuaKFJsGkpjW>}li%h`DZ{#3#j?H6SQw^e
zHG5rkk(zQURId6>VP0M5&5y}hSzSMW{@h%@=Y;D;hS+0Xa!p@9Oq7iK8f(wzke@fJ
zxxb#bVdi3X&DPj$SI#uAd$wC-@q<e?=C-Y}xyBuP9-n>xpi?+)!i;dq>D;qt&rbgT
z?{5QV_5JPn^7+-bZ!`ROlWw1F|NT_>zE698p8dJt!;enk)dfeSy?4euo4US+_5a_)
z``H~<UOJ+mZkeN5c4Xp_g=f3HA6@t({erD_ng6$&Gg||-{=dDsG_&cs<rM9kPcDBo
zH{O^l&d`77e`VdDyZ@~jZgYJVnWXaY%aoPX7hm&Nyj;8e^IG*YX1V42{)n!w{2}co
zx6aPk*n4l@yZbGQpKm7Yj#?Y{<?o#TI@hoAv8_H>C=>UQtN8x^bN_!Z%e|eMeqiBD
z#=`|KYtpV4it+1gzP|s{{QnK&vHA0K!{6N6*yO&q>eI=^ujiFFu<!eEonel}-UIuz
z&s1_9no(!=Vcu(=o&R6Ef86x;iqzIkXQkh#B)-vB^zXj4HT(LqwTI%fXWwmDxA$#z
zW!AZv<+u98jVoI%&CB<_y88U?y7Ihz&X%jM?a#ihH?QJRXQ)Ne%?`8YyZw)a?ThtZ
zef3f4`g&%D?f2_;&u#sa|Nrg&k0-+AAHA~O%~<hjWBW||#IQAU{@I8gFJWp6Jaq2$
zS)FIm`@YZp^PB(A{RXxd;@Nq5@8*PFFT0%+SpL~N?$AT$G-*(;W$yR%oSRAC6yj#g
zSN9EmYhT~_>Z_IKjJNBp>|Ix8EwZ0vp>XcouHHk9vQyLxU1sIBr@t~$`C)zL`x9BV
zog0dlx~(*+(ovgeIsa)?@=3>quXn{%-~G%m!>Y0=`dx)({l9dz{{g=p;^!Hdd@ts@
z@=EQzS<l(5YfE2zttzR0_BVKK-oBVyTZ<m|nlpWvB)-4lvFhei70c$&D{rVfw<`bJ
zoFA9W`#$~ucW^%AhkNt?9ON~OI5WSoeDAZVf6n*+HDhS^KXY-->}{zMZf2Jh`h;z+
zr{2#i=KFm(Fmd}+OR?Xl+!W(BF7}-BH0*xu_q)=M=GcoD%3RKvVfNz6%HVCb`vc;a
zUCg-g)^~gE?X>PAFDn(MdzC{Mw49K*ap!WfQQ0TaFI9W}mQN1nDu0{xE;KyWb!EsS
z_4-fhj4#S|%UG9*H00a-v*5p*zwKMqkH`Pz@Bcll=2Cb2o2=P-!}SK*-rdQYlWx5J
z`ljpW&3WZ_OMTL(t}1_ftMuOdsqWf5?aq%Z?tR((ar&yLwU2hCE!$^Z&h*S@Rm0&I
zwLz;xGxJT~_v%J(yHQ;8;)3G0_xI1gyu3X8|AFfpz1B89?|paK!f<unSGU=hDi;Z?
z+jp$xp`1;{1na#0a}5k`uPL?S-f~-5yXJ_r|Gp+r6Y0;2u*b!#8ti9VbiMg~Je=j^
zs*~HV?D;lp_0L~_{h0+^dcFTy3d-&OslM#p$=C1pw1(fQ`@Bi^ag=qzVeX2L-SIpJ
zp1=RAbhc{S->8%66GHR+g9~EXS7vUOs;=5r?z#W4&L^uKm7PMz51#xN81r9u-`c!A
zW$eqJpXJ)O?U{+S%ahvkHKBiQn#}f1OG{(8u{pgzHkZH2VP#s8=auAX8z+eeW|~Nq
zHN;)XF`GGK#)gGXYs0#w^9&SA&F>T_um9h!rt@!OzU-E0@1un|-@k`3S0+|I-yw0U
zbX)eioo(#$H3Aa6BGV_$&%R#z^84>CQCb(uHBUX=wD<hy3#ARO^LI4H|9cwGc4q5|
z?vK7cJ~!6Bz4vupdExcg@{b$)YjdXdSN-*x%yRx~jx@`J6ydPmZ$~QCXOzV!eiD`c
z`|En<mRoP`q+ZJRld)gO_$&29_x{Rt+24Eb?X7+^>GI@lId>0zd#hHyGv*RQ?bavn
zC(HkwDF5)tm-WmB6<-Xhw{4ku=F+^F>&j;@xz{|nu|@L25>GEv?UI=lc2g&1{;zv|
zSpF$1`?|E#Y?@^|Q*ZO#`&etwaiI45-SZ!Vms#ZPj!d2KHeXKsn_0Y<-G^eC$;ao{
z>&%~0G^a+vPD^Q4eeBjZw>=xnHlIm3tz+vnUmms=ASR~xsLJH%v&Yrdrp;S$-{+CV
zw$@KtQ%^0j%gox&>67!{s7q;)#-_x#eUER{g)F}u_&->$)9DWM41r?}VHZ-@JlT9m
zSXkIQ&;R49@V#9smesqbO{@vKTqtAxS+Z^6-yLZN`Z)#$4|mRcKDWGk>fPPtn>Qq+
z{rUa(UuF2M&r_#B##RDWhKQ|w_N?sPos+ZgrEFue{ypd0?`0ZcJ7bQ0uN7UolSMON
zt-1Kz%{GgcT)kIxulQ!hjH!2Jt;+?D8=BkwcV&>V{KIqoe!<~Wa$ne{ELZ-y&;O*k
zpw(2br<1nV?0U7THm3AyC`0!pv6NEKQj9;{^M7(OtowK4_>J15qI=%-O=sNj|3KY|
zvYf&O|NF)K49ENB)7`gu$*FOc-z^nq@Rzr8Nl#2Xyk<f3;j`OkW_`c^@0j@~_y3ng
zru95JBG%dcNaB3yhrNNjAE&N<ta@KsRIAuc@pb0I>{Y4r%N8GUxh>+6bN%#{RnPv4
z9M}9D`+3d$neRXMF89^C@;Bc8Q0e*Iat&2~FI^Tgn`O~AbKX2QpZP}ovGrdry64(o
zDU`W=U303}kA3H_hR5gDA3M_0x#(4imDykCCrK|>swS(}zwq(%Gcq?XKlgmTZo5ss
z$z+vC6NmHG*Jqc;pYNX9UT`&Q>*uyF+ivGp%Pn8N{Jgcp`Muw^uD|-=kI|FnH{KJU
zp9ZD%DkcM|j8m*jE@b%Xthz9J{`PN2rhTr9{`YnJ-G4?k_n%i@pY8Z_Z~Tuxi#VNk
zTKv40v9w6?z2%j)9gk<2+%Df76WH-P>V$gH`W=tBY|byfZF+us=jK<lW9t7hGR&*{
zrBJ=j%(}VesdoIsF759O8`9rTU0r%&b=q^i&)fh0@c-{ESN+G3L9XV9;qCC5?|C$)
z+eGnxUSnIgEBW!=+WSkR44dDUEj}}Cnq-UrmQ`1@p4kc?=lpz^(fH=Qm&cbqoAG|u
z$@Pf>6IHygmt>@!e--6xEx+Y<E}x9S_h%<3tG{iz|L^bbw@-Gy-X)%M|MR}{Z{ED&
zl3$x+5)}uT!V#2Yj&hv7(Ztg7<jgfeKbC5=?SIaCX4Y9X`yb8A6i#nm`z^1mGV0)y
zCr>KVTfLV~T6?eV%?(5A)iripuXouzEvh^z@SQt!^EqXoZ}0E>ufM+e`iCU#3wdet
zo)_Nz{7wH?MBJa{rGiKAefpMmJulcquQPeK)S4@^y3NmA%F%jiG_U+;Hize=32Cca
z_LcujnzpIv(}xGSx3?93c;GnOsdU>PNke=4{QKJO{c>9a9i%JSC)8e#JJ0|3LqF4p
zv)}(QT`pETrO+oF_0>qV{tM5Iy=RwPzEku#Z&FTeZr;A*Uz#k}yU({eT627lTuj2$
zKTe-CbX=up{npbzWMyuiKL7Yr?;D~@@s9RoZ*F{&Uyzd_z5VLs(%hn=NzLs1Olb~9
z8x<EF-LqiN;h42yl|N6%?=xcGb@0j0pzZgnUbF6h2Rg&@Oj(?M_07{^zc!dHjaqw5
zG_tkedg;trvzXj&U(;26f8yVn^M82y?f+SPPuV$ly7A4eH!aqAS0@$rW!pLAZ`0c+
zRlPKcO(Oj5?pb-$j21EeIx5ZMBiov_w(a#iYsb=!kJc<Q`Y^}o>C;b7nZJOp82J5e
z_xZN`@4x@LDjxc&pw^cx9c628pP!wT^F&1RdTHfd>HWeD<~7gc>b~>aF&;?Seae@;
z?DLt8ff-+3N*Z7Mbv@oLV|()MIgUSWe)>1{wN;rz)k4`Qv&9-+davg^nf$Ez;DK-c
zq0(-8ZSRC2DP*GIg3MG&Z_tvF<NfmcpS(XE?sLiHD$j@16W{yl%_^r}s(!cAy>&y_
ziL2r9XOG+eD?BjgdHMd|cOArbRW}-xH!!pFZ76>3xBFAclM@rC+TP&RvOoXT`%bg;
zgTDHL<*VA`+bpsVtE+9ZS#GA<m3&9XCGLFF)`{VJ?Ft?+%=J4ScV5}OPv@4qRX<0O
z%<(oRem3UWMO!C^Utqj7IhyguLHVDYcIEG<Gg_2A68T>DRbZ*ptm6h}l$IY_s=Pw)
zNTH1Mti83r%cNPi|F67W^yoo2qeayp73;D$3=u|qvy8b9f7qn7@YClP7JYXYIthjr
z8D6QLu<^^L>3h$#MaFxn>+&mps;zf^zIN@_ySvMo)%3ONUudM~R!%*gx^DlyoXXE1
z4)e!<`ffhk_uj8-+nFxB{yOdJ4YO{Wnk^Uie7PlBxng(Btl9BJ+zh|@WB$)!dol0%
z#`^s$SFF$8_-m5N!nvW@`6g0F3eR-M|4BNKBN{n{|Jwe~*849n`&#oVc>bd=nVbJ!
zKk6s5zTEuoC;lHB>p%H1*nMo@fBbL1+}8Ju#~agUPG@y{c=>D9+}Pb^H`7n(ZohK~
zd^E1^hi`8TL!W3r6`KF=h&#iN2kiBS=Vklu&=+HAl+9sxO!#f<C~zZ6`S8Pni~E}u
zHdr@ad0qO|^Xa4)c@sB=Xie42zN#GWsQ+xi=}+2adp@nbY2pxXc{S_nq|euE&OeTQ
zUnPE^vfKD%tL070_1E<F>|LxgzbuSh`TzT;v*yfsGJpT`=ZqSwbE8Vvz5di!zK7Z1
z_w4F<<@c1<{!I9AEjoW|^Vhl7<wcK<a5CiW`}r)?;?dS{t?-K1<$seI_I-W9T=Vo}
z^7FHX=h?f3g@xbT-7VfAzUKjJnZUnE)AzLe{r&y6=*OtFW%nGv&))aBongnfw%a#0
zzV1r>U2QhWYiZJJrMXt6r}(y=e!8jGM`Nm&$!y=>?;nM&ocBEQlCxfC5n@q9*o9Q*
zli_FiWh@qmei5B=UZDQ}_xk;@zSE}$ufF=m>%`RXxXOz^8!KI({MlcWskVJq@x7dv
za`E{x#}_V&Id3|3yLEAK@s-zKySp}>3YT2J=aUzoyxpEf$Ibi7-kW}njjR9u{o_ab
z{nH;FXz{kTcylK;i22^XZ`*I*4UYS=NPJ`deLK*tiB*w*=LMa#IiG*(lJ}Ds&^gk%
zCGD#=oX)zy5NkH2rhCHoJ<n~+s<|UAE9GXdS!4ZfN3(z3r^yVU>%5+&is(-E-k!ex
z<qs{Bz$c%4eSJ6P-rnY|WwWjPeVpC@pXZsUZ@c=c>bXVQhw|sE?;rX9ZN1;e^!iVM
z40c~<>K9)2HD~<L$Y1kd&r7CFMl#25ntWf-!|uxrSu54i!w6a=F{xcHvn<kVQrPO$
zaQ~FA8An~7?6fX?#In2W?XD%?FTcCH+p_o>Pr|kxr!KED>kg}Ks{iC)KSy2uHy6YF
ze`lt@`5D}?^~AB|<vTk%Iy!V#oA`QOp0aYK=I+{CM{n&a)owo6a4^AP`|a3;$};)u
zUI(oVSrMW&OGo5p3eu_;u0qi1OcPV5s&F!Jb92ABv-9($ecP{Q-CR_(dGqF+o10Q^
z_UGT(*?0Qh>h;VI4t%{{3_8p@CTOFrVB~y=ITKT-KKJ^6fd9_{)%QOFS6_Y8P_nrw
zX8Qa8$L-k;MDKh2`>o3HwA07MZ}x~hg0Al|Vw+>)dwHuJN2K)U&!2sKd~Vdg4vVNg
zdPv{u|7!o|^|>$qtY7=*&+9wu?e6|Quh*q?pru5=e4@$R|67-S-oNc!o&DLfXD{Y$
zzy2a4MHA|UjgNl6TGVyo*%G8>6oX?O4k&s$dI+u>da(X0<B1;yGU;pi6N4}RjE}bZ
zpY8p;{_Tr9>vf?XFZt(sZmDPqyao|1**Hlh^0o5~lb|y@zumbQZP54VqR%F^Dd8br
zTn*2wz9oCkd9i2xB-Qu-EfQ_@mMm!%=hJ*S$viOY{%y?%PwsDVtABs<d%ci)c9qTS
ziLd*vxtIJ45BJ)&<8Ao;^r=gCq}x|Je*f>~weh*Rr&7)SJ<Hma&--a3mON>{P|7|K
znUr^?(6n|>)SRWuUX}g|KRfCBe=FPnezSDjt<NpGTCDENT|edUBG=ER|Dw<D{D1xB
z&ie)>|H7|Mdb@v((pLM`>ni%VFLE301E;2)F|9LMpWDdWKQC5NQp$E%c=>hny2;=W
z>_DuhN;w>CbG?elWmb`5eBMthtZx3-{9ioh<*kkr708RS<Uyf1@$|DB|1Hw%btW%+
zdFpRj`j_2r@*@x4-(L7~PA5$HlOoIRf5r3k4d?rE|F4g%{~7uJQb6#usgHH`Z8u?5
z*|Z2Lb%VSTX{N=bx@o0_c=#{f(lh_3)#m=L*?%L@T1DHreA<aq!5zChP8exEo4<_9
zNc84{Io@*rts;vjSe@I{#y-Eirti?5r#p+!6)%1+AAj-|m(uK+Y%i3QPP;T0O+2fh
zYI^#ixM@KAl=6LEzAd+uBKdyCE(tB3cy%dK+7~UE=)LTLW29GMujBXj9HpN|pO$fz
z*G}7dbjuB{B|7D`Uq83X>HnH4J#F)jty`CuIsd<y?Dbc1;?xC<yH2QHKJ0PM{rj=B
z)MISVcm6wf)47W`O_;wY=#uO8Z+|Rzp5DFn*3V_^X2+Krq|09TQLr@CJml4!<*b)~
zibo1UGNhm&q!Dbm?30R;(XmT`hU;pcn*3kS+<M`?Q}(kMmx@hm<Xfu~Oy_>*i@N9W
zYvWUqL$@yT-gMVk=GxPEs50(KO>W-=-ie{h8F%$e-E6&c0_$hdc^uE4O4#mjY2dxD
zET$~Wd;F4#s;@A^Bo)K?o3}f1^>GFj%dng0AHEa#U>4h}qDZ}x+c}dMFJ~M&9ciP!
zao+zwCb~X97>}-OcdcEpHOu_dUyeCnYv;}PeP|o<$Jl*&?AvW?Y+83fhho5`^bL<o
zEhdJar+QA(;Sw#qW3%OysqwQ`PM@_-Ynx1-E;9QgdecEn^pBRyca@*7Rn+>D86H_E
z`U-EJlxNrZxQb!Ny!Q9AkFRZS&knyByER^E`r-|1YyOE9aUK19?Xpn5VUa<;|0NaH
z^pJ)Ng?F7q`kEiFdHCxVTh}Fv-M#*s{~y{}9$+}@pk#Lk+szXu4%1Din@{kR5q5v}
zP{eIv?OO}JdHGhm=DmJcDd%_XU}<c*$prh=7pFXbHm9W7yFz1rv1m!I-szv(PWnHO
z9zAkq^QU>G|MaJF#`~YIoO`6zu~I~^jgcWyK;Y;^-b!=9cgyZ-g`S#nT9o0`Qlq++
zEDg_J?mCgGu_W?=$l>1U<qt|c-=1e(bH;YwGy9sC{p*E~I#$XYcS+=MkZ_%#wj)yd
z(NDR3(|tev+;?_L;O)APUEe<k<yzl-l5KZ#)}%)|6E{8CwQg=osqA)v?l&2-&eM8P
zd;PvkGrcCItbXQrBEf)R!R1&52_D7|G1I-aaycvwS{Spk?~rTlegQqJMNUQM&n^-@
ztaCS^u<*fB?Kk?N7uXJz%6|IkaQ0jLoXzRq-X7=vKmUqk=ma}!-h~kv8wG?`icaqi
zk4g316uNH3jx0NwORv8(N_?y4X{&v7Va-05%%1l%udXjz>b5zMeZj@7z}2P<1=^yU
z_itEteDh|-v(tAw?Q&s#wXs-ow%7WA9UpHBs)&F6J(t^tf7(yG`1kK;{+V;E(8t20
zcJ99fhxA0bhJy(Wlb8K?YQ%6gYiiWpEs9gUwhFX9zBzyAz4Ir%yt=g?dwR*ZH(35R
z)7AW6e(l=iWh$-DSI?fCeP93K@0&lr+wR#SaIy1NaipBog445%WaBSe@UhkU&9~w`
zurhf0i?6#FuDmv#ReE`0uAk3^9M=$SQ-)Ivkw11zu6W-3b*Z&gmWBQr3yuCoC-(VG
zZc*XBTgr8N|B_bSHktOoz8FJ`<Aon=&)eO(lcYCy-SJ72R5m`BJ@-mSJn4FO=#lQ(
zpO(CQ<hS*CWyQ}W)67pbUi<wp#=C8+x?$k8Ozy)I6bzWZ)U9_n&t5L}?78HZ>My_3
zCK>t(J$mzN>giOe$mdnZ*Uf!%C-L0=c&&#!PC3h4uI8#!Jio&ta_YS2uN#hL%KdCF
zcys(S=c<dA^2;||*~)uf@80KbHoa}{oa`nPifwhQl-baoeZJVx{7$j&@BMS$o(l>-
zlD+Zn-KP;H^A>mHUEiXp?msW#)f3MHIzdxT*?sjAZs<J8skS|rb-~@HtZ$oT*rnO>
z|Jj<Ee~yT_()L_)isJ!;XdbSng|RALLdJs9x1Z<5%-}B9NS&-SwW!tWXiQ_#Ql^{7
z3lEg;am}2rG~HYA9emDL`^BcRO*2o{Oxt%~z98w91q1v1sxC*dM|KypHss#sW7ym^
z_1Fb7<H_ru-;DHPXTMX^_Ww_@|E#Mv`yajXoR=iflGb)}U4&|<?zEtolUnb>-&-se
z)jnUS8G0&2YwDX~)u8ILOIAo66kuaaOyOc%>S=h#L~?KWr6X<&maODGW~}|;<%$Eo
zJA;-*oj$Crz4&|2J?`hBJe@s@Q$qG=${5K!QCwNOi(8gK>{;5(+4C1qUfago#+WJQ
z_Hvip+OpewzS%^b<z#qu_Svhyj*nm2{64kZGi!0#rIaa20>?M*d_UP~iSx!4!T&ZN
z2s=<_d%cZm_qy))KX<ftObYz*`&pg+lFTgS<xK}C7@WI3|4ohfqEff(oq;oUKfm?)
zy@g)fwxoIDo@atD-%0I|iu|=(U)eRGS7iRy&!5%S{C!~T|M5&PJL8LQzpiMhs;Qk_
z_4C|2zTb5pxOY2={B}56cRp?Z^u$7Gxi-PQar_PE4%u)QZ+=#~+*xK;wOy&qC6iP6
z#RV}o`q|Dh(~Guc#pPdFan<Mc-3&92lS)=|xgPXf(%bsG*M?nc!RcFtpS&*rY}QKo
zc1DK5onL<0bwmEOJ5PGvwk(dFKIwhnDd#)hQv;J<Sg0N0E10w7$Lw>J5icK>u6uM?
zM}lwW`J#uv_R4umInLtUVSB)EZtU?wkH>2kzft-2XZezC%x|sqwz~1o@%)^B{W3!#
zXSbEGqr>vsswWP8m}IhTF57X>w=C?LUNTRaznsVmmN;q{C?J&D{5@;!scE^l8;>f!
z%bfK}YEEk4+t!+fc`n^fcMfZucI;PbI>2*n_g=owpNr3&oAupy{q4jH#@G4Jr)G=I
z+m(9S>`{fu$4xVzF5LICcD~Buxi(#j*9t`h(&oO<;PRYQa`9VPV43ZuBU_xG32O$L
zIX<eiOObuMDSX+zj7vGQx2(+Cnr1iuX3zWfN4E3Z|DDs<F?cic7Z+#Rg{0%Mtq%)@
zRLhd?9F_Imrm}Kvbzt_DOn;v~t$6)F^Jhi<lE)*L3-7&Y=`YOYY+NwMs%nz@{;w<y
zcUvu2ZDreC_Kr!RPgzTJa{s-IZEssvKmTo(dgkji3*lDX7iNnC=c^@@rAakBKHgXK
z=0zfd)o0n;a@O<G%eYRxyIqtzB|C226wOrYLKErSsJCx!&gnVyAojRzI(NeI4^dBo
zG8*)<HRivSduq(S@a3Cx=X{LI)7Tmk?H5cl?b%v2*KM<7ZHCnG4N)7lm7l-yj`RpR
zZNFW{_`CGX-ZTlG8Ryexh(8lAn9E}R`p7TU`(+ui=T$r33hjE!a>O&m`bweH<*r*(
zyq-ygd8zKvN%vzua`cmD@4*6(^u)fn>m?Ip)eoLjvyV9+Ii+~U^Q$wjmVCD2V5-`y
z*WCE?U)A2$c%!+ytJa#GnmO6^oL<k=8;#yxlX$;PvQXSwEqc66K*H6q`QQY<bjF6A
zJ1eVhs)(;^o__cFU&s0>k56nCd2nk%*K><5rQJ=UEsTfPB!mg@aJ1ia@sPN5zU!mw
z!3hd}9-CiGa+J8K6zw_b#y5?Q_9Hiom3)IH)oh4ZzbX5>-nu*0ybSNc`n`_Utcxhf
z4nCQ8(4z0H*5fl@GOJ`i-zq(uuv?;a!uH#N3lB`2ob<V}Sz}A<j#+!n*1ZnY6EUkk
zr~Sga=KrrqdwEvbC7MTW+TMO$YEhfT)v)tr<f^T+=Blg-(axD^GWkyQE^d?AX-zAi
zOc%RaVp;vwtX@q#n<+={*`2nB6Lv;kUT#zLg2UhDqwj$)ri*hXZH>`;Tq$>TRV2fz
z&{I>ge!kY)IxEug{gzu_em#p~Nz7PebujP$?B18YEGH+q_Lx6yo#4Gh2Gq<J6cn6j
zxInZdviN7rqUSp+ZcYglXes%X_Ra2VLfN$^`F=T(3$DHjSihY?W9lih9zEa57qfP~
zo_Kzal|@<F<wBXYx90V0{^fO$Y5TG{=9XVN<9Sy7=)W57se9HG?R#ITvNHIGVC62S
z6z$mKfi3Os)<%`vJ!kc3?a#loVfW`#k8UhBSaSdE?N|HOO-}p1rE<QAv&&<h9@|d$
z)jJOscx=C(I$>>_YUkmC8SPJ0U#CsY+$vhUV6uhUxle_UHI&X27dJOJCWPg;J9<pm
zE62n9>#yBk9i55`uP>fH)GB*j`P^rB?{&Ryg*R$eYo_NvlyDdPyU;TIZ`|}&o#p#?
z8|>GRT4<bqX?~OA{D%c64ED1fR{Z-Xa^ez|Cp#~8-sS5zIr`D(_txawewQTF)O=$n
zhpqNqIcMqPoJ;A>_vDs)I!$m@E_p5<apIQz{n7%P^Lf${F^>LR=X<9FzH$_3afx(^
z5n8@Q?Uq?lisiMP(^pN|JMY%ki*ihws`jtvSI8Y+n3*nC726ir5O4N9ck#`XqSImw
zYTNUcUo^11ur%o8x}N1r%y#MCUwI&>(CeE2t(Na)a<Y?_eAy&x=I1;A;g7=L_b<Mz
zoZJ%m+xgXl>0VQ`E4M^WEt2~gzBXues^Yt~p4)QGuP?fP(|1bjW|PJpwvM*9gEogq
zeVr<^Tw<?fm(1Osx4khkycbe^McL2qi(eGA_V)Fk35)N`8knbBrElI`yd_H5WYZ(B
zr(QShCS0=E*z9p$yXCH>UZm|*r;OBpJ4OFIzBbz_(fs=7oQyD;<2TE)ZccyL<5YjS
zWXtEi?Bmm20yDVh9QB;^wsE%qq#ai8pC_K*_;`ZFGn;2I=J&alMO@*U-7L3UFfe0Z
znuUyk1ka1~<{4SGlD<KjXOlfM73at*=;f^y>s6c6q>wOUDIX7eZPm?&J-6RpdRy{#
ziP!e~+h4LTos?~T>#5h&pnIKV=HE*_CbbxFy-bh3>N|htvo9-!8GPni9R0F|^Sf>B
zFP`Gay!!IQc?T0RivM?CSJM>f@%AX(oc*dwuD5OG72c)^Z+DjordBRLYVg4K|2B;+
zmkpPRu{k`M)fhMD`77~xqAHr1alJ+d=UrFec(WvIsaU$=wZ(}qi!}4}D-$0JGvs%z
zc&6#SZ|%y<Yp&;hJY>-)$rlveQdC#hxYP2p+=~*iH{bfMMxDL4-_z<;Tv2TK#cP|_
zMc*hZ5Wf53=ifJ#a&g<3MBE#5m#3#all)?R^SE-%`Nea1S9vd;q?;G57rw%L)9Wj9
zmTpc^<FDT9xbSc1O|e#$l`GAIR$tAzx9h$By)*;+br%cs=4C61yQ8+3w#`ZE*zIr2
zeS6ilSKBnMDac$n>m;#zZy)E~v)e4CzWgrREqLk3y$eSVd8_qYY0=pk$(nuKlY72s
z#2(j)uXmc6oGz7lq_N3(PvM*gX`$7ZcNhrI>Dgx2^=O8Q!D@BCZASwOze&vfr`mIF
z|KnL7Tz1!nOiK7{ACz+=$!Xz)ND;xb=tf>P=imhGljZgwKKu==Sfz6`MEHDnOlzXc
zjP;k=7z-tC^goXd1aVtG^071Sb)4@Qcfg1%hs9-O%(5sm);6iHR!f8A+Fs?oO1*93
z+p(x4?)aLtxihQ|UQD0I_~1w9<T;kPVHf=8S{=R91DZAy<7jgZp2Io0D`EA4+45O+
zW;b&8)!bix)9Curn^}TK4gW3bnDnQ^?EO}T&)1(%J>Xm77sg}Q`_cQ~im0!P%#JAf
ze(w6EdH9X3FsovU=-1fe2aC`1eT>b0ys>KDY5&&eRw0{1uU$K`MAyZQt2v`%x~Th`
z5^J-k3vR!>`Q2ylwGFP}-4_Gby?$i1_<6;@jThhF|M9)b@W}mQ+dDdES&yrqD64z%
z)h*D!P~y>!zPG`@=C#jX{%xxFmEUQsdvCuMPWdY>d~l+>=8q-kGQKxy^sT)9Nn_Qf
zzdQS^y@HEv&9y&m-?^^W#+vs+>e;8gkte^eyzbjky*BLlN$ppB%7=7H%z2y^X{en!
zbpNr%#>!mJrn~AUo^I8y*5_7i$`LxQ(%L@b=lLSDHt}~2J^mB!?wsQ^GyHg==FJku
z`5JwmpJR&IrRP1j=sO#)QtI~m$uiB#Wt-nyMLzw0h@tl4Pw@kJ$>}rra{meNUv9ZL
zC&+77zB<Q}$UaAz<=e7~WLVP#X4VF;d~$O`R{6zi`lo-g$NYE~cY57VR?$_O%U^1=
zn|VIEXqKUQV+&LHm9$<xu5I<H&QA`{IKr19Gkbr8?sYC}|D1D*3w_l)gqsdd_*oeo
zTlwlnA)mbAZTY!&m6K*>e*SnleOcs-C%3PEJ=@~BubOe?UO&y&Dbo5!%Qsc;3)!S8
z*Zff6cwuh(-RLhi5&GfDt@Bh`FGSz}{3&gog_nm=!CsrKD>poinsw{c&qA4-x~m^q
zNL|(XSo`_&G}9w@EuX8;+`Os8`*A=;Sg+vmj~eMO_1|`ieVw)P+`9_7mW6AZ1z8rp
zWoLa@u;p!n(9O3de@za0yPbb<#kcU$pYINJ+k8H6-u3-g)YsZi)#pCjO0RoY-Ir_p
z$YR^eia>z}6?&diLhHUOpDJAVJ|biLr}pLXS`X8ORh|}gdhPXDnxYnY$z<d03)8%v
z|7?oXFnahc(pPf-mKXPD=L)%=^Y_+7?gKr`Suy>6;Of}|i>el<9d<aZpmXNyE;XOK
zC%=D_dFwf6iC|_<nxe4!vIte<_^VzDA>Zs_YXK%dS+loqZfcBc%{O_Iy3gMOY_w+Q
zJ=pc*XIJ*g!<>r8=A`R?^!RM>z$7Z<P0E(-*-;uz!Hb?u6?=PE*W2^$?1OXa`PEmy
z^PVA;?)s=Bc=n=+YK4kx6*m1|aJ+Nnl=rFH9jg12xHYWu4A)diroWh<+L>bW{;w13
zYZLCm?b<Io*Y268);gEHi*-{_!ROz13P0A$pFhj3yXzb8!|A7fL`tj<FDlG2IjJ^R
z`FwWQQq4pOBlC1Fy}2{(4xgE6?657%&YFA1hHrIYjg<y6Y1&&`ryg<=Ev#Ow%C|B3
zP{du8g+WHE!#!n!KgDSM%(_;kJ?n+V;<mD#^(HsG-m30T2|uvdK*djK&KiZKkB_*t
zdad?U6g}={Y@zl<{J{59%RaowvhZJVZpYer{Z1Ese=}Uj*p|6<Gt-WzMu!z-=9(Xu
zd|N)x%FIc(Q)rUPdZl?cI25jzii=;+UbDcuFTMNN+G~6Fho#?Nx1d^X>Z-__>#oi+
zb23ofsQs*P)*~0rmFZzu_MTAQV0~G|%;~b{#_Os3Y`jmJ?_V6X`cjtZij<c=7AtG#
zP4W7-B4N(+oA33fYKN=}Jr!9U^2yt*D#V&EHxD%OaB4dfWANE6vrHF!O>6eLHiLKb
z+AfAiDoGY^F2A0!YWBXzlU#n9xrg31s9L(|t;TfkR2k!U<_ldin~oQiiB03WUMBYR
zVE@)HccvfJ+Pp-7#aY_UwnWzY!)f`5pWl1582WdyEe+y4UhK9oy6Qp96qQyD?&LS$
z#5y*2y;(W=QOd&)i87OqRd!UTtnOn^^pH6olC73{<ZJBg<vZ?7?CrJ^IA^u%{rO4!
z7e1eQ9Vj96WUC%q?e5gO3NJ3co^^e$-|;+FG2UNG3R6DM^PcBEh4+Z|Qm(7BGFxi)
zH$B(8$CbHR)357DVa{rWa_d;@i1-=vH%G7gT4l?2^ILqNgwXQEUz$y1TX(3R%V>D_
zU_y%d?)OK`WEaNh24|aTq$VC+x7|+7GwgY7*o>N@80(+c-<NkT%Gk11^2RncnK?C0
zOD24JVxbqO&3*f;tg++np6|bY)&+fhoX)<p|EbBs$Fu&_Ex4F*A!nv;s`gZ^=7R|$
zzj~5i$9~x*Yh4-oE#}aP8XE~d&2S(26Z$`=c&lE@dBDE-&Woq(oHu2x-ffus-}e0C
zd0P)oo~$dyJK5_&_0qs_bzg>d6*=Dnw_+9d9Jv?0?s32=we`R5@^RmM?e$dT>7-=#
zr_FWkVcAN*ZS9uU1YIcCn0jX86)DqMXE~$ZZnO1M*ImMVYS~u1c|OpbFFhyhLh9R_
z0xHw9w#jF#zPV`5*)p}yn|U_Xwm(lh7f>d1XkBFLO4Hd_Hm_Q~FMQFoTK}zq%Y)2T
zw|_0`KG~`JtbB*u(xA-B^vdZop2%GGe4@Ja=>KJlLszO8YHz#i*Z$J@GS6nOUztL;
ztI`TZZf>x?Uixv9*3xyaZ_oTww9-ZB_~NNk51sT3)?LwmsMvk;*R;^W18-(#GA#3x
zTYlekb*HDy<R`5U53QK6ZlZ|avhHxb+g?|fth`%Xz0?1DmHr9)TmNm;`kbP7?!El>
z!pU#4^JdRocw6%A;k&29&Wej!m27%_>1|2GixN&|;g6G(lxi4GUFEvEDRcIzr<2y|
z?75l$@6Y=4hl>syEVyniI@Ow+yJT~*wZxa)z%>@DZ_N|Cwd!KF+rw+;GL~NOj)}gy
zCTL}#ZvP^QYp3T%*UZ;_{&?vR9Usrlp)MVd8h%CwTh_li;`wVY>!USArEgS@-28f?
zpYzPBwa?R!3cN0r)|<ax!|L>p1f6R-v7bJRf1FtOz@pDrJ^RXRAD<bb*R$5TE#Dmw
z(fih@{FeyB@feO@%XnwmUS1Y-_LuKkvEFSz|5dH^+<SG&)U_wfrF`$a`933iUybhf
zig`C<?%5aSNK~%1)H)Wf`FnB5ViBQ77rD$P>}tJQ;^x}%d9F>{VaC7nEZ2YDtXiYK
z^?mQbLpF22sW2>!Y7Lrp>cNA6vzIKTCr@57qxRatmObkOHq2gQEVbaY#0jZ@<44aQ
z;(PtoYHCo}ON*|TyuR*@84me%ZI^@7KE$q_lB+lIwPjgDe6~qu%0k!ZZF#BJMSnAR
zTweXb=6aY&`E=#~8zyw8|6erKTR6tBvP0iNfbGj>gL|zvFQ4)8zj*$T?_?FDP@j`p
zvFZ2U@3zaE*8TK%>Z{5Xaa&#1@4noYp}tilzq5GTO;PO*ezw|Y%a&V~9tzoFSNBF@
zFY9H+?#BnheElX})MHz+Sa;H&pqWvNT~({?dE1#MX`By^c_#gNPPXN?ueZ)mT(;8p
zGRNVLy7lMJ_)KHAH9fj=r7*)8pSekjt4;2`JZF63)57Y#jDK^aml$wyHeC=C^bfk;
zW-{&c;xBWHRwjMsH-CILKX3XTsU0WhZ*4xLkTPNJ`MUM~`m<;7HZ2H<t=}>?S<i3U
z33q>AcZ>hIKT|^2#w`w7eft+5-)ogASNxvn{@>WQ>eX?UpDb73*cdPGV=j30#L(*V
z=Od9FrE_}biDp_^DV>*p`qS+8<SD0@b>Dnl)^X@S-T5LLnd=8dcQ1H!j<K?KTG3js
z%`<aNqjeuY5_oz&S+ViRlBO@#i?f4QhvjtC?7g>SCNIbB$&-EZZl3C!8_u*L`~1|L
zvwpK)o4MVt*?D@xbDLvxWoK_}OwQIanQeOOtr){oFWK{_Z+Cu~^G#EJjecIV+s=Q1
z5;sNW#%*tY-M3BsP3i8C=Vyu+hpoJ&d)wyzc45uv!xN&G`mLV1cl)CmlYY53vAr;2
z>-zhvCiSF#Z<^_0gM<ldSFtq9{mtu)tK4FqI`8w#9ei<S&M_-PR$f2boR@SvY**yJ
z70)e0R*8BoU6U~RdH<(Z^OBPzVtD25AHVujl>J4agyD&z|G)n-Hv3I~cwx?Ai>|^=
z>$@l2_;+z)^V^Jyx{UMb>o2EWcrTo?m1&Yn<oDI<v=55>IGJ|uckQ$1&u5<QPC0w-
z!u#jX?N#pY*Y<M1%{fVJTV6x_C(lVOb(c$=+WsmgnmPD$$@V@i`1bqQKK5%TXDgh4
z$lt8U&Ar)2)|%_UMCbDbpLSH*nin5i_l9p*?V%k0y9W(6Xz%uv5ni5|$ndo9UH;@-
z91~oPbiU8sU#I4(AyQO)B5dzx(J;67jfoa2r@mSBKf3W|v8UM#pYwV@r@BAyIoEJH
zgFoed@ro2d+pke`v$lHOeAl@qY=wn`eA>=`cjMYyb%K^y+n-->UzO`@t^XvwRrX2e
zD<9l?-TwH(9P_vS>u)P_xG{ezxmdpT%+K;`fwnyt=e^K-8f7;zT+LV5srsDqXL|)X
zKFKd<p3HyWzs*2*>ZvQ6b}9F!&Hna;CH>nB&f^L)L7zS^T9~>!>%7tP#r@jL1Ac6a
z$_&V#S-tt%iU-f5^{V7NMfz`Lxm`bY^x)Zdk><V|qfZ?(EG+9?bRhl4Yo{=ma*H>?
z@18V&63R1kd@xmO%VyRI8cku<+y}R<b+~4~>Amjsukwr4re_!LF+P5#-R_HG-maHw
zx89n)Et_rqe$V9nKf3pCm@m)Q{%3RjxAQml)mrzuHE-Ydb*+qLQOd>h79}qP%J0{j
z_qsK|y}kYOW&6LE%f$R4dq1wpuU)Xdac}kaPyfE}pa1vwcjgb)`#)Rnd7GR6_#nId
zlUDs2#rJjJcmKR>|2Np~*Tw!#xwp+gm->8|wtY`4yIcjs`Oh7XXPEE*c^0(T<9z+U
z&vPt`+sgNSp1UOT6ubS8gQovp&+86c5q@(0qvzV219Lt*DIZttRhpF3X4JPhFfX_3
z?!Fb*-)@}H%A)_p`pC_123Mn+za0^KRcd@XM(bI#-E+xPhhE*Znz_^bQgPf-PsKUf
ztBqc}M?QTiGRelK|Dsmc;~i<-`kQn;HeJsQyJ)vnJK?02wY_$($Rz31)jJO-ItcJ^
zZVuQv#mPg3Z>906=i7JA=rf=7w%k_cy6n^QmM<5ry53#?y|`b-aQ}bHzcWk|#gfm;
z3$Q7EHr^~_pBQ$Q-~Kbtaz8od1@~Xy;ApYv>ezfeQAGGy<tql2%$~X5%VKA5eo@tT
z)?O!1cxTMQtBd6~+lBFdF1zF+YuS2BR8Ft*#m|ht34!;%TI$RE-n8Rz<72CDHy`{~
z%?cGZy_#XN@@iJa(m&<vwo8BCxj+59x?k`j1Ma)Mk8A>tzhQb<Stfn?il><A!?=Z3
zJKpyns`#AV;5=>Cgg&P`*Nb;=oFlWmV*alytJTbRJ(=z^d(u|@#77S%<$s=fD}DXz
zon~Rjzp{VXlyR{2XJy*+^cUZKROURNnwh?}LTatp)mfGHJ7%Y7>mM)t@YhCkLE7qN
z=2^bG7dJoOwInZbwL{SF25$*l=f@@+qt71mbdi|(-BqIX$3u-GEiR{D?=)QO-pf}$
z?W(;Nu2s5guiZg|+e=k-TcT$w$3HVxeBH|SBKyI+-S6YRy#K!UeQnJPXZc6o@xO$s
zzrTCBz3%mP&>gF1V$1Kc9&oq&B)D$ZE3J1spUd6*&}RMtw1d^=*Neq6b~Q6>tG_XT
zmi{!z|5_;jsP=ue{M$7TBlBh0Zx^n;;$<d(_j7EJ`fCXl!N4~UQhuIU@={~^DNn_7
z)?9{(W(qv%3xf<R9X=Num+a==wmJ8k>-kTPb5mdZSkrv&<IZz`XUCdvo%^h6uit*t
z#@VHN78z_v>?xGE{Wl`^_(sK;sa|K>ZiT+)wb{RAh59zR^Ow4c-4cuWH2a<ho>ZHZ
zb=J(U%=Xa318rSZg-Pf4Gnf6pQnb@)?Y#xlL=S0BJ=MB*yZip4$gVGQzy5vwR(Aq_
z#$$^`_AfSn_`kXQncb$;$esVcm9%x7czN#X)zA+rDoetc-5zf-5bXWIe#;>%Q9&l=
z79&6NRu&JAt-UQb`3^CzWaYC+*m^}M!p630)vD;yc9~?W!}oqmR@+n>=Re&mIZ<-r
z&bn9oL@ixXj@Uhav-x|}{a@Esn#Wt&9xIucwIJ6-^YsH=h6QIg+!c>_WvIWT>yoEt
z=$BIhPWN8Nc4q57mn%M}*wXarSkluK$5Pa<JeZboE8ufZf|I5Yf6%uxpOvrjA9>HI
zr|50|Z1PE#YWB?Hpm0~6-dpEbKg`lI%1%DuB+7bBc>A;nJ#m3m4$n`|n-ds+>xhf7
zon}DA;Y}Yigy!paGxdCKR6oFVPpjdy{?fOz+9vV)n|`|P6uL-5<yNXe+3SnHJKM`;
zr~NDTRur&i&Fby@9X5OKu}zmB9AahT@9Q`CtjZmGf9_|co$^Lmf~xP7d)(gLi|Eb1
zvQ+x>%o5HG0uimQHs>Wxw(K|CVRoUe`EGe_PU5W(s%s20QeV$MyujIV)-{KWztL9<
zH}BiMy?<S9!o}au1zMU_-fi!>CT0KQAiu%vvmegp*9qJIy4ZiARCeFjwfRTy|2!4G
zuL*Q$;*b9SKlm9A)c<>4|LAr6|EfE4m=C=F_wN0oOsPLF-0gRLJntaD;s`-8@~0Nu
z7yAD-{(ozJ-RId6dedk4sQoxz|Hr-NZFc<O{`x=3BCd_h@^ATVYJZ8$uYV`gYXARF
zu}$r-k`JGoo0&yi1?!(H&05yUX24KTRkiDoe@U%GMOT5C=&Fs~1%1b@H!gL(ZPKvy
zh4YV?>;n0PB6CzrH6?0{1es*^p107uEth-U_2vx+zFl@tAA~(Hiq;fX{ln0wCY+Ib
z;a85w{q2TTYkr$avKR`+dUbDdczN5)w`@*}&WwMC$AXS^J6ODwh<N64IB*4%^}UJW
z4>D@Lt;(H#?gX1(oVYLF#9Mc!mbR{va`#M*4E=a3Nyqa;m}0KYf3A}%c~^NChVh@)
zuX?@bdzJmR1f{u~V-~be{}=Uc>6?a)I;lmH<wEiA@2oo|wAFmo8h7O>3w!%~guY*`
zX*2I*c*K4y;85jp%l1h^Q}g?G?k;a=@0Vv}@bmLqWNpoyw6p!SOd`AFfeO3gd8d|e
zwaUJ~^5@6NV4L3$BpDL&>+i4JoHX;`v>iLvPb}awJhzx@`5LV^_7xlq4}um&>RmMP
z3tY6@Zsx&*O~0p=uF?pon!I_HRPuT2(D22AEg^>4JG!b5OqbpCdGmR-^KLq;@>sI&
zcc$&x-F@<0Ud(C}U+#CJVNwj26;Gc|aGGv#PT}w@w_WG7uI(>d&TEx_tmDjztG0%F
zCYsjl;61qW>2IEGK`UxC5Bk|UJ~V#u&c-j!Pc7RzgO|N#rAo5Yn$y1FcVA~MzPPpa
zkM*rv5o$?WI`uxqrU(4mzduIr;&)q#&)=U{C*5+dvE1UgU$yRQc)h6ozmNTeH8nl;
zKicaL$p1Mg|KR@rzxVb3)>g0cd$EZ1=+FC>=fCg!Zu{rw{Qp0{-uoeS;*|Pgr$DYg
zX8o)6pWZNw>?=K;W9GVf#`0eo$&3@tOcM*$mO4Gn=6ijT#rpR-#m#!!26_b-=f0Tt
z{yaN(=sC+J<-6p2)g}ZT_1(GEN>1bMcaOSLHan+mD$zOR)W|*aYQX2;wil*P+<IFu
z$YE;eodwfFW$)JH-aqadKL4j-!^a!Xw*|0<EHqfveBDVjbw$rc{rJ1<T6|;q)Y<Yb
z&2iRhy)>QG=iB$hKL%%)2kT6|JtyJfk+YqtQipys7U(I2HlCWU>Z6w2leOLP{@vT|
zmPN%g1dOiDS@*<v!{_KvXXU=z2)uYEDS7<O!NbRYybAx%&u~CW%>3Q@c-doT6YuY~
zd$I7W;A5R#!Q7h33Mn@89(*+3u37)(gW$Xx)!Yk~;Wzhws`Gc#$<}(1b)t5rPv~)m
z_|X0frMfv5?+*seoN=|V`P@{ehu#a9Oj_}0qsA$&Ih%Dny0iIz?|!Fg{(DtH!LbE<
z%nwa&=QsTQLRsdgpG^AYV4dgdCbwK%xrI&X?DHmWj`yX8a{UH3Zy!F$EdJrv%r_3d
z9#3S?{A+&g&q=f99c+R!sZY;c-lUh@-o9u;MzrK!p`7=B#2Pk4`akta{IPXoVeXYo
z#$&fNDzDc@X-Be6Io4~RGHZVV&yE6B%XhZx7JSt&R9_HqRyR<DweD$n9qay|v-fwt
zuYF(rqxb#~-al{e|I?jkTiv!Tx3Hwd<i}re{kS7*er`@bfA7Q;d0E+ouXmXny|%3X
zwY<J-^5n@s{>T4$B)<B80<7o~I8yB>`GxmjRQIw>@XhXCntxvJ|EIn0@7sK4hI#h&
zegFTx|9=d$6^n@hbcgvP{eO@2Km7SwT=U@|J3~YL&*}A!k<)%0Gv8PE^1jAtp{3J5
z<%rB&Y?yxVNmk2UX7QhYAFQ_h#vjA>=gS+G?#-H2_k(x8+%1tR6yy@TY?GFu-0l;f
z&z)nb{;emx^ZNrux5ZYcwtx1yR@)oZc0O0v`JITI&y=oBEjlSBq0i>Hubft#?!SKO
z_hY?!c6UxbO=g>(UjKYv-%nQy&Uxn1LPDXD$&aeHMp^es3ZJvw5#F1TyNG8-G+XZ%
z>z<7j^Sm|LB}=5r-Q&U(S{k&xdj8I^e<zo0Qzlt(UG&gY7TvVVH-7JV`+G)bP^(jH
z|Ay_)pUwK1BHn7g>yEvJ!^^XqcL;a}?RoV0z@2U;i}%;|XQmYIn{qMnZ$dr)wHg)%
ziMKu<9()vLIB+^#-@v~3=HYGmjM*2fTsu>kmWD_4x|tqRF8}k5?_1%A1Jf(6h`LRE
z&u=T`*m31!!@8D*ixj6EnzHK14e4*aZ#ho9<B!>p5t8X+RBn2v$=I$UmmwhN*Eu2W
z5Zyb9k!5@2i~3fTaLr@ypMSuhQGH+hw~HSYmmNRO(2!<%{LXakB7=gL@2{>pQt@cs
z{{8<M*x9RZeEod!V6*#;kH>>oEqS!le|wXHe0b2JPsMJgQmK+(xK_PLE{oo5w=Q2N
z=s8pJ<h+3FW;+Sd@_$mCUV;|WYY*IQPW~?XA%riYKOpS!4^#0ej_NX79QU*SdvpFD
z&;IY#``i2NesQFyr~f#}U)NCodwcz1{`w!zZ{EIr$p8NX|3}c~%ZeW#6y<Cx8bG~^
zA6w&pZ+-FV-`f0I?)cxgu78;OzJ|U2Yj}O@;ls|La}$rs|Gg-mySBMn;f(hxksBY)
zrT%_k{KXu8`dh(2hVHaJJDmx)#R>%%uyE<0)?3A;9M3(SU9C)Qx5g=}ZMPS6evmQy
z?Z0E@N~Q-6igQc+G#H;gjbJ;GvwQND(-CvCDtk*O=}W!l_ALFcqgP@n?ziaO()}?V
z8jqhgIsf|jeru;`QA6+S(&V+;_8+);C*J*Xz4l!Gmwg{>baM5YY^-ul^|BpH-p=uk
zuS#cG-a_kmoj-e+b!Lk_T(t5O*W{CaIroD@ReQ>r<*u4e@hI+#eXMw+?PLFPh35fI
z3qD-BT@|9dW4(`>u+10K3-V|8bsaraX>dS7BJHBi-Hj7_lD7y)sZG7Od&xStfQ6r1
zu5O5%6f1J@psi)s<ugwbJd8>rHLmPCqENxwa$wC9r74e@uKnQC@OvkH=iBdn{d4(u
z2<&@TGj&gG`##p`2c->;1%%|yyK(nsqlgmQUita9M_ztmY2cP<E6d{X6pIgCED>_^
z{{6!lHf|5i>q>1MU%tM*bjow4&*onk^JjiAY<;k?CM|ta`(O6Fym%91gM-NhmvzK0
zY@Bn+f&Hbm#DnL;=OlkkP)k~OPea9gi9o=@H~wN8uOH}dXzrZ9x$OHlL#gFq`K!OE
zD{hm%wctKee9cGJeV^yPfAI73^BcEsA720e*ZRlp_J0)Xo|o6LGkh?w|7<=X=+W)_
z|IEa?S?hjpua^dGevsds=*02ov;BYLe?R*FOYHv|y}xzWI`D}ZKVI+u_xkpq2t;9K
zx`6kW?g!9WAo+hQLqmW3`@X*)boA@=f9H<N*Y|*m!Kkm%w;6)I7^K)AvraB}W~?~*
znk38554EeK3*@!JQyULSFY#EJv}JyyW7W*S$mtqWx&+T%b^p3uT<kw*Tl2e(0)F2l
zQkHmmdI&D#o1Ll^VWM-nw*OeV<XW=_O1;KAcf|YX`ImhvkvpFrsv(jpQ7`B_bB*E2
z3&)gB`IX*Jyt(DVK9Lsgy5yBtpFFBlu7CH7rBW$fAjqjw{99E>!@<-tT^F61nYY!v
z?ud7@Hbn<ShTph3bHO*EP&I+wX&ejpB=2cnTacqyelh;;{RnxngfpcN8iK7|JHH%B
zN<W`Eb4^`~o|OhO!{JNcJ;ZwwpIi-F>UEcEM}onv=}xAyxANZY*H751Z2!=s_Q~b%
zEa@NR)=Y5;3^NSY-qB&af2)|IP|}*tb&tDKo9$*zXFd5|E7T^xzSp-bSN_nXqO;3h
zZ=1kXlg^{LCo<di*tvPZLVDufI@65*=d>wFJPI?_ia!<DujQfmc+cWfLar8d%&u2$
zFHLYUc4<7dTKBvBn+G3-!?m<5oMU?**OU~UG5mh4rgr|W@+W^U-krX3%lWBUzdqXr
zv-_$g%lrsB&E7xn!OHx}H3c6S9%qR>*Uc_me#*S#d%M|-BW#I}UDA6!w^}c9c>44e
zk7>`v!lF0Tvg#Y1R^8BZ_K*}`6?^-*FORs;1D#z7%K5pa_fIy7_H3>=tkHF8XV>pu
z@0Cv;qzS!VrIWCxTwm1l(!K9eK`SDd-`4$PvpX+lw1RbN=9wiy8cx6UG?T5j)-<2f
zS;Vsb{oNnsYu9H!*RndYe%6g=x!&s+FWDwGA;_W9Gh_KFi5tRB3w7@PD9;s+t`l_?
zJiaG{_1NRskWj(++b=GtomphQ&~$d($|HYI?<&tRI>_ws!*Km7t#iK_oMp{k%Uo=3
zti1i}MpG|i>lfWOUad7noJ%=wG1=C1@})OCm5y6nfB4AX%4f}rqD{%YAzZGJD%)!m
zANyUpaU(<ETGW?Yzb7+fB>(K-?^^%GWUuya3F&6pV_z;Dl${@4pd4^j(L+1X?4MkW
z$cpUx5{vG}JFBD?ewkgmH0Jr#3x!REY##!yO}zag|M!pBsZ%5bnik7d-|ybb{^N(T
z_?zk<FBI+O%zY$oUoQRf`T6;epNi`<Fnm60!<P1YU;pxWyRT98e_N_gr0fx{HITEd
zZ9CpCzkC1ZCxY{A%N!ez_scJy*OMf0`mV0i+F!MnW=C8nbX!9^O#&>AISf-A)y>#X
zCpbS&)LyVhQ&PIv$1Tq66l+O-P`=mPC9XjQ8v5#wVvgkOd7xYM{)aY8dxDbGLxJZU
z#|oSle#&Cei!s~F^OV`k&A#QcOJ`|WOpAdAmuPi!UiP;9y9UP=oz7V(@@iGnw@Fs2
z-7_4g2k~rvc<_jt@yp3U)id{$r>yHLIg|0Ho#iT1@v7Dde^;C`I;Y+`#W48Zwp0@b
zoz<sOgBhl@I@wCOJ9{Nh3QRijjj3SWfs^5dy=~WK>wn^vjDGoCti12{B<8jiB8AWM
zPW+2BP@80_<Zaus)aTusV>^D{v%MDhN;{NsVahJ{J2##Rd_H6TmHoctvC1i1!&5uY
zP4CoP8nBA#lJ^oz@#l7aCm5tV>~yswUz}RR(lQ}?=I{IK6i(iM!WPfJaQU`v8*BQb
z`2xMJ#BJhZ@Rr>4QuWulsre0tB1UIEPc<%W)y{rp-Mg(&UvEdp^^*=~%ls2`f>&@h
zt}1BDW#^Y;No1T6WN_=z$;<qV4D<iKQU7uBd_5b3g{{@Gn>QsH5-#c_nccm0MSiX^
z+scrb^>#I%B;x;G*n6#AzP87`KUVt5$&4o1{F*)6_xE2+F`s#)@YN<Ki;QN!96p^Z
z&WxKTtZ*y+QC2cpbdI%S#EylM!s0iAx^{4~2shlnQ=oUDeBs?GU45G#ZtZj_5a6BU
zcHp|Rw_yGsr!Jp9)+gNQ@60>qWE(s?B~)_XS&MaHM)SYamXG1CotsuA?BU)WqNF!x
z=aid2mdnoD$ktTdX`P<1La`<K$W&L(m&fa4^)`AM?pfIVfIH#&X)6o&r`dm7Cuk%G
zxHwgJR;}#X@i1?<otMYdNgCZ;m+aZE9hqpbx3f6d&PuGz)aaPRlA8~FPq6L?k`g@4
z{%aRggmAr{>#LXpkDoQ|lzMUFPlIyl`$rt}?@LKXdw$)^_<i=-Q|!Ahl@<hlzW7XD
z{9MExjVY;|3xgjxuM~MwoGWv9bHtqm5y=N4-tUiZEWXd>ueBn{R=VWDofC0UyEYtr
zET6S_X7PFUhAbnerKfJ3Y&H~Y-V%F%@n`9hV-Y-BUYZA5?=L8B_$-&`sj{QqTjU08
zEkFy;cLBY3Uuz?{`l_Bh`+0ZnUJJd{zy|NezqQZJKfU<KZ1ZvJqjvY>6+cg%yt{n)
zatrI(OblDDZTNTZ0IPeT$c@{@o4)by`y^WP=izaNhIIM5hP$!bHP>skt|~cRx@mLs
z#}t{<?&svE=jtme-;=+!Kv>%KM3#tG;-lM7BX;nz2~=??=bh>`{kYFML-vqP&$o%m
z3opFB@UGQaQ_@&_im%U;zZ<7c+Gwt^S>}P}E4_*+oy|G+4}P_<v9dG^C^|gKi@I{_
z-CKhthI&(+LPK9f@8=Na>1h{pm$5nD*8XB|qJbHU_nkD~AOCiwMjo|W{aX6}cKrr(
z(|U<x&IQ{qtj*qDpyeZf+^2}~ZT5oP#H8MY``=&G9`n|kUd!`*=hhA`wq)H`fm}xS
zE~q=(-I{IkZ{=o%<|#~5=imRmsjIfV_o5;5>Bv>R(+<u3Z=+RI!Sg0+HqUIG%^E%S
zVx_Hzek89H;R;<c@6NS*Cu$oMV`tAU6cJj<Z{FQ_W7DdGhyNU|QBb+Vyh*`aXHuXl
zL*Cw3j!bu?=ZLy;uI!4Q`+K`$$<tp8b{pQleX}*hHROrGF~zCYa;?__cQU^gl5)6F
zv3zT<2-mG8JynsrvK7|Vzmq)q*!76ri)wc3iwxmj+qX&nUT`9%T%KRfmWjc~|J;XP
zKLi*GiYi(j3tykSFW)5Ubzkd~b2q*obiOY4sd@SN4_{`kHobrMzVq9^o>R0IS*>2<
zB`$Fyq;rd=I>RbQb&e(l2<qr<FnV#sO;Dz0^{zu1HjE4r*$TBK6FKcpnB4N2_d@B9
zop&OGb}ZZW>1?W#LbmF>mPlRp<H-b#!s(v(PD>PDI(nne>j+29ys0O4y={n`w^GD{
zYw4nxsfI=8_D|69UcuFRYRZehmHBIWpPLEWc=>+*XwGA(eS+un+7c(Wy)r%jb6uX9
z+g2al=@2<>V`}*QZyQ6E({-}b(;pv6?D5q*+2iarQ&w8cTHZimm$vuHYZd=)d&}kD
z`tkeol%0kAPffN;y0#W=&k@w|v`GJW?|?<Sh|$iyn^iWZU1Qoexkc2hD(gy@yLiP)
zFOQ|0%z|I<5u22EFz<%o4vupXIZMMrQ^OAD$NXL~!|}PZYeTqg#IXexMW^_lS4N6x
zOzAlv|8qwC!HM<3?)K|@!@QC<8GpS0TtMk(2ZNYX#nT0b26o1IYfJBDGSv5TB<Cdd
zoIQ2z&aLBreePWNxql{yVnAq~&M&{kA5O8H*0FfJ;o9FdtFqtx_%^G1FYC8&b9VoJ
z*&IA)o>gb{Wj#S1H?D&LeOYhbT6g|#Zmxav-j?A(O#+wXDVE8XcMAvwow_nhx4iZI
zAJJ_)quD>!U0|DgLt@U#sq2N;Xua4N{Ud8Jdz;-)C&p%8t8R1U?A)BAVFui77uI<#
zvPz%fIyug5!f!6Y=xc?FF=ulp1Qky^>Am@v^M~Tq3S#y38wwZR`#fDpJS&JPwbyS~
zYqQ}u-N*d@|6Z}us?pckFg2+8qq@+}Hyd@ldwTCLSgkiZE@lE(LA36XO18pgz8wd`
zEX;P^<WINByEb)F;k>Au8&AZwAAMbD{b0^=sS8?rUoRDyDHt}X!`j$&TGN`IqhbB;
zj`;6ieyBUu(NXp30-0COZY)u1?k+sYU;b}esw8trl=ODNGw=96&e>d+U^VU5^`#5C
zCKWySyXlwtyeHpg+w2pc{ESmm^w_-wp8`V;wy5NUnv-qWrqc7}*0=7dIkxqW)13a0
ziBYc4YA?JOt_)C`qJQ<VAlLh^OvXG*B!d@e?CJN8JZ8CP)vFi08zRguGB4K93MuV8
zSs~6~AQvv-A9G-7fYvM>F1<%v5AI}mUL&xl>$sY|+xPbccdI=f`9a2TL8LT8>V?i;
zB^SZdo4N!a?aNM9nRxU*_r!pC`%VWv`Ml?m?~nV_T^Uuc{#sHN?RQG;)0vM`e}^eO
zEWc-#7kPO34BM3E6$ZUOpFYV=5J?s|=6z=~kJSwWVS^I?^ZtL9m=vx%ZSpU_nREJ6
zxt||jhOj@rTe;RT=e6ks*+Yjip2|z7FL+@*!HJ_lOwO32-j;J`n@`fTt#_9FNvzw)
z+~71Z^%QH=Lz%m4w-wf<&vE9E+`PNliGTLg%9OPxmj1dtvAZ=33#YyMHD9B;=3mvF
zK4sx!n&Ee!tX<NOIPH9#lD@tDbK`T@r?c#7I#N5?Q?jJ-RQZ~RP7dE~eJr;2Hk$ga
zP2O}q`{1OPN&ocI86>zwjb4P7G(Mkm|8<Yf>1*Z;-ER}uni?EC^sA>T-#6%00pF2p
zdv(s)mtIwfx$PRcU{zMgy^Jkd+*9sNjTcQd5qLUB-P2lrU4KLO`-@Ag_tb+EchSpT
zQ-n(2s$84<Byin10ke)u{@WqvXI#rPvrB7oX5pOiUeQ<j%l5~8t@US)R<G6F|EA43
z#&3t%qQg5*%#Ce4_)6>D*?T#w=8B!Dc%0s%oF~MnF!>?Z!Q}YL<TDPB<ixy>MTNh9
zvybWYGcm<YXRW;ZEg!GGE6jIeU+<|(PxaGf(vEDaw)#nzGkPpcnqU^cD{9H#ZN=sO
z&+GL%({CC^y!=-4A?fgg$W=Gv&KgSXI<$O$@!RWX&9B~MKlSw5&$PrHj_HRDcRcvs
zX@2r_&JwT3>z8&EPcUUW_G|Vg&pQ3QGlze5EWgcItjc!k`tt5#Ifn0_XDs=tu+DU9
z&p(lcCPqKR3)fyeF2#I6ERHKba!+5YK*GMI`GMCoygL_h+~p2=)1^?G$@?K~_My|)
z-E(@sb0u9??8Im+cXg{=>-ngm&zhVd)~w?_k9p^bHudu?1?L#t3RkWcFxEV`@MTa@
ztEp>s`0>!Y*E0WvAFjOG^xMi)K6#PB>)CJj&F}g7sqXF@p~v#y@0-p_&E0rsx-pyB
zZ$|NrE(ap!PCfI%+$cc&<FXu+zyGG6&3u0<^?K&B#oMC9%fCId)&Da$v`AF+%H9z7
zwJ)ubdt4WrtHmCR?g)tzzV3M9-@gOyI@aqYyRUOOr1~-F%`vvHc(7b1Ti0T{fm-zM
zmc(ZakJrUpJy)96<S}tuU~5o-E8|n%GVYa&B<D`~bm+HZ#Nm7Am7VtRf?6P+@3>A!
ztXf^;e5GP)WH0aX{lBY<qr~Gk`Kevw>HYue#B(;iNilbCg%~BX7d`!=FK{hN+`Hwv
z*7sEL+KqFizlJ1Dxc=(&!Sm~_+VfAvoR>I#ZvL0|)%)*7|2vmz`tZnC$++{19@}qy
zJU3b7aG&Y(f7dMI=betr4zSyFseISnn26_Z*U!IFtNeN01tBL3&D~SDPMyB7dtKLY
zSFVRk-rQVfbK(~JXUXWxwGBIh1GFYWYh8{e1v7?I3xuUlD^!>E`JU_%U@6?55Seyr
z-tT+X`!1Y)>XCEm%o^QdIpNPUd&+um-uis=@Soq(M?>$QKh?r3{q5&_>+C7JcTd_^
zUh(!|^-j;`jc-HWKH)n1p;V%HcIt(-8z$^q-8GHt6if0Bp@mNcKEHc&@J<ky;91A}
zu0Ndx7;-Ok>LygHZLRV27dWzQvu*Kt2m4xHHqo=<(}j5D*k``q`F*3(w!}a8zsknd
z+ka2n-uCeI^7#|*)c$>vs++eX-2B<k?D)T)=EY}YOw1!<K0oPOs!)0Jf@?jyHgDG+
z!zA$v{fKPAsM`hEiMbh#vuZqM{QtXQ<?}atzH>On$WGcJj2MPtbC4`)+F>Rlsmk$4
zuVCHkZ>n)~@@JH>ZU6K-?ZP`|ZHal?pI_)KHGK1<j`7SrX~Dax#fQJfnf!Yk|EKKy
zr|qSB9g&~C&pf;Lt)^)Q*A_?h4$+NIW&1dq6xveGeVuq_;-5=%tqUzzuV|?{%~$Jt
zmF-CMj{4-fjr)&%^?&>D$R^L*w^whKtoeLsiLceieHYl~Dy;K9BPYn>ct=%l#??*v
zH!leP`}a2B-ps3gJ!khExRjQ8b?eR}mYe=AKKp&r_uLcLw>?j3{<z0y;|5OWx{Jqd
zAKUkGdir(FN2>yOt<ZX}9oYqTPF1%9W1AE@zCYg+^I6GA^0`8F-TsQ}Z*JU@3cMM@
z?{o9Bsj%Pg#x9l}`Qis}pZ}BnWc%UZ^#S+KU3)U8UiQWZ`KBFWAWvosh|FVg6u5m}
zRD9P@rdho84r}+`<J(;JwCH<dvN-SmUnguO7a1qTmDgNn|IgJu_w}6S#CH|!>{io!
zoy5K$U(&zh_k<&JkrU&s1;R(R7NpruF;U`ZVu&$&z3z0^x{p7vY3^L~`@*b^9+_XN
zD<1FP=zY6)^Vh7&tNT73z4wV_<6Mv_>w0(B-q~Jl>L~DC#QtVvLO^?6{i#}=HN1QK
z?th$_y)*E_+2>_D)gRA~|6cL=PrSEy<D2|ryFMShfAZdey))}Oelw(A;DohDIg*$c
z@IZp@z5BaGIX5p@zvlaVFN^WmyMGS^%I9(W|2Lg~?OQMV^L-npIH|wm+X89KKC<0-
zbMf!Ti)5C(3eVl{_U_w}*h6j$e}_gHuY1*Bck}gSQ@1;^XjOPF)Y^N^-o<4*Kbd_y
zrN*gOxV<8Ld1;fvIyTQco!_6!UB6U2b4{Uc-ZGYrToTu|&x(4UEo|;@c0RT|duOlE
z`#Yw;=Gxci>CNq3e3a|m?3u-Nb!VU6FRRbleC*Gnk6X;<riJg#H#*iPZ~y<#>tAQy
zWcltftNgS6XsF%)ouwDI_8%2J{>Nxr;klh$&(Hs#v-{V~_sUZsJ_3hG2QR33{=2we
zx%67xgnbGfxe0TZYsYexcjxqNR}4SAZkq2tZY`zii_ec=mA&)%%sc7(d+te}mV17G
zpX1?m-xDn6{rrAk*T3rL>pjn<ci)mf`!B3a@JTFB-X(*#%TC(;4-lNxv3g;sEJrr`
z_1Hhw`CsDX>*`N0pR50L)93j+qQM#B=x@LNe7pC1Q>GlLPF%b5?e>E8J2U>g{IlP(
z=j!{9I@14(?ZsPfF8U$M{@|Gz&+V#|yl=I)v;Xfst=E(*`@j6Lk>uAZyT7d2OTGVH
zh`m2!eb?*x|Bv`ONS7!bvJADkqt<lnf7rs$|H~GB{{L-3@&B@gANR**{K*%Ws&A?g
z-lfF>4hRsL#Jm7CSE&@LD@D!Lo_#+@R66F)EbrYV>nHy_)wb{cTD8v~IZby2t@x3=
zn78*guVB^#7V(eO$8vV+A7DFgJYDda{Mx%W?w|Zw&%AL%b8&pOxqNNpZ@))UDc6@9
zN(H4A|KE1rHu^-u+s#Lx|39Gop=tI3>9(?eju}(Z{_1Zy{cG7;R_=Lc?T@56NtVE!
z*K~tHquI}8n?XgT>9!}uhWk|WOQKJ<P2b49=(x!rbGF^x&3li^zdU#Duk@*(pX;TK
z+oRp>j!dz=qp|JhpY&_TI8C;+B#VCw_lYe2Ui*Ld%Xae<-}=7SHkrL(Ddd&7VZC+D
zf^{!vGv1xY(WLNBea^c>M^>FMd-$g5{oLPAOZQ7Z;&T)#M{|t8`xBLxVS3>{Y6_m;
zrtIzrxHC_Iqe&r8_*9Az%f_4F=xtdq{%g|jU#&vwY!TJ}I=6(vI)_Odo_EmmWlU?f
z)}ywp@>BC*W%x(6DURwL-iaUouhcyDHGX21lpwTpFBF94O|YXncpFsSv3yKjWAX5;
zPUI1gq9b94ZnU0e(n?h3ND2kHMK3wltAy>=!uy^PpQKJiy#^^NmoLxe=VqVvpR=i=
zKBL)BVERPYLu>C>27a~pXqMsWCcskoowN9_bT-qi`NAw4nO3l&lxwFJ2p<XMxLHz^
zpssgRDNN1iK-8*K1&*d0a{E%w?Q5FUm)fs$_CJf`9(9m6$`7nN#L)KcX8DvYCYx{W
zXK`F3k)8PWKW9?up1(C!)5}&*OZv&;7{h#P0nGc30!P>!gvy(CWP1FpS$-n*t)SID
zmcrb7^Ax{ZO<f(A{n2RY6}69cdmdLhzv63BSjU)qf%B1UVYgd+_qTQ5bG|dJuJb;k
zn-ux%xir77Y;seDeA3;#I?kKhLq9K@zvHKcw&}-W-Q<_IwrqHp-Bh8Tle6&Kw$1IQ
z^f;O#SXByPQPrdXE+|+&#>L!X{rc!WpW26p{zJi2{+>(FpRhxir7-o=n&hgS$9po@
z_D;^YpdV|}Ty$)mPWB=ltB>b+&K)#=Uh6eaI6pYx!W`#4+*=&gx6StXm9f@0+qnC*
zcvennXvej<Qd^IG_sYff7jM-$dH1EmednAX_orIwpWG*Z<DlCy-Hc${ou+II32PcT
z`%9~G)|T<|8lS9k;9xv9$6$h?SbJE(#Hf@)wsSjfpV=M1r1kSw57qeZo!s7r9n~j)
zE=c<Kb-~BD8O=9l-&gMVJOQ<CI<-JJ+Wp@DYf;RLegFJpke~6SXZah?6VqY@PS%_+
zZ`MC8m$UcHS-#C7;RjXO-aDsQbmr=Y>gA}5rzG8foq8_*MgAFg@mT)Dlb`9O2kTAR
z7@fSJx9yq~L&7h)+WX85x7NAt&S7MT-R^S#=lkv6U!(+VBo9d1w*`d+c<neI<fz5U
zpmFNq_o*QQ|I+6a7gg+MnVrRRE>^az;I7I}^Tlrz3iVH{=bd~u{n(Q%`PtVN&e^?_
zjp4MYjZN?$0T;I13!Q5f^!R#O&7^9tGcxR2=X`sIYs~%c331;~Sh7FPJ0u*_q+Pzs
zTT!u<W%{B2J@M5^dsayO)!VVPU3!9H+78e2V%g0TlV`SYAC3wrOHW<Gy!PFz_}bR>
zJO6#WKab<+QPcC{fBg0po_^)O`L1WwoYY3=|GgGcH3r{uHe{S$&l|q1c)Pj9v51J*
zVjF7jFU*wENiSwNP-1uV%^MMhg0iBfmnRh&5;nfrn3K-XP`0z>oynH?8(t?Bawe?T
zo>I!npy95n_Slx;z`cWvZjTKa63RDqU##d^wT_Wtm4?C|oqu&KqWAmGo_oIIqCwh^
zuL<{@%j~#2at<H-blhay5wjvk2J`Pn46Zr-UXXPE`-NTZ_ji9?d5z6xjq}nbkv!Q`
ztqlV2ZV5Ow8BWW+_tHvHW{acxxryS1`2uxDSKJooMxRLwW;pQY4bSo8>I@CbA{V^A
zlNMVbY5t-$NJD$O#q6H!p0aYoZ{4PGVb|vg=+}IkmVd6-(7<l>)ok8mpH;l3YSG6x
z?O5>GM)!op<Cli%4`MFxzL1sFay>WSU(-b>+LO1gPS5ysu<7Mh$L-C%H%aR#?=Wbd
zoxf`DLYH4w|C$dfCqGU)E5V(7r*zTQ#;s`rH@MCV@-P%TI&PQv+-;_Kz;&0IMe@qF
zS?R~W@#Wn5yry#f-KH|b_y<pZ2(-7aXJA+#zvs|t@$-xf?fUVLo?OYjHa%CEdE?zp
zuIW`RN+pSshyKm-Ze3L*{bkp@g#3DOh7JEe2+G;lu`pEpc_Jw%V{>HPU3P{Z$paA&
z=beB5-OcEJ%lF#;bL@wHuXDa$dSTb+{nMXGC+oHp#CrxhRHimfDEcsCy@JHN$@{Mr
zRNXoA^LcFL>YEY{2bV}c_+z+3qhjfAx!lVP471WY({3hhEMYtz_ucOx=K>vXk=EJi
zQ-T6c*-mq1R8?K#GyD5*8+JiXl#xPkQ^e9t|JR)Kom;MDO!J=eW6e+T^Y%x(K{Gw-
z$K4}-d8lpH>*ix{VpvsDbnNcm+L}KX!#{r1|7*nHu=0^p`q}c@`iDPPPf@wgW~jBM
z+C(w=>NdS*q15QwswUSnDTR8ATD&<pB~NiJX$tC6I`Y23kS*%<il`0O_`G<Su32r*
zK9CxE?}XOI2`irpIK~~XJo8}Pp<2tm>(8E>$G`d6Nm(14ZH|-VmcB8o?rCgNS>e6Q
zZ~5y*uP?sV`xkfrb%jmL$=>NH+>Gy@_6B)sL^}PLB>mF(Rm19Fp7VlD*6KyylcH<?
zM%;*4v}MNm!lII<^Y(vv7(SdlU*Gh6{%)RM-RI*IUKzj0y}u~;?w-Y^{Mnm6F`ir0
z<;=+$y7SDH3ZsMXCZ1j}f39ERUY^pB{=o3X8kO&>coh%J<gve6@Y`wKuNP6~@Abus
z&pg)?zM(U1hW@jRKYy=AO`d8T$?-D#Z?{nBOHrQ3g0HGr7*?zj3eqf?7ou{#?)>`?
zcYU8MDr-9Ye)s&?02}i!UMF^6iZNK1|68(9@bF{99qczs_%H0;&AuhKJ9RSy!<lqr
zpY!Jmo}Dh4mCF3=`L9(vkG}?psdnx9a9@70Tz^35z9(!a-Z7S(d1t)EQQd6XAGT?y
z-#zP=jNAW*iQ&WL`F}+A|G4ST$gn<c&ykv!OWwOlXZ$ZwwdgveD<xO|LF8D5O~n@$
z27{Zon;Ujq`@P4bZdb4L*O+Zr&2-b!(-|5rzvP_unf2CFp@zwOjz4!`K9=vq(jKJB
zut1}`;;`gZ<(@LN6+3^=%KgcfJoicCifx$}zvpet@tNeen|Fb<eKPNwlPMn}Tf0&j
zzTek4#grPspusBk^qO|fXXzdG@;RrRKWN@g$iA!Iyy?UJ4T<NYt5e<5Vs9_Xy|Z;g
zL|KN__Z_*`CAHjN7RoGdH_Hpwn9)%bA1PuuVQCjr>O`K?OFSBN6jeiBu3NrpRlqNW
z#UVyhyBVUlf7o{Ih-J!6lNsmy3V-}EWq8mn9{*tT`8#+1y*kQ$<`3J(SiK9sc(+|-
z6MHF@(Bt^Y=E1{bMP~DpH<oaxGq;^Q$I`&f^~G(u(nRxP`MZx5tNu86Au4%e!Sm0r
zudo03X)1S}yu4guRZ-J2@6UqC?`}Pq)?CfJFVOVhxp~sh|2DT*{P-}jzNTST_YTMS
zr`2p5HcqXaK9QYg?#dav<<@w%C3iIb|FGssbK@G3W<xs<Bc5x@3^_k;s@f*LjGI$<
zj;Am}%rxh>#3}n(X`M&U{7jxRZ_a}c22<ah5jQq?-yf*edg^y_NN8)-o2GW_>gpS>
z`I9cR_Pb^4dMa;Y$LNYDJuYmUY1e%3>x^^DD!yJyjj{XtMEu9g^YwfT6<<GbpLwpA
zd}*6*iTI{)nM<eTmVdUitN0a~q3^x7?nte~-8+*Q{<TJACyNzsjCk<jLhr}b`f&+X
z_T7`p(@cBLAF#?_@L)mC;-G~(-7hBD$i02U=xyYo_@wn&`1iSuO$&1k=lWgLsbRbD
z&A=}BolW|s9jq(owsu~uN}kK2ufp)Euy=1WJHxr{)sYW><bOCR@5R=TQ1SHKQ?t`;
zuh%tiQ>*LSciF&>`QB?itFL9b-OEbP&zz@wvBG)5%N(w`TRAV^e1DMX&TOWusf?P<
z6C*pbLR=3kD2ASyqOECg@2lRE-|RPT^QYB>p4qg!=VsYf_RW!zJZoI9f6b7d-y5Z8
z_?>OR=9ePI_Ve{`t8VeTsePD1%*$G$ndj2WY0f`4zAO<x|M}w!6*=z3ra9|_uYKAh
zIOYHQZ#^%*a#lL8EtUB{J-()I{=fJB3=Hez_8+<Vh3DFNQ>g|HN&AxmZrLVs$@S;w
zZti|6bnNtvkVps7rw{hT9^GBGp?6+&(Wf<)8ltan>78@j`|j}!!*hx*TJA|6Zy8*}
z)Q(kDy*U$k_r1ZhW2${$Rdql7uswe*E`_Ch<HC$dTff&@rFGvFS-$)@L&M^5{STj>
zdduuByQ`jdSu?7B{luU}Yvw3<trW7Z)@!c&@IkQWUEq&uhd?m_l|pp~>5?R8%Xnic
zvGmycNtV%%-kkC6IPTtVQS(=b;lrz|t2NHQ-Ys@(iEF~c*N@aD$8Ooh{8{)x>C=VJ
z=kH7P+HHQJuGu2~OyQ4HC%44y`6F}sDO2rx)!qb-P{v8#GXk2=v2Z;VyLEc$kwf1N
z@^<sB(g+A&_-~bj4p)bZ#Q&#7jgu!UpIPo_bv$B{I@iI2%`S5{?@%mh)Y*UGowd%a
z)HUj|=gSpZxF>|%bgEpMGvmnJlehjhMP!$(T|Gbc%=8($HR2sFdAe6>Kh3x$R=d6B
z{`ZCNgLlu__x>WA`|D)~ujI=-|7`i}-`2GB;4it&%L<P#eknCWfTN|?cBgmff-ioL
zQx_V{db9Woql>C2SA18%b?b^BC1UgAD|YS{@O-4Vqhhm9>EXnlooCq?PU|pmuP~4|
z$k^}rvZ_~aN1L=XbI7d-^+J9}yK_ki-O`MUowW@XeCd9%?&ap!M;OkOzTfxZ@7gby
z^Vlmh&*r>4w=-Nn{^3*Y@VtT_zc@Z0mAQ7GS!a8|ow?@)#OCb$d8E>yqP%wIxzBeu
z*Y>yzPq}yWmh03o(@VDt8F}XH-#eX;Va^<x$8U~QzS0rr{$f`UBEr?WDsW2PoSgy_
z>h3C~Fuu&5J#)eYn<+C_-q_pr^QXmnNB`MXVyAO*uDKrid+S;M)32VT&+@k%J0s-u
ze6RbVzYB7u&WP(7R996=*-nhxYj@<dxc<jm>pj!c(=-0a9Fgq*&JgPH=8YT!!?Vq*
zrxqPr$A8SPtZc!RS@}z(OXjQTwTGRAcK#d%ST-^Su+6=pq4&x-)3`G0_Ldpv&KHzC
zi81Q;?>DslD!Jw+&)Gw%Jk^)gokfowY(0O(p!?!E3D<|40_Uh!-t)Tm|5V(|GLDOn
z)@5$^Ao%EKQfJ!Eo@E-$ohHvu-f=1Tve$h7EAB6LlMgYTIUZbc_uzwkf#(|-4*l3J
zD|T6PnO*a_nZ2v{6+g}U)FJ5}A#D7i_Il#Rm_=XTZ8~PLSnaz-@BY)u_ty5DbeQyF
zbD;0-1gp}|M?OAO?CYPy^6|?Lj^O+@i~0T+b<zSWlX;4l<ugn>&E}nNv1~WnXXEb`
z+h!!cG*;PsQ>1pf&+|3DpQpX9eb+Z%D`ZOI>P;@8Q&#L<ToD?&BI|oadAa!(zvC<J
z9ltj(nBhyPthLIAH@|MHHRXhJajx_VG5Vr7-Sgi$pFcTf)1MVJNQ$N2tYkWqA-n%#
zx$Ui`(wl!4^_{bSw~OzZ!IC+DCsfDQCF@qL-<3H#HN;VOy0^~r&r@<!98TY<C^~oW
z@6VjIjgzKt^E8941$cLF*NpQU=lm3EJt|Xs-<8><FZV>{`gtma*CT%M{JQv1(eCdP
zVTJ=QPb%)Zc2;tgM!+;zoywK3q*}c`y9sXEn9BLE^sQ@T%F-03IZLzKjn!we$E1rs
zzRJVewIc0=aasA#Kj*KeT}!)bwZ{16W;5frr+K<=FE|vXWAOR=<jtFd_k7Aa9IhY#
z=<8{53o9!ohBM2S2WloZW+ZTG8qWQBN$c>3A2%mQIIXCjE8_S%$n4Ht=j!DPc&#>C
zKG{?@*)r{!^p|z6yE7K8DKVUz{7(E_?&Y1mmVcaduSG2FT(`>o#@(B)FU?;pZ2K&g
zU-{!t?)`=7=Ebk`e;tc@-ZkIyY}PyRjbY1oS!iBLvMipK8xl3+X??Rr`|HVU2Uz=f
zB61!cO*q*6d51v4#tQ<0m$DNUv21-Cr8Aw|q;6wuuTRa}M&~!ZtDN(fF{qsUV=A?O
z!K`_HA3sf<ENl1wP4J$Yf0_&re*EB2S6>&CW;J{9Oy7&Iubk6nSvoDZUoG#0REguU
zdpgMhOLA`~X4|A3)Hrt_vOr3_xwR;ANgw;yiWXb_+BdyNll7Or-^I4qSMT%TX@wom
zyHAE+yO4Ry`wnBo>WkU;FKv9EymtS!v<DmHpUG#umU8DQdsg@O@Frff^o>W7cjj#T
zkbJXbZTTzztvkQZeK_^yzDr_-XSQB^v6j(^o&VUR`>h5O>UgSiFI2vtzU}p+Ka01@
z-D3_rS9Z6ecVoui8*}FReLO0@ZtH{R^J}_Z{?Yl@_dv!~a@WG1g<SD!!P7QsyM(Gs
z)`a#O&g{AT-h=a<_w249r^?9c(0;>tZx}wP8XJB%WL7P-Q_b)|N!?mWmAA*7q-FP3
z{EBm5->@xrk@}e&tD`IPmwx;8HCsl0SHt^@4;B0R_zT~7i#@xXX>;zH1c#`XNXVRh
zYP-F+^m1;jjQ{p|S@;33o9j+Lz2}56h?T>`<}5r_Z^o}LR$kq^mL1%byD?|)>-_ub
zC-c-kx?U5$CB=QrdHyx2-PYBCT4jG<q!>wmN;;Fh@7~)-Q<p!O)Vy3pw`Z$nHn*5@
zgP2)b5L?lPb)TOy7u;N1JZV$4uJT?M^_#vo?T<0O-u(F1D~o6Eo}1Zf&--U<_1@^V
z3Gc3Du0Iw&@VsXs@madGF#iA6hbmo(e4df-H&0Hk`S??xfx-Uw{r~Of?KmaBB%gWa
z*Lzt{+T^W_)hdCKGYhuoN^fqgz3zH=<G$+`15QZ1u6laQhX3V*nVMqHc@Cv-Y7v+a
z<RGeN9IP+?;?Mo*u8pn*<$2RD{M-BFlTS;rn(5bl$6nkOn3?5iz_yro*3$Dqrrj3X
z@@yW;r`x{Vo1&0byH--dj&-t5Hc!&m_G=e?cgAjeaZ63x^~N^K-??5>z87cloPW^M
zcsjxE*n!PX4CgFMgj$ZwW)+uNDAsH^?c|Q!kO>)YH%+>2e(m-0x6yOv?kw7LKE9?g
zJnrRX6J3d*@4`z(xc*0IiJtzlYSn=iWo&C6-<5syes`Yi;*%_;p$j$kPT8v!@LNxN
z_iuKAeL4$QtZK}BVK(hd%+#8B9M|_>t35MAI{CtDx!BjCHnr9UZQN{Kn_r5gFV}0f
zv$Z|=a^~q7{?CKsqn^F9KK)e4SNd5l^U7MbSjN=3r{<?9D%6(EH5Pn+ymW2<o4dA0
z%DHYW5Z>;0XGi8_v3;@P>TcPQF(tcQXPuqS`(UAJtI!0;SuH+6CoNmzORg+tDvfRI
zyxQsh?oy2S++NB4b@!W!&D-jZ>s3k>pIf|3BrLjMqU8yteN)z3E<JklcEQr^KYw&@
zx%omjhodE>^f6CEVrKJ-#WuT}uUXl}pHj(xGH30NWApoVR`-j`KbL-8AfWQ@*rKnc
zwa3+uSNxk<yyV}}<?|m*p1*t6`OTXr`|P@Rte541+5KFJ^Xr`D#Y*=2>E7PbX?i)Y
z%PaSm&gP42Wpt*7H8alHc|CQGV*#J$-|83D1@+PQZr(h2h@Jmgcco5wgXvC&PgTjK
z+!l|&mGsQo=6ZP-@2O3h$pJ@h32gav-g^1t^YxQrrt9{6yp+w&A!jAO#5Mo6S%g{f
zmO7i>n|-~HrRU$@SLwR*{EO$E<v)DhG_7ZuEO6=U=OB;kPQh*0$~ua<#g+1&ghulG
z5zLvfe@)xF-HsDdWs5J|PMhw#gZb&~`ypMIlXsR#?_Ydac~8Z|S2L%7wq%%XW#%Dy
zdh!y1z(;XYRFB;|oRpp}{+s{KvBLU%{>4>2hpb;}p9}~U{%*eZV8t7`{@-#O?|zlf
zurXY)wJ(m__x6$n3(EZ7Zmf2{e!Oyfq@Kb2R^DHd%i<o{%|5r`%cbvmJ6*1qWc&`;
zl$>;OifN{q@F6#OKG4c&+1Hm_A7uN-Y|x$Yo&%-J;^rV(l9X(4Yyr2?k!`+y(|V5H
zTa~~wr!%Ey5sTJ+`5k(%B~CuC6*uN_DmbAatgU@Qsr=x*eLPpJI3F);IT4e@EfOnU
z@7^)RvEBD>OYbS;=Q^jJEzyWIvy*TR{PHd6&<D<Q3tM`Y8P#6r_1RR^JlkN--glel
zt<{Ut-&y{5s%uG9T<Nva0?xgvzNNwLw$okNBR}8FX;XfG=ijfR+A{LHbgsU<DU$nq
z)AeQMhQizod#_zsc;vtf3-+&3{6^af^FB$=nxSsU@StDvhJrND?c?u_&ndK=zaq{3
zu>WR`-QlEnb8qu1w3J(k*GLOL?>uwjtQ7BE6ASC&nJb^xG~V<6Q><)$%%bUqCWr5*
z!s~~oi_TD)pYE}Wm0Q^O^Vy`Xx{HU|4sUi`R@YpeHNQT(c}Zbd!dJP^*)?p=L0+O<
zsZZapeJmIf?xHIFn1TPUwMD;bN)VUG($hD*R2R<pr2m@7#W$|0?C_m$vF)jBIqRGh
zB%9bgza$wR&w1tZC~dQ4f=`HI!Lj6Pp#>AK@CGgVrZ#!=Tw|S@Y2{T#O&3#oZp}V3
zb?KpZ@AMcFLbOcy<(V0J{M6PZ<<9^2t?-bn{rvB?Vy7=8CbTX4xJvf^>zM5Mj_<2W
z7S7oene^=Vw>MvO%KpzdcW%QM+5B7ET(56^aeKjrR|zFnpBFVXEuZ&d@v5dEnN1&3
z{cHY8ep##0s+7^}cgJpH+S#Zt``WhU-nN)&wBbdIrS<GbU%p73Zk;U?E3NYVkJCwu
z_Zo|n7WSq(#O{(>dvS%E;wi`9U9Uf03%z{p(2f(gwu&$;3;ecpw~GIjsC3gGX4@t`
z3R*Ushk1vE{_42DKc0N;&pw*D^ZM6EAM+y&GU{#5hzEah{59M2PW9TqZWnUP4mqth
zKlgHW|KX1h1Z=K$uH$}o-@2f>QDWL(^O`H`u4mMoUcULJNcz6oyES&*$!mJQ&ExtI
zpWZm(jyYrH**uv#{gZOnERX%-Z)@x>&FN*o&gN8ca`#rYL+tyXr5o$~v1yNM-h83T
zy`g<pyutgfeYV`|UfA%L|Jzn8eVcJx<k|Fld=s9Up8qF(u>BxY!rb}&EuHKQ8$+b7
zZnG8JSNG-38<ERTb=aDFeN#DS@3P<j;zyjt?0wHwr%(53Ia{VEy5!63+?5GEWfPSc
z+@inOC7jsValTPEX~W4Uv%L={vM=TMIeYKDhRwx-PStl0MyMB7`8(z*s#=tPk4pCa
zBA9twZ<@|e^`)2W&ONd@XwfZw#C7w5JM*6}Pd`56is`9SYirBO%P;&)-uC~2;;xt~
z+YeiIEKbSQ-@Waq%@)tu^AZfduf5PyHoHiE%iCLWwHaG)n#`Er`rstb=9$(1UY^u^
zX18Kfgieh)zx}pb2b89?E~%X5&9^k>!|D}UA*<Rxd8(@&S@8I1)v+X7eeX45pvuC3
zjr)}se;2Kc)VcV>b5nlxoL}2S=huGYto!x<AG?0d{R=lga#qDVbLA>HYb&2jUTXE2
z=jjRGw#8LVn^qYe-YmMg_4nr*Wl?i;9nrI9r!CL<`Ca(YvH7BH5AW9<e-9L@TsgXO
z(UBYOugl$(B^DP)FJHLwa#x;{`8N5OkMdo!9hPwHzbX}b|G|?JTN!>o`usfN7i;51
z+b#QFzV=)GX8zX9i)vGh|9^~+o_uS~+S$?K9xdljO72*{Tfe2{<Mci6s<znOxR@#X
znm<vu=jzO#H-4^l-qvx}?r|j}<EEqQPR8lHKR@r*-yJg5fA;nr{k|<jN=NM8j6O*N
zX(k<;YybDXzxQk#f8ag-sBG!iHow=g|50m-l-~SogU&hQp7sMS6}k>B*Am*4TYQ#?
zY}`6`tJ*KYGs}$U$jTpQExT>D@$E8!B<0N=;zxPguHP)}%ecgEaO}~XgRIRj_ujl(
z)Ah87QP@ncR{FMeQMwV+fv=T%wPw?e7u>(k%ph@@|9-vLlFI*?nas+X@lHF~i_QgT
zEbovERi3id{{ND$@3D`cFB4di6nVsu<=LU{)i0lKUg!S$^}^-p=@!zV5?9yR)n42(
z;hxI6>?jF&4uhGNFV~*Go2_83+w->ScIub!7Irp0t6Cq_Ua2ZRx9)XP!k$Py!|ukr
zmecBNO=h1pILovz_wtdjiPvV8oRMr6a9kL%;FH(nixoXtLGG9L-3cg(o#1(=%)#^p
zS~qn^XiT(<{^{J^5}h?aA6feK#eOTOs%g5eKbQIQXMg*npU>MLd>y`SUdg^0u9lMw
zr4(14YvoZr|Db8{C&@_{Gn!Vd2@h+o`}Z<>hC}}oqkD1X8EJlI=C+oHK0egeNz*&E
z=C@t8?$mVV;NM#}t-A2@TE*gBhmy>?*R3?0yiSNSJ2yvoN6vH$TdRYw^<%6zh|jO@
zx|u2QU+mZto|FonB^<SZ(<FSqC0ieSnl$lN$=Z@X`V;P@%{+TsA?9)ur$+qp$SJH-
zbpD>N+?8kSyX)hmFAAqy&l>YqPSdn?TgI^Q4BOFN|0S6}?@ym_+GDd-W&PRA|1uM|
zYMHnl&)M{rQQAu7!JJD^Yj->iiJW2IG-pfvGBfvwbq9hk)m$iT{<-V#4B7V9kESo~
z%m{g=B6{l7_8F5d$;vb2UQV*IJvK8u_3Zg&hO<>uCr$q}dj;!WCGox8p|R=B&(m|c
zb}u`4$2xSrjBJvjbt_-0pPIJn2^Q5DkC3gW7aW$5dAsAy+sQB4U+gkFXS>?sx1P1h
zcH93ktj8>O%%8n#*P(MqdV@o+UTjv{GM6{<zGE)0x9OY1*UHr77H`YFXcC*_somnT
zxkUFy)n#Y)t<xm=uEgdxX07d=`S$6egD+P`$M38A%e7qnUE%he3*U6D;)@pVw$oZO
z>#0!p(r95*?(6T&ZTQ|AOz&ph@@~<tBfP0I&a<R^@Y7OVwc^#9K+)7M;sxgOvQK;8
z<GTGIyV>Ic+uR+chkSQuPOGSWQPuG8N&P>4yZU!#>hA6Og|B$$_4W4`6cu%)PEgpY
zn-g(FYOdI6Hi3H!*sgiTFfPytF}b%(EZ(T_UWDxzuamzne3$CgH=l8Sd4$jT3nreA
z<g&7hA8VI0^K5-7d#Lwiip{|<IbFx{Z)`PtEj>FoVs32HRx!0`9-rmu7QB1I{QZ*V
zCf+Y~u<$F}ag%SUbnNwmOf&prwdWp9diYoB9Bb%1gC0e%f8DDb9-3#zoV4)EJ1cD_
zb?xM%!^iw*G>RE;UB7v>^%T#wT&>O9icd7DpYZcNcInx%8&5PRy#HYN{J}oIjk9_J
zD=SwScX~4(`yT0WKW+WvJ#2SbGZ=GgKX`m!c;(J^>7ss1@AoqcpP5<QWV6jNTGQ*y
ztg4cgUlcZl>s0=y-F2NWOWH0wm-}1VRy5q&zH*Y+(M=s^AEfn9-g=FFSM2@gFR!o~
zrlqTA%yykKzoB^h0fB;7(K@}e)BP5Fe8s&zvi{c_XPa8HemP@3hvL1zKg{}Wkgd30
zciKN2?blMftJlfo)R&7-wNGb#{vxNW-<07|%+aJso@BE)W43iibtXLfDR6t1xwlDO
z@XFtEOqG+8y4gO?^=!O)!D;jBC>^mpTO(`BgAcv8zl+gXmKXf4`DRqM#N*TKxAdl+
zG|6q&+s5+lVtHb&aMh~azc&f!%n~g=s8}1YOvkIo{oTEo>!K}_^5WPV*3_iu-g$bs
zwp{^r@#Sn0Ewy)=inFhm%J#+Y`sO~r=9lrGH}&;Q3>LO_PSR0HTX=VE>pgdR=a(y$
z=9SK(hZ*&&MVuV2>issE_r{5%()rWcw?cc^#j_6V{L+@O*-Y$#htQgwoY-hh_kwV?
zm~Z+|%Bt@=m!F(?ZKvA$I-gI@yJVH^jzo3eOFy=IoBQ?B3yygwENAGSelTbGn)Qi>
zCr?k@`f%dCNXyGbv$;d~?dDd`E$=;j_~TBs&(9L)Ea%y!6HxKA=ZVs8qs?ztZ=dQT
zsr{OF${lsiOWD~B!fQWYzF(a7;Q5n98~=tbGhqzsY^vRSN5La}X~>O_LJ#kr<Zyi{
z;y9=Kb$UdeWwX$+OA*|B+z&T*&RH%tW9N~W4L(JuB`V5t8e@LW7GVwQN~t*JYQt8$
z{-U1v4A$qbf68#@uL-?wI>r3`EuPNmWe0Xlxf+-LaLN_8#k_7w$F>*rbhVkB6Vtpr
zIkacN>(VLzww-3(wXOT+&#PzthfB^r+hQp8{PQNAjhi2z`J%Raw?yUjuTGlFTe!~s
zRP&sFcg<|C(}!vf&0ySY^Lw9XugV(M@2N&HQzy(cOv<w;|NZ<=mgl^=D?dA2HktAJ
zb-mU6q*t<c#Wx#oiRHfBUSx2Dd(r#d8EH4S*;ehJcQMM{)B4Y?v<qyeuZx7w*iN0Y
zVvpg2j6KbpRxJ8+_iTOnYYBn(?70^@dk;!9-@No)*KYRXGyV%suj?&!*!6zl);{U!
zHPr`L`*ZiTOwrg|of+A;VShctfvr*#U;UE)qHSBf``h!pix1?BC*ImICA4?fyd&GP
zm%V;;jJ2|R+L_d_3h_b)fmJPEbIX`sOH9(0e5QR+LSc%FZPD`&73unY^|y6`Hz-Tj
zpNq`78$89-ZL#62k9-UcEB9<wIGr3-p06qJz3``HjH`TCP?v_fiP_fAT+%xPo^0@V
zYHqb!bxY*jyu253=_<4J{y46!mU+2FbNe-Rjm^yhV(&sVHyW35f1f+o^UZ_<Kg+g;
zR!=rL@1e(_cyLj%MgQzlP2LB)T@8*c?wMZ9r#9)xTt?4N=P$43o)_00x#0aB!K_(g
zpHtg+e!mf+C%&;}`D?2X=@%0V1GjgVZV^uIIr{HbQ+LHV(NxxR5ues4=*aQU_Eoxe
z>&1(6OS?YZJNHWGO6$SB4|dI&f7onSjr!yr?EA%3xkKvK8r{5m_}}4nhK9?VgCnvx
z78vq<sg-Y5|JlCn=l*NUIJ!$eyL?bw>Av_!`LWVYqciHwEl17HYfqmrclOEO%2&VX
z-{w2LRQk!yq{h6RJ!|DYFKOPYHZ5bv*<Ji`nY_7&zMJl{D`hjhbs){N`^9Yq(N%}0
z)`x_$PW8N#zxhwc4IQ*KgsB%gqtzwMIL`%EYF3%vJa}(kw~Dvg#wq6x-a6nEEgh>d
zGxdRyhZ3t-{)V7_wHvktH<y2`;FquY5z27j;6FyLrFkmMQ=eXJ(5c^$`SGvg8ymMD
zmP`6K^dGZ+A^&CLng!Q$Jv6OeCjZGfb8^)~5uQ`CqkPNC0z_Ox%nP>3y?nts&o$aL
z@5fOK(C)3Tr}zsRkGcQ6ohErVBUa5erA~Fp`Ds%^TUX6WIR9Ny@3q!sL3QC-ugeX0
z{Q22)cTc!{GLO!TPaBqK1b8j{)W!F5=_7|1rf+&zC&aA3C9r*)XH%Zh^5o>=U?b_n
zcg|E@%v`3y$$5OCVbrNltxR(*<{R=o{rxcPE6Zft<qa!V7ltr@*m^GZ_56i59(<Kl
zc|PHetgu>&jQ{gT^JYJ+47NC?5TW%mA<}Gms@!)Tov9rPGv|NZ>$W>0;ig6M@}r9!
zck{4yS!ui9_!607`u@D;@}M+xjogsPq$j;=)OP=VvHP54i&Bc%-Os(IAOCEfSrWa<
zC@p7dP=b$3=_xJ$hoAM2CQYmR+!y~Z?(k2Yr7kbuPpxME{o_G1KZ6BxjHaqze?J35
z_cG6!k;%#GEVE1X9>g58^!IAKSkbeW{oKyK4=yUdk==28^4`A@-_%{}V&27lGqc|w
zIc47Mj8ADb*Q6O{ZFAim<5YextN&)>C!L=9>*X(YO;OF4)~|gZy(L$E^XI*WA1e&>
z9!YAlwrlNOv^pTb$<0+j^+G3Twe@ZFJ26WRr92W_;y=&k=nd=Fde74>YM#cJ@%Q%?
z7S;3|z2hl#dzoXz+}>4E)^*OG9()wGsr@9v5YSup;m5^fh65?}Mk`|X2yQZc|4di1
zA!oZ-{*{=56NhwXsZZvdBC;`W%E4ntUGINCY;{W_M=($;a;j-apekqhy=PgiJZA3E
z9{ViBf*hubmX&>H++ozb&fD+$!{D;LZM{YbjDjjFgB;UlUs~iLRDSHosjw6I`ic9W
zCLf%nygP{N>WQmmyUe=Z-7&f5aQg!5p+g4KdakeS?f&yw_fk@{a`wTdxkf$Hr^c0R
z+`MLOpjy%Pm(Lrx<2>U}8O-b1xcm9D%~f+$-sP;_deOY#OoUasO1ef!<EAf-w#OFh
zL`6$yTU(}cEZy2;n89se-&;Iy{&}&6@8=krH~h0`Uf7$)t1A}Uy_3H}cNg1Uzs4Ch
z6E=A+DK6l3oKnF3;3nJN2{&%u{ak-%!F4OP@FgNIN>^>>{mzgbxn{FyP(u2nJ14t~
zcvhzDd3UY!-?O6kz0dB%#Q!*ZtNAYb3%h@+3<pwd4!&0B|M;hP`!`EVyCXU8P8r==
z=YG9yK@h*3*+QoUA3nQ8POJFzgmYf)2T_ItoB8dJTu#sXY%lkI0Y@CS(~;jl=eBLU
zvF@S~+cWjVWP#_BceB4lE$00mHT%>QiS!F|fA8J)_QEl%((Y^W-Rp|)pJ(2j=$mrj
zK#TO}O{)TbF?3Gg^7&A4cZZkbt);>!3;B9MD}L8bI$gC?U`2NNoR1$aD%({4I`Ws#
z;+)^yGp{$Fw>y|V{~y!w<Lm6d+`MTsYpsk;g~ZcD`Pwgra&~;@(>1*Erv&xZvb~CW
z|7+IyyLUM1JC+omTUfJYyHsz$6jlrFOO~9GJ3d~y<?>iz_Rb|tI;Z4zP6=4mz;RP}
z-pPP)3C(k=zoc_TO8PXi-KT{<WLmn)V4g+iOOD4kf@d4b-L2>~JeMke?&#gNf4A<O
z46B?HxT;a5qBJJYxIDUD;k~I$i1aEAgOABOH*e<-Rk{8l;Z<5<%=e}zDpO+a6f2vb
zp5&R-w{=~&%b9rz6B_xCpOi8#=qs;3@V|ZY4ejmgj?d`1Tdj9GhH>JtYU|HBp6kxB
zuuoT7cDQ$Ipxmv}S{?g@4KE{#7<DaMz8()q*;Jp+zN~&urDxgo#-EoO{k~5~?Oj@)
zm;c<iNc{MRKR12C>JyiqKa(u~!|AHTdkfdu!E+<0EZwaxlFBN3YR;Orub1wJecve4
zV%&G?{(1MuoKv)nM6Xt@*%0yVy_(k@{iZ@WYagF7_Xmek_sHAUw)H>T-xF_T#lo<s
z>Zeru@ppxrXC#{ypL-m8`RF@SFRv?cnkF;fJZ$El_voYXa+N!`Ee}*&Kdb)uqQ*Jn
z*%#L)^rkF#G?|dXv(eF}eYVRV@mss^Gw1Q0@(;PYvvSefTN>T}|G(LLx<BP~=(oQ|
zQsX~Gh2E|8lb64(|9<s*X~pK0nVbe&QrXzrcs2+yA7NpM*rfi4m4`v`AWzGY1I*7l
zIun~(5)x!vQo0YCSE&BJVYhwX6;u7{_Z>gj1UD*`g@u)uhNp$5UHv6H_tly;dye(V
zS}R@KJn!ioXYnWRd~Y9=SoM)nQ>FKIX=tKE-`Na{V;K+f#Zx6icsx&@FksNXFjKa{
z>t#l-(vu5($CY`s^$XX#i_Y8g`13{g#hh)24ekCt31&F(v3t6JBKzOs_xt+K|6hNe
znPHw?E&t_})30xhWtLVGj;b`2SlYSoYQ&GUd)NP}{(R>r^~rN``Dfmp8$x;6+qF)7
zIJL@U<zJVx&s1IKD3^a+w>hMZ<(gCW)o6vhWTy?gb*p_{rs=DTc5Pa4a@rJ4^GGdD
z-NS62)4Da9?3o|*dtWatNEA{Gtrsd=ub#p<-$)?l&T6U0o&Mr8{P+#{F5P|fle<Hq
zw5-=Lo9CzYk~1+3Oe)HyFTC%kMm&hl|2<FTQh`C@qIBb(W%K&=T3+xv1$n)=G(URr
z#Ti8n-9eXsPJaCD!sl=XmFH8u82u(qJ0Ib^bD{6;i!PD{7dmRCCv50wm6__rU6+!3
zJ9?2P<IM`stZ0)JY|c7PFV7v@Qo<23t^c=x`YEQBU5=5W61`3**KcwN4P9|~QBpv7
zN43;7$w@oPbKSYcldZheSFbjD@+fVp%C;+esy7?-f0ol+>Es?cZHr@2I5UT;=c&4~
zs<xjxQ<$T53W{FUR?hl)=(-}yf>syPFSC^vA7pTE?>CV7T{-2FP-?||$5`jq><;}`
z6OZkwb}zF!Zn$NQ7Z+RTRe?}hvw3W$({h{BUf#a5BjnO`OXsNyx7IZp{=6Y4b9e6d
zvkQurdj*@$KA6$s=y6-7r+rHEx~+Vv+>sZ~e0eB$(17PK6j?L4Uzj=fprw1D7U#>?
z511sTn8p-X=E|36>|!(XDqq?XP#6B=#Ye_IzM3gHHWJS59m&_rp4esg?p6L-EOh_v
zris1EofZP7uk2Q-1YWN@UTLr<P^7em&9#8hG4Rl~*d)huCv>Mw)3n;Z^!&Z@!uxMS
znzSdboVsL^hSQP78eB#~T3o&_na<r*Iq5d(S>$EVO#kGC^H%%3Evz=2wA+#`NmYrL
zA$6sp?T3pm)Zg13eY{wmp~2topUCFV+zbtzrSq!OVm`_U2&rZ7_#)B%LQs6})X7eE
zC)cjsI#al2*#W`0yp@X#!xtK^`BP~&&&NRK=WVZb=G*R^R#-1EQ|0b<!<kx<?h`eW
zb=L3-l`1AY+Ip~TgPT)_#L8Ixi=~l`dF@Y*y;<XWdyB!rC!P_Ut}AU%8f44Q{<h3Q
z@x_#>K?`&a&sc2w>LADD%z&*|m8Ht(m|hWFTbLoW-Xl_HT1rCX6xI|qv6D+*%yzqA
znzQ|QebBtf*S7^67Mh%zP-iU19}uRTwOPG?{+BD9n-e6q$DCVP)g{t(O#FMTA#5#x
zP^?zSt|q=umC3rA;iq;jd1bz6x#+I*d+k=+#)nAo)W*+~@iUnHGfQ)>;XMt#S^G+L
zXKucAZlcx&sgzf8g3qMwoZ>kGj!r2Gn7pRe%JzVX#`d;m!B+;$r+PVdsT9_8yfS-M
z^?_;bP01xw8vL4rlY{$aU-OKM4K-y;d=${zJ|%s1S4fhJ*86EZ46)Z2W!HMnT^60j
z{Q9=A{<`b3KEYj2^8BS9ZJ!u)!F8EN*SyO)q1QB;c*NJ~_Zypeu6i8)Hi}b~dy;hi
zYSug2b+_3+i7>CM`5iuW|8fm35ySt%*^?Zrc9u-oVSQoAPUC$`xSuXq{dQ~pJKeqi
z^vm5pZNDJVS99w0?)UrLQ^oD8ze$P}+h2TZC0xYeoYl5DWYb#Vl~V%a#Ln(-|9?G-
zdAcm~^rykkzjIIgmbm20(g%y2e=k^NDDj)~?!hk&PbNC8+B<*8Q{e!uwUHVx7B%!u
zHDx(*d6BX1(^t`&3ZH9*pDbNkq`2Tk@7A9M(y7bOS(f;Ar|N80v5NSWBmL)4bw|O8
zm>b+hzr?%}Or#PGIOcJbwrU(GId|#Uu0k=_$G<lPapek|MPxiq{(Sp#{<MN^&MA*Q
zWzMfo^nF|s$QyWFR9DM4H1%qN%rf>mo6k?*Px|iR;`MUr<%f33x*-*pH?6p4_3Hlf
zfBG#7k@cb1EjZqO|8Y@x#|);(DH>arIk0YN<M_KLbGn1Hx4VRg^fdo-jz@DCH5W{E
zlYHhr`Q?;P|K#nfdKL$K$}^gKsm4p&b)FH=<ip%0Y3v=pUou@fdN+<)P)sf;^TmeS
z(bGW*c5&zZ&Nn@d;%bG9FLH#M+*_d)HOE6WDN3`a(C*UKh5rARO>T}|caf`M-G!*E
zkk9~Kp6HCFh8%)lR;>#>(s|n}#L(@+)Js?Ndfx?1b2Z|Kn(V#Xuxv}@dhVwuUJ5nu
zauZkTXw`eUX#LhjCqvH%C>kpTyL~U-aJuP}qxrrIyDwcxG;NamUsuhpSr@)iq)qYp
zhm(`te>^&0E6DKS&CT>37M}&bEX%x5rklGcR!i|l^}{dzHp_E6<~>)vk+aQdNz~yJ
zXI@Wn3Y-?gw_c97P{M1qFCYKO<_Fijo%19oPW^K^($j6JiGcE5zA1<GWdznvPrA47
zl-Qk<yAR3>D!8a!wpLo(A)})+#d}$Cp>ffDbH}_Mh7f}{+TC2GCmi*+9Lumc)KGNk
zb;XRT*$USpg4TI5>V$Zo|DL<M^~TTD*|zU=3P1aMcwWEk80*Zj|6pMFKA$wJ@2;zA
z`$P`r?(REtdXrk4gUMlE>9&&EmF(KroBw9-e?9qF+mE@YR~^ZC!YeS}rn3Fln-rs?
zDMkk^rm)-C)pb68oXl{bXs3dG!#3Zo=RW^izSSv|S0l^La!!)az4Ri3qZMzCe`{`L
z?s^~|DrvT1+jXWhb%!ipz{_!-&CCTXb9WYdtXiRB+0MU;tJ&(w?oiXW1yb3Dvb_%u
zy<2*ztIUX>f7y(dAg|_w4T}_yMXcDM9h-Hx-|F5J^SgV+%fstlSsjtJ4t=4J%(BKX
zpw&rM=~Zgv#Kjgyk=vS;j|WeDZnTOmH83c0`dZhOWjhnsd!9L~dx|ME)=~QYxhU-y
z6Z+R}IaM@ivrY8#1&eGfrbRBk^K8<&g}Is%8c)BUdR(ykxI2fVm*`B_m2Q`rZE9bg
zHmv){9e*HFBX&zhTE=ZYzPL~C<}9swVKY_1{%P$SGwqqvLX#&4IVerl713HIts(V%
z)h3s~Fp1WTQx6v(ulQvd-}$I`{%@P9ZI@rwO?B$J@4{YLFM5Ud@kfEL2l|b>fA;L#
zY-+Z$Z%%VV^VXe82mgCo`Cgs8Ktxkw$%F|Dojewrltc!d>R5H^P0cR*+&^X<iZwT_
zf1HTZVO`4ATV>!9dz_<cX6&~~LB~qediD7PPA#7%x{4z?Fl0jRw0{#e|Gv)HsN#M-
zYVviK81C*Dvjd&PSv6h5V)rE<<y&gf!}U_?oMK)5dIb^9MS2d`C+yN%XnggAtyGkr
z<34u1lYhBm6C{3>S=*|-{9R#lw7}$uhQ&kwe!dScOe~)3PmgHZ^M9N7J~uugqbD|^
zsjVkddM@5@Kg)htQIr35mBY%$=3U1M1TLACO4cx6+F97o&;FV11Jm4{#h<KR9JVm<
z<2RJ~)fp9fy=3C1Ye^Pz!Mvw8t-9FOSY#!cC~_*|O0(5Txy@B;nlB1?-Q74RBlPEP
zWe$bOS*o48-|pGzqr<v*>oV@zX<;`e&r(`@zP57urY1gam3*-y(-(y9QL%l-F>S?b
z##;eWUL8}iS1<A5?z$?{ToCPe*wS%l?mhDZ^2R&2E-UXaJ$k+HH`8|&`|n0U^*g1n
zn###mu6$VieqZzR_rG@?PJf;rp(iCJeQvJ9ZPvxk$r+9>V!Q$b_d2E9?Tk5ElQz@L
zV~bvZ*vt~s9{1GHg&J%UtwA2~KOTvH-2eale`bb?=W~y*Xuf_d?6OmyWMfELpl4@R
zK%xzg(S?_S%O(pmIBd?@5c7+5-pgH6^d8jAv=%J>#pv~PLX`9B9hyofY`j-8S;^F|
zRay4fa9QyGd8so~jwFe*KZ{n|<{El6<Mj+@y}&7^OK<*Qt+Ki<o7=Kv*G0YsS6ZFK
zFQiTs^Olxx{`O`^>Qc9@(<Itl=WLBV)qYJXXi2Z7Vv5<F<?pjMvu-<4rqv=65Gk9t
zQZ;t_=}k>tYK8nSqI~LHqXHR{lH5gXGHxHs?`tnCH?ckNsL<f?Z1ae=OFeT93(n1#
zcFMR_v-XtG;foz+F|Q9Yqz1N{`_EI`bzwy_Pu%od`45iq?_91aedgIt`|#SfL<uOm
znQYN??hTJuc2`6BwM89ma;Y=V_|9?8&ARnfw@XM(BJ*mf@9ssddcj8m#kU-e4@)&*
z*|k{K>-l06>z()Yi#)d+Td?k>|Fx)FsbN|(txo#5<*fDI{WtQ9fWV4XlaxA~?&u$0
z?JJbp<GM0%c9+uAYd2FW)IyE!oDNc(vspmtgxK1zn=BtH$AyNbPCAx*YU%oSH_I<S
zcb?rDGIfCzj{#?zZU6mR_V>2+d<+)$mPd;&2AQ~M_5M8MUT}MxVtIMG@nrYuGxu|H
zu2oqo6q4$xmVY>~ch#rl+Z9&F96Rob1v!bD9t+O*`f{&&{^9>WcmC&Pm?7t*`AU0J
z$L)LWdyH6nFG(%cGn`qW`TyWUWt*x;s!N?1#EauMt<H>6nDS<mSiw5yRqrwak8E-~
z*edxUIie>>G?j5>(~?-me!2bK$KTt1eQ#;o!1qeX<D<gUr8|}FLPb_&ANf@-#+SNs
zWxjapvJ#oulFD8)f2|Z@GIP7r%@i6MJXKWe<Fl0pQlSN3ww+t_I!Tl>Ud(4%vvVkK
zgNUy9BKu8~vfQ;e*1otC;5DhsH+%23qkrv`johnMMOQkmDSfi&zDckDR+a7F8KsQc
zvM;v0ZZu!hQ!MMy_Bt;%Tx0btAN%fA4uYo`q_h8=WSYOpjIa3asuh1KKRWa=7uQxa
zp1Wh|`EG>)$0dKolt~`iGt<6bI}qZzZ{5~5PUEeMG+sJ|znG*FQ#o&o{^G*xs@-KF
zkNb4)I*5mSkMVe!y+Y|({z{$sF=>;Hr{_iUu05Qq8kof^Dkl9?rSGNl^QKF7Tb+NO
zoV9V9TKYbd@KuT4SGVqM-LYS`?ud|W)a$o9cf2=P`9y5R*;9*-6g*OQXLs-a_+xH4
z14H`q<ulIeW!%v?E!1tGm_3cVB=(G>|77EplbI_bHLjHU{%mi*tSn>miTk~Jzudw#
zf0as%B!lA?P2fAm_&6|Pft>B3%inA3{$$vA_TAXYBJ}-%MB2MwPZJtWF1&AGSyj^V
z^OCpMYRA@XoT;zYupT-#PhUMl!PP=8Y{4q0Uk4UAtvtMF!@7WWoAZlSX#73I*_~*5
z#QI=+g2~K99FxLSzcSC&Sblc?4hQ)@w=E0G&N*uK8s((CSfsFXLvf$X(YaH%e7Nj-
z@$}EDt;>q4X20KGKGC7rd6Nl$i00I#Z=LSuCf8cIUkfqhy=!^kqW;RhooCFBE!7Kn
z@nrA9EsK1kX6pW_tvug;@p*74Kj+h$_;p(D*WH$Goj>12zG2k@s~5+f%vOIH;jrXq
zKxml8sis>ot3y1G?waDHyws=r$EJo!pZ?_>Fp_RoeTP=9-;`_-c~Yb~bx~|3!;@t(
zJGib{-ui1g*KtkR>X1p#MO`PxtZrR0Yi*SHL6vuTWtw-@WS?wzm=x$e<>J!_&xq$Q
zlArJXGQGDc>1^nivX-e+1hh^*n)&s~+jtRIwL<?_EQ(>bZS8i(f0Y!NBBk_xvdb@B
zfyiHNT3jKDRfe*@1z&z}GCX+lhbMRY5~*#MFB`|4*`qmOquMHA#U%}Vn~pA8Wx$bX
zdibP3`(aK#d3!bno4P+NlND0u_o#oFmm0W8>+g*x*-M$NTngAjJDZ!G|5r69>Nm|(
z+Wous&!Y;4ikF`&Y>qB2;1TO?lX;i^+*soE)1|HJ0z)>Q4Gnm~a@qOig3}oc%L9*P
z>^P;|=5V_;MCP*7N+$P*7PeMaD#byrUw6sBs}%ZuC&6IBx8e^ky+tz5tX~+}Ta_+b
zk{2T8yK_oQP}bYhWaBsQOuuTa;9cT#Y?4#JfAhJGrENi$dn{8|sVL^I>YQi&Dp)IO
z#_J=GSB8azeEG+}a&~%K^_1L3A*Z%i#zrelV}m?I9VaHwU23AP85}<?$Z_SAqL;UA
zd#sf-w>P9bQ*Uk2Tl6xIQSp8FRK7H0aF^<n=N5q`F_m+c9540V?q%M&cx0h*td!4G
z2hXB)C5DrXijD4maHzO@y{lMEKkt5QXSK@H{@<*X%jWUTmc5>T*h2CF_l2*KxyC=m
zW?NNO7vEN2GR4HNM@`wL>I(;h!Thre<{nkB_@I~0tuxJz{T8Qha-Wup?uyk_9WQU3
zzQNC@W-&u9$%gmS&y$R+7S_ka@@53;PjOhdxFq6$mGj}oOH9p;^>vYAdp{cJ%51-=
zwcY!U#U<CyixnQ+CC?q6p1<|8$IEl-E+@&91F5l#wAe1B&PcQlh-#X4lS!J%&tliz
zHlYcz*Bv+-o12vx4pbO9%Em?Ct^9TQ?xgtUZl$mLBYt_t1%C40^<lTy&le1OxdL`i
zw(ac-t?#T^m$dfNOIeQBZc%HwZ;1p39Te$$*U#;=v}C<Xx*h+g_paNweSccUF;Q|`
zN6z8R_n-YW49jd?$079n+#$B-WlOts&g$r1C=G1s)o@)uz3A`X#f<wM`jf+A-YhSE
zoG8Qp?CXXjbK$jOVi`l<0%L2}eUtBWFPQu#+#%DoE%MkbmA_M)WV~IsMeo^FTra-+
z$H_HW+m)YNir7}V=DvP?AaL^b=ZdFu%{~2lCwP{wUUe+6V}bWV16ltM?|!l}B<$PK
z!1>rGQbc6q*06;f+q;WePTp{jKfc)T*kjJC7V<o7Pc+tbPvY5J)8%fnj_+7RMD`(d
z-;1?NMO+o$M}L`kMq{e^wb_1qJ?AvLh@MdqKh3&R^YtQ?=1orG_x|Y4I>zaKomo|M
zW)|o4oo}5N7$0Q4S0dn)ATdR#+0nPCa_dzt_TP^4(l*}`yPhdM{p8U}KW7|Z&cBwe
zxM|}-_Da?{G4k%+nhjx^8PZoQ1ybU+NzL4wpM2uB!2bQGFR9$kl2-I?50Z)%zdEb!
z3XhTZ#}mP2Tl5xeae6ml{<DP+dB;4|Y9IcU|FJOf+5zs8wDidB5z{9WTv80RJheRG
zwYbUdf<Uj=pYBfIzJ3$;+wGfEHd&@^_vG8BslRz$c9g~S(%!{~oo8&AkUgvN)Ak8c
zMml1>8$;4ItjZ3V8b9HBYUd^`4fc@NO=@{Tsoit`)NtKnGJEaZrPiMHwqo1+C-+^w
zUTV9A*xAR+ar7K!bH83{`+kDO%TO=2?N4W@B^cMY{rfq?tnzZw-Kh9Y6U6?cdcI`W
zj4$E$*u5{h>gV?83wJ%^V=b3|n`z>6B0TR!@c;JLwa>5aJfADqU&FZP+4>t(clz5c
zKV$AX<<ncy)#4dT6LL;CnztRxyuWUvSHP#Mop#)Nr?i?r-glp4LHxU`KhEX!+3u1u
zgqO!>{<bQ=I1~3_RY!%K<9^e7CC82Hf8^yT8P85Qzu1(YbE2!|sQ_IjhR`~RE6z8V
zxdoqGn)~*FPl@k2l~0!(6)aW7FFMAwzwqq&61OUM_D;3+E|sYvtlj&#UfgpJTk=Ad
zf2GQ*gd5KiCNr)G3Ap&ji;H7n22WXmz(QNynEIMt!ICAr=N3<3NHO_)`PHeC6?5B;
z%PGliT)VA9;O|Md_h+{)PpY_jyi<Oe{KkE?#wS+?DgHU$)ja$5%ANl2jgNC_oSVJt
zqJ)lWh>z-qzE?Ba8*klrG21)&)1*nCPbJT=ou7E^Aa_aH`<=}_pUmt0tM)L<oL=-^
zbffu>H|m?KFEGV=9Fek4jXcEWxx0AZ6u%O$bum*@CJ03GRTeRXd8PSX-K1VF^6<O1
zozMT`wKr4u%x-=3_C!GDX6Ajpi&pPlFR?L7&)|u3df$V}-%q<4rsmfyvHuma;!QTE
z%J$cxp0ECGw7&Fk_k!(}{j;~Z)T_t-aQXGM{$1%*Q|?RAPxOAjeQhq7q{a4j``bHz
z+S5vy7Ce@#E8Vzd!4c8NmG<>_>YvulKXR&;r&zY4@ti^a3EyLp+oc{Rev{jtS9<h~
z-lBLngJ(ik>56mDh&{czD{{&4wbNW*N%K7X^yv3gi~K_pryKA7RC&iICLZL_l4HGf
zlJu<SkDry!{;V5xefCfFm@w%}NAEKSal|i?_?x_A{s&goqR-PJDqFR8weEi8U$;JY
z_dSN+UE#Zq+_vWHefc7P-X(!AvpzoB)t@{g`~XHjJ#k%AOwmQ}qTN~F|Aa1iarW>u
z<$L)*cD!S@^;|P$f}!QXpT)-I|E5LGTRvsF^5gZNj_rsG3Hy?|;J1U`$^9!A%=q+c
zao53x@7K+dD-W%Xo20n^+1?kHzpp$yGxf>!$G-8g)zj;qUpvov%{Eheeww|fvHZlX
z$KGx8e)nOYR{VMS!v?q8#9#1i?z{T&dhFlj=E>#yK0Kc<OmI5DDmzpEsOpJ=oT>X(
zUJ(7h{^#GgNx2dCek_f<TKBqV%8}HEFLrJ6bLyC9^>x+v3W4LV8#jDhy}J1C^^(2z
zm0_tD_@7DDf33WHe?PbMyy_==oz==8<k~!Ym(Xc_7&_j}bNCH|jAQzYo~_H|r0+PT
zUX(t3$2Q#6Bh2@nl3x9i;@8JJ*$-uzR12TGy1qYY{q$M;Uj5_?mtX$+)T5bqQ|}sn
zzkYr83F}{a@BYoR2-`8QNF{vtcP)*3eiye}KcD(M`N#EC;d!+=(sD{OcDIPX;F-Mn
zsbHnOo;T0t(>ZywU$0{Q`Sf__*1W&`LHG7Gg|Ev?d$jlDx5utOn4h}Ee*84KO6hy)
zQ-SdN{}gBJi2rPJ_W1SEObwpHF}&V)B%!^mM2R%^2OL(1?`Y{1rO%L7oN#sTy*oR%
zgsIKlDcc!yyy_)$to4d5-!~KrZRS2w{P|Ml_N%8~hi+?r{UE#c+`b(<jL)n)z+KXI
zvfyUu|01)fAD2txwfDXdU4O*jjC65#&`Fb@;^9`U_7-7t*GfL~^LQ$7{b^tR_qCgg
z6MRD%>+OGe-uTY>Tw{JsDaW2uU+--{Zkxm1c2h{FFkJ%Xz!|a)%AnYdo1$@BF+TL#
zKCOmhvybu==T}U)Sk!h?JFn_uZFk3aQA>HHKRebtK3?5+cs0}0L#<ISc06L_IsD}T
ztJUE>({eWY6<N9OU$6gha-9*V{M)Q+R=T!!_Vt~&rarW@o__rOwDa{fM~{BJU&(w`
zLh_m8L7{S(3nbcZGFmj9GsyR;m#$bl`;F~AOR)2fO-|o)_xXySR&!22v*UlW+xU#x
zLsqN9EG+`py>$1#%XW=f*YKG8hFizm>Zv;}+?_fv@AK9DX8k*q3_q><y}pWffxUJ2
z_U%`WulG_t>94C87TZ$()8UQe!oTt6X6x3+9lXQ!J4>qW>W<3HoR|0iTIKDEsFS|m
zxq9B^{VH!CI_^5PcHj32tK~mx{rvs)-oF30{`yY*F{6FE<Don8pfZDT`r0Mctu33l
zgZG?>d%o-L>YpdC_w-JRZz*4uS^ny9%)wCM8Rj!@Jn7&2>Ra1O|2?1f9ABe<=lUi$
z>1S*CCZC>b8W-9!>GuC~H?A++|Ef6NaGQnthHLq2uK&%uC$Vn(?z+FdjbHxU%QydL
zQ|^^E=l8DO?ybM~?}+4%$^WzeptQl6zJr!8KmiTOD&X<F#Huwno8C^1S-gAOr*knU
zUY6~sahZAh$upxP+Rl0AHFvZ3S=ZJ%s=u|HyZhQU^P1M(x&Le1kI$d|=vsX9`nzlL
zFa67xT6nkJX8G)oW{<z8ML+(x?QL$t+?}uc55zFXEii7GqO)R$x5)PYa}WLfpZD<F
ze(N1?-;3q_-`#o}#7&=Z`a>kjWRd=b_cQE&Z?<n1V7mY7+V&Uwo)&f5|5|K+XtKJ$
zfmH8@+53Oa{&CX3?o#zV(2Yocj^+Phb6YGp&!)1;{@-JJx63Bm|9*sLr5U^jg}z%q
z`F;Pt-M?@7|HVLe-rd;!Kl=VJv41b;|Kt4sqyK-$@qYQop!)*q{$8(_m9P20I3>v7
z*aPYNKiKY7K9~LTd;foH&=n^4|K7ddTFh7f*}VSqwfV=TcE@*4`Q8w7YwP#7?-@Ft
zeDPW8Kj*{u^mFTzg1^4W^SJl#*bVctm#KMf>;Ferx6gl)C|JB;Y6!!QxB1fS?z#L7
z%RXB!bn38{7nWz5e(U~^f9D_nfBPU|VM<ipk$?P(KP2ujt^Pazrmsa)o%@{m^B>Q?
z|3~fLyZ8V2+}+(v{+~R_`S0KR|8k(4Q##kzzRmveY5M*i@U0l&%QOC7uV-bbd0&11
z@c%#O|3BD$|F7P@KTq`^XUG4R`u9oyzfk@6^7{76moM-B<poa?XLuj5{*wLJUjL&V
zbQMb@$lSfZ?SDLA-jdtBzW(p)lKa2k@9)>Ied&#Sv6XlHFQI$&|7)wxtp9s!ed5lT
zN6q|p6~Fn9T2C)Oy>I*e4*Ng<h3Xmvi&U%T+2^!Bm|Oj9p~9j1Gj})K`sT#Naq{Bl
z+mC{NbIbkD7v8w(OUK{&{RiJ3Nd8}UK<K;m1Nr|S<v+&%{~8avg`xgszI^>3!&95y
zxL##^@bdEVA3q-VzclopZ};}^-xn`9QX?-VU)va?w=qWVWqIE=<J*Vy4~2_8g?Vs~
zP~U?4M)Gw(6#qT(|HpFw@4NEA>tDCde?I5)&rHURX{!sr8m|6xbN*jRK0dw||MlxW
zcISV4h)7Ip4|0Ere%8!ycVPMax~}y#Pqi;ZIcN8RZz=&f(K)+!x&Qn{nNoXdes21{
z$KU?%lts_p@BMynsmIUL)AcWId%N^R)w%iqUe15?<VnlF{~r$XoBwA;n7_SA{KfV&
z;roAu{&~P|e*koE#pVC|zj*I&$*=o7yJWWp*Pqk-|8UzrU)*nZ2y`{dpHu7qa4|fX
zUjK9Y$HVgf1mtVK2--fYzW-Zp)v80``#w$8zQ22wme2Cb_x{7ez~D^Y0m~QL&!iX~
zoWAeN(tEXwFLLzD+b{cF|NeU&|NVd8wtxKbF&WeWy#MoD`3LU(AGlLAzJFa`FKhq*
zvwi>lpL6dYod5sl{KrST#ebYD-`9Nq|KI!1UCkk7%3*^u^A2%;k$tlM->dZtwjRs>
zdo4fFZvNxd@qe}cJ(T~)==F0~tC!{<@I@RC`2R8N|FwF5*TIB_`~TkFKNkPzX#Aaz
z>fn+bT+-hYdpM`K{IBAS-4DNf5n*R%|FV1QH$MBb^90ZQ2-E#}>E@PyTZFXhCmN;B
zEcm_OlBwxd@m2Z4uMtNsDe3(_`L^D;Mc_re<GOuwI!yZ?eA^$L^!xsvx7TH3pM@6O
z-ygl>FSsO9&97&$u(V8Meb;wTu%xXrdEGjtnPQ!P-H+57%-feI_Py)U!PUo`zAKr#
z?vKl@yZzKXdFkHm_kS%k{!qBj_Q<P@8F`<79s{*L^4Vt}L2AkK9S|%@+kB*8)?)eZ
zJcXWKwR@M}{a&_HdCuY$Z(sMFw(7M0{A|yvxu5MV6*r}o-I&L-tNxGd>9zS2S6esx
z*FQ);05+4${ld(*3J=oH<ZqpIH*ww1(sgsD-P`=^2Codm_3Yy3kM`cIJ@o%P_x9Nz
zcU>!f$2E25fwEuq6?gYNXOMp!-6;NmXYxVuinc^EX8jBBlqQkJp3rH%Ik4*Y@pa$N
z?{#?MbvNAh-KzVsQ~ups9(L3A8mGC(k27!UmE*4et<IHCeeU<8m_4v*-_CE#uZw=v
zP1ZVGYkMro^+>(={m)gIs^72Q-8=nEVfy^0o4TKF>3uK%lPK}b>;bFQX2-BOr{6zh
zJ(X^=e`n9xr`zAfZ+^q3_qx!w{ChxGulUpQ6JqYn7k@vG>$A4pd!_C{-!WmWyo$5O
z@2b1x*AzbBwLkWFM;FUs1L-ErAuEZ$RVRG-r@POQ^LU-I_5RVdGg;XtF5I0W-Tqs9
z``*}fGoL#4`{wNXd*AJBk^BqpHTm^EJJ0>B$!G3dbpIdIf^PZU*X#q{&6d<VY*5ap
ze_>|t#q|nh_3B#ZcE0uvxGa3_Znb`-xnr!l{{4GRwXtFAqJK``DR}OuP2HZVh41v1
z7U%5yd-qk@LFNdBomXWiMaR$IfA`y&y^62@A85W+l)CN_<C$uSww<vNkIsSO5t9GF
ziy@>x87z%84El4*<HM|sd$oPrES|53z0;L-;OVs7o!z?xwrkX<o4J+!Syy-FZOxSG
zYNyyv<<nL5T6fEs_jpb^Y<u+UZaek!AVX)jh`%^<R^Z7*-umw48tWg~ZS#v!h{#Ut
zU3hy-M0>NqB(X<M93C(8y)^|}ZT1AD-|PEb5w^E)hv2sA=VzKNq{2<Dr}s%Si^A3d
z6r@PBC7OX2^hgWn&Puv_zT~&xvdnX9>#O5_<nlh3@rjsH9^1Yxl8Ir~vc{KI|0NiL
zJTsoQOD`4OqQ$@vm96pi{q!J}%ldX{>lO7btozS%kD<~yO!@MaD(kC#+Fot@1W(-k
zARx9Pyn};f!l%pcgRP%j4@;VUu6g$}Ioa3S6Q>`W&%4R9R4BfFrg>{IN_u_3VO7k0
zXDvJDwPzOTPxmP8-FxazVfkUp^Wmw<_m)36sddisSJSnql3Z?v8L@L7fB7N7P*7Ia
zw=K3Uonyr&huG^34ZCC($nh~SG*>lf-B~}iY04@4X7kzAPyXJuoc-&1);)Vp0hUin
zDNf(MCz+S>S(N{bcw2n`e67fu(uU3d_;2o*IQ{CWeD`-MK}DzaF74ee{JPcKysm$H
z&#|?+e|zO8KUrP)a_aY=EGJH!XRT-ddtmjQkYB0{hil)MehSM`X{zq+l9qlfH{(sr
z+ojA;{{CNOxc>SrrkT4QR9&r?P&>q3lGb{6<L;OGUNL(ZXZy>{Y2H{T^mdJ-l$`6A
zz$TFet@EdFIdPq^2)I{ppeA5t$Ib5>AD)&>Hkf~&kwHJ+=D2_TCt-#IpVQA5*jaP;
zhh6YWvXNtAP`j+zCuhsZU{m#nZ`nHrhJfp)C4xnl=k8hDeKYUt|C&V)a$+o`Zd`c2
zcB_Hf5}^q1ZZ=I71%{=64#jBkE`4OF;Qa3YS@Fr=Gxt55^I6(Y(RA_asI21mvjuJi
zdENRj!6`ub$@cKb?Gx^c{ET>>e`m@2xX(ZLw$8rs;gC)4zu5A|Nz3Ke+@7;{%gQ3>
zBieDQ|8lSPr<S`-3wKWLE8TFe<@byJfANm?RovgbAA8p2o!BjP`FqcWBiC-;ORM;{
z+_e9^Px$BkPo<Tm@2Lp>R5GcX68rwn^&_d*!?!Q{yFTZr>09}~WeO=}=JVOlyiUaE
z0fyb^)x8k+#o+eQE!Pf3IOjc#y}poFC_C9_TdTIhp>s<oa4r3I(K&XC#wn(#>d8hs
zm(D$NTfcToZIX+Iy;<z_#El;Wzkn{QNw@zi!0=%*e|_6@b$v#LYg+^aR<J8G9C*A~
zx#r#H_z&m**UP%9O}#e3@YL_Fj3;F`dmleryp!*oYWSaZz7y}>c)okvQ6q`ZrLpev
z@m!1xCo#rHW=u(CWmxe_Dm9Xc!S$;7x1F2k|8|m!=9#tZXpI>&L(G}y6CUOVd1akm
z6marGKxW5+pa8{9de>aMT*M-8mV7yqntDC&-nabEf6mJ0ujlYguI@=;yg5T_PB?E$
zzVz&nZ;Q5M@&wMzN)etIqhGN9kJS2C|9=;RxrlN;xV=AoDzoOS*P=<DngY>E^4n#D
zj)ZBmt_%rUc<1JieYc;y&F=~K3N*QH$?&i2-v7CqMJ`QsQaWASB*0`99GL56$(q77
zF;2C!_Qlh1Vc-14U8hQ9W%=*_cmB<N@%{fR|ClQ81bZ;bJ~x@!rMr*q@E)!>(9o#f
z%U-<)a}7%-zPcrrdwoIdFV<5@mdBHxiFcfSI_b%~Ymt+-in}%*Jn-D6UoE-k_~in{
z-JW@OR?k;{7kP5$)e>eaxnl`pVkXDW$3IxyU&qDp<6?h(OZxfwKaZR6uGzRkYrlq#
zh1HQYAJ0qrxm(Pr>inHy;~4p?S6KZ@^B0bDzxSKQ`seMPq0hk3eY7Vp{*0c1{r(T%
z^~JaBXk?k9v*N7#Vna3deRKQ!<d%9Kj@A!bH?3&*Uct}b4Cfv_n$z}tejOKsg{5_?
zz`pt6yPQPLOuJU8+;3U6YQYMn#_s_Ww4|exPBl)+{G2HrbpLNok<z#7WZh}r`yXzZ
zasHyD{kg->;?J<|%&-Y(@$Fpd*X^LF8Y1z$G;)E?p=BX=baq}e+)@8m{zZKG?4y&+
z{?9S}ko7vJaZ>1{7fU5lCcV1xFEw=G8ZQpP<KM$oIc;J-t<pGsl*#w@7c)-*@ouLJ
z8w<oTAG@SJ^;z07O~_T$EN!*aEUjfZ6+E}@>+vs`A9lG^cG|;VyK<%}mKxdVRZU8H
z-0!MoDs$WPwnUHg<J76=cvV&N0}R)<V%D#k8k3TErui}-a6h~IoO{r$)aF#<<s6T4
z%nl#DX~~eV(ZXFi<v?zFqXNI!q5}pJQ*8g<dA=aT@#2Q<;y?D?(tBd(cE0-J-3^m-
ze7jQ(I<4(2k8M65$G~7${Y^8@=KJ>a=g(hQHLoz3Yct=$)Bekz|3Bv+KL2;UfNHaA
z-ly*qHeOqh8*O4ZYsZ|&N-n3)pZ716`}ODNP0MrV{TUfH-?Y4?an`t@p_NN;^~Hk{
z@9Q6SGt{W08hm+v_;x%)+|~czSHEBWBDekKO-s99FV8bD%(wkLW8d8hqhkdoj0`?*
z$~?#Zm8Dxvx#jLr@=&!Wa3^!aB9$oZt|d>3zW2HYep`J~-%-;z*Zc9$j~~5t#OvmW
zb9EFJtyNJ_U8-*R`ad5-RF=^PVS$p}av>7E%l~bgAn<D$*W9mq?|#pC#P~(I<KwRC
zs<N)1t@6b>RtG#MIE8C;u~|K45LA9`<hg!rE64Lg1r`S)WKu${Zd|ope*ItK8GGBW
zZ|_Ie*OnZ+XnKXy^Y1w+@3;DYJ0Hm>@6~*l@h13m!3FbOcixEKcys!$=(Q-5vqI_V
z|7KauKbs)<Y@(k-+F$!V`)gJXEg>2n7C*k29N7NfAY{$Ku8SF7;txMJMDpujm^oMR
zd~V+DX+^VVr%u+rFg@bj^BMYkT&l_p4`)jF=<B6LoJs#OCspHf>TSN}j}i<CJx33I
zVYqy<<zBJ0(D&Z~`A;UTvHi@_v1#|R%)-KV>R0sp=0Co<`8)%|@$>PIzNo}K(Yqko
zeM9aT<8gI$hCgiH;-7uyR$N%MenvSTLu~qn7`=@gv*kDcWIcC&kM_TtFC}$P>Feng
z6ur9r>CYRc)2T21`@R-`op{i0j-RIaua~?1Kc2Ab%HPGh@^0NL*}0`N^r!!Lv$>yv
z!T#sR_9<M&Uw#O*_dDG@u;y$_K|$)A7;!uG*kzrwxh)r`1_u7tUisk4Gnu3BnJ?<@
z&$XVz^1jR8?q7%4i`111x%b};5mQ|fH06Be+{IrQRYfjYBqui8lt%QQaNT)9D(G&^
zquuXr{?;qpel1Dx)}JR&RL}YUouS;?93r*rL$KT0N%0*gYnW76d@??7dz&Eemt~p8
zDXvtDHZQGR^FA=CCazKC?|D4^d|_Et+l+EPj*PjhE*?1=mmc(0N|WX5&ub+ct|e@=
zVPVjS{j$g1?E1T#rYZk-*)-HN9|858zv#pTpI1EmC|Z*@wx!T5%PVzL<gea_hC;Sj
z=}ST`t9ArU(e!=w_W9g1&RCknnnlJtH0H+XOv|{fb|)@j-;89jC;QT$r(5t|ywTmw
zt>cukH&$;WN6^N!n+XzSOZoZvE|#V-OYdF3vSa6S#xLHcJBrJ1t~**J*?(N-xwze_
zPoIu@7v<U8+ADwFcXU&0ahsC&*+q)wMN3&-Lzi6Rzh|L3>q1Fvd)m$gQlB?>OP+IL
z`TOLJNV?<Pf~vZ%&7cKmM{}nAs=vG_GiudDyF6=~+A6_&%zK57&CdV$_wA2E+h(+y
zeOD_~ytI}zWyPNbA&!?aIVOhi=W>T;bWM@YR!B-&wn?Koaek@Tr0>T#pT`)<7|Xf}
z`1|)|@~mGi<odMtXV;>y>mJ-R>?jJ>RNXtxkZoJ{RX!`8<}25Ibh>im7{3`b_+@E6
zztGAh*xfC8uGz}V(?L}Al-?ZXs9+QG^2_Ia&&^ua$osgz>DZRsX5pV#^?vY+X4Pk3
zY!hkj-dsFq?%Y6@aF46zmC8%~j5LcGVwd0E*7`E)z|YT59(-u{x9#J(o$j@@Q|pe(
za$lA->YN=Lqrh^i_P=@Jx<x!+>u1kY`SmaVVoUOiHLYTGcjnLN`(=MPh8<KTvc}rY
zahAU8Gh3Cn;`2|L&o_C}p9j9H?wYJIecuibq3_!cZsL4;-HKUOrY2Wox{BwbT}wR=
z+3_9GOFd_up84?Mn%2@jvFf**7M9uBTOU3xUKjZ9(^Eq|zrQVccJq@3%|h3FHPRQ=
z%UE?`MfUvZrgHv)?CrH{O+35gRrvOrG+m1@S;#y6tWbAq!L+&h1%{vB))bcYZQc-B
zT3F~N+`TP(?-#=_?-!O%NK|$acU|9gu-ERBnaHQ|mI*>$(*qW^%-Yzt%2gz4vBs)`
z-3?u-QcD*VS^F+ru)9gDPcOTE<>|N6;`UryRNx-ox9B~Sp0iVBy6&{@2TJc`JXiWg
zJ7~H7JR9U;Bpf(lN?5`!y(QNeR;>wFJ1+fV%ley(_nzt7X1}S>p(BLL%PT6!n%&~!
zrJZ@3d1EXlh+U2hu!_39)$^Zr?a7rPWd*nIXY5~amTO{-@EU=P-F!;Z!i3xU+E2vZ
z(0z~+am1Q2xtY8E_92O8Ma%x@mH*2FU6afgi|tEE*rR*+nfslTtuKYkWp{nBom%{2
z=Z@oNg`Ou^HS3+3Ds$=nwxGSuJFnY3xM=_z*Wfw)hEK*Zy^QU-%+;S;&P^(u@Y-t9
zDa-5&lFk>WY|CC5_9bcO5gnJ9TdB;Ct*Y+s=(g1Ho|5Xg|NbB2_w^<V^i%uay_r_l
zxYn>>=a<5rN8TKAFF5b#S5Wij?k)Xueg^R^D|Wujh`uGoEuX@pcc%4N!UNx5ZOx2a
zM(a*y?RZzccpod@%6)sb-g|JWZC~zM)tx2Jb#@7eWbP8nwa`1A+8x=kY4)`PoYz;E
z+i4}+-YH7{TOX>jzxw0E>&}L%iUDD&Y|i?vVnK;FtCpUqF?5&p(N5ni`RYMa{M6#E
z8P_!u6$MNup0iNcvbp>lZ)x}D7mttq`ngrAF4#T&@I-^@alTxPD;JmC4a}PC-{~nB
z&FXOU#DXgV7gP8&n=-7uFMj#4vQfhD_L1lPn;wa7{5Ey{-rec!U)>wdte@iNcXioo
zg_Z`<iz?c^p#n{}?njCHoZe%(n&WYQm{d^Ov6R~<*WQd?ROZVtL8MT$!S{ON(%|2o
z97TETOTu3>7>F&|Wt7XVxL0w0{a#(Sg8b4yH+6o#)Ox`CB}uDMs40XyOhQ8V_N9w|
zM4SRn&D+Wsd;JjG*JV0fK}$IL78vJq=wFy=t$x0K^Up<kJXL-i0kwiB0+wlbK7BMp
zy|sbkXO!QKh*VxL%_4nS9(IkAjfR?E_w{eD%-gwjnx5OT*9kt-@4ip^zC+;6tv0WN
zbK>Vr?*3h~&p~|7=U&h0$>LI;t)20)S0(yu?OqlbI679A@*8Ux#{S&3?sdX$J>8fk
zDxT}7acRxr_c~#+Fl^F0^G(egn3Q~0bZ>Gn<+0oom0z$(LGSOj*_Stj3#jjPTA<;@
zlXR+8@1<hw^9!YkLSmnI9>2BNxlLe0!Ip`S9td<Raz4N0Q}CE~O1Qm1xSpN4>V|Lc
zMa|^QRBkW-7~^$f2A6Wls#g~!SLpo;i{N;@AY|W9!M;Z07rS<Nz6gryov`J@%k9^B
z?LLd@J3T!<=YPrS`-RWF3eqgM#IecVdDktZ)pK^Psom7(YuA;2+buBRx0o%nQ8u7u
z_tvn0nMdyKKR<2%b-9V=u2aIZpL(-J344{LzU6P|n|%L9uh45gv%G*v=CzZ;8}8j=
zGW;F$?v?g|xESe{{QpYJnlpJXOZ-yK&EfV;m6w%y`jh*)?AOb4+?O2PS961r<JsAV
ztX7}Ja@41vJD(o&En0@>;r6zN;$6oiW*9^kU%QwTo!P21rLpkXqTqj)Q5rm1@*lNU
z-_p-8lh|?V^ulT1Tx6!EzPzRPlz&@pknVx_fER_w5^lEGY(L8MIbhoI+-WIF5B>xl
z{jXG`5ZKy%FTvuF!IYiSeePQv#GT&#?>o+0p!fFF?Fql#etYQ6{=vLplU2|no_}1a
zp}}7QxHy^HwVrtKzY;u^u<7dUllKdX-~VBGBYLFsW`e+?$DxitUj!{{<#x$?c6|}|
zMWMBSj&X+GJz2*8nRDj+3rl@xN>BfNYTmm;&%O7r`SaH8{bt#vF5B+4Phm=Zu{ks}
zAX5MG%ri?ieV$w^eV%dZrGv36xO-<v$(pY(*>6|-J~}7+OriGvx36wa%vbu+D#IY+
zb&;(-gGEOtSHUX%gtD8$*Uvhp*RQV%ugke~YWlI;=ewVNTd1tSQu1PX>$lXsx6JhR
z@#e&6d!@AH8_9~lz9izsp%J=(L%KI8H+@%q=AWHSv2Xv@vP_wBvS)pOfa1qHN}ppJ
zT*Yt2tjURS<Ou512z5%YQ@!(lrg<aASj^`(mCRemd^=?|ex>+K3OTQ*S5Wn8?yd9w
z{)JU#U7rJrvdRkkA`8};`8ro#VzOgm`0+_1^y%mP)2qJiEZ8A)vr2kh)i!}}Z{Ko8
zt?U%tm4dU*=<d&*_T<*Pr;87{pI|)m+<4C1AA3GOe*E0R_M6_j&E1w((y{fjNfxnO
z`g_+ovDDf~CRcqpabM1V!QsD)o*V7no%8vI+sbu@Y`M3S$^^aY=E^*N%6<Qte!SiB
zlZ6_(6?JWuA7VG;dS`aJE)4YGl>Kz>^)5G2r59T7|C`^r6kofozb!B9U(HY7qhf6G
z^)XW~tzg?Xm+k8WrH*r!CcYYbi|g1V&&_}OhpF_X_r0mjT%nP{v$NM4O7;HD=4D^0
z<rJoyczJJZiv4!Ujb~Lan%kYTeY$Rm$NV7Cl?BtzGM#?F_`rA`OAyzJ7Nw^vRc>}(
zl6rj7WM7Uy<HhMxIqdd+NA4G`y{Z>4KH*%vVsL9y8Kd$04IQ7dS5~k4ab=6s(%-EL
zD>qy?wESg)?~c;%?SGC;Q?uWzwqTAeYqsN3W8dqFFPF1~YJAv#+-&;F$fYfMUL6l!
zDm?urnq~Mmb^3F=_0CT!Cx=boZ!=}<{c@dQ?#eP5nV%Cl6cc4K*#kpGE3;x={pa~C
zRnd5EkD}hw*|`$j-kV;f?L3mXV&&h>^7S45_J27T3O;>O)jN0IkUMpsShwXZ1;f&r
zw*vyFX*93dtKl^zu`zCH=&Jd<8NY=;lKadeo7<xEtauiWNjKZ+g2Y!&wpT42?W`>i
zo_>Cwfx-UohvO9=UoK~8`1z*C=iihmE06ST5b$zh-T5lP;=p2N`$9RMtW&=C+mBjq
zXl+feuzanP+jZpM|BwE)`~N?g-2dUx%>2)nFDK7wH)`(wDHAJg=9(Z_ySXHAfecT8
z3-jj0UdM<9-dnZ4?mg%(KK=LqYtPf7tC$sQ<mzQ_tz4r$X`<e9V-xQ9b9r@tgwDU7
zuvkNMX@<tq0Dg7}o<oajOpYy9_h<OQJ2}u`{^o1%zOtC53&$Vc`EQb`)a1zPiDG|r
z<Lv(T9FxCnvf<FgDX|J?mv?V+5j68)TWt7~af|Qe&sHBRFDGu?ytMFms(s<hZ|^3o
zzBEx%BI<Tx*~8;Ar=O2cvYbEBaL!~tvz#|v6MIf<xh9a<yi_N9%2Ip(oa?ctPToKM
z^{3gfc{PXi^6QhO=FFe>=;reIj0|F%KX35(Uc7Y2M!qFxSE8I-iza+6=vbwZ;kR||
z`TeKr_;Pph_bj&g_wx;tx_&<+!`Y&VJ>5&=H!$1P`fJ}mKQ&AsC_OV>b*}ol`elY^
zvN1=@?ltkwK73U6_qim=C%g3H?GF3beMx3G(EsoK|8{@-e=H0IMW2MuCiN}*YCR|R
z`oi4Dd>fS|lWkWRO0a!aTkFB3w)BJGEM8aNZ&}~%1<E@a^=C)7T#8w~T;0O{<E59I
zyOYnHYxYVsbKg88vFx34$MNOo3%^~me>XY({D(K2Hyqv{p*Gp5LqxK@c@kIam&0c_
z$R$~P3p}<->*SMsf2J4G?J)<eyIl?LbpQRYZvSgPc$Xf_asBzs49`AuTlwEwx0Ivm
z-v8CR+DzF}C(O{&JUKBkH{jKdccI&+F>Nm0BRHpTk_$syh_b#$m1@GulD<hN&qjGQ
zZdw(<K6&TICk*Mw{r}#V2?)O@yKh}~*RJ1_a?CBn%4;s=oS8YZ>9$yIL1KK&oX1~U
z<)i1-ei97resL@Het_ZRDPpZ|qA@>?UuIr$!OnmFzIHXY2iD9Yx8KjHei$X|aqjiX
zzt6>u=d=pVI<9Yb^v@q9?`k8>S$qzs6IzzCmUPJR9T%SBm}yl1Jhmj4Is5O%z)N>4
z@84COlyz_s=hOf_zw-ru-Xz=bzdG2x*?2}lPETopS=dyMm0n)nUeBfd`va!3J`?}9
z>+UvRt={cN4_10hdPE<dzPD$)?yhx5lb)?V{5)O1@Y5yj>(9hDUwL-zQm(p+WVDy+
z!ji^=Csr>#wd%m1jp2bax3w-cF@E>|%<G4&R>j|s99?8O<NRNhH#e8hf0S<jmHSJ-
z{V&PB`Nxl*TvNW#@S0kAe6r`heFA2>*Pb(PIXL%@#O2d-tFzY`?&!*W{%D`+%${|x
zH*ko5n0|hKpw_{UpP%or__}kexOjTRnRAA-e{;S&`cm?olk6AJQr{Mvm+NAkSbDc!
z64II?_tNR-`c0pNw_mJqDZ0OF&B`@r>hj9(%u&gFV=(_`+21#l{Xqk<E%WPMoNs(Q
z{k-96wWz>*8EZUM_pezxDLd)q=SS0u?G+7Tr=Jpg7gK*n(M9dxR<`cc7oVR$H?b_c
zHtF)#5Y5#Wo^Q~8^<4aUdWQ48s>sk8a=*6pojhprlQE-qbLB1FXE)YNR@uL3)g|eD
zWl;-U<R|{D@mneLeEIT-mMzQHWh=xyTRd^8+19m-yhP4f@*GY(`SPXav%<zaD?9e8
z9ru_F^M2?~_s-gU^eC%Xx8%vHL|vaPBH~PQzjS+D)!4GDw>-J--S0n1cHgHuZgTy5
zSmy2Z$+zw=i2PNUW;XlbpGQoaXPnzI<6z4c;|TW0Z<b!4*xSPUSKcY1#_HIcL-WmZ
zFMqjJ??0Kx%*~E%$+vQYxeKE{b*DBTJ+u9Ok>PSLvqP4jZclVN(3agiMabyHUB>+@
z;*V*W=U%^krE137b9*>3mhqgK>pWF;?NOsQa`WS366`+j{(gGd%eP|QniI7ely=7l
zUfFd)wM$FFGF0{CyCX}Zc9{RUP`!iqRm`e|x5{Ln9h7+YwEOvw7l%O?g4g~s^lQrg
zQDfJhIW6S-woI`Z=WC9nn9Wa?ymNQ=w#BheGmfzQP@5FAn5)h4@IiscEBn`oq;3qn
zys!3HRJZGdb@N-jST|?fx?UD}_x6)A{g##q`<8CKB4FepJGD(qq(t&;HW$atw%@bM
zZ@<>`_@*DE$<ShWi1FHzUE42C;W?+ICd#4s;Lyeid>ale>Rncw*Ejjl@+O)66^+yN
z_q=?1`TSV}&UcT@^X2nzRcdFQJTupNQ>NthV!mT8uARPqZ-WBvPYXJ@ThZ-&m3yX9
z(8`eVh^4Pvwz9=~v>F}DS#bAz!Gry5KeryVWbcUJbagJ5`dCtM=(_9ojwciJRaaK*
zSzKZ8XEUFkx%-{ng%8UN6q~qNw#rXhxjcx=;NLb;F(avIjwyfRokTbO&)$*4vrYT$
z{%0k1A1t2l*_pfPkpIfW*0zkxk5lGM=9<{sSU0EZItzEoRcoD<=5vd)j|aD%e8_6G
z+1X--!Hmp>0lj-{3ah@%@OmFJXa2&-GZ$UWgV`tXdM;g&ay`M|(31xY3<VWmSSDX&
zX*eG^g}=lh#$2=X+{7jCo_rBGANM1qso(ye#PNq^*S8et`DX3jw)ALKdekIatLzni
z^NiU#j1trXM7R!5Ja0co#>arGa*^Hi?}>8#p)!{qxi~CZq0OVdkKbB7LwRwe-i6kf
zfQJmCch^i^w8<^h^gu>c!(r$6b9qK`lNWE=v6OdW?VKiV2G@t`2fr3He7sVvsv~af
z@Z$^f<+3My@0R$?Rt;hZn$*2j$IIej{`O;+EFWLyHM?P@z5M*P>vnqA)AJslEs2;A
z(k%6O<@^8LN9Tyiy)BYlvP`p8W1e)7cZlNkdW%^J7N4XQcWEeucrD%eb9vofkJ9+x
z^?Piz)*5nXG9CV?I7M$oQrFhlFxx{HO+&L<SA9A!$<wyNS!?noDL;=jpSPt8?fs^2
z(ze*p?XojNgPylZBJ=ebeP%qLjpDtur!4%>-=@stF8tyWyZVIQ-_mzO4*%WR#QkGZ
zV_|Sg0Kb96Z$p<=N=wg2G_Q-k{C}!bB(EXI=h>U&E@bbVs+3(V^Efe&lP}f~GWW}K
z*x(FkNx-vnoq`&gDqR8EyJh%3{`k22UzzEFH+Q6`$?mUc{QTK?i|-xJvXr_|5mUG1
z{mJ%rHb)MA0kv}tY^}J~hdOIjCWl^}ZEMTv`2NyObMv)}&+AW;&bhwr316LIbi&3D
zyN{kNVtmbWvUcrO1IH(~OT_|z-i~b7D-P@9JGD#4@I=bn#~)d)8Z47plKe5CeA46Z
z)0~{z|HbpVSyX-D+rrnDJUMvIzAr*AyKh>$ZtB@u;FuLICfepKzgJ3DCZVdJqwvPx
z`F2)b$5LKB(|dQl^4q>05z9*$85LDMm$X0Dl-vLKxPqeUIj7d<qcwcuqCAn#8k&k*
z-6UhCtj=l(40w0tG3QlvF|Tzd56&h9tUkZw!MEuBk6sr@*MD5%G-1Lm_c?8c4Y%&s
z<1*SErI&6H`%WoOu~{TqoOS08{`O=aXO?|(eJA#Ko|>Yx$+zaezkBlU<4<!>-f~vi
zx$9cjs$7Ze3tNPZK5RaAXhy;;j)32*7deRf2%TPZOv7fs2Dit=mA-OsGWO5=C-LO=
zCLM1dKE7HHafi)07g#QPUM_vIg5ToAf-4tO8&~m_URbTT>@xF}Qkn0;Tvyb7|Nj+!
z>+U_dleZTvZ)#d#(pzP6WXtE`<7pOZ%yzFQ_&5t*%6ss;K2l7B`~I`T4+X3|p0Ki*
zb{|OVXDqe{<y~VA&5WWL{&tJ1N9yV9?d~CUSyexno~x@zv~@aNHhHpU=IL91A06@M
z+Y%(v-n#pmmXAZ8nZ+*i$dEMcsj)j^I2*#moK&t~+_cJ&gS+cvN|V{MLyimP#xF2k
zxn(YQ_g6FR?a7RjZgDO(=y)2Z7Azwp``~W*;g2<cIHG=gZs8GkNtyrh;6z`(MJ{{g
zct5<jTV5#e>vN6W;g1gu86G_PB69kH(QPwb{|)N-u(bd=5eu&0R6B9-py08|hFt}A
zzQ=;2{%|Yi+t`+Ed04W)Z>9*7)|ANEJ?<61-u-51c$m?3S$Myr(fqlKyNkYF3yAh$
ze6dKS^J_vxvVh9I_WpSZ4#H12O;6jbRlA4tw}!$w|LU1jnb)*C+f;qwV@NQWl^_^<
z<2IYvJ$vR4MZpt&C%oPu7<5JT)usD#JnkxU#e?oX3V3|&&Mn(ZzigiV(vD4%__aQ4
z*LFz`#e}4+$=;&DOT08wg0w!#PV{1A(hUDw$182F^uF84YsCh~&?%;BlbNq1CT}%9
zw!H7)dHY4nn@ZV?esp`pE(p*}-=*jMqJZy5@5+!%CA+zg#J+pG-pRp>QS_NhsqK=p
z>dCxIzi?=7{`Y><zx4`=8og_DE-&kdpMU({d3A=*RhY{=tkuhxEaOOuy{NV(sB2ED
z`en^?=g)13XuCDZms_~Z^!Q=HW5M!_a=mUV4xQU**w!<@C1Cc=y*0w^{rA#7X}9d(
z{&bttq$Pn~t(*KNzEgkyqho5Z*kplTTRXdBr^U|~RK4=u^d_h88mo2i<Ri0ptqEv(
zalOFgV4#O~#iw)0KK%V3?){EuV6d^OnWCiq=-ErQ@2r}lT}HEH_!Q<e*nFv8aZJL8
zzqb0>-~Ev$8$ABji~RauVdECd`(n?^*OO8z4z>H|{m5MZ`_J9!R&IM(0v%X)W`tg~
zsQM(qQ1Igg$7XeZ28Odmoq8vvXQz6Ls+CMgKVG<e9eaS{EK@1oK=#ABu^L?)I5tM|
zHl3*3Wt&m#Zzt#Z;zC+zWO9)}*70Pf%dXc8*cDl4nn-3ZbYeNpDc+;bs4AMovuIV8
zm6(yl?~gkkf4nMY)LB}l({*8b=t9L-mF)$g8b($nX0bbR;%48roRqG;bmiUf`|U5c
zSB5N{y6Z@S$)N;`j()GS4zEi$@?wLGEO#t9!Sz;N^;*!1HD`CeE&f!;*$|@O8aUz3
z-SeSNzufQrH@@!U{_e-Y9ic1!?bzHZ!u;$XXaz?42l3?-yjOTnX_aT_Ud0oXv0#-}
zPn)yW@of=i9nB9ntP5<FxwC6srqRY2y^KW)F7-mczwKGe{#;w_>~@Q^<J>JlT+O%q
z8J1mE)|po!nHd>+<=FD&$A3I|>}>P<jqv~9A2pvj=H1#N`>0&2q_KIz=bz`Q-#^;>
z{XYNt>W*EjG|n!N<2n39Qs*mE)nsGQC0(w82SXe9mNHEhnBr|A*L%@q;eY*UD%P?*
zY!WQX|E!X6(DLN_yU5(~Hp}|=|Etxvi(Ncwo?{`(>b7uF%Oxpx_ItiNH|xe2#6_6t
zI)tjQEC~s@6sXC{QqQx}<do69^^>oZGp~8~`tA8ce~gqSw~H-RGf!D5lKYQSalsOo
z+eeEM+Lkn2tJeB```n?{5RKT3SsA}SD|oN1^o|Qx&5ZAN`W4rtW$z%O(IsScYW>n>
zLCq&@e0#RWaq;M%6gxOsWvau|k9D@0VM-aoF25^#db*EZ`4^SN<@4hk|5DDii+K;P
zd;P%5xmYV_<zM|?``@=dGUl&;C^OabvMVERJ)el{#7q23mh~3y`0}@R^M-3dTvIlz
z+iy5;yU6+48P~zvh6J3xlxa`p6IWXrr0exmJ<9c|dfe3_&#Muq7cJq8U1%D+B4zSh
zvv#Q+kJgIc$p3uQVe{5l!*j26xisJJU(yj87#d>q_QMB(#}^r|=GFasV?5`)9s@)7
z&8AreMl&DHU2ezpzx8~*pnucB;Mj13V@hF`TBVE~BD}XxeLu|;`KKjuy6-HTegBWY
znBQ{ALGm-_RxdXbuZ6ta{hMMgHLY2rbt~s$)Zqx{i45twQxET6D|zMLj1<;6_g^hO
zDJpYn!3)jPyTrft`DW}AJN7FkV5!NJD<+-W&IM>{S-7*!i1M`3lfG$ExX%3MYuC%)
zc+`U|JrpOYJ4a3tIeYb1{u8(Ng7(|eE&nFo$)6>bYmpYUbkAqsm11$_FUnHa)CaF%
zS>UiOaa}-|=_#Wg_n^i5S*I(#xag66bITOtwNqY971*7BPt;s>TlZ<JsZ*F*FP*g5
zBDdsQIO~HT7Tct?t(<T7N0=FGY78p;_`d4-fn#>RXT9I#-(52CYFGK8gSWoSoiatl
zM`QI8fu8G`RlR%u&pwxbhpAy}$lZ1K|5vW=s<fTcjK1VewqaYT=QO>oEIu6)S+03k
zE=h8vhbsjrHm%^E^h9&1!r^O0(Ix`1|JU9-(fU_(4a@p<f65A-E5*&GvAPt^n>MMe
zxioNLpJ2q&lY2`{<QA@Rw_C;czQbnsho3LRyH#B}+Wggm_k6$ioPpu}-tTsNe0%TQ
zm2Cg{h$&WwTiGhW;CkM2*BGt^zh!He#D0oB>Rs-<Ka6XF=d|b-O0ESDCq?h`IKD~i
zl*;01Oote9{jcq=y!i8Vj<AN&mY=6$X1go2)E!bkD|57algG}MLlfl=Ncg78O$`WW
zUG`$iMzIF{=!~`Af#QXqjmlT=2>-K<f61q41<&=DSntM9QFXn{y;fmrlc{0T3yn(;
zSUhy6Zr^yxYU$NAf8OSvRQ?;j`SUJ8hVU)*)21!l>J~UnqkBop;)fwiCf~Mf*X!}+
zV_McN_{F5|qO{@k36b-5USd6UDv)Kbj(5<PjJ3g6#QBuA>@Veu4ftTexW%_fW%?%h
zuXjc69sN@$6Yy}4xvR|T?nNs8+_6(c9K)j~`zY*ZvwEH|<<vTUF{>^1-|L_Gf_nSU
zpKOwsk|=c)|GP*hqjBBbwlFCxoo`ynn&KYbor`>a&fmz>R>-C{MdjmD53{-5ztz@n
zXFha%YX5>0Q<gb|wgm+QeHUx=(mFB0CtwO!_sr?Lx92iH{`2_QW5s!PUn`&Y%gHZX
zSNkvTw$6qesUx8~U#jS8-JP~BWO_>Z-tV`rp4{|-yZDDIM^2~F6%oBIA=f(vm!zz=
zq=sHiITMoMo65CRBp`OW&ukfnjjf!wO3PMs#OBvC2yB_K`m~f;j@{Kz-|nyTPR=XN
zT-Y|D+;8$`Jx_UG_cULx+*|w%GnbX@Pp@<Gn04V=DC^@xkCtcz9=TJu_RkHMyBf00
z7VOTI=TBaC@pL@yf9fn3`}%sWH;(_$-`>A2vpGPsb(KcuMvbXaw=b{RIw3JR)?q<#
z-5jmcN!EY=?NekuTl(tM_WD12wY*>GFkC$U`&;d)DDJCE3*$WJ=B_IE9q$^)zW0Ju
zD2JO%yx@U;N5fjrxWH8xcV77q+DCe9z1JpB`Oj$^F!zu)3ovQDxxxR6ai-SPRM+o^
z8Rx!S(EERO;j}NWyu3vm+q9N6Y}H(q!o7d;`_sOjIYsQBwN@_PUBYZF=)fN4`zXkI
z`qb%9yr!O#<$UP7w#WBap6}D8A9@QN43<jz9h<?n{M*Hf4zJ%G*MqFiJQL5D6<~Cx
zEK)ef^U*%Pvh9l**MvM$T`Bo$Rhu5ym8sz-8A}tK?Sq#oSLUbZYPqjaHL?75$o;bB
zC2p_(H%dgFYME!d+dItXT>bs6L=e{$!>P$8OZsENQq?AkRc>yQnc-?*dnC$tlUuru
zYwDiv-`n;b<THO~Iw5ER*Q!<7lUBcWTG$a3yS66MH0$t{XXheLyjZ0lbW%%Ibk&Dl
zv-=jXPb~bQQsJs~_MN=6Caa00ve-!-Z*BeWy@E&LD$h)@Q)z9Tvhm221}-o2wR@S(
z+zZw#m~@LYEqW3f>$J_t^0|1bf9quXo2;d?jkk#}ow~{Q)#0MeSCxzI+&X#gpJL1V
z|1YCv-r9A6^-1Vo`?~zs3QL!kZQG_CDh<sQn~gaXUoe@-@M)$;rWPqB>xeLD9&S<a
z&I=8?kf60h;k%C}EANcZ*q`_FAOCKtpUaS|^rK|2Y~<3z+bbpYteST<ZLD*=v90aX
zLPZu9on3hX^PVQKEu7+)eNl41gFFxW3Mb7Ct7H~vJZ6gj`~S_}=$_P@vG@PSX20Eg
ze(kF4s%3XCZ!yRy;NiUS<KTpu8-;FmH3@V32>2hl)S+I`vNNJVK#+eX`)N0u1uC0%
zwAdWcn0}I3LXeY<t&vUVc7lw~1jB#*O&e{$efbizYxk<vujXw29`*YFhIPNMSYEvv
z`#kFT?}=%@uIzlb_uH-PwfBGht-CMJ_SbNhRjmKc4V_w&-s*9lp@G+gW`6&FkAcnV
zbhX%pTStzERVLrPHRJgDDLrg<ED2LizIvurQvL3h&LM|R`&k#?Jypv7|Mlhn$sCGF
zvY+S9m6eD;<(<~8J$<?KryN0lSC8)&k}o>k_6jhisz3R>s#SN2`P4mpg(s@teXS}y
zBfun}7!&JJ9-neo_vz!bm+X<D6E^8AZgY$4uXaoq?t8^^ejR(|@Alr0e#^NZUY_2<
zldAByVp99-C>3TwrP~JXcOuFk9#rL>BFT~R*S=*-`K}2P%tpD(PKW(oe!ku6+cBn7
z`mfiPD&CqZfBw{_n3u;M{ObGFxq*#0S8W1M;qxsVne~<b{l6N`k!xV+x^Tg0*)tK>
zga7>Bajz5NP;3!!;!tdvVA>#8vdN4?agkTr_Uo>fO+IdwaMLrrzz{g`)(weY){*W}
zKjx-)bGZgQ(&-X5)p_1}_RAxenxsdz+&`bPyK^u~zFzP>K_H8x-+5-}cRQ7*)uAgQ
zw0C8iZ0Rr2IBisQ;q)Sh&>y>w206~2`=xT?kr&gRo-JL!Ci?Yu!63J(_wM=e@4B{;
zfA{shC+3~Iva;9HsX(b)fz$fy)Zf=DS;a&jy|%ddNw@a4Y5v~{NsBMM+*OuUVt=hK
zUv}?S&xzN!#ZO*)A^X6sCA(tWSf6cr+N;i~naZPobyv6B&W%SSCfh^?IceSe<k5cX
zdDw~@`@7ft51q;N$LUx7vKKa=bwB^Vx^uGo$C6cA--5GwT=aHL@0_yp+xLD|g}v8f
zB_)+zPi^|L^+j+Avt{QLBd(97yJbBzlV`cVa|}2BwO@ei(1{=aY?PMjoSOFG^`^+@
z|K>0Mv(@F%5}%jSMx4jC9+RKFbgRer{Q-_19D>hFrr$d9&;J}BZ^<UJCv0V*p@w^|
zM+tvExiwFrC1+*u>>LB0pHW^ba}0b>ow?M`sGrm{YgTjhr&#0oNLHtg9hHHlyEwRS
zZIW5|QMIV&+S+fEoECjtxWD(B;gP)>r!wwLNfo{7-KwjwxwT1)>kFIT!`geNHqDOv
zr165W<YKE{NzFY8ZcS%ZrkSl@mTd}R>bM^C<7kXY*p#f55&BF1``aa||NixB`+n|^
zrGK~F-)wmHn1u9g%j@PdY@9VydBRH-uhliXh+h1l$t9(=`NZWpyYA}EI<$4ancA|V
z9Y!82=gw`Mw3@L+e{w+N@Ak8+Tfh9Drg8AsxA)bPazBO6^_$bb)v#gfMwV!~M|o>q
zbxP73|7f**7k9lV_4?-P<&)1JpX(>?B^vnqXq0sD;ZNJPM0PRe+}3{(@}T?248?29
zm0MPS3t-(Vu4=5ixMcQoE4Ob`s^h#Yw^p&QXR_qxDO87~V*#gY3{@9SMonx_U{$op
z_FeUPrD%`uJrVBNHZP1ijh^0fR!qH9Ddwb;BfeAgg7xLjO>+09PII?eF-7UEz-p(3
za@OZ7?)F4~J+)R~!l}16R=X`WscYXcA@ISn6+s^BMVMS87uetE+<!eNWZw0!7Eh~V
zejTh@ePpNId?%-=T0t+?ZM^W$>go69t&#u5&0Kqb{F8UuI91@|$3;$em^X|5y1wP1
zaS^|sLcog$2e)pB6lG4CH{n4-p;MX?r(NpfzDY*cc1-7%X*QcX`Mbl5&z1K1{qaBd
z&OKe<wdZ_#?!F1z=G#8V7peR$?mF>^z}noa)%jZ!?LI!O=O|3Nm%4wydD5c)?RD>!
z%Kubv+BPTB^uYG|xX0C&pLWdle(^tb=Bu;IcW&Ez<b=s1wSCMUNn00fU6%S^{W~*n
z$);&LYAzTsrl!U$ne5ePnSU)U^_)QQy(34Oax|G2=dKMgYpP-5tY_A1G4#_(e)!nK
zdBxl&!IL+*RrgQvQmu;d$iKk+A$92{oAqHkUhX;fG;aNE0ioUdx?h&f-x@ggy4I0T
zf!{CxpI*nGaI^8vXJ5&aw^wM0^vE|)*?7~b;*s6?N$=Hf@0|Ks@~fs<cFznquE*v7
zmuPuE-!E2a_hL!oi@5yl`=c%9hd7*A&n$i{T|NK*=PlB={~w$ov-$FuoapzRpKm<T
zH8(uB;qCi=&&5^~@+Um`>}U7HciUEhn;GX{JG>Ka+aU}p<Ul1|HiPYpl(#d#c=@)K
zEZu+9h2v6DxejZQ{>^7Dwtk;y?3jE1LfyZw4}5h(LMrl0gjs*H1o6IHr4uNk>2oIb
z@Q?1b7mhDg@Z)5S3HEC-^jm3XQ0X^$-dXO~wlkHs8LvM*yQOB+H}Uk}pK5qG&hL0X
z=lsUCyh*?2f8KNW-En5?-DS*`0q3MjCugU`?x@?Br1t#mwQS*J+nMq|WdxK&{qAvJ
zKK{+-$lM8^9hm3NVYaVq@mQ@Ix%Bd(j%!V(mObo8TOU>_?-7-I+w*-{+2K|_-!sQe
z&9px%O>T^vmU`xCsn@<o`^4^iuf6kq(NeuVk!@B6zh$m3d#^8SD5<h<L9F3HgNvDS
zu8BEyOwDQe_-akx+AZ#C#}-sBtC(P_G@F?t(#+(-$!2A>OY1DnUCm18o%_5rDX%Kf
zA*J&1wU(@x3~EKr&Y3ph&-BjkkNs-0eW7@Y@C<_+V)wqMd)S^am!5kj>GKq`X^iRz
za}PgDl-~2EWrF2lnG#sYr|>RdpKD_woT`4uuPES@-~atDd_MEWxA=Z7h*LDTt-6vM
z&1uV@Id|&$eJ2*%+}>@(+q^S==G$-c=AJmied-=}cHd3A81baJ`}3nClH~WabN@Bj
zJE8l$tHjTfwllYV`^dko_>W@C8EL5(Ph=wYhn*HnDV)2*cJk#f9^1JK{@t9lUp1ml
zq{=v(ao?Uzap~MUVskRLau=*Ue{hMzb)!=^=IU{6yL&zPW5kUKv-dwzj<mn=eH-)a
zUdPGhjK3KapZqa6G8dG7K*dZX^9x7y=ZF2?iRV9l_wlISC*!lidQts;ai3FH#l^q5
zcAvp-$A#$vdA5%i<v)JGoUnG2&Nib%<-ND&>vaB!I=)4&jKS$d&4Nb1X9uSFdquwZ
zZg#<IZ}ej+Yn|H7Dt<BlQnzdm-<k3E%Cu+y*DYe1bM~L0@VA#{_wu7FP8~_~uhQgD
zd~yffIZyT+v3hX(rA?IS>zDiQi-pDBw@d$>x9?=gq^DaQrX?qA50;ry__jsBNsQI@
zMavV8j|_^7#XPTGZQ|bc^pIG*s@S!>nX%j4*6h1^_pbVbvsXh~Zm;L*vjJ&f=0%Fb
zgbr&($+Zhy-3;>B%uXB5_+}Gnpm}Ge?!J^Y>pk}+9WUK=b=y|<oY$4YP8^XeCKotQ
zW=!?mdEZo=_t4Zwv*uq<2;Fex!m0>%(U()@85COtiV{I4K524LZUhH!j+w~?PDG=G
z%?ipE*u-|h0jZFedI5?FkmLy|2hnn)c&C-CO~XpWk`~E?ge}z$<=*s@-EU6+hv%7w
zdk+bU9u@Zq3(C#<&76Ig{rV)$zk6!!yC?fUPWkP>xBZz<-T$ZdclNdW?@6}JkX2#0
zQDT>Fl~%ZDQNr)rhnk;m*?*$$)svNLgMaT%<~uI2I^$MZz1?ZU?qEHJ)si`emyca2
zU3B##^Uoi}$CB*>FPYe${pSyf-qUP6=QgWNnAvXkwDphmwf{Z(3OWCO8oy=BuuWfX
zqni+3!20gDT%7tl!+CQaawn{fSKwZgqMUT?hj{<%BigSUtmhTH*xdh{=l+#j8=|&<
zR?$wr%f4Xd<7c&U-_`o}x8!i3)q9+gjH^FbO=7uSA7>L`z3K1y(<0^{nrrIb<-97b
zo$%Q1{LWh|>+jB&pKqgaZC0rKp)h01f6q0IQa*0@pU-A;!PCWyEo6<*w*Og)zt@Xx
z`~NE8_Ik0S-{Ljj{9o;=xy@d2@`rT_uwcK&fE)z}1j>aB+bT6rD?MS*oSNsjn0K<k
z^fvFR$w5cc^`ic7XE-uTZTqJG>!(d%URCpde@1Qn-;HZGE?+6l&@jR1E>rOy@umy^
zm5ORUD=|5#l>UxX^$2$>b2yeE;wl+`>&d_U=N|vbx%D^R{Fbf2^63*)J|8@EY~%bj
z`d=2H6znZ)m<&_%d#sOpKY3)nt>b^R^Ns)ET?xtSXO#Uu&Dx!!TcjhPdwtJ|dGW@d
zn0GncJG@oydHN;01V!_AEM`)D|7SDumN<nmw7YLQyWziZQQ(a|yCd^*EFGLqY&#%O
z4lc+xspi~U#-y0CdqJZgtns{tk+?Lw3S136VH8|>N~}R)Lhi~bz8s1zHUcIWICm;=
zTnt;bbsBey(+MWQV69hOANn6ixNK{xd6zn0z2yuuN)^Ui;$$Y*__8!M-PZqvYwO?I
znRhmCZDn9t&$;u&mfzb29=VuEE4JLx=P6WAxjb{L7{__zM|}dD7<6{1I&G8X&b}L~
zz;b}2-06hP0(R6=E#>e{KlWcDH#0VU-Eku5y1B-+Egml4{#WmPt#ogp=gxbjo4d=~
zp44$H<vzmt?sLn8R43-S0-G9tJna_{xTtV?o_ci0gRAjk={?!|XUtYvRQgYE&CE2(
z#7sx06MsM%9h!PJv0Z5PJHb{wE9%YBFLA7XZ8w4zq+1IL^XrxEpYO8eU*s`fht^k<
z8Cf*%#5Tl%il67LY*vcWo&2wleaX0-8>#f{`F`E!KDTZN^KavPo!6i`?|0<X+xqXG
zZrBjX9rNaGSApo=cj<q$FIO>a^4%y|J8`yEi$GER1qb!wmV3>q2cP!6PESf&c;?>p
z#LaU~aISv!NN>jWwd^|fIZw{mK38%#y1^ZG?{2)dwPn|{>j6G?woiY}y8L-V@RrlA
zSvF1_GwshfA{9ne7f$|+xPBzwx?29fQU!l=#)mV;k;k()G5EFI-j*$&t9vafB0ItN
zL(kF-X2s1bnz;+~bIc<-ieBe$3P`(S_S#Bzo?G<hgUj}R=9m)}P@mwn(tGyz134wz
z?4Bf?`f<jvL%_+;iFxiEZpH)8gx_$9tN(O5EUA%ral$mopj`_D^|<ud)Q`;iv%gF@
z{M7R!QPSscMsP1S-E#4xsir7{gX7ZQ3<*14vMSuN)#j+Y@8#!tgunQ-T9@dpX_dK;
z+2mV%cOUw&T>sNgv;RWXk8H)5j9$-r`}6ynRct9z>c1kd{j;2$Ew`@m+<}#S^M0(@
z>pv?uXJhZlO7!SFcT{T+%jEr%|MIHO^7h>SYkus=Tfe0$OG0M9_v{yJH7lS0@X5ZP
zHFd8|9?svqVMW=tvNq-l=Dp$kF53?0_cn6Mm8@Mjo9%Jcn}23vs|w`4ta`OT<Ie?s
z)hEmDF{{t`Z#w_>549tYYFd&M%l|TOo?!V<#Q$1k#50Ti7oGcA*O)ReEWTX9<g-jD
z^?b_bb)Q?GHx=`l-#_&&V(y{24Z7bf?w$W@^mgyhUF!XdicT|12hVEp_-CQ$lJk1c
z+3g$uF29&}{zpz#Gl#0E`aFBVGYQML87rnYvROq|r%66}SQrx^!MynJBd5iASqu$%
zSqJ?6LPHmx;Ste%I*WHs`dQVvW}0WpQ!9!l&62Y+FLkw2os%aheD%%xT?w<^RnDJZ
zVHcyG%(JCT@$J_g#|kQ179ZaI?)@^y?Uz{@zLb|;c>SG`AvN;o`SsUpH&m@L)IF@c
zmqGj!H-o^+zlUB2-wI6mxxM)9f8n(MKYI^rRvr~Tb4O&h@mt>OB{s|Z>?c3=`}arY
z_Wv#GXQ(!B)YM|UHb=&v;d)-?s?75THOp*&%ccAc_GECqBjNt<mKdM4de1B2D4`R_
zW@<_+UOT2{?q;ptQg3IWw&v;vv!!1>HJ96o{ZxC~bZn*Xp{)z^{gXGX%Ud41)NHc!
zMy3gg$tiEI%}TkO*kKK-dO-ysI4fThntk%1Ut8|hBO7`eKgyM?H7&Wzz~Hu6u<dX%
z!-0<<4G&E(wTg|ob^CC_24)6<)SYR&XYoIZpE=)O?fydkdy^k{`j~FbJw16+yW_Hg
zmthxkHB=Yw@tAp{?EUkzJoca6Cf#RV`#ilvF)R6k$-4jY^74uQ&*kp<_DY+f;qYVU
zlGSny4_<9uy+dg|6T=j(q!*8)?y_kwx;igvyRByAfB*OS%j<XiyZ`PtLx2Y7N~izf
z#opQ*)LFKjyZ!$Br^@O>);9Y8KcxJ=ea3jkBFUolRtal5_v^LfaJqKAI1sw=?{h&@
z)0?l}UQct8oAX-y`S~XnOg=6TO?bD+`>!$l*K#@i&(co8oQC)B?7m!AYW*&@szFP)
zODTr=>OAIUCG)?|n*Q9`Zokz1b9p^8#bhtZ{r3%<dRT(@?PAv1yZVwA?8;0MS$Iv#
zN#R@d(k=<h2octhm-DBqE}8Vtw({5f9M^rh%m=IGo&~No&Dr6%!NX8RbG?SY@f?}|
zts)wSb}a4+%X(_IRlCw4W5MLFN0O2X-^|~(O|&X&O=I4nCn3ouWtQ97+1YRGFJ@=h
zQ2)Ga4iEcuJx7n$Rj(Krx;DjJlgwpV7(08}!HOrhHeK9$I)7f3Ezg#|jb#oe%9|Pf
zq%3K1xcYX%W9K!eH^oFmd|lQuaUQ3&_45r|6Ghi|yDh$Z=+TQG66^Q=v)cD<>v|@J
zy#00DclQ}zSUTm#&7CX^FTSw_yqeco9o@XuOz+&W#eqJPH@Y3aa53!Oep3T0TYk-;
z7we`3?5hu-%V#y$;2Fn_%B+MG#pkPEfB*dRY1nUm_Z6iX|JS4}Fs(~gSz^5Ox8n+%
z^I=Xu%k->6v;HrN$;b-c@$dQ7w-Iu0FT6~6b9J#{*80T6L<NOQ5zQq>*KS;Uc5lr(
zzUxcZXq8O({#{2T;#An|r&>S6&vtaaKKXl_Eo?1-*xHLfHZIMawZo2aQ(f|(XXWo2
zK74nJy)N<dXQhqY!gY7cdtXakJI{D5Ln1psOqAjIoE25?<X%jXol?ge5~kX9Y436!
zFOjLy!lJH)hF_}AIX&aan#H#Gu_8l4On<_kzY|^?@0j9Qe||>Jvnh+Fo?Fu5a+C8d
zKgYvc-<-Cq&Xh)L!<~#W)V*>}VlwB!n_)Xv8lG&9yROUwy2GixoWJ1r)o?}z{kuP`
z+>*Diu6g=Odc*e%sWE2LAHNS&IX$s^agV#QjEoEegWGXu36l+pljFD8cI@Jdo62_S
z{ZC1ijf#pYRn2za^mdz_-y8m%&vdT9np-0CukP*mYs9@cyPGTZ{pagG(vMjL8GGE^
zZ`A)S-SZ>#xnup?tI<2YT+m~9aO!IIMQ_WWvA1jZTmIS0^)fL0{>?5SyW2!EdG?k0
zs!?25kM-M&NeOYORfXmF$iLwKwd2c#*Z=ogeyjhkI{W_n&l|oi%>Ufn-2CF?Ca2>b
ztcp6Hs@}UvJM5@-a5~hYX6m_fm-&l_m*!>vuk)X4fApEi(mlQ_>gUNP>V@R?INFva
zpSbu@@Yv(P3Rb5TYra)lm1pPlq%pY6aW1)hWZQ~Wd^#@6H0J%<H%D=jT1&)@JA1mc
zr<`A38k_ti_(R*_WRrbod3~<TzjEtP6z^m8xV5uq911r#?d!X<RZ>p=;fogn3>RLo
z^?qM=d)dJqD+7OB*|h2U@dN_~hLYXZFDmn^wudi#e0jdr-?=~L`EBpswCd5v_460J
z`*Y&@<h-|=`57#%teUp=)=zKX`5V4U<mEzLg<AWsjvo^J#GDqsSH9j-Alh>0u?Sba
z<LoJC7^PmMtUV#l71eIDz>_(4`zL;B`^=pia`x}AusZa*JdT-R&!<nmGUj?RYcxcU
zExzccvuIkM>zQn8E2~3mqu2fI<M02Y^62okkXb8qFPMFM^k~t+8`~>`&2LD?bWILk
z{^rP@HJ^<vcP<t9em1;te(r+VVIFbwsus-Na4_icxr4cT>MlQBu)pYcm`PIG<30b2
zo3)NhG%N2vS^oQ5w#Ba3V*8v_lC95QZV@nCdmu`EmyDB=dnxZ*=Pl)Z-xa3L&Rf07
zY2h=Auj^bpe*Zkd`^7oF^1;{ZaR)z6G){^sZvU45{FqskvR>K5TlIIY7^+k(-!HvB
zK6F}um*Wc7)*b1Jx3W(^S(qyQxKy|#rcL4(uaKttr^!ouj_t~uWY@XDLHJg^N!zz$
zy=H8op$C6VF<Q+PA^C;%h{^9ee|N4hX%UT)%JzNJfB2#R`)@tg_Ycn1mFP$Ww|9J-
zkuLYEc&+Ig^L_ot9`C3uEve~Py!+kfuRkOfPmJe(X}Cqs{q1zW?fr9Qm+#$dEV1Br
z@l=~#dl`T2e)rRRcXfu`&PQ_26?<nG>^RXqn^ko47oN7og74nkXJfc?*S_J)T-Q}h
zt}ly!gfhPTD$=uUV=N2Hmdt?biutkb?!l3z0YCq(Uy>Edq?jUwo}F(QtUM>@bbYpu
z?@bBb#gmJ6Z#8Qxx%ybJulB}`ySvK^e^28M-nF-$eXHN2^q^B3Y1?+%E&rMPaIx?M
zr#t-LV>^D|U97C}^3bk^&H(f5g~t4OAy@KeY23KpbNs@sr1ziX7|MB{UwvhKb&C0w
z#(V3EZ}VmM*V>7narz`-=G(hbywu9d?$F!Yzjr)!{@T~ymndJj|KeJ&4vB*b63Ndw
zUoveKkGHbg(fxP#x!J2#7P0RM;Br!X`dedC2CvVub2d`_7q2Y-AoNY{)bIMP1dILb
zN4Gh>6F>hbPcNIt&H1^c&5q6e&hI02mh{wydA7#r+>CHY;d-BVPvUyA$-lY`souG^
z>OCupUH`2;dah#5k;vIqJrns0!-E_|Ri}tQoIKNMUw6T2*Jn-=-z}>6RYkU(eU>W`
zq5U{LO|1X?jMe6~o!h;;_zW{^_En3o-~UeOO5WaIT72(z?c63QyQ_oA;_Ov7bBSM5
zW`E3Jd3@dK_+i1mzk3U9Y>r)A$X~cVdxnD0bJmin-@lYu+47Xd%nDw9+j040r}fp%
zdh2XHX)q*|q_Qk*@|aV^R226!_LRuQ(u<4M9;!%K+qy2Br}oLYyN7pc{D}&js;c$Y
z>EG-{ju$KVtJEqaR^4ye+J9B5wczb_lj@C+dZjn&he=QR>C8NLji{l{g{TbsndZKe
zKi%4*tt`|dl$?8JrgZOdi%-n2|IMwv^G)krIe&k$r(ocefK*OZrw<&bW4D|rO5VC(
z?D5ANQ?ofOn}gh%53G#%eO6fFM!+vubBW)cSuy4>zLXj%9g$%!PrGRze7$n^W=-Lq
z&l3CQt<;vzoiuBc!>tpmw(4tg+^PJ_7gzb!^o{(E*4sPs6u9<(ShdUWNL0rbpBvwP
zA4o0ikT{mzu;b@)R)wYKS#?ERIP8Qwc3uqI(K~sClbzhcZ`YTZd$@IEJT20@y@BoA
z-T#||qCW4Ne&_9*TiXoT7B4jR%bNLVdhCgH9_<M+w|5^mTPD+U{ISHk*s`j^!a3i6
zewNcNun#ZrJwE?W!KT7Ej+vp}f)kD%F*A2^n|<p=jPS8#S4<|GT~loFHtcx#UupBv
z&6{d}-a9{M-DR!9<cbXG-i7yTcGdnCi`)6ph~dG~>HGVv*WYJi;OXakWO4tB>9Nx0
zh4&3)Wcvet^X{)&V<>0ITzlumHMfv8A0B?nRp_1&6};$rdE#5w$VHDopJun7ZXoyT
zPFeDW&#D>K&5UJbCE1^!E;=W;Q?28SSwgQ_M$)XvRTmO-uBGcH>1;C1+bbpVtM}~j
zzgw>DnX%U6882vLJmN;k`OPb%k9l5xk+C2;IjM8v#gB%3HUAzRJjlrRcU{rlo`5NN
zmn2Jey(qQ59ccB0u_LWn<RgEq`3AGMN4!^VYMs_;SsZmeqeN&X_bmniwxEuPPa4m*
zoNaw#oAdkYGTo-@If*t0mmI(IRK9JJrP?dzjNGIp%ncbWJ?+kSY)iVgS^qBIP`{yn
zVZTP>gcs#^ALXQ{H>~1{o46(8UfH2I{}r4%OFEJR?)_(c@B3+fmz@4x2We^ZWwQch
zk2Wuva`E?zV{<IOA2qJMJEzY0zR2v`nJg1kU7YV6TJ$ZK^Tv&TVWJHo4r)GP@7mpF
z-}tv{-QtRw4WF5q*X=(4bVGW?i_OL7!|nfVIr{KT=W`X8RkLGPWUPr^oVY1LS~KTP
zM(Hn!hjyM$Q`7D+XuX)GvENYCEdBGus3i^CbQY;kww-BxdXLb;+*iAfP3%9hv-Y)E
zT;)?Wh6hij^&ft{KF7SaqC&tt#=W%pVn)lt`%9#H-6K73s;$0ycZn}U_M{(jcOn-5
z`6?so`bRHx%8FfnD(^C`IQ%locHQ6Y{%6^{r|!r0eXCkkT(5Ytwdvup|2wV;Ds9^-
zAm!FR>yzgkQ74BZz7pFVQ)~Ek1!!&i?<#gvxx3L4dCZXCDpEh^R;SPIPadb1ZB+3N
z6707u_HF)nqIE*=vEv(KCS5aIm0$MTHYBz5pOLk;>iyQ(3Hl1RE5#4B&gPP}={9TI
z!L{Q;*@35LRG<E}dM3ZhX`x2fiaYbP4d(wgP><1BzH$e*%K1CH9`AV>`K!S&a!2*4
zhuh6;?`QOWG<c#amsnBKa;sWwcWCRszSEX6U)VIbo*T{#-|^m6!SZ8_y?&RHTlJM*
zUZo!sP93uLQD{B!Nxb<}QP4WQJ=gcldGY^qDetnHgy(1H-`juw^_O{N=jZJ?FK1w-
zaKvwSj1<EMLGw84BQGreNu)9;3$ztv=dOucP%8WR-)t*aTaBfgzRmAf&%PF}B3iDH
z&pq*M<myk$p4TR1)eC4IS{WkhbwBO#v6Mou58pkk&d->crsLD0(b($b(Onex>BDTJ
z-E5N`_peRs{rl+O`L8C^Rz8y3v)MQH@rM&@{qyebYP}v;oSG0{`P6jJzpmBW3TsLv
zo}b-SmU_ua#PhO=;as=bYG--PGAA)aO6=Mo;N<9KF1K=5<CpuYtxlFj7el}9a0|7}
z|CR7uh_Bu5(}s0-ZKga;j}N(YLtkNuQ)HXXAEhwW4Pi?HzUkb#tJKr{PCvZn=+;n0
z!QvmG?;M}+@jl1ETe8XS#+i~$W`0(;UTEw|sfmjgSY)`Xuk!q@6w3>~vb^Gnyj=6^
zqf4y=TqkzgoGo9tr>Awg0QVf7+G-K6g<Qhknt|6F#OfBU^5rTtx6(T&wKh1fWYfci
zDUF*}Ea+1D-?=m4=$Eatvln-M&+AC!+i`_AxkP)bvYpx6N!btYU2t3e;l#%at^0oO
zzq+6!we*hdgI-Zj-nIr-2E~9ADIx4{yLPQxSZkZKFjr^q<9Wqzm-q6s^UC^jc|`tv
zziQEmJ9}>L{#v@6$MN~Azs7w(kJPHYY5p6KHlN*jm)7YU|EgxZW4$8glwo4ly2E{;
z*IHvnS8mN3-i**=-{Qq4=WdpJeEy}ULxV?@a%+Reo}X*}x`n6}iIyh#T-IuqYI&fb
zvY@FjXvc?dI<<*P5AM}IX|X%`H~rWAPF23j#5L=rg^N$P9~S(^KgZzCzqQvlzW-X(
z*Uulls3>Z7hJurN?7VFc=hPiO@O18O@jGd|zU1EGknQzSWO;QfRytXASG%9jmk$pZ
zzAh}!N%<cB<BY4y`%WeYMOLr-`Kc=vUT=7qlBC7B#&NCl+Tx41rfhETKghUb)uUU%
zT34mq#jk8W$(l6zZU=OL(CI{LBWOWFgi3$2A=}n)HCsEYu2)yiR<Pts-v}`CoxNg<
zjg8f@iQ=8o^8LvxRtlbzW@EVPC+{VC(c6Ik2&ee9M>cnM-dgc{p=)KDN=`s<9#3E2
z`$dxMsX?;a>u0O2+|#9T^2xg7jv$Q?#z+qj$+p>++y1Ux@7uQJeC*Avbx)KEZ)IG0
zTo{&=&U1Ii?}HJO=QedDIWAuF<=l@7j>}gJ?j>K<)PD13mr?v&KmJqk+&epef4_W4
z`PtvU3=FJqZPkt+-W~YGK!4)p7bW@}@)k0G{eqSWxwe)(>f&}wIc|U6@Wq$kI@}*^
zzUOy6aTV2S`ywYRf2`2X<!wtqLizIQ{6zv6oAsvjG^IOrUis(!mF1rCikg*ko_<=g
z)Ac~c{qwWg^lEl}Tfekq*{-~xGdmpD{A0`xo;9WDs^B7a@yVHTksZ}yY<mo*Nj-Y^
zPgLpYtISw;!^0OdM2`P_n9(x9KDlXEZH8as<BHst2BC%avm+KNh}&$w#>Bh8_0z8B
z$Cpg;KgyWY@%y0jZ;MZvL2kFX*WR(?6?aulY-U&_DADh{Dy4a&&r-RwB8lFLA+P=y
z1Udw@UVqXf=YOIkW5ML9msfqw3F@5lw^qFD>#JVrinpcH*PGf{xfo0BYBh}Ut6IZs
zn^$mM`o;FVyN4Fm^Dyl76KA;avgFR9#J<UXdH-~)?(v`AQ_ZS%?|OOKSErzkt!{UB
zbY}klmb>TAC2tG662;10>n`3{ptd@C^}Y$O*LU&l+PB1erN|mX?#TS7r|$``Z*^UK
z_Ws_wEx-4lx0mTJ{QfTX&dyqChJu3UW^Qp4_pWq5$uUtgr^H6)@ihJGpKocK7Zy}-
zyzc!Tx4gSCyimVODRkHEBS){#>HYlekm+6KUb%-4wsG6;t$dvJ=Kr#b7dS-KW`+IN
zK4tXmd-<=wGt`oL;%+tN2v&<%u6%XvbFkdq|K-aIVs9+5y=1aj;#c+OW8Q_IL;H_q
zOt@s}V#Xno%J}s5{@e0Lie{<F*MC~_lC{X_dQI)|`PU>wa&lJ(RzFUusCjZ~w$f6A
zt8wp_u6(`ap{}Y^!m=qw%QPa^*1o9zHMb_YGHcc)ne&B0yN@L5zcoK0k*AlcW&C_o
zl2b&r+5D*Qb_<&}&d4=;e&`ibAzy>1zGQ{6{St;-Q|gj8@#^s|xLjEI+}+*T<liiB
z$-BJ5_GOJ5uPvXxv-0zg4|#Kfj~{*<Vis`A;@=9N^~aa`ixnPTyz119CbOB>4hobP
z=}SC9n)&#$VDePqvesThiT;=y*WX63e|S{Co|ECj)cPOw6;Gc|XJlwE=MU)bH!gi0
z<FoGIjrN6ouh@<!f8TLm+95QreRJ^CfS|cNqW0`cx4B{~1d<C<bq{%`36xj6KUU<+
zvwZ(HTfbh`Jimsw-EPssmF|XL%)`aS1p;f<Tz;LD{#}v5AyUl3&dTL+uvnB+)bl4-
zR;P>CnLcw8`EgNd@rD2S_YYl<|D(0<+f{vLhPe8tYJB~3*f+|_IUm{KDf+t1+_!gk
z`CRoUQ?KVed~oiqMAe;_<rm~DChpi2<F(`Kvc$dLQ%uU{9o$|1t?>0#X@-XI{5soj
z^|AfQ5{oaYd4CiLSn9O=^`g?UGWo8r&-(e*fBk3rof1?s|9|<s3b|sd$pK3bOZ4nX
z|MuXU?4G*MstgCtO2;3*YrXF8>#7%f`W!W`s9Zd?$m6a3jl0f~%f9hv-MBVmX%ENg
zi9CDx)%en~o`i@UUHqEu@y703l5(<(@?KTU-E#5bWvg}4>v!-wC{=cLGp#D<Z*NvC
zd&RcQOU`5B-#YKpwyV$2JAb~IcYE9-rOK%62#%RHYaM%n(ynsFn0U<E{z*&PZ;1|n
zxPNBeM4d~n5scYB-Weuqwr=svU8!4OQ}X>zg~=fc;ibYeqjm~ATh~{wQ7+`$##S1f
zT=C@4AO3Ig$KOWBCH{Y>=;JZlgw1Tr<Ov#0D`FG_L`18aWf>f<>K2w%h&FWF@F*2~
zo#XISQfX$hinOh3y147$$Bo7YaeIFX?fbLzKRd&Z_W$3R@_q_@znH;cyYBImdpDLS
z<!$X;_`Y}Rg=4%8eiMzSa7_N(uW7Zq=f|Fi0IS8Vy_Kzp9}2KLrk2&qxBveA@s`O~
zi_??6e_ps2b>de0lvh@MZ``e|E$plg-H_Hui{yU7DxvjxnQYMAgcrRZ!t-l*<EtKa
z|G0Gje?3FP?e%;63g3zaR)rjoRZRAY`Qj)o^RxBZzlVl>eC;oOnlvwZv*1-q)~0#6
zr}X!TUyI6E`&jMa!-tCR?v;K&aPc5xo8A8XD_^geVsmqHs%~OURAa+|hx?*e$jbVC
z`5$)c=&$%@*XN7e4m+Al{H(dNyPSW+{`XFI-ru`<{9~ZTf0L#Sk++|JpAd4vS9bsR
z7YWz@S{wd*&{Fofc2nbbU%8-rm((|WtUu?#KQ*Ao?eXD?<BvC9ZaK;G^TNDc7Xx2A
zaWE#|m02LwyXb@4pB-*@O)mb}t`RlUUGquJp@{P{(!2FTTNPG3I?Z${f7z-{PB#k^
zF9fM7$DCL)S1DBEwCJUCE;+`N|H^xu60hWR*VI{3p!lX?_dm1S9NlXbO0Rs`c#X+!
z`(3WLzs|6I`}$kCSN@p93$@%S^78zKHYJbGWmJgBN}MpWYnhUfl2ObWx#Z*XAMXNv
zd{@7=3f*~7t>;(DRrI9^+DDbdJq#_ZO5#?9$5o1&$A5abbp5_2=l3Ts`7&py*E3m6
z+!3+<vVvArHn&0rSF7v8sU}mkp1tGr(pvj+r)!(}t!w{Y|EW6}CGC9ub)oR>OA*|P
zt^7xext4`3iCX>ex@d~X7R^&!r`o4;)yp<1Z9aJ<D{Ym3uHePr*G(*Ll>hy+bo#!&
z_5TjrKX@HqDacSzQ8D2acXsm%ww&M_i%dJR4jex$we{Ky&*zTsL%3x1g_ciQ^t^`c
zn1snz{*PCs)T%az_}t%c>_A)9Ikl^f)190&I~RSK$kqC3QRKhfpa044-G4(O+>7UF
zyu*FZtK2y`|CePhvf3(Le@P;5ZDWt=LRXPyVXs9Rb3Nv0owoSKp>lr1#$`+U{yMy^
zfA+d;Tfp)c7sXCC?=oRowt87);|euR)+G}zW@qR|eSPNI5g@GeYAT}==Q&B{?8&!w
z7_uFT=hsZpKI54(KVSa&v!54k%jF6#o<3zt;7@6#%45-&AG*Al?rqO8@10JWdiA~2
z6MnaE3st@=HTzb4w8O6BtS%u^)0aAlh91}USh|Sef$LnOC`qPk%YECnO*i7YFXqcA
zJ1dfF#<BCqnLGq%)y?60G{s?$*|9BGzj5vqH@R>!>*S%=Jr_5AIZ<G7WaIhz)m!_7
zZP&D(J5>{T;~K*XS1sqDD%1O$-nfLGU8Ga9bGoHbZtmt6AIlHgFIeJmv+%9?jlC@o
zGg=lE)%Uv}UcoS1`?Qzlf<0NK%Wu2if1b!&_AMan?hNg@T}ryw>~2ocG>}sF_4>G@
z_BmhN-mhBUYES&mFlp)OHkK9tcq=1Awr4h5^8OcVd)ow<PPOm<ZdF_I=PUR1Mj!PX
zS6oArHavD((q271_`f_~FsFO&=70JNPchB)<7c?=p8tY;3=_kYP*L;sEG*A5=j-1-
zcK&j_xFKI_&9havj~<xLCd1b*{C56Qvx9DrW5u}U_TBEdb@OKLQr6Rc=2K&4UszVR
zVcYED)$Gx^M|Ybl{W~w2vd|}C`DJHi?(L3z>pA3}-HK6+_vi>X6u4uRCc~X)(*oXZ
z7QR`^F}pu9;JMT4HETVN?hVNM?03@WRkOw6+xccMr|2<gGA3VAYrpofw%7BiFC%xh
zQ}i><^krY~-kP!FWcHfY4=Xut-G~s{s-+#W?~(8N)d3n)&4kQS)j!$^3ir2eC^X)7
z{q5rIkB<qgJQeZkqQu-&d0khsQy(7tpLf33@ot>_rTfm6?f0f^<&4ygS*bg7`TV+D
z-MLHtuZ!I+7Qg-4qnFF)AN%_H`o-5@KddX?%RT@9pXbr{3twN;wfTA__{Qzqhwt5!
zn^*Np^Uk-YGeEO`ptTS=YF`$tZ+QQs@BIP!zZd0??hjSF^~HPt7w;cW<Nu}p+5Z3A
z{SRyJ|62RwLc3kd`=9gP9~9sJ!}ZNOtNe4n?|rx1^W#x>#kZU3j0~U~5W1GntK$0q
z{QsZ%Pv@PGIq@{1#rL7ZE<=G!Z_TEsvhVuzb)hbU2ghuuw~HLO8kBPE#8s{SGBPBT
zm-Fx4cUx31<e~F~XWON1qLuR)z4EwSIz-&GLIq#Xh~HNv>Kd9@@kF$?{di!<NzQ#c
zzlCpdiENcRV*91)T=Ty2O#Z!&@~aB22YYl@u6l9aM*jc$ubB+l)uu+SA2zPHDJZGv
z`DoE;^77cCYo71iD_+Xy>XfV~ULD-Uq_D7yY3lc9WmT$P_UAkl#c#ap_IVef!^Gs&
zrLil#)apj{i$sQZbrO|~`yRfKxK-^xN8MKA^E3_X&=A4*WxsChePZ)sZXExqYB5){
ze`gLSTfLT!S#nBgUF+Q6s(wyUhnBK2y!gsq@q^coapwvxncrWQKYSsfCN8sC?9%q!
z$f+;B)v!3{i&yi%{rTR?^52~Iau&DKix-}{d~AMd#kp32wO!0F)m@)G6<zzi{lmSy
z?d-9oi;K2y6!U%T`l#pZKCfdxG_nO3Z*Y1#rDAStS8?x&L%&$3Ef&$6X5q55m~GL9
z*%was=DYgrU$M3A!@UB|yIzc2t}XiZxzW(-MTk>JiT$oGhAHpOGfE^@e-dH-Z~6UL
z#s893dR5HZ^R!OMEeSHLefVh7ucaRzzD)GJcl+kSdGpI(AJm(bb65DNM(gYI4c@C)
zt`Z7;sqOjZ%@HplrxPXfb)W7zvCNsdmQ}>{;-^{cYqtLA|Nqhck$Bxh@ej@RKbjdD
z`fJ}LSA4nX{?Y#b^Z!SF-~V4%^N>6Kz~=LI-Tw8zE?4~dc$|@8|3~Tljq3AjgyR1^
z691Tc|68uN?exz{iP4^S9G`A^Q?_yQbFuBE!H+LY@0aRrTXFoc#m<b}#AH3Cq<8*T
zUniwsm+auT|HAf#J#S&y6xZwpF<)-xG8s1bcH}J5yztfX^mKju9>@BIiTbM-zb-T>
zf4!{n>ugo8sR8#K-cJ!dbxOCxI+T5`pLyKvr(5f1m+q0;*|mG4W=xbu>!$0@<r`kd
z3vYC4ysFlg_&UmYm4IAkqI2Bxpcmh(chuaJobmUrt%&2%+J(LQ`_|T2Ri0WcV$^0H
z7RtYS`kfsY-+qgksd+%M{hzY$wf{?X7Odh5<w(}$F8N~{5IT3p^P8{!ck?{HJ0bhw
zA+P4fbxC~n+pix#%pcFlz{9p%qW2El!gbjZib)+SH(E(axP~r#Tzuj5svgB_bMx%`
z?1RoIAAOml_^#~O<C*y}*LK{v<?ik2UiQfL)b##W-+nc0$Xqo|Nh|7kC})r1#T!@L
zj+d}5RB4%Dc-BEn^6;w0HJiNTlKWZBPIEnzS4_R)(hv|3c>JhK>3g^3-<r=G_e)zV
zy^P3MJK3&TV6Ewd-gDfHYfJAOkTswAQIA1VZ&r|@>Dt@U3-0qywNF|7>a6QoNA_F0
z*!4os_bUF4lW*Oh7B&0EIj0jdo~0xzE@EqIYU;^MNsT<l8^7IARlR<~gqar{;u-b#
zd|+A^zrW9KdGm4kdKvkDAKE|a-v6Zg<I?nfEz;(B5AMFNE3e64e)*vF{hxj{pC-?T
zq@Y*9^AFv-7iV&g@j<8hyaV^{$=Urp=|3-PLBHGLh(l}zPdA743d}V3JT)WzhV+u7
zk)dA$`tLsaQBlDX+@JV2U23kHxhBg4_QQGWyW`GFnm0T0@3uY{q2IMh^^VhpPtRIA
zmuhg8?EPN)d=lH5PGQ@I8PlJ=T2sZpD8Mk&O^Z{q{2uG6O+Cl<|JJ!}FVrKvbit_$
z|I0s~Q0_lsW_{20*p2JYw;emuS$D@|gKw0E#QUk5R<b<5rhhmQn!dok<Ym#7loQGl
z&+6o6E<18;f@?8{=3<GY(6AT33z^L%6`7cvmj08si45|HnE1)^^Q>d8fesy80+Roq
zKViE%=-8g;dCS}H+HQB;l<j*ZN`Rroi*1ov1J}<pOdo$)>Tj(6cjU+BHLRZ`^I4^f
zH{6zcld8~QF~6&V-<nx}+8-^EDN{Bc+o{!+A|fSSJiGMr0?yQ1n~KW4G&NKe|NhZg
z+I8Pl^6ZA57ptc71UenL^?a#NK%KG|hvZR>(#6S3rd;$>F}$kiZj(2+*FEUOjP$%U
zeUEC7?f6qHTXbRb&)b&Hf713$(D=J2xYWv!X@!Q>gtghlhR4^~+`4#mu7A^x)X<~6
z(TYL;b-AW?ZeEr<MZ-bT?3QtU&As#bMZT3r_Ig!sPTl(W<8l9E^ZL)`AKB|au>a`2
z|AY6=jzZ@5700bV+{#}6@EGs%sDCf`UY$MwTMMwbf1BOs7mNFkUC+C-qj7ck`guR@
ztqxy*?E9HV%JM%w&P3n8efzNV{U66H=ZZpCz)bk;#Q$qj<@xG+!t(pSuFXF>+25|y
zeD6!&A2*KMwW-gmU^;MeZgTe9E3(fn-!ty5|Ns8KZQZZs^;ZA(?%%&(%&qF3t!C}K
zg#FeB-Yspv^El4FYK_lhk-N<sGGe7A<S(%{u83ND%BU)IiO7nY6)Tr~FEgvuTM(e3
zWp48&=X~Y1kWUVp?|ZX)db#!lDYV^<RA@_?y{j-WPVsp`Uwci|R5R<R7k5p3ze;;)
zQpLM>3GCDL;~m$(UL?Vj!;>%K5yiOpqs7+Eh5-xjc&`kYD$2$zzRu!B`Qq?|#5MWG
z^ChP<zuw!D+PLn!ny2O>rp+Njt@7zHUp#i`t?LQg!7jBnxukhYR^q%BClg-#u6r<f
z`OPVFg=}B{+CN*`iEqD)qN>zfFTax$K24cAHA{;3@!lO?D|MDs*}bjb_Tja0Tu*96
zum7JV{Z<|SnI|m088Lg2qskiXxi6nLIHk$CFgRxI(Uj7V|D~NRIltWUg{GCO$C(dm
z=lb$yEYJIA6ncj_NNs&(;Mag3Tl+$Vj(xu$^;+WTime}C%0K*U^mM}QDN-7(9f3L5
zUg(^^<0LJsEY&pqZte80m+Z%0NH7MjFq$f=9l~{T--RuoY-9HKO*9XEQ<55a?8Uqw
z(F>KC2O`uit#x;v&7Ew-zsqGed$FvSUpw2cE=eA?ir3NiyTs!v80|kW+cO-fJh}g&
z^ghLX&!3&0eQ|Z&+gql4{(L&EzVG?e@HoqdmGhTeetBfho>CVMLGK`u)W*8=x_uX4
zFIZFc&$dBJMP*OpirE_15?gz|7OZ8=dh3!iYnh)@jW_SX-kZtZzxG;A=$z5Qxktxq
zN^0Y!>8nmVi#lsg|FANoI5gR!=xzMrskz+TT{h3Z+-a{qbv?)H^>gm46CPcBTUwa;
zUZ||BDZyX#_MSH@Zv1zDY&fe>qjpKMUZ(LjgF{Dp*DTU_tdx`}Hm4x*Znn<xa;@Bl
zI@=fMg-Y~$h19*#;Sx1x%1yh_@-Kf+qmfMSg(F{Dw{Vn1+J26n<69T3=d-P_ql9<L
zloeeHB2kOxWc(MoHrvNM+gHR$n$LYj^4l*eacW0urX5TF-B+SNrz~7YcaE*ZQ{lPF
zZ)KMX%~-dr*h9SFt(=+X5|5oHe@@ZrZCSJV{)e{3Q`Xs4ty-x&S?n0k!F?y6KfC4R
zy~om}>|87V^mk=eFMj;o62jV~)nuwR&0uXdGsoqu%`pag{EN?duRJPHo*m0qrSUM0
zH%R+b#+1XiB)nFOESlFm$uFRM=4`ju4W6Pb3saVPUV6D`RnTpP`wLDv-SNGg@Z>bB
z_1+l;e{<A?w#Vjr$@S#kkc-ZCTP(QmL#zG+>3t8SKio*}e|T$acE!7$&mX;h{88e(
z{ePQ#AN$G~80OV{^1QRNn7#g^c)j5L&(G`sJ>OCM+^>coRxq4xmiwamd9(fR%@yyf
z?|0|_T9$w4>}>Oo3;Am~e*gac<DvY&L=MFd2l?v+z_ryg^Zk;byO2IU<gb_bTPOd%
z`u=YQhW}6I{}KN4y8iF_kIMF+lz)7U|6j_m?#!+4wfDd0&S|P%pei7;rzN!YQ2TGO
zR;T5U_q<%Cv0zh>hu_jGm1|s<Jz7`FY+82TT5jovt1+h4aVbh)gr8rntG%1qIYWc-
z<=${v%|MaVFYl&#IaQrsWV*7X+vO8q=Hh6@1zuB6zP31?Z0DVIJcZ--F2S<PQ@s-R
zgdW$t&wg=VT)x2Rtr|-grLUH|zG7>)!o{t8H`!K{^4`6Yk@dV+(8<NW>*OB&;;-H}
z1+20j-<NLn|HzTJ*Gp7D_PU*G<Po8!)MZsUzRULTUzgwN`PZgmKUe6njwzMJ+o}`x
zc0T44VATi}`SL~X%Y}cfO(Cu#?4~o>FC1{=Pg!=6J#>m8)6xGAcJ^CN)3JWK`;%qD
z+K@Y&4FfxJ_?+*hi+agV;#CZo7V1-6lsmJP)t$e}>*)r8k5MZY6>+`0m^shsX8P9q
zO25Bq+04-MRd(_Cy74iqKzUhtvZc?$5Du$`ZBiG+thNP<t)2E&T{Fk$v+=EC7qVZs
z#(vgPR9xhxP+7cm(h9Hls$q7wcsu6Z&sBJz9<=NgYij7y4c}IEeJ&0Z(VTVAy^nF-
zd9xt5i>`NHOp#Lk^f7(ma%VjblMB<&bnEZysQ;b+UpKDyYv`Vby!i)&{cRdS&DS5#
z^8ckV960~?&iRKwen{AVOSW%|-k$gH<8k@p^8X&nACr2)@WKAy@&5<>|2^?{+xq?e
z|9|g~yW9V|ICai>8$qWdt@+DeB^VTNomv(0B9(2|>g%$fmIrxAtm%E)-*fHb?j-?+
z>$40m&HNq}+u8Yj&HAT8W=3A2i(Wf>^<LHJ5}Fzxv%)F$=b4{My4sS<d~<jeRZcmn
znqIM#*4k|5;kRko!t03(RVF<Q50(A$yLpG^CgT_GOJfy-=jC0#68TfVS8dAcOsSq@
z%2%AlvzB)$c^hy2elhKPGr#G!>|5v39a0jn-pw<=CZN|XG}SyTB=E?jSlya`mFuR-
zTo&3B$f;v~zT&cg)1oijxAK-V=l*%LV@=ds{i$bmg-eyM*;uITr67I&RL-Bs$lvGp
z=}%kxXrA=bwU(Y8XDnWBNz)BC($ZZ2{J7-tzczL^n4(%gu5noyvPb@0N!r@a^NXW(
zwsNOv`t0L>|L)y`PlwkXIyO~1{KMC~;*2}4EPK3g{TAbO3)gmLGC6ff?8|F)&@jzj
zd*aZI&6YPJ<~Kc_aC4WZh9vLtxb4kx_m>8(jFXp*-yNs1wKRFEz`9r`trZhI-|h<z
zE0ont-F9<I?L7(Rm7#YSvZgqS+AS6fv2Bfs$XK91Gksp=vn$tI1uA~MT>kOPW&iUv
z=MVGS_x%5N|Nrkf{XO8FF9J>{v=%n{U1L*Z>5{l~yF1Bylg5RQ^IVqB`L1#$!1S70
z>7|_SJ1%N&(OCad*6GVRp?MYiQ=(j#AKAKod$?iC)~R#3=5GAHK)QKRKwzm^e*N_t
zPZ5olxmhcNITlaR2oXH2`t(lu#O8?Z6SL~0tk=ii-hPQI<<<YWe(Zni^xM9EtFjGA
z?MTpgRC?*wf^S|A-K0(a72eGVSuE)GbmQ-u`VAWdUW?71bl#9zlf^6k<HE};12W=8
z7X=vFgsxiBFeluufGJfhXxSDf&Dav>KoLXNM8UWzmCN6*;nH+{^LcI_`!RRrEw}b_
zyq(|qxz*4?+CyK6y=3w6?E$HK)_q==W+2&hcbCxS{~4Q^M8AJ~zq@{kK;VfrXAV`g
zGH``D{P=jX)3NPJ-xJ5_0uv0i_BCHR&+Zzz>&147<l6j?hK8T}KW{#>TQ&1xr-a_!
z*Ix@N-y1PJc-Ss??5X=4^S{?#uTOqq`{HZ`i%ExI)3IeGn__x`J51g`JNVm+i$lfG
z?zySIX3O7wt3O=4eY01z_*>cc3-5Ps4GI-2?k|fjU(#Rn;>SiO2E$Lwbb@?KG*ef9
za(MIqkb~D`t<4#-*M0p&=gXB8m4PO{COa(*?x<dWySbBFSLLyvs7Cjpr<)JzcKPaT
zPkx*}<)UZn9-RvxpH4dEXBv1db)Jgw#cg3Ck(PXG7SDVk;B<sFWciv4KZN3a?^Zm`
zoIhJTC8u6o`{n)vQY{C{v>95boDK_}yTc*woJ#4YrPpmgM5R4kde=|f&3vPd|MFKZ
zqJLLuCGXf`D7CAwHZHq&R~cL4-76YXT&{jh<^KJ5$}`3U(X|`iy_Nq}@1gplta`=q
zt@XOE{|C9)vZh?+TqC-{;Nzb;N}H@-uZk)AZ-3HidwtwVg&ddCUA870|6abaq$U6V
z8p&k4DzTsIx>9<=Lt9Tt|Le~C|4lB}?pyoLhfhQ!T<4$YSD$+QjMJUdTt7cPza=gf
zx&OS-qO}47W;t<BKX2#e_mkfJy?o#2JlTy+vmH1Dud9THCSDJJQSsu`;ff~@-5D6x
z$JfcayXOU$+DIMlYy0^57}o*yk2}{*ox|feS>5|>yU3;dzG`M;W1HQ3^L!L*UOd#U
zc=Ax2p}~D!jN^Ixcn#C<W%1#Uq(Zo+q&A*f9&+fELN?3F6rbEv&UX?g-sRRi>MdHg
zCP*ms<?8z>v!q()w7$J1rwp5Oz9v$2;pD56d(<6OH(!76ni`btB%3H7x2j8`?RiVa
zp6^F8BKB9W-*T#Dj!M<N=6frx?s0FJG51V$>#TK)ziX*iSe#nraDB(z`)(^kj79ZA
z^tP;ZST#GFM_^V=RHIXC_?+*nbb>lwI+aa&Tk<~S+oz~WW$#tB-amZto`)fEp$nHM
zkKBPxTFEO^*0?@)R+zoa)A~;`tD=rpJumxSyH%@%>(fPzHod;}&+<}r0K@b&0h_1C
zW{I%rgoa!%XH>Z-oXN8$U?$g|uH@)+$-n>Qa@>A<PuX{^;Cji0iudykHFH8VUb0O8
zlddCh)N$&G&>yNzzqRxKyMFm^@us`LCHUUvyl@3C|Lw;Y*nHAic_ErZGrII*a+IT*
z73b_#QXaa-6ZZ+VYF&OF9hmcI%9JHj>`bp$r?K{(iMg{afOVJccD0=*H;yXz?_p&4
zaO?2)0+SNCFK*Hz?Z+kh=8DI@W>f1pa?r)lPxJQ0+`ubqv@X8>e(`PjpZm36%40(A
zEWI21<xkCq?;n(ZJj<^XW_Z9GE`PL7yl3)l6`|>C9lLdwUgG>*dC^mI@ri{&M%@l4
zUF1X+*0!8#`P;N3bz#?)dABdEdlGZOK|R}9F7Eovvd2r-`wFWoe3z5F&(5Ir#8!H;
zQ}3ov?p`Z1?u3MjieKlpXq>j`gPM?fRp<fknTs^IGLkR3OkI7DYoga1596P?|8}c%
z>F6dVPOh8Azdvy2g@tDpOfcM2b>Y3UlZ)e*O&ZCw+yljCHtH?tIc*)js-xR@sY%Gf
zMU6LKf4}hdSHN!9um8Clf<K<+DcLWWv8A`$K+(nM!e(AA?X~(_+rHSzPun}?Up?cA
z&n3m8fA_>p`SNyt(f{SWwhR;21xJb$o|(k$QJ7Ubf3EB)yY6Xfr!IM|OO2L^oVojg
zKX?9=_Q%2wrxefg>4o#1?=95~_NWQm;rq4bUWTmazwcAhX8*R`yy&IkmgON_t@9Ju
zr|UhOXdc7Lu;<~o+$+7O9m8E47cWlk>1#eX@8w$t!_<`ls;e%wpDVY1Q98GAZ~05b
zH@17a+x23L)|axq_&T@oo~D*ato^yKY&+`SS}{EM_4W0O_g@~rpYN*uK<VMN>0DFy
zn+2`B@$A|yi+TQSJB~Z`i=BASt9iL%*(Topx0!)Oa-dBKiqSvHR%ulgZ_S&ez;#DS
zasG?P>o%Qz)pE!!IoM0m_MO*Gn;l0h3d~Pv%yB#uKiNpC#cQST*T>O|Jbo^7xuM{u
zR`*Q3a$;q?*rB%V`zNgA@!xO%Ve7oP<uR+2q;9VYxF{fg$hDiHA;?!`W;R!^-}0{9
zdoM!*YrIeDe(JGdILM)S+GyKmVF#XR-%FYgZgX3C<^AKwuHXN2JM8;ezUZ&|vH3Rb
zR_k5ucmF-S`tyFKw+o;DJH9ZiJ}Q;{<SidjR+kSvQ5SFh|Kh*vfAp4TclYQ%D%Y$u
zDpHxP9VPcg^LhSq`@aX)=*&{gz8&|}_62|JF=h95hK4E=r<bSa*lzjG(bw01p`uq%
z+2_sSsjn8jw!PaN$9^~Vf9zdGw%z9x_HU`?{Of4%#(!#))5@R{&j|U_U9~)W1ovA@
z91%+PI<;1M^`RfaJz1Km+kQ^D=B|FtKB?#rXWO5Xr2>lSt?NWU!|<TS19)%s8s5Bi
zyW4xe&l5@RntX5aHNIyrcYk;CTJh$i>#d__oO5J9f8_D0n%}TyE~~;j!DE&$H6vTD
zzgje5d*}y=u(^CoCS9;<31z<Ye6hFcqht<;Uw5lBC-2(v>7|^}l#W1GAMTwVf9nO$
ze5#nUb;?a0{fDkjON6rx`-}3w=hPb-zS~+?tW;B*`F8)#i`II+nw1REiEqPv_K5#8
zRrtPO{<pgi@BfLKC-tbV(NmC>OLl(qzU|w)m+gEuPoL{cSve!a@&0$oA=fi%rp|Jj
z_F-!B#n<l_ygt2zx61m)$HbS-|M;x-6}ex1xj;kIOLUdHMXb;P%}Lx3o!4^<E`EAy
zQ%7LT?N=Y?`aIk%zBAqSx6t?VlKYz{WP(ZrSE(~BAt$~I8c8-Sm#9|s*ZXbsUvQ#W
zR=1qaZS5IH|MT6-e&YJ)&60)l{=aZFwh8mxXVBm;*x^*Iv@~aqK}?Fl1=Th6^@+Xz
z`zCyzarJQQlS8kWUKl)?lNOR=YCKEH{M)ln#>*v3U$*Z2dvBXjuJV&Dg-#uRYSVw;
z%iUk!A|T-C?szJ~ub}+9&=P&Q`!C-=5R}iWtEhQ%gum5%-c-g1W-+^)<+?6OKK<L*
zlX|e~Zk$eNw8qn~QZ=(USW@g-)0<Kg^Ckq@6=?41K61tMJm)9gRUiHxl@q_IhrSGB
zs|&}Hw;r>rv(mLcoQw8&R+m{l<N0e(tB=v&E!tfFnMKMdRT;&2EGnPjvoG`2*YoQu
zI~;O5Z|PXPQmjll^ik(Y`l0@(_D}2bAKH60Y_7O===JRiT^6&ydv15V+Ng5y%=f1c
z-~F5V#`d%QzMmUrF$>RJZq+iWytUzzDnof0+l77`CWaNSrNpe3={l~cunbWQ5Ie`L
zKeg-80<V)xMBa-9&NP=eq1M<b=JDQg_V*bVvi-zB3v9p5DP0t?ys&5^+b65JnvpDu
zdrZDAuAbhO)w=T6f8ErN2Cv;?WZpQ{-+H#Y$nZ+RX5J;f>Zw0-E^j?ywp{O$=KMs4
zOvyUw!&#wsoGsUXu$WS2Vm7tQ^xBV8f(IY4rQF%ztMw*mSy5kZvyI04`G0R+&`?jQ
zMc=u2!gA)e*KhXBf4IK#{k8knGyXeXS$^`@#|3h|sg_&)xTlw&JM!e-yzB>`x16~B
zgW2xOH>aIO=KSIg8)YB9JAH{wwfk9|qJa9Otara}-)-I&wBw7@{0&BRtGB+Zuk5J$
zFl+mfBK6kd<(vlvoy_>8UbM`aY~!1+#9dLi|K<OuU%bOk{(WJ0=6m0UoA0|j!!uNM
zC#_6vP1~T`_WF@o@=2u`xjX!J*KIE9m5+J9bZH(xqjr<hj=7fe<}Fipa-K7xo89>i
zCv3n0bcm1Bxw9hm-xkSgelJ)!KjfNfir|@V3-wjECOO&sT2!57-n(|E%x%Gw^@%&?
z7bXRsd%2>Czk1mzsmXCgRcASO-nihPp5mu-U5!t%Fk`)fM3(2YGf(0!ZZhRh^040h
zXVQkiz=W!u_WvCcs>^(~Ju%tdZ!B?e?VWAx+~xL5XWe~sU!^4`11)6=8-<5G@XFl1
zX4?PXDZ3XYJ^WTUEqkBtz2Z%cXI{<Do%(IF#j4w)#z&aDj`{wqtq%I|NoV1QmI>XU
z&DhUauP;u~_Pi#Q-<bPQgu7Pw^Ty~*r`aVBo;c3PeKGI<t>bq-eg3xi<fqJ*32U3!
ztQ3oruX67W{cm?O?Z)qI{VR8FmcAn>XTz4+>|Z6l@UAyUWbuq<l;umpP8^o@JiPau
zHf0IT?y+z5wdXa8Ut`;zuq)xNyVHqgXMV^L1ULE8Zk?Tc?MJipjh;p7EpynBx4%0u
zL$*=pup8gKt#13Q?A7KLflU!mt2QY)dFp*Uz<K^j-H!EFKCE2I_38RWz4&u`ik(i#
zpzpwb!pJeNuk-BZ4py<%52VUIzm=R9w^_DU(Z$BDaa*&J+)LZO%BbJZyLNv`(wTPo
z*MG0y_tZ4hpUd98&#=+<eAS!D_x5C(UpXX@9=2`U+S%2uwTjuFKN!q&`gT0>_q)t_
z@4jr@JYV1Tx%ac4v$e}!8-1L1^8B1qKjoGQGEy&EY#4qzRjFQn*K@K?_!`6JTjy?V
z)(=XrKW@p_GiT<_zwvV_(pKg;v7hL_*tY!L=N;*L>ou3>Z=RojfAh}Vr10A0ZMSav
z*@$eYOx}8IUbXz{-EoE4A7t1)!x~M~cc*POdvN}b^=t#VwM=H*ir-rl-@zK*C!`$s
ztrWEzqfe+u#?6k{_P;4%cOKK{*Z<$XzbVuH@JXZHiN^WQQ*O_{dW?Z#$%K!$I20qi
zs~t0p?QTo!rgym}<Xrw`eg1-C_wlIBubdUq8`!KmJx(@sg&z7AubcD#>Y;D(vN^x6
z28qRVtrhzA|LUR}|61lWl(Rzf4ft${`$22A-nf51{%azrLTwRn3S(jAz0NQ7BKp+9
zgN*ln95Y|{%K$p{t^Mf1gM_Q?4r&6^ZmUIiZWYtt_d{vl%h~%l<A0tC->`lA_E*kI
z(x?9YvjgdS1iBwwFLu|KSBDj)IerUR>c4S*vS$PT#L5kxe@{epH#alK?5~>}#gol8
z)pMJOqKnC?@87;%s}oRseSWF;^c(#rb|%OxJ#Ve;m?Qp8(TLw{sr*I9?ehwD!-9_^
zk~stEAcTghUoV%>kNfI4;p)OEhj!olswcAMu-7@p--2+PKOeGlc?K2`=|psY7}~%G
z6o8G*W<Wmm1J7Xxzr;Rk@BgG-@n+-k3vbIle%roZw*Fgs{kB)mO4*0Nx54jyU#q_^
zem|cgOWpJGy5(PYZ58vk|7!x8tBYITUcUEr?2kXs?eABeUmLys!<AtF#Qc2z>gwu>
zS1Xqn{QmYfbsk%!qWsSj?jP>n|9khw-MdGxt`7gmZ2y7z$0PCmH>%EOm>lx|bHx9_
zsj1o$JZwMyz5ibaT3fL8d(Bhr_=DB=f5-8#F~{sIVzvJ{*}n5*#hx?4irSCD>%WG7
zoO}Q0+#Mw^h4f-~wScCK_y7OBUp_wlzvB1P?slI9A%n99cE{^n-W|Q{Z_lgf@_K*v
z^>s(D?^ILz+{X56+Nb^hzyCkRZvVsa&msLkO#fc3|Ht+J&;0+zd!F0AKM1;{K2%;R
zl9`X6|KqmpdwJ#mzHnc@?;m`TM9r7Q@<-F{K1;^zF5|ub+4g>Ob93{LdEfWGul;f7
zxm|nu{93W|cE5G(zVAH$aOLuOQP(slh<^U_`TS#M`5z2+e_#4P-uZl<^JSBY@4N5!
z9zJ~d$2|VJ56wS*9JlXFpI6B?|Hl#ag75EQYwmxqmEUrWfnlxbzVFrh#oOE4e;iS_
zYXqs;|22Al>-?WH=SN=6oT&P#_x_LGA4lW=xc+$>|4;SbC;k6I{~yKw;r=tb{&W7L
zL(~7Z-{GJC^Gy1O_<yJC50=+GFW)vV-CimEq4mDU)*mi;>mU99?^*sowSC7-1!r1M
z%TfLRW&Xe5-|zq3-Jfmyz5oA5`)&6BKiltLq^$Isi{baj{(75#xjh@NuZ!Kh|3~+J
ziTToe?PdA-=l|VW|995bYq$3Qy}f@c!<*&ye_#HX=U@9OSghgi?)|@aKb5tKl+L@i
zCzJ8U^ZE7nqO#w<y}dm*a@x0<>GL|@|Gag5U)s_s-)^SQ-+C?TclG}7)nQ(l`@d~n
zfAssG_5Z)_&slzXWBI!~k?%MsY<=+Q>FIC#|6Tuo>YwvFP<H(N%zXb%yYF|3zs-GL
zv;6PM`M)%?b&o3+nf*Il|AYTqZhrOcE7y0ZDRno<ebG&^k$b#({$HJYf8UjFpH~lx
z2>-fIleMk1Hfh$p^o~E&D{UV2clqU)59YqFNq=KM|JRk}8@6w6KQ3Qyv+p@{%K7(=
zX+_V^$ub-`%x}-b@Z(LoefO?)(SKk3`ue)!bo9MTuiW!1Pe&L0{q^<7y!x-}|B1RS
z7PR|)^Ss{27bjO;jCwpXecr)`4;4XE65r&D;%go-%OCh&_x}4MP%Pc7n)kP3&Q#Ex
z)%Er9$CLYQ+vI;Ols|O;|KIz}4`y}fv?X0-cbIm5_4<8WYfa^9zg)cbx!>-WM&6wr
z8y78Bn(g#L`SP#x)A#>*`ePn=O7zXu)!{dfZxhJY1x;j1{eLt6ukoIzy7`O`etCq3
z?x^`$^m^}4i;~C3dWHYK`SkSkid9{IGrWJy-v3kD=I4{i5`679Zr(h2-2Pu-&F}5?
z)}YkA@&5$lk7ta}KLCx1cAu|#W~?6f*uv%9p~wC9efR&Iy?<nT-Rtd-o=%TH)^7Jj
zanEDf_XnQa|F2xvdBSNy<G!ODic$5^+5R@}Cv@IjtzY(4_1ng`Pmb6BIsWl_{om`L
z#9ny*`zHB`bMk+0%Rl_w?z`okeYMiyv@Z`DTmO9C-v0C7H})#eL8W!wtL1fE^*`F{
zJMy+yKRdrse&U?(d!E~V{1|=zR~X0(6_;n<YXL7udDN-SP~hwGjNAFn_6geI>l`#o
zldivec6PRU83X4`6^-fhuGO!L-Q6}lzV7Fd^!UoBqTe>^K31=Lr2YYvjDJkF|0!Ja
z*t{;e=HIQY*%JN7ca**kd;NFv-;7Q3@9rw)E{)wRpUW8<`cVGw;`)~Nzt+7!1S*>L
zyv@x&T>s1ef9K!!Ii2V0zHQ!7`C0AWzi-<YYjBCUHa?$UFZcha{r_|k*G6~w+9`iK
z?wB_pWXP|59sThTw|;@Iix?B{7u_YRwD$acn}59cyzTX>e><PgJ8XULW1pz3=uHv1
z>NkclyUW&Itv~kIa9;htpEv43$qRGFi|_Z1X$fnO_W%FU|9E@-@9iH!!49eqqSo*K
z`!?S_a@yLuFPFUk*H@Rnxs@V!yzr0ZLS0v<g$fdyKln3PU%yEZJLsbqWW?deCCN3n
zq_DK8SR`Eie?!oQ9amNg2A8hBraD<9DuBE7Jn!+=&+iUcf1IU%=QS%o%cl<$<ZBf7
zn=76-&f2zp`~I1W-@bjDW+K&lJ~BEwJ1s43*3zX*A4hU5RmtSz=ReE;-(&gZ%(lac
zpI=>F{ju=nrKQWRzwV8nt^9B8;lqcY-Q8X8yW8=b(N6{j76wlj$B?_*)F16P?6kgY
zSm{6C?(CH-A#(P0bGGN-PfJZzRrjBFrk!72?e9g62M-=7G#>;Z-^))P9&VT9VY_+v
zuJ0t9iVq6K#l@B1-bA(?PMkJ<`sKXsoA>Xx-*@cl>hR4wcFZ_?_H0gG-m^bHKff&7
zJvmC~_?vTct!K`jefrojH@C$XfBg9K^Yf26x3}k~CnhSse*OC9ty`z2YKIp+Jk%;9
zE34|+*Vk9{?#|8<tGPM3xv90aw%pv@FTeku93^)A#k;$^D?dJRy|=%9{`K|o&+qN6
zwk&+)a_!o+Ni*c@&d9%iG;fCTzWmZsQ)y}Gn>TNsJUw0i^4qe@SzC`)r&TM}nKk~i
z|MueI;yJd}W|uEt-dXYS(T|VrAO8IOY~uTQ`r~J3XM5IFuQ~De_xIvoUtXR$bLPpX
zr>7<P+V96azP#N3<=3jrtx=g<qh5Zkx_SHd>;qXdTK3PLzby09larG_TE_3I@!Ws^
z{GUHHY3b>g-<Ey;`1pAKy3M<H&(6NSF14)8?DOZ(FTel(`RnUz!}V>RJ4#<)`(gd+
z%F5uEC036u{Lk>)KRe%;*Y{(dw0Yi=yLstZSz77m=A8Wc`ugW*XJ>!>{mtc1&VH4X
zDRsNq85kJqp4-1*U|<MnaA0R(XkcQoVqjnpQMka!z_5U!k&l6aft90#fq_B8VF5D(
qg99UzECT}rm%yl&5gcMaL_c?W$hj%S_AxLpFnGH9xvX<aXaWF@ppOgy

literal 0
HcmV?d00001

diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_20.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_20.png
new file mode 100644
index 0000000000000000000000000000000000000000..9a00a3657cd09a41c51c4ac4f7ada961e5870018
GIT binary patch
literal 123708
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LvuAw0hU)Kl@bUawKO)
z{$3Q6xzI~UL1iH?cU$b1jS;-^JqLR;Z`<Z3=QvB>ew=ov%($$6*2ftiZ|r!R=f7Qi
z&xYP!Y34SwV-hU~Je-__q6Ah=%DP|F|24P#-;VcpD<)2zIaN?nP;zGFzWMzj6K4v(
zzq{l8-s<-|pO>E#WR4YJafBi_2Ez-iFb+#1i@->dOq^W!=!S946aN3k!Q$tPOCQ=4
ziZliNvWJ96VoKrl-Hc5JJckajKiGYL-}KY#_VsnXwZ68~waLK3Z;sX3{r~y@v-jIo
z*fUIgTJStJpW(sp_|Lb#=FC#yXfj9ut*459@|l&PXy+ZP?H&Rxc>?^q6gZlosE6T^
zqqv!E;)Boq^?#o;{CW5OpWgm|)%8bwLE@I&XB+H)K3UE<W8U1QPemAih?nnWJH6@J
z=FHhbOOv9W&sX8gVtAreU3hvo!v>j;ahy#C5mSPE{CyceoVo0OamDqM;#=5jlZvcw
zZ_j5>SYy=pypq94{0rmMmOk5$A8e-_SG!UEL5d;fdi41;PH7p#3$4E1TG{`P`~PK?
z|GD@-+ku#bKn;=Wn<Jy=y?mLeHI++Y({4w><AzIvCdU6d8qe}z`~Ug(BcF@q#)XJ5
z82tSZU;K!Bzt`$z;wSFi$WvQaXUMQS?|0!T_IdmbPfslJ6=?ZqY;1dWaes|8!~Unq
z)&i=JgEwD%@Mh*@hKjg(8&6p<OrCsOQvUk-)5*z68@@LL88Vdr|Epf{YU29B<EKk4
zZff8Apm$8IY+d^07Tz9@J19w(f7b?0PUiXg>YKjV|6ct6*t*y%@#0-&laf4bUL02A
zV3Mo-V#x4r_xree-?nXMeB>xE((Bf|A@Ff@{J;4OCa*)imI^6MI##!6(S+jfe<d0G
z|Gw2XwyvGGtSln%)3S^?)iMn?kJ}yo@%BCAgRbyB?B>(sr+>>+soC#3Va0+|Prdw)
zdn{e<rI{1`N3eO>#hkzs-6d5wS`s-9l<)g2kbZ6+<AMqL51tlPRMy_t7EOq*Iw`-U
zrqAD=7j$>K=(+jVSIw8-@!IrG(P>@hyuZ&B`;?X~JNMz~`C68SOF#1Bezw&!pZKg$
z(l7Di(6T4@^6wmeU-RQILrn44(3-ce<JlL)-ALRti>p~RRz}{os>i?nSFz291A7_%
z-01(i!ceUBpn<iucgD_|-zPX3mMu&7jcD9Z7UcQ(XS@Ab<@&#M40?0y{kO6P2A#}f
zH<)(a{>t3gH#;A>GFYt3@mlMWmGkG}`}&T@=Ve$QOt1gi?9=1Vl;K?6dNfbwb@t^f
z)5;f(`Ah}x&J@P|ZvHPcq4kqOM{@1_`d9DwALHNi#EfB^?}-Xyo+&|R&YfW>`0^r<
zDLy}I>nFQ;(-%K@efGef>BrB$e0?Rytn!1RZtMS3;qRWE5d1smr{jsU=J$C{6kp<X
zTyT6%)>bzOt*ozX49ELyvYv6BF1oh1_RujGo|44iqBmC}=UFZ;Z+*T@@59=~&lz@n
z{K<ae`O#|AjI6Cz@xLyGGyXWe|Bpt$-LKrZk6qIlKO7R@S8(^%)=-PmS0ca5d_EPw
zuM=n3|KWXIt8MkSHN~sV*tPmB|DF(MsCbdQ|G>@QbjB4w1zd7(8-@w=#d9BcDF5gD
zo84jezi;{wJ9A4l*VDH(-#-7BZCKv-$9tVcfj|Q@yI%71b+K;?V~!pPWO3NL?SQfR
ze8z;jx@n8u=P^ClX@2Ki_Prm<CqFLz|JzsQ^*{TvKP>5bHrxWtd!;X(ePhwrF^N~}
ze*VQQvlZ7@F@&t<K6CyolYy=6(N^x~j289(WE>aRzZX5dBkz$azq5^f`~6F7yPt18
zv-khq_qIpH_y163=##NL^-b0)^WE#X?^cy|RSJ9S93=$YxK3X?w&QVC#59famU|Pd
z-J!)li=%)W!^Z{OvnRPNJ{YWCq7x?J#xijlXie<QPfAYposVa*%hw1r_}6_3u6gNQ
z)&B3r#rKR|=KFu1Ww`X8S>^7@`d2HLThu*bk^i^fj>AEMMaHJ0z;^bwhk>2bKm2H(
z|9E!&zc_|v{_;yF9+~6LrE|bjCZMcPoW1UWJ>!P|yTrTFv!+_~#ZBAub#4Ch`nrdo
z8EgvvZ~t*d{7Z#UyJBB*vU;4B_2sqJWp5t*Jini_A^zvp_{SHIm+&<NtM_^T=bykW
zuE+4<?t7aPFQwNpKe%~*SCZ{)lSx-re`b)WekJ%UO}O>`8y@4!x1{ZiZI7P$V#09Q
z`0|-EXN-)k*$@12nw#Z2y<p9?Sti2gD+Ju`)V!8uxbx#rw9izj^W7bXIutH2Pmymq
zb1sYj&))BKlP9Z}x_ys0`sa}TAEt&Q^S^s&C4aA-uh6qG*48YtZ-r^=JwfK!8&iJl
z^EbZ0{mMj5a6!;Y3C<Z8q`fo`1$@sHXmOkLYi<7B^XLDZInVInh_L^Rh)V`MJO6&W
zU3so}-e$eGcfFQ$Z+v{b|MR2i`(&n`c<rZq=ls6f-`6&0N>5HXym+I*(TVHpMH=$!
ze>KNglyfzNt>`UcIDYN_(@$3W4;{3wpSe1(QdeQqt2mCu6Ha!;JqSB?{NsE(zJ{ih
z!=`&)7;hC`Uh$Rx4(kEm^ZQ#LAOD)J^>j~6GvlSKtqeN~o~fk!&5wD0tw-;<pFQsZ
z`G4oufBa(j)?tNNjnvvDB2mT*UM?5<E@0ooF=?k6SMnm2YxZHMj{I$QUGrsc?AkEj
zq@zyz9A@Z0Q1$#hYpvLMnaj`Ze|<4FnVemAxAgq8tLy7b8&rbcOuP{z-jS5?qv~ws
zmmiXURMZ<<!np1#`7egniX2S}Jq(Y$M9fsrrd>W!ySb;ozngt8`;;c*^etcB1<(H_
z_5aU#&z~!9S{^(8mG8eZf9*VXxk`=~A-W8As$Q@4@$uo=cr<!)lv1Nj=_eN9Ei2yK
z;?8*a{@h&a>zgyBnMB=9o|j(Q{!+NV@Kt9%L&2kk=ZpWH_{(s`xjoAJeeUfeB9oT9
z`6+YcRNDWyR?$B`$9>)Jb?lpI!0M|SYICdKmY#ohuzmmH{{<g6+&i{u$E#PX8Q=15
znPfiQD`;o(1d;Bju(#$}b8P;dvD%(ivN87USv&LCrw`TrnFU%3-7OE4+!Q))xH0Se
z(!w=o)~-*wx^bVUXztgjW{oTF{hz*#TVT7rP^9?NlCXbg&YqQSz0GTGbG~J+=2Dl;
zOU#-7W9x6P)|{$!r+WQ5sVD3oC%q1EjNnaL$syh4mdhx5T*NDtAt(K1^p3do<vcx^
za~^Fw$vLsG)N}2%C-VOuGS>b7ZqI#yncpUH$(3nKHAKERJ$`euUEk;o<G1(s&-4Gi
z!2i%9C@tlJj*bq4fw8rBfYzt4^?$e+w%`A#bnN)?>zgx`{bfunKOMdQXm|W?3x?zU
zw!WJK*%jjFr9A(d&+>rv{&%&1AN}h%8xp>0JXKlR^!kAE=G~P?PuB}IIC*Z0Sl=2|
z%BU{6`g6;(Qi)ibV@oWy`IdV1yVrjYuRr+r|DW>=G1Y&+GUvU$re+%8wEyVG<XaB?
zk0YMla(z-%wb<jK#LFs)ZST`rWsg<KZ09Xox@F7VKf0B<iGoX)vewQw@Ok>l%u2*c
z^J~QF;&)s4exA6^7#GC!>0b4}#`6D9E;H<T$bSD&cKr9|U$(3_ubdJ(zA^H?OQ4I)
zQpFm^#1*M;s`Yly3a|SwU3u~Ft|f2m>mSQivbD^ch*3^TH?2&0{(XJ@`|C3;%e!o+
zXG=bAJbXU!e(0`iANu}I55BpLyCH3JqFpwls(*F<_jk7xh1P`%un6+ot;pv1fBpY2
z%YXmgzfVqFIPK5Yy^r&68*+31y5-`joAkGO_G!J{JPr4M^xl8aXZ=pX@9=hu%xU*D
zx_&<W{+~<!#{qT*(5Z=<9quWqIqk{r`%Yhc|MElc#?|r1M6bWN^|U>|PIS6#ogG76
zX<PN_s7tG(BszajpWpK1)&JJje74mueDC*M$>Kf}d*LD5)z6njKJQvA{%UQi{bLI;
z{=17e@0G9rAsujw?LhDLdsYvw<>j7AU7KND@uBEhS~|nW1^TVCy`Ma@aGCfmAzf7Q
zmgc%M*{*7wOS2!V1|695`hnH1{JnFUWnUHUw-Oa#`}Olfv~H}o?a6QVa<*lta=s`k
zbJ6x(^!v=^;}xH(-5D#MJZ#^QbY6nt`u$%)Tuaw3-_^Ca;pJm~1_S%AJZszHzR$5K
zY)OmNzM{0>??rZLsDue;?cRGiD+<58|8F|4{&hD)#jB2%YL30iY`Y9T&9Sa)@&EH}
zKl_7?`E{%zXN>z_7R7z9`<Q>Cvg(p{sM^hK(dn!HJv)5-%yZl8%YrTl?QyDn?Q603
z!;8iKA3xjwuV%3Mc7yYgMbxvozENu{KVQBvW8R(kUzesA{rHf`@NU;@y&}ubqp~Jm
zn!)c*Y|A}%?3j<wuZ7O-Dn}j&MQl60@s`E&tX=ch?S9u9Q~TJPF+*q0<9+A<F)}Qd
z`>TE^a&Kj5{y}@&mG=LyDu0+}&3D4hWBv-gGse@W%sI7N?CFyDaH9*weZ7+<3|pP%
z{d9S!UFpu|ZMARz6IFe~r>2Jurqso|=y9@cn6qc%Qf=0}pxK2rYaDj2_`NCQ%Ze%8
zBA=>kigKl|Z#|nHw6j#e?MI`TjQ*Ut3umUZtT$(ls>|s4q|mcr?Ue)NAB%qNm^#V*
zUh(AXV)Z|E{}*hy8(ueS{{Qm-oo}tTg}oEnZ+G@^{r}mZC8Ju!b450u<iAiSd$h~o
zX3j_Ec6Iq*T+?H}@iC}vdmCr;#$O<;IVYbB)|25l#G!C|_MsC+-)4LZs(rKl-ucJh
z@8;I!M@|cjJYMJ`lC?5$^}U2|d#1U}t4b47zp1;gX48SEw@Y##)$ZQLzxt>2B$Lgr
zC;QtS`Fj2JL&f>?pS-xp`s~@35Wnkxd|uTZ<36(S-p2jEUahV?9et1Kfc5>KexSYD
zOa}J$`jSU>tMn!N&9OQArbe{k=1x{Iu`jP%vwDB3+*uHpf5GFB<*KVz=WW(5?TXvy
zvHI$wxa;SSg@(tPzFEIP@#EaLJA~O8cYF_)e{y^NUx5X}jJj98*4E`j6^2=_nW1y2
z_<Od0$kqbY<^8q&X`4B>7)NvOE&O%GGq3L9X~v3258E|Wv{rPUlIWYQ9QHQns&0Js
z)#ImKzrDN3d*I2ry>qM!`5I#UvIO{>qx1Jp1x>**%&{u%T0ObvSJSbxFRO2y7T@`G
zCp*K8H6lIfHH+pP_uTW+aY=@Wvy`r_`gLhL<Ikm^t=7(c$G&mp;oQgvug(-ytn*zN
zbl~$A_j^Hxj*}*=yT-G^^h-_MzFSM~T{xb##cAIc-@Wg4ecQ!a_e}hdW9iWoleGPU
z?k!t?_RLIm&*JCli}<ZJWV9>p2s_c~Zg+Swd&!L8eE}xL8#Gq8<OwpzN_hIo*EaRn
zzX)fr`1N7$6QRmH9*wJ!yB5g?-|N%uPd+-YYaWmOd>w(vU!Q+&N(qbW44Jee`8c10
zblv)@tED#oegx04UamfiTRiGm#FpG0f4_w@eGs<)D7@!Qs=o33`d6B^7nc`aJoIYj
z%$W~k-`DB8`@Q_os1UTQ#!sTvr7<pMrK@(^mq?2Z-x<=+#~Ro#|H;rYRnz~?lT`aZ
zbqsQUX5W9{5@eLMORA{EYya`B4<CHnrt&rBsTo7vzx(^<^Z);rZ)Cdke#L_Wjf&gr
ziYN5F-E4e$&!2PQ%pc}Fzkl$@J$;6R#T|zPQa5R|Z;86)aDQ*Pe)+whS`2FC@1B|e
zKOfJ2;B<GR9S>+)-Ai?^WF2U)`OU`Dj4Mo|#HY^o+C1U)r^L)vpSInp{_T=_`RIn-
zo;O{OpWU3jn~(kW{?$$MPh2>x@#ssX?RGg^%j7378P+9BKfYU>yUkx^YEFPlXJcG8
z+m%;Uc{>7fgR*~Ine7=?Zm-gHYtt`pLp!^Ds^*fi=I7U~E;%>nvVWcEB^kzT-U7>l
z%DN+7nx>}gJaV$Mw^;6KtJ?iPukOFvFUnVR*7Q2VhT7d0?Je(a#4MhVXg}oy9BJ0;
z5xKhRTHn8K^?&$fcK*+1=y|F$x%KWwT^*SzbKmUKPW|(2TB>Ay(h?Et$xKJX<Le}Y
zRo^=5^mnq?nwm)Q-uvMe`~BzC^);%?{pLQJ|L^5|h94)~|4oVAy(K35`MTFXw#NT8
zb*T2=B**`@Rh+*{KSWD(oyCUs>UV$57?ys#8?~QfMMUbJz?nAt#a5^&o_)F5_|J6v
zUlQ9ExBobK@?@e}{ozTUKiT|dEoUtFFzfl}-u3sH55)idDgWWq^z5Y`D`S-6uicyQ
zcY6FuW&W4hU-rz-OMO4jb{XH6iVM|;zi(y#u=2g_!S1*<lfUe2<+A^BIG_2!w%hRz
zTceKpr@Wn(8tk`c+tQ+&D;ngg-x!KLdp_wq&sXi7$YaNj?Jzw#<NrnfKce4lmWn#u
zuXvNGygqO7af92NR{nPUq<wV8^5+xoS6rW6d9^!V-fMTe>#P-*i@4`ltbTu1R@im1
zR0eB+zslQn$%Y%(=BT{8TGf4%wf6k=S9V*|w7mH_nC@=>m=*JQbxKjuq(5Sz^WND0
z5n^Dv|9s};=Zrhv?L7bdANzjh15baiUuI**=&&z9E&hU6^PKPp8;{F9KQ_DMXn*nZ
zbB6Zz`+t0B+MspBLENn?r0MI0PRY1W&*n2Nuroh<@whx=!m}rVMUK6>uC^CNV`s17
z@>{y`C0AK*w(_TM*Y`|SKcAs&c-Ba7&6zuQWZL;;nYO(7``}>no`<~o3=dAn|J(HQ
zc6a=rN2!lz2QU8cWu~!n#>Z!eKHJ3oc_jW(z5d&Dh9{qrcf<)DUS=TXF2ky(r`N~y
z*Ery_w9ow94b~F_z5d)@8mM)wP-jogrk^Eedwt&AU_Nm8``xqtd%xGSC%CK4cak|C
zW3l{m+!blxdG)7rYu<atE_>T2zAt0O+509-ioVXA8R?~3`~TRM8U8(Qofd9*_1n^R
zTCO*1b7DfIn10p7eeeH&(YHIdxYU+iW_IQ!u4#Sg+jLi7-ry7W|5yD_i|g@=pHHi;
zF5}&B^|10?n_a&m+jstd{h#5$Om1$OJIjBc<X4jFd}te<TX?_R?~%&WE2mt~AL$Jj
zmi(>Yad^?UH#aw@ZvG&Cywr5T>b$>+eP>?24!QHyM(z8{eLEkk>c?)2d4H!yRR83)
z{psiB=GA;UskkNLMo-S!<^B?pmx^?!dbNh{d-a=f$J=eU&*(jo|Nl|`^M~#7PrCkA
zGg^GQ;e2NPMLF%&hW__1bvJ}bZ2m2^xBKTU`8xIeUl;zD7GSR3dgkoe*e9j3^4C>g
z<?VT?)+c{C^$nk#&5k#Q+j1|Pc8EWF9_Z!y_otrbRIekBLGh*kWOg=%)gPJYKjq3U
z-sWY7rygs#s6PErGOtadeEL71T?qnV$4-l%e0uA0lFX}rU%H;E_B!3(w)54ibjE^r
zZzS{f{cWvzXKeK^;FZI7H-Q(wBN>lQ>f6k#^!DtlwyM2;YuC-6@09rZ=%sby*JI0N
z8O&|pTh2L`ssA{{SvPw@{FAS~&pPvM3Mc*l{&+s)gTMBF`+O61mK8skt6y*U|FLjA
z%Yl!^#XVEM+_=Q$wAiF$k;L(BmOH|~CoaC~_vYICZ8O5%T6g4Mmk1P!{=4h?-n`&1
zKchMpbrePRJ3c=@-~91Uuk4vcJ9AFWes^QzVU^CwKOJ6(?TluD48J-Guq3kFxOF@E
z(20pv7rd7WUCo-MdB^PDozwdJ=fvn8_y7OJpE+RlRg2PBDh&QM|19|LE%&ar{c`eu
z|MovKrk!|yW9R83rpqMLT9<Yzy)|5O{q?creKXQyYfUeEE_-EL{Y|HOO~~2{Sz9|6
zWt@J0tlWEHz=3UF{c3aH@tk=Xz}Wq*I7mlK;{Lk%y}7ry&9t*Cdn3`#C;RA7EBE32
zA8cyzI*%>h{x<2_dVPI}oci`2u7_RPTY0{}xVZRE-R)eKeR`Y2*6JD9*%>|%%eM>S
z-<2Ba_A^k!MLd;pzeu3Otmnr?Sx;W@@Xm@WeJWb>eBW}$4~L7cALlImad`j5O8>aZ
z<7fB0*e3n^+Oe<CK5RYzu=0Gh97Fm2&!xw_Jb!MT<86HM&N`8ZZAW)zzU|#>5dHp@
z%&n8ziOV&;bhx#DD!%@I)-LRN?AC7X&$pWOms*y#c9guGS#?zZ=#3i^#>U1BZ|?8E
zUvazk{`3Ijh1w}cb$UcHg{Btm%;EW>lboFF<KrW-GGJ-Y!&})~m%O``z5a3Nf2Y%r
z<bU4_435(3QVPBw&30m{r}**6%<D<(_I&aJEi7A*tD)z5>-x6b%NZssLR1{%%`4`m
zzxy1ri?879*6W`d`D++1TvzfvW^QPh=yiMV@4N4xowI)bM0oy>BNL+c76umfBwMHP
zFm+7kUH$3DkxkM*)!$!M9ChFSS@zV_!m{@lADXB8%@<_e%YNxeeqZkFT^Fmr`<2Mf
z+mid+tnA&Dji=-Mc)lb~v{SeL_t^g2%$N6B7yNut_$^;L-H5Y#Q!e||mi`?FR%Yg2
zSP>EEAryP8&)aVK@%{h*rOQ9IY+s*nTg|g<XYO&md%w1oGZehv`@Qhj9=|?oyD*Ks
z4rka}fCV$JnD-lPJv&{=^pB4B@sG>*dz&xS(KbDD+tcOpcTt<`Ib1#cl|Erx9zQx&
zJJ~1i`u_PdBC49}v;|!!dQO>s{<-zFC8wrv_MH7?#N&L(z+_X|=}l*>Rz<Bn^(*)V
z*Tfy%$SrEQlEft*<*n*!YSVQ5KTevyr^O;JX5CWXU8^%Ar``O?({$iZT$w@mvYS^v
z#T+l3rn_-d`TICAu`hk~i!Vl8yF9Nd=-Bb&N1N|4|E$?}c=qf~)!*~p?ed<^6n$rT
zZ<}A&(@ME@uf2k1=><3}G`V&$edVGhM*DJa?$epRHNE`$yI7aNBc<o}$u$TcpZ{=H
z_IlZz#pa5c7L#7@dJ?nt!pY~KW2e{b`tzwdrtarc2H8aJLj^m&-OB!X^!py}25q~K
zoZsHvKF*z2&&bfuC*QOrshhRtVRt;sgD)>Hzwz4h#8IaB`P_1*4_`JWhlq=r^|H(A
z<n0Mf-~GQaeE+Qd|KzPUrbrxB^Nf*jwb<7BddqQH^^bkeW0ucdaVE?ATIe%d*7K=*
z=A<XZsC&rhSBh}|s_araTH|~EtMO;vc@<IZPItf06^{A4CYwQH>Mnlo8#yk4N4|V9
zS#W*I%96hq-Q`VR2b|t?CQ5z!>4&@Y!ea_sEsq^(2@4Ee9V+}!kz=)Enr`9}5B0ex
zPkKIk_Dt{B@1;p6E;}0cJ?3M!jg85_x@+EQ)u{!d-A7YZ_db67c$xh2<;$m=UI>o+
z*cIMUc#nDI#Jjwid+r=L(sELrA=f!Lf|2#<DHr#)dt2@wQ{Sfhd*heC+wXm2in;zY
z@_NSNKl9e#y}L0{V@=-{lc;l_3$9JruGFOz5>$TqboY^3TMzT1?{9CnKeo7%RaG}L
zV#@s|v$FY^KYY3DezU%H9S>-wS9k67x9kc38&9`geX?+4b^pIS`>)0Ok0kfovmIdO
zw@tgI_4%q=+_{B8*NWf1<PKe2ULHH!DNg$K<JA6K(cBjQ5H69=zh-tWn(;Gg^2{Y=
zzg89(pSk|!S@>!G&c{oOt$I|8OE+pv<v(`(xMfYm{n_c~=b1{^we!gu&3?WucfG~F
z<=OLZ-n_}UJ?utKN3|>3$g=XuCr?y@J(qpRJ8|m%WtOz$<m5e%WvvuXFWs{@dalWu
zgrcINo3RgL^wKwNpKn!q>W!9u`-xpuhd=L8Reh(Oy4g=ut({MHQQZ33**k9WY>AdU
zUby2|WV=<}bhZC0*C^eLwz~J`=IY7Ejs~XeIVcphxhl$YhVQ-41#|Azaumue7Sdn%
zT4(;5APJe3HWkPFWMyotuCxT`s?Ak?_Wb$T%|)M{crIqTbw<>IFRqmL|EuG5Obze%
z{STip@3L02M%T(IHbr^Wd^dJGw_m<fb2skMk^N@o@#$5L-(R0pem-;ktLtY)_dL;_
zxN3t-?uz%jO*miQxie>G|6aXSPD|vz1TXjdy1((zvb4{ARfpQrii##JcJF7pr4YH+
z#Y9?sirx(FRwn(LhurL!FZjAi>6f0?-M;3>KJE2;gf2YY6ZfG>oM%^L^rWPXC-$j0
z@5sG9$GV&^WBS_Yt`f!H^S<wCKQ3QCM_+B@+`Tzvxu!a|(`ptOA2T(*a9nHk`D63W
zXEQ(k)Epk*?c{dEA>Q`vvU7_AG{iQ(?KWQ#<~=1PgzcKjRPicx(+l6<-afwf`@QTZ
zw|m_dJ1fnRG7J=v%>4T2&z_SjH_mikl5_jn)b(}34EO&p)&DfHzh0{0<VPlRnR};=
zm*2Ydg4?)i@mKkMl~<-Dzdp(l@3U*)rrgsKOSD5XZg#aK-Uyz*WcIVOX_wddtD5(0
zkb0sg2(R2*1Rb_bZJqdJ(`miOUtV60t=IcHLt|+Q`wsR?w?0l+Ive!ssD53bP$F*!
z=$Zuox=)iE-aY@m@B3Z{rMt0?&-e;{d`K*Ne=pa@U)^txL{74~W~Tl0U26{V7X1Ex
zSMlcIY6Y)jA38g8v!#L$X&mxX`D7%%hClP#>%;B*!E3|Lezhrl<l-*-GDI*Xa@s^D
z^Vz<_MO$auzF>Gf`8H$4@&5hY>+gK_W$>G8dEWNEotvKUvx{6pPeV3rY06U7Ic;?5
z&0OnpDbYI%(_@d$TzsGH!IPJp-`v{DopAEQs<l1>EVh~pFV$_)IUTY>z;)^dsg$n@
zJu3PY2f2IB?3(QwrKMODTONFT?OOBd@9$VkV#2ImdYp->|7g>nz3!rFzFgIdh3o9?
z&CHIyj{jf9@ak(-{OxU_9#0oP-T1CJd`VFGLhHOeFVh(KWcQ`{vh8|oA!D_~_|@sH
z5_W|$#`99L^{1b92|V(7-gg^^>0M_gNxjamx;)z_;{0>_|CM?%7oP49+g-Tl;?9T9
z-al6V|J9oD$CvoOs^4v^F4-_oW1W6uI_s@ZFN0PdnP*#lMyBZVS@UAh8Na(&?*02~
z)m?M%^v72J|CS8$|318*xo;ZpcfXqZ=Et_Z|DAUC@$Y>nO)q6_wW|A8dq0FpbE?-S
zHPKy8@5B;SPChNNt+Wl|uQFqcePMsIH9TsTFVB~Qff^#a`l5?v+ROL<zRPf0EnO(=
znAfj80WmxGEWTiWY_g5S%l&(eEG<v&uf4C&{NUsblaid<&(`MGYA<*_+q!Ra&ZKKs
zB=$U=7TvQEbm02AIhM=^dd=@yw1};@x70uX`u?BA3^ngB{{DIG@$zZChW@=rJ3Be~
zWGomC6wmuCliYH@<g%}fRmq8pBi%<IZF2h_oBu1EA*S^0+Bdg0ug|}qZane)bKkfn
zpP!$XPQLxwX0gwSr$s%zy))-;UK%8Oe4;P^LTwc`l+_fVxwNh;*>yiYBz|1LKcS@k
z$J_k+-5-~6H!qIRk@7#0Iz4vVs~-nUl#70?zaTsLcIo{7&?j>DGa{zB#wFQapIUNf
z=Iq&vL$ua<rB1Dq)ZhKas88PB?!vcTrE2~cfArQ@-M#(e$@6y$uU;w2<nF#(U6OG?
z`u-2MVB4p^Uax=t;9xUD&i#FRmzVnMEr0%5deR4>he`APzDbuZZBI!QZ)*fiA}i?%
zg3h%)KV`cBo4eF;HJ)j=^Y_m^U-xY@!<$=MyEn>Bn#Or|^Z$mpA6+Ja0#(oN>@0qB
zW8>o0N0Qn3WFEZR{hn=?_SRh&H|pg6x%=_b?jQI6-L16yY%b6I;B)*hHuF0L%nb6s
zF0@bM6&GM@PK}IyCMV*?e3MNGIqTcJIJ8V@s@%zUn>Nf`5u$ahT8W4M;|z{Nw=9dF
z@l=0%^YT^Yt=;AN!NI`|dWBQlLUTp69t;0@UH>`Q=If2^3_lJ{-<SByU*%fUhMyCc
z$3Uu_7usH$Q-bDLm!F&BAFX?Pd;ap9IhS(GR$k3w&U%=UeB112&Ab{r{n@Qe8;+ta
zbAdO#YE}D^8N|fIZtSft51+p_L`!Yuoi}fEZg0zdUH#il_Vy;rf}>X%WcEFi0_{v_
zSU2e{XVV5l_==hr+L>#<^#3{0UlRKf6yMDytCMb;<^R7ppXI?;`yXYSPj0;W=p$>Q
zwvtdeyqDuB!KkxzO4NHdj@O6({IL-h7Jin#Q?$+B>|^(r{~sp)i;rLO|N8VT|ChdR
z@4xeVx*CtOgZHlAb5(qQ)z^Y##q9lyi;H{u`_~6&w=5Ot+zlBDG6>qSPA8Dn@y4u<
zBPdC9q%8O;-z%-q!#6E;ZMpC^lS}_!cYpc+OX=_aI*<G7_2FE74sm6<66Clz(yS-(
z$Rh5&T8`wDAO?%R<T~*-#%*tPz6&nw*SY#XP~@cFzX=om#m9?%ua{_JxUuccO@8L3
zS6si_b*L9c=)9|s{LM4}O@#9I{{@jX|G5`;o;e0@);Ae2b+E?@Tx(of)^)Vn&Su)H
z`kQ;>m8Y?GrhmJXKlNX{zu5P!73bPdKl(Slx?VS8$=&7G4F2&vvN`l>!teSW9`*S=
zM;yd=C4FpO8=z1;bwi(y=}n#z#?;28Uo5YN?fI$Oow~gI^rWM!6?lZY*IGYUOa5E*
zxIZ=Wt>I4p+AXur9to8De9JfXpoVemwm;t^)&`oNs@?eT<emSQ&d-*=X(o=AMY&XV
zmulzCiHeYw-n@9<>g|{GHst+UdVBvTL$}|**Xw8QU)eWX>+@|<)k}9zY}%r(YFkjh
z&hz-swO{6&R*CMK&|2QU^-*!Prik{h=rFtDXGi|-V>>N(|IdcddG^K3aV2xxjMz#m
z|EKR<QTp06E$)!?ZSLkbzn31H-+gYqwBZJ`m`PKwm>$k@dUn&}<*Qv^3gVYsPh0Zr
zf8M&IQuCg7`|plOow+X}`M%CCyXG0uZEo`OCigCRBv9qdQ<CUe)f*^zvXd+9Uh0WG
zu1gO;Tl8)HHv2Q*;~z=<P0oD0`m){0SrLbKiml$CKCN#4QvOTppKUpx6uJ6d%}X1H
z|6;SXzxiH!Ad|uK^wrDT-_7)Q{qK`?k2oao)?(k!#Fx|h?^Ik7o_^2ZYQ6vQ4F_8i
z)_lFU`^DwecYIFwtzA92B1$K5HLu9(^NMnJzm={}Uh!&%d062*Ua`Zs&hARly}#!E
z_5JN)Uy8Zja?2JwTr!XSdcjCqP4;v3uc{-*e>&Qk&;9;mQnchDHfNQ0XesB0R7zRi
z?t4eyBwjC`QCV{<Zqu6ChOhr_WqWmTe@K1YlR1&cq^$y~b|@Uqd%Vh~X=c5dRP6oQ
z+Nr1Wn$ARpS+%WQ7jNdpbogqY@6Ga(s!p-mvYksNdbeEtGJ7B2M(5Jjb(<b8em3u|
zv9zz`g=MzpE6&~T5n-OqY<4W*`n<>N0$hux{W+O*!^>-7eMh5S$))9ihhIfrvSJZg
zk(x92Tfnxm%9M7MV$sN;@X9OQ*F08BzS?~0_}2*uQCuOHIHyVNYt6g3@7d~|EQ|L9
zNZ*~d_Dt69dV#<-%-mn)h4$X*&z^QWO>AQJNza0lmnU%QMrn4J9On-^9<P@<h394E
zyXR&XUf4c=Eg!#6G2?oY^tqSUQjb?3D4EEf@Z{R`*Dl9znaZ{rZEq{Nd<-+(UZe>8
zS|L~*pPId0JL1;vOUK{epSU~gZKu!g0}r0=>lVJ2T7T}_|A5W^%05nIe`)w;?mLxp
zZ~Zge-v8D)Tl8w0?#Ws5KjbE{>OR~n^<-<nP2n{cj!a#)Ebq4Yis#X}2Ryp2nukj+
zJ$$UztX=cF?76cWA|`D6(X+U8ZP?BKFQXELyO<dQxJ(<ggq}6LRGAgn%_Yrmc%fBQ
z(w8~aVND3rYWeo%cc(|KTE(_0zHnvsvS}4tpB0z2m6gr+EuA2IRcY5MgAG5rc_*w>
zty-ONJE(B4_q<fuQ%Y;=mp$fnnPr{)(fQg}wYI3Qf9=2gZq%FS8S%MzW?pe_O>%MW
zmnlDYb!T6gx&HR6p082rJO3=b^4x2sU5hzyWzOj{3%zSMCZ1itI`QkP|J&G??oGV?
zlh^Ez%p}R%zw2|2YA2U0II~-tA6_{&DS&4B<Vq4VLyjH3aQNH3q|VQ6OZ??#ADtg}
zTJ6~+>p!bGyd`49zT2%}+_W|DZ261(>o)BaU;9qV%0vBERQaaqr`c|Io9~m&HBjne
zEVlo$e%X6A*~VKs?~Iih_g*QUboK0-b>eI@Gk+{9Uh{PG=?b>+_{+O(->vz2@BOyE
zAFuju^5?%>l)R09-?qmoY{$EQ*RM=o-B-V<{IP*>5#O!m9eI4Grux;ay!H6?f<>>o
zax(6uxy1fCd+m!)Oo{%ArS-Z!Hc1P(wJ%gV>{|M3XGmmx+lsPxy;o1fnxA@cXJf<b
z+GdUJPL?;jxY>kXT)gi3NNDoz4J^`6|Gl5)&F43B#(BY)P5bWt_s&_c>Ym&e*W9S8
zJ3DW%ozF>;c$ruKxUYJC<8<qU`r~pDzqiXCaXS(f;XS`UV%OZO7Y*AZR!94Psah2%
z+2S^*#OBq@oi`?!FWexKw1B%gF?eeEi}F2>q{Ir9w@i?<`5Qg&n^}79(tYo?d}Z5g
zdQtWDy$0R`s>hnY&EMT`|EByq|E228zB#@VmNeh4w!5{|ewPdXS4;f}`}K_y?i+UH
zwEPV`m+NCBUCI3O-(jCi+dsZc{p`ix=<V}Fx?XYL(+Lvjl^w_G1@o&<W(O+d9<}{j
zcQI6~{MUO2iNAkee=GZ~@P6~vw8>Me|6VG&>>d`~UfWq+nEZ9mzUjBVul-rpT=!tw
z1g7uT8}~hBThO@qm(HU@3IhLs7M$Q%{v_`HfsRH!o}RNIml8ul^7neoGy7HQA^sry
z^z2LCF<JB1e`njlC;QiA!4t>Td&QI$H@}~?bg~+s*0F7~?V|P`v7EeQ{dBj~ev>WL
z`|LknxI5RV_}rQ$Tk6#p#QPsuah`GYNyZERKgT@UTXO%m^1ZXMhFLoqw`sjyGGn#>
z+}rC@CLH>O*1|f{tjDo>(fgkz>|K6oduEpTv(Md=#`&vaR^ayp-IG?+^<NyH*?#f;
z&Ek@I`j4BV?@V`-vpw?f?I!K2+?#ECu3tYD_U9b);(D&Wt)`3HKdwLT$;5hafz{{u
zb${Y^a+)(IE#Ou@>Ds*~HESK;?7+!)S6%(PLGwjv_mb!HB(`?%<=Zm<@Yd@p_jTHC
zKYBm$-<n4fOGOHQeLur=e_M{u?z@dEOH6+6cDxj<_c`>I`s}B>xRl$1-sW6cQ>!88
zCE92=Pgz%T$2_CY6ZH+P8N!P4*6e;#fAUh>+~UnV$7i!+<j;qbzD$|1hJAi-(5W{?
z$2-lnj&A!JHz_sp+5XbRE8C`Qe^8cr{d@BH+AU?`zn<;1dix}OuU+-sw2Shr)26IX
zKep0C^N|LVLZ8zj4VA7(Pihk^tL_xZir+3|u$^Xk^7YpK)YW_3tJkpCt<2sxaoy9f
zl*94!-+VrP%Vx&vwQ?6Le}$ei&3^N|WbcxY-w|4UlkYG0{Cq3<=!a_#+4A4rCmxOa
z)c4ydb-nxV@7=%cfB*iP`trz<L&w~CN)q4BSY>A0C-kyqNz$PJ{j%t_Vu2z|4{n(C
zEzS=;URo$4ecS7Ze7D-FM4oA{=iV)e=w4ShH(j9i>baa<HFJ{eZ_SrWHod>_b4l$!
zH{~scSI+*u|8DZbwF=j&{FEcZt9-obuivxj=@FD`W2`&vANQN3&OwCjS1p%Jxb!2-
z^UBYkF?{&M%GGMKp!ch(t^D*2=YN0Y(ckw>`re1z3Tx8-NUkWUp4hnQUWu`sbN!O%
zr(46mX6FQZ2_CPq>0H!daOL$p4W2-a;<(#|XO7K#y(6OYa?;sk5AnA$t<?*{Hzixl
z3{aU`$ad6gVUnxN>(UJO|F`+JO@8~i`**$a_kM#av_|^J1>CEXmd<@W&-QtDpKPn*
z*C^hGpFb;^;;Wa*99N6iVGPg_IZ;_zv~FK%?()5pSKi+CrEdG1oHF;a@c3%MwcAc7
z%v|@z<8gZFzCz2&2zjYpOVW4Vw_Eyj4}0^cxTU-Q-j%uk>c;!`dwiy)ZWY%3w(x)W
z`;)Ks)mP=l-`5hC;IDcn*&!PED3tT?gai4E4}R-P^|CRXO>1`B>uCJbvQJqjx_VF7
zPn)Abk`0}?w|msj6y9k(8Tz|6pYL||Jx%Mg=Zv(MbjR4RZfQ01-ao(B&|Js#A5YO6
z&;P!nD%vMa^xoa-zQ222VrI5$=^dAw_G><Fcw4Yf;lg9j#n%=@t!BEAWyZNkK>gzs
z@orTv)xCULqFhgG^erdd7G$#U*cEEf!}RvI<+}ham(D2T9;VM$vd<U092GcbSXN}e
zJMP>X>$@?0=7BCdJ68o8&v~to!+XR*{My`-m!d3;#+Qv5=GfMDg>B-{o9gA`=f@!6
zF4|Stb1J)Y#p)spKda1?rEcEyz1hx9J*g+vb48ES^n};1P3v#huG%nd#sZzwhYIJG
z@#y`X`b2kUjQoK|p`|*1*i+U>u+CHBaaP{?+Two^_u-?nMOW3z${c^$(HK|#fBm=5
zZ>y67z8E)e3Od!}UMN$Z6Xfc-rc&V7mZ+0WyDlyWyUP8lYOB}YxKzc+gx|jN4Jylu
z^7=mJR`DEe3)=K>MqhID%%g?>Zm#)}`TzK;&rvHXE=tU=G`svkeJW@DMx7oNiKUyL
zFPGlk_c({6b5)S{8ylVnGMV=6i5Z`?m;By*EvUbETUA24;=OZvxwrYY<w`pjoqe0~
zRXJe)i~p9B3)Q+-Tz|zd$F6dc@p3<=3mIkyne><Qe(XHyx$XUpmG+i9dp8yO+?bi3
zXi@aNw}~&<OU5D4<-zL@%J=ghZolLkHs9dNxdj?M89#lKHyrnRc;l^s>iNr$OYPzp
z1ZXh@XoxW8uDQK!UcC7uw>E6aJbRIT*QE&gBm6bX($6y&JbF?Xbykhx>8X~F&+>w`
zZl3Zpc4`h<nSLSj^xd~>zPmhmw^~&??}E>-``@E)RZlvZleKA%+o_z-k*Ac--fd4!
zPT#YA-gNcp72LYZ&lepR6<Pn+we*iM$E72tiI@H-K2TqNrsAwo(S3`qgI;xAhJWQ3
z*Uzn5^XaEe+(HJ2bEm#8{2zY%<=xUS|F^HUPqFqrv`$28s>`vBfs<J3t~JM*Pr4G7
zJMWcK@2fw1{zX4{Y`*o*-EBEdPd?w?_Ex1!Usv`X*Altn$C~Fg$`2_V_&(Wi#naj8
z2fzRAJL1R15$vxo*td9ZWZzun=W21E=5$Z?R#`c%dGhJUPq(HU%|HKm*W0BRUYzG|
z_T`%Xt$y)EgM~7;s^|1dHdy%WZK-<0Zu@>&@#fq}wJFM9?Y{Z0+#u&^EV{zZJ-t!x
z_48+2iau1k?>l|j-;UE^?@fnDOSR+28E<SZ@1H4Ol*ea2y(%|1h(B+YT1#(%Jb&}I
z8;^c7_U@8f{rvf}6`|q`8CPHbIBC27k;MIcLAI0Ur@7j3s($!X$>ljCXk~=i=XJ^H
zlf-t<)tdA*po(KQyWxe_brLRjqN|Q*bbWkX<!EMV>%G>D+hJ$m;o`3b(@#JBP&BWT
z^-^=<Z-;Gjr6zi(m;0xdWzXHymL|+Mam^kR4(3-YOSZ>dUd?I!(pg93Ws{XPYw59`
zW&6vE^p+OQ^!ikJT<=RH)3tNE_FnW%wmW=adEDAdE3#iMPF?u5SY^86&vk*<0s?1V
zFLV)Up8KV;a?PQNU5QEG{V(ml#FQdoc)Ho5`DRU5@*|V(Y8mNfm98Y=#S$!bj^6!|
zYttr&t#;Hl)XL`O4w;<JAv5`+Eze)?wnruR(|Y^%-LT+q3i3){$0zhM^TA~=GgGOr
zRn|2N;+D_TThT10)zzVNx3W-1NPV{aMke*0%5Ud1PnR&XT%S8(w`IRq>YR<8o($W3
z^Ngh<S32%|dZI=2M`z$Z1M~EvLpQ`C`jQ_l-1@}!uENF*mtu8S&t2`3`1n~#{j^ib
z5z|_8)n{+HcI$U#XmLUOeAcVm8P%<?y9IjaPTUc1QQY=kwwA5o)gPI@>FL+cz5Qie
z=(2Hzd8Br7@{{hUq_<Ctp6$}8wm8=@@%)Q<Cl^o1TVpnxH!bap+liHv)h+Aai7;&a
zx$30;BP+f{k%vnpZ^cfpc@&{B^|*$*U-t^31oiBo>u0x~PP-LXG+(`M(V73|SCaxI
zxRMrd+g^x^`Ic;$@#u<9x5mvyd1kB5oIArP&~8|K@?7dp8@G)y$Gq8mtxIlqx1CGa
z!MAzie#5rY)4$z%vE;fj&n?d1SzB2}s)|{JmO4q<FHd^w%6=#!QMIjF;`oGPJyBwT
zB9p&=d35M><*^$gMk(eVO%tNFdM#eJo^jjUm-W)8y&f+SEu8g6?eg<F2?16{$6v()
zDUY6i`fKbG_95kKQ2CB%Hu2us6Ham_#JpZ<(|A<5k-2Nz$9KQ4yuNi~i%h#gXZ@Ah
zX?64VMZA>GwRz<+;puOa*|!`rO=ca_m_L7ZYMx*IrE_O|45vR)&op`M68KCau|a-`
zs-^B_$!%Bl&d>aAQ`A{#Y-V@v+sU_Y_Q%AZPuiFwl$V;k#Qhe-OJlc*i>GKxTiDyX
z+XlAZ=$qUl?O7DId+j&HAeWbI+NV}XhR7_QWXE&3Bj%iOa)epD&->muy~^8e2@^jn
z{M>je!_eB6^}w4mGV7)v_B{3>Xy1t^Ww~qe?*}HYS#*3_(#9Ev0@M3H%lH1SyfM4o
zYxS9iu*D~RE^R+AQ`@z?Uxsmu`P?VAKZ6*r7oJcp{2#Z`K{0S%Z@89;R&qm_?GnGw
zb9Q@7eCC)Hb#vR@hx;XZvlVhgQl{#__nmPlH&k3`eYe4?)@@qq*6%LWU#2Z}FS!%5
zyQJgorL0$T|5$EyNR2ryt<4>JOv|*Za_{PwR_B!R7hJZ>a{E2+o!0uBi?2@?3eC1V
zlJLTZA@9jvM*-DM_f3}BT$`s=@+N(kv+U78>uDxkzHFa78lP9b&H3Q`Q)uz6liCw@
zZckd;5#l4D78kvH?%BKBbQeoq{5$_k@f|(c$G`0yA6)iYa(LZifwo^?Pu#2DJLy~W
z{^W}%PuvZ?Z7gv_F;Qan{n_7-3vSGs{^H}`14n#sZ%p=D_q0f^@9nH@>oZ+$E|8m<
zllFAl{YBF>T(hp0@%;btMdbOpd8`l4ybSh<z3|iX)m5oFfs|F=N7VW|Q(srhZux%7
z_m^e3Mu3l3$lF^xXIu2GR1x|<clV#Z*E<ZWxA<!qEtC=5xBh+Q@!pL(($}wk-^=y*
zsXuHjz-tS&ekb>Be=Us8d&;=B6iOMt6>6LO+Th!la=RDdD}7HNve~`u?SrScioPy6
zow03JMB;%x%R||NH($<~e|6QNS5Bh!v-w;(4l|ffugH1)E$YO!w@W@eJG!tgd-?Xq
zJa2!^wmfL`dd9T(#-^sc2R<gB|FHMH9qWNNhqjzt7@#Nm!KUA7(>|SPT%Oa)X6R0p
z^#8<oWmRdEXGXBh_RwIhK1~ge=^NL*PEddRZ&TN%t>+jIEpz25S*Sft%Hx_1>#~g-
z*Eyfd_I?nR8MHtlAuY<^=jkPhr$Hw@?&#h&n_q6+89ZfEPuHzYYqo`44b1MI|H}D8
zrJ7IvmJ=)@x3{IHyf7?O;}l+TL-CwSXjku@y}H$34j+){^Kz6)%`V~pbh<z3cv*j+
z>~@ai+>qlFjkwdVmvt1qbn+3r*w@Q9*;mm1Lg$&LkbiQ=ocBMkvW(R~pJxAlRnFVz
z7JWvXr*ElNHHD>j%GrCo`>dhD<@6`z4%eXu4L`Am>wNX*A9Jo&liO>5@|T!wvV*kP
z-y;$)3R~`H1+L9vuC2?Pwo_6!+rIvpj=J9*hLWEvU%ur2W&4?%#c{I1O^J|+Mvwb)
zHQy}Bm%VMMx{B+l(qqq+emd<*OOqyj%Y1BiIb6Er@?!lh?X@BTDv$joUPKg&s()Uc
zzV&cUz_Ez_M-uiP_QDd$#ypQprDpvuzw~t8)i~$Mpv`B>WInm>ohP|EL_=iH7v2>X
z%kFsy1zn2{5&vSfB5d`gj29aO_FpwJ-6?z9uz#=9%O|Osn}26<Y<vDWuWzTFbFdV1
zo}k*pinD1BduR4oe&$xwj9EMF@<NG|5|5tR3OC2;Op{z6@+Dm?>&L$NGS`&CG9%6Q
zvIQ0H?pgL)Ejd{2`{}N=cTYX;ztD)WE%Ji<wP~A9Zqw=NoU`J=)7zYz|A=i>iS*qX
zwKQ)1Wv@y4PxtPbSpIT*ddi`)SrX@tol;HJzqY6J_DsV))9;>}cy3e9tZUN(7as^Z
zrP6jd?8dWRGmDqoDjK@hek;6m#Idh?_W6ev-YTDkZ<X8;7uz=Vq_>#+v1Gy94~}?F
zi{QSLV|r?vg3rD6B3fN%|IR#}zIPk*f3;bOcc0hV^g0Qu&bw*A!x_x#^klX`qd`VG
z@AdOVs}urR5<BKs-1?g~+2W(at!?g#%WVzkJ=dLmVr4s9{2z<nPd}W}*<M>*k^6G1
zN$&n~Js-o;e=-cu&(D7v^Q-C?Q?V!8v#Pc8JnjUy`b8)4o|<xNOYZ3kvF@KXj%(IO
zD#kB+$$rc_@n(+L!?U+G8vK23!8c=4v!I2bmTvMYnc%2Xn`EcVZ8M8hyTdS5;||01
z(}~uHzq0p!vEi0Ixp%M2#4xRCC&j%^O6M%nFnR2^`s$La7vgS*ZBF#E{ngk%dqtVd
z^@D!S{8OBBj;G0OXPlZQ{{Fbih15xQssGGvbWR`g{AD)(yU$6Jr@OXHD%^GPgRkZB
z1LXy=;^w^WpNc9vS8a~Vxa6bd^TRPiE&cY!-mVK>x{EA~uCI~lm)yGi@s77|-pT&#
zdE0j>Cv!KeBTq?U=o-IS%rDnmKKo>b+^tQypIB{YOg*hS+0g7r{_(A?yY2+eGBpd@
zxH5E2fZDs8n{qbq*zjhXO~gVgu?`~vz24l&Wo8>5TSQDd<X2ZF%YHjA{j;zB*5v4j
zFl#Ywk9Vx*(+?LH%WjNlK6FK1_Q4~a+jV<iyg0vellw+p?%SolGfi})wUzJs{=QUp
z;M|(YK`Yn4-p#VDdAbgV&Gp>$Ut8NY2gtdJmDetMa{s7nm+r1zX1m_)e05@R!lOBl
zZyZ^CdtL9_CFh+o#EPdqPD-Bms_L<YnY7Njw+~b!kJz3!zMdf9f5>27<JL*KhF7yp
zXU@O6=^OX+b4CB=n4MalzHFuLi#y6^qwY$mI7$e#G@h(o_<DtUrNp8ea}IAhP`Krx
z5ZgXOF>$TUEo<92c{l2~Uw?m3f#=h&sDxu;=F<=R9-9-9sktrtnC$hO9a<;8#5YK*
zN<Z6ZRP1rCG+g)N+uP+YZ~xd_6<HMidfu7zVC79lc5XY@@RpcAf0f1WX>Yyd_&bZR
zv}P?X>*D<po<H^X>TT*Un*Hu|CQDQri>%&DHrIRF0dkjxz6ROl7d5#QRtKAMIp<g(
z@cng%H>OB8cfs$v>R^G>X43cOO*cN@nr$87S6#bu(F~^`zVj!a_LR))am>42l~-o8
z(>Ntos{tifs|fJ#+Q78ZWly_*+1Bd0DxI5iCfjZfkW!w0LO6O_^XnJa*G)hC)n@bK
zHNquZY{Lp4`E3b2_IpLZ+xHii>)wegw{X9{e5v8rM{mFJZG64!M_o$U=S@r3TkCI3
zwb7jRc!KxSt8sGYKO4#2IrxT8{~O<z+lRM=?AA5dT6g`G=k_({{+$og=xE-t`2W<E
z&GUG*Gu0V4<w~DFE$N@XaDw^0HT%B(SM9sH&@3YL|Cd?qg)5hp%$^ZYoqXH#QIC~+
zSmw(j9UbNCTXVS8IX4!@ik~jDnxv++<@nLFPkXKyK7VR_sv~aw(WS?qE!32#I@ohl
zaBW)mOv|~kKkw`;_KCl6@`0GxDz~6pTs4z7=yxeSir8xWX0eaarii1tTc-qBOq^Te
zHt}?(WcJ=`3vP1sd{Xf}!O>IFwBzXcw+S{c-&R{c-<5WTgQ+z)^2n;cHl=gS7eDe$
z-D9br?!@!y<PZBZ8{PLW{rxe0=lS*D{@$H;e3Pznp}cmu#<VTduNN1)B(|ihcNWL8
zANQX2rYvnvr}E-2oQn;N*<Tklo6J({+Z=b>t|D{ypFdSRuG3NzmwUDp>ph+HElvFR
zu@f^}4!w<fnJAGQEubP-c$~BFuF4io9;1^Qy2{h%pR9CaoBvrxCTEe#%a{u}GhPX<
zdp)zj=k%tYMe6YyK_{O3zA8U`s`F4V!x0DZu!OUZ%eBhmpFX;=NjF(UjO*>eGi!Q0
zz4!kxk*a$5ENYvk?$qMq9VZ=LTJ%NAJTdwdw=_gPt?QokGX38yGjrB7M>V|eTpK%U
z-OY>(UVd4(%cAeC&?&AB5fN6Mbx)&XgV5s(pFhcd3~$bOJ!${@Pyb#&mHB1!%=cOO
z-q`8qc-c;G@+o@~mAmlp53{AL#;S}V5)ak6P4_=td?A#dLC0G7|25~+dUqd%?lIpy
zabwW?FXf(>mL9Q{mY+LuB3oT|Sg`k+*=yDIt&iV6%lFTfjvP~trUnh&^!7uWCi$-0
z<9#ptxY9b)GYPiWbF)pW7Sx7@$O!+iJF600x;M=Hr`xPvsk6(>RvlI__{s2S#ooe6
zTUN-brQVDP%ZW?ZuACvj>iy7S=GhHrj$K=!*B&lY|102?$!*3+Wj)=%(DmV&rn1VF
z<+0m8+j*?>U67PK=SH8i>O_&~ZI|y&*>&Xm%WWrD*VUJ;iTQl<cYAB<q2r%gZJs&_
zaZUdGp?TU%^W&R(6z{DuU!nd`p1XAs=i81&C#J0Wy2r-P&F=k<Epx?AMQs+eSatqX
z(j{K*>!q5i$BMQIP1u~VSvf3W`R?*na~B-inB!!Bmhr-(xa*Iv?0G#Q>}-#+>*{+c
zNsiMCWM<D<5Oi(n&7wFy^+FTIWw%_G1}VzTUoz)e-G;eknyiW5%H@ra8GR55J~d+6
z((sj;zdx`3GAG?ea^)1;`QLk3H2IikneL6YF@E~sR#%wsb>_LcVrTmb&wV|!ZpCX+
zjVYH}ij#Z#^Dpl&k4?IMH0tuZk3lOZ>;L8an>6LyJN;#EZF_tlO{rRY?8_IEz!%H&
zjjTUT%ewA(J}vKf*-7=UF?(bD)C;99l*gYFzA%4^iEZ3-xfdVqxe2bF=3iPT*HD~(
zUPxtTTIZvszvX?{p5EB>@zcCO#~C@P**VFx-_4(WHLic*>EA)?qbB9(crCfI@BX5&
zt8tU6Y8zkek!yanRqO1uePV0f_P&kGH(MFDdW+Ede3^EOljR!XUQ>>3nRW2=(`!HO
z?z*I_^8efWo6*%tN6Ma6Fa5IG;^To|b(5=Nua~d8n&mcEp!MyVlZ7(QGNm=jQ&l=I
zFXUKxFKS|##f68;C)ew;-!44!C+YUJV}<N-lX6aYi?8^$f2GyI@64|<%l>{A=V+d`
z^2tMsK2E`oK-ulitLA8laNm;ds1w_i#l7^3!2HH1bFwXND{Q!BzU1ZdJ>d%BS3WPB
zT<rLAA9Kc)*JtM0ul~QR=1*H3^I3m?L$h^Lxu$L`{M4DX$|P)2h)$r!G)9dnTvnZ`
zDxtY-@8@5hUbDB_F0jRdZ|9zOx4jB`YChd6EKZx(6H=5vYvZv)e$TELba5C-e$Bpm
zq^2urir1u0x2^?O7ld6+zH#J_4foU|&GWwZ+=+`ctMu1ajk2DVaJwQ-is|XYHKiYQ
zbGVK;h_ks}7fL>DbSd`y*_j7*vVNZV-PyBcqeJpHrq&>%mrrb!l}lr$#|SMB)#?qD
zyUhH!&$jyJZhKwlq{qARmOZ&%@Zz~qWkT|{ptM3UHpbp6-iDhuCDYRN1XL1P17&8d
zwCz)Vq~g2g?G3emmrp-Gd+5ODPe0bix|~$nb-(Rb!sbKeKmR?sAGbfTy6{bK?2N~U
zEcYr{*Z)%KO_{94(_D6?y{mW6#Z9syn>Kvls_Z&y_}OObtll!VTXq+sr+>d65i>D#
zo|^XdzC#nzob}f|d!9C9--6%uzYeiJOIyaULQm&`x?APyt4H`R`8*Un8`fME#C4M2
z`O`_`1WUfw6vt`3N8hfL-~Gd9{w3v-O~;xwUEL)bmDK!_zWxon?BSk$wNk3HQSO&r
z;HC3ge3K12Q<T+{Ll!+Mo1<Z-B{^GX_uT#iWjaNc=R-IzDmpLTB@`FCd(D~dtub<<
z$5}k>udn9z@qJmt5d8f7g*D-w!puiE>1-Aha^2XuJe2E`=hmj8ok_nc%4_)(Z)7f6
z-+Gbn?AyFKmmm6gZtbmUOxid1=-rJ9JYOP$qdOEXoOjO6o3_$;IfKS@EfKF<H)Nz|
zFEFxWJn&@OT%UJ$j((eaoAJiJWb?<uQB}E?s>+Y$-nhM}l72pO0`F-fw}Q-~o}$R(
zi+9KEj_PWC#c^=crTdNZvM<|6BsyI1G81~taXPR4>JhC)Q#~GLZ)N2w-sRN#_{Ot;
z+jHB4g#HN%2Ww50T%VynDd=sN;$mw(&chBoC5e^Sc62YVitJzBoO!PC$buEu#6L{l
z;c~la<{o!N$&9^D_hj}>I6YJL(wx^pK0QC?8jJhHWSl$w_$hbV!wJ_G$e7g5UM9Bv
zYSiN{oo1%wgzbOCwpIx}HnTtd=M7KYBgritzM67#16Ip6&zti6*t+W)s*@ut>w4Vw
zx(U3<77)Kukd)1qG?#~O=`GV8(!ExjH(&ON_we%box42nGB=ZG`%H;vH)?D}wL@NA
zi`pO|ogL)k_3cV_=%FS5ukZ7aJGW?IxPJ8ZQ=Mfe*LQ@iKKf@*T)<r0%BIQ3=d&fe
zdXt$pxixI{MFo#XInn#_C!KOlbkXKHQ@d`;T6UcV3!k|=Beu<bdGO(v)Oz7#sW#{K
z%3bcroAlfKW<=IcJKo2R>xES|{&N(N@J~v5ID6gIvw_d@S3X?PaaK)V<IWbf?W-sE
zEVJ~>k)3ew_IC*rXW@w|=N)8b@A&_-)$&=|mPR}4TE~8Suk$B&r9}PSyo_%zZ<z1*
z;>}kVP3W=T`l_ag_v>#TzTUGQ{IBQbByEqe^R&u*DfL{-@Iti1;%OEJ&z|{uMxEZK
zA%5vey6Ukm&pBT!T2IPa-`xMdh=DKWrqSb-uXpWG)9*K(VtSz}`S!NTXWT!H9w%3A
zUNqsekI@l>4V@uZ!lY8fwY;{5+61ONYcSxr>{YR2S}(Ip=dHDYrzb~W@S3Z!?Zf2k
zm%A*ty}cl<9=GqnlWn<a%5F!KnSXqn+mrJtU?Fp-V?6u62mJpUr1N$(e*9Q??D+AW
zkNd2D?B4&|`t$d&)kn|&dvktM@pHdZPmMswT3Qx9ayf3;Cu@D|b=-HWQ%{Yo%ileD
zUia?#hsm+l@FiD?j}_&<ls-7n$XxTGS^mj|h0Y9rUe5ognO|{Ox&n0g<h$ber>pP(
zj{Em5|Npf9+BeB>ZftD+zW06Yo^M;%KmGUn{qaJXMH-Jx*H`lHE_?gv-R}2kSy^4>
z`##UrSo-5byZxSX_t*8N?onA?Q@>25t<`sqi~^7ItCQ>YH7oTkD)Y%zGtRm3X`@i(
zsvxf07nfGQ>Q(cbba8LU%mpT4h9B)~_5W^?slBx!=FTNKWj^tVod-iRcTQy3ztpzT
zQCp!e>G9tUfioD6`0Sh;anz-5Qs&LFjICeV0yke>boCSGWZCqkn<QskKfyKqoQ2V^
z6-E*&UYduFc;Cn|T^agXO>X<uPriR<i@Gnn)tI_<^9%RF6r<Q?*S$AQZf=}?R;+GS
zLWlA-voGcIn;YM#@A~kpOt}A^cg~hmclIZW1g#I9X;m-RAbj5D?8o#z1_RU5#xSF8
zE{Q4c9(pYO%bB?3vl&b0CwI*g+qal&^DOqcd}UWf&hMyc*}hh<ays??<}5oUxc}xM
z|6{!SuNnni)Zp^1W4&9SB4RXC<w;odsl3Fkp)rz6L(Xm0eDYcCe&^<6J-?cl+}^$9
z`|3$&Z5RFC6PSO&$I0@Kf=Z7Q=s+_Sw@q)gr2m!`&&n{`ylK_C)$fj8-+xb7Xi{oI
zf|{7~0Ws!fate_OifTR|pQIl<u*pTa#U>$zlap<pf|^2P8>3G{r>eJt+W+eJ?f-A>
z3*9~|M`^L;*?Yfv%cO6*6)Pz#71v(cD>_qh`R(-irQf1nN8f*xcklMDzZQA__Abnl
zJyvP8+F<UDx63a}zFO5a^P6r%>;K$ur5kdX=5D-kYuyR1DXnMQx?`AlR@|u$R=LF+
z^x;UG!5J;<bEh<Xj%_pXoj32n-`~P97P7t93`EwQji@gWcyVvr?&F8gE?B<SyEs#F
zntvbPhbJq~Ch+sORn#Y4@0zi3r_h`!Q<wE_TccqyZCd<&qXjGPR#%5LeinRn>Sc6_
z<)0f;$%kr%jQC}v+S>gK3Jv+*r!OttP};V3^;L%(=@XjwvHm%h|L549^Y?#U+x|hk
z{-gMh?e)LSYyN$nf4qGE@7O<A<Nu1*eGRV{W%zKt{_pi4KOXmg?En9x|HrNC``YCH
zJYfHE{{J8UnolRyf4o@S&%jXsYk7Uw{eN%oAKSj~tFDZkTv^Go*M)b&1z&#J=HVro
z;a0{d)@l`Sec}EMwGXSAWwLkn7$)4YHdL3`voU1v^!N8373;@6>Rf%)NNwBRh*!6!
zmCBffbYDH|q^y@A{4P_#Z{kjuX-_j^yT!Fnr2IcNle6}KY4U`;GpS+6{>`t<Yi+6V
zf9dx+vGDPiH-`ix!#3o+O;&44HQ->>n71X)FiQQhreK`ckv5mG1v<Y4T7{!n9(mWF
zKG+r7S1)|G_V33&M&+wf?0?VB4rgfakN+!@KWB5Dp_Oa!Z-(|p*}&I4RlIFs+FPR7
z4;mLV9<#KL%I2uozaCpK^R2~?lbmbzZ?&#fv|yR;5%cCj$o5sPZ)N#QSJwT!RQ&#{
zsL7(*hjZEu(-Q<{3inKwJhiEP)BC0^Mx2-4-H58lJa}a4{PrVjOXMxZ8@u#U+oHS_
zI2qVvd5$sUf0t}O^Jd4iy^Kp1XWw=R<2kcNUue73yTf1B7V+2%#T@u{gl$46Pg5aB
zyz1hT1)+zJIB+EETnPy8<#?Z~$D;O_tGBz8hp+GBr^V-)8D{ZoXBhK5zx{RXjc?Y^
ztPGAZ9j!Hxd356HEB;^3Pu_iR;?}sv#=U%s*JFi@y|ycF@BH|^EY0fig(zn$Mz0x#
zH>O|X+FD(ANooIbeYb6YnC&W3pItjQTfq13(cjKHy6*DI+6!qc{jm3aE&t<>67fGz
zg?~6K|4+d8@`Kg!f3tp^bC<7e(XV~!{bPFlPjQ9=`~SV(|HwQ3S5Uz@#s}H)zok~K
zI>cZ9<8bwUHl{`g1py8g5VeN?)Pj7@|Nq|q?^|E<RC~tRGzq@;AGi1ajjs9F9e<?1
z?u+u1%D%^sAMbp>zv3g)`na2C&aDn#|KZWm?w$MP<>i&nfBrD{bwH@7*7S)C4aL_F
zy>!cIZhNWpF)}j2V2j|nhZhB>blaHuvS##Nb7fd<rgfr-w_ztoz0lR10~f4beJ!za
zy?w<@nE%X0U31Zk@7vny_^s19cvuvTpZHZgd+<WjM8a$NqkCpk7azU3q97+QDQTL)
z>E;68oAwTBsy-*u?(*+i@I}vFJuJ|zCz|bO<h+F%zbz~_l`Xg`b@a-#$}OR+(=<N(
z`nmp=#M|kq{Orw&Z0*yIg^Rd~DBUtk%{ywjd*yQz(azaE%Pp+8mVJCv({u93*5K79
zS?-71t~FkI{pHk~^zYSApEU?D8ErXtQXzI`@BVo0<h!r$uW*cd@S%rwqNk!!N@d@?
z?2{4Ss$N(={oVbCY4glvg)P1U8%#FLY@MPepYgVb^_l5&qg7_|JcR`rk-_cm?k{+&
zP8jQNn!4iE`v|UD)8Cu>_C6Lkbgw%uzv1xm^Nb8#hF{czx2)T%@c8qUL|H3OhM9{q
z_}Q7i@bCG1lJVTLO%wS=S7%KA^?ltG%U|qacYptQ$!=k5-96W0Rc44_JLk=aW0pJ0
z%#IfnTwkm$%+ys_u{ku<v?uxC%}JB^W*F>v81`;~gEq6mT#JJB_6IHs|IU+@v2#4X
zHdOBjtHtAheRJ9*x8$9XOb)nrEq$WmDM{|R%2T$Tk&pX%Nk;V2f?b9m&MGcFVNja=
zu`I3CXy(WFt?Yja1g0@rzKA|_{_mah58ds53Htf_e>AWEZ2n{I{a?C&KHLBQ+<Sk&
z59jXAca^uf|K7g;&+Oj^{{ICJi({_)=)6|A**e=aXz!W>AB(dc;`jWJ{4&?*<<S>1
zSJyOsD#>nkc>jp=YPYv!&$|x~IF4S>`?cdlqUXnVcf$7Xnz}uPJzV0h?7sgwyQja1
zsc`-C@S$SM8K%2iu9~)3bLaZJd7C*$$tb3?sao=xE2HA)f_!V<KRTP%PZj6Zz7n~9
zv!3Uzw;q~-d|ooLzghG2zuXI3#r8RN>7=T(#icj)X;hy$&D4Cb@pt9E;)78UzyGa$
z?ox6y`ntkB?WLx#mhrkc>#0;c%($?sb;Vt!HKq;kch9{b$jffA<ZV39f-~GaG5mM_
zePD<b%(e^XGGb9LvNhN+^;G{Zr>y6#Q%;;>TFQOQ?(d!F7k*i#9&?`i`NbSoUbe?s
zCeFKyk13?+u%0x^FR!w&`gHD`u}%HAoga4Iw|98=uKhvHbD84qt8dPGiM(!Er#*L{
ztD(lnCo5~&#a%mB&03hd_VK|<R<Xw-HReBzQ7C`)s4{Lr$@{l^G!%AlY)k+8@!g?s
z4Ba>Sw=y?!-|P9ZSKGMr;env@_J3YDGq62hSAFE<$><*UZTt3QzOwjl>2$z5&8X*p
zK|w=ZeZ%5p`59JiCB<=GlJAeIF>TxZcsl!%t^ZQv9z5vWdiJ<~pFv64uQzYbY-7$z
z=3L6pla;J6MZf)0hLN}e<Am0Aa=J#6&v!O*a`GHwd>6$eeXKc{pU*>bzV+^Tw<g#c
zP5-C*#-!uXKGi3cee?g`oPSjR?<M_*prlgwQM_KT{@?TZzUlh$i`He&nKS21?f=c^
z?YJX9PuGu+J2_?koH+|JXKBy;D)Rqx{XhRXbLY1HxBK~I@;m(=cwr~Nq1|Zo!kQ_W
zXVt1h)A#>LO^Ix)|IuE5;QIc5r3?p_&#&wH|D*r^0r|fd<rx`3C;L8#zW+<i?(di2
znja6_85%%!vPKtE{J&4r^KIM$MKoeqzUt*@FMeSB!03G8n@#QW|NlrnlXjkg;rVmr
z9(Uz4HT8G0#ExuMdA@Ld>O^q~i&ZxsBs8e|zxnp}Awy+ci%-7P-Z;M3oG;e$B+JY#
zHdeggvGLi7I}y`TITcy92-hYX6#lX3&S6PjR8&97CSgwW)|!&Zj4@&lD?F>J7hb%5
zNLj#0(`iBYG>f97w!;q{H9l`(IyI3|Xp#x%{aKuR=PH&&oVKxvj(xh|+Rc5^MNfb2
zsL|bdCcxs^*~!cOn{#LOoHHy{l`9Qh$QcsYdPVGnj`R90k>CG)U}*1it2C%-vf17v
zvX7}b@pUSvtkT<Sic1|Lr%6~PUY@RB&t`l7c%{XWf{ffBv#+l=DAfApd-*_ys8PV2
z;*^=Pw{7$dWFod*`EXKr&yNFXXZz>LD3^0xb8mN-;A?AqmnC}Ayzb`dWbbdsxqYWq
zHa0V#&Ux{@ZC#66+S$owl7_SMcxr+(_}Jc^vfA@Ea{kooXTNP%-L^aGw@&KwN#ECr
zhyT6Pu3uPC&~Wn1t-0m-_a1G&zMhfc@kv&#^nM9uBlB~q>yI3~VCU^W-}dmqi;8Tu
zvnSeH)io{rJ^Re2uQNloCz%ItnYVNDQ%Sx#xt3K$9SenfUVpvssL7kG6Ma^KIW@-Y
zF2k|Z3tJ5X>dqZz@!At2)hlvvAE%<z{+~W63-@U1bMefX`<nOH3(@8PrlUJ&%zqwx
ztI<6m>C*%UzF%S=*y}&A|M(jJzqIDh$Kw*cZa?mQ-`5UmydC<!|9`EFtn9<`y65E|
ze((SPyW-m$$$56QUHNsNXaD#)|NqYgul`+KUnd$5I<NzDeG}+{gP!m2??0Y>|BqVT
z_wxGf#;oO+56()RdMo~akx0w}9`2{f2V{1i4>l?7y|uM|=DD<m&jLR2M5gs7&J)+D
zTKaph!$YyNl@lGgB<D^wz5io-N5}E^C2{Rr4^EFSGCXrq)BD_k&q~`gPo)NAo9nF9
zzM`fxYwNXzrIQS$Vm_SRBP=#y0q>L-ss0BPG`#dTt?Xov=G<0y?Ru#Z$GnAS=1S?j
zZuI_Mbl%vb{OnrB8IN~Mw_Z5rk<GjGYs^XakX85o%(*XqBi;Dgw$nDw`}1Y@JYIhO
zLh=02&oYlYV+GDH+q~duVCZHC@$)Hdn{)zp<^KB1=(YWZ93T5OQ=w~|Ty_dAub-dT
z#KV4WW!<+w%rdgK%Wrgx>wjDrJh$%iFXI@WoZTzZ!ghYEC|k#^cv1dFp<Y*9#1B3`
z{(>(@boYFY<5*R|H{~x=(7TGW&xO9Jo0UeqziSYF_&f`j`)=2;2F^B{{<SZiX6hL?
zKAIQQH1%4-x`dYBWy@r5$R+p*CPcy30&FhNk(^!sx^CJI@q_tE9E_73^BWxV1?HSe
z_n-gpX7TI{3v0{6M~|M!JKSirJ$vcF4eid)bL3>@7wepIs6XGW!@`+cee>%&{gsA0
zzg^$WqZr{4CM$1$xSN0NgQ8e-3){-}iz`z%^c|ZVaBI15&es(t2|`y(-$pIj>gA{*
z=lypJ-_lg2(*Yva%w*;G3JX%c%J$8-ajm!DIrY9LInO7uX2;~I^3nhQ36{w{S&+}T
zK7Ri(^L-zAYks|4ZeeA0NdM0v{RhAA|F^4qd%cdA;X``;xAX}?k6y?Bw_0{tv+ikl
z9c%s1>GhIFoLU5a{NDe+`p>=hf92{xLVM%*_y3%|ztjHbWc!=XQUxJxMo`l+kr&jz
z0iCeD_v`!A$Vb-qfAa17Joo*bA9F!lo<U;<yVv>aCPW|HDWE9Mb}996``;Vqe|B0m
z8F8KZsxr^ix5MC+jk}t1X>3L5>m}@k6Q`f}^k$xM#O%dO%6X?1ET}OH@8FsFps{Ic
zs*#{f_w6iUV@<EEEAH9`<yzY_#jY-BH{QpXGjH3D4Gz~f=}h9w+i359&ay>BV~*0M
zGpb91!_Rf|OuGHiT&GO&!Z8-ExZB%StkPPceLLDy@%!ruo62&;?rh3!Yj3x(DcIX2
z>HhdsmfB^_Wy#*#<@}E;CP#>|o~q+d&D(x{lg^io=ZzQ_PfXYt^T7H1mSVn?phfRn
zHqNtK>&$hIq2k{`c7}%Y|NH-Qe?8Mz`C4Sf-nD{Ftk;}oJ{5SkH!#Ij;F+;kve8DS
z=+ao_>7R90&6RmR#kJ2m&1?Gl=@;B*D;Ilxzf`KoAz7lAoONEoV0q8A4B6m?tF&G$
z(MgZrR2Mt<kx~BNgu_!gA8Q$<J>QVb^zC=;mzbHy9v)P5dt7MYci*^_ukFS3zaMJV
zEVc+6Jf7+D%;-hW=5rFEznd(tSv=M#`psu+SJx%3pR3t3MMgcJ|KrVU>vNCZTF;rg
zZ@cu>GgD1=nzqdUe9YnZC4Pg97Yc0ZOC26sh1gVnQb{zoIqW`v`_q-@=h?Z|UuYM&
zZd|o)zVqvkH_9&E6I|CIQ*y{{!>cMqi;CPeS4AS*8mnJM?3&gX7HE3;_ADPSj&O6{
zV~KMv6~$g(s5>cilIV`>QosLxJpZtFU#QL3D?9G2RK6|VJH=>^&!y8wZilNC*FN%m
zy*T^TDl7ZPyZ`SiS?TCxxc9BavswPDl~!pMa~y1*R5va4MDt^H=Gku2(ah{OK3>l|
z_c@G#Cu8m>)A;RM!>jt{zRhHxa3N1JeL~PNhbaOljN+w&Swuf>x_<bEZpmgF{^YnP
zmR+0L<JLd_mfMuqU?{WJbISeo>Fst(70(--Pw>>5r=2}$VB_XfAd?lXeoKp2_>?(M
zi-6(<HH+p6>-NRF9B(!j)VP*=`NyS<Gifq0UT^le<z?09E!<uHYPR}Zm6iu5yw)cw
zPJFJqB>2R1Cl}Eyg(=b!YY$HSQ0;tp?yKF)cf3DaT~Mo2xANl6%U%m}Yr6UPj#*Tl
zW6KmgUATbP<=M+uJhtESUdZz}WhP7%4~Sa$tx@OL;zbok-*=lit}YY0VR1>%G)AE~
zxvZq7VSc9W(Z4@8KewnYY*P38zvBO6{|}S>-_*#(#<0i=trhJlzBaXQV)$W+1Fk#F
z{~lJHXS@B}e|P)OhV$$;{|2Rsboq#`-<Q+R2YgH7wMyQ7Gq|bX|Ba94B8U#607pOb
z6i4-#?yap0!gv<8%{vs;YJ6fd&(7EGbJA!2oz{IL-B<WhKohsOc5AP|_ETTarZSyM
z-9KZ?%ozXs?;N<6HP^o35aN|T7#UF5e)8asg5-Qtfju93JpZpR-BI6j{P+2pq1)dX
zb?@e3nrYz~t~brsyf{<fa-jUH+Yg^_3SL&mKH13m<))WTX$xx(r(H-+yBIG%{nRD}
zsp%h2eQI&qE_d`T<Jk%WmoDpM8L5rodefO)&!-7=Z|c93dP;TrMxQ3d4#j6i&g<`U
zZ%N1v5fFN0lg4kWS|^yZGW^If!M8lyQ(66Ptj)Z2;E>~?M~0cxx{RMFaeqJXZK`<T
zezl$EeFram(3BGWy&~Oc{$hO=(NA+1nVh*j|Hy>c|94F%T$;P|{SqZ(k$FoMj72Kt
zB(j>+l?n|S7qTTQl*o9mkD8l0Gx&7>npIObu=5`|q#9CuJ3?bEvvq(ruV%8DSu$JH
z?Kc&xrzSVv*xDoB`TG0sg)Z)1jk_{0n)U5GoIHI_@3&j`5?gq7iM;q-)Oc83KrcLU
zwV40>+J^MwX0QK#xfv`Y8yWTM_4&BRe{YvFG~6ud+O^5+eeUhHayK>OFTZPf_;XL5
z>ps8th`W6B!qffs|0`wWA~!ycTQANscfO3h<Nk2AusfpCQ?BhSvEggE%Vzna<#pjs
z(W^}7Jk_(FHvT-p{5J5lP-^AM*eTT)pOgxlO`6GZMK_tJ<r7=~;+0Ep$DNa2{`<rE
z@=5PYMKw2eamvXQu`x6`a=l;RJ~b%WM=0ds#8t;ddOmV<?B@9H_cv_9o#j)XXRhe=
z?RMV1dpl3z!&9p66U7}bPEVJ)G+ly2QjFzgaaIqX=?fo21>=WH=cgZC%5YLj`!4I0
z&)>N?OCt)zZaw0uuAO2VeS6N+N{yKlW16hja-U3H@%elgkLxsNi&cxRNx5F!^|t#*
z&WoK%Uv5vll5Bs(RWzB$iEGNbusv_TUf8zw_iE1KYd0=%GOWHe@9D*POQr-Q2c-)J
zTzc=lu;90-jq`eW@gtct58EC1@jRdTy(pWvJ9|!aSbqJCEsobhR$Nmt-En7r_r-*L
z)$KjGON}JA$MVnqeqsF{d9kS9E&iwF^?&9>vqk+btf*-Cm(VdU`uBku0=tdQY<s)u
z`O$!HcYkSU3oR|<)N@&oB%S<h&aZXL_86wU&zbCD^;<?xM&a}47!HZGAMacQ_r_|z
zd=zJ3SYQ7q_|KE8{tOK7@9#Z)^u($c;i0@Qtt&-X`S|!hyxDp8AGdrxqrQC=C&P~i
zH=jEx1U(b_yYI4<q@1GusULOwY^GiJS@~Bg_s}W@_PHA*-mT2Iq`$Rm&w+xB#S^@w
zMfQn>M?G(`Y`!&3cSrP&Lb>z4nyuGT{g()=xa+Nd-k3x4aMJrYp1bG7Qe#`+-=Ep3
z!=dB4Q2V<149<eY`t<1h-Pw;<CP?;2maSFXr1NFP^Y4F*(jV5}eQRLB5_>QD*dcGL
z^F>qk3iW2+KV;!N@weT|i;m`M*NhKmWW19pIjCsC|NXGuy2~GzhyM{ZU{iE?ad@t%
zBv<%yjU^njB3v^MDechU(s=(Pm1*V)r~2Gno{;F>Z$GOzZ;G0b5x!~9Y2(1Wd+f!@
z^Q?cznW;(zw%7i4)=YJpZKb*P#?*TD58lrg2erFcT2Ezm+x<SXdC{ArzZ>=Dw^a+s
z6f$z2fAP}9<3t3<8L?DOMH}w3o38Kiecq(bXVuVh^ze@K-hwB35~@o?XLf(@dehHt
z{IPPv%p)HZzG>-qDRF$3Om4a>9<-qFefq)5jEkzSA_byN&e@VTRHd|TtX<1?dV5Dg
zxrO_~h?&g?4Om<cy!rL)#M!scb{ze<@od%pif=Od@llD}&GX|Q*Oc%vtXO8+lgu-%
zvhCmp0sT2Uo_5c#>`eE!FE}pAGSTj!C6{=`$<IQS^VEMa?5Li*H=R-NP}Tye643Y^
zs4WI6tjidtII8Qkxhj>tED!5>^?QxmP3;ToW4o1;ncjw^ZTmNk^;NP{v(IfGP2QI;
zdUMq#Xjj|0&Qm`Bc?nysua1FUrpuPeMh(1&`d6P(;gVJUa?52`iPb-bNj_bC+wV#+
z>&BQ(k1Tz&fd4>cdE|kq-!{ih>yG_(C%0XBx?}mP2XUr1GlVy(gdelN%J89UZ<Nz+
zs}hEFu0eL?Jy-odCAz(5eXdb$D<fm|^n+V#SU*oqAJ_cn`^@%om_9w0!J(%p^H=uR
zHffeMvDz`mx()ZucdoeWx&EXAr(}t_d8xm%NuTW1Z41B6*=Ux=wv<KuQ<PiNH7kQv
zTg)E3yQvW&c26<EVgL2rJD(LFeeF@lw81jE-je<9)4-sv(#UBUOVb@CIW(KU9Zmf$
zA9_bvZ0eN2YzL3;_hQY}OXl;Rdt~zAhwZjMwf<L*b}u?|apKtp(^DDsF7+9!Z76Oz
zA#_`bd2z4uwD~_x{c7?%E+jg2oZZ)avu|Cw6K_>gan;|tgzpC>4D_0E4K6GU+k5|g
z;)7dxcJ)7H#KpIrjlF%P@PAYCh1ZXNbe`QMFKd7JU}JL1Nv6to@8@$Y4Twy;?sjIQ
za$a!ZeY5JWg8iV}DIjLXovn9m&*oSWTb{OQt5!_);#s})`?0Dhu@!HlUI*}>n$mRP
z+KDtTwsju!o}bukle2%_!RWH=V__AI_mwY+&(PO?FvmGtw5r<ZoKmQvB*WUtWrm)y
zQsqhhv3ebcf3Dkf_LSYxXYqYD7FRCmO^~gP%9ee(wDZTL)^b0e9M@Ey11UM78ZHqn
zcfQZLpSr}%-J^4p#zOuz8UeSjY&<*l*qv5y^K(II3(wBFBsE8IVO+7nW3l6rVp(!;
zi#PBup3yQtFT!M<^ny>1-$(O^sxI<~KYL-95dUJA0t<`h4?N}5pL6XvpE=t=IP(Eh
zf$DC7L)&_M?km22@a*}@&mUsjfA4z8p_jlE!M?HZpiuVz<b(;vX631h9;<n`{O)$S
zq!k+Vd;hk#JLk{ZQf)J>b$)l`w1xH?{1T?6>-~5bz2W794rBLt_Gir7dNvw7izz7B
zkZ^d(l*VgkcfNST^!?zZShuKCiB*3+3fr|emux$hA?$sah5z97xb^Mo?xGA1TXm<1
zr?a+CF=B~qV`o>?nDo4oV@I*r^$kuO1&YtEEqT%*%&=&OFro|8xIuUUk5!_g&XT#e
z95*SXT_`rV;Zd|YWWfc)XN&rkg5Ek!(q6d3du{Wq^@ePhQn#i|-2LWcnbMTiTM}-v
zy{Y{m8SY)kf8~_Qp=^PAdv%HF2hvXlC9WvlIG5w|)#VAn<(Jb%Yp=!37PzuKz2NNE
z<u}FFuaS=Au}M+Tw6gCHU{g@(+Qf5n#kS0(vY4Y{O&%J1BbPbPHeG5u!*Keh$a%Y>
zTE4j_ofYc;on1Wro5Y<tMfJ0`ezm_{FT5-7vWlcS=RwyW(hM1IpYLS!&Ykd^>v>>A
zNCBT_<qmW0_-nG#QOo>(UHJ8L^P`XNRvwQ?5ld<8EtvbaGd<bqwCQi5j^&bX`e%Rs
zomic;z0dW0+1>9BIsa83o?+Q^rmQ1Fc53WOu|1{d8N!R-IxEj^Icmg`cvEHO@}tY0
z)}Gw;(y-}sM)W5g-TI9@$2Tmy!d18I^`4fO))$@6UD)!?ZL6>B^;xqPzL>g@IWSV}
z1h+oh^mZZEWBNCD>Ye__!O!+&fw0(NrflZy_-m_eKXo(DOg)&88s%J_8dq^#Iq2=B
zUwO(&wi#8MGOH!BdA5ggUpIYQSnQ!0o^+74s_On_alhsI^L6*12x8BiTy9*OslRIH
z>}|haR{fEG#iV2**rc2sIpe$5>887xx6AY%JkS2S^;)O!eWtdfRTq}X?LE=G;K6LG
zY1(t&M@5&{U(q{NcIncrfY;}feg^&0DX{aO?)N)anKQ`nck1r=bI&!G$m(>6->mv4
zV7Ou@|AthScY7<Zmrp)_y;Qp5#W!`^%_=E-ztpijPUsZQZD|b9OITqs<wI&c+Zpy6
zz2439pU>eIf6@E<^{OrBWpfX{e{-(Jf4#Nt&e_}J)n0TJoIPwED&1fiE62z8FzbA@
z=ECUcuER4O;>0w%J+i-VeHS_Hu1E6y8&RDbt}Ap|gQ^Hv%C%-VwLn<xP%Zmcmgfm^
zN1U@W9xi`XV^Y?am%GU0=F=6QVzw=9{v2ItQx>7{PHjWW(hV2N&3j7wH~5z)-2CWs
zwT1Ka!y-*Kai(Lb$6Kddh->hF?NE6AR*TMVGszjh^%6oS|4r9aQmxj1*;76zPp9(W
zuT}5*y3VC+x$ShqQd%za#%IY5r)T~NxpKx{hUfL|m0!2Lw^+Sn*Q=*YyW{>@eb39g
z-y)jr`RD2S67L9+YsozaKSUTEZf*GFb4c6A^nBEV#?nVCFK?W){;*Ip>-E6TsdCxp
zE<Tx&&HYx*?1>edz+=z!DH}MsC4Kc&cf2>dxFx{qoB8?8N?$C_e`1;`d|=O+Uo-9J
zvVS@wV8v?rqQ!dSq>nEWE(%OJw3FfaXYLJ8WvA=$K6v%}lm2DfFPG(cuEom5@B3}&
z&|><1&*2Ic?v9-a^E$O2%z3?JZWIs8tx3^y|JVg8`iHI$=54d(nWs~AY}={Ky++GV
zm!7VRPrP$u+S~uP&ed-JXTrQF>aTO{#+<|d)>NJ-^|s%m`zfSsp4HTsoSRnPj{Tl*
zKEwJ`QnX5ZTzb{A<1y7aZ~dNqGyh(me?Ky3Yx?fxH{?^aou6~g)!w2v;q*+7+{+BB
zkI1k5^7*alNlo=TtY`%j^8y~Lhkg~VFV;35U2|E_MfSRFYx}GxH*B`mzn9mRdwk+N
z_xBEsQ!PK=d=RZliSl!PWUrmPuO_qHL&myD>T|`0_fwu4Z=0Lwt`@sNy{U2L?(^xB
z%hKk?&Nkhd{qpULqFwQF>r3{YW>7fU@Y_gL+0;m1Br7B#{HNWQd9JE09=n$3yt}s~
zRy3pWXMqEs)kD8EA?<1AEEgR2Uf@fVf4P#MIY<1O*Y-u1t9HjaxL5K1?s+YnV|?H4
z^|IWzZqk<1s}D;Zf8%s_Z}a6B0@j5>*OjdFX0LYNU!HUGU&&IN`%izR&o)cAtGqro
zYTBj48|Ov+dwaZ--H4&a+3N6Qm#G4d?ME^st&A&X*T+sMn|!X)!YpRzY3GfM{W30v
z>aYeA2MbdoyMtuOq23o-kFJ-B{JgiZdFBy!MW1IItgk$9ebM^uzN>NMZg1b)doAS;
zPAWNQcI=JZO&QtL^<mZ}=8`TC7&ojadnmi%z~2ZjgLT?p*R9)l)N;Pu{@r)qzBb-)
zd(GC0JoEWab|u%%bTo~>_2lZ~bvN}aPxkUY<TX$4+spOl+GgJft|tqGIm{Cle|5^1
zI=f+O?8MlAZ<`Oivv_t|Iq1W>dy}=hHom)Gn*HV4F+B@K?!=@2+^aikOV7x2eJj+-
z+pfM*&g|&27l*o&rXQ;;KbI1{qpq)H)AP_K(cLEI(`={nUcUAIkDT1CRUZl)Wl9e9
za{QIwUL|(>@UnILCwo}Ax^8bcn%*+=_rI(AWB0d*zJGa`=fWMXS^rynliOvO84Azc
zFN}LO%b)vAO{=hyjZaSA)AIK^O}y8V?|TQl47yNrQ+wg^s{M|pFTnH2&|rPTpwaBN
zLoD_<+xLxp*~dSr_jAowjn1#*`=#X-Uppb_Y~HR-(XTIxFPg9ZYO{8R@P!)noJo^*
z`froJasRpE%2{*Q*ClPgE!Y40z3}YS%aY75Hk{Ft{8KCYQgx&Ht6RGR^Dgk7t;^TE
zXa2%K$697~$Zqu<xhD&R*R|fvoTzcA`8b>U{n|AXc?zCNiS1mndTmgcOvi><aZi%I
zzxBMo&Ern(!+-Bj?>pP#n_w<8<*MOw|3~(E#h&IJXU>+2?YVe)|DJ=+b#~Ja2Qk(4
z%gWj{_1jsx{QG&YN#h-+9~spGl6Unyi(Hj#b1a$Vspz{l!`YWJZi(FemgPM;+G45s
z+sCIWXMX69ob_${3)6SAWtLQ`@L%}5`l`KL?VtA6*WSsyHrSsO<e6r2ira2Uf5su(
zZz<0X-OQPMVol!exA(*@T$P@AYt38p6OQV4dJ<Hwzi;0;d+)sb<HthoSl_#U_{g)E
z)~(TZBsV9>|9at3cG>By%JH6~Z;RJlGHr@~St=-}X(l3hTY2;T&kwc!&$;*4&-bl=
zI(z@`-Ny=}PHvMDUU7f7!L!+W{{ME^d~fIL_zl$uo1Mb1@A-YXw}89jksoY%fB*-}
zA-)Eq7cILlx;`k9SFY?gEZXgS<EhWJPcvVwlV_MO)vfs@bjt1L2j8Whn!VSAji3Ft
z<bT^;&r`mOI~)1ER%?5oy+nN0Z|PnCt0&lOzj5*Be~Hui*HX7euDy9YE@C67(OaOt
z%djg&hQm8)y6u;_GtYDHitbrjs#ac~I{C)bh1F{mO5fhznA~@AU9#e>A_Kka+Y5G^
z=ak;MZ0sH(r^Y#B&8H;+j~o872HxRBilrNj0c>+O6uxOT;7SzVcv<ty-GjRQ*JW(`
zj`Cl(ot!rL($C`OE*Jl}ZsgqdvbOKP-K~GM8_a$$I#+Y`U(E7Hxs&`?r*ewh&DVC{
z^ESFA_E2y6(~Sl9<xiIiF@Yka^Gj;gPPw#rF|OAMd4?Mo-FlN`dOD?Xy|ehMN3XA^
zzgM4DHX&$gT1@S|-3OS>#buQP-@W&E`D>l!!~gsK8E>C&{%hO!*z3RJlht3pe=N7*
z#nxr-kMDFVjJ@8d|55k<nYG1izkl&C+%5ka5&rwpwT*Y~C&n>73lcy2`aXMqqVK;5
z2a$5j&R=V7A4hqUx8$+B@4Q|M?l;_i7V8!L<tN|aGs>N-^2J`K1<UW<`$EY4#=P6_
z&feX-Dc?Hgl+2;6Pm-J2|II0lNOm}X=+li|e+~P0KX1{k-ZX#a!9#yvWv;u=Y_?NO
z^$p7jM|FX14X=B$R!4cfl=u8}Mf_-u>EfNgPQTu^^V$0-?E*b3>-Fs|>%?QOzg?T{
z^)&h5UY)kHk8}FB`!ys>W~^mscype22mf#99gHuvw<<6H@abFZ)T;tw%t!sdF+W)#
z%w(~=t36lge0T2rLyOy{+}!5>FwmK!$Zs3#roXpYZ_az$^z46`<F@$@JGeG^A;q-9
z8wQZmV67W)u`W{X)Nrlp_VN!eCIr2nwXJc1)RF4O`L8!VlMnC;<h^5i@Vd;hD{h<Y
zzw_tU&)UYwu*v>A%Tkd|I+t!mUu9yjSUl%stwVP0(QnKl%(e49uG^XXe=p9~mh)Gx
zVIK1083AywTcC_Z<l-Lt7<Dd}o0CfqZdkGJy;bsAiN$7ivduZ?|32EJA(qPbUVQpn
z`<wqjp7{G{*R+`}cbP3;v@9+7>6(_1_o9FHx8-#Y_7-vOZan(e`H<C)h3eb>Cr>|D
zyg@PNUq`pzito23?$5NlY@;r~A$@4q!LGgAcCsAeYdjQ&8W7;Zx7#f+|J0I=r|%c;
zub6N#)I98^sr`x9cO(t&SlIrxVQyIW{-EjipGH2v8e{(*-D<t}Y5wYl*7|L(N#42c
zd;T0<|IzC9=2u(K%ssvJ`=d`k?ibld7$j-WJG<3-Z>8Sv%aPB%d*q(~voCz7c=^2P
zoi>_>Y!7bqTsQxGKg*jmzVpZK?cFZ(Ij--%s@R@sSIcT=roOa)b8yESrFRkKIVo$M
zZ*Wd%_M35dS@y<f;%9y*hDaob%dFq+mihSlPQmm<=^am8Vv227pYcpH-%~i>``ybj
z^;f61Pv#G=D|{VRJ}0}R?c35cqqu)b*LR$Jon(Hm`!x5dFE@8R`xhVApl7{5PggKP
z-n=)lO8;7=+Ou!<XJ@?Yj=gUlvv2+Nv+34f_zV6_FVKkG@cTeja-sW&H+_$*-(32<
zq4)c-JJtt!kDgNA<S^ln(KmgE4R`h=Z%|G6U0mDZ>WC$;<?#1Z)}7mS{t4R#?fE>$
z5hiuj_7gwXhW8jLCR@r&$Jfj;Z{xkhu>SC&&#C^Ko=@NSdh?Yt|MmaA<qevl9T&W4
z=FO{XO|JhfV7{C_-KeT%_km~sc7DFiQ~a&uf98kN=|0NWc0XG;@9b;iU$-msfB)RD
zHvGiCbBBH(<;s@d^paob$pYbRZL#IL>#I9;A8*>|r*ZB2oP#xu`~Tmcn^s%Q{W(Q&
z=R3nc>wKoWURiy1OKfR#`PV(~4y_B<j$Wnk?j?)wpXJS0Kh62)TG4jlWy;Ozo4VMW
zMVVW!hbGVXJ^O}il4)1vjjE$TeZFUl#dv!53xCfS{Qi?O?(4oczp9@bh1I|M{*;Te
z8(Xb-L+V@Tg=d?deZD*6bpG1XH@BNkM0fYCmtOSkkm1S+5zjfls4Abao~gTMZr<M4
zH|DGVoyA!jY*ux)`xDom*(YwzOqrhj{%_ys+w-e`TYRiAT~el9FEv{(=XuSv_}w|r
zZk$dmyuF!Gxc0q)_r8bU-~Qt0Zk8!wddL<NzP@y+U+KcuQj>+VRg`kqX6;^m^w`qB
zGekwA^KbtA^t{O5@7E=hGpy&|X8oR;vQcW4(7XI&OBP+;{Ypng=Zbdg-Hp|e-^C}K
zYfPQ{ReR~$!sQ=}H=V!g_n+_erte$NS$D`zcz8o^n=!+6Td%oq%U`$YPrFv~yKb-a
z>h-nnb|{~m(dPeoZDN?!E3=39+0D1Dnf?FMGyjeaq7$0^c9g&A_n3G(;$G3Nw3BbH
z?+V}d=HsKXY`F?)52M%Fx=LYteuN&cx>#Gj>F?5wJ7Yyo#r(_=nEUs4)Qa3{y>)v7
z?tNfgV``pv<BCM{)=8b)e|Y^)KL4H9P-DwF*<07GMVga7^WF2xzvF6qWM^1H_tk^5
zU)SCG>d1e6XWZKVZ`*g6{EL12dfn`w4mm<MuN~)I<%rS#WlHQXh*o=gFsxJRdROkw
zK4;D{?}uA1uh?PuI{xOi>h~%)R92S$kM>*J>0WiSy0`bs!`tdAQ{H^J&fRx9rhD_$
zH}59twC$C7{%(d;xlEgbf(~QR1<vnX$1@gRo-P+SEzEV3Q*@Ew!5HmbPmk}ree_iF
z{?FX8|J}0x%m0>Dcq6?{-l$sQ#ukrzb}zDZno74AtaE+NJpaptJC6(11jHDzRO$u$
zZ#@4{#Ga5d)#qK?%Jk}{QqkkecMCUud|z{-yyjhgl=07nDKj~4JBhsYx%%z-n?tFF
zdu+GOzI*FW`^N)ojn&F-?{19`cU&{CQsOaBPMAt*tij<6j)mfl8!jub&vn?rp0oMi
z*M)nIJ>ssc48MEk>!PR{KE9e*1_lKNPZ!6K+2^jQ|1J>LyS{n->Us5*-^1<h{5z}n
zYj3dU$+U}+=1sfzcRr|;W-iveV7Yz1bj#xMt2cLW_U}7=%QRv+>n*PJ4L{%NTdwIp
zxNXK0)g5PM<mcrCwbn8{Ol;P`(#RCIY0LQhHsbHE>*tj1Hf)T~H3^ew=DQqT?Rorl
z)P~%Hl`}T^`Y7G4zdX~Xs`OiR)Aom}r@f5XuK#=e&M8uRT_W56Z+821_>P*Vo~<Pp
zx8(URbKWXGGAuLQyl-~;*4Q=1YO!BFRZMw3V`tnm6K&3x-%OS-TG*M3U%GD6UO%by
z{>x`#&!1d-d(HaIxkvX_%s*nd_mdB!_PL`|)sr9f#%{K#nZo@{H#xUDji+bZxou`r
zZnJkXgx!)lEipI8`2CgTg)?uconkm6#BAv;Q*!S4oYG?w7XF+q|MFkQN+)iP=ziq4
zElKx=P@}|>-5;y_Yi5XF-=Uc7yh9dSFYVaHQirP&#_kh)=9hlbEmKW?RJX(Y;evBY
z-?RgIFK2vjK0N91#$Ot1<~!8~M9y|FPvhqQ|Mkk_Q2u(`m6g{G%BOK(d@nA4{_cUS
z<oECAU*n33jJ~@{Y*+3@jnx0kL}vVsyS*(Vl$#+S%F(n;da0B|?t(dc(;p=C{mVO`
zSj5P1qLOdoZPmUfOiJh9q)&A8;+%Q&eWBvP!@LPoZh95W{=3U=cJ1D?Z*qK;Lz7<m
zMqZj+UB32s-GgOyFZ)YN^w+yT_pZ=+W8u2&+}78@Op1(_FIsvNg|{v|CZVzP!nU%9
zVb@Jp-4tP1(92lPHldhN?=6!L7oXyrM?HmXdMquA&AAk>ne~0%I`iT7?6;p!89sQe
zuCLo}_JSeq`=m&b+3P<09RIWKea<Hfek*|@WuHxc_ul-tU-BpR(4FE*S`XvHj{47S
zPKjH}ZF20ncp?AFV@}!c6Wo8>&h~p-znPOE!K!oq>zh2ABUA0ec~`9}x_x~`DEEz6
zhfG$*8iue1;bII8YhEn2-!T95rvAEo4u%)<UkoL90;kwAIIP!EH2z)Zk@=oK@#3CS
z#uCh$R(CePC^<4|a^-X7x{f|}{zm@zqzzjQO&bz-r<%WOGJJNbx<vfrf~E`F2PA~&
z39mIRNxHw~V&S>j8NoXq2*k9U@A;TeE!T8cv4pwk0;lvrt=zSF_v2$su9Wt^Jj%gP
zP*l}*`FlPCgLo)wny{gO(}EK24Lav9yq?O?ut+12k4@s++oZK`rp}c-*1K=THO+m|
zj4vPgth{!$dD->pI_LiEH`9@+J0Gj75wrKX-TsDk+iq~qH!Is?BD9}l-LK-$jFWtO
zelOO%y#M4)GqzhQ-Nv%7SMy#v-|(G(%im3Z8;c9r3LZ9h3iTY9dKK_}{+&CuwRKHb
zW?xz{=W%UaUEB8c_J@C-<Yaj8clY^%qBQ${KYzoS=NK5g7(;WJH|E}55U6!+qqb<(
zB5%Ek)306QXS3zuTQk>QM&{v<=I0Cz>c`K2eDi~oZ@yirz5L?)@(c`{Y}#)e{`i*5
zj)9LM_x6HyZ)>xpSg&qNT<5H*QEqRUT-;|--q(IcrDcQn8J*LLOL-a#kG<cytEfHy
zWvaA%of(_db^G@(-{+M-lJ9NZ7yctbCt>b~4`)nxU#)U_I&b#2%x6tEAKsiGbZK*S
zN}J7TMWf%FAG}uY<=|%yX~ygV@+KP3bX{t?Dywb#`}@ocb$?F&KiL2Ow=lzj3LB?j
z^KaE|3r`d=IE0D3;Fp<OXmF%mKmI{|&BOm}3^xDoJf9$b)a_iU@P><D&t82Hm!`$w
z5F36W%5ke+^`S+Jj3!(OIv89M+vynOHX&ETsiwNFLG}Kt2NB;Rm~(p^Z*RL0rMjPc
zex60mnzQNCH?57~;F!Mjt=a5-|0QS5j^tu{Ise%!9$~NK+flPGZ_}L;bir=+B9Wd?
zk|n&)HmSS4p3s@{K%l9;dh%1tC0k0e6(^^6bWccS|EAwP@74e8853sO*48(L&;Q4=
zKJG6I!-tp4*B5;HX3TKl_xI(EkM3o)Zrl3J!<1{S(FM=jruqF6>_+BwfB!MCvzr;$
z6%@4a$L(WbsQK|p=J7}NikI&upHVUTzHUO$p$&giwPKDInHkJI|G3-m*kf)6htRVD
zXSFnP|1XP{oyT}AnJt!s@!h6pm4Pf`w-YQ}ZoY1QS~lmWs@tW#3GFj(98;Og?X$&L
zGuEo-ed#aDOmQYQgJR9aeJv&B#|`XzD(}gPC9aJun|=9WhUlzgx0c;3X*yZa(>*b@
zB5bqdl<Iclwj<}nHMmZHdHMDCi|_0&EXDXw--z4H%Xzm^ro<`zMu_dYr4x4@-54|@
zRP^4yYIcSn@BjbG|6~9E{eLEgIeV(5SGcYUo8YITA<SeOUSCo1heh1}_hyT#M=$!$
z&r^<GFt2j^hM&7WZ_72Dc_Zq=$D<sjcU5%zLt+9nL~ltM8We<cpIXY%=N2jQ;w!tx
z&e%1D$KI!|aef*8{P5PDAHR2R-j-`P`|O2X;``k;eYj*br!lOm&-(3ZE}qSoBI_I{
zh`VyQcq&?p<Q}^B<N3=&+IoHKfA^Ii$uBykdsm!c);8D2S&LWia*7RoD0i*2_ZlnD
z)@uSmZRZ=c)-<j;p)g~&e`?GQ(bUc}mL{%&O6QaRCUx!I5dG3p?OV)N-n7kJ>FL)5
zZK}VE<=?;c;PuOwlFK$5GAzgwndR1+JLS?zyR&nGAHDU<w>g$_hn?ZfvdszmjWh#N
zgf6SQGc;_wdb0N2pHtxu)4vyQ<o0^LlfS56&#mJ3v1$FjZsIep8f(a_1WMhq{FGqB
z@w;%QVsTQ<--iP3?(XljWg_Pto{@9*b!2VMo8nD(f6wXr9CLS5@uMwfiU*c&ZEIvp
zx7*OQ<WFmR!`-J1uTy{h_GMIm|4uqbF=Er=9cy+Qhuck<Vwt)2xtHUrnYu@JO2j_+
z@<i4zhAGo%pTlL7#QBGAzO#A1(0&8o&x@0lW$f$u9x`usipgU1tXQ)k(g9;o=iP<E
zh^jc*o368a-J;EB#LQu4@bka-@bB&I3=QAk-%ENWayRsD%ZZH_9VXs>^YG*Id5=E)
z@a)J6x>F&i*nIDbME@I!{nfwue2tq8=k1fr-)hK}DAGGqc*mrfvY+oQ;7``671<zp
z=bX#?yv&{3`d@AOH)r;;V^1C_ZIF=Yk*&C~VpacB?WF>%c!koKx3sY}Pbr&y@Phz*
zdwbb$BO{4jC+5V2?Yh4-asKI9%e$^zPrVeAW^UyAY;%la_C1pf+2C}m*-2L4xSk}R
zStfiYCetH0bcOc!$gLlGa;)R$GAw4aFrJ_neD8Gi3*Ovo<rnM^Jp5?L@Zjd=^u$@|
zI_#g<Og&I{H`m+jzmD6gbxm%;rYq(Y{a&-qaCMH^s#RHM(ysZPU!@jwXX@U1$0@U=
zCEmW=cP#BX<C0wSR)K|QGOgquCs{c^WqEOHo3GH>lQlbUZpo2|d;7oWe4q5byAPSu
zd-$HRFWzjt=l7Yk3&$T9hisN&>pQx@Bw<d_*0hG@AH6y+X+F9hDtvDLb?F2H35Gt|
zO}r&*qIduKD16a>sgmxlm9HoChDJGBrZwr_PEdS(%7TAB>+}akx{{lZC-kVN`hBY}
ze!E9tpTzcqhhN2P;CgmXICHki@9q!gb2qH0(e$ugZ7?@t+4-M8HSg`O?=R1fV`k7h
z=Pu!^YwZzg`ry=@qL~Zp3m6zGem-nJ@rkLq@$XKZ)4#8=sJ+oR;i&#bO^>rJTUNB;
zcGyi;{f3h%T^r*S{Fh7YoMjnn9$;nlV`nr&dS&0XtYllg<#JOPPj;`&jOsc5ZK?4-
z3-{3L6B5s~d>2jZ;rlw@D>|Kd!#j7inC>OZ+6095&MUR)TGZgU<Y;-pt+M#vb<&qV
zu9uF9=`kq%&M-&0nEU>eRV%l)<<*|u%+~WaX0@1`riQs$=;gMzpKbU**E@@EI#{dU
zZQ*yX@N(4It^HijvuCV5Si0?KhU~4UTXMT^1>RhKSx`+p&#|nm>*7yIh6Iyc2TF`M
z@2`F(nWmRuF?;KUy!}nx4yUg5xy={v6RR;ea`2!q!-2_*)hj-JQf4sQ@l<m{49EU+
z%>Lqct$R+3+!07%aOW1yJ|Vc<-XP7?oxx!>Tkh;vhAz7_gY5!17}(ZUx3Q$J*du)9
z%8XwLp07`pRv6`7=Xtp8&B;ygm2cm>+%Mm)YdQJ8K36i2l=*Y@%bcrb*3OUXQO}qq
z<#xMxvQxWd&X%^Kwzk)5Q}jQ)WSP9N^u+SZoVT{MMqW32^Dkt-=)HF)rM)L_T+{47
zcRui{Swu?78u#aOn!P3G6ltb%?BJT{d}_;Q=Ow%2^F%9h_rHBo?WADS-_6!4C$z5g
zTyyih7t9&5uTF;EX6c>xvZRaqyWI{8`@=U+TF=?DRdvRD|MLc=_0s3v7EbYGwkT0G
zn^S00|4(U8_M4A)Ic>MicAUYCrT?{I@`j1t^Lu+kE-%Xs3>94_JbmV>Wf?KkvW(`j
zc&%KOy~UB$bdxtP^RH&6z59f9lnwhjREih(a$bD2%rqlZI)W!gBjt{J(^gTfW^H?q
zqoG^6IgHzu^<^!K4PKD%XHmNP(Z0eZwbvd_`4YW;ip=Krp3N6l@65dIus3XFMdW3N
zt-4v|`AY;c`f~3-?+w0SzWm&F5gpgN-EzyOTvAKf9KH16+U78+D9tMmt3zL0x1H@%
zP?u=@RD5~5MPcpk`+KXqKNm-H8Oik<&h)vU<zBlcE2MGV-L{|lEc`q|Yk4i$mu%sg
zfA9l?`#U?^zYmHtrpTUtcu~-6`6unvwlk|g8#5mMrhL)pdf<VJ#oe1+)@xjpzU7lW
zEp@`7;1XW}`O6*}ulwdnduu&w{ace1Bc1E2!+52X+2ov@ChtMX9Umo+xNIqsXZs{|
zhP!#G_{KTBCT*<CIxk7Bon61MoBcD_W1&N-#il+B_DL^3SYtUWugUh(s?w**+OhL?
zPchxR+d8rT&5e-K*2%`%&UU}Q1o!CYn9VKbI~n`_hfVvL;*@>UYbH7toL)3hl3n~;
z@wBHC_BnS6Jjkm)C;3C>Xl#qnmXN?ZDV9sVJk5??{d!0F8SX=8xto`H{W8qH*QQhc
zmc^0r!K0*>%fi}R-*3JSulV~*^xmG0b2Z$ar|*!kY)d!obz01zwf*nMhr(NOMbC9V
zym*J{kSu7~N-)RMEz@7wHz%&q>RBEfGspVX-Heu(SELT?T6xiI-_warMO)mDvF<6$
znfctpqM~V&xa^nX?yq)9_b7TaWovlrmv$T9G?IAj@6aLf=YrKL<LsperY=7FQEb)G
znCxx856-iAcD*5*pT+ApYhH<&s`!Pzdl?c7_Bt=}<?y=d+q^4}$u(kYwqD<Nj?C2u
zj$P$Ex6JrVjOLjNE4R0|%eP*PG{5Drl~+sr!|ojtswP*s=ghIZ_2_o+oO!p8etnVC
za`H-Dz17TxdCM}Q;y*29;@y-xdx5CJ4xd+d)*gO!nx8Mdbces|&BIsbF3-FD;m?_?
z9#Y9)IlmofV`ZPaae@0paa)nUa(i0Ce0x`I`o1PhDx~huEVH0HGmD*s?;EdpB<(PB
zh3%n)@1ak)N~PcLyeM_YQnjgbgZ^*58}B049m?CAIeTexs?NK!8O?6L9m2Y=O+Cxd
zaE^!TImfcQd{c}J)|th6w3=C%PrSF+sAp^WLlg1aDh-Cy0;X?oUhr{|h+1;C`Mtf>
z?ZL}`<%URq(I`?>=n}dVc*l6Av&HW7tuAp<z0>z-1Uxf4pt{*+%A&%9ikAGhRGm&-
zc<S866Peh5IsJ3)UODHJ@mbDWuN{=j&P~|T#r1ZTYxM7}&vjU0mQUtfHuZXz#nId6
zbI$%;ZvR))?(a+g5AXKYhR5{i8I=B#@?G83=RYk~!#n!Z^{mx*4?8P7eb{fGXc+Ko
z0#bvcMV2A;0%viA=j=s?3$}1d?)Oj+idvjG=R=UGv+3LgVR5Z<T}88Vg{;I6l=gTO
zJ=C0P%frtXutUQ%x%v?QUiLGbX^lra)=h0{oi3U@$<az~<%3I?9x-SflS#di>Miuq
zY+9kgz8tIcnV;|dKk<3a0^#DwF9zE~7pO}uJ1FQ{yF}aEAcobf!;I~MRnJbHO%rNw
z{xEpUFjZuO*^%HY=g*%j_;xRKue-WL@0x=Cyw?+IpWa!p?)8LBdwbc3IW_O>=0Esy
zB<RlhbLS0rZQz;ru|j6kp3Rx8Yej0NSFJUjbxb>U^??QfCzrAb8_l$fC7&+KJ0KIh
z^v(Bxvu_O3H%Gqc?^*JG`|ra1T#59s2`9Cc%)J(0U01&6(&zQluGAPbR8KS#o4TUc
z(D4J;oW`A&{KuG;PaHU4AolCz^7Rcr|Gb*Ub~U|n`ht@CU-mAYf5c@$mtn)tDW(=I
z$p$lJ&-)altkZF3Uf6Fw!%61olUk)e@2+p;{dk9G+LrHZ206RSI6X41Mzt61`B>2t
zzCMnT;Z>E`u{|0_C)PNu-*U5XqG!rFY2N9QT<TIYzk5xw{XN&|S>WBfhQ&5h=c;GD
zR}!|6xUo(y=)@Cin=YPrs{?nkYJS$xc&;s)vsz!+`>11W=9LtiV^>N;CH?gb=HAHp
z_3~u(p6YaK&b`&Y+1}sZ&#xM=__JY_I>U-BeA_%zB>DQ*c+3&p7Sp)<_sJD+COvTA
zvr3d(?U7U-@+!M$W`61u*^<Q<%+|@>(k=Px?PI_=@#iibNs)}$dcp6VipBa1iY^>3
zFyJVSx@%oJdwsRv`JJD`lKy>bzFC%0p#LkzX~PP&**kxkD^|`h^7869rX6}b%I&18
zinkZ1mHemKWjhvDPt=)Xe)UwZG2cXuA4ca6?wO@8?zlC)z(MoBQ@<)(r0&92uCLuY
zd$_kgIFQ5fdF#RN-BWhm*p?d*UH|u&am}}tu`K)R|66ISm*&lQE|WIN*>Q2vFER1S
zn&-}~X|}VnKDsm8x}vbKaboeK^vzl~WR{9VEq%7)h1XGq<bn&9{Em!k*KWT1!&UO}
zi{3X%H8%4W&D!OlVw|wg?6+F#Gg~K%<m8w8>=<reF}<ah*+1>dnO_Zxe@v@S+4yi=
znsua5{AD={cdmJ8wza>+cbS5N!l6I!c9xbD%5_IO*f)HfJ*U&)`KK6%&xfv=FrL_1
ztNvs0mU9Ou?%`$BI;gs%+TZx?)Q#4gIJwVNntfN)x|7fRa`P!h3Gpj4dX8JzZsoiC
z@}%d2==8|GxX8AmJxb>%TC>NV;4#|%{=udfi#1}H7HJ%Q-+CfIMAG8(-S9sX8~04u
zSFC#~j^8!$dpA#XzkjY!<F$1m5%FfFqTb3=mu`1|zW3l6*2?3LJvAzKN%R&xv|^h(
zf8L`nSN8dzbAK+;tLOCdP>C5QW6atT4b>N_fd}I*I<L3qaJ*H!^<~RD$AwZDbDSmZ
zCa<<TeLM3_p={=-Wt{VK*XOz~3=X@{ta@eVnTzjIrYU<@Ki&1d;9RqU*ZMb$>k9;`
zI?9?oR`Vaf7qZ}AP)h04xb55D-~W3!GT`OeO*~#(6=$pNU@1>NSD?B0y-t@Qn_gx2
zo)Z&OBNt35lbyBSuwG7MqipIWW@Y8Sq2-U~YXuvhQ(VFknSXbMfbZ2~4V6y|=cctL
z`RC}{sLAeLqVrkd%+=D8f6M-s+L?>Dcv{)@#2kBk_O<`V$@29~3_spn)t=LrbF8bm
zx%l^ACG7(YSGJ0G&Q5xAWvaiQzw+KftD`xuyz+!ZYu9f5dp>rPnP)rm+QYR*w_131
zrO#|RGi!~3cgxcn|FWyECP+TB36;I?wybrbby$~MwCRc(&fr+~UDaAz$0WFOgp&VA
z#9Y>oeciJ1Fw^Vf63lP!@s?g*kQa5}ef>Ij>un~>b~jG3I%mnvGso?j!JU?Bg(W<x
zehD>s(&t4^ewL}syuUkg+SyVc!((eQ+SlEB;JUH4srrr7;no&q^#v<uA2?U}{he*p
zcO8z23w4UW{0{S3qtlgee(9MBJB{`(I-w|QyGx@eW#;lD=^80D;m)%^@ac8eY5caf
zvT6!qXV`YQYL~qWTl*y`-`wMsR&&`tn%8PJ-`i4}5aO$+S72CXd-k|;kGuH8&#lQR
zz4~rDX2c}e^zy8}Ro>sgcYboB!?PKDhYve{sczn&w)BnV!Di54hR4~i$Ru9#cyW>J
z`kL6;L0nUfmrcINv0OdBuqrFmUtL^0W6mkHW=^-hVlnXor<QG5e;xT#<J?{qupj%d
zE4Jjl#r-`7FDC`P`F_BX`T54Qo$FRP?0r1P`P{l|#?nhKR=rwhv~X(B{x`R;d2z;W
z)z&HcFVP%(b-khAcG=~tKki>+aYmBA?|4Ox;JyQr&zfZCUCWy#wzWF#)-E=Q;}@nX
z87L}N@T@9nla29laeXOfynI2m;mk*WXKt08zpt`)^7ecNhFcn|OL(G{CUZCL`c@^*
zd#ujUY-Yl<XbZJIW4-NtUiP=|B|MzNw0DxKtk#q!w>i#UnilhA=P*0DbZxsXykXnf
z+IwuWMZW*%Y^=~tVDdRqdC!D*N>|D20LHVD5;YAcugyF@iFX={k<$yYrs5@vj_cVk
zTrs`1jjQ`ZrPs@MXP^Iem~&XoVxm(=Lb{FW4Z}u73FczcyFJAj=G(L;Mr~j9((u8F
zAm84p2d){J>-@>LHj=!yZ1*SbgA*;IcAiPOaC)Y1`a<nqL#dflG^)Q<yT&!NZ{iV~
zQ#A49hWj@9O=b>(VlTc{ow!@blD^RA)q@Y5ZSB`I*QbY8{3}!L*(fO?{C;;(ZpLJ@
znLUQ3W&1*POK!J)O^dxc!(#8mlTVnE*V`I(etog{qNSeRxx3}dGFGwqzP`TBiqk|Y
zBYi^41c`5L3=NAHJAbL(yCF`AeeMHCKC49Ih-2s4%fz*Gwye6T^HR}<m+iw>|N1Wf
zf3Np{cy@U{1B2S);uqKS=17)g7#>=}@_qi!BMZ_OUuga(uy@mqivOR_i8HLuU|v%q
z^S$3}p<A}u+=qYOh-}?0f9%Bug$EtE*MbD))lyc>eLdAyV(sG@cRougtg{Wb|Bz%A
zlU=2kw$E+dtk4}6n<xG}Z&%%`*7>RWKie$_N!#uG3=I=BPAR?MxRLX456iW`37=>2
zX!dwU{oTrSMz?0`rHr&|yCq`hJU(-^Mr-M#MKifM8ZVq%y;92L)U9bR*KqO0-QKpb
zcCMM?gp4h1SKWG)BBeH7v)K~%xFffAPxJdT6R!ns=wMFVm^=643zxi7!R^}$jf*cg
z79I#O-0)m~GPhg{Z}G817QY`X-2UF+TRFppPa1xjEd6_TZEee{IlY&2)=M6%FE7H1
z4{l|TY1*x@Xkp&m#YX!i63ym1SQdsYPTF5wAh<2@!GoE?{g=7EK1{sx{1)@BeNvCE
z2_LD;E9RTI`+M?w{)cnkhHam5cFo-UTWn1qA8beuYOB<;U>8=Z`Nr9<qaCp0OwK&<
z7hkJ2V%h9YCoP+6+<D8E-^<is-Q0WEj;9~K;K_8N|MQPOOp7Pho;UMNZFO>fea292
z-L)Ds$>cX%+|@2~E}OjZ_c@h}sXpq$Ccey%qsyg4g{3*USG*B@VLfr*!-5W-^G+XH
z9X>3Obi^3-%HCMjdxPuvr&32>=_r}K)xRar#jNi7yt&+>GWmAIo~p0Od#e6Q-rK*m
zezuQZg3WusmjU4!lX$qNGgW40#(_5O2i|F(RC@j53)dBQa{5;7(CIPUShszpVe!P@
zpEnE7*;n8F@`&4{(%Z)_U$n|BKIZ&wlLprpwrNh`(^S(opJ(;T6!+S7`i!r4Zp`{8
z2@@CJtlsB#?1sy$;@D7$-g6(GolR$GFkfHSwQ}|HyxCUo;#N=i_%x;^UVN|6-+zuL
zW`t~xyioE&sJxf^Hq%lQ8DR#a-(8c1X6(Fm?q*3>=VJA3t9q-%cm#Ud3zMSQTfZ&K
zJe<B*IX5s{_R55<7mFopBv@R_C3v429XK>2!uV~)^fNo6GII~?;WgGtnXuWWf6BX-
zNBjCS<8Cuv(0;4ErL_6lj+}XY-<>)7e0J+7GWSR;pUcf&aigzeVQ3%g#Z>|K^=EL1
zWS?ueWw=)DvgWeOo&o7$t9)<W%Pe>-`t^H3LAYzie^Kj|XO;=~obzX7NYB5YU?jP4
z<y^aliw)mYnF9G4<|yjt@RmfMcl!IK<d@K@(CnKJ+8Nz{iZfL{{Nh-(H(>So#svoh
z!c8TZZyn1E<`kUAd#p0Z=$K+{d;c1zsXuwD`c|#FSX}0xX6fZ#{{HLlj5IUvJ6fV|
zK0EKTKQ`k6+qQXU3ku(Tb-kBdl5~3hvCD$9B3rq?*UgBHaZ!7o)76>1)@)`U^X7%?
zvV3Zf)q>8WF?eU;Hv2~%Blpvgy^GoxEAO_G`ocaT((OvwAyLqrzToLitHKT69-FZt
zV)ZMlEz&>V|Np!H<F8=tS0%sR>H5XaKRNlb@a^gwSDRmLbDg)_?t)wEE&1dq3HN-{
zC>7Hv$(AYKH-CF|!8-Cs&GjS^_u~s!Y4yx0ID7N=b_?su_Laiki2(^`E_)}hPg?Bz
z;E9jgV~2&(JZv-i+!xMYvGjM<^17|kh4m&^RQosd)$_F|97{1fdh;fy-~HQBFE4-3
zH!MA<y>|8v1v9H_3$&TvM}IiU5gNPLUgpMMU%d-e8>JQtN(ry;Nj<*wbH~-QA9N*_
zI=p<b&2@eM9n04?g&RUIpRv3*C-L0DZ|0japI1NqwLU{u^Xjn-^X-4189rEABGO~5
zbLs9@v*IdIHnz2ab?qFF*IW)u@SMFhbbf>Gy2HV1CoWrg;Yz56ea0&*tGZ(?QZ=`q
z+gQDGo#vQQ`18`XvYc7lTsxf4^7@K&&h9%d(R+@mwA5;KQ*hRn#)pCC3A4MOedWB%
zEq8o|gi5&7)XkU07Yq8`kNjQy=^t;}=FAGV1OX<+o{t6dd<uN-?l3EDJ$T^e{BFTn
z%Q(;94LhRz{%?nQv*NW0{B6!MGB>JHUcM21z|?rGqL}U8woW?+{@Tq4Lw@w-MQ50&
zOGogso0a9>E)s1~o0^rg<n+8ViyLCItrnhGbtvOa)Z)2wAIzQod~$d3mD1KMtK$2!
z7Zrv4*fqE4mKba;z{*3`6*lu&4q7ZVS+;K8-lC-eb`soaNt{zfG-4NJR2Uq&DExZC
zceZAM97Tbk3u}-{BIw#<-3T53o$ENJpI5v3m1li?Jr~1|_5a`3Kb-vk^L>Vf&zC1V
zsAsLxoYJ)=>-IHOw<hM#*A)U>Ed@kQriNL#-pmWRlOOv1+x6?2(Tl7%T(b2D{gV4+
z`>Hg>!zOb60imW*?t-EY84IVSxor&$D9wpIvTPoo+2Im1=h)voyO<`dEtn^$ZTce8
zGq?6+%wH>~l4C6=szc8j%ss=zyFD|s=TtVcn$q5*^Jg|SWyOSb7oS;WrO|(WRaW1@
zg8Ls**%%luyG}gJd)!mx5UcnEKb0P5HbJ?=JM9-+UTX@w<(DqoI^)6ARgpIJ=UnGF
zXMT&m>9b^C8s8GFcWR={C0<W;47^xQT?%SpXRqavWnOgs^zPiln?rjog^xI_?KBJc
zFf(-SiXF-}bv^E`1qaves(5DH(XmvKheypo;E}6Va?`7d#UihExjud~Gb}f#Xaa{`
zp0w<e3*xos{!GaY?LKv}^!$1M!e=g8`g+F#a_6pi_4$L1f!J-<SKBxjEtHaZ%so4G
zj?b|buU5>NfA9A1S>3n83fUiRK5gmzZpDkeaq_n6NzqR%TRKh`X`8&<=KIVz*@i=z
z=^~rv+QubslNa-(t<zCFzv{ys*`9vqX%?YU_vfVEQ=9a)S9*4)DR<9-&6kDuRHu8N
z)bsNXxE}a$Z|15S-!_KM*p>4u#fESG)Ju)J5!-d6mLB??;2E${yGcL$#rG-+zJ7)q
z-zsA|PIM`)vOWk}vORZ4@2l&c+3N%PZzMg-s`op8uCOjo^V;K^EL)2&te#nW^0=73
z(#rIl!<AeIovSCVIdN#w_V{lTye~=~{kt!tqdVbhwV-)-BTMrQwHrI8#s70nPI%<q
z&UmXfEJ5JR<$%-`t|?86LphIb@3!2`<XU&xyWj8I{5#y|TwherPPLTU9$>&L)U}y&
zikq5I%DKYxn}q%zWHfSLX`HaozTEuFrKjQ7zwiAb?8I{F#e(<+8gF0w8AQM4VaUDQ
zvMVZe%je^BZ6DtG{k&}98_joa$J3PqkLQ0)?Xu2W@I~$PgC`XYZ(Sa~&yAcS!Sm*j
z?fa<*72hslK5C|MY~i^`b<^`w$39%BbxvcQF=HpM#E!n)rF*h=oKanJMlm*8iMiM3
z_Qs3H*j;izD6@E*B+a%ucrYPhk6K%hL0sqk7b+8k*8VQLb|$vsh4;Pm#m#Kav8F3(
z&+ZHhxYcs+ZbPF-)Mdl_d=pN7sMbq;b1LZiw7T3y$}i?OrJgdmrq_E*@c-oEzB^wH
z?ImO$d^jo0aNyy`;5j>QW!zRP5)(NXo!tE3TmGr6i3iU6n)^@ww!(?SK+##D!LZrw
z``zyrORVdrr8}Nad^%~StlOIP*AF^|=XRf3YkJ;Yc~7a7`*Zd8fuW%rzFxEYd7f>m
zw^2xF?<sp}Ej!~|>ite-YU}12Yfcmo+gV@ngN1z^+uk?d6?Z5cpHsk!ZAFYzgn3b|
z_9Txzg<saK(YR17qTtZ9J0fT?@2ypQ6H}J)+9(HcNE)TNu5bUh@a{ehu9^>zSQ#FC
zc)<`ES5hY1y{dZo{TS8eoi~20cU$WJT~eb$$yspGUiW|~<?po@LZz=Pl~h_9u~jQ=
zWlG<^WL=TJ%(FT9rgGfw6j{G?{`Lp|uHQ6I*5NqiF>~>C`3Emv7Bftnc2~Ok>W$1I
z72#8+Tg)22&6sK{!_y`qXUm$9S@Q2*iQ)I~o5z<Ox0g}B;9+Uxul)A=L{4jYR`Gy+
z*DDtX>^>j0dgsiO5g`w@G8LHpzMds~+NxxUi}qT5)g!`x?|DBqUG6;n-`wsAn);{h
z`1<-78QR<3PsAMS-pKcBLB479VS$~;Ze1#Mu217zU$SB=W4Q?1xd|(_sjqtYFx`H8
z<s0=gJSDHa?R-wGIcyO9?7*UcMf+-;ncmH8-<xY7b|Wz8*@@rVjw~vPRoGF_&nb3n
zCb!&fQG<q^<rVASD87#TXsoC*$@)WvVD4mxXV<j$9%MM~Zr1$o&rkLhv5}J>@H|g{
zKEp5edtX><5Dzn}=#KY+OZtoXraQDVIV<w)5Dq?b+EL)Gv<%P1^4PFVYj|>|w9h;G
z)qisk*H&TQxqizQiah@EMy52>)iLyi!W#Cx3nudfFS#sC%1vUso8g{ct{T$AZg@aP
z|3dls%Lx??4=;RkJfFg+C--fKa2R+Ual%V$S^cfTUNJ9uZm{dy|Np=FyW0LuI^lc&
zo6mZ)>h4|3=VizDeE(7{<ivLJ6NllJR5rFYxds8Jj+4#}s?kn=7*7Z#C?4eD?rdbA
zr>u5>h4bKnT|PY*g!kWnT==`%fA{TIM#hiKJJgi3%de({roP>5_kCV**7bF#(o$1W
zT-I#e#~o|!IREUiicIGT^KAd~Oi!Oa<LnvdH5#Hj_-lI%-^})V|Kwz{%*~U&bCyWR
z&18R2P{E;@%A9&FjAvtXWjXho{IimaB!ApKICDaWb(+&<dkYs4)fqR7bfdI84%EH7
z5VG<>Ohv59UuSz?>yE`7cb;B*o6)qRD|6bt^RrI<%@a~u>T>IBK|zZ8jm)-A-EQO4
z%M-L_DD3Lo-gZ8|=dwtlkg{)XN6DnH)LmtE9Jkk~Id46oBEWf_O_--GZPSEfnp5`H
zf8ONqu*hudDp|4QRMD=rrBl<TTXwWto=%LjN;r4P_m9tut^XCW65p<w^~NPgp)1$(
z#5;z&amVF13!HtCHX}KrUikDQ?ZY1zJW;%?cIUcZScJ-7r%8IurCCdxPxiLyiE>?M
z&0MhNlX*Z@YfbB+*JcOW6K5AyT-A-5wJZPKYYz3NyZ44(yZv*~bc>h|i9O1j{+3-j
zYp{X4W@68twxeI)8yKkD9+Irc5x==uV(+}2&mXBY3QVlGTeIiHmT#;#uNghOTX0PA
z&S%5Z7woOr81{T#`h7y_nL|GgK4hF%`%iM7{pOz+!>2Dh#pv^+`o^=`TitE%y_fV{
zeEGGoAVchDTQf6HTUw2YO-0MW#>%;=l1o-xN-z6gb3^9pPQ(9qbi5OcjL$b*tVr@&
zx^s(q=&t^mCd&`Kj1W0dJpEsw{_K@on;w|W_2Qa;>cZP^1{=5y@BS0myDw6q^D#$H
zV25>~ELWjA2kffr4lxJ0lB7zhu&9-XHnaSa-Ms3@i;Kw}<@eYaTw)$P)qd>w|HWbc
z4?maBe|YEGi*w6`cX-|Tdyk=CZg#*o{l8cIA3k|9@#ek+fjeuG_}FSa6t9P!i7DMU
z`KG?U?6Z9yfxp~dtqoVIp8563*Xr7o%xAV8O_J}I{A~Jvy2IY``l1z6HZ7gfvFOP4
zUr+Wl3fvX_P#tsV-)WW|QqONkIli;|6VK6S;&)-YpyJ#$%}V90^G-*JbYDBSIcn_=
zBgHe<=KPq}Q}g4`y6Z2^V}<T+Pdrzv<u*s9!&q2Qs8mRP<${J&zXdCn$lU6VVr|Oz
zsy@H-(vC8tI3~Y#$Guafj7$D%FZ@&^;`$<D{m+C8&f8zVQZ|2+c+*pP1<Umr-E0q-
zl%`$yb|)k<EOE)@mG(Z8g&yL&vrm_Dq`5va*~5?;C$eu{ZRC`Hvov`Ns^^Qic5c#X
z&SIPTLN$4V>Gk!?)!s_4KC+VIV6E2C1@<4#U&!3wzeq!?pYQoTS7Wt34fC(va`)qu
zRNneMW>%Sk^2_;*+V<t)zrsHJ{mL}w+Od9Xi_e0-filXQ7d}7k-hXj(@`A^c-7PA=
zu*|RjWXSN~=;?F|Thmp)E}y)?{UdX2P01_~rpQ-H_t`3HKC!s>pE32ZmQ@Mc@%70Q
zfxr7cK3n#3w$P)vUh5qX>~86F?Xa((EPr6a?Gv+Wrv1M4a@qZDa$goX#0gK@ynBP-
zGQ9<geM%*3oa+B4bR4|k()#VU?2?H)#ez=F?d|L+a~3X1Ivyf<vZ*-UOXF<Nm$glW
z*WM;1i0WI<)%$hVE^g13RkPF6?LuDucp-SN_PWo7`*qJX+qN0&gf!M9$)yE#$v%%~
zdfjr}bn$^&<3u}4{woQOJrw#@*{rna`<oDH$d<;Qwd%^h#ARMj)$Mv_2ds~(xH(H_
zQ(WQu>C=C#;X5_6_13A^{-?Bkex)bWt4*+2`bvZC^$pg3j~{z>Y^V{r?08attuM!t
zt62uzT6)KJOgx-x+hcsBY~sq>FCQjk1jX_7$^VQwv-%>3(~J#)ysT?OmYT>;adQqh
z<&pXHu=n8!8OE~dj&(b~3I8c5$WUwf7h4d=EAUw5XhMSM-2T3cTQ%+VWVRWWNjzM=
z_2hb1pZVvRN?+ON8*E)^vbpA2?o1`7&7oH#GMzkkzK)mpJd0_mR^W~6u7N+UKRmKg
z$2%idY5S`iyVgt#l&I)_*PqpxKGS*C@*o|z6}JO?V}wfH81K0Jk}2lrZ_f>@v{)8A
zn6)!ZH72ep>DFt_BZYT5g1$Nju@pR4V)@+tu)W>=!JSun1#K5EYu>AUZ_99?d%FI|
zS3ipx4qUyedd%#p=SrcV9j<~e)msi9R<^17!@=$>Y<J!zwDZx24+6Ej1teSp7ynXO
z+qTotr{&19`lWN_cA0(IQ(l=`bn2~AeB6|Mx13jsZh4=+<$A0}=+`+3XLR<QxREvg
z%Pza451#yxXg5pEy&$h}?u=7}a;RkoJLgs&Sc$^Xl)?DKQN4^SdFqQf0!)|M?A!u3
zaLr8X5ZZie#a2$kr<YdlJ${e<|Bs8xGWJGtUmhmBIK1;l4wGuEg~aBC^{-o%>^&kx
z&mWNZp15M7kAgCz=31vZsp>$<4X0MG4|(dS-_3OS<&}Nwb1F(jAMFYb>-@`eXzKRD
zKW;Z?RWFSf^n8DFQjo(94z^yeTAeS?rms3uV&$B9xV6&PvGTfjLh%)Cp%5pZNcE!&
zzoy8@$tGsls)<jZ9w*>&K22lmw|S1D6>b7oj+<q@y|q_1;ojAQtc7RKSge?%WXXTe
zTuyww+5FTOw@%D|e3&`qTJyaf6_@*FJKQ*5aBjhAFNt+0dIQs4m#(ruYdXcuOsgXE
z$|~)vmi3CCHn}9S&hOgv<<+Sk#-&9oEuKkvuYPo{;(=-Y)YC~vtHiUpTDdY^k4@sZ
zduH4I4(Fmy71Me5JlsN;baGuXpW>9MES$DkvS!v~foC%}rAgO$*iP@4Nny%NYkAn#
zEHqK}yGQ1f_x?Gov%c${D=bVDxvQ_QZzwr?mDVa9g|$JuS8k2H8vdS_Z^Er?v)NDM
zUX)&VtF-yIh}n@}3lB$#ifW`b<z2s#T2at)Sb4UQ<?M#SxTQ`7eIKU=R=7tx-PDoh
zd%Ae>ly$4tb0`X^b5_Yto>g)|{?U_-o`x27l|9YOpLt%Tbov)Y{IpY-voUd0FY7us
zM{3PkR-V>A$sPP(eK+$}?d3bC?^6+EIJ<J`eT_bWo9t6NRCdfw&{{k3wqtyxm|LXf
zj4L{KE!W+hz0Sya&sznlYs?&Md-c9(c_saRV9qU9C{w*OUbN+hR_HIzDm|CbOG{2P
z3wiRowyZDY-4b{8pWc+pe~q{9Y)!BepEkR5wrq^2V(m^b#n$srLrjyi>;pBuI2#h5
zY58@k1zUehwn$`4ImY00>_s%|<H?iVE0WmvKEBAYRC{9aLZ7@%vpc4nx9`?onmxJT
z_@71bH@r$_+&<G>ROO`5Cu}eH{wse$MZzJ4_V)G{B|i4wCmd2ZTsO}<?^I=~S&3EO
zUfI)|q*$_b1E%FQF7`TF_~Q!SQXfg1199HVXCHjHiDik%iAN%rR`nXk$?~s`-8y%D
z(wY;W{sydgbS^==(135|4S}y3PBP0qjLjXV?>jU7+NttaUYhe~pMH9zJ)~H3PRW6;
zH&KE0!V$B%8?QY3`#O%j(_6Viso>m&&24rsz8lER<}8bQa)NvJh8120`)`E!I&D^Q
zoV85A%vATh_n9|~DkmM;7sZm!q#Hf+mcW_iJ6#HUt~~oC&%<8v`|WlH22Y)dsj>4<
zDL%e_Z{FscXI8)PUc0BuTHnk5T2E?=-}?T;&X?Qwe|=(jukN`l!-2)>{TJWQtX-DL
zKk@p<#JJ{W1*eQAzc*7hL?_L0{vD$sxQ9Pp-P|wfh-cTD?6CUonrHIAA}9U4b+=H2
zJ+*U({EDfowlIG(RSVu4RLsw<zv1YE&$k{~wDl;xw>8|h)$)Z@!)eEGnW&lX3l{#_
zdUhv+_@>CoYbUns+vX9O8@l`@tI+550y2RLZ;mZ>d6VVJ{qTOc)YhoG?+&zF*&5_#
z)b;0Y!ne)mjz(lgW@ooNf2OvrP^9wU-tG6Q#Q&fF|7ZTQ&C3pKt6VF2>eH3yy4uTX
z>~eE|oekJ~{+W*9bs3BGYIf)TIeEB*Wh;9MeW|jQk(<qUcd~l^<F(s!L@pd`ln=OO
z^P>9RcY_65>KZ~zBH3eK7kW+RximFK+W&3RtjLZez4O9hQH`O2Jm*xFUW)s3_DW#+
zqL|R1yYkj|A1r8Cr^_hjT9|uCeg$8`^0zVUYy0lLP0d~-p2V|GW%CrFm7+4;k0j=r
zIL}e}SFY8eSJ<u2BeipHy+!hj$VBgBcLR#ADql6%>3L_K_ejRG^GMa^odR_qqd7SB
zT(%m_Q1P%<vuex?k>ZN_{jbAN|75d9SFgvizjc9P9jQ+b6bMG@biAwV2>Hb|)gXS-
zk+}AhiV}{r*DT92yZn}S>lAY@t1Wr6RkGiGhTp0c4&h}Rbh@;Hv`-flRJ0uTmt!{Q
zKB)ff>xS#!{rcjzGb`rs{aO|p+`0FuZ-kjLqFH&(S*|4M`43UQV|%6>_zI<%&C&A<
zdS9z`nq%&oZpZT#hi5c>U-PBCc71}B>c;O3%Vk>+tt*>VuvEda#5KQS#jTyvX1gDq
zVsTG8{7yo`<%nSP`Dr~$9=nCsZv8e-WNnM)R<?$XOi?#QlN5W*e;jOi`Kni^qFpXu
zk7bgIV`PMWdxG7OxyA3C?`*y17#y}QQe)`?<(Ij6UOQX9#ryMDet%nUSi|Bdv-rBX
z+~xB7wbH4Xzna%vZrq|OQK_;(VnHF-fo-|+Zc&w%H@3dD_E%~aWL&@J^*bw0MZw#5
zE_t}U;P+XPy#4m^g9QzTl^1XM^Ui;7`||gDxfv|%EI!>YJpTCm{i5CXTR*nWDi)OS
z*v!GayyVXl!E?FuawElN_@#gI4lUuZFy8h}^~09$TZ+$RPZfwMaS>AAcjV&1hlYIp
zetVoMMLgvn<=y#xZrko{g){66&lj&+=_S-qe(+e}8{5r+Iulf8p3gUvE1BLLH+5#v
zDi-mj_viJ*e4TQ`O>eFE&S%wYZS(#&*w)>C=Atrj*9jKIni9_EcfP2;3t8H5rR>By
z)1cga$y<z8RUdr5?R3?ZDH=<!Pn<YOdDCx^MGuAgbdSwV7YUX7^7ygx`jwN*++TcW
zm$>C6wfuSi$3HV)&OUd3y@A}$eJj75Z(DT5V{V(r`u@d_lWi(bSDfwd>o?qRabDn*
zU!S%_u5Z@Zr)brsz?9MCw}nklYvYuI3;O%kE|gN=SpVXPk<<43t_yuC!bQBr6MNTO
zcf8KG>ypaHt&WoGjkta7N}sS>U(pR~vD{raMd9s^4c2_ecFxzC!Cr6bxZbN;GroMr
z)H~1fGM6f(i1--DH(fPf%_!h5c*?{v(e<9mgRi0%!uQ&w4lXc1Gx-|VoZ|nRIf`za
zHI4f$_2yuMlFSzm#fuvgyO(X-ywO|g=!0!_;*S};Sf$@`@UfX0E$#V~)TX2{Kg@M@
z_JM2H*|sZ1J4Wn2t?ql7<!|Fmg)(bNzcn+SK6oH;I8pqtvN6Y>mEZrd->dp{rDomr
z&)*|=RBZm=ymOWPv>+v4D+?QgZI!RrZr}Sulp*HU$zM5DtWVV*Hi*`4w&L+}-u3HN
zP=oRJeN9`KpXY6FcQ?E8Wp4TXqX$14TA3Z0`}tMfs;3LKpE+||!|+(dR)HC5EA^|j
z7I8$*3RyJOiH&>nt?Mr4Pfc?>ti?6BZ$I~7RD8mmvHR@9QjHxhlcEl8TlAqj{GC_$
z&6tH5stW>c-sf*J*>hs4$RVG9E#B%E4}NY??z{6tV~&E|o!5`O7BDtU5j2WU^VQ}}
zRDW?(<*TLvLqSDl$6{yWNPBzx<43rTJuUmgIpfo&bCOfOTD|z*UQv=H7E|54?|y$m
zgZH1)mqa!eH`sK16xhfq*X7*}x;+h28hn%bv_RPUc>6-H#=840b#6fw{1r0paX;7-
zE^r0>y;OgErSfslo+GV0j)zKeE3TUGK%-A_(F(?cOJmnng>`MqZsobRCH48iUgh{U
zS1!)ATlHC0TRtp|dL}W)W6r1Ro?NX#QTbLq%g=D~{4BV{)>mxK^38oSlYX3~eb<5z
zE=?baxk0zKrwbpGUiB!P>zY-CKljt{=Z6JetL1Fh&;Ga2At1+@tNJeAsY4x`I77PL
zNVy%f-Q;9<exB{&pD(jP&1unP+hk^Qg{&3~StxLc!^U!b<s>x;o}8U?4=Vb}?c8u&
z*`_Wjr1`R+c%-`X^;J9UtNw7PvmZ+qRxg||?Sfi2d*a{KHP!)}CIu~+ywt+V==$Tm
z%imW_T;sRB`EvNNf6LR;HF9T7+Wj;w%vG{+xs5MVY1!EcH#HU<Jh-qws-mW-X|lWj
zg_CPMVq_v!U;lc%z*mg@o%Oslr7DZ(9yt=#%P)Tv<+FI+G5JWh7?<K-+XV|(dvSPG
zKP}T-Wl(XD^^(fhz)<bY#r!qKWqgaTrl{1~>$ZNF$mumxi!Ibj@cX;MV4I_R!vgL#
zu6wwf=iC97@AqQWRu@#BTm9Yjf#dz1mF7Mc*RE`v+dOlhw82aFOdID!SMBP(`{XCb
z#m3&e)cCb<df2L}b1p)A*L*rqZe^>oO~@%SY^AN|tg4G%2k*}jVNS9HH49|!XLfm+
zhH(V8RvEr?UcNP~BdK$T$=umtRwuMqomw-~Ce!*R=PRDm8cr&Uw^|>G{kD9oqe^nG
z-=)KIo?dCa%b8fjUHR3aeEw#}Vum{`d$qiuT8W>NXqjTJ9kl+yI{CEE%|Fzpd;Cc`
z|7?M{pKknAN6u}le8ShBn6<9RaqG3M=L;3H9$xa5d2E+>NIJH2uE^eXrzeNbh`Rdn
zWJ*(aH+Q_JQfKm>4c`wuJu2z;Sdd}CnW^&=isDvoJ|5V#=Jvr0&!&H8tDPfr)AQ#^
zLAje%JK7IB^W^T>?UQt*Gth{=;czoEPkY*?SuDaO=Wd>REBCH`u3o$0GgF;MDvr0_
zCK;HT&GwOVc3YNzzDhP`&ddpyE?!mby0lU)TVtug>{$Unf~I@qe(h87op{3_hvS*J
zchz6JU(CiCb`};#9zJaJZ=a;}DRq*>WB&SSMa);7#N1_Orxz?=9bm!BmaC?pr=;A}
zxy^0si&aydUV2M=t>;%($_zPr{Y`UO4Lgf(^55rqH?IFKn&9*!JtJ~jKx(9Iu;c?R
zafi@QUK6IR^=lV4KW}-kXWxd`_3Zmk<b8U0eQQo_)BP=v7jR}>wUzju>?GH+?|5KO
zq@8o%41sSZ=Pztss>k2YC9-bYf=g<9IiKyEefztmPyMCMFO4&&vAt|a<g0md*;Oji
zVE%14>9_tm{H;5LSzs4Xxo|7+TV0frcpPWp>=pU>*e(GpgWgRc9x*Rs1rl@iJigW}
zSH+|1{N`|gvd7N*t7aya-t%2MrATg#K{4M_r^Gb}W{dBb(3>!4ciL6QqGM|Wg12tk
z&$oNsp}o4ll{uPu-tvc-@q|`S4ea5z3(@TQ93}Di-?qP@hPl^V+d1avO`M|2w<f)`
zsHjQ5_T@_dwJ%d@dH8#7oPT;$J0?crphc_DrFFU42PYgkR(<>J5(|lMg%veS3>H>(
zEsL3z|CLn~HN;(SSy#Sm<@yc<mG%jok4~)mttPptPxw*Qf`$E#Ce1xc!PPsmZC<D!
zcZ-x~sM^c8EI7E_V!rP}uiMj>u56Cekp2`m>xwEv$7F|zv6}y_ypooLtyy{b<c0U8
z6PJXA+D|flc<S$#3TLf%JwG)}j#=HCykZL5bDfSC54L9H%LgtMNfG$<?w7nGi%WoK
zlKt$`&HnQ?*z>JU3W>|(J8J1AzkglrQ>LR2ZC}KQCaCV;7OQC4GGQuv?3t~f6aHt<
zzdA40|Cr<s;qOx}nR}e;-I1#q`<1cr&^`Vr)^FDv-luu>Ub?m<d}&jM@)9#&t<L28
z*A+W5CI>mVC8ivnCpqB;mx-f#RCDJRu0s{gK|y!yeHfx+SsLb^*!@8%&{u1z$i5Ob
z{-O&rdC%W_&9^bEX!%Qp?A=!t-n@>I_^Zob@_DA$-MwZE31?ehy!&%%ZN#knNQ>kP
zbq;$DJa4|f@Nc7eagbfVG2?TYiD!?WFJW8WP!psjQpu@yhW)aieEadVAltb%2cN#U
zl(RrYKrcVmpd_cFH2=ckgBJz;_|7i*_u&VJbM!6Uw`CJ=U3h3Av4u0!OVd!=NT<~y
z>+q(^3A1nPd%e9zFE7IHa_e=sz@{z1zs?>pax&Y>Ew{HWx9P;2(n&#0g?vx1<;?u1
zczurXlvZgM@wy`AmNo5H)jRjgIhk#**x~suq;P#w_w`%uKkoD{S{2nEv?}bL{+uhB
z3%;#c=Wlj4JtjKNUAN}@^|a#O{O5f;veq27WG)vjVX0D%V&~&wRJ@ZOv39<2<Km>c
zJC~Q(KHpw)dE42A@6Ep4($9JQ>+^zFv(Nn4ptI`JjMjpwAxxcr5`30yY1;I6%C%+o
zoo`ueCkZ)u?SF4Db;(M*=gZ!QKlfbt?l%u+?(#Zx_1G-)35E=3R?nN}%JMdBhGfl)
z43Y5F|9iOKH<sVNmv6QrsEm2pJTrk`1$jmfb60OYdvmw$^|fNz_f~ZM-fFv6YuT1Y
zvwfd`r&TV`{rmdd@8gy`%H-~FG^}l3ZQ8YoWk%uIZ`QSQdVARS&Nyc<d*`n^ce;%V
z6(>gI*X+N3{6Rv8bNKr`_8+DSOtSbiPeiiiSJAnwM~*$=_nw+@9JYMcpDf${cF**%
z*H_}B^i(I!{JNmL_=#D`l+3q>i(5A+&3Bx}yLqB@!m1z<eJ}l2M_g0AHC0kn1S9!(
zP1zVOp5MK9`qBGRykFcuPxN<qsyP3DPx8cl_3^p)-m|TTtp#{J!~TzNg=V%>TB22>
zEBj04y6uivoFrP_zuUY)$Yt{MgqyE-K6HN?G{brQu_-zh24YK!IF{Dz=UrPH%Eb08
zK6_~(TU^oQ{UM_Hdlo2h=ZGztzqXE#yJo+yoBFgiwHHT%?%dGaA@hXytjOz!@k|T3
zHgrw7uh0BBYfs|2&ufqG{l#dyeXVJE{<G)V=VHX}J-_>W?@Pvr=ws!dza3{|%Q{ke
zr$J4_WXq$nS68|Iw6MtV+~Hs6)~qda-iNOw^2v$x*1HVtX?i753Lk&Aac=TEzWQHU
z<g=+&OGO^&)w+MUr4aS{6(3(I`?p%BV(FgHzgt>ZB>u2i_6bcfE8Ba5TmBd~i>C3R
zWvmrXGs32x3J$f)h@4U<aCYX0yVJQhmRqrGnkIdBp6kR)G0RoUu4jw;Zp>JHcAMkn
zsUe5nw*5c1T=%X^h0K{VOwn5-ZXdhw`h#TN9Koq`v$<ssI(c+lyEXk-@&?i1XF*!|
zcixM=o2mOFzk}CF@g2N~XSv99qS<dvfB&tOVJyBbC7&0@pF8~U=;kf!RzANYGVi*{
z+s~pGq+aS(DzCZE#2*<PH+}XY4@QQGZqrI1tjkb89dOI)g4e<BK%+Dp<p$2e{w1q_
z%P4j!&refcy5`W;=f9QTZ{1&3@Id!%;w+n07k=yRU|8ZS`9S7S)dgkA(57UY4yy+|
zdK>QMEdG?Ex%5wI&?>pu(A6~uB$oJFW^9(YU$o_f;m@>(#dd$<rEeVln_K+(ZTa=@
z$I}+GzFs*+Z|gE4hdq+9na3B}eY;cY!dJ@vo7eY3XRkmTFXP$gnXS!hSBYnt9nXsA
znCdB?HT}-B#$t(iF{Yo}3uSNRd@tRRIcZ&MLyt*NYSDtl7JO~ZYj!P}bJbbmq1p?X
zChqn9g|!7@KBw|erq>2@h~70#cI4Z!s&&evX^ro;%4C!miY(YN^Fg*~+dQL&P_7#c
zOi#bxJ{<79w|!dCsa041haJw+Uv=`=vP=KU4zByHA-;(}XIt;)4{A{X&WZcJ->BJj
zKj}9A^hWuh=$haKoK_ndUi;Uq<}{u4bq)L6Z)P{XI=|AB;Qn+`{)om|-gD(O67yVb
zB%Z|^FN}U5)uMiVQ}(s4ZSVROKRh(sAz*4BINgb<Q}_8&CHs}hJ=evO{;0^@kzb^J
zee;aFx2|o=e`w~v|NqxnKezWpel$1NOh4$b$<AWm*>zhzHQ9G;IxkiD`Ot=IQWti0
zHD#1q?tYq?Jnwy0&i9*jpB2|AK0SKoN6P&5htIulkADC2?5)!0&+n?t=Cx8VJ8?L|
zObya);Am3lux+<_ab&NFR)btlLA}$a+oD$W;dU>aqjYj7pPk<N@Y^K!?Q74y7Ry+-
z?O<`iXG4~kM!d5%zsxH-sF)aXM>M={fB93<d(Ucfn{}_JE{td}-4ppNi0!X-a>CZ`
z-7|7)pLAVo2<=G!C8od0%<fnF6Vv^jzSWZEXV2-Mwz~J3{lL3--A9i_cgx(j+y4Lc
z8gst8-~T=EZBcu1<lT+GH7WL-MaJ3rzxQ{XEwKIa?VSI;PX>FQernXamsj}n0^hQq
zYj<{REhvwfzs6ofEc4^*wjJ^Jzn$ea;pV^f-Z~@gwcK`>6PbZ~67Dq}_iFxF7BIDa
z$?J_Ar|)%jPnlmWkum?!54AbEjwsoR>qN8PopaI~wJPn;&Q5ezbu!!b^zG*N2V3=~
zDwjOF`~C*^p&j{O>MUK8b06<{Zu0Dmc(~1@vWj|fE!7k|js=PO3%@?Q7ZT>49UDAl
z-%E?z3H#k{CUv|&yKT4a%;(okCSI6bmalhVU+ntS{_l#mg4^65fB!h|>D;$l<f9X>
zm&?B2*It?*%`!7X+{95muk}~!*#**mi`IsJyLG=ku-7)frrc+}_~WR5RX-N&`?>J#
z=X-w{Z6<8nkb3COli!EB<nJu05xutNZRzhrS3X((-O6aWJ9}aN|4TyC?0haO-jM&c
zLjT6(*Bedv*RtJH+mRjk)^~|xbinD`_8Ld#D!`LO6hq|&&ZN^O`zHKj2!EO{9+a(L
zx_oOXtB!6(@a?GD*QU=O>B`0afBE$Gk;B5bBkhBpn!SH_c++Lw7pr9N##J)(ezQ-r
zzm>mR=tfkT^ui@V2KCDCif_EGy>qMe4R?2T;XBcFNsWo|`hM1x3w)PdY+&-LxM`o!
z<ag&3FVnHt`NnrXNP7u4A8xlfV3K2WE!Xz;S^t#${bE;_?E1KR>0K4I2$qaRu{Z0>
zO)nTuUd8r3?&|%lgkb*MALa62WorCaOxZV4@qX#jN1;0P;nuf~XIF;rI{KEo`uB;v
z>V>P;nn%Zlveyf5PkvJ$oBZ_G^FOO!owePw{=Eyk_uDtyp1M6+h*`|$$oMve9^uM4
z)qg4F!@+maTl2mtm<gH{=Zcrh6fidmFT7Q?BXW_VT+J81-81*Qo-p2RVZHUzyqHD5
zTMW0Ch<uB1GCaPse^2I3rr$HZyRTvOz0et*xlX?#xGJD2L;HIBm+SVI_@+KwDwdXY
zyr$aY)xPPs6*-P?Rr7mWRX9z^_{P(7oadFUKjfXcW1nQYrv+wYHD#zrb8L^B?Y1{u
z`a)!>>E7n;dDpjOcebZr_bO$%==E&Mi}DhY-#p2BB~^{*^L|8hxJKwdf0^j&8`xcQ
zc>$+Yq4w!#O0BPE^Jo6}@ZpsITXEl;`%kuiO_Td0ePda8b^N#Nv(FXv@-`O;?DeT%
z6utSFgTUF%Kc0M2+|c>_ozb?-#oR|$%bc|H7cfu$FZyQV3FDlj&+pV3ey@pM5F4le
z*Xxb2iKF_v)SZ4`6U&&s8abCw|FHA(?jv4jZWl~!WWHHjyUOuZQSQEPcfa;6Xv`I0
z+1P*Om;Bjj^HhH;g}yFP&Oh?xecG%!OJ18_YLb4!n>Rh5Yf7`90K7KTZLoR4vQekX
zc=f^5NC%Exs^W>U@89^|4_n3ZJZbG)y9lYg&s$#YkM7#E=I@^0m%PqNA9?0vl+X2g
zU3K3xW$QdE_RrVOPUR`d<>tNeGrA#Y<*oBkv*$}H&p+9_<6pZ~-`dS{Jxqk;ZmN|?
zzhyU(R<N0K`9Z>Tm%u%*ohuekG`jUwanHqo|C_B_7PPL6b>iN<yY<(+yH4DXSqf!e
zO@-$xjzz2&SZa^gysy5`oXm6o-?#05t1rJ4+5da@{_e?>g-dqF{yDY&50~A)ACGT+
zxBK(K`Ohc)|3<s+>iPNkeW>35y?VykwA*$y@HxOmiW=*(+W-7GZhtKP-_!U<pnHh3
z-q-)WegD|~KWFbh09{Gg*Wdqf?)w_{{a?KIw|u`}FYm-LCAAZD^;X4~7lQv@&i}`$
zAHVNN{-0y{4%xl?e{}DU_*ro!CQfE!<)I5!oBn@O{QaJ7`gMu6u*rY7AK&x$<hR?d
z*|FKbD<?8Du(bZlYpwh}J(aP+gkjs!t>5O~{^q~ZEZR|%RWtL~^|BS_w*;q8pZ;TO
z{BP4g57_MwJbbvY{{NddJoR70>s#N~|Ns5t*Y*8<pi4M^JmjzMnE&UA`j7VdAM6YV
z?*F}e|Ka`rfA4<;-S-&}y7=?!`g+;>|Nnje*ew5t;ra9DyRB5=A(6zJ(X>yw?s<6~
z`~5%9%s+lzU%&U;zu)io_uHKR*qdK-c>niv*6$yjj{j%$@8|sgk_;d8|9{f|@oD=0
zp7MK@$LpVgZmKn$>-X{B@Avu7Svu|(c3=ARPGkmWlBGoQmAG<_oAukz+>R@7y!Tnx
zD8K%gMdkVHO^K4MWm*4sx4H;^XYMMz!D#>MV*iKr|9`Fj@v*<Y=56`>`hS*>EY?+C
zWqfdQvigrdpU?kIpJ!7U^!x9_hl-CZzRlm+`Ld+zWy!1hxTCl2?r*#oHpT7rs*2t;
z{xvpStG#~TDg7sXbL-~+T$4+})w(m&)^%2H{-wuow&3mGZ4b`rZux2Y`*juPva>QB
z8yDW}|2EwzzvlQ`m7L<)Iwy;RZ=0Fr@4x6fb^YtIq#oUPyRNh1VyicQ+^2r$y4}=$
zS*!AIPyE|C`)1gG=L7ehx8G;X*_!Q;-TM0A2K&DT8x6MfY)ZBJ^+Ng2zxV&`>V6!S
zSMt5wx_|lBb+#ROGCF5#)8@UeeP1oX*Z%MP<>mg<tt${Qk$i!r_Vk|r|9)3|dn38;
z*VXk-UYwe$|31q92VZ8$r>Q#6rn2c~PTTeM@z?i#e{<9Ly=ndHwcFQKo{HaJ*K2cr
zedRUhe;@e&3#6x~|2yw4Ut98g<1T{}AI@(*f9GSY_}3!^wbtMN?o8}HIN!Se*1IqB
z-fsSFU;KLh1BrK5|8MP^mQuJ|XQS`$`TNy&<W0VPZ~fn!OyzT{D_E}gsqI+z)ok;l
z!uwbJ1h%|Qu>ZdG^My9^efK%Oev99qXMQvBX!V0>W;^qC?|*$G&-V7M^r#12JKsuO
zw+otk`O@FVdw0*@e*Bf$&int$=Rg0pb8&wB1G(Hg|JH8sjGnQXdH2HkyYjiC-`0!W
zuK)YvcEQ@WpEIWJt9f@m_xpvp)%l_I7m~uV%(urxPdF>DB=Trq>b`GV*FRLZ|LOU5
zFDSPj@&EtD|1tl+2mBwtybN{;Y}x<+_x|JC_kGo6IFLTSwypm6_WHx}|3AtzGt~Wi
zUN2Yw#l61eyxnh}{QZB;7?fqEt8jus``)hiDxMQmPC6a0yxou!ZE&pS$hk+SnY?rA
z-|Fh@Tz_C*d27SlTkp&b>s@ATRG71>bBC67VCIi2>+{!l74FsN$``)=@Y@21{g<V0
z9jn@wX#Q`*QdhBrhh_1<?@4VlkB_aJzxw_9+V9yMyC2TFpFjEP?K^)=`8j`ozV&*l
zQ_}nS8rvH`+$*zrV(@17JNC(aCBL0!-*qTHE|in6JNtL*mg;YzZ%bC5eLb~k@eQ|U
ziN5(oSJMytJ9Oti!?Sg(_ARcAug<%<{ra2c@a$-p=mng=roH_B8<b09s@LCs`{>7y
z8~gu9@BbS8<6QZ^=EskdLDvfIzW-OR?pu2OHSSZjkEQP)IREF&`3KkQ|6c#7UjIqG
z;_EBXeZTL%f3&^+_jW@Go@-Y7w((dT?u*HPk?69<dGg$UZ@mqDb4u$@|2B2Iu_kw0
zY4qDuPu}!O$=o};D1HCReberKs=Ax|mYaX)*Q@W0zsG&}HOuV8HSvfn_st*5GwxiJ
z;otc;d`9YuUH_FNPXC(yc-}Yvw|xx07otzj|9f-3qgQ8s?dxcX{^LJD_gnA(_j>;~
zQ>9h`@NL6?*8l&y{{#2_58Nj<@$CP#dViPw-^=!QKTbpp<gGsRW%j$Uie^iD`{M-`
zU+lG)M!j@ozxDWLe$$6Lhl<2=H`y2Lp1yUT#+{h&8&?+353kDK{5St?-*=TI-}Pcd
z8#kOhbGttJ`O51#`*-K5zb**=9q#q>`?lIVZ+^#bf8q+BSFe4m&&a&`o%-){e@<ur
zEqm;|_jj=3tKB@_Z8`s?&dvW{`|bX<+6^HRpO_wg%YC*k{r$c}2Wq}b%P%jy|2Z}K
zyyb&y6Au0i%1%#D&vt(xbk<3(WKrlHv$hN)mG9dwJkQ<GzdG?><KcCCZ@;N4**aP6
znA>Of8)dieSJrI5`Z>DP-f`0HYwsFe^&0kR2d+PPIHNkd!Z_lkmPv*F8+E;tSEUlC
z^KX%k$oS};y*RZgOy-l{1@k?-{(GNRRo}iQ)8vG$CilWxvj;vL7eDWgN>TL5e!-jh
z{>t~w2Xlp`+e7Yf!i%LvtP|MhW=L+|d13DT?81lBDjR1>+i!jvVEz0@Ms?E3UhRX?
zmTA><zy4Bei}So%b?04}cRpje++@Bv>Z@-)bvu7e%;p+j`JJ^}{!Uu6c+>9e2<}_|
zm1;lVy?@X7aP+M0``7Ki6Sa8Fypva>PgggaYcfTDR?yG<?z?SMtL@tIn*ZC9cfY;2
zYuk2N7Xy>;JUgEMo+@?w@BG;5Q_nAzdfhTH=j^uKf9tR9J9&X+?hVV+rPuNn6%|)p
zxFoxOozc&26N|U`?7F!vGuo3+)+Xh-^0gaGmi$}27^*fNbez0Wq<h0D2h~64a&yaO
zGA_7%PwiHHu5ZKJZxv>SnwNh4dXjYW?-t$X)sx>QPW-FCt2g@gzj?Ro8+9FCTdT<(
zJhFYC*G@$#%lWhK<tIFfTg|rlPx;w9D-XU53cju=u|47Hrsa*B{(bxOcDwDqjPn)G
z{7Pa27u8+4?yCB3chv5<2Gv=OPUxY0Lv!`|FRTw8tB;5=t(%s{D}Q*}j(3TivTWPe
z{=07bth<V1+hgbatXAtUD%*6Km^dzT-6~7*Eu8&5zf<?lL*9F;zU@EE?uNI|`&a7p
z>~_}w-3dI`y7}%@roX+-yy;loa-%bwH+pZpetpIc`Pkpb_oSFxUh8CM^S#h1b(`m7
zt?+#9Tn^h^cKx^i8s<(~`sv=b0%nukx5w0e-}q4bf5YsXavN_LJ!BJ>n{_vf``4AH
z5#=+t&AS(BU2C@eZLRTHnSZy|&Cq}QyKeKwrQh$rIpkZdf6Q0%w#mnA{pxM=Jl1fa
z4g@aXv<hraoUOh5ZB*dBHubjLNK-o(<u58N_4jxrlE2@s=Qcmk6qR}V`Mz)a(~1kf
z-Dl1HzA5jspUV5wd6BpO<@`HdDO!5FbL;Mt`e&okvVZ>FU%cg;*{vta6AWL~UrTai
zHu^2U@qR#u^~TUJUenuR+`Lb&&q#SK+dJ!)o#Rats~^AL@#pDn%$8qwFe#H^^-691
z>VN#&%wOfcd==aEdd~~BxA(totB*d~5w_@kW!IKF*R(e-T2v){D^|KMF)-`+F2?jj
zax)jr)rpu@5dPR_QRE5KMzz|DBW0Bw-YZ_uIc(;C|Jd1gm%09FWvqR_K6l;Mq{1V&
z&wjiS9G2nFzne3!<?PIyjk^11Zg1ST-99scU;4J0qlw$$?+jaisa?#EXnHi8vvr5C
z=`)vL={xTZzw$aHWPiG*F8a->dk^cL_b<#_y-TR@^Kr&CW)tt6;r(!I`~Oh&ui0^J
zd(C!VyP&-){QlmXM?;R>Um?;geIw%M*4n(u)@d{Amh-0N9X4F!{Nqm4*SLt~EJ}s!
z+j~OgZbdxyZBu*UBD+4}s~Z2=S*f#SpXphruQi>b#mJDla>0~O`;&PRVi*`I6vU2I
zsHSatmoP)l=WX)d>`O;P3eVqmnK1j_m6VHDF2tqWkEm}<*}MMz95pqK&j!a<tdE-9
zD&~JH;jx*FvvbDUaP9K#$IWisP>OASbJ$R5HR@0TXoN0jj&C)0R$Si)@#u)qJ=tGB
z`Eq8L&-=7V$6)qThK8FdT{m;m>iBsTRV>V3HwLN*x-WY@F_7h*&Fei;`ggvIKFkf%
zUUA5-G1q-x&aS`u(q8;~>-yH;ex7?=UXGjj_N<fA!BX)zY*z2QFq<oL@7;d~^py70
zM8|xd^}hRijh*=Y8MRx5@4M93Mc==$q_+3^jXm?Oo7_KEy2sjg%{R~QoxO7BH)$sP
zzI4s`+3i}}u4DV7s&>zox%_7F+|J(%IjsVd?;es0wZFLGfX9Z|x34R%TVKxRH?G!`
zQd@ItPv)W3hv%CgoGo$9Zl+H`Ss53Dg|+R`r$<E@7F^&G6z*8^GH+8H`{92K3>V&h
z7f{z^FfJ^g{B`cevU8u))*Y>}UcdckRN=Z;qN|H~egBqE4?AFP9dYBvwD&jf-`aLP
zz-zHi?ku-Jhs@1Cj!1m3WqW)z`^?geGyZbs$<Mzgou3|gAfoKX{!QPS|JPmJHdU+H
zWTt{{+gblfk+~0QE-UOh`Ferx#Kp(9T{oL^c57I`t7)!6|HD5R2W<EGpqMs)_v~3K
z@=F}Qx4kP}tkkr%E-vycN3p`1s>;*8lG`dj7nj~Qso=M{up#UE{~d<CLBF2;Tk=hr
z`EzT`^B{(ZjPGad$~)WHQA+{^eyfdUvp>&@|K79vs&DA64OyX!bhtk6IuUqFw0^CK
zgz;<t9>y4n^J{vPT#TA}lo%QWURUQ#=Q~{Mkg;~+^JD*>KNtV;=<<06hWWL>IOA-p
zIT<ugNvd6zY!OwEk&$`u^73~E2LJ!J{~x$`(U76xbKm~71AT8^?h*BVQx&YW^;|R4
zfvU3D+2;eJW@|6qb3A;yYKX2(e{*56QWN)y8(V&Abk&+L-*@?azoGo4S$p8*l`LMF
zPb&LPR<JNg^t)f!W-l1jP&|E_qJnFx{q$J}B{yH>Tz7wE_4-?v?RAzt+NaUG#OOff
zS<z2-mK^h09;|VDTknh|TaD9?J=58+dv~rSe^9E{?9U2WDSuyInD+XHP2&8?&sk4h
z`eJ;{T_WcBgH(x?%{$B9{dwusacl3TFMBtvH1x=oSF2B3oRND>k0D@6>-*bh-@p1+
ze!cl&+Hd3A|L#h(b8i&P|JD0^<Hfc4VoODete1tPzRX?P+%90eYVNbIroq=1OT>gM
z5V#TXTU}1g#8F*p!OwRQE49w7ko&eG;E82go`AVrvW+A&gWL4*8RyhMcSSx5J*=!L
zsLsi-;JSQ5ML|d0cK!u+1<}(@7h8YlD!27oYB1N2kzsw@{zL8Z|HK&{{Qukkzggez
zKMO-aSy|V~3Z`83?&dgt``^X(><kkMd#<$ZIBwW7_s5%8jN2~dnHwmU3g?&ei@3g2
z*PHxNV)Dw&&zCQ<Twa;^IedD!hS%qrn=}rjwj9xOQJu@z#@^1*aQLwDhdh3V%@5y6
z=l*JJ`mpu;^?M~-SD4TBEBN)xl;OeE*VpSBWZVTWo!N3(rLVSL$%Q5Js|btugQjNg
z@5QE(Pv-nSDzNYI!JCJ)-ZlJRkY>(aYA*IFdwZ}5tJ`!n(`Rq~oOvBla8B^%HXYXX
z2|^s|^=J5+RM|Iwo8EYKsmQ+k%uVOxTg_JQ$X**L5_)RV>*7Bmwkxz4c2_(VV`RLY
z&+c_UuSmkxaFNQr2P_-sev1)XE6R2IdCzg-C!1Fqf1dN#G(<9^f5-WbQ~zXmj3j;^
zDP+>zZv2E_`Q!J-TR%2w7|fkv=o|RtYSZhQq6wQV)A#+j_~)11W1fjUXZZ_b;`c1_
zv?}Bmd4x8Ob0o^-E$50ux0)}MhK6a+S^BYPr@@uer@iOQoyW+a=NJFz4A*4eb?X8&
zKG&{ouz1bDaIf;c>>u-U7dP572To?ce`lN6-KW>SXMBHc^CGqJ<c*4A{d0aFe}2|y
zV34o>qiFZ@2{Xfi)zjA-O8GM6?YsP%e?n=`-}_bHHSbk^x7~eq?Yu+1I+{VdH-3As
z<T{64d;ZfIH#}NbpXTmar+4P{YC%2yGp|p7zP>|d=J_*f!WkM4vrTXK)i>z>{l1)`
zL8EKJ(wR3CC(BLM4a>g4;-%@MF1)AeClly^)%i(TwmX{h+Wf9_NPlCGU9vKBf8ZR2
zuHJSRu0-dDv7t<#jTt;7f6i-TUAS!ZrX1_F_2sPAuS&Ome1CIKsqnL(JkOsmv;Y5S
z^LYcQnRRyFN=G^~H)l>$=z4VOT#!?QGl%A$<K5gZ7fVmFaGW)ZgG0<U`&PZ}%pGP`
z=MQU4I`qx*@oMd!wSOg<4_IoY?{r&w|M&r?^Hy_C$b5clf7<HBMmra+KmSfNSIAB_
zN_$gZTG_bzw6?+QB7s}+$|9ec=bUXcuxWEX#&maHr`VhCGy7lMEXj(OzWqZfV{PCQ
zV;{FN8Oyo%bofq{eAuztNn+22`Fmx23gi`Ur0#Wl>u*y7TAU^n%2w&%IyHKAN#~*y
zhI40jp2)B{G*kA%UOU_4FJEdi9C-RuQY~5dm-S516K@`@)8LvTWA9d&v`zN?Plts!
zb1og__$+dI&w;76GxpZhb?MvvlwtUAbh-Sa?(_2)8P1(MZ#dWYV2;G9Ft?|&2G{*p
zzTO#Qy<5dPkL&6o_fDJhhO=*k^xeF&yr{=rIVMJOcE6tfhf{h1vGe9W{`2Wh&9hHJ
zmoxdKSvwuKvuCoO&bO@;f4Y$=&^^1i#_aITotd-G&#P~|<aeR_<%RZHMduz!bzQo}
z-{GyO;Qg|AF>89lp*?+%mx#UFcfR(VT0w0@q{xm9xj%k>PM_iThGp+%*Zt{Jr*3tc
zG{x+UtU&9E9KDwN(;l2zZYdi1?C{;QOE&ImTm2zmecTF7qg}fWWt3#r9h6vP!B+lo
z-=3(D#!GR(TMc^;Wu<0>{>n^_)H-r7DJ&vrvcpubMZJ7%3^B1Wk6wL}nYHuNlE4Xv
zWqdApw;sAFAKI}ejBA!*z3n3l$DFt8O}{#tFU;-O9W61(?^x)nl$fb4scSBAHMHgb
z-=N7A#~PO{5?gHV8u;dNiCmCpWKwZ}zNY}n@TyC1sgwHboBKac$=>f2!}7J@^rj;f
zR);Hc4%e=C+p)`F^`Ga@)9)EqfBPkR>{_$k+-Dxv$C~SYykL=<ddPaC#b+li27{S?
z1$9|Aar5i{Dcb#ek<4&F{CxbwFK71HOZ5jlVO{by!8hIb%$n&9n!Jj0*llC3-j8J7
zvittqe_MkzraC2tKU%(dX8w8c#o95Eifd1w*6vw<=QVfCJn7l-bLJ;no!&crbqMP`
zAGJL72fyDi^RS%0wsv>yZJqQB2^!v;zt)%?tw^zXVYKU0l6Rnt^0s*b!SZ*j^0zi|
zt#Y5z)I8NMbB?nrubb`~p<DN^tZS}b?D?D7t$dBfnQv)7MU=Da3!Y8=JoAA-&(HKG
zp-Z<HpJ1M-b8gS~zyh|=vcHD+ms#$RSY2Bv-&AMXl)<*v;Pl$AeG}JyQ+(}Y93Oh<
zYv||op^-m0=4o_gt<1`fYiK{dwffYp{Q(TCr`%~RcssM&f2WrBlyk|^S|X`S9pbXy
z{$BNH!;Ltpn{3)uIbxrA0?eEWrinkW*|NVfzMxGh<MTfKO^?>C`{lTDi~M(u(0B7K
zJLWnGmn89BZ`S$oA;wFnV&~%v`z~wm-INpfL?dlyIN$tp%Vyj#xN@_kYvb8=xmaI=
zO%ErwUJ_{4HB?nyWbu)ISK8rjiDzki)n{uet?h4WYfruWx!c=jbLDgS+Ao6pD$-7^
znY-8S>$mgWGN}RUTAZCZR-afUBDn#!7C`3sKhx)LB{$p+yY^a&cYFQY|E6#6+rId$
zur}Fh?yr--QmhUh@!O+5xp3{@^Pe;ma;2ZQp05@TYRXkPG9|J&XW85PCF^JXUAtWJ
z&Gu7gSX>rL&FNj9_R%?p$>|p7uAZ6|dXwFD$}(`NDlBc;bX?hW=_9?JJVkEO8_sia
zd+JndJf(Oi_y5;(Cv#^NzuP+L^P(daX}<(|L@ZW^+-RNPkt2MKC-j_py2jfz6O4Zx
zofM-M%6V?<+x2h%6z%+%75h7%`IrPtx#jk&F0NC#5?r@7XsF&X)nB+;#3bWMYh;aX
zca~F<+2O43QiaBL&u1D=*`=kq+EhSuwwl^%SIwh7SEUc=uCn+o9w7Cv?nc(kncK`h
zR43f&alW&6?G&fLu-didK^zaQ=LWGShps(SaeQg|s}Db2a_2?x6)6kB^B8!|R-tm*
z(hs{Tu7Bk>+wH$SDSq0i^-f~0jYbhu=ZhN0&%dE<ezUnSZdJ^5jWsuVlVpOV{FA1o
zdQ3`jR(!|(J2u)|;#geeET6xj+b7x2eku{^|Mu!p)i|4KJ_ZY0+oM;feylkANoH4x
zT>0nP^dh~alHF=|w%mT{<mPvA%GTqX7p)EYEXJ>%^WQa2VgA_(=Zk)SK69Vhbzb%P
zU3y!;Tg;L=cJ1-HqBEbE4qfe<CRF%lk;kH_w~yG)GgPs^t-qUbN-M2Hagva%wua<!
z&KYHa3aV3HH-~WEm~d&<uASXR8?Of#FZl9%#XEK7O%=PDJ_Q}G^IuXR!N2tR{hW@p
zCXbww-Ul7I@w!V{g3YWH^%umxSQnNMRavi-E~BO6^5zXc+uM8h8!|pAZA|-TEEQpV
zA-UQ>{Hx*v{%f~l*i9GS<>XX*z~z{IbkzgCwR;at>rv)7cl+}G?Y$q^K50tH_%QnE
z%`a5`#b(jzTs~JqVU<Ak{e4r|#F+w<T7R|(yXXA6@I5-i{D|u@3qy;w&HrLFGaj})
z+_Bv_o#)it{hQ*-?(Z+=i1uvac04;jf@{_S;p~egExWlFU-NQoU8?=&y{Pfe&HHY#
zuJ&qg@Gh9WTw}(HkjbrIRLgel)q7-d?*#MGX|s1OO1v|3UEGoM%0oidc@Ld6pB@%F
zm@uX4?xRkviMO{jeXQtNt-YABptQ7gX7FCU)$fg$EtLGMb!x7O<Mw2){V99(S`3&u
z6mLzFto`5QJz48lRJO+KQ-NZvT%k|Jm>O1ZRNm3B;q4q_zPzg+54Q5hrW>eM-g*8=
z<J0$so+ECz#8>Be)!Xsr)js^Izx%$ymk5tezw1*1yf=$%jJ0{x<hbKx+Z2I2%ThTQ
zAFAm(dhE8Gr)6Io&Rzbd?YegC)aqZSUst|d{kGHi-R;atDjjS7&TNo3@zzvy30b*=
zn^SL<LEQd?#Shj?rtkTA@FSD)mkqgZPye~o8o@33b5H$Ii5UWR^QRRvUca(6EzW(3
zhF8Yz^rsE+68$MD>KbofJ)FM0D9YsK{?_QCZ_|Tj&8fFmdlXdln_KZfEBE1V*;))U
z%5yT7`c%4`s|n2x%G;kfyLwjhxdipA>+&aF+Ma%{H8O=M=cMUp*|p7IY{HbZREw<p
z#e<Y4g=YD^kht~Ty72~R&s1LeLz5D71HSvQiA7Qs(?UMnx-xak`p-g}ZN3Y;D0d{)
ziMwuGZ#lEf=>6HtF^aFhF)-YXlP{da!u*nL*U8yM#v30w<aly6-1-+@BVlDNzHN(m
zf?CJ9$B)HaV&+8$KB-f(o9$b3Hzsu2g>^@|^;Yi*I(E=fz}r~xeMz;1+>BY5_WH>O
z<{X_Laoa|xTh=@Ht-PaN`obw^vo|*z8x%Z!$1B=#;mN&fRo503v$yts%M)T8jvV?o
zM{(oU^Qj@a0j5R?w;z~BKmGCND}&f>^*P783_T<jPxj26q`^9U-7!n{=~LBN7Fp?S
zpKxMpuVTS%;ZVKBk}~?WTHSKLoYq`Y3g5iHe(ML7W3}!a?>_&YY|+}2^qcW5``I~#
zljnp-b0qvL-p5zPvfn|-^JYQj`lpMtza_3Z#IXN_`qGOb3=KEeu<&1>GqWvh>e;)8
zn{Ia6Fu3$My18vv>|4z1CvaH!MnaSQYW?hWyA&!;FZ*jY_iyXg{j+XzDmB$Sb0|M}
zq$`A*Jx|f5OW7r`Nu`kc!R$zdotcyC47L6|wez_qx%oWfZV3&RB5TL=3wkpcn_i##
zcQB!!k>UA-YuS2Dm$I(ks$YG~%0+siObL8M7qS5|FZJfvy|<E9{?E2tCG$dP=~>13
zJ;x<_duDz5QPgtza=3-HJ#)gLRr<Lzw_eP6QoML;&^_V9tnTacZC=dPX%;d1prBXZ
z^ZCv;&h4w#n!mA*R4)l)=US2)_~S&2&H3ig0*0u?TOMA&{E}t)^7RZ1`tdf0S5H@C
z|NH9Go>RSiSG;$A<vQ}Miia&$MoyN2!D_Exs9k5S@rM6(({iOh&yT;77~tA9qm2KC
zkfrO=Y4wGLeVfCNJv$$7bNuH_O?3;&{#w!ImlaJj&rW{E(=nOl(z<))yJVMa^O^DB
z>@uM{xBlIHBzGm+Y{Reejb0+%A1kc4R_j@a<oNyX`MFQkZvThpbNtmFTstNtV>9vI
zYYBBpqwM0z(_ehM+;TjZ^?ccfq>Trfa_{x(ZJ)+^m5pV~*+=J>Tk7q6`MmeqA)Y{y
zC)cc&rk<?Xul<-MR@yXa&-}A<&ucA<y!Ow!F*H!#E%3g<Tt9=^hVqY2w{nz-Ja`-L
zv`}Zt-yRp4+jj0A^A~NHd6@6=={w!W%<}&2OuqlR`r_)f)xVATmWsHUwd(jhH<r7X
zRkJYHa!<@ujWv0kEe<M4>zNN6{_u+J-CNgffxlgp%Wm29Y@W3?ZCg^nyz_hhvOag@
zlK*VQ$R*_(_-o5%jjq)tCVG2pzu8}HzQG1s3zIrE<8^j?+>^zP29c4o+E1t09DIE}
z&FRyxqsBJ%iLEE%Y>sz}>lf7JscCFJDH3e$7#OhOWq86I#Z3?26<%`HH?CY7xt&|{
zNSIpF?0GZHH_ETwx;{Eu#B!N&v~``$$I`IViyE|w;}5-l^oJ+D=9?zNgUS4MN5tpP
zy1ux(Si{;;e2()ig9kyy1qDaU-mISd)xc(h@E4P>%%8Sx?E7(6>#@LEktth$=2#uP
z`BF1(Zv`8}k4HD3SNz+lnfU$D&*GSv7zT!}n`>6JbHB~5Fy?dd?DCkw>9zi{<8iLf
zo{HOr;<kTF$YGz=eWuNVN$tw^8MF4K8qG|oNzJLN{B`KL=W(NNTNf^!(D6v3^KJI7
zzj}Op{eRyFNn6RUl$c|#EVP~H^g8}GE}te{JzSffY;0j?ZGZUX>gfy(5k)G6Nv>xY
z3dDHku%<lv;%24MCx7$0?UYk?GC9AlyxJCjUMqLr;uh|0mGhE~jFdW;uRp)=>Kd-6
zTf4V8?6ovJz`@4Qarwsc`?I7jaLrD7`)1MB$o$X+Y6>goNWA8mE-qg2@eeD5!ujQO
zN*WfQcL%Mw#JJGJ#N5n(Gt0ykMJo;$9@^G&_f_AlZDxNC)P-f-=v?b}EP2lS-K__0
zGXCG{evlPrne6jBeL|sX$xE@jTf^3FWw_{vvB0JC_Qi)qKc5Arc78ljkr{9ETSorR
z{r@ZsHGdA)SG|Au`nrB$VPWgb6BSk5Q-5FeTWUE&_>7nFm)~xhHhxL#E3&SnNQ)@%
zPPTsCaYAS7p}lTejn{5zZ}&eg95Z)5Geg|oicam>VH5h-8_4w*RAye{ikm<8(Npnw
z28Mb2t6Ig++p#nFxP{y4Haa@r_-cQ)p@Un0)77`>FTVDeoA)KJZ}_$0(7tK>8}z1r
zQhd8UZr=fS`9I=z{|?+?j<5N}85fcN>*r6^v|w@5pejb!r4LSfb!s@SzwVr5ySHbd
zn9!XmYv12G_e=5J>iSaMIRW=`x;`%5$*y-UzS_`5kYk$boZlgQi+AZ<+?ZQ!VRK}0
z`90Qzkh;fbR!u%`xFsk3ipPntv+_$Se}v4s$RTbv_3@Xd#y;xLZXO8XRAXIo`B+G3
zq>7$}(dt9?FZln~UV2+{LHfoi!A!P|$1Xf~EDi2+m~ge4UtKsRX2$b_M}K;YTwb|e
z>)_UPmu61+cBmjKd;X~@DY7nMDtTtJ7wKGmc8Hy6;<{zuH=KC7t|aQZHPhND{>Hm^
z?K!Y|y8eexJFEA_{R*1Rb7p##&S|e>vDv*Are^O;es?UAxP0<R-MX9$|G2qUu*v6U
zKk=xD@zR{)+PRW9d;hLohptY2*?cPU-EI5JT&<#4u6i}^4%&FC>+?+wInCrV%Vuw|
z|ET65T$1#>LiFRJ1Fdrv>V6z#|Iz>d$9;x|^Y*_4*2m8@Sby=VXxh&+{Etp8c$P9x
zd|zLQ&FrR|*CUs6FUviCs!^?d9(Qi$)k)dhSG?jXnNs$LuM%pN6^MzM_qbdCOu~c1
z|9|Pn+_3rl@rBUj)7&vT1nzGxj=8btfA?zb^?%lda3&@frA**Hb@1R$hxN&FQO*At
zf7vd6G*9JYTh=A>!>=;sy5q&mc~5Wp5XBu|^H1{M=l_4|e>`da&&^Qr^N*z7+P|M8
z^IqM(wReZ@(}N67rwkW}Z1TJQZpoL_iBdBYbaqVKb?EP;+){SKYf;%Er!sYY3hNTt
z($~lDIZ%?N-qE06F5-HLzfbv~;$x2V^k@4l?Q45G|N6;zmQ<%T-8gBr@6VL9)f&<3
zGp2~~^VK%242pAqSX9z_eZBAg|9@_Z&*<^pVcOjGK<Luc1nx^hEh7JB#m3F4ZvFeP
zprKiLa^8iv-?U4A=w1qY{aWEiq-JmAJFkqmhp#T#^y{BLKf!<bvVWF7zuKd3xPIUX
z<B{k;`*(t<s+H{Lzb7+V7M)nQrIO9$?&Iru3*C74t`Rty_51sIhNTAEgkOFBY&>UQ
z)x%)xV~Yh7E}Qto?fi5<)b37HbFAcRzjRBhy>f2vc20b5mtPh8+kT7dDy_3Y%IAyk
zU+;IHzGG8&i0i!Yvd3qvmA8Z)SQB)8zK^8PYR(DE#An=SJ*uR?ASnE!^ZnJi4gzmw
zB@y%GN2FOQFLcgb%$)!3Xe;O9x{rS(<7_q`Dp<Ze&araZd7r(x;ng!XN7;HkSJ9ec
zwlLlx(c5eN!;{g%>N1ZauDxEHACVgy-f(*DlGQ<p(`FZ}`~3O(j~|Em85sWml>aZS
zzt-S>iIr2}nSiL$8!t=RHpYt1^C^DsIRB|7SN`W!%gi6kIB~dyUEFp3{lfIum%Jsn
zT5qZK6#wOQU3EoFL1pG1S^fAu2R^5t|M2Q-Hp79Z8Bem$uMYb8I5DQ-XNbrFx7~}k
ztmM9Td7Y%mq3Q(Nu+<+nq?|hLH_J72t-|@@C)d1<=ANzbP)<M7VZs>p_12y<-9nX-
zhfHUk)cM{Nx%VI=pPw8v1KVNdC1D<UTOGb%b>g12=Jp=VDc4S<PYrl+V_A*Qa%1^l
z+7`_H5)!Ld+3%=R-=27#VS+f9XV$y<;rj6pj)eV_kdaaH4A$4#p7VcmR)Tx7*1I#D
zEv6;1r4JmhoN8YuUfFnP+y6}=8dIA-$d#~te-Ik=`+Dla1#3KRmQ1T=y#Dgcl0~^r
z8t-m>UH#~+^o?JW!mFRwhB@tgS7{^XZ!puRRz74}Yd_bQzx}S2zo-BEqkdUaZL;RE
zMy{RJa&MT5=dKEwRwlUQ&&owz7j(Sk=O)bCZPwc3d4Jl}AiJ$WQ>A*m&%806{ggHB
z+U&R~#c%6RYc4tR&r!JKQJmP>_PFX#(qC@HxYY^VmgEVzB~ZF_Yv{MqQ%lY~zgr}z
z*mrh;wx{)r=%pY26*QdT?Ks*uYmcqz-mLhV=A?J0+83=pkg?Xw=Z(UTKVM|@=gqcx
z?r-;-W&OOF*DLLqLmn2-^$vX+@7pcp`f$qe;`LM3O#O6T_MGG*52ekOk&)(~Eu)mW
z{y0?DnoVrn@q?%KYNvnflWVP7pJpljC^7rE@cOPfS4ArCD$oDS5t-$*e6fmaz5&lE
z?y$tG)y8rhV#~I5X7|tOT(Cyud)c+r&YNq3{+4P=-Kv{@+s-YsZKdpr*q&t)u{XIm
zFJ~@zvs>0QwY<i=wod)o^{vroZ_Y2|%Y7R&jjKmAbfwR^IXg@((jOe!RxG%13-hCk
zTaJ_@sdc;BMdvTtu`Kc0yg4}uWx>G<%T{{E{4nY*oU%Y?wTKbpyVdyyZ|5Crc*135
zR9k)Pq=N8duLUztUcI{Y+`5^^O5e)eI`}64Z+2BI>%3;?6R)JsaB<$)!qn!K?{3VN
zW?H85{NBIF<?J($#3?&ZJ*#_e?XCQ+`AP2*wq9RnGPg(Rh?%V0%dC&0J?u{}o8){H
z;aIDf+H@rJjmM;{%hFR46y($}rT|=u*St9Jr8M8N-RI1y<ob$+<L~#dGo08}JBPnF
z;MD8u>kBK(`tDqNZ8p#4_0vaps_(M5w_9v7?Pzazm*D9&x9w7?U|y8sy<RR{N@=YC
zH`l3URrx_Hr|`GW_AT;B_d8q8ww6oZVcAx`tR>S!wHm|fw$3Z&OADW|*urVQ{gH*D
znN~IyPDxYiQWvb)zfQeyslh9@h;sjX!Y3?Ja`wpoeJG&re~)qVy#re=ADkJwWnN62
zqW;`j`g{IbJnqPqax6DE^6;S`U*B8Xf|3>$!`nq&*K^ZvujJ=>CnX{Mt=d_BT3kj#
z%4PmfCs|JY;+ZM%;M(L92NjfFu6JC1+4-93p@Pg=2aj4AtXY}2U+HvM);-rHtjTw{
zcYNLL%#$no*(tMUT~27{OO}RDU!U)sp!Z3{iR;L=BFF8wo%0Jg4rpw*?pIE(*;`$f
z?-U@`yitp**YKHbbKsl>>GNlEIas|@)Q?eRez({`BH3=M8wX#Wa;a5emx{5V&BO@|
z>n}N$E%?79@LJ!h?~=wmPBXsEPm|^0>tFch*yf88N6*;Imu&A}^r+`|y1{dvL*MNG
zuIcvs&#-ar$+H#3wOOk#UkYnrO%^!FswBPj!fXE8_=!F08dECYaUHAG;<)_bx(64Z
znre__h|z}cllgAhJL)j`Ug&I%P`Pm3$8NeTTUhkdm>)vA?CkCW6M03?&VTUd%!;=C
z6<=l2*T;o5Z;gEC?7!Ks?co6)4LRGorhf-CTHOnK9yV6$wrr_fy!(yjZ3AC^^`mAz
zA;&z{?)r6b@$n5S!!2y<TQ446%2~?3py=u0wXu0h3{Sj%U)Z40cX4a;=7Sshn->f3
z`TZ_<^V`G9@my`iFGXjB+fS9=w|`O5zucT;hm)<G+3XF?4;8OWH|gs;%kucmSIM|2
z*Vm^v8~YsFb|xY6$FwPFE5nc5+tsz)ThMP}${p6;&c5%7VD#p{>+9d&x%{uZG}|am
z%<>J(;_@qpqx1JNGraizD^C9Lt5-rhb?>vTeds0b;-u7<oU-jq)bh)&S>iEl?94|t
zM%JXvVeeMSPBqp)`e^6>+xr<FGTh|N*xbxF&!$qkVdMVG=`(!XG(In~l0SFWN!~|e
z+vfUdsUE_Y|Ls03w<P=job_8hcJC{_b>aVYPI1oIuJ#_~lB#9==`jkg&jhdui)`PJ
zeM)oI+XBU!7uMUqGc$0!{8cILaz8=(b^_n8Puw51?aKeK%yquix_rmvq>74$8+sCc
z%Y#LhzAUd;Abr5%^UL%(-2Ztd7WSB&{nNBCW5b?juhtmZ-7&fP_k@ITu0;{|W63RB
zBWH=)wfY-8`~35)>h|Oa#RINO`vs3)T5dD5Xw%n#s-_*>n5U!}iUrJx303I}J$-zF
z*%I^DB@@!pR4pb6F7rQg>f^`P?iSU5xt?E}Z94nxp5^5iUMFX?KIG%$n;5B|yHF%4
zbJi|_nzyB=)tok#>xv!Hnq1xQuI~Hs#}iHlh54c{czeyuKKxO&`~5|E&U~ra{a+-k
zwl@{7V43{L;^XSShaWP^?M>bG^~cBLFYN6VpRPqSG&CP}ejk~sa`(Zs@6Q%nMm&g&
zy!B^0hjZrl-KHOoAGJ`r|8KX&L>UV^Mus^yQjdRJx$*hY8<B8j;lQM<+q2exueSa2
z``IjBe!dAySH}M}S1P==d27<|Ts@mld6P|F#YT&<c}VXxe!=_k+wNn{aU!a2;mi2G
zr_{8byy9XoCH3X)NU7r;i#TSAa(Hb%<IboW*yVS=qIj|epU9DL>tj>>dPBb-zWeRI
zY>%P*F1r_e0XOUxYk2#tosnucdx1vN6lnwbuL?^YlAP}>)?nLy`&F8(%C|}Z&z(sk
zC(CaAUssqLT+nx;?UfSqC6!iT{^y%M9W&anDyg0C>p7DdYm*X`R-0YfWF~QM%a>*0
zdp5)^={L;(Z_;=1HE)fGN944Elaf9i3*K`CrA=XDYAx4WA|GtH@86B|SZ8ys4fh4U
z{+`IVrpk>=apDb*7K^UERr|cNi=;0k{&p9*dq85w>({S;O&59RcZb{eLg&&M`aiFF
z+%)=rA)O~?M@<pixfs3lrZvfOL4}hRU4Q-P!6Ba`>)nJKW;aHyH+EPb-#Xpv;i<ho
z3qq&P-m~q2R+)82uE?>yXBV3sJ>YlBd+moG6KBfI+h5w)d|1)$@0((V15aOS>ba+F
zGMepM+fhAfnZ&IvP38B03(d3pE5z{N#S@81#s3$azI5ifrP01+s_$z~z1%tf+U`%Y
z&q+V)X*}&^YSSs?@w<4|QV;92N96?u2X5S|x0%Ou=f?ioUoUK&e{vJwk|`Q79`h#b
zySOf#;|1f^ztSA)xlS%GZk*gEV93Vq%&<%*E>pdGawKEgTlr3oAg}!%s!JNaB~A!^
zp(S3l_h_G}wL<M%*WU?iqP7StIZeBn#jn(6$K$jroi%M+70ZsM4Z@BGEnC)y9axb2
zwckT+!lGF^>(c%&d)F{6p5glW%mZD`%6(@R1&Q2l&C^>|$k4q0{faGZMOW>-SeL)g
z`}Naz?)Gnr$JR(qG1;2A|AD|f$G16BcjS}L`14r`cd)vv_{tx#bWZtvQuVRj`<afv
z1<IGMnzH%Qw3?K4cYp7{_Hdyc>#A>uO=>bl4l+bM=SycYD*M~BqPMwrWk~LpikM8Z
zwWn`MEI(RqcM)_pk&ge`{=82QkNo9YD!_E->Ku_v)lL?VC+s;D>|-TtZ{e|tXYab1
z3)BlAg@5f<a$gwxbNwotpaP-Ovd=Hw&yYXE&%}@^?+`g_QTE&A3lHSVT|M|v@z-8P
zHg<Q0266qkhkwpo5tr-L+v{-lLqf;#{@&xSUtXSnXtMgT$Foa~MK<4guH&V6aE5-=
z)>o1&_4jN0a@YNqIV90uFj-iSA@Em>h31U-0<XssGev{vd|7rOb*sapJ=+UKoU>VN
zOUuGSZMR+Jd*`_2x9f-RZ7Fq|=B8*`++p!|-Wl~W^(A|H42Mfl75|KDx27wHcsWMp
zFA=EO>z5MBzw7VzyXDNEnWGec{y%?j_K_2lVoUG*w{~&i3;o)bw|jSPT8e;E-1fJ;
zISvYpPH#4(Y-IA*5pd$*-1xFJRYk0WRr(39Tf>dbhKJjF4c|;moyq^XwxZ(iudlDa
zXPr6IQT=}Vj^vcou+%gj$(f~fn|`N06*#=t{9Vbv=Q1Ma+U@1V1=iUMNitv7IdZU}
zQ@XZ^`-k<KRa~K|zia2Q*k|jnef%*ny2VKBPkQTv2}aIhQ!>8#^4&i!m3-&Wg;mud
zqHEtA`(j+S?cV!#k>$3mKZ}wXgn5j#n-;lu>9EuYJ6++re7>~j(!#UnpB2AY#T8b*
z`|^bd`x_s=A6_zTDSw9{;|>?KxAH-0iR)A>)|aj*-0bG8+1s`A&ezZocbTb)?JroR
zRwA~*Br!~2otxoNeaZCL;;9$jhcI1h(%bRd`tgY=O;VA?3q1eSciC{iG)$S-t}(mj
zAmdbzJHB5I-l=o{^WnQgWKddy;i4^H=Wi8rUMtcvIs9<X#OIbqlC@Xk=SF(}{`ypO
z%j*A|Cm*l)Eo`QH)%yLOW_LfKGcyj{iD|!*kid5C#cd1SvuXF=9{RY}wmRj*(<dDN
zwmWfU=qkkCEznc^G-H{z%RO<MEuVFS7xv}+4o?V`To*ojS!-Ry8=a@$1uG98h_#<`
zQYYeoC3DYe?#PuFgmxsH+m!LzAyaggXXwf!-{-e(NvQp%UVHu5yXVDuay^buHvXv<
zW74#cNM5n$H^U?4bCL^c|DNPJvvldEd670X_2Rd>4koZk9NpU%KB1s*&xym?nx8Wq
zMHam?647~K_2bU198JAf*4s<3U5#Du_vGNDb?a6p_t(CC?0d!k`XiYRRW2dL3E~^i
zY+mCqZRykbF*9G^?hSLil*ce-PV4^ugjbiC!%`pAp80IU{aINtb;kUnbK%?TGYs+;
z-M7?VyH$2yZ;-0MY-jG0r0N@&UN6&o;g~0@e#BKw{6<jMjNsYE8FP;xWlR2Wc;6JE
z*2znrRmv?bs}%h6NMd{Um%GoS$|l%-$=eq8td2oQ=}E%bPg;61tjA{<&Y5SqbKS)W
zep%(VlI-exCr=KxDcyN)`DIPFbI)Tkdo9gZh;2Lf?6Z*D(K)ZIH=gD57TR!h@5O@N
zQ&tzbjW=xQm=NPoEU1?5lP2I9rL6XcMd4RZ(YZj2m(^h+0imp+KT9gK=D5Ev`kdYL
zgm;##_RZbb3iJYYl+AnUS~2&Tq4><cpIZ+qq>8DfoB6McU!&7Bn=g6IyZyU$t+P}Q
z`$za!-YB<dKkJ+m@BQ4HkD)TKMMCV5T1nfN^QA_iVsqMELqey1c)ETo*G97gW!m5G
znwP%jsjSR9egCUtklM;U7Mpaq>;BkiraQDpaI?wu9RFv=a(mJxwv4xX`7?Je39mY~
zb-QQxl0U{X8CyGx7uoRVNi`L}*bq5k%KnKDly2^LBxBS)TW9;Z?WV_HHRo+~ERO6D
zXPVs3ZZ~;msehC1^;^&SJKxSPo*%T<Zn>yu!v4R@cPsNTPC`1_;|PNSx79{l&kIw^
znvZOpP?v2ow?R_>uI_;ti^!!B8`_xd9<9HdeyX_f%-=W<!4$9L#my#~r@Nm`Jj{P_
z)(*B~kMatqxob}iE9JIgHz=L>MUuJbxtD>Q@1b`eQ>vPb#gEn&RW*G)5moFRn^adk
z)#caPCZ<IzRnM<dG+W)Bke+=f#aCU;;M}6E%JTgao-$oJS;hK1;9k(V3K#VNZrEA?
zk6!g19FyMYJU+4M#=pxBPOE|*n(sD?ojgNech29hW`fQd`BmrCa=TQ;`d^kvF)2LT
z$x}Kxu023YWW|Fs-`qQ0Zfy6}+_AOeU{w69QhD#d)!YAmwS6jV@6UIy@MrrzHO>Dg
zD}<QhPR6utJ8Q|FzGfK<=d_hiF8Tzo%v|c+VEp^ux=XCDnF>|z)-O=&dc4p6<fGqu
z9!ouRUdSa|@O*z~+~CL5Q02WyWYhl#HK)&RnEJ9SpV_y6vs7Eew#s?U#&XZ>g3>nL
z7gw6u-nqc6#W2B7cj;yxpAQq7E=1Qqu6=W_W4mNIKi70I-7i<)*)mLUV%e(r{9^3k
z0}NKRawZKw<{U|PGtn%1#OMUdT6s$&vtMqQ)82ajWQi2p+$-s`BpD(f6`!aSm~-0a
zNXPP^w(qRZ16n@^>lba0sDEL*biTlG#w8kE6Rw>&&{DFh=k}jF_vEegi*_5Z7Zex0
zHGa83;<<&bEh~f1vBwJAr+F=!Gw<M1KlgJ+1=qiR3F7X#>2dzu`DdNq9<l5VU1^Yf
zBKEiKOrOA&S}CR%*dF8sI~$12<DGc&!Fe4O{*6*Q1R5M8req`=Nd24=>dANg;A9tt
zcRMy#c)mNa^JIv+dVn3*jt7Rm;@y)CmzJJM+_UB11h$9fk#Q}%Hq<TQ71#DXmGrpP
z>s9j2+MmqZ`1Z`c^dzOJ=;7)4s@yq@=fd?b)b<D-*j7CM?O}r>KU5|yv)%4t=3zA5
z+*<$Bh6wXx+oI3ata6b1Z72LYB-!W1a*O`^f<d<ocb<2>TV$PI8hE#NF;jZs<gF6D
z2aYP$OiRBgzbout$Kwgt4A~f-%ecLs!ReBgczDUj!!<qK#SxynM2sY=F8!Vo)UwY$
z_cjBA;C$9xpB3uKJS|gBzTd6AT|jr=+fK`k<{ro^4w)OaP3m0xGK+tLvDg|J2ca9M
zW+<43&e`d){M%xIGt7FI)^vnTQqVuU>4VkjO;H>A+Py*)HY5bfKDAu6aq`AuzSy4*
zHEd1prA~2T8eGx_>t;MvjF>P*NLf8wUUYE+=Y*gKPh47M<Mb@LG6m0FHnpqBimpEO
zb=&26s;#PF`(9o-RsDBj=+Xtfll6*Z%ieDe$va;omoZ=6oNYp~&9g6gT3cVgzj!my
z>yAQ}y*Sg+6$SR!7xG^^wx;LU>dOt2^{idCq)4Q6G(N4ln-<x&?CidoPIZ^fb}#=_
zKJjqxyalJ$u*PN!8_5)?$F7&P-El@GU$t|)WcMo_#aWR>{grPX%sE~c_xxPznXUDT
zkBkE*@0fjLmRx+cVCn@Y4snN#e-G_mtrz|@E5E|%H^0EKy=H5t_G}hdS!<%Dz{;;z
zYj;5|LHBLvUmJ~8J%R@Jrut+Vh&Agziwq0?Z?fxLSf7zhkoasLuMBa4DW6{iX|`~1
zwNzQoivH^tP_xNm|EA(geb1~tt>3%dc6`GewLmy}(-l+o?gq0D|HA7Oc`I&Co4aCR
z(^T#1`%Y^oIZk#=GgNhxICJ1o%b~JOf4<e`9K2V%{?cc2o!=!4CqKzdR#Doa^;T)m
zC8;@~id>rnY<#9I6;M3N{ak6u)03ZMc1k}<P?2Cz{Ifvau;|nGV|AU;S6IE{-h}0B
zKYumtv;S))eJ&2oL&rptc~*UTYvY#E-&y}=fld?4rDF*nmY!zi7v6eBH)Y0~ck#0I
zdvB|>s?KidQT*X>yR~Z0oNAs&N=GstFWGmI{qA&oVI|K%Rq3hqm;XKgXSRF)r{_Jb
zMN+-T^@Mio{-2=Mdvl-NuUX1Ii!Qs)(5(*_pLCq#MpF37mlNjCEL-u_u~Kl!t|;vS
zwL?s^H}5*#tY4ly?bU(f$pU6-Z2YA+_ULT4ZTnkiEMK(kQR(dNg<Jk~FKT#jXjyiP
zY<z9yHS=x0YyaxoGq1c~^?Bdp9rGEFNwiEUU@9-rdm|%U7Pzmfk#9|Qc+W<I<DJFl
zx1Ij@Eko#-%A{TLCMw7$l`}esl_YsjTU5VokF)rv;$p$(xfyfcIAv*QHeWS!(Qm!~
zu;l(@rHGo`56fqm?|S(zb@Pwqx)+zN>HE29YJuaOgA&e9bs|GU7mCQ-d8_i;i*=>)
z^T4L#lV2=P(tNa1Kxiko&T-48Qrq5=yW+dW@4kI;E%$xE@<{>Ne+yo*C@wG#|L4`7
z?Rk5VVc^6Amg}dkeXvK&CgaAENF|-yTPCQ5PKw&_Ci^#!#@gg7Ph76;i}{z?#(peW
zF5}#*zk$MYOTPd0Kl~}bqU?Ttie$G~jPUQuH603jUs?Jr-tl?M-}f=!v=`l$SFE#{
zVB{8e{n)lPllblW{U&Nxi)^o)nr|v!J^Rv@-G0#y;m1ziuuo6$abVk7^5@*HZ~IsM
z310nn-|6}nEZa}0JZ?4&4BYx>Z)(yq;ottN?!8&{CR}z~r9w;+#|5Uj5-M@WI2evC
zy~@b&RwcTe*P|g;#OT`D16$rJp4)X`n|k6Z*CXkL30(iqY+{Kw&`5o{PgFP{@o=-d
zq}hZM6|QefqyD{ATJbWe@P6q<(S2vzzMYZSQrIn;IW4W-ut|qo$maIH;QPCpXU};%
z<J9s-?k&G-r#x-rwO^YYHJ6uv&a}$ePwz+T&Pvfv=$>pg_1`hmgq;1yRP4@c>#47u
z9C7CBr~Fd~ZSAc$t@=~>D0p|*RZX49qBUiw^YTk4E}8XaRteu`-n5nL_}1OOX`ET<
zsd+u`-_qQ~yE8V}ywCjUbiLk1@NR$8!r4KH_WUD9P=c|ZR{l1MPiXtEDS<*-511DI
z;J+SmVS2ng_x5)ykAB+T{;lZykx45oBpw^8o2*~3<ZoOk7l-_TenSs&O`G$d1ai7R
zOZ+vNvpV_abuFvRrLx=q2iQ3|{9ve)p0hspwdd{Qx2Du~bp<cw@(!_<{{JsxO<VPn
z?y^0Pr@s05=Xc`ePwCbgx_rWAzf;>U&%Z0;A{%<>-u#3AZe+;qJik-zw$7Q1+gaX=
z;xiika*h@)pHRkd`pCZpwf1*cB)!?5eCN7L;oZt?S%V8sA?5$|*Pj%YOunGxcB1{W
zd-zVyj|>MQJ~*ELwCCCB-9^a@(}kYC_B*;|72mtO|GLLGJ<e_Zf7GkqWM^<$`<H_2
zkKgt(ulc;~biMwM^t|)a9V2daIql2dz2>K)dcItZwK`u{?7XIsY5r@!8Z2P7+9+B5
zfmKy!wx8ED@$R$c9((5RZ1iY4%c1F%V6l>y=MU3d=U=Wi;->X46feeCrz}{wLGtv!
zDg1qV^#$bJ61H6Bv6fUc<ms!c`yBB5p7P@xvtJrI*}Z_TCuA{XIML*n;}X1b<@120
z3ANE5ZgpDa{5Q4E+SPnS_RPC|R<Cy$$~gVd__advW{s7#!L^siek(?Vyj898R4q7B
zeZ#r<?Tv5W+i$$*S=d`1`_FmWLH-3lI$O-<wd-B-zxw-U;<l%;l1}n2F0-z%zx>I^
zAGJXE`=#&&D;M(R)$#?!&RN~tS818yHAU|F`I0q{D?hh#72G$w{^8dDy4RcE)~V~>
z{c<Aq=&2i1ANq9d*8Cq`=+m~v<G#TUp^L`3w!+J9pU8{e`n2&k1K)CarCSLz*7oe+
z#%Kr^vh!E7f1Ob_p<ioJ>EW`Sv1wZ#XENU|tjX#q-EPd{d`;o^tZDi$&mDfdS?ENT
zUBoT_(2W0Yx6Hg-DHQg*>wmI_);z~=&MXaLAvGtnH!YKA+v1?k@yO9I!1dt)gB#zU
zxx|M%oK57dHDj#O=#<OY<+(S|ui4uF;pG_Je6F{<|6V@yM{&dZFt;3bPo!Ot;4W^2
z_x-Hpimcp97axD%D7}<?^~+D58yP>DGygMBu=-ZYdbh3DDxs?OTv<oc+$SCJYX$DT
ziTIuW@`xAP1@^Z`*7B+HZrJrqecxZ^@)e%19>!(gEIibGw`!xa?kjdj@2Sp@Z$EV8
zE@_H5YRDJiT(Ir##J@Tczwa$%>RrV7Tm0ttqYm$j^hFD<J0A%98(e?((ortk0GHi&
zzFS<`l=;pe&5+^QHH)*C_`~BoZV2DdJHTaF5oID8xZA=4t!<?9;z*PkS4YtjiQ<|~
z`nOWI=hXdXJLZ1(?U$}QH{}ZEu34ha{qEmguC`U8FV_E^ExP_%-RTGK&Q+f7xZ$k(
zm;F40_ObGdr_bi6ij*-k<Sc#k_*!AU{EKhPxAuq0=Z2p>vFo?eH{WXhgA-yrI?pa(
zwc0puURCbqB8FS$%yVQ-maLqA%g*rF7PaF0uf9dsu)QkYk$By4_S3r$v?e{u{~p!$
zO^2t<_{!A&ml~os@7irI|7(yZcjsY?pNxsKO!M8(8#exKiQKy{uSW9p+x;&uvfpO5
zt@yL3>bhZphUTA+w+mUVE?PU!mid16UYQ~Pt{wc<j}rJ20{;a_ED~LK{@UKlcen2d
zyHy#u@0Z7y2*K(Ej^1^Dzuo_O?2W+hd(Md+w?kdFPvEzLow>;3$iuK{fpGbSe|53d
z*MyU*`F7m-zNPfem01p-Hr>wo`eS>>S;;)!FL!p7Yjl{cN?d<RGmQIv-2WBNy%#>r
zw-4BPpYiD|n<zeu%Ja?bVlR$FSp{0HeWe=qZ1d84EgdrJw!99wU0AMqZpO_&AM-Ao
z7WLPjx@-CFx2S$z=)c@e?US#W-Ix@U6PC4me%#Z><1g+=^KZSA{qxdw(F4pn)18~&
z-bl4QVpgv+;Rw<}KWq$<7dp3IDT@}?{+_m<)$HE1uM?Zh_id`<_<lc$<?-(zt5QMl
zuM$j~ue@*kI*m`w_I+*9_hgOd9fd2|tP6^7u9{JE<q7Yp`t8DB4(&bvw=4UdR>b8z
z$IIdN?AuS*TzB!mTkzdj@^+Zl^_$#bvB8%;&K^Hiw12<nsZC$^*U!j_X1m=}87*7h
zTpaW}zTeY`X^o1mb=G%xM%@dYXC+=J?Git8=}XmN*57`Un`JLmt-a;3W4p0^#w($_
zD`H|}({g<;$vsM0U)eSN+o?ATr`AggPThTD%Z-$a)h9|eI#g!lZkM+5iga7EG*f;{
z<?iJs`MnG6p1n}$v_^}vBinSMuasLJ*}MG4*<b$zz6Z4H<l2ed+QzWXPAau3cA5QY
z?Z^#b7sG#sUu9xYNcA(iFL%NF>#D6x3<Y}M3N4$Lb*Cr%>`2YLT|Z6KkHh`E!*reP
z^+_`>FwNyC@N4R-b$Yr#e#M{f+`fI^*{A-k)9m`VPyeB#a_YAC-W3;m+$Pt?Gdc3`
z&6+3#FT0O0EMP@RSd(@LGp_x*PygY;2YZjYD(QxLP5hteU$NgxG3jUU@Av(oPyOHS
zx1V<U{_h8q-lx|u(KAhrWLja*?^3Q2s(AX-2lKCg{|0COpPK#uN!DfVV-l~j`9O&k
z$wCEgE5|pDp);?Xthyl|a_x6&=+EG}CI_eAO}ki`Kizcd-*rn;cV-{S-X!y_Ti~{T
z?ezIGP2Mx63T3iw{a?3m<2P`PCOX^h#^0svxA+sS&V=c2v)=pvR?h>*P0P*%@6!06
z%eFN+|G#FgPC$q5j?I5JpL>-M`rF(fA>m-^^BKRF`p)|w-Mz#2b<?xchnw%(p4t$)
zzI^R}#)~B%%R0W-oM`#Q6>Bi{|3(Myl1F@Rn)iFx@AX#CZ?Jvqu>5*f-roA_YuC(G
zyDp}C`uN?s1$T72zn9%SR-Ik?{eJBIea~la{ls3jZ+on|cKP3T7t{^P??y*I-S_Ol
zxB1rlHm#fceS1;L!zsV3*z&G2UWokt-CJVYLEqWCf6d=^>!fY>s(l}yZr{JL_eR?`
z-R|9Io3G`TnckoI{%}#%ndEq5i35w?J-W8$^S(_x*XMJ`8YsISpXh*54X;U&x6>-C
zujoCxTJ5o6#%ZH#?fT1XkA5?HVD`G<D0k%FnZIq~ZoT~^KPfd!dfNNi$)DbD`g?!c
z!M5<Zb2n@5p5ngt&e?UBcE1g=d42omU-lcvPE~5y)vR8!{rlGc>)z$wExc?MU7gE*
z=Rbq=y~ob2hMT^q{+O0`V^v&sdFdH}Upi$^&L8-jT2n87<5cMpZmV0H>cDMPiEOLM
zw{CY{S-tGyzQ^Co=d3-SnEfO6>4)_N;ceCFhxcyUrdFCZSN!B%_4nn0W$#_m&fogl
z#<P8@Aioszm-k&pF_&7mJ9gJ@$SmdcP+7BjarC|3YDuRTH?2ZEQ2W?AFI?sx%-g8u
z={s$)#Puuhqu+^r+p~60=8WlzCoX1v(KUU+aLfIkd}hUV-=*)IbMu_{uKRss#b5rl
z_dm)w{&!x}tYv=mxZv%8^UO;kMa+I5Jb3upz0LFG?=3t3Mr^fV!m@hdst-nsJI^0<
z<St1v$hp=ytMpvt?)lgM-gcjF`NZziyKG}cy8{dRK0E9DZa2x``x<7xU+?k1>KXqo
zNZ)-v@0!>5_}dS^+fRIUaYsMD7XSH8y$|>O?7X?fQue5w$F2juy2fAotM^V*eb<#5
z)P2EzLXY{80!561r1a0Z`2L{dZ<o5O<pnIezH_zZrN8IC2uwMZ|A+5VQPq9dnMay-
zxH?L%ukyI(SzPuF)C1l9hhMR%`ZkZ@rZ;{+SDKe}?=)8bopAgAKA#uTR}S+1{URm!
zCT`(^r$@rpNS1GxcfM2^{Nwz+`R&hU{5t(qM^kqG^@QV=8T_Bm-FjiXpm6#Po~Q-F
z)raqJ74H1(c<bPdXxS+7924=k5gxm9yQV#jKVCb>)M$P5aZ~O8CI)+d-p)6kZ@6st
zYpW%WmyUF;`)OdVIn($3eHHG9X4y&0U4MQu44dL@^JZ7_>}Y*npZ6DEwO{#DRwdT6
zvv~4{eaU+DRy!)>k6hdwEuV6$x@>aYs(wp<oBYet2H)kEnf1RuICsfQ+nJ*GzU1~+
zpWMp3;<mb3iwe>amf#lZmvakGRDWOa&EK!@+?MpU8sdjG&XPYazxegt-?@u-Y>#C<
zocH$ohCQe6Uw6Lf%5t19)O@#G@`j6-tru19PfVC|n<x3Kh+}Q{ujmZJBaKESUqh;D
zV|$Ljz5CZ};zzy-d;RP>7dmj4B&pu@i{e{)+2?79XV7FeR^uLP`D3A9&fZgZ|84i5
z@zS$DDeu4TPv3TP2Gg$B|8K8u<$bblw%oGoqE@bj^&K)%|C6VQb>6m7TK#K++57u>
zr|wR*e`7Iem08*6MGfNYyr|8;3ruq(PJURcUYmU3*j3{<{#&n{la<lyG5r1CcmMsD
zS8Za<ru*5=k$Um?X3C8<|3BV;-E%Oq<kw!gptVBmt%ld8rgtAt36;OpmtrUP^IhGm
zh3Ct3u3VKdQz=ycm0B=)bFSgJ)ROJ%*1LXxFY9ObX48Jv#%#-`@7wmx&)vl)KWooM
zZ!`VwZ(EKx>;IqNrMd9wi+8{I{u(~9dZEqNW*yD{T%l}XcY%O&-uK&u*Oh8Dd$ZcF
zGw{@DUDi8!V?*x$5}VxjiB8-li^Nwf{*V*Km+LRgzv<89C2QMEbtW_KseROV`Bzq>
zT+{Cje^YquuAjBsWtn%oWM)>;jxEv?9w;2YJGVmPyQjckN1<}WT73zI6i4+A*&Alu
z$F_aCw2zsaUy_;myFJ71lL6)4xmWgxeM<{3c)33;x*#HByY=p@Hwv8h+D%_xcx#or
z)b`e~t;=SgDQgcAj&nPG>#Wj+dkd{p*J@8*F{AI~jJojZoJa2x=5Kahnfd6#jV-xB
z+%|j}jeY{w8-JRV-EaQ3vGm$)Fa7VkEM9!QqjqQYH8!{G7X@{~mo60?JFrvKzwli3
z#EtLP^7UnGnzPLI)|O*sr}+IWD`ZRO-(Gg!Gd^yYugCh;_s-vwtxmoAx%S1UA3yf|
ztbg@=^X1L10=fn7Wjby>33R~ls+Dryqte~8(}T1VD`s}h^1bu-+sbWGx9;xGR^Pnx
zYC-hM*uN#m_crhHytyTD>)p_I8BrY9_pb~(5Wm>)S{5IJS7^i()m5vw#GmY+o@)7N
z5kteV^M`7$-?(PXP<Fd1)t<d7^R@FQOV3~1@=ovDDfoB8lDFlTUEbv;pXc4F<MU(r
zwfR5(@iRzx|2q6+dUjrR@akW2I&Y&jz5duAUc0~a{7l_j3rk|!9amMX*(t$jUD^@5
z^?hma<m6Yy@>W|M)U6htJ$mu(d`XG7DSO?Vce8edad~O~j><03V_<0FKH=lUar?{O
zE8hcN2HEBJxV`<b@`?Vr=hN1y@rmhF9z2kAYl|5B8bueWcTTS|!h8iL{f>F6zG`bz
z(6+Ps&x&K>;~%~H#KjOWH8kV3dirvUr~Ql!P95ihe74@wnl5%C*3T(SH^A)Sw-}2`
zv8X#DZ~EVstKPa}VCbe^DtJGA-G9&XhptVj{<G)or~8H5(^h<bmU3AA?i1tF(vHVk
zcAIUN`fY2TUXWe*_;vE%N1Jv(PZbE=sI~RcG5gqe|HEz6zy4nnn_wgsykyJl8y^h}
zquSFQq<gFE=hYeOUN3d;{_7W>+%TW{;-No3EZ$t@M6?rSI8z+eqZY@$?&Q4oA$0!I
zFukQ~dcvowo?6Aipd-e8CO?g#Vb!Wb=TZ$NA3u4*GWny3L;LPoYh_ZKU%$$@9+EA)
zW~0@{6+0%kU0$~P`--<_*Vnc?aTFwm^33^sZYuZMsa@MYC6wlF*_%CgSE~;Dim1|c
zR~{|h+Ez5_8|a`k`PvqKyB`7!1*MgJIVq`c-@hm~kn?@>e(sgM!cqFO>z2HUvkVI5
zy0x<4&CkpFYkwB5weJkdIGFr9|LRe;Sgwfg!VH(cn}>$pjr_Ngd-DJ8g>qjm?DzXU
zfA0!Op{o}IR#-NwK3-|I(f(uVIm^RE)i=)6%_~ciso@sAT68;a>$z_s;;XM%p7xsi
z_35r(=26)aqPqLO{%db66qlJ&Y;f$b<)!a?*Y+6(Z~kFt@@LQG-EEqos$TpG*F3IB
z8BDXevoF8%k}$_Z=1pA&?=xf9nr+zEn!z5mK)5%v_|Y6btGdRD*Va+as*`sVZDe3L
zlWu$_?K(rl>F(l~*t<8rKQ~V_u&VyUGN+cw)sBs!W8J(4F>9a6XF?>Vv3HeSJQurQ
zmDU;YVul8-)wf(?q-DhnR|R!OH?mdCaWF7{;jK79+_Gz9tjM#-I*Z8+!SQSnyXNG&
zuT0Xq@Bg=P`qSPzr?pd@B5(1odc9hEPt8xkx)06onHcP<ehN*VEX;7A!sh5~`QV2;
z?%p|=xTx1H^ya3SXVWyiZ*P|nRzG*_ML~bmOO0xig3os(bmMopCeC|)qDzqBx6PJo
z?{>#7JpS$AH60nNh&kbjlV7rNU*DdcJE_Rbz#t&h$nM8aL-wBdDb3Cv(f?cn736<@
zn*R5@wR5FL*vVD7>C6YF@7E1q8nUAJ>`&Q$X9~Bg$f{4P-6kn65S`M$;nHghzb&uM
zZ4ux8J)`78RQp-=wIweO=h_R)@7gun{n5GQ+8W=ZLQ`+dSUaVwyWrRX$@U4~@)bW{
zkS`Q`?UZ)&)Ec>1UA1=4tPg=R&dw=Z9;0&8|I$YDycx@9hu7u4^Y-CjoSDkdV54s}
z=R42RX2n~WRkqH?+<*mnDQluuZ_v(}c8D{3Y15k8Ks|%vpl`2Nd&kU~&&+Txe*dA>
z;p^YL{(RkF-OBx+PfE(!Ry7^(4?q2Uc8qaQX0W#PtY_Cwulw%Vyl1;k;ajGjv+2eL
zGZJPt876+;ziL%N;l))gMM2h!wKN`=&0{_M<%x*@yc?^<m%sJe8}_XIUC8IFfAhY+
zWk@ZIw=31Ya4X^|)0$a{cH39A&%S92vV8M*(8i9sA42`|(WNK(|DNbq{j{fSovF+k
z=TdihiR7lMe_nlJG7sN&M#A`-4R?InxvHg;s*3dFj#ZR0wV!yCzwC1GoT}6BGVUZL
z*fG!8Rk_>MHu$f}TG{V?#!}6#!S7=B*d4!mRh1z-G)3=%dihzMT@NG<Ot+MH5L+bC
zULy8o@@3;Wm8TzcY@e_<VRL%=)PHI6cO(l;f7+BzUO8vCM8eaZJ)0HYn6CKle{WOv
zZ{6$iFIQ~Ylr@RRX!GL@B1S82MI;$-3oH6P%P>w_ecJ2n?Y};s&+7mB&@VN#aa+#m
zO*~o4H|b1Xkiw?((!clGg_CnUew)od*C>`6AgC4Uq&!XgImbHLnI|S#PG7d@gkmZm
z!wGlglyj%FQ`t0gWhIld)@2;e@ih08o%)o?eBJ$>J9l>GNp|jPFl3fpwbJhW=JO4I
zyS*DfX1v)ae*3dP(`}){?P4!n<~DwjjB>wUw0X(Lu&G>=+lvB|9zOB-d{f5!dYMyg
z-A68c`x-`uik}x>8_bsKFPhSAS;8*7jB%G_p8F;Zozp_s!|NLBm{lgn21hTLuJOFA
zXoH66lp;fhQ<fnw)s(#+KY1f{>8EhdvBw61+24O%Ec$&{$*WL&N#K;p+ADtRzuJ{^
z$@jsjn=;|kr|+<-=VjQjW7mNjKNlFku&_)!Zu{{TSNOW8hqgUD-F@01kokF{P_}wx
zq2uGzF`3K~y_a+gwgi2+-H;loc=}F@#rf#og9(>RCV4FRv3BmlYNzUJRwr)h>zyks
ztz<ml*H;`~S9VbF?wpdyg+X->mj?VQbk5AUzD+!|)u#XH`=$GipW7z=;+V_zO|Fq_
zovPx;eqK6uZR#<#kEM)j1Ap>5hqfjco}2ib%b}<8V6T1Eo4c1b&g-stJLhwh{ETBy
zZmj#ywfetq-DRHp-O_6hFZ%QB8Qb;ic{Ow6ou{tTDJ_Y7#B;&n#+R_r)>T{bsza9s
z=-qMivgCK`3R<~qcYByY=jxjkNq5hH7S5l0np0HN^zq2CCo_GPYs}I1o0ht5i`)q%
zS%w6jRhtfNy**>^&YfJ+n=9wF<~YpRyrGaO_ffV)h}Yp4r|MZsljb+-=ubN)(6mE3
zOBFsA02w&G;^|u^eIfPVQGpK6*&DcXn{P~6F=uM3+5E?8Y2{Pb=dUZQO)g)m9~b}N
z&z-3FbMgDR4mN46%`rJ^=DW6G`Mz(kwE!m<3W@%B7<hVf?*{FdP^kx*3evK91sfw+
zB1<D(SKh6$<DPaRGV+i_?@#IcTlcd|lI~^K7XSBSt~y@kb!-}wp6hq!#lCO1hR+HK
zZEf9t;mq?LyY?MC+FHw&W`6yl*XBJOj7?D!Wh!pUuetSWfzNi$tr>gG67DS8^z=*x
zkH<0A=7O-PUasLXOGAC{E)HqE6uEziK*gsgnQwoz`<lPKub^>d;TE@-I^8};cm!j@
z1$x+*HmzE;G;AeT>Pt}`QLpk1K3qEUwnhAlwm17-Wni{uxyq;Q?%A?T6FHeP4mSri
z8w%?@P1AhbULPA8`eJsAz=S5}*ETi!aSt~gxf?wv@@&hMLYpJ!K73YQYAWWJTUJ@u
zI9-43q4$se$b@Dd4^VOZ#jv_>RZR7~v-ts5-}_gE7$*BhCOtfs5E^Q*?+*`iiKy<2
zphsV>M4ysRwAt$D?0;VFVQ013Jex}9^!{^qeyW=>pAK4J_y3o~$8*W2de?WmKIMJE
zz`W$cU(5ct_MHEoGfT7^9+XHqm+G*3)wI9QB2G`p01ec8=j?QPKS3Zc=4i*#D9tI|
ztYWD#9Ov#lFqwb0>B!$lpM;+K$yM4$Czx!zWTmLmG9@9`tEVkEg|~CE#WazABd%SS
z9^7NU&Tz|@Y0Gc>2WI|L<Zp=0*m=?;Qd8ZrH;;?m&_efjusZj}4^!7YyL0UKrpljH
zyBzu_)^0Vtn7&0Pa3|-Tr&m?u=I=jtb?f{cnJGJ`UQexLe5l5|_R8TPo(AXm`em`r
zpMqSMKJ1bY;&@?DB$W}~5+$v%_^_I1<g@^-uc7_>EqxY6w=Dnq?Yu<ArjwDG(bL>!
z8_0R+Eii6;kk+7K7#fuvxU()j@R;F}p0C%rqOBLcUw-azo8b-Hsi}{?JO5PY&QDhG
zm8zV3_0q<ltX-E@O<Q#8e_R2df!w<1WhYgiyT=HWxz2y=AF&{u%iO%I?$f8m(<}b7
zzh`E!tNCb`W`6C&0`bioKFqs+CSVn-nBS>7<K1qSo9AaPyPLP-u8Pj{cb1J^8;y1}
zT-4ez`RU9fCs)SS%=fW7bYpMbpC7(c&YAWWOCIB#_*5Wh-Iv*R*I3n(dFC9yQgSQf
z#i{=MP@cpIc_}k*{LhfkS!J~2`%M<kk262c_IHmcabX8_E<L4YtUbR^W$P67`+iFo
z)~+jF8W_f{Va|Cilr^+ceyvb(`qsJnt2RWh^<~wJ?OJ(}qjFj+-w%VA$IPoL|B0!U
z-%ENeu5{+gANHl6pNH7!ou6WM!Bc9<niI~u1n*sZab;iY(l`a}{<H69|9DrCwq1Mv
zuj#W@=FaL5SS-|iHOcPy*3YhccI`QI^mX`-nUSuY4`ePMVp~14@A$##>%P8z_hiN2
z0PZsO=jsxvHVoen9%qo-Tl{d7#K8jAFxUGoi+N{kIDV?jW<|xWcY(WanY>#5cXol&
zIl;33Tf!KM4GmZh_?&sE)5_v>%Uw+Dk(>07tNYeWt@jS!HPN(ihrdftL1Naly&ra(
zC2l-Bla0r}COy*UXKD#YNTk2~vZN0dKNRwH{=M}-I+>wBZJK)e_vJ~qXUe7O?DJW@
ziii8-_4VgJK5CX{VA%J4@B4?Zw(@4|*2q7UR9$9#cu|nX+|pXR`R%*~x4%7>crZ1)
zr?6n+6+s@O%;R?hCq8_1=-8DRKK_MOndaQj%tLP!oOf+ov_Y%g=h=xApX1j|HauE*
zK%%|i@#03#Npfk6ESpr{9`6(Ge05mmbon{OJ8Yf3a|@$aItjd1kS{^&7hl`-QZ8Pr
zI;+W$?c}n$q&-1~LRvjjqtxpH@3=1!i}X3o#G<XN5U_*ez~hrFk@MW+ce#c46!5OT
z_xhOm{Hv<VzI%ypKN8(~z^O`1Pa>hBfP2Hi(#86Vu6(PuI^Fz#&J>}gzwMqgwVr9x
z54-a)fBF`&DDD5%Au8A2@7jBS+0bft@3Yry9~)SmC`}Ytq$a&Mxl2yrN6oqXXFGPz
zOElbG?|)3WXPH@6eqhg}FRs1%JKa7wmtVih`%&`6BgxO}WSqRjciuYXI@5Tnw_fro
z{c{IQzE5XOZdg-f*FLqW;M!`RQv#NIvb96Z3k`0ZYH!#nye*Xf48xtsQ>`bQ;u9s<
zg*X0To&G^dV4drZ^tFsHuY|5zr4aLsBb)O}=B=tNal9%TC%vvuPB2~n-P+JSWKns0
zn_*yJQagirm_*ufjvF6O94`;-$enBXefq8Y+B%zi7B5SP^gA9|UnX@W**{m|?2d&~
z4lSL$BYt09D}Q{%>Ytn6+aEsq)0^QyO`Y(f&8tuC$_}}g>b7!$)rFI~8o3E~ED|N0
ztiQ*9_<QcG4);6r%|VHQRrZ;(&jKDN^-K<4ZZ^lqa9&U1CehsQ9l9^)Y@Cqg$HjRz
z=cbWjlKi<!4P$19mNgn&QRyF6RVW%i$>R}N<m}2(IOPJ<+>GARx##^Ro3kx3=2-kV
zdv`$Ov~xFG6~xyWPhq<A^yir#r*}bJJ<Ef4JM^Cn+rEEW^!1(ZHjAmJXNz^^>I*zR
z#?F7q?4V`IN+*r^UdLm$uKX`5z^<T}a$@Hx%i|d)ZqJq!uStFR=vK0+?sSv&zhdK~
z?c{^5U%q=TH)b~f!6}#SJn!7y==s+^RP>Lic5Gsx7Q?sqI{F5d8->>=*{t#mon54D
zUpPs7XK0uWb8cSC&nd-q4;7YjtYj7EW__oA{8$5f_?#zpbHgW;%b)lpV|2p1dqYG{
z^`vd@DsrcsU3UFe)cx}j8MB=}ZE##<%3Wli%VV-->f~ecOdB>;2%fTEJ+<EB?G3M=
zn|t{tf8#BGrX(NoLHByQ@xCWq$0mJQvP|tWZ_qcD1=(kx&oSQp%TN5py{QYo)vb{`
z_G-3M=1rc(bIcU;7HEeqEE4*D`nC5Q>zzMecVD-tFXdyHadzE8rwN|3_nl*RUUS^G
zgLUZ?uGw3*{eSrIb%KtL*4Aqa^TSTHRH#NBzml`qv(dfZpOK+|zMbpRRZ$N6pRDT>
zJ60L9z`L{PVGt{mVPC69a@U3*w|eF8&Gk>K{P6O5j7-38)iwsy0lo>Wb0bdfEBlot
zbl*g2hxgL3bK*13=Qo9{UZr&=Het={*{dgny?XXc>Xb#M&|{5bevjgM6n13zKC77C
zyH$7T``WTQQ^oEq3p@H`O82HiPmfk|+*%%5VtL`#5s&?$tvgpwKU%{VUMtbBE-<s@
z$=wKn_q$tTy%(JfeOHvny!pz%&<W;YR~Jn?rRvgq)r#fuZ2h!{mOJ<DI<zOMMfQKr
zltinInq{BXbclU9#x-g8E&J^AU3KlV7MhCBUi!H3ShM!Qt5;Jk?4MuUl)YAco!%<0
z)S&bPCUtc~hY1mrUT-^8dpv7_(#`7<57us*b2P+l`gHNYxrZexl*CQh4Bkmbtk7aP
z!}NIJAIa&4+^*c;x1LsfROzdov|MdXb=aDwBd5<sY8bz^3Rd+pV_B`6uy{LjS<Z(%
zzhg5NND0O?bZc-wGY#Hpo$zDv@3QOhr~96+VVr)JWyj8$4_`gIvv=RYR&W03dv}f)
zwXIiQzs@7&YNzR41G%O>H_yM>FT-=HSD7JT+BI25hEqRzuAlR=nXPM3erol_jF#hi
zPjB6RUvp_$?(OpAw}S8U4o(h{v+I4cD8?mpp+M%RNfHKvQmZZnx=wxiP|~CS=E14u
zufDmy0gXav-*lJiHJP8XGvdLerJlcE9A*FU;b}WV!|U$rJ9h0ja>&(et(dA<p3}Af
z(RF%nnV!CSCB&`Hdpe~p(~yawXSuL;d{#~VU%rpC=d3N<K4;0-pit4EYkTW{3Z0*C
zfB1~AlGx_Rjw{?t164m+y_KC{>HbdTty4inYw{GsZ_b}tZ?Bu4b^L_x`Fw#>`&Vh*
zIg?jVnx|eE9zI<|yiD0^I+tC?zOd8}k$YyI|M;o3*3Yi$qs-@@r61UB=lT@>dSS?L
zLx;^aB_kvDQJp?d@2fjUdIb;oozaWGZTF)2x%`5d8~cuG$OdgR%q_nAi&-LByqO`O
zr+dP~0~vEY9#-p2PdmDiT{Bzf|IwPp)7RHCGQ7917CRLmE^3kNn6!36PiWgg>*f8&
z7Aw4O4b14j>vi-_)kXEr{+;#eH+f=yMk$}nT-T7o9Qayewcp=s+Djj~={3acvO4uS
zs>*{|Sgf0kgZq4SX6A<%Te<$U$tP6>ZH-8H*UQ%}bZWVZ?&D|M3uY@T{_E=uDq&`O
zKVjY0P4gMe{2H8%U-JoVYMH9K>P)@=;q8xao|T!pdh_Iu67TnXc4l~^w%gB)L+;R_
z^Sh>HPB~})|Jg68^>cnVUgTy8mr8SL<J^2jMN&BN-DFS6XI^)w-T!C)x8s{4#yrj4
zjcXY%&QS2TssGDm|Kr|&MuvUA_y6a=_y6DbH^0~09XflKXX)+2bzhWD+})ZKaLd((
zmH*o6%g6Iu4*1VJvG&S}hkk#|?DM78WL_>_8h`s~&aoqVwwqrMuXq{4egFTx{||p|
ze*f^*ov6)en`b|$ODGXl>78@BK=5Zq%gHNjs=`i5hO^u6Z^_)ZBl_vZEiSV*{Qa5r
zw7#^JKi=kew|tE_!-s>PpU<##^^6Qv%vx`zwZc=3ySLjr+Fjqy>iE~y;SYA6t+kW$
zFMRaMSxxNA-JSQD?q@M<_uY4xA$eBh#nMT^KR!K@(T}rXXV_Em|M!lan;hqcZ0%TX
zz_qG~OGq!F$I)<G*4&d%OjtB$pUrDB-E?+ZMf^^en~%Rey|nu4o#?cw#}0XV>7R>#
z`1AL928Q$d|JU!>wPo6xRWTN^yZQT8<lcX*cWe6pk}9@`se8=LSA>LGUtjm;*NZJr
zKW*VYy*;L0Z!zng7c(x$WQuNb3dv&35MJ`;g4ELTrv_FmTE40m!x|IgpNGbAr=<z3
zb>13Lutu&%KPB4p>W8%#CeIGlJt529%zfjS;FR>KfsU<<g|#hJavpd-p33F9*HCP8
zRmS8g*&(kA)E0#NiOv>|DVq{xc0;3K=Zw~UFE8Fyj)}SPJg3fh^Sd0y&8G#0MO1F>
z^0g{G{Pd}+o?cGN-z+=+YXxaMTdK{r7(LLNvBHq8a$fs_BSxn`rsPe{_gYzZHTcLu
z(0&NrmEkw?_TOJ)>~(oUh5W7O@9hu&|98Hgnc?64|NqS5Z2mJcJb3kr>uD0>Q#HY<
zVTlWZLR(LjFG$dE(_4EbgX!H@k2_b?S$1zY%(J$0e$Mrv%L>sZY*Qzf&5fV)_^>#*
z5AlyjzV3s}_334eL809)uT~tMk-Vj?FvzvARx*bF*ksK#^XV&MN}}$bQrKGAY0!4}
z(#5Nbp5^_Uoa=defBc+1H9wi||2_BrLH+;V(F_gz_x{W2>96f>3@a2`-osaF7C&Xi
z&XWhu=Jc&HvZ#IaWM6B`i721XTQ@41{^ESU&E)2%DCsrl_jaG%`nox8{{BO&r|UB?
ztdFbfn4KN{&n-N`udYj_yD?Czjrq-~yd`ty=^EH=towgGe0rke<#Wr9mOVXGmiaGw
z{?l*oxBp#tN$R?u=vDXiagUb1Z;rD$KJ|6|mUU}vtUm7MWf$Q2b7|Y>pE-S=8vnZm
zq#dN+PV@X*6khp8xvP4L-|_3Wj=0Xb78<c&^`=$JOH8b4rY&;`^>Pf=k~yuv;q;;w
zFXg6eX5~q(@w42{>L0u9wQ^h2KQBvP#p4HKwK&#U?$EXi;fgwHcVw~lYq4j~t&Y7Y
zxXW|qe1?;k-+|vwxAQ|a7V<ud@pLukUmLO_UDL(lKd8}AE<JJcPo^l<$JPEH8Gjv{
zVG(@w)&d>xJ7;p_OG+#Iywhi_c=mb2!y^{`((8^joV~Mg#=*0^$8Xp&Pd+JPzRrI2
zDxq69&K~}@^z_Lk)65wA*d}3Y&zNW8^Yohi-6Zkz(E?i!wN5s)tN+jb<KF+j^$ZQ^
z=j$4-ueW1jn9{xT?$PhlEEOUyoL<Fc>CBsKaE5h~_URPys{PVEW#+ZJ8{}?Jshb>a
z?3NrDwfg(ltD<@_4Qp1f&ORgFtsr>SOZ{hVrIM*>z|x}irfKJR6E|uY#!uOp=d(rV
zi)+@>o6B<Zl5gI+YLqqUTm9QLTlDAc@BjaI{{Lg;`##$<H1ylm2!6U|bVK7B!-9i{
z{QfOkV^A#iqcYM-v-#tpQ@5rDnKmciR}{+q_;!)f&7k9#A3QWWW+B=ftQd3NVD?VC
zC99k)jdKqyeJ}lZs%FNDAolWEH)|Syp0Q*8{8K67LikhBcg+$WYnOkhwYEv0x~i$`
z)u%r~;o;vZXPkZJ*vPy#*QG%0Eq9#W8gZ_kn^n8!oh>MSYg}_D;hl)BSEk3!dVwn;
z$M*i=DXG(3ts=6LLD8e8QR1)G-*t@_OTE|n>2~bPe5uiSjm>i#=kMPcy}ohkjV~KC
zvduj|?7!B0?OVv#uSzE8uCfHUB`%z6rC6$ZK}*Db@;V(S2Y<0m=M9cI30ThE;ikDF
z>i;6&Epx&{*US!iw2oI{iS+H#o;&9)n*G*(JD%ylK4Duu^U~D|m;$GAtzuhh>XPK>
zpZd{o$2vxFrq8XX(>6yWJZ#z#7JBvO9raq16Lobq7ntVmnC{E&zB=iy?;&0WH_ec|
z!1CJKX6fm6xq(wP?mo#0oOWR<+vnB1a<v<CyyVn3J`*z1XJ828I&sEbMEvaW8L~^x
zpSHjM?)Tkk^(vmJM=Lcp*MumX?%HwS+Ohd(d2f|DJa0O@^N!N#<1^;XWn^%>%(-L2
zhlhT-2{-PV*X!K2PB6K>CnA=8xA*qPjE9!2TvhN`Ohw<WLjL^y|BP`p8LHQ&ua9^B
z$;u^BGfn?+#f%A|Q{7&wRi!R%bZI-@>hesh-Td1}2{m8ydxxgQdpuWFFt&C%rNdtS
zG=G)WOq1hf2VL5Fq)*&Q@3C+++jM>co0HbOGL?6>TmH-b-sx68Jx6ZI%f1~G96CDQ
zn_R7HI<u%Jf`f79&AR;(z6wRRpKVQCJGK7syL#Tcb`!SS*iYKhy3J-$drgdmdbjhj
zgEJT(E7kOOpQ-g%Oo>lsC^pJF$?%SyW&5t=lT5~Yr-|HWn$amOSy-&Ob0M=cN2AT=
zrxQ~x9~fUdb6UbZCGODuC6}0*K2G?1<kzqJdeR3Le92?A+I7d^*n%ybE4ePa?(|yn
z+F^}-2Jgdj)1O*?+QT4z(exEVcdhcI<p=*gy|wd<@soA-fl;ljX2~`w9SLoRt@%9?
z6`pb|?)>bi-xZL)m3P%P^EnQuz9qM)ytDm$uljv!O!vS4`TPHt{kS91{QX`v|NI|E
z)D7hNKYq6V|M>^#7N}c>pc|BG9&*PYSnS^a;l)K|Fne|Q`d|A*;X?q6Tu(IZV+UPe
zBliE-`u|e@_;yAy{<%5-ujIc!=l{#p|Gi${JO9_p`G=<O`=a{ikp3U0eP7q+Km77V
zgyF-_^YwD~|Gq2#xOIIkFT)4x{hzIW91`ExQ2*z6{hRM@QO6h()h`*ay;KSiUo70C
zrnji;M1a~wlY=w-tGi>A-h6xZ*wF8M&b{aA`TJTY2Wx*lyQIhZlJ%vM=bO*IxVH82
zqM2X23|r<t){%br<clCfbe+!Wg3^ag$75n0tt;n+KBz3#Q;0FSeDNfw+}sH6UyIG{
z+CEk=>E-T><j(tFI^o^K?e5OmG6LK7Z4FX%xcT!Z>pA_j9Xrb=eRXa1s(#(s_uTi^
zq(C)~T3!Z4V-dYsZ!&DSt|i?5*MDAYlefZ_r_2$jJGNH!s|VXu{ZeB%P|){rEAO}9
zb7`IpM#8uDhq1*NoS3+E!F)eI1KVmY28~ZjU#xQ@{C;Kpuk}8__<rBRQ}s1Xm({oZ
z@y<2aS6I0?-B@Co^Shj5tUcUCM=dApG^;Nw>Y98!pMjxEX_|fho$n^Ue#S*UefEHt
z_2Jh3Ip-K(E_z@b!JQ+qouz4)qc-o`KDDiVVll}Ib68^wIMphC@IJoiy3kB!!;x7#
zy<QY2q@EWz9mCal=qqn!po7QlbK1E9JADLFL)+|nw3#)7R&V9Jcuz874zpy-i(gii
zJ8Bhn3b=%?7Ff97tLT#PxkXuy931I}=TaGGK2;PxWcRDtE}_RYmFe+=7=_chcjwHp
z<;vZ?W8T75YYqjgyfQhqX0;@P$GHQWc!ZZP(mEEL;+M&EF6-@{zrQ#9pQQS?Vgc(f
zxd}nn);yC-=K1$X{~uHRC-wTK`#*Z`GceSAT^)ZkI)85~_<||%{Xbl5KF_{?<odpE
zrZtbH?;qIxejhi(k5l3Mn$FjK+x+9&_I<7M|Gk|5?rYqwBjtSz26N{<=<UCGQgk|x
z`t!1l<%NZL!Ownloakuo7Gc^sId#5WUC(CY-3My^eBqsAyQ#ZWar2G^cit+M|9^XK
z`JG2|tiN8Wa}rTq>N+p^*Nr@mTA%%`lP?>`{Cu%)v-XPC?~%cZNBbVg?3AA2=jR{T
z^Oo&&hRLxMt45BM6TaDAc)xAx#AQ1&i$%V;2i<C!(wM+wbY8)I8&7KJ!5u#sq7;2J
z7{pS_*{p2rgS>i<C(qecR$ukaVuy}N*8g|6r2f|({&c%4=*EUTiR8q<ARqUNKTkSq
zV|xr|?`BQ1WarLY8MJqE;{&0}MD-n!6O%=ZJg+QW^n2;cuzP>qk55bQ;CAUdlmBUM
z-^VY$)@(g)8~>~>dRN01Bl}@T{Gpu(GLn?Hi!WxnEPT7Y_t@hdg7b7dw(s6pdp+9t
zQt!j3zx!vqcP^2#`63$QRWPyHQ2unQqsH$!5~AWyy^iOWtz}UAlQh4%Sgike#g4Ww
zrCNK_Piuc?R^1Wr(KxYq_v{|7CwYfM3dHVAIpw8pl-0Vb>*+$@S%#{e><Npa8754d
z(rY>IT5tT7<u}8ZTrksSVwhQ&lGixzspXO<2d~%u{~K1mL^|Y}?=ihq>X(HL(th`T
ztYCb~Biyuc$-Iby`^int9DL{IYCF$s<>lM0DEgSQq{3Xm|I6bBu@}`3Zr}fBX7{nv
ze}M+qp5O0wgYM(%ng646{(<s+pJi>Tzwv->4V2gyEy7y&?s*+w{QqCqKOWVu6a4@0
z{r^7qe!148mJBt|jOQN&6@y>b*Z)1o`m4t7_#M`XObwquf9_rX({FlW@#~{`1`5+R
zCfB@vTh74HFK^Ggvi#h6eZ$?mj+|jVV-&@{`nQGtg#I@VKE1f8>=S$M`NfJRVe`Pr
zGjC+h+j{<BX7K#uv9%Wt-{B}^QZ??Jym9V}uH`aUXL98(*Ltq_p=WM{%YXm)`kN~_
zDqkG5Fq+wZAg%ZGCRXl<#a~Oqqp$EJZnu^9{qW<ZbcDs}Q&%gRTDff&ui}!j6AhZP
z!Z6vXVUx{iLtE>kv*rIwFeF&nww7?ukM&-^Ha%hX%fn`R%X^azcC^kecv~_>+`_W7
zP~_NT0gDbv-YX#%C#T%F;W?{*I_LAldYdF3WPaDqY5jfczn!hGWb(rMGy0BId^)0c
z;ruzd#YK!7mc|Y}7gK(_*E1v^_<N|m&?BAm^k$_m_Pe7le2>k~-Jo|j{jA^Yp67{$
zCs{0>KRBa%N;2UO)7=+Ub-Ctd8ta<x@9*tBHL17Z*CLLSn>W7u>#X|D)}Z6eSKdmt
zNQ={39wbhV-kng>@IBa%tzP!=)QrW8@7E`prR&V?n`si#?7L9B>FKd{H|B-*lOr2X
zUa>QFo#@>0tn09|GVg)uCwbD|=)7<h+*PZXY9yz|#gd#;+16_?@ks8AK9epM-E;ly
zpB&%MEWckXUjNy=zPbL_^7=#J`#y<+lF0nucb<QE*e?I*=H_&UhVA#NR)3ql{a%%J
z&9^r<jcfiqmfv4`r@#Ks<A>I-e_Xczd-=ike=ja7|M|fGzrefP6@C)ENvqBa+s~)>
z|2h5e>vH?QnKj=w&p+z_?}`7T)$xC|>^{#t&#)tRWmMmf9agix{0&t6|D*rEMEwW$
zdVzm-_V)LaCcY~#4cwlvEy4Fo`{N$xT`P9G8XhXiT6=HuNtX0mUZwK(a~ErQhbYbs
zVSSwQ!qx21ih}*}z7xd#E@@Xx*jFs?`)$FuC%%gk61LvGbS&(!6we(`A<O5ElkBvL
z5>yQ4MeWoxwpt>mIhAjd`#F~lb%u&fZ@gy<?dg5-bKbAAkAe^Wq)R$KyY;`Ms%d%t
z9?2zTPyg^vIcGFADo89;GU$uJ;pVU5X+n=bim3a)DK0KD;++3>m4k=szrCXMQnFT+
ztGmCQPguIo=7$#d6Ti|4r)?r;Zt`*1u{W1B{i5rZl*;TyVN&PjF{!yIJ<fevWPR9V
z&lxu*wu4PvEuYVPvwgR<KXKwyNfnD#7i2_x%8y@NdB<v5vq+HIzO&5h8~9dUJ<C<T
zVwQc?q-)$gjs<deOcEFl*Y3V9@J>K9Jm8L|?4%VB=WuJ!=Xc$&vN8VeH`_~lofUWS
z|KMTn_wy^P%KH86<P(;eub)Rgy8R~gec(qy-3OUlzJ)wEC%Jn0rpu)tcmMa6p1VXd
zWrE^2AHh3Cn*sy7`@aZ8oD)-+!C88ErbArCc9y{Ka+cKQ#%oeutjD*e#NAt%dRt<~
zLVlei*Df&Cp7&WET=VPl{A1hq|IPjLYyE#KhHTaP=X1*smCv)Ums|4+bP?jc`u~5U
zkN<qo%%2x|Z@Oj|Q|ssc9GBOBePTp@vBt$cIpJ+>IXR}m(|X37&;}#XFNgS&K4%Fs
z&G*opxSO?4L@8$ZrO+>PH~(5JA@bya)z-YAKM@k$PY>?oV7xD(9n-K;!@nnW^`!g7
z9CEIfcBXM#8>YUR`Q&@A-j;{&+1+2&XWxEbVRY=|Vs{D4>AcU(rZF(gIcTx->l&Sf
zbMmcrlq5DLFn=rTJEL2$B%wnyqP(Kvcg&RQ9GlNtFuwfY^d|P$md1PX!D&W05ve<Q
z_WgTzh~WU6u#uX_!{^<WQ>Ldf7e2NAz_zD<^=e%%=Pu>Wz{F&O6jwgYzt3{nPHvvD
z@5GU#U4d3lyyu^P?wEI0vg!9Zzwg&SGHuisUsd9JZj$-y=lzd2I>sz0RCMZ@bS3bp
zf!LF4g;N+-xva~5`pO~d*YP)(_i&x7<ghcdt?qHx+jn&F@qWXqe=-aONA&}LZM<qV
z-Fc>p#GFo{uL`a1i<;cO#2c=V&hxnxzSNEDSR~K7+35o3{O!&gThFuKQ029m&uHSp
z55+qe1Ym0cKGn}u{`}6^>5AEGr~k<&Q-U<Sr%&JKWj5J5Y~J?`ybfP@JnwuzQ)74B
zeE(11J)h56|M)2Xzi`jrZ?}I;um3sy!_TCR2loHHz5ikH{NFMR4>r&Ls}r}suJ`|+
z^Z$A7|Lp(&gMUxmU#psS_)XRpHYb|y8Q1@4ukVQedo})O|DO~64}N}r{^Qd0eJ!6q
z7yr4I|5r>R`N!Y;|7&Z0o{m4Z-0rJp&8y(~ho<lUlj@@;T=Vbqe0GLEXU_lOse3uS
zjuT{i@BUw__cJA2Ui0_V`afRp1@A=jrSTq<*zv)7iqNFv*LU8obUVkmI6$<lJxK3U
zg5&c$EgWZJQVe%}z2lI*d;f}>FPCx``SYH7l)BVsZj4~}%HkG*g*v?=6OvA5y$HCq
zBVyw=+ltB!jQl~N$vwPNilPH|zD|`BJviy0L<_%`nsLu3o?}-X<6L$srW+nTceaKx
z*0R&O`%~8Js^v`W>-i@}#Q)m4{@cx03-5AHOED5~VlkK0R9*6Az3U3@xnj#UuI$!&
zcxtBMlsmf~6&#G-^Jbwv<8Jc}TmGm%KQX6C<-F08bF=293k980SvsY&c5hHbh+Q;`
z`^zh;F~?S((+j^|+PS`a-97Vdf8LsMXdc+|e#_e5!rnoPSv5@`Cq%V>cedwmxqn;Z
zonch<mKD4I<xjmGSFRkpe~Bd5oS0v4zKG=SWSHka&+h1xBWx*uUtHCeNc+tbnkl~1
z*3J3K!K}QjX`hw~@A`jB=*hv&n$s-(=Nl_JTiNJwiRkTJd*)MF>}5XIwpoi5G^#eq
z%=}Uu^locbn77ceu(x+Cb5@4(yk$MU_x+;D&oy~PJY@8?IJ}?vzV7?(A7}6X@!eDL
zkxBmdjpH9?p08oM|KphXhsE~47Be*1|5|K+=<HeEy6@%n;_|g$1n<>;kNxx6{(td_
zMm~o6@8$LF_kZub&wcS;{oCtxy!Ah)*WbMFTXOZhN|5zQ*N8Rgm259l!h;GV)+)}u
zuPZKeZ0SCOwuK+|#W*=xu3XG(@=i?aWy5wu_vc^s2(`WVui4sBS9oUH@+Y1Ao4<cH
zDQx6xe({`Vn$ESihvusb*31@3pKkR3o~Qb%9#&D4^4X!A3N)9yJ$|t7pd>f<$2Bw9
z=exd$&<jmn{O)(JCf_r;mfM1J%n!{F$dtJ8`Le)X)eEZ@ocAnnonVqy=%k(UB06a0
zdfih?Vt5r&HYGm&y;;Y5UhlHWTVLegaJ7B2i8m>4?+sq*qjy~c&ULHoD(Ne{p>tB9
zr9(L7`FBnRH>nRg&(!-e**D+#-||1l@44~;hhLj-v5AT&Hs<s&I^S)#$vvcaY5T*i
zyzYx*XFrz-I`;h7v*_=SPrkanf3JnShhna0K~AD!>*JFrMe^&;>@wW<_1f(p2g~=f
zGyM4Qll#t{Gk3mg&vw#1v3&ZZm4^4XtH-_YbT)0%?VVg$chr(wPkHg814oWdpXsBf
zai{p(g+J#Rw|kyTUge(rX@;chsToGS#UF05CFcBJ8P1Sw^T&<j-bbam7G@cZ_l*C8
z8V%2%_ZaT^ey_UX{oe1_>Yl&6y!^-Q{eN#yTi*jO9B!y@aZul;?y>sTO<tbeyH4^I
zho#KWQr~)NvqtQ5A%`=6b$%#C2)8CEP7r>~bLzj^<Ox14#WN*zvy+2XKfYJ)m@R01
zd#XWY_xuwnx(gJ9W#+hcRtH#R%#CT}oS4X)B%*X|&7O<wb63ZH^K-5A>1wOm{pjGK
zgN7&FPq^7>AC%a+<*Q;!iFkxc<AwvgTTaj37ZDPscYg0uTYkZ#Yi;V<xePLW)w4S8
z8RnW-Gx#}9Iw9Sy)V?C=fJJ_x*WyU&<Sa40D{FQ}ZrGP%)XlhU#_skX$G??G-mU5_
z`F5^u{lY0mTa7ja{Bz}yI<>Un%%a_nS$B;yXJ+#*n{)NLX9;8UzklX!iNEz!UKU$t
ze!g3sze8)+?s*as6P|D>AFOdH)IZ1{-}5c^a0Cy-EVhKFhKnrH&$#XDvtR#|J-*u3
z)c9}W_uoB=E1cbqa`?;7XJoin^O<*!O{w7B^L_=kyBQN6^E-x@a_{QoT`E>!Q<>(x
zAUw@qDrRvDhht2)lKZnIZ_?A3TU7sPtNnXS*rxW^iMZrx@9WoXW|v4;j9C5m_G+%h
zTwUCPuUXZ!TzeQVOSzr+5UsiB>Rxk?TXiBAnC9MSv<S@HD(@loV)93mk~W?~ryTYj
zFOrp)@M!K|v*pC{7oJuDYuE6bH0Ye4{6&e~hyC^Ekb4nNSZi+NuQlOu7FuZQ_4Ln?
z3emcRQ%k;{KIOE^dQw$ogp{v&=KseRC1Mz6ey-MYV=a3BOffa%`O^v>;U%xRPU&7a
zz3E6&9Lx9qj}<&^C4rC6)o-|Z;VheIvd)e&k;P1VdUEf%e|YNC;@UIU<afOE^k=8P
zyUXmnZ!;w_;=%2I%QFwk=Nw(Dc5{YSjD29Q`wFku%UI3@R*3WKDYEdJ&ex0C66QI}
zOzxMuw6nsr{}+DEU$;JO?)D;!daYWqx~Lf*OQx1R{+nyAIxlXo;RV0nrziIooO{Ez
zw%j=4+SdFa`QP8%{nr<Yn=dpu<`?(GqA;&pzWTH7p0CGdGc<_z&rc|;<YmwhSKVT^
zVoUGh1(Q17=&Y4C*j~xFTY-OFip<UlilxshtT>ZDlvH(Hym9K*`FV35&MmiNWcbl3
z|I5&(?((l=>6L~%o-fh9bc18&i2%!)_7>dzy=PKp$QPb_o!fBSS0uMYM!uw{JLUM>
zyi>(LHz*d_>t5lXr5v#m-hLN2^3YkVBq@8>t&pcZtr>6C)rC()#vbE{SgGm1?fqt*
z&TH#RlQ;#o%2w&G*LHK=ut7#^>)b!nQh74J1g#Gah;n?L@_n9bcH8-_S^qD1l)N=H
zUMs+~li%w4jz9f5;rF8#SvcECF)}P$9-Q*|#jS~{l^q)MQX>OeB-T2aWUpP7P#7~s
z^^*<%JNd;IH6ns;-8g!GeWL2ba<;ui)&+9Py4ki}n=*12g-rPzCEX_!!kaAgw67!Z
z_mU}!C+<I-{$DHN&vM85BbM%QKR(GXE(*&}=1G~hL!w~bj-M|QG_TKcw%E?6>$3Jw
z?T6KKmoAGvb>7<UXso~IExDNw5`#`iEU1}(UNnIF+{sB=>*KfjH3c5~c*DKWzxjyk
z>Zi5Ww{B-Ue{1vY-wY`Yyipc%xA*-!dD(c+*Kg4b4dU`P$IqlcoxpVSr)6H6Sw_su
zd+a$Eub(mtlo0dFoGNPRw=8*%um9c3dq=*!0pC@~_B7?D`f~M($G+Ny{};;tR+004
zTb`mO*TZ`EutobBl_J@zb@%o<s~vRA|Ng&@XT|P22FIKx>^P_MLV8!n1k=AC7O+}f
z>=6_1(D^uBs#iVnLZH`CK7O8_;|F7B%*b=uc_sK;gpG{10o%Jj^Ec}>KR7(uB9CwP
z*YMeQ_59Vg?CY7bYC*^pZ6gIqkw-U6&s3+VCn#=XU>DzLH*4D8gJE~2YAQJt4?oGO
zDr)mNcc5i8zv6_{yhl@yPAOOWcwBF_mYaC`wdqrKrYp<$K4#;5%)a;NMw|S6>#K`B
zY8LFB-5X}*bLvtA<4fihbFWzW&J<1J;<%Xf`@ZwryXEID$eMg{P4_H$85lDqW9=a|
z?Z<hO&E`yY-Z&%6cy32kxte0~trM}Q*Iy2Lzt~H1(fSJCsq=J}987e%lajhG#x(lV
z?e*Sk9=Ao>zN*lYeKx1{S41?s_xtzNbK=U&q)(@b&)nVbsn~qv&yzQT_ewT>GPnCD
zmZtaHXQKEH3(Lbb55-<QWis$f(tX@kKFzylj(w$}<l~PwmCNsF&a<f#?w@~y_1EI#
z{)d-2Ocb4A{e5{%TE(X$^ZrksU&Ef>zs7#geC9X1`F^z+vvCOCIcXuTxK#7G(wFC_
z-P*1eGCevblCb#E@<<*j;XATsf2(BHWUQ@|02PL_ZspaV_TTmXz$P8GP%rTp^FkSe
zw)AzEs{Fe$=d(nPM+fuv1=lwpF59X->)D#EjQ7s$EsfnT#`gZz`I%?uN1tx=X1P?v
z$2I9C=P4WRYlY_`I5wr1f110i<!Dj5V{DSR+SFA}){?z$Ct@zxPkh#B>2RskN&Kxn
zTXA=7N9cqj@2}i0xLYN(Uu13f_96#)sqatCayCji)jiYUp1tMPj2)Uyw^L6{j=7jw
z)B5G6RLRfp0xErLPo{5+k;}AP`gFVI*M?OmZ%Ri0<ypHi=>7hAx9s=tS5;*FG%+^B
zzVZ)C{@%}K3=bZ?;yQXGYJ>j$T}Nun+6(PoOiemrT-^{D=HU0{z4~NMzq=dH$@vx(
z{bFG#sH*CEnbLK#^RJG)Z*#pB&w?p;ITDnPm%K4+TfSVPf6=9s|D_k~dp@dY7_Mja
z@R{HHWnypcy|4D2yOvCg+HmyKoo^n}M><s4jw!AWK|1FoLxJ1MP-D@Z@GEi4#lFnC
zbZ$nJ$^DXO<GVZGWQl*CvGV5*)%W>X2UE%;_H^97F}GU%{ak~TrE5;RR%Y>jk>pF7
z{JiJ7%HGJNuezU<euNcYykNBH{jNRdXWbT>V>n~Mp__lo_qlt$Z90DMU$A#(^s2Ti
zP3rG{ulsH8t9mW#|K+N`yxynY?p*2<q5O31R~zYHksCkA|4y3P|I@(h;HBQ(8{Qvg
z<yt<?s`ih>{69zdnK!)s{$}FTCHK#WNL&_}S>7vnqV@0Dlqm;yY)rC}O19cs^z&s&
z)5Oio`rVYDRI+L2M<3}mR6N$x=&Q&U5xKkn%eg+q+h_SAp86V<$4tDHC%f<e%c^&q
zPaB%o_;fNla+f4!XT>_-_FKStaQ?L!w_ca(JlA@^WU|ZwmsRUO^)HW@<#X?2<oxS}
zIR<SL+BA~&rcUt_dvQ`coVEVp9MzZmYrHhg71#XSZ#ui;?S8RoYTsnH{lBZ`ba%>y
zgIoSzQQY});kMoBVezbH%Qv?s@6EZigVnk5>YqQ8zdth1+Z!V{KmYFeS%3Nt?|iMB
zapBzMDYGu0WcihB<}v%3nZ6}M$W*rTDn{Ei#P2N2X306F|4{5|q?*&4NqbIA-1)tA
zOR~q^_mwN1WLM^w{`q%pdud5d_Jz#7|1$-n=E%$O7k48Xhze|Mkrz7GMr8W>rUb{%
zFTO9<R{Os9UgST9*5@__S&XxIxT9BW*9ktk`o$B)tb<u=^bfsl@c&)cHtWzd-g4RR
z_D9OrY`Z9{7Hg}yecr)FyGf3`Lbazhd^vXM`|GcDr@tn;-Y;J9H*j*<ytHnHqB%b2
z85kycpNSDETPm_-f}^OaMSI~Z^_jaEyd-01w{U3b=x6R<UvqiG=G{9O*8Q^kdQ|q}
zgUE#&KY`0?r6*4>S(>u{vD)^fKeK91(TvGE)N*ziiWXgxZrFJBYu$>;4}2>GihG$?
z?SH(o@7<|C*I0J8YrK0~aGrHt=ZQRfsXu4mvYxZtbY>~T5tSoch8wzz^paTGqC#r_
zTNS!`1ZS-4KF6=KoB7?0vdOD9mrIHNY?jdJXUCZPz9^O1(33p*0#Dla|8>l44C$Ws
zldL3sZdzZ9RQh&y0`rv;&saBZnW?<x3Ay#cmlE2XtL(Ndy}Zc2O(E0$)VK3@@=hK6
zVq<48`%IF7zX9_>*R#GWzugvP<T2m-&Ft6IbxnyvuQTHAwcnPu_W_;fbBwRfbD^=t
z2hYz3{U%-iwQRkgxY3rAUmT}Y^9O!uKloQOt?j_ItA-DLNxS|2-rX!)zjqaXlwz}-
z&;8<dm))U!p%3exyqU7~VPEe>-&<RKnO}?F7Mk;W%BGyX{uZ|{GgUUc{LnW)t@gvJ
zWZ6$Oe-tq{wVEYOKWiOUEvTz$*EiMkpS4R{;=wGxEZ_Z~tDPq-;j3t`3$3>JwV{J~
zU4JRd>bFr(&rOngaPR&1;~##_Da+aY{j1}~b7dO;muYqETl4H|u#ijB>vT&7;kRk8
zm%RC%u)5|!;=b}Li<6&kv6W*H_gFQpxk2p35jT^W%XH6Iue_|rC%D;Z(eCfOz3U_w
zeEZht!uIg<)9~4{iStV>7cj*gtWCWq_j=o&8*kTdcruxd`%mqZKNr7Cx1=6EySS8l
zqv98?+j>Inc@>o>0`?b2U>*&^o1w<&le}WalMLqxQ-n(2O=DlrVQ?rSTaVkhpKEu}
zBRiJu4SX-%x^A!8vrRDS*s+tZ#IA?l-*=tsHGjgJj{*AgZy%H}Pv0@=dEL{kJ&IG-
zHg?t?`oy|s=Ypr{UjpWxJs4(xu_HESLEDpOn}RRcTv*ema0}$UzgukLWZa(H&T%Z#
zzay0zxydg5>!ZY%{$=GwQFd=0I!p}QesIRTWd$$KJuu_VUb;B$mPNRE$nI?^C)Wm6
z-{@R2M|yYI-CK^H@jT17OWqR|%)O|w?-1iBgLj*<SEwt1l1-E0+L;xX7Jo7Izu)_B
zk6wFA<nA2?U$>v(<DT#9XQ%M`pxT7}cfXnRzARnN{_|7gcAgDe;;wGK^6&iz$-An@
z+=T8WB>WJ&*T3)Roj#?k_;(T~)|%b>@m*rEg@(&}nccUvJ_x*<s8H2VbAhu7*53r5
z3Uq^G|L5xI{z0{mOFAY_+Me98$vOFqTV3MoJ;%dq#qQl)mGvn9)|$Zln^KGHtG3kf
zME$y`HQVO<Zn@0|8I!K${r?_&-<5r9>Y~)0?;dV=J@ePrkbK|vSJR?PcLW`naAVKS
zyMLWmF+~-x_|@5_9<9*fm@w&i-QqKnDYp5Yis$S)_koVQnejFDQ)Brx*{>7#p3wHK
zZC+A$jPbfR|Kp(InGYLIuUF=~@Oy#!t$Pb!?OX6&cXO_g&w2TT*gaiaZyS2fG`but
zzlZfphG6s3)xLgB3hyvC2X1j+^=--9YhO*YX7lFinu>mV7<%k5&qeo~Qx840-j^9g
z%3A*0kr9@zBX)7p+&^XE<<_kCE-f_Ja<7$T?cs!Aaib;+lW%M1C~X5Bf|GW~Fzx7q
z-Oj>%W=m&h22a+wCVgJE>_hw3i@leVw}j007Mzi}z{2I$ZKF)7qp}Ac>ZFAK$X~bT
z%fkET`?{w^@$Y&k_rB}GzD?Y5x6VZD+s3O`THw9mV64DJ)_qImZ~Jt<V7r_YBE)to
zt}p{L^`G@v^Mt>5TWWsqBjwVJ%-3&jq_u}l{<CcDruvTD?Y^(xHn-MqTRV55ba!-W
zJA-$o<@Q_eO)~%QwmH1D*xcsZ|NHmm9(4=-R?qN%Ye}R1A(o~9sVft%>z<kvA>w_9
zsY|G!(_F7*LPhIBj)~IKxpx>eRyZy?sOpyd<ycjtg#MHU!Bs8+EK=HfhJucq-BQ!K
zoH8r#aX<c}xj>A2ZhN`i{FF)G=A^5g&)h$E-us!x>Hoet{Z(IU^U+z;&!TzZ^7Hx6
ze~CQ5eD-lnO%&6AKdXmldiL)v`q}w@^^22J&z*kN`Top_|M3=2o2I3Is}Fy6E}zTl
z%Yl{tCAJldbRIWLrC*kp|0)zX@!$XSdyjt?_Raa1{B74>-$Up3U$2T1`}b|%Q=R3^
zD)pa#|M;An<X8G$+V<CNi^<JF>q`9QTm1bW`_J6+s4N2mgV6)g62AwxZrYZA>rYu$
zVxy%cV{E-v*#D~)xBZ99_AP(Dhvmm@wXNHut)=~Y?$Min_+LKNe74-?jwb(mk;|7~
zuHGzQW!2~6;!^7S|Izyc?;pkdc>Mk5#ha0jDyM9Jto}E)w5-g<#U(Vf_s;jm$@Tx9
zcsedWajr1)>+9#|H%@u7f6J;>tGsPnH(gyn|IPGE4gYs9xDu?9J#{Ky&-9?&w+%u5
zjGG=ua)KPXV8Qg2Q-WlyN>*IC%)r3lb;Q;6^Wp{5SAP5UZO4m6-Cnl53=9igZr#4^
zZOiHxG*QM((_3@tkB`UYA3y5W@0)8~?zS*M<LeX)e_5*%4ZU427X5hGE}!(_!NH~T
z_?|0DF4~^bac`31xwg-m?wU(8^7H$D{i?d2bfRZ<(A1S(U0q3<`XXF6?K>yzKiJHE
zT5zwD^OtEn7o&}i+$`Al<OFv~Wzh~6h%=cP7#!Gs>BjA;C|s%T`0~r^>-u>+pH5q`
z>Qf&3KU+(vMOEHy7Sc~T?iEe6U|?W4(GYxxk%2*hnahfSfg#1gk)45|fk)#70|UbZ
zM%KMOw*UWpHmv&c;>G>_^(H1JN8IIWLtbf4?BuuqWAJXz=W{F8ukY{b>Z<ttcKhzN
z{+dT09qnGcZ=W3-kA%SXJ4N0(x3{gmJ>&21@5k3fZeA3i;j%EGBXV=v(MD$WUq!|m
z3st?R9oc$4PP&<mx9j2I_T#qS?+D+o`Ru#h(7j)-xAOC|qZ<+rCp|dOSa?0Q{Aj=Z
zzZ<z{&ds%ce9roPPa`w?u?>lbA5C<Z>+I|6+jmFA>q)D4Tu0&KV@DqxY)=00;NZm@
zHzeNg{T^4i_fNsHX*!WYqN1W36Am^#GO~O$Ung#lg_f4quDh>Zz3O`XR=9AR=8M!<
zXU*^TuyTtXne1;T8NEHPS2}->;WFRZV%FvFbiQ6Wap2+M_T)c5K5ne}`RVey`d=@X
zC*RzZ3gX?^k{NvE>eZvU+wY3Kef##PA-~;^ge}{)9a|N;I_c`F(2KWjNo`I$`)alC
zf+JB;QAzLa?A%!R_*lf|G~bf4vSU|P20#Ar@bFPXZZVyXsoLRg#l^*I;`iIt{r!4<
zhGDW>NolF8i%WQTxX*k$TRwR^nb+6X_dk2~EMjAlt4_?04I#5#<)uusLUdwxnb`e)
zv-!uH&F7OoJvmwU{cgE<dCk*y<Bge@msPx6Iz8#mj>5asP7B%=e!Uug{N3H%-P^Zq
z+xE!nx67Q;&P^qEORq1rEPhrJUG{Wp__E`2)oWagmBIxlhOLW<{PXX}$Hyzzt<%$u
z-L+-Mn-de2R|aS-5s$AiTsq~_^!U1&N=mtRc5JjrJKV;rsdVXjeEr?>$?DR-zrFPq
zoEQ}q738HUYf+#O8Xms<*|TSlX2k9;TYBo$sV!MoS4|1>dcW^?-l{cge0G<;)#|H!
z+-n|`o11G@@gd=U9z&#rQHn>^&!^L$wi{o%cW<8F?l+sZq@A5r^7*X!@}HldFP~z=
zf6=&GOxNr2@qYWaAkT2eIqEyh%F1r6{QPW&RcY4tr@_npdi(AF?Qq%rsAgmB?{7CY
zr~7aJbLHB#V`t6p$DBFe#w)!jK;y`fPT}t4b^HJQ(h%V?3R}h}XComf=-kfN+tG1$
zw)ydm$;Wp+U9oSU-LW3Y%ewB#$9g({{rdH2#_jz5wtaH8QnStT-yOagoD~}zd-2X4
znRb5pzGKJSem?9uGuPUDng4vb?f0s(w?8d%@vr^;c6(ray!>MK{=VPu_uKFL{cd;1
z2LB^F14CbNUie=3@8|OuuU>TtD!Y|L+a(?80J*m_?dZ=(=X>Vp*;|*r(dd)3tNEe%
zUDmE<N6*xSQ-W-My;xj$nAiNs48vrlNBuolu3R}XLD6|vukFXmjPvtsmp{olF+njf
zI9S;|b<x_jx>C~8k55cgE<DI8e&p0t?Z>NDuj{&YE$rt)_gS-NC!e0C3raM>*DB=}
zsjK<TkyyX~UsX)q&!-#9-`}fvwQ_mVr6rylb8nmdc9|p0RVBH4#flf-YQ0`gN&OK1
zPt$(+=}A3PmoHnk?8l$a=ac{b`ug7@tk2@2Xn2g^+O=y79~@`|CEhdhY^|fBqW%@_
z`BSh+zV3(Ov-9)iSBJ0f`}g<v_aAjdM>?1J&JO!i_2$M#P<H<R^L+iIt=HqaU$5V9
zr}Rd+u*~x4ULIa)Go4>wUzeW>++F+o+uR}+0l#n0r+WX_vo9?z1-Ul(-S5l(_9r7|
z&NR=D15F`rEPH!P!Za(Surf9_wxp!w$iKh8clX*`x~o6W`Ty^4;hP(VmRiE5rly52
zmrg&{!YQ0|a+0cH-Jc&7&t|4SX_vdXr?U9X?d|$fQc{ant<qYxYSp5pOI7F9e!ID1
z)hbYwoe)gVd2pc7u<Xr^AKz~0zZEX@(|D1(V%ah^DJiL>v$IU^PFo+jSxwD%R>-2r
z!hI69RV7!hUM)TC@9yrtWy=<k&zEo9kYMMR>+!e$yT#(!WPiKPW_JEl5i>nBU4w&z
z_k6t;{qZ2X{E-(I7w=x1pOMk=>eZ_}%UgS^%WFO!6~9~b<*0c45m4?<4qG25yLIc<
zix)0jFqd`;3-T)b@*?o(Lic4pGlg<<b1&Yy6}88AhJj+*xjB)4qWUa?L1pjyeZREa
z`eZWacN8xc317DO%dFY6gG)<GtDa5`2WNFLorno+d@?ik{r~qn$iJ6o%l7Td*G6w&
z2ErX4r>E(9M{m#bwJv+(p}BNR$;(S28X}jX^Y>1@b?eq8W`3IqZhbN{`DCp^YI>~S
z?NIKOHrLC&u|W}pdu6T7&dxAg95UNQzWT?*_TYs99<Q&h_1<0nUhiJr@3-3@&9E$f
zwj^+|+tTm%>+N%IZc_D~XJgqbZ*NyxR<>+P(5p9Ze3Fm#cm^-?@r>S<<N1F7|2k0F
zn3a{Kbv5l`yIlRBk6#|P%P)I-d;9Y9_Wx~cKOPZYxoMNp+PJ+|OI7UuSgXe!wN<rz
zG+#Gnhr!zD?RvG}@0MpiKGvIgtVc5Q!UD&mwQ0Xy=Hzl!Nmjqx`TUaV^q5ImSy`7%
zug3)c`Jo)KyDYb>BRFq!`guRizaKX$fy$-Q($baNwwc{6x$L`g?b@}slmC1=t)Kbq
z%uJAZU<_ja|Myq*hLqRClAoO&UtX<VFLwOTzu)gyu3V|fD{E!KD`B8;c7~zy+dDfq
z-+uh&#ztk|`F6G-QIM>usp(Q>_r5P5uLW@N+kOf7SbwEeJZ{D^pP4~A&oxi-|37z<
zHMZ}E`uDr#@luvWDXZ44^ZWYs>&tu9?|pA?%hg`D-T%nVu!%ulODo^XF)%RvnEZVK
zGpJ1=QUY!%H1RPoFh~Ymz};Q|H|!RWtSLI6cNGHz<1<ee#}EbvBhn2R)dX&?ks17S
d4ZRQX(<_UeR89sKFfcGMc)I$ztaD0e0swpbvr7N~

literal 0
HcmV?d00001

diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_5.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_5.png
new file mode 100644
index 0000000000000000000000000000000000000000..14368c68c25a3c524b19dce52c86f3ba6be114c0
GIT binary patch
literal 119930
zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B
z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI|
z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx%
znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK
z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O
zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY
zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V
zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{
z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW`
z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX
zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_
zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW
zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_
zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj
zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA
z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU
zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg
z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k
zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c
z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb}
zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR
z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h
zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh
zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy(
z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c
zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^-
z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`)
zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef
zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6
zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je
zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p
z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4
z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@
z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~
z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O
zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@
zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@
zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8
zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz
z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ
zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW
zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS
zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{
z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY<
zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62
zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@!
z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W
z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn
zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>&
zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$
zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J!
z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u
z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&-
zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy
ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w
znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC
zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9-
z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f
zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{
zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7
zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$=
z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg
zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d
zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k
z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@
zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt
zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV*
zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x
z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a
z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{
ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S
zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)#
z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z
zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg#
zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_
zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy
zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N
zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q
z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF
zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah
zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr
zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab
zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E
zkDc+4rq^leSzNz&&#02up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ
z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o
zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o
zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd
zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW
zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ`
zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N
z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@
z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE
zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?))
z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC
z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P
z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H}
zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU
z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6<
z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE
zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp
zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo
z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2
zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce-
zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN
z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld<
z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s
zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu
zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8
z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4
zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV
zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8
z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP
z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G
zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD
z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg
z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv`
z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_
z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l
z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u
z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X
z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy-
ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis
zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy
z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0
zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8
zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS
z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA
z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh|
z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5>
z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2
zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$
zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5
z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+
zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U
ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb
zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8
z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j
zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC
z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-|
zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F
z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp
z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a
zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~
z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF}
zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv|
zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w
zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I)
zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP
zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR%
z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM&
zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG
z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^
zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO
z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3
zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd
z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F%
zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^
z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n
zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR|
zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR
zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat
z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i
zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0
zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b
z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(%
zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd
zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu
z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji
z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC
z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V
zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?(
z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p
z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N
zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6
z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D
zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS
z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4
zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL
zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d
z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ
znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv
za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@
z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP%
ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB
z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K
zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F
z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g
z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k
ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m
zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR
z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc
za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv
z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn
z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7
z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp
znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v
z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0-
z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA
zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x
z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A
z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z
z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO
zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi
zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h
z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+
zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA
z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR#
z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F
z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$
zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6
zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4
z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S
z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k
zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU
z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz
z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U
zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb;
zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p
z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q?
zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP;
zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0
zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N
zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz
zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5`
z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq
zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{(
z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU
zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69
z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF
z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH
zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU
zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ
zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm
zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP
zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV
zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa
zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k
z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x
z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn
zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$
ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ
zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70
zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L
z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC
zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj(
zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s
zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2
zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj
z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb
zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK
z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za
ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^
zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U
z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS
ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G
z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL
z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6
zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@
znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X
zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE
zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM
z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p!
zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|!
zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq
z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy
z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC(
zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8
zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451)
zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X
z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk}
ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j
z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z
z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a
z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav*
zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0
zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI
zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu`
zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz>
zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK
zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO>
zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu
ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A
zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa
zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK
z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j
zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK
zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA
z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D
zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP
z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~
zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb
z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe
zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY
zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^
zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R
zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_
zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI
zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9
zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH
zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW
zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW>
zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y
zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj
z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K
z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X
z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_
z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A=
z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A
zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S
zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt
z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p(
z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en(
z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI
zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u
z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9
zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J
zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c
z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm>
z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O
zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w
z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6
zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j>
zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK
zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x
zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_>
z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1
z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS%
zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb
zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^
z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F
zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh
zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b
z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+
z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI
zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s
zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1
zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z
z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH
z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd
zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj
zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT
z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0
zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY
z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE
zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr
zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH#
z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b
z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA
z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU
z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~
z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843
zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56
zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j
z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9`
zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{>
z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS
zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7#
zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U
zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L
zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt*
zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3
zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a(
z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ
zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY
z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{
z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ>
z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE;
zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF
z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0
zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ
zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S
zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o**
z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp
z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ
zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5
z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl?
z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~
zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu
zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X)
zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{
z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW
z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m
z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+
z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ
zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|>
zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4
zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt
zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ
zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP=
zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5(
z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB
z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do
z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO
z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc
zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK
zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B*
zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK
z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{=
zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s
zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~
ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr
z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX
zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT
z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC
znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@
zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t
z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0?
z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f
zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N
zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3
zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N
z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8=
zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D?
z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@
ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973?
zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC
z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o;
z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879
zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni
z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF
zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2
z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{
ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt
zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs
zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-%
zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@
z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z
z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO
zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P
zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e)
z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_
zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X
zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9
z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI
z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G
z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw
zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY
z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z
z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7
z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI
zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^
z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ
zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O
zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX
zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v
zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j
zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P
zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg
z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d
z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA
zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f
z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w
zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+
zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ
z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o
z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^
z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti
ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv
z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV-
z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd
zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR-
z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z
zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86
z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0
zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p`
zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@
z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax(
z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk
zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4
z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf&
zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r
z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y
zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB
zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20
zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>(
zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a
zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h
z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV
zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am
zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6
z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B
z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{
z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?(
zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e`
zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@
zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh
zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U<
zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~
zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig
zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4
z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2
zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18
zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p
z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9
zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD<
ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx
zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF
zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y
z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z
zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6
zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX
z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM
z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB
z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX
z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz#
z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s
z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y-
z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W
z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V
zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT
zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y;
zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~
zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9
zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k
z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM?
z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m
z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj
zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0
zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5
z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ;
zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8
z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s
z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX
zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn|
zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S
zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7
zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF
z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_
zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5
zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@
ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA
zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@
zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^
z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK}
zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL
z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I
zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ&
zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX<
zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw;
zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K
zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t<
zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze
z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj
z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G
z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL
zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M
z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD
zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7
zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0
zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV
z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7
zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h
zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO
zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM
z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf
zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt<
z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`?
z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ
z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN
z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+
zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP
zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod
z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T
z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR
zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#*
zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60
zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw
zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@
zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti
ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU
z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~
z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM}
z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif;
zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR}
z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@
zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|)
zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~#
z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J
zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ
zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s<
zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34}
zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW!
z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw
zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8
zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII
z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU
zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i
zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL
zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm
zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr
z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72
zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo
zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h
zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo
z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ
zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8%
z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y<
zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^
zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im%
zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG#
z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh
z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R
z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U)
zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip
z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM
zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW
zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED
z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5
zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f
z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I
zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D
zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^
z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8
z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED
znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl
z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS
zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx
z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz
zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz
zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR`
zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~
zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp
zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q
zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b
zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j
zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1
z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~
zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+
z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ
z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd
zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t
zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e
zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`)
zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U
zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q)
zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL
z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg
z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$
z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+==
z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$
zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K
z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|)
z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R
zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@
z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv
z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M
zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h
z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G%
z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo
z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7
z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LpQo?e(h9f8Gh_?F;={
zbm4OFhw4dlRH9Fwkh^VRdQ9?111E3Zg5{iQI}8oBw6~=#uz#EQ!5~3u*UY>kgKq-2
z5;jOD_iRi}_ME13b5f6v?aQYjKc5MI`?K-;&F^=rLj6VaLhr7Mim(4uvien9?RU%c
z`FpSZTD$d#gE)($00gxNI`EXhI4q75j3Y|&M%o;^pFI1&&;CF2<mu@%_SAHmbUJ2#
zu7?CjVhX2OHAB+|!6SkE4fX#X)y5P**6n$JZ}UlIp_Z?YzuYYT^ZWmY`VTLh`57i?
z%)h?x;aY~8yVCc!%ybrJaTK^VGj6^6`s+(0bQlHN9;)?w2((O95JU-Vl_tHM>PIV%
z-~WG8p5epl{l8ZK`Lq77nEoV=T^r8MeDCt-T)Q35fh%WtV)yeL*k5s2I?yZk*@bPY
zQOis8Z5^dd8983FbFTW$5U|f>J&R*R{FZAzzJ5#}&Rq7tl($u5nh#5DO_KTU^7m{D
z!sHhRXfT}Eo4}DV+v?j?_jgO9q@Q27IGcf^=};P<_l-v#je0rJMv=eo|Nklfse1p{
z`wTOBMV1Ct8n<tKJag8pMRDtym3Bw#Uou%5r1^QW{YPPjKcD`8)}C#%=xw*362mgN
zpT>UmZ_;0won_k@aQpm^UVZk2`?2?(zn<u34A_@*i^WmG?s9Oj&99~UOc!2%`%vTY
z=GT?X?K=zp@i4SHO^mALY3S^{+tWMq_|+(1o^PQGO1Ta!|NpJo=I7G$1?N}$SlwKG
z{}=O>W8d?hU1-tm@wmeZi6ln>mPD2b9J@B?b}p8izh%?6`~TPeKen&-ShwX>8|R%$
zf?s;ox|HN<zZf#S+yCEg-`m^!cqefDs=AoBz4Ny3z7Hq=b2==)x*%vJgHoo9npNk{
zivRDKKRk*5Ct@5t{l$z1(W!@2-gfsh8+^VIZ&>!dpQ+&P>iQ`PI(ermwhQfzn|@-|
zf>l?4t-7Z?d0y7qk2am|Ys}yJO%DoOa#`9}<~T#m&(r+H{|;3$cpVjLHCPg0@_g?#
z!Ffi}|5n_7eC5hzhCh$(>$<$B_q=-k`u+#EcRL>U@yh-ErsylArhfkO$^HLq8MKmr
zSDuaj&#Q2~c|*|=2k~vH-)rB+)jj?Dp8dfx>HG)A^Z)8Fti2=`el;W_e$&~Hox<ur
zKeYd!#V)^xzv2DAckhdiE!tpr=FAy^)eZV~rBV$iS4vI~Q&=<C=TgPXiTt0J+E?>4
zOxKTHbg}hF*{0jfSGu0HPut(me0?tugT27=D_2kS^xpsT^?Tu~nZgWzuAJX9{o_VX
zhUAR+)XlS(J-bn|TUM^_!)JyVoBA&E+Qa)<QWo!#Te8yf{Qp1s_J^<Uf27Ay)_b~Y
zvtY*BnKS3HJvh=S>|*=)$}6#I5iZ50^9tF-xLunr$Sn6;e%P5`TJz6xyRVt^s!qkE
z@6~wr?RGx<6RSwhz?5ri+!lMvWY1b_#-KjG>dIa1DWA-9YYts=;VDUsF8cI_b)IGZ
zo<o}_PyczSvzy`0w@1n%-9me#@@JhDoB!j8J<|vG`Y*?Ae!UQ{{JMI-Si|&vUzW}`
zTQ~R6&CThSThg24E1&Z-e0co--Ezx<2M5&pv#J+do>CnDOM-#F{=xB`1>cw$&dRxX
z-Y@epJ(6tBT<}NwpK*Jh+4H?QHS7J%Y?r>uv-@=MKi`4L{(rsKSr>^kD7&vqe7~>u
zZ)wc(C7w(Ut1ZtPr_W<d$jfUJ_P6Cc@Hv0)Z1a6@t>64U{fB?HiRtJ1PggR}#n<sE
zu>JBnG3RFHtO*h9q3f?Ny`6bE%Zwqz<k`&Ga~Tt|vL>CLuFqKT@{;SK6MOartP^4}
z^O8F*Ql+?eo#74c)^*n3|NmU=|LJ3YJyXN-c~%GC*)Gd?H~apdw4HWgj%9xqSt$9L
zoH9PPLtZ4nYl`)uR}+lgq4fZZqktPj=K}8Algf6VoxI#vFHA<=rE{X>)hyHNaV`>i
znX^7!aOP+Hu#o?+<@_HlA1}<e_!#Q&+4uezUk0Q9uRWfftp9XU-LmwT$@~BN?{PcG
zxXRd8l^C~gdwS8#tK!wd{m(wvf6!xCc5d#1+~RY>yj&l08BS@xe|+Nle{}}F`=5e3
zeRPHIo8O+aegEIvKj+K;)?nbb`@s6|RdSlG=VOWc-#_F`Id$6i^*r0^ijUp#EC>Am
zpE>{OMe;JX12-=(Px*I!;_2!7%pcCj*L4(czsGc-cz*HSG`>ugOw(r!7C)a%pD}kM
z*Z!HA%a;3?)Kq0ndbv`QVcD|fGv>`ptV$DW*!feecUk7c8yRIUZk(tPQNL67+!mCI
ztYfCna#B?66kc>fCt$BeTG}y}2k&>k|2)SsS!>sFtEb27{~Tvj`Cl_N#pqkydUuiK
z6^)Uzr|4(-CVmB#r`}b2<>sEqS+RMJOGDM(cPa^oUR{V1KAx7hSfgyx75$orjCC*C
z>o^+L*F4qMn{LvV{BGaxym{aEJkLE<Q7&{d?ah^y!F&EpUGEfKdH3c|c8ii17t;80
zvy)`y-v0EQ_v?*3^M|AS`=_54KhJcbw>OaQLG`o$i5IVgTl~5;|52OuJ(i9&Ri;Ng
z&$!&pDR`Zn{AHdUYXjTsg5LENzMsED#{K`A&+x!ie_wO(@-x}5t}c>kE?si_EmOhI
zKa%I>TW>zOSTa^`UbR%i{XbLZKYck_t>Hq(_l)vf?Ja&T%cpzZNv<k%N_oH4bIzn2
zG5<rdr+??~3YlHJ`(nn9LtRUgI(I}YO6dMpx+`{`Wv1Q#BbU!#*m(TSwCH)KU&sHi
zV$fW&!z-vfM!|F8UE}I=!pqNH-fYUKvNb3|v&fXINr3}`4sj?fbV-c9^s;2m9rN=y
zZp?7G5Z-vL;NPB!_x}EzU*A^$OZ~Q8R@$_UhL0cC|9IH{X{o*~56>zwhIe~D`yD%e
z+`Qn3_2gw!9p>2<&nnz?<-06P&zJJ|_x8@V+@jm)Cu~)`?8WUXFOOUNo_e0K;Mc?c
zqL(Y#88VLAon7}aw|dExoWO5M94o(B)NEfV_V3X3zw3iG*7BOn_B~Zrl)vxkPMa?$
zrk|Bx7jx~m#!+7LdmJ+|7Hslg7qX=IcvX;|bY$uJyHC!nOgF1ES==o?BjelAm2CYs
zg?tSfe(bjx({4{Q@%1eIA2(~+t+~Ift}_3g?Q`*3);7<i&wqUG#dY{RG4l;NH^=bQ
z{F^r|mly2*dQE)S7UQ*BHGIPy&Fb}cy#5-ZRr+rC`4Zk&t}hq;4seX%OIpbh-BngB
zH+R_-txyJ=`j5dou4eJ-^hC~kw63#oV&U2eX`2t<|9iLj&#(3MEDh}Pf4U|IX)o2B
zddBVXp;q^G24@)g<n7LEuQ|Q_!S73HDSKzmpU<99mDaW*=-KA_|C$W%_B~JS>Fv#Z
zcEN3)$*T`nj@NhA|2s3Eq2Se%%O$sT8M>}=e%tpTmtoJ7?0pmW|DQXbMPZhu<JD;)
z95p{KovDlayXrmjf{=+?*RmJhoN;`6cIm_$wtbVeug~DQ|2e~F*4G#L|Gw~7KA8WH
zvtf4pho(}wx98N110Kaq4_5DOoVRS{oosP|wqt=yKF%$%?fd<Fa~or_t?zHP-Phc1
zz5ACYuPx$vEo#Gc<v!z`d)hr)x2=_%t*bZBSX16re^ElT!@ctN_dlL{UoF+Jz3#C2
z=Vj*g&6R$hbD}CQnUwyXt>Wo1S*KNBsjs)^?*UWuPqWrnOY2u3*)rwt^7D7KuQzPS
zdU8e((qv|F6lf82P<nA_TEeBOy8myk*Ufv`oo-pMcA}x2<v$y~y9rgi?=5R|zsCM%
zcu{ie-Bzv@B0gWfJ=kZf^e~DoaLR`Z&db_A)c;*yfA;>rw|~!^H-8)dTdw}R_ssd`
z$JI9O?Ku11cHPcrQVewu#p@cY-|b9KX4`l8<f<=fo~QixK41QG=ltK6;KN?Mgamh5
z%{zZ``M;UM@un}Ow@UAy_BzjK@9F;g|E$(o{!3!0>dkz&TFP_%yGJVT=GQP?lKwBA
zXYuV0ul%pFB{%1!f7|3~o)I%^QH+VO?fqAJKc()6+tjRI`K|8N#Pg1+;tbpGRzA1t
zFG~+zE9H9o;^ON@*2cUZEVYJB7fzl1=qV(8@SL`jPe9D><FjG}PaRmCu(ToZf$)#C
zJnn`4;<HQl8%hegKl}Bfboa99yVicY_p;>WEvAx%(=TjwEty~WOU1wDD+@z>)sw_^
z)&a~9Sj+cK3QB#xa@{4Bq*qs(8P53HId9MXW}EJ3@47ryB+GNX>mB1)t1Mm#d_PmS
zdF^qFnjh(vALr^bKRCHu<*svtZPEg6<?}~_{XZUz|M#82=G#yIM!(8uhL_L1-q-)1
zHSyq`FIrzY%ifw#U1k6Ogy;8PP7eb0B{}0(?)sc(vHIaf_xVqb*S)#UQ1NEt<t3S$
zju=~)>@I${JnHP7JMlkHg%|z#QOI!bLz}rk+obN@_cGST?p8kkdBxQ%J@vmgHYQI>
z`k<qs{~)Efr`y-qfBT(JL3w-LPG#8gT)*hQdmVGb=Kg=oAA1Vpw(k1C??2=E|Hr`}
z&VH8>bU!g6<IH)(>}WqxX4k9dUSH+;a^d@jwSvJ~qBA!a#jmv9v@hlLZ|%5`T-W1_
z`;upVXKgVPb@=J3?tNW~>GtfxHDQaQ%!(s5#aD!%p3;?O%VpEA@ZnCj(aus4^)E`v
z7IFIwe2<5<<d-V#+IvItY2cg(E6*I@*JycG`+6$VQKtlX?Yht5|CJejum5jg|Ly%h
z;oaZgthuGS_nJumpSSu<2E`9g-YLAaWSyPE|H4UGNw0HWy4v~M{Lx&u^O-fH#Qm-H
z7q{3uM({nlCxV<e?#w=PqUhn0&Y;={)9)RA{Js9x-#E>uA=ffzO*rC~btQM}%$+GJ
z6VvC<Jh=Vdqil7rnBAwpsM&4F|L(?H?>#BBtoBi7d*wmyGoJ!<{0bf&vDv)YO)I^s
z?$*BfFKsfjY`%d`N4o##?0udC*7rX0+5P`{p4q_MTwU}?xW}wzbL@)yX6|HTFy8$6
z%=y{JKliE?o84V-HS6-WmomL>-Rbkpf{r?E^x1xU=~bia$9T=}Y`7So=zZyPxp0p>
z>w|sv_4@IDPW)yF=E&HWdhYY&;91;i2}fNd=hfeEStPaewPpFI)g@N43*v7^MaVus
zH}B!M>HD}E*4upIP+i?5wf_2t<_RI+SBI8YtF5vN(=GmRppHT9o7|H}FS{997JgB<
z#{sIE{{86xFVV0${e02lwJY=`nl8*a+?q7gdVW1iLub`V*JH<5yVgki_6zy$7QXy$
zR&~+pyUA7Sp30@~y<8pm>Q{j_YvW2Dcf}7Yu6T=ZsVS{5@k-&oWNIyVcH7SR@mVDq
zThCT+-EBDk$DW(zcWX}D*nfHavC8-83887~E8ZC$Py6*pIA!bS;+yQu8ox3*8oMn2
zF5Um=qO#iAl@VIIt2bz@ZkejYw##7B9P5vw|DM#^^B(AQf2X|V(;bluRU1lO?U(PF
zA3bl`EauW;<2_}ITo#>q-5t7eO^vCM=c9SH)eOl$_P#6K{^7@C|DunJc3zCxcc=8&
zqUQ(imhWe4c>nj_`={Cazh&QjJ-_DCofn(;WF-Fd@%R7C{Juuqf3E3E=D<a<zvozV
zdMa(+d5OD>=jPUeCl3VmV)neLJNJr_BYe5lzUk}#Ui;4Q;X?c$rscV(SFCh9)9Lwn
z&VlB|yMIr*(*1Qe!;g*izvb@zKfV9NlO>gpCMvs|ReZVKoRd3$=DbIt>uYTp&R2i5
z?UDT>!5}wFrSIapt|Fi9**stVvh#nsb$uUSL+9S#Kac+Z{G3rk<fy}aj&-}=S!szr
z=Gp)M-|wBzPHbf`xqVmrmTzk43E$rv)`V2XzuQ~AXW!eR8_c)MF7kK1xt)9IAm97d
zmp2=IvGBAgKY1tGf6mOZPbCcpzR&p>$6-^}f7{P2LnwQJxwYWgX*<nh@=7wcRd2D{
zwyIiR&GXl$U+Kv?IXUiDl7APR*eC6Cc22SXALSHNracWB=a#(b3Yl%2x`-*LI_B~Q
zhva>Spa1`;fA+qY`_7lkW;5K_8{Oo5=+uq4)$?IZs3wJ+K$RxF9+BR*i+%q-)&JqQ
z`FbFoVMXhy(8TYyt%uyJul-)PwR^Vq(ij`Vi?jA_bNtwQJ??PIQ5S*LrkxA)+sk&J
zy?rn3m)-tnrt2TRxw-kzVf#PK4Ew)V??1h-)@|L^^831f-kkrVldwqrXGeSIA#avi
z(<`q_*I5@eRKNeN#4vT^U$^}nFG8L#3fyV6pKFV*NAbHuCjXyqw`+JlTeU7JDM`6~
ze<~-p>%8BS%oz&4EEE5{^ZY&T1M~kK%>S?|Tym+$(x`<IrWYq1z8-gex}4eZ7p?lc
zCO5P5?XbHb<QOlzcU~uh-OsD*KWv&lTdCG@<+<%OueUQ6T)(To@M6Y=&6~=W+N?6m
zie4Eum+QsG<8sM$dDraHo%bK=TN<{yaQWI9|BuW634T|5Nu$B;`;E(fad(feNu2j7
z<EzqdZQr#C?-cicV7`CkbzI%|ww~(6C%8&iEjaR$``Mj4#&Kn<8uM6mwKMr^j{aD;
zYVr>AsMxe;XD#pNe9b5`imY-GnYq(<y0BEdny|32NcoCSPab>>XAt;WWmEi2h+(_U
z|D!e^E=*_K@$ExzNcLj}5%170)x{<p+^TZbZwm9OC%*hq`0<hJvuDr5_U%>B;WoU`
zI#FqIf^ALJtnix4-<dDWn)~R;<9McoUuQTEtvI=E)6R=infv!}`K9lCDfO*aQu)(6
z^L=yG&q*sAt~Sz(nS1kQWS^`xo5aoE7Z<x%zK*`nbwJ(zr|0+W)A#>*>ix_--R<Gd
z&(F;hj@<5cT6o}e{6C|*=imQxG;D}a*0>>K*1Or_l1fo!VW!Z``HgAo&t7RY`@Oa&
z=+pgqvTK8D;sZ6Jo?rIeZn*C`14I9v|C#&#$Nslws4n^{a>?ZBC)eQbi>|)=@W}ez
zqt&209l!7Sk}7TaC)ZgmeEz(73xf=w=X*`J%+8tawKR49`J2_1^GXbEa7+o>^CtD#
zp8t34{|L+F&a6Ig@+IHhjE^;G{wp01U$Xo6^ZzIHJrC51^DRpf?pyU$Jw7qV-Q4cE
z1%J)A_Y4;GmGc(2pRxJ6sAZe!o^<KhcmF?0*4*}68>P2n&&Rf@8`rZ(MqO!SW-rST
z{r73cOSY23bMK!D-u%pB>i4}9I-S$<-c=seo}P2v+WPu}gw<c=Eeaac=T#&zyXoY(
zmp!|x-lG$_ds@}rbJ=m<OBwEzUXMM;{qy$zzqf5Z9c|z7?t>%4ys9^e&(6*6n3{Dy
zFeFX*LT~W5`zd>7<o~)>{=xhG@BNI17p9+n^X83c;Ps7$mlwU;Ccd{LSlw58_hR>c
zy`OTs%Vx?Q`CMF_v3BYIKU^zAw3bYKyWXmN;)awf@|l;EH}1`Qyy9`sCzH;L+hpgh
zygWhZjq&=EW;}<kYKok0N&LTU#<4Uz?x(L7xh;HNd8goUF~g3Ehc?^q{|);0YrW6E
zg<l%uWCK&qrSneFRy%Lz<zteqx+O|?mTvLiDPGq4)5|vRcsebbq2eO<{Np<>xJats
zuJUC5+qGi-UjLeR+UY;)|36vJP;s8W?)f$YvCY*Fvg5xN{X5QH&)pFGJbh*8nOm27
zla`x!OcJ^O*`n&gnZ(_<_1~Dy*|@{queBm0zW2zpu>C*J=HC-5-X}ImWnq+Q_JyV1
z)9+N(ZQbj$HLCQj@Ao%1A9o!&`PU&rvuGQ%H`t`WafoBX=DW#<PE2&YpgonV*DXx*
zPVvP%+3WXCGvN7oQ2vi2!>qGv>F4J$KG5#BKj-{?_O&?v`WOEn&)$FA<H`3ocb|Wf
z+RU~2&?A-3PKj+%y5ffMCyMj-Ow^2C`RhO<v-iI6WnnMMcB^=9dc60e_R<iohn2^I
z@6WO2->equaB;uisi#88yU%Xjn0;N({J6URyeBs{CdcfnseH`7uT^u}>K}FgZG3}-
zzpf5B&M`eeF{XU)#E0`N3Y&Jn-_^Y${ni>&sn0#Vz3V@BY?qH@iPd~MMSf{ek*ny3
zbmh+E^1m#L6mA-9nl{Tkrd~FF-~UX8s>0Hv?}Z<Ko?V~#YTlk_^KMt(jNQ(g+cW#@
z$Jz6bbI1R1Vz8@ypT06Q=l52F1<Bgmvw2Si$ILOhc;mG3TG84z&QDr<*0^*AY5aD!
z`!{?4n!KHf^3$LDu*63d&*BrjdC$1J%U*hGRPW1|nGAgLc5fEF-5cj0bhbrQ(K;=0
z$%(ENA*(~v7d&5iHLIt;-+E=h-ni$_X7?_6_iT3l!_xnUPCSzT{fhH?l$NK^_50Cc
zCst3+?fZObT`TCU9Gf2xnjP*3#PsB>vpv7~ZeH+u@5X&o12jbLRL=9f&X~9BXIkC6
z=XHDr$Cb2?ncLaDi@Lq{^W67Owyv+$mH+dA-Mr#TwD{a*Kjyu^rqFQ3YR#(T$KF;m
z_~eX!cJ<f&JRR~n`Hg+TrTlaAt@YV{X`SfW|8w5+UvBa?7W*E3SrWUud}I0gld*a&
zNel8tZkB$sz5m&E&ir4Y3|9T~9(`D6sFrhU^7Ee=v+aZ!(wFx*E)MoRDYnb!Z$nbX
zHBcol|Df{t`sC|onq@n)&)ePmmwTV{jUvYs*jj)Cwcqca-|4-~;$6gAm*d~e{fqXV
z6<0R?GsUR#&&~Hn%clg*RJ^CJG|P5<2*;e@gf(Fai}IMnuglL$NZS7M?~fmk_<qfG
znWVBVAZ}xX%#F!e*VPP4f1kGK>wJ9U<gKYedGc2?Oj7=9uHl%tgBvmo0#5h}f+dMd
zPV71K`0?ZJZObc;YR5Uw(#yGiN&Rz{*3vo8jk}b-SAR^1o9lP{L~-r?_)SMo9c*Tw
zIp19Ff7$N6DNAg-m-O`Zda~4tigX`s%*Z?T@9*!*!_q$58(NER<;`9c(dyKwz_CQ*
zEY}5xl|j-oHv0qy$=}}kBqnUN+NRz4|LrEJJe>A?A49|C<?|jco1Gtb-!b2LQ^^tq
z4i4tU7c|AXwex<Kyxr=)^V_X#Mz%|0Exiw)&CY+OUiXEaVaK~>`6mw+I`4V%ZaPE3
zn;(W7WTQnsZ0xU>X()bvZsU2klZ#EBf})<mf4+@pa$VhRmkW-Cx92Xq_4oSze_#LH
z{BO{z`dFpZ_0c1hgWp9O@5h(dNXzmw?~h;M^Hue=)%Q6;iV16?QfkhKc*v|4(U^Yb
z>lBq)JD2Ue?tgyk&r_GxL|^^Wpa1OG^E)gKOE-Pm((=}Al8TS7FJqejOwa4`wO<0a
z^M`uv-0LUN#^QLO^m^>`d&xC-R;-ZfZS(#w(DGEFTsLvai99P|Vc|39&c%KFo_<>K
zyx3V2Uv{1^ImLT}e^=>E_c;`*H+}k)FMYkeJ1ghRniX});e5r{)$zK=erlcQc{6pw
z)6>2E{kyA}E|{CNu3oS(N?v}&h1q9s-}tdkHGZ1y|8u+JoCH{Go~tEKx&M2nKfeV}
z>(hx_-MG0~|CnA`>oJKX_jjIHmr~(<9wYa63!U3P)Xq=4d?)^x_!aY=FPA-Lu=)Fi
zlP^Bqs=4MNcl?73rtORtHBV;sN_}eE_`l(2-u?f|_9v73?b!}A^V>iBrd8a_*Lq=j
zoay&l#nYwz-pjGbEnQ@|?f5Fzva7v<c5(WFdb6_CJcFLil3kYj{>x_Z^qJXG&%?Ki
zPhQr2y=2AB>e8J$bNP=QJ7!ULXU=SKy_f>N{mIAsET8XuUKt*HfAik+XU?3l>JPh-
z=TYH`HpHxa^2iaE$=iZ{c%3+Xe=}3s)~Me1fBb?cJiWPSuk~D=wFyZ{NuKKqB-++h
z{l2+5eQtQArpvXhR$Q%z772Y{9lH6Ph}!W!*~M40b|&w*!?nd)^8WXoA1#lw)lC=u
zzfynkjp%LnWGphejxF_kwCLcZsLeII%+4;0(0K5Bb-&`0%&u*LhYrN=nz3|4UCO5i
zw$<MX9v$JF?zDBn8#zOB^XKcP8mFJL5WP_Lj-lvF+w33V_y6u?`185CZq~}k#YP^J
zrc^C;kofYRk^TFOl3BO&Ej_XxXKyanUH0tko_Uq8go=4T?<k(C@$>45kcdTQCeLHT
zT1v~xuHEhD)_%b?(e=XldA8Pn7`blGdb|4-XY{PjPENl$7K{?jDLaKO*2D#DOVpd{
zwdc!H{n+`9dB&S+R$9N?@p#qw-T!{QX1sjvwW@yQ$twPA_aMFLmMPjT)$@)Y?G|sW
zyS?k^3A0W1zZTn{dfab+?s#tA^Q<|s*1S(EdwThw?MP#*TD$L0)|;b?3=P)VR>}I#
zHd12y_334ak8Equ&YtJ7FBe4Vb*^2(v&K_Pf6crz4)!H41is%bpFcT&`|Y=kodsz}
zR6HLoxmsLYyl&aCGQWwRZ2GV7`6tczW0!x;ocq5g^D`S5hCRCWn7#5@PP|lY<t>Y-
z|L;Dl$5?N>D)Er}<hSs7%jY;&ZROLoo@mh*ZmK@>@}A2tcl=#>rA=^J^Bh%p8P{aM
z)Dayi;kj<-GpTcPt+zkAo+>E3c56jLxZ^eJe>YF8no{@YvHWzWh}TC-ug4w-UoLUx
z^X_|J^$vKIuU9H&x2XGL@%#Jx@`=kYFZW;nK4H7&O`Gtr8_m)W-mTy1zN&qF(~)%#
zA3xrGZOgJFo=xehpNjNv$ZT45{dm9p@{1We9#{VQ^0LwH(o7`}&8JHa%=J6IG$!{s
zht+`_NAei<eXg!+@W1=JlHuIE{YUo3+j!3K{`|r%%u-Z$-GW_GUYhD>@9i#MAAC@@
z`W){Z`;V>+=jQA_u&?$vgP8C7TPIxtw`i$`nDu*UUSH@W5_+g;!rf+rNqe5C>K7Wl
zo|<#Xh%-=t<+fFR?q<u14+;sNHf@^S_hb$4bf<*}e9dQ0Gv~Me^Pwv~e)ZLg)6w^s
z99CbIdUd0WYi7-ssOZYKT|Te$*7V$tE3sxc-gkeC8uQ)nwSBV2qF<jz<k)1+GD=&$
zHGFmGB$bD)`ZbCPQLfKU_Iw3h9#oQP3p$o<XU)wm|D)DDu2^0C`fdE-?|)yHGkkbx
z|5y24{g<BIY*U)jKb~f){aLa!=;47z=67;Mzu#^zem=LHX&LLihliJS)oc{_w2}Wm
zBg6ap|Lb?|6l?#jus80!<n6t2=igRW?VY#U^wQfh_PTdptJVp7EDf4yyK;lllN>>}
zNd`ROqF+xaz4$3plKA6^d0b?+nc;=&{Xr|YJlbP=|9j<g>-(G=QVP``zS6LMzVy@8
z+tyr%lh0f`c;esgC^a>;AKTym(`4Y<WR`0&@A=1X+xN>F{5@NHKYo)(b{fyU!sD{%
zBJS_6w|{<qKKp}hxASf{2<F=*E<6#v@8xcWAFmeke`q~^UT<ddJjw3Ij~~le7O^xu
zw|!rEj-&o!cifSU$;V?{_QdGvXO`@LDE(iQ!Te5*`folNsaxM~`iXSAhKs+vwAB0D
z4LuPqznKDUid&=3{+*LQ_0{iv7Pc*-ik2^sleGs+?2WLLz|W75_j|L{%AT}2a{u4k
z`|lRLJoGD2Z+fiClUdp8BFpL$!UQdUuis##RyNym{ne*3_p>yXYIv=CzHHK3>&=@t
zhiFYrUAbnH#$(g#F^5+MFTYk=v-re8<z@R$zrOb;x8}wA_e*aZ7G<_3{b!sk^<mrg
zy=P1PD-UwV9k{sIo$<!r>hG(**(PSZd%peF7omq<^M2oXZdKYIk|=J*WO$)9*Y%px
zle_QhwrA%nu91(Fo4sM*o!akrYn~{}GbY^MS9>KaaEnibWqbdO-t`{BtchP^_Eb!?
zt^T%V#fKXcmEFN-bFNu)^;MX=X7ZoApHG>8*#CF8_n)irH4F{?b&rbgRJ~ryu;+d4
z`)H$BhY0y8LDtV?MBJDQnK|JBb%+Dh#)+Qj*?(lWPLBGkue-YEaY(nj_^>3tonv1=
zkC~ls&5J6liVq5tCr@t3ES$PD^sUIN<i~$r*MI(N^Yex{!;c&4cF&*rt6Xc^@OR?s
z7)Zq<p%s<A<yy?1ii=zQqxC>*#xB3S@UkSsZ1!uDLl=*Iw&^;mbTlb&PHWSK!vf5)
z5KSP`jRD>Qb5`{YW_b4e`OW?H|GVO%*I$nf+&OcmWZBzWre8kxTFv`pQFOPLL1zC;
zwRbxn^EHTy-WFy_%vNIC1sR4h2-y_#^8Js#_YsB1`-^tI;kh)o>yypCzq|MGH<;HR
z-fpda-0$>p@s_zAsOuU6qO$kiY!)zU-?`KB*zx0c&lhRs*!(=CZ}eZf|IGhqN}u=d
zO!=%|y#M2go&Vn)Dddsx{Jx=k$;m(YdPe_epFZ?Dv#e~|#*G_&rFu6=C>26i{kU~0
zOwe7Wz+o*6_a3By33DyT%{>fB3s730!$(pe=Nm)IMMur8H=S=>JOK%-?lb?NDHiYF
z3Fq!ti0O2>fVRfufyd>N&Fvc=f7r9H-{)EV<B31-$9(!cU*+VqjwKlhD+6EMc^vpp
zEo%0}U;Fq^?A$MT;?`!ci9dh#KmO5mpYwJ1nXfOD-912w3o>2~o^x+f;Fx_btYhBc
ztICg~A4})V-6_VB_*?m6jN=X=!wam5+>f?h-`QKH7A<Nv?G49?H{4Ad1T}uW?sZz2
z`c;s{@kUt3Z7(z<4@m`RY~fzWr{A?O<lWmTQPWDw7Uq=hcDoX;bzb(Ejm~ppal7Q*
z=j?U9OT0*o6KXQ}q_OnV!ndJo8E-C4ja$W5XZ~SN<MD92MC*0-vp0U@?lvyad1G@r
zhx^b60p{2UvA<g__G>h|z4z$M|MzUmj5{)W%`Psy_V;^q?zR<D6ZRiIaIUahR<||k
ztBc0cu)TrN-s{%gN_)w!J)c{7U+dbkZJgbOTR&UYr@fhyy!Xl11?y_gd9C|D)hcaz
zQuSK<tU&dnoA+gje*T~H-gM3P+oxg*-#!1XwR7*WbMuz=ItImT(}yQ!_+*?>WK8n(
z?;o|L1Mk1n(VjG;yKc?7+xxb?IH`0vaiNCLHZPTguNRBI^R4b!#J~B{)}Snh{Syp-
zecr$2NLi)6{Ds%+a#fhQroORXY*&A~x%K*?tLu7W<`mvuX0fIuH)3X5X6~t#uJ;Qk
ze(d{qi#a>4ep7j5cURU#<&D$6-#(?2|Nikm!{>kb<}B}Z(av4;!sz^MKEn&GPdCme
z-S{AXQ>0u<?(3y#uT65J^xHODHZPpU9$^~o&$h=Z@@3lw;m=uSlS6ggvl{Euq-EEL
zo;!YO-_NUg+pIeuuC>pO{J**OY(eZZYi2_!bB3E*dC@M9^bi9g$_*|TT2l*6^*^2K
znzQ~$=+0l2lFRl~oi;k6DY2q!|C;CP-~Y*PW!NyM>Cgs)>-Vo+o}hEg>ss4Y7J<~a
z+jAcM($_i0b?$emOlyJaqL3T&IvVxX^t2YulHI14bLE<6_TGKcTXhTWm=(|7b?@{3
z<h&KuPqOpMeYW>)jpf&RKJ`}D@}ryf|Cb8hw`r^6wf`5B9?aXo`Yiv(nimysru?3*
zutpg(qPi|*ObOdLzfA0OpUT>6&2N^K**<2Ee!L?!*kX#qC63B3+r7TTyxw~5?}q*9
z`zo$on{oK<(G6YGbI&GkFPRnY7q+Z@<F<A0Z{7c2z9sVaugwq6wtX^-PJDK)J#j?_
zi(`ac(gJSnwCow>uiMXMnp_pqJrHK=yzBph{jzfJd<$Q{F>DJzTVWbsdG|7p+q|vQ
z+C!aVwLkIAUR%tUFJF?ETa<lC%ddZJ-3u}EOKm^bt`S_@u3vmV>iXFar-JiWuD3n3
z<Le)-=g<7gk~j_-2r|bCgms;>fAil!#QE0S>f%~m_XSta^d&z0!@u$I#GIHmcRTTt
z<<>mrtxMOnuf7>lG-ICZ)&2cE)q8KuJbk|J&!yMyb?+zNp8w>#-J*P<mWK)$%?5#M
zr=(VYTX(x!_v^Dmmvm<QU%gda#EgBdxW}5OTkaKzg-OYGeB)d4|I5=`hm0Z?a7gC4
zmRoWh`Vd(4!A>)MrUDPU;RV)2_6<{?UcId-UbFh#|0v!TSKb|_n>M_2uFF|$dcNv_
zL9F+^Z!3zn{yca6l|b0(2}K*+U+s#p%PtRiQuRBR@ze3l)ptIBIq-O`;rXTwq5_?}
zK@|if3HC4uIf}b=v<fbNvwf$<A+e8I{FAj+_G;JuEok3t$+PwOxh%W+bFIIxi95O>
zcHjT25n5K361>tG7dE6WN<Ne}`RN^<d%7tz*Wdfavwp#Ek4-nEHhn1PDtq$JU7$=W
zX#w}_zTJYlFBEs*NZxuN;Py7@yNz){tMAOo4UBx8l=1z%+xx&ZF4dy#3D#%r*ZAe_
z(qp=OcGr{Ab?qhZ3hVx!`pfQdv1~)vzdf2uf2nT_x?RpI+;%MM&E>aS{>>=i+^YLF
zc<ol}uyE@%uf|iIajADBq`l8=Jr|oBJ~L@%ed1n044<0Gzdqqp+T|zyS>?O!EHBL|
z&n^9T$$eOrzc}Mc)BE>PeR`jN^O{yn;*U3$I2-xH@MlO1W9Rz6cLmrE9cv57y%Mo`
z)5rDIA6D6mdy9#k(hM?tyG!DcO^%!D--EB7{N1W~b!Fw8tVt?t3Rk6q?!IT3@TyM1
zP1EK)`+?6ke-sM(H}B^@bV<j)ZJ%CaaqZD&SN*qNW9zp~KW8g%>OYyqAiKja_`6Ii
z+tqkwoAdYjZCG!eo~QEqxRGRlmd?VCQ_C+u{jPiZ=3x)1CIg=%4&r80|D>6F22Zls
z*gyGSuUGbzy`De!wLkw|antwo=b}p&|NYi`vu}#|qwS{MIZML6nnmsYej$9%a-(A>
zm_!!*o;SJi`Sa~z*>`<(%;l?A=w1r@A(p*1?Y243^sL~i<zY{58|m6z_%mnb|21`f
z(`^4AUUO$3=j?f{*B!pqUNTYbQ)ZZ?q1IK+;1cK}q`oAtdF?@|2aVzui}wWR1e~!`
z;rTFizhJ!k4NjecW$Rw)Zi)NyQB;1(-NlUUKZD+{Y@2Xy<0KR5-g_d;?`=A9^44V&
z)opB5GRIX`7XEm7WR3mJd+I#3HTSK))yVs&9@}-|-g>uxakG~FwY)xavT3=F*fz@$
zubq3-?g=jXbWmX`w-B$0^vnJ23TxQVT10{+iJv#jJFW9b#9i=h8GA$C_QxslR##aT
zb{dH`F(oc^5SSHwou8>jTUJ%SHvWO-d+#ILclf-EY_nf;Vy)lS&j!oQCat)9=W|R+
z)xm~oAH<|9=Y3?anpYIqSbEg*=ykc1v3Y_&x4QLy7TUvjzHZ;)gALQ|^$(^MOsHHr
z@0EL$&DH&WVXyD*kJ@ywpgUN%zQ+0YokotN|9dZAaof45CGY&2;J0PnVXJu^w%=WH
z_uV9wnSX3c1@|lv2-2F$AR#TCT$9Aqu;}?$WfPArt`W2T*}l;_FL~(K{r&7qESF9>
z$9{IFl23;6^HZlatBPJvJhaCCu-D5SuW}9Q|Mq3bR{PfP^_tWYx1QT!^VLPS4PSTq
z1z!pY)@Wf6Iiz%S(#3lsT&zt8{@i0<euXj8nN8AW{@ftNu8!o@As)hat{t2A|K`6V
zpGD^7f1A$L`u^r;%jJ*0*qpx`z4_PtpX;nwYp&DcP+;4&p)<vNWzOT<FH2_3oX3=q
zSJrmoln3+EV6EBG!7D?S#^?s>gfVD{6{c_OS6aUzdX4GLwDQ+cX51#fPG@d5<9Tf0
zt?e;s$`QHgCcYOlZ|%RhFm`Rjo<-gdBiT6?*o2(x3ic9==+t+-aDHj@`sR(tYG)Q%
zehFXZuk&~2;oCCHJ-ueB?TktPHEGYCKk4?f*}ED&&-We==DMHvqUk{SY`%!Qh7sGn
zHTLh6Wc<W8`OJsDM{;wg8D4n){P~Qza~T&{-d}Jt<HE}s`;U6QnbRNlAb4#EqeaCB
zsiq5Z-3CX#*WTQt>uP6S(vh<@Ch)7yT${FM5<bD@^VBo#V-MevHktLW%EY2}X5+pG
zzqaz*UR}SN;o6GG!+-RZg=ajRZ+ci^d){qR8$YF4XVpN<b5qKWtx@+B68@$5bXDP-
zP_5Fe(#>s4GJAto#!o+fy0oK!E%Dp?YnEr*{p?INJ%g)kC-+^+GtD&ZRaWV<ez!s6
zJbTcTbY_QrN*~Tfy{(j+mw%bJiK*4;ppE(m_E+6JOJbib`LH@SRO?L)X8Xd|b+PA~
zH!H4Y75{wX%5ZL;rSta7ObR+8lB=&XuITkQFf{aAd+qz1^h<%OA8+N~TW4Y@9(LbI
z?o8{s|EqbcJucm=+2ttW?h?5FN9Zh-bC2h*-)661cE<JZ)a5ZMM?c%v*e}TF4^DL4
zxZta$+F{*G+vXS?nbqI4Z2r56M_dA*bWKbxayQ;K#pI+?_s(<dPqY}cr5(3V+H-(g
zW7=tkDIuK&A*<V;Kly!H?)HS!VY`+0FPIR#&ChkO+}drCv(wVjXYQ(zY*=}E@|knz
zE^L`NGjF@^6=Nf>^Pg8<&;GVI;rhF~3|C%#&Aqz5$}}c$O3uVrr<nPt#(heXUbBne
zN_$Cbkz)M$R{?w1s&L0W|7tIvdS*&?;1%UpGmmFxUHf12y{U0);Mc|1{#J%o?2E1c
z)8MqyMNqgj=KR<Ckkq#u6jG0^5}c%wmY2uZuz9&(@wYdU43{hx1?X+gzO&@;mGZY~
z`FoE4(G9JQ-1=NFEikHea(a6B#7jGWf9|-{|BK)H(f#n*s)atwbFV$S`BGC&y*Fy}
z)tnvYzaM7sca)g**@T0+i*<AU$G;6u7qu+AT_<e{EEMBn{c~XZ`Hvs}Bq+?)?{4N>
zA?;SXSI`aA$v>-lb;-<<E!Ur3dZNN`-sZ1K?=>5StwmGs{yx)IRzBx}=A0!O98B9S
zwEP!NSzENKK=i2iY3uu8+)o^yewjM?{*|;%-{Q8rUp`mA{kCfFqq^T3XCJ8T`tSFb
zmqRl$Y5H^RLmN)q_#u&ymsB_H`qovCH}E7|8V6iI;dW}R>EDw6xb5z{FRN^tv`58{
zEtqFgU2VfY!I>77S+kBUDSS02Brzf-CrPFu;ozU$`8(buZ#-AL=}@uL_uS^KlZ^#}
z=klFfdp7coYwWJr<OSQGNuN18<LuWnZ+I?G4nA{c_WawuVt4Z{^PNrKZu`Id{Z0Rz
z=*_)f)>Sf}n4@sBa{i4gd<K3i8J`E=3tuMs#n}CK|D}J`6SIWEEu3$jH4-_*<hbxb
zP~NsF3-?K6$Gm0>&K9bgt0P}EFYmgI-=iZ>p6@D=di!e6lk_upq=LRTpL(_@V2Pbs
zTm0sr2cgSLa}GY<%;NV*?s!R5+FXn3e=`2HUsp4fJm!16mGc(+H^vR-o}A3LMU^--
zqdH3^Sbm&~kU!Hat)aEf{l}lU<%OBO-lsh-&6vjfD`wW5M_*npXPhy6Ua8;8B!LI4
zcB!w==uKZWMeCS={?t=ba(NrPwmzHl(lba!XU6^Z#Ec%T+~5;iiZbg@eU8y``j;hp
zGg&FeDro_?w7<PeYTk>P52r6HiArOfJ8RF8Enl^^Yl)V}>$Rn3O%+Pro#7TZ(_qs*
zzx(QE_Z*L_e|Y-2^g7e;xz@>_ayC~n=t>oDX4n!f8?^Q=o4AC=zsc3i;!k}qO|jT`
zae73sj#vy|(#jCW+cI}T`$`_F#~*AG`8P3bqs{ZY?arGG{kLC!ZLgl*vCCV-_jll0
z3&l-tDI&*9s$(aekZCsHi9ND3YGt6#F1L8?3mi}4H_p3$fy>>*h1>Rd^`_^=&py0(
z{_I$x*ZS=Blk?iQ^`0`B?K|tN8gKRj^Jmf}x6&TZRon5|UiIK@x3*(ZC$7zj3oBWF
zbz$~%V?UuS=WgXK^OIe)`BCz&|C=|l>t5o_Oj*}x(be%b`R&gZvsuyeZyY^xgk|cg
zK$Dil7d&(3&f6@#oHIB3$eHu!E^Ts+-WvP=_xE$GeECN1)5=<(F0v@<JCd}q<N5C?
zUdKK}{{8j;P4;1p^aa*zGL5%Hb+XT#FZ{VFP|z$|_tw`kHLfKA8iDI)*7|RaT72EO
z|8NXT_)<BqnU>)*OXsm(aJOh$9abkCb?^7HnsCoKm-3|BFQ0j0l74;;v(LSHk(u|!
zndU3#1ZdBW`G4w$g=n<(k|4d{m9vfu-(9Dj6!U7TX6TuZ+G5@!Th+d9mMOb`_4daL
z3pOPL{g?2_+qFStQZss=us6L?$$IkNAN%^#Z4b_ko1V6ramJm6Ym(A-hAj?R8E_`W
z{ixBxug7Mex^lCc^)JV+AWQvCxr-kj+azi;UE0E}+NUbe=km7xtgTTRzIxAncN(s&
zITpVzDQlLROQ6`<-i}8?rP_0SE`ROM<<VVVzSzHC=T}NJU)sgUrBhF<oBN+$vTWz7
z)1Hr%+6wP1zWnmiStaJgi5m-rdA%={ELrTW?XN9S##goMh2r(A4!ghfTNu4!F_^2q
zsUvy&)rGg;UOFA+y6x6F*4fK#%5zR1ouIJCNW5HqVtDV7LYL#`Zl3v~GF>m8X~D&e
z3umKll<wA(-zDz4?VD5lqj@efi`3ONO)Rx9RP_vKoe*{Qis8<OFL+rJU%b<Fe6Ton
zjZ=S!cq6a+)h};s%%gOp!Y)3`Ja9gAdDy(}S=rzF&#t`|dHc$Zs~29l8gBh{<Jg+N
zum5potIt39e&L7QBcYo8({eYP-OrftYD&}8(COKsTBeJCtq55ik~8J{6NlT^7k~Jp
zbJl<H)K~7y_X@`4U(1a6nd>k~EsuBR+}TeL-TcfDv!mkN+UKtKmj`GBoPAbVH!bSw
z8tJE5tzETua?M}f_|l)X_0biJt5H*z1Qlm{OSHYa@ylw1?Z*R$%O76!xoNQJxZ4dA
zP}6<hokf{Xo^M;=CJ>}EyGdr=^UE(&e&!o)cHR6SG(Bx)$f}U6XU{_PLN!D-pI!I<
zp3Q}-1p)2pOI>eCpJBWu<^8D2yG#84i8D8{w_7a;w$VR*^UBVo8jH@2%i>SycqXMU
zP%m_P&~C{*zmfNDQPhc8Lz~~fmcGlJtymb|{I1JX*qw9kw4H1wD|fDBuF(7|Ra?ot
z*Zz6ndgtYLm!_Mah`ah;-Z=m5^GiilM(h9WHFs~jdA|MK_L*JD*;9_&D(&ukU20uo
zti0#)!tB(^bK|Z{y!d7sC?tIIyWRqhoVz_iOJB|DI(Ffv)anZtBnqA^RVjS*toYL>
zmF4s7I1l{%oIZ0`4wvQGbLV%KG=^y_h1yQ?3llJ0nqK^Ct6!j1cI6U{o4-A`8XY@$
zn4LjG{Pde!#(p8@ri@*hd5`xbpS*r;bN^$FWx3pPO~-=m;>`R{75{UZoBeV|mTy+S
ztH{y3+)r<Rt^ZXw!Bmv(HXmEB^xo%|?Xeq!oFY%J&AmQ5a&}gj!rk~-*jj+utAf|g
zD&7{hK6s_X;tdg6yS61TBtH8Sb>Y+L%gs$U18433swFi2e_xd2oLR-2Z}(>0Dw|<!
zZ2V={vyJOb_Q?m$Ge5X6XsOTEv}b!_w01kqUz^svEOv9&R;kC=eqMjuC;U}Oy<30U
zX^}S@c}u&lZ7biq{_e*B?n`=~HD?|==ce)wK6c(@z~sRad!u4g!%E$6lPmcTA6On_
zBzMYb=bJ?n@8<RYT-G`7jQR5w=EvuL*?#%$rMI)3qUMP&sCj;E`=s(<iF0-?nXSwB
z&S@_CU7>Y7Zb!^+jqUHN*Ts5IQaMuC@_zP-1@9{-tQ0PiUv*JsW9N)7kK{H^oxD)w
zl=0hZXZm-FReVuBs@<&;7t3t8#^PJoqMgnhx2-u>K5u*#ezpH`hC=G%_=~dQ8@(pY
zh`Vm{u4H$KwQTqXPX6$%x4!?m^K*Yx>9MNNuZ=a)M|u_XxBFeL6a5HU4UzYMqwbFD
z-O57I42GUblh&BVZTFV>+L3Fb_U`C}ttYjs{A5G4LOBlmTsl=2)illX-L37ekE}M%
z+`MzA<+*v*ya!fZPTx`RPKO~l__B$#+N!HBzjQp3yQL-SAiVRn$n`L-FU(q{letXI
z_DQcjv$gQ=Md^;m6%)g{qNmp!TzPe`<Nixq-hbzQcGNT8@zHO)x><9#pSmkAvNHPc
z<cQr}Hws0*c6Y8?<FMNNLuJCX|8tiq1%BzD`M!F}8m<jtlImL~eKYaQDBpGF_UF2F
zhUahWdAa6Nmf7#>1%Bf9&ns>IJM&A8y#I2wy~iGPDfUIRlrbM$9Mqa`uYOT;?>bBW
z+h@&uXP;Vld4|D<%+j-WrbW5l^8LI$XsgrlviC2(TIs#Ix2pG|r1|$w4a2*3o0y6U
zg(lxP)KM6;Ai`k3fAfXXpp&;Y?Nr+1<<-H(W_Y3Xtn<vcn=?i3@;jXp)%Mg0`(RUi
zxoeVHW{UWpI3FR`C1t`Bjuigi*mtpW?UXk^cY0m_%iHkH^wzVqoBR8wT*>yl799M>
zPPx4Jd&s-Aa}KWAPc`?fX)4OIS?TAwrp0IZN@KlR`vc#ZoOXA9Xv>(I!@hE{^7ifD
zrksr~`zrP8Q6+zjw({k=Rq>9Nv;Uj;dR#h^d#*;mWK-7t*VnTmUKdLI`tw{kYPzLa
zdG7j)7fwC7cJ4rjvU;Kaq8T?%m6lFgJtw~|@!o;v5bZ}MlYgtFC~a+uUl3w?ENN+2
z**WLr7i%(aL{Hgw#MVpbR_^1Jx%nnDXU$`L@Mx*GkDp}c?<-3+rLKA2ep%vC(&YE6
z&+&R$Kx6*pnTHOjU%FN~HA_vcCuHlzOyQf`5)WJ}n2_;TC;R`cbG2(X&r-5*K6rlX
zeCOF;T`SY(?VV#Dbh%tYE%Q$P%;{<@k#<|;1y~wan;Z9d%3tkza$4#6gAcXyH)MRb
zO%~NUx~bN$<639o7skDQ{WnhCd%VJ3B(-mXUSU$tFBQ&@Hn*1v^!nM(*<>ru^D)SF
z0`uORYo2q=NxmJ<QpO*o@uT8fOy8xBxbtOw9YR(6ieA?4P3m8f9zEa9@P?`T%R1e;
zar$Mi`-8ZaZq5E3;V&G%(4L3e<!4#W!r0|ps!a-Kz6PB?dDs2H4UXCEsIy5EICgDV
zso`(gUn{{9qIIk~Mp}Mxigx0+MP`3@U9LK?cFE<I6Q??xG!(z}Zol-IdCwYw$O8`c
zkFR*o<teJJ)VRK4quDO&10pX!uTin$sCl#_evj+&m9NeHC+(P?{d@l#%bQoK_PHzS
zd|5jAcGkJ}j-vk$H2Kee|M+&Rpymm8*;28kzLWp$oU8KA^47JFr-Q`05*rOZ+<o5j
zrgDAJO1{&f_rD)CSiMNU(7!juRy%LTlAWc>;WmD+9VP3gy?e<1W1rH8%^n^ON&S<>
zf2?~|v@)RVyy2^bbJaeyHZspvJ7O#Bn7>Wx%sDB^{N%iO$6~@H*17J^eX?}!i4(Wk
zFWJ0s-zHRT^XSOo?9`&~7eq_F7R{KlC0?g+LB`84TcPaT9GjjxXtt(nAFOnA5J)M`
zycd1@MMW2TrD*6osZ&>Mx!zuy#pQQtcj)tSizoe)io96whyGm`{`$(XoR5bT7ToQf
z6P3QOOUYVnugcPd%O@WhY~s@N-e1YGGtKP5_wHl4-xsCmO?CLm!n%36rbw3vv+!B9
zv*+?J+p6{zX03D*nw<7(j>);NGp^^wEw*5r{b|apDHiVpZ_j`1H#_KNnarw?7ZIY-
z0&ODBpMNeb>JM7#6`0C8Y463o_T1845-$!ddt7w0X1<f!*HvMfA!nGLZEfDS#LDkQ
zX_cP*Mgg%qvMX+9UOatk{ZuWM#Ck)%wOdYn7Tx!J@!q<7ne{S@cWdO8T&?u~DyyEk
zs?$nVD7$BQX1tt~`pXA<@BW*hw$gfCqx=K*xcF<QC+t7o=5vlM^iufWyHkR8Xq~uQ
zcH8smBa0%-yg-r1ETt>UuHJpDp>%Op(8*ITx*Ye5_DeZ!`ct)#ed(*$xdy3IZy#K8
zXi271O7XA98ftw#4{vl=ZONUNwA;{svEh3;_q%o5IT`+(N%;Q3X7f7{Zr4*`yP~wF
z&e^;wo-4WJ`n<&COH7+~2{(kD`zh!;aq`D)vvhC8YG=PMJL@Ll@pxY_*YCJ>uNA(0
zUK#xMPkW}2_3|$FuJ-K@gifs6?fYWJMjo@QkXieV-2EI9f9&?lNl$u2OJ4QNsPPnh
zTKUfO)MpN+*<r#J*FJ1GFa2$S`}+yHj`r&I@%bvN`GeMlt+@S;DRHNVeqX>B*$t7i
zH-s%d_~(vH!knEObI*!>e>LT;oCXK;p$!lE7*qaloj>=gZousK)1uaEy{nw^{$X_*
zpVm{Y#G7l*I!a7hc}jT=^Bt>9V|9@kI|8PCTR6q2FKWT<w-au3eF!vPc0KcQ_RPPT
zxjA#PPRjIuia2YTc344S%lGE0+MbUl*Cmgi-fn#7jk0o%8s@ypvW06*^gau*?eo9r
zwrllOsnp*$zMEub*&P48){<*7ql?<Ct8@1GY)#YNFYbM=I%aKe;JR<}*N+{4+ukSX
zzi)cw`m18oO!=g36{OE9ZF}q1{BotIRalag`^42U^VI%w?VI<0;hH_?zSl5m-~Mdt
zI%!FB>)AKze5uc_y0u)G9=+krhFL$hT)X9YeXHNg(%mLGQ&K*Ca=o?9BW(S3)lT0O
z^UmL_r}xB^*0%PG|M+ol-JKiPlxwz1WM7%{{H8%^%T#qY!@Yf-54KtBMwOk5KFhXw
zTf)sVUqmKPp3X31Pf4fSWfyO$UbeSk{JGucnoBv}R*QS9YLyBba&oawIVIXDeaKuQ
zY~h|>2Tjv}m`fqHXXJjZ+mUkR?WNqACqndJ3Eh5Fn|UkVTOru-%lVx(Cb72{b!u?b
zd~QFm>~_UZr3}5bNq?0plzV5JyzO(9Ile{e*`N9I<}A6LC%C&*UEJ6G`_;gG{rTL7
zTU!@(Tc~+9U0eBDD^Y7Zf2Uxmt<EVW@5R&m7fjc>@@m=gvaKPDE@w6DmAmz}GHv;p
zUBWNq=C-};w+mh$yv68M)LOUNoI`uUw>s^NS{`J&()4OpZ_vv1c>!TZCkr3Rw{y1Z
z(F&J1|J}BWRoGE~de@cJrr#^ho!jp=IjeX1X011x`%daFUj2);ck3mUF!B4^TRf`M
z`X(>&mf4zVn*09O&CITE#j7@pa=A)x{qF2lw*FT4u8PJ(n}07g;E8Gdo*T*%9$^TY
zRq@`pX~lAl8!`)nc0Lg^?w=BOTk6G2ox;T@=j29)XtarJdUeIo<K{Mvl_A+zj`xP-
z<Rsa%^U1M1crY>h<5jus48LyOHv0bU=|--{8tNZQD|7ei$!5<vbI!-8_GgoE*rK@W
zxf3pLnSXx0?fKA`Uz;0>j^5eA)jA<>x#y%K?}~r@eNZ%eb^6+nJy(8wZcC51vi1p1
zy=m?>^|#*Xs$@2mYmrip%kM5TG(Y`hDK|sRzKXtSxf?IPE{)CBpPYB$e@?ih1&7A8
zQzCELR9=-9@9g2JEZTHl{>S+MyF*(aM5`Y@xg~7#OQ}Mi?Y9%_&V>lh-&ND8xm$7G
z+&yQen4Wr`mNsMi@uYo*?{C?B+a);HqAYa!<&eiWx2}xf&=fl}OO(y=e~eU^d-I#O
zUkdo&{#wj%{;F31SNe~mo<91<ryd`%T)!ccb7t@%=ZR158CstW)_-0Q(&dz3c3^3e
z!vlRAwr^Xb_ddOzRh9efl1<RuOPe!g?}l~njC?(1)*g@5Hx)L$WRF^2t7*-1qImAc
z$d$XkF29^9q;7a?UG%fhMcl`uc1__~!&|lD_4%qv(+$%vJrCOGu`@@e@~Bg1!;}@-
z=iWX0V{;>lckNA0FV)TSM7mk0ACA+TKG$WRouOlG4S)5wcdQBT4<3GVZ!f#SclLCa
zXHoZZry1^8x9)3>|D&HQGaKVp2CPrfbWh!*qkC*#cjmj2GndZnu_$}K{}Sg72DeMR
zft{9mnRk?XtG3KalfR{LE=Y66`I+mcapa^g+8_|HR{D9Rxz~q36Oz<g^`~;YjZ&3*
zKDSrm#i0`mrX1QlajBEyf`r8zGZ)=))Ag%z;fl(=t*89u?y=MSQ$F8&&U++QczVXx
zXK&LT40&SxcD-j`A-Kblw|nZX_6zq<q}X;cE{a<pKV{|BC0BDUoc(m?5zAC<w`U#)
zkFEaj=)_79tGRlC`byi@e%kVG`XA{H=Ogd-R$Z`*S?=*@*Ie<xy{oRR>=xQ~JNMc1
z=b2}u{r~*Alau%FaZKQ{eXh%X-+b|7V!zw&j17UdI!6BwCp^5e<}hF74MU^3-4eU@
zJ>T1L?2pXz^K+OUyqP&U#-^ODVdl%sXX$4*W^9-G^2TlFW$%u)k2PN%J>vOjj{1wb
zBdQuA8Y0H7o)^qL?%F#inX=tdTV&(<pt_~(@f-2l>z5;+@69=Nvq9tO!{y(m&-iRt
z%rh$?Yn$Ttn7geP_%$M$)pSBR4=>Vgn->3h`=4LuPw89x{;x8qJooL+yDcxa^agLc
zYxKJQS<2b#T@n%HqVFtEeSfj*&YcdGuHUEH=k$lI+{&5CcAagjYKThZltu9ddLJ~W
zuMrggkx`SB`)tGAF3%k64Q0DMSI)5f@AYG0s3IHdbCH!HSw21QlfGS0WLUJqJz?>)
zqe&ADPWyh}b9Q~>#=iOX4>&fq26-<P5|uu%GDN$@OyWq*<dEfm%Nka?{oeM?Z&8e)
z<<j8t`yG4o_P=X2^3ywST)o`j!%Y6OA9>Q4muq}Hr1W_A*+O62#h>nMR$rYuX~He*
zotz4}Z%sWTY#+_P$x`>&yskMqfA7?d8x4;gJGSHbyy_pb_y3gs{ylH|Y5xBo_&1lo
zk6U$BE5Gt|v_<W&F9)jU*i=q3-~aP$$m-B<@9v)N|8t^$hwoze)boa~6F7dU6+Ag1
zc<=YU??rEJ7&6p-FR!1zec#u$pxp;H|9_r;9{avZy#D9(`jhN-9~eQ0pYOi^H}Bq;
zW#%6bF!Mk7ZRa`Z!!h%H6Kj8e`}oqoe%8s8p7%cXl`q)(?C<;f|7!KSw=Rf@3y~1}
z*!}Fw7lz#1VI{%7Ui)|D%&JhicKGE_F8{AfCq<siTYgn#)A{uwSv~J>d8@9TBGsmM
z%JkI5$)(bfdbgHsExWj1<z={6*r~((&NbREgEYif`+iM0U{d|2lF@O-(-6^|z9hX@
z^G=tZkJ}uT`7){9m)COArg<NW#Tl>9x)GZGUhw$de}*4wr$2wWJhT4a<(eZQJ8PWo
z^K%^95YMi_@$0@5|Kr<VRtxI?<XOtLOJxo3UWKWO|Ce8_Z@c#EfBO5gi8;~dKD}Sw
zw)L7^wbk=G)wQ{w|J&7icuZ?NpdzN2(A{u_aT2SLlHyU$6qaeKY>H1BP6!FH_z7@&
zOjB%N@z9B668x)f@NMt+JH=IZ4$oTkiaRT&cGvlv#qaO_{kNq0{JVFyYht&CtzA_$
z|9fTgl3nYxW8&sKR{x)?{Nn%j`v2=EBn6yXzG9Em!rY77*8LTXzn{gsmZwA@raK}{
z>-5F<J7vE39OF1Ec1&hk%*5Yv-YGqe+>K{?MQv|7KUCTGcM->`=2M>Dj1JPwhXp^K
z3+^<PIArU<As1)=M%?1l&IOMZKPmM;{uj3YVOqpH3Gpc#W_($=d;Y74s0$J-Qyb3|
zrL1Djk6m)-g$DDx8k6P+ep@Fz_53Q5c=>kl_P^&&PkYb$?HKd_#}9uPMkLMZ7GRp`
zeff0PnLgon^8%!qHLA~L^-egwa7xpPn3QRu3Fop8PSf0TC?#$2yO<P-oqxW3yvWIA
zE?1~1XUAVVSEQXav4=IXK2Ahp$HxQ%nbwc)UW`jC-7h7EeDVE|yqAf)$no%+cpio`
zmhIO*W`{UAaQ!ydi_m#L`}=}B7N#=u7v;{nFu%vJAm{x*hJ@ztsY$ahF#Toxu{Hkp
z)^q3Y|9NKq@p=8f=RdC3{|&EsS3Li4`M%Gxf1bwwQ?2_sy<U>xLwNny@E?Dk+xOT1
zXs<sIzW-Nf&Hvx`K}VF-KXAAIC205OgEPZ{`F~E%e_&q!+5F?#{5oOxb$!nkUYMv*
z7%#TU;r>-#y<dMP{9gQ;i;L@wzE~vNvA4WETV>|#JT8!Mhp*yuRN^DC*XENsPZh~6
zxwG=-g}BXc9QJlynYwX9!GjnU&ld$XJ*(Cllv{4`jV(KK#wRFv-cRX-xCDz0Y3A<k
z$4_)Cov6CZ8TxB&n5Xf+{G{&>CT|v9dMt5s6K6_g<HH-Xq_3@Ve5odw8_T+Lml<2!
z^>Y=s{@L=hCCgYAAKCMw^{A3r!tM<xUYpx;c1*gZl3sE3yhnD%?1)F%R&yW!IrQxA
zy!e>5!o_Q|P1b$sGn2|)!QPvY#kTk$%LK#ucFF-iE@d?{*@im>c}e<eg<JnBuig3N
z|8GyLXT^f23whg>ZR*pCjnB{9d*IH}(t?7J-unuH4Pk}zPr5Aj*RyDuyzyCN-(uzJ
zfBSztsNGW#bpK*OkIiW(OT%YgQtwQ?Wga}r^m{2h>0iP32Yaq_w<VWGC)>SVyfUX=
zLiViYLgC9-kG$Aw{O`+~AHu)>&Qp$DCH*dUa;@EG<(C(K7YCkF5#MR=5ceb_+xp$=
zZEml{3v-*TZszx1wUnG8d~6j{KwI<Eb3X4LF$Je*+}z?jA!E553%}Ts8wZ~o9dqja
zu_!*_iTRs0XOX=YX~xGMAG6>o3D~W@!t9-aru};s?o{Jm##y@<i%V}?Bp(#GazmY&
zA?04f&eths^B1n2{b1gNX$O?&nW+@kCrk<Y@veM-_sfzl{raD$e;nkmYgm@~Ve0xC
zRh#FB`R$L0@BiWY=d=BPV}=Lu|DMKwII3S~sB@0-!Rq+GTB}wa;;;MAJhz@5J|>w|
ztI_n&;m_^;f2H^Rd8)ry$GgW(`On$=e|YzOXw`qvZvRK|lg;s$FEgM2e82y{o!!45
z$qWaM%h&gOzhA%q^Y_b_gP&B&%_|lU4PCfuQOJi|Qwwg1@0e`O<e-1vNwVkhW#J6@
zKeK%<TnjbPe9UvJf<3aqu-eO5^MLXDFZcLWb$F65xVgJ0Y&d+QAl~T6h8?quw}@^E
z3Y70mdSSWz&*RO;Cwvx_TwJqj&B8rLc4a=CB|mdQ!np^U=Ql@u%Cm3^{IW<>c#`a+
zD+@9=uHSZP^YygI>6=)Uck^_pF1ONq!?gDxgZjBrbM2xt>DMZjX=!JKv$>h(cBrHo
zF@FzwxX2;jfFrOeZhw9H@AY@O_;(!K-+5wB<>SW523c=Kmm0)0c#B6~bXdLTcC~O2
z&lD$*?Tr&o>}b&0v%9EqV)ui2vh&-DCR{seYcVg^;cUTgS+OY=?-{R2Olf~5d-x+q
z`uTgz41cct|7?FCHsx>9mrR4TIk(t$U1j+EYPm-2Q>R5A&i&kL=Xd^1?U!bL`|k5K
z$HG2I^t(TBDp}n6eX0K&?$bT?-DTB6S^T~SD*|qPVXKvyKbMgqMKAE&bH%gH&dxit
zSle!IlxLW6B49^#ZvKoO`@M23{<mya-fL3b7ghA(`@hux=d0XTDSb?v6qNL0$#eI|
z$}+O^j|3MRxxSY97JcC59YzxlF1B+lJ0|bQK6bE`<<8cHlH7eyw%NS8tTc7U_fJfJ
z8*R;xFHQ`|PK#{Yl{YDiIq=avr}o>sjM$ovR;GvE6!BSVdMm7@qiXe|)MW<`#HQF@
zmw9|^-?0ql0<qr{g6~Y(aDnM><Bys1e@g!O&~AU^=~LBzzt;bk+W%2{e`Ecx<@LM1
z|J;7s=B}!1Rk-Gg{My&iKbq}-G=Jr*IlQ5y@q|Rn^r}vt$HLYPb<d3Dlb&Q%#>L-H
zu-nV&x7kZG{+HyO&VWZtugfP`d<xoV=yq=7=Ihc99Wwve=AY{OHa&F9{fL}pllGW;
zi*?NLev;RmY$2t5zWaf}JuOkO1zsyP^rzaKc-`_~g5RO3PtD|Q&wh;$_xiqWdcNNO
z%B`Kh56z$N@$hn|lsMDgMg1G2AKWzIuRdp<%Pi~_xbniZAg+Sx|22&}b@ZF8%gR>&
zy?j1?o4#1xzeUd<OxkedTcz+yo_~KtW1Pe+-TbEgUQ?rgMPT09WeL~A<g%6to2-o%
zSk(G)(@CGC3-XCif_nOnxxeUr^Z0W5dBcKG)f;b*KJ>cYH2=>1-|DC5oj)YG=Ju}g
zDRMmR73cHqihD0k^qsu3;xEtA)t&3MZW86H*;{$|VzE%@%;yj1$Uk9qJ07;Ewy3I0
z{Qb@Ex>dCtnul6$+{(!RyL#OTuE*ym{WcC0lU3bWH`!)7Yumd&XS<nlFSm8E9?Mv9
z?fDrcomZAgU5#hBQ+A$r->&IrxHYl!eerX{{eOSoNWOD_vi)9r1BJXZTzz-$n)}b6
z`>6QqbAx?bJ}+2(TH8l`o0M;Gc&ELmkN1S2wk@+RUX)n;kmIrNZckH*9>u%1wmAa7
z9^bqsewW$mrAeK#%4x%r)N98c2g~d{d--~^;ImTZXP<xH7CW{4v!<xny*bCT+0HDT
z#VByf>q+fPD`v4dw<RAxxb(Gn*`Z^d0z7k02Q+qcN38o+_?_pYUdHNYjVC_K*#Et3
z-y8p<HU7Z%eP4C|{5k*M=HHw1|9IqUJ}|!8b?oR-*XKX=<M;6de&)CP@u1h^=h36A
zvzApVZ<_b1djI$89lLgM{r~&I-Tu}eab?KDNscCkuqLG!)lG(Mp`j1G<9`Wl(m8zp
z|KIzMv*UkDF+5n@Z+B?_|KIx`gWAT74DtUyO$S%l^0i+C?H>2!@B9Dv{bCKSnwQ@3
zyS^KDEpmAH+V&l{&Y$ycpZ9piOiQ%bu=~4y+zf@E`)A&H@avP-soK?ASGI}Fao+Xf
zWQD=88?NzP2Nfi)e{pwCsgx`G^Zn+|yPN+y*94cHi0o<kQdL`hPlb{5zfEq*g!ZC?
zPOlh}KOV5$ytQxf;ks2Uk&ZGO4%^*6>b}(akB)|i$|t4c2P~G~T;jI3f6k5LTy^t9
zJ><&1N^ZZ%RR2RMvtC7T^V&@>gTAb^yfZ6*p4+EGmijDge;NDkMjTFMd%9@L=9@Cl
z*T*w4tkcssoFDml$11Jno#z+WAGmnZ@Z7mL28O==K7~1V{yzDlGDENE+_gRxy)V1|
z@+utDST4<QC}Q&Wf~u^=_nf$7tWBMNK1>g^WbI5~IwmotI9)-#(nDTAiCatOTxChS
zei6^{Z*>#Wh30%bSGs-un^zZtUhb4vUn25ix5@Ij^#y8|1K&QroU_1kN6Fun`6r*=
zO;+5|`$=u$!4DHx%REn3+WWpp@L9%j_w)pxM{jNxGaR`3l=a;CwT(}|qzMI`TOx8|
zPLaX+;-0x1Uz~iY>GoLp3ws=AdCR`l6AmnW^W|soLHA`#CtPIt{)OXlvh}n6{__{N
zn9d1cOkneU8mg=o^8Udcmg1OmktfUq_OME{f4Hd}bEuTpNbx}AngWGZ+1a1=q|5%k
zTXZJD_3{zbiUQ%-B*l!ze++;Az5j1l_cgp;bpHQ8&kKu-o8Q-c-~How{U7(5_tp0g
zfBa}z_j-FB_x|6z_jjkCpZD<18=m_=j+uYhZ2x=n!K;6@<9~92E92Mk|E>PL=>Ny@
z{Q2`A$ISON-v9UZzMTd8_umhk7CmPRC`&pp=g;#mUwE#k3!k~m5jEA+CGEdji^Ds$
zl)ncV7C$_&H(X52wE3Sv<iz81T=z|0dde~3`jxy(S`{AR8eL3t+}W>enKIGyb&G0I
zZf=Q==b~usy?s%?QWhQkR^7DWt@TsgMOOkNZswo=d!}-dk(6-IR>On+2lMidO0N%-
zTC44UV&;pwsj)TldA;xK%_&$Mu9NJrYr*Mc%|&(f0x}h^cOAK*E2e)g{_(M&<!6>%
z4tSVtBKP>s6Q1Me*W@4AV9s$*()A+$rxWY;l$2KfR*KK<58cOEcvwT*h$l9x@r;qo
z&ZBHII*aVjF(w<#jy}2jiH**_R)LGLdqN%O-I`_g#4Y{Ow4L7P7u(7;mUWe1WzWfU
z)8GE>aed6?k5BFxCGwabYdNJ6C8?1sZvOAy#nQt1D()jwb{h#w2%MVCcU)P-m2dvx
z?|*(4&)LBx94`KRhX384^V3h%-mAZO_{P);wsw|I7hfOG*4Ce}n|HcTSKiEn%P+9^
zw0apiaecY_=Tn8np_4OZKc8RMcQMR#%4(sMWxP>&^4h5aM&G4{zZ~~rY}!4={v5-)
z!#~e$b$a$}`KA*WUf;HSnPGG6W9Q#94>MZgF1DW$?w@gB(=+pK$IbT+H;BF9KcGIp
zrU`WIz>gP;`wMDndglM$IsfqYecx^WoLc{fi{XL)|1bWEOOIUN_s#Uo^Ws03^#2O|
zd!+wQNk^+y;K%O$zpekAd;f>8?xT3U;NLp={r_I?@3a5+*uL(>dc=m`HH^9!<Qv}C
zJh#sOTfP4J;qCkX=GOeaeShC~OZ%_E_O1K>-rj%r%R*a?HJ@*=yxeuJ`+-K@6$aP!
z{X31<2bQMJ^<sQt)T}Y5Ie!{!<nBvSTa7JFf9475Sa+oMetG})&7Hs0JTpw!N@^`N
zHQ-#yqBK!UO>x(iA8wkh$4)l;UcS2VePwp}j@943ZA;jGJKp2RhczNb76*)u35yrW
z#vQigzPqs3?Xro%*81Xv=d;o`-xRRAJ?Zkc>9$7a4!HKk<sFw&O*PnQRMm0E)BpEg
zyLIl<85&NeNGY{Fz9?~g`SOL|Hcxr|^MM;|Er3w&>y(>woK@UnvNwJ>ZLX7eL&<KF
z))I&H@8^70^-o!1<8{5Y#gOgrD!%&9Msep<w{+jyw#xPGoMW$dIXydGqxY`h{>{sQ
znc-aX`ZTA$=GIfF{o?Pzq3AS0VQRX>i~_%G=8WlGm$&I&SR#Mv<iuN-#4U4pk`;9q
zoG|7PRDGYD-*85HJ70gmbhD;;sY0#Nn?Kbx?(<$P$;Xy3XK~rrbH?YIMdon}E;{MI
zRR2<b=Gh->UL}As$(dz>XY$l8%xc~BWlr&dh^-+<TWpszW@sEppH<jmqR#7}=GGZG
zZ}EFA$vHBzt*hA5&&NO5``k?Q)y<p6Jnn}VMBKT(vEzp276<ijZRf0}Y*ffTZ`5{%
zciEi64j;DVaZ7(CoZD%2-lc%~+$Ww(d-tt-tkc-d<I~}1SF&hN-J>PB2NhzX#n#z$
zelRaT=e({&C!F2j+~KA$m3NO4$^z$mRr4=jSzfusP=9hU-^|nr_hiGmBGhy(1548z
z<!*;(zh3uV{Ebp!K-v5!|L&^Ij+MzP*{pK*cYFCW(FrzIe~t74Qd+BJ)XyDLm=gK9
z+m+!3Kl=;*Ut!a@b{_~_7}L+0X?E+y)_si81&8zI$F9kLeEw|D=M91xpJ(oUT~ze1
znfZ*1tEBjeyT^3WnQrYUT$S6jd(%auWfBDp54M-LaF*Cgx=dSGpuSgtDaga%e%p(%
zl^?oonT5q(^lUa@x*=2YN#$L^b+zq=8`nsQpV;9L_ao*hkKSW8CE<+d*<4B~ZHID~
zJaH8aV(#9P{(I3j?#gqPJ9f8opL;0lC6^la-`3@RXG)`;)iLhr&+``qd^s+$b5pkK
zKfyTf-+N}CH1!H!7Ga(%6Wzo4e1A!<Of8F>Me)+0`L^|a$<yshzrA6NtI0TRH_xuV
z?_mXt=3j|z-3u;We)-wC&CLhiM{ByltkLB6MpRMZbW(1NGRrU9>~)GP?w7Y5tZ>$p
zRnn|fbG{O;rnj_bqrl!%Mww^x4&~MDirzVYcNbgQX`$CDvtB9hP&y@Tnl8}PZZ+5G
zgTT#KE-!^TcY9`q8iz-RpKzXX<?T7uKE=Y%Q`h~yd)#~Cj9)6I5v55I$1S*vvKQz6
zZa1ENf70?_4|u<QT~p63-NCcjy6!<w^HRYWm#2LKN+&9!MP<KAiaWX*z4&hMhW|ow
z^3>Ary_)h?g{@J~r6pzrSUz0)bwQy7Q+f3K8{T)4Z4;Dz1Kx5>bp32}jNw?|lW(^p
zL#KXtFZSBIn9pLd*D@auK|!VB+Ly=o{@u$|HZf`Pt*3??4E$1poPK8Pn!J6vTl@Co
zbqB7wo9poDE!=1I+|P9@_tSHVkIsfZ?$BAX*5ko*yB@|lyERq|1gw>9UNYgt+(icG
zyBDYlIytQrI~B_uvuT0WlgwFC^Ze?6eD>$+tUGUYOI}v~@m~HlclMaeJoxfN%KZIY
zMh3rm`wuLa|1ZJt;nyFT@abk-SFXz5vTjw&H7gC_C1);Z7xlPZ+w$qn8<zLA3Cd6P
z<M#Alyy11HeX*gR|J!t#xpNXONGlX4OFWKMeOxB>NZ=h0i|&Qay@&eUE2kwIY+}~n
z;ohWs&|*o*31jub>sCH1mYzAJ<W_KRX2tKAdphSQq#8Y&Yd6*Uax};1l}8SmpElB%
ze|UYAcIW4FOBTI8BzIj_?bN;~w&dL!%Tz5^N<6Pw+h%^u#xHW7H!DMf&FO`qB`#ty
zEv`MK2e<RPF8}+utus(6LFda%fsIc>v`k}{O3Ls0Yi_mGLuGGFg!uPEKVv!0T_{fN
zywvLbYR>$VJYF~V9Ql{fQMdoVf!<ILvrQqF+qi^vH0!rpy}xH+)uJg;EGp~b;rnV~
z_>ER~<yRN#=5TtLH~M-zFx^YMW9Oe8UnRi69P;|olAfjqb%K*i#k&2|N{i%q5)~da
zDHeafW~P52v?TF)Q@deDshPziw<fbYeYP8<W9+8-crea<YIrvD=tt$8eKuVm|DV;K
zV%SocWbw|~K+@|j<C!q$M&F+t+$EZaZs@ge9OOP{Su$Jk%VdE>#eCVH^Y5i~{$CgK
zVS<%`)VGUQ$~MM)X|u4jJN9R$?(VXZvZn9%Hw%3YUmySQ(bH^(11WZ{S1Wez=9_A>
z<BWj}Pr)Ov(tQ;lncmx0^D`8DdLv@1KKFbzs~hw0A5WgJ?5z_tQ!6jbyZq~q!2(vR
zjphbNSiR~m9NxI;r<Ip<N}ba&hLs{)wl%MA<eY4*m?~3Y!EG59bZkzkW~;XJG?xpu
z)iQo}t{yoeefa6jmcraS+v+CCELJRB)OwC-qV>`yA%|yKby9iW2Y=YT&=Cl?IT!1H
zWm?>nbp^~{yqFmhl|+@cc7`{t4Sk~&rnC3vv0F!^cqEyZX#ZE*tg}b`y^g^AA1;<J
z)z3+E?KyB_>d!}WoOk)EO7AU77U<8KwC6=DYt=;Y6J0X4>6eaJI8W1gRU0Y4@flm_
z^AGon;+8Gz{mt`S=F-;Sz?6VfGmn_sNKGtcll0MMU2?*yNzQ+d?v_g#cUcup+~3t2
zA839Uzh2|b-bW4R?#AYJ73v*gip`ciR%g(l{4qVDkl7|Q%V2F2mmYIMO<vx--Mtgf
z{+M9%MeU*6i<nt;>n0^ybO{z8w)nK*h2cZ1lec6Fl5PFZ{I+m5I6F1QLEP$2xum;9
zbHy&lR@ZI6<v8O64?S-CnqbgS^!04DYv(rEBpaz+`*{nia-J_dKY#CmqwHo)cC)9<
zxNgi)*7#2Lam$n!{B0JNrRy#24sJZ1FW=Xu_}*53Q^Ff_i7ywms}}O_-G4sJ@=Nyf
zP6x{uEb#N`H?jw?%)KEWF=gVn>c1OSua253F;D9E{O&78VzNhbr(ARuOI)<)oP<bg
zx5_D=$Z72!sp-le4Rf{D30Q94xghS*Jmn{cI3K1gHoR`RjAO$&_m?K`?^{pces{~Z
z^8s7s%U!+u=5J!(?80H&o6@o5ujJ!^eQUfQU8~zI6aB*{*~w(CF>`W-N8|*f?x_N1
z5(n>I{}wMHcG<K=M5Ai2-<6x%UOYY--g*{Gq@zFC@IT+#&r<!K?cm}sQwrPa?*Ghq
zV^B4FRrI%s8inOSC36=)KlZAPTSGnE+^v0MXZ6lfqqgIE#t%Nk@!HJ!TzT;DkI7Gu
zK0enTSNMkgjpdu$oE=?e_WyoY>%PB}{W#s|*nyeBA7{+i{O<UFiN<tkso#x<-#XU+
zoB3p)wqe1gbUl`yOAF6#?W?m6TIp9;|7yGNrTHxlhCF8~O*!-??p(3<&60{Yo4F6C
zdEP!*{Yb=>(X?dgizTwfTQ;ur-CHN09DeEhlOH1ImxaBvTdftc*^*&Fsh0VHZP^#K
z4T|#K9$#$OruW|F{AU5j^P6;*ycCIiR#%oKf2_Q$Ug4W`)B<6CzpM_yqJnOvKl?&g
z1>e7!!JNG4%XM{z!gITphW$Mxd)KpK+S79HJN%91YulZ2Z$0%CfANhiul~Gc`!%am
zvjj`8e!Dg=r|U<NbtlV3X`agU4d<9@W6O5heNlfH-B&B?Y3RJmF-d*%+7GJBlYZ}(
z{5bdcqvC6cyCzj;?<;-qcE9SQO0A39T}zg2?z}$PF-D-N{jB}UO$iQ}>a|K&q{N)m
zzLuzV&6}EcT2}AE_tM09hlJL*=$t-eSbWgAt3Ax>rFyo7*lE6F--FJy{ANtH$&2Wm
zad_VI%I$9+Ec9s;kL;h7x{XcwCDYyO$=fnz?Y7_Vvrp74_g`zD$J5jKRKZ!(#{6Ho
z*o*8<2MYGwKQd=&Mx5Ga1?TB=oHJ$jEx*Kd>*-wWwTE7>-MO@W`HZRuwcbtr%^j+@
zcRXmnou_@t^XLPcoPBALVtd?{ObPI6|Cu`R`N1Xm1~N$o+q%E*(hCgRR<k}#s?O@=
zUk0{3<83d#Uf_Q(Yo3!jX_~^5T;^ly*9?#Bop59>e0ope8$;IuVSaxlQyxK=nJ3;%
z>3VnNm_zpD86l<0PYtUCo>rVu@TzTXn6PQ{<oW>XY2RJ+Y+k#aS+sa-$0-)IoG8X5
z7V|0pE0vqF?^Wo_&%B@VMdjy&?SDG=7W%y2Q0l1K-4_0DkB=zl!k?G-9hhzO{YUjY
zmjd}^f4|>da>lFZuH9CK2)WDgA-8v3VLFhJZN(N*nXmQN*PEN`oU`U)oyi+NH9k49
zRKH%u>iV&$<Ny0M7hb-8z-+_woz*;&`zAk-x#fD{a$rAWg6GZMUu2#{Ie6SpSKDP)
zJa0<Q=2WxohVS<0+Qj@nyZ!y0`F)lSZ0F`Q9q+g7bkcUaJo)^7(|^k+{_NE%|L`vR
zxxg{`1DeZ)w$AiFo$&6@_xq07yid>Nt}V5BE9@Ne`_PiJlHSkkj83iC+2OYSWVW1X
z=al)ye2*`)`jqUN?&Op$8WQNWa>1jCkvi$&+gaOseeE}A9bEBfN)Vg+Kb!N-S&nIy
z0fJGb%^d4Jd&~Lr{Je5_qZSBPJEs>ZJhpY_6f8Qo^|XC|+S`)}W!VAUmTezvb5~02
z+sOH8one~!_aN>5GW&vyGhdXbCpyensLEabU+(4OSif_5_TL56vNZoi?a2RFdq3pw
zxA(hucFwjb6sunE9HDTmw9S|EgplUe^@?kzwp}b_daAzn*a?lTtOr>5yJzWiXR<bZ
zez0!O%hprL3R~FOS-SI%Mg7q9s`__>^J8rCj_(>D`)#+IuQ0p&FTeQG{#qUF<a;p!
z`OP!D7$oGxU%cG^ve00Ooyzv(_4nO(-<Eh|_cq|zeDh!)i|v|niSHJh?)Wf|=i0`*
z`|M6#y*$PEwdmpdGk*X0&L{uh<@llvKXqABID85+be(74X5FQ4dg9`bs^?nobL83@
z1fQRnG-;Vp_dV;fW|e7ODcg@NUVe-J$Y0D<TkWdV$-V#ap54v!B_7^5`&>e^U%zYr
zbI*<M)}E*-KefB>_W#<y9gbRwd%}0kv^ua)wP{~qSk?V2O3w^->|MRDL?om8-5&Pp
zpLY)CE^Yt#xbtDcnUhOf+saty?G$rlnz^bnXUYV2^*X(j<3H5Byv#3Dc$XhYob!L>
z?(GRYbMDul`QEEv9;<%4CqVbpzU<iJ|4O-8FPPsve^KzyyN~v6$CJNZ-gdlx+MoKH
z*WbSXIe%NImHR`TFlWPK4!@?%_WQm0-CnCbE4>RpeO~ZH%Hqz?^Hq1g?q%(NX*8=i
z+v&}#S;a>cr}S2BpX2=F#4qV(YybUa)U?=95Lm2fz0&mi%8GZ@J~p`-jec)5w|~mF
z-7emEAX;tpNtQ$Z(`HX*+g7W2cVExl@@>kyw|Z_`dp_=|DNkbC?pfzQ=Iy&3ZC~$i
zRX_EyMT<%E?fa{ZJB?(HtzF;SdF~Y3uFXYBE59FI%lYxyul%3J7yEpre^r$8{QJK;
z&Og6C{RZzc(eqp19xk&J)BjXB`~CCZcF(U}EK#|3`_CQIxbz#x&R_K{zMiJ&|LNcR
zJ2hTmPv<_{xmDu*lEt|*&bG3axm$!=9;kWBC?S#efW7*hg-LmLsiM<Vk=-5Nr{-8Z
z5c|S&EpUGE^koVa>ev6|)^61QUY=C1&}j{?;2qyEia4r&n^e-iQ8_D_?b)|;$-gqL
z2liI?ylgn@c3J#yl;VSOkLa7+o4)aV-gWyAcg-I~HzBdq+~Xge4RQ{>)tFYDaEVLM
z<|p4H-t>LvUf-`+>??DBm43<pbvOUy&td<4cW!jz_lw0{>vB{6*f$hUU26VO<!SQI
zCDY!XYk&8OpRFWF;JfIt2q8v)QI5EmqQ3X{G&#Nqu}t0dJSZr!QT?S)kFwpq<@Opy
zes|b)FLeH0Zrt$pcu4BZJ%@dDJhsI>%07Ryd-e^cxe0PFg=+2B?P`C}cgOF@Hv@yY
z_Bo$zVt?<wZl(HudWpQ#uS0H;<%_vam$%-XR=4W<gLyswcc*pBDZT!5P1(Dzdj9d&
z-=`-V9ogc_{5bfr)p_=JySi#mrIt_r)>nNZ*k*p`Qbmkl>rjm>Gp`pGT-N^MOl@NR
zBK2;MJMxiT2k&k9yKkd%@EYGuFLut<suz3v-`O+%221w$A6$NUr(@dtSL$c{xfv|>
zW}5TN_B+vnOdnV8duv&t%(VYUy1<dz3ruqr$__oAVwXQvcbcnJizl;Vg_+^b=r2?J
zy)}dcXC=I!b#{BXx@l{~tgGu956}I*XQKH$o<-$TfBDAE_~ZPTZKKo{2lZ*sJnugV
zo3q4r+lg0tH}2);PW7wkGQauv&$%rJH%WE7hh;|XjD2w@w&iVzOYP>euR;3tr;6u`
zR)!SM-_7H|ndBY7XN8<hKt`(1iV-^UFfq)sQvUF_|C275{##*iOlO5nM{3)&=Nspl
zNdJk`?zKPSW{}hSE#2h1B1cmCgd=k!=Be)ptIYUwWY#Bz>*=ADkAk&Jw{O2c`Plrm
zo6bpWZu)=Ial^^P@}<u_@2={Y8tFgFZ?1#Dk#`F?Q0y0RRG;=tQ+mmTe?NuO1j}D9
zug-kav)tz28>XPwOL7i+*04@(Y_wc4sjh$8aSi@R0jvKUN!vj|IW1x4tpnTRcFaCs
zKL4}CGQr<bZ%;~GUc2Yfztjqux9=i<#_azuYyKndNRW={zcm-1_vbNg?maS1G&o1>
zriEdD`tMUSY-N7S|6-66xTT`hao0(x9Bm9jAUf@`>FoJ_ycx^c45TOB&f9SJUDfjA
zH?(I@vbLXFTxPvyU0Q@|pz!+L0m8Kh`|Gys-Q!um!BqO?x2<1pOtBW6ykf<->_6&a
z?Z@hxB0$yHkxe=_k&C4-?{k>kVj5Z6==ApAf;E@^)ETC%m;BDg_ItVcJ;m8mzUTew
zTA=;r?u8%w6{ns3v7k)7V=A^pYG{zCev@r##2@ZliTu`5p3@pto9w(@1>`3NKCIj5
z@Z;2x=WB2ME05Lxmh1cJrOsdOucjMA!({(wzPYcX7I@{zyM&j*6Z+V${9@T?wZ%cb
zV`_m>z>H`kz4FaTZSVY~n;Fj>smWNNyq)*-G?%uyd5f03zgWq*(c;aul<BJ6CX;Q_
z-h8{&dxK@}rI=@Z-}Wzla?tJ8|Fa);Jbmv!c>c!n<j?x+KZ>tk`gr!feQVn-laGI1
zhn!FNILAC8p)T0qr>*ICu|%E7HTMhS7i?4S*owu2Q+MP~pI7$Y+}~X4Ug*WUlP=Hv
zoibrbMnw1R-0Ok8Gpg(Sb9&gb|5qQ|y!_hv?Z@R6Tym}VC$BL!Yi*x<U${H@-LL0i
z(Q0r1Tse2T{n5U%W#800dL6k-niTjZ{8nQ!aa7<)IxSKB+@tt=z9aYaUgx)-0@}{g
z&pSGBmna>uOtrC5x$=*nd+YzhPH+Dg1l+dQfph%@@}0t2(Q*-d7Olg!LFJu`gXY$v
zwJ&3ndOTlUKl19#F@<TDqV{BcZhqkXjYIL!`z_b_OD+7Tg+#f(-Cup_TmCGzIovV_
z1ioZ^c)NZIQ$w@Fe|hF(5>mhA1(F#QGv3sDT-vxl_qKVRdrtrD$NU@TU%2XkIAE!o
z!SzDtfrT#q@2vfPzdrnrkL6>?LnoONSAYLl@G)b1K()Qjl|R2(UC)(s_u98J#)`5y
z3S=KB(75gNn|G@s#2>mB5XYV+>4WML8HUqdllE}leSCD=@!GSScE11r?R@3unYS(4
zYMXU+1Z(%?Itc7;Zq!vVT==^82JiR#%r9hAI?g(9mo(id4m&CC76180-i+=o?8#?t
z{$hSz^Sd-?t6a4Fni9EPp{<dt#XCY1BHrIomz$Tm-tu>i`8(T3=k~9U-DY|2p834x
z?w>kl?>T(i@AU23&l2xySw0G2wradD-jp>J5x=cAyXaO*k8M-zo1>{$KdSo8>$_U^
z(fnn}F9E^%XE*FP@?TfK-fH1e+ooB6HbmC`soW!eclWIn>F>LC+kL+0Wz=8ew`Eq>
zsZTR*w<>I7)V<Jo)idSDk$uHCny!~#JN0`9$G!c^yShcqTsfL<aIl5kTyXmEmbU%%
zI@>I2&oq6%dh7qjtxS$@xF+oYU9ku0V;_-o5G-lB;cTY4ep`M=^W9T%TXnB-&dJ~N
zH-G>B-{tdnw=8<jva$Nm4QItKeC&pDs%gKE$$aqr&KH*X-&SP3;E{t+{qx+nUo5v4
z;R&0okQ*(Q-*eOZ<=<nGd$~Ctc|JPcR;n-kt;6l_-XD72WgN-3@4vVk{^)NnTYXc6
zXw(8>Zztw=>kQJ0tuOc|8SV(&X1>vC%D#yI2D}IE)U!D1bVg=3zc#!%_3hzu!|z{@
zH}*W={V3pFKFh}Upwbndn!hoea#WvoXoiY-XPMXbp4|B4c{^r*Ykra>RlY9x@cMJf
z8t>f&_}lwsj1P<L7n%P_b^F^ZD))Ez8+7IMaDI1A_OX$jT&>dkon@nCMx);vzT|{7
z`zPuBy?M6RO~t+1@7eCwVL$W7es+9}-O-b$6=ysYJhCr2LG0Y&x}NWkTZ=EO{POx+
z!iz1r6;t%CaW>tMP$^W0yRE~vLFvVjPd{Qqj`8iPxo)@lWX9`*?jd0!0voEYbiDtg
zbHwcP-w#`szFS@VAYIN;My&s9Q*uc0yM>jvL*8$kSH|*j!Ud+e5smM9C)rl;P5SRM
z?a7<F^_LeMy_UGKXU}Hm73zD=S?-)!{50U{+t+ykODwxtHrf<U*R^eq_*5UQd%)J{
zuJ*Mh=k0$K?*E*7@8g`~t%eLYy1p|eDPIuq6WHCV@(z+5KqPp`C1PItog@1WPg$3}
ztn7E7_<O~}i==NjZtzn1Z0M>R%zpD}q&oj$_Yczw0_#3sWj|l_)?XmjDtU5uUs+w<
z=fvmJ+wOio^1=N7zPbEc|KGFfmkiszt^BNQ`~BK;$>%J0U)_Gub<b~;`h5EzSM(kw
z?96}X`aK{?64dmyy?gN7wEad=zvnOb8oSx}yK%zZXNRliG#84od9jrRG(TH3v!Xw<
z@LgnR-riXo*Ux{k>*PJI;vdJau}|sWFO&cJ|86f4+p>ERQ<x3hoTV?9wwLw$KJWat
zb6VbP$={29G|Ru1JRnitANfh*-Mk4om)fF_UVhnM{_)w*>hpKg8)r|-y~evG_qj+{
z?LE)Ui(4%>Cg=6%)~$K9?5Tmow`aCfj>$Z-^LXTkR-&~=*gV?2^VIRg@JmN*3m2PC
zxfYPi%n;zUF!$DnPDjm?$q_A|C2Su$IdE|*F8v*SXR%ew+%vH=Z{Cyq%Pr^nEKEiD
zlBNHp?-eIxA5Zl=8l5T3=Iv^|UC74YcG0_4?%mP3vt!Kp%ku176T;LV-TqtqW?6Km
zW!%B!GqRJi|0n!EzSz|;Gg?A6%2|_jY1Edr(uaH7vZnl<ebM05zkOF5R%QQ|Id(v@
zxgdG_CAM2Pu5VakY5DxbCmsfcRJNHnk2`r396UI=n(2F5TTbV!+x$mmpZk0|ZhHTg
z3#;>@90P_0z5*)@)9+UPu2^HCXleGpdU;ZGy-d~d@5Zy|GzuKCT~d7Mi<RNARaR5`
z>WeqHY&~q@e@sSf9sl<;u{F$(7#6Tvee|1l`r_>ixrUX}bA6<yWL><%`|K$XL%@0O
zkkC~5)l$dKJy$SdJ9kGZhU<wEJHrVj=l%EH8|VGCoGjpz^K3?WL*?|zZ)a&A*3dUK
z@O;&9ahbL(&-}wy``>$P7h0QHRlMu(o~QkV8@GB-NLl~K^Yw<Ebrp}_`h4n6S%2hR
z=bgW~mt{VcK3&%RY_W7QU(G5(aYeJIKmWDvsNd%K>)5&5f0EzcKdQNE@s){&^S<!z
zzP$RkfEoY&-oI&9GY@Rb?Ovr77^cdwV9wMPcOSn@={lx+D*dzOtW$ZXj3jnHeD$6)
zARupzkidhPxvP7`C3@Ky8ZK6}Jp94Ia6z6=A+^n>{5uP?!>wwD_>0*|+jIUgTz1`A
z_A=RP>xEmn)3$IOdyz6(wbHQvxq5ox=4RE|3O&UI-{m*7ezxRk-=d?w&9(gSRr_mE
z?b&YGyo*Jq?9SWLR~&v!Vn@g9rn=^d#f;}Fpa1(~ajZHiHlxw+&UxlO!Lm)#>b$31
zgI?`AmSc7J=~YXH2hU!~gog_=IGD~~wCe2vjU5dI&53HNpZ3jNA=`i4qWT|C`uTax
z4(gMN1ezaNt4(<A<A3Qz=QXZVzKga7y;ECqsQr$uU{Zoj=Zqh$oX-X3IREf85YKky
zys2c=RIPO8cG}%NpTErUH+Q`hTlFC9ce(S6@_qWrJT_l=+0*mu|5^86-v8&Ey`9f(
zefJm_{Vz6m&KdiNy`FotmusHHzw`sXcbw)KA1apM*)ie4p*U%$jtw22>bZCCykeGE
z{_fEB$z~aInX>Hk4R`K3^7O1J!-GFxv+u;*JT5N&e8<i`3=C(|jIR{$7F@mX0MCL4
zVv~CLt~XC%+PjCJ;Y4xg$Bz;W1!dpl?)^WL{^oJ|c|$v^LkT8K3_NTM;(D`EZ$u?u
z_S=#CCp!I(=kdSWaxa=~%U`w1E%vrq{w%3g>lR+>Q25?m#CPuQ&)J?Sd2^;KHJ^AR
z671FKljb@3Q}4Xv{ppGOlsjcMT0A>j-LN<9k6TzsiJ9-?f7y5M&$7s8YA$$Oqh`#p
z{Do#0)66r6|D3RISI}Uei#ALb>(qBs?#-h%kuMs%vuCkgzR4R`|BH*^!>7mdA6(7;
zT~TIyuqJKk`!++4{j1Mgep=YOYR+8S!~diI)@xLKd#-byaeMMk|D{VLlJlSF=g!Wv
z-tHK8Yn$$^ZJd>hytW&hI=$^uvY4WmcFPMF)}?1ANULj}m6-AScGmr@iQ%f(&aAFE
zB(3>{JM&feKbzm5Or|=QE-AKK#K*v9wM@QbpBlFs&&OY1{~l?6-!w(&LtxbJ<4gNX
z?bl7ZT5;Le#?8Yj@51(?g54J<tNc}dX?%4{#?;<rTh=xeUGKTZW}vmF{PwN7)HA2H
zZoaeh&J!WmxEsfV+A_Ev>wG+Ip>v<7Ki_bzX-M|%MRU#-6tXH+2{SM#FnGE+h7`6=
zUvJOGu;<T@<T>+iulT7h|DWag{2LqprWFY<dH>CqCrW?+HLf!&mljP_)X#}dn|Yvf
z@>cumk9O;pn=>?=Kli-i|6lP0y{viZl1sK+)cH`p!nw>rz<0^x^VXNnTsyn_+hd>G
zW)J18=K31UzHxl>O_o$k_s3Im0@Sw5pCB|-I=af0-?ltox2jgewpvfzResI!19vR<
z)J>Rh*EVP7;m)P^r@p?g>f2UWTjM|L#=@z+wj!6RkLI=}`drQo*u66-a+=0z%Tt&7
zLQ5^(gKz(CG`n@LI`R43!;PUIzWlEJ(ysi4?c1)0a~coEDqNZGFBP>wICfIZx~1y%
z(q+et{0?PoX$vYd3JWz|W-dG@eh(YNpC^mwKX|G>pMgOyE<V9*HWR~^E_2&stiNil
z11tXBtJe5rXZHiNI{n9wiiN*6?M@Rt`Dm5V@!dh3t5zMlv-N3>owMou#jD=<u2{Kx
z!snUWB*mF7<#wHjQ96C+$(ryRp3>6o&vWn3$-jH_)2I1c-`$*_H(|?Kr`y*u=G+N+
zy+gzN<sn(NjlV)3NgsI2c$8PTb5XuJ0}n&-C#%C|`$e};7k;9mdwAaa@+Th-+a7-|
zcB`uI;l}*v+)Mic0`fL{Z8crB%gJ;;bHVJG+^7H27Tmg3tLD7+4U3;98)Ms=4cEQy
zy-t3z<oe%-47S?~&VT0laBP~=$Kr@96B7Fkjx8vhbRp96_}3>~;^JnhFCX{Y9bG>E
z*3n<b?f-F}JAaqy?<cLCvMpz}?VsLvOK;QT&ND1V`m3J_O?NLlGxJ>fgT!X7;~6%G
zPWaB5dhy2c)Vq7Lw{G8)uy(QkvAMg}6+SjI(u=F@`doZlKU`dVhTrnU$u0+<&1NoB
zUh@9j{f7lDjkiT4`}+;-HubkB^D3s?;4rM&d-lWc_+9soy;)bGeEoiI#LFw&n{US^
z<ri>on9z0bz~m{aV!rB=|10k~WpA;j@R8!qy$0X^v-z_vy}0Y+o^`J_tSmL&d+^II
zw#l7)+tMa;K6^JS^S0Q|-S7F>n0xyC85oW)R+h<>z3j4sVY1%aNntPir7)W6kMhE9
z=I&j~9oKj+Z)vBXw!CBhDz492Z7YpMckSGD@aa!gh6j&6$vnN{wtm$%#yy+Wc#71e
zS$Xo-E#Ihfp7Bk9URBTb)Q_tLrf_{0x*i^uRaINueDkbGX>NJb>|MNUngTLR_fpO`
z6zV^mbRw2z@AdbI7Is`}8j;gnU%uN`_SL*VkEwgx-(5_Xe^||(^L+D96OZR5x1E*?
zCe-Iezuj8BrupZLYr0#E9vYq7B;&4roPnWIrRmPy14k~kaDPAgFW&gT>@K1Db5eIr
z7t{n_dZYB{*nt;6W(gd;%5`fxQ*hv=xT&IPpC!}mn&SKdtuLQiHD|HT+xMlb19q<P
zx~s*ZH^Dmc!^Mvb>c`LDeJm^^f1Be;MorJ0>he!1@wMDs9kB_MUL?kv&DdGETSt9H
zOdKPFTDbU*o!cg^I9bE?_V#{LgJr&_YF<v*bkNIz%bbl<vgb_IUZ(5UztyI1);zU|
zr<P;x35{=O7H2PX_B_`(bxQcRR)#k}?8|El>k1qF<E%<=t@id=emx^*w&dkwA7fHp
ze63-r?JIm7ym;1wG~RO;UVjbvk~3@afh?)-<@fZz*)-e>T)p#iW!zcA*-?vc@5*wD
z=L-L)FY%UBvgha;&UOBZj}vU}`R9kf<~UoZ-THpQrQ|ZtRU2M~Jo1>5y(+h<WUtoq
z8CF{#KKUdCs_k}dIW_t9>+Cx*w|8b;-ZtUgEK8~R51#Do-L*R1G$n4q^PZm1O85W$
z>9F7cwFM4;GM?&tPyDUY5nZz>oZR9|MP7L=UUlclcD=(X+jYD{&XsP<($+AyOyddA
zdtMy3U0_mU@?_?OJ&NmgJJbaT-HZ)Ad${-Mr$<6hYx>mAI`RvZ%bjlBFhl+J6`|61
zcN?@N40za`84hHuDAahPB!6|j(Xkl@3w2iuT|R00Y^m-1UbDoF6HjfLxZ|YM(u=!Z
zFA3FswTo{bqw6$w|AvDJ9d|@N?w#fre`j;(8Qpi&)zy|39Aazd>wVeIwEyJ7Nkx`k
znI?&IR$eg4Ym5!mNZ;0<_EhHbNz*jHcNX){U)bgPbIY25-JUVg+CJ%d8}p<Zym{Ey
zojS5vyyD}XecwM<a^62@bXuW!`${Dj_it4hH|#u*?6}ilc|G}Zh@;i5RVq`RrMIk$
zk6N5CrA^=UK#7lQ0#8Qb{chvkfvh)r_4QX@U%P3lrq7)Nyw?@(1s*Fpu4DBt=he34
z9>=>oK37^D{c=lB=JZdNt9x7?Up_ab>B6^~E0<bWljdDrk@oG++;qz&8@Nx^)i-R*
zoP24nw%q*R<@Hq=l9Oc8mL7Wc`sz<nyI)U^Gc=qIpTDSdwnB5AeB}E6g9n!F6xl1+
zHBVN(%C%8vd+zL$GMDu4EakbHZSmNyP_{w;{!?ui1BIM5$DiAT-rJF`a!>i;zJ(%D
z)0u8u@zr>5J^#Gn&W+NY;o;&tEb4o&ug~Rr_VlWDOx%sikl5)bjBZc={J3&Q`1egR
z?#I&)PFFr#YJY%7EvXrEq$2iOVd4FP4>$6+WiP&HrMxUGQ{$@B&l4WE+hWgd%RBtJ
zMEY>g+Dih5uDVZWYOWLXnJIB2&ei8#%JlZ<x7K7voq291WHkGH;PlXr1-HL2$TN0t
zvOKo<XSAAWRDQ*@%#^1#67$xsHM)_=Q2u=P^@V?>&!nlQ6-)O%_2_AkaJq3@LRPua
ztNqs3+~~!tvP}H)qMoxJTWYRmEWJPMyWrZ=DgV{oCg<L6Id0Xt@7Cq6))kd^O)_Gp
zELo?0W|<jNU9s`OoHXU`&o6l{OaK0nW_R?<FSRc>Yph(a-ZERCCc0&^%emK5TX%00
zNltKjbYf=a-uS5xE2{p=9AE0|opHrtMMqAH>eP*LVqtBsl`5T@JQ*MROcYtv<?>SE
zDI4>ij0S0GNuFo(ggPc&Q4u;O@cM!@^NtV}MGKc>2WwlK&n0Zi=iQZ2HTiG((}kvc
z7@J-#TY3Azt$R|*XTMC!KKdiOL($^Z^<A!l#}<fftzN%tWwYQds}0P23zw(8^;-Sl
zOKoLk-~WH>|1&ZCx&HsJ{f>Q`1h4y~z4-cDqG!*ioSuEfzvOz`B&>{2I@UMr3x2@!
ztN8)jyj0626CVCMQ@Q4eVoQhLuQ~EhEH;^yhrDR0&Jo%=_0q>0KCM+hWiIcWyfr@l
z(bsJ4%=)jNR6z~Q^>KSy80PG^IzH9=_?6u5g{#$;lyc9!eSG<O?=4nw(RNAw1ttC)
zi#Zy^UL482R#2FpUG=c+bi@mTotskk-Ems1w{R8L+VlT2qfEBWc5z_$T+DdLWqm3S
zYt6r94*3>5sfiN(PqV|O?#}=HY@7DX;9KRlZuIgVuzG$yR8%d`E&IUklSXWEVtrN?
zr?b{7r0NJh^PZIR%%WV~IriAY`D<%gOMWlNjh^!P)L+MD!}y}pD#C@6pUl<Xk|%V>
zM0C|AzS&xHIyW5JSi5Cic+21N`)Xyfl?juKZ>$pQog5hcx$?N|eSN04Y3+@x-h5v6
zS#z1WUVdfVqgzXB?!?3=6=jM)4WFFt6Z`K)j@i*1E7!<huC<-ZJ{7%X%Uyf;@lNlf
ziEJmjm3A-`vwf+$R{7^<w@|P5*~YHFIs50yuef>e?0uhI_D2}<N=_VK`%LuJsc*iE
zvofA~i%9107FfS=gGO(i>M@NB^~2B3w0vLnN^0w5KJ(n}T}Bx-_qLiXOga%fU*LB2
z0$FtvpYVIDOK+$!88=Axw{+f<T$Ssr<#<=)%iZM1>o(_g9)8L$Sp0n1skQGP{M+V#
z?vLDlj$kkKl`O_Fby=zx|Nq?oUs&IMYxnM5^OS`pmz;ht|Fv3zXO8y2iwy3Mjel3z
z9NBz1nBl<7&(AGN``ZsE^R%<J6rVf4nI|&MmSK~UJKuBm4=kTA1xxN`6Y>|I?e|jr
z>8i{NS@vdAXZ)VBbhc)m+P8ZJrG<_D@jEx|pI_H>eSS?-_`BzyPjjD9`)1mt%rbd~
zj)DH$8TU<e6OwLkJ`((B<rnrsbBsYR7x8b$n&)0z%e%^H%IdYN6|RQ*HoI+iWaC=<
zNH1BMcm9Hq8w;KrG)xZo*2es$y7|GfoqD@(K8UedwRzoq3+~d*l|k7zR|z&LuQyD%
z<sDKfwDH1)ci(SqS=ha2j_Drx+r_Kz@_A=ynSa<?q2$i;_~O;QxlX?r(${=8RGY|R
ze$RBzx`3&vJVAwQFJEUA?`u3=J%7tG&lJnf1=?#bTnkLH{yyo*Z0QicxUAl<d#-G3
z%gT+7W|-l#zTm0sQT6K;wTY{xeDw7T-@Uryr?=j){C(*4rJ=K@eES-D*&#DLJ6cl1
zye)HSU}Y*ZOG@CvqKmbW96au3US_jv#ZI}#Tw2qTmr^kQSE8W=PtWQ_7tOdzL)l%Y
z1m#*h-<cF>+9cL<`@NP4^JASQ4hI>|+&8~-o?*ek!^N}07JdxXSY<gYt?Sx%_oS+w
zhTFIHZjAZA&W>g036u1V`?eWg_;)LS?aT{<YsDWD+|-1(*Ca>Sq|at6m0m5IvG%cL
z&Y88h?)vjwE`7e{!Ld0%S@h#0pZ|I7$+>KCbltqC8eG{%*QCD~6m9zU@P&l_yuAzz
zH6L#Bf0%i`hJnGN`kP%}f4c^k_R@3RHZubG419tvC&k-+yZ0jGJx5z@VCBjwp?TL%
z-nl&c=hV+ampenfebuh-DEQvo{keEg%~wr^2VYP7e|)+6x<!5N|FX);##<{rSRNld
zvp#S2gf!N+2e<elitU{z7Bg*eP|us}kv=`PcAeE$&(yby|JSa(XvG<EdE15Fa)Ijx
zQAew1PZ7xbsLL(6#M8~t!Z^O*VBn5P@y!nz{yOsa+>bI@SM!E{*YZO4Y`u$rm$4-u
zoIAIW?;vZ>?skK`1Am{Zq+WY-y0%Zr|4B#L#CNerZc4R_+Z~^4-0#ISZ3|~IPt(SN
zd534r=;!V$*(tV1YD?!mo?EBB)W~xwPTYBt@%f*%LKm0v-PD=SwK?;W>D1{OOlJM{
zcHbu*k&dzSeDw9GX<FW*)DT(q+#W~m)=N*@{qxl<_HWwR`h5Ml!n(}V72)F3cNDIl
zA0ArpId?XjSGI<En5mbesh$7!*4I)Jivzb`EVap>z2U$fxgLX^8&j3nuU{8nCAq}w
zl-nkkM|pe)oga&t9lxBrXa$?^<s(H+t9T~`O@6b`C@p7`@tjKQWR7eu<{h<;uWcV~
zu-u*(%<b^_QqHr>mZvINpPB`Q+*T9%SsT5;TI@`*k+%NDzl&_{s`SiL^5N>xVK0BY
zn}xaf>3*Y`&Q_9J&#3GuE-~jhnKsk*z3++O2=k-QbRVDFwfjo6%31dB(#w3jB%XJ~
zn~A0cSD(Ef6YreOy6o?=og7nTHZ3}^AYc6T-+!(Jg8H|Gj^%b;DebPR>q<&^Zs$5}
zvDKz|VqQnT2|KmfvDg3jSQA|${?zcn1v6id(;3oFkEy&r9I#MparEyixo7Uh#6Ns=
zs_*ji>CboUD@p$Lgl+O{&a`z&$M@(Qo?~|U(}X6rqlcd@77+4L`K(-*p=`BL7jpzw
zFMG!h<88N&Rg|m`3Gj=$5>k32_evD2dqFM_&kobQO?TgZ-?T6;&Z2kmUESQdIX=dM
zcf7mrF;s>fd0}w-Kwj!6wz}^>4=NdEyYS~EXuZ4EeP;G)50kYGUoN?~2{>*S{QRT(
z*qsSUJ!=nhy`D2aJ#vDd(Dw&Q%?-U93N#gCXKe5cc^O;&X~wC<yI+%4CK$6U^_cf`
zLS6g4vMYZ3F6n&~6v{smJXLg=aQ2&TzrJSAnIHXlo`3wlLuVxSUG)`K5^rb}k-2)O
zPkQ?G^#z5A%F65GYNhT>RiB)F=5&VLv&Fhm+S=2<1UfHWyy&2WM0}!Bp;r0>12r$1
z(>Hm{g{5m}`mPH+zt?ltuB8_`+nn0l5;-P@T)i=+Vb><F_Dxw$);j`kO}AoaX8x}C
zuBWlNacA~n3FfD%Ds$L(Zx3N*Ie5X!{qN73rk`)vQf<qRUvT-n**5i}%JR_n2M<o^
z`s`=2N8`=oWhb3~GdD2sulwbccA~~)?}>@Kf8E(R<>U9DvV8}Cl^;KB{hqNT^=Y1;
z(TlGE7RnaqiYwwztjbz&TP?7ganZ*06Q9a_J>zyk{isN<@m!N*H?-Ipq;dm7MStmC
znkO#l_1r0M#?(E`4)er6-rKNu{l5<qB|#e5)5C(N8;2;iZYo`NM9*~9x&SNDu*hjM
zc67;xn_r({QU2}ZS&_>td)J&#557_=DdJcf+`iG%D|e~`!;XX#bET33o}6fTac4e%
zVT`&NzwU)jP%2r!&7!~WirT~%W~(@b-!99$@Pl!^PT<tyGck56v$72Am6K)8?CdVq
zJg{Z5z)7B&vr9xG`)tlHF5$Q6IC@G?<!<J8!*hpt4?lPMZ4;Qg>*?x4%lZ-(<NFN7
zWRfi<cJvgTJeMvtc?rjxLi;zTyyQ2|mvq*c9d>?kh~L)S6V~}rtpU{@?)q6*H8Lc=
z{N84tqGnaQxz+hz_s!T>$rrcro|-u~=B`iPhnL>F9sZx}ukY!;{%vE{EI&>CgOX{+
z`rZ4FUEO-xbbef--PZl{&##`~ysoz?E9u<sOI9x~l}LMk$;h3Q*46i>=jJCXJNb=y
zT3hV?U))moF!K&$UeDcpg|-l;sZ)ZorMH}wSz7GA?sVl0i`#Wu?nf3mXzL$NYe?u=
zb!SKQQcHz9&kK$v#-vN6284ezUOrhfZF6S9x%^pXGW}+1d+OF7Uz~d|$4laY+1Dkp
z7F>~y+M=q5+?4suaw~Q|5Sq39-&%z~YHK$<{{OZptReqd>g`{5qs4wdD>)?b`p)sc
ze@)L<OYr5K+)`IB@aZ6Lk8J#%V{*o7Az_)U+|tdFN1YR#w{zY4>TWqZ@z*~|w|hTp
zO`3}4$y8oEK5_DHem3Wnox9Vv{rD^26X2(NPkPoex2Li<(}Snf>8#KWDHW~}S+&Y7
z(rV|gls4(@8vA$b<0|@o@~mi@d7)suxu>N6;YkbJ+s-VF`u0i2_PKh1NUJyRN5{pv
zrYwaS7ntVWka)?Pp*d-G-D~fMA*QFabTc0+CC;yDnlAsBCH$Pn(`QD{GG}e$JC<@s
zLFbgBL{+V|!MFC>4jt}esjvImz8}ADZf$$xYF}1_i-DY&;MF}xp8T@9b0j3Xy<>8i
z)stDpiq3I!r$|=WhWDGEk6B`VPvi2RFS%>qUt7mpbA5L1L=*Gt63x5T8J6yBT_0cD
zb?WKXtEIe8Pw{Dqezw{v;9xLm^D4oE=kLs3y!q$0K)DL1!sxA!ynmVc_Fj709zI!e
zS@G>@)5V|vcrv-4@y4D*Za253=rUJy@A{Tnn)dK(s^sbVt-E-o)n${t*Di?SJ^bfc
zsE+;&KfYeW54VGQj5kbM{LqelQ>hon?RK3Nei3&#tglGMSiFfy-x10c8o5ZXHglbt
z#wsJV1$Qcvd>9q38K%oTxZ@i?De9<G;g1cwQ<z+zO$oD^HGQjZb5_`*yt(BKtDI+=
zXQzlAU$)#~m*?37imj)6#gy^{!c<rN)akL_6}piB@`~!nCogsv-q(;_w8d-tg_Aq(
z$F5j!v`6nlQ|MEcXqB^$-%rh5G(Fj(Wa~NhzZ(jkGf1s{ERnP(P@W-!RpZ?=uY|;h
z>n2ayGWn#bp8jzQ%dKoh=jYqA-}zc#W6dqyxJ^EJzs#E-Mf@ub6Jr*bFHE`h<Q3cG
znS0GcHcOr=>bv!G!kO2VA6RDiE}OCIxo`fm89OXrmRNDmQ@OgwC3b3J<GJ3phjDLD
zPPAU?a!q={_3gFup4Wc)#B?aWynoH#&a0JEq|-oCrjUgRg&6@Xb9YRidty~@r{(Om
zPH&4Emra(AnHPQi$>;0q3qHP5Wq9yZ-TvUu*VlLKDcL=Ja(0N`rlqfDtY=;Op!_E5
z`M@V->ifgLOz@N}K6uTx?)l;x>1fZM*5_+Zm;F}KwH11Lu=MHOHTs3M|F|x%^w-wd
z9ppaQg>{a3!x`0Ie%q!$W%_)RTjOc@8($&ENR!<~qGsvOcNe52-rTVF<+QqwLAN)}
zNiHky{e1n~p8CI^l+VPN>|ME9;q<njFW#+{@c#5qwdyaU(RBW(tDgmCZoT-0*KJy!
zr$W-rz3d%vs(IgiCwZ@!W%gv+^s79=@p|cIM{CmLxBGIZ@kq_@U(;}H?q)A_ql{Fi
zmKH;{cS_HEq%{^Nt=rit=)81N@jaCywgQQHR$sCu-al@5(V^RLVfz8Kbu-vIF17gZ
z2(K=^!ux8O<J+Q)#F7BN%{~r?=I!@kuzT!Q#Ca}q0#o!-C!e1mrt-6hpP18Kt><zg
zJ$%*CEpryly7@UVZrX|%&TWfcwhGPZ`S`ahE!Q(ErJL!;@9swZwq>)}mi9};#V6U#
zURe5eNvY0Mc7qh9Ws|4cYTwOW&2`B&r@zntg5Bx_CzA-~G+EKxX78nMw;PJpsDD~>
z;DGA|_Pv2KRvQ?Y&vWhE?U%*fX0(YXBbMudjMTF`E9FiJJ<Vx)+53L8So6fGTd&Js
z+t?zvsEB*^O1s_DXQbR&`Ajr#-P;}Yg+Hajr*G4VvYee%Ropvs^49RnQpNg(^TRb_
z*ZnLpJ9<Tv>-8=^zxS!J&gQu@+;3*-eEYog$%!RzZ`WOPz8|YzxjsGED0$ueX;BRp
zCK-)>HWJ4q((gPx9eZVl<;@G~@_!}f|9P_i@MG@u4<)5_jVDW*Zh41Gi$3XG8`LSI
z6KRpvX><0wVC0m(b+(Mvr(YlbRUlmS{b^tE%#!9EVP=U;SGVP!xH#)<-W#`$-;tWE
zVozQPW;3Pt2X9sKP*6Xt_-Yf6P~zMxE8d@wo<6hqZOx-SH=gV6SDoNtyOr;GQRuW8
zK6wVEmid=wXNR0yvn=<vU))?zwRee^p2a-<bHwqgZiw{yUSGYrlZ*E8_xY*MPB?hN
z>tlw%m1~8L7V~`#c5W2jaLsp((<!#+bH7O2TblW(|2C+z<kXnYKKBR55$}NGUs%Qb
zOTs5;Mb>-_SY>cpHRYX{UFF0nZBN+euDCH%!+h#j@sDqL*j`>XVPXHSn<BAgazoKc
z#RE+zr(M#Wb!+PXNx4(9jpcmAB%5z<VV$+jDSFzB-B(r=SvlL5X(~4_QQLK6z3YQR
z*KbPgv^6_>Y`W$egYVp5UYgF@#G}fx^=>3fg00((+Z=(bwyH8FdcR2ZdsO%B5$meT
z)@@&BZ`m8M&Di!@>-pDzUrrBA=-Bx$a$cgzrcB1gj}@zIqgUI!7hN%%>&|r9mcIK@
z$1PhOZOo^bEqu3a=IzhdmtPinZfjGYc-qY@R5YlNZ?Eos*N&SRyia@D)1S&*zkZG3
z%h#XUF?+WiT<|le>Eu__XXhTTSmk9>x6X3?;rGu!TQ2isyT3}T^s%k!on;&Rt&=Y@
zOgU{K_qCmsZQc3Lag3Tz=E~U~x!iURzWjuv3A|Nt&tzBMm@vbR&3wnowr^ae6*DJ#
z<wf`Zf0h3{|NnD7LqoW}J*Ux?qPT^buM)Z@d9_UKyJ*bI`s~RypAP|DYwy2y^td>&
zdmZ!biL>A6F{QDwopNOfz0D@M-jJ>5cu*-%;JzH6Ki^hL=P#c!edDXP7a40OpGaP`
zGWwbIyNb{C(Qoq){hxE>u6OBdw%pstuCOT{nENG6LU_@dsM#A%uS#_KX{~7FF;lU)
z$WzZXLwmB8Ran{b?|*CF&p&YH*Ym%ZBwCt<JiOdEB~KM?y>M~q_OKOmY_6;le<WC}
zx5y{{b)QPeav_2L7jJn5{FOLT@%-&14vp?(uAW=&?vH==E7C~NXIsj&#?2qt*gOBP
zi#q--ytmEB;q~H;YHn#$x79PR*>hdGy69N0q{qYaHH^A<f3AqsIeSd<0q?994nc2&
z>{U;FJzg*4oVfLhN?v-av{=f`8=s7>&#TYN%2_dmYn5=?8p%2N#c5ll-5+TA{n*!e
zN_VNqs#BippBIOeMp>EOWA5qv-qmaNeV*izyJ~$`nOqYWuYCMa;&HOJvpgSL#%wLm
zMz5F;GyPQF>Gbe69X~F^b81CJp0;fAhdJv*yuKTBKHj#TCnQ{SnegfbJ8kwK*tz<Z
z;p~`1vzd!Db4&JQNl85AwMphmyS!?F$;Hm1V9m#u<ld%pDIVUlaytKo@|8S)|1tb+
ztc?+2by0JcywyA9pQ;?|76)}Pg{cYqEKAnJe7^lO<Jg|(W>3EEv9mwEIy|hew76JU
z<?X7>g#zMVXKkFY|Kx(hRsM?@$~Wy^^nz9Vdt5%l%x4QWo2s+s&poKRY46{8+6)`G
z+Y5@HE9GVJxJk&J4V=1-_x3I(q0D>_RRNy3V4cl8m3iv2e;*1MoqnX$vN5G-f=<DP
zKPq2xZ6b855-iyh#s2%o)@@#Npx{jrTWIsoE8FXDma=>gJtV<Ad1J}>1cO5tC+cpT
zEWS57HD=rX8@EGWFaLW+g1hpz(R6`B^A5)tc<gs_Yg@H#z2<AK(6_RCqNBU+#czvI
z7F(CBc>ZR_k+W)x4~geab(^jC!Q}OhPvz&@AK08<;5+50wAzBX-?mG93;5y1@si2-
z;R3aymuapaG%qleWR&oVolAfHJE2~`l_z%^C*QGTznz8+o1+>o*<5*T_TWJxv&yNb
zlEN2y9IxJczmR8B!dm&H@RtuiJ{Np$6JsCamGbV->#yzto19*YX=L85I3_UXzGb?=
zI+NKtMjeYd<|iZ^QoE{m<8@w&&XP3+iW8ojvA%!uhG+iYH|-1!KXcl2gm)C)Q%((S
z6=7Z+DlyYS;JA&RLhRe0do&DQ@fVg<F)>KU$|u`=>;50OB3$3XenVqQ<ev%|^8>4Q
z9lNqLI4*wf<FDD)*XP8>FI?xfrFZ>@1<l3#E^)10|72m*mUnxnm?bQ{w*IRMS1otT
zr)7JUoY&{CUw$y7rLp?X>1qL|7GJ$%ANnd)KZbyoS;7}RftT!yDY0D0Z@0YO7j(?r
z_!x`i$}H0@_g$Yz?&uIwTFS%oIcTR!lZMKY$y>V@aabQYyf}G|+}vBo7Ylyc!e@1(
zYWLK9-rv78ZnAy*v|ZyRU%dUqrNsvWzPw%c?}x$#zX!0j06#=x3a0pdOTEgY_h@N}
zg_@@7gIo5eRf@!IC3)RneEoG$=crrf-X(^03zzP@wa$FT^sn7f8_r+;!hTz9-(S{W
z&5VBM<}osCQaWCfcUAT39<IJOs{#$~>~mH#Do}r^*TwYrA;aQ>5)2n!e|4I&RC{6c
zTE*{~&HEpBraDRHNKfUcdd_ppo5PnmHOO=G`jfc_1eY#m((zcc^J0La)Vd2*hxe)^
z-OFNLx@h9$hZ`q`2+d5jvCI%#&%%(<w9tOTrf*7{Mb+QDcU|<WlWWS~O@`IhFD)Ot
z$FDXDaMa87>Ap5QX=X<E(HR_XPfD^&@J|Y8Xw3ZIr=_95lb)bv=dRpxZDDrru5A}L
zY+7@{#I9*yB=b>ch29$*kI3%7{yMoNW$}6gw$RXph0nU8OdnQlXsgZ3d8oAHYKm*)
z;)$~LpW^tNKF(OyXz^`**}r@B&+Jzey^>whw&LHy2QsdS$KOuAEL`*L^Z&zk;a)QH
z=RUf+d_EIH-a37Qxfaf+cX75=GdTU4JVog58Ov7w_KJURSkm9$?D*3zU(@jY{(l~Z
z1QRKx?=Sr`zm##`|GDtz|C`n2^4_;r|NH*?&Z|xOcWrIAUtizP|9s8^mJ<q*YK%_N
zY6b#A35rZEOiVgAIqMslH%w4C?4(riKxU$ZkP1uVS0$Bb7IlkXvN?b5J)1l4-OGF1
zS5?guwz+=mZgo|B*8N@A-Dl0Ty;~iAHSX(`;^_NZ!*cjG@>Rw98Wwtn-;axbd~2o1
zy8Cg7VWAi7Bp0oG*cNWGjPvv5RjVGjs+8S(6_;&Y*V2;j)3WQE08@{3Y4fRtHNGXP
ziaR{ilkQ42SVVyqd>&i7FS(iHwLtl^<c%sJ^K@3tw`FH|k}By{)4M)D;h6H3t+~6F
zt$Vn*V6)GnGqFAA7xX_oFzx3n-uVyy?6eKre}DVryDIn6_j<?wE0&JXkV{-$TQ=qQ
z?;ACGDn_Z|FPa|;Xay_gnVeO+mm&Q4{uBnGom;1$IPK%OQfFes=H5*&-kUjP+iL!}
z6!}G1bI;Ut_nXP{L?tXdlj5eVaQYK1YV^dsR5(XtDMPt1gC=Xrw05Ixqtnsf{FCj%
z_p*9#|9e*Y-=rgv`j0QRIeD(|*>%0)(Yl(60hw9xFK%V8DqWp(cTMM}FH#-rONEVg
z-QIETht3jdW0{<TcD&t}vbQ^)xT~@*K(gqeTHZ{TXDYwEPVW5O{^M81hr&%ZZx;P1
zir%#?w>s>&QTf?5Y{eU&O356W`qXF{;}*xqziMO69hL6C*m1DQt^HEP3h5~yBJYT1
z#U|d`Q5<G$;=3m>Cojf|Wn1<9NS?KcGKX?MiKa?ArA(Q$B7L(!bGDT1JK=U-bw-Aa
zmKnEg&QGxHtXXDs{n%qShgo}4vTH9KoY<p&@EOl3+vm*>1>V>H`^?a=d9(1JL;8Q-
zSA6|=oT0(r?w^FXUstVhRrhP@-HFjxMW^gekDRu!gnPew`tyqapXVPxef}ovua`F^
z&&{`GPI&HkO7}@_<(03;A3Lkt9XAYj%57NnX=i^{Pwdvo7q5i=FfeR6bNqw!+#|DQ
ztF=YGV(XpHe~?dp-}-4z4m&@vh8`)}zi2|@=g=KO+5hBZ@^7o{YC~Q-TgWhheeMm8
z%{%igs&rZ$B5z48SpNL^gS_^Qv-}Dkmv!sw#XWrWNl19QPoC9W7Rjv0X%c*I`~KgY
zTs&vT^~nAG>i%!f6$VZdXv%*g9a+`>xi9MB>$&-N&#zV6xcz3u-09s%Q;bvBx9>S|
zyL10#9$!bsgNN5`GW6BnygrCaNk!;ZL41K^b;*;RcaNr(dGC6&_hF1vs$^B|ZySl=
zw!6Q-)Med0@P0GbNny#YU&VgBp5Ao)6zj?(ww&fK=FHXfy{-N!H<*j{sZiL{O1{Wl
zELBbpR-P*oZN4QQyEcX2Q+sRYJP|SBeVNHkO^&-=rhj{UOx5i3dD*C1hba@)6y@gJ
z)H$bBb%4#e`uu4}$wNL%LM+N8v!uL)U(Ie_Xvns8@)WbLJf%;C4bL9f^4Vx3SMTK2
z*Lf1=w6heIE-J~GrMAjjVDe1EGfgTp3i~#dH_zT)#&a>0bx9Xndm-oiKGA1Fn{~h5
zQz(2MmdE}2tK65hT)O9rO?-v5s~HyBC!J|gDeS#=P*`IrPpHVJMGaH5Ryi2le=oCs
z?se7DsNerqoZy->Kl198$?EA3WF)Ll{!U-7U-0o**v_4Q-Wb<>IqA;uMn)sta81I4
zX9526ZI7S+Zr>ifyh$La_4mq8N-7th^4ogGEHeA_)<#(9%*xX{rd(K;Z@QsVYp+m1
zw(Rd^N1E4_epw)`5c1U^&+f_X%4J4RX393V9TnKyc>0cBwW3H%A)}f_<+;vi&>)k3
z<{jh5j+3lyY@J_jiaBK9v)t_8&nIs<@5Ssnc3XRP<L76;q;92Nkl|~yu->}y+4ASl
zUszVko>!@|wa#eGnYlZ%^62$;8S&|RxVp16b9^itY)-#*I+Xt1S7m3Wio#<Zp9iy+
z@m)&HmEur*oMJAiu{Nrl`}-p8%CBO{|MMrO)K8W1@|tl+?*fZIdx7w+X|eXZj<Wi{
zs*-GWlQvoB!jrz}Z>Zdr6opLhp4MItMGGVK?>gN=t=iej-AY?>kMY(#Wz5YAkJ3te
z{<XVQ_Mg-0GqVc2tA5|=ygS*oaz)n>Nr{@1TJugwzHRbYVd40Gx967)^-VVZk6rr1
z+h#qR`=F=&y|yu<o&?Y4?~CVMRg~MaYSx767DMJ|W*$3kC#0_9&ywPO#uIzBl*6*Y
zO!4w2#^&?t^HN1ushF_LiM(n1ruJ6J<(~l&rG@X}k5{CLuHr~p#_*iuVM>$nm3Nkj
zJ&rq)O+0^YF^Tt8GoG$!$5|Y;SknH8YY(H-37+XTXF@~56wVh*NY8Eme($%;I(M@x
z?_Yi5lCMo!`u_4ul{2%AmR``#wJ$F+I&kuX$f?|arn?;9-3w3A>Uo~&*PVQCLX^uc
z#&?eohR$245wos;jl;uFPkmZkj%xjoVm-#td*1L;hV(u5-5;+XDH47=sd-Z4PG0SU
zqFmF1m%I>vA^Pp!H+I${_1f*TpFh(0U7ECe0`k6XK88;Vgsat6avn20_Y+!Pq_O?B
z=2VCE8{?MhoDUFjy^*@Fs+#xhrhk0w&U5D6TC-U_efdG}v>s0D<#RTMsok8rLBIXX
zrsuwIC+-nhIB!c+g3X&F-1AGX%vbST_2jj)d8num*VWLwemPgI&TbQakbA68_QgY=
zp2FECf^q9~on_ycxF}5BT`V_wQs&yg&`|B>w~gU!?^xKxgeGw6IS0+#^k#8M(BZm3
zhh5i$o+R9<TDoPU=g~bS8!uW_c+SYYeXISd!4kQW$0--z*}jwgXKy!iy;-2uS;^)A
zp_xVV{!Nx^+sAKh>HJJY#QOc_Z4Rp#Iu^=s&Cx8F&vWj@jrJE(y=C(+vYk80p()A0
zxAJlAr-$smvFeKK4r`NTs~=AOGn4IBMnQaXtd_@2l?T;7`cLZKTC1%kTJy>LoW+!o
z2d648%<R~D!IGbgWi9WP;I}4LRWhw259XX*=@6EG+4^n&cHdj)YU~e3tf-qLZh2~v
z_>vd9bS{<)y-cicsJp*!p3kufdX_6rh!}~_x~A>D!iL{${cFt@?<tx_GgGA8jo2-g
z?GjjhP=Y%-Lrv7{`u1;Cl{5U$sR=h2UNN3NVe3k#XXVKPztj#iTzw~MoDkQ0!19xi
zlhyl*oB9SXZcb>OeA)QR94oEKksJ?2R$6r_2!Xab@X8B|sIRv1u!@?y@>IhaeJ1uY
zp$Df_B#$+#Y`y+|@ta7`xOu6H&nlxr4a-&(7B1p15%7vEop-Z~BSk0eaj0a=g9&=)
ze7OWw-o0eEe5{yVq?@!X&EjT?M(*`l0s@+a|4u1P;ad8#MWise<#@WAbgzQ!GsAhe
zrtR-8iamFGas&JAf07TX1<#huXj$d6=tR!_fN#GnY_~q0zfO;RhELAUxi{CeT`P@I
zFuQg0y6(BZPBwpUFF8N6Kd^uD-35!DG5Fkx_-MF1a^B+m?-xFQ@?HHe<GGm3)tk&Y
zDitK2yVw8!!`A-xd-7JMld3GAg=0jMe+Y`7E)_m~bK#>0cNUnPwDpMlt-0mwiTp#A
zH64u!GLh4iwPVVj+O!wU?zg#VW5H8aqFcU2_gt%Nb)vYS*Rg*qMEwq1w(tvI<ehcw
z=wkEIh#fa9(l2(g_bre6XT7O?i<5s*Xoa-K!NA?`m&L5>nV_$HbII1i^WSPK16vk`
zbw%7WIbGzT>Ey?DFqvavP~?v3isqh0zWjo1KVn-aDYkt2@<hhm|Bb`}i}tGDVxd7n
z({|QK&geUww&sdd)Unpx>uVI2ww&55kXBG;cI2|UncKss-Onv-H~(blisMv$R9sf^
zm#>iH0@K`xP7}_c^3EMeO|u^KK4mBt&RsdFLNnQ5wTagB5630s9?h#x6`XYDX{F?=
zC(As~np{43d8@V=Z@XFA-a_NM!tw8zPo{A`?__dx<`6u+j8ih}>9TnOY%Nts=4>>W
z`DlaT>zI~|uUGe<xp(7kkHOtFLP0kqO3al#%v~>~nA>Ug{<U=av-aVxr6CXIv_~EF
zxWdCfX@kZyPq|hhb^kX{UcBsn{^L%ouC2+;b2*W+456mZu~#o<uPcoaXgJuybo;Y<
z&UV3RSM0yf%Rg7q@iw$cxqR{q$Nficg4$0vs=l9(+jHQv_<Kf%Hub*?qGrzDBm3P-
zwNKGYE5)|;lIr2p-8wleVZO|d_ipJ-ziq%a`N_csvyIPeo(tIJJ1l<q-D`({Mv=AI
zmtVDC+G@YFuTx2nbnx6S(Az1>pDdihUw%tHathPT;8_})3yoOc9ZNh|xh40Kyy>k2
zJA7}gT6JKi_UU6YyuWU^`Q74OnS5q$o4TdIl2Z@5v%FJt-wA&(Y}?^@s3K$jO_S#9
zuNyd1Dq~u_PcD%DzQ)mM=cSc9wcg42%bDmrt9U88cfq!rUw<kk%-IhM$HebHT9PB|
z;de}UO89h!hL0I7A2Ve7r>d}j?OJ1V{=#d1!vfAOfB#<=*4FF{HkIE*mZyK4^S4MK
zBshj+H{<TB`u;M?BF#v9g4h`<FLYkz>|1hn?}eA^6rbC8Sbg5JA$4)W>E)IAR>Cs1
z$p>Pem8ptqi9ZjUrpl!rt<$ZP^7E+^+seh0vcB)0I(yfJ>pk4j&;PXug$A*`=PWjC
zGwPiA$@*uejb;yHeoR{GF+tm|L!K(JZm)b#udxk~aMoVq{M_oueonn6r5078^1~4~
zQcVpMr8hLPi8M{QQS~JMcD?LzPjA=a1OpXOCW~f)YqPJs7Plz8^zr=O8ve^0zs{0A
zd|>XEI}&WU5-p$S`KTLT={<i-`surGHe!>jg6=fW^K#pJJkYD}&R1X8dC4!l<mb+}
zKU)2M?~%*T^%)udU;qEJ{_)Yz;tUOS^%94C-h8}VEWcfUVtdXhuDxs8_iaA@;0dQ%
zaC~J$`=smyo?h;3p&n;0!IY&+C->aD63CVB!~Fi)RIi0EqCH=K_`>t|Awz1K?TeW~
zA1*4dT=Vb7={0Mc&z9ugj+rLD@xOqK(Zn6zicZ^DZ_7t+xu$3~w^;C&J%h*0tyffE
z3#N!1zx74;<POap4WDYALs@^P&TN`w)bc9wsV9#xccsh~o?Rc89$--2b0^AyQ!?%6
z9C5?j)f3h4{YW-@^2y*>Qbyp!hhMH7Ycnqu-E@1uY;QsFUom5Iww`6ibN1BnGVG9w
zUo7Q&_n^R@k1{-)J|wcTvi+@lai9IKV%xfqtbB_j2^q;3s{hJuy3@{csitEG=x`kE
z%S&zUFnID9doP*4*T7(<PXER^P0huOPg5pT-g932Rz+{JWXtP}(>naJ8S9KB${TFX
z-(^bu>zFCeJ;kK1cy`N-Sk>IO#SDu!Eo6^to33|3^7-0LK?w^TJU478QN8`ALFGr9
zsr~oV|5MNHJftl2^p(yH(_pS+GX(Y}K7If3Z?{+8&t7fb=wl~V-&z`U@ZX-Tj$7x+
zmS2?%Z*$GuG<U*II|cp1vOI5tYo)En+_ks`m$db88x-u>TgS~%@%x*unz44~nzYgx
z7TGg?{Pj(8JeCmAQ~YF(a<S0YMJEg-Zg}1<C}{d_m;PAj{_j7}KmI%Y{o|k3*eUf7
zKgS=qEPnoQdP<PFRn#vFVaugIMVCacNOe+tFK%JEaq?5~_qO~Ww}ht(ioMvC=Tyh7
z*b=R?i`8!vqxITV3f<;CtyXttikyg@^Z(~%aSO{zDKplPdF`z!vp7CX(Ag98f3u^f
z|2c^%w?(wNlvKi5lLMSuj)Vmr*%a_H)YP|G%`@$#xJ!@W?RnOdLZu}P)^D_5BE6L<
zu~E-u#`iC!YfSZb$eRDPId*K9<?)t@ifmE=dCoEkzOqgymuTPD*y;Z+>oW&KLy%#N
zqHMIBQszw4{f0B1Te3ATtZsLkcKht^gFo07Up%4K&1@jsU-<ONtHmEVLUWzXa_j`B
z-)}0^cpfpywXrU+t?K#TMGkSdTq^^gD8AeKX8H*udpT}#uCEi`Gi~JCQtAvJR1*M~
z8haoAtqeMLW|l*ByQS`5r4|nBkCpS-B@G_yq)eU~<gnwCveoIPk{vo;(btlKSKcku
z_Icl8IIZHs<_8@sTh6ka4&vYS{mn-W&Z}x^YttA?KFO(W-jO_KifH8Z?nmq2UXa-_
zZ|foMpx@~;r+&S5E<0OF;UmxT&NY{G9$9@AlaRAv3tBayphx|rg!%Iedv+SmQ#mWP
zZi>_S^tZP5+%s=2)i5Y|+EvxeSk(+YasKFQ^Bq;c*%%6ni<^(NUNZ5OUF8(fzjOP}
zt=j&p<md3L-BV~$)AV`ywdVg%PFmJItpCl*aA5QIxCh|=_)Zt6^Yb4+IWqN8pw^e@
zwYN(%)Z%Apbbfmq<I%b4&BHgHTYZDGQ_em9{^aE42OEtHE}WaKx3lGp=#+3fj=p1m
z^Q>mJsnpMr)R_OoM>9pw@!HFqn)7UH`!4VMx?pOh;OP+6c@LZ4#=J|E{a@*!rdbiN
zeCkrSr@#1_nGd>h>=c;eem*ZKYeFI4y&XO8Vp=$ti7-_Lviz(uPi2-rrl4cNKlA#*
zhFyLk!8+g4-Lhw>vF-S=Z*Dg4;k~*QiyjCDC^er+YWpa#Na3<k_M42`zqB^Eux2cA
zc_$QX)OKO|mnv4ZzjkTCx8I*xHd!HjzTfhUn4(8*GXt_G7YZISG@hz_TBOSMcKd1@
z?xl89gHF`^+!`nNOKtWHqqZEGIa<9pq(O&*a(NqN-#R&K_3zV_Q=~WTP<ZUrv^k>4
z>!q5{w6{#^daqoS9&)K3K6Oa%!sO5Eo8uea#>i}Y^5o7M#o`nX@fTW}f=8WKiv9l|
zuzTLo-$xRij@>Z%b|L+;pLoaY=v@BEn^ntLuWj6|zIFc;p&mn%L%J8X_8m7nu&Bz}
z#^*}TADwdHB+cXqruzm*793^N6?>dw78ek~!O?ifx5KZ>`GHMa(U+LaV|D*on*TA#
z*ZnGHIIvv4t|xr{tsjR^pY}epEbQBg)m*~cBev(>{u(dPkfLF<TSK0Qy`n5jy*&MW
zE#Gs!=J%J=(<`2-yiHF(Zy+IJA$j9Ium3Lzo;S~z1|>Et&OPvU;q{j+_n%pGt4eP+
za<4CF+kEO)@G7RA-IsIHf~7-Vf2dtIMRJo8zi><+o3Z$IyIDRB0rRCNocU@wlc9X$
z&eZh>ZoZUkTfXl}puJAgju#(pzL=H!&0go*Z96|ngN62=gnr*>KXO*T+E2J{-DIIT
z|9%P|N>lm%_`|b}FS^|s%)bA2ZavCqmX>v%QPF9kgMy~wikWSNH*f8{_~6}hrw)zp
z(`|b8M&=!!Rr6I;(PhW{Oy6J4x$mPJ)cx4vohCH57M#*KKQYxZYrDYuw9pBM!msjN
zzSaK0G-Jzr=1&1v-F8;`1>P`p-Svw7;nw%xr*Qq8)-qxHsSF_&2jmkzEI3Xy`@NZJ
z64@ibbjGt`#{@&o;77Js<}|C{w0Qe|&K;4r$v@XTo>R#2ROMsjy=jK)%CBnI+oasR
zR}%k!-{-ud3bum%>FSS6i`5qN=KXwo==*%*7O{VEOXjC5njEZ4DfYZ;wEL{$PbnYu
zcT?8>elwXR`QJ_t+laNVIJx&^UTi)V6(@AA(jsiR_1E_nV#ztmu8!&|_wQFv;$rx4
z^2a8gy_dZ1e2(Ma>&UMkGih7+`S^#6SNk(CEbf**<94mtZf0+QwfgiVnM+q?(_)-b
zW%eGbzR+$_ytT~V|9nANTI!wU>gp2nBG&s{(+)^;U11k!!QZ#nMNpLCbD3RIe)j{L
ziZ#`H8PA<tCU9!o*@q{2(v!1|@0x6rV$6|$a(GsV-o%qkhteHPctUeGYx^$`4w*W2
zc~)}L{A7uq>TR2R7S0!!m@{`*_6z0nYyY-R*cf$a;mwNf>65<+$GtovVB2?VM%doZ
zC3pPh7g)>vPCoX}$AZ;=jl#ytw{KhL^PhZuM(yXPGPdH!$_xhU4(yb6?%h}{E$_69
zSEB!v?6Eb|!#x-m|4ElvGW)g0)SEgV6m=X`PHlG&`fa25cc0nC4YRe2#C{1~y>aH}
zRPLE8H%qR%^^MmzwAE#5ui4s-x*GRe8YUQiToGb)#(8Pb$E^Z}E{%JhA7KLZ4Cj^<
zO_=8KDai7!iQ>7K-xmJz($i18PFPgZSIGF(D)wON1O?BPQNq1n^(var=Tsir@bTf^
zSAB*C&y2U8*WJ?7Ia#4C;M55PzmCgm4u9@G+Z&l&yyWyL=G_NwYv(TiD5mo>RxGvd
z{WGTNHM6s&t7mGeOK0{tw#+|P=fv50Mt8&KMF$r67<KKhXw;9XlVd2TEN-5uefC<&
z<qK@m1ylT1aV%Xh#bM@c)~cJ@h6So+r~WBCx&Gp7)xsyUrU)6`wDE8j6w6JKeVwBB
z?X6A9<ab}WGHThLik&#S=FpZ;Gbb_bVBN(VStPw~l47vo`VK>$t=yI?(v7d&+GlpF
z<!p4XhPX)3!V^X!c8iMwTXKGXn`s@8_>gbYwC$fKthmOsxAYb3-_F>OV=@APL1*XY
z9%eM#cTV-*)Slh#cmFTHuP*D{>*<x0C3`&m-0k<54P^{?Ckw^2JYNzU_u1n2gmp8v
zvlb^ZI+<MCmZuoY&3SXjj?X?vD_2}BH`6?q%jvQIq}F8KNk3gJ{SUFoSE<z|+47aB
zD8c8^JC3tfUg+FA`Q5W^Sz*8KR-Ze3Zs|m+J%S(q-%{b+EEKu*!2?BO{rtC2@^#kV
zdvQ2t_3oelR_E4ry{L^j`FU<t<@+7$V>g_O`|NmPZFtJW>(wvcZ#)|N)ASuf*~D!t
zbJy=|DfG0Sw(`r}(|22)mL;*>TQx87&l^pK1gn(>tLL!q&1*WobY*&g-cO0?VOle-
zE0e=S4o*&5`dV*x{<KyWN1nI){5odH{yumrAXq<l+Tw7fiVfL!7Zi3rtXNc&=$YiH
zsj{PEo}&cw+oj7(h2v+>$h;|cMD^+<uAmNur{_M~sB{X&uB_R1pos6w+4-9V!X}@(
z(Oak<x71ecs@krs)7o;6BZQ7sKFc++H|Hu|WRj^d;Yj?_Q>Gg?rxbMe<?4SdSTldy
z^D?F*GoDP?yuxpS(}KL5`xmbGhCIm-4y`;Ha$G&=i>JX-5yi~-sGkb8auI(%Y};p6
zxa0!UTnh;?Ucb*9cQ~m`T2~@;&S%Ea4JQAl87dt4_AdP1)^}er=f{5c`u57>P{sF!
z=654JlP+y9`}fwL^ZVY6=;wc;?@f;?IJfiPk^LTG)pHCbme-1VDQXvesV-{_ziJ#}
z9G<s)mBHsr*&hU?*Y$F8*QCYlW8MBEEXXm<uDgy+vG&a37XKvKXIC@VH3&HWHc-#u
zF*J+x<P2jvcB7Z4x$J)3^|X*F-t9kFCEk9Xs<P?Zl20wMYj${AOn#trSETdOW#@Ct
z_Jq8@{IGbMSN;9F>3VWkcWryR%ia1K@2zY94<`I^n)K27z2|G;=z9;m56g<}OV?w0
z7vOQ*S$lpH_u0p{zF(CI+ReJl>yvDz!dWk2u^$f-n$#!#l+ZfyHZRBG`Jb->M{L@6
z$NC^ziv1j)76`MS++8NoYseuv-={j=tYYqsN7rNHuAhtey61O6WZuNQCllY@FFm{I
zh^j&PhxX*39^sMGx4%6ZrLn!_e-XnozViyt*$kN6qVzknM6%Qa^=Gs77Md26`q-uR
zoMn<ZcRJ@-A%lR?$vNjM&s?yNXSNb#{Agl$hq-iB#Q8OUi-Nog<n}h6*)Xl-%ew1x
z3YUoT=Y%p(54bWTW1GebC+(Eu)n_cYk6VA4b>X*k`5*i5bL)R!zwY|KI4AClSobrN
z>fQ5H&(Gho(0Nn+YFpK%>=MZao=)BmU!R>FVY~FN>7<|P$-1KFVjs@_`2XS6WA|Gt
zW`Gh&#k;6A?R|9@9ljpel%%&})z?1$oVP(8<q2l@SS@_`N*`|GTDvL0GsNdtH8b<F
zyYJ-tpZ1p+S#Fl^-*onx${9Hg8GWBClX@;~&zbpe`o_Qhd&&>gJmtH*X{~B))1`p0
zZ72E|S{x@ZZkIo(B6mynN$lk3&dO`MK3cqdu-kr(Ugi2VSH<`<3hTNr_$ROP@_jS=
z$Q)yh32u?Q>gp!ePUGZO-~cT#p4vJ2@{jN5)+Zj9y|Yi<z5iz8zWm$Fr>nL9ES>b0
zUwoRK%;(wlY#*lfwmdXARGAxnvhPNa@Y+_x58sdG*fBj5KVDvW?OtY=s!hjRk;eD?
z+IlOlr)_wdHYMh1)c5FH8?yg6tz7J^n>?v~=kZ<jeW^j0s^&$nelPlrv44rO`Zlhk
z3y{wCVRVoyNpiiRd?(TF+}#Vlo2S`_T<da8`Tp~9M{?4_=@ShN-hZ9*x#!rA^G}oY
zpC5VuzUp<*`|6Az>4sHv!Ya-ka=+0OowP`2U#+oK;>@%S=jTmtl&!tLU)=o((_~wg
z>bz5rKlA9nisnfA4I1{EXweuIW?1$|=H;U|=OWHLemEhi@a!Si1BahZc(dR3-HW49
zg<RWJw|y%$-&R>8eD8OJv(v5z%C{q?Z1=DHfAG7ex%nBH-23$rccxj`_k3V%Qs9%E
zbaCR+<*>B?JJ5XAw4;69-k9CNax#@Vha4@%`$Jqea`r!ZtygE3H?@ps>(vbtbGN;`
zY3sJ;%-y|w^|EHqIKHT^om9%wVCsIvI`7NH={eEtLB9o#_$_3$+Q`_S)9|XJbj>q$
z=G8f37w+zyecWullGx>_mc_Q>`BVQzg_x<w2JT{R@!x8+U;X{!%6Gbbx$pM>`kJ>*
zceme6)6W%27pA3^7R&r|JF`x~THr_?%0Xc=3{M=@!=7FA+}$@t`MltE(`%(VYZoUe
z^tJ!oy=#Nr_eH<$-z(UQ?KRtIbZpHt*Zb|pvx|=8PHzv*uQLxwm28TTi&`Ljq*f;2
z$H%=v?vwY~ymK@-va~GcckkOIpK4JtwG4jkXT`FSZ=IFzJv*Muo-{9%z4h$x)}`hg
zhmXBE{IdJoaqD-+x@W@MZmBrx@O$1toT2rIL4n`O@lNwgqx5|C-S0k6+NFH{>Oa0W
z=2lyzp1i#ipZ3q3zw2De-)A0s)!VOp=xAOv)x|(o-l=`hTrv51C%>deTbx%c;7D|R
z`+Lrxn(xy$#fSC2R^Uid&S>-#a6fl=zD9{?@`n$)TTQR+Wz8${o~ABm^fKtq^M5zW
z9$4B2?|yE0`%XZqN7D^Wl+9zz4K^=WHu6ZP=`8kHU!CS%bouz9tVB6Glf>%l&I0YH
z=3dl4l9r>je%ZhJVl$CV7iC^dSWsQa13D7wUF*ROmYm5(0ZY4%O|b~{wsY8;f9*iJ
z`*yRK+y6q!^J;J0Vd++#$?x-NR+31k``JZxZNKJ!ElAyY<L!>>^NUIsGajhv;4S{h
zHuvVg!h7d;7ct#Q{coVQe1DDmiQ|h5=iK1i5?&+&wn<g?#^0ceysDo5=@WQjwpSfE
zZa$;DeS3XRdfe%MDZjt&Og+bX@}u0H6ZfxP`Ph(UDioa(Xz%>@eASZ2X<wR*kL7*+
z`~Fwu_rI4O@0-7DuI5*{-<!Y9e%DZSEcSDU^m{=^L!`5?3qh013fB?>ZA6bozGd5F
zzfpS55wY1-m3*h&Q%r2tk9>6c`+r~L!G9(Ge0^C_?|%z*s4if&5_~X+Mf7*eoBi=8
z{{3!!v)}&2HxLEk`3r1cxV#B*CJ7%y)Pnaj-`701PUv|!`~IJ_A2&;^j)E^fytz63
z#rNMo-roP0`{zx%eRl0T&?QSBqxXM}e)0Wx#kV(-|GxPD7ukF>=lXPicx6?>;(6!$
ziT=7T%75P8|ECMOZ*k|>&-rzqXa8ug|H1y}0lWQy%gg;guFbFI-v4v<{!V_o9}G?$
zCce#}3sx%r{jvP_HU7Wo{Mv7lb^pKD%O8^f-GX=a*7e0(?|so0)Sl$ETdwKv<&4dT
zyLRP1KK!VqBI299nOxLwd#RY;&)5B({I;Bb>)*dl-|p+D{Qv8e$lA_-ccE=zZEbIU
z&12~w_rC9ISNEUSGCw{p?$P^y@7{m7`@T**{_m^sk4yDyIq(1f_x<Bz`Tr9C|D6BN
z!|>xFe|^XQU+e!L`o8~vE$9NNL*Tn2zwf?(6m<PdOl<7i*V=;cCE?Nz++S=zg07ML
z@$35jzV&rqSFfF4|KT9}id9_kzi(YXbpBrb|Js_5-SJ02*SRn<{QG<Vzij-UN8%s<
z{eIv6{m-%dKWxh`Yuf#I(0sRsv1teMv_F<95}WHe9t9Th@N0tBo!bO?Jle-z_n}$-
z0q72y4~ymhzPR?@?$-<Dl*ntJRxuwqJzf9fMR)nu?|W)~Zu<IL-G83K=}jNz?VjPc
ze1_lhhyS1Cg3c-Hc-+LeR@O~Re_M3aH}i(bfU=$&d{_Q;9%rb$P=3b0{#WpyoAdul
zLhjD$T56x(!{}|LQr7-E|DWyWn&;N{559bv`Qvk|eof-mZjgbHM)Ni{-3#Ss*yU>)
z{Ox|SfUe?FT-q{4=>I4E|4pEKZ`!5^>BsLol4ExG=uy|##q(=Ed48C+|NFh_?KV%v
z#l=^wdNnQG_UZZmf6f<HR!aW+^JTex?5|yt$*ccXzWC+2eB!;o-}l$bP0D`HwVK=S
zEx%3P&YBM?2KOIr&+NGUEj{CY_i?w=e9`ZUr@#Fz&wl&&zqS8T4q6!Be`qu9_l8$C
zDSL~TJc}*3^W{d*oBLb;UjBb4`@i+N*9$js{}yg%2Dv<Z-zU*OKaSfUtN-`BzRiCB
zC++=BpoH^qYY^9eP;$5X{IFgAk-Gg)&bqhP>v$PHtls}?^^cSObxr*Ce+>3Khu+jU
zegB`Qt<TSWmQhz%Uu%DQ!?oslJW>4I_KN$`H7D`iik)LxvTOVK;_ruAUkK&@uKa!b
zTW$Ma`Iz1Lll`U~+Wa7QOY74|O23z@SMrpx7nDmEn<uW^mwCB3_o4CeBXj?LSbKl{
z{eQiMp=xG(roa6y5cWq}rm+4;?~bYV+uf{lZq_pg->rT3c#Hjpdo~4g&sW?|Zccwu
zcH92mH~C|iWpB>6kkMePJ<ika3`&YQf7jf9|M=zQ<qx0Ne_*d~0Nwvr@#~A`x%1~g
zzRj<f-v7mWzlhMO+PB&9hxPwG(tq^5?)~=<;`JZJEB^j6-S_ux{$u|CANZ%omFT;=
z^OxW9l(=m7=Hn4Q*Zh~S<Wo1UyB?Jum)_jcxU*QUyOn>U@3fgc8<n%}dmotgWup4M
z<u`s@+kALe?)`b67;nl&?ECEb?()9d^WXpeUMm~B;ZurvWWt(ne|KMBv|+<U>GOp$
z-&?l+i~Oyj{q^YGTmRpc72ABfUm~@ms{GE^XL&YxRei}D>&0{BD<o<^BsYt_U_TN6
z_iDVOSLgkobMGIlusH^f-@o_&+qMWWFetM8`zZfku>OmCeM|iRukr4Y(|+8&|2GzN
zQ|!}u>*v6W$q4bZjOeEqi%LsdFJHd=p?+=YZ{E{YXRaM#aDV*tR*2S?7lw~*+-Ba{
zwBP>wuH7q+{V$d=yT|_hc0Kb`mqQ=RH?OV^dJ|sv{rkPPzh~Rxemkeiu6(!YTl|gh
zB}*1%ng37TqyM^6=>Ao)_u0R1Pg^cmH-F2{@7Id2Z+7^$zd!HI{uh!J)Blz$p0&&Q
zU2goIVcKSUhM2gxvegGv&Dv~U9GUxOQFDq#-^yFZw%z#Ry-v2{>cyY(hIeh*j$gX<
z{AS9c4fEgsHV}O${pNx!gHGnZXDjBl`l_E=UGLu|U0RaS7P{!niGO{zGaKLZpSx}M
z;li=Q#~D>S5qIx(FoO;Sm@BjGPkMOC)Q`pYw=I!<SzEluuhH6g`FoM(zxMXOpL@*q
zm!6+lcmMiECh4vJO^*j8pZRwDzH-HqZ&&?J{F`=e(v!6nYv!J@<-haq`1I^~H`r7P
z)x{oJpUU;@<Es}w5P!ew{{GeP(|Z(eUY~d4n{mO5HJ|@({}gk6dVNKTMB28v=YP(9
z&Rh7`e%c&~>{@TO1391V<o#3o{p5d|ZhDd5s=R8=rMZ8@e{8$*kMYQ}Tb+OT>*o3D
zG})lnraPvun;YK#-tv8$Uh$UPXD6#<zTH!sy-GsPd-i>?%%kn)_t-x>*luC-w*JN!
zdaz*1`2%T6t4z;}@2!blt=9KiY|Vui(=9HodVjC$ueI&1Z7&b~)BbjB+25JRZ~xo<
zx}xuyw(#}^tX75UJsVS;uHJR{xuU9@`Q)N~>*t*8R(rxzVN>+<@l3%xC#{54{?ELt
zKSln@C7A<R(#5wo{6D6AVB@_RvE{)!JL`{?RQ*$a-&J-v?5)4~gSa_=o7b-RE8H)E
zayk&GvH!?#+t%B^3u<G^KUT!P$o#$Y>a=HFm+YRf<Q%_u>$=db+}$_zCq&!(@t=&{
z_x7;yk;kvTn<uPRlq%tWmwNA?Y!|z{>S{B~tp6;6pleiw`y%g^N<>~U@2r3K!RVds
zbnBUnJS9bS!kagLvUu(3tjQPq>zz8^=~Mgqcb;|s^Veq1uLw4V?6)#DEY|yHhvc0;
zFlqgnIfj>JZ(b`qDRg`GnTz?ea;E%Fj^F57Ua+S2;=a`xB|@#WOSZ9F&G>yL_t^Vp
z_uTqND=^#5(~>67eUp6e;FmYm>h+=TuiEA0^>98nJ?4-t8^^q{&)8V!#>EXktnTL8
zpNM@dns?AS<Fn>5FC_+<V|zKX*qU8RKW@mW>sIhH++HW=yTR7?-KMRT@=>?h_cR^+
z8t+}7Q7m2+BEEKcLZw0ZqSrx2r{`N}?U!5qw><Wwg6-DM&uz!E|EpTZJv!*fU6Q04
zHuInDmCjq|#5Hn$#@zaCuyg<UsMi}b@@KL62Di^QX6T7L*e4*<!_C0(+~&q)W4>ek
z2?ABeQ$8}9{fs`do-sc%X}Y55fp0zYrtIkoD*FEGK*sm2(fb(txBmTo_IR`+%bHxi
z;@3yBel#!Tzh%`unZ3mL&*B}E7nYy<_j=uV`L4f*+ZH75-n`%Q_uZ@f9|Lmux9k><
zT5PYE(df5^CAvucw_@pp&ofdU9XS;LIiIV3?b#|*hw|+2SAy@E@V>gq!(gyl>&&v?
z-^F(s5+)qdyRbAQAd-ziz{$abl_BBKnxAvaPwzHg`E8SP(*L_RU*x{~H>)St^5pq4
z&#Us~f6TNv5+<=-*k<W%%`*AQ=UNBj)weAfp4I=pF!O)k#@v!mZ{Od@*?9QfrdKQV
z^cI!=s*rtG-@Sz~Q*PoH%U5dqPkg(g`1bOdoA!1`R@c`&&gQIFtlir6H#xj?&bR)<
zw?E$aA9lOk{{EjNxpNjycla^8va0WHAHLo8+@`nw?v!^nkq75aldCP9^I{Xr*C!8C
z&hFzDwz0n0Y_~d1qBoC$VexC}o@3uiL$5z*b4&}n7Wd`Xi|Mrt4q;C;cHC8eVsr9E
zor|3N<(0p6Ec1Tp%q-u!;>(|6xw{{f{_V-W&9?r~#H#bYKdv8mVbb5^w@S!h2S@L;
zzd1P@)_XAMTx!^2qvd{OoA}1HX7{a*TP1r+buzs12`w^MyN~&4*p}ZlV*f0Dz1~?Z
z+`cwsp3MFC@wvCYg-gnxIkdd6JLm2{vAqvOdKlMLcun}eH12-Jwy$qCmB@98YR@Zi
zOaIn?YU;Ox({uk{e3kqA{j$IB&;D~+4(?r-+kBAKJJ)OIc}D)$`rGew_QzZ(Tq>*K
zEj&55W-j--)VIvb^ruZJxm#;^`{?=ey^gWBBR;=O=`o+4&%hu)fA68$-QElbQf!*8
zshzmx@8|#FUiWi`hKDzUH4=9#>b0yrP{wj+5`S4u%>07&U+dRC{{8Is-uC64Ym%(f
zdm2A$%(!(->7#`BbB3h*i*lp+b_&m$5zNT*z^~w#>zSz&p80NA|8s8HhFU+HyUr0y
z@|(Au-F{g0p025%`J!8~MW5!Voj(+~$zY8_?dfOT!iyiXP4yG+wyKmrbLZ0G{V@jr
zcKvJr{jc+_!=9U8+a3xz7m0uKpS*h8GslxZ?CRyjyk?y1UjJC)fF=9)^9OG2jGLCx
za`JZH#eZd!uiaywt9R{s&VSwC?^pfJKm6~=In2@{>{0BwcD-+}F7-Tk`T9z7w(9%x
z-<P5%-Lp<v8pFYHj`6wgoh!2sJ=?S=PwQj+>#DN36ZAh8y<FxPd-F)a;@5(D@$n1{
zcE4_(|M*c|o|$3Yx_b#WGb460SNwal_ruKp&Y~KpnHUtNHa%?LpFZQB^5w=QdUD#g
zwq{DbSmt=ygyD^GK>Kyy4@Eb<KR)lb{$gfr$A5nH14GIA6O<}0_g|ZRL-5)&y_1Qt
z$!2qtjAk-0th%W)QH1G`rftg;fkU@~ycqRzUbH<Big_`uTqX3K%k2EW*|M_bp-mf-
z8@{V8lJ#a3+tX-v(YSy8`!5?df5=f-DN{J1#clGx7k3r?XZKk<u3T(7>zFP7uFiWg
z=5p;9)N&Uov0VJuBl#mjU>eVf9zzdJ#+O%uYPzomn7!?L{$~G_Is2S{XJ0>W{%)(;
z#b<0*d-|@YG91~L`md^Xzw(lnl3LODVAma2)OT(8Uvqo^^Cz*}>u2A%_SJFaqQsNm
z=Br)&Qf4>no4*VX=(PSM@xteyB@gbsvSnrV3x(arZ~crX+DR$+ypZVr_~1d=Cmx2#
zdCI|Di&oEwnRaYvZeDwGN9fkFZPz1TOI_|fd+p!1UqbWivc#X-|NVLX<LCK*`57Ku
zT`vFdS(=C%SH9jl0~tO>2K{^0^2@hM^YrG;eSBfx-=-Ij&h_Q@aOT#Ttu~nLYdHJY
z(WKUur@P`qjbGgIUO)M)mZD<pY(X!_0>+s;%jQ4TsJ3NrIM-DsQ_4O&<iN*MFKg}x
zT{U%EEWKyvhD52w7frWBui-d2G1Zbm;k1#)cdPTo8mZ3aA<GW1`inj4Tw)TrCExnW
zgBuxNf0y<~hB7j|+U4~4Q2HC`zxLbC_by~r+LNa9Z;tBI^A_R)c||%G^xjt#-1#c8
zx0>PJpD8EVJVT>@hhOEHx?6nL#@S8#`nO59ywp;OtIn#|tI723+@mq!u3*}QzqL0m
z$Z6N_vHooywRqKE2?OWYvxn5yUSzY<kzq72XPaU9oBMlALo>IWnOOIx9!3A`Z;q!q
z?^tj9Upsw!>$iAIcBjzL#KS35zr8<x<jOzy%l|r?AAYzS3h$<}eB@Bzx7sN4{?^mi
zCmM5XJIb~fnaxeK+I;Wuu34=9)2>O~%9wHNZG~D~_*|7sn~W0Pr*7Z6oiV{cCc(mn
z*ZPFhhjKOfUGiq%tDKcLMC<dl?G~E$GAj95+3fY}-77wy^1NgJQ@-Yhy*(>K&7Y6%
z61{2ym%Qa!_4MEVUX>*l%D?t~O@`eUR-wx~1G-8*-bPuQ9!#-0_VsJ%i7xwnlF6_3
zyxe?~r?*;u24j22`kj-by%{xAJ}mfN#cX3)pHzQ*@sU`IlaF_8P{}o8e(mGC+4$KZ
zu66l&A5I<z9h#{Z*IE`Q!dms0kzv7`sV}D5exE7j`cPECbV<mAxJRcWKg=;cxG>@O
z0=>y0@0vsAUYVMu6w)-~Y(eqkTYrA2sVvxX>Y_&S^9K+A2X%dzWq8f&p2(gzF$;9O
z864)7uU6m`XHC$*x0?6&f-f_3OPX(9`S#p=@pi|pi&smjoz<#ay{hH?VS$tz7Z}R#
z#VjqFGiP4QKR1qz%kEB}Fnjq;iSk2jkL!x&Mw!pBbe*-mK6vMnscTufq|~;$YIm;t
zzUFrNG41-Ei_*92SFU*=+taDNvGrTMaTPbi48P?U&i&KgT3^n+BO&0_t@`C}|KB*4
z_{cA#(J$xBGNJ1wjgM4&AAjU9zrJnqoY2iPBE`xUa8CNJ5_b26+L4#nN`;?PmWDcd
z-8QsaJzx1emqx1k>9)@j>f7%fEtd|FdUS7>b;|V!&sCFmn42y$wqCen-@Zdfk7hF*
zII6z>!>g~_zkfY4b$cwiWYgWV1r?nqZ}>6I_PRg!=a&Uy&kro(ZRXpS@<>vs^LIu`
z^XYExn7v!iA4st|cExv2`c;vwvrP<Kewrk6Y?~6~#3A|UAA7UmlF7HGrs}6$x&LF<
z#`YjL*-3ucy?F+b{vTc$?{@hA<T1aq&clQXAu~=!;nX*Cwm(_4O}k5$i$BPnGj7L+
zW)=2hh8K68mtE%`-1$4j>fmhd-Ie8~m5sM-`R8~`ALiV>GRs)$H|wshMCO-wOf1(;
zVcKO`I)D0uZ2t-G7tLMxU&7OTrP^dch6lf12|b>8SLDjEBNBBC3B~@k6F8(z&OIv)
zcD(-WdF4DukIqFKq@$1Z?$3@{xxb<H{f)<AC!>}qCSUuP%y8iARZ+Lcg)ho)&Afj5
z{`|_{v#<O!^;sM!qIbMIMC0_?H~#}pm!IAK|Fw2>W17vZ78!=sTmJ7VT&TF!ao+8X
zWz*mOkGN&`F|RLw8q#eE`~sgA2)8>w`Y6$Vd`HRd8Iw;gQGK{+reAH^S+?G9oMBQg
zPQ8~qZ!mjjig{_P&&}8;dvpr_nWVXiN_(x`Eta(Y)s>sAODwcRl9Z+f{I0P&`s0@r
zLqTO>=k<I$W`;eLf2G3L@%{RG)^yosww>FoPcB<Iai?sGqRI~M2kD#p<e#1U<7dNm
ztfkC$rcXiXS21xtkpv^D<X4-z&%ct)ny=z#elV@==$UI?n(Bqy%dRo_%}GDDTK<jZ
z_8Gq4GCYKL&U|oi*PcCHuN0aW97=3z{&`)es)(0isp$-E;|(jD=6rX3wLl?|?c&v2
z6W^9UGQHzuY^Y~j{UPD1>AH367#Qa7`6XhkzHypUn@av1V~v%E{t5&g_4$=>!Ok->
z=zPQ~n-<HjY|bkd7nZ*Nant0$nU%$PZpl4v*Ji(S=2;|ezAaby-={2&)k&*YS*gug
z&CR2JIqd%Ct?Mtm+<SNN-{Z-5?%X-j^I(qpUDu>~;dDja-`9C(?Q(j1Y|6uvEpO`O
z&;2u3wr1;bTb%Ge^j7`TcZs3lE3&M=+noF6|3)}!fiQcsV~^{a*HV)=#!iTdjZ?j8
z%$WSj;Kht(c~j?qGTc*Y>KwYWNYyRbV#6o5yAsh{hv#ojZvD0F$iCA3+{?F2{{D3T
zp9AsNeLH;j?A&><^>o$WUsttb_H5(+vU+uP&t0c<v+M=0+4gMVo>_FmxxRvl;lydC
zL+Nv$zS)p>Y*NlH3!{_ICg=YTjZHS1n^cmke!|@Rx<r5SPyPGP5=*lA9>;sFR0tJ&
zQtI{8@z)E#s@H#xZwk0StEJy?`-{zQx6BGlY)niz@Ruo2qhPzmlLW<e0oe;q&JqY?
zIM#f`HamO$<gUcKB@Vx5O}d%+YMG^kz`llSRxM{@V&fj(YOQG4IDt2ki%(B=Q%a*=
z%(jAaEQ@}oPFVWw_hEyy8xDb&6L;TF+t>43b?t4d)Yz+zkN6fJ+{yAhajVemwTX)F
zVqQxu3l1$kF;%g(h<i>&U&8-tuM>AGJKtC2?7F+=*0a5}=B1&@MzdOc)uPuP_&aIi
zk$)TAFWz#f{(XI$&+;iVe|vnY%(?t;_IJ*cGdJ|R?&4RJ?pG`8VGYarU)Ol=3hxr_
zlRHm;^Y{MJ&WJI^v9Wv+yJ1x?ug?iSyP184vu|FHy3O;>t}-C@dgAdND_=h_U0>3A
zZ11z61v<YO{^%`xQQ^PMS^v1)<{i?{Bbkyk8vpLxb}~Inf9~wWXGU-O-LCJb%2r*u
z{(j7ZN4=A`_TNh~+9vm9*SdsBxp(X88y>Da+c7s?D@88-b7weT*HP=A(!cm0YbPJl
z>@i%iD&k~<ja;(Lwwr5Tuky@#thV*BFLQFtC!>=SPxBnRQI>!I{p9Jn=TGgvvG@M8
zhDpV3I{JY-a_;*W_#D61eD0WX%FeULqQz8;rdMd5ekI_=T+kr-Vhi7{&kwXbUX*!R
zegCew{b%L77teR?dgymGW$CMLKQ7<oxvsakI{5m=WoDBfG_iN?_Of}=<X!O8=5>t2
z(`(gBL*zmu98Mp;?m6T5yx6eW>MM)y*_><Em3+K#{>s-}PAabi&N*B3p3QjcEMk(j
zRd)63NKw6>!f4@J>RVh^B}Kp1yb)HvM=tT+rf<9-zV&Z?d~nCw?sv}|%`B6Q!qoJ>
z%y{CnebVD5*Y`Q6|E)DH&;5V*e&f2^`?m*QHd!&ZD{Jbv_}_+&8y}d~pLjd}1|PWb
zm~C`pi@WJt#&h2jeHS-BS+VZ*w3ZduL`!5hPy5xkF>{sz@9BUeZ>~8x-7)ki{U~Z>
z=&MwCf9jpvw_~zpRjwUda`WTXZtMPyt#)Q5W^)sbwi&&7`Qz9#ZU%$dS2~y6VrWwi
z4$Crs@jY-?&N8E!G4h{+p2j-u_ElqFdtRdDlTJZltChx0-Ywd?H(ppB*<_k=pvGdC
znZYf;XEUA&^r+9)>3F)|=hhjkjP#Sc-u_TyFI;qbN5d4Ro!Z_iJGctlc3sSfvA_I+
z&EVa!7i|C3Buxz5Sd>jJH1vJ?Ua-0M<+k%T1aI$2i#O_OY^^BDi+EGKY;#Ke$$jn~
z;&uv~0{kWzbB0=L?wOR}r;@RS&G?<nF<S=Nx`k`?y|&4AKh15Pu{KIY)UT#)M!>dn
zFCxzIY`l}X`1OV7Cc8KjIh(vS7Cu_Eta)Eu`a;Xy9YzKh^$wj6tyt9F_V#{qMck&9
zDG^3($1D98OIzRnxKJ@j?c4hYlgiWn%a%+lejBe6syN|H|Fqoyz0$%ts-n}YpG4fY
z-)NrE=vTs){Q8RHzT2#a4>+-BEO3sAjy)d`UV1}y-K$8Qo!3kf12ZOBO`Rp3l6Oh{
z@Vk;X6LzOO{$Xy<dG}(H>DtVDCcYZQ&mW(=Tc7iC!mZ<C=K^;2PB@v<bZVuv+UAva
zx3Vwr6;@m8#_YoonJE53eYv_uby?%Q^vD>CP06x3HPKPKFD$V3`LdvRx`F<gixLMW
z-<Q0>+2Gsq^uCZf@0^`2W+zk5`|pVkzj^eL%9fk!9`lzwTzbZm91x_WKeyZ_e4}5D
zkbQ=Lxp&FkglF@(&#+h|Cm89OMZWV(&VF$7y!!cRhIyG)Q{LX&xKMnq;;~zW=bS7}
z)haVSM`cTF*E}TAyiVI>>ffbdQk9P<`K77Vu+4GY_(L*3sdjbS$7dzd-}kg@bG&8~
z+p{I+)PkTD*{?glCby=^e5f=K_$|_GG0&jw0q?nxH1nkXO>^HTw9f1Ko!IQ<<#BTD
z+q>0&9!WoNyvVlT>ijde?I+tQW```#nf&*NL;3B0wfh7$U2p&M-d2DA%+8L!&d0g`
zkL+6@QG%GTvtR%%4xAbCXkLoB-?qfnk-f7g_PWmLIX1&b{a|qP)zB#pnY}6xv?}(0
zvf+QaY{{gAJ$vs<eK#>bBXO%W{h0OI$;!D`SLX;-hQ+p5Y+sg_bS7=_#TU0u`7rh@
zPmYPb_2yK*eRXSgIN$o2eu*`1f0umWo-EW<EHbnAt*tEI#rKi=OM`@ZwukbvpSJCr
zQu=Oh=!MFaNk#W1nV-wpc`aC_?K3AR(QG!`%k_D$F8u2?JLtVGl<nq<3uQYdDMr^-
zZH+y0f0L}mj54O=2TqI5#Cjgv!y}Y=E#rk%+PA59p2e<6GoG?8s_~S{r#&4DGWYVq
z)&dCq^jUa4VyTB(=$CyG%oFF79ga(Xzr{)Inq9~5>BSn)_XfqVEj^TC#<|n&m0Ps_
z)ZZObj5HR1(s7TwQKzQQt?`_3TYtn9_U*@{mh6vy@ApRO{h@WYI;KA?I@e^ic9zct
z6W<k27?YjC{)Bx$7@;A0QlkBfQ2EJ&u4n#UdRcyRQ(@Vyy&G@HSO5N9uxZ)K=G;UR
zssFQ%+ubl=6Rta#TgNtkvg466k8f|OzkdGEx_0q%5i;&u9iJZh7MA(n?%JJc?IogW
zeOvwt|85q0aU^ag|H0lM-Ik+|zTVc}^Y4o&!-HpURgXOm)Tm$bTCMCsXHR$+PvlGW
zTa`s(&nB_lJ-Te~ow6gbw^xSBsz%mbSU+1TIQ&$$)!c+<r)1Brl3aF~^H}~{wUaM?
zaZS(9$=vE6Un}IbdT-rd&1K2IC0|%wX`goJRM_cD_uAwBi&W-`>p30Uv8H+Y_WPTK
zV%3ivRyl6^P~X}!qojG`?HN_Sp9x(LzxM3%ON$oiJ6Zn|7X}^5=-m{)>;5Z&=eH}3
zb8kNFc=EQ-KrwAw%B=W=^qD-;YLj1b{5o~3#!ND?L{fO-&nJaJT2Ea24yi8DskWVC
zYuRpHF)2c?`6IWxcFX;P+wUmptUbBs-1Ecn4-zIQu3?zr`}W!KvsXpajDPQ%bv9v3
zTVc2RvC0WY(<9p!ZK?HMf1iKy^UurAJ0)FoyS-$(&6~D&diRe%oaC|OuK%lD$H48|
zkH3t4jxClrG(|^@*XKpKgt&m8lKy6%L%qj+7w5(aAKACgxO;Q^2B)2W|6B>}{dm?_
zB7XT|!K~>G{?~mwirWkw#qys!<TY!bR<LO2<8+;TL8>J4|2n=c{<q%V?_dA;^=nX*
zaQ~S(Yvyj=FwyDl{0LEuVfaPKVgA=Ho>R&zuTJ00>1JN`{okjr*)cWWI2j(ieJXwB
zs>zA&H7u9r2eaqTI92py>gN<uRjuc|W*6S_?0d_7^UUN;uIx!CZg5^ZrL*hb$2a?<
zvajT|*ILbdaBHg1?yApH`Fi@G@y+a*__#-JxBk6*`!sh<{LSjm&)!P!*}JXiyZL&(
zLgQ`gd(93Suba^z!sK<+pm~wT#GThOl{P!4N1sed*4r1cZfRcDnPZa$><UUhO0Jv3
zzIUeY#UJU*E<SA9;d_;jVZ|oSSy^q1Hr%^=GDBukj^pvqcXmxE-4`=U_1%obGt-Pd
zNglLxe|(7RSpNN_FV}AMWDBP(o};MgtvVr<t99}Tem}p0uWwWtr0pI}wQ-%s-mm}s
z(T}%m35!*HGwaVh5-ho!V6#b7DQ}&gVNsS)?D+-0e>k4Y*i|)i3r^vBJlpX_^SSvp
zyj=>h=4QpI6IhR*wwtu>h3pzb4oTrF9B$?Z{U*<rj@h^I-r??W`Q(yf;p2hA+I0qp
z6Xry98M8gSRd(~Wa`D2{%O`nfE#rH>(Of_9Ue2YRQqydl(<V>bVVJFY%J<Fs;NSgg
z{@&m7OM<~**FMM4wR!(f9<g)oT^HRMzk9QNRPBvA;nuRt|J2v*dHi(t`GSXU_dEU8
zuP%ExGnMOdr?zNi{O|bfpE=*&KQGuHc--v{tL}x)sXP3AHV4{zB|C`~M(;cACAECA
zw9j9K;Ijdt8>e*mSy`n?Y?<zDZn|W0v*g;w3yjR&yVsvhPmf!-Yc1oc1>FtjQvz2c
z-@P(>c6QCTo68v*=Krn#&pm(dKaPgG3X-w$kAI!g+jrdj`ivbrcD(**a)q<D_@~&`
z-RZklI?vG+=Bb>w_{D9<)f(I#Dx2RN^u8UQu()c+u@;GcyVe=b?K70T-8<pq52@bS
zbFP-={AcTEwtKvA?sebZmpL+z#a~PLzD=$9b<S+dx`1`Mf9%)2Jh*nXDMxBw%YzlM
zGtOohwUxcSlh>m1Q2LDSHA@3ACi8W<_j~dUiqB6wWjtrj9HtGaY<qR$JZ|dgR(?5u
zNb0-&#2wDFZ*1#ryS8pwv2F9WuUoTo&p)(Zlze76qf`B{<;gzF*S&e1({}U9^apF+
zCKuV9Ey<LKu6^U{e0tV0&QQx^j|J88f>TP0dtau=6vZ3N_*NNnqnNj0_w$y*wv$J`
z*<W4b6ub5J+H1d5_QlLB+h3Xzs&Zl5{&}1KSCk0Lh-PL4SNGpzxE1wa+h6q+vF~Q=
zS|xs~e(~${x6W@a|BBuEf1|dnwI?V_zdya9HaT-eMREM^`0r*%&gYfC^L!(Rk*SkZ
zx4pb?XmCzBZ*%%Dm1M2+&X44iO;SQzcfHt^`Cj~2ie}`r#pWC2Zr9Z}?9sXV{^z6o
zjnAfAZ&UGC3zW@Rn{2diwf3L$=l@AFeAxf*{(tuQfBroG_I&a770V0NcdXLBGSypW
zxvAFt4Qnp0XzsGQ#vyu0t?<?EThISG@<-<F?V0m=@kgn5kL=i4=WKf@6}N6ix@8ad
ze}PSW>$mzHlDBC8FfVrL1X0#aXVeWQFRX1}^YNSg!>7BxKeTvvPifKd>()hk&BF>L
zwHyoBu6PC+J`=U!4cMttdB}i+Ipp3l<p);959O!le>kQYa85n=3;Vm77qz|=^EZ~-
zM6BdKXTbLEO}q%}uVzJt1OtgSmIc1CTZQ5jfA&mJ+VXRePQa6G_rtwdE2o!D`lV;<
zdwW`F{!>ZsypRtHS-r=?A9+mSbkgkD<tLJ4^(Ay=S`(w9=gbhvDXSTCk3T)~+G4tE
z{p5Y6`)<FAI=b!GRNb3WVz=&p=e_pNF<0&NlM`wi>$hkp>ulWL6eKz0_2Hh6Tuyg3
z{kQt`%60w=8}`ih<5?g3zR5p%-Q&EYU{C0+{UvYXR_dJbEWi2hWcNRV1*}#ZRm0vd
zlZ@zz4&&N;kb&XDlRuRe=U=3Cyi5^U66YJ-&dQ$7b4NF$YA+*OvoOPf%g@gnSV-=A
zoVIOE_z9VP&#r&IUbDM=i%i9T36)aNjWj!6zm~4~)H!v>|3CG1N0!fz=-jQp@p49X
zamH=~_J&m#6&L^8GHZe1H(ME-7sWe5G=8(rn`6(&@a0t9oE?R7Y|ESDm%m>yFJgt$
zf*i9~mp3nGSo0<C%^~(xFHN3gU5MJAT<Dy6kg4+K;mPUWKL0()Fmtn|@W#LSSzm5<
z|6<Pn@p(&Hc-g||=B{0Fod-MLI;U;cbhDdQ5Y~9`*8I&oG!IFzi}QHx%6Xg0w(t$p
z#fGDsTGtl!q;39jSh=0i<9jzt`iU5}CkJ0@&fEV-hT-=1_}x8^E`Q|c_1he=xq!bV
z=!IyR@`gA31<!uXdHB-PVjchLm)o9PnP&Yj^wx2!!Zc4+=69Pmq`Nl$yU>>E^IG#*
zWMfvEGn<dLNMmbVL+1|1OYeD|BiyGw&%5L6H*-$iTobWwGZE|fIct98tP_1U{l@&A
z6K3k1zbHR1;g!?uCo3G@I+^ucJUFv)+Fwhf)Zg>t>Kh)u%;Z>}*tFGTbNR_j;lGw~
zzugr7d;L~#i|hZ4rypNrZ*z3Zwr}xE|9-D7+gDjM>Bj$g-}YzOZ`u6K|4ncE=2FDE
zGXZy=$_t&k8;|M9B_}LwTXiTQqg-+R-kQ$1`&F)adFu>i{hfSo?^<>E-EI+~LvQbW
z?^5!(!``g;tM+y8bg!n(Az^#h{eN=9HZJhm>!nel!R;)jmv<dpQgrj~YN-q@lXw4b
zWn4K|9U2}uDcoG`)biGrf|XOd>*Sv=_y6$dr!m8U2PqPJrt~b0KF*$ZSvN&H-DA$p
zIqdJJ1_}LrDBvHzhk@aVtDMmFGs}!KmZz=AmR;x0B`KofI!{@jn`e&8j`|{|r$$=c
zDr*vwkH3v6o1J`Tx4-Sm9z&1mQ}^C~|M<_&t@hzu=J~m9e{WVa?b^6XFhe%P{!VMr
zlh&`Zrth`;wb!vice2^}CYwnQAKb1@=zJZsnX%>D3Cktf%MU*k(6>*weet)B-`w2H
zCBbOcqO7zP>Ff3xGfxTb>(FsNpL$XMmn~0B(y50hU&_jTv0%$7V!xp$q`Yo|>#6N)
zf3Mf5`kO3%=0NTKSTPG*d-jCmXHTZ|+&t39&udbW`di^JqiW1;F|Cw5{p!62@19jM
zo^#z|lDziZa_h#gVi8yO?kNe5NU6X5|H)pV<^Jasr*6&7s^{g6{rN3lLHPIcbN^h|
zw>#Dg{8HX%{JZ>*&6<q*Z6$JdkG|cnkt<(RRk!```|STq`Jcb$pRoJiiwtPrROjfb
zk1J2F>iM%o;=?B;^^c-PNBHN>nX{<G@P+zve}mQ98RF{coA*^mZfFoFD+uy(+Ie)>
zsgM^cZy!DRwxnk3`?CMP`R(~m91lABa%Bit>V3Tz=jPcQKGQ0AXV2b4XTL^Y**dj6
zw6u9wq2xhn;iNp?=M(g{*#t8&tACcVu{?Zw`uyXUpTB2hs7mDz`gP;pJEh&x-;dtt
z^!_m^R<3&Hcm3+9V}}mi-}Ya^Ic{3*oOzL*d4bb1V#;2v%FIb+I&iY)?Q>&QMtS2?
z5-HOhce;8`obLGV+>d9{A>D5_hRs~)d+zSZ+P=wZ$09Za2TrT_cBbw6mtVGb?#yA_
z5XzIaePZa<(g_O-6&05_tp6hPT5i)B{cF{Zzp}koFO|Kp>-t`6r^@5M@9(%(o4|8s
zM#^E0woH-A&db5#VwYbhnr(e3wRx9Q@O8yAoNNK7w&!v_{UtW_=>)yHEjqs^T$*0?
zBrLD%n!<)duDAKO+8;V}|L(T`rCaX5yZ>A7ai8G?L%F0G#-haxDUp4<);W3lNeCxh
zm6X^~k|_6J;hP0#idN_xTm1Rju?K0r|6=9uub6b~?c%iyZOi_z%dX#k<8(^jzXXY2
zy{+H;#lC+2c7Brtzis~iUbCfT+w9^m|2sYBzwF!l?VLKP|E+KB=P5pa^xOTG-?#p6
zJD!kaj(KcKbkfP(Ge@qTtC-XqenR2o+nI4IzOLy#eNTE*o>^Eji^D3FhZ5=Mypz@+
zsm_u7T)KVtbnWeyZ)DFruutW2`gJ5p_1w9&Jb#a-^eoEXTW>x+yyEXo?U+3~H~inf
zlP~B;*Y$)A)<=RkM9w8!+gKi+y!=~4y8pZfZ~kO@2u&BQJQHK9{`J<A-CH7~o^O*4
z`=Hcv_lrxJ_D+{+nqTI+Y}Yxp^YBrfKY@&j3zMZPHmFQdJ}uJn`OKNsVpeDU_Pfr$
zUpx2i-SlHKPPe=_elBidyEX3f!GwmBouLzY+>_75JZ-KDYy7G6F38EF^U%uDQ;Rwj
zt-YLn-g@rT^5%y7Lp%0u)iXVJr}sFjn0;R8dm)wM=*CXLt-<~`yM>KzUAFf#V_fQ*
zs?~D!$G81c_taFM>)-k;@=)iE7`H!%PA>jzlV59oEa{T-42^E{TSv0f3}3DmsnOfA
zMpr5Fmsj~5pTf<T*FHGqd)xl=XUWb@I)OV{QtS9wZakT?FsSR{#ea&v)(poEN;;k3
z<1e27<kN=<Z})$R%-dRTuddZ~X<Kc=)^GDyI4%C$zy7cA?^dxFNA7Xf`c2}U%q^B=
z*6TPSxA0hE!l9JC7p2Y|4=%oFwT{o|fz?cb<aO8Y2eohaQ@bd8P@;LKa(4dA=N6Wm
zCmmb%Q|8><Jyj-iA3V8S%wu24%24t78Pnp4z3ub-mK)ruJ70J6@X3{@=luVoI?rzF
zq$~Fl8gxz@6h!`9Izb@zr~`BPeWzniyKkJ&jfj1IykW!2BdYC_xGJALz8+D*_U6dx
zy3Dy#&ImiTn6019=DYZ?iXYd_TO1zhDy!|7-p^4f(aN7=|Ltvp%k941+^Gx+o9`T+
zwoIE#-CMl&%hufemml(MT^$n;8ag9@Tk$}v!?TpDL0uCvZ)Q0BEb??}36MJ`c|&*S
zm&dJ&d270kOmphkP+*=Hyeuz9Q)R{n$>b!Pm1b&BvIJsUThrG(+PLqc_`UVH+y3iL
z%Db`b?R|Yei*jl8y3frYm&E(75|9uU)7y1%;V1Uzn?$`X+*7Gv(Odtstzh}zShs@v
z;T(FC&Z-N($xjgaJX_-5lQ;SiM*3AD-{R+0{{Fo)ectxB`*VI@_nlMyYr@3i*Z+0;
zE@ZVTWZ2Tw_~!JH$w?yIo&haS$~MaG(e(YX<AKeR-v&|b60X5ZpKqFM{Ypr;XX66B
z30@1sZ@79C3#o5Eyv%96OiN3$`uh0^CYx0I-7ZVcm@UB5u3qu!h~BIDdn@`DR__;(
z*=nZfDJ;z7X?aa=-%(rp`+s{X*S??1bBl*3hQmYt@JUyXu)|AP{BKpBIDPza(}tDW
zA)&3i`U<-WkJpKd-rasc*7KLdge#@-@9nmm%iQXcvkwf86!V)c?z&<1IxPeF&pIqK
zCJ5ZgulpF#v|-)r7oLJjf!}}dPFlQ2dHc-|f!@Un3)K`_Y!^(@TD731!I16L@n)lz
zquUuLv3m8c`lR~dLf(IA)r?uYFXV3ed#bPac>gxRn3iw)EiF@&p0Llj-{ALnUu{la
zXsAKx@0qr{!uDOPjZ56Fc9K(Qj!2A?rf`m4D~G2;WKun|uzAi_PF0KaP}Y!>Y;Rsw
zZ~UDee*R|6Z+<N~&E`)zQ@_RUtT9}cCH?os8~-<=U5<#A(jA};4@ZRFq}@ONi~sLC
z!}brK+!h}`w^ZQLTbAFlk2UT;QrdSdid}zd+sw)4k1n3>y0pn{&e6L`OKYy(HA&mq
zuXB3gl&y(jB0F~OWMuF;Hd$fyyYFlk)oG_c&6z*HUFT0|tfT+(z^@lfaw~64yRrUK
zNo@YQ-_wmbG$&f_Tp^(3v1DiWbC#Uj-_9?8U{i4+TmNxtnfm<GD(`-J-2NYX?#Q~$
zS2ww=(`aE?b8=zG6p!r1imjg)q-&+!o4&0jdBS@2qFm|w?>;A}oWK9^Zd>`Lmv<9*
z8m3Rt;(V55y>!CC*{|QOZJoa7_O|!&)t#p6T{HfBq<pCRlhImZQx);Uy5ho8C%Jj7
zjEbonY#*-?6_$14Nl=*d=8@ywYo~U9h_LBgZO^;%@6w<InTySO$?=oZUYR+(DDH98
zsD33HSr>O@+yBQqm``8M`+ul+t7UhnZCK|2jrpD5-+$a%pA?+Y=%;hAuf(mVv9fZ7
zfa9f%o{moed5_H_m0ohq)$VVe<{`v#)3dxM`;NuMW9w4Fts5A1Xa9bpF;i$^Nq5N1
zz2XPAakXlzn#%dctkh4qpj}v2#C2erdSISYFQ>s=pMag6&XcEbzD^Q-`~K&jT3^>S
zv#0Gb_S9VQG{W)Tj2b01%O?|@8WfK`I3;jc=JnF;{09!Db^5nFozJA0s&jO6;%{@$
z6L<4=?sbX3d#d|mu!%iquvcs6`d-&9X5T$e{mIsE7r8Xe|MO4LFLzp5JI(xmFL*pd
zYyG`{;mTWnTUM^TR<3^`f2xp|%Cdd)SH(`!`TaSg{+)TIxx(4zO};hzx85yQbx$u`
z9IeIq*4&$=UBKwc!Gs?DE&I>sCw<>_X=CgA)sG`)$KFZbcH&=9L!tCNmMy;v&P7=F
zXnnD?+EOWfYPz0*@bAr!XB>I+%yM^by}aMD$#?X%x7I(dmofL~+XyPvF%CeC;1k})
zvb~IJ+KJ9jI_>L|7M2P>SsL?UnoEev?)hy;gH#SWzwUdzH{L6C<B{vLBqTOi3x&z5
z_OQO3I!P!pZS%J<*WNR#8jqb832Lb+3v)%DSF3p~x_83L?boFf47SYsnz)}|&g-_J
zNonhu>IO^y;zv32_3p0uzOnPktc?#81A`P#cPoTH>2c>@AYi!IS}6L^f{!<on_H|-
ztzTN=`Rm3qJI><tL)+#i9*VzvFKqdPK)o$$`rH}QdCpZ`p1URL^^s~J?>9f}j@_4>
zTQPU1z=_zMDvCdti<hXpO}u-7FWp4Z#X~L9Tx!?H$Q#K`YUke8e&TeDEb?2MES4R8
zva$8N##7@-pYyITl=pQWpMGer;gMBxP3_<Ar&PYEXW70=_WrfYI#;$;`<_~G?cD4Y
zNuTT%s!Z`YcF*+feh=N!D=LcabJV|`FTPSLe8{}zL9x~f>o@ByOBTsKv03#fCF{Sb
z^*dP~=JIo~Z}%5|Ua)Ls^WX5y|HoS03XdtyF`swK{^S46<!Kuy#eDtye_pV6`Tf!~
zn|W{Zn`M|(4jv2gN$Q`<!g7!?k>iv%(+Q`pDGp7H+>10?*q<>b9%1%U+B8XnF||;x
zL1UuOaW_Wcma|DYiPIFk1$t!rr_Z!5fB$Zk)${)a*IwPOtzNn6-K%~3`=9Qt{atpw
z=vDOcbC&yaV=|ijdXAhpnX>ni{NhQg8&|U@7RuZ_r{NvDtZbd#jBfca{hlxWJUC>1
zt)aLj?ZVxTFAO(J*G*1{<yU?7FEe$XWTL==ix(zacoYbKJ|ht{@0MYO#L<khyDs;9
zE<_g!`^I|ZuDn{Zai`+~wxhSc>+vj(vAMR#;LpQ|GZW)<RbE>Bw`dYz%6ugE;-ACW
zC+r`#F7NX{E`N%FNAI6*m$FIHbG?4cYxNfkS`R;%bGtghGJ4xog&pGluaC>E;(4T|
zqj*C1LQB9cc7~f73fJDsyK^tAk9;#rqx@^L@R4OxP6X*6@0c!YA1-H5ZrQR{;NSs)
zBXuV?MC{j7Jah84?&l=CRa!42N;?`AA224_E}Wp`Hp^;m(fazNGp(FIUeAx=NclC%
zRj0+|{4@)vCr`5t?$4f*xwZYKxWQb{iCVfDxAr$SEYEvm?DX4s+Rm4j$sA0X@0Z`m
zuFv;P@cD9R#T>ut6}7$_|8D)a^g?%w@GJYIUs6R&YZ;1H*C&;oxv$X(-<zNyCa`IN
zaI&FJrhA}w*VZ4dhG(RbrIwieoce2lciq)&$0uiUy^E&LIjnLcNbjBFIi~oQpB`I_
zEUq23?YeO3<ozav63%HQk93m1cwZLay*tlSdF$!pjuHzl22A^E(Y5Ey?_0K^^?F^>
z9EY049_&nadih)X;oe{VK1oJ1Z@v~`xubR|>5l3W!FfOXJQW_xZ1k)UJASRy;zMkW
z_J#c~<yUPf32%H=zk~Pl1R)RMRLAKBd2hA&XL=rcF7$teJdc{$@$Hj7Hz@b@u$s^B
zt-NO~5b4Cx8DD*Si*T~v|Dd!DdP{qr9-4FIYXJL!zuzr$G(03+JGQD`{PI6Fa>1YK
zhN%-KY%&m@@iF#o?z-P{3~^0{q0zU!AHCW-f4}v^z4}W^-pae}G!R_+d(m6_wMrk8
zgSPy2UjNr}dnhN{*8QIn3U4Q#__D2Oj(gYre`<$+I|X(9E3Fq{*|zSF#V_;oj}$%}
zpXcuK-zD<`%Up^6!)Z%c|NgEKzi+@%Ja^g51+#Vb{$oCAZ}waK<*8RUIF+VUCubUV
z+^f5KaLV?Rt3KX+kTd(ZVbrsOLTqIhw2c^#F~1I*+oHLoF5_rq+U8Jp8;2_fd3!d_
z&hct=yTefO=UPzl$zA_G8LdCO#bUy-J$ouL?3;Jg=l<F8JVsOhnNq>dDc?4*JnvZW
ziG9V}ojNzxWc@XsSzq7xA=yE);mD2^+?_sJXHWY$9r8I8%g26wNuEIZy7}_lRU0N9
znRAzU?=Ss_R=;a&6E@#ny#8M<U(+4K8ApZrR>rQeOb+{>_~Q76>GPQvyeX>xTfV4X
zuIx?Grl*Yi|N7oPbK~H*?cJZx#IGpt7Mk;Uj`ybh9@+Eu{`<#e`1bibjnyBEHr;+`
z@b`D}{FvXjIjj7C-+sM3>B3<H`)?n=hxcg4H%z>>U*_-ZXO>(3@?YE^TkyvC+n4X*
z9hNfXLXREw-XT^b1~Q*$@|(h*yfoq><K(q>*Jj;%^CoE3|GlL_^`@7ij3kOr&Mum^
zX42aB0|!KXo->6y2QQkgawc_0f6naI#10c*28PUOP3b~Pm*qGm-P4@-S~jbB9m`qv
zO@k*l$<Bj8<{Fdy@r|X0^N*)Q{++W+^yt?7@TbhVjYeWRGtJLNaDLCQ{1E=z_Aa~Q
zgx&0?7X9D*BxYas%D;>&iXU?95&C>5yZ$me=gT!aeU9GVas5Pea*o)?hVO5ipBZ2D
z|2KpGii-ZG)bp=SNwBA@9dWJ-`y}|Q{&VfSb*?+F9d15;*ZbwI^uxYsuHRo=&uzQ@
zZ`;|uDjN=;yUDL?@HRf{Hvi4AnY%)yW%3T`O5K}q-JUsJMo)cdIe)^2XKUQ2=Kaq)
zW_S4ZJsJPZo-6-Y%M-ukuVOQN?rG8Y@9)38n>IdIyuIq{jmZ*{vla+%Z82m^^NR9d
zI~nV4oVEP1m2=wfO`F)$7mKXXs$CFZlqSG!aXtFj&SFkqp(Q%a2K>6`4y@h1vO2@i
zBRZ(1*xb>)+4!~B{l~9Dzs%|hGg;H(5P5n*qZ8+EgLS1=!CN(hmn1FtU9-phh;qSX
ziT$~MPo6TFxxKN;enApX*yo^K-^vXa{wk{Mj{UbFGvN2??avC6)~)<;;qDSX2IHl#
zmn^ThjC#jEE#72hmSM_;veWOrFAsfmN_W!i`a6GT&u_RLzO&Q&ec74UMz`y)<W9Zy
z-@|O`?Q8K@7@oh2>^}JR{`)^w;*6(r{|DNK-?J@H*tACJic0MNL(O+S_OJRM_xAg~
z@MDI3zjjtueiLG!>Hb+1v{e$aDOE=%#Zf)W|NX1qKg7Op&G5c{rTIth5y|p6?jA=e
zZ>4mOCZ3soJkwJZmy|6H;|$?bW93?WAx%HD^!d)MY{uujN;k_LT@~o`<>&?3X}kH?
zR^RmzI`~jtE-^aQ=-;<fUlLY`mFLOWY~WkG?LMb~OhM|K|9=mz7w4P3Vbz}OH|aaR
z?@e*r#<B5YO}1Kd?-ve@>&+><<~i}i{r)~@&6hJXc_gwN^?N(FNA8JrGhQ(L#=lzK
z^~WY3eB*8IIrsMdE&CFyewCkmz}7A#v+Vz=U%xuHW$!bVKOcX{QMe?@r>#`rYB}3x
zxfgy$Z&q(!z1~*(T+R&T$Bat~Pd=4V6hE;gd%eh^qmP{$JReWzmEJ7DBGWT_%}K4x
zTX~H?+*-e(`nS#&gR`-}nj2;rc+Ot!xMUxD*Rjm1|6!4rw6+^)FrH+4dzxp;(<^rp
zikm+>Yi!>yxo2}GA7lF6|ErTFzJER%>ziG0YZ~+Q1^)NrPS&aao%gPuYigrxq5W06
zN9=dLo95NO&y3%|^ZrP@?%c{t`)#i@{Ze1X?|Y$hqr^4Oumq2l@~poeL>*(9>A7G_
zv4#Pg!AjkGj11=le|XN?lVV!8lV95Y_@AiTw$ogUBV6NPYXS1-PnQ3rqW$yN^Om#r
zuYT1w#$K6qNO<uksrHR8%?+eeKbWpP`SZng|C!v)rBVv#Cw0DWX5v2{_&wq;OJUiR
zOaFZ?n1%Z9de(Y#>wk&)s(<A-G3q=!kkYsid6~ru#uP{OQ>h2TUvRBYy0){nMtk9u
z3AQ&^_O|D*pB=L9$(4o~u4b;UA31Ps{~Ne%;rU;We#+#!@3q=dA@9o7{`g0nd$Li`
zwO_1h(`IciJnH_1>&&kGl5sHw8)ugO7T(;f_Tq>~&mB*l7k`#)@!Pau_Ql4>6B=e(
zPM6NRm2UCqXyn&xyWf7FxoXBy=Ike|ZLOF8XKXwdtT?^EcmD+U^j&c--(8)vSFG{p
zG<Ogb|8BUhcJAl7J>Ifv>W}4^xBk!RPn`H`fz=j!L+cYq=OWq(SqzaEI=v#6gr2do
z2<MIQO#LSBb2-OaSo@n!_~e@ve#^Qity$*B{o^lxDx=iQ6}F|j`1^Q7O@1jwZeP8u
z>$&dM{~aM$9tQkAFP`G4-l2Hr^n;!|3$<MOZf`5mJ>|Zr+(~cc+}EtVzdI(acy`Y2
zM!SH^-2{cd!Y0Ul-Y5s*l0{M(6Z;|*j`_K46Zp0M#M!({`d(!RCO5u$ZrZHJ5t#n#
zi{e#B^TUiM8myz2t*T$7A=2#Eb8N>}J+3tE^{mA&jrJ8}9x*L0(-m|2e>JD<QrgS#
zcQ00?6sV`U+WwN&RBbhwdO+oGtFE%w+xQusUOYj+r?c7WKj+?rbX0~5?*dLML!qGm
z<x3`P`V(?TIM2_^GU?gbqhA!Y_f*8WP42n4g?pmP)^pD{%rKJYn7vVT`lf$EM|NDW
zEuNr!tx(v7@x;-&65R{el~pNh_lPZ+`L5Mf-13)fcPXRxmZ!6nQx`^7Np^c*I~uiV
z-m$We^4+ErCD(7cvn67UnH(=?WX_~Gr`f$vvUU|*PrGwtUEns;huhtA{=4pEV%`1c
zl4Pcg!`paC_mzKr&7+oogJzkJ>?i8}Z{(1D?7;PHMyj6{TW<Em+xt(1Y<$Bxw?*c{
zjqY+*uipRBJ5Js%nfW9tWaA9Qrw1REb=ReK>s|6&{6F4i$@d#;-Tz-+|5jY_u1Ecn
zc}u37c&}OUS6n#v#j42P!k1fPkPeAh#5RF-uEvqT$jRDIUU+CvXL0nIskPSk%Hm#*
zuYb2Tyla(IDz@*?EH2r@C&oW(f$$Lt4^2ik1M6gYgVgv55i6`Nnr~@(TKCzF@yfr{
zAa(Kki~aJW<z^ZzmMmWI-%{!0hSG#f|Jr}eeI&wJyy%-g-`4*ZG3{4yJE#-)N=tE4
zWxmJzt(EnK#>daJ&HHv{`~L6j*Ur!K^Xa>|S^M+#Y+D(Te~OInZ&l=}m&AG<*so{%
zKG=G?|NVc*w`~4CEAV){-p_x>EB&7SmVZ`iylK7v)_wXfF7<T2_Mh_k!NHWBd*8lS
z|Ni;jl5g`l_Wx~vF@NU$>f1AK)yFO5v~uim%0E7>n&~9td*P*p8Nd5K*cmFav+v$1
z_U%?QQ`UnE-=!`*SP;YJduZic?Z#jKB^7`FHCSE0cm5}_)4y}t_0F=Kh*>Ou>pL^^
zt@&a+>gwxnJAbX8@$Iv``ZJcILUj(<!mbV}2QknpuOyoj&5a5jGYwbFU-&Owi|5Vr
zm4BBXX3#fHTDXAID)HeQ8Lc$Vt^actew(j*<=^J!TXow4exDc1`hU~ut-k>K!rd?f
zIhqu*7<?}vPW@QKHlf=(QPAnkFM&RuWhtQoEZ=Oi{=a;@`&!^{fBsALwg$hJZ<}v-
z<@*`2{eLH`Tzt>E(`&Aat49O-lK+uTiL77S*9jo%)GG{|76>2VN!a4!FO%r;pT+SC
z>pI&?2^EG{v$fi1%}{7_5-w?);r!-vuVHkobI?rQM;#L`?{^F8G=J1_fZ<YI=LWm=
z9lxA@srNCNII15@n(_4X*U48B#TpIw>)w1=Sa_yR>-)Dwc3X~Z-8bzTU)BDdd%sJ>
zh;2Q)ymRNCphfkw`Txkh+&_KOt%Nnz?=*BIHr>0oO}?mL=ZnMUYxmi<{rep|-}TD>
zGr#JRvYs5XQ@)#i<vV{;;O&Pi9FWh~0Jk}Nj;zowf0xYtt}bNb)vB1+iS{=f#0}bh
zelC!B<XUjUTvEFxmhIJi*-w@`AA}w0lDJ-F)UoFu<MN+BFWWQEUZHG|Yq0X4`YF)|
zUwgZ6eDA-fc4l*1|2@8|ukP<LkH4N8_Dg-4|IcLk-&~(p)IYPj@^OFkp&RWpWKA5^
z+k#9MUQQ|%YWEj8EiE7-JxBJ&t;Xhg%NtKWnOwZPmD4ohg_Z$B(LXkp#|IhIzOLT%
z?sHP}=6%sAd!y%w|Mj=CIGvly^mqEi6YK9gSZ;3%{r$~c<bCt8o6~=9U!wc%;{Td0
zf8TuZKhw48xLw}ve|FED`6ui8Jl*Ed9a7A_6X|dr7hVN!D??SW!;>s*wYjENZ=AM7
zXjWoa_wk)A{@qQ_B?~SXg|qF`{uQ{)X7yW@U)sCbUv>VQp}j0xbi$YQGuHm=jC4$%
z?<(<I;OIh5D?`y|^^1(|va?<7bX(~=?|heick+z=JDxXJtlKVnYVwx#GbjFAe(~Su
zO)=Kox|9BymcIDkxzhQU`^#JG9{)dcpt=iGMu(pA{cmV1A${?#$0Cu<0;*pEx=(yw
zIjvczDKH`Gy0cg0-hbY^{8y)hO`7TTTV7P{!p$pR;)}%=oK{gw(5m%6`*puZvV2m}
ziKBC8Xnl?<J7r_iwljWed0lAP`69hLbAP4Q>h0OMalhHEQu$Kr&pj8-m`}H!+*Pdo
z(CMks{qUnTUz~!b?bu-4_;1OSsXJ%u9r|l9hx6RVqQBnn?^hXT{}ncF_`<(HE?GY5
z+XPnh%68$DB+rGedkiPeo4DzY=+mE(0lMdnqJK=$+_*+H{qGsm9LbHcdDg2=p3eXB
z^HRO#bNiQ?)1NwC%AeiMFMU6Janj%O;g`?H{Xa70;;-c!{d<qu9XX@GZFO<}rsGGu
z#X^#kxKF?PSZZx}>{S2cxy?In?+Uu2Sru2T?<2dmcJ+UuiAD3+GBzLHR(~_#zww-|
zul@pCm#x~!@A3c0A4g$OVFN8IRxmz!<oD(Ifvn`t&IQk8?9Y0<Y*Wjuo3j6owfxGB
z9m>6Hf|f7&ANb;ZQ{0`qGk(n%RQN0GE_un`G2%p%Uyp~O{8v}ayUI(i=pHOF%VxVT
zzgo!upK{!`+<E<X9VSn{X|!HymG^#4?zFIVhb?`aVsGu&_*});ed*tkH#5?C&%Q1c
ze(E4rlBCk5!X33mZ`t<CDQO>~CKflg=xph4&G;Xb{mzHK>VVkcZ`KL!;lCYtzt}gj
z?hVSmQL=K=lRF#!GA;Rk^Y#20tfv&5lI0ne{8#3PL@o7L=dS2koMbztAgu4wxfzD~
zZ#539uzhjOs$c)>!Wpqi$Il)zc>T@(!OO(>D>bV3WafWavu$#OzsLWla)&$OLb|WK
zvwK`M(f1DDlK;#Sf3NR-y-Ic;+q0z~tB%<%sr{Z5r>7XmXX2=?l{o9~;|1q--2a_c
z5b7(rP{`kEyY9=geD1O`)5<lT3H<tdY4_}y-CpbG<!ipRz3tLk8Y^S?`_uQAkKWaY
zM=t;C^}c!0mn`{XhfCRRO=pjLGG{OU3;7Li-^BC(|NDqN_;B{J$OVNT9r*NWHXdx6
zk;DE^|Jz!t7x%*x_TLRz|NmE3eNM_g-`|EC?$%7N*JO_ukLO`ld%d-q?aPb%l@;f`
z{<9yqKK!NL;rB0)X`8cML%2}08mI^mn!5XIZ%<@k>9p28tbzN*jHWL*5y@j|k#3M3
zoVrf#`k{&|#~+zrOsiV6k-7Xz@*VjpZ*Tf<3fXej-S@_mb~%xycE8TQcaJ>9%HY7k
zsMzz5wMFFGtOJtF{8OG)3Mf2iyc_mbN5l2S#tNS;oYlOk{ierm`n%Y_mtin^KJTTD
z+`hNTvwrD2|9%`e@t-QgwdDOpu@hWPyYtVj`}gOs$~<HLuJE1zu2z0~b${Crfxpui
z*7od}d-FxTNt=DVX|vDPf6do7FZdpH{%OP8-_t7ZFFy6hZu^vF_2&D|<ky7!-M#PB
z`>o5C{x>>qcjOJIToF=MoupHlbLss-rKMNSs~Kxf6i^CYZ`^psC(MXZv*jP(mnAYB
zhZq7S6gj4Tv3&mdtAmu$GaW03GroV$r1*1fy?du&$N3i$43FPE_;dQWB=h5{CW~IP
z@3z0aRtC2(O#Zt{{dw7M%fH-9W?rhFw#4I-2*ZSBoR>_tUY}6drqRW~(CfzByMxi;
zE`O*_Sm+@RxqGQE?qA>gL0$XNgSv?I25egtlX>pEn%}rl(_;O}EVZ7!+$>o>G56}&
z{NnhcYfQGYz5cs<r{4)*k5g${!k=food4B&f#NUo^A9Vp)eC;&UTyS!-of(DZ@q$5
z-1nCEyx6<>i&*MeJ2u<tXO=#4WLUSpz0z&<{_Afl4Ne*FQ2Be?_5GZS>ig#he$BsC
zxa!w-=hmv1^CkE(nkb9(b*8^)>YZ|b(V45e{+wF>CQ?*PU}n_0Gc69&)EF96PQH0<
za(aSfcG9$4kNY39O`A6TV$L=OhD3>|(_wGJdTiZ_UTS9?{j^qn=7|ZJr`HH5<wrJd
zSbb6_edD8TbF2HO7xyV#xa-?-Yx~Zt|0ULa3B7QBmd4VS3-=Twr!BhumWg54Ts^C~
zW(*7N<}JSbR^esIm2!y-877Pj*{@$m#7DC;m_!IWE(rhHShb|{?c{>&DOMMrzKB=Y
zT<e{7JMvYvgY2~3;u4>8qhxwK4@4}s>E=)7NzC{n-}L!nZ0T|PiJ#10PWESse8+dz
zlwr!(Rr{v~+VaQLrf}{*<GNog_42m|nul0GDU_k@ReV(Tq7utf3%2kl?D)6#c~ooZ
z)9fr0n+3VAA5QoG^z7DEe(@JOkDV!xpJukjvxCRUeopGLdBV%qGflS4oS9y5fSKji
zZY>TbmPWq%SyzpB9ba2N#p*@sYkT2)H`L4Lx?SEc-<y2v{fgJ~CFEx<5UxF$x^T{-
z?0kE115?Kmy|+Or9>HI$CzV~uT<z(x{H|lPf55K0d{)1I|1#$6*?i*DE3S3Z!f&5c
z;@{CLf9AM;pWpnCS4uQj{#`mnAjo#cB^6imK;iu=FP%~%?|r?vtD3W7u|c(tPQtf?
zS!&OFm(5Z*rZdm!OtdBcn~8mE7IEL-?eUZ?@sQrUlHIafzE3&#{ae|_t(%z{Zrr_h
z=-W55Z{NzUZfD)FX%`cN#rOZ~9F@baEA=Q@2TWe0CYb&A*5?ZsW(j@OZ+WLb<=teL
zz2Cm-FEM}d^{?L71D9GV4R-AKzvtiTzMpH{Cj9N+yk{Hxr(5SXUD<bTcbxp10EN9h
z*S7stWe~n~#Nv<z8$*jDgB;7f;<aL{%Fj6bulp^(tls*k@VdXntCgI;$baWFo+19%
zzsr8v$ulgr-fx{cq;CJ<_Br!=-Ur*8doM`U|IVszFmg*-xwGCVMXA-}?4cw!Hrt<k
zOU^nAwHZEY<Erd>#J0$zxA&03oZi#b@1II<yUq1w{*8_POo_i17=Fn=Zr5n+BNO^p
zc(OCb&?QgGlc~1ns{&=7XHCg6SDwi^n?vt3OUs!FucrR>+udB7>v-qx{e$PWZIXER
zHYYhfJ9_WE+pUq0_Plzv`a;j_h`7j$yR&!L_CLFLhq?L6KOdh>H&vc$-1>L#d(Y8T
zmtQ92=ilCU?vjakT0-5&&)YooMHuHv+dSt9ymR2zFR6w-(sxr<A78v<?)M)jeK+(+
zRvrAN_G4nut*L)}EdG{T%f5O0mXTrGw(T1VE14MzeqQ>#<If+}oc!3p`KMX@UVO_p
zi`wz(iRWhJGk?3P9smB8bC`MJ!ds2kC*R#Ov$Aq=P+3`=Kjp;B`?n`;E6RMx-SGND
zqsFXx|58`}{rK?7<}&|1qSd^cbX=FOy|w>x?(GSx6FqOQ)0;T?m)Uc@Sm7n!AD;X^
z)#li8?UNA0f~{M6E_mMxKUSN!?(vpY7GK`%xnL^c{{P&<<=;J@zw15xCBH<T#j&*Z
zzsOhno;~UdxOaQ+ihaFuLh2#aoX?Z>jTjEuCN4dp(8GGyw&`kxhUvWgSe0W<^GYTx
zk-W5y@3*%#$4seDrza?1$$Pstjr;7<)UUgyI&nRHshs>gH)%y`h6n4f`(KaQDFt57
z(fK=jqyGT`*Q_4P(7)Fme!CQAH2H}v(-F`ApExa*X=d5&Q$dNb>zAI3nyYf_sQJr9
zcSG~u{@z`E<K`_UhMe5|N1vXaW@yl!E!{Bh&Jv}AFE^*>^6Wn28=&^mAhvVvq2fc5
z59e84^1E>Rt!++zE)&DI@3#e<Zt*PXYR)~nWJ_edvEqbV2e&#bzPN#ZdD>>ymF(=3
z<v%{WzUs$PiGBTAC(<vLM^5=%`20|7g$n1cSksPs_wOFvcJ2SMW2rX3{}k^i`5DRJ
zaO>rQySA(hJIem6E3AF}VTxZ4pTV#E?N^(QpSz~^?R&_5rIh}Ey{nVzm<0~)+_)?<
z>8`hQ?~Sm&472H4SO1$h=bd`-X-P}(XP-$dyLV?5?Ag6J_i)aVFG_jUv3Df5JBeMI
zDs{#vF}D7&!GVv$>R(=8IC^syvxdRP6`lzmig$|3Oa6Y(l0Oje*L-%?#FV1H{Pkhy
zZJwM-_?>q*e>s!vT>T|`x3`ytONzO?^1ratmQiz|*#EC7`rg8?#rSvF*ksPS<t3Ln
z>&C{w<-7SOmR!6h{AJB$#$>%M`gtp|FT_M0`?czn=cF}jlT(lGc<8<0=7z~FxBRbg
zUs(NL*7)1a?Az%dEPnYL+kW#@mEskRGWPv@KIXTJ=7er*w0>%>WP0nCGgqyiZ&RJH
zG_BR5FicQU;nI;^4@<3N-(-v5pZiueCtv&Z>8You7yi7Y%5dP?Gtn73`&S?LbKq$E
z!<Dk}>I0>3-!IO1l(p4vW}f-Mb)I(Hb}#QcP|Rui`Z&*qyz&Vrc79gvTz&GcZ_t`G
z>t62v*|qXmP^`(7gll3<EB6Y<h^4;Vq`h2o*Ri8}Zy)@(Z)3&V1n=Ej;&0wKaBS)G
zf~S*;D#d3W_;jm~Vb|8urUiCo4`vxYO`hx!{<^F@|9%_)iYI%Pg>86kU*xEJslrNw
zJ8aSty@z49j;!)an|ZySb-6)%p5V2nscAQE1}1t<*Nb)9y*J;EVRCa+mruL!&LE*}
z{C=uI65I<;XUMwyvP|5RvUaWfdG!RH88REA;%8UAoFA#Jw7GP_(!c3D{;j^Y&$7)*
zVWExl8O!CFO@7gpDsSH8B$tQ3wDH_+koIYUyOyv;Lx@L*$=34?Dle6MeP#q_-F>=y
z?zZCW^LL8PUzU9-?=dxJPG5EZxuUa(cJ{kVuY|spMx6AV$Z#uK&?oYi?;?A(^uWIf
zX1}&4&);i1dt$B3-`m*})I5SjjS8-O@fT@Vd*KqlL}o9K%S^r0pFPWu<(^LcEIQL+
zQrX388w;zeci*@fHgom%ZQD1jjGeqLCpXdi_=5Lu-YWA=^$rwi>3D4LeqBgG+gYvo
zi~P^ujjFN_{yX93{oCzRgkt<(Sxn!sw8W-ftFz|k`X#HKMT{C1I_|I>U+uf}lxpTN
z3)k7HdlxYtw)mxAxcujgV#OS{IK`MbiId9SI^^f)^WUEB^?dg2**l6{eJ_}=&q>VA
zX1Ct8%8{eZga4e=S~aJ~>msVdkG`6|pY5%YZ_w*U+?oe=YEPVeeg8ZQC*EVe8Ge&?
z^qg9_zP|5HL*5jjB6hxuXLb1lq{Z(Gemw2NshD%(*tctDX694pT{hWlsjCvip;*m!
zB93Q8<Q1mP%&)F)P2S-Z&&{ddu$^U9XxiQ{`KOqhc21i0LCm}D<^00!{Nb9(Mt}KV
z?MhqwKSo|pHOP3PpU|6EtE9rs%r-1NJn`H2GR2u$_UD*n%hw(HzU!{p7XyyDdF(6s
zex8`b^Va3A`dz={((<V%&NMk(YxOYNU9YK9u_8+Sf#Rcxqi*ZhtWD03_kF~yd60SQ
z1X1%@9gmllE`1*JOs)QMrQJD&D?Y!H=bQN)H}3m)mc`cFxW#eFek0qz=e_Uy%kcSL
z=xhwJ<$QJ5KmY9WGu^9;)*Gizd^_t>R_vCqDXI1K^1E;S+O+$1*njK0dP#FvEWVhr
z@M4UUK*i*vP0P)j6+_}bZGEkN@TlY}A)QyH(^5Syt<ybyXfKQU8E+3I#kJR+CzVZn
zal_nTYQfnf8w}4q<Z89b{;qVSNX+rjcL#wJm#*-wYdNvztIO84tIPMLC%KiEZCES5
zbX)nhjk`BDyF}+!Zf<=xY1<5)wF+03mZZJa3{X2-{Mf_b+}?eS&wnjY2w2a2Zml`z
z`^EqBR<T{oG%wuvO6Hu<QNCC8HE;Rfl|IWXcs5;-g~8x?;)QoxHtt<K*>tOQ*}<@7
ztNb>`zdGl4idBK>Yh43FVer@AXWdr&+Xwrdx4rpQd-|iwizT;tF4iZU$}4;)G|Mww
zzG}w5nKKtoS@i$k{h2HORUb2O;<(+u{d-K`oYT|wAAkCMo|&QS`?m?4SJPzfRCz7+
zWcQqOBdGlMT(h9u884P_?)tq;Bx2f)qgslpDa&rDdRhw@g>HQEs(&5-BbkkQTX*i+
z-Mj8vNr#fcm8S~R!@@2`c@<X%RQZMdpYzvvNzPyCxoMGU#V>mn|Gy&td&YVh*1y6_
zoiN7Bc+$P%+|-Iq7sPB`V(@P7x+7Brn2dz4&6?E7GqcQ5sG+z1^)lJ$MeV7Vj>(%v
z=^hEpxa)h`?%yekGs~~mu6STK=e6bYGwZ~>-x^Q7X_d`%N4%x%qiB$V@Ucg)*9A(n
za5M=_JeRa~Uv%GsRVA+SrMF$Zbs|^q6xk`z=#yf3-8Hx@U<uR8=@;*&_?}~!eRlip
z+|^U-b8R^fbF57b_FDe(R86Aanis6bx&7PtQ;!$Kspu^>+Ec^OV_b0exySn%J^y^=
zr*-l;3cSi~?bxz<@uodj;{PuWYV%G#HzAKFc;=Qwqq$|btDdMtF4C%Y_}kkY%{}c*
zOtnj3#_f0pju{tiP9N=^R;0PA@AsOh|Cdr1TloA}OKI>fbokBC_UisrLG3!d%bz|-
zv)|`FRl!(RGUMX6cV=d#9G8|ppLhK8c{^T)8#ixn%zMHlq-2<^kZPO%y2kpgpS0{-
z!Ko^;D#tF(Tl%i@%#6~B{+mN`r|;ZUuC_^2SZ3n4MOoXe9|Y7#M8zHaSo(JBrtSSH
zrL4TcAC-9+PQI;klbST;ph?-4#r4^m>3RPjzqsF1+oa&Kz<F_B)4$H5g`8Fw#qY;f
zUHMsQ$!xmUUvcf~#S>;$uRXn{^T^R9()o(#Vw9FQv_Du_c2Z2Ja1GmWZ*Sd}#GJ<~
zXHHjGkzpQw=ja{{*7Xd<b88P+?wA+Q&ggzBal3A7!-mBfiSu%;K2GX9dMf7Sj0R;c
z<=0k`|97OnkMg_ReZG6X=*$KW<J}LYbe_=*S{ljr@aQsWR`z-SB>4|C3Fw5(?_SKY
zdi83CkQwd|+NE`Pj(+7o7PGF^z-7hn2_~fr4T3m09<N%lo^wHr=+ftTYY$mndHzUa
zp7!5<*M~Ql-tYFAK8q=&eck_Q%QS;zi&w`j_xPHm@K~lX(mLf1-@45P4r!C}4fE9J
zxe9xHOMSL=JGWch?e+%`e{KIO{Fr@9ex2N^|E`z!DVE<o%M$C5A~~r~vw3HGukTdl
z^yFmb^RYpx3ERuJPs}v`#&E{(-7Zh*%t;IH26CRB<hMxp6l0{?Tcx!pR4mLnrFMim
z%u1W!vG=5UbAzTnw~Lj2KZEn?rHAI1m6dJSyu9dF$*$a#%(VG0-<@FyYi>Pg^YqpI
zzS=_$nep{$A)s{=5z_5qQU6_3buPW=LCn=X6Wg>vxOO6YSWEl*Kcd@YD<aplig=Wo
z-N@VB`)yy5@arwNUzB{?xIKH)!MBO!@oRs)%YDCSb@*!6S%=oxw-&Z6omTcfHp)q&
zb>8a0&X5e-nX?qH>xdPn7YaEoy8Z6PCOxN=GF8j7cd`tF<FCvYG*k4FXyI6N;B%D5
zPaCZandi1awM@HfuEjr>yX7mKUHh`k>P6P~V`b^`yRE%G-?qMe<J!`zR=a;keeY6u
zz>&1I>VA%HVrFEdr&Mp-R-<3r9p_&EwtVL4>tA^17{A^*dCP6RI}Rz|;=X_7XGl1+
zYqilaK`HV36Lza~u5kDt{PBav{i`82PZaZV<OzQ$oGnqfe{cUbzh5`sl}%KOl`c9U
zxj8O`kze4|n=8DU8?R)o{C@a=sy%bj(~mu|cmL<ctok-*RrkMMcm5?Vvn;)Lrgr>0
zUHswe497+9>)I3Is~<}JvsiZbZIb`@+q0u*-?$UP`FPuQvm8q+&6c&-CaT3QiF{?W
zeYs}Js^79|3CGNXJXY7AoRezp8@yXr;k~Yg;>6ZnEQxax?(ewx{_Wz;>+ilW4!>ts
z9_R4zo80m4)LScGSS0V<=)Y*PK>y<ZcW$U(`FoS;_52lVvla+1HJsR8o)`4aYfH&)
z**AHwdzMe1w|Qgq?&#<nckdp&x2|jQt^4_llZ|Gpaa!$~_xxU+xKc3xUW2ZSIWIfC
z7B9S0{a5EnSzF|W>B&52xVdLoFZseIercN2&D%GR9$WhS;<c~aE-!hl_Il<9{@V&1
z2fnDd@J^YVJ^jR-)pO#*R!(`&HT#=#&4EOp74_ePZkWB_a{I>3n}?>Ab>6vo>&Uuu
z410F(?w*@lYX9cVyPH|8w|DQpaW{-ReC}Rb4^4rWo+m#A37_`PnyAI$ynDi-FZI7z
zj@dqyJH=5nQ`KnsSrgxl>)EeJPuH*f<*%@*`PXws_Q#ED%LI-YGTB}@ZS?R<eL_)$
zfZ1HZTZzYQGUeEAKA$>MAx-J%zOwCi_v~rB8(XTs<@@aun?#I^XHJi`+^WDK;I748
znqA51JNKyV*`V)p9QSX%VzgzxegDrxx<Ycx>Z5~iA2D}+c{7#WesOE%64+XRnE&TQ
zceot&^Zef~=Oq7^+rxt~I@iIYaoxO}_uId3T)#R$=l$D-yVKPgWoHMwEYmbnR0!If
zp`FuP!kM;IjWK!|?;+p1%RVojuZwIF3j02%xMkPbNhXeyUaV5M%Qq=R+ER#7)3|*7
zlUXxFtK+V`GdubEe#*W3_ir9N_SBofVA{X8H`<M7PpzN$)jxz8b3j!}R8sTrn&nO@
zFS5c{uRW_>@#~~KGsC>9PwqR4URp97_%@aI&D(d2@0xNp3uT}6HF{|j<()Zsam(u0
z99vVj3m!jpDO=~o(|LWH&z$a>B-p#-|HeCSYsItQ9=iIn?83d^Yd6+vPv21ZGV=Aj
z=_S^2Miz`|VK4UHT97DmbJy)cnZ<YSZN4XX>GP};YgPSct-O)4GC8eU^hS|;#FBX_
z_51!^zLNUq?wuVi-T%Lf%-j2;o}r=l`TXP8mPMVsfBWX~eSR`m-j-c>oAv!jS<|+-
zhyIgTJhcSOznW$o$uOOgYREPB-{~Ingk2ZYvt?#JI91)Lx%9+^tF_+M<>Ir$LuTjO
z{O{piExGK!gStePuI}w8Q|5kKcX|JWO8bZk&ueN|_y3(W$3A*p$TYXFm-usE-Pm>U
z_U!2!*TygRbpIZDj=Rh8#`TG1h5nQDqHZ1Cd-q=Rgmbp0*Uk31pFa|IaMzY^DZk9a
z?j`>6|8jpxcwv(#TjpUQzU%wf#_BIEpToVX{_`0F_DP<v->MpA>aO-&-n@6)t7sSV
zjiH${TJn;wU!Rf7sTt!GaG+{(ia=$*i{jj+;T-xcx-6IH@!eI~dVYdQrm~^fZ=I{t
zGaY7xPc%$SWxHSW<^HwWzt5(6->CQ}$spnVU-#`=vEzbPzi#ne{lBEP|7yK!vV2k+
zXrW*)mu<!wW>s(FH?KV(7N56iR-a$N#PH#Y@c(Y@*;<b?tJB5rE@{>=y}5R&xb!Qv
z7n2O5AE}-e(*I|9;=JdoQ>!c&#}!RF*!elD{OOxXc}cM!zI`v>xPN!EU$igRWfRlZ
zuA--1GZ=y-rXRbqYi`*s*(G<69GkrAN9lR{e%T63v7d!ah0nFOe{{Fp)~UBswuLcr
zRzi7nYu=yx{qv9f|M#KL=I@lKCAaSFNfP(ib+@ndpm$JWeEH-n`_B3BF&Jz1OLHj2
zKI>*@Ra0_KIFsG-@;<|46_M{>=ch^v*+$&Ge}8j#NVVnPbie=q_OVQ0da!Jda(c$>
zO&<IHEj?i_`1<OHAIIPCJMMM;pM{Umvxn@go{BN|=c%1AGA?}K#FgL3{EtC=!*|=_
znX8N^-iVPD5Ynp&QE=z{?i8!mI{DRoyXN*6_m7wupJ2Yl-uC)_Yo&tvFV~Cv`{&-7
zby7P0!Lg$@0%d`oDV?Qr{dUQU8y(wuY3<)RvmbaX=7<#@%Q5v0O+0jtQPpV2hJ!k#
z!e11oa2T1Yo!Z1_BpY?rH@M`Bipga~`wv>RPv%Lx=1E7M{k&Y~@B7yU%f8*y`&L#O
z_S^7F{xQ3^Wyhzr%Pjk^<lP+FSKDzDbDd(38>?i^+p@h^PutElEG{l)o^CcJ`uEhc
zyl=9nFZSEcJaL)8HC<`5&!tK#33vLO_D@S~iBNz0AaQ|CcWRoF+y>p>b)4_sO|>+5
zGHFVsBGaLr$%W?xT?CzS=RQ3%xBt^DV>5#`2YC&CC6`@iA6smbT=Q0sU+RMTrdLM4
z{onsijSlkqR``9>5o_`9BDbwiHT}C&EdH_H-?sC)o*gg4i#P8VE)IW`IxX@qH|J}|
zNhy*`3e!`VdfK<$t6Y51;m(Ec4A1qBEN1fFbz9~0xy=vExa;Z_YQMa<DT*<>r_d#k
z@mD)HbM>?{(f*PQ=SuerAMGgNjagcM{?)s!+|KgfFB-ns+p@;U`&5b0MM+;XDPNtn
zYnT|WUAwk++T|_W6I0C&Z~4`Ca+Zw3HNAIhpNfTrUuR_S_CC$wbeUati?_%=eyw%Q
zah|8YXMo0ytaB~B*S@zj@%djT6!hQv^TPjufxp9V9@yzS>-b_0pX+k$61!G%yBnQ!
z+-$P-SgK}-we)p<%{R-ge%&-r;Y`$pt6Ph8wOfmqo^SaOW$7&Ts!M(n<1-0WcM-EM
zAKMccw}*<JTAO0@YwOIg`}`JvqraCPTl@T`#V`J??-rks|Lx=dKgBhkC!@*ljLiDk
zEf@4$?y9t&2stn8B6uib=c{E-O@@4#?57JRJF$7ZjS_M7H7Si;IrVFD#HEiH5=EK{
z=e_3Z?m5dRf1|Qnsx@6BS?-C-zPO&75}z7aJ7%vs8y?obaCX_o{i|bYCi~sCJFrB=
z%v&d!Cx*Z2@rur;skS@f?AvzS+%nVe@5jQ2?e7ni%{<DS^`-Wd-F{BRHP(0D-Lw1l
zeYc0P@Tr4uTU;2-)&&@_JvKOdP(k_XQg_Fe9TyLLx+TRB8h1fn=edn2_jzBwoouPT
zF~=-Vcz$2`HUCiJqcq{uRZZ7Dt#4ef4Y-uMd&W_@zsC7ZJN9hp+G_gs?~aQb3>WWv
z@%G6)*&mlX+G{>Yhw`3V)zx(&ntg#-|Cyv$r+!KK&9!592yMD?_hR>!-_@&HLY}Ef
zEYk@RaE-`XyW;)&HII&54QFJy)+f99dMo>$DUS8~x2@ONv@+}O>`PhBU*?xwW!fcj
zY4xdtcbe`S{N?{JVV=wX=3jFo{rz&P_}ATPea+~_!gns@c9+hEhaPX&IZWE+8Wzmi
zX2{5?&%OJ^8tttO8`?P4-rUZ5crC{Jg@D8E7xQk`NH!U=RE5n~S$Wp>a5F<=oJ+<L
z#X}04l9?WFvn^d_@{MuMzq2>eD@$c%=U%Oo`KzzLv-RkXh40!Ef9WrN&z`ovev!?I
zqqV1Eb`&`BKH2mC{2a^V|9VT0v~r6Vyt`w$B}#YCtI+j_%J+Sqd&kVo%&g$JY<WU$
zt?cX9uXjA|vo3I*u824q|C#Wn1?L;4?|qZ{<Ii*Z{Ca+y@Avy_-z5L|aooOd|L@)V
z4|~Ub5~}%eSpHac{O_om|G)1af3+%VYW3^r`(5huYlObvtJY_Du)Y5G_QK<`<qz)v
zdwXBY`k9hv3}5?B)}UiKX%{uJ5;9#QohE%@dDIrQlc#*!#g}CQncoc*ThAtFRVJ)$
zSvxg!&6-v3*RPX3{%Y4Im1BX-cZv(cS5KHc=c>m2i`w^7ci8q-GKPr#oM@M6zV6P^
zuU<tbF2)2&PPpzr$3en9<MoolyJg}t&vocb;tA6K+-kE$ucp_+DLXRNC^j<6ar4cR
z&R-8&C46$GNq^hRl@sZ_?%<Q^&*m9IT&^8az9w75nfR@)ox0*Fygf-@b;lLGrM`V0
z?WHEu!#C{N)ARN5siulQHw;a-hAKR0EM1x0oW!DL^{u&H+x7Q>h{%!|;&z6ImS0?5
zpZqav+pGxtLZ*gKdoo|EfSpuW=pVHDzXr#_rW0xF@^p0*D<i);_O`9BFLU@W%vOHJ
zmgm;z0~Xf}`U1A!fAvbs@8!|gPp7KRcG$A_x|>$e>=J$+j#8%pIrof6@$acRv+XiU
zMHhb4GgOpoy?g8T7xt+)*J)kc&wXygY`I1M^P*KJoK{fS620w-7q~CK>yy#6*T2QX
z{@?r2<jQy`fHSt>;hqI4k0w>Ctt_3(SJ4*Y#iGV?syO?+5##e@-MuP>mm>Et&*N^K
z<h1Lz&jGc75K%#&3=x6jtLAepVmo9|aPv{|_cJ25_g~uBf6H<GzuCH9*TmQt9{MKz
z_{ILEwr10(hhMnR8P&h!U#HUrmRh!!#2K4sNiUi5W3l}&<(d!8@<-PHy|tc^!S3ry
z|A${*UjA{s{*U{f$FlDaeBbxo_D=Qty%jGOwikRpYtGDI_w%Ixqdz}C|M>TPfB*D-
zUzSdlDK3qi|JMFNkKz@*OTB5ruaEaJGdyw=&V3uTW%uUhbN}p&CVw^Yee0~vp=?qT
zId|$+(=}^Wp7a&jej#gRW0b@zop-F~({=itMPzsQKKgI+$ZxOjYW58?71}yVb#8q+
zCH2Tncx9Z3=Vg=W<_By_Do$K|BJCi+X2z%8r`!^F_~@p}xAq^u)UbX2e2_ibua5B?
zbIZn8lctAFE4&&Se!EEb_gmXHIjeqr`McM4N$0t|xoHyum^UbNtvPqSPxkn)Ush7T
zzF(bc>QeR5rB{-hZ;RWWx;zdO&B;IZ^=-Ut_siUHOW~CxoBA629=BbtpC-HNze9Ub
zOCfXMn@5F}_Z#1($b2i^{PvQVyFpyN<u%jm?^cu@>?n?|U3@X((5+okEc#oc))hHU
zbK*)g)?((FIPZsn+>USkN!B~^Orpya=ZMP5@aOe=Zo0vLGx*(ci+IT@#y!5f=ZLhw
zzTa}kVb?279-cc}{tNt_KJ|CftzYw5wthHrpro3mNBL5>xMH&2Jj>6YC!~Dav~*>a
z{nt|qX0;Y-E}7o$9wlC`cK2uT!lwB#7JLV0aJCmsRWX|BxL&luyWyqiaSaZEs_&EQ
z&#vMv|G2X3O>*6rSN45dx__Tq#d}l2{r|#$ej>XozGS|tzjjOgRHNDp;|Cv)%OBra
z{QN?O2`CjjR+j(CQTIr_j>-PdL;k{#k6iDR-Ol~Cxz~+(ea%ztk5kvzu)eQ2ZvEjw
zGk;QT?Onffj1Q(o=N<g@%WB`Jsq1B|9N(8%y(qEz_FXqNe4B~d8{wSgN13y2BeS+{
zsEb*9Z~dC3+rFH8caP8NckGf~fBYt?n5Ajwm|V=t;{J6>E2>H~#H%gs^bz^C*7<si
z%h#!@o>=uK@kLna+rx8<cSl^xGQF5%R>bLd#wG3)&#{&hOwUx;HEQcKD?Ev*)LXFp
zuUh3lzx<L1-zrbsSF04;#nKdaM&WtJi;AsRuZD7XME_HJsdnQ|P@<0YZR-~=tX_Ct
z+WJ<?JUSvOQ2YDqZ1oM>cJXl5@`g`;lft^DV%PkO`{He+@~oy?t*^g4&rxE*%@FRo
zUN_}(<=L;*muz6%ViVvwv!-7m`7BrSzhCLai~etvC=Na5lX50|a)>sMWz?>}sf%ac
zHehyE^Wm{_7s$N4fZ;&QC!OZ3dUMD0oqg$NzRgMc?C<;k-jT$RzueJ#?nT~hf4Tp@
zO8%Oy?Ypw&?^V9s#^cMhZG!TpZu!8?j1uQP&%H5rF`6E)GMVXwN{jB=XKGI;9I9nM
z;d|}u*Uj~tInU4Nb^P8u&(g_dqPDa2tLrw;I1VXX&-dN^HGOIQ<bX{#b8e=8ium<C
z>DJ)`S3K;ceyN{oPP(xC%vtmMJ^uB-F8?_H|Brvor^)k=9PJh_e7$!2qf1M@cT{{-
zVtDZ7<>j64=h)TW`uFzH(Qb><S63R}&a)~#RhK4Ee!q5mZ*+Wo{PC^V<DxG`A}+Ra
zRpkCPrSk9V`26_$1&4Vp>i^lqeOV;_FnInik-VKx#TeMbPcE5atDVmtezD5_azB5~
z1LlhRzwf2j-@kQBt9(-2g|#yp6)%Kc-*EB3roP9CJ*!3DGF-FD&QOni9e3qz*;}p@
ziMFz>#(77|o|>N&V!1QLeCD#({gG4W?%jP?<Hx!<n+F^vHpMdL2X=1GF=UgTzD#Ul
zDUW{oJnOmf_f$haZl9N`Dt_9Gef6PpoZI<b|LoYiEulx*#PEst>4ZCx`bL@?%ic&Z
zB$Vg#%f|L?xco9gJ9P2YEmygwg-sJ=HxycUXVc>ik+YuWe+jLb9-lPtOMXny-+xE0
z+e^GD4P5>-JbS{mO-e?IYxm4)FJAlq<BSJwAB-Q)?s?<baAJxDSH(HkxrTYV%?(=~
zG6z|8FFav1`=#xJbw!Mq^SJfoO73iq-tzjXcX7wR-m6m!&lhXNuYDNs_jyds+~=nj
zE!f5I{myfn|1!L#Hbur^ahVNT%-OdTPPbgmnda&7GU<}y9PQmxF8x&Z++Uw6a3|tH
z<vu=@WDcLc$pMFMJeO#ejc*N1NnR$M$m}TarDBinxvigGUfo~GXD-DXu9(F0xBJcw
z^%CpIg1^E~orJ$gZr-z}M>=l@W54}Bi+g{bnKK83ecGIU{?>V$-)}ZwTUGb$jHJ!y
zGsf)OKHn)mFS}vS_e&Wjb9SHG5i(u%-0TGm7xFq3`2}AcjFf2Gc39-BTGY%9A3HL)
zbHChqaptYtjsgnCU!A}26+Us5X>Q;4q=zR@N^mxP>Uo|0s=i%u!`B?uLkbQn*iYDS
z6!EM4F4h00dD>{IJOjg|KOfIOfBa%XcR&!U;W5Uv7=^<Un-t&J3VgWGmZP(NO_ca|
zzun2^7dnznqO+RrWtd$Ne82j9A=~Vb6&b(#m5&E)={GEkU|Cy#S)SEq!(Tsv7PBYH
z5{v4ir`vfdOm3ch;OCY95<Xi3p6)eiPLNaJDE%?XJkq?hb!ovvle{Lq-2L;_ICJvf
zo9|llO=^l1v#svm>UaOzU*1>Sa<x0~Tl76k`DOoGuh;cYb!zRJIpd#%_b&c?J>A7i
zf4?&5N#t6}sW@S&nqW+uOG-l8MQOd?k!+R*k_y6UHcKC$*()GZJ(uNxZ{<0IO+V9S
zo%a3C(<!Yb?;<LEVxqi4a?Lgl+h660W(&`D8utAYo~!Js_9o-&Uze2=x_|e)EV23l
zx~^_>`uRt@Uavbm(>T50|KIPo_m}UEwfS&>dB@jl(Tohw&(A;p?3voWZ(G;jJYVy5
zb^Ot1&zAk=flq-O)=yxqJ@x0_`@eGcejGD@#HwGxIIs3wB)Cy}?V8xVf8Vw@8@BC!
zw~Jf;=Lz=@kHq&&=+}Mh{y4F}hQ-_4yW(~9eJ+L{FX#Wu-1Dw<{o(w-*YY3g|No@V
zxWXuV`~AA=RLMJx)8D-e_`Z*Ga;l^^^W!_acCatpJmW}Wi$i*IYsk#oy{6{e%)6tv
z-g<dQp*bX1yEkaIjB8f8LH@y#M#=9@J64~Ta858%C{8uyVNO2yXxrT-&z+VF9k0B(
zc4v0XQ?27~19g2iPk*#?t*(rXL&jHmr7425)R=QblrCLY=9p`0-X-<zU*{u^jo%bH
z4+{i&m7ML`A0FnubAi|nrnsctN1L7=vS~7KI=qLE>Gi5pmfLSlJG6OG0Uu}Qft2rG
zjSl?$6<!?`)3uB(<;-2?Guidoj@NHaaJA>QV$h5E?XB|8`j_#()tRDaoGp$!&iMP?
z;O}iOmN<*azwU0af4N`$a$2Imf`#6(>(;M(@MG7ipv{{$HTCkoy?NqWPTf}%VF9Nd
zLK*YcEh)KH!YO_)Ls-G-dE@6pg$g_W`iZo4Y}NjK$?Nnq(dfJ_8<zAN_9RVh-PcsT
zv@TJp@-O?c7@g!YAIrXfxw8!`k}oY@S)Wvt(PWo8ujZ5Io~OF`2S1;;?_a%spVam{
zMci^#FBJEDXw_$7`19}mf4gtrzkl4l|M%`2H*OpNRSCb}?LL3afxV&rM|=H&>U*E%
zX21RGn_net_p#Ie%##|1CvqaL0qb0sx%hSHTwdo|*b?C%a$w5t^&DHftHo}fo7b)v
zZ1kKbGvUrLo9UY;JZDRve8$wR^Si!qWd%zK=Z^Nt_6v+mw;KPQu!(<_!i$*;cC=5F
zbSXF%lc6V3A)sKe)Z<xc(e>+hx9oVfwr=l12NBi@9D=Vn%SBwTEj>5?gnMF&?b|~d
z4r|!O5=9(6I(0(pMU<L(s{Yh)Cwz<ix>P1Jaf3nSUup4I23(3cHe0m+i?ZC&HTyZ)
zaPN%_r@RN#Z9aY3Kcib(uJ+FV_Bz-9PkL6fI;>y~e|WTh*T44W;&)$Puj||O;g!Sh
zb#Hoh3&_?lu;D!XtKQmCEAeYy)UWU2Yxpnk*WP)QKSTaN!C(Dd-)tp5g(@DhICg21
zR(0jotKpBIJoRR1n0(&8`>eJ!L&M&^vC*frxs61f@^1TBo%Mbh{(hUs*5s}A%l2g_
zuQ<%GQ8W2=R)TBzAB(y-5`Ob6I2kO;{z!y{UuR$_RNf?fX_I8B;Obu+`7ikYU-qc;
z!I`W&oxiuAD{uaOIq<T5pv<fV{xhrJ?R<V=zwxnxhlf~Wb`&H&NcWp#(YXKr@BR8e
zPat-UL^^?X0rFXCOi#2lw_h7wy7+12Wo4E#D$gf8uxSvnnmKK{>&+c@ulf}^rn1IH
zhFnR1v}56#{r9v!t3+)7<7{T2zpn4vgM%}+#<>Qzm|T;r*(}1y|K|RV_us?{45HuP
zy_z{ya`UPOIt~J?9Zql8o$X$$;(xpO;JfYprmJ1}%MH#69y`T!FGo+YOKJL-3G8M0
zJ;g4!geEOJl;+!a=tS&(g@%N4zZ5o!^hWH|GdfnC|BzEcvHI$qSNC@Wr57^KJj--0
zRF&z;WZj=x2EV4S+_uc+++LH8LqD(mmssc4JSklEmu#NS+B;R=sT)7svfpq`d!4OB
zMTU+19pMgc#)*>L+jd(y3arSv*|1eZ?BRv%2P}r-25i}1<(Ab4zrT6jY3;mqw}R6<
z{;hQ_bNbu&>CReSpS#@ujIV|)vn>3>a&GSLdWMF#z1lZ!-ehIivOD&=n{`0gr;x}i
ztzRa&c|NoetvZ%sHc@iR_Nm|QWST{rU3~HJ@$te>S)uE`pSfwg<JTKWh65{u(>Lzg
zw5ZR#PkZx%>z#GK&VRX~emcmSPuBf^kT~z7p4*0RCtkJ>l$f<ZIJq!kPS_)b7Q-~-
zd3w606HDfLFX~O7CS)_ALG$S&{|l1meHStPojIYn;O)FyIVN9Hj`MElF1X>4%jAFF
z`TOE+k-5inHcfX6Oi8|fY0B#ev(E)ZdixT7e$)_Oc7$8t<vZ6R(PaWh_1dl&yu5kl
zlVj-BL)^({`1+<#kM_8H!<TF4>8l5t1(d?O+<6}`$=!&sF!h+s(W`CtIOF9Fr?1<K
zZsopkS-ND|tZPe5KnEHum;^e|V6D{O)vX5({yP8VheeX&l7Bb$ypBKQyQh8q$)56y
zp>jgz6V1Li2q<0um$zWeqmzGscHUeZ{#9_{6b_}Y3k|vi&3#(=*ExH48NQGTxoCaG
z^}iY0_2?&`^FJqomeC$~BbMo|xZUpY*2p^@7ovjn-W~6k4;Hmx*z*1R#ka50bJZ?n
zZDU}Vewg>ooBYL_m)lM6<e4dV*?~iv`K$!<o<Cg6rbsdMxk)U%7&Q6p)v2Lt)~;n{
zI5)?(^>S6?1J?BQ2WJ*PXJA<FH}}Y;SzOC|_R0uM+mtl>*pFW(zpWP6Ylg%duKcGw
zP5w87h0!ndQ^_BvABX2GjwC(>ZmU3Pi)6Fl(#<!WR;;}jROR<2XqC=#wauD)Tw{Oa
zooJY7o^9~@-i-{iQn#C#YwXTlxL(Mlt^YZ!qgRwWAWT=$XvXJ{v3I6^J)P@Z@m{+8
zyTSvG!!I1f(*7RY*k62Y%3Ft|ZO3;O>*wm~Dqr0ia(7=zH5aGml$l;0FLihta{bR;
zG2Nv1$uU9K*z)i63xAq<SF6sta6Hk8pMCNF6Dmtuyl*{!J-_f-<z$&F`!k~zmzJJh
z=lB2e>du0SLz{{Y&G}Q!kifBH7kkT@@Ah+cnuVNaNKP$2etb_$ap05f`>)lz)}B9O
zdq@4vZ$_T0`*~eIl-TwCo6EYX=bQY&rO9FyObG?^%o+JFW~|y48x?nK<7z(!2BV2L
zj5(d!mh0Q`GDO7H@y(t+edE@>Ywf0|ow%gOF!$kIHQv(B7Yq&A`bXR(l2ezqPTiW!
zFeUo;N8xZrhIO{pynb`SIv=jHE0j_9Uv>Ss|GXoYCe`_6a94?L_gva}-|OQ3&o2ab
zX&tfn^<MTjgN4;EbuZ9X*&91J9W9v)tRtT41s5%Tn6z?}&gQubrkvX9T~y!nPL{to
z@`$Ce;o@~JK_V-IB$t+DUVfwA-g{iV<G;xd;V&18^MfTPyWTGg+ds2$Q_0gl8*!b<
zjQ6Ino%RjrGHRX_zm$K^Z(qM9E<$Z_ow7GJ^!Zq9FVl=oi)VYnCcw!5mPM7r>2;DU
z%e!0C3<Hubd%s-wz4%7D+WC&eFYh<iT9<!u{B^zc=9h<>e}C)Etb5v=^`$?m=X{r2
z?T^}C&f-tT0rENj<)(*cCOKGIOuzTN)a}!S)I$BOe;Z%MHgkQQpZ(wYOa5=}XX)3=
zA{p9V+M7FSdgVS>|Hm`8^1Nf8hyS&xwW@1g-zehXWDJfnIQELubm6{NPeOP6xx==t
zY&!$PUB4!sz<2L{dvYyfvJ!Atv<R{GK6c^4)63JQPcO(R<;`9mvgYT;t)X*vc;)^+
z@^STsGM}lH(XnxdZmlY+jgO6WTfH*o5p(tY9c+5*PpSvJ)c79h`K#PHXr6Yl`Ko`_
z$L$#UCj9H%1llrTm^x+R$B*(a>MDf<Q_5V0E;O@7CmpxuI`+n)x7u?q)4Qp=IJ7p*
z<GDE{{`KA;`}pd;rcT}9ubVXE<h-u8+n+1gW=G}!Sz11C-_+RHey&q%WH;$<KNR~u
z$G5KfiMl$Y(dMf6bDf{PjQ3(JSKm=8ELYIdxcatK%TJ@wr*X~B|3aRbN+@#ddJ*?$
zlSRTEy-%9@^FDrkf8T%eh5uW&#9u4@CeA4tk$3R?`}#9amQT;zwqJS;|BvdMZ{ykj
z-uAv=&sG-k+u!?l+W)ODe!nfg;CmtU^52>4GCtcYWsY0a`S?y-KgXt7yE^>By}-$z
zw#;5I`_1a>D-Ad+1WcvYv83>rD4QP4+d6H-mTgT}Q$x*iD=S&Ecg4IfTHRU^8F^}U
zVNaU#{ydXCDP8RA!z-`nH@)SN{LP^H>i(41sf|}JKvJ}*4v*e}8|@Y{DCdAlIf#`k
z3VWinV`5?clXFQcbax&OV=LC49w$~&AG&{uvR+}dvVm&3*D;A1nwp0`PwUt-mE~Q7
z&FMuq+v=7kIeX`PFWeR??R`q%PqEQFImfi5v#qgv`Inriobu${*&WXsl{uJSw;p27
zi=RHfKGEv?fh{&KbLB;5)CUCofBM~eabC8ZuI9C0A_fMPAAazkezm6OHT(a#y8ZT2
zsoUyhztji(W;jqZ?dZL?Gp@Ub{{J`Qn2EoLCxh?reH$ChA77Yex%<_s)fevFc8}h@
zHT^D+lS<lRkFPT{_?!!5r9|0e3Y{Y_Jl1eqEU0|#+DA8;g*SuNKi-k(UCK7+w!i@c
z9$WsdRcoG4He8!wmg;(a|Az#R`}|)n*RTIpeP8>rg!|t+Hedg`$jw?Hymd+WCZ$S$
z^_%$)4Ej39r3HTIy<J*5v9CC{n1Mmqz|+MsBsD+ZMMYZ7^v%)zQ(g8SochJBd(Hjd
zD?T*ZT`a3Dy)u2yyPe+8jx8-NlUnls-dlrn#V60K+97vYc1!Q3^`F*l?kr{FD@^_V
zwf+Rl-Vm{f|9g3)?wnKj>e9Dy{aW$5(1i8Mb!lF|zRz!TR(rA3@S|D!!un^f>Z|YP
z^a-$BnD<0$%Hbtjd6`V2SBXSVQ}ejwvU9Vu`m17QnXMVz3QrcU-gIo|><V{5COIXe
z$@%($i%zyLG<(`3S@+}e8nLZx#<qWdKh$Q9y~%&E{_n541i9b;7xQ5(C<yG(y1w-H
zPEJM%%i#3V)%zbm->0YBdFjGmhxf}b<h98kZ`d~XSl4ft>=Qf<h12IYPfdCHb>j9p
z&n40v!=+cgsp{E%caLu7rCPCHRV%;P)|+{rH#oRY{ih%2FZs83mL;#8qy5_QjH&jG
zf2G&<n_7fbPY}L+e(S&GH^0yRAfCRzWafU$WV4!vqk4w%S2`|w`EKnKQ93)}WtXgz
zhk<_MqMLfp8E0&~)6~eSr#X`=*XU|aOepiYPvtAWUb!?c{9kqHLcexn|6kkNty2FA
zgZ7FBcFer<&iU>h?fZYfeD~aH(#0?F?84>j2bTVs4j0O=PmXDC`n)ahdqkIdq3_J4
z|7QOGd)RLKfw%E97QMAU^;~SnU+;_md2Xwf|C!S~yUTdeZ2>z?<`V&X#f*Yf_q|D4
z!(hz4P3FV&+BMO;ZcV($dO2BD-{(kmUPO7$d+X9!EYim;RWAKcls*vCTg!p6(J2a)
zAqBDm^Z0xx3ma)~*MGTlgRJYTXL;^E(=|o)SLklOw%=xxZGZB#>kVJ_OQg@|zHO|?
z?{n*e@G%viz14hdn$6A9hWFn}r(XVSmz-9-^Sfm8>In^hb}Y&(ubO|@K1iqQTjxj6
zW?8envTc8T_1=lpUYq;mhT(qhkhtV)x%a*8<eTIYUS97$qqF|-j?}LWKecqtI&Nmy
z*Id8un)ToF-2O?675?gr^lZGds9LYQr_g+Q(9a#u(pLP_k^c6({r#H{-#>r;`D?3r
zZ*9k7EF1mA{)T5S{jTpg#U)hog!&l`JCEP)2OHwdw;xw_Y?b`szTH4Jmp#}h;p_x1
zsr`QUSpW95R(9@5$$zv>=(cixkNU*xeO;^9Uvd0@qyTgPSnHc!w=c1qB<}ujUg$GR
zIr!#=Mqjb+i~9TxEWw4%ucjYuJysCBe3x2$%0i)TC(~c+cYpiq^V-?&<*W3Y65p8P
zC)GvTyK(y!GkyKb;-L4A1wM8W$PL<(vH185Kc2)@y+<6Dowqw76w5mEUR>wx7?%?p
zm$~`)uKrx-A0nFMe5R-M&FaYi?zQKt{2ofNh=u&`2JLcwto(U@1z!lamFIfLcC$c@
z7fErwi+qIY@1-l(Zgc&}9jdr=NzXP_!+HPu3ucFxyqf$)V9Ea?jivAPC8r7>`ZH<z
z-1xZsH$l}ohR0IWawdI=pJVlEz61~G3=_$c$(PUC&senar~6*Ms<{$1x}N`=7jB#B
z-=)$y`*U{PmF|Aw;N%N;Ci7O<UfZVrN6t}TGnO+B+Jdf337V&xxnlL=m^qWmj|KS7
z%PmcqRP8WLs@iVS>cufK_Hvr97uQ~WKjVIz%#}kbG85wDO@4Db{!;HVQf{r(>G+rV
z#+kvyQN3g03=O_ji%u4;@7^lEcw5AaZ<AGdCy1v#GN@IP)Cs?O$9?&f<decj7A2Z}
zdmXpZ_t`z|MDednS<1g}D)Ig`zogiG>0Pnui<i_cII^+-ri5WQ=2i+9QJ;%fyRNym
z7ng+HTb=yGrS;0St&4O1M(dtfeDS}>{p^HE?=RaL2Cw+rxtJ@nz7BkZg5&;kd4;iO
zUOP`Ta{khw)wyr!Q;+|b6N3JRul>8Y<g7Yp@uGdpWnQhSZ(1=+DfOAh|IfS_MW3Tj
zi|3>(vsd2QTfgLt_tZlr*3#nH6_Tf?eAZkr>yF8OmaX+$Wfs+^`Mz~Y{8RRBdHvk|
zXSBohF0TLka+gTc!O96YdODx+vZcito9+0!@}auI`ucE>1gF2(zX(;d*FX4MS9ZDZ
zp8S^FB)NjW-va*f%ly7Dqa+UGe4ir=4(jnXomT&!F!9^`JJz-L)K@(g_<Pw@V`B5$
zIoB)wmvUHUNcde}DzG<qdi2y!O?GU%rUX6qZ+r9ou|vB3_g~+&_C1N2xi`j){r+|C
z%l|aLSKrT@9e8uy&c)|%9N+ii;{U{3=j-Rp5XLyHg)>R)LROmN3dZMByJ}b!y>$zx
z%*_A$d^OV!mI|$&rN_0GJ)hmMsc$z+!kOy%vK8}xt~+m9SRy`i##hBNmVd7p%HL9V
zYgc>G(pp@!VutFKf16ux)q{?U;LG}b)9I~!^oqaf+*|D(Wm?{GHNlsju3$8Av|r?*
zxpC`O)7OV#!bxrcXTSV%6#k-o>f1N7b$h?vij-%A<x}IN>gwui?G9fKsOZj?@mw;c
z;?qg>k4@rx82oKMvRu1<J-ycB$ec}Ex3*@l-z#SS?_>YQZQIOVA69%Oa7iFg1d7={
zFHzQ1-L`#u;k!GQr&t4wH9YSKwi>3XKYjiB_15<;9lthj+vaAa#N{ZZ)a3-hrxM~y
zT-bJ1Ih|HTDm9ohn*1O~KY>V7g&hSC54A?hvlv=8DI8cG_f@M!(bZaDva=Q39FTdZ
z8cJM5S|=SrOnSKRDu|b(h78Jy9jKe=QO>!MauEKad}jXNoAV#;dcDqh^UWi^=675E
z|9k&`-d9CI(}&*izl6ZUv3GVBC-gjw|MxV$sD66TqeHFS7Ul0`qSlJVeO(p)(E9#Q
zzjwyc($b)%2OIY7>-+k(^iJV%*&RhsPnq~P&rmGCUu$0X?s*;G>eZ_)N?(b9#`GWm
zzW=}Oo$*{h_V;z)cNczo;;Eyr{}?pfH?QW?$vf%uDjsp}`PiF(<kKf3zj-#D-}gMX
zeNndivW;kx+n=BF|69iW`!qc{H<vd%JKLiEpUuC=_Wut5oBPGN=k(q3`@F{_-tBs=
z_gn5|hs3c~Zt(*Wr~lSJJ0tnKTuN9l)ftpR?EinZf4pw@yF={uKOAj7olyR9H2#n4
zo_}B09~btwF?{W;oOR&cJH5O;AKhvm3D1A=`#XHign!K=;UB-Q@9#5CKlfnk`dZy>
z+qb_>zxV6f_D2`p<&W<Dey_Xw{a*2YyI&gbc0BIOoXcdGELZV>anI}6_lKPMZCif7
z-!Gpz>(RE`d57P<Tle=&Z28^R^R@4acRZh0{o$#8y`;6Z^^U*aZcj{=1l{nv=OJ%C
z$SwQ+Jk@_Zuln7=bi2=zd;b4@KmTf`VDOV!+3OCv+y4rzc`SYZfcd_UynB9KU4Lx-
zzgO#THR``?muO#K|M&He)%$;G@A>mo|NLHmD<!vwsruED^Xh(O{{ElbZ=3etEm>(%
ziAtf$&!6-ESN=R#zR&pkJ^#N~{7>5dXttkmQBbgywc*d5=XUA!;!Y=w)6bpgulut2
z+upL>y4SB?e;WViXuOB!(m(IY_iHnrXqT%xQTOa1yZjV}C;$JP|L^nuLFcUxZ#JLz
zV))d^E;k{_tMch7QAyW{d!Em$ev>}0>Xqh6%jw_mRj;2CbgKUU_xkB`iho`S_P=@l
z&t?0+lXFa@ii(Sicd0vEX?lFT|MdQUulK9{6-eH=cdu^zpGV@Sf4|=!51I|0^1k+c
z_0lO<_yre#T*zPRaj)WWZ!OqoTqm09SYDRxuK4k=z3_JK_NVvuzuk8G!_@UPsc!DB
zXSku0&qwFfN%gYD{X7*O_1EUdgXW0%_~U2I@8{STpVr-;P+L3Kq|D{!ojWWHb1Vv(
z7(RSB%&+V@X-?m{xz_Ek*YCGmzWDX}{c_LG&D}iz=hXP0q9s<cHh(@G4z{UEx|R~z
zR{d@#`|jPlL5cNcyF_>S-q*1eho$c|fU?y&aHKqiPL3DcExrEGyza62hi3Ud3=F-U
z9a$XdwG2nTRQ~(<d}6Ak-+a5d)&IY|yu730<D;Iwt{LJzZoghWcenpF@$Z?H!OQt-
zzF%1xykw(t#}uLW)%SmY;NJg%d&j?DuNgIZj}-PiKHmS_?)7(Pas4=(1)Coq?^o_i
zzI0LW;l|@~hkt&4elc(R#!Z`=K<V+v%=tehZGOF2yhJ`p<=xKbay6f4-#>DF|G%%y
z^^5B|BwA<Z?~|PW@5}O!lcw)sIdAis$L`NV{>Rs%^N*JA`z$LZEI1WZ#PB5ReBV9g
z(}8Lh!;ZvXFPE!cx^eNzIqUaFw(t9@Tl4dDyxgzIOM(wSUz)y81e9sk#q4Z4U-Qhk
z;`i<Qee7}-2@jro+P9qVum6+0=lkCGM{B>|ZBN^5`RTidd&~LP@&BuS|7w%YJMi=K
z^N)+f_j1htb!B<MY2ED%3k(GV^`1PcW3jCKq|&5du_5dGo6YCtA{bRV;(VT6I{c*=
zHj}vT_nqSN6OZ*tfC{6J>;L~+|KpJOzJ}~|JCE%Hl^Z3yV{>wHp4i=Ay*O@eZcdJZ
zr_iN~f{J~~f1ddNQ;GZ775?De?)S%f&F^*C|9fn&_E$jp<A=lik8h^WKME>S4R{3G
z6hTG6pOf?da2_%^^78U>Pxm7?KxH1t>5u#E{gRay31u|Zv2;F`Fuz+O{BHmMe|LU=
zzh7^kxA*HcNm)@t{h0E*r544{eEjV1=85y$d}z3O{^#fC8+Y#PTwnV(`<rq6-&f%q
zckc9*vR3lYEPOt<{L$w5e|7%7-v5vLdTe>@yZ0b-7ipY&`QqjB`Ny{J|NC}M-@d<Z
z^B=!lK7ZT%o$vSk1})3D>}&4(+@&K*ajDDl%ZebM%(}jZt>5;Wgk0^Hz~BG1<34ij
zd7GQRdA+CmksT#gvNi9k?;pOoIX%<ICFHP<(PhES&*xRYn;0l^a{tfS`zPN2`>y<H
zZ24W)>C>k_1ywHReqHF0+OT)8u6*Sa!Jj9T`#l&wJ(mB!qvpv(_b2^zUz9bMPLcon
z!u{#5U%URiNw?RQuYP0rbK3SjuJdfG!}4--Z{~s~`6lbv|2+M)ncq%BzUG5t<zZg)
z6SwpC*M=>3@tJx5=iK`fU%!6+sXPA9qMBbXm%sgAU0wan_<hZD>!+sIW0dXx|2%&>
zzwYzwPgmF1ZQb+nm~`r_WkFt=mrbT#kFVcbb2d9pdH>I|`KQj;|NH!DR`$Ay<@YL|
zukq`ip(Ov~0Q-~a`@X3DJS_h&pzd|_{Yju1D-Fx%pZ5KJH#ulhUB}4}n|FA7S}C=C
z{`Y-<eBH<H_$l^34)Q;7=C@VJ-~YF4=dN8@$IqCkDV=Ild*MFA{_kb`sroe!xl?71
ze@d_amY(}lxe1g26&PiH{C}HYzk5p1RMDRo+U-=%&#_dN?rr<CH2#<B&l}18Pq!7m
zyrlYb+xES_>(;G1b@gf}n4OoCbLK%#N8|;6dxj_X|Gm9`>-?Md?@wF5-xEB~qR?qu
zly2qkx7$yv&#O?{J{J_$pLp{tnsc^BeLB)9{OO$a`zdeBs!ydmpJ}@P=j{D0=U1#=
zzb|UvGt>1OCl_ma+8;^z;&;K*{fI%`-|O|UpjdIc_&@)CU#0?E5(9^ptB1^*$8{BR
zwE7<`%`v<@t08>a`^fCG_o~lX?%z4LqkeZ<+P<B4nHd-u^zC0TFfa%xTwr8iP;gkl
z%)sE#;K0tn(7@2h$H2hA$Rx|az`(>}#lXP8!coG&z`!9es$qnLQU$}5|Gv|`3TKrv
QFfcH9y85}Sb4q9e0NgV>k^lez

literal 0
HcmV?d00001

-- 
GitLab