From 4fd56d5e9ffd61089dd67c36c2f7923777c498de Mon Sep 17 00:00:00 2001 From: DejasDejas <julien.dejasmin@outlook.fr> Date: Thu, 25 Jun 2020 10:41:31 +0200 Subject: [PATCH] update last 2 --- OAR.2068271.stderr | 3 - OAR.2068271.stdout | 68 - OAR.2068272.stderr | 3 - OAR.2068272.stdout | 174 - OAR.2068273.stderr | 3 - OAR.2068273.stdout | 60 - OAR.2068274.stderr | 3 - OAR.2068274.stdout | 102 - OAR.2068275.stderr | 3 - OAR.2068275.stdout | 92 - OAR.2068276.stderr | 3 - OAR.2068276.stdout | 102 - OAR.2068277.stderr | 3 - OAR.2068277.stdout | 100 - OAR.2068278.stderr | 3 - OAR.2068278.stdout | 90 - OAR.2068279.stderr | 3 - OAR.2068279.stdout | 111 - OAR.2068280.stderr | 3 - OAR.2068280.stdout | 174 - OAR.2068281.stderr | 3 - OAR.2068281.stdout | 90 - OAR.2068282.stderr | 3 - OAR.2068282.stdout | 105 - OAR.2068284.stderr | 3 - OAR.2068284.stdout | 1347 --- OAR.2068285.stderr | 3 - OAR.2068285.stdout | 3089 ------- OAR.2068286.stderr | 3 - OAR.2068286.stdout | 1509 ---- OAR.2068287.stderr | 3 - OAR.2068287.stdout | 7690 ----------------- OAR.2068288.stderr | 3 - OAR.2068288.stdout | 3001 ------- OAR.2068289.stderr | 3 - OAR.2068289.stdout | 3003 ------- OAR.2068290.stderr | 3 - OAR.2068290.stdout | 2690 ------ OAR.2068291.stderr | 3 - OAR.2068291.stdout | 3168 ------- OAR.2068292.stderr | 3 - OAR.2068292.stdout | 2903 ------- OAR.2068293.stderr | 2 - OAR.2068293.stdout | 2050 ----- OAR.2068294.stderr | 2 - OAR.2068294.stdout | 2052 ----- OAR.2068295.stderr | 2 - OAR.2068295.stdout | 2193 ----- dataloader/dataloaders.py | 5 + main.py | 4 +- .../param_combinations_chairs.txt | 20 +- reconstruction_im/charis_VAE_bs_64_ls_15.png | Bin 0 -> 122818 bytes reconstruction_im/charis_VAE_bs_64_ls_20.png | Bin 0 -> 116835 bytes reconstruction_im/charis_VAE_bs_64_ls_5.png | Bin 0 -> 116789 bytes .../charis_beta_VAE_bs_64_ls_15.png | Bin 0 -> 116042 bytes .../charis_beta_VAE_bs_64_ls_20.png | Bin 0 -> 123708 bytes .../charis_beta_VAE_bs_64_ls_5.png | Bin 0 -> 119930 bytes 57 files changed, 16 insertions(+), 36045 deletions(-) delete mode 100644 OAR.2068271.stderr delete mode 100644 OAR.2068271.stdout delete mode 100644 OAR.2068272.stderr delete mode 100644 OAR.2068272.stdout delete mode 100644 OAR.2068273.stderr delete mode 100644 OAR.2068273.stdout delete mode 100644 OAR.2068274.stderr delete mode 100644 OAR.2068274.stdout delete mode 100644 OAR.2068275.stderr delete mode 100644 OAR.2068275.stdout delete mode 100644 OAR.2068276.stderr delete mode 100644 OAR.2068276.stdout delete mode 100644 OAR.2068277.stderr delete mode 100644 OAR.2068277.stdout delete mode 100644 OAR.2068278.stderr delete mode 100644 OAR.2068278.stdout delete mode 100644 OAR.2068279.stderr delete mode 100644 OAR.2068279.stdout delete mode 100644 OAR.2068280.stderr delete mode 100644 OAR.2068280.stdout delete mode 100644 OAR.2068281.stderr delete mode 100644 OAR.2068281.stdout delete mode 100644 OAR.2068282.stderr delete mode 100644 OAR.2068282.stdout delete mode 100644 OAR.2068284.stderr delete mode 100644 OAR.2068284.stdout delete mode 100644 OAR.2068285.stderr delete mode 100644 OAR.2068285.stdout delete mode 100644 OAR.2068286.stderr delete mode 100644 OAR.2068286.stdout delete mode 100644 OAR.2068287.stderr delete mode 100644 OAR.2068287.stdout delete mode 100644 OAR.2068288.stderr delete mode 100644 OAR.2068288.stdout delete mode 100644 OAR.2068289.stderr delete mode 100644 OAR.2068289.stdout delete mode 100644 OAR.2068290.stderr delete mode 100644 OAR.2068290.stdout delete mode 100644 OAR.2068291.stderr delete mode 100644 OAR.2068291.stdout delete mode 100644 OAR.2068292.stderr delete mode 100644 OAR.2068292.stdout delete mode 100644 OAR.2068293.stderr delete mode 100644 OAR.2068293.stdout delete mode 100644 OAR.2068294.stderr delete mode 100644 OAR.2068294.stdout delete mode 100644 OAR.2068295.stderr delete mode 100644 OAR.2068295.stdout create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_15.png create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_20.png create mode 100644 reconstruction_im/charis_VAE_bs_64_ls_5.png create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_15.png create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_20.png create mode 100644 reconstruction_im/charis_beta_VAE_bs_64_ls_5.png diff --git a/OAR.2068271.stderr b/OAR.2068271.stderr deleted file mode 100644 index 64fb0257ff..0000000000 --- a/OAR.2068271.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:29:57] Job 2068271 KILLED ## diff --git a/OAR.2068271.stdout b/OAR.2068271.stdout deleted file mode 100644 index e1e66006f7..0000000000 --- a/OAR.2068271.stdout +++ /dev/null @@ -1,68 +0,0 @@ -Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 171)' -0/69092 Loss: 147.665 -12800/69092 Loss: 158.181 -25600/69092 Loss: 159.590 -38400/69092 Loss: 158.551 -51200/69092 Loss: 158.112 -64000/69092 Loss: 157.238 -Training time 0:03:48.393375 -Epoch: 1 Average loss: 158.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 172) -0/69092 Loss: 159.925 -12800/69092 Loss: 158.833 -25600/69092 Loss: 159.460 -38400/69092 Loss: 157.054 -51200/69092 Loss: 157.525 -64000/69092 Loss: 158.482 -Training time 0:03:41.025229 -Epoch: 2 Average loss: 158.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 173) -0/69092 Loss: 152.283 -12800/69092 Loss: 157.230 -25600/69092 Loss: 157.103 -38400/69092 Loss: 158.817 diff --git a/OAR.2068272.stderr b/OAR.2068272.stderr deleted file mode 100644 index 234dbc3557..0000000000 --- a/OAR.2068272.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:29:57] Job 2068272 KILLED ## diff --git a/OAR.2068272.stdout b/OAR.2068272.stdout deleted file mode 100644 index 1f62614dd1..0000000000 --- a/OAR.2068272.stdout +++ /dev/null @@ -1,174 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -Tesla K80 -Tesla K80 -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 304)' -0/69092 Loss: 153.033 -3200/69092 Loss: 151.558 -6400/69092 Loss: 150.062 -9600/69092 Loss: 154.221 -12800/69092 Loss: 151.615 -16000/69092 Loss: 153.931 -19200/69092 Loss: 153.015 -22400/69092 Loss: 153.433 -25600/69092 Loss: 151.584 -28800/69092 Loss: 154.002 -32000/69092 Loss: 153.302 -35200/69092 Loss: 151.154 -38400/69092 Loss: 152.741 -41600/69092 Loss: 153.137 -44800/69092 Loss: 152.327 -48000/69092 Loss: 152.095 -51200/69092 Loss: 150.511 -54400/69092 Loss: 151.692 -57600/69092 Loss: 151.058 -60800/69092 Loss: 155.055 -64000/69092 Loss: 150.898 -67200/69092 Loss: 155.036 -Training time 0:01:58.162781 -Epoch: 1 Average loss: 152.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 305) -0/69092 Loss: 143.092 -3200/69092 Loss: 153.010 -6400/69092 Loss: 155.530 -9600/69092 Loss: 155.364 -12800/69092 Loss: 151.123 -16000/69092 Loss: 154.058 -19200/69092 Loss: 151.657 -22400/69092 Loss: 153.832 -25600/69092 Loss: 151.606 -28800/69092 Loss: 153.287 -32000/69092 Loss: 150.634 -35200/69092 Loss: 152.244 -38400/69092 Loss: 152.817 -41600/69092 Loss: 152.458 -44800/69092 Loss: 153.017 -48000/69092 Loss: 151.141 -51200/69092 Loss: 154.387 -54400/69092 Loss: 149.705 -57600/69092 Loss: 151.770 -60800/69092 Loss: 151.618 -64000/69092 Loss: 152.999 -67200/69092 Loss: 154.086 -Training time 0:01:57.931589 -Epoch: 2 Average loss: 152.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 306) -0/69092 Loss: 149.850 -3200/69092 Loss: 153.249 -6400/69092 Loss: 153.873 -9600/69092 Loss: 153.335 -12800/69092 Loss: 153.749 -16000/69092 Loss: 148.933 -19200/69092 Loss: 154.976 -22400/69092 Loss: 153.382 -25600/69092 Loss: 151.603 -28800/69092 Loss: 152.808 -32000/69092 Loss: 151.032 -35200/69092 Loss: 151.926 -38400/69092 Loss: 155.662 -41600/69092 Loss: 150.252 -44800/69092 Loss: 152.976 -48000/69092 Loss: 153.162 -51200/69092 Loss: 153.542 -54400/69092 Loss: 152.422 -57600/69092 Loss: 150.808 -60800/69092 Loss: 152.001 -64000/69092 Loss: 153.256 -67200/69092 Loss: 152.930 -Training time 0:01:57.656130 -Epoch: 3 Average loss: 152.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 307) -0/69092 Loss: 161.186 -3200/69092 Loss: 151.119 -6400/69092 Loss: 154.165 -9600/69092 Loss: 150.897 -12800/69092 Loss: 152.695 -16000/69092 Loss: 151.460 -19200/69092 Loss: 154.138 -22400/69092 Loss: 153.239 -25600/69092 Loss: 152.014 -28800/69092 Loss: 151.173 -32000/69092 Loss: 155.464 -35200/69092 Loss: 154.407 -38400/69092 Loss: 150.135 -41600/69092 Loss: 154.000 -44800/69092 Loss: 152.920 -48000/69092 Loss: 151.982 -51200/69092 Loss: 155.144 -54400/69092 Loss: 151.637 -57600/69092 Loss: 150.082 -60800/69092 Loss: 153.631 -64000/69092 Loss: 152.659 -67200/69092 Loss: 153.400 -Training time 0:01:58.079109 -Epoch: 4 Average loss: 152.67 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 308) -0/69092 Loss: 173.856 -3200/69092 Loss: 152.023 -6400/69092 Loss: 153.829 -9600/69092 Loss: 150.343 -12800/69092 Loss: 151.734 -16000/69092 Loss: 152.576 -19200/69092 Loss: 153.110 -22400/69092 Loss: 155.344 -25600/69092 Loss: 151.083 -28800/69092 Loss: 151.468 -32000/69092 Loss: 150.122 -35200/69092 Loss: 150.961 -38400/69092 Loss: 152.861 -41600/69092 Loss: 150.400 -44800/69092 Loss: 154.243 -48000/69092 Loss: 156.053 -51200/69092 Loss: 151.848 -54400/69092 Loss: 154.020 -57600/69092 Loss: 152.957 -60800/69092 Loss: 154.637 -64000/69092 Loss: 151.895 -67200/69092 Loss: 152.106 -Training time 0:01:58.719240 -Epoch: 5 Average loss: 152.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 309) -0/69092 Loss: 161.423 -3200/69092 Loss: 151.636 -6400/69092 Loss: 150.785 diff --git a/OAR.2068273.stderr b/OAR.2068273.stderr deleted file mode 100644 index 178871f770..0000000000 --- a/OAR.2068273.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:29:57] Job 2068273 KILLED ## diff --git a/OAR.2068273.stdout b/OAR.2068273.stdout deleted file mode 100644 index bfda5c064b..0000000000 --- a/OAR.2068273.stdout +++ /dev/null @@ -1,60 +0,0 @@ -Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce GTX 1080 Ti -GeForce GTX 1080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 143)' -0/69092 Loss: 116.257 -12800/69092 Loss: 116.865 -25600/69092 Loss: 115.704 -38400/69092 Loss: 116.840 -51200/69092 Loss: 116.758 -64000/69092 Loss: 116.974 -Training time 0:05:34.767176 -Epoch: 1 Average loss: 116.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 144) -0/69092 Loss: 115.425 -12800/69092 Loss: 116.366 -25600/69092 Loss: 115.519 -38400/69092 Loss: 116.832 -51200/69092 Loss: 116.514 diff --git a/OAR.2068274.stderr b/OAR.2068274.stderr deleted file mode 100644 index 50eb79e2c9..0000000000 --- a/OAR.2068274.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:29:57] Job 2068274 KILLED ## diff --git a/OAR.2068274.stdout b/OAR.2068274.stdout deleted file mode 100644 index 6b9b463ae6..0000000000 --- a/OAR.2068274.stdout +++ /dev/null @@ -1,102 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 139)' -0/69092 Loss: 110.847 -3200/69092 Loss: 115.390 -6400/69092 Loss: 112.621 -9600/69092 Loss: 112.659 -12800/69092 Loss: 114.223 -16000/69092 Loss: 112.621 -19200/69092 Loss: 115.178 -22400/69092 Loss: 113.874 -25600/69092 Loss: 113.745 -28800/69092 Loss: 114.605 -32000/69092 Loss: 113.612 -35200/69092 Loss: 114.793 -38400/69092 Loss: 116.839 -41600/69092 Loss: 114.658 -44800/69092 Loss: 114.111 -48000/69092 Loss: 112.756 -51200/69092 Loss: 114.016 -54400/69092 Loss: 114.316 -57600/69092 Loss: 112.581 -60800/69092 Loss: 112.926 -64000/69092 Loss: 112.703 -67200/69092 Loss: 112.203 -Training time 0:04:30.608806 -Epoch: 1 Average loss: 113.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 140) -0/69092 Loss: 102.792 -3200/69092 Loss: 112.805 -6400/69092 Loss: 114.190 -9600/69092 Loss: 114.078 -12800/69092 Loss: 113.312 -16000/69092 Loss: 112.534 -19200/69092 Loss: 113.381 -22400/69092 Loss: 114.327 -25600/69092 Loss: 114.343 -28800/69092 Loss: 114.635 -32000/69092 Loss: 114.228 -35200/69092 Loss: 113.063 -38400/69092 Loss: 113.853 -41600/69092 Loss: 114.526 -44800/69092 Loss: 113.829 -48000/69092 Loss: 114.176 -51200/69092 Loss: 113.607 -54400/69092 Loss: 113.869 -57600/69092 Loss: 113.135 -60800/69092 Loss: 113.620 -64000/69092 Loss: 114.794 -67200/69092 Loss: 113.848 -Training time 0:04:18.213843 -Epoch: 2 Average loss: 113.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 141) -0/69092 Loss: 123.686 -3200/69092 Loss: 115.639 -6400/69092 Loss: 113.484 -9600/69092 Loss: 112.216 -12800/69092 Loss: 112.320 -16000/69092 Loss: 115.109 diff --git a/OAR.2068275.stderr b/OAR.2068275.stderr deleted file mode 100644 index b7fe79eccf..0000000000 --- a/OAR.2068275.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:29:57] Job 2068275 KILLED ## diff --git a/OAR.2068275.stdout b/OAR.2068275.stdout deleted file mode 100644 index 437dd91e0f..0000000000 --- a/OAR.2068275.stdout +++ /dev/null @@ -1,92 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_15 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=30, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=15, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 769185 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' -0/69092 Loss: 2891.769 -3200/69092 Loss: 2825.642 -6400/69092 Loss: 1205.228 -9600/69092 Loss: 556.734 -12800/69092 Loss: 484.027 -16000/69092 Loss: 465.437 -19200/69092 Loss: 448.356 -22400/69092 Loss: 437.048 -25600/69092 Loss: 401.074 -28800/69092 Loss: 289.548 -32000/69092 Loss: 238.668 -35200/69092 Loss: 234.046 -38400/69092 Loss: 226.796 -41600/69092 Loss: 222.254 -44800/69092 Loss: 225.392 -48000/69092 Loss: 221.208 -51200/69092 Loss: 220.618 -54400/69092 Loss: 213.913 -57600/69092 Loss: 210.644 -60800/69092 Loss: 213.087 -64000/69092 Loss: 216.019 -67200/69092 Loss: 208.903 -Training time 0:04:53.937253 -Epoch: 1 Average loss: 460.47 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 1) -0/69092 Loss: 188.720 -3200/69092 Loss: 204.200 -6400/69092 Loss: 204.811 -9600/69092 Loss: 200.863 -12800/69092 Loss: 202.928 -16000/69092 Loss: 205.920 -19200/69092 Loss: 195.467 -22400/69092 Loss: 199.383 -25600/69092 Loss: 200.195 -28800/69092 Loss: 196.327 -32000/69092 Loss: 196.155 -35200/69092 Loss: 193.812 -38400/69092 Loss: 193.730 -41600/69092 Loss: 194.544 -44800/69092 Loss: 196.956 -48000/69092 Loss: 190.843 -51200/69092 Loss: 192.657 -54400/69092 Loss: 189.354 -57600/69092 Loss: 192.162 -60800/69092 Loss: 189.223 diff --git a/OAR.2068276.stderr b/OAR.2068276.stderr deleted file mode 100644 index 7819e1f177..0000000000 --- a/OAR.2068276.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:39:19] Job 2068276 KILLED ## diff --git a/OAR.2068276.stdout b/OAR.2068276.stdout deleted file mode 100644 index c4b0467592..0000000000 --- a/OAR.2068276.stdout +++ /dev/null @@ -1,102 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_20 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=40, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=20, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 773035 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' -0/69092 Loss: 3095.371 -3200/69092 Loss: 3013.162 -6400/69092 Loss: 1142.397 -9600/69092 Loss: 583.239 -12800/69092 Loss: 500.184 -16000/69092 Loss: 479.822 -19200/69092 Loss: 462.136 -22400/69092 Loss: 446.272 -25600/69092 Loss: 445.532 -28800/69092 Loss: 451.249 -32000/69092 Loss: 444.728 -35200/69092 Loss: 436.249 -38400/69092 Loss: 434.357 -41600/69092 Loss: 450.662 -44800/69092 Loss: 436.829 -48000/69092 Loss: 444.385 -51200/69092 Loss: 442.255 -54400/69092 Loss: 431.708 -57600/69092 Loss: 444.837 -60800/69092 Loss: 445.616 -64000/69092 Loss: 438.358 -67200/69092 Loss: 448.892 -Training time 0:04:22.264375 -Epoch: 1 Average loss: 608.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 1) -0/69092 Loss: 419.617 -3200/69092 Loss: 441.728 -6400/69092 Loss: 436.680 -9600/69092 Loss: 440.386 -12800/69092 Loss: 437.215 -16000/69092 Loss: 439.624 -19200/69092 Loss: 436.731 -22400/69092 Loss: 436.506 -25600/69092 Loss: 439.104 -28800/69092 Loss: 433.798 -32000/69092 Loss: 443.554 -35200/69092 Loss: 442.369 -38400/69092 Loss: 441.461 -41600/69092 Loss: 428.932 -44800/69092 Loss: 458.124 -48000/69092 Loss: 440.610 -51200/69092 Loss: 433.183 -54400/69092 Loss: 445.103 -57600/69092 Loss: 448.074 -60800/69092 Loss: 437.783 -64000/69092 Loss: 442.622 -67200/69092 Loss: 435.505 -Training time 0:04:38.790417 -Epoch: 2 Average loss: 439.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 2) -0/69092 Loss: 419.540 -3200/69092 Loss: 431.518 -6400/69092 Loss: 444.740 -9600/69092 Loss: 437.046 -12800/69092 Loss: 446.255 diff --git a/OAR.2068277.stderr b/OAR.2068277.stderr deleted file mode 100644 index be3f6a3232..0000000000 --- a/OAR.2068277.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:40:03] Job 2068277 KILLED ## diff --git a/OAR.2068277.stdout b/OAR.2068277.stdout deleted file mode 100644 index ce73d369bd..0000000000 --- a/OAR.2068277.stdout +++ /dev/null @@ -1,100 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_5 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=10, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=5, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 761485 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' -0/69092 Loss: 2840.949 -3200/69092 Loss: 2696.334 -6400/69092 Loss: 878.800 -9600/69092 Loss: 529.528 -12800/69092 Loss: 473.136 -16000/69092 Loss: 459.979 -19200/69092 Loss: 427.518 -22400/69092 Loss: 312.154 -25600/69092 Loss: 251.443 -28800/69092 Loss: 243.150 -32000/69092 Loss: 238.743 -35200/69092 Loss: 232.739 -38400/69092 Loss: 233.067 -41600/69092 Loss: 230.312 -44800/69092 Loss: 223.895 -48000/69092 Loss: 230.252 -51200/69092 Loss: 228.705 -54400/69092 Loss: 232.979 -57600/69092 Loss: 229.967 -60800/69092 Loss: 224.165 -64000/69092 Loss: 224.971 -67200/69092 Loss: 228.978 -Training time 0:04:33.155919 -Epoch: 1 Average loss: 426.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 1) -0/69092 Loss: 220.633 -3200/69092 Loss: 223.511 -6400/69092 Loss: 224.541 -9600/69092 Loss: 225.067 -12800/69092 Loss: 222.152 -16000/69092 Loss: 222.201 -19200/69092 Loss: 225.091 -22400/69092 Loss: 220.790 -25600/69092 Loss: 219.536 -28800/69092 Loss: 214.187 -32000/69092 Loss: 221.030 -35200/69092 Loss: 217.724 -38400/69092 Loss: 214.937 -41600/69092 Loss: 221.160 -44800/69092 Loss: 214.006 -48000/69092 Loss: 216.696 -51200/69092 Loss: 208.186 -54400/69092 Loss: 198.221 -57600/69092 Loss: 202.476 -60800/69092 Loss: 191.258 -64000/69092 Loss: 196.500 -67200/69092 Loss: 196.036 -Training time 0:04:43.151928 -Epoch: 2 Average loss: 213.44 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 2) -0/69092 Loss: 181.796 -3200/69092 Loss: 190.527 -6400/69092 Loss: 192.437 diff --git a/OAR.2068278.stderr b/OAR.2068278.stderr deleted file mode 100644 index c77cae3370..0000000000 --- a/OAR.2068278.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:40:04] Job 2068278 KILLED ## diff --git a/OAR.2068278.stdout b/OAR.2068278.stdout deleted file mode 100644 index b700e16e37..0000000000 --- a/OAR.2068278.stdout +++ /dev/null @@ -1,90 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_5 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=10, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=5, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 761485 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' -0/69092 Loss: 2903.199 -3200/69092 Loss: 2704.227 -6400/69092 Loss: 982.409 -9600/69092 Loss: 523.329 -12800/69092 Loss: 363.221 -16000/69092 Loss: 276.723 -19200/69092 Loss: 250.323 -22400/69092 Loss: 229.455 -25600/69092 Loss: 220.906 -28800/69092 Loss: 220.425 -32000/69092 Loss: 216.671 -35200/69092 Loss: 213.795 -38400/69092 Loss: 211.775 -41600/69092 Loss: 205.819 -44800/69092 Loss: 206.077 -48000/69092 Loss: 208.456 -51200/69092 Loss: 210.820 -54400/69092 Loss: 204.282 -57600/69092 Loss: 204.736 -60800/69092 Loss: 204.576 -64000/69092 Loss: 200.975 -67200/69092 Loss: 198.954 -Training time 0:05:45.368750 -Epoch: 1 Average loss: 390.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 1) -0/69092 Loss: 193.590 -3200/69092 Loss: 194.946 -6400/69092 Loss: 199.709 -9600/69092 Loss: 200.276 -12800/69092 Loss: 193.180 -16000/69092 Loss: 192.735 -19200/69092 Loss: 190.256 -22400/69092 Loss: 190.013 -25600/69092 Loss: 188.325 -28800/69092 Loss: 189.229 -32000/69092 Loss: 189.882 -35200/69092 Loss: 190.248 -38400/69092 Loss: 188.566 -41600/69092 Loss: 185.072 -44800/69092 Loss: 189.564 -48000/69092 Loss: 181.238 -51200/69092 Loss: 181.543 -54400/69092 Loss: 182.526 diff --git a/OAR.2068279.stderr b/OAR.2068279.stderr deleted file mode 100644 index f9f388689b..0000000000 --- a/OAR.2068279.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:40:20] Job 2068279 KILLED ## diff --git a/OAR.2068279.stdout b/OAR.2068279.stdout deleted file mode 100644 index 5bf0bda7e7..0000000000 --- a/OAR.2068279.stdout +++ /dev/null @@ -1,111 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_15 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=30, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=15, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 769185 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' -0/69092 Loss: 3015.823 -3200/69092 Loss: 2867.494 -6400/69092 Loss: 899.528 -9600/69092 Loss: 536.005 -12800/69092 Loss: 478.343 -16000/69092 Loss: 455.459 -19200/69092 Loss: 457.437 -22400/69092 Loss: 370.021 -25600/69092 Loss: 263.633 -28800/69092 Loss: 232.440 -32000/69092 Loss: 210.459 -35200/69092 Loss: 217.661 -38400/69092 Loss: 216.086 -41600/69092 Loss: 215.461 -44800/69092 Loss: 208.221 -48000/69092 Loss: 205.981 -51200/69092 Loss: 208.176 -54400/69092 Loss: 204.615 -57600/69092 Loss: 205.887 -60800/69092 Loss: 203.826 -64000/69092 Loss: 202.141 -67200/69092 Loss: 198.343 -Training time 0:03:51.208936 -Epoch: 1 Average loss: 427.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 1) -0/69092 Loss: 187.281 -3200/69092 Loss: 200.427 -6400/69092 Loss: 196.083 -9600/69092 Loss: 202.029 -12800/69092 Loss: 196.254 -16000/69092 Loss: 196.466 -19200/69092 Loss: 195.587 -22400/69092 Loss: 192.062 -25600/69092 Loss: 197.137 -28800/69092 Loss: 196.870 -32000/69092 Loss: 193.763 -35200/69092 Loss: 196.194 -38400/69092 Loss: 193.444 -41600/69092 Loss: 186.353 -44800/69092 Loss: 184.125 -48000/69092 Loss: 179.607 -51200/69092 Loss: 181.214 -54400/69092 Loss: 179.105 -57600/69092 Loss: 173.470 -60800/69092 Loss: 163.793 -64000/69092 Loss: 163.068 -67200/69092 Loss: 164.580 -Training time 0:03:46.574199 -Epoch: 2 Average loss: 186.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 2) -0/69092 Loss: 164.363 -3200/69092 Loss: 157.112 -6400/69092 Loss: 152.674 -9600/69092 Loss: 154.297 -12800/69092 Loss: 155.036 -16000/69092 Loss: 151.871 -19200/69092 Loss: 151.537 -22400/69092 Loss: 152.374 -25600/69092 Loss: 150.578 -28800/69092 Loss: 152.244 -32000/69092 Loss: 150.801 -35200/69092 Loss: 147.880 -38400/69092 Loss: 148.003 -41600/69092 Loss: 147.567 diff --git a/OAR.2068280.stderr b/OAR.2068280.stderr deleted file mode 100644 index 048a3f1856..0000000000 --- a/OAR.2068280.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:40:20] Job 2068280 KILLED ## diff --git a/OAR.2068280.stdout b/OAR.2068280.stdout deleted file mode 100644 index b2affcdd22..0000000000 --- a/OAR.2068280.stdout +++ /dev/null @@ -1,174 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_20 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -Tesla K80 -Tesla K80 -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=40, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=20, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 773035 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' -0/69092 Loss: 2881.933 -3200/69092 Loss: 2719.794 -6400/69092 Loss: 873.853 -9600/69092 Loss: 554.953 -12800/69092 Loss: 492.325 -16000/69092 Loss: 482.132 -19200/69092 Loss: 452.762 -22400/69092 Loss: 330.168 -25600/69092 Loss: 255.698 -28800/69092 Loss: 239.942 -32000/69092 Loss: 228.030 -35200/69092 Loss: 218.689 -38400/69092 Loss: 215.508 -41600/69092 Loss: 216.039 -44800/69092 Loss: 210.728 -48000/69092 Loss: 214.618 -51200/69092 Loss: 213.710 -54400/69092 Loss: 209.650 -57600/69092 Loss: 205.299 -60800/69092 Loss: 203.167 -64000/69092 Loss: 204.888 -67200/69092 Loss: 199.354 -Training time 0:01:59.952372 -Epoch: 1 Average loss: 422.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 1) -0/69092 Loss: 213.822 -3200/69092 Loss: 195.598 -6400/69092 Loss: 188.690 -9600/69092 Loss: 189.246 -12800/69092 Loss: 185.152 -16000/69092 Loss: 182.199 -19200/69092 Loss: 178.716 -22400/69092 Loss: 175.190 -25600/69092 Loss: 173.751 -28800/69092 Loss: 173.114 -32000/69092 Loss: 169.251 -35200/69092 Loss: 165.858 -38400/69092 Loss: 162.986 -41600/69092 Loss: 160.892 -44800/69092 Loss: 157.779 -48000/69092 Loss: 159.470 -51200/69092 Loss: 155.455 -54400/69092 Loss: 153.642 -57600/69092 Loss: 152.026 -60800/69092 Loss: 154.318 -64000/69092 Loss: 149.577 -67200/69092 Loss: 149.924 -Training time 0:01:58.317271 -Epoch: 2 Average loss: 167.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 2) -0/69092 Loss: 165.835 -3200/69092 Loss: 147.308 -6400/69092 Loss: 149.297 -9600/69092 Loss: 142.005 -12800/69092 Loss: 146.004 -16000/69092 Loss: 143.574 -19200/69092 Loss: 144.306 -22400/69092 Loss: 142.412 -25600/69092 Loss: 141.625 -28800/69092 Loss: 141.184 -32000/69092 Loss: 140.178 -35200/69092 Loss: 142.290 -38400/69092 Loss: 140.434 -41600/69092 Loss: 138.432 -44800/69092 Loss: 141.047 -48000/69092 Loss: 138.527 -51200/69092 Loss: 140.962 -54400/69092 Loss: 137.973 -57600/69092 Loss: 137.226 -60800/69092 Loss: 136.121 -64000/69092 Loss: 138.238 -67200/69092 Loss: 138.245 -Training time 0:01:59.670387 -Epoch: 3 Average loss: 141.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 3) -0/69092 Loss: 142.078 -3200/69092 Loss: 136.431 -6400/69092 Loss: 135.250 -9600/69092 Loss: 136.257 -12800/69092 Loss: 135.379 -16000/69092 Loss: 135.078 -19200/69092 Loss: 134.206 -22400/69092 Loss: 135.185 -25600/69092 Loss: 132.867 -28800/69092 Loss: 137.278 -32000/69092 Loss: 134.216 -35200/69092 Loss: 134.020 -38400/69092 Loss: 130.385 -41600/69092 Loss: 135.043 -44800/69092 Loss: 133.981 -48000/69092 Loss: 132.545 -51200/69092 Loss: 135.545 -54400/69092 Loss: 134.631 -57600/69092 Loss: 131.294 -60800/69092 Loss: 132.418 -64000/69092 Loss: 131.634 -67200/69092 Loss: 133.258 -Training time 0:01:58.240577 -Epoch: 4 Average loss: 134.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 4) -0/69092 Loss: 142.708 -3200/69092 Loss: 132.561 -6400/69092 Loss: 130.874 -9600/69092 Loss: 131.468 -12800/69092 Loss: 131.411 -16000/69092 Loss: 131.824 -19200/69092 Loss: 131.005 -22400/69092 Loss: 132.192 -25600/69092 Loss: 132.671 -28800/69092 Loss: 131.997 -32000/69092 Loss: 128.867 -35200/69092 Loss: 130.574 -38400/69092 Loss: 132.202 -41600/69092 Loss: 129.819 -44800/69092 Loss: 131.265 -48000/69092 Loss: 129.098 -51200/69092 Loss: 130.616 -54400/69092 Loss: 130.498 -57600/69092 Loss: 126.580 -60800/69092 Loss: 130.212 -64000/69092 Loss: 132.173 -67200/69092 Loss: 129.980 -Training time 0:01:58.078942 -Epoch: 5 Average loss: 130.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 5) -0/69092 Loss: 124.281 -3200/69092 Loss: 128.822 diff --git a/OAR.2068281.stderr b/OAR.2068281.stderr deleted file mode 100644 index ed1a13f56d..0000000000 --- a/OAR.2068281.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:40:20] Job 2068281 KILLED ## diff --git a/OAR.2068281.stdout b/OAR.2068281.stdout deleted file mode 100644 index 88b79673c8..0000000000 --- a/OAR.2068281.stdout +++ /dev/null @@ -1,90 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0005, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_5e_4 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce GTX 1080 Ti -GeForce GTX 1080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' -0/69092 Loss: 2961.939 -3200/69092 Loss: 1584.693 -6400/69092 Loss: 429.344 -9600/69092 Loss: 254.546 -12800/69092 Loss: 231.380 -16000/69092 Loss: 223.665 -19200/69092 Loss: 223.704 -22400/69092 Loss: 222.083 -25600/69092 Loss: 204.693 -28800/69092 Loss: 191.011 -32000/69092 Loss: 182.565 -35200/69092 Loss: 181.646 -38400/69092 Loss: 177.863 -41600/69092 Loss: 177.561 -44800/69092 Loss: 177.871 -48000/69092 Loss: 177.182 -51200/69092 Loss: 175.946 -54400/69092 Loss: 173.444 -57600/69092 Loss: 169.927 -60800/69092 Loss: 172.724 -64000/69092 Loss: 167.277 -67200/69092 Loss: 167.102 -Training time 0:05:38.196312 -Epoch: 1 Average loss: 269.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 1) -0/69092 Loss: 163.101 -3200/69092 Loss: 165.132 -6400/69092 Loss: 164.033 -9600/69092 Loss: 164.653 -12800/69092 Loss: 165.870 -16000/69092 Loss: 162.765 -19200/69092 Loss: 159.483 -22400/69092 Loss: 160.846 -25600/69092 Loss: 150.316 -28800/69092 Loss: 153.128 -32000/69092 Loss: 151.751 -35200/69092 Loss: 149.352 -38400/69092 Loss: 153.455 -41600/69092 Loss: 151.018 -44800/69092 Loss: 146.968 -48000/69092 Loss: 149.090 -51200/69092 Loss: 146.556 -54400/69092 Loss: 146.958 diff --git a/OAR.2068282.stderr b/OAR.2068282.stderr deleted file mode 100644 index 36785ebedb..0000000000 --- a/OAR.2068282.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-24 16:43:44] Job 2068282 KILLED ## diff --git a/OAR.2068282.stdout b/OAR.2068282.stdout deleted file mode 100644 index 7edde933fe..0000000000 --- a/OAR.2068282.stdout +++ /dev/null @@ -1,105 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_1e_3', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_1e_3 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce GTX 1080 Ti -GeForce GTX 1080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' -0/69092 Loss: 2701.321 -3200/69092 Loss: 815.006 -6400/69092 Loss: 448.151 -9600/69092 Loss: 444.065 -12800/69092 Loss: 443.395 -16000/69092 Loss: 429.927 -19200/69092 Loss: 437.021 -22400/69092 Loss: 446.268 -25600/69092 Loss: 442.520 -28800/69092 Loss: 452.733 -32000/69092 Loss: 441.294 -35200/69092 Loss: 440.683 -38400/69092 Loss: 451.406 -41600/69092 Loss: 443.954 -44800/69092 Loss: 444.240 -48000/69092 Loss: 425.311 -51200/69092 Loss: 436.951 -54400/69092 Loss: 441.969 -57600/69092 Loss: 439.883 -60800/69092 Loss: 432.937 -64000/69092 Loss: 430.354 -67200/69092 Loss: 438.986 -Training time 0:04:22.675834 -Epoch: 1 Average loss: 460.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 1) -0/69092 Loss: 477.468 -3200/69092 Loss: 444.829 -6400/69092 Loss: 439.752 -9600/69092 Loss: 448.288 -12800/69092 Loss: 433.830 -16000/69092 Loss: 441.858 -19200/69092 Loss: 441.838 -22400/69092 Loss: 440.030 -25600/69092 Loss: 441.060 -28800/69092 Loss: 443.189 -32000/69092 Loss: 444.328 -35200/69092 Loss: 444.173 -38400/69092 Loss: 425.570 -41600/69092 Loss: 442.802 -44800/69092 Loss: 443.597 -48000/69092 Loss: 435.120 -51200/69092 Loss: 447.508 -54400/69092 Loss: 446.497 -57600/69092 Loss: 438.670 -60800/69092 Loss: 433.847 -64000/69092 Loss: 438.785 -67200/69092 Loss: 439.632 -Training time 0:04:12.735653 -Epoch: 2 Average loss: 440.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 2) -0/69092 Loss: 393.189 -3200/69092 Loss: 435.335 -6400/69092 Loss: 442.619 -9600/69092 Loss: 437.330 -12800/69092 Loss: 445.204 -16000/69092 Loss: 446.610 -19200/69092 Loss: 443.931 -22400/69092 Loss: 444.131 diff --git a/OAR.2068284.stderr b/OAR.2068284.stderr deleted file mode 100644 index 8761745c12..0000000000 --- a/OAR.2068284.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068284 KILLED ## diff --git a/OAR.2068284.stdout b/OAR.2068284.stdout deleted file mode 100644 index 4d17472346..0000000000 --- a/OAR.2068284.stdout +++ /dev/null @@ -1,1347 +0,0 @@ -Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce GTX 1080 Ti -GeForce GTX 1080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 173)' -0/69092 Loss: 155.952 -12800/69092 Loss: 159.121 -25600/69092 Loss: 160.204 -38400/69092 Loss: 157.853 -51200/69092 Loss: 158.496 -64000/69092 Loss: 155.627 -Training time 0:04:07.256582 -Epoch: 1 Average loss: 158.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 174) -0/69092 Loss: 156.559 -12800/69092 Loss: 157.571 -25600/69092 Loss: 157.691 -38400/69092 Loss: 158.235 -51200/69092 Loss: 158.045 -64000/69092 Loss: 157.110 -Training time 0:04:09.060156 -Epoch: 2 Average loss: 157.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 175) -0/69092 Loss: 169.037 -12800/69092 Loss: 159.161 -25600/69092 Loss: 158.117 -38400/69092 Loss: 157.120 -51200/69092 Loss: 158.061 -64000/69092 Loss: 158.438 -Training time 0:04:11.693603 -Epoch: 3 Average loss: 158.06 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 176) -0/69092 Loss: 173.992 -12800/69092 Loss: 157.694 -25600/69092 Loss: 158.061 -38400/69092 Loss: 158.073 -51200/69092 Loss: 157.170 -64000/69092 Loss: 158.600 -Training time 0:04:08.950306 -Epoch: 4 Average loss: 158.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 177) -0/69092 Loss: 152.509 -12800/69092 Loss: 157.509 -25600/69092 Loss: 157.259 -38400/69092 Loss: 157.133 -51200/69092 Loss: 158.958 -64000/69092 Loss: 157.564 -Training time 0:04:04.422023 -Epoch: 5 Average loss: 157.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 178) -0/69092 Loss: 159.325 -12800/69092 Loss: 157.663 -25600/69092 Loss: 158.119 -38400/69092 Loss: 157.028 -51200/69092 Loss: 157.416 -64000/69092 Loss: 158.792 -Training time 0:04:05.803442 -Epoch: 6 Average loss: 157.93 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 179) -0/69092 Loss: 170.144 -12800/69092 Loss: 158.356 -25600/69092 Loss: 158.823 -38400/69092 Loss: 158.388 -51200/69092 Loss: 157.626 -64000/69092 Loss: 157.173 -Training time 0:04:07.837678 -Epoch: 7 Average loss: 158.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 180) -0/69092 Loss: 155.297 -12800/69092 Loss: 158.118 -25600/69092 Loss: 158.781 -38400/69092 Loss: 156.992 -51200/69092 Loss: 157.078 -64000/69092 Loss: 157.590 -Training time 0:04:10.990231 -Epoch: 8 Average loss: 157.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 181) -0/69092 Loss: 151.523 -12800/69092 Loss: 158.502 -25600/69092 Loss: 156.810 -38400/69092 Loss: 158.807 -51200/69092 Loss: 157.819 -64000/69092 Loss: 157.962 -Training time 0:04:08.934011 -Epoch: 9 Average loss: 158.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 182) -0/69092 Loss: 158.328 -12800/69092 Loss: 156.602 -25600/69092 Loss: 157.674 -38400/69092 Loss: 158.318 -51200/69092 Loss: 158.263 -64000/69092 Loss: 156.871 -Training time 0:04:07.837835 -Epoch: 10 Average loss: 157.67 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 183) -0/69092 Loss: 168.085 -12800/69092 Loss: 157.082 -25600/69092 Loss: 157.931 -38400/69092 Loss: 157.634 -51200/69092 Loss: 158.448 -64000/69092 Loss: 156.862 -Training time 0:04:04.238534 -Epoch: 11 Average loss: 157.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 184) -0/69092 Loss: 152.943 -12800/69092 Loss: 157.047 -25600/69092 Loss: 159.241 -38400/69092 Loss: 156.479 -51200/69092 Loss: 157.264 -64000/69092 Loss: 157.732 -Training time 0:04:06.931607 -Epoch: 12 Average loss: 157.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 185) -0/69092 Loss: 149.970 -12800/69092 Loss: 158.554 -25600/69092 Loss: 157.538 -38400/69092 Loss: 156.891 -51200/69092 Loss: 158.801 -64000/69092 Loss: 157.180 -Training time 0:04:06.729115 -Epoch: 13 Average loss: 157.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 186) -0/69092 Loss: 168.819 -12800/69092 Loss: 157.445 -25600/69092 Loss: 158.959 -38400/69092 Loss: 157.423 -51200/69092 Loss: 158.772 -64000/69092 Loss: 155.783 -Training time 0:04:07.010972 -Epoch: 14 Average loss: 157.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 187) -0/69092 Loss: 160.036 -12800/69092 Loss: 159.004 -25600/69092 Loss: 157.329 -38400/69092 Loss: 157.758 -51200/69092 Loss: 156.844 -64000/69092 Loss: 157.920 -Training time 0:04:08.909317 -Epoch: 15 Average loss: 157.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 188) -0/69092 Loss: 149.585 -12800/69092 Loss: 157.099 -25600/69092 Loss: 157.843 -38400/69092 Loss: 156.822 -51200/69092 Loss: 156.968 -64000/69092 Loss: 158.730 -Training time 0:04:07.691350 -Epoch: 16 Average loss: 157.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 189) -0/69092 Loss: 167.834 -12800/69092 Loss: 158.222 -25600/69092 Loss: 158.600 -38400/69092 Loss: 157.595 -51200/69092 Loss: 157.795 -64000/69092 Loss: 157.077 -Training time 0:04:07.152289 -Epoch: 17 Average loss: 157.83 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 190) -0/69092 Loss: 157.181 -12800/69092 Loss: 157.831 -25600/69092 Loss: 158.101 -38400/69092 Loss: 158.576 -51200/69092 Loss: 157.180 -64000/69092 Loss: 158.019 -Training time 0:04:08.809209 -Epoch: 18 Average loss: 157.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 191) -0/69092 Loss: 153.267 -12800/69092 Loss: 158.127 -25600/69092 Loss: 157.503 -38400/69092 Loss: 157.463 -51200/69092 Loss: 158.788 -64000/69092 Loss: 157.668 -Training time 0:04:11.227325 -Epoch: 19 Average loss: 157.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 192) -0/69092 Loss: 161.668 -12800/69092 Loss: 157.593 -25600/69092 Loss: 157.789 -38400/69092 Loss: 157.822 -51200/69092 Loss: 157.680 -64000/69092 Loss: 158.281 -Training time 0:04:09.122571 -Epoch: 20 Average loss: 157.93 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 193) -0/69092 Loss: 150.352 -12800/69092 Loss: 157.402 -25600/69092 Loss: 157.315 -38400/69092 Loss: 158.616 -51200/69092 Loss: 156.236 -64000/69092 Loss: 158.431 -Training time 0:04:11.388727 -Epoch: 21 Average loss: 157.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 194) -0/69092 Loss: 156.163 -12800/69092 Loss: 157.171 -25600/69092 Loss: 156.466 -38400/69092 Loss: 158.786 -51200/69092 Loss: 158.157 -64000/69092 Loss: 157.648 -Training time 0:04:05.055387 -Epoch: 22 Average loss: 157.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 195) -0/69092 Loss: 147.419 -12800/69092 Loss: 157.830 -25600/69092 Loss: 157.611 -38400/69092 Loss: 157.757 -51200/69092 Loss: 158.056 -64000/69092 Loss: 157.455 -Training time 0:04:05.411815 -Epoch: 23 Average loss: 157.72 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 196) -0/69092 Loss: 171.791 -12800/69092 Loss: 156.112 -25600/69092 Loss: 157.859 -38400/69092 Loss: 158.415 -51200/69092 Loss: 158.944 -64000/69092 Loss: 156.379 -Training time 0:04:08.043169 -Epoch: 24 Average loss: 157.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 197) -0/69092 Loss: 160.278 -12800/69092 Loss: 157.984 -25600/69092 Loss: 158.727 -38400/69092 Loss: 158.111 -51200/69092 Loss: 157.447 -64000/69092 Loss: 156.952 -Training time 0:04:12.129530 -Epoch: 25 Average loss: 157.79 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 198) -0/69092 Loss: 152.806 -12800/69092 Loss: 156.814 -25600/69092 Loss: 158.617 -38400/69092 Loss: 158.246 -51200/69092 Loss: 156.832 -64000/69092 Loss: 156.933 -Training time 0:04:08.390553 -Epoch: 26 Average loss: 157.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 199) -0/69092 Loss: 156.767 -12800/69092 Loss: 157.931 -25600/69092 Loss: 157.088 -38400/69092 Loss: 157.270 -51200/69092 Loss: 158.061 -64000/69092 Loss: 158.765 -Training time 0:04:08.695474 -Epoch: 27 Average loss: 157.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 200) -0/69092 Loss: 156.520 -12800/69092 Loss: 157.872 -25600/69092 Loss: 159.027 -38400/69092 Loss: 158.514 -51200/69092 Loss: 157.492 -64000/69092 Loss: 156.484 -Training time 0:04:05.689479 -Epoch: 28 Average loss: 157.95 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 201) -0/69092 Loss: 150.646 -12800/69092 Loss: 158.405 -25600/69092 Loss: 158.932 -38400/69092 Loss: 156.635 -51200/69092 Loss: 157.135 -64000/69092 Loss: 157.422 -Training time 0:04:06.258930 -Epoch: 29 Average loss: 157.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 202) -0/69092 Loss: 165.311 -12800/69092 Loss: 157.452 -25600/69092 Loss: 157.317 -38400/69092 Loss: 156.785 -51200/69092 Loss: 158.505 -64000/69092 Loss: 158.541 -Training time 0:04:09.311575 -Epoch: 30 Average loss: 157.68 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 203) -0/69092 Loss: 152.277 -12800/69092 Loss: 156.063 -25600/69092 Loss: 157.964 -38400/69092 Loss: 158.164 -51200/69092 Loss: 157.314 -64000/69092 Loss: 158.910 -Training time 0:04:08.771677 -Epoch: 31 Average loss: 157.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 204) -0/69092 Loss: 164.293 -12800/69092 Loss: 157.703 -25600/69092 Loss: 158.666 -38400/69092 Loss: 157.075 -51200/69092 Loss: 157.553 -64000/69092 Loss: 158.131 -Training time 0:04:11.246236 -Epoch: 32 Average loss: 157.63 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 205) -0/69092 Loss: 154.875 -12800/69092 Loss: 158.356 -25600/69092 Loss: 158.025 -38400/69092 Loss: 156.657 -51200/69092 Loss: 158.189 -64000/69092 Loss: 157.547 -Training time 0:04:09.750177 -Epoch: 33 Average loss: 157.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 206) -0/69092 Loss: 153.610 -12800/69092 Loss: 158.994 -25600/69092 Loss: 158.683 -38400/69092 Loss: 158.389 -51200/69092 Loss: 157.156 -64000/69092 Loss: 155.605 -Training time 0:04:04.536860 -Epoch: 34 Average loss: 157.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 207) -0/69092 Loss: 160.609 -12800/69092 Loss: 158.284 -25600/69092 Loss: 157.730 -38400/69092 Loss: 157.647 -51200/69092 Loss: 157.609 -64000/69092 Loss: 156.316 -Training time 0:04:07.207110 -Epoch: 35 Average loss: 157.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 208) -0/69092 Loss: 157.581 -12800/69092 Loss: 157.032 -25600/69092 Loss: 157.428 -38400/69092 Loss: 158.491 -51200/69092 Loss: 157.662 -64000/69092 Loss: 157.269 -Training time 0:04:07.801669 -Epoch: 36 Average loss: 157.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 209) -0/69092 Loss: 159.224 -12800/69092 Loss: 158.065 -25600/69092 Loss: 157.590 -38400/69092 Loss: 156.078 -51200/69092 Loss: 158.977 -64000/69092 Loss: 158.306 -Training time 0:04:09.360865 -Epoch: 37 Average loss: 157.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 210) -0/69092 Loss: 165.091 -12800/69092 Loss: 158.108 -25600/69092 Loss: 157.228 -38400/69092 Loss: 157.449 -51200/69092 Loss: 156.462 -64000/69092 Loss: 157.308 -Training time 0:04:08.158248 -Epoch: 38 Average loss: 157.41 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 211) -0/69092 Loss: 157.792 -12800/69092 Loss: 157.611 -25600/69092 Loss: 158.170 -38400/69092 Loss: 158.744 -51200/69092 Loss: 157.334 -64000/69092 Loss: 156.975 -Training time 0:04:07.028698 -Epoch: 39 Average loss: 157.68 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 212) -0/69092 Loss: 170.346 -12800/69092 Loss: 156.963 -25600/69092 Loss: 157.363 -38400/69092 Loss: 156.976 -51200/69092 Loss: 156.863 -64000/69092 Loss: 158.115 -Training time 0:04:06.447876 -Epoch: 40 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 213) -0/69092 Loss: 153.107 -12800/69092 Loss: 157.775 -25600/69092 Loss: 156.232 -38400/69092 Loss: 158.089 -51200/69092 Loss: 156.741 -64000/69092 Loss: 158.053 -Training time 0:04:07.363092 -Epoch: 41 Average loss: 157.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 214) -0/69092 Loss: 158.205 -12800/69092 Loss: 157.932 -25600/69092 Loss: 157.873 -38400/69092 Loss: 157.378 -51200/69092 Loss: 157.124 -64000/69092 Loss: 156.899 -Training time 0:04:08.284864 -Epoch: 42 Average loss: 157.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 215) -0/69092 Loss: 159.169 -12800/69092 Loss: 156.975 -25600/69092 Loss: 156.550 -38400/69092 Loss: 157.878 -51200/69092 Loss: 157.209 -64000/69092 Loss: 157.833 -Training time 0:04:08.949711 -Epoch: 43 Average loss: 157.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 216) -0/69092 Loss: 152.923 -12800/69092 Loss: 156.564 -25600/69092 Loss: 157.336 -38400/69092 Loss: 157.758 -51200/69092 Loss: 158.955 -64000/69092 Loss: 157.532 -Training time 0:04:09.563251 -Epoch: 44 Average loss: 157.46 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 217) -0/69092 Loss: 159.523 -12800/69092 Loss: 157.357 -25600/69092 Loss: 157.871 -38400/69092 Loss: 158.002 -51200/69092 Loss: 156.907 -64000/69092 Loss: 156.788 -Training time 0:04:07.358115 -Epoch: 45 Average loss: 157.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 218) -0/69092 Loss: 166.447 -12800/69092 Loss: 156.163 -25600/69092 Loss: 158.640 -38400/69092 Loss: 157.564 -51200/69092 Loss: 155.737 -64000/69092 Loss: 158.560 -Training time 0:04:04.926735 -Epoch: 46 Average loss: 157.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 219) -0/69092 Loss: 157.227 -12800/69092 Loss: 157.724 -25600/69092 Loss: 157.674 -38400/69092 Loss: 158.769 -51200/69092 Loss: 156.429 -64000/69092 Loss: 157.198 -Training time 0:04:09.950528 -Epoch: 47 Average loss: 157.59 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 220) -0/69092 Loss: 165.830 -12800/69092 Loss: 156.446 -25600/69092 Loss: 157.076 -38400/69092 Loss: 158.443 -51200/69092 Loss: 157.780 -64000/69092 Loss: 158.231 -Training time 0:04:10.794276 -Epoch: 48 Average loss: 157.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 221) -0/69092 Loss: 161.042 -12800/69092 Loss: 156.000 -25600/69092 Loss: 157.124 -38400/69092 Loss: 157.936 -51200/69092 Loss: 158.877 -64000/69092 Loss: 157.673 -Training time 0:04:11.640587 -Epoch: 49 Average loss: 157.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 222) -0/69092 Loss: 157.060 -12800/69092 Loss: 157.399 -25600/69092 Loss: 157.788 -38400/69092 Loss: 156.679 -51200/69092 Loss: 158.832 -64000/69092 Loss: 156.170 -Training time 0:04:10.365157 -Epoch: 50 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 223) -0/69092 Loss: 161.609 -12800/69092 Loss: 158.738 -25600/69092 Loss: 158.430 -38400/69092 Loss: 156.129 -51200/69092 Loss: 156.666 -64000/69092 Loss: 157.170 -Training time 0:04:09.316831 -Epoch: 51 Average loss: 157.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 224) -0/69092 Loss: 153.683 -12800/69092 Loss: 157.725 -25600/69092 Loss: 156.806 -38400/69092 Loss: 157.850 -51200/69092 Loss: 158.526 -64000/69092 Loss: 156.939 -Training time 0:04:05.028103 -Epoch: 52 Average loss: 157.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 225) -0/69092 Loss: 158.885 -12800/69092 Loss: 157.245 -25600/69092 Loss: 158.704 -38400/69092 Loss: 157.207 -51200/69092 Loss: 156.306 -64000/69092 Loss: 157.821 -Training time 0:04:10.674155 -Epoch: 53 Average loss: 157.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 226) -0/69092 Loss: 155.339 -12800/69092 Loss: 158.253 -25600/69092 Loss: 158.159 -38400/69092 Loss: 155.812 -51200/69092 Loss: 156.602 -64000/69092 Loss: 157.555 -Training time 0:04:12.632021 -Epoch: 54 Average loss: 157.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 227) -0/69092 Loss: 155.890 -12800/69092 Loss: 156.798 -25600/69092 Loss: 158.212 -38400/69092 Loss: 157.738 -51200/69092 Loss: 157.282 -64000/69092 Loss: 157.701 -Training time 0:04:11.221483 -Epoch: 55 Average loss: 157.68 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 228) -0/69092 Loss: 161.760 -12800/69092 Loss: 158.265 -25600/69092 Loss: 157.248 -38400/69092 Loss: 156.036 -51200/69092 Loss: 158.352 -64000/69092 Loss: 156.961 -Training time 0:04:12.344839 -Epoch: 56 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 229) -0/69092 Loss: 156.050 -12800/69092 Loss: 158.169 -25600/69092 Loss: 157.276 -38400/69092 Loss: 158.034 -51200/69092 Loss: 157.169 -64000/69092 Loss: 157.876 -Training time 0:04:06.652882 -Epoch: 57 Average loss: 157.70 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 230) -0/69092 Loss: 155.364 -12800/69092 Loss: 157.337 -25600/69092 Loss: 156.698 -38400/69092 Loss: 158.144 -51200/69092 Loss: 157.125 -64000/69092 Loss: 158.089 -Training time 0:04:05.451386 -Epoch: 58 Average loss: 157.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 231) -0/69092 Loss: 155.917 -12800/69092 Loss: 157.703 -25600/69092 Loss: 155.820 -38400/69092 Loss: 158.629 -51200/69092 Loss: 157.808 -64000/69092 Loss: 157.381 -Training time 0:04:10.231175 -Epoch: 59 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 232) -0/69092 Loss: 154.034 -12800/69092 Loss: 156.802 -25600/69092 Loss: 157.941 -38400/69092 Loss: 158.557 -51200/69092 Loss: 156.309 -64000/69092 Loss: 157.781 -Training time 0:04:09.659678 -Epoch: 60 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 233) -0/69092 Loss: 152.551 -12800/69092 Loss: 156.890 -25600/69092 Loss: 158.074 -38400/69092 Loss: 157.366 -51200/69092 Loss: 158.784 -64000/69092 Loss: 156.646 -Training time 0:04:12.622080 -Epoch: 61 Average loss: 157.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 234) -0/69092 Loss: 159.347 -12800/69092 Loss: 157.794 -25600/69092 Loss: 157.253 -38400/69092 Loss: 157.027 -51200/69092 Loss: 156.760 -64000/69092 Loss: 157.832 -Training time 0:04:09.804689 -Epoch: 62 Average loss: 157.52 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 235) -0/69092 Loss: 161.108 -12800/69092 Loss: 156.700 -25600/69092 Loss: 158.598 -38400/69092 Loss: 156.907 -51200/69092 Loss: 156.723 -64000/69092 Loss: 156.703 -Training time 0:04:06.690097 -Epoch: 63 Average loss: 157.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 236) -0/69092 Loss: 151.689 -12800/69092 Loss: 159.341 -25600/69092 Loss: 156.846 -38400/69092 Loss: 157.478 -51200/69092 Loss: 158.575 -64000/69092 Loss: 156.002 -Training time 0:04:07.036244 -Epoch: 64 Average loss: 157.57 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 237) -0/69092 Loss: 160.479 -12800/69092 Loss: 156.621 -25600/69092 Loss: 157.561 -38400/69092 Loss: 156.412 -51200/69092 Loss: 159.183 -64000/69092 Loss: 158.383 -Training time 0:04:12.176953 -Epoch: 65 Average loss: 157.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 238) -0/69092 Loss: 168.077 -12800/69092 Loss: 156.993 -25600/69092 Loss: 158.328 -38400/69092 Loss: 156.861 -51200/69092 Loss: 157.901 -64000/69092 Loss: 157.954 -Training time 0:04:10.374660 -Epoch: 66 Average loss: 157.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 239) -0/69092 Loss: 147.819 -12800/69092 Loss: 158.114 -25600/69092 Loss: 156.945 -38400/69092 Loss: 157.846 -51200/69092 Loss: 156.692 -64000/69092 Loss: 157.591 -Training time 0:04:09.441636 -Epoch: 67 Average loss: 157.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 240) -0/69092 Loss: 158.824 -12800/69092 Loss: 156.585 -25600/69092 Loss: 157.306 -38400/69092 Loss: 158.213 -51200/69092 Loss: 157.915 -64000/69092 Loss: 157.248 -Training time 0:04:08.608228 -Epoch: 68 Average loss: 157.43 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 241) -0/69092 Loss: 159.264 -12800/69092 Loss: 157.138 -25600/69092 Loss: 158.863 -38400/69092 Loss: 158.558 -51200/69092 Loss: 156.178 -64000/69092 Loss: 157.639 -Training time 0:04:03.071162 -Epoch: 69 Average loss: 157.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 242) -0/69092 Loss: 152.968 -12800/69092 Loss: 156.544 -25600/69092 Loss: 156.787 -38400/69092 Loss: 158.234 -51200/69092 Loss: 156.915 -64000/69092 Loss: 157.555 -Training time 0:04:07.455852 -Epoch: 70 Average loss: 157.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 243) -0/69092 Loss: 160.421 -12800/69092 Loss: 158.576 -25600/69092 Loss: 157.594 -38400/69092 Loss: 157.761 -51200/69092 Loss: 156.322 -64000/69092 Loss: 156.756 -Training time 0:04:08.703059 -Epoch: 71 Average loss: 157.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 244) -0/69092 Loss: 153.485 -12800/69092 Loss: 157.888 -25600/69092 Loss: 157.596 -38400/69092 Loss: 156.846 -51200/69092 Loss: 157.866 -64000/69092 Loss: 156.987 -Training time 0:04:12.067903 -Epoch: 72 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 245) -0/69092 Loss: 163.371 -12800/69092 Loss: 157.914 -25600/69092 Loss: 156.977 -38400/69092 Loss: 156.872 -51200/69092 Loss: 157.466 -64000/69092 Loss: 158.811 -Training time 0:04:10.709059 -Epoch: 73 Average loss: 157.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 246) -0/69092 Loss: 161.437 -12800/69092 Loss: 158.193 -25600/69092 Loss: 156.608 -38400/69092 Loss: 158.900 -51200/69092 Loss: 156.847 -64000/69092 Loss: 156.355 -Training time 0:04:09.862156 -Epoch: 74 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 247) -0/69092 Loss: 161.102 -12800/69092 Loss: 157.671 -25600/69092 Loss: 157.514 -38400/69092 Loss: 156.699 -51200/69092 Loss: 158.679 -64000/69092 Loss: 157.702 -Training time 0:04:07.326575 -Epoch: 75 Average loss: 157.59 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 248) -0/69092 Loss: 151.403 -12800/69092 Loss: 157.397 -25600/69092 Loss: 157.554 -38400/69092 Loss: 156.725 -51200/69092 Loss: 158.962 -64000/69092 Loss: 157.685 -Training time 0:04:11.968574 -Epoch: 76 Average loss: 157.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 249) -0/69092 Loss: 157.915 -12800/69092 Loss: 155.784 -25600/69092 Loss: 158.362 -38400/69092 Loss: 156.531 -51200/69092 Loss: 157.851 -64000/69092 Loss: 157.451 -Training time 0:04:09.654373 -Epoch: 77 Average loss: 157.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 250) -0/69092 Loss: 148.656 -12800/69092 Loss: 157.064 -25600/69092 Loss: 156.904 -38400/69092 Loss: 157.858 -51200/69092 Loss: 157.146 -64000/69092 Loss: 157.414 -Training time 0:04:08.727900 -Epoch: 78 Average loss: 157.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 251) -0/69092 Loss: 155.678 -12800/69092 Loss: 156.509 -25600/69092 Loss: 157.133 -38400/69092 Loss: 157.766 -51200/69092 Loss: 157.756 -64000/69092 Loss: 157.893 -Training time 0:04:07.309731 -Epoch: 79 Average loss: 157.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 252) -0/69092 Loss: 144.090 -12800/69092 Loss: 156.885 -25600/69092 Loss: 157.186 -38400/69092 Loss: 156.099 -51200/69092 Loss: 157.945 -64000/69092 Loss: 157.640 -Training time 0:04:08.898807 -Epoch: 80 Average loss: 157.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 253) -0/69092 Loss: 158.216 -12800/69092 Loss: 158.188 -25600/69092 Loss: 156.013 -38400/69092 Loss: 156.550 -51200/69092 Loss: 157.594 -64000/69092 Loss: 157.669 -Training time 0:04:04.894205 -Epoch: 81 Average loss: 157.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 254) -0/69092 Loss: 163.928 -12800/69092 Loss: 158.098 -25600/69092 Loss: 156.798 -38400/69092 Loss: 157.754 -51200/69092 Loss: 156.268 -64000/69092 Loss: 157.443 -Training time 0:04:08.553407 -Epoch: 82 Average loss: 157.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 255) -0/69092 Loss: 157.476 -12800/69092 Loss: 156.176 -25600/69092 Loss: 158.057 -38400/69092 Loss: 157.450 -51200/69092 Loss: 158.515 -64000/69092 Loss: 157.737 -Training time 0:04:11.952887 -Epoch: 83 Average loss: 157.47 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 256) -0/69092 Loss: 152.488 -12800/69092 Loss: 158.060 -25600/69092 Loss: 157.019 -38400/69092 Loss: 155.443 -51200/69092 Loss: 157.548 -64000/69092 Loss: 157.624 -Training time 0:04:10.425186 -Epoch: 84 Average loss: 157.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 257) -0/69092 Loss: 162.522 -12800/69092 Loss: 159.263 -25600/69092 Loss: 157.610 -38400/69092 Loss: 156.635 -51200/69092 Loss: 156.299 -64000/69092 Loss: 157.541 -Training time 0:04:11.270785 -Epoch: 85 Average loss: 157.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 258) -0/69092 Loss: 153.684 -12800/69092 Loss: 158.437 -25600/69092 Loss: 155.698 -38400/69092 Loss: 157.179 -51200/69092 Loss: 157.263 -64000/69092 Loss: 158.020 -Training time 0:04:10.949805 -Epoch: 86 Average loss: 157.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 259) -0/69092 Loss: 156.394 -12800/69092 Loss: 157.345 -25600/69092 Loss: 157.588 -38400/69092 Loss: 157.866 -51200/69092 Loss: 155.943 -64000/69092 Loss: 157.875 -Training time 0:04:04.290943 -Epoch: 87 Average loss: 157.27 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 260) -0/69092 Loss: 151.419 -12800/69092 Loss: 156.644 -25600/69092 Loss: 156.534 -38400/69092 Loss: 158.318 -51200/69092 Loss: 156.783 -64000/69092 Loss: 156.739 -Training time 0:04:15.388469 -Epoch: 88 Average loss: 157.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 261) -0/69092 Loss: 161.832 -12800/69092 Loss: 157.948 -25600/69092 Loss: 156.336 -38400/69092 Loss: 158.019 -51200/69092 Loss: 156.740 -64000/69092 Loss: 157.256 -Training time 0:04:12.798415 -Epoch: 89 Average loss: 157.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 262) -0/69092 Loss: 167.103 -12800/69092 Loss: 157.328 -25600/69092 Loss: 157.233 -38400/69092 Loss: 157.854 -51200/69092 Loss: 155.752 -64000/69092 Loss: 156.840 -Training time 0:04:12.797798 -Epoch: 90 Average loss: 157.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 263) -0/69092 Loss: 155.901 -12800/69092 Loss: 157.552 -25600/69092 Loss: 157.195 -38400/69092 Loss: 157.300 -51200/69092 Loss: 156.765 -64000/69092 Loss: 157.187 -Training time 0:04:11.831708 -Epoch: 91 Average loss: 157.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 264) -0/69092 Loss: 154.262 -12800/69092 Loss: 158.352 -25600/69092 Loss: 156.119 -38400/69092 Loss: 158.913 -51200/69092 Loss: 157.989 -64000/69092 Loss: 156.361 -Training time 0:04:08.926917 -Epoch: 92 Average loss: 157.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 265) -0/69092 Loss: 155.008 -12800/69092 Loss: 157.280 -25600/69092 Loss: 158.019 -38400/69092 Loss: 155.993 -51200/69092 Loss: 157.609 -64000/69092 Loss: 156.842 -Training time 0:04:03.073599 -Epoch: 93 Average loss: 157.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 266) -0/69092 Loss: 162.025 -12800/69092 Loss: 157.524 -25600/69092 Loss: 157.398 -38400/69092 Loss: 157.294 -51200/69092 Loss: 157.970 -64000/69092 Loss: 156.351 -Training time 0:04:07.584761 -Epoch: 94 Average loss: 157.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 267) -0/69092 Loss: 168.699 -12800/69092 Loss: 156.917 -25600/69092 Loss: 156.806 -38400/69092 Loss: 157.386 -51200/69092 Loss: 156.886 -64000/69092 Loss: 157.273 -Training time 0:04:09.591231 -Epoch: 95 Average loss: 157.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 268) -0/69092 Loss: 158.137 -12800/69092 Loss: 157.558 -25600/69092 Loss: 157.538 -38400/69092 Loss: 157.434 -51200/69092 Loss: 157.487 -64000/69092 Loss: 156.290 -Training time 0:04:12.204420 -Epoch: 96 Average loss: 157.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 269) -0/69092 Loss: 162.844 -12800/69092 Loss: 156.509 -25600/69092 Loss: 157.572 -38400/69092 Loss: 158.294 -51200/69092 Loss: 156.501 -64000/69092 Loss: 157.894 -Training time 0:04:10.931413 -Epoch: 97 Average loss: 157.46 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 270) -0/69092 Loss: 160.477 -12800/69092 Loss: 157.578 -25600/69092 Loss: 157.279 -38400/69092 Loss: 157.476 -51200/69092 Loss: 157.491 -64000/69092 Loss: 156.596 -Training time 0:04:08.272934 -Epoch: 98 Average loss: 157.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 271) -0/69092 Loss: 161.273 -12800/69092 Loss: 157.254 -25600/69092 Loss: 157.126 -38400/69092 Loss: 157.503 -51200/69092 Loss: 158.235 -64000/69092 Loss: 156.365 -Training time 0:04:03.909884 -Epoch: 99 Average loss: 157.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 272) -0/69092 Loss: 157.615 -12800/69092 Loss: 157.470 -25600/69092 Loss: 157.726 -38400/69092 Loss: 158.092 -51200/69092 Loss: 156.651 -64000/69092 Loss: 157.146 -Training time 0:04:11.181057 -Epoch: 100 Average loss: 157.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 273) -0/69092 Loss: 155.768 -12800/69092 Loss: 156.706 -25600/69092 Loss: 157.099 -38400/69092 Loss: 156.770 -51200/69092 Loss: 156.383 -64000/69092 Loss: 157.121 -Training time 0:04:09.140018 -Epoch: 101 Average loss: 156.98 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 274) -0/69092 Loss: 146.619 -12800/69092 Loss: 158.031 -25600/69092 Loss: 157.539 -38400/69092 Loss: 157.488 -51200/69092 Loss: 156.214 -64000/69092 Loss: 157.160 -Training time 0:04:10.464033 -Epoch: 102 Average loss: 157.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 275) -0/69092 Loss: 149.681 -12800/69092 Loss: 157.090 -25600/69092 Loss: 157.236 -38400/69092 Loss: 157.710 -51200/69092 Loss: 157.181 -64000/69092 Loss: 157.986 -Training time 0:04:09.876653 -Epoch: 103 Average loss: 157.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 276) -0/69092 Loss: 163.643 -12800/69092 Loss: 157.128 -25600/69092 Loss: 157.302 -38400/69092 Loss: 156.973 -51200/69092 Loss: 156.821 -64000/69092 Loss: 157.241 -Training time 0:04:07.838607 -Epoch: 104 Average loss: 157.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 277) -0/69092 Loss: 158.093 -12800/69092 Loss: 157.244 -25600/69092 Loss: 157.186 -38400/69092 Loss: 157.452 -51200/69092 Loss: 155.985 -64000/69092 Loss: 158.488 -Training time 0:04:03.601052 -Epoch: 105 Average loss: 157.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 278) -0/69092 Loss: 154.813 -12800/69092 Loss: 157.052 -25600/69092 Loss: 157.161 -38400/69092 Loss: 157.203 -51200/69092 Loss: 157.232 -64000/69092 Loss: 157.310 -Training time 0:04:07.292869 -Epoch: 106 Average loss: 157.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 279) -0/69092 Loss: 158.664 -12800/69092 Loss: 156.515 -25600/69092 Loss: 157.229 -38400/69092 Loss: 157.361 -51200/69092 Loss: 157.873 -64000/69092 Loss: 157.616 -Training time 0:04:06.809608 -Epoch: 107 Average loss: 157.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 280) -0/69092 Loss: 156.387 -12800/69092 Loss: 158.136 -25600/69092 Loss: 157.099 -38400/69092 Loss: 156.837 -51200/69092 Loss: 156.747 -64000/69092 Loss: 156.586 -Training time 0:04:09.066369 -Epoch: 108 Average loss: 157.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 281) -0/69092 Loss: 156.363 -12800/69092 Loss: 156.955 -25600/69092 Loss: 157.579 -38400/69092 Loss: 156.693 -51200/69092 Loss: 157.130 -64000/69092 Loss: 157.739 -Training time 0:04:07.344154 -Epoch: 109 Average loss: 157.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 282) -0/69092 Loss: 154.839 -12800/69092 Loss: 156.584 -25600/69092 Loss: 156.852 -38400/69092 Loss: 156.705 -51200/69092 Loss: 157.566 -64000/69092 Loss: 157.846 -Training time 0:04:02.596162 -Epoch: 110 Average loss: 157.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 283) -0/69092 Loss: 163.107 -12800/69092 Loss: 156.967 -25600/69092 Loss: 156.324 -38400/69092 Loss: 158.065 -51200/69092 Loss: 156.880 -64000/69092 Loss: 157.599 -Training time 0:04:03.459253 -Epoch: 111 Average loss: 157.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 284) -0/69092 Loss: 152.234 -12800/69092 Loss: 155.948 -25600/69092 Loss: 156.527 -38400/69092 Loss: 157.628 -51200/69092 Loss: 157.727 -64000/69092 Loss: 156.804 -Training time 0:04:06.196250 -Epoch: 112 Average loss: 156.93 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 285) -0/69092 Loss: 166.500 -12800/69092 Loss: 157.189 -25600/69092 Loss: 156.956 -38400/69092 Loss: 155.700 -51200/69092 Loss: 157.823 -64000/69092 Loss: 157.373 -Training time 0:04:08.707100 -Epoch: 113 Average loss: 157.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 286) -0/69092 Loss: 161.993 -12800/69092 Loss: 157.234 -25600/69092 Loss: 158.382 -38400/69092 Loss: 156.551 -51200/69092 Loss: 157.351 -64000/69092 Loss: 156.157 -Training time 0:04:07.990283 -Epoch: 114 Average loss: 157.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 287) -0/69092 Loss: 161.841 -12800/69092 Loss: 157.712 -25600/69092 Loss: 155.495 -38400/69092 Loss: 157.577 -51200/69092 Loss: 157.636 -64000/69092 Loss: 156.955 -Training time 0:04:09.016317 -Epoch: 115 Average loss: 157.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 288) -0/69092 Loss: 155.560 -12800/69092 Loss: 157.573 -25600/69092 Loss: 158.010 -38400/69092 Loss: 156.599 -51200/69092 Loss: 156.843 -64000/69092 Loss: 156.326 -Training time 0:03:59.434990 -Epoch: 116 Average loss: 157.03 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 289) -0/69092 Loss: 153.375 -12800/69092 Loss: 156.316 -25600/69092 Loss: 158.547 -38400/69092 Loss: 157.258 -51200/69092 Loss: 157.724 -64000/69092 Loss: 157.224 -Training time 0:04:06.722800 -Epoch: 117 Average loss: 157.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 290) -0/69092 Loss: 155.603 -12800/69092 Loss: 157.760 -25600/69092 Loss: 156.922 -38400/69092 Loss: 157.641 -51200/69092 Loss: 157.616 -64000/69092 Loss: 156.164 -Training time 0:04:07.593237 -Epoch: 118 Average loss: 157.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 291) -0/69092 Loss: 154.914 -12800/69092 Loss: 156.693 -25600/69092 Loss: 157.227 -38400/69092 Loss: 156.418 -51200/69092 Loss: 157.796 -64000/69092 Loss: 156.511 -Training time 0:04:06.697634 -Epoch: 119 Average loss: 157.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 292) -0/69092 Loss: 162.489 -12800/69092 Loss: 156.861 -25600/69092 Loss: 157.719 -38400/69092 Loss: 158.311 -51200/69092 Loss: 155.898 -64000/69092 Loss: 156.442 -Training time 0:04:08.848071 -Epoch: 120 Average loss: 157.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 293) -0/69092 Loss: 159.276 -12800/69092 Loss: 156.682 -25600/69092 Loss: 156.932 -38400/69092 Loss: 157.718 -51200/69092 Loss: 156.803 -64000/69092 Loss: 156.573 -Training time 0:04:05.920002 -Epoch: 121 Average loss: 157.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 294) -0/69092 Loss: 155.874 -12800/69092 Loss: 157.463 -25600/69092 Loss: 157.989 -38400/69092 Loss: 155.701 -51200/69092 Loss: 156.886 -64000/69092 Loss: 156.351 -Training time 0:04:03.654210 -Epoch: 122 Average loss: 156.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 295) -0/69092 Loss: 149.058 -12800/69092 Loss: 156.329 -25600/69092 Loss: 155.563 -38400/69092 Loss: 157.396 -51200/69092 Loss: 158.430 -64000/69092 Loss: 156.105 -Training time 0:04:06.935410 -Epoch: 123 Average loss: 156.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 296) -0/69092 Loss: 158.406 -12800/69092 Loss: 156.088 -25600/69092 Loss: 156.076 -38400/69092 Loss: 157.194 -51200/69092 Loss: 158.158 -64000/69092 Loss: 157.273 -Training time 0:04:11.321915 -Epoch: 124 Average loss: 157.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 297) -0/69092 Loss: 156.820 -12800/69092 Loss: 156.939 -25600/69092 Loss: 155.882 -38400/69092 Loss: 157.324 -51200/69092 Loss: 156.343 -64000/69092 Loss: 157.685 -Training time 0:04:13.570882 -Epoch: 125 Average loss: 156.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 298) -0/69092 Loss: 153.471 -12800/69092 Loss: 156.685 -25600/69092 Loss: 157.746 -38400/69092 Loss: 156.922 -51200/69092 Loss: 158.207 -64000/69092 Loss: 157.401 -Training time 0:04:10.702523 -Epoch: 126 Average loss: 157.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 299) -0/69092 Loss: 160.194 -12800/69092 Loss: 155.556 -25600/69092 Loss: 156.484 -38400/69092 Loss: 157.497 -51200/69092 Loss: 156.744 -64000/69092 Loss: 157.462 -Training time 0:04:04.298316 -Epoch: 127 Average loss: 156.81 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 300) -0/69092 Loss: 145.845 -12800/69092 Loss: 157.552 -25600/69092 Loss: 157.499 -38400/69092 Loss: 156.503 -51200/69092 Loss: 158.020 -64000/69092 Loss: 157.439 -Training time 0:04:04.537136 -Epoch: 128 Average loss: 157.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 301) -0/69092 Loss: 172.349 -12800/69092 Loss: 157.380 -25600/69092 Loss: 157.161 -38400/69092 Loss: 157.727 -51200/69092 Loss: 155.646 -64000/69092 Loss: 157.910 -Training time 0:04:08.531440 -Epoch: 129 Average loss: 157.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 302) -0/69092 Loss: 155.418 -12800/69092 Loss: 156.609 -25600/69092 Loss: 157.015 -38400/69092 Loss: 158.265 -51200/69092 Loss: 157.511 -64000/69092 Loss: 157.121 -Training time 0:04:06.752566 -Epoch: 130 Average loss: 157.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 303) -0/69092 Loss: 150.533 -12800/69092 Loss: 156.525 -25600/69092 Loss: 157.079 -38400/69092 Loss: 157.841 -51200/69092 Loss: 157.257 -64000/69092 Loss: 157.765 -Training time 0:04:08.646985 -Epoch: 131 Average loss: 157.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 304) -0/69092 Loss: 155.461 -12800/69092 Loss: 156.606 -25600/69092 Loss: 156.778 -38400/69092 Loss: 156.201 -51200/69092 Loss: 156.135 -64000/69092 Loss: 158.307 -Training time 0:04:09.419583 -Epoch: 132 Average loss: 157.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 305) -0/69092 Loss: 156.535 -12800/69092 Loss: 156.648 -25600/69092 Loss: 157.401 -38400/69092 Loss: 158.188 -51200/69092 Loss: 156.639 -64000/69092 Loss: 157.362 -Training time 0:04:02.464969 -Epoch: 133 Average loss: 157.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 306) -0/69092 Loss: 166.057 -12800/69092 Loss: 156.458 -25600/69092 Loss: 156.344 -38400/69092 Loss: 157.892 -51200/69092 Loss: 157.120 -64000/69092 Loss: 158.209 -Training time 0:04:07.555364 -Epoch: 134 Average loss: 157.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 307) -0/69092 Loss: 155.097 -12800/69092 Loss: 157.837 -25600/69092 Loss: 156.164 -38400/69092 Loss: 156.819 -51200/69092 Loss: 157.538 -64000/69092 Loss: 156.176 -Training time 0:04:09.609917 -Epoch: 135 Average loss: 157.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 308) -0/69092 Loss: 152.057 -12800/69092 Loss: 156.457 -25600/69092 Loss: 156.684 -38400/69092 Loss: 158.750 -51200/69092 Loss: 156.853 -64000/69092 Loss: 157.246 -Training time 0:04:07.395100 -Epoch: 136 Average loss: 157.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 309) -0/69092 Loss: 144.699 -12800/69092 Loss: 158.049 -25600/69092 Loss: 155.358 -38400/69092 Loss: 158.175 -51200/69092 Loss: 156.777 -64000/69092 Loss: 157.143 -Training time 0:04:08.038622 -Epoch: 137 Average loss: 157.06 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 310) -0/69092 Loss: 154.776 -12800/69092 Loss: 158.213 -25600/69092 Loss: 157.469 -38400/69092 Loss: 156.029 -51200/69092 Loss: 155.871 -64000/69092 Loss: 158.126 -Training time 0:04:07.007746 -Epoch: 138 Average loss: 157.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 311) -0/69092 Loss: 166.088 -12800/69092 Loss: 155.682 -25600/69092 Loss: 156.094 -38400/69092 Loss: 157.821 -51200/69092 Loss: 157.103 -64000/69092 Loss: 156.859 -Training time 0:04:04.057358 -Epoch: 139 Average loss: 156.84 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 312) -0/69092 Loss: 148.434 -12800/69092 Loss: 156.650 -25600/69092 Loss: 156.832 -38400/69092 Loss: 156.339 -51200/69092 Loss: 157.166 -64000/69092 Loss: 157.624 -Training time 0:04:10.618231 -Epoch: 140 Average loss: 156.98 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 313) -0/69092 Loss: 161.419 -12800/69092 Loss: 155.633 -25600/69092 Loss: 156.680 -38400/69092 Loss: 156.857 -51200/69092 Loss: 157.910 -64000/69092 Loss: 157.843 -Training time 0:04:11.862477 -Epoch: 141 Average loss: 157.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 314) -0/69092 Loss: 159.316 -12800/69092 Loss: 156.805 -25600/69092 Loss: 157.847 -38400/69092 Loss: 155.797 -51200/69092 Loss: 156.922 -64000/69092 Loss: 156.482 -Training time 0:04:10.162818 -Epoch: 142 Average loss: 156.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 315) -0/69092 Loss: 146.955 -12800/69092 Loss: 157.627 -25600/69092 Loss: 156.975 -38400/69092 Loss: 157.253 -51200/69092 Loss: 156.910 -64000/69092 Loss: 157.968 -Training time 0:04:08.477279 -Epoch: 143 Average loss: 157.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 316) -0/69092 Loss: 154.526 -12800/69092 Loss: 157.462 -25600/69092 Loss: 158.502 -38400/69092 Loss: 155.874 -51200/69092 Loss: 157.289 -64000/69092 Loss: 156.534 -Training time 0:04:07.828540 -Epoch: 144 Average loss: 157.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 317) -0/69092 Loss: 163.826 -12800/69092 Loss: 156.522 -25600/69092 Loss: 156.078 -38400/69092 Loss: 156.854 -51200/69092 Loss: 157.322 diff --git a/OAR.2068285.stderr b/OAR.2068285.stderr deleted file mode 100644 index 5a9b289cbb..0000000000 --- a/OAR.2068285.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068285 KILLED ## diff --git a/OAR.2068285.stdout b/OAR.2068285.stdout deleted file mode 100644 index 7a2085697d..0000000000 --- a/OAR.2068285.stdout +++ /dev/null @@ -1,3089 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce GTX 1080 Ti -GeForce GTX 1080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last (iter 309)' -0/69092 Loss: 152.183 -3200/69092 Loss: 151.650 -6400/69092 Loss: 152.285 -9600/69092 Loss: 150.815 -12800/69092 Loss: 153.354 -16000/69092 Loss: 152.782 -19200/69092 Loss: 155.529 -22400/69092 Loss: 154.036 -25600/69092 Loss: 148.649 -28800/69092 Loss: 150.179 -32000/69092 Loss: 152.932 -35200/69092 Loss: 151.995 -38400/69092 Loss: 152.076 -41600/69092 Loss: 153.395 -44800/69092 Loss: 151.396 -48000/69092 Loss: 154.387 -51200/69092 Loss: 153.050 -54400/69092 Loss: 154.637 -57600/69092 Loss: 154.287 -60800/69092 Loss: 148.589 -64000/69092 Loss: 153.666 -67200/69092 Loss: 151.120 -Training time 0:04:52.357383 -Epoch: 1 Average loss: 152.43 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 310) -0/69092 Loss: 159.442 -3200/69092 Loss: 154.781 -6400/69092 Loss: 152.621 -9600/69092 Loss: 150.426 -12800/69092 Loss: 150.802 -16000/69092 Loss: 152.935 -19200/69092 Loss: 150.630 -22400/69092 Loss: 150.863 -25600/69092 Loss: 154.977 -28800/69092 Loss: 150.534 -32000/69092 Loss: 155.075 -35200/69092 Loss: 150.436 -38400/69092 Loss: 152.814 -41600/69092 Loss: 152.529 -44800/69092 Loss: 151.246 -48000/69092 Loss: 151.439 -51200/69092 Loss: 152.896 -54400/69092 Loss: 153.654 -57600/69092 Loss: 151.745 -60800/69092 Loss: 154.735 -64000/69092 Loss: 152.990 -67200/69092 Loss: 154.547 -Training time 0:04:51.856329 -Epoch: 2 Average loss: 152.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 311) -0/69092 Loss: 134.734 -3200/69092 Loss: 152.843 -6400/69092 Loss: 152.510 -9600/69092 Loss: 150.592 -12800/69092 Loss: 153.914 -16000/69092 Loss: 152.556 -19200/69092 Loss: 149.478 -22400/69092 Loss: 152.516 -25600/69092 Loss: 152.359 -28800/69092 Loss: 151.001 -32000/69092 Loss: 153.504 -35200/69092 Loss: 153.543 -38400/69092 Loss: 152.340 -41600/69092 Loss: 152.565 -44800/69092 Loss: 153.622 -48000/69092 Loss: 154.323 -51200/69092 Loss: 150.575 -54400/69092 Loss: 151.611 -57600/69092 Loss: 151.667 -60800/69092 Loss: 153.052 -64000/69092 Loss: 153.388 -67200/69092 Loss: 153.600 -Training time 0:04:50.139861 -Epoch: 3 Average loss: 152.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 312) -0/69092 Loss: 142.408 -3200/69092 Loss: 149.926 -6400/69092 Loss: 154.006 -9600/69092 Loss: 154.148 -12800/69092 Loss: 151.793 -16000/69092 Loss: 151.222 -19200/69092 Loss: 152.250 -22400/69092 Loss: 151.391 -25600/69092 Loss: 155.184 -28800/69092 Loss: 151.960 -32000/69092 Loss: 153.657 -35200/69092 Loss: 155.231 -38400/69092 Loss: 152.180 -41600/69092 Loss: 152.465 -44800/69092 Loss: 152.076 -48000/69092 Loss: 149.416 -51200/69092 Loss: 152.701 -54400/69092 Loss: 151.919 -57600/69092 Loss: 152.060 -60800/69092 Loss: 150.976 -64000/69092 Loss: 151.854 -67200/69092 Loss: 154.316 -Training time 0:04:55.009685 -Epoch: 4 Average loss: 152.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 313) -0/69092 Loss: 153.333 -3200/69092 Loss: 152.545 -6400/69092 Loss: 150.896 -9600/69092 Loss: 150.357 -12800/69092 Loss: 152.456 -16000/69092 Loss: 152.458 -19200/69092 Loss: 152.289 -22400/69092 Loss: 152.380 -25600/69092 Loss: 152.213 -28800/69092 Loss: 152.459 -32000/69092 Loss: 152.800 -35200/69092 Loss: 154.103 -38400/69092 Loss: 152.956 -41600/69092 Loss: 152.906 -44800/69092 Loss: 151.564 -48000/69092 Loss: 153.002 -51200/69092 Loss: 151.203 -54400/69092 Loss: 151.133 -57600/69092 Loss: 154.644 -60800/69092 Loss: 152.807 -64000/69092 Loss: 154.770 -67200/69092 Loss: 150.738 -Training time 0:04:51.641555 -Epoch: 5 Average loss: 152.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 314) -0/69092 Loss: 148.495 -3200/69092 Loss: 154.320 -6400/69092 Loss: 153.600 -9600/69092 Loss: 153.046 -12800/69092 Loss: 150.433 -16000/69092 Loss: 151.382 -19200/69092 Loss: 152.088 -22400/69092 Loss: 152.638 -25600/69092 Loss: 152.848 -28800/69092 Loss: 149.897 -32000/69092 Loss: 155.370 -35200/69092 Loss: 153.207 -38400/69092 Loss: 152.994 -41600/69092 Loss: 152.902 -44800/69092 Loss: 152.503 -48000/69092 Loss: 151.920 -51200/69092 Loss: 152.251 -54400/69092 Loss: 150.518 -57600/69092 Loss: 153.685 -60800/69092 Loss: 151.117 -64000/69092 Loss: 153.273 -67200/69092 Loss: 152.338 -Training time 0:04:49.531773 -Epoch: 6 Average loss: 152.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 315) -0/69092 Loss: 159.999 -3200/69092 Loss: 152.523 -6400/69092 Loss: 151.299 -9600/69092 Loss: 152.631 -12800/69092 Loss: 154.044 -16000/69092 Loss: 152.559 -19200/69092 Loss: 153.762 -22400/69092 Loss: 152.462 -25600/69092 Loss: 149.804 -28800/69092 Loss: 154.240 -32000/69092 Loss: 153.769 -35200/69092 Loss: 150.327 -38400/69092 Loss: 155.003 -41600/69092 Loss: 151.960 -44800/69092 Loss: 150.458 -48000/69092 Loss: 152.349 -51200/69092 Loss: 152.027 -54400/69092 Loss: 153.317 -57600/69092 Loss: 152.629 -60800/69092 Loss: 152.926 -64000/69092 Loss: 151.968 -67200/69092 Loss: 151.694 -Training time 0:04:58.512221 -Epoch: 7 Average loss: 152.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 316) -0/69092 Loss: 163.111 -3200/69092 Loss: 153.264 -6400/69092 Loss: 154.351 -9600/69092 Loss: 154.740 -12800/69092 Loss: 153.918 -16000/69092 Loss: 151.023 -19200/69092 Loss: 152.130 -22400/69092 Loss: 154.274 -25600/69092 Loss: 152.311 -28800/69092 Loss: 148.902 -32000/69092 Loss: 152.154 -35200/69092 Loss: 152.465 -38400/69092 Loss: 152.427 -41600/69092 Loss: 151.234 -44800/69092 Loss: 151.904 -48000/69092 Loss: 154.259 -51200/69092 Loss: 148.981 -54400/69092 Loss: 151.418 -57600/69092 Loss: 153.284 -60800/69092 Loss: 153.432 -64000/69092 Loss: 154.522 -67200/69092 Loss: 151.813 -Training time 0:04:52.326015 -Epoch: 8 Average loss: 152.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 317) -0/69092 Loss: 145.411 -3200/69092 Loss: 154.616 -6400/69092 Loss: 154.145 -9600/69092 Loss: 151.741 -12800/69092 Loss: 153.260 -16000/69092 Loss: 153.434 -19200/69092 Loss: 149.795 -22400/69092 Loss: 151.875 -25600/69092 Loss: 154.525 -28800/69092 Loss: 152.066 -32000/69092 Loss: 151.676 -35200/69092 Loss: 153.090 -38400/69092 Loss: 153.029 -41600/69092 Loss: 152.771 -44800/69092 Loss: 150.900 -48000/69092 Loss: 152.190 -51200/69092 Loss: 151.611 -54400/69092 Loss: 153.291 -57600/69092 Loss: 150.412 -60800/69092 Loss: 150.282 -64000/69092 Loss: 153.127 -67200/69092 Loss: 153.294 -Training time 0:04:53.794871 -Epoch: 9 Average loss: 152.44 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 318) -0/69092 Loss: 128.179 -3200/69092 Loss: 149.781 -6400/69092 Loss: 152.331 -9600/69092 Loss: 154.396 -12800/69092 Loss: 151.316 -16000/69092 Loss: 152.371 -19200/69092 Loss: 152.552 -22400/69092 Loss: 153.303 -25600/69092 Loss: 153.643 -28800/69092 Loss: 150.225 -32000/69092 Loss: 150.622 -35200/69092 Loss: 152.424 -38400/69092 Loss: 151.834 -41600/69092 Loss: 152.264 -44800/69092 Loss: 154.677 -48000/69092 Loss: 153.459 -51200/69092 Loss: 153.347 -54400/69092 Loss: 152.326 -57600/69092 Loss: 153.728 -60800/69092 Loss: 152.451 -64000/69092 Loss: 148.630 -67200/69092 Loss: 152.763 -Training time 0:04:49.848114 -Epoch: 10 Average loss: 152.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 319) -0/69092 Loss: 142.905 -3200/69092 Loss: 153.824 -6400/69092 Loss: 155.878 -9600/69092 Loss: 150.336 -12800/69092 Loss: 153.642 -16000/69092 Loss: 151.411 -19200/69092 Loss: 154.567 -22400/69092 Loss: 153.036 -25600/69092 Loss: 150.087 -28800/69092 Loss: 151.030 -32000/69092 Loss: 151.418 -35200/69092 Loss: 151.023 -38400/69092 Loss: 148.444 -41600/69092 Loss: 151.903 -44800/69092 Loss: 152.763 -48000/69092 Loss: 154.169 -51200/69092 Loss: 151.868 -54400/69092 Loss: 152.579 -57600/69092 Loss: 153.067 -60800/69092 Loss: 152.149 -64000/69092 Loss: 153.555 -67200/69092 Loss: 151.000 -Training time 0:04:57.013579 -Epoch: 11 Average loss: 152.29 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 320) -0/69092 Loss: 151.394 -3200/69092 Loss: 152.447 -6400/69092 Loss: 152.888 -9600/69092 Loss: 152.646 -12800/69092 Loss: 151.644 -16000/69092 Loss: 152.469 -19200/69092 Loss: 152.163 -22400/69092 Loss: 150.452 -25600/69092 Loss: 151.902 -28800/69092 Loss: 152.144 -32000/69092 Loss: 150.738 -35200/69092 Loss: 153.309 -38400/69092 Loss: 153.811 -41600/69092 Loss: 152.597 -44800/69092 Loss: 151.872 -48000/69092 Loss: 153.172 -51200/69092 Loss: 153.323 -54400/69092 Loss: 150.141 -57600/69092 Loss: 152.336 -60800/69092 Loss: 154.109 -64000/69092 Loss: 152.203 -67200/69092 Loss: 153.926 -Training time 0:04:48.153389 -Epoch: 12 Average loss: 152.41 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 321) -0/69092 Loss: 157.636 -3200/69092 Loss: 152.608 -6400/69092 Loss: 152.308 -9600/69092 Loss: 153.485 -12800/69092 Loss: 153.940 -16000/69092 Loss: 151.878 -19200/69092 Loss: 149.654 -22400/69092 Loss: 151.707 -25600/69092 Loss: 153.842 -28800/69092 Loss: 150.141 -32000/69092 Loss: 152.478 -35200/69092 Loss: 152.337 -38400/69092 Loss: 149.935 -41600/69092 Loss: 152.342 -44800/69092 Loss: 154.538 -48000/69092 Loss: 153.898 -51200/69092 Loss: 152.160 -54400/69092 Loss: 153.422 -57600/69092 Loss: 152.781 -60800/69092 Loss: 153.877 -64000/69092 Loss: 154.009 -67200/69092 Loss: 151.143 -Training time 0:04:45.355561 -Epoch: 13 Average loss: 152.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 322) -0/69092 Loss: 162.517 -3200/69092 Loss: 152.929 -6400/69092 Loss: 152.477 -9600/69092 Loss: 150.981 -12800/69092 Loss: 152.707 -16000/69092 Loss: 155.280 -19200/69092 Loss: 151.793 -22400/69092 Loss: 152.082 -25600/69092 Loss: 155.199 -28800/69092 Loss: 151.704 -32000/69092 Loss: 150.883 -35200/69092 Loss: 153.300 -38400/69092 Loss: 150.486 -41600/69092 Loss: 155.252 -44800/69092 Loss: 155.059 -48000/69092 Loss: 152.528 -51200/69092 Loss: 153.416 -54400/69092 Loss: 154.628 -57600/69092 Loss: 150.056 -60800/69092 Loss: 152.059 -64000/69092 Loss: 151.454 -67200/69092 Loss: 149.021 -Training time 0:04:48.906956 -Epoch: 14 Average loss: 152.60 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 323) -0/69092 Loss: 157.050 -3200/69092 Loss: 153.959 -6400/69092 Loss: 154.344 -9600/69092 Loss: 152.152 -12800/69092 Loss: 151.359 -16000/69092 Loss: 152.589 -19200/69092 Loss: 150.047 -22400/69092 Loss: 152.870 -25600/69092 Loss: 149.748 -28800/69092 Loss: 153.648 -32000/69092 Loss: 156.431 -35200/69092 Loss: 152.113 -38400/69092 Loss: 152.905 -41600/69092 Loss: 152.468 -44800/69092 Loss: 153.602 -48000/69092 Loss: 152.497 -51200/69092 Loss: 151.044 -54400/69092 Loss: 155.048 -57600/69092 Loss: 151.216 -60800/69092 Loss: 150.927 -64000/69092 Loss: 152.557 -67200/69092 Loss: 153.362 -Training time 0:04:54.813450 -Epoch: 15 Average loss: 152.59 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 324) -0/69092 Loss: 148.821 -3200/69092 Loss: 152.991 -6400/69092 Loss: 152.562 -9600/69092 Loss: 150.855 -12800/69092 Loss: 153.888 -16000/69092 Loss: 153.659 -19200/69092 Loss: 152.960 -22400/69092 Loss: 152.873 -25600/69092 Loss: 152.063 -28800/69092 Loss: 151.277 -32000/69092 Loss: 151.158 -35200/69092 Loss: 152.072 -38400/69092 Loss: 153.704 -41600/69092 Loss: 153.907 -44800/69092 Loss: 149.131 -48000/69092 Loss: 151.833 -51200/69092 Loss: 151.896 -54400/69092 Loss: 152.958 -57600/69092 Loss: 151.339 -60800/69092 Loss: 151.675 -64000/69092 Loss: 152.641 -67200/69092 Loss: 151.787 -Training time 0:04:57.074914 -Epoch: 16 Average loss: 152.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 325) -0/69092 Loss: 139.830 -3200/69092 Loss: 153.831 -6400/69092 Loss: 154.674 -9600/69092 Loss: 151.321 -12800/69092 Loss: 153.510 -16000/69092 Loss: 148.394 -19200/69092 Loss: 151.813 -22400/69092 Loss: 153.058 -25600/69092 Loss: 154.548 -28800/69092 Loss: 150.580 -32000/69092 Loss: 155.687 -35200/69092 Loss: 152.704 -38400/69092 Loss: 152.194 -41600/69092 Loss: 153.185 -44800/69092 Loss: 148.863 -48000/69092 Loss: 153.429 -51200/69092 Loss: 154.257 -54400/69092 Loss: 152.202 -57600/69092 Loss: 152.896 -60800/69092 Loss: 151.201 -64000/69092 Loss: 153.511 -67200/69092 Loss: 152.102 -Training time 0:04:56.971456 -Epoch: 17 Average loss: 152.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 326) -0/69092 Loss: 144.373 -3200/69092 Loss: 152.078 -6400/69092 Loss: 153.584 -9600/69092 Loss: 149.502 -12800/69092 Loss: 152.185 -16000/69092 Loss: 152.809 -19200/69092 Loss: 153.496 -22400/69092 Loss: 154.004 -25600/69092 Loss: 154.795 -28800/69092 Loss: 151.465 -32000/69092 Loss: 154.518 -35200/69092 Loss: 149.687 -38400/69092 Loss: 153.964 -41600/69092 Loss: 152.572 -44800/69092 Loss: 149.701 -48000/69092 Loss: 150.567 -51200/69092 Loss: 151.033 -54400/69092 Loss: 153.177 -57600/69092 Loss: 151.122 -60800/69092 Loss: 151.542 -64000/69092 Loss: 152.469 -67200/69092 Loss: 153.430 -Training time 0:05:01.046983 -Epoch: 18 Average loss: 152.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 327) -0/69092 Loss: 152.464 -3200/69092 Loss: 153.488 -6400/69092 Loss: 152.579 -9600/69092 Loss: 152.127 -12800/69092 Loss: 150.396 -16000/69092 Loss: 154.485 -19200/69092 Loss: 150.241 -22400/69092 Loss: 152.079 -25600/69092 Loss: 151.118 -28800/69092 Loss: 153.015 -32000/69092 Loss: 151.977 -35200/69092 Loss: 149.929 -38400/69092 Loss: 149.426 -41600/69092 Loss: 151.497 -44800/69092 Loss: 152.594 -48000/69092 Loss: 155.580 -51200/69092 Loss: 151.766 -54400/69092 Loss: 152.328 -57600/69092 Loss: 154.382 -60800/69092 Loss: 151.399 -64000/69092 Loss: 153.803 -67200/69092 Loss: 153.180 -Training time 0:04:55.558946 -Epoch: 19 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 328) -0/69092 Loss: 146.869 -3200/69092 Loss: 153.782 -6400/69092 Loss: 153.934 -9600/69092 Loss: 153.725 -12800/69092 Loss: 153.885 -16000/69092 Loss: 154.710 -19200/69092 Loss: 152.246 -22400/69092 Loss: 152.874 -25600/69092 Loss: 152.616 -28800/69092 Loss: 153.899 -32000/69092 Loss: 150.965 -35200/69092 Loss: 152.105 -38400/69092 Loss: 150.924 -41600/69092 Loss: 151.229 -44800/69092 Loss: 150.414 -48000/69092 Loss: 151.099 -51200/69092 Loss: 151.417 -54400/69092 Loss: 151.783 -57600/69092 Loss: 152.924 -60800/69092 Loss: 151.453 -64000/69092 Loss: 151.253 -67200/69092 Loss: 151.988 -Training time 0:05:00.999168 -Epoch: 20 Average loss: 152.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 329) -0/69092 Loss: 147.028 -3200/69092 Loss: 151.092 -6400/69092 Loss: 153.710 -9600/69092 Loss: 152.265 -12800/69092 Loss: 152.751 -16000/69092 Loss: 153.640 -19200/69092 Loss: 152.519 -22400/69092 Loss: 152.768 -25600/69092 Loss: 153.118 -28800/69092 Loss: 151.120 -32000/69092 Loss: 152.780 -35200/69092 Loss: 152.773 -38400/69092 Loss: 151.942 -41600/69092 Loss: 151.585 -44800/69092 Loss: 153.718 -48000/69092 Loss: 152.276 -51200/69092 Loss: 154.530 -54400/69092 Loss: 152.744 -57600/69092 Loss: 150.482 -60800/69092 Loss: 155.222 -64000/69092 Loss: 150.784 -67200/69092 Loss: 151.592 -Training time 0:04:54.733607 -Epoch: 21 Average loss: 152.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 330) -0/69092 Loss: 151.133 -3200/69092 Loss: 151.407 -6400/69092 Loss: 152.002 -9600/69092 Loss: 152.132 -12800/69092 Loss: 150.633 -16000/69092 Loss: 150.642 -19200/69092 Loss: 153.192 -22400/69092 Loss: 153.700 -25600/69092 Loss: 150.160 -28800/69092 Loss: 152.733 -32000/69092 Loss: 152.790 -35200/69092 Loss: 150.569 -38400/69092 Loss: 152.402 -41600/69092 Loss: 152.672 -44800/69092 Loss: 153.412 -48000/69092 Loss: 155.049 -51200/69092 Loss: 152.697 -54400/69092 Loss: 154.992 -57600/69092 Loss: 151.886 -60800/69092 Loss: 153.533 -64000/69092 Loss: 150.066 -67200/69092 Loss: 151.130 -Training time 0:04:51.479730 -Epoch: 22 Average loss: 152.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 331) -0/69092 Loss: 134.860 -3200/69092 Loss: 153.536 -6400/69092 Loss: 152.443 -9600/69092 Loss: 149.892 -12800/69092 Loss: 150.728 -16000/69092 Loss: 152.499 -19200/69092 Loss: 153.774 -22400/69092 Loss: 152.431 -25600/69092 Loss: 149.763 -28800/69092 Loss: 154.345 -32000/69092 Loss: 151.940 -35200/69092 Loss: 152.357 -38400/69092 Loss: 152.972 -41600/69092 Loss: 150.494 -44800/69092 Loss: 151.210 -48000/69092 Loss: 154.224 -51200/69092 Loss: 151.207 -54400/69092 Loss: 150.331 -57600/69092 Loss: 152.456 -60800/69092 Loss: 153.180 -64000/69092 Loss: 153.737 -67200/69092 Loss: 151.679 -Training time 0:04:55.682500 -Epoch: 23 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 332) -0/69092 Loss: 146.132 -3200/69092 Loss: 151.199 -6400/69092 Loss: 151.551 -9600/69092 Loss: 155.865 -12800/69092 Loss: 150.800 -16000/69092 Loss: 151.015 -19200/69092 Loss: 152.506 -22400/69092 Loss: 151.661 -25600/69092 Loss: 151.519 -28800/69092 Loss: 151.153 -32000/69092 Loss: 152.509 -35200/69092 Loss: 150.394 -38400/69092 Loss: 152.259 -41600/69092 Loss: 153.364 -44800/69092 Loss: 152.367 -48000/69092 Loss: 153.211 -51200/69092 Loss: 153.377 -54400/69092 Loss: 152.013 -57600/69092 Loss: 149.970 -60800/69092 Loss: 152.552 -64000/69092 Loss: 152.334 -67200/69092 Loss: 152.434 -Training time 0:04:46.518119 -Epoch: 24 Average loss: 152.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 333) -0/69092 Loss: 149.840 -3200/69092 Loss: 154.191 -6400/69092 Loss: 152.417 -9600/69092 Loss: 150.376 -12800/69092 Loss: 152.603 -16000/69092 Loss: 152.176 -19200/69092 Loss: 151.488 -22400/69092 Loss: 151.300 -25600/69092 Loss: 153.556 -28800/69092 Loss: 151.875 -32000/69092 Loss: 151.179 -35200/69092 Loss: 151.816 -38400/69092 Loss: 153.076 -41600/69092 Loss: 151.797 -44800/69092 Loss: 150.499 -48000/69092 Loss: 151.741 -51200/69092 Loss: 152.232 -54400/69092 Loss: 154.147 -57600/69092 Loss: 152.086 -60800/69092 Loss: 152.965 -64000/69092 Loss: 154.207 -67200/69092 Loss: 153.088 -Training time 0:04:50.798790 -Epoch: 25 Average loss: 152.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 334) -0/69092 Loss: 148.167 -3200/69092 Loss: 154.325 -6400/69092 Loss: 152.557 -9600/69092 Loss: 152.038 -12800/69092 Loss: 150.379 -16000/69092 Loss: 152.418 -19200/69092 Loss: 151.297 -22400/69092 Loss: 151.685 -25600/69092 Loss: 153.702 -28800/69092 Loss: 153.929 -32000/69092 Loss: 151.989 -35200/69092 Loss: 152.220 -38400/69092 Loss: 153.127 -41600/69092 Loss: 153.456 -44800/69092 Loss: 153.248 -48000/69092 Loss: 151.492 -51200/69092 Loss: 152.005 -54400/69092 Loss: 150.737 -57600/69092 Loss: 155.506 -60800/69092 Loss: 148.446 -64000/69092 Loss: 152.352 -67200/69092 Loss: 151.310 -Training time 0:04:56.322250 -Epoch: 26 Average loss: 152.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 335) -0/69092 Loss: 141.427 -3200/69092 Loss: 152.090 -6400/69092 Loss: 152.904 -9600/69092 Loss: 152.459 -12800/69092 Loss: 151.812 -16000/69092 Loss: 150.855 -19200/69092 Loss: 153.354 -22400/69092 Loss: 150.437 -25600/69092 Loss: 153.535 -28800/69092 Loss: 151.582 -32000/69092 Loss: 152.588 -35200/69092 Loss: 149.283 -38400/69092 Loss: 151.001 -41600/69092 Loss: 150.085 -44800/69092 Loss: 154.701 -48000/69092 Loss: 156.761 -51200/69092 Loss: 152.037 -54400/69092 Loss: 153.141 -57600/69092 Loss: 152.711 -60800/69092 Loss: 151.207 -64000/69092 Loss: 153.963 -67200/69092 Loss: 151.814 -Training time 0:04:57.506762 -Epoch: 27 Average loss: 152.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 336) -0/69092 Loss: 133.221 -3200/69092 Loss: 153.101 -6400/69092 Loss: 153.749 -9600/69092 Loss: 152.099 -12800/69092 Loss: 150.121 -16000/69092 Loss: 153.229 -19200/69092 Loss: 152.229 -22400/69092 Loss: 153.361 -25600/69092 Loss: 152.052 -28800/69092 Loss: 152.372 -32000/69092 Loss: 151.172 -35200/69092 Loss: 149.881 -38400/69092 Loss: 152.041 -41600/69092 Loss: 152.504 -44800/69092 Loss: 150.522 -48000/69092 Loss: 152.769 -51200/69092 Loss: 151.048 -54400/69092 Loss: 152.903 -57600/69092 Loss: 151.750 -60800/69092 Loss: 152.186 -64000/69092 Loss: 149.461 -67200/69092 Loss: 154.764 -Training time 0:04:56.992493 -Epoch: 28 Average loss: 152.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 337) -0/69092 Loss: 130.269 -3200/69092 Loss: 153.670 -6400/69092 Loss: 152.220 -9600/69092 Loss: 151.508 -12800/69092 Loss: 153.114 -16000/69092 Loss: 151.541 -19200/69092 Loss: 152.177 -22400/69092 Loss: 153.604 -25600/69092 Loss: 152.756 -28800/69092 Loss: 153.729 -32000/69092 Loss: 152.179 -35200/69092 Loss: 151.586 -38400/69092 Loss: 150.351 -41600/69092 Loss: 152.783 -44800/69092 Loss: 154.172 -48000/69092 Loss: 150.299 -51200/69092 Loss: 151.737 -54400/69092 Loss: 152.123 -57600/69092 Loss: 151.734 -60800/69092 Loss: 147.117 -64000/69092 Loss: 151.109 -67200/69092 Loss: 153.096 -Training time 0:04:51.204427 -Epoch: 29 Average loss: 152.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 338) -0/69092 Loss: 138.425 -3200/69092 Loss: 152.477 -6400/69092 Loss: 150.676 -9600/69092 Loss: 153.611 -12800/69092 Loss: 150.906 -16000/69092 Loss: 152.130 -19200/69092 Loss: 150.774 -22400/69092 Loss: 153.285 -25600/69092 Loss: 153.297 -28800/69092 Loss: 153.633 -32000/69092 Loss: 151.448 -35200/69092 Loss: 153.320 -38400/69092 Loss: 152.201 -41600/69092 Loss: 152.348 -44800/69092 Loss: 150.531 -48000/69092 Loss: 151.512 -51200/69092 Loss: 150.381 -54400/69092 Loss: 152.497 -57600/69092 Loss: 151.720 -60800/69092 Loss: 152.262 -64000/69092 Loss: 155.182 -67200/69092 Loss: 150.858 -Training time 0:04:51.996438 -Epoch: 30 Average loss: 152.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 339) -0/69092 Loss: 149.449 -3200/69092 Loss: 153.819 -6400/69092 Loss: 150.767 -9600/69092 Loss: 154.335 -12800/69092 Loss: 154.126 -16000/69092 Loss: 149.557 -19200/69092 Loss: 151.935 -22400/69092 Loss: 152.038 -25600/69092 Loss: 151.220 -28800/69092 Loss: 151.983 -32000/69092 Loss: 152.670 -35200/69092 Loss: 151.051 -38400/69092 Loss: 153.609 -41600/69092 Loss: 152.595 -44800/69092 Loss: 151.606 -48000/69092 Loss: 150.659 -51200/69092 Loss: 153.891 -54400/69092 Loss: 152.512 -57600/69092 Loss: 152.411 -60800/69092 Loss: 155.702 -64000/69092 Loss: 151.627 -67200/69092 Loss: 152.198 -Training time 0:04:51.963552 -Epoch: 31 Average loss: 152.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 340) -0/69092 Loss: 134.457 -3200/69092 Loss: 153.652 -6400/69092 Loss: 154.143 -9600/69092 Loss: 150.744 -12800/69092 Loss: 154.232 -16000/69092 Loss: 149.880 -19200/69092 Loss: 153.318 -22400/69092 Loss: 152.315 -25600/69092 Loss: 151.022 -28800/69092 Loss: 152.031 -32000/69092 Loss: 150.523 -35200/69092 Loss: 154.217 -38400/69092 Loss: 150.024 -41600/69092 Loss: 151.019 -44800/69092 Loss: 152.273 -48000/69092 Loss: 152.065 -51200/69092 Loss: 156.054 -54400/69092 Loss: 152.644 -57600/69092 Loss: 150.708 -60800/69092 Loss: 150.233 -64000/69092 Loss: 151.841 -67200/69092 Loss: 153.538 -Training time 0:04:59.586796 -Epoch: 32 Average loss: 152.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 341) -0/69092 Loss: 184.830 -3200/69092 Loss: 149.674 -6400/69092 Loss: 151.520 -9600/69092 Loss: 153.057 -12800/69092 Loss: 152.992 -16000/69092 Loss: 150.488 -19200/69092 Loss: 151.317 -22400/69092 Loss: 153.007 -25600/69092 Loss: 152.180 -28800/69092 Loss: 153.014 -32000/69092 Loss: 153.689 -35200/69092 Loss: 149.681 -38400/69092 Loss: 151.869 -41600/69092 Loss: 153.280 -44800/69092 Loss: 153.019 -48000/69092 Loss: 152.745 -51200/69092 Loss: 152.673 -54400/69092 Loss: 154.760 -57600/69092 Loss: 150.124 -60800/69092 Loss: 150.195 -64000/69092 Loss: 151.911 -67200/69092 Loss: 152.179 -Training time 0:04:44.373168 -Epoch: 33 Average loss: 152.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 342) -0/69092 Loss: 149.493 -3200/69092 Loss: 153.542 -6400/69092 Loss: 152.415 -9600/69092 Loss: 154.209 -12800/69092 Loss: 150.385 -16000/69092 Loss: 153.775 -19200/69092 Loss: 150.375 -22400/69092 Loss: 151.428 -25600/69092 Loss: 151.631 -28800/69092 Loss: 153.269 -32000/69092 Loss: 151.129 -35200/69092 Loss: 151.653 -38400/69092 Loss: 155.009 -41600/69092 Loss: 155.339 -44800/69092 Loss: 151.274 -48000/69092 Loss: 153.453 -51200/69092 Loss: 150.441 -54400/69092 Loss: 152.416 -57600/69092 Loss: 153.149 -60800/69092 Loss: 151.520 -64000/69092 Loss: 152.832 -67200/69092 Loss: 152.487 -Training time 0:04:56.752912 -Epoch: 34 Average loss: 152.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 343) -0/69092 Loss: 156.455 -3200/69092 Loss: 153.220 -6400/69092 Loss: 151.141 -9600/69092 Loss: 151.671 -12800/69092 Loss: 151.010 -16000/69092 Loss: 155.255 -19200/69092 Loss: 153.328 -22400/69092 Loss: 151.027 -25600/69092 Loss: 155.107 -28800/69092 Loss: 151.477 -32000/69092 Loss: 151.732 -35200/69092 Loss: 156.207 -38400/69092 Loss: 150.103 -41600/69092 Loss: 153.276 -44800/69092 Loss: 150.903 -48000/69092 Loss: 149.701 -51200/69092 Loss: 151.371 -54400/69092 Loss: 152.385 -57600/69092 Loss: 153.020 -60800/69092 Loss: 149.253 -64000/69092 Loss: 152.212 -67200/69092 Loss: 151.646 -Training time 0:04:41.271757 -Epoch: 35 Average loss: 152.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 344) -0/69092 Loss: 152.728 -3200/69092 Loss: 154.176 -6400/69092 Loss: 152.111 -9600/69092 Loss: 153.827 -12800/69092 Loss: 148.727 -16000/69092 Loss: 154.085 -19200/69092 Loss: 150.397 -22400/69092 Loss: 152.221 -25600/69092 Loss: 152.440 -28800/69092 Loss: 151.169 -32000/69092 Loss: 150.328 -35200/69092 Loss: 153.477 -38400/69092 Loss: 154.612 -41600/69092 Loss: 151.677 -44800/69092 Loss: 153.689 -48000/69092 Loss: 150.797 -51200/69092 Loss: 151.514 -54400/69092 Loss: 149.755 -57600/69092 Loss: 152.959 -60800/69092 Loss: 151.039 -64000/69092 Loss: 150.996 -67200/69092 Loss: 157.028 -Training time 0:04:50.749251 -Epoch: 36 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 345) -0/69092 Loss: 144.968 -3200/69092 Loss: 150.944 -6400/69092 Loss: 151.882 -9600/69092 Loss: 151.432 -12800/69092 Loss: 153.335 -16000/69092 Loss: 151.410 -19200/69092 Loss: 151.090 -22400/69092 Loss: 151.332 -25600/69092 Loss: 150.389 -28800/69092 Loss: 151.724 -32000/69092 Loss: 153.236 -35200/69092 Loss: 151.028 -38400/69092 Loss: 153.111 -41600/69092 Loss: 152.455 -44800/69092 Loss: 150.457 -48000/69092 Loss: 151.080 -51200/69092 Loss: 152.359 -54400/69092 Loss: 154.452 -57600/69092 Loss: 153.823 -60800/69092 Loss: 152.210 -64000/69092 Loss: 156.284 -67200/69092 Loss: 153.959 -Training time 0:04:56.092557 -Epoch: 37 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 346) -0/69092 Loss: 154.519 -3200/69092 Loss: 152.953 -6400/69092 Loss: 151.713 -9600/69092 Loss: 151.209 -12800/69092 Loss: 152.897 -16000/69092 Loss: 152.985 -19200/69092 Loss: 150.601 -22400/69092 Loss: 152.633 -25600/69092 Loss: 152.365 -28800/69092 Loss: 152.170 -32000/69092 Loss: 153.599 -35200/69092 Loss: 154.194 -38400/69092 Loss: 151.321 -41600/69092 Loss: 151.657 -44800/69092 Loss: 152.809 -48000/69092 Loss: 149.193 -51200/69092 Loss: 151.585 -54400/69092 Loss: 147.995 -57600/69092 Loss: 154.751 -60800/69092 Loss: 152.405 -64000/69092 Loss: 151.126 -67200/69092 Loss: 153.054 -Training time 0:04:46.340005 -Epoch: 38 Average loss: 152.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 347) -0/69092 Loss: 155.517 -3200/69092 Loss: 151.532 -6400/69092 Loss: 151.045 -9600/69092 Loss: 150.674 -12800/69092 Loss: 149.913 -16000/69092 Loss: 153.018 -19200/69092 Loss: 151.897 -22400/69092 Loss: 151.769 -25600/69092 Loss: 151.634 -28800/69092 Loss: 152.942 -32000/69092 Loss: 153.543 -35200/69092 Loss: 148.720 -38400/69092 Loss: 153.905 -41600/69092 Loss: 151.111 -44800/69092 Loss: 153.790 -48000/69092 Loss: 151.695 -51200/69092 Loss: 152.201 -54400/69092 Loss: 152.448 -57600/69092 Loss: 154.993 -60800/69092 Loss: 152.544 -64000/69092 Loss: 154.550 -67200/69092 Loss: 153.987 -Training time 0:04:51.157197 -Epoch: 39 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 348) -0/69092 Loss: 164.980 -3200/69092 Loss: 152.534 -6400/69092 Loss: 151.433 -9600/69092 Loss: 148.842 -12800/69092 Loss: 153.554 -16000/69092 Loss: 153.431 -19200/69092 Loss: 152.971 -22400/69092 Loss: 152.744 -25600/69092 Loss: 151.805 -28800/69092 Loss: 154.479 -32000/69092 Loss: 151.800 -35200/69092 Loss: 152.465 -38400/69092 Loss: 152.071 -41600/69092 Loss: 150.298 -44800/69092 Loss: 153.446 -48000/69092 Loss: 151.722 -51200/69092 Loss: 154.719 -54400/69092 Loss: 149.358 -57600/69092 Loss: 151.644 -60800/69092 Loss: 152.203 -64000/69092 Loss: 153.698 -67200/69092 Loss: 153.300 -Training time 0:04:58.104908 -Epoch: 40 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 349) -0/69092 Loss: 155.595 -3200/69092 Loss: 150.947 -6400/69092 Loss: 154.446 -9600/69092 Loss: 153.506 -12800/69092 Loss: 151.536 -16000/69092 Loss: 153.836 -19200/69092 Loss: 153.533 -22400/69092 Loss: 150.537 -25600/69092 Loss: 152.646 -28800/69092 Loss: 151.218 -32000/69092 Loss: 153.552 -35200/69092 Loss: 152.001 -38400/69092 Loss: 152.176 -41600/69092 Loss: 152.006 -44800/69092 Loss: 151.491 -48000/69092 Loss: 150.715 -51200/69092 Loss: 151.317 -54400/69092 Loss: 152.502 -57600/69092 Loss: 154.138 -60800/69092 Loss: 150.647 -64000/69092 Loss: 152.744 -67200/69092 Loss: 150.142 -Training time 0:04:54.278531 -Epoch: 41 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 350) -0/69092 Loss: 165.297 -3200/69092 Loss: 150.804 -6400/69092 Loss: 151.645 -9600/69092 Loss: 153.291 -12800/69092 Loss: 152.469 -16000/69092 Loss: 150.577 -19200/69092 Loss: 154.290 -22400/69092 Loss: 150.442 -25600/69092 Loss: 154.266 -28800/69092 Loss: 154.679 -32000/69092 Loss: 152.875 -35200/69092 Loss: 151.537 -38400/69092 Loss: 151.901 -41600/69092 Loss: 151.255 -44800/69092 Loss: 151.752 -48000/69092 Loss: 152.236 -51200/69092 Loss: 152.769 -54400/69092 Loss: 151.213 -57600/69092 Loss: 153.572 -60800/69092 Loss: 152.105 -64000/69092 Loss: 149.684 -67200/69092 Loss: 152.700 -Training time 0:05:07.562855 -Epoch: 42 Average loss: 152.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 351) -0/69092 Loss: 148.370 -3200/69092 Loss: 152.623 -6400/69092 Loss: 152.860 -9600/69092 Loss: 153.164 -12800/69092 Loss: 152.447 -16000/69092 Loss: 152.457 -19200/69092 Loss: 153.142 -22400/69092 Loss: 150.295 -25600/69092 Loss: 152.441 -28800/69092 Loss: 150.415 -32000/69092 Loss: 154.880 -35200/69092 Loss: 154.536 -38400/69092 Loss: 153.023 -41600/69092 Loss: 152.579 -44800/69092 Loss: 153.105 -48000/69092 Loss: 150.858 -51200/69092 Loss: 148.467 -54400/69092 Loss: 150.451 -57600/69092 Loss: 152.593 -60800/69092 Loss: 150.685 -64000/69092 Loss: 151.622 -67200/69092 Loss: 153.743 -Training time 0:04:51.185614 -Epoch: 43 Average loss: 152.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 352) -0/69092 Loss: 167.932 -3200/69092 Loss: 151.753 -6400/69092 Loss: 153.492 -9600/69092 Loss: 153.002 -12800/69092 Loss: 151.284 -16000/69092 Loss: 152.758 -19200/69092 Loss: 152.294 -22400/69092 Loss: 150.516 -25600/69092 Loss: 152.514 -28800/69092 Loss: 152.163 -32000/69092 Loss: 147.794 -35200/69092 Loss: 152.661 -38400/69092 Loss: 152.315 -41600/69092 Loss: 152.247 -44800/69092 Loss: 155.118 -48000/69092 Loss: 152.939 -51200/69092 Loss: 153.689 -54400/69092 Loss: 152.181 -57600/69092 Loss: 149.681 -60800/69092 Loss: 150.995 -64000/69092 Loss: 151.173 -67200/69092 Loss: 153.536 -Training time 0:04:55.612014 -Epoch: 44 Average loss: 152.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 353) -0/69092 Loss: 145.841 -3200/69092 Loss: 152.229 -6400/69092 Loss: 151.560 -9600/69092 Loss: 151.520 -12800/69092 Loss: 152.022 -16000/69092 Loss: 149.459 -19200/69092 Loss: 151.850 -22400/69092 Loss: 151.131 -25600/69092 Loss: 154.602 -28800/69092 Loss: 153.778 -32000/69092 Loss: 151.886 -35200/69092 Loss: 149.483 -38400/69092 Loss: 150.160 -41600/69092 Loss: 150.472 -44800/69092 Loss: 153.515 -48000/69092 Loss: 153.779 -51200/69092 Loss: 151.000 -54400/69092 Loss: 153.249 -57600/69092 Loss: 152.344 -60800/69092 Loss: 154.424 -64000/69092 Loss: 152.395 -67200/69092 Loss: 155.873 -Training time 0:04:51.201725 -Epoch: 45 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 354) -0/69092 Loss: 137.913 -3200/69092 Loss: 152.157 -6400/69092 Loss: 152.798 -9600/69092 Loss: 152.298 -12800/69092 Loss: 152.906 -16000/69092 Loss: 154.373 -19200/69092 Loss: 151.240 -22400/69092 Loss: 153.380 -25600/69092 Loss: 153.667 -28800/69092 Loss: 152.635 -32000/69092 Loss: 151.434 -35200/69092 Loss: 150.640 -38400/69092 Loss: 151.175 -41600/69092 Loss: 150.284 -44800/69092 Loss: 151.346 -48000/69092 Loss: 149.708 -51200/69092 Loss: 153.606 -54400/69092 Loss: 151.059 -57600/69092 Loss: 150.702 -60800/69092 Loss: 153.747 -64000/69092 Loss: 152.882 -67200/69092 Loss: 152.776 -Training time 0:04:48.809736 -Epoch: 46 Average loss: 152.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 355) -0/69092 Loss: 155.595 -3200/69092 Loss: 151.454 -6400/69092 Loss: 150.406 -9600/69092 Loss: 153.454 -12800/69092 Loss: 151.006 -16000/69092 Loss: 151.426 -19200/69092 Loss: 156.457 -22400/69092 Loss: 150.815 -25600/69092 Loss: 151.828 -28800/69092 Loss: 151.957 -32000/69092 Loss: 151.945 -35200/69092 Loss: 152.698 -38400/69092 Loss: 152.272 -41600/69092 Loss: 150.738 -44800/69092 Loss: 152.915 -48000/69092 Loss: 153.258 -51200/69092 Loss: 151.136 -54400/69092 Loss: 153.077 -57600/69092 Loss: 152.956 -60800/69092 Loss: 149.251 -64000/69092 Loss: 151.603 -67200/69092 Loss: 153.848 -Training time 0:04:50.084359 -Epoch: 47 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 356) -0/69092 Loss: 156.728 -3200/69092 Loss: 153.443 -6400/69092 Loss: 150.638 -9600/69092 Loss: 151.727 -12800/69092 Loss: 152.303 -16000/69092 Loss: 151.170 -19200/69092 Loss: 152.111 -22400/69092 Loss: 152.699 -25600/69092 Loss: 150.311 -28800/69092 Loss: 150.221 -32000/69092 Loss: 155.142 -35200/69092 Loss: 152.097 -38400/69092 Loss: 152.748 -41600/69092 Loss: 155.204 -44800/69092 Loss: 152.113 -48000/69092 Loss: 152.013 -51200/69092 Loss: 152.560 -54400/69092 Loss: 154.394 -57600/69092 Loss: 151.125 -60800/69092 Loss: 153.749 -64000/69092 Loss: 152.106 -67200/69092 Loss: 151.150 -Training time 0:04:56.589392 -Epoch: 48 Average loss: 152.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 357) -0/69092 Loss: 162.978 -3200/69092 Loss: 153.373 -6400/69092 Loss: 151.620 -9600/69092 Loss: 151.033 -12800/69092 Loss: 152.945 -16000/69092 Loss: 151.605 -19200/69092 Loss: 150.252 -22400/69092 Loss: 151.784 -25600/69092 Loss: 152.188 -28800/69092 Loss: 151.456 -32000/69092 Loss: 152.454 -35200/69092 Loss: 153.653 -38400/69092 Loss: 152.103 -41600/69092 Loss: 153.231 -44800/69092 Loss: 150.651 -48000/69092 Loss: 152.846 -51200/69092 Loss: 151.844 -54400/69092 Loss: 152.032 -57600/69092 Loss: 153.584 -60800/69092 Loss: 151.616 -64000/69092 Loss: 153.219 -67200/69092 Loss: 152.786 -Training time 0:04:47.694802 -Epoch: 49 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 358) -0/69092 Loss: 146.221 -3200/69092 Loss: 152.938 -6400/69092 Loss: 153.933 -9600/69092 Loss: 152.109 -12800/69092 Loss: 153.504 -16000/69092 Loss: 153.531 -19200/69092 Loss: 153.283 -22400/69092 Loss: 150.464 -25600/69092 Loss: 152.537 -28800/69092 Loss: 153.610 -32000/69092 Loss: 152.708 -35200/69092 Loss: 152.029 -38400/69092 Loss: 148.441 -41600/69092 Loss: 149.923 -44800/69092 Loss: 151.397 -48000/69092 Loss: 151.045 -51200/69092 Loss: 152.944 -54400/69092 Loss: 151.273 -57600/69092 Loss: 153.945 -60800/69092 Loss: 153.427 -64000/69092 Loss: 153.790 -67200/69092 Loss: 151.499 -Training time 0:04:50.751972 -Epoch: 50 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 359) -0/69092 Loss: 165.142 -3200/69092 Loss: 151.661 -6400/69092 Loss: 151.705 -9600/69092 Loss: 151.387 -12800/69092 Loss: 153.068 -16000/69092 Loss: 153.747 -19200/69092 Loss: 150.545 -22400/69092 Loss: 150.692 -25600/69092 Loss: 152.346 -28800/69092 Loss: 151.423 -32000/69092 Loss: 153.013 -35200/69092 Loss: 149.609 -38400/69092 Loss: 153.360 -41600/69092 Loss: 150.800 -44800/69092 Loss: 153.717 -48000/69092 Loss: 151.040 -51200/69092 Loss: 152.198 -54400/69092 Loss: 152.882 -57600/69092 Loss: 153.217 -60800/69092 Loss: 151.976 -64000/69092 Loss: 152.568 -67200/69092 Loss: 154.505 -Training time 0:04:53.556238 -Epoch: 51 Average loss: 152.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 360) -0/69092 Loss: 155.354 -3200/69092 Loss: 151.415 -6400/69092 Loss: 148.914 -9600/69092 Loss: 151.348 -12800/69092 Loss: 152.186 -16000/69092 Loss: 154.559 -19200/69092 Loss: 153.989 -22400/69092 Loss: 154.117 -25600/69092 Loss: 152.078 -28800/69092 Loss: 152.098 -32000/69092 Loss: 151.568 -35200/69092 Loss: 151.049 -38400/69092 Loss: 151.978 -41600/69092 Loss: 153.583 -44800/69092 Loss: 152.448 -48000/69092 Loss: 148.927 -51200/69092 Loss: 153.927 -54400/69092 Loss: 152.828 -57600/69092 Loss: 152.888 -60800/69092 Loss: 150.125 -64000/69092 Loss: 150.730 -67200/69092 Loss: 152.808 -Training time 0:05:00.744422 -Epoch: 52 Average loss: 152.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 361) -0/69092 Loss: 146.191 -3200/69092 Loss: 151.267 -6400/69092 Loss: 155.417 -9600/69092 Loss: 149.679 -12800/69092 Loss: 152.965 -16000/69092 Loss: 151.732 -19200/69092 Loss: 152.283 -22400/69092 Loss: 151.821 -25600/69092 Loss: 151.954 -28800/69092 Loss: 156.055 -32000/69092 Loss: 152.704 -35200/69092 Loss: 152.981 -38400/69092 Loss: 149.679 -41600/69092 Loss: 151.232 -44800/69092 Loss: 151.826 -48000/69092 Loss: 151.640 -51200/69092 Loss: 150.887 -54400/69092 Loss: 153.202 -57600/69092 Loss: 152.679 -60800/69092 Loss: 151.314 -64000/69092 Loss: 150.668 -67200/69092 Loss: 153.902 -Training time 0:04:54.495637 -Epoch: 53 Average loss: 152.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 362) -0/69092 Loss: 166.947 -3200/69092 Loss: 154.093 -6400/69092 Loss: 154.242 -9600/69092 Loss: 152.789 -12800/69092 Loss: 154.342 -16000/69092 Loss: 149.782 -19200/69092 Loss: 153.207 -22400/69092 Loss: 151.134 -25600/69092 Loss: 152.531 -28800/69092 Loss: 151.491 -32000/69092 Loss: 149.411 -35200/69092 Loss: 153.941 -38400/69092 Loss: 152.423 -41600/69092 Loss: 151.690 -44800/69092 Loss: 150.280 -48000/69092 Loss: 152.689 -51200/69092 Loss: 149.195 -54400/69092 Loss: 153.367 -57600/69092 Loss: 154.523 -60800/69092 Loss: 152.483 -64000/69092 Loss: 152.741 -67200/69092 Loss: 149.173 -Training time 0:04:45.627212 -Epoch: 54 Average loss: 152.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 363) -0/69092 Loss: 157.367 -3200/69092 Loss: 150.394 -6400/69092 Loss: 150.663 -9600/69092 Loss: 153.807 -12800/69092 Loss: 151.130 -16000/69092 Loss: 154.581 -19200/69092 Loss: 152.572 -22400/69092 Loss: 152.268 -25600/69092 Loss: 155.387 -28800/69092 Loss: 150.463 -32000/69092 Loss: 151.389 -35200/69092 Loss: 151.641 -38400/69092 Loss: 153.353 -41600/69092 Loss: 152.714 -44800/69092 Loss: 152.886 -48000/69092 Loss: 153.651 -51200/69092 Loss: 152.755 -54400/69092 Loss: 150.921 -57600/69092 Loss: 151.642 -60800/69092 Loss: 150.403 -64000/69092 Loss: 151.311 -67200/69092 Loss: 151.678 -Training time 0:05:02.730608 -Epoch: 55 Average loss: 152.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 364) -0/69092 Loss: 145.930 -3200/69092 Loss: 150.429 -6400/69092 Loss: 151.513 -9600/69092 Loss: 152.365 -12800/69092 Loss: 151.374 -16000/69092 Loss: 152.184 -19200/69092 Loss: 152.533 -22400/69092 Loss: 154.206 -25600/69092 Loss: 153.850 -28800/69092 Loss: 151.375 -32000/69092 Loss: 154.196 -35200/69092 Loss: 152.400 -38400/69092 Loss: 151.774 -41600/69092 Loss: 153.905 -44800/69092 Loss: 151.187 -48000/69092 Loss: 150.063 -51200/69092 Loss: 152.525 -54400/69092 Loss: 150.089 -57600/69092 Loss: 153.965 -60800/69092 Loss: 152.555 -64000/69092 Loss: 150.469 -67200/69092 Loss: 153.792 -Training time 0:05:08.792934 -Epoch: 56 Average loss: 152.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 365) -0/69092 Loss: 152.498 -3200/69092 Loss: 150.841 -6400/69092 Loss: 149.979 -9600/69092 Loss: 154.737 -12800/69092 Loss: 152.760 -16000/69092 Loss: 153.164 -19200/69092 Loss: 151.122 -22400/69092 Loss: 150.475 -25600/69092 Loss: 153.124 -28800/69092 Loss: 150.368 -32000/69092 Loss: 152.099 -35200/69092 Loss: 154.059 -38400/69092 Loss: 152.283 -41600/69092 Loss: 153.770 -44800/69092 Loss: 151.144 -48000/69092 Loss: 153.797 -51200/69092 Loss: 153.163 -54400/69092 Loss: 151.551 -57600/69092 Loss: 149.193 -60800/69092 Loss: 152.865 -64000/69092 Loss: 151.365 -67200/69092 Loss: 151.513 -Training time 0:04:57.827078 -Epoch: 57 Average loss: 152.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 366) -0/69092 Loss: 147.381 -3200/69092 Loss: 153.777 -6400/69092 Loss: 153.114 -9600/69092 Loss: 149.780 -12800/69092 Loss: 153.229 -16000/69092 Loss: 150.720 -19200/69092 Loss: 151.541 -22400/69092 Loss: 152.261 -25600/69092 Loss: 151.935 -28800/69092 Loss: 150.915 -32000/69092 Loss: 153.301 -35200/69092 Loss: 151.364 -38400/69092 Loss: 151.890 -41600/69092 Loss: 153.117 -44800/69092 Loss: 151.360 -48000/69092 Loss: 152.360 -51200/69092 Loss: 152.068 -54400/69092 Loss: 149.764 -57600/69092 Loss: 152.226 -60800/69092 Loss: 151.177 -64000/69092 Loss: 153.096 -67200/69092 Loss: 153.029 -Training time 0:05:02.011952 -Epoch: 58 Average loss: 151.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 367) -0/69092 Loss: 150.569 -3200/69092 Loss: 152.745 -6400/69092 Loss: 153.195 -9600/69092 Loss: 150.142 -12800/69092 Loss: 153.325 -16000/69092 Loss: 149.827 -19200/69092 Loss: 153.633 -22400/69092 Loss: 152.257 -25600/69092 Loss: 151.171 -28800/69092 Loss: 148.631 -32000/69092 Loss: 153.539 -35200/69092 Loss: 154.201 -38400/69092 Loss: 151.118 -41600/69092 Loss: 153.224 -44800/69092 Loss: 151.894 -48000/69092 Loss: 153.593 -51200/69092 Loss: 150.882 -54400/69092 Loss: 153.404 -57600/69092 Loss: 152.346 -60800/69092 Loss: 154.515 -64000/69092 Loss: 151.724 -67200/69092 Loss: 151.763 -Training time 0:04:51.397189 -Epoch: 59 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 368) -0/69092 Loss: 152.698 -3200/69092 Loss: 150.510 -6400/69092 Loss: 154.781 -9600/69092 Loss: 152.349 -12800/69092 Loss: 152.191 -16000/69092 Loss: 150.223 -19200/69092 Loss: 150.018 -22400/69092 Loss: 153.098 -25600/69092 Loss: 152.559 -28800/69092 Loss: 150.995 -32000/69092 Loss: 150.916 -35200/69092 Loss: 155.911 -38400/69092 Loss: 151.247 -41600/69092 Loss: 151.564 -44800/69092 Loss: 154.736 -48000/69092 Loss: 150.521 -51200/69092 Loss: 151.808 -54400/69092 Loss: 153.132 -57600/69092 Loss: 152.417 -60800/69092 Loss: 155.007 -64000/69092 Loss: 151.645 -67200/69092 Loss: 151.255 -Training time 0:04:56.358551 -Epoch: 60 Average loss: 152.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 369) -0/69092 Loss: 144.129 -3200/69092 Loss: 151.475 -6400/69092 Loss: 151.476 -9600/69092 Loss: 152.586 -12800/69092 Loss: 151.600 -16000/69092 Loss: 150.702 -19200/69092 Loss: 150.883 -22400/69092 Loss: 151.202 -25600/69092 Loss: 153.367 -28800/69092 Loss: 152.773 -32000/69092 Loss: 151.591 -35200/69092 Loss: 152.391 -38400/69092 Loss: 152.063 -41600/69092 Loss: 153.060 -44800/69092 Loss: 151.395 -48000/69092 Loss: 154.362 -51200/69092 Loss: 150.850 -54400/69092 Loss: 154.596 -57600/69092 Loss: 151.363 -60800/69092 Loss: 153.536 -64000/69092 Loss: 155.335 -67200/69092 Loss: 151.891 -Training time 0:05:23.467534 -Epoch: 61 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 370) -0/69092 Loss: 163.940 -3200/69092 Loss: 150.827 -6400/69092 Loss: 149.793 -9600/69092 Loss: 151.618 -12800/69092 Loss: 151.544 -16000/69092 Loss: 152.441 -19200/69092 Loss: 152.698 -22400/69092 Loss: 152.034 -25600/69092 Loss: 150.992 -28800/69092 Loss: 149.667 -32000/69092 Loss: 153.019 -35200/69092 Loss: 154.537 -38400/69092 Loss: 155.126 -41600/69092 Loss: 150.875 -44800/69092 Loss: 151.684 -48000/69092 Loss: 150.959 -51200/69092 Loss: 152.445 -54400/69092 Loss: 152.994 -57600/69092 Loss: 151.815 -60800/69092 Loss: 153.775 -64000/69092 Loss: 151.573 -67200/69092 Loss: 155.133 -Training time 0:05:53.166138 -Epoch: 62 Average loss: 152.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 371) -0/69092 Loss: 160.420 -3200/69092 Loss: 153.931 -6400/69092 Loss: 152.696 -9600/69092 Loss: 152.333 -12800/69092 Loss: 151.992 -16000/69092 Loss: 150.342 -19200/69092 Loss: 149.804 -22400/69092 Loss: 151.871 -25600/69092 Loss: 150.169 -28800/69092 Loss: 157.273 -32000/69092 Loss: 152.391 -35200/69092 Loss: 153.342 -38400/69092 Loss: 153.075 -41600/69092 Loss: 155.212 -44800/69092 Loss: 152.789 -48000/69092 Loss: 153.142 -51200/69092 Loss: 149.485 -54400/69092 Loss: 152.921 -57600/69092 Loss: 150.541 -60800/69092 Loss: 152.106 -64000/69092 Loss: 151.806 -67200/69092 Loss: 150.912 -Training time 0:05:24.650218 -Epoch: 63 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 372) -0/69092 Loss: 157.216 -3200/69092 Loss: 152.605 -6400/69092 Loss: 154.170 -9600/69092 Loss: 150.242 -12800/69092 Loss: 150.847 -16000/69092 Loss: 153.558 -19200/69092 Loss: 149.197 -22400/69092 Loss: 152.052 -25600/69092 Loss: 153.600 -28800/69092 Loss: 150.805 -32000/69092 Loss: 151.154 -35200/69092 Loss: 151.345 -38400/69092 Loss: 153.986 -41600/69092 Loss: 153.242 -44800/69092 Loss: 151.297 -48000/69092 Loss: 152.481 -51200/69092 Loss: 154.252 -54400/69092 Loss: 150.514 -57600/69092 Loss: 151.360 -60800/69092 Loss: 151.142 -64000/69092 Loss: 152.341 -67200/69092 Loss: 152.235 -Training time 0:05:23.349995 -Epoch: 64 Average loss: 152.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 373) -0/69092 Loss: 156.083 -3200/69092 Loss: 148.343 -6400/69092 Loss: 151.406 -9600/69092 Loss: 152.402 -12800/69092 Loss: 152.789 -16000/69092 Loss: 152.097 -19200/69092 Loss: 151.255 -22400/69092 Loss: 150.589 -25600/69092 Loss: 151.193 -28800/69092 Loss: 151.768 -32000/69092 Loss: 152.436 -35200/69092 Loss: 151.905 -38400/69092 Loss: 151.210 -41600/69092 Loss: 153.031 -44800/69092 Loss: 155.077 -48000/69092 Loss: 152.141 -51200/69092 Loss: 152.639 -54400/69092 Loss: 152.202 -57600/69092 Loss: 153.911 -60800/69092 Loss: 150.886 -64000/69092 Loss: 151.991 -67200/69092 Loss: 153.081 -Training time 0:05:27.113903 -Epoch: 65 Average loss: 152.06 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 374) -0/69092 Loss: 146.668 -3200/69092 Loss: 154.008 -6400/69092 Loss: 155.628 -9600/69092 Loss: 152.317 -12800/69092 Loss: 152.248 -16000/69092 Loss: 153.502 -19200/69092 Loss: 153.896 -22400/69092 Loss: 151.885 -25600/69092 Loss: 153.051 -28800/69092 Loss: 150.148 -32000/69092 Loss: 151.484 -35200/69092 Loss: 151.041 -38400/69092 Loss: 152.862 -41600/69092 Loss: 150.271 -44800/69092 Loss: 153.355 -48000/69092 Loss: 150.979 -51200/69092 Loss: 150.087 -54400/69092 Loss: 150.249 -57600/69092 Loss: 153.382 -60800/69092 Loss: 150.308 -64000/69092 Loss: 152.263 -67200/69092 Loss: 150.980 -Training time 0:05:23.714057 -Epoch: 66 Average loss: 152.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 375) -0/69092 Loss: 142.300 -3200/69092 Loss: 152.648 -6400/69092 Loss: 153.002 -9600/69092 Loss: 151.178 -12800/69092 Loss: 151.427 -16000/69092 Loss: 150.636 -19200/69092 Loss: 153.439 -22400/69092 Loss: 153.312 -25600/69092 Loss: 151.814 -28800/69092 Loss: 153.635 -32000/69092 Loss: 152.744 -35200/69092 Loss: 152.227 -38400/69092 Loss: 152.585 -41600/69092 Loss: 151.846 -44800/69092 Loss: 151.106 -48000/69092 Loss: 152.238 -51200/69092 Loss: 150.460 -54400/69092 Loss: 153.362 -57600/69092 Loss: 154.661 -60800/69092 Loss: 153.270 -64000/69092 Loss: 150.172 -67200/69092 Loss: 152.478 -Training time 0:05:33.072789 -Epoch: 67 Average loss: 152.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 376) -0/69092 Loss: 167.086 -3200/69092 Loss: 152.539 -6400/69092 Loss: 153.615 -9600/69092 Loss: 153.984 -12800/69092 Loss: 153.109 -16000/69092 Loss: 151.658 -19200/69092 Loss: 153.113 -22400/69092 Loss: 151.606 -25600/69092 Loss: 149.857 -28800/69092 Loss: 152.291 -32000/69092 Loss: 152.001 -35200/69092 Loss: 150.874 -38400/69092 Loss: 152.269 -41600/69092 Loss: 152.812 -44800/69092 Loss: 152.633 -48000/69092 Loss: 153.407 -51200/69092 Loss: 149.529 -54400/69092 Loss: 150.778 -57600/69092 Loss: 154.074 -60800/69092 Loss: 155.265 -64000/69092 Loss: 150.943 -67200/69092 Loss: 152.413 -Training time 0:04:59.252105 -Epoch: 68 Average loss: 152.32 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 377) -0/69092 Loss: 142.886 -3200/69092 Loss: 150.915 -6400/69092 Loss: 151.632 -9600/69092 Loss: 152.223 -12800/69092 Loss: 150.318 -16000/69092 Loss: 151.817 -19200/69092 Loss: 152.761 -22400/69092 Loss: 152.089 -25600/69092 Loss: 154.266 -28800/69092 Loss: 150.921 -32000/69092 Loss: 151.730 -35200/69092 Loss: 153.607 -38400/69092 Loss: 153.081 -41600/69092 Loss: 150.853 -44800/69092 Loss: 152.767 -48000/69092 Loss: 152.460 -51200/69092 Loss: 150.523 -54400/69092 Loss: 151.378 -57600/69092 Loss: 153.249 -60800/69092 Loss: 152.830 -64000/69092 Loss: 151.944 -67200/69092 Loss: 152.016 -Training time 0:05:16.139701 -Epoch: 69 Average loss: 152.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 378) -0/69092 Loss: 171.625 -3200/69092 Loss: 154.513 -6400/69092 Loss: 151.640 -9600/69092 Loss: 150.764 -12800/69092 Loss: 150.490 -16000/69092 Loss: 151.810 -19200/69092 Loss: 153.845 -22400/69092 Loss: 150.604 -25600/69092 Loss: 152.091 -28800/69092 Loss: 150.351 -32000/69092 Loss: 154.173 -35200/69092 Loss: 153.935 -38400/69092 Loss: 151.496 -41600/69092 Loss: 150.508 -44800/69092 Loss: 151.278 -48000/69092 Loss: 148.709 -51200/69092 Loss: 152.223 -54400/69092 Loss: 154.862 -57600/69092 Loss: 152.224 -60800/69092 Loss: 153.854 -64000/69092 Loss: 150.635 -67200/69092 Loss: 150.417 -Training time 0:05:20.814982 -Epoch: 70 Average loss: 152.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 379) -0/69092 Loss: 159.456 -3200/69092 Loss: 151.843 -6400/69092 Loss: 152.962 -9600/69092 Loss: 153.162 -12800/69092 Loss: 152.416 -16000/69092 Loss: 152.438 -19200/69092 Loss: 154.884 -22400/69092 Loss: 152.882 -25600/69092 Loss: 152.923 -28800/69092 Loss: 151.315 -32000/69092 Loss: 153.602 -35200/69092 Loss: 151.506 -38400/69092 Loss: 153.189 -41600/69092 Loss: 151.808 -44800/69092 Loss: 149.524 -48000/69092 Loss: 152.428 -51200/69092 Loss: 151.998 -54400/69092 Loss: 151.662 -57600/69092 Loss: 149.739 -60800/69092 Loss: 152.809 -64000/69092 Loss: 154.365 -67200/69092 Loss: 150.230 -Training time 0:04:41.908707 -Epoch: 71 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 380) -0/69092 Loss: 147.989 -3200/69092 Loss: 152.401 -6400/69092 Loss: 151.690 -9600/69092 Loss: 151.527 -12800/69092 Loss: 151.547 -16000/69092 Loss: 148.992 -19200/69092 Loss: 153.467 -22400/69092 Loss: 150.681 -25600/69092 Loss: 153.436 -28800/69092 Loss: 152.665 -32000/69092 Loss: 153.847 -35200/69092 Loss: 149.465 -38400/69092 Loss: 154.151 -41600/69092 Loss: 152.815 -44800/69092 Loss: 152.269 -48000/69092 Loss: 150.504 -51200/69092 Loss: 153.604 -54400/69092 Loss: 153.192 -57600/69092 Loss: 151.053 -60800/69092 Loss: 153.720 -64000/69092 Loss: 153.013 -67200/69092 Loss: 152.351 -Training time 0:04:49.550108 -Epoch: 72 Average loss: 152.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 381) -0/69092 Loss: 155.271 -3200/69092 Loss: 153.494 -6400/69092 Loss: 152.078 -9600/69092 Loss: 149.940 -12800/69092 Loss: 150.048 -16000/69092 Loss: 150.825 -19200/69092 Loss: 150.739 -22400/69092 Loss: 152.702 -25600/69092 Loss: 155.752 -28800/69092 Loss: 154.054 -32000/69092 Loss: 151.410 -35200/69092 Loss: 154.361 -38400/69092 Loss: 150.217 -41600/69092 Loss: 153.970 -44800/69092 Loss: 151.603 -48000/69092 Loss: 150.173 -51200/69092 Loss: 151.283 -54400/69092 Loss: 150.320 -57600/69092 Loss: 154.031 -60800/69092 Loss: 151.250 -64000/69092 Loss: 152.557 -67200/69092 Loss: 152.158 -Training time 0:04:51.031669 -Epoch: 73 Average loss: 152.07 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 382) -0/69092 Loss: 167.281 -3200/69092 Loss: 151.140 -6400/69092 Loss: 151.214 -9600/69092 Loss: 154.212 -12800/69092 Loss: 152.252 -16000/69092 Loss: 148.862 -19200/69092 Loss: 149.399 -22400/69092 Loss: 152.893 -25600/69092 Loss: 153.142 -28800/69092 Loss: 152.190 -32000/69092 Loss: 151.733 -35200/69092 Loss: 152.655 -38400/69092 Loss: 154.997 -41600/69092 Loss: 151.070 -44800/69092 Loss: 153.855 -48000/69092 Loss: 152.491 -51200/69092 Loss: 150.044 -54400/69092 Loss: 150.720 -57600/69092 Loss: 150.193 -60800/69092 Loss: 152.856 -64000/69092 Loss: 152.537 -67200/69092 Loss: 152.294 -Training time 0:04:55.081420 -Epoch: 74 Average loss: 152.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 383) -0/69092 Loss: 154.157 -3200/69092 Loss: 154.255 -6400/69092 Loss: 153.611 -9600/69092 Loss: 151.472 -12800/69092 Loss: 153.355 -16000/69092 Loss: 150.815 -19200/69092 Loss: 153.617 -22400/69092 Loss: 153.628 -25600/69092 Loss: 150.988 -28800/69092 Loss: 151.479 -32000/69092 Loss: 152.324 -35200/69092 Loss: 153.211 -38400/69092 Loss: 150.005 -41600/69092 Loss: 148.870 -44800/69092 Loss: 154.888 -48000/69092 Loss: 152.478 -51200/69092 Loss: 152.040 -54400/69092 Loss: 151.494 -57600/69092 Loss: 151.065 -60800/69092 Loss: 153.344 -64000/69092 Loss: 153.279 -67200/69092 Loss: 154.722 -Training time 0:04:50.357753 -Epoch: 75 Average loss: 152.45 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 384) -0/69092 Loss: 148.367 -3200/69092 Loss: 149.811 -6400/69092 Loss: 152.498 -9600/69092 Loss: 153.230 -12800/69092 Loss: 151.580 -16000/69092 Loss: 149.368 -19200/69092 Loss: 153.172 -22400/69092 Loss: 152.466 -25600/69092 Loss: 149.360 -28800/69092 Loss: 150.754 -32000/69092 Loss: 150.235 -35200/69092 Loss: 152.744 -38400/69092 Loss: 152.375 -41600/69092 Loss: 152.117 -44800/69092 Loss: 149.865 -48000/69092 Loss: 152.296 -51200/69092 Loss: 150.958 -54400/69092 Loss: 154.242 -57600/69092 Loss: 154.513 -60800/69092 Loss: 153.132 -64000/69092 Loss: 154.810 -67200/69092 Loss: 152.240 -Training time 0:04:56.023137 -Epoch: 76 Average loss: 152.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 385) -0/69092 Loss: 159.299 -3200/69092 Loss: 151.701 -6400/69092 Loss: 154.116 -9600/69092 Loss: 153.099 -12800/69092 Loss: 153.676 -16000/69092 Loss: 152.018 -19200/69092 Loss: 152.899 -22400/69092 Loss: 152.236 -25600/69092 Loss: 154.659 -28800/69092 Loss: 150.001 -32000/69092 Loss: 151.848 -35200/69092 Loss: 153.828 -38400/69092 Loss: 149.875 -41600/69092 Loss: 154.095 -44800/69092 Loss: 152.501 -48000/69092 Loss: 150.692 -51200/69092 Loss: 151.368 -54400/69092 Loss: 152.377 -57600/69092 Loss: 154.053 -60800/69092 Loss: 150.230 -64000/69092 Loss: 151.682 -67200/69092 Loss: 150.104 -Training time 0:05:38.090144 -Epoch: 77 Average loss: 152.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 386) -0/69092 Loss: 133.769 -3200/69092 Loss: 150.945 -6400/69092 Loss: 152.139 -9600/69092 Loss: 150.133 -12800/69092 Loss: 153.125 -16000/69092 Loss: 152.958 -19200/69092 Loss: 153.307 -22400/69092 Loss: 154.924 -25600/69092 Loss: 150.651 -28800/69092 Loss: 152.592 -32000/69092 Loss: 151.322 -35200/69092 Loss: 151.483 -38400/69092 Loss: 151.906 -41600/69092 Loss: 151.097 -44800/69092 Loss: 152.955 -48000/69092 Loss: 152.512 -51200/69092 Loss: 153.579 -54400/69092 Loss: 150.903 -57600/69092 Loss: 151.697 -60800/69092 Loss: 152.023 -64000/69092 Loss: 152.772 -67200/69092 Loss: 152.888 -Training time 0:04:55.780531 -Epoch: 78 Average loss: 152.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 387) -0/69092 Loss: 177.367 -3200/69092 Loss: 153.016 -6400/69092 Loss: 154.626 -9600/69092 Loss: 152.591 -12800/69092 Loss: 152.371 -16000/69092 Loss: 150.365 -19200/69092 Loss: 151.905 -22400/69092 Loss: 152.857 -25600/69092 Loss: 151.943 -28800/69092 Loss: 153.557 -32000/69092 Loss: 153.086 -35200/69092 Loss: 150.043 -38400/69092 Loss: 152.453 -41600/69092 Loss: 149.896 -44800/69092 Loss: 149.321 -48000/69092 Loss: 153.453 -51200/69092 Loss: 153.388 -54400/69092 Loss: 151.923 -57600/69092 Loss: 150.125 -60800/69092 Loss: 153.940 -64000/69092 Loss: 151.747 -67200/69092 Loss: 151.802 -Training time 0:04:55.208007 -Epoch: 79 Average loss: 152.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 388) -0/69092 Loss: 150.818 -3200/69092 Loss: 151.441 -6400/69092 Loss: 154.883 -9600/69092 Loss: 152.123 -12800/69092 Loss: 152.493 -16000/69092 Loss: 152.560 -19200/69092 Loss: 152.359 -22400/69092 Loss: 152.105 -25600/69092 Loss: 152.571 -28800/69092 Loss: 150.197 -32000/69092 Loss: 151.594 -35200/69092 Loss: 148.968 -38400/69092 Loss: 153.790 -41600/69092 Loss: 154.585 -44800/69092 Loss: 152.791 -48000/69092 Loss: 151.996 -51200/69092 Loss: 151.946 -54400/69092 Loss: 151.222 -57600/69092 Loss: 151.251 -60800/69092 Loss: 153.577 -64000/69092 Loss: 148.282 -67200/69092 Loss: 153.347 -Training time 0:04:59.494419 -Epoch: 80 Average loss: 152.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 389) -0/69092 Loss: 160.390 -3200/69092 Loss: 152.723 -6400/69092 Loss: 154.673 -9600/69092 Loss: 152.125 -12800/69092 Loss: 149.842 -16000/69092 Loss: 150.631 -19200/69092 Loss: 154.081 -22400/69092 Loss: 153.013 -25600/69092 Loss: 154.062 -28800/69092 Loss: 153.230 -32000/69092 Loss: 151.247 -35200/69092 Loss: 151.991 -38400/69092 Loss: 148.997 -41600/69092 Loss: 153.138 -44800/69092 Loss: 152.746 -48000/69092 Loss: 152.123 -51200/69092 Loss: 153.045 -54400/69092 Loss: 153.534 -57600/69092 Loss: 149.361 -60800/69092 Loss: 149.920 -64000/69092 Loss: 150.953 -67200/69092 Loss: 151.708 -Training time 0:04:59.060240 -Epoch: 81 Average loss: 152.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 390) -0/69092 Loss: 153.963 -3200/69092 Loss: 152.424 -6400/69092 Loss: 155.083 -9600/69092 Loss: 151.304 -12800/69092 Loss: 152.461 -16000/69092 Loss: 152.443 -19200/69092 Loss: 152.779 -22400/69092 Loss: 152.083 -25600/69092 Loss: 151.778 -28800/69092 Loss: 152.084 -32000/69092 Loss: 151.633 -35200/69092 Loss: 153.404 -38400/69092 Loss: 148.104 -41600/69092 Loss: 155.486 -44800/69092 Loss: 148.950 -48000/69092 Loss: 152.170 -51200/69092 Loss: 154.032 -54400/69092 Loss: 152.849 -57600/69092 Loss: 150.474 -60800/69092 Loss: 153.086 -64000/69092 Loss: 151.313 -67200/69092 Loss: 149.878 -Training time 0:04:57.080448 -Epoch: 82 Average loss: 151.97 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 391) -0/69092 Loss: 154.336 -3200/69092 Loss: 151.494 -6400/69092 Loss: 152.967 -9600/69092 Loss: 149.309 -12800/69092 Loss: 151.182 -16000/69092 Loss: 150.112 -19200/69092 Loss: 153.050 -22400/69092 Loss: 150.839 -25600/69092 Loss: 153.711 -28800/69092 Loss: 151.765 -32000/69092 Loss: 151.727 -35200/69092 Loss: 152.602 -38400/69092 Loss: 154.348 -41600/69092 Loss: 152.824 -44800/69092 Loss: 150.893 -48000/69092 Loss: 150.305 -51200/69092 Loss: 152.051 -54400/69092 Loss: 153.804 -57600/69092 Loss: 154.280 -60800/69092 Loss: 152.271 -64000/69092 Loss: 152.635 -67200/69092 Loss: 149.864 -Training time 0:04:57.010780 -Epoch: 83 Average loss: 151.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 392) -0/69092 Loss: 182.028 -3200/69092 Loss: 152.429 -6400/69092 Loss: 150.760 -9600/69092 Loss: 151.331 -12800/69092 Loss: 151.735 -16000/69092 Loss: 151.469 -19200/69092 Loss: 151.580 -22400/69092 Loss: 151.156 -25600/69092 Loss: 153.199 -28800/69092 Loss: 151.023 -32000/69092 Loss: 152.648 -35200/69092 Loss: 151.730 -38400/69092 Loss: 155.580 -41600/69092 Loss: 152.280 -44800/69092 Loss: 153.323 -48000/69092 Loss: 151.427 -51200/69092 Loss: 154.983 -54400/69092 Loss: 150.072 -57600/69092 Loss: 153.436 -60800/69092 Loss: 152.252 -64000/69092 Loss: 150.017 -67200/69092 Loss: 152.116 -Training time 0:04:45.735179 -Epoch: 84 Average loss: 152.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 393) -0/69092 Loss: 154.702 -3200/69092 Loss: 152.774 -6400/69092 Loss: 152.440 -9600/69092 Loss: 154.457 -12800/69092 Loss: 154.161 -16000/69092 Loss: 150.860 -19200/69092 Loss: 151.098 -22400/69092 Loss: 150.214 -25600/69092 Loss: 148.884 -28800/69092 Loss: 149.376 -32000/69092 Loss: 151.280 -35200/69092 Loss: 153.219 -38400/69092 Loss: 150.948 -41600/69092 Loss: 155.880 -44800/69092 Loss: 151.803 -48000/69092 Loss: 152.655 -51200/69092 Loss: 153.246 -54400/69092 Loss: 151.673 -57600/69092 Loss: 153.024 -60800/69092 Loss: 153.541 -64000/69092 Loss: 153.738 -67200/69092 Loss: 151.754 -Training time 0:04:57.023906 -Epoch: 85 Average loss: 152.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 394) -0/69092 Loss: 142.829 -3200/69092 Loss: 152.490 -6400/69092 Loss: 151.030 -9600/69092 Loss: 150.666 -12800/69092 Loss: 151.519 -16000/69092 Loss: 150.399 -19200/69092 Loss: 153.108 -22400/69092 Loss: 151.066 -25600/69092 Loss: 152.339 -28800/69092 Loss: 152.410 -32000/69092 Loss: 155.271 -35200/69092 Loss: 153.059 -38400/69092 Loss: 151.213 -41600/69092 Loss: 152.088 -44800/69092 Loss: 154.145 -48000/69092 Loss: 150.306 -51200/69092 Loss: 150.901 -54400/69092 Loss: 151.373 -57600/69092 Loss: 150.391 -60800/69092 Loss: 150.261 -64000/69092 Loss: 153.969 -67200/69092 Loss: 151.814 -Training time 0:04:55.390241 -Epoch: 86 Average loss: 151.91 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 395) -0/69092 Loss: 149.056 -3200/69092 Loss: 149.947 -6400/69092 Loss: 154.324 -9600/69092 Loss: 153.580 -12800/69092 Loss: 152.930 -16000/69092 Loss: 152.680 -19200/69092 Loss: 153.038 -22400/69092 Loss: 151.125 -25600/69092 Loss: 151.951 -28800/69092 Loss: 152.586 -32000/69092 Loss: 152.570 -35200/69092 Loss: 149.354 -38400/69092 Loss: 148.427 -41600/69092 Loss: 151.235 -44800/69092 Loss: 152.589 -48000/69092 Loss: 152.086 -51200/69092 Loss: 150.932 -54400/69092 Loss: 153.294 -57600/69092 Loss: 152.074 -60800/69092 Loss: 151.371 -64000/69092 Loss: 152.852 -67200/69092 Loss: 152.169 -Training time 0:04:48.814648 -Epoch: 87 Average loss: 151.95 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 396) -0/69092 Loss: 157.786 -3200/69092 Loss: 152.570 -6400/69092 Loss: 153.078 -9600/69092 Loss: 152.408 -12800/69092 Loss: 152.629 -16000/69092 Loss: 151.153 -19200/69092 Loss: 151.928 -22400/69092 Loss: 151.346 -25600/69092 Loss: 150.992 -28800/69092 Loss: 150.583 -32000/69092 Loss: 149.188 -35200/69092 Loss: 152.389 -38400/69092 Loss: 152.509 -41600/69092 Loss: 154.821 -44800/69092 Loss: 150.531 -48000/69092 Loss: 151.399 -51200/69092 Loss: 150.111 -54400/69092 Loss: 152.454 -57600/69092 Loss: 152.133 -60800/69092 Loss: 150.629 -64000/69092 Loss: 153.384 -67200/69092 Loss: 153.505 -Training time 0:04:54.803282 -Epoch: 88 Average loss: 151.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 397) -0/69092 Loss: 171.129 -3200/69092 Loss: 151.790 -6400/69092 Loss: 153.028 -9600/69092 Loss: 152.004 -12800/69092 Loss: 151.282 -16000/69092 Loss: 150.597 -19200/69092 Loss: 153.276 -22400/69092 Loss: 150.037 -25600/69092 Loss: 151.375 -28800/69092 Loss: 152.042 -32000/69092 Loss: 151.800 -35200/69092 Loss: 152.210 -38400/69092 Loss: 152.840 -41600/69092 Loss: 151.627 -44800/69092 Loss: 151.665 -48000/69092 Loss: 151.353 -51200/69092 Loss: 152.797 -54400/69092 Loss: 151.047 -57600/69092 Loss: 151.778 -60800/69092 Loss: 153.219 -64000/69092 Loss: 153.312 -67200/69092 Loss: 151.992 -Training time 0:04:50.539237 -Epoch: 89 Average loss: 152.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 398) -0/69092 Loss: 163.351 -3200/69092 Loss: 151.922 -6400/69092 Loss: 152.530 -9600/69092 Loss: 154.250 -12800/69092 Loss: 150.779 -16000/69092 Loss: 153.006 -19200/69092 Loss: 152.350 -22400/69092 Loss: 150.987 -25600/69092 Loss: 153.924 -28800/69092 Loss: 152.805 -32000/69092 Loss: 152.224 -35200/69092 Loss: 151.677 -38400/69092 Loss: 155.644 -41600/69092 Loss: 150.963 -44800/69092 Loss: 152.313 -48000/69092 Loss: 152.735 -51200/69092 Loss: 149.950 -54400/69092 Loss: 150.979 -57600/69092 Loss: 153.317 -60800/69092 Loss: 153.071 -64000/69092 Loss: 152.851 -67200/69092 Loss: 151.237 -Training time 0:04:49.878713 -Epoch: 90 Average loss: 152.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 399) -0/69092 Loss: 163.554 -3200/69092 Loss: 151.718 -6400/69092 Loss: 153.950 -9600/69092 Loss: 151.830 -12800/69092 Loss: 152.770 -16000/69092 Loss: 153.396 -19200/69092 Loss: 149.883 -22400/69092 Loss: 150.290 -25600/69092 Loss: 149.773 -28800/69092 Loss: 152.480 -32000/69092 Loss: 151.067 -35200/69092 Loss: 156.999 -38400/69092 Loss: 152.950 -41600/69092 Loss: 152.975 -44800/69092 Loss: 153.519 -48000/69092 Loss: 152.611 -51200/69092 Loss: 152.230 -54400/69092 Loss: 151.480 -57600/69092 Loss: 150.186 -60800/69092 Loss: 150.945 -64000/69092 Loss: 149.248 -67200/69092 Loss: 151.699 -Training time 0:04:47.200851 -Epoch: 91 Average loss: 152.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 400) -0/69092 Loss: 150.296 -3200/69092 Loss: 149.735 -6400/69092 Loss: 153.625 -9600/69092 Loss: 150.936 -12800/69092 Loss: 152.938 -16000/69092 Loss: 150.642 -19200/69092 Loss: 153.460 -22400/69092 Loss: 152.283 -25600/69092 Loss: 153.096 -28800/69092 Loss: 152.937 -32000/69092 Loss: 151.133 -35200/69092 Loss: 154.050 -38400/69092 Loss: 152.118 -41600/69092 Loss: 152.096 -44800/69092 Loss: 151.038 -48000/69092 Loss: 149.925 -51200/69092 Loss: 151.219 -54400/69092 Loss: 152.395 -57600/69092 Loss: 153.124 -60800/69092 Loss: 151.859 -64000/69092 Loss: 151.257 -67200/69092 Loss: 149.621 -Training time 0:04:52.972326 -Epoch: 92 Average loss: 151.90 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 401) -0/69092 Loss: 160.210 -3200/69092 Loss: 150.249 -6400/69092 Loss: 151.565 -9600/69092 Loss: 149.957 -12800/69092 Loss: 151.506 -16000/69092 Loss: 152.402 -19200/69092 Loss: 152.908 -22400/69092 Loss: 149.944 -25600/69092 Loss: 153.508 -28800/69092 Loss: 150.672 -32000/69092 Loss: 155.991 -35200/69092 Loss: 151.940 -38400/69092 Loss: 149.855 -41600/69092 Loss: 152.922 -44800/69092 Loss: 151.392 -48000/69092 Loss: 154.734 -51200/69092 Loss: 150.691 -54400/69092 Loss: 151.314 -57600/69092 Loss: 152.757 -60800/69092 Loss: 151.927 -64000/69092 Loss: 153.325 -67200/69092 Loss: 149.930 -Training time 0:04:55.110473 -Epoch: 93 Average loss: 151.98 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 402) -0/69092 Loss: 141.758 -3200/69092 Loss: 148.836 -6400/69092 Loss: 153.720 -9600/69092 Loss: 151.733 -12800/69092 Loss: 150.266 -16000/69092 Loss: 153.532 -19200/69092 Loss: 151.682 -22400/69092 Loss: 152.700 -25600/69092 Loss: 151.377 -28800/69092 Loss: 151.040 -32000/69092 Loss: 148.090 -35200/69092 Loss: 153.011 -38400/69092 Loss: 152.989 -41600/69092 Loss: 153.283 -44800/69092 Loss: 155.993 -48000/69092 Loss: 152.637 -51200/69092 Loss: 152.229 -54400/69092 Loss: 151.351 -57600/69092 Loss: 154.748 -60800/69092 Loss: 151.491 -64000/69092 Loss: 151.453 -67200/69092 Loss: 152.492 -Training time 0:04:49.920553 -Epoch: 94 Average loss: 152.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 403) -0/69092 Loss: 160.858 -3200/69092 Loss: 151.767 -6400/69092 Loss: 149.789 -9600/69092 Loss: 152.571 -12800/69092 Loss: 150.421 -16000/69092 Loss: 151.720 -19200/69092 Loss: 150.676 -22400/69092 Loss: 150.497 -25600/69092 Loss: 151.545 -28800/69092 Loss: 152.169 -32000/69092 Loss: 152.427 -35200/69092 Loss: 153.442 -38400/69092 Loss: 149.878 -41600/69092 Loss: 152.922 -44800/69092 Loss: 151.869 -48000/69092 Loss: 151.706 -51200/69092 Loss: 154.346 -54400/69092 Loss: 153.269 -57600/69092 Loss: 151.879 -60800/69092 Loss: 152.733 -64000/69092 Loss: 154.100 -67200/69092 Loss: 153.658 -Training time 0:04:46.535271 -Epoch: 95 Average loss: 152.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 404) -0/69092 Loss: 151.968 -3200/69092 Loss: 153.705 -6400/69092 Loss: 152.080 -9600/69092 Loss: 152.701 -12800/69092 Loss: 151.054 -16000/69092 Loss: 152.064 -19200/69092 Loss: 152.099 -22400/69092 Loss: 152.200 -25600/69092 Loss: 152.526 -28800/69092 Loss: 151.792 -32000/69092 Loss: 150.670 -35200/69092 Loss: 155.599 -38400/69092 Loss: 148.762 -41600/69092 Loss: 151.034 -44800/69092 Loss: 153.194 -48000/69092 Loss: 154.365 -51200/69092 Loss: 151.639 -54400/69092 Loss: 152.496 -57600/69092 Loss: 151.936 -60800/69092 Loss: 152.478 -64000/69092 Loss: 150.782 -67200/69092 Loss: 153.092 -Training time 0:04:45.636976 -Epoch: 96 Average loss: 152.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 405) -0/69092 Loss: 146.729 -3200/69092 Loss: 149.252 -6400/69092 Loss: 148.245 -9600/69092 Loss: 149.307 -12800/69092 Loss: 153.481 -16000/69092 Loss: 151.573 -19200/69092 Loss: 152.993 -22400/69092 Loss: 151.453 -25600/69092 Loss: 154.485 -28800/69092 Loss: 149.507 -32000/69092 Loss: 153.101 -35200/69092 Loss: 153.367 -38400/69092 Loss: 153.710 -41600/69092 Loss: 154.064 -44800/69092 Loss: 152.640 -48000/69092 Loss: 152.065 -51200/69092 Loss: 153.477 -54400/69092 Loss: 151.558 -57600/69092 Loss: 152.573 -60800/69092 Loss: 151.899 -64000/69092 Loss: 153.708 -67200/69092 Loss: 154.891 -Training time 0:04:59.854441 -Epoch: 97 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 406) -0/69092 Loss: 137.998 -3200/69092 Loss: 151.489 -6400/69092 Loss: 151.412 -9600/69092 Loss: 150.391 -12800/69092 Loss: 151.562 -16000/69092 Loss: 152.893 -19200/69092 Loss: 152.713 -22400/69092 Loss: 150.260 -25600/69092 Loss: 151.633 -28800/69092 Loss: 151.326 -32000/69092 Loss: 154.725 -35200/69092 Loss: 150.661 -38400/69092 Loss: 152.762 -41600/69092 Loss: 151.188 -44800/69092 Loss: 152.194 -48000/69092 Loss: 152.163 -51200/69092 Loss: 150.429 -54400/69092 Loss: 153.507 -57600/69092 Loss: 154.009 -60800/69092 Loss: 153.067 -64000/69092 Loss: 154.646 -67200/69092 Loss: 151.797 -Training time 0:04:46.845983 -Epoch: 98 Average loss: 152.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 407) -0/69092 Loss: 169.630 -3200/69092 Loss: 151.264 -6400/69092 Loss: 153.226 -9600/69092 Loss: 151.168 -12800/69092 Loss: 154.012 -16000/69092 Loss: 152.439 -19200/69092 Loss: 151.221 -22400/69092 Loss: 150.469 -25600/69092 Loss: 151.142 -28800/69092 Loss: 153.160 -32000/69092 Loss: 153.687 -35200/69092 Loss: 151.872 -38400/69092 Loss: 151.593 -41600/69092 Loss: 152.981 -44800/69092 Loss: 151.639 -48000/69092 Loss: 152.625 -51200/69092 Loss: 152.690 -54400/69092 Loss: 149.891 -57600/69092 Loss: 149.604 -60800/69092 Loss: 152.135 -64000/69092 Loss: 152.302 -67200/69092 Loss: 150.975 -Training time 0:04:57.776910 -Epoch: 99 Average loss: 151.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 408) -0/69092 Loss: 157.478 -3200/69092 Loss: 148.961 -6400/69092 Loss: 154.174 -9600/69092 Loss: 149.814 -12800/69092 Loss: 149.233 -16000/69092 Loss: 151.266 -19200/69092 Loss: 149.778 -22400/69092 Loss: 155.607 -25600/69092 Loss: 150.476 -28800/69092 Loss: 152.955 -32000/69092 Loss: 151.325 -35200/69092 Loss: 152.565 -38400/69092 Loss: 155.373 -41600/69092 Loss: 150.391 -44800/69092 Loss: 151.788 -48000/69092 Loss: 152.091 -51200/69092 Loss: 151.354 -54400/69092 Loss: 152.939 -57600/69092 Loss: 154.037 -60800/69092 Loss: 152.035 -64000/69092 Loss: 152.074 -67200/69092 Loss: 153.509 -Training time 0:04:53.823615 -Epoch: 100 Average loss: 152.03 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 409) -0/69092 Loss: 169.415 -3200/69092 Loss: 153.103 -6400/69092 Loss: 151.163 -9600/69092 Loss: 153.687 -12800/69092 Loss: 152.283 -16000/69092 Loss: 150.388 -19200/69092 Loss: 152.896 -22400/69092 Loss: 153.909 -25600/69092 Loss: 151.392 -28800/69092 Loss: 151.566 -32000/69092 Loss: 152.565 -35200/69092 Loss: 150.287 -38400/69092 Loss: 151.676 -41600/69092 Loss: 152.150 -44800/69092 Loss: 150.827 -48000/69092 Loss: 150.386 -51200/69092 Loss: 150.106 -54400/69092 Loss: 152.285 -57600/69092 Loss: 150.452 -60800/69092 Loss: 151.801 -64000/69092 Loss: 153.773 -67200/69092 Loss: 155.499 -Training time 0:04:48.562618 -Epoch: 101 Average loss: 152.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 410) -0/69092 Loss: 158.078 -3200/69092 Loss: 147.879 -6400/69092 Loss: 151.176 -9600/69092 Loss: 150.107 -12800/69092 Loss: 154.523 -16000/69092 Loss: 149.720 -19200/69092 Loss: 153.969 -22400/69092 Loss: 152.776 -25600/69092 Loss: 152.456 -28800/69092 Loss: 150.317 -32000/69092 Loss: 154.425 -35200/69092 Loss: 152.331 -38400/69092 Loss: 151.896 -41600/69092 Loss: 153.088 -44800/69092 Loss: 152.307 -48000/69092 Loss: 152.278 -51200/69092 Loss: 154.122 -54400/69092 Loss: 151.100 -57600/69092 Loss: 150.320 -60800/69092 Loss: 150.146 -64000/69092 Loss: 154.554 -67200/69092 Loss: 150.885 -Training time 0:04:47.864876 -Epoch: 102 Average loss: 151.93 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 411) -0/69092 Loss: 161.600 -3200/69092 Loss: 150.294 -6400/69092 Loss: 152.689 -9600/69092 Loss: 152.596 -12800/69092 Loss: 150.389 -16000/69092 Loss: 153.032 -19200/69092 Loss: 153.226 -22400/69092 Loss: 154.488 -25600/69092 Loss: 149.508 -28800/69092 Loss: 152.821 -32000/69092 Loss: 153.566 -35200/69092 Loss: 152.721 -38400/69092 Loss: 153.682 -41600/69092 Loss: 152.280 -44800/69092 Loss: 151.708 -48000/69092 Loss: 152.183 -51200/69092 Loss: 152.264 -54400/69092 Loss: 152.192 -57600/69092 Loss: 150.605 -60800/69092 Loss: 152.570 -64000/69092 Loss: 153.640 -67200/69092 Loss: 150.774 -Training time 0:04:46.565216 -Epoch: 103 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 412) -0/69092 Loss: 142.357 -3200/69092 Loss: 153.350 -6400/69092 Loss: 152.448 -9600/69092 Loss: 150.219 -12800/69092 Loss: 153.586 -16000/69092 Loss: 153.335 -19200/69092 Loss: 151.796 -22400/69092 Loss: 151.756 -25600/69092 Loss: 151.087 -28800/69092 Loss: 153.957 -32000/69092 Loss: 151.021 -35200/69092 Loss: 151.751 -38400/69092 Loss: 150.219 -41600/69092 Loss: 153.643 -44800/69092 Loss: 151.641 -48000/69092 Loss: 151.229 -51200/69092 Loss: 152.683 -54400/69092 Loss: 150.299 -57600/69092 Loss: 151.652 -60800/69092 Loss: 152.452 -64000/69092 Loss: 152.588 -67200/69092 Loss: 155.900 -Training time 0:04:53.206867 -Epoch: 104 Average loss: 152.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 413) -0/69092 Loss: 147.985 -3200/69092 Loss: 150.459 -6400/69092 Loss: 151.480 -9600/69092 Loss: 151.722 -12800/69092 Loss: 152.108 -16000/69092 Loss: 150.949 -19200/69092 Loss: 155.608 -22400/69092 Loss: 151.986 -25600/69092 Loss: 152.775 -28800/69092 Loss: 150.901 -32000/69092 Loss: 150.172 -35200/69092 Loss: 154.703 -38400/69092 Loss: 151.604 -41600/69092 Loss: 151.956 -44800/69092 Loss: 150.413 -48000/69092 Loss: 153.019 -51200/69092 Loss: 153.686 -54400/69092 Loss: 151.706 -57600/69092 Loss: 152.662 -60800/69092 Loss: 152.065 -64000/69092 Loss: 151.596 -67200/69092 Loss: 152.116 -Training time 0:04:58.640244 -Epoch: 105 Average loss: 152.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 414) -0/69092 Loss: 149.987 -3200/69092 Loss: 149.893 -6400/69092 Loss: 152.323 -9600/69092 Loss: 152.562 -12800/69092 Loss: 151.810 -16000/69092 Loss: 152.911 -19200/69092 Loss: 153.191 -22400/69092 Loss: 150.899 -25600/69092 Loss: 153.012 -28800/69092 Loss: 153.163 -32000/69092 Loss: 151.207 -35200/69092 Loss: 152.882 -38400/69092 Loss: 150.813 -41600/69092 Loss: 152.901 -44800/69092 Loss: 152.755 -48000/69092 Loss: 150.881 -51200/69092 Loss: 151.376 -54400/69092 Loss: 152.687 -57600/69092 Loss: 153.730 -60800/69092 Loss: 150.189 -64000/69092 Loss: 151.934 -67200/69092 Loss: 151.211 -Training time 0:04:48.120273 -Epoch: 106 Average loss: 152.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 415) -0/69092 Loss: 151.823 -3200/69092 Loss: 148.643 -6400/69092 Loss: 152.817 -9600/69092 Loss: 151.382 -12800/69092 Loss: 153.022 -16000/69092 Loss: 150.716 -19200/69092 Loss: 153.632 -22400/69092 Loss: 151.172 -25600/69092 Loss: 148.932 -28800/69092 Loss: 151.189 -32000/69092 Loss: 151.965 -35200/69092 Loss: 151.846 -38400/69092 Loss: 149.539 -41600/69092 Loss: 152.411 -44800/69092 Loss: 153.926 -48000/69092 Loss: 153.859 -51200/69092 Loss: 150.885 -54400/69092 Loss: 153.050 -57600/69092 Loss: 153.645 -60800/69092 Loss: 150.253 -64000/69092 Loss: 152.771 -67200/69092 Loss: 150.985 -Training time 0:04:48.540351 -Epoch: 107 Average loss: 151.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 416) -0/69092 Loss: 131.866 -3200/69092 Loss: 149.503 -6400/69092 Loss: 152.488 -9600/69092 Loss: 152.815 -12800/69092 Loss: 151.525 -16000/69092 Loss: 151.414 -19200/69092 Loss: 153.750 -22400/69092 Loss: 152.786 -25600/69092 Loss: 152.018 -28800/69092 Loss: 153.919 -32000/69092 Loss: 152.371 -35200/69092 Loss: 153.434 -38400/69092 Loss: 151.454 -41600/69092 Loss: 152.944 -44800/69092 Loss: 151.085 -48000/69092 Loss: 153.937 -51200/69092 Loss: 151.860 -54400/69092 Loss: 150.493 -57600/69092 Loss: 148.695 -60800/69092 Loss: 154.028 -64000/69092 Loss: 152.080 -67200/69092 Loss: 154.185 -Training time 0:04:55.298100 -Epoch: 108 Average loss: 152.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 417) -0/69092 Loss: 147.412 -3200/69092 Loss: 151.994 -6400/69092 Loss: 153.347 -9600/69092 Loss: 150.016 -12800/69092 Loss: 152.968 -16000/69092 Loss: 150.501 -19200/69092 Loss: 152.418 -22400/69092 Loss: 151.831 -25600/69092 Loss: 152.847 -28800/69092 Loss: 150.512 -32000/69092 Loss: 149.003 -35200/69092 Loss: 149.976 -38400/69092 Loss: 154.265 -41600/69092 Loss: 148.565 -44800/69092 Loss: 150.216 -48000/69092 Loss: 152.008 -51200/69092 Loss: 153.583 -54400/69092 Loss: 153.803 -57600/69092 Loss: 152.243 -60800/69092 Loss: 152.050 -64000/69092 Loss: 154.021 -67200/69092 Loss: 152.084 -Training time 0:04:41.255307 -Epoch: 109 Average loss: 151.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 418) -0/69092 Loss: 162.086 -3200/69092 Loss: 152.745 -6400/69092 Loss: 152.261 -9600/69092 Loss: 150.936 -12800/69092 Loss: 153.044 -16000/69092 Loss: 151.620 -19200/69092 Loss: 150.673 -22400/69092 Loss: 151.599 -25600/69092 Loss: 153.168 -28800/69092 Loss: 152.770 -32000/69092 Loss: 153.143 -35200/69092 Loss: 152.202 -38400/69092 Loss: 153.055 -41600/69092 Loss: 151.643 -44800/69092 Loss: 150.894 -48000/69092 Loss: 150.257 -51200/69092 Loss: 152.914 -54400/69092 Loss: 152.266 -57600/69092 Loss: 150.819 -60800/69092 Loss: 151.397 -64000/69092 Loss: 152.063 -67200/69092 Loss: 152.324 -Training time 0:04:47.438624 -Epoch: 110 Average loss: 152.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 419) -0/69092 Loss: 160.629 -3200/69092 Loss: 152.910 -6400/69092 Loss: 152.561 -9600/69092 Loss: 152.619 -12800/69092 Loss: 151.571 -16000/69092 Loss: 153.697 -19200/69092 Loss: 152.958 -22400/69092 Loss: 152.440 -25600/69092 Loss: 151.144 -28800/69092 Loss: 150.991 -32000/69092 Loss: 151.666 -35200/69092 Loss: 152.099 -38400/69092 Loss: 150.653 -41600/69092 Loss: 152.933 -44800/69092 Loss: 152.994 -48000/69092 Loss: 151.900 -51200/69092 Loss: 150.365 -54400/69092 Loss: 152.757 -57600/69092 Loss: 152.901 -60800/69092 Loss: 150.266 -64000/69092 Loss: 151.742 -67200/69092 Loss: 153.295 -Training time 0:04:51.982336 -Epoch: 111 Average loss: 152.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 420) -0/69092 Loss: 157.400 -3200/69092 Loss: 149.721 -6400/69092 Loss: 154.515 -9600/69092 Loss: 151.512 -12800/69092 Loss: 154.721 -16000/69092 Loss: 150.363 -19200/69092 Loss: 151.800 -22400/69092 Loss: 152.965 -25600/69092 Loss: 151.072 -28800/69092 Loss: 152.065 -32000/69092 Loss: 151.845 -35200/69092 Loss: 150.387 -38400/69092 Loss: 150.705 -41600/69092 Loss: 151.653 -44800/69092 Loss: 154.105 -48000/69092 Loss: 149.193 -51200/69092 Loss: 150.544 -54400/69092 Loss: 150.828 -57600/69092 Loss: 154.232 -60800/69092 Loss: 152.992 -64000/69092 Loss: 151.455 -67200/69092 Loss: 151.612 -Training time 0:04:54.074097 -Epoch: 112 Average loss: 151.84 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 421) -0/69092 Loss: 157.065 -3200/69092 Loss: 150.346 -6400/69092 Loss: 151.884 -9600/69092 Loss: 152.009 -12800/69092 Loss: 149.326 -16000/69092 Loss: 148.875 -19200/69092 Loss: 152.735 -22400/69092 Loss: 152.689 -25600/69092 Loss: 153.586 -28800/69092 Loss: 152.923 -32000/69092 Loss: 150.834 -35200/69092 Loss: 152.571 -38400/69092 Loss: 153.652 -41600/69092 Loss: 152.052 -44800/69092 Loss: 150.601 -48000/69092 Loss: 152.516 -51200/69092 Loss: 150.682 -54400/69092 Loss: 153.087 -57600/69092 Loss: 152.169 -60800/69092 Loss: 153.943 -64000/69092 Loss: 153.933 -67200/69092 Loss: 153.847 -Training time 0:04:45.471707 -Epoch: 113 Average loss: 152.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 422) -0/69092 Loss: 166.283 -3200/69092 Loss: 152.282 -6400/69092 Loss: 152.711 -9600/69092 Loss: 154.190 -12800/69092 Loss: 148.430 -16000/69092 Loss: 154.423 -19200/69092 Loss: 154.683 -22400/69092 Loss: 150.249 -25600/69092 Loss: 151.769 -28800/69092 Loss: 151.643 -32000/69092 Loss: 150.683 -35200/69092 Loss: 152.734 -38400/69092 Loss: 152.737 -41600/69092 Loss: 150.408 -44800/69092 Loss: 153.608 -48000/69092 Loss: 149.757 -51200/69092 Loss: 150.082 -54400/69092 Loss: 151.735 -57600/69092 Loss: 152.117 -60800/69092 Loss: 152.901 -64000/69092 Loss: 150.976 -67200/69092 Loss: 152.441 -Training time 0:04:50.508285 -Epoch: 114 Average loss: 151.98 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 423) -0/69092 Loss: 156.983 -3200/69092 Loss: 153.281 -6400/69092 Loss: 148.878 -9600/69092 Loss: 152.051 -12800/69092 Loss: 152.789 -16000/69092 Loss: 150.928 -19200/69092 Loss: 150.311 -22400/69092 Loss: 149.966 -25600/69092 Loss: 153.276 -28800/69092 Loss: 151.430 -32000/69092 Loss: 155.032 -35200/69092 Loss: 152.147 -38400/69092 Loss: 152.673 -41600/69092 Loss: 154.257 -44800/69092 Loss: 152.049 -48000/69092 Loss: 150.658 -51200/69092 Loss: 149.756 -54400/69092 Loss: 153.817 -57600/69092 Loss: 151.338 -60800/69092 Loss: 153.225 -64000/69092 Loss: 153.599 -67200/69092 Loss: 152.351 -Training time 0:04:54.961885 -Epoch: 115 Average loss: 152.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 424) -0/69092 Loss: 132.478 -3200/69092 Loss: 149.838 -6400/69092 Loss: 152.855 -9600/69092 Loss: 152.989 -12800/69092 Loss: 153.865 -16000/69092 Loss: 150.047 -19200/69092 Loss: 151.295 -22400/69092 Loss: 151.470 -25600/69092 Loss: 150.768 -28800/69092 Loss: 151.075 -32000/69092 Loss: 150.120 -35200/69092 Loss: 156.213 -38400/69092 Loss: 152.625 -41600/69092 Loss: 152.245 -44800/69092 Loss: 153.139 -48000/69092 Loss: 151.104 -51200/69092 Loss: 151.805 -54400/69092 Loss: 153.466 -57600/69092 Loss: 149.804 -60800/69092 Loss: 154.504 -64000/69092 Loss: 148.703 -67200/69092 Loss: 153.108 -Training time 0:04:47.408569 -Epoch: 116 Average loss: 151.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 425) -0/69092 Loss: 161.084 -3200/69092 Loss: 149.878 -6400/69092 Loss: 154.645 -9600/69092 Loss: 152.513 -12800/69092 Loss: 154.098 -16000/69092 Loss: 151.261 -19200/69092 Loss: 153.206 -22400/69092 Loss: 151.152 -25600/69092 Loss: 150.373 -28800/69092 Loss: 151.378 -32000/69092 Loss: 150.651 -35200/69092 Loss: 153.225 -38400/69092 Loss: 154.637 -41600/69092 Loss: 152.478 -44800/69092 Loss: 151.924 -48000/69092 Loss: 151.923 -51200/69092 Loss: 151.490 -54400/69092 Loss: 151.390 -57600/69092 Loss: 151.142 -60800/69092 Loss: 150.049 -64000/69092 Loss: 152.262 -67200/69092 Loss: 154.271 -Training time 0:04:42.203575 -Epoch: 117 Average loss: 152.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 426) -0/69092 Loss: 167.484 -3200/69092 Loss: 151.594 -6400/69092 Loss: 151.849 -9600/69092 Loss: 151.773 -12800/69092 Loss: 154.473 -16000/69092 Loss: 153.150 -19200/69092 Loss: 151.681 -22400/69092 Loss: 151.531 -25600/69092 Loss: 151.840 -28800/69092 Loss: 152.144 -32000/69092 Loss: 155.200 -35200/69092 Loss: 152.617 -38400/69092 Loss: 152.047 -41600/69092 Loss: 150.749 -44800/69092 Loss: 152.802 -48000/69092 Loss: 153.691 -51200/69092 Loss: 151.513 -54400/69092 Loss: 149.877 -57600/69092 Loss: 149.372 -60800/69092 Loss: 151.032 -64000/69092 Loss: 147.679 -67200/69092 Loss: 153.573 -Training time 0:04:54.279119 -Epoch: 118 Average loss: 151.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 427) -0/69092 Loss: 133.374 -3200/69092 Loss: 153.390 -6400/69092 Loss: 153.883 -9600/69092 Loss: 150.555 -12800/69092 Loss: 151.884 -16000/69092 Loss: 152.527 -19200/69092 Loss: 154.051 -22400/69092 Loss: 150.880 -25600/69092 Loss: 152.859 -28800/69092 Loss: 151.407 -32000/69092 Loss: 150.339 -35200/69092 Loss: 151.008 -38400/69092 Loss: 152.450 -41600/69092 Loss: 151.903 -44800/69092 Loss: 152.252 -48000/69092 Loss: 153.607 -51200/69092 Loss: 149.811 -54400/69092 Loss: 149.198 -57600/69092 Loss: 154.233 -60800/69092 Loss: 151.883 -64000/69092 Loss: 154.476 -67200/69092 Loss: 148.915 -Training time 0:04:42.952877 -Epoch: 119 Average loss: 152.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 428) -0/69092 Loss: 130.876 -3200/69092 Loss: 153.569 -6400/69092 Loss: 149.717 -9600/69092 Loss: 152.734 -12800/69092 Loss: 150.330 -16000/69092 Loss: 152.841 -19200/69092 Loss: 153.176 -22400/69092 Loss: 152.644 -25600/69092 Loss: 153.954 -28800/69092 Loss: 149.216 -32000/69092 Loss: 154.519 -35200/69092 Loss: 151.584 -38400/69092 Loss: 150.392 -41600/69092 Loss: 149.239 -44800/69092 Loss: 152.308 -48000/69092 Loss: 152.019 -51200/69092 Loss: 150.558 -54400/69092 Loss: 153.810 -57600/69092 Loss: 151.494 -60800/69092 Loss: 154.102 -64000/69092 Loss: 151.360 -67200/69092 Loss: 150.479 -Training time 0:04:46.836761 -Epoch: 120 Average loss: 151.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 429) -0/69092 Loss: 142.914 -3200/69092 Loss: 151.008 -6400/69092 Loss: 150.469 -9600/69092 Loss: 152.556 -12800/69092 Loss: 151.596 -16000/69092 Loss: 151.404 -19200/69092 Loss: 152.845 -22400/69092 Loss: 153.279 -25600/69092 Loss: 149.563 -28800/69092 Loss: 149.553 -32000/69092 Loss: 151.925 -35200/69092 Loss: 152.067 -38400/69092 Loss: 151.782 -41600/69092 Loss: 152.750 -44800/69092 Loss: 152.136 -48000/69092 Loss: 152.894 -51200/69092 Loss: 152.172 -54400/69092 Loss: 151.977 -57600/69092 Loss: 149.534 -60800/69092 Loss: 152.757 -64000/69092 Loss: 151.173 -67200/69092 Loss: 154.301 -Training time 0:04:35.789460 -Epoch: 121 Average loss: 151.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 430) -0/69092 Loss: 150.952 -3200/69092 Loss: 152.128 -6400/69092 Loss: 152.453 -9600/69092 Loss: 151.920 -12800/69092 Loss: 153.240 -16000/69092 Loss: 153.071 -19200/69092 Loss: 151.953 -22400/69092 Loss: 147.788 -25600/69092 Loss: 150.992 -28800/69092 Loss: 153.508 -32000/69092 Loss: 151.623 -35200/69092 Loss: 154.380 -38400/69092 Loss: 150.654 -41600/69092 Loss: 153.483 -44800/69092 Loss: 154.157 -48000/69092 Loss: 150.010 -51200/69092 Loss: 155.253 -54400/69092 Loss: 152.480 diff --git a/OAR.2068286.stderr b/OAR.2068286.stderr deleted file mode 100644 index 8656ad55ec..0000000000 --- a/OAR.2068286.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068286 KILLED ## diff --git a/OAR.2068286.stdout b/OAR.2068286.stdout deleted file mode 100644 index 1a2cfa4114..0000000000 --- a/OAR.2068286.stdout +++ /dev/null @@ -1,1509 +0,0 @@ -Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last (iter 144)' -0/69092 Loss: 120.459 -12800/69092 Loss: 116.572 -25600/69092 Loss: 116.237 -38400/69092 Loss: 115.864 -51200/69092 Loss: 116.059 -64000/69092 Loss: 117.337 -Training time 0:03:42.281008 -Epoch: 1 Average loss: 116.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 145) -0/69092 Loss: 120.358 -12800/69092 Loss: 116.899 -25600/69092 Loss: 115.721 -38400/69092 Loss: 116.798 -51200/69092 Loss: 116.771 -64000/69092 Loss: 116.356 -Training time 0:03:40.681431 -Epoch: 2 Average loss: 116.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 146) -0/69092 Loss: 119.181 -12800/69092 Loss: 115.598 -25600/69092 Loss: 117.185 -38400/69092 Loss: 116.847 -51200/69092 Loss: 116.143 -64000/69092 Loss: 117.005 -Training time 0:03:40.721636 -Epoch: 3 Average loss: 116.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 147) -0/69092 Loss: 115.099 -12800/69092 Loss: 116.701 -25600/69092 Loss: 116.450 -38400/69092 Loss: 116.328 -51200/69092 Loss: 115.482 -64000/69092 Loss: 116.387 -Training time 0:03:40.701471 -Epoch: 4 Average loss: 116.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 148) -0/69092 Loss: 119.770 -12800/69092 Loss: 115.991 -25600/69092 Loss: 116.217 -38400/69092 Loss: 116.309 -51200/69092 Loss: 116.911 -64000/69092 Loss: 116.120 -Training time 0:03:39.979969 -Epoch: 5 Average loss: 116.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 149) -0/69092 Loss: 118.151 -12800/69092 Loss: 115.808 -25600/69092 Loss: 116.703 -38400/69092 Loss: 116.090 -51200/69092 Loss: 116.427 -64000/69092 Loss: 117.572 -Training time 0:03:40.579498 -Epoch: 6 Average loss: 116.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 150) -0/69092 Loss: 113.875 -12800/69092 Loss: 116.600 -25600/69092 Loss: 116.295 -38400/69092 Loss: 115.668 -51200/69092 Loss: 116.840 -64000/69092 Loss: 115.933 -Training time 0:03:41.221395 -Epoch: 7 Average loss: 116.36 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 151) -0/69092 Loss: 114.324 -12800/69092 Loss: 116.549 -25600/69092 Loss: 115.837 -38400/69092 Loss: 116.300 -51200/69092 Loss: 116.452 -64000/69092 Loss: 116.383 -Training time 0:03:42.000145 -Epoch: 8 Average loss: 116.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 152) -0/69092 Loss: 112.656 -12800/69092 Loss: 116.205 -25600/69092 Loss: 116.463 -38400/69092 Loss: 116.948 -51200/69092 Loss: 116.328 -64000/69092 Loss: 115.736 -Training time 0:03:39.929666 -Epoch: 9 Average loss: 116.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 153) -0/69092 Loss: 121.883 -12800/69092 Loss: 116.664 -25600/69092 Loss: 115.788 -38400/69092 Loss: 116.076 -51200/69092 Loss: 116.190 -64000/69092 Loss: 116.272 -Training time 0:03:40.616174 -Epoch: 10 Average loss: 116.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 154) -0/69092 Loss: 115.453 -12800/69092 Loss: 116.273 -25600/69092 Loss: 115.309 -38400/69092 Loss: 117.375 -51200/69092 Loss: 116.806 -64000/69092 Loss: 116.037 -Training time 0:03:40.447946 -Epoch: 11 Average loss: 116.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 155) -0/69092 Loss: 119.812 -12800/69092 Loss: 116.018 -25600/69092 Loss: 116.276 -38400/69092 Loss: 115.628 -51200/69092 Loss: 115.753 -64000/69092 Loss: 116.374 -Training time 0:03:40.825373 -Epoch: 12 Average loss: 116.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 156) -0/69092 Loss: 112.388 -12800/69092 Loss: 115.852 -25600/69092 Loss: 116.388 -38400/69092 Loss: 116.094 -51200/69092 Loss: 116.621 -64000/69092 Loss: 115.358 -Training time 0:03:40.482848 -Epoch: 13 Average loss: 116.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 157) -0/69092 Loss: 117.393 -12800/69092 Loss: 116.509 -25600/69092 Loss: 115.161 -38400/69092 Loss: 116.172 -51200/69092 Loss: 116.397 -64000/69092 Loss: 116.203 -Training time 0:03:40.998442 -Epoch: 14 Average loss: 116.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 158) -0/69092 Loss: 119.346 -12800/69092 Loss: 116.319 -25600/69092 Loss: 115.947 -38400/69092 Loss: 116.468 -51200/69092 Loss: 116.241 -64000/69092 Loss: 116.013 -Training time 0:03:42.395751 -Epoch: 15 Average loss: 116.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 159) -0/69092 Loss: 113.202 -12800/69092 Loss: 116.460 -25600/69092 Loss: 115.730 -38400/69092 Loss: 115.797 -51200/69092 Loss: 116.281 -64000/69092 Loss: 115.448 -Training time 0:03:41.078200 -Epoch: 16 Average loss: 116.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 160) -0/69092 Loss: 112.005 -12800/69092 Loss: 115.957 -25600/69092 Loss: 116.704 -38400/69092 Loss: 116.893 -51200/69092 Loss: 115.449 -64000/69092 Loss: 115.642 -Training time 0:03:40.431808 -Epoch: 17 Average loss: 116.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 161) -0/69092 Loss: 113.287 -12800/69092 Loss: 116.447 -25600/69092 Loss: 115.693 -38400/69092 Loss: 116.821 -51200/69092 Loss: 116.644 -64000/69092 Loss: 115.405 -Training time 0:03:40.430938 -Epoch: 18 Average loss: 116.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 162) -0/69092 Loss: 112.196 -12800/69092 Loss: 117.175 -25600/69092 Loss: 115.399 -38400/69092 Loss: 115.678 -51200/69092 Loss: 115.329 -64000/69092 Loss: 116.300 -Training time 0:03:40.572838 -Epoch: 19 Average loss: 116.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 163) -0/69092 Loss: 117.480 -12800/69092 Loss: 117.243 -25600/69092 Loss: 115.588 -38400/69092 Loss: 115.861 -51200/69092 Loss: 115.026 -64000/69092 Loss: 115.228 -Training time 0:03:40.556184 -Epoch: 20 Average loss: 115.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 164) -0/69092 Loss: 118.064 -12800/69092 Loss: 115.452 -25600/69092 Loss: 116.303 -38400/69092 Loss: 115.384 -51200/69092 Loss: 115.665 -64000/69092 Loss: 116.274 -Training time 0:03:40.790851 -Epoch: 21 Average loss: 115.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 165) -0/69092 Loss: 112.775 -12800/69092 Loss: 116.776 -25600/69092 Loss: 116.287 -38400/69092 Loss: 115.689 -51200/69092 Loss: 115.688 -64000/69092 Loss: 115.419 -Training time 0:03:41.559039 -Epoch: 22 Average loss: 115.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 166) -0/69092 Loss: 118.464 -12800/69092 Loss: 114.966 -25600/69092 Loss: 115.504 -38400/69092 Loss: 116.800 -51200/69092 Loss: 114.923 -64000/69092 Loss: 116.779 -Training time 0:03:40.445243 -Epoch: 23 Average loss: 115.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 167) -0/69092 Loss: 117.857 -12800/69092 Loss: 116.386 -25600/69092 Loss: 115.667 -38400/69092 Loss: 114.653 -51200/69092 Loss: 116.496 -64000/69092 Loss: 115.861 -Training time 0:03:40.728070 -Epoch: 24 Average loss: 115.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 168) -0/69092 Loss: 118.362 -12800/69092 Loss: 116.060 -25600/69092 Loss: 115.154 -38400/69092 Loss: 116.675 -51200/69092 Loss: 115.458 -64000/69092 Loss: 115.521 -Training time 0:03:41.048771 -Epoch: 25 Average loss: 115.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 169) -0/69092 Loss: 119.678 -12800/69092 Loss: 115.659 -25600/69092 Loss: 115.170 -38400/69092 Loss: 116.955 -51200/69092 Loss: 116.197 -64000/69092 Loss: 115.340 -Training time 0:03:40.247926 -Epoch: 26 Average loss: 115.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 170) -0/69092 Loss: 112.441 -12800/69092 Loss: 115.019 -25600/69092 Loss: 115.888 -38400/69092 Loss: 116.372 -51200/69092 Loss: 116.046 -64000/69092 Loss: 115.798 -Training time 0:03:40.481684 -Epoch: 27 Average loss: 115.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 171) -0/69092 Loss: 118.454 -12800/69092 Loss: 115.568 -25600/69092 Loss: 116.489 -38400/69092 Loss: 115.309 -51200/69092 Loss: 115.959 -64000/69092 Loss: 115.868 -Training time 0:03:40.730148 -Epoch: 28 Average loss: 115.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 172) -0/69092 Loss: 118.467 -12800/69092 Loss: 115.553 -25600/69092 Loss: 115.273 -38400/69092 Loss: 115.216 -51200/69092 Loss: 116.678 -64000/69092 Loss: 116.455 -Training time 0:03:41.245003 -Epoch: 29 Average loss: 115.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 173) -0/69092 Loss: 114.006 -12800/69092 Loss: 115.621 -25600/69092 Loss: 116.126 -38400/69092 Loss: 115.985 -51200/69092 Loss: 113.654 -64000/69092 Loss: 116.662 -Training time 0:03:40.563781 -Epoch: 30 Average loss: 115.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 174) -0/69092 Loss: 114.707 -12800/69092 Loss: 115.550 -25600/69092 Loss: 115.860 -38400/69092 Loss: 115.116 -51200/69092 Loss: 116.279 -64000/69092 Loss: 115.989 -Training time 0:03:40.619515 -Epoch: 31 Average loss: 115.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 175) -0/69092 Loss: 116.031 -12800/69092 Loss: 115.936 -25600/69092 Loss: 116.239 -38400/69092 Loss: 114.555 -51200/69092 Loss: 115.844 -64000/69092 Loss: 116.013 -Training time 0:03:40.575515 -Epoch: 32 Average loss: 115.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 176) -0/69092 Loss: 111.837 -12800/69092 Loss: 116.479 -25600/69092 Loss: 115.491 -38400/69092 Loss: 115.912 -51200/69092 Loss: 114.634 -64000/69092 Loss: 115.763 -Training time 0:03:40.491551 -Epoch: 33 Average loss: 115.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 177) -0/69092 Loss: 117.520 -12800/69092 Loss: 116.071 -25600/69092 Loss: 116.613 -38400/69092 Loss: 114.784 -51200/69092 Loss: 115.905 -64000/69092 Loss: 115.579 -Training time 0:03:41.179735 -Epoch: 34 Average loss: 115.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 178) -0/69092 Loss: 123.567 -12800/69092 Loss: 116.828 -25600/69092 Loss: 115.420 -38400/69092 Loss: 115.197 -51200/69092 Loss: 115.964 -64000/69092 Loss: 115.175 -Training time 0:03:40.153394 -Epoch: 35 Average loss: 115.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 179) -0/69092 Loss: 116.028 -12800/69092 Loss: 115.196 -25600/69092 Loss: 115.596 -38400/69092 Loss: 115.706 -51200/69092 Loss: 116.102 -64000/69092 Loss: 115.148 -Training time 0:03:41.520109 -Epoch: 36 Average loss: 115.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 180) -0/69092 Loss: 114.294 -12800/69092 Loss: 115.208 -25600/69092 Loss: 116.025 -38400/69092 Loss: 116.365 -51200/69092 Loss: 115.723 -64000/69092 Loss: 115.075 -Training time 0:03:41.725098 -Epoch: 37 Average loss: 115.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 181) -0/69092 Loss: 108.952 -12800/69092 Loss: 115.211 -25600/69092 Loss: 115.684 -38400/69092 Loss: 114.832 -51200/69092 Loss: 116.676 -64000/69092 Loss: 115.385 -Training time 0:03:40.430924 -Epoch: 38 Average loss: 115.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 182) -0/69092 Loss: 115.457 -12800/69092 Loss: 115.327 -25600/69092 Loss: 115.543 -38400/69092 Loss: 115.617 -51200/69092 Loss: 115.977 -64000/69092 Loss: 115.014 -Training time 0:03:41.206588 -Epoch: 39 Average loss: 115.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 183) -0/69092 Loss: 116.693 -12800/69092 Loss: 114.557 -25600/69092 Loss: 115.086 -38400/69092 Loss: 115.546 -51200/69092 Loss: 116.112 -64000/69092 Loss: 114.996 -Training time 0:03:40.908944 -Epoch: 40 Average loss: 115.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 184) -0/69092 Loss: 112.386 -12800/69092 Loss: 115.443 -25600/69092 Loss: 115.660 -38400/69092 Loss: 115.033 -51200/69092 Loss: 115.429 -64000/69092 Loss: 115.723 -Training time 0:03:40.941674 -Epoch: 41 Average loss: 115.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 185) -0/69092 Loss: 116.749 -12800/69092 Loss: 115.176 -25600/69092 Loss: 116.024 -38400/69092 Loss: 115.643 -51200/69092 Loss: 115.313 -64000/69092 Loss: 115.243 -Training time 0:03:41.117220 -Epoch: 42 Average loss: 115.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 186) -0/69092 Loss: 121.403 -12800/69092 Loss: 115.205 -25600/69092 Loss: 115.911 -38400/69092 Loss: 115.502 -51200/69092 Loss: 115.076 -64000/69092 Loss: 115.854 -Training time 0:03:41.143228 -Epoch: 43 Average loss: 115.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 187) -0/69092 Loss: 112.070 -12800/69092 Loss: 115.371 -25600/69092 Loss: 115.118 -38400/69092 Loss: 115.911 -51200/69092 Loss: 114.989 -64000/69092 Loss: 115.609 -Training time 0:03:42.112486 -Epoch: 44 Average loss: 115.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 188) -0/69092 Loss: 106.050 -12800/69092 Loss: 115.710 -25600/69092 Loss: 116.172 -38400/69092 Loss: 115.340 -51200/69092 Loss: 114.929 -64000/69092 Loss: 115.512 -Training time 0:03:40.727732 -Epoch: 45 Average loss: 115.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 189) -0/69092 Loss: 117.641 -12800/69092 Loss: 114.826 -25600/69092 Loss: 115.081 -38400/69092 Loss: 115.612 -51200/69092 Loss: 115.316 -64000/69092 Loss: 115.945 -Training time 0:03:40.648978 -Epoch: 46 Average loss: 115.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 190) -0/69092 Loss: 112.434 -12800/69092 Loss: 115.572 -25600/69092 Loss: 115.967 -38400/69092 Loss: 116.601 -51200/69092 Loss: 114.836 -64000/69092 Loss: 114.873 -Training time 0:03:40.988167 -Epoch: 47 Average loss: 115.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 191) -0/69092 Loss: 115.484 -12800/69092 Loss: 114.976 -25600/69092 Loss: 114.461 -38400/69092 Loss: 116.200 -51200/69092 Loss: 115.965 -64000/69092 Loss: 115.243 -Training time 0:03:41.030348 -Epoch: 48 Average loss: 115.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 192) -0/69092 Loss: 114.590 -12800/69092 Loss: 115.792 -25600/69092 Loss: 115.040 -38400/69092 Loss: 114.508 -51200/69092 Loss: 115.620 -64000/69092 Loss: 116.456 -Training time 0:03:40.662849 -Epoch: 49 Average loss: 115.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 193) -0/69092 Loss: 122.536 -12800/69092 Loss: 115.258 -25600/69092 Loss: 115.104 -38400/69092 Loss: 115.037 -51200/69092 Loss: 116.723 -64000/69092 Loss: 114.876 -Training time 0:03:40.648263 -Epoch: 50 Average loss: 115.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 194) -0/69092 Loss: 110.866 -12800/69092 Loss: 115.340 -25600/69092 Loss: 115.662 -38400/69092 Loss: 114.955 -51200/69092 Loss: 115.300 -64000/69092 Loss: 115.256 -Training time 0:03:41.139315 -Epoch: 51 Average loss: 115.37 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 195) -0/69092 Loss: 117.302 -12800/69092 Loss: 115.389 -25600/69092 Loss: 114.703 -38400/69092 Loss: 115.806 -51200/69092 Loss: 115.654 -64000/69092 Loss: 115.386 -Training time 0:03:40.901612 -Epoch: 52 Average loss: 115.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 196) -0/69092 Loss: 113.879 -12800/69092 Loss: 115.001 -25600/69092 Loss: 115.614 -38400/69092 Loss: 115.384 -51200/69092 Loss: 114.834 -64000/69092 Loss: 115.560 -Training time 0:03:40.568950 -Epoch: 53 Average loss: 115.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 197) -0/69092 Loss: 122.464 -12800/69092 Loss: 114.625 -25600/69092 Loss: 116.063 -38400/69092 Loss: 114.064 -51200/69092 Loss: 114.791 -64000/69092 Loss: 116.462 -Training time 0:03:40.821567 -Epoch: 54 Average loss: 115.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 198) -0/69092 Loss: 127.387 -12800/69092 Loss: 115.084 -25600/69092 Loss: 115.119 -38400/69092 Loss: 114.816 -51200/69092 Loss: 115.599 -64000/69092 Loss: 116.237 -Training time 0:03:41.123891 -Epoch: 55 Average loss: 115.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 199) -0/69092 Loss: 113.509 -12800/69092 Loss: 115.800 -25600/69092 Loss: 114.487 -38400/69092 Loss: 114.952 -51200/69092 Loss: 115.551 -64000/69092 Loss: 116.056 -Training time 0:03:40.488129 -Epoch: 56 Average loss: 115.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 200) -0/69092 Loss: 113.927 -12800/69092 Loss: 113.790 -25600/69092 Loss: 115.493 -38400/69092 Loss: 116.131 -51200/69092 Loss: 115.332 -64000/69092 Loss: 115.806 -Training time 0:03:40.772788 -Epoch: 57 Average loss: 115.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 201) -0/69092 Loss: 111.797 -12800/69092 Loss: 114.642 -25600/69092 Loss: 116.307 -38400/69092 Loss: 114.750 -51200/69092 Loss: 114.781 -64000/69092 Loss: 116.396 -Training time 0:03:41.710917 -Epoch: 58 Average loss: 115.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 202) -0/69092 Loss: 116.348 -12800/69092 Loss: 114.825 -25600/69092 Loss: 114.921 -38400/69092 Loss: 114.994 -51200/69092 Loss: 115.013 -64000/69092 Loss: 115.435 -Training time 0:03:40.356029 -Epoch: 59 Average loss: 115.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 203) -0/69092 Loss: 111.710 -12800/69092 Loss: 115.723 -25600/69092 Loss: 115.646 -38400/69092 Loss: 115.310 -51200/69092 Loss: 114.750 -64000/69092 Loss: 114.651 -Training time 0:03:41.163611 -Epoch: 60 Average loss: 115.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 204) -0/69092 Loss: 114.197 -12800/69092 Loss: 115.492 -25600/69092 Loss: 115.614 -38400/69092 Loss: 115.454 -51200/69092 Loss: 114.582 -64000/69092 Loss: 115.071 -Training time 0:03:40.874169 -Epoch: 61 Average loss: 115.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 205) -0/69092 Loss: 118.631 -12800/69092 Loss: 115.554 -25600/69092 Loss: 115.449 -38400/69092 Loss: 115.311 -51200/69092 Loss: 115.563 -64000/69092 Loss: 115.179 -Training time 0:03:41.192234 -Epoch: 62 Average loss: 115.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 206) -0/69092 Loss: 115.212 -12800/69092 Loss: 115.093 -25600/69092 Loss: 115.891 -38400/69092 Loss: 114.202 -51200/69092 Loss: 114.780 -64000/69092 Loss: 115.348 -Training time 0:03:37.915514 -Epoch: 63 Average loss: 115.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 207) -0/69092 Loss: 119.185 -12800/69092 Loss: 115.877 -25600/69092 Loss: 115.202 -38400/69092 Loss: 114.906 -51200/69092 Loss: 115.212 -64000/69092 Loss: 114.694 -Training time 0:03:39.470830 -Epoch: 64 Average loss: 115.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 208) -0/69092 Loss: 112.690 -12800/69092 Loss: 115.238 -25600/69092 Loss: 115.583 -38400/69092 Loss: 114.951 -51200/69092 Loss: 115.899 -64000/69092 Loss: 114.965 -Training time 0:03:40.621222 -Epoch: 65 Average loss: 115.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 209) -0/69092 Loss: 111.283 -12800/69092 Loss: 115.453 -25600/69092 Loss: 115.282 -38400/69092 Loss: 115.247 -51200/69092 Loss: 115.254 -64000/69092 Loss: 114.364 -Training time 0:03:39.657240 -Epoch: 66 Average loss: 115.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 210) -0/69092 Loss: 114.298 -12800/69092 Loss: 115.087 -25600/69092 Loss: 115.529 -38400/69092 Loss: 114.790 -51200/69092 Loss: 114.523 -64000/69092 Loss: 115.252 -Training time 0:03:39.587864 -Epoch: 67 Average loss: 115.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 211) -0/69092 Loss: 119.244 -12800/69092 Loss: 114.677 -25600/69092 Loss: 115.632 -38400/69092 Loss: 115.939 -51200/69092 Loss: 113.807 -64000/69092 Loss: 114.473 -Training time 0:03:39.266111 -Epoch: 68 Average loss: 115.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 212) -0/69092 Loss: 116.596 -12800/69092 Loss: 115.531 -25600/69092 Loss: 115.348 -38400/69092 Loss: 114.819 -51200/69092 Loss: 115.305 -64000/69092 Loss: 114.165 -Training time 0:03:39.576071 -Epoch: 69 Average loss: 115.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 213) -0/69092 Loss: 111.364 -12800/69092 Loss: 115.789 -25600/69092 Loss: 115.457 -38400/69092 Loss: 114.520 -51200/69092 Loss: 114.835 -64000/69092 Loss: 114.175 -Training time 0:03:40.669528 -Epoch: 70 Average loss: 114.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 214) -0/69092 Loss: 109.991 -12800/69092 Loss: 114.868 -25600/69092 Loss: 114.949 -38400/69092 Loss: 114.404 -51200/69092 Loss: 115.914 -64000/69092 Loss: 114.747 -Training time 0:03:39.913414 -Epoch: 71 Average loss: 115.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 215) -0/69092 Loss: 115.842 -12800/69092 Loss: 114.590 -25600/69092 Loss: 115.731 -38400/69092 Loss: 114.622 -51200/69092 Loss: 115.623 -64000/69092 Loss: 114.875 -Training time 0:03:40.583036 -Epoch: 72 Average loss: 114.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 216) -0/69092 Loss: 110.377 -12800/69092 Loss: 115.047 -25600/69092 Loss: 115.273 -38400/69092 Loss: 115.216 -51200/69092 Loss: 114.854 -64000/69092 Loss: 114.817 -Training time 0:03:40.331125 -Epoch: 73 Average loss: 115.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 217) -0/69092 Loss: 106.582 -12800/69092 Loss: 115.858 -25600/69092 Loss: 114.577 -38400/69092 Loss: 115.438 -51200/69092 Loss: 114.821 -64000/69092 Loss: 114.224 -Training time 0:03:39.740569 -Epoch: 74 Average loss: 114.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 218) -0/69092 Loss: 124.641 -12800/69092 Loss: 113.975 -25600/69092 Loss: 115.571 -38400/69092 Loss: 114.576 -51200/69092 Loss: 114.249 -64000/69092 Loss: 115.583 -Training time 0:03:39.557484 -Epoch: 75 Average loss: 114.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 219) -0/69092 Loss: 115.628 -12800/69092 Loss: 114.197 -25600/69092 Loss: 114.989 -38400/69092 Loss: 115.503 -51200/69092 Loss: 114.342 -64000/69092 Loss: 114.788 -Training time 0:03:39.911937 -Epoch: 76 Average loss: 114.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 220) -0/69092 Loss: 118.019 -12800/69092 Loss: 115.567 -25600/69092 Loss: 115.781 -38400/69092 Loss: 114.912 -51200/69092 Loss: 115.020 -64000/69092 Loss: 113.646 -Training time 0:03:39.957911 -Epoch: 77 Average loss: 114.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 221) -0/69092 Loss: 109.805 -12800/69092 Loss: 114.832 -25600/69092 Loss: 114.996 -38400/69092 Loss: 114.294 -51200/69092 Loss: 114.873 -64000/69092 Loss: 114.860 -Training time 0:03:39.574652 -Epoch: 78 Average loss: 114.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 222) -0/69092 Loss: 114.975 -12800/69092 Loss: 114.704 -25600/69092 Loss: 114.546 -38400/69092 Loss: 114.155 -51200/69092 Loss: 115.018 -64000/69092 Loss: 115.606 -Training time 0:03:40.653183 -Epoch: 79 Average loss: 114.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 223) -0/69092 Loss: 118.612 -12800/69092 Loss: 115.064 -25600/69092 Loss: 113.899 -38400/69092 Loss: 114.684 -51200/69092 Loss: 115.660 -64000/69092 Loss: 114.569 -Training time 0:03:39.065048 -Epoch: 80 Average loss: 114.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 224) -0/69092 Loss: 109.031 -12800/69092 Loss: 114.216 -25600/69092 Loss: 114.796 -38400/69092 Loss: 114.840 -51200/69092 Loss: 114.877 -64000/69092 Loss: 114.433 -Training time 0:03:39.553370 -Epoch: 81 Average loss: 114.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 225) -0/69092 Loss: 111.758 -12800/69092 Loss: 115.345 -25600/69092 Loss: 114.349 -38400/69092 Loss: 114.239 -51200/69092 Loss: 115.207 -64000/69092 Loss: 115.440 -Training time 0:03:39.635807 -Epoch: 82 Average loss: 114.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 226) -0/69092 Loss: 113.457 -12800/69092 Loss: 115.237 -25600/69092 Loss: 114.856 -38400/69092 Loss: 115.088 -51200/69092 Loss: 114.461 -64000/69092 Loss: 114.783 -Training time 0:03:39.479383 -Epoch: 83 Average loss: 114.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 227) -0/69092 Loss: 118.418 -12800/69092 Loss: 115.666 -25600/69092 Loss: 114.994 -38400/69092 Loss: 114.782 -51200/69092 Loss: 114.864 -64000/69092 Loss: 113.881 -Training time 0:03:39.779647 -Epoch: 84 Average loss: 114.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 228) -0/69092 Loss: 118.901 -12800/69092 Loss: 115.459 -25600/69092 Loss: 113.995 -38400/69092 Loss: 114.473 -51200/69092 Loss: 115.358 -64000/69092 Loss: 115.174 -Training time 0:03:39.825373 -Epoch: 85 Average loss: 114.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 229) -0/69092 Loss: 116.887 -12800/69092 Loss: 115.089 -25600/69092 Loss: 114.870 -38400/69092 Loss: 114.173 -51200/69092 Loss: 114.921 -64000/69092 Loss: 114.568 -Training time 0:03:40.558272 -Epoch: 86 Average loss: 114.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 230) -0/69092 Loss: 119.022 -12800/69092 Loss: 114.155 -25600/69092 Loss: 115.116 -38400/69092 Loss: 114.351 -51200/69092 Loss: 115.333 -64000/69092 Loss: 114.804 -Training time 0:03:39.110950 -Epoch: 87 Average loss: 114.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 231) -0/69092 Loss: 114.052 -12800/69092 Loss: 114.419 -25600/69092 Loss: 115.095 -38400/69092 Loss: 114.998 -51200/69092 Loss: 113.998 -64000/69092 Loss: 114.826 -Training time 0:03:38.998349 -Epoch: 88 Average loss: 114.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 232) -0/69092 Loss: 107.197 -12800/69092 Loss: 114.560 -25600/69092 Loss: 115.108 -38400/69092 Loss: 114.551 -51200/69092 Loss: 114.927 -64000/69092 Loss: 114.435 -Training time 0:03:42.260425 -Epoch: 89 Average loss: 114.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 233) -0/69092 Loss: 107.413 -12800/69092 Loss: 114.444 -25600/69092 Loss: 114.685 -38400/69092 Loss: 114.867 -51200/69092 Loss: 115.129 -64000/69092 Loss: 113.986 -Training time 0:03:50.393656 -Epoch: 90 Average loss: 114.63 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 234) -0/69092 Loss: 112.908 -12800/69092 Loss: 115.659 -25600/69092 Loss: 114.256 -38400/69092 Loss: 114.956 -51200/69092 Loss: 113.938 -64000/69092 Loss: 115.278 -Training time 0:03:41.978122 -Epoch: 91 Average loss: 114.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 235) -0/69092 Loss: 113.401 -12800/69092 Loss: 114.613 -25600/69092 Loss: 115.830 -38400/69092 Loss: 114.113 -51200/69092 Loss: 114.794 -64000/69092 Loss: 114.232 -Training time 0:03:44.706303 -Epoch: 92 Average loss: 114.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 236) -0/69092 Loss: 118.505 -12800/69092 Loss: 114.510 -25600/69092 Loss: 114.844 -38400/69092 Loss: 114.507 -51200/69092 Loss: 114.165 -64000/69092 Loss: 114.310 -Training time 0:03:42.290089 -Epoch: 93 Average loss: 114.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 237) -0/69092 Loss: 111.298 -12800/69092 Loss: 115.110 -25600/69092 Loss: 114.177 -38400/69092 Loss: 114.547 -51200/69092 Loss: 114.346 -64000/69092 Loss: 114.125 -Training time 0:03:40.739105 -Epoch: 94 Average loss: 114.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 238) -0/69092 Loss: 115.497 -12800/69092 Loss: 114.533 -25600/69092 Loss: 113.951 -38400/69092 Loss: 114.258 -51200/69092 Loss: 115.078 -64000/69092 Loss: 114.435 -Training time 0:03:40.520623 -Epoch: 95 Average loss: 114.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 239) -0/69092 Loss: 120.449 -12800/69092 Loss: 114.306 -25600/69092 Loss: 114.458 -38400/69092 Loss: 113.983 -51200/69092 Loss: 114.979 -64000/69092 Loss: 115.746 -Training time 0:03:40.739195 -Epoch: 96 Average loss: 114.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 240) -0/69092 Loss: 116.587 -12800/69092 Loss: 114.370 -25600/69092 Loss: 115.026 -38400/69092 Loss: 114.646 -51200/69092 Loss: 114.849 -64000/69092 Loss: 114.088 -Training time 0:03:40.295166 -Epoch: 97 Average loss: 114.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 241) -0/69092 Loss: 113.646 -12800/69092 Loss: 114.517 -25600/69092 Loss: 114.350 -38400/69092 Loss: 114.589 -51200/69092 Loss: 114.638 -64000/69092 Loss: 114.851 -Training time 0:03:39.879273 -Epoch: 98 Average loss: 114.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 242) -0/69092 Loss: 108.064 -12800/69092 Loss: 114.233 -25600/69092 Loss: 114.721 -38400/69092 Loss: 114.504 -51200/69092 Loss: 114.622 -64000/69092 Loss: 114.088 -Training time 0:03:46.401228 -Epoch: 99 Average loss: 114.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 243) -0/69092 Loss: 112.234 -12800/69092 Loss: 115.063 -25600/69092 Loss: 114.201 -38400/69092 Loss: 115.500 -51200/69092 Loss: 114.187 -64000/69092 Loss: 113.749 -Training time 0:03:43.651188 -Epoch: 100 Average loss: 114.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 244) -0/69092 Loss: 108.880 -12800/69092 Loss: 114.441 -25600/69092 Loss: 114.546 -38400/69092 Loss: 114.229 -51200/69092 Loss: 114.399 -64000/69092 Loss: 114.490 -Training time 0:03:41.775324 -Epoch: 101 Average loss: 114.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 245) -0/69092 Loss: 116.923 -12800/69092 Loss: 114.301 -25600/69092 Loss: 114.859 -38400/69092 Loss: 114.571 -51200/69092 Loss: 114.437 -64000/69092 Loss: 114.160 -Training time 0:03:41.341339 -Epoch: 102 Average loss: 114.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 246) -0/69092 Loss: 118.843 -12800/69092 Loss: 113.869 -25600/69092 Loss: 114.652 -38400/69092 Loss: 114.754 -51200/69092 Loss: 114.434 -64000/69092 Loss: 114.532 -Training time 0:03:40.704962 -Epoch: 103 Average loss: 114.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 247) -0/69092 Loss: 108.865 -12800/69092 Loss: 114.752 -25600/69092 Loss: 114.883 -38400/69092 Loss: 113.607 -51200/69092 Loss: 114.288 -64000/69092 Loss: 114.525 -Training time 0:03:42.934816 -Epoch: 104 Average loss: 114.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 248) -0/69092 Loss: 119.276 -12800/69092 Loss: 113.929 -25600/69092 Loss: 114.603 -38400/69092 Loss: 114.846 -51200/69092 Loss: 114.323 -64000/69092 Loss: 115.003 -Training time 0:03:41.347376 -Epoch: 105 Average loss: 114.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 249) -0/69092 Loss: 117.378 -12800/69092 Loss: 114.512 -25600/69092 Loss: 114.029 -38400/69092 Loss: 113.996 -51200/69092 Loss: 114.640 -64000/69092 Loss: 114.273 -Training time 0:03:41.384372 -Epoch: 106 Average loss: 114.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 250) -0/69092 Loss: 116.733 -12800/69092 Loss: 114.053 -25600/69092 Loss: 115.784 -38400/69092 Loss: 114.504 -51200/69092 Loss: 113.391 -64000/69092 Loss: 115.021 -Training time 0:03:43.748070 -Epoch: 107 Average loss: 114.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 251) -0/69092 Loss: 109.071 -12800/69092 Loss: 115.350 -25600/69092 Loss: 114.421 -38400/69092 Loss: 113.817 -51200/69092 Loss: 114.571 -64000/69092 Loss: 113.952 -Training time 0:03:42.178234 -Epoch: 108 Average loss: 114.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 252) -0/69092 Loss: 110.194 -12800/69092 Loss: 113.623 -25600/69092 Loss: 114.909 -38400/69092 Loss: 114.726 -51200/69092 Loss: 114.983 -64000/69092 Loss: 114.253 -Training time 0:03:42.143474 -Epoch: 109 Average loss: 114.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 253) -0/69092 Loss: 112.906 -12800/69092 Loss: 113.083 -25600/69092 Loss: 114.752 -38400/69092 Loss: 114.171 -51200/69092 Loss: 114.487 -64000/69092 Loss: 114.980 -Training time 0:03:41.290923 -Epoch: 110 Average loss: 114.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 254) -0/69092 Loss: 124.385 -12800/69092 Loss: 113.826 -25600/69092 Loss: 114.997 -38400/69092 Loss: 114.641 -51200/69092 Loss: 114.734 -64000/69092 Loss: 113.799 -Training time 0:03:41.705886 -Epoch: 111 Average loss: 114.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 255) -0/69092 Loss: 111.269 -12800/69092 Loss: 113.420 -25600/69092 Loss: 115.922 -38400/69092 Loss: 113.670 -51200/69092 Loss: 113.914 -64000/69092 Loss: 114.474 -Training time 0:03:40.924247 -Epoch: 112 Average loss: 114.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 256) -0/69092 Loss: 115.978 -12800/69092 Loss: 115.311 -25600/69092 Loss: 114.722 -38400/69092 Loss: 113.684 -51200/69092 Loss: 113.768 -64000/69092 Loss: 113.957 -Training time 0:03:40.834863 -Epoch: 113 Average loss: 114.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 257) -0/69092 Loss: 109.364 -12800/69092 Loss: 114.242 -25600/69092 Loss: 114.552 -38400/69092 Loss: 114.000 -51200/69092 Loss: 114.802 -64000/69092 Loss: 113.713 -Training time 0:03:43.156358 -Epoch: 114 Average loss: 114.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 258) -0/69092 Loss: 111.265 -12800/69092 Loss: 114.377 -25600/69092 Loss: 114.272 -38400/69092 Loss: 113.863 -51200/69092 Loss: 114.741 -64000/69092 Loss: 114.591 -Training time 0:03:41.998148 -Epoch: 115 Average loss: 114.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 259) -0/69092 Loss: 117.682 -12800/69092 Loss: 115.080 -25600/69092 Loss: 113.807 -38400/69092 Loss: 113.662 -51200/69092 Loss: 115.175 -64000/69092 Loss: 114.527 -Training time 0:03:42.627598 -Epoch: 116 Average loss: 114.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 260) -0/69092 Loss: 113.881 -12800/69092 Loss: 114.402 -25600/69092 Loss: 114.172 -38400/69092 Loss: 114.510 -51200/69092 Loss: 114.053 -64000/69092 Loss: 114.174 -Training time 0:03:42.035927 -Epoch: 117 Average loss: 114.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 261) -0/69092 Loss: 113.673 -12800/69092 Loss: 114.281 -25600/69092 Loss: 114.134 -38400/69092 Loss: 114.204 -51200/69092 Loss: 114.304 -64000/69092 Loss: 114.797 -Training time 0:03:41.551131 -Epoch: 118 Average loss: 114.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 262) -0/69092 Loss: 111.412 -12800/69092 Loss: 113.519 -25600/69092 Loss: 114.681 -38400/69092 Loss: 114.317 -51200/69092 Loss: 113.760 -64000/69092 Loss: 113.961 -Training time 0:03:44.184585 -Epoch: 119 Average loss: 114.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 263) -0/69092 Loss: 111.933 -12800/69092 Loss: 114.447 -25600/69092 Loss: 113.720 -38400/69092 Loss: 113.964 -51200/69092 Loss: 113.929 -64000/69092 Loss: 114.812 -Training time 0:03:42.196323 -Epoch: 120 Average loss: 114.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 264) -0/69092 Loss: 113.074 -12800/69092 Loss: 114.431 -25600/69092 Loss: 113.384 -38400/69092 Loss: 115.006 -51200/69092 Loss: 114.743 -64000/69092 Loss: 113.431 -Training time 0:03:42.197650 -Epoch: 121 Average loss: 114.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 265) -0/69092 Loss: 115.437 -12800/69092 Loss: 114.323 -25600/69092 Loss: 113.790 -38400/69092 Loss: 114.352 -51200/69092 Loss: 114.947 -64000/69092 Loss: 114.044 -Training time 0:03:41.562076 -Epoch: 122 Average loss: 114.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 266) -0/69092 Loss: 113.162 -12800/69092 Loss: 113.852 -25600/69092 Loss: 113.980 -38400/69092 Loss: 114.593 -51200/69092 Loss: 113.447 -64000/69092 Loss: 115.204 -Training time 0:03:40.874992 -Epoch: 123 Average loss: 114.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 267) -0/69092 Loss: 116.120 -12800/69092 Loss: 114.274 -25600/69092 Loss: 114.634 -38400/69092 Loss: 114.158 -51200/69092 Loss: 114.676 -64000/69092 Loss: 112.900 -Training time 0:03:41.653124 -Epoch: 124 Average loss: 114.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 268) -0/69092 Loss: 117.180 -12800/69092 Loss: 113.294 -25600/69092 Loss: 114.609 -38400/69092 Loss: 114.933 -51200/69092 Loss: 114.103 -64000/69092 Loss: 113.871 -Training time 0:03:41.242283 -Epoch: 125 Average loss: 114.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 269) -0/69092 Loss: 109.756 -12800/69092 Loss: 114.033 -25600/69092 Loss: 114.634 -38400/69092 Loss: 114.371 -51200/69092 Loss: 114.184 -64000/69092 Loss: 113.549 -Training time 0:03:42.196836 -Epoch: 126 Average loss: 114.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 270) -0/69092 Loss: 111.929 -12800/69092 Loss: 114.828 -25600/69092 Loss: 113.790 -38400/69092 Loss: 114.042 -51200/69092 Loss: 114.953 -64000/69092 Loss: 113.364 -Training time 0:03:41.900956 -Epoch: 127 Average loss: 114.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 271) -0/69092 Loss: 110.864 -12800/69092 Loss: 114.467 -25600/69092 Loss: 114.406 -38400/69092 Loss: 113.131 -51200/69092 Loss: 114.844 -64000/69092 Loss: 114.251 -Training time 0:03:43.068656 -Epoch: 128 Average loss: 114.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 272) -0/69092 Loss: 112.706 -12800/69092 Loss: 113.940 -25600/69092 Loss: 113.914 -38400/69092 Loss: 115.086 -51200/69092 Loss: 113.297 -64000/69092 Loss: 114.017 -Training time 0:03:42.137844 -Epoch: 129 Average loss: 114.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 273) -0/69092 Loss: 114.385 -12800/69092 Loss: 113.581 -25600/69092 Loss: 113.566 -38400/69092 Loss: 114.429 -51200/69092 Loss: 114.653 -64000/69092 Loss: 113.894 -Training time 0:03:41.510301 -Epoch: 130 Average loss: 114.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 274) -0/69092 Loss: 110.028 -12800/69092 Loss: 113.881 -25600/69092 Loss: 114.392 -38400/69092 Loss: 113.452 -51200/69092 Loss: 114.865 -64000/69092 Loss: 114.058 -Training time 0:03:41.511612 -Epoch: 131 Average loss: 114.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 275) -0/69092 Loss: 110.665 -12800/69092 Loss: 114.053 -25600/69092 Loss: 114.680 -38400/69092 Loss: 113.985 -51200/69092 Loss: 113.684 -64000/69092 Loss: 114.159 -Training time 0:03:41.726226 -Epoch: 132 Average loss: 114.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 276) -0/69092 Loss: 118.540 -12800/69092 Loss: 113.363 -25600/69092 Loss: 113.460 -38400/69092 Loss: 114.502 -51200/69092 Loss: 113.836 -64000/69092 Loss: 114.899 -Training time 0:03:41.569514 -Epoch: 133 Average loss: 114.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 277) -0/69092 Loss: 117.445 -12800/69092 Loss: 114.008 -25600/69092 Loss: 114.618 -38400/69092 Loss: 114.031 -51200/69092 Loss: 113.772 -64000/69092 Loss: 113.839 -Training time 0:03:41.186443 -Epoch: 134 Average loss: 114.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 278) -0/69092 Loss: 113.595 -12800/69092 Loss: 113.980 -25600/69092 Loss: 113.805 -38400/69092 Loss: 114.087 -51200/69092 Loss: 113.955 -64000/69092 Loss: 113.742 -Training time 0:03:42.152164 -Epoch: 135 Average loss: 113.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 279) -0/69092 Loss: 112.821 -12800/69092 Loss: 114.496 -25600/69092 Loss: 113.962 -38400/69092 Loss: 114.649 -51200/69092 Loss: 113.409 -64000/69092 Loss: 113.551 -Training time 0:03:41.361916 -Epoch: 136 Average loss: 114.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 280) -0/69092 Loss: 115.241 -12800/69092 Loss: 113.896 -25600/69092 Loss: 114.136 -38400/69092 Loss: 112.995 -51200/69092 Loss: 113.532 -64000/69092 Loss: 114.980 -Training time 0:03:40.680527 -Epoch: 137 Average loss: 113.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 281) -0/69092 Loss: 117.064 -12800/69092 Loss: 113.764 -25600/69092 Loss: 114.953 -38400/69092 Loss: 113.620 -51200/69092 Loss: 113.511 -64000/69092 Loss: 114.963 -Training time 0:03:41.352191 -Epoch: 138 Average loss: 114.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 282) -0/69092 Loss: 108.923 -12800/69092 Loss: 114.116 -25600/69092 Loss: 114.152 -38400/69092 Loss: 113.833 -51200/69092 Loss: 114.022 -64000/69092 Loss: 113.697 -Training time 0:03:40.793996 -Epoch: 139 Average loss: 113.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 283) -0/69092 Loss: 115.468 -12800/69092 Loss: 114.883 -25600/69092 Loss: 113.313 -38400/69092 Loss: 114.564 -51200/69092 Loss: 114.127 -64000/69092 Loss: 113.590 -Training time 0:03:41.558375 -Epoch: 140 Average loss: 114.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 284) -0/69092 Loss: 111.618 -12800/69092 Loss: 114.210 -25600/69092 Loss: 113.877 -38400/69092 Loss: 113.493 -51200/69092 Loss: 113.761 -64000/69092 Loss: 113.488 -Training time 0:03:40.687252 -Epoch: 141 Average loss: 113.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 285) -0/69092 Loss: 115.856 -12800/69092 Loss: 113.995 -25600/69092 Loss: 113.398 -38400/69092 Loss: 114.115 -51200/69092 Loss: 115.273 -64000/69092 Loss: 113.940 -Training time 0:03:41.465886 -Epoch: 142 Average loss: 114.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 286) -0/69092 Loss: 109.752 -12800/69092 Loss: 114.166 -25600/69092 Loss: 113.758 -38400/69092 Loss: 114.394 -51200/69092 Loss: 113.661 -64000/69092 Loss: 114.022 -Training time 0:03:40.046346 -Epoch: 143 Average loss: 113.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 287) -0/69092 Loss: 113.853 -12800/69092 Loss: 114.157 -25600/69092 Loss: 113.092 -38400/69092 Loss: 113.822 -51200/69092 Loss: 113.737 -64000/69092 Loss: 113.995 -Training time 0:03:40.139976 -Epoch: 144 Average loss: 113.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 288) -0/69092 Loss: 113.345 -12800/69092 Loss: 113.668 -25600/69092 Loss: 113.303 -38400/69092 Loss: 113.832 -51200/69092 Loss: 113.686 -64000/69092 Loss: 114.217 -Training time 0:03:40.291585 -Epoch: 145 Average loss: 113.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 289) -0/69092 Loss: 110.422 -12800/69092 Loss: 113.919 -25600/69092 Loss: 114.204 -38400/69092 Loss: 114.164 -51200/69092 Loss: 113.983 -64000/69092 Loss: 113.053 -Training time 0:03:40.165304 -Epoch: 146 Average loss: 113.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 290) -0/69092 Loss: 111.442 -12800/69092 Loss: 113.895 -25600/69092 Loss: 113.671 -38400/69092 Loss: 113.587 -51200/69092 Loss: 113.714 -64000/69092 Loss: 113.411 -Training time 0:03:40.558246 -Epoch: 147 Average loss: 113.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 291) -0/69092 Loss: 114.554 -12800/69092 Loss: 113.458 -25600/69092 Loss: 113.886 -38400/69092 Loss: 114.594 -51200/69092 Loss: 113.528 -64000/69092 Loss: 113.846 -Training time 0:03:40.836498 -Epoch: 148 Average loss: 113.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 292) -0/69092 Loss: 115.352 -12800/69092 Loss: 114.107 -25600/69092 Loss: 114.243 -38400/69092 Loss: 113.824 -51200/69092 Loss: 113.277 -64000/69092 Loss: 113.832 -Training time 0:03:41.716480 -Epoch: 149 Average loss: 113.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 293) -0/69092 Loss: 110.963 -12800/69092 Loss: 113.638 -25600/69092 Loss: 113.369 -38400/69092 Loss: 114.120 -51200/69092 Loss: 113.222 -64000/69092 Loss: 114.146 -Training time 0:03:40.436857 -Epoch: 150 Average loss: 113.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 294) -0/69092 Loss: 107.337 -12800/69092 Loss: 114.409 -25600/69092 Loss: 113.354 -38400/69092 Loss: 113.109 -51200/69092 Loss: 115.007 -64000/69092 Loss: 113.664 -Training time 0:03:40.938804 -Epoch: 151 Average loss: 113.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 295) -0/69092 Loss: 109.025 -12800/69092 Loss: 114.129 -25600/69092 Loss: 113.999 -38400/69092 Loss: 112.536 -51200/69092 Loss: 114.157 -64000/69092 Loss: 113.699 -Training time 0:03:40.882615 -Epoch: 152 Average loss: 113.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 296) -0/69092 Loss: 113.340 -12800/69092 Loss: 114.084 -25600/69092 Loss: 113.610 -38400/69092 Loss: 113.778 -51200/69092 Loss: 113.365 -64000/69092 Loss: 114.084 -Training time 0:03:41.200797 -Epoch: 153 Average loss: 113.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 297) -0/69092 Loss: 107.227 -12800/69092 Loss: 113.711 -25600/69092 Loss: 113.918 -38400/69092 Loss: 113.109 -51200/69092 Loss: 114.343 -64000/69092 Loss: 114.783 -Training time 0:03:40.808502 -Epoch: 154 Average loss: 113.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 298) -0/69092 Loss: 118.423 -12800/69092 Loss: 113.903 -25600/69092 Loss: 114.294 -38400/69092 Loss: 113.249 -51200/69092 Loss: 113.512 -64000/69092 Loss: 113.888 -Training time 0:03:40.464494 -Epoch: 155 Average loss: 113.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 299) -0/69092 Loss: 110.552 -12800/69092 Loss: 114.813 -25600/69092 Loss: 113.985 -38400/69092 Loss: 113.234 -51200/69092 Loss: 113.633 -64000/69092 Loss: 112.940 -Training time 0:03:41.316922 -Epoch: 156 Average loss: 113.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 300) -0/69092 Loss: 107.383 -12800/69092 Loss: 114.037 -25600/69092 Loss: 113.720 -38400/69092 Loss: 114.365 -51200/69092 Loss: 114.352 -64000/69092 Loss: 113.392 -Training time 0:03:40.482092 -Epoch: 157 Average loss: 113.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 301) -0/69092 Loss: 117.259 -12800/69092 Loss: 113.602 -25600/69092 Loss: 114.473 -38400/69092 Loss: 114.025 -51200/69092 Loss: 113.492 -64000/69092 Loss: 113.360 -Training time 0:03:41.407732 -Epoch: 158 Average loss: 113.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 302) -0/69092 Loss: 112.966 -12800/69092 Loss: 115.213 -25600/69092 Loss: 113.350 -38400/69092 Loss: 113.020 -51200/69092 Loss: 113.828 -64000/69092 Loss: 112.916 -Training time 0:03:40.707541 -Epoch: 159 Average loss: 113.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 303) -0/69092 Loss: 112.165 -12800/69092 Loss: 113.725 -25600/69092 Loss: 113.370 -38400/69092 Loss: 113.152 -51200/69092 Loss: 114.303 -64000/69092 Loss: 113.987 -Training time 0:03:40.781130 -Epoch: 160 Average loss: 113.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 304) -0/69092 Loss: 118.550 -12800/69092 Loss: 113.662 -25600/69092 Loss: 113.729 -38400/69092 Loss: 112.721 -51200/69092 Loss: 114.058 -64000/69092 Loss: 113.786 -Training time 0:03:40.647435 -Epoch: 161 Average loss: 113.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 305) -0/69092 Loss: 110.329 -12800/69092 Loss: 113.751 -25600/69092 Loss: 113.522 -38400/69092 Loss: 113.958 -51200/69092 Loss: 113.470 -64000/69092 Loss: 114.256 -Training time 0:03:40.584303 -Epoch: 162 Average loss: 113.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 306) -0/69092 Loss: 115.073 -12800/69092 Loss: 113.487 -25600/69092 Loss: 112.933 -38400/69092 Loss: 114.015 -51200/69092 Loss: 113.915 diff --git a/OAR.2068287.stderr b/OAR.2068287.stderr deleted file mode 100644 index 8fc598446e..0000000000 --- a/OAR.2068287.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068287 KILLED ## diff --git a/OAR.2068287.stdout b/OAR.2068287.stdout deleted file mode 100644 index 6505e10a52..0000000000 --- a/OAR.2068287.stdout +++ /dev/null @@ -1,7690 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=True, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -Tesla K80 -Tesla K80 -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 141)' -0/69092 Loss: 125.079 -3200/69092 Loss: 115.007 -6400/69092 Loss: 112.859 -9600/69092 Loss: 111.069 -12800/69092 Loss: 112.965 -16000/69092 Loss: 115.110 -19200/69092 Loss: 114.558 -22400/69092 Loss: 112.883 -25600/69092 Loss: 115.052 -28800/69092 Loss: 113.553 -32000/69092 Loss: 113.282 -35200/69092 Loss: 113.634 -38400/69092 Loss: 115.232 -41600/69092 Loss: 114.954 -44800/69092 Loss: 114.793 -48000/69092 Loss: 113.861 -51200/69092 Loss: 115.127 -54400/69092 Loss: 114.662 -57600/69092 Loss: 113.465 -60800/69092 Loss: 115.242 -64000/69092 Loss: 113.780 -67200/69092 Loss: 115.152 -Training time 0:01:56.869585 -Epoch: 1 Average loss: 114.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 142) -0/69092 Loss: 112.760 -3200/69092 Loss: 113.538 -6400/69092 Loss: 113.977 -9600/69092 Loss: 114.566 -12800/69092 Loss: 112.319 -16000/69092 Loss: 111.585 -19200/69092 Loss: 114.728 -22400/69092 Loss: 114.281 -25600/69092 Loss: 114.036 -28800/69092 Loss: 112.604 -32000/69092 Loss: 114.703 -35200/69092 Loss: 112.797 -38400/69092 Loss: 113.396 -41600/69092 Loss: 113.250 -44800/69092 Loss: 114.304 -48000/69092 Loss: 114.082 -51200/69092 Loss: 113.120 -54400/69092 Loss: 114.240 -57600/69092 Loss: 114.220 -60800/69092 Loss: 114.049 -64000/69092 Loss: 114.315 -67200/69092 Loss: 115.325 -Training time 0:01:55.978440 -Epoch: 2 Average loss: 113.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 143) -0/69092 Loss: 104.286 -3200/69092 Loss: 113.911 -6400/69092 Loss: 113.413 -9600/69092 Loss: 114.114 -12800/69092 Loss: 114.172 -16000/69092 Loss: 112.455 -19200/69092 Loss: 113.278 -22400/69092 Loss: 112.483 -25600/69092 Loss: 114.161 -28800/69092 Loss: 113.708 -32000/69092 Loss: 113.457 -35200/69092 Loss: 114.794 -38400/69092 Loss: 115.137 -41600/69092 Loss: 113.252 -44800/69092 Loss: 113.677 -48000/69092 Loss: 114.658 -51200/69092 Loss: 114.810 -54400/69092 Loss: 114.506 -57600/69092 Loss: 114.287 -60800/69092 Loss: 112.400 -64000/69092 Loss: 113.262 -67200/69092 Loss: 113.660 -Training time 0:01:56.425483 -Epoch: 3 Average loss: 113.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 144) -0/69092 Loss: 110.025 -3200/69092 Loss: 113.539 -6400/69092 Loss: 113.187 -9600/69092 Loss: 114.277 -12800/69092 Loss: 114.722 -16000/69092 Loss: 115.005 -19200/69092 Loss: 115.202 -22400/69092 Loss: 114.601 -25600/69092 Loss: 114.374 -28800/69092 Loss: 113.862 -32000/69092 Loss: 113.593 -35200/69092 Loss: 112.949 -38400/69092 Loss: 114.994 -41600/69092 Loss: 110.398 -44800/69092 Loss: 114.510 -48000/69092 Loss: 112.255 -51200/69092 Loss: 113.327 -54400/69092 Loss: 113.922 -57600/69092 Loss: 114.309 -60800/69092 Loss: 113.514 -64000/69092 Loss: 113.504 -67200/69092 Loss: 112.617 -Training time 0:01:57.257287 -Epoch: 4 Average loss: 113.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 145) -0/69092 Loss: 115.686 -3200/69092 Loss: 113.514 -6400/69092 Loss: 113.764 -9600/69092 Loss: 114.790 -12800/69092 Loss: 114.248 -16000/69092 Loss: 115.185 -19200/69092 Loss: 114.162 -22400/69092 Loss: 113.379 -25600/69092 Loss: 112.616 -28800/69092 Loss: 111.764 -32000/69092 Loss: 111.180 -35200/69092 Loss: 113.116 -38400/69092 Loss: 112.823 -41600/69092 Loss: 114.039 -44800/69092 Loss: 115.470 -48000/69092 Loss: 112.761 -51200/69092 Loss: 114.183 -54400/69092 Loss: 114.356 -57600/69092 Loss: 113.520 -60800/69092 Loss: 113.811 -64000/69092 Loss: 114.090 -67200/69092 Loss: 114.403 -Training time 0:01:56.836488 -Epoch: 5 Average loss: 113.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 146) -0/69092 Loss: 109.627 -3200/69092 Loss: 116.425 -6400/69092 Loss: 115.631 -9600/69092 Loss: 113.910 -12800/69092 Loss: 113.174 -16000/69092 Loss: 115.867 -19200/69092 Loss: 114.272 -22400/69092 Loss: 113.119 -25600/69092 Loss: 113.460 -28800/69092 Loss: 113.324 -32000/69092 Loss: 113.904 -35200/69092 Loss: 112.535 -38400/69092 Loss: 113.853 -41600/69092 Loss: 114.495 -44800/69092 Loss: 113.832 -48000/69092 Loss: 113.648 -51200/69092 Loss: 113.347 -54400/69092 Loss: 112.514 -57600/69092 Loss: 114.683 -60800/69092 Loss: 113.183 -64000/69092 Loss: 113.315 -67200/69092 Loss: 113.213 -Training time 0:01:57.404128 -Epoch: 6 Average loss: 113.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 147) -0/69092 Loss: 109.914 -3200/69092 Loss: 114.036 -6400/69092 Loss: 114.713 -9600/69092 Loss: 113.437 -12800/69092 Loss: 114.746 -16000/69092 Loss: 111.768 -19200/69092 Loss: 114.115 -22400/69092 Loss: 114.814 -25600/69092 Loss: 115.645 -28800/69092 Loss: 112.973 -32000/69092 Loss: 113.810 -35200/69092 Loss: 115.210 -38400/69092 Loss: 113.221 -41600/69092 Loss: 114.990 -44800/69092 Loss: 114.650 -48000/69092 Loss: 113.660 -51200/69092 Loss: 112.482 -54400/69092 Loss: 113.060 -57600/69092 Loss: 113.071 -60800/69092 Loss: 113.850 -64000/69092 Loss: 112.558 -67200/69092 Loss: 112.789 -Training time 0:01:57.441482 -Epoch: 7 Average loss: 113.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 148) -0/69092 Loss: 121.824 -3200/69092 Loss: 112.704 -6400/69092 Loss: 113.783 -9600/69092 Loss: 113.949 -12800/69092 Loss: 112.764 -16000/69092 Loss: 113.602 -19200/69092 Loss: 112.738 -22400/69092 Loss: 115.579 -25600/69092 Loss: 113.357 -28800/69092 Loss: 114.605 -32000/69092 Loss: 114.020 -35200/69092 Loss: 113.004 -38400/69092 Loss: 112.137 -41600/69092 Loss: 115.544 -44800/69092 Loss: 113.168 -48000/69092 Loss: 114.932 -51200/69092 Loss: 114.134 -54400/69092 Loss: 111.579 -57600/69092 Loss: 113.492 -60800/69092 Loss: 112.961 -64000/69092 Loss: 114.972 -67200/69092 Loss: 114.606 -Training time 0:01:58.520655 -Epoch: 8 Average loss: 113.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 149) -0/69092 Loss: 110.463 -3200/69092 Loss: 113.137 -6400/69092 Loss: 114.297 -9600/69092 Loss: 112.593 -12800/69092 Loss: 116.417 -16000/69092 Loss: 115.145 -19200/69092 Loss: 111.854 -22400/69092 Loss: 112.939 -25600/69092 Loss: 111.441 -28800/69092 Loss: 112.811 -32000/69092 Loss: 114.812 -35200/69092 Loss: 115.321 -38400/69092 Loss: 114.408 -41600/69092 Loss: 113.814 -44800/69092 Loss: 112.967 -48000/69092 Loss: 111.880 -51200/69092 Loss: 113.830 -54400/69092 Loss: 113.349 -57600/69092 Loss: 114.363 -60800/69092 Loss: 113.460 -64000/69092 Loss: 113.752 -67200/69092 Loss: 113.491 -Training time 0:01:58.384435 -Epoch: 9 Average loss: 113.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 150) -0/69092 Loss: 121.917 -3200/69092 Loss: 115.084 -6400/69092 Loss: 114.664 -9600/69092 Loss: 113.384 -12800/69092 Loss: 112.379 -16000/69092 Loss: 112.492 -19200/69092 Loss: 113.140 -22400/69092 Loss: 115.757 -25600/69092 Loss: 114.930 -28800/69092 Loss: 112.177 -32000/69092 Loss: 111.538 -35200/69092 Loss: 115.418 -38400/69092 Loss: 114.796 -41600/69092 Loss: 112.498 -44800/69092 Loss: 112.340 -48000/69092 Loss: 113.766 -51200/69092 Loss: 113.419 -54400/69092 Loss: 114.525 -57600/69092 Loss: 114.386 -60800/69092 Loss: 115.346 -64000/69092 Loss: 115.220 -67200/69092 Loss: 114.505 -Training time 0:01:57.951281 -Epoch: 10 Average loss: 113.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 151) -0/69092 Loss: 108.863 -3200/69092 Loss: 112.518 -6400/69092 Loss: 113.433 -9600/69092 Loss: 112.106 -12800/69092 Loss: 113.909 -16000/69092 Loss: 113.413 -19200/69092 Loss: 112.693 -22400/69092 Loss: 113.943 -25600/69092 Loss: 113.133 -28800/69092 Loss: 111.835 -32000/69092 Loss: 115.210 -35200/69092 Loss: 114.977 -38400/69092 Loss: 113.770 -41600/69092 Loss: 114.100 -44800/69092 Loss: 113.332 -48000/69092 Loss: 113.625 -51200/69092 Loss: 111.323 -54400/69092 Loss: 113.913 -57600/69092 Loss: 113.490 -60800/69092 Loss: 116.104 -64000/69092 Loss: 114.764 -67200/69092 Loss: 114.384 -Training time 0:01:57.412617 -Epoch: 11 Average loss: 113.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 152) -0/69092 Loss: 104.733 -3200/69092 Loss: 115.578 -6400/69092 Loss: 112.918 -9600/69092 Loss: 113.655 -12800/69092 Loss: 114.260 -16000/69092 Loss: 114.817 -19200/69092 Loss: 114.822 -22400/69092 Loss: 114.628 -25600/69092 Loss: 113.353 -28800/69092 Loss: 111.861 -32000/69092 Loss: 113.800 -35200/69092 Loss: 112.308 -38400/69092 Loss: 111.741 -41600/69092 Loss: 114.310 -44800/69092 Loss: 114.432 -48000/69092 Loss: 113.419 -51200/69092 Loss: 113.757 -54400/69092 Loss: 114.367 -57600/69092 Loss: 115.230 -60800/69092 Loss: 112.206 -64000/69092 Loss: 112.024 -67200/69092 Loss: 113.345 -Training time 0:01:57.934890 -Epoch: 12 Average loss: 113.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 153) -0/69092 Loss: 107.076 -3200/69092 Loss: 114.470 -6400/69092 Loss: 112.783 -9600/69092 Loss: 111.472 -12800/69092 Loss: 113.910 -16000/69092 Loss: 112.457 -19200/69092 Loss: 114.655 -22400/69092 Loss: 111.367 -25600/69092 Loss: 114.837 -28800/69092 Loss: 114.223 -32000/69092 Loss: 114.428 -35200/69092 Loss: 114.466 -38400/69092 Loss: 114.307 -41600/69092 Loss: 113.122 -44800/69092 Loss: 112.442 -48000/69092 Loss: 112.000 -51200/69092 Loss: 114.755 -54400/69092 Loss: 115.889 -57600/69092 Loss: 115.738 -60800/69092 Loss: 113.443 -64000/69092 Loss: 113.503 -67200/69092 Loss: 112.557 -Training time 0:01:57.624968 -Epoch: 13 Average loss: 113.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 154) -0/69092 Loss: 106.276 -3200/69092 Loss: 113.254 -6400/69092 Loss: 113.480 -9600/69092 Loss: 113.790 -12800/69092 Loss: 113.209 -16000/69092 Loss: 115.360 -19200/69092 Loss: 115.386 -22400/69092 Loss: 113.469 -25600/69092 Loss: 114.159 -28800/69092 Loss: 112.560 -32000/69092 Loss: 112.678 -35200/69092 Loss: 112.689 -38400/69092 Loss: 113.637 -41600/69092 Loss: 113.831 -44800/69092 Loss: 113.137 -48000/69092 Loss: 114.083 -51200/69092 Loss: 114.013 -54400/69092 Loss: 113.474 -57600/69092 Loss: 114.993 -60800/69092 Loss: 112.344 -64000/69092 Loss: 112.172 -67200/69092 Loss: 114.178 -Training time 0:01:58.010337 -Epoch: 14 Average loss: 113.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 155) -0/69092 Loss: 108.611 -3200/69092 Loss: 111.197 -6400/69092 Loss: 112.415 -9600/69092 Loss: 114.600 -12800/69092 Loss: 114.010 -16000/69092 Loss: 112.331 -19200/69092 Loss: 115.730 -22400/69092 Loss: 114.922 -25600/69092 Loss: 113.552 -28800/69092 Loss: 114.249 -32000/69092 Loss: 113.767 -35200/69092 Loss: 112.832 -38400/69092 Loss: 113.465 -41600/69092 Loss: 113.522 -44800/69092 Loss: 111.865 -48000/69092 Loss: 113.941 -51200/69092 Loss: 114.104 -54400/69092 Loss: 113.277 -57600/69092 Loss: 114.511 -60800/69092 Loss: 114.295 -64000/69092 Loss: 114.379 -67200/69092 Loss: 115.290 -Training time 0:01:57.048396 -Epoch: 15 Average loss: 113.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 156) -0/69092 Loss: 107.534 -3200/69092 Loss: 115.344 -6400/69092 Loss: 111.464 -9600/69092 Loss: 116.030 -12800/69092 Loss: 113.621 -16000/69092 Loss: 114.181 -19200/69092 Loss: 111.447 -22400/69092 Loss: 112.626 -25600/69092 Loss: 114.451 -28800/69092 Loss: 114.031 -32000/69092 Loss: 114.145 -35200/69092 Loss: 114.513 -38400/69092 Loss: 112.339 -41600/69092 Loss: 113.435 -44800/69092 Loss: 112.827 -48000/69092 Loss: 113.485 -51200/69092 Loss: 111.628 -54400/69092 Loss: 115.204 -57600/69092 Loss: 114.545 -60800/69092 Loss: 112.454 -64000/69092 Loss: 114.114 -67200/69092 Loss: 113.067 -Training time 0:01:57.457423 -Epoch: 16 Average loss: 113.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 157) -0/69092 Loss: 116.660 -3200/69092 Loss: 114.853 -6400/69092 Loss: 112.667 -9600/69092 Loss: 112.774 -12800/69092 Loss: 114.292 -16000/69092 Loss: 114.432 -19200/69092 Loss: 112.169 -22400/69092 Loss: 113.521 -25600/69092 Loss: 113.267 -28800/69092 Loss: 113.237 -32000/69092 Loss: 114.095 -35200/69092 Loss: 113.309 -38400/69092 Loss: 113.006 -41600/69092 Loss: 114.433 -44800/69092 Loss: 112.666 -48000/69092 Loss: 113.657 -51200/69092 Loss: 113.695 -54400/69092 Loss: 112.925 -57600/69092 Loss: 114.781 -60800/69092 Loss: 112.507 -64000/69092 Loss: 113.606 -67200/69092 Loss: 113.461 -Training time 0:01:57.301919 -Epoch: 17 Average loss: 113.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 158) -0/69092 Loss: 122.441 -3200/69092 Loss: 112.092 -6400/69092 Loss: 113.156 -9600/69092 Loss: 113.583 -12800/69092 Loss: 111.844 -16000/69092 Loss: 114.031 -19200/69092 Loss: 114.414 -22400/69092 Loss: 113.251 -25600/69092 Loss: 113.530 -28800/69092 Loss: 113.606 -32000/69092 Loss: 113.308 -35200/69092 Loss: 114.011 -38400/69092 Loss: 114.065 -41600/69092 Loss: 112.315 -44800/69092 Loss: 113.055 -48000/69092 Loss: 115.181 -51200/69092 Loss: 112.946 -54400/69092 Loss: 112.808 -57600/69092 Loss: 112.249 -60800/69092 Loss: 114.315 -64000/69092 Loss: 113.936 -67200/69092 Loss: 114.932 -Training time 0:01:57.483391 -Epoch: 18 Average loss: 113.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 159) -0/69092 Loss: 122.759 -3200/69092 Loss: 113.321 -6400/69092 Loss: 113.648 -9600/69092 Loss: 112.375 -12800/69092 Loss: 112.852 -16000/69092 Loss: 112.071 -19200/69092 Loss: 113.528 -22400/69092 Loss: 114.628 -25600/69092 Loss: 112.113 -28800/69092 Loss: 113.940 -32000/69092 Loss: 113.889 -35200/69092 Loss: 113.388 -38400/69092 Loss: 112.044 -41600/69092 Loss: 115.349 -44800/69092 Loss: 115.419 -48000/69092 Loss: 115.057 -51200/69092 Loss: 111.960 -54400/69092 Loss: 113.128 -57600/69092 Loss: 114.014 -60800/69092 Loss: 114.916 -64000/69092 Loss: 112.238 -67200/69092 Loss: 114.478 -Training time 0:01:57.380616 -Epoch: 19 Average loss: 113.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 160) -0/69092 Loss: 122.416 -3200/69092 Loss: 113.065 -6400/69092 Loss: 112.945 -9600/69092 Loss: 114.812 -12800/69092 Loss: 113.286 -16000/69092 Loss: 113.571 -19200/69092 Loss: 112.787 -22400/69092 Loss: 114.123 -25600/69092 Loss: 111.963 -28800/69092 Loss: 114.746 -32000/69092 Loss: 114.841 -35200/69092 Loss: 113.247 -38400/69092 Loss: 114.276 -41600/69092 Loss: 113.018 -44800/69092 Loss: 113.369 -48000/69092 Loss: 115.743 -51200/69092 Loss: 112.478 -54400/69092 Loss: 114.102 -57600/69092 Loss: 111.813 -60800/69092 Loss: 114.739 -64000/69092 Loss: 114.274 -67200/69092 Loss: 111.381 -Training time 0:01:56.380362 -Epoch: 20 Average loss: 113.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 161) -0/69092 Loss: 112.697 -3200/69092 Loss: 111.970 -6400/69092 Loss: 113.422 -9600/69092 Loss: 114.740 -12800/69092 Loss: 112.861 -16000/69092 Loss: 113.943 -19200/69092 Loss: 114.139 -22400/69092 Loss: 114.140 -25600/69092 Loss: 112.929 -28800/69092 Loss: 113.136 -32000/69092 Loss: 113.414 -35200/69092 Loss: 112.107 -38400/69092 Loss: 113.728 -41600/69092 Loss: 115.102 -44800/69092 Loss: 113.559 -48000/69092 Loss: 112.958 -51200/69092 Loss: 114.589 -54400/69092 Loss: 113.106 -57600/69092 Loss: 113.833 -60800/69092 Loss: 113.401 -64000/69092 Loss: 113.879 -67200/69092 Loss: 113.091 -Training time 0:01:56.913742 -Epoch: 21 Average loss: 113.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 162) -0/69092 Loss: 112.838 -3200/69092 Loss: 112.310 -6400/69092 Loss: 113.759 -9600/69092 Loss: 112.544 -12800/69092 Loss: 112.362 -16000/69092 Loss: 112.802 -19200/69092 Loss: 112.718 -22400/69092 Loss: 113.442 -25600/69092 Loss: 112.484 -28800/69092 Loss: 115.515 -32000/69092 Loss: 114.749 -35200/69092 Loss: 113.935 -38400/69092 Loss: 113.959 -41600/69092 Loss: 114.361 -44800/69092 Loss: 113.340 -48000/69092 Loss: 114.839 -51200/69092 Loss: 112.398 -54400/69092 Loss: 111.141 -57600/69092 Loss: 113.406 -60800/69092 Loss: 114.487 -64000/69092 Loss: 112.059 -67200/69092 Loss: 113.190 -Training time 0:01:56.616397 -Epoch: 22 Average loss: 113.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 163) -0/69092 Loss: 112.265 -3200/69092 Loss: 113.519 -6400/69092 Loss: 114.359 -9600/69092 Loss: 114.245 -12800/69092 Loss: 113.577 -16000/69092 Loss: 110.586 -19200/69092 Loss: 114.820 -22400/69092 Loss: 113.391 -25600/69092 Loss: 113.191 -28800/69092 Loss: 113.830 -32000/69092 Loss: 115.596 -35200/69092 Loss: 111.519 -38400/69092 Loss: 113.771 -41600/69092 Loss: 112.730 -44800/69092 Loss: 113.291 -48000/69092 Loss: 113.354 -51200/69092 Loss: 113.362 -54400/69092 Loss: 114.491 -57600/69092 Loss: 112.943 -60800/69092 Loss: 115.163 -64000/69092 Loss: 114.269 -67200/69092 Loss: 111.660 -Training time 0:01:57.499579 -Epoch: 23 Average loss: 113.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 164) -0/69092 Loss: 110.541 -3200/69092 Loss: 113.010 -6400/69092 Loss: 112.319 -9600/69092 Loss: 110.574 -12800/69092 Loss: 112.917 -16000/69092 Loss: 115.502 -19200/69092 Loss: 113.512 -22400/69092 Loss: 114.476 -25600/69092 Loss: 115.393 -28800/69092 Loss: 112.487 -32000/69092 Loss: 113.305 -35200/69092 Loss: 111.957 -38400/69092 Loss: 113.179 -41600/69092 Loss: 113.447 -44800/69092 Loss: 112.649 -48000/69092 Loss: 113.721 -51200/69092 Loss: 113.584 -54400/69092 Loss: 113.247 -57600/69092 Loss: 113.686 -60800/69092 Loss: 114.066 -64000/69092 Loss: 113.360 -67200/69092 Loss: 112.081 -Training time 0:01:57.703437 -Epoch: 24 Average loss: 113.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 165) -0/69092 Loss: 105.358 -3200/69092 Loss: 114.464 -6400/69092 Loss: 112.813 -9600/69092 Loss: 113.094 -12800/69092 Loss: 113.297 -16000/69092 Loss: 114.835 -19200/69092 Loss: 115.511 -22400/69092 Loss: 112.595 -25600/69092 Loss: 113.581 -28800/69092 Loss: 113.866 -32000/69092 Loss: 114.044 -35200/69092 Loss: 114.533 -38400/69092 Loss: 115.093 -41600/69092 Loss: 114.654 -44800/69092 Loss: 114.217 -48000/69092 Loss: 113.844 -51200/69092 Loss: 111.626 -54400/69092 Loss: 112.837 -57600/69092 Loss: 112.028 -60800/69092 Loss: 111.412 -64000/69092 Loss: 111.944 -67200/69092 Loss: 114.354 -Training time 0:01:57.128045 -Epoch: 25 Average loss: 113.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 166) -0/69092 Loss: 119.216 -3200/69092 Loss: 113.760 -6400/69092 Loss: 114.056 -9600/69092 Loss: 113.799 -12800/69092 Loss: 113.218 -16000/69092 Loss: 113.157 -19200/69092 Loss: 113.767 -22400/69092 Loss: 112.843 -25600/69092 Loss: 114.296 -28800/69092 Loss: 111.594 -32000/69092 Loss: 113.287 -35200/69092 Loss: 112.529 -38400/69092 Loss: 115.394 -41600/69092 Loss: 113.424 -44800/69092 Loss: 113.577 -48000/69092 Loss: 113.916 -51200/69092 Loss: 113.749 -54400/69092 Loss: 112.013 -57600/69092 Loss: 112.941 -60800/69092 Loss: 115.017 -64000/69092 Loss: 112.619 -67200/69092 Loss: 112.699 -Training time 0:01:56.817717 -Epoch: 26 Average loss: 113.44 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 167) -0/69092 Loss: 112.080 -3200/69092 Loss: 113.181 -6400/69092 Loss: 113.334 -9600/69092 Loss: 113.410 -12800/69092 Loss: 114.304 -16000/69092 Loss: 115.035 -19200/69092 Loss: 110.356 -22400/69092 Loss: 113.695 -25600/69092 Loss: 111.821 -28800/69092 Loss: 112.289 -32000/69092 Loss: 112.570 -35200/69092 Loss: 113.323 -38400/69092 Loss: 112.747 -41600/69092 Loss: 114.286 -44800/69092 Loss: 114.734 -48000/69092 Loss: 115.015 -51200/69092 Loss: 113.396 -54400/69092 Loss: 114.657 -57600/69092 Loss: 112.889 -60800/69092 Loss: 113.635 -64000/69092 Loss: 114.906 -67200/69092 Loss: 113.901 -Training time 0:01:56.991105 -Epoch: 27 Average loss: 113.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 168) -0/69092 Loss: 118.096 -3200/69092 Loss: 112.825 -6400/69092 Loss: 111.038 -9600/69092 Loss: 113.668 -12800/69092 Loss: 112.929 -16000/69092 Loss: 116.022 -19200/69092 Loss: 112.779 -22400/69092 Loss: 113.887 -25600/69092 Loss: 112.522 -28800/69092 Loss: 113.807 -32000/69092 Loss: 113.408 -35200/69092 Loss: 111.301 -38400/69092 Loss: 113.108 -41600/69092 Loss: 115.450 -44800/69092 Loss: 114.732 -48000/69092 Loss: 112.078 -51200/69092 Loss: 111.123 -54400/69092 Loss: 113.296 -57600/69092 Loss: 113.732 -60800/69092 Loss: 115.135 -64000/69092 Loss: 112.423 -67200/69092 Loss: 113.397 -Training time 0:01:57.699817 -Epoch: 28 Average loss: 113.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 169) -0/69092 Loss: 129.896 -3200/69092 Loss: 111.535 -6400/69092 Loss: 113.759 -9600/69092 Loss: 112.517 -12800/69092 Loss: 113.311 -16000/69092 Loss: 113.559 -19200/69092 Loss: 113.697 -22400/69092 Loss: 114.203 -25600/69092 Loss: 112.384 -28800/69092 Loss: 111.674 -32000/69092 Loss: 114.226 -35200/69092 Loss: 111.903 -38400/69092 Loss: 111.676 -41600/69092 Loss: 114.267 -44800/69092 Loss: 114.515 -48000/69092 Loss: 114.730 -51200/69092 Loss: 113.357 -54400/69092 Loss: 113.161 -57600/69092 Loss: 113.563 -60800/69092 Loss: 113.460 -64000/69092 Loss: 112.999 -67200/69092 Loss: 113.924 -Training time 0:01:57.600318 -Epoch: 29 Average loss: 113.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 170) -0/69092 Loss: 116.106 -3200/69092 Loss: 113.221 -6400/69092 Loss: 114.010 -9600/69092 Loss: 112.702 -12800/69092 Loss: 113.932 -16000/69092 Loss: 112.952 -19200/69092 Loss: 113.270 -22400/69092 Loss: 111.887 -25600/69092 Loss: 113.317 -28800/69092 Loss: 115.396 -32000/69092 Loss: 113.389 -35200/69092 Loss: 114.309 -38400/69092 Loss: 115.338 -41600/69092 Loss: 115.297 -44800/69092 Loss: 111.782 -48000/69092 Loss: 111.820 -51200/69092 Loss: 113.843 -54400/69092 Loss: 113.087 -57600/69092 Loss: 112.162 -60800/69092 Loss: 113.825 -64000/69092 Loss: 111.508 -67200/69092 Loss: 111.641 -Training time 0:01:57.824421 -Epoch: 30 Average loss: 113.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 171) -0/69092 Loss: 111.976 -3200/69092 Loss: 113.670 -6400/69092 Loss: 112.234 -9600/69092 Loss: 112.258 -12800/69092 Loss: 111.372 -16000/69092 Loss: 113.058 -19200/69092 Loss: 114.690 -22400/69092 Loss: 113.186 -25600/69092 Loss: 112.399 -28800/69092 Loss: 113.581 -32000/69092 Loss: 112.355 -35200/69092 Loss: 114.725 -38400/69092 Loss: 114.342 -41600/69092 Loss: 113.915 -44800/69092 Loss: 114.097 -48000/69092 Loss: 111.121 -51200/69092 Loss: 112.346 -54400/69092 Loss: 112.699 -57600/69092 Loss: 114.326 -60800/69092 Loss: 115.077 -64000/69092 Loss: 113.883 -67200/69092 Loss: 112.444 -Training time 0:01:56.239890 -Epoch: 31 Average loss: 113.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 172) -0/69092 Loss: 107.572 -3200/69092 Loss: 112.417 -6400/69092 Loss: 113.643 -9600/69092 Loss: 112.115 -12800/69092 Loss: 113.451 -16000/69092 Loss: 114.296 -19200/69092 Loss: 112.702 -22400/69092 Loss: 112.452 -25600/69092 Loss: 111.976 -28800/69092 Loss: 113.433 -32000/69092 Loss: 114.964 -35200/69092 Loss: 114.163 -38400/69092 Loss: 114.011 -41600/69092 Loss: 113.044 -44800/69092 Loss: 112.864 -48000/69092 Loss: 113.486 -51200/69092 Loss: 114.419 -54400/69092 Loss: 111.944 -57600/69092 Loss: 113.216 -60800/69092 Loss: 112.574 -64000/69092 Loss: 113.551 -67200/69092 Loss: 112.291 -Training time 0:01:58.274545 -Epoch: 32 Average loss: 113.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 173) -0/69092 Loss: 128.844 -3200/69092 Loss: 113.094 -6400/69092 Loss: 113.790 -9600/69092 Loss: 114.675 -12800/69092 Loss: 113.787 -16000/69092 Loss: 113.817 -19200/69092 Loss: 111.743 -22400/69092 Loss: 112.467 -25600/69092 Loss: 113.830 -28800/69092 Loss: 113.495 -32000/69092 Loss: 113.034 -35200/69092 Loss: 112.246 -38400/69092 Loss: 112.938 -41600/69092 Loss: 113.047 -44800/69092 Loss: 112.097 -48000/69092 Loss: 115.020 -51200/69092 Loss: 112.659 -54400/69092 Loss: 114.513 -57600/69092 Loss: 112.853 -60800/69092 Loss: 112.763 -64000/69092 Loss: 112.027 -67200/69092 Loss: 114.172 -Training time 0:01:57.798408 -Epoch: 33 Average loss: 113.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 174) -0/69092 Loss: 104.629 -3200/69092 Loss: 112.173 -6400/69092 Loss: 114.126 -9600/69092 Loss: 113.989 -12800/69092 Loss: 112.428 -16000/69092 Loss: 113.403 -19200/69092 Loss: 112.374 -22400/69092 Loss: 114.004 -25600/69092 Loss: 111.297 -28800/69092 Loss: 113.265 -32000/69092 Loss: 114.151 -35200/69092 Loss: 113.076 -38400/69092 Loss: 112.095 -41600/69092 Loss: 112.621 -44800/69092 Loss: 113.332 -48000/69092 Loss: 113.742 -51200/69092 Loss: 112.438 -54400/69092 Loss: 114.087 -57600/69092 Loss: 112.684 -60800/69092 Loss: 113.479 -64000/69092 Loss: 111.662 -67200/69092 Loss: 114.712 -Training time 0:01:57.837601 -Epoch: 34 Average loss: 113.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 175) -0/69092 Loss: 103.858 -3200/69092 Loss: 112.354 -6400/69092 Loss: 112.711 -9600/69092 Loss: 112.340 -12800/69092 Loss: 114.180 -16000/69092 Loss: 114.228 -19200/69092 Loss: 112.943 -22400/69092 Loss: 113.147 -25600/69092 Loss: 113.512 -28800/69092 Loss: 113.014 -32000/69092 Loss: 112.682 -35200/69092 Loss: 113.589 -38400/69092 Loss: 113.333 -41600/69092 Loss: 110.257 -44800/69092 Loss: 113.071 -48000/69092 Loss: 113.393 -51200/69092 Loss: 112.867 -54400/69092 Loss: 112.875 -57600/69092 Loss: 114.227 -60800/69092 Loss: 114.129 -64000/69092 Loss: 113.988 -67200/69092 Loss: 113.577 -Training time 0:01:57.205795 -Epoch: 35 Average loss: 113.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 176) -0/69092 Loss: 103.413 -3200/69092 Loss: 112.778 -6400/69092 Loss: 111.808 -9600/69092 Loss: 113.004 -12800/69092 Loss: 112.850 -16000/69092 Loss: 112.508 -19200/69092 Loss: 112.487 -22400/69092 Loss: 112.307 -25600/69092 Loss: 112.598 -28800/69092 Loss: 113.347 -32000/69092 Loss: 113.953 -35200/69092 Loss: 112.537 -38400/69092 Loss: 113.105 -41600/69092 Loss: 113.944 -44800/69092 Loss: 112.627 -48000/69092 Loss: 113.469 -51200/69092 Loss: 113.354 -54400/69092 Loss: 111.951 -57600/69092 Loss: 114.612 -60800/69092 Loss: 115.151 -64000/69092 Loss: 114.095 -67200/69092 Loss: 112.999 -Training time 0:01:58.093735 -Epoch: 36 Average loss: 113.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 177) -0/69092 Loss: 118.704 -3200/69092 Loss: 115.288 -6400/69092 Loss: 112.416 -9600/69092 Loss: 113.091 -12800/69092 Loss: 113.384 -16000/69092 Loss: 111.939 -19200/69092 Loss: 115.027 -22400/69092 Loss: 113.573 -25600/69092 Loss: 111.731 -28800/69092 Loss: 112.633 -32000/69092 Loss: 113.658 -35200/69092 Loss: 111.934 -38400/69092 Loss: 113.779 -41600/69092 Loss: 112.805 -44800/69092 Loss: 113.871 -48000/69092 Loss: 112.855 -51200/69092 Loss: 113.678 -54400/69092 Loss: 111.995 -57600/69092 Loss: 113.649 -60800/69092 Loss: 113.059 -64000/69092 Loss: 112.577 -67200/69092 Loss: 113.533 -Training time 0:01:57.311183 -Epoch: 37 Average loss: 113.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 178) -0/69092 Loss: 98.776 -3200/69092 Loss: 115.477 -6400/69092 Loss: 112.687 -9600/69092 Loss: 113.104 -12800/69092 Loss: 113.899 -16000/69092 Loss: 112.074 -19200/69092 Loss: 113.378 -22400/69092 Loss: 113.883 -25600/69092 Loss: 112.427 -28800/69092 Loss: 112.084 -32000/69092 Loss: 113.294 -35200/69092 Loss: 114.481 -38400/69092 Loss: 111.956 -41600/69092 Loss: 111.803 -44800/69092 Loss: 115.324 -48000/69092 Loss: 113.409 -51200/69092 Loss: 113.415 -54400/69092 Loss: 112.898 -57600/69092 Loss: 112.548 -60800/69092 Loss: 111.415 -64000/69092 Loss: 113.569 -67200/69092 Loss: 113.263 -Training time 0:01:58.672983 -Epoch: 38 Average loss: 113.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 179) -0/69092 Loss: 117.852 -3200/69092 Loss: 114.132 -6400/69092 Loss: 113.622 -9600/69092 Loss: 114.413 -12800/69092 Loss: 113.895 -16000/69092 Loss: 113.178 -19200/69092 Loss: 112.793 -22400/69092 Loss: 113.263 -25600/69092 Loss: 112.936 -28800/69092 Loss: 112.303 -32000/69092 Loss: 112.990 -35200/69092 Loss: 111.565 -38400/69092 Loss: 112.377 -41600/69092 Loss: 113.479 -44800/69092 Loss: 115.034 -48000/69092 Loss: 112.626 -51200/69092 Loss: 111.186 -54400/69092 Loss: 112.106 -57600/69092 Loss: 114.955 -60800/69092 Loss: 113.966 -64000/69092 Loss: 112.044 -67200/69092 Loss: 113.459 -Training time 0:01:57.760976 -Epoch: 39 Average loss: 113.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 180) -0/69092 Loss: 112.574 -3200/69092 Loss: 113.277 -6400/69092 Loss: 113.513 -9600/69092 Loss: 112.636 -12800/69092 Loss: 114.511 -16000/69092 Loss: 111.913 -19200/69092 Loss: 113.311 -22400/69092 Loss: 112.848 -25600/69092 Loss: 113.098 -28800/69092 Loss: 111.790 -32000/69092 Loss: 115.993 -35200/69092 Loss: 112.678 -38400/69092 Loss: 112.988 -41600/69092 Loss: 113.563 -44800/69092 Loss: 112.193 -48000/69092 Loss: 111.674 -51200/69092 Loss: 112.468 -54400/69092 Loss: 114.340 -57600/69092 Loss: 112.935 -60800/69092 Loss: 114.753 -64000/69092 Loss: 114.156 -67200/69092 Loss: 114.243 -Training time 0:01:56.222605 -Epoch: 40 Average loss: 113.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 181) -0/69092 Loss: 105.331 -3200/69092 Loss: 114.259 -6400/69092 Loss: 111.239 -9600/69092 Loss: 115.819 -12800/69092 Loss: 111.548 -16000/69092 Loss: 112.908 -19200/69092 Loss: 113.682 -22400/69092 Loss: 113.371 -25600/69092 Loss: 112.336 -28800/69092 Loss: 113.930 -32000/69092 Loss: 113.883 -35200/69092 Loss: 113.407 -38400/69092 Loss: 112.290 -41600/69092 Loss: 112.645 -44800/69092 Loss: 113.480 -48000/69092 Loss: 114.097 -51200/69092 Loss: 114.638 -54400/69092 Loss: 112.103 -57600/69092 Loss: 112.390 -60800/69092 Loss: 113.538 -64000/69092 Loss: 112.240 -67200/69092 Loss: 113.869 -Training time 0:01:57.349000 -Epoch: 41 Average loss: 113.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 182) -0/69092 Loss: 106.944 -3200/69092 Loss: 112.803 -6400/69092 Loss: 110.267 -9600/69092 Loss: 112.340 -12800/69092 Loss: 113.424 -16000/69092 Loss: 113.995 -19200/69092 Loss: 113.619 -22400/69092 Loss: 111.961 -25600/69092 Loss: 114.552 -28800/69092 Loss: 113.481 -32000/69092 Loss: 113.119 -35200/69092 Loss: 111.295 -38400/69092 Loss: 114.473 -41600/69092 Loss: 111.617 -44800/69092 Loss: 113.792 -48000/69092 Loss: 114.302 -51200/69092 Loss: 114.581 -54400/69092 Loss: 113.555 -57600/69092 Loss: 112.925 -60800/69092 Loss: 110.887 -64000/69092 Loss: 113.113 -67200/69092 Loss: 111.808 -Training time 0:01:56.222317 -Epoch: 42 Average loss: 112.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 183) -0/69092 Loss: 118.230 -3200/69092 Loss: 114.454 -6400/69092 Loss: 114.169 -9600/69092 Loss: 113.332 -12800/69092 Loss: 113.019 -16000/69092 Loss: 112.611 -19200/69092 Loss: 113.410 -22400/69092 Loss: 112.536 -25600/69092 Loss: 113.521 -28800/69092 Loss: 112.724 -32000/69092 Loss: 113.471 -35200/69092 Loss: 113.396 -38400/69092 Loss: 112.500 -41600/69092 Loss: 112.662 -44800/69092 Loss: 112.447 -48000/69092 Loss: 113.205 -51200/69092 Loss: 113.619 -54400/69092 Loss: 112.108 -57600/69092 Loss: 112.777 -60800/69092 Loss: 111.704 -64000/69092 Loss: 113.784 -67200/69092 Loss: 114.549 -Training time 0:01:56.173590 -Epoch: 43 Average loss: 113.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 184) -0/69092 Loss: 110.065 -3200/69092 Loss: 111.767 -6400/69092 Loss: 113.636 -9600/69092 Loss: 112.554 -12800/69092 Loss: 113.104 -16000/69092 Loss: 112.124 -19200/69092 Loss: 112.675 -22400/69092 Loss: 113.358 -25600/69092 Loss: 113.541 -28800/69092 Loss: 114.161 -32000/69092 Loss: 113.763 -35200/69092 Loss: 113.449 -38400/69092 Loss: 111.399 -41600/69092 Loss: 112.777 -44800/69092 Loss: 111.883 -48000/69092 Loss: 114.067 -51200/69092 Loss: 113.131 -54400/69092 Loss: 113.204 -57600/69092 Loss: 114.136 -60800/69092 Loss: 114.549 -64000/69092 Loss: 113.641 -67200/69092 Loss: 111.212 -Training time 0:01:56.315797 -Epoch: 44 Average loss: 113.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 185) -0/69092 Loss: 107.930 -3200/69092 Loss: 112.748 -6400/69092 Loss: 113.215 -9600/69092 Loss: 112.162 -12800/69092 Loss: 112.736 -16000/69092 Loss: 113.186 -19200/69092 Loss: 112.042 -22400/69092 Loss: 111.728 -25600/69092 Loss: 113.111 -28800/69092 Loss: 112.076 -32000/69092 Loss: 112.213 -35200/69092 Loss: 113.642 -38400/69092 Loss: 113.701 -41600/69092 Loss: 113.927 -44800/69092 Loss: 112.954 -48000/69092 Loss: 113.721 -51200/69092 Loss: 112.651 -54400/69092 Loss: 111.437 -57600/69092 Loss: 113.122 -60800/69092 Loss: 113.259 -64000/69092 Loss: 114.487 -67200/69092 Loss: 112.311 -Training time 0:01:57.252377 -Epoch: 45 Average loss: 112.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 186) -0/69092 Loss: 107.370 -3200/69092 Loss: 112.774 -6400/69092 Loss: 111.116 -9600/69092 Loss: 115.065 -12800/69092 Loss: 110.289 -16000/69092 Loss: 112.626 -19200/69092 Loss: 114.124 -22400/69092 Loss: 114.952 -25600/69092 Loss: 112.964 -28800/69092 Loss: 111.603 -32000/69092 Loss: 114.307 -35200/69092 Loss: 113.034 -38400/69092 Loss: 111.020 -41600/69092 Loss: 112.118 -44800/69092 Loss: 113.457 -48000/69092 Loss: 113.852 -51200/69092 Loss: 113.247 -54400/69092 Loss: 114.377 -57600/69092 Loss: 112.041 -60800/69092 Loss: 112.349 -64000/69092 Loss: 113.902 -67200/69092 Loss: 113.314 -Training time 0:01:57.677153 -Epoch: 46 Average loss: 113.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 187) -0/69092 Loss: 108.191 -3200/69092 Loss: 111.180 -6400/69092 Loss: 114.511 -9600/69092 Loss: 114.274 -12800/69092 Loss: 112.695 -16000/69092 Loss: 112.708 -19200/69092 Loss: 113.813 -22400/69092 Loss: 113.495 -25600/69092 Loss: 113.813 -28800/69092 Loss: 113.657 -32000/69092 Loss: 113.259 -35200/69092 Loss: 114.526 -38400/69092 Loss: 113.245 -41600/69092 Loss: 112.102 -44800/69092 Loss: 113.019 -48000/69092 Loss: 113.146 -51200/69092 Loss: 111.802 -54400/69092 Loss: 111.874 -57600/69092 Loss: 112.954 -60800/69092 Loss: 112.509 -64000/69092 Loss: 112.301 -67200/69092 Loss: 113.756 -Training time 0:01:57.270936 -Epoch: 47 Average loss: 113.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 188) -0/69092 Loss: 114.384 -3200/69092 Loss: 112.098 -6400/69092 Loss: 113.737 -9600/69092 Loss: 112.405 -12800/69092 Loss: 112.935 -16000/69092 Loss: 112.704 -19200/69092 Loss: 112.897 -22400/69092 Loss: 111.671 -25600/69092 Loss: 111.944 -28800/69092 Loss: 112.637 -32000/69092 Loss: 112.662 -35200/69092 Loss: 113.128 -38400/69092 Loss: 113.058 -41600/69092 Loss: 114.302 -44800/69092 Loss: 112.805 -48000/69092 Loss: 113.744 -51200/69092 Loss: 112.352 -54400/69092 Loss: 113.272 -57600/69092 Loss: 113.209 -60800/69092 Loss: 112.415 -64000/69092 Loss: 113.384 -67200/69092 Loss: 114.061 -Training time 0:01:56.621897 -Epoch: 48 Average loss: 112.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 189) -0/69092 Loss: 122.424 -3200/69092 Loss: 113.558 -6400/69092 Loss: 114.006 -9600/69092 Loss: 113.438 -12800/69092 Loss: 112.103 -16000/69092 Loss: 111.731 -19200/69092 Loss: 113.225 -22400/69092 Loss: 113.965 -25600/69092 Loss: 112.907 -28800/69092 Loss: 113.415 -32000/69092 Loss: 113.648 -35200/69092 Loss: 112.892 -38400/69092 Loss: 113.315 -41600/69092 Loss: 113.611 -44800/69092 Loss: 112.368 -48000/69092 Loss: 111.456 -51200/69092 Loss: 114.291 -54400/69092 Loss: 112.338 -57600/69092 Loss: 112.937 -60800/69092 Loss: 113.357 -64000/69092 Loss: 112.928 -67200/69092 Loss: 110.368 -Training time 0:01:57.034065 -Epoch: 49 Average loss: 112.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 190) -0/69092 Loss: 103.725 -3200/69092 Loss: 112.181 -6400/69092 Loss: 110.256 -9600/69092 Loss: 112.561 -12800/69092 Loss: 113.508 -16000/69092 Loss: 112.477 -19200/69092 Loss: 113.481 -22400/69092 Loss: 113.713 -25600/69092 Loss: 111.214 -28800/69092 Loss: 112.821 -32000/69092 Loss: 114.706 -35200/69092 Loss: 113.510 -38400/69092 Loss: 113.152 -41600/69092 Loss: 111.306 -44800/69092 Loss: 113.479 -48000/69092 Loss: 112.801 -51200/69092 Loss: 113.999 -54400/69092 Loss: 114.534 -57600/69092 Loss: 114.387 -60800/69092 Loss: 111.725 -64000/69092 Loss: 114.551 -67200/69092 Loss: 111.415 -Training time 0:01:57.144276 -Epoch: 50 Average loss: 112.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 191) -0/69092 Loss: 123.784 -3200/69092 Loss: 113.886 -6400/69092 Loss: 112.050 -9600/69092 Loss: 112.913 -12800/69092 Loss: 112.992 -16000/69092 Loss: 113.581 -19200/69092 Loss: 112.858 -22400/69092 Loss: 109.655 -25600/69092 Loss: 113.699 -28800/69092 Loss: 113.077 -32000/69092 Loss: 113.015 -35200/69092 Loss: 113.601 -38400/69092 Loss: 113.509 -41600/69092 Loss: 112.657 -44800/69092 Loss: 112.097 -48000/69092 Loss: 112.557 -51200/69092 Loss: 113.076 -54400/69092 Loss: 111.945 -57600/69092 Loss: 112.558 -60800/69092 Loss: 113.805 -64000/69092 Loss: 113.686 -67200/69092 Loss: 112.579 -Training time 0:01:58.141268 -Epoch: 51 Average loss: 112.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 192) -0/69092 Loss: 102.234 -3200/69092 Loss: 113.874 -6400/69092 Loss: 112.134 -9600/69092 Loss: 111.494 -12800/69092 Loss: 112.315 -16000/69092 Loss: 114.314 -19200/69092 Loss: 112.447 -22400/69092 Loss: 113.243 -25600/69092 Loss: 112.554 -28800/69092 Loss: 112.491 -32000/69092 Loss: 114.047 -35200/69092 Loss: 114.010 -38400/69092 Loss: 113.350 -41600/69092 Loss: 111.099 -44800/69092 Loss: 112.864 -48000/69092 Loss: 113.585 -51200/69092 Loss: 113.284 -54400/69092 Loss: 113.734 -57600/69092 Loss: 111.351 -60800/69092 Loss: 113.639 -64000/69092 Loss: 111.110 -67200/69092 Loss: 112.782 -Training time 0:01:57.109686 -Epoch: 52 Average loss: 112.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 193) -0/69092 Loss: 125.149 -3200/69092 Loss: 113.593 -6400/69092 Loss: 113.225 -9600/69092 Loss: 113.240 -12800/69092 Loss: 113.332 -16000/69092 Loss: 112.498 -19200/69092 Loss: 111.564 -22400/69092 Loss: 112.087 -25600/69092 Loss: 114.866 -28800/69092 Loss: 113.822 -32000/69092 Loss: 112.653 -35200/69092 Loss: 112.648 -38400/69092 Loss: 113.448 -41600/69092 Loss: 112.285 -44800/69092 Loss: 111.339 -48000/69092 Loss: 114.992 -51200/69092 Loss: 112.286 -54400/69092 Loss: 113.181 -57600/69092 Loss: 114.641 -60800/69092 Loss: 112.185 -64000/69092 Loss: 110.240 -67200/69092 Loss: 111.789 -Training time 0:01:57.890895 -Epoch: 53 Average loss: 112.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 194) -0/69092 Loss: 120.738 -3200/69092 Loss: 113.921 -6400/69092 Loss: 112.629 -9600/69092 Loss: 112.500 -12800/69092 Loss: 112.924 -16000/69092 Loss: 113.851 -19200/69092 Loss: 112.452 -22400/69092 Loss: 112.171 -25600/69092 Loss: 113.169 -28800/69092 Loss: 113.749 -32000/69092 Loss: 111.723 -35200/69092 Loss: 114.696 -38400/69092 Loss: 111.455 -41600/69092 Loss: 111.961 -44800/69092 Loss: 111.725 -48000/69092 Loss: 112.909 -51200/69092 Loss: 114.163 -54400/69092 Loss: 112.770 -57600/69092 Loss: 113.329 -60800/69092 Loss: 112.858 -64000/69092 Loss: 115.067 -67200/69092 Loss: 112.942 -Training time 0:01:58.375331 -Epoch: 54 Average loss: 113.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 195) -0/69092 Loss: 113.161 -3200/69092 Loss: 112.216 -6400/69092 Loss: 114.245 -9600/69092 Loss: 112.978 -12800/69092 Loss: 111.724 -16000/69092 Loss: 112.694 -19200/69092 Loss: 114.218 -22400/69092 Loss: 113.346 -25600/69092 Loss: 113.955 -28800/69092 Loss: 112.076 -32000/69092 Loss: 112.785 -35200/69092 Loss: 113.738 -38400/69092 Loss: 112.492 -41600/69092 Loss: 111.618 -44800/69092 Loss: 112.485 -48000/69092 Loss: 110.495 -51200/69092 Loss: 112.329 -54400/69092 Loss: 113.543 -57600/69092 Loss: 112.926 -60800/69092 Loss: 111.947 -64000/69092 Loss: 113.947 -67200/69092 Loss: 113.614 -Training time 0:01:57.921067 -Epoch: 55 Average loss: 112.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 196) -0/69092 Loss: 98.536 -3200/69092 Loss: 113.967 -6400/69092 Loss: 113.678 -9600/69092 Loss: 112.032 -12800/69092 Loss: 113.125 -16000/69092 Loss: 112.978 -19200/69092 Loss: 112.244 -22400/69092 Loss: 111.852 -25600/69092 Loss: 112.795 -28800/69092 Loss: 112.706 -32000/69092 Loss: 112.926 -35200/69092 Loss: 113.740 -38400/69092 Loss: 113.753 -41600/69092 Loss: 112.075 -44800/69092 Loss: 110.197 -48000/69092 Loss: 113.637 -51200/69092 Loss: 114.269 -54400/69092 Loss: 113.479 -57600/69092 Loss: 112.259 -60800/69092 Loss: 113.970 -64000/69092 Loss: 112.493 -67200/69092 Loss: 112.385 -Training time 0:01:57.750009 -Epoch: 56 Average loss: 112.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 197) -0/69092 Loss: 111.093 -3200/69092 Loss: 113.880 -6400/69092 Loss: 112.762 -9600/69092 Loss: 111.905 -12800/69092 Loss: 114.283 -16000/69092 Loss: 112.578 -19200/69092 Loss: 113.268 -22400/69092 Loss: 113.933 -25600/69092 Loss: 113.673 -28800/69092 Loss: 113.308 -32000/69092 Loss: 113.911 -35200/69092 Loss: 112.552 -38400/69092 Loss: 112.965 -41600/69092 Loss: 112.686 -44800/69092 Loss: 112.111 -48000/69092 Loss: 112.260 -51200/69092 Loss: 113.688 -54400/69092 Loss: 110.520 -57600/69092 Loss: 112.602 -60800/69092 Loss: 111.985 -64000/69092 Loss: 113.892 -67200/69092 Loss: 111.503 -Training time 0:01:57.478060 -Epoch: 57 Average loss: 112.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 198) -0/69092 Loss: 125.914 -3200/69092 Loss: 113.873 -6400/69092 Loss: 113.726 -9600/69092 Loss: 115.227 -12800/69092 Loss: 110.942 -16000/69092 Loss: 112.000 -19200/69092 Loss: 111.971 -22400/69092 Loss: 113.533 -25600/69092 Loss: 112.320 -28800/69092 Loss: 112.569 -32000/69092 Loss: 111.833 -35200/69092 Loss: 113.412 -38400/69092 Loss: 112.716 -41600/69092 Loss: 112.908 -44800/69092 Loss: 112.154 -48000/69092 Loss: 113.787 -51200/69092 Loss: 112.760 -54400/69092 Loss: 113.770 -57600/69092 Loss: 113.666 -60800/69092 Loss: 112.642 -64000/69092 Loss: 112.393 -67200/69092 Loss: 113.339 -Training time 0:01:57.454998 -Epoch: 58 Average loss: 112.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 199) -0/69092 Loss: 113.249 -3200/69092 Loss: 112.831 -6400/69092 Loss: 113.055 -9600/69092 Loss: 112.264 -12800/69092 Loss: 113.239 -16000/69092 Loss: 114.807 -19200/69092 Loss: 111.828 -22400/69092 Loss: 112.956 -25600/69092 Loss: 112.355 -28800/69092 Loss: 114.544 -32000/69092 Loss: 110.842 -35200/69092 Loss: 113.752 -38400/69092 Loss: 114.699 -41600/69092 Loss: 113.010 -44800/69092 Loss: 113.437 -48000/69092 Loss: 114.445 -51200/69092 Loss: 112.138 -54400/69092 Loss: 112.515 -57600/69092 Loss: 111.633 -60800/69092 Loss: 110.929 -64000/69092 Loss: 112.556 -67200/69092 Loss: 111.946 -Training time 0:01:57.979320 -Epoch: 59 Average loss: 112.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 200) -0/69092 Loss: 118.560 -3200/69092 Loss: 113.390 -6400/69092 Loss: 115.115 -9600/69092 Loss: 113.015 -12800/69092 Loss: 110.703 -16000/69092 Loss: 112.370 -19200/69092 Loss: 111.884 -22400/69092 Loss: 112.114 -25600/69092 Loss: 113.264 -28800/69092 Loss: 111.140 -32000/69092 Loss: 112.199 -35200/69092 Loss: 111.933 -38400/69092 Loss: 115.160 -41600/69092 Loss: 112.984 -44800/69092 Loss: 113.587 -48000/69092 Loss: 111.713 -51200/69092 Loss: 112.597 -54400/69092 Loss: 114.407 -57600/69092 Loss: 111.939 -60800/69092 Loss: 112.508 -64000/69092 Loss: 112.346 -67200/69092 Loss: 113.437 -Training time 0:01:57.129662 -Epoch: 60 Average loss: 112.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 201) -0/69092 Loss: 106.730 -3200/69092 Loss: 111.336 -6400/69092 Loss: 112.730 -9600/69092 Loss: 112.802 -12800/69092 Loss: 112.511 -16000/69092 Loss: 112.847 -19200/69092 Loss: 112.665 -22400/69092 Loss: 112.093 -25600/69092 Loss: 111.901 -28800/69092 Loss: 113.367 -32000/69092 Loss: 111.384 -35200/69092 Loss: 114.479 -38400/69092 Loss: 113.044 -41600/69092 Loss: 112.871 -44800/69092 Loss: 111.875 -48000/69092 Loss: 113.852 -51200/69092 Loss: 114.161 -54400/69092 Loss: 113.598 -57600/69092 Loss: 112.559 -60800/69092 Loss: 111.755 -64000/69092 Loss: 113.378 -67200/69092 Loss: 114.233 -Training time 0:01:57.502646 -Epoch: 61 Average loss: 112.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 202) -0/69092 Loss: 110.732 -3200/69092 Loss: 112.066 -6400/69092 Loss: 110.979 -9600/69092 Loss: 111.672 -12800/69092 Loss: 112.490 -16000/69092 Loss: 110.993 -19200/69092 Loss: 113.076 -22400/69092 Loss: 112.079 -25600/69092 Loss: 113.152 -28800/69092 Loss: 112.425 -32000/69092 Loss: 112.395 -35200/69092 Loss: 112.097 -38400/69092 Loss: 112.282 -41600/69092 Loss: 112.552 -44800/69092 Loss: 112.215 -48000/69092 Loss: 113.234 -51200/69092 Loss: 112.832 -54400/69092 Loss: 113.246 -57600/69092 Loss: 112.555 -60800/69092 Loss: 113.089 -64000/69092 Loss: 114.522 -67200/69092 Loss: 114.644 -Training time 0:01:56.714733 -Epoch: 62 Average loss: 112.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 203) -0/69092 Loss: 125.102 -3200/69092 Loss: 114.078 -6400/69092 Loss: 114.435 -9600/69092 Loss: 113.205 -12800/69092 Loss: 112.800 -16000/69092 Loss: 110.416 -19200/69092 Loss: 113.880 -22400/69092 Loss: 111.915 -25600/69092 Loss: 112.619 -28800/69092 Loss: 112.915 -32000/69092 Loss: 111.166 -35200/69092 Loss: 113.828 -38400/69092 Loss: 113.011 -41600/69092 Loss: 113.585 -44800/69092 Loss: 112.541 -48000/69092 Loss: 113.303 -51200/69092 Loss: 113.605 -54400/69092 Loss: 112.948 -57600/69092 Loss: 110.535 -60800/69092 Loss: 113.138 -64000/69092 Loss: 112.730 -67200/69092 Loss: 112.324 -Training time 0:01:56.675149 -Epoch: 63 Average loss: 112.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 204) -0/69092 Loss: 107.751 -3200/69092 Loss: 113.080 -6400/69092 Loss: 111.117 -9600/69092 Loss: 113.675 -12800/69092 Loss: 111.980 -16000/69092 Loss: 112.702 -19200/69092 Loss: 112.221 -22400/69092 Loss: 114.652 -25600/69092 Loss: 111.969 -28800/69092 Loss: 112.533 -32000/69092 Loss: 113.737 -35200/69092 Loss: 113.486 -38400/69092 Loss: 114.099 -41600/69092 Loss: 111.737 -44800/69092 Loss: 112.225 -48000/69092 Loss: 111.938 -51200/69092 Loss: 114.247 -54400/69092 Loss: 111.343 -57600/69092 Loss: 110.885 -60800/69092 Loss: 113.434 -64000/69092 Loss: 111.832 -67200/69092 Loss: 112.673 -Training time 0:01:57.304249 -Epoch: 64 Average loss: 112.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 205) -0/69092 Loss: 119.555 -3200/69092 Loss: 111.338 -6400/69092 Loss: 111.867 -9600/69092 Loss: 111.428 -12800/69092 Loss: 111.916 -16000/69092 Loss: 114.298 -19200/69092 Loss: 112.599 -22400/69092 Loss: 113.052 -25600/69092 Loss: 112.724 -28800/69092 Loss: 112.868 -32000/69092 Loss: 115.266 -35200/69092 Loss: 113.234 -38400/69092 Loss: 113.548 -41600/69092 Loss: 111.175 -44800/69092 Loss: 113.618 -48000/69092 Loss: 112.329 -51200/69092 Loss: 111.662 -54400/69092 Loss: 111.407 -57600/69092 Loss: 114.493 -60800/69092 Loss: 113.059 -64000/69092 Loss: 112.701 -67200/69092 Loss: 112.004 -Training time 0:01:56.345180 -Epoch: 65 Average loss: 112.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 206) -0/69092 Loss: 115.853 -3200/69092 Loss: 113.659 -6400/69092 Loss: 112.134 -9600/69092 Loss: 112.609 -12800/69092 Loss: 110.304 -16000/69092 Loss: 114.111 -19200/69092 Loss: 111.842 -22400/69092 Loss: 112.393 -25600/69092 Loss: 111.813 -28800/69092 Loss: 112.723 -32000/69092 Loss: 111.490 -35200/69092 Loss: 112.234 -38400/69092 Loss: 113.776 -41600/69092 Loss: 112.868 -44800/69092 Loss: 111.690 -48000/69092 Loss: 113.217 -51200/69092 Loss: 114.886 -54400/69092 Loss: 113.434 -57600/69092 Loss: 113.007 -60800/69092 Loss: 114.535 -64000/69092 Loss: 113.078 -67200/69092 Loss: 111.854 -Training time 0:01:57.293184 -Epoch: 66 Average loss: 112.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 207) -0/69092 Loss: 121.578 -3200/69092 Loss: 112.014 -6400/69092 Loss: 111.408 -9600/69092 Loss: 114.871 -12800/69092 Loss: 112.817 -16000/69092 Loss: 111.106 -19200/69092 Loss: 111.748 -22400/69092 Loss: 111.850 -25600/69092 Loss: 113.682 -28800/69092 Loss: 112.155 -32000/69092 Loss: 111.136 -35200/69092 Loss: 114.829 -38400/69092 Loss: 109.859 -41600/69092 Loss: 114.682 -44800/69092 Loss: 112.475 -48000/69092 Loss: 113.490 -51200/69092 Loss: 113.920 -54400/69092 Loss: 113.714 -57600/69092 Loss: 112.002 -60800/69092 Loss: 113.716 -64000/69092 Loss: 113.480 -67200/69092 Loss: 112.792 -Training time 0:01:57.191413 -Epoch: 67 Average loss: 112.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 208) -0/69092 Loss: 112.806 -3200/69092 Loss: 113.068 -6400/69092 Loss: 114.299 -9600/69092 Loss: 113.946 -12800/69092 Loss: 113.426 -16000/69092 Loss: 114.277 -19200/69092 Loss: 111.715 -22400/69092 Loss: 112.805 -25600/69092 Loss: 113.436 -28800/69092 Loss: 111.918 -32000/69092 Loss: 110.794 -35200/69092 Loss: 113.398 -38400/69092 Loss: 112.557 -41600/69092 Loss: 113.606 -44800/69092 Loss: 112.019 -48000/69092 Loss: 112.819 -51200/69092 Loss: 112.972 -54400/69092 Loss: 112.156 -57600/69092 Loss: 114.157 -60800/69092 Loss: 112.676 -64000/69092 Loss: 110.638 -67200/69092 Loss: 112.451 -Training time 0:01:57.261387 -Epoch: 68 Average loss: 112.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 209) -0/69092 Loss: 113.386 -3200/69092 Loss: 114.170 -6400/69092 Loss: 110.506 -9600/69092 Loss: 113.760 -12800/69092 Loss: 111.703 -16000/69092 Loss: 112.979 -19200/69092 Loss: 113.631 -22400/69092 Loss: 112.239 -25600/69092 Loss: 113.287 -28800/69092 Loss: 112.579 -32000/69092 Loss: 112.529 -35200/69092 Loss: 112.516 -38400/69092 Loss: 112.248 -41600/69092 Loss: 110.628 -44800/69092 Loss: 111.668 -48000/69092 Loss: 114.073 -51200/69092 Loss: 114.264 -54400/69092 Loss: 111.930 -57600/69092 Loss: 113.082 -60800/69092 Loss: 113.034 -64000/69092 Loss: 111.445 -67200/69092 Loss: 113.708 -Training time 0:01:57.350971 -Epoch: 69 Average loss: 112.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 210) -0/69092 Loss: 125.102 -3200/69092 Loss: 113.944 -6400/69092 Loss: 113.237 -9600/69092 Loss: 112.432 -12800/69092 Loss: 113.079 -16000/69092 Loss: 113.065 -19200/69092 Loss: 113.352 -22400/69092 Loss: 111.868 -25600/69092 Loss: 111.362 -28800/69092 Loss: 111.899 -32000/69092 Loss: 112.378 -35200/69092 Loss: 113.345 -38400/69092 Loss: 113.601 -41600/69092 Loss: 113.423 -44800/69092 Loss: 113.835 -48000/69092 Loss: 113.524 -51200/69092 Loss: 111.625 -54400/69092 Loss: 110.301 -57600/69092 Loss: 113.257 -60800/69092 Loss: 112.360 -64000/69092 Loss: 113.661 -67200/69092 Loss: 111.989 -Training time 0:01:57.706960 -Epoch: 70 Average loss: 112.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 211) -0/69092 Loss: 109.951 -3200/69092 Loss: 111.585 -6400/69092 Loss: 112.386 -9600/69092 Loss: 114.688 -12800/69092 Loss: 112.558 -16000/69092 Loss: 114.412 -19200/69092 Loss: 110.693 -22400/69092 Loss: 112.368 -25600/69092 Loss: 111.187 -28800/69092 Loss: 110.824 -32000/69092 Loss: 111.415 -35200/69092 Loss: 113.049 -38400/69092 Loss: 112.739 -41600/69092 Loss: 114.434 -44800/69092 Loss: 112.295 -48000/69092 Loss: 111.453 -51200/69092 Loss: 113.783 -54400/69092 Loss: 114.709 -57600/69092 Loss: 114.544 -60800/69092 Loss: 111.354 -64000/69092 Loss: 113.425 -67200/69092 Loss: 114.318 -Training time 0:01:56.501884 -Epoch: 71 Average loss: 112.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 212) -0/69092 Loss: 115.720 -3200/69092 Loss: 112.429 -6400/69092 Loss: 110.584 -9600/69092 Loss: 113.790 -12800/69092 Loss: 112.467 -16000/69092 Loss: 112.473 -19200/69092 Loss: 113.625 -22400/69092 Loss: 113.141 -25600/69092 Loss: 111.571 -28800/69092 Loss: 113.934 -32000/69092 Loss: 113.007 -35200/69092 Loss: 113.262 -38400/69092 Loss: 112.649 -41600/69092 Loss: 111.434 -44800/69092 Loss: 113.323 -48000/69092 Loss: 111.536 -51200/69092 Loss: 114.455 -54400/69092 Loss: 112.240 -57600/69092 Loss: 113.238 -60800/69092 Loss: 111.717 -64000/69092 Loss: 112.014 -67200/69092 Loss: 111.735 -Training time 0:01:58.567226 -Epoch: 72 Average loss: 112.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 213) -0/69092 Loss: 111.391 -3200/69092 Loss: 110.615 -6400/69092 Loss: 111.063 -9600/69092 Loss: 113.281 -12800/69092 Loss: 113.252 -16000/69092 Loss: 113.083 -19200/69092 Loss: 112.328 -22400/69092 Loss: 112.919 -25600/69092 Loss: 113.872 -28800/69092 Loss: 112.001 -32000/69092 Loss: 112.789 -35200/69092 Loss: 112.941 -38400/69092 Loss: 113.896 -41600/69092 Loss: 112.776 -44800/69092 Loss: 112.682 -48000/69092 Loss: 111.300 -51200/69092 Loss: 112.580 -54400/69092 Loss: 113.257 -57600/69092 Loss: 113.428 -60800/69092 Loss: 111.667 -64000/69092 Loss: 112.985 -67200/69092 Loss: 113.264 -Training time 0:01:59.109756 -Epoch: 73 Average loss: 112.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 214) -0/69092 Loss: 105.142 -3200/69092 Loss: 112.594 -6400/69092 Loss: 110.573 -9600/69092 Loss: 111.890 -12800/69092 Loss: 110.356 -16000/69092 Loss: 112.265 -19200/69092 Loss: 112.690 -22400/69092 Loss: 112.969 -25600/69092 Loss: 113.605 -28800/69092 Loss: 111.696 -32000/69092 Loss: 113.205 -35200/69092 Loss: 111.634 -38400/69092 Loss: 111.312 -41600/69092 Loss: 112.915 -44800/69092 Loss: 114.137 -48000/69092 Loss: 113.250 -51200/69092 Loss: 113.176 -54400/69092 Loss: 113.504 -57600/69092 Loss: 113.093 -60800/69092 Loss: 112.143 -64000/69092 Loss: 112.619 -67200/69092 Loss: 113.034 -Training time 0:01:57.727148 -Epoch: 74 Average loss: 112.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 215) -0/69092 Loss: 106.662 -3200/69092 Loss: 111.343 -6400/69092 Loss: 113.590 -9600/69092 Loss: 113.685 -12800/69092 Loss: 111.313 -16000/69092 Loss: 113.363 -19200/69092 Loss: 111.301 -22400/69092 Loss: 112.669 -25600/69092 Loss: 111.878 -28800/69092 Loss: 114.197 -32000/69092 Loss: 112.956 -35200/69092 Loss: 112.539 -38400/69092 Loss: 112.137 -41600/69092 Loss: 113.329 -44800/69092 Loss: 112.944 -48000/69092 Loss: 113.005 -51200/69092 Loss: 112.354 -54400/69092 Loss: 111.350 -57600/69092 Loss: 113.151 -60800/69092 Loss: 113.402 -64000/69092 Loss: 112.928 -67200/69092 Loss: 111.612 -Training time 0:01:58.503154 -Epoch: 75 Average loss: 112.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 216) -0/69092 Loss: 109.634 -3200/69092 Loss: 112.922 -6400/69092 Loss: 111.558 -9600/69092 Loss: 111.909 -12800/69092 Loss: 112.965 -16000/69092 Loss: 114.224 -19200/69092 Loss: 109.836 -22400/69092 Loss: 112.878 -25600/69092 Loss: 113.737 -28800/69092 Loss: 111.219 -32000/69092 Loss: 112.265 -35200/69092 Loss: 111.559 -38400/69092 Loss: 112.683 -41600/69092 Loss: 112.252 -44800/69092 Loss: 111.319 -48000/69092 Loss: 112.530 -51200/69092 Loss: 112.719 -54400/69092 Loss: 114.480 -57600/69092 Loss: 113.720 -60800/69092 Loss: 112.721 -64000/69092 Loss: 111.756 -67200/69092 Loss: 114.433 -Training time 0:01:57.915950 -Epoch: 76 Average loss: 112.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 217) -0/69092 Loss: 110.370 -3200/69092 Loss: 113.485 -6400/69092 Loss: 111.071 -9600/69092 Loss: 112.981 -12800/69092 Loss: 113.115 -16000/69092 Loss: 113.565 -19200/69092 Loss: 112.656 -22400/69092 Loss: 112.244 -25600/69092 Loss: 113.620 -28800/69092 Loss: 112.454 -32000/69092 Loss: 113.654 -35200/69092 Loss: 110.934 -38400/69092 Loss: 110.700 -41600/69092 Loss: 111.663 -44800/69092 Loss: 111.770 -48000/69092 Loss: 113.938 -51200/69092 Loss: 112.635 -54400/69092 Loss: 111.136 -57600/69092 Loss: 114.183 -60800/69092 Loss: 110.725 -64000/69092 Loss: 111.686 -67200/69092 Loss: 113.193 -Training time 0:01:58.140659 -Epoch: 77 Average loss: 112.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 218) -0/69092 Loss: 119.513 -3200/69092 Loss: 112.164 -6400/69092 Loss: 115.295 -9600/69092 Loss: 112.260 -12800/69092 Loss: 115.003 -16000/69092 Loss: 113.505 -19200/69092 Loss: 111.126 -22400/69092 Loss: 112.373 -25600/69092 Loss: 114.709 -28800/69092 Loss: 113.183 -32000/69092 Loss: 112.834 -35200/69092 Loss: 110.947 -38400/69092 Loss: 114.188 -41600/69092 Loss: 113.869 -44800/69092 Loss: 111.811 -48000/69092 Loss: 112.425 -51200/69092 Loss: 111.222 -54400/69092 Loss: 109.423 -57600/69092 Loss: 111.643 -60800/69092 Loss: 111.004 -64000/69092 Loss: 112.427 -67200/69092 Loss: 110.218 -Training time 0:01:58.233680 -Epoch: 78 Average loss: 112.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 219) -0/69092 Loss: 112.880 -3200/69092 Loss: 111.231 -6400/69092 Loss: 111.246 -9600/69092 Loss: 112.264 -12800/69092 Loss: 111.231 -16000/69092 Loss: 113.573 -19200/69092 Loss: 112.453 -22400/69092 Loss: 111.672 -25600/69092 Loss: 111.678 -28800/69092 Loss: 112.624 -32000/69092 Loss: 113.164 -35200/69092 Loss: 112.180 -38400/69092 Loss: 111.770 -41600/69092 Loss: 114.413 -44800/69092 Loss: 113.653 -48000/69092 Loss: 112.630 -51200/69092 Loss: 114.465 -54400/69092 Loss: 111.538 -57600/69092 Loss: 111.864 -60800/69092 Loss: 113.904 -64000/69092 Loss: 113.190 -67200/69092 Loss: 112.678 -Training time 0:01:58.886331 -Epoch: 79 Average loss: 112.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 220) -0/69092 Loss: 128.631 -3200/69092 Loss: 112.969 -6400/69092 Loss: 113.126 -9600/69092 Loss: 112.544 -12800/69092 Loss: 114.528 -16000/69092 Loss: 113.954 -19200/69092 Loss: 113.491 -22400/69092 Loss: 112.045 -25600/69092 Loss: 112.418 -28800/69092 Loss: 112.261 -32000/69092 Loss: 112.555 -35200/69092 Loss: 112.481 -38400/69092 Loss: 113.040 -41600/69092 Loss: 112.316 -44800/69092 Loss: 113.381 -48000/69092 Loss: 110.421 -51200/69092 Loss: 112.938 -54400/69092 Loss: 112.496 -57600/69092 Loss: 111.130 -60800/69092 Loss: 112.314 -64000/69092 Loss: 111.236 -67200/69092 Loss: 112.486 -Training time 0:01:59.192499 -Epoch: 80 Average loss: 112.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 221) -0/69092 Loss: 110.983 -3200/69092 Loss: 111.795 -6400/69092 Loss: 114.281 -9600/69092 Loss: 114.297 -12800/69092 Loss: 111.781 -16000/69092 Loss: 113.590 -19200/69092 Loss: 111.945 -22400/69092 Loss: 111.954 -25600/69092 Loss: 114.341 -28800/69092 Loss: 111.819 -32000/69092 Loss: 111.738 -35200/69092 Loss: 112.450 -38400/69092 Loss: 112.232 -41600/69092 Loss: 113.709 -44800/69092 Loss: 109.591 -48000/69092 Loss: 111.978 -51200/69092 Loss: 113.746 -54400/69092 Loss: 112.940 -57600/69092 Loss: 111.191 -60800/69092 Loss: 113.764 -64000/69092 Loss: 110.196 -67200/69092 Loss: 113.870 -Training time 0:01:58.037191 -Epoch: 81 Average loss: 112.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 222) -0/69092 Loss: 106.766 -3200/69092 Loss: 110.676 -6400/69092 Loss: 112.739 -9600/69092 Loss: 114.432 -12800/69092 Loss: 111.230 -16000/69092 Loss: 113.746 -19200/69092 Loss: 112.254 -22400/69092 Loss: 110.426 -25600/69092 Loss: 112.839 -28800/69092 Loss: 111.624 -32000/69092 Loss: 111.983 -35200/69092 Loss: 112.184 -38400/69092 Loss: 113.878 -41600/69092 Loss: 112.466 -44800/69092 Loss: 113.243 -48000/69092 Loss: 113.959 -51200/69092 Loss: 111.869 -54400/69092 Loss: 114.875 -57600/69092 Loss: 113.464 -60800/69092 Loss: 111.022 -64000/69092 Loss: 112.748 -67200/69092 Loss: 113.343 -Training time 0:01:57.151935 -Epoch: 82 Average loss: 112.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 223) -0/69092 Loss: 112.459 -3200/69092 Loss: 113.521 -6400/69092 Loss: 112.971 -9600/69092 Loss: 114.863 -12800/69092 Loss: 113.266 -16000/69092 Loss: 111.280 -19200/69092 Loss: 113.492 -22400/69092 Loss: 111.211 -25600/69092 Loss: 112.837 -28800/69092 Loss: 111.302 -32000/69092 Loss: 112.393 -35200/69092 Loss: 113.066 -38400/69092 Loss: 111.966 -41600/69092 Loss: 113.211 -44800/69092 Loss: 112.303 -48000/69092 Loss: 112.610 -51200/69092 Loss: 111.012 -54400/69092 Loss: 113.453 -57600/69092 Loss: 113.841 -60800/69092 Loss: 111.124 -64000/69092 Loss: 111.964 -67200/69092 Loss: 112.159 -Training time 0:01:57.861526 -Epoch: 83 Average loss: 112.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 224) -0/69092 Loss: 112.569 -3200/69092 Loss: 112.110 -6400/69092 Loss: 111.643 -9600/69092 Loss: 111.477 -12800/69092 Loss: 111.725 -16000/69092 Loss: 112.504 -19200/69092 Loss: 114.204 -22400/69092 Loss: 111.431 -25600/69092 Loss: 113.620 -28800/69092 Loss: 112.256 -32000/69092 Loss: 110.583 -35200/69092 Loss: 111.800 -38400/69092 Loss: 111.793 -41600/69092 Loss: 114.786 -44800/69092 Loss: 112.921 -48000/69092 Loss: 111.340 -51200/69092 Loss: 112.890 -54400/69092 Loss: 111.795 -57600/69092 Loss: 115.177 -60800/69092 Loss: 112.495 -64000/69092 Loss: 113.175 -67200/69092 Loss: 113.448 -Training time 0:01:56.508485 -Epoch: 84 Average loss: 112.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 225) -0/69092 Loss: 108.268 -3200/69092 Loss: 113.082 -6400/69092 Loss: 113.174 -9600/69092 Loss: 112.854 -12800/69092 Loss: 111.730 -16000/69092 Loss: 112.991 -19200/69092 Loss: 112.370 -22400/69092 Loss: 112.805 -25600/69092 Loss: 112.939 -28800/69092 Loss: 110.554 -32000/69092 Loss: 112.918 -35200/69092 Loss: 112.305 -38400/69092 Loss: 112.502 -41600/69092 Loss: 112.318 -44800/69092 Loss: 114.760 -48000/69092 Loss: 110.678 -51200/69092 Loss: 111.979 -54400/69092 Loss: 113.421 -57600/69092 Loss: 111.349 -60800/69092 Loss: 111.670 -64000/69092 Loss: 110.914 -67200/69092 Loss: 115.127 -Training time 0:01:57.954607 -Epoch: 85 Average loss: 112.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 226) -0/69092 Loss: 121.964 -3200/69092 Loss: 111.323 -6400/69092 Loss: 112.121 -9600/69092 Loss: 113.463 -12800/69092 Loss: 113.063 -16000/69092 Loss: 112.890 -19200/69092 Loss: 113.526 -22400/69092 Loss: 112.961 -25600/69092 Loss: 111.565 -28800/69092 Loss: 111.969 -32000/69092 Loss: 113.186 -35200/69092 Loss: 112.689 -38400/69092 Loss: 112.469 -41600/69092 Loss: 113.112 -44800/69092 Loss: 113.887 -48000/69092 Loss: 112.435 -51200/69092 Loss: 113.260 -54400/69092 Loss: 112.285 -57600/69092 Loss: 111.916 -60800/69092 Loss: 112.957 -64000/69092 Loss: 111.678 -67200/69092 Loss: 110.248 -Training time 0:01:56.265853 -Epoch: 86 Average loss: 112.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 227) -0/69092 Loss: 109.157 -3200/69092 Loss: 113.487 -6400/69092 Loss: 111.748 -9600/69092 Loss: 113.971 -12800/69092 Loss: 113.269 -16000/69092 Loss: 111.564 -19200/69092 Loss: 112.596 -22400/69092 Loss: 113.633 -25600/69092 Loss: 112.949 -28800/69092 Loss: 112.985 -32000/69092 Loss: 113.670 -35200/69092 Loss: 111.751 -38400/69092 Loss: 109.655 -41600/69092 Loss: 113.779 -44800/69092 Loss: 112.315 -48000/69092 Loss: 113.399 -51200/69092 Loss: 111.939 -54400/69092 Loss: 112.200 -57600/69092 Loss: 112.255 -60800/69092 Loss: 113.125 -64000/69092 Loss: 110.611 -67200/69092 Loss: 111.268 -Training time 0:01:55.365660 -Epoch: 87 Average loss: 112.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 228) -0/69092 Loss: 116.874 -3200/69092 Loss: 113.586 -6400/69092 Loss: 112.407 -9600/69092 Loss: 112.673 -12800/69092 Loss: 112.387 -16000/69092 Loss: 111.351 -19200/69092 Loss: 112.815 -22400/69092 Loss: 113.230 -25600/69092 Loss: 112.361 -28800/69092 Loss: 113.541 -32000/69092 Loss: 111.372 -35200/69092 Loss: 114.097 -38400/69092 Loss: 113.668 -41600/69092 Loss: 112.039 -44800/69092 Loss: 111.892 -48000/69092 Loss: 111.060 -51200/69092 Loss: 111.540 -54400/69092 Loss: 112.278 -57600/69092 Loss: 113.199 -60800/69092 Loss: 112.627 -64000/69092 Loss: 113.202 -67200/69092 Loss: 113.085 -Training time 0:01:57.042352 -Epoch: 88 Average loss: 112.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 229) -0/69092 Loss: 114.875 -3200/69092 Loss: 112.138 -6400/69092 Loss: 111.415 -9600/69092 Loss: 111.738 -12800/69092 Loss: 110.809 -16000/69092 Loss: 113.625 -19200/69092 Loss: 111.668 -22400/69092 Loss: 114.136 -25600/69092 Loss: 111.754 -28800/69092 Loss: 112.277 -32000/69092 Loss: 113.830 -35200/69092 Loss: 113.253 -38400/69092 Loss: 110.957 -41600/69092 Loss: 109.613 -44800/69092 Loss: 114.308 -48000/69092 Loss: 110.400 -51200/69092 Loss: 113.213 -54400/69092 Loss: 114.264 -57600/69092 Loss: 113.775 -60800/69092 Loss: 113.685 -64000/69092 Loss: 114.123 -67200/69092 Loss: 112.675 -Training time 0:01:56.362619 -Epoch: 89 Average loss: 112.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 230) -0/69092 Loss: 113.780 -3200/69092 Loss: 110.638 -6400/69092 Loss: 110.601 -9600/69092 Loss: 113.225 -12800/69092 Loss: 111.759 -16000/69092 Loss: 111.304 -19200/69092 Loss: 111.822 -22400/69092 Loss: 111.951 -25600/69092 Loss: 114.009 -28800/69092 Loss: 113.582 -32000/69092 Loss: 111.096 -35200/69092 Loss: 112.199 -38400/69092 Loss: 112.879 -41600/69092 Loss: 112.579 -44800/69092 Loss: 112.746 -48000/69092 Loss: 115.082 -51200/69092 Loss: 110.698 -54400/69092 Loss: 114.595 -57600/69092 Loss: 111.723 -60800/69092 Loss: 113.068 -64000/69092 Loss: 113.374 -67200/69092 Loss: 111.968 -Training time 0:01:57.460918 -Epoch: 90 Average loss: 112.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 231) -0/69092 Loss: 128.725 -3200/69092 Loss: 113.530 -6400/69092 Loss: 110.484 -9600/69092 Loss: 111.388 -12800/69092 Loss: 111.532 -16000/69092 Loss: 114.390 -19200/69092 Loss: 112.773 -22400/69092 Loss: 112.701 -25600/69092 Loss: 111.224 -28800/69092 Loss: 112.133 -32000/69092 Loss: 112.773 -35200/69092 Loss: 111.604 -38400/69092 Loss: 112.374 -41600/69092 Loss: 112.812 -44800/69092 Loss: 112.262 -48000/69092 Loss: 113.658 -51200/69092 Loss: 112.086 -54400/69092 Loss: 112.476 -57600/69092 Loss: 111.860 -60800/69092 Loss: 114.189 -64000/69092 Loss: 111.349 -67200/69092 Loss: 113.362 -Training time 0:01:57.583728 -Epoch: 91 Average loss: 112.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 232) -0/69092 Loss: 112.169 -3200/69092 Loss: 112.838 -6400/69092 Loss: 112.009 -9600/69092 Loss: 112.562 -12800/69092 Loss: 110.737 -16000/69092 Loss: 112.397 -19200/69092 Loss: 111.796 -22400/69092 Loss: 113.050 -25600/69092 Loss: 112.202 -28800/69092 Loss: 111.759 -32000/69092 Loss: 112.713 -35200/69092 Loss: 113.893 -38400/69092 Loss: 112.594 -41600/69092 Loss: 114.052 -44800/69092 Loss: 112.531 -48000/69092 Loss: 112.984 -51200/69092 Loss: 111.920 -54400/69092 Loss: 113.424 -57600/69092 Loss: 111.371 -60800/69092 Loss: 110.712 -64000/69092 Loss: 112.798 -67200/69092 Loss: 110.935 -Training time 0:01:56.638898 -Epoch: 92 Average loss: 112.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 233) -0/69092 Loss: 104.901 -3200/69092 Loss: 113.506 -6400/69092 Loss: 110.374 -9600/69092 Loss: 113.009 -12800/69092 Loss: 113.245 -16000/69092 Loss: 111.917 -19200/69092 Loss: 112.796 -22400/69092 Loss: 110.250 -25600/69092 Loss: 110.654 -28800/69092 Loss: 112.481 -32000/69092 Loss: 113.008 -35200/69092 Loss: 111.767 -38400/69092 Loss: 110.780 -41600/69092 Loss: 113.789 -44800/69092 Loss: 112.085 -48000/69092 Loss: 113.199 -51200/69092 Loss: 112.478 -54400/69092 Loss: 114.154 -57600/69092 Loss: 113.327 -60800/69092 Loss: 112.483 -64000/69092 Loss: 113.620 -67200/69092 Loss: 112.331 -Training time 0:01:58.264885 -Epoch: 93 Average loss: 112.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 234) -0/69092 Loss: 102.670 -3200/69092 Loss: 111.317 -6400/69092 Loss: 113.022 -9600/69092 Loss: 112.766 -12800/69092 Loss: 112.702 -16000/69092 Loss: 111.284 -19200/69092 Loss: 110.661 -22400/69092 Loss: 111.850 -25600/69092 Loss: 113.525 -28800/69092 Loss: 113.103 -32000/69092 Loss: 111.017 -35200/69092 Loss: 111.895 -38400/69092 Loss: 113.335 -41600/69092 Loss: 113.631 -44800/69092 Loss: 111.002 -48000/69092 Loss: 113.389 -51200/69092 Loss: 112.564 -54400/69092 Loss: 115.150 -57600/69092 Loss: 112.661 -60800/69092 Loss: 109.555 -64000/69092 Loss: 111.753 -67200/69092 Loss: 113.512 -Training time 0:01:57.561475 -Epoch: 94 Average loss: 112.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 235) -0/69092 Loss: 111.616 -3200/69092 Loss: 111.908 -6400/69092 Loss: 114.024 -9600/69092 Loss: 112.815 -12800/69092 Loss: 112.405 -16000/69092 Loss: 112.368 -19200/69092 Loss: 112.817 -22400/69092 Loss: 112.361 -25600/69092 Loss: 112.703 -28800/69092 Loss: 113.290 -32000/69092 Loss: 112.128 -35200/69092 Loss: 111.069 -38400/69092 Loss: 112.229 -41600/69092 Loss: 111.405 -44800/69092 Loss: 112.453 -48000/69092 Loss: 111.708 -51200/69092 Loss: 110.954 -54400/69092 Loss: 112.996 -57600/69092 Loss: 110.041 -60800/69092 Loss: 113.277 -64000/69092 Loss: 111.377 -67200/69092 Loss: 112.470 -Training time 0:01:57.399955 -Epoch: 95 Average loss: 112.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 236) -0/69092 Loss: 108.858 -3200/69092 Loss: 112.788 -6400/69092 Loss: 113.286 -9600/69092 Loss: 112.635 -12800/69092 Loss: 111.946 -16000/69092 Loss: 112.513 -19200/69092 Loss: 113.211 -22400/69092 Loss: 112.744 -25600/69092 Loss: 113.010 -28800/69092 Loss: 110.110 -32000/69092 Loss: 114.224 -35200/69092 Loss: 113.327 -38400/69092 Loss: 111.222 -41600/69092 Loss: 112.321 -44800/69092 Loss: 112.465 -48000/69092 Loss: 112.242 -51200/69092 Loss: 114.034 -54400/69092 Loss: 111.427 -57600/69092 Loss: 112.722 -60800/69092 Loss: 110.585 -64000/69092 Loss: 110.285 -67200/69092 Loss: 112.110 -Training time 0:01:57.737669 -Epoch: 96 Average loss: 112.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 237) -0/69092 Loss: 113.734 -3200/69092 Loss: 112.927 -6400/69092 Loss: 110.756 -9600/69092 Loss: 112.624 -12800/69092 Loss: 113.738 -16000/69092 Loss: 113.159 -19200/69092 Loss: 110.637 -22400/69092 Loss: 111.946 -25600/69092 Loss: 111.776 -28800/69092 Loss: 112.537 -32000/69092 Loss: 111.712 -35200/69092 Loss: 111.581 -38400/69092 Loss: 113.931 -41600/69092 Loss: 113.069 -44800/69092 Loss: 113.205 -48000/69092 Loss: 111.657 -51200/69092 Loss: 112.759 -54400/69092 Loss: 113.272 -57600/69092 Loss: 112.965 -60800/69092 Loss: 113.063 -64000/69092 Loss: 112.486 -67200/69092 Loss: 113.419 -Training time 0:01:58.457412 -Epoch: 97 Average loss: 112.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 238) -0/69092 Loss: 108.410 -3200/69092 Loss: 113.605 -6400/69092 Loss: 112.954 -9600/69092 Loss: 111.622 -12800/69092 Loss: 112.280 -16000/69092 Loss: 112.006 -19200/69092 Loss: 111.360 -22400/69092 Loss: 112.516 -25600/69092 Loss: 112.452 -28800/69092 Loss: 111.874 -32000/69092 Loss: 113.323 -35200/69092 Loss: 111.920 -38400/69092 Loss: 112.724 -41600/69092 Loss: 111.703 -44800/69092 Loss: 112.722 -48000/69092 Loss: 111.623 -51200/69092 Loss: 111.738 -54400/69092 Loss: 111.144 -57600/69092 Loss: 112.676 -60800/69092 Loss: 113.212 -64000/69092 Loss: 111.363 -67200/69092 Loss: 112.736 -Training time 0:01:59.224965 -Epoch: 98 Average loss: 112.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 239) -0/69092 Loss: 111.845 -3200/69092 Loss: 113.693 -6400/69092 Loss: 111.175 -9600/69092 Loss: 113.933 -12800/69092 Loss: 112.771 -16000/69092 Loss: 110.274 -19200/69092 Loss: 111.342 -22400/69092 Loss: 110.797 -25600/69092 Loss: 111.887 -28800/69092 Loss: 111.159 -32000/69092 Loss: 112.912 -35200/69092 Loss: 112.362 -38400/69092 Loss: 111.300 -41600/69092 Loss: 112.362 -44800/69092 Loss: 113.710 -48000/69092 Loss: 113.416 -51200/69092 Loss: 114.248 -54400/69092 Loss: 113.388 -57600/69092 Loss: 113.971 -60800/69092 Loss: 112.745 -64000/69092 Loss: 111.748 -67200/69092 Loss: 111.991 -Training time 0:01:58.678730 -Epoch: 99 Average loss: 112.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 240) -0/69092 Loss: 110.661 -3200/69092 Loss: 112.339 -6400/69092 Loss: 111.748 -9600/69092 Loss: 111.444 -12800/69092 Loss: 111.422 -16000/69092 Loss: 111.832 -19200/69092 Loss: 110.530 -22400/69092 Loss: 112.211 -25600/69092 Loss: 112.419 -28800/69092 Loss: 113.769 -32000/69092 Loss: 111.190 -35200/69092 Loss: 112.705 -38400/69092 Loss: 110.066 -41600/69092 Loss: 111.861 -44800/69092 Loss: 113.482 -48000/69092 Loss: 113.957 -51200/69092 Loss: 112.604 -54400/69092 Loss: 113.089 -57600/69092 Loss: 112.564 -60800/69092 Loss: 113.803 -64000/69092 Loss: 112.737 -67200/69092 Loss: 113.359 -Training time 0:01:56.680057 -Epoch: 100 Average loss: 112.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 241) -0/69092 Loss: 110.930 -3200/69092 Loss: 112.815 -6400/69092 Loss: 112.960 -9600/69092 Loss: 113.546 -12800/69092 Loss: 112.789 -16000/69092 Loss: 112.152 -19200/69092 Loss: 112.332 -22400/69092 Loss: 112.596 -25600/69092 Loss: 110.187 -28800/69092 Loss: 111.092 -32000/69092 Loss: 112.499 -35200/69092 Loss: 110.721 -38400/69092 Loss: 111.915 -41600/69092 Loss: 114.503 -44800/69092 Loss: 112.824 -48000/69092 Loss: 112.665 -51200/69092 Loss: 111.630 -54400/69092 Loss: 113.112 -57600/69092 Loss: 112.477 -60800/69092 Loss: 111.280 -64000/69092 Loss: 111.140 -67200/69092 Loss: 112.843 -Training time 0:01:57.646950 -Epoch: 101 Average loss: 112.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 242) -0/69092 Loss: 115.128 -3200/69092 Loss: 112.378 -6400/69092 Loss: 110.980 -9600/69092 Loss: 113.601 -12800/69092 Loss: 111.631 -16000/69092 Loss: 111.741 -19200/69092 Loss: 114.039 -22400/69092 Loss: 113.053 -25600/69092 Loss: 112.787 -28800/69092 Loss: 112.469 -32000/69092 Loss: 111.676 -35200/69092 Loss: 111.143 -38400/69092 Loss: 112.707 -41600/69092 Loss: 112.902 -44800/69092 Loss: 115.000 -48000/69092 Loss: 114.135 -51200/69092 Loss: 111.745 -54400/69092 Loss: 111.527 -57600/69092 Loss: 111.419 -60800/69092 Loss: 112.648 -64000/69092 Loss: 112.654 -67200/69092 Loss: 110.848 -Training time 0:01:57.675385 -Epoch: 102 Average loss: 112.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 243) -0/69092 Loss: 122.110 -3200/69092 Loss: 111.696 -6400/69092 Loss: 113.218 -9600/69092 Loss: 111.855 -12800/69092 Loss: 111.998 -16000/69092 Loss: 111.435 -19200/69092 Loss: 114.606 -22400/69092 Loss: 111.574 -25600/69092 Loss: 112.168 -28800/69092 Loss: 113.102 -32000/69092 Loss: 110.812 -35200/69092 Loss: 111.244 -38400/69092 Loss: 110.454 -41600/69092 Loss: 111.764 -44800/69092 Loss: 111.940 -48000/69092 Loss: 112.859 -51200/69092 Loss: 111.696 -54400/69092 Loss: 112.131 -57600/69092 Loss: 114.864 -60800/69092 Loss: 112.273 -64000/69092 Loss: 113.124 -67200/69092 Loss: 112.506 -Training time 0:01:57.176206 -Epoch: 103 Average loss: 112.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 244) -0/69092 Loss: 107.943 -3200/69092 Loss: 112.101 -6400/69092 Loss: 114.077 -9600/69092 Loss: 112.517 -12800/69092 Loss: 112.820 -16000/69092 Loss: 114.419 -19200/69092 Loss: 111.560 -22400/69092 Loss: 112.843 -25600/69092 Loss: 112.677 -28800/69092 Loss: 111.454 -32000/69092 Loss: 113.242 -35200/69092 Loss: 111.730 -38400/69092 Loss: 112.198 -41600/69092 Loss: 111.994 -44800/69092 Loss: 111.727 -48000/69092 Loss: 111.415 -51200/69092 Loss: 114.657 -54400/69092 Loss: 111.494 -57600/69092 Loss: 112.025 -60800/69092 Loss: 111.606 -64000/69092 Loss: 111.702 -67200/69092 Loss: 110.875 -Training time 0:01:57.934002 -Epoch: 104 Average loss: 112.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 245) -0/69092 Loss: 118.837 -3200/69092 Loss: 112.914 -6400/69092 Loss: 112.777 -9600/69092 Loss: 113.202 -12800/69092 Loss: 112.745 -16000/69092 Loss: 112.602 -19200/69092 Loss: 111.085 -22400/69092 Loss: 111.904 -25600/69092 Loss: 113.905 -28800/69092 Loss: 112.016 -32000/69092 Loss: 114.198 -35200/69092 Loss: 112.954 -38400/69092 Loss: 112.641 -41600/69092 Loss: 110.650 -44800/69092 Loss: 110.040 -48000/69092 Loss: 110.839 -51200/69092 Loss: 111.753 -54400/69092 Loss: 111.339 -57600/69092 Loss: 112.851 -60800/69092 Loss: 110.588 -64000/69092 Loss: 112.322 -67200/69092 Loss: 111.523 -Training time 0:01:56.932822 -Epoch: 105 Average loss: 112.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 246) -0/69092 Loss: 119.116 -3200/69092 Loss: 112.507 -6400/69092 Loss: 114.622 -9600/69092 Loss: 111.569 -12800/69092 Loss: 112.558 -16000/69092 Loss: 111.289 -19200/69092 Loss: 110.495 -22400/69092 Loss: 111.210 -25600/69092 Loss: 113.024 -28800/69092 Loss: 113.384 -32000/69092 Loss: 112.152 -35200/69092 Loss: 112.843 -38400/69092 Loss: 113.555 -41600/69092 Loss: 112.324 -44800/69092 Loss: 112.075 -48000/69092 Loss: 111.592 -51200/69092 Loss: 113.754 -54400/69092 Loss: 112.188 -57600/69092 Loss: 112.554 -60800/69092 Loss: 112.263 -64000/69092 Loss: 111.831 -67200/69092 Loss: 110.805 -Training time 0:01:56.950941 -Epoch: 106 Average loss: 112.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 247) -0/69092 Loss: 104.412 -3200/69092 Loss: 111.679 -6400/69092 Loss: 112.090 -9600/69092 Loss: 111.886 -12800/69092 Loss: 112.062 -16000/69092 Loss: 112.733 -19200/69092 Loss: 112.301 -22400/69092 Loss: 112.985 -25600/69092 Loss: 113.072 -28800/69092 Loss: 112.380 -32000/69092 Loss: 112.159 -35200/69092 Loss: 110.853 -38400/69092 Loss: 113.615 -41600/69092 Loss: 111.124 -44800/69092 Loss: 112.985 -48000/69092 Loss: 111.388 -51200/69092 Loss: 114.311 -54400/69092 Loss: 112.027 -57600/69092 Loss: 111.420 -60800/69092 Loss: 111.063 -64000/69092 Loss: 112.437 -67200/69092 Loss: 113.936 -Training time 0:01:57.014313 -Epoch: 107 Average loss: 112.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 248) -0/69092 Loss: 115.203 -3200/69092 Loss: 112.016 -6400/69092 Loss: 111.749 -9600/69092 Loss: 111.528 -12800/69092 Loss: 112.093 -16000/69092 Loss: 113.914 -19200/69092 Loss: 112.226 -22400/69092 Loss: 112.427 -25600/69092 Loss: 111.981 -28800/69092 Loss: 112.209 -32000/69092 Loss: 111.937 -35200/69092 Loss: 111.763 -38400/69092 Loss: 112.318 -41600/69092 Loss: 112.454 -44800/69092 Loss: 113.071 -48000/69092 Loss: 112.119 -51200/69092 Loss: 112.597 -54400/69092 Loss: 112.414 -57600/69092 Loss: 113.179 -60800/69092 Loss: 112.642 -64000/69092 Loss: 111.958 -67200/69092 Loss: 112.401 -Training time 0:01:57.301862 -Epoch: 108 Average loss: 112.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 249) -0/69092 Loss: 122.546 -3200/69092 Loss: 113.128 -6400/69092 Loss: 112.474 -9600/69092 Loss: 110.420 -12800/69092 Loss: 112.803 -16000/69092 Loss: 110.452 -19200/69092 Loss: 112.079 -22400/69092 Loss: 110.320 -25600/69092 Loss: 112.415 -28800/69092 Loss: 112.520 -32000/69092 Loss: 110.496 -35200/69092 Loss: 112.416 -38400/69092 Loss: 111.564 -41600/69092 Loss: 112.560 -44800/69092 Loss: 112.120 -48000/69092 Loss: 113.670 -51200/69092 Loss: 111.537 -54400/69092 Loss: 113.272 -57600/69092 Loss: 113.247 -60800/69092 Loss: 112.408 -64000/69092 Loss: 112.795 -67200/69092 Loss: 112.773 -Training time 0:01:56.308761 -Epoch: 109 Average loss: 112.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 250) -0/69092 Loss: 98.938 -3200/69092 Loss: 111.445 -6400/69092 Loss: 113.297 -9600/69092 Loss: 112.665 -12800/69092 Loss: 112.216 -16000/69092 Loss: 112.548 -19200/69092 Loss: 113.707 -22400/69092 Loss: 112.265 -25600/69092 Loss: 112.643 -28800/69092 Loss: 111.430 -32000/69092 Loss: 111.949 -35200/69092 Loss: 112.830 -38400/69092 Loss: 112.370 -41600/69092 Loss: 110.079 -44800/69092 Loss: 111.474 -48000/69092 Loss: 109.858 -51200/69092 Loss: 112.089 -54400/69092 Loss: 114.173 -57600/69092 Loss: 114.180 -60800/69092 Loss: 111.812 -64000/69092 Loss: 112.274 -67200/69092 Loss: 113.646 -Training time 0:01:56.748136 -Epoch: 110 Average loss: 112.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 251) -0/69092 Loss: 109.140 -3200/69092 Loss: 112.765 -6400/69092 Loss: 113.035 -9600/69092 Loss: 111.078 -12800/69092 Loss: 113.376 -16000/69092 Loss: 113.253 -19200/69092 Loss: 111.920 -22400/69092 Loss: 111.738 -25600/69092 Loss: 109.345 -28800/69092 Loss: 111.622 -32000/69092 Loss: 112.487 -35200/69092 Loss: 111.012 -38400/69092 Loss: 110.377 -41600/69092 Loss: 113.165 -44800/69092 Loss: 113.685 -48000/69092 Loss: 111.998 -51200/69092 Loss: 112.723 -54400/69092 Loss: 112.647 -57600/69092 Loss: 112.257 -60800/69092 Loss: 111.227 -64000/69092 Loss: 112.463 -67200/69092 Loss: 111.712 -Training time 0:01:56.515083 -Epoch: 111 Average loss: 112.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 252) -0/69092 Loss: 110.661 -3200/69092 Loss: 111.328 -6400/69092 Loss: 111.800 -9600/69092 Loss: 112.689 -12800/69092 Loss: 111.939 -16000/69092 Loss: 111.356 -19200/69092 Loss: 113.590 -22400/69092 Loss: 110.786 -25600/69092 Loss: 110.686 -28800/69092 Loss: 111.201 -32000/69092 Loss: 112.002 -35200/69092 Loss: 112.562 -38400/69092 Loss: 112.656 -41600/69092 Loss: 110.836 -44800/69092 Loss: 112.719 -48000/69092 Loss: 112.621 -51200/69092 Loss: 113.685 -54400/69092 Loss: 112.028 -57600/69092 Loss: 115.000 -60800/69092 Loss: 113.152 -64000/69092 Loss: 110.856 -67200/69092 Loss: 111.474 -Training time 0:01:56.597435 -Epoch: 112 Average loss: 112.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 253) -0/69092 Loss: 109.960 -3200/69092 Loss: 110.964 -6400/69092 Loss: 112.876 -9600/69092 Loss: 110.982 -12800/69092 Loss: 113.332 -16000/69092 Loss: 110.655 -19200/69092 Loss: 112.564 -22400/69092 Loss: 112.240 -25600/69092 Loss: 112.795 -28800/69092 Loss: 112.056 -32000/69092 Loss: 112.768 -35200/69092 Loss: 111.929 -38400/69092 Loss: 110.701 -41600/69092 Loss: 113.828 -44800/69092 Loss: 111.824 -48000/69092 Loss: 111.996 -51200/69092 Loss: 112.019 -54400/69092 Loss: 111.082 -57600/69092 Loss: 112.899 -60800/69092 Loss: 111.659 -64000/69092 Loss: 111.178 -67200/69092 Loss: 113.213 -Training time 0:01:57.918296 -Epoch: 113 Average loss: 112.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 254) -0/69092 Loss: 118.086 -3200/69092 Loss: 111.598 -6400/69092 Loss: 114.653 -9600/69092 Loss: 112.980 -12800/69092 Loss: 112.017 -16000/69092 Loss: 112.215 -19200/69092 Loss: 112.215 -22400/69092 Loss: 111.565 -25600/69092 Loss: 111.433 -28800/69092 Loss: 111.878 -32000/69092 Loss: 112.721 -35200/69092 Loss: 110.890 -38400/69092 Loss: 110.228 -41600/69092 Loss: 112.251 -44800/69092 Loss: 110.539 -48000/69092 Loss: 113.110 -51200/69092 Loss: 111.918 -54400/69092 Loss: 112.831 -57600/69092 Loss: 111.676 -60800/69092 Loss: 111.244 -64000/69092 Loss: 112.928 -67200/69092 Loss: 112.688 -Training time 0:01:56.785403 -Epoch: 114 Average loss: 112.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 255) -0/69092 Loss: 105.504 -3200/69092 Loss: 111.509 -6400/69092 Loss: 110.423 -9600/69092 Loss: 111.608 -12800/69092 Loss: 112.015 -16000/69092 Loss: 111.526 -19200/69092 Loss: 112.261 -22400/69092 Loss: 110.048 -25600/69092 Loss: 113.101 -28800/69092 Loss: 113.714 -32000/69092 Loss: 111.425 -35200/69092 Loss: 113.042 -38400/69092 Loss: 113.132 -41600/69092 Loss: 112.322 -44800/69092 Loss: 114.220 -48000/69092 Loss: 113.080 -51200/69092 Loss: 110.365 -54400/69092 Loss: 109.480 -57600/69092 Loss: 112.605 -60800/69092 Loss: 111.615 -64000/69092 Loss: 113.207 -67200/69092 Loss: 114.524 -Training time 0:01:57.574441 -Epoch: 115 Average loss: 112.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 256) -0/69092 Loss: 112.621 -3200/69092 Loss: 111.410 -6400/69092 Loss: 113.177 -9600/69092 Loss: 111.835 -12800/69092 Loss: 113.086 -16000/69092 Loss: 110.949 -19200/69092 Loss: 111.810 -22400/69092 Loss: 111.389 -25600/69092 Loss: 114.276 -28800/69092 Loss: 111.165 -32000/69092 Loss: 112.905 -35200/69092 Loss: 111.984 -38400/69092 Loss: 112.424 -41600/69092 Loss: 111.574 -44800/69092 Loss: 111.835 -48000/69092 Loss: 111.637 -51200/69092 Loss: 112.245 -54400/69092 Loss: 113.529 -57600/69092 Loss: 112.601 -60800/69092 Loss: 112.377 -64000/69092 Loss: 111.574 -67200/69092 Loss: 111.307 -Training time 0:01:57.667118 -Epoch: 116 Average loss: 112.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 257) -0/69092 Loss: 107.236 -3200/69092 Loss: 111.610 -6400/69092 Loss: 112.600 -9600/69092 Loss: 111.004 -12800/69092 Loss: 111.948 -16000/69092 Loss: 110.685 -19200/69092 Loss: 110.344 -22400/69092 Loss: 113.975 -25600/69092 Loss: 112.237 -28800/69092 Loss: 112.586 -32000/69092 Loss: 113.264 -35200/69092 Loss: 111.315 -38400/69092 Loss: 112.652 -41600/69092 Loss: 113.324 -44800/69092 Loss: 111.615 -48000/69092 Loss: 113.560 -51200/69092 Loss: 112.039 -54400/69092 Loss: 113.206 -57600/69092 Loss: 112.907 -60800/69092 Loss: 111.778 -64000/69092 Loss: 113.576 -67200/69092 Loss: 109.730 -Training time 0:01:58.268045 -Epoch: 117 Average loss: 112.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 258) -0/69092 Loss: 119.309 -3200/69092 Loss: 109.940 -6400/69092 Loss: 110.648 -9600/69092 Loss: 112.478 -12800/69092 Loss: 112.512 -16000/69092 Loss: 111.950 -19200/69092 Loss: 112.965 -22400/69092 Loss: 113.168 -25600/69092 Loss: 112.653 -28800/69092 Loss: 111.329 -32000/69092 Loss: 112.938 -35200/69092 Loss: 112.107 -38400/69092 Loss: 112.749 -41600/69092 Loss: 111.167 -44800/69092 Loss: 113.240 -48000/69092 Loss: 112.599 -51200/69092 Loss: 111.117 -54400/69092 Loss: 111.381 -57600/69092 Loss: 112.368 -60800/69092 Loss: 111.555 -64000/69092 Loss: 113.408 -67200/69092 Loss: 112.892 -Training time 0:01:58.493072 -Epoch: 118 Average loss: 112.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 259) -0/69092 Loss: 110.086 -3200/69092 Loss: 113.020 -6400/69092 Loss: 111.594 -9600/69092 Loss: 109.827 -12800/69092 Loss: 112.473 -16000/69092 Loss: 113.471 -19200/69092 Loss: 112.421 -22400/69092 Loss: 113.545 -25600/69092 Loss: 112.571 -28800/69092 Loss: 111.506 -32000/69092 Loss: 111.066 -35200/69092 Loss: 111.101 -38400/69092 Loss: 112.553 -41600/69092 Loss: 112.108 -44800/69092 Loss: 112.328 -48000/69092 Loss: 113.641 -51200/69092 Loss: 111.265 -54400/69092 Loss: 111.934 -57600/69092 Loss: 113.249 -60800/69092 Loss: 111.569 -64000/69092 Loss: 111.621 -67200/69092 Loss: 110.803 -Training time 0:01:57.863728 -Epoch: 119 Average loss: 112.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 260) -0/69092 Loss: 107.729 -3200/69092 Loss: 111.098 -6400/69092 Loss: 112.683 -9600/69092 Loss: 114.338 -12800/69092 Loss: 111.751 -16000/69092 Loss: 111.751 -19200/69092 Loss: 111.278 -22400/69092 Loss: 110.961 -25600/69092 Loss: 112.530 -28800/69092 Loss: 114.040 -32000/69092 Loss: 112.281 -35200/69092 Loss: 112.416 -38400/69092 Loss: 111.593 -41600/69092 Loss: 110.715 -44800/69092 Loss: 112.425 -48000/69092 Loss: 111.945 -51200/69092 Loss: 113.088 -54400/69092 Loss: 113.703 -57600/69092 Loss: 113.058 -60800/69092 Loss: 111.201 -64000/69092 Loss: 109.807 -67200/69092 Loss: 112.162 -Training time 0:01:58.318562 -Epoch: 120 Average loss: 112.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 261) -0/69092 Loss: 115.668 -3200/69092 Loss: 113.417 -6400/69092 Loss: 111.360 -9600/69092 Loss: 112.868 -12800/69092 Loss: 111.201 -16000/69092 Loss: 112.403 -19200/69092 Loss: 111.328 -22400/69092 Loss: 111.108 -25600/69092 Loss: 111.842 -28800/69092 Loss: 111.713 -32000/69092 Loss: 113.858 -35200/69092 Loss: 111.048 -38400/69092 Loss: 110.803 -41600/69092 Loss: 112.040 -44800/69092 Loss: 112.643 -48000/69092 Loss: 111.528 -51200/69092 Loss: 113.667 -54400/69092 Loss: 111.525 -57600/69092 Loss: 112.965 -60800/69092 Loss: 112.586 -64000/69092 Loss: 109.281 -67200/69092 Loss: 113.376 -Training time 0:01:59.138927 -Epoch: 121 Average loss: 112.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 262) -0/69092 Loss: 102.175 -3200/69092 Loss: 109.960 -6400/69092 Loss: 112.384 -9600/69092 Loss: 110.948 -12800/69092 Loss: 111.415 -16000/69092 Loss: 113.569 -19200/69092 Loss: 111.811 -22400/69092 Loss: 112.280 -25600/69092 Loss: 113.318 -28800/69092 Loss: 111.813 -32000/69092 Loss: 112.473 -35200/69092 Loss: 111.266 -38400/69092 Loss: 113.206 -41600/69092 Loss: 112.823 -44800/69092 Loss: 110.928 -48000/69092 Loss: 112.257 -51200/69092 Loss: 113.370 -54400/69092 Loss: 112.357 -57600/69092 Loss: 111.404 -60800/69092 Loss: 111.087 -64000/69092 Loss: 110.713 -67200/69092 Loss: 111.838 -Training time 0:01:58.268645 -Epoch: 122 Average loss: 111.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 263) -0/69092 Loss: 114.347 -3200/69092 Loss: 112.021 -6400/69092 Loss: 110.714 -9600/69092 Loss: 112.481 -12800/69092 Loss: 112.010 -16000/69092 Loss: 112.858 -19200/69092 Loss: 114.146 -22400/69092 Loss: 113.468 -25600/69092 Loss: 113.793 -28800/69092 Loss: 110.912 -32000/69092 Loss: 112.297 -35200/69092 Loss: 110.685 -38400/69092 Loss: 111.899 -41600/69092 Loss: 111.598 -44800/69092 Loss: 110.782 -48000/69092 Loss: 110.557 -51200/69092 Loss: 112.468 -54400/69092 Loss: 114.146 -57600/69092 Loss: 113.223 -60800/69092 Loss: 110.101 -64000/69092 Loss: 112.696 -67200/69092 Loss: 112.284 -Training time 0:01:58.717772 -Epoch: 123 Average loss: 112.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 264) -0/69092 Loss: 114.796 -3200/69092 Loss: 111.597 -6400/69092 Loss: 112.164 -9600/69092 Loss: 112.020 -12800/69092 Loss: 113.329 -16000/69092 Loss: 112.340 -19200/69092 Loss: 113.006 -22400/69092 Loss: 112.646 -25600/69092 Loss: 111.458 -28800/69092 Loss: 111.624 -32000/69092 Loss: 110.047 -35200/69092 Loss: 113.653 -38400/69092 Loss: 110.712 -41600/69092 Loss: 112.988 -44800/69092 Loss: 111.665 -48000/69092 Loss: 109.792 -51200/69092 Loss: 113.108 -54400/69092 Loss: 112.833 -57600/69092 Loss: 113.314 -60800/69092 Loss: 111.704 -64000/69092 Loss: 110.928 -67200/69092 Loss: 112.795 -Training time 0:01:58.193320 -Epoch: 124 Average loss: 112.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 265) -0/69092 Loss: 108.997 -3200/69092 Loss: 111.090 -6400/69092 Loss: 111.651 -9600/69092 Loss: 112.592 -12800/69092 Loss: 113.259 -16000/69092 Loss: 111.718 -19200/69092 Loss: 111.622 -22400/69092 Loss: 110.863 -25600/69092 Loss: 111.885 -28800/69092 Loss: 110.308 -32000/69092 Loss: 113.694 -35200/69092 Loss: 110.378 -38400/69092 Loss: 112.791 -41600/69092 Loss: 113.794 -44800/69092 Loss: 111.802 -48000/69092 Loss: 110.771 -51200/69092 Loss: 111.244 -54400/69092 Loss: 113.381 -57600/69092 Loss: 111.620 -60800/69092 Loss: 110.666 -64000/69092 Loss: 111.954 -67200/69092 Loss: 111.739 -Training time 0:01:57.941828 -Epoch: 125 Average loss: 111.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 266) -0/69092 Loss: 123.242 -3200/69092 Loss: 110.574 -6400/69092 Loss: 114.011 -9600/69092 Loss: 111.405 -12800/69092 Loss: 111.924 -16000/69092 Loss: 112.379 -19200/69092 Loss: 112.513 -22400/69092 Loss: 112.633 -25600/69092 Loss: 111.569 -28800/69092 Loss: 109.637 -32000/69092 Loss: 111.933 -35200/69092 Loss: 112.171 -38400/69092 Loss: 112.258 -41600/69092 Loss: 113.604 -44800/69092 Loss: 112.474 -48000/69092 Loss: 111.926 -51200/69092 Loss: 110.240 -54400/69092 Loss: 113.540 -57600/69092 Loss: 113.718 -60800/69092 Loss: 112.365 -64000/69092 Loss: 112.068 -67200/69092 Loss: 113.282 -Training time 0:01:58.633467 -Epoch: 126 Average loss: 112.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 267) -0/69092 Loss: 118.893 -3200/69092 Loss: 112.783 -6400/69092 Loss: 111.837 -9600/69092 Loss: 112.242 -12800/69092 Loss: 112.555 -16000/69092 Loss: 113.339 -19200/69092 Loss: 112.081 -22400/69092 Loss: 111.319 -25600/69092 Loss: 111.447 -28800/69092 Loss: 113.518 -32000/69092 Loss: 112.991 -35200/69092 Loss: 112.440 -38400/69092 Loss: 111.251 -41600/69092 Loss: 111.765 -44800/69092 Loss: 109.843 -48000/69092 Loss: 110.788 -51200/69092 Loss: 110.088 -54400/69092 Loss: 112.768 -57600/69092 Loss: 114.083 -60800/69092 Loss: 112.801 -64000/69092 Loss: 112.033 -67200/69092 Loss: 112.089 -Training time 0:01:57.055968 -Epoch: 127 Average loss: 112.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 268) -0/69092 Loss: 110.885 -3200/69092 Loss: 112.572 -6400/69092 Loss: 111.447 -9600/69092 Loss: 112.685 -12800/69092 Loss: 111.153 -16000/69092 Loss: 110.326 -19200/69092 Loss: 113.495 -22400/69092 Loss: 111.638 -25600/69092 Loss: 112.952 -28800/69092 Loss: 109.724 -32000/69092 Loss: 112.432 -35200/69092 Loss: 114.034 -38400/69092 Loss: 112.584 -41600/69092 Loss: 112.523 -44800/69092 Loss: 110.940 -48000/69092 Loss: 111.957 -51200/69092 Loss: 110.980 -54400/69092 Loss: 111.456 -57600/69092 Loss: 109.690 -60800/69092 Loss: 112.595 -64000/69092 Loss: 114.273 -67200/69092 Loss: 112.951 -Training time 0:01:58.018575 -Epoch: 128 Average loss: 112.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 269) -0/69092 Loss: 109.695 -3200/69092 Loss: 111.374 -6400/69092 Loss: 111.361 -9600/69092 Loss: 112.371 -12800/69092 Loss: 113.973 -16000/69092 Loss: 112.413 -19200/69092 Loss: 112.429 -22400/69092 Loss: 112.522 -25600/69092 Loss: 111.950 -28800/69092 Loss: 112.936 -32000/69092 Loss: 110.791 -35200/69092 Loss: 111.810 -38400/69092 Loss: 111.177 -41600/69092 Loss: 110.538 -44800/69092 Loss: 111.373 -48000/69092 Loss: 113.135 -51200/69092 Loss: 111.911 -54400/69092 Loss: 110.473 -57600/69092 Loss: 112.694 -60800/69092 Loss: 111.446 -64000/69092 Loss: 112.469 -67200/69092 Loss: 112.830 -Training time 0:01:57.592824 -Epoch: 129 Average loss: 112.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 270) -0/69092 Loss: 110.452 -3200/69092 Loss: 110.466 -6400/69092 Loss: 111.432 -9600/69092 Loss: 112.794 -12800/69092 Loss: 112.774 -16000/69092 Loss: 109.937 -19200/69092 Loss: 112.586 -22400/69092 Loss: 112.148 -25600/69092 Loss: 113.248 -28800/69092 Loss: 109.771 -32000/69092 Loss: 111.443 -35200/69092 Loss: 109.777 -38400/69092 Loss: 111.336 -41600/69092 Loss: 112.573 -44800/69092 Loss: 113.080 -48000/69092 Loss: 114.813 -51200/69092 Loss: 111.562 -54400/69092 Loss: 113.657 -57600/69092 Loss: 112.000 -60800/69092 Loss: 112.768 -64000/69092 Loss: 110.541 -67200/69092 Loss: 113.268 -Training time 0:01:57.598200 -Epoch: 130 Average loss: 112.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 271) -0/69092 Loss: 105.434 -3200/69092 Loss: 111.917 -6400/69092 Loss: 111.433 -9600/69092 Loss: 112.869 -12800/69092 Loss: 111.079 -16000/69092 Loss: 110.561 -19200/69092 Loss: 113.303 -22400/69092 Loss: 113.539 -25600/69092 Loss: 110.971 -28800/69092 Loss: 111.493 -32000/69092 Loss: 113.151 -35200/69092 Loss: 111.416 -38400/69092 Loss: 113.769 -41600/69092 Loss: 112.592 -44800/69092 Loss: 112.700 -48000/69092 Loss: 110.438 -51200/69092 Loss: 111.709 -54400/69092 Loss: 112.481 -57600/69092 Loss: 111.177 -60800/69092 Loss: 111.158 -64000/69092 Loss: 111.630 -67200/69092 Loss: 112.780 -Training time 0:01:57.694994 -Epoch: 131 Average loss: 111.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 272) -0/69092 Loss: 112.573 -3200/69092 Loss: 111.776 -6400/69092 Loss: 112.478 -9600/69092 Loss: 111.609 -12800/69092 Loss: 110.617 -16000/69092 Loss: 111.480 -19200/69092 Loss: 112.747 -22400/69092 Loss: 113.442 -25600/69092 Loss: 112.510 -28800/69092 Loss: 112.243 -32000/69092 Loss: 113.979 -35200/69092 Loss: 111.217 -38400/69092 Loss: 112.713 -41600/69092 Loss: 110.079 -44800/69092 Loss: 111.208 -48000/69092 Loss: 114.122 -51200/69092 Loss: 111.058 -54400/69092 Loss: 111.174 -57600/69092 Loss: 111.158 -60800/69092 Loss: 110.395 -64000/69092 Loss: 113.077 -67200/69092 Loss: 111.988 -Training time 0:01:58.058514 -Epoch: 132 Average loss: 111.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 273) -0/69092 Loss: 121.018 -3200/69092 Loss: 112.661 -6400/69092 Loss: 112.562 -9600/69092 Loss: 110.916 -12800/69092 Loss: 112.616 -16000/69092 Loss: 110.914 -19200/69092 Loss: 112.020 -22400/69092 Loss: 111.536 -25600/69092 Loss: 110.976 -28800/69092 Loss: 111.438 -32000/69092 Loss: 112.881 -35200/69092 Loss: 111.717 -38400/69092 Loss: 110.565 -41600/69092 Loss: 111.493 -44800/69092 Loss: 110.398 -48000/69092 Loss: 110.814 -51200/69092 Loss: 113.235 -54400/69092 Loss: 111.401 -57600/69092 Loss: 113.059 -60800/69092 Loss: 112.742 -64000/69092 Loss: 112.204 -67200/69092 Loss: 112.430 -Training time 0:01:56.792400 -Epoch: 133 Average loss: 111.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 274) -0/69092 Loss: 110.742 -3200/69092 Loss: 113.340 -6400/69092 Loss: 113.245 -9600/69092 Loss: 110.026 -12800/69092 Loss: 113.185 -16000/69092 Loss: 111.091 -19200/69092 Loss: 111.806 -22400/69092 Loss: 111.200 -25600/69092 Loss: 111.964 -28800/69092 Loss: 109.868 -32000/69092 Loss: 111.438 -35200/69092 Loss: 112.407 -38400/69092 Loss: 111.131 -41600/69092 Loss: 111.926 -44800/69092 Loss: 112.104 -48000/69092 Loss: 113.281 -51200/69092 Loss: 112.860 -54400/69092 Loss: 112.034 -57600/69092 Loss: 112.700 -60800/69092 Loss: 113.316 -64000/69092 Loss: 110.939 -67200/69092 Loss: 111.988 -Training time 0:01:57.272370 -Epoch: 134 Average loss: 111.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 275) -0/69092 Loss: 127.176 -3200/69092 Loss: 111.731 -6400/69092 Loss: 110.770 -9600/69092 Loss: 112.029 -12800/69092 Loss: 112.023 -16000/69092 Loss: 112.091 -19200/69092 Loss: 112.280 -22400/69092 Loss: 111.250 -25600/69092 Loss: 112.418 -28800/69092 Loss: 111.083 -32000/69092 Loss: 111.736 -35200/69092 Loss: 111.939 -38400/69092 Loss: 113.224 -41600/69092 Loss: 111.375 -44800/69092 Loss: 113.684 -48000/69092 Loss: 113.034 -51200/69092 Loss: 111.617 -54400/69092 Loss: 113.043 -57600/69092 Loss: 111.940 -60800/69092 Loss: 111.944 -64000/69092 Loss: 111.805 -67200/69092 Loss: 111.653 -Training time 0:01:57.058910 -Epoch: 135 Average loss: 112.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 276) -0/69092 Loss: 118.687 -3200/69092 Loss: 112.916 -6400/69092 Loss: 112.381 -9600/69092 Loss: 114.137 -12800/69092 Loss: 111.492 -16000/69092 Loss: 109.961 -19200/69092 Loss: 113.096 -22400/69092 Loss: 111.977 -25600/69092 Loss: 111.565 -28800/69092 Loss: 111.526 -32000/69092 Loss: 111.217 -35200/69092 Loss: 111.367 -38400/69092 Loss: 110.970 -41600/69092 Loss: 112.607 -44800/69092 Loss: 114.355 -48000/69092 Loss: 111.468 -51200/69092 Loss: 112.745 -54400/69092 Loss: 110.527 -57600/69092 Loss: 111.736 -60800/69092 Loss: 110.270 -64000/69092 Loss: 113.704 -67200/69092 Loss: 111.488 -Training time 0:01:56.959955 -Epoch: 136 Average loss: 112.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 277) -0/69092 Loss: 109.122 -3200/69092 Loss: 111.330 -6400/69092 Loss: 111.645 -9600/69092 Loss: 113.376 -12800/69092 Loss: 110.622 -16000/69092 Loss: 111.457 -19200/69092 Loss: 113.859 -22400/69092 Loss: 111.271 -25600/69092 Loss: 109.988 -28800/69092 Loss: 110.879 -32000/69092 Loss: 112.654 -35200/69092 Loss: 113.028 -38400/69092 Loss: 110.386 -41600/69092 Loss: 111.067 -44800/69092 Loss: 109.077 -48000/69092 Loss: 113.784 -51200/69092 Loss: 113.707 -54400/69092 Loss: 112.856 -57600/69092 Loss: 112.763 -60800/69092 Loss: 113.247 -64000/69092 Loss: 112.301 -67200/69092 Loss: 111.590 -Training time 0:01:57.133902 -Epoch: 137 Average loss: 111.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 278) -0/69092 Loss: 107.406 -3200/69092 Loss: 112.618 -6400/69092 Loss: 113.154 -9600/69092 Loss: 112.063 -12800/69092 Loss: 112.073 -16000/69092 Loss: 111.946 -19200/69092 Loss: 112.897 -22400/69092 Loss: 112.109 -25600/69092 Loss: 111.530 -28800/69092 Loss: 112.458 -32000/69092 Loss: 112.763 -35200/69092 Loss: 110.965 -38400/69092 Loss: 113.469 -41600/69092 Loss: 110.809 -44800/69092 Loss: 111.943 -48000/69092 Loss: 114.101 -51200/69092 Loss: 113.021 -54400/69092 Loss: 110.293 -57600/69092 Loss: 111.147 -60800/69092 Loss: 111.424 -64000/69092 Loss: 111.865 -67200/69092 Loss: 111.375 -Training time 0:01:57.266665 -Epoch: 138 Average loss: 112.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 279) -0/69092 Loss: 103.212 -3200/69092 Loss: 112.472 -6400/69092 Loss: 113.479 -9600/69092 Loss: 112.589 -12800/69092 Loss: 112.073 -16000/69092 Loss: 111.552 -19200/69092 Loss: 111.969 -22400/69092 Loss: 111.225 -25600/69092 Loss: 113.232 -28800/69092 Loss: 112.642 -32000/69092 Loss: 111.045 -35200/69092 Loss: 110.319 -38400/69092 Loss: 109.832 -41600/69092 Loss: 110.909 -44800/69092 Loss: 111.229 -48000/69092 Loss: 113.238 -51200/69092 Loss: 112.517 -54400/69092 Loss: 113.034 -57600/69092 Loss: 112.834 -60800/69092 Loss: 112.623 -64000/69092 Loss: 111.474 -67200/69092 Loss: 112.129 -Training time 0:01:58.435114 -Epoch: 139 Average loss: 112.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 280) -0/69092 Loss: 108.457 -3200/69092 Loss: 110.087 -6400/69092 Loss: 110.082 -9600/69092 Loss: 111.008 -12800/69092 Loss: 112.120 -16000/69092 Loss: 112.566 -19200/69092 Loss: 111.473 -22400/69092 Loss: 111.214 -25600/69092 Loss: 113.012 -28800/69092 Loss: 113.351 -32000/69092 Loss: 113.902 -35200/69092 Loss: 111.173 -38400/69092 Loss: 112.956 -41600/69092 Loss: 110.527 -44800/69092 Loss: 114.892 -48000/69092 Loss: 110.396 -51200/69092 Loss: 113.245 -54400/69092 Loss: 110.763 -57600/69092 Loss: 110.205 -60800/69092 Loss: 111.772 -64000/69092 Loss: 112.627 -67200/69092 Loss: 111.441 -Training time 0:01:56.262381 -Epoch: 140 Average loss: 111.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 281) -0/69092 Loss: 98.658 -3200/69092 Loss: 113.159 -6400/69092 Loss: 110.102 -9600/69092 Loss: 112.839 -12800/69092 Loss: 112.983 -16000/69092 Loss: 110.094 -19200/69092 Loss: 111.538 -22400/69092 Loss: 112.158 -25600/69092 Loss: 112.301 -28800/69092 Loss: 111.748 -32000/69092 Loss: 110.355 -35200/69092 Loss: 110.992 -38400/69092 Loss: 112.652 -41600/69092 Loss: 113.077 -44800/69092 Loss: 111.689 -48000/69092 Loss: 112.482 -51200/69092 Loss: 111.524 -54400/69092 Loss: 111.967 -57600/69092 Loss: 111.668 -60800/69092 Loss: 110.932 -64000/69092 Loss: 112.046 -67200/69092 Loss: 113.020 -Training time 0:01:58.535137 -Epoch: 141 Average loss: 111.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 282) -0/69092 Loss: 124.952 -3200/69092 Loss: 112.607 -6400/69092 Loss: 113.206 -9600/69092 Loss: 110.438 -12800/69092 Loss: 112.742 -16000/69092 Loss: 112.216 -19200/69092 Loss: 112.843 -22400/69092 Loss: 111.532 -25600/69092 Loss: 111.301 -28800/69092 Loss: 110.823 -32000/69092 Loss: 111.241 -35200/69092 Loss: 112.160 -38400/69092 Loss: 111.847 -41600/69092 Loss: 112.071 -44800/69092 Loss: 112.332 -48000/69092 Loss: 112.300 -51200/69092 Loss: 111.658 -54400/69092 Loss: 112.571 -57600/69092 Loss: 110.150 -60800/69092 Loss: 112.637 -64000/69092 Loss: 111.443 -67200/69092 Loss: 112.552 -Training time 0:01:57.326723 -Epoch: 142 Average loss: 111.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 283) -0/69092 Loss: 108.045 -3200/69092 Loss: 112.897 -6400/69092 Loss: 112.089 -9600/69092 Loss: 110.165 -12800/69092 Loss: 111.870 -16000/69092 Loss: 112.836 -19200/69092 Loss: 113.111 -22400/69092 Loss: 111.287 -25600/69092 Loss: 111.836 -28800/69092 Loss: 112.930 -32000/69092 Loss: 111.349 -35200/69092 Loss: 112.133 -38400/69092 Loss: 111.580 -41600/69092 Loss: 113.092 -44800/69092 Loss: 112.667 -48000/69092 Loss: 111.006 -51200/69092 Loss: 111.750 -54400/69092 Loss: 110.065 -57600/69092 Loss: 112.065 -60800/69092 Loss: 111.136 -64000/69092 Loss: 111.657 -67200/69092 Loss: 113.054 -Training time 0:01:57.236775 -Epoch: 143 Average loss: 111.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 284) -0/69092 Loss: 106.834 -3200/69092 Loss: 111.079 -6400/69092 Loss: 111.140 -9600/69092 Loss: 113.726 -12800/69092 Loss: 111.682 -16000/69092 Loss: 111.500 -19200/69092 Loss: 112.017 -22400/69092 Loss: 112.366 -25600/69092 Loss: 113.172 -28800/69092 Loss: 110.644 -32000/69092 Loss: 111.564 -35200/69092 Loss: 111.866 -38400/69092 Loss: 111.532 -41600/69092 Loss: 111.272 -44800/69092 Loss: 112.606 -48000/69092 Loss: 112.309 -51200/69092 Loss: 112.685 -54400/69092 Loss: 111.293 -57600/69092 Loss: 111.289 -60800/69092 Loss: 110.347 -64000/69092 Loss: 112.299 -67200/69092 Loss: 110.649 -Training time 0:01:58.010957 -Epoch: 144 Average loss: 111.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 285) -0/69092 Loss: 118.306 -3200/69092 Loss: 111.237 -6400/69092 Loss: 111.661 -9600/69092 Loss: 114.291 -12800/69092 Loss: 113.517 -16000/69092 Loss: 110.445 -19200/69092 Loss: 111.158 -22400/69092 Loss: 109.768 -25600/69092 Loss: 110.498 -28800/69092 Loss: 113.142 -32000/69092 Loss: 113.399 -35200/69092 Loss: 111.526 -38400/69092 Loss: 113.117 -41600/69092 Loss: 110.777 -44800/69092 Loss: 111.227 -48000/69092 Loss: 112.151 -51200/69092 Loss: 111.684 -54400/69092 Loss: 110.881 -57600/69092 Loss: 111.018 -60800/69092 Loss: 113.214 -64000/69092 Loss: 111.659 -67200/69092 Loss: 111.615 -Training time 0:01:58.616269 -Epoch: 145 Average loss: 111.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 286) -0/69092 Loss: 115.363 -3200/69092 Loss: 111.312 -6400/69092 Loss: 112.252 -9600/69092 Loss: 112.526 -12800/69092 Loss: 112.737 -16000/69092 Loss: 111.285 -19200/69092 Loss: 112.019 -22400/69092 Loss: 112.912 -25600/69092 Loss: 110.939 -28800/69092 Loss: 113.678 -32000/69092 Loss: 109.269 -35200/69092 Loss: 110.789 -38400/69092 Loss: 113.603 -41600/69092 Loss: 112.517 -44800/69092 Loss: 111.067 -48000/69092 Loss: 112.921 -51200/69092 Loss: 112.439 -54400/69092 Loss: 110.862 -57600/69092 Loss: 112.110 -60800/69092 Loss: 113.408 -64000/69092 Loss: 109.576 -67200/69092 Loss: 112.647 -Training time 0:01:57.659672 -Epoch: 146 Average loss: 111.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 287) -0/69092 Loss: 117.260 -3200/69092 Loss: 111.658 -6400/69092 Loss: 109.211 -9600/69092 Loss: 113.671 -12800/69092 Loss: 111.070 -16000/69092 Loss: 112.197 -19200/69092 Loss: 113.150 -22400/69092 Loss: 112.106 -25600/69092 Loss: 110.923 -28800/69092 Loss: 110.465 -32000/69092 Loss: 112.369 -35200/69092 Loss: 111.273 -38400/69092 Loss: 111.069 -41600/69092 Loss: 112.165 -44800/69092 Loss: 110.222 -48000/69092 Loss: 113.154 -51200/69092 Loss: 114.592 -54400/69092 Loss: 112.268 -57600/69092 Loss: 112.081 -60800/69092 Loss: 112.133 -64000/69092 Loss: 112.107 -67200/69092 Loss: 111.921 -Training time 0:01:58.866951 -Epoch: 147 Average loss: 111.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 288) -0/69092 Loss: 125.864 -3200/69092 Loss: 112.431 -6400/69092 Loss: 111.947 -9600/69092 Loss: 112.225 -12800/69092 Loss: 112.134 -16000/69092 Loss: 112.516 -19200/69092 Loss: 112.602 -22400/69092 Loss: 109.668 -25600/69092 Loss: 113.651 -28800/69092 Loss: 111.084 -32000/69092 Loss: 113.826 -35200/69092 Loss: 111.270 -38400/69092 Loss: 112.044 -41600/69092 Loss: 110.729 -44800/69092 Loss: 111.775 -48000/69092 Loss: 111.153 -51200/69092 Loss: 112.430 -54400/69092 Loss: 111.239 -57600/69092 Loss: 111.362 -60800/69092 Loss: 111.584 -64000/69092 Loss: 110.666 -67200/69092 Loss: 112.932 -Training time 0:01:56.854656 -Epoch: 148 Average loss: 111.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 289) -0/69092 Loss: 120.989 -3200/69092 Loss: 110.863 -6400/69092 Loss: 111.532 -9600/69092 Loss: 110.060 -12800/69092 Loss: 111.442 -16000/69092 Loss: 112.615 -19200/69092 Loss: 110.756 -22400/69092 Loss: 113.074 -25600/69092 Loss: 111.051 -28800/69092 Loss: 114.605 -32000/69092 Loss: 112.238 -35200/69092 Loss: 112.525 -38400/69092 Loss: 112.964 -41600/69092 Loss: 110.887 -44800/69092 Loss: 109.753 -48000/69092 Loss: 110.362 -51200/69092 Loss: 113.599 -54400/69092 Loss: 111.841 -57600/69092 Loss: 109.317 -60800/69092 Loss: 111.099 -64000/69092 Loss: 113.230 -67200/69092 Loss: 111.380 -Training time 0:01:57.507897 -Epoch: 149 Average loss: 111.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 290) -0/69092 Loss: 117.476 -3200/69092 Loss: 112.599 -6400/69092 Loss: 110.336 -9600/69092 Loss: 112.918 -12800/69092 Loss: 110.651 -16000/69092 Loss: 111.573 -19200/69092 Loss: 112.520 -22400/69092 Loss: 111.845 -25600/69092 Loss: 110.945 -28800/69092 Loss: 113.548 -32000/69092 Loss: 111.766 -35200/69092 Loss: 112.943 -38400/69092 Loss: 111.785 -41600/69092 Loss: 111.330 -44800/69092 Loss: 111.686 -48000/69092 Loss: 112.200 -51200/69092 Loss: 109.573 -54400/69092 Loss: 112.740 -57600/69092 Loss: 112.079 -60800/69092 Loss: 112.911 -64000/69092 Loss: 112.236 -67200/69092 Loss: 112.986 -Training time 0:01:58.333631 -Epoch: 150 Average loss: 111.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 291) -0/69092 Loss: 115.953 -3200/69092 Loss: 113.134 -6400/69092 Loss: 113.103 -9600/69092 Loss: 110.199 -12800/69092 Loss: 113.194 -16000/69092 Loss: 111.184 -19200/69092 Loss: 111.698 -22400/69092 Loss: 112.935 -25600/69092 Loss: 111.881 -28800/69092 Loss: 111.115 -32000/69092 Loss: 112.603 -35200/69092 Loss: 112.020 -38400/69092 Loss: 112.642 -41600/69092 Loss: 111.432 -44800/69092 Loss: 112.172 -48000/69092 Loss: 110.613 -51200/69092 Loss: 111.053 -54400/69092 Loss: 111.428 -57600/69092 Loss: 112.518 -60800/69092 Loss: 111.422 -64000/69092 Loss: 111.675 -67200/69092 Loss: 112.371 -Training time 0:01:58.128314 -Epoch: 151 Average loss: 111.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 292) -0/69092 Loss: 104.421 -3200/69092 Loss: 111.188 -6400/69092 Loss: 112.041 -9600/69092 Loss: 111.957 -12800/69092 Loss: 110.362 -16000/69092 Loss: 112.861 -19200/69092 Loss: 112.682 -22400/69092 Loss: 111.382 -25600/69092 Loss: 111.200 -28800/69092 Loss: 109.572 -32000/69092 Loss: 111.507 -35200/69092 Loss: 114.643 -38400/69092 Loss: 113.705 -41600/69092 Loss: 111.291 -44800/69092 Loss: 113.218 -48000/69092 Loss: 111.520 -51200/69092 Loss: 111.699 -54400/69092 Loss: 111.856 -57600/69092 Loss: 112.596 -60800/69092 Loss: 111.065 -64000/69092 Loss: 112.072 -67200/69092 Loss: 111.599 -Training time 0:01:56.836098 -Epoch: 152 Average loss: 111.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 293) -0/69092 Loss: 107.049 -3200/69092 Loss: 111.545 -6400/69092 Loss: 112.860 -9600/69092 Loss: 109.550 -12800/69092 Loss: 109.521 -16000/69092 Loss: 111.000 -19200/69092 Loss: 112.895 -22400/69092 Loss: 109.538 -25600/69092 Loss: 111.365 -28800/69092 Loss: 113.803 -32000/69092 Loss: 111.668 -35200/69092 Loss: 112.163 -38400/69092 Loss: 112.722 -41600/69092 Loss: 112.485 -44800/69092 Loss: 112.295 -48000/69092 Loss: 112.679 -51200/69092 Loss: 113.590 -54400/69092 Loss: 110.211 -57600/69092 Loss: 109.907 -60800/69092 Loss: 113.576 -64000/69092 Loss: 112.936 -67200/69092 Loss: 110.808 -Training time 0:01:57.354715 -Epoch: 153 Average loss: 111.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 294) -0/69092 Loss: 111.501 -3200/69092 Loss: 111.638 -6400/69092 Loss: 110.784 -9600/69092 Loss: 113.868 -12800/69092 Loss: 110.259 -16000/69092 Loss: 112.660 -19200/69092 Loss: 111.296 -22400/69092 Loss: 112.705 -25600/69092 Loss: 110.795 -28800/69092 Loss: 111.370 -32000/69092 Loss: 112.506 -35200/69092 Loss: 111.228 -38400/69092 Loss: 111.229 -41600/69092 Loss: 110.885 -44800/69092 Loss: 111.343 -48000/69092 Loss: 112.372 -51200/69092 Loss: 111.562 -54400/69092 Loss: 112.554 -57600/69092 Loss: 112.194 -60800/69092 Loss: 110.748 -64000/69092 Loss: 113.162 -67200/69092 Loss: 111.802 -Training time 0:01:57.258471 -Epoch: 154 Average loss: 111.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 295) -0/69092 Loss: 108.742 -3200/69092 Loss: 110.511 -6400/69092 Loss: 111.703 -9600/69092 Loss: 110.358 -12800/69092 Loss: 112.914 -16000/69092 Loss: 111.439 -19200/69092 Loss: 112.426 -22400/69092 Loss: 112.589 -25600/69092 Loss: 111.170 -28800/69092 Loss: 111.646 -32000/69092 Loss: 111.722 -35200/69092 Loss: 110.836 -38400/69092 Loss: 112.782 -41600/69092 Loss: 111.605 -44800/69092 Loss: 113.442 -48000/69092 Loss: 110.468 -51200/69092 Loss: 110.794 -54400/69092 Loss: 110.828 -57600/69092 Loss: 113.813 -60800/69092 Loss: 110.367 -64000/69092 Loss: 112.361 -67200/69092 Loss: 111.840 -Training time 0:01:57.111745 -Epoch: 155 Average loss: 111.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 296) -0/69092 Loss: 118.872 -3200/69092 Loss: 110.466 -6400/69092 Loss: 114.033 -9600/69092 Loss: 111.255 -12800/69092 Loss: 113.188 -16000/69092 Loss: 111.942 -19200/69092 Loss: 110.293 -22400/69092 Loss: 112.721 -25600/69092 Loss: 110.724 -28800/69092 Loss: 111.917 -32000/69092 Loss: 111.823 -35200/69092 Loss: 111.921 -38400/69092 Loss: 112.379 -41600/69092 Loss: 111.464 -44800/69092 Loss: 109.217 -48000/69092 Loss: 111.438 -51200/69092 Loss: 112.555 -54400/69092 Loss: 113.719 -57600/69092 Loss: 110.811 -60800/69092 Loss: 112.150 -64000/69092 Loss: 112.173 -67200/69092 Loss: 110.787 -Training time 0:01:56.623030 -Epoch: 156 Average loss: 111.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 297) -0/69092 Loss: 114.869 -3200/69092 Loss: 111.270 -6400/69092 Loss: 110.590 -9600/69092 Loss: 111.682 -12800/69092 Loss: 111.369 -16000/69092 Loss: 111.500 -19200/69092 Loss: 113.862 -22400/69092 Loss: 112.474 -25600/69092 Loss: 113.168 -28800/69092 Loss: 110.683 -32000/69092 Loss: 111.306 -35200/69092 Loss: 109.768 -38400/69092 Loss: 111.974 -41600/69092 Loss: 112.443 -44800/69092 Loss: 113.173 -48000/69092 Loss: 111.066 -51200/69092 Loss: 110.422 -54400/69092 Loss: 110.778 -57600/69092 Loss: 110.822 -60800/69092 Loss: 112.678 -64000/69092 Loss: 111.867 -67200/69092 Loss: 111.467 -Training time 0:01:57.529709 -Epoch: 157 Average loss: 111.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 298) -0/69092 Loss: 124.694 -3200/69092 Loss: 111.638 -6400/69092 Loss: 110.301 -9600/69092 Loss: 112.122 -12800/69092 Loss: 110.529 -16000/69092 Loss: 109.903 -19200/69092 Loss: 112.519 -22400/69092 Loss: 112.301 -25600/69092 Loss: 110.694 -28800/69092 Loss: 113.052 -32000/69092 Loss: 112.189 -35200/69092 Loss: 113.203 -38400/69092 Loss: 110.898 -41600/69092 Loss: 110.987 -44800/69092 Loss: 110.335 -48000/69092 Loss: 110.953 -51200/69092 Loss: 112.360 -54400/69092 Loss: 112.887 -57600/69092 Loss: 112.167 -60800/69092 Loss: 113.126 -64000/69092 Loss: 113.502 -67200/69092 Loss: 110.894 -Training time 0:01:57.557864 -Epoch: 158 Average loss: 111.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 299) -0/69092 Loss: 114.132 -3200/69092 Loss: 112.711 -6400/69092 Loss: 112.266 -9600/69092 Loss: 111.940 -12800/69092 Loss: 110.040 -16000/69092 Loss: 110.274 -19200/69092 Loss: 111.464 -22400/69092 Loss: 114.249 -25600/69092 Loss: 110.451 -28800/69092 Loss: 111.813 -32000/69092 Loss: 110.874 -35200/69092 Loss: 111.192 -38400/69092 Loss: 110.178 -41600/69092 Loss: 111.566 -44800/69092 Loss: 112.302 -48000/69092 Loss: 112.227 -51200/69092 Loss: 112.962 -54400/69092 Loss: 112.561 -57600/69092 Loss: 111.218 -60800/69092 Loss: 113.534 -64000/69092 Loss: 111.048 -67200/69092 Loss: 110.810 -Training time 0:01:58.071249 -Epoch: 159 Average loss: 111.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 300) -0/69092 Loss: 123.650 -3200/69092 Loss: 111.714 -6400/69092 Loss: 113.229 -9600/69092 Loss: 113.051 -12800/69092 Loss: 111.433 -16000/69092 Loss: 110.213 -19200/69092 Loss: 111.912 -22400/69092 Loss: 112.486 -25600/69092 Loss: 111.917 -28800/69092 Loss: 112.611 -32000/69092 Loss: 110.129 -35200/69092 Loss: 112.950 -38400/69092 Loss: 112.496 -41600/69092 Loss: 111.032 -44800/69092 Loss: 112.336 -48000/69092 Loss: 109.904 -51200/69092 Loss: 111.151 -54400/69092 Loss: 111.449 -57600/69092 Loss: 111.840 -60800/69092 Loss: 110.888 -64000/69092 Loss: 112.554 -67200/69092 Loss: 110.121 -Training time 0:01:58.034978 -Epoch: 160 Average loss: 111.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 301) -0/69092 Loss: 116.410 -3200/69092 Loss: 110.600 -6400/69092 Loss: 112.400 -9600/69092 Loss: 111.510 -12800/69092 Loss: 110.163 -16000/69092 Loss: 110.768 -19200/69092 Loss: 114.241 -22400/69092 Loss: 112.413 -25600/69092 Loss: 113.094 -28800/69092 Loss: 110.829 -32000/69092 Loss: 113.481 -35200/69092 Loss: 112.277 -38400/69092 Loss: 112.755 -41600/69092 Loss: 112.485 -44800/69092 Loss: 111.657 -48000/69092 Loss: 111.142 -51200/69092 Loss: 110.248 -54400/69092 Loss: 109.791 -57600/69092 Loss: 112.472 -60800/69092 Loss: 112.471 -64000/69092 Loss: 112.048 -67200/69092 Loss: 111.838 -Training time 0:01:56.366043 -Epoch: 161 Average loss: 111.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 302) -0/69092 Loss: 113.542 -3200/69092 Loss: 110.087 -6400/69092 Loss: 113.418 -9600/69092 Loss: 112.001 -12800/69092 Loss: 113.136 -16000/69092 Loss: 111.554 -19200/69092 Loss: 112.779 -22400/69092 Loss: 111.375 -25600/69092 Loss: 110.408 -28800/69092 Loss: 112.812 -32000/69092 Loss: 112.009 -35200/69092 Loss: 111.353 -38400/69092 Loss: 110.976 -41600/69092 Loss: 113.415 -44800/69092 Loss: 112.298 -48000/69092 Loss: 110.774 -51200/69092 Loss: 108.745 -54400/69092 Loss: 112.864 -57600/69092 Loss: 109.988 -60800/69092 Loss: 112.738 -64000/69092 Loss: 110.572 -67200/69092 Loss: 112.847 -Training time 0:01:58.019849 -Epoch: 162 Average loss: 111.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 303) -0/69092 Loss: 119.715 -3200/69092 Loss: 110.518 -6400/69092 Loss: 111.559 -9600/69092 Loss: 112.434 -12800/69092 Loss: 112.339 -16000/69092 Loss: 112.397 -19200/69092 Loss: 110.979 -22400/69092 Loss: 110.737 -25600/69092 Loss: 111.644 -28800/69092 Loss: 112.902 -32000/69092 Loss: 111.472 -35200/69092 Loss: 113.155 -38400/69092 Loss: 109.615 -41600/69092 Loss: 112.107 -44800/69092 Loss: 111.096 -48000/69092 Loss: 112.698 -51200/69092 Loss: 112.322 -54400/69092 Loss: 111.918 -57600/69092 Loss: 112.837 -60800/69092 Loss: 110.629 -64000/69092 Loss: 111.170 -67200/69092 Loss: 112.125 -Training time 0:01:57.907451 -Epoch: 163 Average loss: 111.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 304) -0/69092 Loss: 134.733 -3200/69092 Loss: 111.368 -6400/69092 Loss: 112.738 -9600/69092 Loss: 112.785 -12800/69092 Loss: 111.969 -16000/69092 Loss: 111.528 -19200/69092 Loss: 109.242 -22400/69092 Loss: 113.343 -25600/69092 Loss: 113.095 -28800/69092 Loss: 110.104 -32000/69092 Loss: 111.320 -35200/69092 Loss: 110.740 -38400/69092 Loss: 109.703 -41600/69092 Loss: 111.375 -44800/69092 Loss: 111.857 -48000/69092 Loss: 112.100 -51200/69092 Loss: 112.985 -54400/69092 Loss: 111.972 -57600/69092 Loss: 109.736 -60800/69092 Loss: 112.205 -64000/69092 Loss: 111.661 -67200/69092 Loss: 112.903 -Training time 0:01:58.142396 -Epoch: 164 Average loss: 111.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 305) -0/69092 Loss: 118.115 -3200/69092 Loss: 110.009 -6400/69092 Loss: 111.570 -9600/69092 Loss: 112.055 -12800/69092 Loss: 113.302 -16000/69092 Loss: 110.916 -19200/69092 Loss: 111.357 -22400/69092 Loss: 111.904 -25600/69092 Loss: 110.185 -28800/69092 Loss: 111.550 -32000/69092 Loss: 113.098 -35200/69092 Loss: 110.133 -38400/69092 Loss: 111.114 -41600/69092 Loss: 112.392 -44800/69092 Loss: 114.921 -48000/69092 Loss: 111.498 -51200/69092 Loss: 111.717 -54400/69092 Loss: 111.010 -57600/69092 Loss: 111.393 -60800/69092 Loss: 111.221 -64000/69092 Loss: 111.821 -67200/69092 Loss: 111.310 -Training time 0:01:57.883301 -Epoch: 165 Average loss: 111.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 306) -0/69092 Loss: 109.505 -3200/69092 Loss: 109.239 -6400/69092 Loss: 112.679 -9600/69092 Loss: 111.230 -12800/69092 Loss: 112.153 -16000/69092 Loss: 108.978 -19200/69092 Loss: 112.635 -22400/69092 Loss: 111.655 -25600/69092 Loss: 110.654 -28800/69092 Loss: 111.396 -32000/69092 Loss: 110.772 -35200/69092 Loss: 110.620 -38400/69092 Loss: 111.977 -41600/69092 Loss: 112.527 -44800/69092 Loss: 112.819 -48000/69092 Loss: 113.921 -51200/69092 Loss: 112.138 -54400/69092 Loss: 111.674 -57600/69092 Loss: 111.156 -60800/69092 Loss: 112.003 -64000/69092 Loss: 112.026 -67200/69092 Loss: 113.795 -Training time 0:01:57.628814 -Epoch: 166 Average loss: 111.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 307) -0/69092 Loss: 111.059 -3200/69092 Loss: 111.078 -6400/69092 Loss: 111.255 -9600/69092 Loss: 111.719 -12800/69092 Loss: 110.882 -16000/69092 Loss: 114.077 -19200/69092 Loss: 111.082 -22400/69092 Loss: 112.027 -25600/69092 Loss: 110.732 -28800/69092 Loss: 111.248 -32000/69092 Loss: 112.801 -35200/69092 Loss: 110.367 -38400/69092 Loss: 111.870 -41600/69092 Loss: 111.445 -44800/69092 Loss: 112.290 -48000/69092 Loss: 112.549 -51200/69092 Loss: 111.689 -54400/69092 Loss: 111.940 -57600/69092 Loss: 112.155 -60800/69092 Loss: 112.263 -64000/69092 Loss: 112.639 -67200/69092 Loss: 111.075 -Training time 0:01:58.999863 -Epoch: 167 Average loss: 111.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 308) -0/69092 Loss: 105.557 -3200/69092 Loss: 112.981 -6400/69092 Loss: 112.326 -9600/69092 Loss: 110.460 -12800/69092 Loss: 111.842 -16000/69092 Loss: 112.710 -19200/69092 Loss: 113.543 -22400/69092 Loss: 112.468 -25600/69092 Loss: 110.899 -28800/69092 Loss: 113.226 -32000/69092 Loss: 111.981 -35200/69092 Loss: 110.594 -38400/69092 Loss: 110.432 -41600/69092 Loss: 110.462 -44800/69092 Loss: 112.145 -48000/69092 Loss: 112.282 -51200/69092 Loss: 110.518 -54400/69092 Loss: 112.326 -57600/69092 Loss: 112.281 -60800/69092 Loss: 112.349 -64000/69092 Loss: 112.677 -67200/69092 Loss: 111.289 -Training time 0:01:57.916369 -Epoch: 168 Average loss: 111.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 309) -0/69092 Loss: 106.652 -3200/69092 Loss: 112.091 -6400/69092 Loss: 112.037 -9600/69092 Loss: 111.819 -12800/69092 Loss: 111.874 -16000/69092 Loss: 110.806 -19200/69092 Loss: 112.183 -22400/69092 Loss: 112.422 -25600/69092 Loss: 109.044 -28800/69092 Loss: 112.361 -32000/69092 Loss: 111.146 -35200/69092 Loss: 112.348 -38400/69092 Loss: 110.026 -41600/69092 Loss: 112.366 -44800/69092 Loss: 112.497 -48000/69092 Loss: 111.515 -51200/69092 Loss: 111.187 -54400/69092 Loss: 111.332 -57600/69092 Loss: 109.368 -60800/69092 Loss: 111.638 -64000/69092 Loss: 114.175 -67200/69092 Loss: 110.968 -Training time 0:01:58.337494 -Epoch: 169 Average loss: 111.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 310) -0/69092 Loss: 116.036 -3200/69092 Loss: 109.581 -6400/69092 Loss: 112.270 -9600/69092 Loss: 111.920 -12800/69092 Loss: 111.055 -16000/69092 Loss: 110.885 -19200/69092 Loss: 112.197 -22400/69092 Loss: 111.740 -25600/69092 Loss: 111.951 -28800/69092 Loss: 111.953 -32000/69092 Loss: 109.690 -35200/69092 Loss: 111.384 -38400/69092 Loss: 109.769 -41600/69092 Loss: 111.808 -44800/69092 Loss: 111.351 -48000/69092 Loss: 111.708 -51200/69092 Loss: 112.546 -54400/69092 Loss: 111.851 -57600/69092 Loss: 111.209 -60800/69092 Loss: 113.422 -64000/69092 Loss: 113.189 -67200/69092 Loss: 111.935 -Training time 0:01:57.384316 -Epoch: 170 Average loss: 111.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 311) -0/69092 Loss: 127.703 -3200/69092 Loss: 111.678 -6400/69092 Loss: 110.477 -9600/69092 Loss: 111.366 -12800/69092 Loss: 111.567 -16000/69092 Loss: 113.184 -19200/69092 Loss: 112.240 -22400/69092 Loss: 111.619 -25600/69092 Loss: 108.892 -28800/69092 Loss: 112.422 -32000/69092 Loss: 112.121 -35200/69092 Loss: 111.129 -38400/69092 Loss: 112.726 -41600/69092 Loss: 110.563 -44800/69092 Loss: 111.391 -48000/69092 Loss: 111.781 -51200/69092 Loss: 112.103 -54400/69092 Loss: 110.624 -57600/69092 Loss: 111.868 -60800/69092 Loss: 111.465 -64000/69092 Loss: 112.831 -67200/69092 Loss: 113.136 -Training time 0:01:57.705388 -Epoch: 171 Average loss: 111.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 312) -0/69092 Loss: 108.844 -3200/69092 Loss: 111.695 -6400/69092 Loss: 111.223 -9600/69092 Loss: 112.083 -12800/69092 Loss: 112.880 -16000/69092 Loss: 110.638 -19200/69092 Loss: 112.117 -22400/69092 Loss: 111.752 -25600/69092 Loss: 110.880 -28800/69092 Loss: 111.832 -32000/69092 Loss: 110.838 -35200/69092 Loss: 112.321 -38400/69092 Loss: 111.527 -41600/69092 Loss: 112.675 -44800/69092 Loss: 110.984 -48000/69092 Loss: 113.043 -51200/69092 Loss: 109.742 -54400/69092 Loss: 110.143 -57600/69092 Loss: 110.711 -60800/69092 Loss: 112.018 -64000/69092 Loss: 112.209 -67200/69092 Loss: 112.814 -Training time 0:01:57.964064 -Epoch: 172 Average loss: 111.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 313) -0/69092 Loss: 117.573 -3200/69092 Loss: 111.334 -6400/69092 Loss: 112.929 -9600/69092 Loss: 111.225 -12800/69092 Loss: 111.788 -16000/69092 Loss: 110.620 -19200/69092 Loss: 110.578 -22400/69092 Loss: 111.633 -25600/69092 Loss: 112.730 -28800/69092 Loss: 112.205 -32000/69092 Loss: 111.285 -35200/69092 Loss: 111.097 -38400/69092 Loss: 110.843 -41600/69092 Loss: 110.864 -44800/69092 Loss: 110.815 -48000/69092 Loss: 112.478 -51200/69092 Loss: 113.079 -54400/69092 Loss: 111.633 -57600/69092 Loss: 110.176 -60800/69092 Loss: 112.667 -64000/69092 Loss: 110.104 -67200/69092 Loss: 112.285 -Training time 0:01:56.752130 -Epoch: 173 Average loss: 111.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 314) -0/69092 Loss: 110.782 -3200/69092 Loss: 111.362 -6400/69092 Loss: 113.374 -9600/69092 Loss: 112.839 -12800/69092 Loss: 112.448 -16000/69092 Loss: 112.099 -19200/69092 Loss: 111.209 -22400/69092 Loss: 110.317 -25600/69092 Loss: 111.654 -28800/69092 Loss: 110.356 -32000/69092 Loss: 110.643 -35200/69092 Loss: 111.474 -38400/69092 Loss: 111.918 -41600/69092 Loss: 111.560 -44800/69092 Loss: 111.214 -48000/69092 Loss: 111.769 -51200/69092 Loss: 110.218 -54400/69092 Loss: 112.135 -57600/69092 Loss: 112.353 -60800/69092 Loss: 112.673 -64000/69092 Loss: 110.937 -67200/69092 Loss: 112.363 -Training time 0:01:58.067145 -Epoch: 174 Average loss: 111.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 315) -0/69092 Loss: 114.900 -3200/69092 Loss: 111.194 -6400/69092 Loss: 110.765 -9600/69092 Loss: 113.184 -12800/69092 Loss: 111.068 -16000/69092 Loss: 111.820 -19200/69092 Loss: 110.786 -22400/69092 Loss: 110.856 -25600/69092 Loss: 112.766 -28800/69092 Loss: 112.088 -32000/69092 Loss: 110.329 -35200/69092 Loss: 112.775 -38400/69092 Loss: 111.490 -41600/69092 Loss: 112.312 -44800/69092 Loss: 112.025 -48000/69092 Loss: 110.544 -51200/69092 Loss: 112.408 -54400/69092 Loss: 110.298 -57600/69092 Loss: 111.694 -60800/69092 Loss: 111.988 -64000/69092 Loss: 111.013 -67200/69092 Loss: 110.715 -Training time 0:01:58.014468 -Epoch: 175 Average loss: 111.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 316) -0/69092 Loss: 119.735 -3200/69092 Loss: 110.581 -6400/69092 Loss: 110.471 -9600/69092 Loss: 110.051 -12800/69092 Loss: 111.062 -16000/69092 Loss: 111.943 -19200/69092 Loss: 112.570 -22400/69092 Loss: 113.682 -25600/69092 Loss: 110.904 -28800/69092 Loss: 110.676 -32000/69092 Loss: 111.977 -35200/69092 Loss: 111.398 -38400/69092 Loss: 110.633 -41600/69092 Loss: 111.087 -44800/69092 Loss: 113.643 -48000/69092 Loss: 111.851 -51200/69092 Loss: 112.379 -54400/69092 Loss: 111.891 -57600/69092 Loss: 109.544 -60800/69092 Loss: 111.967 -64000/69092 Loss: 113.614 -67200/69092 Loss: 112.276 -Training time 0:01:58.495056 -Epoch: 176 Average loss: 111.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 317) -0/69092 Loss: 124.552 -3200/69092 Loss: 112.319 -6400/69092 Loss: 111.483 -9600/69092 Loss: 110.606 -12800/69092 Loss: 112.892 -16000/69092 Loss: 112.674 -19200/69092 Loss: 111.931 -22400/69092 Loss: 109.751 -25600/69092 Loss: 111.548 -28800/69092 Loss: 109.975 -32000/69092 Loss: 111.960 -35200/69092 Loss: 110.546 -38400/69092 Loss: 111.756 -41600/69092 Loss: 111.660 -44800/69092 Loss: 112.089 -48000/69092 Loss: 112.292 -51200/69092 Loss: 111.803 -54400/69092 Loss: 112.917 -57600/69092 Loss: 109.461 -60800/69092 Loss: 109.814 -64000/69092 Loss: 112.297 -67200/69092 Loss: 112.958 -Training time 0:01:57.255709 -Epoch: 177 Average loss: 111.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 318) -0/69092 Loss: 120.511 -3200/69092 Loss: 113.576 -6400/69092 Loss: 111.405 -9600/69092 Loss: 113.479 -12800/69092 Loss: 112.399 -16000/69092 Loss: 109.682 -19200/69092 Loss: 113.299 -22400/69092 Loss: 111.035 -25600/69092 Loss: 111.170 -28800/69092 Loss: 111.269 -32000/69092 Loss: 110.564 -35200/69092 Loss: 111.389 -38400/69092 Loss: 111.394 -41600/69092 Loss: 111.550 -44800/69092 Loss: 113.036 -48000/69092 Loss: 110.169 -51200/69092 Loss: 110.245 -54400/69092 Loss: 110.791 -57600/69092 Loss: 111.674 -60800/69092 Loss: 111.160 -64000/69092 Loss: 113.037 -67200/69092 Loss: 112.097 -Training time 0:01:57.057106 -Epoch: 178 Average loss: 111.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 319) -0/69092 Loss: 103.304 -3200/69092 Loss: 111.873 -6400/69092 Loss: 110.717 -9600/69092 Loss: 112.062 -12800/69092 Loss: 111.397 -16000/69092 Loss: 111.597 -19200/69092 Loss: 112.798 -22400/69092 Loss: 110.245 -25600/69092 Loss: 110.977 -28800/69092 Loss: 111.191 -32000/69092 Loss: 110.798 -35200/69092 Loss: 110.867 -38400/69092 Loss: 112.236 -41600/69092 Loss: 112.333 -44800/69092 Loss: 110.852 -48000/69092 Loss: 111.670 -51200/69092 Loss: 110.712 -54400/69092 Loss: 111.992 -57600/69092 Loss: 112.176 -60800/69092 Loss: 112.691 -64000/69092 Loss: 111.358 -67200/69092 Loss: 112.990 -Training time 0:01:57.803994 -Epoch: 179 Average loss: 111.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 320) -0/69092 Loss: 107.170 -3200/69092 Loss: 112.843 -6400/69092 Loss: 111.024 -9600/69092 Loss: 111.109 -12800/69092 Loss: 111.462 -16000/69092 Loss: 110.910 -19200/69092 Loss: 113.197 -22400/69092 Loss: 109.887 -25600/69092 Loss: 111.829 -28800/69092 Loss: 109.722 -32000/69092 Loss: 111.730 -35200/69092 Loss: 112.916 -38400/69092 Loss: 112.945 -41600/69092 Loss: 112.207 -44800/69092 Loss: 109.817 -48000/69092 Loss: 112.512 -51200/69092 Loss: 112.084 -54400/69092 Loss: 111.714 -57600/69092 Loss: 111.316 -60800/69092 Loss: 111.814 -64000/69092 Loss: 110.556 -67200/69092 Loss: 111.118 -Training time 0:01:56.358556 -Epoch: 180 Average loss: 111.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 321) -0/69092 Loss: 100.743 -3200/69092 Loss: 111.787 -6400/69092 Loss: 111.899 -9600/69092 Loss: 111.281 -12800/69092 Loss: 111.201 -16000/69092 Loss: 110.951 -19200/69092 Loss: 111.522 -22400/69092 Loss: 111.217 -25600/69092 Loss: 110.644 -28800/69092 Loss: 112.240 -32000/69092 Loss: 113.481 -35200/69092 Loss: 110.947 -38400/69092 Loss: 111.085 -41600/69092 Loss: 110.284 -44800/69092 Loss: 111.467 -48000/69092 Loss: 112.270 -51200/69092 Loss: 112.145 -54400/69092 Loss: 111.475 -57600/69092 Loss: 113.179 -60800/69092 Loss: 111.228 -64000/69092 Loss: 111.896 -67200/69092 Loss: 110.584 -Training time 0:01:57.502158 -Epoch: 181 Average loss: 111.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 322) -0/69092 Loss: 108.357 -3200/69092 Loss: 111.731 -6400/69092 Loss: 111.733 -9600/69092 Loss: 113.481 -12800/69092 Loss: 111.365 -16000/69092 Loss: 111.726 -19200/69092 Loss: 110.502 -22400/69092 Loss: 110.389 -25600/69092 Loss: 112.975 -28800/69092 Loss: 110.518 -32000/69092 Loss: 112.618 -35200/69092 Loss: 112.790 -38400/69092 Loss: 109.776 -41600/69092 Loss: 110.367 -44800/69092 Loss: 111.609 -48000/69092 Loss: 111.711 -51200/69092 Loss: 110.099 -54400/69092 Loss: 112.283 -57600/69092 Loss: 110.904 -60800/69092 Loss: 113.059 -64000/69092 Loss: 112.030 -67200/69092 Loss: 113.089 -Training time 0:01:56.875677 -Epoch: 182 Average loss: 111.63 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 323) -0/69092 Loss: 114.072 -3200/69092 Loss: 110.401 -6400/69092 Loss: 110.559 -9600/69092 Loss: 111.795 -12800/69092 Loss: 111.781 -16000/69092 Loss: 111.667 -19200/69092 Loss: 111.338 -22400/69092 Loss: 111.120 -25600/69092 Loss: 110.425 -28800/69092 Loss: 111.761 -32000/69092 Loss: 111.229 -35200/69092 Loss: 111.569 -38400/69092 Loss: 112.074 -41600/69092 Loss: 110.837 -44800/69092 Loss: 113.152 -48000/69092 Loss: 112.021 -51200/69092 Loss: 111.156 -54400/69092 Loss: 113.387 -57600/69092 Loss: 111.168 -60800/69092 Loss: 112.002 -64000/69092 Loss: 111.889 -67200/69092 Loss: 111.340 -Training time 0:01:57.008256 -Epoch: 183 Average loss: 111.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 324) -0/69092 Loss: 120.016 -3200/69092 Loss: 111.444 -6400/69092 Loss: 109.558 -9600/69092 Loss: 111.469 -12800/69092 Loss: 111.536 -16000/69092 Loss: 111.952 -19200/69092 Loss: 111.813 -22400/69092 Loss: 113.079 -25600/69092 Loss: 109.439 -28800/69092 Loss: 110.270 -32000/69092 Loss: 110.863 -35200/69092 Loss: 111.457 -38400/69092 Loss: 112.581 -41600/69092 Loss: 110.833 -44800/69092 Loss: 112.133 -48000/69092 Loss: 113.678 -51200/69092 Loss: 110.353 -54400/69092 Loss: 111.541 -57600/69092 Loss: 111.633 -60800/69092 Loss: 112.184 -64000/69092 Loss: 112.424 -67200/69092 Loss: 111.424 -Training time 0:01:58.523298 -Epoch: 184 Average loss: 111.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 325) -0/69092 Loss: 107.876 -3200/69092 Loss: 109.747 -6400/69092 Loss: 109.868 -9600/69092 Loss: 111.135 -12800/69092 Loss: 111.407 -16000/69092 Loss: 112.379 -19200/69092 Loss: 111.545 -22400/69092 Loss: 113.547 -25600/69092 Loss: 110.568 -28800/69092 Loss: 113.485 -32000/69092 Loss: 112.639 -35200/69092 Loss: 111.609 -38400/69092 Loss: 109.332 -41600/69092 Loss: 113.248 -44800/69092 Loss: 112.174 -48000/69092 Loss: 110.729 -51200/69092 Loss: 112.713 -54400/69092 Loss: 112.936 -57600/69092 Loss: 110.470 -60800/69092 Loss: 111.682 -64000/69092 Loss: 111.546 -67200/69092 Loss: 110.812 -Training time 0:01:58.360094 -Epoch: 185 Average loss: 111.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 326) -0/69092 Loss: 109.357 -3200/69092 Loss: 111.876 -6400/69092 Loss: 110.766 -9600/69092 Loss: 110.595 -12800/69092 Loss: 109.909 -16000/69092 Loss: 111.825 -19200/69092 Loss: 113.635 -22400/69092 Loss: 111.603 -25600/69092 Loss: 110.578 -28800/69092 Loss: 109.896 -32000/69092 Loss: 112.974 -35200/69092 Loss: 112.931 -38400/69092 Loss: 110.565 -41600/69092 Loss: 111.909 -44800/69092 Loss: 112.094 -48000/69092 Loss: 111.724 -51200/69092 Loss: 109.451 -54400/69092 Loss: 112.351 -57600/69092 Loss: 111.552 -60800/69092 Loss: 111.427 -64000/69092 Loss: 112.138 -67200/69092 Loss: 112.850 -Training time 0:01:58.267326 -Epoch: 186 Average loss: 111.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 327) -0/69092 Loss: 106.456 -3200/69092 Loss: 111.164 -6400/69092 Loss: 111.993 -9600/69092 Loss: 112.414 -12800/69092 Loss: 109.983 -16000/69092 Loss: 112.061 -19200/69092 Loss: 111.702 -22400/69092 Loss: 111.505 -25600/69092 Loss: 110.846 -28800/69092 Loss: 112.006 -32000/69092 Loss: 111.262 -35200/69092 Loss: 111.303 -38400/69092 Loss: 112.328 -41600/69092 Loss: 111.673 -44800/69092 Loss: 112.157 -48000/69092 Loss: 110.761 -51200/69092 Loss: 110.008 -54400/69092 Loss: 112.026 -57600/69092 Loss: 112.987 -60800/69092 Loss: 111.907 -64000/69092 Loss: 112.970 -67200/69092 Loss: 111.228 -Training time 0:01:58.723759 -Epoch: 187 Average loss: 111.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 328) -0/69092 Loss: 113.900 -3200/69092 Loss: 111.702 -6400/69092 Loss: 112.092 -9600/69092 Loss: 110.643 -12800/69092 Loss: 111.959 -16000/69092 Loss: 111.351 -19200/69092 Loss: 111.236 -22400/69092 Loss: 112.940 -25600/69092 Loss: 111.317 -28800/69092 Loss: 110.408 -32000/69092 Loss: 111.312 -35200/69092 Loss: 111.465 -38400/69092 Loss: 111.462 -41600/69092 Loss: 112.111 -44800/69092 Loss: 111.153 -48000/69092 Loss: 113.464 -51200/69092 Loss: 112.607 -54400/69092 Loss: 112.634 -57600/69092 Loss: 110.603 -60800/69092 Loss: 110.935 -64000/69092 Loss: 111.933 -67200/69092 Loss: 110.884 -Training time 0:01:56.799651 -Epoch: 188 Average loss: 111.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 329) -0/69092 Loss: 109.241 -3200/69092 Loss: 112.366 -6400/69092 Loss: 110.846 -9600/69092 Loss: 111.406 -12800/69092 Loss: 110.057 -16000/69092 Loss: 110.629 -19200/69092 Loss: 111.649 -22400/69092 Loss: 112.120 -25600/69092 Loss: 113.910 -28800/69092 Loss: 109.390 -32000/69092 Loss: 112.291 -35200/69092 Loss: 112.187 -38400/69092 Loss: 109.937 -41600/69092 Loss: 112.167 -44800/69092 Loss: 111.798 -48000/69092 Loss: 112.998 -51200/69092 Loss: 110.693 -54400/69092 Loss: 110.759 -57600/69092 Loss: 112.801 -60800/69092 Loss: 113.271 -64000/69092 Loss: 109.608 -67200/69092 Loss: 110.332 -Training time 0:01:57.246459 -Epoch: 189 Average loss: 111.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 330) -0/69092 Loss: 97.416 -3200/69092 Loss: 111.024 -6400/69092 Loss: 110.710 -9600/69092 Loss: 111.905 -12800/69092 Loss: 112.514 -16000/69092 Loss: 112.099 -19200/69092 Loss: 110.833 -22400/69092 Loss: 110.053 -25600/69092 Loss: 111.712 -28800/69092 Loss: 112.495 -32000/69092 Loss: 110.644 -35200/69092 Loss: 112.581 -38400/69092 Loss: 110.519 -41600/69092 Loss: 110.523 -44800/69092 Loss: 112.045 -48000/69092 Loss: 114.001 -51200/69092 Loss: 113.558 -54400/69092 Loss: 113.206 -57600/69092 Loss: 111.365 -60800/69092 Loss: 110.648 -64000/69092 Loss: 109.599 -67200/69092 Loss: 111.489 -Training time 0:01:58.534265 -Epoch: 190 Average loss: 111.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 331) -0/69092 Loss: 109.889 -3200/69092 Loss: 111.807 -6400/69092 Loss: 111.917 -9600/69092 Loss: 112.418 -12800/69092 Loss: 111.399 -16000/69092 Loss: 111.778 -19200/69092 Loss: 110.268 -22400/69092 Loss: 112.134 -25600/69092 Loss: 111.793 -28800/69092 Loss: 113.554 -32000/69092 Loss: 111.343 -35200/69092 Loss: 111.764 -38400/69092 Loss: 111.731 -41600/69092 Loss: 111.383 -44800/69092 Loss: 110.959 -48000/69092 Loss: 111.216 -51200/69092 Loss: 112.441 -54400/69092 Loss: 110.586 -57600/69092 Loss: 111.640 -60800/69092 Loss: 109.830 -64000/69092 Loss: 111.446 -67200/69092 Loss: 108.799 -Training time 0:01:57.102272 -Epoch: 191 Average loss: 111.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 332) -0/69092 Loss: 108.920 -3200/69092 Loss: 111.195 -6400/69092 Loss: 111.135 -9600/69092 Loss: 110.951 -12800/69092 Loss: 112.638 -16000/69092 Loss: 112.347 -19200/69092 Loss: 112.486 -22400/69092 Loss: 112.524 -25600/69092 Loss: 112.107 -28800/69092 Loss: 110.149 -32000/69092 Loss: 111.548 -35200/69092 Loss: 111.022 -38400/69092 Loss: 111.766 -41600/69092 Loss: 109.564 -44800/69092 Loss: 111.678 -48000/69092 Loss: 110.788 -51200/69092 Loss: 111.531 -54400/69092 Loss: 110.344 -57600/69092 Loss: 112.534 -60800/69092 Loss: 111.576 -64000/69092 Loss: 112.879 -67200/69092 Loss: 111.351 -Training time 0:01:59.373875 -Epoch: 192 Average loss: 111.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 333) -0/69092 Loss: 94.938 -3200/69092 Loss: 109.984 -6400/69092 Loss: 113.110 -9600/69092 Loss: 112.400 -12800/69092 Loss: 110.083 -16000/69092 Loss: 112.644 -19200/69092 Loss: 110.717 -22400/69092 Loss: 110.447 -25600/69092 Loss: 111.353 -28800/69092 Loss: 111.059 -32000/69092 Loss: 112.197 -35200/69092 Loss: 110.996 -38400/69092 Loss: 111.752 -41600/69092 Loss: 111.362 -44800/69092 Loss: 111.330 -48000/69092 Loss: 110.749 -51200/69092 Loss: 112.118 -54400/69092 Loss: 111.676 -57600/69092 Loss: 111.923 -60800/69092 Loss: 111.846 -64000/69092 Loss: 112.101 -67200/69092 Loss: 111.094 -Training time 0:01:57.080547 -Epoch: 193 Average loss: 111.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 334) -0/69092 Loss: 103.360 -3200/69092 Loss: 109.909 -6400/69092 Loss: 110.607 -9600/69092 Loss: 111.329 -12800/69092 Loss: 111.241 -16000/69092 Loss: 111.323 -19200/69092 Loss: 111.070 -22400/69092 Loss: 112.863 -25600/69092 Loss: 110.287 -28800/69092 Loss: 111.865 -32000/69092 Loss: 111.984 -35200/69092 Loss: 110.044 -38400/69092 Loss: 111.127 -41600/69092 Loss: 112.657 -44800/69092 Loss: 111.520 -48000/69092 Loss: 111.684 -51200/69092 Loss: 112.632 -54400/69092 Loss: 110.193 -57600/69092 Loss: 112.449 -60800/69092 Loss: 111.390 -64000/69092 Loss: 112.835 -67200/69092 Loss: 110.220 -Training time 0:01:56.919221 -Epoch: 194 Average loss: 111.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 335) -0/69092 Loss: 114.571 -3200/69092 Loss: 109.905 -6400/69092 Loss: 112.086 -9600/69092 Loss: 113.124 -12800/69092 Loss: 111.455 -16000/69092 Loss: 111.385 -19200/69092 Loss: 110.461 -22400/69092 Loss: 113.651 -25600/69092 Loss: 111.032 -28800/69092 Loss: 111.218 -32000/69092 Loss: 110.235 -35200/69092 Loss: 111.196 -38400/69092 Loss: 110.942 -41600/69092 Loss: 111.118 -44800/69092 Loss: 112.162 -48000/69092 Loss: 112.270 -51200/69092 Loss: 112.336 -54400/69092 Loss: 112.304 -57600/69092 Loss: 112.400 -60800/69092 Loss: 110.947 -64000/69092 Loss: 112.175 -67200/69092 Loss: 110.084 -Training time 0:01:58.159029 -Epoch: 195 Average loss: 111.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 336) -0/69092 Loss: 108.121 -3200/69092 Loss: 110.551 -6400/69092 Loss: 110.122 -9600/69092 Loss: 111.087 -12800/69092 Loss: 109.713 -16000/69092 Loss: 112.398 -19200/69092 Loss: 111.586 -22400/69092 Loss: 111.953 -25600/69092 Loss: 110.096 -28800/69092 Loss: 113.473 -32000/69092 Loss: 111.779 -35200/69092 Loss: 109.830 -38400/69092 Loss: 113.223 -41600/69092 Loss: 112.166 -44800/69092 Loss: 111.385 -48000/69092 Loss: 110.130 -51200/69092 Loss: 112.360 -54400/69092 Loss: 112.056 -57600/69092 Loss: 111.081 -60800/69092 Loss: 111.881 -64000/69092 Loss: 112.729 -67200/69092 Loss: 110.063 -Training time 0:01:58.104471 -Epoch: 196 Average loss: 111.44 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 337) -0/69092 Loss: 106.781 -3200/69092 Loss: 110.821 -6400/69092 Loss: 111.953 -9600/69092 Loss: 109.727 -12800/69092 Loss: 111.328 -16000/69092 Loss: 111.844 -19200/69092 Loss: 112.256 -22400/69092 Loss: 111.124 -25600/69092 Loss: 110.867 -28800/69092 Loss: 113.414 -32000/69092 Loss: 112.425 -35200/69092 Loss: 110.892 -38400/69092 Loss: 112.804 -41600/69092 Loss: 112.032 -44800/69092 Loss: 111.316 -48000/69092 Loss: 110.373 -51200/69092 Loss: 110.897 -54400/69092 Loss: 111.082 -57600/69092 Loss: 111.780 -60800/69092 Loss: 111.888 -64000/69092 Loss: 111.758 -67200/69092 Loss: 110.124 -Training time 0:01:58.603707 -Epoch: 197 Average loss: 111.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 338) -0/69092 Loss: 113.594 -3200/69092 Loss: 113.698 -6400/69092 Loss: 112.309 -9600/69092 Loss: 112.653 -12800/69092 Loss: 111.578 -16000/69092 Loss: 111.554 -19200/69092 Loss: 112.596 -22400/69092 Loss: 113.017 -25600/69092 Loss: 111.630 -28800/69092 Loss: 110.219 -32000/69092 Loss: 112.802 -35200/69092 Loss: 111.337 -38400/69092 Loss: 110.153 -41600/69092 Loss: 110.940 -44800/69092 Loss: 111.857 -48000/69092 Loss: 110.170 -51200/69092 Loss: 110.449 -54400/69092 Loss: 110.685 -57600/69092 Loss: 112.279 -60800/69092 Loss: 111.142 -64000/69092 Loss: 111.796 -67200/69092 Loss: 112.044 -Training time 0:01:57.167400 -Epoch: 198 Average loss: 111.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 339) -0/69092 Loss: 112.419 -3200/69092 Loss: 109.955 -6400/69092 Loss: 112.138 -9600/69092 Loss: 111.481 -12800/69092 Loss: 112.328 -16000/69092 Loss: 111.303 -19200/69092 Loss: 111.574 -22400/69092 Loss: 110.819 -25600/69092 Loss: 111.268 -28800/69092 Loss: 111.733 -32000/69092 Loss: 112.241 -35200/69092 Loss: 112.829 -38400/69092 Loss: 112.505 -41600/69092 Loss: 112.321 -44800/69092 Loss: 113.180 -48000/69092 Loss: 110.595 -51200/69092 Loss: 109.521 -54400/69092 Loss: 112.243 -57600/69092 Loss: 112.375 -60800/69092 Loss: 110.801 -64000/69092 Loss: 111.653 -67200/69092 Loss: 109.770 -Training time 0:01:57.924023 -Epoch: 199 Average loss: 111.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 340) -0/69092 Loss: 111.472 -3200/69092 Loss: 110.743 -6400/69092 Loss: 113.299 -9600/69092 Loss: 113.510 -12800/69092 Loss: 111.098 -16000/69092 Loss: 110.945 -19200/69092 Loss: 112.532 -22400/69092 Loss: 110.176 -25600/69092 Loss: 111.653 -28800/69092 Loss: 112.327 -32000/69092 Loss: 111.306 -35200/69092 Loss: 109.258 -38400/69092 Loss: 113.309 -41600/69092 Loss: 111.966 -44800/69092 Loss: 109.731 -48000/69092 Loss: 110.473 -51200/69092 Loss: 111.429 -54400/69092 Loss: 110.927 -57600/69092 Loss: 112.217 -60800/69092 Loss: 110.853 -64000/69092 Loss: 111.186 -67200/69092 Loss: 111.871 -Training time 0:01:58.334315 -Epoch: 200 Average loss: 111.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 341) -0/69092 Loss: 115.150 -3200/69092 Loss: 110.023 -6400/69092 Loss: 112.227 -9600/69092 Loss: 111.714 -12800/69092 Loss: 112.349 -16000/69092 Loss: 110.676 -19200/69092 Loss: 110.853 -22400/69092 Loss: 113.538 -25600/69092 Loss: 110.516 -28800/69092 Loss: 111.096 -32000/69092 Loss: 111.750 -35200/69092 Loss: 111.765 -38400/69092 Loss: 111.635 -41600/69092 Loss: 110.206 -44800/69092 Loss: 112.139 -48000/69092 Loss: 111.607 -51200/69092 Loss: 111.363 -54400/69092 Loss: 112.149 -57600/69092 Loss: 110.888 -60800/69092 Loss: 110.482 -64000/69092 Loss: 112.155 -67200/69092 Loss: 111.006 -Training time 0:01:57.005626 -Epoch: 201 Average loss: 111.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 342) -0/69092 Loss: 113.854 -3200/69092 Loss: 111.091 -6400/69092 Loss: 112.947 -9600/69092 Loss: 111.028 -12800/69092 Loss: 112.363 -16000/69092 Loss: 110.452 -19200/69092 Loss: 112.219 -22400/69092 Loss: 110.810 -25600/69092 Loss: 111.414 -28800/69092 Loss: 109.000 -32000/69092 Loss: 112.222 -35200/69092 Loss: 111.294 -38400/69092 Loss: 112.423 -41600/69092 Loss: 109.885 -44800/69092 Loss: 110.768 -48000/69092 Loss: 111.757 -51200/69092 Loss: 111.989 -54400/69092 Loss: 111.814 -57600/69092 Loss: 111.490 -60800/69092 Loss: 110.375 -64000/69092 Loss: 113.477 -67200/69092 Loss: 111.864 -Training time 0:01:58.205028 -Epoch: 202 Average loss: 111.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 343) -0/69092 Loss: 122.803 -3200/69092 Loss: 109.099 -6400/69092 Loss: 111.211 -9600/69092 Loss: 112.652 -12800/69092 Loss: 110.796 -16000/69092 Loss: 112.224 -19200/69092 Loss: 111.626 -22400/69092 Loss: 110.358 -25600/69092 Loss: 110.847 -28800/69092 Loss: 109.929 -32000/69092 Loss: 112.566 -35200/69092 Loss: 111.338 -38400/69092 Loss: 112.282 -41600/69092 Loss: 112.631 -44800/69092 Loss: 111.255 -48000/69092 Loss: 111.783 -51200/69092 Loss: 110.747 -54400/69092 Loss: 112.228 -57600/69092 Loss: 111.133 -60800/69092 Loss: 112.582 -64000/69092 Loss: 112.125 -67200/69092 Loss: 110.639 -Training time 0:01:57.600120 -Epoch: 203 Average loss: 111.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 344) -0/69092 Loss: 93.580 -3200/69092 Loss: 110.922 -6400/69092 Loss: 110.754 -9600/69092 Loss: 112.235 -12800/69092 Loss: 111.213 -16000/69092 Loss: 110.708 -19200/69092 Loss: 112.412 -22400/69092 Loss: 112.055 -25600/69092 Loss: 111.254 -28800/69092 Loss: 110.863 -32000/69092 Loss: 111.556 -35200/69092 Loss: 110.194 -38400/69092 Loss: 110.994 -41600/69092 Loss: 112.317 -44800/69092 Loss: 110.494 -48000/69092 Loss: 111.593 -51200/69092 Loss: 112.344 -54400/69092 Loss: 111.820 -57600/69092 Loss: 111.345 -60800/69092 Loss: 110.048 -64000/69092 Loss: 111.832 -67200/69092 Loss: 112.054 -Training time 0:01:56.237356 -Epoch: 204 Average loss: 111.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 345) -0/69092 Loss: 112.522 -3200/69092 Loss: 111.112 -6400/69092 Loss: 110.098 -9600/69092 Loss: 108.869 -12800/69092 Loss: 112.934 -16000/69092 Loss: 111.414 -19200/69092 Loss: 111.944 -22400/69092 Loss: 113.090 -25600/69092 Loss: 112.490 -28800/69092 Loss: 112.373 -32000/69092 Loss: 112.170 -35200/69092 Loss: 111.583 -38400/69092 Loss: 112.493 -41600/69092 Loss: 111.659 -44800/69092 Loss: 109.277 -48000/69092 Loss: 111.841 -51200/69092 Loss: 111.398 -54400/69092 Loss: 110.888 -57600/69092 Loss: 110.742 -60800/69092 Loss: 111.845 -64000/69092 Loss: 113.225 -67200/69092 Loss: 111.037 -Training time 0:01:57.617241 -Epoch: 205 Average loss: 111.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 346) -0/69092 Loss: 98.533 -3200/69092 Loss: 111.355 -6400/69092 Loss: 111.611 -9600/69092 Loss: 110.095 -12800/69092 Loss: 111.926 -16000/69092 Loss: 112.762 -19200/69092 Loss: 112.127 -22400/69092 Loss: 109.491 -25600/69092 Loss: 111.587 -28800/69092 Loss: 111.030 -32000/69092 Loss: 111.695 -35200/69092 Loss: 109.720 -38400/69092 Loss: 112.026 -41600/69092 Loss: 110.734 -44800/69092 Loss: 110.859 -48000/69092 Loss: 112.773 -51200/69092 Loss: 110.691 -54400/69092 Loss: 111.574 -57600/69092 Loss: 111.777 -60800/69092 Loss: 111.960 -64000/69092 Loss: 111.923 -67200/69092 Loss: 111.407 -Training time 0:01:56.652164 -Epoch: 206 Average loss: 111.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 347) -0/69092 Loss: 108.875 -3200/69092 Loss: 110.916 -6400/69092 Loss: 113.648 -9600/69092 Loss: 110.534 -12800/69092 Loss: 111.209 -16000/69092 Loss: 111.274 -19200/69092 Loss: 112.621 -22400/69092 Loss: 110.061 -25600/69092 Loss: 112.428 -28800/69092 Loss: 111.467 -32000/69092 Loss: 111.706 -35200/69092 Loss: 111.864 -38400/69092 Loss: 111.089 -41600/69092 Loss: 111.207 -44800/69092 Loss: 111.968 -48000/69092 Loss: 110.630 -51200/69092 Loss: 109.912 -54400/69092 Loss: 111.795 -57600/69092 Loss: 110.983 -60800/69092 Loss: 110.989 -64000/69092 Loss: 111.718 -67200/69092 Loss: 112.320 -Training time 0:01:56.916312 -Epoch: 207 Average loss: 111.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 348) -0/69092 Loss: 102.599 -3200/69092 Loss: 110.473 -6400/69092 Loss: 111.614 -9600/69092 Loss: 111.271 -12800/69092 Loss: 111.222 -16000/69092 Loss: 111.518 -19200/69092 Loss: 110.553 -22400/69092 Loss: 111.711 -25600/69092 Loss: 112.280 -28800/69092 Loss: 113.308 -32000/69092 Loss: 111.122 -35200/69092 Loss: 110.948 -38400/69092 Loss: 110.553 -41600/69092 Loss: 111.291 -44800/69092 Loss: 111.090 -48000/69092 Loss: 112.110 -51200/69092 Loss: 109.851 -54400/69092 Loss: 111.271 -57600/69092 Loss: 110.337 -60800/69092 Loss: 112.488 -64000/69092 Loss: 112.346 -67200/69092 Loss: 111.697 -Training time 0:01:56.969007 -Epoch: 208 Average loss: 111.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 349) -0/69092 Loss: 113.835 -3200/69092 Loss: 111.938 -6400/69092 Loss: 111.895 -9600/69092 Loss: 109.699 -12800/69092 Loss: 111.054 -16000/69092 Loss: 112.884 -19200/69092 Loss: 111.537 -22400/69092 Loss: 110.177 -25600/69092 Loss: 111.210 -28800/69092 Loss: 110.937 -32000/69092 Loss: 110.941 -35200/69092 Loss: 111.862 -38400/69092 Loss: 112.476 -41600/69092 Loss: 111.416 -44800/69092 Loss: 109.835 -48000/69092 Loss: 113.591 -51200/69092 Loss: 110.922 -54400/69092 Loss: 112.708 -57600/69092 Loss: 112.562 -60800/69092 Loss: 111.865 -64000/69092 Loss: 109.793 -67200/69092 Loss: 111.836 -Training time 0:01:56.360459 -Epoch: 209 Average loss: 111.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 350) -0/69092 Loss: 120.409 -3200/69092 Loss: 110.850 -6400/69092 Loss: 112.257 -9600/69092 Loss: 113.017 -12800/69092 Loss: 111.456 -16000/69092 Loss: 110.195 -19200/69092 Loss: 111.982 -22400/69092 Loss: 112.190 -25600/69092 Loss: 112.127 -28800/69092 Loss: 111.933 -32000/69092 Loss: 110.376 -35200/69092 Loss: 111.161 -38400/69092 Loss: 112.101 -41600/69092 Loss: 110.839 -44800/69092 Loss: 110.107 -48000/69092 Loss: 111.470 -51200/69092 Loss: 112.179 -54400/69092 Loss: 111.840 -57600/69092 Loss: 110.614 -60800/69092 Loss: 110.808 -64000/69092 Loss: 111.620 -67200/69092 Loss: 111.510 -Training time 0:01:57.590427 -Epoch: 210 Average loss: 111.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 351) -0/69092 Loss: 119.344 -3200/69092 Loss: 112.807 -6400/69092 Loss: 112.348 -9600/69092 Loss: 110.871 -12800/69092 Loss: 111.955 -16000/69092 Loss: 110.985 -19200/69092 Loss: 110.206 -22400/69092 Loss: 111.836 -25600/69092 Loss: 110.782 -28800/69092 Loss: 111.066 -32000/69092 Loss: 113.356 -35200/69092 Loss: 108.950 -38400/69092 Loss: 110.221 -41600/69092 Loss: 109.766 -44800/69092 Loss: 110.668 -48000/69092 Loss: 109.244 -51200/69092 Loss: 112.367 -54400/69092 Loss: 111.290 -57600/69092 Loss: 113.432 -60800/69092 Loss: 112.470 -64000/69092 Loss: 111.769 -67200/69092 Loss: 110.955 -Training time 0:01:57.536802 -Epoch: 211 Average loss: 111.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 352) -0/69092 Loss: 120.097 -3200/69092 Loss: 110.348 -6400/69092 Loss: 109.759 -9600/69092 Loss: 111.939 -12800/69092 Loss: 111.628 -16000/69092 Loss: 109.937 -19200/69092 Loss: 111.015 -22400/69092 Loss: 109.874 -25600/69092 Loss: 111.871 -28800/69092 Loss: 112.431 -32000/69092 Loss: 111.558 -35200/69092 Loss: 111.477 -38400/69092 Loss: 111.061 -41600/69092 Loss: 111.284 -44800/69092 Loss: 111.224 -48000/69092 Loss: 111.538 -51200/69092 Loss: 110.273 -54400/69092 Loss: 113.683 -57600/69092 Loss: 114.031 -60800/69092 Loss: 111.889 -64000/69092 Loss: 110.906 -67200/69092 Loss: 112.257 -Training time 0:01:59.027080 -Epoch: 212 Average loss: 111.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 353) -0/69092 Loss: 112.744 -3200/69092 Loss: 111.743 -6400/69092 Loss: 111.099 -9600/69092 Loss: 112.636 -12800/69092 Loss: 110.038 -16000/69092 Loss: 110.172 -19200/69092 Loss: 111.920 -22400/69092 Loss: 111.602 -25600/69092 Loss: 111.908 -28800/69092 Loss: 112.016 -32000/69092 Loss: 112.443 -35200/69092 Loss: 109.461 -38400/69092 Loss: 110.080 -41600/69092 Loss: 111.385 -44800/69092 Loss: 112.291 -48000/69092 Loss: 112.444 -51200/69092 Loss: 110.867 -54400/69092 Loss: 111.104 -57600/69092 Loss: 112.389 -60800/69092 Loss: 111.302 -64000/69092 Loss: 111.587 -67200/69092 Loss: 110.853 -Training time 0:01:57.615160 -Epoch: 213 Average loss: 111.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 354) -0/69092 Loss: 114.279 -3200/69092 Loss: 112.340 -6400/69092 Loss: 110.850 -9600/69092 Loss: 112.539 -12800/69092 Loss: 111.477 -16000/69092 Loss: 110.505 -19200/69092 Loss: 111.526 -22400/69092 Loss: 111.796 -25600/69092 Loss: 112.174 -28800/69092 Loss: 110.404 -32000/69092 Loss: 111.231 -35200/69092 Loss: 111.565 -38400/69092 Loss: 111.532 -41600/69092 Loss: 111.646 -44800/69092 Loss: 109.560 -48000/69092 Loss: 110.412 -51200/69092 Loss: 111.165 -54400/69092 Loss: 111.110 -57600/69092 Loss: 111.434 -60800/69092 Loss: 111.814 -64000/69092 Loss: 112.276 -67200/69092 Loss: 111.237 -Training time 0:01:58.346116 -Epoch: 214 Average loss: 111.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 355) -0/69092 Loss: 127.044 -3200/69092 Loss: 110.452 -6400/69092 Loss: 111.756 -9600/69092 Loss: 112.551 -12800/69092 Loss: 111.003 -16000/69092 Loss: 112.250 -19200/69092 Loss: 110.165 -22400/69092 Loss: 112.154 -25600/69092 Loss: 110.438 -28800/69092 Loss: 112.979 -32000/69092 Loss: 110.254 -35200/69092 Loss: 109.706 -38400/69092 Loss: 111.473 -41600/69092 Loss: 112.342 -44800/69092 Loss: 111.705 -48000/69092 Loss: 111.665 -51200/69092 Loss: 112.091 -54400/69092 Loss: 111.668 -57600/69092 Loss: 112.842 -60800/69092 Loss: 111.255 -64000/69092 Loss: 110.401 -67200/69092 Loss: 110.209 -Training time 0:01:58.014856 -Epoch: 215 Average loss: 111.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 356) -0/69092 Loss: 112.351 -3200/69092 Loss: 111.519 -6400/69092 Loss: 111.246 -9600/69092 Loss: 109.853 -12800/69092 Loss: 109.595 -16000/69092 Loss: 111.626 -19200/69092 Loss: 111.506 -22400/69092 Loss: 111.250 -25600/69092 Loss: 111.395 -28800/69092 Loss: 111.913 -32000/69092 Loss: 111.892 -35200/69092 Loss: 111.181 -38400/69092 Loss: 112.370 -41600/69092 Loss: 110.939 -44800/69092 Loss: 110.783 -48000/69092 Loss: 111.743 -51200/69092 Loss: 110.026 -54400/69092 Loss: 110.932 -57600/69092 Loss: 112.053 -60800/69092 Loss: 111.906 -64000/69092 Loss: 111.053 -67200/69092 Loss: 113.081 -Training time 0:01:58.788414 -Epoch: 216 Average loss: 111.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 357) -0/69092 Loss: 121.562 -3200/69092 Loss: 111.542 -6400/69092 Loss: 109.944 -9600/69092 Loss: 112.213 -12800/69092 Loss: 111.913 -16000/69092 Loss: 110.020 -19200/69092 Loss: 111.637 -22400/69092 Loss: 110.192 -25600/69092 Loss: 111.485 -28800/69092 Loss: 111.960 -32000/69092 Loss: 111.698 -35200/69092 Loss: 110.886 -38400/69092 Loss: 111.271 -41600/69092 Loss: 110.022 -44800/69092 Loss: 111.836 -48000/69092 Loss: 110.569 -51200/69092 Loss: 113.301 -54400/69092 Loss: 110.978 -57600/69092 Loss: 111.605 -60800/69092 Loss: 111.127 -64000/69092 Loss: 111.314 -67200/69092 Loss: 112.614 -Training time 0:01:58.957951 -Epoch: 217 Average loss: 111.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 358) -0/69092 Loss: 102.586 -3200/69092 Loss: 110.779 -6400/69092 Loss: 112.011 -9600/69092 Loss: 110.499 -12800/69092 Loss: 112.280 -16000/69092 Loss: 113.763 -19200/69092 Loss: 112.573 -22400/69092 Loss: 108.902 -25600/69092 Loss: 111.236 -28800/69092 Loss: 109.855 -32000/69092 Loss: 110.905 -35200/69092 Loss: 112.341 -38400/69092 Loss: 111.872 -41600/69092 Loss: 111.001 -44800/69092 Loss: 112.656 -48000/69092 Loss: 108.933 -51200/69092 Loss: 112.074 -54400/69092 Loss: 111.367 -57600/69092 Loss: 111.971 -60800/69092 Loss: 111.967 -64000/69092 Loss: 109.766 -67200/69092 Loss: 111.624 -Training time 0:01:57.840309 -Epoch: 218 Average loss: 111.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 359) -0/69092 Loss: 124.881 -3200/69092 Loss: 109.882 -6400/69092 Loss: 111.695 -9600/69092 Loss: 111.945 -12800/69092 Loss: 111.044 -16000/69092 Loss: 110.048 -19200/69092 Loss: 110.531 -22400/69092 Loss: 111.482 -25600/69092 Loss: 112.433 -28800/69092 Loss: 110.267 -32000/69092 Loss: 112.630 -35200/69092 Loss: 112.747 -38400/69092 Loss: 111.090 -41600/69092 Loss: 111.716 -44800/69092 Loss: 109.714 -48000/69092 Loss: 110.786 -51200/69092 Loss: 110.437 -54400/69092 Loss: 110.069 -57600/69092 Loss: 112.107 -60800/69092 Loss: 111.284 -64000/69092 Loss: 112.616 -67200/69092 Loss: 110.709 -Training time 0:01:57.654049 -Epoch: 219 Average loss: 111.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 360) -0/69092 Loss: 107.601 -3200/69092 Loss: 112.450 -6400/69092 Loss: 111.540 -9600/69092 Loss: 111.025 -12800/69092 Loss: 109.177 -16000/69092 Loss: 111.226 -19200/69092 Loss: 109.213 -22400/69092 Loss: 110.742 -25600/69092 Loss: 111.340 -28800/69092 Loss: 110.020 -32000/69092 Loss: 111.061 -35200/69092 Loss: 111.604 -38400/69092 Loss: 113.606 -41600/69092 Loss: 111.543 -44800/69092 Loss: 111.912 -48000/69092 Loss: 110.423 -51200/69092 Loss: 112.450 -54400/69092 Loss: 111.991 -57600/69092 Loss: 112.207 -60800/69092 Loss: 110.035 -64000/69092 Loss: 112.878 -67200/69092 Loss: 111.034 -Training time 0:01:58.261768 -Epoch: 220 Average loss: 111.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 361) -0/69092 Loss: 110.842 -3200/69092 Loss: 110.316 -6400/69092 Loss: 111.318 -9600/69092 Loss: 111.450 -12800/69092 Loss: 112.726 -16000/69092 Loss: 109.595 -19200/69092 Loss: 110.400 -22400/69092 Loss: 110.424 -25600/69092 Loss: 112.292 -28800/69092 Loss: 112.729 -32000/69092 Loss: 110.775 -35200/69092 Loss: 111.294 -38400/69092 Loss: 110.349 -41600/69092 Loss: 109.950 -44800/69092 Loss: 111.693 -48000/69092 Loss: 113.166 -51200/69092 Loss: 111.447 -54400/69092 Loss: 110.477 -57600/69092 Loss: 112.263 -60800/69092 Loss: 113.131 -64000/69092 Loss: 112.114 -67200/69092 Loss: 110.500 -Training time 0:01:57.627358 -Epoch: 221 Average loss: 111.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 362) -0/69092 Loss: 109.257 -3200/69092 Loss: 111.263 -6400/69092 Loss: 110.685 -9600/69092 Loss: 112.333 -12800/69092 Loss: 110.178 -16000/69092 Loss: 109.855 -19200/69092 Loss: 110.781 -22400/69092 Loss: 110.541 -25600/69092 Loss: 111.465 -28800/69092 Loss: 113.951 -32000/69092 Loss: 109.545 -35200/69092 Loss: 109.706 -38400/69092 Loss: 109.152 -41600/69092 Loss: 112.902 -44800/69092 Loss: 112.605 -48000/69092 Loss: 111.139 -51200/69092 Loss: 111.587 -54400/69092 Loss: 111.706 -57600/69092 Loss: 111.629 -60800/69092 Loss: 111.455 -64000/69092 Loss: 112.777 -67200/69092 Loss: 112.410 -Training time 0:01:58.640351 -Epoch: 222 Average loss: 111.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 363) -0/69092 Loss: 127.826 -3200/69092 Loss: 111.929 -6400/69092 Loss: 110.048 -9600/69092 Loss: 110.230 -12800/69092 Loss: 110.655 -16000/69092 Loss: 112.476 -19200/69092 Loss: 111.954 -22400/69092 Loss: 112.187 -25600/69092 Loss: 111.901 -28800/69092 Loss: 111.431 -32000/69092 Loss: 110.900 -35200/69092 Loss: 110.733 -38400/69092 Loss: 110.865 -41600/69092 Loss: 111.837 -44800/69092 Loss: 111.534 -48000/69092 Loss: 110.931 -51200/69092 Loss: 111.468 -54400/69092 Loss: 110.263 -57600/69092 Loss: 111.144 -60800/69092 Loss: 111.499 -64000/69092 Loss: 113.455 -67200/69092 Loss: 111.727 -Training time 0:01:57.344704 -Epoch: 223 Average loss: 111.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 364) -0/69092 Loss: 115.922 -3200/69092 Loss: 110.742 -6400/69092 Loss: 112.816 -9600/69092 Loss: 113.036 -12800/69092 Loss: 108.655 -16000/69092 Loss: 110.480 -19200/69092 Loss: 111.792 -22400/69092 Loss: 112.388 -25600/69092 Loss: 111.947 -28800/69092 Loss: 112.240 -32000/69092 Loss: 111.292 -35200/69092 Loss: 109.624 -38400/69092 Loss: 109.701 -41600/69092 Loss: 112.976 -44800/69092 Loss: 111.058 -48000/69092 Loss: 110.137 -51200/69092 Loss: 111.092 -54400/69092 Loss: 109.685 -57600/69092 Loss: 112.904 -60800/69092 Loss: 111.244 -64000/69092 Loss: 110.958 -67200/69092 Loss: 110.772 -Training time 0:01:57.242663 -Epoch: 224 Average loss: 111.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 365) -0/69092 Loss: 105.513 -3200/69092 Loss: 111.115 -6400/69092 Loss: 110.288 -9600/69092 Loss: 111.020 -12800/69092 Loss: 113.001 -16000/69092 Loss: 110.015 -19200/69092 Loss: 111.040 -22400/69092 Loss: 112.315 -25600/69092 Loss: 111.176 -28800/69092 Loss: 111.426 -32000/69092 Loss: 110.235 -35200/69092 Loss: 112.121 -38400/69092 Loss: 110.873 -41600/69092 Loss: 112.275 -44800/69092 Loss: 111.597 -48000/69092 Loss: 110.714 -51200/69092 Loss: 112.752 -54400/69092 Loss: 111.250 -57600/69092 Loss: 110.235 -60800/69092 Loss: 111.397 -64000/69092 Loss: 109.267 -67200/69092 Loss: 110.353 -Training time 0:01:58.334069 -Epoch: 225 Average loss: 111.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 366) -0/69092 Loss: 118.099 -3200/69092 Loss: 110.454 -6400/69092 Loss: 110.810 -9600/69092 Loss: 110.643 -12800/69092 Loss: 112.621 -16000/69092 Loss: 113.077 -19200/69092 Loss: 112.072 -22400/69092 Loss: 111.309 -25600/69092 Loss: 111.833 -28800/69092 Loss: 110.233 -32000/69092 Loss: 112.047 -35200/69092 Loss: 110.325 -38400/69092 Loss: 110.898 -41600/69092 Loss: 110.207 -44800/69092 Loss: 111.931 -48000/69092 Loss: 111.206 -51200/69092 Loss: 112.358 -54400/69092 Loss: 112.203 -57600/69092 Loss: 111.354 -60800/69092 Loss: 110.269 -64000/69092 Loss: 111.339 -67200/69092 Loss: 112.139 -Training time 0:01:56.571158 -Epoch: 226 Average loss: 111.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 367) -0/69092 Loss: 105.174 -3200/69092 Loss: 111.525 -6400/69092 Loss: 110.272 -9600/69092 Loss: 111.046 -12800/69092 Loss: 109.603 -16000/69092 Loss: 110.997 -19200/69092 Loss: 110.737 -22400/69092 Loss: 111.180 -25600/69092 Loss: 112.482 -28800/69092 Loss: 112.495 -32000/69092 Loss: 112.216 -35200/69092 Loss: 109.527 -38400/69092 Loss: 110.979 -41600/69092 Loss: 110.004 -44800/69092 Loss: 111.313 -48000/69092 Loss: 111.064 -51200/69092 Loss: 111.682 -54400/69092 Loss: 110.034 -57600/69092 Loss: 110.902 -60800/69092 Loss: 111.099 -64000/69092 Loss: 111.124 -67200/69092 Loss: 112.292 -Training time 0:01:57.296885 -Epoch: 227 Average loss: 111.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 368) -0/69092 Loss: 106.661 -3200/69092 Loss: 110.437 -6400/69092 Loss: 110.442 -9600/69092 Loss: 111.701 -12800/69092 Loss: 110.894 -16000/69092 Loss: 110.809 -19200/69092 Loss: 110.898 -22400/69092 Loss: 111.743 -25600/69092 Loss: 113.289 -28800/69092 Loss: 111.461 -32000/69092 Loss: 109.851 -35200/69092 Loss: 111.512 -38400/69092 Loss: 110.425 -41600/69092 Loss: 109.910 -44800/69092 Loss: 110.566 -48000/69092 Loss: 110.228 -51200/69092 Loss: 112.979 -54400/69092 Loss: 111.993 -57600/69092 Loss: 113.125 -60800/69092 Loss: 111.460 -64000/69092 Loss: 112.063 -67200/69092 Loss: 110.471 -Training time 0:01:57.932701 -Epoch: 228 Average loss: 111.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 369) -0/69092 Loss: 109.460 -3200/69092 Loss: 109.768 -6400/69092 Loss: 111.855 -9600/69092 Loss: 111.658 -12800/69092 Loss: 110.377 -16000/69092 Loss: 111.898 -19200/69092 Loss: 110.089 -22400/69092 Loss: 111.923 -25600/69092 Loss: 112.154 -28800/69092 Loss: 111.484 -32000/69092 Loss: 110.921 -35200/69092 Loss: 110.930 -38400/69092 Loss: 110.767 -41600/69092 Loss: 111.373 -44800/69092 Loss: 111.323 -48000/69092 Loss: 111.928 -51200/69092 Loss: 111.844 -54400/69092 Loss: 110.907 -57600/69092 Loss: 111.087 -60800/69092 Loss: 111.255 -64000/69092 Loss: 111.467 -67200/69092 Loss: 110.572 -Training time 0:01:56.896235 -Epoch: 229 Average loss: 111.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 370) -0/69092 Loss: 100.697 -3200/69092 Loss: 111.961 -6400/69092 Loss: 110.156 -9600/69092 Loss: 110.939 -12800/69092 Loss: 111.157 -16000/69092 Loss: 112.250 -19200/69092 Loss: 111.242 -22400/69092 Loss: 111.208 -25600/69092 Loss: 111.491 -28800/69092 Loss: 110.459 -32000/69092 Loss: 109.915 -35200/69092 Loss: 111.903 -38400/69092 Loss: 109.792 -41600/69092 Loss: 111.766 -44800/69092 Loss: 111.266 -48000/69092 Loss: 113.149 -51200/69092 Loss: 111.914 -54400/69092 Loss: 110.529 -57600/69092 Loss: 111.267 -60800/69092 Loss: 110.886 -64000/69092 Loss: 111.560 -67200/69092 Loss: 111.441 -Training time 0:01:57.565134 -Epoch: 230 Average loss: 111.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 371) -0/69092 Loss: 107.621 -3200/69092 Loss: 111.732 -6400/69092 Loss: 110.538 -9600/69092 Loss: 112.264 -12800/69092 Loss: 109.527 -16000/69092 Loss: 111.364 -19200/69092 Loss: 113.838 -22400/69092 Loss: 112.676 -25600/69092 Loss: 110.422 -28800/69092 Loss: 112.439 -32000/69092 Loss: 110.913 -35200/69092 Loss: 110.436 -38400/69092 Loss: 111.448 -41600/69092 Loss: 109.956 -44800/69092 Loss: 110.899 -48000/69092 Loss: 111.218 -51200/69092 Loss: 109.792 -54400/69092 Loss: 112.106 -57600/69092 Loss: 109.574 -60800/69092 Loss: 110.445 -64000/69092 Loss: 111.070 -67200/69092 Loss: 111.572 -Training time 0:01:57.721162 -Epoch: 231 Average loss: 111.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 372) -0/69092 Loss: 118.985 -3200/69092 Loss: 111.589 -6400/69092 Loss: 110.570 -9600/69092 Loss: 112.050 -12800/69092 Loss: 110.363 -16000/69092 Loss: 110.479 -19200/69092 Loss: 110.818 -22400/69092 Loss: 110.467 -25600/69092 Loss: 111.968 -28800/69092 Loss: 112.022 -32000/69092 Loss: 112.321 -35200/69092 Loss: 110.381 -38400/69092 Loss: 112.018 -41600/69092 Loss: 110.860 -44800/69092 Loss: 111.434 -48000/69092 Loss: 111.930 -51200/69092 Loss: 109.133 -54400/69092 Loss: 110.783 -57600/69092 Loss: 109.955 -60800/69092 Loss: 112.031 -64000/69092 Loss: 113.308 -67200/69092 Loss: 110.796 -Training time 0:01:56.902076 -Epoch: 232 Average loss: 111.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 373) -0/69092 Loss: 107.782 -3200/69092 Loss: 112.229 -6400/69092 Loss: 111.837 -9600/69092 Loss: 111.382 -12800/69092 Loss: 110.122 -16000/69092 Loss: 112.720 -19200/69092 Loss: 110.917 -22400/69092 Loss: 110.515 -25600/69092 Loss: 111.300 -28800/69092 Loss: 111.422 -32000/69092 Loss: 110.690 -35200/69092 Loss: 111.913 -38400/69092 Loss: 111.768 -41600/69092 Loss: 111.117 -44800/69092 Loss: 110.936 -48000/69092 Loss: 109.291 -51200/69092 Loss: 111.271 -54400/69092 Loss: 110.415 -57600/69092 Loss: 111.206 -60800/69092 Loss: 111.269 -64000/69092 Loss: 112.456 -67200/69092 Loss: 112.000 -Training time 0:01:58.284692 -Epoch: 233 Average loss: 111.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 374) -0/69092 Loss: 122.656 -3200/69092 Loss: 110.646 -6400/69092 Loss: 110.087 -9600/69092 Loss: 111.240 -12800/69092 Loss: 111.472 -16000/69092 Loss: 111.305 -19200/69092 Loss: 110.153 -22400/69092 Loss: 112.367 -25600/69092 Loss: 111.038 -28800/69092 Loss: 110.239 -32000/69092 Loss: 110.406 -35200/69092 Loss: 111.731 -38400/69092 Loss: 110.514 -41600/69092 Loss: 108.850 -44800/69092 Loss: 111.103 -48000/69092 Loss: 112.646 -51200/69092 Loss: 113.490 -54400/69092 Loss: 111.335 -57600/69092 Loss: 111.706 -60800/69092 Loss: 112.250 -64000/69092 Loss: 111.484 -67200/69092 Loss: 112.740 -Training time 0:01:56.956137 -Epoch: 234 Average loss: 111.28 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 375) -0/69092 Loss: 110.892 -3200/69092 Loss: 110.887 -6400/69092 Loss: 110.948 -9600/69092 Loss: 111.023 -12800/69092 Loss: 111.547 -16000/69092 Loss: 112.227 -19200/69092 Loss: 111.496 -22400/69092 Loss: 112.579 -25600/69092 Loss: 110.428 -28800/69092 Loss: 110.210 -32000/69092 Loss: 110.786 -35200/69092 Loss: 111.905 -38400/69092 Loss: 110.357 -41600/69092 Loss: 111.679 -44800/69092 Loss: 110.700 -48000/69092 Loss: 109.927 -51200/69092 Loss: 112.556 -54400/69092 Loss: 111.367 -57600/69092 Loss: 110.971 -60800/69092 Loss: 111.714 -64000/69092 Loss: 111.642 -67200/69092 Loss: 110.445 -Training time 0:01:56.701332 -Epoch: 235 Average loss: 111.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 376) -0/69092 Loss: 102.721 -3200/69092 Loss: 110.008 -6400/69092 Loss: 111.771 -9600/69092 Loss: 110.820 -12800/69092 Loss: 110.292 -16000/69092 Loss: 111.429 -19200/69092 Loss: 110.661 -22400/69092 Loss: 111.941 -25600/69092 Loss: 110.882 -28800/69092 Loss: 111.950 -32000/69092 Loss: 112.068 -35200/69092 Loss: 110.569 -38400/69092 Loss: 112.274 -41600/69092 Loss: 109.851 -44800/69092 Loss: 110.529 -48000/69092 Loss: 112.117 -51200/69092 Loss: 110.190 -54400/69092 Loss: 111.345 -57600/69092 Loss: 110.456 -60800/69092 Loss: 112.395 -64000/69092 Loss: 111.087 -67200/69092 Loss: 112.002 -Training time 0:01:57.784069 -Epoch: 236 Average loss: 111.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 377) -0/69092 Loss: 108.712 -3200/69092 Loss: 112.343 -6400/69092 Loss: 112.327 -9600/69092 Loss: 109.230 -12800/69092 Loss: 112.186 -16000/69092 Loss: 109.064 -19200/69092 Loss: 113.283 -22400/69092 Loss: 111.513 -25600/69092 Loss: 110.349 -28800/69092 Loss: 112.609 -32000/69092 Loss: 109.786 -35200/69092 Loss: 109.445 -38400/69092 Loss: 112.362 -41600/69092 Loss: 112.131 -44800/69092 Loss: 110.724 -48000/69092 Loss: 112.368 -51200/69092 Loss: 110.325 -54400/69092 Loss: 111.311 -57600/69092 Loss: 110.564 -60800/69092 Loss: 112.719 -64000/69092 Loss: 112.450 -67200/69092 Loss: 112.526 -Training time 0:01:57.479259 -Epoch: 237 Average loss: 111.36 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 378) -0/69092 Loss: 109.185 -3200/69092 Loss: 110.635 -6400/69092 Loss: 111.992 -9600/69092 Loss: 111.282 -12800/69092 Loss: 108.316 -16000/69092 Loss: 111.221 -19200/69092 Loss: 111.703 -22400/69092 Loss: 110.000 -25600/69092 Loss: 112.576 -28800/69092 Loss: 111.549 -32000/69092 Loss: 110.746 -35200/69092 Loss: 111.515 -38400/69092 Loss: 109.555 -41600/69092 Loss: 110.974 -44800/69092 Loss: 110.739 -48000/69092 Loss: 111.645 -51200/69092 Loss: 112.599 -54400/69092 Loss: 112.298 -57600/69092 Loss: 112.291 -60800/69092 Loss: 109.475 -64000/69092 Loss: 112.657 -67200/69092 Loss: 111.482 -Training time 0:01:58.070004 -Epoch: 238 Average loss: 111.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 379) -0/69092 Loss: 103.191 -3200/69092 Loss: 111.912 -6400/69092 Loss: 110.286 -9600/69092 Loss: 111.739 -12800/69092 Loss: 110.873 -16000/69092 Loss: 111.077 -19200/69092 Loss: 112.737 -22400/69092 Loss: 111.359 -25600/69092 Loss: 110.602 -28800/69092 Loss: 111.192 -32000/69092 Loss: 109.452 -35200/69092 Loss: 110.769 -38400/69092 Loss: 109.890 -41600/69092 Loss: 114.046 -44800/69092 Loss: 110.270 -48000/69092 Loss: 110.798 -51200/69092 Loss: 111.544 -54400/69092 Loss: 111.508 -57600/69092 Loss: 110.659 -60800/69092 Loss: 110.040 -64000/69092 Loss: 112.591 -67200/69092 Loss: 111.184 -Training time 0:01:57.766793 -Epoch: 239 Average loss: 111.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 380) -0/69092 Loss: 113.920 -3200/69092 Loss: 109.719 -6400/69092 Loss: 110.938 -9600/69092 Loss: 111.372 -12800/69092 Loss: 110.764 -16000/69092 Loss: 110.970 -19200/69092 Loss: 111.281 -22400/69092 Loss: 112.916 -25600/69092 Loss: 110.118 -28800/69092 Loss: 111.521 -32000/69092 Loss: 110.514 -35200/69092 Loss: 110.994 -38400/69092 Loss: 111.896 -41600/69092 Loss: 112.232 -44800/69092 Loss: 112.411 -48000/69092 Loss: 111.327 -51200/69092 Loss: 110.128 -54400/69092 Loss: 111.865 -57600/69092 Loss: 112.046 -60800/69092 Loss: 110.568 -64000/69092 Loss: 108.884 -67200/69092 Loss: 112.514 -Training time 0:01:58.447590 -Epoch: 240 Average loss: 111.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 381) -0/69092 Loss: 106.667 -3200/69092 Loss: 110.994 -6400/69092 Loss: 111.828 -9600/69092 Loss: 110.403 -12800/69092 Loss: 110.869 -16000/69092 Loss: 111.339 -19200/69092 Loss: 110.626 -22400/69092 Loss: 112.181 -25600/69092 Loss: 109.524 -28800/69092 Loss: 110.179 -32000/69092 Loss: 112.797 -35200/69092 Loss: 112.763 -38400/69092 Loss: 112.085 -41600/69092 Loss: 111.966 -44800/69092 Loss: 108.199 -48000/69092 Loss: 111.263 -51200/69092 Loss: 111.702 -54400/69092 Loss: 111.092 -57600/69092 Loss: 111.441 -60800/69092 Loss: 110.747 -64000/69092 Loss: 109.926 -67200/69092 Loss: 111.399 -Training time 0:01:57.672062 -Epoch: 241 Average loss: 111.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 382) -0/69092 Loss: 118.522 -3200/69092 Loss: 113.003 -6400/69092 Loss: 111.845 -9600/69092 Loss: 110.895 -12800/69092 Loss: 110.848 -16000/69092 Loss: 111.250 -19200/69092 Loss: 110.447 -22400/69092 Loss: 112.390 -25600/69092 Loss: 111.955 -28800/69092 Loss: 109.747 -32000/69092 Loss: 110.723 -35200/69092 Loss: 112.436 -38400/69092 Loss: 109.578 -41600/69092 Loss: 109.520 -44800/69092 Loss: 112.748 -48000/69092 Loss: 113.196 -51200/69092 Loss: 110.835 -54400/69092 Loss: 112.373 -57600/69092 Loss: 112.555 -60800/69092 Loss: 110.195 -64000/69092 Loss: 112.207 -67200/69092 Loss: 110.139 -Training time 0:01:58.554527 -Epoch: 242 Average loss: 111.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 383) -0/69092 Loss: 110.692 -3200/69092 Loss: 109.538 -6400/69092 Loss: 111.412 -9600/69092 Loss: 111.209 -12800/69092 Loss: 110.019 -16000/69092 Loss: 113.119 -19200/69092 Loss: 111.463 -22400/69092 Loss: 110.923 -25600/69092 Loss: 111.187 -28800/69092 Loss: 110.448 -32000/69092 Loss: 111.356 -35200/69092 Loss: 111.989 -38400/69092 Loss: 112.339 -41600/69092 Loss: 111.679 -44800/69092 Loss: 111.292 -48000/69092 Loss: 110.369 -51200/69092 Loss: 110.691 -54400/69092 Loss: 110.423 -57600/69092 Loss: 110.764 -60800/69092 Loss: 111.110 -64000/69092 Loss: 111.982 -67200/69092 Loss: 109.894 -Training time 0:01:57.696635 -Epoch: 243 Average loss: 111.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 384) -0/69092 Loss: 113.028 -3200/69092 Loss: 111.658 -6400/69092 Loss: 111.408 -9600/69092 Loss: 110.169 -12800/69092 Loss: 110.419 -16000/69092 Loss: 111.114 -19200/69092 Loss: 108.767 -22400/69092 Loss: 110.102 -25600/69092 Loss: 110.452 -28800/69092 Loss: 109.772 -32000/69092 Loss: 110.774 -35200/69092 Loss: 110.432 -38400/69092 Loss: 111.535 -41600/69092 Loss: 112.125 -44800/69092 Loss: 112.251 -48000/69092 Loss: 110.962 -51200/69092 Loss: 112.463 -54400/69092 Loss: 110.419 -57600/69092 Loss: 111.509 -60800/69092 Loss: 111.829 -64000/69092 Loss: 111.827 -67200/69092 Loss: 111.953 -Training time 0:01:57.499486 -Epoch: 244 Average loss: 111.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 385) -0/69092 Loss: 111.727 -3200/69092 Loss: 111.671 -6400/69092 Loss: 111.128 -9600/69092 Loss: 110.674 -12800/69092 Loss: 110.573 -16000/69092 Loss: 111.281 -19200/69092 Loss: 111.655 -22400/69092 Loss: 111.609 -25600/69092 Loss: 109.946 -28800/69092 Loss: 110.985 -32000/69092 Loss: 112.240 -35200/69092 Loss: 111.988 -38400/69092 Loss: 110.245 -41600/69092 Loss: 110.574 -44800/69092 Loss: 111.236 -48000/69092 Loss: 111.256 -51200/69092 Loss: 112.173 -54400/69092 Loss: 110.117 -57600/69092 Loss: 110.748 -60800/69092 Loss: 109.949 -64000/69092 Loss: 111.060 -67200/69092 Loss: 112.144 -Training time 0:01:57.728370 -Epoch: 245 Average loss: 111.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 386) -0/69092 Loss: 110.880 -3200/69092 Loss: 111.216 -6400/69092 Loss: 111.107 -9600/69092 Loss: 110.549 -12800/69092 Loss: 112.441 -16000/69092 Loss: 111.091 -19200/69092 Loss: 111.000 -22400/69092 Loss: 110.637 -25600/69092 Loss: 111.768 -28800/69092 Loss: 109.734 -32000/69092 Loss: 111.293 -35200/69092 Loss: 111.020 -38400/69092 Loss: 111.124 -41600/69092 Loss: 111.152 -44800/69092 Loss: 112.918 -48000/69092 Loss: 110.081 -51200/69092 Loss: 109.203 -54400/69092 Loss: 111.268 -57600/69092 Loss: 112.532 -60800/69092 Loss: 111.184 -64000/69092 Loss: 110.975 -67200/69092 Loss: 110.599 -Training time 0:01:59.189433 -Epoch: 246 Average loss: 111.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 387) -0/69092 Loss: 119.276 -3200/69092 Loss: 109.900 -6400/69092 Loss: 111.798 -9600/69092 Loss: 110.056 -12800/69092 Loss: 110.956 -16000/69092 Loss: 111.421 -19200/69092 Loss: 110.138 -22400/69092 Loss: 110.850 -25600/69092 Loss: 112.589 -28800/69092 Loss: 110.275 -32000/69092 Loss: 112.987 -35200/69092 Loss: 110.354 -38400/69092 Loss: 110.669 -41600/69092 Loss: 111.464 -44800/69092 Loss: 112.296 -48000/69092 Loss: 107.889 -51200/69092 Loss: 110.713 -54400/69092 Loss: 111.676 -57600/69092 Loss: 110.659 -60800/69092 Loss: 112.807 -64000/69092 Loss: 111.888 -67200/69092 Loss: 111.914 -Training time 0:01:57.338323 -Epoch: 247 Average loss: 111.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 388) -0/69092 Loss: 114.700 -3200/69092 Loss: 111.241 -6400/69092 Loss: 111.656 -9600/69092 Loss: 112.026 -12800/69092 Loss: 110.048 -16000/69092 Loss: 110.723 -19200/69092 Loss: 110.779 -22400/69092 Loss: 109.860 -25600/69092 Loss: 111.066 -28800/69092 Loss: 110.062 -32000/69092 Loss: 112.445 -35200/69092 Loss: 109.649 -38400/69092 Loss: 111.172 -41600/69092 Loss: 110.447 -44800/69092 Loss: 112.813 -48000/69092 Loss: 110.219 -51200/69092 Loss: 112.625 -54400/69092 Loss: 113.060 -57600/69092 Loss: 109.788 -60800/69092 Loss: 113.112 -64000/69092 Loss: 111.282 -67200/69092 Loss: 110.880 -Training time 0:01:58.430439 -Epoch: 248 Average loss: 111.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 389) -0/69092 Loss: 103.736 -3200/69092 Loss: 109.705 -6400/69092 Loss: 111.352 -9600/69092 Loss: 110.496 -12800/69092 Loss: 110.735 -16000/69092 Loss: 109.864 -19200/69092 Loss: 110.467 -22400/69092 Loss: 111.431 -25600/69092 Loss: 110.229 -28800/69092 Loss: 112.154 -32000/69092 Loss: 110.671 -35200/69092 Loss: 111.736 -38400/69092 Loss: 112.159 -41600/69092 Loss: 110.002 -44800/69092 Loss: 113.132 -48000/69092 Loss: 111.088 -51200/69092 Loss: 111.827 -54400/69092 Loss: 111.049 -57600/69092 Loss: 111.497 -60800/69092 Loss: 111.336 -64000/69092 Loss: 111.809 -67200/69092 Loss: 111.159 -Training time 0:01:57.369860 -Epoch: 249 Average loss: 111.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 390) -0/69092 Loss: 123.498 -3200/69092 Loss: 111.731 -6400/69092 Loss: 109.836 -9600/69092 Loss: 111.213 -12800/69092 Loss: 111.127 -16000/69092 Loss: 112.301 -19200/69092 Loss: 111.047 -22400/69092 Loss: 112.960 -25600/69092 Loss: 111.261 -28800/69092 Loss: 111.291 -32000/69092 Loss: 112.719 -35200/69092 Loss: 110.935 -38400/69092 Loss: 111.477 -41600/69092 Loss: 111.206 -44800/69092 Loss: 110.188 -48000/69092 Loss: 109.406 -51200/69092 Loss: 110.845 -54400/69092 Loss: 111.418 -57600/69092 Loss: 112.339 -60800/69092 Loss: 109.618 -64000/69092 Loss: 110.230 -67200/69092 Loss: 110.452 -Training time 0:01:57.411439 -Epoch: 250 Average loss: 111.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 391) -0/69092 Loss: 106.357 -3200/69092 Loss: 110.279 -6400/69092 Loss: 110.361 -9600/69092 Loss: 113.076 -12800/69092 Loss: 111.444 -16000/69092 Loss: 110.781 -19200/69092 Loss: 109.138 -22400/69092 Loss: 111.925 -25600/69092 Loss: 109.538 -28800/69092 Loss: 111.920 -32000/69092 Loss: 111.026 -35200/69092 Loss: 110.586 -38400/69092 Loss: 113.298 -41600/69092 Loss: 111.047 -44800/69092 Loss: 110.734 -48000/69092 Loss: 110.385 -51200/69092 Loss: 111.447 -54400/69092 Loss: 111.839 -57600/69092 Loss: 111.870 -60800/69092 Loss: 111.131 -64000/69092 Loss: 110.217 -67200/69092 Loss: 111.671 -Training time 0:01:57.431767 -Epoch: 251 Average loss: 111.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 392) -0/69092 Loss: 102.804 -3200/69092 Loss: 110.917 -6400/69092 Loss: 111.240 -9600/69092 Loss: 111.921 -12800/69092 Loss: 111.686 -16000/69092 Loss: 110.836 -19200/69092 Loss: 110.360 -22400/69092 Loss: 112.078 -25600/69092 Loss: 109.073 -28800/69092 Loss: 113.623 -32000/69092 Loss: 112.233 -35200/69092 Loss: 111.018 -38400/69092 Loss: 110.364 -41600/69092 Loss: 111.294 -44800/69092 Loss: 111.601 -48000/69092 Loss: 110.258 -51200/69092 Loss: 111.271 -54400/69092 Loss: 111.440 -57600/69092 Loss: 111.215 -60800/69092 Loss: 111.404 -64000/69092 Loss: 110.972 -67200/69092 Loss: 110.816 -Training time 0:01:57.637421 -Epoch: 252 Average loss: 111.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 393) -0/69092 Loss: 108.239 -3200/69092 Loss: 110.886 -6400/69092 Loss: 113.579 -9600/69092 Loss: 110.798 -12800/69092 Loss: 108.050 -16000/69092 Loss: 110.297 -19200/69092 Loss: 110.946 -22400/69092 Loss: 112.451 -25600/69092 Loss: 113.043 -28800/69092 Loss: 110.665 -32000/69092 Loss: 110.870 -35200/69092 Loss: 111.911 -38400/69092 Loss: 112.313 -41600/69092 Loss: 109.459 -44800/69092 Loss: 110.712 -48000/69092 Loss: 110.312 -51200/69092 Loss: 111.116 -54400/69092 Loss: 110.275 -57600/69092 Loss: 112.778 -60800/69092 Loss: 112.580 -64000/69092 Loss: 109.848 -67200/69092 Loss: 112.238 -Training time 0:01:56.937335 -Epoch: 253 Average loss: 111.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 394) -0/69092 Loss: 113.377 -3200/69092 Loss: 112.926 -6400/69092 Loss: 111.311 -9600/69092 Loss: 109.904 -12800/69092 Loss: 110.220 -16000/69092 Loss: 111.905 -19200/69092 Loss: 110.879 -22400/69092 Loss: 110.318 -25600/69092 Loss: 111.719 -28800/69092 Loss: 111.584 -32000/69092 Loss: 110.900 -35200/69092 Loss: 112.835 -38400/69092 Loss: 111.440 -41600/69092 Loss: 112.075 -44800/69092 Loss: 111.887 -48000/69092 Loss: 112.226 -51200/69092 Loss: 109.887 -54400/69092 Loss: 110.785 -57600/69092 Loss: 110.074 -60800/69092 Loss: 110.514 -64000/69092 Loss: 110.812 -67200/69092 Loss: 111.522 -Training time 0:01:56.496175 -Epoch: 254 Average loss: 111.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 395) -0/69092 Loss: 125.020 -3200/69092 Loss: 111.732 -6400/69092 Loss: 111.201 -9600/69092 Loss: 109.565 -12800/69092 Loss: 112.074 -16000/69092 Loss: 110.631 -19200/69092 Loss: 109.777 -22400/69092 Loss: 111.223 -25600/69092 Loss: 112.449 -28800/69092 Loss: 112.911 -32000/69092 Loss: 109.928 -35200/69092 Loss: 110.396 -38400/69092 Loss: 112.070 -41600/69092 Loss: 111.047 -44800/69092 Loss: 111.813 -48000/69092 Loss: 109.342 -51200/69092 Loss: 112.822 -54400/69092 Loss: 108.774 -57600/69092 Loss: 109.953 -60800/69092 Loss: 110.226 -64000/69092 Loss: 110.831 -67200/69092 Loss: 111.720 -Training time 0:01:57.038958 -Epoch: 255 Average loss: 111.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 396) -0/69092 Loss: 109.533 -3200/69092 Loss: 111.231 -6400/69092 Loss: 109.497 -9600/69092 Loss: 109.054 -12800/69092 Loss: 110.814 -16000/69092 Loss: 109.865 -19200/69092 Loss: 111.885 -22400/69092 Loss: 113.264 -25600/69092 Loss: 111.223 -28800/69092 Loss: 111.529 -32000/69092 Loss: 110.043 -35200/69092 Loss: 110.608 -38400/69092 Loss: 110.200 -41600/69092 Loss: 110.879 -44800/69092 Loss: 112.661 -48000/69092 Loss: 111.049 -51200/69092 Loss: 110.760 -54400/69092 Loss: 110.193 -57600/69092 Loss: 111.437 -60800/69092 Loss: 110.753 -64000/69092 Loss: 110.284 -67200/69092 Loss: 110.475 -Training time 0:01:57.300419 -Epoch: 256 Average loss: 110.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 397) -0/69092 Loss: 119.043 -3200/69092 Loss: 110.694 -6400/69092 Loss: 112.449 -9600/69092 Loss: 110.888 -12800/69092 Loss: 112.096 -16000/69092 Loss: 111.366 -19200/69092 Loss: 111.170 -22400/69092 Loss: 111.517 -25600/69092 Loss: 112.610 -28800/69092 Loss: 110.832 -32000/69092 Loss: 110.499 -35200/69092 Loss: 111.410 -38400/69092 Loss: 111.158 -41600/69092 Loss: 110.478 -44800/69092 Loss: 111.160 -48000/69092 Loss: 110.847 -51200/69092 Loss: 110.402 -54400/69092 Loss: 112.098 -57600/69092 Loss: 109.922 -60800/69092 Loss: 110.733 -64000/69092 Loss: 113.063 -67200/69092 Loss: 110.606 -Training time 0:01:57.780238 -Epoch: 257 Average loss: 111.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 398) -0/69092 Loss: 117.179 -3200/69092 Loss: 111.384 -6400/69092 Loss: 109.683 -9600/69092 Loss: 109.482 -12800/69092 Loss: 110.988 -16000/69092 Loss: 111.890 -19200/69092 Loss: 111.074 -22400/69092 Loss: 111.664 -25600/69092 Loss: 110.090 -28800/69092 Loss: 110.135 -32000/69092 Loss: 110.975 -35200/69092 Loss: 112.127 -38400/69092 Loss: 112.769 -41600/69092 Loss: 110.558 -44800/69092 Loss: 112.651 -48000/69092 Loss: 109.083 -51200/69092 Loss: 110.386 -54400/69092 Loss: 110.048 -57600/69092 Loss: 112.158 -60800/69092 Loss: 111.103 -64000/69092 Loss: 112.057 -67200/69092 Loss: 111.740 -Training time 0:01:58.561590 -Epoch: 258 Average loss: 111.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 399) -0/69092 Loss: 118.334 -3200/69092 Loss: 109.569 -6400/69092 Loss: 111.863 -9600/69092 Loss: 110.048 -12800/69092 Loss: 111.313 -16000/69092 Loss: 111.699 -19200/69092 Loss: 110.905 -22400/69092 Loss: 112.432 -25600/69092 Loss: 111.223 -28800/69092 Loss: 109.268 -32000/69092 Loss: 111.676 -35200/69092 Loss: 113.159 -38400/69092 Loss: 111.500 -41600/69092 Loss: 109.357 -44800/69092 Loss: 110.880 -48000/69092 Loss: 109.824 -51200/69092 Loss: 110.635 -54400/69092 Loss: 111.235 -57600/69092 Loss: 110.958 -60800/69092 Loss: 111.464 -64000/69092 Loss: 111.591 -67200/69092 Loss: 111.618 -Training time 0:01:56.658825 -Epoch: 259 Average loss: 111.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 400) -0/69092 Loss: 99.918 -3200/69092 Loss: 110.536 -6400/69092 Loss: 111.087 -9600/69092 Loss: 112.079 -12800/69092 Loss: 111.291 -16000/69092 Loss: 111.590 -19200/69092 Loss: 111.152 -22400/69092 Loss: 109.990 -25600/69092 Loss: 111.403 -28800/69092 Loss: 111.198 -32000/69092 Loss: 109.055 -35200/69092 Loss: 111.210 -38400/69092 Loss: 111.335 -41600/69092 Loss: 108.108 -44800/69092 Loss: 112.186 -48000/69092 Loss: 111.355 -51200/69092 Loss: 111.126 -54400/69092 Loss: 110.002 -57600/69092 Loss: 111.158 -60800/69092 Loss: 112.760 -64000/69092 Loss: 111.019 -67200/69092 Loss: 110.575 -Training time 0:01:57.564294 -Epoch: 260 Average loss: 110.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 401) -0/69092 Loss: 102.919 -3200/69092 Loss: 111.334 -6400/69092 Loss: 110.592 -9600/69092 Loss: 111.426 -12800/69092 Loss: 110.922 -16000/69092 Loss: 111.627 -19200/69092 Loss: 112.994 -22400/69092 Loss: 109.935 -25600/69092 Loss: 109.856 -28800/69092 Loss: 109.845 -32000/69092 Loss: 110.726 -35200/69092 Loss: 111.638 -38400/69092 Loss: 111.053 -41600/69092 Loss: 110.047 -44800/69092 Loss: 110.895 -48000/69092 Loss: 110.560 -51200/69092 Loss: 112.562 -54400/69092 Loss: 110.502 -57600/69092 Loss: 111.007 -60800/69092 Loss: 110.608 -64000/69092 Loss: 111.131 -67200/69092 Loss: 111.897 -Training time 0:01:57.132493 -Epoch: 261 Average loss: 111.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 402) -0/69092 Loss: 114.218 -3200/69092 Loss: 112.573 -6400/69092 Loss: 112.008 -9600/69092 Loss: 111.699 -12800/69092 Loss: 109.915 -16000/69092 Loss: 111.076 -19200/69092 Loss: 111.227 -22400/69092 Loss: 111.564 -25600/69092 Loss: 110.558 -28800/69092 Loss: 110.465 -32000/69092 Loss: 110.430 -35200/69092 Loss: 110.942 -38400/69092 Loss: 111.891 -41600/69092 Loss: 112.028 -44800/69092 Loss: 110.570 -48000/69092 Loss: 111.672 -51200/69092 Loss: 112.246 -54400/69092 Loss: 111.485 -57600/69092 Loss: 112.011 -60800/69092 Loss: 109.935 -64000/69092 Loss: 110.762 -67200/69092 Loss: 111.097 -Training time 0:01:58.383614 -Epoch: 262 Average loss: 111.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 403) -0/69092 Loss: 112.604 -3200/69092 Loss: 110.540 -6400/69092 Loss: 111.252 -9600/69092 Loss: 109.829 -12800/69092 Loss: 113.017 -16000/69092 Loss: 113.760 -19200/69092 Loss: 110.520 -22400/69092 Loss: 111.341 -25600/69092 Loss: 110.474 -28800/69092 Loss: 110.952 -32000/69092 Loss: 110.309 -35200/69092 Loss: 109.334 -38400/69092 Loss: 110.914 -41600/69092 Loss: 110.116 -44800/69092 Loss: 111.209 -48000/69092 Loss: 112.935 -51200/69092 Loss: 110.746 -54400/69092 Loss: 110.242 -57600/69092 Loss: 110.549 -60800/69092 Loss: 112.742 -64000/69092 Loss: 111.958 -67200/69092 Loss: 111.216 -Training time 0:01:57.953651 -Epoch: 263 Average loss: 111.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 404) -0/69092 Loss: 101.946 -3200/69092 Loss: 110.426 -6400/69092 Loss: 110.260 -9600/69092 Loss: 109.664 -12800/69092 Loss: 110.935 -16000/69092 Loss: 111.888 -19200/69092 Loss: 112.961 -22400/69092 Loss: 110.784 -25600/69092 Loss: 110.923 -28800/69092 Loss: 109.775 -32000/69092 Loss: 111.445 -35200/69092 Loss: 110.206 -38400/69092 Loss: 112.993 -41600/69092 Loss: 111.066 -44800/69092 Loss: 110.433 -48000/69092 Loss: 110.588 -51200/69092 Loss: 111.304 -54400/69092 Loss: 111.200 -57600/69092 Loss: 112.353 -60800/69092 Loss: 111.725 -64000/69092 Loss: 110.548 -67200/69092 Loss: 110.856 -Training time 0:01:57.917637 -Epoch: 264 Average loss: 111.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 405) -0/69092 Loss: 102.223 -3200/69092 Loss: 110.544 -6400/69092 Loss: 110.596 -9600/69092 Loss: 109.487 -12800/69092 Loss: 110.647 -16000/69092 Loss: 110.012 -19200/69092 Loss: 111.867 -22400/69092 Loss: 109.929 -25600/69092 Loss: 112.987 -28800/69092 Loss: 110.354 -32000/69092 Loss: 109.552 -35200/69092 Loss: 111.469 -38400/69092 Loss: 111.168 -41600/69092 Loss: 110.773 -44800/69092 Loss: 110.498 -48000/69092 Loss: 112.108 -51200/69092 Loss: 110.388 -54400/69092 Loss: 113.500 -57600/69092 Loss: 109.864 -60800/69092 Loss: 112.753 -64000/69092 Loss: 111.999 -67200/69092 Loss: 112.182 -Training time 0:01:57.302165 -Epoch: 265 Average loss: 111.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 406) -0/69092 Loss: 103.748 -3200/69092 Loss: 111.518 -6400/69092 Loss: 111.662 -9600/69092 Loss: 110.320 -12800/69092 Loss: 112.069 -16000/69092 Loss: 111.370 -19200/69092 Loss: 110.221 -22400/69092 Loss: 111.720 -25600/69092 Loss: 110.837 -28800/69092 Loss: 111.321 -32000/69092 Loss: 110.262 -35200/69092 Loss: 111.120 -38400/69092 Loss: 108.821 -41600/69092 Loss: 109.257 -44800/69092 Loss: 111.489 -48000/69092 Loss: 111.358 -51200/69092 Loss: 109.158 -54400/69092 Loss: 111.183 -57600/69092 Loss: 112.635 -60800/69092 Loss: 110.459 -64000/69092 Loss: 110.898 -67200/69092 Loss: 111.642 -Training time 0:01:58.368381 -Epoch: 266 Average loss: 110.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 407) -0/69092 Loss: 112.892 -3200/69092 Loss: 111.153 -6400/69092 Loss: 111.807 -9600/69092 Loss: 111.807 -12800/69092 Loss: 112.844 -16000/69092 Loss: 111.230 -19200/69092 Loss: 111.024 -22400/69092 Loss: 111.635 -25600/69092 Loss: 112.329 -28800/69092 Loss: 110.557 -32000/69092 Loss: 111.422 -35200/69092 Loss: 110.001 -38400/69092 Loss: 110.677 -41600/69092 Loss: 111.130 -44800/69092 Loss: 110.490 -48000/69092 Loss: 111.001 -51200/69092 Loss: 110.854 -54400/69092 Loss: 111.521 -57600/69092 Loss: 110.090 -60800/69092 Loss: 111.625 -64000/69092 Loss: 109.477 -67200/69092 Loss: 109.777 -Training time 0:01:58.427540 -Epoch: 267 Average loss: 111.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 408) -0/69092 Loss: 105.202 -3200/69092 Loss: 110.029 -6400/69092 Loss: 109.795 -9600/69092 Loss: 110.878 -12800/69092 Loss: 111.447 -16000/69092 Loss: 114.239 -19200/69092 Loss: 111.138 -22400/69092 Loss: 110.883 -25600/69092 Loss: 110.844 -28800/69092 Loss: 111.197 -32000/69092 Loss: 110.699 -35200/69092 Loss: 110.040 -38400/69092 Loss: 111.646 -41600/69092 Loss: 110.489 -44800/69092 Loss: 110.871 -48000/69092 Loss: 111.598 -51200/69092 Loss: 110.340 -54400/69092 Loss: 112.259 -57600/69092 Loss: 109.082 -60800/69092 Loss: 111.659 -64000/69092 Loss: 112.772 -67200/69092 Loss: 112.814 -Training time 0:01:57.560979 -Epoch: 268 Average loss: 111.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 409) -0/69092 Loss: 114.172 -3200/69092 Loss: 109.790 -6400/69092 Loss: 111.874 -9600/69092 Loss: 112.924 -12800/69092 Loss: 112.108 -16000/69092 Loss: 110.863 -19200/69092 Loss: 110.759 -22400/69092 Loss: 111.317 -25600/69092 Loss: 111.183 -28800/69092 Loss: 112.582 -32000/69092 Loss: 110.774 -35200/69092 Loss: 109.770 -38400/69092 Loss: 111.539 -41600/69092 Loss: 111.438 -44800/69092 Loss: 112.325 -48000/69092 Loss: 109.711 -51200/69092 Loss: 110.771 -54400/69092 Loss: 111.276 -57600/69092 Loss: 111.158 -60800/69092 Loss: 109.779 -64000/69092 Loss: 109.416 -67200/69092 Loss: 111.248 -Training time 0:01:58.904154 -Epoch: 269 Average loss: 111.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 410) -0/69092 Loss: 105.736 -3200/69092 Loss: 109.660 -6400/69092 Loss: 110.559 -9600/69092 Loss: 111.273 -12800/69092 Loss: 111.583 -16000/69092 Loss: 111.526 -19200/69092 Loss: 109.822 -22400/69092 Loss: 111.871 -25600/69092 Loss: 109.665 -28800/69092 Loss: 110.681 -32000/69092 Loss: 111.805 -35200/69092 Loss: 111.811 -38400/69092 Loss: 112.030 -41600/69092 Loss: 110.044 -44800/69092 Loss: 111.697 -48000/69092 Loss: 109.874 -51200/69092 Loss: 111.497 -54400/69092 Loss: 112.470 -57600/69092 Loss: 110.808 -60800/69092 Loss: 111.034 -64000/69092 Loss: 110.285 -67200/69092 Loss: 109.798 -Training time 0:01:57.119963 -Epoch: 270 Average loss: 110.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 411) -0/69092 Loss: 107.418 -3200/69092 Loss: 113.195 -6400/69092 Loss: 111.603 -9600/69092 Loss: 110.949 -12800/69092 Loss: 110.224 -16000/69092 Loss: 111.228 -19200/69092 Loss: 111.496 -22400/69092 Loss: 111.003 -25600/69092 Loss: 110.157 -28800/69092 Loss: 111.891 -32000/69092 Loss: 111.249 -35200/69092 Loss: 111.203 -38400/69092 Loss: 111.227 -41600/69092 Loss: 110.084 -44800/69092 Loss: 112.262 -48000/69092 Loss: 111.512 -51200/69092 Loss: 112.289 -54400/69092 Loss: 110.747 -57600/69092 Loss: 110.910 -60800/69092 Loss: 109.941 -64000/69092 Loss: 112.352 -67200/69092 Loss: 110.064 -Training time 0:01:58.405551 -Epoch: 271 Average loss: 111.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 412) -0/69092 Loss: 112.247 -3200/69092 Loss: 111.532 -6400/69092 Loss: 109.866 -9600/69092 Loss: 109.927 -12800/69092 Loss: 110.300 -16000/69092 Loss: 110.468 -19200/69092 Loss: 109.192 -22400/69092 Loss: 111.327 -25600/69092 Loss: 110.400 -28800/69092 Loss: 112.408 -32000/69092 Loss: 109.738 -35200/69092 Loss: 111.481 -38400/69092 Loss: 112.698 -41600/69092 Loss: 108.841 -44800/69092 Loss: 109.635 -48000/69092 Loss: 111.447 -51200/69092 Loss: 111.715 -54400/69092 Loss: 111.377 -57600/69092 Loss: 112.041 -60800/69092 Loss: 112.644 -64000/69092 Loss: 111.499 -67200/69092 Loss: 112.792 -Training time 0:01:57.107391 -Epoch: 272 Average loss: 111.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 413) -0/69092 Loss: 113.593 -3200/69092 Loss: 111.851 -6400/69092 Loss: 112.942 -9600/69092 Loss: 109.614 -12800/69092 Loss: 113.096 -16000/69092 Loss: 110.529 -19200/69092 Loss: 110.020 -22400/69092 Loss: 111.430 -25600/69092 Loss: 111.389 -28800/69092 Loss: 112.372 -32000/69092 Loss: 110.273 -35200/69092 Loss: 109.844 -38400/69092 Loss: 110.619 -41600/69092 Loss: 110.420 -44800/69092 Loss: 111.002 -48000/69092 Loss: 111.528 -51200/69092 Loss: 111.237 -54400/69092 Loss: 113.031 -57600/69092 Loss: 110.168 -60800/69092 Loss: 109.557 -64000/69092 Loss: 110.396 -67200/69092 Loss: 113.071 -Training time 0:01:58.378197 -Epoch: 273 Average loss: 111.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 414) -0/69092 Loss: 107.776 -3200/69092 Loss: 110.438 -6400/69092 Loss: 109.587 -9600/69092 Loss: 111.353 -12800/69092 Loss: 109.622 -16000/69092 Loss: 111.800 -19200/69092 Loss: 111.342 -22400/69092 Loss: 110.491 -25600/69092 Loss: 112.317 -28800/69092 Loss: 111.947 -32000/69092 Loss: 111.256 -35200/69092 Loss: 111.003 -38400/69092 Loss: 112.212 -41600/69092 Loss: 110.820 -44800/69092 Loss: 111.593 -48000/69092 Loss: 110.804 -51200/69092 Loss: 110.570 -54400/69092 Loss: 111.628 -57600/69092 Loss: 111.308 -60800/69092 Loss: 109.944 -64000/69092 Loss: 110.376 -67200/69092 Loss: 109.365 -Training time 0:01:58.140014 -Epoch: 274 Average loss: 110.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 415) -0/69092 Loss: 107.265 -3200/69092 Loss: 110.911 -6400/69092 Loss: 111.722 -9600/69092 Loss: 111.788 -12800/69092 Loss: 111.163 -16000/69092 Loss: 111.562 -19200/69092 Loss: 112.048 -22400/69092 Loss: 112.247 -25600/69092 Loss: 110.505 -28800/69092 Loss: 111.820 -32000/69092 Loss: 110.298 -35200/69092 Loss: 110.960 -38400/69092 Loss: 112.540 -41600/69092 Loss: 110.044 -44800/69092 Loss: 109.915 -48000/69092 Loss: 110.118 -51200/69092 Loss: 110.464 -54400/69092 Loss: 110.355 -57600/69092 Loss: 111.397 -60800/69092 Loss: 111.731 -64000/69092 Loss: 110.044 -67200/69092 Loss: 110.554 -Training time 0:01:56.970570 -Epoch: 275 Average loss: 111.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 416) -0/69092 Loss: 109.308 -3200/69092 Loss: 109.620 -6400/69092 Loss: 112.496 -9600/69092 Loss: 111.210 -12800/69092 Loss: 109.303 -16000/69092 Loss: 109.302 -19200/69092 Loss: 111.062 -22400/69092 Loss: 111.424 -25600/69092 Loss: 112.844 -28800/69092 Loss: 110.963 -32000/69092 Loss: 111.105 -35200/69092 Loss: 110.907 -38400/69092 Loss: 110.317 -41600/69092 Loss: 111.495 -44800/69092 Loss: 111.257 -48000/69092 Loss: 111.045 -51200/69092 Loss: 111.204 -54400/69092 Loss: 110.498 -57600/69092 Loss: 110.776 -60800/69092 Loss: 112.857 -64000/69092 Loss: 109.549 -67200/69092 Loss: 110.512 -Training time 0:01:57.871726 -Epoch: 276 Average loss: 110.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 417) -0/69092 Loss: 114.632 -3200/69092 Loss: 111.907 -6400/69092 Loss: 109.742 -9600/69092 Loss: 109.988 -12800/69092 Loss: 109.891 -16000/69092 Loss: 110.597 -19200/69092 Loss: 109.888 -22400/69092 Loss: 110.783 -25600/69092 Loss: 110.870 -28800/69092 Loss: 112.833 -32000/69092 Loss: 111.495 -35200/69092 Loss: 112.458 -38400/69092 Loss: 112.049 -41600/69092 Loss: 111.632 -44800/69092 Loss: 112.290 -48000/69092 Loss: 111.698 -51200/69092 Loss: 108.472 -54400/69092 Loss: 111.141 -57600/69092 Loss: 110.113 -60800/69092 Loss: 110.784 -64000/69092 Loss: 109.813 -67200/69092 Loss: 109.572 -Training time 0:01:57.464278 -Epoch: 277 Average loss: 110.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 418) -0/69092 Loss: 127.052 -3200/69092 Loss: 110.904 -6400/69092 Loss: 110.255 -9600/69092 Loss: 109.091 -12800/69092 Loss: 110.646 -16000/69092 Loss: 111.554 -19200/69092 Loss: 110.131 -22400/69092 Loss: 110.198 -25600/69092 Loss: 108.659 -28800/69092 Loss: 110.733 -32000/69092 Loss: 110.423 -35200/69092 Loss: 112.402 -38400/69092 Loss: 111.252 -41600/69092 Loss: 110.627 -44800/69092 Loss: 111.488 -48000/69092 Loss: 112.702 -51200/69092 Loss: 111.199 -54400/69092 Loss: 111.644 -57600/69092 Loss: 111.951 -60800/69092 Loss: 111.907 -64000/69092 Loss: 109.767 -67200/69092 Loss: 112.209 -Training time 0:01:56.721931 -Epoch: 278 Average loss: 110.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 419) -0/69092 Loss: 111.806 -3200/69092 Loss: 113.157 -6400/69092 Loss: 110.903 -9600/69092 Loss: 110.516 -12800/69092 Loss: 111.144 -16000/69092 Loss: 109.884 -19200/69092 Loss: 111.071 -22400/69092 Loss: 112.457 -25600/69092 Loss: 109.489 -28800/69092 Loss: 110.938 -32000/69092 Loss: 109.966 -35200/69092 Loss: 112.436 -38400/69092 Loss: 111.449 -41600/69092 Loss: 111.393 -44800/69092 Loss: 111.038 -48000/69092 Loss: 111.123 -51200/69092 Loss: 111.270 -54400/69092 Loss: 110.161 -57600/69092 Loss: 111.428 -60800/69092 Loss: 111.725 -64000/69092 Loss: 110.831 -67200/69092 Loss: 110.678 -Training time 0:01:57.508080 -Epoch: 279 Average loss: 111.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 420) -0/69092 Loss: 105.821 -3200/69092 Loss: 112.053 -6400/69092 Loss: 110.937 -9600/69092 Loss: 110.877 -12800/69092 Loss: 110.348 -16000/69092 Loss: 109.876 -19200/69092 Loss: 110.762 -22400/69092 Loss: 110.478 -25600/69092 Loss: 109.307 -28800/69092 Loss: 110.364 -32000/69092 Loss: 110.561 -35200/69092 Loss: 110.215 -38400/69092 Loss: 112.803 -41600/69092 Loss: 113.309 -44800/69092 Loss: 110.400 -48000/69092 Loss: 110.345 -51200/69092 Loss: 110.096 -54400/69092 Loss: 111.199 -57600/69092 Loss: 110.091 -60800/69092 Loss: 112.631 -64000/69092 Loss: 113.145 -67200/69092 Loss: 109.860 -Training time 0:01:57.990605 -Epoch: 280 Average loss: 110.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 421) -0/69092 Loss: 99.305 -3200/69092 Loss: 111.363 -6400/69092 Loss: 111.338 -9600/69092 Loss: 111.436 -12800/69092 Loss: 110.589 -16000/69092 Loss: 108.550 -19200/69092 Loss: 111.130 -22400/69092 Loss: 111.056 -25600/69092 Loss: 110.729 -28800/69092 Loss: 111.964 -32000/69092 Loss: 110.826 -35200/69092 Loss: 110.334 -38400/69092 Loss: 112.357 -41600/69092 Loss: 111.353 -44800/69092 Loss: 110.260 -48000/69092 Loss: 111.335 -51200/69092 Loss: 110.534 -54400/69092 Loss: 111.128 -57600/69092 Loss: 110.575 -60800/69092 Loss: 110.258 -64000/69092 Loss: 111.142 -67200/69092 Loss: 110.867 -Training time 0:01:57.845171 -Epoch: 281 Average loss: 110.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 422) -0/69092 Loss: 109.939 -3200/69092 Loss: 110.927 -6400/69092 Loss: 111.372 -9600/69092 Loss: 113.477 -12800/69092 Loss: 110.871 -16000/69092 Loss: 110.388 -19200/69092 Loss: 110.984 -22400/69092 Loss: 109.603 -25600/69092 Loss: 110.984 -28800/69092 Loss: 110.942 -32000/69092 Loss: 110.955 -35200/69092 Loss: 113.097 -38400/69092 Loss: 110.582 -41600/69092 Loss: 110.519 -44800/69092 Loss: 110.225 -48000/69092 Loss: 111.144 -51200/69092 Loss: 110.632 -54400/69092 Loss: 110.743 -57600/69092 Loss: 110.619 -60800/69092 Loss: 109.524 -64000/69092 Loss: 110.168 -67200/69092 Loss: 111.639 -Training time 0:01:57.405325 -Epoch: 282 Average loss: 110.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 423) -0/69092 Loss: 119.652 -3200/69092 Loss: 111.000 -6400/69092 Loss: 109.335 -9600/69092 Loss: 110.609 -12800/69092 Loss: 110.800 -16000/69092 Loss: 112.095 -19200/69092 Loss: 109.557 -22400/69092 Loss: 110.808 -25600/69092 Loss: 110.399 -28800/69092 Loss: 111.826 -32000/69092 Loss: 110.780 -35200/69092 Loss: 111.985 -38400/69092 Loss: 112.738 -41600/69092 Loss: 111.138 -44800/69092 Loss: 110.412 -48000/69092 Loss: 111.163 -51200/69092 Loss: 112.704 -54400/69092 Loss: 111.012 -57600/69092 Loss: 110.059 -60800/69092 Loss: 111.216 -64000/69092 Loss: 111.620 -67200/69092 Loss: 110.888 -Training time 0:01:57.440733 -Epoch: 283 Average loss: 111.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 424) -0/69092 Loss: 106.990 -3200/69092 Loss: 107.762 -6400/69092 Loss: 111.007 -9600/69092 Loss: 109.851 -12800/69092 Loss: 111.823 -16000/69092 Loss: 111.459 -19200/69092 Loss: 111.446 -22400/69092 Loss: 112.483 -25600/69092 Loss: 110.370 -28800/69092 Loss: 110.804 -32000/69092 Loss: 110.054 -35200/69092 Loss: 110.605 -38400/69092 Loss: 110.478 -41600/69092 Loss: 110.785 -44800/69092 Loss: 113.107 -48000/69092 Loss: 111.193 -51200/69092 Loss: 112.808 -54400/69092 Loss: 111.634 -57600/69092 Loss: 110.049 -60800/69092 Loss: 110.342 -64000/69092 Loss: 109.923 -67200/69092 Loss: 111.048 -Training time 0:01:58.276838 -Epoch: 284 Average loss: 110.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 425) -0/69092 Loss: 126.258 -3200/69092 Loss: 110.308 -6400/69092 Loss: 108.240 -9600/69092 Loss: 111.404 -12800/69092 Loss: 110.676 -16000/69092 Loss: 110.967 -19200/69092 Loss: 113.284 -22400/69092 Loss: 109.787 -25600/69092 Loss: 109.907 -28800/69092 Loss: 112.063 -32000/69092 Loss: 111.203 -35200/69092 Loss: 112.119 -38400/69092 Loss: 110.590 -41600/69092 Loss: 110.458 -44800/69092 Loss: 113.380 -48000/69092 Loss: 111.126 -51200/69092 Loss: 111.631 -54400/69092 Loss: 110.385 -57600/69092 Loss: 109.505 -60800/69092 Loss: 109.918 -64000/69092 Loss: 110.778 -67200/69092 Loss: 111.695 -Training time 0:01:58.765267 -Epoch: 285 Average loss: 110.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 426) -0/69092 Loss: 110.888 -3200/69092 Loss: 109.617 -6400/69092 Loss: 110.353 -9600/69092 Loss: 110.585 -12800/69092 Loss: 110.895 -16000/69092 Loss: 110.390 -19200/69092 Loss: 110.729 -22400/69092 Loss: 112.426 -25600/69092 Loss: 110.992 -28800/69092 Loss: 111.520 -32000/69092 Loss: 110.369 -35200/69092 Loss: 111.826 -38400/69092 Loss: 110.541 -41600/69092 Loss: 111.892 -44800/69092 Loss: 109.360 -48000/69092 Loss: 112.748 -51200/69092 Loss: 109.524 -54400/69092 Loss: 111.490 -57600/69092 Loss: 112.498 -60800/69092 Loss: 111.301 -64000/69092 Loss: 111.848 -67200/69092 Loss: 110.673 -Training time 0:01:57.282262 -Epoch: 286 Average loss: 110.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 427) -0/69092 Loss: 114.157 -3200/69092 Loss: 110.901 -6400/69092 Loss: 108.332 -9600/69092 Loss: 111.945 -12800/69092 Loss: 110.487 -16000/69092 Loss: 110.610 -19200/69092 Loss: 110.866 -22400/69092 Loss: 111.028 -25600/69092 Loss: 110.484 -28800/69092 Loss: 112.734 -32000/69092 Loss: 110.830 -35200/69092 Loss: 111.092 -38400/69092 Loss: 109.632 -41600/69092 Loss: 109.797 -44800/69092 Loss: 111.363 -48000/69092 Loss: 110.378 -51200/69092 Loss: 111.159 -54400/69092 Loss: 109.174 -57600/69092 Loss: 111.778 -60800/69092 Loss: 111.520 -64000/69092 Loss: 111.976 -67200/69092 Loss: 111.374 -Training time 0:01:58.552811 -Epoch: 287 Average loss: 110.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 428) -0/69092 Loss: 98.511 -3200/69092 Loss: 108.557 -6400/69092 Loss: 110.954 -9600/69092 Loss: 111.782 -12800/69092 Loss: 111.856 -16000/69092 Loss: 111.708 -19200/69092 Loss: 110.535 -22400/69092 Loss: 111.989 -25600/69092 Loss: 109.486 -28800/69092 Loss: 111.154 -32000/69092 Loss: 110.285 -35200/69092 Loss: 112.020 -38400/69092 Loss: 112.430 -41600/69092 Loss: 109.311 -44800/69092 Loss: 111.011 -48000/69092 Loss: 109.668 -51200/69092 Loss: 111.056 -54400/69092 Loss: 110.999 -57600/69092 Loss: 111.689 -60800/69092 Loss: 110.654 -64000/69092 Loss: 111.223 -67200/69092 Loss: 111.608 -Training time 0:01:57.676074 -Epoch: 288 Average loss: 110.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 429) -0/69092 Loss: 104.075 -3200/69092 Loss: 111.203 -6400/69092 Loss: 110.838 -9600/69092 Loss: 110.986 -12800/69092 Loss: 110.098 -16000/69092 Loss: 109.012 -19200/69092 Loss: 111.120 -22400/69092 Loss: 109.926 -25600/69092 Loss: 112.095 -28800/69092 Loss: 111.210 -32000/69092 Loss: 110.441 -35200/69092 Loss: 112.471 -38400/69092 Loss: 110.142 -41600/69092 Loss: 111.790 -44800/69092 Loss: 112.376 -48000/69092 Loss: 110.861 -51200/69092 Loss: 111.021 -54400/69092 Loss: 109.097 -57600/69092 Loss: 111.030 -60800/69092 Loss: 111.385 -64000/69092 Loss: 110.457 -67200/69092 Loss: 112.128 -Training time 0:01:58.374407 -Epoch: 289 Average loss: 110.98 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 430) -0/69092 Loss: 102.637 -3200/69092 Loss: 110.249 -6400/69092 Loss: 110.317 -9600/69092 Loss: 111.740 -12800/69092 Loss: 110.958 -16000/69092 Loss: 109.061 -19200/69092 Loss: 109.024 -22400/69092 Loss: 110.359 -25600/69092 Loss: 111.071 -28800/69092 Loss: 109.974 -32000/69092 Loss: 111.436 -35200/69092 Loss: 111.265 -38400/69092 Loss: 111.014 -41600/69092 Loss: 110.954 -44800/69092 Loss: 110.811 -48000/69092 Loss: 111.528 -51200/69092 Loss: 110.617 -54400/69092 Loss: 111.308 -57600/69092 Loss: 112.040 -60800/69092 Loss: 109.778 -64000/69092 Loss: 111.718 -67200/69092 Loss: 111.476 -Training time 0:01:57.290321 -Epoch: 290 Average loss: 110.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 431) -0/69092 Loss: 112.755 -3200/69092 Loss: 111.344 -6400/69092 Loss: 110.573 -9600/69092 Loss: 110.679 -12800/69092 Loss: 111.196 -16000/69092 Loss: 111.228 -19200/69092 Loss: 109.418 -22400/69092 Loss: 110.008 -25600/69092 Loss: 112.658 -28800/69092 Loss: 111.429 -32000/69092 Loss: 110.372 -35200/69092 Loss: 111.216 -38400/69092 Loss: 111.777 -41600/69092 Loss: 110.837 -44800/69092 Loss: 111.508 -48000/69092 Loss: 109.906 -51200/69092 Loss: 109.060 -54400/69092 Loss: 111.110 -57600/69092 Loss: 109.381 -60800/69092 Loss: 111.219 -64000/69092 Loss: 112.256 -67200/69092 Loss: 111.393 -Training time 0:01:58.204894 -Epoch: 291 Average loss: 110.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 432) -0/69092 Loss: 112.736 -3200/69092 Loss: 110.317 -6400/69092 Loss: 110.182 -9600/69092 Loss: 111.489 -12800/69092 Loss: 109.635 -16000/69092 Loss: 109.835 -19200/69092 Loss: 112.105 -22400/69092 Loss: 111.390 -25600/69092 Loss: 111.282 -28800/69092 Loss: 109.946 -32000/69092 Loss: 110.244 -35200/69092 Loss: 113.222 -38400/69092 Loss: 113.057 -41600/69092 Loss: 112.111 -44800/69092 Loss: 110.511 -48000/69092 Loss: 110.272 -51200/69092 Loss: 110.620 -54400/69092 Loss: 110.659 -57600/69092 Loss: 110.869 -60800/69092 Loss: 110.452 -64000/69092 Loss: 112.389 -67200/69092 Loss: 110.010 -Training time 0:01:57.528478 -Epoch: 292 Average loss: 110.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 433) -0/69092 Loss: 114.500 -3200/69092 Loss: 110.128 -6400/69092 Loss: 109.510 -9600/69092 Loss: 111.423 -12800/69092 Loss: 110.941 -16000/69092 Loss: 108.992 -19200/69092 Loss: 111.361 -22400/69092 Loss: 110.340 -25600/69092 Loss: 110.495 -28800/69092 Loss: 110.377 -32000/69092 Loss: 110.545 -35200/69092 Loss: 109.933 -38400/69092 Loss: 109.964 -41600/69092 Loss: 112.998 -44800/69092 Loss: 111.314 -48000/69092 Loss: 111.898 -51200/69092 Loss: 111.896 -54400/69092 Loss: 111.930 -57600/69092 Loss: 109.081 -60800/69092 Loss: 111.646 -64000/69092 Loss: 110.968 -67200/69092 Loss: 110.556 -Training time 0:01:57.517016 -Epoch: 293 Average loss: 110.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 434) -0/69092 Loss: 128.226 -3200/69092 Loss: 113.884 -6400/69092 Loss: 110.194 -9600/69092 Loss: 112.417 -12800/69092 Loss: 110.099 -16000/69092 Loss: 111.266 -19200/69092 Loss: 110.346 -22400/69092 Loss: 110.674 -25600/69092 Loss: 111.557 -28800/69092 Loss: 109.910 -32000/69092 Loss: 110.767 -35200/69092 Loss: 108.370 -38400/69092 Loss: 109.809 -41600/69092 Loss: 112.768 -44800/69092 Loss: 110.918 -48000/69092 Loss: 110.599 -51200/69092 Loss: 109.976 -54400/69092 Loss: 110.991 -57600/69092 Loss: 111.904 -60800/69092 Loss: 110.660 -64000/69092 Loss: 108.824 -67200/69092 Loss: 109.690 -Training time 0:01:58.568456 -Epoch: 294 Average loss: 110.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 435) -0/69092 Loss: 101.908 -3200/69092 Loss: 111.186 -6400/69092 Loss: 110.414 -9600/69092 Loss: 110.318 -12800/69092 Loss: 112.272 -16000/69092 Loss: 109.021 -19200/69092 Loss: 113.014 -22400/69092 Loss: 110.897 -25600/69092 Loss: 110.764 -28800/69092 Loss: 110.582 -32000/69092 Loss: 112.341 -35200/69092 Loss: 112.834 -38400/69092 Loss: 111.393 -41600/69092 Loss: 110.558 -44800/69092 Loss: 111.250 -48000/69092 Loss: 110.628 -51200/69092 Loss: 109.401 -54400/69092 Loss: 110.663 -57600/69092 Loss: 110.167 -60800/69092 Loss: 111.613 -64000/69092 Loss: 109.191 -67200/69092 Loss: 113.185 -Training time 0:01:58.401494 -Epoch: 295 Average loss: 111.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 436) -0/69092 Loss: 111.187 -3200/69092 Loss: 110.383 -6400/69092 Loss: 113.301 -9600/69092 Loss: 111.514 -12800/69092 Loss: 110.436 -16000/69092 Loss: 109.524 -19200/69092 Loss: 110.445 -22400/69092 Loss: 109.889 -25600/69092 Loss: 111.973 -28800/69092 Loss: 112.284 -32000/69092 Loss: 111.488 -35200/69092 Loss: 110.241 -38400/69092 Loss: 109.937 -41600/69092 Loss: 110.844 -44800/69092 Loss: 109.690 -48000/69092 Loss: 111.326 -51200/69092 Loss: 111.018 -54400/69092 Loss: 109.443 -57600/69092 Loss: 110.248 -60800/69092 Loss: 109.418 -64000/69092 Loss: 110.942 -67200/69092 Loss: 112.532 -Training time 0:01:58.054422 -Epoch: 296 Average loss: 110.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 437) -0/69092 Loss: 109.589 -3200/69092 Loss: 108.906 -6400/69092 Loss: 111.589 -9600/69092 Loss: 110.672 -12800/69092 Loss: 111.534 -16000/69092 Loss: 111.271 -19200/69092 Loss: 111.011 -22400/69092 Loss: 110.344 -25600/69092 Loss: 110.352 -28800/69092 Loss: 111.733 -32000/69092 Loss: 111.576 -35200/69092 Loss: 109.561 -38400/69092 Loss: 113.457 -41600/69092 Loss: 112.402 -44800/69092 Loss: 110.143 -48000/69092 Loss: 109.951 -51200/69092 Loss: 112.914 -54400/69092 Loss: 112.174 -57600/69092 Loss: 109.020 -60800/69092 Loss: 109.533 -64000/69092 Loss: 111.442 -67200/69092 Loss: 111.365 -Training time 0:01:57.368761 -Epoch: 297 Average loss: 110.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 438) -0/69092 Loss: 108.749 -3200/69092 Loss: 111.171 -6400/69092 Loss: 110.433 -9600/69092 Loss: 111.856 -12800/69092 Loss: 108.539 -16000/69092 Loss: 110.187 -19200/69092 Loss: 111.049 -22400/69092 Loss: 111.446 -25600/69092 Loss: 109.760 -28800/69092 Loss: 110.100 -32000/69092 Loss: 111.754 -35200/69092 Loss: 113.237 -38400/69092 Loss: 111.183 -41600/69092 Loss: 110.450 -44800/69092 Loss: 111.432 -48000/69092 Loss: 113.090 -51200/69092 Loss: 109.832 -54400/69092 Loss: 110.826 -57600/69092 Loss: 112.865 -60800/69092 Loss: 111.927 -64000/69092 Loss: 110.442 -67200/69092 Loss: 109.851 -Training time 0:01:56.984332 -Epoch: 298 Average loss: 110.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 439) -0/69092 Loss: 105.931 -3200/69092 Loss: 110.126 -6400/69092 Loss: 110.617 -9600/69092 Loss: 110.992 -12800/69092 Loss: 110.139 -16000/69092 Loss: 112.035 -19200/69092 Loss: 110.818 -22400/69092 Loss: 110.201 -25600/69092 Loss: 111.025 -28800/69092 Loss: 110.035 -32000/69092 Loss: 111.795 -35200/69092 Loss: 112.614 -38400/69092 Loss: 111.208 -41600/69092 Loss: 110.589 -44800/69092 Loss: 110.215 -48000/69092 Loss: 111.576 -51200/69092 Loss: 111.711 -54400/69092 Loss: 109.680 -57600/69092 Loss: 112.130 -60800/69092 Loss: 110.922 -64000/69092 Loss: 110.125 -67200/69092 Loss: 110.402 -Training time 0:01:57.751606 -Epoch: 299 Average loss: 110.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 440) -0/69092 Loss: 108.554 -3200/69092 Loss: 109.777 -6400/69092 Loss: 110.337 -9600/69092 Loss: 112.371 -12800/69092 Loss: 111.388 -16000/69092 Loss: 109.166 -19200/69092 Loss: 110.062 -22400/69092 Loss: 112.056 -25600/69092 Loss: 110.879 -28800/69092 Loss: 112.380 -32000/69092 Loss: 111.925 -35200/69092 Loss: 110.586 -38400/69092 Loss: 109.672 -41600/69092 Loss: 110.674 -44800/69092 Loss: 109.983 -48000/69092 Loss: 110.466 -51200/69092 Loss: 110.676 -54400/69092 Loss: 111.481 -57600/69092 Loss: 110.750 -60800/69092 Loss: 111.140 -64000/69092 Loss: 109.790 -67200/69092 Loss: 110.965 -Training time 0:01:57.502604 -Epoch: 300 Average loss: 110.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 441) -0/69092 Loss: 126.165 -3200/69092 Loss: 110.285 -6400/69092 Loss: 110.129 -9600/69092 Loss: 111.424 -12800/69092 Loss: 109.740 -16000/69092 Loss: 111.854 -19200/69092 Loss: 110.794 -22400/69092 Loss: 110.792 -25600/69092 Loss: 111.706 -28800/69092 Loss: 112.301 -32000/69092 Loss: 111.723 -35200/69092 Loss: 112.221 -38400/69092 Loss: 111.395 -41600/69092 Loss: 111.282 -44800/69092 Loss: 110.389 -48000/69092 Loss: 109.643 -51200/69092 Loss: 110.450 -54400/69092 Loss: 111.629 -57600/69092 Loss: 111.873 -60800/69092 Loss: 110.584 -64000/69092 Loss: 111.131 -67200/69092 Loss: 109.687 -Training time 0:01:57.204475 -Epoch: 301 Average loss: 111.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 442) -0/69092 Loss: 106.093 -3200/69092 Loss: 109.878 -6400/69092 Loss: 110.295 -9600/69092 Loss: 111.979 -12800/69092 Loss: 113.320 -16000/69092 Loss: 111.759 -19200/69092 Loss: 111.122 -22400/69092 Loss: 109.408 -25600/69092 Loss: 110.433 -28800/69092 Loss: 109.775 -32000/69092 Loss: 108.749 -35200/69092 Loss: 110.879 -38400/69092 Loss: 111.396 -41600/69092 Loss: 111.396 -44800/69092 Loss: 111.190 -48000/69092 Loss: 109.918 -51200/69092 Loss: 110.460 -54400/69092 Loss: 111.901 -57600/69092 Loss: 110.748 -60800/69092 Loss: 110.686 -64000/69092 Loss: 110.852 -67200/69092 Loss: 112.430 -Training time 0:01:58.077791 -Epoch: 302 Average loss: 110.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 443) -0/69092 Loss: 108.815 -3200/69092 Loss: 112.556 -6400/69092 Loss: 110.766 -9600/69092 Loss: 108.460 -12800/69092 Loss: 111.993 -16000/69092 Loss: 110.540 -19200/69092 Loss: 109.040 -22400/69092 Loss: 110.837 -25600/69092 Loss: 111.466 -28800/69092 Loss: 110.389 -32000/69092 Loss: 108.280 -35200/69092 Loss: 110.833 -38400/69092 Loss: 110.869 -41600/69092 Loss: 108.830 -44800/69092 Loss: 112.886 -48000/69092 Loss: 110.929 -51200/69092 Loss: 110.975 -54400/69092 Loss: 111.118 -57600/69092 Loss: 110.810 -60800/69092 Loss: 110.648 -64000/69092 Loss: 112.793 -67200/69092 Loss: 110.700 -Training time 0:01:57.392230 -Epoch: 303 Average loss: 110.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 444) -0/69092 Loss: 102.485 -3200/69092 Loss: 110.565 -6400/69092 Loss: 112.579 -9600/69092 Loss: 110.242 -12800/69092 Loss: 109.614 -16000/69092 Loss: 110.495 -19200/69092 Loss: 110.945 -22400/69092 Loss: 112.366 -25600/69092 Loss: 110.999 -28800/69092 Loss: 109.653 -32000/69092 Loss: 110.920 -35200/69092 Loss: 111.993 -38400/69092 Loss: 111.538 -41600/69092 Loss: 111.368 -44800/69092 Loss: 110.520 -48000/69092 Loss: 111.310 -51200/69092 Loss: 109.049 -54400/69092 Loss: 112.195 -57600/69092 Loss: 111.088 -60800/69092 Loss: 109.198 -64000/69092 Loss: 111.151 -67200/69092 Loss: 112.724 -Training time 0:01:57.946444 -Epoch: 304 Average loss: 110.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 445) -0/69092 Loss: 102.396 -3200/69092 Loss: 110.045 -6400/69092 Loss: 111.459 -9600/69092 Loss: 110.740 -12800/69092 Loss: 109.375 -16000/69092 Loss: 109.528 -19200/69092 Loss: 110.296 -22400/69092 Loss: 111.529 -25600/69092 Loss: 112.015 -28800/69092 Loss: 112.480 -32000/69092 Loss: 111.684 -35200/69092 Loss: 109.674 -38400/69092 Loss: 109.920 -41600/69092 Loss: 110.739 -44800/69092 Loss: 112.200 -48000/69092 Loss: 110.242 -51200/69092 Loss: 109.654 -54400/69092 Loss: 110.177 -57600/69092 Loss: 111.492 -60800/69092 Loss: 110.973 -64000/69092 Loss: 114.455 -67200/69092 Loss: 110.318 -Training time 0:01:56.605594 -Epoch: 305 Average loss: 110.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 446) -0/69092 Loss: 109.967 -3200/69092 Loss: 111.850 -6400/69092 Loss: 112.518 -9600/69092 Loss: 110.590 -12800/69092 Loss: 110.210 -16000/69092 Loss: 109.241 -19200/69092 Loss: 110.525 -22400/69092 Loss: 110.654 -25600/69092 Loss: 111.915 -28800/69092 Loss: 111.632 -32000/69092 Loss: 110.208 -35200/69092 Loss: 109.360 -38400/69092 Loss: 110.583 -41600/69092 Loss: 110.789 -44800/69092 Loss: 111.279 -48000/69092 Loss: 110.052 -51200/69092 Loss: 110.062 -54400/69092 Loss: 110.449 -57600/69092 Loss: 110.957 diff --git a/OAR.2068288.stderr b/OAR.2068288.stderr deleted file mode 100644 index 1791261322..0000000000 --- a/OAR.2068288.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068288 KILLED ## diff --git a/OAR.2068288.stdout b/OAR.2068288.stdout deleted file mode 100644 index ede880f175..0000000000 --- a/OAR.2068288.stdout +++ /dev/null @@ -1,3001 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_15 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=30, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=15, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 769185 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last (iter 1)' -0/69092 Loss: 206.887 -3200/69092 Loss: 207.842 -6400/69092 Loss: 208.285 -9600/69092 Loss: 202.771 -12800/69092 Loss: 200.673 -16000/69092 Loss: 204.444 -19200/69092 Loss: 200.745 -22400/69092 Loss: 196.177 -25600/69092 Loss: 196.550 -28800/69092 Loss: 196.250 -32000/69092 Loss: 193.874 -35200/69092 Loss: 190.245 -38400/69092 Loss: 194.581 -41600/69092 Loss: 192.099 -44800/69092 Loss: 192.691 -48000/69092 Loss: 187.078 -51200/69092 Loss: 190.474 -54400/69092 Loss: 187.622 -57600/69092 Loss: 183.145 -60800/69092 Loss: 187.360 -64000/69092 Loss: 180.957 -67200/69092 Loss: 182.479 -Training time 0:05:05.562599 -Epoch: 1 Average loss: 193.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 2) -0/69092 Loss: 170.944 -3200/69092 Loss: 181.493 -6400/69092 Loss: 178.386 -9600/69092 Loss: 180.497 -12800/69092 Loss: 178.568 -16000/69092 Loss: 176.458 -19200/69092 Loss: 182.626 -22400/69092 Loss: 177.960 -25600/69092 Loss: 174.158 -28800/69092 Loss: 180.979 -32000/69092 Loss: 175.474 -35200/69092 Loss: 173.373 -38400/69092 Loss: 175.485 -41600/69092 Loss: 172.948 -44800/69092 Loss: 174.871 -48000/69092 Loss: 173.946 -51200/69092 Loss: 174.915 -54400/69092 Loss: 172.485 -57600/69092 Loss: 174.387 -60800/69092 Loss: 173.445 -64000/69092 Loss: 171.097 -67200/69092 Loss: 171.948 -Training time 0:05:04.217780 -Epoch: 2 Average loss: 175.77 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 3) -0/69092 Loss: 166.616 -3200/69092 Loss: 174.563 -6400/69092 Loss: 169.681 -9600/69092 Loss: 169.392 -12800/69092 Loss: 169.089 -16000/69092 Loss: 169.595 -19200/69092 Loss: 169.412 -22400/69092 Loss: 171.284 -25600/69092 Loss: 168.897 -28800/69092 Loss: 165.861 -32000/69092 Loss: 164.709 -35200/69092 Loss: 166.149 -38400/69092 Loss: 167.966 -41600/69092 Loss: 167.646 -44800/69092 Loss: 168.247 -48000/69092 Loss: 165.073 -51200/69092 Loss: 165.861 -54400/69092 Loss: 166.124 -57600/69092 Loss: 171.008 -60800/69092 Loss: 166.149 -64000/69092 Loss: 172.057 -67200/69092 Loss: 165.177 -Training time 0:05:12.167257 -Epoch: 3 Average loss: 168.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 4) -0/69092 Loss: 165.766 -3200/69092 Loss: 163.782 -6400/69092 Loss: 165.200 -9600/69092 Loss: 166.316 -12800/69092 Loss: 165.267 -16000/69092 Loss: 166.998 -19200/69092 Loss: 169.749 -22400/69092 Loss: 164.441 -25600/69092 Loss: 162.002 -28800/69092 Loss: 161.511 -32000/69092 Loss: 165.594 -35200/69092 Loss: 165.813 -38400/69092 Loss: 163.929 -41600/69092 Loss: 165.160 -44800/69092 Loss: 166.075 -48000/69092 Loss: 167.417 -51200/69092 Loss: 162.397 -54400/69092 Loss: 163.676 -57600/69092 Loss: 162.870 -60800/69092 Loss: 166.312 -64000/69092 Loss: 163.025 -67200/69092 Loss: 162.398 -Training time 0:05:07.147008 -Epoch: 4 Average loss: 164.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 5) -0/69092 Loss: 153.476 -3200/69092 Loss: 159.726 -6400/69092 Loss: 165.582 -9600/69092 Loss: 161.601 -12800/69092 Loss: 162.702 -16000/69092 Loss: 164.992 -19200/69092 Loss: 166.401 -22400/69092 Loss: 163.438 -25600/69092 Loss: 159.738 -28800/69092 Loss: 161.781 -32000/69092 Loss: 164.914 -35200/69092 Loss: 165.694 -38400/69092 Loss: 163.410 -41600/69092 Loss: 162.084 -44800/69092 Loss: 160.367 -48000/69092 Loss: 161.416 -51200/69092 Loss: 160.890 -54400/69092 Loss: 166.457 -57600/69092 Loss: 164.688 -60800/69092 Loss: 164.736 -64000/69092 Loss: 164.117 -67200/69092 Loss: 164.351 -Training time 0:05:06.414312 -Epoch: 5 Average loss: 163.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 6) -0/69092 Loss: 189.969 -3200/69092 Loss: 164.013 -6400/69092 Loss: 161.849 -9600/69092 Loss: 162.317 -12800/69092 Loss: 162.261 -16000/69092 Loss: 160.441 -19200/69092 Loss: 162.060 -22400/69092 Loss: 162.608 -25600/69092 Loss: 162.462 -28800/69092 Loss: 162.498 -32000/69092 Loss: 160.510 -35200/69092 Loss: 165.184 -38400/69092 Loss: 162.527 -41600/69092 Loss: 162.811 -44800/69092 Loss: 159.004 -48000/69092 Loss: 162.282 -51200/69092 Loss: 164.850 -54400/69092 Loss: 159.039 -57600/69092 Loss: 160.952 -60800/69092 Loss: 158.907 -64000/69092 Loss: 160.586 -67200/69092 Loss: 159.604 -Training time 0:04:58.356152 -Epoch: 6 Average loss: 161.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 7) -0/69092 Loss: 163.107 -3200/69092 Loss: 159.555 -6400/69092 Loss: 160.722 -9600/69092 Loss: 160.986 -12800/69092 Loss: 161.709 -16000/69092 Loss: 161.245 -19200/69092 Loss: 162.102 -22400/69092 Loss: 160.872 -25600/69092 Loss: 159.378 -28800/69092 Loss: 163.367 -32000/69092 Loss: 160.811 -35200/69092 Loss: 162.435 -38400/69092 Loss: 159.574 -41600/69092 Loss: 160.831 -44800/69092 Loss: 161.828 -48000/69092 Loss: 158.710 -51200/69092 Loss: 158.553 -54400/69092 Loss: 159.628 -57600/69092 Loss: 160.123 -60800/69092 Loss: 158.915 -64000/69092 Loss: 161.189 -67200/69092 Loss: 163.030 -Training time 0:05:01.055401 -Epoch: 7 Average loss: 160.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 8) -0/69092 Loss: 174.514 -3200/69092 Loss: 161.884 -6400/69092 Loss: 161.307 -9600/69092 Loss: 163.065 -12800/69092 Loss: 161.624 -16000/69092 Loss: 161.000 -19200/69092 Loss: 161.357 -22400/69092 Loss: 158.717 -25600/69092 Loss: 160.997 -28800/69092 Loss: 158.610 -32000/69092 Loss: 160.508 -35200/69092 Loss: 160.528 -38400/69092 Loss: 159.435 -41600/69092 Loss: 160.706 -44800/69092 Loss: 159.112 -48000/69092 Loss: 158.584 -51200/69092 Loss: 161.281 -54400/69092 Loss: 158.506 -57600/69092 Loss: 155.892 -60800/69092 Loss: 159.104 -64000/69092 Loss: 159.219 -67200/69092 Loss: 159.272 -Training time 0:05:04.411575 -Epoch: 8 Average loss: 160.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 9) -0/69092 Loss: 151.763 -3200/69092 Loss: 156.918 -6400/69092 Loss: 158.726 -9600/69092 Loss: 158.688 -12800/69092 Loss: 159.796 -16000/69092 Loss: 161.199 -19200/69092 Loss: 160.557 -22400/69092 Loss: 155.504 -25600/69092 Loss: 158.230 -28800/69092 Loss: 159.681 -32000/69092 Loss: 163.094 -35200/69092 Loss: 159.575 -38400/69092 Loss: 158.562 -41600/69092 Loss: 159.907 -44800/69092 Loss: 158.514 -48000/69092 Loss: 157.097 -51200/69092 Loss: 157.089 -54400/69092 Loss: 160.598 -57600/69092 Loss: 161.355 -60800/69092 Loss: 159.777 -64000/69092 Loss: 160.242 -67200/69092 Loss: 158.511 -Training time 0:04:58.204644 -Epoch: 9 Average loss: 159.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 10) -0/69092 Loss: 134.625 -3200/69092 Loss: 157.098 -6400/69092 Loss: 159.415 -9600/69092 Loss: 156.766 -12800/69092 Loss: 159.311 -16000/69092 Loss: 156.983 -19200/69092 Loss: 158.991 -22400/69092 Loss: 162.854 -25600/69092 Loss: 158.652 -28800/69092 Loss: 156.597 -32000/69092 Loss: 162.327 -35200/69092 Loss: 159.612 -38400/69092 Loss: 160.586 -41600/69092 Loss: 157.079 -44800/69092 Loss: 156.920 -48000/69092 Loss: 161.475 -51200/69092 Loss: 157.764 -54400/69092 Loss: 157.025 -57600/69092 Loss: 156.038 -60800/69092 Loss: 157.571 -64000/69092 Loss: 158.655 -67200/69092 Loss: 156.811 -Training time 0:04:59.827318 -Epoch: 10 Average loss: 158.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 11) -0/69092 Loss: 159.620 -3200/69092 Loss: 157.281 -6400/69092 Loss: 159.662 -9600/69092 Loss: 157.641 -12800/69092 Loss: 159.027 -16000/69092 Loss: 154.571 -19200/69092 Loss: 157.737 -22400/69092 Loss: 155.758 -25600/69092 Loss: 158.316 -28800/69092 Loss: 157.215 -32000/69092 Loss: 159.709 -35200/69092 Loss: 157.757 -38400/69092 Loss: 161.319 -41600/69092 Loss: 161.856 -44800/69092 Loss: 159.194 -48000/69092 Loss: 156.638 -51200/69092 Loss: 159.944 -54400/69092 Loss: 156.483 -57600/69092 Loss: 158.072 -60800/69092 Loss: 160.427 -64000/69092 Loss: 158.403 -67200/69092 Loss: 157.545 -Training time 0:05:07.402879 -Epoch: 11 Average loss: 158.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 12) -0/69092 Loss: 154.575 -3200/69092 Loss: 155.621 -6400/69092 Loss: 159.010 -9600/69092 Loss: 157.663 -12800/69092 Loss: 156.741 -16000/69092 Loss: 160.086 -19200/69092 Loss: 159.133 -22400/69092 Loss: 158.643 -25600/69092 Loss: 157.256 -28800/69092 Loss: 158.074 -32000/69092 Loss: 157.626 -35200/69092 Loss: 160.211 -38400/69092 Loss: 158.422 -41600/69092 Loss: 156.553 -44800/69092 Loss: 156.754 -48000/69092 Loss: 155.479 -51200/69092 Loss: 156.734 -54400/69092 Loss: 161.558 -57600/69092 Loss: 158.854 -60800/69092 Loss: 157.962 -64000/69092 Loss: 157.696 -67200/69092 Loss: 155.864 -Training time 0:04:57.898314 -Epoch: 12 Average loss: 157.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 13) -0/69092 Loss: 198.587 -3200/69092 Loss: 156.337 -6400/69092 Loss: 157.083 -9600/69092 Loss: 158.551 -12800/69092 Loss: 155.835 -16000/69092 Loss: 159.414 -19200/69092 Loss: 156.997 -22400/69092 Loss: 156.781 -25600/69092 Loss: 157.049 -28800/69092 Loss: 159.597 -32000/69092 Loss: 158.982 -35200/69092 Loss: 156.480 -38400/69092 Loss: 157.809 -41600/69092 Loss: 157.435 -44800/69092 Loss: 155.803 -48000/69092 Loss: 157.486 -51200/69092 Loss: 159.577 -54400/69092 Loss: 156.059 -57600/69092 Loss: 155.216 -60800/69092 Loss: 157.501 -64000/69092 Loss: 159.789 -67200/69092 Loss: 157.693 -Training time 0:05:00.335381 -Epoch: 13 Average loss: 157.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 14) -0/69092 Loss: 171.126 -3200/69092 Loss: 158.834 -6400/69092 Loss: 158.648 -9600/69092 Loss: 156.490 -12800/69092 Loss: 156.551 -16000/69092 Loss: 155.481 -19200/69092 Loss: 158.480 -22400/69092 Loss: 157.740 -25600/69092 Loss: 156.230 -28800/69092 Loss: 155.460 -32000/69092 Loss: 158.201 -35200/69092 Loss: 157.160 -38400/69092 Loss: 155.383 -41600/69092 Loss: 157.695 -44800/69092 Loss: 158.694 -48000/69092 Loss: 158.045 -51200/69092 Loss: 159.016 -54400/69092 Loss: 158.704 -57600/69092 Loss: 158.473 -60800/69092 Loss: 155.494 -64000/69092 Loss: 157.108 -67200/69092 Loss: 154.708 -Training time 0:05:01.352674 -Epoch: 14 Average loss: 157.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 15) -0/69092 Loss: 158.885 -3200/69092 Loss: 159.121 -6400/69092 Loss: 156.716 -9600/69092 Loss: 155.387 -12800/69092 Loss: 154.486 -16000/69092 Loss: 155.538 -19200/69092 Loss: 159.955 -22400/69092 Loss: 157.290 -25600/69092 Loss: 155.298 -28800/69092 Loss: 157.796 -32000/69092 Loss: 155.302 -35200/69092 Loss: 158.811 -38400/69092 Loss: 157.280 -41600/69092 Loss: 155.210 -44800/69092 Loss: 160.083 -48000/69092 Loss: 154.914 -51200/69092 Loss: 154.685 -54400/69092 Loss: 160.132 -57600/69092 Loss: 157.141 -60800/69092 Loss: 156.621 -64000/69092 Loss: 156.775 -67200/69092 Loss: 159.171 -Training time 0:04:56.771282 -Epoch: 15 Average loss: 156.98 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 16) -0/69092 Loss: 180.610 -3200/69092 Loss: 158.926 -6400/69092 Loss: 157.400 -9600/69092 Loss: 154.938 -12800/69092 Loss: 158.403 -16000/69092 Loss: 156.749 -19200/69092 Loss: 154.579 -22400/69092 Loss: 156.441 -25600/69092 Loss: 155.450 -28800/69092 Loss: 155.572 -32000/69092 Loss: 155.950 -35200/69092 Loss: 155.745 -38400/69092 Loss: 156.225 -41600/69092 Loss: 156.569 -44800/69092 Loss: 157.336 -48000/69092 Loss: 156.346 -51200/69092 Loss: 156.521 -54400/69092 Loss: 156.633 -57600/69092 Loss: 156.478 -60800/69092 Loss: 157.656 -64000/69092 Loss: 157.980 -67200/69092 Loss: 156.007 -Training time 0:04:57.181037 -Epoch: 16 Average loss: 156.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 17) -0/69092 Loss: 166.976 -3200/69092 Loss: 155.996 -6400/69092 Loss: 156.284 -9600/69092 Loss: 157.531 -12800/69092 Loss: 157.001 -16000/69092 Loss: 156.033 -19200/69092 Loss: 156.092 -22400/69092 Loss: 155.495 -25600/69092 Loss: 154.071 -28800/69092 Loss: 158.731 -32000/69092 Loss: 155.976 -35200/69092 Loss: 158.330 -38400/69092 Loss: 157.550 -41600/69092 Loss: 153.981 -44800/69092 Loss: 156.093 -48000/69092 Loss: 155.275 -51200/69092 Loss: 156.546 -54400/69092 Loss: 157.030 -57600/69092 Loss: 158.271 -60800/69092 Loss: 157.585 -64000/69092 Loss: 157.200 -67200/69092 Loss: 157.208 -Training time 0:05:09.402899 -Epoch: 17 Average loss: 156.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 18) -0/69092 Loss: 138.008 -3200/69092 Loss: 155.972 -6400/69092 Loss: 155.708 -9600/69092 Loss: 157.606 -12800/69092 Loss: 158.033 -16000/69092 Loss: 155.677 -19200/69092 Loss: 155.332 -22400/69092 Loss: 159.563 -25600/69092 Loss: 154.693 -28800/69092 Loss: 153.843 -32000/69092 Loss: 154.891 -35200/69092 Loss: 152.642 -38400/69092 Loss: 158.392 -41600/69092 Loss: 156.441 -44800/69092 Loss: 156.736 -48000/69092 Loss: 153.157 -51200/69092 Loss: 158.228 -54400/69092 Loss: 157.247 -57600/69092 Loss: 156.135 -60800/69092 Loss: 156.527 -64000/69092 Loss: 157.145 -67200/69092 Loss: 157.334 -Training time 0:05:11.412854 -Epoch: 18 Average loss: 156.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 19) -0/69092 Loss: 175.512 -3200/69092 Loss: 159.676 -6400/69092 Loss: 155.888 -9600/69092 Loss: 155.238 -12800/69092 Loss: 154.457 -16000/69092 Loss: 157.052 -19200/69092 Loss: 154.044 -22400/69092 Loss: 158.530 -25600/69092 Loss: 155.509 -28800/69092 Loss: 154.811 -32000/69092 Loss: 156.581 -35200/69092 Loss: 157.237 -38400/69092 Loss: 155.297 -41600/69092 Loss: 153.913 -44800/69092 Loss: 154.750 -48000/69092 Loss: 153.670 -51200/69092 Loss: 157.841 -54400/69092 Loss: 156.308 -57600/69092 Loss: 153.487 -60800/69092 Loss: 157.768 -64000/69092 Loss: 154.807 -67200/69092 Loss: 154.463 -Training time 0:05:10.181806 -Epoch: 19 Average loss: 155.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 20) -0/69092 Loss: 149.774 -3200/69092 Loss: 156.927 -6400/69092 Loss: 155.198 -9600/69092 Loss: 155.500 -12800/69092 Loss: 158.390 -16000/69092 Loss: 153.901 -19200/69092 Loss: 157.590 -22400/69092 Loss: 156.058 -25600/69092 Loss: 155.266 -28800/69092 Loss: 157.283 -32000/69092 Loss: 158.147 -35200/69092 Loss: 156.172 -38400/69092 Loss: 154.989 -41600/69092 Loss: 154.753 -44800/69092 Loss: 155.295 -48000/69092 Loss: 156.432 -51200/69092 Loss: 154.009 -54400/69092 Loss: 155.243 -57600/69092 Loss: 157.107 -60800/69092 Loss: 157.627 -64000/69092 Loss: 155.015 -67200/69092 Loss: 153.090 -Training time 0:05:18.014695 -Epoch: 20 Average loss: 155.87 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 21) -0/69092 Loss: 156.897 -3200/69092 Loss: 152.205 -6400/69092 Loss: 157.276 -9600/69092 Loss: 157.334 -12800/69092 Loss: 155.175 -16000/69092 Loss: 156.639 -19200/69092 Loss: 156.498 -22400/69092 Loss: 156.934 -25600/69092 Loss: 155.024 -28800/69092 Loss: 155.736 -32000/69092 Loss: 156.889 -35200/69092 Loss: 156.288 -38400/69092 Loss: 156.362 -41600/69092 Loss: 157.268 -44800/69092 Loss: 153.435 -48000/69092 Loss: 156.287 -51200/69092 Loss: 154.534 -54400/69092 Loss: 155.425 -57600/69092 Loss: 155.554 -60800/69092 Loss: 155.930 -64000/69092 Loss: 156.817 -67200/69092 Loss: 156.358 -Training time 0:05:00.028455 -Epoch: 21 Average loss: 155.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 22) -0/69092 Loss: 166.798 -3200/69092 Loss: 155.961 -6400/69092 Loss: 157.307 -9600/69092 Loss: 155.340 -12800/69092 Loss: 154.392 -16000/69092 Loss: 152.580 -19200/69092 Loss: 157.830 -22400/69092 Loss: 155.235 -25600/69092 Loss: 157.458 -28800/69092 Loss: 155.417 -32000/69092 Loss: 155.424 -35200/69092 Loss: 154.403 -38400/69092 Loss: 156.144 -41600/69092 Loss: 158.808 -44800/69092 Loss: 157.301 -48000/69092 Loss: 155.940 -51200/69092 Loss: 152.464 -54400/69092 Loss: 155.455 -57600/69092 Loss: 154.166 -60800/69092 Loss: 154.344 -64000/69092 Loss: 153.303 -67200/69092 Loss: 156.709 -Training time 0:05:06.625068 -Epoch: 22 Average loss: 155.57 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 23) -0/69092 Loss: 153.292 -3200/69092 Loss: 155.550 -6400/69092 Loss: 154.465 -9600/69092 Loss: 154.747 -12800/69092 Loss: 156.483 -16000/69092 Loss: 154.716 -19200/69092 Loss: 154.990 -22400/69092 Loss: 158.698 -25600/69092 Loss: 153.843 -28800/69092 Loss: 157.427 -32000/69092 Loss: 155.258 -35200/69092 Loss: 156.867 -38400/69092 Loss: 155.848 -41600/69092 Loss: 154.291 -44800/69092 Loss: 155.653 -48000/69092 Loss: 153.495 -51200/69092 Loss: 156.850 -54400/69092 Loss: 153.608 -57600/69092 Loss: 156.122 -60800/69092 Loss: 155.608 -64000/69092 Loss: 153.933 -67200/69092 Loss: 156.125 -Training time 0:05:02.092503 -Epoch: 23 Average loss: 155.32 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 24) -0/69092 Loss: 148.688 -3200/69092 Loss: 157.104 -6400/69092 Loss: 155.251 -9600/69092 Loss: 157.003 -12800/69092 Loss: 153.265 -16000/69092 Loss: 157.457 -19200/69092 Loss: 157.067 -22400/69092 Loss: 155.820 -25600/69092 Loss: 157.289 -28800/69092 Loss: 154.638 -32000/69092 Loss: 154.275 -35200/69092 Loss: 153.192 -38400/69092 Loss: 154.359 -41600/69092 Loss: 153.652 -44800/69092 Loss: 154.943 -48000/69092 Loss: 154.444 -51200/69092 Loss: 153.575 -54400/69092 Loss: 155.056 -57600/69092 Loss: 156.695 -60800/69092 Loss: 156.227 -64000/69092 Loss: 150.975 -67200/69092 Loss: 158.196 -Training time 0:05:02.910400 -Epoch: 24 Average loss: 155.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 25) -0/69092 Loss: 151.762 -3200/69092 Loss: 155.785 -6400/69092 Loss: 154.801 -9600/69092 Loss: 153.452 -12800/69092 Loss: 154.596 -16000/69092 Loss: 155.320 -19200/69092 Loss: 154.723 -22400/69092 Loss: 151.396 -25600/69092 Loss: 155.391 -28800/69092 Loss: 153.849 -32000/69092 Loss: 154.842 -35200/69092 Loss: 156.054 -38400/69092 Loss: 153.651 -41600/69092 Loss: 157.530 -44800/69092 Loss: 153.593 -48000/69092 Loss: 156.526 -51200/69092 Loss: 158.754 -54400/69092 Loss: 154.276 -57600/69092 Loss: 152.490 -60800/69092 Loss: 156.267 -64000/69092 Loss: 156.384 -67200/69092 Loss: 153.558 -Training time 0:05:08.903150 -Epoch: 25 Average loss: 154.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 26) -0/69092 Loss: 145.520 -3200/69092 Loss: 154.470 -6400/69092 Loss: 157.175 -9600/69092 Loss: 153.897 -12800/69092 Loss: 155.593 -16000/69092 Loss: 155.791 -19200/69092 Loss: 154.346 -22400/69092 Loss: 153.382 -25600/69092 Loss: 157.153 -28800/69092 Loss: 155.913 -32000/69092 Loss: 151.357 -35200/69092 Loss: 153.224 -38400/69092 Loss: 155.464 -41600/69092 Loss: 155.946 -44800/69092 Loss: 155.148 -48000/69092 Loss: 155.896 -51200/69092 Loss: 153.044 -54400/69092 Loss: 151.947 -57600/69092 Loss: 154.547 -60800/69092 Loss: 153.721 -64000/69092 Loss: 155.764 -67200/69092 Loss: 155.832 -Training time 0:05:02.145435 -Epoch: 26 Average loss: 154.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 27) -0/69092 Loss: 145.025 -3200/69092 Loss: 155.914 -6400/69092 Loss: 154.117 -9600/69092 Loss: 154.782 -12800/69092 Loss: 156.164 -16000/69092 Loss: 158.107 -19200/69092 Loss: 150.796 -22400/69092 Loss: 155.807 -25600/69092 Loss: 156.047 -28800/69092 Loss: 154.962 -32000/69092 Loss: 155.689 -35200/69092 Loss: 155.341 -38400/69092 Loss: 154.023 -41600/69092 Loss: 154.776 -44800/69092 Loss: 158.038 -48000/69092 Loss: 156.683 -51200/69092 Loss: 154.205 -54400/69092 Loss: 155.036 -57600/69092 Loss: 154.203 -60800/69092 Loss: 153.761 -64000/69092 Loss: 152.981 -67200/69092 Loss: 153.593 -Training time 0:05:04.721903 -Epoch: 27 Average loss: 154.92 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 28) -0/69092 Loss: 142.085 -3200/69092 Loss: 156.566 -6400/69092 Loss: 154.072 -9600/69092 Loss: 155.197 -12800/69092 Loss: 155.686 -16000/69092 Loss: 155.226 -19200/69092 Loss: 155.577 -22400/69092 Loss: 156.916 -25600/69092 Loss: 153.739 -28800/69092 Loss: 156.855 -32000/69092 Loss: 156.404 -35200/69092 Loss: 154.426 -38400/69092 Loss: 153.957 -41600/69092 Loss: 153.818 -44800/69092 Loss: 151.411 -48000/69092 Loss: 155.809 -51200/69092 Loss: 155.386 -54400/69092 Loss: 155.290 -57600/69092 Loss: 156.896 -60800/69092 Loss: 155.407 -64000/69092 Loss: 154.888 -67200/69092 Loss: 155.350 -Training time 0:05:03.047716 -Epoch: 28 Average loss: 155.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 29) -0/69092 Loss: 151.373 -3200/69092 Loss: 153.773 -6400/69092 Loss: 156.066 -9600/69092 Loss: 156.678 -12800/69092 Loss: 153.829 -16000/69092 Loss: 155.105 -19200/69092 Loss: 155.393 -22400/69092 Loss: 152.258 -25600/69092 Loss: 154.484 -28800/69092 Loss: 157.004 -32000/69092 Loss: 154.659 -35200/69092 Loss: 153.899 -38400/69092 Loss: 153.183 -41600/69092 Loss: 154.263 -44800/69092 Loss: 155.750 -48000/69092 Loss: 156.017 -51200/69092 Loss: 156.395 -54400/69092 Loss: 152.766 -57600/69092 Loss: 154.067 -60800/69092 Loss: 154.765 -64000/69092 Loss: 158.121 -67200/69092 Loss: 153.901 -Training time 0:05:03.827168 -Epoch: 29 Average loss: 154.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 30) -0/69092 Loss: 161.455 -3200/69092 Loss: 156.467 -6400/69092 Loss: 153.161 -9600/69092 Loss: 153.883 -12800/69092 Loss: 156.245 -16000/69092 Loss: 152.822 -19200/69092 Loss: 154.706 -22400/69092 Loss: 155.953 -25600/69092 Loss: 153.495 -28800/69092 Loss: 154.108 -32000/69092 Loss: 155.972 -35200/69092 Loss: 152.512 -38400/69092 Loss: 153.367 -41600/69092 Loss: 154.328 -44800/69092 Loss: 154.372 -48000/69092 Loss: 153.476 -51200/69092 Loss: 155.928 -54400/69092 Loss: 154.817 -57600/69092 Loss: 156.931 -60800/69092 Loss: 154.815 -64000/69092 Loss: 152.635 -67200/69092 Loss: 156.441 -Training time 0:05:03.619466 -Epoch: 30 Average loss: 154.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 31) -0/69092 Loss: 163.201 -3200/69092 Loss: 154.643 -6400/69092 Loss: 154.043 -9600/69092 Loss: 154.239 -12800/69092 Loss: 158.436 -16000/69092 Loss: 156.100 -19200/69092 Loss: 153.272 -22400/69092 Loss: 154.454 -25600/69092 Loss: 155.075 -28800/69092 Loss: 155.023 -32000/69092 Loss: 156.125 -35200/69092 Loss: 155.432 -38400/69092 Loss: 153.544 -41600/69092 Loss: 154.850 -44800/69092 Loss: 154.166 -48000/69092 Loss: 154.606 -51200/69092 Loss: 153.678 -54400/69092 Loss: 154.670 -57600/69092 Loss: 153.692 -60800/69092 Loss: 158.491 -64000/69092 Loss: 153.935 -67200/69092 Loss: 151.687 -Training time 0:05:04.037156 -Epoch: 31 Average loss: 154.77 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 32) -0/69092 Loss: 141.922 -3200/69092 Loss: 154.850 -6400/69092 Loss: 153.576 -9600/69092 Loss: 154.580 -12800/69092 Loss: 157.847 -16000/69092 Loss: 156.746 -19200/69092 Loss: 154.366 -22400/69092 Loss: 155.767 -25600/69092 Loss: 153.426 -28800/69092 Loss: 151.863 -32000/69092 Loss: 154.862 -35200/69092 Loss: 155.273 -38400/69092 Loss: 156.388 -41600/69092 Loss: 153.722 -44800/69092 Loss: 153.381 -48000/69092 Loss: 154.076 -51200/69092 Loss: 156.021 -54400/69092 Loss: 152.544 -57600/69092 Loss: 152.952 -60800/69092 Loss: 153.821 -64000/69092 Loss: 154.748 -67200/69092 Loss: 152.921 -Training time 0:05:06.533599 -Epoch: 32 Average loss: 154.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 33) -0/69092 Loss: 147.477 -3200/69092 Loss: 154.419 -6400/69092 Loss: 151.117 -9600/69092 Loss: 153.667 -12800/69092 Loss: 152.558 -16000/69092 Loss: 152.046 -19200/69092 Loss: 157.615 -22400/69092 Loss: 157.424 -25600/69092 Loss: 153.632 -28800/69092 Loss: 153.371 -32000/69092 Loss: 155.240 -35200/69092 Loss: 153.214 -38400/69092 Loss: 154.187 -41600/69092 Loss: 152.769 -44800/69092 Loss: 154.383 -48000/69092 Loss: 156.063 -51200/69092 Loss: 153.722 -54400/69092 Loss: 155.292 -57600/69092 Loss: 155.070 -60800/69092 Loss: 155.242 -64000/69092 Loss: 154.664 -67200/69092 Loss: 153.232 -Training time 0:05:06.860989 -Epoch: 33 Average loss: 154.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 34) -0/69092 Loss: 150.105 -3200/69092 Loss: 154.872 -6400/69092 Loss: 153.334 -9600/69092 Loss: 153.557 -12800/69092 Loss: 157.195 -16000/69092 Loss: 154.167 -19200/69092 Loss: 153.944 -22400/69092 Loss: 153.382 -25600/69092 Loss: 153.936 -28800/69092 Loss: 154.048 -32000/69092 Loss: 151.582 -35200/69092 Loss: 150.827 -38400/69092 Loss: 152.395 -41600/69092 Loss: 155.515 -44800/69092 Loss: 154.176 -48000/69092 Loss: 155.271 -51200/69092 Loss: 154.451 -54400/69092 Loss: 155.946 -57600/69092 Loss: 158.292 -60800/69092 Loss: 153.092 -64000/69092 Loss: 154.001 -67200/69092 Loss: 153.687 -Training time 0:05:02.044776 -Epoch: 34 Average loss: 154.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 35) -0/69092 Loss: 154.792 -3200/69092 Loss: 153.265 -6400/69092 Loss: 152.430 -9600/69092 Loss: 155.663 -12800/69092 Loss: 153.035 -16000/69092 Loss: 152.774 -19200/69092 Loss: 153.099 -22400/69092 Loss: 153.285 -25600/69092 Loss: 154.487 -28800/69092 Loss: 155.288 -32000/69092 Loss: 155.312 -35200/69092 Loss: 151.985 -38400/69092 Loss: 153.029 -41600/69092 Loss: 153.710 -44800/69092 Loss: 154.096 -48000/69092 Loss: 152.608 -51200/69092 Loss: 153.097 -54400/69092 Loss: 157.047 -57600/69092 Loss: 155.492 -60800/69092 Loss: 155.266 -64000/69092 Loss: 155.379 -67200/69092 Loss: 156.074 -Training time 0:05:01.698349 -Epoch: 35 Average loss: 154.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 36) -0/69092 Loss: 147.266 -3200/69092 Loss: 154.854 -6400/69092 Loss: 156.191 -9600/69092 Loss: 153.243 -12800/69092 Loss: 155.336 -16000/69092 Loss: 156.092 -19200/69092 Loss: 153.358 -22400/69092 Loss: 154.779 -25600/69092 Loss: 151.964 -28800/69092 Loss: 152.475 -32000/69092 Loss: 155.118 -35200/69092 Loss: 153.731 -38400/69092 Loss: 153.870 -41600/69092 Loss: 153.622 -44800/69092 Loss: 153.203 -48000/69092 Loss: 153.439 -51200/69092 Loss: 153.529 -54400/69092 Loss: 153.085 -57600/69092 Loss: 151.578 -60800/69092 Loss: 157.822 -64000/69092 Loss: 153.030 -67200/69092 Loss: 153.405 -Training time 0:04:58.065118 -Epoch: 36 Average loss: 153.96 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 37) -0/69092 Loss: 144.321 -3200/69092 Loss: 152.110 -6400/69092 Loss: 154.992 -9600/69092 Loss: 154.468 -12800/69092 Loss: 154.868 -16000/69092 Loss: 153.470 -19200/69092 Loss: 151.740 -22400/69092 Loss: 151.488 -25600/69092 Loss: 155.486 -28800/69092 Loss: 154.514 -32000/69092 Loss: 155.513 -35200/69092 Loss: 156.860 -38400/69092 Loss: 152.545 -41600/69092 Loss: 150.724 -44800/69092 Loss: 156.680 -48000/69092 Loss: 154.619 -51200/69092 Loss: 153.913 -54400/69092 Loss: 154.099 -57600/69092 Loss: 156.039 -60800/69092 Loss: 154.873 -64000/69092 Loss: 153.594 -67200/69092 Loss: 153.795 -Training time 0:05:08.408368 -Epoch: 37 Average loss: 154.07 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 38) -0/69092 Loss: 151.149 -3200/69092 Loss: 154.316 -6400/69092 Loss: 153.311 -9600/69092 Loss: 152.132 -12800/69092 Loss: 156.712 -16000/69092 Loss: 155.304 -19200/69092 Loss: 153.195 -22400/69092 Loss: 154.007 -25600/69092 Loss: 152.999 -28800/69092 Loss: 154.118 -32000/69092 Loss: 155.476 -35200/69092 Loss: 154.149 -38400/69092 Loss: 151.813 -41600/69092 Loss: 153.062 -44800/69092 Loss: 151.518 -48000/69092 Loss: 155.054 -51200/69092 Loss: 156.870 -54400/69092 Loss: 155.662 -57600/69092 Loss: 153.237 -60800/69092 Loss: 153.279 -64000/69092 Loss: 153.719 -67200/69092 Loss: 154.816 -Training time 0:04:59.677722 -Epoch: 38 Average loss: 154.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 39) -0/69092 Loss: 166.044 -3200/69092 Loss: 152.716 -6400/69092 Loss: 156.488 -9600/69092 Loss: 152.505 -12800/69092 Loss: 154.847 -16000/69092 Loss: 153.333 -19200/69092 Loss: 153.921 -22400/69092 Loss: 155.176 -25600/69092 Loss: 156.477 -28800/69092 Loss: 153.947 -32000/69092 Loss: 153.339 -35200/69092 Loss: 153.645 -38400/69092 Loss: 153.167 -41600/69092 Loss: 153.730 -44800/69092 Loss: 153.016 -48000/69092 Loss: 153.397 -51200/69092 Loss: 153.121 -54400/69092 Loss: 156.223 -57600/69092 Loss: 151.676 -60800/69092 Loss: 156.338 -64000/69092 Loss: 152.792 -67200/69092 Loss: 155.497 -Training time 0:05:01.546897 -Epoch: 39 Average loss: 154.07 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 40) -0/69092 Loss: 145.958 -3200/69092 Loss: 153.693 -6400/69092 Loss: 155.230 -9600/69092 Loss: 152.551 -12800/69092 Loss: 152.835 -16000/69092 Loss: 153.111 -19200/69092 Loss: 155.037 -22400/69092 Loss: 150.292 -25600/69092 Loss: 151.004 -28800/69092 Loss: 156.137 -32000/69092 Loss: 154.216 -35200/69092 Loss: 155.649 -38400/69092 Loss: 153.518 -41600/69092 Loss: 158.186 -44800/69092 Loss: 155.724 -48000/69092 Loss: 154.573 -51200/69092 Loss: 151.834 -54400/69092 Loss: 151.491 -57600/69092 Loss: 153.863 -60800/69092 Loss: 153.605 -64000/69092 Loss: 152.668 -67200/69092 Loss: 155.306 -Training time 0:05:06.053928 -Epoch: 40 Average loss: 153.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 41) -0/69092 Loss: 152.745 -3200/69092 Loss: 153.341 -6400/69092 Loss: 152.335 -9600/69092 Loss: 154.571 -12800/69092 Loss: 152.477 -16000/69092 Loss: 153.298 -19200/69092 Loss: 154.614 -22400/69092 Loss: 152.732 -25600/69092 Loss: 152.089 -28800/69092 Loss: 155.235 -32000/69092 Loss: 155.665 -35200/69092 Loss: 155.164 -38400/69092 Loss: 155.002 -41600/69092 Loss: 154.969 -44800/69092 Loss: 155.071 -48000/69092 Loss: 151.430 -51200/69092 Loss: 154.898 -54400/69092 Loss: 153.429 -57600/69092 Loss: 151.567 -60800/69092 Loss: 152.725 -64000/69092 Loss: 152.782 -67200/69092 Loss: 155.043 -Training time 0:05:07.448444 -Epoch: 41 Average loss: 153.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 42) -0/69092 Loss: 147.857 -3200/69092 Loss: 153.241 -6400/69092 Loss: 155.718 -9600/69092 Loss: 153.425 -12800/69092 Loss: 154.952 -16000/69092 Loss: 153.958 -19200/69092 Loss: 153.363 -22400/69092 Loss: 153.638 -25600/69092 Loss: 151.926 -28800/69092 Loss: 153.577 -32000/69092 Loss: 152.298 -35200/69092 Loss: 153.688 -38400/69092 Loss: 154.614 -41600/69092 Loss: 154.486 -44800/69092 Loss: 157.781 -48000/69092 Loss: 154.365 -51200/69092 Loss: 155.802 -54400/69092 Loss: 152.274 -57600/69092 Loss: 152.661 -60800/69092 Loss: 153.740 -64000/69092 Loss: 153.539 -67200/69092 Loss: 155.345 -Training time 0:05:08.560162 -Epoch: 42 Average loss: 153.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 43) -0/69092 Loss: 171.613 -3200/69092 Loss: 149.764 -6400/69092 Loss: 151.743 -9600/69092 Loss: 154.044 -12800/69092 Loss: 156.217 -16000/69092 Loss: 153.436 -19200/69092 Loss: 152.853 -22400/69092 Loss: 153.352 -25600/69092 Loss: 154.759 -28800/69092 Loss: 155.015 -32000/69092 Loss: 152.561 -35200/69092 Loss: 154.654 -38400/69092 Loss: 151.119 -41600/69092 Loss: 152.056 -44800/69092 Loss: 152.853 -48000/69092 Loss: 154.311 -51200/69092 Loss: 153.144 -54400/69092 Loss: 155.307 -57600/69092 Loss: 155.020 -60800/69092 Loss: 156.720 -64000/69092 Loss: 152.289 -67200/69092 Loss: 153.449 -Training time 0:05:04.432898 -Epoch: 43 Average loss: 153.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 44) -0/69092 Loss: 170.133 -3200/69092 Loss: 152.235 -6400/69092 Loss: 152.641 -9600/69092 Loss: 155.498 -12800/69092 Loss: 154.923 -16000/69092 Loss: 152.892 -19200/69092 Loss: 152.627 -22400/69092 Loss: 151.357 -25600/69092 Loss: 152.230 -28800/69092 Loss: 154.684 -32000/69092 Loss: 154.487 -35200/69092 Loss: 152.331 -38400/69092 Loss: 152.898 -41600/69092 Loss: 151.549 -44800/69092 Loss: 156.044 -48000/69092 Loss: 153.885 -51200/69092 Loss: 151.917 -54400/69092 Loss: 153.655 -57600/69092 Loss: 154.280 -60800/69092 Loss: 152.941 -64000/69092 Loss: 155.576 -67200/69092 Loss: 155.964 -Training time 0:05:04.038218 -Epoch: 44 Average loss: 153.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 45) -0/69092 Loss: 156.539 -3200/69092 Loss: 151.731 -6400/69092 Loss: 152.422 -9600/69092 Loss: 153.158 -12800/69092 Loss: 153.571 -16000/69092 Loss: 151.715 -19200/69092 Loss: 155.852 -22400/69092 Loss: 152.424 -25600/69092 Loss: 154.561 -28800/69092 Loss: 153.384 -32000/69092 Loss: 153.394 -35200/69092 Loss: 154.395 -38400/69092 Loss: 155.487 -41600/69092 Loss: 153.853 -44800/69092 Loss: 152.225 -48000/69092 Loss: 152.628 -51200/69092 Loss: 155.227 -54400/69092 Loss: 152.513 -57600/69092 Loss: 154.089 -60800/69092 Loss: 152.235 -64000/69092 Loss: 155.785 -67200/69092 Loss: 152.158 -Training time 0:05:04.734548 -Epoch: 45 Average loss: 153.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 46) -0/69092 Loss: 160.141 -3200/69092 Loss: 153.474 -6400/69092 Loss: 152.989 -9600/69092 Loss: 154.237 -12800/69092 Loss: 152.351 -16000/69092 Loss: 153.528 -19200/69092 Loss: 154.957 -22400/69092 Loss: 151.499 -25600/69092 Loss: 152.737 -28800/69092 Loss: 154.073 -32000/69092 Loss: 152.931 -35200/69092 Loss: 156.743 -38400/69092 Loss: 155.835 -41600/69092 Loss: 154.301 -44800/69092 Loss: 152.964 -48000/69092 Loss: 152.606 -51200/69092 Loss: 153.143 -54400/69092 Loss: 153.386 -57600/69092 Loss: 150.341 -60800/69092 Loss: 154.751 -64000/69092 Loss: 153.371 -67200/69092 Loss: 155.081 -Training time 0:05:05.560478 -Epoch: 46 Average loss: 153.65 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 47) -0/69092 Loss: 159.554 -3200/69092 Loss: 154.737 -6400/69092 Loss: 152.041 -9600/69092 Loss: 154.259 -12800/69092 Loss: 150.843 -16000/69092 Loss: 154.812 -19200/69092 Loss: 153.575 -22400/69092 Loss: 153.562 -25600/69092 Loss: 154.008 -28800/69092 Loss: 153.427 -32000/69092 Loss: 154.091 -35200/69092 Loss: 152.106 -38400/69092 Loss: 158.513 -41600/69092 Loss: 154.801 -44800/69092 Loss: 154.234 -48000/69092 Loss: 154.945 -51200/69092 Loss: 154.535 -54400/69092 Loss: 154.542 -57600/69092 Loss: 153.441 -60800/69092 Loss: 150.218 -64000/69092 Loss: 152.690 -67200/69092 Loss: 152.164 -Training time 0:05:05.756269 -Epoch: 47 Average loss: 153.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 48) -0/69092 Loss: 134.804 -3200/69092 Loss: 153.924 -6400/69092 Loss: 151.148 -9600/69092 Loss: 150.673 -12800/69092 Loss: 155.309 -16000/69092 Loss: 152.124 -19200/69092 Loss: 155.303 -22400/69092 Loss: 151.643 -25600/69092 Loss: 151.390 -28800/69092 Loss: 150.736 -32000/69092 Loss: 156.025 -35200/69092 Loss: 154.392 -38400/69092 Loss: 153.438 -41600/69092 Loss: 152.407 -44800/69092 Loss: 155.137 -48000/69092 Loss: 154.130 -51200/69092 Loss: 153.248 -54400/69092 Loss: 153.686 -57600/69092 Loss: 155.877 -60800/69092 Loss: 152.973 -64000/69092 Loss: 153.756 -67200/69092 Loss: 153.518 -Training time 0:05:10.223096 -Epoch: 48 Average loss: 153.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 49) -0/69092 Loss: 137.311 -3200/69092 Loss: 155.135 -6400/69092 Loss: 153.290 -9600/69092 Loss: 155.428 -12800/69092 Loss: 152.749 -16000/69092 Loss: 153.186 -19200/69092 Loss: 153.337 -22400/69092 Loss: 157.355 -25600/69092 Loss: 154.726 -28800/69092 Loss: 152.976 -32000/69092 Loss: 152.562 -35200/69092 Loss: 153.569 -38400/69092 Loss: 153.438 -41600/69092 Loss: 155.214 -44800/69092 Loss: 152.062 -48000/69092 Loss: 153.686 -51200/69092 Loss: 152.035 -54400/69092 Loss: 155.127 -57600/69092 Loss: 155.570 -60800/69092 Loss: 152.989 -64000/69092 Loss: 151.805 -67200/69092 Loss: 151.512 -Training time 0:05:06.435324 -Epoch: 49 Average loss: 153.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 50) -0/69092 Loss: 176.282 -3200/69092 Loss: 152.492 -6400/69092 Loss: 151.182 -9600/69092 Loss: 153.315 -12800/69092 Loss: 150.967 -16000/69092 Loss: 155.656 -19200/69092 Loss: 154.845 -22400/69092 Loss: 155.301 -25600/69092 Loss: 154.970 -28800/69092 Loss: 152.298 -32000/69092 Loss: 155.756 -35200/69092 Loss: 156.072 -38400/69092 Loss: 154.876 -41600/69092 Loss: 157.088 -44800/69092 Loss: 155.463 -48000/69092 Loss: 153.898 -51200/69092 Loss: 152.215 -54400/69092 Loss: 152.863 -57600/69092 Loss: 153.437 -60800/69092 Loss: 152.373 -64000/69092 Loss: 151.388 -67200/69092 Loss: 150.655 -Training time 0:05:03.710498 -Epoch: 50 Average loss: 153.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 51) -0/69092 Loss: 158.625 -3200/69092 Loss: 154.152 -6400/69092 Loss: 153.690 -9600/69092 Loss: 152.061 -12800/69092 Loss: 154.185 -16000/69092 Loss: 149.322 -19200/69092 Loss: 153.205 -22400/69092 Loss: 154.816 -25600/69092 Loss: 151.939 -28800/69092 Loss: 156.743 -32000/69092 Loss: 153.360 -35200/69092 Loss: 151.926 -38400/69092 Loss: 156.276 -41600/69092 Loss: 155.058 -44800/69092 Loss: 153.286 -48000/69092 Loss: 154.900 -51200/69092 Loss: 151.956 -54400/69092 Loss: 152.775 -57600/69092 Loss: 151.664 -60800/69092 Loss: 152.328 -64000/69092 Loss: 155.246 -67200/69092 Loss: 151.667 -Training time 0:05:04.672720 -Epoch: 51 Average loss: 153.40 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 52) -0/69092 Loss: 156.898 -3200/69092 Loss: 150.986 -6400/69092 Loss: 152.840 -9600/69092 Loss: 151.740 -12800/69092 Loss: 153.018 -16000/69092 Loss: 156.755 -19200/69092 Loss: 154.863 -22400/69092 Loss: 153.028 -25600/69092 Loss: 149.774 -28800/69092 Loss: 153.092 -32000/69092 Loss: 152.882 -35200/69092 Loss: 155.499 -38400/69092 Loss: 152.468 -41600/69092 Loss: 152.468 -44800/69092 Loss: 151.979 -48000/69092 Loss: 153.114 -51200/69092 Loss: 154.031 -54400/69092 Loss: 154.356 -57600/69092 Loss: 154.272 -60800/69092 Loss: 152.246 -64000/69092 Loss: 153.062 -67200/69092 Loss: 153.387 -Training time 0:05:08.002440 -Epoch: 52 Average loss: 153.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 53) -0/69092 Loss: 161.253 -3200/69092 Loss: 155.004 -6400/69092 Loss: 153.371 -9600/69092 Loss: 152.802 -12800/69092 Loss: 152.663 -16000/69092 Loss: 155.737 -19200/69092 Loss: 151.118 -22400/69092 Loss: 154.458 -25600/69092 Loss: 156.289 -28800/69092 Loss: 154.404 -32000/69092 Loss: 150.858 -35200/69092 Loss: 154.569 -38400/69092 Loss: 151.450 -41600/69092 Loss: 153.888 -44800/69092 Loss: 152.719 -48000/69092 Loss: 154.929 -51200/69092 Loss: 152.535 -54400/69092 Loss: 151.346 -57600/69092 Loss: 152.216 -60800/69092 Loss: 153.693 -64000/69092 Loss: 156.593 -67200/69092 Loss: 153.910 -Training time 0:05:06.410454 -Epoch: 53 Average loss: 153.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 54) -0/69092 Loss: 155.533 -3200/69092 Loss: 153.937 -6400/69092 Loss: 155.412 -9600/69092 Loss: 154.931 -12800/69092 Loss: 153.251 -16000/69092 Loss: 152.131 -19200/69092 Loss: 153.399 -22400/69092 Loss: 153.270 -25600/69092 Loss: 154.298 -28800/69092 Loss: 154.523 -32000/69092 Loss: 151.808 -35200/69092 Loss: 153.407 -38400/69092 Loss: 151.423 -41600/69092 Loss: 153.940 -44800/69092 Loss: 155.125 -48000/69092 Loss: 151.519 -51200/69092 Loss: 154.659 -54400/69092 Loss: 153.851 -57600/69092 Loss: 152.930 -60800/69092 Loss: 151.557 -64000/69092 Loss: 152.873 -67200/69092 Loss: 153.245 -Training time 0:05:04.874587 -Epoch: 54 Average loss: 153.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 55) -0/69092 Loss: 164.339 -3200/69092 Loss: 153.000 -6400/69092 Loss: 153.157 -9600/69092 Loss: 151.128 -12800/69092 Loss: 154.678 -16000/69092 Loss: 153.077 -19200/69092 Loss: 151.972 -22400/69092 Loss: 154.141 -25600/69092 Loss: 154.754 -28800/69092 Loss: 153.184 -32000/69092 Loss: 154.772 -35200/69092 Loss: 152.511 -38400/69092 Loss: 153.568 -41600/69092 Loss: 152.005 -44800/69092 Loss: 149.800 -48000/69092 Loss: 152.716 -51200/69092 Loss: 154.639 -54400/69092 Loss: 153.018 -57600/69092 Loss: 154.460 -60800/69092 Loss: 154.754 -64000/69092 Loss: 153.897 -67200/69092 Loss: 152.005 -Training time 0:05:04.064776 -Epoch: 55 Average loss: 153.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 56) -0/69092 Loss: 145.024 -3200/69092 Loss: 154.929 -6400/69092 Loss: 152.530 -9600/69092 Loss: 152.945 -12800/69092 Loss: 155.670 -16000/69092 Loss: 154.351 -19200/69092 Loss: 152.745 -22400/69092 Loss: 155.064 -25600/69092 Loss: 152.553 -28800/69092 Loss: 153.270 -32000/69092 Loss: 152.030 -35200/69092 Loss: 152.364 -38400/69092 Loss: 153.618 -41600/69092 Loss: 153.368 -44800/69092 Loss: 153.049 -48000/69092 Loss: 152.522 -51200/69092 Loss: 154.650 -54400/69092 Loss: 152.192 -57600/69092 Loss: 152.361 -60800/69092 Loss: 155.067 -64000/69092 Loss: 150.842 -67200/69092 Loss: 153.224 -Training time 0:05:05.357819 -Epoch: 56 Average loss: 153.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 57) -0/69092 Loss: 153.625 -3200/69092 Loss: 151.436 -6400/69092 Loss: 152.714 -9600/69092 Loss: 153.801 -12800/69092 Loss: 154.746 -16000/69092 Loss: 154.916 -19200/69092 Loss: 155.349 -22400/69092 Loss: 152.170 -25600/69092 Loss: 153.511 -28800/69092 Loss: 151.470 -32000/69092 Loss: 152.545 -35200/69092 Loss: 155.377 -38400/69092 Loss: 151.887 -41600/69092 Loss: 154.537 -44800/69092 Loss: 154.658 -48000/69092 Loss: 153.163 -51200/69092 Loss: 152.460 -54400/69092 Loss: 152.746 -57600/69092 Loss: 154.616 -60800/69092 Loss: 151.210 -64000/69092 Loss: 153.386 -67200/69092 Loss: 152.204 -Training time 0:05:00.132235 -Epoch: 57 Average loss: 153.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 58) -0/69092 Loss: 140.014 -3200/69092 Loss: 156.273 -6400/69092 Loss: 153.502 -9600/69092 Loss: 152.811 -12800/69092 Loss: 152.082 -16000/69092 Loss: 150.071 -19200/69092 Loss: 152.512 -22400/69092 Loss: 151.939 -25600/69092 Loss: 151.793 -28800/69092 Loss: 151.631 -32000/69092 Loss: 155.074 -35200/69092 Loss: 151.940 -38400/69092 Loss: 153.641 -41600/69092 Loss: 154.657 -44800/69092 Loss: 155.468 -48000/69092 Loss: 153.665 -51200/69092 Loss: 154.009 -54400/69092 Loss: 154.453 -57600/69092 Loss: 155.003 -60800/69092 Loss: 149.373 -64000/69092 Loss: 154.071 -67200/69092 Loss: 153.819 -Training time 0:05:08.698422 -Epoch: 58 Average loss: 153.29 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 59) -0/69092 Loss: 143.812 -3200/69092 Loss: 153.009 -6400/69092 Loss: 153.208 -9600/69092 Loss: 154.279 -12800/69092 Loss: 152.098 -16000/69092 Loss: 151.400 -19200/69092 Loss: 153.523 -22400/69092 Loss: 153.810 -25600/69092 Loss: 155.014 -28800/69092 Loss: 154.882 -32000/69092 Loss: 152.385 -35200/69092 Loss: 152.551 -38400/69092 Loss: 151.502 -41600/69092 Loss: 153.572 -44800/69092 Loss: 153.259 -48000/69092 Loss: 150.445 -51200/69092 Loss: 150.321 -54400/69092 Loss: 152.052 -57600/69092 Loss: 152.770 -60800/69092 Loss: 151.706 -64000/69092 Loss: 154.925 -67200/69092 Loss: 152.911 -Training time 0:05:04.608892 -Epoch: 59 Average loss: 152.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 60) -0/69092 Loss: 162.215 -3200/69092 Loss: 152.426 -6400/69092 Loss: 152.394 -9600/69092 Loss: 149.961 -12800/69092 Loss: 152.450 -16000/69092 Loss: 153.276 -19200/69092 Loss: 152.965 -22400/69092 Loss: 153.926 -25600/69092 Loss: 153.751 -28800/69092 Loss: 152.589 -32000/69092 Loss: 154.798 -35200/69092 Loss: 151.504 -38400/69092 Loss: 156.993 -41600/69092 Loss: 151.467 -44800/69092 Loss: 152.940 -48000/69092 Loss: 152.895 -51200/69092 Loss: 153.160 -54400/69092 Loss: 156.046 -57600/69092 Loss: 154.143 -60800/69092 Loss: 153.214 -64000/69092 Loss: 152.232 -67200/69092 Loss: 154.575 -Training time 0:05:11.751397 -Epoch: 60 Average loss: 153.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 61) -0/69092 Loss: 148.478 -3200/69092 Loss: 154.240 -6400/69092 Loss: 154.791 -9600/69092 Loss: 151.924 -12800/69092 Loss: 152.483 -16000/69092 Loss: 152.506 -19200/69092 Loss: 152.950 -22400/69092 Loss: 151.456 -25600/69092 Loss: 154.445 -28800/69092 Loss: 150.913 -32000/69092 Loss: 152.421 -35200/69092 Loss: 155.222 -38400/69092 Loss: 156.020 -41600/69092 Loss: 151.382 -44800/69092 Loss: 153.835 -48000/69092 Loss: 153.079 -51200/69092 Loss: 154.136 -54400/69092 Loss: 153.399 -57600/69092 Loss: 154.339 -60800/69092 Loss: 155.080 -64000/69092 Loss: 152.277 -67200/69092 Loss: 148.640 -Training time 0:05:05.818863 -Epoch: 61 Average loss: 153.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 62) -0/69092 Loss: 162.908 -3200/69092 Loss: 152.068 -6400/69092 Loss: 153.853 -9600/69092 Loss: 151.146 -12800/69092 Loss: 153.924 -16000/69092 Loss: 151.657 -19200/69092 Loss: 150.882 -22400/69092 Loss: 151.974 -25600/69092 Loss: 154.947 -28800/69092 Loss: 153.533 -32000/69092 Loss: 153.462 -35200/69092 Loss: 152.480 -38400/69092 Loss: 152.152 -41600/69092 Loss: 153.849 -44800/69092 Loss: 154.626 -48000/69092 Loss: 151.176 -51200/69092 Loss: 155.849 -54400/69092 Loss: 150.300 -57600/69092 Loss: 151.026 -60800/69092 Loss: 151.228 -64000/69092 Loss: 155.838 -67200/69092 Loss: 156.099 -Training time 0:05:08.367117 -Epoch: 62 Average loss: 152.92 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 63) -0/69092 Loss: 158.083 -3200/69092 Loss: 152.139 -6400/69092 Loss: 151.515 -9600/69092 Loss: 154.007 -12800/69092 Loss: 154.114 -16000/69092 Loss: 152.373 -19200/69092 Loss: 156.591 -22400/69092 Loss: 153.921 -25600/69092 Loss: 153.131 -28800/69092 Loss: 153.269 -32000/69092 Loss: 153.428 -35200/69092 Loss: 153.374 -38400/69092 Loss: 154.027 -41600/69092 Loss: 153.133 -44800/69092 Loss: 151.447 -48000/69092 Loss: 153.021 -51200/69092 Loss: 153.346 -54400/69092 Loss: 153.267 -57600/69092 Loss: 153.133 -60800/69092 Loss: 150.994 -64000/69092 Loss: 151.683 -67200/69092 Loss: 152.689 -Training time 0:05:00.343405 -Epoch: 63 Average loss: 153.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 64) -0/69092 Loss: 155.382 -3200/69092 Loss: 150.348 -6400/69092 Loss: 153.559 -9600/69092 Loss: 151.789 -12800/69092 Loss: 152.339 -16000/69092 Loss: 152.841 -19200/69092 Loss: 153.235 -22400/69092 Loss: 155.057 -25600/69092 Loss: 152.698 -28800/69092 Loss: 154.833 -32000/69092 Loss: 151.222 -35200/69092 Loss: 154.029 -38400/69092 Loss: 150.603 -41600/69092 Loss: 153.714 -44800/69092 Loss: 152.634 -48000/69092 Loss: 155.500 -51200/69092 Loss: 152.528 -54400/69092 Loss: 150.831 -57600/69092 Loss: 156.847 -60800/69092 Loss: 151.564 -64000/69092 Loss: 153.409 -67200/69092 Loss: 154.167 -Training time 0:05:03.212436 -Epoch: 64 Average loss: 153.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 65) -0/69092 Loss: 139.758 -3200/69092 Loss: 151.157 -6400/69092 Loss: 152.249 -9600/69092 Loss: 154.095 -12800/69092 Loss: 153.313 -16000/69092 Loss: 150.597 -19200/69092 Loss: 155.302 -22400/69092 Loss: 152.118 -25600/69092 Loss: 153.546 -28800/69092 Loss: 154.313 -32000/69092 Loss: 153.620 -35200/69092 Loss: 154.113 -38400/69092 Loss: 155.124 -41600/69092 Loss: 152.480 -44800/69092 Loss: 152.689 -48000/69092 Loss: 152.772 -51200/69092 Loss: 152.237 -54400/69092 Loss: 152.833 -57600/69092 Loss: 151.780 -60800/69092 Loss: 152.019 -64000/69092 Loss: 151.113 -67200/69092 Loss: 154.489 -Training time 0:05:05.074899 -Epoch: 65 Average loss: 152.91 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 66) -0/69092 Loss: 159.979 -3200/69092 Loss: 151.053 -6400/69092 Loss: 154.034 -9600/69092 Loss: 152.561 -12800/69092 Loss: 156.672 -16000/69092 Loss: 152.556 -19200/69092 Loss: 152.532 -22400/69092 Loss: 153.240 -25600/69092 Loss: 155.443 -28800/69092 Loss: 154.030 -32000/69092 Loss: 153.251 -35200/69092 Loss: 152.415 -38400/69092 Loss: 155.896 -41600/69092 Loss: 151.039 -44800/69092 Loss: 151.409 -48000/69092 Loss: 151.106 -51200/69092 Loss: 151.377 -54400/69092 Loss: 150.559 -57600/69092 Loss: 154.342 -60800/69092 Loss: 150.862 -64000/69092 Loss: 152.216 -67200/69092 Loss: 151.325 -Training time 0:05:00.575013 -Epoch: 66 Average loss: 152.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 67) -0/69092 Loss: 142.966 -3200/69092 Loss: 152.295 -6400/69092 Loss: 155.944 -9600/69092 Loss: 152.407 -12800/69092 Loss: 153.805 -16000/69092 Loss: 152.183 -19200/69092 Loss: 153.307 -22400/69092 Loss: 150.859 -25600/69092 Loss: 154.866 -28800/69092 Loss: 154.007 -32000/69092 Loss: 153.482 -35200/69092 Loss: 153.582 -38400/69092 Loss: 152.513 -41600/69092 Loss: 152.289 -44800/69092 Loss: 152.738 -48000/69092 Loss: 149.751 -51200/69092 Loss: 154.121 -54400/69092 Loss: 151.372 -57600/69092 Loss: 152.082 -60800/69092 Loss: 151.721 -64000/69092 Loss: 154.688 -67200/69092 Loss: 152.273 -Training time 0:05:03.398712 -Epoch: 67 Average loss: 152.86 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 68) -0/69092 Loss: 156.820 -3200/69092 Loss: 153.983 -6400/69092 Loss: 152.582 -9600/69092 Loss: 152.875 -12800/69092 Loss: 154.775 -16000/69092 Loss: 151.311 -19200/69092 Loss: 154.312 -22400/69092 Loss: 153.475 -25600/69092 Loss: 153.559 -28800/69092 Loss: 152.839 -32000/69092 Loss: 151.645 -35200/69092 Loss: 152.993 -38400/69092 Loss: 152.570 -41600/69092 Loss: 152.728 -44800/69092 Loss: 155.204 -48000/69092 Loss: 151.278 -51200/69092 Loss: 150.405 -54400/69092 Loss: 151.839 -57600/69092 Loss: 152.835 -60800/69092 Loss: 152.176 -64000/69092 Loss: 153.671 -67200/69092 Loss: 152.518 -Training time 0:05:07.168211 -Epoch: 68 Average loss: 152.74 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 69) -0/69092 Loss: 154.987 -3200/69092 Loss: 153.001 -6400/69092 Loss: 152.196 -9600/69092 Loss: 152.795 -12800/69092 Loss: 151.874 -16000/69092 Loss: 150.412 -19200/69092 Loss: 152.470 -22400/69092 Loss: 156.112 -25600/69092 Loss: 153.249 -28800/69092 Loss: 153.358 -32000/69092 Loss: 153.126 -35200/69092 Loss: 152.111 -38400/69092 Loss: 151.914 -41600/69092 Loss: 152.241 -44800/69092 Loss: 156.576 -48000/69092 Loss: 153.261 -51200/69092 Loss: 151.098 -54400/69092 Loss: 152.671 -57600/69092 Loss: 150.513 -60800/69092 Loss: 153.903 -64000/69092 Loss: 152.987 -67200/69092 Loss: 153.839 -Training time 0:05:01.142378 -Epoch: 69 Average loss: 152.87 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 70) -0/69092 Loss: 138.401 -3200/69092 Loss: 155.595 -6400/69092 Loss: 151.267 -9600/69092 Loss: 150.606 -12800/69092 Loss: 151.684 -16000/69092 Loss: 151.296 -19200/69092 Loss: 155.351 -22400/69092 Loss: 153.372 -25600/69092 Loss: 150.808 -28800/69092 Loss: 154.447 -32000/69092 Loss: 154.128 -35200/69092 Loss: 152.911 -38400/69092 Loss: 154.448 -41600/69092 Loss: 153.440 -44800/69092 Loss: 151.671 -48000/69092 Loss: 151.455 -51200/69092 Loss: 151.722 -54400/69092 Loss: 154.920 -57600/69092 Loss: 152.498 -60800/69092 Loss: 152.582 -64000/69092 Loss: 153.175 -67200/69092 Loss: 152.935 -Training time 0:05:01.443628 -Epoch: 70 Average loss: 152.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 71) -0/69092 Loss: 148.997 -3200/69092 Loss: 153.403 -6400/69092 Loss: 152.238 -9600/69092 Loss: 152.631 -12800/69092 Loss: 154.329 -16000/69092 Loss: 152.442 -19200/69092 Loss: 155.095 -22400/69092 Loss: 148.772 -25600/69092 Loss: 150.420 -28800/69092 Loss: 150.991 -32000/69092 Loss: 150.446 -35200/69092 Loss: 153.889 -38400/69092 Loss: 151.610 -41600/69092 Loss: 157.595 -44800/69092 Loss: 156.073 -48000/69092 Loss: 151.608 -51200/69092 Loss: 152.426 -54400/69092 Loss: 153.357 -57600/69092 Loss: 155.688 -60800/69092 Loss: 152.993 -64000/69092 Loss: 152.860 -67200/69092 Loss: 151.448 -Training time 0:05:06.476809 -Epoch: 71 Average loss: 152.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 72) -0/69092 Loss: 141.329 -3200/69092 Loss: 150.459 -6400/69092 Loss: 150.223 -9600/69092 Loss: 149.934 -12800/69092 Loss: 155.668 -16000/69092 Loss: 153.889 -19200/69092 Loss: 151.707 -22400/69092 Loss: 155.100 -25600/69092 Loss: 153.854 -28800/69092 Loss: 154.796 -32000/69092 Loss: 150.782 -35200/69092 Loss: 154.409 -38400/69092 Loss: 149.620 -41600/69092 Loss: 152.567 -44800/69092 Loss: 154.245 -48000/69092 Loss: 154.795 -51200/69092 Loss: 152.696 -54400/69092 Loss: 151.767 -57600/69092 Loss: 152.658 -60800/69092 Loss: 151.507 -64000/69092 Loss: 154.653 -67200/69092 Loss: 155.114 -Training time 0:04:59.466738 -Epoch: 72 Average loss: 152.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 73) -0/69092 Loss: 151.954 -3200/69092 Loss: 150.543 -6400/69092 Loss: 150.064 -9600/69092 Loss: 151.341 -12800/69092 Loss: 155.051 -16000/69092 Loss: 151.767 -19200/69092 Loss: 151.707 -22400/69092 Loss: 150.051 -25600/69092 Loss: 153.169 -28800/69092 Loss: 152.199 -32000/69092 Loss: 153.218 -35200/69092 Loss: 154.742 -38400/69092 Loss: 153.789 -41600/69092 Loss: 152.391 -44800/69092 Loss: 153.139 -48000/69092 Loss: 151.313 -51200/69092 Loss: 153.902 -54400/69092 Loss: 153.355 -57600/69092 Loss: 155.380 -60800/69092 Loss: 154.568 -64000/69092 Loss: 154.107 -67200/69092 Loss: 154.334 -Training time 0:05:03.158249 -Epoch: 73 Average loss: 152.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 74) -0/69092 Loss: 149.423 -3200/69092 Loss: 151.679 -6400/69092 Loss: 153.798 -9600/69092 Loss: 152.668 -12800/69092 Loss: 153.307 -16000/69092 Loss: 153.359 -19200/69092 Loss: 153.498 -22400/69092 Loss: 153.059 -25600/69092 Loss: 149.113 -28800/69092 Loss: 150.271 -32000/69092 Loss: 151.695 -35200/69092 Loss: 153.754 -38400/69092 Loss: 154.245 -41600/69092 Loss: 153.353 -44800/69092 Loss: 155.702 -48000/69092 Loss: 154.674 -51200/69092 Loss: 154.443 -54400/69092 Loss: 151.039 -57600/69092 Loss: 152.744 -60800/69092 Loss: 151.841 -64000/69092 Loss: 150.926 -67200/69092 Loss: 152.025 -Training time 0:05:01.050127 -Epoch: 74 Average loss: 152.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 75) -0/69092 Loss: 166.404 -3200/69092 Loss: 152.402 -6400/69092 Loss: 153.553 -9600/69092 Loss: 152.141 -12800/69092 Loss: 154.060 -16000/69092 Loss: 153.407 -19200/69092 Loss: 151.435 -22400/69092 Loss: 153.794 -25600/69092 Loss: 153.962 -28800/69092 Loss: 151.479 -32000/69092 Loss: 152.428 -35200/69092 Loss: 150.827 -38400/69092 Loss: 154.074 -41600/69092 Loss: 150.292 -44800/69092 Loss: 153.294 -48000/69092 Loss: 155.552 -51200/69092 Loss: 151.826 -54400/69092 Loss: 148.807 -57600/69092 Loss: 153.112 -60800/69092 Loss: 152.712 -64000/69092 Loss: 152.365 -67200/69092 Loss: 156.062 -Training time 0:05:00.279982 -Epoch: 75 Average loss: 152.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 76) -0/69092 Loss: 160.236 -3200/69092 Loss: 156.036 -6400/69092 Loss: 151.301 -9600/69092 Loss: 154.022 -12800/69092 Loss: 152.363 -16000/69092 Loss: 152.940 -19200/69092 Loss: 152.926 -22400/69092 Loss: 155.772 -25600/69092 Loss: 149.718 -28800/69092 Loss: 153.058 -32000/69092 Loss: 154.940 -35200/69092 Loss: 149.198 -38400/69092 Loss: 150.990 -41600/69092 Loss: 153.861 -44800/69092 Loss: 152.412 -48000/69092 Loss: 151.850 -51200/69092 Loss: 151.471 -54400/69092 Loss: 152.056 -57600/69092 Loss: 153.746 -60800/69092 Loss: 152.218 -64000/69092 Loss: 154.474 -67200/69092 Loss: 153.115 -Training time 0:05:03.586743 -Epoch: 76 Average loss: 152.70 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 77) -0/69092 Loss: 151.925 -3200/69092 Loss: 152.772 -6400/69092 Loss: 153.458 -9600/69092 Loss: 153.755 -12800/69092 Loss: 150.433 -16000/69092 Loss: 155.720 -19200/69092 Loss: 154.717 -22400/69092 Loss: 151.831 -25600/69092 Loss: 152.225 -28800/69092 Loss: 155.586 -32000/69092 Loss: 150.702 -35200/69092 Loss: 152.576 -38400/69092 Loss: 153.101 -41600/69092 Loss: 152.526 -44800/69092 Loss: 151.885 -48000/69092 Loss: 153.356 -51200/69092 Loss: 153.625 -54400/69092 Loss: 152.734 -57600/69092 Loss: 153.902 -60800/69092 Loss: 150.747 -64000/69092 Loss: 151.922 -67200/69092 Loss: 151.135 -Training time 0:05:01.913817 -Epoch: 77 Average loss: 152.74 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 78) -0/69092 Loss: 150.499 -3200/69092 Loss: 150.364 -6400/69092 Loss: 152.616 -9600/69092 Loss: 150.805 -12800/69092 Loss: 152.270 -16000/69092 Loss: 154.041 -19200/69092 Loss: 151.174 -22400/69092 Loss: 152.580 -25600/69092 Loss: 150.905 -28800/69092 Loss: 151.016 -32000/69092 Loss: 155.241 -35200/69092 Loss: 153.416 -38400/69092 Loss: 155.948 -41600/69092 Loss: 151.825 -44800/69092 Loss: 152.065 -48000/69092 Loss: 153.484 -51200/69092 Loss: 154.511 -54400/69092 Loss: 153.743 -57600/69092 Loss: 153.570 -60800/69092 Loss: 152.180 -64000/69092 Loss: 149.114 -67200/69092 Loss: 151.693 -Training time 0:05:04.301251 -Epoch: 78 Average loss: 152.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 79) -0/69092 Loss: 139.963 -3200/69092 Loss: 152.064 -6400/69092 Loss: 154.636 -9600/69092 Loss: 151.479 -12800/69092 Loss: 154.645 -16000/69092 Loss: 155.208 -19200/69092 Loss: 154.139 -22400/69092 Loss: 154.556 -25600/69092 Loss: 154.659 -28800/69092 Loss: 153.859 -32000/69092 Loss: 152.297 -35200/69092 Loss: 152.349 -38400/69092 Loss: 151.648 -41600/69092 Loss: 154.945 -44800/69092 Loss: 152.920 -48000/69092 Loss: 153.521 -51200/69092 Loss: 150.717 -54400/69092 Loss: 150.692 -57600/69092 Loss: 151.252 -60800/69092 Loss: 150.369 -64000/69092 Loss: 151.706 -67200/69092 Loss: 152.179 -Training time 0:05:00.712610 -Epoch: 79 Average loss: 152.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 80) -0/69092 Loss: 145.566 -3200/69092 Loss: 150.740 -6400/69092 Loss: 150.905 -9600/69092 Loss: 153.793 -12800/69092 Loss: 152.054 -16000/69092 Loss: 151.727 -19200/69092 Loss: 153.509 -22400/69092 Loss: 152.940 -25600/69092 Loss: 154.239 -28800/69092 Loss: 153.820 -32000/69092 Loss: 152.859 -35200/69092 Loss: 151.372 -38400/69092 Loss: 154.048 -41600/69092 Loss: 153.518 -44800/69092 Loss: 151.242 -48000/69092 Loss: 150.291 -51200/69092 Loss: 151.278 -54400/69092 Loss: 150.139 -57600/69092 Loss: 153.476 -60800/69092 Loss: 152.763 -64000/69092 Loss: 153.223 -67200/69092 Loss: 154.283 -Training time 0:05:01.484190 -Epoch: 80 Average loss: 152.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 81) -0/69092 Loss: 152.637 -3200/69092 Loss: 150.512 -6400/69092 Loss: 151.159 -9600/69092 Loss: 152.371 -12800/69092 Loss: 151.326 -16000/69092 Loss: 153.093 -19200/69092 Loss: 151.106 -22400/69092 Loss: 153.780 -25600/69092 Loss: 156.551 -28800/69092 Loss: 152.412 -32000/69092 Loss: 152.912 -35200/69092 Loss: 151.983 -38400/69092 Loss: 153.083 -41600/69092 Loss: 153.586 -44800/69092 Loss: 152.433 -48000/69092 Loss: 153.503 -51200/69092 Loss: 152.919 -54400/69092 Loss: 151.444 -57600/69092 Loss: 152.309 -60800/69092 Loss: 153.188 -64000/69092 Loss: 152.829 -67200/69092 Loss: 152.593 -Training time 0:05:14.836802 -Epoch: 81 Average loss: 152.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 82) -0/69092 Loss: 127.290 -3200/69092 Loss: 152.351 -6400/69092 Loss: 152.768 -9600/69092 Loss: 152.386 -12800/69092 Loss: 154.187 -16000/69092 Loss: 153.321 -19200/69092 Loss: 153.269 -22400/69092 Loss: 151.541 -25600/69092 Loss: 152.779 -28800/69092 Loss: 152.687 -32000/69092 Loss: 150.497 -35200/69092 Loss: 154.914 -38400/69092 Loss: 151.950 -41600/69092 Loss: 152.179 -44800/69092 Loss: 153.137 -48000/69092 Loss: 152.031 -51200/69092 Loss: 150.718 -54400/69092 Loss: 152.290 -57600/69092 Loss: 152.399 -60800/69092 Loss: 153.191 -64000/69092 Loss: 152.428 -67200/69092 Loss: 153.222 -Training time 0:05:03.126978 -Epoch: 82 Average loss: 152.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 83) -0/69092 Loss: 170.106 -3200/69092 Loss: 151.821 -6400/69092 Loss: 152.948 -9600/69092 Loss: 155.070 -12800/69092 Loss: 151.771 -16000/69092 Loss: 151.659 -19200/69092 Loss: 150.362 -22400/69092 Loss: 153.987 -25600/69092 Loss: 150.692 -28800/69092 Loss: 154.158 -32000/69092 Loss: 150.786 -35200/69092 Loss: 151.568 -38400/69092 Loss: 155.342 -41600/69092 Loss: 151.864 -44800/69092 Loss: 153.326 -48000/69092 Loss: 150.261 -51200/69092 Loss: 152.559 -54400/69092 Loss: 154.103 -57600/69092 Loss: 151.534 -60800/69092 Loss: 152.258 -64000/69092 Loss: 150.644 -67200/69092 Loss: 154.056 -Training time 0:05:04.365485 -Epoch: 83 Average loss: 152.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 84) -0/69092 Loss: 156.607 -3200/69092 Loss: 153.684 -6400/69092 Loss: 152.161 -9600/69092 Loss: 151.058 -12800/69092 Loss: 153.163 -16000/69092 Loss: 151.401 -19200/69092 Loss: 150.793 -22400/69092 Loss: 151.713 -25600/69092 Loss: 153.818 -28800/69092 Loss: 155.153 -32000/69092 Loss: 153.687 -35200/69092 Loss: 153.718 -38400/69092 Loss: 153.344 -41600/69092 Loss: 154.692 -44800/69092 Loss: 153.889 -48000/69092 Loss: 151.061 -51200/69092 Loss: 152.466 -54400/69092 Loss: 153.934 -57600/69092 Loss: 152.357 -60800/69092 Loss: 150.489 -64000/69092 Loss: 151.883 -67200/69092 Loss: 153.254 -Training time 0:05:05.027352 -Epoch: 84 Average loss: 152.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 85) -0/69092 Loss: 144.233 -3200/69092 Loss: 151.305 -6400/69092 Loss: 152.445 -9600/69092 Loss: 152.617 -12800/69092 Loss: 154.848 -16000/69092 Loss: 151.736 -19200/69092 Loss: 154.041 -22400/69092 Loss: 154.408 -25600/69092 Loss: 152.803 -28800/69092 Loss: 152.694 -32000/69092 Loss: 149.173 -35200/69092 Loss: 149.996 -38400/69092 Loss: 150.598 -41600/69092 Loss: 152.484 -44800/69092 Loss: 149.742 -48000/69092 Loss: 154.882 -51200/69092 Loss: 149.077 -54400/69092 Loss: 153.066 -57600/69092 Loss: 153.498 -60800/69092 Loss: 153.081 -64000/69092 Loss: 152.484 -67200/69092 Loss: 155.103 -Training time 0:05:00.247594 -Epoch: 85 Average loss: 152.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 86) -0/69092 Loss: 141.634 -3200/69092 Loss: 154.162 -6400/69092 Loss: 155.657 -9600/69092 Loss: 152.385 -12800/69092 Loss: 150.410 -16000/69092 Loss: 152.131 -19200/69092 Loss: 150.595 -22400/69092 Loss: 150.497 -25600/69092 Loss: 153.052 -28800/69092 Loss: 153.005 -32000/69092 Loss: 152.996 -35200/69092 Loss: 150.578 -38400/69092 Loss: 154.163 -41600/69092 Loss: 150.851 -44800/69092 Loss: 150.714 -48000/69092 Loss: 151.768 -51200/69092 Loss: 153.833 -54400/69092 Loss: 152.679 -57600/69092 Loss: 152.159 -60800/69092 Loss: 152.186 -64000/69092 Loss: 151.733 -67200/69092 Loss: 152.934 -Training time 0:04:59.334738 -Epoch: 86 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 87) -0/69092 Loss: 132.613 -3200/69092 Loss: 154.505 -6400/69092 Loss: 150.723 -9600/69092 Loss: 154.777 -12800/69092 Loss: 154.341 -16000/69092 Loss: 152.327 -19200/69092 Loss: 152.538 -22400/69092 Loss: 152.846 -25600/69092 Loss: 152.652 -28800/69092 Loss: 152.130 -32000/69092 Loss: 151.218 -35200/69092 Loss: 151.767 -38400/69092 Loss: 150.011 -41600/69092 Loss: 151.972 -44800/69092 Loss: 152.368 -48000/69092 Loss: 150.778 -51200/69092 Loss: 151.855 -54400/69092 Loss: 151.421 -57600/69092 Loss: 153.227 -60800/69092 Loss: 153.404 -64000/69092 Loss: 154.412 -67200/69092 Loss: 155.687 -Training time 0:05:04.861271 -Epoch: 87 Average loss: 152.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 88) -0/69092 Loss: 149.474 -3200/69092 Loss: 150.297 -6400/69092 Loss: 152.666 -9600/69092 Loss: 152.328 -12800/69092 Loss: 154.612 -16000/69092 Loss: 153.454 -19200/69092 Loss: 150.684 -22400/69092 Loss: 151.669 -25600/69092 Loss: 154.238 -28800/69092 Loss: 152.287 -32000/69092 Loss: 154.842 -35200/69092 Loss: 154.491 -38400/69092 Loss: 154.811 -41600/69092 Loss: 150.886 -44800/69092 Loss: 152.775 -48000/69092 Loss: 151.452 -51200/69092 Loss: 153.143 -54400/69092 Loss: 149.978 -57600/69092 Loss: 154.368 -60800/69092 Loss: 150.601 -64000/69092 Loss: 154.155 -67200/69092 Loss: 150.809 -Training time 0:04:59.932954 -Epoch: 88 Average loss: 152.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 89) -0/69092 Loss: 143.299 -3200/69092 Loss: 152.911 -6400/69092 Loss: 151.744 -9600/69092 Loss: 154.087 -12800/69092 Loss: 153.153 -16000/69092 Loss: 153.537 -19200/69092 Loss: 152.830 -22400/69092 Loss: 150.626 -25600/69092 Loss: 149.894 -28800/69092 Loss: 151.881 -32000/69092 Loss: 152.581 -35200/69092 Loss: 154.882 -38400/69092 Loss: 152.432 -41600/69092 Loss: 152.900 -44800/69092 Loss: 151.728 -48000/69092 Loss: 151.693 -51200/69092 Loss: 151.184 -54400/69092 Loss: 151.568 -57600/69092 Loss: 153.244 -60800/69092 Loss: 152.252 -64000/69092 Loss: 151.284 -67200/69092 Loss: 151.461 -Training time 0:04:58.809173 -Epoch: 89 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 90) -0/69092 Loss: 144.438 -3200/69092 Loss: 151.207 -6400/69092 Loss: 152.556 -9600/69092 Loss: 153.540 -12800/69092 Loss: 152.265 -16000/69092 Loss: 151.794 -19200/69092 Loss: 154.257 -22400/69092 Loss: 153.766 -25600/69092 Loss: 152.606 -28800/69092 Loss: 150.654 -32000/69092 Loss: 151.568 -35200/69092 Loss: 152.547 -38400/69092 Loss: 153.567 -41600/69092 Loss: 152.986 -44800/69092 Loss: 154.000 -48000/69092 Loss: 152.426 -51200/69092 Loss: 152.760 -54400/69092 Loss: 152.946 -57600/69092 Loss: 152.907 -60800/69092 Loss: 152.971 -64000/69092 Loss: 150.503 -67200/69092 Loss: 151.103 -Training time 0:05:05.040677 -Epoch: 90 Average loss: 152.57 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 91) -0/69092 Loss: 151.201 -3200/69092 Loss: 148.363 -6400/69092 Loss: 152.795 -9600/69092 Loss: 154.857 -12800/69092 Loss: 154.865 -16000/69092 Loss: 151.746 -19200/69092 Loss: 151.830 -22400/69092 Loss: 152.672 -25600/69092 Loss: 153.510 -28800/69092 Loss: 152.644 -32000/69092 Loss: 152.946 -35200/69092 Loss: 152.825 -38400/69092 Loss: 152.690 -41600/69092 Loss: 151.726 -44800/69092 Loss: 151.685 -48000/69092 Loss: 149.414 -51200/69092 Loss: 152.569 -54400/69092 Loss: 150.847 -57600/69092 Loss: 154.336 -60800/69092 Loss: 153.217 -64000/69092 Loss: 156.152 -67200/69092 Loss: 149.649 -Training time 0:05:07.174822 -Epoch: 91 Average loss: 152.41 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 92) -0/69092 Loss: 146.879 -3200/69092 Loss: 151.679 -6400/69092 Loss: 154.180 -9600/69092 Loss: 152.580 -12800/69092 Loss: 154.908 -16000/69092 Loss: 151.998 -19200/69092 Loss: 154.043 -22400/69092 Loss: 152.445 -25600/69092 Loss: 152.331 -28800/69092 Loss: 152.467 -32000/69092 Loss: 154.391 -35200/69092 Loss: 149.140 -38400/69092 Loss: 154.011 -41600/69092 Loss: 152.635 -44800/69092 Loss: 153.557 -48000/69092 Loss: 151.022 -51200/69092 Loss: 153.452 -54400/69092 Loss: 151.311 -57600/69092 Loss: 150.852 -60800/69092 Loss: 152.605 -64000/69092 Loss: 152.167 -67200/69092 Loss: 149.958 -Training time 0:05:02.091466 -Epoch: 92 Average loss: 152.46 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 93) -0/69092 Loss: 155.889 -3200/69092 Loss: 151.318 -6400/69092 Loss: 153.910 -9600/69092 Loss: 149.093 -12800/69092 Loss: 152.369 -16000/69092 Loss: 149.840 -19200/69092 Loss: 154.737 -22400/69092 Loss: 150.456 -25600/69092 Loss: 153.290 -28800/69092 Loss: 150.556 -32000/69092 Loss: 153.934 -35200/69092 Loss: 152.128 -38400/69092 Loss: 155.152 -41600/69092 Loss: 151.227 -44800/69092 Loss: 152.402 -48000/69092 Loss: 152.533 -51200/69092 Loss: 153.016 -54400/69092 Loss: 152.008 -57600/69092 Loss: 154.355 -60800/69092 Loss: 151.960 -64000/69092 Loss: 151.035 -67200/69092 Loss: 151.408 -Training time 0:05:09.818408 -Epoch: 93 Average loss: 152.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 94) -0/69092 Loss: 160.898 -3200/69092 Loss: 152.832 -6400/69092 Loss: 152.692 -9600/69092 Loss: 149.815 -12800/69092 Loss: 150.418 -16000/69092 Loss: 153.161 -19200/69092 Loss: 153.317 -22400/69092 Loss: 154.669 -25600/69092 Loss: 151.977 -28800/69092 Loss: 151.650 -32000/69092 Loss: 151.620 -35200/69092 Loss: 150.944 -38400/69092 Loss: 152.662 -41600/69092 Loss: 152.309 -44800/69092 Loss: 153.141 -48000/69092 Loss: 152.710 -51200/69092 Loss: 149.739 -54400/69092 Loss: 152.727 -57600/69092 Loss: 151.518 -60800/69092 Loss: 154.450 -64000/69092 Loss: 153.961 -67200/69092 Loss: 150.943 -Training time 0:05:11.518790 -Epoch: 94 Average loss: 152.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 95) -0/69092 Loss: 158.054 -3200/69092 Loss: 154.231 -6400/69092 Loss: 154.395 -9600/69092 Loss: 153.585 -12800/69092 Loss: 153.048 -16000/69092 Loss: 154.041 -19200/69092 Loss: 150.861 -22400/69092 Loss: 153.845 -25600/69092 Loss: 149.978 -28800/69092 Loss: 151.273 -32000/69092 Loss: 155.098 -35200/69092 Loss: 152.181 -38400/69092 Loss: 154.399 -41600/69092 Loss: 150.771 -44800/69092 Loss: 149.101 -48000/69092 Loss: 150.421 -51200/69092 Loss: 154.368 -54400/69092 Loss: 147.994 -57600/69092 Loss: 150.609 -60800/69092 Loss: 152.076 -64000/69092 Loss: 153.247 -67200/69092 Loss: 151.974 -Training time 0:05:19.096335 -Epoch: 95 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 96) -0/69092 Loss: 167.858 -3200/69092 Loss: 151.973 -6400/69092 Loss: 150.961 -9600/69092 Loss: 153.146 -12800/69092 Loss: 153.905 -16000/69092 Loss: 150.775 -19200/69092 Loss: 151.109 -22400/69092 Loss: 153.245 -25600/69092 Loss: 151.288 -28800/69092 Loss: 149.723 -32000/69092 Loss: 153.029 -35200/69092 Loss: 154.187 -38400/69092 Loss: 152.289 -41600/69092 Loss: 152.623 -44800/69092 Loss: 150.950 -48000/69092 Loss: 151.842 -51200/69092 Loss: 151.985 -54400/69092 Loss: 151.905 -57600/69092 Loss: 154.471 -60800/69092 Loss: 148.848 -64000/69092 Loss: 151.029 -67200/69092 Loss: 154.073 -Training time 0:05:14.758375 -Epoch: 96 Average loss: 152.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 97) -0/69092 Loss: 147.837 -3200/69092 Loss: 154.152 -6400/69092 Loss: 149.796 -9600/69092 Loss: 151.266 -12800/69092 Loss: 154.179 -16000/69092 Loss: 153.537 -19200/69092 Loss: 152.437 -22400/69092 Loss: 153.179 -25600/69092 Loss: 154.426 -28800/69092 Loss: 151.582 -32000/69092 Loss: 150.323 -35200/69092 Loss: 151.787 -38400/69092 Loss: 151.679 -41600/69092 Loss: 151.968 -44800/69092 Loss: 150.813 -48000/69092 Loss: 150.975 -51200/69092 Loss: 151.489 -54400/69092 Loss: 152.246 -57600/69092 Loss: 153.647 -60800/69092 Loss: 151.336 -64000/69092 Loss: 151.397 -67200/69092 Loss: 155.549 -Training time 0:05:10.379359 -Epoch: 97 Average loss: 152.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 98) -0/69092 Loss: 154.740 -3200/69092 Loss: 151.913 -6400/69092 Loss: 150.169 -9600/69092 Loss: 150.706 -12800/69092 Loss: 152.045 -16000/69092 Loss: 152.562 -19200/69092 Loss: 150.442 -22400/69092 Loss: 153.113 -25600/69092 Loss: 153.983 -28800/69092 Loss: 152.689 -32000/69092 Loss: 151.500 -35200/69092 Loss: 154.215 -38400/69092 Loss: 151.321 -41600/69092 Loss: 151.483 -44800/69092 Loss: 153.338 -48000/69092 Loss: 151.855 -51200/69092 Loss: 155.090 -54400/69092 Loss: 152.879 -57600/69092 Loss: 152.352 -60800/69092 Loss: 153.363 -64000/69092 Loss: 152.709 -67200/69092 Loss: 152.203 -Training time 0:05:14.910973 -Epoch: 98 Average loss: 152.39 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 99) -0/69092 Loss: 142.389 -3200/69092 Loss: 151.556 -6400/69092 Loss: 150.432 -9600/69092 Loss: 152.263 -12800/69092 Loss: 152.895 -16000/69092 Loss: 153.922 -19200/69092 Loss: 152.318 -22400/69092 Loss: 151.243 -25600/69092 Loss: 155.285 -28800/69092 Loss: 153.173 -32000/69092 Loss: 153.491 -35200/69092 Loss: 152.379 -38400/69092 Loss: 153.217 -41600/69092 Loss: 153.880 -44800/69092 Loss: 152.068 -48000/69092 Loss: 150.619 -51200/69092 Loss: 152.586 -54400/69092 Loss: 151.715 -57600/69092 Loss: 151.369 -60800/69092 Loss: 152.483 -64000/69092 Loss: 151.930 -67200/69092 Loss: 153.290 -Training time 0:05:17.595488 -Epoch: 99 Average loss: 152.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 100) -0/69092 Loss: 158.684 -3200/69092 Loss: 153.906 -6400/69092 Loss: 153.327 -9600/69092 Loss: 151.818 -12800/69092 Loss: 155.821 -16000/69092 Loss: 152.444 -19200/69092 Loss: 152.891 -22400/69092 Loss: 149.164 -25600/69092 Loss: 152.786 -28800/69092 Loss: 149.422 -32000/69092 Loss: 150.534 -35200/69092 Loss: 151.991 -38400/69092 Loss: 152.149 -41600/69092 Loss: 152.764 -44800/69092 Loss: 153.696 -48000/69092 Loss: 153.265 -51200/69092 Loss: 153.180 -54400/69092 Loss: 150.813 -57600/69092 Loss: 155.719 -60800/69092 Loss: 153.404 -64000/69092 Loss: 151.654 -67200/69092 Loss: 151.188 -Training time 0:05:03.418084 -Epoch: 100 Average loss: 152.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 101) -0/69092 Loss: 167.760 -3200/69092 Loss: 152.876 -6400/69092 Loss: 153.562 -9600/69092 Loss: 152.892 -12800/69092 Loss: 151.356 -16000/69092 Loss: 152.326 -19200/69092 Loss: 152.955 -22400/69092 Loss: 150.492 -25600/69092 Loss: 153.585 -28800/69092 Loss: 152.329 -32000/69092 Loss: 151.782 -35200/69092 Loss: 152.113 -38400/69092 Loss: 149.783 -41600/69092 Loss: 152.142 -44800/69092 Loss: 151.179 -48000/69092 Loss: 151.627 -51200/69092 Loss: 155.051 -54400/69092 Loss: 152.449 -57600/69092 Loss: 154.746 -60800/69092 Loss: 153.757 -64000/69092 Loss: 149.538 -67200/69092 Loss: 152.841 -Training time 0:04:51.914784 -Epoch: 101 Average loss: 152.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 102) -0/69092 Loss: 137.340 -3200/69092 Loss: 153.577 -6400/69092 Loss: 150.329 -9600/69092 Loss: 154.083 -12800/69092 Loss: 151.225 -16000/69092 Loss: 150.840 -19200/69092 Loss: 154.126 -22400/69092 Loss: 153.644 -25600/69092 Loss: 151.214 -28800/69092 Loss: 148.798 -32000/69092 Loss: 152.823 -35200/69092 Loss: 149.150 -38400/69092 Loss: 152.960 -41600/69092 Loss: 151.685 -44800/69092 Loss: 150.527 -48000/69092 Loss: 152.596 -51200/69092 Loss: 154.297 -54400/69092 Loss: 151.212 -57600/69092 Loss: 155.284 -60800/69092 Loss: 155.288 -64000/69092 Loss: 151.360 -67200/69092 Loss: 153.971 -Training time 0:05:01.022271 -Epoch: 102 Average loss: 152.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 103) -0/69092 Loss: 153.573 -3200/69092 Loss: 155.110 -6400/69092 Loss: 151.305 -9600/69092 Loss: 153.206 -12800/69092 Loss: 152.802 -16000/69092 Loss: 149.800 -19200/69092 Loss: 150.971 -22400/69092 Loss: 151.738 -25600/69092 Loss: 151.675 -28800/69092 Loss: 152.290 -32000/69092 Loss: 154.392 -35200/69092 Loss: 154.004 -38400/69092 Loss: 152.356 -41600/69092 Loss: 152.916 -44800/69092 Loss: 152.282 -48000/69092 Loss: 149.664 -51200/69092 Loss: 154.644 -54400/69092 Loss: 152.245 -57600/69092 Loss: 151.714 -60800/69092 Loss: 151.316 -64000/69092 Loss: 152.527 -67200/69092 Loss: 152.642 -Training time 0:05:07.864949 -Epoch: 103 Average loss: 152.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 104) -0/69092 Loss: 151.662 -3200/69092 Loss: 151.814 -6400/69092 Loss: 149.252 -9600/69092 Loss: 152.869 -12800/69092 Loss: 151.850 -16000/69092 Loss: 151.858 -19200/69092 Loss: 153.972 -22400/69092 Loss: 152.033 -25600/69092 Loss: 150.453 -28800/69092 Loss: 152.936 -32000/69092 Loss: 151.613 -35200/69092 Loss: 152.562 -38400/69092 Loss: 152.823 -41600/69092 Loss: 153.282 -44800/69092 Loss: 150.677 -48000/69092 Loss: 151.082 -51200/69092 Loss: 153.963 -54400/69092 Loss: 150.317 -57600/69092 Loss: 151.814 -60800/69092 Loss: 152.419 -64000/69092 Loss: 151.160 -67200/69092 Loss: 151.677 -Training time 0:05:03.611881 -Epoch: 104 Average loss: 152.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 105) -0/69092 Loss: 161.888 -3200/69092 Loss: 151.001 -6400/69092 Loss: 153.504 -9600/69092 Loss: 153.895 -12800/69092 Loss: 150.216 -16000/69092 Loss: 151.263 -19200/69092 Loss: 152.214 -22400/69092 Loss: 153.599 -25600/69092 Loss: 150.967 -28800/69092 Loss: 151.131 -32000/69092 Loss: 151.013 -35200/69092 Loss: 151.392 -38400/69092 Loss: 153.402 -41600/69092 Loss: 154.157 -44800/69092 Loss: 150.464 -48000/69092 Loss: 152.472 -51200/69092 Loss: 153.008 -54400/69092 Loss: 152.619 -57600/69092 Loss: 151.042 -60800/69092 Loss: 152.681 -64000/69092 Loss: 152.854 -67200/69092 Loss: 150.712 -Training time 0:05:04.874558 -Epoch: 105 Average loss: 152.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 106) -0/69092 Loss: 163.787 -3200/69092 Loss: 153.259 -6400/69092 Loss: 153.108 -9600/69092 Loss: 153.607 -12800/69092 Loss: 152.003 -16000/69092 Loss: 155.934 -19200/69092 Loss: 150.254 -22400/69092 Loss: 152.237 -25600/69092 Loss: 154.861 -28800/69092 Loss: 149.868 -32000/69092 Loss: 151.238 -35200/69092 Loss: 150.747 -38400/69092 Loss: 153.263 -41600/69092 Loss: 153.709 -44800/69092 Loss: 151.564 -48000/69092 Loss: 152.925 -51200/69092 Loss: 150.700 -54400/69092 Loss: 151.824 -57600/69092 Loss: 151.186 -60800/69092 Loss: 151.589 -64000/69092 Loss: 151.741 -67200/69092 Loss: 153.103 -Training time 0:05:04.314858 -Epoch: 106 Average loss: 152.27 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 107) -0/69092 Loss: 150.281 -3200/69092 Loss: 153.516 -6400/69092 Loss: 150.627 -9600/69092 Loss: 150.680 -12800/69092 Loss: 150.820 -16000/69092 Loss: 154.541 -19200/69092 Loss: 151.983 -22400/69092 Loss: 150.967 -25600/69092 Loss: 153.063 -28800/69092 Loss: 152.155 -32000/69092 Loss: 152.521 -35200/69092 Loss: 150.335 -38400/69092 Loss: 154.174 -41600/69092 Loss: 150.998 -44800/69092 Loss: 153.771 -48000/69092 Loss: 151.923 -51200/69092 Loss: 152.697 -54400/69092 Loss: 152.294 -57600/69092 Loss: 152.125 -60800/69092 Loss: 150.568 -64000/69092 Loss: 150.760 -67200/69092 Loss: 152.534 -Training time 0:05:02.166449 -Epoch: 107 Average loss: 152.03 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 108) -0/69092 Loss: 162.576 -3200/69092 Loss: 152.626 -6400/69092 Loss: 151.675 -9600/69092 Loss: 149.449 -12800/69092 Loss: 153.519 -16000/69092 Loss: 153.674 -19200/69092 Loss: 151.671 -22400/69092 Loss: 151.299 -25600/69092 Loss: 151.974 -28800/69092 Loss: 151.358 -32000/69092 Loss: 150.880 -35200/69092 Loss: 152.578 -38400/69092 Loss: 151.399 -41600/69092 Loss: 153.304 -44800/69092 Loss: 151.126 -48000/69092 Loss: 153.111 -51200/69092 Loss: 151.278 -54400/69092 Loss: 153.105 -57600/69092 Loss: 152.167 -60800/69092 Loss: 151.647 -64000/69092 Loss: 151.658 -67200/69092 Loss: 153.319 -Training time 0:05:03.899225 -Epoch: 108 Average loss: 152.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 109) -0/69092 Loss: 162.644 -3200/69092 Loss: 151.071 -6400/69092 Loss: 151.951 -9600/69092 Loss: 150.950 -12800/69092 Loss: 153.295 -16000/69092 Loss: 151.607 -19200/69092 Loss: 155.580 -22400/69092 Loss: 149.835 -25600/69092 Loss: 152.906 -28800/69092 Loss: 151.171 -32000/69092 Loss: 150.889 -35200/69092 Loss: 150.368 -38400/69092 Loss: 151.140 -41600/69092 Loss: 155.550 -44800/69092 Loss: 154.019 -48000/69092 Loss: 153.075 -51200/69092 Loss: 152.970 -54400/69092 Loss: 152.861 -57600/69092 Loss: 152.184 -60800/69092 Loss: 152.178 -64000/69092 Loss: 151.419 -67200/69092 Loss: 150.563 -Training time 0:05:02.399302 -Epoch: 109 Average loss: 152.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 110) -0/69092 Loss: 154.988 -3200/69092 Loss: 153.248 -6400/69092 Loss: 151.155 -9600/69092 Loss: 152.526 -12800/69092 Loss: 151.358 -16000/69092 Loss: 150.776 -19200/69092 Loss: 151.902 -22400/69092 Loss: 152.815 -25600/69092 Loss: 150.157 -28800/69092 Loss: 152.073 -32000/69092 Loss: 152.516 -35200/69092 Loss: 151.435 -38400/69092 Loss: 150.491 -41600/69092 Loss: 153.070 -44800/69092 Loss: 153.470 -48000/69092 Loss: 152.637 -51200/69092 Loss: 154.199 -54400/69092 Loss: 151.909 -57600/69092 Loss: 152.136 -60800/69092 Loss: 152.336 -64000/69092 Loss: 152.451 -67200/69092 Loss: 153.406 -Training time 0:05:05.714831 -Epoch: 110 Average loss: 152.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 111) -0/69092 Loss: 162.069 -3200/69092 Loss: 151.802 -6400/69092 Loss: 153.021 -9600/69092 Loss: 152.369 -12800/69092 Loss: 152.280 -16000/69092 Loss: 151.387 -19200/69092 Loss: 152.338 -22400/69092 Loss: 155.283 -25600/69092 Loss: 151.629 -28800/69092 Loss: 152.203 -32000/69092 Loss: 152.868 -35200/69092 Loss: 150.479 -38400/69092 Loss: 152.421 -41600/69092 Loss: 151.306 -44800/69092 Loss: 152.975 -48000/69092 Loss: 152.016 -51200/69092 Loss: 151.654 -54400/69092 Loss: 152.664 -57600/69092 Loss: 151.651 -60800/69092 Loss: 152.255 -64000/69092 Loss: 149.480 -67200/69092 Loss: 152.793 -Training time 0:05:02.300465 -Epoch: 111 Average loss: 152.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 112) -0/69092 Loss: 156.487 -3200/69092 Loss: 151.962 -6400/69092 Loss: 151.294 -9600/69092 Loss: 152.823 -12800/69092 Loss: 153.223 -16000/69092 Loss: 154.456 -19200/69092 Loss: 153.151 -22400/69092 Loss: 153.360 -25600/69092 Loss: 151.618 -28800/69092 Loss: 153.194 -32000/69092 Loss: 150.388 -35200/69092 Loss: 150.987 -38400/69092 Loss: 154.060 -41600/69092 Loss: 153.648 -44800/69092 Loss: 151.719 -48000/69092 Loss: 150.867 -51200/69092 Loss: 151.067 -54400/69092 Loss: 151.764 -57600/69092 Loss: 150.370 -60800/69092 Loss: 150.257 -64000/69092 Loss: 152.464 -67200/69092 Loss: 151.794 -Training time 0:05:02.461204 -Epoch: 112 Average loss: 152.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 113) -0/69092 Loss: 134.647 -3200/69092 Loss: 152.720 -6400/69092 Loss: 151.996 -9600/69092 Loss: 151.881 -12800/69092 Loss: 150.558 -16000/69092 Loss: 151.079 -19200/69092 Loss: 152.303 -22400/69092 Loss: 152.675 -25600/69092 Loss: 151.991 -28800/69092 Loss: 151.762 -32000/69092 Loss: 153.496 -35200/69092 Loss: 153.372 -38400/69092 Loss: 151.300 -41600/69092 Loss: 154.439 -44800/69092 Loss: 151.378 -48000/69092 Loss: 149.762 -51200/69092 Loss: 153.833 -54400/69092 Loss: 154.696 -57600/69092 Loss: 150.390 -60800/69092 Loss: 153.278 -64000/69092 Loss: 153.532 -67200/69092 Loss: 150.833 -Training time 0:05:00.977990 -Epoch: 113 Average loss: 152.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 114) -0/69092 Loss: 147.473 -3200/69092 Loss: 151.169 -6400/69092 Loss: 152.872 -9600/69092 Loss: 151.215 -12800/69092 Loss: 152.837 -16000/69092 Loss: 152.389 -19200/69092 Loss: 153.817 -22400/69092 Loss: 150.561 -25600/69092 Loss: 150.609 -28800/69092 Loss: 151.353 -32000/69092 Loss: 155.208 -35200/69092 Loss: 149.628 -38400/69092 Loss: 152.854 -41600/69092 Loss: 149.109 -44800/69092 Loss: 151.593 -48000/69092 Loss: 148.380 -51200/69092 Loss: 155.033 -54400/69092 Loss: 154.760 -57600/69092 Loss: 153.577 -60800/69092 Loss: 150.653 -64000/69092 Loss: 151.115 -67200/69092 Loss: 152.697 -Training time 0:05:02.626567 -Epoch: 114 Average loss: 152.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 115) -0/69092 Loss: 166.235 -3200/69092 Loss: 151.045 -6400/69092 Loss: 151.566 -9600/69092 Loss: 153.103 -12800/69092 Loss: 150.612 -16000/69092 Loss: 152.364 -19200/69092 Loss: 153.273 -22400/69092 Loss: 149.959 -25600/69092 Loss: 150.041 -28800/69092 Loss: 152.056 -32000/69092 Loss: 151.269 -35200/69092 Loss: 151.116 -38400/69092 Loss: 153.598 -41600/69092 Loss: 154.428 -44800/69092 Loss: 151.714 -48000/69092 Loss: 154.260 -51200/69092 Loss: 152.895 -54400/69092 Loss: 149.122 -57600/69092 Loss: 149.939 -60800/69092 Loss: 152.893 -64000/69092 Loss: 151.964 -67200/69092 Loss: 153.125 -Training time 0:05:02.931710 -Epoch: 115 Average loss: 151.91 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 116) -0/69092 Loss: 153.137 -3200/69092 Loss: 154.553 -6400/69092 Loss: 150.445 -9600/69092 Loss: 150.450 -12800/69092 Loss: 152.588 -16000/69092 Loss: 151.747 -19200/69092 Loss: 151.415 -22400/69092 Loss: 151.264 -25600/69092 Loss: 151.927 -28800/69092 Loss: 151.327 -32000/69092 Loss: 152.850 -35200/69092 Loss: 152.286 -38400/69092 Loss: 151.161 -41600/69092 Loss: 152.494 -44800/69092 Loss: 152.301 -48000/69092 Loss: 155.223 -51200/69092 Loss: 154.050 -54400/69092 Loss: 152.871 -57600/69092 Loss: 151.519 -60800/69092 Loss: 152.448 -64000/69092 Loss: 147.826 -67200/69092 Loss: 150.735 -Training time 0:05:03.193442 -Epoch: 116 Average loss: 152.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 117) -0/69092 Loss: 157.562 -3200/69092 Loss: 152.486 -6400/69092 Loss: 150.864 -9600/69092 Loss: 152.991 -12800/69092 Loss: 150.016 -16000/69092 Loss: 149.548 -19200/69092 Loss: 150.238 -22400/69092 Loss: 153.190 -25600/69092 Loss: 151.756 -28800/69092 Loss: 153.476 -32000/69092 Loss: 151.726 -35200/69092 Loss: 152.100 -38400/69092 Loss: 153.736 -41600/69092 Loss: 151.745 -44800/69092 Loss: 151.568 -48000/69092 Loss: 153.706 -51200/69092 Loss: 151.723 -54400/69092 Loss: 152.113 -57600/69092 Loss: 155.143 -60800/69092 Loss: 153.267 -64000/69092 Loss: 152.065 -67200/69092 Loss: 150.600 -Training time 0:05:04.841105 -Epoch: 117 Average loss: 152.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 118) -0/69092 Loss: 155.602 -3200/69092 Loss: 153.534 -6400/69092 Loss: 152.894 -9600/69092 Loss: 153.559 -12800/69092 Loss: 150.108 -16000/69092 Loss: 153.907 -19200/69092 Loss: 151.515 -22400/69092 Loss: 150.308 -25600/69092 Loss: 153.708 -28800/69092 Loss: 153.366 -32000/69092 Loss: 149.893 -35200/69092 Loss: 149.675 -38400/69092 Loss: 150.179 -41600/69092 Loss: 150.500 -44800/69092 Loss: 152.019 -48000/69092 Loss: 151.848 -51200/69092 Loss: 150.390 -54400/69092 Loss: 152.176 -57600/69092 Loss: 151.036 -60800/69092 Loss: 151.798 -64000/69092 Loss: 154.119 -67200/69092 Loss: 152.002 -Training time 0:05:10.346446 -Epoch: 118 Average loss: 151.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_15/checkpoints/last' (iter 119) -0/69092 Loss: 164.591 -3200/69092 Loss: 152.554 -6400/69092 Loss: 152.542 -9600/69092 Loss: 152.283 diff --git a/OAR.2068289.stderr b/OAR.2068289.stderr deleted file mode 100644 index 62059a6fde..0000000000 --- a/OAR.2068289.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068289 KILLED ## diff --git a/OAR.2068289.stdout b/OAR.2068289.stdout deleted file mode 100644 index 0105d9f495..0000000000 --- a/OAR.2068289.stdout +++ /dev/null @@ -1,3003 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_20 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=40, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=20, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 773035 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last (iter 2)' -0/69092 Loss: 430.567 -3200/69092 Loss: 451.552 -6400/69092 Loss: 438.499 -9600/69092 Loss: 445.077 -12800/69092 Loss: 447.616 -16000/69092 Loss: 435.337 -19200/69092 Loss: 450.837 -22400/69092 Loss: 439.799 -25600/69092 Loss: 439.213 -28800/69092 Loss: 437.965 -32000/69092 Loss: 435.058 -35200/69092 Loss: 438.174 -38400/69092 Loss: 448.690 -41600/69092 Loss: 431.653 -44800/69092 Loss: 438.952 -48000/69092 Loss: 436.764 -51200/69092 Loss: 431.678 -54400/69092 Loss: 432.029 -57600/69092 Loss: 452.793 -60800/69092 Loss: 435.165 -64000/69092 Loss: 444.115 -67200/69092 Loss: 441.251 -Training time 0:05:05.893259 -Epoch: 1 Average loss: 440.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 3) -0/69092 Loss: 444.272 -3200/69092 Loss: 445.115 -6400/69092 Loss: 441.781 -9600/69092 Loss: 446.416 -12800/69092 Loss: 442.182 -16000/69092 Loss: 433.913 -19200/69092 Loss: 437.256 -22400/69092 Loss: 441.802 -25600/69092 Loss: 431.982 -28800/69092 Loss: 439.460 -32000/69092 Loss: 438.135 -35200/69092 Loss: 439.063 -38400/69092 Loss: 448.086 -41600/69092 Loss: 440.595 -44800/69092 Loss: 437.003 -48000/69092 Loss: 433.917 -51200/69092 Loss: 447.033 -54400/69092 Loss: 440.830 -57600/69092 Loss: 435.229 -60800/69092 Loss: 439.483 -64000/69092 Loss: 440.454 -67200/69092 Loss: 448.095 -Training time 0:05:03.050238 -Epoch: 2 Average loss: 440.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 4) -0/69092 Loss: 462.525 -3200/69092 Loss: 433.152 -6400/69092 Loss: 434.208 -9600/69092 Loss: 441.110 -12800/69092 Loss: 444.663 -16000/69092 Loss: 446.222 -19200/69092 Loss: 432.492 -22400/69092 Loss: 441.121 -25600/69092 Loss: 441.951 -28800/69092 Loss: 437.930 -32000/69092 Loss: 433.192 -35200/69092 Loss: 446.659 -38400/69092 Loss: 444.017 -41600/69092 Loss: 449.571 -44800/69092 Loss: 439.392 -48000/69092 Loss: 438.912 -51200/69092 Loss: 449.640 -54400/69092 Loss: 437.776 -57600/69092 Loss: 426.500 -60800/69092 Loss: 443.331 -64000/69092 Loss: 443.030 -67200/69092 Loss: 441.288 -Training time 0:05:11.274975 -Epoch: 3 Average loss: 440.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 5) -0/69092 Loss: 447.306 -3200/69092 Loss: 443.481 -6400/69092 Loss: 446.084 -9600/69092 Loss: 434.249 -12800/69092 Loss: 433.784 -16000/69092 Loss: 445.353 -19200/69092 Loss: 441.356 -22400/69092 Loss: 443.973 -25600/69092 Loss: 439.298 -28800/69092 Loss: 439.510 -32000/69092 Loss: 440.013 -35200/69092 Loss: 443.306 -38400/69092 Loss: 435.255 -41600/69092 Loss: 442.483 -44800/69092 Loss: 445.100 -48000/69092 Loss: 439.007 -51200/69092 Loss: 427.231 -54400/69092 Loss: 436.510 -57600/69092 Loss: 436.720 -60800/69092 Loss: 450.904 -64000/69092 Loss: 439.393 -67200/69092 Loss: 442.527 -Training time 0:05:06.700535 -Epoch: 4 Average loss: 440.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 6) -0/69092 Loss: 418.644 -3200/69092 Loss: 438.218 -6400/69092 Loss: 450.252 -9600/69092 Loss: 439.158 -12800/69092 Loss: 441.716 -16000/69092 Loss: 447.580 -19200/69092 Loss: 445.912 -22400/69092 Loss: 438.749 -25600/69092 Loss: 436.598 -28800/69092 Loss: 437.339 -32000/69092 Loss: 433.433 -35200/69092 Loss: 431.786 -38400/69092 Loss: 448.120 -41600/69092 Loss: 435.548 -44800/69092 Loss: 445.933 -48000/69092 Loss: 441.889 -51200/69092 Loss: 442.513 -54400/69092 Loss: 435.773 -57600/69092 Loss: 430.723 -60800/69092 Loss: 443.641 -64000/69092 Loss: 438.866 -67200/69092 Loss: 442.804 -Training time 0:05:05.878531 -Epoch: 5 Average loss: 440.27 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 7) -0/69092 Loss: 501.531 -3200/69092 Loss: 436.080 -6400/69092 Loss: 430.934 -9600/69092 Loss: 440.531 -12800/69092 Loss: 443.256 -16000/69092 Loss: 443.942 -19200/69092 Loss: 439.735 -22400/69092 Loss: 441.888 -25600/69092 Loss: 443.789 -28800/69092 Loss: 443.138 -32000/69092 Loss: 282.311 -35200/69092 Loss: 222.722 -38400/69092 Loss: 224.461 -41600/69092 Loss: 216.463 -44800/69092 Loss: 216.539 -48000/69092 Loss: 205.753 -51200/69092 Loss: 198.170 -54400/69092 Loss: 199.128 -57600/69092 Loss: 195.972 -60800/69092 Loss: 191.918 -64000/69092 Loss: 192.646 -67200/69092 Loss: 189.203 -Training time 0:04:56.607394 -Epoch: 6 Average loss: 306.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 8) -0/69092 Loss: 193.317 -3200/69092 Loss: 190.651 -6400/69092 Loss: 188.764 -9600/69092 Loss: 188.883 -12800/69092 Loss: 189.042 -16000/69092 Loss: 184.939 -19200/69092 Loss: 187.289 -22400/69092 Loss: 186.018 -25600/69092 Loss: 188.386 -28800/69092 Loss: 185.676 -32000/69092 Loss: 188.149 -35200/69092 Loss: 183.489 -38400/69092 Loss: 182.190 -41600/69092 Loss: 180.228 -44800/69092 Loss: 179.100 -48000/69092 Loss: 178.929 -51200/69092 Loss: 180.279 -54400/69092 Loss: 180.885 -57600/69092 Loss: 180.871 -60800/69092 Loss: 175.996 -64000/69092 Loss: 175.814 -67200/69092 Loss: 172.733 -Training time 0:05:01.248720 -Epoch: 7 Average loss: 183.06 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 9) -0/69092 Loss: 175.976 -3200/69092 Loss: 175.519 -6400/69092 Loss: 172.875 -9600/69092 Loss: 168.530 -12800/69092 Loss: 174.181 -16000/69092 Loss: 174.451 -19200/69092 Loss: 173.476 -22400/69092 Loss: 177.952 -25600/69092 Loss: 173.038 -28800/69092 Loss: 173.493 -32000/69092 Loss: 169.433 -35200/69092 Loss: 175.888 -38400/69092 Loss: 172.573 -41600/69092 Loss: 171.296 -44800/69092 Loss: 173.126 -48000/69092 Loss: 170.911 -51200/69092 Loss: 172.181 -54400/69092 Loss: 176.282 -57600/69092 Loss: 171.192 -60800/69092 Loss: 171.903 -64000/69092 Loss: 172.167 -67200/69092 Loss: 170.300 -Training time 0:05:02.991306 -Epoch: 8 Average loss: 172.77 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 10) -0/69092 Loss: 177.808 -3200/69092 Loss: 167.293 -6400/69092 Loss: 171.747 -9600/69092 Loss: 172.320 -12800/69092 Loss: 169.716 -16000/69092 Loss: 168.703 -19200/69092 Loss: 171.163 -22400/69092 Loss: 165.480 -25600/69092 Loss: 171.134 -28800/69092 Loss: 169.034 -32000/69092 Loss: 170.347 -35200/69092 Loss: 171.707 -38400/69092 Loss: 168.689 -41600/69092 Loss: 168.946 -44800/69092 Loss: 166.259 -48000/69092 Loss: 169.122 -51200/69092 Loss: 167.689 -54400/69092 Loss: 172.184 -57600/69092 Loss: 170.305 -60800/69092 Loss: 168.594 -64000/69092 Loss: 167.623 -67200/69092 Loss: 169.057 -Training time 0:04:59.365652 -Epoch: 9 Average loss: 169.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 11) -0/69092 Loss: 170.726 -3200/69092 Loss: 169.164 -6400/69092 Loss: 168.319 -9600/69092 Loss: 165.079 -12800/69092 Loss: 167.098 -16000/69092 Loss: 164.978 -19200/69092 Loss: 170.563 -22400/69092 Loss: 167.007 -25600/69092 Loss: 167.459 -28800/69092 Loss: 170.687 -32000/69092 Loss: 165.900 -35200/69092 Loss: 166.946 -38400/69092 Loss: 164.479 -41600/69092 Loss: 169.314 -44800/69092 Loss: 165.872 -48000/69092 Loss: 165.364 -51200/69092 Loss: 163.238 -54400/69092 Loss: 165.130 -57600/69092 Loss: 166.742 -60800/69092 Loss: 167.505 -64000/69092 Loss: 168.180 -67200/69092 Loss: 167.454 -Training time 0:05:00.056367 -Epoch: 10 Average loss: 166.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 12) -0/69092 Loss: 165.274 -3200/69092 Loss: 164.180 -6400/69092 Loss: 165.239 -9600/69092 Loss: 168.142 -12800/69092 Loss: 168.498 -16000/69092 Loss: 167.716 -19200/69092 Loss: 163.388 -22400/69092 Loss: 165.186 -25600/69092 Loss: 170.132 -28800/69092 Loss: 165.804 -32000/69092 Loss: 164.222 -35200/69092 Loss: 167.129 -38400/69092 Loss: 165.750 -41600/69092 Loss: 163.277 -44800/69092 Loss: 162.054 -48000/69092 Loss: 163.924 -51200/69092 Loss: 163.566 -54400/69092 Loss: 164.816 -57600/69092 Loss: 161.576 -60800/69092 Loss: 164.528 -64000/69092 Loss: 165.856 -67200/69092 Loss: 165.561 -Training time 0:05:06.804340 -Epoch: 11 Average loss: 165.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 13) -0/69092 Loss: 183.655 -3200/69092 Loss: 162.179 -6400/69092 Loss: 166.925 -9600/69092 Loss: 163.074 -12800/69092 Loss: 161.481 -16000/69092 Loss: 165.606 -19200/69092 Loss: 163.444 -22400/69092 Loss: 162.572 -25600/69092 Loss: 166.145 -28800/69092 Loss: 164.023 -32000/69092 Loss: 163.924 -35200/69092 Loss: 163.503 -38400/69092 Loss: 162.495 -41600/69092 Loss: 165.627 -44800/69092 Loss: 162.917 -48000/69092 Loss: 162.868 -51200/69092 Loss: 160.486 -54400/69092 Loss: 162.442 -57600/69092 Loss: 159.867 -60800/69092 Loss: 160.743 -64000/69092 Loss: 167.472 -67200/69092 Loss: 162.736 -Training time 0:04:58.903187 -Epoch: 12 Average loss: 163.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 14) -0/69092 Loss: 146.602 -3200/69092 Loss: 164.487 -6400/69092 Loss: 160.674 -9600/69092 Loss: 166.910 -12800/69092 Loss: 162.449 -16000/69092 Loss: 159.800 -19200/69092 Loss: 162.522 -22400/69092 Loss: 161.967 -25600/69092 Loss: 160.885 -28800/69092 Loss: 160.508 -32000/69092 Loss: 162.803 -35200/69092 Loss: 162.870 -38400/69092 Loss: 162.641 -41600/69092 Loss: 164.704 -44800/69092 Loss: 161.753 -48000/69092 Loss: 161.745 -51200/69092 Loss: 163.318 -54400/69092 Loss: 159.323 -57600/69092 Loss: 163.804 -60800/69092 Loss: 164.845 -64000/69092 Loss: 163.711 -67200/69092 Loss: 162.224 -Training time 0:04:59.047005 -Epoch: 13 Average loss: 162.60 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 15) -0/69092 Loss: 180.344 -3200/69092 Loss: 162.784 -6400/69092 Loss: 164.695 -9600/69092 Loss: 163.425 -12800/69092 Loss: 162.526 -16000/69092 Loss: 162.231 -19200/69092 Loss: 158.073 -22400/69092 Loss: 164.558 -25600/69092 Loss: 162.173 -28800/69092 Loss: 162.845 -32000/69092 Loss: 160.427 -35200/69092 Loss: 160.872 -38400/69092 Loss: 161.094 -41600/69092 Loss: 159.888 -44800/69092 Loss: 159.363 -48000/69092 Loss: 162.448 -51200/69092 Loss: 159.365 -54400/69092 Loss: 162.186 -57600/69092 Loss: 162.648 -60800/69092 Loss: 161.662 -64000/69092 Loss: 158.286 -67200/69092 Loss: 161.052 -Training time 0:05:00.164209 -Epoch: 14 Average loss: 161.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 16) -0/69092 Loss: 199.840 -3200/69092 Loss: 163.063 -6400/69092 Loss: 160.443 -9600/69092 Loss: 160.690 -12800/69092 Loss: 160.661 -16000/69092 Loss: 161.505 -19200/69092 Loss: 162.851 -22400/69092 Loss: 163.128 -25600/69092 Loss: 164.712 -28800/69092 Loss: 160.490 -32000/69092 Loss: 161.206 -35200/69092 Loss: 164.118 -38400/69092 Loss: 162.320 -41600/69092 Loss: 161.073 -44800/69092 Loss: 162.087 -48000/69092 Loss: 156.887 -51200/69092 Loss: 161.298 -54400/69092 Loss: 162.237 -57600/69092 Loss: 159.090 -60800/69092 Loss: 157.578 -64000/69092 Loss: 160.340 -67200/69092 Loss: 160.287 -Training time 0:04:58.618335 -Epoch: 15 Average loss: 161.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 17) -0/69092 Loss: 179.801 -3200/69092 Loss: 159.282 -6400/69092 Loss: 162.081 -9600/69092 Loss: 162.562 -12800/69092 Loss: 161.926 -16000/69092 Loss: 158.826 -19200/69092 Loss: 160.103 -22400/69092 Loss: 158.152 -25600/69092 Loss: 163.123 -28800/69092 Loss: 161.471 -32000/69092 Loss: 159.271 -35200/69092 Loss: 160.391 -38400/69092 Loss: 163.551 -41600/69092 Loss: 161.165 -44800/69092 Loss: 160.229 -48000/69092 Loss: 160.965 -51200/69092 Loss: 158.097 -54400/69092 Loss: 160.917 -57600/69092 Loss: 159.306 -60800/69092 Loss: 160.436 -64000/69092 Loss: 161.442 -67200/69092 Loss: 161.968 -Training time 0:04:57.306732 -Epoch: 16 Average loss: 160.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 18) -0/69092 Loss: 149.385 -3200/69092 Loss: 159.807 -6400/69092 Loss: 161.194 -9600/69092 Loss: 161.355 -12800/69092 Loss: 160.187 -16000/69092 Loss: 162.113 -19200/69092 Loss: 157.555 -22400/69092 Loss: 162.597 -25600/69092 Loss: 159.544 -28800/69092 Loss: 160.797 -32000/69092 Loss: 159.622 -35200/69092 Loss: 158.874 -38400/69092 Loss: 159.822 -41600/69092 Loss: 158.641 -44800/69092 Loss: 158.873 -48000/69092 Loss: 158.707 -51200/69092 Loss: 162.068 -54400/69092 Loss: 163.116 -57600/69092 Loss: 160.427 -60800/69092 Loss: 160.234 -64000/69092 Loss: 159.714 -67200/69092 Loss: 162.192 -Training time 0:05:10.648769 -Epoch: 17 Average loss: 160.37 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 19) -0/69092 Loss: 172.314 -3200/69092 Loss: 159.519 -6400/69092 Loss: 159.834 -9600/69092 Loss: 160.876 -12800/69092 Loss: 157.965 -16000/69092 Loss: 158.430 -19200/69092 Loss: 162.003 -22400/69092 Loss: 158.368 -25600/69092 Loss: 161.281 -28800/69092 Loss: 161.379 -32000/69092 Loss: 157.398 -35200/69092 Loss: 161.975 -38400/69092 Loss: 160.614 -41600/69092 Loss: 159.682 -44800/69092 Loss: 160.802 -48000/69092 Loss: 160.805 -51200/69092 Loss: 158.886 -54400/69092 Loss: 158.829 -57600/69092 Loss: 157.948 -60800/69092 Loss: 161.549 -64000/69092 Loss: 162.151 -67200/69092 Loss: 158.295 -Training time 0:05:12.274791 -Epoch: 18 Average loss: 159.96 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 20) -0/69092 Loss: 131.326 -3200/69092 Loss: 159.722 -6400/69092 Loss: 161.068 -9600/69092 Loss: 162.357 -12800/69092 Loss: 158.572 -16000/69092 Loss: 156.072 -19200/69092 Loss: 159.042 -22400/69092 Loss: 160.605 -25600/69092 Loss: 160.488 -28800/69092 Loss: 157.250 -32000/69092 Loss: 157.668 -35200/69092 Loss: 159.510 -38400/69092 Loss: 160.301 -41600/69092 Loss: 157.766 -44800/69092 Loss: 163.092 -48000/69092 Loss: 160.065 -51200/69092 Loss: 159.585 -54400/69092 Loss: 160.448 -57600/69092 Loss: 160.693 -60800/69092 Loss: 155.794 -64000/69092 Loss: 159.446 -67200/69092 Loss: 160.260 -Training time 0:05:10.358980 -Epoch: 19 Average loss: 159.51 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 21) -0/69092 Loss: 139.467 -3200/69092 Loss: 156.805 -6400/69092 Loss: 163.923 -9600/69092 Loss: 156.384 -12800/69092 Loss: 160.907 -16000/69092 Loss: 157.463 -19200/69092 Loss: 159.306 -22400/69092 Loss: 160.186 -25600/69092 Loss: 160.608 -28800/69092 Loss: 157.611 -32000/69092 Loss: 161.119 -35200/69092 Loss: 161.114 -38400/69092 Loss: 155.444 -41600/69092 Loss: 157.161 -44800/69092 Loss: 159.646 -48000/69092 Loss: 157.669 -51200/69092 Loss: 157.876 -54400/69092 Loss: 161.787 -57600/69092 Loss: 161.446 -60800/69092 Loss: 160.716 -64000/69092 Loss: 158.617 -67200/69092 Loss: 157.310 -Training time 0:05:18.605031 -Epoch: 20 Average loss: 159.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 22) -0/69092 Loss: 162.804 -3200/69092 Loss: 157.607 -6400/69092 Loss: 158.703 -9600/69092 Loss: 159.519 -12800/69092 Loss: 156.560 -16000/69092 Loss: 157.732 -19200/69092 Loss: 157.927 -22400/69092 Loss: 157.652 -25600/69092 Loss: 160.784 -28800/69092 Loss: 158.147 -32000/69092 Loss: 160.244 -35200/69092 Loss: 158.372 -38400/69092 Loss: 160.944 -41600/69092 Loss: 158.488 -44800/69092 Loss: 159.586 -48000/69092 Loss: 158.742 -51200/69092 Loss: 162.743 -54400/69092 Loss: 161.818 -57600/69092 Loss: 160.912 -60800/69092 Loss: 157.601 -64000/69092 Loss: 156.800 -67200/69092 Loss: 158.901 -Training time 0:04:59.334097 -Epoch: 21 Average loss: 159.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 23) -0/69092 Loss: 178.919 -3200/69092 Loss: 156.956 -6400/69092 Loss: 155.858 -9600/69092 Loss: 158.408 -12800/69092 Loss: 159.608 -16000/69092 Loss: 158.151 -19200/69092 Loss: 156.806 -22400/69092 Loss: 159.397 -25600/69092 Loss: 158.664 -28800/69092 Loss: 159.260 -32000/69092 Loss: 158.235 -35200/69092 Loss: 155.953 -38400/69092 Loss: 158.616 -41600/69092 Loss: 161.979 -44800/69092 Loss: 158.240 -48000/69092 Loss: 159.231 -51200/69092 Loss: 159.557 -54400/69092 Loss: 158.783 -57600/69092 Loss: 158.981 -60800/69092 Loss: 160.020 -64000/69092 Loss: 157.398 -67200/69092 Loss: 156.409 -Training time 0:05:06.096368 -Epoch: 22 Average loss: 158.52 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 24) -0/69092 Loss: 198.471 -3200/69092 Loss: 159.577 -6400/69092 Loss: 157.152 -9600/69092 Loss: 159.531 -12800/69092 Loss: 156.278 -16000/69092 Loss: 157.974 -19200/69092 Loss: 159.375 -22400/69092 Loss: 159.431 -25600/69092 Loss: 155.183 -28800/69092 Loss: 159.021 -32000/69092 Loss: 156.130 -35200/69092 Loss: 158.486 -38400/69092 Loss: 159.190 -41600/69092 Loss: 161.333 -44800/69092 Loss: 156.929 -48000/69092 Loss: 157.362 -51200/69092 Loss: 159.342 -54400/69092 Loss: 159.642 -57600/69092 Loss: 158.222 -60800/69092 Loss: 157.330 -64000/69092 Loss: 159.937 -67200/69092 Loss: 157.708 -Training time 0:05:01.714042 -Epoch: 23 Average loss: 158.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 25) -0/69092 Loss: 154.421 -3200/69092 Loss: 161.038 -6400/69092 Loss: 159.909 -9600/69092 Loss: 160.374 -12800/69092 Loss: 155.509 -16000/69092 Loss: 158.463 -19200/69092 Loss: 157.168 -22400/69092 Loss: 156.711 -25600/69092 Loss: 159.442 -28800/69092 Loss: 159.541 -32000/69092 Loss: 158.115 -35200/69092 Loss: 154.931 -38400/69092 Loss: 161.294 -41600/69092 Loss: 156.948 -44800/69092 Loss: 157.822 -48000/69092 Loss: 158.018 -51200/69092 Loss: 156.660 -54400/69092 Loss: 158.641 -57600/69092 Loss: 155.128 -60800/69092 Loss: 158.553 -64000/69092 Loss: 158.320 -67200/69092 Loss: 157.628 -Training time 0:05:02.542967 -Epoch: 24 Average loss: 158.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 26) -0/69092 Loss: 145.903 -3200/69092 Loss: 155.523 -6400/69092 Loss: 158.970 -9600/69092 Loss: 158.780 -12800/69092 Loss: 157.718 -16000/69092 Loss: 155.180 -19200/69092 Loss: 161.513 -22400/69092 Loss: 160.515 -25600/69092 Loss: 157.197 -28800/69092 Loss: 159.840 -32000/69092 Loss: 160.121 -35200/69092 Loss: 156.714 -38400/69092 Loss: 158.600 -41600/69092 Loss: 155.920 -44800/69092 Loss: 155.065 -48000/69092 Loss: 159.233 -51200/69092 Loss: 156.716 -54400/69092 Loss: 158.423 -57600/69092 Loss: 158.802 -60800/69092 Loss: 157.774 -64000/69092 Loss: 156.853 -67200/69092 Loss: 156.542 -Training time 0:05:08.574867 -Epoch: 25 Average loss: 158.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 27) -0/69092 Loss: 183.912 -3200/69092 Loss: 159.267 -6400/69092 Loss: 156.931 -9600/69092 Loss: 155.880 -12800/69092 Loss: 156.799 -16000/69092 Loss: 157.466 -19200/69092 Loss: 157.293 -22400/69092 Loss: 161.534 -25600/69092 Loss: 158.723 -28800/69092 Loss: 158.959 -32000/69092 Loss: 155.528 -35200/69092 Loss: 155.695 -38400/69092 Loss: 158.558 -41600/69092 Loss: 158.691 -44800/69092 Loss: 156.499 -48000/69092 Loss: 159.375 -51200/69092 Loss: 156.073 -54400/69092 Loss: 156.345 -57600/69092 Loss: 158.272 -60800/69092 Loss: 159.055 -64000/69092 Loss: 159.254 -67200/69092 Loss: 158.598 -Training time 0:05:01.677203 -Epoch: 26 Average loss: 157.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 28) -0/69092 Loss: 158.319 -3200/69092 Loss: 155.226 -6400/69092 Loss: 159.075 -9600/69092 Loss: 158.067 -12800/69092 Loss: 158.444 -16000/69092 Loss: 157.934 -19200/69092 Loss: 158.273 -22400/69092 Loss: 158.384 -25600/69092 Loss: 156.721 -28800/69092 Loss: 157.274 -32000/69092 Loss: 160.808 -35200/69092 Loss: 158.591 -38400/69092 Loss: 159.001 -41600/69092 Loss: 158.926 -44800/69092 Loss: 155.346 -48000/69092 Loss: 157.825 -51200/69092 Loss: 154.177 -54400/69092 Loss: 157.157 -57600/69092 Loss: 155.185 -60800/69092 Loss: 157.648 -64000/69092 Loss: 156.520 -67200/69092 Loss: 157.222 -Training time 0:05:04.085619 -Epoch: 27 Average loss: 157.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 29) -0/69092 Loss: 168.794 -3200/69092 Loss: 157.004 -6400/69092 Loss: 157.799 -9600/69092 Loss: 157.924 -12800/69092 Loss: 157.496 -16000/69092 Loss: 154.202 -19200/69092 Loss: 156.467 -22400/69092 Loss: 154.233 -25600/69092 Loss: 157.350 -28800/69092 Loss: 156.450 -32000/69092 Loss: 155.983 -35200/69092 Loss: 158.488 -38400/69092 Loss: 158.456 -41600/69092 Loss: 158.286 -44800/69092 Loss: 155.845 -48000/69092 Loss: 155.172 -51200/69092 Loss: 161.770 -54400/69092 Loss: 157.202 -57600/69092 Loss: 159.669 -60800/69092 Loss: 156.999 -64000/69092 Loss: 154.768 -67200/69092 Loss: 157.480 -Training time 0:05:02.893539 -Epoch: 28 Average loss: 157.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 30) -0/69092 Loss: 173.289 -3200/69092 Loss: 157.316 -6400/69092 Loss: 158.827 -9600/69092 Loss: 155.158 -12800/69092 Loss: 157.116 -16000/69092 Loss: 158.760 -19200/69092 Loss: 157.836 -22400/69092 Loss: 156.273 -25600/69092 Loss: 158.301 -28800/69092 Loss: 156.450 -32000/69092 Loss: 158.055 -35200/69092 Loss: 157.311 -38400/69092 Loss: 156.183 -41600/69092 Loss: 157.349 -44800/69092 Loss: 152.971 -48000/69092 Loss: 159.318 -51200/69092 Loss: 157.521 -54400/69092 Loss: 154.562 -57600/69092 Loss: 156.533 -60800/69092 Loss: 158.231 -64000/69092 Loss: 156.484 -67200/69092 Loss: 157.459 -Training time 0:05:03.158730 -Epoch: 29 Average loss: 157.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 31) -0/69092 Loss: 152.272 -3200/69092 Loss: 154.144 -6400/69092 Loss: 158.409 -9600/69092 Loss: 156.469 -12800/69092 Loss: 156.355 -16000/69092 Loss: 156.064 -19200/69092 Loss: 158.342 -22400/69092 Loss: 156.801 -25600/69092 Loss: 156.990 -28800/69092 Loss: 157.833 -32000/69092 Loss: 157.819 -35200/69092 Loss: 153.839 -38400/69092 Loss: 154.517 -41600/69092 Loss: 158.042 -44800/69092 Loss: 156.666 -48000/69092 Loss: 158.158 -51200/69092 Loss: 159.296 -54400/69092 Loss: 158.656 -57600/69092 Loss: 160.197 -60800/69092 Loss: 155.470 -64000/69092 Loss: 155.759 -67200/69092 Loss: 156.717 -Training time 0:05:02.535085 -Epoch: 30 Average loss: 157.06 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 32) -0/69092 Loss: 159.900 -3200/69092 Loss: 155.428 -6400/69092 Loss: 156.153 -9600/69092 Loss: 158.252 -12800/69092 Loss: 154.153 -16000/69092 Loss: 155.715 -19200/69092 Loss: 156.701 -22400/69092 Loss: 157.210 -25600/69092 Loss: 155.482 -28800/69092 Loss: 155.486 -32000/69092 Loss: 159.990 -35200/69092 Loss: 159.849 -38400/69092 Loss: 159.775 -41600/69092 Loss: 157.037 -44800/69092 Loss: 153.946 -48000/69092 Loss: 156.716 -51200/69092 Loss: 158.174 -54400/69092 Loss: 159.367 -57600/69092 Loss: 156.563 -60800/69092 Loss: 158.856 -64000/69092 Loss: 158.591 -67200/69092 Loss: 155.222 -Training time 0:05:03.584235 -Epoch: 31 Average loss: 157.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 33) -0/69092 Loss: 138.630 -3200/69092 Loss: 157.491 -6400/69092 Loss: 158.921 -9600/69092 Loss: 158.418 -12800/69092 Loss: 155.203 -16000/69092 Loss: 154.800 -19200/69092 Loss: 156.910 -22400/69092 Loss: 157.309 -25600/69092 Loss: 156.536 -28800/69092 Loss: 156.003 -32000/69092 Loss: 156.527 -35200/69092 Loss: 156.284 -38400/69092 Loss: 158.071 -41600/69092 Loss: 154.295 -44800/69092 Loss: 156.268 -48000/69092 Loss: 155.979 -51200/69092 Loss: 158.383 -54400/69092 Loss: 157.090 -57600/69092 Loss: 158.942 -60800/69092 Loss: 155.958 -64000/69092 Loss: 155.065 -67200/69092 Loss: 158.969 -Training time 0:05:00.048382 -Epoch: 32 Average loss: 156.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 34) -0/69092 Loss: 154.280 -3200/69092 Loss: 156.005 -6400/69092 Loss: 157.047 -9600/69092 Loss: 155.668 -12800/69092 Loss: 156.591 -16000/69092 Loss: 157.436 -19200/69092 Loss: 157.341 -22400/69092 Loss: 157.175 -25600/69092 Loss: 158.463 -28800/69092 Loss: 157.588 -32000/69092 Loss: 158.312 -35200/69092 Loss: 157.513 -38400/69092 Loss: 159.358 -41600/69092 Loss: 155.965 -44800/69092 Loss: 156.304 -48000/69092 Loss: 154.301 -51200/69092 Loss: 155.460 -54400/69092 Loss: 157.155 -57600/69092 Loss: 155.685 -60800/69092 Loss: 153.439 -64000/69092 Loss: 156.254 -67200/69092 Loss: 156.532 -Training time 0:05:06.067095 -Epoch: 33 Average loss: 156.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 35) -0/69092 Loss: 141.958 -3200/69092 Loss: 154.117 -6400/69092 Loss: 157.673 -9600/69092 Loss: 154.604 -12800/69092 Loss: 158.539 -16000/69092 Loss: 159.025 -19200/69092 Loss: 159.947 -22400/69092 Loss: 157.176 -25600/69092 Loss: 154.619 -28800/69092 Loss: 159.329 -32000/69092 Loss: 157.699 -35200/69092 Loss: 156.895 -38400/69092 Loss: 157.851 -41600/69092 Loss: 154.119 -44800/69092 Loss: 157.337 -48000/69092 Loss: 156.373 -51200/69092 Loss: 155.055 -54400/69092 Loss: 154.255 -57600/69092 Loss: 158.908 -60800/69092 Loss: 155.901 -64000/69092 Loss: 156.265 -67200/69092 Loss: 156.322 -Training time 0:05:02.584854 -Epoch: 34 Average loss: 156.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 36) -0/69092 Loss: 141.024 -3200/69092 Loss: 157.381 -6400/69092 Loss: 154.569 -9600/69092 Loss: 156.749 -12800/69092 Loss: 156.400 -16000/69092 Loss: 156.175 -19200/69092 Loss: 154.078 -22400/69092 Loss: 158.045 -25600/69092 Loss: 158.648 -28800/69092 Loss: 156.584 -32000/69092 Loss: 157.413 -35200/69092 Loss: 155.964 -38400/69092 Loss: 158.223 -41600/69092 Loss: 156.824 -44800/69092 Loss: 154.100 -48000/69092 Loss: 157.217 -51200/69092 Loss: 157.154 -54400/69092 Loss: 155.985 -57600/69092 Loss: 154.258 -60800/69092 Loss: 158.663 -64000/69092 Loss: 153.862 -67200/69092 Loss: 156.158 -Training time 0:04:58.572646 -Epoch: 35 Average loss: 156.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 37) -0/69092 Loss: 149.548 -3200/69092 Loss: 158.175 -6400/69092 Loss: 157.057 -9600/69092 Loss: 154.916 -12800/69092 Loss: 152.153 -16000/69092 Loss: 155.552 -19200/69092 Loss: 159.669 -22400/69092 Loss: 156.470 -25600/69092 Loss: 155.376 -28800/69092 Loss: 153.088 -32000/69092 Loss: 154.291 -35200/69092 Loss: 154.271 -38400/69092 Loss: 158.879 -41600/69092 Loss: 157.144 -44800/69092 Loss: 156.685 -48000/69092 Loss: 156.017 -51200/69092 Loss: 155.343 -54400/69092 Loss: 155.829 -57600/69092 Loss: 156.472 -60800/69092 Loss: 160.351 -64000/69092 Loss: 156.204 -67200/69092 Loss: 156.556 -Training time 0:04:58.032654 -Epoch: 36 Average loss: 156.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 38) -0/69092 Loss: 166.897 -3200/69092 Loss: 157.064 -6400/69092 Loss: 156.608 -9600/69092 Loss: 155.527 -12800/69092 Loss: 155.202 -16000/69092 Loss: 157.688 -19200/69092 Loss: 155.319 -22400/69092 Loss: 155.936 -25600/69092 Loss: 153.880 -28800/69092 Loss: 155.470 -32000/69092 Loss: 156.070 -35200/69092 Loss: 155.959 -38400/69092 Loss: 157.210 -41600/69092 Loss: 152.925 -44800/69092 Loss: 156.254 -48000/69092 Loss: 156.256 -51200/69092 Loss: 156.374 -54400/69092 Loss: 156.948 -57600/69092 Loss: 155.010 -60800/69092 Loss: 157.953 -64000/69092 Loss: 155.792 -67200/69092 Loss: 157.263 -Training time 0:05:12.924819 -Epoch: 37 Average loss: 156.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 39) -0/69092 Loss: 148.838 -3200/69092 Loss: 157.990 -6400/69092 Loss: 155.146 -9600/69092 Loss: 156.503 -12800/69092 Loss: 156.882 -16000/69092 Loss: 156.628 -19200/69092 Loss: 157.286 -22400/69092 Loss: 155.862 -25600/69092 Loss: 154.377 -28800/69092 Loss: 156.522 -32000/69092 Loss: 153.395 -35200/69092 Loss: 155.686 -38400/69092 Loss: 156.584 -41600/69092 Loss: 155.208 -44800/69092 Loss: 155.178 -48000/69092 Loss: 154.740 -51200/69092 Loss: 159.219 -54400/69092 Loss: 156.950 -57600/69092 Loss: 157.241 -60800/69092 Loss: 156.995 -64000/69092 Loss: 157.894 -67200/69092 Loss: 155.692 -Training time 0:04:54.323092 -Epoch: 38 Average loss: 156.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 40) -0/69092 Loss: 147.868 -3200/69092 Loss: 157.768 -6400/69092 Loss: 155.189 -9600/69092 Loss: 158.650 -12800/69092 Loss: 157.251 -16000/69092 Loss: 156.936 -19200/69092 Loss: 155.778 -22400/69092 Loss: 154.944 -25600/69092 Loss: 153.205 -28800/69092 Loss: 157.779 -32000/69092 Loss: 154.850 -35200/69092 Loss: 158.655 -38400/69092 Loss: 154.072 -41600/69092 Loss: 154.439 -44800/69092 Loss: 157.815 -48000/69092 Loss: 154.913 -51200/69092 Loss: 154.039 -54400/69092 Loss: 156.694 -57600/69092 Loss: 156.639 -60800/69092 Loss: 156.112 -64000/69092 Loss: 152.171 -67200/69092 Loss: 156.980 -Training time 0:04:53.604248 -Epoch: 39 Average loss: 156.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 41) -0/69092 Loss: 147.705 -3200/69092 Loss: 155.556 -6400/69092 Loss: 155.200 -9600/69092 Loss: 157.521 -12800/69092 Loss: 153.459 -16000/69092 Loss: 156.978 -19200/69092 Loss: 153.923 -22400/69092 Loss: 157.482 -25600/69092 Loss: 154.741 -28800/69092 Loss: 155.055 -32000/69092 Loss: 158.463 -35200/69092 Loss: 154.147 -38400/69092 Loss: 155.114 -41600/69092 Loss: 155.337 -44800/69092 Loss: 156.893 -48000/69092 Loss: 158.580 -51200/69092 Loss: 156.684 -54400/69092 Loss: 154.755 -57600/69092 Loss: 156.090 -60800/69092 Loss: 155.736 -64000/69092 Loss: 154.606 -67200/69092 Loss: 158.278 -Training time 0:05:13.506864 -Epoch: 40 Average loss: 155.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 42) -0/69092 Loss: 160.277 -3200/69092 Loss: 156.898 -6400/69092 Loss: 154.616 -9600/69092 Loss: 156.852 -12800/69092 Loss: 151.225 -16000/69092 Loss: 157.091 -19200/69092 Loss: 159.233 -22400/69092 Loss: 155.176 -25600/69092 Loss: 157.237 -28800/69092 Loss: 156.804 -32000/69092 Loss: 156.285 -35200/69092 Loss: 154.726 -38400/69092 Loss: 155.144 -41600/69092 Loss: 156.868 -44800/69092 Loss: 156.826 -48000/69092 Loss: 156.344 -51200/69092 Loss: 156.396 -54400/69092 Loss: 154.604 -57600/69092 Loss: 155.950 -60800/69092 Loss: 154.924 -64000/69092 Loss: 154.222 -67200/69092 Loss: 157.096 -Training time 0:05:07.493872 -Epoch: 41 Average loss: 156.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 43) -0/69092 Loss: 176.641 -3200/69092 Loss: 156.157 -6400/69092 Loss: 157.115 -9600/69092 Loss: 150.653 -12800/69092 Loss: 154.181 -16000/69092 Loss: 158.271 -19200/69092 Loss: 155.148 -22400/69092 Loss: 156.107 -25600/69092 Loss: 157.770 -28800/69092 Loss: 155.937 -32000/69092 Loss: 154.601 -35200/69092 Loss: 155.916 -38400/69092 Loss: 154.866 -41600/69092 Loss: 153.659 -44800/69092 Loss: 156.341 -48000/69092 Loss: 157.204 -51200/69092 Loss: 156.436 -54400/69092 Loss: 155.775 -57600/69092 Loss: 154.015 -60800/69092 Loss: 154.759 -64000/69092 Loss: 157.842 -67200/69092 Loss: 157.727 -Training time 0:05:09.750887 -Epoch: 42 Average loss: 155.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 44) -0/69092 Loss: 146.066 -3200/69092 Loss: 156.428 -6400/69092 Loss: 154.703 -9600/69092 Loss: 153.493 -12800/69092 Loss: 154.055 -16000/69092 Loss: 154.985 -19200/69092 Loss: 158.085 -22400/69092 Loss: 155.330 -25600/69092 Loss: 154.810 -28800/69092 Loss: 155.093 -32000/69092 Loss: 158.393 -35200/69092 Loss: 157.086 -38400/69092 Loss: 155.725 -41600/69092 Loss: 154.598 -44800/69092 Loss: 154.570 -48000/69092 Loss: 157.881 -51200/69092 Loss: 157.361 -54400/69092 Loss: 154.023 -57600/69092 Loss: 152.908 -60800/69092 Loss: 156.139 -64000/69092 Loss: 155.932 -67200/69092 Loss: 154.440 -Training time 0:04:59.423167 -Epoch: 43 Average loss: 155.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 45) -0/69092 Loss: 200.474 -3200/69092 Loss: 153.884 -6400/69092 Loss: 156.203 -9600/69092 Loss: 155.631 -12800/69092 Loss: 157.309 -16000/69092 Loss: 153.582 -19200/69092 Loss: 158.401 -22400/69092 Loss: 154.351 -25600/69092 Loss: 157.492 -28800/69092 Loss: 154.397 -32000/69092 Loss: 157.346 -35200/69092 Loss: 154.203 -38400/69092 Loss: 153.720 -41600/69092 Loss: 156.197 -44800/69092 Loss: 153.916 -48000/69092 Loss: 155.614 -51200/69092 Loss: 157.565 -54400/69092 Loss: 153.797 -57600/69092 Loss: 155.992 -60800/69092 Loss: 157.435 -64000/69092 Loss: 152.022 -67200/69092 Loss: 158.247 -Training time 0:05:03.481951 -Epoch: 44 Average loss: 155.67 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 46) -0/69092 Loss: 150.111 -3200/69092 Loss: 157.995 -6400/69092 Loss: 156.446 -9600/69092 Loss: 154.183 -12800/69092 Loss: 154.716 -16000/69092 Loss: 153.516 -19200/69092 Loss: 152.982 -22400/69092 Loss: 153.300 -25600/69092 Loss: 156.466 -28800/69092 Loss: 157.172 -32000/69092 Loss: 157.166 -35200/69092 Loss: 156.265 -38400/69092 Loss: 154.529 -41600/69092 Loss: 156.155 -44800/69092 Loss: 156.316 -48000/69092 Loss: 154.215 -51200/69092 Loss: 155.968 -54400/69092 Loss: 156.190 -57600/69092 Loss: 156.931 -60800/69092 Loss: 154.928 -64000/69092 Loss: 154.245 -67200/69092 Loss: 155.043 -Training time 0:05:06.014997 -Epoch: 45 Average loss: 155.40 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 47) -0/69092 Loss: 164.460 -3200/69092 Loss: 155.164 -6400/69092 Loss: 153.712 -9600/69092 Loss: 158.241 -12800/69092 Loss: 154.462 -16000/69092 Loss: 153.172 -19200/69092 Loss: 155.025 -22400/69092 Loss: 156.956 -25600/69092 Loss: 157.186 -28800/69092 Loss: 154.228 -32000/69092 Loss: 155.207 -35200/69092 Loss: 155.690 -38400/69092 Loss: 153.174 -41600/69092 Loss: 154.424 -44800/69092 Loss: 156.082 -48000/69092 Loss: 155.082 -51200/69092 Loss: 155.209 -54400/69092 Loss: 156.691 -57600/69092 Loss: 154.057 -60800/69092 Loss: 157.915 -64000/69092 Loss: 155.094 -67200/69092 Loss: 156.608 -Training time 0:05:06.110059 -Epoch: 46 Average loss: 155.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 48) -0/69092 Loss: 157.285 -3200/69092 Loss: 155.880 -6400/69092 Loss: 157.244 -9600/69092 Loss: 154.071 -12800/69092 Loss: 156.788 -16000/69092 Loss: 154.833 -19200/69092 Loss: 155.581 -22400/69092 Loss: 155.328 -25600/69092 Loss: 155.566 -28800/69092 Loss: 155.714 -32000/69092 Loss: 154.491 -35200/69092 Loss: 154.973 -38400/69092 Loss: 154.087 -41600/69092 Loss: 154.297 -44800/69092 Loss: 156.104 -48000/69092 Loss: 154.182 -51200/69092 Loss: 156.398 -54400/69092 Loss: 155.229 -57600/69092 Loss: 152.827 -60800/69092 Loss: 157.835 -64000/69092 Loss: 156.431 -67200/69092 Loss: 157.561 -Training time 0:05:04.778110 -Epoch: 47 Average loss: 155.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 49) -0/69092 Loss: 155.640 -3200/69092 Loss: 157.163 -6400/69092 Loss: 155.718 -9600/69092 Loss: 153.309 -12800/69092 Loss: 157.666 -16000/69092 Loss: 154.540 -19200/69092 Loss: 155.487 -22400/69092 Loss: 154.137 -25600/69092 Loss: 155.672 -28800/69092 Loss: 153.656 -32000/69092 Loss: 155.147 -35200/69092 Loss: 154.278 -38400/69092 Loss: 154.301 -41600/69092 Loss: 153.384 -44800/69092 Loss: 158.994 -48000/69092 Loss: 155.656 -51200/69092 Loss: 155.256 -54400/69092 Loss: 156.492 -57600/69092 Loss: 151.754 -60800/69092 Loss: 154.231 -64000/69092 Loss: 156.473 -67200/69092 Loss: 156.620 -Training time 0:05:05.030386 -Epoch: 48 Average loss: 155.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 50) -0/69092 Loss: 152.081 -3200/69092 Loss: 154.616 -6400/69092 Loss: 153.586 -9600/69092 Loss: 151.007 -12800/69092 Loss: 153.013 -16000/69092 Loss: 153.165 -19200/69092 Loss: 157.482 -22400/69092 Loss: 155.414 -25600/69092 Loss: 153.239 -28800/69092 Loss: 151.686 -32000/69092 Loss: 156.170 -35200/69092 Loss: 158.453 -38400/69092 Loss: 153.003 -41600/69092 Loss: 156.861 -44800/69092 Loss: 153.598 -48000/69092 Loss: 154.978 -51200/69092 Loss: 157.901 -54400/69092 Loss: 157.818 -57600/69092 Loss: 153.674 -60800/69092 Loss: 154.840 -64000/69092 Loss: 156.388 -67200/69092 Loss: 157.618 -Training time 0:05:05.663659 -Epoch: 49 Average loss: 154.95 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 51) -0/69092 Loss: 138.055 -3200/69092 Loss: 157.310 -6400/69092 Loss: 155.433 -9600/69092 Loss: 156.493 -12800/69092 Loss: 154.718 -16000/69092 Loss: 155.934 -19200/69092 Loss: 153.202 -22400/69092 Loss: 153.749 -25600/69092 Loss: 155.077 -28800/69092 Loss: 155.993 -32000/69092 Loss: 152.357 -35200/69092 Loss: 152.738 -38400/69092 Loss: 157.730 -41600/69092 Loss: 155.163 -44800/69092 Loss: 155.048 -48000/69092 Loss: 154.018 -51200/69092 Loss: 153.513 -54400/69092 Loss: 154.700 -57600/69092 Loss: 154.419 -60800/69092 Loss: 156.469 -64000/69092 Loss: 156.642 -67200/69092 Loss: 157.263 -Training time 0:05:02.768568 -Epoch: 50 Average loss: 155.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 52) -0/69092 Loss: 161.086 -3200/69092 Loss: 154.211 -6400/69092 Loss: 154.670 -9600/69092 Loss: 155.008 -12800/69092 Loss: 155.333 -16000/69092 Loss: 155.166 -19200/69092 Loss: 155.091 -22400/69092 Loss: 154.827 -25600/69092 Loss: 153.501 -28800/69092 Loss: 155.039 -32000/69092 Loss: 154.895 -35200/69092 Loss: 155.657 -38400/69092 Loss: 157.103 -41600/69092 Loss: 155.500 -44800/69092 Loss: 151.399 -48000/69092 Loss: 157.694 -51200/69092 Loss: 156.642 -54400/69092 Loss: 154.087 -57600/69092 Loss: 153.673 -60800/69092 Loss: 154.877 -64000/69092 Loss: 154.903 -67200/69092 Loss: 156.111 -Training time 0:05:05.459720 -Epoch: 51 Average loss: 155.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 53) -0/69092 Loss: 141.273 -3200/69092 Loss: 154.704 -6400/69092 Loss: 160.726 -9600/69092 Loss: 158.246 -12800/69092 Loss: 154.867 -16000/69092 Loss: 154.588 -19200/69092 Loss: 155.334 -22400/69092 Loss: 154.317 -25600/69092 Loss: 156.342 -28800/69092 Loss: 151.124 -32000/69092 Loss: 153.697 -35200/69092 Loss: 155.627 -38400/69092 Loss: 156.727 -41600/69092 Loss: 155.011 -44800/69092 Loss: 152.628 -48000/69092 Loss: 156.980 -51200/69092 Loss: 152.179 -54400/69092 Loss: 156.922 -57600/69092 Loss: 154.467 -60800/69092 Loss: 154.816 -64000/69092 Loss: 155.005 -67200/69092 Loss: 153.558 -Training time 0:05:11.431072 -Epoch: 52 Average loss: 155.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 54) -0/69092 Loss: 164.586 -3200/69092 Loss: 156.119 -6400/69092 Loss: 153.139 -9600/69092 Loss: 152.056 -12800/69092 Loss: 153.613 -16000/69092 Loss: 153.200 -19200/69092 Loss: 155.015 -22400/69092 Loss: 154.981 -25600/69092 Loss: 154.164 -28800/69092 Loss: 154.798 -32000/69092 Loss: 153.374 -35200/69092 Loss: 154.654 -38400/69092 Loss: 153.589 -41600/69092 Loss: 152.973 -44800/69092 Loss: 155.552 -48000/69092 Loss: 154.761 -51200/69092 Loss: 156.590 -54400/69092 Loss: 153.793 -57600/69092 Loss: 156.273 -60800/69092 Loss: 155.909 -64000/69092 Loss: 154.876 -67200/69092 Loss: 157.661 -Training time 0:05:05.996288 -Epoch: 53 Average loss: 154.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 55) -0/69092 Loss: 146.012 -3200/69092 Loss: 152.299 -6400/69092 Loss: 152.976 -9600/69092 Loss: 152.541 -12800/69092 Loss: 155.811 -16000/69092 Loss: 154.429 -19200/69092 Loss: 156.677 -22400/69092 Loss: 151.371 -25600/69092 Loss: 157.504 -28800/69092 Loss: 159.227 -32000/69092 Loss: 155.371 -35200/69092 Loss: 153.324 -38400/69092 Loss: 155.056 -41600/69092 Loss: 154.234 -44800/69092 Loss: 154.490 -48000/69092 Loss: 153.918 -51200/69092 Loss: 152.108 -54400/69092 Loss: 154.187 -57600/69092 Loss: 155.906 -60800/69092 Loss: 153.891 -64000/69092 Loss: 155.826 -67200/69092 Loss: 155.579 -Training time 0:05:04.230799 -Epoch: 54 Average loss: 154.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 56) -0/69092 Loss: 153.508 -3200/69092 Loss: 155.734 -6400/69092 Loss: 154.875 -9600/69092 Loss: 155.674 -12800/69092 Loss: 154.985 -16000/69092 Loss: 154.900 -19200/69092 Loss: 155.885 -22400/69092 Loss: 152.871 -25600/69092 Loss: 153.240 -28800/69092 Loss: 155.101 -32000/69092 Loss: 155.479 -35200/69092 Loss: 154.778 -38400/69092 Loss: 154.601 -41600/69092 Loss: 152.157 -44800/69092 Loss: 152.879 -48000/69092 Loss: 155.989 -51200/69092 Loss: 155.628 -54400/69092 Loss: 157.303 -57600/69092 Loss: 152.704 -60800/69092 Loss: 152.557 -64000/69092 Loss: 153.799 -67200/69092 Loss: 153.185 -Training time 0:05:03.901663 -Epoch: 55 Average loss: 154.57 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 57) -0/69092 Loss: 154.122 -3200/69092 Loss: 152.552 -6400/69092 Loss: 152.658 -9600/69092 Loss: 153.987 -12800/69092 Loss: 156.042 -16000/69092 Loss: 155.590 -19200/69092 Loss: 153.177 -22400/69092 Loss: 154.028 -25600/69092 Loss: 155.959 -28800/69092 Loss: 154.585 -32000/69092 Loss: 154.518 -35200/69092 Loss: 152.070 -38400/69092 Loss: 158.937 -41600/69092 Loss: 154.355 -44800/69092 Loss: 154.037 -48000/69092 Loss: 152.917 -51200/69092 Loss: 156.300 -54400/69092 Loss: 154.668 -57600/69092 Loss: 155.386 -60800/69092 Loss: 156.333 -64000/69092 Loss: 153.739 -67200/69092 Loss: 152.806 -Training time 0:05:04.243139 -Epoch: 56 Average loss: 154.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 58) -0/69092 Loss: 144.614 -3200/69092 Loss: 153.546 -6400/69092 Loss: 153.930 -9600/69092 Loss: 153.363 -12800/69092 Loss: 155.139 -16000/69092 Loss: 155.062 -19200/69092 Loss: 154.600 -22400/69092 Loss: 153.238 -25600/69092 Loss: 156.407 -28800/69092 Loss: 155.126 -32000/69092 Loss: 152.581 -35200/69092 Loss: 154.254 -38400/69092 Loss: 153.591 -41600/69092 Loss: 154.453 -44800/69092 Loss: 153.838 -48000/69092 Loss: 155.885 -51200/69092 Loss: 157.253 -54400/69092 Loss: 155.813 -57600/69092 Loss: 154.260 -60800/69092 Loss: 153.679 -64000/69092 Loss: 153.516 -67200/69092 Loss: 151.820 -Training time 0:04:59.879109 -Epoch: 57 Average loss: 154.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 59) -0/69092 Loss: 156.545 -3200/69092 Loss: 152.711 -6400/69092 Loss: 155.152 -9600/69092 Loss: 153.643 -12800/69092 Loss: 153.460 -16000/69092 Loss: 155.417 -19200/69092 Loss: 155.859 -22400/69092 Loss: 156.568 -25600/69092 Loss: 156.311 -28800/69092 Loss: 154.010 -32000/69092 Loss: 154.787 -35200/69092 Loss: 155.393 -38400/69092 Loss: 154.792 -41600/69092 Loss: 154.848 -44800/69092 Loss: 151.788 -48000/69092 Loss: 153.340 -51200/69092 Loss: 154.351 -54400/69092 Loss: 151.239 -57600/69092 Loss: 154.593 -60800/69092 Loss: 153.693 -64000/69092 Loss: 154.874 -67200/69092 Loss: 153.618 -Training time 0:05:07.218632 -Epoch: 58 Average loss: 154.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 60) -0/69092 Loss: 156.600 -3200/69092 Loss: 156.684 -6400/69092 Loss: 151.265 -9600/69092 Loss: 151.986 -12800/69092 Loss: 153.862 -16000/69092 Loss: 154.563 -19200/69092 Loss: 156.867 -22400/69092 Loss: 153.331 -25600/69092 Loss: 156.700 -28800/69092 Loss: 157.730 -32000/69092 Loss: 153.682 -35200/69092 Loss: 152.577 -38400/69092 Loss: 154.478 -41600/69092 Loss: 153.996 -44800/69092 Loss: 151.927 -48000/69092 Loss: 152.702 -51200/69092 Loss: 154.391 -54400/69092 Loss: 153.501 -57600/69092 Loss: 154.020 -60800/69092 Loss: 153.457 -64000/69092 Loss: 154.137 -67200/69092 Loss: 156.023 -Training time 0:05:04.719617 -Epoch: 59 Average loss: 154.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 61) -0/69092 Loss: 170.459 -3200/69092 Loss: 152.318 -6400/69092 Loss: 154.422 -9600/69092 Loss: 152.764 -12800/69092 Loss: 154.167 -16000/69092 Loss: 152.276 -19200/69092 Loss: 157.502 -22400/69092 Loss: 152.620 -25600/69092 Loss: 152.902 -28800/69092 Loss: 155.460 -32000/69092 Loss: 155.917 -35200/69092 Loss: 152.836 -38400/69092 Loss: 154.717 -41600/69092 Loss: 153.879 -44800/69092 Loss: 152.771 -48000/69092 Loss: 154.452 -51200/69092 Loss: 154.147 -54400/69092 Loss: 156.133 -57600/69092 Loss: 156.922 -60800/69092 Loss: 153.447 -64000/69092 Loss: 153.968 -67200/69092 Loss: 153.248 -Training time 0:05:06.522886 -Epoch: 60 Average loss: 154.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 62) -0/69092 Loss: 147.740 -3200/69092 Loss: 152.669 -6400/69092 Loss: 155.595 -9600/69092 Loss: 151.748 -12800/69092 Loss: 156.285 -16000/69092 Loss: 154.100 -19200/69092 Loss: 158.269 -22400/69092 Loss: 154.795 -25600/69092 Loss: 154.597 -28800/69092 Loss: 154.787 -32000/69092 Loss: 154.627 -35200/69092 Loss: 155.593 -38400/69092 Loss: 155.354 -41600/69092 Loss: 152.669 -44800/69092 Loss: 153.115 -48000/69092 Loss: 155.852 -51200/69092 Loss: 156.078 -54400/69092 Loss: 151.349 -57600/69092 Loss: 151.340 -60800/69092 Loss: 151.443 -64000/69092 Loss: 150.492 -67200/69092 Loss: 152.684 -Training time 0:05:05.323525 -Epoch: 61 Average loss: 154.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 63) -0/69092 Loss: 139.416 -3200/69092 Loss: 153.701 -6400/69092 Loss: 155.274 -9600/69092 Loss: 154.927 -12800/69092 Loss: 152.724 -16000/69092 Loss: 155.177 -19200/69092 Loss: 155.993 -22400/69092 Loss: 153.200 -25600/69092 Loss: 153.818 -28800/69092 Loss: 153.500 -32000/69092 Loss: 153.379 -35200/69092 Loss: 154.827 -38400/69092 Loss: 152.315 -41600/69092 Loss: 154.844 -44800/69092 Loss: 153.337 -48000/69092 Loss: 154.495 -51200/69092 Loss: 156.173 -54400/69092 Loss: 152.639 -57600/69092 Loss: 151.143 -60800/69092 Loss: 156.477 -64000/69092 Loss: 151.459 -67200/69092 Loss: 156.094 -Training time 0:05:08.764411 -Epoch: 62 Average loss: 154.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 64) -0/69092 Loss: 150.931 -3200/69092 Loss: 153.194 -6400/69092 Loss: 153.936 -9600/69092 Loss: 155.239 -12800/69092 Loss: 153.442 -16000/69092 Loss: 155.337 -19200/69092 Loss: 155.263 -22400/69092 Loss: 154.418 -25600/69092 Loss: 153.767 -28800/69092 Loss: 152.669 -32000/69092 Loss: 153.968 -35200/69092 Loss: 155.063 -38400/69092 Loss: 154.774 -41600/69092 Loss: 155.956 -44800/69092 Loss: 149.058 -48000/69092 Loss: 153.635 -51200/69092 Loss: 153.272 -54400/69092 Loss: 154.152 -57600/69092 Loss: 155.237 -60800/69092 Loss: 153.538 -64000/69092 Loss: 152.544 -67200/69092 Loss: 155.601 -Training time 0:04:58.135277 -Epoch: 63 Average loss: 153.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 65) -0/69092 Loss: 149.957 -3200/69092 Loss: 154.703 -6400/69092 Loss: 154.330 -9600/69092 Loss: 153.689 -12800/69092 Loss: 152.845 -16000/69092 Loss: 153.162 -19200/69092 Loss: 153.399 -22400/69092 Loss: 157.306 -25600/69092 Loss: 152.055 -28800/69092 Loss: 153.684 -32000/69092 Loss: 151.968 -35200/69092 Loss: 152.251 -38400/69092 Loss: 151.774 -41600/69092 Loss: 154.926 -44800/69092 Loss: 155.528 -48000/69092 Loss: 152.358 -51200/69092 Loss: 154.989 -54400/69092 Loss: 153.860 -57600/69092 Loss: 151.102 -60800/69092 Loss: 156.806 -64000/69092 Loss: 156.172 -67200/69092 Loss: 152.239 -Training time 0:05:04.264074 -Epoch: 64 Average loss: 153.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 66) -0/69092 Loss: 135.616 -3200/69092 Loss: 152.446 -6400/69092 Loss: 154.534 -9600/69092 Loss: 156.478 -12800/69092 Loss: 152.469 -16000/69092 Loss: 153.438 -19200/69092 Loss: 152.151 -22400/69092 Loss: 151.988 -25600/69092 Loss: 152.486 -28800/69092 Loss: 154.608 -32000/69092 Loss: 152.458 -35200/69092 Loss: 155.160 -38400/69092 Loss: 152.668 -41600/69092 Loss: 153.771 -44800/69092 Loss: 155.444 -48000/69092 Loss: 153.273 -51200/69092 Loss: 154.682 -54400/69092 Loss: 156.136 -57600/69092 Loss: 154.308 -60800/69092 Loss: 154.201 -64000/69092 Loss: 154.921 -67200/69092 Loss: 151.464 -Training time 0:05:11.196563 -Epoch: 65 Average loss: 153.87 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 67) -0/69092 Loss: 153.509 -3200/69092 Loss: 153.018 -6400/69092 Loss: 151.510 -9600/69092 Loss: 153.944 -12800/69092 Loss: 153.229 -16000/69092 Loss: 154.579 -19200/69092 Loss: 152.519 -22400/69092 Loss: 155.319 -25600/69092 Loss: 154.698 -28800/69092 Loss: 154.007 -32000/69092 Loss: 153.458 -35200/69092 Loss: 153.842 -38400/69092 Loss: 152.014 -41600/69092 Loss: 153.029 -44800/69092 Loss: 153.387 -48000/69092 Loss: 156.787 -51200/69092 Loss: 155.629 -54400/69092 Loss: 153.123 -57600/69092 Loss: 156.001 -60800/69092 Loss: 153.081 -64000/69092 Loss: 154.751 -67200/69092 Loss: 152.536 -Training time 0:04:59.973290 -Epoch: 66 Average loss: 153.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 68) -0/69092 Loss: 158.298 -3200/69092 Loss: 152.507 -6400/69092 Loss: 152.727 -9600/69092 Loss: 153.121 -12800/69092 Loss: 150.498 -16000/69092 Loss: 151.056 -19200/69092 Loss: 157.246 -22400/69092 Loss: 155.845 -25600/69092 Loss: 155.414 -28800/69092 Loss: 155.750 -32000/69092 Loss: 151.761 -35200/69092 Loss: 155.314 -38400/69092 Loss: 157.279 -41600/69092 Loss: 155.597 -44800/69092 Loss: 153.331 -48000/69092 Loss: 153.527 -51200/69092 Loss: 152.233 -54400/69092 Loss: 152.478 -57600/69092 Loss: 154.482 -60800/69092 Loss: 153.493 -64000/69092 Loss: 152.558 -67200/69092 Loss: 156.084 -Training time 0:05:03.196744 -Epoch: 67 Average loss: 153.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 69) -0/69092 Loss: 137.431 -3200/69092 Loss: 153.184 -6400/69092 Loss: 153.018 -9600/69092 Loss: 153.017 -12800/69092 Loss: 154.140 -16000/69092 Loss: 153.353 -19200/69092 Loss: 153.756 -22400/69092 Loss: 155.243 -25600/69092 Loss: 152.656 -28800/69092 Loss: 150.268 -32000/69092 Loss: 154.123 -35200/69092 Loss: 152.991 -38400/69092 Loss: 155.381 -41600/69092 Loss: 152.844 -44800/69092 Loss: 157.580 -48000/69092 Loss: 155.649 -51200/69092 Loss: 152.598 -54400/69092 Loss: 155.049 -57600/69092 Loss: 156.392 -60800/69092 Loss: 151.240 -64000/69092 Loss: 155.197 -67200/69092 Loss: 153.459 -Training time 0:05:07.525183 -Epoch: 68 Average loss: 153.81 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 70) -0/69092 Loss: 151.003 -3200/69092 Loss: 154.731 -6400/69092 Loss: 151.691 -9600/69092 Loss: 156.213 -12800/69092 Loss: 154.119 -16000/69092 Loss: 156.713 -19200/69092 Loss: 158.253 -22400/69092 Loss: 152.825 -25600/69092 Loss: 153.418 -28800/69092 Loss: 151.424 -32000/69092 Loss: 151.944 -35200/69092 Loss: 150.554 -38400/69092 Loss: 156.523 -41600/69092 Loss: 154.309 -44800/69092 Loss: 151.041 -48000/69092 Loss: 154.112 -51200/69092 Loss: 152.367 -54400/69092 Loss: 154.360 -57600/69092 Loss: 152.664 -60800/69092 Loss: 152.367 -64000/69092 Loss: 152.254 -67200/69092 Loss: 155.735 -Training time 0:04:59.974978 -Epoch: 69 Average loss: 153.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 71) -0/69092 Loss: 161.774 -3200/69092 Loss: 155.306 -6400/69092 Loss: 152.665 -9600/69092 Loss: 151.905 -12800/69092 Loss: 155.717 -16000/69092 Loss: 152.308 -19200/69092 Loss: 153.469 -22400/69092 Loss: 153.628 -25600/69092 Loss: 152.235 -28800/69092 Loss: 151.682 -32000/69092 Loss: 154.698 -35200/69092 Loss: 154.138 -38400/69092 Loss: 155.426 -41600/69092 Loss: 149.700 -44800/69092 Loss: 153.198 -48000/69092 Loss: 155.658 -51200/69092 Loss: 154.721 -54400/69092 Loss: 154.164 -57600/69092 Loss: 149.495 -60800/69092 Loss: 155.010 -64000/69092 Loss: 155.860 -67200/69092 Loss: 152.009 -Training time 0:05:03.293064 -Epoch: 70 Average loss: 153.46 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 72) -0/69092 Loss: 144.245 -3200/69092 Loss: 154.381 -6400/69092 Loss: 153.375 -9600/69092 Loss: 150.919 -12800/69092 Loss: 153.996 -16000/69092 Loss: 153.696 -19200/69092 Loss: 153.120 -22400/69092 Loss: 153.994 -25600/69092 Loss: 154.056 -28800/69092 Loss: 155.968 -32000/69092 Loss: 151.166 -35200/69092 Loss: 152.345 -38400/69092 Loss: 154.135 -41600/69092 Loss: 152.586 -44800/69092 Loss: 154.086 -48000/69092 Loss: 156.236 -51200/69092 Loss: 154.236 -54400/69092 Loss: 153.280 -57600/69092 Loss: 153.596 -60800/69092 Loss: 154.071 -64000/69092 Loss: 152.977 -67200/69092 Loss: 154.226 -Training time 0:05:06.396825 -Epoch: 71 Average loss: 153.66 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 73) -0/69092 Loss: 156.194 -3200/69092 Loss: 151.805 -6400/69092 Loss: 154.363 -9600/69092 Loss: 154.537 -12800/69092 Loss: 152.933 -16000/69092 Loss: 156.908 -19200/69092 Loss: 156.385 -22400/69092 Loss: 153.351 -25600/69092 Loss: 153.926 -28800/69092 Loss: 154.872 -32000/69092 Loss: 154.015 -35200/69092 Loss: 150.921 -38400/69092 Loss: 153.676 -41600/69092 Loss: 152.123 -44800/69092 Loss: 151.742 -48000/69092 Loss: 151.958 -51200/69092 Loss: 154.512 -54400/69092 Loss: 151.513 -57600/69092 Loss: 154.801 -60800/69092 Loss: 153.840 -64000/69092 Loss: 152.705 -67200/69092 Loss: 151.378 -Training time 0:05:00.657293 -Epoch: 72 Average loss: 153.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 74) -0/69092 Loss: 156.484 -3200/69092 Loss: 155.144 -6400/69092 Loss: 151.167 -9600/69092 Loss: 154.190 -12800/69092 Loss: 151.972 -16000/69092 Loss: 155.841 -19200/69092 Loss: 153.245 -22400/69092 Loss: 153.017 -25600/69092 Loss: 154.034 -28800/69092 Loss: 154.449 -32000/69092 Loss: 151.774 -35200/69092 Loss: 154.554 -38400/69092 Loss: 152.260 -41600/69092 Loss: 153.270 -44800/69092 Loss: 156.584 -48000/69092 Loss: 156.922 -51200/69092 Loss: 149.480 -54400/69092 Loss: 152.737 -57600/69092 Loss: 152.815 -60800/69092 Loss: 152.341 -64000/69092 Loss: 155.473 -67200/69092 Loss: 153.995 -Training time 0:05:02.853466 -Epoch: 73 Average loss: 153.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 75) -0/69092 Loss: 148.939 -3200/69092 Loss: 153.304 -6400/69092 Loss: 154.032 -9600/69092 Loss: 151.501 -12800/69092 Loss: 155.538 -16000/69092 Loss: 155.840 -19200/69092 Loss: 154.375 -22400/69092 Loss: 152.371 -25600/69092 Loss: 153.850 -28800/69092 Loss: 155.079 -32000/69092 Loss: 155.369 -35200/69092 Loss: 153.096 -38400/69092 Loss: 153.323 -41600/69092 Loss: 153.568 -44800/69092 Loss: 152.036 -48000/69092 Loss: 150.695 -51200/69092 Loss: 152.184 -54400/69092 Loss: 153.827 -57600/69092 Loss: 151.439 -60800/69092 Loss: 153.644 -64000/69092 Loss: 155.684 -67200/69092 Loss: 153.418 -Training time 0:05:00.557330 -Epoch: 74 Average loss: 153.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 76) -0/69092 Loss: 150.033 -3200/69092 Loss: 153.176 -6400/69092 Loss: 153.239 -9600/69092 Loss: 151.274 -12800/69092 Loss: 153.676 -16000/69092 Loss: 155.003 -19200/69092 Loss: 152.913 -22400/69092 Loss: 153.146 -25600/69092 Loss: 152.478 -28800/69092 Loss: 153.191 -32000/69092 Loss: 154.477 -35200/69092 Loss: 151.997 -38400/69092 Loss: 150.608 -41600/69092 Loss: 155.911 -44800/69092 Loss: 154.714 -48000/69092 Loss: 151.517 -51200/69092 Loss: 153.886 -54400/69092 Loss: 152.867 -57600/69092 Loss: 153.793 -60800/69092 Loss: 152.574 -64000/69092 Loss: 151.439 -67200/69092 Loss: 154.768 -Training time 0:05:01.203807 -Epoch: 75 Average loss: 153.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 77) -0/69092 Loss: 142.014 -3200/69092 Loss: 154.271 -6400/69092 Loss: 154.913 -9600/69092 Loss: 154.524 -12800/69092 Loss: 153.158 -16000/69092 Loss: 154.462 -19200/69092 Loss: 153.590 -22400/69092 Loss: 152.747 -25600/69092 Loss: 152.127 -28800/69092 Loss: 150.609 -32000/69092 Loss: 151.544 -35200/69092 Loss: 153.632 -38400/69092 Loss: 152.679 -41600/69092 Loss: 154.565 -44800/69092 Loss: 153.910 -48000/69092 Loss: 151.477 -51200/69092 Loss: 154.229 -54400/69092 Loss: 151.742 -57600/69092 Loss: 153.524 -60800/69092 Loss: 150.082 -64000/69092 Loss: 154.862 -67200/69092 Loss: 156.026 -Training time 0:05:04.062959 -Epoch: 76 Average loss: 153.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 78) -0/69092 Loss: 148.453 -3200/69092 Loss: 152.221 -6400/69092 Loss: 153.214 -9600/69092 Loss: 155.322 -12800/69092 Loss: 153.553 -16000/69092 Loss: 152.134 -19200/69092 Loss: 153.447 -22400/69092 Loss: 154.105 -25600/69092 Loss: 153.733 -28800/69092 Loss: 151.577 -32000/69092 Loss: 155.673 -35200/69092 Loss: 153.258 -38400/69092 Loss: 152.589 -41600/69092 Loss: 152.946 -44800/69092 Loss: 152.928 -48000/69092 Loss: 152.054 -51200/69092 Loss: 153.723 -54400/69092 Loss: 151.409 -57600/69092 Loss: 152.121 -60800/69092 Loss: 153.611 -64000/69092 Loss: 152.776 -67200/69092 Loss: 153.087 -Training time 0:05:01.937133 -Epoch: 77 Average loss: 153.17 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 79) -0/69092 Loss: 158.441 -3200/69092 Loss: 155.406 -6400/69092 Loss: 152.158 -9600/69092 Loss: 155.231 -12800/69092 Loss: 150.286 -16000/69092 Loss: 154.259 -19200/69092 Loss: 151.001 -22400/69092 Loss: 154.950 -25600/69092 Loss: 152.324 -28800/69092 Loss: 154.063 -32000/69092 Loss: 153.091 -35200/69092 Loss: 153.493 -38400/69092 Loss: 150.938 -41600/69092 Loss: 154.376 -44800/69092 Loss: 153.107 -48000/69092 Loss: 152.342 -51200/69092 Loss: 155.247 -54400/69092 Loss: 152.103 -57600/69092 Loss: 154.678 -60800/69092 Loss: 152.135 -64000/69092 Loss: 152.381 -67200/69092 Loss: 153.750 -Training time 0:05:03.291943 -Epoch: 78 Average loss: 153.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 80) -0/69092 Loss: 151.019 -3200/69092 Loss: 151.870 -6400/69092 Loss: 152.273 -9600/69092 Loss: 153.427 -12800/69092 Loss: 155.270 -16000/69092 Loss: 154.600 -19200/69092 Loss: 150.932 -22400/69092 Loss: 154.699 -25600/69092 Loss: 153.568 -28800/69092 Loss: 149.703 -32000/69092 Loss: 151.962 -35200/69092 Loss: 153.908 -38400/69092 Loss: 152.027 -41600/69092 Loss: 154.136 -44800/69092 Loss: 154.786 -48000/69092 Loss: 155.455 -51200/69092 Loss: 153.557 -54400/69092 Loss: 154.232 -57600/69092 Loss: 152.527 -60800/69092 Loss: 151.458 -64000/69092 Loss: 155.241 -67200/69092 Loss: 155.344 -Training time 0:05:00.654061 -Epoch: 79 Average loss: 153.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 81) -0/69092 Loss: 164.827 -3200/69092 Loss: 152.071 -6400/69092 Loss: 154.103 -9600/69092 Loss: 151.613 -12800/69092 Loss: 153.057 -16000/69092 Loss: 153.029 -19200/69092 Loss: 153.164 -22400/69092 Loss: 155.791 -25600/69092 Loss: 150.832 -28800/69092 Loss: 153.147 -32000/69092 Loss: 154.802 -35200/69092 Loss: 155.089 -38400/69092 Loss: 149.886 -41600/69092 Loss: 154.534 -44800/69092 Loss: 152.561 -48000/69092 Loss: 154.211 -51200/69092 Loss: 152.915 -54400/69092 Loss: 154.393 -57600/69092 Loss: 151.915 -60800/69092 Loss: 153.240 -64000/69092 Loss: 152.048 -67200/69092 Loss: 153.093 -Training time 0:04:59.990244 -Epoch: 80 Average loss: 153.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 82) -0/69092 Loss: 151.023 -3200/69092 Loss: 150.561 -6400/69092 Loss: 152.307 -9600/69092 Loss: 152.909 -12800/69092 Loss: 154.198 -16000/69092 Loss: 152.977 -19200/69092 Loss: 151.994 -22400/69092 Loss: 154.000 -25600/69092 Loss: 152.126 -28800/69092 Loss: 155.862 -32000/69092 Loss: 153.807 -35200/69092 Loss: 156.478 -38400/69092 Loss: 153.013 -41600/69092 Loss: 153.210 -44800/69092 Loss: 153.690 -48000/69092 Loss: 151.425 -51200/69092 Loss: 154.031 -54400/69092 Loss: 155.327 -57600/69092 Loss: 151.086 -60800/69092 Loss: 152.455 -64000/69092 Loss: 151.816 -67200/69092 Loss: 155.467 -Training time 0:05:06.066471 -Epoch: 81 Average loss: 153.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 83) -0/69092 Loss: 170.955 -3200/69092 Loss: 151.483 -6400/69092 Loss: 153.425 -9600/69092 Loss: 151.804 -12800/69092 Loss: 154.874 -16000/69092 Loss: 153.667 -19200/69092 Loss: 150.724 -22400/69092 Loss: 152.623 -25600/69092 Loss: 152.325 -28800/69092 Loss: 154.891 -32000/69092 Loss: 152.610 -35200/69092 Loss: 154.654 -38400/69092 Loss: 150.852 -41600/69092 Loss: 150.880 -44800/69092 Loss: 154.887 -48000/69092 Loss: 154.362 -51200/69092 Loss: 153.672 -54400/69092 Loss: 151.659 -57600/69092 Loss: 152.698 -60800/69092 Loss: 152.635 -64000/69092 Loss: 153.886 -67200/69092 Loss: 152.832 -Training time 0:05:04.369737 -Epoch: 82 Average loss: 152.92 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 84) -0/69092 Loss: 147.327 -3200/69092 Loss: 151.784 -6400/69092 Loss: 154.445 -9600/69092 Loss: 154.886 -12800/69092 Loss: 152.869 -16000/69092 Loss: 153.140 -19200/69092 Loss: 151.202 -22400/69092 Loss: 154.594 -25600/69092 Loss: 154.053 -28800/69092 Loss: 152.765 -32000/69092 Loss: 154.873 -35200/69092 Loss: 150.885 -38400/69092 Loss: 154.746 -41600/69092 Loss: 156.010 -44800/69092 Loss: 152.345 -48000/69092 Loss: 154.142 -51200/69092 Loss: 151.205 -54400/69092 Loss: 151.321 -57600/69092 Loss: 152.261 -60800/69092 Loss: 155.695 -64000/69092 Loss: 151.443 -67200/69092 Loss: 151.694 -Training time 0:05:02.456637 -Epoch: 83 Average loss: 153.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 85) -0/69092 Loss: 157.304 -3200/69092 Loss: 153.795 -6400/69092 Loss: 151.412 -9600/69092 Loss: 153.938 -12800/69092 Loss: 157.122 -16000/69092 Loss: 154.438 -19200/69092 Loss: 155.162 -22400/69092 Loss: 155.787 -25600/69092 Loss: 153.335 -28800/69092 Loss: 154.145 -32000/69092 Loss: 154.408 -35200/69092 Loss: 152.654 -38400/69092 Loss: 153.887 -41600/69092 Loss: 151.372 -44800/69092 Loss: 153.267 -48000/69092 Loss: 151.122 -51200/69092 Loss: 151.413 -54400/69092 Loss: 152.751 -57600/69092 Loss: 152.389 -60800/69092 Loss: 151.229 -64000/69092 Loss: 152.515 -67200/69092 Loss: 150.938 -Training time 0:05:04.469644 -Epoch: 84 Average loss: 153.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 86) -0/69092 Loss: 155.411 -3200/69092 Loss: 152.728 -6400/69092 Loss: 153.224 -9600/69092 Loss: 153.888 -12800/69092 Loss: 150.202 -16000/69092 Loss: 151.087 -19200/69092 Loss: 151.997 -22400/69092 Loss: 153.448 -25600/69092 Loss: 153.868 -28800/69092 Loss: 154.632 -32000/69092 Loss: 152.747 -35200/69092 Loss: 151.499 -38400/69092 Loss: 152.371 -41600/69092 Loss: 155.379 -44800/69092 Loss: 150.440 -48000/69092 Loss: 152.814 -51200/69092 Loss: 153.243 -54400/69092 Loss: 154.576 -57600/69092 Loss: 153.910 -60800/69092 Loss: 152.324 -64000/69092 Loss: 156.518 -67200/69092 Loss: 151.910 -Training time 0:04:59.088313 -Epoch: 85 Average loss: 153.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 87) -0/69092 Loss: 160.774 -3200/69092 Loss: 155.434 -6400/69092 Loss: 157.195 -9600/69092 Loss: 152.280 -12800/69092 Loss: 156.440 -16000/69092 Loss: 151.277 -19200/69092 Loss: 152.130 -22400/69092 Loss: 153.580 -25600/69092 Loss: 154.009 -28800/69092 Loss: 152.155 -32000/69092 Loss: 153.223 -35200/69092 Loss: 153.253 -38400/69092 Loss: 151.555 -41600/69092 Loss: 152.075 -44800/69092 Loss: 152.142 -48000/69092 Loss: 156.967 -51200/69092 Loss: 151.809 -54400/69092 Loss: 149.804 -57600/69092 Loss: 150.972 -60800/69092 Loss: 151.268 -64000/69092 Loss: 154.066 -67200/69092 Loss: 151.888 -Training time 0:04:58.442294 -Epoch: 86 Average loss: 153.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 88) -0/69092 Loss: 152.322 -3200/69092 Loss: 151.590 -6400/69092 Loss: 153.602 -9600/69092 Loss: 151.057 -12800/69092 Loss: 151.128 -16000/69092 Loss: 154.163 -19200/69092 Loss: 153.779 -22400/69092 Loss: 152.040 -25600/69092 Loss: 154.772 -28800/69092 Loss: 153.669 -32000/69092 Loss: 151.816 -35200/69092 Loss: 151.665 -38400/69092 Loss: 153.741 -41600/69092 Loss: 155.616 -44800/69092 Loss: 154.520 -48000/69092 Loss: 151.972 -51200/69092 Loss: 152.793 -54400/69092 Loss: 154.131 -57600/69092 Loss: 152.470 -60800/69092 Loss: 153.640 -64000/69092 Loss: 153.099 -67200/69092 Loss: 150.981 -Training time 0:05:07.376272 -Epoch: 87 Average loss: 153.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 89) -0/69092 Loss: 159.553 -3200/69092 Loss: 153.347 -6400/69092 Loss: 152.530 -9600/69092 Loss: 154.021 -12800/69092 Loss: 153.439 -16000/69092 Loss: 149.131 -19200/69092 Loss: 150.333 -22400/69092 Loss: 151.817 -25600/69092 Loss: 152.307 -28800/69092 Loss: 154.859 -32000/69092 Loss: 154.099 -35200/69092 Loss: 151.406 -38400/69092 Loss: 152.829 -41600/69092 Loss: 153.314 -44800/69092 Loss: 154.028 -48000/69092 Loss: 156.256 -51200/69092 Loss: 152.179 -54400/69092 Loss: 153.508 -57600/69092 Loss: 154.960 -60800/69092 Loss: 148.960 -64000/69092 Loss: 155.890 -67200/69092 Loss: 152.293 -Training time 0:04:55.985734 -Epoch: 88 Average loss: 152.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 90) -0/69092 Loss: 136.290 -3200/69092 Loss: 152.589 -6400/69092 Loss: 151.043 -9600/69092 Loss: 155.248 -12800/69092 Loss: 151.427 -16000/69092 Loss: 151.395 -19200/69092 Loss: 151.643 -22400/69092 Loss: 154.406 -25600/69092 Loss: 155.140 -28800/69092 Loss: 156.893 -32000/69092 Loss: 151.823 -35200/69092 Loss: 153.980 -38400/69092 Loss: 151.603 -41600/69092 Loss: 154.155 -44800/69092 Loss: 151.745 -48000/69092 Loss: 152.713 -51200/69092 Loss: 156.490 -54400/69092 Loss: 151.307 -57600/69092 Loss: 154.355 -60800/69092 Loss: 152.788 -64000/69092 Loss: 150.361 -67200/69092 Loss: 151.625 -Training time 0:05:00.287694 -Epoch: 89 Average loss: 152.92 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 91) -0/69092 Loss: 173.193 -3200/69092 Loss: 153.656 -6400/69092 Loss: 152.859 -9600/69092 Loss: 153.125 -12800/69092 Loss: 154.441 -16000/69092 Loss: 153.359 -19200/69092 Loss: 152.302 -22400/69092 Loss: 153.237 -25600/69092 Loss: 153.937 -28800/69092 Loss: 151.052 -32000/69092 Loss: 155.033 -35200/69092 Loss: 153.576 -38400/69092 Loss: 154.512 -41600/69092 Loss: 152.978 -44800/69092 Loss: 151.260 -48000/69092 Loss: 151.452 -51200/69092 Loss: 155.488 -54400/69092 Loss: 154.502 -57600/69092 Loss: 153.495 -60800/69092 Loss: 151.899 -64000/69092 Loss: 151.552 -67200/69092 Loss: 152.370 -Training time 0:05:07.109067 -Epoch: 90 Average loss: 153.12 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 92) -0/69092 Loss: 138.774 -3200/69092 Loss: 151.979 -6400/69092 Loss: 152.541 -9600/69092 Loss: 153.044 -12800/69092 Loss: 154.177 -16000/69092 Loss: 151.911 -19200/69092 Loss: 153.195 -22400/69092 Loss: 152.966 -25600/69092 Loss: 151.744 -28800/69092 Loss: 151.799 -32000/69092 Loss: 151.514 -35200/69092 Loss: 154.238 -38400/69092 Loss: 153.472 -41600/69092 Loss: 152.963 -44800/69092 Loss: 153.216 -48000/69092 Loss: 150.231 -51200/69092 Loss: 154.025 -54400/69092 Loss: 153.853 -57600/69092 Loss: 151.647 -60800/69092 Loss: 153.048 -64000/69092 Loss: 151.840 -67200/69092 Loss: 153.029 -Training time 0:05:03.215848 -Epoch: 91 Average loss: 152.69 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 93) -0/69092 Loss: 150.631 -3200/69092 Loss: 155.801 -6400/69092 Loss: 152.577 -9600/69092 Loss: 149.986 -12800/69092 Loss: 150.401 -16000/69092 Loss: 151.807 -19200/69092 Loss: 150.984 -22400/69092 Loss: 153.995 -25600/69092 Loss: 151.320 -28800/69092 Loss: 151.361 -32000/69092 Loss: 150.865 -35200/69092 Loss: 154.256 -38400/69092 Loss: 155.717 -41600/69092 Loss: 152.501 -44800/69092 Loss: 152.904 -48000/69092 Loss: 155.577 -51200/69092 Loss: 153.366 -54400/69092 Loss: 154.010 -57600/69092 Loss: 153.506 -60800/69092 Loss: 151.959 -64000/69092 Loss: 152.378 -67200/69092 Loss: 153.409 -Training time 0:05:02.467104 -Epoch: 92 Average loss: 152.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 94) -0/69092 Loss: 137.588 -3200/69092 Loss: 154.422 -6400/69092 Loss: 153.005 -9600/69092 Loss: 152.546 -12800/69092 Loss: 151.804 -16000/69092 Loss: 152.492 -19200/69092 Loss: 149.259 -22400/69092 Loss: 152.988 -25600/69092 Loss: 154.934 -28800/69092 Loss: 154.740 -32000/69092 Loss: 153.126 -35200/69092 Loss: 151.362 -38400/69092 Loss: 153.404 -41600/69092 Loss: 152.740 -44800/69092 Loss: 152.464 -48000/69092 Loss: 153.898 -51200/69092 Loss: 152.364 -54400/69092 Loss: 152.889 -57600/69092 Loss: 150.061 -60800/69092 Loss: 153.786 -64000/69092 Loss: 154.129 -67200/69092 Loss: 151.211 -Training time 0:05:21.121234 -Epoch: 93 Average loss: 152.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 95) -0/69092 Loss: 159.301 -3200/69092 Loss: 152.549 -6400/69092 Loss: 152.793 -9600/69092 Loss: 154.778 -12800/69092 Loss: 152.887 -16000/69092 Loss: 154.832 -19200/69092 Loss: 151.559 -22400/69092 Loss: 152.364 -25600/69092 Loss: 152.966 -28800/69092 Loss: 154.015 -32000/69092 Loss: 151.286 -35200/69092 Loss: 154.054 -38400/69092 Loss: 152.238 -41600/69092 Loss: 152.510 -44800/69092 Loss: 151.685 -48000/69092 Loss: 151.848 -51200/69092 Loss: 150.794 -54400/69092 Loss: 151.815 -57600/69092 Loss: 154.456 -60800/69092 Loss: 153.243 -64000/69092 Loss: 151.379 -67200/69092 Loss: 152.289 -Training time 0:05:05.718220 -Epoch: 94 Average loss: 152.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 96) -0/69092 Loss: 148.685 -3200/69092 Loss: 153.959 -6400/69092 Loss: 154.756 -9600/69092 Loss: 153.469 -12800/69092 Loss: 151.996 -16000/69092 Loss: 151.456 -19200/69092 Loss: 153.570 -22400/69092 Loss: 151.253 -25600/69092 Loss: 153.916 -28800/69092 Loss: 151.222 -32000/69092 Loss: 153.491 -35200/69092 Loss: 151.802 -38400/69092 Loss: 151.863 -41600/69092 Loss: 152.482 -44800/69092 Loss: 157.120 -48000/69092 Loss: 153.743 -51200/69092 Loss: 153.713 -54400/69092 Loss: 151.019 -57600/69092 Loss: 152.423 -60800/69092 Loss: 153.373 -64000/69092 Loss: 152.027 -67200/69092 Loss: 153.569 -Training time 0:05:13.770123 -Epoch: 95 Average loss: 153.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 97) -0/69092 Loss: 144.888 -3200/69092 Loss: 154.294 -6400/69092 Loss: 155.633 -9600/69092 Loss: 150.376 -12800/69092 Loss: 151.350 -16000/69092 Loss: 150.670 -19200/69092 Loss: 151.202 -22400/69092 Loss: 154.200 -25600/69092 Loss: 155.299 -28800/69092 Loss: 153.456 -32000/69092 Loss: 151.662 -35200/69092 Loss: 153.122 -38400/69092 Loss: 152.119 -41600/69092 Loss: 155.510 -44800/69092 Loss: 153.847 -48000/69092 Loss: 151.220 -51200/69092 Loss: 152.173 -54400/69092 Loss: 152.944 -57600/69092 Loss: 150.199 -60800/69092 Loss: 153.262 -64000/69092 Loss: 152.992 -67200/69092 Loss: 151.225 -Training time 0:05:14.512258 -Epoch: 96 Average loss: 152.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 98) -0/69092 Loss: 145.908 -3200/69092 Loss: 156.202 -6400/69092 Loss: 153.557 -9600/69092 Loss: 153.879 -12800/69092 Loss: 151.261 -16000/69092 Loss: 151.924 -19200/69092 Loss: 155.570 -22400/69092 Loss: 149.156 -25600/69092 Loss: 153.326 -28800/69092 Loss: 153.375 -32000/69092 Loss: 150.357 -35200/69092 Loss: 149.965 -38400/69092 Loss: 152.330 -41600/69092 Loss: 155.561 -44800/69092 Loss: 153.511 -48000/69092 Loss: 155.264 -51200/69092 Loss: 153.119 -54400/69092 Loss: 153.118 -57600/69092 Loss: 150.697 -60800/69092 Loss: 151.908 -64000/69092 Loss: 152.887 -67200/69092 Loss: 152.033 -Training time 0:05:09.046628 -Epoch: 97 Average loss: 152.84 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 99) -0/69092 Loss: 163.816 -3200/69092 Loss: 151.839 -6400/69092 Loss: 150.942 -9600/69092 Loss: 151.094 -12800/69092 Loss: 152.994 -16000/69092 Loss: 151.583 -19200/69092 Loss: 151.724 -22400/69092 Loss: 151.680 -25600/69092 Loss: 154.411 -28800/69092 Loss: 153.341 -32000/69092 Loss: 152.108 -35200/69092 Loss: 151.711 -38400/69092 Loss: 154.571 -41600/69092 Loss: 152.383 -44800/69092 Loss: 153.287 -48000/69092 Loss: 153.545 -51200/69092 Loss: 151.304 -54400/69092 Loss: 154.108 -57600/69092 Loss: 156.060 -60800/69092 Loss: 150.395 -64000/69092 Loss: 151.598 -67200/69092 Loss: 151.042 -Training time 0:05:17.460411 -Epoch: 98 Average loss: 152.48 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 100) -0/69092 Loss: 142.495 -3200/69092 Loss: 152.631 -6400/69092 Loss: 153.448 -9600/69092 Loss: 154.208 -12800/69092 Loss: 152.384 -16000/69092 Loss: 152.287 -19200/69092 Loss: 153.442 -22400/69092 Loss: 152.089 -25600/69092 Loss: 151.928 -28800/69092 Loss: 152.185 -32000/69092 Loss: 154.098 -35200/69092 Loss: 152.993 -38400/69092 Loss: 151.704 -41600/69092 Loss: 151.850 -44800/69092 Loss: 153.045 -48000/69092 Loss: 151.880 -51200/69092 Loss: 153.108 -54400/69092 Loss: 149.770 -57600/69092 Loss: 153.855 -60800/69092 Loss: 152.210 -64000/69092 Loss: 152.729 -67200/69092 Loss: 151.185 -Training time 0:05:17.488419 -Epoch: 99 Average loss: 152.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 101) -0/69092 Loss: 152.357 -3200/69092 Loss: 152.105 -6400/69092 Loss: 151.490 -9600/69092 Loss: 153.552 -12800/69092 Loss: 152.941 -16000/69092 Loss: 148.692 -19200/69092 Loss: 152.597 -22400/69092 Loss: 151.824 -25600/69092 Loss: 154.107 -28800/69092 Loss: 155.843 -32000/69092 Loss: 151.404 -35200/69092 Loss: 154.285 -38400/69092 Loss: 149.636 -41600/69092 Loss: 153.175 -44800/69092 Loss: 153.762 -48000/69092 Loss: 150.530 -51200/69092 Loss: 152.657 -54400/69092 Loss: 150.277 -57600/69092 Loss: 151.790 -60800/69092 Loss: 151.414 -64000/69092 Loss: 152.574 -67200/69092 Loss: 154.462 -Training time 0:05:04.079356 -Epoch: 100 Average loss: 152.46 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 102) -0/69092 Loss: 150.764 -3200/69092 Loss: 156.045 -6400/69092 Loss: 153.180 -9600/69092 Loss: 150.329 -12800/69092 Loss: 151.842 -16000/69092 Loss: 151.438 -19200/69092 Loss: 149.832 -22400/69092 Loss: 152.585 -25600/69092 Loss: 155.156 -28800/69092 Loss: 152.419 -32000/69092 Loss: 154.063 -35200/69092 Loss: 151.402 -38400/69092 Loss: 154.315 -41600/69092 Loss: 150.096 -44800/69092 Loss: 152.664 -48000/69092 Loss: 154.527 -51200/69092 Loss: 153.800 -54400/69092 Loss: 152.519 -57600/69092 Loss: 153.290 -60800/69092 Loss: 155.294 -64000/69092 Loss: 152.205 -67200/69092 Loss: 152.099 -Training time 0:04:59.508990 -Epoch: 101 Average loss: 152.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 103) -0/69092 Loss: 164.819 -3200/69092 Loss: 154.112 -6400/69092 Loss: 153.043 -9600/69092 Loss: 153.420 -12800/69092 Loss: 153.918 -16000/69092 Loss: 151.298 -19200/69092 Loss: 153.300 -22400/69092 Loss: 152.069 -25600/69092 Loss: 152.772 -28800/69092 Loss: 153.973 -32000/69092 Loss: 153.526 -35200/69092 Loss: 154.607 -38400/69092 Loss: 153.641 -41600/69092 Loss: 152.778 -44800/69092 Loss: 150.596 -48000/69092 Loss: 150.833 -51200/69092 Loss: 151.411 -54400/69092 Loss: 151.794 -57600/69092 Loss: 152.379 -60800/69092 Loss: 150.641 -64000/69092 Loss: 153.430 -67200/69092 Loss: 153.745 -Training time 0:04:58.759844 -Epoch: 102 Average loss: 152.79 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 104) -0/69092 Loss: 155.212 -3200/69092 Loss: 150.710 -6400/69092 Loss: 150.372 -9600/69092 Loss: 152.780 -12800/69092 Loss: 154.372 -16000/69092 Loss: 152.948 -19200/69092 Loss: 154.913 -22400/69092 Loss: 154.924 -25600/69092 Loss: 151.664 -28800/69092 Loss: 153.776 -32000/69092 Loss: 151.676 -35200/69092 Loss: 152.477 -38400/69092 Loss: 149.843 -41600/69092 Loss: 151.344 -44800/69092 Loss: 153.824 -48000/69092 Loss: 151.946 -51200/69092 Loss: 152.546 -54400/69092 Loss: 151.850 -57600/69092 Loss: 153.006 -60800/69092 Loss: 150.892 -64000/69092 Loss: 153.496 -67200/69092 Loss: 151.937 -Training time 0:05:01.081316 -Epoch: 103 Average loss: 152.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 105) -0/69092 Loss: 158.482 -3200/69092 Loss: 155.715 -6400/69092 Loss: 150.633 -9600/69092 Loss: 150.715 -12800/69092 Loss: 151.132 -16000/69092 Loss: 152.029 -19200/69092 Loss: 152.349 -22400/69092 Loss: 149.221 -25600/69092 Loss: 152.625 -28800/69092 Loss: 150.371 -32000/69092 Loss: 152.691 -35200/69092 Loss: 152.896 -38400/69092 Loss: 156.667 -41600/69092 Loss: 152.666 -44800/69092 Loss: 151.124 -48000/69092 Loss: 153.126 -51200/69092 Loss: 152.280 -54400/69092 Loss: 153.000 -57600/69092 Loss: 151.603 -60800/69092 Loss: 153.182 -64000/69092 Loss: 153.217 -67200/69092 Loss: 153.639 -Training time 0:05:05.078701 -Epoch: 104 Average loss: 152.43 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 106) -0/69092 Loss: 162.693 -3200/69092 Loss: 152.524 -6400/69092 Loss: 152.094 -9600/69092 Loss: 152.530 -12800/69092 Loss: 151.146 -16000/69092 Loss: 151.000 -19200/69092 Loss: 153.157 -22400/69092 Loss: 152.684 -25600/69092 Loss: 152.236 -28800/69092 Loss: 151.991 -32000/69092 Loss: 149.786 -35200/69092 Loss: 154.276 -38400/69092 Loss: 153.001 -41600/69092 Loss: 152.500 -44800/69092 Loss: 150.808 -48000/69092 Loss: 152.246 -51200/69092 Loss: 152.803 -54400/69092 Loss: 150.922 -57600/69092 Loss: 151.247 -60800/69092 Loss: 154.350 -64000/69092 Loss: 154.206 -67200/69092 Loss: 152.359 -Training time 0:05:08.495428 -Epoch: 105 Average loss: 152.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 107) -0/69092 Loss: 157.806 -3200/69092 Loss: 154.320 -6400/69092 Loss: 154.119 -9600/69092 Loss: 152.087 -12800/69092 Loss: 151.915 -16000/69092 Loss: 151.474 -19200/69092 Loss: 150.175 -22400/69092 Loss: 152.247 -25600/69092 Loss: 155.800 -28800/69092 Loss: 152.738 -32000/69092 Loss: 155.295 -35200/69092 Loss: 153.964 -38400/69092 Loss: 155.813 -41600/69092 Loss: 154.893 -44800/69092 Loss: 151.783 -48000/69092 Loss: 150.853 -51200/69092 Loss: 150.650 -54400/69092 Loss: 153.105 -57600/69092 Loss: 150.999 -60800/69092 Loss: 151.310 -64000/69092 Loss: 152.381 -67200/69092 Loss: 153.032 -Training time 0:05:01.722781 -Epoch: 106 Average loss: 152.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 108) -0/69092 Loss: 164.493 -3200/69092 Loss: 151.558 -6400/69092 Loss: 153.669 -9600/69092 Loss: 153.055 -12800/69092 Loss: 152.687 -16000/69092 Loss: 150.611 -19200/69092 Loss: 147.977 -22400/69092 Loss: 152.367 -25600/69092 Loss: 152.304 -28800/69092 Loss: 153.159 -32000/69092 Loss: 152.434 -35200/69092 Loss: 151.772 -38400/69092 Loss: 154.893 -41600/69092 Loss: 154.256 -44800/69092 Loss: 148.339 -48000/69092 Loss: 154.205 -51200/69092 Loss: 152.878 -54400/69092 Loss: 152.201 -57600/69092 Loss: 153.168 -60800/69092 Loss: 152.438 -64000/69092 Loss: 155.415 -67200/69092 Loss: 153.441 -Training time 0:05:02.547415 -Epoch: 107 Average loss: 152.42 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 109) -0/69092 Loss: 148.809 -3200/69092 Loss: 150.910 -6400/69092 Loss: 151.943 -9600/69092 Loss: 152.889 -12800/69092 Loss: 152.411 -16000/69092 Loss: 153.348 -19200/69092 Loss: 152.371 -22400/69092 Loss: 152.439 -25600/69092 Loss: 152.269 -28800/69092 Loss: 152.576 -32000/69092 Loss: 151.970 -35200/69092 Loss: 150.969 -38400/69092 Loss: 151.487 -41600/69092 Loss: 152.641 -44800/69092 Loss: 151.826 -48000/69092 Loss: 151.155 -51200/69092 Loss: 152.168 -54400/69092 Loss: 149.807 -57600/69092 Loss: 155.031 -60800/69092 Loss: 153.892 -64000/69092 Loss: 151.999 -67200/69092 Loss: 151.738 -Training time 0:05:04.695620 -Epoch: 108 Average loss: 152.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 110) -0/69092 Loss: 158.586 -3200/69092 Loss: 151.509 -6400/69092 Loss: 151.652 -9600/69092 Loss: 152.892 -12800/69092 Loss: 153.234 -16000/69092 Loss: 153.368 -19200/69092 Loss: 153.232 -22400/69092 Loss: 152.319 -25600/69092 Loss: 149.443 -28800/69092 Loss: 150.087 -32000/69092 Loss: 154.087 -35200/69092 Loss: 155.178 -38400/69092 Loss: 150.814 -41600/69092 Loss: 153.138 -44800/69092 Loss: 151.443 -48000/69092 Loss: 150.927 -51200/69092 Loss: 151.618 -54400/69092 Loss: 153.429 -57600/69092 Loss: 153.643 -60800/69092 Loss: 152.830 -64000/69092 Loss: 152.977 -67200/69092 Loss: 151.568 -Training time 0:05:02.439395 -Epoch: 109 Average loss: 152.36 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 111) -0/69092 Loss: 160.520 -3200/69092 Loss: 153.134 -6400/69092 Loss: 151.785 -9600/69092 Loss: 151.450 -12800/69092 Loss: 153.406 -16000/69092 Loss: 150.892 -19200/69092 Loss: 152.349 -22400/69092 Loss: 151.413 -25600/69092 Loss: 155.517 -28800/69092 Loss: 154.485 -32000/69092 Loss: 154.868 -35200/69092 Loss: 153.424 -38400/69092 Loss: 153.438 -41600/69092 Loss: 152.351 -44800/69092 Loss: 154.254 -48000/69092 Loss: 151.103 -51200/69092 Loss: 152.773 -54400/69092 Loss: 149.550 -57600/69092 Loss: 152.296 -60800/69092 Loss: 151.777 -64000/69092 Loss: 151.505 -67200/69092 Loss: 151.820 -Training time 0:05:06.358995 -Epoch: 110 Average loss: 152.60 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 112) -0/69092 Loss: 144.156 -3200/69092 Loss: 152.230 -6400/69092 Loss: 151.840 -9600/69092 Loss: 153.787 -12800/69092 Loss: 151.389 -16000/69092 Loss: 154.197 -19200/69092 Loss: 154.010 -22400/69092 Loss: 153.567 -25600/69092 Loss: 151.977 -28800/69092 Loss: 151.630 -32000/69092 Loss: 148.550 -35200/69092 Loss: 154.312 -38400/69092 Loss: 154.578 -41600/69092 Loss: 153.901 -44800/69092 Loss: 150.806 -48000/69092 Loss: 150.984 -51200/69092 Loss: 154.965 -54400/69092 Loss: 152.275 -57600/69092 Loss: 149.143 -60800/69092 Loss: 149.454 -64000/69092 Loss: 151.215 -67200/69092 Loss: 151.462 -Training time 0:05:02.575174 -Epoch: 111 Average loss: 152.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 113) -0/69092 Loss: 137.242 -3200/69092 Loss: 154.129 -6400/69092 Loss: 152.299 -9600/69092 Loss: 151.966 -12800/69092 Loss: 154.456 -16000/69092 Loss: 154.436 -19200/69092 Loss: 152.158 -22400/69092 Loss: 150.708 -25600/69092 Loss: 152.748 -28800/69092 Loss: 151.616 -32000/69092 Loss: 151.754 -35200/69092 Loss: 149.865 -38400/69092 Loss: 152.191 -41600/69092 Loss: 152.820 -44800/69092 Loss: 150.216 -48000/69092 Loss: 149.721 -51200/69092 Loss: 152.029 -54400/69092 Loss: 155.722 -57600/69092 Loss: 151.542 -60800/69092 Loss: 152.518 -64000/69092 Loss: 154.387 -67200/69092 Loss: 151.074 -Training time 0:05:02.396935 -Epoch: 112 Average loss: 152.31 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 114) -0/69092 Loss: 165.902 -3200/69092 Loss: 150.377 -6400/69092 Loss: 151.814 -9600/69092 Loss: 153.642 -12800/69092 Loss: 151.890 -16000/69092 Loss: 153.804 -19200/69092 Loss: 150.675 -22400/69092 Loss: 153.077 -25600/69092 Loss: 152.290 -28800/69092 Loss: 155.946 -32000/69092 Loss: 151.610 -35200/69092 Loss: 152.848 -38400/69092 Loss: 151.772 -41600/69092 Loss: 150.248 -44800/69092 Loss: 153.183 -48000/69092 Loss: 151.950 -51200/69092 Loss: 153.444 -54400/69092 Loss: 154.098 -57600/69092 Loss: 153.529 -60800/69092 Loss: 150.748 -64000/69092 Loss: 152.207 -67200/69092 Loss: 151.174 -Training time 0:05:00.621314 -Epoch: 113 Average loss: 152.43 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 115) -0/69092 Loss: 147.808 -3200/69092 Loss: 153.776 -6400/69092 Loss: 151.598 -9600/69092 Loss: 148.984 -12800/69092 Loss: 154.844 -16000/69092 Loss: 155.733 -19200/69092 Loss: 154.050 -22400/69092 Loss: 150.272 -25600/69092 Loss: 150.759 -28800/69092 Loss: 153.905 -32000/69092 Loss: 155.563 -35200/69092 Loss: 152.909 -38400/69092 Loss: 151.906 -41600/69092 Loss: 149.198 -44800/69092 Loss: 151.171 -48000/69092 Loss: 154.471 -51200/69092 Loss: 151.954 -54400/69092 Loss: 149.824 -57600/69092 Loss: 153.078 -60800/69092 Loss: 149.280 -64000/69092 Loss: 152.360 -67200/69092 Loss: 153.188 -Training time 0:05:07.754681 -Epoch: 114 Average loss: 152.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 116) -0/69092 Loss: 162.564 -3200/69092 Loss: 152.357 -6400/69092 Loss: 150.666 -9600/69092 Loss: 152.617 -12800/69092 Loss: 152.975 -16000/69092 Loss: 154.865 -19200/69092 Loss: 153.846 -22400/69092 Loss: 150.764 -25600/69092 Loss: 150.878 -28800/69092 Loss: 150.933 -32000/69092 Loss: 152.093 -35200/69092 Loss: 152.873 -38400/69092 Loss: 152.629 -41600/69092 Loss: 151.633 -44800/69092 Loss: 151.503 -48000/69092 Loss: 152.399 -51200/69092 Loss: 154.762 -54400/69092 Loss: 153.077 -57600/69092 Loss: 149.121 -60800/69092 Loss: 151.332 -64000/69092 Loss: 154.033 -67200/69092 Loss: 151.749 -Training time 0:05:02.491970 -Epoch: 115 Average loss: 152.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 117) -0/69092 Loss: 143.778 -3200/69092 Loss: 151.167 -6400/69092 Loss: 149.055 -9600/69092 Loss: 154.806 -12800/69092 Loss: 151.053 -16000/69092 Loss: 151.978 -19200/69092 Loss: 153.226 -22400/69092 Loss: 152.385 -25600/69092 Loss: 154.677 -28800/69092 Loss: 150.408 -32000/69092 Loss: 152.199 -35200/69092 Loss: 152.255 -38400/69092 Loss: 154.065 -41600/69092 Loss: 150.001 -44800/69092 Loss: 152.624 -48000/69092 Loss: 151.635 -51200/69092 Loss: 153.096 -54400/69092 Loss: 155.753 -57600/69092 Loss: 152.518 -60800/69092 Loss: 153.385 -64000/69092 Loss: 150.671 -67200/69092 Loss: 149.546 -Training time 0:05:04.539182 -Epoch: 116 Average loss: 152.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 118) -0/69092 Loss: 145.364 -3200/69092 Loss: 155.135 -6400/69092 Loss: 149.908 -9600/69092 Loss: 151.907 -12800/69092 Loss: 148.680 -16000/69092 Loss: 151.505 -19200/69092 Loss: 152.239 -22400/69092 Loss: 151.608 -25600/69092 Loss: 149.992 -28800/69092 Loss: 152.539 -32000/69092 Loss: 155.070 -35200/69092 Loss: 151.357 -38400/69092 Loss: 154.963 -41600/69092 Loss: 151.068 -44800/69092 Loss: 154.297 -48000/69092 Loss: 152.450 -51200/69092 Loss: 152.996 -54400/69092 Loss: 149.902 -57600/69092 Loss: 153.720 -60800/69092 Loss: 152.241 -64000/69092 Loss: 152.892 -67200/69092 Loss: 152.491 -Training time 0:05:04.691764 -Epoch: 117 Average loss: 152.29 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 119) -0/69092 Loss: 158.828 -3200/69092 Loss: 153.695 -6400/69092 Loss: 154.094 -9600/69092 Loss: 150.939 -12800/69092 Loss: 153.622 -16000/69092 Loss: 152.381 -19200/69092 Loss: 149.955 -22400/69092 Loss: 149.864 -25600/69092 Loss: 153.791 -28800/69092 Loss: 150.729 -32000/69092 Loss: 152.179 -35200/69092 Loss: 150.721 -38400/69092 Loss: 151.006 -41600/69092 Loss: 150.271 -44800/69092 Loss: 149.664 -48000/69092 Loss: 152.665 -51200/69092 Loss: 151.087 -54400/69092 Loss: 153.225 -57600/69092 Loss: 157.378 -60800/69092 Loss: 152.752 -64000/69092 Loss: 155.546 -67200/69092 Loss: 153.239 -Training time 0:05:11.812518 -Epoch: 118 Average loss: 152.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_20/checkpoints/last' (iter 120) -0/69092 Loss: 156.434 -3200/69092 Loss: 151.044 -6400/69092 Loss: 152.033 -9600/69092 Loss: 152.175 -12800/69092 Loss: 153.270 -16000/69092 Loss: 154.147 diff --git a/OAR.2068290.stderr b/OAR.2068290.stderr deleted file mode 100644 index 2c95ab0472..0000000000 --- a/OAR.2068290.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068290 KILLED ## diff --git a/OAR.2068290.stdout b/OAR.2068290.stdout deleted file mode 100644 index 37eedf7207..0000000000 --- a/OAR.2068290.stdout +++ /dev/null @@ -1,2690 +0,0 @@ -Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/beta_VAE_bs_64_ls_5 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=10, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=5, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 761485 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last (iter 2)' -0/69092 Loss: 206.284 -3200/69092 Loss: 191.772 -6400/69092 Loss: 186.580 -9600/69092 Loss: 187.553 -12800/69092 Loss: 179.883 -16000/69092 Loss: 182.176 -19200/69092 Loss: 187.932 -22400/69092 Loss: 184.194 -25600/69092 Loss: 180.651 -28800/69092 Loss: 178.819 -32000/69092 Loss: 175.748 -35200/69092 Loss: 185.757 -38400/69092 Loss: 184.852 -41600/69092 Loss: 178.318 -44800/69092 Loss: 180.974 -48000/69092 Loss: 176.737 -51200/69092 Loss: 184.122 -54400/69092 Loss: 177.643 -57600/69092 Loss: 179.564 -60800/69092 Loss: 179.818 -64000/69092 Loss: 178.485 -67200/69092 Loss: 180.491 -Training time 0:05:42.886828 -Epoch: 1 Average loss: 181.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 3) -0/69092 Loss: 185.484 -3200/69092 Loss: 177.918 -6400/69092 Loss: 178.950 -9600/69092 Loss: 175.949 -12800/69092 Loss: 180.625 -16000/69092 Loss: 179.795 -19200/69092 Loss: 176.926 -22400/69092 Loss: 177.637 -25600/69092 Loss: 182.322 -28800/69092 Loss: 175.535 -32000/69092 Loss: 179.663 -35200/69092 Loss: 178.396 -38400/69092 Loss: 177.509 -41600/69092 Loss: 178.524 -44800/69092 Loss: 180.868 -48000/69092 Loss: 179.206 -51200/69092 Loss: 175.411 -54400/69092 Loss: 175.164 -57600/69092 Loss: 175.484 -60800/69092 Loss: 177.437 -64000/69092 Loss: 183.367 -67200/69092 Loss: 175.420 -Training time 0:05:50.560333 -Epoch: 2 Average loss: 178.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 4) -0/69092 Loss: 165.081 -3200/69092 Loss: 177.282 -6400/69092 Loss: 177.009 -9600/69092 Loss: 175.280 -12800/69092 Loss: 173.575 -16000/69092 Loss: 177.322 -19200/69092 Loss: 173.360 -22400/69092 Loss: 179.046 -25600/69092 Loss: 179.528 -28800/69092 Loss: 179.841 -32000/69092 Loss: 175.505 -35200/69092 Loss: 173.406 -38400/69092 Loss: 178.157 -41600/69092 Loss: 181.415 -44800/69092 Loss: 177.471 -48000/69092 Loss: 178.392 -51200/69092 Loss: 179.621 -54400/69092 Loss: 179.774 -57600/69092 Loss: 179.728 -60800/69092 Loss: 176.719 -64000/69092 Loss: 177.497 -67200/69092 Loss: 174.821 -Training time 0:06:03.416294 -Epoch: 3 Average loss: 177.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 5) -0/69092 Loss: 177.347 -3200/69092 Loss: 176.306 -6400/69092 Loss: 174.916 -9600/69092 Loss: 178.468 -12800/69092 Loss: 175.838 -16000/69092 Loss: 179.554 -19200/69092 Loss: 175.765 -22400/69092 Loss: 178.247 -25600/69092 Loss: 173.473 -28800/69092 Loss: 177.255 -32000/69092 Loss: 175.557 -35200/69092 Loss: 177.057 -38400/69092 Loss: 176.364 -41600/69092 Loss: 177.415 -44800/69092 Loss: 176.233 -48000/69092 Loss: 176.041 -51200/69092 Loss: 177.231 -54400/69092 Loss: 177.484 -57600/69092 Loss: 177.772 -60800/69092 Loss: 179.202 -64000/69092 Loss: 177.597 -67200/69092 Loss: 176.004 -Training time 0:05:43.414806 -Epoch: 4 Average loss: 176.76 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 6) -0/69092 Loss: 192.912 -3200/69092 Loss: 177.919 -6400/69092 Loss: 176.670 -9600/69092 Loss: 176.543 -12800/69092 Loss: 176.900 -16000/69092 Loss: 173.263 -19200/69092 Loss: 177.434 -22400/69092 Loss: 174.874 -25600/69092 Loss: 178.713 -28800/69092 Loss: 174.574 -32000/69092 Loss: 174.557 -35200/69092 Loss: 178.241 -38400/69092 Loss: 174.689 -41600/69092 Loss: 174.315 -44800/69092 Loss: 178.442 -48000/69092 Loss: 178.501 -51200/69092 Loss: 176.855 -54400/69092 Loss: 175.434 -57600/69092 Loss: 176.113 -60800/69092 Loss: 177.818 -64000/69092 Loss: 172.621 -67200/69092 Loss: 176.531 -Training time 0:05:29.381799 -Epoch: 5 Average loss: 176.25 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 7) -0/69092 Loss: 185.043 -3200/69092 Loss: 172.702 -6400/69092 Loss: 179.136 -9600/69092 Loss: 176.406 -12800/69092 Loss: 175.405 -16000/69092 Loss: 175.605 -19200/69092 Loss: 174.544 -22400/69092 Loss: 172.518 -25600/69092 Loss: 175.201 -28800/69092 Loss: 173.957 -32000/69092 Loss: 178.255 -35200/69092 Loss: 175.895 -38400/69092 Loss: 174.356 -41600/69092 Loss: 174.803 -44800/69092 Loss: 175.339 -48000/69092 Loss: 177.531 -51200/69092 Loss: 173.707 -54400/69092 Loss: 174.617 -57600/69092 Loss: 179.951 -60800/69092 Loss: 176.160 -64000/69092 Loss: 177.427 -67200/69092 Loss: 174.210 -Training time 0:05:32.869675 -Epoch: 6 Average loss: 175.75 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 8) -0/69092 Loss: 175.536 -3200/69092 Loss: 176.146 -6400/69092 Loss: 182.585 -9600/69092 Loss: 179.227 -12800/69092 Loss: 173.100 -16000/69092 Loss: 177.521 -19200/69092 Loss: 176.860 -22400/69092 Loss: 174.105 -25600/69092 Loss: 175.694 -28800/69092 Loss: 176.292 -32000/69092 Loss: 172.337 -35200/69092 Loss: 173.839 -38400/69092 Loss: 175.045 -41600/69092 Loss: 178.532 -44800/69092 Loss: 178.498 -48000/69092 Loss: 176.122 -51200/69092 Loss: 172.301 -54400/69092 Loss: 173.076 -57600/69092 Loss: 175.092 -60800/69092 Loss: 174.465 -64000/69092 Loss: 170.611 -67200/69092 Loss: 177.806 -Training time 0:05:26.216188 -Epoch: 7 Average loss: 175.80 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 9) -0/69092 Loss: 185.987 -3200/69092 Loss: 178.445 -6400/69092 Loss: 170.073 -9600/69092 Loss: 174.401 -12800/69092 Loss: 179.827 -16000/69092 Loss: 175.722 -19200/69092 Loss: 174.884 -22400/69092 Loss: 174.974 -25600/69092 Loss: 172.651 -28800/69092 Loss: 172.641 -32000/69092 Loss: 178.871 -35200/69092 Loss: 173.840 -38400/69092 Loss: 175.191 -41600/69092 Loss: 175.336 -44800/69092 Loss: 177.951 -48000/69092 Loss: 172.772 -51200/69092 Loss: 177.344 -54400/69092 Loss: 174.130 -57600/69092 Loss: 173.331 -60800/69092 Loss: 176.248 -64000/69092 Loss: 174.978 -67200/69092 Loss: 175.957 -Training time 0:05:32.889948 -Epoch: 8 Average loss: 175.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 10) -0/69092 Loss: 195.713 -3200/69092 Loss: 172.833 -6400/69092 Loss: 173.741 -9600/69092 Loss: 177.423 -12800/69092 Loss: 179.955 -16000/69092 Loss: 174.259 -19200/69092 Loss: 177.071 -22400/69092 Loss: 173.643 -25600/69092 Loss: 173.985 -28800/69092 Loss: 177.484 -32000/69092 Loss: 175.859 -35200/69092 Loss: 172.818 -38400/69092 Loss: 178.825 -41600/69092 Loss: 174.300 -44800/69092 Loss: 175.437 -48000/69092 Loss: 175.735 -51200/69092 Loss: 174.531 -54400/69092 Loss: 173.547 -57600/69092 Loss: 174.477 -60800/69092 Loss: 175.797 -64000/69092 Loss: 173.868 -67200/69092 Loss: 174.690 -Training time 0:05:29.560786 -Epoch: 9 Average loss: 175.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 11) -0/69092 Loss: 173.612 -3200/69092 Loss: 174.081 -6400/69092 Loss: 174.155 -9600/69092 Loss: 173.137 -12800/69092 Loss: 176.574 -16000/69092 Loss: 177.726 -19200/69092 Loss: 174.834 -22400/69092 Loss: 175.774 -25600/69092 Loss: 176.048 -28800/69092 Loss: 176.829 -32000/69092 Loss: 175.205 -35200/69092 Loss: 175.138 -38400/69092 Loss: 174.141 -41600/69092 Loss: 173.852 -44800/69092 Loss: 175.199 -48000/69092 Loss: 179.661 -51200/69092 Loss: 174.070 -54400/69092 Loss: 173.991 -57600/69092 Loss: 172.956 -60800/69092 Loss: 173.462 -64000/69092 Loss: 176.472 -67200/69092 Loss: 173.347 -Training time 0:05:42.417051 -Epoch: 10 Average loss: 175.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 12) -0/69092 Loss: 163.116 -3200/69092 Loss: 175.304 -6400/69092 Loss: 177.005 -9600/69092 Loss: 173.286 -12800/69092 Loss: 174.734 -16000/69092 Loss: 174.939 -19200/69092 Loss: 173.188 -22400/69092 Loss: 173.347 -25600/69092 Loss: 175.969 -28800/69092 Loss: 173.679 -32000/69092 Loss: 175.613 -35200/69092 Loss: 177.046 -38400/69092 Loss: 172.615 -41600/69092 Loss: 176.622 -44800/69092 Loss: 174.378 -48000/69092 Loss: 172.333 -51200/69092 Loss: 174.156 -54400/69092 Loss: 178.344 -57600/69092 Loss: 174.554 -60800/69092 Loss: 171.129 -64000/69092 Loss: 173.789 -67200/69092 Loss: 174.153 -Training time 0:05:38.281182 -Epoch: 11 Average loss: 174.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 13) -0/69092 Loss: 167.593 -3200/69092 Loss: 172.577 -6400/69092 Loss: 175.898 -9600/69092 Loss: 173.126 -12800/69092 Loss: 174.301 -16000/69092 Loss: 173.796 -19200/69092 Loss: 176.480 -22400/69092 Loss: 176.278 -25600/69092 Loss: 174.386 -28800/69092 Loss: 175.487 -32000/69092 Loss: 172.144 -35200/69092 Loss: 168.589 -38400/69092 Loss: 178.079 -41600/69092 Loss: 178.203 -44800/69092 Loss: 172.678 -48000/69092 Loss: 175.696 -51200/69092 Loss: 173.820 -54400/69092 Loss: 172.014 -57600/69092 Loss: 174.640 -60800/69092 Loss: 177.710 -64000/69092 Loss: 175.304 -67200/69092 Loss: 171.286 -Training time 0:05:22.413960 -Epoch: 12 Average loss: 174.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 14) -0/69092 Loss: 180.297 -3200/69092 Loss: 171.896 -6400/69092 Loss: 173.761 -9600/69092 Loss: 176.759 -12800/69092 Loss: 174.684 -16000/69092 Loss: 173.839 -19200/69092 Loss: 174.083 -22400/69092 Loss: 175.820 -25600/69092 Loss: 176.575 -28800/69092 Loss: 173.056 -32000/69092 Loss: 173.990 -35200/69092 Loss: 171.532 -38400/69092 Loss: 177.350 -41600/69092 Loss: 174.512 -44800/69092 Loss: 175.190 -48000/69092 Loss: 171.103 -51200/69092 Loss: 177.047 -54400/69092 Loss: 177.925 -57600/69092 Loss: 173.641 -60800/69092 Loss: 176.523 -64000/69092 Loss: 173.404 -67200/69092 Loss: 172.554 -Training time 0:05:33.331409 -Epoch: 13 Average loss: 174.60 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 15) -0/69092 Loss: 190.760 -3200/69092 Loss: 172.674 -6400/69092 Loss: 172.813 -9600/69092 Loss: 173.694 -12800/69092 Loss: 175.784 -16000/69092 Loss: 175.043 -19200/69092 Loss: 176.451 -22400/69092 Loss: 172.945 -25600/69092 Loss: 172.757 -28800/69092 Loss: 177.959 -32000/69092 Loss: 172.057 -35200/69092 Loss: 173.982 -38400/69092 Loss: 174.324 -41600/69092 Loss: 173.081 -44800/69092 Loss: 177.249 -48000/69092 Loss: 173.428 -51200/69092 Loss: 175.714 -54400/69092 Loss: 173.761 -57600/69092 Loss: 172.590 -60800/69092 Loss: 175.677 -64000/69092 Loss: 172.918 -67200/69092 Loss: 173.185 -Training time 0:05:22.947126 -Epoch: 14 Average loss: 174.21 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 16) -0/69092 Loss: 167.152 -3200/69092 Loss: 175.923 -6400/69092 Loss: 173.443 -9600/69092 Loss: 175.274 -12800/69092 Loss: 173.762 -16000/69092 Loss: 176.352 -19200/69092 Loss: 172.607 -22400/69092 Loss: 172.997 -25600/69092 Loss: 178.061 -28800/69092 Loss: 172.353 -32000/69092 Loss: 175.860 -35200/69092 Loss: 171.380 -38400/69092 Loss: 173.802 -41600/69092 Loss: 177.668 -44800/69092 Loss: 175.795 -48000/69092 Loss: 173.208 -51200/69092 Loss: 175.804 -54400/69092 Loss: 170.799 -57600/69092 Loss: 173.943 -60800/69092 Loss: 176.869 -64000/69092 Loss: 173.862 -67200/69092 Loss: 171.966 -Training time 0:05:44.882489 -Epoch: 15 Average loss: 174.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 17) -0/69092 Loss: 175.757 -3200/69092 Loss: 175.039 -6400/69092 Loss: 173.789 -9600/69092 Loss: 176.758 -12800/69092 Loss: 176.867 -16000/69092 Loss: 176.634 -19200/69092 Loss: 172.219 -22400/69092 Loss: 171.303 -25600/69092 Loss: 171.701 -28800/69092 Loss: 173.745 -32000/69092 Loss: 173.220 -35200/69092 Loss: 172.173 -38400/69092 Loss: 174.064 -41600/69092 Loss: 173.507 -44800/69092 Loss: 174.430 -48000/69092 Loss: 175.702 -51200/69092 Loss: 168.808 -54400/69092 Loss: 175.641 -57600/69092 Loss: 170.829 -60800/69092 Loss: 177.189 -64000/69092 Loss: 171.159 -67200/69092 Loss: 175.589 -Training time 0:05:51.200178 -Epoch: 16 Average loss: 173.88 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 18) -0/69092 Loss: 158.718 -3200/69092 Loss: 173.612 -6400/69092 Loss: 177.566 -9600/69092 Loss: 174.291 -12800/69092 Loss: 169.936 -16000/69092 Loss: 170.902 -19200/69092 Loss: 177.548 -22400/69092 Loss: 174.334 -25600/69092 Loss: 175.364 -28800/69092 Loss: 173.103 -32000/69092 Loss: 176.042 -35200/69092 Loss: 177.162 -38400/69092 Loss: 176.477 -41600/69092 Loss: 173.526 -44800/69092 Loss: 171.050 -48000/69092 Loss: 175.433 -51200/69092 Loss: 173.217 -54400/69092 Loss: 173.919 -57600/69092 Loss: 173.317 -60800/69092 Loss: 171.425 -64000/69092 Loss: 172.770 -67200/69092 Loss: 171.839 -Training time 0:05:37.227078 -Epoch: 17 Average loss: 173.91 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 19) -0/69092 Loss: 175.521 -3200/69092 Loss: 169.495 -6400/69092 Loss: 175.040 -9600/69092 Loss: 174.591 -12800/69092 Loss: 173.541 -16000/69092 Loss: 174.730 -19200/69092 Loss: 176.340 -22400/69092 Loss: 170.779 -25600/69092 Loss: 174.685 -28800/69092 Loss: 173.111 -32000/69092 Loss: 175.287 -35200/69092 Loss: 177.107 -38400/69092 Loss: 173.228 -41600/69092 Loss: 173.567 -44800/69092 Loss: 174.867 -48000/69092 Loss: 176.990 -51200/69092 Loss: 176.325 -54400/69092 Loss: 172.071 -57600/69092 Loss: 169.826 -60800/69092 Loss: 176.096 -64000/69092 Loss: 171.550 -67200/69092 Loss: 174.078 -Training time 0:06:00.896832 -Epoch: 18 Average loss: 173.96 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 20) -0/69092 Loss: 181.706 -3200/69092 Loss: 174.942 -6400/69092 Loss: 174.335 -9600/69092 Loss: 175.405 -12800/69092 Loss: 174.920 -16000/69092 Loss: 174.579 -19200/69092 Loss: 174.273 -22400/69092 Loss: 175.236 -25600/69092 Loss: 172.553 -28800/69092 Loss: 173.624 -32000/69092 Loss: 173.970 -35200/69092 Loss: 174.625 -38400/69092 Loss: 176.944 -41600/69092 Loss: 177.543 -44800/69092 Loss: 171.156 -48000/69092 Loss: 175.112 -51200/69092 Loss: 168.709 -54400/69092 Loss: 173.187 -57600/69092 Loss: 173.014 -60800/69092 Loss: 173.705 -64000/69092 Loss: 172.995 -67200/69092 Loss: 172.727 -Training time 0:05:33.461102 -Epoch: 19 Average loss: 173.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 21) -0/69092 Loss: 181.324 -3200/69092 Loss: 175.460 -6400/69092 Loss: 173.600 -9600/69092 Loss: 172.653 -12800/69092 Loss: 176.877 -16000/69092 Loss: 173.990 -19200/69092 Loss: 175.041 -22400/69092 Loss: 173.715 -25600/69092 Loss: 174.660 -28800/69092 Loss: 174.793 -32000/69092 Loss: 174.699 -35200/69092 Loss: 170.826 -38400/69092 Loss: 173.354 -41600/69092 Loss: 172.968 -44800/69092 Loss: 171.330 -48000/69092 Loss: 173.645 -51200/69092 Loss: 173.527 -54400/69092 Loss: 174.024 -57600/69092 Loss: 172.847 -60800/69092 Loss: 170.919 -64000/69092 Loss: 173.528 -67200/69092 Loss: 176.333 -Training time 0:05:41.627131 -Epoch: 20 Average loss: 173.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 22) -0/69092 Loss: 175.522 -3200/69092 Loss: 171.681 -6400/69092 Loss: 174.306 -9600/69092 Loss: 173.824 -12800/69092 Loss: 173.190 -16000/69092 Loss: 177.138 -19200/69092 Loss: 173.399 -22400/69092 Loss: 175.519 -25600/69092 Loss: 174.662 -28800/69092 Loss: 173.911 -32000/69092 Loss: 171.048 -35200/69092 Loss: 172.223 -38400/69092 Loss: 173.460 -41600/69092 Loss: 175.998 -44800/69092 Loss: 173.967 -48000/69092 Loss: 172.762 -51200/69092 Loss: 174.501 -54400/69092 Loss: 174.181 -57600/69092 Loss: 174.943 -60800/69092 Loss: 170.237 -64000/69092 Loss: 177.731 -67200/69092 Loss: 175.039 -Training time 0:05:32.326405 -Epoch: 21 Average loss: 174.01 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 23) -0/69092 Loss: 169.470 -3200/69092 Loss: 173.431 -6400/69092 Loss: 173.364 -9600/69092 Loss: 173.243 -12800/69092 Loss: 175.181 -16000/69092 Loss: 172.482 -19200/69092 Loss: 172.325 -22400/69092 Loss: 170.139 -25600/69092 Loss: 174.497 -28800/69092 Loss: 178.208 -32000/69092 Loss: 171.218 -35200/69092 Loss: 173.980 -38400/69092 Loss: 177.087 -41600/69092 Loss: 175.343 -44800/69092 Loss: 171.970 -48000/69092 Loss: 177.428 -51200/69092 Loss: 172.604 -54400/69092 Loss: 173.524 -57600/69092 Loss: 175.285 -60800/69092 Loss: 169.347 -64000/69092 Loss: 175.777 -67200/69092 Loss: 173.082 -Training time 0:05:41.385094 -Epoch: 22 Average loss: 173.72 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 24) -0/69092 Loss: 170.264 -3200/69092 Loss: 175.610 -6400/69092 Loss: 173.777 -9600/69092 Loss: 174.105 -12800/69092 Loss: 173.542 -16000/69092 Loss: 173.334 -19200/69092 Loss: 170.956 -22400/69092 Loss: 177.598 -25600/69092 Loss: 176.880 -28800/69092 Loss: 172.293 -32000/69092 Loss: 174.877 -35200/69092 Loss: 171.622 -38400/69092 Loss: 172.211 -41600/69092 Loss: 172.787 -44800/69092 Loss: 176.438 -48000/69092 Loss: 173.580 -51200/69092 Loss: 173.973 -54400/69092 Loss: 174.231 -57600/69092 Loss: 176.727 -60800/69092 Loss: 172.584 -64000/69092 Loss: 171.992 -67200/69092 Loss: 172.850 -Training time 0:05:31.432612 -Epoch: 23 Average loss: 173.84 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 25) -0/69092 Loss: 192.459 -3200/69092 Loss: 174.192 -6400/69092 Loss: 172.172 -9600/69092 Loss: 173.914 -12800/69092 Loss: 173.817 -16000/69092 Loss: 175.222 -19200/69092 Loss: 174.602 -22400/69092 Loss: 170.613 -25600/69092 Loss: 173.318 -28800/69092 Loss: 174.815 -32000/69092 Loss: 173.949 -35200/69092 Loss: 173.028 -38400/69092 Loss: 173.344 -41600/69092 Loss: 172.672 -44800/69092 Loss: 173.504 -48000/69092 Loss: 176.420 -51200/69092 Loss: 173.166 -54400/69092 Loss: 172.663 -57600/69092 Loss: 173.213 -60800/69092 Loss: 173.389 -64000/69092 Loss: 174.746 -67200/69092 Loss: 173.229 -Training time 0:05:41.747589 -Epoch: 24 Average loss: 173.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 26) -0/69092 Loss: 187.258 -3200/69092 Loss: 174.271 -6400/69092 Loss: 169.356 -9600/69092 Loss: 173.209 -12800/69092 Loss: 171.349 -16000/69092 Loss: 176.658 -19200/69092 Loss: 175.129 -22400/69092 Loss: 169.299 -25600/69092 Loss: 176.399 -28800/69092 Loss: 177.179 -32000/69092 Loss: 175.130 -35200/69092 Loss: 175.582 -38400/69092 Loss: 171.445 -41600/69092 Loss: 173.623 -44800/69092 Loss: 173.105 -48000/69092 Loss: 174.830 -51200/69092 Loss: 173.433 -54400/69092 Loss: 174.068 -57600/69092 Loss: 172.694 -60800/69092 Loss: 172.232 -64000/69092 Loss: 170.319 -67200/69092 Loss: 175.323 -Training time 0:05:48.043514 -Epoch: 25 Average loss: 173.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 27) -0/69092 Loss: 159.018 -3200/69092 Loss: 174.298 -6400/69092 Loss: 172.624 -9600/69092 Loss: 173.771 -12800/69092 Loss: 171.477 -16000/69092 Loss: 176.488 -19200/69092 Loss: 177.637 -22400/69092 Loss: 174.962 -25600/69092 Loss: 173.725 -28800/69092 Loss: 175.619 -32000/69092 Loss: 172.961 -35200/69092 Loss: 169.719 -38400/69092 Loss: 173.452 -41600/69092 Loss: 174.124 -44800/69092 Loss: 174.044 -48000/69092 Loss: 171.758 -51200/69092 Loss: 173.624 -54400/69092 Loss: 172.592 -57600/69092 Loss: 171.208 -60800/69092 Loss: 176.300 -64000/69092 Loss: 174.036 -67200/69092 Loss: 173.975 -Training time 0:05:29.049309 -Epoch: 26 Average loss: 173.78 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 28) -0/69092 Loss: 160.580 -3200/69092 Loss: 175.324 -6400/69092 Loss: 174.976 -9600/69092 Loss: 174.375 -12800/69092 Loss: 173.432 -16000/69092 Loss: 173.015 -19200/69092 Loss: 174.784 -22400/69092 Loss: 170.553 -25600/69092 Loss: 174.186 -28800/69092 Loss: 178.069 -32000/69092 Loss: 175.331 -35200/69092 Loss: 177.122 -38400/69092 Loss: 173.582 -41600/69092 Loss: 170.883 -44800/69092 Loss: 168.975 -48000/69092 Loss: 171.320 -51200/69092 Loss: 171.969 -54400/69092 Loss: 171.927 -57600/69092 Loss: 175.958 -60800/69092 Loss: 177.487 -64000/69092 Loss: 171.726 -67200/69092 Loss: 173.001 -Training time 0:05:40.474273 -Epoch: 27 Average loss: 173.70 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 29) -0/69092 Loss: 186.247 -3200/69092 Loss: 172.054 -6400/69092 Loss: 174.711 -9600/69092 Loss: 173.377 -12800/69092 Loss: 174.325 -16000/69092 Loss: 171.554 -19200/69092 Loss: 170.114 -22400/69092 Loss: 172.368 -25600/69092 Loss: 178.603 -28800/69092 Loss: 172.321 -32000/69092 Loss: 175.067 -35200/69092 Loss: 172.821 -38400/69092 Loss: 173.497 -41600/69092 Loss: 170.781 -44800/69092 Loss: 172.645 -48000/69092 Loss: 174.624 -51200/69092 Loss: 174.692 -54400/69092 Loss: 174.437 -57600/69092 Loss: 173.175 -60800/69092 Loss: 175.592 -64000/69092 Loss: 176.727 -67200/69092 Loss: 171.446 -Training time 0:05:54.306120 -Epoch: 28 Average loss: 173.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 30) -0/69092 Loss: 177.635 -3200/69092 Loss: 176.320 -6400/69092 Loss: 173.105 -9600/69092 Loss: 173.753 -12800/69092 Loss: 173.966 -16000/69092 Loss: 173.023 -19200/69092 Loss: 177.296 -22400/69092 Loss: 171.875 -25600/69092 Loss: 172.370 -28800/69092 Loss: 171.588 -32000/69092 Loss: 174.452 -35200/69092 Loss: 172.140 -38400/69092 Loss: 172.938 -41600/69092 Loss: 171.031 -44800/69092 Loss: 174.442 -48000/69092 Loss: 169.778 -51200/69092 Loss: 175.924 -54400/69092 Loss: 172.634 -57600/69092 Loss: 173.484 -60800/69092 Loss: 175.750 -64000/69092 Loss: 174.191 -67200/69092 Loss: 172.983 -Training time 0:05:23.217377 -Epoch: 29 Average loss: 173.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 31) -0/69092 Loss: 177.443 -3200/69092 Loss: 172.360 -6400/69092 Loss: 171.361 -9600/69092 Loss: 171.755 -12800/69092 Loss: 174.928 -16000/69092 Loss: 174.394 -19200/69092 Loss: 174.640 -22400/69092 Loss: 171.706 -25600/69092 Loss: 174.741 -28800/69092 Loss: 172.728 -32000/69092 Loss: 175.243 -35200/69092 Loss: 170.282 -38400/69092 Loss: 173.597 -41600/69092 Loss: 175.927 -44800/69092 Loss: 171.773 -48000/69092 Loss: 172.405 -51200/69092 Loss: 176.730 -54400/69092 Loss: 176.713 -57600/69092 Loss: 172.287 -60800/69092 Loss: 173.667 -64000/69092 Loss: 172.699 -67200/69092 Loss: 174.272 -Training time 0:05:40.304543 -Epoch: 30 Average loss: 173.62 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 32) -0/69092 Loss: 191.708 -3200/69092 Loss: 173.430 -6400/69092 Loss: 173.703 -9600/69092 Loss: 171.621 -12800/69092 Loss: 175.206 -16000/69092 Loss: 173.444 -19200/69092 Loss: 173.582 -22400/69092 Loss: 172.806 -25600/69092 Loss: 175.794 -28800/69092 Loss: 171.370 -32000/69092 Loss: 172.763 -35200/69092 Loss: 173.796 -38400/69092 Loss: 172.945 -41600/69092 Loss: 171.384 -44800/69092 Loss: 174.757 -48000/69092 Loss: 173.012 -51200/69092 Loss: 173.523 -54400/69092 Loss: 177.514 -57600/69092 Loss: 174.484 -60800/69092 Loss: 173.689 -64000/69092 Loss: 175.510 -67200/69092 Loss: 171.662 -Training time 0:05:25.356098 -Epoch: 31 Average loss: 173.58 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 33) -0/69092 Loss: 196.864 -3200/69092 Loss: 174.341 -6400/69092 Loss: 173.206 -9600/69092 Loss: 175.148 -12800/69092 Loss: 174.531 -16000/69092 Loss: 173.104 -19200/69092 Loss: 174.909 -22400/69092 Loss: 171.156 -25600/69092 Loss: 172.036 -28800/69092 Loss: 173.442 -32000/69092 Loss: 172.939 -35200/69092 Loss: 173.429 -38400/69092 Loss: 174.354 -41600/69092 Loss: 174.152 -44800/69092 Loss: 173.010 -48000/69092 Loss: 173.626 -51200/69092 Loss: 169.262 -54400/69092 Loss: 170.032 -57600/69092 Loss: 178.830 -60800/69092 Loss: 176.600 -64000/69092 Loss: 172.144 -67200/69092 Loss: 172.936 -Training time 0:05:23.495012 -Epoch: 32 Average loss: 173.53 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 34) -0/69092 Loss: 166.554 -3200/69092 Loss: 174.301 -6400/69092 Loss: 173.805 -9600/69092 Loss: 171.245 -12800/69092 Loss: 174.749 -16000/69092 Loss: 175.356 -19200/69092 Loss: 173.674 -22400/69092 Loss: 171.741 -25600/69092 Loss: 174.273 -28800/69092 Loss: 174.210 -32000/69092 Loss: 171.078 -35200/69092 Loss: 175.898 -38400/69092 Loss: 178.527 -41600/69092 Loss: 174.504 -44800/69092 Loss: 174.795 -48000/69092 Loss: 171.500 -51200/69092 Loss: 173.709 -54400/69092 Loss: 171.968 -57600/69092 Loss: 174.119 -60800/69092 Loss: 175.209 -64000/69092 Loss: 171.790 -67200/69092 Loss: 173.900 -Training time 0:05:39.295017 -Epoch: 33 Average loss: 173.71 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 35) -0/69092 Loss: 186.714 -3200/69092 Loss: 176.883 -6400/69092 Loss: 172.812 -9600/69092 Loss: 171.623 -12800/69092 Loss: 174.599 -16000/69092 Loss: 173.348 -19200/69092 Loss: 173.608 -22400/69092 Loss: 172.481 -25600/69092 Loss: 175.913 -28800/69092 Loss: 174.323 -32000/69092 Loss: 172.932 -35200/69092 Loss: 172.995 -38400/69092 Loss: 173.248 -41600/69092 Loss: 172.981 -44800/69092 Loss: 172.659 -48000/69092 Loss: 173.360 -51200/69092 Loss: 171.643 -54400/69092 Loss: 173.445 -57600/69092 Loss: 174.796 -60800/69092 Loss: 174.537 -64000/69092 Loss: 173.874 -67200/69092 Loss: 172.268 -Training time 0:05:44.055745 -Epoch: 34 Average loss: 173.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 36) -0/69092 Loss: 164.509 -3200/69092 Loss: 169.188 -6400/69092 Loss: 173.661 -9600/69092 Loss: 172.126 -12800/69092 Loss: 175.549 -16000/69092 Loss: 173.874 -19200/69092 Loss: 174.934 -22400/69092 Loss: 172.382 -25600/69092 Loss: 171.855 -28800/69092 Loss: 172.607 -32000/69092 Loss: 174.699 -35200/69092 Loss: 170.735 -38400/69092 Loss: 172.636 -41600/69092 Loss: 174.432 -44800/69092 Loss: 171.385 -48000/69092 Loss: 176.124 -51200/69092 Loss: 172.042 -54400/69092 Loss: 175.066 -57600/69092 Loss: 174.499 -60800/69092 Loss: 174.652 -64000/69092 Loss: 173.362 -67200/69092 Loss: 176.318 -Training time 0:05:29.571042 -Epoch: 35 Average loss: 173.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 37) -0/69092 Loss: 184.585 -3200/69092 Loss: 175.565 -6400/69092 Loss: 172.125 -9600/69092 Loss: 170.228 -12800/69092 Loss: 171.469 -16000/69092 Loss: 172.525 -19200/69092 Loss: 173.128 -22400/69092 Loss: 172.829 -25600/69092 Loss: 173.167 -28800/69092 Loss: 170.336 -32000/69092 Loss: 175.812 -35200/69092 Loss: 173.563 -38400/69092 Loss: 177.054 -41600/69092 Loss: 173.328 -44800/69092 Loss: 173.700 -48000/69092 Loss: 173.092 -51200/69092 Loss: 172.745 -54400/69092 Loss: 170.423 -57600/69092 Loss: 172.372 -60800/69092 Loss: 171.590 -64000/69092 Loss: 175.804 -67200/69092 Loss: 171.773 -Training time 0:05:51.309468 -Epoch: 36 Average loss: 173.09 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 38) -0/69092 Loss: 173.427 -3200/69092 Loss: 173.175 -6400/69092 Loss: 172.144 -9600/69092 Loss: 173.344 -12800/69092 Loss: 174.643 -16000/69092 Loss: 178.121 -19200/69092 Loss: 173.095 -22400/69092 Loss: 174.251 -25600/69092 Loss: 172.400 -28800/69092 Loss: 174.409 -32000/69092 Loss: 177.024 -35200/69092 Loss: 171.541 -38400/69092 Loss: 175.171 -41600/69092 Loss: 171.738 -44800/69092 Loss: 174.493 -48000/69092 Loss: 173.316 -51200/69092 Loss: 170.099 -54400/69092 Loss: 173.562 -57600/69092 Loss: 170.568 -60800/69092 Loss: 172.148 -64000/69092 Loss: 173.017 -67200/69092 Loss: 173.565 -Training time 0:05:40.488864 -Epoch: 37 Average loss: 173.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 39) -0/69092 Loss: 186.108 -3200/69092 Loss: 170.907 -6400/69092 Loss: 173.202 -9600/69092 Loss: 178.612 -12800/69092 Loss: 171.577 -16000/69092 Loss: 172.614 -19200/69092 Loss: 173.740 -22400/69092 Loss: 176.534 -25600/69092 Loss: 174.375 -28800/69092 Loss: 173.829 -32000/69092 Loss: 171.273 -35200/69092 Loss: 172.430 -38400/69092 Loss: 172.139 -41600/69092 Loss: 171.459 -44800/69092 Loss: 174.351 -48000/69092 Loss: 173.663 -51200/69092 Loss: 174.352 -54400/69092 Loss: 170.678 -57600/69092 Loss: 170.146 -60800/69092 Loss: 173.981 -64000/69092 Loss: 174.069 -67200/69092 Loss: 171.602 -Training time 0:05:40.008656 -Epoch: 38 Average loss: 173.15 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 40) -0/69092 Loss: 187.263 -3200/69092 Loss: 174.044 -6400/69092 Loss: 171.880 -9600/69092 Loss: 170.916 -12800/69092 Loss: 172.835 -16000/69092 Loss: 169.904 -19200/69092 Loss: 173.127 -22400/69092 Loss: 172.923 -25600/69092 Loss: 175.621 -28800/69092 Loss: 177.994 -32000/69092 Loss: 172.789 -35200/69092 Loss: 174.507 -38400/69092 Loss: 174.986 -41600/69092 Loss: 171.516 -44800/69092 Loss: 170.562 -48000/69092 Loss: 174.539 -51200/69092 Loss: 173.680 -54400/69092 Loss: 172.400 -57600/69092 Loss: 172.262 -60800/69092 Loss: 174.315 -64000/69092 Loss: 171.795 -67200/69092 Loss: 173.152 -Training time 0:05:33.916960 -Epoch: 39 Average loss: 173.26 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 41) -0/69092 Loss: 180.096 -3200/69092 Loss: 174.381 -6400/69092 Loss: 170.518 -9600/69092 Loss: 172.870 -12800/69092 Loss: 172.021 -16000/69092 Loss: 172.750 -19200/69092 Loss: 170.749 -22400/69092 Loss: 172.568 -25600/69092 Loss: 175.968 -28800/69092 Loss: 172.411 -32000/69092 Loss: 176.875 -35200/69092 Loss: 171.088 -38400/69092 Loss: 172.786 -41600/69092 Loss: 177.546 -44800/69092 Loss: 174.277 -48000/69092 Loss: 175.076 -51200/69092 Loss: 170.425 -54400/69092 Loss: 172.672 -57600/69092 Loss: 177.248 -60800/69092 Loss: 173.309 -64000/69092 Loss: 170.583 -67200/69092 Loss: 173.451 -Training time 0:05:47.549711 -Epoch: 40 Average loss: 173.44 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 42) -0/69092 Loss: 166.892 -3200/69092 Loss: 169.907 -6400/69092 Loss: 174.729 -9600/69092 Loss: 174.300 -12800/69092 Loss: 171.541 -16000/69092 Loss: 169.615 -19200/69092 Loss: 171.974 -22400/69092 Loss: 170.669 -25600/69092 Loss: 175.969 -28800/69092 Loss: 173.754 -32000/69092 Loss: 172.225 -35200/69092 Loss: 172.512 -38400/69092 Loss: 173.071 -41600/69092 Loss: 170.008 -44800/69092 Loss: 171.252 -48000/69092 Loss: 170.339 -51200/69092 Loss: 172.338 -54400/69092 Loss: 174.364 -57600/69092 Loss: 173.408 -60800/69092 Loss: 170.907 -64000/69092 Loss: 172.668 -67200/69092 Loss: 173.325 -Training time 0:05:35.665365 -Epoch: 41 Average loss: 172.28 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 43) -0/69092 Loss: 183.274 -3200/69092 Loss: 172.073 -6400/69092 Loss: 175.359 -9600/69092 Loss: 170.925 -12800/69092 Loss: 174.301 -16000/69092 Loss: 172.649 -19200/69092 Loss: 170.175 -22400/69092 Loss: 171.567 -25600/69092 Loss: 170.073 -28800/69092 Loss: 170.343 -32000/69092 Loss: 166.742 -35200/69092 Loss: 172.750 -38400/69092 Loss: 171.848 -41600/69092 Loss: 171.209 -44800/69092 Loss: 169.259 -48000/69092 Loss: 174.016 -51200/69092 Loss: 171.689 -54400/69092 Loss: 168.837 -57600/69092 Loss: 168.469 -60800/69092 Loss: 169.180 -64000/69092 Loss: 174.771 -67200/69092 Loss: 173.935 -Training time 0:05:54.282279 -Epoch: 42 Average loss: 171.47 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 44) -0/69092 Loss: 167.563 -3200/69092 Loss: 167.655 -6400/69092 Loss: 170.149 -9600/69092 Loss: 171.828 -12800/69092 Loss: 172.133 -16000/69092 Loss: 171.540 -19200/69092 Loss: 166.793 -22400/69092 Loss: 171.767 -25600/69092 Loss: 171.824 -28800/69092 Loss: 169.961 -32000/69092 Loss: 172.404 -35200/69092 Loss: 171.086 -38400/69092 Loss: 171.440 -41600/69092 Loss: 171.000 -44800/69092 Loss: 167.727 -48000/69092 Loss: 168.990 -51200/69092 Loss: 169.421 -54400/69092 Loss: 171.666 -57600/69092 Loss: 172.731 -60800/69092 Loss: 168.360 -64000/69092 Loss: 169.549 -67200/69092 Loss: 170.794 -Training time 0:05:54.221089 -Epoch: 43 Average loss: 170.41 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 45) -0/69092 Loss: 173.246 -3200/69092 Loss: 171.212 -6400/69092 Loss: 171.112 -9600/69092 Loss: 171.287 -12800/69092 Loss: 173.460 -16000/69092 Loss: 170.604 -19200/69092 Loss: 170.470 -22400/69092 Loss: 169.744 -25600/69092 Loss: 169.659 -28800/69092 Loss: 170.463 -32000/69092 Loss: 167.962 -35200/69092 Loss: 168.192 -38400/69092 Loss: 169.308 -41600/69092 Loss: 166.174 -44800/69092 Loss: 167.972 -48000/69092 Loss: 167.101 -51200/69092 Loss: 168.082 -54400/69092 Loss: 168.402 -57600/69092 Loss: 167.455 -60800/69092 Loss: 168.489 -64000/69092 Loss: 168.424 -67200/69092 Loss: 166.649 -Training time 0:05:42.435056 -Epoch: 44 Average loss: 169.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 46) -0/69092 Loss: 153.235 -3200/69092 Loss: 167.863 -6400/69092 Loss: 168.738 -9600/69092 Loss: 170.254 -12800/69092 Loss: 165.962 -16000/69092 Loss: 169.147 -19200/69092 Loss: 165.075 -22400/69092 Loss: 166.501 -25600/69092 Loss: 167.458 -28800/69092 Loss: 170.880 -32000/69092 Loss: 166.437 -35200/69092 Loss: 166.887 -38400/69092 Loss: 169.201 -41600/69092 Loss: 167.544 -44800/69092 Loss: 167.635 -48000/69092 Loss: 164.696 -51200/69092 Loss: 167.352 -54400/69092 Loss: 168.781 -57600/69092 Loss: 169.274 -60800/69092 Loss: 170.615 -64000/69092 Loss: 167.813 -67200/69092 Loss: 167.527 -Training time 0:05:32.692638 -Epoch: 45 Average loss: 167.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 47) -0/69092 Loss: 157.577 -3200/69092 Loss: 168.256 -6400/69092 Loss: 170.025 -9600/69092 Loss: 170.829 -12800/69092 Loss: 164.074 -16000/69092 Loss: 167.900 -19200/69092 Loss: 168.318 -22400/69092 Loss: 167.668 -25600/69092 Loss: 165.187 -28800/69092 Loss: 164.678 -32000/69092 Loss: 167.627 -35200/69092 Loss: 165.355 -38400/69092 Loss: 165.897 -41600/69092 Loss: 167.423 -44800/69092 Loss: 166.143 -48000/69092 Loss: 165.399 -51200/69092 Loss: 166.400 -54400/69092 Loss: 165.740 -57600/69092 Loss: 167.359 -60800/69092 Loss: 167.019 -64000/69092 Loss: 164.991 -67200/69092 Loss: 165.534 -Training time 0:05:40.355541 -Epoch: 46 Average loss: 166.73 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 48) -0/69092 Loss: 167.794 -3200/69092 Loss: 166.358 -6400/69092 Loss: 167.976 -9600/69092 Loss: 161.915 -12800/69092 Loss: 170.618 -16000/69092 Loss: 169.478 -19200/69092 Loss: 168.012 -22400/69092 Loss: 168.640 -25600/69092 Loss: 166.508 -28800/69092 Loss: 164.664 -32000/69092 Loss: 165.563 -35200/69092 Loss: 165.242 -38400/69092 Loss: 165.173 -41600/69092 Loss: 166.427 -44800/69092 Loss: 164.840 -48000/69092 Loss: 164.091 -51200/69092 Loss: 165.624 -54400/69092 Loss: 167.620 -57600/69092 Loss: 167.491 -60800/69092 Loss: 167.892 -64000/69092 Loss: 166.079 -67200/69092 Loss: 165.601 -Training time 0:05:39.830287 -Epoch: 47 Average loss: 166.56 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 49) -0/69092 Loss: 160.000 -3200/69092 Loss: 168.413 -6400/69092 Loss: 166.428 -9600/69092 Loss: 167.653 -12800/69092 Loss: 166.982 -16000/69092 Loss: 167.007 -19200/69092 Loss: 166.679 -22400/69092 Loss: 166.577 -25600/69092 Loss: 165.914 -28800/69092 Loss: 165.350 -32000/69092 Loss: 164.527 -35200/69092 Loss: 164.677 -38400/69092 Loss: 169.371 -41600/69092 Loss: 165.501 -44800/69092 Loss: 165.035 -48000/69092 Loss: 167.083 -51200/69092 Loss: 165.342 -54400/69092 Loss: 168.917 -57600/69092 Loss: 164.038 -60800/69092 Loss: 162.979 -64000/69092 Loss: 163.487 -67200/69092 Loss: 165.938 -Training time 0:05:38.988145 -Epoch: 48 Average loss: 166.13 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 50) -0/69092 Loss: 154.051 -3200/69092 Loss: 168.800 -6400/69092 Loss: 164.603 -9600/69092 Loss: 168.144 -12800/69092 Loss: 166.208 -16000/69092 Loss: 167.659 -19200/69092 Loss: 162.595 -22400/69092 Loss: 166.029 -25600/69092 Loss: 169.441 -28800/69092 Loss: 164.896 -32000/69092 Loss: 163.644 -35200/69092 Loss: 169.101 -38400/69092 Loss: 164.853 -41600/69092 Loss: 166.421 -44800/69092 Loss: 166.245 -48000/69092 Loss: 166.465 -51200/69092 Loss: 165.259 -54400/69092 Loss: 164.067 -57600/69092 Loss: 165.839 -60800/69092 Loss: 165.805 -64000/69092 Loss: 164.429 -67200/69092 Loss: 165.264 -Training time 0:05:57.260261 -Epoch: 49 Average loss: 165.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 51) -0/69092 Loss: 181.015 -3200/69092 Loss: 164.637 -6400/69092 Loss: 164.384 -9600/69092 Loss: 166.718 -12800/69092 Loss: 167.925 -16000/69092 Loss: 164.983 -19200/69092 Loss: 166.862 -22400/69092 Loss: 164.006 -25600/69092 Loss: 168.377 -28800/69092 Loss: 164.324 -32000/69092 Loss: 163.546 -35200/69092 Loss: 164.518 -38400/69092 Loss: 163.273 -41600/69092 Loss: 162.711 -44800/69092 Loss: 167.412 -48000/69092 Loss: 166.993 -51200/69092 Loss: 166.282 -54400/69092 Loss: 167.241 -57600/69092 Loss: 162.450 -60800/69092 Loss: 165.818 -64000/69092 Loss: 164.673 -67200/69092 Loss: 167.188 -Training time 0:05:50.119307 -Epoch: 50 Average loss: 165.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 52) -0/69092 Loss: 198.353 -3200/69092 Loss: 168.760 -6400/69092 Loss: 163.387 -9600/69092 Loss: 165.692 -12800/69092 Loss: 164.378 -16000/69092 Loss: 166.856 -19200/69092 Loss: 165.326 -22400/69092 Loss: 164.655 -25600/69092 Loss: 164.794 -28800/69092 Loss: 165.226 -32000/69092 Loss: 166.955 -35200/69092 Loss: 161.901 -38400/69092 Loss: 164.587 -41600/69092 Loss: 164.124 -44800/69092 Loss: 166.599 -48000/69092 Loss: 163.628 -51200/69092 Loss: 166.996 -54400/69092 Loss: 166.418 -57600/69092 Loss: 165.492 -60800/69092 Loss: 165.077 -64000/69092 Loss: 162.775 -67200/69092 Loss: 166.733 -Training time 0:05:36.376033 -Epoch: 51 Average loss: 165.16 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 53) -0/69092 Loss: 143.459 -3200/69092 Loss: 163.731 -6400/69092 Loss: 163.375 -9600/69092 Loss: 168.696 -12800/69092 Loss: 165.597 -16000/69092 Loss: 165.569 -19200/69092 Loss: 166.215 -22400/69092 Loss: 167.393 -25600/69092 Loss: 167.570 -28800/69092 Loss: 163.246 -32000/69092 Loss: 166.556 -35200/69092 Loss: 162.497 -38400/69092 Loss: 166.182 -41600/69092 Loss: 167.587 -44800/69092 Loss: 161.856 -48000/69092 Loss: 163.982 -51200/69092 Loss: 165.737 -54400/69092 Loss: 163.250 -57600/69092 Loss: 165.125 -60800/69092 Loss: 163.595 -64000/69092 Loss: 162.587 -67200/69092 Loss: 165.027 -Training time 0:05:40.020361 -Epoch: 52 Average loss: 165.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 54) -0/69092 Loss: 150.567 -3200/69092 Loss: 166.590 -6400/69092 Loss: 166.091 -9600/69092 Loss: 162.325 -12800/69092 Loss: 165.441 -16000/69092 Loss: 162.639 -19200/69092 Loss: 166.093 -22400/69092 Loss: 163.996 -25600/69092 Loss: 164.310 -28800/69092 Loss: 165.598 -32000/69092 Loss: 165.352 -35200/69092 Loss: 163.505 -38400/69092 Loss: 163.557 -41600/69092 Loss: 165.363 -44800/69092 Loss: 167.443 -48000/69092 Loss: 163.115 -51200/69092 Loss: 164.136 -54400/69092 Loss: 169.178 -57600/69092 Loss: 161.254 -60800/69092 Loss: 165.040 -64000/69092 Loss: 163.431 -67200/69092 Loss: 163.072 -Training time 0:05:34.292027 -Epoch: 53 Average loss: 164.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 55) -0/69092 Loss: 179.397 -3200/69092 Loss: 169.331 -6400/69092 Loss: 165.416 -9600/69092 Loss: 163.820 -12800/69092 Loss: 164.717 -16000/69092 Loss: 167.858 -19200/69092 Loss: 165.986 -22400/69092 Loss: 162.102 -25600/69092 Loss: 162.791 -28800/69092 Loss: 162.377 -32000/69092 Loss: 161.870 -35200/69092 Loss: 164.394 -38400/69092 Loss: 167.809 -41600/69092 Loss: 162.293 -44800/69092 Loss: 164.169 -48000/69092 Loss: 163.266 -51200/69092 Loss: 164.188 -54400/69092 Loss: 164.553 -57600/69092 Loss: 163.790 -60800/69092 Loss: 163.379 -64000/69092 Loss: 163.940 -67200/69092 Loss: 163.795 -Training time 0:05:52.653168 -Epoch: 54 Average loss: 164.30 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 56) -0/69092 Loss: 158.589 -3200/69092 Loss: 164.807 -6400/69092 Loss: 161.015 -9600/69092 Loss: 162.975 -12800/69092 Loss: 164.167 -16000/69092 Loss: 162.519 -19200/69092 Loss: 166.933 -22400/69092 Loss: 162.555 -25600/69092 Loss: 163.479 -28800/69092 Loss: 163.457 -32000/69092 Loss: 167.122 -35200/69092 Loss: 165.168 -38400/69092 Loss: 162.780 -41600/69092 Loss: 162.968 -44800/69092 Loss: 162.150 -48000/69092 Loss: 164.946 -51200/69092 Loss: 163.820 -54400/69092 Loss: 164.089 -57600/69092 Loss: 163.518 -60800/69092 Loss: 162.881 -64000/69092 Loss: 159.904 -67200/69092 Loss: 162.548 -Training time 0:05:52.862775 -Epoch: 55 Average loss: 163.54 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 57) -0/69092 Loss: 150.236 -3200/69092 Loss: 162.965 -6400/69092 Loss: 161.524 -9600/69092 Loss: 165.274 -12800/69092 Loss: 162.213 -16000/69092 Loss: 162.425 -19200/69092 Loss: 163.687 -22400/69092 Loss: 161.616 -25600/69092 Loss: 160.336 -28800/69092 Loss: 166.733 -32000/69092 Loss: 165.842 -35200/69092 Loss: 164.410 -38400/69092 Loss: 164.495 -41600/69092 Loss: 164.165 -44800/69092 Loss: 160.374 -48000/69092 Loss: 160.507 -51200/69092 Loss: 161.214 -54400/69092 Loss: 162.758 -57600/69092 Loss: 163.086 -60800/69092 Loss: 163.382 -64000/69092 Loss: 161.542 -67200/69092 Loss: 160.924 -Training time 0:05:42.539817 -Epoch: 56 Average loss: 162.94 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 58) -0/69092 Loss: 139.150 -3200/69092 Loss: 159.976 -6400/69092 Loss: 164.714 -9600/69092 Loss: 158.648 -12800/69092 Loss: 163.976 -16000/69092 Loss: 163.032 -19200/69092 Loss: 165.323 -22400/69092 Loss: 162.589 -25600/69092 Loss: 161.895 -28800/69092 Loss: 161.899 -32000/69092 Loss: 161.471 -35200/69092 Loss: 162.316 -38400/69092 Loss: 159.002 -41600/69092 Loss: 161.996 -44800/69092 Loss: 162.421 -48000/69092 Loss: 161.444 -51200/69092 Loss: 162.999 -54400/69092 Loss: 160.922 -57600/69092 Loss: 164.080 -60800/69092 Loss: 163.423 -64000/69092 Loss: 163.086 -67200/69092 Loss: 163.945 -Training time 0:05:46.353508 -Epoch: 57 Average loss: 162.38 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 59) -0/69092 Loss: 178.841 -3200/69092 Loss: 162.692 -6400/69092 Loss: 159.783 -9600/69092 Loss: 160.010 -12800/69092 Loss: 163.379 -16000/69092 Loss: 160.886 -19200/69092 Loss: 162.199 -22400/69092 Loss: 162.560 -25600/69092 Loss: 168.001 -28800/69092 Loss: 161.574 -32000/69092 Loss: 160.602 -35200/69092 Loss: 160.272 -38400/69092 Loss: 158.592 -41600/69092 Loss: 162.144 -44800/69092 Loss: 161.838 -48000/69092 Loss: 164.109 -51200/69092 Loss: 162.542 -54400/69092 Loss: 158.274 -57600/69092 Loss: 159.163 -60800/69092 Loss: 163.266 -64000/69092 Loss: 162.224 -67200/69092 Loss: 165.458 -Training time 0:05:39.626714 -Epoch: 58 Average loss: 161.89 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 60) -0/69092 Loss: 166.984 -3200/69092 Loss: 162.239 -6400/69092 Loss: 162.115 -9600/69092 Loss: 162.349 -12800/69092 Loss: 159.904 -16000/69092 Loss: 158.859 -19200/69092 Loss: 162.854 -22400/69092 Loss: 160.167 -25600/69092 Loss: 160.621 -28800/69092 Loss: 158.050 -32000/69092 Loss: 162.151 -35200/69092 Loss: 161.174 -38400/69092 Loss: 160.051 -41600/69092 Loss: 162.315 -44800/69092 Loss: 161.528 -48000/69092 Loss: 162.895 -51200/69092 Loss: 162.563 -54400/69092 Loss: 163.136 -57600/69092 Loss: 160.897 -60800/69092 Loss: 162.557 -64000/69092 Loss: 160.214 -67200/69092 Loss: 163.037 -Training time 0:05:33.048844 -Epoch: 59 Average loss: 161.45 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 61) -0/69092 Loss: 149.507 -3200/69092 Loss: 160.715 -6400/69092 Loss: 161.707 -9600/69092 Loss: 161.779 -12800/69092 Loss: 160.168 -16000/69092 Loss: 160.552 -19200/69092 Loss: 159.908 -22400/69092 Loss: 161.218 -25600/69092 Loss: 163.683 -28800/69092 Loss: 159.321 -32000/69092 Loss: 159.532 -35200/69092 Loss: 159.671 -38400/69092 Loss: 161.547 -41600/69092 Loss: 158.484 -44800/69092 Loss: 159.405 -48000/69092 Loss: 161.779 -51200/69092 Loss: 159.974 -54400/69092 Loss: 162.963 -57600/69092 Loss: 160.340 -60800/69092 Loss: 161.868 -64000/69092 Loss: 158.539 -67200/69092 Loss: 160.137 -Training time 0:05:40.333830 -Epoch: 60 Average loss: 160.77 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 62) -0/69092 Loss: 168.603 -3200/69092 Loss: 159.598 -6400/69092 Loss: 160.441 -9600/69092 Loss: 159.780 -12800/69092 Loss: 164.112 -16000/69092 Loss: 163.368 -19200/69092 Loss: 160.479 -22400/69092 Loss: 162.530 -25600/69092 Loss: 161.251 -28800/69092 Loss: 162.324 -32000/69092 Loss: 162.983 -35200/69092 Loss: 163.757 -38400/69092 Loss: 159.764 -41600/69092 Loss: 160.018 -44800/69092 Loss: 160.194 -48000/69092 Loss: 158.096 -51200/69092 Loss: 161.157 -54400/69092 Loss: 159.922 -57600/69092 Loss: 160.651 -60800/69092 Loss: 157.688 -64000/69092 Loss: 159.952 -67200/69092 Loss: 160.075 -Training time 0:05:45.995703 -Epoch: 61 Average loss: 160.82 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 63) -0/69092 Loss: 164.432 -3200/69092 Loss: 159.754 -6400/69092 Loss: 159.381 -9600/69092 Loss: 161.880 -12800/69092 Loss: 161.369 -16000/69092 Loss: 157.463 -19200/69092 Loss: 161.791 -22400/69092 Loss: 159.944 -25600/69092 Loss: 160.871 -28800/69092 Loss: 162.126 -32000/69092 Loss: 162.310 -35200/69092 Loss: 161.692 -38400/69092 Loss: 162.270 -41600/69092 Loss: 158.490 -44800/69092 Loss: 162.484 -48000/69092 Loss: 158.736 -51200/69092 Loss: 158.702 -54400/69092 Loss: 160.241 -57600/69092 Loss: 160.938 -60800/69092 Loss: 158.529 -64000/69092 Loss: 161.997 -67200/69092 Loss: 161.102 -Training time 0:05:40.618788 -Epoch: 62 Average loss: 160.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 64) -0/69092 Loss: 154.568 -3200/69092 Loss: 160.887 -6400/69092 Loss: 161.419 -9600/69092 Loss: 159.361 -12800/69092 Loss: 159.252 -16000/69092 Loss: 160.597 -19200/69092 Loss: 158.492 -22400/69092 Loss: 160.724 -25600/69092 Loss: 163.020 -28800/69092 Loss: 159.280 -32000/69092 Loss: 160.119 -35200/69092 Loss: 157.753 -38400/69092 Loss: 159.272 -41600/69092 Loss: 161.015 -44800/69092 Loss: 159.210 -48000/69092 Loss: 160.275 -51200/69092 Loss: 160.902 -54400/69092 Loss: 157.824 -57600/69092 Loss: 161.885 -60800/69092 Loss: 161.744 -64000/69092 Loss: 162.985 -67200/69092 Loss: 160.771 -Training time 0:05:53.095656 -Epoch: 63 Average loss: 160.34 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 65) -0/69092 Loss: 172.859 -3200/69092 Loss: 162.614 -6400/69092 Loss: 159.534 -9600/69092 Loss: 161.002 -12800/69092 Loss: 162.184 -16000/69092 Loss: 160.792 -19200/69092 Loss: 160.219 -22400/69092 Loss: 161.261 -25600/69092 Loss: 161.704 -28800/69092 Loss: 157.483 -32000/69092 Loss: 159.020 -35200/69092 Loss: 161.533 -38400/69092 Loss: 158.825 -41600/69092 Loss: 158.501 -44800/69092 Loss: 159.131 -48000/69092 Loss: 159.244 -51200/69092 Loss: 160.231 -54400/69092 Loss: 160.575 -57600/69092 Loss: 159.540 -60800/69092 Loss: 160.942 -64000/69092 Loss: 160.067 -67200/69092 Loss: 162.011 -Training time 0:05:34.212499 -Epoch: 64 Average loss: 160.41 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 66) -0/69092 Loss: 139.824 -3200/69092 Loss: 158.205 -6400/69092 Loss: 160.618 -9600/69092 Loss: 156.324 -12800/69092 Loss: 162.737 -16000/69092 Loss: 160.543 -19200/69092 Loss: 161.895 -22400/69092 Loss: 162.182 -25600/69092 Loss: 158.472 -28800/69092 Loss: 158.899 -32000/69092 Loss: 156.941 -35200/69092 Loss: 159.754 -38400/69092 Loss: 161.669 -41600/69092 Loss: 159.106 -44800/69092 Loss: 160.160 -48000/69092 Loss: 161.184 -51200/69092 Loss: 159.042 -54400/69092 Loss: 156.636 -57600/69092 Loss: 163.306 -60800/69092 Loss: 159.992 -64000/69092 Loss: 160.094 -67200/69092 Loss: 163.599 -Training time 0:05:32.575799 -Epoch: 65 Average loss: 160.05 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 67) -0/69092 Loss: 155.559 -3200/69092 Loss: 162.071 -6400/69092 Loss: 158.085 -9600/69092 Loss: 163.591 -12800/69092 Loss: 160.074 -16000/69092 Loss: 162.083 -19200/69092 Loss: 160.218 -22400/69092 Loss: 160.989 -25600/69092 Loss: 160.541 -28800/69092 Loss: 156.759 -32000/69092 Loss: 157.632 -35200/69092 Loss: 160.790 -38400/69092 Loss: 158.259 -41600/69092 Loss: 161.889 -44800/69092 Loss: 162.124 -48000/69092 Loss: 159.639 -51200/69092 Loss: 159.816 -54400/69092 Loss: 157.599 -57600/69092 Loss: 160.068 -60800/69092 Loss: 160.466 -64000/69092 Loss: 160.161 -67200/69092 Loss: 161.598 -Training time 0:05:33.207884 -Epoch: 66 Average loss: 160.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 68) -0/69092 Loss: 154.558 -3200/69092 Loss: 161.224 -6400/69092 Loss: 160.700 -9600/69092 Loss: 160.048 -12800/69092 Loss: 160.292 -16000/69092 Loss: 161.326 -19200/69092 Loss: 158.982 -22400/69092 Loss: 161.091 -25600/69092 Loss: 162.158 -28800/69092 Loss: 158.306 -32000/69092 Loss: 161.938 -35200/69092 Loss: 158.099 -38400/69092 Loss: 160.225 -41600/69092 Loss: 161.799 -44800/69092 Loss: 159.889 -48000/69092 Loss: 161.780 -51200/69092 Loss: 157.643 -54400/69092 Loss: 161.322 -57600/69092 Loss: 159.164 -60800/69092 Loss: 158.339 -64000/69092 Loss: 159.711 -67200/69092 Loss: 159.860 -Training time 0:05:33.566629 -Epoch: 67 Average loss: 160.19 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 69) -0/69092 Loss: 169.675 -3200/69092 Loss: 160.542 -6400/69092 Loss: 158.814 -9600/69092 Loss: 160.833 -12800/69092 Loss: 163.534 -16000/69092 Loss: 158.616 -19200/69092 Loss: 157.820 -22400/69092 Loss: 162.494 -25600/69092 Loss: 159.611 -28800/69092 Loss: 159.206 -32000/69092 Loss: 163.601 -35200/69092 Loss: 160.216 -38400/69092 Loss: 158.062 -41600/69092 Loss: 160.071 -44800/69092 Loss: 161.188 -48000/69092 Loss: 161.149 -51200/69092 Loss: 159.584 -54400/69092 Loss: 158.012 -57600/69092 Loss: 159.519 -60800/69092 Loss: 160.839 -64000/69092 Loss: 160.357 -67200/69092 Loss: 160.408 -Training time 0:05:35.774903 -Epoch: 68 Average loss: 160.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 70) -0/69092 Loss: 161.484 -3200/69092 Loss: 161.311 -6400/69092 Loss: 159.259 -9600/69092 Loss: 157.865 -12800/69092 Loss: 160.388 -16000/69092 Loss: 161.656 -19200/69092 Loss: 159.835 -22400/69092 Loss: 157.867 -25600/69092 Loss: 159.708 -28800/69092 Loss: 163.847 -32000/69092 Loss: 161.511 -35200/69092 Loss: 158.605 -38400/69092 Loss: 160.856 -41600/69092 Loss: 161.425 -44800/69092 Loss: 158.509 -48000/69092 Loss: 158.459 -51200/69092 Loss: 157.175 -54400/69092 Loss: 158.936 -57600/69092 Loss: 158.645 -60800/69092 Loss: 162.137 -64000/69092 Loss: 161.631 -67200/69092 Loss: 161.586 -Training time 0:05:45.968104 -Epoch: 69 Average loss: 160.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 71) -0/69092 Loss: 164.481 -3200/69092 Loss: 159.260 -6400/69092 Loss: 161.784 -9600/69092 Loss: 160.517 -12800/69092 Loss: 159.791 -16000/69092 Loss: 157.795 -19200/69092 Loss: 159.406 -22400/69092 Loss: 158.184 -25600/69092 Loss: 157.690 -28800/69092 Loss: 159.254 -32000/69092 Loss: 160.635 -35200/69092 Loss: 162.649 -38400/69092 Loss: 160.130 -41600/69092 Loss: 159.409 -44800/69092 Loss: 160.040 -48000/69092 Loss: 159.570 -51200/69092 Loss: 160.380 -54400/69092 Loss: 158.930 -57600/69092 Loss: 161.539 -60800/69092 Loss: 158.730 -64000/69092 Loss: 160.679 -67200/69092 Loss: 159.969 -Training time 0:05:32.651529 -Epoch: 70 Average loss: 159.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 72) -0/69092 Loss: 142.716 -3200/69092 Loss: 157.992 -6400/69092 Loss: 157.551 -9600/69092 Loss: 160.012 -12800/69092 Loss: 159.935 -16000/69092 Loss: 159.061 -19200/69092 Loss: 161.256 -22400/69092 Loss: 159.462 -25600/69092 Loss: 162.119 -28800/69092 Loss: 161.915 -32000/69092 Loss: 156.964 -35200/69092 Loss: 160.437 -38400/69092 Loss: 161.939 -41600/69092 Loss: 162.232 -44800/69092 Loss: 158.483 -48000/69092 Loss: 159.101 -51200/69092 Loss: 157.089 -54400/69092 Loss: 158.380 -57600/69092 Loss: 160.195 -60800/69092 Loss: 161.569 -64000/69092 Loss: 160.382 -67200/69092 Loss: 158.295 -Training time 0:05:31.268910 -Epoch: 71 Average loss: 159.72 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 73) -0/69092 Loss: 144.982 -3200/69092 Loss: 158.636 -6400/69092 Loss: 159.587 -9600/69092 Loss: 158.902 -12800/69092 Loss: 158.461 -16000/69092 Loss: 160.561 -19200/69092 Loss: 158.414 -22400/69092 Loss: 159.442 -25600/69092 Loss: 155.782 -28800/69092 Loss: 159.598 -32000/69092 Loss: 160.719 -35200/69092 Loss: 160.212 -38400/69092 Loss: 158.779 -41600/69092 Loss: 160.444 -44800/69092 Loss: 160.412 -48000/69092 Loss: 160.666 -51200/69092 Loss: 159.817 -54400/69092 Loss: 159.676 -57600/69092 Loss: 157.572 -60800/69092 Loss: 159.114 -64000/69092 Loss: 164.526 -67200/69092 Loss: 160.948 -Training time 0:05:50.763759 -Epoch: 72 Average loss: 159.63 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 74) -0/69092 Loss: 145.163 -3200/69092 Loss: 159.608 -6400/69092 Loss: 159.834 -9600/69092 Loss: 160.672 -12800/69092 Loss: 161.739 -16000/69092 Loss: 158.802 -19200/69092 Loss: 161.271 -22400/69092 Loss: 160.589 -25600/69092 Loss: 158.441 -28800/69092 Loss: 160.220 -32000/69092 Loss: 159.768 -35200/69092 Loss: 158.483 -38400/69092 Loss: 160.513 -41600/69092 Loss: 159.295 -44800/69092 Loss: 157.276 -48000/69092 Loss: 157.452 -51200/69092 Loss: 158.179 -54400/69092 Loss: 160.086 -57600/69092 Loss: 159.868 -60800/69092 Loss: 160.561 -64000/69092 Loss: 160.033 -67200/69092 Loss: 159.217 -Training time 0:05:27.953398 -Epoch: 73 Average loss: 159.64 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 75) -0/69092 Loss: 182.593 -3200/69092 Loss: 157.735 -6400/69092 Loss: 162.623 -9600/69092 Loss: 157.961 -12800/69092 Loss: 156.636 -16000/69092 Loss: 159.952 -19200/69092 Loss: 159.249 -22400/69092 Loss: 161.514 -25600/69092 Loss: 155.918 -28800/69092 Loss: 158.620 -32000/69092 Loss: 158.486 -35200/69092 Loss: 160.225 -38400/69092 Loss: 161.200 -41600/69092 Loss: 158.838 -44800/69092 Loss: 161.555 -48000/69092 Loss: 160.739 -51200/69092 Loss: 157.590 -54400/69092 Loss: 157.939 -57600/69092 Loss: 159.183 -60800/69092 Loss: 161.986 -64000/69092 Loss: 157.023 -67200/69092 Loss: 161.347 -Training time 0:05:26.295751 -Epoch: 74 Average loss: 159.40 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 76) -0/69092 Loss: 158.681 -3200/69092 Loss: 161.179 -6400/69092 Loss: 158.464 -9600/69092 Loss: 157.540 -12800/69092 Loss: 158.278 -16000/69092 Loss: 160.927 -19200/69092 Loss: 158.889 -22400/69092 Loss: 158.557 -25600/69092 Loss: 159.444 -28800/69092 Loss: 158.354 -32000/69092 Loss: 158.480 -35200/69092 Loss: 159.606 -38400/69092 Loss: 158.638 -41600/69092 Loss: 158.121 -44800/69092 Loss: 161.871 -48000/69092 Loss: 159.119 -51200/69092 Loss: 157.051 -54400/69092 Loss: 158.179 -57600/69092 Loss: 162.269 -60800/69092 Loss: 161.076 -64000/69092 Loss: 159.565 -67200/69092 Loss: 159.024 -Training time 0:05:37.460671 -Epoch: 75 Average loss: 159.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 77) -0/69092 Loss: 180.183 -3200/69092 Loss: 161.326 -6400/69092 Loss: 156.454 -9600/69092 Loss: 158.102 -12800/69092 Loss: 160.033 -16000/69092 Loss: 157.371 -19200/69092 Loss: 158.610 -22400/69092 Loss: 161.016 -25600/69092 Loss: 158.187 -28800/69092 Loss: 158.732 -32000/69092 Loss: 158.551 -35200/69092 Loss: 164.114 -38400/69092 Loss: 158.244 -41600/69092 Loss: 160.820 -44800/69092 Loss: 161.380 -48000/69092 Loss: 160.957 -51200/69092 Loss: 160.380 -54400/69092 Loss: 159.550 -57600/69092 Loss: 159.288 -60800/69092 Loss: 159.340 -64000/69092 Loss: 159.191 -67200/69092 Loss: 160.314 -Training time 0:05:39.624340 -Epoch: 76 Average loss: 159.65 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 78) -0/69092 Loss: 154.192 -3200/69092 Loss: 160.147 -6400/69092 Loss: 160.512 -9600/69092 Loss: 163.486 -12800/69092 Loss: 160.083 -16000/69092 Loss: 161.902 -19200/69092 Loss: 159.175 -22400/69092 Loss: 159.717 -25600/69092 Loss: 157.231 -28800/69092 Loss: 156.782 -32000/69092 Loss: 161.465 -35200/69092 Loss: 156.727 -38400/69092 Loss: 160.297 -41600/69092 Loss: 160.974 -44800/69092 Loss: 158.703 -48000/69092 Loss: 160.782 -51200/69092 Loss: 158.618 -54400/69092 Loss: 156.340 -57600/69092 Loss: 157.774 -60800/69092 Loss: 160.375 -64000/69092 Loss: 159.188 -67200/69092 Loss: 161.189 -Training time 0:05:34.005221 -Epoch: 77 Average loss: 159.61 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 79) -0/69092 Loss: 163.315 -3200/69092 Loss: 159.521 -6400/69092 Loss: 157.050 -9600/69092 Loss: 158.928 -12800/69092 Loss: 159.364 -16000/69092 Loss: 160.024 -19200/69092 Loss: 159.391 -22400/69092 Loss: 160.335 -25600/69092 Loss: 158.621 -28800/69092 Loss: 159.980 -32000/69092 Loss: 157.115 -35200/69092 Loss: 158.873 -38400/69092 Loss: 162.329 -41600/69092 Loss: 161.074 -44800/69092 Loss: 157.698 -48000/69092 Loss: 158.620 -51200/69092 Loss: 160.713 -54400/69092 Loss: 158.261 -57600/69092 Loss: 160.761 -60800/69092 Loss: 161.576 -64000/69092 Loss: 159.373 -67200/69092 Loss: 160.216 -Training time 0:05:52.913169 -Epoch: 78 Average loss: 159.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 80) -0/69092 Loss: 172.063 -3200/69092 Loss: 160.270 -6400/69092 Loss: 157.432 -9600/69092 Loss: 158.220 -12800/69092 Loss: 157.986 -16000/69092 Loss: 160.562 -19200/69092 Loss: 157.943 -22400/69092 Loss: 160.751 -25600/69092 Loss: 158.696 -28800/69092 Loss: 158.822 -32000/69092 Loss: 160.434 -35200/69092 Loss: 158.596 -38400/69092 Loss: 158.962 -41600/69092 Loss: 165.257 -44800/69092 Loss: 157.434 -48000/69092 Loss: 159.686 -51200/69092 Loss: 162.117 -54400/69092 Loss: 159.919 -57600/69092 Loss: 162.438 -60800/69092 Loss: 158.443 -64000/69092 Loss: 159.690 -67200/69092 Loss: 156.254 -Training time 0:05:32.739756 -Epoch: 79 Average loss: 159.49 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 81) -0/69092 Loss: 156.964 -3200/69092 Loss: 161.015 -6400/69092 Loss: 156.071 -9600/69092 Loss: 159.688 -12800/69092 Loss: 157.272 -16000/69092 Loss: 160.853 -19200/69092 Loss: 162.442 -22400/69092 Loss: 159.761 -25600/69092 Loss: 159.435 -28800/69092 Loss: 162.287 -32000/69092 Loss: 160.241 -35200/69092 Loss: 158.339 -38400/69092 Loss: 159.539 -41600/69092 Loss: 158.518 -44800/69092 Loss: 162.535 -48000/69092 Loss: 157.626 -51200/69092 Loss: 158.148 -54400/69092 Loss: 156.977 -57600/69092 Loss: 160.558 -60800/69092 Loss: 159.007 -64000/69092 Loss: 158.975 -67200/69092 Loss: 160.422 -Training time 0:05:38.436039 -Epoch: 80 Average loss: 159.55 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 82) -0/69092 Loss: 166.420 -3200/69092 Loss: 158.251 -6400/69092 Loss: 159.005 -9600/69092 Loss: 159.200 -12800/69092 Loss: 160.833 -16000/69092 Loss: 159.219 -19200/69092 Loss: 161.466 -22400/69092 Loss: 157.718 -25600/69092 Loss: 159.957 -28800/69092 Loss: 158.104 -32000/69092 Loss: 157.485 -35200/69092 Loss: 160.498 -38400/69092 Loss: 159.825 -41600/69092 Loss: 158.072 -44800/69092 Loss: 158.347 -48000/69092 Loss: 156.493 -51200/69092 Loss: 159.301 -54400/69092 Loss: 161.004 -57600/69092 Loss: 161.581 -60800/69092 Loss: 158.647 -64000/69092 Loss: 160.269 -67200/69092 Loss: 161.770 -Training time 0:05:37.385188 -Epoch: 81 Average loss: 159.47 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 83) -0/69092 Loss: 147.358 -3200/69092 Loss: 158.292 -6400/69092 Loss: 157.895 -9600/69092 Loss: 159.892 -12800/69092 Loss: 158.760 -16000/69092 Loss: 159.902 -19200/69092 Loss: 157.565 -22400/69092 Loss: 159.770 -25600/69092 Loss: 161.968 -28800/69092 Loss: 160.955 -32000/69092 Loss: 159.616 -35200/69092 Loss: 160.013 -38400/69092 Loss: 159.763 -41600/69092 Loss: 157.884 -44800/69092 Loss: 160.106 -48000/69092 Loss: 157.624 -51200/69092 Loss: 160.414 -54400/69092 Loss: 156.007 -57600/69092 Loss: 162.964 -60800/69092 Loss: 158.520 -64000/69092 Loss: 159.945 -67200/69092 Loss: 160.523 -Training time 0:05:26.791158 -Epoch: 82 Average loss: 159.45 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 84) -0/69092 Loss: 151.199 -3200/69092 Loss: 159.845 -6400/69092 Loss: 159.746 -9600/69092 Loss: 158.563 -12800/69092 Loss: 158.639 -16000/69092 Loss: 158.074 -19200/69092 Loss: 158.288 -22400/69092 Loss: 157.029 -25600/69092 Loss: 160.350 -28800/69092 Loss: 161.038 -32000/69092 Loss: 161.095 -35200/69092 Loss: 158.589 -38400/69092 Loss: 162.509 -41600/69092 Loss: 160.726 -44800/69092 Loss: 157.305 -48000/69092 Loss: 159.656 -51200/69092 Loss: 159.312 -54400/69092 Loss: 157.474 -57600/69092 Loss: 157.230 -60800/69092 Loss: 158.984 -64000/69092 Loss: 159.303 -67200/69092 Loss: 161.517 -Training time 0:05:48.321003 -Epoch: 83 Average loss: 159.27 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 85) -0/69092 Loss: 167.506 -3200/69092 Loss: 158.734 -6400/69092 Loss: 154.474 -9600/69092 Loss: 158.548 -12800/69092 Loss: 159.065 -16000/69092 Loss: 161.150 -19200/69092 Loss: 156.751 -22400/69092 Loss: 161.333 -25600/69092 Loss: 158.619 -28800/69092 Loss: 159.785 -32000/69092 Loss: 158.721 -35200/69092 Loss: 160.114 -38400/69092 Loss: 159.841 -41600/69092 Loss: 158.137 -44800/69092 Loss: 161.397 -48000/69092 Loss: 157.815 -51200/69092 Loss: 159.810 -54400/69092 Loss: 159.795 -57600/69092 Loss: 162.666 -60800/69092 Loss: 160.183 -64000/69092 Loss: 161.473 -67200/69092 Loss: 161.339 -Training time 0:05:36.990551 -Epoch: 84 Average loss: 159.50 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 86) -0/69092 Loss: 155.993 -3200/69092 Loss: 160.144 -6400/69092 Loss: 159.036 -9600/69092 Loss: 158.457 -12800/69092 Loss: 156.089 -16000/69092 Loss: 160.999 -19200/69092 Loss: 159.388 -22400/69092 Loss: 160.120 -25600/69092 Loss: 161.818 -28800/69092 Loss: 158.264 -32000/69092 Loss: 159.129 -35200/69092 Loss: 155.037 -38400/69092 Loss: 156.492 -41600/69092 Loss: 161.887 -44800/69092 Loss: 157.376 -48000/69092 Loss: 160.773 -51200/69092 Loss: 159.116 -54400/69092 Loss: 158.015 -57600/69092 Loss: 160.229 -60800/69092 Loss: 160.340 -64000/69092 Loss: 161.229 -67200/69092 Loss: 158.952 -Training time 0:06:00.143695 -Epoch: 85 Average loss: 159.23 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 87) -0/69092 Loss: 155.338 -3200/69092 Loss: 156.856 -6400/69092 Loss: 159.420 -9600/69092 Loss: 158.050 -12800/69092 Loss: 156.955 -16000/69092 Loss: 161.199 -19200/69092 Loss: 161.122 -22400/69092 Loss: 160.793 -25600/69092 Loss: 160.091 -28800/69092 Loss: 157.460 -32000/69092 Loss: 158.015 -35200/69092 Loss: 160.317 -38400/69092 Loss: 162.705 -41600/69092 Loss: 156.314 -44800/69092 Loss: 157.986 -48000/69092 Loss: 157.577 -51200/69092 Loss: 157.721 -54400/69092 Loss: 160.059 -57600/69092 Loss: 159.799 -60800/69092 Loss: 159.100 -64000/69092 Loss: 160.676 -67200/69092 Loss: 161.405 -Training time 0:06:06.903945 -Epoch: 86 Average loss: 159.18 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 88) -0/69092 Loss: 149.605 -3200/69092 Loss: 158.922 -6400/69092 Loss: 161.236 -9600/69092 Loss: 159.632 -12800/69092 Loss: 159.879 -16000/69092 Loss: 159.513 -19200/69092 Loss: 159.728 -22400/69092 Loss: 156.810 -25600/69092 Loss: 159.908 -28800/69092 Loss: 158.473 -32000/69092 Loss: 162.172 -35200/69092 Loss: 158.501 -38400/69092 Loss: 156.194 -41600/69092 Loss: 159.270 -44800/69092 Loss: 156.212 -48000/69092 Loss: 159.069 -51200/69092 Loss: 162.970 -54400/69092 Loss: 159.473 -57600/69092 Loss: 160.206 -60800/69092 Loss: 158.938 -64000/69092 Loss: 161.160 -67200/69092 Loss: 157.509 -Training time 0:05:50.139203 -Epoch: 87 Average loss: 159.35 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 89) -0/69092 Loss: 177.011 -3200/69092 Loss: 160.157 -6400/69092 Loss: 157.318 -9600/69092 Loss: 157.788 -12800/69092 Loss: 159.433 -16000/69092 Loss: 161.363 -19200/69092 Loss: 160.101 -22400/69092 Loss: 158.566 -25600/69092 Loss: 158.240 -28800/69092 Loss: 158.962 -32000/69092 Loss: 160.175 -35200/69092 Loss: 160.883 -38400/69092 Loss: 163.155 -41600/69092 Loss: 161.841 -44800/69092 Loss: 158.269 -48000/69092 Loss: 156.448 -51200/69092 Loss: 157.790 -54400/69092 Loss: 157.862 -57600/69092 Loss: 156.747 -60800/69092 Loss: 158.219 -64000/69092 Loss: 158.478 -67200/69092 Loss: 161.865 -Training time 0:05:43.728689 -Epoch: 88 Average loss: 159.24 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 90) -0/69092 Loss: 166.930 -3200/69092 Loss: 159.466 -6400/69092 Loss: 159.608 -9600/69092 Loss: 156.597 -12800/69092 Loss: 161.365 -16000/69092 Loss: 158.517 -19200/69092 Loss: 160.347 -22400/69092 Loss: 158.586 -25600/69092 Loss: 156.568 -28800/69092 Loss: 157.357 -32000/69092 Loss: 157.222 -35200/69092 Loss: 159.279 -38400/69092 Loss: 161.612 -41600/69092 Loss: 160.618 -44800/69092 Loss: 159.613 -48000/69092 Loss: 156.892 -51200/69092 Loss: 161.148 -54400/69092 Loss: 158.872 -57600/69092 Loss: 157.522 -60800/69092 Loss: 159.689 -64000/69092 Loss: 162.225 -67200/69092 Loss: 160.018 -Training time 0:05:50.054965 -Epoch: 89 Average loss: 159.20 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 91) -0/69092 Loss: 163.660 -3200/69092 Loss: 160.243 -6400/69092 Loss: 160.221 -9600/69092 Loss: 159.913 -12800/69092 Loss: 159.190 -16000/69092 Loss: 159.877 -19200/69092 Loss: 157.558 -22400/69092 Loss: 156.779 -25600/69092 Loss: 160.367 -28800/69092 Loss: 159.827 -32000/69092 Loss: 157.915 -35200/69092 Loss: 159.848 -38400/69092 Loss: 162.339 -41600/69092 Loss: 159.374 -44800/69092 Loss: 158.487 -48000/69092 Loss: 157.560 -51200/69092 Loss: 157.324 -54400/69092 Loss: 162.203 -57600/69092 Loss: 159.657 -60800/69092 Loss: 156.430 -64000/69092 Loss: 158.719 -67200/69092 Loss: 161.346 -Training time 0:05:38.412112 -Epoch: 90 Average loss: 159.33 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 92) -0/69092 Loss: 150.490 -3200/69092 Loss: 158.934 -6400/69092 Loss: 159.617 -9600/69092 Loss: 159.273 -12800/69092 Loss: 158.963 -16000/69092 Loss: 157.031 -19200/69092 Loss: 159.648 -22400/69092 Loss: 161.084 -25600/69092 Loss: 161.378 -28800/69092 Loss: 157.690 -32000/69092 Loss: 157.451 -35200/69092 Loss: 157.694 -38400/69092 Loss: 156.956 -41600/69092 Loss: 157.919 -44800/69092 Loss: 160.401 -48000/69092 Loss: 158.635 -51200/69092 Loss: 159.358 -54400/69092 Loss: 160.336 -57600/69092 Loss: 160.171 -60800/69092 Loss: 160.302 -64000/69092 Loss: 160.705 -67200/69092 Loss: 157.521 -Training time 0:05:28.990469 -Epoch: 91 Average loss: 159.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 93) -0/69092 Loss: 145.606 -3200/69092 Loss: 157.411 -6400/69092 Loss: 158.385 -9600/69092 Loss: 161.953 -12800/69092 Loss: 162.363 -16000/69092 Loss: 160.688 -19200/69092 Loss: 159.999 -22400/69092 Loss: 160.088 -25600/69092 Loss: 157.191 -28800/69092 Loss: 157.325 -32000/69092 Loss: 157.672 -35200/69092 Loss: 157.772 -38400/69092 Loss: 159.461 -41600/69092 Loss: 158.805 -44800/69092 Loss: 160.401 -48000/69092 Loss: 159.929 -51200/69092 Loss: 155.478 -54400/69092 Loss: 159.072 -57600/69092 Loss: 160.275 -60800/69092 Loss: 158.119 -64000/69092 Loss: 155.665 -67200/69092 Loss: 162.841 -Training time 0:05:38.189466 -Epoch: 92 Average loss: 159.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 94) -0/69092 Loss: 149.699 -3200/69092 Loss: 160.871 -6400/69092 Loss: 160.415 -9600/69092 Loss: 158.102 -12800/69092 Loss: 159.485 -16000/69092 Loss: 160.179 -19200/69092 Loss: 157.111 -22400/69092 Loss: 159.198 -25600/69092 Loss: 158.266 -28800/69092 Loss: 159.081 -32000/69092 Loss: 159.866 -35200/69092 Loss: 160.600 -38400/69092 Loss: 161.372 -41600/69092 Loss: 161.123 -44800/69092 Loss: 157.819 -48000/69092 Loss: 160.199 -51200/69092 Loss: 157.882 -54400/69092 Loss: 158.645 -57600/69092 Loss: 156.973 -60800/69092 Loss: 157.073 -64000/69092 Loss: 158.881 -67200/69092 Loss: 160.097 -Training time 0:05:51.833121 -Epoch: 93 Average loss: 159.22 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 95) -0/69092 Loss: 184.254 -3200/69092 Loss: 159.065 -6400/69092 Loss: 159.760 -9600/69092 Loss: 159.856 -12800/69092 Loss: 161.118 -16000/69092 Loss: 158.212 -19200/69092 Loss: 160.134 -22400/69092 Loss: 158.819 -25600/69092 Loss: 159.705 -28800/69092 Loss: 157.535 -32000/69092 Loss: 158.722 -35200/69092 Loss: 158.514 -38400/69092 Loss: 160.212 -41600/69092 Loss: 156.201 -44800/69092 Loss: 160.091 -48000/69092 Loss: 161.874 -51200/69092 Loss: 157.687 -54400/69092 Loss: 160.520 -57600/69092 Loss: 158.559 -60800/69092 Loss: 159.642 -64000/69092 Loss: 157.527 -67200/69092 Loss: 157.909 -Training time 0:05:30.468429 -Epoch: 94 Average loss: 159.08 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 96) -0/69092 Loss: 158.403 -3200/69092 Loss: 161.799 -6400/69092 Loss: 160.832 -9600/69092 Loss: 159.543 -12800/69092 Loss: 157.111 -16000/69092 Loss: 159.294 -19200/69092 Loss: 158.326 -22400/69092 Loss: 157.586 -25600/69092 Loss: 159.439 -28800/69092 Loss: 158.697 -32000/69092 Loss: 160.257 -35200/69092 Loss: 161.020 -38400/69092 Loss: 158.668 -41600/69092 Loss: 157.037 -44800/69092 Loss: 159.130 -48000/69092 Loss: 159.078 -51200/69092 Loss: 159.145 -54400/69092 Loss: 158.187 -57600/69092 Loss: 158.109 -60800/69092 Loss: 156.643 -64000/69092 Loss: 159.603 -67200/69092 Loss: 161.188 -Training time 0:05:38.293450 -Epoch: 95 Average loss: 159.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 97) -0/69092 Loss: 168.477 -3200/69092 Loss: 161.501 -6400/69092 Loss: 159.521 -9600/69092 Loss: 158.598 -12800/69092 Loss: 156.909 -16000/69092 Loss: 161.964 -19200/69092 Loss: 157.111 -22400/69092 Loss: 162.194 -25600/69092 Loss: 159.024 -28800/69092 Loss: 158.036 -32000/69092 Loss: 160.642 -35200/69092 Loss: 156.836 -38400/69092 Loss: 158.410 -41600/69092 Loss: 159.573 -44800/69092 Loss: 160.553 -48000/69092 Loss: 159.129 -51200/69092 Loss: 160.196 -54400/69092 Loss: 158.417 -57600/69092 Loss: 161.815 -60800/69092 Loss: 156.995 -64000/69092 Loss: 154.083 -67200/69092 Loss: 158.133 -Training time 0:05:28.475772 -Epoch: 96 Average loss: 159.04 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 98) -0/69092 Loss: 140.255 -3200/69092 Loss: 156.551 -6400/69092 Loss: 159.354 -9600/69092 Loss: 160.916 -12800/69092 Loss: 158.278 -16000/69092 Loss: 159.341 -19200/69092 Loss: 161.566 -22400/69092 Loss: 158.895 -25600/69092 Loss: 158.972 -28800/69092 Loss: 157.996 -32000/69092 Loss: 158.795 -35200/69092 Loss: 159.576 -38400/69092 Loss: 160.755 -41600/69092 Loss: 160.168 -44800/69092 Loss: 159.245 -48000/69092 Loss: 157.132 -51200/69092 Loss: 159.715 -54400/69092 Loss: 157.385 -57600/69092 Loss: 159.976 -60800/69092 Loss: 161.275 -64000/69092 Loss: 157.620 -67200/69092 Loss: 159.525 -Training time 0:05:40.654846 -Epoch: 97 Average loss: 159.14 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 99) -0/69092 Loss: 153.552 -3200/69092 Loss: 157.359 -6400/69092 Loss: 156.474 -9600/69092 Loss: 157.425 -12800/69092 Loss: 157.220 -16000/69092 Loss: 160.235 -19200/69092 Loss: 158.997 -22400/69092 Loss: 159.980 -25600/69092 Loss: 159.940 -28800/69092 Loss: 156.694 -32000/69092 Loss: 160.209 -35200/69092 Loss: 156.144 -38400/69092 Loss: 161.132 -41600/69092 Loss: 160.131 -44800/69092 Loss: 160.084 -48000/69092 Loss: 161.853 -51200/69092 Loss: 157.055 -54400/69092 Loss: 161.999 -57600/69092 Loss: 160.006 -60800/69092 Loss: 159.206 -64000/69092 Loss: 157.588 -67200/69092 Loss: 157.070 -Training time 0:05:38.871933 -Epoch: 98 Average loss: 158.93 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 100) -0/69092 Loss: 173.034 -3200/69092 Loss: 158.607 -6400/69092 Loss: 157.463 -9600/69092 Loss: 160.543 -12800/69092 Loss: 155.781 -16000/69092 Loss: 157.382 -19200/69092 Loss: 160.133 -22400/69092 Loss: 159.512 -25600/69092 Loss: 158.401 -28800/69092 Loss: 162.084 -32000/69092 Loss: 157.081 -35200/69092 Loss: 160.956 -38400/69092 Loss: 156.895 -41600/69092 Loss: 159.678 -44800/69092 Loss: 160.463 -48000/69092 Loss: 160.401 -51200/69092 Loss: 158.272 -54400/69092 Loss: 157.737 -57600/69092 Loss: 159.711 -60800/69092 Loss: 159.560 -64000/69092 Loss: 160.014 -67200/69092 Loss: 158.850 -Training time 0:05:35.589953 -Epoch: 99 Average loss: 158.99 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 101) -0/69092 Loss: 167.127 -3200/69092 Loss: 158.691 -6400/69092 Loss: 160.346 -9600/69092 Loss: 158.123 -12800/69092 Loss: 161.401 -16000/69092 Loss: 155.992 -19200/69092 Loss: 155.775 -22400/69092 Loss: 157.855 -25600/69092 Loss: 157.884 -28800/69092 Loss: 158.127 -32000/69092 Loss: 157.958 -35200/69092 Loss: 157.580 -38400/69092 Loss: 159.400 -41600/69092 Loss: 159.374 -44800/69092 Loss: 159.242 -48000/69092 Loss: 159.683 -51200/69092 Loss: 161.591 -54400/69092 Loss: 160.516 -57600/69092 Loss: 163.235 -60800/69092 Loss: 157.712 -64000/69092 Loss: 158.136 -67200/69092 Loss: 160.390 -Training time 0:05:58.043103 -Epoch: 100 Average loss: 158.96 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 102) -0/69092 Loss: 152.027 -3200/69092 Loss: 158.885 -6400/69092 Loss: 159.788 -9600/69092 Loss: 161.860 -12800/69092 Loss: 158.560 -16000/69092 Loss: 159.234 -19200/69092 Loss: 161.745 -22400/69092 Loss: 158.516 -25600/69092 Loss: 157.561 -28800/69092 Loss: 159.708 -32000/69092 Loss: 156.264 -35200/69092 Loss: 158.669 -38400/69092 Loss: 159.436 -41600/69092 Loss: 160.343 -44800/69092 Loss: 156.492 -48000/69092 Loss: 158.668 -51200/69092 Loss: 156.608 -54400/69092 Loss: 159.002 -57600/69092 Loss: 158.732 -60800/69092 Loss: 158.290 -64000/69092 Loss: 160.763 -67200/69092 Loss: 161.906 -Training time 0:05:35.318233 -Epoch: 101 Average loss: 159.11 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 103) -0/69092 Loss: 157.941 -3200/69092 Loss: 159.008 -6400/69092 Loss: 157.562 -9600/69092 Loss: 159.699 -12800/69092 Loss: 161.177 -16000/69092 Loss: 159.552 -19200/69092 Loss: 158.248 -22400/69092 Loss: 159.358 -25600/69092 Loss: 158.911 -28800/69092 Loss: 159.869 -32000/69092 Loss: 159.056 -35200/69092 Loss: 161.017 -38400/69092 Loss: 157.137 -41600/69092 Loss: 157.186 -44800/69092 Loss: 163.476 -48000/69092 Loss: 157.922 -51200/69092 Loss: 159.202 -54400/69092 Loss: 156.061 -57600/69092 Loss: 159.155 -60800/69092 Loss: 161.382 -64000/69092 Loss: 156.198 -67200/69092 Loss: 159.163 -Training time 0:05:42.512486 -Epoch: 102 Average loss: 159.02 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 104) -0/69092 Loss: 165.301 -3200/69092 Loss: 157.779 -6400/69092 Loss: 158.741 -9600/69092 Loss: 158.514 -12800/69092 Loss: 159.785 -16000/69092 Loss: 158.431 -19200/69092 Loss: 160.162 -22400/69092 Loss: 155.917 -25600/69092 Loss: 160.767 -28800/69092 Loss: 157.529 -32000/69092 Loss: 157.990 -35200/69092 Loss: 157.774 -38400/69092 Loss: 159.274 -41600/69092 Loss: 160.234 -44800/69092 Loss: 160.363 -48000/69092 Loss: 159.043 -51200/69092 Loss: 159.252 -54400/69092 Loss: 158.529 -57600/69092 Loss: 161.563 -60800/69092 Loss: 155.825 -64000/69092 Loss: 158.326 -67200/69092 Loss: 159.363 -Training time 0:05:38.708248 -Epoch: 103 Average loss: 158.85 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 105) -0/69092 Loss: 162.340 -3200/69092 Loss: 159.264 -6400/69092 Loss: 158.435 -9600/69092 Loss: 159.761 -12800/69092 Loss: 158.671 -16000/69092 Loss: 159.417 -19200/69092 Loss: 159.279 -22400/69092 Loss: 158.103 -25600/69092 Loss: 158.076 -28800/69092 Loss: 161.202 -32000/69092 Loss: 158.187 -35200/69092 Loss: 161.701 -38400/69092 Loss: 157.858 -41600/69092 Loss: 159.545 -44800/69092 Loss: 161.386 -48000/69092 Loss: 160.321 -51200/69092 Loss: 157.574 -54400/69092 Loss: 155.936 -57600/69092 Loss: 157.492 -60800/69092 Loss: 159.926 -64000/69092 Loss: 159.998 -67200/69092 Loss: 159.038 -Training time 0:05:38.603309 -Epoch: 104 Average loss: 159.10 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 106) -0/69092 Loss: 152.111 -3200/69092 Loss: 159.423 -6400/69092 Loss: 162.587 -9600/69092 Loss: 160.640 -12800/69092 Loss: 159.132 -16000/69092 Loss: 159.707 -19200/69092 Loss: 158.382 -22400/69092 Loss: 156.301 -25600/69092 Loss: 159.051 -28800/69092 Loss: 158.924 -32000/69092 Loss: 157.140 -35200/69092 Loss: 162.650 -38400/69092 Loss: 157.653 -41600/69092 Loss: 159.198 -44800/69092 Loss: 159.082 -48000/69092 Loss: 158.785 -51200/69092 Loss: 156.259 -54400/69092 Loss: 158.097 -57600/69092 Loss: 157.105 -60800/69092 Loss: 163.704 -64000/69092 Loss: 158.391 -67200/69092 Loss: 156.931 -Training time 0:05:34.796696 -Epoch: 105 Average loss: 159.00 -=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64_ls_5/checkpoints/last' (iter 107) -0/69092 Loss: 170.103 -3200/69092 Loss: 156.306 -6400/69092 Loss: 160.654 -9600/69092 Loss: 159.796 -12800/69092 Loss: 157.796 -16000/69092 Loss: 157.300 -19200/69092 Loss: 157.026 -22400/69092 Loss: 158.475 -25600/69092 Loss: 158.968 -28800/69092 Loss: 159.848 -32000/69092 Loss: 158.780 -35200/69092 Loss: 159.463 -38400/69092 Loss: 160.543 -41600/69092 Loss: 159.262 -44800/69092 Loss: 158.482 -48000/69092 Loss: 157.139 -51200/69092 Loss: 160.624 -54400/69092 Loss: 160.324 diff --git a/OAR.2068291.stderr b/OAR.2068291.stderr deleted file mode 100644 index bef21b425d..0000000000 --- a/OAR.2068291.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 02:59:26] Job 2068291 KILLED ## diff --git a/OAR.2068291.stdout b/OAR.2068291.stdout deleted file mode 100644 index 8cab011240..0000000000 --- a/OAR.2068291.stdout +++ /dev/null @@ -1,3168 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_5', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=5, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_5 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=10, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=5, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 761485 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last (iter 1)' -0/69092 Loss: 160.718 -3200/69092 Loss: 195.348 -6400/69092 Loss: 196.738 -9600/69092 Loss: 194.883 -12800/69092 Loss: 190.485 -16000/69092 Loss: 187.904 -19200/69092 Loss: 191.408 -22400/69092 Loss: 192.884 -25600/69092 Loss: 190.201 -28800/69092 Loss: 187.534 -32000/69092 Loss: 188.378 -35200/69092 Loss: 187.631 -38400/69092 Loss: 187.406 -41600/69092 Loss: 188.709 -44800/69092 Loss: 186.751 -48000/69092 Loss: 191.667 -51200/69092 Loss: 183.246 -54400/69092 Loss: 187.353 -57600/69092 Loss: 188.015 -60800/69092 Loss: 183.729 -64000/69092 Loss: 184.278 -67200/69092 Loss: 186.790 -Training time 0:04:47.348882 -Epoch: 1 Average loss: 189.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 2) -0/69092 Loss: 168.150 -3200/69092 Loss: 183.479 -6400/69092 Loss: 179.790 -9600/69092 Loss: 183.119 -12800/69092 Loss: 181.762 -16000/69092 Loss: 179.022 -19200/69092 Loss: 185.978 -22400/69092 Loss: 183.064 -25600/69092 Loss: 181.177 -28800/69092 Loss: 181.881 -32000/69092 Loss: 184.199 -35200/69092 Loss: 181.692 -38400/69092 Loss: 181.997 -41600/69092 Loss: 180.545 -44800/69092 Loss: 184.930 -48000/69092 Loss: 181.591 -51200/69092 Loss: 183.077 -54400/69092 Loss: 182.514 -57600/69092 Loss: 184.202 -60800/69092 Loss: 175.696 -64000/69092 Loss: 178.647 -67200/69092 Loss: 178.508 -Training time 0:04:50.598290 -Epoch: 2 Average loss: 181.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 3) -0/69092 Loss: 160.616 -3200/69092 Loss: 176.036 -6400/69092 Loss: 181.527 -9600/69092 Loss: 180.076 -12800/69092 Loss: 180.270 -16000/69092 Loss: 180.807 -19200/69092 Loss: 177.929 -22400/69092 Loss: 178.709 -25600/69092 Loss: 181.522 -28800/69092 Loss: 178.841 -32000/69092 Loss: 180.035 -35200/69092 Loss: 178.275 -38400/69092 Loss: 182.683 -41600/69092 Loss: 177.399 -44800/69092 Loss: 180.405 -48000/69092 Loss: 181.841 -51200/69092 Loss: 176.475 -54400/69092 Loss: 177.734 -57600/69092 Loss: 182.002 -60800/69092 Loss: 180.416 -64000/69092 Loss: 176.499 -67200/69092 Loss: 179.069 -Training time 0:04:58.449314 -Epoch: 3 Average loss: 179.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 4) -0/69092 Loss: 166.288 -3200/69092 Loss: 180.779 -6400/69092 Loss: 177.722 -9600/69092 Loss: 178.878 -12800/69092 Loss: 176.309 -16000/69092 Loss: 176.302 -19200/69092 Loss: 181.046 -22400/69092 Loss: 181.669 -25600/69092 Loss: 180.611 -28800/69092 Loss: 177.631 -32000/69092 Loss: 175.672 -35200/69092 Loss: 176.264 -38400/69092 Loss: 180.020 -41600/69092 Loss: 178.528 -44800/69092 Loss: 181.005 -48000/69092 Loss: 176.038 -51200/69092 Loss: 178.528 -54400/69092 Loss: 177.017 -57600/69092 Loss: 176.450 -60800/69092 Loss: 178.622 -64000/69092 Loss: 173.096 -67200/69092 Loss: 178.671 -Training time 0:04:53.296224 -Epoch: 4 Average loss: 178.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 5) -0/69092 Loss: 162.201 -3200/69092 Loss: 175.820 -6400/69092 Loss: 179.074 -9600/69092 Loss: 177.050 -12800/69092 Loss: 175.576 -16000/69092 Loss: 177.369 -19200/69092 Loss: 177.303 -22400/69092 Loss: 175.484 -25600/69092 Loss: 176.561 -28800/69092 Loss: 180.101 -32000/69092 Loss: 175.739 -35200/69092 Loss: 179.139 -38400/69092 Loss: 173.434 -41600/69092 Loss: 181.191 -44800/69092 Loss: 178.676 -48000/69092 Loss: 177.746 -51200/69092 Loss: 177.446 -54400/69092 Loss: 175.045 -57600/69092 Loss: 177.810 -60800/69092 Loss: 176.667 -64000/69092 Loss: 176.333 -67200/69092 Loss: 178.492 -Training time 0:04:51.420617 -Epoch: 5 Average loss: 177.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 6) -0/69092 Loss: 160.424 -3200/69092 Loss: 178.602 -6400/69092 Loss: 175.228 -9600/69092 Loss: 173.148 -12800/69092 Loss: 173.935 -16000/69092 Loss: 176.762 -19200/69092 Loss: 177.120 -22400/69092 Loss: 176.178 -25600/69092 Loss: 178.346 -28800/69092 Loss: 173.847 -32000/69092 Loss: 175.982 -35200/69092 Loss: 176.556 -38400/69092 Loss: 177.775 -41600/69092 Loss: 176.511 -44800/69092 Loss: 177.889 -48000/69092 Loss: 172.558 -51200/69092 Loss: 174.388 -54400/69092 Loss: 175.100 -57600/69092 Loss: 177.807 -60800/69092 Loss: 173.273 -64000/69092 Loss: 173.717 -67200/69092 Loss: 176.009 -Training time 0:04:44.187596 -Epoch: 6 Average loss: 175.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 7) -0/69092 Loss: 154.626 -3200/69092 Loss: 175.090 -6400/69092 Loss: 173.648 -9600/69092 Loss: 177.601 -12800/69092 Loss: 175.078 -16000/69092 Loss: 171.486 -19200/69092 Loss: 174.718 -22400/69092 Loss: 175.500 -25600/69092 Loss: 175.546 -28800/69092 Loss: 174.822 -32000/69092 Loss: 172.752 -35200/69092 Loss: 176.297 -38400/69092 Loss: 173.670 -41600/69092 Loss: 177.349 -44800/69092 Loss: 177.002 -48000/69092 Loss: 171.563 -51200/69092 Loss: 173.142 -54400/69092 Loss: 175.472 -57600/69092 Loss: 177.937 -60800/69092 Loss: 177.506 -64000/69092 Loss: 173.922 -67200/69092 Loss: 176.779 -Training time 0:04:42.086637 -Epoch: 7 Average loss: 175.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 8) -0/69092 Loss: 166.842 -3200/69092 Loss: 176.393 -6400/69092 Loss: 177.910 -9600/69092 Loss: 174.545 -12800/69092 Loss: 175.173 -16000/69092 Loss: 172.209 -19200/69092 Loss: 177.664 -22400/69092 Loss: 174.725 -25600/69092 Loss: 173.448 -28800/69092 Loss: 174.825 -32000/69092 Loss: 176.125 -35200/69092 Loss: 172.737 -38400/69092 Loss: 175.656 -41600/69092 Loss: 173.128 -44800/69092 Loss: 172.895 -48000/69092 Loss: 172.324 -51200/69092 Loss: 172.439 -54400/69092 Loss: 175.153 -57600/69092 Loss: 176.990 -60800/69092 Loss: 173.385 -64000/69092 Loss: 171.504 -67200/69092 Loss: 175.988 -Training time 0:04:50.085384 -Epoch: 8 Average loss: 174.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 9) -0/69092 Loss: 192.984 -3200/69092 Loss: 168.908 -6400/69092 Loss: 174.075 -9600/69092 Loss: 177.689 -12800/69092 Loss: 173.688 -16000/69092 Loss: 177.886 -19200/69092 Loss: 174.232 -22400/69092 Loss: 173.340 -25600/69092 Loss: 172.025 -28800/69092 Loss: 172.520 -32000/69092 Loss: 171.036 -35200/69092 Loss: 173.630 -38400/69092 Loss: 172.711 -41600/69092 Loss: 173.286 -44800/69092 Loss: 171.935 -48000/69092 Loss: 175.494 -51200/69092 Loss: 175.592 -54400/69092 Loss: 171.378 -57600/69092 Loss: 176.081 -60800/69092 Loss: 171.243 -64000/69092 Loss: 175.991 -67200/69092 Loss: 171.297 -Training time 0:04:46.070348 -Epoch: 9 Average loss: 173.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 10) -0/69092 Loss: 146.981 -3200/69092 Loss: 171.780 -6400/69092 Loss: 173.784 -9600/69092 Loss: 177.090 -12800/69092 Loss: 170.615 -16000/69092 Loss: 168.159 -19200/69092 Loss: 172.559 -22400/69092 Loss: 170.943 -25600/69092 Loss: 169.955 -28800/69092 Loss: 167.313 -32000/69092 Loss: 169.852 -35200/69092 Loss: 168.104 -38400/69092 Loss: 167.028 -41600/69092 Loss: 162.734 -44800/69092 Loss: 162.262 -48000/69092 Loss: 167.438 -51200/69092 Loss: 164.043 -54400/69092 Loss: 163.100 -57600/69092 Loss: 164.585 -60800/69092 Loss: 162.346 -64000/69092 Loss: 161.962 -67200/69092 Loss: 166.577 -Training time 0:04:47.102107 -Epoch: 10 Average loss: 167.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 11) -0/69092 Loss: 151.183 -3200/69092 Loss: 165.384 -6400/69092 Loss: 167.018 -9600/69092 Loss: 163.825 -12800/69092 Loss: 162.573 -16000/69092 Loss: 161.033 -19200/69092 Loss: 162.465 -22400/69092 Loss: 163.940 -25600/69092 Loss: 158.944 -28800/69092 Loss: 162.664 -32000/69092 Loss: 161.330 -35200/69092 Loss: 163.406 -38400/69092 Loss: 158.683 -41600/69092 Loss: 160.531 -44800/69092 Loss: 160.417 -48000/69092 Loss: 164.075 -51200/69092 Loss: 163.731 -54400/69092 Loss: 163.045 -57600/69092 Loss: 164.244 -60800/69092 Loss: 157.949 -64000/69092 Loss: 160.197 -67200/69092 Loss: 162.859 -Training time 0:04:51.746640 -Epoch: 11 Average loss: 162.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 12) -0/69092 Loss: 154.924 -3200/69092 Loss: 163.273 -6400/69092 Loss: 159.163 -9600/69092 Loss: 155.884 -12800/69092 Loss: 162.201 -16000/69092 Loss: 159.360 -19200/69092 Loss: 156.143 -22400/69092 Loss: 156.272 -25600/69092 Loss: 156.757 -28800/69092 Loss: 157.364 -32000/69092 Loss: 158.780 -35200/69092 Loss: 156.232 -38400/69092 Loss: 154.412 -41600/69092 Loss: 155.536 -44800/69092 Loss: 158.557 -48000/69092 Loss: 153.966 -51200/69092 Loss: 155.738 -54400/69092 Loss: 153.539 -57600/69092 Loss: 157.388 -60800/69092 Loss: 155.193 -64000/69092 Loss: 156.084 -67200/69092 Loss: 154.706 -Training time 0:04:39.651515 -Epoch: 12 Average loss: 156.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 13) -0/69092 Loss: 142.486 -3200/69092 Loss: 156.168 -6400/69092 Loss: 155.495 -9600/69092 Loss: 154.547 -12800/69092 Loss: 150.812 -16000/69092 Loss: 152.557 -19200/69092 Loss: 155.233 -22400/69092 Loss: 153.208 -25600/69092 Loss: 152.687 -28800/69092 Loss: 154.943 -32000/69092 Loss: 153.995 -35200/69092 Loss: 155.391 -38400/69092 Loss: 150.432 -41600/69092 Loss: 152.702 -44800/69092 Loss: 154.048 -48000/69092 Loss: 153.700 -51200/69092 Loss: 153.710 -54400/69092 Loss: 153.347 -57600/69092 Loss: 156.340 -60800/69092 Loss: 155.228 -64000/69092 Loss: 153.031 -67200/69092 Loss: 156.122 -Training time 0:04:47.079566 -Epoch: 13 Average loss: 154.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 14) -0/69092 Loss: 167.874 -3200/69092 Loss: 153.950 -6400/69092 Loss: 153.100 -9600/69092 Loss: 154.868 -12800/69092 Loss: 153.843 -16000/69092 Loss: 152.569 -19200/69092 Loss: 152.143 -22400/69092 Loss: 156.714 -25600/69092 Loss: 149.704 -28800/69092 Loss: 150.733 -32000/69092 Loss: 148.052 -35200/69092 Loss: 155.286 -38400/69092 Loss: 151.164 -41600/69092 Loss: 150.744 -44800/69092 Loss: 149.292 -48000/69092 Loss: 151.365 -51200/69092 Loss: 153.081 -54400/69092 Loss: 148.012 -57600/69092 Loss: 153.617 -60800/69092 Loss: 154.546 -64000/69092 Loss: 153.127 -67200/69092 Loss: 153.229 -Training time 0:04:38.197224 -Epoch: 14 Average loss: 152.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 15) -0/69092 Loss: 142.733 -3200/69092 Loss: 153.018 -6400/69092 Loss: 151.895 -9600/69092 Loss: 151.264 -12800/69092 Loss: 148.139 -16000/69092 Loss: 150.293 -19200/69092 Loss: 152.738 -22400/69092 Loss: 152.494 -25600/69092 Loss: 149.747 -28800/69092 Loss: 151.198 -32000/69092 Loss: 150.283 -35200/69092 Loss: 154.543 -38400/69092 Loss: 149.681 -41600/69092 Loss: 150.284 -44800/69092 Loss: 151.567 -48000/69092 Loss: 153.972 -51200/69092 Loss: 153.460 -54400/69092 Loss: 150.492 -57600/69092 Loss: 151.530 -60800/69092 Loss: 153.527 -64000/69092 Loss: 152.394 -67200/69092 Loss: 151.078 -Training time 0:04:39.605667 -Epoch: 15 Average loss: 151.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 16) -0/69092 Loss: 135.762 -3200/69092 Loss: 151.223 -6400/69092 Loss: 149.636 -9600/69092 Loss: 151.390 -12800/69092 Loss: 152.078 -16000/69092 Loss: 152.049 -19200/69092 Loss: 148.491 -22400/69092 Loss: 149.151 -25600/69092 Loss: 153.019 -28800/69092 Loss: 147.553 -32000/69092 Loss: 153.056 -35200/69092 Loss: 151.313 -38400/69092 Loss: 149.743 -41600/69092 Loss: 149.528 -44800/69092 Loss: 149.730 -48000/69092 Loss: 152.423 -51200/69092 Loss: 153.822 -54400/69092 Loss: 150.835 -57600/69092 Loss: 151.424 -60800/69092 Loss: 151.928 -64000/69092 Loss: 146.308 -67200/69092 Loss: 150.844 -Training time 0:04:41.437413 -Epoch: 16 Average loss: 150.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 17) -0/69092 Loss: 140.489 -3200/69092 Loss: 152.261 -6400/69092 Loss: 149.076 -9600/69092 Loss: 147.913 -12800/69092 Loss: 151.479 -16000/69092 Loss: 152.871 -19200/69092 Loss: 149.458 -22400/69092 Loss: 153.279 -25600/69092 Loss: 150.869 -28800/69092 Loss: 150.986 -32000/69092 Loss: 152.924 -35200/69092 Loss: 148.119 -38400/69092 Loss: 150.243 -41600/69092 Loss: 148.496 -44800/69092 Loss: 150.882 -48000/69092 Loss: 149.852 -51200/69092 Loss: 149.254 -54400/69092 Loss: 149.813 -57600/69092 Loss: 148.314 -60800/69092 Loss: 151.928 -64000/69092 Loss: 150.182 -67200/69092 Loss: 151.590 -Training time 0:04:41.424319 -Epoch: 17 Average loss: 150.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 18) -0/69092 Loss: 165.653 -3200/69092 Loss: 150.708 -6400/69092 Loss: 150.738 -9600/69092 Loss: 149.234 -12800/69092 Loss: 150.091 -16000/69092 Loss: 153.208 -19200/69092 Loss: 150.966 -22400/69092 Loss: 148.370 -25600/69092 Loss: 150.041 -28800/69092 Loss: 152.196 -32000/69092 Loss: 147.806 -35200/69092 Loss: 146.719 -38400/69092 Loss: 149.678 -41600/69092 Loss: 151.082 -44800/69092 Loss: 151.379 -48000/69092 Loss: 149.959 -51200/69092 Loss: 150.877 -54400/69092 Loss: 149.647 -57600/69092 Loss: 148.742 -60800/69092 Loss: 151.242 -64000/69092 Loss: 148.770 -67200/69092 Loss: 151.824 -Training time 0:04:48.453964 -Epoch: 18 Average loss: 150.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 19) -0/69092 Loss: 137.928 -3200/69092 Loss: 145.544 -6400/69092 Loss: 151.132 -9600/69092 Loss: 153.427 -12800/69092 Loss: 152.087 -16000/69092 Loss: 148.224 -19200/69092 Loss: 151.954 -22400/69092 Loss: 151.094 -25600/69092 Loss: 149.743 -28800/69092 Loss: 150.293 -32000/69092 Loss: 149.179 -35200/69092 Loss: 148.198 -38400/69092 Loss: 149.964 -41600/69092 Loss: 149.894 -44800/69092 Loss: 148.807 -48000/69092 Loss: 152.734 -51200/69092 Loss: 148.849 -54400/69092 Loss: 147.120 -57600/69092 Loss: 149.641 -60800/69092 Loss: 147.192 -64000/69092 Loss: 149.263 -67200/69092 Loss: 149.469 -Training time 0:04:56.394880 -Epoch: 19 Average loss: 149.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 20) -0/69092 Loss: 129.201 -3200/69092 Loss: 149.012 -6400/69092 Loss: 149.960 -9600/69092 Loss: 149.647 -12800/69092 Loss: 151.793 -16000/69092 Loss: 149.258 -19200/69092 Loss: 148.539 -22400/69092 Loss: 147.455 -25600/69092 Loss: 149.341 -28800/69092 Loss: 149.944 -32000/69092 Loss: 152.197 -35200/69092 Loss: 146.482 -38400/69092 Loss: 148.127 -41600/69092 Loss: 146.162 -44800/69092 Loss: 151.764 -48000/69092 Loss: 150.575 -51200/69092 Loss: 150.623 -54400/69092 Loss: 149.253 -57600/69092 Loss: 147.238 -60800/69092 Loss: 149.014 -64000/69092 Loss: 150.219 -67200/69092 Loss: 148.554 -Training time 0:04:45.573469 -Epoch: 20 Average loss: 149.37 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 21) -0/69092 Loss: 133.640 -3200/69092 Loss: 148.624 -6400/69092 Loss: 149.967 -9600/69092 Loss: 148.680 -12800/69092 Loss: 147.118 -16000/69092 Loss: 150.804 -19200/69092 Loss: 148.523 -22400/69092 Loss: 152.628 -25600/69092 Loss: 150.004 -28800/69092 Loss: 149.583 -32000/69092 Loss: 148.045 -35200/69092 Loss: 147.617 -38400/69092 Loss: 152.470 -41600/69092 Loss: 150.862 -44800/69092 Loss: 149.814 -48000/69092 Loss: 149.141 -51200/69092 Loss: 148.093 -54400/69092 Loss: 152.332 -57600/69092 Loss: 146.968 -60800/69092 Loss: 149.775 -64000/69092 Loss: 147.789 -67200/69092 Loss: 147.252 -Training time 0:04:59.276110 -Epoch: 21 Average loss: 149.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 22) -0/69092 Loss: 131.701 -3200/69092 Loss: 148.449 -6400/69092 Loss: 151.597 -9600/69092 Loss: 148.279 -12800/69092 Loss: 149.448 -16000/69092 Loss: 147.015 -19200/69092 Loss: 147.292 -22400/69092 Loss: 150.862 -25600/69092 Loss: 151.634 -28800/69092 Loss: 146.623 -32000/69092 Loss: 150.266 -35200/69092 Loss: 150.815 -38400/69092 Loss: 148.912 -41600/69092 Loss: 148.657 -44800/69092 Loss: 151.418 -48000/69092 Loss: 146.808 -51200/69092 Loss: 148.590 -54400/69092 Loss: 144.899 -57600/69092 Loss: 149.390 -60800/69092 Loss: 148.584 -64000/69092 Loss: 150.349 -67200/69092 Loss: 152.418 -Training time 0:04:46.599533 -Epoch: 22 Average loss: 149.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 23) -0/69092 Loss: 147.441 -3200/69092 Loss: 146.450 -6400/69092 Loss: 147.865 -9600/69092 Loss: 149.093 -12800/69092 Loss: 149.175 -16000/69092 Loss: 148.235 -19200/69092 Loss: 145.462 -22400/69092 Loss: 148.329 -25600/69092 Loss: 149.039 -28800/69092 Loss: 150.100 -32000/69092 Loss: 149.619 -35200/69092 Loss: 148.932 -38400/69092 Loss: 151.061 -41600/69092 Loss: 150.732 -44800/69092 Loss: 147.543 -48000/69092 Loss: 148.581 -51200/69092 Loss: 149.412 -54400/69092 Loss: 150.560 -57600/69092 Loss: 147.948 -60800/69092 Loss: 148.273 -64000/69092 Loss: 148.835 -67200/69092 Loss: 150.739 -Training time 0:04:49.055498 -Epoch: 23 Average loss: 148.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 24) -0/69092 Loss: 148.316 -3200/69092 Loss: 150.705 -6400/69092 Loss: 145.427 -9600/69092 Loss: 145.590 -12800/69092 Loss: 146.992 -16000/69092 Loss: 151.595 -19200/69092 Loss: 150.990 -22400/69092 Loss: 149.186 -25600/69092 Loss: 148.401 -28800/69092 Loss: 149.080 -32000/69092 Loss: 149.414 -35200/69092 Loss: 150.053 -38400/69092 Loss: 147.450 -41600/69092 Loss: 151.939 -44800/69092 Loss: 146.092 -48000/69092 Loss: 149.252 -51200/69092 Loss: 149.241 -54400/69092 Loss: 147.512 -57600/69092 Loss: 148.757 -60800/69092 Loss: 150.917 -64000/69092 Loss: 144.102 -67200/69092 Loss: 148.888 -Training time 0:04:42.031507 -Epoch: 24 Average loss: 148.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 25) -0/69092 Loss: 152.213 -3200/69092 Loss: 149.305 -6400/69092 Loss: 147.650 -9600/69092 Loss: 147.823 -12800/69092 Loss: 150.604 -16000/69092 Loss: 146.576 -19200/69092 Loss: 150.881 -22400/69092 Loss: 149.893 -25600/69092 Loss: 148.029 -28800/69092 Loss: 150.403 -32000/69092 Loss: 149.834 -35200/69092 Loss: 150.335 -38400/69092 Loss: 149.817 -41600/69092 Loss: 148.180 -44800/69092 Loss: 148.837 -48000/69092 Loss: 148.287 -51200/69092 Loss: 145.299 -54400/69092 Loss: 150.729 -57600/69092 Loss: 146.837 -60800/69092 Loss: 146.870 -64000/69092 Loss: 147.973 -67200/69092 Loss: 147.860 -Training time 0:04:47.412749 -Epoch: 25 Average loss: 148.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 26) -0/69092 Loss: 147.533 -3200/69092 Loss: 149.722 -6400/69092 Loss: 145.848 -9600/69092 Loss: 149.544 -12800/69092 Loss: 147.232 -16000/69092 Loss: 146.528 -19200/69092 Loss: 144.404 -22400/69092 Loss: 148.635 -25600/69092 Loss: 150.073 -28800/69092 Loss: 148.495 -32000/69092 Loss: 148.930 -35200/69092 Loss: 151.213 -38400/69092 Loss: 149.984 -41600/69092 Loss: 149.236 -44800/69092 Loss: 148.683 -48000/69092 Loss: 149.080 -51200/69092 Loss: 147.438 -54400/69092 Loss: 148.451 -57600/69092 Loss: 146.744 -60800/69092 Loss: 150.171 -64000/69092 Loss: 148.242 -67200/69092 Loss: 149.408 -Training time 0:04:50.951991 -Epoch: 26 Average loss: 148.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 27) -0/69092 Loss: 152.592 -3200/69092 Loss: 149.182 -6400/69092 Loss: 148.681 -9600/69092 Loss: 147.861 -12800/69092 Loss: 148.158 -16000/69092 Loss: 147.307 -19200/69092 Loss: 148.734 -22400/69092 Loss: 148.499 -25600/69092 Loss: 147.275 -28800/69092 Loss: 151.277 -32000/69092 Loss: 149.926 -35200/69092 Loss: 150.180 -38400/69092 Loss: 147.927 -41600/69092 Loss: 147.626 -44800/69092 Loss: 147.453 -48000/69092 Loss: 148.842 -51200/69092 Loss: 151.201 -54400/69092 Loss: 149.597 -57600/69092 Loss: 147.173 -60800/69092 Loss: 150.191 -64000/69092 Loss: 148.148 -67200/69092 Loss: 148.408 -Training time 0:04:53.876524 -Epoch: 27 Average loss: 148.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 28) -0/69092 Loss: 136.799 -3200/69092 Loss: 149.160 -6400/69092 Loss: 148.577 -9600/69092 Loss: 148.877 -12800/69092 Loss: 148.757 -16000/69092 Loss: 148.481 -19200/69092 Loss: 148.485 -22400/69092 Loss: 145.469 -25600/69092 Loss: 147.464 -28800/69092 Loss: 150.880 -32000/69092 Loss: 148.038 -35200/69092 Loss: 150.974 -38400/69092 Loss: 148.349 -41600/69092 Loss: 146.056 -44800/69092 Loss: 152.184 -48000/69092 Loss: 146.304 -51200/69092 Loss: 148.212 -54400/69092 Loss: 147.954 -57600/69092 Loss: 146.696 -60800/69092 Loss: 148.265 -64000/69092 Loss: 148.102 -67200/69092 Loss: 148.043 -Training time 0:04:48.916889 -Epoch: 28 Average loss: 148.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 29) -0/69092 Loss: 139.670 -3200/69092 Loss: 149.241 -6400/69092 Loss: 146.362 -9600/69092 Loss: 149.768 -12800/69092 Loss: 150.836 -16000/69092 Loss: 151.187 -19200/69092 Loss: 148.298 -22400/69092 Loss: 146.347 -25600/69092 Loss: 147.607 -28800/69092 Loss: 148.707 -32000/69092 Loss: 149.895 -35200/69092 Loss: 149.527 -38400/69092 Loss: 148.237 -41600/69092 Loss: 144.982 -44800/69092 Loss: 151.784 -48000/69092 Loss: 147.750 -51200/69092 Loss: 146.564 -54400/69092 Loss: 146.418 -57600/69092 Loss: 149.342 -60800/69092 Loss: 148.502 -64000/69092 Loss: 149.298 -67200/69092 Loss: 147.498 -Training time 0:04:45.409229 -Epoch: 29 Average loss: 148.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 30) -0/69092 Loss: 151.405 -3200/69092 Loss: 146.274 -6400/69092 Loss: 149.452 -9600/69092 Loss: 146.109 -12800/69092 Loss: 149.210 -16000/69092 Loss: 146.885 -19200/69092 Loss: 148.982 -22400/69092 Loss: 149.403 -25600/69092 Loss: 150.823 -28800/69092 Loss: 149.720 -32000/69092 Loss: 146.378 -35200/69092 Loss: 151.609 -38400/69092 Loss: 151.925 -41600/69092 Loss: 150.469 -44800/69092 Loss: 148.398 -48000/69092 Loss: 148.156 -51200/69092 Loss: 146.210 -54400/69092 Loss: 147.480 -57600/69092 Loss: 147.065 -60800/69092 Loss: 145.786 -64000/69092 Loss: 150.431 -67200/69092 Loss: 146.721 -Training time 0:04:50.737945 -Epoch: 30 Average loss: 148.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 31) -0/69092 Loss: 150.116 -3200/69092 Loss: 150.399 -6400/69092 Loss: 148.203 -9600/69092 Loss: 151.006 -12800/69092 Loss: 147.144 -16000/69092 Loss: 150.393 -19200/69092 Loss: 146.829 -22400/69092 Loss: 147.297 -25600/69092 Loss: 145.868 -28800/69092 Loss: 148.685 -32000/69092 Loss: 147.328 -35200/69092 Loss: 150.047 -38400/69092 Loss: 144.112 -41600/69092 Loss: 145.091 -44800/69092 Loss: 147.921 -48000/69092 Loss: 147.783 -51200/69092 Loss: 147.961 -54400/69092 Loss: 149.061 -57600/69092 Loss: 147.789 -60800/69092 Loss: 146.963 -64000/69092 Loss: 149.435 -67200/69092 Loss: 146.020 -Training time 0:04:48.621983 -Epoch: 31 Average loss: 147.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 32) -0/69092 Loss: 139.254 -3200/69092 Loss: 147.274 -6400/69092 Loss: 148.368 -9600/69092 Loss: 147.824 -12800/69092 Loss: 144.687 -16000/69092 Loss: 147.647 -19200/69092 Loss: 145.607 -22400/69092 Loss: 145.909 -25600/69092 Loss: 147.128 -28800/69092 Loss: 147.337 -32000/69092 Loss: 147.407 -35200/69092 Loss: 147.988 -38400/69092 Loss: 150.538 -41600/69092 Loss: 151.803 -44800/69092 Loss: 146.955 -48000/69092 Loss: 147.923 -51200/69092 Loss: 147.718 -54400/69092 Loss: 149.130 -57600/69092 Loss: 149.352 -60800/69092 Loss: 147.535 -64000/69092 Loss: 149.475 -67200/69092 Loss: 147.609 -Training time 0:04:48.911700 -Epoch: 32 Average loss: 147.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 33) -0/69092 Loss: 135.456 -3200/69092 Loss: 147.926 -6400/69092 Loss: 145.118 -9600/69092 Loss: 149.077 -12800/69092 Loss: 150.177 -16000/69092 Loss: 148.397 -19200/69092 Loss: 147.117 -22400/69092 Loss: 145.922 -25600/69092 Loss: 146.261 -28800/69092 Loss: 148.776 -32000/69092 Loss: 149.062 -35200/69092 Loss: 149.170 -38400/69092 Loss: 147.219 -41600/69092 Loss: 148.891 -44800/69092 Loss: 147.959 -48000/69092 Loss: 150.057 -51200/69092 Loss: 147.330 -54400/69092 Loss: 147.750 -57600/69092 Loss: 148.495 -60800/69092 Loss: 147.875 -64000/69092 Loss: 148.009 -67200/69092 Loss: 149.262 -Training time 0:04:50.174805 -Epoch: 33 Average loss: 148.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 34) -0/69092 Loss: 182.166 -3200/69092 Loss: 148.901 -6400/69092 Loss: 145.378 -9600/69092 Loss: 148.315 -12800/69092 Loss: 146.911 -16000/69092 Loss: 147.523 -19200/69092 Loss: 147.612 -22400/69092 Loss: 146.449 -25600/69092 Loss: 147.696 -28800/69092 Loss: 150.118 -32000/69092 Loss: 148.327 -35200/69092 Loss: 147.242 -38400/69092 Loss: 148.225 -41600/69092 Loss: 146.721 -44800/69092 Loss: 149.915 -48000/69092 Loss: 147.828 -51200/69092 Loss: 146.816 -54400/69092 Loss: 148.654 -57600/69092 Loss: 147.533 -60800/69092 Loss: 148.067 -64000/69092 Loss: 148.144 -67200/69092 Loss: 150.079 -Training time 0:04:43.649297 -Epoch: 34 Average loss: 147.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 35) -0/69092 Loss: 144.509 -3200/69092 Loss: 148.918 -6400/69092 Loss: 149.180 -9600/69092 Loss: 143.877 -12800/69092 Loss: 147.871 -16000/69092 Loss: 148.619 -19200/69092 Loss: 148.622 -22400/69092 Loss: 149.938 -25600/69092 Loss: 151.149 -28800/69092 Loss: 145.947 -32000/69092 Loss: 146.845 -35200/69092 Loss: 143.968 -38400/69092 Loss: 148.796 -41600/69092 Loss: 145.774 -44800/69092 Loss: 147.522 -48000/69092 Loss: 150.373 -51200/69092 Loss: 150.224 -54400/69092 Loss: 144.202 -57600/69092 Loss: 147.134 -60800/69092 Loss: 147.678 -64000/69092 Loss: 147.897 -67200/69092 Loss: 147.136 -Training time 0:04:52.302760 -Epoch: 35 Average loss: 147.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 36) -0/69092 Loss: 171.568 -3200/69092 Loss: 147.211 -6400/69092 Loss: 151.186 -9600/69092 Loss: 147.847 -12800/69092 Loss: 147.045 -16000/69092 Loss: 147.694 -19200/69092 Loss: 147.207 -22400/69092 Loss: 146.437 -25600/69092 Loss: 148.529 -28800/69092 Loss: 147.193 -32000/69092 Loss: 147.475 -35200/69092 Loss: 149.954 -38400/69092 Loss: 146.927 -41600/69092 Loss: 147.328 -44800/69092 Loss: 147.303 -48000/69092 Loss: 147.689 -51200/69092 Loss: 145.557 -54400/69092 Loss: 149.372 -57600/69092 Loss: 149.927 -60800/69092 Loss: 148.130 -64000/69092 Loss: 145.447 -67200/69092 Loss: 147.423 -Training time 0:04:41.499130 -Epoch: 36 Average loss: 147.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 37) -0/69092 Loss: 126.942 -3200/69092 Loss: 147.392 -6400/69092 Loss: 149.148 -9600/69092 Loss: 148.443 -12800/69092 Loss: 146.970 -16000/69092 Loss: 147.117 -19200/69092 Loss: 145.697 -22400/69092 Loss: 150.965 -25600/69092 Loss: 150.003 -28800/69092 Loss: 144.241 -32000/69092 Loss: 148.380 -35200/69092 Loss: 143.263 -38400/69092 Loss: 146.500 -41600/69092 Loss: 147.698 -44800/69092 Loss: 148.868 -48000/69092 Loss: 149.101 -51200/69092 Loss: 146.882 -54400/69092 Loss: 149.080 -57600/69092 Loss: 145.908 -60800/69092 Loss: 150.441 -64000/69092 Loss: 149.058 -67200/69092 Loss: 148.011 -Training time 0:04:43.312257 -Epoch: 37 Average loss: 147.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 38) -0/69092 Loss: 138.473 -3200/69092 Loss: 148.439 -6400/69092 Loss: 146.342 -9600/69092 Loss: 149.556 -12800/69092 Loss: 147.739 -16000/69092 Loss: 147.844 -19200/69092 Loss: 150.256 -22400/69092 Loss: 147.245 -25600/69092 Loss: 148.738 -28800/69092 Loss: 145.625 -32000/69092 Loss: 149.568 -35200/69092 Loss: 144.465 -38400/69092 Loss: 145.087 -41600/69092 Loss: 148.033 -44800/69092 Loss: 147.266 -48000/69092 Loss: 147.949 -51200/69092 Loss: 147.969 -54400/69092 Loss: 151.305 -57600/69092 Loss: 144.169 -60800/69092 Loss: 148.036 -64000/69092 Loss: 146.607 -67200/69092 Loss: 148.207 -Training time 0:04:37.742191 -Epoch: 38 Average loss: 147.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 39) -0/69092 Loss: 140.590 -3200/69092 Loss: 147.467 -6400/69092 Loss: 145.737 -9600/69092 Loss: 148.149 -12800/69092 Loss: 148.441 -16000/69092 Loss: 147.550 -19200/69092 Loss: 148.744 -22400/69092 Loss: 145.392 -25600/69092 Loss: 147.454 -28800/69092 Loss: 148.207 -32000/69092 Loss: 147.382 -35200/69092 Loss: 148.161 -38400/69092 Loss: 148.098 -41600/69092 Loss: 146.294 -44800/69092 Loss: 147.684 -48000/69092 Loss: 146.768 -51200/69092 Loss: 148.378 -54400/69092 Loss: 148.982 -57600/69092 Loss: 146.299 -60800/69092 Loss: 148.486 -64000/69092 Loss: 146.811 -67200/69092 Loss: 148.951 -Training time 0:04:50.802320 -Epoch: 39 Average loss: 147.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 40) -0/69092 Loss: 136.610 -3200/69092 Loss: 150.866 -6400/69092 Loss: 147.610 -9600/69092 Loss: 148.863 -12800/69092 Loss: 147.901 -16000/69092 Loss: 146.124 -19200/69092 Loss: 147.856 -22400/69092 Loss: 147.756 -25600/69092 Loss: 146.895 -28800/69092 Loss: 148.882 -32000/69092 Loss: 149.392 -35200/69092 Loss: 145.366 -38400/69092 Loss: 146.326 -41600/69092 Loss: 148.099 -44800/69092 Loss: 147.129 -48000/69092 Loss: 147.240 -51200/69092 Loss: 146.275 -54400/69092 Loss: 150.795 -57600/69092 Loss: 146.048 -60800/69092 Loss: 145.345 -64000/69092 Loss: 146.640 -67200/69092 Loss: 147.691 -Training time 0:04:46.034226 -Epoch: 40 Average loss: 147.57 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 41) -0/69092 Loss: 130.478 -3200/69092 Loss: 145.856 -6400/69092 Loss: 148.837 -9600/69092 Loss: 148.716 -12800/69092 Loss: 147.260 -16000/69092 Loss: 146.766 -19200/69092 Loss: 148.677 -22400/69092 Loss: 144.870 -25600/69092 Loss: 146.645 -28800/69092 Loss: 149.022 -32000/69092 Loss: 149.616 -35200/69092 Loss: 147.131 -38400/69092 Loss: 147.440 -41600/69092 Loss: 146.554 -44800/69092 Loss: 149.245 -48000/69092 Loss: 150.220 -51200/69092 Loss: 147.618 -54400/69092 Loss: 149.107 -57600/69092 Loss: 147.340 -60800/69092 Loss: 147.957 -64000/69092 Loss: 146.702 -67200/69092 Loss: 147.134 -Training time 0:04:32.941870 -Epoch: 41 Average loss: 147.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 42) -0/69092 Loss: 142.196 -3200/69092 Loss: 149.834 -6400/69092 Loss: 147.423 -9600/69092 Loss: 147.878 -12800/69092 Loss: 148.993 -16000/69092 Loss: 146.516 -19200/69092 Loss: 147.415 -22400/69092 Loss: 148.012 -25600/69092 Loss: 147.496 -28800/69092 Loss: 148.991 -32000/69092 Loss: 147.641 -35200/69092 Loss: 144.425 -38400/69092 Loss: 148.495 -41600/69092 Loss: 146.185 -44800/69092 Loss: 145.948 -48000/69092 Loss: 148.388 -51200/69092 Loss: 144.057 -54400/69092 Loss: 149.661 -57600/69092 Loss: 149.148 -60800/69092 Loss: 148.142 -64000/69092 Loss: 146.454 -67200/69092 Loss: 147.064 -Training time 0:04:51.137364 -Epoch: 42 Average loss: 147.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 43) -0/69092 Loss: 146.976 -3200/69092 Loss: 145.914 -6400/69092 Loss: 149.067 -9600/69092 Loss: 147.212 -12800/69092 Loss: 149.855 -16000/69092 Loss: 147.618 -19200/69092 Loss: 147.907 -22400/69092 Loss: 143.236 -25600/69092 Loss: 146.884 -28800/69092 Loss: 146.931 -32000/69092 Loss: 149.960 -35200/69092 Loss: 147.290 -38400/69092 Loss: 146.588 -41600/69092 Loss: 148.242 -44800/69092 Loss: 147.682 -48000/69092 Loss: 149.333 -51200/69092 Loss: 145.939 -54400/69092 Loss: 148.984 -57600/69092 Loss: 147.244 -60800/69092 Loss: 146.377 -64000/69092 Loss: 147.587 -67200/69092 Loss: 148.987 -Training time 0:04:52.995865 -Epoch: 43 Average loss: 147.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 44) -0/69092 Loss: 147.195 -3200/69092 Loss: 145.492 -6400/69092 Loss: 148.713 -9600/69092 Loss: 147.604 -12800/69092 Loss: 148.692 -16000/69092 Loss: 149.684 -19200/69092 Loss: 150.388 -22400/69092 Loss: 146.937 -25600/69092 Loss: 149.534 -28800/69092 Loss: 148.582 -32000/69092 Loss: 147.982 -35200/69092 Loss: 150.096 -38400/69092 Loss: 146.612 -41600/69092 Loss: 143.746 -44800/69092 Loss: 145.780 -48000/69092 Loss: 146.939 -51200/69092 Loss: 144.991 -54400/69092 Loss: 149.095 -57600/69092 Loss: 146.711 -60800/69092 Loss: 145.298 -64000/69092 Loss: 146.612 -67200/69092 Loss: 147.295 -Training time 0:04:48.267435 -Epoch: 44 Average loss: 147.44 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 45) -0/69092 Loss: 144.535 -3200/69092 Loss: 149.252 -6400/69092 Loss: 147.248 -9600/69092 Loss: 145.847 -12800/69092 Loss: 147.830 -16000/69092 Loss: 145.908 -19200/69092 Loss: 148.936 -22400/69092 Loss: 147.652 -25600/69092 Loss: 146.594 -28800/69092 Loss: 148.105 -32000/69092 Loss: 147.654 -35200/69092 Loss: 147.288 -38400/69092 Loss: 146.380 -41600/69092 Loss: 150.282 -44800/69092 Loss: 146.159 -48000/69092 Loss: 149.498 -51200/69092 Loss: 146.705 -54400/69092 Loss: 148.901 -57600/69092 Loss: 148.219 -60800/69092 Loss: 144.109 -64000/69092 Loss: 146.984 -67200/69092 Loss: 146.319 -Training time 0:04:46.182034 -Epoch: 45 Average loss: 147.42 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 46) -0/69092 Loss: 136.896 -3200/69092 Loss: 149.550 -6400/69092 Loss: 148.753 -9600/69092 Loss: 148.302 -12800/69092 Loss: 148.910 -16000/69092 Loss: 146.299 -19200/69092 Loss: 148.390 -22400/69092 Loss: 145.611 -25600/69092 Loss: 147.391 -28800/69092 Loss: 148.267 -32000/69092 Loss: 146.850 -35200/69092 Loss: 147.362 -38400/69092 Loss: 147.291 -41600/69092 Loss: 149.410 -44800/69092 Loss: 147.307 -48000/69092 Loss: 144.954 -51200/69092 Loss: 148.240 -54400/69092 Loss: 147.475 -57600/69092 Loss: 145.484 -60800/69092 Loss: 143.873 -64000/69092 Loss: 148.499 -67200/69092 Loss: 147.200 -Training time 0:04:42.458226 -Epoch: 46 Average loss: 147.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 47) -0/69092 Loss: 150.699 -3200/69092 Loss: 147.425 -6400/69092 Loss: 147.047 -9600/69092 Loss: 145.380 -12800/69092 Loss: 149.754 -16000/69092 Loss: 149.451 -19200/69092 Loss: 147.034 -22400/69092 Loss: 147.372 -25600/69092 Loss: 147.991 -28800/69092 Loss: 148.776 -32000/69092 Loss: 149.615 -35200/69092 Loss: 147.608 -38400/69092 Loss: 148.215 -41600/69092 Loss: 149.303 -44800/69092 Loss: 146.046 -48000/69092 Loss: 145.386 -51200/69092 Loss: 145.610 -54400/69092 Loss: 146.915 -57600/69092 Loss: 148.651 -60800/69092 Loss: 146.439 -64000/69092 Loss: 145.994 -67200/69092 Loss: 145.309 -Training time 0:04:50.171637 -Epoch: 47 Average loss: 147.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 48) -0/69092 Loss: 152.689 -3200/69092 Loss: 148.242 -6400/69092 Loss: 149.818 -9600/69092 Loss: 150.796 -12800/69092 Loss: 146.022 -16000/69092 Loss: 146.036 -19200/69092 Loss: 148.187 -22400/69092 Loss: 146.057 -25600/69092 Loss: 148.854 -28800/69092 Loss: 146.305 -32000/69092 Loss: 147.919 -35200/69092 Loss: 147.342 -38400/69092 Loss: 145.379 -41600/69092 Loss: 147.849 -44800/69092 Loss: 145.081 -48000/69092 Loss: 148.374 -51200/69092 Loss: 148.579 -54400/69092 Loss: 148.269 -57600/69092 Loss: 148.248 -60800/69092 Loss: 145.525 -64000/69092 Loss: 143.879 -67200/69092 Loss: 146.685 -Training time 0:04:51.065306 -Epoch: 48 Average loss: 147.28 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 49) -0/69092 Loss: 138.702 -3200/69092 Loss: 149.051 -6400/69092 Loss: 146.844 -9600/69092 Loss: 146.851 -12800/69092 Loss: 148.108 -16000/69092 Loss: 149.468 -19200/69092 Loss: 146.898 -22400/69092 Loss: 147.229 -25600/69092 Loss: 148.109 -28800/69092 Loss: 144.980 -32000/69092 Loss: 146.640 -35200/69092 Loss: 147.083 -38400/69092 Loss: 144.511 -41600/69092 Loss: 149.689 -44800/69092 Loss: 146.317 -48000/69092 Loss: 148.143 -51200/69092 Loss: 149.500 -54400/69092 Loss: 146.935 -57600/69092 Loss: 145.848 -60800/69092 Loss: 149.408 -64000/69092 Loss: 145.568 -67200/69092 Loss: 146.664 -Training time 0:04:52.656015 -Epoch: 49 Average loss: 147.28 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 50) -0/69092 Loss: 141.442 -3200/69092 Loss: 145.800 -6400/69092 Loss: 148.988 -9600/69092 Loss: 146.610 -12800/69092 Loss: 149.453 -16000/69092 Loss: 146.489 -19200/69092 Loss: 147.201 -22400/69092 Loss: 146.820 -25600/69092 Loss: 146.664 -28800/69092 Loss: 144.953 -32000/69092 Loss: 150.625 -35200/69092 Loss: 145.450 -38400/69092 Loss: 145.755 -41600/69092 Loss: 147.921 -44800/69092 Loss: 146.116 -48000/69092 Loss: 147.734 -51200/69092 Loss: 144.139 -54400/69092 Loss: 143.210 -57600/69092 Loss: 146.801 -60800/69092 Loss: 149.121 -64000/69092 Loss: 150.397 -67200/69092 Loss: 147.114 -Training time 0:04:52.556216 -Epoch: 50 Average loss: 147.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 51) -0/69092 Loss: 148.842 -3200/69092 Loss: 149.280 -6400/69092 Loss: 144.520 -9600/69092 Loss: 145.122 -12800/69092 Loss: 148.532 -16000/69092 Loss: 148.949 -19200/69092 Loss: 152.320 -22400/69092 Loss: 147.693 -25600/69092 Loss: 148.352 -28800/69092 Loss: 147.083 -32000/69092 Loss: 143.256 -35200/69092 Loss: 147.945 -38400/69092 Loss: 148.295 -41600/69092 Loss: 146.062 -44800/69092 Loss: 148.280 -48000/69092 Loss: 148.141 -51200/69092 Loss: 144.961 -54400/69092 Loss: 146.155 -57600/69092 Loss: 149.486 -60800/69092 Loss: 147.682 -64000/69092 Loss: 144.341 -67200/69092 Loss: 146.745 -Training time 0:04:52.407796 -Epoch: 51 Average loss: 147.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 52) -0/69092 Loss: 144.874 -3200/69092 Loss: 148.552 -6400/69092 Loss: 146.392 -9600/69092 Loss: 149.637 -12800/69092 Loss: 142.479 -16000/69092 Loss: 145.334 -19200/69092 Loss: 147.575 -22400/69092 Loss: 147.806 -25600/69092 Loss: 144.501 -28800/69092 Loss: 146.850 -32000/69092 Loss: 146.706 -35200/69092 Loss: 148.118 -38400/69092 Loss: 146.641 -41600/69092 Loss: 146.493 -44800/69092 Loss: 148.939 -48000/69092 Loss: 146.910 -51200/69092 Loss: 148.734 -54400/69092 Loss: 147.240 -57600/69092 Loss: 146.749 -60800/69092 Loss: 148.595 -64000/69092 Loss: 145.173 -67200/69092 Loss: 146.752 -Training time 0:04:46.414580 -Epoch: 52 Average loss: 146.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 53) -0/69092 Loss: 159.264 -3200/69092 Loss: 146.521 -6400/69092 Loss: 145.872 -9600/69092 Loss: 147.680 -12800/69092 Loss: 146.508 -16000/69092 Loss: 143.673 -19200/69092 Loss: 149.822 -22400/69092 Loss: 147.306 -25600/69092 Loss: 144.225 -28800/69092 Loss: 148.730 -32000/69092 Loss: 147.515 -35200/69092 Loss: 147.099 -38400/69092 Loss: 148.525 -41600/69092 Loss: 148.024 -44800/69092 Loss: 146.560 -48000/69092 Loss: 148.455 -51200/69092 Loss: 150.450 -54400/69092 Loss: 147.113 -57600/69092 Loss: 147.433 -60800/69092 Loss: 147.747 -64000/69092 Loss: 147.956 -67200/69092 Loss: 145.113 -Training time 0:04:51.452545 -Epoch: 53 Average loss: 147.28 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 54) -0/69092 Loss: 141.546 -3200/69092 Loss: 145.539 -6400/69092 Loss: 149.190 -9600/69092 Loss: 146.784 -12800/69092 Loss: 146.082 -16000/69092 Loss: 146.864 -19200/69092 Loss: 145.810 -22400/69092 Loss: 147.325 -25600/69092 Loss: 143.982 -28800/69092 Loss: 150.492 -32000/69092 Loss: 147.060 -35200/69092 Loss: 146.891 -38400/69092 Loss: 146.113 -41600/69092 Loss: 147.908 -44800/69092 Loss: 146.118 -48000/69092 Loss: 146.011 -51200/69092 Loss: 146.489 -54400/69092 Loss: 147.377 -57600/69092 Loss: 146.536 -60800/69092 Loss: 148.937 -64000/69092 Loss: 147.756 -67200/69092 Loss: 147.634 -Training time 0:04:50.742064 -Epoch: 54 Average loss: 147.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 55) -0/69092 Loss: 138.250 -3200/69092 Loss: 145.860 -6400/69092 Loss: 145.939 -9600/69092 Loss: 148.053 -12800/69092 Loss: 145.854 -16000/69092 Loss: 146.061 -19200/69092 Loss: 146.897 -22400/69092 Loss: 147.777 -25600/69092 Loss: 148.758 -28800/69092 Loss: 144.013 -32000/69092 Loss: 146.965 -35200/69092 Loss: 148.122 -38400/69092 Loss: 145.971 -41600/69092 Loss: 148.565 -44800/69092 Loss: 146.701 -48000/69092 Loss: 145.711 -51200/69092 Loss: 144.412 -54400/69092 Loss: 147.006 -57600/69092 Loss: 148.684 -60800/69092 Loss: 150.994 -64000/69092 Loss: 148.301 -67200/69092 Loss: 146.625 -Training time 0:04:53.544549 -Epoch: 55 Average loss: 146.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 56) -0/69092 Loss: 153.768 -3200/69092 Loss: 148.208 -6400/69092 Loss: 146.056 -9600/69092 Loss: 144.783 -12800/69092 Loss: 146.773 -16000/69092 Loss: 142.310 -19200/69092 Loss: 148.937 -22400/69092 Loss: 146.681 -25600/69092 Loss: 145.761 -28800/69092 Loss: 149.047 -32000/69092 Loss: 150.048 -35200/69092 Loss: 146.347 -38400/69092 Loss: 147.055 -41600/69092 Loss: 144.490 -44800/69092 Loss: 152.141 -48000/69092 Loss: 146.734 -51200/69092 Loss: 148.234 -54400/69092 Loss: 146.772 -57600/69092 Loss: 148.011 -60800/69092 Loss: 145.731 -64000/69092 Loss: 147.526 -67200/69092 Loss: 144.554 -Training time 0:04:53.486139 -Epoch: 56 Average loss: 146.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 57) -0/69092 Loss: 146.591 -3200/69092 Loss: 145.821 -6400/69092 Loss: 150.520 -9600/69092 Loss: 147.664 -12800/69092 Loss: 146.785 -16000/69092 Loss: 148.951 -19200/69092 Loss: 147.684 -22400/69092 Loss: 146.618 -25600/69092 Loss: 147.101 -28800/69092 Loss: 145.667 -32000/69092 Loss: 147.255 -35200/69092 Loss: 146.929 -38400/69092 Loss: 145.768 -41600/69092 Loss: 148.278 -44800/69092 Loss: 145.624 -48000/69092 Loss: 146.251 -51200/69092 Loss: 146.753 -54400/69092 Loss: 144.288 -57600/69092 Loss: 149.160 -60800/69092 Loss: 145.712 -64000/69092 Loss: 147.056 -67200/69092 Loss: 148.634 -Training time 0:04:51.065809 -Epoch: 57 Average loss: 147.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 58) -0/69092 Loss: 143.716 -3200/69092 Loss: 148.458 -6400/69092 Loss: 147.682 -9600/69092 Loss: 146.822 -12800/69092 Loss: 144.305 -16000/69092 Loss: 147.238 -19200/69092 Loss: 148.305 -22400/69092 Loss: 146.991 -25600/69092 Loss: 146.660 -28800/69092 Loss: 147.319 -32000/69092 Loss: 147.859 -35200/69092 Loss: 147.335 -38400/69092 Loss: 147.587 -41600/69092 Loss: 146.720 -44800/69092 Loss: 145.439 -48000/69092 Loss: 147.053 -51200/69092 Loss: 146.829 -54400/69092 Loss: 145.434 -57600/69092 Loss: 144.668 -60800/69092 Loss: 145.682 -64000/69092 Loss: 146.102 -67200/69092 Loss: 147.807 -Training time 0:04:46.504364 -Epoch: 58 Average loss: 146.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 59) -0/69092 Loss: 137.024 -3200/69092 Loss: 146.156 -6400/69092 Loss: 146.917 -9600/69092 Loss: 145.676 -12800/69092 Loss: 144.955 -16000/69092 Loss: 145.394 -19200/69092 Loss: 148.735 -22400/69092 Loss: 151.117 -25600/69092 Loss: 143.244 -28800/69092 Loss: 148.260 -32000/69092 Loss: 145.791 -35200/69092 Loss: 148.731 -38400/69092 Loss: 147.829 -41600/69092 Loss: 144.755 -44800/69092 Loss: 146.574 -48000/69092 Loss: 146.108 -51200/69092 Loss: 148.643 -54400/69092 Loss: 148.252 -57600/69092 Loss: 146.390 -60800/69092 Loss: 148.153 -64000/69092 Loss: 145.236 -67200/69092 Loss: 146.518 -Training time 0:04:51.503963 -Epoch: 59 Average loss: 146.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 60) -0/69092 Loss: 138.822 -3200/69092 Loss: 147.527 -6400/69092 Loss: 146.079 -9600/69092 Loss: 145.572 -12800/69092 Loss: 147.603 -16000/69092 Loss: 144.474 -19200/69092 Loss: 145.038 -22400/69092 Loss: 144.862 -25600/69092 Loss: 146.587 -28800/69092 Loss: 149.152 -32000/69092 Loss: 145.570 -35200/69092 Loss: 147.617 -38400/69092 Loss: 147.989 -41600/69092 Loss: 146.229 -44800/69092 Loss: 147.906 -48000/69092 Loss: 151.285 -51200/69092 Loss: 143.997 -54400/69092 Loss: 145.932 -57600/69092 Loss: 150.376 -60800/69092 Loss: 146.700 -64000/69092 Loss: 148.486 -67200/69092 Loss: 146.345 -Training time 0:04:46.929217 -Epoch: 60 Average loss: 146.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 61) -0/69092 Loss: 166.519 -3200/69092 Loss: 145.672 -6400/69092 Loss: 147.772 -9600/69092 Loss: 148.168 -12800/69092 Loss: 146.215 -16000/69092 Loss: 146.079 -19200/69092 Loss: 147.056 -22400/69092 Loss: 147.892 -25600/69092 Loss: 146.288 -28800/69092 Loss: 148.293 -32000/69092 Loss: 148.328 -35200/69092 Loss: 143.436 -38400/69092 Loss: 145.152 -41600/69092 Loss: 146.213 -44800/69092 Loss: 148.472 -48000/69092 Loss: 145.735 -51200/69092 Loss: 147.423 -54400/69092 Loss: 148.034 -57600/69092 Loss: 148.200 -60800/69092 Loss: 146.902 -64000/69092 Loss: 147.962 -67200/69092 Loss: 145.349 -Training time 0:04:50.557487 -Epoch: 61 Average loss: 146.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 62) -0/69092 Loss: 152.315 -3200/69092 Loss: 145.624 -6400/69092 Loss: 144.994 -9600/69092 Loss: 146.370 -12800/69092 Loss: 145.070 -16000/69092 Loss: 147.258 -19200/69092 Loss: 146.463 -22400/69092 Loss: 146.461 -25600/69092 Loss: 146.188 -28800/69092 Loss: 149.226 -32000/69092 Loss: 146.179 -35200/69092 Loss: 143.983 -38400/69092 Loss: 145.782 -41600/69092 Loss: 149.198 -44800/69092 Loss: 145.018 -48000/69092 Loss: 149.167 -51200/69092 Loss: 147.337 -54400/69092 Loss: 146.529 -57600/69092 Loss: 148.921 -60800/69092 Loss: 148.086 -64000/69092 Loss: 148.350 -67200/69092 Loss: 148.678 -Training time 0:04:52.219880 -Epoch: 62 Average loss: 146.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 63) -0/69092 Loss: 150.422 -3200/69092 Loss: 145.658 -6400/69092 Loss: 148.464 -9600/69092 Loss: 144.912 -12800/69092 Loss: 146.988 -16000/69092 Loss: 145.140 -19200/69092 Loss: 147.034 -22400/69092 Loss: 149.184 -25600/69092 Loss: 143.026 -28800/69092 Loss: 145.987 -32000/69092 Loss: 144.233 -35200/69092 Loss: 148.456 -38400/69092 Loss: 144.521 -41600/69092 Loss: 146.424 -44800/69092 Loss: 146.320 -48000/69092 Loss: 146.144 -51200/69092 Loss: 149.693 -54400/69092 Loss: 147.905 -57600/69092 Loss: 145.137 -60800/69092 Loss: 147.358 -64000/69092 Loss: 146.544 -67200/69092 Loss: 146.999 -Training time 0:04:41.221411 -Epoch: 63 Average loss: 146.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 64) -0/69092 Loss: 171.182 -3200/69092 Loss: 144.032 -6400/69092 Loss: 149.165 -9600/69092 Loss: 146.192 -12800/69092 Loss: 145.012 -16000/69092 Loss: 147.469 -19200/69092 Loss: 146.261 -22400/69092 Loss: 147.494 -25600/69092 Loss: 147.959 -28800/69092 Loss: 144.652 -32000/69092 Loss: 147.345 -35200/69092 Loss: 145.761 -38400/69092 Loss: 147.931 -41600/69092 Loss: 148.879 -44800/69092 Loss: 146.097 -48000/69092 Loss: 148.339 -51200/69092 Loss: 146.139 -54400/69092 Loss: 145.088 -57600/69092 Loss: 147.679 -60800/69092 Loss: 144.936 -64000/69092 Loss: 146.873 -67200/69092 Loss: 146.842 -Training time 0:04:50.096951 -Epoch: 64 Average loss: 146.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 65) -0/69092 Loss: 133.547 -3200/69092 Loss: 146.622 -6400/69092 Loss: 145.129 -9600/69092 Loss: 145.236 -12800/69092 Loss: 149.343 -16000/69092 Loss: 145.954 -19200/69092 Loss: 148.716 -22400/69092 Loss: 149.692 -25600/69092 Loss: 144.304 -28800/69092 Loss: 148.359 -32000/69092 Loss: 147.637 -35200/69092 Loss: 144.991 -38400/69092 Loss: 144.874 -41600/69092 Loss: 146.725 -44800/69092 Loss: 149.184 -48000/69092 Loss: 147.321 -51200/69092 Loss: 148.040 -54400/69092 Loss: 146.115 -57600/69092 Loss: 145.868 -60800/69092 Loss: 146.311 -64000/69092 Loss: 147.308 -67200/69092 Loss: 143.867 -Training time 0:04:57.613096 -Epoch: 65 Average loss: 146.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 66) -0/69092 Loss: 137.107 -3200/69092 Loss: 144.685 -6400/69092 Loss: 146.227 -9600/69092 Loss: 146.986 -12800/69092 Loss: 145.772 -16000/69092 Loss: 144.567 -19200/69092 Loss: 149.107 -22400/69092 Loss: 146.743 -25600/69092 Loss: 146.766 -28800/69092 Loss: 146.158 -32000/69092 Loss: 147.916 -35200/69092 Loss: 143.342 -38400/69092 Loss: 146.238 -41600/69092 Loss: 148.321 -44800/69092 Loss: 147.586 -48000/69092 Loss: 146.530 -51200/69092 Loss: 146.869 -54400/69092 Loss: 148.187 -57600/69092 Loss: 149.371 -60800/69092 Loss: 149.565 -64000/69092 Loss: 145.194 -67200/69092 Loss: 147.560 -Training time 0:04:44.057703 -Epoch: 66 Average loss: 146.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 67) -0/69092 Loss: 132.834 -3200/69092 Loss: 150.361 -6400/69092 Loss: 146.893 -9600/69092 Loss: 147.579 -12800/69092 Loss: 146.295 -16000/69092 Loss: 145.771 -19200/69092 Loss: 146.264 -22400/69092 Loss: 146.407 -25600/69092 Loss: 147.373 -28800/69092 Loss: 144.665 -32000/69092 Loss: 145.544 -35200/69092 Loss: 146.769 -38400/69092 Loss: 146.017 -41600/69092 Loss: 148.503 -44800/69092 Loss: 145.678 -48000/69092 Loss: 144.804 -51200/69092 Loss: 149.534 -54400/69092 Loss: 145.693 -57600/69092 Loss: 147.367 -60800/69092 Loss: 147.390 -64000/69092 Loss: 147.381 -67200/69092 Loss: 146.191 -Training time 0:04:46.229026 -Epoch: 67 Average loss: 146.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 68) -0/69092 Loss: 156.265 -3200/69092 Loss: 147.226 -6400/69092 Loss: 144.118 -9600/69092 Loss: 150.272 -12800/69092 Loss: 148.052 -16000/69092 Loss: 147.857 -19200/69092 Loss: 147.257 -22400/69092 Loss: 147.120 -25600/69092 Loss: 147.883 -28800/69092 Loss: 146.170 -32000/69092 Loss: 146.023 -35200/69092 Loss: 148.848 -38400/69092 Loss: 145.555 -41600/69092 Loss: 146.862 -44800/69092 Loss: 147.628 -48000/69092 Loss: 148.706 -51200/69092 Loss: 145.668 -54400/69092 Loss: 146.020 -57600/69092 Loss: 143.698 -60800/69092 Loss: 145.418 -64000/69092 Loss: 146.778 -67200/69092 Loss: 147.013 -Training time 0:04:44.444230 -Epoch: 68 Average loss: 146.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 69) -0/69092 Loss: 141.757 -3200/69092 Loss: 146.667 -6400/69092 Loss: 148.135 -9600/69092 Loss: 144.239 -12800/69092 Loss: 146.948 -16000/69092 Loss: 145.072 -19200/69092 Loss: 147.376 -22400/69092 Loss: 147.459 -25600/69092 Loss: 147.408 -28800/69092 Loss: 146.334 -32000/69092 Loss: 145.263 -35200/69092 Loss: 146.575 -38400/69092 Loss: 144.863 -41600/69092 Loss: 149.402 -44800/69092 Loss: 146.329 -48000/69092 Loss: 146.814 -51200/69092 Loss: 148.077 -54400/69092 Loss: 147.105 -57600/69092 Loss: 148.299 -60800/69092 Loss: 146.524 -64000/69092 Loss: 143.302 -67200/69092 Loss: 147.207 -Training time 0:04:46.047948 -Epoch: 69 Average loss: 146.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 70) -0/69092 Loss: 141.410 -3200/69092 Loss: 146.306 -6400/69092 Loss: 150.284 -9600/69092 Loss: 147.467 -12800/69092 Loss: 145.598 -16000/69092 Loss: 145.802 -19200/69092 Loss: 145.539 -22400/69092 Loss: 144.361 -25600/69092 Loss: 147.736 -28800/69092 Loss: 145.281 -32000/69092 Loss: 145.185 -35200/69092 Loss: 146.842 -38400/69092 Loss: 147.779 -41600/69092 Loss: 147.431 -44800/69092 Loss: 145.748 -48000/69092 Loss: 147.031 -51200/69092 Loss: 144.653 -54400/69092 Loss: 147.337 -57600/69092 Loss: 147.096 -60800/69092 Loss: 149.250 -64000/69092 Loss: 146.275 -67200/69092 Loss: 145.122 -Training time 0:04:45.749935 -Epoch: 70 Average loss: 146.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 71) -0/69092 Loss: 146.901 -3200/69092 Loss: 148.857 -6400/69092 Loss: 145.309 -9600/69092 Loss: 148.464 -12800/69092 Loss: 145.992 -16000/69092 Loss: 145.157 -19200/69092 Loss: 144.117 -22400/69092 Loss: 150.274 -25600/69092 Loss: 146.916 -28800/69092 Loss: 146.169 -32000/69092 Loss: 143.758 -35200/69092 Loss: 150.341 -38400/69092 Loss: 149.049 -41600/69092 Loss: 146.319 -44800/69092 Loss: 146.374 -48000/69092 Loss: 147.975 -51200/69092 Loss: 148.639 -54400/69092 Loss: 145.146 -57600/69092 Loss: 146.491 -60800/69092 Loss: 145.525 -64000/69092 Loss: 148.042 -67200/69092 Loss: 144.941 -Training time 0:04:44.314991 -Epoch: 71 Average loss: 146.89 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 72) -0/69092 Loss: 136.750 -3200/69092 Loss: 143.544 -6400/69092 Loss: 143.704 -9600/69092 Loss: 148.213 -12800/69092 Loss: 148.150 -16000/69092 Loss: 147.150 -19200/69092 Loss: 145.401 -22400/69092 Loss: 149.390 -25600/69092 Loss: 146.899 -28800/69092 Loss: 147.619 -32000/69092 Loss: 146.977 -35200/69092 Loss: 146.808 -38400/69092 Loss: 148.002 -41600/69092 Loss: 147.236 -44800/69092 Loss: 145.674 -48000/69092 Loss: 146.777 -51200/69092 Loss: 146.922 -54400/69092 Loss: 145.737 -57600/69092 Loss: 149.854 -60800/69092 Loss: 145.690 -64000/69092 Loss: 147.044 -67200/69092 Loss: 144.801 -Training time 0:04:44.887256 -Epoch: 72 Average loss: 146.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 73) -0/69092 Loss: 143.328 -3200/69092 Loss: 146.134 -6400/69092 Loss: 147.602 -9600/69092 Loss: 145.674 -12800/69092 Loss: 146.106 -16000/69092 Loss: 144.240 -19200/69092 Loss: 146.586 -22400/69092 Loss: 146.861 -25600/69092 Loss: 146.332 -28800/69092 Loss: 146.855 -32000/69092 Loss: 146.523 -35200/69092 Loss: 145.526 -38400/69092 Loss: 147.427 -41600/69092 Loss: 147.800 -44800/69092 Loss: 149.240 -48000/69092 Loss: 147.022 -51200/69092 Loss: 148.705 -54400/69092 Loss: 147.315 -57600/69092 Loss: 147.294 -60800/69092 Loss: 145.819 -64000/69092 Loss: 144.981 -67200/69092 Loss: 147.104 -Training time 0:04:45.578236 -Epoch: 73 Average loss: 146.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 74) -0/69092 Loss: 148.127 -3200/69092 Loss: 147.190 -6400/69092 Loss: 145.206 -9600/69092 Loss: 146.966 -12800/69092 Loss: 144.832 -16000/69092 Loss: 146.914 -19200/69092 Loss: 146.511 -22400/69092 Loss: 146.988 -25600/69092 Loss: 149.029 -28800/69092 Loss: 145.859 -32000/69092 Loss: 147.268 -35200/69092 Loss: 148.214 -38400/69092 Loss: 146.391 -41600/69092 Loss: 146.535 -44800/69092 Loss: 148.129 -48000/69092 Loss: 148.398 -51200/69092 Loss: 146.996 -54400/69092 Loss: 145.574 -57600/69092 Loss: 145.142 -60800/69092 Loss: 148.766 -64000/69092 Loss: 147.201 -67200/69092 Loss: 144.287 -Training time 0:04:47.385231 -Epoch: 74 Average loss: 146.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 75) -0/69092 Loss: 145.387 -3200/69092 Loss: 147.010 -6400/69092 Loss: 146.720 -9600/69092 Loss: 145.023 -12800/69092 Loss: 144.783 -16000/69092 Loss: 145.967 -19200/69092 Loss: 147.753 -22400/69092 Loss: 149.264 -25600/69092 Loss: 147.752 -28800/69092 Loss: 145.571 -32000/69092 Loss: 145.894 -35200/69092 Loss: 146.341 -38400/69092 Loss: 150.516 -41600/69092 Loss: 144.471 -44800/69092 Loss: 147.365 -48000/69092 Loss: 146.712 -51200/69092 Loss: 147.938 -54400/69092 Loss: 147.917 -57600/69092 Loss: 145.684 -60800/69092 Loss: 146.698 -64000/69092 Loss: 145.271 -67200/69092 Loss: 146.297 -Training time 0:04:52.850931 -Epoch: 75 Average loss: 146.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 76) -0/69092 Loss: 134.811 -3200/69092 Loss: 147.197 -6400/69092 Loss: 144.804 -9600/69092 Loss: 144.591 -12800/69092 Loss: 143.718 -16000/69092 Loss: 147.373 -19200/69092 Loss: 148.129 -22400/69092 Loss: 146.322 -25600/69092 Loss: 147.842 -28800/69092 Loss: 146.666 -32000/69092 Loss: 142.722 -35200/69092 Loss: 148.314 -38400/69092 Loss: 145.398 -41600/69092 Loss: 149.611 -44800/69092 Loss: 145.691 -48000/69092 Loss: 146.587 -51200/69092 Loss: 147.103 -54400/69092 Loss: 147.075 -57600/69092 Loss: 146.253 -60800/69092 Loss: 147.973 -64000/69092 Loss: 147.565 -67200/69092 Loss: 144.309 -Training time 0:04:38.922155 -Epoch: 76 Average loss: 146.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 77) -0/69092 Loss: 161.470 -3200/69092 Loss: 148.837 -6400/69092 Loss: 145.034 -9600/69092 Loss: 146.081 -12800/69092 Loss: 146.551 -16000/69092 Loss: 150.407 -19200/69092 Loss: 145.112 -22400/69092 Loss: 147.386 -25600/69092 Loss: 145.021 -28800/69092 Loss: 144.185 -32000/69092 Loss: 150.343 -35200/69092 Loss: 145.518 -38400/69092 Loss: 143.175 -41600/69092 Loss: 145.601 -44800/69092 Loss: 146.190 -48000/69092 Loss: 147.611 -51200/69092 Loss: 144.955 -54400/69092 Loss: 145.267 -57600/69092 Loss: 143.007 -60800/69092 Loss: 145.417 -64000/69092 Loss: 148.023 -67200/69092 Loss: 148.796 -Training time 0:04:49.948629 -Epoch: 77 Average loss: 146.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 78) -0/69092 Loss: 132.900 -3200/69092 Loss: 144.037 -6400/69092 Loss: 147.456 -9600/69092 Loss: 147.700 -12800/69092 Loss: 142.977 -16000/69092 Loss: 144.563 -19200/69092 Loss: 148.978 -22400/69092 Loss: 146.363 -25600/69092 Loss: 146.626 -28800/69092 Loss: 143.578 -32000/69092 Loss: 146.683 -35200/69092 Loss: 145.173 -38400/69092 Loss: 145.595 -41600/69092 Loss: 147.735 -44800/69092 Loss: 145.994 -48000/69092 Loss: 147.550 -51200/69092 Loss: 149.236 -54400/69092 Loss: 149.362 -57600/69092 Loss: 145.351 -60800/69092 Loss: 145.817 -64000/69092 Loss: 147.280 -67200/69092 Loss: 148.197 -Training time 0:04:48.329674 -Epoch: 78 Average loss: 146.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 79) -0/69092 Loss: 146.488 -3200/69092 Loss: 148.755 -6400/69092 Loss: 147.160 -9600/69092 Loss: 147.761 -12800/69092 Loss: 146.850 -16000/69092 Loss: 146.065 -19200/69092 Loss: 148.065 -22400/69092 Loss: 146.303 -25600/69092 Loss: 144.103 -28800/69092 Loss: 145.871 -32000/69092 Loss: 145.392 -35200/69092 Loss: 149.758 -38400/69092 Loss: 143.850 -41600/69092 Loss: 144.490 -44800/69092 Loss: 147.981 -48000/69092 Loss: 147.345 -51200/69092 Loss: 144.965 -54400/69092 Loss: 145.190 -57600/69092 Loss: 145.986 -60800/69092 Loss: 147.443 -64000/69092 Loss: 146.229 -67200/69092 Loss: 147.378 -Training time 0:04:48.934611 -Epoch: 79 Average loss: 146.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 80) -0/69092 Loss: 157.176 -3200/69092 Loss: 145.926 -6400/69092 Loss: 143.998 -9600/69092 Loss: 145.831 -12800/69092 Loss: 146.750 -16000/69092 Loss: 144.284 -19200/69092 Loss: 146.421 -22400/69092 Loss: 146.518 -25600/69092 Loss: 146.410 -28800/69092 Loss: 146.470 -32000/69092 Loss: 148.159 -35200/69092 Loss: 148.378 -38400/69092 Loss: 147.588 -41600/69092 Loss: 146.371 -44800/69092 Loss: 146.708 -48000/69092 Loss: 146.941 -51200/69092 Loss: 148.051 -54400/69092 Loss: 148.573 -57600/69092 Loss: 145.871 -60800/69092 Loss: 145.712 -64000/69092 Loss: 144.300 -67200/69092 Loss: 148.144 -Training time 0:04:52.228795 -Epoch: 80 Average loss: 146.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 81) -0/69092 Loss: 153.261 -3200/69092 Loss: 148.666 -6400/69092 Loss: 148.354 -9600/69092 Loss: 147.904 -12800/69092 Loss: 146.296 -16000/69092 Loss: 143.740 -19200/69092 Loss: 147.392 -22400/69092 Loss: 147.917 -25600/69092 Loss: 145.985 -28800/69092 Loss: 148.436 -32000/69092 Loss: 148.712 -35200/69092 Loss: 145.638 -38400/69092 Loss: 145.446 -41600/69092 Loss: 144.139 -44800/69092 Loss: 143.804 -48000/69092 Loss: 147.053 -51200/69092 Loss: 145.991 -54400/69092 Loss: 147.518 -57600/69092 Loss: 148.761 -60800/69092 Loss: 146.601 -64000/69092 Loss: 144.337 -67200/69092 Loss: 145.645 -Training time 0:04:45.350943 -Epoch: 81 Average loss: 146.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 82) -0/69092 Loss: 153.126 -3200/69092 Loss: 148.162 -6400/69092 Loss: 143.942 -9600/69092 Loss: 144.100 -12800/69092 Loss: 145.566 -16000/69092 Loss: 147.425 -19200/69092 Loss: 149.394 -22400/69092 Loss: 148.007 -25600/69092 Loss: 144.938 -28800/69092 Loss: 146.931 -32000/69092 Loss: 145.399 -35200/69092 Loss: 144.522 -38400/69092 Loss: 146.210 -41600/69092 Loss: 148.657 -44800/69092 Loss: 147.164 -48000/69092 Loss: 147.403 -51200/69092 Loss: 145.348 -54400/69092 Loss: 143.764 -57600/69092 Loss: 147.150 -60800/69092 Loss: 146.995 -64000/69092 Loss: 148.026 -67200/69092 Loss: 145.771 -Training time 0:04:51.941539 -Epoch: 82 Average loss: 146.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 83) -0/69092 Loss: 176.068 -3200/69092 Loss: 145.124 -6400/69092 Loss: 143.828 -9600/69092 Loss: 149.005 -12800/69092 Loss: 148.229 -16000/69092 Loss: 147.771 -19200/69092 Loss: 144.125 -22400/69092 Loss: 147.251 -25600/69092 Loss: 146.498 -28800/69092 Loss: 146.091 -32000/69092 Loss: 147.282 -35200/69092 Loss: 145.029 -38400/69092 Loss: 146.293 -41600/69092 Loss: 147.910 -44800/69092 Loss: 149.290 -48000/69092 Loss: 146.987 -51200/69092 Loss: 145.287 -54400/69092 Loss: 150.488 -57600/69092 Loss: 145.710 -60800/69092 Loss: 144.541 -64000/69092 Loss: 145.557 -67200/69092 Loss: 145.058 -Training time 0:04:48.348697 -Epoch: 83 Average loss: 146.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 84) -0/69092 Loss: 144.708 -3200/69092 Loss: 144.832 -6400/69092 Loss: 145.334 -9600/69092 Loss: 146.718 -12800/69092 Loss: 147.947 -16000/69092 Loss: 146.680 -19200/69092 Loss: 147.667 -22400/69092 Loss: 145.028 -25600/69092 Loss: 147.608 -28800/69092 Loss: 145.457 -32000/69092 Loss: 145.508 -35200/69092 Loss: 148.174 -38400/69092 Loss: 149.388 -41600/69092 Loss: 146.454 -44800/69092 Loss: 147.681 -48000/69092 Loss: 146.904 -51200/69092 Loss: 145.659 -54400/69092 Loss: 144.355 -57600/69092 Loss: 148.931 -60800/69092 Loss: 144.741 -64000/69092 Loss: 147.586 -67200/69092 Loss: 144.604 -Training time 0:04:47.092381 -Epoch: 84 Average loss: 146.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 85) -0/69092 Loss: 150.844 -3200/69092 Loss: 149.226 -6400/69092 Loss: 145.229 -9600/69092 Loss: 146.837 -12800/69092 Loss: 145.042 -16000/69092 Loss: 147.181 -19200/69092 Loss: 146.465 -22400/69092 Loss: 147.421 -25600/69092 Loss: 147.043 -28800/69092 Loss: 146.730 -32000/69092 Loss: 144.857 -35200/69092 Loss: 148.278 -38400/69092 Loss: 144.500 -41600/69092 Loss: 145.502 -44800/69092 Loss: 148.351 -48000/69092 Loss: 143.943 -51200/69092 Loss: 147.422 -54400/69092 Loss: 145.589 -57600/69092 Loss: 147.053 -60800/69092 Loss: 145.999 -64000/69092 Loss: 147.959 -67200/69092 Loss: 148.060 -Training time 0:04:54.056603 -Epoch: 85 Average loss: 146.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 86) -0/69092 Loss: 150.501 -3200/69092 Loss: 146.975 -6400/69092 Loss: 145.075 -9600/69092 Loss: 145.210 -12800/69092 Loss: 147.565 -16000/69092 Loss: 146.472 -19200/69092 Loss: 146.963 -22400/69092 Loss: 147.741 -25600/69092 Loss: 143.369 -28800/69092 Loss: 147.038 -32000/69092 Loss: 146.497 -35200/69092 Loss: 148.039 -38400/69092 Loss: 146.521 -41600/69092 Loss: 147.316 -44800/69092 Loss: 144.388 -48000/69092 Loss: 144.874 -51200/69092 Loss: 147.348 -54400/69092 Loss: 144.612 -57600/69092 Loss: 144.866 -60800/69092 Loss: 147.650 -64000/69092 Loss: 148.534 -67200/69092 Loss: 147.284 -Training time 0:04:42.164306 -Epoch: 86 Average loss: 146.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 87) -0/69092 Loss: 130.774 -3200/69092 Loss: 143.932 -6400/69092 Loss: 146.004 -9600/69092 Loss: 145.332 -12800/69092 Loss: 147.397 -16000/69092 Loss: 149.202 -19200/69092 Loss: 145.596 -22400/69092 Loss: 143.158 -25600/69092 Loss: 149.671 -28800/69092 Loss: 148.668 -32000/69092 Loss: 146.308 -35200/69092 Loss: 147.665 -38400/69092 Loss: 144.408 -41600/69092 Loss: 145.956 -44800/69092 Loss: 145.521 -48000/69092 Loss: 146.520 -51200/69092 Loss: 147.369 -54400/69092 Loss: 145.813 -57600/69092 Loss: 146.935 -60800/69092 Loss: 143.657 -64000/69092 Loss: 148.843 -67200/69092 Loss: 147.984 -Training time 0:04:49.511242 -Epoch: 87 Average loss: 146.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 88) -0/69092 Loss: 172.170 -3200/69092 Loss: 147.932 -6400/69092 Loss: 148.160 -9600/69092 Loss: 146.456 -12800/69092 Loss: 147.134 -16000/69092 Loss: 145.960 -19200/69092 Loss: 145.012 -22400/69092 Loss: 144.202 -25600/69092 Loss: 148.634 -28800/69092 Loss: 142.529 -32000/69092 Loss: 145.319 -35200/69092 Loss: 145.394 -38400/69092 Loss: 145.681 -41600/69092 Loss: 146.299 -44800/69092 Loss: 146.569 -48000/69092 Loss: 147.196 -51200/69092 Loss: 146.142 -54400/69092 Loss: 145.017 -57600/69092 Loss: 146.816 -60800/69092 Loss: 148.059 -64000/69092 Loss: 147.033 -67200/69092 Loss: 146.888 -Training time 0:04:46.596728 -Epoch: 88 Average loss: 146.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 89) -0/69092 Loss: 141.474 -3200/69092 Loss: 144.988 -6400/69092 Loss: 144.828 -9600/69092 Loss: 148.709 -12800/69092 Loss: 145.847 -16000/69092 Loss: 147.807 -19200/69092 Loss: 143.096 -22400/69092 Loss: 147.022 -25600/69092 Loss: 145.785 -28800/69092 Loss: 147.062 -32000/69092 Loss: 145.481 -35200/69092 Loss: 146.118 -38400/69092 Loss: 148.299 -41600/69092 Loss: 149.001 -44800/69092 Loss: 147.231 -48000/69092 Loss: 149.250 -51200/69092 Loss: 145.316 -54400/69092 Loss: 144.862 -57600/69092 Loss: 146.098 -60800/69092 Loss: 147.844 -64000/69092 Loss: 145.150 -67200/69092 Loss: 145.787 -Training time 0:04:45.924385 -Epoch: 89 Average loss: 146.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 90) -0/69092 Loss: 150.736 -3200/69092 Loss: 143.700 -6400/69092 Loss: 147.926 -9600/69092 Loss: 146.266 -12800/69092 Loss: 147.853 -16000/69092 Loss: 146.538 -19200/69092 Loss: 146.596 -22400/69092 Loss: 144.553 -25600/69092 Loss: 144.404 -28800/69092 Loss: 145.696 -32000/69092 Loss: 144.545 -35200/69092 Loss: 144.873 -38400/69092 Loss: 148.271 -41600/69092 Loss: 149.252 -44800/69092 Loss: 145.313 -48000/69092 Loss: 146.939 -51200/69092 Loss: 145.722 -54400/69092 Loss: 147.297 -57600/69092 Loss: 146.017 -60800/69092 Loss: 143.556 -64000/69092 Loss: 147.418 -67200/69092 Loss: 149.259 -Training time 0:04:36.654075 -Epoch: 90 Average loss: 146.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 91) -0/69092 Loss: 130.866 -3200/69092 Loss: 147.000 -6400/69092 Loss: 146.036 -9600/69092 Loss: 145.496 -12800/69092 Loss: 143.556 -16000/69092 Loss: 143.745 -19200/69092 Loss: 146.638 -22400/69092 Loss: 147.189 -25600/69092 Loss: 148.213 -28800/69092 Loss: 148.934 -32000/69092 Loss: 147.896 -35200/69092 Loss: 146.729 -38400/69092 Loss: 143.678 -41600/69092 Loss: 143.533 -44800/69092 Loss: 147.984 -48000/69092 Loss: 144.601 -51200/69092 Loss: 145.526 -54400/69092 Loss: 146.910 -57600/69092 Loss: 145.254 -60800/69092 Loss: 143.548 -64000/69092 Loss: 149.972 -67200/69092 Loss: 146.744 -Training time 0:04:45.640072 -Epoch: 91 Average loss: 146.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 92) -0/69092 Loss: 143.790 -3200/69092 Loss: 148.452 -6400/69092 Loss: 148.212 -9600/69092 Loss: 146.093 -12800/69092 Loss: 146.753 -16000/69092 Loss: 146.704 -19200/69092 Loss: 145.288 -22400/69092 Loss: 145.378 -25600/69092 Loss: 145.909 -28800/69092 Loss: 144.579 -32000/69092 Loss: 147.110 -35200/69092 Loss: 149.035 -38400/69092 Loss: 146.199 -41600/69092 Loss: 147.460 -44800/69092 Loss: 147.125 -48000/69092 Loss: 145.227 -51200/69092 Loss: 143.031 -54400/69092 Loss: 143.526 -57600/69092 Loss: 146.274 -60800/69092 Loss: 144.178 -64000/69092 Loss: 147.213 -67200/69092 Loss: 146.719 -Training time 0:04:46.616076 -Epoch: 92 Average loss: 146.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 93) -0/69092 Loss: 131.844 -3200/69092 Loss: 146.233 -6400/69092 Loss: 145.560 -9600/69092 Loss: 145.973 -12800/69092 Loss: 145.216 -16000/69092 Loss: 146.969 -19200/69092 Loss: 148.277 -22400/69092 Loss: 144.590 -25600/69092 Loss: 146.804 -28800/69092 Loss: 144.767 -32000/69092 Loss: 147.660 -35200/69092 Loss: 148.570 -38400/69092 Loss: 144.681 -41600/69092 Loss: 146.550 -44800/69092 Loss: 146.291 -48000/69092 Loss: 146.049 -51200/69092 Loss: 148.134 -54400/69092 Loss: 145.314 -57600/69092 Loss: 147.903 -60800/69092 Loss: 147.337 -64000/69092 Loss: 147.311 -67200/69092 Loss: 146.239 -Training time 0:04:33.958303 -Epoch: 93 Average loss: 146.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 94) -0/69092 Loss: 159.987 -3200/69092 Loss: 144.610 -6400/69092 Loss: 145.484 -9600/69092 Loss: 147.181 -12800/69092 Loss: 144.933 -16000/69092 Loss: 146.598 -19200/69092 Loss: 145.728 -22400/69092 Loss: 147.576 -25600/69092 Loss: 149.163 -28800/69092 Loss: 146.879 -32000/69092 Loss: 145.968 -35200/69092 Loss: 143.184 -38400/69092 Loss: 143.644 -41600/69092 Loss: 147.400 -44800/69092 Loss: 150.723 -48000/69092 Loss: 145.739 -51200/69092 Loss: 148.812 -54400/69092 Loss: 146.706 -57600/69092 Loss: 143.072 -60800/69092 Loss: 146.473 -64000/69092 Loss: 148.354 -67200/69092 Loss: 146.095 -Training time 0:04:45.355013 -Epoch: 94 Average loss: 146.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 95) -0/69092 Loss: 147.164 -3200/69092 Loss: 145.659 -6400/69092 Loss: 148.269 -9600/69092 Loss: 145.315 -12800/69092 Loss: 144.934 -16000/69092 Loss: 147.971 -19200/69092 Loss: 146.946 -22400/69092 Loss: 146.300 -25600/69092 Loss: 145.977 -28800/69092 Loss: 146.625 -32000/69092 Loss: 145.866 -35200/69092 Loss: 147.237 -38400/69092 Loss: 144.933 -41600/69092 Loss: 145.057 -44800/69092 Loss: 147.038 -48000/69092 Loss: 147.101 -51200/69092 Loss: 144.668 -54400/69092 Loss: 146.394 -57600/69092 Loss: 145.030 -60800/69092 Loss: 144.753 -64000/69092 Loss: 142.859 -67200/69092 Loss: 150.341 -Training time 0:04:49.958558 -Epoch: 95 Average loss: 146.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 96) -0/69092 Loss: 158.442 -3200/69092 Loss: 142.351 -6400/69092 Loss: 142.983 -9600/69092 Loss: 145.565 -12800/69092 Loss: 144.412 -16000/69092 Loss: 145.774 -19200/69092 Loss: 146.258 -22400/69092 Loss: 146.872 -25600/69092 Loss: 147.029 -28800/69092 Loss: 147.865 -32000/69092 Loss: 148.307 -35200/69092 Loss: 145.273 -38400/69092 Loss: 144.069 -41600/69092 Loss: 145.431 -44800/69092 Loss: 146.413 -48000/69092 Loss: 146.679 -51200/69092 Loss: 144.460 -54400/69092 Loss: 145.622 -57600/69092 Loss: 147.939 -60800/69092 Loss: 147.975 -64000/69092 Loss: 146.828 -67200/69092 Loss: 149.784 -Training time 0:04:49.432118 -Epoch: 96 Average loss: 146.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 97) -0/69092 Loss: 150.812 -3200/69092 Loss: 147.672 -6400/69092 Loss: 148.727 -9600/69092 Loss: 144.173 -12800/69092 Loss: 147.766 -16000/69092 Loss: 144.169 -19200/69092 Loss: 145.384 -22400/69092 Loss: 145.715 -25600/69092 Loss: 145.146 -28800/69092 Loss: 148.175 -32000/69092 Loss: 145.735 -35200/69092 Loss: 146.501 -38400/69092 Loss: 149.295 -41600/69092 Loss: 146.113 -44800/69092 Loss: 142.665 -48000/69092 Loss: 146.194 -51200/69092 Loss: 147.126 -54400/69092 Loss: 146.652 -57600/69092 Loss: 145.176 -60800/69092 Loss: 146.656 -64000/69092 Loss: 146.244 -67200/69092 Loss: 146.630 -Training time 0:04:48.152766 -Epoch: 97 Average loss: 146.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 98) -0/69092 Loss: 137.869 -3200/69092 Loss: 144.554 -6400/69092 Loss: 147.447 -9600/69092 Loss: 147.078 -12800/69092 Loss: 147.414 -16000/69092 Loss: 145.274 -19200/69092 Loss: 143.583 -22400/69092 Loss: 146.877 -25600/69092 Loss: 145.375 -28800/69092 Loss: 144.806 -32000/69092 Loss: 147.440 -35200/69092 Loss: 144.985 -38400/69092 Loss: 145.597 -41600/69092 Loss: 145.825 -44800/69092 Loss: 146.902 -48000/69092 Loss: 146.497 -51200/69092 Loss: 147.173 -54400/69092 Loss: 147.590 -57600/69092 Loss: 143.967 -60800/69092 Loss: 146.571 -64000/69092 Loss: 147.073 -67200/69092 Loss: 148.854 -Training time 0:04:50.807013 -Epoch: 98 Average loss: 146.28 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 99) -0/69092 Loss: 154.239 -3200/69092 Loss: 144.396 -6400/69092 Loss: 147.155 -9600/69092 Loss: 144.404 -12800/69092 Loss: 144.719 -16000/69092 Loss: 144.030 -19200/69092 Loss: 145.726 -22400/69092 Loss: 145.985 -25600/69092 Loss: 146.530 -28800/69092 Loss: 146.298 -32000/69092 Loss: 145.471 -35200/69092 Loss: 146.877 -38400/69092 Loss: 149.247 -41600/69092 Loss: 147.390 -44800/69092 Loss: 146.625 -48000/69092 Loss: 148.406 -51200/69092 Loss: 146.172 -54400/69092 Loss: 147.904 -57600/69092 Loss: 143.994 -60800/69092 Loss: 145.696 -64000/69092 Loss: 144.117 -67200/69092 Loss: 147.643 -Training time 0:04:49.392991 -Epoch: 99 Average loss: 146.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 100) -0/69092 Loss: 138.864 -3200/69092 Loss: 144.660 -6400/69092 Loss: 146.022 -9600/69092 Loss: 148.185 -12800/69092 Loss: 146.598 -16000/69092 Loss: 146.159 -19200/69092 Loss: 146.482 -22400/69092 Loss: 147.925 -25600/69092 Loss: 144.232 -28800/69092 Loss: 142.620 -32000/69092 Loss: 146.098 -35200/69092 Loss: 145.490 -38400/69092 Loss: 148.119 -41600/69092 Loss: 148.468 -44800/69092 Loss: 146.462 -48000/69092 Loss: 143.704 -51200/69092 Loss: 144.804 -54400/69092 Loss: 145.402 -57600/69092 Loss: 147.141 -60800/69092 Loss: 148.049 -64000/69092 Loss: 147.209 -67200/69092 Loss: 145.067 -Training time 0:05:02.259688 -Epoch: 100 Average loss: 146.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 101) -0/69092 Loss: 139.731 -3200/69092 Loss: 146.653 -6400/69092 Loss: 146.633 -9600/69092 Loss: 146.183 -12800/69092 Loss: 146.290 -16000/69092 Loss: 145.528 -19200/69092 Loss: 146.658 -22400/69092 Loss: 144.775 -25600/69092 Loss: 147.836 -28800/69092 Loss: 145.933 -32000/69092 Loss: 145.502 -35200/69092 Loss: 149.519 -38400/69092 Loss: 146.157 -41600/69092 Loss: 143.665 -44800/69092 Loss: 146.125 -48000/69092 Loss: 145.846 -51200/69092 Loss: 145.099 -54400/69092 Loss: 145.854 -57600/69092 Loss: 149.682 -60800/69092 Loss: 146.248 -64000/69092 Loss: 145.447 -67200/69092 Loss: 145.757 -Training time 0:04:50.492272 -Epoch: 101 Average loss: 146.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 102) -0/69092 Loss: 137.845 -3200/69092 Loss: 146.728 -6400/69092 Loss: 148.161 -9600/69092 Loss: 145.300 -12800/69092 Loss: 145.649 -16000/69092 Loss: 146.977 -19200/69092 Loss: 146.316 -22400/69092 Loss: 144.493 -25600/69092 Loss: 148.020 -28800/69092 Loss: 145.930 -32000/69092 Loss: 147.541 -35200/69092 Loss: 143.148 -38400/69092 Loss: 144.819 -41600/69092 Loss: 145.984 -44800/69092 Loss: 146.177 -48000/69092 Loss: 147.886 -51200/69092 Loss: 147.379 -54400/69092 Loss: 146.163 -57600/69092 Loss: 145.780 -60800/69092 Loss: 143.685 -64000/69092 Loss: 147.160 -67200/69092 Loss: 146.238 -Training time 0:04:56.379840 -Epoch: 102 Average loss: 146.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 103) -0/69092 Loss: 146.581 -3200/69092 Loss: 145.429 -6400/69092 Loss: 145.708 -9600/69092 Loss: 147.823 -12800/69092 Loss: 145.072 -16000/69092 Loss: 145.139 -19200/69092 Loss: 148.050 -22400/69092 Loss: 145.983 -25600/69092 Loss: 146.083 -28800/69092 Loss: 147.766 -32000/69092 Loss: 145.270 -35200/69092 Loss: 146.375 -38400/69092 Loss: 146.013 -41600/69092 Loss: 146.810 -44800/69092 Loss: 144.908 -48000/69092 Loss: 150.633 -51200/69092 Loss: 144.139 -54400/69092 Loss: 147.514 -57600/69092 Loss: 146.007 -60800/69092 Loss: 146.419 -64000/69092 Loss: 144.330 -67200/69092 Loss: 146.160 -Training time 0:04:54.375537 -Epoch: 103 Average loss: 146.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 104) -0/69092 Loss: 130.534 -3200/69092 Loss: 145.072 -6400/69092 Loss: 144.192 -9600/69092 Loss: 146.945 -12800/69092 Loss: 144.152 -16000/69092 Loss: 146.369 -19200/69092 Loss: 147.721 -22400/69092 Loss: 145.291 -25600/69092 Loss: 148.231 -28800/69092 Loss: 147.630 -32000/69092 Loss: 146.201 -35200/69092 Loss: 145.965 -38400/69092 Loss: 147.652 -41600/69092 Loss: 143.750 -44800/69092 Loss: 144.310 -48000/69092 Loss: 146.166 -51200/69092 Loss: 146.873 -54400/69092 Loss: 146.049 -57600/69092 Loss: 146.260 -60800/69092 Loss: 145.330 -64000/69092 Loss: 146.802 -67200/69092 Loss: 146.804 -Training time 0:04:59.427512 -Epoch: 104 Average loss: 146.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 105) -0/69092 Loss: 132.117 -3200/69092 Loss: 146.253 -6400/69092 Loss: 145.019 -9600/69092 Loss: 148.625 -12800/69092 Loss: 145.470 -16000/69092 Loss: 147.295 -19200/69092 Loss: 146.672 -22400/69092 Loss: 145.614 -25600/69092 Loss: 146.372 -28800/69092 Loss: 144.464 -32000/69092 Loss: 144.707 -35200/69092 Loss: 143.969 -38400/69092 Loss: 148.209 -41600/69092 Loss: 147.600 -44800/69092 Loss: 148.195 -48000/69092 Loss: 147.528 -51200/69092 Loss: 145.292 -54400/69092 Loss: 145.971 -57600/69092 Loss: 143.792 -60800/69092 Loss: 148.743 -64000/69092 Loss: 147.708 -67200/69092 Loss: 145.900 -Training time 0:04:59.014296 -Epoch: 105 Average loss: 146.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 106) -0/69092 Loss: 145.947 -3200/69092 Loss: 148.659 -6400/69092 Loss: 144.583 -9600/69092 Loss: 147.626 -12800/69092 Loss: 146.635 -16000/69092 Loss: 144.842 -19200/69092 Loss: 145.490 -22400/69092 Loss: 144.518 -25600/69092 Loss: 143.298 -28800/69092 Loss: 149.115 -32000/69092 Loss: 145.910 -35200/69092 Loss: 145.557 -38400/69092 Loss: 145.652 -41600/69092 Loss: 145.566 -44800/69092 Loss: 145.848 -48000/69092 Loss: 147.078 -51200/69092 Loss: 147.832 -54400/69092 Loss: 146.577 -57600/69092 Loss: 144.249 -60800/69092 Loss: 146.791 -64000/69092 Loss: 144.408 -67200/69092 Loss: 146.397 -Training time 0:04:50.408624 -Epoch: 106 Average loss: 146.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 107) -0/69092 Loss: 151.039 -3200/69092 Loss: 148.167 -6400/69092 Loss: 144.562 -9600/69092 Loss: 145.521 -12800/69092 Loss: 148.811 -16000/69092 Loss: 145.789 -19200/69092 Loss: 146.616 -22400/69092 Loss: 146.180 -25600/69092 Loss: 144.805 -28800/69092 Loss: 145.103 -32000/69092 Loss: 148.776 -35200/69092 Loss: 144.775 -38400/69092 Loss: 144.048 -41600/69092 Loss: 144.765 -44800/69092 Loss: 149.169 -48000/69092 Loss: 147.047 -51200/69092 Loss: 147.648 -54400/69092 Loss: 146.018 -57600/69092 Loss: 143.473 -60800/69092 Loss: 147.100 -64000/69092 Loss: 144.868 -67200/69092 Loss: 145.224 -Training time 0:04:37.447307 -Epoch: 107 Average loss: 146.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 108) -0/69092 Loss: 128.266 -3200/69092 Loss: 145.199 -6400/69092 Loss: 147.147 -9600/69092 Loss: 149.362 -12800/69092 Loss: 144.580 -16000/69092 Loss: 146.901 -19200/69092 Loss: 148.808 -22400/69092 Loss: 144.811 -25600/69092 Loss: 144.553 -28800/69092 Loss: 146.868 -32000/69092 Loss: 147.421 -35200/69092 Loss: 145.371 -38400/69092 Loss: 146.525 -41600/69092 Loss: 145.474 -44800/69092 Loss: 146.642 -48000/69092 Loss: 144.745 -51200/69092 Loss: 145.890 -54400/69092 Loss: 143.847 -57600/69092 Loss: 147.177 -60800/69092 Loss: 145.012 -64000/69092 Loss: 147.952 -67200/69092 Loss: 146.501 -Training time 0:04:49.045111 -Epoch: 108 Average loss: 146.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 109) -0/69092 Loss: 148.765 -3200/69092 Loss: 146.100 -6400/69092 Loss: 144.642 -9600/69092 Loss: 147.783 -12800/69092 Loss: 150.626 -16000/69092 Loss: 148.139 -19200/69092 Loss: 143.067 -22400/69092 Loss: 143.564 -25600/69092 Loss: 145.103 -28800/69092 Loss: 144.103 -32000/69092 Loss: 146.391 -35200/69092 Loss: 145.805 -38400/69092 Loss: 147.241 -41600/69092 Loss: 146.699 -44800/69092 Loss: 144.942 -48000/69092 Loss: 143.257 -51200/69092 Loss: 147.046 -54400/69092 Loss: 145.775 -57600/69092 Loss: 146.831 -60800/69092 Loss: 146.036 -64000/69092 Loss: 144.623 -67200/69092 Loss: 146.934 -Training time 0:04:50.016618 -Epoch: 109 Average loss: 146.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 110) -0/69092 Loss: 130.376 -3200/69092 Loss: 149.106 -6400/69092 Loss: 145.386 -9600/69092 Loss: 146.282 -12800/69092 Loss: 148.713 -16000/69092 Loss: 147.315 -19200/69092 Loss: 145.703 -22400/69092 Loss: 145.796 -25600/69092 Loss: 147.294 -28800/69092 Loss: 147.374 -32000/69092 Loss: 145.776 -35200/69092 Loss: 146.005 -38400/69092 Loss: 147.978 -41600/69092 Loss: 143.488 -44800/69092 Loss: 143.420 -48000/69092 Loss: 145.115 -51200/69092 Loss: 143.473 -54400/69092 Loss: 144.648 -57600/69092 Loss: 145.152 -60800/69092 Loss: 144.988 -64000/69092 Loss: 144.863 -67200/69092 Loss: 148.045 -Training time 0:04:50.847158 -Epoch: 110 Average loss: 146.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 111) -0/69092 Loss: 165.203 -3200/69092 Loss: 145.252 -6400/69092 Loss: 145.382 -9600/69092 Loss: 147.041 -12800/69092 Loss: 147.485 -16000/69092 Loss: 145.525 -19200/69092 Loss: 146.576 -22400/69092 Loss: 145.825 -25600/69092 Loss: 146.910 -28800/69092 Loss: 145.976 -32000/69092 Loss: 146.487 -35200/69092 Loss: 147.970 -38400/69092 Loss: 142.838 -41600/69092 Loss: 147.194 -44800/69092 Loss: 146.962 -48000/69092 Loss: 148.049 -51200/69092 Loss: 143.582 -54400/69092 Loss: 144.774 -57600/69092 Loss: 145.327 -60800/69092 Loss: 144.627 -64000/69092 Loss: 146.615 -67200/69092 Loss: 147.865 -Training time 0:04:51.248216 -Epoch: 111 Average loss: 146.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 112) -0/69092 Loss: 136.520 -3200/69092 Loss: 144.773 -6400/69092 Loss: 144.679 -9600/69092 Loss: 146.260 -12800/69092 Loss: 147.670 -16000/69092 Loss: 144.617 -19200/69092 Loss: 144.163 -22400/69092 Loss: 145.293 -25600/69092 Loss: 143.857 -28800/69092 Loss: 147.111 -32000/69092 Loss: 146.718 -35200/69092 Loss: 146.649 -38400/69092 Loss: 145.887 -41600/69092 Loss: 147.043 -44800/69092 Loss: 144.844 -48000/69092 Loss: 146.134 -51200/69092 Loss: 146.961 -54400/69092 Loss: 145.410 -57600/69092 Loss: 146.247 -60800/69092 Loss: 146.507 -64000/69092 Loss: 151.692 -67200/69092 Loss: 146.187 -Training time 0:04:45.679753 -Epoch: 112 Average loss: 146.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 113) -0/69092 Loss: 146.427 -3200/69092 Loss: 145.019 -6400/69092 Loss: 144.179 -9600/69092 Loss: 143.454 -12800/69092 Loss: 145.496 -16000/69092 Loss: 147.107 -19200/69092 Loss: 148.987 -22400/69092 Loss: 147.540 -25600/69092 Loss: 144.192 -28800/69092 Loss: 145.857 -32000/69092 Loss: 146.907 -35200/69092 Loss: 147.025 -38400/69092 Loss: 147.464 -41600/69092 Loss: 145.127 -44800/69092 Loss: 145.134 -48000/69092 Loss: 146.232 -51200/69092 Loss: 148.749 -54400/69092 Loss: 147.042 -57600/69092 Loss: 146.374 -60800/69092 Loss: 145.059 -64000/69092 Loss: 145.683 -67200/69092 Loss: 143.474 -Training time 0:04:46.129673 -Epoch: 113 Average loss: 145.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 114) -0/69092 Loss: 144.778 -3200/69092 Loss: 143.392 -6400/69092 Loss: 147.666 -9600/69092 Loss: 146.264 -12800/69092 Loss: 143.568 -16000/69092 Loss: 145.713 -19200/69092 Loss: 144.667 -22400/69092 Loss: 144.799 -25600/69092 Loss: 147.714 -28800/69092 Loss: 147.228 -32000/69092 Loss: 144.913 -35200/69092 Loss: 143.135 -38400/69092 Loss: 145.958 -41600/69092 Loss: 147.487 -44800/69092 Loss: 147.618 -48000/69092 Loss: 145.319 -51200/69092 Loss: 147.119 -54400/69092 Loss: 146.600 -57600/69092 Loss: 146.191 -60800/69092 Loss: 147.204 -64000/69092 Loss: 146.261 -67200/69092 Loss: 146.122 -Training time 0:04:51.105844 -Epoch: 114 Average loss: 146.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 115) -0/69092 Loss: 133.509 -3200/69092 Loss: 147.741 -6400/69092 Loss: 142.576 -9600/69092 Loss: 145.737 -12800/69092 Loss: 146.453 -16000/69092 Loss: 149.904 -19200/69092 Loss: 145.035 -22400/69092 Loss: 145.878 -25600/69092 Loss: 145.561 -28800/69092 Loss: 147.577 -32000/69092 Loss: 148.763 -35200/69092 Loss: 144.254 -38400/69092 Loss: 146.629 -41600/69092 Loss: 145.588 -44800/69092 Loss: 145.786 -48000/69092 Loss: 144.087 -51200/69092 Loss: 147.574 -54400/69092 Loss: 146.626 -57600/69092 Loss: 147.096 -60800/69092 Loss: 145.142 -64000/69092 Loss: 142.579 -67200/69092 Loss: 144.149 -Training time 0:04:43.645364 -Epoch: 115 Average loss: 146.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 116) -0/69092 Loss: 161.732 -3200/69092 Loss: 144.177 -6400/69092 Loss: 146.406 -9600/69092 Loss: 147.298 -12800/69092 Loss: 143.329 -16000/69092 Loss: 144.917 -19200/69092 Loss: 146.169 -22400/69092 Loss: 145.983 -25600/69092 Loss: 144.672 -28800/69092 Loss: 146.303 -32000/69092 Loss: 144.998 -35200/69092 Loss: 146.761 -38400/69092 Loss: 147.210 -41600/69092 Loss: 146.413 -44800/69092 Loss: 145.364 -48000/69092 Loss: 148.832 -51200/69092 Loss: 144.940 -54400/69092 Loss: 144.519 -57600/69092 Loss: 145.309 -60800/69092 Loss: 147.307 -64000/69092 Loss: 148.331 -67200/69092 Loss: 146.517 -Training time 0:04:44.782513 -Epoch: 116 Average loss: 145.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 117) -0/69092 Loss: 148.347 -3200/69092 Loss: 144.033 -6400/69092 Loss: 145.816 -9600/69092 Loss: 148.012 -12800/69092 Loss: 147.761 -16000/69092 Loss: 143.092 -19200/69092 Loss: 146.285 -22400/69092 Loss: 147.739 -25600/69092 Loss: 149.156 -28800/69092 Loss: 145.611 -32000/69092 Loss: 145.875 -35200/69092 Loss: 147.979 -38400/69092 Loss: 145.146 -41600/69092 Loss: 145.820 -44800/69092 Loss: 144.963 -48000/69092 Loss: 146.284 -51200/69092 Loss: 145.179 -54400/69092 Loss: 146.234 -57600/69092 Loss: 144.831 -60800/69092 Loss: 147.571 -64000/69092 Loss: 147.710 -67200/69092 Loss: 144.079 -Training time 0:04:46.924920 -Epoch: 117 Average loss: 146.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 118) -0/69092 Loss: 157.480 -3200/69092 Loss: 149.274 -6400/69092 Loss: 147.107 -9600/69092 Loss: 143.046 -12800/69092 Loss: 144.197 -16000/69092 Loss: 147.376 -19200/69092 Loss: 145.885 -22400/69092 Loss: 144.901 -25600/69092 Loss: 144.866 -28800/69092 Loss: 146.456 -32000/69092 Loss: 148.189 -35200/69092 Loss: 146.113 -38400/69092 Loss: 144.089 -41600/69092 Loss: 148.923 -44800/69092 Loss: 147.606 -48000/69092 Loss: 146.035 -51200/69092 Loss: 145.660 -54400/69092 Loss: 144.232 -57600/69092 Loss: 147.091 -60800/69092 Loss: 144.818 -64000/69092 Loss: 143.162 -67200/69092 Loss: 146.966 -Training time 0:04:45.661094 -Epoch: 118 Average loss: 145.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 119) -0/69092 Loss: 153.837 -3200/69092 Loss: 148.322 -6400/69092 Loss: 146.598 -9600/69092 Loss: 145.814 -12800/69092 Loss: 146.202 -16000/69092 Loss: 144.343 -19200/69092 Loss: 145.251 -22400/69092 Loss: 145.708 -25600/69092 Loss: 145.235 -28800/69092 Loss: 145.780 -32000/69092 Loss: 144.486 -35200/69092 Loss: 146.611 -38400/69092 Loss: 146.383 -41600/69092 Loss: 148.458 -44800/69092 Loss: 145.451 -48000/69092 Loss: 147.772 -51200/69092 Loss: 145.517 -54400/69092 Loss: 144.958 -57600/69092 Loss: 142.384 -60800/69092 Loss: 143.981 -64000/69092 Loss: 146.866 -67200/69092 Loss: 145.221 -Training time 0:04:48.385159 -Epoch: 119 Average loss: 145.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 120) -0/69092 Loss: 136.371 -3200/69092 Loss: 143.163 -6400/69092 Loss: 143.475 -9600/69092 Loss: 148.267 -12800/69092 Loss: 147.337 -16000/69092 Loss: 146.614 -19200/69092 Loss: 144.409 -22400/69092 Loss: 147.758 -25600/69092 Loss: 147.001 -28800/69092 Loss: 145.738 -32000/69092 Loss: 144.724 -35200/69092 Loss: 144.732 -38400/69092 Loss: 146.099 -41600/69092 Loss: 145.078 -44800/69092 Loss: 147.099 -48000/69092 Loss: 146.569 -51200/69092 Loss: 146.935 -54400/69092 Loss: 146.290 -57600/69092 Loss: 145.528 -60800/69092 Loss: 147.599 -64000/69092 Loss: 144.916 -67200/69092 Loss: 148.928 -Training time 0:04:36.875365 -Epoch: 120 Average loss: 146.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 121) -0/69092 Loss: 131.305 -3200/69092 Loss: 143.638 -6400/69092 Loss: 146.782 -9600/69092 Loss: 143.325 -12800/69092 Loss: 150.015 -16000/69092 Loss: 144.729 -19200/69092 Loss: 144.394 -22400/69092 Loss: 145.765 -25600/69092 Loss: 145.712 -28800/69092 Loss: 145.295 -32000/69092 Loss: 145.650 -35200/69092 Loss: 146.135 -38400/69092 Loss: 146.447 -41600/69092 Loss: 146.660 -44800/69092 Loss: 148.607 -48000/69092 Loss: 147.215 -51200/69092 Loss: 147.149 -54400/69092 Loss: 144.786 -57600/69092 Loss: 143.834 -60800/69092 Loss: 146.769 -64000/69092 Loss: 143.324 -67200/69092 Loss: 145.913 -Training time 0:04:52.196409 -Epoch: 121 Average loss: 145.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 122) -0/69092 Loss: 155.197 -3200/69092 Loss: 147.635 -6400/69092 Loss: 142.454 -9600/69092 Loss: 146.415 -12800/69092 Loss: 147.256 -16000/69092 Loss: 144.683 -19200/69092 Loss: 146.449 -22400/69092 Loss: 145.164 -25600/69092 Loss: 148.890 -28800/69092 Loss: 144.380 -32000/69092 Loss: 144.353 -35200/69092 Loss: 147.569 -38400/69092 Loss: 144.548 -41600/69092 Loss: 144.247 -44800/69092 Loss: 148.184 -48000/69092 Loss: 146.054 -51200/69092 Loss: 144.699 -54400/69092 Loss: 144.041 -57600/69092 Loss: 148.090 -60800/69092 Loss: 145.390 -64000/69092 Loss: 143.471 -67200/69092 Loss: 145.281 -Training time 0:04:43.886909 -Epoch: 122 Average loss: 145.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 123) -0/69092 Loss: 148.461 -3200/69092 Loss: 144.364 -6400/69092 Loss: 145.360 -9600/69092 Loss: 146.712 -12800/69092 Loss: 149.114 -16000/69092 Loss: 145.473 -19200/69092 Loss: 147.030 -22400/69092 Loss: 148.086 -25600/69092 Loss: 145.227 -28800/69092 Loss: 144.656 -32000/69092 Loss: 144.907 -35200/69092 Loss: 146.060 -38400/69092 Loss: 146.030 -41600/69092 Loss: 149.171 -44800/69092 Loss: 145.563 -48000/69092 Loss: 146.399 -51200/69092 Loss: 144.539 -54400/69092 Loss: 143.456 -57600/69092 Loss: 142.815 -60800/69092 Loss: 146.142 -64000/69092 Loss: 147.865 -67200/69092 Loss: 144.077 -Training time 0:04:45.941821 -Epoch: 123 Average loss: 145.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 124) -0/69092 Loss: 133.072 -3200/69092 Loss: 145.802 -6400/69092 Loss: 146.011 -9600/69092 Loss: 146.894 -12800/69092 Loss: 143.769 -16000/69092 Loss: 148.883 -19200/69092 Loss: 145.309 -22400/69092 Loss: 146.619 -25600/69092 Loss: 145.833 -28800/69092 Loss: 146.381 -32000/69092 Loss: 145.016 -35200/69092 Loss: 147.641 -38400/69092 Loss: 147.790 -41600/69092 Loss: 145.403 -44800/69092 Loss: 145.743 -48000/69092 Loss: 147.073 -51200/69092 Loss: 146.143 -54400/69092 Loss: 143.506 -57600/69092 Loss: 145.625 -60800/69092 Loss: 147.074 -64000/69092 Loss: 144.900 -67200/69092 Loss: 147.176 -Training time 0:04:42.112605 -Epoch: 124 Average loss: 146.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_5/checkpoints/last' (iter 125) -0/69092 Loss: 148.691 -3200/69092 Loss: 144.481 -6400/69092 Loss: 145.141 -9600/69092 Loss: 146.340 -12800/69092 Loss: 144.990 -16000/69092 Loss: 148.193 -19200/69092 Loss: 143.628 -22400/69092 Loss: 145.318 -25600/69092 Loss: 146.684 -28800/69092 Loss: 146.355 -32000/69092 Loss: 144.701 -35200/69092 Loss: 144.713 -38400/69092 Loss: 146.332 -41600/69092 Loss: 146.015 -44800/69092 Loss: 147.595 -48000/69092 Loss: 144.976 -51200/69092 Loss: 145.766 -54400/69092 Loss: 146.489 -57600/69092 Loss: 147.861 -60800/69092 Loss: 146.934 -64000/69092 Loss: 143.582 diff --git a/OAR.2068292.stderr b/OAR.2068292.stderr deleted file mode 100644 index a65b71902f..0000000000 --- a/OAR.2068292.stderr +++ /dev/null @@ -1,3 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) -## OAR [2020-06-25 10:08:28] Job 2068292 KILLED ## diff --git a/OAR.2068292.stdout b/OAR.2068292.stdout deleted file mode 100644 index 5e37e87eac..0000000000 --- a/OAR.2068292.stdout +++ /dev/null @@ -1,2903 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_15', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=15, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_15 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -Tesla K40c -Tesla K80 -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=30, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=15, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 769185 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last (iter 2)' -0/69092 Loss: 164.068 -3200/69092 Loss: 159.062 -6400/69092 Loss: 157.224 -9600/69092 Loss: 154.582 -12800/69092 Loss: 154.183 -16000/69092 Loss: 153.739 -19200/69092 Loss: 153.701 -22400/69092 Loss: 150.246 -25600/69092 Loss: 153.596 -28800/69092 Loss: 150.894 -32000/69092 Loss: 151.965 -35200/69092 Loss: 149.944 -38400/69092 Loss: 148.097 -41600/69092 Loss: 147.112 -44800/69092 Loss: 147.547 -48000/69092 Loss: 143.439 -51200/69092 Loss: 143.876 -54400/69092 Loss: 143.881 -57600/69092 Loss: 141.629 -60800/69092 Loss: 141.141 -64000/69092 Loss: 140.164 -67200/69092 Loss: 142.035 -Training time 0:04:58.146411 -Epoch: 1 Average loss: 148.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 3) -0/69092 Loss: 152.479 -3200/69092 Loss: 142.726 -6400/69092 Loss: 144.389 -9600/69092 Loss: 138.407 -12800/69092 Loss: 138.264 -16000/69092 Loss: 140.209 -19200/69092 Loss: 139.579 -22400/69092 Loss: 136.847 -25600/69092 Loss: 134.427 -28800/69092 Loss: 134.863 -32000/69092 Loss: 135.759 -35200/69092 Loss: 137.380 -38400/69092 Loss: 136.066 -41600/69092 Loss: 135.911 -44800/69092 Loss: 135.465 -48000/69092 Loss: 134.008 -51200/69092 Loss: 133.120 -54400/69092 Loss: 136.413 -57600/69092 Loss: 132.427 -60800/69092 Loss: 135.123 -64000/69092 Loss: 136.686 -67200/69092 Loss: 133.240 -Training time 0:04:50.508829 -Epoch: 2 Average loss: 136.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 4) -0/69092 Loss: 137.475 -3200/69092 Loss: 134.191 -6400/69092 Loss: 132.651 -9600/69092 Loss: 132.042 -12800/69092 Loss: 134.187 -16000/69092 Loss: 133.448 -19200/69092 Loss: 136.283 -22400/69092 Loss: 130.460 -25600/69092 Loss: 133.009 -28800/69092 Loss: 134.494 -32000/69092 Loss: 133.096 -35200/69092 Loss: 130.866 -38400/69092 Loss: 132.377 -41600/69092 Loss: 133.557 -44800/69092 Loss: 133.696 -48000/69092 Loss: 128.877 -51200/69092 Loss: 130.718 -54400/69092 Loss: 130.170 -57600/69092 Loss: 131.031 -60800/69092 Loss: 128.449 -64000/69092 Loss: 131.945 -67200/69092 Loss: 132.108 -Training time 0:04:49.348248 -Epoch: 3 Average loss: 132.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 5) -0/69092 Loss: 112.655 -3200/69092 Loss: 131.264 -6400/69092 Loss: 130.131 -9600/69092 Loss: 131.474 -12800/69092 Loss: 130.229 -16000/69092 Loss: 131.610 -19200/69092 Loss: 128.390 -22400/69092 Loss: 130.507 -25600/69092 Loss: 131.762 -28800/69092 Loss: 130.924 -32000/69092 Loss: 129.825 -35200/69092 Loss: 130.224 -38400/69092 Loss: 130.196 -41600/69092 Loss: 129.426 -44800/69092 Loss: 130.307 -48000/69092 Loss: 131.456 -51200/69092 Loss: 128.890 -54400/69092 Loss: 130.250 -57600/69092 Loss: 128.794 -60800/69092 Loss: 131.355 -64000/69092 Loss: 130.152 -67200/69092 Loss: 131.066 -Training time 0:04:50.908864 -Epoch: 4 Average loss: 130.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 6) -0/69092 Loss: 127.888 -3200/69092 Loss: 130.891 -6400/69092 Loss: 129.799 -9600/69092 Loss: 130.955 -12800/69092 Loss: 126.172 -16000/69092 Loss: 130.069 -19200/69092 Loss: 130.856 -22400/69092 Loss: 127.463 -25600/69092 Loss: 128.853 -28800/69092 Loss: 128.933 -32000/69092 Loss: 129.473 -35200/69092 Loss: 130.088 -38400/69092 Loss: 129.832 -41600/69092 Loss: 130.128 -44800/69092 Loss: 128.135 -48000/69092 Loss: 127.895 -51200/69092 Loss: 125.976 -54400/69092 Loss: 127.525 -57600/69092 Loss: 130.168 -60800/69092 Loss: 127.672 -64000/69092 Loss: 126.680 -67200/69092 Loss: 128.760 -Training time 0:04:49.413921 -Epoch: 5 Average loss: 128.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 7) -0/69092 Loss: 136.036 -3200/69092 Loss: 127.881 -6400/69092 Loss: 128.480 -9600/69092 Loss: 126.520 -12800/69092 Loss: 127.070 -16000/69092 Loss: 127.472 -19200/69092 Loss: 127.496 -22400/69092 Loss: 129.317 -25600/69092 Loss: 126.693 -28800/69092 Loss: 126.789 -32000/69092 Loss: 128.037 -35200/69092 Loss: 126.847 -38400/69092 Loss: 127.274 -41600/69092 Loss: 127.458 -44800/69092 Loss: 127.357 -48000/69092 Loss: 129.112 -51200/69092 Loss: 129.610 -54400/69092 Loss: 127.765 -57600/69092 Loss: 127.420 -60800/69092 Loss: 126.488 -64000/69092 Loss: 126.994 -67200/69092 Loss: 128.856 -Training time 0:04:52.057289 -Epoch: 6 Average loss: 127.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 8) -0/69092 Loss: 114.712 -3200/69092 Loss: 127.520 -6400/69092 Loss: 124.320 -9600/69092 Loss: 126.230 -12800/69092 Loss: 129.335 -16000/69092 Loss: 125.961 -19200/69092 Loss: 127.808 -22400/69092 Loss: 127.900 -25600/69092 Loss: 125.901 -28800/69092 Loss: 127.676 -32000/69092 Loss: 123.257 -35200/69092 Loss: 125.715 -38400/69092 Loss: 126.342 -41600/69092 Loss: 127.061 -44800/69092 Loss: 124.434 -48000/69092 Loss: 127.263 -51200/69092 Loss: 126.219 -54400/69092 Loss: 127.302 -57600/69092 Loss: 126.033 -60800/69092 Loss: 126.737 -64000/69092 Loss: 127.853 -67200/69092 Loss: 125.695 -Training time 0:04:49.157151 -Epoch: 7 Average loss: 126.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 9) -0/69092 Loss: 144.076 -3200/69092 Loss: 125.569 -6400/69092 Loss: 125.122 -9600/69092 Loss: 126.678 -12800/69092 Loss: 123.121 -16000/69092 Loss: 126.292 -19200/69092 Loss: 124.290 -22400/69092 Loss: 125.286 -25600/69092 Loss: 127.713 -28800/69092 Loss: 128.740 -32000/69092 Loss: 126.587 -35200/69092 Loss: 125.263 -38400/69092 Loss: 127.627 -41600/69092 Loss: 122.766 -44800/69092 Loss: 123.776 -48000/69092 Loss: 124.783 -51200/69092 Loss: 127.640 -54400/69092 Loss: 125.066 -57600/69092 Loss: 127.092 -60800/69092 Loss: 126.302 -64000/69092 Loss: 124.086 -67200/69092 Loss: 126.229 -Training time 0:04:51.763548 -Epoch: 8 Average loss: 125.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 10) -0/69092 Loss: 143.115 -3200/69092 Loss: 124.100 -6400/69092 Loss: 127.471 -9600/69092 Loss: 124.016 -12800/69092 Loss: 124.874 -16000/69092 Loss: 125.503 -19200/69092 Loss: 123.509 -22400/69092 Loss: 123.893 -25600/69092 Loss: 124.253 -28800/69092 Loss: 125.839 -32000/69092 Loss: 124.033 -35200/69092 Loss: 122.995 -38400/69092 Loss: 126.921 -41600/69092 Loss: 126.131 -44800/69092 Loss: 125.028 -48000/69092 Loss: 124.421 -51200/69092 Loss: 124.513 -54400/69092 Loss: 125.414 -57600/69092 Loss: 123.846 -60800/69092 Loss: 123.672 -64000/69092 Loss: 124.252 -67200/69092 Loss: 125.823 -Training time 0:04:50.687557 -Epoch: 9 Average loss: 124.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 11) -0/69092 Loss: 132.530 -3200/69092 Loss: 124.715 -6400/69092 Loss: 126.497 -9600/69092 Loss: 123.316 -12800/69092 Loss: 124.901 -16000/69092 Loss: 125.205 -19200/69092 Loss: 122.765 -22400/69092 Loss: 126.498 -25600/69092 Loss: 124.976 -28800/69092 Loss: 124.783 -32000/69092 Loss: 123.165 -35200/69092 Loss: 123.086 -38400/69092 Loss: 124.304 -41600/69092 Loss: 122.915 -44800/69092 Loss: 125.451 -48000/69092 Loss: 124.571 -51200/69092 Loss: 124.476 -54400/69092 Loss: 122.600 -57600/69092 Loss: 124.240 -60800/69092 Loss: 123.787 -64000/69092 Loss: 122.615 -67200/69092 Loss: 124.837 -Training time 0:04:52.461847 -Epoch: 10 Average loss: 124.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 12) -0/69092 Loss: 123.180 -3200/69092 Loss: 123.575 -6400/69092 Loss: 122.534 -9600/69092 Loss: 123.632 -12800/69092 Loss: 124.860 -16000/69092 Loss: 123.442 -19200/69092 Loss: 124.136 -22400/69092 Loss: 123.966 -25600/69092 Loss: 123.843 -28800/69092 Loss: 124.526 -32000/69092 Loss: 122.504 -35200/69092 Loss: 124.491 -38400/69092 Loss: 123.499 -41600/69092 Loss: 124.616 -44800/69092 Loss: 122.246 -48000/69092 Loss: 123.037 -51200/69092 Loss: 124.100 -54400/69092 Loss: 126.530 -57600/69092 Loss: 121.947 -60800/69092 Loss: 122.122 -64000/69092 Loss: 124.514 -67200/69092 Loss: 123.882 -Training time 0:04:51.755454 -Epoch: 11 Average loss: 123.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 13) -0/69092 Loss: 124.780 -3200/69092 Loss: 123.718 -6400/69092 Loss: 125.246 -9600/69092 Loss: 125.144 -12800/69092 Loss: 121.691 -16000/69092 Loss: 121.736 -19200/69092 Loss: 123.536 -22400/69092 Loss: 124.053 -25600/69092 Loss: 124.311 -28800/69092 Loss: 124.009 -32000/69092 Loss: 123.313 -35200/69092 Loss: 123.694 -38400/69092 Loss: 123.137 -41600/69092 Loss: 122.437 -44800/69092 Loss: 122.643 -48000/69092 Loss: 121.283 -51200/69092 Loss: 122.192 -54400/69092 Loss: 121.984 -57600/69092 Loss: 121.845 -60800/69092 Loss: 123.966 -64000/69092 Loss: 123.677 -67200/69092 Loss: 121.343 -Training time 0:04:49.593080 -Epoch: 12 Average loss: 123.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 14) -0/69092 Loss: 113.463 -3200/69092 Loss: 121.899 -6400/69092 Loss: 122.716 -9600/69092 Loss: 121.791 -12800/69092 Loss: 122.534 -16000/69092 Loss: 122.608 -19200/69092 Loss: 123.967 -22400/69092 Loss: 123.682 -25600/69092 Loss: 121.969 -28800/69092 Loss: 123.313 -32000/69092 Loss: 122.102 -35200/69092 Loss: 124.053 -38400/69092 Loss: 121.807 -41600/69092 Loss: 121.690 -44800/69092 Loss: 123.093 -48000/69092 Loss: 122.188 -51200/69092 Loss: 123.149 -54400/69092 Loss: 120.774 -57600/69092 Loss: 121.591 -60800/69092 Loss: 125.514 -64000/69092 Loss: 122.014 -67200/69092 Loss: 121.635 -Training time 0:04:51.107930 -Epoch: 13 Average loss: 122.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 15) -0/69092 Loss: 141.649 -3200/69092 Loss: 121.660 -6400/69092 Loss: 124.211 -9600/69092 Loss: 123.860 -12800/69092 Loss: 120.946 -16000/69092 Loss: 120.423 -19200/69092 Loss: 122.185 -22400/69092 Loss: 122.621 -25600/69092 Loss: 123.143 -28800/69092 Loss: 122.857 -32000/69092 Loss: 122.491 -35200/69092 Loss: 122.411 -38400/69092 Loss: 119.921 -41600/69092 Loss: 123.385 -44800/69092 Loss: 122.616 -48000/69092 Loss: 121.728 -51200/69092 Loss: 121.045 -54400/69092 Loss: 123.097 -57600/69092 Loss: 121.515 -60800/69092 Loss: 123.073 -64000/69092 Loss: 121.583 -67200/69092 Loss: 121.666 -Training time 0:04:49.451576 -Epoch: 14 Average loss: 122.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 16) -0/69092 Loss: 124.186 -3200/69092 Loss: 120.439 -6400/69092 Loss: 121.248 -9600/69092 Loss: 120.874 -12800/69092 Loss: 121.578 -16000/69092 Loss: 122.464 -19200/69092 Loss: 121.549 -22400/69092 Loss: 120.158 -25600/69092 Loss: 120.951 -28800/69092 Loss: 124.429 -32000/69092 Loss: 121.813 -35200/69092 Loss: 121.571 -38400/69092 Loss: 123.013 -41600/69092 Loss: 120.008 -44800/69092 Loss: 122.563 -48000/69092 Loss: 122.886 -51200/69092 Loss: 120.782 -54400/69092 Loss: 123.421 -57600/69092 Loss: 121.868 -60800/69092 Loss: 121.298 -64000/69092 Loss: 119.484 -67200/69092 Loss: 123.969 -Training time 0:04:50.416095 -Epoch: 15 Average loss: 121.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 17) -0/69092 Loss: 147.280 -3200/69092 Loss: 124.071 -6400/69092 Loss: 122.413 -9600/69092 Loss: 121.878 -12800/69092 Loss: 118.349 -16000/69092 Loss: 122.346 -19200/69092 Loss: 119.379 -22400/69092 Loss: 119.008 -25600/69092 Loss: 123.249 -28800/69092 Loss: 120.557 -32000/69092 Loss: 120.716 -35200/69092 Loss: 120.112 -38400/69092 Loss: 120.230 -41600/69092 Loss: 123.128 -44800/69092 Loss: 122.548 -48000/69092 Loss: 121.832 -51200/69092 Loss: 122.497 -54400/69092 Loss: 120.060 -57600/69092 Loss: 121.200 -60800/69092 Loss: 122.492 -64000/69092 Loss: 121.126 -67200/69092 Loss: 119.935 -Training time 0:04:49.960933 -Epoch: 16 Average loss: 121.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 18) -0/69092 Loss: 124.367 -3200/69092 Loss: 122.409 -6400/69092 Loss: 122.262 -9600/69092 Loss: 119.387 -12800/69092 Loss: 121.039 -16000/69092 Loss: 119.182 -19200/69092 Loss: 121.419 -22400/69092 Loss: 121.514 -25600/69092 Loss: 122.545 -28800/69092 Loss: 122.114 -32000/69092 Loss: 119.501 -35200/69092 Loss: 122.873 -38400/69092 Loss: 121.808 -41600/69092 Loss: 120.921 -44800/69092 Loss: 121.306 -48000/69092 Loss: 120.496 -51200/69092 Loss: 120.772 -54400/69092 Loss: 118.943 -57600/69092 Loss: 120.649 -60800/69092 Loss: 120.235 -64000/69092 Loss: 122.692 -67200/69092 Loss: 119.990 -Training time 0:04:49.027354 -Epoch: 17 Average loss: 121.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 19) -0/69092 Loss: 121.317 -3200/69092 Loss: 120.732 -6400/69092 Loss: 122.482 -9600/69092 Loss: 119.718 -12800/69092 Loss: 119.866 -16000/69092 Loss: 120.726 -19200/69092 Loss: 121.990 -22400/69092 Loss: 119.675 -25600/69092 Loss: 121.545 -28800/69092 Loss: 120.568 -32000/69092 Loss: 122.772 -35200/69092 Loss: 121.967 -38400/69092 Loss: 121.649 -41600/69092 Loss: 117.995 -44800/69092 Loss: 121.247 -48000/69092 Loss: 120.534 -51200/69092 Loss: 119.402 -54400/69092 Loss: 119.726 -57600/69092 Loss: 122.539 -60800/69092 Loss: 119.981 -64000/69092 Loss: 118.654 -67200/69092 Loss: 119.318 -Training time 0:04:49.797799 -Epoch: 18 Average loss: 120.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 20) -0/69092 Loss: 118.134 -3200/69092 Loss: 120.396 -6400/69092 Loss: 120.969 -9600/69092 Loss: 120.209 -12800/69092 Loss: 121.274 -16000/69092 Loss: 121.006 -19200/69092 Loss: 122.580 -22400/69092 Loss: 119.853 -25600/69092 Loss: 119.243 -28800/69092 Loss: 118.694 -32000/69092 Loss: 121.411 -35200/69092 Loss: 121.019 -38400/69092 Loss: 120.749 -41600/69092 Loss: 121.177 -44800/69092 Loss: 120.289 -48000/69092 Loss: 118.386 -51200/69092 Loss: 119.777 -54400/69092 Loss: 120.387 -57600/69092 Loss: 119.084 -60800/69092 Loss: 122.402 -64000/69092 Loss: 119.486 -67200/69092 Loss: 120.203 -Training time 0:04:48.928545 -Epoch: 19 Average loss: 120.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 21) -0/69092 Loss: 132.927 -3200/69092 Loss: 121.500 -6400/69092 Loss: 121.023 -9600/69092 Loss: 119.467 -12800/69092 Loss: 119.294 -16000/69092 Loss: 120.119 -19200/69092 Loss: 121.221 -22400/69092 Loss: 121.108 -25600/69092 Loss: 120.540 -28800/69092 Loss: 119.922 -32000/69092 Loss: 119.803 -35200/69092 Loss: 118.895 -38400/69092 Loss: 120.113 -41600/69092 Loss: 119.533 -44800/69092 Loss: 120.517 -48000/69092 Loss: 118.937 -51200/69092 Loss: 119.558 -54400/69092 Loss: 118.833 -57600/69092 Loss: 119.291 -60800/69092 Loss: 118.990 -64000/69092 Loss: 120.532 -67200/69092 Loss: 121.909 -Training time 0:04:51.148482 -Epoch: 20 Average loss: 120.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 22) -0/69092 Loss: 118.307 -3200/69092 Loss: 119.423 -6400/69092 Loss: 118.216 -9600/69092 Loss: 119.984 -12800/69092 Loss: 120.158 -16000/69092 Loss: 117.909 -19200/69092 Loss: 119.399 -22400/69092 Loss: 120.739 -25600/69092 Loss: 121.521 -28800/69092 Loss: 120.108 -32000/69092 Loss: 118.571 -35200/69092 Loss: 119.629 -38400/69092 Loss: 118.709 -41600/69092 Loss: 119.575 -44800/69092 Loss: 118.780 -48000/69092 Loss: 119.657 -51200/69092 Loss: 119.952 -54400/69092 Loss: 119.715 -57600/69092 Loss: 118.939 -60800/69092 Loss: 117.817 -64000/69092 Loss: 120.944 -67200/69092 Loss: 121.950 -Training time 0:04:49.804652 -Epoch: 21 Average loss: 119.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 23) -0/69092 Loss: 121.398 -3200/69092 Loss: 118.355 -6400/69092 Loss: 118.077 -9600/69092 Loss: 119.630 -12800/69092 Loss: 120.356 -16000/69092 Loss: 119.896 -19200/69092 Loss: 121.023 -22400/69092 Loss: 120.690 -25600/69092 Loss: 119.712 -28800/69092 Loss: 121.213 -32000/69092 Loss: 122.260 -35200/69092 Loss: 118.701 -38400/69092 Loss: 120.645 -41600/69092 Loss: 118.089 -44800/69092 Loss: 119.693 -48000/69092 Loss: 118.592 -51200/69092 Loss: 119.260 -54400/69092 Loss: 119.355 -57600/69092 Loss: 117.261 -60800/69092 Loss: 118.825 -64000/69092 Loss: 117.297 -67200/69092 Loss: 119.719 -Training time 0:04:50.067787 -Epoch: 22 Average loss: 119.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 24) -0/69092 Loss: 111.638 -3200/69092 Loss: 119.813 -6400/69092 Loss: 118.761 -9600/69092 Loss: 118.287 -12800/69092 Loss: 118.752 -16000/69092 Loss: 118.375 -19200/69092 Loss: 118.758 -22400/69092 Loss: 120.132 -25600/69092 Loss: 117.772 -28800/69092 Loss: 120.166 -32000/69092 Loss: 120.307 -35200/69092 Loss: 119.838 -38400/69092 Loss: 118.112 -41600/69092 Loss: 118.822 -44800/69092 Loss: 118.199 -48000/69092 Loss: 119.910 -51200/69092 Loss: 120.456 -54400/69092 Loss: 121.213 -57600/69092 Loss: 119.889 -60800/69092 Loss: 119.915 -64000/69092 Loss: 116.545 -67200/69092 Loss: 118.453 -Training time 0:04:52.012971 -Epoch: 23 Average loss: 119.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 25) -0/69092 Loss: 140.434 -3200/69092 Loss: 118.041 -6400/69092 Loss: 120.979 -9600/69092 Loss: 116.782 -12800/69092 Loss: 119.718 -16000/69092 Loss: 119.394 -19200/69092 Loss: 117.417 -22400/69092 Loss: 118.923 -25600/69092 Loss: 118.774 -28800/69092 Loss: 118.152 -32000/69092 Loss: 118.696 -35200/69092 Loss: 119.377 -38400/69092 Loss: 120.148 -41600/69092 Loss: 119.314 -44800/69092 Loss: 120.440 -48000/69092 Loss: 118.426 -51200/69092 Loss: 119.611 -54400/69092 Loss: 119.685 -57600/69092 Loss: 119.266 -60800/69092 Loss: 118.629 -64000/69092 Loss: 118.080 -67200/69092 Loss: 119.973 -Training time 0:04:49.487557 -Epoch: 24 Average loss: 119.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 26) -0/69092 Loss: 124.300 -3200/69092 Loss: 117.881 -6400/69092 Loss: 118.144 -9600/69092 Loss: 120.593 -12800/69092 Loss: 117.324 -16000/69092 Loss: 118.725 -19200/69092 Loss: 118.808 -22400/69092 Loss: 120.655 -25600/69092 Loss: 118.664 -28800/69092 Loss: 120.388 -32000/69092 Loss: 118.245 -35200/69092 Loss: 120.707 -38400/69092 Loss: 118.805 -41600/69092 Loss: 119.746 -44800/69092 Loss: 119.556 -48000/69092 Loss: 118.753 -51200/69092 Loss: 117.709 -54400/69092 Loss: 118.975 -57600/69092 Loss: 119.539 -60800/69092 Loss: 118.077 -64000/69092 Loss: 118.615 -67200/69092 Loss: 118.794 -Training time 0:04:52.128706 -Epoch: 25 Average loss: 118.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 27) -0/69092 Loss: 113.090 -3200/69092 Loss: 119.358 -6400/69092 Loss: 118.229 -9600/69092 Loss: 119.189 -12800/69092 Loss: 117.514 -16000/69092 Loss: 118.845 -19200/69092 Loss: 118.498 -22400/69092 Loss: 117.974 -25600/69092 Loss: 116.578 -28800/69092 Loss: 118.265 -32000/69092 Loss: 118.847 -35200/69092 Loss: 121.428 -38400/69092 Loss: 120.392 -41600/69092 Loss: 118.957 -44800/69092 Loss: 119.120 -48000/69092 Loss: 119.334 -51200/69092 Loss: 120.669 -54400/69092 Loss: 120.009 -57600/69092 Loss: 117.227 -60800/69092 Loss: 118.158 -64000/69092 Loss: 119.327 -67200/69092 Loss: 118.300 -Training time 0:04:49.223185 -Epoch: 26 Average loss: 118.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 28) -0/69092 Loss: 116.295 -3200/69092 Loss: 117.970 -6400/69092 Loss: 119.817 -9600/69092 Loss: 117.504 -12800/69092 Loss: 120.582 -16000/69092 Loss: 120.024 -19200/69092 Loss: 119.205 -22400/69092 Loss: 116.581 -25600/69092 Loss: 117.436 -28800/69092 Loss: 118.478 -32000/69092 Loss: 120.577 -35200/69092 Loss: 116.665 -38400/69092 Loss: 119.224 -41600/69092 Loss: 118.680 -44800/69092 Loss: 118.032 -48000/69092 Loss: 118.059 -51200/69092 Loss: 118.905 -54400/69092 Loss: 118.619 -57600/69092 Loss: 117.789 -60800/69092 Loss: 118.975 -64000/69092 Loss: 117.807 -67200/69092 Loss: 118.468 -Training time 0:04:51.033925 -Epoch: 27 Average loss: 118.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 29) -0/69092 Loss: 107.462 -3200/69092 Loss: 117.137 -6400/69092 Loss: 119.733 -9600/69092 Loss: 119.552 -12800/69092 Loss: 118.056 -16000/69092 Loss: 118.923 -19200/69092 Loss: 117.516 -22400/69092 Loss: 120.202 -25600/69092 Loss: 118.220 -28800/69092 Loss: 120.580 -32000/69092 Loss: 117.011 -35200/69092 Loss: 117.457 -38400/69092 Loss: 120.626 -41600/69092 Loss: 118.098 -44800/69092 Loss: 118.663 -48000/69092 Loss: 118.516 -51200/69092 Loss: 116.312 -54400/69092 Loss: 117.661 -57600/69092 Loss: 117.157 -60800/69092 Loss: 120.903 -64000/69092 Loss: 118.162 -67200/69092 Loss: 116.963 -Training time 0:04:51.592031 -Epoch: 28 Average loss: 118.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 30) -0/69092 Loss: 102.629 -3200/69092 Loss: 119.291 -6400/69092 Loss: 117.435 -9600/69092 Loss: 119.788 -12800/69092 Loss: 116.903 -16000/69092 Loss: 118.794 -19200/69092 Loss: 118.863 -22400/69092 Loss: 117.916 -25600/69092 Loss: 120.067 -28800/69092 Loss: 120.635 -32000/69092 Loss: 117.094 -35200/69092 Loss: 117.373 -38400/69092 Loss: 118.355 -41600/69092 Loss: 116.381 -44800/69092 Loss: 118.091 -48000/69092 Loss: 117.962 -51200/69092 Loss: 119.181 -54400/69092 Loss: 117.127 -57600/69092 Loss: 118.752 -60800/69092 Loss: 118.904 -64000/69092 Loss: 116.458 -67200/69092 Loss: 118.868 -Training time 0:04:51.587348 -Epoch: 29 Average loss: 118.27 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 31) -0/69092 Loss: 117.959 -3200/69092 Loss: 118.615 -6400/69092 Loss: 116.865 -9600/69092 Loss: 117.357 -12800/69092 Loss: 117.407 -16000/69092 Loss: 118.332 -19200/69092 Loss: 117.742 -22400/69092 Loss: 118.900 -25600/69092 Loss: 118.546 -28800/69092 Loss: 118.227 -32000/69092 Loss: 116.875 -35200/69092 Loss: 117.978 -38400/69092 Loss: 118.425 -41600/69092 Loss: 117.657 -44800/69092 Loss: 118.104 -48000/69092 Loss: 119.604 -51200/69092 Loss: 119.600 -54400/69092 Loss: 121.515 -57600/69092 Loss: 118.742 -60800/69092 Loss: 116.864 -64000/69092 Loss: 115.990 -67200/69092 Loss: 118.275 -Training time 0:04:50.048876 -Epoch: 30 Average loss: 118.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 32) -0/69092 Loss: 106.593 -3200/69092 Loss: 119.711 -6400/69092 Loss: 116.807 -9600/69092 Loss: 117.608 -12800/69092 Loss: 118.867 -16000/69092 Loss: 117.906 -19200/69092 Loss: 117.232 -22400/69092 Loss: 115.240 -25600/69092 Loss: 117.749 -28800/69092 Loss: 118.540 -32000/69092 Loss: 119.195 -35200/69092 Loss: 118.320 -38400/69092 Loss: 116.502 -41600/69092 Loss: 117.607 -44800/69092 Loss: 117.263 -48000/69092 Loss: 117.957 -51200/69092 Loss: 117.742 -54400/69092 Loss: 118.916 -57600/69092 Loss: 117.189 -60800/69092 Loss: 120.184 -64000/69092 Loss: 116.788 -67200/69092 Loss: 118.234 -Training time 0:04:50.015429 -Epoch: 31 Average loss: 117.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 33) -0/69092 Loss: 128.475 -3200/69092 Loss: 117.685 -6400/69092 Loss: 116.569 -9600/69092 Loss: 119.111 -12800/69092 Loss: 117.263 -16000/69092 Loss: 116.626 -19200/69092 Loss: 117.213 -22400/69092 Loss: 117.793 -25600/69092 Loss: 117.037 -28800/69092 Loss: 119.234 -32000/69092 Loss: 117.317 -35200/69092 Loss: 118.113 -38400/69092 Loss: 117.912 -41600/69092 Loss: 117.433 -44800/69092 Loss: 117.601 -48000/69092 Loss: 118.597 -51200/69092 Loss: 119.003 -54400/69092 Loss: 117.660 -57600/69092 Loss: 117.688 -60800/69092 Loss: 117.206 -64000/69092 Loss: 119.188 -67200/69092 Loss: 118.233 -Training time 0:04:52.524545 -Epoch: 32 Average loss: 117.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 34) -0/69092 Loss: 108.132 -3200/69092 Loss: 118.912 -6400/69092 Loss: 115.902 -9600/69092 Loss: 117.341 -12800/69092 Loss: 117.619 -16000/69092 Loss: 116.339 -19200/69092 Loss: 118.875 -22400/69092 Loss: 118.306 -25600/69092 Loss: 118.466 -28800/69092 Loss: 116.170 -32000/69092 Loss: 115.511 -35200/69092 Loss: 120.453 -38400/69092 Loss: 118.390 -41600/69092 Loss: 115.965 -44800/69092 Loss: 116.297 -48000/69092 Loss: 119.445 -51200/69092 Loss: 119.516 -54400/69092 Loss: 115.973 -57600/69092 Loss: 118.658 -60800/69092 Loss: 116.730 -64000/69092 Loss: 119.248 -67200/69092 Loss: 116.062 -Training time 0:04:50.447285 -Epoch: 33 Average loss: 117.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 35) -0/69092 Loss: 121.678 -3200/69092 Loss: 117.583 -6400/69092 Loss: 116.046 -9600/69092 Loss: 118.373 -12800/69092 Loss: 115.075 -16000/69092 Loss: 116.979 -19200/69092 Loss: 117.002 -22400/69092 Loss: 116.698 -25600/69092 Loss: 118.600 -28800/69092 Loss: 118.987 -32000/69092 Loss: 116.339 -35200/69092 Loss: 116.992 -38400/69092 Loss: 117.991 -41600/69092 Loss: 116.828 -44800/69092 Loss: 118.113 -48000/69092 Loss: 116.288 -51200/69092 Loss: 116.670 -54400/69092 Loss: 116.627 -57600/69092 Loss: 117.844 -60800/69092 Loss: 119.019 -64000/69092 Loss: 117.406 -67200/69092 Loss: 118.033 -Training time 0:04:51.258306 -Epoch: 34 Average loss: 117.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 36) -0/69092 Loss: 122.526 -3200/69092 Loss: 117.809 -6400/69092 Loss: 116.431 -9600/69092 Loss: 115.905 -12800/69092 Loss: 118.919 -16000/69092 Loss: 118.223 -19200/69092 Loss: 117.447 -22400/69092 Loss: 119.590 -25600/69092 Loss: 117.410 -28800/69092 Loss: 116.450 -32000/69092 Loss: 119.641 -35200/69092 Loss: 118.163 -38400/69092 Loss: 116.956 -41600/69092 Loss: 116.597 -44800/69092 Loss: 117.110 -48000/69092 Loss: 118.238 -51200/69092 Loss: 116.821 -54400/69092 Loss: 115.176 -57600/69092 Loss: 116.725 -60800/69092 Loss: 116.664 -64000/69092 Loss: 117.485 -67200/69092 Loss: 117.773 -Training time 0:04:50.190005 -Epoch: 35 Average loss: 117.37 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 37) -0/69092 Loss: 123.229 -3200/69092 Loss: 117.976 -6400/69092 Loss: 116.481 -9600/69092 Loss: 117.942 -12800/69092 Loss: 117.082 -16000/69092 Loss: 116.883 -19200/69092 Loss: 116.089 -22400/69092 Loss: 116.840 -25600/69092 Loss: 118.900 -28800/69092 Loss: 116.752 -32000/69092 Loss: 115.466 -35200/69092 Loss: 116.356 -38400/69092 Loss: 114.889 -41600/69092 Loss: 119.188 -44800/69092 Loss: 120.328 -48000/69092 Loss: 116.525 -51200/69092 Loss: 117.148 -54400/69092 Loss: 117.533 -57600/69092 Loss: 117.055 -60800/69092 Loss: 116.720 -64000/69092 Loss: 117.952 -67200/69092 Loss: 117.484 -Training time 0:04:50.280765 -Epoch: 36 Average loss: 117.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 38) -0/69092 Loss: 111.605 -3200/69092 Loss: 117.366 -6400/69092 Loss: 116.807 -9600/69092 Loss: 114.905 -12800/69092 Loss: 117.049 -16000/69092 Loss: 115.857 -19200/69092 Loss: 118.030 -22400/69092 Loss: 117.065 -25600/69092 Loss: 121.040 -28800/69092 Loss: 116.276 -32000/69092 Loss: 116.552 -35200/69092 Loss: 117.029 -38400/69092 Loss: 116.262 -41600/69092 Loss: 116.357 -44800/69092 Loss: 116.982 -48000/69092 Loss: 117.109 -51200/69092 Loss: 117.132 -54400/69092 Loss: 117.274 -57600/69092 Loss: 116.951 -60800/69092 Loss: 119.223 -64000/69092 Loss: 117.742 -67200/69092 Loss: 118.431 -Training time 0:04:52.490880 -Epoch: 37 Average loss: 117.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 39) -0/69092 Loss: 115.327 -3200/69092 Loss: 117.210 -6400/69092 Loss: 117.962 -9600/69092 Loss: 115.766 -12800/69092 Loss: 116.867 -16000/69092 Loss: 116.569 -19200/69092 Loss: 118.385 -22400/69092 Loss: 118.070 -25600/69092 Loss: 115.436 -28800/69092 Loss: 116.705 -32000/69092 Loss: 115.048 -35200/69092 Loss: 118.282 -38400/69092 Loss: 117.069 -41600/69092 Loss: 115.870 -44800/69092 Loss: 117.483 -48000/69092 Loss: 116.781 -51200/69092 Loss: 118.254 -54400/69092 Loss: 115.811 -57600/69092 Loss: 116.128 -60800/69092 Loss: 116.566 -64000/69092 Loss: 115.452 -67200/69092 Loss: 118.371 -Training time 0:04:52.498969 -Epoch: 38 Average loss: 116.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 40) -0/69092 Loss: 125.033 -3200/69092 Loss: 120.041 -6400/69092 Loss: 116.207 -9600/69092 Loss: 118.136 -12800/69092 Loss: 116.748 -16000/69092 Loss: 116.243 -19200/69092 Loss: 116.841 -22400/69092 Loss: 116.977 -25600/69092 Loss: 116.668 -28800/69092 Loss: 116.521 -32000/69092 Loss: 117.136 -35200/69092 Loss: 116.983 -38400/69092 Loss: 117.618 -41600/69092 Loss: 114.372 -44800/69092 Loss: 115.211 -48000/69092 Loss: 118.201 -51200/69092 Loss: 116.028 -54400/69092 Loss: 115.890 -57600/69092 Loss: 114.996 -60800/69092 Loss: 116.487 -64000/69092 Loss: 116.983 -67200/69092 Loss: 117.058 -Training time 0:04:50.387457 -Epoch: 39 Average loss: 116.77 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 41) -0/69092 Loss: 110.258 -3200/69092 Loss: 117.252 -6400/69092 Loss: 117.309 -9600/69092 Loss: 116.297 -12800/69092 Loss: 117.236 -16000/69092 Loss: 117.996 -19200/69092 Loss: 118.234 -22400/69092 Loss: 118.257 -25600/69092 Loss: 116.130 -28800/69092 Loss: 117.185 -32000/69092 Loss: 115.816 -35200/69092 Loss: 115.462 -38400/69092 Loss: 117.363 -41600/69092 Loss: 116.068 -44800/69092 Loss: 116.302 -48000/69092 Loss: 117.931 -51200/69092 Loss: 114.693 -54400/69092 Loss: 116.760 -57600/69092 Loss: 114.889 -60800/69092 Loss: 116.937 -64000/69092 Loss: 116.777 -67200/69092 Loss: 117.384 -Training time 0:04:50.472581 -Epoch: 40 Average loss: 116.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 42) -0/69092 Loss: 109.066 -3200/69092 Loss: 116.320 -6400/69092 Loss: 116.240 -9600/69092 Loss: 116.514 -12800/69092 Loss: 117.777 -16000/69092 Loss: 115.869 -19200/69092 Loss: 116.254 -22400/69092 Loss: 116.256 -25600/69092 Loss: 117.526 -28800/69092 Loss: 118.255 -32000/69092 Loss: 116.091 -35200/69092 Loss: 115.097 -38400/69092 Loss: 114.364 -41600/69092 Loss: 116.590 -44800/69092 Loss: 118.679 -48000/69092 Loss: 116.334 -51200/69092 Loss: 118.734 -54400/69092 Loss: 119.049 -57600/69092 Loss: 117.248 -60800/69092 Loss: 117.773 -64000/69092 Loss: 115.110 -67200/69092 Loss: 114.249 -Training time 0:04:50.321341 -Epoch: 41 Average loss: 116.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 43) -0/69092 Loss: 116.922 -3200/69092 Loss: 115.485 -6400/69092 Loss: 118.106 -9600/69092 Loss: 116.983 -12800/69092 Loss: 115.947 -16000/69092 Loss: 116.718 -19200/69092 Loss: 118.177 -22400/69092 Loss: 117.735 -25600/69092 Loss: 116.123 -28800/69092 Loss: 117.093 -32000/69092 Loss: 117.513 -35200/69092 Loss: 116.709 -38400/69092 Loss: 116.535 -41600/69092 Loss: 117.350 -44800/69092 Loss: 118.415 -48000/69092 Loss: 116.725 -51200/69092 Loss: 117.575 -54400/69092 Loss: 116.148 -57600/69092 Loss: 115.328 -60800/69092 Loss: 116.508 -64000/69092 Loss: 117.187 -67200/69092 Loss: 115.227 -Training time 0:04:50.882292 -Epoch: 42 Average loss: 116.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 44) -0/69092 Loss: 126.416 -3200/69092 Loss: 117.159 -6400/69092 Loss: 115.931 -9600/69092 Loss: 117.318 -12800/69092 Loss: 115.581 -16000/69092 Loss: 115.776 -19200/69092 Loss: 115.857 -22400/69092 Loss: 115.716 -25600/69092 Loss: 115.505 -28800/69092 Loss: 117.308 -32000/69092 Loss: 115.968 -35200/69092 Loss: 116.318 -38400/69092 Loss: 117.705 -41600/69092 Loss: 116.935 -44800/69092 Loss: 116.748 -48000/69092 Loss: 116.868 -51200/69092 Loss: 115.906 -54400/69092 Loss: 115.920 -57600/69092 Loss: 116.019 -60800/69092 Loss: 117.345 -64000/69092 Loss: 116.749 -67200/69092 Loss: 117.800 -Training time 0:04:50.692964 -Epoch: 43 Average loss: 116.44 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 45) -0/69092 Loss: 113.226 -3200/69092 Loss: 116.414 -6400/69092 Loss: 115.403 -9600/69092 Loss: 114.424 -12800/69092 Loss: 116.078 -16000/69092 Loss: 118.299 -19200/69092 Loss: 115.333 -22400/69092 Loss: 118.434 -25600/69092 Loss: 117.068 -28800/69092 Loss: 117.351 -32000/69092 Loss: 116.913 -35200/69092 Loss: 116.053 -38400/69092 Loss: 115.261 -41600/69092 Loss: 113.541 -44800/69092 Loss: 117.611 -48000/69092 Loss: 115.486 -51200/69092 Loss: 116.020 -54400/69092 Loss: 114.984 -57600/69092 Loss: 116.429 -60800/69092 Loss: 117.387 -64000/69092 Loss: 118.603 -67200/69092 Loss: 117.236 -Training time 0:04:50.906052 -Epoch: 44 Average loss: 116.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 46) -0/69092 Loss: 114.154 -3200/69092 Loss: 115.486 -6400/69092 Loss: 115.256 -9600/69092 Loss: 115.306 -12800/69092 Loss: 117.701 -16000/69092 Loss: 115.663 -19200/69092 Loss: 115.530 -22400/69092 Loss: 115.508 -25600/69092 Loss: 116.523 -28800/69092 Loss: 117.027 -32000/69092 Loss: 116.623 -35200/69092 Loss: 116.793 -38400/69092 Loss: 114.976 -41600/69092 Loss: 116.407 -44800/69092 Loss: 117.925 -48000/69092 Loss: 115.193 -51200/69092 Loss: 117.126 -54400/69092 Loss: 117.248 -57600/69092 Loss: 113.484 -60800/69092 Loss: 117.698 -64000/69092 Loss: 116.944 -67200/69092 Loss: 115.727 -Training time 0:04:49.102354 -Epoch: 45 Average loss: 116.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 47) -0/69092 Loss: 110.757 -3200/69092 Loss: 115.191 -6400/69092 Loss: 115.617 -9600/69092 Loss: 116.033 -12800/69092 Loss: 115.286 -16000/69092 Loss: 116.425 -19200/69092 Loss: 116.590 -22400/69092 Loss: 115.571 -25600/69092 Loss: 116.207 -28800/69092 Loss: 116.555 -32000/69092 Loss: 117.130 -35200/69092 Loss: 114.536 -38400/69092 Loss: 115.110 -41600/69092 Loss: 116.440 -44800/69092 Loss: 114.962 -48000/69092 Loss: 117.549 -51200/69092 Loss: 116.202 -54400/69092 Loss: 116.490 -57600/69092 Loss: 115.999 -60800/69092 Loss: 115.435 -64000/69092 Loss: 117.503 -67200/69092 Loss: 117.120 -Training time 0:04:50.815465 -Epoch: 46 Average loss: 116.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 48) -0/69092 Loss: 115.975 -3200/69092 Loss: 115.669 -6400/69092 Loss: 116.485 -9600/69092 Loss: 115.950 -12800/69092 Loss: 114.916 -16000/69092 Loss: 118.731 -19200/69092 Loss: 114.510 -22400/69092 Loss: 116.273 -25600/69092 Loss: 116.265 -28800/69092 Loss: 117.772 -32000/69092 Loss: 114.696 -35200/69092 Loss: 114.409 -38400/69092 Loss: 115.990 -41600/69092 Loss: 115.251 -44800/69092 Loss: 115.582 -48000/69092 Loss: 117.679 -51200/69092 Loss: 116.516 -54400/69092 Loss: 117.912 -57600/69092 Loss: 116.147 -60800/69092 Loss: 116.550 -64000/69092 Loss: 115.431 -67200/69092 Loss: 116.913 -Training time 0:04:50.529880 -Epoch: 47 Average loss: 116.19 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 49) -0/69092 Loss: 118.941 -3200/69092 Loss: 115.989 -6400/69092 Loss: 116.560 -9600/69092 Loss: 118.031 -12800/69092 Loss: 116.526 -16000/69092 Loss: 118.645 -19200/69092 Loss: 116.125 -22400/69092 Loss: 116.495 -25600/69092 Loss: 116.235 -28800/69092 Loss: 116.240 -32000/69092 Loss: 116.055 -35200/69092 Loss: 114.656 -38400/69092 Loss: 116.154 -41600/69092 Loss: 117.614 -44800/69092 Loss: 114.164 -48000/69092 Loss: 116.587 -51200/69092 Loss: 114.979 -54400/69092 Loss: 114.746 -57600/69092 Loss: 114.571 -60800/69092 Loss: 115.249 -64000/69092 Loss: 115.959 -67200/69092 Loss: 115.955 -Training time 0:04:50.316161 -Epoch: 48 Average loss: 116.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 50) -0/69092 Loss: 118.445 -3200/69092 Loss: 116.011 -6400/69092 Loss: 115.451 -9600/69092 Loss: 116.933 -12800/69092 Loss: 116.725 -16000/69092 Loss: 114.365 -19200/69092 Loss: 116.176 -22400/69092 Loss: 115.867 -25600/69092 Loss: 113.811 -28800/69092 Loss: 117.353 -32000/69092 Loss: 115.446 -35200/69092 Loss: 115.863 -38400/69092 Loss: 117.233 -41600/69092 Loss: 114.420 -44800/69092 Loss: 116.427 -48000/69092 Loss: 115.379 -51200/69092 Loss: 116.464 -54400/69092 Loss: 115.967 -57600/69092 Loss: 114.872 -60800/69092 Loss: 116.183 -64000/69092 Loss: 116.950 -67200/69092 Loss: 116.495 -Training time 0:04:51.000314 -Epoch: 49 Average loss: 115.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 51) -0/69092 Loss: 110.965 -3200/69092 Loss: 114.970 -6400/69092 Loss: 116.543 -9600/69092 Loss: 115.009 -12800/69092 Loss: 116.755 -16000/69092 Loss: 114.706 -19200/69092 Loss: 114.190 -22400/69092 Loss: 114.569 -25600/69092 Loss: 115.313 -28800/69092 Loss: 115.033 -32000/69092 Loss: 116.078 -35200/69092 Loss: 115.569 -38400/69092 Loss: 116.802 -41600/69092 Loss: 116.311 -44800/69092 Loss: 117.974 -48000/69092 Loss: 115.641 -51200/69092 Loss: 116.793 -54400/69092 Loss: 116.699 -57600/69092 Loss: 116.751 -60800/69092 Loss: 116.524 -64000/69092 Loss: 113.234 -67200/69092 Loss: 116.150 -Training time 0:04:51.109183 -Epoch: 50 Average loss: 115.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 52) -0/69092 Loss: 108.017 -3200/69092 Loss: 114.934 -6400/69092 Loss: 114.856 -9600/69092 Loss: 116.531 -12800/69092 Loss: 113.770 -16000/69092 Loss: 115.197 -19200/69092 Loss: 116.244 -22400/69092 Loss: 115.346 -25600/69092 Loss: 116.879 -28800/69092 Loss: 116.504 -32000/69092 Loss: 114.772 -35200/69092 Loss: 117.467 -38400/69092 Loss: 114.945 -41600/69092 Loss: 115.933 -44800/69092 Loss: 116.462 -48000/69092 Loss: 115.551 -51200/69092 Loss: 115.669 -54400/69092 Loss: 115.515 -57600/69092 Loss: 115.213 -60800/69092 Loss: 117.749 -64000/69092 Loss: 115.684 -67200/69092 Loss: 116.791 -Training time 0:04:50.668655 -Epoch: 51 Average loss: 115.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 53) -0/69092 Loss: 117.423 -3200/69092 Loss: 115.116 -6400/69092 Loss: 116.887 -9600/69092 Loss: 114.589 -12800/69092 Loss: 116.855 -16000/69092 Loss: 115.924 -19200/69092 Loss: 116.141 -22400/69092 Loss: 116.903 -25600/69092 Loss: 114.613 -28800/69092 Loss: 113.224 -32000/69092 Loss: 117.233 -35200/69092 Loss: 116.103 -38400/69092 Loss: 114.733 -41600/69092 Loss: 116.245 -44800/69092 Loss: 115.208 -48000/69092 Loss: 116.370 -51200/69092 Loss: 115.745 -54400/69092 Loss: 113.581 -57600/69092 Loss: 116.676 -60800/69092 Loss: 116.732 -64000/69092 Loss: 117.132 -67200/69092 Loss: 115.330 -Training time 0:04:51.758798 -Epoch: 52 Average loss: 115.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 54) -0/69092 Loss: 107.363 -3200/69092 Loss: 115.455 -6400/69092 Loss: 114.363 -9600/69092 Loss: 113.316 -12800/69092 Loss: 114.088 -16000/69092 Loss: 115.876 -19200/69092 Loss: 114.352 -22400/69092 Loss: 115.823 -25600/69092 Loss: 114.822 -28800/69092 Loss: 116.164 -32000/69092 Loss: 117.430 -35200/69092 Loss: 115.201 -38400/69092 Loss: 117.835 -41600/69092 Loss: 117.573 -44800/69092 Loss: 116.864 -48000/69092 Loss: 113.686 -51200/69092 Loss: 114.353 -54400/69092 Loss: 116.330 -57600/69092 Loss: 116.880 -60800/69092 Loss: 115.311 -64000/69092 Loss: 117.652 -67200/69092 Loss: 115.619 -Training time 0:04:49.333246 -Epoch: 53 Average loss: 115.65 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 55) -0/69092 Loss: 111.250 -3200/69092 Loss: 115.047 -6400/69092 Loss: 116.211 -9600/69092 Loss: 114.196 -12800/69092 Loss: 114.638 -16000/69092 Loss: 114.877 -19200/69092 Loss: 117.125 -22400/69092 Loss: 116.822 -25600/69092 Loss: 116.239 -28800/69092 Loss: 115.250 -32000/69092 Loss: 116.520 -35200/69092 Loss: 116.383 -38400/69092 Loss: 116.305 -41600/69092 Loss: 115.319 -44800/69092 Loss: 115.305 -48000/69092 Loss: 114.337 -51200/69092 Loss: 114.042 -54400/69092 Loss: 115.618 -57600/69092 Loss: 115.546 -60800/69092 Loss: 115.192 -64000/69092 Loss: 115.025 -67200/69092 Loss: 113.886 -Training time 0:04:51.174373 -Epoch: 54 Average loss: 115.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 56) -0/69092 Loss: 121.345 -3200/69092 Loss: 116.380 -6400/69092 Loss: 114.931 -9600/69092 Loss: 115.219 -12800/69092 Loss: 113.502 -16000/69092 Loss: 115.090 -19200/69092 Loss: 117.525 -22400/69092 Loss: 115.704 -25600/69092 Loss: 114.509 -28800/69092 Loss: 116.143 -32000/69092 Loss: 117.079 -35200/69092 Loss: 115.237 -38400/69092 Loss: 114.852 -41600/69092 Loss: 116.465 -44800/69092 Loss: 114.581 -48000/69092 Loss: 115.045 -51200/69092 Loss: 114.057 -54400/69092 Loss: 116.492 -57600/69092 Loss: 114.078 -60800/69092 Loss: 112.629 -64000/69092 Loss: 114.679 -67200/69092 Loss: 115.498 -Training time 0:04:52.204344 -Epoch: 55 Average loss: 115.23 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 57) -0/69092 Loss: 105.918 -3200/69092 Loss: 114.693 -6400/69092 Loss: 115.644 -9600/69092 Loss: 114.654 -12800/69092 Loss: 115.317 -16000/69092 Loss: 115.527 -19200/69092 Loss: 113.368 -22400/69092 Loss: 116.289 -25600/69092 Loss: 114.841 -28800/69092 Loss: 115.621 -32000/69092 Loss: 116.214 -35200/69092 Loss: 116.268 -38400/69092 Loss: 116.120 -41600/69092 Loss: 115.684 -44800/69092 Loss: 114.851 -48000/69092 Loss: 117.124 -51200/69092 Loss: 116.559 -54400/69092 Loss: 113.316 -57600/69092 Loss: 113.417 -60800/69092 Loss: 115.656 -64000/69092 Loss: 114.335 -67200/69092 Loss: 117.134 -Training time 0:04:49.365066 -Epoch: 56 Average loss: 115.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 58) -0/69092 Loss: 130.230 -3200/69092 Loss: 113.360 -6400/69092 Loss: 115.075 -9600/69092 Loss: 113.792 -12800/69092 Loss: 115.990 -16000/69092 Loss: 116.490 -19200/69092 Loss: 117.062 -22400/69092 Loss: 115.459 -25600/69092 Loss: 112.523 -28800/69092 Loss: 115.314 -32000/69092 Loss: 115.161 -35200/69092 Loss: 115.395 -38400/69092 Loss: 115.698 -41600/69092 Loss: 115.437 -44800/69092 Loss: 116.958 -48000/69092 Loss: 115.300 -51200/69092 Loss: 115.323 -54400/69092 Loss: 113.655 -57600/69092 Loss: 115.774 -60800/69092 Loss: 116.198 -64000/69092 Loss: 116.066 -67200/69092 Loss: 117.171 -Training time 0:04:50.333766 -Epoch: 57 Average loss: 115.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 59) -0/69092 Loss: 110.380 -3200/69092 Loss: 117.242 -6400/69092 Loss: 115.368 -9600/69092 Loss: 116.128 -12800/69092 Loss: 115.609 -16000/69092 Loss: 114.974 -19200/69092 Loss: 114.545 -22400/69092 Loss: 113.922 -25600/69092 Loss: 116.304 -28800/69092 Loss: 112.777 -32000/69092 Loss: 116.925 -35200/69092 Loss: 115.065 -38400/69092 Loss: 115.531 -41600/69092 Loss: 113.043 -44800/69092 Loss: 115.650 -48000/69092 Loss: 114.513 -51200/69092 Loss: 114.802 -54400/69092 Loss: 114.561 -57600/69092 Loss: 114.275 -60800/69092 Loss: 116.770 -64000/69092 Loss: 115.084 -67200/69092 Loss: 114.219 -Training time 0:04:50.861188 -Epoch: 58 Average loss: 115.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 60) -0/69092 Loss: 120.938 -3200/69092 Loss: 116.526 -6400/69092 Loss: 113.273 -9600/69092 Loss: 114.060 -12800/69092 Loss: 115.242 -16000/69092 Loss: 116.480 -19200/69092 Loss: 114.736 -22400/69092 Loss: 115.080 -25600/69092 Loss: 114.591 -28800/69092 Loss: 114.889 -32000/69092 Loss: 114.226 -35200/69092 Loss: 114.526 -38400/69092 Loss: 114.164 -41600/69092 Loss: 114.240 -44800/69092 Loss: 116.406 -48000/69092 Loss: 113.433 -51200/69092 Loss: 117.690 -54400/69092 Loss: 115.850 -57600/69092 Loss: 113.394 -60800/69092 Loss: 115.963 -64000/69092 Loss: 114.316 -67200/69092 Loss: 116.932 -Training time 0:04:51.653567 -Epoch: 59 Average loss: 115.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 61) -0/69092 Loss: 129.070 -3200/69092 Loss: 113.538 -6400/69092 Loss: 116.309 -9600/69092 Loss: 115.728 -12800/69092 Loss: 114.899 -16000/69092 Loss: 114.760 -19200/69092 Loss: 116.447 -22400/69092 Loss: 115.839 -25600/69092 Loss: 114.601 -28800/69092 Loss: 112.923 -32000/69092 Loss: 115.536 -35200/69092 Loss: 116.740 -38400/69092 Loss: 114.354 -41600/69092 Loss: 116.054 -44800/69092 Loss: 114.711 -48000/69092 Loss: 114.170 -51200/69092 Loss: 114.636 -54400/69092 Loss: 115.156 -57600/69092 Loss: 113.717 -60800/69092 Loss: 116.622 -64000/69092 Loss: 115.291 -67200/69092 Loss: 115.842 -Training time 0:04:49.531087 -Epoch: 60 Average loss: 115.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 62) -0/69092 Loss: 113.572 -3200/69092 Loss: 115.474 -6400/69092 Loss: 116.251 -9600/69092 Loss: 116.395 -12800/69092 Loss: 114.333 -16000/69092 Loss: 114.263 -19200/69092 Loss: 112.245 -22400/69092 Loss: 114.744 -25600/69092 Loss: 115.087 -28800/69092 Loss: 117.191 -32000/69092 Loss: 114.861 -35200/69092 Loss: 115.426 -38400/69092 Loss: 115.288 -41600/69092 Loss: 114.900 -44800/69092 Loss: 114.223 -48000/69092 Loss: 114.517 -51200/69092 Loss: 114.747 -54400/69092 Loss: 116.455 -57600/69092 Loss: 115.121 -60800/69092 Loss: 113.595 -64000/69092 Loss: 115.817 -67200/69092 Loss: 113.993 -Training time 0:04:49.861094 -Epoch: 61 Average loss: 115.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 63) -0/69092 Loss: 120.034 -3200/69092 Loss: 114.612 -6400/69092 Loss: 114.035 -9600/69092 Loss: 117.415 -12800/69092 Loss: 115.067 -16000/69092 Loss: 113.959 -19200/69092 Loss: 113.977 -22400/69092 Loss: 112.873 -25600/69092 Loss: 114.675 -28800/69092 Loss: 113.659 -32000/69092 Loss: 116.643 -35200/69092 Loss: 116.369 -38400/69092 Loss: 116.391 -41600/69092 Loss: 114.723 -44800/69092 Loss: 115.430 -48000/69092 Loss: 115.085 -51200/69092 Loss: 113.667 -54400/69092 Loss: 114.991 -57600/69092 Loss: 115.769 -60800/69092 Loss: 114.969 -64000/69092 Loss: 112.662 -67200/69092 Loss: 115.065 -Training time 0:04:50.082754 -Epoch: 62 Average loss: 114.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 64) -0/69092 Loss: 107.914 -3200/69092 Loss: 115.811 -6400/69092 Loss: 114.845 -9600/69092 Loss: 115.219 -12800/69092 Loss: 113.002 -16000/69092 Loss: 114.682 -19200/69092 Loss: 114.980 -22400/69092 Loss: 114.454 -25600/69092 Loss: 113.652 -28800/69092 Loss: 115.837 -32000/69092 Loss: 115.660 -35200/69092 Loss: 114.064 -38400/69092 Loss: 116.172 -41600/69092 Loss: 114.529 -44800/69092 Loss: 115.625 -48000/69092 Loss: 115.497 -51200/69092 Loss: 116.070 -54400/69092 Loss: 114.471 -57600/69092 Loss: 115.314 -60800/69092 Loss: 114.247 -64000/69092 Loss: 116.192 -67200/69092 Loss: 113.941 -Training time 0:04:49.957412 -Epoch: 63 Average loss: 114.98 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 65) -0/69092 Loss: 116.641 -3200/69092 Loss: 114.474 -6400/69092 Loss: 112.499 -9600/69092 Loss: 116.596 -12800/69092 Loss: 114.035 -16000/69092 Loss: 114.961 -19200/69092 Loss: 115.245 -22400/69092 Loss: 115.777 -25600/69092 Loss: 114.787 -28800/69092 Loss: 113.626 -32000/69092 Loss: 114.013 -35200/69092 Loss: 115.915 -38400/69092 Loss: 114.022 -41600/69092 Loss: 114.241 -44800/69092 Loss: 115.958 -48000/69092 Loss: 113.939 -51200/69092 Loss: 116.508 -54400/69092 Loss: 114.077 -57600/69092 Loss: 115.458 -60800/69092 Loss: 113.704 -64000/69092 Loss: 115.936 -67200/69092 Loss: 114.465 -Training time 0:04:49.658180 -Epoch: 64 Average loss: 114.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 66) -0/69092 Loss: 112.635 -3200/69092 Loss: 114.548 -6400/69092 Loss: 114.231 -9600/69092 Loss: 115.587 -12800/69092 Loss: 114.641 -16000/69092 Loss: 115.595 -19200/69092 Loss: 113.876 -22400/69092 Loss: 113.440 -25600/69092 Loss: 116.155 -28800/69092 Loss: 114.903 -32000/69092 Loss: 112.486 -35200/69092 Loss: 113.886 -38400/69092 Loss: 116.748 -41600/69092 Loss: 116.410 -44800/69092 Loss: 114.976 -48000/69092 Loss: 115.530 -51200/69092 Loss: 116.601 -54400/69092 Loss: 114.131 -57600/69092 Loss: 115.115 -60800/69092 Loss: 113.630 -64000/69092 Loss: 114.185 -67200/69092 Loss: 114.594 -Training time 0:04:50.297879 -Epoch: 65 Average loss: 114.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 67) -0/69092 Loss: 125.901 -3200/69092 Loss: 115.050 -6400/69092 Loss: 112.895 -9600/69092 Loss: 114.888 -12800/69092 Loss: 114.904 -16000/69092 Loss: 114.360 -19200/69092 Loss: 114.818 -22400/69092 Loss: 114.196 -25600/69092 Loss: 114.682 -28800/69092 Loss: 114.934 -32000/69092 Loss: 114.733 -35200/69092 Loss: 114.040 -38400/69092 Loss: 115.150 -41600/69092 Loss: 115.889 -44800/69092 Loss: 115.538 -48000/69092 Loss: 115.784 -51200/69092 Loss: 113.973 -54400/69092 Loss: 117.135 -57600/69092 Loss: 114.236 -60800/69092 Loss: 114.949 -64000/69092 Loss: 113.168 -67200/69092 Loss: 116.649 -Training time 0:04:51.649768 -Epoch: 66 Average loss: 114.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 68) -0/69092 Loss: 109.445 -3200/69092 Loss: 114.568 -6400/69092 Loss: 115.636 -9600/69092 Loss: 114.090 -12800/69092 Loss: 117.041 -16000/69092 Loss: 115.497 -19200/69092 Loss: 114.000 -22400/69092 Loss: 114.204 -25600/69092 Loss: 115.507 -28800/69092 Loss: 114.216 -32000/69092 Loss: 115.093 -35200/69092 Loss: 113.535 -38400/69092 Loss: 115.401 -41600/69092 Loss: 113.445 -44800/69092 Loss: 115.084 -48000/69092 Loss: 113.895 -51200/69092 Loss: 116.076 -54400/69092 Loss: 112.761 -57600/69092 Loss: 114.978 -60800/69092 Loss: 114.853 -64000/69092 Loss: 113.223 -67200/69092 Loss: 115.037 -Training time 0:04:50.448239 -Epoch: 67 Average loss: 114.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 69) -0/69092 Loss: 121.913 -3200/69092 Loss: 113.246 -6400/69092 Loss: 114.522 -9600/69092 Loss: 116.150 -12800/69092 Loss: 114.766 -16000/69092 Loss: 114.983 -19200/69092 Loss: 114.599 -22400/69092 Loss: 115.377 -25600/69092 Loss: 114.733 -28800/69092 Loss: 113.788 -32000/69092 Loss: 115.150 -35200/69092 Loss: 116.280 -38400/69092 Loss: 114.409 -41600/69092 Loss: 114.290 -44800/69092 Loss: 114.097 -48000/69092 Loss: 113.125 -51200/69092 Loss: 114.332 -54400/69092 Loss: 115.385 -57600/69092 Loss: 114.851 -60800/69092 Loss: 113.286 -64000/69092 Loss: 115.712 -67200/69092 Loss: 115.736 -Training time 0:04:51.138483 -Epoch: 68 Average loss: 114.63 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 70) -0/69092 Loss: 125.051 -3200/69092 Loss: 115.102 -6400/69092 Loss: 114.087 -9600/69092 Loss: 116.201 -12800/69092 Loss: 113.721 -16000/69092 Loss: 114.431 -19200/69092 Loss: 115.753 -22400/69092 Loss: 115.861 -25600/69092 Loss: 114.995 -28800/69092 Loss: 113.949 -32000/69092 Loss: 115.319 -35200/69092 Loss: 114.642 -38400/69092 Loss: 114.189 -41600/69092 Loss: 113.771 -44800/69092 Loss: 113.618 -48000/69092 Loss: 115.785 -51200/69092 Loss: 113.695 -54400/69092 Loss: 114.677 -57600/69092 Loss: 114.020 -60800/69092 Loss: 113.694 -64000/69092 Loss: 113.486 -67200/69092 Loss: 112.500 -Training time 0:04:49.815245 -Epoch: 69 Average loss: 114.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 71) -0/69092 Loss: 118.067 -3200/69092 Loss: 114.432 -6400/69092 Loss: 116.424 -9600/69092 Loss: 113.103 -12800/69092 Loss: 113.420 -16000/69092 Loss: 114.150 -19200/69092 Loss: 112.896 -22400/69092 Loss: 114.493 -25600/69092 Loss: 116.477 -28800/69092 Loss: 114.754 -32000/69092 Loss: 113.572 -35200/69092 Loss: 112.137 -38400/69092 Loss: 114.255 -41600/69092 Loss: 114.041 -44800/69092 Loss: 114.902 -48000/69092 Loss: 114.853 -51200/69092 Loss: 114.115 -54400/69092 Loss: 111.929 -57600/69092 Loss: 113.867 -60800/69092 Loss: 115.578 -64000/69092 Loss: 115.253 -67200/69092 Loss: 114.495 -Training time 0:04:51.925960 -Epoch: 70 Average loss: 114.37 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 72) -0/69092 Loss: 110.626 -3200/69092 Loss: 115.597 -6400/69092 Loss: 113.847 -9600/69092 Loss: 112.283 -12800/69092 Loss: 114.362 -16000/69092 Loss: 114.564 -19200/69092 Loss: 115.204 -22400/69092 Loss: 114.233 -25600/69092 Loss: 114.334 -28800/69092 Loss: 114.784 -32000/69092 Loss: 112.240 -35200/69092 Loss: 114.379 -38400/69092 Loss: 115.718 -41600/69092 Loss: 114.241 -44800/69092 Loss: 115.565 -48000/69092 Loss: 114.088 -51200/69092 Loss: 115.310 -54400/69092 Loss: 113.681 -57600/69092 Loss: 112.798 -60800/69092 Loss: 114.490 -64000/69092 Loss: 115.532 -67200/69092 Loss: 115.908 -Training time 0:04:51.263301 -Epoch: 71 Average loss: 114.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 73) -0/69092 Loss: 126.524 -3200/69092 Loss: 112.766 -6400/69092 Loss: 114.966 -9600/69092 Loss: 114.645 -12800/69092 Loss: 115.025 -16000/69092 Loss: 115.586 -19200/69092 Loss: 114.933 -22400/69092 Loss: 113.922 -25600/69092 Loss: 115.301 -28800/69092 Loss: 113.919 -32000/69092 Loss: 116.193 -35200/69092 Loss: 114.761 -38400/69092 Loss: 111.971 -41600/69092 Loss: 116.336 -44800/69092 Loss: 113.653 -48000/69092 Loss: 115.769 -51200/69092 Loss: 112.701 -54400/69092 Loss: 114.297 -57600/69092 Loss: 112.923 -60800/69092 Loss: 111.982 -64000/69092 Loss: 114.084 -67200/69092 Loss: 115.607 -Training time 0:04:52.005985 -Epoch: 72 Average loss: 114.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 74) -0/69092 Loss: 112.065 -3200/69092 Loss: 114.408 -6400/69092 Loss: 114.604 -9600/69092 Loss: 114.376 -12800/69092 Loss: 113.403 -16000/69092 Loss: 114.143 -19200/69092 Loss: 115.974 -22400/69092 Loss: 113.870 -25600/69092 Loss: 114.257 -28800/69092 Loss: 114.431 -32000/69092 Loss: 115.319 -35200/69092 Loss: 113.325 -38400/69092 Loss: 115.692 -41600/69092 Loss: 114.905 -44800/69092 Loss: 113.285 -48000/69092 Loss: 112.058 -51200/69092 Loss: 115.133 -54400/69092 Loss: 114.319 -57600/69092 Loss: 115.527 -60800/69092 Loss: 112.734 -64000/69092 Loss: 113.817 -67200/69092 Loss: 115.289 -Training time 0:04:50.372596 -Epoch: 73 Average loss: 114.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 75) -0/69092 Loss: 108.900 -3200/69092 Loss: 113.069 -6400/69092 Loss: 116.169 -9600/69092 Loss: 113.440 -12800/69092 Loss: 114.160 -16000/69092 Loss: 115.020 -19200/69092 Loss: 116.341 -22400/69092 Loss: 113.578 -25600/69092 Loss: 113.593 -28800/69092 Loss: 114.390 -32000/69092 Loss: 113.834 -35200/69092 Loss: 113.907 -38400/69092 Loss: 116.457 -41600/69092 Loss: 113.770 -44800/69092 Loss: 114.490 -48000/69092 Loss: 113.662 -51200/69092 Loss: 114.060 -54400/69092 Loss: 111.935 -57600/69092 Loss: 114.180 -60800/69092 Loss: 113.947 -64000/69092 Loss: 116.748 -67200/69092 Loss: 114.355 -Training time 0:04:50.022412 -Epoch: 74 Average loss: 114.31 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 76) -0/69092 Loss: 119.328 -3200/69092 Loss: 113.290 -6400/69092 Loss: 115.541 -9600/69092 Loss: 114.173 -12800/69092 Loss: 115.024 -16000/69092 Loss: 113.129 -19200/69092 Loss: 114.460 -22400/69092 Loss: 114.829 -25600/69092 Loss: 114.816 -28800/69092 Loss: 112.927 -32000/69092 Loss: 113.915 -35200/69092 Loss: 113.821 -38400/69092 Loss: 113.344 -41600/69092 Loss: 113.747 -44800/69092 Loss: 113.595 -48000/69092 Loss: 114.600 -51200/69092 Loss: 113.716 -54400/69092 Loss: 116.395 -57600/69092 Loss: 114.278 -60800/69092 Loss: 113.421 -64000/69092 Loss: 115.272 -67200/69092 Loss: 114.376 -Training time 0:04:50.965335 -Epoch: 75 Average loss: 114.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 77) -0/69092 Loss: 106.325 -3200/69092 Loss: 114.237 -6400/69092 Loss: 112.202 -9600/69092 Loss: 114.797 -12800/69092 Loss: 113.953 -16000/69092 Loss: 114.647 -19200/69092 Loss: 113.164 -22400/69092 Loss: 114.101 -25600/69092 Loss: 115.652 -28800/69092 Loss: 116.110 -32000/69092 Loss: 112.867 -35200/69092 Loss: 113.098 -38400/69092 Loss: 115.475 -41600/69092 Loss: 115.695 -44800/69092 Loss: 115.099 -48000/69092 Loss: 114.189 -51200/69092 Loss: 113.810 -54400/69092 Loss: 113.467 -57600/69092 Loss: 113.638 -60800/69092 Loss: 113.796 -64000/69092 Loss: 112.408 -67200/69092 Loss: 115.216 -Training time 0:04:48.314100 -Epoch: 76 Average loss: 114.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 78) -0/69092 Loss: 111.949 -3200/69092 Loss: 114.600 -6400/69092 Loss: 115.056 -9600/69092 Loss: 114.120 -12800/69092 Loss: 114.041 -16000/69092 Loss: 113.095 -19200/69092 Loss: 115.825 -22400/69092 Loss: 112.967 -25600/69092 Loss: 113.657 -28800/69092 Loss: 113.907 -32000/69092 Loss: 114.831 -35200/69092 Loss: 116.393 -38400/69092 Loss: 114.758 -41600/69092 Loss: 111.627 -44800/69092 Loss: 113.137 -48000/69092 Loss: 114.459 -51200/69092 Loss: 114.188 -54400/69092 Loss: 114.140 -57600/69092 Loss: 113.776 -60800/69092 Loss: 114.968 -64000/69092 Loss: 114.500 -67200/69092 Loss: 111.762 -Training time 0:04:50.516608 -Epoch: 77 Average loss: 114.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 79) -0/69092 Loss: 120.149 -3200/69092 Loss: 113.093 -6400/69092 Loss: 111.723 -9600/69092 Loss: 113.978 -12800/69092 Loss: 114.171 -16000/69092 Loss: 113.628 -19200/69092 Loss: 114.345 -22400/69092 Loss: 114.132 -25600/69092 Loss: 114.419 -28800/69092 Loss: 113.464 -32000/69092 Loss: 112.627 -35200/69092 Loss: 114.483 -38400/69092 Loss: 113.634 -41600/69092 Loss: 116.167 -44800/69092 Loss: 113.841 -48000/69092 Loss: 114.498 -51200/69092 Loss: 114.056 -54400/69092 Loss: 114.758 -57600/69092 Loss: 113.521 -60800/69092 Loss: 113.663 -64000/69092 Loss: 115.677 -67200/69092 Loss: 115.055 -Training time 0:04:51.375221 -Epoch: 78 Average loss: 114.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 80) -0/69092 Loss: 112.982 -3200/69092 Loss: 114.917 -6400/69092 Loss: 114.844 -9600/69092 Loss: 112.990 -12800/69092 Loss: 112.300 -16000/69092 Loss: 114.665 -19200/69092 Loss: 113.423 -22400/69092 Loss: 114.391 -25600/69092 Loss: 112.353 -28800/69092 Loss: 114.761 -32000/69092 Loss: 113.442 -35200/69092 Loss: 114.386 -38400/69092 Loss: 114.219 -41600/69092 Loss: 113.040 -44800/69092 Loss: 113.246 -48000/69092 Loss: 113.242 -51200/69092 Loss: 114.584 -54400/69092 Loss: 113.588 -57600/69092 Loss: 115.343 -60800/69092 Loss: 113.627 -64000/69092 Loss: 115.992 -67200/69092 Loss: 113.429 -Training time 0:04:52.295794 -Epoch: 79 Average loss: 113.96 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 81) -0/69092 Loss: 114.161 -3200/69092 Loss: 113.462 -6400/69092 Loss: 113.622 -9600/69092 Loss: 114.331 -12800/69092 Loss: 114.920 -16000/69092 Loss: 115.949 -19200/69092 Loss: 115.160 -22400/69092 Loss: 113.351 -25600/69092 Loss: 115.150 -28800/69092 Loss: 112.688 -32000/69092 Loss: 111.680 -35200/69092 Loss: 113.813 -38400/69092 Loss: 113.434 -41600/69092 Loss: 113.293 -44800/69092 Loss: 115.529 -48000/69092 Loss: 114.092 -51200/69092 Loss: 113.028 -54400/69092 Loss: 112.844 -57600/69092 Loss: 113.923 -60800/69092 Loss: 113.820 -64000/69092 Loss: 114.425 -67200/69092 Loss: 113.621 -Training time 0:04:51.764568 -Epoch: 80 Average loss: 113.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 82) -0/69092 Loss: 107.403 -3200/69092 Loss: 114.295 -6400/69092 Loss: 112.806 -9600/69092 Loss: 115.963 -12800/69092 Loss: 115.544 -16000/69092 Loss: 114.910 -19200/69092 Loss: 112.273 -22400/69092 Loss: 115.473 -25600/69092 Loss: 112.662 -28800/69092 Loss: 115.452 -32000/69092 Loss: 113.634 -35200/69092 Loss: 113.874 -38400/69092 Loss: 111.303 -41600/69092 Loss: 114.504 -44800/69092 Loss: 112.888 -48000/69092 Loss: 113.844 -51200/69092 Loss: 114.398 -54400/69092 Loss: 113.549 -57600/69092 Loss: 116.015 -60800/69092 Loss: 112.868 -64000/69092 Loss: 112.874 -67200/69092 Loss: 112.393 -Training time 0:04:52.298415 -Epoch: 81 Average loss: 113.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 83) -0/69092 Loss: 107.947 -3200/69092 Loss: 114.589 -6400/69092 Loss: 114.348 -9600/69092 Loss: 114.530 -12800/69092 Loss: 113.244 -16000/69092 Loss: 114.148 -19200/69092 Loss: 114.319 -22400/69092 Loss: 113.858 -25600/69092 Loss: 116.558 -28800/69092 Loss: 112.606 -32000/69092 Loss: 114.654 -35200/69092 Loss: 113.615 -38400/69092 Loss: 114.364 -41600/69092 Loss: 114.591 -44800/69092 Loss: 113.994 -48000/69092 Loss: 114.206 -51200/69092 Loss: 112.193 -54400/69092 Loss: 111.868 -57600/69092 Loss: 112.703 -60800/69092 Loss: 113.730 -64000/69092 Loss: 113.579 -67200/69092 Loss: 113.643 -Training time 0:04:51.209246 -Epoch: 82 Average loss: 113.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 84) -0/69092 Loss: 107.467 -3200/69092 Loss: 114.237 -6400/69092 Loss: 114.535 -9600/69092 Loss: 112.398 -12800/69092 Loss: 113.000 -16000/69092 Loss: 113.300 -19200/69092 Loss: 114.881 -22400/69092 Loss: 113.460 -25600/69092 Loss: 112.801 -28800/69092 Loss: 115.524 -32000/69092 Loss: 114.338 -35200/69092 Loss: 113.895 -38400/69092 Loss: 113.508 -41600/69092 Loss: 112.388 -44800/69092 Loss: 115.688 -48000/69092 Loss: 113.361 -51200/69092 Loss: 114.276 -54400/69092 Loss: 112.706 -57600/69092 Loss: 114.713 -60800/69092 Loss: 113.868 -64000/69092 Loss: 114.698 -67200/69092 Loss: 113.222 -Training time 0:04:52.280438 -Epoch: 83 Average loss: 113.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 85) -0/69092 Loss: 106.944 -3200/69092 Loss: 115.518 -6400/69092 Loss: 115.470 -9600/69092 Loss: 114.716 -12800/69092 Loss: 113.934 -16000/69092 Loss: 113.233 -19200/69092 Loss: 113.723 -22400/69092 Loss: 114.237 -25600/69092 Loss: 110.741 -28800/69092 Loss: 114.205 -32000/69092 Loss: 113.444 -35200/69092 Loss: 113.357 -38400/69092 Loss: 111.711 -41600/69092 Loss: 114.080 -44800/69092 Loss: 114.114 -48000/69092 Loss: 115.278 -51200/69092 Loss: 112.557 -54400/69092 Loss: 114.194 -57600/69092 Loss: 113.822 -60800/69092 Loss: 114.116 -64000/69092 Loss: 113.442 -67200/69092 Loss: 114.152 -Training time 0:04:54.264285 -Epoch: 84 Average loss: 113.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 86) -0/69092 Loss: 112.850 -3200/69092 Loss: 113.493 -6400/69092 Loss: 113.656 -9600/69092 Loss: 114.496 -12800/69092 Loss: 112.854 -16000/69092 Loss: 114.891 -19200/69092 Loss: 113.072 -22400/69092 Loss: 113.396 -25600/69092 Loss: 112.900 -28800/69092 Loss: 113.637 -32000/69092 Loss: 113.876 -35200/69092 Loss: 114.509 -38400/69092 Loss: 114.604 -41600/69092 Loss: 112.058 -44800/69092 Loss: 113.134 -48000/69092 Loss: 113.515 -51200/69092 Loss: 114.492 -54400/69092 Loss: 113.979 -57600/69092 Loss: 114.504 -60800/69092 Loss: 112.922 -64000/69092 Loss: 113.027 -67200/69092 Loss: 115.655 -Training time 0:04:51.105966 -Epoch: 85 Average loss: 113.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 87) -0/69092 Loss: 94.388 -3200/69092 Loss: 111.242 -6400/69092 Loss: 112.348 -9600/69092 Loss: 115.769 -12800/69092 Loss: 115.243 -16000/69092 Loss: 113.438 -19200/69092 Loss: 113.098 -22400/69092 Loss: 112.425 -25600/69092 Loss: 112.287 -28800/69092 Loss: 112.773 -32000/69092 Loss: 112.341 -35200/69092 Loss: 114.409 -38400/69092 Loss: 113.970 -41600/69092 Loss: 114.154 -44800/69092 Loss: 114.033 -48000/69092 Loss: 115.759 -51200/69092 Loss: 114.301 -54400/69092 Loss: 113.919 -57600/69092 Loss: 114.798 -60800/69092 Loss: 113.820 -64000/69092 Loss: 115.980 -67200/69092 Loss: 112.752 -Training time 0:04:52.219598 -Epoch: 86 Average loss: 113.70 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 88) -0/69092 Loss: 121.401 -3200/69092 Loss: 112.879 -6400/69092 Loss: 114.243 -9600/69092 Loss: 112.702 -12800/69092 Loss: 112.158 -16000/69092 Loss: 113.485 -19200/69092 Loss: 114.173 -22400/69092 Loss: 112.978 -25600/69092 Loss: 114.152 -28800/69092 Loss: 114.511 -32000/69092 Loss: 112.840 -35200/69092 Loss: 113.681 -38400/69092 Loss: 114.121 -41600/69092 Loss: 113.551 -44800/69092 Loss: 113.046 -48000/69092 Loss: 113.967 -51200/69092 Loss: 112.369 -54400/69092 Loss: 112.924 -57600/69092 Loss: 113.448 -60800/69092 Loss: 116.035 -64000/69092 Loss: 115.074 -67200/69092 Loss: 112.418 -Training time 0:04:51.213202 -Epoch: 87 Average loss: 113.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 89) -0/69092 Loss: 111.812 -3200/69092 Loss: 113.849 -6400/69092 Loss: 113.464 -9600/69092 Loss: 115.864 -12800/69092 Loss: 112.305 -16000/69092 Loss: 113.882 -19200/69092 Loss: 112.665 -22400/69092 Loss: 115.261 -25600/69092 Loss: 113.349 -28800/69092 Loss: 112.552 -32000/69092 Loss: 113.600 -35200/69092 Loss: 114.422 -38400/69092 Loss: 114.059 -41600/69092 Loss: 113.211 -44800/69092 Loss: 113.649 -48000/69092 Loss: 114.113 -51200/69092 Loss: 113.820 -54400/69092 Loss: 112.448 -57600/69092 Loss: 113.484 -60800/69092 Loss: 112.836 -64000/69092 Loss: 115.360 -67200/69092 Loss: 114.395 -Training time 0:04:52.346897 -Epoch: 88 Average loss: 113.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 90) -0/69092 Loss: 123.009 -3200/69092 Loss: 114.672 -6400/69092 Loss: 114.283 -9600/69092 Loss: 113.250 -12800/69092 Loss: 114.013 -16000/69092 Loss: 115.927 -19200/69092 Loss: 112.359 -22400/69092 Loss: 114.315 -25600/69092 Loss: 113.557 -28800/69092 Loss: 113.454 -32000/69092 Loss: 114.627 -35200/69092 Loss: 112.778 -38400/69092 Loss: 114.176 -41600/69092 Loss: 112.950 -44800/69092 Loss: 113.211 -48000/69092 Loss: 113.908 -51200/69092 Loss: 112.994 -54400/69092 Loss: 113.669 -57600/69092 Loss: 113.994 -60800/69092 Loss: 113.695 -64000/69092 Loss: 113.448 -67200/69092 Loss: 112.353 -Training time 0:04:51.132729 -Epoch: 89 Average loss: 113.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 91) -0/69092 Loss: 107.751 -3200/69092 Loss: 115.992 -6400/69092 Loss: 111.825 -9600/69092 Loss: 115.858 -12800/69092 Loss: 114.290 -16000/69092 Loss: 112.762 -19200/69092 Loss: 112.139 -22400/69092 Loss: 113.851 -25600/69092 Loss: 112.673 -28800/69092 Loss: 113.076 -32000/69092 Loss: 114.495 -35200/69092 Loss: 113.640 -38400/69092 Loss: 116.184 -41600/69092 Loss: 114.355 -44800/69092 Loss: 111.952 -48000/69092 Loss: 113.720 -51200/69092 Loss: 113.271 -54400/69092 Loss: 112.506 -57600/69092 Loss: 110.996 -60800/69092 Loss: 112.843 -64000/69092 Loss: 113.444 -67200/69092 Loss: 114.445 -Training time 0:04:50.625156 -Epoch: 90 Average loss: 113.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 92) -0/69092 Loss: 112.598 -3200/69092 Loss: 113.812 -6400/69092 Loss: 114.151 -9600/69092 Loss: 112.680 -12800/69092 Loss: 112.075 -16000/69092 Loss: 114.050 -19200/69092 Loss: 112.628 -22400/69092 Loss: 114.042 -25600/69092 Loss: 113.074 -28800/69092 Loss: 113.462 -32000/69092 Loss: 114.582 -35200/69092 Loss: 113.098 -38400/69092 Loss: 112.913 -41600/69092 Loss: 115.821 -44800/69092 Loss: 112.552 -48000/69092 Loss: 114.369 -51200/69092 Loss: 112.121 -54400/69092 Loss: 112.954 -57600/69092 Loss: 112.156 -60800/69092 Loss: 113.913 -64000/69092 Loss: 113.602 -67200/69092 Loss: 113.076 -Training time 0:04:50.194425 -Epoch: 91 Average loss: 113.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 93) -0/69092 Loss: 115.386 -3200/69092 Loss: 112.377 -6400/69092 Loss: 113.867 -9600/69092 Loss: 113.624 -12800/69092 Loss: 114.453 -16000/69092 Loss: 113.860 -19200/69092 Loss: 112.540 -22400/69092 Loss: 113.809 -25600/69092 Loss: 113.196 -28800/69092 Loss: 112.945 -32000/69092 Loss: 113.234 -35200/69092 Loss: 114.203 -38400/69092 Loss: 112.276 -41600/69092 Loss: 111.515 -44800/69092 Loss: 115.496 -48000/69092 Loss: 112.570 -51200/69092 Loss: 111.446 -54400/69092 Loss: 114.333 -57600/69092 Loss: 113.735 -60800/69092 Loss: 115.819 -64000/69092 Loss: 113.408 -67200/69092 Loss: 114.424 -Training time 0:04:51.056869 -Epoch: 92 Average loss: 113.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 94) -0/69092 Loss: 115.292 -3200/69092 Loss: 112.917 -6400/69092 Loss: 113.135 -9600/69092 Loss: 114.095 -12800/69092 Loss: 112.343 -16000/69092 Loss: 111.457 -19200/69092 Loss: 113.123 -22400/69092 Loss: 113.382 -25600/69092 Loss: 114.794 -28800/69092 Loss: 113.786 -32000/69092 Loss: 111.974 -35200/69092 Loss: 113.622 -38400/69092 Loss: 112.727 -41600/69092 Loss: 113.396 -44800/69092 Loss: 114.468 -48000/69092 Loss: 113.996 -51200/69092 Loss: 112.353 -54400/69092 Loss: 113.359 -57600/69092 Loss: 112.007 -60800/69092 Loss: 113.062 -64000/69092 Loss: 115.791 -67200/69092 Loss: 114.567 -Training time 0:04:50.570403 -Epoch: 93 Average loss: 113.36 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 95) -0/69092 Loss: 109.136 -3200/69092 Loss: 114.790 -6400/69092 Loss: 113.016 -9600/69092 Loss: 113.913 -12800/69092 Loss: 113.639 -16000/69092 Loss: 114.177 -19200/69092 Loss: 113.522 -22400/69092 Loss: 111.878 -25600/69092 Loss: 113.327 -28800/69092 Loss: 113.775 -32000/69092 Loss: 112.777 -35200/69092 Loss: 113.935 -38400/69092 Loss: 113.537 -41600/69092 Loss: 112.504 -44800/69092 Loss: 112.843 -48000/69092 Loss: 111.545 -51200/69092 Loss: 113.418 -54400/69092 Loss: 114.000 -57600/69092 Loss: 112.889 -60800/69092 Loss: 113.918 -64000/69092 Loss: 112.917 -67200/69092 Loss: 112.881 -Training time 0:04:50.509614 -Epoch: 94 Average loss: 113.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 96) -0/69092 Loss: 120.211 -3200/69092 Loss: 112.835 -6400/69092 Loss: 114.498 -9600/69092 Loss: 110.539 -12800/69092 Loss: 112.930 -16000/69092 Loss: 114.047 -19200/69092 Loss: 114.101 -22400/69092 Loss: 113.367 -25600/69092 Loss: 112.753 -28800/69092 Loss: 114.776 -32000/69092 Loss: 112.135 -35200/69092 Loss: 115.300 -38400/69092 Loss: 112.598 -41600/69092 Loss: 113.166 -44800/69092 Loss: 114.484 -48000/69092 Loss: 112.204 -51200/69092 Loss: 113.411 -54400/69092 Loss: 114.884 -57600/69092 Loss: 113.061 -60800/69092 Loss: 112.235 -64000/69092 Loss: 113.967 -67200/69092 Loss: 113.788 -Training time 0:04:50.899388 -Epoch: 95 Average loss: 113.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 97) -0/69092 Loss: 111.181 -3200/69092 Loss: 113.883 -6400/69092 Loss: 113.542 -9600/69092 Loss: 114.806 -12800/69092 Loss: 113.439 -16000/69092 Loss: 113.058 -19200/69092 Loss: 113.155 -22400/69092 Loss: 112.833 -25600/69092 Loss: 112.554 -28800/69092 Loss: 114.190 -32000/69092 Loss: 113.610 -35200/69092 Loss: 111.993 -38400/69092 Loss: 113.532 -41600/69092 Loss: 113.269 -44800/69092 Loss: 114.041 -48000/69092 Loss: 111.756 -51200/69092 Loss: 115.580 -54400/69092 Loss: 112.936 -57600/69092 Loss: 114.655 -60800/69092 Loss: 112.729 -64000/69092 Loss: 113.405 -67200/69092 Loss: 113.330 -Training time 0:04:51.675494 -Epoch: 96 Average loss: 113.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 98) -0/69092 Loss: 129.512 -3200/69092 Loss: 112.647 -6400/69092 Loss: 112.876 -9600/69092 Loss: 112.423 -12800/69092 Loss: 114.425 -16000/69092 Loss: 112.080 -19200/69092 Loss: 113.824 -22400/69092 Loss: 114.857 -25600/69092 Loss: 112.271 -28800/69092 Loss: 112.538 -32000/69092 Loss: 115.135 -35200/69092 Loss: 111.871 -38400/69092 Loss: 113.502 -41600/69092 Loss: 113.204 -44800/69092 Loss: 112.465 -48000/69092 Loss: 111.558 -51200/69092 Loss: 112.963 -54400/69092 Loss: 113.559 -57600/69092 Loss: 114.097 -60800/69092 Loss: 111.680 -64000/69092 Loss: 116.714 -67200/69092 Loss: 114.457 -Training time 0:04:50.365147 -Epoch: 97 Average loss: 113.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 99) -0/69092 Loss: 118.832 -3200/69092 Loss: 114.116 -6400/69092 Loss: 113.636 -9600/69092 Loss: 112.787 -12800/69092 Loss: 111.858 -16000/69092 Loss: 112.529 -19200/69092 Loss: 112.109 -22400/69092 Loss: 112.187 -25600/69092 Loss: 112.936 -28800/69092 Loss: 115.427 -32000/69092 Loss: 112.267 -35200/69092 Loss: 111.076 -38400/69092 Loss: 111.865 -41600/69092 Loss: 113.033 -44800/69092 Loss: 112.791 -48000/69092 Loss: 114.817 -51200/69092 Loss: 113.882 -54400/69092 Loss: 114.492 -57600/69092 Loss: 113.355 -60800/69092 Loss: 114.096 -64000/69092 Loss: 112.991 -67200/69092 Loss: 113.376 -Training time 0:04:49.462065 -Epoch: 98 Average loss: 113.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 100) -0/69092 Loss: 108.530 -3200/69092 Loss: 113.168 -6400/69092 Loss: 113.990 -9600/69092 Loss: 113.376 -12800/69092 Loss: 115.051 -16000/69092 Loss: 111.984 -19200/69092 Loss: 112.483 -22400/69092 Loss: 110.864 -25600/69092 Loss: 113.915 -28800/69092 Loss: 113.825 -32000/69092 Loss: 114.106 -35200/69092 Loss: 113.509 -38400/69092 Loss: 113.246 -41600/69092 Loss: 114.283 -44800/69092 Loss: 111.216 -48000/69092 Loss: 113.894 -51200/69092 Loss: 112.492 -54400/69092 Loss: 114.035 -57600/69092 Loss: 112.132 -60800/69092 Loss: 111.788 -64000/69092 Loss: 114.670 -67200/69092 Loss: 113.927 -Training time 0:04:50.711497 -Epoch: 99 Average loss: 113.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 101) -0/69092 Loss: 104.715 -3200/69092 Loss: 114.996 -6400/69092 Loss: 111.712 -9600/69092 Loss: 114.057 -12800/69092 Loss: 113.130 -16000/69092 Loss: 114.854 -19200/69092 Loss: 112.510 -22400/69092 Loss: 112.570 -25600/69092 Loss: 113.299 -28800/69092 Loss: 112.590 -32000/69092 Loss: 112.673 -35200/69092 Loss: 111.300 -38400/69092 Loss: 111.996 -41600/69092 Loss: 114.006 -44800/69092 Loss: 114.334 -48000/69092 Loss: 111.544 -51200/69092 Loss: 114.231 -54400/69092 Loss: 111.873 -57600/69092 Loss: 114.207 -60800/69092 Loss: 112.306 -64000/69092 Loss: 111.566 -67200/69092 Loss: 113.902 -Training time 0:04:50.773052 -Epoch: 100 Average loss: 113.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 102) -0/69092 Loss: 103.241 -3200/69092 Loss: 114.012 -6400/69092 Loss: 113.032 -9600/69092 Loss: 111.289 -12800/69092 Loss: 113.076 -16000/69092 Loss: 113.746 -19200/69092 Loss: 113.834 -22400/69092 Loss: 112.645 -25600/69092 Loss: 114.432 -28800/69092 Loss: 112.254 -32000/69092 Loss: 114.221 -35200/69092 Loss: 111.278 -38400/69092 Loss: 113.230 -41600/69092 Loss: 113.947 -44800/69092 Loss: 112.927 -48000/69092 Loss: 113.256 -51200/69092 Loss: 111.359 -54400/69092 Loss: 113.623 -57600/69092 Loss: 112.886 -60800/69092 Loss: 113.248 -64000/69092 Loss: 113.053 -67200/69092 Loss: 112.776 -Training time 0:04:51.880454 -Epoch: 101 Average loss: 113.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 103) -0/69092 Loss: 104.510 -3200/69092 Loss: 115.825 -6400/69092 Loss: 113.438 -9600/69092 Loss: 113.008 -12800/69092 Loss: 112.949 -16000/69092 Loss: 114.365 -19200/69092 Loss: 112.928 -22400/69092 Loss: 111.763 -25600/69092 Loss: 114.226 -28800/69092 Loss: 112.180 -32000/69092 Loss: 111.872 -35200/69092 Loss: 112.966 -38400/69092 Loss: 113.134 -41600/69092 Loss: 111.910 -44800/69092 Loss: 112.458 -48000/69092 Loss: 113.513 -51200/69092 Loss: 112.349 -54400/69092 Loss: 113.011 -57600/69092 Loss: 113.556 -60800/69092 Loss: 112.649 -64000/69092 Loss: 113.863 -67200/69092 Loss: 113.112 -Training time 0:04:53.868210 -Epoch: 102 Average loss: 113.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 104) -0/69092 Loss: 112.749 -3200/69092 Loss: 112.414 -6400/69092 Loss: 112.463 -9600/69092 Loss: 112.118 -12800/69092 Loss: 111.886 -16000/69092 Loss: 111.227 -19200/69092 Loss: 112.808 -22400/69092 Loss: 112.538 -25600/69092 Loss: 112.087 -28800/69092 Loss: 113.498 -32000/69092 Loss: 112.696 -35200/69092 Loss: 113.405 -38400/69092 Loss: 113.021 -41600/69092 Loss: 114.543 -44800/69092 Loss: 114.788 -48000/69092 Loss: 114.305 -51200/69092 Loss: 113.947 -54400/69092 Loss: 113.979 -57600/69092 Loss: 113.925 -60800/69092 Loss: 113.345 -64000/69092 Loss: 113.074 -67200/69092 Loss: 111.675 -Training time 0:04:51.015212 -Epoch: 103 Average loss: 113.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 105) -0/69092 Loss: 113.049 -3200/69092 Loss: 112.966 -6400/69092 Loss: 112.076 -9600/69092 Loss: 113.396 -12800/69092 Loss: 113.117 -16000/69092 Loss: 113.435 -19200/69092 Loss: 111.830 -22400/69092 Loss: 110.879 -25600/69092 Loss: 112.320 -28800/69092 Loss: 113.011 -32000/69092 Loss: 112.395 -35200/69092 Loss: 113.857 -38400/69092 Loss: 111.612 -41600/69092 Loss: 113.616 -44800/69092 Loss: 113.028 -48000/69092 Loss: 113.891 -51200/69092 Loss: 115.016 -54400/69092 Loss: 112.686 -57600/69092 Loss: 114.493 -60800/69092 Loss: 112.483 -64000/69092 Loss: 113.863 -67200/69092 Loss: 112.239 -Training time 0:04:50.883705 -Epoch: 104 Average loss: 113.02 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 106) -0/69092 Loss: 117.649 -3200/69092 Loss: 111.403 -6400/69092 Loss: 114.627 -9600/69092 Loss: 113.497 -12800/69092 Loss: 114.286 -16000/69092 Loss: 111.266 -19200/69092 Loss: 113.161 -22400/69092 Loss: 112.569 -25600/69092 Loss: 111.745 -28800/69092 Loss: 112.846 -32000/69092 Loss: 111.716 -35200/69092 Loss: 112.420 -38400/69092 Loss: 112.767 -41600/69092 Loss: 111.755 -44800/69092 Loss: 114.990 -48000/69092 Loss: 114.644 -51200/69092 Loss: 113.324 -54400/69092 Loss: 112.092 -57600/69092 Loss: 115.715 -60800/69092 Loss: 112.178 -64000/69092 Loss: 112.530 -67200/69092 Loss: 111.036 -Training time 0:04:50.722033 -Epoch: 105 Average loss: 112.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 107) -0/69092 Loss: 110.335 -3200/69092 Loss: 112.968 -6400/69092 Loss: 112.965 -9600/69092 Loss: 113.754 -12800/69092 Loss: 112.037 -16000/69092 Loss: 113.292 -19200/69092 Loss: 112.486 -22400/69092 Loss: 113.055 -25600/69092 Loss: 112.109 -28800/69092 Loss: 111.938 -32000/69092 Loss: 113.729 -35200/69092 Loss: 114.021 -38400/69092 Loss: 112.244 -41600/69092 Loss: 111.851 -44800/69092 Loss: 113.689 -48000/69092 Loss: 112.606 -51200/69092 Loss: 114.633 -54400/69092 Loss: 115.295 -57600/69092 Loss: 110.716 -60800/69092 Loss: 112.370 -64000/69092 Loss: 113.886 -67200/69092 Loss: 114.530 -Training time 0:04:49.583058 -Epoch: 106 Average loss: 112.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 108) -0/69092 Loss: 109.728 -3200/69092 Loss: 111.651 -6400/69092 Loss: 113.660 -9600/69092 Loss: 110.784 -12800/69092 Loss: 112.393 -16000/69092 Loss: 112.028 -19200/69092 Loss: 113.139 -22400/69092 Loss: 114.301 -25600/69092 Loss: 112.913 -28800/69092 Loss: 114.420 -32000/69092 Loss: 113.733 -35200/69092 Loss: 111.859 -38400/69092 Loss: 112.927 -41600/69092 Loss: 115.408 -44800/69092 Loss: 111.712 -48000/69092 Loss: 115.124 -51200/69092 Loss: 112.678 -54400/69092 Loss: 111.074 -57600/69092 Loss: 113.910 -60800/69092 Loss: 112.468 -64000/69092 Loss: 112.889 -67200/69092 Loss: 112.525 -Training time 0:04:50.873563 -Epoch: 107 Average loss: 112.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 109) -0/69092 Loss: 100.595 -3200/69092 Loss: 111.699 -6400/69092 Loss: 112.685 -9600/69092 Loss: 111.818 -12800/69092 Loss: 112.431 -16000/69092 Loss: 114.224 -19200/69092 Loss: 111.799 -22400/69092 Loss: 113.780 -25600/69092 Loss: 112.470 -28800/69092 Loss: 113.491 -32000/69092 Loss: 113.645 -35200/69092 Loss: 112.084 -38400/69092 Loss: 112.113 -41600/69092 Loss: 112.947 -44800/69092 Loss: 113.417 -48000/69092 Loss: 113.985 -51200/69092 Loss: 112.549 -54400/69092 Loss: 112.278 -57600/69092 Loss: 114.006 -60800/69092 Loss: 114.476 -64000/69092 Loss: 112.118 -67200/69092 Loss: 113.907 -Training time 0:04:50.246159 -Epoch: 108 Average loss: 112.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 110) -0/69092 Loss: 109.749 -3200/69092 Loss: 111.728 -6400/69092 Loss: 114.343 -9600/69092 Loss: 115.068 -12800/69092 Loss: 111.811 -16000/69092 Loss: 112.032 -19200/69092 Loss: 112.554 -22400/69092 Loss: 112.011 -25600/69092 Loss: 113.259 -28800/69092 Loss: 112.044 -32000/69092 Loss: 110.983 -35200/69092 Loss: 113.468 -38400/69092 Loss: 114.091 -41600/69092 Loss: 112.747 -44800/69092 Loss: 112.890 -48000/69092 Loss: 113.464 -51200/69092 Loss: 111.830 -54400/69092 Loss: 113.043 -57600/69092 Loss: 113.324 -60800/69092 Loss: 112.852 -64000/69092 Loss: 114.433 -67200/69092 Loss: 112.236 -Training time 0:04:49.864885 -Epoch: 109 Average loss: 112.90 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 111) -0/69092 Loss: 108.662 -3200/69092 Loss: 112.250 -6400/69092 Loss: 112.018 -9600/69092 Loss: 113.160 -12800/69092 Loss: 112.030 -16000/69092 Loss: 110.437 -19200/69092 Loss: 112.932 -22400/69092 Loss: 112.913 -25600/69092 Loss: 114.639 -28800/69092 Loss: 111.360 -32000/69092 Loss: 114.006 -35200/69092 Loss: 112.941 -38400/69092 Loss: 112.100 -41600/69092 Loss: 114.785 -44800/69092 Loss: 111.514 -48000/69092 Loss: 113.532 -51200/69092 Loss: 113.963 -54400/69092 Loss: 112.818 -57600/69092 Loss: 114.311 -60800/69092 Loss: 115.810 -64000/69092 Loss: 110.706 -67200/69092 Loss: 113.092 -Training time 0:04:52.403239 -Epoch: 110 Average loss: 112.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 112) -0/69092 Loss: 117.085 -3200/69092 Loss: 112.570 -6400/69092 Loss: 112.889 -9600/69092 Loss: 113.498 -12800/69092 Loss: 113.033 -16000/69092 Loss: 113.505 -19200/69092 Loss: 110.694 -22400/69092 Loss: 112.606 -25600/69092 Loss: 114.135 -28800/69092 Loss: 112.351 -32000/69092 Loss: 113.568 -35200/69092 Loss: 111.569 -38400/69092 Loss: 113.105 -41600/69092 Loss: 113.619 -44800/69092 Loss: 113.033 -48000/69092 Loss: 110.961 -51200/69092 Loss: 113.473 -54400/69092 Loss: 113.197 -57600/69092 Loss: 112.174 -60800/69092 Loss: 114.522 -64000/69092 Loss: 114.344 -67200/69092 Loss: 113.659 -Training time 0:04:51.452453 -Epoch: 111 Average loss: 112.93 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 113) -0/69092 Loss: 114.975 -3200/69092 Loss: 112.918 -6400/69092 Loss: 112.470 -9600/69092 Loss: 113.404 -12800/69092 Loss: 112.227 -16000/69092 Loss: 113.907 -19200/69092 Loss: 112.203 -22400/69092 Loss: 112.680 -25600/69092 Loss: 110.716 -28800/69092 Loss: 113.804 -32000/69092 Loss: 113.425 -35200/69092 Loss: 113.265 -38400/69092 Loss: 111.771 -41600/69092 Loss: 113.441 -44800/69092 Loss: 113.071 -48000/69092 Loss: 112.056 -51200/69092 Loss: 113.299 -54400/69092 Loss: 112.062 -57600/69092 Loss: 113.936 -60800/69092 Loss: 111.318 -64000/69092 Loss: 112.291 -67200/69092 Loss: 115.086 -Training time 0:04:51.975763 -Epoch: 112 Average loss: 112.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 114) -0/69092 Loss: 102.922 -3200/69092 Loss: 115.186 -6400/69092 Loss: 111.882 -9600/69092 Loss: 113.402 -12800/69092 Loss: 112.680 -16000/69092 Loss: 113.579 -19200/69092 Loss: 111.947 -22400/69092 Loss: 111.836 -25600/69092 Loss: 113.005 -28800/69092 Loss: 112.644 -32000/69092 Loss: 112.913 -35200/69092 Loss: 110.705 -38400/69092 Loss: 112.131 -41600/69092 Loss: 113.813 -44800/69092 Loss: 115.153 -48000/69092 Loss: 112.444 -51200/69092 Loss: 112.657 -54400/69092 Loss: 111.252 -57600/69092 Loss: 114.383 -60800/69092 Loss: 114.278 -64000/69092 Loss: 111.896 -67200/69092 Loss: 113.764 -Training time 0:04:50.679658 -Epoch: 113 Average loss: 112.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 115) -0/69092 Loss: 112.672 -3200/69092 Loss: 112.993 -6400/69092 Loss: 112.206 -9600/69092 Loss: 113.897 -12800/69092 Loss: 113.445 -16000/69092 Loss: 112.395 -19200/69092 Loss: 113.587 -22400/69092 Loss: 114.301 -25600/69092 Loss: 112.975 -28800/69092 Loss: 113.426 -32000/69092 Loss: 112.050 -35200/69092 Loss: 113.016 -38400/69092 Loss: 114.072 -41600/69092 Loss: 110.919 -44800/69092 Loss: 113.175 -48000/69092 Loss: 111.370 -51200/69092 Loss: 113.587 -54400/69092 Loss: 112.240 -57600/69092 Loss: 111.858 -60800/69092 Loss: 112.010 -64000/69092 Loss: 112.690 -67200/69092 Loss: 112.855 -Training time 0:04:50.348314 -Epoch: 114 Average loss: 112.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_15/checkpoints/last' (iter 116) -0/69092 Loss: 104.999 -3200/69092 Loss: 113.136 -6400/69092 Loss: 112.056 -9600/69092 Loss: 112.611 -12800/69092 Loss: 111.995 -16000/69092 Loss: 112.782 diff --git a/OAR.2068293.stderr b/OAR.2068293.stderr deleted file mode 100644 index a9c628a29c..0000000000 --- a/OAR.2068293.stderr +++ /dev/null @@ -1,2 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) diff --git a/OAR.2068293.stdout b/OAR.2068293.stdout deleted file mode 100644 index b7f0ce4388..0000000000 --- a/OAR.2068293.stdout +++ /dev/null @@ -1,2050 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_20', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=20, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_20 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=40, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=20, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 773035 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last (iter 5)' -0/69092 Loss: 123.071 -3200/69092 Loss: 129.671 -6400/69092 Loss: 127.398 -9600/69092 Loss: 127.951 -12800/69092 Loss: 128.455 -16000/69092 Loss: 129.429 -19200/69092 Loss: 126.305 -22400/69092 Loss: 128.984 -25600/69092 Loss: 130.783 -28800/69092 Loss: 129.975 -32000/69092 Loss: 128.062 -35200/69092 Loss: 127.186 -38400/69092 Loss: 128.455 -41600/69092 Loss: 128.958 -44800/69092 Loss: 129.323 -48000/69092 Loss: 126.212 -51200/69092 Loss: 128.191 -54400/69092 Loss: 127.190 -57600/69092 Loss: 126.934 -60800/69092 Loss: 127.484 -64000/69092 Loss: 128.661 -67200/69092 Loss: 124.744 -Training time 0:04:50.464730 -Epoch: 1 Average loss: 128.18 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 6) -0/69092 Loss: 129.943 -3200/69092 Loss: 129.051 -6400/69092 Loss: 125.219 -9600/69092 Loss: 123.455 -12800/69092 Loss: 127.291 -16000/69092 Loss: 127.190 -19200/69092 Loss: 126.336 -22400/69092 Loss: 127.079 -25600/69092 Loss: 126.929 -28800/69092 Loss: 126.119 -32000/69092 Loss: 126.972 -35200/69092 Loss: 124.950 -38400/69092 Loss: 125.826 -41600/69092 Loss: 126.043 -44800/69092 Loss: 123.989 -48000/69092 Loss: 124.989 -51200/69092 Loss: 125.214 -54400/69092 Loss: 124.362 -57600/69092 Loss: 125.383 -60800/69092 Loss: 125.831 -64000/69092 Loss: 123.904 -67200/69092 Loss: 127.904 -Training time 0:04:51.734344 -Epoch: 2 Average loss: 125.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 7) -0/69092 Loss: 151.090 -3200/69092 Loss: 123.873 -6400/69092 Loss: 124.226 -9600/69092 Loss: 126.185 -12800/69092 Loss: 125.767 -16000/69092 Loss: 124.022 -19200/69092 Loss: 126.055 -22400/69092 Loss: 124.320 -25600/69092 Loss: 124.870 -28800/69092 Loss: 127.822 -32000/69092 Loss: 124.268 -35200/69092 Loss: 125.595 -38400/69092 Loss: 123.975 -41600/69092 Loss: 122.331 -44800/69092 Loss: 121.933 -48000/69092 Loss: 123.773 -51200/69092 Loss: 124.910 -54400/69092 Loss: 123.662 -57600/69092 Loss: 122.927 -60800/69092 Loss: 123.387 -64000/69092 Loss: 123.426 -67200/69092 Loss: 125.656 -Training time 0:04:45.516245 -Epoch: 3 Average loss: 124.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 8) -0/69092 Loss: 116.913 -3200/69092 Loss: 121.551 -6400/69092 Loss: 123.757 -9600/69092 Loss: 120.772 -12800/69092 Loss: 124.840 -16000/69092 Loss: 122.135 -19200/69092 Loss: 124.674 -22400/69092 Loss: 124.362 -25600/69092 Loss: 124.429 -28800/69092 Loss: 121.847 -32000/69092 Loss: 122.697 -35200/69092 Loss: 121.337 -38400/69092 Loss: 123.855 -41600/69092 Loss: 123.472 -44800/69092 Loss: 123.395 -48000/69092 Loss: 123.456 -51200/69092 Loss: 122.075 -54400/69092 Loss: 123.076 -57600/69092 Loss: 124.115 -60800/69092 Loss: 123.259 -64000/69092 Loss: 123.464 -67200/69092 Loss: 121.002 -Training time 0:04:52.057476 -Epoch: 4 Average loss: 123.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 9) -0/69092 Loss: 99.405 -3200/69092 Loss: 122.589 -6400/69092 Loss: 123.487 -9600/69092 Loss: 119.019 -12800/69092 Loss: 121.564 -16000/69092 Loss: 123.554 -19200/69092 Loss: 121.925 -22400/69092 Loss: 120.459 -25600/69092 Loss: 121.809 -28800/69092 Loss: 121.263 -32000/69092 Loss: 122.560 -35200/69092 Loss: 120.117 -38400/69092 Loss: 121.506 -41600/69092 Loss: 123.250 -44800/69092 Loss: 121.267 -48000/69092 Loss: 122.438 -51200/69092 Loss: 121.474 -54400/69092 Loss: 123.530 -57600/69092 Loss: 122.750 -60800/69092 Loss: 122.617 -64000/69092 Loss: 123.213 -67200/69092 Loss: 121.717 -Training time 0:04:47.144073 -Epoch: 5 Average loss: 121.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 10) -0/69092 Loss: 116.159 -3200/69092 Loss: 122.455 -6400/69092 Loss: 120.286 -9600/69092 Loss: 119.735 -12800/69092 Loss: 122.867 -16000/69092 Loss: 120.996 -19200/69092 Loss: 121.540 -22400/69092 Loss: 122.140 -25600/69092 Loss: 120.710 -28800/69092 Loss: 121.041 -32000/69092 Loss: 122.114 -35200/69092 Loss: 119.510 -38400/69092 Loss: 120.339 -41600/69092 Loss: 121.481 -44800/69092 Loss: 120.913 -48000/69092 Loss: 120.790 -51200/69092 Loss: 121.752 -54400/69092 Loss: 120.170 -57600/69092 Loss: 120.647 -60800/69092 Loss: 120.284 -64000/69092 Loss: 121.987 -67200/69092 Loss: 121.628 -Training time 0:04:53.401766 -Epoch: 6 Average loss: 121.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 11) -0/69092 Loss: 129.555 -3200/69092 Loss: 119.839 -6400/69092 Loss: 118.692 -9600/69092 Loss: 121.241 -12800/69092 Loss: 118.470 -16000/69092 Loss: 121.128 -19200/69092 Loss: 120.905 -22400/69092 Loss: 120.691 -25600/69092 Loss: 119.656 -28800/69092 Loss: 119.566 -32000/69092 Loss: 120.417 -35200/69092 Loss: 119.614 -38400/69092 Loss: 119.080 -41600/69092 Loss: 119.992 -44800/69092 Loss: 122.269 -48000/69092 Loss: 120.826 -51200/69092 Loss: 120.305 -54400/69092 Loss: 119.281 -57600/69092 Loss: 120.017 -60800/69092 Loss: 122.424 -64000/69092 Loss: 120.654 -67200/69092 Loss: 121.758 -Training time 0:04:53.550179 -Epoch: 7 Average loss: 120.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 12) -0/69092 Loss: 110.400 -3200/69092 Loss: 120.276 -6400/69092 Loss: 121.587 -9600/69092 Loss: 119.223 -12800/69092 Loss: 120.454 -16000/69092 Loss: 120.013 -19200/69092 Loss: 117.803 -22400/69092 Loss: 121.672 -25600/69092 Loss: 118.489 -28800/69092 Loss: 120.078 -32000/69092 Loss: 119.809 -35200/69092 Loss: 119.278 -38400/69092 Loss: 117.270 -41600/69092 Loss: 120.507 -44800/69092 Loss: 118.501 -48000/69092 Loss: 119.447 -51200/69092 Loss: 120.600 -54400/69092 Loss: 120.683 -57600/69092 Loss: 118.504 -60800/69092 Loss: 118.999 -64000/69092 Loss: 118.737 -67200/69092 Loss: 121.232 -Training time 0:04:49.394686 -Epoch: 8 Average loss: 119.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 13) -0/69092 Loss: 104.134 -3200/69092 Loss: 120.123 -6400/69092 Loss: 117.816 -9600/69092 Loss: 117.857 -12800/69092 Loss: 118.330 -16000/69092 Loss: 117.953 -19200/69092 Loss: 118.829 -22400/69092 Loss: 120.242 -25600/69092 Loss: 119.360 -28800/69092 Loss: 118.183 -32000/69092 Loss: 118.660 -35200/69092 Loss: 116.001 -38400/69092 Loss: 118.471 -41600/69092 Loss: 119.110 -44800/69092 Loss: 120.752 -48000/69092 Loss: 118.350 -51200/69092 Loss: 118.216 -54400/69092 Loss: 119.695 -57600/69092 Loss: 119.219 -60800/69092 Loss: 118.008 -64000/69092 Loss: 117.196 -67200/69092 Loss: 117.916 -Training time 0:04:53.527974 -Epoch: 9 Average loss: 118.63 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 14) -0/69092 Loss: 134.504 -3200/69092 Loss: 118.385 -6400/69092 Loss: 117.437 -9600/69092 Loss: 120.115 -12800/69092 Loss: 116.593 -16000/69092 Loss: 116.214 -19200/69092 Loss: 116.874 -22400/69092 Loss: 118.624 -25600/69092 Loss: 118.921 -28800/69092 Loss: 117.498 -32000/69092 Loss: 117.532 -35200/69092 Loss: 118.473 -38400/69092 Loss: 117.333 -41600/69092 Loss: 117.636 -44800/69092 Loss: 118.679 -48000/69092 Loss: 118.222 -51200/69092 Loss: 116.884 -54400/69092 Loss: 116.768 -57600/69092 Loss: 118.938 -60800/69092 Loss: 118.071 -64000/69092 Loss: 119.501 -67200/69092 Loss: 117.280 -Training time 0:04:54.806029 -Epoch: 10 Average loss: 117.98 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 15) -0/69092 Loss: 109.254 -3200/69092 Loss: 119.447 -6400/69092 Loss: 117.376 -9600/69092 Loss: 115.992 -12800/69092 Loss: 117.909 -16000/69092 Loss: 116.937 -19200/69092 Loss: 116.312 -22400/69092 Loss: 117.740 -25600/69092 Loss: 119.293 -28800/69092 Loss: 116.433 -32000/69092 Loss: 118.364 -35200/69092 Loss: 117.022 -38400/69092 Loss: 117.941 -41600/69092 Loss: 116.341 -44800/69092 Loss: 118.821 -48000/69092 Loss: 117.934 -51200/69092 Loss: 118.055 -54400/69092 Loss: 116.848 -57600/69092 Loss: 114.801 -60800/69092 Loss: 117.061 -64000/69092 Loss: 116.393 -67200/69092 Loss: 117.030 -Training time 0:04:53.313837 -Epoch: 11 Average loss: 117.39 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 16) -0/69092 Loss: 124.562 -3200/69092 Loss: 117.708 -6400/69092 Loss: 116.378 -9600/69092 Loss: 115.341 -12800/69092 Loss: 118.288 -16000/69092 Loss: 116.312 -19200/69092 Loss: 115.873 -22400/69092 Loss: 116.824 -25600/69092 Loss: 114.939 -28800/69092 Loss: 117.201 -32000/69092 Loss: 117.600 -35200/69092 Loss: 114.187 -38400/69092 Loss: 117.203 -41600/69092 Loss: 116.734 -44800/69092 Loss: 117.038 -48000/69092 Loss: 116.328 -51200/69092 Loss: 117.843 -54400/69092 Loss: 117.899 -57600/69092 Loss: 117.246 -60800/69092 Loss: 117.224 -64000/69092 Loss: 117.388 -67200/69092 Loss: 117.255 -Training time 0:04:48.196398 -Epoch: 12 Average loss: 116.80 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 17) -0/69092 Loss: 103.586 -3200/69092 Loss: 116.581 -6400/69092 Loss: 116.557 -9600/69092 Loss: 117.937 -12800/69092 Loss: 117.568 -16000/69092 Loss: 117.730 -19200/69092 Loss: 116.240 -22400/69092 Loss: 116.533 -25600/69092 Loss: 114.281 -28800/69092 Loss: 115.136 -32000/69092 Loss: 115.581 -35200/69092 Loss: 117.259 -38400/69092 Loss: 115.315 -41600/69092 Loss: 115.175 -44800/69092 Loss: 115.283 -48000/69092 Loss: 116.809 -51200/69092 Loss: 115.756 -54400/69092 Loss: 117.455 -57600/69092 Loss: 116.416 -60800/69092 Loss: 118.661 -64000/69092 Loss: 115.042 -67200/69092 Loss: 117.673 -Training time 0:04:49.374363 -Epoch: 13 Average loss: 116.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 18) -0/69092 Loss: 114.152 -3200/69092 Loss: 115.526 -6400/69092 Loss: 116.044 -9600/69092 Loss: 114.991 -12800/69092 Loss: 116.347 -16000/69092 Loss: 115.274 -19200/69092 Loss: 115.281 -22400/69092 Loss: 116.965 -25600/69092 Loss: 116.550 -28800/69092 Loss: 115.085 -32000/69092 Loss: 115.061 -35200/69092 Loss: 115.124 -38400/69092 Loss: 115.807 -41600/69092 Loss: 115.448 -44800/69092 Loss: 116.142 -48000/69092 Loss: 116.700 -51200/69092 Loss: 116.097 -54400/69092 Loss: 116.449 -57600/69092 Loss: 117.906 -60800/69092 Loss: 114.443 -64000/69092 Loss: 117.303 -67200/69092 Loss: 116.183 -Training time 0:04:47.466840 -Epoch: 14 Average loss: 115.87 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 19) -0/69092 Loss: 115.756 -3200/69092 Loss: 113.816 -6400/69092 Loss: 116.148 -9600/69092 Loss: 116.477 -12800/69092 Loss: 116.312 -16000/69092 Loss: 116.970 -19200/69092 Loss: 115.761 -22400/69092 Loss: 116.004 -25600/69092 Loss: 114.904 -28800/69092 Loss: 114.584 -32000/69092 Loss: 116.777 -35200/69092 Loss: 116.189 -38400/69092 Loss: 113.972 -41600/69092 Loss: 117.633 -44800/69092 Loss: 116.672 -48000/69092 Loss: 114.872 -51200/69092 Loss: 115.771 -54400/69092 Loss: 115.499 -57600/69092 Loss: 114.661 -60800/69092 Loss: 115.201 -64000/69092 Loss: 114.100 -67200/69092 Loss: 113.874 -Training time 0:04:51.327746 -Epoch: 15 Average loss: 115.49 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 20) -0/69092 Loss: 115.941 -3200/69092 Loss: 115.412 -6400/69092 Loss: 116.467 -9600/69092 Loss: 115.764 -12800/69092 Loss: 116.308 -16000/69092 Loss: 114.297 -19200/69092 Loss: 114.467 -22400/69092 Loss: 114.919 -25600/69092 Loss: 114.402 -28800/69092 Loss: 114.454 -32000/69092 Loss: 115.140 -35200/69092 Loss: 114.877 -38400/69092 Loss: 115.791 -41600/69092 Loss: 116.370 -44800/69092 Loss: 114.254 -48000/69092 Loss: 115.377 -51200/69092 Loss: 115.315 -54400/69092 Loss: 114.060 -57600/69092 Loss: 114.105 -60800/69092 Loss: 115.245 -64000/69092 Loss: 114.178 -67200/69092 Loss: 114.546 -Training time 0:04:41.171591 -Epoch: 16 Average loss: 115.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 21) -0/69092 Loss: 141.782 -3200/69092 Loss: 114.003 -6400/69092 Loss: 115.411 -9600/69092 Loss: 115.911 -12800/69092 Loss: 114.007 -16000/69092 Loss: 114.354 -19200/69092 Loss: 116.028 -22400/69092 Loss: 113.100 -25600/69092 Loss: 115.666 -28800/69092 Loss: 113.996 -32000/69092 Loss: 116.153 -35200/69092 Loss: 115.098 -38400/69092 Loss: 112.231 -41600/69092 Loss: 115.095 -44800/69092 Loss: 113.056 -48000/69092 Loss: 113.455 -51200/69092 Loss: 113.613 -54400/69092 Loss: 115.574 -57600/69092 Loss: 114.387 -60800/69092 Loss: 113.743 -64000/69092 Loss: 115.058 -67200/69092 Loss: 114.973 -Training time 0:04:36.060267 -Epoch: 17 Average loss: 114.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 22) -0/69092 Loss: 107.420 -3200/69092 Loss: 113.793 -6400/69092 Loss: 115.466 -9600/69092 Loss: 113.951 -12800/69092 Loss: 115.332 -16000/69092 Loss: 115.308 -19200/69092 Loss: 114.394 -22400/69092 Loss: 113.850 -25600/69092 Loss: 116.228 -28800/69092 Loss: 114.637 -32000/69092 Loss: 113.228 -35200/69092 Loss: 113.624 -38400/69092 Loss: 114.285 -41600/69092 Loss: 112.589 -44800/69092 Loss: 114.494 -48000/69092 Loss: 112.654 -51200/69092 Loss: 115.949 -54400/69092 Loss: 114.853 -57600/69092 Loss: 112.992 -60800/69092 Loss: 114.541 -64000/69092 Loss: 114.248 -67200/69092 Loss: 113.553 -Training time 0:04:37.523009 -Epoch: 18 Average loss: 114.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 23) -0/69092 Loss: 115.435 -3200/69092 Loss: 112.490 -6400/69092 Loss: 114.217 -9600/69092 Loss: 112.386 -12800/69092 Loss: 113.442 -16000/69092 Loss: 114.289 -19200/69092 Loss: 115.442 -22400/69092 Loss: 112.385 -25600/69092 Loss: 114.455 -28800/69092 Loss: 115.032 -32000/69092 Loss: 115.131 -35200/69092 Loss: 113.942 -38400/69092 Loss: 114.186 -41600/69092 Loss: 114.002 -44800/69092 Loss: 113.893 -48000/69092 Loss: 113.659 -51200/69092 Loss: 114.449 -54400/69092 Loss: 114.045 -57600/69092 Loss: 114.498 -60800/69092 Loss: 113.359 -64000/69092 Loss: 114.983 -67200/69092 Loss: 112.828 -Training time 0:04:33.872554 -Epoch: 19 Average loss: 113.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 24) -0/69092 Loss: 111.737 -3200/69092 Loss: 114.558 -6400/69092 Loss: 115.141 -9600/69092 Loss: 115.882 -12800/69092 Loss: 112.989 -16000/69092 Loss: 113.441 -19200/69092 Loss: 114.143 -22400/69092 Loss: 113.532 -25600/69092 Loss: 114.813 -28800/69092 Loss: 112.059 -32000/69092 Loss: 113.061 -35200/69092 Loss: 112.920 -38400/69092 Loss: 113.187 -41600/69092 Loss: 112.812 -44800/69092 Loss: 114.557 -48000/69092 Loss: 112.577 -51200/69092 Loss: 113.078 -54400/69092 Loss: 114.110 -57600/69092 Loss: 113.877 -60800/69092 Loss: 112.964 -64000/69092 Loss: 113.965 -67200/69092 Loss: 113.553 -Training time 0:04:39.906828 -Epoch: 20 Average loss: 113.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 25) -0/69092 Loss: 123.589 -3200/69092 Loss: 113.380 -6400/69092 Loss: 114.676 -9600/69092 Loss: 114.405 -12800/69092 Loss: 113.494 -16000/69092 Loss: 114.177 -19200/69092 Loss: 113.390 -22400/69092 Loss: 111.949 -25600/69092 Loss: 114.273 -28800/69092 Loss: 113.334 -32000/69092 Loss: 112.502 -35200/69092 Loss: 114.189 -38400/69092 Loss: 114.932 -41600/69092 Loss: 115.119 -44800/69092 Loss: 111.780 -48000/69092 Loss: 111.857 -51200/69092 Loss: 111.502 -54400/69092 Loss: 113.287 -57600/69092 Loss: 112.345 -60800/69092 Loss: 113.466 -64000/69092 Loss: 113.066 -67200/69092 Loss: 113.099 -Training time 0:04:39.348429 -Epoch: 21 Average loss: 113.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 26) -0/69092 Loss: 110.674 -3200/69092 Loss: 112.143 -6400/69092 Loss: 112.617 -9600/69092 Loss: 114.939 -12800/69092 Loss: 113.844 -16000/69092 Loss: 113.021 -19200/69092 Loss: 114.569 -22400/69092 Loss: 112.865 -25600/69092 Loss: 112.809 -28800/69092 Loss: 114.086 -32000/69092 Loss: 112.677 -35200/69092 Loss: 114.229 -38400/69092 Loss: 112.291 -41600/69092 Loss: 111.985 -44800/69092 Loss: 112.205 -48000/69092 Loss: 112.236 -51200/69092 Loss: 113.672 -54400/69092 Loss: 113.601 -57600/69092 Loss: 112.585 -60800/69092 Loss: 111.314 -64000/69092 Loss: 113.152 -67200/69092 Loss: 112.903 -Training time 0:04:34.061168 -Epoch: 22 Average loss: 113.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 27) -0/69092 Loss: 109.967 -3200/69092 Loss: 112.520 -6400/69092 Loss: 114.405 -9600/69092 Loss: 113.686 -12800/69092 Loss: 112.579 -16000/69092 Loss: 113.520 -19200/69092 Loss: 113.800 -22400/69092 Loss: 111.771 -25600/69092 Loss: 111.360 -28800/69092 Loss: 113.635 -32000/69092 Loss: 113.484 -35200/69092 Loss: 111.351 -38400/69092 Loss: 114.812 -41600/69092 Loss: 112.548 -44800/69092 Loss: 113.236 -48000/69092 Loss: 112.303 -51200/69092 Loss: 114.013 -54400/69092 Loss: 112.735 -57600/69092 Loss: 111.526 -60800/69092 Loss: 112.256 -64000/69092 Loss: 111.369 -67200/69092 Loss: 113.282 -Training time 0:04:39.859457 -Epoch: 23 Average loss: 112.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 28) -0/69092 Loss: 119.190 -3200/69092 Loss: 111.744 -6400/69092 Loss: 111.066 -9600/69092 Loss: 111.289 -12800/69092 Loss: 111.358 -16000/69092 Loss: 111.865 -19200/69092 Loss: 114.916 -22400/69092 Loss: 113.265 -25600/69092 Loss: 111.379 -28800/69092 Loss: 112.894 -32000/69092 Loss: 113.767 -35200/69092 Loss: 112.440 -38400/69092 Loss: 112.766 -41600/69092 Loss: 112.426 -44800/69092 Loss: 113.225 -48000/69092 Loss: 112.531 -51200/69092 Loss: 114.364 -54400/69092 Loss: 111.020 -57600/69092 Loss: 111.747 -60800/69092 Loss: 114.497 -64000/69092 Loss: 113.869 -67200/69092 Loss: 111.078 -Training time 0:04:39.936371 -Epoch: 24 Average loss: 112.52 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 29) -0/69092 Loss: 110.290 -3200/69092 Loss: 111.822 -6400/69092 Loss: 111.413 -9600/69092 Loss: 112.422 -12800/69092 Loss: 111.954 -16000/69092 Loss: 113.762 -19200/69092 Loss: 114.692 -22400/69092 Loss: 110.497 -25600/69092 Loss: 114.033 -28800/69092 Loss: 111.619 -32000/69092 Loss: 115.025 -35200/69092 Loss: 112.577 -38400/69092 Loss: 113.097 -41600/69092 Loss: 113.049 -44800/69092 Loss: 113.574 -48000/69092 Loss: 112.155 -51200/69092 Loss: 110.795 -54400/69092 Loss: 113.053 -57600/69092 Loss: 112.099 -60800/69092 Loss: 110.614 -64000/69092 Loss: 111.320 -67200/69092 Loss: 112.674 -Training time 0:04:45.041794 -Epoch: 25 Average loss: 112.47 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 30) -0/69092 Loss: 110.546 -3200/69092 Loss: 112.299 -6400/69092 Loss: 112.430 -9600/69092 Loss: 110.809 -12800/69092 Loss: 113.117 -16000/69092 Loss: 111.603 -19200/69092 Loss: 111.411 -22400/69092 Loss: 111.766 -25600/69092 Loss: 111.472 -28800/69092 Loss: 112.941 -32000/69092 Loss: 113.351 -35200/69092 Loss: 113.431 -38400/69092 Loss: 111.543 -41600/69092 Loss: 114.145 -44800/69092 Loss: 111.926 -48000/69092 Loss: 112.800 -51200/69092 Loss: 112.201 -54400/69092 Loss: 112.540 -57600/69092 Loss: 111.984 -60800/69092 Loss: 111.264 -64000/69092 Loss: 110.867 -67200/69092 Loss: 111.477 -Training time 0:04:43.517833 -Epoch: 26 Average loss: 112.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 31) -0/69092 Loss: 116.476 -3200/69092 Loss: 111.689 -6400/69092 Loss: 111.937 -9600/69092 Loss: 112.337 -12800/69092 Loss: 112.217 -16000/69092 Loss: 114.211 -19200/69092 Loss: 111.085 -22400/69092 Loss: 110.283 -25600/69092 Loss: 111.542 -28800/69092 Loss: 112.261 -32000/69092 Loss: 111.289 -35200/69092 Loss: 111.992 -38400/69092 Loss: 110.785 -41600/69092 Loss: 112.940 -44800/69092 Loss: 112.285 -48000/69092 Loss: 114.579 -51200/69092 Loss: 110.708 -54400/69092 Loss: 112.470 -57600/69092 Loss: 113.620 -60800/69092 Loss: 110.872 -64000/69092 Loss: 111.970 -67200/69092 Loss: 112.708 -Training time 0:04:43.768186 -Epoch: 27 Average loss: 112.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 32) -0/69092 Loss: 109.204 -3200/69092 Loss: 112.435 -6400/69092 Loss: 114.026 -9600/69092 Loss: 111.097 -12800/69092 Loss: 110.929 -16000/69092 Loss: 111.349 -19200/69092 Loss: 110.908 -22400/69092 Loss: 110.745 -25600/69092 Loss: 114.152 -28800/69092 Loss: 110.816 -32000/69092 Loss: 111.625 -35200/69092 Loss: 111.684 -38400/69092 Loss: 110.873 -41600/69092 Loss: 112.146 -44800/69092 Loss: 111.570 -48000/69092 Loss: 111.101 -51200/69092 Loss: 110.831 -54400/69092 Loss: 112.227 -57600/69092 Loss: 111.256 -60800/69092 Loss: 109.046 -64000/69092 Loss: 111.628 -67200/69092 Loss: 112.160 -Training time 0:04:41.229393 -Epoch: 28 Average loss: 111.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 33) -0/69092 Loss: 104.209 -3200/69092 Loss: 112.197 -6400/69092 Loss: 110.449 -9600/69092 Loss: 110.083 -12800/69092 Loss: 109.298 -16000/69092 Loss: 112.898 -19200/69092 Loss: 112.408 -22400/69092 Loss: 112.143 -25600/69092 Loss: 111.547 -28800/69092 Loss: 110.064 -32000/69092 Loss: 110.612 -35200/69092 Loss: 111.170 -38400/69092 Loss: 112.284 -41600/69092 Loss: 111.592 -44800/69092 Loss: 110.504 -48000/69092 Loss: 112.900 -51200/69092 Loss: 111.123 -54400/69092 Loss: 113.507 -57600/69092 Loss: 111.303 -60800/69092 Loss: 113.287 -64000/69092 Loss: 110.679 -67200/69092 Loss: 115.029 -Training time 0:04:43.681844 -Epoch: 29 Average loss: 111.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 34) -0/69092 Loss: 121.056 -3200/69092 Loss: 111.290 -6400/69092 Loss: 110.832 -9600/69092 Loss: 112.305 -12800/69092 Loss: 112.942 -16000/69092 Loss: 112.884 -19200/69092 Loss: 112.636 -22400/69092 Loss: 112.394 -25600/69092 Loss: 112.482 -28800/69092 Loss: 110.956 -32000/69092 Loss: 109.826 -35200/69092 Loss: 112.321 -38400/69092 Loss: 111.822 -41600/69092 Loss: 110.904 -44800/69092 Loss: 110.287 -48000/69092 Loss: 111.784 -51200/69092 Loss: 109.850 -54400/69092 Loss: 110.845 -57600/69092 Loss: 110.811 -60800/69092 Loss: 111.698 -64000/69092 Loss: 109.814 -67200/69092 Loss: 111.012 -Training time 0:04:43.069539 -Epoch: 30 Average loss: 111.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 35) -0/69092 Loss: 108.077 -3200/69092 Loss: 111.317 -6400/69092 Loss: 110.567 -9600/69092 Loss: 110.230 -12800/69092 Loss: 111.407 -16000/69092 Loss: 111.366 -19200/69092 Loss: 111.396 -22400/69092 Loss: 111.792 -25600/69092 Loss: 112.813 -28800/69092 Loss: 113.976 -32000/69092 Loss: 109.683 -35200/69092 Loss: 109.564 -38400/69092 Loss: 109.532 -41600/69092 Loss: 111.487 -44800/69092 Loss: 110.475 -48000/69092 Loss: 110.605 -51200/69092 Loss: 110.499 -54400/69092 Loss: 111.540 -57600/69092 Loss: 112.921 -60800/69092 Loss: 110.256 -64000/69092 Loss: 111.300 -67200/69092 Loss: 111.619 -Training time 0:04:49.022954 -Epoch: 31 Average loss: 111.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 36) -0/69092 Loss: 127.145 -3200/69092 Loss: 110.557 -6400/69092 Loss: 110.201 -9600/69092 Loss: 111.831 -12800/69092 Loss: 110.124 -16000/69092 Loss: 110.563 -19200/69092 Loss: 111.827 -22400/69092 Loss: 112.174 -25600/69092 Loss: 111.700 -28800/69092 Loss: 111.491 -32000/69092 Loss: 110.017 -35200/69092 Loss: 111.848 -38400/69092 Loss: 111.125 -41600/69092 Loss: 110.740 -44800/69092 Loss: 111.447 -48000/69092 Loss: 110.298 -51200/69092 Loss: 111.226 -54400/69092 Loss: 110.337 -57600/69092 Loss: 113.737 -60800/69092 Loss: 110.593 -64000/69092 Loss: 111.048 -67200/69092 Loss: 109.999 -Training time 0:04:34.240853 -Epoch: 32 Average loss: 111.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 37) -0/69092 Loss: 107.446 -3200/69092 Loss: 111.796 -6400/69092 Loss: 110.517 -9600/69092 Loss: 109.203 -12800/69092 Loss: 112.325 -16000/69092 Loss: 111.188 -19200/69092 Loss: 109.881 -22400/69092 Loss: 111.257 -25600/69092 Loss: 111.082 -28800/69092 Loss: 109.237 -32000/69092 Loss: 111.067 -35200/69092 Loss: 111.960 -38400/69092 Loss: 110.869 -41600/69092 Loss: 110.585 -44800/69092 Loss: 111.741 -48000/69092 Loss: 110.282 -51200/69092 Loss: 111.195 -54400/69092 Loss: 111.672 -57600/69092 Loss: 112.134 -60800/69092 Loss: 111.049 -64000/69092 Loss: 110.333 -67200/69092 Loss: 111.257 -Training time 0:04:43.764296 -Epoch: 33 Average loss: 110.95 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 38) -0/69092 Loss: 115.077 -3200/69092 Loss: 111.501 -6400/69092 Loss: 110.084 -9600/69092 Loss: 108.942 -12800/69092 Loss: 109.901 -16000/69092 Loss: 111.592 -19200/69092 Loss: 110.374 -22400/69092 Loss: 111.268 -25600/69092 Loss: 111.209 -28800/69092 Loss: 108.915 -32000/69092 Loss: 110.874 -35200/69092 Loss: 110.405 -38400/69092 Loss: 110.662 -41600/69092 Loss: 111.986 -44800/69092 Loss: 111.237 -48000/69092 Loss: 111.136 -51200/69092 Loss: 110.622 -54400/69092 Loss: 111.210 -57600/69092 Loss: 111.007 -60800/69092 Loss: 110.189 -64000/69092 Loss: 110.597 -67200/69092 Loss: 110.604 -Training time 0:04:34.058617 -Epoch: 34 Average loss: 110.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 39) -0/69092 Loss: 114.591 -3200/69092 Loss: 111.557 -6400/69092 Loss: 112.004 -9600/69092 Loss: 110.475 -12800/69092 Loss: 110.930 -16000/69092 Loss: 110.553 -19200/69092 Loss: 111.408 -22400/69092 Loss: 110.119 -25600/69092 Loss: 109.701 -28800/69092 Loss: 110.129 -32000/69092 Loss: 110.820 -35200/69092 Loss: 111.306 -38400/69092 Loss: 112.009 -41600/69092 Loss: 110.124 -44800/69092 Loss: 110.473 -48000/69092 Loss: 110.975 -51200/69092 Loss: 109.217 -54400/69092 Loss: 109.901 -57600/69092 Loss: 109.916 -60800/69092 Loss: 110.830 -64000/69092 Loss: 109.267 -67200/69092 Loss: 109.708 -Training time 0:04:41.568257 -Epoch: 35 Average loss: 110.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 40) -0/69092 Loss: 107.984 -3200/69092 Loss: 111.464 -6400/69092 Loss: 110.381 -9600/69092 Loss: 108.964 -12800/69092 Loss: 109.341 -16000/69092 Loss: 110.254 -19200/69092 Loss: 111.665 -22400/69092 Loss: 110.508 -25600/69092 Loss: 109.982 -28800/69092 Loss: 110.859 -32000/69092 Loss: 110.971 -35200/69092 Loss: 109.513 -38400/69092 Loss: 110.977 -41600/69092 Loss: 110.812 -44800/69092 Loss: 109.692 -48000/69092 Loss: 109.992 -51200/69092 Loss: 110.592 -54400/69092 Loss: 111.265 -57600/69092 Loss: 110.588 -60800/69092 Loss: 110.761 -64000/69092 Loss: 108.940 -67200/69092 Loss: 110.958 -Training time 0:04:40.277525 -Epoch: 36 Average loss: 110.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 41) -0/69092 Loss: 114.775 -3200/69092 Loss: 108.106 -6400/69092 Loss: 111.209 -9600/69092 Loss: 109.911 -12800/69092 Loss: 109.625 -16000/69092 Loss: 110.445 -19200/69092 Loss: 110.535 -22400/69092 Loss: 111.299 -25600/69092 Loss: 110.666 -28800/69092 Loss: 110.410 -32000/69092 Loss: 109.227 -35200/69092 Loss: 111.651 -38400/69092 Loss: 109.915 -41600/69092 Loss: 110.830 -44800/69092 Loss: 109.736 -48000/69092 Loss: 110.278 -51200/69092 Loss: 110.908 -54400/69092 Loss: 110.394 -57600/69092 Loss: 110.202 -60800/69092 Loss: 110.999 -64000/69092 Loss: 110.175 -67200/69092 Loss: 108.871 -Training time 0:04:37.605560 -Epoch: 37 Average loss: 110.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 42) -0/69092 Loss: 104.960 -3200/69092 Loss: 108.889 -6400/69092 Loss: 112.234 -9600/69092 Loss: 109.699 -12800/69092 Loss: 109.142 -16000/69092 Loss: 108.497 -19200/69092 Loss: 109.407 -22400/69092 Loss: 110.011 -25600/69092 Loss: 108.630 -28800/69092 Loss: 110.500 -32000/69092 Loss: 108.327 -35200/69092 Loss: 109.930 -38400/69092 Loss: 110.265 -41600/69092 Loss: 110.566 -44800/69092 Loss: 111.602 -48000/69092 Loss: 109.075 -51200/69092 Loss: 112.328 -54400/69092 Loss: 111.355 -57600/69092 Loss: 110.336 -60800/69092 Loss: 108.419 -64000/69092 Loss: 110.706 -67200/69092 Loss: 109.177 -Training time 0:04:42.874293 -Epoch: 38 Average loss: 110.03 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 43) -0/69092 Loss: 101.099 -3200/69092 Loss: 108.840 -6400/69092 Loss: 111.816 -9600/69092 Loss: 108.919 -12800/69092 Loss: 111.016 -16000/69092 Loss: 108.929 -19200/69092 Loss: 109.597 -22400/69092 Loss: 110.688 -25600/69092 Loss: 108.692 -28800/69092 Loss: 112.614 -32000/69092 Loss: 109.458 -35200/69092 Loss: 111.066 -38400/69092 Loss: 109.306 -41600/69092 Loss: 110.359 -44800/69092 Loss: 111.017 -48000/69092 Loss: 108.748 -51200/69092 Loss: 109.679 -54400/69092 Loss: 110.205 -57600/69092 Loss: 110.115 -60800/69092 Loss: 109.525 -64000/69092 Loss: 109.737 -67200/69092 Loss: 110.562 -Training time 0:04:44.660730 -Epoch: 39 Average loss: 110.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 44) -0/69092 Loss: 113.374 -3200/69092 Loss: 110.626 -6400/69092 Loss: 110.426 -9600/69092 Loss: 110.897 -12800/69092 Loss: 109.861 -16000/69092 Loss: 108.550 -19200/69092 Loss: 109.533 -22400/69092 Loss: 109.485 -25600/69092 Loss: 111.144 -28800/69092 Loss: 109.704 -32000/69092 Loss: 109.563 -35200/69092 Loss: 110.768 -38400/69092 Loss: 108.485 -41600/69092 Loss: 109.076 -44800/69092 Loss: 108.626 -48000/69092 Loss: 111.067 -51200/69092 Loss: 110.033 -54400/69092 Loss: 110.220 -57600/69092 Loss: 110.535 -60800/69092 Loss: 110.658 -64000/69092 Loss: 110.981 -67200/69092 Loss: 109.433 -Training time 0:04:42.924883 -Epoch: 40 Average loss: 110.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 45) -0/69092 Loss: 108.721 -3200/69092 Loss: 111.064 -6400/69092 Loss: 109.979 -9600/69092 Loss: 109.450 -12800/69092 Loss: 110.368 -16000/69092 Loss: 109.995 -19200/69092 Loss: 110.070 -22400/69092 Loss: 109.947 -25600/69092 Loss: 110.112 -28800/69092 Loss: 109.921 -32000/69092 Loss: 107.978 -35200/69092 Loss: 109.070 -38400/69092 Loss: 109.520 -41600/69092 Loss: 108.034 -44800/69092 Loss: 109.744 -48000/69092 Loss: 109.552 -51200/69092 Loss: 109.638 -54400/69092 Loss: 109.456 -57600/69092 Loss: 109.720 -60800/69092 Loss: 111.156 -64000/69092 Loss: 108.989 -67200/69092 Loss: 111.889 -Training time 0:04:51.701796 -Epoch: 41 Average loss: 109.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 46) -0/69092 Loss: 102.802 -3200/69092 Loss: 111.136 -6400/69092 Loss: 109.180 -9600/69092 Loss: 109.834 -12800/69092 Loss: 108.788 -16000/69092 Loss: 109.064 -19200/69092 Loss: 110.622 -22400/69092 Loss: 108.998 -25600/69092 Loss: 109.969 -28800/69092 Loss: 109.226 -32000/69092 Loss: 109.222 -35200/69092 Loss: 109.802 -38400/69092 Loss: 110.785 -41600/69092 Loss: 109.166 -44800/69092 Loss: 109.259 -48000/69092 Loss: 110.716 -51200/69092 Loss: 108.746 -54400/69092 Loss: 110.182 -57600/69092 Loss: 110.703 -60800/69092 Loss: 109.418 -64000/69092 Loss: 109.296 -67200/69092 Loss: 108.989 -Training time 0:04:43.843168 -Epoch: 42 Average loss: 109.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 47) -0/69092 Loss: 126.465 -3200/69092 Loss: 109.168 -6400/69092 Loss: 108.719 -9600/69092 Loss: 109.867 -12800/69092 Loss: 108.087 -16000/69092 Loss: 109.965 -19200/69092 Loss: 110.314 -22400/69092 Loss: 108.599 -25600/69092 Loss: 109.118 -28800/69092 Loss: 112.310 -32000/69092 Loss: 110.493 -35200/69092 Loss: 110.416 -38400/69092 Loss: 109.973 -41600/69092 Loss: 111.803 -44800/69092 Loss: 108.155 -48000/69092 Loss: 109.102 -51200/69092 Loss: 108.966 -54400/69092 Loss: 108.444 -57600/69092 Loss: 109.125 -60800/69092 Loss: 108.695 -64000/69092 Loss: 110.524 -67200/69092 Loss: 110.741 -Training time 0:04:50.546091 -Epoch: 43 Average loss: 109.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 48) -0/69092 Loss: 103.647 -3200/69092 Loss: 109.899 -6400/69092 Loss: 110.280 -9600/69092 Loss: 109.248 -12800/69092 Loss: 110.468 -16000/69092 Loss: 111.977 -19200/69092 Loss: 109.311 -22400/69092 Loss: 111.485 -25600/69092 Loss: 109.807 -28800/69092 Loss: 109.574 -32000/69092 Loss: 107.953 -35200/69092 Loss: 109.336 -38400/69092 Loss: 108.080 -41600/69092 Loss: 108.483 -44800/69092 Loss: 109.126 -48000/69092 Loss: 108.139 -51200/69092 Loss: 108.291 -54400/69092 Loss: 108.933 -57600/69092 Loss: 108.613 -60800/69092 Loss: 109.202 -64000/69092 Loss: 109.614 -67200/69092 Loss: 110.292 -Training time 0:04:49.733684 -Epoch: 44 Average loss: 109.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 49) -0/69092 Loss: 109.167 -3200/69092 Loss: 109.525 -6400/69092 Loss: 108.399 -9600/69092 Loss: 108.729 -12800/69092 Loss: 108.766 -16000/69092 Loss: 110.111 -19200/69092 Loss: 109.067 -22400/69092 Loss: 109.113 -25600/69092 Loss: 110.619 -28800/69092 Loss: 110.376 -32000/69092 Loss: 109.246 -35200/69092 Loss: 108.491 -38400/69092 Loss: 110.233 -41600/69092 Loss: 108.926 -44800/69092 Loss: 108.867 -48000/69092 Loss: 109.026 -51200/69092 Loss: 110.182 -54400/69092 Loss: 109.406 -57600/69092 Loss: 110.103 -60800/69092 Loss: 109.449 -64000/69092 Loss: 107.732 -67200/69092 Loss: 110.404 -Training time 0:04:53.380546 -Epoch: 45 Average loss: 109.34 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 50) -0/69092 Loss: 102.441 -3200/69092 Loss: 109.258 -6400/69092 Loss: 109.261 -9600/69092 Loss: 109.454 -12800/69092 Loss: 109.680 -16000/69092 Loss: 110.244 -19200/69092 Loss: 109.354 -22400/69092 Loss: 108.090 -25600/69092 Loss: 108.010 -28800/69092 Loss: 109.430 -32000/69092 Loss: 111.084 -35200/69092 Loss: 108.300 -38400/69092 Loss: 107.124 -41600/69092 Loss: 106.001 -44800/69092 Loss: 109.506 -48000/69092 Loss: 111.813 -51200/69092 Loss: 109.929 -54400/69092 Loss: 108.852 -57600/69092 Loss: 107.228 -60800/69092 Loss: 110.214 -64000/69092 Loss: 108.539 -67200/69092 Loss: 108.468 -Training time 0:04:42.198571 -Epoch: 46 Average loss: 109.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 51) -0/69092 Loss: 110.935 -3200/69092 Loss: 109.027 -6400/69092 Loss: 108.949 -9600/69092 Loss: 108.656 -12800/69092 Loss: 108.127 -16000/69092 Loss: 109.599 -19200/69092 Loss: 107.615 -22400/69092 Loss: 111.287 -25600/69092 Loss: 110.431 -28800/69092 Loss: 109.253 -32000/69092 Loss: 110.841 -35200/69092 Loss: 108.992 -38400/69092 Loss: 108.798 -41600/69092 Loss: 110.392 -44800/69092 Loss: 107.892 -48000/69092 Loss: 108.384 -51200/69092 Loss: 109.177 -54400/69092 Loss: 109.331 -57600/69092 Loss: 107.822 -60800/69092 Loss: 106.257 -64000/69092 Loss: 108.215 -67200/69092 Loss: 110.373 -Training time 0:04:49.803242 -Epoch: 47 Average loss: 108.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 52) -0/69092 Loss: 107.273 -3200/69092 Loss: 108.980 -6400/69092 Loss: 109.240 -9600/69092 Loss: 107.524 -12800/69092 Loss: 108.102 -16000/69092 Loss: 109.265 -19200/69092 Loss: 110.584 -22400/69092 Loss: 109.721 -25600/69092 Loss: 107.613 -28800/69092 Loss: 108.611 -32000/69092 Loss: 109.184 -35200/69092 Loss: 108.064 -38400/69092 Loss: 108.106 -41600/69092 Loss: 108.937 -44800/69092 Loss: 107.993 -48000/69092 Loss: 108.745 -51200/69092 Loss: 110.025 -54400/69092 Loss: 108.768 -57600/69092 Loss: 108.040 -60800/69092 Loss: 108.474 -64000/69092 Loss: 108.278 -67200/69092 Loss: 108.626 -Training time 0:04:50.519463 -Epoch: 48 Average loss: 108.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 53) -0/69092 Loss: 102.906 -3200/69092 Loss: 108.175 -6400/69092 Loss: 110.078 -9600/69092 Loss: 108.896 -12800/69092 Loss: 108.041 -16000/69092 Loss: 108.613 -19200/69092 Loss: 109.001 -22400/69092 Loss: 108.239 -25600/69092 Loss: 108.157 -28800/69092 Loss: 109.316 -32000/69092 Loss: 108.273 -35200/69092 Loss: 108.219 -38400/69092 Loss: 107.372 -41600/69092 Loss: 107.124 -44800/69092 Loss: 108.016 -48000/69092 Loss: 110.386 -51200/69092 Loss: 108.787 -54400/69092 Loss: 108.155 -57600/69092 Loss: 108.254 -60800/69092 Loss: 108.866 -64000/69092 Loss: 109.982 -67200/69092 Loss: 109.006 -Training time 0:04:49.696891 -Epoch: 49 Average loss: 108.58 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 54) -0/69092 Loss: 104.153 -3200/69092 Loss: 108.018 -6400/69092 Loss: 108.156 -9600/69092 Loss: 108.956 -12800/69092 Loss: 110.080 -16000/69092 Loss: 109.224 -19200/69092 Loss: 109.280 -22400/69092 Loss: 107.590 -25600/69092 Loss: 108.249 -28800/69092 Loss: 106.179 -32000/69092 Loss: 108.142 -35200/69092 Loss: 108.132 -38400/69092 Loss: 108.733 -41600/69092 Loss: 109.026 -44800/69092 Loss: 107.957 -48000/69092 Loss: 106.913 -51200/69092 Loss: 108.879 -54400/69092 Loss: 108.485 -57600/69092 Loss: 108.608 -60800/69092 Loss: 109.192 -64000/69092 Loss: 107.740 -67200/69092 Loss: 109.164 -Training time 0:04:42.383065 -Epoch: 50 Average loss: 108.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 55) -0/69092 Loss: 103.210 -3200/69092 Loss: 107.998 -6400/69092 Loss: 110.100 -9600/69092 Loss: 108.056 -12800/69092 Loss: 106.873 -16000/69092 Loss: 106.977 -19200/69092 Loss: 108.452 -22400/69092 Loss: 108.645 -25600/69092 Loss: 108.029 -28800/69092 Loss: 108.975 -32000/69092 Loss: 109.396 -35200/69092 Loss: 107.864 -38400/69092 Loss: 108.605 -41600/69092 Loss: 108.646 -44800/69092 Loss: 108.115 -48000/69092 Loss: 106.863 -51200/69092 Loss: 108.656 -54400/69092 Loss: 107.829 -57600/69092 Loss: 108.720 -60800/69092 Loss: 107.200 -64000/69092 Loss: 107.129 -67200/69092 Loss: 108.928 -Training time 0:04:53.753077 -Epoch: 51 Average loss: 108.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 56) -0/69092 Loss: 99.226 -3200/69092 Loss: 109.379 -6400/69092 Loss: 107.912 -9600/69092 Loss: 108.517 -12800/69092 Loss: 108.567 -16000/69092 Loss: 107.621 -19200/69092 Loss: 108.156 -22400/69092 Loss: 108.049 -25600/69092 Loss: 106.849 -28800/69092 Loss: 107.496 -32000/69092 Loss: 107.815 -35200/69092 Loss: 110.221 -38400/69092 Loss: 107.563 -41600/69092 Loss: 107.106 -44800/69092 Loss: 107.033 -48000/69092 Loss: 109.990 -51200/69092 Loss: 109.967 -54400/69092 Loss: 108.879 -57600/69092 Loss: 107.200 -60800/69092 Loss: 108.082 -64000/69092 Loss: 108.172 -67200/69092 Loss: 108.027 -Training time 0:04:49.744157 -Epoch: 52 Average loss: 108.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 57) -0/69092 Loss: 104.733 -3200/69092 Loss: 107.449 -6400/69092 Loss: 107.652 -9600/69092 Loss: 108.413 -12800/69092 Loss: 107.699 -16000/69092 Loss: 108.465 -19200/69092 Loss: 106.801 -22400/69092 Loss: 106.146 -25600/69092 Loss: 109.091 -28800/69092 Loss: 107.616 -32000/69092 Loss: 109.353 -35200/69092 Loss: 107.828 -38400/69092 Loss: 107.516 -41600/69092 Loss: 108.168 -44800/69092 Loss: 106.649 -48000/69092 Loss: 109.267 -51200/69092 Loss: 109.144 -54400/69092 Loss: 107.902 -57600/69092 Loss: 108.065 -60800/69092 Loss: 109.866 -64000/69092 Loss: 109.355 -67200/69092 Loss: 106.590 -Training time 0:04:56.545482 -Epoch: 53 Average loss: 108.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 58) -0/69092 Loss: 103.578 -3200/69092 Loss: 107.679 -6400/69092 Loss: 107.674 -9600/69092 Loss: 108.424 -12800/69092 Loss: 108.361 -16000/69092 Loss: 106.618 -19200/69092 Loss: 109.062 -22400/69092 Loss: 107.414 -25600/69092 Loss: 110.398 -28800/69092 Loss: 106.737 -32000/69092 Loss: 106.625 -35200/69092 Loss: 106.643 -38400/69092 Loss: 108.122 -41600/69092 Loss: 107.716 -44800/69092 Loss: 108.184 -48000/69092 Loss: 109.113 -51200/69092 Loss: 107.916 -54400/69092 Loss: 107.116 -57600/69092 Loss: 105.350 -60800/69092 Loss: 109.847 -64000/69092 Loss: 107.041 -67200/69092 Loss: 107.282 -Training time 0:04:49.920582 -Epoch: 54 Average loss: 107.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 59) -0/69092 Loss: 109.314 -3200/69092 Loss: 106.938 -6400/69092 Loss: 106.937 -9600/69092 Loss: 108.338 -12800/69092 Loss: 106.591 -16000/69092 Loss: 106.293 -19200/69092 Loss: 107.046 -22400/69092 Loss: 108.085 -25600/69092 Loss: 109.090 -28800/69092 Loss: 106.335 -32000/69092 Loss: 109.177 -35200/69092 Loss: 108.154 -38400/69092 Loss: 108.860 -41600/69092 Loss: 107.963 -44800/69092 Loss: 106.935 -48000/69092 Loss: 108.159 -51200/69092 Loss: 107.759 -54400/69092 Loss: 107.512 -57600/69092 Loss: 107.193 -60800/69092 Loss: 107.152 -64000/69092 Loss: 107.224 -67200/69092 Loss: 108.543 -Training time 0:04:51.018882 -Epoch: 55 Average loss: 107.69 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 60) -0/69092 Loss: 91.358 -3200/69092 Loss: 106.304 -6400/69092 Loss: 108.153 -9600/69092 Loss: 109.371 -12800/69092 Loss: 107.301 -16000/69092 Loss: 108.816 -19200/69092 Loss: 107.875 -22400/69092 Loss: 107.227 -25600/69092 Loss: 108.243 -28800/69092 Loss: 108.738 -32000/69092 Loss: 107.627 -35200/69092 Loss: 107.309 -38400/69092 Loss: 108.692 -41600/69092 Loss: 108.226 -44800/69092 Loss: 106.392 -48000/69092 Loss: 107.722 -51200/69092 Loss: 106.610 -54400/69092 Loss: 108.167 -57600/69092 Loss: 108.127 -60800/69092 Loss: 107.082 -64000/69092 Loss: 107.069 -67200/69092 Loss: 106.531 -Training time 0:04:43.520874 -Epoch: 56 Average loss: 107.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 61) -0/69092 Loss: 110.477 -3200/69092 Loss: 108.627 -6400/69092 Loss: 107.287 -9600/69092 Loss: 105.823 -12800/69092 Loss: 109.205 -16000/69092 Loss: 106.500 -19200/69092 Loss: 106.957 -22400/69092 Loss: 108.999 -25600/69092 Loss: 106.936 -28800/69092 Loss: 106.688 -32000/69092 Loss: 108.377 -35200/69092 Loss: 106.603 -38400/69092 Loss: 106.404 -41600/69092 Loss: 106.618 -44800/69092 Loss: 108.963 -48000/69092 Loss: 105.955 -51200/69092 Loss: 108.686 -54400/69092 Loss: 107.060 -57600/69092 Loss: 108.829 -60800/69092 Loss: 109.190 -64000/69092 Loss: 109.119 -67200/69092 Loss: 108.589 -Training time 0:04:41.173054 -Epoch: 57 Average loss: 107.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 62) -0/69092 Loss: 112.057 -3200/69092 Loss: 108.878 -6400/69092 Loss: 107.226 -9600/69092 Loss: 108.297 -12800/69092 Loss: 108.657 -16000/69092 Loss: 106.209 -19200/69092 Loss: 105.882 -22400/69092 Loss: 106.071 -25600/69092 Loss: 108.803 -28800/69092 Loss: 107.810 -32000/69092 Loss: 105.625 -35200/69092 Loss: 106.806 -38400/69092 Loss: 108.175 -41600/69092 Loss: 107.626 -44800/69092 Loss: 107.604 -48000/69092 Loss: 107.837 -51200/69092 Loss: 106.685 -54400/69092 Loss: 110.453 -57600/69092 Loss: 108.153 -60800/69092 Loss: 107.209 -64000/69092 Loss: 107.714 -67200/69092 Loss: 106.547 -Training time 0:04:43.993388 -Epoch: 58 Average loss: 107.55 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 63) -0/69092 Loss: 123.563 -3200/69092 Loss: 106.403 -6400/69092 Loss: 107.181 -9600/69092 Loss: 108.489 -12800/69092 Loss: 107.953 -16000/69092 Loss: 110.204 -19200/69092 Loss: 109.196 -22400/69092 Loss: 106.157 -25600/69092 Loss: 107.468 -28800/69092 Loss: 105.458 -32000/69092 Loss: 107.226 -35200/69092 Loss: 106.051 -38400/69092 Loss: 107.864 -41600/69092 Loss: 109.366 -44800/69092 Loss: 108.387 -48000/69092 Loss: 107.860 -51200/69092 Loss: 106.375 -54400/69092 Loss: 108.123 -57600/69092 Loss: 106.196 -60800/69092 Loss: 106.480 -64000/69092 Loss: 106.830 -67200/69092 Loss: 106.591 -Training time 0:04:37.546204 -Epoch: 59 Average loss: 107.51 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 64) -0/69092 Loss: 95.213 -3200/69092 Loss: 106.027 -6400/69092 Loss: 107.618 -9600/69092 Loss: 105.784 -12800/69092 Loss: 107.630 -16000/69092 Loss: 106.266 -19200/69092 Loss: 106.681 -22400/69092 Loss: 108.355 -25600/69092 Loss: 108.582 -28800/69092 Loss: 107.247 -32000/69092 Loss: 106.418 -35200/69092 Loss: 107.866 -38400/69092 Loss: 107.643 -41600/69092 Loss: 107.719 -44800/69092 Loss: 106.770 -48000/69092 Loss: 108.965 -51200/69092 Loss: 107.024 -54400/69092 Loss: 107.825 -57600/69092 Loss: 107.277 -60800/69092 Loss: 106.770 -64000/69092 Loss: 106.849 -67200/69092 Loss: 107.868 -Training time 0:04:43.409421 -Epoch: 60 Average loss: 107.24 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 65) -0/69092 Loss: 99.140 -3200/69092 Loss: 108.373 -6400/69092 Loss: 108.361 -9600/69092 Loss: 106.322 -12800/69092 Loss: 106.600 -16000/69092 Loss: 105.737 -19200/69092 Loss: 107.075 -22400/69092 Loss: 107.897 -25600/69092 Loss: 106.637 -28800/69092 Loss: 109.254 -32000/69092 Loss: 108.755 -35200/69092 Loss: 107.586 -38400/69092 Loss: 106.973 -41600/69092 Loss: 106.574 -44800/69092 Loss: 107.630 -48000/69092 Loss: 107.069 -51200/69092 Loss: 106.450 -54400/69092 Loss: 106.582 -57600/69092 Loss: 107.387 -60800/69092 Loss: 107.566 -64000/69092 Loss: 107.241 -67200/69092 Loss: 107.083 -Training time 0:04:45.168993 -Epoch: 61 Average loss: 107.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 66) -0/69092 Loss: 108.632 -3200/69092 Loss: 108.459 -6400/69092 Loss: 106.302 -9600/69092 Loss: 107.831 -12800/69092 Loss: 105.810 -16000/69092 Loss: 105.939 -19200/69092 Loss: 109.040 -22400/69092 Loss: 106.610 -25600/69092 Loss: 108.444 -28800/69092 Loss: 107.125 -32000/69092 Loss: 105.910 -35200/69092 Loss: 106.708 -38400/69092 Loss: 105.734 -41600/69092 Loss: 107.290 -44800/69092 Loss: 107.097 -48000/69092 Loss: 107.371 -51200/69092 Loss: 107.602 -54400/69092 Loss: 108.115 -57600/69092 Loss: 107.538 -60800/69092 Loss: 106.859 -64000/69092 Loss: 105.613 -67200/69092 Loss: 107.768 -Training time 0:04:46.909384 -Epoch: 62 Average loss: 107.12 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 67) -0/69092 Loss: 96.787 -3200/69092 Loss: 106.211 -6400/69092 Loss: 106.251 -9600/69092 Loss: 106.681 -12800/69092 Loss: 106.072 -16000/69092 Loss: 106.618 -19200/69092 Loss: 107.220 -22400/69092 Loss: 108.668 -25600/69092 Loss: 106.418 -28800/69092 Loss: 108.128 -32000/69092 Loss: 106.958 -35200/69092 Loss: 107.550 -38400/69092 Loss: 105.766 -41600/69092 Loss: 108.187 -44800/69092 Loss: 109.119 -48000/69092 Loss: 106.322 -51200/69092 Loss: 108.572 -54400/69092 Loss: 107.911 -57600/69092 Loss: 106.371 -60800/69092 Loss: 106.815 -64000/69092 Loss: 105.432 -67200/69092 Loss: 107.124 -Training time 0:04:45.988190 -Epoch: 63 Average loss: 107.08 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 68) -0/69092 Loss: 101.009 -3200/69092 Loss: 107.848 -6400/69092 Loss: 107.981 -9600/69092 Loss: 105.931 -12800/69092 Loss: 105.062 -16000/69092 Loss: 107.260 -19200/69092 Loss: 106.238 -22400/69092 Loss: 106.388 -25600/69092 Loss: 107.564 -28800/69092 Loss: 106.940 -32000/69092 Loss: 107.675 -35200/69092 Loss: 107.333 -38400/69092 Loss: 106.242 -41600/69092 Loss: 106.396 -44800/69092 Loss: 107.305 -48000/69092 Loss: 107.249 -51200/69092 Loss: 107.218 -54400/69092 Loss: 108.159 -57600/69092 Loss: 107.802 -60800/69092 Loss: 105.884 -64000/69092 Loss: 107.416 -67200/69092 Loss: 107.177 -Training time 0:04:50.115311 -Epoch: 64 Average loss: 107.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 69) -0/69092 Loss: 99.700 -3200/69092 Loss: 105.408 -6400/69092 Loss: 107.577 -9600/69092 Loss: 107.187 -12800/69092 Loss: 106.684 -16000/69092 Loss: 107.859 -19200/69092 Loss: 106.757 -22400/69092 Loss: 107.083 -25600/69092 Loss: 107.706 -28800/69092 Loss: 107.304 -32000/69092 Loss: 106.535 -35200/69092 Loss: 107.133 -38400/69092 Loss: 108.241 -41600/69092 Loss: 108.464 -44800/69092 Loss: 107.018 -48000/69092 Loss: 106.956 -51200/69092 Loss: 107.139 -54400/69092 Loss: 105.645 -57600/69092 Loss: 106.116 -60800/69092 Loss: 107.512 -64000/69092 Loss: 105.906 -67200/69092 Loss: 106.503 -Training time 0:04:50.923955 -Epoch: 65 Average loss: 106.94 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 70) -0/69092 Loss: 113.871 -3200/69092 Loss: 106.510 -6400/69092 Loss: 104.945 -9600/69092 Loss: 106.325 -12800/69092 Loss: 104.192 -16000/69092 Loss: 108.807 -19200/69092 Loss: 107.005 -22400/69092 Loss: 106.568 -25600/69092 Loss: 109.132 -28800/69092 Loss: 106.207 -32000/69092 Loss: 106.092 -35200/69092 Loss: 107.904 -38400/69092 Loss: 107.723 -41600/69092 Loss: 107.919 -44800/69092 Loss: 106.389 -48000/69092 Loss: 106.156 -51200/69092 Loss: 106.327 -54400/69092 Loss: 108.188 -57600/69092 Loss: 106.585 -60800/69092 Loss: 106.378 -64000/69092 Loss: 106.329 -67200/69092 Loss: 108.926 -Training time 0:04:50.597860 -Epoch: 66 Average loss: 106.84 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 71) -0/69092 Loss: 106.674 -3200/69092 Loss: 105.739 -6400/69092 Loss: 105.293 -9600/69092 Loss: 106.417 -12800/69092 Loss: 106.795 -16000/69092 Loss: 106.054 -19200/69092 Loss: 104.626 -22400/69092 Loss: 108.555 -25600/69092 Loss: 107.928 -28800/69092 Loss: 106.134 -32000/69092 Loss: 106.989 -35200/69092 Loss: 106.796 -38400/69092 Loss: 106.665 -41600/69092 Loss: 105.272 -44800/69092 Loss: 108.432 -48000/69092 Loss: 106.274 -51200/69092 Loss: 106.274 -54400/69092 Loss: 105.491 -57600/69092 Loss: 107.484 -60800/69092 Loss: 106.835 -64000/69092 Loss: 106.077 -67200/69092 Loss: 108.613 -Training time 0:04:50.856114 -Epoch: 67 Average loss: 106.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 72) -0/69092 Loss: 107.316 -3200/69092 Loss: 107.972 -6400/69092 Loss: 108.050 -9600/69092 Loss: 106.102 -12800/69092 Loss: 106.441 -16000/69092 Loss: 108.152 -19200/69092 Loss: 107.119 -22400/69092 Loss: 106.215 -25600/69092 Loss: 107.264 -28800/69092 Loss: 105.527 -32000/69092 Loss: 107.794 -35200/69092 Loss: 105.042 -38400/69092 Loss: 107.403 -41600/69092 Loss: 105.311 -44800/69092 Loss: 106.848 -48000/69092 Loss: 106.986 -51200/69092 Loss: 107.933 -54400/69092 Loss: 105.659 -57600/69092 Loss: 107.058 -60800/69092 Loss: 107.427 -64000/69092 Loss: 106.436 -67200/69092 Loss: 105.850 -Training time 0:04:42.894581 -Epoch: 68 Average loss: 106.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 73) -0/69092 Loss: 103.258 -3200/69092 Loss: 105.467 -6400/69092 Loss: 105.508 -9600/69092 Loss: 107.575 -12800/69092 Loss: 107.472 -16000/69092 Loss: 105.982 -19200/69092 Loss: 105.868 -22400/69092 Loss: 106.597 -25600/69092 Loss: 106.147 -28800/69092 Loss: 106.502 -32000/69092 Loss: 106.497 -35200/69092 Loss: 106.906 -38400/69092 Loss: 107.811 -41600/69092 Loss: 107.281 -44800/69092 Loss: 106.072 -48000/69092 Loss: 106.723 -51200/69092 Loss: 106.482 -54400/69092 Loss: 106.787 -57600/69092 Loss: 107.622 -60800/69092 Loss: 105.791 -64000/69092 Loss: 107.319 -67200/69092 Loss: 106.772 -Training time 0:04:54.501528 -Epoch: 69 Average loss: 106.62 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 74) -0/69092 Loss: 107.553 -3200/69092 Loss: 106.098 -6400/69092 Loss: 107.191 -9600/69092 Loss: 106.159 -12800/69092 Loss: 104.771 -16000/69092 Loss: 109.163 -19200/69092 Loss: 107.074 -22400/69092 Loss: 105.869 -25600/69092 Loss: 106.491 -28800/69092 Loss: 106.822 -32000/69092 Loss: 107.059 -35200/69092 Loss: 105.834 -38400/69092 Loss: 104.738 -41600/69092 Loss: 106.728 -44800/69092 Loss: 107.754 -48000/69092 Loss: 106.263 -51200/69092 Loss: 105.967 -54400/69092 Loss: 105.614 -57600/69092 Loss: 108.203 -60800/69092 Loss: 106.293 -64000/69092 Loss: 105.167 -67200/69092 Loss: 106.777 -Training time 0:04:52.868330 -Epoch: 70 Average loss: 106.45 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 75) -0/69092 Loss: 98.173 -3200/69092 Loss: 107.283 -6400/69092 Loss: 106.688 -9600/69092 Loss: 106.175 -12800/69092 Loss: 106.923 -16000/69092 Loss: 105.406 -19200/69092 Loss: 105.920 -22400/69092 Loss: 107.011 -25600/69092 Loss: 107.188 -28800/69092 Loss: 106.831 -32000/69092 Loss: 105.050 -35200/69092 Loss: 107.188 -38400/69092 Loss: 105.814 -41600/69092 Loss: 107.216 -44800/69092 Loss: 106.493 -48000/69092 Loss: 105.505 -51200/69092 Loss: 105.077 -54400/69092 Loss: 105.549 -57600/69092 Loss: 107.144 -60800/69092 Loss: 106.992 -64000/69092 Loss: 105.153 -67200/69092 Loss: 105.536 -Training time 0:04:55.646175 -Epoch: 71 Average loss: 106.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 76) -0/69092 Loss: 104.828 -3200/69092 Loss: 106.681 -6400/69092 Loss: 104.585 -9600/69092 Loss: 104.697 -12800/69092 Loss: 107.388 -16000/69092 Loss: 106.748 -19200/69092 Loss: 106.904 -22400/69092 Loss: 105.430 -25600/69092 Loss: 107.294 -28800/69092 Loss: 106.562 -32000/69092 Loss: 107.229 -35200/69092 Loss: 104.755 -38400/69092 Loss: 106.461 -41600/69092 Loss: 105.027 -44800/69092 Loss: 107.103 -48000/69092 Loss: 107.121 -51200/69092 Loss: 107.508 -54400/69092 Loss: 106.154 -57600/69092 Loss: 107.660 -60800/69092 Loss: 105.422 -64000/69092 Loss: 105.391 -67200/69092 Loss: 107.187 -Training time 0:04:52.971490 -Epoch: 72 Average loss: 106.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 77) -0/69092 Loss: 102.193 -3200/69092 Loss: 105.875 -6400/69092 Loss: 107.181 -9600/69092 Loss: 105.227 -12800/69092 Loss: 107.922 -16000/69092 Loss: 105.979 -19200/69092 Loss: 106.287 -22400/69092 Loss: 104.530 -25600/69092 Loss: 104.866 -28800/69092 Loss: 106.620 -32000/69092 Loss: 105.745 -35200/69092 Loss: 106.743 -38400/69092 Loss: 106.674 -41600/69092 Loss: 106.348 -44800/69092 Loss: 106.103 -48000/69092 Loss: 106.401 -51200/69092 Loss: 106.476 -54400/69092 Loss: 107.128 -57600/69092 Loss: 104.708 -60800/69092 Loss: 106.286 -64000/69092 Loss: 107.405 -67200/69092 Loss: 106.975 -Training time 0:04:52.079726 -Epoch: 73 Average loss: 106.29 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 78) -0/69092 Loss: 115.106 -3200/69092 Loss: 106.613 -6400/69092 Loss: 105.516 -9600/69092 Loss: 106.279 -12800/69092 Loss: 107.035 -16000/69092 Loss: 106.901 -19200/69092 Loss: 106.259 -22400/69092 Loss: 106.482 -25600/69092 Loss: 106.685 -28800/69092 Loss: 105.713 -32000/69092 Loss: 106.677 -35200/69092 Loss: 105.898 -38400/69092 Loss: 105.959 -41600/69092 Loss: 106.056 -44800/69092 Loss: 104.058 -48000/69092 Loss: 107.636 -51200/69092 Loss: 106.408 -54400/69092 Loss: 105.510 -57600/69092 Loss: 107.126 -60800/69092 Loss: 102.794 -64000/69092 Loss: 105.883 -67200/69092 Loss: 106.210 -Training time 0:04:48.463217 -Epoch: 74 Average loss: 106.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 79) -0/69092 Loss: 108.485 -3200/69092 Loss: 105.781 -6400/69092 Loss: 106.366 -9600/69092 Loss: 106.327 -12800/69092 Loss: 106.386 -16000/69092 Loss: 105.807 -19200/69092 Loss: 107.269 -22400/69092 Loss: 107.495 -25600/69092 Loss: 106.904 -28800/69092 Loss: 106.073 -32000/69092 Loss: 107.340 -35200/69092 Loss: 104.801 -38400/69092 Loss: 105.712 -41600/69092 Loss: 104.574 -44800/69092 Loss: 106.045 -48000/69092 Loss: 106.166 -51200/69092 Loss: 105.577 -54400/69092 Loss: 106.264 -57600/69092 Loss: 104.153 -60800/69092 Loss: 107.094 -64000/69092 Loss: 105.029 -67200/69092 Loss: 106.907 -Training time 0:04:46.581238 -Epoch: 75 Average loss: 106.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 80) -0/69092 Loss: 133.000 -3200/69092 Loss: 106.878 -6400/69092 Loss: 107.797 -9600/69092 Loss: 106.549 -12800/69092 Loss: 106.853 -16000/69092 Loss: 105.499 -19200/69092 Loss: 105.092 -22400/69092 Loss: 106.505 -25600/69092 Loss: 106.679 -28800/69092 Loss: 102.969 -32000/69092 Loss: 105.854 -35200/69092 Loss: 106.818 -38400/69092 Loss: 106.764 -41600/69092 Loss: 105.524 -44800/69092 Loss: 107.438 -48000/69092 Loss: 105.218 -51200/69092 Loss: 104.353 -54400/69092 Loss: 106.234 -57600/69092 Loss: 105.975 -60800/69092 Loss: 106.486 -64000/69092 Loss: 105.349 -67200/69092 Loss: 106.522 -Training time 0:04:52.247822 -Epoch: 76 Average loss: 106.09 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 81) -0/69092 Loss: 113.320 -3200/69092 Loss: 106.065 -6400/69092 Loss: 105.636 -9600/69092 Loss: 105.594 -12800/69092 Loss: 104.921 -16000/69092 Loss: 105.310 -19200/69092 Loss: 106.557 -22400/69092 Loss: 106.530 -25600/69092 Loss: 106.007 -28800/69092 Loss: 104.959 -32000/69092 Loss: 105.296 -35200/69092 Loss: 105.649 -38400/69092 Loss: 105.838 -41600/69092 Loss: 104.787 -44800/69092 Loss: 105.916 -48000/69092 Loss: 104.483 -51200/69092 Loss: 108.540 -54400/69092 Loss: 106.935 -57600/69092 Loss: 107.094 -60800/69092 Loss: 105.542 -64000/69092 Loss: 107.094 -67200/69092 Loss: 106.696 -Training time 0:04:50.465072 -Epoch: 77 Average loss: 106.04 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 82) -0/69092 Loss: 105.775 -3200/69092 Loss: 104.143 -6400/69092 Loss: 106.376 -9600/69092 Loss: 105.853 -12800/69092 Loss: 107.442 -16000/69092 Loss: 105.974 -19200/69092 Loss: 106.224 -22400/69092 Loss: 106.614 -25600/69092 Loss: 104.898 -28800/69092 Loss: 105.351 -32000/69092 Loss: 106.364 -35200/69092 Loss: 106.209 -38400/69092 Loss: 107.988 -41600/69092 Loss: 106.163 -44800/69092 Loss: 105.920 -48000/69092 Loss: 104.891 -51200/69092 Loss: 105.154 -54400/69092 Loss: 105.039 -57600/69092 Loss: 107.874 -60800/69092 Loss: 106.659 -64000/69092 Loss: 104.838 -67200/69092 Loss: 106.004 -Training time 0:04:47.906519 -Epoch: 78 Average loss: 106.00 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 83) -0/69092 Loss: 104.938 -3200/69092 Loss: 105.438 -6400/69092 Loss: 105.059 -9600/69092 Loss: 106.616 -12800/69092 Loss: 105.004 -16000/69092 Loss: 107.055 -19200/69092 Loss: 106.784 -22400/69092 Loss: 105.539 -25600/69092 Loss: 105.332 -28800/69092 Loss: 105.271 -32000/69092 Loss: 105.947 -35200/69092 Loss: 106.141 -38400/69092 Loss: 106.491 -41600/69092 Loss: 104.884 -44800/69092 Loss: 106.111 -48000/69092 Loss: 105.816 -51200/69092 Loss: 104.976 -54400/69092 Loss: 106.576 -57600/69092 Loss: 105.387 -60800/69092 Loss: 106.023 -64000/69092 Loss: 106.223 -67200/69092 Loss: 105.289 -Training time 0:04:49.954373 -Epoch: 79 Average loss: 105.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 84) -0/69092 Loss: 111.414 -3200/69092 Loss: 104.501 -6400/69092 Loss: 105.996 -9600/69092 Loss: 105.728 -12800/69092 Loss: 105.972 -16000/69092 Loss: 103.711 -19200/69092 Loss: 105.339 -22400/69092 Loss: 105.824 -25600/69092 Loss: 106.456 -28800/69092 Loss: 105.027 -32000/69092 Loss: 105.114 -35200/69092 Loss: 105.825 -38400/69092 Loss: 106.253 -41600/69092 Loss: 105.802 -44800/69092 Loss: 105.359 -48000/69092 Loss: 105.120 -51200/69092 Loss: 105.310 -54400/69092 Loss: 106.832 -57600/69092 Loss: 107.461 -60800/69092 Loss: 106.991 -64000/69092 Loss: 108.579 -67200/69092 Loss: 105.452 -Training time 0:04:52.101022 -Epoch: 80 Average loss: 105.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_20/checkpoints/last' (iter 85) -0/69092 Loss: 118.695 -3200/69092 Loss: 104.423 -6400/69092 Loss: 104.555 diff --git a/OAR.2068294.stderr b/OAR.2068294.stderr deleted file mode 100644 index a9c628a29c..0000000000 --- a/OAR.2068294.stderr +++ /dev/null @@ -1,2 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) diff --git a/OAR.2068294.stdout b/OAR.2068294.stdout deleted file mode 100644 index b48bdf14b4..0000000000 --- a/OAR.2068294.stdout +++ /dev/null @@ -1,2052 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_5e_4', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0005, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_5e_4 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last (iter 1)' -0/69092 Loss: 159.842 -3200/69092 Loss: 169.274 -6400/69092 Loss: 166.739 -9600/69092 Loss: 164.403 -12800/69092 Loss: 163.047 -16000/69092 Loss: 158.285 -19200/69092 Loss: 160.616 -22400/69092 Loss: 155.277 -25600/69092 Loss: 154.275 -28800/69092 Loss: 151.988 -32000/69092 Loss: 149.324 -35200/69092 Loss: 150.873 -38400/69092 Loss: 151.049 -41600/69092 Loss: 150.226 -44800/69092 Loss: 150.034 -48000/69092 Loss: 148.424 -51200/69092 Loss: 145.290 -54400/69092 Loss: 151.523 -57600/69092 Loss: 147.486 -60800/69092 Loss: 146.221 -64000/69092 Loss: 149.535 -67200/69092 Loss: 146.699 -Training time 0:04:50.557788 -Epoch: 1 Average loss: 153.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 2) -0/69092 Loss: 143.173 -3200/69092 Loss: 148.837 -6400/69092 Loss: 149.340 -9600/69092 Loss: 147.622 -12800/69092 Loss: 146.403 -16000/69092 Loss: 146.955 -19200/69092 Loss: 145.442 -22400/69092 Loss: 147.009 -25600/69092 Loss: 145.950 -28800/69092 Loss: 143.687 -32000/69092 Loss: 145.683 -35200/69092 Loss: 145.375 -38400/69092 Loss: 145.855 -41600/69092 Loss: 145.754 -44800/69092 Loss: 145.672 -48000/69092 Loss: 143.268 -51200/69092 Loss: 143.225 -54400/69092 Loss: 144.677 -57600/69092 Loss: 145.922 -60800/69092 Loss: 146.299 -64000/69092 Loss: 143.574 -67200/69092 Loss: 143.527 -Training time 0:04:51.692162 -Epoch: 2 Average loss: 145.81 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 3) -0/69092 Loss: 153.519 -3200/69092 Loss: 145.651 -6400/69092 Loss: 141.828 -9600/69092 Loss: 145.531 -12800/69092 Loss: 145.265 -16000/69092 Loss: 142.549 -19200/69092 Loss: 140.299 -22400/69092 Loss: 147.157 -25600/69092 Loss: 144.192 -28800/69092 Loss: 143.237 -32000/69092 Loss: 141.736 -35200/69092 Loss: 142.677 -38400/69092 Loss: 142.500 -41600/69092 Loss: 144.968 -44800/69092 Loss: 140.901 -48000/69092 Loss: 142.025 -51200/69092 Loss: 144.095 -54400/69092 Loss: 141.622 -57600/69092 Loss: 140.296 -60800/69092 Loss: 142.888 -64000/69092 Loss: 139.783 -67200/69092 Loss: 139.524 -Training time 0:04:46.026650 -Epoch: 3 Average loss: 142.71 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 4) -0/69092 Loss: 153.974 -3200/69092 Loss: 143.761 -6400/69092 Loss: 142.291 -9600/69092 Loss: 139.206 -12800/69092 Loss: 141.900 -16000/69092 Loss: 138.278 -19200/69092 Loss: 140.812 -22400/69092 Loss: 139.452 -25600/69092 Loss: 142.395 -28800/69092 Loss: 141.577 -32000/69092 Loss: 137.828 -35200/69092 Loss: 141.852 -38400/69092 Loss: 142.464 -41600/69092 Loss: 140.110 -44800/69092 Loss: 140.493 -48000/69092 Loss: 139.024 -51200/69092 Loss: 137.492 -54400/69092 Loss: 139.615 -57600/69092 Loss: 139.125 -60800/69092 Loss: 143.667 -64000/69092 Loss: 139.027 -67200/69092 Loss: 137.685 -Training time 0:04:49.303581 -Epoch: 4 Average loss: 140.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 5) -0/69092 Loss: 112.383 -3200/69092 Loss: 137.454 -6400/69092 Loss: 139.073 -9600/69092 Loss: 140.830 -12800/69092 Loss: 139.548 -16000/69092 Loss: 138.777 -19200/69092 Loss: 140.528 -22400/69092 Loss: 137.749 -25600/69092 Loss: 138.787 -28800/69092 Loss: 141.040 -32000/69092 Loss: 138.785 -35200/69092 Loss: 139.628 -38400/69092 Loss: 140.765 -41600/69092 Loss: 139.658 -44800/69092 Loss: 138.988 -48000/69092 Loss: 139.052 -51200/69092 Loss: 138.653 -54400/69092 Loss: 139.797 -57600/69092 Loss: 139.011 -60800/69092 Loss: 138.346 -64000/69092 Loss: 139.014 -67200/69092 Loss: 140.627 -Training time 0:04:47.368582 -Epoch: 5 Average loss: 139.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 6) -0/69092 Loss: 130.235 -3200/69092 Loss: 138.492 -6400/69092 Loss: 138.328 -9600/69092 Loss: 139.536 -12800/69092 Loss: 138.059 -16000/69092 Loss: 136.499 -19200/69092 Loss: 139.865 -22400/69092 Loss: 137.590 -25600/69092 Loss: 138.390 -28800/69092 Loss: 138.681 -32000/69092 Loss: 138.109 -35200/69092 Loss: 141.501 -38400/69092 Loss: 137.944 -41600/69092 Loss: 137.168 -44800/69092 Loss: 137.908 -48000/69092 Loss: 138.282 -51200/69092 Loss: 136.059 -54400/69092 Loss: 137.297 -57600/69092 Loss: 140.392 -60800/69092 Loss: 134.949 -64000/69092 Loss: 137.993 -67200/69092 Loss: 137.138 -Training time 0:04:53.281922 -Epoch: 6 Average loss: 138.11 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 7) -0/69092 Loss: 140.970 -3200/69092 Loss: 137.488 -6400/69092 Loss: 140.878 -9600/69092 Loss: 137.161 -12800/69092 Loss: 139.734 -16000/69092 Loss: 137.984 -19200/69092 Loss: 139.772 -22400/69092 Loss: 136.809 -25600/69092 Loss: 139.014 -28800/69092 Loss: 134.192 -32000/69092 Loss: 140.247 -35200/69092 Loss: 137.572 -38400/69092 Loss: 139.433 -41600/69092 Loss: 137.778 -44800/69092 Loss: 137.263 -48000/69092 Loss: 136.331 -51200/69092 Loss: 136.103 -54400/69092 Loss: 136.096 -57600/69092 Loss: 137.410 -60800/69092 Loss: 136.121 -64000/69092 Loss: 136.672 -67200/69092 Loss: 137.533 -Training time 0:04:53.955557 -Epoch: 7 Average loss: 137.61 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 8) -0/69092 Loss: 125.774 -3200/69092 Loss: 139.187 -6400/69092 Loss: 136.501 -9600/69092 Loss: 137.414 -12800/69092 Loss: 135.825 -16000/69092 Loss: 137.348 -19200/69092 Loss: 137.275 -22400/69092 Loss: 136.744 -25600/69092 Loss: 137.035 -28800/69092 Loss: 137.127 -32000/69092 Loss: 134.687 -35200/69092 Loss: 138.643 -38400/69092 Loss: 138.699 -41600/69092 Loss: 134.890 -44800/69092 Loss: 137.422 -48000/69092 Loss: 136.792 -51200/69092 Loss: 137.172 -54400/69092 Loss: 132.974 -57600/69092 Loss: 137.482 -60800/69092 Loss: 138.539 -64000/69092 Loss: 137.681 -67200/69092 Loss: 137.094 -Training time 0:04:50.852102 -Epoch: 8 Average loss: 136.97 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 9) -0/69092 Loss: 128.512 -3200/69092 Loss: 136.849 -6400/69092 Loss: 136.887 -9600/69092 Loss: 135.035 -12800/69092 Loss: 135.584 -16000/69092 Loss: 137.715 -19200/69092 Loss: 136.939 -22400/69092 Loss: 138.728 -25600/69092 Loss: 137.430 -28800/69092 Loss: 136.728 -32000/69092 Loss: 136.111 -35200/69092 Loss: 136.315 -38400/69092 Loss: 136.075 -41600/69092 Loss: 135.117 -44800/69092 Loss: 137.334 -48000/69092 Loss: 137.614 -51200/69092 Loss: 135.375 -54400/69092 Loss: 136.036 -57600/69092 Loss: 136.917 -60800/69092 Loss: 136.521 -64000/69092 Loss: 137.985 -67200/69092 Loss: 136.001 -Training time 0:04:53.617479 -Epoch: 9 Average loss: 136.62 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 10) -0/69092 Loss: 116.711 -3200/69092 Loss: 139.440 -6400/69092 Loss: 135.457 -9600/69092 Loss: 138.314 -12800/69092 Loss: 134.946 -16000/69092 Loss: 133.214 -19200/69092 Loss: 136.892 -22400/69092 Loss: 136.203 -25600/69092 Loss: 137.560 -28800/69092 Loss: 138.216 -32000/69092 Loss: 136.824 -35200/69092 Loss: 138.758 -38400/69092 Loss: 135.570 -41600/69092 Loss: 137.090 -44800/69092 Loss: 134.380 -48000/69092 Loss: 135.627 -51200/69092 Loss: 135.116 -54400/69092 Loss: 135.653 -57600/69092 Loss: 135.568 -60800/69092 Loss: 135.086 -64000/69092 Loss: 137.637 -67200/69092 Loss: 135.876 -Training time 0:04:54.556594 -Epoch: 10 Average loss: 136.33 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 11) -0/69092 Loss: 130.440 -3200/69092 Loss: 136.629 -6400/69092 Loss: 136.639 -9600/69092 Loss: 136.358 -12800/69092 Loss: 137.923 -16000/69092 Loss: 136.105 -19200/69092 Loss: 135.169 -22400/69092 Loss: 136.566 -25600/69092 Loss: 135.791 -28800/69092 Loss: 137.898 -32000/69092 Loss: 136.301 -35200/69092 Loss: 135.944 -38400/69092 Loss: 139.066 -41600/69092 Loss: 135.071 -44800/69092 Loss: 137.581 -48000/69092 Loss: 135.287 -51200/69092 Loss: 134.512 -54400/69092 Loss: 134.847 -57600/69092 Loss: 133.324 -60800/69092 Loss: 133.098 -64000/69092 Loss: 138.197 -67200/69092 Loss: 137.772 -Training time 0:04:52.905411 -Epoch: 11 Average loss: 136.22 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 12) -0/69092 Loss: 142.560 -3200/69092 Loss: 138.019 -6400/69092 Loss: 137.816 -9600/69092 Loss: 136.478 -12800/69092 Loss: 134.968 -16000/69092 Loss: 134.737 -19200/69092 Loss: 134.154 -22400/69092 Loss: 134.689 -25600/69092 Loss: 136.335 -28800/69092 Loss: 136.210 -32000/69092 Loss: 134.062 -35200/69092 Loss: 137.574 -38400/69092 Loss: 134.143 -41600/69092 Loss: 135.749 -44800/69092 Loss: 137.421 -48000/69092 Loss: 136.107 -51200/69092 Loss: 136.956 -54400/69092 Loss: 135.313 -57600/69092 Loss: 134.547 -60800/69092 Loss: 137.678 -64000/69092 Loss: 137.972 -67200/69092 Loss: 136.143 -Training time 0:04:47.934248 -Epoch: 12 Average loss: 136.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 13) -0/69092 Loss: 138.820 -3200/69092 Loss: 134.840 -6400/69092 Loss: 135.779 -9600/69092 Loss: 136.047 -12800/69092 Loss: 136.017 -16000/69092 Loss: 133.767 -19200/69092 Loss: 137.659 -22400/69092 Loss: 136.069 -25600/69092 Loss: 136.581 -28800/69092 Loss: 137.223 -32000/69092 Loss: 134.748 -35200/69092 Loss: 137.429 -38400/69092 Loss: 133.493 -41600/69092 Loss: 136.301 -44800/69092 Loss: 133.949 -48000/69092 Loss: 137.032 -51200/69092 Loss: 136.085 -54400/69092 Loss: 135.442 -57600/69092 Loss: 134.689 -60800/69092 Loss: 134.591 -64000/69092 Loss: 137.789 -67200/69092 Loss: 134.512 -Training time 0:04:49.043560 -Epoch: 13 Average loss: 135.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 14) -0/69092 Loss: 138.798 -3200/69092 Loss: 136.422 -6400/69092 Loss: 135.985 -9600/69092 Loss: 133.135 -12800/69092 Loss: 134.340 -16000/69092 Loss: 136.762 -19200/69092 Loss: 136.748 -22400/69092 Loss: 134.862 -25600/69092 Loss: 135.796 -28800/69092 Loss: 136.190 -32000/69092 Loss: 134.759 -35200/69092 Loss: 131.705 -38400/69092 Loss: 136.131 -41600/69092 Loss: 136.145 -44800/69092 Loss: 134.797 -48000/69092 Loss: 137.117 -51200/69092 Loss: 134.780 -54400/69092 Loss: 134.688 -57600/69092 Loss: 135.539 -60800/69092 Loss: 135.482 -64000/69092 Loss: 135.210 -67200/69092 Loss: 138.155 -Training time 0:04:47.415866 -Epoch: 14 Average loss: 135.48 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 15) -0/69092 Loss: 134.309 -3200/69092 Loss: 137.721 -6400/69092 Loss: 135.463 -9600/69092 Loss: 134.279 -12800/69092 Loss: 135.122 -16000/69092 Loss: 133.930 -19200/69092 Loss: 133.664 -22400/69092 Loss: 136.379 -25600/69092 Loss: 135.420 -28800/69092 Loss: 134.670 -32000/69092 Loss: 135.000 -35200/69092 Loss: 135.351 -38400/69092 Loss: 136.120 -41600/69092 Loss: 135.211 -44800/69092 Loss: 135.834 -48000/69092 Loss: 134.783 -51200/69092 Loss: 134.572 -54400/69092 Loss: 136.132 -57600/69092 Loss: 134.998 -60800/69092 Loss: 135.242 -64000/69092 Loss: 136.464 -67200/69092 Loss: 136.273 -Training time 0:04:50.106540 -Epoch: 15 Average loss: 135.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 16) -0/69092 Loss: 135.949 -3200/69092 Loss: 134.864 -6400/69092 Loss: 134.832 -9600/69092 Loss: 133.051 -12800/69092 Loss: 133.823 -16000/69092 Loss: 133.778 -19200/69092 Loss: 135.979 -22400/69092 Loss: 136.273 -25600/69092 Loss: 135.099 -28800/69092 Loss: 134.681 -32000/69092 Loss: 135.605 -35200/69092 Loss: 138.182 -38400/69092 Loss: 136.193 -41600/69092 Loss: 136.388 -44800/69092 Loss: 135.354 -48000/69092 Loss: 137.457 -51200/69092 Loss: 133.089 -54400/69092 Loss: 135.397 -57600/69092 Loss: 133.427 -60800/69092 Loss: 135.073 -64000/69092 Loss: 136.909 -67200/69092 Loss: 134.642 -Training time 0:04:38.435256 -Epoch: 16 Average loss: 135.30 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 17) -0/69092 Loss: 138.000 -3200/69092 Loss: 136.111 -6400/69092 Loss: 133.658 -9600/69092 Loss: 133.701 -12800/69092 Loss: 135.034 -16000/69092 Loss: 135.448 -19200/69092 Loss: 134.607 -22400/69092 Loss: 137.125 -25600/69092 Loss: 134.265 -28800/69092 Loss: 136.148 -32000/69092 Loss: 134.616 -35200/69092 Loss: 136.364 -38400/69092 Loss: 135.393 -41600/69092 Loss: 134.187 -44800/69092 Loss: 136.165 -48000/69092 Loss: 135.929 -51200/69092 Loss: 134.787 -54400/69092 Loss: 133.402 -57600/69092 Loss: 135.915 -60800/69092 Loss: 135.325 -64000/69092 Loss: 135.651 -67200/69092 Loss: 135.385 -Training time 0:04:41.886585 -Epoch: 17 Average loss: 135.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 18) -0/69092 Loss: 143.136 -3200/69092 Loss: 135.909 -6400/69092 Loss: 134.992 -9600/69092 Loss: 133.596 -12800/69092 Loss: 135.802 -16000/69092 Loss: 134.036 -19200/69092 Loss: 133.975 -22400/69092 Loss: 136.420 -25600/69092 Loss: 135.745 -28800/69092 Loss: 133.899 -32000/69092 Loss: 136.081 -35200/69092 Loss: 135.021 -38400/69092 Loss: 135.222 -41600/69092 Loss: 134.817 -44800/69092 Loss: 135.857 -48000/69092 Loss: 136.124 -51200/69092 Loss: 133.457 -54400/69092 Loss: 133.075 -57600/69092 Loss: 134.068 -60800/69092 Loss: 136.092 -64000/69092 Loss: 133.002 -67200/69092 Loss: 134.536 -Training time 0:04:37.640146 -Epoch: 18 Average loss: 134.92 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 19) -0/69092 Loss: 136.190 -3200/69092 Loss: 135.955 -6400/69092 Loss: 133.368 -9600/69092 Loss: 136.835 -12800/69092 Loss: 135.033 -16000/69092 Loss: 134.636 -19200/69092 Loss: 134.387 -22400/69092 Loss: 134.776 -25600/69092 Loss: 135.802 -28800/69092 Loss: 135.218 -32000/69092 Loss: 134.476 -35200/69092 Loss: 134.542 -38400/69092 Loss: 135.400 -41600/69092 Loss: 134.663 -44800/69092 Loss: 133.927 -48000/69092 Loss: 136.387 -51200/69092 Loss: 133.757 -54400/69092 Loss: 134.504 -57600/69092 Loss: 135.201 -60800/69092 Loss: 134.295 -64000/69092 Loss: 132.394 -67200/69092 Loss: 133.272 -Training time 0:04:33.461645 -Epoch: 19 Average loss: 134.74 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 20) -0/69092 Loss: 141.672 -3200/69092 Loss: 136.147 -6400/69092 Loss: 134.504 -9600/69092 Loss: 135.077 -12800/69092 Loss: 132.699 -16000/69092 Loss: 135.500 -19200/69092 Loss: 132.953 -22400/69092 Loss: 134.542 -25600/69092 Loss: 135.023 -28800/69092 Loss: 135.674 -32000/69092 Loss: 133.153 -35200/69092 Loss: 133.527 -38400/69092 Loss: 135.516 -41600/69092 Loss: 135.942 -44800/69092 Loss: 134.288 -48000/69092 Loss: 134.031 -51200/69092 Loss: 137.359 -54400/69092 Loss: 133.247 -57600/69092 Loss: 135.630 -60800/69092 Loss: 134.472 -64000/69092 Loss: 134.720 -67200/69092 Loss: 135.098 -Training time 0:04:40.036596 -Epoch: 20 Average loss: 134.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 21) -0/69092 Loss: 150.207 -3200/69092 Loss: 135.195 -6400/69092 Loss: 134.344 -9600/69092 Loss: 135.940 -12800/69092 Loss: 134.407 -16000/69092 Loss: 134.870 -19200/69092 Loss: 133.250 -22400/69092 Loss: 133.484 -25600/69092 Loss: 136.036 -28800/69092 Loss: 134.513 -32000/69092 Loss: 134.567 -35200/69092 Loss: 132.468 -38400/69092 Loss: 134.329 -41600/69092 Loss: 135.064 -44800/69092 Loss: 133.131 -48000/69092 Loss: 134.148 -51200/69092 Loss: 136.914 -54400/69092 Loss: 134.930 -57600/69092 Loss: 136.108 -60800/69092 Loss: 133.987 -64000/69092 Loss: 136.280 -67200/69092 Loss: 134.166 -Training time 0:04:39.091547 -Epoch: 21 Average loss: 134.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 22) -0/69092 Loss: 119.053 -3200/69092 Loss: 135.355 -6400/69092 Loss: 135.607 -9600/69092 Loss: 136.246 -12800/69092 Loss: 134.407 -16000/69092 Loss: 131.474 -19200/69092 Loss: 134.511 -22400/69092 Loss: 134.013 -25600/69092 Loss: 133.152 -28800/69092 Loss: 132.573 -32000/69092 Loss: 135.316 -35200/69092 Loss: 134.359 -38400/69092 Loss: 135.460 -41600/69092 Loss: 135.286 -44800/69092 Loss: 134.391 -48000/69092 Loss: 135.731 -51200/69092 Loss: 137.241 -54400/69092 Loss: 136.328 -57600/69092 Loss: 132.285 -60800/69092 Loss: 135.411 -64000/69092 Loss: 134.402 -67200/69092 Loss: 134.102 -Training time 0:04:34.055154 -Epoch: 22 Average loss: 134.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 23) -0/69092 Loss: 132.497 -3200/69092 Loss: 134.809 -6400/69092 Loss: 136.661 -9600/69092 Loss: 132.698 -12800/69092 Loss: 134.736 -16000/69092 Loss: 133.905 -19200/69092 Loss: 136.538 -22400/69092 Loss: 135.342 -25600/69092 Loss: 133.752 -28800/69092 Loss: 134.078 -32000/69092 Loss: 135.883 -35200/69092 Loss: 135.296 -38400/69092 Loss: 135.743 -41600/69092 Loss: 134.805 -44800/69092 Loss: 135.000 -48000/69092 Loss: 133.954 -51200/69092 Loss: 134.722 -54400/69092 Loss: 134.012 -57600/69092 Loss: 134.085 -60800/69092 Loss: 134.561 -64000/69092 Loss: 133.512 -67200/69092 Loss: 132.733 -Training time 0:04:39.774768 -Epoch: 23 Average loss: 134.59 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 24) -0/69092 Loss: 139.944 -3200/69092 Loss: 131.760 -6400/69092 Loss: 136.860 -9600/69092 Loss: 136.123 -12800/69092 Loss: 135.383 -16000/69092 Loss: 135.544 -19200/69092 Loss: 135.580 -22400/69092 Loss: 135.211 -25600/69092 Loss: 131.185 -28800/69092 Loss: 132.956 -32000/69092 Loss: 134.480 -35200/69092 Loss: 135.644 -38400/69092 Loss: 134.626 -41600/69092 Loss: 132.784 -44800/69092 Loss: 133.034 -48000/69092 Loss: 135.432 -51200/69092 Loss: 136.171 -54400/69092 Loss: 134.883 -57600/69092 Loss: 136.160 -60800/69092 Loss: 133.469 -64000/69092 Loss: 133.819 -67200/69092 Loss: 134.401 -Training time 0:04:40.808800 -Epoch: 24 Average loss: 134.60 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 25) -0/69092 Loss: 145.018 -3200/69092 Loss: 132.701 -6400/69092 Loss: 132.960 -9600/69092 Loss: 134.206 -12800/69092 Loss: 133.399 -16000/69092 Loss: 135.152 -19200/69092 Loss: 134.454 -22400/69092 Loss: 134.089 -25600/69092 Loss: 133.050 -28800/69092 Loss: 133.241 -32000/69092 Loss: 135.133 -35200/69092 Loss: 134.018 -38400/69092 Loss: 133.902 -41600/69092 Loss: 135.801 -44800/69092 Loss: 136.048 -48000/69092 Loss: 135.188 -51200/69092 Loss: 136.588 -54400/69092 Loss: 133.573 -57600/69092 Loss: 132.799 -60800/69092 Loss: 134.888 -64000/69092 Loss: 135.027 -67200/69092 Loss: 135.773 -Training time 0:04:44.718572 -Epoch: 25 Average loss: 134.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 26) -0/69092 Loss: 127.012 -3200/69092 Loss: 134.702 -6400/69092 Loss: 136.845 -9600/69092 Loss: 134.568 -12800/69092 Loss: 133.714 -16000/69092 Loss: 135.752 -19200/69092 Loss: 133.098 -22400/69092 Loss: 136.472 -25600/69092 Loss: 134.800 -28800/69092 Loss: 133.131 -32000/69092 Loss: 132.874 -35200/69092 Loss: 133.481 -38400/69092 Loss: 134.428 -41600/69092 Loss: 135.679 -44800/69092 Loss: 134.405 -48000/69092 Loss: 134.641 -51200/69092 Loss: 134.593 -54400/69092 Loss: 134.779 -57600/69092 Loss: 134.973 -60800/69092 Loss: 132.792 -64000/69092 Loss: 132.360 -67200/69092 Loss: 132.379 -Training time 0:04:44.102291 -Epoch: 26 Average loss: 134.25 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 27) -0/69092 Loss: 149.808 -3200/69092 Loss: 132.259 -6400/69092 Loss: 134.341 -9600/69092 Loss: 135.164 -12800/69092 Loss: 133.393 -16000/69092 Loss: 134.844 -19200/69092 Loss: 133.896 -22400/69092 Loss: 132.075 -25600/69092 Loss: 133.649 -28800/69092 Loss: 134.832 -32000/69092 Loss: 133.606 -35200/69092 Loss: 134.642 -38400/69092 Loss: 133.741 -41600/69092 Loss: 132.305 -44800/69092 Loss: 133.431 -48000/69092 Loss: 136.227 -51200/69092 Loss: 133.519 -54400/69092 Loss: 135.129 -57600/69092 Loss: 132.867 -60800/69092 Loss: 132.726 -64000/69092 Loss: 134.911 -67200/69092 Loss: 135.453 -Training time 0:04:44.718513 -Epoch: 27 Average loss: 133.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 28) -0/69092 Loss: 140.091 -3200/69092 Loss: 133.067 -6400/69092 Loss: 135.230 -9600/69092 Loss: 133.767 -12800/69092 Loss: 133.414 -16000/69092 Loss: 132.176 -19200/69092 Loss: 134.166 -22400/69092 Loss: 135.205 -25600/69092 Loss: 136.393 -28800/69092 Loss: 132.047 -32000/69092 Loss: 131.969 -35200/69092 Loss: 133.022 -38400/69092 Loss: 134.558 -41600/69092 Loss: 133.753 -44800/69092 Loss: 134.982 -48000/69092 Loss: 136.384 -51200/69092 Loss: 133.967 -54400/69092 Loss: 132.168 -57600/69092 Loss: 134.359 -60800/69092 Loss: 136.309 -64000/69092 Loss: 134.633 -67200/69092 Loss: 135.702 -Training time 0:04:41.116094 -Epoch: 28 Average loss: 134.14 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 29) -0/69092 Loss: 124.378 -3200/69092 Loss: 131.196 -6400/69092 Loss: 133.288 -9600/69092 Loss: 133.099 -12800/69092 Loss: 132.631 -16000/69092 Loss: 133.875 -19200/69092 Loss: 135.789 -22400/69092 Loss: 133.333 -25600/69092 Loss: 131.898 -28800/69092 Loss: 135.044 -32000/69092 Loss: 136.767 -35200/69092 Loss: 135.353 -38400/69092 Loss: 135.699 -41600/69092 Loss: 133.328 -44800/69092 Loss: 137.368 -48000/69092 Loss: 135.211 -51200/69092 Loss: 134.633 -54400/69092 Loss: 131.426 -57600/69092 Loss: 133.014 -60800/69092 Loss: 134.384 -64000/69092 Loss: 134.334 -67200/69092 Loss: 134.622 -Training time 0:04:43.813486 -Epoch: 29 Average loss: 134.17 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 30) -0/69092 Loss: 135.568 -3200/69092 Loss: 134.305 -6400/69092 Loss: 132.871 -9600/69092 Loss: 132.481 -12800/69092 Loss: 134.599 -16000/69092 Loss: 131.658 -19200/69092 Loss: 135.084 -22400/69092 Loss: 132.367 -25600/69092 Loss: 135.661 -28800/69092 Loss: 132.998 -32000/69092 Loss: 135.432 -35200/69092 Loss: 136.519 -38400/69092 Loss: 133.184 -41600/69092 Loss: 136.257 -44800/69092 Loss: 136.150 -48000/69092 Loss: 131.348 -51200/69092 Loss: 132.628 -54400/69092 Loss: 134.070 -57600/69092 Loss: 133.399 -60800/69092 Loss: 133.182 -64000/69092 Loss: 135.141 -67200/69092 Loss: 133.544 -Training time 0:04:43.219094 -Epoch: 30 Average loss: 133.88 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 31) -0/69092 Loss: 124.188 -3200/69092 Loss: 134.833 -6400/69092 Loss: 133.584 -9600/69092 Loss: 133.853 -12800/69092 Loss: 132.266 -16000/69092 Loss: 135.120 -19200/69092 Loss: 135.788 -22400/69092 Loss: 131.430 -25600/69092 Loss: 136.732 -28800/69092 Loss: 133.887 -32000/69092 Loss: 135.501 -35200/69092 Loss: 134.410 -38400/69092 Loss: 133.129 -41600/69092 Loss: 131.547 -44800/69092 Loss: 133.732 -48000/69092 Loss: 134.267 -51200/69092 Loss: 136.209 -54400/69092 Loss: 131.541 -57600/69092 Loss: 133.454 -60800/69092 Loss: 132.622 -64000/69092 Loss: 132.528 -67200/69092 Loss: 132.466 -Training time 0:04:48.333091 -Epoch: 31 Average loss: 133.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 32) -0/69092 Loss: 129.738 -3200/69092 Loss: 134.777 -6400/69092 Loss: 135.615 -9600/69092 Loss: 132.873 -12800/69092 Loss: 135.517 -16000/69092 Loss: 132.053 -19200/69092 Loss: 133.392 -22400/69092 Loss: 136.432 -25600/69092 Loss: 134.465 -28800/69092 Loss: 136.804 -32000/69092 Loss: 131.439 -35200/69092 Loss: 135.418 -38400/69092 Loss: 133.925 -41600/69092 Loss: 135.465 -44800/69092 Loss: 131.826 -48000/69092 Loss: 134.965 -51200/69092 Loss: 132.440 -54400/69092 Loss: 134.992 -57600/69092 Loss: 135.859 -60800/69092 Loss: 130.496 -64000/69092 Loss: 132.862 -67200/69092 Loss: 134.359 -Training time 0:04:34.723577 -Epoch: 32 Average loss: 134.06 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 33) -0/69092 Loss: 135.288 -3200/69092 Loss: 133.811 -6400/69092 Loss: 134.418 -9600/69092 Loss: 133.275 -12800/69092 Loss: 132.395 -16000/69092 Loss: 131.969 -19200/69092 Loss: 134.218 -22400/69092 Loss: 133.016 -25600/69092 Loss: 133.718 -28800/69092 Loss: 135.349 -32000/69092 Loss: 134.404 -35200/69092 Loss: 135.265 -38400/69092 Loss: 133.873 -41600/69092 Loss: 134.478 -44800/69092 Loss: 135.259 -48000/69092 Loss: 135.084 -51200/69092 Loss: 133.549 -54400/69092 Loss: 133.415 -57600/69092 Loss: 132.021 -60800/69092 Loss: 133.636 -64000/69092 Loss: 135.127 -67200/69092 Loss: 132.057 -Training time 0:04:44.494181 -Epoch: 33 Average loss: 133.83 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 34) -0/69092 Loss: 142.448 -3200/69092 Loss: 133.348 -6400/69092 Loss: 136.045 -9600/69092 Loss: 135.147 -12800/69092 Loss: 133.005 -16000/69092 Loss: 133.364 -19200/69092 Loss: 133.808 -22400/69092 Loss: 130.967 -25600/69092 Loss: 134.049 -28800/69092 Loss: 132.894 -32000/69092 Loss: 131.265 -35200/69092 Loss: 132.280 -38400/69092 Loss: 134.631 -41600/69092 Loss: 134.471 -44800/69092 Loss: 133.223 -48000/69092 Loss: 133.106 -51200/69092 Loss: 135.413 -54400/69092 Loss: 133.348 -57600/69092 Loss: 135.116 -60800/69092 Loss: 131.990 -64000/69092 Loss: 132.751 -67200/69092 Loss: 135.112 -Training time 0:04:34.204443 -Epoch: 34 Average loss: 133.63 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 35) -0/69092 Loss: 123.990 -3200/69092 Loss: 132.792 -6400/69092 Loss: 135.419 -9600/69092 Loss: 133.988 -12800/69092 Loss: 133.357 -16000/69092 Loss: 134.003 -19200/69092 Loss: 132.330 -22400/69092 Loss: 133.200 -25600/69092 Loss: 133.000 -28800/69092 Loss: 134.942 -32000/69092 Loss: 132.583 -35200/69092 Loss: 132.112 -38400/69092 Loss: 134.837 -41600/69092 Loss: 133.017 -44800/69092 Loss: 132.499 -48000/69092 Loss: 134.986 -51200/69092 Loss: 134.932 -54400/69092 Loss: 133.095 -57600/69092 Loss: 133.156 -60800/69092 Loss: 132.966 -64000/69092 Loss: 135.842 -67200/69092 Loss: 133.402 -Training time 0:04:42.218022 -Epoch: 35 Average loss: 133.62 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 36) -0/69092 Loss: 133.238 -3200/69092 Loss: 134.758 -6400/69092 Loss: 133.690 -9600/69092 Loss: 134.546 -12800/69092 Loss: 134.473 -16000/69092 Loss: 133.391 -19200/69092 Loss: 132.560 -22400/69092 Loss: 134.921 -25600/69092 Loss: 132.042 -28800/69092 Loss: 131.305 -32000/69092 Loss: 133.672 -35200/69092 Loss: 134.956 -38400/69092 Loss: 134.512 -41600/69092 Loss: 135.354 -44800/69092 Loss: 131.522 -48000/69092 Loss: 136.540 -51200/69092 Loss: 133.360 -54400/69092 Loss: 133.874 -57600/69092 Loss: 133.071 -60800/69092 Loss: 133.754 -64000/69092 Loss: 135.372 -67200/69092 Loss: 131.328 -Training time 0:04:40.897872 -Epoch: 36 Average loss: 133.79 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 37) -0/69092 Loss: 128.988 -3200/69092 Loss: 132.509 -6400/69092 Loss: 132.893 -9600/69092 Loss: 132.500 -12800/69092 Loss: 134.516 -16000/69092 Loss: 131.733 -19200/69092 Loss: 134.720 -22400/69092 Loss: 136.080 -25600/69092 Loss: 130.821 -28800/69092 Loss: 134.869 -32000/69092 Loss: 133.506 -35200/69092 Loss: 133.271 -38400/69092 Loss: 134.171 -41600/69092 Loss: 134.311 -44800/69092 Loss: 133.292 -48000/69092 Loss: 132.155 -51200/69092 Loss: 134.171 -54400/69092 Loss: 133.322 -57600/69092 Loss: 134.706 -60800/69092 Loss: 133.661 -64000/69092 Loss: 133.638 -67200/69092 Loss: 133.638 -Training time 0:04:38.412299 -Epoch: 37 Average loss: 133.46 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 38) -0/69092 Loss: 124.622 -3200/69092 Loss: 132.056 -6400/69092 Loss: 135.011 -9600/69092 Loss: 133.184 -12800/69092 Loss: 133.030 -16000/69092 Loss: 133.174 -19200/69092 Loss: 133.255 -22400/69092 Loss: 133.345 -25600/69092 Loss: 135.452 -28800/69092 Loss: 133.048 -32000/69092 Loss: 133.322 -35200/69092 Loss: 135.453 -38400/69092 Loss: 133.312 -41600/69092 Loss: 134.087 -44800/69092 Loss: 132.115 -48000/69092 Loss: 135.058 -51200/69092 Loss: 134.513 -54400/69092 Loss: 131.484 -57600/69092 Loss: 133.567 -60800/69092 Loss: 135.834 -64000/69092 Loss: 134.272 -67200/69092 Loss: 129.925 -Training time 0:04:42.429171 -Epoch: 38 Average loss: 133.53 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 39) -0/69092 Loss: 156.193 -3200/69092 Loss: 133.821 -6400/69092 Loss: 132.816 -9600/69092 Loss: 130.703 -12800/69092 Loss: 134.637 -16000/69092 Loss: 136.554 -19200/69092 Loss: 135.034 -22400/69092 Loss: 132.533 -25600/69092 Loss: 133.841 -28800/69092 Loss: 133.199 -32000/69092 Loss: 133.368 -35200/69092 Loss: 133.641 -38400/69092 Loss: 133.051 -41600/69092 Loss: 129.854 -44800/69092 Loss: 133.528 -48000/69092 Loss: 134.050 -51200/69092 Loss: 133.928 -54400/69092 Loss: 135.090 -57600/69092 Loss: 132.527 -60800/69092 Loss: 131.953 -64000/69092 Loss: 136.588 -67200/69092 Loss: 133.985 -Training time 0:04:45.375654 -Epoch: 39 Average loss: 133.62 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 40) -0/69092 Loss: 121.759 -3200/69092 Loss: 135.346 -6400/69092 Loss: 132.908 -9600/69092 Loss: 132.013 -12800/69092 Loss: 134.725 -16000/69092 Loss: 132.235 -19200/69092 Loss: 130.104 -22400/69092 Loss: 132.965 -25600/69092 Loss: 133.479 -28800/69092 Loss: 135.865 -32000/69092 Loss: 131.262 -35200/69092 Loss: 134.122 -38400/69092 Loss: 134.475 -41600/69092 Loss: 134.452 -44800/69092 Loss: 134.810 -48000/69092 Loss: 136.456 -51200/69092 Loss: 133.344 -54400/69092 Loss: 134.291 -57600/69092 Loss: 131.519 -60800/69092 Loss: 134.138 -64000/69092 Loss: 134.223 -67200/69092 Loss: 133.954 -Training time 0:04:48.930774 -Epoch: 40 Average loss: 133.73 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 41) -0/69092 Loss: 144.336 -3200/69092 Loss: 133.839 -6400/69092 Loss: 133.075 -9600/69092 Loss: 132.904 -12800/69092 Loss: 134.981 -16000/69092 Loss: 133.528 -19200/69092 Loss: 133.937 -22400/69092 Loss: 131.403 -25600/69092 Loss: 134.301 -28800/69092 Loss: 131.515 -32000/69092 Loss: 134.074 -35200/69092 Loss: 133.805 -38400/69092 Loss: 133.653 -41600/69092 Loss: 134.400 -44800/69092 Loss: 132.125 -48000/69092 Loss: 133.792 -51200/69092 Loss: 132.654 -54400/69092 Loss: 132.679 -57600/69092 Loss: 134.043 -60800/69092 Loss: 134.716 -64000/69092 Loss: 136.102 -67200/69092 Loss: 132.645 -Training time 0:04:47.339056 -Epoch: 41 Average loss: 133.54 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 42) -0/69092 Loss: 132.451 -3200/69092 Loss: 135.299 -6400/69092 Loss: 131.848 -9600/69092 Loss: 133.216 -12800/69092 Loss: 132.636 -16000/69092 Loss: 132.065 -19200/69092 Loss: 133.161 -22400/69092 Loss: 133.787 -25600/69092 Loss: 133.244 -28800/69092 Loss: 132.750 -32000/69092 Loss: 132.239 -35200/69092 Loss: 133.696 -38400/69092 Loss: 129.928 -41600/69092 Loss: 134.737 -44800/69092 Loss: 133.275 -48000/69092 Loss: 135.322 -51200/69092 Loss: 132.460 -54400/69092 Loss: 134.073 -57600/69092 Loss: 133.371 -60800/69092 Loss: 135.080 -64000/69092 Loss: 133.444 -67200/69092 Loss: 131.956 -Training time 0:04:43.830576 -Epoch: 42 Average loss: 133.21 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 43) -0/69092 Loss: 135.158 -3200/69092 Loss: 132.319 -6400/69092 Loss: 134.570 -9600/69092 Loss: 132.404 -12800/69092 Loss: 134.118 -16000/69092 Loss: 134.321 -19200/69092 Loss: 134.189 -22400/69092 Loss: 134.232 -25600/69092 Loss: 131.641 -28800/69092 Loss: 132.989 -32000/69092 Loss: 135.760 -35200/69092 Loss: 133.028 -38400/69092 Loss: 132.821 -41600/69092 Loss: 132.379 -44800/69092 Loss: 132.276 -48000/69092 Loss: 132.132 -51200/69092 Loss: 132.759 -54400/69092 Loss: 133.374 -57600/69092 Loss: 132.124 -60800/69092 Loss: 133.663 -64000/69092 Loss: 135.621 -67200/69092 Loss: 133.664 -Training time 0:04:50.468097 -Epoch: 43 Average loss: 133.35 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 44) -0/69092 Loss: 139.048 -3200/69092 Loss: 133.552 -6400/69092 Loss: 133.540 -9600/69092 Loss: 133.927 -12800/69092 Loss: 132.372 -16000/69092 Loss: 134.623 -19200/69092 Loss: 132.679 -22400/69092 Loss: 132.230 -25600/69092 Loss: 136.383 -28800/69092 Loss: 135.167 -32000/69092 Loss: 134.343 -35200/69092 Loss: 132.917 -38400/69092 Loss: 134.341 -41600/69092 Loss: 132.956 -44800/69092 Loss: 131.317 -48000/69092 Loss: 133.880 -51200/69092 Loss: 131.834 -54400/69092 Loss: 131.631 -57600/69092 Loss: 133.360 -60800/69092 Loss: 134.007 -64000/69092 Loss: 134.175 -67200/69092 Loss: 132.231 -Training time 0:04:50.108150 -Epoch: 44 Average loss: 133.36 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 45) -0/69092 Loss: 135.992 -3200/69092 Loss: 131.969 -6400/69092 Loss: 132.230 -9600/69092 Loss: 133.682 -12800/69092 Loss: 132.256 -16000/69092 Loss: 133.592 -19200/69092 Loss: 132.326 -22400/69092 Loss: 134.299 -25600/69092 Loss: 135.507 -28800/69092 Loss: 132.121 -32000/69092 Loss: 132.063 -35200/69092 Loss: 133.704 -38400/69092 Loss: 132.375 -41600/69092 Loss: 132.320 -44800/69092 Loss: 133.848 -48000/69092 Loss: 134.989 -51200/69092 Loss: 133.256 -54400/69092 Loss: 133.317 -57600/69092 Loss: 134.129 -60800/69092 Loss: 134.256 -64000/69092 Loss: 133.321 -67200/69092 Loss: 132.003 -Training time 0:04:53.508367 -Epoch: 45 Average loss: 133.26 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 46) -0/69092 Loss: 130.517 -3200/69092 Loss: 132.984 -6400/69092 Loss: 131.636 -9600/69092 Loss: 131.881 -12800/69092 Loss: 132.526 -16000/69092 Loss: 134.043 -19200/69092 Loss: 133.470 -22400/69092 Loss: 132.409 -25600/69092 Loss: 131.709 -28800/69092 Loss: 132.902 -32000/69092 Loss: 134.319 -35200/69092 Loss: 136.253 -38400/69092 Loss: 134.041 -41600/69092 Loss: 130.727 -44800/69092 Loss: 133.832 -48000/69092 Loss: 132.790 -51200/69092 Loss: 132.107 -54400/69092 Loss: 132.977 -57600/69092 Loss: 134.921 -60800/69092 Loss: 133.574 -64000/69092 Loss: 134.376 -67200/69092 Loss: 133.520 -Training time 0:04:42.061703 -Epoch: 46 Average loss: 133.20 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 47) -0/69092 Loss: 133.775 -3200/69092 Loss: 133.730 -6400/69092 Loss: 131.377 -9600/69092 Loss: 131.189 -12800/69092 Loss: 130.373 -16000/69092 Loss: 134.994 -19200/69092 Loss: 132.828 -22400/69092 Loss: 132.458 -25600/69092 Loss: 132.872 -28800/69092 Loss: 133.617 -32000/69092 Loss: 133.669 -35200/69092 Loss: 133.018 -38400/69092 Loss: 131.874 -41600/69092 Loss: 133.839 -44800/69092 Loss: 132.748 -48000/69092 Loss: 136.165 -51200/69092 Loss: 132.377 -54400/69092 Loss: 133.373 -57600/69092 Loss: 132.232 -60800/69092 Loss: 132.530 -64000/69092 Loss: 135.841 -67200/69092 Loss: 132.767 -Training time 0:04:47.580389 -Epoch: 47 Average loss: 133.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 48) -0/69092 Loss: 128.723 -3200/69092 Loss: 130.819 -6400/69092 Loss: 133.273 -9600/69092 Loss: 134.754 -12800/69092 Loss: 132.760 -16000/69092 Loss: 134.709 -19200/69092 Loss: 134.013 -22400/69092 Loss: 134.015 -25600/69092 Loss: 132.572 -28800/69092 Loss: 134.936 -32000/69092 Loss: 132.879 -35200/69092 Loss: 131.608 -38400/69092 Loss: 132.359 -41600/69092 Loss: 132.794 -44800/69092 Loss: 131.539 -48000/69092 Loss: 133.287 -51200/69092 Loss: 132.672 -54400/69092 Loss: 131.857 -57600/69092 Loss: 132.390 -60800/69092 Loss: 132.856 -64000/69092 Loss: 135.911 -67200/69092 Loss: 133.497 -Training time 0:04:49.268835 -Epoch: 48 Average loss: 133.10 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 49) -0/69092 Loss: 129.483 -3200/69092 Loss: 133.579 -6400/69092 Loss: 134.122 -9600/69092 Loss: 132.421 -12800/69092 Loss: 132.922 -16000/69092 Loss: 133.830 -19200/69092 Loss: 135.214 -22400/69092 Loss: 134.288 -25600/69092 Loss: 132.616 -28800/69092 Loss: 131.659 -32000/69092 Loss: 134.710 -35200/69092 Loss: 131.626 -38400/69092 Loss: 131.865 -41600/69092 Loss: 131.776 -44800/69092 Loss: 135.127 -48000/69092 Loss: 132.649 -51200/69092 Loss: 132.262 -54400/69092 Loss: 134.266 -57600/69092 Loss: 131.577 -60800/69092 Loss: 133.486 -64000/69092 Loss: 132.942 -67200/69092 Loss: 134.161 -Training time 0:04:49.351053 -Epoch: 49 Average loss: 133.16 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 50) -0/69092 Loss: 147.384 -3200/69092 Loss: 133.079 -6400/69092 Loss: 134.019 -9600/69092 Loss: 133.171 -12800/69092 Loss: 132.717 -16000/69092 Loss: 134.023 -19200/69092 Loss: 134.378 -22400/69092 Loss: 133.032 -25600/69092 Loss: 132.334 -28800/69092 Loss: 132.942 -32000/69092 Loss: 134.698 -35200/69092 Loss: 133.306 -38400/69092 Loss: 130.680 -41600/69092 Loss: 131.174 -44800/69092 Loss: 133.474 -48000/69092 Loss: 130.451 -51200/69092 Loss: 135.306 -54400/69092 Loss: 132.507 -57600/69092 Loss: 132.798 -60800/69092 Loss: 131.816 -64000/69092 Loss: 133.174 -67200/69092 Loss: 133.875 -Training time 0:04:41.682554 -Epoch: 50 Average loss: 133.05 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 51) -0/69092 Loss: 136.488 -3200/69092 Loss: 135.509 -6400/69092 Loss: 131.770 -9600/69092 Loss: 135.026 -12800/69092 Loss: 131.669 -16000/69092 Loss: 131.227 -19200/69092 Loss: 132.927 -22400/69092 Loss: 131.692 -25600/69092 Loss: 132.917 -28800/69092 Loss: 133.707 -32000/69092 Loss: 131.803 -35200/69092 Loss: 134.959 -38400/69092 Loss: 133.376 -41600/69092 Loss: 130.779 -44800/69092 Loss: 133.152 -48000/69092 Loss: 132.008 -51200/69092 Loss: 133.650 -54400/69092 Loss: 133.612 -57600/69092 Loss: 135.377 -60800/69092 Loss: 131.977 -64000/69092 Loss: 132.687 -67200/69092 Loss: 132.218 -Training time 0:04:52.903941 -Epoch: 51 Average loss: 132.99 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 52) -0/69092 Loss: 128.212 -3200/69092 Loss: 132.653 -6400/69092 Loss: 132.919 -9600/69092 Loss: 133.486 -12800/69092 Loss: 131.899 -16000/69092 Loss: 134.405 -19200/69092 Loss: 132.317 -22400/69092 Loss: 133.405 -25600/69092 Loss: 132.550 -28800/69092 Loss: 133.849 -32000/69092 Loss: 132.646 -35200/69092 Loss: 136.405 -38400/69092 Loss: 131.433 -41600/69092 Loss: 133.545 -44800/69092 Loss: 132.170 -48000/69092 Loss: 134.529 -51200/69092 Loss: 133.212 -54400/69092 Loss: 131.058 -57600/69092 Loss: 134.522 -60800/69092 Loss: 132.641 -64000/69092 Loss: 131.853 -67200/69092 Loss: 132.450 -Training time 0:04:49.937765 -Epoch: 52 Average loss: 133.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 53) -0/69092 Loss: 154.664 -3200/69092 Loss: 131.569 -6400/69092 Loss: 133.267 -9600/69092 Loss: 131.108 -12800/69092 Loss: 134.072 -16000/69092 Loss: 130.141 -19200/69092 Loss: 135.100 -22400/69092 Loss: 133.228 -25600/69092 Loss: 133.742 -28800/69092 Loss: 133.085 -32000/69092 Loss: 134.728 -35200/69092 Loss: 134.777 -38400/69092 Loss: 134.701 -41600/69092 Loss: 132.244 -44800/69092 Loss: 135.134 -48000/69092 Loss: 131.380 -51200/69092 Loss: 131.166 -54400/69092 Loss: 133.751 -57600/69092 Loss: 130.564 -60800/69092 Loss: 132.434 -64000/69092 Loss: 133.248 -67200/69092 Loss: 134.456 -Training time 0:04:55.322000 -Epoch: 53 Average loss: 133.13 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 54) -0/69092 Loss: 121.583 -3200/69092 Loss: 133.230 -6400/69092 Loss: 136.075 -9600/69092 Loss: 132.229 -12800/69092 Loss: 133.163 -16000/69092 Loss: 132.531 -19200/69092 Loss: 133.423 -22400/69092 Loss: 133.894 -25600/69092 Loss: 132.111 -28800/69092 Loss: 132.092 -32000/69092 Loss: 134.509 -35200/69092 Loss: 132.290 -38400/69092 Loss: 131.369 -41600/69092 Loss: 132.263 -44800/69092 Loss: 132.489 -48000/69092 Loss: 132.776 -51200/69092 Loss: 133.100 -54400/69092 Loss: 133.091 -57600/69092 Loss: 134.334 -60800/69092 Loss: 133.931 -64000/69092 Loss: 134.194 -67200/69092 Loss: 133.505 -Training time 0:04:50.053210 -Epoch: 54 Average loss: 133.15 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 55) -0/69092 Loss: 139.116 -3200/69092 Loss: 132.280 -6400/69092 Loss: 131.085 -9600/69092 Loss: 133.199 -12800/69092 Loss: 131.715 -16000/69092 Loss: 134.194 -19200/69092 Loss: 133.526 -22400/69092 Loss: 134.003 -25600/69092 Loss: 132.579 -28800/69092 Loss: 130.548 -32000/69092 Loss: 130.813 -35200/69092 Loss: 133.355 -38400/69092 Loss: 133.445 -41600/69092 Loss: 131.297 -44800/69092 Loss: 133.953 -48000/69092 Loss: 132.609 -51200/69092 Loss: 134.504 -54400/69092 Loss: 132.477 -57600/69092 Loss: 134.692 -60800/69092 Loss: 134.461 -64000/69092 Loss: 132.301 -67200/69092 Loss: 131.675 -Training time 0:04:50.185496 -Epoch: 55 Average loss: 132.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 56) -0/69092 Loss: 139.767 -3200/69092 Loss: 130.033 -6400/69092 Loss: 136.771 -9600/69092 Loss: 133.974 -12800/69092 Loss: 134.293 -16000/69092 Loss: 135.151 -19200/69092 Loss: 133.709 -22400/69092 Loss: 134.872 -25600/69092 Loss: 132.963 -28800/69092 Loss: 132.037 -32000/69092 Loss: 134.976 -35200/69092 Loss: 134.066 -38400/69092 Loss: 133.453 -41600/69092 Loss: 131.751 -44800/69092 Loss: 132.321 -48000/69092 Loss: 131.545 -51200/69092 Loss: 132.053 -54400/69092 Loss: 133.989 -57600/69092 Loss: 129.672 -60800/69092 Loss: 131.938 -64000/69092 Loss: 132.031 -67200/69092 Loss: 131.946 -Training time 0:04:42.928901 -Epoch: 56 Average loss: 133.01 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 57) -0/69092 Loss: 144.037 -3200/69092 Loss: 132.071 -6400/69092 Loss: 132.160 -9600/69092 Loss: 134.628 -12800/69092 Loss: 129.619 -16000/69092 Loss: 131.743 -19200/69092 Loss: 134.225 -22400/69092 Loss: 132.648 -25600/69092 Loss: 130.468 -28800/69092 Loss: 130.525 -32000/69092 Loss: 136.156 -35200/69092 Loss: 134.091 -38400/69092 Loss: 131.885 -41600/69092 Loss: 133.657 -44800/69092 Loss: 134.782 -48000/69092 Loss: 131.491 -51200/69092 Loss: 133.445 -54400/69092 Loss: 133.638 -57600/69092 Loss: 133.323 -60800/69092 Loss: 134.983 -64000/69092 Loss: 133.721 -67200/69092 Loss: 131.053 -Training time 0:04:40.165173 -Epoch: 57 Average loss: 132.86 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 58) -0/69092 Loss: 129.738 -3200/69092 Loss: 132.425 -6400/69092 Loss: 131.857 -9600/69092 Loss: 135.928 -12800/69092 Loss: 135.517 -16000/69092 Loss: 132.770 -19200/69092 Loss: 131.028 -22400/69092 Loss: 133.902 -25600/69092 Loss: 133.489 -28800/69092 Loss: 134.372 -32000/69092 Loss: 132.467 -35200/69092 Loss: 131.959 -38400/69092 Loss: 134.314 -41600/69092 Loss: 131.457 -44800/69092 Loss: 132.516 -48000/69092 Loss: 131.558 -51200/69092 Loss: 133.222 -54400/69092 Loss: 132.404 -57600/69092 Loss: 130.771 -60800/69092 Loss: 133.937 -64000/69092 Loss: 132.910 -67200/69092 Loss: 133.500 -Training time 0:04:42.612048 -Epoch: 58 Average loss: 132.91 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 59) -0/69092 Loss: 122.984 -3200/69092 Loss: 132.611 -6400/69092 Loss: 135.339 -9600/69092 Loss: 131.863 -12800/69092 Loss: 133.527 -16000/69092 Loss: 130.291 -19200/69092 Loss: 133.049 -22400/69092 Loss: 135.233 -25600/69092 Loss: 132.212 -28800/69092 Loss: 134.731 -32000/69092 Loss: 130.560 -35200/69092 Loss: 134.372 -38400/69092 Loss: 131.422 -41600/69092 Loss: 130.815 -44800/69092 Loss: 131.701 -48000/69092 Loss: 131.929 -51200/69092 Loss: 135.147 -54400/69092 Loss: 132.449 -57600/69092 Loss: 133.829 -60800/69092 Loss: 133.501 -64000/69092 Loss: 133.877 -67200/69092 Loss: 129.602 -Training time 0:04:37.324057 -Epoch: 59 Average loss: 132.82 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 60) -0/69092 Loss: 122.513 -3200/69092 Loss: 134.482 -6400/69092 Loss: 132.177 -9600/69092 Loss: 133.577 -12800/69092 Loss: 133.506 -16000/69092 Loss: 133.168 -19200/69092 Loss: 133.895 -22400/69092 Loss: 133.565 -25600/69092 Loss: 131.319 -28800/69092 Loss: 130.678 -32000/69092 Loss: 131.773 -35200/69092 Loss: 135.546 -38400/69092 Loss: 133.470 -41600/69092 Loss: 133.065 -44800/69092 Loss: 133.927 -48000/69092 Loss: 132.890 -51200/69092 Loss: 130.915 -54400/69092 Loss: 131.842 -57600/69092 Loss: 129.366 -60800/69092 Loss: 131.157 -64000/69092 Loss: 133.777 -67200/69092 Loss: 132.089 -Training time 0:04:40.821442 -Epoch: 60 Average loss: 132.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 61) -0/69092 Loss: 149.925 -3200/69092 Loss: 134.578 -6400/69092 Loss: 133.580 -9600/69092 Loss: 132.310 -12800/69092 Loss: 134.810 -16000/69092 Loss: 134.253 -19200/69092 Loss: 133.320 -22400/69092 Loss: 131.336 -25600/69092 Loss: 134.131 -28800/69092 Loss: 131.634 -32000/69092 Loss: 134.895 -35200/69092 Loss: 130.358 -38400/69092 Loss: 134.110 -41600/69092 Loss: 132.002 -44800/69092 Loss: 131.523 -48000/69092 Loss: 129.541 -51200/69092 Loss: 131.935 -54400/69092 Loss: 133.334 -57600/69092 Loss: 131.391 -60800/69092 Loss: 132.812 -64000/69092 Loss: 133.295 -67200/69092 Loss: 131.466 -Training time 0:04:44.859402 -Epoch: 61 Average loss: 132.78 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 62) -0/69092 Loss: 131.649 -3200/69092 Loss: 130.858 -6400/69092 Loss: 131.698 -9600/69092 Loss: 130.840 -12800/69092 Loss: 134.111 -16000/69092 Loss: 135.759 -19200/69092 Loss: 134.759 -22400/69092 Loss: 133.252 -25600/69092 Loss: 131.654 -28800/69092 Loss: 132.767 -32000/69092 Loss: 133.286 -35200/69092 Loss: 133.181 -38400/69092 Loss: 131.110 -41600/69092 Loss: 130.842 -44800/69092 Loss: 131.715 -48000/69092 Loss: 130.865 -51200/69092 Loss: 132.387 -54400/69092 Loss: 131.835 -57600/69092 Loss: 134.237 -60800/69092 Loss: 133.573 -64000/69092 Loss: 132.774 -67200/69092 Loss: 132.712 -Training time 0:04:41.388189 -Epoch: 62 Average loss: 132.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 63) -0/69092 Loss: 128.223 -3200/69092 Loss: 131.041 -6400/69092 Loss: 133.689 -9600/69092 Loss: 133.526 -12800/69092 Loss: 134.404 -16000/69092 Loss: 133.655 -19200/69092 Loss: 130.344 -22400/69092 Loss: 133.791 -25600/69092 Loss: 132.568 -28800/69092 Loss: 131.957 -32000/69092 Loss: 131.541 -35200/69092 Loss: 132.421 -38400/69092 Loss: 133.257 -41600/69092 Loss: 132.507 -44800/69092 Loss: 135.825 -48000/69092 Loss: 132.617 -51200/69092 Loss: 132.709 -54400/69092 Loss: 131.571 -57600/69092 Loss: 132.242 -60800/69092 Loss: 132.903 -64000/69092 Loss: 131.835 -67200/69092 Loss: 133.631 -Training time 0:04:49.618462 -Epoch: 63 Average loss: 132.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 64) -0/69092 Loss: 141.970 -3200/69092 Loss: 132.906 -6400/69092 Loss: 131.589 -9600/69092 Loss: 132.945 -12800/69092 Loss: 131.993 -16000/69092 Loss: 133.720 -19200/69092 Loss: 131.937 -22400/69092 Loss: 133.572 -25600/69092 Loss: 133.384 -28800/69092 Loss: 132.476 -32000/69092 Loss: 134.767 -35200/69092 Loss: 130.999 -38400/69092 Loss: 133.096 -41600/69092 Loss: 132.213 -44800/69092 Loss: 134.635 -48000/69092 Loss: 133.338 -51200/69092 Loss: 131.336 -54400/69092 Loss: 132.595 -57600/69092 Loss: 130.424 -60800/69092 Loss: 133.307 -64000/69092 Loss: 130.981 -67200/69092 Loss: 134.853 -Training time 0:04:49.486074 -Epoch: 64 Average loss: 132.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 65) -0/69092 Loss: 142.410 -3200/69092 Loss: 132.879 -6400/69092 Loss: 131.708 -9600/69092 Loss: 134.260 -12800/69092 Loss: 134.587 -16000/69092 Loss: 132.342 -19200/69092 Loss: 132.129 -22400/69092 Loss: 133.000 -25600/69092 Loss: 132.074 -28800/69092 Loss: 131.301 -32000/69092 Loss: 134.566 -35200/69092 Loss: 131.667 -38400/69092 Loss: 133.092 -41600/69092 Loss: 131.948 -44800/69092 Loss: 133.808 -48000/69092 Loss: 131.241 -51200/69092 Loss: 135.670 -54400/69092 Loss: 132.278 -57600/69092 Loss: 132.134 -60800/69092 Loss: 130.886 -64000/69092 Loss: 135.610 -67200/69092 Loss: 133.141 -Training time 0:04:50.348031 -Epoch: 65 Average loss: 132.85 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 66) -0/69092 Loss: 139.822 -3200/69092 Loss: 130.727 -6400/69092 Loss: 132.551 -9600/69092 Loss: 134.175 -12800/69092 Loss: 133.198 -16000/69092 Loss: 132.715 -19200/69092 Loss: 130.373 -22400/69092 Loss: 133.920 -25600/69092 Loss: 132.062 -28800/69092 Loss: 133.211 -32000/69092 Loss: 133.075 -35200/69092 Loss: 130.958 -38400/69092 Loss: 131.023 -41600/69092 Loss: 135.211 -44800/69092 Loss: 132.886 -48000/69092 Loss: 133.733 -51200/69092 Loss: 133.364 -54400/69092 Loss: 132.806 -57600/69092 Loss: 133.334 -60800/69092 Loss: 132.378 -64000/69092 Loss: 131.962 -67200/69092 Loss: 133.470 -Training time 0:04:49.848154 -Epoch: 66 Average loss: 132.76 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 67) -0/69092 Loss: 122.181 -3200/69092 Loss: 132.670 -6400/69092 Loss: 131.164 -9600/69092 Loss: 133.716 -12800/69092 Loss: 133.805 -16000/69092 Loss: 132.016 -19200/69092 Loss: 133.238 -22400/69092 Loss: 131.701 -25600/69092 Loss: 133.658 -28800/69092 Loss: 134.396 -32000/69092 Loss: 134.192 -35200/69092 Loss: 133.033 -38400/69092 Loss: 132.378 -41600/69092 Loss: 134.240 -44800/69092 Loss: 132.282 -48000/69092 Loss: 134.094 -51200/69092 Loss: 132.881 -54400/69092 Loss: 131.479 -57600/69092 Loss: 129.058 -60800/69092 Loss: 132.371 -64000/69092 Loss: 132.129 -67200/69092 Loss: 132.735 -Training time 0:04:51.138665 -Epoch: 67 Average loss: 132.72 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 68) -0/69092 Loss: 124.340 -3200/69092 Loss: 130.412 -6400/69092 Loss: 132.574 -9600/69092 Loss: 130.767 -12800/69092 Loss: 131.837 -16000/69092 Loss: 134.062 -19200/69092 Loss: 132.242 -22400/69092 Loss: 133.401 -25600/69092 Loss: 131.134 -28800/69092 Loss: 132.820 -32000/69092 Loss: 132.169 -35200/69092 Loss: 131.609 -38400/69092 Loss: 134.158 -41600/69092 Loss: 132.800 -44800/69092 Loss: 134.012 -48000/69092 Loss: 133.530 -51200/69092 Loss: 132.636 -54400/69092 Loss: 132.712 -57600/69092 Loss: 131.364 -60800/69092 Loss: 132.467 -64000/69092 Loss: 135.751 -67200/69092 Loss: 133.907 -Training time 0:04:43.856306 -Epoch: 68 Average loss: 132.75 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 69) -0/69092 Loss: 131.655 -3200/69092 Loss: 133.725 -6400/69092 Loss: 130.032 -9600/69092 Loss: 132.432 -12800/69092 Loss: 133.568 -16000/69092 Loss: 135.816 -19200/69092 Loss: 131.504 -22400/69092 Loss: 133.019 -25600/69092 Loss: 130.538 -28800/69092 Loss: 134.134 -32000/69092 Loss: 131.309 -35200/69092 Loss: 131.254 -38400/69092 Loss: 133.626 -41600/69092 Loss: 134.476 -44800/69092 Loss: 134.004 -48000/69092 Loss: 132.131 -51200/69092 Loss: 133.296 -54400/69092 Loss: 132.150 -57600/69092 Loss: 134.057 -60800/69092 Loss: 132.065 -64000/69092 Loss: 133.015 -67200/69092 Loss: 130.422 -Training time 0:04:53.279530 -Epoch: 69 Average loss: 132.66 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 70) -0/69092 Loss: 125.589 -3200/69092 Loss: 131.118 -6400/69092 Loss: 132.382 -9600/69092 Loss: 133.215 -12800/69092 Loss: 130.796 -16000/69092 Loss: 135.467 -19200/69092 Loss: 132.306 -22400/69092 Loss: 134.098 -25600/69092 Loss: 130.094 -28800/69092 Loss: 132.910 -32000/69092 Loss: 131.109 -35200/69092 Loss: 132.451 -38400/69092 Loss: 131.878 -41600/69092 Loss: 133.722 -44800/69092 Loss: 132.581 -48000/69092 Loss: 133.228 -51200/69092 Loss: 132.824 -54400/69092 Loss: 133.179 -57600/69092 Loss: 132.546 -60800/69092 Loss: 133.130 -64000/69092 Loss: 133.600 -67200/69092 Loss: 133.109 -Training time 0:04:51.803614 -Epoch: 70 Average loss: 132.67 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 71) -0/69092 Loss: 117.361 -3200/69092 Loss: 134.069 -6400/69092 Loss: 132.470 -9600/69092 Loss: 133.053 -12800/69092 Loss: 132.501 -16000/69092 Loss: 132.771 -19200/69092 Loss: 133.054 -22400/69092 Loss: 134.746 -25600/69092 Loss: 129.443 -28800/69092 Loss: 132.636 -32000/69092 Loss: 130.268 -35200/69092 Loss: 133.105 -38400/69092 Loss: 132.794 -41600/69092 Loss: 133.814 -44800/69092 Loss: 130.128 -48000/69092 Loss: 131.660 -51200/69092 Loss: 134.778 -54400/69092 Loss: 132.476 -57600/69092 Loss: 133.365 -60800/69092 Loss: 133.058 -64000/69092 Loss: 134.067 -67200/69092 Loss: 132.029 -Training time 0:04:55.168694 -Epoch: 71 Average loss: 132.62 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 72) -0/69092 Loss: 136.164 -3200/69092 Loss: 131.908 -6400/69092 Loss: 133.864 -9600/69092 Loss: 132.912 -12800/69092 Loss: 132.428 -16000/69092 Loss: 131.046 -19200/69092 Loss: 133.465 -22400/69092 Loss: 132.551 -25600/69092 Loss: 134.417 -28800/69092 Loss: 132.658 -32000/69092 Loss: 130.542 -35200/69092 Loss: 131.479 -38400/69092 Loss: 133.827 -41600/69092 Loss: 132.156 -44800/69092 Loss: 131.939 -48000/69092 Loss: 132.566 -51200/69092 Loss: 132.774 -54400/69092 Loss: 132.511 -57600/69092 Loss: 135.735 -60800/69092 Loss: 133.289 -64000/69092 Loss: 131.164 -67200/69092 Loss: 133.477 -Training time 0:04:51.320410 -Epoch: 72 Average loss: 132.64 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 73) -0/69092 Loss: 137.239 -3200/69092 Loss: 131.684 -6400/69092 Loss: 130.119 -9600/69092 Loss: 135.505 -12800/69092 Loss: 131.383 -16000/69092 Loss: 131.100 -19200/69092 Loss: 133.959 -22400/69092 Loss: 131.316 -25600/69092 Loss: 132.879 -28800/69092 Loss: 135.066 -32000/69092 Loss: 130.489 -35200/69092 Loss: 133.174 -38400/69092 Loss: 133.194 -41600/69092 Loss: 133.004 -44800/69092 Loss: 132.902 -48000/69092 Loss: 133.927 -51200/69092 Loss: 133.512 -54400/69092 Loss: 133.162 -57600/69092 Loss: 132.015 -60800/69092 Loss: 132.341 -64000/69092 Loss: 130.212 -67200/69092 Loss: 131.414 -Training time 0:04:50.639351 -Epoch: 73 Average loss: 132.50 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 74) -0/69092 Loss: 128.461 -3200/69092 Loss: 133.643 -6400/69092 Loss: 133.056 -9600/69092 Loss: 134.341 -12800/69092 Loss: 130.799 -16000/69092 Loss: 131.329 -19200/69092 Loss: 132.097 -22400/69092 Loss: 133.080 -25600/69092 Loss: 132.457 -28800/69092 Loss: 134.632 -32000/69092 Loss: 131.857 -35200/69092 Loss: 133.437 -38400/69092 Loss: 134.191 -41600/69092 Loss: 132.604 -44800/69092 Loss: 130.977 -48000/69092 Loss: 133.419 -51200/69092 Loss: 132.324 -54400/69092 Loss: 134.801 -57600/69092 Loss: 131.169 -60800/69092 Loss: 133.855 -64000/69092 Loss: 130.546 -67200/69092 Loss: 131.256 -Training time 0:04:43.400141 -Epoch: 74 Average loss: 132.68 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 75) -0/69092 Loss: 129.280 -3200/69092 Loss: 128.060 -6400/69092 Loss: 132.713 -9600/69092 Loss: 131.357 -12800/69092 Loss: 132.191 -16000/69092 Loss: 132.008 -19200/69092 Loss: 133.235 -22400/69092 Loss: 133.112 -25600/69092 Loss: 131.919 -28800/69092 Loss: 134.392 -32000/69092 Loss: 134.172 -35200/69092 Loss: 131.547 -38400/69092 Loss: 132.146 -41600/69092 Loss: 132.063 -44800/69092 Loss: 129.239 -48000/69092 Loss: 132.211 -51200/69092 Loss: 133.981 -54400/69092 Loss: 134.989 -57600/69092 Loss: 131.962 -60800/69092 Loss: 133.478 -64000/69092 Loss: 135.140 -67200/69092 Loss: 132.177 -Training time 0:04:49.077664 -Epoch: 75 Average loss: 132.43 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 76) -0/69092 Loss: 132.039 -3200/69092 Loss: 132.490 -6400/69092 Loss: 133.999 -9600/69092 Loss: 131.021 -12800/69092 Loss: 133.773 -16000/69092 Loss: 134.095 -19200/69092 Loss: 132.457 -22400/69092 Loss: 133.266 -25600/69092 Loss: 132.737 -28800/69092 Loss: 131.414 -32000/69092 Loss: 132.399 -35200/69092 Loss: 134.236 -38400/69092 Loss: 131.446 -41600/69092 Loss: 132.047 -44800/69092 Loss: 130.692 -48000/69092 Loss: 132.875 -51200/69092 Loss: 134.827 -54400/69092 Loss: 130.094 -57600/69092 Loss: 132.695 -60800/69092 Loss: 132.648 -64000/69092 Loss: 131.729 -67200/69092 Loss: 132.372 -Training time 0:04:50.271656 -Epoch: 76 Average loss: 132.56 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 77) -0/69092 Loss: 138.312 -3200/69092 Loss: 133.760 -6400/69092 Loss: 134.814 -9600/69092 Loss: 132.228 -12800/69092 Loss: 130.811 -16000/69092 Loss: 130.341 -19200/69092 Loss: 134.031 -22400/69092 Loss: 133.910 -25600/69092 Loss: 128.844 -28800/69092 Loss: 132.982 -32000/69092 Loss: 132.897 -35200/69092 Loss: 130.602 -38400/69092 Loss: 133.486 -41600/69092 Loss: 131.232 -44800/69092 Loss: 131.308 -48000/69092 Loss: 130.775 -51200/69092 Loss: 134.724 -54400/69092 Loss: 133.027 -57600/69092 Loss: 134.760 -60800/69092 Loss: 129.936 -64000/69092 Loss: 130.772 -67200/69092 Loss: 134.359 -Training time 0:04:49.884341 -Epoch: 77 Average loss: 132.40 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 78) -0/69092 Loss: 136.987 -3200/69092 Loss: 133.288 -6400/69092 Loss: 134.047 -9600/69092 Loss: 129.458 -12800/69092 Loss: 133.686 -16000/69092 Loss: 130.544 -19200/69092 Loss: 133.436 -22400/69092 Loss: 133.693 -25600/69092 Loss: 131.974 -28800/69092 Loss: 134.353 -32000/69092 Loss: 129.646 -35200/69092 Loss: 131.835 -38400/69092 Loss: 132.434 -41600/69092 Loss: 132.363 -44800/69092 Loss: 131.716 -48000/69092 Loss: 133.753 -51200/69092 Loss: 131.988 -54400/69092 Loss: 131.147 -57600/69092 Loss: 131.306 -60800/69092 Loss: 130.084 -64000/69092 Loss: 134.025 -67200/69092 Loss: 133.127 -Training time 0:04:47.500596 -Epoch: 78 Average loss: 132.32 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 79) -0/69092 Loss: 142.447 -3200/69092 Loss: 132.908 -6400/69092 Loss: 133.935 -9600/69092 Loss: 131.297 -12800/69092 Loss: 130.220 -16000/69092 Loss: 132.283 -19200/69092 Loss: 132.330 -22400/69092 Loss: 132.251 -25600/69092 Loss: 133.363 -28800/69092 Loss: 130.896 -32000/69092 Loss: 132.771 -35200/69092 Loss: 133.911 -38400/69092 Loss: 128.730 -41600/69092 Loss: 132.264 -44800/69092 Loss: 132.691 -48000/69092 Loss: 132.675 -51200/69092 Loss: 132.761 -54400/69092 Loss: 134.194 -57600/69092 Loss: 133.052 -60800/69092 Loss: 133.198 -64000/69092 Loss: 131.895 -67200/69092 Loss: 131.477 -Training time 0:04:42.610289 -Epoch: 79 Average loss: 132.41 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 80) -0/69092 Loss: 133.878 -3200/69092 Loss: 131.946 -6400/69092 Loss: 131.534 -9600/69092 Loss: 134.315 -12800/69092 Loss: 131.719 -16000/69092 Loss: 133.018 -19200/69092 Loss: 131.079 -22400/69092 Loss: 133.072 -25600/69092 Loss: 131.219 -28800/69092 Loss: 132.463 -32000/69092 Loss: 129.932 -35200/69092 Loss: 132.161 -38400/69092 Loss: 131.843 -41600/69092 Loss: 134.582 -44800/69092 Loss: 131.029 -48000/69092 Loss: 136.120 -51200/69092 Loss: 131.440 -54400/69092 Loss: 133.946 -57600/69092 Loss: 131.097 -60800/69092 Loss: 131.184 -64000/69092 Loss: 134.055 -67200/69092 Loss: 133.600 -Training time 0:04:50.732455 -Epoch: 80 Average loss: 132.38 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_5e_4/checkpoints/last' (iter 81) -0/69092 Loss: 147.651 -3200/69092 Loss: 133.330 -6400/69092 Loss: 132.364 -9600/69092 Loss: 131.480 -12800/69092 Loss: 134.336 diff --git a/OAR.2068295.stderr b/OAR.2068295.stderr deleted file mode 100644 index a9c628a29c..0000000000 --- a/OAR.2068295.stderr +++ /dev/null @@ -1,2 +0,0 @@ -/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. - warnings.warn(warning.format(ret)) diff --git a/OAR.2068295.stdout b/OAR.2068295.stdout deleted file mode 100644 index dfa55f8083..0000000000 --- a/OAR.2068295.stdout +++ /dev/null @@ -1,2193 +0,0 @@ -Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64_ls_10_lr_1e_3', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) -creare new diretory experiment: rendered_chairs/VAE_bs_64_ls_10_lr_1e_3 -load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) -use 2 gpu who named: -GeForce RTX 2080 Ti -GeForce RTX 2080 Ti -DataParallel( - (module): VAE( - (img_to_last_conv): Sequential( - (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (1): ReLU() - (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - ) - (last_conv_to_continuous_features): Sequential( - (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - ) - (features_to_hidden_continue): Sequential( - (0): Linear(in_features=256, out_features=20, bias=True) - (1): ReLU() - ) - (latent_to_features): Sequential( - (0): Linear(in_features=10, out_features=256, bias=True) - (1): ReLU() - ) - (features_to_img): Sequential( - (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) - (1): ReLU() - (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (3): ReLU() - (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (5): ReLU() - (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (7): ReLU() - (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) - (9): Sigmoid() - ) - ) -) -The number of parameters of model is 765335 -don't use continuous capacity -=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last (iter 2)' -0/69092 Loss: 375.625 -3200/69092 Loss: 446.785 -6400/69092 Loss: 440.296 -9600/69092 Loss: 442.574 -12800/69092 Loss: 432.406 -16000/69092 Loss: 444.233 -19200/69092 Loss: 435.788 -22400/69092 Loss: 440.217 -25600/69092 Loss: 443.591 -28800/69092 Loss: 444.238 -32000/69092 Loss: 434.090 -35200/69092 Loss: 427.514 -38400/69092 Loss: 439.384 -41600/69092 Loss: 434.977 -44800/69092 Loss: 449.689 -48000/69092 Loss: 446.574 -51200/69092 Loss: 439.118 -54400/69092 Loss: 444.995 -57600/69092 Loss: 434.926 -60800/69092 Loss: 441.292 -64000/69092 Loss: 427.845 -67200/69092 Loss: 432.656 -Training time 0:04:34.051671 -Epoch: 1 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 3) -0/69092 Loss: 393.832 -3200/69092 Loss: 438.616 -6400/69092 Loss: 431.874 -9600/69092 Loss: 455.541 -12800/69092 Loss: 440.252 -16000/69092 Loss: 440.665 -19200/69092 Loss: 435.808 -22400/69092 Loss: 437.461 -25600/69092 Loss: 444.880 -28800/69092 Loss: 435.920 -32000/69092 Loss: 447.494 -35200/69092 Loss: 431.046 -38400/69092 Loss: 437.620 -41600/69092 Loss: 442.615 -44800/69092 Loss: 436.568 -48000/69092 Loss: 443.203 -51200/69092 Loss: 440.405 -54400/69092 Loss: 436.639 -57600/69092 Loss: 432.852 -60800/69092 Loss: 432.166 -64000/69092 Loss: 434.953 -67200/69092 Loss: 441.264 -Training time 0:04:31.395650 -Epoch: 2 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 4) -0/69092 Loss: 422.917 -3200/69092 Loss: 431.748 -6400/69092 Loss: 447.314 -9600/69092 Loss: 436.361 -12800/69092 Loss: 444.990 -16000/69092 Loss: 442.628 -19200/69092 Loss: 444.761 -22400/69092 Loss: 442.232 -25600/69092 Loss: 438.262 -28800/69092 Loss: 431.871 -32000/69092 Loss: 439.934 -35200/69092 Loss: 435.968 -38400/69092 Loss: 426.521 -41600/69092 Loss: 441.102 -44800/69092 Loss: 444.118 -48000/69092 Loss: 434.464 -51200/69092 Loss: 430.311 -54400/69092 Loss: 445.226 -57600/69092 Loss: 444.504 -60800/69092 Loss: 438.852 -64000/69092 Loss: 440.893 -67200/69092 Loss: 436.566 -Training time 0:04:29.906735 -Epoch: 3 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 5) -0/69092 Loss: 415.262 -3200/69092 Loss: 448.800 -6400/69092 Loss: 437.634 -9600/69092 Loss: 438.002 -12800/69092 Loss: 431.911 -16000/69092 Loss: 442.412 -19200/69092 Loss: 435.215 -22400/69092 Loss: 441.085 -25600/69092 Loss: 445.418 -28800/69092 Loss: 448.736 -32000/69092 Loss: 435.353 -35200/69092 Loss: 439.455 -38400/69092 Loss: 435.531 -41600/69092 Loss: 437.956 -44800/69092 Loss: 446.065 -48000/69092 Loss: 444.811 -51200/69092 Loss: 431.132 -54400/69092 Loss: 432.654 -57600/69092 Loss: 433.304 -60800/69092 Loss: 436.254 -64000/69092 Loss: 445.370 -67200/69092 Loss: 438.517 -Training time 0:04:26.361455 -Epoch: 4 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 6) -0/69092 Loss: 449.209 -3200/69092 Loss: 440.689 -6400/69092 Loss: 436.107 -9600/69092 Loss: 434.786 -12800/69092 Loss: 437.954 -16000/69092 Loss: 439.338 -19200/69092 Loss: 439.716 -22400/69092 Loss: 441.164 -25600/69092 Loss: 430.412 -28800/69092 Loss: 440.419 -32000/69092 Loss: 447.638 -35200/69092 Loss: 435.944 -38400/69092 Loss: 441.802 -41600/69092 Loss: 435.020 -44800/69092 Loss: 435.082 -48000/69092 Loss: 443.907 -51200/69092 Loss: 427.800 -54400/69092 Loss: 447.827 -57600/69092 Loss: 435.002 -60800/69092 Loss: 445.449 -64000/69092 Loss: 431.835 -67200/69092 Loss: 452.837 -Training time 0:04:35.682005 -Epoch: 5 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 7) -0/69092 Loss: 413.826 -3200/69092 Loss: 443.325 -6400/69092 Loss: 437.337 -9600/69092 Loss: 434.842 -12800/69092 Loss: 435.281 -16000/69092 Loss: 444.859 -19200/69092 Loss: 438.488 -22400/69092 Loss: 438.252 -25600/69092 Loss: 441.747 -28800/69092 Loss: 447.335 -32000/69092 Loss: 447.572 -35200/69092 Loss: 435.608 -38400/69092 Loss: 434.339 -41600/69092 Loss: 435.066 -44800/69092 Loss: 432.960 -48000/69092 Loss: 435.379 -51200/69092 Loss: 431.384 -54400/69092 Loss: 440.550 -57600/69092 Loss: 450.134 -60800/69092 Loss: 431.891 -64000/69092 Loss: 435.316 -67200/69092 Loss: 446.095 -Training time 0:04:32.055193 -Epoch: 6 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 8) -0/69092 Loss: 410.914 -3200/69092 Loss: 443.680 -6400/69092 Loss: 421.163 -9600/69092 Loss: 446.949 -12800/69092 Loss: 433.857 -16000/69092 Loss: 436.575 -19200/69092 Loss: 434.585 -22400/69092 Loss: 435.087 -25600/69092 Loss: 449.742 -28800/69092 Loss: 440.855 -32000/69092 Loss: 443.160 -35200/69092 Loss: 437.213 -38400/69092 Loss: 443.910 -41600/69092 Loss: 438.458 -44800/69092 Loss: 438.994 -48000/69092 Loss: 441.874 -51200/69092 Loss: 438.175 -54400/69092 Loss: 430.585 -57600/69092 Loss: 445.506 -60800/69092 Loss: 440.340 -64000/69092 Loss: 440.323 -67200/69092 Loss: 439.424 -Training time 0:04:24.081298 -Epoch: 7 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 9) -0/69092 Loss: 422.780 -3200/69092 Loss: 448.578 -6400/69092 Loss: 430.252 -9600/69092 Loss: 441.269 -12800/69092 Loss: 436.205 -16000/69092 Loss: 443.399 -19200/69092 Loss: 441.904 -22400/69092 Loss: 444.786 -25600/69092 Loss: 437.944 -28800/69092 Loss: 450.518 -32000/69092 Loss: 432.025 -35200/69092 Loss: 432.558 -38400/69092 Loss: 439.379 -41600/69092 Loss: 446.042 -44800/69092 Loss: 436.374 -48000/69092 Loss: 451.215 -51200/69092 Loss: 432.161 -54400/69092 Loss: 424.488 -57600/69092 Loss: 434.085 -60800/69092 Loss: 438.740 -64000/69092 Loss: 440.643 -67200/69092 Loss: 441.024 -Training time 0:04:22.898986 -Epoch: 8 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 10) -0/69092 Loss: 442.409 -3200/69092 Loss: 445.771 -6400/69092 Loss: 437.414 -9600/69092 Loss: 450.510 -12800/69092 Loss: 441.865 -16000/69092 Loss: 429.933 -19200/69092 Loss: 434.439 -22400/69092 Loss: 436.837 -25600/69092 Loss: 443.226 -28800/69092 Loss: 445.913 -32000/69092 Loss: 435.719 -35200/69092 Loss: 436.262 -38400/69092 Loss: 426.778 -41600/69092 Loss: 444.944 -44800/69092 Loss: 438.147 -48000/69092 Loss: 437.067 -51200/69092 Loss: 431.721 -54400/69092 Loss: 443.098 -57600/69092 Loss: 450.341 -60800/69092 Loss: 437.374 -64000/69092 Loss: 441.980 -67200/69092 Loss: 429.471 -Training time 0:04:25.848194 -Epoch: 9 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 11) -0/69092 Loss: 464.626 -3200/69092 Loss: 432.685 -6400/69092 Loss: 438.780 -9600/69092 Loss: 446.017 -12800/69092 Loss: 434.559 -16000/69092 Loss: 439.762 -19200/69092 Loss: 439.569 -22400/69092 Loss: 438.673 -25600/69092 Loss: 440.022 -28800/69092 Loss: 444.908 -32000/69092 Loss: 436.992 -35200/69092 Loss: 442.352 -38400/69092 Loss: 441.576 -41600/69092 Loss: 436.198 -44800/69092 Loss: 433.849 -48000/69092 Loss: 440.041 -51200/69092 Loss: 437.511 -54400/69092 Loss: 440.434 -57600/69092 Loss: 430.454 -60800/69092 Loss: 441.230 -64000/69092 Loss: 436.647 -67200/69092 Loss: 447.057 -Training time 0:04:28.407033 -Epoch: 10 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 12) -0/69092 Loss: 451.777 -3200/69092 Loss: 431.351 -6400/69092 Loss: 436.055 -9600/69092 Loss: 441.894 -12800/69092 Loss: 443.788 -16000/69092 Loss: 441.224 -19200/69092 Loss: 442.755 -22400/69092 Loss: 429.945 -25600/69092 Loss: 435.642 -28800/69092 Loss: 439.928 -32000/69092 Loss: 436.072 -35200/69092 Loss: 435.795 -38400/69092 Loss: 433.844 -41600/69092 Loss: 438.198 -44800/69092 Loss: 442.656 -48000/69092 Loss: 439.857 -51200/69092 Loss: 437.720 -54400/69092 Loss: 440.369 -57600/69092 Loss: 439.407 -60800/69092 Loss: 445.087 -64000/69092 Loss: 446.632 -67200/69092 Loss: 446.490 -Training time 0:04:36.721568 -Epoch: 11 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 13) -0/69092 Loss: 445.309 -3200/69092 Loss: 445.610 -6400/69092 Loss: 440.409 -9600/69092 Loss: 435.306 -12800/69092 Loss: 446.171 -16000/69092 Loss: 428.434 -19200/69092 Loss: 435.219 -22400/69092 Loss: 440.951 -25600/69092 Loss: 437.595 -28800/69092 Loss: 445.892 -32000/69092 Loss: 444.479 -35200/69092 Loss: 429.088 -38400/69092 Loss: 439.665 -41600/69092 Loss: 439.643 -44800/69092 Loss: 437.927 -48000/69092 Loss: 436.874 -51200/69092 Loss: 432.499 -54400/69092 Loss: 440.864 -57600/69092 Loss: 434.907 -60800/69092 Loss: 435.699 -64000/69092 Loss: 451.284 -67200/69092 Loss: 441.631 -Training time 0:04:31.425226 -Epoch: 12 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 14) -0/69092 Loss: 391.987 -3200/69092 Loss: 439.455 -6400/69092 Loss: 438.929 -9600/69092 Loss: 438.123 -12800/69092 Loss: 438.160 -16000/69092 Loss: 436.873 -19200/69092 Loss: 432.016 -22400/69092 Loss: 443.506 -25600/69092 Loss: 442.866 -28800/69092 Loss: 432.541 -32000/69092 Loss: 439.689 -35200/69092 Loss: 432.838 -38400/69092 Loss: 438.098 -41600/69092 Loss: 433.655 -44800/69092 Loss: 454.539 -48000/69092 Loss: 433.450 -51200/69092 Loss: 429.925 -54400/69092 Loss: 435.827 -57600/69092 Loss: 443.370 -60800/69092 Loss: 449.191 -64000/69092 Loss: 437.884 -67200/69092 Loss: 442.179 -Training time 0:04:31.222503 -Epoch: 13 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 15) -0/69092 Loss: 395.253 -3200/69092 Loss: 443.331 -6400/69092 Loss: 451.115 -9600/69092 Loss: 444.352 -12800/69092 Loss: 434.585 -16000/69092 Loss: 433.416 -19200/69092 Loss: 439.680 -22400/69092 Loss: 434.093 -25600/69092 Loss: 434.002 -28800/69092 Loss: 432.102 -32000/69092 Loss: 444.747 -35200/69092 Loss: 441.676 -38400/69092 Loss: 454.103 -41600/69092 Loss: 454.494 -44800/69092 Loss: 438.996 -48000/69092 Loss: 434.560 -51200/69092 Loss: 439.567 -54400/69092 Loss: 432.892 -57600/69092 Loss: 437.043 -60800/69092 Loss: 430.473 -64000/69092 Loss: 428.671 -67200/69092 Loss: 439.237 -Training time 0:04:29.380603 -Epoch: 14 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 16) -0/69092 Loss: 400.240 -3200/69092 Loss: 450.573 -6400/69092 Loss: 442.114 -9600/69092 Loss: 442.227 -12800/69092 Loss: 448.687 -16000/69092 Loss: 428.751 -19200/69092 Loss: 439.393 -22400/69092 Loss: 439.926 -25600/69092 Loss: 446.699 -28800/69092 Loss: 437.067 -32000/69092 Loss: 444.480 -35200/69092 Loss: 436.639 -38400/69092 Loss: 441.261 -41600/69092 Loss: 442.127 -44800/69092 Loss: 427.793 -48000/69092 Loss: 432.717 -51200/69092 Loss: 434.227 -54400/69092 Loss: 431.206 -57600/69092 Loss: 434.003 -60800/69092 Loss: 436.200 -64000/69092 Loss: 437.519 -67200/69092 Loss: 441.965 -Training time 0:04:28.812572 -Epoch: 15 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 17) -0/69092 Loss: 498.240 -3200/69092 Loss: 440.474 -6400/69092 Loss: 443.826 -9600/69092 Loss: 427.633 -12800/69092 Loss: 432.060 -16000/69092 Loss: 437.623 -19200/69092 Loss: 446.722 -22400/69092 Loss: 447.293 -25600/69092 Loss: 443.333 -28800/69092 Loss: 440.026 -32000/69092 Loss: 431.689 -35200/69092 Loss: 445.803 -38400/69092 Loss: 425.248 -41600/69092 Loss: 435.430 -44800/69092 Loss: 430.713 -48000/69092 Loss: 449.797 -51200/69092 Loss: 445.763 -54400/69092 Loss: 444.885 -57600/69092 Loss: 443.544 -60800/69092 Loss: 442.726 -64000/69092 Loss: 433.580 -67200/69092 Loss: 434.089 -Training time 0:04:27.019803 -Epoch: 16 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 18) -0/69092 Loss: 466.280 -3200/69092 Loss: 444.208 -6400/69092 Loss: 430.691 -9600/69092 Loss: 440.609 -12800/69092 Loss: 444.150 -16000/69092 Loss: 433.251 -19200/69092 Loss: 440.078 -22400/69092 Loss: 434.438 -25600/69092 Loss: 437.736 -28800/69092 Loss: 442.102 -32000/69092 Loss: 448.164 -35200/69092 Loss: 429.432 -38400/69092 Loss: 452.784 -41600/69092 Loss: 442.916 -44800/69092 Loss: 437.249 -48000/69092 Loss: 440.515 -51200/69092 Loss: 426.367 -54400/69092 Loss: 437.090 -57600/69092 Loss: 442.061 -60800/69092 Loss: 436.515 -64000/69092 Loss: 439.174 -67200/69092 Loss: 436.353 -Training time 0:04:19.161998 -Epoch: 17 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 19) -0/69092 Loss: 387.399 -3200/69092 Loss: 443.479 -6400/69092 Loss: 437.514 -9600/69092 Loss: 438.330 -12800/69092 Loss: 436.930 -16000/69092 Loss: 438.073 -19200/69092 Loss: 429.599 -22400/69092 Loss: 452.687 -25600/69092 Loss: 442.682 -28800/69092 Loss: 433.250 -32000/69092 Loss: 432.935 -35200/69092 Loss: 443.827 -38400/69092 Loss: 443.910 -41600/69092 Loss: 428.557 -44800/69092 Loss: 435.339 -48000/69092 Loss: 439.639 -51200/69092 Loss: 443.590 -54400/69092 Loss: 443.773 -57600/69092 Loss: 443.634 -60800/69092 Loss: 433.950 -64000/69092 Loss: 440.524 -67200/69092 Loss: 433.771 -Training time 0:04:27.899715 -Epoch: 18 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 20) -0/69092 Loss: 517.758 -3200/69092 Loss: 437.515 -6400/69092 Loss: 438.680 -9600/69092 Loss: 430.177 -12800/69092 Loss: 442.590 -16000/69092 Loss: 444.649 -19200/69092 Loss: 439.902 -22400/69092 Loss: 434.947 -25600/69092 Loss: 446.782 -28800/69092 Loss: 448.020 -32000/69092 Loss: 449.653 -35200/69092 Loss: 436.316 -38400/69092 Loss: 440.670 -41600/69092 Loss: 440.831 -44800/69092 Loss: 433.954 -48000/69092 Loss: 436.466 -51200/69092 Loss: 433.538 -54400/69092 Loss: 446.983 -57600/69092 Loss: 433.267 -60800/69092 Loss: 435.412 -64000/69092 Loss: 439.729 -67200/69092 Loss: 433.043 -Training time 0:04:18.605166 -Epoch: 19 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 21) -0/69092 Loss: 468.855 -3200/69092 Loss: 435.587 -6400/69092 Loss: 433.519 -9600/69092 Loss: 441.110 -12800/69092 Loss: 448.535 -16000/69092 Loss: 435.916 -19200/69092 Loss: 442.000 -22400/69092 Loss: 432.518 -25600/69092 Loss: 437.813 -28800/69092 Loss: 440.261 -32000/69092 Loss: 451.433 -35200/69092 Loss: 432.196 -38400/69092 Loss: 429.665 -41600/69092 Loss: 434.087 -44800/69092 Loss: 452.219 -48000/69092 Loss: 441.694 -51200/69092 Loss: 443.547 -54400/69092 Loss: 428.570 -57600/69092 Loss: 434.825 -60800/69092 Loss: 442.841 -64000/69092 Loss: 446.499 -67200/69092 Loss: 435.330 -Training time 0:04:26.089858 -Epoch: 20 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 22) -0/69092 Loss: 399.025 -3200/69092 Loss: 439.286 -6400/69092 Loss: 437.546 -9600/69092 Loss: 437.893 -12800/69092 Loss: 439.831 -16000/69092 Loss: 441.731 -19200/69092 Loss: 435.240 -22400/69092 Loss: 446.213 -25600/69092 Loss: 440.672 -28800/69092 Loss: 436.112 -32000/69092 Loss: 437.153 -35200/69092 Loss: 432.120 -38400/69092 Loss: 434.109 -41600/69092 Loss: 448.263 -44800/69092 Loss: 444.124 -48000/69092 Loss: 443.655 -51200/69092 Loss: 439.393 -54400/69092 Loss: 440.949 -57600/69092 Loss: 428.376 -60800/69092 Loss: 444.703 -64000/69092 Loss: 439.446 -67200/69092 Loss: 438.540 -Training time 0:04:24.569566 -Epoch: 21 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 23) -0/69092 Loss: 447.055 -3200/69092 Loss: 444.572 -6400/69092 Loss: 442.419 -9600/69092 Loss: 446.406 -12800/69092 Loss: 429.402 -16000/69092 Loss: 442.351 -19200/69092 Loss: 435.744 -22400/69092 Loss: 435.037 -25600/69092 Loss: 432.900 -28800/69092 Loss: 430.895 -32000/69092 Loss: 445.457 -35200/69092 Loss: 443.495 -38400/69092 Loss: 440.882 -41600/69092 Loss: 439.615 -44800/69092 Loss: 435.154 -48000/69092 Loss: 433.825 -51200/69092 Loss: 442.148 -54400/69092 Loss: 441.451 -57600/69092 Loss: 434.547 -60800/69092 Loss: 441.309 -64000/69092 Loss: 435.940 -67200/69092 Loss: 439.713 -Training time 0:04:22.992704 -Epoch: 22 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 24) -0/69092 Loss: 389.986 -3200/69092 Loss: 437.453 -6400/69092 Loss: 428.187 -9600/69092 Loss: 437.500 -12800/69092 Loss: 440.849 -16000/69092 Loss: 446.903 -19200/69092 Loss: 435.664 -22400/69092 Loss: 435.958 -25600/69092 Loss: 437.770 -28800/69092 Loss: 439.976 -32000/69092 Loss: 434.114 -35200/69092 Loss: 450.093 -38400/69092 Loss: 446.469 -41600/69092 Loss: 423.855 -44800/69092 Loss: 442.047 -48000/69092 Loss: 445.983 -51200/69092 Loss: 439.791 -54400/69092 Loss: 430.888 -57600/69092 Loss: 446.467 -60800/69092 Loss: 430.531 -64000/69092 Loss: 451.369 -67200/69092 Loss: 440.697 -Training time 0:04:27.871353 -Epoch: 23 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 25) -0/69092 Loss: 534.593 -3200/69092 Loss: 435.368 -6400/69092 Loss: 443.011 -9600/69092 Loss: 443.323 -12800/69092 Loss: 443.329 -16000/69092 Loss: 439.366 -19200/69092 Loss: 435.409 -22400/69092 Loss: 434.417 -25600/69092 Loss: 447.081 -28800/69092 Loss: 427.311 -32000/69092 Loss: 437.893 -35200/69092 Loss: 448.450 -38400/69092 Loss: 430.901 -41600/69092 Loss: 441.879 -44800/69092 Loss: 433.479 -48000/69092 Loss: 431.285 -51200/69092 Loss: 449.887 -54400/69092 Loss: 438.692 -57600/69092 Loss: 439.121 -60800/69092 Loss: 438.396 -64000/69092 Loss: 448.568 -67200/69092 Loss: 434.511 -Training time 0:04:20.548591 -Epoch: 24 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 26) -0/69092 Loss: 476.164 -3200/69092 Loss: 436.696 -6400/69092 Loss: 446.213 -9600/69092 Loss: 450.422 -12800/69092 Loss: 432.899 -16000/69092 Loss: 436.943 -19200/69092 Loss: 436.398 -22400/69092 Loss: 436.425 -25600/69092 Loss: 439.782 -28800/69092 Loss: 433.574 -32000/69092 Loss: 436.817 -35200/69092 Loss: 446.180 -38400/69092 Loss: 443.506 -41600/69092 Loss: 439.607 -44800/69092 Loss: 440.577 -48000/69092 Loss: 438.207 -51200/69092 Loss: 433.010 -54400/69092 Loss: 444.056 -57600/69092 Loss: 439.147 -60800/69092 Loss: 440.633 -64000/69092 Loss: 440.489 -67200/69092 Loss: 436.375 -Training time 0:04:19.057597 -Epoch: 25 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 27) -0/69092 Loss: 374.643 -3200/69092 Loss: 445.066 -6400/69092 Loss: 437.406 -9600/69092 Loss: 433.901 -12800/69092 Loss: 445.341 -16000/69092 Loss: 445.741 -19200/69092 Loss: 427.750 -22400/69092 Loss: 430.690 -25600/69092 Loss: 430.201 -28800/69092 Loss: 432.028 -32000/69092 Loss: 450.946 -35200/69092 Loss: 435.227 -38400/69092 Loss: 446.144 -41600/69092 Loss: 438.084 -44800/69092 Loss: 432.434 -48000/69092 Loss: 442.399 -51200/69092 Loss: 442.481 -54400/69092 Loss: 438.879 -57600/69092 Loss: 442.300 -60800/69092 Loss: 440.708 -64000/69092 Loss: 433.623 -67200/69092 Loss: 451.991 -Training time 0:04:26.867117 -Epoch: 26 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 28) -0/69092 Loss: 411.831 -3200/69092 Loss: 438.035 -6400/69092 Loss: 444.905 -9600/69092 Loss: 433.037 -12800/69092 Loss: 436.386 -16000/69092 Loss: 443.999 -19200/69092 Loss: 430.444 -22400/69092 Loss: 440.358 -25600/69092 Loss: 430.060 -28800/69092 Loss: 429.699 -32000/69092 Loss: 440.840 -35200/69092 Loss: 432.152 -38400/69092 Loss: 436.628 -41600/69092 Loss: 440.554 -44800/69092 Loss: 455.091 -48000/69092 Loss: 442.408 -51200/69092 Loss: 450.611 -54400/69092 Loss: 430.677 -57600/69092 Loss: 447.235 -60800/69092 Loss: 442.394 -64000/69092 Loss: 437.629 -67200/69092 Loss: 443.945 -Training time 0:04:19.868080 -Epoch: 27 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 29) -0/69092 Loss: 463.077 -3200/69092 Loss: 455.815 -6400/69092 Loss: 431.184 -9600/69092 Loss: 431.235 -12800/69092 Loss: 440.467 -16000/69092 Loss: 442.644 -19200/69092 Loss: 450.845 -22400/69092 Loss: 444.505 -25600/69092 Loss: 441.152 -28800/69092 Loss: 433.715 -32000/69092 Loss: 437.446 -35200/69092 Loss: 437.977 -38400/69092 Loss: 442.337 -41600/69092 Loss: 428.539 -44800/69092 Loss: 445.475 -48000/69092 Loss: 427.866 -51200/69092 Loss: 440.335 -54400/69092 Loss: 423.947 -57600/69092 Loss: 441.449 -60800/69092 Loss: 436.196 -64000/69092 Loss: 443.439 -67200/69092 Loss: 439.903 -Training time 0:04:30.814036 -Epoch: 28 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 30) -0/69092 Loss: 405.135 -3200/69092 Loss: 452.535 -6400/69092 Loss: 435.374 -9600/69092 Loss: 436.959 -12800/69092 Loss: 444.434 -16000/69092 Loss: 440.027 -19200/69092 Loss: 440.817 -22400/69092 Loss: 444.350 -25600/69092 Loss: 441.136 -28800/69092 Loss: 438.674 -32000/69092 Loss: 434.921 -35200/69092 Loss: 434.902 -38400/69092 Loss: 444.388 -41600/69092 Loss: 427.179 -44800/69092 Loss: 435.924 -48000/69092 Loss: 436.628 -51200/69092 Loss: 443.645 -54400/69092 Loss: 428.798 -57600/69092 Loss: 440.182 -60800/69092 Loss: 436.767 -64000/69092 Loss: 442.607 -67200/69092 Loss: 438.407 -Training time 0:04:24.017043 -Epoch: 29 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 31) -0/69092 Loss: 476.353 -3200/69092 Loss: 433.756 -6400/69092 Loss: 440.207 -9600/69092 Loss: 448.995 -12800/69092 Loss: 444.782 -16000/69092 Loss: 429.639 -19200/69092 Loss: 444.561 -22400/69092 Loss: 447.386 -25600/69092 Loss: 438.468 -28800/69092 Loss: 433.601 -32000/69092 Loss: 431.844 -35200/69092 Loss: 450.702 -38400/69092 Loss: 442.945 -41600/69092 Loss: 443.027 -44800/69092 Loss: 434.272 -48000/69092 Loss: 442.576 -51200/69092 Loss: 433.732 -54400/69092 Loss: 437.670 -57600/69092 Loss: 434.728 -60800/69092 Loss: 440.396 -64000/69092 Loss: 431.227 -67200/69092 Loss: 434.757 -Training time 0:04:30.715730 -Epoch: 30 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 32) -0/69092 Loss: 481.012 -3200/69092 Loss: 444.196 -6400/69092 Loss: 443.710 -9600/69092 Loss: 437.834 -12800/69092 Loss: 434.136 -16000/69092 Loss: 438.710 -19200/69092 Loss: 449.580 -22400/69092 Loss: 434.762 -25600/69092 Loss: 437.236 -28800/69092 Loss: 433.502 -32000/69092 Loss: 445.858 -35200/69092 Loss: 436.958 -38400/69092 Loss: 432.003 -41600/69092 Loss: 435.567 -44800/69092 Loss: 430.610 -48000/69092 Loss: 438.893 -51200/69092 Loss: 438.334 -54400/69092 Loss: 448.751 -57600/69092 Loss: 437.368 -60800/69092 Loss: 437.962 -64000/69092 Loss: 440.413 -67200/69092 Loss: 447.322 -Training time 0:04:26.265103 -Epoch: 31 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 33) -0/69092 Loss: 400.108 -3200/69092 Loss: 437.015 -6400/69092 Loss: 437.442 -9600/69092 Loss: 435.463 -12800/69092 Loss: 442.450 -16000/69092 Loss: 439.221 -19200/69092 Loss: 438.020 -22400/69092 Loss: 436.137 -25600/69092 Loss: 436.487 -28800/69092 Loss: 427.598 -32000/69092 Loss: 430.596 -35200/69092 Loss: 437.139 -38400/69092 Loss: 445.967 -41600/69092 Loss: 445.456 -44800/69092 Loss: 435.217 -48000/69092 Loss: 446.861 -51200/69092 Loss: 449.337 -54400/69092 Loss: 441.523 -57600/69092 Loss: 430.402 -60800/69092 Loss: 443.866 -64000/69092 Loss: 445.363 -67200/69092 Loss: 439.684 -Training time 0:04:25.301353 -Epoch: 32 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 34) -0/69092 Loss: 448.684 -3200/69092 Loss: 435.749 -6400/69092 Loss: 432.473 -9600/69092 Loss: 435.465 -12800/69092 Loss: 435.356 -16000/69092 Loss: 440.362 -19200/69092 Loss: 444.648 -22400/69092 Loss: 435.983 -25600/69092 Loss: 441.671 -28800/69092 Loss: 435.129 -32000/69092 Loss: 431.571 -35200/69092 Loss: 440.624 -38400/69092 Loss: 437.530 -41600/69092 Loss: 428.413 -44800/69092 Loss: 432.629 -48000/69092 Loss: 443.885 -51200/69092 Loss: 444.145 -54400/69092 Loss: 452.289 -57600/69092 Loss: 444.870 -60800/69092 Loss: 436.989 -64000/69092 Loss: 441.231 -67200/69092 Loss: 444.663 -Training time 0:04:33.404934 -Epoch: 33 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 35) -0/69092 Loss: 436.446 -3200/69092 Loss: 447.517 -6400/69092 Loss: 440.830 -9600/69092 Loss: 435.077 -12800/69092 Loss: 444.663 -16000/69092 Loss: 438.343 -19200/69092 Loss: 436.011 -22400/69092 Loss: 444.873 -25600/69092 Loss: 441.715 -28800/69092 Loss: 436.985 -32000/69092 Loss: 440.298 -35200/69092 Loss: 433.009 -38400/69092 Loss: 437.177 -41600/69092 Loss: 450.954 -44800/69092 Loss: 439.261 -48000/69092 Loss: 437.136 -51200/69092 Loss: 433.217 -54400/69092 Loss: 440.091 -57600/69092 Loss: 435.368 -60800/69092 Loss: 436.326 -64000/69092 Loss: 432.034 -67200/69092 Loss: 439.265 -Training time 0:04:16.514513 -Epoch: 34 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 36) -0/69092 Loss: 403.806 -3200/69092 Loss: 438.807 -6400/69092 Loss: 432.434 -9600/69092 Loss: 443.323 -12800/69092 Loss: 446.873 -16000/69092 Loss: 437.214 -19200/69092 Loss: 434.220 -22400/69092 Loss: 442.977 -25600/69092 Loss: 437.363 -28800/69092 Loss: 431.058 -32000/69092 Loss: 439.841 -35200/69092 Loss: 437.261 -38400/69092 Loss: 437.091 -41600/69092 Loss: 445.562 -44800/69092 Loss: 447.495 -48000/69092 Loss: 449.808 -51200/69092 Loss: 437.370 -54400/69092 Loss: 443.357 -57600/69092 Loss: 436.630 -60800/69092 Loss: 435.718 -64000/69092 Loss: 427.944 -67200/69092 Loss: 438.632 -Training time 0:04:22.187666 -Epoch: 35 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 37) -0/69092 Loss: 454.148 -3200/69092 Loss: 430.643 -6400/69092 Loss: 449.694 -9600/69092 Loss: 444.262 -12800/69092 Loss: 435.892 -16000/69092 Loss: 437.207 -19200/69092 Loss: 448.424 -22400/69092 Loss: 433.562 -25600/69092 Loss: 438.894 -28800/69092 Loss: 428.642 -32000/69092 Loss: 433.974 -35200/69092 Loss: 432.721 -38400/69092 Loss: 431.000 -41600/69092 Loss: 443.778 -44800/69092 Loss: 437.898 -48000/69092 Loss: 437.710 -51200/69092 Loss: 446.022 -54400/69092 Loss: 442.456 -57600/69092 Loss: 443.119 -60800/69092 Loss: 441.017 -64000/69092 Loss: 438.171 -67200/69092 Loss: 441.328 -Training time 0:04:23.534664 -Epoch: 36 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 38) -0/69092 Loss: 503.709 -3200/69092 Loss: 452.426 -6400/69092 Loss: 433.778 -9600/69092 Loss: 437.960 -12800/69092 Loss: 437.121 -16000/69092 Loss: 438.996 -19200/69092 Loss: 440.897 -22400/69092 Loss: 434.344 -25600/69092 Loss: 434.731 -28800/69092 Loss: 442.679 -32000/69092 Loss: 442.099 -35200/69092 Loss: 436.466 -38400/69092 Loss: 430.395 -41600/69092 Loss: 439.344 -44800/69092 Loss: 442.088 -48000/69092 Loss: 432.574 -51200/69092 Loss: 454.989 -54400/69092 Loss: 446.804 -57600/69092 Loss: 438.708 -60800/69092 Loss: 432.784 -64000/69092 Loss: 432.696 -67200/69092 Loss: 437.383 -Training time 0:04:23.355301 -Epoch: 37 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 39) -0/69092 Loss: 447.649 -3200/69092 Loss: 438.415 -6400/69092 Loss: 437.275 -9600/69092 Loss: 433.935 -12800/69092 Loss: 444.876 -16000/69092 Loss: 436.280 -19200/69092 Loss: 442.748 -22400/69092 Loss: 433.677 -25600/69092 Loss: 434.464 -28800/69092 Loss: 436.915 -32000/69092 Loss: 434.070 -35200/69092 Loss: 433.907 -38400/69092 Loss: 444.981 -41600/69092 Loss: 438.346 -44800/69092 Loss: 435.798 -48000/69092 Loss: 439.504 -51200/69092 Loss: 449.858 -54400/69092 Loss: 438.362 -57600/69092 Loss: 435.984 -60800/69092 Loss: 453.773 -64000/69092 Loss: 438.298 -67200/69092 Loss: 443.329 -Training time 0:04:29.106721 -Epoch: 38 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 40) -0/69092 Loss: 391.537 -3200/69092 Loss: 440.161 -6400/69092 Loss: 446.423 -9600/69092 Loss: 437.502 -12800/69092 Loss: 442.225 -16000/69092 Loss: 446.088 -19200/69092 Loss: 437.018 -22400/69092 Loss: 437.129 -25600/69092 Loss: 442.543 -28800/69092 Loss: 425.001 -32000/69092 Loss: 455.314 -35200/69092 Loss: 442.058 -38400/69092 Loss: 437.978 -41600/69092 Loss: 435.451 -44800/69092 Loss: 442.741 -48000/69092 Loss: 435.259 -51200/69092 Loss: 441.030 -54400/69092 Loss: 437.358 -57600/69092 Loss: 441.818 -60800/69092 Loss: 430.050 -64000/69092 Loss: 433.974 -67200/69092 Loss: 440.024 -Training time 0:04:27.133206 -Epoch: 39 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 41) -0/69092 Loss: 437.809 -3200/69092 Loss: 445.816 -6400/69092 Loss: 426.942 -9600/69092 Loss: 436.363 -12800/69092 Loss: 442.467 -16000/69092 Loss: 440.726 -19200/69092 Loss: 433.769 -22400/69092 Loss: 438.185 -25600/69092 Loss: 441.295 -28800/69092 Loss: 437.113 -32000/69092 Loss: 424.040 -35200/69092 Loss: 437.843 -38400/69092 Loss: 446.272 -41600/69092 Loss: 449.939 -44800/69092 Loss: 436.133 -48000/69092 Loss: 432.491 -51200/69092 Loss: 435.159 -54400/69092 Loss: 445.164 -57600/69092 Loss: 442.093 -60800/69092 Loss: 445.885 -64000/69092 Loss: 438.135 -67200/69092 Loss: 441.220 -Training time 0:04:30.637297 -Epoch: 40 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 42) -0/69092 Loss: 409.611 -3200/69092 Loss: 444.389 -6400/69092 Loss: 440.365 -9600/69092 Loss: 442.838 -12800/69092 Loss: 449.627 -16000/69092 Loss: 436.579 -19200/69092 Loss: 431.977 -22400/69092 Loss: 434.451 -25600/69092 Loss: 436.311 -28800/69092 Loss: 440.259 -32000/69092 Loss: 441.167 -35200/69092 Loss: 439.849 -38400/69092 Loss: 441.058 -41600/69092 Loss: 438.793 -44800/69092 Loss: 440.302 -48000/69092 Loss: 435.157 -51200/69092 Loss: 439.652 -54400/69092 Loss: 444.732 -57600/69092 Loss: 435.939 -60800/69092 Loss: 434.778 -64000/69092 Loss: 439.681 -67200/69092 Loss: 432.230 -Training time 0:04:26.600357 -Epoch: 41 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 43) -0/69092 Loss: 507.415 -3200/69092 Loss: 438.228 -6400/69092 Loss: 438.391 -9600/69092 Loss: 437.827 -12800/69092 Loss: 437.751 -16000/69092 Loss: 445.539 -19200/69092 Loss: 436.618 -22400/69092 Loss: 443.044 -25600/69092 Loss: 449.848 -28800/69092 Loss: 434.835 -32000/69092 Loss: 436.210 -35200/69092 Loss: 440.821 -38400/69092 Loss: 430.715 -41600/69092 Loss: 443.028 -44800/69092 Loss: 442.057 -48000/69092 Loss: 442.289 -51200/69092 Loss: 435.588 -54400/69092 Loss: 436.053 -57600/69092 Loss: 432.229 -60800/69092 Loss: 447.308 -64000/69092 Loss: 441.927 -67200/69092 Loss: 435.013 -Training time 0:04:30.007899 -Epoch: 42 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 44) -0/69092 Loss: 407.972 -3200/69092 Loss: 432.577 -6400/69092 Loss: 440.557 -9600/69092 Loss: 433.031 -12800/69092 Loss: 440.819 -16000/69092 Loss: 431.605 -19200/69092 Loss: 436.227 -22400/69092 Loss: 440.783 -25600/69092 Loss: 442.717 -28800/69092 Loss: 444.362 -32000/69092 Loss: 436.995 -35200/69092 Loss: 447.956 -38400/69092 Loss: 449.645 -41600/69092 Loss: 432.915 -44800/69092 Loss: 443.741 -48000/69092 Loss: 442.266 -51200/69092 Loss: 436.813 -54400/69092 Loss: 444.252 -57600/69092 Loss: 427.523 -60800/69092 Loss: 437.849 -64000/69092 Loss: 439.495 -67200/69092 Loss: 440.288 -Training time 0:04:29.266357 -Epoch: 43 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 45) -0/69092 Loss: 398.038 -3200/69092 Loss: 431.172 -6400/69092 Loss: 441.445 -9600/69092 Loss: 444.381 -12800/69092 Loss: 440.471 -16000/69092 Loss: 433.104 -19200/69092 Loss: 453.816 -22400/69092 Loss: 439.002 -25600/69092 Loss: 441.156 -28800/69092 Loss: 437.415 -32000/69092 Loss: 438.586 -35200/69092 Loss: 430.243 -38400/69092 Loss: 441.148 -41600/69092 Loss: 446.183 -44800/69092 Loss: 442.891 -48000/69092 Loss: 442.371 -51200/69092 Loss: 440.565 -54400/69092 Loss: 438.831 -57600/69092 Loss: 429.123 -60800/69092 Loss: 435.269 -64000/69092 Loss: 435.936 -67200/69092 Loss: 439.151 -Training time 0:04:17.281301 -Epoch: 44 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 46) -0/69092 Loss: 385.241 -3200/69092 Loss: 439.788 -6400/69092 Loss: 439.399 -9600/69092 Loss: 437.780 -12800/69092 Loss: 444.044 -16000/69092 Loss: 442.072 -19200/69092 Loss: 434.022 -22400/69092 Loss: 443.063 -25600/69092 Loss: 443.804 -28800/69092 Loss: 445.599 -32000/69092 Loss: 437.145 -35200/69092 Loss: 436.727 -38400/69092 Loss: 437.106 -41600/69092 Loss: 447.407 -44800/69092 Loss: 437.015 -48000/69092 Loss: 434.691 -51200/69092 Loss: 433.837 -54400/69092 Loss: 434.865 -57600/69092 Loss: 434.589 -60800/69092 Loss: 436.302 -64000/69092 Loss: 442.040 -67200/69092 Loss: 440.525 -Training time 0:04:24.839865 -Epoch: 45 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 47) -0/69092 Loss: 494.956 -3200/69092 Loss: 429.617 -6400/69092 Loss: 433.782 -9600/69092 Loss: 443.090 -12800/69092 Loss: 433.299 -16000/69092 Loss: 434.624 -19200/69092 Loss: 440.676 -22400/69092 Loss: 444.434 -25600/69092 Loss: 439.572 -28800/69092 Loss: 430.997 -32000/69092 Loss: 442.559 -35200/69092 Loss: 430.993 -38400/69092 Loss: 443.031 -41600/69092 Loss: 437.318 -44800/69092 Loss: 441.607 -48000/69092 Loss: 439.600 -51200/69092 Loss: 436.554 -54400/69092 Loss: 445.179 -57600/69092 Loss: 443.965 -60800/69092 Loss: 440.311 -64000/69092 Loss: 445.184 -67200/69092 Loss: 435.747 -Training time 0:04:26.880554 -Epoch: 46 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 48) -0/69092 Loss: 412.232 -3200/69092 Loss: 452.045 -6400/69092 Loss: 446.762 -9600/69092 Loss: 444.849 -12800/69092 Loss: 437.523 -16000/69092 Loss: 428.655 -19200/69092 Loss: 440.258 -22400/69092 Loss: 445.879 -25600/69092 Loss: 435.195 -28800/69092 Loss: 436.907 -32000/69092 Loss: 429.976 -35200/69092 Loss: 431.490 -38400/69092 Loss: 442.729 -41600/69092 Loss: 443.433 -44800/69092 Loss: 439.090 -48000/69092 Loss: 444.125 -51200/69092 Loss: 438.630 -54400/69092 Loss: 429.891 -57600/69092 Loss: 439.128 -60800/69092 Loss: 443.925 -64000/69092 Loss: 440.835 -67200/69092 Loss: 438.906 -Training time 0:04:32.843146 -Epoch: 47 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 49) -0/69092 Loss: 426.367 -3200/69092 Loss: 442.251 -6400/69092 Loss: 436.144 -9600/69092 Loss: 444.448 -12800/69092 Loss: 439.454 -16000/69092 Loss: 442.244 -19200/69092 Loss: 437.906 -22400/69092 Loss: 435.093 -25600/69092 Loss: 430.616 -28800/69092 Loss: 441.967 -32000/69092 Loss: 436.438 -35200/69092 Loss: 447.880 -38400/69092 Loss: 434.073 -41600/69092 Loss: 440.352 -44800/69092 Loss: 443.125 -48000/69092 Loss: 438.794 -51200/69092 Loss: 434.574 -54400/69092 Loss: 434.909 -57600/69092 Loss: 440.548 -60800/69092 Loss: 447.929 -64000/69092 Loss: 433.344 -67200/69092 Loss: 432.947 -Training time 0:04:32.968524 -Epoch: 48 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 50) -0/69092 Loss: 426.598 -3200/69092 Loss: 437.581 -6400/69092 Loss: 447.624 -9600/69092 Loss: 441.424 -12800/69092 Loss: 435.978 -16000/69092 Loss: 439.993 -19200/69092 Loss: 440.253 -22400/69092 Loss: 441.978 -25600/69092 Loss: 440.757 -28800/69092 Loss: 438.010 -32000/69092 Loss: 436.918 -35200/69092 Loss: 437.191 -38400/69092 Loss: 431.716 -41600/69092 Loss: 443.954 -44800/69092 Loss: 446.419 -48000/69092 Loss: 436.451 -51200/69092 Loss: 444.939 -54400/69092 Loss: 435.050 -57600/69092 Loss: 441.813 -60800/69092 Loss: 430.161 -64000/69092 Loss: 432.653 -67200/69092 Loss: 439.996 -Training time 0:04:28.575223 -Epoch: 49 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 51) -0/69092 Loss: 422.456 -3200/69092 Loss: 435.311 -6400/69092 Loss: 436.360 -9600/69092 Loss: 437.095 -12800/69092 Loss: 436.947 -16000/69092 Loss: 445.358 -19200/69092 Loss: 440.554 -22400/69092 Loss: 429.427 -25600/69092 Loss: 436.670 -28800/69092 Loss: 429.370 -32000/69092 Loss: 443.846 -35200/69092 Loss: 438.409 -38400/69092 Loss: 437.534 -41600/69092 Loss: 432.698 -44800/69092 Loss: 452.084 -48000/69092 Loss: 448.768 -51200/69092 Loss: 440.683 -54400/69092 Loss: 437.061 -57600/69092 Loss: 448.541 -60800/69092 Loss: 429.059 -64000/69092 Loss: 443.735 -67200/69092 Loss: 437.904 -Training time 0:04:27.925841 -Epoch: 50 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 52) -0/69092 Loss: 550.071 -3200/69092 Loss: 442.956 -6400/69092 Loss: 438.831 -9600/69092 Loss: 438.188 -12800/69092 Loss: 442.906 -16000/69092 Loss: 444.248 -19200/69092 Loss: 442.256 -22400/69092 Loss: 441.740 -25600/69092 Loss: 446.092 -28800/69092 Loss: 437.966 -32000/69092 Loss: 432.234 -35200/69092 Loss: 442.237 -38400/69092 Loss: 431.455 -41600/69092 Loss: 438.076 -44800/69092 Loss: 439.315 -48000/69092 Loss: 441.768 -51200/69092 Loss: 442.594 -54400/69092 Loss: 436.191 -57600/69092 Loss: 433.962 -60800/69092 Loss: 438.392 -64000/69092 Loss: 437.155 -67200/69092 Loss: 431.720 -Training time 0:04:29.821254 -Epoch: 51 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 53) -0/69092 Loss: 437.337 -3200/69092 Loss: 446.035 -6400/69092 Loss: 442.904 -9600/69092 Loss: 435.249 -12800/69092 Loss: 439.279 -16000/69092 Loss: 443.838 -19200/69092 Loss: 436.515 -22400/69092 Loss: 439.223 -25600/69092 Loss: 441.838 -28800/69092 Loss: 442.334 -32000/69092 Loss: 440.988 -35200/69092 Loss: 427.747 -38400/69092 Loss: 441.443 -41600/69092 Loss: 444.276 -44800/69092 Loss: 445.065 -48000/69092 Loss: 439.623 -51200/69092 Loss: 431.319 -54400/69092 Loss: 441.970 -57600/69092 Loss: 433.791 -60800/69092 Loss: 442.944 -64000/69092 Loss: 437.015 -67200/69092 Loss: 428.847 -Training time 0:04:25.797223 -Epoch: 52 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 54) -0/69092 Loss: 417.672 -3200/69092 Loss: 443.598 -6400/69092 Loss: 437.574 -9600/69092 Loss: 438.813 -12800/69092 Loss: 444.055 -16000/69092 Loss: 437.293 -19200/69092 Loss: 449.733 -22400/69092 Loss: 441.537 -25600/69092 Loss: 425.452 -28800/69092 Loss: 444.374 -32000/69092 Loss: 435.388 -35200/69092 Loss: 440.291 -38400/69092 Loss: 431.105 -41600/69092 Loss: 442.119 -44800/69092 Loss: 439.724 -48000/69092 Loss: 432.880 -51200/69092 Loss: 453.698 -54400/69092 Loss: 433.217 -57600/69092 Loss: 437.590 -60800/69092 Loss: 442.609 -64000/69092 Loss: 438.135 -67200/69092 Loss: 439.851 -Training time 0:04:22.740984 -Epoch: 53 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 55) -0/69092 Loss: 381.935 -3200/69092 Loss: 428.765 -6400/69092 Loss: 443.327 -9600/69092 Loss: 436.975 -12800/69092 Loss: 439.071 -16000/69092 Loss: 437.715 -19200/69092 Loss: 433.178 -22400/69092 Loss: 443.541 -25600/69092 Loss: 436.405 -28800/69092 Loss: 447.054 -32000/69092 Loss: 442.356 -35200/69092 Loss: 436.860 -38400/69092 Loss: 442.425 -41600/69092 Loss: 442.004 -44800/69092 Loss: 430.222 -48000/69092 Loss: 438.636 -51200/69092 Loss: 447.515 -54400/69092 Loss: 443.500 -57600/69092 Loss: 437.393 -60800/69092 Loss: 442.845 -64000/69092 Loss: 440.101 -67200/69092 Loss: 436.235 -Training time 0:04:21.278154 -Epoch: 54 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 56) -0/69092 Loss: 413.646 -3200/69092 Loss: 431.481 -6400/69092 Loss: 447.569 -9600/69092 Loss: 437.780 -12800/69092 Loss: 433.669 -16000/69092 Loss: 438.410 -19200/69092 Loss: 445.867 -22400/69092 Loss: 444.858 -25600/69092 Loss: 445.017 -28800/69092 Loss: 445.177 -32000/69092 Loss: 439.514 -35200/69092 Loss: 431.732 -38400/69092 Loss: 439.518 -41600/69092 Loss: 431.592 -44800/69092 Loss: 444.482 -48000/69092 Loss: 438.297 -51200/69092 Loss: 432.212 -54400/69092 Loss: 442.138 -57600/69092 Loss: 438.929 -60800/69092 Loss: 437.359 -64000/69092 Loss: 436.536 -67200/69092 Loss: 441.419 -Training time 0:04:27.817203 -Epoch: 55 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 57) -0/69092 Loss: 427.898 -3200/69092 Loss: 447.176 -6400/69092 Loss: 440.106 -9600/69092 Loss: 439.614 -12800/69092 Loss: 429.972 -16000/69092 Loss: 446.450 -19200/69092 Loss: 435.340 -22400/69092 Loss: 439.818 -25600/69092 Loss: 436.800 -28800/69092 Loss: 441.428 -32000/69092 Loss: 440.438 -35200/69092 Loss: 431.536 -38400/69092 Loss: 442.916 -41600/69092 Loss: 431.127 -44800/69092 Loss: 439.969 -48000/69092 Loss: 438.947 -51200/69092 Loss: 442.249 -54400/69092 Loss: 441.265 -57600/69092 Loss: 443.976 -60800/69092 Loss: 427.512 -64000/69092 Loss: 436.935 -67200/69092 Loss: 445.539 -Training time 0:04:33.632200 -Epoch: 56 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 58) -0/69092 Loss: 411.760 -3200/69092 Loss: 433.892 -6400/69092 Loss: 439.177 -9600/69092 Loss: 432.515 -12800/69092 Loss: 437.680 -16000/69092 Loss: 444.365 -19200/69092 Loss: 438.557 -22400/69092 Loss: 445.234 -25600/69092 Loss: 440.781 -28800/69092 Loss: 435.052 -32000/69092 Loss: 442.516 -35200/69092 Loss: 437.830 -38400/69092 Loss: 435.828 -41600/69092 Loss: 442.848 -44800/69092 Loss: 446.832 -48000/69092 Loss: 445.540 -51200/69092 Loss: 436.871 -54400/69092 Loss: 440.483 -57600/69092 Loss: 431.503 -60800/69092 Loss: 435.062 -64000/69092 Loss: 436.744 -67200/69092 Loss: 439.370 -Training time 0:04:33.756435 -Epoch: 57 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 59) -0/69092 Loss: 438.751 -3200/69092 Loss: 448.455 -6400/69092 Loss: 434.567 -9600/69092 Loss: 438.998 -12800/69092 Loss: 442.327 -16000/69092 Loss: 439.686 -19200/69092 Loss: 439.175 -22400/69092 Loss: 443.437 -25600/69092 Loss: 434.127 -28800/69092 Loss: 434.975 -32000/69092 Loss: 435.085 -35200/69092 Loss: 451.537 -38400/69092 Loss: 438.002 -41600/69092 Loss: 439.895 -44800/69092 Loss: 429.652 -48000/69092 Loss: 450.670 -51200/69092 Loss: 426.567 -54400/69092 Loss: 432.979 -57600/69092 Loss: 434.381 -60800/69092 Loss: 438.850 -64000/69092 Loss: 436.625 -67200/69092 Loss: 443.626 -Training time 0:04:34.159196 -Epoch: 58 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 60) -0/69092 Loss: 481.370 -3200/69092 Loss: 443.856 -6400/69092 Loss: 438.814 -9600/69092 Loss: 441.666 -12800/69092 Loss: 437.547 -16000/69092 Loss: 434.459 -19200/69092 Loss: 431.864 -22400/69092 Loss: 433.989 -25600/69092 Loss: 430.929 -28800/69092 Loss: 439.915 -32000/69092 Loss: 447.245 -35200/69092 Loss: 447.208 -38400/69092 Loss: 433.403 -41600/69092 Loss: 438.187 -44800/69092 Loss: 435.722 -48000/69092 Loss: 438.726 -51200/69092 Loss: 432.387 -54400/69092 Loss: 439.987 -57600/69092 Loss: 440.465 -60800/69092 Loss: 441.431 -64000/69092 Loss: 449.919 -67200/69092 Loss: 450.584 -Training time 0:04:34.858693 -Epoch: 59 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 61) -0/69092 Loss: 429.961 -3200/69092 Loss: 429.342 -6400/69092 Loss: 442.421 -9600/69092 Loss: 435.096 -12800/69092 Loss: 441.566 -16000/69092 Loss: 442.757 -19200/69092 Loss: 436.914 -22400/69092 Loss: 443.071 -25600/69092 Loss: 442.141 -28800/69092 Loss: 448.962 -32000/69092 Loss: 443.628 -35200/69092 Loss: 430.613 -38400/69092 Loss: 427.441 -41600/69092 Loss: 434.592 -44800/69092 Loss: 436.874 -48000/69092 Loss: 447.286 -51200/69092 Loss: 429.857 -54400/69092 Loss: 436.978 -57600/69092 Loss: 447.167 -60800/69092 Loss: 438.259 -64000/69092 Loss: 438.108 -67200/69092 Loss: 447.906 -Training time 0:04:28.926358 -Epoch: 60 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 62) -0/69092 Loss: 453.265 -3200/69092 Loss: 438.843 -6400/69092 Loss: 432.844 -9600/69092 Loss: 441.518 -12800/69092 Loss: 434.637 -16000/69092 Loss: 441.445 -19200/69092 Loss: 445.523 -22400/69092 Loss: 442.913 -25600/69092 Loss: 438.194 -28800/69092 Loss: 449.389 -32000/69092 Loss: 441.307 -35200/69092 Loss: 437.638 -38400/69092 Loss: 438.045 -41600/69092 Loss: 439.874 -44800/69092 Loss: 419.166 -48000/69092 Loss: 439.177 -51200/69092 Loss: 438.055 -54400/69092 Loss: 454.875 -57600/69092 Loss: 442.716 -60800/69092 Loss: 433.500 -64000/69092 Loss: 442.145 -67200/69092 Loss: 425.070 -Training time 0:04:17.812471 -Epoch: 61 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 63) -0/69092 Loss: 435.152 -3200/69092 Loss: 425.168 -6400/69092 Loss: 436.629 -9600/69092 Loss: 440.108 -12800/69092 Loss: 440.200 -16000/69092 Loss: 441.054 -19200/69092 Loss: 442.874 -22400/69092 Loss: 440.906 -25600/69092 Loss: 437.788 -28800/69092 Loss: 439.653 -32000/69092 Loss: 450.036 -35200/69092 Loss: 447.640 -38400/69092 Loss: 440.043 -41600/69092 Loss: 431.116 -44800/69092 Loss: 440.889 -48000/69092 Loss: 439.093 -51200/69092 Loss: 444.772 -54400/69092 Loss: 432.654 -57600/69092 Loss: 439.986 -60800/69092 Loss: 434.186 -64000/69092 Loss: 450.730 -67200/69092 Loss: 429.098 -Training time 0:04:24.809857 -Epoch: 62 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 64) -0/69092 Loss: 440.093 -3200/69092 Loss: 433.018 -6400/69092 Loss: 429.474 -9600/69092 Loss: 441.433 -12800/69092 Loss: 442.660 -16000/69092 Loss: 446.788 -19200/69092 Loss: 441.570 -22400/69092 Loss: 441.901 -25600/69092 Loss: 439.729 -28800/69092 Loss: 441.023 -32000/69092 Loss: 433.298 -35200/69092 Loss: 440.624 -38400/69092 Loss: 433.511 -41600/69092 Loss: 441.454 -44800/69092 Loss: 439.079 -48000/69092 Loss: 438.031 -51200/69092 Loss: 442.159 -54400/69092 Loss: 445.902 -57600/69092 Loss: 430.249 -60800/69092 Loss: 440.677 -64000/69092 Loss: 432.880 -67200/69092 Loss: 437.562 -Training time 0:04:20.804945 -Epoch: 63 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 65) -0/69092 Loss: 436.817 -3200/69092 Loss: 440.182 -6400/69092 Loss: 435.733 -9600/69092 Loss: 439.587 -12800/69092 Loss: 431.296 -16000/69092 Loss: 441.980 -19200/69092 Loss: 442.104 -22400/69092 Loss: 438.614 -25600/69092 Loss: 440.386 -28800/69092 Loss: 434.225 -32000/69092 Loss: 442.410 -35200/69092 Loss: 437.588 -38400/69092 Loss: 442.037 -41600/69092 Loss: 442.591 -44800/69092 Loss: 436.520 -48000/69092 Loss: 438.737 -51200/69092 Loss: 434.122 -54400/69092 Loss: 429.386 -57600/69092 Loss: 433.496 -60800/69092 Loss: 442.233 -64000/69092 Loss: 445.463 -67200/69092 Loss: 448.857 -Training time 0:04:19.942842 -Epoch: 64 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 66) -0/69092 Loss: 398.998 -3200/69092 Loss: 443.840 -6400/69092 Loss: 439.399 -9600/69092 Loss: 435.081 -12800/69092 Loss: 445.893 -16000/69092 Loss: 431.500 -19200/69092 Loss: 435.736 -22400/69092 Loss: 439.064 -25600/69092 Loss: 436.566 -28800/69092 Loss: 431.796 -32000/69092 Loss: 431.160 -35200/69092 Loss: 435.912 -38400/69092 Loss: 436.780 -41600/69092 Loss: 445.401 -44800/69092 Loss: 434.821 -48000/69092 Loss: 438.186 -51200/69092 Loss: 434.963 -54400/69092 Loss: 441.965 -57600/69092 Loss: 445.562 -60800/69092 Loss: 441.051 -64000/69092 Loss: 440.830 -67200/69092 Loss: 454.219 -Training time 0:04:28.375923 -Epoch: 65 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 67) -0/69092 Loss: 481.965 -3200/69092 Loss: 444.284 -6400/69092 Loss: 430.930 -9600/69092 Loss: 439.995 -12800/69092 Loss: 445.742 -16000/69092 Loss: 442.147 -19200/69092 Loss: 433.298 -22400/69092 Loss: 438.165 -25600/69092 Loss: 443.967 -28800/69092 Loss: 437.553 -32000/69092 Loss: 435.797 -35200/69092 Loss: 439.222 -38400/69092 Loss: 441.535 -41600/69092 Loss: 435.819 -44800/69092 Loss: 437.121 -48000/69092 Loss: 432.600 -51200/69092 Loss: 442.415 -54400/69092 Loss: 436.416 -57600/69092 Loss: 441.440 -60800/69092 Loss: 441.323 -64000/69092 Loss: 431.728 -67200/69092 Loss: 442.462 -Training time 0:04:25.304930 -Epoch: 66 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 68) -0/69092 Loss: 485.893 -3200/69092 Loss: 439.189 -6400/69092 Loss: 429.988 -9600/69092 Loss: 435.731 -12800/69092 Loss: 437.687 -16000/69092 Loss: 436.549 -19200/69092 Loss: 440.563 -22400/69092 Loss: 443.955 -25600/69092 Loss: 443.521 -28800/69092 Loss: 436.155 -32000/69092 Loss: 437.393 -35200/69092 Loss: 443.298 -38400/69092 Loss: 441.077 -41600/69092 Loss: 438.236 -44800/69092 Loss: 438.087 -48000/69092 Loss: 438.055 -51200/69092 Loss: 444.033 -54400/69092 Loss: 443.158 -57600/69092 Loss: 440.457 -60800/69092 Loss: 446.044 -64000/69092 Loss: 426.677 -67200/69092 Loss: 438.979 -Training time 0:04:33.185552 -Epoch: 67 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 69) -0/69092 Loss: 420.831 -3200/69092 Loss: 442.669 -6400/69092 Loss: 452.660 -9600/69092 Loss: 431.214 -12800/69092 Loss: 443.841 -16000/69092 Loss: 433.611 -19200/69092 Loss: 436.799 -22400/69092 Loss: 435.424 -25600/69092 Loss: 440.612 -28800/69092 Loss: 444.618 -32000/69092 Loss: 432.802 -35200/69092 Loss: 436.876 -38400/69092 Loss: 440.315 -41600/69092 Loss: 438.914 -44800/69092 Loss: 447.854 -48000/69092 Loss: 439.244 -51200/69092 Loss: 444.912 -54400/69092 Loss: 439.080 -57600/69092 Loss: 433.689 -60800/69092 Loss: 435.428 -64000/69092 Loss: 435.146 -67200/69092 Loss: 442.037 -Training time 0:04:28.518043 -Epoch: 68 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 70) -0/69092 Loss: 393.491 -3200/69092 Loss: 432.490 -6400/69092 Loss: 436.490 -9600/69092 Loss: 432.180 -12800/69092 Loss: 437.639 -16000/69092 Loss: 426.939 -19200/69092 Loss: 442.415 -22400/69092 Loss: 429.092 -25600/69092 Loss: 444.033 -28800/69092 Loss: 450.195 -32000/69092 Loss: 436.750 -35200/69092 Loss: 439.721 -38400/69092 Loss: 435.390 -41600/69092 Loss: 438.870 -44800/69092 Loss: 445.929 -48000/69092 Loss: 439.922 -51200/69092 Loss: 444.181 -54400/69092 Loss: 446.175 -57600/69092 Loss: 439.737 -60800/69092 Loss: 437.200 -64000/69092 Loss: 451.240 -67200/69092 Loss: 433.368 -Training time 0:04:34.362609 -Epoch: 69 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 71) -0/69092 Loss: 486.449 -3200/69092 Loss: 440.920 -6400/69092 Loss: 436.375 -9600/69092 Loss: 435.286 -12800/69092 Loss: 440.093 -16000/69092 Loss: 444.735 -19200/69092 Loss: 437.497 -22400/69092 Loss: 433.487 -25600/69092 Loss: 435.702 -28800/69092 Loss: 447.285 -32000/69092 Loss: 433.168 -35200/69092 Loss: 444.765 -38400/69092 Loss: 433.999 -41600/69092 Loss: 435.072 -44800/69092 Loss: 448.299 -48000/69092 Loss: 438.131 -51200/69092 Loss: 443.913 -54400/69092 Loss: 440.995 -57600/69092 Loss: 444.716 -60800/69092 Loss: 436.394 -64000/69092 Loss: 434.067 -67200/69092 Loss: 444.127 -Training time 0:04:23.119485 -Epoch: 70 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 72) -0/69092 Loss: 456.388 -3200/69092 Loss: 440.627 -6400/69092 Loss: 434.655 -9600/69092 Loss: 425.941 -12800/69092 Loss: 442.158 -16000/69092 Loss: 438.968 -19200/69092 Loss: 436.301 -22400/69092 Loss: 443.149 -25600/69092 Loss: 443.818 -28800/69092 Loss: 441.077 -32000/69092 Loss: 437.158 -35200/69092 Loss: 441.001 -38400/69092 Loss: 436.902 -41600/69092 Loss: 450.161 -44800/69092 Loss: 440.306 -48000/69092 Loss: 428.515 -51200/69092 Loss: 446.683 -54400/69092 Loss: 435.140 -57600/69092 Loss: 448.877 -60800/69092 Loss: 433.218 -64000/69092 Loss: 439.427 -67200/69092 Loss: 441.373 -Training time 0:04:28.330593 -Epoch: 71 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 73) -0/69092 Loss: 458.070 -3200/69092 Loss: 444.052 -6400/69092 Loss: 442.543 -9600/69092 Loss: 427.966 -12800/69092 Loss: 428.694 -16000/69092 Loss: 435.232 -19200/69092 Loss: 442.810 -22400/69092 Loss: 440.732 -25600/69092 Loss: 439.676 -28800/69092 Loss: 438.011 -32000/69092 Loss: 436.440 -35200/69092 Loss: 436.617 -38400/69092 Loss: 440.179 -41600/69092 Loss: 435.382 -44800/69092 Loss: 442.662 -48000/69092 Loss: 439.867 -51200/69092 Loss: 440.253 -54400/69092 Loss: 435.741 -57600/69092 Loss: 441.780 -60800/69092 Loss: 444.592 -64000/69092 Loss: 442.122 -67200/69092 Loss: 441.525 -Training time 0:04:22.613738 -Epoch: 72 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 74) -0/69092 Loss: 469.953 -3200/69092 Loss: 438.776 -6400/69092 Loss: 435.868 -9600/69092 Loss: 441.209 -12800/69092 Loss: 441.959 -16000/69092 Loss: 429.666 -19200/69092 Loss: 439.287 -22400/69092 Loss: 436.681 -25600/69092 Loss: 444.585 -28800/69092 Loss: 448.134 -32000/69092 Loss: 427.122 -35200/69092 Loss: 433.999 -38400/69092 Loss: 440.035 -41600/69092 Loss: 432.372 -44800/69092 Loss: 447.241 -48000/69092 Loss: 442.884 -51200/69092 Loss: 444.846 -54400/69092 Loss: 438.735 -57600/69092 Loss: 439.255 -60800/69092 Loss: 449.132 -64000/69092 Loss: 432.687 -67200/69092 Loss: 435.702 -Training time 0:04:20.623353 -Epoch: 73 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 75) -0/69092 Loss: 427.240 -3200/69092 Loss: 429.469 -6400/69092 Loss: 444.833 -9600/69092 Loss: 434.928 -12800/69092 Loss: 444.967 -16000/69092 Loss: 423.495 -19200/69092 Loss: 434.935 -22400/69092 Loss: 449.202 -25600/69092 Loss: 423.320 -28800/69092 Loss: 442.072 -32000/69092 Loss: 447.337 -35200/69092 Loss: 437.285 -38400/69092 Loss: 442.135 -41600/69092 Loss: 446.631 -44800/69092 Loss: 433.983 -48000/69092 Loss: 431.751 -51200/69092 Loss: 441.727 -54400/69092 Loss: 442.096 -57600/69092 Loss: 437.589 -60800/69092 Loss: 448.595 -64000/69092 Loss: 441.812 -67200/69092 Loss: 436.986 -Training time 0:04:35.874284 -Epoch: 74 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 76) -0/69092 Loss: 431.358 -3200/69092 Loss: 443.052 -6400/69092 Loss: 443.236 -9600/69092 Loss: 433.132 -12800/69092 Loss: 434.050 -16000/69092 Loss: 437.981 -19200/69092 Loss: 441.862 -22400/69092 Loss: 440.291 -25600/69092 Loss: 429.166 -28800/69092 Loss: 441.906 -32000/69092 Loss: 431.980 -35200/69092 Loss: 447.021 -38400/69092 Loss: 436.277 -41600/69092 Loss: 452.453 -44800/69092 Loss: 442.244 -48000/69092 Loss: 442.442 -51200/69092 Loss: 436.932 -54400/69092 Loss: 437.544 -57600/69092 Loss: 430.479 -60800/69092 Loss: 441.225 -64000/69092 Loss: 439.020 -67200/69092 Loss: 437.369 -Training time 0:04:28.609695 -Epoch: 75 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 77) -0/69092 Loss: 430.895 -3200/69092 Loss: 429.181 -6400/69092 Loss: 436.251 -9600/69092 Loss: 434.145 -12800/69092 Loss: 447.277 -16000/69092 Loss: 438.238 -19200/69092 Loss: 434.316 -22400/69092 Loss: 433.676 -25600/69092 Loss: 449.608 -28800/69092 Loss: 436.183 -32000/69092 Loss: 438.880 -35200/69092 Loss: 435.693 -38400/69092 Loss: 441.719 -41600/69092 Loss: 441.783 -44800/69092 Loss: 440.828 -48000/69092 Loss: 440.520 -51200/69092 Loss: 449.355 -54400/69092 Loss: 441.894 -57600/69092 Loss: 443.175 -60800/69092 Loss: 431.229 -64000/69092 Loss: 443.335 -67200/69092 Loss: 437.127 -Training time 0:04:37.820950 -Epoch: 76 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 78) -0/69092 Loss: 430.771 -3200/69092 Loss: 438.633 -6400/69092 Loss: 444.544 -9600/69092 Loss: 444.716 -12800/69092 Loss: 434.922 -16000/69092 Loss: 437.631 -19200/69092 Loss: 435.571 -22400/69092 Loss: 441.155 -25600/69092 Loss: 437.357 -28800/69092 Loss: 445.235 -32000/69092 Loss: 438.067 -35200/69092 Loss: 433.339 -38400/69092 Loss: 437.645 -41600/69092 Loss: 439.892 -44800/69092 Loss: 453.014 -48000/69092 Loss: 436.742 -51200/69092 Loss: 439.820 -54400/69092 Loss: 432.332 -57600/69092 Loss: 442.311 -60800/69092 Loss: 443.235 -64000/69092 Loss: 434.287 -67200/69092 Loss: 434.622 -Training time 0:04:35.927628 -Epoch: 77 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 79) -0/69092 Loss: 446.499 -3200/69092 Loss: 436.133 -6400/69092 Loss: 441.444 -9600/69092 Loss: 427.256 -12800/69092 Loss: 436.374 -16000/69092 Loss: 436.849 -19200/69092 Loss: 441.694 -22400/69092 Loss: 440.956 -25600/69092 Loss: 436.733 -28800/69092 Loss: 440.706 -32000/69092 Loss: 439.587 -35200/69092 Loss: 432.551 -38400/69092 Loss: 443.022 -41600/69092 Loss: 437.109 -44800/69092 Loss: 436.916 -48000/69092 Loss: 442.528 -51200/69092 Loss: 443.058 -54400/69092 Loss: 440.018 -57600/69092 Loss: 430.461 -60800/69092 Loss: 452.985 -64000/69092 Loss: 448.857 -67200/69092 Loss: 439.490 -Training time 0:04:32.511036 -Epoch: 78 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 80) -0/69092 Loss: 487.504 -3200/69092 Loss: 442.350 -6400/69092 Loss: 446.787 -9600/69092 Loss: 441.357 -12800/69092 Loss: 432.835 -16000/69092 Loss: 443.573 -19200/69092 Loss: 444.299 -22400/69092 Loss: 434.448 -25600/69092 Loss: 446.956 -28800/69092 Loss: 449.180 -32000/69092 Loss: 430.925 -35200/69092 Loss: 433.882 -38400/69092 Loss: 446.180 -41600/69092 Loss: 441.777 -44800/69092 Loss: 434.901 -48000/69092 Loss: 431.769 -51200/69092 Loss: 439.595 -54400/69092 Loss: 437.004 -57600/69092 Loss: 430.203 -60800/69092 Loss: 443.179 -64000/69092 Loss: 433.426 -67200/69092 Loss: 434.029 -Training time 0:04:30.890610 -Epoch: 79 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 81) -0/69092 Loss: 481.668 -3200/69092 Loss: 437.355 -6400/69092 Loss: 432.293 -9600/69092 Loss: 434.117 -12800/69092 Loss: 447.442 -16000/69092 Loss: 439.925 -19200/69092 Loss: 434.140 -22400/69092 Loss: 427.423 -25600/69092 Loss: 442.359 -28800/69092 Loss: 439.085 -32000/69092 Loss: 449.415 -35200/69092 Loss: 435.332 -38400/69092 Loss: 433.305 -41600/69092 Loss: 445.405 -44800/69092 Loss: 430.264 -48000/69092 Loss: 438.950 -51200/69092 Loss: 446.735 -54400/69092 Loss: 436.979 -57600/69092 Loss: 441.830 -60800/69092 Loss: 438.962 -64000/69092 Loss: 437.526 -67200/69092 Loss: 447.985 -Training time 0:04:23.198038 -Epoch: 80 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 82) -0/69092 Loss: 378.888 -3200/69092 Loss: 431.912 -6400/69092 Loss: 443.355 -9600/69092 Loss: 437.282 -12800/69092 Loss: 435.850 -16000/69092 Loss: 441.770 -19200/69092 Loss: 425.460 -22400/69092 Loss: 429.830 -25600/69092 Loss: 434.771 -28800/69092 Loss: 428.194 -32000/69092 Loss: 448.500 -35200/69092 Loss: 446.295 -38400/69092 Loss: 455.919 -41600/69092 Loss: 437.209 -44800/69092 Loss: 444.666 -48000/69092 Loss: 443.734 -51200/69092 Loss: 442.007 -54400/69092 Loss: 437.688 -57600/69092 Loss: 448.615 -60800/69092 Loss: 442.213 -64000/69092 Loss: 437.041 -67200/69092 Loss: 429.636 -Training time 0:04:30.661318 -Epoch: 81 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 83) -0/69092 Loss: 449.163 -3200/69092 Loss: 439.526 -6400/69092 Loss: 444.871 -9600/69092 Loss: 441.900 -12800/69092 Loss: 439.481 -16000/69092 Loss: 442.925 -19200/69092 Loss: 448.002 -22400/69092 Loss: 434.180 -25600/69092 Loss: 432.900 -28800/69092 Loss: 436.394 -32000/69092 Loss: 437.555 -35200/69092 Loss: 427.933 -38400/69092 Loss: 442.859 -41600/69092 Loss: 442.253 -44800/69092 Loss: 430.309 -48000/69092 Loss: 438.446 -51200/69092 Loss: 429.865 -54400/69092 Loss: 455.650 -57600/69092 Loss: 430.378 -60800/69092 Loss: 443.486 -64000/69092 Loss: 435.465 -67200/69092 Loss: 443.477 -Training time 0:04:19.914743 -Epoch: 82 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 84) -0/69092 Loss: 406.290 -3200/69092 Loss: 444.287 -6400/69092 Loss: 444.629 -9600/69092 Loss: 437.308 -12800/69092 Loss: 438.079 -16000/69092 Loss: 441.510 -19200/69092 Loss: 437.281 -22400/69092 Loss: 441.529 -25600/69092 Loss: 431.017 -28800/69092 Loss: 439.013 -32000/69092 Loss: 437.763 -35200/69092 Loss: 440.027 -38400/69092 Loss: 442.800 -41600/69092 Loss: 434.031 -44800/69092 Loss: 442.341 -48000/69092 Loss: 445.696 -51200/69092 Loss: 441.060 -54400/69092 Loss: 442.858 -57600/69092 Loss: 441.939 -60800/69092 Loss: 431.163 -64000/69092 Loss: 440.905 -67200/69092 Loss: 434.195 -Training time 0:04:23.488505 -Epoch: 83 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 85) -0/69092 Loss: 441.828 -3200/69092 Loss: 434.512 -6400/69092 Loss: 434.845 -9600/69092 Loss: 448.229 -12800/69092 Loss: 436.518 -16000/69092 Loss: 446.633 -19200/69092 Loss: 429.827 -22400/69092 Loss: 431.421 -25600/69092 Loss: 433.879 -28800/69092 Loss: 451.642 -32000/69092 Loss: 438.861 -35200/69092 Loss: 436.175 -38400/69092 Loss: 441.431 -41600/69092 Loss: 442.288 -44800/69092 Loss: 437.448 -48000/69092 Loss: 441.520 -51200/69092 Loss: 443.343 -54400/69092 Loss: 448.508 -57600/69092 Loss: 437.061 -60800/69092 Loss: 440.716 -64000/69092 Loss: 429.753 -67200/69092 Loss: 432.530 -Training time 0:04:30.260231 -Epoch: 84 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 86) -0/69092 Loss: 425.748 -3200/69092 Loss: 438.217 -6400/69092 Loss: 438.140 -9600/69092 Loss: 442.356 -12800/69092 Loss: 437.696 -16000/69092 Loss: 444.825 -19200/69092 Loss: 443.557 -22400/69092 Loss: 436.350 -25600/69092 Loss: 439.677 -28800/69092 Loss: 439.924 -32000/69092 Loss: 443.346 -35200/69092 Loss: 430.511 -38400/69092 Loss: 440.147 -41600/69092 Loss: 442.451 -44800/69092 Loss: 434.681 -48000/69092 Loss: 438.830 -51200/69092 Loss: 441.980 -54400/69092 Loss: 441.627 -57600/69092 Loss: 436.089 -60800/69092 Loss: 448.313 -64000/69092 Loss: 434.959 -67200/69092 Loss: 429.999 -Training time 0:04:26.453752 -Epoch: 85 Average loss: 439.07 -=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64_ls_10_lr_1e_3/checkpoints/last' (iter 87) -0/69092 Loss: 437.104 -3200/69092 Loss: 445.228 -6400/69092 Loss: 447.248 -9600/69092 Loss: 436.153 -12800/69092 Loss: 427.372 -16000/69092 Loss: 450.446 -19200/69092 Loss: 443.578 -22400/69092 Loss: 443.433 -25600/69092 Loss: 433.324 -28800/69092 Loss: 430.439 -32000/69092 Loss: 434.079 -35200/69092 Loss: 434.142 -38400/69092 Loss: 441.583 -41600/69092 Loss: 439.060 -44800/69092 Loss: 434.916 -48000/69092 Loss: 434.462 -51200/69092 Loss: 441.623 -54400/69092 Loss: 442.552 -57600/69092 Loss: 440.673 -60800/69092 Loss: 438.891 -64000/69092 Loss: 447.394 diff --git a/dataloader/dataloaders.py b/dataloader/dataloaders.py index 4e2d5fc700..c3b32f415b 100644 --- a/dataloader/dataloaders.py +++ b/dataloader/dataloaders.py @@ -3,6 +3,7 @@ import numpy as np from skimage.io import imread from torch.utils.data import Dataset, DataLoader, random_split from torchvision import datasets, transforms +import os # Load data @@ -108,6 +109,10 @@ def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='../data/re """ Chairs dataloader. Chairs are center cropped and resized to (64, 64). """ + path_to_data = 'data/rendered_chairs' + if not os.path.exists(path_to_data): + path_to_data = '../data/rendered_chairs' + all_transforms = transforms.Compose([ # transforms.Grayscale(), transforms.Resize(64), diff --git a/main.py b/main.py index 2e80eb9cff..85af9d178f 100644 --- a/main.py +++ b/main.py @@ -17,7 +17,6 @@ import json def main(args): - # continue and discrete capacity if args.cont_capacity is not None: cont_capacity = [float(item) for item in args.cont_capacity.split(',')] @@ -62,7 +61,7 @@ def main(args): file_path = os.path.join('trained_models/', args.dataset, args.experiment_name, 'specs.json') with open(file_path, 'w') as json_file: json.dump(parameter, json_file) - + # create model model = VAE(img_size, latent_spec=latent_spec) # load dataset @@ -98,7 +97,6 @@ def main(args): args.latent_name + args.experiment_name + '.gif', viz)) - if __name__ == "__main__": parser = argparse.ArgumentParser(description='VAE') parser.add_argument('--batch-size', type=int, default=64, metavar='integer value', diff --git a/parameters_combinations/param_combinations_chairs.txt b/parameters_combinations/param_combinations_chairs.txt index 0abd899eb8..700e38e30f 100644 --- a/parameters_combinations/param_combinations_chairs.txt +++ b/parameters_combinations/param_combinations_chairs.txt @@ -1,12 +1,12 @@ --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True --batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-3 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_1e_3 +--batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --load-model-checkpoint=True --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --load-model-checkpoint=True --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_15 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_20 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --is-beta-VAE=True --beta=4 --lr=1e-4 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64_ls_5 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=5 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_5 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=15 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_15 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=20 --lr=1e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_20 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=5e-4 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_5e_4 --load-model-checkpoint=True +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-3 --gpu-devices 0 1 --experiment-name=VAE_bs_64_ls_10_lr_1e_3 --load-model-checkpoint=True \ No newline at end of file diff --git a/reconstruction_im/charis_VAE_bs_64_ls_15.png b/reconstruction_im/charis_VAE_bs_64_ls_15.png new file mode 100644 index 0000000000000000000000000000000000000000..6da0b5f5450a2c0385aace15464b1773a5835075 GIT binary patch literal 122818 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LtXVv}V`mKl^mQacBl> zKAjgib?VHm0o+$!H6`lb+7ZDk-*d1x^R{hna*ng~n?mEf-IBZQ&sLnN$hlLtefe$f zxEsfg^)fn3C-b;6ZVhnNof#VPbl%D<`;PsaW?g^hdtA$uNkM{KnogH~*4c$hPD<KY zc)#}hz2ful=P0x7Qs8KUqAv_d3%Fq%4kvzvktBIY?D3<Y#WjEW{~1pfe(dAdBm6^7 zW9ffk7DoXVM}aD_-M4uKT6zx@zh<cUU(LVy{|VkNZ)IK-b+aV?-C<EPv;M#QKYl-( ze;N$?5)1GD&1ZVR9{>GUo|&%zi(^FktFKmHt9nz6SQ{Q&#O6&@;8?35R{}N|Z2Swx zBh7j_l{VYY+5bHo&+wso|M%)Y$KL-p)ED93wc+T@^}GJOOt)h{aODh-sW$I{{X71b zO0-=(yDZmp3fGEWd-n&^7z#dBZ`j<-ATh0CJ&R*R{FERcUq7aTcW*Sco*JE;@@>KQ zukTZypPS3@<P)n<CriT`R#}JEg~{jbek$CIk+0^LWk0Y@_-@X$4JQSeV{dG7+4Qac z*PHlHAMO9;Go0DQwlZYb?6bGN`S|)yJpY_=;@!34jsg=-F8TR1{+B94-ShuH@9J&O zc)h4bykVvK|F-V<f2LWgdma6rw7szY6vV*x{+H(__BfV?#FNW>1zOG-+nOHjT)vOp zVQ<*+EeH6YFV9+f=*0<D2BA)soi&UN|NhMt;rdl*HeI-RFYgpChKdLBc4t>E-*<BF z`YR7p)>mDwKJoSKtF+54zC9jySmB|#kX?X(*9O&(cdX*MQ{UGAJO01-pkr;9W#}#! zD`mMay~j#p{pMJ39#HPLIb(hABcFrKi`TA8gAT5q^5fn0f9ecZizfQ0F?TH4I9cO< z@|%hF><_No|I1|@{5WLm;Vz$~NvCcYGn|?8$EJ1nef9$n!}s#v_AFbvcXnsh-Ztq~ z3pU-XiGDBW=|44S#<CyE*JgWdb<@(k^s@KZXB&ojb-y^>+}s&FRD)Gy+FgSBtCz<3 zIOqSo8#R|ZIGypwG4p-re(VVQ`{%;n^^g0k-`#j{Enk-DetJ<+%lg`nj~P<9ocH|l z{m(Yxw_}E^;e}S+lZWruO}PK}#&HIVx+hWley+`D4DjPU66xFeRrQw4e9Pi_=WE|} z+kCrmnBmV6|34KuI$W<0pE<)bFY)u<%i@eP=FI9m%+<10*i-8G{68}Of6ulv%#e^@ z9>HwCCdHiL$)sQHn@mr<JFL%mVAIopELElC$Nm2vERL}#XKRT6xwZd7_zU(6ZQr<N z-&MG9eOcJ*Pe+pZ84b*e8n6HVu%9Jm@g6yrM!Dzn|F-9Ua@OC?-5^_QbU%m1OEYcR zaz=~dXFPea@>y3Wl?rjThs4UWsR?`LxW_Ng+Is4-e}?9t>-+yPEcbu?d(FEl&;(J# z9rd*jc2%9z67#N@w<u&CL&3i<ofT^hcvfe>6*f~(TEHDW>GR>mbEGdWKeTzWaLxBK z5)9k-zF;`Hq+<QG*+DDMgzx{w%kb~jdb@+2!uKDCuCHQc0BynDeQn*_LmxgERI~s3 z+4_ASdjtQ!-SMg4-`$PPyL!!mm2vv~Uq%f6HJ_S$`1+XwRyDsi&pGbU7`{WUA=&=V z{F~K#<-TwF7&~)Cb<oYZH4nZ2%Qgfr|F7E4FT?cUK;z#xQZhMb9&0IlsAV{{wDMf6 z75jlZcX-nM<}*ED-G1-v>wABaAO80KUp`CW!r%IThg{v%)-fM($ZvgNV9inU=R?D) zxb=an!!)LMF^F`3K6CaQgMq2($s<QB7#=@P-m$K(R%!0hZO-~TpHEz2eI@%=g1<`E z#~c6ueO~_KRQNuw11~S9->_UT`PsgQy!jJ;FXmnJ`gxV!y!8e?xjoTkOos)Y_Fa%O zDgu{0pt6kxnsZi$XwBKRB6*|D`Qu-=p3#_o`sh>FmUBWZjQ#fiEEwkhJd^(ORrpuV zzcY=`Gk0y@_jN79rT?!zN+#96x}vEUv**O|f9v}h9_-X>=aYSvcG=8U>x)oa#h-4Q zFXHdn6JC9i)Ji<FbNvB^H5V9Dm$6%ZaQ@HPP;0&?!X|k2kxgH=J$aj7um1n@>3F6G z8{PMxe!hRr^T`K3Z_p7o{t`6P_pX(J!GZ3$FHQ_~U$58A6;?0hYk1f#zU2S)iJhIC z4Ez3nc^tFvD;q=Jo_7W2v#(5^(p}6j$NsCxX5)p2^3!I$)O^c3f8MN=sw}RCl`l1y zEl-~@ZzgL(-aem=OS~<_yhB$lOuzHBCU5`eIEK9Hi?W4NXSp0Y{=Ft9+&`f7dUBdu z^#l33ABuXhmn82pi+(uBUnk)3==^P!NgJ=fE{)MYu;uHWl!!&wL~gnBlq7lwt-ro< zSCzBuQ5B{qpMOR$scmTw;yQo1_Vunf9nZh-%H^LvuY32Lq2k-k^v4lF=Rbq`(mP)+ zo4xDOy|*q~BzG4)WYVwwsU5g*PhQ2pz;EyF-afl5*Y6N>|EWJJ%lCifWZ3t8XTO1= z8IQx+%WjqpsjvReS#oZD!Ha$I4{uq=@pr7*C2MnkvHg1U9Y38Kf8FF}(BR;Y*{dBF zyvyQDcKwSwhPWS#talVR?pK@dd&)GzJ!`8JgRt^+iJdhoPp^F$drWUW>x2Hf@7FD> z<E#a`rdmynir`xNDrl{{P<j8Z=a1X6*S=@{k+`OQL5R$EezwL-$-5(Tj&+I#pA?BR za#ixV6~6YWMR{EPznPn#uV}mercFBU$=3C?x(zBpIg=Ik={;Z%Sozxa`Alx*D~IPW z2t{db>AKSkZ+0|YVD8WkyfG<c_0@=Xw|y1{2=G@)Yp^OSM^$~ldA@G)`x<o}c~fKW zg$w+D%&&OlZS(bt@Byc*OrWb=Jmcf<vu&%W4&qXsaCo}jCHLMx59A!Y>&xHXx_Wk5 zE?3Bd;JKGQ?=RDvm-6FgK6AmxPJP3=Ux5s#=DDt1c7B^LQ&3{iw<XMtMmNj1pA)M) zo&7KT<c)o7UQ2~uZYW;A|Dl^){in>o?b^$~vb7!D>fXn2OFE;)|6IzFqT^MQ{IVlU z_Xa(>)LI;y=leeC)~(sLW}#0`KG$P@P<61WsNv!^RSqVms}bJK4o98iS+frQQw!QM z)mya2-`;-GcJ-LIJ9+;!cu(K*DZQ*rFKox%s@J-OH)aNTO;O7g_<H|r`QB+hYUdC0 zzh327Y93J}uf?(2QAac}I8gKK;--cWHSUH?UE7w^Pd_zv8g>QWxp-gQXq}km)Kz~T z+uI$J|8r2Bq2kTP^kmJgi5fwgdoN1J)_&qTER%45U+te0{eL*7siwMJoBi`=CBw4x zv;yPIeP8|K*&n>Cj(1uZ@FMMU)w~01i+*YEKl^?EPfZ5BIriRLgV+>izD>V=HlOXm zJoyUl|6i8x=V`DmZp)bwba2~)l`|FNzMh)TrZ9D)&b91?A#;v%J%6PV_vgmv^>dPy zbS^KkSowVM{{OG{Ke_n6hP~l+{=Uk&(YyC{@`$XDdwi%ecLBSjLiSrF8FzUR%{39b z-c|N~T$9kaQI3VTIaX6QxBtJGoteRh#h04CTFnzb`P8>Wqa@<h#*nl(oA`cu%+l-J z!1ClU|3BsTe_w89*z>ae{;}8hKOFvLscCs7OO2zcqW<x3yGHre4?8R7P22eXUVTgW z{|B=xPfp&o<W2d$zYFd#JKa8ULJ(d=w#Yfyyg0Nh!N}(4-`V&7^DaBycC$9%v;@D* z?#{i}Uqu~e{>?Y(z9EOh)~L?-Y=)UF-|oGWlo8;(u2m2_|G4~h)0Y3Q>;EeK|G?jG zU?0!*|CYr^^Ro><D{FKAY!KV{Z|})}e}6OnID7w(@4LO<@AYQ>FjGHu>Gf~M{ht=b zKRqn}&w$~2Ofj$K$Bs2UnT7wpe7F3(hwuIg*-F;-{@1sj9?z@i{oTKpqoJyBR{Q3t zORKYv2z_5~%YJa;|JLmOdpjQb-tU^?_4$n7i-P7yKSW+GdH3RHQSQy_5z`I|^S{b@ zFFx;&SxOm0!R@)_>x#3to8Md$wnf&eWWvpvnGQBDyc4Y#-jU(He_ifPnrlZ{*Xkb| z7in@X&7H)tw4pCIF?v_Na9``omzDc1UOw9S>)(p&S-YlH&3L;vYHc95@CD0d{<=Pk zs^7h-oLBvihr!?WCrf+zbA}y1&rP3vD#!k6=!4xpu@yWGJ5Ls0(W<&%{PI!es?@as zpI@i$*%cOEnJ2n_-S^p|p$Yf*#Xol~-^bDryj=B;bB4U(h1PlLZw_VJ{k8rt*D#sC zRyO3o&dIyxTt6KDGkQ)-+!v#tb!9v+eXjD`R@&9o9x^+*d<%>I)Vp=ue%5m=3cKR} z9KFx};K|8umd5>Oj8|XDD*oudb57hH&>0TJZ*CYefO_jP?n#B$rI&`pygOmyTeLGq zW^&z^7lE9HJGk01i}!^jtXcB=Wt()|nTfaK_#9H}dffMYXlLM=|08{mWNk(0x`X!i z%j5s|UjDGHn*W5ON4v(k^M=yX=6Ky=ySX7g+~|Vr=_6ddGeWdZ#%O$>x<~o7x5@tf zZ&LNUPiI%nQ~$e<L!F1!U`>jScR1IZ4Q9!T)0JjltDWhoej@$yl1Wu|n|y_Dn?1hn zQj~rD^UB?~3g$@6T_%;*q8}ccRjO}xD)#(w6D8*RY7bw0KbtP3B3$<4#)JO4_x4N% zC1;=iI9mUG{te3wdyA%DIUQ{ClYc+!fio{wE_=O%<Ix|6-s5!(J{&qcZCCckJHqkl z|NoUUUf7<TadLybV+3!}9!+?Mk;Aq@CZEgp^oz>3OMgAdukT2gt5o>6H&J5aDJzbe z8h`KJtfySYkE4VvYx3B%ZFKE!%zyNNFLrjt`v>QGv;HkpIrZk(onrrj&u6QuJk)+$ z7N^a-8L2z<vZ?*yUGopxI4<yi(=TIr==QyDW(@cKzAOKH!I_`Yz}#G2@<_A_2a{gh zt}|z11RG}FtbF$T>*JqEojVQgEQnbbz<JoR>!{K5b6G2slx8jqTOFwPy87|0?DcnF ztlyxyGTM6MZ$8EkAJXj)ec$&X&_SJPmj3I)x;ihzRkC4UmOo_uy+wW1j9qP~pU+<& zwU(*(%r&R#7`c5%-s;z>GMu;jsj@PF_3HHVi8uKgvr<;CySg=e?*!k?>E8ty{_g%} zP*%vpaD1ZF5oyr9Vkgz@K5{a&wYOUerCkv>*|zw2fzr%p=fq_g7TC}4vVB~8Qzh($ zZ+Wfj(pP~iUz+ZWS!rw=-Y4(A_44aHf$I;=cs7)#SqN?ORGY6f@q%2XGwY5-r(Ho; zmxf$?{j*}D*Um-vR|kFm@yfaCe(7J{&wuW)@BR9!Yu-`M@00H?Tz~e<iDH+XpJy-P z7fZOn;k<#jzuUido-ljKj9{aweb*BL!#LL}vF*ArImYg@&ir35)-x46JK0|7RGG)1 zv2{a<tMalvg3)p;U3V+@O31zOe<=Oy>&Z1KVR4-vlPnAj7%~pOH(kH8F@2up(Hk@3 zGSt+vHg3$ARq*}pdbS74>s~FdII0~dxc}c3&Ak`g3ojmeHFMs)XSVNa?U%Qg{%Cl; zdPhy)^Xeb#?!~NhwQhS6XR+Zq!{TJ&kLLsJ7!p%A)$Xo1+F!@faQy!_^PLjYdS+== z&6#=S{6=4kEt?fRWl!H{J)r;ZHvh+s_kZfDsecvbm$BGzaP565m*U@NzKE>f^L{JC zoiB^3HQ)R+Vo>9{|2d#gEVVz%SNer>^|yliwd)xd)L$3a|F!-f8$;(3i5JobA0BQ$ znerv^hjPEop?}Qmj2fX?;ZtUJZJO}<Q)1w%Pi=Rq)8p$-AKh>}@uur(KcgMN?agnc z&jj<QzL@vExH4w_+H^hN<DW_xZW|>(woRP<<_)*@%>^HvnfHd2YEJ!n%OG$~(5fq% z;fL3}E9JkRf8y18w}k;WrnUD>o15|>YOe9~PsR5eG~639A6HGBa#tas%KxRbnPWvP zv$|v9zEjTke^~$BenqiQ-k$Hkxw(&IgrbtO&(<N@OdC7}`FC9i7U_<%{$>6DqkX}z zi}_3wihC@$cc)58L}(b>)P`$)n=RcY_*=Mk=?zga4ZETO`^l1T9nU;F(!5VfYbsZM z-R5<_K?A<C9zIO`_jCS#$%g*=Kj$T6t`x0}Z8rb#djGfA4d3RORNHJ3kF$C4cEb7R zmNg0H{C0nA8H`#L*T%DiESR+?(6_RVHz3hz*6GEU|4g_4r?PD6@*n^H{p-#7x9q5= z%Fd7TeluE>{Bf=M9nH`5;d=eY_C24bMrlqundXtU)jZ|?!R(4xoVC4ql@I5>xw+SR z9kZ_7mv1YsZ)N{*<@5PZlcv8?sV&nw-~Z=@HN%eA@2WM#y017#?oOPM;=DdrZFX;{ zgS!8`l)5~#nsaS+t-0QM(;uHRNdBj8_xHL@g_m~2zS>VYI_vWmJU6&(pn3i7hw!c# zr}c{af6m+fY1Z_6dllc_(^%v(w{7mDM=RuJGuOV1FbybPDC2c2_w<5%ce80b#7~>1 zJ^MOCf9mTgt0wB)Jz83NpKWzv@A^sq{?$#o9a6dJ`Hj;I1+Pob#Y(Y1XcOPl;Vxe< z)zJLAZ^GHHj1zoPJ(q2{bii|oMdc^Syy}JPei)jW9lLYq&ZF((Euo5RyDkK~2(3}q z^ZUGM`#&Crr#Cgv*?bmZxIF#bgB_}6OTIcy-{w0jv_PxNH{2lNg4>h3>#MEL_hu*? zo-)!~bLPz(9ru1Y)-7-TURdb7=cR8x(}V2z-%)?IPv7@t>FHzU?rsmCPMpY_@$s6{ zM2`=brtfR9|ND7A(*e(C8-x>iW-D#8V7lM?_z~0ntM<%Gt6EoH<Z@ov6ZGi*y1pRB zX{i%D+S>h(=P%ArFlX?$`@~@X`QLxphQ?(zT#f<;hRZ(3P0<dGD>)u(^M8)s<+AtP z@tY=|y>H}F^!4RSNh3+yI_9i1t;fo=rbd0O=(~5?WNFhuw*(0`{mM?c@AcoN&wu0+ zxt{U)^3_-FEPXuF_i#i;L|cFT<NY;Vv-@9fO@06FU}?_RV}i1BvOC{N^w+(XXOx&Z z<N1ZSyZ)uumkUYV+k8~2-=>yRTW9$+U-d^jJ|<}-$MY}Ru;T9S^8DL6e_l4NV=H+( z*Z$PY$lAG=nzvurAO8L9Uj6Eyo1RvsKkrgGl=F9Y`TJ)(pU=D9AjTa%@onXIPFwGg zb*l5ve|~lSj{-ya-O}(HuAl1lpVV!B?mcd~C!e2Txxd}PJ00I5B&S+VYP-jBWlzJx z$G=2Af3^RWSND7Ie{%)4Us*Hf&fR<Hb(F>nq0;SpKeWbJtUrB2)~Y1q=Jy*Lov$m* zn?KuGQ}yffXqCw)1$HFXUfpRpXG&N-OP#F!n$p)huint$ui+P+cKC9o6w@2Wzq2w9 zE3ENRnt7~H>U7eBm;Zd0Z1$FFU6xt&cH(OW32E7f-*(5J5w~Cen13l>N%f9(a_6}` z(o5#7eVv^jrak3!s#j|5|0O}U^`~u%hRmscm^ORIn+*NODXzNN3*sMs<-OjSZ(rT{ z|9kL!_6N@Pzt`y|>bPY;s9j&9`Tz0ddY%KV6C;ZxZMR>E(GQdQQP+?<OXk+%-y4Fm zRmxubL_c!h$W{10fzQ5YZQWt%dmB`L)#(1%=Wn+9`GSuhKUUbqXX;NroA&tAGG=Dx z!buj9{4HS<FDfB5CJubFlM}A$JJCGvWQvB^VxNa;Z_e6Qd{F3n{9&{G@68NTyj0uT z^%+0BF+Ts{hw`p1*M;Z*{9kd~Kcn-{fprHh))}5M(AMdFpWUChGp5h>S@+I&Cj^%r z^0~UZ{C(WFy-Hi1)`lJa{x`Q?>b};>5U$Ht)W0shDLCWmLMFD}-zszc0&lE*-z#ff zcBHoE-=E4pIonf5jvP5=UL!o&Cw=3ZV-{bT-+n!v!fkPSg#cgt;?y1K=jJ?oxBK0p zwXcn`k3O<#b-Hi0z2dcC<ptiu9aH63PN{bl`>^_9bzIH=8;cZf8Z4SL>v~-AjOFr{ z+zxk7Z~J2>CszMuyVd)XtKaXPJN-^+^zmCaa{FTIg+cQh4E#1fbc<$g_%kaxnAdo_ zHfvj^f!Wf%8-<OZPP22iuH-$V;o6y)&|+`$yMA{5YUy>dDM^0SAC{UdUnd~=)>e7_ zkE<u17Ww%5GjGVhzwgHFxb@dnulQte-ZbR4b)Dj(I{WM~wkqSDF@5{??TgTwa{l?w ze^t6GcmMk(U2%5*g-t&upP%39?fr9~{PpkCIEzvjoh{tFCEM_NOfhf2?Kg=F1|rjy zUS(f4Ss9}B<nyEj>qUh+U2M)NzqC5=@%8%WpbpD|^{!KT)~{c$ub2D%-uHdeL6;(c zmXS!`d3Cm%i%I8l*K>si1)B}0#C}b)O}Mo={J8eKieH(Velj`lF8y)##8W}T3%3=# z{-w=Ki!rY{KX2c(!;{P2+&Q=|)~d|%VMpV>K$q_){r^4jH!}KK%@E=rlW@O}>2KnV z$(d0r3~G+BwJqP`xR}XR%cn##!pzhCeEt8w=j~7W9_QPf+^w?vj-kPc+xI`}G04^Z z5Y+2`{bWaLOjlOK{X6-qa`%Z$e3&j_)o1@JwnQUUVxr<b4<#vE{iz!sJ2yJ5&~Q<M ztp(6?tdFzSTX*xe|9`)~zxVB1%Ku`!@V@uQJ3mc2`J~BqW!GsIwvYcVeYUYV-<|rl zE%C_j6-gU4e)}&}b$O(Rl<XTSF0{^5vJ!pw`gQaso1>@Wz8N(o6z-hHc5&shM2U|l zm%rZi@%>Yl;?z~4y63m*WZx9huKxBWu`X`@k8rK2skUz?sxJ-D=wRQ=JL%*Tru@7k z7cK~VzrWtQQTN?tFIV-WUMfO2w&{9iMmaF9^vQFa@7gt~Ch_>D+L>pw&cAzbL1Ewf z;={e>%mp70S@y-(|NUiF#VypTd~;iGa(1hq(afBkPc9#9ZnvoTpm3mR18ZV3=(ORV zOTX`BZ#X>vpGoz%cTeZ-e$V*e#m2<~VL65k`t?t>8DjR;%shC(`yCtO_q*lt4C&|R zFSoGYpK9|Wq2TshtJ{D1_kP>@=j{IrovOC>9g~k#?(0vLx)GLqZ==)u9m&zXE~#$L zo7T;mH`(ik$R^KUTvm=rijx)QUiv=yz4kM&s<rdyt^V*PQkLuMiOb@aMRyAsjAmXt zEVNB(-+N<IQ`Q%@sVcGdg^yhJ@SE}|-+OJ**PMG>#;(Squ7981+C^Go-Gx8e71ppt zZf%*T6jk!;_is=+{pfvow_?BASp^O;i5C~2Rqej^HAZ)0i}qYUeeIXJB3y;`e!jlC z*$dqFyb4_}^mq@ilJaiRMHM^u?b~NDpTUI3H<48&<#R2!(HFPBVJ~iPd~<ry^ZS+8 zZEtKlTY7wJ;J*jv@(~3I8f*Gin9Q2&k+4=VzxDm^6&v2ADQOCQ&l8Y+^6u_#@za|$ zrhfT#X}iY$lOG=+XRxUL#`Bx+^(h6=3fh~y>*X1K^S!yhLM>mydH2`y-!tQXr25$v z3pE^{XCe7M^jTM^P@k*a>g%^o3m=VmpLbhr<r1@P+&5XQKi%SZe|oux`d8b>zZr{{ zYF$oz`{m)r$Y)-^KCBM=&e62A*y_oltyXiVonmiwYD_-<<%W!`Y%l+xJ~>+{`FXRK z?R@k{?rm*aTH3XpTMvaf-_b@iJufhKu*bge1O+0GaqD)c&3|mY5~iJgT5)}MiPN;z zmDSs=10x*k>;G?BeyH#9k(;;M+uI)pKYc0?8D6a-)TyfaPCIpTpNN`!zueLoz2nyl zwn}DfH=dSS_+-~&?mBVR|0mZg-HbN5|K{G}$;Vjt$yYb4Zb|!k<&eSb6s5-0t?!*V znixc@ICHaqrc68ZOYmefI~$ut@iQM8r>!$GdS}d@-Ti*5_jJ9ZS_{_3Fh04k_4v<l z`;Wm4HUFLWpSrRpO!7yagWco<8>O=k%wv@GEB?(}&EfR_)|;4_D=Y7=pYGRh9Db#L zwRXkHaHXKc&RYTfyEQmpzj>3hM@~Iz1(#suh4%J#>-!Fg-kVF)Z4-kp-@ku;rg1t$ z?u0dAO1EUhMRI2ZuM`1II9y-8FuF%0?p2@lyNHjKpptaK>B_ss=WSo#U6bo+H8(AP zhT<I)-($y)HMrf}wY0-*)BEcCzbl^2O#k5}ar@@E#Oq~;4Scz3xszj*nQf=X*P4Ax z36hpz=a*e3($>?_xUXte=v;TjseZ|`!sP<iirJr8!L!CwOMi=h%7XWIcTaDZud|qz zAFef(Rp{Y~j*qqW)56Z5J$uyBbX!r!l+0Oser?TXe89f{m#E#pmFF2R#CsIJ-e@~V zI?rRV`m(Q%ukGzh)bx&D>l55JBcncbmRrt*bs-B=tshm!Mb`?+&I(_BwW3~YXJX4$ zg~cx5Nd@q{Tor?5m{`@MzrVj1|NQiHTD*9r&y=7draNqbZ-1;7Ox65*Dtw<(=Z0&Y zhuir-&pcnlcH!@zf8Y1Zb1dDhec}#dpRDz<3l{?3RPL(y_~@5eS+~&F;$=sr?l6@9 zKd^U_?H=Ag1$^&c-`=>)^62N<GXYBa*^cEMo8siH%X*SFO2nV<7T4EXp)9M}#B;b~ z>4B?RrhGeZosuhQaQg4ZaPRBn_YYt5+p!$@aKeJW?!Ap)@C^5}yi<eUUE*3b)qqEN zTH5<tTeZUu%I<v^<#w)yzrlODyQGW^ON7y$EbGU+@}j*~tdQqD+@T%PvB)cecT=@M z)uifoJJqK}Zr|kDt>UsRH~;01t$CZ%&&xR+Pj&6?JF=#9nv2rGkB@gfIV<dMbMe#b z;+-=2HIJnkHKw1I&AnZwIH^Cac<u9b9ZTLhW#9RB=r*H8)teu)cuG!hvZxA4zcM|0 z<3|=p2gNhj=ABLZSUW#DZzt=8rAo6qd%kYp^HjGm;ymb(MK!gOpX;y6$>f*i?fuLC z<7NHdJO;b(*XxfetLq*8-jH}8^jvCVTaDG^lN+kPzpLQg`S;uHouAKHGsZII-?y9V zYB#gs$EWB2m>T+P-+X_(ZyNLW)+?{S-ng;u`s<JTmdC9>zSAvh>#e5wufJBsaH>o` zd178j2B)O1lm8<Nzv#IB6V3Nzn)OQNJ?jk*ndQs#<*V{kudOoM(;~&**S@c2oaTE@ zWlfLZw@R(OMV0Ogi$xCENL<|i_R{_P=lB0Tu%2PUgq@j(4SgqX-~ab*!@B&u$ZMNC zqm+|B^jW{_=>58Ip`x3c8^eyb+isgJIC}TEr%L7H=z5uk=l(XQ%I8bQnH{q+68rt@ zmqoz?1_txHCBZo@`#-emKY4L+@kV!>xqkZDCHMbNt7kp1_4@sj58myS{cRWBnPMdQ z+*L|mzQ6aai;|$Wu*`AA>8Fp{n@{)Js^iUP+cIr}1jbywrqcSK8<US8Y2Mf8qJHFk z&2#JI{9POBmRx>$LwHmD|9_#!+1(^3F0OCA_Tv7^-!{{y8}7Slz|*|sNLAU?jC(WZ z&Q+a!a*bE2Xr<)$_xI1Ya*JQvTD$keJZ7u?r?c;U;IsRDlznCB)|gud5;C^)@m74E zeP1Trf9KC<vn@+r2ryWezst$K|Jb6+cE2f)zTmni$E5RnuF6hojlIEf#6f(UNMPp# z&|b&FO76tJ9gl9be0}<E_xop{MRyF%&CO44c|@sgIk%6w>aq4E7srhG8#fxVv9U#Y z*_1svzzEtFuwZM@>e;e~FC4qSSAYNf|8MX2e*U@tuL?u_uUFf5e!UjW_~V7U{jQuH z4IAtv+BW7MTW~@8gy96}G7^p^g)a<`9L2YZO#I^EH@$VOi{1SGz3PXKDar{uMp!E= zE5Et7clXlYndj%(`uO=V?K%=F61Fw=g!r!?*Z)6Dw<!Izo1y0C>id1a{Z+0tZTLEI zcMPONd7<H@IVGs4xA*AN%VDR_&9z<`wmM{WsMpd<R$Di0H}svHV&rKwbIM^S#~W!K zjVMhl59mUHmOddCMuyLyKlAYNZvAqr#!g;+>g<^_6OZ@F%I3$fPnJ?+=aXlAaO2}+ z(Aqf$UDeydEQ!TRu!S%e0vAQRl>fa^K6~dQcdNO5yqDf~CC=LO`FOol!}b3ktRFk~ zy%p=%=eR96aR>5BngordA={-DOWJqtwEXq!*Q5EV8aXy+JL8x9H<x?)|DDp``>~7u zP2YFFBIQlI?D@|Ox-Z|AOfrGWh~4+!ym_+-SF7Guw+Jq{!M3frr^P}ATHbcTJO`St zSjaBG919695Lv}wcmZXJ#PE^au=_5<!g2$i#kYNLT=V!}E)EGU+a>RJcYmobpZM>+ z-lhLd1*(r6#X$iBu8+X;I8Ht9e-};K>8P=kVS|qLzqw!jyDj>C-(>0k-JO|c=Q?W7 zA2%@f{J;7`{Nh4=caydWjH_OD+J3nzcHZ7mpk%Y<ZNAn+S+lB_{5Ka{dZlTr`G?xS z4$uDcF0Op{-R6DQea_e2UrOIAhkJm6A7XJ8!^Z{OhL3FTSWJ7B{qldW%dh>{Z<yRG zjxeYRlQFloS{9a7y!v}%P=ds&mmjm@?pORPJMu!+@~GL9F2h@kzrQSV+_ST(Ks5=p zIBN~_F{4e-j!t@Uws&Je{^~6?;Wy@NDfU<zpJZYicXjon|EDW5WtkUio=SQtcV)Wj z9)+TKuGNPkKFZyT%D$eK*ts*b@apgQ8-Gr0oQjrRTT&xV%~nxAA>IGYWwq+l4W}#r zn7y)+bUQrx>YW2uy*jFMZFD^fw()qae7b-B#w|75f12+7Hn&wzsBe0lr10uM0hip~ zxtFD{d^wtHJWDQi>s8xp=bg$UvL&vE#;-pz`!?qz>#Cja%)<8lf4o{jJUJM&^em^e zr+}&d`J1yw+2;B|y{;LiZ_Rm<9hu&qd$(w-f%!kpe{;&79NfDtbKkG>41cy<or*ir z_ak3OWlxAJf43kzHS)dJ{MGeoC!MVlb9LUO&onk;Y*YO1pdOLz)snG&$*k{o+}m{z zsX3^;Lu;@KL?sH(7s%fgrf=ukC;RHyD!qeD>}QOEzI?kaHZMT`-<)svbpCAL9qwV| zogcp|^kBm06_sIX`<l%^{<?75qra>zE%4^Ai*Ht$is|MTsjl~XzOK*FLcQ^f_iO>f z3$3P?Y#8&`aw>$et+j}cll*(RSVPqBlI@LcQzM=+ZLvOc?J!T=l!&c+mu@wGQ!L`u zQ<CWX;z&R^cT&W)BH@+GRxT5MT)#Jc*3`&z9Jf<8*GFvfw|{r`YWBxB`#EoLaPM8Y zih0$~4_d$Ci=A7v12wK@h4wtX=Xv8y#}SmA|8W6#_M)FH`LE|*i><t~XTi2NLF-?v z^vjrYC{I*VbIsq7opV)ESASfy_4b;$kD4Xk&vbI^uNggCe2UY%_u96rrm|AMxaYLb z-LbIOZSRk1w>F%4zuWfsmP3zL@5wpJ_u|x{+aXDH!liG1?Y_{PTKD3|-i=FNo+*u5 z@$p8Eaf1Tet_w!DbCvJwY~3y87M%0x*IK95XRPl0`FJYg8ULZ8oIe)tk1^efV#`hx zzK~*Ra)`hB^Su4P5^r7#I-lBm!AzUQ#QpM$W%Aed+2-xPe|u(q$?e&_x1R0adUwjY z1z|V;pKX5@9{2m4T)keYuUY@i%YS#)6@R%bmc04y4=2o3VHbpMpRHb(soWXR?yr0M z)3TV4LYAIyQ^UL%_AXerJH|cH(A#t2?59iTu1mV0cx|!ju}$}`tls><bgjqoS@)AW z-QO;l67_Y@{tv5HrPl2~*)e(cHl;7I?Db{RiEOrqo8ASimgb-R^LL)%EkB#xFKk=R zc1pZBH0x#P&nLewbZTzi>%a7_|GhWYms`i~d$^`Ve(inRZGRpHYqK?7NDVV|{1T+O z;c9=ns9pWn_9?OP{Z>CdUM!D%xx4)D?{(@A%P&9G=}m3_`Kev$^?h^OyMJ><O(SkR z&#lb~Ze@*hy5=C=-om{ormCudE8Ll<WTEP<60ID?U7w%!UcFiqeL`&JoZUhHvYFW{ z*XL}Qo^?EnrzO|7c>dAalBJRt?`(g4ar)XlsoRs&Zp*&EE7AS7CQbR>{@b>D3)i@A z-B2asR+BB+{eMedOzqpda@Q-i>R76}*}I>=x#1eep=Yj1s5J}!t_w<9UwB>|KjbCR zTR&@V*4ra)dNuBeb8oJwdnfw-XXwifC25<jpFDoOEadXuofcxrFSBp|ywJFHfA|;O zYr!iwWge?)H<<OxOE+ZhI$g7S9L^%!!t>oO-F^CK@$}cdt&(qVzxut5tz*)QS0??{ ziGL&ayprgyi`en?PTuBY&)j%Q7V<t(+i!J@>9@_g|2vPB-&K2f!>RwGO`f&kzbm_X z9z9hKw(bn#TFS)0WFK+EylvwfH9Mm^-o-Bu<n~I}EzX=5`T2K_P)J3@mM4KHta2T$ zSFO18Z0DOzxi3x4mieCUzw}h)+uUu-#iu=f{igc6-0XC}8|Px)YMl(dvj;Qd9kSYR z=j7h7-Rl)AFK8`27X7xQezmIlohj3o&vj`%z2RDU#HrbmE4{B}zj42}Q-R}ytvJK^ zuOFE0b0&8t&YUrkXZy+7_x{{4S?fCKi0PMOYCF}f>O6NTe2m-Ol@fgKtL>4ir{|hY zUmWvEvzMnXce~^M8fz5>k-c&H1zS(Cu8mpP>-kKhgv;;(>q1tmO)0rYZtZ*ejXyeP z^M<ACeDf1@>MlGi3U6G`TX?;AWq3A2NOq{rdFBHq2R7yCoW69{fXC-Fk9>5*wtssc zTg+HiCu6%k)GSu#P1p^AbyMc;YMsvY`n1~}soTzv_W63}u5$D1({@(tVf~-yQ$5YH zu<O)A$=R9?o*At0mP(TXXfd%|$-?x=_qPt_UgUItC*^l9ygF>xJH9V3zLa&Izshe_ zy|?Pwukwbo+WN11vkSIvyil-U{a?L|X<K(MT(dVw)7aXW*&%bC$I>vy11blMd?&5s zVJJIvaGNZH&TXZc9*h%Crg^G-O}=arEqD8Mp}xo7-`65~(*w(2rtQ66J=L`Dyy>~U zXRp^Resair@BTZ>=enA{O)ue?9On9Sp1*(^iz%=0?Tc!YQ*X|AcC6}hsr2*-?YV}9 z3okhElq^iYaC2hl<;Mztx*IdIHoAYw|Ni1Y&JMBN3%52X|9vlI-gU7wQzwawNvdD^ z{1F2s&-a%;Zoe&B%W3vIZEx|>f45$CUE{sEEazkPo8JzaukvIYR<6|4o423iz>OCM zM}O}8plp+KSZVS(rU~a#J(q9YIL}Mf^ZQrk4e15uf33e<%Dx?4&3W&Oa~<n6>nj1? zHbPcMrJgS^J+dHwjp8!SCWia`+HNZp?){Hg)|y&ct-qx*^WOOeC5|u2=RdCq%|0WV z&Zu!t{A1Ryglk?_B3!i$Uqrc<T+aMkefrjczh{FUhfTM;_bhsiZs(nc$W>&{+sD<3 z!3&y>ac-3M>fW=fJNmku_GKf_WnVH=l_tK}C0@Js((m3=_qR=pi9D-*rt$sbs<=5S zr@z-W85D2jVsJh>U;Jx(YUIW}*SD+<5W4nZ9e1{Jn4ZqQ9cQ)L)i$=j`+UyhlhtI4 zjO0Dtb5DscXKH=@%Fy22`uvBbpBd)ZmUg|g)Gh!1T5sR`iC!-X=bsim@pP;CUC%TL z37ISJOPiHupJtrkqZ*xmy3FU!mYFxSHZ_{69F5N3cFA@_!dhOYrULsXzwN$8^%l9d zU-&Uk{=E3kn0YBij9;2o6%=pSG5_zfzdf(B^eb0JBo)<6;TG3tFfg=o+8M&6F!}7} z{|6iy*6n?#vHSa5R)x7<N9SMMYq--Y^|{#0ncH}i7I4S9vU1tSOn9|b>vM6Go|Un& z@75p|g{kKZ4J=q3;urECF5GtJ(VnPlA)PB*dp2+EvE}$sQyUSqHe|&V?-1=!hC5Zg zQNH$k45zm|<}W%VvDQV&(Ma-C^<~eXl_q`}J0il~`&qv>U3bfJN~A#bjumS{{%l`% zUwi4J!+Q6>e^oQ<nQY8!d`=?o=C^IT>u=eMbsN3V3aPNKh?^U=BXhQ{*vy$1i%w*% z?JIh{agE*FdFs<Iw(Xc&u%hMrnF|l%UbTO1+Yp|!^Q$zU?I%|Aj<d7lm1cdvx`^l6 z#f5PZZUvjqOV8b7mtC_u&3RAQRkw<rF^ht<n5*v2ojI$EpTX9DV|BmXliklw1j?kV zE3p0YGI`z@(0J(Umdne7^nx|be^us%y|;GPi+^zF=jRxUda;I$r;{rd8Y|tue*DiL z5r&yLU9!y93?6DiA8)M+Sba|TO6D}Kotb=VjkkHfY}9SJa}zlYep#pOeM3w`r0&H` zt!Z5`y9)Rkiqp>-$g91&5qRSy@Af-f4pvjIP0C!n_t(L>X^WSXot}Cq#&orfZLeRV z?fvCaUayxeQ=2I#zu02E|EKPwMpswa)qbnpAX|Gb-P&_f-?vH2H&=dYwP9%e$N1}) zh-GlKuy3*Q<W)I-Q-Zjk^jQh|e7^tZ#r2QL_xTH6@3Pw-z5emfxS0Igg)&An11?TD zX>#@cyK|*CUYy<^_PnvN@#35XnrBYDv*4Vw%q4%_MUI<>I?Umj{k`GeXXw8Cz4B4m zqqzLDw=aE2E1P9{USE69^H=kB7u~p!WqY}M{`M5M93BI!@XHmStIkTZ6j}retUo^Q z{n5Cj)7v)aN*m8H=Q*6wb63yzsdQ{*!cCo9x%=nOQ_tF}m8`s&VUF!*o9TKjpI&ta zE>la_5Z@Yg+)riayB~!NMmw2y&WVdRH}kxi=Byi_CGz|^qlC0<Vv*DLpGS^ZJYJm4 zz%$?a@Y2)MB{|n0ui4lls<!W}DA$Zci~INfvRl@i6=c{nGe^0GUzz9U>w8}#Ec|BI z?LT|PCz{dlLhCx=RL!+hykmCR@Eo|TK5vo9a^5e^zrSt%e!z}_t^B>B<dT46$Mnu= zUwrkf%yzlw)jta=|6h5;cD?xZnYK;qJ2x60JLaZw?$ztSRZ~B#Uf7tS>7#6P!8b=; zM>SM0aBX(;k<YO@&PNT4%cK>#q_;kC?T%QUnzefWvt9|y^Ti+c8eEHC`9q4WP3gm8 zlV4hVt}Cu;O*tLq7CUSH@+i&YOAi`#f(FiiSgOzL;{Bd?*KYQ~Wr4o!N*88i=iFAC zd1d1Q>tEa~3v(`gea*5@P<}?lG}k3|UzuEwU3|QM!s(+wC8Kun@3OzT^~9^^bABjz zt^84~wKR3*uer0dYZx3I5=@q?Zdw2R55xKE$#x%VW6X7?KiNGaQN!=hM$ctIOAhh; zK4-==Gi%w-`LFZl?hFWu)thE`xL}EonXlR0gPh0rnsF&FUgD_#Jvsf^oO8Z0ff_z* zqaOch-OOO~WiET=ua&|KXMFlz-qCNYi!+;ke8bm0wSRtz7kqf2$S~>TlU?7cA2Y0a zY20&fUf-<4CX0414bm(8`AL;wUfnBBy*YNw2VR_DRa^e$URqjO*UgufUWpvRcRzcy z__6aG{qaME;ql^Rk!~xN&GpCq)_j<7?LdcJ<<W0z|JQChVtSh;d))?52WH+u{*p<2 z4IeiarY--Hk}*pxSy`CjjeUsH+><&TyI=iVrZ8(#c>1-qs-Abe<bG>=S4#S>jsE+a z`AY0`FW2gm-cwht<IZ~d-TOx7pPqX^W=RzKR9-UM@TPz{JxarWfB4prg)`<Yzp(za z&(f1yE-c!S$i46QuGr7ZN_|)INo`ntj#1$6>JKse`X(2cpB|M?68SNa-8Mrb;La@f zy^CyLTn(D|@}_0i=BmxP>M})tSs8wn^OQW`&b3)>%MrawAUJyV=T=RIN4#5eZ(2y! z3QYA%J&{uU@VVxc#3R=ao9S|_58nA~(&<;%Q;J!II*&~4-IG;4YkS@6=f3gUZ%ayT z+Fs|`JiA+EdagQfW%$Rehs8DG+oKkW$=R(`P~ecCt{s~7IngG+w(sZ9n;-W6xxsPQ zbW8hV^F0m9?)^*&&$%VS_{*NOT{KAYI;y1ZXTyBp$O(;|O>(z?e}9{P{ei$wyVx|X znLbI8yX?cInfJyOe|z=(<-JV-N%4Dv&YXL3_`~Jp=ZoImiDc;d{8{4wk8<GZ(&-mZ z-`ZSV`9*2!sa}Q@qnUjx9mCvoYi@K;_IC*mR%Q=a8T0HB>)bn^U#ic0^5x}o#u+m6 zdx{x$e3iPIH8rbZgZPiS8i~AFYMYHOGsNtwn0S(Nulik6lNMR2kEggMKh-nd=zcx@ z@g$jV*Jg-EIb*i!OT|)VnSJ$4xw_WSc)kDBxf=`Bo_)zo-5Ij%!t-N>Te|(<&sIKS zc58E9$(5(Kjy=Ep;gjk7IoqZ>-pTjy@(oT;?LRfif=}Ss`I*y1=gUb;toZO)H`R30 zR%x}y^-q^y;9U9e*q6d|{nYIEC|1VCpo%)%Kaq_O+us^}bnaL5dT4gE=UU9$!ZkY? zzgF4mU7XC*w8JNY|F`YBLqYpKKApcz?1aJfn2fcB=`$1D6J<Hst=ISo{E(ZLIBCP; zPws5%R*UlXy*~EcQ*CPB^YvxVSHzXYZIxQO`a+gqL(;|*cjkNx>h0|-e0j%}L9ah9 zNi8Jg?71@r=Jx)UXUf*{Fi(-YJ@0iOzjOAhdHr1X#Sbe?y>|WS1JmOkPm5%1YAST& zH>--pKacB;UVr6v&HpQz41RV$C2qFp<yXB~_Il^L6NTSo@9-b!`zKpisd>B1U~Pu1 z*`tk;M}L`b*2^y9zt62L__cL%!J`lQ_dl;_Sv9d}Ya8drnp>+vX3V@AdBk16-@tV7 z)xg@;eX5~6ZT}{G&HD3ePkwvEi<NmN?ygRhoA7dFrXGJkgMqcR?*$RBYcag6tXgxT zYpySqsk*g%xw@p})%EwwA24vHC;o`ryh!og%4Nsh{52g~<6L=47Os|PyC`yaPKWu% zzNY~zGnG^F^7<}%R~gNjH)~OSy7IH-mX2MS5>=bUHpK|dES)V7{&QdU%{j55F7ogD zdP8p;d+)uorN_eW=C&N3(+3L=xt=z7l%l!pt;v&Js{*4#Gz}K-(7AkI%iAAT+ua{~ z=NzfJ_H*+zvp!D|7DwgE;KvH96+L;UD1DGV-<frFcir5qwQj0w-p}$$Etqp`VOaHd zhwZ6Xwd+5KexI6kUMK&E)oP20!oHRav*e{EW?cM}JS#!s#=?zB5oLRJ77KS;<lXgD zyRFlE<?X-xsjQA{r|o?OkN2KG>sR=2&$NYhU%yPY`FUe9LySfJw3V5;JH(%RhrBM8 zEn}{5Y>;e~lyv)J5zxCp`Lx-|r<)!gpSkNuP)f+QoAWPL>(8$_c|+v-s+$Wo<VfqA z2%Mj9?Z0=Ge7uxwT1m;A&r1V7!`1>wKhI-)a4UO#YC?iI!_F8s^)o9IX1U39CC^e@ zcJW8g*H=AP_pMHp$hMP+^kzEz^xo-hvYRSpttNP;d#W6s@qCeEgH!9V<h!MhZ@l<8 z(Qw(Zt(TMDUl5p9yY%oOgC6ZUY;$k@&S^^IeepiK_4kYvB~Pun-T$ApeRkjb?AYs- zaZ9DS+nogU4puli>|Mrx=6Tw43Hk1COC~P~`lX;f(@W3f!tCb_YRq@bWOB4`$<O4D zQ|1s<DnuU^z20fl+?PD@Z2Qt3LVQ<ueOq;AdiNQ>Y|HC8h4Z4;dTC9$&bX0X+o0EC zp;xh_?A0mz);`{(pIj=rU;5_N>l(Q+YnkUBJ6Y*1FFE(mEVZx~iJNq1x4boZ64}-$ z8E1TYqo>u$A5Y^dwBBmRtDjVw^uhAu@2%xQdjdT}rRHCcw0G>je%IiTq0G0LE0bKA z1?<Bb@2e~~Haz5WwQj)&Tk~&nPd@MbG39>7>FV3H=idg+zn{6XVDohw4zX!33J(`B zU;muMnIiC`_sy@yLt8qgDz)95a8zAbY~`A757dHBR-DV;So&~(_HF^~uaW7K#n=A3 z#ggcB^5soSzxkI=&i1n_os@q5#qq_{^^C=*d91qr`bXUb4PLPoZEJ32e2Q3k>{h}p zv4s~}cK)>Lo2&SA%S6xpGsCw2vGsXUd3NcgH!?Cz3&M(bRs^<7^z`-^8C$xlet97D z!)2<UFPq0Qr_zqe2R1GKc~q%rq4bOys|xK)Qj9V`>fV~CJxlfXTotL=(>%>q3on26 zi8Um~DJ*fpBU6WkN$c~MMlA`t_PzOa)yAUShqv7=k1nnacx<(O`GcD^5^lkjKF8H& zUi*E_MM*H+V`a5oi<9Q<Z3{F_4lh_}7VPz~ZN26+@1FjbEw#yum6sgu61Z8@w=7m; z24h=R%>E1>%atlGLn2(2CLY+b=7;GcPjRIq4&uAIrtNsmsyWeT5~uk_&f^DrUbS5N zyQ3y#Y0R<je=Ca9v_y~F3OD%g2#`GTReS5k%O|$vm6ZtJYAW1!PRB$uTvI=m?Xp4g z%POUb2fUXhNzP4_Dm;^T$m@~IBpYTM^GR{+h1@#F4{a1K^r_lyd%t(r_PbF!yoai8 z2k!mkaI{@XqqWN{iYsJ>@6AnTZxomt21FG0zKdDsV6~=spIBw-`VDf1d%CmFv+wg4 zIOjO;`NQ3TWgo2^7nq;Y;&{Znpx2B=S6$|Ln`1)TCC|fZbFZ+gbec~4npGaNEy}y* zZF2qBMA^WV2WEB_o}0_xduSu)sm;5l1g?$i_g+@HZ=c&msRgrmN{S~=vFeBtTCqY% zT4KWarPpobU3K*5zWbth|CeCwYZs%FjkUKN?oZS%Ff;Oa_I%||xv&}eiW5DKKg{@N z*YC7{-O0J0>5nU3r6_fF6&;O8SmDMI<zD4_H0;W+O@8x**Y__IJ%9G6lbzl{iK#of zm(|+lw}19rFso>n2_I)@@Jy%X6~A15*u*bf^FnRI_Nf#362JBq<fu)W>9#WP%&~oj zb#)f(v(y6H*;eex$=n*0s&wX2UF8p<pEVM8$r>`Z`>tp0eS78o)8ATg{%g9LXY+b5 zNc+4bh;zdt13|+}tY^RNa7LO5Iu2SeT)OD8+wo10&uloEqGsp#t+s#FYFo{`yS>J_ zOd6sBEWIr<XO%7}6fKy|<|WB(w>ns2^@m9kSxa4<=H_@`PF`$lTI;Npbxi%uwA_a( zIUK1g+JZKk-z|H?Dp@0IJ*8PP?9IL+8ENZ@88-fY?ct6~er5C&Z<m|*X?5H83;azM zk<(uP{E--Bp?{%tesJd7t!Kr!EI4(YbDx*&6W6<0mA<df=EcUCFI|;tXPVYGc}!@| zG*eYI-ddzMDKy(Le@cp;g6v7{>n|Mhr>CuamNjpC8Giw{(Dx1b+Eb%qvUh~cQ~a<< zi_P)yWC=Cq+!G$s?>AfA3@Xw6V!!Z}R^r4nsRqiWUhL~!Kc}yH=9)2Cpt?A>ySAF2 zVZ-kWb(8Mfb2{vdSs1j|z;KapvTgaNOdscPjT!rDc$pXK)FoW^D|>T`(_!HS`SwMs zlRSNnXY6RUzGS)j{fn(<Wy62VBp)nZv~a<!J<GKdXQ|Cx@@>I#<4hUjpa(Bh6@mh9 zPIEO1(VfxftHSxw#(v$`+!<_bUDp!snuxl*I=F1jOxq~e1ltUi$D2>4Zn>m9{q%&c z>(0W;L242Y|7;2gy47I8nY}eCH7)3Tu=4b_ld0UlESGtzP32wssj9Z)Q%}`CZ(Sdw zbjg7A&mN!OaF!`eiz_#yWfSLZX;7c-@*GDq;j~-2B3w5(Z38P+<=2Z%ySQ>{!Ryi( z^IJP^9&z)za3dgD;B>X_?N0OLx%VX2XL0W?_!~F**<RJk>}bPDfiZI~PH33bruS3y z>&~DVbsE1vHQo4N<|}OP_a)CP<wIL@YE<@_NB4MlZ9g2Q(c}=wdwSQDZqZkXoTg9B zllYj=ALljCS{J=oWZJ})BHb*F-A`Z4;aeHPbv&>BVYsj4M)S!JH%f`6<>t$D>D2f= z&StMW91*_HKje|NmUilq$1#Et57TZMCokToTztVws*#tucx~WzU7xbV`4y*@M_p}; zUm3DE=5q4A(z`nrH6}KsN^GpD{iv>U)pXg#6<!lJ30q9td+hawKiSm}4OXWvGQDAP zQuNE5!n<3KTUajH{9^aIcKIJ?&b{36{Q129c8ecRXSi|kyKUK*_Y4Uc3Fhqm8O;A@ zWv@^EzfhTh=glowyZQN1?bqY~trx35VzqYfukh3V|7Eo^FUy>C=2i0*r~iDDZo2)n zViuKt;in`hKkNExQ?)}nj~*v0M+9~_Y28e@@cQuQXa45S>sxQRnI-Jmza{5WZB@>D z83~oC-tGIhOTErqQ1VV-vthgW@el6jSBI|lIiJN``{NU<5a-_TPk*FZYv!fQc&|Fu zM_{hPu66D!m%Nuhzc%>Ab@s?*$&<a7Z4eHuJXf}Q4M%kE*=@;Ukhw?}M}ZdI&Wa1I ze4Dl@XI<X(=*+a4Iekmks(P%8TpD-vX0rORW0HGI1kYcN6FXk^DA@OWG3OqIy7eJ5 zDpcp5o#5FnIc4(7zIg#sry`~*FHqEP?e&trK8@M7YHi{X(>d8wrHVIip3<Fo?M9U7 zVV<XpX3R*u7I%6}X`Ao?Pc;vfFPfXqZQis~rSz`V!M-`Vbq|6yr%T97vL__{F*<4) zdvZb0oa5Y+ul`uqF0ab?=>UI!4D;b5CU16VIVnxev97MZv+cwEwKdz;hX_>fX;SDg z{(CJe)a&67{j=wTw9dY~AKqOU;kd*k&`<eiz?8|JH`CrI8v10vox3ya`FpPI$?l)i z*L~X7FH{w^tXKS7<<h7=)rDsxSMhGCxt{YW$29z8$LxHG!lxZ+rVdIo4{Q|9-f`UA zz4mjN0gv*ue{%c230#j^Zu?+sRqxB0npugPuD$%Fa`a~;gPQws&$g3~jc%GSpMUl1 zMLWOzvo`TNTnEl>zjN&2WA~S@Uvt|ZkKAsTBh+A0zp<2mVx~N^ddTY3V#`aMd-FXl z__`WgUI_ZnP;*?7G+Rdg*>8V)R)+_nGj8mcZ>U)~-^Xl9;q%{~%Ys!7X=zV;e55m8 z_jcBfi`!pB#Pwv(dQ!A2pRJ8ev!y@x_L8vfNw;T7G#=vmZhmZ0^<AFh6Q1vyviPI@ zv<}{tUYYZ17CLCH3>A18GRwtiP0`{75q#HstENV|-uK>FGjHEM*(FUSKlGBOaY{*Y z9=err>qmy+g;$Sc#P_*6$4%#YZ1Vdz*AnN&yJF@o54p(p^TSf^CBkaf?#`7H5+D7n zYL3yq{^79C{<g;xPQN~TVBNyIZ*J`lx0jPqO8;s)by?KyS6jS(+bp|#<3q0+hsf6z zXYStN5mpwTIdc}%fwkdDo$FI)6`s^MoRQMzyUZx1=$1u@R>Jjl3;T{f)V}JdoV4@& z0_)$?G@2{cMkOcZ^aP)u%aHKoPvo-YYK$wwy|27V+`*{TXZU5xLVnMN6f5t2`}>_7 zj~|=4!tLk!ZPDAe`j#v$i9g0(_tk1^K$5Mw?a?PYrcLqdiA%~0lAjaO?YhUn@0LkU z&FKUD&y{Z%emKPJY&}!$q02&rV^Y;cYY!DCA1+E-^DLO>@Bu#K`|6X-yk7nbp6CC- zyyZ>cde@~_7FCAma;@!sR<c=B?yiY+|Kw?|N}I))Yd@!?=Zh}wSS|48mg#|m*;^Xz z3~l?OS1&lkEUce#q~=GXzwMd+M3yej`18U0<O9~b{xr0?^wTHi)kTvv7X2rWZFKAX zZ53O5Sm9lFjGepLlpV{1GMf$@?XwRH<UeemroP<b?OYD|{sOHtO7lFIYkuKpFxZf; zZ(YVak(=N37dxAz#D$$qzt;R)ro|RrtfPO-gm==yjW#>7C+u^wXYe!POqG>dHpR)* zQkbXt#{~c9n>oI(Vq*zBxjSfLrtOoJp<YXbI)50LP4#=+68SUt^s*@a!&jI%xEnVl z7fe`aTm5+Fx^n(WExm3$B@1)K@(X%e>vL`jner&lJM-yp?UO@0*4&g7-XF)7ko3kV zEg(6`L`O1p#*c?S&#%V*S@6)&zlC#?o8H?e2e#bHD0s~6p)x6AS>4{mwYifo^e$cd z)yR8oz7Ny=<x$sGwXQrFsOF|0IPZGruT@uz9?#X4);76N>YMSmT79O<%uBP`P8;3W z|DWODxyEU?HpoO@t!6#4s?}@dkrPY1=hzo>HC%l7Ipox?`+uu!{e;>Rk1UOjIiIca z%v){c?$EZjE#{}c|2f8yal3E_t99JPCx+iY+Dy+1?Ef8<*>_WN@8?;wBvQ3}CYTx) z&D<GqHemhk!vC{1n0$P!_t-ND+t<85bU?4Cz&U5;wOM>@*FPJTWN((6I?c;cv*$%s zMQH~g6YpGcW+}FvSyC5zCuR5kyU6LNtZgUuJ;9PQNBinG(;K%wF6=E;n*RFnEar9w zjk7)vcd#u!m&%|um8-16Hs|z}RTDlGh6r0t^n1`+YZ^T#HK}OULfcyoo@$e4B-Xw# zm7k;^#Xr4z`_(+pU4^xe|8V$enJLK{ANVf%(b7%eh~dh8(F=pFd_FfLI<-#Agh_U` zOVo5tofr#Wv+M3=HcMo0l~0(RzuUXs&#G5=l^jp<Zk8qHpI$B56#45=bI+2wIV#^m z>@EtbWw5)b94ho#J<;WQh=gNE*=8?SeaVWv-lE{jD<xXJvd^48UG(f@^f`WzQ~2N2 zRiPmQIT4m|iJuh=U&KD(|Nns>v}{aMgiC~r_1)g@asU3k|8MuNdTrR_=k@=d-`tul zelus9`M!_6F?%Ws4_42yub*eW=OJ&(=E$<Qw~p%nIiw%Jzc&j$J8<Zkv(1ax2L~FN zYn~{}KYVd<F~gsm^Z!cbS6!Z6@n+-kii6y72Y%oGU-$3b`+t4@b)P2l@bG+S<gaPC zzW?7>n_n*$7alu#eeb(c9zMQL2blQ{EG<v&zW+CGN>I(4Wck+>)wi`yyM&~1guUK- zRj$NVrFf;zOoO&NhmQ51{va}Q{^k|!L5h>zI^~)e?5F&mHLX>$s^)q6vlXp{y*Fd} z_8sCA3heCVJvHN|=gmu1+sw0;Kd%-!+_N}XSon;OZy>*M*Y17yH7Zl0Hm;egaG>|p z-jJ+_zI|>lYvhjx8BXKdzK)^ehQoO`@sKrMD<htTt(!7)j%0dK4Nt?(nKLb}MVgwP zGmzT!<G|;wUqlN2GF;XSUUlv8{JsC@?=|n-sJi>q-~D%8%5S~N58i$%G<EhdBLf5B zZpDOd#$f&lIuithmsKzsvrSW#QhdUw?CoLjfyI#Vq!G^pdxm?zAAkR|L4Iv)$j`8= zd(HE|&0OAlqk8|rdmEMgwk@|WG`fDi=;_Xx%R4tKCzZdBzOR+pWO%iFcYmSt>uK*r zI1VeGJMULek#PIZgR93a$^t)6p3Gb_chQqCKUieHTbwreWM$Q3n6Wgm$h|0aL9u_^ zlDIAZr||BaQpc6{GO*;>jPLFOK~6g|b|tnlZ`D(s6}?ciS?_t<v-8^WRWGg5c^>Hf zRpw!CDUuRBT)T&P-6Z$_v(}2;`#B|a-boFY#W$T^@0Dj@;EUV;DS3myo#z4Vfi24> zhrEAhcj($ZWrhRa?kT%$y>)0-K}tocvi+O;>uoYCdxGy7tgjGiQ9N|Qb=yvs=SL&5 zBLdAPa5KJp<`v|{@tiq%i{t&1TiN&8#nt@by7Sce{XQ#)n9Z5#*45P>cm8y3{P^7A z^%}X2wGFi~-PsvAw_cn0C9P*L^lEN&+*QwgPSHE{-46ff$*wcq4)ou?X~4|H{P@|D z*xWzW>0Uptm`J*;xc=tPs@pGjR%#!;&>5J~xR0ss=k)r@C->w3z6$>c+HCe?dHpYS zo9b^o_kSES|Bzn)E&WGp{0~-!1M~m?od5W&`TZmJ|Gm8rKEH3@-?#aX<Ntq+|M=%; zu}$qS5rz-#^*`EwY>oeITJv>v{MX9mtB+l0KKi5R`<`!=5#9njYf27VusP4JE-k#* z{)ERfOZ-Mq!F@}kXKF<onB(?Er2kc{NGW!U-+Sly<n8A!l%yuM%-MS9+@_gDsiukd z^Lq|ncq;vk&6y{tcj4;hd8u46JGO=1(!a3Ps80E)MBf2kpG>P3skBy|YTXFmd6^Tv zvlkfgKD{Mi)9~z@Re0nx-(L%6?td1{D)IeKfLlkF>5-k90Y7)Ix%zcqM9#gPx!3<K z=x_cz{l|OxKkN(-j(&b_VY{{aYhC#R@lTPnl+OD8GGfmCG^u>swcL4Wi?=wgdi(Q6 z27mXb?CkKo0<mMamwesY)x7A=goiT6boUn5GyJ~e{XWzy*x;7P)@_oXx#cyPk8G4R zUbLf6Va79=kTcDRTONFyb8k|m|3sC(4^KA6CTusKRq^MA;k~NwxeNzRKbL>><VMw` zj9dY$oh6fw+_+cE!%(s1H%G7U?B~+0ie|T@Cpf;aPv18~o1fQ<&G7NIi(Y=ZpZ_T& ziYOLoGC2w;8B6^%o9e_iHJ>fb)i-ac3ER)F{EshZCGbp1+$N&JP*>LF9KO4H#<G8P zRUS`fmlWC_e0ENcK_Sybz$*FtLhtE1Hda20+39D_m-1+@OI+Lg{<CCyz^)h3Z7&&S zTFZN-O7Ok?-R-dOCC~pg?Liw2cg1}UOqyu3WTum9px49M_y4F_&E>QE|MUD~>-#_X zE}0w^-}iy_|D5Ii^B--V|5xYVL-~J<3?KUc|LFhmCf)wE_;ZF2NA>Fjn-4PF|9P%_ z+CNziSkc>Yb0NpCt{?Zl?`uC_|L^mQ@4qulq<);<|Hr%LneqIC<@<lfwj_3(J$rWI zbNi|<9Qt$be0q9%dc~I)7f;+bH#Zk-TUdXtl!uL(hmHCF`^}p-Th=X(mMC95P1Lbb zqbHy^)u743;r*RcFMnlredcQ}i#iriw7)vD=k8e+2DKa!afXTof^(xEFMGV%xJ1wD z#2n^yljJXnGVULLp1Qrf;-ZUuywUB%ZPgr29D#copDkIgB>OA2*5Fxcyce^Lzd3`u z#7+-~DGlt6=7(lh)mN}i`n>dg+H{qkt;g85mA|RgYjwH5RDy^7@1c*Ps*{bAMHLw? ztk}L`=jQfa*=!+km&A!(23HgB-jA)#-()V6RR3SJ?n8XovEBbawx5WJVqCB{$T9or z+0&;^9XXiL@X)|@miw9=4TYuGM0(6M9_7q3iv7O*Z{wq1U5glIN0+_1ee=$-qpiNd zo4Q!Vmo^oqDtum{IAMC>6V>afiYi%tt)gmzX1B~{-M(|nMZh;-D4bI-)PJV<F^PPW zldSG*pWQk5+IPz==^OX99*a7jzqk3aaQ2iHA#DmJ6Hl&a3p?%AK6@?O65~Tse8Db- zJO{axcN|?FG^0~GT~w{JM|9Dw0I&Cl{=GPvyrQJx%-7$~@ACaRr?F+diOZ{B3ey^A z*VsHrIJZZ?C+SL-p~Uu66QkC49&ml08Zar_zhKQz+wFbd`Ls2&vI=E$!~537`E$8f zr}0LFX4a&h2yJX|IT>)CTeM4~dYP$H?w&=CE0x}!&*)v~y_IKX%ekWBAhw3dn|gOJ z>0Ssw0!ng^ci;c3=jZ45LA?H>_>Zgce?$NLz5oAj@A>_YLaNT5t-0RxC_DbQRNeRT z`tmi8XQ#8<Y^&Dds*Dvmw!%{UL)GS&Ph)r*5`|_Ka!YzVsa<x_A??kf=xpYPVl$kM zU8t0saPdOaZ_k~zvtKUlej}z?lFE`I>~Uu=v(b+88@sYhb8_E1?)2q7>=U>>LWH^d z(y`rB(q?`WZqUedICbIqdD}CMFWyZKn0BGn$Zhe~#<|DC^mc9B`Ly_g@l>aspJL}2 zOO)$oi{zauoTK2GbS0~7lg^P{ON(?S+PEed9Qb)tl8<jq@$ZvAU03oadc>Y$@6lT2 zTJUb^qP-@YyNj=%bChWGp57(gc5m*@XVLy;decf@J*(~QS$*i7eJGpaw(V=blze}g zToMzhsmS-YRBxw)0GGqlr>xxN+2<^nrWZ@AbC#98U1Y-}#F4qW>dm`%Kj*wWxz9WF z-F)xUCp3d*=mqB}iD!DfEO=lZdf1_%`$j&)wJg(|{M$jxy|O#*9JLkbi0N{YaIHHm zWA(jCgU>`i{cFIfn!9YppCtvoa&~@NQt>=?i*)Iiplbd-RXh9p=hrhZSXkSC=e+91 zav~)0!i3!~?5qAr^v|<v3;g-x%*C?VAx>`hzCTp#J^qs|P{3=;t-QLKCW6nTJ(>G_ zG?%Q4S?|fa$;Q{s<AlQeoM~oEI~`_;&R!qG5#Q+~$(+0HT=k9zc2nJt3AQ}oe`z9+ z>?HJERIp9a?(0hbhoH*u<JR@Hy!M}s?VIiYJ+?pg_;|me3}0bQjm@V&fB)9Xo7VsN z@o}oh&yODsFPZEWiq!vnd;j0t7Phuu|JVQf^YhPs3GgCt&_IZxsEFfwj$;x$Y|J(9 zisw5Eu>6?4|EF}#OYe9lhCLM@nePAp_x&U297cu)P&xPGRrvlcas9XlCnu{jH00O+ zzTL5iWB%_u&-4EDXmr(xEMN5`O*8CO#^U;Zd0WTbnex&S9un_MP93bh607<2?2|2S zg1tS$uNAnng_2TV?%Z>_ipl@<+OQ;T16S>A#&y*;dOgMmBqz2y@?4xIuudUc#FZm< ziWZmi{b`3wI^vF>`lx61{KT9&tHZqCtoy_xl-<zit6wr>o@MQ`9a@uOQWco`47e_2 z-Rfw+^FY9F*NIeycPYwB5AI1ChO$|mPVMKCk@*_+$Zoz$$@Rd#F0Et(iDmZ`I$RZ% zre8bAP;a}u`O399?Z%&j{kAf*onuWBKe+0;^aDMk;ML}eOyZ9969f-iS1r7w;>VR^ z!F+!E{l6lw{9H>bO1LK8*mfs7Hz7TrU9mi^=um^9c&zxuejnDvo?X>vFJ3g{>wmNC zds_A3t7>tNKL^NFJhM0>!5p8fe0s|IgSkD8518C;@pms`klB`haoL=G2L;{E#m0E7 zH<9Gf&eUICZM)<5gKdrq;p+_BcBKC9PhZP+ukyEW2U9iw8~K`^`rrHSvoqBE_~XpO zR<=eo=0~v_%kgu4p|N{^zw}T3{xMlPm%X5_sKa90<1zuC;G+qDKdv-M?1(z+btihQ z7*o2!$?8~#%oHvEL@hb*b%GhyxzZvRE6#};P1Rn-aIBld>iMPRGA9&1toNKG6_uO) zET%h|#ppxv{q~Buj@JuWe{ubod;h2GpG*3Gh3?gS_MJ0-{$o%@3+i$3-T!rM`-Qyi zA7AhP_xi`$`@eK^^7E6kv$^Aco(lgEZ2vX*-qpXL-8goiXP$p>I{u$g-T&|P^6u{L zKTd`3Yr6lV_x_5W=IWW5&-k4R=AZud<)!q6ojD-}E{Po~+a@#Xwdi*)JaFOdjXl2} z8ho9U6FO<j^(<bNzz$d6b9;V2@A~rgdhKe@q6ggv8yl@N!z5Y~3R|j@ZtuC7rC9hh z>X1f5!nVKcF9pQUU4QVx!ex2#=ch|1)Cs3n_2|c&wwKR(uruOQ`ZK?EGK`Ns?zCw2 zIUmUjR_Sr_c=@ET@q_T)#A%5yY}DAA6)z>e>W`K-4%ct_?XvSoxWH8fr|k#&c*|n! zOwwhRr<XOB7nN|`-JW`F$~EQhReSF_RG)q}!7N%=LtQ`jh^fbOnSTp>?$~aRul~7J zQ^h@I``<H*-`Z}8-ZuZ|M}tF`k6#n{di>sBk!|0~_O6LCVBF!k!SL2^HjSkQFK)V? z+5h+U{>AtI%Q5^o#WuA#RbKk~Y@G*X+wAmqF7G~h`QpMUY|lT4@-GO~(RzEy`oH_h z-dWB&>f(z!eO^!W>VJLfS8#Fk|L9-A^TICVZTaxzrm=~1ncSAW+nY5uem}f;x%`6S z#NfOw=V~}Z<Tz}qzOXSonCri<*==uUxO^=SgGY62{7HrV<!L{)Uhn8jS=xKx#?Rm@ z(Y`q*Z}wDPkUum-ukBdh;+qP(UgwM6{&h{@nc>a&Bw>QzyK}9+yk~Bk^GGIbH<WH$ zcz@5`8@CQklUBd=)|VyGfxGw-*A|C(#`SS~4^7|yClyo-y)Bcr|9jcKH^26E^pB(Q ze_R<3$p5`4@95R3U;EPg#n-AIKj;6i{PS}Dzm@C#wOS5<IslK&>pz=+EVln%>@kUD z|0nJJP4+*U?IWIEN1U~g)*$vm`+@ZRAIH|#_dk}1|Nray$FJ+_{~mk3=j*lTAFKEO zT3snWYxy2$`_ISju}rjnY#*#pn5JpnFQ-`cHF$CrZ*Q9L*<F8UPq=jY^#L9$akH%3 zZ_6$e3*O0l&lIb^H_zl1$Dv7yH)SHyQa-Jln;l$da5y}r$FXf)UV*NoimH^}tg9Kh z3j()qvX&IF-rpHC;a^OFM8sxYP1cH&OLAV#eKaZiv(N6cX+jtO&v|5%T$lDwbB^H& z1BWL;mXj<TA3b^HI7NY{=(Ev8YgwgBY=;lTJ$E!Xa`flU{%cX&zf1DnpQ5KxR=+4N zHF=*#SD=4Z$7{1w7uQ_>@Pk*nca^ImAOG90b5zzB6lKY-VQ*G!(_8CS(CD_h)i#`c z*S(yC2R_2hZo*Bsi)YSX&wf<aQqDC++d;SN?f#oi&C#sRt1li?xBqFz@SxXx-omRH zzpfX=Ey=%^$TW|EL4m>3#W6%;?cS4-(=<zVhrQhJ^OGu*_(`Ln=3+m=)q*#s9)D_< zRFL=B&WcaoV1sPYNs}#K%<hR#F@CWoVAEQqzpGC@;aY8Sc7l1Jh}V_LR<F+G+Hg4U zc|2?F&Ag-=+XYLerb&Ex8{=;LZnfx}oVSgfeJUG^ms|8r+_7Tggw3<s&RHB>!4Q~o zJGDBSd97@A#SEv##cCH{-l#h)@tF7Vfi;4938I;IH2zoTN3F47;#ANHiQE`0mzR^f z=x$l&Z2x-)-X+hTcPq#Ajm)%P%8!J$IH<2{{rTUgJ@$dWF~@W5lI9b>E2Op_;SX9H zCM+#Id&N%A5(&3^xpyR*>uyg=emyUK!R@W8Rek-;^Y_cJG){eTb_)MquRM7P_e(<Q zGnfs}9k`RC-RHy-q~IBIa&8pw#L1^vjW+x|%P=ME-q!LNOZP3A&nD2p^>mN#lPvr7 z$#UPB@A98hY-X6~{gmU-f!)FFi5!}9H?NtJaPGD7^kuuu8%`PRj}WYpTm9<y%UyHk zCm&Qzkx(r8`L|H}nDn{Fi+679oNJqX;O4!I#|icF3>V&hy-;qH#oBzfSNDz0ChjjD zZu_RB?iH)#Z?C>qlU#URclzn7#ReZ&`X=zKjBYW>o;bZrEs;giWB<lO0aMmqp4B{i z((X;$CcjqbGAQ{QVwPgS|54?R*TYBi)(fzT>xIitXk>Z3C!?6L<IL2vDIeaRwESMV zt&Wjjfx{^y_s_A4)MHJn9(b1-dQ3M;lV}%UGCJekz}UM?wz)U#g7i5}o8T8a?L4x3 zcWL|2zLF%t(0KbpS9a+Uz1sA!&fmKZOE^C=+dsQkY~Hil>cy@9HuMXpU#h7oY3VMu z?hnyAnlK@J<;g!^uJvtnjbgWG|H8P`s!Z-JBg4I#Z=5;rZ*qxBOV7Shd{t}Gl6S`n zn<P?W!!<$8AV_<taQy-ft3umgtr=-ktEJ!9ofJH_^Kp%AZ`<9Uxm#~#n9ROs(Cz)Q z{LR6LlNKG$yJTx}XOwT}TYThQ*t)lV|K1*t-ts@^XrW|s+(CikhKCGX_D*xZApGB4 zZHYO@BR3_k;^*I_*w*E3G0bw|+Fx`mZ`xD&_5L3p@C1rDS}#6q&?Wd(lRfZ-a$iix zA&xwg2EN>!C9E4RJ?z?2SNhN_NaA^|@7~7Vv$6~ao?R1b)7vC{yfpt#$wkZWfknAI zW>LBMLh30GWNQv9v^}`Yzx}jPs?o7EPwbwa^U+y(b;HKo+x~1qce!6X$hHXuzF1dz z@}Q*j#OP+x{z|#>2W*aU-z_)<SSxu`0%yz;RF+6S;Cj!mvA?NUFGu*fP?_?=CB^IX zLOUKbgvW8})re~`XJ)%hpOVeL)LtsxYsuZOGgk5#m0i59(l%wGzqD}AZ>i^AsjYXS zG@ooVTN@PL9(RhN=kRj3tx>ru>+*$*OuM#SO*h-Ilk2hF)1_N49{aYgx5%E0*(H!^ z>P?TICm$-t?cJo>tFL#iHf8VSw}}>8KF>Z_!14B2WP>6P^A+i`bzgpb4BqqmWH|%F z{9jM{6O(Uyy=+!E_H3E2>x%1H6P!fccD<f&>u`oMYJsr%hCgwK4*c+(F2dxyUEvLP z+?20f$}WLD2Y8+46x(+u^h{MLX((H&zo?Es@sZf<K$A@l@#gES-y~ho?yuY2+tOob zf5H5fE{o&CDyb6!m!|eVTH|4ICF=J{7ZJA=JMU<pyXj%M?ds+^kxes|&MV|A9h978 z@$ny5P)E`uQ5L(khvVM2Hg7eol$2<;&=Ru?6ghjo{NX-7g(*|NKU;crl8W11PcP}S zY*SwQryLNpy7}_vNy8=Du`7dm(^fy!&g@Wdm=~>_${=}0Njvtv+y2*jCw{j@2_<JA z_Dd?ArdXP3^x({HwZk(6BX|35EPN?G=V!0hv91)J#D)X86FAQ1xOT9oE7x)FRJMLT z;oYz2do+4aCWyaxd!G09%=9XmmtkJr1;=LCuTK<UaBR5XS-;v?OsDzdUiU>2NvogM zh~JvcvG~CD<!m+k^-~#A&gI54H-1)m>CC+De7cju6PdTY+p2pHxLyA0oAfidKKR%B zS0{oEXS_e0EV=OJrcB1!(YJ5hz3u$qnYowdoZY-PCO>xGQ}dIHp`fOq<#O@w-<uyN zr>wiO%;;Opmbv@~)bIagxmWpJoq@ssUd5YWV^;ADleg*Dq)Iy$c!)0f*KuMYt5u=y z)4Y<%zpTuko4rMjW^Bo2SKB4ybc4^B!>QohU%mYaNhyu<<ab`X#2-}{<h(b(+~x6& zYfaCyXE)oOGU+~0_#j51i2IY<X2x@@PT~heo0?DWIl>`t$aG3vv5{-S6Yi3OYr`Ev zZ`Isc^u$=FYni?Nx6e%qE^FhQAMj+&NSv^#L*ZBUzeziT^9~)E(JS=iyXT8{vnvDc zdF=KtI48)WD75{+y&HGjZrk=flG>t`H9tH4P+;PVE0!}at++0=Z{Io&ru8o-8o4|X z`^2AJXe4(}MQ?(~oFXkQRioVBxjejW>-f#Rc4r&Jb1)rM3k^JQdd8w13)4QNDoqZ% zyK3DFlZqMfI|^FzlsCM|T)4IE+NzLOlYX9EuKlD|yS<-_O=rX7<};sH%DX-8U#)RQ zG*DXF`oWoPft%ypC5|rk63m~ns{5=^@~2GU9hzPbB~uS9X81bm?cqr~+Ga(I^v(F` z`}^*l^Oq7u|7*;RFZ;<V+ECo6QS>Z#_w5(yW>Wk1Ztk8tSN4csse;6WUH|r0UpyK; ze}mwc#fzQgeeG>(c&GOB-fAfBE4!VyY0t-JvnzgGnbw}OHQMfiNDGtai(iYEuoa%1 zFj0Zwl%qOg{LITiu;fux*w(|kdx|SsW}V*NWY+rS`qNiG?z$cPqi3tVbF;UmV9U-m zwyi}%%QOV^+Q096<9oI|`j-2q7Kb-VkzQ97Ex00gi^N%-jTCfjPZKbjzN0;CGCRW= z1)kNHpKVTke*cWk6`so7ZHXMoJWI|j-nObk;**nGR{gFQ3$IPs^r2va6+^k@1xJZ> zg-@G~K8n4w)M4+n1Mm9ITHn8sQ~kU~lQl%|I<M%V6W@FtO+LIdQ#&o-!q{|SW$mF8 z?#@jL4iA<b4(*fEdv)X8uIHzoE1ciVdzj_Kr+sq|Ydl}@=1{4*?5ci?PlqO_WG4%s zpLZ+f!rHyM@+W0~|In^E_lz@n&6M(UwJbY+{HrVp`+a}v>A0xn-<71|-z~qP`qMga z!s^A_%*+FeFWwIDn%y_O{kW)h>}OTh<^%&RdFht#yCwuVa0Py`zN00~C{pxFQlhtK z_NC+>6RLjN^y|h%E9^5_oUrf7op<N>n6CSqm_=o5HJk7xOFhtKTl?FE=cVu8$$9+Z z#R=PcEalIYE=xsan#}!_m0m6$9c`AX?v>P{_deF^;o_G@6RvqLJ8?5IhFKt+Rrf-t z*TK671dj=3&0M?tEKf~ezlh8nMw{tR4BxTOR+7HX=U_B_$8pXb(n}s`xQM9Vi^#jH z#&z#V=0RmyahZ+U=MNoR*!yv|x)T?N`r*e-;!{6XOl<CBcu;w6`2&vUbHg@F`E!x; z{+x$Fy{}K6pBTS_qfw))rdn$)cd~Za9rdSwqJt-$d^-8r9gV;f3yh>yLS5S!rQWK2 zo1#1U+Pw@#uGqT?iU()J&Pj>PZ03@w-0XEsG39}HeV~ZbkD>}ir|kv%`(HACZZdx8 zZE@`t@0B?>gRFf1t_{^%SN3=IkLQK^EpFbpcks4-;{OYICbfMpSFL!p!+6(%q@{B{ zpDxOM>78XXW8$Rpr>y^;)_j>-_ulpGnRAVM&Q4O1^lTMe${TTZOMOp}R(k@^vEH*$ zT=Q?KFLe=MxwqS~;N9`bm2=pO&n|9?yjNeSeoFtsPKTJypJ%__8*37qxl5r-;ONHt z28nGy>(nQ>X1Y)1eYj~(4)5<jTQpebX6jGupUkn)dVZnA&rK_XxZX1-9G@n7U)n`= zp`<jV!2%*f7`he+PoI%1e%}4VvW^eaR0|vh7R-|_El`ksCRoC#$)vw@+obP%zI1;K zj5cU>*nRg=i(=7nVU~q=L+3Rg$zHnQli#mD8`B)kPN}fSTh5;&x{~E-Y<x18sk1;^ zo$#DuGp&cS*tzfJ%zGB$9T&=wW^FoMb>XEM6Bjhu+nD`o+{tVlG4InvX`YMk{`gJ_ z<&K^`dxg4Lmb8nIV~9o6^J&Ruw;nFp?exR$_yYd42fo`LX?$D7E+|$j#(E*YZQ~)2 zHCJ;UU6l4`U}(-0?~QurrW>dgm!Q1&=j%dKE*=JHY2El$!KV^b^{%}><Pra{%`-9Q z|J;6Nx9N-8RQ)%cu040@)XZr-+fKEmPPf0RW7}dEXJU~*-{F+@`EN_pOBeceEMhS# z`8&}t;FMk8C6PlrCv$5mwtP8demneZ_PyXs>tn38Z;x8N>C)tNzl#kwh`!(6VA=OJ zJ?H+tHRcN@-HDwWeR$ucLb2;Tjt`VxC(0;xRWmf~5LYZsTc;_~GI`DI=?3e!O>zwU z>&6urlBB75pJNeEZ_tsZ8Gg$`e5R=`+A%?S>A?&CW4$=vsYOh;Hb3@x)}1q_8=5Z_ z-eB}z^Hrtth)QWnW1BbggB<4Dr8_$;&3QGh`!c+7$zA3g8Jsrx)zr_9`SX@+kUnq8 z`)jgdtHauR4l>c#<Br`t;dE|>O{~MOqh$hZ9g}R*O&s>#`*4rfbJCA2_DS7aPdLWw zl%F}5xO?*+e$OmUx%W3%tCj`rkDRppbkCRHPt7$Z`ZqZr6Zjz%-+KM<uT3(0%O;9* z7X*KKyDY|VgNee%*KxZO^y<&$%3FIgBuc5BbxWQTe>dcWxogXZqRic#la?Dx&X1b9 z^33$hJ&P|aTl{qP%i@SR{l$Ly)oj}GpGD?Z)_UGNsd<T=LCmd;`Oe=u70<I08qd4V z2YjkyY%Y=B++%F;{HxNIyDXheHIvQ0EM;BG?>SE@f<@=rUUen0<FncYIbjnm9FOW8 z1WS@yD&IcyeVuH!Y4wXarp*_mChttQc$u#^SNpBS^d>I0JMTY9Cv$za$a}hyyIA|% z`)sjikB@mREHeAmKJobHUw=G#e5MJSMo#B=Vzc+pv0vw=n||X?ioI1I!zHQLK844v zL%UvEm`!ogjakPfbN8HbT<Uz~)z?F<HeEIQkItN-*|fEw^+VGAdv$Ir7w^+;dU@HZ ziNRC1zrxK<N>6RVE3v<J-@iZF6~AwK>VebUZ1IaDHq=L)dLExP?{C1=-&=~f{OYCz ziPc`|=-hSD)wfzx;m4bmsi9f31;u|01uqSGcJagQxa^+(BrZ*bkidn?9BWq@ue`3v z#>{YF0<Yi+0nf9`JXJkqH%jw28GJ}~jbz*yAfesKtMzJv#~lvc3!Q>B^Pa|7_3u{g zHQzs_a^<wC%CXZMs?R<+=w<&WsrKKdc(YHA<~EDh*v(HAGJR{PAAN4S$0`%g87-w& z>}yn}@7M31>6xInapuOL`oO9qf96E|@)Q@ow3{(|sv=jCOQ-fy;TGk0*K)WbziyJb zKRrlf;Sr1Ptq){u_Pp9=S6gp!Hao1ExkpuV-yG&WY_(^%=)9_l(N#CMcT>G(yv*jQ zbe*y#o2uI--WzAkzpPsSzi{T&-!II%&N_4+c>34f%I)yqFptK%`_C4y_GvWkYtw#x zJ7=rl(aM#6J1+z+H?QmewCtE^anhn)6OPP9oYbMk;Ci96)o|UCkMF)G2DjONlIOm` z8rR>O%24ob_W>)<IoDF3*Tt-J+4-kgbiQ!e-@Aq9XVvSxu{2`PUggyD=kD9|;&-b= z4qTgl{<Wj@<i_HM*}TQ)_69yJ`Fr$@;D(L%D;KHnS#>-#)lF&JKgO?r%WGa0*`=nr zhOX1v^O1R3&HYc&7i^~&?-X*}8RhtnX}*i0QEKcR_LmGk#z#t5uj-n7WV!N()~&Bu z)b<#6M0GxO<}OL{yt8~>;;g>1t@r0o{WN*CT4POza8u}gUjB_|k0&mP&085V!M=Zb zaK6E-OXqIpaOYULu6}BFNBO9n<?axpRZ%@M&$aC8|N4K8iTIwqFNUi?@cr4n`a<8Q z+LQ=5Nx%Lgx16(wvFSkQPmSqcVrRU+=yY$|3I>%zq!t$!I3FF|Is5i}QSN(vM{RB` z`SH)sZMT!y&eJw04MQfT%3t?7=W05;PD|p(rNvFkdDpg!$Ig4XxASU2{&_}e-|tah zB@7PL=6;r5aY!QOnO*GX?!HCO?YTuozt2~1X)#>3V*0u1frcGB)?Z+n8=(~{J!9Hg z8}IzH$5y#sI}$VFQB%}3;~zm9x>jq>9{S|%C-}WRYtD7+Pd)EB%fp=_pQH<4-Er;u z^iN59V^|MJIOlqwVU1cKtbAtsnOnX#caA<xnJwIH&AvL!L}&M!;H@*C)$LFVuR1e1 za@CRI^&8B%uS=vbhTat2J^6Q4Uf!dH`8VQ@Z#wt?l()mW4_51sh;F~+_=B<3$UC9L zG0tdmwZ~jb!*UIF^duGNwa|C}<~nE1Wtl63?7mq@tjXH{Q||ao@9ScQyvx2MUowli zD{5>1&hFnQW1ee^*E62+aOhPsIQ`V_j^yOcdf$)zS#iiRZf)O&S>aWB{PRnz9$Z!Y z=KH)T=W(50>CGd1Km!cQXa46qzTdAWds9m#<6KM1Md6YthBb1>)OL%%u{`~s|3>DC z!?P0nxniGPUFubPVO4*MXl~%bXYo?YoZ@$RU9T72(75ntPbN>qDVr=yk>W$YKh}2a zUchPvY7IaR+X-Qqv_ts1li!rjsX@weVZN+V8=cl&-!$dvN`BW>R&#p_o-T_x5~Q)a z*}rO?@5=kN5qIBLG`)T#r}h8ar|fG7SiW5<4J><D$Fb)0_c_Zm)wDxxR(_aT*;;BD ze&i3RBc{xsdtsH>7N>aD(0$K*D<3|1e&Fd!x1S&1c7NSkW<KN7g6oBe`>s9DbnV%4 zbBW*09LwC=&s%rQs{8*gO)6L7nAhIZ9@`Il#a?#4X)uTV^xZ2F^BK;}dCy+I@b~|a zS(Wn_m&!298)2l~M}A^kZ~qD?`@HPuywvX(Tes}3-*Brq!E4r~)A7Yq-QJ(>G3cqS zee!9~#1B_{{pH@DU!8G#=KX}4yNh?4o!Radz){O}r`G7KX8gv2%z2aU{Y+vw>=tTs zed~I|<olW3tAsYsTa)>J3(JZJr)w%SKEM6VqI;op>E{BgF3Z~Uu4is(mGX6Qe$D86 zoD`=1IIjM5#1j8v{SBOI2hH~#_X>YeyyM%kd0RtYTFsy18dJx={Qq2;ZAqW|vrhM& zRh94I>d!y2wrAV7PwRfZ{59`qf9TSZFV*~CzrW`8yo0Ff7BK~|%$4YlJiA%$jNUz_ z7^mkO_wVg{Ykxi?=<2@zI>(Ls^EbWu@pI4ZdK1@V-k8P9Q{tAjhVK5i`jk=A&QKfi z$LTji-rwjvDf!hy`^=wJb53RWcpfZ#&ng~V<7od~rTExyCfy62t;O<eUyJtL(b^KY z+2_jjm48nkk23lBN=*HGZDYyh!n4_nw#|7Tdv@DerpLdfcg+7@_o&*uJFBbkoU7_y z{b>g_tx6AhY5n}nybUIQ)#HEqX0~U^r6>K9-mF&tAhD;nqPM4*H}s>G#M8dG69=w7 z+Iw!ozE}5qCB!G~fZid;;wa$4x`4yVQ1JRY8^5URvbif;UjID&sHo&=k@TG}zjw+z zYi=_56#4zbul*}~|K9Ib@B8ysF>e0p1vP(lA6cDN4nF<u^13Hqi+pEYdSPn!>-ue_ zvf$7UJD!=AyRy0m+g+Q!``6scz3<na-(504H1gYC0lnD&lk5Jc)^9&Ozx?Uv>lVzf zu5F7s{NCAzP4`0Q&6S@Lf<srFRC~7UU{<DZ)9gR2atFTFM@ygAJsyy45EmO5u4pB5 zUi8q9=Sgdx-~Zdzz5kq>`Mf{%&mJ@~t|?x=z2|lPt@HcOuX$2^f7^rPaJimex9%VQ zyycF`Qr9VKXZ(*AI%2ed)#~9x(RniVEGzzob8r2hB{->Vaj4_<e_0E^#p_=Ax4N}> z<11%{j#G|%g^;sx)B@x%Q}9)M80e+D_6T>PruXYD*R*XWwR3L$4>qInclOdZ`YZm& zb46);NQ(Sl_AOrPm;^`QiB&7#N9s+#U4P*{Gee5PL5ZWh(;1hRhR9nvBL+SL88w>x zDm1G61U@g-U}T>#S0^xX#rt@zaG#AU{!Tx&rFibdqUy@}I`8f0Bz8|f_il61&cCh- zci(HKc?ei;aZvA&)YMwvbL~{>nIFfGq!=)?-Hm;8k|Du-s(rL(PRhBnUaG4beuwn6 z$3{l4`L}!OtE<27ul+Sc?D&iCDjZ4k?rfQnURhsvJZk@qB};dIQM1rJ!}*A-Bpgzf zfk<$2*=Ue=t8$;e^-1%0>!vF$yKei`ZtFpl9%Vxr_m+&=KeLw98osUm{BzEax$7z? zYsCpGPdaz$<K41<dB5^bcc{ev%L%J9S$HW)O7hL3eYan1l!)19{m$x=R$MfTq26`R zqvD49BT{C`pS;^ySv0rExP9H`-;BB!I*%5dwwUgH_>2^%@%4{0<c)aVyxMtc{YkI+ zhgQiv34QrXXY%z=+2W>wdq4m9w154@Cr^L9H~Cq)BXe=9!YZD_8T%jZRDLhL;Po7a zccn}hBxXOk_UqZay8rA97}-98r|quHi^QeR*PML!?CJ^2o$t;$-J8{&<r?f~xZ}&r z;P_&0`=?iT%3nJbQgx<z?v~Wv(yA@;g|Dmcy?y2*a75&eY5R`1OGSfwLmo<q9qQP$ zQ0ac5&(@>0%X79x&n$NC;nlssnWQDQ_sE{-Iy-*miL!;8iErpSzJ=|{^H1wqf0>+( zKFP(n*>UHFBhAf*Q47w@%--v^YSYP>M&}h=p`Npp)!J3wp`{p|mco$bulKCn>#_ZM zJ43WM>miA)H=chFT-~2@@A>IjQ|eeg8f+}Q+vQSzz2_pwo3~SaKD{yxl{)?|x!(Tl zpUqsKxs!}C8vT6E9*$Zv?QTl=hnLFdwtP=m6!<gy`Ks=pSsH3C-EuM0w~KDfy7u&6 zCCBq7g=vSa*je5s1^)b|eAQg7I<?NE*m~MV`<+tE-(@1--kBUByTw8MSaRpYBUwRm z8DZDCTz~d_<zs&~xg(Tk+2bt{rRzT1u+K_Nx%Bw(!K1~`K6)x&UUf--)n&QjgxG7( z4gT5f4}a?~pq&u9{m&uuF#X<zS2c{c?>cXG?9OJ_D${54j(l1uQv&arG_7C|aa2E+ zB>21R^(_9)U9z`|j(wA9UZ(y0m1#k!lzDFS{Vnfp{1~nt)0<w?m%m$H@Bi7D$_+D; zcWi5l2z~N@aZhdhy5RlA?cIM&z8{mSt!|njy;{R^>nY1~tBU$oU)U>lIGL3%t?$et zn?3Qm9}Pg2{2FFu;jddSzVJIJv;X>xtJ~Kt{w1_C^tAZudv^TIE7fwo=Unm<c)aP% znHN*p6~g}hT>WHT{rAi!m+zI=D&iG8t&xkDt_8y0=})as8yi=DDcHvFcGvd%6=$T5 zuB#Eav+>{e!%x;cx^w4wnO^<&SF7zgnj%bAzk0hSx^5@G(Np_1PiDMRUTtzqbsDqo zg-+=RpLs89U(A1gQLjzq5X-yoi$0c#75}}j^0(UKZOpgT5<mYsXEp~}UHCh1&$@L} zL<@~i?>oEdSyW!b#8>jJM`w!4Ua(ES(_)<U?`tzgGK)FA$2{e%Y5z6R<h1<xKTY+u zS%a?a&po}y<xuEC4;DjNezl+)Ve{4t+8t{>3Rk)vIKstIoP6EfPd;eri^n^9<czgz z|FhS<wGa67*Dzi3r%CbL)Bfsnk2e{zwcU*^Zu5C`jUUv|)LFCTN|V}IWnuGRq2E*X zwaF$t+o7`VK+U^bo^QDN9`D<@CfNIVSA@*YBh@!snU)`rkXW2pvhRS#u?3$V#b)!a z-CEBVpyP7t{N~4wh2@2cZ@eX#)9=``F-vH(w7lNpvH#r~y`5DO2|1cx^)}qI&DJE( zd&^b*eP=ww<<K_~i)|0>+$>~2q0*(d<CLRNIa(TXi@c$B$EMYf?UrlImY@Kyo5!Pm zo_{!}x$ygpk4fs24S#Q6SuP#E-@EeiM&n~1_pJ4_3kARTPy7Gyh}VwSbuk$&M`xUh z%UmWRd43bm%>oXF0Iko**KBn%^I>GjTxH<H{xg1!;k1nx3lB5QsNpeKx<Xr^g^@vl zOPM8*iGgFWK#&JV=5l+dj-B(`|Lk@1|7&yZNNDK|CC&KVZqgZxYp=-c`m%k}LLKG< z6$?WiEG;aTy5_)K^nRw-(Fc0`)%jst#b=4TcKNPj`}9ianESg%*KgmS>aahmbKovX zvOH5*yKc&{3%)OQ-Q_#y=g-J6_nhX0o6lW5n+*EiJT`E9pq6aJH_?SNB|$xJj=!2x zWa;y8)|K}yW;1-YJm;zxm-nmGbDQP){@vdviyZ1XvF7dhiT8I_H%%2c>1p1Wb?5r& zMR)Wfr!6Y3>$~pG&d_k~CFd@2Sq6vg)s5#|uiN>jzWDkkc`fe((+T+poEXlWx?j4C zAy@ph4Ud4UDZ_zhVbZs)`xzN_SN8|xn+AHn`c^qd-^0sxe|6oP$FrRIHkobHof_nE zm+fSN!I6Rs?yKJHFJ1NL>lsUDyB;q&g`PV*W~*>~E-bs{JE6TeIz+Bmv-QKb;AFSD zJMO1ycb7RX@<|QIeD+>ZPbJ0fyGT;X=d6FVb#*olb!9o_1^xbqY}>_N9EnQoX$<1J z+c)<}?VmsHKMq#gvoP4y|F<pCKgY<hRmE}hO(upb(Y{AE&Ry~Ljm@Fk^M8qym6tOz z*zipME6U(w+`enK@%(->#d?EXI}957XGuuR=g&Hmad3yt^I#6ckI#;ah8bAS{(q=u zUB3Cj=l62=nD&34|E>1@={X1M`jw<|d<yd;O8cwVh<*y~c_QO;<9HMI@^6L0+b5RC z`>Z^zHDUY31cL()U)R=rI4sYwq4r02e>?+2ob1V0>suM1YXSDVy}$GA^Gv20w`<RC zX$)jjidW$3+w*2qkfcxAed{h|mCoK-`S0I6dRuPK%kX34{6C&Hm5(J^w%1POX}bA) zmC))r0_U?>mTq;Nb+hbUOw5B1SG5@qyk30$#hkbWxA!wJENNC;l5MQ0+Ok32p^dT3 z?Cp(TFK*7hapMLP!;!5LbIymabXe1r^ziNHGx~EcS6|wCzsr#A*w;iaZ65ZpyO-a8 zz4*FxLTcGTITpr8H@-PO<<&m6^L_D*;L>wHIqnvo`<dIh)XDM%diB>DDf-UtxO=v= zqrE*dgU$aJmizwi{m;u#@qX|33)Y(j#S7Ywc)ral<h9w-Z~yU|u|&a^TV}iTniJN< z{@wZh_vVvPO+TOCFH$MKp=+x5X!<H1t<s<K4=Y~Makbiz$vRUi>4jW&vck^OPkB@( z?V8$a_KMeK-CxV+!B5%NRIf?BIdO}iXX(7|XuoJ(&!E$M*H$O)-Tv+LE1~y|3q>yJ zeEsgW|N7wrOCMz{t({`i;dG=i^j(L8!i2{2?bB2>4Ib~=!R{3}?Q6f2m{xP*{{GFM zgZKP;Vaf1d@Bcdf_xu0fXJ}ZwSolk|Ekna4wllHDr#!trYj;e)bxecz>64{R#qy5# zZ7dEcY<<4+TF!#2w;cA~V_;C}WNMkswYKu|xm!;q7GHdSE2QbVe*B~R|KIOtV6gl5 z!+Fl!xxY=Cbz~1&+-wq%IkPohdF8|2@_TFy8w|c(JgmTV_p41E^ZLi7cD}!-|9*Sa zWB&9rRpoED2YvZ{>-+D+j`HHNtMAy@+8p>;crm{<uqACbFGEIt&Z1|(<~U5VF-U1x zu;fwX@6Y~cc%v2wXFDmb57Ro_`kEnrZ$+cH{VxHA508#&e~J0G$S~6LkcL2uA;SV= znFqb)_YS7F&EJ?GE&uuP^E;V-zw+)eJh>)*-poiUc|uxQU|m&FQ}f|kh6De)r(4{s z@4dWPn8ED5{oC7R*L;*#?)3a{&1{}+H5)_4@4NoV)%pAk0&RhbQ-TD=N=;51HAx#5 zXi4Yo^qs16dO^su{Tl4wcNRE`RC>NzrN(@9r;J;6#{Fw@`_A@iekw6;P0SL1c=#a0 z-8gaa^s-H5b%kB$W=>`KzL{~xroVw9-U0n@m}1))n+!gF50GiSC$Bs~F=c}PBNe9Y zE2anin3VW>=K>vFCkyvgCcm7uSKHaz9(~z)x5n1e)_H&a(#3A81?xF-yL?X<ahfjO zYRtX$y!YHIAuK|3xnGAG$?#2Bd1n88+c<xp9z(Xn3v)k*|JMH)Z@=Ybvi!dPa_7#U zzfk<#dG#56jU5jryt}pL`l}1;T+7S9eR#3)?C<s2wz)^wnI`{Pee$=#l9~S60!_}l z&i37TVzzu$_xFwFi>@yb`0g>&q(`pkpZQV~qwDX#SIN$qC&S2K_v?kT%$};w&BeE` zbI2{&n|j$s&bF%S+A%f;1<*v)-c8f4T+G<|XTPRs%ZbQRiB`l2AV&bp+z94V*0Z9d zQ&u{yPgV|2U#@OZCb&B9`5pI|kZDzxvf?~Oo2;)$&n-6CTh;k~OOQ)(tVEJuP*!r! z^e1&6{#gF|`2V*x!-3!SKgwm~<QG4enc9AnA;9mRgptZQ&C2%|h3EWR5~^l0E7xSs z7VQa)b3(r!InJ!3c53&I-akM0ex7=wWvAMsbe<`bxtAYitlDeG@ZirM8S&@h5<F`z zxfFHYJsx&(!_KXHi!ASIoy}giWA*eWn%lo}-}~b$esS`_ga^MDecl{AXU@DwFAi8u zl9!i%_~V9K*tzrlhA*N^osTeIc@=h1_?Tgng45c2EDS21O=Y+3^73;QT-@?KVC}^N z$DVDoJ)^=nxmEd()uj0PM2SVyOa#r=Owr^>da`Zu%u^F~mFcy|OKwgopU;rMV<e(? zs*=<1pyd?p{b>gn(nNU@1(YT%>Im6nt-CV3&oJ#wb?G;0?dj{jSGAUWfAL0U?&abo zr{?jeNqmZKWfo}sZOgpNPwBq&mj$I!R_k81`%jmAa{l*%gA4i(FTT#ea8NbNv|8V# zkmaE24&y0LruQ7Zrgtjp>E(E-=(8)9tokAntMz`iQfb!Kxb@wam2aPymwWU0X!moA z@>80;4?f(Ocl+{UXOmc#y<+MaTXOF2+xeR##;aiY51yvTQw+l2LF+iO8{bQ8Z9CQW z;_F+dCAZ%uT5RcGIAi*}tlS5pNwbvYWt|i+=4=(T=zJMf*1{cg_sP@O^Y;H|-1mR) zdq#$P_3ztXlvx}2S#cHETXHuse4Qn`Vu^@FRjzpBbM^FnZ5!8R7Idssw_C~;%AGzf zYSCvK-JeQDM?(M4;x{_xU|IR3V8*XkZ0_vqKR$Gqe|*(@_P<1v4>#xklVosM8}_|u zSG!YX;JPWFel~lh);&65(f;7*lNB+pG1|Rnme%vMF_)ZsduVBKVWaSLu1}AiYQNcE z)!1BXt!Ta9;=Azn%aeuY@8>=ixH_`F&7en-xpPULt)bLbiP^Ki$=#~m(tX^29utF{ zZFSp;sjS?KG8WDb?_RcN#{?sX&5_5?Et}f7ZI*BR?wBciw0jKW-W``<KAzEe#^$}u zvMn3g9Sp3GdOl*2K3BfvYL?Qvs|qnkJ4-X2>u<+zo^P;zUArNh;@xMSB93ilU!6D@ z)ff}+EMx15x8OP_xN}R7g^vJ7`M()DW_x;O{!lo6f65Hyr3cd{9sL!u^ZC2<{0qm~ z?KiAsS<laZq2Oxzy^3EfZ+msG%vtX(;b!-DX^iU98vCiYvt!r24lPbSye%a#-{SMt z>@9{DR!L<4uHF6f?(P>4-kkBe<=^jLP*&Er?)H|eToOA<&eSb$|FBh7Tjlu*(>s-Q zzhkdt@w%K-_w?F%?XR_=y~iUz&~N~x9u{p-df}2Px$^Mb*+!bJbyhChlNUex`|p7J zb>q2};zb87nZ#979(2rc4BNf4bMIYS?cHkY9xQIR`dsufZvX2bcCMEh|7_Own#;dl zE*1MWZZdBdM~ddE(0@H2BO5+^@LRlBGv@hCnZ++ES?<Pucawfm^kh#+yWMog@4s#5 z%#&eeh<m&LSifC`{Q3Fy3<s=^+SO+9{wZ4dt@*(3U71V#E?%_U@31^uS*H1+z@m`J zF<kFd_ql1OoZ6RWA+g~0)>kc$CnwA7t>R>`u(3Pz@u4EagR84+_t@3+PF9xoefjm* zi=EfM?5bVzZf`<Qe~YK0APZxb>1?%0Cej((bEZ7)UA$bv!o6bVl?}VUvoKsJxpd;s z>$S-}s_&UCo_9=QIr~kGVZqj&oo$nUa4C8{o5XX;b<aUb35gxQw<nyLo%7O1ak`(U zrU1*gJI5xv?49S`u7CYW++?v7W&3r%FPl2P;(Wc_;Mvk`o<YuwCx$;=q3qp$BIVV+ zsg2f)PipA&@Gg#O*^zeHe31e}v7v&r!}?9feripQ5&gN;#Pk3A^F7xpe!fa(IPm|6 z{QsVL-r5y^D%kVuA6>5a^@f+hVfEh5CGWH@tC$`sth2o?=(f{lmq_Y!rk-$juJaPn zRjHG2Yn<2rY<Mx_?eQ3f2CbFmp^4ATUz8TU3)1H2<1eU4`2FVbW92VZwM*6|wInhG z{r>g&4bQJDq3b<@J(imU`aHO~**_uq^0&r`*SJ@7`>j#l;-KypF=b2IrM{gy)|a9j zcea*KTPpGG*Nbm=Sa#q4J~un^)zO_Ary@A|Eao$8zn!t=R$Y)C-_<jpb>uJCu-P7y zU^3rv{gv;L&SKG2#vML?)u+kc<jt8U%8+8!Dz{@&@XSq<Q*W>;&d+Sz$M7y=Q|hT# z>;Kj~5pGx7>O5WS>CWJ-VYha7lv~Nl?40ww-~OL~ebqn4IBU<l*Pe-`yoou$Y`J-L zo$33|z*DLh*qRyn?x?(Sf4{f=@Aa^@yeUk@+`NfACCdyv*7hI0`Lgr8{`<1_7yNIM zet*3vcy3O~-rMp?FD~U;?Uk$AE60|ntl%5W!}e`2+u<wojguc}`xqP)IK{Aa)>Ox9 zznOXF_Pfcb-td0=WY6W7O2vN9qh2RTXI>S5)l+azp{0Q*<|r?tLEtBM4c$eb-|Nh{ ztMDXG@toxMZZAEH9<ADj$q~hDCv2Xdycgpt9k%Od(aTRN=jSI*7Ib~(AkfmG^nB_B zl@+{g9?e@yZ1i$<I0QQ$nf`3koz8S@E>G?j-M=SR>))NLdNxz&lNm=!L)`g$x8?u7 zV6OS{(Vd~8{-?dv+Gqd!@5;{pcQM2CVo{vv*(z@9{+wT@pXEvK-rdi@U|qfY#+_~b z(r2w6S+r?X>&7rY=Qnu1bIZ@Usggm{Z%t1<_3iRf*Ik9l1*?LVth3+0!{YGGm21rk zD+(GOD@Q+k_T>%F-?;nLQwq*4jC{D#u)wjuJ5T=3UG?6x%yZ_>cYIlN+*LpYd9KV0 zv^uFO?TTMq*(|x=rPn1aGuKYE%nZ!GaQNm?NxeJoQup8geD1MX((LT0Qq8RM0y{ho zT=V1p>Xxe{{(aR+k7Ds;hGO%c({p>Xzgj)IA;sdlRiaHYK6^%Sn2YSp59>Csy~Z{v zikU&6#j#LtE7SE>=Cy`bC*Hk#=1KbA4a>CtnSNY8EiUbp>8|w>hj-qspQ}`A^dfF~ z`{!cmk9Y6iKYs8a<F9j;djjttIQLAC;q@Hb;))fomh*4Be?s}jdj4-8_x}GY%W&ZT zpX2{K|6UIZ(ozsOvMv9CnzPx9M_&%PojTul?&8ba$D0#hJ?(vIaQJ{^uvX|7<7+M+ zip5#-Yem}pTqmW@G~ckL^uXt+yAE31&kK`HTCC0Ip0jMT74LKm+r_p@S$M7}^L4*< z-?pvwm~h{7O-IViM{y_SevegS5;0!7@7@pZ*@kJo&ln5@dt5eMT9Yq3r=jy|tas|6 z-#I2{(@wpgI(<cYLrHC&#?q;N&(FP$`N7ZS6;yVNb%wXCfq_Jtp3zDXrp1cOtQV;o z?`299`ebO(qm=XR1{d#Poul2?w{f}bzs>rbsW5Mr1jmte_iBQ=H||YUy%>Facg451 zwdVhY?f*&c`FT>FnZc&+kI37zzW=2T_x7_DEAG{dlyG<bb>h$drS&08fBQ&3{{8vh zQPy*FU#45hSj?=BeEBd)WAmBs!RhJCEiAVMem>k>D`V*z`uq>m-Z*iu+uze-9Cq1d z7)UI5to5+uH?xc1#bs9*5{`ZUeRaOH;OQo@7e}_vm^Armtn9Ij<JNzfj!HD2@y)nw z@^zDP@|O5D%b90O-+g_%)nomA=Ve7N(-k?*&NM9l_PvRlLw#Y+H7SopDTn+vM0uBN zUT}Ehra<c%DuFFkr>C)Gn#|%@%+a_dSHgAS`G@?6IZCH5-?4RTqkI3_J$imZ^*vG9 z+b5i~PcQPkt2Jd$@J^23r|WP1UhqUM`qbU<C~;A)O*|`iKih2bb<&%E8@kW6YX2;) zYjoWHe(tL6-^(_<Trw%>1iK-p!LfuFVlVXV>N@{_-T#K^@BICr&s$h+nVg^}nU(k1 zkBf0?nnn4hZ*klE8z*Zmo7rZz^K-T0T>Zl{Zijr#_TmjKWB8Ws(OYEyvP<`7ebKYn zGu3<bf}a18W1BetLg6{@?f<Lhx$j@O(4?)IkuC4hEZ(-GPiBZ0Wlz<t|7)E4ep1n` z9=%G_DQom=mMgM+-yi-`Kug!G*1gDY^|6qu*Do*6_pwaxWIVH!)!>{U3*!!*JKtwk zXKS|pKcUbg=utg4D|f=KUYDt97aH3pPWHSL{xZ$h_rLwDblZCp0xXK#zP;HYdDL|N zsg%n}Y%jjesNa6a(w@(G&YT@GFa9RW$Va}P=(xRq-{jNZtz_T4dsnr-&G9?a-^RNU zK2o_hwcpej67t^%Zk%ZPy=>jNMKT&y(Q8fF^rpUe@<Ze}`+5e3%xSk~J3L!ycxRa) z;{~_M&R;)&a-Q?g{XKu~+(&P&=v~vdN`LW{En%I%U}H;}WB<W~hJDcwmcJA@bavqm z!3QzFrubCzUE3V5{tR<MaL446i>6<GKO-twJv_bW!gnE+xLZ@t8L_SvnNl=Sbm@UR zef!g-b~>6SbImNeD4cs>Ypsm=ERLpvMGY>Z&AmU@z1#DB`R5K#3H2KVf?wY5jpfh_ z@L%&}Z=gSy_$vpcGNFeSJ{Phgg=agQn$*2}<GRN=w^nSb^%b1H;sGaP!>3xKrHgl$ zPrG`JLvMYdodnMWE8|TMH{9ryU*;U2{`JcX3GwCE9QWLR?{s)U==NtF)w_4E*!lUm zT!*txGS4y3lHbjCd~<m|e)wwFH^)ZMfJ0gOBX?_y85{HUbAJ=Nbf!CMzm5G;s%aG0 zS9;@$u(8yB9oOR1;rsi4SiLN>%&I9&RE~3RSHJfp-{49ducFIChq$BrGHvD<shqy> z{(Hf@plN>R&)1w{Gu8;2IOEf&J7+WwFzotr_wP<kP3ake0+lnaXXyLC{Z{qj`>wdk z)Wz?-i`b%>S{MHikqxknbr5$_&}8axP)gW#|NPaEZ=WT2iqE}I>@e8)*ipcRqe8KK z`}LZwN~^jb6p8#=cUghuc-igVt+U@cy<E7a$Uy$51jEB;w!5Z8O<t;LbmO(1fRJ<Y z?LRw;+xE`QUE-HlTlnGD@;h71x9thcs7}7T%r>_8&3C^0vKc(=Wp`}s?GJ4X4$;&w zP+OzL!tlJ+b50nSZTRm$i!LAh+4^?#uDN_|@4o+ylRy0L!2H<(*(rCnRqnU{P&+%w z>ihbZo;P>2-rrw)^W&kYh6v@1M!%keXJ@^tTqY{X9B=29`Sg?E+DGU9+es(gkXMk6 z@Lb{<e1O-lsW4-ve@tunWZp##6Qf<+5+9vD>{AqT^_78m_y#rkEw8^yZTtR>fnl$s ze4<L=>EdfljWy~nlD##1mtSR=%dP#}%HG!X`cvoj#2$mBr7|VIWp#v2-V_BfyW1Br zbv}K%+$Xr~tpBblr407gTQ41L4qsomBVRmwdHV4acUlxeHH}i^FTea+P&30@b~lHr zd-CCFPqOlJ6}#k4sGK>-;4yJ|&XohPY&rE2J63D2HSoxtx9<s)!^E`7nxPiY7jLOd z>SB$Jbemgz*D`(CmJXe%XN-?I7@I0}KRuJXBWBLyA7}D*$jHbjlxkXkcl;OeWODYG zU9vKBZv>U5A9t77k$roCMZH_Mpyn>UuMIth`rD6n9N8hUeTQM)=F@%hwg2;j%Sz_I z-X3Ew5fNBsAYkWj*}>Ej`JmQ=<@p7z^P5}cgIyI4M(o?6`K#vKn{BVQRGtW4Dt)$j z=aR{H_ZgnGbkDx5ccFZq-B;<h%K6D&v)wEAAKY^6LTLAeC};Vd|6DTXl)pLjG2uU} z*==2(_R0&3UyC<J-|qkTqqDTJ{`Xz~h3{6~ITLlSyD@gNWo*yF)#shh|Bmg|DNZ%l z*DH9X@~XLnL9=E5JWGkT$T+#+<O{`m@18$@u`6W7xt}ZL{d=U1KNUJ_J`66LqV;Uc zF$wc~Hx9Uo9No8x-SNo<rnxhCpZzb+{4-O}YZkvl<gy97I-{1EwCR<<`tiZk?%#{r zH~Xs?4?J7&yz==RLl(XJ?c9w9<{_Q0Rva&5$TE}KrX2HGa_0K*y3~!<w;5*a&lhRE zk+q$HVfk@WhNDh4vfpYXCq6W2J=Ya=apCFtzU;Ocx%K~beyf<7Zx2`<&1|X2(sRCY z_R9kCQ=8OVo>r~dTPOcpKkmWa|9|)y4)Fhf{JY}kA*tDOW#%jSc6&O{Td`zoLs`G^ zS%KrGIlF#cnk}t6zxzi*!WnJbThhKcdG8oDSkC_$yJ#!pX>W_H-8Vj*-de=BPV;W$ z(#}sy`!_2dzm)n|{Hy9=``<fG_@=W3?BvlnZ6I-La>d1+2M#uN|9ZdQ;lAYMyX_h& z|Nge$6i8pbyyEMnYg6s5t&d-*>^BH=$&xe(O1mKOb}QF4>%+QCo051Edzz;!eVzMx zkIp6SoV+a?w<h;)-E@}cp=tLoEyJs7A5E-VG(^lAb*3hpFqogwKV^D3U>$!Fo2zFq zTgp0_hYRjIzVdn0^P8`AMV2e~JHroLYg1+Av}+8^%*_OL$<$fT62ES2-fGLRpm9w| z*~Tr2Gj^KU+rNL{D)W<9I9X)TfqCkzjq6S?zqWbW_oQ&s+{MecSv|LWZ@gur^ach4 znQw&;Loy<7F{j_jXOmhxap#KiRYqTSf4jBsMajk2w-f@`-~aA*)GawhSu0rbLE9^x zvwO-plbH(7&ij1r7~7(%pdM4vz4{$bKO1c6gLJDwWMH92li!&mq5E%~EPqpL;+egq za^8cZtbYD$-mJL(dckA4_xt}yyx;#nzT)pE<=@-iS@xV#UA0GpS(#;#M!A&u1iwR~ zY(-0aZr*wydT&L-3|>v<6DP{}Zx%G<J?A;*dTK5AChgqip(hjTAC%Xh_dj3oFeTZ& z-M!-R+VYRj)bBAdaQx&b)V!Y+G)?qzR9RNDp;Ya2o$3!+^8Y{T|8IK#SN^rlzlZJe z56(RG<!5(J*}2$y%lV1Hx2BzEY>3+1n6|f5clzxJ|5y83?m6FFnBMdAljGVjZvT09 zj0`4Hr8082wi&qfpDK{tbID<f($ncvwRVPF4El3#M$p!#PsS3=pMPFh>?Iyt!!X6r z&b-RvjKPcB8opLRyB^Bz__J&M{H0vt%hN3i|1sQs$2#TpdCPzu-rfxx|NPo|id|mj z8PCqrx>-f*S8z2S(AL;;?ZqxG_T%j9H{Q=l%)V}wp8qySxlGXKT%~KM?d0!OmtU^r zirlrf=FyT}&3eD~7E4T>zAQK(Qm)ce;Lz61UWKnd&E)?+`^L?!tERebZZ+UZms&J! zS?-MQ?ROIQ9%6{!nfU&qvdOD!+Adt3CZ`YlIkRfQM~PrNpWup18Lj^m^sQGLzWM%l zvjj7nUh2ZY{U0=q(~fc1E&9b2_j9|H=mh()a3Nuaw!ezM*5zNw%6MOYeSf;v*K=<( zr~UdeJ8$`O?V1@n%;mM#kEMEyS?ta>JOA9cD?qEI(PeMi->O+_#hfH<W)#kpkdIm* zoLum`Y1@Rlq-Cy)!np4CO%>Q%^^-~8zJ`y%!m6fobMoxPKYl&cmXVWraARg7Z#DD$ z$I2~?J+osx_~Ng7Xt%7(ahq`DLDDCq_|ViPC)2}sh`&F*c8MTE)m`p6^0H3a)(VcV z7quBk-%U8Fo;&l}i92bhU6(iKJ?FVJw>fR^)6WZ+3x3oIth5lGJdbN}?|g<g@An^J zm*3MKzCQQo^m9jB&2=U-wijHlOfxYuzv$J=RCCgiRj}a79M3sC%~{Wdbvk0!Nw*np zn}37#*RgMWaeFsS%F=c(dAeJo`GM=(oMtDsm7x>AuGuQ5IVo(O#&q%9yT06udOb<! z-=(R6ry9+ooGpvJmrj{~$26Mv{o+D-pO&J}hKqUIw7!-;-JJO9c5neh+#|i3e>&yT zYo3}k@8R!qYTeV$vBc%<cVjl@@J;VNe6>4dap+$1?B?H3ZmM6%5c~AgtB=?F^%t+# zp1B4k&zIicd*H((rc+CGpVprbymNBtWxI1R)BiaYm}G5ZNw;08%%$uS_#`gyY{_ib zIlry1J!g2+X2Gx}EB8w5Y}TNJ8AdCLq8h60+%K{hoZA!5+|F41xTVdJ?XCHmDTc0@ zjtc|JlbtmduRL{ft@_clcCX^k+w^wDzMh+WMZk%}K0ZXNwdnJ_5(9^4!KaPp+Z|r& z^5j>hsM~{_h$+8KKS=kvNqVR!^FO*U`<>Zr-{;ex+?ADo65$)uiZPAf)2Qhrw>{^L zuk?Yli{&$?J$iCvSAhNhi}jD&|NorN&~P|h|3b0#oV$7Ack{$;(@!ldd3N8uAaKSl zgE*H=3Fik&nt^lHe0-PBxBFxKX0{8Tw+T8qSUJyh@F>t^c)KWaQOcyF50oF<BwRRG z;9bb~tnBM%ouie@`!5G^ZfMKfb$;fH7imAUPNzFb&UaJX?cJ_vwCr#AG{=CVDdsyD zU0*7@<34ww$DPSiS-otJY?|cG_&bH)G%COTVDUz$1!A{5Ty;AIEnXJSN;Ozo729LD z;m@Kgx9$f-W$R~$M@?5!X}vb3(NWq~DDsMGY3IIYMLTr9>ZGq>aqQ@w8_RIu-n(QK zyC%Cp;WHec|9{n5m2FoabTaE^>0Cp;rA5I@4_%yB$au1-G$ins$B8{>ViuMd{Ip2u z`ClvHrQ&x<`|yF;248<W&zV0@^xWCKdQ-Zs*o14lj~bu0wN9OCT0d{I$>*+ZdCQyQ z_L~cB)m>NId}nUa0ycwn^Unvh-nd&Vz1w<)`E8GwRWk*OKCO8BBz}3)9UJFUm$_c8 zHJdg2+8om!C!RLu{Jw~~mF9Pg{~J85^Aa^Gx}7g7_+`&~vo6IGy?<Gv=iAMVecP|L z^TOW1<wg=#omK0vJ6~U!U1GIC@7J+&;#*JEuqqylOnh=|W_fJ-9L776Le{K)d3&a( za@m|dom}+9Z+D@{;%gheI|;eJtCRTK$KuFclH`*ow)6aI>x;({9(-Ev=XdVIr=_K9 z?e5ffE<AlU)JySn(0t~#TQpzoYwCZaT#+6rn6NlgyhZx$wCP@bzDKRjxXSt2WpXuf zL`R#|e|Q<4zwlm0!V9*IdEc3Ar%Q9^#;jX3SL}Ie#iJ#CM?7~Ns*>#u<Gyq9hsoom zCy%NWt$S+4t`q(4RKn9D1_5=`H*aj(PQ7{Z;LDE_&rg13cb3>*;CcDX=?#{TJ7Q+% z=h`0H?7ydV?%Z4k2LT^D#eH8Lt}`C<y1x0yxv;qGiqqd2-7@!EJmxWo5zBiRbyz`v zbC|_??X?T194qaa;>z^LDQ>#X8sAL85WV%!_-@{J4wQNLab2lY{kLPnM^rn1e>!3Q z=-sSC{mM`FK6}}tsO|md;K3cYC7ztoKgF#1r>TjXPmg6sbVqjbAGh3{WxF06+I^r{ zvBrGzGTS-x=03i%bJusazk=;Qv<$ub(|zwOx6x<Va?#_rUaeZNM4Hs3=RddH$!{}e z*7*L<D!6X5>QyQIn9LK$*MIx?<7IRm^LNFf*(>Yry-Ac<cz4_EqP1bdk+Z}YdrUry zs`Z#%u+e{-df~kJ)&mMLD<e;`wmjgtvqO7nLqY%KD%sv?Yd;9KER3%Rn-wG<@=bY$ zmd23>=6Y6p?W~@gF-%F-d}Pw<8Dll`3B&o%YdTsl!`1?v?7h$M+=wN@@ZF)e{91~N zt%ol3YH9`F3wF`web*!w#Ij=dDzmL=!j2lX`&|VrOI!s&Z4&UhCGbK(L-RCVI}W`A zF;kA5a(yee(#-4>(~Vg#GM7zwnwGMvAaUDAaq+@Vr7Ls1pB?+gS0*3XydrG#Tjh|) zK}+{Oy}c;?GtWN{%?nxE85#2Tebp-~|9+vk==kN$!gJ<ZN<KDdEeNVOnEN)DAtOI; z;mbJvR+m+hi;m2?&k^Y7I%7|%cJ`ByB&|x#$M;HiUCerPa&~@V@@2OJzxVR_%~2`0 zka_Tb<99XxNvh#{|6gynK02c~HMO)fv_H%D#mmm`k3E0w{Vq1Cv$a8$J4J%KhgU+u zIP-A)0@f1-&9X*kA~F`*9&_7pkcYX>{~E`IhGTi9;pNxoB&WC?k-byT{r&ZKx3HA7 zGlj~pYi{k*(lS<hx7Tj>{NjD;8<XrKS51g2t+nsCuw|ao>(|i{w<C`KYFo*C@aUOa zAGM~~Cu}|Ettf5!IxafjG-kK=r7MvaSRXf>xwGT&7N^KHcXzsHO}TRStHVydC+^o< zUBjlYIpWsy^AX#m=*?MyE#hUprf-kk>-I~?mQ1y;W_{}<pm{ndoiTiuM#0HeZr2Y> zO0E?swgx^=ckL_r{!>R=CtK=7k?1EM#?H#S{lXe$ZRZw>O1=FWn{o0?h*^3ow`x?v zTx)%k#xq*}>1MZ-#dRhNock(1XXouRIkij<w~{Tk7P~DkZnN;y%l+P+@N(<vt}^={ z#h<4?_r9|y_nMZxRgLWXYwsRD{QH}sVX~iir|j#kZQR9PGs_mOO=#G{v?$7`C9uQP zn!o+)tk=e`qpff3OWY*kaXwm7{QIWE7gg@*{k##mElj<z=d!VK(F|4FC53N}gtb0* zzVXpQmZSL8oN|$hhk;X<Xg*SL+n#M>^LR)5Jki45%OY|;+IyzhEo$RTU2$DXxV1*$ zy8NvL!rtogGc3~e&TYDvl~{XO$M3SwL3`78d*`0xoD$UWc0qbb-`VHQ3QiKUTywH> zWu^7%KC69;t2nqvoh$6{+-xSj;)T+`cON*gHamRtRhR0$Z-cgN@iV_*X{MLxmFoJ} zuyI3L%$nQT*%@YMS*D~(?wTw7<J#VH-))qI_p2P6d82#Bd%@d1b<d8TFgWHjN2=jK z_k}oZK1&vhU1moVd?!zOy~Qcb{B=;px<7{vnx@E{(K~TU>&bc5o}ClK{VVhiJI`8r zG*Ld;WAmA{3)#2G=GZK+Tzlu4%iL`5=eMVI^V;q&w4Xj@)15t^jut%-H+=E>b?)<N z`+HjNTn(4mUiwsTr<7ILi=%0eCoY>Ayw5+BO=YKdKHFNKzdy}__Qdd1-d&RUO6+u0 zrud=>%Z@&>@(ptED9N4Hsp8G{sB*oq_*-`U=G_*Ct#?ia{Sva7n6R{m{Z{Y8GfQ7x z;;B>;ZSXdDEyQ!~;0}#PWz(m|eQs)s2${d@g6{2q2PVtqy}if8u*OvChs%HAANRi3 zb1?ik>0jUF&hLA|VbZY+mDcWpUdk-)8KvU4vVCjb^zuKPdi|ck{?9COHWf?^H}3B3 zY`d#abZ&KO>yC~hi#t=eWsf~DyBEL{D;+iSOVx``iN80_temGFdt(Xbd4p8B<0lW; zK4DkCyIF77Ub$bf#@mi~HmRI`&b5PC=w0CzrPYh%S(v3uZmkfue1bYhsq^AU#FV?y zpRaG;bgSst+*hxE9b2}!%6t}YNndaE`-7L6Z7Tl=bV)YO|MKQc<g{6D&8}@XV_+~Z z|GpvHf6?pLxjE6<H4j*KtUGh*$KsG@MfbQAAN;Oc_)DwyN8?KMb0#gKrAbZ76Lzw@ z$Ob0FeSa)bc&GhDv6L~N-BR(xH>SO1HC)TRTzJPPi<<lG8`R&;(+}8ut&o*%-s+Ew zHY~`FxE?Q2S`!=eAv9~+BcH2UpHCO)y^B%UlDlo^wIWF_hG(ZZE-*hma$wG#9oJkX zwU%<1e%tg&+8{wZJ%Kszqxjc=woPeL#ZFGWVY2#n%#vrkZ}rZ7J-yY`N90`M{0Pn7 zx><|Ludy=B`TF}@xw&ua>GwPm)5{q+4l~TtKiGOT=K85#_RMKY8xM75%1poVa5AHQ zn?|-+-rlFXX71=%K5@+~dEvXgx<$u!oId}y+U}Bpv)pIJ){;lzKH1Ct&TehmqUL^{ zKOkE|ag9Qk!qORj9NFIr#g?wu`}M}?#NXMQbX-^G>fA1m+td4YZSJ4`_@DO~8qD|q zmaX|7|6iZs!N14t7H^*%N?Tc6o^SGcNAY((h6j)3|EvBvwcNhfSNq$qFCT^f9RL20 zm*GNAo<+X4-N_wB$9L`cvn%-A`fvFMTeEN5e7O7l+hrD=#?Kd~1X=K}*3mtbK1ruA zE`saU*@J~Li?8=jjOeaewT1h3Vhls&zN+)h;x~DO=dnEBQ<N>4^z#DST#4D6q?gMT zSkHP_J@Wxaj@1^oy^X%RSLT^tpP+JV@2`)ylq>2O&h;L$-ccfbeD2)XJr&RUDr<}R zvtOIB&8p^jo8aLzbMe9{P20Mo4@$O7IA<Hke&*;$?vt@|G{l+am1g!F64=)}Q?%*v z6OUbGhmIC$EzIINdp=;+{H>QBBz#!owC{c8g)+y53lF~0nq}B~=GggVOSdG<DNfOH zohEvd@5%<7`171j1y`if9IL*clg(K(yLnH0zntPWP3fsY9)W8Z&(BwUd1=|6IcdK9 zmHsc)&+qA<>%D!+`L!jf^R(9QYuoB8t**s7t=7Qk^1o#HR_;uZp0)8Mclz%pnNK!~ zKi|aN*CM*=ZJZKg;w#_PNzHt`&x53nZ#-QvVd>0h4Q{;!q5{{>FfMw}p7zm3^y=&A zXLk}O{VqE0>i5-pg}K0$SMLn&OrIxR9-$fSG)wiw;h#%IGE94eDr|WkR?E$Zm?!-{ zRdwSVi8nT>bH7;3GW&b&+c(}jyY{wQe^YpMjobX=LUTJFhKl!p%RfAMXveVN{_CdO zA<J)D@2>b8`uNhnTkUa2k3F-RVQaARs&mbUAB+qNFTZzhy|C#J?=;7EZs#PKsuOOn zFb`ZU{dU@9KlZ<I@{wtLJf+iiv7a@1+U1qX^)ql?(5W4Jm`_|1`D-C(@#U<umgS7q z-1k2RZa=1R{_`2O+PL#RYjn26Dk9EA;BpWvNvc{V_U44^u^pS`JkL94#4ZtRn{a4H z?MVfPS!ypL8|PaDf2jRD^I4Si*J+{0c$AjESQpY|VtD+QR_t4wHHZDyamQ|Yxz-|8 zTe19_cH$lH%6A8%cRc*HkNtiduZQN`*BhQ!p1T`m%&WLV^vhwNUf<-Uf%9Kkg=<gu zkN(4RW~%QyQ!UqZPH`P4GBzl&8?qbS-d4G6!OWug32M76{)W%otme1=&_1hglbsqS zEsiseWQnW#8hWSh;*P%kpWj)(_{zn-OE3EPdCu)m%|2}EwhmbL-7(v$+3xwHy!g$V z&d%W#QB6McRCnLbTH)x~$81BZ?m4yYdG5P#-FZQem$!1KrM|H4Z@W_Y*5hF8wmu)t z2Jvee+SmCN!nd2X&Rw!HSj7JlPv!GZw(<>4>OI@19bZ~_d7VMG)boZzQtvA5oM!(_ zSbMRBqjt-h59tru*9AVWe95@re)q-g#l_Q7SKPF;;mH1AQ~!oXt6Ai4=Aw_Q4~4#Q z<2&~7=e9G87y<<jZa=g$#;c-i-QK^CxL?eXxEL@sHDO!+mT28I`4a0}d%yBl?Bkz$ zQ%Amz<$jfh7h8DxWYg7GXEL`PlqgT#xN&3SvtLpS3yN<!&RX{3o6pT}ziQ3RB=RrT z@SOVeLOo;I#E9uXR6HjxT_tgUNkP)?L!Sj)mgz<Jww-Q%=Y4<5lTxV%oiiPzOBMw^ zDbAR+G@$I_vue2->x<VX^EigIe|h8b*z<YY@-1w|cKgmOoquYR#By~vR=abTHkxZp z_0l#iS!(usDtkJQO}~ALOx%O1W|ERiZ2xdD-_O0Ub4p(EL2vG?dCM9eJSZ;Q7<a}g zam%my|9*aY{bOEBklm8dCtqzWU$kZCyBoCW^jrIfF63KhA|c@twc|wm<tMDl2PK-* zPk(yW8~x+M@&D2c58Ca282VYMiH1yD>h|`YY|z16C!f7fq`y2;SbgW$m!I-HcN{)m zl3Dj;-M(l2e-0d-ETmg~qT>10-5FcY9tzaa)JeHl5wt*z)s;gi`JAY2pD{-of0*sN zFA_r2oHF0u@rcaa+<58yW*^6!UxK|>I<em0{{H;#)d{X?{XuiXvkuxET)W}YeC6!q zDg50m0h^_}suuUHxOm{(Hcso+rcx7h?0u%cyIox<e^>bO{9SjA&Do2OP1`qrcIvdr zk(0mwkGgT7>U7I}mO6%G6%%hB{(dp%%G=+fuS_=|ygak)m!6}*g2dq5U;FqKStiAV zH#1JW+7TGXkw0sVK<F!J;RBY=8O|TBUB6zCeg1_kXGTSk!q!ByyO$b;FS|;It%?vf zIyc8^_Y@u{Bk^zIZTq5Ev(+_RYm+=5{kGI)+rK5xcQcDMX*h%8c!iEQht~wvvZC*` z+dqD8W^jC|V!`25vG1&`tZT=cCZ!&x>A`!;XFc4K?%H9ce&W{Kpm$%g5BNAc7oVQy zkaD?Ui6@id(%Vxw0(qqC1Qa$*o;bmE&aRmSUEhmO9-RC6P)@k#;x)^k?=+a5o3mTj z*k2)`QFxQ!CGE;tQ&NsfFmGl(J+n-6)d3&bs#9Nt6}v>-&nx#Ba@>AC`z%{r_1Pmu z_jYV;cklOowaCKrz@;;sW|^_8Zg*cYo~rY}wfp?~&PB6KiVt-(P3K#G?ysz?V%{Bt zu+P`yYFXE&9ll$i%Ex)yXUFTp+(-_VuU1)ga{ZbIt6LjlvTkqo5^4GRAaM@=3kC)$ zrTbH~-<mzG+_m+O*=HlMOLDJv?FwW*ACSQs((d^#Rq5ltOX(Jq^>Q=UUOZA&&6^!o zuqHC!N?&Vnf5Ne8JMKFlmuq2_z2EWg;1tU#>(=m{SmffaU-j?LE~5_uThHu~W>egu z(eic4gLBTh9ZnxC&IitKyt#DGlzGCzPkI^+cN|tf|M|j($DA`5o=?{Qzxs-~+CiBc zvvwBNW*_H#eO21@inMRR?y@H_4<1}N@@sX-&Yg{ne)-3_YbINXg#|l%xP-Ych|PDr zv31pZ&z6aj&&|rV3EbNHYD?43BVV6Ny$ynw=p0F<iriL#k|riwt{xLfSaDNg?zbrE ziMEwbViJ<GW&hq-mXK|tkgM}>t$5zUW9Rf37VNy&^yJy|^oxawhS%3@TK;2kQRJy* zD^Dgbw|TioFi7*@ftaYdKB)<nzw|W~i@A3RFpD`Z_t93(N<4dalR(n3X<dgNS-y#k zcxk&i?OLwpcR!9MfuJSFKCxu~)vn}vqF1PPc46rDXOf$A`gfYu9^HQbG;4X@gwtt} zd-d~+9VH(0n#Zv+{5gOAPq|HPg*?NABb=8^n!Sp@e?4fOnp*xa=(g7Or$w8^=IpLF zE^ujlss1&J*Kxw~>XZPP3t>NZZQa>+-R=)3!vXE}d)p3Z{SCWR#m7(?IpxuZ<BkQ5 zQEU6&N|)W)_kG<-HwJ}w-zTc>boU4=Vm38B=(@0P&iA5o56|$$c>IXVi~JJXHlb>7 z-`TUWTdtciGSo>lJym20)qU1E<48-~o-a#W)~4NAI(bKX+V0k{!zpen&7}o)Ztwpx z*VOi1>$$zxr`tJ6pO$uexS+C*Q>Xgg{x_d0e;kck&8eS%dS8QpYwL=jA3W(YmCHQV zwMwV&NH{8yGPk<ud!?r8wQD{#RX0}b{<pznS}eOIPr*HowPD=)clI$eWNe=uasNii zOUA=h%nyIRXJ+{I*Y1<u(VZoljkC|Py)yfv!1L+@b7$G<DaDKLGF*RV<t4sS?z)+| zV5F}|@b~Lk4;0f_axZkAI&k2Qi|AG<jvT2uTeogiIyaL$<)vO$>0>96@4xbdH*ee7 zxpi6R$Ca*I@4V*g-F(5fFYdwGnm<=;wp&zQthiJx9H1qf^7KdA+Spw(=XS0(PAqHv zRz1V}@uNzi-YVgqrz=zT?7aJ*VW~yp9PivvSBd0nu_7IdP8>bR81_Re{=u|6rI9C( z-sqUL@{g{-B7x7JTi7#ypWI|#eR>t=b2ly9oZOjTQsw`j_<tbU{+A`gg3B)z{Di-} z`E9&3=0vZX=CchtACGlSY3?yDU=#NeV3Bju{vqNj7`JCHJHw9B&tkWt(-^0xaHY=; zo^!+I!E9;s4>SG$`!gJP*Sj}p-?uKq2~ownZslCby0I(O>_s*Iw+A<8oK<<J{BHIw zk4alH_BT0eJ~fk@Q@A0>CU@UN@utOB4W!Q~tUCCa+x)?8{d>oz@v3q(6>RWZUN!5f zv2U(Kr||0Lhrc7DPn!y`M4e@Ob<K6x#f%+?UE;WIe)wy*C*an3kCxKSoFDfdICAS; z#v92{@nu{Oxz4ls+jt8;5}JBz5tI0$3%f6HS)D&QSM|iN%DP;(YB%nq5=K*ReV3ki zVb7dH21ma68oy(0eE)1#<vI5AUPU|_Wjg%F=2S%Mc5T?0%J({JtJJHtW?5!-Hml4x zZcQ{{tlE3yC8Nj7g=x3TR$q0x{A}HNS6-H_9K64OD)21Gsr^!2`z6<ETa~TL?W|r8 z&G33puQRMg$V<<-0xmwTd{o&|{4Qv9?wVYM&0<HQ_C8y)#Y=OAPN|-&+tVv1k5`B( zZqf9#S-)XQwUgCBh4?Cg^G6Gxrj&V2muunv5mwW0$aXF`<8{@nRaYX{v$3paDQ_}+ zcKzEHNr%00#p%zV9jUlj8j$<C((m56V%E6jPIFf_UWwB?E0uiVXZG5I#frMe6lOGh z;9C8#;p$(@mZ`ULB8=}TmdEYtHn;m%$Z&w2U+&Qw@#eX67#Jq06h3x~WR+1pXnFp- zKt$jgx3e7~d21z4zqxl$F7K{k*yp!%qj&uN<;~C_Ep2{qt?BmbuOFT~tX}cyiz35< zz1tei<7yA@$=e>Y>d>jHGe6%-2>z<WmV9^L=JZSVO8fgaZr++*KXa!@)89It`(0L? zCl^j_61XPp&aAY(kNbS5{m;Y(-_^5pQXAsVb4*j!I(qFHpV_r?28Ma^BAUx3;%oU= zYihMj)mi5ja%RVtV#X_rc6kenwk&+je@rM+<CXF973US!Sgd}}{=xR;v9+!Rb`Lu_ z*>`y?$vtOY#QN0ed|+f+zRr2Mg>y2JW@)MaTehR@v4}9!omH=;{e_;{RMp&fzrF0_ zXPd~L^x_2_6_)Xw&+l)rIh7i>`6Wy1gbACbSY6}aurW{PMdmDrCr#CL503q<+Wd^A zH2bR>lYK+}QBliey({a*zfXwd=Q!8O{V?WSRYwGCMzf#Kff~2SV-hvevv1~YpBPcD zaDMW;S&kEwJe4ZU<f6FvFX^4Dk=$`~=1KcVofDsZlmkU}`aUt5dB0*#{+(sPdg*g^ zHuHbB<vFyuUFKH#yTqWXJjMf-<+{y<?_$3Cbjil8>UTZvblcUhRg7Ic@Jai$2XmB9 z=iCdO*0`JNYOC~<hVJT*>f(3w%yND>ddfejY%k=yzv}V&{Jcj`cdut;sN3>AzT(RZ z&Y;~LU3-tn3S}*g-PREm;=VXHW_kIxyoC4XVi^v+UcawJJbp*--Pviu`!-h#2i{$k zP;K|;fY#LC^G-hHRd}mzv1@Dl<i*MiX^%H=&Nb^x6bbtmkox3HtoQ*IcY&508_w4( zzkaxPcA9c*zNw%`aGlrdq{p%>54hfa=q%=&+g{{w=$*epi$lWQr<Zk(e*CA%u;8+7 zqrBUS=%uNesus})98WAdHeYl7<2zTI8QxC2>%zfjuMu*$_NDmK^AUnki@nVSL|^W= zv2T!X5uH)pE`H9&`1RA=tSLXT&+WXuBt6DqHP5NL(#27tk|sN3oh6b5&Q0GxBi%BY zIeFjt+V6Mgd_GxpsXyA``Mvn1nmbOY9GuH#op5N%C+GKD!<aJjt%5mcT(#!<%djuD z{MxHhaXtwa#g-{cKQO+N3ZLT2e3R)DkM5<<J~RAWk5?pB>Qrx0K{OheQXJLQ68(-Z z=rPRJWtaMDm1Mv1df*AKt_SnfCqA9#rm47g_2LgZibHjxd053;ckg~~d40pg_t|<v z#>RinF>d{oczwp1t9v(0ihjN0ua%~%M3H!WWKro8)zf)5iw-;}ewdej=ac;BV`uOG z`t#6M+H+0%ht<={7oFW1n69t$>d?+pFF%WYnN$(~vt^&oy)9nLKR>OW+x|*F`Ap=u zs9v^rd;S<PJXkFM*TT=w>O*ezyDz&gRA%^yB;H+BxBu6}>mOgOUeC<%Zr>NHxIM{6 zUT^Ypl~%Q$`+70Lt*ffY>vYfV=ck-n7l<X?-6dpvOyF9tY1+4&e9sP+OsaR{aQSL= z>$RInf9BI70rOkB6-M7XCULA`Z+c(N{PQ{M^mkjYRXr&Cv_@fX+?zXo*>lw_(m$-> zSo!6t%wF#s2jYLmo}HYz{JE3Lx#C3yF<czS1gl(UK9vjODVV8pKw`(4=e!S{&Yjuw zR@bB|;l|cGUkcV0JTpGt?{Am)JmcJ)=Tm~@npPCdO`A7Y`oP?y<{xTUw$0^MT%&&b z!)u>{V&&;Ure2?m=CID?R`)r%qu`-8!-Ox+DYw=+hdw!!v*h`~&0-%kRvqL&d*1eC z^n2fINBvm;s(S~1o#>3=+9<{9rXzD}fpBt=)Dr#9m$RnSBz*ppB)Hb7)x>yTY*ePk zQbF}&yg^(q?>#^5G;<2K;R2)AW>&&Se%q{e*_GlpM?*iVr^oA^*6|q(=||K2pMGRI z&^r4-cij2Ojjws4=ZNO-*>$(C;=I~A!~fUcINPz^Q9gdhIi$Y$yUz3Xl``Kic&-y} zQT+C;$NQJN{YOrj`DF?=!55YvkLB3S5q&%6aCTYnzlr_zOy%!qRebvTm3Panu#MNh zD@d?==`CaCEj$sYd%o$xZ`JavJLOmTY+uQC?*8o`wF~xG^c@m-ZFbK13zPUWkt<mf zekRT2{t>s&V%jq89UoVUn6I0%TYRnQl)DRl*X^I8xRCpt<*ThRiF+)z%-wh9^y7Q3 z`I5=^Vw~j99WT~YeYN$@(YwqG=609JH6`b56iGYWeOTRJ%*vqY_TkT~`aHRJtPOnL zwJ3kar?aOof3N+%S%+utq8%q=60X~>Infe4&pxf_zwz&7S%G!}A0;*`RzAzzY@&V5 zHtO*9l`oe}&^z4rUVJ61ueJU9qs0ezWpo%eE1a6pjj|bj(*oh?6QV`+Dv!&od2wLD z)!D^wW3KmhbUDmodG~9l_Y#e#PtxXy=ehk{si9W9KJMDXXK(yMmv5e7c<cZR^W|ps z-|x!3?f%X^{`L6JV~;+mUe8Ienz}E2UEo~dZ>e`qyI!AD@<y|0k+;cgw-0ZpPLFpL z`X1Qdllt{Riu}ady_fGDyn8*4m0?fCcRsUgy;c<>S7Wv{Z*pB-qWXJt_xr;u-hVEh zKZE_~ULREj%O{CyU#}THWSgg*uBpN_y>syfi6%pinbj_a1|pBoxhe`ioxp#P#ln0( z|6z`(%=DGtQw)s7zuzqBUH$y-#C@r!cFrt**CN>Z;MioH`I9BJ&n|6s7iVXaX4IaS zy6oB=uHN>?27dO5IU8gR!nlrJ*ric_j4kF%daPNu-s{iTXCMFd$>v<NV*L3h-!J4i zJYy<ay0uRrNkRRW!;Je4-xUfbvd&dl*JSqMNNbPPv@_aiS9}8+yzd^eY@fn(ihtt& zOFNV1$8X_{JP=#y`+Gav?2Ad+L1{Z@7#2R*T$H``kV<fC^$s3m{qxU1WJ!i>-Lst6 zFrmk?^uyP$rh9(9YLA)o@Zm|xC4bLV?d_Yr+nj;nY#8%GU-PHaO(Z@Yy|Kgf=&_Es zbJ{+xF4&YVx%}+&DDj_ZkzSn#_K5{eiE;JbxbsXNr}t-PKTEdQ+y5Dazt3-X%3QlJ zv~Yovtz{rjQRr`%nVC*5r&8_SFeJZlJbNQt@^zoqYejp#$6qHWEw(#<B_lL-P2IBP zr*#fWFk7_itSv3t`nAUIe0?0>M~MqkntSu-JxQKc<~ZYe@>)j`%mn5<^UI(78=23q zyxXVB9sDk+_M+n_gYw6P>rIa?Pd~PXKjHMcFsWUi+Sjg5m@C!l_+IFHmgaXOuGJCm zChrQLeO_!)PNGOsZ8ERdeh!8kZ@$mrs#tx^X>DrEL+L=?eWDyjH<eb!r%k@P`lL8R zkMt+Qc~_@>R;q5Fc4%j4u^!j=dz+5_nRENagRS0{Yfmex`!pZ+le+eG?o`)vY9I7w zh`a9Vyt%8zKg)GJQ|QkA=bck^ip$pBXHNF#StDbl5U^s`eC}ASo@d?~%M+7|pFZEG zHm~};^%h6<HY4w+pEjL7ufx_?$=jiAsp!ivTjA-AMG<wfX9^$2+SzFBd>GdHbo$>S zjYk)4T@qWuZZG+hrJ`wbKCOd8`Nz(n^;5);%#L@ylUHse{^26u(ixsp*)Gc$y%mV_ z6AZOlqI=wlfA`(Q{Zc!`m(BlqcgF_HXWwT0{dTABK3ChFnCJgY*Yk*8E}DC)Ch2&7 zG|QZiJHH;!Tybfyz~^SO7e@k~?c`i{rDe;4ALj!jW4w$$mv3E_^wV_XhUgRi_f4Zu zsqN)TwXIf*?wfj9%JaOtu2ERAsMhpV7r*ZbveDB{TC8nab*Af6SjDOQT}g8cH_qXS zv60TMOT2Z=dwu!IeEo_wp1%(5+4lVNyXm2KMfe_9^#xu{yP0Yye(<{H?HbYOh1Y&v z+7z|4&M$`NDC${0+*XDMlysazt?sUV^zubgWZ$pn4%XH4v>T6vr@LAHs|d14pI|n3 zdeAA&dTvFwJ=&i(dix9Q+vA|tYa6ffd~?1?;qw_Qy-z!|bjtnUbhJ4hBVStcNM`d4 zk<O)#(j`d@v2ikIWpB;ZnVs5uUvFKv7~71c-iC&jJFB-ozg>~RJKb*ioHVcOTED{! z7xnINn)`aw1+`<6ET>k@_p8l}D`$4_kIfBkd9FYARO>83@5Nqkw;x)Z`Sir^_e<Bk zYY_gm<m=H_j(R8u!klRG)9KZ!xIZKK#3qT0pWdZr>bM%N>$<h#bfV<Z{an}f7p~R3 zJS{$QK|$%yX|S~bYyNEhbpM&vX~A#1&plaGec<UMcjMGoeh$euY<7Bay#BR8#s84a z6#>z#gHh7@=Yk4t<Z}~>w)n;xu9<R1z`gkDDktfZq=x6k8ZwhgeC+KDBcCvAO*-=+ zW%a7u>JJBeraLLR?R<E1Nr6uOrS{nGn{4h(eY9v!viBpSw-XyhTDo^kKN`Dg(-ZG1 ztDGpk&n6);Qc*_pz5V=umT8;Rg-VtkjEHAdmN3LJsmHLG!~e{rQ=L~u)Jihu?%uBV zHc#x#igjh13r<$&ah0a5d&QlqZe|-$cYfEcS(86^?_YgO@7?)(-&5bM+bn0luGjmi z&%9*2%FgL_&(1H%3EMY!!s{zrkDL|u%ibt6Z}W|>cdvw;`oGW1#$ImTdE+gP>eIZo zUT6E<Z5Z?ISBZr3Zs)TqDSeO3k0%?<pWYo^UOz*enR~srcFEUM^<UprIDOjj-TR)= zDYoy6&i7w0oj*HhJ<ECjJ6|(w?APYEEmxf`8YcSqoPO#r>)2n34|F6G^E8Ur&iiZG z5`%IW*#y?P5?()_<i@H0I`-@Po_QbEekeY_;oPZ33Fmh|eDNvi>bbSG3ufs3xUfR~ zxpwHkZ!=47&Q56EeK9~U;PG6|sS?HEYniyGU)qy@_H=ATVBU$<0iQzUC#4--V^lfg z!^DH{WfB}3a(89xc4huLymhm}Zp#flXUpn3In+1Ky1+Jf$E2M*?}pYWD25+)ov2?i z|GUxtMfN=c7IrtE?8$n%K0LYHknyw5-%PQ*&GVS2O}bggrC0r>@@#)`d3pTQL+a~N zHq4C?lh|-aqU4s%x#ok+&X0aMV5ZoXtJZg;S-l_SMDEm@H9>3ZQO|cvy}sLXuCDvP z`h?D@J-1H%|NMNDQc2#915;T;TEFf8V;#XKKK1XZm9yukAION?VKqJW-s!FTPFz?P zx%E3^|D@u|{i`o5=SaE+n%|pv@@q(V(T6#!(-XIzTI}`R_<ZXnjq{e*Ur+xX(0Xdm znLUrQI*%IuHkz*|lJp=iY>jQtnwJUpa{d_>MfI#+Z{7WGM^|k@*!lfk=k56N@+`m4 zm~LNwaenbCyLbFG_f6LaH!a|`G88)Om$=?^*Os|a4<5Z(^xZa}d&}qVRsVh-kKFO{ zU`&c|Y`w_Gb&2yO_jRnOvwiVNjd}9?@U=m+S2Ha>A{)NY=X`eu-|ppJPpsqBjKwa? zWUe`!5WiRN>H6aCmlo%ZCzmYvyxgm_<m#T+_n!Ydv3jZ1c?W^(tX;@Qd4r~{nszj4 z&EX4wC^zk7=*DL59gQD*4X-ae*S4%w@!3hEU%zaEByHa(Ut1%2`s_a|qrB=_3l#LU z9|!(+vy=!}UvaGS;-N!nMT(!lugYRrBVl5)o^6Yxy3Cx(&PR<Feu~!%`FFbYRDC6f z;<Q@s^QKq6P3NBazv!XKKY=607go3+)(43;n7#0RmL30FN+S8kr|J9O)Lnc3{Uhl9 z#~Zh9Iqi)*p8w}q{)4^W?@9l-v-|zN?)d*-<K6eh9lv%>?B9$2e;kD}`oF%x&*STm zbkuw2{RDJX;J;Vv|8edA;=SMG!)N{apQnG^-v2kc=5_S_L(iV6?fW!!{e$auZ?AuN zHap*mqfzHH_}0MNw{QOd-&<MxOJx6N>;24YP5*t;|6lazcc7Q=Z;vB0ro_Hp@kgA0 z>i?pJpW^u{b28uE@=M(xvE>?bB5UL{#)yYDceLBtp1b}G{vB`9{B-_OO@@ZR6$hOx z?EeW|ZK*mu=|zdvk4w|{wdB`4mX3&zFSob1vN{Cv)8p6i|E=sm_Z&{1|3_ut&$IcD zs_*}ngWhlWHosol{?9}Hk7x7igy;WxqW<yc`Fc6<<u|?gHO$A4A3t5C(xd?GkS1|u zH1AXS_kjN&L;Rmd;vltk51!}m`>8fb<sj((#P6H;?zIKo7kk+L|7Uw<hJR1v|FO#d zzHxlR_U+H_eFj~k^WyvOiqB`w#XmE+EKTgO{rvxPLv`4(gpv|T&ci}SEaxpZT-Y^7 zzj{@_t8?n!m~&g}&z-E==a8``lJ~^XT262{gKj!{Xnp_ZIph7+A09B)+?U_5iupjV zwE2ez2bsUmlQz%e`BPV0E4%Og?(aN{@4sJs|NZXz^S5ukYilTOW?XuIrt0E+httiU zLQ4-wXfJ)VqO6v8cFv67hxa6``66=VA4ihcsoK6@!j3WGdQsaMcb#ZsbGTh@)HXFz zTi}S6qk9<lvwM51e>}GTmt6CC_I($LHsyN1Y}*ZjlG`*b|Ihne^ENx)dH3D2|M&OR zR_~dOICk|JTkZw%Gqdyeb-MS<Jq(`zOJvEE2|<tK|9_PK2)gKRLeQgQz0w_zCD_^7 zndeu3c`<SGtoQHU*(Gb*TUa<uQaK-S?ew3M^Z#)6_4VEP|NY(F*?*a%=FI+R@OoMC z?s>PLiXSrw|8(fARPo0p(tFP7>`UHZT@%=PwRFGC^L=wJ|8|<MTE4k{pA+x1lc~Ai z4t-zS;r%+ac9Ye2QwzJ84=YdEvTuy)xt6!;_O?|wrZ*<Z>HI3HylYf**DT=NQbPub zRGkREQ0?+23HDnH^k<x}eOLVB-uHd&_5Z)um;e9&N&mmmzAsDlcV3_O{Nelm|K8tC ze|LX>|NHv?zki%bw_|4b@nyMvFNnLN{{Oz}^V|3T&1G?H@UMLpEFNdg!L%i6ZR7vt z%R9d69{=0-@8&CGiv#_e6}SB7J>q;m^ZGskt)lm*XB4R0aqLW3yIH7b`;N*q#a$0t zjji`b$^3Zgl$W@UN4EK#?z-vUXB<A(cD1a0>CwMMl48s4e=v)j?z`0Awr^#T&d+&l zr;4_H4~ly~M}D=Kd+6(08!_8<p{q?v7sP!w-#l{M?%T%3`Bz_;=H%t=n*aaZ`+s_% z44qJ1EG#W8{o_^m{;vM|Kac$a-f_qOV6yu(vH!vL`rq3>F0cQ!{KozJ$HVvk3jK5M z{oi{%W_KSixSMdE;YHzb!DC@sYB%n@`_cULfKt*{xt&Kg<<FY>Z_ekb5pvD*?Trs_ zIluqSCF$9pUnkz~n15A&#{xIDTYuh|@P0WOzGd#~Pq$aeJ-)l5@(A}Yr=LI7b)MJE zw(tICb)h;e=Ysb3%~yAQ4t@UUUqFwe_@37>|Mg$#|F^uVQgBqlika>E<fk7~Za&?g zWIL<3YWd~${vEFzrN3}}0^Kh?A?T5L{b%!wZ_7UJJYUOK|Jl6$@h34Z#Si86-^+je zz5l<q=G*4^t|G4ByV^iEN#C6Geh#c4Xqq9iEc|W6>=}~Bj~~z2e*4{huazJ7FR2NM zvYICQyky%e-vWofG8>+~SMsYC`jq}`=@q5LQ~&=-`p&L%?78m5sjC*hJpJI*C;NH@ z+m)$B3+h8w^0+@%GCWnBZ&cs=WA4-Q{n!6>AAGtfdv5+A@!0K~&K&TqeW1C%;@O@* z?bB_gD{c1g$_c-G=<}Hy{Abq4_uGH7kLQuC_R`mz#r(zf@BTmDIxGI@zc}A~FEThj zrRjatI<^VdsvbVA-}f)Pxkxp(<o)E{wSQuwb}wGMSheDT&~!(!k|Z0wXa_%;<<%2k z=X^~#5YybH9{7Cz-L2lA!*}Xwh3R%jL~Kah?O=Y{_(dSs)0p^`5r%#~H)Crj?J}4z zztrSdyo=HI<6Q^1rhk>k6cO=kNaekBjV^Rj=37y)IvBw5F!y-}P7a=~ENW?~(X4 z&s!<4<lkw@HKuNn+ha;*Z{{eLezCmj!FoYE>$_XSTR%_yw)(oYzT83f*Y!VUr95aT zWW9F%h=PicJ8}i5^WuoA&+}uou^Q1EzN)S({hSoYHLv7=m6CXb?dhlHYfgoo41S`u zEOS!0{ok%W>*N_n*Ui^@|7!co&pn~;dLj#QHZrYC-nqskIsEw5IGdi0#Si%xZ=HQ{ z&1~f=LCf<D-;Woc`zjgFp8G=lOs{f9Qt!K+ZXv9<76^+M)wb<;DJgT~S-8>8*_Voh z)Ycw*u$N={f6sM=S8s<G7R~8a_$B)Ez_LB7<gVW@jyh%dLwVKJ`T5+RGtRHReoO61 zjmF6}n^=7;&aFwZU$698^7--Avp4FWKh<~T^8Md86zz-)=I$4pa$dVAY+J&Y3D?EV zd3bH_G<^7ThT}RL>I8{{Sji(NvDCA%rrn2Qba!Y^KU`_~BsXo|v@e0Le;TDejMTQ* zpObmzf!f|Bf2${H>n)y<9%!^H<lMQ1g|`Z3adIc$*|+u0GGFJXUsDAi|M9tS*j=~x zVeyGQ*K8KoWmo3REcg5Jv!M0K?M>`UEsI~?a$&BD_}2S6R^__Ttp&m^tr5qZQm*oO zutom+w5UTsx=3F;cH8N+GrQJ${83GQCa1QtYT4JF%w3tcz9n=mbUIKqWlF}oVC9(f zpQ&+aZBBPxQfHjCuwTb_LZf}luS4}uA0K$q&LefJ_Nj+tirdu#8u!x+J73ASSga_v zKP>9%WcXq=`_3K0Ea3Ie;G=UDxUC8exh;HSuL|#-TDW)jvnj5{>2rOnY8vOgzAd&z zkMq3G&lx=7Pbba~ky)qJGr!tKonK4p$1KnHi@yA9tT~_@71ZX<8`}S~RmS(%+@sIi zmif%TIA{9xbDtIdZRvTVxj1RgTKCtVlf(Dw#q9jLG~OWYVa$`9CEmhWp{Hl>Xi%J~ zGOzaZXXCUO_Kapfo>alvy`gvK#H+7!l|7^AS0xr-D%-W~%o-C-uk3RReWJdd4l=Nl zx3~Lh8<LV3Gx4@WXOZlgb%H+6!fI20&%J1yRW3W}U7VS#jk&als;1$D#@r{bq%2p} zT+x^LxjXD>L!X4KZP{<-X`C2=U^pc*{qMZcyr?A83sL>kUe7$M=Y8PQ(??uhex29* zGVl7XH&`(J*4ZD4Y~HTtPZS1-uT8g16c+EeGxhUc{ym$W&fJ(}(;u*G^{xLe?mOu; z72axCdAmDnyUO~#Tp7G)PjtnFs+}xzV*7FxJeYN+EMZ@o^C7RdGGZ;)0-_ihHkmjt zGy0sobb;xCorO09op|)Vz0E%N^MdPz6Wx!sSheCdKZ{Gdr6jjCV^z@9(<wKj#F<xJ zcMfX_U&$%(*=hPC&-wh*iWsav@0cmNdTr&|l_uN#c|{+7Z8v*yq#(^gI<DK|dGVS@ z4=mnS1w<+LB{Mj@|H6}gH<-a;`)$`-{RfvYFkHzp^{{7Q@X%AVG3IGaWXOy!K6Y@% z%?s<FxxM|h^`|5s$L61MNr?u>^fE4O-pC$4_b2B?U$>ue#{@N_Q>O*~QeJ9i{ePxm z@J`$Qkmc%Y)h7Qk4VWCGtHFkHDthFF&V?H|eP8T)!{&LsbZX)}(}~esn{-^47lW41 z-TnUI;NI<w4E}QVZp$yXK6qApHjVjfnl!_OsM`mg9aCdScz#Xp*0<;L<QqPFE?P5< zJJPqKa)S={y9TGfuS%Sgj=d<Z+^Hx1ylrXnnn~Xe?kQCL+;jaT*E!zeRpxuWHvUkJ zaX4=rTDdjrvd-^@c@fF=thXN&^W<LWTsWmTug_`&kI${s66|^cnOgV%uW?#6O;*~9 zZ~Alpxd*@Be((2)#b3^rm7(Un{r+zG{}0$18otZdG+dr+{6dG7;m5pwx6Nz}H}2dz zcz1dn8^fPd>Hqn&^sh5A%zK|)!#-cquR-|A`$gZLJ*_LdX(**#EkC^|-v3V8%@TIC z$8vE#+cf8{J^j`7`yQ^pb<1KdT$s1~X`JD1ooI{f8&}igg;N*$FEw2-<@ffswyDyF z|BKiyUGG2WX^y-*F(y7`R-N(BWhn>e$g3^yv6C=k<6U$9)czTpdd?f~zqIb#iNcFJ z-rxFPDR`%7zsA{U9-ba?Ud8JVBVQ$IZ#2RjR1^=0ShQ|aitgtWzii&6pMHk~c<r2D ztZj7c=mSd;<~t|<m2Pg)RX(Di|9SJ~;61;uMKd(K|9|}Z$7cCI>I@106Xf@9wwt7~ z?fVJ=Hb#a8cjFFEUhK?p;H-H3!Lxg3Gc>Fa>#ddlyyDcyHRnEm4LV`8xNCl@<fS7O z$_<$t?!-<I-)4JELgM*@pS9C<v{Svq>K57G@;wk+Y;^n7k7Y|fuKjoUYNMoom!Zo| zqi|KxVnquJ^QQKm%^yz{oT@$@`DaJzM9$h{xphq;rQF)xMXN3>Jty5<YWVu+^~keR zou<tyRPzm9;@Nbj$}u&QZR&b{kp+prc#?U7W~46tVp9?JCD@DKscX@FpP;&3ACe+M z=JvlmTD)%dl)W?D)-K&NH7u3uRGM?(%%aGkPxEJH7ZhYK6%BH_Vf4%?X7|^#N*d9} zeZO_3uYKkvn(e#Pq-5S+x73D9d9|7?4FWsGI~gXIoi24eHmmZG#`9yRK%;7^C)tnd zoEA7<%iwV5{o?DU>rGAm9AIboQ5Ud7tkJPb=n~(Qrq7{MIrldhhBIG|^UdDgQN8QG zi2aX=h1vg4`q%aF+wI_Iu&}jtw(q>l7Ocq{|BZoRV^GBJ2Zjs@_5U?5T{_gPajSCH zk{4y?85r8#+bt@RoH(ogN^E%laFX+_qcfjZe^@-rn&V@wd}6|s&xfN}&VOb|P}+Xk zQ^vRS<@uvVzZNzGaTVITy+1RhSpVgs`m9?knG|xxniP5juKIMiJz#(LJg2dHU24mX zDeEn_`z9{ClN8Q)Vd>#XkM=U?%l2^S&5_PbHP6#_`q`l68(gwGmcilsmgaXiHFw#5 zeqXn~U1e*g$>u9dzl-%K_ndi{wKmRu?L8KTE3bK70$HA&eU`AtOVado#*|BfO_A9R zzn@;6A1>uNi-F<SUpXsv*%E76h66Vv+5gUy?BBG6on!MpPA2)plw*t2HaAu+W@YGj zRqFAQSLRILe}~VSFSM@7G88*RykhoBy|AhzA@#a?W)j~T1_fW?CEp&by5G&1QEu?` zCnMASGY1_dnz)U_J7(T_HA8WQkA6CrnpzviP}YuygNwIy`@I%>dvD%u$*0$D)a~zg zey#NP$HQ6~JHz$HOBI}xRi_+k-=aP}Tl)2ln>!oRHZvaRy6#hIf7OyV&TUEKHL1Nv zDs*isJ}|uB^LJf!ZAp&E-QR^dF-q+_x>yUD(q6CJyOq&jY}(z8?^!<!Z{2w!$;|)s zhM-ehKcBlPd9VI`EyIES`X9A>zFwA}J%7H;qU*-$Kby3F{N${aQ0U59as4_2!|mI* zD}Fl5GcnxRSuMVHTHtB%q^8Y(D#gB>*|{r^YvN%E|L^l3%$@(2hoRvA!`~M+YDVwB z=CC?bCwTVm+c$3AU}V@(#@!>y&6&=iKey6<l5?f#jJ;oF*3JE1WjklCRCnU``|VzD z_Z$u^y8HBl4Zq_%*+)MoTuVB-v*6vn17EolPtCl(Cwg9V^<Fuv<7sxapT21N@$na2 zvSeiVQeCUEk~7llG7rx)W2YY<YLjo~Zi$MBj%R1c$$it1pYMDkQrA*lx@DSRpZPh{ z;HeK^yx?H?@GaW@_}}XH4_+R$V|ei8g~Z-3A`A*!`R$F0Q+2Zz>`gqj?Csj<8@so% zGu${}mSvjk%FeZL-^O=;o9caTuU)k&d|9H?hZu{<S<{?O3oZFpDs<c<>GHqozjnLQ z)6Ts5+Os?%PxE^XfA57grsn0_9{gOU$0E)>+xe@pen)7d*^46)Gft*?MPAyt?(3WL zQ-VC!RA0P#Q}Ua<EhEF8&)=+nJlI>!&~SM&UzM5P_S<h2wtoNftNq@A|G(n@OPfkR z)>$5BaHec~(5b91JrZwH%M1Qp-J=<_I`u`Q`2+QSxyKI|vokb2o-F+3aT4S7-94i7 zP5o6{+qYg5V@Rk@W_QdGyW8XYK+op+<w>r3?>?2u-8Q;&zrIWU_J_vze_q=^PPhN9 z$?)LG4~fXMUrf?F?D<}LKF`~=w_5mr{{5Qkzn+QBD%))N@b1)GFFT&vrrzv*6l9b8 z^~+<sd;7oZ{d@oayFNohwfr9D^Lbp?Z%5zQoB2ghM55;Yjww}+90zmf=-y~}uatb) znQ`6gWram1LDFiUpFC9l^SoZ_ZC8809D~`_M^TG=qt5D-WcOOVTB|mTxA?@CZP(n+ zZY#Fuxs#Yv>1?#N>BooNW--feU5QfOs&{SgJ4rvQH0O$%4gH4~JI{$Ke{JE(CCjt+ zz{Ga7uNOAgs=YhvvBrB_7+2ulXU7(MnsuMQv-)rKy{GnF+8<q$&+jOFo;m5kLuTXl zy7%_~WZ(aLlv|#Vx@p0TO<$Gy7v?)ndsN1z5iG9AUzl^+qAP1cOhfB8rAxCvIF#K8 z_6dI#D$BI>T7c@?i6*Bf+z>cra(cqeeS*h3Z!b80cOLiJH)Xp$s%lk!R=KBJteJhr z#OOo7>e+@qT{lxzb`-HjUA-*u$m_&W^kxm`jQ^c?8miQ~grD7cyFLAAHsAbrkMHf? z&%p5Kg}VKr>M++oA6~F5|Mq0(WlQGGPJVWif4o_4Z+*CC%4R#RbMq@hPN#gFxw9}X zGV*ZeQkBA{bDf1Jt9Sipxtsji%KNfYY`o;d<$Kn!ru*GA;bMNXuYj3h!{)7)Q@ekc zE)Y0<YQj>@UAD>*-+nx-{qtjg59?od`(J|hs_$2Hm7K2%xK^dKqvcZT3AyJoTW1Mo zo)Rh8kRPKuv+Z=jh80Eg!Xk2}{7!ijne6y)=frhuMSlI2=$E%;V%Ssvp1C0R)XR*= zJh89e%`0R)&lONLuf*$T-2-Q?moaO03Oo<_ayK@%R{y-@PJ=s+&n52veOJ!NVE^-F zz2n!OsjEPT`I?A*uG-w#dzSajn>S1hd3X0U&y5u>+OTn7W7XXX^B<~=_U9xF9-ooD zzEbS;s;e`%_NaUI#GQ}0@VHL??&jbxYdm5u^-p~IXv!SN=+!&ZB$t@3S$x0!&CI$> z?~ipnK2mxia?0IBr|Pe4WS21dm$2t%<l&CPj1KE>ACJ7`dcVp}bLzpYYNw@4E4Qq> z9<}hi&(HZz3uiz3I$hzk$fh&bCa>sIEq(I!Y?Fk*!ZRVB8ir*_1%;k3%-(&U%er^| zmy6rqzdUMt<gduzBUcioj<1L|JX*IsJ|?}bKYr~bl{C)W3!PqpaT+{(w$0w_liD#^ zLROml`-h9Qd#c~dG8~Au|0{WKf4Z5Ty1Kf>=I%}t?~5y>r^l_ATX-|i@7XKUmYr|& zPYEAmUAKuLZJt?j#LwycUZ3tS^~>DWJ+Cy`=Q2yxi8ht^Njuj!7bdbdC~y@fKNn+I za5KxX>ilQ6y-OC%N%fc{k$!FImy?U#E52N4DS9LSX7Oc1>F;&>XMC~rf0)&2Sa3{% zdG;;7hJ159N0El^RkA*@B~wqXH-4ACbHax|42R4wKZ>+>yJMRBd&~XOSEqamT*6Ev ze=W>D{j~}-^0`6MKRaV$J{R}&xO2<H8TR}AZ8m&%DgS5Ulb|x&+D{_w-vT_H6}fz8 zwg<MjEp9#QD=f9S{CV!4U#DI(G=#@hO71rI<#`vi`l(ae5`lBE1!C{6UayRt)BjmZ z+v#N0U%5*v&M`sj&b^uQ=I6ZbHvwE4q9!x8XfCsvoW{HKXQF7t6GpX!O{ac@eZ9@i z(lRZf%<s#CnQM$0W<1GT_teSZ8T-1KMJqo{GI5=y_F;;pist#3k8P$~KRM#l{4?#F z?`D_iWS5PO=VN9>PEykoS$_TX&Mg}Y=O~=LFMPb?GRsEWCzpJhqZc=epIG!SY{_5Y z)2$eF{0bFjv67_=Ki%2krPwJv=T^+o-|fFGDzbFCkF&E|Y&-SP{kXf|5})RU7frG@ zRo~v7aYg#v(OOjrr8=|IpPz5Kx@S(j-TC}=Qvw6a3?AR&V_2RZ`$k@dfuWC|Z|<qg z$SIoT`DND=d4gsHKMmX5JG=Urt!Wn%$M>0%b`QE1lol4vSE-#dxAfvk*I9m67S^V5 z%ARvX<_Ys?JXb7u>y(*sZh>)j>~uS+FdK~ze_r~35PueL_3XCf?gjZVZ*pc$Z~bDk zX6@R=7jKp9?_L|U^_7v#{299}Y^)Ca+b3DPt!&$ct&)l@56nsqOtYM^nXOoj?NrSy zf!R-^<0CxPOU#r5-(B2tF(<k9aLXPQ&#uG5#`DzwvINb#o+z;(%=*a7nJ@YG-jhsl z&dW;dIKkD>Ht+c{-M2plzQrw_5*&STdK_!9ihT5xpc7l~OIWnLSM=z8B%$AWndK7m zcBf7+ZG+dQLM(PR*?)PN?{iE$tF>prB2fc@Q-_buUv4RW&U*R92<O#T+wN~av@${9 znzADYqrO2ZXn$1p3_}eb=?P)3^BWa|XGUAUoD}d{<;<2Nt1}(gCvYFV`8Dn2-PoJ; z%w@7!*R8aC7jE9u<12sSxbm?^4U^hq-)jmCcbBGz{$?<=&S>@v=}Me^wCL4zpQRp; z?9QD#leDwA<dNCy!fCsBlcs4t7kmHH?pE&OM|GcDXLI~Xcq$`udR?a4n;J9YJ3l`( z-f7kL4f?XSYNeO)<F;A;dOeC8S6=n&x4yAGZ^dzT_7_j*2d;XP%X@C8_vT|e9TJi& zu5T~fusK!i$)(Q+mRVWsd?27~|3Jh0Nw~mL?&+86^xf{fxBPB(?7^M?%^EIOPHz_A z2(Rzic!{xl)6*O=_N`SdZtK*vk9^_UB&v6MVY!Ku!HNk&y=lVHv!xjt()RYQ>ur3t zhT~#DWZRPb*!t>?s~78>o{+|wW3l4qfs|#ouY)#E`}X@xt?x9gtexG)wx3zc>JkK7 z7`K`Gtf>^a7CUo!WK>F10#8pNN9G~>nwQq$KNkO8{$k$D8(&m<A1>eb*XNPl`L_=h zbqlypxlZiob>etDjZcBYIVH-OYqwzdsb0n)ukD)tk9p2y8T{DSuc5=ox>S97)HCkW zhbGD!CI88sWvIaM_RfxL$1ZO*b@?fyAW<W2ceu4=z4ThKS-Oi&gVvkIwn;toG@kz~ z${^VG%4gSm>}(~zTgsv&r5H}P-jZC<T7BBVvHFm60>955g@Rl9-AR&}terO<rArnW zO)>A*I_>pS-T401eskDbfbE5yyJKZ!Y>qDG_wjpiykCAnzWIwu#x8*w_Q5&V4jUZ0 zw=Qx^ZeEU5_Sr7IbI%MPJX?M=a^;!FDuqd=JGa`*j}bAcTE6UzyiHw0b^c!_Pz#y4 zWDUEs&~ZPHb1(ji#xVqWncPkjtoy!n_l;XO*%&H<{I=%SEb}^@y0m+XTIk#@TP~eg zv%p8@`$QGZkUAlKl~-XO)?UpKO)AQainv_*F(-3cV{zj$(Q8rh*^BecUpQ5DXa9e9 zO-=i=XOddGVOPZD1Rh6;1$)zqj+;m8maLf?mVID5yUHZ)lxv&rS=$~wd2!)yn<-6U zX^m%0nx98bG}4V(vrEi1bImgilj=|VG?yMZHcgU$R(5Vno=y0<U>7dVWsGx|+q|0p z@W``1J3Ff*FE_5-{O;CF;m*&c9C_bgrA@T`zolN=b)`kb%MTs5d3Qel{UMa?d{lv{ z$qd`hB%VB*KqJ?@<xgX*Y}wvbKj=B1b7SU`Kk9<3=De_a{@?JJs$}v9+hjxjMOLrA zN=^A%Gs#J5%P)xs1utcr543MtZ+p<EFZV{XhCzckJKGV_h{B}pg4a)-J(y`<rg?qS zlKwMYn^)-+m+DwBYs)5ZoqWjJ%I9`-bpe}s_W!zXyI1Wxrg$v5^-m3aI+f$mFDJ2* zMMf_sb(PLJ;wQW3vgNUl`!)u>wXf~^Eq~{*wf%ofh6jItzkhrpDmQf5g%gkY4`0}M z>#CIQo4Y%C88Ws;>+uR1N_b6JrkOPR($d?uhdX^|mX%etsrXK)-tql0i#z)=JG+YS z;uWu-+p{s){CL3VmwTqfzHj0(*Hik(W^8V#oY%fKckzKgzh19T%szeOkC$S4&Q0C= z>3T=c_Rap2wohdF-PZa!m!v$WEvim468v(0mxocXc@S62w~%=^0~imq@QLKkcCKJr zyKN)e`#0|v<?a=0dC<Li*_6{Y#|lqxZYyNF|2Z&wR>6!F_Z%`rry9@Qd8OfQoOr+d z?2w$yTgMOnOJ+Fm?3dLw^KBR6%v0}WtzCH0=)P#n#O~vwUOu60*H0DAPL}uddblTh z+qSX|*UWAy&MABz%R1x3%((jzn+p~_wBN(eP_a79S>S1{Q}X+3+zdU^2G5T*ANk&_ zRr){c!JSPrxy=QfX3gngFj_icspghYj_Xm4#@72jAIe(oC6<1UE0<BR<!4+i@9lT0 zJ=T{Ejy?F9HfP1vY>vYmGrx)$$^~7Ub=z0q_VvBSeHQ-h;@j_hWfA^RvtJ@hP1by# za=E-QbM|zlZP(u~EKYLDJa^8jBlp(j9rD)vzO71gj68!Jm@ie$s)%EFIWu?KjE(OC z4O?&6g`b+_9K#PPyxG>8Bw0(!%F9058$aVqX8!)K#&@=_yfV+Gu0x&uw?$2oS%-Rh z`njo5nQ!j|NcXBm>23~Kx81zp`B8Dk0~{Q&$64Ra5RtsHMSFkU9d~o_`?u@6)cfri z7-VE+lzfd<$`03Fd->pDt#DGo`@i2myxaYrkwMO`s-y33&7@^|y!{^=uJ}Dr<6*jU z!$^_6{N26Mb=Px_v8y*<jS=EseeK_!g{Bj3c6C0s`zCLH@OJ)R5rz++<^MDE-!s-^ z@%QgrP|Rq5F4ksqnB<mNmI}v)stD)Pd1mEh+b*0ie^K;NQEus1=hj4lrp1xl7qYD7 z=zsG_>-EtW^Jlh3-LgG=F?h3P{g-_u?W(<Qyl=Pi=G<alKKE|)j-O4I5_j(1b1lA` zW9I6-!&TalBUy%5d(zg;n_IWpCY+ii@we_>+$<$;?(kQ6vmRv1`7Jh5G28p>;y>Xx z`*SX>zgziI_06qaADS<`v=nG_Of;5Oo2>R?-c09DlOHF~nOnACv&|jO6Kfb$ceJI) zKAb5aaLx7h_p^$NEA5S|i)U4>ce&-<dtmZ~D9geNCY=*+ZP;w_Qt@4sV9eZun^*41 z>b1IN?$dGN+dJQsU+b(TzSx{^mFX!y5zcpF=en!m*X+D5i!2X&{Nlq)#(8#z?HkqA z-Cx}N>N`#CM36C)VW3Qwq2hrZ&-s?^5cp7h(eB)Hv-epGN*MYcS>5{UxJCi(n1sHM zol7Urk4uYu#!`2$^0)4v+x!1<Gdy^1|5KBXZ$1-4)$;Tgs+{MF7>%{%!fX01Epv<( z#F<Z<ardonPTq`=xI}@oS6oX<k2ZO!AFDjIWwNl0jp5Tj5B}Ni`F!m*LxcM7{)yjy z>Ak&m@}#1it=aqPA0G_A@%L)~IhlF<YJ1^NtttB?wf$yhe-)_KzsJJx=H8B%em|D$ z9$)mWz4+Y2y+s*oC*BZfKHTgK8oPPOe*bSd!-3oH_p~nGmgn=LJ@kmU>n;u9RS9wJ zTFuXY`dwKmxixU}G|#r1nz!OZpQWB+|FgI*>0)emapQ?L-Ybha4t22}-D|vLTVBaD zD??Y!*5X?JB`&&Lf$OE$w{Gp7pZtB=$2&X!UOHXzwAY-0;ojTn4<c80nQjqKwOO5X zH{+TB+s?0?=k{9p*Q%^J-rH96$XDIneMfq*+}t@bk6$WJ=6nC)gTR@nO6jj^HTyj( zOKRUXJzhMeXrbrbJaJj+XC+ldE$?1tp5$LCa6Tx?dbPf|+>&(TN*B`~*LJIP3Ty8( z-953~==|%C?h9S3E3&Iqmx@-+<>Q-Y!@^L~*LR^@@0#s&Gu_Kvhi=`fIe&QaGiHVZ z{~o))DBtZmqj5^!y15!>-%Kc3f4#AY>xPN%#n;~oQi6}$Relj@XHVm?d|NW%Nt{jO zqa&q~&)3=P{P3`n@zAW9*_P=`Qv+7MIX2V6y{co<#XT~<$3EGA>K0lJ+B5fbvUX6q zrr%oY>xbL<Kcw8}nRGYq`calt9tM+^P?xlM@7b2|$OOL2yOonzdv?c^yqvoZhnFdy z49(<hJ|!X~9d^Oe?%-keV{8Auo&Q%Re}C$uKl1i99d-MkhunQ!*TXzL{~t?w?Bk$Y z-NM^<T)yC{rOA-s$`iIW?)bZPy}Y?*>C-0HU7gMsmA(C<g-t~lJHOn6jiu{f%gk5U z`t``^Sud=@m$F^*+09xqORK@KrIAyf<CS8?KIs(W52m_Hg=U$0TYuQZ?irVIOrYQU zOY&;Qf~u~4rE}9Xiq2;ro%r;v`RNHNhUeb=?(^sScxBmtD~k%Ah~;m-eq)m|%m4T_ z^2@nA!5Qs`t}M37DqXA@^x1jIr5<}L?}J+!rkGuuS!}*e-LtE&)Ss1o#)irr(cd?G zf5FF)@cvq^iPYDXWpS%3HL6XY8m=g>>RLCqfAbFZ1t;F~Oy#{&GEaEc(wTu<+XA<L zvnf6>=}2wL&63I;=ZzzId#>9}4?17T_fEz2`5TG$GCm7iOSh!pb(x`3<}=)~t_S>$ z6W@E|%jCTE+)G8XcsEC`xh}opwsVwj+Vsi)q9#apUJ^-PE?aI;dd;#hb=?-GoICr^ z8NG<fW^}l>WvZWoh5NL6wX=5|yR@Ds%&xpBZvF35c(}=|ehEReN#18JNiRhn#qwP0 zn!Dw?dExh|yBT_Bz092V{M!?W<Hy}CHYdscRcXx+^*<cNJ6qaKw&wj&@xs^BHqO{$ zZZ^j>*2^+j^rhz=<>mYT7<2Ad|EI>=dS%zT^53y<>`j+{^`B>RWU>0Ot*=l1v#Yur z{H5yHrb$OQt#)4BbKQB)lT-VS)*39>u*rx`ktNG){_At!%)aH_Wnj3ns9@FPKd;kR zPt13(vU}Cb79}ms;A6>t?d$a&;o{Hs-<h{=3fuO-%Wvi+mA_}bv#mBGxtM#O4)6CI ztK(;1hrVL%5xrK(+Ph@_^QHY0kA!{jDwzCP#^7D^HK#>Wot8Z~BC`9go!{CM(~@{* zoA=Ck)ZWLxadWnd(DBbDYy4Km-*|6wc!}kEMrAcI7Pap`zn$Z~v#<90pBU{Q{XW0# zZS9=aUvJ(f$2rIFdD7V(1rM1MMHX&MJH-2{S8T_L)`#o5uOE`RuuDK7m0^2Q+q~z^ zg=|yXB{leR&$ji5>h1H&Hdy`QTno#a^IKo*r<~s{6dfknBWk<xbMdsa09EES+mbEP z&s2(NEfrM1HhW=p+u_H_Z|qIyb*LXde&db_)3kZ-{V%Yu%b$PpxXxPNZPV}EKGV;X zvhA!f+n1vEY#C3cDlTC^zpb)>@8Qo03ndTR+;2Z|m@DF@oK>>?ckkDee%)CGTFCoy z!zDMpe)~H&ZaA#{#>sFXTi&mrDkbLaJiD5n-~IBBPArRkeblh&1W%iJS>A(d+}jx# ztj)h|*p?>JFf--DlAm#UX=|2PUJO5LcJxw7w%p?l+zby6=_Z+8?#P|B``%5>K5N-8 zZ`o{vPc2REzI>%s-av%=X^)|Swc^ixE+TF>_GX$rmH&If{lleheMW{u20O}Tzwu1$ zalAF-cG~7%@%Q`Q1l7H@uWISDUE)>xOe|$qv5M!Lea+mTe}4UH`sUu9!`J#Q#@*Pr zk$2|mljjZ{tySH5hj;eDBMYj{w$2iFSrPs8x5YbWV`H|XfA^J!vy?2m`%I-<xPfs} z^wlR0O}EdgEoraWb@sr<Q%~zN>r>zLcZ#$~KKJ`t@%$KX&7;Zxc^L}6zmv7ul^?Wn z@Bf3gGIn>}@Avty44YskH<$Zm5cj=1cMspoUCg*)@7~_CzQs45wm%D)aBOaR;+)+# zYVLDi$eD4$;Go2$x;KY%rktB|de^n1ZEc2mmo_tg_`~qk?e4yB&sHVba!o$6|GZVm z53Ns!a~M`!eU*`)xA?N*O=TPXl2?zsmY%avNU_XSZWc-V!}VG)YpvOi;JoJ-%GSky zDGr@?CpMOYLsRgo&+gdUH=I%)pZuL}Te3D$$?un6`;je`vz>yuemFk)61T{W*HL1} zdp)n(X-ogFndxEwxhcXGb9DC9f!2mC>JtO^cJA6LcddzIrR`dqeYGvo?d^UScin!w zD9ztudpW3wUesVF<y$e&va@fqNa6K}=xJ}0%y)LZ{UCfjQ@*{B&wl%@ZPzwz%w2OQ zx_{n+t!a1ee&^?7sAHQOojcR4v*7dZP3u!nehpu|VU<a=?wfZxk9*DS*cg7i|9?Jx z!|x`+&d)WQ7CbLF7i)LhZFT4DH)h-NCBk1kxoWp7R`?p@u{$$&UMk32KC8H3^$n>O z##w8ZZFXaGWH>loTXLV!y|rruG;iOyb*Nik(!c-fS5uqHlwXH0K4knA*3p@nTxu?V z^?{Sc>cri9+j>otxANY~-D2kZ!&kzswdqGhZvDloOU*qs>!041*?R8u;m)rf879&d z7tNpQ$Jengzc%T|kB`bWH3jnRVVRbm!pmRC{ZKU9)^q*DyL)=K%(i%PynH6?f69^Z zH0#3fBWtGi-@f!cFn{K!?yOQ3&!#KS9K&ap6>qx6H78nIH+{l4Q*oxcjAO?4KPy_q z&$?RnNN9fN%1Rr?qkH~je`PDn-^Xx1>VWm};}$O^^ykIB*SS8Y<;#-S#+N<|w5HjH zWSa!8zIq|fJX=YhC-zw9$!9TdMV_s{-7|OheB*P9w(|RUk4JyD$w>X>VE;~W8&g-I zec?iOhn43!IuGzG<YshyQLTCXNY7&a>8R(Q*01>%;T*%4d!h5yg3lp=4%1RPW~D9S zd_A%FCGTQ}tx>|hyKlTI-JK`AY1_88Wue*pUWQ?j;fkk&51ondEUQtwe05KTz`U5H zmv@yIK0B4a_iod^<VW9Z6&Ysc+gLndfB*2uksT4=t2YLhoG&?kRMPCV>6M%vjLA$3 zYiqxsi{10_V*jJ9*X?;2Djpw}cf6dJWbs^tFG`DHo_twBXVl(jcVtz?{c`6UGwQu@ z^jLYG!C}_%(+73LV$LW%cHK5r)zC}gl?{Kk+unT%l~(J-;;R4he*gTqwpioG!RGI= z9lfV6Ir&H)v#l<^og<L{=G~&atG7a@CDq=|x$yeyF7E#kqQ_QFJy;}HSR8a~&$EqZ zy;4_P&k5^u<Ib)O>pPqK=57_Ey4hrxNk`sk)rl;KG%t3@&OIwT@5tV`mGf>~S$A#q z?6_i!cQq}B<tLVJ(b~ED`a{;N1@E8SRNkah{MPcnB!j`)xx4JrnR@)=-w7LkeEHzf z+=HK!c@DBltyOb+tt9)sO3&G4|MhZ7>m?!yXO;zhwry#=8N=4dzO>;&+P04^bN)>z zb9-sInkD&+q~DI*|34Y!zT0|4r_Gb!p<_DJD|TCxPOw@HbJ{;KCmtCFqwPQA6K-9Y zYQd|%E@^8RCwvVPOQEkKx7EgyJ1do%h2y<8Uy%&85O(8WZCEbaq~NT}`?+5twM=65 z&f@itnRZ6HWl!<5n|jh)bK28));CY4tuv~M<4XxT`ee@;%jfI<EYdhMjaRT^5y#g5 z^Y@x}PF3Cgs_y^p&W;?v`rW&(Uk#Xh`rnT=-|u~&7qU&=fU)sQqkyqaWX}O1<`w}b zC!eeY$xg<k11yzIf(p-ke2f#5crK|kZqt0TDfa2A=+NzX<?mi@>h9QkKVf^N-!sdb z?kV%WPJU-w`N_r2?akig^6a($ZyCjL-M(%8;~#%rL;HM*iOVK0R<_w(>2y=Qe^2$@ zySvK^A5SZMnR|-uTfSuX!{zrYnDzJn(aMvVQGDOx#`m9v>(?hlD(tIXzkrAL9BYtv zo`&$t*PVs$bl*ntxBET`3yhz-b7e|?Z%D$wCtG&g@hvV)yILvSH#^L=zWhI1mv|fl zgU$a(r!A_|bY3i#a=5wAwYaU#XJh^4nr8{`8Ctix$;sNfPGb#s|9<97LFrY4)|ct? zt}PX<3G1{ue{sXxc#lq#jbT~`6<M4wM~Qttc%VC8)yQ#m?y<J8%`XoZol@%8`JMGt zb!EE1nP|<xzgiX_&3WJHZ0>AvdGhwi&i%4$x4v&awa6j!?t{}otlheg6MD{1`I_=} z=DEXn<yVw&o@5nLx44$GAXMU_*HSN!hkMqtctsmJ6?a_OQhCsVty$<+SmOl6??2Tl z>vg2A|6^=8+;NOC%};a5*CQdF-^C1-c1}DxC;Np_nQ7<gnx9YO9>=xK5Q<tLY^t#0 z-?VG$<rm~x%1gv{KPY^COSHFYoBOHmL%TP5>n;r4qEPtm-Kv&LiIKa_4qw^HJ<oR9 zUm2Yp#j2i<#Osu1HB3$Ao9S_9PjXDTwYqx6kCV>7f6D*Z^!H4<UAK6=k>O%bwT-#4 zLGe`|RqyPqJ-&PY^4?|f3(i;t-nhcqwmLL6%b@Ln)$xc63>UaA<XvKTaY8k8r)TrC z2Ccwd7M2GCHNJ1JTwk<p)B37M1{c4-ei5iGvT0hR!n=2GenecjySKK)T1_r$s_K-v zJyTb?Oj5g%CB6My+UnMISNFY`H?P7p)iStiaRK|Tcc<s<Oj^4&|F9E#E%!3h83nb% z&Pu8!uP%ujPT7`Qd{E(y+FAk68#k^@tTugYH?1u7j9mAYq#5$&mNWX7ie9t5)yv=0 zz2V`)Df<6yq_St~Emq>crSdF#onUa^)w)|j(;o2DHEOiFO#3Mt!*TM@Z@u2RdQ;`k zOG<2cw@{<$R^3(B{TnJzH+4Q2Ud3a(W`a`AvLd#1P2akO880j~%e<c8q#-FDP$svE z(P2lS^_~Al&-6=mqm#-q8vU-Y9h<TJ(^RV?N}m?a>}7j==lz-V$iv(<1(T0RG`!S^ zofpIUG`NxX6I1HS32QQSt}e1pY%_=`IJO`rM~Azc;h@B==-U<>m}@7gyeRX{TCbD+ zBU`AKO-gq=$N39etp8_Da`Jjte8<~xHEZGKM1#q(2XwaiYOR<s-}H)Yx7xl#%T2Cx z6<l5ZiOFl_Le~A8eX`b0vkH_rex+@RtMNhcY?jyU9!DpXd!`)~xvb-yCf@F~a>K+G zrYTA_a`~FU`b$(TzCS81?oM^>UJz=SdFHFqujK}o&*~D7OMc$CV8Y7I{B75b4;<h& z>zv}qvAsj)TA9Y5pN+0t4w=e2tviw%S8#Bm!EB=dj}tDxWS-9{e4n{!>NjqobCxZi z8xnTLUpRdHXWVJkUp@tidv4D;5iv<^U-R_~6O1?}Tdr-5U|yi(H6?0cNZRCpmq%Z| z&zZ&M+%xgqhS~`a1g>?r6gu3j?B;NH;(lA2Fl9^fj`!@&_Q86d|2xE<&E`Hk2{F{V zh;0Jv+!ee%hWQ(B<(VnIJ!dGv9TumjAl!N8n7rCjo>SM2zV4nIQ}A9(&B8sYd^YQx z?hU^$-CSRK?fli!<H5`tYq=`cUq09wnrm-qdGO^;$z5SP|NeNv;y>TUtlrx8n_h|h z-v4${+s@_P*~zTfbM)hn9~_a>oT6OsZ^}6n$~JpfvHa{uEf3WG9Efsj5lQefcT7GZ z_4<~PKI751#>%}%@3z)tEIpj}X3pFEdym$?licyk`tg?r&s$ELGk?uA@tqK5nxe>R z5~Gv!!rN=9Vyi=v?%O7Am2GF$&$31NKK`ZGa_5ejjrKX$aQ5#(GgD5?VJe-bw6V7P z3RC4FMYf%`en|!fa<+4dRWhI5FE5>JD&?_9`cKm(S>M7g(@zEbT-RcL2+UUToS?EY zywtqiirXsSmP5LtO3}Mbz6J5?gE-bKy}GCA`IXm)Pq0L;?!EHz{SwWl|Lt70-jjY* zG0pg%rqM05RBPgG!@27tpLJ*@^e754E#+Cs6ssnB%yLdq;F{!xTfg1%Z1{LjXHm)K zL#>}1*W5i)a)D{?3Q<3vbvN^V{JGOp{QlO_8BFOmC9`^3LqeQ>ox9*;l#>@QQ{ub9 zj43J?s@A-?_3OZ)e%8`oUQ;E$_|7}Ocyh8$?H>+?4=+9#&a<s;3ZC8m<K^Vz6;&xN zo2t@npPcex@bmBc_~phEHNV->c4hA@d=FYOUp{y@{MfsFQ#rp~?N&4|OA{B$D|pUy zXqSf3F~yi)N(XEI8XpVXb?3;03sM57rmSuHG&}x?YQ|f0`)#*$O>*R?sC1qW)Mx#^ zki%8*QO;DOdheWDPUkGSX8V_CS4+Qb^VHRF*(&@rva0*^uam7D3tVd@rt2+DWA;oE zzpeB!cb=iP%qx~NDV&Nz^>Wv*s~de>J-02)P9!Dp>Hc-f$CqZjHQzJY<m2DKNlPXK z{n{AjZlyO%)8Or|nMypqK0A2kOz4cM+#T<-dCvB}^r~wyv(HLtd}_QNG9jpiSBUq& zjfdvn-#*N@%)Th;FI*USt5DhZN!qrXtja=-F1LNJWi-mQ|6OU3zVcdu>guhVq=WMU z*Bx{b*sju%xj@Vrv8LX%!AHv_H=(C;Y5uuy&8ab7`3D144=mW@!2A4Q?8L%~ZqDa6 z9qF9CVTU6&rA%@-!CPSXb^3mejmo<p$BDcsv0`XQZ}0#3V&%rRa{sCqCBG#!)Z32k zDR-{Um%g=ZX4aP56U=mjl+R9x48QE8T~Z}$W4meES~upi(*!4+-t_Fw_5GR#$7&+n zH(zXNb4!}fc+PSQ*Q4-rQb%`w__|#Aqro{AktWj_hJ7ZR-o%MFE%=dgo->(er7z=- z&AVS8ebD1DZSq>aruLqV8dKbwIT`h0=W?2?O}KMb+WbO6qNQh0?tkOv<GpsvW$kl! z`f)v%S^3tSp~XzwsZ0OZjE`GB<t@2oFYUE?f|w@<NBYSulf^lrFHfDWkClm*OulzX zyjnr!TGhK>e7y=8D<!#=B4<^v?w@d`dW))&q}1x^o;u5Rc1`Nv-#E9v{?+s5%JnNv zd@tl|`(x>=#$O%s#8qR-ho?C~_blE!<gGtcqjCDu3DLT*XJ!eNO)WU*tI^9XEv#m% zzz{us;*P9>GHwH9hF7|;98AL2FZ(Mzn_2fl=dA;h-}QQXx(y5p--X_gOi$?fU9l=? z^=I29{~sn_-ub0)X;9mqX;Tm0c%-(C+rl?u!SomN<}xz$^`F16{oT8rrzV;jb4c^w z%F9oFzwBh;zTM>wiwq3gt*zO2l-_=3wZBw2+WOd1b7!uC1?j=TbLVU;NIrk0M{DUb zzn$AO4UX+iTA#Ib!QxGgY$Ez^3mq5U(%3uOc}h~j+jz&Bt$VyLDhI!>I{Pd{aJ}QU zc_(LnvV1&e@m;gGVmd01g_J&W?^$$3(b;9?-l9$Gg|{c9%N#nkK|S+Tsqvm|ZmDOs z6-b_&x9vfWP~e^7%}>pOT}3t>(a#asQIg>1dgqGc%7@7XjVx#K0+w>DTjkWz`o;9} zi5Y9Wd3IfFH2mvwO=B^S{GAp}*O!;J6un$*vLl$IU+nc9P5E^bR5A-h<CqqoF59VU zS2S5GFWk7sHo3#-%8Y-Dbmsgj_gH*V;&ZXW!JY9e$6hkeOi8f$yzWEflzUsaBqDOf zUoQOru#EZqS<jwhO^RH-S8nZJzqs&FZ|}bPhYeeH8FarY?|6OqtKm{a&T;7loo*)| zQNW(0W8&Mpz~Su7jV&AQMC8uAlwi}5QYcsU=dPZ{a|U6(?b@sFT+I-?Ci2XG!;aX@ z*lBk8o3AYuU!G|medFFe*UN33TcUg;`h(`oo2&R<(tCFjQ?B%)4VyPNt8C6YFl(X2 z6pbkxXL+-PpIjMIWM1=qX7RJBt7dL>vCN(lcIx@_w21}^j}NoSyf;-^^3}uex%cHO z-A4+~J=gNyre^jfa!!cF^LwIm4S#&<k3W8>r$=#$>f;A<ei!u}o$cbxGyVS@pGn8- za&*t$VqELc7{Srk_VvqzCjO^V<?FXzQ@eKZUdtsdF5`rK_l06AvQ?fd_3(CYQi_|% z@wevZ?p>=kPclyC@qBdbUd{_K$r<|<*KRG}-gYg(s^!v;3DQgV9<}uqR_54s!mcLd zafGV!KI1N<Lu(fA;pZ;67jmg%gP3dQA+1fuVyT}5CRWHaxlg^u<fM7P&i^HsbM~>S z=`G#SCrf>}pWkUqZb`pd{mSLhp(srav3HlMzgzU1$#*ZPwGfHC(3!cA)hbXsDO}lp zVrQDwy`y(`o!0D~(B<W#H!(2%#3Ga2kFP6dq%`gE5nJi>{+**o=d#eb_wL=|>vrDT ztK++2^LBQI8@KL#oczE>e!>0sOboyF+8jBb+UcLW+$2D(HC!S;-@Ip*T@Uy9BdHeY zS$j$k=*lgbqE_3jyE$m(!w7e=O%glI6k0gE9tSlQH=2}AW`23P=APMVQ|aw$E5(g< zTpow?&-uLK&sKlO6;s?a54lZy&E2zl<(K*XmyRr(Zlq|PcWJxPu{B3y_6oq(0$g~0 zUm<4R;ccDz+q2$YlvrR|qtU44t#M3AJh>&JSj^0+g(vUr={r-dM)li$KUD59&3}$4 ztA~4zTFb8w?=yHGnt6N4-ZgH1keCx$^5^r0ZcFR`?__*#`7L^1^10i!X1Bj|_Libk zm$p7+TEvsc^v+T+rh$9=2i`=EMCYTu{HHblXTGbPxOI!pjt32<0+~zyL`6Hd`Z_H; zcsG{E_J5AY+PTJT$DHL|1TH)1w!!zuDP%E3Ug(TUDpQ$z)%r=h*|muqv?W(_pFWYK zw1Z>S=^6L4EFN)**X+~W_w&%+AG&cqyUk_0dpI>O<Vcr(oqJbSBrK=Xaq-n#2fw}3 zV_0zYOwGNAn@(JKJu@%m!im5s$4*W4cxWpvk$&v%#XA4hH~B1gE?+Ty>xNtBI=`nq zIJ71AdElb0;=em}%jRr;aCYI&@|Uc}3uP2jQf_po?8~0>`muI$nDx^2%^q8$GI> zreC^JrKRy=!L!r71(Ubv9s2k@`TAv715a7K)$<}!rgB?e5KouxW_|qVbLMNewHEA; znVe?qbK`hv+x2Jz-(%NJGtBCbvig56o6Gxxp=oKqp;?Nf{HA5|R~N~riJsM%{&1&R z*Tc_oa-R%4v%fBxF4-p?{y(RM{m_#g0V?l9RhNi&Hut^i<e&a_M^RkG&-f&#_{oZo zm=4$SFR*krnDY5URL{H5G1mNg?;~#P@Q$$ubt$F=GB4<S{P14v^@{DSCnMMF+j)j> z<EDLON5p?8CLQaXUp(D!lE~U+fgA4Kz5BUq!zzu78QW@3t#DbEu<cB!NdxDxhu7MJ zyq1LVMl91j&}5Z6YpF+&_;c^(YaTggme1B;kh+tl%Ts->%}cyMnEkU|x?<Xvyr+A1 zy`Gu>&?2kxU~5BB;jUkQHYO^blZ-#-vvt?G=Z~!4{Q3P^*Gtd3JVv~bV~WoqlVdi< ziauGQKGD*q@$;)6ndK*~UcUd8mYLfzIl0<p=d2hE=NLNdIJ&5<!Ptk#RY*tWN^Vq^ z*%F<e8yO3~7RbLdUv$hw{=T~__m`^&_4ds<nBjbd9c5xf3Uo%aZb$i}-b9rMvE~`C zKizq;D&bc3%&Sfhbo`t+mY98i_3av8g6`{GI*OB3o?J}hxwZ17Q?sRG*;2*Db5^em zPWBV>(5vx_v20GbdFXYi?=8<au14#4YQ(Oc`1*HI>gTFW9v2@da<A*tRave1JoJ0+ z=DPcvuAYjue}At2-l+{;MYom|rU|{eHecs#Y~97@voD|h`)B8$*R693%hq}Swy&Rm zHR9O%w47Q4<yTn>-oJJ^a+f^vder`ZPtw~Zg|Vl1&AYL*<m>&|`|k~fnZMso`I;Q$ zGV{k-x7AOle%c!3)_QB@<gC_38>CfiR%nV>_Nf?h|Ix`-*vR#$bBbA-$q}<-g?*t0 z|F>UDzrdaSBekvMN{*Y6YO=X`+S}b`Rf0Qayq~+2f7Z7@tCQ~D{-3tt&&IgTPjxOe z2Hrb%wO@Anp;ZNQ)YTOIDl49D<i4{+EsR_DLg&VwSyN)}1g`mOU~K%_PP2RM`l_Y~ zmCXfa>nE#x?0&IHN54Y7<4DKV6G6YO#JR4lu~{+2^8|Zt@I7Cp6ytZh#Lgbcy>@&` zuWdr^Bgy5dcW?iX3OMZfA?fIwKdU3&t-aRFw)J<`%`2bwzi0_4wD~hNSvt`CS(TYt z<)(cL19+@p8~a!suP|&{Ae{X1<?MAgwsyzvaFey{{JKpq=gm9Y*=LSsp76?xy`#TE z(bz#F@4uSDjF)afFFYJAm&|xH=lZ%Bby1ahPgbSx+<q(S?)sUbsS^zsU9Njys@%6g zcGI%!4QE&N|A>1PxGy|#`lt2t?N1l2@U9dVkBqxJfwT7R0#+--Ns(5ah4U@+4T7&9 z^^|2>J9Wv@nHu6c+}&FPkKdjW&(qLnp5eA+=_==)^W5WiI>oQu<|w;j*SuB#{)GlU z{~a^;SliFYrvU-at7f#ETvz{NhE?z0*Kz;4lcvsY33>K4^=7H_>Ca!AW021m0d-L$ zEKmC#Hr5S&qZPh!qV3vuKbF3FaF2z}!0=VttK7zYr=}L(ydJkaeSu!s)X$PiX1%`q zw$Get@-6LQ{O*0FhWEE#SN?s(YI=R{j7z+&r}nJ7QoYV4gkASSXYra%%U3jB_I0&g zyw2!aZsX)fPoEu+jg#!%`}?(7(6twJtNpdN-Pw0y?p{09INQ)(hR0umvd%Ki>))_! z^}!q7XAZnLW2HFz;Sa0W(`NfG?hrW8rQf_l7iH0cX@l5{BL+OHZ>Oz2d2ZpcSGk;z zyDaxjON|Y`@N%6eYfoyW>EQ+KTb3ODy;^VTuImS%3BOd-6JN`?_GDgVBiFn}sg`Lz z?9ttF)j`+R{dmpP{m<7razib@Xl<;)){UzS%&VSV<BwV(?7XI`Hm)*e%C)VtejK^J z>CEe>n~Rn#%h>I*e%7hi4Qy{EXKcQdvCPEf>G=av8(tW#+IQxq<P5Q6H!l3Lkvn`h zTP&`}uJf*n%B!PVSxbJU&zm6@g?tVXufjx&MMbMZx2(&GE<Ce$(xfY_TjCDA%kN#o zQ5saTeo|>*;eM~=i|HI4c}K74b~0UU|GJ_j)sBDjSL?3<jrUF5t{=_$d-UfU?T?n% z7uN5cHiy49Nl~D%Fy8U}8&Jki;`lBQKDnwV^g?IG`&WBTS<98rUN?K67VnL%k7kLu zhQ8h3#kB5u%tNiz*DL1ec@{3wUw1w;sYWz-S<kLVDG%KzY_}`t$&5O`r0u|#-yfLv z-Je(VFF03Ya&AQ2)k%LJ$%j14Zhp-!Zjg83P)#kU6(p_o+T+dltSjkCzPs-=zOMa# zdigBhomPHQ>p~(o{oj0=zx1zX$UGkIxy8A1+;4x2Z|_($t8%`tZCP{DHSVZ0nP+w$ z+F^YvX-ALll+tXW>1UZA?SJ`V#>T%se|iGdw}`Fj4wu|0gR(;sT<Lp9Y;&Gs_VK8< zm9^s<;U`^TyusqXm&i*bJ~Z0DA<Nn}E1lumS?`xc)tk0&VOCD=&-PFG7W-<=;$^8u zp0U13zOtKEy<Xj1)^Rp%?JtH$Oj{h(^%8d}1~Jz$q+E2UzPi98_QcZ(vo9w_zFhEh zZ?60G#JOx2Uf(_!7R~PVby3rf|FgbrxoXe6dTn>)yYG7fp6w_;lKjC+s9RHSQ`D;b z<nF{<za^?mT!naM2k~pC9_hOpnru4tbD9Inc{t1`n*4f><Q#~7%VbfeUhiA}q2x){ z_Bp(1u{#@+@2=I^Y>-(!Cw@xipYLm48*j8&qY={EwQ!YH=kJ+29Hu=z7|^~=T)Ih2 zFV0MSp?};m_LF-`1KO=(co)u}vEA-fR9a~NL8+=Ii^HFPtB<{SkT?HFt=9S8cCi;n zB--Tv6$+o~RXyjuv*GBkLu%=ID{`j1dOO2+YU%qE?mLThf6sH9yZ@cutL_JX{_12M zGP}y=Ij1Pw@n^zuUk`2f{+H>p#drSebT@QA&DT#pq%HC5oME!7?COIXPkb_e{&{`c z-X+;*18RF_SL+n`8D;Lbe{cEv)S}=2KNkx%DX6t$6iPGtOmFeVN$hg_<n_+!k<6yY ze0LY@T6K8um4{MczN+74>YuZ`ty#SC(ZBXn_y5j#$Yu7hGBWa~e(3HRV~OkYv_34` zrMKqQy{TG^40F1t*2p`qVcz1PZZl`Hv+LA=pW)n7>$e8{3}>HOyY<4MB~dH>hIdc# zygJ=MU~6-gD*V)yrWK4^91y37bVxbqy=!sT4E?GaW1V!}O6&hs=cn<yg+HgK?!01R zf5bKBXYlQK+vm6KHrz1@?>=x`CA)`bdV0cF-o^b}Qo4-Xr<whke{Ja>bJn${EgXrm zA^%plAF_JIe^mgj`YAR%-S=E=<)U>~_TNix$n4WwYpC>^-SG;~rg;L_r<P{^{%3Xl zaZ!8XnfPrYCwJPfeayR7|M}_Jr{*i@IdPXHX-No#)oh-p{BKX6(3v^bxe>3g<-49d zb|#>WU268Cbj|7K7lkW|PT0S$@Ll`6{Lf4LS4qAL%Pv)alf=EUxLU1aHAk%U>>axO zvnsA<3s2tBccJOSt^-YtPRu6XgkH1gUg+$MxYbbRc_PY2aZgXEPEFhT)JyLrw<R3+ zvG(MRw_l}m<AY)F9D_Kwb&ro&=1mtDKjNLkKRu_V=kJ*dOzD45Rf%kkYv{e9!kAT3 z8*Z@feDC`Io9ZgB{pNWtBb?FGUHf^(d#Uo=p0)A6=P$di&ao)U?W^sxwIBb6%I?f~ z*ZHrku5OQ`oA@CI!xxCjtUz$aNtwGw=CGcRw?+LId%Znzf}%T~?2LW!>ej)X62Dg3 zswPdZlP$aYwPyF3?vH9KmnQ#n;&}Tk=I+nvxU;tX-_NWpzh4&md)Aj<>KhNl|2U(% zzxVN>muf#EzSf>j;b~94`a7y~mcf&TLo4pCnc;ctd8rKZjn>N3JCkd6cmJ(D@jZR+ zLRKroBNI*+m|Wa<?uFsHO{ZHLL*K0m`N>dL_h+WT6Go2W#e(wls?W?yv@L2(&DRP& zso~3cEX>|l;{5{NgtO)z&u*&hDk-vhT3Pz#|4#Gk!5(jf+KxNd{_F4fC-MK_znJr7 zZa&^7;VTxLS8g+JGv^YEx<2(Yo7fqzsuQg9qMlfxo(2aBk{HjsWy)VGFW=Z?&bpOv z_k`&kw{*W~pETCY5svprEiauNlO;PhyME*Ize~=aI<@v>RKEyYjOxY<iBIoIUjO%S z)wENq>+{qkINDfrZtkp(`^}`_wrJtkqdA%^hP-(-duALH|MvH^y}g#g<ujTm7pKo% zz-qOzEXL#bwn^uXd8X)PwAwwBd9x?}gI46^ik(+QxTU`)FY5OxebFVhdbN*s$n?K^ zPOn?M&hSF%ZJxbdk=GSo%RDN~l#Tu5&XvAjZbR|v#jj(ppT50R;(ELPt@f(&kET&; z{EG4)_jS6wSzkFjMjmC!LKdj&_tk~}Z^TFO^ZC!DUZ>ft<i9MmVzv9cZCr0w>&z<M zoU(4-Rj~^jGL)nv?fv#-Prb*~oi4k6?>bv{$2GG`YwE;(KNxM{40&c9ouVl}_kPVW zBlZ0JMb9oU&5iJO((q;V{=&MVrEm8eE!GLIZTxt5Z_GWXvf^B7o#tx)?1IuaHE#~P zpJ@raJ!2b>`}RktH_2Yn-I6eM&17#~L*0pSyal$koi}xAPu!T?8qR&MBDQ_j%H}ej zKv}dljm`^~wGx?;k`vqaM7>|~^X{GX_juxZwEu>zIhpt0B7A%4ufBjQuLGZnuP_jK zY_m|~tg*3|%g;Zd*RD2I2Y$%7TFW4I{q3CH)2pWac-j*jJnv=9Kh{>3923*G(P3^^ z+Rwy`OfL2KSZsAt{nf4i{YTo1+p^={8|WnkfqHmt8|S9|sq?j3_H?~}So!>H(}+kh z%R;%MI?w0k1@5m)jf+0FbbV4;>pIB;ZNK=ck4TCB-E{kB<+9SnG0QitnYCf1Ppeyu zc-ZZ0`aK7w7`nG-zPzb?4NLclHzMHO$JU^wb8bJ1aDQESS3>KM=PXvypFx~VlR8*t ze~Fs@TkDV&!|PImyXw<QR85l`*Zo&hK5D9I{wQkGsc*IaR&U|s*Jf_pwW7E3l~zZC zN*KTHh0czwc|TTL7xU((-!=VM5U(U%-^`sV*!9c#Op(!kHkrP9JAc*5MZf1dKmKWD z=Q7>L<Ivk1AvMoq?wPkrwf>E_HraCj=fY3w9ajreXPoyqUn=|8{?9!%hu5E9GwNR8 z^xvy4x9#xVId)|{r#GKDF8t^0#s^n2S8#<z<rbHQN1lty{{MF)>on%l`WyNNg}>JK z@)?&*KBua7XJ*0i?BrejD?5%Y5InT>dh_YyiI<=ER{gJ<c5Um?tKXTdyIS*)3A>zK zC{co3`=mIkcVs){oZLI_+WM0bPuOawK3%i5EsSfa)|vNQ5AN)G!4<jJHM?#7{3F|2 z6#E?SpJ|J8J$qF3q~4z5zdNS2+1ReJe;?cbxBkPz3~_s_d%l)(vwdpzRolL26`s0r z%D(M>_lmAMoj>-qLF|Rg(wx54rL_x{;`Ao+M7o%^zMH2WI!&WXrqb@ie(#wK442rN z6ZGb7TQsrm)uWkrmR6M1<}j^Zx%#tZ>)F|dr$4;K`}Mx`p&57A7k*v6RqoRE8E;nZ zR{59mBIe=RQ|3aQzno(QHZGiieA+L#r=^`98YV6)vfJjEY`$^%Q`3St&UL3wM|yAB z&b~HT`eJ|=BLiDy-?^Kdetq+2?tkJ?oiEL>L7BxuoWbm}lc?pHq|IlvSNp!L*f^i> z{%+5uRd*#<J-^Xi;iB4qN+Z+1=ws=d-*qp)^YfpaeO+0%Js`ho(ZYF#+wT4S8>01Y z_SsdJ@`SE}s?4QpvI^HtY0~okf2;Rbk0FQN0gLbZuTNYUGcP<QslZv*&{JvI<4rc1 zrtaB4SgY3GK6sdY{)6V<@0l1*-DBAP{w_1ao<FBvPw?bocu-S3XNAw?c*ot>FFw29 zqO)oK%Bmta+tW3r0n<Nq-~KS+#kUTV*2#S8h0i!#&MSZJ{#r3vea`ITm8-L@)UG#H z{Co22*Fq!n{2BB8CLBIrTX8`#^6=5Bwd>1VI*w^vTYIK6>*k!Bl86Sw8p9Mvbu+H* ztLN|+mF!A?R=S^i>g?~S(-vLLQqDDDU~uY~^)8ET|61*%MOhiT@=rAj<JOx0ixkf) zvkYFi)h$xu>bG-|?DBOr^7b{qWf=~<JSiFXu7rW%_iyuy_srhC`<naz@P<y28u8yU zJn42Ft{Y9Zbj4Ns2iulR?J0i0@W6q#Jr&m$p3#4#v-tXj<s}oZEZA>%-@bqMlF#q^ zee>VW<6XOO>!$aLLFMJ=9a0?2o2E_dw-&#neen4C6IFKl(~GB?Km57e$Ne3zSL?og zI^G%9?=?diL#<BldO1Hveu|3bq$?GElKO{E%zC%Kg!gnM=lRP8cU|NZFESfw9dXX) zUHUbk^4R*yv$p1)RgT;xNy!(Ys;|Dfd^y<W&y!?^0}mg!TUc8%F}!(u_ein+o{rhu z^O+f1G8W7`7rfZ?;Q9E>xgk@w@)=%;T3K-RjNhF%dwRL;o<!}nY!3a(J$;eM<ZYYJ zY0BAFbbP;OuJ`V^y844lQ+}?_uMsQHwOz}-+GoS!zbW1ew@i)|HcCFVO~dO+B_9K5 zTC#Tk71ffJiY=Y*{iP*?tQGxIm=w<zXt&P!ou=m<y|pIn`muJiuYbBvzpo6LwJvqb z{Ht0_YbJfnd;2jhq^3qD&9tP4&)vX9I#?%XnfB6!Z+<f^^esNt&?}>^C#ik#Kt+Y@ z>r*q1&j0BXC?fIY7em9p1^tK4RkJlSvi;p>d+$s9y8D^iw{O^*YL>Ryjrr2P^Q|1* z$BX&B<~s3(iQZZ~)o8YxMZEb%!{`0mOCzV0H6M{XW68c<RBI`Vw~yLXflr3VOT(<# z1Xed-w8|r@x0L@5I#HZ_w(8Rt&3iu^3*Y~Jc>Dgr&5wl{4s`3=^54u${C|x1`$I`{ zqwqc1mFILq%uib;#Jru8T4-=$qPt$j(FBH>v+h1F+uiFnjj>_7*}1QOzolROeIk_e zIr~Oc-qhIjyYK4Flaqb)@v%BX!{f`wclH)b>23LRDN3fhMl9)cSfGeTO!YZ-i7!<Q z4Swsp*YS$K_+Is*toNvv{2WJZK0V*rd0TE}<ZoqUuzs8SMplM_A!@A{%d`CNvpsYw zmTqASdGUSE$FD-&7gKW&MyH9Z_E?+>v43~r#}BE+3){~$FFrKsOyNhviPt^9xUVgp z;_2#~7@=@)XVU5uMysYUi7%^T5kJ<|m*5#yo}KtXN@F6w&;3cycj~Kas<xCjo7w;U z93ZB#=0ooO+Xr8+oO!wAoZrRG4{PSe$?rA(9F^HxGr?KqnN9Rt**kl_$}lA4*UO)s z_Hy<lo#rWNInN3s_>!Id5({Veg&s-%YxK<FocF=A%5yJlINZv5guh|tcM1Nse+dna z^$%W4`X~z?>&~i9m)3oFDlF{L41={hGy`?FIH+HnWnmVg`SkAYd3JR@^8ZfgT-g8l z?)wK%Ztz6y()eKi|NVdcqOH;E8S6_mUm1LCx#YX$la2dvy_mj!zk(lUT10Ise{r<; z&wuo-csm2b{JO`+9{gw6PAZALxa>1!z0K6WmZxXxO}l2Xd<UzrZ^u+4;jWs12Vb6u z9Cu&FcW&3t{j<^*KRsPLS8dNm@Ax-CyKm?-dd0UffBBX6=<4fvkJemfWtcN}-lI2H za>`21oxAXUmf8K+<$+?V51cF~v8=p1<(8$zf$a5r`4~JdPe~FyzF^9+goL}L)wUwr z3|OBFoY@koclJ<j#=#8nPpVtq_ctVN|6yW!d9I4*-$VJ5Jo-xK_D2^V(>Zr`S1fPq z<G2eM4OdefzTDc)^_u&5J8#U>t4CV}9xRm=p7fz6L$6IQPj<faT2rsx4_=p@E2v8Q zHNkQH`}gYEDIRNH?=1G!=QiK>?c(d1`<^{{!O?!+hwJR*!|E2VXYE^g{q2JE*!z~x z11kBxi{#|yFT7tqyEAr6`8NiJwPn)1%VO84uauWwGUdUX_Qb0z4=p~FdATL)<>vWu zi$l0vQ(_8|wUTWvonwsIxoXjY1O39WphWU^=Kar(=ksseJGy*=X-{I)=dLaBG1F$1 zzU*ITiP1Vd5@nFJ{ocQ(OS^=5*_h`<bU$onmw&8oU&qhz;i3Ed1-H%Lt<;~hhe0!l zBXQQhHPth+cQo3|K4+=Z`)A3ey<uI|^0~n_zkUca9Qgg+{>X0oUxEw|_I|JHITy+P z|NQ@7@eB>&@s+s;pKjkVd84Jzi$Jyb__XBE{^uz#Dhu)^FLg?Mz38&#;ftG{=S23m zEegpn>6yCZ?!9@p&u%Z`zBb9m)5PS|ou~_+W$w=VxaVc*E{m;Blb0`FZeeG`!Z2rU zsey#V>X7sc?sg{@a=#bOVtL3Q((3m7-REzYPF5N6E%llsBhSn*&!(p3abMx%r#=cB z^L7|bo)E(lo}k!V5f-<=e#5(!QWFksxm>onH+p;T^*#}yh?eK)Bp#_JN1p$`$w2O` zRaLIU%U^QsN-oEHH_g%xWz)8K^C4;N$<#oHNbX&iq`pmTyb>szd!S<V6sP^^I(Pl$ z?T;-!&d<p3H%|Oalv(szwn;~JxOgiDEc%jEaCft@&F0z*m)-k6UWvM}TRr`RclJhI z?kPJpKb!alPP5#x^{^~Y*}=8qUWO+wX3Q+k&CO3fU$tfHw(S>B__WP-Tiod4_2ES% z=iPs7AtxkCR{ohW>v?U)@~-nu$LC+Wbv<&W*B9>Ke{<v5)tAT4nK#pJ&2?L6<!mN~ zJefP6=Glc#y|?SD`*qo<1;X<}SEl%#TH(4gC`-dnq#-=;UD@u6A3s2GC;wkUzOF)^ z;lrCB5|_%>c&={!7AEavvGU5x_uKtaw`4Rmef_{>+sAwL){<hzGc7lEZms|GfbrhX z_3s%O{(ZLp&uw3Iy+y*N>JMjBui3x#|F7#@kY3v+|3y4-TKAeh1IxJ|m)vX4*_fMh zhb=Tlf2r1m?cGN=PZpjtw`9WfXZcRcGTy&qVz`vEQ*Ynu1H1Pfb6nr;aCmv=sn1Nc z(&cq!WnJfHR@T<kG^Lx>Jbv<prFHI{(%rUCnq~B|CKh*oD?9y1Ng^dFc8lfx7j`Le zyUGMV-~0Rh!@=tJ%nW|kvj693^BTwo-R*R7Ni?gSV!%CTi(=vDWt^)kAGV5b+?s5@ zVvXK`JwCzh&hLJh&XARE{U9j4{@eP8+l!C$EDi2H*5$!|_-gm1Q`fy$c5yG)`kQ1M z^+)^Z{$@k5pvIl|#lPKIvyQK6nd>{}KD#~t?d<-&P-ZxA@uH%a^tFi|oD(Cie=~Bw zcmCpAtG(TN^KPA8y?L>43A^58mv_g5&oLZ3`+CjAhA=L>oG5X-*1H!^a<*{qzj^oY z+jTE*^YQU**u0sUAt6UThQr`~TqG}#ur`NuvQEpHDW{fiW}b1qqVwwAtw9oBn!10# zylL3C=Gnv`=9IF=c}tXX%5+lh8UMA+y6{yX*nztwN!91J{t;mY1+nlzv!@gP%5tT? zE3%*e@Z{s;3=RD6?jLv7o^bU&|Af4m6{}~Pf8V%wGw-?d%?r-#DX>0nRWjw2?}90j zTaF|Z)JhkZUb8*CS$)}@`Y(UwAK35zEX#19zV5sIhl}lLOqbq&|M-Yo|KYpd-3$$3 zo3|P)TsD(!C1=#*HM2vV)6+itD}L$V{P^>GY|P_?35%1}qx|{iKm54a`ODkQh1IVa zw&&kvVK9-pIY+p~^77#`UtfNH9`T`B<m${zT&eHWu4~!wFZGm4-51MTCd|_1*!=Uy zQJ13k6EEhNO}sfJyF26e>|F<*>nu^Vva&h${l4Ms8u_{c`Q_<pg^Sr(y+R#sCq0?< zyVKaDIcHYp*>m6Q>RxTV&cLwyt?Yq5$*ZmBudTS;fA%p$+x!(L^5k+)&6@wN{ORdC zIkVb%KX2HfS#v)`<Y+-%#<@i`cco%xevB~eJ#ze~p8uJm&``nWt@2-fSNymjAyD__ zu>1q{_p{C}-+a!H>vn$ex`11sUYGuQ!CUp>rthJksVC-^`%mOws#_W*9^~bb-FV&0 zvAE%OwXLP)r_bUOZ9ZT7GCBRY#Etjw=g2%hcJ}ta7|%&Rqy(5Q?8<uEBN`&(%<=E4 zj?MO-pIc@}xjuFbtTMb<lVEmo?gEX+QfJ#D7cBP-V}3hP>Z{|CshE>es}m3Dz77;~ zUfaxicjxxqGn|*2c*(|`xRY1>d`t7CUGtb^UQP=<zh`4P_gc5xtB?8BN?+jKwCH-V zy79ItFHSfGO<Nki{oVH}3p+!uE&g)$huqDkJgCmE7tjCyy`GuD?#}~fd2g*rEW3AG z@Ay1v<AUX$PmQOUF)%1Fc)B=-1Z`yf(DXAy<#N<T{fHA^QtlVu{8{p)>c`&?IV|r3 z-d?^_x=Z$pRqTsP%QUmR-@JLl9O3da`%Kc!E*sV7Ne}bhIzQ(Nvpcx+y}AW|7{8*V zOOj4l<fNnoebvW2yH4*dcTx)8GV9pU+SOOxt{H5cJ3H%doXEMIosJKG%zWu=_v;0- ze3*g6m)u{ACp4WtYEaC(WZRtlH{S~%Pus{gEsH_zq})Tvw>#}bqVt0MUM}Q6vM}x3 ztQ8@WYaU*(OWPj8%64wk4fzEjr;dLpQv91P!Mx<kx4$O4R=NIM9h)-s9?!X*i|r*I zoD_ci@cX^p_6OPJ_pmcqSX+LLYv_@lUdnKS-IC4qovG-fj~&g8k>Ni?I=3$~KIU|0 zi(Z4#l2zK>m)aM5>P@`;anJ473vZhzs;bX5F8S?NzIf|Zx6P79bvi1KPe~m(P}607 z%xRib0dM#P*OiNY1~%>~d70`v%QQXkywpm6&Dm+0OKa=b+EjFOE�~X*$sJX)^P6 z2bKn-^MO;IUTCu2&K$M=`e!Ab<~`42KeRl#k(<lNkauTq@0yD<s$T5pd!)hehaqH| zDp&NnqYCcZ@4LP~p>t}!oZZ28`Fak99seKxuBiCW$nfB}eI<Xty`fU!-FGv~8E<Eq zeZ1tY|M=OyNQF<U*ndss4f(8l?rryndD)+z_Z17XI{Z%Fl`hNkt5#!%@2a<3I`=XQ zH|wREN~^>zNPB0jyZc{EP4x{9O|I5EZKXWFYBRJ?v9PUASKR8L=56rWN~_i3u%4Lo z+il`Ki&=lE8vNLE&?x(WEAtaq$sozERT`(2ympHhxfLI)*?(ESWMPi{wXE$ELn8lK z>6pKs*j=%u?`VLA?~{45%ZpeTVyDIVY}6>OkBQV;ap~pcCv}bY-hZ1Qt~%*VUe3~) z;^j{nwiuNvw|0EG+rQ(LhFz^)SSb6M_MHZ7Pr{U+ytrv>^XJHp-Sg+o`(cr<x%B<v z(~Dd<pNij4_;9GhM)1U(88KQ1?>-a0{NUTYQ%=k$0&o5EDE}?-<IlZY&)=o_D4aZV z?BK(P!gJ=%^4<9NZnVXX+s=z`@{||L{?h9;;162r|2smgaz^_qqci@eg_u{f8@wo; z$X{ib7kf%=Q`qT!>#i9blvwQgYnEg5DYP-`D{U3u?ew|ct6h0pdePGK+U?Dgg-dqH zzBu$I#pvL|w|18wURM8cL~HT4-LVd{lZ9p`RG*LF&%d*WdFF|guABDwb^On_d$mJQ zcJ*U^w%R#!rBpAe_sc(A%>V9j?QFBRcgyb|ZSL=l{(U*U{l!fagX44M&iS2xbF#rL zt?Wnsy?w3XakZ?`VYZbMcc0kYxzqPum0jo2w8+_)3Tsyc%?xoZ5ZjT^SN48->chLr zfzuxNC?_6Ex|*|n<KE<XjC!l?PM>@JV?C?E^PP(euNnS5w|Tk$hZAWX7IrmF=VoR; zueAHn^mk726s~(qLzeMGD(^5q#ah*;b8b?EzJx?e=<fU!$rh7f5k;3PPkLW(-E1Po zz3Z=y_`X6zK9gAs|G2ikjoX}YV};}6>k{IAV$o-l-^)lay3RLrTDT!^Z>8Obckf&c z8#X0>R*+YCKYQcDEyZn%E@VtOw%BFrsrF@t87WIws%r)>G1ZvwdQf7I&|U$}C8EW_ zsqgmw^*iskcdE_ABoCLM0y&XemhMS+Z%tNl%yLz46`8Otm;2;HYn8PD8oirLN-w-W zcs+RiW!K}^d{<8KPrPyO)}fcim!IF=SIqx?UOnSm*<{|b``a&OC^tmhFsrGm>N)K0 z&p5+JuDNmLW+Q#48Ilk7I#%7atJ*8KMRs!PB&Cg|dMx)#{(C1K1TREB*Sg~R>qjS* zC#!$?_gntKWd1rHhKesA6#M$;DQ+)}jFGyo$nc_!z2d`#9a*;3->&e7WX?*gKfhwf z`!{)K#l5#KkPExMVfD2r<?T=Fi)vcr_x&|vc(D8aU;aJc&)u&0U;FslzXu<a=gghK z>a~47bHTfWQ~F_(O%DItcXI8oKg;6|b)T>2x^(Pq*!d;K2Ts1y;H&?TKF`qa*71t0 z)=e4{qrdMunD8Kewut`0z1ugGUVB^e;YnwtOW7{<fQI=pIr;fNk3QPdy~{UR#OjXI z(UlwK%g8@`%zviszW=>i_W3qHBp3>+ik^HvE1vrD?grNB6MA`i+c=kdUJ_XvS~0yz z-|F){w?%?GKXSdiJ?n{$j*|qlg>xeJl{NKuJ}>zDTv%@**K4=6R}L+ntW@}1du9FA z*Twd4B}}JW)oQ6(p;7HJPyAl&uG=q_wtqZx_nu_c+<CSCd0H=JMESO*Ri91|5^Qpu zUAo(!H*KFEf4<9EwOYfrt5-Yn4+kY=A3x)K>$bI>&f$(XH<B%#lgyV^9Gb|%$v1n_ zlwyvDV!sb9_fM9pb6ioxcA!;G;|qHw$63u{d9|WzFMsrY4a%0Un`~=cc9QSIM|b(h zKfXw8@4DTsH|f?x^A!sMr?C3@^%Opu+%NZF@$dJH41Ij_tDFNP#TK4ZVJ<#*BFO0k z&)F~oHxJ2Yv$-cFZoHmzKJ@>&))|6D$d`|TRu?TY(^z_8yVje2`^tv@zxwOh8UB2) z|EvCP|93rx2R9!s6r8is$;3;0zp%ZAX;tm#pZ6AQ@Y?S%DJS`O)P>t?zX@$kRA2r} zo8!pOv%AyXo_>AY|L*bq|L6BJGTi(3uKwX<_4yCJ+%#rz*nj!+v@%{%PL6}ukDd#Y z{{Bwt>bL9h)x6vD?zIV=ewnxI?$miPI;wVQPT9MDt9<_NTM_!Lc;W}2?Y9qZc77aJ z{^y6FpP$dq>1JP;84g&^_}Xvt^2>)8jT?X1)qWDt;8qFq$Ve|2@9haWvVM_{cgeXP z)(;Px`#=8chtx^_AKqLPW>EWcIMsw<%KF4}tdruHt8V|fmtz)a)ws|xko)?xU&2La zxY;;v&sSOLa(OqqdEm62{QnblD%KSoySQml*jYE`nWdb4J#V=8hP7<=_pv=X>yYh{ zyUnk)w_JNBaQ%()*7BuZJZpBBY%lIIzU@DE-n>Uw+C1mV$U0^&NMzl-ZF{+5(Bq4n zujc$JHjVa`zqQPZwZp@9o^J5<+R7hq_??ofPnYnqo98XKYxMTZ7oE?iUY~Vi_FesJ zt|w=~v-#|w_XnTjPpSz}-D0|&|J1(k4gpJ@w%a?b&;GT!ZeI23%I(+P?`s}6uGs#| zF>pa)%B%M;en|X{+pe~#ZS_J8uae!iHd`P1$k%?@$N${gvgX<8pqECUl9JWtu{BJP zj9RO^<XZHEOcu%it=sRuJa7HQMtEzx*bA53fYi>(!iyDtEiSL?c>m}3e@2Eqzu#F` ze0w6maN%`%qtTI*qEU;te019D*mq~2-d48l+=twla<=!Lp6C-KFYLy%c&gL-Y_S*Z z{__^RKE%=Dvim02OShJmH#0p$R!*6JVJg>&oI5{1&##ipulZKbz+m@x=J|x`>hwzP z!%KfwZM5{a+}&Nh-~7O2_x=x)<!5dwm9PJx=a+kHSKW4Q^T5YWKLYyhDIA~Z>;3i1 zLuZk{^X3cWZ@n#W?P}h&=v!Y}_ZH{dTN|fVe0d`vE8V<~&2mPm{?w-G??DEP;pe+L z7gl7fb;>&AIPrG?%Pg5*C7mN)yFYkrX3M*6l6n06yTsLrVkYTxjYV7q<*NB^EMk3r z;N7-Jmb*I&xy|$L8oob$<#=aU?7z~Lwfk@MCY?SzZBeYiyxUg;wEjpfPY6!sIQp{8 z%EE42_ov6nGB<tiE?(?B#kKQHp3uB4{d=Sf@~dxOubh;Yaf^4FoAT#fj7$taHXMGw z>#O@5<NE)*+1YR0HC9YGzFfU7C)ZReV{6W{b{$reJ)f!qMNY7rUCp#}NDTe*IO#<9 zo%yRlgTamKOryRm{&`VBzowq0WrNV!8U6dOc{Ou0YC3;wF1@2Lvt@%}+=A+|uF1)l z^UnMA?G1BS>1`mkN$SUx@;S=ey9?&>2Z+^*?7Ycwag|I^UHqx7$)61O>eccaN@9!& zxjfx*_w*u-f*(gZ_U!%r`2FL%^Z&3ge0cFNnJ4F8K&)25!9(wMa$PG~{*F6hYf#?j z1<N^S`EJ&>T|Md3uD93x-32@f*X3FNHvjNSdOah<t+!_L?CM(7`+e`))O})E?ss&T z#zfPet9x!{J^r@#IRnG`x?iSyKE0A=Xs|wS+x~X00#}IX<md~}0#s)m^jf~vEpe@? zy1M(156$wA+3)|>V|Z||{r%$f@=w42?kj(9`u66YbD{-Vt~2}i`Y*ozJ~2W&be77( zxA{fE^TgNITIc3%-B|y5S*5g;@9W+Rugd}=0@pasYqp-6Hq&XD<g92nmAvl{*tV7R z7S&Bk4U~5(>-qfSxNEjN*XH_yhU@>2r!z2E@4kIc>h{|bgBRr&x39Yp!!<uUN`<qm ztc*c|`&aS&Um^?%<@x0vveg^K`(MsmDOC|*V2}}>aq(%)j!lYhcT5Ofq|t0}C&A!A zLc*`Pj`z6rUU^lXuBe}oeBreezXikHJn`PN<Ms1y$K35r<6gV1vToMdY2hE)jjt`) z$r7i1jH7L)*^aCC4qjWAx%{kp?w7SwXBYFOy${rEU8J*jL$v+-#n-ng*8E*CXZ_Z1 zU#E!gtdCzQRJpK5@7E%ozxPiCRrXI>xJPPMbs*?gpEqyb&R%0)u<lN`-qc+WY$`;i znB8n-P&g^H#7yLHi_fgb6@foK2?sevMK6CQqh$D)f#HM7$LC4MLQ@}x+l5ZOvf#a< zTD#bbBLa5omNm`W5y0yA=Ft0_4-L;*r5T(*ZNQw=vrxx$hIea-)|9#et=b*^K0+qB zQR~;fmEE$oD(9-^GMUmh>XH&JS-V>1&XwKs?N&M?gZ|z>Tz-9hAAcmTUiJS$vW&bO zBg3blg_(!h-`&~Q>u+0seox&yxo<gl_WSsH%~<u_B2Dwt&C8Kz#p>sYrx|_w@>2QF z3-<rL@_RlrGdMi|BC#}fPw}}0xds~S&8IJ3md+@7>lU{CKJyHxB=zdsYtx=^@7%a~ z&CZ8T3L9UxeEXj7G}~6|&aPVN^yA0w{(bUAg4ueZ98b}Io#nkenX?w|O%;1u{rmTg zd&ZMLl&u!k)mx?ee^u-rebp$IEm6KU_2<8+o9Dk<th2^@Wk3U$q`gFU(1w+lmM`_1 zEV8n+JAYerMAT0Iid#`fKh1kR@6kWqJo%5mVzhamnjN0X*KHfRs6=nygMe)gpKRRk z@7nkLFXOMj``$PIYL;m&&OUEcQl0nkrhDG+4F?yzH?G%MI#EqAtZJ^=ndI;nXY}sO zTFaA}bt|(|XsK_cxx|6#hUseO?6?1|TYumEc;10;pYI%BtG%}N)UHh$f7QCK9Xq?X zfa|@M*X@;|9t)5EsTXKc-mJ*>+dMCE_0_g5($ijtJllL|M}rSbl&`Sb=K9y$_<3K? zExWLNc2H`ho8D_4ryD$`a~58`bLb$i@V*V(w?Dsp+3=jWbennZss~nI?T@%zN#0u2 zTk(4Bb{`%8FYk9gpZB@`deq~!+wUFPTmAh)j@ie}_P;lSE*mm0={tPbx#s8T_+#(h z>6Mk2e|)N6FL{1VX(N2$eT4ssrZ`6XznATM>whh;|Fr*jUUdDR<MloEKPTHCjQ?{q z{=wz>|4jD%y1M?+^SXD>Km2`PFMm7i&ol4%UqYZ8i}LF}&t_=2|L5%eBh&Z)N&R#8 z{@=TQ#J95?JlVO~&-mT`8S0YTzLmZGEoGbSEB}O9;rwAe`^y(j?X+rp^C&v{_Kw=y zIW>DetQ5bvDfM{vX7$kJcYR*ZJ+L#}_nee&3h(362}?CkS#y=!e^p|5(E3<dMn3Z3 zrh^Q+*-LNTzJI*8HaLClHL*!YqByoRX?baEol`w8CH;Oy#<_ogFI(?E|Ll?7hM!yK z+thT;ulb-T7xnbRp8H?dUEy)O(r#FB^`75;m+i@)FY_0z5UTrb?<wrzclU4V4&LDO zt=V~73y*7QJ-$}_;+H_P+^;a+$_dZ!38`Kd$(*zxaelkbX@%hQv%WRfYrQg7UYl0j zU3o4?{%ni5WzPFIRi)W8mwBWLt<*T&ZYKJdv1t0@IMI7mE4-hsZSQ_vrM~`nl=$BX zrnW`N*Q_|?UOh~@++lxMS$iYP_VwJn@|%LSSeHu9IVLulY0k}>`++YSuifgNE?W80 zo_}pX!L#3+cjkJFhHxaG+5Lul;-VL`%Wl2ryYPC(Kb7g0F88B0C%W98l6!b>-MgvR z*_&;4tjK<AE77&+!}n#0SMSX&ch-5c{Og4f{g#&=Ik~q5=H87p*>t9QNzNA5xvb}T zW-ht+`_r?xyKmezo!9X9AH&j3H=9pAa9mWvnRYzvoW!Orjmtt`+`o6%N$G6GA<Okk z-d`7w6L`&Z_J)>&mt~4+dB$4s%}zfK+y8O?^J@J+Ertiu_kXaxyR)--|IgX`4~Fmi zB)aGCx7$CSneXq+um61;bg>yD1Nio|R{a{r`~Uxa|9DI~|4eD_=@)itrQcF#{oE1| z{WkZ`W^Sj_*LqfAv47q?5!qXJynp?y!~WBL|Gkr6c4t?qbou+e3=BI8A2Xb7>vUwF z|4+`mD#5B<J3LfNK6;*+k%!)dn->4pu8l4E?)+y#aAoe+=(tAniI=9&mXcu2-l`&c zxpPLb(=oM}Mdv@8x*fbVC2;xu<0n1Emv75meeeMPyC4pOuwC4rKW^V^<9`2GwaBd_ zkImjD1*Wa+Z=K!x`V)u2u>(_La}4C>F;4t(G$~L+!#eP?){&wjwF4}Byfqj^>V(AW zPi}gjB=cH;d3~+Dp+rgTn)+Ew?8LU*z2`KG&p-CgGiUvmi|-rP27h1Ua$YZ^NblUv zFXzseoOh``J?Ch5k&AXATZZhdo@-V;yS;wzH$12qWNfDLl0nJv>y!?b4OL8;vm8$y z(GQqx;;8Mlb6VunqJx$@`q}krwKg&_#kl3&EN)vA9w^;oC|{&v>7H4x{plb>y4kil z%xa~YXOjF2-py}c6mo)l_X>Ft=XGz+>F(3;w&yT3(8%}^P#oR<Ewv`KPVinv+Ks#S z*cslueXHa-c|+r-gUJoMP0v}fxP-|0&fgZODQgyK*?zfBlUwweZ@`0u#KX<4ZKou} zqS}P#ue!Fo`AF&oroBw}Dxb^V*<H>bIql(D^ZQ4x@B3!D=hG?eitl&JKR!6f{O8a4 z|9kAsP8<C>bN&y{zOQTZA8N<{<N{xdw|n>Qx<WpN`Tzes-?)2scYf{b=;?YFe*fLq z$-G(S_7-2m)2D7&aP}B`%zj;#ozK1~aaQ{7n_s5A_uJmQ=fvI>JQAN*-aO}L_261o zb-`mczHh!V6PzBdO^SM1xn#eXTdcTEUi@92A9)Lt*w$Q;TO7o?_H6!~_Jg)lJGUPw zKKJ*)f+<dMBF@%7xszR4UtVIE{eI7v6Fc`EkNz3LdDc0u@@S<8E3?B5*?LjmT{{H+ z{e0-zW#T(Aa-xOiCd=D3zS3`+E;jT(zj8sKtV5*p%iEY!7yg}HboAL{HuJYFmWs=m zVq7cJwe=5~&RFqsf^v)|@3XKZnYcY(9&CC)0t$ESYjxfHAZThp>s<xU5>>`p;nRWV z)|47rFD_D=J?B%Np!l|HbIUt_#~Si3oy*4Ho_75DqKgNniF)dE9XkGI*-Amrl3#q0 zlNKee?TL=QopFQri%xFC?u}9HGs@Sk{aWbwH2CD7w$`6#znzoYb~{Z`XOc)B?_BZb z3)8lq)OlWKzNk7;QSR8~1Xca1pL)+-U2>iG!oqd!k0wTDaA)2+a_`@^y~o5ZsjR*8 zIeqI4+5EiY;hIAFZ;nfRW>YxlYTz)%@%IW1uZ&m+(N=pso4D%>|8%$piPzuHJ`B3q zZ~vdu`;XlJ|Mx!l-bFc^iU$3<kKGlYo^Z<9R4_2?D1LtKLi)QqJ0Ji5_TV7%oqe^x z4^`&h-}km(^0@rpi}F8re7$=&cF%`H+}yjg;cKvx;!ZT}ORD=QUVm}_zdO(E+VyK5 za#wu48vYS<Nh2r)F~;0+y&lEC*F0<b-#><ne>B_wVE*&&{l9hp|Ni)~L#+Et#M3KB zUvp?~xNO9AV*C5Mhqn3dUF5Z(<<q;qAdWfnBubwyKi{`t>&=~KHn9cmj;<}KU`hMF zBGh+{N9k9qP10XZu(NK`IZ|OXqr!qAVdCn=m$=q!S+&=dPwy_D@n`FwUfBi)>#J66 znRng!qVdmpU%sq*^_+9s(jQy8w`%{8{iSm7+ch!1yn9RxQ(XBnV|g#TI7D3!EO?lF zp*v`?`G%SNpM-k2Wn@5$B+lln<E=?%<TLy*yXTwUYZ)cZjjgxZIWjWd-mx=XaOSm; zl*ZJnml$?*Ds4SpsJ<=UlRxD0J2e4Si30zSS!o(;GQB=5xN<J1Ug*(c)25}@H4JB; zSDDbM`9;MyENgC=k5ov&Ph-)ev*y3Qf5`jU>$c2i&S@%-1<v#wmpWBFWs1!ax9zud zGuB?*@b1vrH0G5iVV~WMziQoxyylQ}_kpCi+d_E;3-<J!cUC=nC#*VfHu~M2-Ob_g zwUP`U?p42ER9wWwVDakvo-FGHzCR|N4-l~7dSsGWIA`ajiL7%Cg|pW+UA4*UzxSEz zO#gEkhgVzDH+_p*zI8Td+C0YPixrlBsM2@x;K=qBk2zHNPg}J%)?jU5mZa1SzR$~C zzaNZiTlwi+bA;FyhxIeccK3oVV61pPxBP?l{!iKrJyZX@ySw|}jCOwcs@1=W&)c^9 z+x>iUs8Y_hs^s9Ox_LUMCs<xwti3`hWs>nTak(HB52<Ifx8J&b<F+|B?>W{3te1{( z<{Qj6H_bMwofmqrRldQcifiqeO5Z&fN@7#DnBDZbbEw-;I-7UOG5K@<D?L(r4c{|O zJEd|&^VJ5%AU8{AQxUJV1}Eko=xP${E_^8yZZ3XE;#vIs{+$dw{&~+Eir?L?H_lF~ zFPC>sG&9|#;&?fWVaxXI7tX9%#*}>TZQ+FH7IsF$dpB<m{_>ge8^6yC_sw_b+4I+` z*lp?D#nWTB;h{hbhuou!hl?liv|8`rGzjPN%8)Nux3#TBIO5QR6_-~<hJB6~se8!& z%>1WRZ`;du1{Ix_(uU#!Io)d|8U3D<etZe8RAv<}TQoQADwj!YWz5mp@%#A0m5<l) z?zqeU+3tB<_QDoUW#%)>JhH@ZuU*rcbo+?UX_p4$ccxym){0#^^U7MKvtDJ%1jmAI z@A+b(9+{8pmhV|>cwTC?hswE^Ti?9De?Z$z=HuP(_YO~9-p|0W*YSS$la)>juiVlX zYxLmJ6S58Qs{FWpVFBy!>X*(1PS(;<KQ}7~sV{XnytFCX<lxd9C-(ibDU28D&ktgG zct>UGgKfE9lFQ4kJjiQ2C)s85efFLn_e8~~i?+A6F$Xzcb)US*s{GfHsS~=ZkAC@G z3u=h$sQ#`OSNAj3=KG!EAIIzexc~otFrlIT-}Cxo;`@KNG8_=!_kmSLR`%ije{b*q zG5r5){r|4Ti<Rqn;0yUS)=gloJqo(RQm*dh^g2%ceLs}s>}opJ*L_`WVP|)2{r_L< zn+@CU|D1dOAh@#o_v>}V->=s{Ze3r?yEcqF{@11H3=H%CzDfVcz5fIEkKX$~c>nyI z|KE~fa@yPa|L_0XZf~mgQLSFq^V>vg<%0w>Uhi2d9<g1rGbIdlc5jyJp7^wq@45S_ z)`o4?7kgEh=cwi^(_LwG;*@TG0&hy)_8oJV9=tk1^1D+mx4+t@dXK3}pB_E+hzQZ= zc(<}spw9flP6xdww~mLL{<(d6s$<NS!h?~WJDz0Z=0EPs-EMvR_Kl4%<I293U&xU% zcR47${@3l7WrY<L91IpUe^}1*&0lzN+p7~wvSMsXZo-jSz21vOJ11Y_4t{mw%sGMf zYKis2={JRfDzYWEyl=XubT@LU#n0_7rzS-C7QO#F)gw9b=|<MOQ4PVoFRo0f4>rB< z-0^{D{{|zy*`2X>wB_O+m1J$?+Tky_FgK&od>7m4b)E;G*|-+TCrwb%yp^kLG3^A8 zr_zNji>9tkJI%e!aBaKIdZ(G1|GzdFPG0uvR1??vXQ`>{w6*e=cihX_`r**>I3|WY zA8($2aL`?ziNVj`|KfY;#JzEGi*!V%=(3z^3RrPcE-{$n*sEX9Z+-iDKUSVa?9xq+ zb7yDpE!cbY&_3SoQ?qzE%sgl2^YzU9RPfi1!T!3>B^{y8?mvYk0%D>|8xrnRODKKf zO3k^MG$AndvczV=3rw{~@9eLa-~TOpf7|hX`N!ARM*sNp+`b>&_<gB*Ir9I%_y6s7 z-PNmmy}gdRy}cdOBL2w#{{z1ryA{Kqukrs)>wa&qzrA`d_`=wKZ_fYAS$I9NHQGEm zk-<AkH|5*!%R0_km)D<EX%slLdtMXg60@*f6HNo7zMffN#hv4xwQu9=-zFgoH|@@n zaJu(q%~gj<mP^a{j#)&Q1Qxuzq$W1S_5JMYP40RJ&F*>!724d^xcaE_yy+RHbKK#_ zc#Ixqn4MjelASJH&2IMh>_Ns`W_}YqIdj#s*2Xbrn##nS+3(@((OtZ8w#)jYnOABX zPc1FYZ~5{!aLujLlJcMQzHFRxE648Vc@0LzCZ#>a`D<4_5x@CwI&1T`yoGL-_fz`> znwq1_OBK(s%=qbPpiq;wF5sM}kdvU-3xl+fC--D*0^Do=Z`l26m1Lgq!LOEk*5=$P zdf_}L+LVR8oLfY3&o}Prcl0wh>9|f?b|UB2ah1+X<(WT@s+rW}?0#@3-S0sRkM4!z z-{W;|iSAr7PrHh(Mx)JVL-l2ymiW4-rF*_V{?5R_FIUrZd9pEs!}jauigIzn$~ha^ zmY066e{=Co^rW*H3K0^)Ed|nHi8a%L7UTxsdwYLR<LvD|5h1H@N}LL;kA2Xj=o>qY zkM&^eyQ+uAo;QNFuQzQe`@E2;XQP3AlG<I(hM&%7&TTwd9C*lq`-|vj(Dk>||IIaQ z+kUT#JAd!jYd4bl`1n4A*MAM?-e&}Fz%260X!PqztlR$Xv@V-?V$Z^h24efAcURw& znr%9(PCc%GPqStF7bc#lnX;$cln*aB@pk8y`y1~}KeU@Ky|<@K?)U)-=fk@u8u2`l zYGz=NtMGJj3^~?RwQ@?swS;@dv8>_l=bD$ZHj4`yJ+eD@>)^!%n<s|rPE6XTA^zTb zt@-D=cH8o4DjDg~FQN}Fb=%w-c6&$rw&+}w*}3&QHrJ_oc5X6}Q~8_6KKGp2j?)iM z?G#_9c<gZNhleITAd_9MNM~i#1zz!vZq$9ZHl(3o-F_Pmm$OP`TRE;N9cg4;z4D2S zmfrIlz0+Am%NZsHm6m8J?1(mg_WDxvy=>Ronmfs*HE(T&bAFc{N{M0>&pgIB`>KQb z#HkUQ`p;HvZJKgv^^D?UdzmI_O$k>we^i`zM{u96fn9gg?-l=U?CkKbT*a!);(ohL z^X}g7ntQ$-OJ`(|udk4AKkoM8^Onnw^%L5E3a39jl)ST6Y`2wx#cwP2=A>KgoJ%HE zpWYxKbZ1xG_H9u+Di5b{@BIGf^Nz~LmJDu7CKkq(o{rHx^G(>Z=;Cdk0=X8o$3+(x z=3kxTydfd>`9y;S0^Pjg1@|j$KV6RZ2gP0L)x5iDjd@9F{CRQ}+qau^&eG&QJ}Z7_ z`Rz%Qepe_i6&3nzc{8Iz{HIR#nF{;a_c@J@O}xPwx~Jnof}7?w-)W-k>3L3T+L?71 z@6`XE$dNXo=&Op0>8TBQ3bV@>8r8kd`o}t<STko!)Qy|>UGJx<W^6CNkTJuxa+c{H zrcDnn`R6Uwx+wMK>__YB8}Ilg+~AB{eRo!9Lt^5U8=G$_Teu(I_0UW4{L0_Eq&tMf zj+!5x>1qEo=3(lbF0UUVle#m0Z}vIm^qc?xb>4F`ukQ=Ul)B`;azd^1?TG&o>u+7} zxppviHlxzU?%IiNwb7=vm218Rt~Y3&u$OtF_P-0uIJR6=+Q|LPB`t1p<4&773@MRL znzM_1-Mt<!?TnQ7iq1H_z~$xLr<Un<PiF~qUUw0Ukr4c;xhgN?uGHP^KZ~sn9m*}w z7uWwcg|o2c>DTKYPcA;r(6ITkUe_LncfEW%EB+d@rLjk|Jv$!D_Vz2ol30OV6))bd z729@K?fpHzThVI2&;I+TJOAA0&GUcG-|>A;<y@7OR~1+6*$~E-EVFWVzJxE!_MgWs zzSpvMUpjG&_w14eo<u310{OCS9|{^58mvA#Z`KO-(mP&i&`aE#6gslmBQJDL)H!m< z^656Y{x#vh+08G!m(E@w;8=5pW1?%4;j^T>l7GAxS_WmVebx&)eY#|lit)YZtx9&Q z6~tano>;x$nv@Jr4C_IiwOs#qPLP{hnHn#rInyZb)tR}wKM6EnTsHNj{k{X<l6Lx^ z-~C^EO>A3vnc_Jg@wui(^8Y3-(M%C4d%D-b_uzzEW%qK-HtycbtTy*_%`0cIRY@M2 zyOtH4+Z(;^furfo6`QSZZ~hb}Y9RJh!R&2(g`&3HCkt-Lo%_z;Z+cdkKWFn#eNnNM za<5Gy4u=L-@CzK<QF`=SrDDxvp*hUwbfcCxh)(mKbj3b;>UVq7$2HX*Ew^p&%v#^N zcD9Sw`w54YT?<rG1SSQa+OOwrs<S{M^=HT7k_B7&<0m_@1RB3{TDENU?i<-!Wfkjp zaUMy|on~5an5)6=fAIQ8%kBQLFccIOH7(L9C@agdTO!G2{ch8Qw%ci23s3zNT50fk z-rBilQD@o8zMa__U-hx_&fZFXh6^`tf8+Yy>n81axaQxxxz!ds3fUV3pR7G~dx_Q# zUe}_xi*+7fFc6#S&av^L!-fUF-O`>rDph#-OlwW3Ium|<i?jN(CeXxNLQkdnk+N#; z&e#NJZF|efhmI^gnyGW=kn^brZd@~3Eg7~%@t#omeEb4SuFXB$>HPk;Op+B@XI#5b z=CmNhqxEoQ!ScsWJif=0LjSHhUC%i2k+aU3*r^A%KMmX6`F5`Cl5Mujd(X7jr$oLo zpTC2n`$WXyg>$zbTol4{woLnoL-6nYQ!11-kKAGE*}cPs?`-p8i|^f~-+xZ%YIpDU zsynN;d-Ef;gGOGZA*Wd0trU&n**SaO{bdE*<%(PN>jm|{t@zuYt}#Wq$?);Lcc=6` z4@}K{9(X@)+S7m?jYZsEPXer37W4jm$|ZNHWhz$;+tnQVHUqQhHEX|T$Y1MuApBC` z&;Pe~qjO}g{yp&V{+pw(z2Ef8s^9zZe#)+ZsI5CaOm!u;vQ9J;Q58Ajy)dxlin^9h z=P7S}{wE8A7TGCmT_hg5cGb6~@0gdoa_$sjnc?PpYr>I3E!`6qa4u+>VkVy4A$xoO z|HJRjoLf`=cJG;Uma~7>Em4_$_vTIG&FSaQypK7&FKEh}yPD66%Ws~!cXf5D!gP7& ze+U2DP58Mw{Aqn_vDy9&FL)jOm&lwH(Mq-sFZF)^YE4JSm$fgan%?}Q^Tv7puPHoF zuATb7_U!xh^$B~|L{0rar!v%2?}>fA-}<WOOE+&0uB!U<+iUslr0>y%GU^5_=L?16 zj;`@&z3LybCu;4HB&Q=EO+{3N_Puu8taXC(-1<<K7aSa$9oD5s%5R^#c<<i3+}Ffw z#cRK(9r$?HW%vBcdi$2@$b5`Cd;8X<qbJj(Z1x>nelDB0@$-`o71{en!JRGFCn-Ie zzuJMxv2xLw@)BRJjhQ#jE}ttadujWwaJy4G9vcS7wFXCPy<Hpqddih0DR)w@R>{1~ zIA7uDlODeOqu7_QhwD9p%+Gt<8Hg7ici1gGeT$vd!SB=G32T3zZv4(vVXoFphI5?r zg7a7Ib}_thdi{>4Q|`)%{x~=Dms-!~D3-fMwo|9LEPU>lxikDt;3B1WW-DusuB*>9 zo$C6&(2IMo+N4L(QD@6}KkD9=JXaWYFWg|hN&Y^D{7)NGf~>es&v{z(`pMzf_L@pc z#`6BB54~BlrTqEv-qTGU?&Wp6L+9Szl%{b1(%!m+0JEGE+k4i(d^_1R`<JWBlI`_t zzm$|$34dOCNi*N4e&44fZ|@rD?~3s7)>3@AW%r&en|l49sh4V|ZV}yI|NW0n?cI9b zjufHo2YO~M^;B-i552RIk%57MA%QXKLZWE>+D*~jD_4dr5Zk;(^~nEuN#f<YeSbZF zP4ieJx-{!(;lI|MiM6`Y|5U&HS^SyV^thqr^{KBfX5Z=0-{GcqS?})Z&G#n7uj-z3 za)++s)9RKbHT}XXmv}6*{lC6rN$|@@5_i}xOR7JOI`}u4Z+cmCsgh>WqYt-NE#>Jv z{IkRBL)6Rj|BvSE*YM2GXt#PbyTfJAeCI=jM>MC{pKA(!aWo)j=9j2j;-My?5_U>Q z#g3;~iDvkgXU#oUyEA#shS^0wSIpWIy2p0qKP`a_NBxq*_tBU2rPoP|2~OO()75k7 zu9UQAi#j?=%E~<d->O+%`TthwrThE!{#PuBuiCu&^X(L)Nm^^}Ow7!l>|*rrEO+p) zYOQr$0WxA4mjg^DGwodw_Qo+Vejca4r}W<7Upv0dTeE?g(Q4MZT~6!%{ND3j-&k`} z{r!K1c8PHrPWlDWZ*GN4tq_@Rq*bqQcAtaf&dP|F#?CWpPrscs&u8fp+skoprmcIl z_VFB^lD|6lT%PZ45j$q8w_|GXzDkBWwMTy()8_eEJx{gV@nWrA{QN@R>Gsp=+WVA` zF5RQG=iT4evlpM=Yo{)Ay!xK~xoBb4!#p*qOT$(?`5J!dIrDJ=z6}*BiSKj_L>64D zmOWm$=j+MpUDYl{t<`f=f;MG`oqp3^{PTKMxcB{8arwLZ&edH1er}!L$t|Mlyt;FL zAN_B+biQ^_)ZUJuZDAo-X05Awe>jmZ_6|6eY+%rR(cxk%e2n$pexJK}GbS5~Ue5IQ z4t+4=)S004MPXNb))o~WTE4<={j~F1Z{NhcPw#rtZ#dQKXPCCY{Y|C&?mK%j?M+lX z`RL5Mcl&$m(*x(%$J+(}zjNu}dsV)*Oxw0T`f>WCg^!cSx1aqfk5)*9)Zf+qa;;Eo zFQ>@o$p=N{tT{b@eUJR}Gwe;$-21De=ZVT&cZ$iXg+5-g@ZFh*N<XKj@8aIS-1Ydx z(6_Nh=JV%s?q9w;+G<yLXNO0%nsRRI$vc-`hTJUL_v)cyXfEsQEl=JvnJPQDFZp!$ zD!0zQjd@i+!;dbUuG@0jHnc1!=e2RY;Huhl{~nY-{2OXqu6DC%s{iS^(=T;x*l=#) z$M=U;%3RW!zAa26`%lmO=Uz39!4ERGdzZWn`6l$|>6S1B`C8X0x~tCBce<SXzPhn~ z_09ODU8ULe%%NJ}%F0)r`~L32k`$wty7RYL&7Sb>ThI2MOsmU!xtZmm{Vhv^-u?Kq zWc&Ou`*ID9;I_8S_Ydt~8zgdE200#LHVWy_@jIBfaqYLA*TOC=og6OuZSwudjF(wz zxA!$yS+?#EdA)v9-je8Frk9KEDb#0Ai?`jZXFhrD^PRKS-I#i6?g6vD?Mpjul>dv} zR>!|Ba@%#UnXj*TJvV*#{O;emszRLkUnP%wdRR^UrpD*1GAYix`eoGJj~lm?d;e7Q zTYEJ`=5G0osOPHhI4(Tw+_iu|@zQI7O9{`9>Ygc?de7muRoeA)?+@AUFL;|J)0ZK7 z`M$fc{k<>WlYZR^n>%;*6ran__fPrwe(}+%vGa8PJAL@SZ{ssJ*DpUq??3*r%j7rn z`=cp^8jX)tYBs;v{^G|Uwh*g(PtQAN9$ll#+Sf60KGVa>?1kOdppuJ0YyqpRTxjpU zuxkOvyI$T(pDdq$-K92heZKTM(P`D|8)FY!Y8n3B-C@OB7%RPPRpb%f6WnJ-@1J}y zEA?an`}(OD)=icPt&-A=k~u!H<^Qi8XIy5k=+j;8f1_Y->tBuw4-EtV%;t(d#JxxA z_n)PUJSXVJ&V5ugcT=JT`-3PwZMUk=86VmOr*BdZ+NTf{x|aLQ;wAg`X9vb`x~LZV zrUXU5Gwbq+@6V2xSKD*m_4NW|M+a}MTAFR{zIfxw{j=0Q39_Z_{xR!R@z$)VC1$Ip zmG(&AEsu1I>Uov<@Z<jD`@|May)kLJFW;XHU$_d+W*p7ivualgn{)8-z&EuI{1le! zh8)^4N1*HYwbSm}pPp~#*m`fO);*334>J$G&V0S9VBO<j$4gO%e#HHW6_0+(75O@- z{`5+<`7=-c|5+b?>fh7z2e+EG-E}cY+BHdl!(fJZ_^gS0MDs81F}eQJIzMdUky`#7 z_XfWHiJp&`R%QF|RLgs@#%EvSH=Wb7m(BiEz2Vbt_spG>{_p=?@$-9VQnuyQuH3=~ z&eHIps9(4HgBDLeANHm-P*>QtB4@AMLYrd?m_bnou5@}|rClqTevET@^`u<h9eJmx zO_cm9D|mH<yXMVryezFZk6ORmdi|>G{)c}aSj1fmU%8GoW9PI9UQa`2{9L6sE!9=| zw7g`@DdlIbjfG$5{Ga8mb~(6pcE~gH)Z1UrS7dQLcUF$F>yHaw+s+_+ZN<7jd_URZ zLa!96Cr1AAd^#^*>#?!8YkbG*_ii_@1?;^TlYVor=aW@?Esage{R|lIC4UqO){K31 zTH>96V*Q=%mlAhR4!Sw({o?dRe+(x+Pl{8J2={MUw<wO;@#kJvw$7t_FHBGP8FByj zVd=7!jYlHB+|77;!SV`MOgEq8Rpj(4W*BhvdHyr4m1|8lKM3x*eW}NMzTV=8TaIr2 zwd-15uUYNycXNI(J+Jf7+Kty{-KXZ9bKf^6d^eD8S^w|dwbs0oQI~eTEDO&wh&5Za z`s~gv>Oqq$o!kDL-sQRT{m-aBZPU_kUtkL9XOPuZKa;vjX5xwbzUkTqzTXO#E5yhB z{QP*zodY7r#oVptnPrI@WvxET8JKrBxjyPo{Cu`w>)5w(smlsooKeEPdCA93$A4T< za?$KrzjH?V`m;Wd*JcI2wVL7^v@T~&NZgi7Ld&jZZ0X+ru}G8`*?VqRLl285Elo%W z_l;rS_v>-any`H_`L$p7KiHR%c{Zy!TB!T3@Zme@JMYG3n_mAn>yN|v1~s`fTigB2 zyms$|ukKlSjX!gefx4^K_WWS2wfgzq#nVq-H5S;*8p~6dU-snThMoH(qt~TwTcVux z^c~0N>ztf>774~o7Sv@bVVR=K;yfqS!eZhwR#nf|r~QAV_9m`-ekkar?b6JZH?C&y z?BDWm&w2-MEfJ}+^@V$Pv}>*^j>wcLU(lVrlUK|BYLHj+%?;moJ}UcXDBXHo`!7>A z=Z@Tey3>}em7J>jwD10pP1U{^dTQ=yn0xM$NNeCT32gnzo3r|f%a0e2_&~|Jfi=VN z_^D};%Qx=(+q!e}v&}1y9$&V_MeWU>@Q=x}uJ4sleI<EQ=<uHWCo@W4KF+9X{MPyE z&-wH5qJk4cv|_g{_b6E!RJb-@kk_Yi=be=r*Y{q#FMT*reTT=6;5Snj?pr6-7jpfU z+>8mEQ;thnWFIYAx$1lEx%gO)ckiX%9J~;<?k(r{hAM#thbMbnSa?X~-2TXuDVIuw zl6wE-^F6<}#%I}G5NFf<H7-q``KLTu#RG9O$Ax6C(5IiCo?bQ?RM#JvV8N%jS(dTN z$JgKgbQ`a<k2)yNHYi@ce0kaA2BE&7Tp{mOTJQJ$URU!-c>V<A^m86&vrXr!Y*}%7 zx;{w5ley*hCeE8Dclo3vw-W!tz$c0(T{bNSTY~I@LTApKH|^j-$7f0#c_tq@I_0rN zT)@1uX>0Xe686uVC-+HE%1O>?@d@V)kxGuljHxv)%yZ|i&;vP(;Q$lM3y^~uA{2I} zpPy&DOqj8F(#a)v>VChS<Yjn^@vE{t%qq8u?E-9{1f`Cu6hd?~=)Hq77-Yc=ZUI<9 z#8d(n&~a#xOWyzIseWojMZ~S!w^LJ6T>kz0zJIo#kj}?P-TJ5QmfzQHZf<^L(f8-6 zem&=&b*na|pO=%Ak(tuh$G7wEx7$yztPF0<)r;Aou)FN-q#QHtn>k@+Z*QrJ>&Nwc zGDx^^Z*TR}?)X28O3KSm?<#%$<X-jrspj`8lsBAx^Jb0BrxVJT?%&ssjg9?uHoq?T zUhVh02h7sX&6&9S{l4g3yLK(vzdwH8_r32=-nkPqrJc#S?(6FKlh4l1Ub=j_dsS6c zN=Zq`yvk>i?@K@NXKgKiA6F>jUiSXpTU&R#LtfwB+*Iy+%<}I^k>&f+cbx)eOkZaF z`aJ)?&hGN})8zmEI9~MWiRaH#;ro=z@0L!VV_AHx<WfT8%$brmH>Gyl{CqMwHU9rg z|9UNdn~yCZZqb_?h9{pEefqk-K6csi<$H7Y{e7E%`pJ_eG8P36d@>dalP6E!lzn~O z3O>d*Umu?nhxzSw-23IGI=Azk{PSl|&h2f!X=!PDa?9S|)BXMZ{q&C?3oUDYY^eG1 zuzgeValXii2m!%~t*xv#_tow`bLPy6hlkr!YieTVRlU-ze6#VmkF1!IiHV8I?{9A> zPminejH`O7y7O_L^^<wk?>^?$oU~tYbYt@IC+7Qq_U7E%WBI}6C&yLLFu#8K`FUUe z`S|))t}pa&xuBW!(mVdwB)cycoEx9p{l0nr6@T3aW@pW&wJt8--`{`#x4y72uz2U3 zcel5nuYPxGs`jk2X<x7J|F?D3s(rs+t=3Yi`tl+$f3~uF--?bGuh;LFi+z;X`}z6# z)g3R69BEm#DsE3j;N_QF`uh8;Z}0hjuX>h;%9jI;%&S)Y+P?p<uW)C}zVG*{@0r#A zx;)=x^2rxVy{9j-Wr$d~eS3KQ@7wn$)dx&|`7-nGm*w_r+xcWK-Ok(XD_{F1Fm$Pm zQ>k42pTfJFQoV0p-=Xege4$CsxwyEv=+BSBo7-}uAN<U{z3rs^zmNRRE1gzX{C>Or z>7AX$jejPeOnI{HcHZYt=O-$=tIR%o>a6+wH@U^9b+>z%%~tI{dS$8ibQhN;>(~3c zxb(@}>xHk6<9)LD;6cZmI|`E(<a6)r2xMbt-<$hx&u71xbLUQde7xU%M%9dM8#X9B ze*D<T*jRb-;>AzouRM9!E<f$<?d_+p@B6m(z~?8*A+OJx-=A{uprfRm+_c~C_s8F> zdaWz?a306miAHl7T;4bH+f8U~WtEhW;IOebFi?1YZm#hZtu0*U{ZmfcFZZASZCm8_ zyt|XWuZ!N^XCvmkN(;0w>FMeCf17gd><D!ERJmmBTHmVbYUbO&PA@Eeeopsf`rf^J zFI~IlX4loZa;2uEtn5_n@O39vg|1Hd|L^aoo#$)))YR2a+OIhE<HwFU7KKiIvew(4 zn4VG$dHig4{xti4ANz|Q_nM#j{eHi`{m+yBPp(DhPYqt~SLoleOu?bw@OUB9|M07- z=NYH2nNol1sp_W)o8I2ulc)9f>$LOB#}!6@68vNLdFJ^OPo6A^*;5e+PPiWqvZp2` zEqe6riTsbfpU+u;da=0w)WK%<rF-}8ef51}|AX@DvE`Nh=DD|27B600^!Mxa)AIj5 zu<v|2E!w4}TB)U5@15b5`}g%vrWARuz5Da?^XXR@n3mp|={^0l{mvM_d-ebSs=ohw zzW$%HT=z_Oxk{IRzpn2;_4&NLzO%FQz0W&i{GL5~_T*42cjH^{&w-hCy9*vR#q6z` zS|cKyo10s7nAiM-ulZe->hJHS>PBxnalY=G@hAROphRU^|8GxEPmhPz)JY*)s=~s; zpFYq39}~243J(v@g#Lid>(=Sr+>$wY&(CMG?+7o{<hYQ$V(nUAH#fH@7Zy4<KIfOU zQrUj5YW2d9g`qtB{N8%gxu4A6xzlpyj2Rz3oqzFSMa-@e&wpRn*H_;D^LhUNDc;ld zCLT|63Qf()@tIfmE3@+5&gUr=6&4?UojB34<nl`gJFDt%Ye37C8f(6s(q4b!=H~Rh zxqNaq8Z&*|+}zw2SqenBhNhO4P5aZlD(CL5&}GY(r4$ui`dxh4*ZkzUxz>A+KT*Dt zRaO=jSN+yBa(|uecb5!4VdKjO_k8?V=)3&#uif|m`o-6N4ZXX!dV5)E>C659|K?xz zY-U}yeEHWWCnr~Zdg3W6So^3`{R@cq>q};6=-uu4^V2p**8Y0AyfiDzOTOX(W9<IA zy>a_$Zr(m_zV9RN-943?<t&R_`eiH^%{I%uBx_wZ!%D^F&F=eu*MT%XY!(0V=H}*m z^ZV_7ow)sMVY}R=g$osHzuip#dZbgh>bPwAi)p&iC3SUip`p*8KQDcJtan%G>oD8G zM=f^0-)y!rF<FwFoV<*WTkzLI{`wXA`+h9i_xIcFU!P9vzwWR5qU@_8RQ2J3W2ox? z1$O@;?}VOokGPrKZ@Wx?&xfXcU#~@j3bVT#liSP6%d5Yixg)HY!}7xLTX*~)r}ewv zS><MDUj{AOx%bKaz~}S!>y<V=Ip550w_?@LR98@8boOb{tdl8UR>%Kc<>%|m`t9TW z|Np|v-`!bx_wL<WckiyXE`N80TU<}VLTW~U-v5pcP|f;%+s_}5`%80je18A>wPo>Q z=khl<7N(z@!};d<mzS4!)&4Gf`{Kogef#WWrKK-xhp%&~F)?^(eg9`)d2iJ2vbA}4 zcU|Q^7kbiug@0y)pWPuZ(DJmGzrMaUo$L4d!Gi_&%J0`!y}F_asqx%Huln4!WdMN! zLpI!P0BAFg;{v$Jv4Mfn3Z#WWOu>O2#6Yw`8t^nEMh(GiT#bgwK!?eL|BUy~XZ`xK S@<=l%DSNv5xvX<aXaWEdImP(^ literal 0 HcmV?d00001 diff --git a/reconstruction_im/charis_VAE_bs_64_ls_20.png b/reconstruction_im/charis_VAE_bs_64_ls_20.png new file mode 100644 index 0000000000000000000000000000000000000000..75b85cb51c300b4027d43e0ff391c2cc68445690 GIT binary patch literal 116835 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|b}fx5ehe-}gCNS9@*K zIlcRKUjE%L`<Bg4%vW2ou<<~<zzG4hlXpBhJQJ8so-HswY2ayh_$;rvxuS4dQTnC{ zt#8#*I0R;taCl!XsahER=3UwCO{tNSw(4)a9{EoGeYM}zl#|!OmIl52`RQQnB(F;s ztIt)Q-)-~$vln|ThhmF>6Nh3;2J<CHaS#K<yVX!~p%uhv5pe1-Q;;ozDiT=4>oGL7 zEIQ1?H|Ke9{g?O|67tDOH9Yr=6*;c_2Yb@x_9pXR3@sU~+rwBN99=G-{QjZvlWpH~ zJ_vGNv}txe{HOi@kNFlquLv_#v>mPezMr*0zUJ|4vriXV1e{DFw?-|ES}V}6&QKte z-rVoOu~EpVSq~DX0!~{PXF7_@o?jdKbNT+C+zfU9zt_*d|D)OdnHWesZ(Yn|fBXNg z3~I}luZ-|y`1ka0{t<(oUYjj_A}n@OH(vg+m5IUcy55@-eTFvG&EZZR&$yZzPIhuK zoSSd$yfQ*%UV!n7o$ub}+}|hL;1fPALWfP^d{e2wi>1l>HopyC`t;pp?_*53y|LFu zXX8mv_Slj&25bJ#-}hm9&8z<Z)(pm`%`QqiC$?{W>g(rs>FQNhj~lU@f9&(un)+mV z{mbbLKkoj2{@v_HhgJB4s|+)0zU52&xwSq}a|K(G&gRK?9)>eqsDAE0>0Y@uLz`-^ znc|UOvuDkD@}$_GIbdywq3(y0zae^4cbF7`RyFx8)8=+4|6aB!@~hR{lOFB0qD=?b zA1ti@A(KAuH{bU?Zo2B#Z=>(It8GtK=J(A>5_*Idh9}pC{%qsR{{Pwj-}^7$Rt26p zdB}B==1j-@tx;=_ot(TJysWF@`tEzICwQthPw`T{6V&*=_HjL9fZj9Dr9llXChL|T zD3+}KbDq)SbNT*5U!F*$nkKqxnK@>DsbpB@U)%X6R-WO(gKYbTw@1vMRG3fB+Un%% z?zr@F?CM{Vi7zq*SY|9c<8BhYGDcBw`h}Na#j)ZI@9Y0dy6N>YOz2SWu;kmgW7oUp z1#Out)aus;Jw5cql40N9xA}%<%NEtuz4&Kd^!x4h?LS^vx4*CS@#*={yS|32A*4)w zef8=6tWW9$wAE!xE>4uIev(-CUU)vkgBuT>Yo71E&$?j7i_T56x}I@KAOHK88FVPj z!;|Xr%n#J-9vxqNZc#?x%a@rkho8ON+|1zP<L7>w>&UHE#opxebrYZed#23L)89LB zeZ%tdO|Kb^3cosDe6{rbgVT%~awMnhnzUi_NB8<4g?e+|vp)#0dz<`Z(_MyDi)&kt zt$V+^IC$lh%4a9t86{+Q9++MCBcAb6Kpxxu@asRt|2?$+b3yw(OG32YtJz^3O${$s zYBK!#{d;BT)dgXyajIg)9wAo~5^ThdmtCpUnts~mYY$iJ|7+Xj9=(YyogbR5xBYIJ zw8Hn3URSbKojdiMdq<wb!U(2>2X9Wkh)k5Y)+Rgu#+)V1dRCVXTu?pNzasGA%+A7n z*X_9uoZbFTS#J8x)oI!yT{VAS-)DQU{@<(1b8LQ^tgn5$nsLYXd)4M|c5LffxKOd| zd&y_+_x17&^8dc?_ll3d&n6$5&QUY};q!fL2aM<cG??C|#~84}>Fnz7vVR%wyeVYp z`}d(f@q1zEUGKx+PaS&Xxn%q2r|bXmGn||AH(cgUIYUG3?{AwHZ{Hr*&u+KxIb(p% znZkdMDjCw!m%p^HW^0&!w?sU@=5_ze`T9@y->ZqA`u{+yqua6dtV^2r2|Y~M_P)BJ zs$o^s+5pYz8e*Rqo_sDobIym^z|!*Ij~@~Y$;peaWWD;Ge9~mw+VqpL(<81fj0%+f z7O_Ss_P74Nk~VhvKUNIs=f7><>#lmX_CX{2lYbGdAO2juBehOEVa6)syqktR&PwG+ zUY(e#j9T`r4ACk~3s`%!D7Jsr@<TmFGkvz~?TCoq_x|&hV1LFBKhM`UuCI^nz3~0} zeioKJf8XY_PxzF-s6gfanVH5h5;9MO|6f1OP>^lPCu6Z;V*9q2tX0!K914zqcya#^ z1%}Co|4#Wb3$)N|!xxq*GvB1%=l`3|@NLeH@U&&qPHqa>{ABL?8uS0Jv*TGGoK)X; zeEPm+uY~WHZqyMDJ|8rb_vo$5mk)y$JRMm7@7DU_Pg71Y8kkf#p4#7e?D%oUijTkj z4QnoQGOXME?SY$IP_)*wbVdn_&oaiBtq$c^b*=O?m9{grJb2}a3d7{!$v(cm#-_H+ z2j0X?tZ~eJI75Gm=IfasXT2`GE&H9J;Pcw;?z^uXNs^oQI&k$$u2oURGv|dFf9SXU zrXjAss^?wZgU=87>m?kn&0ilRaV&0a*vg%D%htY9J3J}FcVpEhM{(JeQEP+Ntz;|R zp(eOs^=fS{M&Z@MER5?`pV}5yym-Qu_qFdi>)t)D<7*I)t5A&cezi-l{BEiE_4xX~ zZ8Gn}gv^fV#q2ns9rsm=NjA>h<U7mm^7r>nINzT0rNKQjuW9rBza|X+^&gXa`uP|G z3PYF695A~2f9{S`>kA(2i+_0GZ9bFAnkv(n^GkPon-=We6uIiT9)m!GTtTV+?|FwF z2;~1*_?vOZ(`&bP7C6@Whg<1AU(l&Fm5brAvbdz=z8weMFYj|}KhOBVegF5@bEE@= zIerFB4RXzI4O<tuu1)csUg-73%jR#L_xkb6t^eu-Tweb>c!2-P*16}OFFw-MS;1sJ zPhr{QZ&S5J&+)Igf4}~nO=|5qzd1Yl%=bLxWtikqIQ7qqJq^#DSFXA>=dZZiidS<O zHf;%7Gv!V%tVQ7>Jz=HG#fhh$7KyyOtug!TDV|?iEQ~!pD=zHTuX$+w=d=Cmw~Lph zpGdpP@!$A-&D7`fs@Z19Z)GSrE?Yj~^wX${BhkT*?GAjgGAiz^>+Z!iaQ(fzG5NTg z+^uB-KjfZ9PW_Tw^g+Z~--hYH1LOGAH*bU)L}I(0Tzhk8|4=Cj`nH3)E@9Jiy{Wo? zj$QwsKWSqvFIOv*XY7vS{xQdc&)3D*KKzum_nd)6$q$1CY0SKTpM`jpy~|jZ64V+R z?#-$fXR#j?gg(({)B63MRet+oz+ifP{&v}f8#y0q<?UD4d)L}`=>0vw|7>gip^j}y z3tOJA`riKV?Z#QNc7C;;-z^^c<oua4IU*0sF8i9hoj%v3Fu`MTD97pdZPxc4w5}da z?q3<(yvnrxV%Z9T(~7pD8&^)@DrVW|uQZkIz!tInE!{^S?ddX%S-xYfwR&QVc8JE5 zpU3NKCfWZvtk3-6$z*+(g;&}HCwQ!AJGRvOeB3od_8Xhi`RzX`+c%}2G*donW^T@Y z;K~=1ts#@%|GT`MVaMxv(<h%zGyinq*1UM_;%^7<KRo)rMy!FG`MJjQE`}qQ@4ngb za4o}~zs&iM=l}aMopFWl_sQ2ZMRU04&AxXsJO1-!29=;mN2_$Xep>3ph956ne0^Pc zrL6EKpUHn(R`vh;xBmYm^?yI-Gg{Og=JmC^wO04df*n`6#MwgF?|!eXyr%cSB5Q%h zfi9=(vD@ox*$vije)sz;U$wxB3*TO3|JvHvD4wSqvG&of#2tG&qqx>?uhJ2blnwK? zdz98Y;~vwejqU#@e*gc)lHuN`!|xyX^8eXT<?qC{RqE$H`K|dj=MR5Bq*`Md6W+S< z`&-*Huj@Xn-Sa1M>(V#&_MbM~VNSaG<dh&RS>9?mv!L5I(W(E>zq9gx*n$^3e|a08 z*z>zD?)*FFto0A)+5Ucc>l(Mi&X}%!*BOEgO{;gW-tO+SW7@*7&lRsUx3+(%|D7NI zQ2yV;!e`I8ey#p0SbzD;%-O-uk6o@7Tz!7_o4dQk8}9!(d;iJ2>UWuE8}kbjr^TKB z{BvsmA1&}s$Q{pSWqX|HIWcvn7;}33lK-k(Ym|$BT$Qm|_D#>e>h|lK)nCFGR{hkJ z^IkpS-U26)NB?>+Kal??E@M>`dzyc*uqapYnV!{8*?w;HoKzTkq4?;jN%xZ@+0NUn z*|ayl;+vpHF7tzD*6%VtUChgUxuq+^x*);c_;PT=nFadC%1U-vip^V|wn19i>B^D{ zfxUbg9!{CFkCbRENRGZSP3!iI<iuU8?w$9)Qjq=X--<A;EdA2CZ}-Nm3%JPnLgw<~ zMU!95vo}BRa{4dEig!2DEpAL_e9&ec=c=^z>!Niv>yJHYRcD+r*TR44l3TXo?B|2@ zR&kiFk2<n;)eEidVaL|4`j)17VpID0^~JAc_1PbsiHv-w80K&FV$s{)IE&NI>%QAF z6ui2a@A#nj-;`VDUT<XoFQ&dsu4?7FylrnoX0DR2EmQdQZ$|E=sR4==onNk1KUj0@ z<mB`pN8|r6Gx*JwI`Vz5>b=NiK{I>pPNiHq{5N!cm8g5a9P5LBzuzA(OwrBT%<3qR zTb?pYZKjV})a1G+Cj=vt3Pjs7jRQ^?MFl)9d30p2%)XzY3{#%DRsK0WpC#eN6Z695 zS099KWV&y&cHjTo=?`VUznR=Pp>)#x*{N>%mZIBvFYSt1f5ov}N7%bONvP9ev(=sO zPkkog5&QRln!3Jc+x3#z@Kd#n?)t0-Ybr#h$+0B7-YdCzCd<nuTBk#d+`_FqmDasd zzHPEG*Z9{wgFCyPRfS})dTddb*|q5$N4(DU6(M(51jiNI`Y6A7aQleN*W%qlhK~%R z_nZA#eE+{LLs{Hs*Se4Q|EF*Jp0oCj>eWXo=l>nfXEvyP>2tV}>%-zd3}3I$lYj8) z;Iyo>kG>e+PkMjvJHv$A+lnuy);sC6^W<~E`gyqyZRW1GcbP0mTWR;%TK?hB<MLg0 z`4Vm-sc(PF&0Fo%t94Z9a<Z06(ThJO)8usT-JhHA-)yV-$9MPMuC@B(t9j;4)vqtc zcM6(U$vyg*_v`ob88ZVH7G<6H-}`>Kef#^>g1-;9^MCFu-^1MSec$)JHosmhW;k>1 zoEO_i(NDGW4|X5+Isc4t#=M!yd47B6ofe;Q^)zqSQ6bg6bCl=n7yX;V720!ja)_2_ zmuqRhj8(~stM!MLg>2oH{G5;B!wqq}W0&LqSu7A@JS%#&)XqS%z|%M4;@p<$Zv%}3 ze;zUA;osx3GluQe%(X{f@$kn!*;XCTe1QABowt*_<I`P65!;&OuWSwtUzHVRJKJy5 z>U?#EyVhlfRu)_hk59-QSqrL>KD_j=mugtJP?7I-&o8HqvZcJoA9=p3xM|0*Yq!wF zGZlKW$1iPuX{x^<q)apPit)~fRYs=KJ#p>T%fqwlw(xIHY*=e_Sa7p%P%LMXp{a5{ zi=FA*3F`vZ1!}B({xf2q&&DNnVJjbf`syCK`}L1b%er@m^EP)a%C$V1cj@+(oin8@ zeP>wjPyBk&hV5%A$F_$?KkiJo*y*oZ+@(J0qH%=M>LXsB?6F&xKKv*C<IVAU(T0EN z@`o=z+-WDk@_GBZ73($Euh;$lw_%^&SA#qE=N>S=^8NVbNs&Lj4ox^RZ=Re(>7Tg& zzl3f6|B-ZazuKHuvqz{@%vbo`uGgguf3Eod6<J^Rb@k%+_Qh_tFAkSpO!~QO*|LiJ zzwJ-lRNPv#;2G=1Z<gzxKe`(7SS#W}636@2+TGs@GfQlKS)5^4Sf?}h_QBQlUz8ba zzHZ-ta=|^LETi|A>=)iko?VboZL3nc<+UF}-N*a2E&hMr<r^C=ytgC&{ys7J+H{WB z-(Iftj4Qq`&9LL&wdxb^en~N?G0uA}<Pte0R!j7%<Ncl4;@|InuVUC${^rT{|L5;B zD2PqxtJ0RSshAMr#oK28@5kdecel$oIIS$YSr(iqR<yM?V#caHa_{!qUcXwHeIs}8 z+eN9zU*26et@-WCw~JOCz7Tspxx&Xb`nSHH>%*4}+fv=;exH%M$#!}9CdC7nWxqJ> zbX&M$9`ECyMy)|plOoeg*YB!`vt9EqYtzj)(_~V%ys_BZ9&&EZ!^`*E4BQ(sgNqLb zlrh@}<a(Xo@bPQq*SQiucN+EA{eFMtx)8fX*&7Ll+uKh+nGiAa+^WB@HhhP#SK0;F z=#$Sw-@JJL?^^wnH^TQB6&_0jij|!<G1$Q2WBW^v<>H>5i4qrU7KyXGxgaefe{cWv z&MC7TebQ6dYAwB%3gy?XzV-cQ>H2C}XJ=>7>LZp1!SjC^S5=4ZxYl=1_|LEPf2|gz z`AenST+!KcX2E*5@NjYV?_WQDNcLx*aOz#i$8LuQ?7W);c`NI9IZB*nJ@gL#bKU+Q z&$6Yfe!P44E==y<vZqHL#gu>l%OGP>rrlrjJ(1zxFMYd{*>Q`NT!UVUeB3gN_vYsR zQuC_a<}Q}b-`N~nTYJ&&f>HB6tE;PKG1`2-#J%T_sFvsaxi22M*L{g)xKnxk?vu}z ztE|@CHSoDqb<J$5pL?Lga=*Drd1Y?<moKe9G;Qk1lpW6LXa0YA{%=<M`4t=s-2LWu zA6or7L^e%I?P!*7y_SM-@c9Y%Ywq8!{Hy&g>tx|}uNf;YZxH5*3%Z`>uP5os8<G`p zMe*&n)Csqz^*P=7e3a{Q@vB+-BCADCB}P>BM)^)%yMNBgkEyTTy;Ixgs_b7TTdT^j zHEZf;@#72@A2&r;K3e&nc|-mA#7i?}7(Tkps&I0Zve?M7+|Ty>+3hQ2?cLnnXU?4) z`{QwIgxJdk-P?rP5^Rkvj%wfkXUrgyuJ*G2pC!XGy>E}NaOHTfVvoIKmf6$9eQ4`T z#xH51>Yvt`@0)yCdDUczG)eJrGh^e!6P4W=M8DNNIKX)C)3ogjpkqChf87FI>!y0$ zynXJWhZ84?$rPq{9!=WwNL2s1|NlSh844arzL^nsSWMunMa_D#wcVfh&iW;x5#sF= zr?oM-J@C}8?W?(&<WC!Q9R2#>^2XUGzkXr-@a8f9M`QUv_6#pFPb`1%+wSpVt@o}Q zL!Mo`{r<_)%UQFxRllpP)aKux-16{MaPZ|NL9c#&U1_k|`gW&F(#`9|KQ{XWml<TR z9yX}>dHQPU|MdEwk$z%VjS~`9`7GV`qblvP!LxFmudna_SU>-1Tk@-$n|80?-syhV z>fwWn53~C}9V!1W*f8;<CEuH{ry*-Ar<5G8R*Qf5@qPS}OSe}poxCyQZbe-CMsw#K zI;+;N&p(~^&_C^Jo<sY)AA#r2t@u3U&EARc?ykytSNU}Hv^(p{)6D#R(qF%S{rd5j zmzQ-dk}h^`dv;g-R@jbM@9=Q(_0@m*nLsD^xGkPg|4F_6&}M)8qX%twGgwr=l1y{I z(la%1mTKM#H;1ENZ&v#BChdFae*g6Qnm_;9mNf5+F*Y`yes)*d=B(~rv-5Yhax-U1 z?`CG_)A?z<EjPGY;QZNhLM)AM?DspZ4B^_p?0fiJ*`uB-Uhv;v{pjW1yt`4BucrK- z=e=P2;owTCnm2J@Z4;XvV<L6t9VvX(?|MJ<sigNZ@wXzgmYrO9_&Sq8Rc6cWce|#q zukl=KKc#j-`0}ve>%|Nz!C7;2&jxRf)DF}U(-gV-cd|#$-mP1tpC0KHX1G)I_$!Zf z*0jP!B04u6_vc&-w^x^|e5myQefoZu1MYR-Y-KM-^2~4izW15vpY!Mc8ZwBxrJYz3 zayMw@&cG#&&woZNJJ}e!ipP6uRnqpameXE@inQ+7ZQi{6dYJu(1I)64&$1s@%DvpO zs`=QlV~c+M@yeZ9VkMiKf9vvPVb#vb&l@8&cSga>F|!R@+mE~4=1jj3yi(+6%?!;u zJ!!??-{0?lZ1LyK`F}bLtxk;#7j`r3`S9nn&DR~bZoQs){(t?R$Lb*+HRt>8WyB`W zNDR|C_xVas;>L)cv@_znzI{kkD_!<#-@bjS^<ffg16GE7u*pB&e{6k-(!>KMS3PPI z(^%531Ti-Ms-5Jcb|NqQ`>}1gw-*`7Nk}|6F;TgvzkmC`1LhkmjCxbAt`9yRzPWB? ziCB84MoaVc6$W?y{i}Po>$6{0=+?7QcJ}UOv$H=5md`6-yKB&+@kx2&2ffowb*A%P zyM6E16;#m`&RbdeVpem_|BuBCA$PxY)%SHDmH)f;RQ0D_)p?JfmfzcxcYMdiKDqt# zr1SR(HnhwA)0;WvUftP^ny=5ib!2GEG_YEkmVA79xArgDtV!1o@B~khU~Bugpzz=J zkK3#YS4{sHY1*tGUA#(G>Cm=x3++17nLceRS86hRdvjCx?6&aLp^;f?VJ=Z;7OidZ z47v2O<ceedl#?kZo)!hJ2nY`sKi<E3!mh{1{XhJwUwP<}|K2O|xw=m)<F@SI9x@?Z z%&bq^dAHcEXS1>^KAlu=ta2|jOpKhp%yVVPqSf9)U)H+lh;^^~Y)~Tm;Ks+tHD4CX zvtHTBG5O=uqMaGpyT9-M{};5-ujXCx{Opf``EiZ!lV^s7urvOsI-oW8tghvOE!o?n z)>nM`eP8|V)YSC(QFX>fHcGNzLOCYyk6b4CR(fxCc;3;|legvGKh`Ik^|t8DM82xk zE#FW2|9j$ZWc2el!xaCxg!9{U?pEELoEgPZ^|OPQ$9EN<?*n#~l11M4H+5RC`uAJD z{-5MJ`>F}KvXkBvMf>Z&uen~$Q1NEtaY?!0lZBgSvZU_azw`Qr?LU(a_03OQQTpfM z^FxlBhdHbteN|cX@VAhmwUo$-w4{>qm7U$$W#yOm#@5<RkFIH`)Bb3q?=?ld|M>H* zp3NDoOJ&1gYXN3E*k{G>TG#!0S75~MM2SFat@-D@e+RGWXxYK72u=984rv!$qdDDM zi+A2xbUS#@r>X0Yd>7BV9wgqECDkU_TXQXI>x<7uO_ixnH*uZcs*`<EH>~XKt)qA5 zNPX0w>g9cIOS`e=&782b3*m}#{pV+&<$Zf+=j7k-!=oE@buI^asvhk+nsj5Eu4iVL z0)x=XGkc7<mA!Utx;;(jbV=0NH{ag9Ir`bgFQ%NCp;`P~@tYqXpUIW5b4^#ixve*O zHOJfvn|+UT=YM-|f8gKW-;B?6qXpI${`pZ@_mcTN^MeP^?T)XzyL;#Fb-NiYioS5X zkd5Yfkj-z$ap1!TgS}PL_B{Iyig<=O(h>^x=GP64UnCTKmesobmw)d=-alvmhjgmO zp6{P@Waqs0RH++bd+%-h@@7YJ^jDWuH`^53j0%6Hw8_55Po{=89m&yhGg|mg{XF*! z-4*G7ujF)!pIf;!pufI;!r|+3%nDPZer{^<dt50udGh3jtl+kVuhsqM_1s$6mgtfz zd%SQ%?(AlEem8sN>A`^^KWprw{wW?QIuY!>W$K58m+#&^d*;lU)cF0kq&{u9^rf~w zj@>pVCjV-!?R0IPhhA!vz1zN|ZN9leMqOQf`kMvqalda}_j+C<ddTmaSIg_CMLT1r z_%pnc^(|y&T(Z09v(cBfr_;{nMt{0}===S`=XY;xJG=FG$nrlA-`kkv9|+L#-(fmS zxI1yJVt(uMN|vhoXCq>q?wC7SOxRuhJx}NKqJV(&)9*C>Q9Irz%lhEX&bn_hA=b?` z@2l@8f4^tT@aE?B?V;^=jI4iOx&O_0|A*6as{V;E_}dk0WvxE*?DP?t?sZ$LuJQFh zUtCds+syMwXu9?6zKv_WOAi&ta!x8NJzp{Je9po%Q|?*UW|XwuY?Au3DkQe1{^J}z z$-is-)KZ@}=a`+oxcJqrJtZ%LOdga!IWaNg!yS{e+SlGE-cGNo+I7-h+p5=RJ#11? z0Fr)Ry?dADl+G33dF;b?gT_d;$q#Mc2XaQPGrPU}YU^pPUAuQrmk}+KQ9pIh&csBd zS4-dZ(5^6bv2I<dM|Dect|hjdoT%)sA=Z7-GA57h*4i_hbok<{Q|>)K^u#{)w8uBG zYv#4PLoQj||GemCLS)qD8qvLH)a1GoBUjIN{!lyL;k?kTYnM*yxPESVc+l3?_RIJ0 z?%pfJxaJFP-n{wZ-lC6>j%skNm|V_aS@1&Q|1b4At_E@YPpf^-t<YdT|M{iY(SkR> zj1$89qx_0*cgFsxs>@B=cH+q#t?S+C$7h^fef_ESnMv`U60NEi+g|PBp1k4QnKLfu zAK&0AYvoA4(B9T|?LUL7`|CSV{yAB9@813L{X6q2=S_D6E*>j&Ol-EC=uz-~?{~B3 z4%R+9;$D5boxlIl?{zz$Njc;`Fa3VE-2C^3ZA(&&PUg*3ykp|)=I-A3Yg=hIr}QTI z9|zbg{{4Jj8L<9s%-MwNVaYSpZr=H0x-OC3_VU(0Id4Ahc$M(RzF<OAoRO03m#5m( zL*-gsj5;&p>>Ren%saP&XN_h^+?u!>j`#OgoA=v(ixAltt2OmmD@XfWiSwTqU3hi# z=1q;|ZtD6IjeI9x-}^9^;m?EX@=t>2|5akRdy~an_U_T23#&4|{Fow@@%Om<@5OI# zgk9#0*T{*VxlFLsWBnHA(_v3`y<2rkMaD#b`su*mAw`Efo=#Zp0!thj%tmW;Ze6;! zw^~w8F7D&^R%10sffF1bv|6f<$NSD$`sE<I{1lf6-=Yr>9PR%9JkPvpj{T2={7hCQ z-?<XsF}U~3r9MA5_u`q$4;~~G^KWx*eL5%Vq1+vY^1lacC)w7B+Qha$FS>m#WciMH z?JJ$1JdNC7cxcUa_kKCm`RCoA7Z(&1+_Srs=rSQuB2c4XXH4I;n9@%?Ru0>$tr_0` zJo)|O+ID%?gp8D)_W5!LG9#V^u6%i7<*i48A>m09ZX&bxCLiz9;CgprYrDkDdZ~u) z!_!~9eajkAQh7BjZ1vSJQBKimixVX-@`(xss!nr`;$Nf-T5%CL<ExicW+KPL+}pBy z^Kuuzy|tA);Ps|M?R{$^qvJP5^duj@GR^$F&F3>+`|T&6{P4_tzhpzw#vSX9ZwqaC zxcKFnQ^nye3*RNB=IwiG#?U8YyKNcYuGB~w%SA@7PVdaHz5o5>tDLtlOQg<!-tqC6 zG~?FLl*Jo1|J$~GuWr<}&sW#iP5oH7_3!l}_CE97v-5s4*8RG_N4!D*-`Dt$KTdXE zv`vsGm|7UQK+bNi*U}fSUw6+_1kJUT-zj8Yu<gL@&F-la`;W`)`*w6c!vo>@Kblvp zNj*@zFKeq*>9*BZv#z{b8MZob-9)dYM(-bIZIyb<GRbS{5?`$_mvv$nr^y_Tyt>BS zqWRtqw%9fMkF|yGFr8g;VYd22k2Mu{XQf8&`TzGldxVkY<Q+!N(<_xKpT3nn`s?H? z8;OVY;j4G=o?ZWaVLYRPT50g<nafUE-~Z|7@HRg$^4cWNsKe(Tyxo3ZuJl^@yE`XO zoZw(Ezh6_#-B<D0a-&6l-S2+p50_4=|G4+r*?XNKzjgP{m_E??!v%l8UU#4S0kn`? z*}c!j_|eIfqLY5#|K|U`&LCq|$G*3A_w~2$U#fhpusPLjVrC{*x-EHQgviVX7JM^( z)PC(KTpe<HQ_2PBH63e^7e1U>(A_6=ZkD`lRY=-}*%~s6b>Da2mp!|z`<bWO<cmHh z?(MCfzSqv+Ooz<B@HIZ)%R-;c)Z2N?T>7v<$LXl^yrS2vjg5_$1g%VUjcncAQ~mwj z(?hM?zP9_ywq(yg_5RZ@_IpR4@Bd^lbraWgGlLs9mrrBc^L1^0Z<+tjhi%dp1rHcN zM-;?|?mk|4<?|o4y?b0@-tBt5u6vQS3is{|)|VjH<q3jLE6})g&&kApN1w0B_1N;e zN2l-qlgdz4U43$mQs&HvowmP24u?Alw?^!}crmc5sw!+sMb7<wwKiWaI3GB*E$Z$Y z9_P}3?<%kU{qz2RU620Xx9JQ&UR{@exNLSF(}TzI|9?z6&FWGt(Y7&lo#REh6bTQc zT;Hr`<t0(2viS6($t9(wuA9{tm8KkX>DVeQDY<a{`h3^#m)FJao-tzv!xgdchnrTd zU8Ftx@%=xy=RZ8N@;&2+t?TWDrp|AP;J*0tiJmxkApW%$2UC+mLP?3qExX*E+w$-G z?TlF#qZh0pGOMKJ?O7AwM;|RdR>ZJzx86uvg1oqbvk+>)sqeK6&z?QIv9tJj*S_tm zS8ID|ncLc)-Ija%+TS0y=4Q@#V_hN9u=sdi;qSNGnb&CCoF|Y}Jc(}?c#TU$_`|4| z^1nCAM}O>-Kbd0mYC>LUTjr;C^8Yg#?tMA@zK_jv+pVe^#cfJ3`<yrwZ#4+AIBvMe zu4s1b%^RJaF?zou^jfcF`}|RQdcP{@pS1U>`sCK9`l<J;ir&W0eZ8xJ>t)<~l}xCN z?w<K+X=x|YHcOY7BpJdMJKXBZ^%f50*l6n6u^a3%0Vj@&Y$!f{xd5qcY4rjed`=vS zF47aAo*CR)-t^irT(sjkeB*`ljY~`Zm`|JX|JbBY_br0HfdkC*XTFYRy`rAFF|yAj zO9VgG?ti&oIin(1=TA()|0iLR{-$StNz8n`>$9EM*~jd!R&CbR{x#=$rO~AON)K)G zPk!C6_~mJT>dH@fu6OsFN}Q=brMvcHRQ}1$<}>PJqIa(2o)Q23#Mk>(Yxn(gy?f|& z{1$afXQZ%{EV&re-Fs6y{MREfrOoYYll6?Mw@gi+5|z7g(zMt6OP>VA`yXriv}aF& z__?_JmSa2ru8q6C_TBpUf_cp!?4|4T%r7Nf4+_wix!AVt+ui+@&_z>=CQG{2<~j?U z&^VjKvv}W^cUi7iEH+<YV>Vb@w$yRn29f5r`c?sL<zO)+w?N|ch?Y*a(k+7(|MMT8 zob&9F)cLbT%sjUq)@-|1^gnCorIrX?&O&kR<@00M-frCH2U^dybn2SNW{c{-bn{l_ z<$c}yJSjJ<>aRrG#SPx)t>Qi(yA~6sunn{d31$^|Dr|L>MV1tAOy0qR6^9L;srE-^ z<wthv2sm}Dj?B4VAiFSi!?K&(E6=Y@sNI}<+GooPm5YbClV5H-owfdF)dP>ezpvl1 zoAhn!4W=c{dSN=R=H$Ie+;Zj+d+_6SZ`&<Br{&zfvOoA`7bAA_yX%$-2ls5*AARW0 z+qM*gRbTbi$D6G$xDd?w?E3nz=4XG)ef=j|q9T=iCOk6kl4kz0vwvl7*L+{RF~xeF z-ARScf2}t>V7aCRy3A_zwupkH^vL-SAD?#Cz5Yj7T=wQY5$5l*NgpG3si_{xH0J*Q zWoeq2`Ej2~H#{CL4c^}}E&RFE=gsR}uiu*bJ?+~2*o%T)&!QzJZr*wRN?OFTZ5dNe ziQZFg$*_I7pxgA-mAqe%=04c^|HjsD7pB{-J1d^Hy-NBfM^v2p0^#@FqG=zFW<-3y z-T8E*p_THLs@nf;qNyR~J+7~M({vr9Rv)!mJ-1Xp*6zXbf7M4XD@5)IUuyiSPd6n_ ziBBvfxae=W6-wE1W<j^<%QYMSe7!31E=GRmJp1(;R+rP}Jcz7G+j#NRw)_`&Ecf?b zl{`87%GC`wo^CVTT=UDJX=(lUqC+pP-%l#{O~3DXdX>3(^i!=PS~?LYH$Ujk_O8;r zHNWJ-(OE3A*FMFqKX(0(Rk0)6Bhx82Kk=_W?01GqTKL}9m({M_**jKTD}Cv3SXIJh z{)&2)u+@p-9eh_R-s*0*+jr~2#i^V2>HnL&?n7TC^SZU0c5a@dzpi+F;?leG4$h6c z7ww&{zg$>Bwq&E*s;n1t+R87ddq#!0%#BTz4wtaWyBELrXS(kCJX?0VXV-ZzoD5IV zj*T-feRp@?oO4x=tD{T>w#;&DG5vQ;>`z}<bWOz5F5zaQY>gu}iHFYoJfBzju8b)X zx%{8$DDEBg?u^4@G0W)0*(;w$Y<j`7m#dcb>E>0Ev-;+Q1V1&%@1AkGYuVrJJ8rHC zE0&e&=6P~@X5`wVr{h(B<sLhel)U8BvH4q{$~$NGmnJ*io4!GEa=cDv-P1&!6+do2 zoV90CnYHNKqRw@`&t0<PZf4Efy6bK6&2sPA8Jj0bmTb&xatLLe`$1;HsWrT7A3O@; zU;WEmqU}}Ank^HB{!TfUaaTu=LxE#f{n_=;SUOHj?OJbnJ@fEah39X(zUXdw*i&ZF zAv$Zji{o|YSH->mucw}Q_Hx$NXz4|F`_i9o3zFUPOS|^voTBKJf2^8Ikk?}>zDx4d z_MLGpPcb%otKsceYx>XHNA2VIYtGuXam~gr$CiqJ{=fUrrpTMel4Sk39ve9doQb}+ z`AS%+_f^HSE25?9pG8fVVV%BLAp7c>U6q^XEqglEQ{i;VwItzf$x^0rb?RpMEfF48 zFOu%+)N9W^o0|CeU;y_?^C#cq*E-&xDEqnf&{mNHUVcZSPNgk<?PLAX#wGURfr!xP z{Myq?zGe#^e$3y*aQ{2w2b=i{0qdFn?p*Nj@3NJBmrd5b_+`k;d^qG__O#TsKfbSj zVii-YS^A*#j!d}x-d9Jg9Annyo-cl!@W{q(ifzWj>$kIt7Pap7HoNxq;mZ*3o>$(_ zqDp06f7^ZQ%O(-;$pYoDQI<u#CwO-4Shf1x12a{=O@&W3^|}>aH17QTNj>+&N7uyq z==2Vgj2+L`$%P)+)w4(6viYV#<u=oE2ZMgE-PXnEmYp1Xb<Iw8hpkadLo}EI^u#r% zdof&znSS8=fl%X@`yNjAP+=@cDoonAqiSx)M6Wak1K~oR#g&hrL_f^RQO~um)-qdv zEIUhdV)E%9tlrmzwL9-+Z)<(KZrLBc*z?u%R=u{pe)MxlZQd+5k&h|2`Ign)eNz;< zzIcP_Ew#C>RxgrL#a_NybG<kI{5>uf#(j0Uv(ipGcZV%9WYPK+^QFIPW8Cq*5hsE- zYu!67HM^UKg@vU>`%p8(nT(y~hpj#?vp*pA-}G}|y==Dzht$8cS)Z+M-7RACn6>@M z(x1FrUzoqNzw+HSYpNE*<zQhRK0XEmGpkcyj#x1K+-cJo-z`<x#<|mnuffI2S#3LS z!`r>qmKA3e8InH!=*sVZ+Gbn!YLc?zt!q~H={4sMU!8kY;e(-X=yr>~%b&IdMCYpS zaC1DojhoTMds@u(r9qm(S|SV@Vq8;7_r5=pb7`g?L($GWAx_f=w|3O5R6Tz7)wIa6 zsJ<0z9h~lf7v4fv7aPAwI(#*K<)5mIiO(OszP?TNaN(7uS!)zl2EA@k-pIYVdwbT7 zqQAmvrfP?{YDB+1{r&2B^}hD^tBR9n9NQBwe@-rHTI)*TM9F2A`do{IO<3k$d=+_W z>7k6~1&L`lIiB@So87kZT&TC{=9sA2DtaH7wVoO=ES|1c_^ef&Q9^3ZffFYL7&dP% z{;|*h&ZX;npFTK}%y2}Q&$f0qqeb1Hs<O9X>y2OPNvetGuAb{O$GrKf+h*Nq4V!}W z46SXCp7|oeFi-x%?c3Z3w#ix-%B0KoRlLsVx$wo7-+%h%_q#&0L>ai2G8qeB?&;-a zHZU}F+q&$Q)y$GMX7=yQ0@)dp+X8vliU=gI{Hoh?DmRk9EW0+^bxm){g`-_-%9YL@ z^SWFb+vO@6HD&(k$G`O$Vt3{lEsNUxa!a9m{=Gom7cQoyxk<vmv>N3f>@sCI^_1&s zmSlK)RcP$=s8HJre-8Bj3%PBwA(@jws8gcw@2$S0o@zq6(VMSwecoP^8JE7X?(P-q zJH6j~eyy*2%YKnz`uo*y9yRW>NZJ^2WdS$4pV{i4*ZU3i@9c|gI<WlN%HInEbPTMG zc@O;fA|f38s&u1Cd;IG4q5el?dDIv73u&2NRk&0CKw($zj#Z~hetz#aId<ffPK{se zwq{TED|gRsnD%`4``<fEuU^xf-hJlmImUv_lnLVT74s%4nleZf3*9L^zn5XjrkxoE zHJh(LUn^oKfBLD>RD*JlwQhFnPt|0lP3nHm{^Gqo_kkBD1lU&1DgW}#C3i-y^)HX= zRlZrbrHwm8`PgDhFGqG}-{11&9J~z$ZrF&<vTxt_Y-XbK**}e^W>^|8J+$-J`MJGm z1?w$qbUEEyyP~G8oK)m;fB#42Uvo`X3(WIB|6M~YblIz!CpAA6Zw|@II<hlpWx&<N z=jXkDxbk4V&ux{5EygeSI=6VOxU_dI`|9n}T`Vr$Z~By#XZE!1_5O$VzlyQcZCRu6 z;cv!~JKz8O`qbR^=F!%u-mFMhvnk%LT33rqe$9V<)31EHSI{;+&bFwMv+c(vbtZQ0 zzu9@=)#?0KPkWvxzxt)|&_YG%)vWK?p*EL~U%sDw+iY6h{O3QlvSl7b6uv1q=_h=u z&^S#f{?m-Z8s`$8dQP17+uCa7zqqv;O2_#>G*{gX^7mp*d%Q_ibF(S;>1|=F4NdL1 z4&0o6uHf0y;8$O}&lmqXWBJTWYn8#=Qy2H@avxZDxZU%WtWs2Z@x0F~`1t><@SQpT zw0mH{(MLKz_h>!dIMI8K^>3lS&wn${keGjD+f~!}Ra0Kvy|{Q^`n#w-@AAGD%d(&5 zdTtdR@8-DS%i{`TJ8qY`pya&vxo^Hnh~B#QhK8n`2VMrB4_>))!m9|KbKBm%Ww6*d z<JL5dKg-NG4&MIYwSja0{m(XCR+C@;IAU@6a&U-t7H{6xuwJJ-dle3>ebv{^*jG10 zHHkCmW#r$w{tz{1on`Ei*ZyW4E_h%1|DgB3eQE#KDR6v{vU)V{xnRprNhbdI{J)QW zGOk<g=Akv!=;t1-&ofVYrY&2(a>`YO)ARnad(PV-7a)6l>pk^e$G@M;7>#BX+e@?s z-gixiYhJQbUFnZ)TcV5Xn+Pq(Robi$Ww*_;)~#ATiId&_!^)Lr3r_7`U~SS`G_hsh zzv8=*lRl>WeZKBXg4LNrs?wjQ=WD$3&%bjr`CwQzZ?vV${reN%#^3dSWmj0se|p2K zuM@BC(mC^1Q{lo_pQ~#F^;TBhTN}1GTW?;6VE56DIagD*NL{;|_jXfsZLN4+{L+|* zt<UGPKbXz`&-QP6=<|Z2q$!=9kzKp$UY<KwwCleNgT2A@<<+yZgd>+-T~zn5O1~gS z_x@+i*EULzla+bq%CjUaOZ=3WlhV@NEH1ITgtKAiPMb2H=T{A7+T5=`U#_<N#ml># zE52pc&OE3z^WEY-2EM-zmsF?xOW5{;<&vYg^l5{VPh1Kd8s}E>9eZ#=;pwJTCe`KN z3SV5<+TgV+CCYpK&zoGHxl;0z&#vmOy}x{s^~0Y|jZPaI)>}W?_wwQISB)u>0x$e_ zHnu0O(mMLN=2Vs0_JA2ngY+JkuaqoZtt<R@>vV(239Bc6tlZcAyv_6Xo{ao3`wuH$ z^6h%QYlqcB-=!gGMM-mBN{UVtk`Vj-EuPsyYi?xw<L)@!k3ZFBY=5`k_2fgTUkz>x z)>ocZoO<Q<+mzE4RbgsVeVQd7w8@s-Ui55b^??};E?%XljAy=Cm3CqJ=W}OoSOm{~ z-licicf-mcEtk>>@+&@t+)ub*5a;~hcSRNN`qx(%U2lB&xY9~#MO3Qa`AMvf2iEPg zeRFR+e?y2`@70CpyPk3|Ez<Qpz0~MAyB>pqv8B_3*&Wv9-!?AZKHbOdy6m}A*X_z* zeXdx$>MGaY^mwKRPmGsK%naH5a;j6K*H$;z>+e~u{py0Y_J3OHWU}JYj;kwo#E6K# zs5*1*48w;@CnwLb`K!ZF99-#Bn=8gu?9=OSxcW206fe~?UGEmmHumXV#kr*Oq~SNw z(!Ue^l3z)F(N^n;*7C@Z-TpvyuIn}A@q)AquD1;gR=zYi@+W5AOij}$o2tx~otCDH zcJ5uyetP}-R_>;Rix=dWlka^9cJIB%-rKzKtfZ+akF%~SgO88Q?SohMpE`7;>ova* zv-kSQEe4C%Je-y(<bUjHv<~}y{*;#TR;lf>A-C_Wyx#cU{o$^8?}c0D^S@fSYTf(5 zve;*zw2s)uYq)27Uq8+^@3h$8tgX4Rw(Jf4TK2a$ZP5MtqUWfLkmpu5+h-9Lev9n7 zlV(mS*-^0c#iR?_Zj)C&S!JZ}{<?8}#Pr;AYfBEj-ZNo-a!mU~zB%#<FPdhZm6er0 zymsZyFG)L{0@h7fzbb%LnBU)h)|FGHUhA}qnYYeiZeYl=dX@6~TkfCk@O`u1luezi zIMeHp*twS6gfrD`eJ?-NKf0*CA}r)@;iFxzE$jXk{`wNuIMavicw|!N0i|f$w)poe zo_~;PO-+n)EBSkV+A|IDLmvFo8TQNRKD{<$mK1YBQc=??zN;Ij@4S1fYRcbFuNJJX z|L^v}wtuGN-j+{G#VdbxK4+M5_POV)w+4naSy!w6%`Mv6CAzKoOysg<#~625n4D;A zW@q$B-L>e`hTJPTH5Gd|D;(Op@XnJsfpBHnl8p}+mCjR}(Ux_G&2Ea<s$e@a!((gi zac>E_*PDBj<>9p0i}s0|c79lxp2U{8_(06(=B0a0{wt<OiEZ5RszSxsGv@x`tyiNg zF0X0-H*4C}4-BiOukGw#D|~F}Bu}06)$2dU%q`%pnxVrdHs>$HtC?G**g}1njSV(D zUiDF|-}<6i_UwN)TUPK(u{drCU-x>~#i;u0rJRRcqOQEwIc?afE_}oAs^E4V<5jnl z46R@3Se31*e4Zfu?Y#8$c5yCNHvKr32OrhtpYKec&-UQa&x0B+dqcDyR>u9k$MNSy z{<?e}4hgnCIUPe?<EY|&#n=7#WG&m4pMSn=zx=gR3l=sfCeB<nPhyY7iK7b{8PtyH z2c9@zc=)V2^M&i%+t;n(D(^p@bn#non)AB0V@Y>SQuj2aUVDA@=9ae-+ZMBJ=G|_$ z;^9s!{?30pp6&8^_4a_8es8emD%A!<^|s75W}VN$Go;)OZ`;yl`2OpvoN1qTaOi)~ zd}*}X#O%~kPSYEKGtN%FFqyOP^s(d1gMykHL$`M=Ot11eol@lHE7i;2UzAzF(vY&L zJ8!RQfzGreMrYg1)=Jt=zPhCS*PhI%zzCZy@2?$9O3uBTm<;c)^q%0^mBDPKb8D05 zlF+i0(`FhkdS+i<EX>otB68~8-`^fv_)YP>mLnmWcc)PEfcl<2zQuJCdwRm+=5{tN zo@{h;+uFnBSI;cSoE7LXFE#4(Hi^z{OrKvr&9O8zt=4$DFDdcUtObc>F|I8y%q8Te z`Nch}jte<rYQ7+<bn%h2l`&?s9PfwBtT_C;^4^((;^iHOZx-JFyyE4QH&?T!dTHJ{ zx}fcKn>Q!ZodRKIW}!C8)*Z9k0{K5~&3$B5yjwQ@HqWo5(i=gZzs;DNt6EOniJ8a! z{2X(^KOcMM=OG=xTe+R5lw7(n>-DPd?l*6VpSjld-?XRdliFbwvEb|VI@1n(woUq2 z@nzpyJssxbotN(}-rRg#=a~CdoyTX6uuPrhZnJdW`DM9DvuYVwUVhnAP=5K#*YhUN z|Nc1}aBi*7jxhb=_T1a$3|Z<OS%)X7HZugPCw^sK@zN?IEp1j4U#tI;pc__Aj;>R$ zB;WE`ZD*Y=_3V#F`_+sax{0P{N|!4t?5?iankD=!{gaRX%9g^TNi)0rd~QzlOp;V< zT&VrEAwz0&*k=vVkQcv?T#=Zr$ICq7T-n3dl3yy6`tD8$y>F7MQ~U4ACJot@k1SM< zU%Cfd3vlG?w>jJ1u8_4iJNQ>I%G>J2qTGmSo^J2w&h=TwS>pC;=1s}8V^?l14BFUm zd+OT!&q=dcE>6q7Xusm=;_lq*%2OXqb;)M+WxgH68+E+Q;H`yK7vJrT4&?znx1&n< z1NJMjT-_EjWBQaorzF}0b1$b}+VJl@i~ICt&u3q}Rdo9EVm6M3d=?9<HRiXc9^IJy z>-n}<`VqSm;`sOetl7VBYwX$5t6{+nuYXq5?X}~)zToz>-lr|8>!OOc$=xvWneFgC zD`AFNm`%)Tx%gt+D_`bTN9kNpe7AXXFi%X#ZJ$_~T_>(AxwU#njAroatJ^(iPnT~v zditP&ug_n(%RC0LrTU>U(<`)8WxufXD!#Mcw)*ef@^4=RUg-QV{%Ogk$MfNmw?5MZ zzw|``Kh{Jm&kd3N9-$-m_EMs0&hs6!=5W8wv9+EtEpyWAz~8f@XNpX#yHFJ>@56nX z`+mlQ8>{#XdF$^ncwA95Idgi|se%vM2Uf4|y{E#g_F5@tdxTnNOC4L3+m!W3KWDvI z)ta@mEBW@0xEbqJJLavQ_de)i{+Z|8K7FgrGQWS@nDP3Ci%zGg@#4G6ImeHg9J*_N z=0!}zG~aMNb_cWTzBco2SUq>viB7*d3pOBnL`@akHFdwKd&#OrZ}M5Ula{BZaxGoO zr@uCgld1lnM&V(fN|Vzs&dV#tSv2V{o*JGe!4_sBobhl*g4L_!<9!cjSDm<Nu=s=3 zVUtClzVj}6Vz%vZg8rE=yH}dp3x|vRec0~JR@0=wvzvR-nSJx*AGFWBcUNj&{N?%O zoHo-de9rE8vgz*XTh-N%TaE2L+h6YyIC+5o`@HLtpKSH5PA^MzF>dY?K3;T4Wh&z| zJG0ZB4=wy`ml%DxAbePWWl71h2N5}M`|q}<8*nMzsu6tWP%Hm#=E_Jtz7-cPcCO6y z5)FM{Jx}~>N^5!i<5HP@T+h}QckO%dx|sVxgxcMmZ!OB&ReWRImt|hMx^&WhS*sG> zyS7@FYhNZ!{By?Sul}mPyM(8?u3R9LmV5u6tn0p`!IGO|GZ`+;)cI)Or8xJXi4V`} zzo&Oy<xJ(htaAM-w}aB$qrBU_4Rv*HD{Z)P{9^>q@r!RIE+1LGZ?(I?72%1dZR=kz zZ~t|j-{6bwhCs!u(i4yFl@rYn>R+90Jo~noZawE8g{V!>EA_Uex)@Jy42=IEP+=#! z_e@$|)hzGBSvOOS<{r3i?X%>vWX|o*RSJiV7M0~Z*d4OED(&8foBL|j8NMa5AMY%U znbH|y4O)$vD8aU}XO%;BRaM8*!=~pML+=J?PxlI09okc%8+x{5+x$;9=2-#JZIY?J z+hmvTb33=KBqQRtxro?uqeipej>`|NUhFPxdj9yA*RMAndUMU~!DFefI?KNvkF@>0 zCUeH@^4`$HpE_ITx@5eo{9x1HweOwwRHLn{vRHoX>tB7|b!|}Zw#d)S_P6Agh3O{G zQuCa9S#hqHi|m=RkG!s*u3DGc!#1^s|9t7|+c!<We7K^0w}8LqP^c`U<BfkuO|DMj z4_^P3pGki116g5Zu9e%?Y_%<0AEq}u&)WI$ihSR6sViR?JlDo_I=NoG{VH1A^q;s` zo^_=B6+<cZiV|B<Z<U+Z=H^Ds+Po_{?u|~)u1)a=40s+@X&&46m;L7Ubbbco;L8>J zPCr<1ihsiVxsR4!Ue4g5Vx;nQtE|83&E4K>eec(Q5ctg}$CU8>-`^*jEO|EnWp|xc zob$SJ{>){bR*PS~To)k|%rC>5=lhn$aff$H^J@1$YR8Ywl#yjsNISl0t(@=WE~8!2 zZ40eyzoypj^536$zNt5&S#FchWEZckn!9)HTKqIV>up@E^;rcD4)G^HS$<TRo#3xI zWu<@V$rY26idP-YeKpRnT554Jq%FcoZm#j|HU1)@cez>@$rY@rd}FtOZAVpA`Gl9J z+@3F)`=0k=lu-)mu1M`IKlU80GVpC~Iaji0alZP?B~`InPiD@MU{9zhXxNb~)V*3T z-KKxjyvQ$ivP^Ex^f}V;vS3+BxcJSysXx>vdc0UOb9Q=s$zcOMZ?3Cd6JKbYIlVe? z&g_G0SGGh>OMVzys!{sj;mZj&r%e{!bkxohzFxh1*(Avf&m&H?^DlnY5`Vl&{A?(H z?)Q~pT0TATObJCfO_sJ^@oT58d^zz?(NZDRErl}D@%#05imrOfWL;JAB1LKIy6e9l zU60RRWGyClyz1{h2HC8;0zU<3SXmuhAE>wbMa#~clF!mY*dAnA`mdb9eqim*2)hM~ zy*XmCTur?n-B9~DW0!oGtna2X?{A)nTy@oehuJ+n;(Urxpo_=Wpo8U$O_{z11V6jq z*T(3!g}<s+owJEyQPsU8R~}w{nKI{HO!<_HRiVdgTKA`Jp7J~Bkig4#xwmiZuD53p z*W)oTG&>g&m%dSMzDl8DkH?0MJqF#oJ<XO2&3k)uZ~J2Pb?gt`P2b=2_<F4St&oSG z)7W(?jTXI_wRLX(WrG)&CN|&QySwwHOIqC3McPlVEN1l;J|6J>@Qb62^J+hFGAvV5 zKaqO%yY)wxkn<L0b6l)i*D6=}oDO+-eZ}4ILla(Io7djE+nnd}5^wh@Z*Sdp4@wU- zH(2ykf1bQR1>>?fuLM@Lu)|%F?$;Ib)*d=?gk^!!dahrU6HYGcJUaQvm!eG!#$7IJ zrfE<4`tOxqok(V=ju_{nB_&Q*JlSJ)g0-(TNnH#J*tsq*iSuh!+OlIyA1X4$)%^SI z)8Fs%uruyK;MJ*d0y`?Kc2{UkRhk?8`gz&=o2TzFw==%Dd2{*U17`joP6S1E&DM>1 zZewkH`on`tuU1Qk)?d4-@-?ro7u4%5Tf@L})uO|a%`^7j%96bo@A7n;8_e48XY=Ro z*^CLh=N<p@MI}AHg0Z2SIen&7xMJ_ruBc~>0jqab?0Z*ngttaHr{qUOr%E-S3`@xK zy^_2ekJhEVw(jVS-M*ExsbQ9M*(uvqRc9Z5`J$qHIP3KKZszARXNB}`{&U7>%bEj) zIbA<_R&L2kU~ltH47+Q*E`QZs{)DRwuWH*?_dZ{C*Sa^cR;K^>1@E(8cU}0k>+^=k zFWS9%rRp7K9G&$u+_BanSht#K!(5g!n|oWVN{y%fPC7JK+32Oo?{BgU3(B8oK701* zVp+((=Rue2)7AzYcB!>{cH?Wh^G>^pd0tCzY+TIlUM}}Ich8fRb?17t`#U8s?!Hzw zkGFZsJBxRgJNk3NY|ZZm%?k-{Yk4P9)hPcqr699{;eKdp^~*<=k2v?vIbU$%g$%<< zpT2kV<R(d)CQR~LezNqn?w2ylz~i;1&l9)azMA*sZGr?_UtHJ5<l}t1N-Qn6Nj~NJ z*vz2+!SHXDtn9N#hP<zSmeuG-6@{HR-*hi+ZIG6rx5^?$_uD2MU%v0ys@1xvYF<Q} z@4^+^POjdub%mesqKPFJjvDE1-FW_2X$w!!iiOj>R6Sp|?+n*8v|g)qU?Jn|Lr)^U zSl8ZPyzIK>F&$;E8L2nbJ}!}3JAdXZmborRJJk!`{CF1iUYO<LpTO08<{V8K{4Y8? z1KZAj4c1sO^H9Z^BVR+<1rHy%eq3z3&z=p1X){umEoXS~^6lZTep@QiN^7N<*ZN6_ z{M+ZX^2m)7s($n9_!=($t4sUJ(3#6p;W$G=Z-Ll~>cuIuSaxlWGu18HDI;ooIZtAC z_Fv02O9Xcu6P7)<@0Z=ytlmZQ1ofY!&%Cx-<*+kz%pL=d16O_+{ERd;j$0YB;suK% z=j~-i=B|<J*}vXt*x6-eJ~PL>v%;cTum7$an@hBt<g&(vi^XELOR44?1!UVgsxo{{ zxW{|1Vx~*9sqz2fhqvyeDES#}{I>SpwB()5p=;NruT!y^R-ts#l>I8h{U4>*6Il!L z9C(97yIpN+@7|VR*(IEL{LzhvRbNu(v@Blq;M7&A;#Q`;R!T}8N3ZQ!UiNuwTE-m% z9vRu(ZL9OmC2eQNEpj`x&Et6KBtvGKzdn3fq07`mN<vp!xL>;XmifMd-1U<VZ&_BZ z<0*{(`=-QS-@PxM-68Kb-=&vlX7yDsz5d3HKTJ}>qU!aHdGqXwsuYftC9zaBoHRQ8 zi{tOc&fK=&GiC=Kzir~<^Y_7rRi;_nUR6xz<S0<Q@Y8LQVNLBht)oU$7s)*^^4aqt zuAuqbUe+URw`?wV$UXs`m}7poMEGXTv>db3w%_j@zW@L4efRkFAzFX_od0iQUG_#{ zuHWZp=KE(JJb19uJ~<(wfnBbmp~UKJpRDzd*7zT-8DYL0kgnp9XUfh$r4#P&tF3vH zEdTh#L}i9QH|PJA%&$Bh4O**RdGmDKF?RbOj{n}h|JMgPkLb&nFCP~2*LIlied!B2 z!YN`}>+{MzAA9qcY~MZ|bo6UyC+EH2_r43UFwXyRL_O-)_BGdimi|iodhteuPTSJW z8-DL|U%A9d_IX-5=c=tQrvIv_u!`N0Jd4F~M=!^W%~~xhLNo*~&&)Ko+^XthBD5>h z>F)Hdgp5o1+%>DJ&i=gf#w7T%@f7V<Ho|4jS6VXNHvcwdvI*}MyZ)ykE3{YOyzlvd z)uGY5{^aa+e?5KH+1U5@h1a!ehkNz(_8D3&Idtpz^5uo49&_KicxQiXZdlb9rSV(t z;lJi}i3ygRe`fuvWPH8*nC=Yo>Yas$|GyTvBA0tVbamLwne(1pQr$Wy?Z+d9>1}Kb z67q6sSwXHXJFW^%&DvphYw?=ThF8`w+}@=5^1{(suY&@X^W5%BoRQ647(cmm?TYJ> zhrcFA^G#d&>eT@gse6|;+?~kT7=AzOU_)E3`D@7;SFc~mzHG8M;Hpo!_{x%HTd(I@ zPyf%9xKrg(VcAQaciZn2s>kk>xxM{6gMm$5=gyarfBz}mGE^1xo^*0$<mcGk-!_+D z=VSQx=B~fd#I8fnc@Jkip80uK*wy01xfiCMop4Fe;%8((Xe=o9x#N^p+Ybl0otJBi zYE|uReE)k&Y4pjjOnVZUo!7UY^X-}Ju`=>=^7XrSw(MV;EBW=Q^v!oVH|L!47U{P9 z@l~SyY8%gD=0){iHmmXcGLZgs_knx%iQ4n3A98B$@~xWIlyQ8v(?W+p{o`Mly0cX0 z1aL>)G83BJUUI?w05iXh!TZPef33a$2$X{RZ9Z}Q{`U6w|C`m5<!?^g{N{US$JO-k zyX*F5mp{Mp{KoO?vb*LxhVQ#0nb2K-fLVoG<w%R>yaPRrshw^dl{uW8Z1WV<6e8Og zeH?aukBYc)Lt^&j`I~RQ+8picQq$Zanw?s@d)21s$glr&=Fgovb?Q!|Yf%^Xp8vh) z$GP%-&7jNHkFEdzYdtf=zi0XX*!tyc583~{Z2xd|{9mno|Np*!tZx64)9%Lu<~!S& zU(EmibN=J<y65E|&gRz%-_0w}JHF0;>g-v%dg6v%g6eLsmL8ZGReIp!MZqqcV$-?I z2N&eB&v16$_^Nix)alPQ9dMW5!_9DG$L{8{Z)H{9Zu@I@{q)i(v2LrlwGYqS|KyVx zk|J^Q&*3!>&at#=KjoU&pZf60z9^Q2GGB{xMbW`kc8f18nldT<x!O7P>#<%6x<)-~ zkCf|(ddbhc7~wQUICgD7#C_ICjVV)iH>)_#*&=YmWMYuho~$`03yc4kuHO3cR$TUu zf5|2?k50P3f4uzv$M*~k>hJgV|7BJ#l;`_B;Zn@)7_op$d0v^kOMUN8>1$lL%IbuU z{)A^s)!n4$)y8%F{J|J=BuPecU4J(JvWJz=3LpHuT6%hk^;NIwUpu${zNvdZd-k4V zHRpaXR>UZ5Sr*_aq`V>3{JC#wW!#-#zA{Y`&ojz>YCm6(`>k^Ax>?N4EzAAqJ$i9q zMwpRCfwkP0MMuusn{D5I_pt?!pxQ^5-n>PNZi#e0xP6vytwoXM#AVNJX?|il^fSVv z<Io-HF2f~d%wbu*hx#O4qZTBD@@@H&#IyFuEZr4nW?hp?7gveld+O#fX^TLlaFVL& zrz^|&3fPv4Zkc<z!bzdwrS^{H3zx{2FO1bR<?Jn5c{X9+<}GoIT?Z>?$?&&H+&-VU zuRky|Z%v4?HAB+NHP6<(Wm8;wq<sJHSROX!nxCiRkMY-iV182Bx4!17_B+$>@9!Uf zZvVgX&+GmFv>6`U|M&Jj=(Ll2y5|@lfYQ+=lcW4~ADUb1*_#wNASkIyqiLT?-IvAk z4^PMcGdlLz@YY*1P|?aa|L>dhkB8;|2{;NQ)YjHM`da?}-qFj;{TUhj=i42<ySrSy zZvVc0eF_|Rvd<~`20uT<H6!CosAcuy{4%{$PyLDn+B()may_<FIdkr@hVFq1zWr0G zDtUUQep2GyeULMjAuNz<t~f{B9tH-R>Q6k){<4lMt-lHXUD;nb^UU@&{h29iO<Uv} zxU*{>RdWb!{{7}^$_k^?3yMEWowcxu=JK!R2|77dcYo=xv#;kHM?cM~{9CLjz-G7T zgobTYwzP&@+Wa_YOIFTcp;OmpT-sT}HEG4wL%+V+y2wWN2~^c_-EK{dzwth@`{bEN zHrncrZyq<7*EjzEw_cu+VV-?u+nH4bGfu6()FYJ;rZ-oV)$8_0ld}`VxYi{wG9L?T zHS#*%VBUJ9_7unIt`(~Vx%lU<+xzUcZqJ(6A1zj&6Q03zd6yP5=Z+vZ9-ceXs=n09 z@9pb+z;)hz%8Y$0@4oXbJsactH(+XQ%~S35wKkhwvTZM#EoD;YQQmSZcTKKT=kLGl z{Dx99Ua|IMSCnnweatd3RO?9LlMue0Ap$+-QAZ7VFNdwu_`gro{hW$k=Jp50j0@Km z>B=j~&aRx0AaiDxuh+>1Z)H|!h@3jrGEe`(@rlLf-k0p^*qvr$pvl?2<JpZnQ;M%2 z)D&IBF>&p-g9|3y_S-#y%gIQ@jOpD^rkzvwv+r|w@bp{d{jK}eC5i%<ee>)vDSy2A z5?9!ThKm(FI_CB+HU&k$4{*<ERCT<vkoDK3iq~tme*h&Fc6Rn3xA*^z{_`#WzuCX1 z@&BIQxjui2+5GAJ)fb;UjK2R%?B9?6|39LRS6}=cS0_}|d4A*ns(B9UFEcZIF}qe+ zlW{+WX%>6KR1GnigtA9r22Wo-O!HCP(4BvbHE4H{yg2J8CH>Hw+Q*ZYZVa3Bnv=zm z=bG`|qqlCU-Lf_A%u_d<GPR)hm~yzhRrsl=e~q6VUMutb&`Z%rHs;KJwUZ_9G2}I$ z`Yw2s)6Cp=Ud$D)yN8rHlv)<<{CD_3vHa}kl5WhK7d+hOu=;NE2EKh&^HRg6TW+6m zFf(i$<7Shio1dTm@NKsm``;G@^7~>delR`QR{U`$)9E#PCK_`5{(d-+>#RlBC06U6 z1*g6+KeO~y-QD;8=#{ohXWxA|wO-9eUV59&<7d~bcC58Ckl<aA)7So<^+J>Ll&9BB zoCT)W^17dXb~A6?`o{+!vokbYv^f0l-Mq@WWL|;p%!#Si;qjttO}Ta-n(X>;kG6$4 zhx7fZGr5@LXHMOpoxw71ZSy<sj-qB4j_+}mb}qBR*8MT>jhvf)%(i7?q|5$qzh3Vs zelEw>uFuFIU-yNFefP7CDGWLH*X?0oj()ZAgvge=40~=z9zXZk-D6Gk?hnd2Yi1v4 z`LKs|<*M0bf2TiQ-JZ8Qeg0!T|2r0|vpb63O)mOjwpQW8-dkVw1>4f<G+En=RVGU9 zo4<I%v+`&E44*4c-!x0Rg6Zz2Ke5~2{<3UZ;VkrBRgi`8Ud?CUKcDpf8}0kLHvi%D zx|h>GOt1ereMk9wxlKBU|NZ-S<n?^}`ge<-eSde?T2%A?{rm3oo-bE=UHb0>|9^q@ z_V#!G<!e41e6wG|QGf-43UxJ_?g?zU=5bjh{@11H4}RPI104n*|NGW;1_u9mHV6Cb z|0Mr8IsXqQ!vj#^2D;$>(aFi`H*Vf!WT^T7`@XwG8|c=Rl6UDXi5(ZNY3!AmzIw0i zWsSza2L2T<A}SwUyJmJvcXRZ6_IaIpQJ>{M%v!wlQh>(NxXMuLn1hlmt%)pbercxb z8w}a>ybkYUk&d1%Fz=@5zT)S4X6C+AwDY#k@w}5^aiGzZ&*~K@e`a_p)MS{|7w=x` zx;pL0&QxhmMFAE;t8BNRTTgl3ZrjOzYc5}u?(8Iimb~rur;kZ|@l{DRkXmp;v_|@7 z(2T;hSGhx&Kil(f7WK8NH#)dbVS)GduL>>+zfYfFz7&)fD{^9~r+LDx-5QBe8WnX7 zM`lGIdn=YBnNeaLD}Hj<ESFzpUxNLrZh37ed@jfEKzRNB#<#l4@4qtl9qD5%m%rm~ zp1FI)&iB<FQD#$>FLS)zdog!=?Ee3c9;g5KE-(Fg|JvT%ABXmDQg~SPe38-m=$SUn zoAzy<qPMo8d8X1uvn7wKr(Rs>slDMl&vVnm_F>gA%a*OV_jON4a@p1FM*?@Z1^TM4 zm6-qUjd%c8-o5(oxqE(hmoqS|lvyZxQ^ZL1<Hoh$3a{8Z$;>RQdi^iC=F#N*9fj3% zmT@o_+gDtkb!20A^wO871kdwdc$>?>(4<lH>_||wXy;ybuC;Rxt(w3!Z?5pu){-m% z#T~`B#4Gs@+J3h>W@&TZ?ef;ZMGR`CDjT0$@;JTb+F$jZ%`iTraUaXS7ybV@_Wzu{ zztg>6?%|Ig68HbUEB|=@|DW?e?tS0a9=E>z{@=UzkIMf!D4$SVEG#W8{o|PVzDE6; zhur6`{?(5E$z}KZ=J`jj<NsUz`{Ms!q`JBqtl<9dz4vFYZ2n#Jo4YmaHjhL3`+Keu zH$B6bcP|lD-e`GY4kyR?lD0#SC+v*X=?msLzU<D$4foxr^)oWO4HI{i@U!^4P9)en zR^LB#k%xj`RK)h~qjTH&H*8E4dl7i2Xubbs!zkUyRd3(#J8<#fyjtaFPga^YR)!lf zFdXw$WxBttXp6OOPEH;(L)BirNk{HT*9AP?^fdF;oT-N&D}VXj?st3L(m8JzU9(N_ zJG$dS%wfq|5ogm(uEP>*-&tKV_sLxGElOHi*0}T2j6?6{eSBka>%Qx)_sk4S&P}}K z9c?84HjMkbyp2)){aEMy`M(zIxZIepeyaOT@hrPQJ<Z}1iwzDP+m-p5y<blG+u5c^ z=f3g1vo|UFTFo!FVEet+4Vwb=EOwMuhp*C_eOzMB;?g-sD!wn~Kl|8^=luRzlmC^T zo4M}q^v2Mqv!rUgURl1F^LbYHzOQi`?mHSV9zA`%GfQyw!?+_B#XEQG6L-km>Xhos z`}MQg_4As{!gt)4=RPyrYkj-o?Z@mF-_Fc=_wR3eMM~_KZYAg2%ZhrADew7fpZ4(I z!Rq|oT=MhlUi-eW*}<RszOngma!Xlocd^}7g>9?4KUeYny4DuCpuF1ljeOM6Ro6}| zEy=9j6wqMMU%d3e&5)Bi)6dO~z4A+5Pr~M0tlv&?mX4h2A9Wmg;;*H%V{>wD@-`Vn z?XA?<C;&=f^K7fzK&P8me0suJwO4N6kE8mJs_*}nt9xu-$IS3Sy#Ay32OEA+ab+OY z`yqS(x9lIQ_y5xFD4HI{@#nDpALhFM-|OY~|60Aj%cAdN^!~5WKQ`O{-ke&e3u(JG zDR3llfh^khdG7m|AHOxaKD^DZm%jh++xGLdXCEK$|M<QB|M$&yTb2gD+ozS9;=!<C z<IcXXrNVpf-n!*fp3A$@H0G1d`Kwz}og6fk&1L(Ky^xn@X886kE~);!OY!cxW`_*o zBCnreWxEiYV%8;GvdcE-j-lY4-d^4>*Sspj7}As@E9G`JpAO;6yzBp1W5!{}^XrNZ zT%GwpG9lqZjr_)`@3!5_ez8_Ec(&i}<`q-ESIx`*f9U%hm8}<8kNv#i`F={6G0)wN zo9lD(9z3bZGK#s+zhURbhnL!#ERHm@^D{EYS$zB6YxVH&_xndrrypZ}Qen_wZ}e)8 z!l#Y3@8$0Oc(R;<VXYs#f84C=t~N~(7o)y(ADm^*s<>@!|EU54rzFutYwPbDJ|A$o zu-)vvLRYdl!;?9?y`!CX@A?*`^~CJ&0@2b78-*$rA03@x^zv1;<gEI|Gt9PjnLG^5 zV#!<7vXp=KGpRKiPhZQNn=5*TRcOb9b@R4-uz9g4W6I+1OCzo%tUld;`9p5Xp35&6 zZolSuebz@+&mO<yfBdpK4`|h2GI7uOuf|iGvhrpByPW)m*CUI+I|LdW*{0PYP_t@% zSrN;cwrOqi?*}m|+2rKStb2BDZ?24-MDgv3_71bsByMN9SI#?JtG;yZo!G-Jw-{gl z(OYvQwlcuUI#kSt;nW@f!buCZr!9K+J+7M9`ukZ6;cFsuSpwU|UL5(Uv!*8Kt@3HU zfb1hn*VNX^&Yrz2Ir{z$hvk<`m&VlGFSfK>7Q7`jHi}j0_jfNbkJFwdGKcv0c<tI= zl#y{ZOY^{IX#sD`BmsAiTe{)@mfn52vsk(2{K?%miW8zWe-~J|rFkE!n3wtfrd;;l zM=^hvB>Xe7Yct@9xmUDWc;}yk8hsC<`Pt5C+q1R_1SY8^2VQf_o^tr}sn!!Z-ZFDH zI~u;8Rm|<i(O7oL?fkSIG52pBnw@{^XxW?v_C`ftx31-_NqKsydbfUILBf*vi7y^s zTzvh*G3opn^B>=cowf6tfF1Al^-aZnrrNf9jb$36*`JmzfBdf1fa_spl9KPrI{U2U zCc*3G^C<HdX3YP-CDJ7>G3d`KE=~3L>R&sbehHqw?9PJ=p^^^gzuzfO?2$Zay^7af zb=B*gUe@V($<rCv{h2PXNNckD9H*PY1~SVUc#T*bIqvfd+~|_6d$9We6Z0JzwbR8t z$BtE})Nk%~yuZiJYnO+WtjJ8s_MIO#Zc9AP*QNPeX>U=qF2kxVwu%<pw)tFm{_Y$f zTUp~gan>o9EVdn-yLfT(_J@HYt==;OSDo^0zm~Ud$pXf+0v}dA^4gtlcJ2LJn<M9H zH$VKn(|>>K+}zC$=Bn>G9+|A(<)sMivNb7mNVDeN6?nec<!Z0MA(sUVCEb0+AABFN z6pDoHK2`UiCqrU&O0-kOxm4r6$6Ak8NLqy5H4N5Q35eX5z5Y6*$l+O2XCF&!IIv2r zCH(Cx@j1#9)lS`hTXN@|F?0Kaq-DA1v^X1!U+0&!yy_}AC#cprdF%E`X1BuL$^B?7 ze)x3G?vANRTno9j{r+_Uwie*+YvCuAe1WGzf0j%-#(B=N|IEL2C)FI&1LM473=HNg z3p~5^uJl$!yz#{^e#^VB-Eb)g4YZhkPoqQd=rIYyKBYHz?jO9iZKB^V$A(7J$<oU; zn>KwqBD!Mx)6n<xL#_Bj_n*DEaalz6Uq!A|ZO0ZxrtD4XEgRU<p1WM|78QGJTH4=# zi7#4|^@i!5{jV-QS$+9UabSP@w7xg{+|CyC-_%%`%Y5{}&UO14-*Cs8Of+=ZXjFR8 zJWKxj?x%hGjcuhjR~X+uS7}$4Xxz{JV;=u{lj$sKQ|eQ>i_Xo>%((Q5@z$LEDqVu^ zhEvu~mpjUNYpqe!KBdy_&zGEfwC7d2oP7mvW!kTqWfDr6>Jm}K=cnt(KPtHY<$d!( z26uP0P50#c0#e-A^p~<EPyG~J!0(v!>(|z=rZyW^TF$R}?Q64zZ4rN5_1&5OEAL(9 z(eAv>tb3u;E%00LzW0kmr=4STPV#=vGI3&U<+hqB&nrKyiRu1WmA>xb)OYWk9B#}} zc=mDX^hbJ3$7amF(-z2mcU_Tccg_9w4csN?KdZ^?ZJoNrZDD^|WEhv!zn-UiCwKSH zF4x=npriRhuFuhl{CQ7b%?qEJCuka;(z)vI;RDXrnLCAS=jo?i_v+rTF`g+Z^GRfz zQ>5pLuygm7x|E)q?Ax}lbJ2#P*t4r+UIZ+-{dPh2X=k>;mW8ovp6@JCz5VQ;ZP><q z?OKK=2G5LNzYKU5tSK=+U8K&eXWsN`@~zEkJC<!(T)Ae!g2Z#HLztpYX6x_RdhPkH z>h&qNuN(Z`_cLjhaY3x^inDGWKX(bo9yr3ZcT!^W^hrsK=Y`KkN}T&(bJpoitX$uR z#v|9#dYFP2wp|ZmJN1S6*bSFmjuNvrT0W5Zt-QHF<j$99JqtyfEw|Hr;v~)gTHf`W zW2n-Zxw+li`rWMk<@xNhqop@!K9%_He#6@6)Az^!1k2{nE-I^L|9#_rH7CQ3+J8*$ z$JNeio;6~b_ui&T&bF?{zxI_c!-3`Zf5~inCl&ek*)g-Ir#l6-i}X5Low-XECEj4X zE4*$>)I@FZji%P84n4hAweLAwEnC>zAK4B!Y!vQ)kDa;g0)OtmhmZDM)H)<loIB@; zAd3l;HK)M5=VEPN8{-U~mHlouC}CD$cNh3kd`orR)5px_X^&kw8Z|m6Mr@w7p=@rk z-khJ(&+qsOSW37A-V?Wbw4-YZOWgxC#UnQjW|)0>TPnBJibHv~pahFv)l?PENtgDl zzwLP1?PTqI<<46iO41v<lycV1uF2wPJhAV6>HFrFN;|GUX{!3Z`R|ONqY5$W?4IAL zjMA97vncQY=j*Le)pKGLra#wtU>Bvk*zMsg|G%XsCAl9jeE9RpJ0M(nN^RBNC$oOv zd^T~m?XFwzU!`6<^?XL4KVzEm^y0YQtJ)XEb>B&xe)giw?85`zV6V65_EvNJNm#VD z!nP@{?_kgFIYlQer<kpu9(4F~txD&|KF%hFg?CkAdcV16rUX<cg?%-Zbh^Lg=-l16 z1?K(i`OPnv{Q8{i^THz*&J(5m8%(?lbHpG0ZfCzyn<e(*|L5-i$BxVI<7cpVCx7^R zZBDfFUH`gQynFt6Zg#kTbLV@r{KqPe0yEA(?^%EDr-B$)?p;_9(ow*Lc>#x&A#>V% z<~N*;)9(HZ^-|ujd+xmFGdb3Uy9%F<P33KP`6}X+S5~6HqU_Jh7pt_rXEzU8WSxB~ zqeABBg9N?z@f;67iTLWRsN6e=Yo4#_hh~Ab(`w}v1z0|7ss`12hgBzqE?oxd=}kDo zx#aHN>kX5mxfKuO9BJWxw`jJH@pF#Vf(O4deJ>VZ;l8~zUAu~J#siK;EVi@D<+kts zz#P5Sf#dpV*1CYFHEc|Qw{5<)Fnng>(AMNVBye}$L@TcQ?fIb&+&|R5-G9CH|IF(r zSp#219tsG4$f8)1cUt!3DZ%*Hr&A*hzRN3gFyGl<eShykou${-d~;k~c6R=fx_7Q? zeP&&gnia}r`q_5%ir<l4Y{wq>O?tr8v-z0EYW>T?dPQ9U)1KbCbIUCu*rv(hz<2ej z>B3vRLrV2p=Dztcr}=iqhDQv~=goZ2z;P&{kE>1cJY#IC&>V}%&AZQg_0P4w9o><8 zq$W9=JNvcmk%=!a?-cOMU7XVRv2EfC`x8NL?wh8XSHHH+$;)SC_*VX1;0M#}+iFe! zeq7AHv8jLeUehgW)&~i+<>f4UVOc1*#X((dhhMs(w`huG!*9oq6J?V&1(*g~$U9Z| zT~f_DW*n8B@jD{p;in~wRSwRw-KNng*mkfbBqvHub=td&XYSQYN_6hdd|bA>*MQ>z zd+01j%L}tR!+)B~JQY$&<XJeipz@HjM4R#4IeULu#pd4Bd@hqH;S}vT=h~{Q;$yLP zR_S+q6D+Rl`R|J1nfCqU$<BKwG2d$a_N`mlJ^hnKv%-P7*0=RU6N-}$OYW{b<gB@Y zkBNU`tzFL6i*gdiE@v&B;tv$BG-Ygw&H2^1e*<Ua*Kg_d=UksZG&){3aY;>-#q)J% z7hANYUuLaY${0J3v3BKA;m0zE<l<!1Z&X(BGX$hus<QAYl#{UDTy2>dQJ$7p<NTg^ z!6{RApG=Eb<NcSSteK4#XeAz(C>AO|H{<pm+n0hDmb7-*Jr9^x+Vk|rjlAsw$I~`) z<OcnH^;!Bkf5N;C>o04(*}L$dz>RO;XPo@`{d9?g-m^`PMmN(g&uocH&6)YlPRm?x z*WS{Wg)_6ucF7(I4AM?M74S{iD?Br8=lk8+85S~0CI-uj<~?_0xbb4<m1SYO--<mA zlsKgS+@<b<#9^03J57?UC&PxCn-uaaMI6<o+HU%OvEkQUJ@FfJ{-F<ROIlcaOwM?| zDtWs6RF?HotH6#mmR<s(s@Ip<d(F9YQ1?V|<~xI9F`DbccC)G`FSkmVV`(1Qa9v4r zSCB(RU25F1nUg>0zWdP_I&H4eu?N5Fo_<*MKyTONiz{|5*;7(z?t6YtxAp9WNl$i} zg#LP`<z8WDw#`iNc9&q`gaiD!oyzA9u35bGLv6Z>xVvDK>}CI_k&J=`EMZnJ+4lt- zRLnDHj{N#YL}0TO`)0f4bBbHSEVpjl%DL31tDVVRAZ*j+&q|vn3nuX9X;-=wwpic( ze&_SP=f0|mcDj4#+O%>1FKc^i?|<%9@|>CRZ-1ztQO|yR|H%o3*%$Y+ocUI>Z`FK_ z=cZ?t$uKZ{ubIwtBU4o)Xz{LBCA&N(oe2Gtz#X(f_tmd?%ie1q4?i%aWvW@KCWq4x z#|J(Iy;esKEbKM4W60oNIM;ofHRr9ebyjly3QY17eb0Y!c@R`q^ZTAd>a2+Wa+d>* zPscXyYuzCO%02~t2cJ)wxU-{5a$5Ft`)R3>HvECQ@$FaZ&fiF}4ZVKwYSF_j*YXm& zvP~0P3^uJ_X?;}Mh;w&Gk;C_y{JIS0A+ZLQdKdpB&3vwu7}jUiU1ZUHBxlkMy;;mF zw*IeNAI~b0eTyyZ>hlt-Se0$}A0BFsKXu8neH(Yld455bw1+pmZcW&ElJ)E+5zjlV z@p){&7+e1S-c<Iz<ce{??4xVMUVXhX%WwH>wJlMaEsblH3Qzvq9oN;x*=MoNvvs+J z`0AqhXPYM9|GK7Zb$;7AKI3-{X*-PTFMbVO#(%}W-LTE?_>{+c{=X<)lRvZO#n-LA zE`fVQp8xr5mn~Pk=$F#3O>fUj6u%WZ+WFgBkA>xVo?O<w%{2#Bm)NaSY?&F~=Ganp ze#`zaE=P%7LRoM9PA|=3YkYr9Sg%Ff-9lIWcGWyhk0VKubrG$I<jm2vKsY^k{pYH! zbFXVEYkZ48Co!Y^-_xI7lCsP!tLGd$U2b;p%h5L~=Yucp_Sm^0P?I6NbCQYPDU;;$ zJ6ca~l@?jLtEc(f>VNw@EpF;P?>Ho|tLN4=rL{d9XHA*zsBV@Ox8<S{zo3}ruDg1R zPPja<y&u1E*LmXvwoe>!##TDPHd`(Qdph~<_y5?DxzqCc$JNSv!hf#w+i8AQaqlZ* ziPcJ3TazD~F1}-ZyF5_j*a966AJP6$>vXAKr!+aPXVxzlSQC2PLc6rha`BN{pTjyi z83LyyBp+TOHc5j`Tux~=)77l40&c0SO8ZyU9oG81v(o9}m#b}JFOKBQoOmTW>iYFv zF7;R0R)in+vsu<RJwhe4bLs3OtAEWod9<wb{M1Qhu^uXgK~oPuu37eT$Lb6HXE&KA z^*BzsCtCCA=h4H<ZcR}N<6m3)_}$LWeaqj>KD6P~+Go64+2x|kKC<ud%1W$F{<h}1 z_ZIGug{%H4KUn3v#VU9E2S4FpzD+jli6Y7y9v^ne@;kgvd(q4__wITl>T`2}t_8xz zse(c4)gGMrGHsJ^l&it)^c|(%3(WSL`I-jod9(M7Wx1fxu^GmTLt0$~eh6$k#IoA; zLg(v^Z@xu;doFx>X=mV<?gx9~LR0JJ7vC+*Oj7MX9THn`V}jasnGKpV0)1Bsv@(Y1 znx6V>n_hKtx`A9q>{9LvF@;|juv!@g=biq$->cay&}jEt<>$-qUO1{|X#a}uz?@=p zMq}a4Uejuq+AW%LXnt^R!n?m`dG6OMy)S&kcvt<1Z~9Nobncn6Oe+2vpEuk&Z_^W% zPd$z8%g%?Zd;KtC3r{MGEOxUE{M-ENL1>f8JLm|wqX5fA28|}aGh$t8=jL8k)7q}O z@xiYbx9Za!o0&O|Fj;6%Qu6!rj_ZBc-HSO^lb5_Uo-g$}=aJ**Cu_wWwKN~ST61ix zt?u=`#$iwI?dMrn|3GGuUTyol8Em^ZCM~OdZMx{8`HHvs+*=&f&pllwJmq%5Z}X%} zWv>MCoKJ_xXn*J3oU5uXeVKQMoS2XDyGAy{+-j4Bmf|}#9WoV<^gd-%{}r^q-fWq@ zwmh@2sQfEa&-4p5lb<)7JMIe_sCctuA@k&gmUADjlDuxxI#cS(i(r0^rX7qr?gt%A zCceJ%cweRRp*Mdu^KP-ln#vk?mu|O9-<-WSGKb~<hP3@31Nf{U(*PjSgrRGJ@DbIF zr~^^KEYl+_cz1K=F>DXze5{n|@cEF{_RmuU(hHAfFH8*o<P&jJFKgz+Usct*vAu`= zWEi!BKTj((I1;*$!>Uj(>b11G>n^>s+1$O+w@=4?&%XaiZ8ooQ)&aM>?%Vq}|Js=P zHGj>w`)UQz<~|*pGq26qFC%u-e8>4&HzR6yzkhE0w(G^DILVAgKSYw`Z4i5L#AoFx zzPo4Udfy7nXSlv+%a*_Lg?!vya_2ttgw&ot`=)-`!b&X#XW^!6UyCYP3>&Xa5BnSQ zk84r(Tc@-ut(SFeIXC}T4r4y$sJ`sk8PEG?w-~b)REmF9^J~jz3NPJwJ?ip;5=p(v zy=Hs694a$bSN)#*T)%LxS$wNqhG^f!9ebyQKd&sm|8?E{tGl0x-+Vtk*Xr%_yG!<^ zs=a;x=IL@fnIy&lmbr+MO^U(wLT7l<#dCKnt*4k<H1IvRy8G3Unw@9(s{dY6$^2au zk;1U}WZ>V=7Q6FpcVAp56<0;v$!fk|V>0?~^A#-|=6dH!U=6(O0`#(Z1;sEL$AZ z^;}JFCT}%-rDLA(Jwvd4tIa9>s-wN!N!xr*TtB}>NA=mkr{*3nWcGCZ+VlUL<8}6p zEbFZ8F7L3D?atdjHDdne&VTW*H}hACNnbG0kJa^fgc86?FOIBET(j--O8t8*sk>@! zo;~(1&FrqhYqJ0?%U5m%TY~pUoZI#9t7L!2X~XW<WlPun?cA8!d3=LI*sDKx0$%XM zG)KA==>H8g-lH!4PO9qD>RI!jUsN~!{9E|BGk3|Ot8?Dm&?{=%!&}Q>{hhsON9vq? z|EBMCzkZ?e2J4=r%b$C$-=9*qT$1a`?9205E{06oXn54`&yu@$N`LM>w`gZ;eC1Qc zPHRvyg(M1aVhw-3?fsFt2Kz6SMPFNCnqU1`hrc*##b5F6d3*l7E%vsY6kYVrfA;&0 zvsPv9GK&Z~<+u2ZOX=AUQ#StW@QyExTcLGgQRact?O88o>3&dsKlydvN#XC^Z~OIr zS1!*=y7F7<?jGwmDfbOd|NFkJr_)?CYJu>PD>qV4PN`iOBs8a6Qs%sF>M7v`Q<$Es zXzjAvyz^h@>qYDL-P`dXWp1?9X0yUQ8-?xn&S~m#oyg2kbKbdl+RLxL8K3h@IX8sI zGv{0qKeFe1Wqt8c-7e#Mzt5Dft$cpvzvibuXRc42e?~R(N$sNb+um01T)W{}QS$Gw zN2e|@%`Ld_C}n5Gy!~&ScU-NID{VjB@@xK6$K3rfhZJJIDc;FyS<w42)#)$4<D9m4 zT=4PjrVNHH4(f=3FE)o+euow=iK+0taoaEU*3v0ak0##HJEfx^nEii|hDX+Rg>zZ; zyZ(u{Z>sE@H}zZ4ZGEwoQ_h;32mIC-<9$_~=2d&I;-pO0tlv8Qlds!f^m)M}2ro*( zUBN)di^Y$o6<nL@ck%O4Ltp>HS*b@)eEe2b@apw+F4y(bxMTlbPV_nz_SDq>?<Tgd z7tc1Y`+v1T>;;RXfQzz4<g*uNif(S5KBwyMN~wn|jsiz?E+&YaSM0EKzP$r(5v0r( zU~x1NDtmQMJMO&R+rW}@%LBj6&9Ezd%Hi43=~_JXL1pFIOQl`{;mt}Q!&w}=KYJfK zAYnZ<&OxVb^4mJ?^M_v^NuP3EwUAeWS)%&sq3T(`_x*{sa%U;DL@Rz&-mw@u$EiM_ z<=0gGu04$Z?S2(?<vi{6(?YH-ee>K_&F^v5^jpbUn~yq9Jidun!ocv|)%>qUd~06r zvT6QhTl4GYW_69{JGKh57>0vP4lbA%^IA!Ax+L@Rxi&F28AiuuZTHaUFMG7%S#i&l z#h!DTLMQ*;<Z@x<bHjewEwc|q=KVadHg?YZ3C#M7`gdkDJ~3N*=HQvX5z`K_3ccyv zwo*F$&XsLDL?-*ao_yUcbk(Pl*?xMDG86p-PB&sybS6EURU>?pXS%7c&e&vBc;?NV zU)MJOTp+n$apS5hp(@LJx1Res`<A|EW#ID^#b3AYnyv4$(&J`xuwHuUtd)EC+nf2n zL#sCR7jr2du(R_2n;u^{Te@FCib3~6XWK@u#Z0>AmZ!dY`DW*4j@oaRkE~6Z^*dF` zm&rmgbKU>6k2>2+F23Ej^W3gwv$m|rJQn5{ykcq7%goJ}{5_7%F4(l*qx8@8x8nK7 zY923h)U4Ug49as;EiGf!<65u%n%b?(#x`B*&nm~~d*UxgxcWH$J!fb7apsP?mrlFa z&bj*g^3@GYSBh?=Z(fo4E$l?({f$N!cF(!-rtJuGp33ySuU1t~&pX1VR9LCOj#f}} zCaFgJU7HhIKEXEo|MWy9=e$LKM6CtaFPNK<6!zkieC+>^UrtMj)J5FbsI%eIp;HUK zuDp=6IeF!3htJU;Lj1PxHVr$jTNm`?|0~O*lGCj&GU(m^zxkHVt8KfD)_^+Q9on0A z*nF5BRsZFU<D)MNiobnNzq&qW=bG+UvDdwKUwTk-+oD>@S$OK{f=f3x{&SverY&~9 z_3OE3n<92=-cx>VyuN65apmok=MVV4^}UgL?SsqVnYmHy8$B?}aF#+=G0~GdehN+w zFRm1xeOcco^GQg(>|2%d4Q)5V;#CgX{I|LMbAQL_FSe&kC&ufEo1WKMywZeCXa4E= z&Ck5Q_y^tF^?cf#C8zVB&J=Lmczaz<l&waSpMZ<<#i;mdhn*RDj>7#f6EoU=O*AxC zT^Fx<>tFv4tLInU?7n|3F`nCGn07mL*S3WxOXfa{OAq~ZWz}5$;xo&+rrs)?zHYy0 z+eTw`D__a&ou?hSOOOjFl|uCnHK%VY`-;@>yMA90In8hKB5mR6&c%G$suwR@?^>k) zyQ-k}2-B}Kr_0W|-3=^17+)fNSLOGn&8yCvw~FQ`*Y3M_;!e2v)ivMR68$f@F3&u= z{z^2v?gh?ATp4S{jX6!^*&b9)K9}l0<9Xw3w>dwu!gJ?K-!R!eEp*qp^VZjvojfAG z^Tt}cEq|70Ev~A*`up&w@^|0A9$i0qdbFjwzPNZz+kN-juD?|8`OmK^*y_LQ*v^Qh z)sM7vvfkMKoVmqe>r?gY>7kc@=`g)xxqD{!|1u|`a%BIBII4$DGV)q5r77%`4Lk3- zQ?}}1Z!4}Z(t2h-Bg?wx)!aYYd4<=MmBj1T*`5CMR4kw__12aB8`mU-Y><0;_1Bvd z2I(>n&h~idY9+0l(xk)1;4m-!#AhA`1HWJgt=~0#VfS7%IX>lTJ#+THH>;Y@{__&; z>MfNs1vm~1FbEvg{jo29-gldVg9mSveC!N&+n%nG9iQ`MhnS(Q<kZ<eety{zl7G2U z=6%o=*{$DJTw3#GZCFxlm0yvxWo2T(Z-MJAVlR%ITDaA1;_Q==^%ss;m@qMTXg;i5 zX8hz1^LF8_2e==y?yH^GT+A0Z`$+6}iH6g>exKuFbc#O~ecC+TFk<>_q3LJmrY3AJ zR!(M(xU$uzpL5wYsS6F4$_{V%7V(UAiAi?=FI(Qy>+_x;{A^PYr)MzRbmnd!Yv1B? zQ-V%h5~<$3o1vlK?iYjnzVCVr4_><a8=PxnXh@pV%>CIi?m@F>U*W`A=9(%AzYEtk zT=@3YQ6%B>Ia`JUhu!-N-#=t#IB@G0o7LTQ(Hs14KYOk_Fa7TE7?WpbK5d(r7rdlF z=Zr=438q~WPAuIbze3?{d(pWAJ2U?qa6GI`i+cG}&L-b1x28*V>5}==(@JOWTw7-O zwa$O4<09ib?_bycc3JSk%uK3KHKWmQjYw3shUUfh-x(R+@B3S9Q~ODf;lYm|5<xT1 z8Gfi~NlcMbH;nR>X1MUW>|%8M@oU$_7!-Pvt~Z{09FhKi*^Jjmj=25_SsOCdbYh|A z{HVFJ-#;<4vtXYcynEiWF5aTadnTV-$SJMv>#F%wE##}GFf;Rwub*pApPad+TVm;! zZl3hYwuN^+t^^$xer9|~!%f6JZ{vxdmOC$fb$!5VF+Fv+r)FVIMZ^66Z`2tY>i-}7 z-!1?5!*Pa&^z-u-yw57dG&g5np8uht+0j{a+1%8H3nQ0?aJ*r%{i2-nK8Km%Ud3nM zKkMWFi835exBDs9WH6&@^0zhbH?KLjbdSn1+2SqN)}8%c7XRq!XK{vxg9Q!$4hkA& znja2kwKurzE?D)Uf`K8UboY%rG3*REd3lR3zh-RMy)XUPtNToSSKqJJx7XaMd3fEm zTfK^2UMXQ;C#PFZnY7{erUaP}Z`G!Xht&G*ov(j<!By+`NA@g~K`Ayw9M$z4ZM6=h zZHung-QpG~VsYa(GsB-J>h{OZ|NFe0p`m%P?TL-O5t^L_M$^k5sCOs{`^MkDb>O+( zch^7b<A3gFU?|U-Qv0pla{0EIkJVNO-8xzD*=GGGr*0-MPm!5FBTvb+{*6`SHrRds z`A?>|W#SAIwg~;$*STtrwCEhc@VeL1b8I4h8EPy&V`{O{J70OipKoukTwmHA<fReW zW}(HYl&<zSbyl^HHg9UEO=X~hbU!1*-#Ynf_TLN*7b_SNryg3H$3M4>`)yy~j~|W? zo*Y^uHuKS(!~AFds<dQ8Y<c=CFnO)WvB!qrzQ;2$+^c?HyXX7E-3$$T@76Av+4+p? zT<mU**INU>h4S!3&Hi@b!iOBYDgm|=Yi23>MOEDGll(5vr^s#jkl(<&{rj^3>D7(i z->Wmz7B$M({$Tv~`M5m`!<)T#jvjod7*uU*yz;=?uP=Ve9XjE{x%)0}%_HIU%nWv) zcj_y7C4H7UpMAr0cg?Ho^TR?#n|6K3iP}F$ZQ=Bwtb(#D#|4&(aLxWVvCsX5yeu<A zUthmMH&g4GH}ZvBqGTBycHefBx%pd>V@~{}4=gr;OH(e@I!(F2G}mJK$-YM=%Qv3* zwS8Uk6{*U34<8(OqO<S+x!V=L-^MdA#O=G`oM(M(&x8lxelXiRB#6I=F5f25%K5Kf zzou~2V@q@S;#K9bdQsZujMg@H4&Pfh(?niYCb8g-`z*=I#}?ib`+f2<W<CF4lYHdL z%d!t29wsv!XlCcXaC=K8OQOkVS1aBm(XXBJHgQif@tyd5=I^=h**WgC+?pR9<sQ7! z`}}8{^8STqSvU>2;~5$IPCsw<_qnyDX^POyug6bZ;$d%RXK2_fe*WV->-^crtE=_Q z_e!gJSlO!R&h8U#<@g)K_ENFu%-*fr_I1A9tv25(bE|aO-}t@Pi$D3D^If;;?wMwt z3Aev#f67u0Fl0P;`mFloy5METh6zef-L$p$iV0onW1p4Dk!YS{EAR9{H0JxBUk$I5 zi~jzOE#r30=3RMa@5bG~na<C%G3}4vcjVzk!=l}Zi?+H6OylliX!N})@x_f}&64u$ zYWCZ=tr;3LW?fY~k>r0%>6wL>m&i8zq=a?$MzdSb#NIx;>$$dGb<FA)e~OG+Jy#m7 zUFKl6Y4-Z#?iHWDBr_a1z1-hWir-Lb#?Ogt7ov?d<)d$xUwk`@!EH_mV~>TO!1kzf z7bbmPmU}?x^rNz~m*71NjztRtSmy39+7*<n`)~79r$CV#_EszmZ{Er$<)8O(?`J=L z?r!X<Lp!UM&vTeC`|e4VzJsj}GBY}^>d4gOb46wM97}ut{crjGgZ_12lo<{jm#^(e z{4bH2w@AHGYhi#_i>lK3H!Rz$ZDnNN-7Zh&IK;xB(87NId-iqiw|w#4n|pqih)xag zvaEb{@Sz=F*>?jesh6==UOl+C_cudB-g<Lm_SegTPu>zWx^32ckm1rd;aQpKj~-Xs z?Kx0>?(#f=gguuyrt8M;f4VhDBPV33hcVA(!M49a?<zX_?^Vh(d^l(Q{y}}+M`MNq z2R|B?WGNl4JEG{qasJfyt<%oM7=EeE$-B$Su;=Hs=pR%6|NhU&V8f%lfpz}=%38j3 zo;m>q&nSili#~zhX;DTWEV>RI6PU4X>e(%m9$d0BJM<s67Ql5*=tj%XZU*m_3U5Ep z6A-xLcJ1$hQ=Z|kZ|(ncF=}W1U#Gn}Qzjdl=V`5-7^!T>+Ic`&qo~-9>&b>kY#bAn zHwT|wBcZGxyztW@*S7TIysK7bp7&SemXVwB(<ktWhmdieTOiN*_2CsOR$jP~nmz5z zeDCEQYbIE}c6qYr*@ZZ%!%r*w0@IXUxF4^5^M2Nsnaj`5ODL&nIarVoH+^YGlJWJL zpMUsv?d4@~kf`cdQ~2@P+}u02D>*i9<Yf3zyRqq&T#_6phfnU__22dRg6vq!F7Kri zmr5QB>zdmayj?@{)0wA5hHLLcC@gI|x3=f%;}<2jI38W7oBsN1i*MwN^WO|iHf@Y- zssC`#`p5eDGgyChKi}=K*|6)*w9ZRHb8frxqzha-yM6w%j@!q!mZzulmzVdb*yX7n z+dC!l<-JMl^V8<+JRLaq{^r*i(w$o?*DNXFJM(+@?uy^y_Qy{@KhMYzsNJ|JQnv8Y zti7v?oC~>2R1KwO*(KNK^E*egI;~=A%>Tt?|3N^NGs$}4r@aS!`=+k@bZzOBcSn{) zcID)(`z*e@y5i##<(fYig&7Wfe5iNt|ACMh75~0y#@z@?dTcU#N516xqSo#;4cq1` zH!(y<r#YER@P2%8F`J=bclmp#8$n@bZzRlAVxMbR@KAXh_m@0d|I6PWOqE{ewR?)H zLBxB8-^%P$HchHry71H#<_v?~{V%xt6t+nlHr}65wp%IO?#ZpnorfGA1|5EM;^~Cb zNxY5o4|SilU9yR3&7CDr@ARJcoT9Md=Zksb4jrO7&!v{#JoVn-^~A$_*6XOm*%{X! ztCp{6Sdx0H=J`9mU9Yn_nvMRd7R_#VDwuw_Chp}r*SN>i3m2K&37(a!^{?Y!oBg*l zD332hgthC;7vIGf8Q9s=8u#tr-o3cFwuhbh_b!=3Wg*qS**TcCli8c)XWPC1D4nmA zv-RT3wTuik^`53IoyQz8n!@K?oaals#)o{UIP^4R`o+~UnX{5iOafQy$S>CD%?@E) zt5rF_z%AmABv<7j_wBcft!J)o%M=cq>~Qv7ih)6TTxo^Pp@$PYjriP|MIyN(Psz?~ zN(eiqA>op^OHi-o%WrpvhJOhSdp1n^v8Z9i&L6KNC60x<d4#Www7u%CH)rz1Prn{- ze%HH5BWCSeas9XlZ{zoLFZb^~QdRqz?_R~{%TKL!9=w>{*u6l!b+?)QpAWTrYJTxB zOjxFDaJz1v{sVTwU9rlByniI-ndV6MA3KqAMCE+&66NAtc|JA?{vMmJFOQ%9@Nx3; ziah0~e;+5y$j|ohnic9LuRK{Ndp&b%e)PX}JvV+hDQvfTG}qdHV|B_U_fI;`8NT}I zuN~@Q*VWq^u01IEAllVIqV+?LZ1KUC*M}`H`<-1dlP!62?uv6gBH2@(-DtfgaAp<X zj!rwP#k)j1!(#WHpZ)Hi-r3c+JjJs+*CwB1y;R6`ewFJdo#KnK$5y>I@4B6F)NPma zcIW4N?6Xf5Ua0vu_1}k8^Gl9ik7t~|>EMR?j7v%X9{>N%$j9gVe`9Gr`+D1&hHbrT z^73*Q+%;}X_PpelqJ5zykmbD8>B>3=|Bz+Vm*uYVlIuRy8!kNm=AFXjcJr?N5B0Ko ze09+Z9v%0^ifv)X>PmL>$KHN!U;B&a@ndC?OMCj9cUw-ivRkKBbAoB#+ry8Sv_2}n zd1t@!#;OZUb9b<Pew}f?XvsSNsLeV@3vRgoKj5>i-M!Yla9WV>lZ>nVo95j4xv*cw zQ{l+dxwB@s&pV$q*-(8U_aTmbrJ|zq_;tIpq)yu^N4C#=Zy}zecPAxWtJh}xbAPc3 zn~JWcH(XvGxBc&W^Obq;SRU%U;{Nz4{rjG?t&_bh({C2edQ@=V<E>rI|Jpsj-`&2k zy?fV&tF8i3FE<EiZ&I1rS9LC7+S7`>&n)%-?%N-)z7|+pP|<NFOr7D(B7dJJHM921 z^SYl1x_n-P@5G^JN@<qIR!;oO$L1`<|N8}h&M)6tO68e~r+m)^oc`RZyY$$pt9?v4 zM-4a>AKa{YqtH2Vir@1`Y@GKcm>=Kysu*M#e$G(8Xgc#*hK^fH=D)mk_e{X#t;}V1 zJgQT*k1ku{8O-4G>+%ua0_ME7$fYrcVLLmv-_BLZc57Sxn?YD^$K4I5KJ)C+$vrMP zqgH17EsopQs#_{UqYlMXxY|{nHBXu-ny%+<`Hl0SV(zX3?f!O0>i=*5xaz_uc8^IC z6McV1L`NTfb~pF)j_s{;WrMFiJhwOZ&Rw&9^KI`I+%<Zx)8)+ZaQDVpSGCG#Y?}S% z%Hx^Aw>>iDw(eZ^cJ@|X|EO=$u8Ip&uF5anwqE|*Z;LzT$*<pa$G+KH!^m*s_T8fy z1#h0MYkaWIetN50*o@X61ydBaWZJU39}g%BeZJ_3%}z&UTf_+O8a)w5^>a^kJn!0+ zFMM69)@@VnRuJSRZYcM){l@M4$GgRsxqVN#QC`~K9dk%q`LW#kZ@DweCazHNyYQ~; zx!T_7REgvdYbql|THfucZgQ-Yn=y4E+dlq0`RYUEM%y&96nW0BGkDHZnfTf<-O}Ru zyIY(R&E~1Hd9mH|_5^*n`6BkuX3NuS(wt(0ZvUNrEksAQcVoQU1^a&-@^+P6OV7Nk zpP}-i<n2zuBuiBZv7T#Em%NU!|FxTEXSg-1{@dmMN9zAR_h)4Io4CJglbBFcriXN? zeoCO^VbRv=IOCACDLp%9y=o0Q@p;iC7p=(E6XTZh7#=&|Z=q@wd2+ku>UX?~Xa3%J zwMKE{r?B@f_qTG){9QTUaPmioY>m|>6C(SZrcVlb=`)joEp@-ya~ZGjw@U(J&wV|y zE2Mz$cjPps&7m4xD;F%8wPSvmW>u)%`#r~!-u<c#{JP2OAb$<VYK@Ct*REvAERCNd zU!gZk?{)39JE7%M@BCd;mKpVBPoKKYnn=mr(}eWD^D{8Gx4U21WVHKhE&toTK=m)T zZ13z&*Rr{DyRzYY%`aYt1BcD+I@_)L85!n&)r%@Tt*IoT)oL%yG;wMKyJLjw&F4k( zChOn6e!OxDE0?w3iA4>Uq+H{q_`R>cKW%f|!Zd4j^I_*bTQ+^WE3RL-A^qIV74}Cm zOk7spKT}$2FM7f6ZKaKj({wM5r2=jj=bUHU*mZ$vZU#?O_7gMz&Gj`eiWb-&Q&dvk zZs+GN!N(?%zDy=!-gCc88e5y@-gabI$DG1-;np-gFQF}y%R=osS0touVqkE5qTF{j z#bMj-3v&){-`_o%!||ottJb_L-<jmIw}p6EXYP)%(Bw{u486AEjQL#7sQ99dH}`lR zYJG9p{Y^?mKwjgDt!|0pGai5BU~f-bwBdJ={Ns|I3(GWf)~sKA^%axD+1U@D1^cc0 z)vRn&`%8r3!$Wufk6&5~x6Ajs`Tf%2P8I7e3!E-~X{nIL(m644vqKpgJYTN4wCvCH zb-D9i+&U(ZoZ8CiFm;!E^*l>`@1G1!;YDwY4(H?+%Vxhmb}{zHy(21lfwnWFA74rT z6}*4BXX>e`zQIn7MumGWNV(oT7sZ(8xNd=n!c0s5IhOW?#%xnAWvkvjwDCmolG@ko z26780ur?Jvh;USVXmfq`Qjw@1b}h2%+-wyI0gaxUIX*LO+NPm5!~0vihWzS7OXVEm z7p~qX_SClgV)m?;O6M%ycc*H*w-`>@D}F4qYmvsB@7y~yU$QdnzNlE1o4M`zZhb=w zv%mjN@3sA6pZw`&`MY-uF2CL7d+gr>j^x*h7x<EL?9I4;R)3dQ?CkCNw@rs{>$SYk z`8IM&+RctpH+^q?vI=~cU!*zl=KhnPWFAkP+05t0yuHAGvxsY)!}R*)TVHRVGUY_h z1*d0H8y<T~sCP`hu{2T0g)<g0{{Wd5m~(njS#T_im)DYQeV-HSAE>+w6gbE><A6!P zic>1x#%%Tm6K^?jhJO#!;tg|K6q5Q&aYutZoA%>7yFDbdEW<=x{nqK3+2*XtRmhr| zk)xfbyyci_kMWbIeD)%{VwJDHUb|j#%SAEaiGk`VZR-tw%+x&FGiQ!#tk9~dMW0GF zmrlN`8R>9qz4Fo{7u?vs$L~AxjypNbSnm5n;{|t(v^sW2mkZwfb??ozH&<ToYP?s_ z@%VA=?;kfp8zq)5=4@6-_Q+iPEXeuR{_DFYnPgl!v)n*(>*W>mR(P*3d{nw(Zu)^4 ziy4>M<^5E53V;6o-dx$7HMgyH&a+Sau*D*+{QR}pNtZuL)JpTp@VA}Y8Mk`YzlPA< zr6G}z?^xacJZqOrc)w)uyLpy&c883!pKSSEB%UoT?H7A!XT-`A3s<)-e0|(z_rJ9@ z_4mIoJbk6xguS1+;>@>~6I}wg8H;~-Q!AvZ*t99HT!7Kk)HAcgB3$pyD`_h>gEos- z3=DtDxHGeOPkmwv@|^Cpcu8B*)J5$(w@tlJ#v|A3rdMTcW#uBW-9TdI$A?cZKew<m z>c9Rz=i&b?-yb}?X0~PO?)xRH>f9B#2EKoM*qNu@tyH0f{TOS++G8~<w@umPkS5A; z_}|9gvrS|jZ+4l=aPe$<b$=_9cJQ(;nM+d7msP%dcYo_vy+s;vLG%4gB%>Ax_c~@i zEozjI*r9Q{oYUO$@dbe(E6WKVYFM`E_$#KWt_;4KaHitvtTUF(^BrfdpUv64;nQco z<?X%JZtK>CHm+Tpd!$qH$YPD6OVObkDSGkRt?B>cRv*&sn{llnxBN59;Wuho>+9xk zy5ckWvw-Z@*7A9&61=@V?>-dByNB(wljBuf`~Hx{WQiM}5}WJf{q24*G@Nw*&cwgh zbn}YaJ2pQ&_36$m?fHh+=k*kBxO1v>X%Tn6>guz0yt&1~r_E;wteAb*aZ2~6DD7+B za(-)0eVv&b`=2NG|FS9jvya`CZYykY?|;Y4VE6Ue@(WqBKZS07v47c4;WKYT^n{l0 zUcMwmqTk)Z%Ix}wz_nWLe>Egm6|amD<^JxX%RaYp^Q-q>?9WOp4t4kUvL8GyzpsDo zT3;2j*5jZ5WKYeFF;VZ&P5Qii&!w~r$EVI0Zd2TILGJ`Bd-9>B4ks0w^1VG9xqob! zYGWg>w4u8yuAF0L`Tginj+tl5)34fx=Si34`Tf>O>`~nC_D)}N!L#``JfHj9Zre=R z<dC)6tH6w5bN3IM(|48rJ^eiW#TFr+wV!|d``5_b&~r)A?&C{y#u<CQ-*yTu3*NP{ zwEjEmuiDKw_zp2RO6(45J`*;R!H4VSM%m_m{_h2Q^0hg?{(cve((0mUx@ENlV>suM z38%j1MrjqKy_>n?s_TQ_z3-|!o;q-sJd!#0PUl&sU$WPp83#4{k~jjdt-Y%8=~98t zQ44>?H+<>aZx^Z+dQRHKS{JCHk=tvp^58b(h3AYcl1JupI#2z4EB19#@!c6gy_W?K z9VlMr<2uiA*Q|3wnVFZS_fG6Rlj7j8>+^Ea30rP|c)N4%Q<YE40{sqr(mC4wT>ry4 zeV>zazt{camXVpY=jF$Oo{ha-DUp1c#bU**;*#e+%iPUlx4xYkIj=OCkNpl;v&DfG zj;DB+TjU+wEbX&rTjb(Iv;I@h1C5J=_v{L>yq*_$?ncUyZ7n-{mm4XqkL{d$`E~QH z`{CLC25jNgdvCvdAiTboi=p8CKfb10OA51=?O;z&UX`|g|CATs`#&C$`XMVPvx8%S zK++-og}0WZsx`g4we8lQ$2FJiHhoE)q;-6rX+X{QxA6(d$;`Q{zi}?+n8O}iH{bGe zmin2SwIMql_?c8DW=<E6Y}`00VPfop{-E&Jmghq&xgEC}rL62^TWwRW*4uqo+IFqZ z42{#}nO~l`-I086%`NfZip<`xr3Q(MpG5iRC`c{#ym8zi?RY}3%$Yt$FENcA&Gmnu zpPyJ_b#8*GuW^K<*tII#AJ;6zw_oUYcMi=u``B4VR+`mcyXT?%%-bE8ymp$s=kF^F znHE<4PlS2(iJ+exhxAU=@@bq~_1bOr&*ha1*YNyj>hn9VA@V+F&0+o~Y3t>R>(0Nu zU?l{fI(9h>TBXAG{CW3A$&=FOtL}f=>w7MD=Wo5ayMGs$I81!bku2PM_r{*bi{3>B zF4(aCbZFn1XGOhi$t(*ieI?r0J-L;2$dA<_y-ZG`d4u9|3on6)=YI}9;5hEyu4g~j zF|=~t9<9%&a{aOE{%@%7D9KStS?nmEUA}F@()SDo7n$x~t&W^>{-BdxnwHN=lg)SQ zDmL`b|NF)M!{Yz{*%=zd{qG;&c=qzylr|+@?@CdPQ!ORB3*VgE|Gf3ZotKGk&xtWC zxSF~9b9r{cnU!WybM@ZkNt!yYzFR2d7Ac~4D%NXhEa%o;J-ft8(|dOQ@n0z#Vf!a` z_XU%zi+QoGHU4gwdUtQ_ePrBrK<;zY`gZ?4AFUV`Y~T3ol&Wcy=KJNFct0r}fB28_ z+q~J6T$?{~>^gJ&drR<_DKq~!WUjt6bC(Op^queLCHL(7{H9uFXXvjt@Ae&Nm*3l8 z{av1cp(;E3L(Xh-{jQ@~|M$K~HJ-9#`pX0-hnshvH8+c&IIdi=ZSG|q=V>!JmQ3Ng zb&n-*f<x5H0ui?xH%$KeU&?cQee>zB_%C+pKka-Lid%lJO`l~Hs-3@U=iXiegO%cQ zj86zVR)6pGS*#Pen7gql^67#T2Ahg<r!JL{`7Ri-UxL@dRZv)N(hZja+xOp2uHM=f z9M{*D%){q9`{WLXInUpvXlpLaU3ux>N5Q^+@6O+h$Cwu<O|E>V)mU)sL8aW1O_pzD zCOi(h8?e;qCuk$&x#H?v-g(dO?kaZJGb=Q1r9kns(8|iq({^X`s;A2H^%YcPh^cJS zm~hKx)y0gKhXoH_%_!d;%hI^B=d+D_;FO(9g$^%#>G1uB;Ewct&dcwvTe464#LVSM zZId?_X}#d&zr&To*3SMw#?MXaiX6AU!?f$2XAZpiX?-rJ$K5TjwxXit>|*Ba6Ee$p zapc&2*?RuSRPi6$8=Txr|GwW>)5(ATKg0R>S(g&pf3th!Mv5O>5}i}5tC*lBaQv~% zoap;)Wi4Ua$DUR3Gt9C1Wp+@4dAqdVT9sqVzJ|P5TP|>;GwWFEYEAxiiYDc|jFvvI z(VcN^*&eAgDr+{Z<cKleZgKHj{nVLr%0jD3BGb7hTfR{Hzh|3+IMY7e#2>$2&p+_k zzfP**<#s94#@T^c8z*r+4wQGVHU6l3N#yCjOqsTITNVd}p0qwUGg9Q*t;x4rl`o%> zog{GR=j4KiyEi_3dfK+;$3OOpzr2&}3jRM#4j0~48FOhyzMS<0DT$kQ&tJOBCz)8d zrQ9|?9UNY^A%JV1?Y`u5hJL@_@mg)$SAHqWxnvdVuPbs~yY>~>{oea*uV!>!%9%yS zsx9Yds^_X~e7V{(`NFPSJmFE!SDKaA@ds*f^J+yph+fNPmU5n}yj5DWtB|EkSwVXF zxydeTKGeMUl@Z(~c<jmAeDQlm^3Kl|dN-fp?z|#(_-jAE;kM#a7Z<#LHr?p_gWEq- zMOZ(muD>L-V8JO7hqVjdq*;mctlcI#yLztP)ClEsE$dKL+<<1L8rQMvJQqJ2xamMa zM%n%OwSNrl>b|isC|uqmrptIKhbQ%Ps6m{h7;7TK!$^0&m2)Gz9`MXF2wb`3vfGA3 zll0d5v-duKIQg^%L)^)V(uE6mP7O8QaY;Gqcj^QIpMz7?8?Wi<KFp|>PhgS`OPZ6a z8MVvy>c>#G+w0BNL~(vE^YOa#*~VE>HK5r2Th1)D^gUY4lf@rgn|p`fR=vM(H|MRr zyj!BvrtkBK-I2RvQeb2M)^)uRTXvbQRBw+rE}cDLVis@XsfTl~&TH>oki9nh>Ham` zd#Yn?cZK!Ox}KaT#lXJ(`(%BVU9riVzRo;f$GCp~zY}uxn|)fA^-5Wpr|KHYEcb9< zw*Ev;lrTd}Bm4d}TnkrEYL<~|U32PT=GwW7TnZR-^-IsOD9v6b+^XnhdAQ)l@z2lC zZ~T5~#<8c7qP%%ot^GG8KF5CA9P`q?bD!yXD?1CP`YY~FW*(cmserjZL~75PmIVz5 zPq^f4E^OOznU&$r&0XCF90wO&I+HK>*5-EI|0_4F4>xYFx$n2U_gqwFoP>iH=i1Y^ zHkKy4TnRe&U|oEq$cakP)bywWTs(m<R_*Ye_gpX4ZB4|?gOLkNV^sU={&Vc!rvG85 z)1@rMO>K*O44-Ukxs_qzH1AfIsh8DGD~UNP=e+kWI2U8pdxraoYh>D5hl#U~J8B51 zr`cp}y$u?@08N~0&s_1@dgG0mfy?8rEnD-H)wX(Lclo_KeufFWY#q^V->!1iJbsXE zy?4)v1K#EF4=p{j_uD(gO_}V_7MAmA!?kPIA4VU)a`j0~enVt{ZiZ9ITARY`-*#O( z&RMT7Ex&o;<khK{)_tp4_h8QL$4hz-Y}+h;grnxZ?}qS{y?aDXP138Iv0(egzTf=v zObox~>isJFyy}G8ikJ<eQ}&8i9de&DW6!qUx78J2ei&Xe>k-~BaL;GSjMZ*aZ=Zb_ zS-Gy`PnKYi#uKyp3(3dsFPx(#dSU9Hy+JFSogJrb3SN5WvzNAV=XxR6*vxI6n-aEm z?pwECtl@)gPVUS-cl~Q#`EH3$+i3UtlyI>BiRF8yyn3#BzNjbnYx^RNJLO+%?|&`% z%DPiaWXFUFr=IffFi}4*d?D(_al1!Hp4{YmxHHdqy42r;hH>v^uHtBZD6n_y*O&V) z@Gd!_+V^YOdC9)x63dedQg4MlWt|eOqcvsuqJ~2i8JEw*W&JsSzK)Bb;_X)dMZ5R) zneJ{p(R@?a<J_$+^Y}l@Rx@rsxHs|m-QKOG%8TF6KIR)5_`2W3CHG#)uL&Bu6L0SG zEMV0CurT+gS+LRhIr|m51YDloOW2-Kc;b#*+}4w|6*rD|tDk3Jkg=@V%lGKUm)(gP z3r=lenyI+?-1|)$0Xu&3FmHeRs@jf)d5Z4xY5l<|k2h_JeHXM$=-`EyvlLpze{3yk zVF@g(e&>U<HpD>0QGMBxRlluu=M-1W>zu-U-aWBg@%LfIPlv3Ue#<%eFW6u`@n}WQ zoom+OuA-9KOPDqbty^*T*tc)C3<u8bm32w1c&!o}epFa)m+a=r=i`zCgd}7nm8bq~ zwoPwh3i%Yo+k4{OsrBpEFT8t~fuW#3(LzR%=XCLHAIVH%jiu)TC6ZpBtKAairnG9S zTN>}|w#9}sHe9a^v#3md@Vn#ov#;5&rC*d-o%`cu{PxbteB~bFE#9REZ?XM3U?sg- zdBvewKME2T$$!gV5~O!TcWcr0J=cD@u<Y%c^tw|c`mDjau){lQ)>gVc_2Zktapu-8 z!_B*^%Wq$G-&eS`D|Y@tAC_&)R1(6jy}N$NNJ3v>?b5AcOiq>OY`CL#?^FF?YaqQ; z^p5lH)N_>*?ixk2Ke6;KVhEDnIz4QwtIwjXM>IA+Tk}$&a#m8v48u@nzpAsA%sDLK zMh;rpUTUKA?2IR#-2VUh@`^vtqF>y)^*QSNxvf<<olokVEsEaP&(7~t+UWGG;@d~# znhzJ-85nA7dUUkcU%h3!xaStTL6dBFXp?cvzW#S@nV-vcKTo+kyL|gZm8H>tbY=Rp zpX*5T6;zb4FlclMUea-1o~tc*gtNu>>*+40<ku(WiSL}eQ9QEIY1Z+_O70VvNh~`S zk!K*4JY(8R>r0+D|0=kp-|e|tD4_pWN^KUW?uE|m0IQ8jM(Lk#<)^2*J1xlm>{9;D z{=jB+d1eF4rpz=M<I5KXl>M8cB_DtMxN-KIPY%jFXPS<Dwp?_>@5FYcJzpgsx7EDA zSNmgK$@y0s4KziPJ8~<hDR2t>Qta!`&5POHd&jTL_T0mD4970!&1C&`?3kF9*>tnh z#&6!gvs@l!m%Q_xZ{y$mZ}*;fZhNxo^Z#E3?K6yv&ebIMPVx#}q&jsLTip$Q<CRC9 z4oqS->R~;`#xr5&mWTQmm{MjO<daO(*>XWHSvkVw?iK@|*dS9aPY(~RmwT%|PtZT! zVZHPFp})WOPL%u^mvXFE^K;FqxYU%CBfZjfe|P=<_}TWk0o%Ev&fWcfyPKD$8h8G# zTg$<Ea*KEUdSivnsR;`h&*ynnCUTtI!7Ul+sd#i=Q&4f9#wNGomeR}fubZu3keAG} z*~B@^nMH!xME}@k9qp7WTEXuMZ#rC$vc8$5muw%`chaW%&7L>@ylj0+^GtZMc4Qrv zx)y#dcFv2MSiLfzMfKk#70z$fvtXYtmta0eB6%JE?@7DQs%P-Mi>%yw>B5|wGQ4S@ zHP^>6JXAixTXNrBBFb|s+aepk@Y{D(e{N8HX3zHh==1PewMizy7Pm~>j@?Ua((zmP zIpw>L1@lDhr&@IyYbQRD);#gyM`vf^{|E1wW!&5sKU=cD=1KDICgVBxf3^N^GQSt_ z<0Ah)euf|S`0G2|`F$hYL|g-|-MH4^E5*!l-+6cHlFO^_s_yyrYIVim<a|bh#BBMR zgli$vx1(3wJbU}JO5yp$H4*J82`@CWE57^eTdZR!9sKW~-5#6o-2!@N^g|tzj?dRQ zd13of*6PBh!-t(^Zr$hS``wZJ+iLBDNcIp3wura00@Unz()OQrIiouL{W%r*RDOqL zi_ME85g`*RPO0)dl1V)4VRhZ?TH)iV(-|3zK79D{QJFzaxk5-*@np~S4=+~m&tA=} zyPoZSRju{cU8mb_WtJCwo*I7U@jIa-Ocg$UsZq<<Ze9Ierb;oZmu<(1%^lg#_fB$h zx*=P!wsF?fDcff0K5u;QZu_R1y`gsQNvF7}dkP)bKh}J5kLMuE43Q5xfiDc!?5x__ zbFeZjG;GN;-_WQ#-U$Ix4_5B<H(HT2`CpRhO%INPf-KAI%fiC~Kl|FJ&JmR>n0m-+ zDT73Qf?oD{ub{G}Uk^OKyjgDAp?a^Gw@=qjJ6Q33>E3z0X|myY68u%wJB_E`tUbM5 zCi%JVuZ-U-MLyW@-{O1pSEI-%=B>B*w1wU?4@@yS#r)i{y={xAn!xdnHD98Za3(BW z-ede_?f2F5Qv_lb&G)|TzG9`Vc3PpG-o$BBPGoJW@GCGl-zMb2sOMF``F-bOjx%cM zsTbDWa-Sx4(&g=JEz9GHI$l@%7(cy#Y`A4wPnI12j7->CfLE`+iR!G+d-T@7mWkoR z+W(*V{=J?3pN-+igL}DO_<MFaIy?S)wo6A>_hE2;y$r*Ljs3MU`L%C!*Q{H|$RPLj z&4b<V_i!_;Fnz6;`K;#akCz7|$~|+MH?ZaTF7(m-^7u&W;f$$@CpO>p4y-sF`Ya@5 z<|PXoqw9;VTOSJ4FY?rXY*MTkJcrY~oxRseN_Vl?+2eIh7JQN~j#!=$pL><>ZI5C2 zx<z-hl8S2&*Yuov5dG3hoQeJXyu|wJ9?uu4xQWbc4O_jtWtXYI^zdsNw&Wx&h+b<p zZMsj)^7rhnng)+pS_PMPC&U<doKt-J<Pm%6lgbZ&4GPXL_v|t_p&C<KVYazwmg<Bi zYsoB8x8oYz*IlDmNG6}P6O(c>{%~i4=CuP8Vw?=J7kGzG>FBbYVj88uav((UW7ry} zkFOskilr>e*ITc%cxOt=f_dtKU)KswObxj8)YI&*`uPiST9d={*0S07hs0E!|0w=x zk&BQx&m}3lw@+2??5GlE2v~ph`I!WrC%;@z?)=!NvBM!E|G?(^@eaG^Fa%C}a`nxE zElk@V_jJmq>UA5X%S`P3oFen$Yccc0okqDU&k1}zn>O_tPnV&L+$^4_k(J?TeHOR3 zu7CIL+;QK77Pro{==|JjCAFz9G+L{;I9by1?6iUuo;kC#H}2luf0)_WTwdnug4|W* z_G=tFPEIwSdo5yqz2DF3kdG&Semtb$usritX=bLVdH%j9p8|4XcQ(G(mt21I`~Ls7 zGH++hF_>lCV!GLGSJ_*&f3I)nGc&Bazo)Zo`P(IT>Lear6qP<d&#=RL2cJ{{+s(4K z>vR_98n06B6nM?TUiSI%iw^=@ZT`3wm_KtVoOo0=;KfbT7lHO}bB_4^J9i+qGuZxv z;H?j>Q~lU=rO%zzOXg!pQqj9F>jl}90V0bzDlc>v8+YzHb(C*;!<J9?s`mDk9j~x| zw4+}qRFBhrQl?7h&9yy?IXb6)VY;Jcz`SFMUzEwp&-*G23U2>%Dk@N%s6OS~CMU00 zZYPe{OHVb4Tsrk&?}6g4JxjkR+T5>f)?dCNk42)`lR<Lwgn1=FWs0>Pku4lgv{;tS z2yW4s=y=;UT+L#Fs9cF&*O#WttEFx14bqI3FdukziYxDq$-EWc>pvN*Y}>XrNODt% zwQJM0X605rTMeOib7j2enCC~_`u3;hPU*7=PD&d%XI~4uzHwWwmS07&TCL9anT75F z>WjsgdaEv1PBUrtc364oOy`y<mt5z!3x0pXr*p3RNtcxCCA$|%Yr;L-EVjn!Dk|9U zw^yg}oeV1dnb+|=s71adw>Z{H+dG4mx8{ww9S=jr%d7m!C)IX-vXS3-_S?S~AC+zP zWbfI+FK6fU|HKNBuxnw0Z3hpS#-y+vyTG;g`_~O^>q7a;rtQkuHjBgA_~Wle{><YW z&TiFpndmv^^h}4fX@|<q%*;1zOuTnLXRE@}lAGUZ^&KQ6*5}H&>-~9PRFyB8{Gs;p zI&JOOH#W`uy!U|fmivbvA884Z`&wnOf%9>Qy>r_2S(&pGH!@GSbgT8W%F0cTC(Ye% z+c_(g-PB4~M_)4Z`LV0n5wB(moQdIe7dWoSJa>lnr=x{e-akyZ?&ILT*KWyNpRBD` zDG$U`uT460R7p<mYvGpsQ>jP1PkSV7{^0kB<L|wNwR3npLY7Yxt!)a?e6Q^#elWH2 zE3^E(@FTM}&zg9ZvElu1Jsn4F)|t~iKG|%~m^QCPplHX#BEL3IUVWyWg$E_w_Xf6a z5oP~#pj_DU`5n(Cp<z@03oV-RHL75RN^3&r-{{H}@n1~drR%>vAyHhrdH0or$M5}O zWjJv6_V$af-!d~SvT$4@loBbZ6K!@e((_U5lrU+Venw4e>woQ+K5x74r5V8QyheYv zz?|^>eJxv4lYg8^{!{5U(YR*M#&*ND1#$<@oBuRwUA#Eyu!?*3Ta}%iMvu!4**+{X zVsT!{l9Fh>H1d_$m7t1_#~hwgbARxCE=kW=n=aCvS66iI;=36YFZ{A4XG^cH_<Po$ zks+@7YpO}~GOu<4nNHpRTX$}4Rev4L&=6hz{?Wa;(F_es-)ZgH@a&XF*nY*JTCv~H z7q8xOS~f1=@V8}#8=~i$G2Jf@O}BXdLa+3Vw&<dL6BCV(#k`wWR?TU;`=;trmUNx< z4eSnww--K-Idt~+^r?3?ZrHW2ZF>Aq0fvOsTITlM)gSVor&_Siv)RSZ(6NYR<=I-1 z<tuOAU}oUGv4vZ}$>En!>FoODcjKIPC$Ed#efiiX(^K*Ls+i|4+gX3ZRePal$g!vU zoI7_qX}7AF-J87kuI-x}yKZO7I7fY7`<{ITyQ#@*wX_xYa-1U8=Pr(O7nm`_GI`C6 zM*X+PEpC{1e~5d}ur_S-hZXuaZdBa)ZMpJ>wc^s-iQjDH=ZQO<-XkMg%<ZmeyS(Ir z*Y2{ZhfZtncUU4cPkrI0B&XF~m&G=Ai`CDYTrd36lg07DqdeP(yegf=rAsW!@0)sW zPI}yFn6l@?mgmP_x*n)0{r%T{&$%8$aqfuq*FSz*t(N)3{eG1&zx-Y11ff4Fg)KHc z`{(ei`w=te$DKyw3cr08&rP4nG{%;+CwAnOONQr5@SnT&%}lEI!rafU?Zu5zHyXBZ z-|{(Jxoh*575?i=A3FLQ+b+m^u&1Lj?Lyw<iH^>Z;x(%_J-Wp4St?v@P0ht;9&tvW zzRtf8pl;hK8tq)2Tq-L4dUiy-skG-@KlZO}Gn*}+pLpZ@m|by+uIkh@$)srhUDvV{ z1&WfSA2p}`7wg}XZywF-Ai-?=CF{eUPdnlz9&L>~o8sLf$yu9t>(1o3z;jp5UH<82 zDK50|Zb`UKN%5gniS)i?n-^y4p5?69^X{=Q<Qz5R<Kw@OHEW;l9)?qDv+g`Se_?Z< zoB^L|chE%M+s|w59adjHI4jgJW^WO%x7o}1#ewcGp8sT7xA3CQJNYIFwy!*hZtDzY zy}szyhy<>k8FKYEUduM#G<j6Fx9vh&VS0i`(Bxc6gUGwT&E)o8j&<6dT=pkCEbL;| zthwH5GqkU7t}p0Vx|C(!UEA0_cORehcwO}A+Xox|ue&~Gao%rMXT212oRxQ4dfV5f zle-*^)vpURiANq^>LAf_?)3@F^;h~gt%#ePSTJ4Fo?(mLsdbzW<)qoG=CSUPDL%bm z!s!ajmP;op6qm;B*%zm~bNM2%YXzU5@iH9vxBT9*yVh!H-#$)Gx3I7&lB}3G)%Hc} zntxw-&haGd`XKbF$dA!tW!3}Mh*z^VX4Y1+UeCXGpxyqL7{deS^|c&p-F_c=eumHN z!{SeijTLy9b#4~k=FbYavtsTe9=)1Q#tS;%B{nhoZ$D?U<oKQYF+Ui+<T%vkG%@u! zx5#B(lRmj*j`z{CD}=s#J`E8}c(Kj*%$r-sw8ExM57@r(T%7=)$NJ)Yo##A<`W*k> z<C3#8cqKAb#UrF_;jvd*C)XEmzF8nwe9*E*L~jevg$FyijtdJ+44tw<Waigpt94qX zrxso93*POyWzCUU&Z3Em)2GzfWtd7w#G5aDQL^g7`|lUFWY4eK+`5kU>5kIh=@oxI zY^;<GGKijf>^ajy-I?2VZEIS4cJ+;Yn|K)_;vyXb%pdn899qfoy0=Yx;jRoVzoe=O zjeck5C@t^T<H^^&kTbJ&)q8f1w}%$YP084LJ0jM!aMtbH;S*KVrWvfcDiE<UMS^8r zkJ~b%=^J<wPJ}!YT0Ws8WkSs*qfhIV<mMLI1*CO7&1TSR^ZSyPm>|ckcrk111bao> z$dx@;PD-CW8CrHHG9a)1*aNd^7TTwlY`pZp_vxf~p3qGak}U}j?&vI9`lU;TsW|b+ z+_{D4Z|B<ml$#db^YG(C{=JRX`!kYw^6&3%zB^aFLs&R{MaZLj#haq1u5036o%+CM zN45q_`-X0V_^OC^WsD4`wPWw>`6$Hj;Mmsb1y7&8uK2p_=igIXXRk2Lnp$&TYsN86 z54{VU3TK^Ns`rgAw>G_&!z^I+9bPNuN#zdW$CMuD<)kM(_*Qvv=IYyXHCv~aNqd*^ zasElryH#~BVb0=vTT&P9I?WL+%c0MosC6ja;`uwai$PA2lBJ996@1>9v~p@nxUrqT zcKCshb%rZ@=lm)5vAn4?Q%hg+hF7M!yus2tX*;|`j1tW@P4bz_ru{k2d^rnaSnkWn z3=y_Rs;c?o=lL&W&A4zvC-{T&{i)lsO{60>6(9X|O>Lfy(aFa`Qx!Kn=A3@%DO*I` z{Ug6_Sy{;%U;CZ-;MrXj-x!YN?|(k1>|l(1aYS=MsS~Kx2ALZxKJfIOlkzie-su;X z1g@WM6UX>!>#o{fC+keb&|{~kPJQw&>R@W;*P8Pu4^C1kmHxggrBko6`MH|<g_wY8 zJD$H?G-cwiu1$BMMD9gAPt`D8R(Ve@*yGA;-tCX|U8i2MGW&6&(nkF9<af93r#(2U zTF5+e+193OuCt%N)rt5R!NnM+Wv{xVB$0En)$>PxR%QNX)cmP=Jf&yu&(9XmIdVEq zpE_l9@81)31_u83_l})A%<l2IV8-9t@NI_QV;I$5>*>pCzdwKJvmhIz6t8jE*6GtW z>`I!HwRYW_N6)6tW@vc5{{E5PY`3KN)xR^gSw*~)()V3_vnhY?zRllW^?myJJoCRW zM`PdA9r63CSR23Ud|kw{^6P@^xeYf{7VxC4;a_8Z{WHsw{KJJyS`y3>XT~27x?Xim z<oM;|{tOKK^0tRw-BQ~Y=4-ioLD>AtX#V6c#a7j!&4C}+7OlOOaq#nu$zPj3DxGPY z>SCjD%8o6uV`}K-^@}x{KKwnUcKdQ)kZXNS-0prOwcgJ&oj9h?30;|^kixucOP;3Y z@{(l>bB{6~Y+3!`;G6o&<e&4{?`7>eucJPHch8Q>V6Td8XDg>UdNdwr3u*gm^~&tY zirX(A+?>a`|DslD@#^QlSKR!Xx%;l;>dTI2wcHsTUN16<PJ1q_cy#IcMgDsvUMU{A zbHJiqen#WQn;A2s6byvD<J4z39`?SxC~RX;-lbC^VY6N=iPrd0_e#z9{&&S48a>Bd zXUsmOt?-#eZL5N|zR0KJUYZ(9=aht`ODde2nRK?gRPSW-&5XjQ&JqV$%V(?qES3E1 z^4U3FBj#>Vp4fq|=WJFn@&S=AqcVco#Ti5%pYSbs=~>+q({`#$$bIsEv2V|R{(7;2 z^|40xv&}j)iYt=^*lxs_x7|{=``W#u{yn3_K4yj;wa?A^`g-nIoi#F$zOLBPupv2k zah&t<X^Wy_?;p7KOf0VcuQEe}w*K7%Mc1WX+~wO98=bfOD&zJ~LCbt~GBU(VF6nPF z3+L4CRXm@)^s~;j<EC9K&pC3=Jb(5~>XoVSwd+#8*Y)0(iI?vF$awIfXQ$t73F(E; ztzViZGgX$Fsaa(0%Y3f!>an~1FGYq2d&~E;%dxF6&z)^-=57>R_RR8R%&m{_c0N3w zx}tJfZ`4}09S<h_RMXX$ej&5ru}JtCNx7|6%-Pb*o<vPrmT^To_+&)wypIolRIC5B zJa7H1;o+L@vysOvT{Mq-*V!A-Ys%dGP-AJ!6IVM11BLTH4z);R{9m>1Xy+Um;X5+x zvzm`s2;{U1D=vJ~wl-i{PNv-D^Oog1<1HSqYl)qe`p)X-rS>iF*I$3V;_53s=RKMH z#cO;tw_nt5X$Vgh`zxI7@<_=6d3p8><`d0+XXb3We&O?(bIFVEmhGM-b?Pmb_S!X1 zZta=w-FGKj!RXzS*m>&Q=NC<S5H{&;rJc?F^~bucb=%(b_$7V+_v7Pd*|KAnJAzd6 za~{qVb+TB$^Vox}Hv5cYmQKlw`x84^iC<RYi^Poim1omG&yl+&-nae#l9Zmqd++|- zIoJJV;lIx|-RkD{`I;89e3hH)o<0r#`11e1$SrH`{JLBIk6-SNG3OJdsRuUCJGk_l zP}ueBj11xH<Bpfk7X0^YtMrXKw~lN&%W)^`%E7lgM1Kig^18nCx#-MeQ`scEA~*Qo zGgq#w{=L_$=<(xr&6R$u<jl`m%NZVf@KbJD&e7hya#`=#$$N5hbGfCXk1_Awv#o8~ z*9Fya9SR>5miRKLTTCgPU3_-Jt_jP}RLVcDYjL}slH6zfAfsO1clO-KihmA^_In2Q zu~gm5W}ECd@9hl-Rz-F(O_o_<OE1L6y3WeFl53=^m}+Qm(01qgVb$j8?UxL~QjUi? zL~t+HS}yl1Qh9~PxzCoNZC^!Bv84UVx4YwgV7u3$S=Y{;e!bN6`Np-TSpt`;9`viT z+J=cPShZv}^ZA+fJX_p9?)s>8A>?lPoTvb<A7|7=&KYGaRd`b|sfcZRNXWDNXNg>r zv%Y(1Dy}K>^*Y~jb4qAHnXH!gceUqdVwbPlcRcf9?PRXg3Tph4FOJ+fAkn;~IjpzU zk7>#>&5(I#qa-VLpYv9nnsU`k?Bm&>s&#Al9^X0nu0<s5U);rn^K3^aPL^Xx-*_OA z!9-u>eGJRePk}iO7h>k=q-DB<@64E`+RVM`PoUvO`+TE$rpInb9MqbrIEQ=tj@Wl) zACI};Ye;zZJ?+8cYoKn91>-L5V+Hjur-m2S{<dOBsIER8I%UOGXO=p}a-HW<32Qh$ zYNS8WpDwp$z0GG+o1KDX%eM0yWM!^@KKFFwJL_W-HV+pjpB7o0pLbyU$0y<I;t&2> zb(15rbXrVWs@{<WN2JzFS?subCzGnO8gFoT--oBu%L)oMbf0~z&A?#)L3>BO-^3aG zoJS33YaG74;?Ewt_B(sIxDFq6PCuElIIYQfsif4;Wp0^#vNM<^ig)=OyV<Z%>FJNp z?`~XQ`OAZ$_y*_6yOI(n+xa-uVphx-ICPia%KPA(UuryugOg8d-&LqTxUud3-dh*; z6yDxb(^omW@LaA(d}i@sxqJK~LDJ6iRAlyjdHcC;qTs#H3QG(46yr`^O~`we^jmj* zUGcxyMt^G0^RpY<KQFOT>)Ys%=YnX4@7OVceeMkHIbXJ@ES&7L%jd0E<pU>$t@pm# zM9L)C1RG7a^?JFfulU?S@7<@4FFl+*_r2zGd)@bMx7Zx*Ie7BcOu2h?pC9iw_4yrj zrm6DN4F0EQa_!?<AAhbWD6XtreU;_;p^#dJ2fw+lzmxQ@JSDNs%$$KCeBJ#cU28Mr z)?ep3zwYa+X@_n4>Zeu5RMmZuKL4+ZZ~AgSwqp`|6b_tf%Z%2wuz6j3>&7jo%U<`J zC#6r2pZ;#vWHWn)Cui3!RD2UYF=$b4_S*Q}Wx|C;EnBDZe&7CaU;53<wl7qr`!hp- z%ke$uS?GI1eJR71nc<AWVFnk{oTo6&;a5|g{d?moCN)EOehpEtWN$g6<bN4;9g{BQ z%FS$PNW5dFzdd`Mg4XKdPn)0h?A~zF<m`bZUuSvC&pUH{R+7UbJBdvUJUw5M<Chn+ z9+s)rH#|R~(QnRdPwDojtrFLFhWI&iJzUa#+<yM&qB&nqcCLMOGCRieh0>;q``e>3 zWdj3B|Ic^5Uo<IBF<>=o#I{ML$3&xYm9xWVEzVB993D39;)abo_Pw7!VG7@0zVqBa zcO)dAxM_B5hUvUs#dBV5@oTR&<eS^OXfl7ze4E`DW>=(G`+Sad<%e6(q#ju~-AzlG z_Pp=+dCNSH_@3;O62-IcocZ3nvZ$@{%MM2)d7W*IMmv_BOy+#HeyV@!In!&$=bHB% zJo<?{@`>QdDMgP1E&2I3Cwm4OF11P*DEz5_d}PWQ#wU*I&*V0*ep$C!?(1ah4XOF} zOpGF?+h3n|^T_s1TjlgQuectpeD3DuW<G!SSMk=%o7(ifG8nZh?Uzi+*t(`XCU4PI zgH117(pN<D=j;tj@tx+>H1*YK>E#bAJnuc@G~ed?LPm0PP}c2jJqNeOTmHOMX}|x^ zKAX(=#ewbms!P_o+FxgWwNmrv^5)>_XNsj`gVHKJ^>!5*$d_+POIQ=|@P*AAp`&{Z zb$T8vZRa(#J>j5!?(CXt_m>}?a9%H|pZCuU9p`;d=bS#KcGAN)?~<DTuMj=m&)Y>T z=l4uKsI#p`JNZeE<1e#w#+UW}UHfb+zCAA0uDh~f>bt2Q-_N+{<Sn6n^zyWni$T9! zRr?HY-#p>h+bH*gQDTSg#mKWsRY7H2<dp8#8+PkHw(E7>dEU?Zyz9*kF)nIT^V?=V zv3|Dk+PWTn6X}?5XG^xTe74{e7Ik2=D$M&NvAJ?)MVhG_FMsEpkll0sZ0O!8vwDK% z%lYEdg7f#>Jo0aT`Tkcs+>cDYbW})-HC=~GG3}M+%#zsKp9GhG{rf2*og>n#BJ{}3 zutK?~G0gk=lOEc>+8BGh=)d*H<*O|3CuZ)M?S5vK!vEZj>n|?KnHJ)xcrWEZ$Xr8Z zBmd`4AzVin2tyk0po3Cm9OOzK$y}Irx4UeD`qM3YU8Jv{f9hlX<4jeN`0dP%4LWJf z&m}8GpX+^__F3uKr1Kuv?6z!q$Z~G+uH?S5zmmy%ee<2C{13QTDf8Rr+`+<YJx`Wi z_X)5J3yX_Y(|?*7v&Br~itXk=@!r#}yXCssw*G(G#8dJ}CM5KEY2eKD@Ap<*{!?;t zv4!bYk&jFfp2tqiEIT&onv|ZbqV6QERztRV-Zv`?r~By{%3235{#Uua_Tl|iGGSiF zcfIJ`(Qz~>&P;Xw?_b?E=PySTyu?hoZcla`S^sDG>8Y+YOM1_AiRL`<)GR)?ZAZ%A zFPn<rx%BGs2R!sW@BNl%PeX-XdS?B!>MdL4GVXd-U0iJ)QQE$1!@d2*g@x~pgLM)e zFYVU5bSv3VncXd^aUD~jV9Ekv<)W&XJ54^uQw=A5*^s3CVP|TM-rR$g=XNPgUpKd- z(0%!%y4^CT7e8kEdZX=)r1{ZjrOH9Ci~MKJ`|>B|;|uXL<xff1`=e%@Hd!gvq+I*u z=DV$x`KJmOOqhO}-SZA7yu?o8Q{cDy=;U^HtM$KKl`H$}3?=5xcyDB8_*O}HanQF0 z{c{x|S8mNs^<V$UtT--x@k`nN4Z*1!^1d#bW2<c&)v~$n-mZleXT-cRYZYfUE_nFH z^O4>*@wq!<CN%o(nQ*W*H}hBe&--licZ<CEbG&5#|3?y%lOLbiWS+bJbZYm}8A8WJ zCw#u*KG&s!ap|VbcFE=ULy9(Z^%;lGE4~zL7IscKKbGaOjKtRYu{t|{%kWNAUc7L* zUEj3llb(P5UpcGznRM22SCpgE4B02J&$Uoa{dsfabG_c*e|D57Ma&l1ysRYj#V(&I zd%}M7_&>JP=`#Olq93^Q-Wy{Bn+<7mlw)~JN-}TFzFe8Fc$h2g^b+C1v-_8qe{^|N ze1AzX%hsz&j%-$elEu4x6!jF8Q_Yv1?AW0&=h|8Ic{i`$OP4Cn={Psbc-8vz*-K>Q zKcD(|(~^05Mq=3GTT^9b_X})%wQZ@`<da96dN(^3)~vC9sGv0O^q+h_!Q+Y;rJ)+r z+iQZCADHkfeYIygu)sU7@AnaldoMSu``S2LPnnzPEYq$3>y2gJCvl?}YprLld37e) z$F;ZcQ?a=Hk*s}3Bqv+WblqXnGxdD&hJfEUxMp!#EtmWB;!?r6Z~I$xOA{5C=dS1} ziji~l>3$q}<Zb?fa~?cpoY@hKpHolvY<xF&$D5e>H5Gq^w_bBiwOHJ`{k**Ofkg&O zeA~Bvo@wSPwo!Ijr{4b=J$Gua@J{vQyd#;j)3Mk{RDQ42spU^^?O((l_|kmd`De2k za!xG1xX|=xk~5oCpsb02fbqhJpo!0GHqNZ@`Dzms<s6zfWe0oc9r5!!&!1wu)^xu) zhlM-0;$h%#^R8Z7<0_ACyY;>9_Idvv@LXRsrJQliu0u)PhUT{Zy@9vB$Zd?(`hSl5 zVq2)uA3cq5b34O-JH!RL`7jEerWwLh!XET|J9F;zj@@4~r#W#+2`xYPdEM2didn1D z{&`=08uR7#V)n1sl=sxtObKIfcx=zWllgz<R}0^RoUBi|gK~HGgiL)p>2u6gp+d!l zS2Z3!m?Or%xuxgu%}3S$*7!dRa(;aN&4O+7bxppV7kl-8vnz+;>tKbBoy~5l@a)wz zgZYHRe8c#EpQay_I4r*J1MBw~5!WA&?f)gOS+{P{#f%5r>t1jFaFAV|XV3d<YomXh zz5mD8M2dIKx^<8I|2^>+IR0^q|9to%ZYwx0g`S;|U;8@x$L#$-r9rnTN>}{jj{m{* z@8A3Xa`FFvUEjEAQ<Hw($L=4!_kZy2`Fze=z)9h>QO&#J`G;@alKS^F{vRvo8lCrl z@4a`-?%n_I^?tkWKUF+=@|Ko~aGJ=Tx@5KV3eWi`ML~J>ul`?d|MfrT<n8&l>UL!? zEV}ajvI(n0(Cf^FrV1=u|E~#%a-Np*HggsOgN6Fa-zFAz{{%jB#x9gBEGTF=U;pp( zk5}RQyYjZbo_GK5-J_t3%N~JmSou8j{Da5x|1I`?+q(YY?)!iB{=J<4kCWj;Z+;E) z{r~^If84shmRJ7&kK-R_p08nx|9L9>!`1b5qSe*an}2yBDi?_fjdsfaUiAOtnE(6E z^A9u6*Q7o8S$?mQ-E-1|&GY}Rsm`memd@YzQ*GbRv-wO6|Gvim7X@**ZQp)3yYBDx zdf7mchjYvCS$?<VR6O8t@9^hC64Jl=BY0TmJN{2UUcdFfZpQw|E1%;^GWJC3^u?>5 zv#iWte&XZpmRt3^J|v4b6g%Ggtm(A*NRorlcgYW5*VoH}Zt3{AHox}uk^ArN@8`e& zoqf+Mh7B7xHvazpe)sj9oE)A%dvCuz^u6}`tVEZ<7LBeu@74FdExGN-#-`O~=<SyC zKU2zl>G@OgS!)-H{}MA%pD*3HOpE91?~}zf(~p;~csc*nQq}!zSDt|?*B=+AJ)E+$ z_O}`MrW(+VBLZy?PrSbz#b4pxR_WEZ|Ct3S*<E~Da%X?`^>uUKK7p6|9i5JBzot|^ zpIiRn!$aqqPm|}jOc4t5`t#ZTzwy6U>;G{DdFABfDD)-2dGm&6&-;gm+s|e1+qtvy zQ1HIZo0o^U7{b;9G^=>}Ra`s$2XvWdS$X;0{kOO0hyQ2oRGbi=y6sH-@6DI&zsn>a zdp+}iw1G#gZEeq*zc-2%bgz^cUO(_>@ifpOaL3wtzG!}a>0d8(A9PpGyWQ`1)#va3 zYi9TV=lR{o=RJQY|No=>-RgIDcej7PSIxiw&*}X<3_q5}|5Dxa{a*Es^7r$q&zkT1 z$jjo`;9vJ?^76Ve0hWyIx0(NUoLsoIEzZID^`e3(zlKQtMd^QkUQRBm-M^!6`chr* zGoJQx3pNC#*Q)6+dsH0LknbbF;;17b(rlL+wN~t2&F8a?&!u|V!otGteBS^6_x^rR zrizG+JoxF8(Y`NB^&hU?ey@o0son3J=O6W&-#hUB-@EsZKsOD2{PHrm=B0Q1A<!*D z6E51ii)`Gn>&qP{EBEJfCV#y1`M9V5^UU?kr~alCT6JG*etTX*`|IC>@9pm$yZZ5U z?I*k49doWK$mjg`EZh`-{&(mKC1nm~>#IicX77Z>C62|k8$C9QEpJi)g`4FQ{r{iz z6_*~#|Nkw2@%7gaFVFvH^6%aIe|(3o^@=z>kpK5k{zH5HkM<u^<9~`?$uj+O?)@LW ze~<M4B^^sg9JV+|d|Br1_m?(p-`?)G{Bd2l*Vzv_V$(l+_<p{<F6LJ2t@@H<Q@{J| z|LgvB0sr$ihfAi)y%w}DjCkZ#Zgza0{MNs34c&9Cl&vC;Xs-Rk+djuWd8+5i)3u8E z|2Kd88~ASj&gdwa*WO28X71VW_w;+4yOniK&$k|QIW}*SdHKJsJeyP3e3O4zH)r=h z`}7O9(znUzYwy^-+nei-WwXtTBQhH*RI`p531mLnS2JZv|MQpD$L}wW-@su%(V}Og z_`Y-@p8v}h*Z+%*K6PTcc&?4*zL`az{%9MXJD$_G`TOmkTKbiL-o%<(@km84=RN;f z+OGJ`t$?X}IgNg`JuGqZ;b_{iB4CmQN^#xncZM-l@y(t$7W3=$lGFW{`4ozamv#MK z^=0?9syB8ad*)6RS$llxuH|#2R=unL{4~<`t<V{9SEB>M^@Y#t*>u0Ykgr^}Z2oGW zkHU|hn6GhbG+g_y{Fmvh<v+h96>#RUHz_=0F}l!cnKVyKc=`O(k-Te!*U!&C-6+v6 z8FMS~*^!SuuO^@6SnoaGGN#L)`*zc2m&yINbCy44n8Eki^c-)?44ZoW*D}Z3Y`=X; z?(e_<dg*?juQnZy8MD+ml4MZMUn^#)yukTrje*$&jq(}aAMH3^bl|Yj!^^vQ&RjFL zuzRf1V_mo=xNdeUd-{dy9V^1qH@&#D;Nu>#Su<WGM4ftW$@{dhHiVzwSVB(e<Dofs zo$ndTddxM_J$K`RNTP$l5s3+negf$aS{zGX&8e+Pn|GJ#os!Z1>`R+tA8c~0-d9wc z{{Kv-(TCom-5Ezd%Ub)%=R7$-%PRQNzy8HFa{K>2-<i&IbVf}S=Mg3L1Km+d`KvRh z8P9pYZEwY#uVpj-|MM3(V&jZ46ezGfAeHTLW>rLoq>&rbi|1c^g=-6=OwS(o?5tb# zVawm2P0pcZ_a|~^Yn)$wzD9D>w)rU)$98-+Iht@=ZhgLeT)ItNuHNIRv&^P{u8VNc z;M6Z<RAip3;J5ISMdB<IJ$B(;XQHyF|GnLE&TplC?`OkZQ?wV9aNC~G+n2-rNXzS; z;N#$@ZAUZTTb@_THD$fu5m_+t`Jd;xpXOHN+U5Ih5}$r8OMLs)&eLodZEVMo6Rh`4 z)YE$OHm&jf8hku4qqX^Y?Jd<W8q)q(3gTZXZ9nQN!FAmCk;S*?;`8g~nF}TtRrUTn zeb)2+&ktQ3QU2Sl<5I3N75-FUo~sadV8h85TRf}hOt{<K61FQPfKSZz@`a;ClQ%ZD zzF*P(pzsiXhR}RIb@A-QTX*l?wp8cV^TdtoK7S~lyRETe&)IYFkqkRBraiimYaCY0 z(?7Yqe(!=@yXuma4-VaYw(K;|SNA3fd7}%QkIuYcWUiUGHzst^*0vxnh6zUuFPUuX z7tUCE=a6c!<PL+2rcM<fngtjh{Ipvlz>qV$FF?CWq(A!|>%!K{C6d>Fr<fIGFsr4D z-Mcf<{&SD&7d@u*yDBo<bNlM=xxRh=`P9nCGxx>({pT96U!@~!fdtZ7THt|Sfn+D^ zV{A)B`1rmvGJLn+(fynMJtITkw=zLj+a(h}uJ~SMd*VRFsp-3B?<jiA#*k3`TkF<a zGX@6^&UyLr`z|=wZCZ2jW46=u46zp<Z`T@FJ^HD?*X8<-Q(VH2>z<{`|93k(J7DVb zYPs9HCp4b_W~0{KcFlFoSDU!@n~Ap`Z8Gx|UFgVCC}VV?^XT)|Pp1wZ@-wLj^R}~G z>e=+W{5=!HzvuS<h5vp2ZO_7BQ&%MK?ryt6hne9^->(n0@(dgH>}&J?w>_Sf;ZObk zU#mIR-mzW7Imeb^CsXr;8T#jHR)<|@Jk`A}P<UtTwvDZM<_{Kys@Ut+MP%2m3XHn9 zM>DTcX+MW?{hD7P=?<003yfSp_~q%z%eQwKOMH8|?ri^Gl~s#t^kw$z`xMX5sV>vG z&*!*@W6}<^-gnYMO?9=)QI4r);lfgLX8u(_c6#?To;k)JYScGhl0EC_|2I|fzHQ%Q zj_vpVTQWR|{{Kz)&ky^07KR(Q@4E{ve{sB)!C_XKz#$%6Z+`hj_oCPsYMw04fAnhW z>YstjfAESmFPbl2E4S-HFVCAhw|QP1E_-v@`se4pi|fl+k6OrlZ;|;viRZV@u^%}$ zVa7Z2oPP<e+8gXXnU`PxrHQtiZNKXT7yd7mOBcLJUTTz*`Rtf%sMoJdm4DCv_IwOt z3gAqfT*sw&K$7`!_d8*&YL~O;we(kClZv`&c3pClk7({Z(YNcTTCK}xU?|X2Sdv++ zsj@@hoz$7{5%&9e&T;<S8gOEbl0mTKmfiY3`%he-Gl!ew_H#?|clQ+Xtqi$R76@~9 zP7YnJIqAp|Gxxt7e?dDSR3w+oUGYbuVal@A-ii;|?QG672W+({{3o6;Sz-Q`K0f}! z-_7$G7~b94+1%bQH~V>Y?UKw_Y9>oXEVg%ZoIiZ;pB_WQ%PYDMGMJ=QP8+#Qy!qh9 z{rk@E9|$lMR8+hW%e^#x!kI6{yu6C4O&3~te#~RP&(FZ%s9Vzi`RHvMqqnEmZ{i6Q zab9`l&$`f!5n&AiM;CSPb`>wL4dckWU3^IW+_}lO_Z^AU>6#>Jbn^8>Et`~^4i1~8 znY{$rj_xq1`J5RQv*hDSgHxtPxBox3a1(N6Xt)>1zxRc}-+hwJn>5@eJ^S9-w&nB6 zCztN3JFe{uTg}XnVKVzejr`Ay!{S#1^kYAHp7|D)sj}^t=l=W7?>}(tJ*@n>x~9d# z?7Fk6=B6`JuM;Nh%lv<VUyx0$MkmMYV$Qa})z=wj@J{ah9w|J>{^t1^7OpGiT)R~( zztnWonJ+(0`tI%(I4T%at)H=b;Uwu7bplE}zQ5TW8P3P4YwqPXtrM7>=;-c=sDF1v zOkkfIVR1_6zD3{0{pmIv_~q^#pKHCHfuY*^{DPp(pCj|HZ``wokKx9xTZfKaoA!Cd zWxZz=8EYplJ7&CZdws+Fzkkda9=v>f+`?*;^%>6=ld}_|_;+1v5C~&jXw<UsW@z4( z+aF%+;+gRMvqo3J`*X4k2l($*i`)Nyd7gpc`@8$jLbLByXFRo;$He0(vEZg*<VSO} zZH1q=UT0)jzvr9OwXo|6@jE{B%+;{tzvv-kQ}>5qx3xbb!%DA*oR52jf(~r%<ZU)+ znZ8=EM*hyX$n&2cG#^|g;VVDS!9Fdu{F9}HclAz}kRIN%E8?f-SchMK^Zxzg7Y`U3 z0$W(-Wv1)7E)02a$fJB`@k-_EA_eCT{(LF-ZI#9OA10ihC08}p3LHPyTwSoC|8II) zUhS73g5S!^3kniem3&#e@3Yh@o#Okw+<gACvae;8Z`ikymEp#nTW;l*H!Fq3uQkW{ zg~vZ^y>iZbwLs+6LzmV4KmK@FYg6+>fT5sdLwnu*Kf1w^MH8(r7jU&zE$;Ix=47}K z8+q{8GqD|^o~?@Q8%}NQyeswj&QA9OvF$|`GlT!7`k7vO{k0(B_{!$JwlXrajt7=- zOwE|SVMpBh#W&5gCQZF+T4MF=))U1#mX9_orVDVlc3uq1E4=Xj>&FvbE9-w8{(s>6 zy}x`658ln){X%x;$upl>ubG=MFzo-Z@_$?W@2&skd)<oJ((4N~j>|v0{^;iB^ooN2 zb_@yS`Sl9VVzfhNeR;rBc>nW;T}kVF)3<Uvvh6yo!{;+w_Raf;?EgP9GaUH;Oa8y` z|DTiPnHkE;%LH!<@Mo~*#-Crn_;8_^)Z(J#TJHTnR#!7Ld_C*CX5Bi!&#UKjPds~} z>sm|ZtOxJj-mZARx88jJaoa6Xu?!BIFFS3{e7ftc*sHBp3=6_mFAh5|fBnEKo(<ip z=YAge8Gd#7)_L>(?2kEAFv<J<6)*SvzkkH;{rzVBO;}k+fA+?OyZ7|Co$k4rxVAHD zZJUBY+k)rSd529uFpKXyVmW_xp^E-R)AI`hqO^|`GBH?KSsa+WJZ<x<i-*~7RDKd^ zw@vQ&Qf+&ntzIRP?bsCSHvKcDmEUsCOU_Q<nfHG8g;{~#m(OZXKBc~3tJ@Xx$3O4A z<9l~+cR%}gpVTRbo0*ranh^BdZ64Eu-_HuyUvIDFoH1dA>Ff-XXofSjlk$6dBvpzR z272w@uvaJe#1z8|mo17PvIp85eP?L++sypt?K=j8&m}_Y9&gm9i&tcr`TSm<`O0iX z*4Bcm_>PDOu@dRY3h=f0dSamQ{CSUOPBjia@nPQEcMq<ezsJt-=fVB`-SzeFs~H;D zzrR!N>QQ&#Xgl8DtN!5F>h(Hb&i!4Zk^VhZL$x&Ml&XI9r!R`{Y%5q8UVQ)Uw{6u{ zr)8#7tX`IK92U5~E}oHL%PZdLAHQrex^O+zbMA)UJodjPew_9Hfqh*A|C&3teN`Tp z4^@Xwdse8YuvW*~&uCBH(%W<NJ(%`Qj6M3ea`UHc0*4MK?(diXe<DQQ;?>cJcw@OQ z8}2!*zRAE~5|wKrrB<@w=9<O3lMb=&IvqRt>Rq|(pKX+Rk1zOM6P9Z~@A~>Laj~^q zxz6=`Df^!wfB(<@|J)3qgB(kukNv(9`EtSLlv{gtZ|U({-F<D+#O`%#bdp!@W@3oA z9dmrr)QN451`|q*me2ZT??2<9P4&6r%=K=wW>jvLKl<W(&Ws?Dh4QX1BG)JGzutcC z%<GV42Xmdm)|yV)@;&&$;}z*bb7bGiD|9|?J&|Ic{mINLs8ywF;*HmW>YPHipT!ub zXoY(lYG^0>8@H-#j4RVf$!s$@yMFQ_(f^rKCLeO#%~BINZR)12>L(`IG$u`)u%o=B zp}AK0*T(I;`z>CHXV0DIcE$Yd{ym#sZQ6S|*P(~$?z$r}MSG3}evDA;6c%6p<H5b! zJ^zCzTmG@H|CD@ZcQ()TxpQNelo@<smOou~AU5u%%i@bMcO-Ub2K5~eihPz5pE^n9 z=)ZXr{p@%BXK+7%#$~F;Q#DOxN$oV1bKOPOi4o4_nP=_z#FqTI{zPNb@mXf?pU;-> zpZDONtnmH+A1(&VyqVpaKTGYx3Ga1`r)<+6-1*xUl6sC~(&ZD+tW{UVd?-HmfRle> z?1Z;(ZJD=3#{8`7P!F3Ioqr{8`=+C1%X{Zd{g|~>ki}GdU*e;MzV_GGgxo4Tx8!>I z@?Td|<;>rCb~<NYxx4Rc@tvlfV*5Tki1e&pe9>X=wIi>(ZrViNjXB!;dOZV!-JfUf zA8)N*KQp;(x8JWkv!z{z^?$y_KY3kl6(#<0b5yqYbDm?0OIiffY7TrCU2ry;cSmpN zQ4^crvlLbwo}Sh`;c2Jj38PBIN=?0&KR;wC)@XNsn=GQVRrRuk_M?+K9R#L)PJWV@ zB$VUv(&O{??wj@JyN@MEKb5|lIcu61cbcAvdatnfKEb1$NxLV`d&!fz>`tw+@s6#1 zUuw$d2mBUZ>=4F<IGYMGmBzMtXY{9A)1K_w`8_O^D|6C<blYzCkBal&O7p+F_s;lB zRa*FF`J*S+u!nmzrrlPN*j4#h>yW_`*)xe5JQe;$nc=fkJSH8fJR;e?nqSscaGssf zrI)+6zu%FwY-Z58$VH!GYo?dX++DR`_3G0Rw@u_qUdFz=wIJ>Jy;CnQi9~8jCUx-? zPP;C9Zb2+tcErhzCmGhn%+{WK<YZOkluI9S4_UnIZ1oc|(Nv!^Md<B2A*R<~y)Q`w zrrgr^3i=Rp@3#GchZ8@3N-KP_Cw#3N``;D)RY|Y;ycyT6J<i>5%2sntlR&eg<kj|l zXIht@`Tq6XRJOZQMNM9-O;PYm{?g|&TYIWy|3di+jz0qa^QA-&KUViIC`mZ>*KKv{ z+0w}o>+WTU9M|8vbBd5pPx!usD=O*TYA>(tT2j;0w&DK8&ox(GEt_V^pi;>4Y|iVP zggYnWh1p7fEc9%9`cuwf)mHICUS86Q5-Q0ba;vY+_I+}AUy!7V`RQ`S)?l-WeeDW5 z$K=npN-K-4)j!vCr~2KMCaI&3CpBES;$rS!AQGz5A~2z`|BvpR>?=}gof#499X*QY z>V39qmyk8O(0Ma>mc^Vc8lExVd}6y|`!0(V?r)EKFTk*2|K@Jz>;>|!f}3>u_g~Vh zxjLP3+qU&g3}$BA6_3Zvi48H~vW%G~x-mO*meT1U^OsYS11_5!Zk)QruJRkt-Wxho zrUtcUoSBw!YPpJ@#j7&Gy05=Xb8>T;4GecruY9DH-{lg>vUF;9<>ROY$*EV*ma(sl zm2vrNcW3Jfqv=O&L%F=Nf0(h^u4!Fy^XMj#qC}Bh&Tj)Ivn>2{{?VL;H!}{bzy0RH zq2}ka%^qLUHu|l_mTK-Nv~=RqO38U5TE24|7f)?-`nUbi0_}8h`~3Rz=9l6!DsDfX z{cP5Kokx|{CeplHcB@72d;hazhpfL>(QA{?2Re@T)1>X+$UZE%pTqO+?Yo8YGykYW zPE+#k4V*E}>6qm6XZJ&n&H9=9InlttJiqFYbH?$P+b*rRnswoXxq$I@Lk$)8u&zY$ zuo)+9U-EcqGJBjm_@jx(CRi=M_}GI}i+;}I*XIb>EUL_8-|*$_E!WKSDcmRL_RK17 zywDe!m~g8mk?nV-<LjiV#G^Nsct3WvJmT<6&T014*i6=g!jF$K9GKy>H*b#f)(w0w zpFU*2{6p!;B4;)$!{SdH12jz&7N~5i37MspQdW4!-saH7f5vxq=X>?v`TIbuOm60p z6f5tTGYh9M9eQU_zB_i$w_TmyIoogN87cETjrgyW7c+IzVvURqN%O*I2CJ)NHaSO2 zm)F;yudMMknvxWFDk5;%$;m>mx1G7}e!oIkTU+hmWPwLTelbf~Oe-U|T68UBoUY*E zth`3@{E1_)jIzQSC%Du;S)H)dbV{s=`(KI7S-XO4?mi9OVttx{A+!9W_VP!!4jlNf zbg3Y(&!QD3&7h^TO*2k2IA+LgpT(Olq8|9@k;~3=6K)o2`6&r+UQztCzv<kW$~3Lw zV_QDibaa_<#y>f!`)WqA;-mV*2aZqGPBY$m_tg$V=k%k;+8^-5c>S1{>3mSa<V~BW z)Ixd5_0=-2dBx!`d75rs>f6`<S+!C+WlF_8*A=yP1x2a+>qI!5H%F>kIM2EoAhl+K zyN6MnQPPyMjsH#^d(7mZ`$4gVW$}tr4|fRFoayDg^!Y)xom8c#-oXbqdBc~P?$9WT zeezP&;_-)K=Dp9Hf5{!SozEH@^ylE3<dC%E6LgAAFD{%a+`@5AFk&k6lr}!+jMp(t zk5}A&{hYl{^SfXy_oJg1GCYyin=({h=$sjJZpO@1$t3A$&_O86t^FAo&d;+udQSLr zMR_{=ZtMQS_so+o{<_!P{^P+tW(J4<EAnmjGBDY@>`g4wGv99Z@shVbBSY5Kf_IM% zm-|mtwC`{9yUfx#wd+`BkB;vgbFI@s;$9!VykwNKt>ZXw!aG>|yKP;?u^G2duD_bS zqwcK~!-K8Y?cOB0{#2d%c&hOUtM}SIng?U%ZutC!v5)U;@;Me8?Wx><#cE#rez)P@ zaBsRwpux@*-|D>l*n_{?I=_Ce*&mdD>cB>c)jHP-Rn8Zv&JU@XC;ubkickHNdF=Wo zxzX#lA86TW=Kkiy)JmII@{e8y8=J9iW#~;?{bAXQX~EhWYv-yI1;iT7{TEl8xFzdk zwBs+ku<+}Q45wGG{=l@`<z$1(=B`yLrl~A%cW*K|x=vTI;`#IKA2ypti#mC2v2xQp z&*H9Yz%^yhm5Vo?*R)l4gjU3d_<8<3l#p_%;p4Gqa`uX<5uWd&r&&$?E%x|M<%6l0 zCTv@~*TCR0-~KzHR(?lKvrjhbskVsd#WOYURBL#7{+w}NP>p4B!kQIN6uqub(69O0 zaWZh7(2}iX4{JT=ScpbXa_PvCo3!G7@%hy{#owI+Ry%UMd#BDDc4Ptj!KM1j-g9`3 zE_BYEINkp=`*9QBjp^QHclZ7+u6b_#o{6FE*Wv#M&Mp4U(4b*;=;B4evK-6x>A%@K z-XvLu-jbYHC$J#*^}~BR>Udvgs})X&Sn%Wa%7CuzK{GWI*%{p3+bhz{UCZX#wt590 zvAulGQ*7~dbHn-l?`#hE*X5kLW4o_j{FKx?25qmlgJ<F^e>iTwcjRn%92-MU{N7jd z)E}66ELtr0&UQ!p{Jr^E^Y?$BTmJF${68WL8+PwzP8Ao3@j4*+)geK=cx{;MrSA_p zlXdcPa}zR8wg`Dd#`3j!>iux@JQBL};bDn@)mJaRn-THfflFai_vRN2GuJxq`Ts_e zkN=ZVxnbEF!TK$~Iokc_KS($}<xf=neYeHAeWGoqSKhdV2(W0ZU4Go=rSYCEMmxW< zocU`bIrGbfSj|_nwNr1|bStH_o5|VsPF$)fl>JBbqur((J?<XCD~{+a`d&USq4xHZ z?GbU2ho5~DWpLPhv*p^sh}`;lb^8U1%EMxA>-gSjtCVrS;3aDKWEStS$>LXU#6<8W z@9~&-l*K}s`J=1B6ek`F=F6vA3>h1)oiHlqcQ7;vY!S_vd-MBeCAnQI1=+SX%Ge3p z|F68)A;q{<^pc9(`x8$rtgLLD&Of`+`MdT@a<T5Oy>)@}?Yd$sgEd+9EMPnK$ycxK zz~)4yM@7$XD4yfXeU8ZBM`Rq<X(v5<V!fwO=HbJ;{0t2L|Glk0{Quwcd?p6Ddpnyg zOydMoqzc89UrGDFO%ze|?LKq0^3$?_D;qBveLD6w`}&2KQtNq^>uh4qNN_kf;k}Ig zo^o;fe-HT?7|QK_aQ5->UEDl#68|E(U%#J~`pelLUYzb0SM~m)@RzkLXQrxc+z|9> zc9iasSHIL47F^7*;=Gr7KlWOba%WHblYe{pKg@k!BW?flUNu8Q^!B>8<<`3y8dN&x z#@yl-QF`t9=J>|y{a(Q)(!3|8eOzYps`Se1%0tVwY+hX68Me4$R&3L%jke}ImnN^c z-gDjB_t%ZB_in7%-n}FLR#|=d^;E9#$Tv1^?dRt`e7V@Y;?n_@4R>zbI(Dhcv+YJy z<l%3k!q)^_7@1}V*2lQ<UB4LmV^48q(Z?NG`I66N)>cU~2wY<-Sgm2%Rb_F;+v3<n z-q{-;T1XyGoHX6((uum1XKnvB+v=>9zIx)@*Xax1?9^MoW<guk(&x5Zw^W&C+w&(! z?woh?<C5#|6Yp!?TC^fxIQePk!x`Re><a=uX0RoS2F4V5<T<-Y@t%47eV(;M%<e4S zFMU-NY0iH`qErrU-N^B5p&4fpqe5`OL;tns>{!zC-Y(YSdMi<NtJ|hLn>YNPd9d5U zpI6po@_qYOc*Q(>?uz^F(`H#J^i5v$C}5VQ|MG9WJ+}I$D_ToDJ0+WUUliN9v*V>B zo0XyQ9GO#mVUd#_Hl984Z}Rv2$0s+ZGc?Q#>qs`1Fq*39X>_Ert&msvGc$wJjvwc* zJ{8^b<r6Q%fz#%B3-XK;Chx1|Sb8ao{kK}lgXY`sAOGL?n~&kax8L?h&z<9|`n%^? zP0I;8yH{T?Y(D0t?=|7s)?MC(+gvL(rI(AgM1Zz@Y>mp@sQz8+;;pT(53}<Z{Jy4p zr#k0d``%{d?Ft`k9%en}dbxAPMVn+JhLo92mt=aE8M;ifI?a*8lV=*r<JZ4%-MIuk zJNMTwb(kzAYNWr<Q8S!pTgk)lA)@U{pQTo3Y%B9xlPMc+-Yu1H&*c9u9L-epT`(o1 z=j_s_rs)s#*RNTaYR-TBscRxbsMLkScFVFnwUc>zcfH(fYOiyO^V_eEw-(IS$11`e zou26U<oPt!7hlgxl>IMkyStCqwc)_Gudf+=VqX4OUb9W-!)LwUr4K#4l(#A-?~RlH z{X31%Z!w3@he?6!4zBG9H$Kp6o6Y*<^TxClSI@eIsK1@{F?-+aM7<NmlTv0LI`~iS zTM@IZ_uXG^1-$dZA1BD%x+h#HqZqs_UQSNVsmd<Qd>aG9Tb<TxX52PscdB+3>@o2! ztk}>$SN8II{%_?AK1qBrDP3B>*~F~d|3;VjH;<ncbHX=sW+i4$x!{_!OHFxhg`r9z zXtEhHR?%VEVDsY08H3rKYd&n?>U%cn<C?tK-HkWi#mIfFy0LZUr2cQ;FT9q0v>|^| z>5soxRQGbd(k+?ZGw1c;{C$o7HIH%`4xF7H?|L`w(vrE4CyQ8r)2y2K(ZaU!k4Smm z%!20V?eCNRCx{28l(k+~am*?22n|~yIZ35B@=mCxA#d`tTWyUu_r5Q)exWD*a^-v7 zj7L*AQ)(_nDW7&`UgEI%rc?RNlqG3W9yv`?4vxRlUWmn5@$b5HsIp#qt?HUJYZ7x0 zryPm9d#m6(L;9LcX7bMt&Yik_gHXO+`iHeCwx^8D&vDFcihR$Re5=xb2E&$GndOo! z{sko&HZKaNI2nK5A$~mKrU~b1CFwSU%vJmN7GL=*Cw@%A>2>Mbb?Xu;OOMu71eRO$ zRe5aYsa(Kz{nlB=c_JK4k0aMymC}0{zxi&9{EWv%ipT!(Ez^v<BX{Na#M!X50F!r$ z&bVqCUZ1kG^rZI;1>c<7pFYj0D}{Lr&c(dV<z>s8oRYcpz}u;TTpo{NUQSEjswV!c zThpj(d1Q~px#zczY~4JG>Cn&XQ$8<9&wLf4?#0~xoBhT2>TiFu-c6O+?6BA)WX@8_ zM=Fk!o`@<NZJ!o6Q|s02>;*Cg6STd3M49=HeLnMB#z!RbOYF9Pob~FDk{m$!`^>Io zGYnd$M7+{rX0ZEn%>Co3cDs~$=No>Pzh`84cV}ns@BVj*$G!YFtGHg4l9Rrk|L7TS zu;1IM;c<tri7LO%GMV+k>uF!d;~P6P^b~d&F51a+F+6QjW!V+?{o*^<ERCGC)74>> z(R62r#T?-mF63Q$)O7fJZONNwC%;`YU86g@cZQ8#?Zp`$CYs3)u36-mP5<!9-L6SH z-1p9>bC1<;+%`6Rv9im@)0AP~1lOF^>JPn>Th^>wzj*hip0e8>YogckEqT84{7Rwp z9gSyeo*J&3cuulC-<dIMD?=l1??un1y1a<=nY+dR_&DCUz&q8*fV1GUdW+Km{<Alh zDE5lon3p`&ZQZq99j@u0^_SPl^)T*B|Mg+(?CXKskNrA$&Q9)zmt4QxoumK$*-ct; z!h6zlxy&oC@`AIne{-3wpP40iwv1ah`l_?f)~q8c>s+rMtIRYOWq7=-cFB9?EvoF2 z{R=l;NnQQSNkqEY%Te>$yy<m{i>EoxJ2-1{p`FoBi-U@Lt#+gzS135Ljo0~|^Foc= z63fl{eU2&A7N7UfZ%Epsk-Yk}B3nB5#R|cxp-X2NN->DbIa$9eJ~r`&@2Yzj1s~aT z*Uf4wwtlbq^xe!2VhgTih)cKa>%VYL-HhXI?YSm%QA1XY>F!R+;9Kq~JdPP<_ph6q zUCg*qb;ML&fB!!#h6f)PyYDFf&U~jnVUK3v75CfMr1lm5Rn55(wf*kX)GIm5Ql_qS zN?I<W`a&a7sC(A254QZd(n$qxpRL|eczK23ySf7I!v7qnyxtn|YN&U&-+rd8{z=Hm z$?G$_{hGw&R9^Ytt=kzG=KnhSzbke2(Yg97*zX>UXtfGsODx^<HH|sE>Gg-~XLTNn zB>p;2{-f0;RPoJD&}T=_PcPA}&u)9mUdeV{mc`1pO#RNw&xg-%c<}i~<sC_Zwq?B2 zuW!4MGb1H$4)>dzI={}B$tC7rUnRMTL+kzLpr+rYTW-6tZrQf8Gwk}l_==3u-dP8~ zs~fzXrvG-z?fs`*3ZEG)v)3;V+n9QoiD`dZ?QD}T-{wYF{CHp|XIH_&5TMnXe|*-t zOI&evFVz?le!ueFGVRQr3;sbSZ)y(wbX{>gHc|K2r$mY7Ey<hSw`WAL_Q|UTL^hph zGhn@!ARiVM_>^^D@OOiAv1R23ew>foRKgDzoD;Z~m9gcl#G=a*8?xqBY3^Kg?Ud@b z-~@qhaT6}NN33_;{gGj5;i5<X_CMG@*}L+T#1avXY+nY4y%$?HDf;Zar^wgu!;vse zEx>FI1A|TGv&U(>Tch?eW{S>^N*DO~H(*uOh7X7N4Mk5ls6S&{E0UzGoXV52{fvTS z3u6@T=N%U_7TnBBt~`6>ncSPV$~h8}cfWn()zO!hOqRGdXXEAfUj=VQ1fBn!!<HkZ z$jG3&bL|%!b?5r8U#AzAe8~n4ddKehUB92%#%!tkuR#6{lXlhJGTs`Spi+8C?@rBq z_tlwV$FHx8J6`|ui2BEGx96K2uX`)HX6>wA2F>IB?6N=fzAZGAPz%1cqGq3{-eh(s zJBh~`TVG}9&SW)W*LLEW()9keXS}h-ZVtamB3`%OY^>{0_%QLvGuyu_`c-s|-uN5M zoAFd~p|<@ej-H<jdkiZUPW-xV?b@W;TxNz1yEe7$WezTSwfz52<vss5e`jQ{_Lq0O z-Mcz!ao^duzIXQg)M9w>s#jX?@~3;}jIX?URySc@eBo|+>uXHXPEpxQ!X`y?XGh#O zdV4>wbi%D27kagC-?&-XwY=XqZjwglgUZUfZauSWXRD`8v(lUQ>*Zs0J^N!y?F>(5 z)E?|Qw*8Wtax%{usm6H|II_}$l{uJGW;(?_-6<|%Bi*++<k=zf77>m$Yh*P(>3SSn zTU%lHEOxWz)c;|H>)6X}`1U_rygP@dWa-S?e>k!kv&@z|O<S6m=kbVTUi#ztJ53UU zEA3}439YCK>~CFgBRcKD9OVt4SBw8xw<ST~7e~&CAp3WYx9?adIJ}tsT>7k4)>o?? zxvw?4?pSTHd6#kagok<@2gZ5}L-&m7reYc;FPgZ&TdcW$Ay9Yw?-%ThOcUR0wfkkM zSd_m{<k7P(n|HG0qiWyPiSGrT?>^3O;bqB(Yti{k42yIeZ)7}vZvWem;lazr$8T&d zdd>cQzQX39^-Gubd4DSZ`^zkDV<Kn%o}Y$${+-gkal>HV+OXA6g{GbK5;EI(>Houh z-hCfU&aS`SGxb;IJgLZRR#x7``swq+RVpt_?K|7S&-?su*CdIRUzZrno}jkgcKt!M zX-i(Zh<%UT_I1bfS%w_13$t2$V|Hd`rN{5DlifIV;yS(Zja!nYsLB8NqgUn5&d?CH zx$(9B{-){il}GpGiPp}pj9<R$#Fyxg`+l5Um{a%rmqtq1%ZaO4E~&+H9b%X_U)}P` zhnmi+yDITPD~sapr>*WyJFOvlNWo>&t>2Cu)6Z;Lwei2}@tJ#;*Et>E-X3~k!Xk;~ zl8^n?Dlcu=AXmb+!zE=-@$?_T+PqV5v83+MD1P^3zw<hy1fCD64Q{6^F4(?2xV_k6 zab&p{D_fh2nHOvD>f2gNgL+jw11&DB_Vu&uaSdI*!%{*`OZmT8kVi%3+e$^noKNQV z-@5Gh+0LIkzBNj=F<xWIl%NxDUb9Up7k?P0pvEWp;)svtaR+9HWxY8kgoPHR?0C{$ z$L7Gn-<Ynp`~v@+jY>Nm0vE9){7hyu2tAT5cvv%@-QR0E<DbRyzYJPF6n^hBw3%mD z)ndK<Jp;qNzu(I@)+g{x36HB3mH&Cdoq<7r{~w`sw|jogo_#waI@)n@UP?mT$}P7l z#d-bioOBcR-NeOv<z(&$gK)1dW8QT;t&?LXE%jDBvn=$Z+2@*N6JOX|uCofb=9<y4 z(}pK>`hBgrr`CweJr0Xxc0Tr2O)*(-cK+_mg>T<i$~7H0@gRJ6_Kmy78!vuPiQDx} zXxsL6Obl6HrEaYIDg9h(9`Anv(J4Q*oIHzHzI`KhEOgyTNrv2Hl^J4s&!!pgh=@A> z`635n=KpDFT!AUS_G(N$`8bGSrtix6OFz7MWOctq=C#fI=&0OJ*B8AyuOY2b+0&IE zbEl23Vqd=3>YLZ6Z{A^i%q!U|aIf>rE0QKPhHtkiPT6{A^3R}KQ`Z>hN=7jo@;J4W z1+NNRfB5uiHlt@|X_GD7vX)-Y6nePgdhzQ8oU@+^+x}8XTx!blm?tKq;CIi=?6(z) z7F+hpTd+)tU0rnUuG=D!LwNyH&6u_4<#(QDmV9v}M^iFmj%PuxdU;2(b6w&EPsLcx z=}`h!=ar_*Jk4COB7WuE!ew85io$i(Dsy&yx%hI6!1o^ZJ!;M>D?h54-Fv^o#^Ll_ zvumGzoIl5vb#2GQc{88fxX}91aysu*)~6ZzrG=9|@0yX&<5+NcdaHQT^v9ni^-t~M zh})IkWhOe0slWKJtv}C^yValCR_wZxu(L9~GXLeJ|Hl=-`0oFDSYY3o-mI54&1<I> ztr9$EI_rGTaj{9sm8q<}(cdn9uKjWCwCI&r9B&Fg2UR`(@c%~jW{K!Yo9}&>clOI( zb1Ss^P2%qK?HethbF90y?VV`M%LWIgmWsoZjtWOSVpMFIAfW#@L9&zm2($hPeF?@# zbH$Bc+&jJVx!JMjMKyeKw|sZsy<GNvUY6Xo2{Q$sD=H}~hp$}~dpK&fQFyKW%Ift| z$!RGmE;S!(@BhC%b;ZP^X1^{9Id0x^LDDJnmXBNAIy?7;>ML7Wl6a5#R4;pcrE)Wi zaGBhO+52~0x&EL`@T|oA*&8o?*?ClEU#7ic>um#`#V4lrG4%u<+I#E#(Kg3ISq6pk zl1)lZr=%Qt^W~1)m?y@ZG&(2Xwose<M&4F|Xx|2lK0&sn>Dxcd>UT>{G0RFZ5ele$ z*Ak&${eH_ei*`o#WFe&u$F@K4`*1d=Li}Qz<`!LN?UsU6xusJcIPIu<DKn3G(aUD$ zjRh#z+Ga6SUg(rcDA#9g-Y~CF(^h}s`$|!!D6f=>p&Q+Hhwx2b__?U?ocDUJ=fY3- zWT+QQMP)yi^tde2TpJvel3gy%zS~-&mydzrw)O0aA0Gr69u(yBv$sF{+1_vd@y9`C z28Z>x-9&C?D>hhg#O$-|Uv%lWQs1w~e${IZM1J;6FTeYI*@J9<^*$vP&nAs6m2EM* z#g_`iy|XJ;>``ROkls3B^_@LQhoy_wtMqKz{oC03*)ESC=MFe8+)}o1x7zv3Tb2vR z9IEncQgBGRY&t27TUk1e>zF{>#O`+!jT}~|Iz9ZoH`IKasMcxm#XTHR7R76VS57Iq zx596GtBQ%7vm}RjnU+NJi6y76hDvedR=XrVv59l?xY4idckA5@%XD$Oy8F#mGox>% zxX-j_XK{S6NU$kDNkFJa-d8w5jh&ZaLCMUn!;-~6cYBFHc4?MQXZ-Q@Jgd2;nb{Pp zP9c?TC210^PiszDF4@%IdgMl*`<%jzrKcvvbK6c%TeMKI#UbS~`=JdzG8bo6{$k+K z`o8ClnU)q0Q-S7!Pm5MHmV|2l$@aGLIFhNrJa<P)SD_b2-?p<GnUeDy-#pjMW{7#h z(Z%Yd5X&*+!JW>epIh^mPSN1nf1+X6AHh3I78-2ZIj6eXy5h@;E0Xsr3gl<co_*t% zL29p=+4c#1y&AnuPIhL(7ZNt~_qz8pGHBoJ<JLcWnaAqv#AwCY_fByo?Y_{Flly4% zr<6uD{V!E|Os=0J--+zvPLxrcaOrD$+onGgIrYCfed@CMl8`!Y?W1RZSBbdmu*`e5 zJ7{-H>I0qnpllX1oxRs13%5R5sxGi(tCNLMo4bT7N2+4nF$LEEu54CDrQBcT`Kd>z zGEG*>`12?yPH|sUwtnr(r^m8SE;YW>9Wv8K|C62Ziaj&5D<a*aI6Q8jds}vVNhL#` zq3!PEb&cN+wSMGbzrC+6s$GP!Wy;eXha)x1PMj_=TKM-Y*Rx+W^Rzc>dWSs{);z|h zsQO65W#fD)*M;7a97|dXqyv{4Hx)kX3>1@&Tl8t~k&gxjClneUT-&L<MA-St2i}}M zrJ2p#@66Wh5D<uI+PLUT&VzTot0s3S%;RZATFU3bt5B{KD6KO6#afA{1yeOW@}F-P zIm+~)^;F?9@2NrO?!4Ro(I#qrwZ>ej0tMB#D*gd)xSm(`F-P0IefXFCMn%q{8|B~2 z49>VEY*31PEB4__@UyKC1^Ao$85y!yXM5}llhEsnVR2bk^d{$hf{oFkqU*;s*WKU2 zcc5j$LmBDQm!0mc_S?I7*4wM!ubrQISi(6W*!-3!)4|s5uh+%8Fg)gItrAXO8f5)^ zSB-t}vzqP~A}19Oo<4uRxpMo<DIULOu8!pH^Sj-#FLr<6xAceH-x?VY*_|^riuTg# zQ7T{*|C->W+G}2yn!1!{@3beLmVAm9Q5!p>61;Z)ZVdmmrY&ua#HHR0S?ynY^|TcW z;?61F-R2!TqxN@p^r?*&v($pzo{PlYvf+t|W({ii7!-3}ywh0z`n&sHrUKDY{m*xH zHY`~A-9<wCGCPx^fQ#V_-a_%9X@Mb54qWv%;#1!<FuY)};<`Jlqww0Dcb4g=GQ1lt zx?)_M1U$-Z&lIP2RBzm8xRmuYm#kAk_*MlD)h;*wB?n$+ofBwj<SBV{Nz-{3%dO6n zH$%KaKb_>>V)oR1i|*`csg^Da6||YdFF9qWA9g5U6cjnNC1t_yjJ0!Dm7Do(+@H_$ z<@oIWjoWuKGu*gu%~G`By7_GN>+9}2Boqs;Uwh|JwfQ|}hA+De!+tHZ`*Q1-R8{Qf ze-@dJPo&tl^_9F%kl(v-<=a(NoAs)%-x1|V=4lMw(3hO*{JHx_>Ha?q#jg|X*|Mtk z>wUU*x=w%Ds+Z;sU5R${=RfFKeEt2c`N1AJdP>Dl&%9Z9Bk%Oml2^axWM+h|dRlz! zz}mojFFQ^t_08aW&eR#Y>RF7k#-WRr--8Nse&4Qkel0Uoclk1g_3sKK!=$(kP3x<| zbh-nKpUW)tHT>}P*G^sDh-q)MKL3!^Zdc?DTeim0Vre0Z+48y1?x`P$`OmYM!*kly zo#$evXx3;1+e#$o@ffil%CYp*Y|tqB-Y}C{tWxi+Ge@U}lWFRLf-f3xeI1`ZGk-1< zGo@|!PX9NiJWecerzZcmYpM|9ja`YjVCP7Yqg=@%GlOGy-tE1%Y7P6T8OwQ2zs=iM z%PX_<>$250`uC4N+|%zg#d=!Z4x7Xe**DU{RP=m{HA0uLvb<RTWy7YdJ@@XGi96=3 zyKH>^-cjT8_ZS&cZc1Ew_iFu`Z-Sy-n;lu!n%oL|tJbBwoX_TT$NFX38q5V<8w*7g zPZz&XQerv9ooⅅ+Fg8-`1D$U*otxr8HXlu;Ftn{eIQQcQ_Ao>cz}1Tz}2j`K3`x zRC8rqT;C=&J@G@8htKQ?ZgV;JWyaqtybCUxGd`EuDB36Dv?GK6S>=V9?>Du6lzO%2 z!>sJ<`+aw0&QyCE-yIngTA04oXMUxSUaJpBi<!<{d+}qd4(@cDb4fazYog_gPxn$% zx9}y)1bIFGI`=T=4f))-+rMXA$h@3>_`;dlnQ2-D22+yR#W!7=U%F7_+>CCW#Gt4` zZ|!9oPi3z1%%1z`;iA(yOFSMrwy(BhaL8Cb=Y9X?v^o0EIqPf8w_dJ&nDnVrXn8wN z$s)5KmYaR5-CEd8wAt%Uwi<t^IJf8ej_Kkd&w7mXWmdjB_A|0SUyZv+-16*!?m5nU zCr(H_+*{T%^=fHMd^~f4$V6_{CxKQ)++EGhu|3C+9pGQg(&-!Su}Gq4dUuBbhwnSf zfV0Uq%*VG*4*q>Twc=T&zGd>7m^__~htG>1HZh#h7F`h%xv%4;QU9Es|7X^pZf#o= zVwB*pvgz!Pns?2T?<d3@+k2|P>!;Fn#y$VCPu;n>;i!Q_j``}Ajy0Ex7Ou0&TyVa^ zoXh?Dc8Qv;P0w_vNhYuR%PRiwLWq`zHtSlEO-fUu7-D8+3mo03?W^JX;8)GZyWLjo z3+7pg`!^Z0sc|#U-OYPwllRWp&z)x--o}-?bzHyGW5{7Qzi|1dxx9B3J{DTOFk<MI zWZJ!P?UtgIzK4u2SSAOYOAeI!v0=8>(cfH;i@zD<_vM!T7MHI4XS-(a^<{Hs3mjTq zlTebpOl|hW;tmVtEpwd_(^jSpHZNS(7BrSjt+2947kDmXG{qy~%G73s62<*71t$)y zI##7vak}T@f_e9o4@(r6ZfO<Zn9Rqp;BGW?Hy?vU|D&x}L%*zLh!Ij>DsZ7AIrV5q zmgDmaXFATXIw|wy>?jj*I%RYuimj15d2V}xa6s=Y3;m`1b%py*oDAVv+imsiR_iUv z{;L-YV$&|$H(WYxCs}75p7zG_;;)lmUq2TNded$_?RZnrPFohC8UJQ~4;P41wA8cM zb+=FW*sS@-Up-lOw<LesZg!WiI^D$+9TQq-p82HOlavxGy;Hcw&vJgZrE8au%yZB6 z=4=1f>dP}Xi?ycT`Qz`uXZr!)t!Ly-``i8tFK_4OJE_`Y^mxMk=~~x24Gn(ZO8GU3 z(@SUX>(2={^;X~CRyR9)|NiQ?Z>sNfAHQ<FGtz<0>LSOVfLIPrx!X3nOSK=q{(Q<f zhv|8&fY`BlJWOAzj@>x-Nm_!pw{hK8hxON;lX_n{cx?}v9OU##>3ncw`nT_@&H*bf zwi!Os&~gq>U72CK{k2K=`m4W!!sXKz>EGI>qnqKx)h{>w+AblXtvjj@+z#2z(wriw zc=XI^RfDIOyKFK$_v8jy9<V&5u;PhryjiKfZiU#NUg2{)Pp`dd^<|6uk2_|6)%u>5 zyf4~$@iLeFwb@-wTYV*0JzFUMHoE)F#<hq4n&w+PUe^?L)PY^A`0~;v%(A~{&vRe; z&}ZJ__4yC)CEv67`j@3pP~*s4#2QR+BRlP&gvIA9p<>&QMsE}5iQ2zfu)=ZAx$6cJ zQl{A&trngFx4tkMJbQJPxnQg9VFjkDXFtR4xb05f^U+gCnaBD3<`dGwFAXHaIDA_6 z>4(_7JE^#JdgK4ioAY?%U3cmI@H#!G_{F1r44jO*U8nP&8~-mkJhy8(=kxX4zG5$} zJFT{U^gI)xy~Ql%+l*o(UipNMl@l8MOoZ&uPtw?V;?a_TTdWNRJO?5J>wJ|tn!N6X zPV5(DVVpGWWORCr#nq1r90IpvE*SJE*e(q|H$Nxmnq=9N^{Z_S!%p>|{b>GbhsCPz zi*n-(>f2uh^*`CPBD-Ft!}THOFJTr#_7e{39ETo$vf0Uyvr~3$Z=kL32Y0W|upo|a ztO46pc+zEzG+wRmQZ{wa-?Kya@<#DvTUbwSs^UK9e7PuR_L)j0?ii~tt@@MAT-U9) zDD8Q-!z<u-yxDXEPT}JY#qW)rEMLI)p0WgjjwKQ}BIqOWE9K<0#nw+_I)V;PDHeZp zZo%9j>*t529Gbmwd2(X)_jz2O3)}avvFtzFe2LdDt<05qcHF7livhxC=T$DdA|T%U z%%y3EMalwU7Q?AdC(b^JW(q!=xHk5lRdd<<gq}w3*~NCrkMH~|_~>o?@7|<SZ7ge9 zv-y`w&pGo(?DS-F=G-0|$*lP^KOZri`AfCXG@)mz?Oe5kOB<c;aKhKrFJha(K38Fy zz_A+>g%Y2CT`*VW(Bu8bcCO$!`0>%!%8nmDv@R9@s1uUQ(g;728Ma&~Io!19p-K1y zF0<1~7NP&=C%=xr>gRuD+D%mh!O}*alBS3tHSv$1&v7T8In6a^Gvh%n(U+3{&m85M zubm{TCvbhSUuEQsv?XfwJmP!*Yd$Y;3hoizk};3p=W)^Hz7rP9e`T2_`PFefnzT@$ z9PY@b6`;dFI<$|=*zWDVb!_d!yp8%x(q(kQ51xJ$-*I#P`^cpXUsvuf6Rw^8xl_vW zs{Z8aWrrefH#aI-r=40kYrfK~XU8)iXTFd+BcEoZr}x{SW2Q5km1B&dM(w+bt`GOS zrBp75ypPS;Xg)h^y=$@FsV~oFx}RLTdFG4d@qA{>*Ls)yJm19o?5CT^=1sF6ZpzD< zIM+!>bo$(62aye(wb4>()7ZI?XAq?v<Vu<pI#>&0V!y8XzCqLH`@EPXQ3pEbII=#^ zNy^|Y$(?t-x~}o{p?O#SeKT#l?ABuNKY8l<iy2RN9k1}cvj6<(i(py_FUO-jpj~vP zNnwiDmjC2^RI%k+@ou)d&$9)}cggubTGDXp<Tsn&=H@-dIbk82wDbg+U%Jl=uZvnd zEBdV3;j8|CjxF7GaJpH{ezqBg#lO_f2bHgywP3Gd#w`z*;#-e2-my;NjI=x9px$9+ z^jJiHb6Ctg&tgGo$<1lA(hEEFI2(S>QodaDWA*+UbM_Skelba|{AI2Ee*c5@a{ps5 z^QCki)$`llxP8v^IQg!B5vG1Cu8JQqY!=x1KXt+M(iM9z1@KuRmY`l?FuK6GsO`)i zmGhJG*3VO)k~i&PdDQH=uQ%5|z54OXIo7p_e@rI#)=lM#ocY;)rM|w=nJEu5)~6lc zw@GG3_5TcM`R_J{`lk$M+^YR3lUclrjm1zHRJ6T1vBr7(bc;J*woKiTmNjGkV}@0U zGvb^In)SP{?OM|j&2H@zuc};YwbdwSox@vs`#W>1?x#Awt($4GF+{`hitHz(14&$X z75J?juS_)7FrCj9?2~1AH}V%JUrcSD{@0IQwW;2liYxnO*QuU*oHq4a{Ij~S@V;-C zj&84iXqk3zVn|>2#--mjS)Tv-X|9yx9Hv)4SPZj4K|9MxH>5PkvZAPP-QJAXomn0c zw>(R{T7K#rs!>0!@-sKy&}`Y-vy#?H+r#752TOdays)p+?xr5E{q|)Kd6}k*-Fx@0 z@#RT*@AFeF1Dg~$k^}=ftdWED(*ohX%U8=((+*kM#s-HrFW>i3%d#{r^7YS_c+1oL zF^U^EMONl!{;|{-U*8xV<DB*Xv|}bK!-Jk0wds!Yo-;5g9#NG)d9~%(eAdffIQD5X zNxo=lR$G3$wK!@{tlE`-)46-?r?YSU`&5Zl_o&`v1rEL60_#jn{s|lj%y30IN!zr6 z2Wfxa3PzD|SBoh@(`z}x`RvzNoi^gy9A{8h9sGa4!Wqxb`M;Fwe)G38pHNsc<=H3h zw!pGSZ#33T*zk6Kx+Fux#UGmmOipcMXINVFyQAu-lEtlmCg1cYo&0uwlL*5B%hp}` zOluhxGuEuPE@_2K*@H+(L6*kyxvPJ^`^{N<p1TNFEV`7pH15yK_stG$$Lq|0il(1V zsh;$_W~0p8^H&awb8h|i)ad5FCzkO#D%0-sWQ3`8L_XxNGGP*8IpbS+s=D#AEwq^> zSJGs`F6w_@L|t)rQ0a;FMm*uqz2+Zpu&cdo@F`o6B`|rJ>yJ6=QGE&=k32!;Dab+K z(kqKW@&!wwTi=^S{+*Amh96s9Wt!M?^Z&WOybL!cf8LqRk}Q7W&W5fxJj+ics&h20 zVEh+Ry2g&JH=V`t3?o;ex}GT8HI3wNOHM|-zSNL;t5Q(>fy~pRtK`$aJuZEx|2(=S z?45Yj2_cri@;4So@60#J6J*&~aiSTqds_h1JUsIB(5goPU%x5M^GRKN*IK{W@62BJ zW|1ee{0e{mdDFHz=2E7g<gtj{-}aUhJ1!SabrJ4ddZh25RJv!P)p;EU0hU6Wlm)_D zo91qAE1GL5q_kaTd8qRY@m#y-Zr^mj%yi<mU9@w?@AaIT(kvfUPW66OFFdHToGs8w zitCJ}{@+gFBZn5My{T@3tp&g++4Xu?YwdGlD%$+)#kzlgHYQFekp$IHBAH%C<2TQf z(X*~isXDRW^Y(5dMHZHg1}7ZU^?28Qy=rnvzj|J*)wIJA%O)fwNiK-<iAjAX{x0sZ zb@wy9rWuwZkI=%wB{!qx#)+4u$$kI1ZsqR#BvQLTN+>dZUCtKn!ZN7~^Es3L=|r!% z<0@`{`kEYzVLZs9smml+i_cv&t8CwqnuY%ybfm-GFV0f%YszcTx+2F?C<ZEpP@?<D z(o0)5+-#H8+vsubqUEeh|7RD?Iih-S#_Ru4*<Cz}QvAJ@p?+EX$8LOFU!BbCC;;j; zJ^HlMiP^&Umv_h8{m=JqQrFAlSj3r;`+xTvX2p)11u2tXp8A&Cc3JJ)%*r*t;+DOw zH#shNWTpc1+!>NjAJlAX-0{cdFMGi!9>K{!Z2w(3_HBx<X4C-zU-$S}?Y0P~IeBj* zcYTe#A76d0%qdMuJKeQcHAko^f&tXBfE6Y#yb7Y_No8{u`$P%bUJ}=|yn5ub>NAIn z{8Eohmm6iXIL26haq&4JI&a_Kt*0kHXR7`3Q8drG$$~#+fv|D&A?f9pJAS=8vh!p1 ztn-hm(;BZyX`PQ<FFdFDBR89mXuMmQm7~CssZUjs=Z0Ca7)qmsTIGe#rAr?5UMYy% zAKCgcZ13E#M}4y2tqMgi{CXq!dh<K=qu+avJHN?)pEzR~L&HBWe$Pux3>=E*zTdrO zUR1ZYs!8G1u_qECGnHdYHkp0@E0b62HGih=<m}0n=DKT3Ig;!qH2UeNdTBnXd?#0& z*5umqB*CZQbL6?GTmR+<)?61&x%FsL<IcE^9$SJK8s?t$t$BX`pS9h-?}iKy-g&Qo zVE^a%e-?&}@?FO7{-@g<OO3ct+2;N8&dFU&DJ=q}k9Pbnc=b8T*?31?e#@@qU(<Uh z=fB?+*IobqjF#^UEyK4~nM)ULDXRY+>bhdi^FJ2v;ud{V(_=y#!sEBv7$RalvvS(Q z4+-)N1`@po-kz(yl&9R8yx~Ae?Xk4&?oTZxI#&B#l<boI!pg}ic5m|Dy|Oj$ci%r~ z{{MeHGsB)Q4{h(%{o-SIkhhxm+<Eb5bz##EMcXxAyXC5-v35bIpmyL_xuRnSe+0f4 zt=!ac%g~o$)1riRjIsOHNEQn!pQ(-swV6MqH#OnSi{CySyMLdUy2E_SwbbDG-)huv zZI+1s`%&YxQHohnKsN6=%Oxh+vWiQ(=PWXO@kK^DFsSy>pZHK^XNlxgFNx%W#_TKK zj%X?{&yCQUGIvGWVeo2ZhKe5_nU|DZ+Ex2nE$?0>*WEmRhJte?ce);i%4SbLuVBd^ z^;-DwzG>-&27hhtto+S=-?E%{?N;yC6<;d2?JIt>|9HrMpOxXs%0tH%A7^MtpZ|}g z;i$xm(@if=KV#BbI$^0KLxPQ*vadTsgU;!R={u#HTSPh*aWDw92sSA&FnDO5U&~w| zx}f0s(SR-MukAAG@tx85&6XiqO<1<U_rXWI_xIvVU&UT)|9ijicPZ~`tIE8X=u8Jo z-+uMF6+b+VYJ^vA^qiqA+t0{w_@E*m`{GB<69QYpM3@;CX|(ZhCC{~f-cmpRqHX$x zdn|F^BHwS^zVG6NyffiDou;K;C|f+Im@(1ZV~IfC!IPHp|IYcvNMN)WlQJ(vIcq+4 zykl>1VDEQ(28KVs%m1sJm6tOztgriY{KBhm7haa=e~CU*{owtExYR9ew=K_2{iw#| zFfTp8Yq#uggDD(M0tbxV+^AM%>a(f;Gyn6V8&~h&zIm`(zNX{2bUy>bT$O_d|E;r~ za#Y6W@!{LH`3vl~r9`$}yil?7+xPDqckkw9xN-CD!GHJ6HZA<Pj$8A>%UOkKrEjgS zt&eAC_)=B-*zuszm;W~xP0_M_k)Y?wU=bTV(`VA;-?CdPMUTyRK6CB9u#XbI6kk<U zc}y^y?C^8@|Mx9Xzdg5Z>9;<&EO^f5OIeFH-kjpzdVSBAb7J#u#XR-MZS6DhE!?r4 znc>F0d&mCm^L+a_Mwugd%iE~sw_hsd&GeEBlu+jIb?FyiI<(Bj@Z9<>?ssG5Z=bu6 zdTYi`_EXopuPlqve6myWbNgXMwsv-p<C!0OJ07txTzI{HLF#S$2Y*gZ6h1N)G%WRT z#|p!>6C)QF<d^fmum2&(@Zfj;Uu(1NXO*nFqJDg-|HIj(w@V{9WX;rTdSAX56g140 z-JEfwVn^e{4F0$0v=|=TOrP(#KfdLbsr{AhyH@OtS!}YMyZi3mT$y+870-9M-VtcJ z>3U<1b^T@DV*5RTqCcNTDSMy2VI<dISYg4y@aFB?haVsNG8|akF8}bLyZpls9|RaC zq;q-R);X7VZ&z=)-B(El2bt|LJFF86ZYl0ORFL9avh~xa^w!%~G`!q@{#`SvKe{p} zPJB+|?hltD!#_sI-7rjian$U|mVlD_V3*aGIzE<~_sF<!J^T0dlh?*S*bnc0K0B`O z>=K2UA1!^4pLlbFr?)Gt^*dt*?~<9E@#i=3Jf2u-BiFwn-L&k|MS<ut<!=}Nw%^#y zwrdL0+8wQN=Otdey_)@Eixopd-2V0>c74&hM_jf11a?^N{IUIHZe5rO!`f550`-S4 zyuYm#ey-qraqF45#eerQ=j7)m9A9UC{ITGpBTFP~zMhG_v-7hEgTjPKPIo%hofO}p z^^;8|W!@8BI)(f9t=o4G9haA$xP#yBhag|OGsA%d3kGqX<rC5>FA3hLpB}$^@0WRV z-fTRz>CD@E_ji}`=huJNWjL_=eGU7{Qy*Wgw&y#*@l{v+>yCd>*-y-x9wyX_KlX8c z{_Mt~6|LvI<PRLRRXSd|NlYcgK75P(wRJWh<)<odmD7LhX#Te*J)L`YSkI?}$G?AE zEMMDVJKJyZ6gPpHnr5<3E55x`e`7wqw5wCAa$a)r;SNc=st*E(mK`d&&AI4C#m^;E z0=$xQep_8W6}#C-^Ti$>&a_KkF4yhvpU3;P_mM=@XYHqwb66*5y}rjC_o8g2Mx5aM z%dS64es2Hde5ZT4<eXQg$vhhZh3~Y*nFl&th@ancT+J$_yjuEqHT$=(B2HqO`iC@Y zvu6Z+yLezt?6>dVHkKzGn>Kf??wdC=jz7LA5FH);?B`kD9=EhPNkScm#D1-I6DZG3 z<$dcX4ax<J?wX%pzb?l4{yE;adHidS>`~`o^3cDu+%vZ>%<H3FuCnZz8$m8MGp0{j zK5f48c1`~%&7QR$_YWS_Gn2DFcI+4%LxRN}_uaX-Dr^5%xqis6jGjD0G-ZKsZ^9*u zFINM)W!CDPH`wrSsq}2?ia#G~84f%<D7VAt@WLsAhYaR5PJAR6`=a_)*S6GBhWi<s zpGCM?Z<?Hrskr{`p4`3a@3IUB>i_EJKd`?4ON`;c$7jxK*2N$1)~}ah5NN#^<p1sS z1CzwZQQFfVEmSxl+1%6Hc=`SJi|^x^8T3PbII*Yv+xf%%YFp9el^n5WVj`;NJ@+u) zyhDzU-Qtch+plle%(iXw>G*x@n%cJVZ5y`dik-8RxMg<4HeIUlv`)>^1)1M1rkwil zVd2dWKbF`3s{iof;c<or4-OTx`e2X7k{L={kM#vv?l65)%(g}8^0UH83Au0C7#;-A zuM|CR|DB0JVavlkE$&;-&8&Wte?&~5+3o1v^CsUz*Zlpx;?A+O2ltN6v)|va@zgSj z&5tK1yz!7I5Pr^E&%B$Xw(fcR`-JBYnHe0`9n*X2s@bb!d~Bhoq;z6=K0m{TuNB<4 z&DPZBr;E4$K6c>z<||8$crP24Ty){;SS(QeTW#x`gnIeFj6-W(1(Z6^*lsTRtoH6s zl@vq4>u0$!`xCbqS?!gR5Epoq^)fZ%z)~|wSy}(Jw%<?PylHm+^PQznW!}6`PEVJ< z{mtt6O^!~}3(W>)Pkq;WMGJ{HhjF>QwVV}hv9aKT+JT1$p0wH3{So*sKYP!bgZ~x^ zKYvjY)$yoX`o-x}8{>*H)Vmf<DVlt_z~s<8)3AHh&t?Cdw*Mc_aNz&n{{P~3e=hc) zd2TtOWLHFdJTpVqf8z(w4~fczFY{X&#GFw6U7-E&#LsSDtF=9%CjS288mV^p&hnsr z8rSvC2P_n^4Vme*%-6bE^Ev-{x8xNz$4}_qX|OQNz4xm0;_I2MQsR?-{oiOH!*fRM z_3ih681n0W-)87}k@&Fisf?P@k=rVh7Dk>bICk;1Smn0W74KT7GcagpudaBdncQL$ ztDLCkGsVmJf5p7QrCPONnfw2GGuxgwTHeeUde1)L*{vyTUO$W7TTb3tSg>K)_4v=X zG<}0@s#4~#-T!$#|55XIdz1Hqr@lrq_Bjf!EVejQU~u5U0f|S}zjxoTHh4YzVZn=* z6I1lo^Cmke^gh&Ga==1XQCmi0G0!2Xr!mG3v!4Hso^5f%bT⁢lrP174n^Awcvld z(j=Ps!IdAgIOaHuEAMF%-ZeMmllR(2J1Jg63Enw;ofBkqrMFJlGI{BRJBniLPtiv! z0=@gVGtC#eU;U(WZ6o(m6Sgw-;_~$KPc^a(T*{vB*nDZZ!0X_E&Y*x>Q%W~3ERVE0 zR*+HlY5VqVA1?mwXJEMh=l{I}=JzU?89u!G{r>TT18<bJN9mSW*WTGt$;}|pa&Xet z{nH~Xy|;)TeNbDw^`#dt%i6|}nI+AMc24UgEX<v2vX?d+bfj0;cz1kUaC<}9)Sbt@ zG_U`6zbOzIcZXYY#@7uqE(AT>qhs_S<K~8Mud}aT%#7Bbx#Ir59qU&VN{T#Y6qiZN zIQFW<qG;iw=-JUH_RKl&rD5iEH1nk8x11O6{}r_SJJnUWXM2B4==0vy=U%S+`DIha zzvol6-p|xI9a}P0Yn?E|(z9E2FJ)V3pY}047&}v6ucA~U_ebfaHD|WU_q$bmIj|(Z z=Kt^fNB7!~HLtUDUY}ib;IT!Mp4U-1zKMM75<F*ZtZZbGV_dYBXcp<8UGEXYZ_&(g zraFS{g+Ys1e0!o5)8^NU=V(4j{(R`%JC5JZvzKk#+&(e1>v^M#(D4b4y?!%YvqF3e zSBeWuvClEq2wj$Hk-uyD!ildpor#(@yG(aiu0-35GM^_QLfhBH>|!W1JmH}3=PBtF zYH&W_U}oamhLhhJPtCf;;G8FZu5wo8Lbu-+%-km$EA*Xps(gEE*6RPBGW|iPuGacp z=2?7^<F^@4Ui#;WtJnYic>MdvbNqD-3_reo-`C4;Z<P49z1dkLIAZtRW9oK=;@R11 zN9Jx$^ZOFqdQofpfgDz5(^E!)?%X1`lN0yJIq%Fm(bnE@?(U+j)YPM2tD|H>X3C^< zJ+_uzE^*u7l8N`meAk)Z%FH(I&HZ$azihkVwue28*E3WFFI~B|i<jw6gt_H~?RocH zL}v3&irQB1>(se)!j6sG_!uJM<BQwM*A=IPF-$oqVe9If*S1M!`XipoynD+(pQ*Lu zVsTkIMf9YJ@7m>US^rCNb7r5>U-<04d1c%b1sTPyO_4iK&3(uxvh>rQs@q3D2knr_ z>0GepWbE<ZPkIbu=Q&SHx42<0?KeC6cEyhy9g5GmBxEEMca&MPZFakJ@SniTj2Auj zOCvR-j#)ZcZ!<m@SfRP($%GAwS7ZV*+Z4_3ubtAi?b@#lgJT;a<T*R<<|=1xtNpKd z%z5*{t=n!LUMp=rQ6<eL`kBCY&-Q?sn<no5so)<R{z*@E`8h@tx!!_|%L1D|N;n>v z81Z&`+4k<d>m9*ui7&p0ay&8#$XA4q0(5}Je;={*Rh`vdUzO^g)~fFn{N_}8X4l0N zZ<zYq+8Jhq|8urry?pTlL$!5U_^*QZ43=m3mQN76+jo;SE`GnEu;^1Gl~eo$dE0(W z*k3$nsU}~J=E}3~{U09we*ft2_j~LNH9y|*e^^}o?Blg_jB@#J85sEZ`8I6N-qSg! zkY!`$b7}MSkEe#m7b->en5T>X^OS2oIX%77ddBO-^7po;k$NqkdyJ3meKASo)IDyW z!V?Y-PoCBOjgt>_n5eA2aI4$A)N{-`wr_tea&!B3^NpFV>gMKh$=QcnR>{f8C0Q8E zTTwVm>2%SNi65tw|BhV~>H6fKmwaNcvc#(*pB}?-u2;XlM!$%DfBD<BX~HY7cuBI_ z<<}+MyK#CZ@APk{stOeaZvD$wsz|HeSNGf0wPoES&F}NR_wN^xf6U+<>2$XHW9TlQ z{~pJad)B0zc?b98UTF@Kaw_1+eAePHrK!+SWM|_PLq5g5-?W)pvo6`6?+G{SGv+f; zmYSJr$;K?5IYHY)`lX`99QN3y$xpl-Z+z`~;&7tdPUn;dGh=~&>i!>lLza4c7Rky8 zE_2hobmz~rhYwFIUHP=@V4bMhAzq#}7v2@0-`^8%XR77DbmjF2JR;c(7RlUu_>Yl~ zzqh=mprYY$W2KE8pMlJ*eRESIXZ|yhQ92#WvTc>i^2@HPW8FexTg_C`*d<>a;k2>z z&b{VVm8h`nvEa8HkFVE`IoH&jpK|-=?YbTrDMtO%%R~d?ALq3E{_bP<<+yxZ!^MR& zGb|cZ440N$&Hd)Xd!$S1E$7cF-vjIa@7%w=`+d#x-3$%+`##2h_;))$G5d1M!Q8z3 z<jZZp`Ph`h#ndiKow|0{Z<4@YQQ=GfPMy|&{BHC4(5zKL{s*2p$=}*!)qI$F#hH>4 zNsjB&mZ@#|c_O2rL;kL@CY!ajbihux+uwdmXPY1JaQx=7<(kK45%z6sE>^$a*Z#f! z$9sl`<MQ<_cV&g=?b^M$d9Ur||Luzx2G6<{q%cA8R&DUL6}MkMzSUKE$LrQP1;xI0 z!#0Om`}XeI*5r5o$y@cpjyri_OINZnua|gwbjCTxhTE&;GGD!$Z*n%q_w7yhZTjaI z-JZWqV)l>Q_4BtkuKRRmseF%{GS3>W{}m=~v!ar1&mWL1zV7)+ATg<D#<X*HYBYDO zxE5G0_;oYy`nV^5Vq~`Qs8q$Selb@iwYlhRiOzzp(NmVo2+UC|FukO@W6Rs;{ZC_d zoDvR@3NX`6pOIuCH~sC(Q(U5l3%fS*UJr|MylwM3b|1gmna98R<q~Y9k}I>zWL&jd zOKc8JTbo?>e{uDVTLymf|K5$2iCTU%qoQNu+E)v=vXx8gFgeO7Z_=FlHjKM4AjE%R zL+YcPfPO{PQeaV-$ReZY+0j29-agj+``q{YN1ChMK9-bMbI&}t@U5SLaAR;`y4B%x z^FGeX&$BypVpRvX;)RW+ZjV)V?vQ#psa5l5l6|uFrt<%ftA9K*{}<12;Qx>O|6On2 zx?5~9jo@!%?pgCHdseESZ&-HQg=@<1zJ`6cb9XmGLwMX@k!$%e-w$n?zWOg$+ROBS zsAL1sutFUN!;b$K*(IV&v*f(hSwzaL{Fa8NI@f$S%+J6uo8OM<vXt%Wq}tCnXX~jH ziT%)&dpdc=sk7!ii~ieJBrGc3_dWmqA^!dU#TXLu^O=>Ue_2ZLPK;uGV&Wgz)ogrZ zt=OU)F1jsql=Eg5d^g~ko_k}4^rbe(_3PFxxWAR_#9FZ+YjcsfYloWGF>t(|D>TVj ztd8CPL{D+U`8$_wZCP`I1b2Cc?0t4-uJmU84WCq}Uz+-Sl}Ogvo&_2VGBR=rDXb#y zhZQgB=pH#H$i_J7$P)b}t7{_`W^*XUcx<0=DEM;TyE}muev1tb{W?3Fp&|X9T{pj- zNoG=WGow@V?wGbqy_XZ`DTkhV*;usfz?PruY|c)I5)5Zdm@{={z|39~Nf{mkncj)3 zHwm?FY7SjD_46|A-Xh+k5`1eO+<f>?&Lp@v>+`O=(%WLE96ET=&hFodHRkuLf6M0N z&Aj!M-Fml2@a6fJ6Z@RH{WJLzf2U8_a^ZE!gc~O6nmfHC6Si8XFM2nj(eDb|TGL}@ z|35FTe*dug|2JKR1J(ck)ym}LGcp9ty*VLhx5a6bHna6wzQsLmYJ0NZC-59Qb3~+r zWA)xeJ)TD0%(aUq+V%hWQyKV7(#X6~UWRAFEl!(vr2>5X6P`Y+O=i`wwq9xCoU*^2 zozW^+_}14;pY<Od|9`oknZfSsEA@+cs=YBWb2}yD-rJnt@U?>Z{=e)0*%&I`uQfN^ z_IHjqW2Sg*S7G=u^)6L2vo&5Ho|&<n-k9X9bv^9b^UMEolnzWksCmZRZ?dCw>AkhS z#@BLkavv+0-V$$b77Vi9_9T+;XqTw2dxm(zOwcY3jx~*PZW*`#I4@Sqd%xLruD`S9 zugvAyAxjt&>dV=i7p2@vXt6mx=a9wqGrCP%*_g5)94~xgcmL%#U(WS2i*6o$`Rs6^ zG*8;KuU`4L1n%3Mzq@DRvSgk$f%|rEZod0gNjF8foxNReiZzGwm*2;<;-&96Wo<Rq zI?mXzwQJi{0Vf&F=F&Pb3o}bumd>gFOc@T$T|V#dt5@F{7#2UQePWP%a*I=jce2*W z30l0Vm)WPJKUy03Ov{I%ATw=c__I6<zllp%db>7U%UgFLPLTQYjcNNIACi0>DAQaR zxsE^WveY;C^q;BX%U`^zoR(N$e*Wy@XzSS)8(!A5w=*A@X4rZyVcE%p3^!IXMrrai z-?%G1$9Vd$h|R%jQVgxAYd86=KDsPhxy!FQS8RW<Mz>wf2Zrx<22J7L-`h8xJNubQ zMu%a?COMZUCvtYYEU-9oqpG%e>P}s6Nw$u)>V_PLB;V}QpMLzvaslg?Yu7vqUSG$? zu%Yg)m0YgPfoIH%WA<*`*f`foC)J>A)er6K*9w1M(`7iY{Qu$f50AL@XP#fbUO98C zmQt1P!zKId-`Z~ewb#V=<41S-hrjRtHDh>inE#$@T*nd59RcoY7D2B!=D9O|<3Ahr z@8LhaOIy}3%c@<hv3YTMk>{yRY`h1nrY=~pQ1DjOQ}eugMPIjmud?mQnJ?eZXSgYD zZOI(P4Y_BUSnifdU!Pxfs^;H0*)O|}z1C)q{JHhnUC!>s0z%QTFCQQE-^ax8V(nU` z?Tf;i4=c7kUg-TcL1x0C7LM$x%^w%3m9(Vi&N_SR)~Q3UvdvYCUX^5g&tH1VeV*m{ zoO$UU!Ns|4hZVoAHMsxooSB@R$xEf#{N@D}8@QLAeZJV>fZuVKt+G7rCvqgrnAu}i z=06O%A9-Z0*8iM!ca`)53(q(eh#%a(>5_ZO(ZfqpG^W^nHgQ+$%?{IUt(lRSWBbVM z$fZ5`bNYHeEd0r+t}sjUX-nK?9p`CJ-&y%y`&E{E(qe~3kfX$-8#32V-Li`66#r@F zJ#pVI*ULYzHkZ5$(pqHUc+G63#4JXw$M0%az1Zx<ysP6@r{H!akLtP1f=yc<c6@eX zvno{6VmsY4eP&d4__WmWbb0GA-=7IKZQCY`upc;fMzi;oPWjL9!-Z{Y0;aJ#C$OI^ zTit45X!&BZq>lggBYA#$i^3P3@bg()CS4w1A;<9H%;s`Kx!#Q%Gf(;0-nwz1FLX;- zW}Awk@UN|}%?p2DlVvz?cJ}rQuV<Ty8#PQ}oHF@IZBdtltft;$CB9l4smF)EzkfKF z-zT(bZ?A5~?xNl$8<sBON<Jp_^*2wo^W^_Kch)xOoHo=uwCVD*t>2R_yxWy^_CSlv zajC2GD_*+V{Jmn#(9rz1HYY!qiJ|P<HiHdr97U}Mr0y4%v+j-KH_yMz#t^f6UtivJ z3B{&vwjO5Fg&Z4slWnTM3o|tM+k9Uno!%mHLFz>CYQM8SocafHX7n6W(@nIH*m2>z zM&8btdo$(NiR<5)k(e8_?k{KlWiRLKr&CLGc=un?Ha3;vpL^-+y>onKa<i+`vXhw? ze^lJDcSrl2=+=USHB+R|Pr0Nwe{SKs66P&z6^FE5Mu=Pg@2>r0V{k0tyR-nyp{@4| zCO8>fp3ZI%WyN6NWz2JVW45~RzP#I&Q>=X1*q)i$ZHlqH`Yk3?W2&;g$UW_)9NN+P z0^fF>GH{WZxn)k?@@9u~%S|Hg=1mSNYjixtaaVM5-NLVzC2nPzRR7*B!E<JoiFEIs zWnI@8HcK(REtA%MeSKrq*(F9>s%$-?r#2m{f3)Vpy>m^Kf4^QoD6#ra`ROWI#$w_9 z|9-vRQT&{5lFC8<|6lwc@4o*x@2T~+ZQDK^)vpu$TPOdwPCow6Bk_&7#d{I$kTfT` zFWwK1*S$IZq5uDn{&)EguWtFX*#4LDpO5nY4gdW)|6fLb{~x1$f1c_;POp2G4%*|k z@V4nfv-lr}#0%cvv#t62I-Z^3&$0YJZ2Nv3)qey!Ph7l8E^HmE@$J4ep4M+c=R|j` z{i@T%a`f8fbHPuz{CL9(89k(Ttzc;}*nKK-!h+<z;dA5UbEEys&GM#fu64i5`q+zq zQQ7YIbBe#@{%$Q~ImnuK&rsU)H#_^fYim!59=Z^-yli!E-u;?oQ@1F*DLomy`L?{+ z!ZOEz-LhXU8^(%cO`9lmw7ln7a*oX}j%aIZhK9q<ic3UoeOe0=4`^Lia}hdr+H}() z$M(g7Q<6?}O{g@T<1KG<a(B@8I)0hZh3O1R(vK>W|B5k1PjyJ;`d$4jDknF;@~^#n z!tcu6R~?t{Z;IP5u%zcM{}VHp85KgQ5?h0~)^3yB9v&8c;r(={`JxwX*_M0EeJ075 zQ*!v*H8H;2y;W*Q=LF}R@)GNP;IjVbl)6(ATeRMbpR?St+V=dNnlqB^r{2z(y!1q_ z?3coMioU_>#mkC!ypliM<9N%mrCC`+<m}=Tn!mD-DKNhb+HlT);<-&fswWyg6M40G zMXSQL=gZtTG&Uz#xzC$zf2^{vWKN=miJ;=+!k4D<>5`j#cD^rrl<#%$=jo}E#a(4- z^SJ7Ndd@hp?NI1)$&`#+_L=2AUpenhu&a$Tx%2mcL^BUliIrN{s;jSdWY$|)9Jsen zGJ2CvtCo_jgmcFARi4Yc{kEsSy2C6mXZrQ#WA%@ECN$P@dT46LeP&u~`tOPVKbHCr z?DY-tKc~hsGSs}yjz4^Mw)w~F^?$GbxHNrVi~0Q;;rRc*u73nw*|2`^Hz|e(tK<J_ z*?r%6{^8o~_YP^>GAn<Ftp!-WXVVVhM25?oyTy_<icKf4=)Jd!Q@3le*rhW*U(!Av z6L3irdN@aM`_72nzki=t(|GA+`Nh}kXTMKn^1QLBU*GPgiCWJ`nH?LBnv`}gG~g2S z;M6=_WT+gyP0znr<m&Dy&*M+mpIi_l(EnMc`65SS?3^PP=X_c?z2VZ0^cz+dN9q=K z)EKxVh<gPtIFS2q(Iu&cdl^L~_;NL>m-%kg41BUmJ4(jq@O>AJEoI&7W~y)sMXU7| zH!evPi}l>yJ<-%AWS;e76)s_ww-TO7$D~fSUcPeT*t}Urg*s8QgWMSoEL6<VnmmPR zqHgRJuc!$N*GS#@Ce?S@FyU}*dwaWt%#DMZ^UMF|&-rj@@=S}VN{`OlJbO@P^W4Z) zV8%}iu4s=axA(4XhAtV!h0V1+$5W?HFbTiV`o&Z}`TVlYTW`mfurE6k{=c9h@OVqP zx24;pr5tNNR$Mb#>G}A@rnLEs&L$mPIK{H-qK5M{vD8Zv$5yW8n)v*LQEQ`bwA9j- z#;1&z-mO@)WnIoD@r)N<D;=Nx3*VEM5cib#Tx)S!%>FW2BMzyRvc+m|ti&|T0xc$; zIJ4fyM}Q-_W_cw4U!_!^^mS%)+uAmq`kg4D(3R{lTgyVK|L%>&Av-<2U&}u-0i~He zf4|)Zl~;>24rQ<3+qS;usdmM`pU*$O+x`C0zrVkK+?@Y6^7}oFt`EWXUxO<i_nLoL zs$a|b|IhjVJ$3uv_Y^byc$045UAMpA{9eUl7v@?Mshv_w88+<RUA^%0jD_#-)W|0b zl&Kr_3CBbmvzhG|Trl^>u1O1Bgj6$bwi>q_`EWs}sl0rf!G_&u3uT;d%>D8AZ*6$h z^G#U`%$4P1cgJkAIn59kQKxo%Q$$RMgQ8d(lXvB_W%<WuX3MYLa@z9zXPHd1GVb@w zHl6Sc<!FmxyHNJ<bOeLs?CQnkYy0PY)nN;4+2E0r!ZW*U;qH$K!iPT!ycON-Fzw(Q zGuLyUY<*vRziQ-^8YyEi#dKz?i^S~WjF&QrS?gS<rR({JwJ{zt(0hH>_}M<w>y<Cp zs!!dKoXE3onL$P5&X}i`F=xcm1!4}Ich}qV&PIIQyDd!452ZpHs^?iqmY-jAr}leq z@n`cn?6GVMjrUB><KEl&(Qe(l_sRL!UFPzzv7flKQGDT4=UXQxYxD`+D(vfKFq4(m znUHtbj-%<6sr_dgn~f1WdoFeuvL$|=XnlR%PSc)iYeeSyd^VDg&wjGAXqQdox;e}D z2r)m9e7H}pX<PkoHml;WoxkNJk~Q*nI&gidR{LL-`d5lcbNv*<lQSg$a|>D@R9*6R zwww2H;omy%c+Vf29u##kX7|H`M(PbaLS~mAaatgmeQ?jWTiHLl_y6GjbNBvV*?qsR zt_P=rKhN#^dwY5B?5~$+DER#B?5Xs;dwX8S?XLfCmv?7J;gjn8J3AiUE0(GM(O&=J z)3x7!?dDZJn<+V06t;AQr7-YB^S*?-f6wdh+5S6|Zr6Oi_FZws!&dPRTi4g}&j0%+ zozX`>HSF$QyIqSdf6mMN^Y8tCySnG)b;tki-Mzb7QMpzw&M-5yd}oSBlCajUUAy|E zx1U+&vih!@1Y5>!1FLhEY-U;s)z#9~(b3Ot%y3)hQ!(dUF-K(8(Q~dxPnXrbnlU~4 zoAk49Pj@~zCw#(^eM?)IYlT?()8#DT31z?MW;)!C31H<5%eh|6c9Lm_?31dw|6b0V z*JLLyksR^<%Z2{l<u*HY3qM~gWjJtJzg|jz?++OUg}!RPl~K$;9yIeaGTi?+|G%t! z%@4UrC&Kgt-W)o+@5?-qG#ka%#i2zH_w1Be`mR-gF(H`UB3)0krFpiNaNUm0fAyA0 zZ0Ys8c;U3XSyi6Ij<@F%1(dkDM3^(9x1XrjtK~k%obgZ0$-=imV@k)`Pt_VtmiM>& z%3kq1cK35x?ZbY?qb6!I98#RmM|(E;9q+MReLZaB_WVU(E|v5+oCso#dzxxjHYp)B zRg~ev+iil|eXsb-Y>$mJ5*944%g=lGbkCWU(+!_#+1=SuD(r9jorz(=?`Pi&EsQ4C z|E%cQxGC|<&d!X}Aumn!*+h;#c$Ofn`TqRcxUC{<)eqg{eYW}DXV;G1DKEC2y|wCY zmTvvOolAR;G45#K4m2-r$W3Pz@8pc_>@H7yGpDdX@6N4uZog#P!n_j>`%`YcHM0X< zA@p|p{bQi(PnZqjKHc7)zx%sQ&5sL}SM%@gYGvn_lleK%y<blD;~sw@S3#xO(ZSvl z2Lhhhx^ukU_$_RA#NM<|7p?D_H7U5{#3wU6+IaH5(46Mmooc7sEo@T0?RIK${P^!P z&$RI5j?|t;<IDe?TJns9oFtT&WVFa!xWheL+v%x`<fC(Ytn}u1a?ITQJ+{r^yidf0 zM7|kj@7I015N~`a!e&pOzwLh`h6kVjAAkPwOKkFj_C$`f^*0Ml9O}>NlzjibeZ%(c z-Aj_iqNASdxbW)Bp<_SS2q&er%WIugJg`G_jnE>ILywpkyNWCw&gI@%H0ddusQJ?? zJ4^+(p4waWmD_r*TXN4^r7xCc4;Ok~a*B8n9pSuoQ)cdeQ745B#m++N68yazh1+~Z zm+gs}Q+rM_BJQ5{9PR>Z_Kal*D+Igbl(bIGF54XuYxs28ClhBO^{0E8o(1uxNG!N* zns{|>*zKumIoqQ>_FUP<y?puA1Rkw(4{zO)s{2*{Uz6d$VfosY{~y=Zvohq^{E>Kh z!9uKPs&cs0OkeH<o^u~A*G25^Ec`Ba*w(B#_vg$<Y6hBr+~?Xgv2*0iKK`)AYt2>3 zV-^yV^{xhaJPcA*z3kT$l*zj6bft55P)xYT%OFb@@zc6dE@wo!3iqeDEf&02^V#># zzFO(?w%=v)?(S*@l@bN(`;RC8xorPe7<5k%GXtpUk(i#&e*e!i^SjmHTdu6Ft>4+Q zz)BF8&kFp%nttBB|2Ou}BmI9$^J>3E+SL3I09}!^arf@-_}^ROnUi_;|GmAx7hH?I zTsr;3C2#$Q+VMZRqSlJ-`_QV-zz|paHT2J&^M7T)_ea%#ORr};FeUPLYy6Maqgp%8 zGlpHUWD;N#w2~EmbT6;`;<o<D7LEce9B=rR|6CBdUG8{?koGFmw2tD>HS4D@ylt%d z>YVtdQqz#Re`3F?bjC_c>+3e3>fWH=yNBbt=%rkN;$yKDTH=S^DrK)-P_k1xely4a z;Kh48wpA*(xLkU*Ai1?AYOkox_b$%PJzu}X#_UeB33l?jZXBKYXi9DV-CfP!tKKVa zn5b;EKcVBdWa#Anf}iJB2OnUFYg^cs_~Ob+%k+8XbCoA=%h!IoCuz>i?*`JJ))n;` z=p4Fr`rG>GF7LS?Zmab;sq4&C*(fX|>~zEIdl2WG2UE)yUUn3)R9xp!^_eyB>5=N& z<vXWkmhhxTHEN#Eym!pfU1G++`7RT+c~^(_<t=YD*m709sP{~r2Uq8g4^!9`Z*6l4 zm6^II#?9jGqwl=4e|%pv|J&@BHs1>`)~!`Js2*P{%J5<S|IhzBKOUI!{@1mKc9%+| z873@~ELu9}`m~KktY^jRFE<Fk4363vvL)$^E_X$Se%IQfsJxtRrp~ye&>xEh!V~X4 zUc80v`5o6h7RLvtjvDc1BnF#oS*OFnW$CSFA@Tg_EqBcTMp4k>`+W(Zo2BCaUX4Hc z_;`Qe-(RIQ-!{)b3c6A1&faQqh7Z;IzgJ7}uz@dT%gN1sxb=G6;rsvp-rwEH$MEmf z`hQ&ezeewWdgWgI%jtET^}m+aS7|;s&fZ}x5S>wa#&Y{4u|*f!VqFcFOo@B@qi6xo zVFAz65}zC=>^wQwQMvE-yWjqk*V~^A)#yJc5wm+%kfQ63-JF-T4hfgevtAl|c6Dx0 z&Aej9w_*hh2j*nG-?a5X%@zrkU4Qw)*3X>q_3AyTyg1{flE3e+^A3Hu$H(@;o{$H7 z|6a+B*}d)EtBp<{yzfe8Hr1Y!P>?8II;Y8DS3&kUO9}1O0v4A8rerEML@p4WA2=uc zSKE$)j(4I5q-VEI$lL7Fbs+bjZ`=0Yw<LQi-6WFZG!3$TKeovHy>rrj8_BTT#5E_H z&DyFLhR7Y|++`*&+tc`RpY--kI)^i2rugZeUdF_8C^TlG-^DvI#dRNle)rM(a7;n} z`M>VJTYmN#wXRH_%QnB}>*XI8-Q6C1Klt~zM88kRZwudrm$!uEUEj5){N2-8uZ>pS zy<(?dm*ZsI+HB3<8h_kw3ge?2c`W5t5s~r5=k-4prEBpt@H7P_yPw*m#h!k_?CCN6 z=u<PMpG!CA=XSm)@xn}g?&n|rO)hH{m}?LIIeY)l+0OOG$3Faez5emn>+$yAY_G42 zJskh<Y5ch#ClKA}(=9wDi^4=6y1Xru{=4lX+cD23g)NI@8(VZ-PV2b7eP_UP_xFsT z2W8vi3Ksw4J5ag(+-X<k+Quraoy^C62exdL?oU+wk#>l?+u+!ogQiWIwQ()er@cDm zRB_Mw<idler55$xoocW3*lzvn6Bf>goLdf69H<moc-8pc3JtE<B}~b8SpAJP=T5lh zwY>f7J*{K6Dpr0nDgA!3($c?U|9?q;fnC!KjtLwUELnK%oJGs?t)Z>61)eG>*i6?= zXYw)d|G9UMS=8a(X}x<HpY<<4ac;rsZBy@69O=t<K6WaEMbd+1WpBfWb(brZR!p0x ze&<fwoX;#L{><L7$LGNu#Vy4hebE=R%kuh^3=W*tkDQliVRGu}<HA>U+gC6p?Y~z0 z@#2ck?!sN~jW)8Xe>HtjQ_PTlNAv#uUA5BoKPUf}W_a*#uY6K=IWxnCz1!P;4lb?y zv5@c7=LcE;BYIBnw{Xy|$<)X$VNMiL*z&n>_vK?=_m}wW{qo4W;^|ZWS>KPCiiyk< zcH(GpY?vdSJwNDZY_@~t#3Na|oG+e=nPItjhn>}gbIp3S3uBusSW^}VZ(S5nmb*3D z;?2#N6%IQ#iO(q(b_?<G&<L$>eIO9VYA1fDHG|!;!S8m<WL9yFt4zPUy{%6b>ATGR z=p~V?x+id|>UERLd5$^j?gpktoMS!IP<?-|&s+2P4|2~*G^se<*?f!Jvqxdes$W67 z%u?n!ivP^_+F7tCOxrPiYxlzgc@c)K-Rg&B?=Gkiy6XM*InQ<eV78TKc3-)0dFo=* zm}srIY4OHSFMBypGHy7%=x^lAqRk<H>$m+-y*xue&n31XP?Np#N%2zE=W*gq*3AYS zDlOuAzEcbyd{MlAlugIQQa<CY$lAjiMYEp=v2iG8PuOm}+cD$)Y#nEbnHyd`%;?cE zo*J>qr1W!Vo7Ume8yCDjb}n$^QS&bUzcVjIPS_Gv@oJ_uLqoXT*T)sF&&o3})P1>_ zY+z^fbuYt@$IIsTpWEZh@-R20;Mf7?mu5a;)wLzN(|otq{bjqgF;X~o_ujUzTT2-Z zbnEZynVy?hBheE6EbilVEk}u_=)JP_pFMqZyr#}?^_JBLGVJ1F51Mw%T3l1uBgR+5 zup4a?VpL#-ztvm4O;@gLc<RG6FKE;L$LIGHxSpFKEHr7A$RzG24qfdqWskGpBeYKK zSrgJ}I<a@v9=16<1@wwdyCz(@H2X#S6eG1Wdi%Mhv!CgG+H&{(XA6J7pUD~Oxg~2B z<;^*g`it#x>i_S24vg;#1=@C0*7E)~>oMsPYPgzgzipeQT#sYNrQp?5R{i?(R#971 z&FOphgtCU_P$jP}we&qc{}uF4eH6LQVDM-`qmIZ;?~TiXp0D0x^{#4xO!FaymM!86 z9ZJjJ`S}!d{mZav-nV??o_5ny9a`sFcl!l#u$=0NtemEJ)<}KR)NY1D*ZigjDQ#{l zRMu2@YoV^KRM;)K`-UaclRsZOB-Q=Qw~3zBOKr%zeWkAc*UjA(&)yX?G|2DyugG@T z@XEsjHQU4P?K=K{Ps5h2yA~U`?9RQk$m*|M-u*qDUtgPpZk_pHH1FRLV}=In@_9_n zolyct+q&L5?7w}u_w}*adPk04Vw}zKoQLtVl8Nosnq#ID#EaKXuY2sSYw^+cwdwOk zN@v`Y?F+>+jwzk%u|IL9YGJHS(&R9vrDv8bol?ea3fhgzbf)FSDS6Ju0I}4GEx`<Z zi*Kx)!d1A@vFIjy#52jdIu2!p18cjs1_*i0I4hiS{@v#(_ij!(nGt#Wozl*Z<BAsU zcl<VF6*Es(`SPpGRR7ZcG}nK{yYC)7yL|q!UpHblU!9t*H-DCeT)p7a)$g)0-dml{ z>PSwU(CqB>kjK&9rtX^MmeW0}RRoW&vzfKN&))aw-H5Pb8JcE^tvc%`3vAMv?sEO% z6`yUzE0q`8T8B9A{-$qUX(|4oGR;2oU-*<)Pjs{|m#~z(+42XK&uw<tRZyu{aa3T| z!A{xFe^~d6E%$%$@%YT7;77N%W>>tLxtx(<d*0nc1r{ZV>%6qL2Og9twtVxqj^8|g zCYQYb-AXb0kHYqx3>EL5if^oYY<4ZIr+Crz*Ghdkq5S6-<a(adIUhL3Li|wZzlbZ# zJmwlCcQ<hBUE39OYn?|!fR4WX;Yd~X+Dii8pQkrjaHlK~7Eii%Z$nZM|6z_j>2lio z+owe{-(J5mR<Ffdf9<)gr+-dq)Oo!!XyxMI;v*6IVkZ=1`lj7f&=ljHXFl=cQs1lg zeUbOLeK^*92`l)1RQ!#w)Z1;58J?QUza`f%y#DrE!Sip%8>&NIe6KQo@jLu+Q`oQC ziO*L?KK;2!MC3uHmceVy<uT8>1GhvAcw}hy+1UTQ;m+~$lfC->$?J~a{BV48=IjZn z#naxNvMf$o^nfR-x~*I9^R<~`OVt_#QZ1cT6?b0c<yhP$@$BWNC;pXr#=n<!2WQ1I zWM^Ohc*uJ_1H-+l*S{rX<P^5a6>6%4t(oRmUMgyye~*FTPVGb2nqQ)m&Hvr`d_MW_ zw2w2&C$YqEDf_i?@~>O2xp>Q}DQUv@YU)BYO9dom+<)Hv{Hoz&q37L~y%na(Z3=@| z$Q+A6TUU1&6mxzQmFbxsn;KH~cJ)K2XXa;<C0V9^%5F{XE~?k#`&@Ktr=G1`@cr#Q zIzRSUBxiizRq=7@^s~ZR?(5S}@o_2ITz&QG`4Zmux#hPy9-Zj+*lE?ZXY-N#=Uwc7 zXZ-QWdVI4`Z2kAlJ+F`4w9L!1w>#TwDcBG+mqmcVhifaZ;ImV%voaWVp7m|Nl%RLS zwj|SXa;EKRmgF;2?O&HvRs71Ftp0DM|9^=^D#vat(_9-He^@=vNHBDJzD=vO*_yxC z&dz>O;#(3bb6js%x{>OG9p4_$@^^95Nw=QQ9v{!Zz+zmx+2iGmZ}Yqp^O7u%q&l%# z1xBB`aPcv_eVC+8<kA*#Uz5)dy|%5s#yz)1GMQuPkyo#}e*g8Fb!>`rV$aN7cNiiB z9I8@d(~8fYi%ZLu+&Ss*{2iA>9=^NG^I17cxwVW_|5N3|BRW$}kIY<?w=7#+{Cv!; zDHB5PHZCiWYj;)5lRj#A?b<a4hV}b?Y2Jy5Y~RL|ci!$ZPo8~p&-c3J?G}c+tO}nj zXPQ&1oNSc(!N#|COT0+^>*B5McUQ*N$IM%%YJ+8~&!RHx*+;G}nqs-{LwMmiK{mCN z*u^~>mcH`lsqfON^)Kvo6(~KhOj`GbvgJ$FxmI!+ys<sO^IlmqH#j)mR$X3sR{ng~ z@u!&|wL@lI5O;gCb{!Lg-N!qhBX-v@J0{pX&0c-|!rR#<%Qg5;bFmxyJe<AP<6lwy z_FoQqUs79mN}4K|PVci&NOPCGVJ<yw`zwaK!7PP#K0BA6j+x{iwx*z1<@sfEK8x~~ z=I{Q_6Eqi8d4I3?>a)0WmQiLUwY6{As`iQ+%)WKSFRG(U>Z6gyY3pkXdiz%W-5suG zmh|PwYZgbD<D1s~LrSNC6WHg@P<+al`8n~)6XlLd$M0f}F%u$>zn=5)dcR=L>}MCR zM$KO#V)xd#^aD?P&*t^*63Od?+%M%R2N|}Ao|@da=1S}O^3Oiv0(;)rc?<Z0uCYHO z^7+k^8@qj`%DuAvDd@6!;q7jPbMBHxIseujo>N_ObL-;u^Pjz6&GS6fZdaI0kNDDO zKPG0!i}x8H*{aT+uQmDVg3UrM&I>TM;+<o>>a5nW`oJEW=qK)q9l-(W=07zp^^W{~ zReAP&-C2p`by4gV?P;M~f2VDkDSzudH-p)7eqk3`1?IUkG>;ank+zaBPi9ilYknML z-BEnu%)>?nF)z)MbEm4^78h1OZhf`e__|ctAMT@m1~NReGG*qUudNIT{iALkck20> z>KXr;-f(}mb7{)3!PvZaWaq~(_FhuDmm=rOW-YqubB!}k?(@2&3s1HwcCZ$>w0^x| zzKHXC@LZb%-4FH@H>_4YXEGyg#pPW`_O~tHIWPR}Ea4+Miu_iF;<GFa%s))%l)8MR znxW_B{|haq_KrIG%T3<RvN&_5`&aMI=k{`J&pw@dJ+Z#-=6-*HaPChFgrB!(zIL5& zSFn5TgUMo2r7O;sy%d(e$a3zguav^4k~fF?^SGNVR5$a>T5oj>yT35ial@$_HLFUG zFUt7imR`xU#Yd^*s1s;cI4oVPU`$yc{QUSkp6s>D--XG4|8r#avx0>5B_dvH?be<? zY<+d7fcM#*zZ&j$O0`(Nc_wS_7{hnmM@jtWvEY04zH4U~S*Ml%GnW4>W!Lu0?{nLH zE=LnSu0r)^9?l|<`*`mf9rqO$ei*DN+r0Q|?R3uigS*Z=_Y^2?dAHxY;Z>$p-|at! zz9rxGdCuO)QdottVU#5>=heI<;fk!xotyv3yj9X?JYCBxy*}4Pz}w9*|B4sO+P0W2 zk>@tZ>^Kx6UAZaWuU7qQc$0;2$^zlyC6dgaKC*qkDDb!2eXr?a-;VCfFIY{A|2uyb zbQG9=GNr=M@bShnw}o$e<^F$c+3+=a)%!UqD}-4J%`i)f?&2KT)bq@-kIz1F;%Kd` zbK?EKC2hO(oe#dHiynl0Jv&=Kqps%uyy^T)Ud~f(+7S}5_xa^x#eoxdEQ_BVJm>qw znZ2U_H@qt9KUURbVGgQskMkXJZ-3O*Vkx@xirVK@%X~tfTPh1r^bii6yJN$|7q$O> zyw7s_e?55jvo+2lFXa?EBptV3bh60Z@oiIY?sCbWUt3DgX`R2!CggaA33CHipGl2$ z=`4;@GWB}lmMr4Me_AUaZs*dTpHzD3@YSj9TIZMVaSp#EllE&i?_;Aw7iQo7Kf66_ z)u-}xXZ||8-7lebTwdt<D*dmXColeAy|<cs<EB^t8U9Jnl@z_)n`Ffo<&n>RirHjZ zUr5(9)ht(YS(lb|JjZ1|Ej!#A$KoaKl*qoQV^`*`fW_THQ%iiLPG5eoLbT}_C%>qi z+UdaMU-wsJUS9Fu-goxi6g&AF2A^%R^RF4#JfHdXZhQJ7<A2lQetwMm6&n%0Xz$+| z7nhRv>n4@7ai9PH<YYdx>)l<I&aRrFQ^KcIamCIm3X1v^Z&mkg>D9fvi~Thte@_W> zbxmEloZ)6+7!w0S1CPdw*bpyGzqwYSuQC}J7*r>nceng8x#^zk)@|F4U0CSsZOhBR zu)rlMI@;ToRWD$gP3|StrBfa~IM`fx+1LE&zrVj12WU*G@`_pRH`hwkxt*_<nVrw& z{=QmoTiJEaMn|qrQd~EUr%*S>-_lFdH9I>yBs_e#m~&c;%DQeXZEfvopPUv>`0Ls7 z=j+?s;e9)_kaXx<eqxH9XA{fBz`!6GaDkD5L4o<MxL(YT4Ob>FDA`s1UQSrer{h!6 z{IUo0Co6+&*_zU^TGcs*yXeT(qKOs^3=Ah4w(nqOU~pg)DFO4E_>j!vsuKTpEjs_` zhQz~*($CKe3=S5Kul*Xja=DAzwe|7xmzVqZzk2mbLtDGs-~R8G!~doP>BQ_XShaff z;_&rxhKYw-ZtN^hZ#O*NFW*1YINfbwK!?*p0ps*@J;LgKCC?HAoVvwyyQ<&qRR8tm zr7$x)U(a#*dYif*58L^YZ{50;^zP11!-NA3FYfLxxB2yAap8vt2l<k}y}u8(_}<>? z;|+|=kA6O%-@iHieA%;w0ZRG%|CaU0SQ`EM_Ex&~_qX0#w{HD-)UDt3`)RxO){Kjb zKra3D>(?VQ%SZ1)E<JVXl+~S8t5$XWUfa3jn#dQuSCjqiI)DB8Rq=Fcc+%}{xrP7# zem_1%GdSu0zrRc8Nl9AN{wnE_GS!-<7h84m@A|#pqI4oRsZ7(0m6~mq+qG)ds)`p2 z+ZS!!y4B*@%=CGk&z?Pt*jbdiCT6G6tl6`ZpPiXGx0GW_L~?TSnVH7wW_focR)??e z`~3X;@h2xIKmPLa@=?RDU%zflI@*<yk<q~`ZFXe+{(n-Jm-%*o`}VD)BO^b*e`WCU zV=pf+Pd?nnd-1{rfz#7;yMKOuKK<2(7cS0iJe^0o#g9KbJ3IOFv$KYUkB(Hl*?7E* zJO1ZGubf+3H1E}Zzbj!`l+ymT=*ZI@uh;E<^x@&*qtV{p-i7l`1+T{}^4|6RUiIZS zH#b}7?0(#5eW_c2U&JEGiK{z2w8PeD)crp$U%zD4s#RMmK0bQ1%{cws5~qa|?o~dY zJ0-|#ciCGn!HH&hcOqmiU%4_xNvZb#-|utHD>oIsxv^11aOK90hD)bh>J(NFa&>jh z%E-{@vn+WL@ao#y=%}4Vsa~2(&)fgEDSdrSSJtXzg~hYS{q}ygRbM>R{pY>8!>qvl z_t#hN_j|w3`%~Z=6&-zf?e=@K!q&&lJ=QNj|Jm8u(}RlS9(~e@*r3oWW%_E;?=_u2 z%qv*;a$8k@%gMR9Nmb2%-krqXpfG;De!t$uH9O+o+}&;7Cu4a@(cZS|OUK8@$HhNi zzH&vR)k*PKk7TfnaoL+28X{aq*Ieh?R2nHM{rdi1UQjT4TTW;3^K+#q0!vFvdF1W( zIQO;j%gbH8diAIwzx|(rEoX|E-!m|<OM1FEhHTw>bee9oRpGZOQPtJeCMG6FUS3|l zc-ywHx*bZz&(3s$BC?s^?ndHnnZliA@9)W8y?WI!=f;MLS1Xq%ou6kbnCN?C|KdGY zgcp4N`{(odi}&uyHM8-)+E9C8fn(v56BC8bcD+72Uvg(i-M6>5!)1&M9vtX?XI=2X zLGpD|kk`jU-1<jqzuy%<+|J+M@jq?JrcFk_zP`Sm_$L0mvwNS+PL1@xzrJ>#I^|{g zN+~KTYSFfBX6NQu3Y*_4a9$I!QR&^D&*w7o@}|k_c{@8h=iJ?8YL<Je<f7ekMZM!Q z43i%%?zii@owr-JPtI0q{k~sWJ<{fSW$*4}`X1Tu<oNy&C}Y*k589O>{YSrk`h4$H z&ttom?b@~L#=hF>oEsY+<{v*LSYP`4?RNL#;^H|Lg-X+Oqs2C-o$Wey?AU+HxVj&! znc4Y{?5X^mbahqe#m(vGPw$&A^D#VlnU7|jZPJmB6>Hb_M(6ERwfpnou!MD4j!T4a zVQyu2wYUkWytudbx9j;^vesp97Ns*hbgGZr`Q`s<|IpA-8QZEai+=z6a@pVL+R-y} zt<CLzzu6qIyDXPS(rC$!y{lGfottMXeY{`(y}`djGO;r@KR(`nd}s0VCo8&FtXb3Z z|Ic%K!>TVYBDQ1%f=Yq7`oE<=A8rDrus&I9F;i31z_>WMr%#_=ym3P!f6qs^DbuGP zU*OpMq(l4K?(+8%hDk1O?(MxjtE0ZP=^krnSeToyukV_;y}J&7ySh63_>RKIUMAY> z#1FUecCT8sitndo^|u@oGc&Qz!O_vu>i+Y3^7sGUX7Oxx{=Ux1>i(x9#3u%I?b@{~ zVqZ;V&CjRPL8*uDcXn3RqD6}qIrs6&+sRm$y?HTVv8;93k%x!dyOYD#Mu~#b`>a{B z&RGg<niSNvZJXK8hnsw6nP`F%!OopKE2M3!O3utMT>N9JOySa7w{AV!{eEBf!DjYo z;g9b%j!u24vA3<QEhI2-;=TI+f45{`Ul$S|KfmhxySa6LJ{}M9@8#LDZQHWk+uN3c zaEFKYG#$^|+j6~se|zh#xfE1#glLFd`t<a4u(!8&)vuS!FF!cge0gQ?@~-}mCzSh_ zOjLGXwrtt5D_5>eaqE$oxXgEU*ed5mlWo7>DP9?%v843%wWWvK`Ni}1|NRzSc;?N` z&6g)AI$xS)ntkco+UUziI)yK<2wZ&W=jZ3aUYc|5>+N{u?QDE!nP}$T-DSEqa<dw* zq>;+it5>Ij3QYaIUxK3c*VW$IU7mkyUu|{O&!^Lax98oxv?_FUkk_Zf_Mfk>-mzT8 z{m<T?pPw%WS#4YWZAq`R`LfK*%a+>J{t~%<=9)`PHmI6>HamaW?EHO}p<!XmcE8`Z z`^WqKgtxc0YAWgNIy=i$d+C?^_1c>f4mO2^hEA>e@?xS~#e>Exmo8m;Xju32>2#Ci zV?9@v`_Bhq5WD2hkB>q!yh{sK{&8{n^`M!*E4l9f-|r#e;nRP8e?PzK>#M2Dd}mMl z_Wu6;hlStX-k!e9Z|*FRC`k6zt5=t18mC+R%+P2}pI^J}hxw~x()m7<)qJ(4eV+29 zz5dyuCO!8*bJge981c&4ScHazEP3_n)t4i}{!8Xsmy3Om7A{;nb?KC#%(&g`3=9na zo*2JiU|^WQ$STXgz+kjs0q*vK6$1l9ii0CNq}?>CX*3{^Q^X(nrE{(yy1M3G1_J{F NgQu&X%Q~loCIEw3Z#e(} literal 0 HcmV?d00001 diff --git a/reconstruction_im/charis_VAE_bs_64_ls_5.png b/reconstruction_im/charis_VAE_bs_64_ls_5.png new file mode 100644 index 0000000000000000000000000000000000000000..bb5d36d5a242430d88307a292acf6f4e00d32359 GIT binary patch literal 116789 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|eM#wA$*!pZB>N-BYgZ zTM?q#spZ*lK`-&(hHf*l)eoBucNpgGUY^^Nn~_|7r{{Lwv3LH)a>jDf+wZ=8`K?KO z+s4A=0~d}-Gz&y<3r)JvG{I}t-c4HDPek0es=xF5UG>DNk*m&}I@58+=Kgv1DWZ~+ zKR+Go{(W!n^E<_<4SFpCP8^CY0!}>)k_)&&3=mJ*f$arEm_zXh#{|Y*P(>VuOesTC z%f^E;)}MIf{~rE-=E+TCpLw><GOZI-Ue$wrnUu2gupNWqH7AK53^m_xe=j&G8g9I; z^!9{)kB+OwZ;p8W`&<9RzT!#aZ-x$?_S^3(lo{^-zjdAW^Mw`xr!_|RzkmE|cQlEU z;r!>e8W*RIr4u-i0!*bz&uovuho8sy|0`yw`(9o@J^ue*`$tus3%Ysp)`@>mpZ|-8 zA=udX%UmOd|Bw2vCq-T};LmmTnl$6zO!batGlsZY^Sn}ahH1(dwH1%N@|x7L@}wuj zyvkpmyXNv8oz%6Uzc)Yi^|iGOS6=aQwK6rtaECc8n%-yo??P-ycJiB>^{Nc(q9vXs zc9#0Fy+}Ijb@|r+kC*EYy8nN%pV2@%Vv5((M7e9r%uP*Q_r|fSyv^Hsq|j$+(6i}v zAH^Aey#4>YysgGXI$VgA!N>N?b(!Cf)?dnBE&aqPS3Nm=4@-mW_CFR^Yt0!FEQ>Cy zwM0~24i2{Y^kF;Whu?PFm?yrQUv*b+xxXy?f&h)6)#eNm^7p+KFWk58T9#2le49!q z<Breo?N3hTub+E6ZsD}adq4HQUuL$gc1F9}HABxrad6}~aVWYqxLi2eCc<VHe=+lI z{Wtgjy|UI<be@I$ws_j*a^ZTE0E^A16N?${RKK^~^Y?8&yGql(s9ksU61Sh-zVDMg z<BQU$5G_%MAgS;mp;n(eztb6Pes14?=FAnzDy;<9r3Rkmj|>^o<o@dPM&IW?&=|f? z{JJ*Z(~9fD_umV@&{>hSb>Eun9>M;TRSs@bmD_l0*Iv7&i<bDU-)g|a_~Tr;+><LW zgBhlDsdCM8U%2AjZxzlBx}~S(ztr~m+43H^zVBP;xjBK6_VxwGvv<B+Hv8I-7v_By zT{Gs`91XYoAIPB9J9p2k-v4Y9&NoL`NiOK-eK{}x-qH6pPm~#ADvv&``73>&VL|Y% zv{kdZu1>utBX3vJa=zx-=R5WPZ5jUD=>NMyQm5;xp|P=Z#?G4GE0Y;~{LaouWqtH$ zsb+7w+%F#f|6kb|EUKUJthIBgQs15Huy)12i-lzyULWXYEQpyo#cF=ZhL7$0|0nj@ z6-zY4|GUa>cuj&mfcfp`J8zC{tjhoOSC0Q)y*Y#M^1e^I<o`@>xTCSY%_8ji&*lIB zz5a8+JD)M(^o%d&*@~V*Y0H)~TGae7Xk4$h^_S~>r-O^1tUh@lX<^6fmETuhfBo@5 zvzF+;)$w~LFP|4Q-`JjG=f`8xj6dh-xC*SWTYWW4xQ+9zpLm0^zirYw(P>Y4-u^i9 zONF^)qoS;3;jDDOm5~o`p4?pX`U4BY^}8GTlL8louU>oi-G`_8^}G%H|D5jsctZL9 zv#INAEE)8xE_Sz-#mqk1DXe~DbMBn^)#rCJ{%EcLuKniL*6b7RTMbnT&zx-E&vBqx z{y(eVd<$NO+wBUcj`bBXB|g?-;QRZaKJ9$yt3A`D?|=55y*%XZsptDX+-I!#w6gwW zW9@Io8{6LtZF_%X;@8KXJ~FNhCAW%givLJ5%sMN{Xa7}&;r#w@VR65g$zNQr|91bS zM-f~9Ph5Q5qV$_(1J8x&N^{TjJ?`-E5BOO(ziz$v^1Dn6uFhI)Y0Z4#$`zIL^Ya)V zoSDhl<nXs<Va(Ce(kV7Pnm^>~;(2dyx9+q2zW?`L^`Dof@8dZT>@S=4+AP%M``7jL zdu!~bDc1gPGEnFd(uw9hCcC{M)$>_jgq&qDtZ?rTR1hrLs93r?cAm|$Ye}t%E&?k} z7Dug3+a@lkt=*Rl8VqEx`?}Kq^HcrRlD`hO?`K!p^HevVal*HF*Oxy3Ci~l+yqJ9a z$BF-66&VgGB>eyP_pr^DQvHj8hZghK%-j9{Pc4JbTpOS8^_KlY8yMW#7rgnz_wDb2 zdZvW;SM?{IxWZZ_QyTqg+xET9|9>9UXDIkzd;ihq_>jMzGHn)py=xbTl&y>0o_qTk zuXzmrf%Si0t^asp@hY|hoyqP?|At?@xjCKj$GdX52T!(!Gk>`ATt?!VV(${a)tm<= zs>`R9xuyR&>tk%YbkW1h!IORbeHjf*ZI6EW!gJYpGlR)<t1Y*(xQ~bJcK3Hb)@<<T z*zA1f2fL*6jCNlU;Svm#5M)`^{Hb}uOi9tk{m<v^wycW@E$N>;BmPHgJi~;q&reTT zw(<8qe}Q8+*1ejo<G#uC=%<qmu{j?5-e2av!dtpaO>jZn`q?4|8*Mx%3AC-sZB{VR zTzUW3wc0;t&i~<I=(qp3Bhp){O>z6ZD(&;t_dd53?V0UaWnA{<MPS^gP2m$>eAy*j z{C#8k`FV+Qw|*^Ax7k%Z+2(6+KjVkD=W9AP3#&7{XwM4ZdvN1beO%zx@Ei5N^^1S{ zu4h(RTV;7jBW2IJyn@%gZ2vC1GkQ4q?`V7e$LIGA&bZIa<qQRXdCd#ItoSvvYOBWk zgIce?|7MtDTRJCLy`TSQhTHWcCzmt+IDG%7={&ndOdM<1`EOsp-RU*!mp>*)ZIAFP zGu5u`Jv75({n!4<N7npi@3shhUbgzGQLCu;QK7_*E{@`FUw{2=Q|$8h-(i1yXaD`_ z;qiZC;y%y1&fuYVG_~vOZ>B(=*!a7}a&}c*@z+@<ES;LP^2uclSc2?f;8gA6U3vZW z%#!<i+!iYeeo6HZvMBXhdaw4^<@o3G|3~J_n;LsBUYPbnzUBkB&7Tj=2NJF^9XM-# z|ICdWH>Bh~KD%;FbAo!Gd~%Q7SJ~Z+Q-AHQ{rxRb?$)jeM+EmS)B0sr`X<oN=ASP^ zpY0FUb2g>&40A6myc=G8+ssfkcFNutj&p9j*&7<lU4L-(|L~PJ>I84SHA}s_BRuwR zj9kSF>sQjx%U(;Ke)LIu9Ycu8g-ibHLQ<ahT@BG&y(Me^?PotOrnl9YEIwTpYEqrF z>Zr5-92NzR$Bl0pF5jMJ(bqZoO_bE}PRp;8EhKmB_cXp`^;R!%#k~2;wu>`~?(AJW z<MHv(XXoGKTu#{$Tm6>%%%;sMo+_79Brkp2{cPIxfR$HvK9}2?Jwg5m_q}$mLdBFN zO4p|5Rrjg%X@;(1xN+{#@`B};C0|HfF71jwc3h=5yYtptx&I&dzkmL{|Gy=}yZ!$Q zCwt{aaxR^;>!L;NuZ6{I&lsw|zkAwV_oBT(=4M*T*0X2NG8)(#I|pcf?ydi$#jyR} zw<M|FV+Q=WPmVhFFW>hiy5{@q`3w(UOkDo5)S5wL_2ZoV&wLs7eE5CujQzip`iuf+ zWR|V+*4n{mW3zd3_`XN#j2fX!y1pLG*#4}bBtBNfB)<LP&RU;S8*`&3ud@HOd;c%) zcfX(4vpraqy)N?U;=6Y)F?zlDZdv8Rd*QLgwCuMw^Omc13CT>}CD(TI=bQrv5^Vc6 zGgePpai#3D?cc4fu2b@KU;J)KoTZn)c$(AewQ{#*)%;ee%DY-GSg^fe&+~Ql4{Ys! znlR-5Ik^4PuIv97RQY+TZT<Af!tA?wpopOROQC%Y1|gYmcI)kI3a|Y?yW*pBmiNv2 zf6rn+NeY}+OYcLpZ&jM~uC;pFe*S%Z|M%BE{&NzpFV*TTyua}I#^*&_uYcIKcY4tM zP0S5(>$B^wF=?@i?!CJ=dG?Zm*an4;iU*8a+dtI*T|fW%`~Uyqo;|zuYxm8b{kg}_ zoL%`{?NYVi>f^cKfxWuN=5@`t^LFRv^3_cCUj4-_@Qi-_gYX{@*zGwEq)v}@^HfrL zo^CBu`D(Y!zj;yn0(U=pDzhW#ZEW3(W8uXo7fLgHh`xL$I8<}5r~Kqc|E8)d?0Z!I z@Kf{o*w4=QJ8r$TOgq2oDcf4(;3?g!7CyK7>so)TP)BZ$cWAZ!uM6f2H?cOn&f8Zx zwZE)*by%p|?SFr#8(ACkda%?gu3LWjY+;9z=)rU8Eh`pOB<=G%A-b?6m&;1@La}U& z`_|lp#T%TjzTd9Ke8{2J?oVC(+okJP@BLm?`)e1&+;sOZrGj_U=h+<+zHiNQ;4r`K ziN;t{hIKoCrcTkCt^Zo9k7-%oJ${GcPm;f4OYax|xe@%uO3PXIlXc6!Q|q{z<rc1g zXTICBd2e-nuXJ9WA%nl2>S@~}paQpNPv>I)k0<Z{`_5of^*vm%v+`Ns*16Yh<9|u- zY1;K7^wr~>n=7?K@Bh6Z`1v#I^<{BEniWf5J=^_2=eTme&B^os|Ga1X@M7`tj>j1j z)4#p=KKohx)>*rD?0=K0|M<c}XYkg-ig{~}#^!oXn(?+T=k~I&)iX_Bvh&MLQDr-S zXj5$87HOX?q1LgrU%Pia+BKc=!ra*p?w$Y3$e=FwQ~i*nY30?IhwW__*8R)&KNy{V zTU}UDdx`1wl(2lu&=TEMyJF9qJA9XscIQv>TB_tb_nmgBdsz6b{rkTx)i=GJ-Il2F z)~<i~bfyTui%XWObMC0hKjya9W$T(-n}YNL)=$$E4XuB2%WPft?D?LT*ESm*;=gj> z<C~Y6RlAgGmWyBb?rf~Ve~9C@7yA!AR{y<udxI846nwodR{vx7f5C>i(`(!2|1baF zx%ReM_*<d<#z&p&|IcPPGpEkzyPfKhWp)nVN=4LLsx}?vmzh`bVRcN=Noz)l+nb6H zrq(;faLl|Xf@p^O<abRh{ngPGRQqSU-GSuq_cG<S>zq!BJYMJ`vMOY8-SX3CB&P~h zKAI^hV;f!bvZB*_`-;7t-{0KW71q9AZ|T(7`4x{G*X?vG<v;q!qMiS|q4nyZr&s39 zueyJ}qR%4C_*-~PA!~l^>uAP`>$~qAy<2{t*J1O`DO``dMUERD@0*{p>?Tt}T3O#t z%dcN!R{I9)o4+X8Rr0l{FKqQ;WB=75N1ZnM?7zSKa^U>l)B5{s*8XoPJz2i(QQuqk z2lM>vJM!z_9d6KKF}WW2{O81#Etj<tj#fy{+aK<_C~E0xi^?a}U#e^sR_EwWd;X;J z@tq%w!WlmNaOMxZ6d92GRjTi`pnBxiSNqm4dexgX^X~34CWC#o=EBF-7(UqCY_8C~ zQ}g+3&6{L-<_AYQg<}?Kzv4dn^@?ST#<ZP3fBt5WSU=q-rDjdkk&73<D0sd2=CrG} z)c0LU?XuajpG$X@?~*@~CZBhjDLk}o@q=3-uT;5MMJH~bG{ZrBN%nW9Td}3K_LpB> ze7WlSt8dQxYPRoszw6a2%erUchpuLIO?*1__{zM%_h-MXRQJe!{ya>cXTynUiaWwi zY;3nbt^E6n(ek8~IqMEiid3EE#r7geWv<O1i}^o3tY;|rv9S6>NmU+?%E<@UL~qXe zl#^R2qyA>q>h6b2AFC>P|E<}mHFfHFbzjdr+j6BBu+^=v`+C*p+l|RSJ}bD--rQVk z9I+*L$JcA&j30#UKML>p^Hks5{{NH7ubk$u>lPEwtE!q+zW;fxO{tTvJjbFVIrD|x z6ayFJt(#O?&hs)o@&3EoIrA*C|INL|Ebu&B_V&5c^*@*yY(ALpKWMl&^-75LlMhR( z`mzuITN~;1%H^*ZL*2jobq)Q0zU3QPuAH|c|NcHxyI;MEZ*QkBTV8SW?Rv%smF9Qc zlD~^HZt(0lG~q}{Am7XHR~c%bzq@;<?)Pd&iTnE|-~VG@FWcZ0$o3-p;ekfx5Unhu zKliHNKb=%No$126Z|863X{~iyw~gQ1dusa2d(p>VN$2tIUcEiG<c^Z{wpC9Ps>`o@ zES0K~aGhhbc-`9ee*f8DN*JzhJo{kpgIhVWm#uG35O~R0wOjncyA|1oZ-(`kU0;6r za_HT^6Esd;dNtp7@x>ccCinD3ryPH}D(&1!^?huay$rWiIWC8kbz1~}pEB{O(ChD} z-?+9stGe@d>;BOD+Haqq(q7M!@H&i>uXE|mh`sY+Rn<m6PnOu8DPi7E`~H2a|HE%n zdjC4(ipps#552n~CdSvfHvRtOBS+5ao;Lb;M8osOI&+PEk1l!7ShIp7X{(yx7w(I1 z%PKF=zOwK9`l_p|Eeap8{Qu(rpXGqN{jcS3ZY;dCb=&(Lv*LeWjb{$|q9Xq>Ah4oy zfxi3RxaSA<#oj4BznyV~N!hADt_q!#V@$NdpI>is5np0iSvBkbCwKYdWg+7Bc6R%w zweQcXY*jj6`%sqQ&Hhhp`+oNBX85t%{y%fvN3N-wK`X;F!a_|_-Y=d0@k8?~+p2?K z%{NzH*W1j$#pS~E<KIJBKAe1Sd#*cvQP-E9ORem`9L{HdFfBUXWA)WT*E8QvOAWpn zc-w1h)}{uz+Ao36W^Mjunf*&WCu(a{@9ff}fBI`bt>5w5b1LJPv+ncFUS5^F+J1AI z?{WSw&YWADcD4OEw)_5})$v8IXUTkz^5ia!%Ii#Ces$;0+%-9y*nTmVlz8oa9nq7! za+b*Vu;u5^%&~fYTXue#zOOew2h-JUA6r|F>0kKq!{Vs#tjbNlFL*O@)XY!so6q>* z)${uYYWZu}8@#{AIc_y$bJ!TNG$LpwTin7Ui~H@4m0n*hYp<rJmSHygb9`I}w-R%S zVbCR!HSGPqpD%6yBf>EErY4{LHv@*t$N3+#=5CvEwRPQ_TTeDWm{gKm#bhm&B~bY~ z`~ETE<yRC8*Ba@a%P%XN*38b&r1iG;|G&R`KKACbJkXB++4b|Dcig8*uGh_%Hy@h3 z+;8nc!F-)or^e}fo*eyia{gachPaJw(HF9B2%YIr?qk}lr`N~yHGjd|@|jk5Q<wWK zp7J&Syq;&0%<)A5S0?+1#~r`1EtbKi<o(<~SAPF1XV~`imFAJcGdDRyzc0G{w(zj; z_78j2ubAa--}~ZdcI6Lgw^{4#Y;B#FE;@IAhMlkN4ZW#e;x%^5*Qegz)O;{%gHE^j z{)oBX>wk&Qe=xCc7n{t?cNh7^;?CzpUwd#MsQ&Nk|4)TuikI%%_U7i+WYPYrw@W6w zhub_C_+I;1p24EDtnY7ii1klLmvH_)>Cv_C{+=t8**iCCYmC9`W6@T<wWdo>FDiR` zYis7}57VWy%om)_|Ccy#R_OcS%H!M;_ZQ!Kwr%>poQrR((r4>(?TY%pE_OF)R`c3} zj-zf{EbVKPQkLG{dgXO#+}Bs{K?yF;aPtJv-0>Ob`*jV>)#c0|t}N!iWV2K$ENr{y z#UOLWzXoZ~r)G(LF17!oSNHnxe{%)qFWjcq*42Jjwq6W~z7kvh_p6NUqHP;*@2~&A zX#K|2?pw_j>u#!e3f-))>(rXcRk+}Lc&^`rsUhFoWq!I;t-o#XVy0uIOsh(jwN2=9 z#bb9D)~W4H6nGx4G411?H=88dSJ`quebv<LbbH&*KV8om3<`gVnBV)QWcNRE>%V|+ zjdAl70-hH$P0`Mpn=7y~<62OOmFz9quRk@Xn%$4OmALcQtJRD<{;{5aykz;Jp2>Gp zE;9bI42-Xx`{UW;<3H=|KSnaxeYpJojzII#FH#l1wc`%`|M5hgvEa)UovmH3qJKGN z81XLBIJPnO+xxKG8*kHF?}j~#I1{eMU3k7vYGPdU-(T1F*Ew(bd9-6uM^@-p$Mkb^ z4FCT8`7U+U)m1m|mE7KzyUb%w4F8d!lQ)%GpygRl!&zHfH8(#g$MqpvTcR?T7Tk6z z*5CUj$maax<@LXoGiGeRJ;$O@rs24Jbr1Wy(CBL0A1nX&Z~r&LYvTQFwe6ADXN1iV z<?dDzHGETIrIuuOzj)n_Ce7HDRoB<WcJB+Dwf4gM@12V>E}uW9AG$K+(6*~SwbkE5 z&a7I>BzE)pk{G><H&)q6M{mn9%&mEHLXc0+=ETj->DT`qxV|xIXV>GD=b0j_SHv&9 zbs$=W`{999E#B`R9v;3^by}BY->tN@S7$B0C=vZs`Ci2(j$NsdYM&Q}be&tt^e<<T zfysRNa3havKD(AadpceAf%SJg-Uj)w>3^&g`Rad|uX=ZKb>8lY;`fX0cF8{8AiL{T z<(>zu`V0@w?cV3OcG33u&oNcIimE3yq(=Mrtju_GbLP28b?scAqHbh%3Y|W5>Hmr2 z^`GTeuhzeR@aD3v2dA&i$!hQTa?iN8%YJs$+GAh7n1H%|rWecZe@|UGGeT%*vY4`} z?xLWzVP_d^*N3e(G&4&JYJK(9Dm->+(5rR3US-Ao)enjKv-rMs&bDb?i%z_GuPgiH z=Th_IKd-F&ski%$5ojVyL0UskB{%!_wwGnQue=Ugkgv(r+GKhD@|DsC?e)95`0GA2 zH&p3gN~%dtPEO0-{e91K+dFl?-`0GZJU`~~;<){jERJoIz0A&dr0USBTN2SFO_|^2 zw#I#&_`aq+Ywy8xu~|RQuAIC)rC}dW=1246+s^L0xVyYxx3comw6)PU_QkG^)vGXa zh}VAk{K@h9KgTUizwT!EB4>H(o-XgPubb3wmw9~oBq(lSxRlMrb56jeR=wooOJA(~ z_kREXo5w5fEo9EQsc=+pd(Q2Hx9|P)V|cgod7R(8z@vrITZL@*?ysD3`*w}u%LC^( zU9tN2Wn)RusZEy}E5ck%YU8TIg{Q;T0<3&6%d^pK?SYC|Rz1Dj#^-*7ef@Fc#v$P^ zvpq#zmj%RajF8!(?t8|papTVYJclP3@c2gUPK|tKx9V!v$-m1ZgwTh#Jv`G}j~_cG zc4ywBrTVp+g*NrOr}<c|&WxNk^CwT!0UJHz8PBi3Uil^Fc%j(cq*Tz&P-j<4{?FUK zJ7bA$?-CO!-p&R3&Ko0SI-V^ndw1ugZ25|{2cB)u+`hUiNtBB<=K9n{Cf*YmmU`tb zID4sQQdRQlMY)k{SDkp*H`lsjQOD}})w~SH`|J)+4UgTri+wNS($f=Tt{*K9ZS&h0 z5%X!9|Ma+B^S$-=iX<f5Y>JQ$k1ZA5|KnacbHRhj^HaXhv)%LInmALzhYOAuthYrR z5a0hrmBDYG%}G94RsKgaZs+fpZCKtfv(VIhd!o{dgu=ULSKa!{zvr3hpRfM|T2&8g zn7KYWq;Y7YZjActav53K?=kAyA!(_auRY&cE^YE&9F?+WA(x7o7V9b1ua#YkTGFCp zUoW2>D_0+-+q&z!_3<5#EW?=sR_fG79&!_Q6$}mzZrHWlC-}O2<rBeT`K-ukJFkDV z;lEyLS@58tvUj85RM)FnThDyrSJZ2X*?PpoQ{U?G<Hu*totyXhZ+f)zys}w^GW<Lj zF3)~_cGvpntzN-9PCfm!NONzm+u<#buUxsZi22JE?f9Qwl5_N(txm*smF&H9<Hn4Y z>I^p>g6Ft1UHx^#q4nODyHd%~Vt+S&`DuRtlT*y~r<UQX9Dl~f?=Ma`6c96`B-><t zz=53|yF>#;CcdaO=XUihly56hDnCEZ)}qgO_u6&($)8`%j;VaA$S|+&mq9iEin)&a zzOK#R_<Yh{hBtT1Pe#dpnssxh_upLmuf_Y1Ebh1EI`Eg@F6&+BthI8i=NHC>UcWUt zJzDMl-O^kySJNALA>27DS3CZQ*z2-$g`IJr$mN{xGp<!HpFd;9(wkwE<7@3z`o!10 z47hy#RZ(P_U51I2jMb8JXD=`JpUt_ynVo;u$>Q7F&fng@{JWj8vGMAfElG<fe&~Xh z-W-NZDouKBmwx=Pn7k|KN6?eY_b)T0ZH?+J-xn;JQn@YTecE(AZ3%h#_>!<2pKXHo z{yowuoEBDTIO*C}n^vd9gCgHQhi>*W_TiJW@mPM@@cqNqumyL|$Q*yz^;|}#LPz&s z@cxFR{LK2z+1s_G#N8)$vYoy(i~IWZ(>YzOOnsaGNI1zHSF!SXVbv|ZS!A`kFaN!5 zxzg?Y@@C#Eo_VhqJezj8Cah21K5tWl*(W}Q-}?I})qhR4XFO1D|3Ta5>?)mRjjom9 zTorj`yf^mx>Mq~;@zvcUR{P9uzcDafe(URx;Pi}bSFZ2<>~iwF`q@L1a-2)=Ep?4Z zPftJlb;pL5Sj9^mzdD80!~QWGZQE8@ZM$(@Z-0OBj}M6sydHWct|t5SH1;OyP4(LI z!c{+NF7w@lOJ9S`@0MJyoL>&QggDE3z4*Qlt*dJzW(VzzN$X!HkaycmSXkI$Tkc(_ zOVT&L@B6;j=G%?r8qf7_W6q^qPfNaO*1Peb>AIH;d&BmB$a-^hkyJv=uKx_VdsAH4 zUWl)|9$YHo_0(uv?K_sMtz9LqsSg$fJw5tqDf1WG>Td<-ZNJa>@-}a~^#r9kd`XKm zj8<Mfn|Aril^Z9#m*m`j7P`LDnBo5ar}`f+`q!{Ee01x~=70Narf_7|mz$ZU7k}}W z%bVTasGBZe7hhGMdV8AWgn9Yx)6Qz}98TTpX_a~J_180hS6*oo6n8o&1e;J!VmYy8 zlZ5B=m?BPf|9LT=&My_5tm2u%Rv~$5@8kKtQA@vg$N!onawtlboloWgXa&Q9TR&^x zSIaL5E<Zo{8DGJR3yNj$?qn+YAMcZmzT13v!KJcwI)(gs4bl7Go2``F$20NW;p4}) z#e~ckaueL<H*tFQ!Ga~B>-lA^TvlH-djEW5@^Q9r6a9>vbWR(sJg_(Jyw1*BCj?6x zj{OK@xcBq%`)8}m@A4k#3{Kzi`nLOrqSH3N8qdw)5<9oRO8)dFpR8}+-rn{VyL0e) z%(<0^@3TGlaq{w;8ylGu4n7T?9Vx(a`c#Y8?TedqHaoYbgmiK%mh&g6?ETQHZ<2Y< zd#9&&a7WDbyBA(xYs>xq?ruZW^r>+rDQ9n;(h}i{sa$&N)3bx@@-d&zU(YhV_o2<4 z;lj(3urD{vx=m`gL`7G<?J~I<t8=#W`hAWA2c5&?t}xs!l;M*L5&imfZ$x#W%;gJL zZ>_$n6)5ttNqi4OK(y<#rOjW>_y0Vb7I_|Y?Zdfwp||T}UmW>ZRsOd3{&D|*uge)f z%-sLW`(5pm9Y1*@#B5IQ(V4K+KU_<+?Cq`8b&BTqDwNId*BCF@cHs8z@X(3+VmAAJ z%(Q2Jpe+B>_VP8Ohju5v*BamWR(t=>_aFQ6vwFY${@YmpdtZJT)5;L7B7d!EF6YDy zC)u2j4!fe<yWsit1>IAp@BiqvJ#8}MuUDE=y}aYLKeOO_UwOWoK}`3Y%DMBGa^tk- z*H^o5ERx#A=l1LVQz?1*=lA#hpU$Y^aevFRoZHWG^Q)y7d^0bXNx!JH_GQ9{WwY~) zn!nDqE-!j@MU!FO?svOPEgn7m%;kFT!!&u;2i5&|j&GN<-uOc5bIAq^GqYp+YJW3S z-1|H)o$cZE_<CD*emN7tk3~E8yjbwN&-}kOgWmpEX=QJ2ZBD8`?-ryZ<{P`jIQ`s= zgJlZ?3}$l9dmgy@>Y4qYqnBFsDNmM5@=W1Ho8F&dl2!NOf@0@_^@~c{e#pMBXzyIs zeKlBby06NUN#1%pAAD`hbbaz=e^TbL?W@ezUwtYQpRaRzkw&&{yVl$CwDk0qAzI>7 zQm48}>hF9a)F)@VYt?b{uCn*RUt{C`{@VU|<@x)r`<Gu@s;g7>F36kt-j`+OGw%kk z+xblD+xz?Ab8V)V-hW*As;X{nT%6LmuXmo?T~8_Z5G~s%meQbSHl?I{!uS3E|E5)Q zZ>+jhnv+y|x9auUns>$XnL$T*UzrxT#YgAvz1mmD!h?icBldN6a&F7Ly=}>%<lo=k zK0asto@Ls$tFNlkBeOn~-#-2BLH+OY^dE2T*T^*J*ZiCfT9(F8^W(65T*=Oc2-#_= zxwDD`de~;N2_eP}LDTn>mdTxbv+0J%tFOB{=XGpV78F+0ySFlU`HijF*C*Ne?=F9z zR#YSu5FNAh^eVINs^p&fzxj1t>hgcZ7~=nYGWY%M*|k+bdVbBRR#2UDq|0kki;Cxr z88ZxSFOOZZHhTM|*I!?Jt=e+?ZK&0ui)pvbjwVe^+Nd$P)hWlw$N_07!IB-|WiB0} zqQ?yxii?Zi+}T;|X&=4*x^LjlnKLD~<=ou#=(zc-oYQId8?_lMN}f)=Q*zmt!CPya zdP~H7*z%XKkX>QF-0PmWPuug@eP@gr^QE(=Hs#*?xY(Za!0WmXvT2i&H?KV|o@6{p zq#RKQMtDwAIc&#aD04P#^2UvZpYtt6uf^^A(7omVt;yfy^)mlI^tv5?tM2W|o&Vn) zGGGbu`tBv}36+`kzjD^xxl1o*@Vv}8;-qpkmIGvNkI40@(IJXQo~dZQgN66-Sg`~0 z9ccAYL3=GjQc1)#(>KmHt}OZ6?tQC%$CAJ8?zied6ol7mG2P_?I9;>|IDsd-6OR<y zym5|5tO~p4rEt=A*6g*ulN$4v*c*P>ks7J;lKaWLy22~mH@79rMF#zzy+83ozPJ4L z8Q-_Bbe~qd;Pkc#>-Y<gU(IIj=l^G`eR$hu%Tr6|{@?j6{>8`2=XVTvwxu^sospl? zZ}0tE|5s$B;_6HPu6fmmh0mD!TW3~s&9u*%Q~%A_^4C1>zWuF9D#r>p-Cn<R`+uds zKb5X;Sor<_FRRjnwfn0Mt@>tv`hE4ajZ5#D>)Z%m+f(z~Jusy%*66*B;A-Xj|B_5j zTC2eO#|)hdy032hCj5>2f?&iZjvqhM(mvmx`G1dz-o!OG<hLG?eDtN_(u$&YrJs&( zxv@G*OoeCPv8bT-{U<K!e%LVe?}g3#Kd}C@)t2l$&v$l~IOi$ba}OSSZrXM6!so56 zty`Cr?R)SozDxAaXWhR_C->~Xxk>1A_qp8v-T(J`r_KF6b92%E{9jAIM67K+zr02C z2XolZFVXrs=WO#g<wtSv3D>@#GOe_5<HVZ!Svm!KxNYlQ&n<N2_xN8vaeDlk|B^p$ z{`_CF?O*!J{Bs_6Ca>A}=cmmFF`c^m6ZW?~{a=0YyWR85|9}2YV>uswGR@}ybxX+w z-B%5rWF7ypJ*!#y%F}MC-_uClA5zYS@4xGp*_^aw{_)wq-t=j|s-mpTOZQL5lkZJR z`N%otXkR^N{dKQx2QS^05Bux9@qndKfeiPSw-17tBEINVsq)pb{{K@W_2$51&%6!R z?>{b#cp$D{@=oX9_cd;dbMt-{|GSfaF8hC|{j8^!@&7kpP_MZ9`~T5(%YU+qy}hlt zans2!-9P7Q|N7ILaIds%qvN-x>$-pEt+}zXc;0ox{qb(kSEn1#`~P|lw1ffWPh|(C z7fHpH(;|;FdK})c_?dX(ls+5VX=^OS?RPCq*IF|n@TWFg-{Z(z-|lGq|8=G_y53#q z$SKLCpZ_=go*yF?npXSG{&nQ07xrN@UCy;ywDW*cxsF3#U#q}jrN8IX6b~0Go>L_+ z>-Pwqp47F>iDRRr=Y9Pa0j8CY^p0fQRJh&4sn`;s^zwhJfRln?2_ze~2qdYTV2C}F zthhUfuRk?1V$w4Um!f~%ifzun>J(c96g1yGl9`lb?sMtaVYT-S0!bE2z6&~WFd8|C zCv7<)<)YYfW6qNQ;!Yfm$bsX?hP=uUR#3L-%-nt^aj^*B79F37trufYOkB}?TOn8P znt3Pk3Pq(CNhztuC#U&ja4BA!t`cbxl+vgg{gYF1OU;#<I+j|+*M_U?s=o4HWz?;R z>6Up@l~ca4?j%EOPv0Hhw+~#k{%@W7yZ&0N)}+*z`_nFVhyMEBbLXm$j-%de|D1x) z`76%uf6jY>{g;mR#dt5F*(Wxx36we65jsVs^QG~p_{k~>Pn(6WEn+_M)u3RDj`nN* z_L@HaEyhpuuKnV^JMWeKwFBpMQ*5{FzcXcxeNnjrN-mx#sBbpe$ILnN<(CUbW{G>w z|GsD9)QAY3NxxRj+t9{dELZg{PG{=WzwSzj(qa4NpORyqG^1hxfA`t%m$#Ii-nOCi z$(=Hlt~y0MmABt(-2UyFFv%|Y@`>+?g=>CwT6CSc{_3~bw#oNiM?`FUXRafC+V1<D zdGa4+O~Zbf^S}JgpJM*>_lG-$E7g47n{VDw{O_a9=}p(%6YXC{U6Yku(7n*xdb>qm z=OT^<4W6@Sb0?`Vi>uw<wo&$P{_VIAY~>rzmAueVu#8`K@k7uZ_TYWze78oQIKb=p z?|JdcS<mCX6xnZnI43>!c2HcZrT&C?>xKDJo5Hqj+SwfVCuR*Z_gZ1!M>!61?t+OD zY38>J%QojGCcd^i^U)^eIOBn%N6W<gWAEmO#p*5iH?el+|L;z<ygX~Z`mZ@?CU^In zT$tReoqw-6)n0H|t-F!e{o5>?ltLL{7Dk4B?}cBje{6A#DJT59XkYW=713qaOE;Fv zC*2lP`6YMa9IuA^rnT*r^~M&OlkR07E1a_XdZ6%%W%m{AH_qY~N#x~u#Qu9)&2<y2 z_l>FVY%TLUJbL(M?m}uaxLi0I@bvQTCWQsJUou>HUDo+1z@AekeD11w;Rin3*qmp6 zc3$QAv)OAdu9=+Ebg|nnfzPmLp238z0?(CS7)Z=IRloIt&c}pT>r*3les^E>Nk6Tw zabs(js-9GgyoT4b8M?8IIoi|ZGH)xJZr(4a@{?&=VUC@8poFmNs`*?_^Xs<z+kXJ9 zs4NtDF@O69o2%`it4mK^<zm>DoU9tTe{1CZ>8#Uvo@^4HWFe<vF!hQ5yPx*!Z(rDE zq5hd`({Z=WYuklydd;@&dmIyeOr>zzQiB;kwiH}D{^!Yx8kLKia@I`jd$(@xAEA93 zT`x*^Gn_eh?n36)D~~-}dVLp0uq+7C3f5V<zI&+<>w1QU$5s}Z;*)w3?$5KIr^s?a z{8UZXp$Q5hwVO{>d0oCCtaI8-@Y$cAInn1Ft~J?ixTA1?c|=55*;=`&-<2)vOOp(n zQX2Hy^!h?q1#Z8b_UMWx!>qHBHSwhjws9X#l5B`t>$o*&VNBTnZ(Od%5#=%B?&S+A z7hiHbl#%{JHKqBJMPH|r>4%Q5Qo7ppg<FeP#x1+NU7{lBT~va#naWKUuPR6Bmu!*A zpI85UmOt(60+uVj#k*E1_?=*T_tWu70x$dV!h)|V;_GJfhAsK4f5)L}$-EGrTBdm3 z6V-d=-iFQg%jRoHTkX32ZrFM5n&QQKtDozYy}8N!g46Bx%`5K@J3Y5u(dfNK-F}gV znx8uV;)t)Ig}e6IAJqA}eN)}>O*zH31-9qs{O^0b;`mczh8N$=PaCmKpSd*GZ_=`$ z)%8(+)7aLqz5luXe5&=fc?KuvZGYyrrmM8-TzleyGiOW~+~?KJN-JgycwV#cMbNq{ z3=;CUofaD|t268K^m_H2TjW6K+m}yn*(XLk-<GPDB($mYdGq_9w`9WWYAffc+)T+5 zxbSktzMc19&nmvRDR<2gFXMxSbJxUmr0!nE|8dX30|B?r-{@OBZ~n6Vx1Z$ox7|M9 z6C_$&m<Ve|awxV)FbX+}J5P4=I}~vC()MRj;KBCb<$f36e`OF|v-a96hMe2`Ca;Y? zp4qc<<`b{2Zj+`kXhhuXDYWY~_ndUGYf{gRH>qMvdVNE*c$j|G-LJ8oKiBO-G3zfj zE|aH=c1}xOoyy5Nb<*=^X+Pax#7fR%4Jv(Xp~mBE{CNHmPcg?H_SMblg2!uKm9ALK zw5qjxsnXL;UaR$(rk%5rTzUQ|M^r{Qr)cVxi4yh;mj7P4^O;WY<Y1q9w%iBayiqX@ z){?sRwp3Fr#Qy5rGR@E{)qyLge2ls765b~MRcf8iU2_$lklVlN_~X;nUFtj*Oy_nf z<SER#6ePT9MZQdGr24kE4_>9RE-h;9I=4$p#9O56sL6|t*3CPu7qLvX6m=D>i~st2 zZ(R9;_vhn-bB`a}7J4N>^y;Zif^6U3Uc1hD{p*LA4LWlln)PIV;)pH#JX5L8J|Qj0 z^}_thUk2&t=3G4AsaYlW^<yE!F6&(`RX=?uxkO5BbKR!hk~{H*ncOwax%!jR<SdTg z+ADeUQ}2l{>T`FBZT7wTZ0%05z$y1wToZ0)7V*w|9`qsP+2qGNcDR<_)e-Bu`L}2G z>2sb!F~<*Hn$H_u`r?^G+pX>DJSk=!7uA_d3`1TW3%?ulbKm*M+T!0&g!?b&tO~j4 zwDH8X+*e9h`G2Xs6_oJc-<oT^ddJJ1DxP7f#cNltHNRBfn^(RfFKzSJppE-3zWrXk z<ypw@?^Ri~b0&wK+b%QtQmW<7uP-)E<yAVlJR(}eTXmIZ=-)lLGa2oA9?aTlI$fUS z73U;_1Mk1SWPg=r*}16kU{aOWQI%)5-Ax?v_V>Tn{yCt|clEp1Q=#bXZy63q$(z5d z{H%SUtCcsWRm45*r@O$9lHIHFj>W7#np50nEWDi2qVkhUy5Ibe`?IqHSFZMS+x}!@ z{(nY>ZLY7}thall1bd$US<-O#{nxWca(3TcGFMOV#rLxeww*$Y42(>@u0)l7t!jKf z`*r8zie*e?OJf!p?vri!_|b3y-wICQ^IOe+hLuOg%eFDT-4?}cYi#Qq|NZZ_+=pUZ zA~CVQk7_^IvGeQSYYBg+zw!QBu`uF@*7UOtcOBPWjrCTZ_Au|)FAKhxFYKOtd3o8U z_J=3KA%#Uj>o+Xk8*6WGcs=3z*AJIWU-V_K+8tfC&tCqX5Z`C(=jK18_A{=U=4X{D zJ9A%ER?#Hk<9$p9#<rdUODD@3wk9<?%{mpQ5qQaaGS^ZgR$B*sQSB*OS%=oIQ2)cQ z_0A>jgxM3P_U^noGyG-k+Vk}*@9g_`f+4o2r=?|^o{+g=;k1*UrV;v6Pq$P(yRp^w z)X_;VWxStqt?Of}TGzg|+U<7d=F-A%1ziSDl{r^--#uTxly{A{QuncMRkqKb&0;9I z6`ON=QNV?_Z$t}iZ4Yo4Grx(MV%VdsB+J=dVq&5D<+&Kwjcrx;m{ggsE$m)XGdbVh z_7X=^L)?D%?YA%A?`EGje_wXtoLq5X7RI`G+x?f{UV6Lb<@YPkmj&oFEWWqDXld3W zrXYj7!q3;;)OT*Zm^j0&vi8?6+gDp|nLMB6^U`#Qv2nU(ahg!T>x;*oW%p*5Zth%@ z)A?lC5;Z#^;gxSotIuprW1KN}UfQ~qzZT@}_r7uc;$aI#j^8brF18(K)i3Zfi6*k^ z+&*}9;+mk9N4CAS{cD|^b6fVts>>VO%x6}A)XRG@Gvem0PZ~XE8EUhtCgnwMo%z}_ z<do>-*5HohI~seh?Ygn^n{n&kMIBqNcRli0`}g{FhEmVC+f9XwzZss++MJd>&w8)i zWUE>C-j=M``a0s*>{h4FC|BR2@YklNOt+fd)fUry@$W=oOp^6k1<A%U2OFCjv;Xt0 z$f&FG<$by3>))q0jcxv(F=m)!RofJCf3*mApH#v0t50HAh8W)Tdzv(JlHR58mDg5W z3;i9g6?*FFs=B&P70(Z61a~BS+bC~gbnVw4@z>|m=9!7Xdiri{E*Fj#JWUIYy>1%a z{^id)&yC-H@9VrVExR<!cyq|AtYe!ZbY_=iA1^El6y!ebyZ!b?wncjmuUIzo+@n=j zzJETevi`4~idx$|Z+7lO6XJG>ZM=Q7NTKiQnj#*RU9UIjTwk*K_|B4_20WZ4Av#>j zIk(Lw-fNuj@Icg8!5N<C=BsC`p4?u)i?=6AU;Kp?1E=S@prW#AE`d&Kf@^=*&ad0I zsA9YG@})r`+_lqnZ<nr0nX@A6`m^i(7kvI%a!Xvlm-PDF<rS3=et)TYRr|8cYRjc5 z51#2<o_zU?j~`<}SytCgOHtl;CAURNrBv26XMb~*YBZB?YFza;Fy&X5-}bX>)@9T_ zJHujpd6n+-S-z9=-m)_~3JAGbEs{&U-PoEqU*l5dmA>B9xAz3Cyl~xnao1I&sa{i) zJin%|lb*?8aQK`?<h7smh4aO){$Kvy-6#J2yi0lIFScC~VqX8iY0iwh)*FN_Dg9bE zJ2XA~`t~(yZc*w7Hs&s}IJGTTdQHTpMW42&v&qX>T{luVU9(N&#n&_QQZIiEowEII z-pbM!sil13(xqu7VbOany(8T(+a3=s)nT|@y6Km}i#Hv2-b=P|@BbcoF@Dxx_32ly zU%Y+Ocb@I(z`2j=em&t-s$KuM!fdM7w0&`!*L_U(2CWOa)*r5Is%6y_xBA-3ep7~w zD_J3jw3aUV#Upw;^}=bVoa2V`C)X_fe#IlE{;0=9#$6J6+S&$>E9I6Jg-uZ2tH}45 zBj3-~?)se6bvGBRv_4+6Gb^uVZ{yp=oA@rAEv?y>yE@lCY^8C`hRMESKdT%M?`S@e zJ25%+?eu#-KLa~Nn^RxrzMoUGQK4YcmJj|uQ=}g(H@{mbB0PD<cT4*NF?(-sNsYS3 zd&G5L`n0LP^S_nK9B;||xLU>R?eyDkJ@VU^&l6^I412Kh{^Hv&XLyQj4>){va{M;y zLz!=t4J_hwPOn$+QFr?F<xAADu-&fS*H2}brO(VgcVSLw^QWE9WajqmQsg;&V9m|7 z)3ijmUb*G}6KbAV8z0u4_qfFWk>B#eZ?;4!85kCJ88263m@#YKqQ%!2ukKvUAY{uZ zk;;5Vf#+=cu}wLfWuM>pVKHrA;Jt0B($U*<7Kiy?-!S<dgXN!n85+;`PtCPVzishy z(gurV^Zhod8TLJX_>$A%c;Q#MpoY|kOLlLJymnw#eDI%sCY3NVLyMk1d&!NVFMe%) z7h&eQw`NU<=B%%O93?KiEYE!DIceuJnPTHtn=h`pt{EQU%N@GGho7mqwBpkJ#OKq0 zoc(=Q`@j0x>bt6Uf3M*)RuwtEj3IUT-NYz=mU&jST@L!Z#kt){JAF)bH6rz9fBEXQ z(<L;&GJNG!&9JN2d!w3<&C!awbJxgkahQ4Y_bQudcjs3fUDMZZyyNQ2W&7AVTs^yX zgN8>z{Y~(cT-zxn@BU)j{wm+4T%z5oLbkWxeXj|=v)K0fvYR=9>sN=YkJ{?Db5_{p zFFvNhw+q>|I<4}edUXzNdeiu2)6_3-UdEg^>)rEB^Bwbk@BdZm=C9>i84HCbZ=3bn z;^vx~rhDEltQtNh*ZD)Hc-x;$S`Ze$&DBS5cH-9Uhj&kS^Y!Q@<?zX!H=YIgUT!MP z-1<SIZxhF^xvou*RJ4V}-3<5j34E!x-8EOPHa4d4jMU-<)0>_sYh}N5I`_uZw|S0w z@4WP@w;nfUy{)s4wYy+`wZVF>UhZA<tx>tp($Z&M_AY*ACHvW!Q><^blIGJaR`YOI z`~UaP9@3HZ5Na}5a69lcOWN$qbL`fxdNALrZdRx9a)udJ)}G<v<=_9>C5p`AnQzh8 z!Mt~}qma<j%qyL)k>aJFe%mcwr1i~YbFul~yz?S*y^m&0Tp4P)#O6)O%*m<IJFG4< z+*aedtkcRc<8t_3*jj+&g+5!euJaZNI(WP>>Gs+yzhIN(nMhgnh|klnKKXZUs?C4# zxAtpNG6L`X)Y<f6#@icHN<Qwbs^tm4f7qqa=g!;NXC{7&>6V<kHhBKrrBR`RU%b}3 z1cr;3zsc!dzvZLwZL|HyQ%-EOs`abljsIX9arm4357U<$Bc^43G5F-W|8CB?r`x{x zYLx6Mxs+7!)aY%~tJz&sjiz>G{m<I%wQ<Qi$JtjSkA3}pX<qh4srydJ-Ceub|JtR> zX08v*ezy7PuD+X|M@wyGuFK9%HA_l4!4S*S8>KuoR>S7{;;_r1UfQ8s?R6&{*%z5E z?ZTKSkn;PUnqlFTyKj~<@3-hX)9WM>`Rt=gVZoduZys{3E?*e+;bZ#$lT+=cr2p@| zIpac#!mVw+*=nXb9h-CyOuA#6B6FPicDYL7uYD=!%VqeFe=K7DxF%{(>g{Jo!+tL+ zQT)DF+}J{9MaTX**FB&8t>fNY8zOToVq0agLSVU+r^xInmn=FxzF6Hh=-@mg5dFUM zwOF@>74M}(QZ?tVzleL_6qO<oeeg^?|J*Rf{>2>zx#u;Es^_~0dPt=HKFeMh<$LEi ze^OJ)`XqZbqv*PwQ@XM`9rwm9jqtf{zuS4Xfh4P^kT4slIml&TY@7V8ao#Mu(`UA< zdtqmuUS`7a$F6YBjL&9%Nt^9UB#yt(<Cr87AAYW1w>>L#>6UG`b^j>H+;FeG;jP`1 zD(7w{zIP8}-7eLYxi_;`Yb<yny2<35Mo@EwcKCe7*nfiVDT@ytsi~W!a;)sqmF)H- zo6e+(Y@EB~^DgG8+rmFf8EEAjE^vR5xt66p$dgr4>T&Xvuh&<tO>(mJyu@F{Qguk5 zqo$Z&g!N`r{noe3UM+ugLQ%!!Z};3A7G-&p%%&&pog}vRyJXn!<&Ny94|%^9-N|~P zn&(HIL-=}Mb<Y>ye}5@`J3Vi`zvF)SrFG|XEN{PMo#Oq<a%oxrynDJ!FTa1}9@|tf zyUvz7o?WX+;lSrB6IMT%dS+9L)5;EU@y&a$oK(BG_D_|=#+NzwteN3Mge@K{u{`~J z3zu(hUH3X@<;pE<kKM3PjZNJy|7D|2tf>t9=_U<bJK=P})ff0VZA`1*R4Fd3yQ{*e z-aF~2py!)K>e`{K6`tysl8mFXZ=3b`9WRn;w>ZW1??|9a#_F5Z)_p~pyS_PmF`Rp~ zTz2ZT+~=2GZ%WE|;<S2o^u@bN)*tTjdp=wF?9vzdudfz|eo$20f4@@1{bh@NS<dWu zsrH4MXWV6GckJ%sTD4S;q1B1;x}Wy@=$+qlEZKM2>=ae+HoqXSNQZgqt;HwaoLsx9 zVAJQDZ=3|uLk~~3IF^$%=g6vErTcE}o9mV%)3wZ~V6Ky)_Ny(LGyhpA@+jBH&YU%S zW@6PV9R}meo6jr_{a~FN%y5z4$wTOk$zgRrj!PLyQ*^mKCmnfn_-%!3+Sh+y)}~F? z;MsJhvton6gIzxQXI&RRw=H3`pPi!lZd$6*@;yn6{_p1rsc?F(;i_wT)qm-A-W&@R zzgfKvp1(UEOC0YzTX^&Hx9s!ZXJ=m&j4f%q+;xg;)2+T_uFhW5V=GNV4jP{S{DJv? ziusYiFh%<w;mhya6BD>LwK;k`d3C-?c7+bxUG_-9BWi1J9o=}TN6YMvZNR^%$@%Hw z;ivV*xYUA=YzkFOYOvtoU^*Sc{A-@SVQ<6lRHnTxIvmPOu?834Z+ppZ`?>VZ_p_yk zw}s5Ic36Mgur}<Vc7Wga@aw-<EdRY$yt{P`|Eb!PYpMHH^tyO19Q~luoV`%yx?yPf z>t42baqLe@Vm2MxBv^N2`Sf-2vt}Baizhw^e*JQ-ewFEF(b?e|Gtb>9l-c8y_jY-1 za{nc>;Ov}@B_^l0otd>lrE%Z=<JU9e>-M+5T_&s+$rWbBz#jV5Dz^B=jc*Q(pYE)c zDV#K8ZneZ3``w=|ao^=q4^r>`m;7@5WPjWK!yWtf?b!Zo*0W`b`%Po(Ivpk4mPzGq zzpU8DG}$d&N94>eb8T~tGxw#}e|wPf;`<TqQ*7yhYc8$5{Mn{UDfsJk{!LpK+zspA zb}uToY}?5>azD1-&ixZN-{ZfJjQg`%tqNADUu<iFRzF%Q`qlh#)!{oqOMc#7^YvHl z<Wu)vZ9QvsF>ibG`{%C=RUW*0ST3ZlGV!O&3{`ngnaOo2O83oI9;y=%ICe9tbgNud z>HjBJr_K3%ROsn3=Cs^3kCR@i8YSLXdfC(C%cS1C?cLew%<`M}u1uZ%??|DHR@K~+ zMfX4dVX(X#bZJ}I&im&3jia;ex$?_@nctq4dTF-yRj$z5`;Ww84r!dxecHjHWLxm2 zY-aW<(+l&m(_jB<wrgBpw=YEN@v~pGTXW7D@3)<6vqdJIIV~_fv0=@<fUxM}x>X`y z{iN1CPo1pr@)J*O+YZi~mu$3ew;tG}b7`wd<MT`3zcTE-tj4qHm)Ksv*_-~^KFw-v zTHfRrcX8>W)rZZu<s`q}_BO(A*AvCnN9M1Wp77+K*hb5oOE0V8rN<Uf>2ZD!*RgH6 zk3~1Vnwc8wvGV1OWgk4Zn;yR+*>UMaQt_;)(B)iHPltT{H#xbNt@ooYL&)poE3a2s z)$9yfd@o~$)~S;YQ5(<rKU=kb=FKN{`@M_HZiys$J*rUHm8bNyFFmMCm|I3xv}60R zp5FeMi=19@zOrA{RsHLM*7o{3{(GUD=R7Kiym3b)j?1}fuij<jV1_xCrA+beVuuX^ z-nK=(nz+n1DkANryTC6O#mK}REII1G_oN24Zk;_{{@6d3^J*tWpLH)5xc~n0wcmW@ z*11->p>wyJT6-6VE%(?yYfF??)4i<i8E02M_xJU`JZI*@>$$V9d#4|WJ#T!qM*Hce z&KWmn>sFoH<0CkiQE2v+yAuM$%ebrTYU7vgWB)tPbN#kSEf$Rd?!}>nM@_z3o%=Pj zWy>WoPnp?sZMa&Qw&f<z&WQN+q*o#G-gBM!*+wUCslNSud#&XojRdv3Cl7Bud;W%B zSk0M2nal61TbUk5Z)bjWD`x$5cB5@;So;e^?fI3%j@q6~{kZgb+QyirtA2MTE$q1e zezw=Iy<y!qPkJ)Uu~2*QQs>Y~snA;f5NYY;HS0EsW%U|*P2JUbLfkubRTbyL*A~x; zCp|G*WtL*r|8w@H&s$!EYP{e%+w^*-Y*x+P`WuD2Y>al>Z`|nded$Iag`miQb+0G9 zxboA0qr>UG&heSq=K?Oz4368FVkE(}ROst33x?SJ{mC~YFYa)<_{J^esnH#?2iD5- zT6r!Uy)ct;*V7qV)0Y;pu3y0RB5abtGUiVQj=w)=XueqMQ`qU7V#@O#2VHr6E&Hle za&#!W#lBSQ=xuKq60WOGe^jN%YAg6a%~S7d+1z#Zdm_?w)za=(EMV_oSo=(8^W^lG zrB`?zWsXN=R%O;T<XJB>TARCD<kYLZ1v1muMq9HaM#Y*bUDTWyF>R&Do?E{At2D2P zn}0cT>FU+0n1JlO^kvIuSX2r%1Rw9an7i^|l1yvD(zp4^OXH6VEDxQwvCy`EQ62vw zi!*tB?0m-AUqaU}+P`Z3zM7XVArII~qH@p83%p%3*Rpof%97dZJ2#&(EfxI`)}0r> zJnnnVuU$>~yKgVP{rb|Y7bVB*5-zoNA5~J_%eFV*#CpRmA!{4Y-gv)Ywcqi=ZLyA% zQlgjrtevbS#kSD%acJ_pmLuoXIE6P)b__ducT>?<Uz_Po^FFK%SuJAAf7&y@{#y0z zbnejUn|&WXxHM}GSM`J6TfT1U+d0#-YVNws=QXdE=BnTPq;~t*)zju(Pba-RpLNwL zIr`YycdS~y=HV-=c<(h&j7pk3TV-qRX`U0OmMV$veLCy4*anY|FHz6+ihW$IN_W{F zztbbNM%>%gtEwPeD}2TED-8SX?9To85%$U|U}Nrexw6;ioeyfy_<G}8)!N+~T(;#t ze6_Uisn^6T*R7LZSEk*Zek;v*wn0ek=6k)z_&8&0&#_IL`Jh|*xXp3C+z#i<`K7mV z)4tf|UetZ?Viw=gpqU$Wb3a?Zx@ws9t9I4ZM~$;2m~S8H^mS!>ku+~>Z}HRZwOez} zw62QK2+(?Q+1T?#sbHT<&xhP@hxNj|Rr4alpX}uGyCqr0s&;P0?8d6x9$oA5)z8}* zuV(djy_>VQDLrqI`=Z~wC!F0C?rAqk)Kzfbz7s$8>h1NLJ@4M{nHHyX-<+zm+g~fb z&Dl|(VQt9s7vFY$`SR;U(aN6JsqfcLt#7@$ha>jH%Dr>Go!_4)CF(hC-#J^)B&WT{ zHe7#wG3T6t^~!B?X3e$qUhq9DRM_+8`ZG!g3b(PFh_wdYeDhwa&C$$p(h+6rh`8Og z3pPtHFq!n^cWv72%QE(#z;g+cIwv1zoH29WqV?M!eRQ6G!T<WQ_O!nx%b#EV&Rk=w z;W_EZog+KLoKA{pXwB-lIcx2HS<9OZcMch4&(&RX=i3a%!l)0reP=2YqgR+N{`pxY z{DbcOd6~7`*SBfBn*F%xabmUJwz;P@B&W{4pE~FNs|)AnX6(MuSha6Ws?)bhj>jDy z>({<5zx8ET?1iI0bdLW?%30HxXRPaU^ZoY^Uw+-*c}?eS+37XAeHXVn&HemL?wEGa zHQ~yoi@I6W7OU{pE^@ejoTHY>*7JoGpX=Ruc?VDbnprfnDz|6jTP=%?`>!uvqV92O zs#dE9tEQ0p?V>W}Q{o%9mM*+fwDZu9in}#$tzKH?cUve**BtM>X=T=xWBib1;mha{ zw}tPX%TCXmbK&~!hd0Z_uX}IbR(z)FQ_xPQ1;$NYOO0-Ce{baa{E&vpSIL;t2ikX4 zlIBh@ec}9pz5W9`XpxhN6t7e-+xEL<()HiV>(lq$fB*gG&G~;Lx8>jW+Zy$hH@|}U zc%Q6vMX$1Z--ln<_s`4Pdg|NT+dp^C|7}_Gmk~CdxbdF{OD)H@x3`bC+kH{wle6JC zF#q4n`JaxN@0<Ah{r>sS?f?JW^S<`|<NW{M@_+s~ZhvlD?(K^Izwe)a9rxYp-R}2x zGRGCWl;VEhy1ps-IN!THpZ(O-)hn;>zUMkgrRIsU{LT}LqhH^Mva>yJmTm0))adA< zS)64#>bLK?o_}DyFz$1jW6JW|6K>qFdUWaiw~b$;E`{xOj(6X=YAf6BZ|~A?_sKr{ zp0h+`QH{!rreN96^<{Qjwa$Lpq$_jXG;qJhnf-Z5*D5F7H#$}3qjGeUtcT8K7Mr_q z`DfQ&TbaA+@bk-@(}X$CEoygs@%a0%mW@{VxmSKOWF5Qbv{$@PC^fo{_ljp($<=#b zij!uSmR-|u&%LfutTO-7?6lq=bqC&@(NXuG$ME2VvA=O;8B;*!+dwJXlS>)f6Elp2 z4=E_{I4{yzyLCcB^vidG>u$Oo|H`E{X_MfuIZsap73grw%(Z%DDYxyPRo~=Buh&2S z>1-6b+^(XMmdRIDyQ}JH%qp#Eo%15!{Xc(i_TgL8?tI;UU+UVHcH?{1)djcx{rNdh z8VSreqQsITIKj$clY^7W5{t&31DlR0w8#iVIyD{ORAM}7#4>@QQ`K8xk^0~Hcem}% z|Gqc<)?=wvuUJjj)t=v3`)uzy%l-XVwtv5Q_*VAysMTSifA{Tw@895jWK;i~y${<z zElF5YFZXLx$b*GCQzl5ZtXU{<+xW?MW8w4Z%>ii>HbyLT$Y#Fl`cg0G_4MU@$&N{} zVwE1PC+CDaJ+Ji?a`n5-W#KKTanO0*t_+s2e?R7)D~LL4P=0E=j`qg?Z&(=;{(lg- zdSd5M_3PJ?t^Y?ZI`!CQn!p-2WuNj~t|uv0yqS_chSgc>nf-RN)^2Spiu0IbxFhfW z(;GXIRYZ3PB(6DZ!JJ*g6)z)y)mQw=y!6ki(_SytUHZyQJhyVvM;W$7pH$xQ&RUS) zc>mwq`|tk#1)VEe|Jl60`Twu={|~Xt*EGDZ`@Z|f?)|^5{~XKz!^ZI7{r`XOKmI&l zF9%Z5wZ8Uk_K$=7bq)Xj-v58JUB0g4`~7-(h7Z&0e@_3g_x^9&n%B|y51l)AZtM5A zt3K_x-Jsg6{P0OwYUrX*&(uOYm&NTYzkP4@=QhVRyp?UU41dH;-kh;#(KMOJcRZnD z+&a^{71WIq8O(X|rX>{YeYe~GZXa{{{kl|BC(D^kd57*^E1h5^#r7lXu#8aRJw@Xl zw|jHaa*Fr=DfBBh-O0%N@Y&>h68h!5M_8B5_TM(ivwh>z@~%r$&&+(+p!?SJLaDFO z;VBzqCbBKjkDT#zhEG|5Z;tO>8~sBEs*B^>O*D4<@x49UF?sj8><x4D3yM;T&-VNK z6;@@PeGqc}z>i`%!>J2$txMkhT$Vl8bLMYdn^{7sk$n@br$tWt>Lp~CYT>N$ouy*u zPUGn*4$nVbj9xk^aPwZjq@S8Dl377Uy@hPgPOZ;uHc&YCNhWe4yRq@Pw%}LizV%Mu z%U*xYPQCVW^ozZRH*C16GdWQx{OubCr$vR6%1bu3D9ngu_#!WUjw9P-=7JBC%4S9e zo9t)Uv+=ic=KtT`8$I_MdEH5!mi**(@^sM|0vx=lCRW??eQ&eLOB}ScQooqS+s*CY zlz6x7LY`rHRY6m5_^h>YYZp$Po~?c-*!NfU;_~V~ZpF&LghxHi>W?!$b|##eEq`o_ zp`6%Ek&x+2N_VWk;N`fpaP>8*Ihsd`a%^;F-L7u?8*;Z~f*!-x7`=;Sx>NK;SC-lb zJgUq&-uA;MW6FlqDM3H(ec#u9G^ufY%~S0k5Bcjmw&i}jy1veI&-1_E?;i)<B>(4l z{U3IQ2loFz+kXUYmhm~q_#iv}x74d$$N1}i9IpP)%i<^iK}XIm<oGr1$NT^P@@t-I z#~-ZPdo0E1p#8tc_TY05>%J_OS3F<*=KcHc_x_)=e*fTc|JubLj?35gl;5jd{{7d# ze|Dd2_}^Rh?^+jVZC=7)QM`Jk=IxNVhQ}0Qr<B>uOZY!i_hQkHKe8T~;e6toRd1=S z`&TxL_2oLxFb`gF4WsOiNz)f^m^44#vgM4^l{Q|TNu_hY?JxYIxXSslnWghHS^wj^ zZ<w>4y*1A|_BxwqY}ToirHk{v#(9M-o%+hRyj*d!O{dhc7vbj@WIC)qJl!nfmO;j? z3ej-OMQSz2rfHvA&1GHP&cL9jn)Q6q{cX7x|4WtppER{^Y0^1uDCfU%bA7^pz0(W) z5<4?LB`AgW{eE8`@h9l;0v~a&tA=_9=YHAv+Dc=G-EwD-ohze7FXc^P+VaqG(cI^i z8rfU6@9#gkuJ?wArqixN7jFIE$1&aJ`L;dFUT1HLX}h8}Q#3*E)!C?dODr=PHvVEu zHhaOcgiFDpNbq!--!h4v$$?>_n{>FZGe2kE%^tJzedX`h({Ej2o$9m6=6Fiham7;- zYo@QxICpE?L7zTDv2&GteDC_6R+#Vwo?4@^c9zP@8xysjvmF+j(tK=&#LctDZ{FT8 zyI)(@Fn4jXPHg<eHQ5<&FJ*3F%$`%^D^c+Dw~pMo?m4LsVwyV5d4KYBdv$&>w|A2) z%@TTk`t`KPww2l^t?$lVpz$Wc)uVA)@6{X$o*7;xz5Dj8yfk5*{i8XolXtHB>{fDb zi_x^zZx1wYoMR;8``FvL%phT*RA1s>rWQM<|03Q+cBL6j`&8>biq{L;|GL;;P*l`Z z|D(PB!25si-aoqk|L=YMn*BF5S_|*_=6<%FUGw|){bQht{a()T_Y;;p5<9i%z{7oW z7u5gbo`3vZpKQ$BomEG)!<p8smNuB)qiVq~{AZEQ;dC|Y>V;~*O7i(rC$@j*%_=D1 z%`5(Y*>SS3;0ETW7b{rKNuD{focYCs&J|O;EW34PPM8&OX^Do{lS;AtDRXjD3(6#$ zzeUT=i{1E6uX%0?vswC14ed8OY<6y1bHOUSc5TR|f3XsQg?fjUICFH`oDQ54rk9y* zufB6(f1X5H>>_2m9=7K~ODBJQXKT&FU75c8_`)Ys!c3zct6t@~WjW!qkJ5Rg*V&8- zRyPmcYm8N>{9Y`daQv$Jw4l1Q_<u7JPjU%9mT~%^(7n!0_|0zDmCb*db?z>j5_oMo zBSTA2z{vyR2`Bb=&Aa)QaUI|G-F0y`^^M|s|I2J<-ij%gJ6*&3R3az2@s8f4Hv2;^ z4c$DCPu{Ri3kVif>o_G*vesMuvCTK#j-PK_<62lJUD6dO`j}StYr~FPi(aj*Nxt+i zrod;}w)1u0e^##u&z>WDdw+U*dc;rHTk9IXT~&%$({x~G$5R$}(Xz7d8(;rgaPnQA zMzOl<v@QPy`VYT7Jb6L$nQj4x6>h>Jdhg@YEGzChS-uxvYa&&C&iJUpj-uO-CTJ}S z{>8a#uh^{!tI(GdnvPX`IXIz``{}l9g#!|YW`uCaF}d?Fc>k@McWj}O%;6}jI;SU< zeV}8c4y^z8YW<_z_y3vIJq@p8t^a$yzPJ2-t+?;y2S0x7`2Nq|?x%{&+55HM@0u$; zJ%0Rn#_eytC#p`#|Nkie_{$fQKi?m=%isIQuguY;072_mT`#aV8M2keK0Y1)&uEj* zVbFyf4_?Rrw_<p(xZm#3|3BydKREyI&3Oif_@Af3KY(g#`Pwgn_p0C9G92Kq`@k&X z+NfXu^R#%Kd!UF$*Q3p4Ps-{pZ0(rXv*yHx*RMjfzB10+zu{v4=Euo<?CN@NuAKUO z{j}8^s`OLZ7Jc}%i<57zOI><8ziZ~=gO6YGom#~;Y0p7jkGREun=OBB{gS!zo~75n zodPH3c*ab89(L?RP04gtP1A^wT!Re(>LJ;pbzI_yBn{_&p8Ng8(<k$`|7;DfsaN_g z9;9@hE99KP3XRhmsp)J9`(B4RUegxJoKvgME%<Yv;I#+mex2C+-QMug@m80>-hzsZ z-@KYEWpj>v|9Vm6`1*KehI47gSNskhejRaZla5!&V=b2k{`vNY&#n9W=d-we)1BB8 zISVcx{;iz0wV*(6!p>V~7oTKdKcD-1|Mnj-6Uv{tc2=eGp4zppHAr@rnw8e?SMp9= zPiF2t9y*z;ojou5eSJf-bNJ51ItNo0DM?;hxFhFb?`^yKOH-8db2MBf^bPWaPyX2} z=5t`j6#iotE!A<FvUgTkcCVCiiaP3Kzx2%Mj&>3CTi1T5YhB;N^!#RbdIC>`-S*`9 zi?6RQEU95(h&cN^V*T}Z#w(+A4<C_iekU*U;K2jSV|q&VGvBd14x8ASIPZVC!>VhK z7v9^$^J>${l&+UIPTgI-$>n-kMCN>_WzJgc0>POQj~7O<KbM(neg3Vb+<Q#}D-9mj zlz<5gOg+1|$Y~y^lv_77<mkj%ns&#&Fh6>Gfu)xF&&m0JIO|?-uj8Ko|Ic&7*=Ik1 zuJ!r<E&qQT=p5b~ckdnrwc{T5|9jD2P*Ks*+{|3_dG`Gy`hPF!vxa|PU-xzOk4NJB zJMwEDOaJ(6|G!v9R`%iS`+wB_J>dWMz>V*ngT4N%p!e+FUe<SI>MuWtX=}W8@7<MM z0n8RQ76<-aR7^9rc8u2%6Y#q~<Frg_s%p&RlPuQ3)r+-G8J+0aq~km-{J}lT8T_kH zbHD9BeR}atY5sMeYBzFL7+pv*a5Pij%;VExz;SK~PyfUdj}j%OY`U~zUGPGksf~=n zHYX*0Ro@++^rLP5rS)5j&gRCRn`m=Fy0YZ+*2-L=rSSoe19xc)Y3??&nxj7FW56=s z%-(fxon~qtdu)0(X#Ky3CV%%%;%hy$$V1I=mD`MWH|rL!akHq%Q*Zozp0DuBExx|= z^yM>l3-xs$WvYuzv6+|fK7s%I{7BKu@9yOlaOr<C(y3S)doDQlzd~X9x%`8^7s{9I zR@8mayp4P3LiYCa&3m@Lj@shezEoTOsO9k^x+$ryeLCge8$NPaTjy=sw7>r^vv&FV zId`l=<~VFh*zi=b;8kYf{Hr`oYvz7la=$w?l<S~ks@ShuO_w*(lZ5)b$`>B$@>G8v z^yQuCp69kj&+XrT$~k!Su2AubrT)6Bk4<=gr1k3a^Yb5nT^-KQFnMyY&NE|%vOuk3 zO{K>tS$6OKH^=@!NxHeupHDjdJFms42p>AJ?fn1UDVKHaPruz66Uyo)d|S^oGHGj6 zd*_~45gO7N>aXt2m0fsc*@HV_0!$3g87FL8{Nbhf9fi-2qZJim4Lqlbb{X-D+8<Jp z_y76Nfx*P_K9_#{z9Z)QKJwOlx#$i`TKfM#=|BE`|G!<`XY+bth7aNOU&AK^Jpz?w zVXH;!{$8(_t^d8fe)f~;Tz@{>|2O{kf&ah2{%_g)+g7dmV7>pd^^flTKe}`O>A(s{ zjz?^uR1G@MxAyhx)W}EH_kZ&3`#kr3%#V5cH4nLeEU*8y{Pw-AtB)VLeAP)<R(<_e zp}D&{m=hh9^tGo<o%}0Ibkm*#8A+<1udi}d3Z6aTmHsDCgjGx2H@#<JS&@gL#V4P( ztEU#uygI{NE@r;>YQ><#+b)P)?6o>=<dHkU(*5<G6AF8^CqG>2B)4kw`^?>Jx!H?f zdP#HWE!GUy&$64d?S0|;K#}!P4?J5so70&rHw%^=WL?rd>4cBdj^t$K7k<C^#HJ|a zUS9C5bj8K9J72iFx83_!?i*yOa6&G%ZP6-&GNTJ>?-lN5KmI5Yoc?Lsob?9rw_aR* zlOuPl#z-=`KHom%fyQc~wZ@l{npi8>8!i)HTGO@U+$kpx5xu6ku+)G?Q(x&N@7vki zS43;SyxO%en0H#Sv}3wc!ttg2BB^V{5`Sy{{+VUM)%PgWv`nq=(0iV$xi_Zm^mV=U z^oED!r{iuPTr`gcq_7%I*HTk$znD4Yyxp~^#jodFuDHIiv|m;HK}?Is-cnt8hvfWC zYen`yIrjcC$EG`4VoO$EjGZFtrGNUK<<Uzs!@M$iT^SR~tvHhxzf9@Unf_weg42DX zLQ8m_+e@#S^-%AFV2NVDw6dCt4g33<r*m!I{97pZ@}knvtSyWW<g|}$obvYYTQyVf zbCPS{?7h9Zcn1gH-=MS;-qrT^Z{9q*aJRqAyZ4DEQtc+Kby^-a3eHl?g}yWUUg(tD z$8B(ZM#6VCvFoRnnw@01-*RWJkJl8xN9Ph0W;i@!<NKP?b7$(Klb>W-Uzc?6;W%%e z+kS4U;=~}Qw8%-bcgwneEKWQr@@mqj7tw#KmT0mWt~WkkUDxOaTMNMb+UOPA?wKNv zySOLwY_n{h=J)ODM+1g{D8<v8Kg=|due$AfFZpof?|rxJr#4jGTwgf3NHJ-)_rb$U zg0h9#_ck5g@yWocz~I~=mcUaL=lEA&{GGG-?%_opA}5R_#TK!MCte7dCi>|^MQc{7 z`p3l=l`NvCKjpCAeOY0(SdfGM8<n7JS(SrP_y3E$xpZgqk?9BhuDN8~W|~?YGS6q3 z<F9p7xGZ1v7?-Sa-hF>ZY?{Q*qmyk;zJET4l|3c$N#et$I@~90xP=!wPSN-JEvLV7 z@AAzme}9_!U;plCWYNTZZlb8G&t(CoLfv_+JGWd^o4H`Sz}n!yJGZRZ;bATF{Ex`( z|3CJ>du`S6SZ*?lrG!Nbi<{rHxB|v=HPu`_$G^?l{`1N=3tzRzFZ|vG{pN}J%6x9Z zZq8jdEX4d-{|C1|k=R+6mR~Oaeoyx2KhKw^Pw04=lD<4W;_9~h8=v~d%IEcbZEE!X z=)oi%w8`Mx$t67Jel9*KvAf#r?6be$?;U2J|C@oK;KLisva+Q3>A$`je48<uuj71@ z$2%EFR}e&gOj*cbRcLp;Ymv+MliAaSc~^h3S@X?kM#8^i7Mm~W>vz7nb>yJA^GmzQ zsWW4rvLC1rK9j{F{=muRN9g0*YwP8n?$ha=w`0Y$i)Bx5&R*rA=zN=rV^WZTL$U0( z%o>%|mnRsxUD*3XyXFOB(dxJIJewn?98Q(&TGUV`Sg2W%VIQr2b=!W!K%tWo-0#!R zUA(*d?ej{;nMc3LXRXe6z4JPhyT`dp!qi;pWit=|L-Bd3ikl*)uukz-*63z>{88fZ z#@;JZ#|~xZ-fr!f`v0C|(fd_`vy&7KSI%OWd|z>C;iYYJLziFdjlG+|=b$JN)U<KJ zEfv;wKcxk6y^0p@FO||NBb~eiQ<w1ni7Sv^qGhDGXJevVocJ8;lUvQLdj8r!*7=ec zHCtllQ=Wv2=I&`li{Hy@eXrsDvSycW#%Y`FD^vdMF;#2-@OZY3^W~c-c8Ek8T$JrS zC9v`ACLXVq32Da~1a3a9aX59b`jFe=*!c6TTG#!m+s}Wful@IbTYeCm>rCb1XKP&N zJ$`aVO6Yp2?4@s8t}W#E7qxIQ;Fzdb{5`7Le}g7_`}z5gj}}LJKDzt;-oftkwTuiO z9{nutS$=uKxy$CA$ye-c6Em9pT+Ei_O`kX`?#DdodykDYH$E<6ljJE<f7rxWGR^tf zxwX4qFRGk3Wx^rre(r+sE-$r82L^?u5=-{H)~Xhg*_ogC|M&3=maX255AUQDCtv1m zk)FeO?y!R1S#|S-1RbmGzaP#`lQQZ)-lopHOL61cZ~pqzBG}ZN1E*ZDYmezr2o&%6 zu3nwkbnfu)zj2<4|IdBqY1%E)e9yX#mHE)2b9;Tnf-^T-uRnch`l1xavK5I*|B}=e z-f4QcV%>tf3>M|7I<<L=%|4o&<VxR}`Fr`916|K^oFAPN2=1HIdhlX~$kP3{T8^rp zTl>B>>|egvrTnU*L|%#Q2Ha_}YZ$E~pRC#MvHR`q0}baIF8HVGZROmsbBj~ggOdk# zzBpO%S3YW`fhPN-N4nxnK`9^iS+9uSbFlWCeMRw#C(L}8UtalTykk?goAik@dO@j` zje1M;JyZ1jW4nG>Ot;(;X870P<%d}h`0YIkWt)!7Ef&cOOwP|||N8qq(}u^#=HAs* zvo@=J@R)!3k0)Q%85*7zH9kEw?Rv;6-oJten#3ZD8W;6+_k>11{BR*`>5n_V<sTfF z`mgripU4x{_w8%iUZzNWb3d`XGN;3QA*Yp~=drHu^Xj=7JR_%XT4ivzaI$Ugq0bBn z3!K-jy`(j5xkpj)<&2bR-UZW7pOy>|3GKLH^Q`Z~tJEFI{}xU$k~n3+cHqc~j=4I^ znm0%^evj8;IdnI`OIq-oTKb&s#9j~C?Y5!2N`5cDs9mo2ypk{3XN5NZk(gpV7Y*^` zhPZ#xA0`ysp8C$}Ue5yljenV=PdRR%{Ml$m=fNWfH(k>DBI!2u!_>mi>uvjjy3R~f zC}~c}T{BaRp=7SxQ?^@99Vu=W8<-3IbLUshjaY0U?s(oPWL?Uv36VS6dM+kjZ!r$! zde*_SF#lpyyUoRO{^#zR|7x9n=BHtcMreM&9NV!wXBRO&xA_>Wap8kS<WrkS6%i(m zxANTPo0fDaCtpnI+ufNQ5g}7loS*pSaKxVXeS4UW-(cmtpD&%fV9NRT`ps7E92Y;c zb$rjvw5?A0Q}goE%~Y|yQgWXqUij{@XLWyerd9p1<}T*j(`HVP2v7Do{!MPf=FQD> z`*ZI7IQf$2^v>R8>tD02$~~;+{BxVl;T1B8Hd_Nf@4Xwlry}w5?fLsF8t?9PW;pQf zoJeqb+s@s)yH~9_RQuRa!>050L&X=pkUl7ge00%Suw>D3v%9U9{Y$T&+QehMcuLpA z+T5lkA{+8%9eOUrCAPRH!8UUDbn~Kfxtel<t^1rK*P0xQ*=2I;>9?On?#6kizo=aE zNVyZXOCo&!-qV@~swc`!4`o;<+0vQSrgPdk?plCsP2!oQPp?j&oDugnE2*dT^Cj=q ztmT#4)#iO(bN%1S-^K!$v(`!}O__7*Gw;<C47cTP2fjP<LexEQn#696skLW!J}sBs zB(OB}p|O|tfgi7(95}9d+n;c@bXribsY3Co!TJBcRXXEtcL~N>1}$1u<LT3>a!qcX z+PN9sMmv2~PiZIfgakd)o|>^dmFu$2`L(ZaU-X~3^NeZ1?cHZ4?YkT9VOS|R@4Mx8 zo50nqZyh)3tG&Fv_2S8`QzPSNFfN<6G{@Ou#y$SjX^C${Rqp)K{P1AH`iq*+`4fCj z=!$o4YAj~slXu*H{KWEW1;?7E_Y2I{lsjxAx7~M*#bL$PxBRODMXSU$Syu(Ne(dXQ z@c&j`@M6geb@g<M**7_=Zm+puqSutiv*h!0$*H2JHXZ7le8T@b-^Ts<tE+n4lzrxW zt}~TNeA4$h!^A0a>cd^qA*qT<t1qz3eX;o{<0iwx1yj>2Z-}l9k=T;4wpzI40L$Su zCi1uJzNr-!S{-e5(EIF?Wxj^*!zSS=-l2i}+yZ}>6eZ5NBG}`YE&J`P)ESkPEDPH< zG+xYen*4|FT~T#1-!F&k2TarL{`=05+4I&n{7;_P?RbyQJ4fb}tSyZ(@Vsq*mz%Ai zJU1gxL6H4OkQ$r+9R9ak?n}L7l6}5SZu`Zu2TOcSB!lN1-xex0=XlkQV=kWS1#}F3 zQ}*t8dB}53Y7ke?hPPs;gj7`*ONc+5vwfw^I}1Zb#mA--;>^`n9@Y(=vV&W(Ib?@M z*FBb0kDnKAd+K_xV?34+W3SlD8QcB-e{$xoj9DiRFg*MG@27OF{ex33YM)*|EOWS> zTd(P2@&DkC)!Su{+kKqV7suVxIU#-Cv=@)o%=bDrdC%*4f;VOVty_3Vf_t9T&XW)O zcNhFE3B763oE4H76sh^E#`5r`sb_O`OU2GuusLBtbdQ@xidYS^+G9gCzjyOeExoqi zb?Q3OvCd&yYT}!0-<bK20u{{^JFQ`3)GUrX3|$L^n-}K4ndUCJGDtCN-Im^EzeU|9 z&zR0=cq+*(#p%#`18z=5*YzgHoS*1@o0q#~W`6QH%bsg{Z#d=HU5oBC_dKFK<;-K5 zrsK)k`=9gG9bi80b*1?lv(043T^W-y^fp}l_mXYTt0NK$od>@2h`j$`ZetO#XkFpb zB{jFp=C+l&C3hKW)aSj{xcgRCc*o=EbG|zsRB+MYwY;JwbX#F+7<1U8=(db$FWi$C z$K733Q8S-UZtkkBd~L;1$G6BRR&)e-YW^0wzr2>C%HW*h9wnD=Q#td${eOO<z}LsM z!EoXE=kKB_P6giX_ISVBiEGNbKjP_omP>?09n5%WFVa&~{doQnhAD=(?;Uc#vXmz? z?eFLRFJ*c|G@0K0X8tn8s%P^AzR9UVm1+IQ^Nd}CcYl$*dUT8N;U=qq6Fg2E0u~wQ zbBRn1_A8VOy1q$=pRH@#q24#EAI&?bsCbXb_d@5v0}=5_vh3%St{GlG<heVEUrg=k z3;#bg?Z+$ctdrNMc>TIvOZC&^YuoQe>(4%4cQM_0o?WuRp_b0}n?LS-R+IdDQl(gv zz29R)ai>i4>1UJkYPcF~(|tE3q@FqY_Wu7h(pz%p$lKf$yQt20%R(U~W`@wN=TqLW zpDIgu7W;*FhW=~TXEAG%?Kb*r3plyCXL}jGIJ_t(_S>y^wU<5{&p&_nx6p9){p*Df z`-5Y09-d6<oUdW`_2|TIj_b`GMr9pmSr2V_`>6K1-Wj#Yvfuf%dzXLyr*z3gTJ!Ma zZGAiSx2|kiE6WkzWmI_ad-B}gJ)f@VAFE2SX)xLRTOo3WuQp5LO%YYiz5HzadOue6 zruv&oY_S%bbM%#YPq75^le(t)=?CY=7EJVclKMX4#un54-2Ojy2-s#Eaf8mEus8}Z zHz>Vu>7VTqn?HG;OkZ}vTo<9lD#0@uLDSaA-4?%dS^Co3D>rfizKAm9TeE%NctYxy zkAg&E?X};*=8ryaGcCFFx8}ELf#&Re((g}SU4Q)Z_vZ_@*h}2*n`$KRYtof9>NCD@ z3SKs^k#G62e@AaGM_7kjm%vG>P2F|+{*UDL8@5GBwithZ(xz?{l=J2N$M;*-n;-k4 zob>PS^E=FKt@pS8IFoy)Ie*onPe+x`sGh(6WyhTD^3CbqfBk)elQzzOAldTZ!l`-Z zZ@o~+Ht)!+>p6Ps^PIhw?{0?l{kT5QC}*=iXJ}wfEBjT;pSve0O5IakHd#%w`P;Es z3<oMqQbc8JI;U{Qvo?0~9(J`-J2D$od=@^A4!*D}HsAYsX;9PgIcGn!OYJK+5%=38 z@8UVp`j&1r^Ko7_x#{O6<#TSw34WFgKa^Vk{Hgk%>G#hqPV0W%G~03}liITL1$FP% z?XC3rJ&)nJFIRi5&i2<yduNIzopDv#-|JX-D*efSp51@nx4m9^TOpD~@!gb^J5Pcq zwrKC371r}YpJ)Ddk3BP=9hW<HBb~eDsJ24Ly@Uh<&!`67*RNCFdd`x(7jeAv=L;Us zDuwsqUp+4Cz1$%%pVjjYCw!PBi6MYx?u&_DYu6<glx{wspVO<VD75+Got-)B%;)NF zm(!Yl_w?%%pWnyt_{DJ3W8#lB8dinB4W`Xm9-Z-T-XlhyGp_3;E*S6s)wA}9uFVFG zlUtS7Zr{WI@Z-_^s@rUNrS<QcSHJyq_;)RTYwmq@^WXC4f{HJk<@j}VTlu~F&B@%F zY<tZfemi%5PSNoK-n=9e+umLAGoDS!nXH=0>QG-}`y<&gM|Rc%;patD9d8|#^_5w1 zZ_4Y^H2&4hZ>lfHvs7o;cPr@mM$LO~^ksMJ>*u%U?S6Y!-y?N}_^Z{wqjyv<Z@QgY z;2q?jB2c~a^OLhSrH{%aFa12f$I>}p;%j8`T3-3)?KMdga&ij|;-ZfoF-z$=9-Fiy zCHYv`{){_blZzi2O*k?aI^53Dq`=1DdZAM;Tx{$9RMiQF`FTanvQ=J7ytj)xa<4CU zzw|HPIz97iwa1=Hop-y0j)wOAZ?+CzvH2d~%8hqh+aD}^X(*>)?t9wXymYf|W%2Fn zJKkTISyUQP#QUwwJ!Y4od{~sQVN6Do-<O?N8E?JyyfdH6@c%d8@)tk!3&Z!+2Dz`T ze|~{wV#T37XP-8({pN3|o4e=jTlPX@CpO{VYZeKx6sBKbnXABd#8s`jq<DvXm70Oc zfvOuhw?B3&tn+wPy&-qA-J?kxUf<Xz#Lp^KEqJ@B=mJ_oP>^G=o8@G5eD~2gpI@8} zUth<gAy)Q3V5Loy!aJ^A;=(M2(?QAQ@Qt^bRXvI`KZNc$Ed9@Uig(<uRVQU@p0Di| zlTY}a&usl-?_A~o0_T6Ob)MY!wqWM(cf9YGm*~b!x^40Qa?w*3M}g}tYA-+?aY)@~ z$l&qF@5|1kQ{$st)bb7moR?2Nv-D}N$j)7S=DEgMpR=8xzb@P1@{LC{ayR?Bf`9Yx zZ=Y<e>L{=sJd#s*@1UOP&IOz&-WJYmyk1&#@ufs;-|H<eZ`(P)t#gfuj$7Jix%K1Q zLpPrOs(n<pvuo2VF^>0q$As>8Wt+-w{eE@<D__$G%y=$V{Qfx6S@2Hch4rE5&(+RT zkmD-3X2+8wa`*q${p>S-EUUh=*qz1nw%EdB>Ky!_AtjTIH{@29eB9LD*mwPHVozt( z<?Jomvfa{2JUq!J8*ivx`4+7hTd+6BUg*Bt@i*HR*v(PsSm+>B4$q8D5)2}a>K%-Z z+CQS(Zq@G&_$}-&@#;S)k{Z-r98rDgy*~M%__P^$QaL+LtDP6V{#@(bqvwUcoA=GO zUfXs*<<ZZLKdm3v-TwSWYyV@Ll`noi|DgKa_^$q(_dDwEeJ(eAux-EY-)q|WiqF=^ zUHO+5as6#t-T$M1d2XKwk~o*YLx%tU(HT2eCwM$R@BH*q-rIkFXP>`c^uIXzc-dzD z-){;Jo2~C&ve{>T?d=&SY+bK2I0{^ERe6UTjT%jUF<iyxl#l(1f4*L5cFDt^Y|o;P z`0lJ?`L*b6M4n=m(7&qN+iGIpe7;vYbA{Xd+g)n05|^#ax6J#~HoI>B|J;-NUw)px zciXSGl?T&f4!qJbJ^A=p{zoZ$^QIXtmnYXBzMjA5m%)y?*{}a8^@_jMU%cX>*ba+x zb=`mYZ=5}UuKU-9f7cJ}-}Cj~@%JYz?-$SOdim$y^KI*Ln-t~=nK-KJ9k(>!`#Eox z_&txzq<hb~&KAzwU9sb7youa>i4}MJKHooQxaWn;&L2NdzdxPpZFTsYp5=SPmov`H z`TXZ>*|V(k@jGUo-hOxL?a$lR7Z?8v`1fd8#fraYa^HTh{rj(b-}8mr{@WIxOzZmV zzu!LnMg)VuW%|K9jlch|{{E-?-9G%!ywBgKuj}-c%Q62OvEW<1zy+4M90h)o{I^@c zah)%o_5ZD7?*7;nf46gQ{a?25n|g=&!qte>p}@xAi;`m}9GT0Jv3C8B&d)-{vHzrv z51%c5dA-d$e#7tDd!Ng{BnM?)zk2I`6U&jfowMFfTlsS8F((^&Gw-yy|Lcy_{9Y}^ z8r!%#`~Tbd|7X8_@1Gm9@UOmA*!H7eZ_nQ$)N|C>%(8Fa->KQvx4kRoch8<$u5z!9 z@ww8UuNvq77N6Vc{q^tkihs{+8o$|3Pn5VOxmF=X?BBkk-|+@**7a))dhXkpXsk{6 zaY0ZC)JFt+qJz;vu;kG#1Bn^tcT#<SWqsO{s+~RKxy6HD^}l~-{5rq+N8RK95*>dt zcyu<@9Z{_8zgh8r?*F#!Q+6aKh+ku}T0co__lwrq1>Nco)3^UW_S62txBV;Tw%_}g z|94jLB8~6s<!>rI-%+vo-sv~J87c2eyXM?y-hSbj_>}NH-bXKnCd}^Fzd3)y?RVwp z{!gp^(f3f$PjXKE`WtVg->tfz(pmK|YQFzJ+x2T6S3bYsy8q|Og1G(uJkqlk2wzv5 zs`!0g_3h8M6N=;Yv?gx)d2hi2skr6eB2zQX^8LSGGK{})PDku&-Rt8L-P|hWo9nml zSgF1JzwY}3KjZ%$+xO+$<2#Ptf9BNwZ2Go;s!`$g4ZWvp&Q?Bs^zQlU_JgfYKh^lY zQNJqHKmE3rZ<+g&zx}qqC;j`osQPH@_m0Fr%i7PSZ+-miwR7&*?RV=VcLmf29(ly+ zbp68NW{k`y&_6+O?Nm0_L+R`8-7aU>n^0iK(zfaN-oHDte%tFN{#dL&b-SH!qkiH2 zC3}yjhPa44RnGHzFSF=!XT<?f-O-Wg)Vx*K`R)H19jneOs=Wob{vKlXQCJ)Wjx0W| z@?Qv)`3*xfn*6{j!KFEK18UKp(c~xK+_aJVb*nH)wW9#b#~ll0N}42up2Wbk`HOWe z5I)k7(9;;mQrm6tUEWdPh^=$2y`umN<E#ZReU1W06cjqG9eFr}cH~Q2F|j!2aC#Mj z(wBp9Nt1+_iGwmEt#zn#qqcECeuGGXYjGsWJkHHCH=VfjKkz8qqqhMp=#~9(|6N_4 zrD>oNxJjYo^`m1`^EZF3Rc@O1Z>HPj%owjZpc;t%y!6}!wcl!-OTMcV%PL7n9e?q? z{mvbE6P}O_Z&yC}EpLCpYQOy};i|a{zuL1n=1krGRsKqT4zuw8=eKNa-Hy#Di0P@< z^||N!{;}p9<L~u+GZ_0^JJ&j6)C_Vev$bc;?yp`wLt3c(7{j?cw?v*Fj@r58#7}1R zi)$}#tVxiFIk#i^`g5GMd=d#?q|fIcVvrEaZSr_jQ5XI7S8B4}QV-AQiz@yGMk%{Y zrUy0HeEj@%+s+J|&&Pg0nyqKUw&uNy+ntuPb;sqUlNVf07K<~x5Op}??Z0a$-F+(5 zlX;wWyqwNrAzpa9Bv+7c)&gOEuFZxo&5pI43&`eO8d9<5Zo<tB*}SMZ#RZy*tsCl@ z1@8D>W4~y)ENSKM<0|G0N(?4!^Ibo6-Gwy&<bdbrPfO=LwURdY`1|0EV}2VfA}fWC zKP=jF^W1F9=I75P^S(L%+k0!q6VtoD6&}|GovYF`vx!x?V`0|+H)8JfKAp<7*V&iO z_m<nNGXF@6`km~5KbJ^mIzI8O`hK}sZ0Es<^>?fK&ClQbkPwmk$8EZWKvnL#()EA8 z9xI*rO?V@}qs_s{N&BXIY-&7yfBGHPGOxeO-0u1xxhwy0hUV3UuSKSmJq}p9;O>ko zDvvez*k(RwXxOBqsCwXzg^8`#wruY{<Bv-ga9Vv-@L(^n+S$2s33JYFv9r7Q`fo4W z`u?KqjML91%ybFu4Ga}!P<YOBY)4<Afb4^BZUQfTk7vlTv%4L>`;&2xrN!<Hhim^Q zvvEydxZR=X;H$s4A8G$(%=k0gSd5LKCS%pa>NMl1(vL|UH)rfvGXLXs&;PbB4=MEU zF_uo_Sz-D7;UfX38?MgV6Er4WmykHuEp6Y%`K(gd>3?~C)4RCKo?kd$oZljG`_1e> zyMJ*jdZ?M_cRSdb_H2A^$WXGX`IQwz!zC@9I^$ypcXCv2?lCS<JM_3@lZ2Yc$#R~B zYuha>+22&YW9E*%-ukg8Xxrbd*6&%LZ{$zE^G&(nZU2+HH^s9h%a6DH*01{T_gL-4 z_=?{1t^Yh;8-!i5l5959owd#J_O6ZT*N+}w#ahg*>EqS2%BW`FDz^zU=k^sI`&}D) z>%E{q*C|JJc)o;G4~`GR4gYo(&t4OD?X_vxX;p@Vtq}?PA{ZF1trp#NZlAh7*Pe=x ze0=lwGca&ivOc$a^wmVU`{k+)`QcYfGh$VadYA4j(Ei4jaA^IL<1ad=-gTWB_RA)n z=Ru)uf%ID$o=@gV1<r}VajVRq^f}tC_l@v*U#+|3_NBcm)=ywEda~!FL~W(h^WV#? z7+<U|blP&Ol>OEV0nO`C&ObXkFDah7QJT9WttZUv*3vh>r(C;m%3XnVMoD1tF-0To z{4++Jn#Lz|HrIP|KD?Y?b@5BZ8lOd1Ydem=KkG5&mPe#lobkHcscl`I^B8`8%03u7 zo3roi7e<B$F>Np2r`3NExc#BbFyPd@^RKURz5dF@5U@U5BJF(qL6%R8IG!)_IUl^7 zi7`h{*MD(6^P~vlV|qR_Z?L^Iy<o=6kgzqX?YQsd0}`T7UOS~tFxpnXs^imJ{Y%M; zEG*&$?I(Y|4Vd@&>Wh^XCOuu>o6p^64rxEv>v(&a<KDQ%>#j32e68x;w(a=lyjKf6 zCPp?^SurL|73wLRqH#CdXhm?xa$eBjNwS&M$t}e>v(0!ko^3Xkk(Xs==!@Hb?B>kc znzEv{U0Y?-B6|YXXN&kfiVJf+;a<O~HYs4!@v^nowRP?$xnDOa6L^!l!|BNJponJS z3dt0iFKjDix4)mBdG3zclc>13vULR&-A4kG^DkU0)eU+6`MQv2>@4Y5_g?>h&(7eb zX<oQx|4t3ADeva!A2_h-^JjN??R>pD7s<>S3DOR$Ly~T}`g4nluYa}8ZFA8|lU!l3 z|5jHWw@U3=efK`ssl9A7l~2DZoph2ZGLC_vYmY;mhz6In#cDUzuA-Ft(>*y}ru5Hg zHId!7_Vx3&AFK6zmwprqcq(qXOYP<D*9L`Gw3dl#NbL5Qv4rObtMkE%7qcavPq?I8 zBjP&aPQg2My+Xw&O8gDW8!oEp9McoymXY7f#xQ5@T&La7H|reEuyKvN^?BQxQw4nK zkz%(Zy(BN0Ug}il4!WzmZT-gD{na}{FPY3-_j*IrO~W%EFA7f6+pr-@cfnMywr!Px z3fgZD#Z44X4D|Pse0R`j@`*be1&o}hJvW@o*3lhQ{$E&L=jDq747P{Or=GZFecgQP z+PPDh4`gjUl(p|bktsWaP8zq)wQm*IUQ5O1zUQrsOZ=Z8&TwHXuf_Det*-lL+%`A7 z_vx$i9cz_Bj7&IT*PK@>MpsQt!@PGpS<XINP?WX!+5A0!B=qh7NickPb$R*>-5isO zUAvoWrab<8zMg?0;FUt8p=oE<C(X4XZpzEnZ7o`J`Esz#-d`dOzOoOR+BtF}mt36e z^6G?;u%hB5j_D55o)^9~pZvgc=fvvfyM2d$y%qj`di}NSx!q}d-R|BJEngg>bg)nR zrIeamjdklaS^NBu$I2f<Llgf$5MVgK+WnF%v+I!ZlRa7db6;IB-S<D^!WFZst7Wpg zmT?A7T9+4Ky>sO?*<IIGdfze)E0#7~`C4ji_mYxa_R#AqrW&(mMXj;^{nMwY;r59z zJ=IkcdnY}2?Oe6S;O0yw2DQhW%XV8cG<-~HT2!#AeNV%QJwd8*(fnE~9{I<wZB{AS z8<)5>CSmKA;|Y7C+KP9q%{F;gYwKQf?5*j6y<es~7pymVAfOi>6%1Po5XUwrb%I}G zK-l61K_`qlbx!A&2s+Gr{y^{V;_0(KpYRN}4(V8M{^Mo-dM1V+KNin#-<N74m-zpK z<hSzg3^$66=N)D(n!ah_W}Zv7VnGaQe1>a-9?I3-aGe@(V_E03ZyPeJ?3(T++0ABT zu>1KVc~9L}PKJbybDAajCf@$MQ^z~RFE&_Am1}w0iEgHu{mZyJ_vqaHtjcwj@z^)T z6Q2bpR=;vvD84aM;#ZngpMP%9N4cQu5j#14CG9*?WO(>yr|mrT^z|DpHusCKR-MKz z9eKWsYx7Uz-<3-P`i?EMKlO>{j-+_;<a_g9R@j<mH2LvN`#h&^tJ#YwTt+9Bt=t&5 z^IYM+12=C<GCX+kMZ#UZtm)^cr^{zp-i)|z8gb_O1*@4NN3UFAUsbRt!J)`gsMR#e zoYT_U_TXv%cqWExr=?scCR=Tt%wcP$ap>cT<|}>$vQOVdeJ^t9HQYPL^-iJH!OEX) z<>nT<6Mwg#4AWVCxs*5TwdgfJuiOQPx8Jb&Uy;kg{$QK)Ws8+}t9q{%H7+Z=$6d*` z!_&i3O7ZlY2k%z$T<O{PmyN-sR9I!{=bw^d>17wLm}y@r<z8HKE}?ts>*#B5rF`Ft zIbHK!bLY^>s@TQR*8Dwrz3YrK?rzHtZSP$1Kq%;l&BaAh%o`>jE;2cE<f-zz_p*;Z z{4D<c<AFj<v9-0Z$eFrhamoK~9co_jaqhEe+DikhS3bY_QnIf<?(v%=r&c}RY&mOd zyg_F3mncc*XKZUH8B4SsSsTT|o^miXqUKZ=Q|p%JKQm$$mE^|tc};oBarJ~>%oe%B zYt7p@Z9i;Ld$sS=fvlZJj?34xF#P!F|Iglno8is-_lGiCV(JSRr!6x(sQ-hrp}g?% zI!np(zm|S^w;}iOvYT$L4c5O;Wk0-Zb8FerL%w(HetuD{`zE~G!D#k;rw$#TBdZr3 z%6M|_;i@AUN$Rg%0~hji`&*t0e0%S*W4TrZlfkh=d#!T+FE5%G-}>3>ZsyX%O1ZbU zB!1izcir*PzB%g)tY$y_aphb3a`)pFww0;!^UoU2zxh~aGtcXtyi%QW9^ZV(?W4Z? zWchI~xg(cbG5RrIJQr2oexek-d|mcMGt+DLrX+7XbZ4#I{5f-3ChvHB{rHbBUj-Q+ ze0d|X`qsLzzGKP;Cl!x4Twk{C>c8!!YZeur-IZrhJn`t)q|RkpNozyTIkVV=Dr9IX zv=pxm^JJ0caZ<^<KHIeSeaG1y-<HlQlYai+^4+7@<rlW-&RSNMf9ay){NtsiOBWy6 zn<-`DH)(I&`i(K`H_W-6krJ13<NNJPnZJ)`98B(Bl5<M9Hu{{H@f_LP`yRgdYWQrq zIzz+PqE0{UE$0G?cCOnv<92q!&IlG$=eui~4P)+VmG~_UFz4-g=Tx#IH%jAreqlk% z%<|YYjhGYDPRgW)KKd}Tch-46@fo{0{$%Ytu=)GFt?wVp%&~sCp(9guU)V2ai!wV` zXHC&x?<ZeQuKD!odBxL3+d#{kEt{8?UOxCEOE#AMsnUm@=<8+AdbK3mIRr}@b|?DA z-Pp$3@G+z5WS_6>jCVeUbKfMCzd!J9`aAcs%iC(T7}s1`aB8(%U%&ssnBUEkDXyJo zPA)e;>uB4ixI`#Y-+6sefZ1F%v6cJFCp}`n{dmq4>7^knTsFt(eR#P%>``4!4bQoV zjs?>fbA@Jx%7>ady<GHi@kI@r_-T@E%IkNnT)6!50+W|Z=NgKwlUG{%;o<7?A1f+n z`Q2Pp_A<cta>CXx#|pf4<}7^o<_k-@`f-cOT;&(X-H%(?ZSp#I`SIlo+lv(ssctAQ zXjm5MtUPP#vg;?EU)=88-Kh4$Wj>?NnZN%ZKZsiRx+c=pn&F#e_vfcF#nT@bmsN=s zT{!ROZ(v`#)Bd#Tl+)Z(o03C%Cd^m<DC=VPPVAQbpSp9+Ie`U?I~b3w%3Lth@m<l9 zu3Zf!{g(Zyu@XEz&*~QM?VNw9^T@>|I~%rJ@3g3oKIeEN#;L1r?YI3m4PQ?^-*rAJ zy!L%kZi&X;L%ECA)ZVK!VsN;=t*|NX_M~RJ_9!tSr(4O>_^!xVuZ-TIf3V`yD-Qer zH~kqI<oEuu^qae<$~L~KFkx$frg67qTJdbD%`sOas$W(Gw~I(8i&%yKU!8j^?xafY z6y2BX4hAhYf#)Q8gx9CeJdm-g`PNh8ZEKs#Zch$MdZO~~^hb-3c_((;#1yy9%s!>? ze*b(=_Pt+k=}tRy?!(E`{U0{-*RwHL*!?tllC$pBjdOF&0_H~lX>Lr^S;Dhn$rf>8 zn?GB0P8-TbOMa-ZI#^OK&rq<Vyy5U+@q^h7-h#3lH@^|P^)2z>0U_}ZHYfg+UQc`} zHv2|R<HwA)r#F@*g@j68N=ccfxTbvbmZK7XeC8DMtuyWExW`$3k$rFJ>|@p^`5A=2 zA9)dRb-~Kr6Z*dY`oXd5wbTB<Fjcj<M{&~<o8o$pt+=CNr|sqAW_C7zXH>%e%)_;< z+>G;N`Y(j}tDJqQRCQ2c?ZWC%wMVw4TjP@V_AISV&-=J7PQSV2@7IfheR2B_t@eMr z<j;$*+H+)XvpzUlBzkK7)6~YRr}DxxS$U(mgf@I{H?Xfibi5TbbO0Zw;9=@oAZ+Vo zlFvQyj=8My-ZgujXIrGLyKZ_dTbegoFFeAc{oBu^#+}BUv(G-8v3A-!<KC&M%nu?v zvqD@YA72pD*ghxe!EIIjZiU9nt6XEV*UUMxT}L`)XZIPdnOAnP&Y0f4NkjJOoP!#? z7C-kmF6!R@lzD>N+xr&n`hpJkkNup#OLMvP^3sy<u&733@sE!STkl?bS9ZPgT832o z@qNd#wz@rDH+$|}*_4HLg}0u4PiL+(*4}&ia`?R)-#nD%^y6!L=36X(#b5tNF>dd+ zNtdoB^=*6W#Ih%DZIfio?x@9uf_Ij!J-jn_hU0bDm8%Tdc=m<qace5~9Pe0fXn0Cv z$$^Z}#o4jFU;Pfxv{qh!?1uFQzx}(va`jF>H(j))>{H0GxeiZOUBCQS=JRKfz_~#g zF}wB7J*)WoQn2pZ#q*2|^Y_(s9zArOH_rK|o%70s$r&-b+&fD0uWbKTy1-I=h1O~* zN#A2PeqOPfApc(O@teDqZ|1x79kPyp&bnl`-<fHuH@~xW*E+>LIXHK2;eukp{a>{X z*X%rWLw0tSiBqJ-<V{7rVZW*!_FR|R@FMlZjBXw)SI*}P<#(LbNX*($I<NcpHs%)( zUtfO1nRZ}@eSN9N|A;f<E3R+V4{O-8W`j($==ls2r>F0ZU#;rhSX_Sov&{<b=&Md! zt!lQ1dhIBj&=FW{$nrGd!M_l`m$go-Bksp!%LdPwrKYhw?6hi{UeLa%vxf6^?|v>m zv-j1*$^IXH{g7~9zt-^1$Jfed?$)Mnjbm3`At*F={rYpptC>DMa<*IY*fB?V)&gPM zGh$2okEy6G7J9kvmB^IIzqC^2e+#MZdVN7so%vmq$y)u`O9yrwm*TqQ`NJ)=@nuQV zo(+=>6rXIcIxOwOliPRKcbOy4p}VSGiyWS^t(}ve;MOkfVHIH-#cny{niY>)&a9o% zG8<$b7^>fuU`Y?Db3eE5`P}2vXO`SgNvfMy{AcQgm&bkb?=7{K{q#>#+;Lt0mbRj> z(^1(H;cRZD*9y%%!ap-9eP6nyV$!#B?{X);va6bQwu`@R)7}~93!fF8jj#QrY4_)4 zJ43_#njgtBJLjCgS;Tf(a?8H^fo!WbH$PYxoOp0UZm30l?K!0f=U%34;+QcbbYbJH zqxOG}tBPk>@rtHt%k0!%Yi3#1TK@d~&G-4c0xFwS|MS&8n(@so@X@_RE8iAIt`oDc zvpu?e{hNkwFTQ5$%<ZnetR?aGJ^RT=QyC9byjb0nTf*M{q^#+%#o?@6^%tjIdvBi6 z<<gn9BDD9=UFK!g!Ea<E*q>g^km=JkW>b3-%)e)0K1cCO<H~8tGAVD8&zyU+aYNGA zkm<Pzcbr0^7|-vxBJ*2J)<(i=slpVl$=?kU_Y0qUpSf*beP6|_Z<A(9uqPjUCwHop z?dz_>r@LdgdaqqrcQ#j&`M)IFvtJ9`L|-JlXPh~OVe+=DuHWa*+-2UR(_9d0yW>IP zoeh6CUa<8&H@VRJc4@%6qV{(tQ-U&LD$i8KCco6Kn{&3n%$k)!NBs4JsT*U?Y%EFr z^z5|dxwPdo=HBG|ee$K`w0E_>s}J1qoUxK?pNo^CrHZ(~rRiNYR+<?{ZexzO)^6K) zYR-vUp#^Vqt1p(w8-{x^Mzv>5GP9ahFUgy)ksT4!ni9h%yr9VB&<ZK{!^@7ROh^)H zeQkQBhDXg}-?Jd4@~xq%#}-;2VYqgz&};u>bwMHi=eJzNCV%)<`LO4<j!XTyXU#Qt z>#ye~`~0_F_v@p}qjNlKq~~PwtqtwC5_Qw0`f+6j>-@xoIgT?6ju}_ZbKZ5l^U{|4 zcedaB_gr9;`62sqm!uzy=PXLNdc~snrM~)dcZ<5GF=g@l4}I(`E?gfTpmj<%*W~oh zh}jZ_fvcQ_9QcDWdF$sL7vDSS@Vrlko8B+p!ka$9>!yf6g!`wWl=Zu>{<8~P=hXU6 zq-8qy=M_~QMmHP3C1%z?sjr_jZ6l~bc4lLd(8Zrwl1u)0NtWE&UT>1~dEM7r-c>wK z`&k*Re)_%jeRfOCH+yl?vTQ|_<F8|-P3^1x%AB9KpPAvt-J9IUBRK@mtMVxBs@Q!b zLyx)Kt5IjNgk@*7sg$zznwP5{T)H;He_f*JD)%c7>#|a>bO!I39;lsoxuj%GiojFV z9rHhzbI29G^#AtmmCnR@%oqH0Z>$n44Q4N8PL|DjxcD)z(Q>{=299f|ZI?PTdv_O) zk?;)8^>d6gVo$k8hMX{p7j^nF=ZF05%6XHP1ynu%Q?-}p>)GAwT(6g|kY0T#^E&S{ zJtn*PXAR1y=1$ved2OB1g{-YS$LhLo%ACF_^Lgjq>pIgu2Z$cbkPYF!z;$TpBaz6y zO&U#>%CBR^`oBjA%m)qGtespo%PxIO=Bx?zx3|g8I%chXe&ejO8#$I<J!fFOdDG&f zMV;4p-<8}x`p5rRfXKJBEyi+-WqK!{`|z=(!F=8igBIznXEs$ZKNngXm-I5vWX|RX zIkQgkT$*YzDX2xJOwmPROYgDZ9=F9QO*6GrC(EXl>!^Gco@4FxWJhmj`mFxEDO{7M z{;X*`$EzXn=tkIUjhA6w3rnw`%-Y%ZZk9sknawhncsbUbF?n`tc{f-2&41;3hQ4aS z40EK{S9`9!V7_Iwn6~=jxV2&tJ1<#&-Suwjokw?Cyx4SNZ62NppVZ`+a>30yvSh}T z*)Cl9PBRUXd90rPR@1+~O?Up<XEWyS+?TiY*sZBG*}M2|`PUq%*48=v?r@b-`R@}F zTk3=^nPuD((^jv1f6Hu{{!;ErHUppU+a%TA=q%$YSR!xexN6lFzIAUK94)mAs$PlZ zoIAH6>Q?dM%xsNR^%X%JGhF2UWF&H2D%LdiiFw*^F{R07bGPe*V{+=xUl)~CNr^{> zdF$M1QPJn>i8;CcVnt7u31|FaR(?(MImb6m{Il+N?fGr$&pE$!^$VBGU#GZ9XG+7> zV|xF7e%=?#wdr%HmCB9{$qTkkUD%Q`&%0!<Z9Qvxnc#u1)?8eZjia*)Z00U5IPQ7M zh0XrOz9(rjj?CTr+R9|z{dgU*h~2*(qpxS|X4`uDeZ1au#iwaIZ4UoA;(OuxYJ<-B z_1QYl{T|uPPqee<eSCRW-i2K?Wetsm+b1X)_Z<6nOX{spU|6V;nrfnP;zCZVjiHz3 z1TNiGusHI}vk1Mvr=Ds)(>qmKR@8L!kIs~>5jx@rRo*@MBC<Sh)4sT~&iAa+b*8ke zJSIFPbmEL7sux$d7Z!I_uDX8O>HGh5fkW<@*0a-}vL$X7ZnWu+Z7*SSbUI<cIVG~~ zkn4l*eDfW>8jGHsa(Qam^3i<Z?s;Nr8!T?@w_dmL<CZ^jq<u<b+rL)zP8N<{|NC;k zz0>0}&2J7(oqt3jvg1*r(~UCTElC23n^F(B$_RWbR`h+pe)pqwzK@!Wl-95uIl0M* zEw-aXn&X*wW@kavjc?h`^Au(@KByBqp?KHwbPw0FRHq{`QH-p)5jyveMx0o9P0BMb z@6!xM2llJCa@S8YJ(u=v#{7A6kABKNcA!F8^Pj`-RVwv2*Bfk|yREzS-wl;#3k<f| z$TCQrJMiGN<*k_X_+vLE_~g|7^W3t1*5NiWcDl}utlp<Zja#*MZ(nzPMYc3!_H8|$ zN9-o^cT4X%q!YPBIB3C%w|k31LMP13{am&8(3>x&QP=%8PgYKe40+xnG$*xj;_NB@ z%dKx%ZrJ*4zI`=&bvygE8ud4i*emw<2_N6F`}f}F1<w^259q~kl=Dwjx;Fj!J0EjB z`&$OR>&h+`E?scv(OdzUo#*4HF)5eN&wXtgwp#VpUaOj~x1^u1%Pv_Pzeh{4G=$go z)>Vz<rdNyCU60ryGz+xbx36+@%%a?A9r23{c@J-`iPPIy@cqHltk$x(r}NAbqd#vJ zUL)qc=B~xH6?!Wc^DsPHH(5u2gYh=5d3*2LPDz!#lGm*9-J6FgYLz1D=zh}cA1mUo zmqqNFdLn%Oz9Xmm>(b=+|KV_-U&F;<VQqb^$gY3Wm0g^H%dYM^c<c1EFkcPJqsE<! zwgfg7g(#l?G-Lj`HTG{0s~uBIo@wy=`&5IK|4Yv7j9s5~#=k$%y3^XHN5_b52Wx%7 z2ZgC;J}J4J34bkGG&A|llF6=eqC9u*-0%8(*K<w2m^9y{oLnc#X;-s4CqGuM`SkHP zL&J3Y-<o0TV!Fd(1DGSk%Vf=#{QWF2A+qhx-0!j1+3vT+IjcPXAG`k6eRr2j3jb_g zXT4Y2tQDpx5Gi<9KO_x47YzV-1p`c84RrFg$Sh!Ysg}wDX+PIpgOI7ZnXMd?tAv zED>_xi#roGiB~LGtf!4%p?nqRrOQg%6TNrOpYxGjGSeh+eq_fa<K&!Q4ct??`JOxG zHopnHeQ?pNgVz*0o@ZY=*Ou9G%+*F*!u!-7$<}RaH?FFkmnpl>`mXJ-9Y1HQJbhvz zexhjgu9KT|ei&ZqW(|w&4*o8v>7pU6QQUauE=$Xq0IR20D$3c}+w~b3y7|+7F#WD~ zx)n0bQ^Nd@kM?5QJ)3{cG7u}eVEO#SlGD8My#c$l_?);TBs9wNoL)azso=_c)v8qF z@xn8*;x;a2x4%k#t>S#Da!u*<#T_P^$tCaiO<oped##JrYNgPYxa$_h-!D&IEIh|* z>8&Ee=B(&7)40FyvrO}zUKe~_(R5YZdS}Z$+j5&P|9+Fx_O+@rFW3IEmgup-n6zt= z@&_tn622c;Chb$UOyiVL%$}F`oo#Z#3!|P}-N}p#xO~OJcB|}D|N1}mA0Gez{GVyV zWMTcUYp-W-iEX~-yYIGN>zzBHcNb*-{rr*bh{b~`RT`g}T*DepH$IDr-TC*jQRK(% zHzs9=|NZoZIZ$rZZqr#;g|frrMWY%|A9<kmMCjQ2Cr(LEv#vIK`;?b$EYEt{_xK{q z%*j=fh8rAjmY(}xQaA5}+xlC7*rdEFAJ3B7d{gsWU(U~!n<rn-xVH7TmFyP(V;d3# zmTcuztvVpFX_L!acEMQbqK8}Vxfvd<UX<RDzI;D}P@#!JE6>(>#~%xd6<aHqdF|dJ z(fi|D%Ev?b;nFLX%t@S4R>YSfR&;dhwS+U?+a-InS10ovn4CSW@#vlM+(W;O6c0XB zx6^sDtVplw=W71eD;M-;BzZC(Q<;(NKUe3|S371gwIAE&lzs`^aQxVI`GyS%Q?E?- z<2l)5^g_gmYf4z|j1H+Iu5;t^E8^eQ?Ctw4w(okqZMU6L&*2^aRz&Krk#93M)=^n< zes&zEN4--q+rhU-K7M(_ve|g{?Av9srvh7F9`W-!wW@1V*1s<;b97!tTRc8^WSfT9 zl)R4y=htY)YlJTM%_vSyc@b@4AtkH+`&4h^tX;>7b~;_Zbv}Htr^o9TA>v{u<v!kJ zaClUl%(F|OFrM}OqQ%$eKe(!{&lusk+gHDMsoeF|3g!8`#nyg4wc<8gw)lnsuXdZS zSCd+o<vH&R=4<%bs&g=K7whMXDP6MVx;^g6Pa@@b%i2wql(wC?{8|z+YY!@ck{UqE z){576ue^5i`t0vpa@#Kl?|$^}(^K~!Fa7J77%Kk0JpG_+rPWiJiF2iwziP7Cm>a#t zu4!F~#`mNN?8UQ+LL5^rSt;6=ty{In@9bd-epSboGYTy&1%buV6<$hb&$!Qz@CY}! z<<Ryje%lhy$6@oQzN$Kw!9VW--~HA7MPKiyMFdR#akVPdYP%)dvy=mFGX)~Ax_zH} z|6zYC%kxFzyr0w3JPm#XK72d9X311zv2%$tpPpzjHkhJg@vKY7J@95n=w*|P=)P;N zkz0%wrp$V{NPXRh^U>_zD)h2t``zE)nDN3SPbgUDSWc$1ylna;cjwa=B_6Nr{qj6j z^2xzD%U8{8cg(6eBH7L{Ro*DYRkE+WG_gPLy`gKv@hgn0Ejjr9nr&C!$yU{W_jqDb zq*+?RmbQ<l<n^3IrgzV<+b~saUuO9Uq3R3ToefDpjqB%44dr~e<a%7-Q*AL0SzZa# z-~hd*Y?BMS>^w4gpRL<@^ChRB|M?ANK?!#?XFS?v|H)8bed4*wjL(IpPL_UmuI_vh zYV&bwz>GkHQ+NAka&ZZs;}wbd<#Bw$7RS(=Z?F1xAM<=tDt`L1k<BIPLu_muqDrrJ z9n48PK5PEIUn27V{|Nv7^Gjk^@Io)&So4D)e6>ZrHkZ!rdMvp%VE1v~?AQmjOYTVs zUs|}y#{KD>&+3ykmswXcG-QQ1p3vzDpMPkhf*w0)wchuY1?G7<(sNdaN~=UHS5LPn z{<Py}jp(WMlFyIbZY`43DrsB$s%f_oGxt|#W6g;>Z7#2paOAqV+R;kl(r=Y+q0igv zp6KqLe~ovaPN4%&%FNvTA1j(Z-qV{Q?Q;FA)Q7JN8)tYQkBImtV01Vm=Wb1R){{GT zlkesInHMr`|KH@otKYuQyY$c4T-B@at;!~i;|vX1yO^H^@$6d1xiv2_h*MsnxLjwG z%;b|IQzu`%`T4$oKtz2!`-OMg4@q|`y;PXdYLkB0C4%GPt(H0YS2In#T3PMW1Y`~_ zeAHkzH|KSTkgVFXclk@5@9n?T@$SLi%Uw55E;?U*{Uh%j<t0r$tBg)Ww-?Nf;kN(y z)J9L{<Q-YD>+_|B*)EnHJiL`V{DQ5g_3QhqdpP3-#W^qUsdwRL)V!!6D%N(8HRajq z`pyY;8+z0BtvqBK8?|FniKXYx4?(vV>1^1XT<d)8bZx=Rg>UC5@9-*`;T!YEIN?EF zppJHTfGbmsgF5$XD^2$wA)J|7HrM*5&*Tw)Wpn<{TGe~z$t&G>CBpZ0Z(L$myXnL^ z%P9{duI2^JeB#{vSz<jGfK=UPHAjGuFQ@UEx(+Q`B_*__fCwb!9wvS4~J;GL`FZ z;B1!WEnzR_e4ltpYHRV4_fwhzSC#93xIS6LreeO&vg#Q-vbE1^a~!PZ{=>hmUp;TC zx`3MssAPaFOnV64!Bo30^Z1R$@&8gk{5#ghcxUat?nNAKnq8SDbK45jB1%_J&X8b^ zxf1ilXvayv^0JNZUv2bT7VM!}r9GuNa;?uIo9W&6?#cETKJhCxxNF_ebnukro9kbt z)=qB7TpYVMtfBkJAI;MSk~c*kT}+wda&heu)3vttGrsxn$oaiI&HnkGuGKMtoyTP? zo}U08=kqOJbMZm{+id1hxr><f#qXRdO;ldL_#%t-@893vD_K2XUOoGoOTA7D7q5+! zL|0GyuXC+u78UY$mu}v=jqhFDMCQr6q>q<fI=M4((yrHWm)_+*4(i-}P3oeHecim@ z83hyO6`WA`FE*oZ?#ckewh8<E-krUb9__Ncz+u;v#j7?=WvkI*@-aDj$;;hyeP8V{ zY17S<GjzOTn0h^9{`4|_eyTR(ea79bN|7FokLD=L@D%^&tz8@UUu=EixujpmQ>>0Y z{9Mi$;r?;+<;ww{i`GeNyuEX9X2S<jp(PDxVy6@sxxT#QzUm|2r#(E!XBNt>JG-32 z`OWf*Nq%7>tZIH=O>W+GF0GN8BIkRV&Alv_XVy9G+z6rG@6qf_61F9^_MZq(4S3?A zdAR(OdeWtIo&{F<3$7<Uy`(F)ne~~mw6DFjo$GQdiS=boe5=gXiiSK7)(#CQ&06b} zm3nzwfL5PpB2SC==M!B_Pj6^F`c}4lhEENPE%z#g1c%3gNv|)k%)KGyxcBK@kICoO zNcnE~|HqQSp@SzKG`n-NhHcsP4_6C#%oV2_oUWMC(s%qup`~3lJA1|Rz2_Mj)P$`s zr1I}E-n05I-&-cOcYQ}wtQrNF-u9i|nH61f&wN4VqTd?niJQ(z@N=seX&XrSHwEiX zzhjxhe}3bau<5Qdc3xtWbS~I1El5dU%cs1Ik-;@`QFbj~{gmld>RAi|PDeW11Ws&{ zaeeu8Qssm|BfB%M6K^-DTJGpM9^}?^+Tx(7%%P_rq?;8Mzw251@4_y}85d8o2wq%& z*RC&<_3xa|JM^QL3zgqJ-TUqBdfo%cT&67I5|xrqD%dY~+Wvd0p|`;%#B!CrnA!U~ zdNwJW8qO3Q(7o6Aal-jKn!KVxnN})#%w-2vd~RHB-Qe=8Pi4MrL&1FUW6%HIdVi+d z@YAJx=0%!|<qsTKKl%2p?e~;qonNST)wHDRzp<^bkxS06Z@am&bYI-s@M~9Px7~l( z8C?2K{l#Tjk#`>}b~UeBHR0*G-;JN2#C<M!fB3rE+zEwZxAgV7WMpo*UM;_0$?qHc z_{P)a`qQ~h)@ivf-eqvp<<Xw=7VRbdpOudP`^PxXzMh?-V8?%+&{Xw~nP(LLBv~b2 zod3kH{!5wX`}J*-Th?7(``T1&oztnBtxmVM8d&|Buw<UZz9(}pt(u<xPW^T4@@myL z7UCyj?TzJnH|$UEe|zsA<FUM^d8w8y0{-u%6znE1-&lgYAEsUDh0FZvDPg}?gmf(P z>MTl8u4_L(ueIa)zjum#eYvt<7GGaqP$qUaK{aN}WY}7Oz13<AA*rG<{runNKYZ}h znBhRmre<gH-t}(D9~jq%<%QnNbCzUS6BG6C|C_z1`%_Pbe*1eQ_5L~4{Ha%;<|W77 z%kSWsl&W^%!Zb+<38Mo}JOaWOxTn40tZ!sbP&~-P-Py=KPg$*vQ>dx&D#uB&&Hd-+ z-!9vJ`)=&i>BYCFca#eVYA2=7J7cAupPv5om*?HmS66nv*<AMK#>OPuY~B0X`*gHC zmQKogdhNR+TTkxGKc0#jk1~21zZGR`H`ts`PVqXCvfS?CSN_J`HjL&!G#sxkG5ut- zyzXvg;Fqp;$F`N$VIM++jyy`e<`BWTa_^Do6Deo*zx=(ajz_(?JETkH-QujCHJ=3U z*f`7OsKl1sR@wALp>&Ul%iru>A#C*v>$h$F`@&nQwEt6B`Px>Fh{zO;KbG^~yib0j zI??O(iUx^{s1vU_+}A8okt_}DHCVOEC3o`9ooo#&v$eFIc|Bhq`moCI^S}Em5+e7z z*J?<u+OuoPni#>;CsSIK%FXWo+?yC~&hYCjQ&1bnnnNY8o?Kh}QR4Skxo38%X&cvE zTyw`Z;*?6$I@OgA)E;Y2;WIlQFom`Dn{?!oBJE3`b%bX>zj3>K)lC1rpUswpSllQ# zv#<QhmHvEPLEhe|B*XHHC5nwc?R=se72ajo9QyqDdByACd}fBezWK>A&nCxQzH>uc z>esRP+^3Aatd<>l^=59N)`}|8U5s1*mKgn?w{COiF7_`wHv0+5KYJCE9mMUcRz2h0 z&)1noj)6NY-7{Uk*S2{kvd_IK%hb@@t+Ceh)Fpkt@81GM&PC?WmzI&UPXGPlheW#i z@)>7i?7rmKE&lF*ELg^_c+<DXkHu&BE&pPxI6q4J>7B`q+rD>wKkmD_<Nn=pE|-<F zFSl16_xGH#tK}QF{!-DCkF74ds&g<M3%Ad;cHVV&TlT`wI{W-iRX9t{*eodieaBY` z!RW9@(}Mz*=6#P?{6SONLp$Evl{-HC?DhRF9umTD?{Cxf{Hn0{PWY1U!w+ZtJ16Mm zvUB;h6UNV3#9TWsp76HqZjv$2j=fhL{ku<aoA;-)$-ng!T^_Z3Pkp;mSuT#h#anTo zz0EcOgIM;*>vbbo-$qCGx+hPGd$(@tkz~8by=K{+du&c`oqT&$0Ut}KS6*-7=Z@d( zNABl84*qg;LA~%xnP>7@lB(Y#rzz`uO|jc=ukS6=>c4;D?$QgFH+~KHeE#Tn7ZoGX zEY=W#$(+lApWAH9?Y^~r{-h{H?!N6)LXO&oTa`Hq2t~#@v|6bI?fbd!!B!3qL2LdA z&eO#;w70Wa*;%<wd|L5uTJ-NT=g$|)U9){&JZJ8%66TdETKf+!{WNFY+LI+shnt;? zek{Lid+Wp5Eo~u9`~GVxC@eU9L#OCT<cZ_@3R7ouw}cq<Iu`7WJr%sBGcotgzlm|t z8z*)(1vI^S`{e12bu;%iGoP}S?^ip~9q`@h$F=4DPh1S758pQ9Icxw$#tars=iUe~ zI(*?uZnc}Z_@YGVvlRE4K`Liw`7NJu{@IMPcl|!yylMG1#c#Q=%$waDpkoX-9eO+A z+G?pQ8X}6POmp6S`VlAZ+1dKA>ijR+vZbO+dW0V8oL{)5-$c5~nnk77|Mr%QTE@-G zGGiHyMaz3uYMc$&{$4&LQSgoaV%^r3Ga^M6v$a=dgvUMKIAN-<^5zMF+pb@USevDl zqP#TfcKTP}J6rp+?nc;nKDX>TCI0&6?1cN`6Xy7Q5BS*;I`6sPD($9E$`f}md#2v^ z(C=!hyK+ZOF(y0LKBzSDPJ2dJSlWtXewHTl`~rR|)jPf5zV0=p#9l0^wAM3u=c;2j z?5&PGJlOcZy76=IcAdzpi`Hj+yb%{@k)A#~BqqE`MOENX_^NN4$`~|O3swJSxA^kC z>txC!uB(bJW#u;JxklgbT;I6#yPKlMT?K!o&F@lWXB|7Md+WYD!*sg|VK<jQii~a7 zIjzz3vg?TL*B=2oXT;vMductXlvpm>GG#_f$*jZ5CUJK+N1Q7xd!_ZtTh(xprOx6- zYePd9X=qQEV_n`P(H|4luI(eX%jv|!d+qOq(lZzu!dSiRxBGqnzG46SCC`_|CN30z zA<$KQ?DR%q*<E@f+uvT=ow=q(pJhwfiM@*w>;E@g(w=W$-<W>B=Hk(l9p}1(>hk=j z^zblmXg(LyAm+lay54VJuuA3msLWLy>o)hOU5?2XarF#Zdojal)4fePhI4mGU#PHB zoxdk{*9_^oPvm&}wtSU-ch2+vkC0>4EG<22<3BBG37eItF*B^hd6SrDUQWq{-D{Q} zof*Wdpi&|yb}(zku3g+~zsv2pI+sB=YHAU;Y19QRS5wI?U6$P|AFD4>;+z+@t~c=Q zdB<hOr-WsfynR0<VZw~<Z!R&-X%2j%`fcx<&mV3Y@A>sYnc=|d$$}+e4jj{?vwN~< zGB3DZ#QS1*`<D~9?zMGVx4Go?zW8zT$&M}4W0)NRLoL3n{W?!xcJdw5oD(s>Zn;-z zwF-QxUbX7T#e<A}f0e$ycrl|Wd-u77r`oOMYMHStx4k|2=X35jn!DzZ+-0Y(JqM25 zm!2nUfB5$ND(>UQ&z+n6a!L^Ao!7rVe>hxF`T5PQpU)RD=J}p^%`d+?<c@)U7gOXk z)zAA}=Sly!@;tx%+vaNtJHMDFx$w??UQ#dq>C<~z7AKpUU(u78^`^Q^I~q3g&~hur zb*>Q}J0;DPSMe*fEGR3B%Ji~7ZN#f-I_3YKKvTD;@zd3F&6oC=Cf+M~Zm{Ls>C-&H z@2AMi%O`IuDXt5AHe>GDfL~u4H(!<v+q!<veUpsY7oM#X|Ew7O%*xqPD$%6y^S6Kh z6z_eSD==^WSDD}Kb;_I8EI70`&Z}cd*)i!lt{J)s>~mj!d@%8;iFu&MuAMJ@4!4x) zr}Ak&>WzISDe82xyGiDYlD^?5*Jo~vyWVZ~y&a^t_;vB`EoleVUXwXk7{Jw9eu8oO z?)lFb3iLX?Fz1ih^^#LDgK^<5mGd&^o+Ums?9jNXyYuv8zg$5j&8T#ZPffQ<G*u@z zd2f7h)%AD#q9`FIH-<%p>ra1b`ju@z_e5w<j>cNe=Ns0z-S{kcd;7fo2Y#-6-B@il z|KXP}EXDJm@BC!Bt)c(YzPz$MFXk*i9V^)Hs?~WWf7_GFzK<16&CJ^qKm7S2k-ztG zl#^ZkZ&u5`=}~pImtM2IxXvaqRdk+hJ@@_}`|CIv3aYBS_Reda6vDG5FG}mklV{b^ z#|wi>{52gd|9BmZ`MzpR!IRfB{v29<|6qFENAVATTD9kGHNU%f#nO;X+dtG<SRa?2 ze)d(^ov(#QYo1(KwNa;g$<wHZvily?G@I?6+ViT<WV?;X9j^Ja(<NOp*v+o2czZ7E zi)*@W&XH-MoY_UI{wA$iXt^TSYRlaHehMD4i$Y`WXDqGVU+FkMd`jJ9+nYI_)dl-! zo=YsM=QS1G#PoY#!tKxE`Iq0@-?cyR=8cGc{5}?jIrHZ}{BlQA^i^oD*_VapbA$IV zGUUujU&S@~rAYAnY`dB79=^CK$nfCD&*+M8XU;l4K525!vS`6|rp?9kPI>hvO0+={ z8?XC?nQ|fO<?KQFn#tYM7U`_)s)&2C<*??S5YsJBGhcP3?2Qat@S*a#>%7H_rv*=Y zaxLn4^VGt-*8_8vuZnH?y>7*)y&{L6_a6Im@P?kcTY(}=C~to3yQcd6{R`AZYuZnk zeOuo3qI}b5+4KGZvQH}8w&|`o+8wfS>O`SU;(t3VuM1te9nYY_vS8`&>bR5uBbN*J zYc!J;+`^{Lc4wHfSm<}P-l2^ZWi8?QbFch-+;4X*<BM^Zk?wTvu3O*q6nEQQ5Gy*j zIK(h2(#tdGvd!riQ7cw)Rk#1PsQM<x@L=xt`v>*wo&_^BEN)g#skBJXzwlE?!Suw6 zl8I~l_r9(BoMpQFmg403|5!E~i|?Iv{#-zHW#-;B)md!flAo{lUej=YcW*+f>Zv=n zb~o-H=9V|C|8~vrUgd9DncveA7k_NI;^=jBnmd2y=P$d>ChpjMW!mfh_i5$%j)HeC zX85cUUb;1#ea4n#?&H(To(i0t8F(yc)~r(|pY|v`JreMI{#=ba6IZNQ;xetIuwla% zH81`%QPQD}O7o1feSHE2X6B!i3=y!r8g;=-{riO9e@b_^yRGS1>Es&v;DGzi>F4_= z{(R2Q$G2g|`3>)%x7~ax88_E*=Wo#PXv>t|6<ZA1PJA+$-)nGpev(Pi{JrLqi$AU8 z_<gyy=lI6ltQpMJTx@Ng3G8zt&pUr}_7}V8c*%0^n~VFi*LogXH`VE;=#_m-Uq@-3 zSrY2zx8z*O6!vV+$9uo7(o($oc)G~aO9yu=TZvnp4)_&!v3JUb4Jx%$w3aDF9FZw; zIM7l&^UH#=pxrM%td9LIwXbQ*#LKa@_tIQA<2Dpdd#=&Da9Xh6DY;J~$+NAslNuGb zzxmo-&AX$?^qs~hmq+g|+2nmZEXV28aihu4>&ZP$IZ@WA{Q<YEXFT|E<0;3!KTlNa z{#`t8Fxxt^G<dy6>f&4n%L~VD1-QRE^j*{8h>d&s+#g$5)&@@7_~Ww4l?yX`3O8); zfBamZfnom7FX<;H%Jh3z?YEBa|Gng>P2q(fXHPR-eknJvHRkg+*O$MU_kVtrJLk;Y z=DM<?uFW@P7y|UeHoVYi57uaOs(zWbGB8!|tfx5ZG2!{;btNq?_eGod9}kv!^FHza ziKUi3tGlvn-+1L!>8rBl6>v{?n)Id2L~7y6yURFQZcFgQbxskN`SRq%Vbf&BUGnM2 zlukcBHf2vlaH7H+mxuF~>`$>0>ny4K_3?g?yBx!=g!&_|PewSumQ!qby|H(OnZ%`Q zCDXp$tGo00RCZ_J@*C&$P6zy)CE`AJ;kRXvpE9kkl6T+7cjD$Bk>&d&?$_*O`SbV2 zsfzrK*Dm}C6p>t2<g(RS?XuujzH_IA7M~Ke*6W_bmCE(A?e_eghKJ{<O2SG4iD#V$ z1xuD4*Lxc4<+)1A`kk7`ZTHfBsnajbogDc4yTs**BKJI>sM_*b|EXN|@~dkopLx^l z6Jqh|-uwFxiz}TvzxA3%^ATC5V@I+c2Axu2Qc@H+{4>!wLXGwDoGm`Vic=4Yxo(`c zDtrGsryD+tcHTXDW%8>u$(F4dDX;m}%j90%wx4)R>D1lU3;X8APB?SC>qGOFzqJ#4 zZVE`QaZ8@G?)qve_VY0*-!9Lulm2|uQow~f$Z1tSBSZI3Azo1quUqRoHC}}}Ie4|+ z>Hn;Ae#Pg5D^_eMm$+T^R@S2RLW$MU9WoDh_CNanKK_@gP5rwruHIvhC2opt{BbSd z>A~4bE|(OQ^bKb96lC1ZpBD5e;k@XX=xw^M&beL_e{Ou{T&(HS(6>r2R(2_dY}D(T zvnuYn)$tqKgQR=4TV5MpW?gn!&~4w-kjT*N=gZjl`Z-<ssb_NS+ok5~POkT+Ecuvy zs%uqnboSm3<=zFqzbko_u=3pPU%SC1%(*K>Cq%Q&vQIw9QsSS_E~%8tzK#9+vQ{Rp z@$C{*V=Z0U^F4e?reNEZriRjNSyAi9M?(1SW|#gFdB=I^{CS22o0&piUJbl_LvW$S z>A0<b_Wt5%-{)~B>*|3UGn~Y(Eiu^WyG%PMGQj)R#S9kNXJU$(^R!M+>UySSdFHFe z=IR@c>3SQQ#gtX125bD`Ju+j}_3|CLe_1j_cAdN6tG&(aQ=j*Q2b~dTuS9Ws3aO~; zb_qY)pmvNs|LxQVt2&OCS(<&>D|*OMwPfC+n!VGlIS)*_qW6#QW%0GrOV?62<YfH6 zQ1<iI#m#S5`Yh>-$_}4vb>s4pwlzvy>#JCpCLHs=zqHY9T1}jrZXerj$D;Ernu+U7 zx$bW(w3+$n$Ay!Uv#$!3-aXR0!p8aK=Y{9}{5F0ny1y+~^C?@0vzun?qB90xjgDm* zy$t<qTX%Z<S1JDu@1IUxyjOGCRXM)D`}bD7w(RSRS$hA@_Q+4}^~<;2P(5^g3qy>S zZ)o475SG?s;o;lF3<|m*tSj8Rh4Fxiu7dTXPfS8P&tDCn*~TFhzcNs4;q7*}>#ZRg zy*k~w%CUAClm2b=&NKKQ&7gF$a@Sc|7q!qMpATJfTkvw1cjf=WcY-E1tPbnFwYPfT z-xj>m<o!1>_FrlfmejQTw7I--t87b&^yY_G)TGx1sa2l#%$xR-C-izdZ`t=uvq-nA z_vXK`ZMf7gvS~wN_9HcqK#>=_#E#v6;C_~C>i+O8YYRD_Gpxx-yfxvIiiU^cl2)Nv zZ{~<wZv8$bD9MED@2k@{+V9QpUS450<F(`mubI$#U7{^<9-oY3dYRuXc3Y1JT7io` zvszkRo+xv=f>S*7Ld#oM!OM1Q6@M*hS@dGzDdUW(rzGD0JZ@_gG@JFZhhi;%*ng=d zW!_4fOo6L9e?)LB&k@jCYxD1!bY1k;RSr=GZoBp!zL(~wImvCqqutkT+G|K$YD&%A zxKN$h^Ph03)3k*gS8u8(OFUk*Wmz^Or--unM+yJs6?IQm{jB@)Q9a|8!p6LdEnKHw zyzuVYbfhBW;f3!J_wV06e9>4vR$gA_!HLsrPiwh9+a2KZ$#B(4j>#*#clj^>E%BRU zPf*ogo3AJQ7dTAvT5R&^P}8NEQ(T@~=k5667@(!m6%_fuL*>6&XAQT)$sL_nk1k!1 zw8%><W#=*_->BuHYvrHcNok%U<C#!8d#C!(vx<+nTy{q#$0S}mvTaGs?u_+M-e(>O z*Sh+C?^%JwyNk9g<1-D?P+z%BIzRrAU-9hT=6g}ydQ0v{ybk96bIUz5WudV5q-Wnl z&b0<}1f3IJ(7ej%oPALCjBTz0&r4=5IrZHvP+j8o#lJV^E)s}j-x9FIDbOq6S5J^s zXz0)PXMSf1wM8;pzc_PlA*UCUSBs+L=hl?#jz7x+k3}7jike{IKgUipY@^$m=V4x7 z^Md?C?``GPleY?)AQliH{^a{>GmA-A4S!92mU_wSN$-ZgZmH9Mf4kA6a@=?#Q?#`B z@s-7w>eDCj^VVm!cx(S$v)pA@<-}$DEqzQ4w;5O(w&f)(J+h+U)91&Bw|_W!Qk|h8 zT;G2~)DAK0*z^P|_44i495n8WW!fD2cTYt4{-Io(SqU~p+?zJ73ix&0HO_@I<)v11 zds#xIWVGuk^R2tqd)zv&*~;_LMsw}rX1$B&RXt_%Po&swJh?}H_1on;cY3VS^VX~? zdTnC*%J7_T)4y`|`BQUJc4}Imu|Kw5e9xV@AQho<@BiHI`DedxTC&GSK7I0pD6#p| zgBE!Qoxb!@=g2QVnQKuQ!tX7ex>Dw>cHb{pn%(qwiOSCcwg6l1r6N&R6?h&k6P!@@ z_GOUX-ex{e-PE;jCw*NpdxewL{BuSt46bMUmIjne`?xb9?)2s8jfT+ikHZFM7#?z1 zU4E|iYsc<iub%u4RcfCcbf_h3(}s1ow(b337xN-{?x{CR-qc<zD1E!AJfl3+z>lMF z@%dLLUz*il-#Xv4<kI6k_tL&!+WF(s#+<0D^Y48=@wVRh>Or>ovs~ELZauL{L0_lp z>VeHh$1C2bJX?L0$^CrH!EM{}He^Xv)jw8#aVbjc)t2qs+ZUag__L!b@W}<mq(!PN z;Ve%h{rZj9Dzr8!wfes)v_GMBz5Ix)XKBw0?+AU{_oAxB`9<pmnLMs2DRrKR&aS?? zwtCilmxGh<3AdHxc5FFuTle|@kigAv4J}l*a9w)2y8C==`u;C<HY(QfCu2h{?mv0` zmwl{%W&1>-Q?s_VPmbfiJ~w^3S*c~vZ;f+DZ58y^aChE0FF99xm3UW!m!jw1nddy1 z7EF<3FkE|}o?Z0W<y)dPt+StB5@}XEXMbix0{dJ^zD4_0_U>5Fbz|R=z5f+I{y*8? zdMB>YeN(`W<h)l)+P~ZJ3O)Z*y8g}uwb|Bx%0Jik&;K1S<E_c~dg~G|hJ6{ILOerU zJ3k)T`fb%~vAOH7+@5(Y^rLIRpQPDaZHkM2t_qkCbUf>)R`Zv8`-7OAT3n;uylr0w zSGp)|<Xfq_E~;KhwT}6?L(Y5Ax?-dA@wZw<_wGM-<<5(c$Ow<!?@Yz-&9~C-bg34& zGqt(m^j^J*OH>cuGF6M3{_M+%o1x-Umn^dWWBTCIlsx?+U+Zgo0-wJUiz&O}EY5y? zmfjZAw_Dnl&5{uRlryQy`q*`qjn}?uJ@*!k_FC5Wd$z@N<8prQJBUV98bblg+?S3) z2W36?zOc}HV{otPxZ&M}avFP9?n-v~|L~pL|I1I!y!w6ZtOZs*-u>M9i;F{c>zd+C zU$z;q+hqNK&E@%X0o9eCb_aj|vG3wcH>na4r>|Ujfky(lRtf2}H25e-JGC)H)t{?g zaWawp^S`evWu|inulpNqwg0=)`|Bsxx0^g%7wC28XlX(Cd{d3+yUO1!|K}9*e37_* zr~S~3_fNmsmdU+4w>$1#o?>gm$5X88h2h!vdQ&#$TvS~(cgv1PM?+?Xi2e#$r}^yJ zhURl$ZkYXlyUX*LUh#_gOtbH$&+oFGvHZBR&e^J;XS7zb>D^5_lTj|RbEDyF1F?(k zK}LT4*Cyq=zFnF0C^zS|@}$<~r8{3g{AtquD{0-k=J;34MSg#b&3{aY-cuf)6M3oW zJ>&Po56n`JvQ5>vw_@Rj=0E@MZB=2&to~fAzqjb^ouq|T)lK0`F70{v((BCK!+ci7 z^%wXa`}IHiIN{sTq}jGMoqyMV4*v11s^6xiS;J+Lmxe;>8^s)j1y25nlGW$A8<(Ws zt}5;4n6It(fA)XrzlAq>MfXmRsng$V*?%!_<MH3?%suCslrJ<{P-|h=-`^UNc`5jd z1h?X%&HFw+Kgu8X+m>fD=bYwqu<_Ev2Fwl0FMQ@(-`V?|;nz2p&+!+{TFVpOPksIN z{I+^w&&AjM&Q{dkd-wF0#K*~c*9>=by3JkxQJu&AyuAIM50zVD*4$KB(y-P1eVD-x zKEX4Kn`BF#$vw2bx@}4K-&pb0m0d@8n5WI!ck+u^(v$h|%I;gf*gLFw&na6K@x6Qc z(er+vZ~mUYH!{$;EwSw++ssF2lpiH6v^!w_{prt{l@1Y)(A>#$*g$Ugvx`sb@79UW zP5yZJNm8`x#IR`pbDQ@HNQ;N}v}$+nU)ry~w_~vp&*zMXufLyt#?>l%_>TFT1;)0E zz6kGF8+}md?QZoD$-O6k&$xcM{NTF_X*vJT-UyV>Q`qaK7awn)`TuB<M_RPYEW3ln z#|{@y{&~D;?>FmY_Rsc*c|@n}Fh(k8A8=R|v+n8s`Jv#*Tf+^#U5(9*(VLu`*S=1! z6U`RYjFUY-vG`foork6ePOa2UtbQxD&Hk{!n+3)bw-hbCv8KyHpW$7f@Aa?OZoP2M z`JiU!K6_(tvTJU{x=Q}rwbf>G%iq0cFsr#4`uy+3-_J7n>^=u{aDR_`@ayN|?Vc4! zmkFJ>zrFeM&*z<wgKTvC9eJ2h9H;Pr!|Je&(~3D$w`MPXA;VfBp%>1u|BuaP%bcyT zhtm_p?<}!*$?to3xlDb7Bs;@=mNv!%d{&c_bahTXtC&`k5p?s>GQN4*+s;3KrMKZ_ z+Hu~TQ+_{XHzZ5n+v3f1_zsu-JKgY&_jGf9&pq@#psjPmk-3Og8XJTAg_(AHns)|Q zuvZ@6@OQq>!&|qPFen_p!)@~)l<*SR=iZ!9`g7}EtxXN9_r2Ww;+NOn<6B;E>@T)B zUUM;U$133~Q_tW3xXAxNc+}pr=@X{Nb8LI}*RMOe{&?($bDp=4{rkT0;Ug{H<@a}e zRX?(cwR5h1?`HL9IvbqN@$^^N^F~B)tl1wXf7-MrbnBPf=W}<b-!?IAOPo=<q50gN zdEVUDyZILH{Sq|$&;O4fETVW~U%JKIJRJFhck=CjW{&Zj|8<!CuDR}|y5XO#nXPE_ z)6{$a*-n>z^EY3USLvg)b^qQkf0mhXz1>&%vH04)veQS^o?m!3<G5kFq4cIQ^?)z) z?!U<4f4XZ=mfg;*Jn08*J0EwwUbFq+fjjax=VQ}WT<0ndwqQpOuItIyyL+#{6|v8Y zyl&868(Ug<OMCBzi8<>#tnQ!9-1*9R+wTvnkDZvBoW8nw|LtOr<69D0v~J12K7aZx zU)t{H>;KF+`*#1=uYXpo|8L&N`}X|u%<VZ@{{zGm|6b0Ht1~Y?vUlUxkGxNI=o=PT z^UsZ*-TAgga@)z-Y}PM$6jiyk$~bS=Z{P5@ocnft`G&V33c{P8sCPJ=6+XLin1`Y4 zLiri<eII!_6hB;DUpIAL^xCi=_Wz&%fAHgn#N&?=`+x7=-!1?D$ML=2|GsdyKlJ|3 zx%UY+a*u!fkf{HbUf;HBo&2v4@VaG&b(88l>nGLsf6M)Q_x>N>{$H#2->Uw%I{vTL zzmM|&1@HenSN`G6P2-xk+3|-#cm6%TTYkSah%5H`L(uIm^X%*UKsO*923<;J|L3rM z%T_TEzxwfG!((^8sq=Er->!S%{MqR1M(-|tUibgX*7f_jgEFt1eY^j{e93XEDO&rO zA20j1f7Zj0pu1%~Uyj=|WWO(c!~8w*KjX#My`_8qZr?XAzxTI}rf7rtg>MWBNyeK> z&GwePE9ZZA_20p72YBD;Pf`-!_W#eW`+K@qT{o9|{*kqL&v&L9m;UYEslKOd&i;en z_S<~Z-}j+zXLt4c()IhfE!HOd_#k;p@cHxSKTd`3Ys#;E9c^J_v*fwIpWlb?_5Z*B zcxJx8Q@`$G_m4Zz?b`F}f8YM`@B9A#`k&M585uxVHyo}1|GoY(=*}Fw?>o;w?2iAV zwD0HH{72FEe~J0|`<H*63?B-e5q*H~SKp7z_J4zGex8m$Ccgj2(R-iY@B6JcYuQ22 zZDCdK=9b?(m~Q_&^3U)6|E(DwfNuZ#aPxef*!w-7`Sw2BUiW(YhN!h4KvyfC;cvJ< zea{8u*p~l#U;XMU4sB$3XK=SZyHC4T(N<NVMdHYNh6~oyeEBu^xc`WKs`z(atUzvI zwe*DvJ5Bzr{hcpfw(ptt;T!jB{_sDRs?&YVXBhLw+AX3wk?)Uvq$X@Fz^ymGyw~5Z zwy}z_PB8m7!}Rn2S;_a0-t^f2`PRq!m$gmL{{K!seLk*w{$88uv0qm@#r*4Oe{!l? ze?#57gKVGAPrLrJ_x$tF&yU-_EkAr`;@^1d`8@ajP2c~#@aBKE$MutUzFPR^{2QKW zJKi_EuX%3$<NW_W{x$Eb@9+MSFJJS4@srJa*Q<;Vj&_Uxc+kxM!c;$Q&x^mmA3jw4 zWV8JGn&hofiCd#C-p`lL^<QeS_xUxO{oEd5?G-Uj5izp_JvB>vlea#;Kl#+`JBRCb zZ|z<m{oPuwoO{ph;_3VUuPWSk`D6V<?X~3shwXQ6<hMEYv0iodxB5Gb)1SNV{<g3> zvg&S}oqzM*vg^J7OW*#IdzSI*{>+|w1_!Hu`f}e*KQF64I9L9DSWMxb>G5gTtu%K_ z*uQ=*FZj=}GSNr-#;JehSK>Z>&A;<!^R=7x;n&|i{pkPy@X?(wqJG~mu0GFuZ^y@U z-lPB4$5yYC{2zVZmOr&VExmx{Z)4^Az284PumAV_$G7eKdpGHr*UjHMfxl!bbJ<<J zo1l#T=KcH2_49w8N#AB&ff!i3m%#qFvGV)f@{bSO<sW^X|KDcIwF^;?<Ntq+|7c$S z+5AG(<D=c;D_%?K$M1Wy_x)jh`z0%WF1P!-(tF~k>H6`DGG}>D{5oa-kM8{kPM+la z`~6<^`@4VnWfb;GOe>X^e7N6xz3;!Z-{r66EqOm@bzkP){DgUOFL#tC|9|#){!ZD8 z|8^AF6@IJxTbX2bc-jA@WqV(J%|Gx%{?gu8pZ*l@wY~YT{Pfe0`I&u@zkj)J`L?r5 zQTFxJ?DM7TYg4lQpZ!Z@|J(TUkodj^&?P=U*8l&d|Lgtry0_OqOkH2oDwiJFR{!sL z{j%?S{{Q>^19U0l{U5#e85sWjTL0gw?nATugTLSJFTW1TimrhoKmI(ouYX!D?%KF_ z@7{a$h~|O81DP-EX;yO|ZJz%(=l#x)6+P+a=Ux0<|HZw&Wqs}2?22!1B>VdMK73tY zFT4Mf_I@YUr~AGv)qe=O^6?|+UezC`_y6&(`E*kK$FJ-A`#>2pZTW0iE&FWZA--P> zKVR?vmz}ZpWA*;;)e$;kKR|w}|IuFG5VS6TRS?(zFaG~q?0-(SKbZgTS^lC`T7Uk% z|8Mv2)%t%~$K4T4t2-izmIvRSEUK#N`un%`*KWhKcK6RF6OGblZul!Nx9xvk;_vs< z66&}8J$yJBR!eMO@{PS=@?_z#2Yfu|9MeH14%_aR5$6Q%tge7n9UNsB;3d688p8%? zt8>S~^L-C{4&OcW?Y?eKeVgJ9u=X}aZ<+G0gx~K)AQpleOD+&8kl}5KGe8ZL!v;LY zJQ0s}1n*dRIxq3{doi$LW1p7a3ygV+*RP5GGI>I;YA(-V1HO9-H+6IV-#zp#U7|_( z1w3AOz$*j{&fHDbJ$d!osWj&YcZy(v+QtcT<C(1yDwDo^@nraxbZtiYF<pl2-s+rR z>xGyE{t35=a5%}8U4eLO#&SN4ep2EL@0ck|<0E$+jgs(wSW-2AW1G^8*xSGA`6d=| zzg+y(D_cWU`MHcMIK<i#=NY|OV9c|5+5_$N-irKvJGO57eq#n7!v!<msP{9<bD6VQ z*A%Ru?Bw9V%AnEJG^gn0{Nnp(`>YP%(e%8_p0<MH1LrMOh$m+-Sid+kyWe-yikt6m zckFAHk@@hUf7(3bV+UqT$j-a4g_mJL+|?DYr`GRj@%(gQD$|y8FE&ptKjW(QvidTI zo%QSOjefWM`X6mfSo`*BAjb~HikofySvhu-O5eY(+GwveJO3<$U(kmC(z(x9OEmnQ z|7DIX!|&+dF30VRO)y(C50iD@e67m<e!R6lemlQz3qwoA;l&2uTeq+1tbBe<;*??j zEVk~SJPZcWIxjx1iaWTCE%y17_g3c()*XAdxy5N&F+;<Y!u<hDp1<IHpRr$W){FQj z|8_j8WSD-;rvLxxi0p(ORacHlUwW_9J$m%`1LMhJ=N7)xU8nDgm+{=R^quKB?|pCV z_amyizyGT}`+4`XUC|MrwB9In-I$#|Y0A>qi(Y=zEX-WTIsfu*cJ7Py=M^L;{7qcH z=lfSy+m(M^C!I>FWuLY}PUh7e5y`f{mw&!kRr%!B$N6UxU)GrX`FNg(v+TmmgO_HT zH1|mTZEfDV@#^%gV$<T%tBcb#yws*PO%j@L=T>&~ubt1%om=+$f{EX?eG%shtID_- zEG#V#uAaW0fnoJip4Fl4=Pca!o$!*et!HDH5Vi2cqUL$6j|zh>+UDfW-flkc-w)sQ zt=Y%_ySl5dIone5Sniz^$A=&N+um9=Z_CWEDUapO-qWn1I;Cj4_fnN5McYDx994=> zx>oa@+*ioKd)kuyQt^d_ukY9-_H=#|Z!-JPH23<=SdPN4$KLeaOj)0sevZ>uT21py zroM&T7yB=Av72(O!ds`ed{)1<Kh@yPp?@zQ?`W&s`!|02w)DOAl39Dcm>+0AX>e@6 z=exy6c#qfL|K}|K|ICDhPHW`GVc!Dd<|j!Tmvvvfec{mQk~XdO-A$==-}k@1P~~aL zkn#50qD^ZY<~_eKQ#;7)&fF)7g@#SiZ|<uJetDYI`E%#wt@G#30bSC^#IUF8Cudsv z@{FwSyFRXPy8K6<;lPSj2CK9f90I3aaAZ_eWobQhWb(wF@!N`p1o>NkT3xQrStI{H zwr1~3tCD4l&(<szHCi8X;<HTD@0I^KZ+t0bnY}f)`SWJuGilEm8m<<xYTv22V&xpV zt8ms+%TIT125IuHovY;N#kx{tWoe7ZUXDlWJo^(DU+H8&6y^O=fAv$LucySPugR9M z`0cGY@uy|9C+k#AkB4v8O<9t$Yf4tGmeY^ldJCCm99Z`73w!gk$u6>2x8~|k(g^yx zQN*xmcGjFr;!C;AR2f$<;&SquSKX0v&y4L@Ja_E%gAvYUdvg9yS^ZZ2irt1TIqnUA zgZ29UPuMnnmBcow|Ki8(4m_TJQ>yI3Ovi~<Dw*?&C)Ac6duk-D-<)%sFZa33{$+U= z*wPDkx&&YUGSfAXfniy7^^7-fC!Z;wt21?HSIK0RIkPkVUoC1he!pP<pC_tub${#_ z9vtSkJ9K*T^cB<d9>z{nol-8)-_KuIQNeIv?rERjtUI@E=#+W0^5mW7D-(k_CmoM1 z*vD9sJB7vESLXlMtkzvC8DFmno5HGgS(72bXyzp6#q)mr@IPL(ch$#NSG8+?JY;8R z*nBxSBLDWHH5<0qb1=;CIVRET&d{)F%>>bNk>@wvxf}5Jj#6*&rN+kI`wK1GJDc}K z=oS8YrONQ&%NLPj<*gT@7R&71CF(j)S)VJVaznM)W&SOFD`kwVR5Y!n-yggv6~W5z zy!l9_+8M>wRj&Q|N=q9AE^gbqrOD)fSWE9mp2&I5?PrB~UR2#Moc`wh+{0J1I=5wB z{QPaw+2tDqJGwJvJO3`7Aky>VX8gv#%&(9AKUKb9=gS}c8(Vj5Jn?w`O)-?7G{XZ9 zD`SbE$lV*KEs4v${w*aw_Vy*c;@ijWp1YdV`t#1o;PdCt7rtA(bM;lGrTs;FD}EdQ z*b;W)@497EK6$zen5$2WR<`s%_9M1#L7tS!Tx;>}pG@;>ir5%_d^pVi;p6f72~S0N zUFRk4dcNq{{)&ALkI$>>xlLPi?62pX#UYpEmh`Rde^8b?+vRL@N$wuA75D#aT6XH^ z^UadaK3l%3;$+b1X41F&n#thzZe8Uc_nI$DGNtFt*>i~h|MUN>3^gAPvYW6hXAj=< z_1ba<hU4e^E}G^2nPuCo6jE#ca96>$)}RSyZa#8empp=AHM*X<F8HjbYr*;SivP>) z85#EczdV1^l`S$;Eo`iq7~c4PH<aoP?2S3)IQ#jDE&V~Mk~tE$PdVHahz#d9JJ<Z> zYtWpSBZvB&73Q8l?0mU2V(pzdg>_|ZPm3JahkL1IvT`}8zGOaTYi73W{*LqfT=RsI zt=pz7Oqk}-!EgKZr~83JD&OMu=KekJ=f5#VSK!fOFU@cpQN68dD~c6_eye|f`5`@U z8bgEOjenZgd;fnn-d+ZZv-!G<{#O1mjy}X^Wvp>%OInX&`;uJis1;jto7Wk?*z;v$ zUe+41bB;65KUdjU_w|!%+}=Mdpye`rPg9q>Wysi8x1Bule43h{p#PNGORQ;80oNqD z&mECsh<*O~;%%|dt;L7Vi>1$)JD-6eZm-qhlP@L1w97ZIKE?ICxSToWO!yXyjcnpw zJM0dAb~H1~*e&M!R`$!fh1m;U`zU3v-}uRL_vxcd&yDT>`Nuta@>KiQl1ovCJ<RXQ z%g83$%-XU3@~@Nq^-;?tn{U36dH?^*a)yTQb${e^Pt4QhQ&>Cw^(r2%C(h3;QznFa zvuc{Qlw5DlKKLwmS2Ncsr6+9+;$ppr4>3(Sv?WI8!{+%rMVjUJes?bEwSLyzymv!C zlV;4*8b`C<GBGE{OLxtuu&ym=sXS0q@@e*w)>%T|zfUz^I9>R?;V~EXk8eai&z!w^ zsmO`XJdw|Wj+QJ_xOL>9$DBiEIVxtlchzrgYrQ08#V>2EGbv5TUut&D^0|gjMCQ$% zpHR22;Y(k_#OIxVc`d7*PPkmlds%m9E3Z|u=8T0~+P;-~OxYsff9K!z-v7q;d(-Tq zC(PY0`F}2dREg&)rvCc0XpG@KpZNljH!hadYkkaZ?%AHJnRIWP?yYr8Wlvq*bnKG5 z!1L3rVxKJ;63k{l4t;U*?<<j0;Zb$j8yjBwD9x9X%1pg*cjLNQ6*@uJf<8`Jw(cTJ zXX)JqA6p-!JvZL-$!O!vKRn$>EpLUc>9}k1?oL$61P<4^E<&O&zMIt<l-d5fDE~iK zy1Hn)h-1Id_p7TGa{Q{<c_iuKBK^-lnbe=BTi6y}Z@4CP{_p;o=aQ~J&Nfha9_hup z)>x-@d*kHE!M6@h^IEVXCUHlSiBs4vj$PL*r*KT2*gARcFLO=?r`;cywA}E#8mFz% zVwdx>I%(F=JFW%sbwy0CkK4C6KI5)UbA70?OiAR|l)vXW_eUN-#~)N;vYlbK=j$71 z{$;Lw(eAiJ)B9S$sf$Hh4_!Jh>BM+!%D!cG2@4flqV2pileU&0>BzloV&d<q87t+y z|K;}j;|*7=Jx#tG+$Z$6(!R_!GI8e&=O26~+l)K^@-E@|*1z|)u8!tfsrg)@OFo?Y zH+}#8C~KMD{3(C*g+rqPq;ib^9kzUPt50jYeb>kHJX~cLX4*MN?pZq3bn>*!+}jIt zqf9!F?0x516U+DO=1s|Sdy0)_pAGcA^T_Hn_Y0eL5oghUp2LRkEnnEl?|S{H&GWK_ z=I^Af3taCc*&WV#mh$%V=3<>ad#ZNEEX<6G(7$>)YVjH8a~XcK)q_^XmHwUUai`qo zU-0kf`x_ZPbgvC)U)VYI^XqMHZ)HziP3oL^e}R>~_3@uKC7%_S=N+4DxarW-LoaQb zzwGSsuZx^;;=<Hx8mGB-%FkYwyYa*49xLnPDQ})nekphEe5~uoO%kfQ*Hv0XOty1) zM9FY#YRKQMefu}!-=*ibwB`6Y7%x<WMDoqunc8Wpd+u-Be4F`+CPmV9lRvV2UZt{g z-8rKP?{!&9>o<sfiSXjgbkbYD*L?YtPw8sX>!feii>qtq$#E)X9zHD9eQWt84rY#v zN6ccK4$L>wSiPdpdAh|9-^)AB7VNl_as5{JzK!uet2EwZ{NsOo>?%v(zW|<B+m`-G zW8_@<c-fSw?0WCU-eq|)y28KsZgTtZ7;nv#cznO@oLnsT{mkOkALV6AE=x-MpDlOv zM>^ZlfW0E{Zh2c}5NNJuqqk(r`mU{}8-q%ve_L<QZC|!Bvwc%$)|D&Uw;nqszGJ3- zT7=HCe?L{fU6Es0pyl;srreEng(>FW{1<QgXy|#XSNqcSmaMm{MW?M6FpW=mru;O0 zv+<nyzaD9QmV6d>^TL{#Dd9hKpX*$f_^I`7ai(jn)6}j@!Rm$k@5k@$o7?}tK(FS@ zo~2j%*kWIE>zS6mNeVD8(Y@m9EIQ+Px24!;%Tf!AfZq~N<CNBjy7DB=eX8DL-Vh{| z8oKDy-)(C*MCi`36}LM4Q%59!R&vp^V}FuN94(7Zwb)z_*y{FHyUV#NBbxidWuq|m zU9T%OdU@id4tL)9n<W>Pq{R@?xI`ehZ{qg-0YbTtuLiE>G1jlOpMN$mOnJ)A)sN<h zYiH;)i<JtizV}pXpVahgF}LD^lv}HRygPR=dGmhdpLUF!gc-bajjuU4IsD$Rc8bwH z-zb(skLzU_uP6Mwav|M%s>`olF{K;s9qgUY@|MKiZ#?o>scTg;cS&xy0P}Q#6D1Qu z)kTl3DQtcA;H`hQa(eyC`o7&qlG+=$RR2nNV}Iade$JNv%O3Av>HNRM`+LLn-v7Vj zCi5j^fGe=ekAt#jwEysv7S~%iYrSFYq|Y)-_bto57|Hxt*7NeQtoL(YUTEujwAC@# zJu`5{zQ`Ugjiv0br@l%0x8;hemetdBXT#S>-75>+wslQ-gx=gEwOeBn_7zDhp1#TR zS)n}s+{LwjUf-6=y&jmod(Vmu<};ZXRuy$Ag_w!%&i}df^v8VNjOHT|kIy+8ojd%~ z;N_3^JXW)N>fawJ?{&N_p}v}V!Dpe!r|TL6O79q6;C{&1`6{DzlZL@JzNC5K0*AKW z6cjV-aP3{_y18}fYxN(^*Uq~i(^!?!t9MFc>%MyR+P|Nr_x|?lf4Y@}F~ae&$$6um z<LeF|STXBC$gW<2%*G|FMHsv_1704>ixRvS<=p*xUH5m+OqCvi3Exew+i3k}-peO@ zsHrGzYuJL-i;KVU^>u7rQ0=<@cKb^W`Rh^4OAkHEekLpU-748<&7uDemKUUN)~7de zeve?7^33(y`=q+ctp5h*cBk-dKe_8<1oK)WkM~!ck7d0-b|Zzk#^Ia%i67Uk&YbW3 zyItacVqTEe;_L^3J@sh;py|S!4_$K-Up~v5#5&b5R>(L1;x*o{SK_XE7s<4iKVsa@ zEh{D!q$#qrn5lTK<H;H6+q2t02=Uu=M`b7G-1uYgci-)UiY8*Qj~2{ck`aIT%9iLo zQM!Ta?^LdwZhGsQt=O@r@ojVetkN-<X`!BBB&&Sd`TnCDt1HseQ<s}>Tyn!-T&CoG zjk@cjTgwh=xtx8i>gtp5=*RR;^Ow&Mm;AIL;+^P&-QVR+Yc&1~pZLr)d1bkPyYig* zzm=-B+P{7CmfgMX^$I!XVDkVk=k124gpw04Ud#Mwad2-LgUjuVwT7Smo^^k0xap8? zU`xoxyrzQBVKY|0y2>@nZ0;qe$sc1R7e9Ws-c%s$+w)uOI|RyN>OYybxZHlRKzr`d zZ%bmIzY|@^*ZD@_Z_VQ?e)|Nbtq*6~@!Rb~@sjmtCxj%vSo(Z&7x(w*`HepIJ0=U* zmQ1}Buf2;sLip|dm11ghj5JrsrexJ;^DNN0dSt@&d!dijK3?8ZU;js2)@)kHmgi!R z?Q<4ni(YkHFa7`f!WW*B+y2fhE#R|4?`$4ayR=|k_s*Q|pE8?o&aB^apvds}Dfg`D zt5u)A)DzRz`SW_#uC__<Hn*G$_$lU@YTD$XwAFvwlBf#tOH8-SGG~Szzg9Na@wQpS z&pn^3HXbT^xw`fIGmGzL^Ut1J+4ZBw>~Pl0xceo#EgM97CBsF(EpvPncQJ3P&*Uxh z9{el}+CAZW{slAN9O;TWH{C0*o*G??jaYj@^1fK+#zRT(c1c`WJvCeRX>RmX(XLCb zYL$P!dunT>yY{`jXUC9WGgqm)^wEFb5ZTH|{erqz$M#I(%6*YxFn^&`sLDk7{^J^} z0^aU*iP~-+RxZC{((^{nZvj!sCS_*Qz3L}w@3KTV-{lhPmb}ub^z=lM-QmiIQ}`+a z7iitBc3W(C>eNcbIkQwWq(zn(7+h)cwdqJo&v0D5ddUwbx7{t%*Sr#aRn>ay`i==v z!QYuVzU*4mQevW*GwJ*Lxal2@p1RYYx!r$VxnaSc*N$_#R=?3tIwH!DRqtP>>)ZTy zvx=$uOn(KT-@7;JJ>vfDD_eE{KSS55#+(0leUzVKey!=%jvV8Et?SJnUYWJvdaU`s z_qBXdGycxJewfc{b9L3ZMZ0%iSuN`47thFG_vhyCA3xdOGc%+uPmj=f_Qb<1H|PJ= znSCiYR#&xFJ)NhoF5KhH|M-IQ_r|(g0i42He2dQB-sUD7#2)6YlfLi7y{yKoNsfL$ zlMIg^5`P?h=DEe^bEi(vukX3J+Mj{p^wBwUJR~khD?Go-arK1moYR|{zF8J!zW=O# zRP^!xFK<}vKR^EWT>g*9XXEEJ`eNKAj$wC8_a@aXJQ^tR|LT>cWg)Jedpx>6+FtON zw#s}cqsX%5+KNAJ$0|&m=2gGUxSmw^?AhY^<=Q%XzWkj$fBFioaFul$MN<|FF59>7 z(7k_*-}w3%7~I{@8{92#6+C`fQ&f7>wSefQ%e|`ZYO4lTEZ?)rOY5K6eBFXyuaX%Y z_SziJ{JC+pDpU9z{qMThKP_6IR6qG7%WwDd3=HSz??3QxbNWB)Df7EC#C*Q_&HFL+ z;iPQF9X2;NXjWH!5{eBDp5^dr&+fC=cbt^^R5JCNf&06!zuA9(iTiHr(Uo%X|2y$S z_NOy%l-7H{){JPrTGV)1*!=yLT;Jzzo{YlTJ&q?6{ztra%IrN?a^rqEYf<hbrl)>! zcMNI-*wX%Q{qa%$-OANhnU<^TGbXJ5xc<+qV=|I&<ahAK%l$vI4RhvquCUoxpY#<c zZk${_{m04b_lykpen0&Gpm{#1=T-NKD_1ym?=hv7K3NHWmY1>#)P-+eq2&?3){V6? zUq9&6mqluc)At#--CC~uT>DI#o|m<?{n5_;HvP2c7M7Mrv)*0iNi)uRzBNM6;QPdH zlP?GFsd`y9JN$HU$-m;Y8z(pg81DGE<4DDuMN?8|PTul&CENOpKhn*|!uQ$R*0z4H z|0Mk9Mf-ndh93`(+aLS6a&q+cvs}me>$wY`{+Mp%{*XJ*Q+4vGhc^F|H_n|eAmpX> zBu;7Wb5>W|SwCgA7C!#}M)X6_?vC7v*(p1B_ojI{rdzt%G1*(*IDYYCG(&@Ue!bNG z5BvYiGc=qtDK*&;R=nDpAuvgMVM)gE83%uSnSJ$*O!538<%ES(+dgfIo2&UEKp-St zqn4#^kNMGuAGsL{vJ_VN&2!FX&1~*!-1jeY9=o))phU7~>*g4}jB}Phe<<rbFYeOe zno-AMct$tK!E1fa3a=nb8QHTJx8&;VSeg=K8fbUoj{O#q<}Gd!S^oogO18#4`13|Y zeSQrKgZLYH?|$ygl^!xn8os=qw?{`|>Y+auG~M-X&S$H&V!wC4Q)1TNPSeNrFE4*S z=kH(e>7&)}c>90F>sJMNJ$`XwZGXid<J*V$tS+aEFHJjn@I^*a&Cip^EB>q7Gco-6 z;{IRW?$--v2EG4c*8<LZCnw#@yInTLKUZ<$^t?$XvC_BGVrFn$es${bg790P;|l(s zb6!{P9l9d@v+<sqmw9gTwLcX7><Z27?LmX2^AleFK4o6&D|&DG>8aN041VdwbLQ{9 zex;QA<>w7^-tcK~KfmI0EV!pu^t;XJ$u>tBJ=T|7{9F5S!zar&_4RR&(%=7=kl*wD zKQlw!zt8*u`r-e+vL)8cFv;I*n$g^Ij_XM%=WRKrf=dreb)T@A|0}<-CiKA5mUJzv zJ7ytV@#ijH*{JOpw(I(uX|s;yFH>omWD%M-CtctE&~bUo$Zs!iN^bR^)wg^_P2R3^ zJPA(={0{ZKng8rEo3*E6g7y8i36_UX_19mNT;UWrt6|clIi(zpGpGNaH*fxfJNa@^ z*@1nrvo5FDI7Utju=;oI;F4=^PW&se-@0*W=G`kR{{F47oWJv@{fQ;Dew7L-7oxZi zSZh~aPB8g4d)H~!X{%M2_P_9PXE*-)zjhvb<MsPt@)!QSR(W^qnAV%p%M0T4Hq6-_ z);#-`eM#Gj*G!8qigXw7P4B*b>wlc&4Di6>F3!6d+qT;;ae8<8x7*{*8UL^M{I8zh zY_`$fSOcR!erB#v8Dnl##dE8ip4XDunzO3ytPlU}oP7PPSn;YUcgl2Kf+AKLt9{#U z%680M*jYxl;NoGOFJe>u9@$N(I4LEU)@}T4c7N?0e}BJ^|NQH?z`5>_yZwI#1_NvB zgE?l-uem>$&Rxo+?tA;f@9@&@Wrczdw&iLFJ+9iV6*Bd<?L5CEmcUHkscY_Lw^yf` zDc)t>zsl>4>!Tm+qLy>cr_Y!>H}M_!=h9r~OxZ&c9F>)S%FV=jHh&28c$&I5XcEu* z@*as9Ys#lv|8a8g?A%juYW60rg*7I3qAuKFN>tc=A$mvmuMq7<zXfg9{;T2^zP!VK z>JyXv{-=vxZobLW9(PQt%|k-Fx%0`r3A20Z|GP2hWzG9}j@dQR>1PO&;u7s5mIGep z`3o!K84m6EF3r6~@$BKK6=!1Y)0Zy~Ia9PXX3^)`z4~&mCvU0$HF>g9s=<rU>)}xg zv#U!F{FQIJ#Lf`F607C=S!7MY@_v>i>kXf6&*^5m=KtEYR_Wl!UbUIREg~TWXKvbi ztYOW0aW^+tgY})Ad(4LVAnuQhELGv38SZ<&KEL+ayeEYc|2_ME?)z&l{r}SH4Rik1 z_Wa?M`+w%|0Y0nC&C7Tdx9vIj<=)$Th3I|vqa^k($hBtvaZNNbPU$<}+^tM=UuG1l zEotKIw&vi7{~G?B_1m&_RnJoXH;CO0I#tK_>ws8_`L2UGp6lnv-VWmXsXo7^gTL<0 zC9ZqFAM$^EwRG~1_0zl$NNkCnz32Y?<;#{n56|sB_Ple}w#JV|2A4}OXgLS|xO3rR zOH`ewY;+xOV&R^@Km1FR%`N{uv0l?^n)oN$!6T)0bFkekh7aeeu3!9_kR4eGTMIDR z>5#{KuM3_hxF6T=dav@XGSEt${YB_mxu&zhWh)AnS1N|^t#?!Q`5v>qv1%*(#scp6 z%UcVBk3@vCGcdHAP7Tp|;+)-Lcu}(X*7nToSvx9A=U@NnE8uahFZ$>8a+AJE8zY}s ze)|^d`se2xj-qEW-<L)1RO0?3=gQaBu;6H6<W!UQ+G`VE#N6;MlRuSOP%QfDY`w$% zryaLqmx`XcFt5ajb&A{OPnl-1?vIZga!|5RY4{+mv-qNft7MR+QF-3w!=f*%5+&|j z`Deb1S><I&;@T<KoG(NzUgLJ|Tf^r4_f_0)AN|fzz4h<vjhkzK*jWV>9{hLMg4tQ} z|3bcFs=xCs{<-g)>=O9xt^Jpe=Xtm>Mx{4T^HsLq-Z$sVlWm3J;jd+`UU?hy?)veN z54nYQ&awI{CwNKm3OYGF^%Js`>s|T&!^O?dLlitTZD(Yhw35?WB(`svvFtQ%b#Hrn z+vBUJ`?dZ4boIDJ?NgP7xz~4?N5~7B2gcpnV%T)gM0Z;0l-=!3wM<Nv^A<|&&PXwx zyWj)s;}xsy3^ewBefC&>$6d$oPoEY3Ntf_dw}`N1fAD1A=i=}+%QC}WAGc=-kz1^O zd2g+ZUGaN;cjXrfyQMpNuNTg~_@2q-cKd_iVh_cMzqKA*ZmyNtUm?vfA(d;n`nvBw zi|h`cDxbY!S@V}uESj-jVxH%%o8_l=qBiPyMpc86OY!EOOIB^m5*Rkz^%U6Nzps<K z-#N<7RPOPMAHnY`R~9_e?$SS(zAj*?|IZ6S6Ay)CvWlL&U%}tHepyWK_kbsf=Pn8u z>7FWC_~<g<&XYg(f0fwu*IVtxt<5^lre#`NoU;S<!!!0et;&`T`pv;`$X!NNrDZxx zcxvm*ebxKV71hsWdCK=oYhGgvd-TouA#csCzkSdv_B<>2)_&HT$0z<*XZ<e|{v9s5 ztorwbnY-ndOz1qTf9t=S{ljyTr+%ETxw2d8{o{h(zwze(oDFxp{AXA4?AhGo2LEOz z9^|vS{5b60LtR-NO^2U$u7L@=p69&_%G}bMExIY@+{P%qxh!&Vd9V7TR`cwf9vJ@E zaMhvHpWT$BO0+d&w|;2!s*&%D*t#WiZ?Ns`<b5AR-EWKaP7l29%YA#R%IUYa#O6+4 zzdiTN)0|s;zS6SCAGAzyZF^bLb=X;b`@Q@24)cCaX?_yJlQ?n1ZIKMdr`jK$RrY;M zng5CN_A>$Pc;2$m^%qJPwmCQ-Uo*w+-P{R_Rt1QPdg*UH{Yl2F)o^~#e?^JEVLMW! z4ul){Eoq+p{K2uE4jc~E?1eGDAHP|ja|G>&SXnOMAHVO&opO^E;o8@iG8BkD*y{8& z^<Z^1yNaNk|969VJ9t;woL<57^TM-*Zzs=MXZg<e>#9ZZ2Q9u7o!Bhoe!h=^Av7|n z?t$F-bLTg#3coVR_%fH$%B=!2lTKE2or&jPT<Ej<;>;$IRnOPhxV<Ynvm|%hp|;7F zEZypoqrDid4LMHkWLx0t#KGx#JW12tDP59lzvk5EGk5Pxsak8h=HYv*+GpR2(=WLm z_^;Xe=61cwqMt{7eBb<F3{V&4@Lcb?e!GwL@8@-wx26AYUm;c3XubWvZQuWZ-$^EY z-|naVVUPSh^;<pjG5g~Gm@Q*F^BYOKeLL6OvvyrGBQi`>ZJ&kvwCP(8-!$XBwaqbm z633#_-#$Ah1<b78f6gf5X}R81muL3jtGJ8YxOUqbuBh44QB)ogk-vGB%)+=ItKR0e zhXyasyVF;D+azOGM2g;x^Chw?N+w@9@n`1@AGI6y7DpaVoE+W1JotspiM8z8+$(15 zK9kn=c(ktS1!L?KRky{4Q}}kjzjv)*;^csr*Jp?wb6;bmskrxwpC<3pk~NRkUCR2o za?L$H?XG=m|2D6Y-68$6nW2SC=pqlhUDodH^$mxWmor$}S}pl^>uZu@*;Fs3^Tt#5 zZMgsMpPgp;l1nT0%yP`Oozd}A)ok1U*Zu$9Sm(Dausav2W+-QQ)iE$^#=G~746m*- zhLyH&`&fH%=_0!qLEawgtt3O0H*F4*bltQhNaUoHjQO7bU9&?qyX!CMMqHAalIfbs zC=&TaOJ=1>?aJ3(kLKmy?(1rf>Rz&Z@16;KUp{=he_{*2R8ov`;k1u(3${81ig;T2 zB-O8EOnmWE;9&0Uz99Pq)+LiB?0qL&xc2LXJJbKZPyUns&o1hT<ypnsJ^w!#F9}-G zQ6chpzN83f(eSps$!#gCc0Qcr{9R3RV(aYSX$!whI%1>mVU&`XxJ%>ft4Svfg0)VC zE?pw?VqNyj8*6qJ%y5p?xUcNT`sQs)Zp@K1R<}CGJrepWTt!-(vRPXSg|a0Wf4I&# zv8Z`%Y2zj9r;&k)CPkl4oUGtycmHi+Q^Nhm=Jbm;wK6TO{bziS)z^IX-GBM7W^2Q> z#AeUM8eFGZgQJd%tCin6S5h+PmDBEB>t1W<I-XcEHAHKz%#9!7N-zIyX#9J0YW>cK z-<9>YwOrBoq!DVePwiOBruJLmpJUfe3;AdsETwh&gr@%Ird8e2$;o$Hb>2T+!2eRl z;&=7B$cwpUCvNY4;dJEv)(KB4p1ZPY-eqey{B5ANtv$r+=tg~(6~EiByvT7spDkN_ z;pu@layQEUFxTC<|6sX_UE-9`(=&{eS{D6Y7r+&jee1=wD0RPHg~;mbrWww&f`c++ zG+ur`^!ugCmw$}~!oTBxM@m<?IyK1Ts4n`ubV8o7e$J*>YtsKmOo(+@^6h=lZ|Pf0 zc-Jre&U5qM?UD%#{^$OVeRsa}vHg~hS0mk|+iv&#KNrs|HtpQ~WQqUaJsU3*^=)^s zX3KQFj@Qe0xN6Fxj0!zbqxcMGPtMsn7Q6Q?_}C_<wtHQ1U_3*H)CE1Gh8y-@Je_wd zo%pMiW23jR{K2A@Yf@S}!l$r)vN^t|#P!sxU5;;mm)>4t8WATlh1vGz?c)_sWIkOi zY1#Wyq`G?F)9|ncrsvGNE$=@4alfWfEbms~AFq`QHcNaxSK{~cWv1Tjmpr}coSxs_ z+!9;8Y}vk7PA6_`D@~ZKq&e+hd9~Tr|4ZNd^C@UleOjdOTimtt+Iij5y9%HE_FR*S zoOU^8@suUJlS1zXu$TwWk~x*AcdpFBt}46O`{EIs^AmqpH%t%`XsdG4R#iMXZ&mrZ z!!}n-Wi4k%t-O&ZeAtTJTJrzPv{nYEXN#{)GUM2~@x&&X%7_2wX&&&Z^52kf{aMK6 zC7Dts|L!eV^3AOO__l71M{YJhKJ?G_I_FTQQ~mq3K!eBI^`eW~If?{)r{CJ|n(iay zD8KLT`>a3tSJ#!D{lWj%YqL)Cx8#c1ALZZep1U#N(rR=0(?8PL4j=fk6tUXsv&lma zD`7!Tvsb)}{HNd86gvBKadH3FBBA>qEW8(~I~|#`IIJ{q)sm1+lW$Jk;?3cxyUgIr z+|#<D?B>7u0$9SdSl=$bcQr-c{d~;ntue>v-27R=zxk!zx%08Nw;oNBj9#JHa%kC! z%{)`{vrX>WA4-v07503B*FufEKSiuoE|~M@$=u@OkLzE5=MFd;VgAosLvm?ZqRnZQ z=WC7C(zdRYP<?+(EQs^e$Lm(nvzzTq=EM|szc^l+BW=4~tU>kjj#WSM&OD3sd&%w^ zx4`(_&t)%bOissoS59+X%G_}DlIv!x<P~@Oyru{?Pu!t?T;SL>y(wa1AL|yBv>n=h zUFQ?iOn<=(L5zoPihP)B=_K2*WLc}B?B8|EG8b$zVUOiI{H`&@ZqMeA`_Ep#JYVUY zqg7wMV$A9-6K1d8vTWzF<u5L>t>VpP7cKpL;uDY8YZdu$p7eX{zaH0%f8+morsMmw z8&i+{wLKmDTf1x4?lpYr;g?;1Yd?MR&QWps=I(Fu7dUqq{FA@*?aSVd$M$EwR>obp za3k#x`&FlOtDp$psz1ifEwUwQlSFpjYCRFi;TYsPH&vs?K5?n(CmoT>;DSi6f2GGJ z1ix3QeYd$MOY^_5lhXIMaV5)Y1N$34DVQ&N@gUVJ@b|)(DNVb|c5d~`oMP9$=U#N8 zVSIv}Jv+miSz_1p_gpdze!}|o{~9+@uKUclqMEn8U6C<=+F$9=9}RQoPgd-ypV;$% zQNhs+hLou9GG7W79Gf*y*V#XI@f7L*N~boJE_+$ZypPH3-0eFrT%%+B^`;vvJ1mka zSY0$-^yw__h>~NL-IW&|e-?`rxrLsvWLYs|e(S>4O(9tk-N_5WUlvd26kzfQ;^dNA zS~*YobF1pqDH}SvD^w@*+Do3VOy`+fr+8$;+x@ELx0AG<^>Aut*gTJ9yPqlS#1OeI zbFuXjIflC6Bl3L{)vR_nIs7tVSv$8`?~;`y^StJ`<8yD%e--Dksc>GZLy+<_wQu5U z8?PO73=x0xzhdY6kMhsBvLEeDlm2~s!m4YV|Iar5H?#fW*&R`kMT4NljL#+>7A$G= zFjr-jvzw&ka%Zpp-YtR!o9<u8^E%|c%VkB6WciHPm9H-R(>^7)^-`eR%98x!RRuOJ zM`Q!tmM>XUmQfiP(5)fSJ#qSu!%{k7+&a(v{@p9(UD9jh@c3|x)%n05bD!_g(0p`b zoA;V9-XbgZz_{lrTNavJ&wISfS>nHu<o~>!-SwBPx>=vBllbrC6`}t-cPY!I44=RY zTTO4gc-Xoq_PXn(<diS3`ftamWj>y-bV^$NvF5IGqQ5<ZSzL@Ptdcd7^jb<nXE<L? zk$(CpXm!NG`Ub%}-O2Jh>iz_~H|+i=>lDDUca__T(w>MwZpVi~=7$VVxIE&^_MD~f zJ0~z?S>O}JR4+b1$4zf9etB2DeM$XXk6GKNo||~N_1V1ekRzerx#C*G+MSM^dTYt> zIJ)tr&+kVyj=D#``P;2YKb=rN_vyayx!Zq=e)GTlZOMxlyLi9xpVCw<4UyjTw|c(l z$H#ZdYfh|n)p)S|?2q$*moNP$|LI418>jUPo{1VY?;mX5R-W&&$zt6qt+2T57dyG9 z-aFiTY{CuMh7P{22}}#>b}3HhKC$OW?S{{fnV-g8+-qC-sB4qU)6Yki3Iyz%w6fvI z3faZ;tkPLyV^}1z6Zf3m8WJcM`Q(X<*;%gDyO!0s&3#(3_)}#0_ixtQAL<?d?<?RG z&=(y!?Hs3}W3p8AM-IuQAH-fdxgPoWe!cMQR<lIb+#?>E?Ma`kAAE|uUH7i@+vK1i z>n$HsdbSnXw%%Q)u=YeoVOmcwpOw?O{r3xmnpPcny~bf$Yu6Lk^-BK*JVf4=f1hbS z<J1y?E1XFtt1etA>~!jm)>KUONiSM^<528@pjqu(r@dl+B0C|F^$m{`pY_?tdN+>! z*;wtehh5xNZmvVNV(OcT_on}F>om~0TlP0?di9FUJW=T%=lx5YU1#00pr%NZrBqsj zD?VQRW=GZBzt%3lxfvarRjx%Yd;I%e!P__2${V;J+uvc{w$;A3{(t#e!QJj3exz@E z!n@xGDcKhu5G+wk(iPplqg185d;9XxJI?Pv9}-bfe`Uq|dg<$hr}8_NEos+exDjx6 zyKsQk7kBX!wFfP?cc1(nv{9pLiR?Y2^BX^`WL?N_{vhYtR$Z%lKA-D~a~`bAW_*0S z=h6p8ZE?#lm%eX18)%|i>mT<-;8PJx;q%$2%B}uw*YRsp$mhAZnknd*-7T}wi4FlD zH+jb^KTh{l)x0!MoYly-ptE|z|FCWTb=`aCvN>^xt9A;;bT2DgCCGhw_T?tt-mOb= z8m3Ihbct69I;P~N=6TduC8y`t{kdJ~zq1{@JRfh-N)~5Mo}9-TC+qaS)c;bsme!ea zN6jbp;V&PqTybei<Jm5iyrK`cO9DFs4_)|eqZ^QB6)qS*=}36fuhQi&1*InZt6Pw> zX3G53%KSV0xqt4r|J@$=>B5h2uE-z%Y|2~h|Jo)f|5nyo+q1p?+0$E*lhjO2zMi;y zyFU7Myu|;LA9GUc?f*^fZH;zjU!>SypEd(DdAal8qc!FW?<GAFbea%6@42OKTkQ3T zJ-4E6NB>ZJx!_%4M8+~9m8BUM7jA76V9wsS+4<6`pOy2HV|Jc;>wE3Ut1Cf^PM5?S zk#_KSzebw-wQQlH=@g#XN|UrA%zc~pY$#c*wYp2}p;2zRNlS6j>5uZoueYnq{*Qbn z7W`y^^yTOeolE9kY2{{MPzYU9z{}FPa@lvjvOo7%m`1&y8C|n;w^);k$$8zm{K<Mb zLf`I*iDxlg{3twO<J?58^6SiTEAC#geBXOedXN201D>)|YkY6HAH9>7{<zNj$PxSZ zwP~+@v~OwJ^6K}68(Z=YxkU#?&u!08ud1GQv9j>-{bMH0DSU;`mG4NaER|R?e|g9W zNBOeV$9Hf2FDCB1%k%Z|%nkLszU}P%d${(`|4rq~H*S)7D*NGo=-xADBH!=bw{PD* z!w*(09!$rAd>*-aIw)Ew@Hp0ZGDLbz6!I`ga1?3%z*z4f@sUwgFw%2M!zK&)291eA z$K4o(Th8Vs@;v;iEh8-*AAkSto6RNRd*!oUzOpoae&)=~rRQh<=l@xBZcb#?yvk*} zSHE7lN~7n0;Q9XxzdJttQ|^5DnB@P%6aI(jzVT8~0)tfy-xgesXuZzrK6Az4*hG<o zOCl;oL~S2OO;6i??V!)eME<1AI6q0nvTP6cO{>KFmmixl@$J5(`A0ORxYNYG&+=Lj z^U_KrMXzarSa{FWu!c|mZ}fk1hEDl+P068)W23I@y6cw~n1AP}k+7|L&vN9#<f)v& z$-E35tus0F`n!a_*X`xrtF&Uv%<yZzUc#=I>bE};<oKzw<8S|I-ve)|87?=kxU=ZO zt{Jj-cy}@;EVmZP+ovAf^)`)R+97`(k<bFM@65usb#iGlCjVb}L!QyKf7<JVyzib_ z|4ub9od19E|BKJ|@SF->YVqZx{P%0^qOytS7rYM)S+(2ZV16sdD#<N;->RhcF)2+- zi*WjAm0ZUhY<A)qzj2g`OxH!(dh?IZS9~nryKmE%JMFiZe7?VapJCRYzmM22`6YEK zPyKHqo3r3@<5!!Tf{D#}KQ>0B?c}~4@!rbvwOskV?EJOOA6Mk%tgQZbxUR^IZ)xHA ziL+y^KJva<Gx;amvQxz#E1L=<rMz|*=2<TAQNE<}IkjE&gv><VVwvj#t}Eql&t9@p z-dXq1rz_5@N*Y(}DBL0B{(ZxPCq74*oJ9Ster!rSTCSqAaov@Grj1%rEzNz2Z+`n6 zbUkFz_gA8BX>)Brcx~$cznvU@eci`??RnGew$CHARotj7egT*Foxk=kta{59^XL2% z|7iba%f0{EHm}MTO7O>;Xp}5rl<i5mq5Qv^_ov{Z9T7z$JVO5iOOMC1Pu6-PUjNo? z-H*ll6|@UV!rtG||JST@b?5cu!=EQ7KDz&R*2AA?15ee@;!EQZ1cN}<4eWEhye7xU z7MR`Nz*BqWEyF3{>pRr1)V{m@x+^nt*@si#=k)~0S4{{PKD7Svnnw~Vd;L|E?QeFT zG7e69waq7Ue{Iy!f6rqwJ8sz6iLUG~6*=xPX-7oAX$1e3JIk%+pWN}e{>gHIr$U$W z>aIn9ce4F=Z|>`>=WDOOeqJY?XBICzMTTkd*Lf}d{N7GWr~Pf0cq4ed=;f0ArAyw< zYWw?b>0w(*w_CkmwYJ~es>@uKC^xV6|GP`q_dc@k-LBNq&~azmo4-vDpI^~FceT$p z;OUR|(!Ud$OZwlteof{tIbOfN_WY9jlkT(g3jF`@ul?%|@2f}HtiGCUTN>9e@%)uv zd;JWarGLp?wd$qm8O9q+7xrlArTI<^e3HI4tTH9tsB~lKhpmgFe%`#b^;GxGuS<1~ z$-6NHiu`ul*`u}NOvv_He*w1J{|eT8(wLvS|N71MU$y1$+xFhr@a|tN&(n8%>*T&# z@^v>(vy}Rwboij2MOfLk--WXac7AywE>mtE!(O@9IsMQ_cDKC`Oz#L79NYgovz5aw z%IIIojtz}|t?Ps@F@Ims;=lTC=b;j*1?|@yPw}}`T8glX8b7=2t1`{`pznvpUb7cp zEIpL=f0@Yx{`MdTHrrW75lJdC{IM&UZ>fBW7x{0#wExS8SEo7)-`4Xj3i@g3X{+b< zM)H57bj~+++dmawDvf-m^=@kWdQfkod~I`l-mJ-g4^Htl`geJ)r;3z(pQAds08#># zK*5Pk!IQJ%j>(+aQq9}^kSUEVd$*)g(}&j*o+a^*@8xIi4m!Wsz+3UFTz|CU<T<mZ ze=~3V5x&yAZeH((1qWk3ZgzfOsc(2<ZUzhU@%bC)a~zwWVQzL|<&%WRrN5GY@7Z<8 zbK{|}&+fJ_z56Bluav)|<mwk+Im@T&h40L%2>R*YELpN9XKL|_fTH`qna}3jkiY%> z_lMU??<QXN`FT=O<=@@c+LwM9{O>GF?6d|aZ9#C_KBac0_ypfc=LM_p?2S0Jy85O- z@#}ZT7e7yFXkYmJPV&F=*Jdyu-NE1a(?0mGwugo7O_MKu{|k(7UVibd=l>S-wv1yp z9G2@fi!AQnwEBr;)YaD1H&NLh){CpZzd2oPw&nMd^9wWPFiU9s=RaG$P*cCFfQ7^1 z$41@ScZdGWpYpDD!~VI7^Sk0croUN!{OJ6h{zrt$AtAcRD}mptG%@^gVv<_C)PIqh z#QyId+5K|2PTylbQm|xa(~rGU%MYggUHb6l-{7gmslIcs{StT|%)fn+`rME6S&z+s zCMx|RMCcvMZ++h*mmhm-PHSai%f3=r_oPtD=Ksv!lM|lV73_aI@jCO_U1y$NZ8P2Z z=lSyu%Q?;M_#S^xSmnNr^VolbV|A}2{tK<Ea$)ek)7b$AT8*|Zu3WZQZzXq3d&cHP z)ql2p|0{XhQzHDF(RX*l16D7BZ*)~2t+fwjG;V(;T0Eb@?1E;1RQVm#$!Yp|F){lM zoop<ngEpLr{O+^Nr1J2Sdd=s*dwx84ZoXvQ(;we@_E&f4=>-=4H{SK`4*R#x{|t|v zB>x}eEjqZ;X7ksC=_`In^0a-NuM0^VFC7laDwMaG<a=43|1y7<!IL}xd-ASCx=MV$ zDUou?qRwn`@}u{4um4&a{F}Tv{-5!;5|IKPE2PM`SzBs2TW!6A-~4MAdj6j=_@92} zseQ72t=Y4l|2ZwrY;3&t)ttxExBU1$Uu~1`=a!%TTco95gdCfDFURoT=A%E(i#@iF z?)mSt@uFdL&;K05e=e-kb_hc(2xX|gkQu)_&An`U`Q7#RkH|jWrxm5wEcJG0_sp)t z&jpSi(ccy2J)^bI^ka!}+;_dL!ZZ30?Jj(BsP6pzwH<Ze-%2q}p6@y5=ly#7;)=8) zekR#_Q5&yHvz@J<u6_B$|H2pI&pqG!x0$}kx%#)q{@>ouWiQe>!}ede@p_M<%{kt0 zv;KxDN<7_cd+H;9^2Y0xw-r`fy{UT_cYp0e?vlQuKi^ONPuks`{ORE1__ejtZ~J*m zq;9>NyxCFCWZA~OPB*S|&rd%wcUgVkr{qJmOT?@)wx6kpNxNZTXfE=Q=ik=yZQEs* z$`-6Y&AV4>#*9-EpY|>1iTd*Yu|?5|xf-nhr)|&ZVBYaRcmALGUuXP@-N|3VUisj! zf2dUV-fc@u4n7gM^v(F@)c*(HhE^8a9^2VfcYkf<^Z$*!_Yd6tz4O=w1IP8X5$~^S z%Rm2if7;$-2Irq8UHrhiX79Xgv5)U-*W2CRl>UeP&WVjyYd-St+s>TVedD=A(ADmx zSL6}Nw88epmi3A2_I%y@e#g3dUu)(m&fk50n@`Pc_oe0E+rQsmvbbVuNyqt`GxMjO z?_|`U_r3OKVNUpeb@@-3Z72S7J+a&HTbA#xx54Z0f~%b7u-EL|xAW5Xf9%zJSH9Rd zG4$;0r2oO|b_r;7iIs_qzkT;r{`_r=ACq~uzCZZk_|C%bLf@iqCeQfMpFeq({Qpjw zdiT!%H;VUP=kEQ$Biv(OeWG8^?83>(lUPMJAAu#JHwNF}Da!t0-k&f5SUQq^;Q|4o z2ZYK$O$pk3ujQkbuea>Eu)BLxZvNZ;`VoKf-6I>eWbgR#U9urGPCa{>*T<H&3;+0! zzWw_s|6jzeTA}1MZvFN4k0aYsZCGk9cnb%A@3VK==y7eGYMI&;f92!*<L7;^;Qz)y z<6FAXnYy&_ceCxk{a<tJ$kF;2ckG!y-Y>qN{LbLw5BZGy%1sq=i+=EbnXB<G;O>vh zjlM?z%b(YMmsQW6QtVT|`{(0%-{sl)v{%^GIYC_QB6>is#A=4z=F_`wr`xVx!jX1B z*DC+_x}?~;oa=vAUD4-inS0@>MfZc{1@Fo?&wJK#{mb3twV93gvRk;n?_kWgpI}(m z@o#0>)A|X;#`8l%4}V>r`J%Si{?F>2*)x2f*38<qj_<&}%6so0UOw^P_Kjrq#pl-@ zKh<}9y~`icc`4t%KI0Mpm%F<HAKO2Xdil7&KHzT9uD$0E8&<6Ai4J{aKehJLgxjY2 zE*n;S4>&%_Zu1WQS^xh%G(PqJL(JOmvQ>YqUhI=!5%=%%jSY={?3cf`&JWT2p;49Z z-M>kre)|GJVZHZ_uXGbP-Y=59ySu#jbIX0_a=ns#@BU`LopV-~y#FZu`1bqh&qGhu zFPNkLa8lu-_<!vm#UCcCZ*66MRrPo8r~Tn<XCM9EogMva?uwU>R5s^3*YTWgkkw$T z-FJI$+~Tf}*BM+4k1hLC=hpjw!u!sT*FWs6zwyZa4!7^~QoflJAKM?<)Uo$deb`R^ zDeJZ0Pyavp&iD4)F752nFHFL}-FBZ^megL+9=23he#^yOzm=S>z7p%>xNE;?>AYTN zsc%}j+ur^3{;zApr5+es#lF;gbI<=PZ~Ok&9dFRewUu=XJ+&b5)BK(OcP-fFf{Xu- z6-+mp{ai$kYM%ndu1P$I2V%K|Fy<_P7kx-cmd#2~F!Zp(>;0FW7=X&m%QngXge%e1 zhVaI4mu-{ye>3S%<~+myoi=6{I<;JH{O@?ypV0Z(2VB^KHHzMFfHgT9Dy~U8xa8Va zKY*<TP@GnA@lVn>NU3ap*7%uyV598|7ncxTnPv+}0c~=A#(x(%H0OabS|IC&MnAAe z@c87Spi0_a#t=rSsM-Jd&cE4l=FZKeKk3~cmm3!TuI+W+QYZO&{)vZHFG^m#td*9R zx@%ph*!QZ@LF9jVhE%G_s(m}xm%g0ibNe=f1Bb&8o0Ye|FW|C#y=`IE#+hwgNA5o@ zd0JE~B~gFt{=eroAC5QF%}+8t->5a||I{Adv(n!Xp<8|7Wx+*<8|D&mp5LDCc{csh z-<bY|6PTPtt}k6xDf(04OtoFc^U9Z8f8(Y<EVsY#XTLyQ^qI%q>K0Xo^ZR1wbDk+b zcz4~_wy;zGBeS2r*Hchfa<W>ohMi^Aw@Q{u<J5=ym^I#~@A}!%y7BV2Zl$jK-TQt# z`j&Nc_wAfV@#o$u&Hw)DtZtsrQ`vdHoi+a*ef#YHs$Y^aZ+}deGk(tYiq*W_<p1^3 z==JX9^Z8p>>a}Qu`?1c?E&b+s^~C>68yEQJd^_|1fiZW#=$U#cHt8278gKGCW*=)m z)jhv>>4Hyp?yM6H$&=P#ny}4L=&0c&3pWw*mGN_%FZZyD+wamZE4jP&z3>;i=NAMf z2wXZ6>2-1j|H>)<y_|Rc2|s0is(7mM>y&@rY|cNl(^XVSn*BL*mXe<kgM)}?$m^6u zHudy}=MV04UH!oN!qoLje=@^=9IBmKy`y1D`@=&Idi?tSu5<f2WA(e8!n^$Ps^e4) z&kNaX-|a0?fARgC-At?G>I46YN*MiH^xgSc51+NbufCv5OOGw$>sx>KbJvSUj=SfD z|KJWjB;VXB@NbR>2jh<0ifMlyhA96JU0*z3@bmqn^MCpuPC{vYYU%HZTC;FrQR|(r zQfZQ(?tGC-i)_;|wlBYxyXCelLqm{dO3FIdt697{x_XQ5WiT|n_gr%K=_Rk5Su9se zx5j1H|J?EA=9E=On(n#Jn0HHK)9%?8-}Xjcee1cV?cFKC15Y-e{=eq3<FiluFFWqO z%f_%}wy#Na?vt56`8X5<R$pgiSiSoAh8<ft7$z)YQ+!?%v?A!7w#N4Slb@4jI7F;o zQ95CJtm;gsFK<{T1v$A3GAK;C#BV<1_Kfnvy>+MR*cxtbZ?}!K3z2HzIaPX?e|dFA zuc|U<hH(AMN9S);GatWywB*Q--+%wjIkx|K!IDb_dluP5X|k?u{yXu~g>_B=noqQ} z=NZ4z)#tq^*s;X&UDpbY)c!>hfp5OKAAPQLxK{Yt^B;HS{@-ca&$HU2?bQEwci3nA zH!(50uyT_Z`{oA=rl!x#pRy%7x5R2$;HJ%+o9DjGWjOHc7+cx4?PqFl<<=WS#oG1- zhsVD4zLP4VxJmuoXDyxCp9{|wm*hOwJ6}}2NTA1;r_W*4@dD<l&$k_sY7khl)U-ZO zh4<K=v!^)^IA$*WbFygK^Am5<FXwH&n75sQ;r8v@H*VcwU|6$$ZDMw@@Y%VtpIMk9 z;^J5t=Ing-vqNa||G+svgg5Q{tJ3r*e3yk~_SWbVR&yWJ?LMB<_Vaa{_AjAIUi)kI zp2ABqv*af$<lH-NUCbB5bF;wkzUcpkH?zE#m|U}z`Tz3Kd=-zJKgo%HYbC3bXMOCy z`<?Bx`2X1FhU+%YeZI7NeO^Y~w9*OBXa2W6U%ch6;m*67a_dD+?re}@_*SNCvVe8b zl@g~Tg)JIJ_RBMQw{A(x^AEQFqv<JJuV^bXi8-Y9UE9U4r~Xf~UDh}2|G#p@i8uTf zRGzPwl0#`dg?K)_l=)V@{`AzBwr_4|&wg7bY;C>ndW~>)_H;%D@$>VKAMKw0=I!f! zvtFz+zOJx#c|=qsQ-a!=OU3bdvR~S67wz&}-W;}>lObd4><eC^sTExNY`m2<TF*~e zpZ21}Y9D*tQ_ELh+4^Md85ts`t?tM<Q@S*5!dkw`za0C!`Kn`#>QndM%}cr+)|Im+ z|G}lD-3$$%&(AyjlUsa4-OWGqo?80Fl}a%LM6Y@HL-aTU19xw0(D@HFT;Gkk&Q3e| zdu=c8f8#CRmUc~?Fk#ztPY;oJ`M0NnnmxCziQ3z@)OGWDL0(SH*fr0q54nW*K6YCA zNk&)t^VwcrliAk)_D$^FFS6{Fr^~?>-&22bs)P@F$ro3zjXS<*+hMCE8$Ql||F_Pt zChfxy@5IxK+<W$a5pF%_|L3rm!*>4jhaY;pRkPZbrJlWg;_b(o%WpcZzUnsbcHC#1 z@6JD>&Tg}34@xYJo~C$xW^Lkv#YRi=oGw_n&YE$4{ly5Uvte6w^>mU7D^K3r*AR90 z&O8;)l#nT@?+q9JT(~9tUw+;UuPuR}_gB12%DB1bnSE~`Z^^1D1!vZNN{zRYD4wT$ z`qP5Odrrl-=LF>B=OxzG$}$xEd&D}&{<{vtgF`>NPZ)iUv24hm_ub~nOs=@~Aqz@4 zT9X&@x!q>2RnJa7E;pxa+iZp@_7>cNtlBR{c)zTf{Bv?&+Um|_dkZdQZ4F#~RUv2b zvV9vGOg28<H|OGB{=1<<E1NGJH~4=$<K3Hc|GB5@J=*#F+@n7`KQlC>t!_S3*ZyyQ zc6^5oe_Q{L=~q7gjAVHq`Seu$j9WME9QZcvC!dGrgj<P>g_D%}ihl=0*8H8KIrU7@ z_u3af{)R2T{PA$sBa^R(v!2zI@U{pn-8(Ia%UAq=@7JO~xhwM~T@g?hbP=2LfUS3d z&rY|1urpUDq%Qs8y;8Eee&W^*@qZ>CndaIr@&5*&@r>m^et$gc^^>h^^VLJ!Wc#-4 z+}K%mT26a*?utFB?=K%a=O^qNo_F`$LgU*j&Rb>dW~*{ny#DOD&gBzt4K1Ac=05Lu zTWG#b`v!wUZXzc)_p*mO_7w3P_n*=IT-|TZkyC}$AIl0kIlJ!8p5VUvLD~90_iq>+ zzxZ~o?EMvTYX6IO&+?M1dG>kMf0JE{zxFCadiGXJZZ!L)x?X?bWA3~%;gI3drkS^_ zUz9{;Y(EqFbnaWRZMpt$Z#`qXrZ-#Y`_|L1E$UBB*%801M)IB2%WvN_Gji7@9J&{^ zlIy<YvHQN0SQ#SK^`|~)%|6LJ)A`oxS39p=*miu$-FFLez3)V?726iW|K}Rtt+!@< zv4yRbvY~bP>!$Az+PmHO-2Zo-g58`=o05`tlyU3M|8ITcmXYea>E_o8Za(|-)O&j2 zzelbyTb%7a*&O!!yrfc)@keLs@=xp91irZW%su<RPhUBAVXFE~VZjAOm#Zgb@var# zy>sIG#6T~{my3=sx%~1+>C09J!_1@~-*Q-;Rg2^gtc!fP{8QJ_f@KE(&W4@#FVawQ z(7gP3IYY(~fkVD&s!b1Bc8UDAIsLXaMW8<RSN*a24?k|3^1AicSFYs$-Jx}~e$Sbl zx7(`p&;Nar96kH>j*5dk_P2J_2u4fKW@so|-dcA1NKN+g*12zU?Qg#I+uYmt)-k-Y zuWxNr(A*@a@U=!;qVqB$*?1K;rQR&m5m>(Mi0#_N*CN;$*2qL3o0&b2pW($5u2cR} zT8&3p>+eio^y7`%_sUS^|FggSxOL}dBk%oypYOHqeA4;u%<|0e|I36M4$C)5nx8pb z=$IEX^^|X<HA9KjGlnP98fRtS<lHoTF<W}ao^5OlJ8FI!UDKaE-`w0x@b;$@8eIXa zul~(hwkRukfqU2ggLcN-V>~p)oPK<KF*7#L%WJpKL;-<yfkI|VoB6D4z3$vz%lF8{ zQDpXv(;BNzT%917Hs^m|^rzFk?q@d1y!G2y<aj#n&y9OGk9}Jv+q`e1_5bZ=XYRYG z2;L5>+<VO-=ktCE?%0WwTOyC$f3|=2-0;k&>AqrI1+3{tlgd6=Dk$@=e0!BIbz1!! z7H`{U-*zW1%PsI;Evmor^!~5|I*;`K{Bz)V`FP1xx7%?uM7abG)rc7x9Zq`lj$>lq zn=e-#<V*~#=l0z<*UY&5pg_NU6<^M(vOjlic$AOF{|H}`@#na<%(5w|lCy57?XP|L zNOex_x8n>A+|SP?{hg$_GB4ftP0p;x&%Rw#Guys><KAEsvAeFt#y!V$_pALWn&qWg z&vWg<1Sf?e@6}5^1K!O`%FJYBD9HKjwIeKJ(zUaDR2am>!~#xd|C313d*fGCc_Qn{ z{@p7soipD3US9A2-#-jHn>M}Al>0oNuZ_1v>*M31v@6ZhdY_+G+4%TRnO(D{H*ED& z_53W;**CT&7tFSHU0je}&3=2E;Qe<ce_UjHk10ugy|qr&WmS^cM}GCMoNg-O;r}-C z>^vuUQ+aBn_SIbVKP+`~V;0}ltCF96+x1WQ5hJ1N2c|!Km|5jJ#nJ86dAt92i!4vY z%-F>KYt7|v>TzqsPWKDvz7zSmfAikvxw@ByH}BoryEg4|e{jwb-YZgRN()-uWDm`a z4SD+|VVdoWZ%+?*i`Ci2XmGr}CeYVp)5#cVa%i)T^R=?6e6k1T&tZI*c{XULqy9R9 z;FU^}Yb;WJ*+wkA&MnR8aPh;1Q{iuq<UP{*Zm=@ZUdq_Lv$uY^^}mC9@y^aHOM`pr zKYpq{YTwtj^$CCSpXEEV3!fY3$zRIbzF}jg-hz4d^>X%gpE4N^^w<9p(Tg)EZq3Qf z{pnV-d1rIl^4`9?`?qhFdD~~XEGzWPjcJ;!sn!NtuI*bMt<9)A#s0eC{JGKJ^p5>% z%j__>wv;OU{Q1%=&NXtzk1vMzZM~4Gqu_U^M*1jgjpfFlUaO}6U$?4Y#-I0F?taR- zC7<~H^ncHIh4~*BPIU`78^#6dk_if4oRi3JHT8w$6p5+F?(VvItGV!b<%QYvp6`qd zJJP%VRPmErdiG02i+0~>4YN!Lmu_T8vS$8#Xi}uxk+U9ATW5OmUn-8CC0IG-`9+2) zuRmVcR~(wXxn-7gx9Spxm^oXUnq~{yw}*W*J}qMO`=_U*qTlO|pzXT_9oZMnh}!yF zL2zd2Kk?*q#VM6x=c>)Ei#Dw3I~6+dzn5b1>Afq?=tL$|2QRWXc4<<i-SUka8Z^x0 z)1IbXoFDkKsXmkU{$r7oC%)Ieh;de5cP-F4d;9#rI&<dSZ`OGk9hbN^npnyo?Yw_I zgY~|)@|Gi8($354Y}wpVZ@}*%@ZX~ELAg_9Kx|TVQ_P&xq4qoF`B!cI<UDhc#z)(} zcN^>OpZ~!xQ!gtg?AEbA{@kifALXCF&a^Jx{n9trH2TH{=Lz#{zw6ZfNe+JW?@E7N zOY!rwUB+wI%9`Z9&z|-??Zyn*TOxd4gAWRoJ(GCDw}R<X=#ibtJ8tK)PR%yzyRa$w z>edMnagnSHb7JgUea)ZMrn7sWJ{_?0H_!6G{LtP%{f`$M($W7^dErm_?^POJf65c? zeVWhL$6KN``{DE(vKJVl!{&-+&li6@r})X-zWDszcQbzrWiR}cH20*%$Jfu?0$WT> zg>7_Aq&y}cnQj=mBD1I<*7{eX{i&kIAtK_2EtZxVrYSCkibqV%O6KkUwl{N4cK9SI zW#8cY5fc}6RKMI|@~}0mwo~)lim$T@|FxeMn#opGIPui{IjJ+}cW9ora;?-Taw*FV z6Pztm{<?H|=Bv{Z*_mhS&HF<B$<MG{*!xD}jz*v0@n_G=<oJFDOt>`9MEi$=m&cP; zH`+6oGXAdgQ2d+X{cMq^fyBkVW_Q99jOKe~MlL)xckRwFmx4wWzduDK5C6G8wKSUP zylTUjYko&k+S?e?76q2i(_N~ewzK5_v}1cR{wqJeZ~sqk+u~#PGd?D%eYC&8`o@v< zeD1fG&%TH4?(EGqX36|}NlGtv4+F!Fl9xhe*Sb^p#x%z{E1dt7uqo#4br*B}z%$H` z`|dg^XROKItyaEK*EMwO2k*088V8?trx{)R$}PTeV`AMotMmm%^*=Ahy|!KD-c$5% z_s^n58lQgJ`25?={h~00XXY*a|FPF(e*Ia#ab?(dMOdy%;<q{*7w|~>o5HrYlT^;8 z8UDO|?U|a{_3In==GNW6am#6QW?fwTeTUQk)>z5zpAs@_NkoK^aEh+(S_Q93r>1V} zcfKH4*zjEA)Z;B{qcXPNzH#f;m%ZDVII1p8t@oLyol+(=`|Vq`qUfg+mT*o|aTK|I zw|9c$&di<Wg_Ev7@9sW!bywA!YPQmgzptD;<6@j^Et#}=XS1#~<DF~2*tX?LKDu>G zZCmd8Gsliiix>0RZY{u6ckSM<Bxdi^X_0exgnc&t6uxRttytAp6&72$b?Qs5W-WTE zzU<D&shkhX9dATd7;T>;zGZ#LgiSLvEzW#O^60Ma+qh@-y_okmeb|b=T+8<8|L{@Y z%PIQpG<&%%(Y_}vzOD9e@pfQ3T2$urVo{LS0*Ot@|4WzNc=ohr|F0(@I{*H*1-})o z-)=8u`p@zHC!a_9f0o-{oUZx*-MP$Ll2+EwX6)FxxAUy-<?MY|?;QHJ?e6w1QTu}2 zJ*+F|y=OY#UF-YdkCXUDkwnub>-n4NPlsN-yl!hl(PTZd?HdxOSMJ`jv+r&1vb*>A zM7lbwOFzh3aeX^gFUiwh=>3>?^8Z7;x|26;xqV;zzq;Hl&8POg{L(K>iu2MFuL+o` z##rCJ9T9DuZ56+#LT>tbdv=D1-6fK*Ur*ndEd63_+3j=Fa`^JB^WMIlyKFwAbzid1 zt)<SdxOtBhzL8dQU*BkSXr1|tK&v@B@0xmCyQcSW=jQVZa?|<Fe?D{GVO4<4ix!P* z%x6FGoa$@un<U|+ZQs3B<mf>UhJOiWFBjLZT(qWXOHiHd?YU=l*W|Bxcu6&wZD-j- zn``<vjgEXZz3-5}Eh@w8tmpl6=ghXfd3*cz?Gu~(@)gW3vAyCoX0!E7s%J8KU-CWw zppAsr(~MhxPu_akU01(o>L>C4Q}jM*btP3lJm34-r=~LN_l?5;#XqMubB9cRwl6*O zFB3yvfjWb+-{z}EALHY9Khgh@xzwxIU2%*2bIqk+9=j~IXtPS3m;Lp|s{b)(Co9Zw zz4_lb(p}-7UR%4_zu?}znF8X+k0k9adcsw9M9AuGpZ&Y6slP2aT{=|%*hmB&n~=9+ z{w0A+rXN(4?BBEgadlN>X=&5n7#=0Mo|!j%@4d|On&ZcwedF8q#%}%1ZS%|fi<d4g zzn60JPx;{~QEO$_-2Qwa@zecMw-v%%tB;@g@$cv9daD(SulIUDh8IgXHnPu6J2(AD z8kg?wXU|(dpMU7?Z^Oq>@yq>xJNNlna$mll7QcAsrqk(ZLFttSh3?BHWEMy6n4FoB zy3YRUbn%JHo^hqmTDI(s#+?S|dea{XwTJgLIcC}mMi!^DXHP#n_3`s_cHQaqe@x2E z%-{aq^dRt{$;K#$pZ7j+6wYE|$oeW}6{$YsuDQlXo-BX$zlI?nA8m}*7H8O`<6eCF zOWYj$dOm;Kk1X>le|a(-Xf1yJXX>B1Ykf^_Z{slxuQNJYrtYr3J$vbP(N8hTu?Bme zW$tZ@+RJxfO?!2Twujq;PeC`|H@wxnfAi+I&3f_s3gmpFw=SO2^g&yk!Rdx%bt;Q4 z%aXUgp07>qPhJxZ&-tyWq!oT4(9nCs%#;)V%nqJkyy-JjCU1Dmf+=ptkFC6U=iswl zo&Tfye@w61uw-_xkHf8#8kgN<C(3peJUX(iK5pvs3xS4b*qr>H3KWPuT3_@2UB<`n z!g*&M|J+?Au<yFnngtV?HcJ0fQnG*I=k-uMoOMg=(<5(Jn{JtX!2e0X-)t|Iy>~7g zO<D2H;<fgbDR&iqFD^0Hj`h)*{&K+u=b7h?Ey83@K6dT@Q$96#_Ur73&DmG@C;!hp zER(%h<5;I~+J4jgpZ@H}*{r6DR)1f)C&uEK)@iF7cWyB-%=!B<xZ=<M-}Q_P{`Ma& zu3hteyyR|<V)#*>_mS)V%-CMG`|<I5EmoJ#Oa--Gk<28&S(7aqdz9?YZ7DjuichM( z+~Dfr{^BbEC*B%mt_|aso}Jcn=h##3i1^(vyzjJLTY5{{-c48knZN}nrLDY&o}Dwh zHP`Icwug_sK2+uWnGkKm7<{f?L1OWZmkG(2=Lr1&;qL#az5lQNynh$}GcsJerpNBg zWA)F;OI>@KLe5s}eS$Nzjs5htdEdVJh-2%Kvp&+l|FCOa^Vt4)$MQdm7<_In4?6g7 z$z`|O)9TE&n_t}W`1it3i(+<ar*CCzv5m|we-#m7BEGe3mUYH0MP=?@)+4t}FD#yS z-dM0X=J;&SKixa^r@ZUiue<&3y-%Mf%=ocb#K=6uEt|pYU*_`WR@Y)1&d2vxn4j4+ zyY6fAgZrL!;(bnk-k!O-_}KnHb8((@vHvUEw`GWQe|Qud<s4<KeR_%K#z#Ff=O48T zS#YJoc<H-$f82hwZEt8O=s*8Ze*KoF2@SCvM@(+K-5AbxI(t?n)0@Yte}v`)&Y3au z_+J~Q%QxIZmH*$)o4Vi`->f`~n*u-Q-zuKldX(4xP0{{8^DAo7C;cxG&?$sXG%$Qy zaQV#6?y8+ZH*T7ROY6s4^>aTz&&Z&+KK9tTzMWk&w;FS-jR`c}r1L%7wS3c}bi-f= z-5r0X+*o}mQ`a=S-+TH>{@stfc9~zAn(@$k$EG#SYf{%SJ-2EXVY(EzG`x~6v-;nZ zu%iO3g45P{+Xq*O9PMb)QB&h~wmWLMY1OIc_4AUmFF*O&%Kg0H-OcoZmycW-4xBru zwyAHfY^3%R$H+bL!h0_}9)G^yjp?nrMAzaI(|5QV%{n$`qp{#Or!TXYmVa+Pw6oN- zrm_9f(VlC8Jek*B&Kt8nT$lSgNtAiJ*t*w_Q;f{6T5Z@Hv-Ipt$3M$2R2xP8X`bJ# zC?D|QWB;QY-`_lqv^Xet=0;0FD4+O$jc-?ZE-Z@qvOx0xBgcd1e;?W3VQUcdr&jdf z#h&^TYy01RW1QGi8(BSRSsh2jtqg^YzyEH#;dcD%vu9F48X19K^0Z^0?E56V@1Xyi z<x|^=UN772`LJnW>bfbhi+-F~WZ{&hz4lTSZ!hcSN4|?MI?PdN&*E5c`hR1w{ENB& z^CC+$|Fq;EezHIQsk58i_2;_(Up~0uuzXU|f5W{&%JE8TMK<-x{=fE0;q=?LN=*|w z_ZIj0tW2;pYt_*|)_mxl#AOq=yXWrg+p?$WsB7^B&&g3c8{;-6_urRMWV1QJQtJJ< zLci|MOoP-2hODoySEh$6yg52qC;PWB)57la`j?mtp36+|>{{x&c};k7A*<)4U%Wb@ z?V%?BE}#DYs3l^hjO=cugWvpw*Os-Fz4Lmn67sH%BjrTRzvp)Ui`On#nmysTM^>qc z*qQQ##6r%kS4=LXhD<RJTeU})eeEIXw|l3=`E&m_36xnJX8ti-NB?)N_wu_<1<siP zQ{24-9XX7vtrL>t;#nGE)psr3(EX~0Z}IW^FK_kde-f*1*Xa9Ww`ZTok^NVhKHZuB zI7`E0hj5a^jvx9u-+J~J{BN0m{6w^UTxfs&^3-Q_lBWNb{;gwuY|ppv&dq=4%UNB7 z4m~s2Qq&&sLPsKO!t;MJD>O37Pn)sv`t#nuVRo41ukD|m6Hkdwxpw03nfF>2OIBWb z=*zJ=miwz~eA`?#!zEKX{%lP8^n2y1C;N9xMC9wtxWnFd>VGTi<nLR5Ejn47koRf+ zv3AvW!DZKD%YU9UyHmg1fBv`n>rs!_?S6M?rg8d(43iJ5!uN9Z+x^OTX{i^xtL1k7 ze%aNlS4YIg9(}w0e&6Zo`u@MyLZ-woN^E4WWsCcDY5Jqj^Z)PpZ~Mvk7nA(&8^=F< z?5~#roqXO8I>h|Phj#m(>wBJ={y4~A*YGs8SoQtd{95gKRj)MfRKMTL&~X3f-1`SX zhJ&=o-*@Y~Q*Cj=$D%gQsG>q-`3n7+t0#D`P2RUhN+7_OQSnV^>RjhrLK`&JIo^u9 z|Lc%YSlF3glfz>wg}lE#H}O2wd00F9f{^aR-OW}1uG-#iSRZMl)}>^B^7g5X!V?Nx zmc4d-zvZuJy=ctd>4ApL`E!;<WXw39|MW+p%2p|*-{#et_x?p(oSC@XEYLS#5*K6c z>w?rNO0gLU2jlkM7j&&m-W|#F@x<0|_U?hNzN>Ei#WZdDw8B46L>U^cCLa&nK7aX? zMVo%wdtKq5W4|ugYj*sd&#InHtxH824iv84up=Y9?}XI}<LzozH9Dy}iUN+e?oD^A zWjwt)ZNIR(sfXa(TXBjmOWUN+X#HDy&nEK7{*4)r%44#(%zpY~H|Kg5hQwq&Ma3M? zti|^@9?k#txMk)9&Zk<Fy52OelKX$=+20o*@86Y<Uizcowcv)Rz&>f6E+v(+|7%)Z zQr<6bam!Pe58nAn_^#9Jdp8%!`?AjuHkhNMk!^0geYSd-R(sg3@aU&pN7;25c+G## zc9}HeZCAG7rKpYbyOw;Ie8l(hg21VN{BzcqCl`ty|65r8;ZJ!e$LZCpJKm-oEuQ?} z#4KmQc?X%}OXG^&vwQ9TJ+?o_ZvVq^&(E{@Yz#H8g6AI!4UcWD|FyjSkoCQfd^P`n z-#@<h`@QaVxhf9xdlkwI4<^t5qmsApXWE|!?Dhw|<33Gd&b@tbw(4Q~=G*3;ihs_n z*|?+QvHCg|1{F_c>)Xc}7-mbqzH#f8M%u=ADRp;BCaJ8row_uvPxkPsPlXHz4t+8b z3-@tW?^EUooU$YQ<r4{s&jt&V_D(tYPVa$!i%Ve3mNcmnZ|&6{*`_Jl>yB7`S7*%o zW6$6rc~dfxQPR~TXJzu*jSVKgzJ~>_W>0BJGxS+~qW;E0h69H#Df!K@X;m?tfAHEf zwrg)ExqrN-X0?sSD69O>$;e4dR+!&$othjGYuTt;-L$9b&yM)40ItZJKlooSP)}d# zRm{ktS<B~M*wyM<JkisObMG6!roW3^PK3To)=b^0pxY^YC1z*FtSNpc?o^a2F8l83 zlhoK$7#qVqeWteFj%5)MCaTwhxL&B1Yo3Z(P~<J9IOjgot^W5tlUYo6^J^cC7rUB$ z+2q}i{^H;4{rh$2AItbC{?IUi?c@AsEDzV+Red-ufcyAj_kE4ai+H13`*gzV<OJ7l zjSVU=FV?*{b%%1s0`c#GQI0DYJ+b|>*kz)9;3N^%yIV!R9yy~oe+lQJ0?%_@vc_sN z{|DyuAMWP<w<mSRpYqhVTchsEmqROo`Hf#z9u|YG1voBO&69p^j^o;}!@cJBI{Is# zDE~M)|Bt85zaNh+s=w*v?fn{7e?Mw%Tll_DQ^B_^l<#>gTk+u_`^H_nUP(V^D7frv zo>*Ec8vpZD__v$|+oN>1+>wxCc>VhI?)N5>^EX%*PV&e~JHBJrrmj1Fbz8R-$wa1Y zt1eDvw!S?(<Mzf~bHk2*H@kjGO3M3LOGRcSYxlPAfo_6Qrp47F$Dcj9(Jz1Ls?~=c z<A2IFQ>`;jXt=%7n`R>AarsLA>?w!*|0S>caGQCrK;0uL)~EhgQbcAJ{;$hi|LWU= zb4LG{_S9ZIv@uzI!PH}?UU7oj0@LEB*JT$A>+Vho$zJ|8IdZ-Eh8=q{<m+X$S05L+ z-L2y7?fq|w;|Z?*oLNPG4jXRI)7f$Qtx8|OW^YAL%|Ay90%JnD95U|Tn0Dw)=fi1Q zEqZEUQ+7}D=JI`h+8`jqy<<PyueDa@4AS-WO)(}(lPsLh`Yj2~vT!@(bLh#mnOu55 zQX~16#xS%0+j;1R@}D!yS5$qxzt{er{=dKw8F{zv`VX^$&Hl#jK52Ykpl?b1J5yg_ zm2D5FsTn4jPnYZR(wzEy-{*z1uUXA7;5!=i`r-atHq-g0nSK>-UVOrTPPD(U$(tBv z?w3rLX5Cz8;iZsz(P926_pph7$~UfDnpx;);_`3zcE!af-fw@V|NrFzt(s+JCU+|y z_x|{@+`jk!ul4^AsoVeboMT%pw*5{Kw_ePShRx~cnHbjXdbR3O^15BGwEl13oPPe% zm6gG}=Y7AjGWeg}-#fM6@7CS<_3D+@yzhIS_r8pU4xBh{WUoCH_kGv(pYzx6erI*3 z=JVN#hurZU{<W`ycf4FSo8gV#-HTDv^InHaU9O!UXZN9z|3U5h>iPd`Yin!6m1~!z zYVm38ITW*b@3zdnZBJ8;{}pGlPWaZ9{JKkQ)>$>9+s*f~wm(=Waeb1M(Cx=pGjx7@ z+%eaWeWLW?b&QR7!>6o1bX?xzgX(!ld+++t*set`v0V0Pd!{XG5ZGs~(x)VU`@_zq z6ZU;KINvS#b848trWsTBRkOYJn&~3@VV}O_llrVr+xJ~KU|7qf?U;Y+nrPaI<KMoC z-P*=pyZq)S#h4781&Q99rcVnG@D|=;{j7SDN}=iTU*&>MB8#>8e+hQ{o$t(X`7`f~ zKc?C?JNCPJys3zi^gL3=_RPZX&kWz(<HpPl7lb0?biS_mbmn_e=ZYO-dft!u16RI3 zpz%?^l!y0km73hX@))lD^<qj|tLzqWZ2YS;$->N@J$2=}D0Tiv^V2Igvc#!$Kipo| zbnU@MQNy!8+MTo6diVdf>yi5Z$)NwiNB0R0wtc%2lZ`%#`hIm|?wl{I@-5UfDl;Xw z{LYz)+HdXoi~s2Ky|nTXm~V8{qIADi-~D+>HajoeS`+eUTgZ;3AB9}Xw)SiE<vhLc z<;NfSr2F=rf5gq?3MV=2_&iVXlYRMNkp+ME)!zdTX?~H6j)^%^dOfxsRG8#fU7pP_ zBkt4c_4{t!e|~3Y@xJiCUtV6W_;xeB-1dC&dE4!)pYM%c8}?as_TLwZ=ey4GUA3*4 z^6|OSjX<}$vnNe_FK)aorOuhOdvZ(&*IPe!+1np7ws*04O;Yj5@r)BXdgAR4oi`$> zd#z%gU(Gpq;kJ!v@LKnx<TFd`vp5wMbCp$Gd4oLaH;JhmCPg!)IlWQy*7Uk#J=ZMi zlHaQ-&(k<pDO?Mcy>8ZRwIM0OQKTn!wc}H+&beO#91;po>WJRRGQF6y_3U|TYr9tI zue;<w$E?4~pr}x`?d;>lD=ZQ(yWUK>>c_X`|MLfDR$gQ97n^6I_`@dYr8;+4siD0? zly}X)>EGp<D(5K_|6b<DzVol0i;-5pHNStKcFLNM;>>!YlE<7G)@@iXQor={M}H*; z@Bb3wM{T?>o;*{&IJm3+&2tV7wTx9^ZyH}6zdzl+U*dn!;w4od<+ZJ^w@g{LQG8+A z^AnLV5r;O-Z79lI8F5RePr3f6!F!GUE>Zz@<(&Et+Mg#Zn`5g{%b%o^T4A^&Bgbu{ z%ig^6yQMnqpB*VoYG?L)Un~{=kN@h$E6V><bFQ!U7dm3r-hQ&ayl$5ETWhOldjDS@ zh<Id|yf%#c{{Mg93%_0se|#%@{n3|~mlyv3`~CO+?YDDnJ{(})@pM`=1B3bf8slr% zu6@|LzV__>=d0uYYF)c_?N2Ra3EYbhiTuB&{QdX-zumnLZRQVtp0Bq%H`ltIzy8PJ zi1_&9x9|Te<4`PkKDYdlviwhuxG#&uAG+#S3EF*{*q@M?$e3UII+~He{<E=t^Ywk- zw*Gi~|6lH(tMPwD88)A}mAn0J*#pTtjSJj^dE%bETgTj2_waJ*LiX^A)Hmy&Ec1Mn zE)uTgK5N+tt7R=K=3e`weOklmm3L6`lbv%t^iJ1SZflwulX}CeapeoCV+Lmv*`B$c zetK=?TDOiRnwkA~rhZ-VLi9q^?}zM4lj@viY3Ql7zD|*Rr1EjT<JGEM=f^Th2B)%j zOC~F4o?3m^rPedZIjefvB^5{At<E-CrTgaw3N4<uEAE)pmUDkox`I67^VU|Mw>GKH zbNejGvsp8@`E6$J<D~t{EPuF!J!M$EliQYd33+Lz<R$I!_$9YNWrpU>vr2h#!4uy% zt<N~<^C<p`u*m&Ji@u4s6y<k6l0W{hLHJzXnxs~Z;=?6M`)ficsqM2m?GvH4?55$4 z{mw%5=9Sl0e4M^iYf|Q(%{PS)o>I%3wBzVf)iv`Bgd5haTlb4IH=Fx)$M!QHmX_^i zUb<y{1=n;F-tOzJ2DaNT9n5TDb1CpsUHawsS_|JlUGm)B-WfVKuIHNsc*o}NTU|Bd z(7sjL|CjH5|Nh+n8{tLQYHYyCXUgh3{%jWOfBG*@X0AO2>OJgvs+)iC=jZ2zPp5`I zS~ffHkTbt+i};=gtPBnIKbq|ioIA%?_x^hw|8%|BL!h?D?{~Y;uW#gI`2VB-f5-Pd z&u#0reK+6tvG>OjbvwgrZ)GajBYC>53>Z64%#~3woOH(2ENjKhn|DpmT#Bnq@~`=9 zqA_v$(UV)Jym*qQzVhsv*#?ir52s$^Tm4bbFi55$^@2sA@sDQ{-9$X^ALv-DAz{>T z=~Jdw`O|ktS*4AYYtBw-?XA46p5~>_k+`$CvQxRZQEO}E{AHR+v(E=kQt&%#an$7X z4+n2eLG`117$fH`&O3gHQ?YB)n^ni^J8DlJ`4rFL5?GjMprh;?RNkod&3JEj!XKrU znbim5p9nHtGQ03t<*Rz_yN&HPZ#;f)#~j(WfA<U(7O#)f0|lKW*PL3I68^_n`u~oM z1^&gc&pl^`f~JTUAKSmD>Bz(0{|gQ!X9*qmxRf+?ruN%8O49Zpg>U4&V_?{}&1~b| zt*i_grBNqB`POzFTP=UNe}l0r%V+Hu3H513clXxKTC(E$S=Q-CkFtfm5t<V&W8bLl zHzPG?y7;t<89P$1U5fQ~4?DW#^Zi(li>oYR_$L3)tJ!~M%KY*K$fWQW&E3!ERe$@l zTY#zjZmIaYU9Z>e`)*nIh~?iy`G1LLqTL{awVRKyS&6!7Y?LcIc6RR!N&mMx%fDJF zZI>&QQr;A<xX>g-#(DX->o(tS=cXm<-E*FDQ!>L_c&p0Pw+=FCn@cWiE-!ev=G)OH z8lAJxnw~#XH80QXR>Iml1wpzTjJn0YeLDAd$+%ixGWj@pY0K-juv0zl5*&&(`tf_? z+=bLVYAa)siew$;JXvwo=lqnJnm0RAS~SW;RRpan<!pAk2+h{-)oHEkQ8i#U@zLrx z{_j1%I3P2@YgO#^kU&Qv&zIL7_0?pI_j64AeO$#uz%%@j-0x38kq7_Cmu0Jo)w2}# z1uxlE{%5g<p6`w)YKMgu&9Jm#UC^>Rq2sU1;<U6^hvoklepTWVuHSy@_==C;uZD?s z|5y2$m|WNrb@$Er>C?q))_?u=YwC@d`wR>*`)UNEt(URyy_@Hp9c;+K;H9Y%J#lgK z-)#a+8-7bl%FJFmrK~7?^ZKX^lMNd(u36h}+td^sKFhOp{jbi|g^#>0&)#2^!^++L zY)Aeo-sPVyLv{ZvSFiEeDyz=GGxh(sFCtzV^8YK()=SBPraxRgr+wj_baZLz{wcFG zH*-ywatsVw(lyDdaZyYJbH}6yPZadhj<3tQdF_n|dsR7u*CmnC)JM}(4H<Y}>b1B8 zZp@KAG`WP4)x1t{-_fZ@(#mSf7fcG`t9O~#wqUJQw<Xt-o<By}-ltEW*nB5`Nz;XZ zQ)lPI=R~jjln}XL(VRf9&WM!?&nD{UPchP}O>@6`V1B}N0sio=xYeSE(-)Kq-qw(5 z=KH^wfn`DCBmYD4iIY`68h`QDylZ)XqS+bq6%y*&Y+d``^zHu;e@E$`(*e7wk(?@J zAN%`?ZdFh2*q{HWSEByq_jKhw3!OD&4vBOo_04hH+c-6Jv&yrT+Wrf7=7!zAaVyGw zck*#jjR%jOp3b=W>ARo0bDI9Htkk}3-(0&yxt6#{iLYL}B$Kyv_nh0GUKxdj`9%H> z4UcKOT-JH_a`?PMQ<tA(VCa*#Zge|r@@TP#-`YmIyu)&PcYnUmyHbRyZpP(+pZZ;& z754u+EAz}=_KeINHOSbDV5ofcg_R4o>U+;ST6H0a>quGBrdBuRoqIoJr0JX9o~+H9 z5qoCV%C7yKir(RW{<dgsy>gx*X0!18kdLP}TstVT=J%2M2|_CauWcz$eUmxK;YRKY z7s)MJ%l?^#PrAEx@1k9f4nIC+DklAx^i-U<%+&s%muPbSi=?|ZG?&#^e7)z(wS9)Z z(^J=<yTVRA+4py6h@()5LyNOb(gFW3;>SDZPmFZCx<~KzDKU1*D1!(--tAnhEhlrg ze>2|lE#7^q_-59bHz#!e;Wu~XaCmm~@15rpRaVBA@94^Y(5Cu2xPSl4WlR^e|CQOx z^QC_JsDI7$`*~63OMa_FUnbelS6LY^x?~Sut*OkkAKvkgtfT&DZ?8HiG9}#2@b?2Z z<>Q|wX%^nMyLas6w@ikHQ^qQJGwvT^nl`VNO<H={liKQP>D=A>wuSAK?_(1Y)>u~9 zwbb>p@%@OL1sgZKsJAbBWDyqD$IRe2&#G~<y8q1E)2IJEufE>qrS{sS=tp+F=d=F& zwEw}lC;cD$?Z<7?cqjj#sF#-Q|Hn(`^UVJyR%RDg=CJX8E?7SG#wEqr)r#ABcg1LD z?4H~+rRmZxi@m)jTekI2f7+IP@k3|L%)m)3scxYr34gX`bMO}}cjOOKnsd}P!p&vY z)5U)ry}9a(6coIq7f#jQ7}gOu<;$_cN5{W$1)k+rVMv?wzi-MV^GC0~T79xHFKoAT z?7MT`i}iZpsh{ts7cw$Lp5c<eoygXpd46@)A9mUA@84}L|HuFPmFqv|20x+tZ%d1w z>Q|gJ_<#806DMbFPSKgak2(}MiT5?G%lmg;@1N`A+x9j+`-AFk$NV|G&{rUj^I($Y z!4E%oJ&xbXt#Z!b<NfclJ_`SicF8V2y1(LI*0K6UEgvjrTnpAoS@y7IPw^s+#eGUk zOsy~f{`k1!U6=5UZM<L3uGQT#D~)qo%+opxsTPN`W~-#TdFMnJrM}@_y*grr`Gy^v zQs(7na&mWTGc+W3^XkZ(_kLY^R8&Xac)Py7-mk>4%@SM|+y2NW-scy2AGy0b#OX)! zhZR5Hhq=!9{b%{Yjg5X&6RQf|GWsy=%=OTo>#R9>)jOAiZ}0ge-+gPc+iJnxso9c0 zk0pw@e`9%H@LqxaX4OMJspf6x8Ta#aFeu#l@zmp1TY|;Rn2#$KH3sd8c&VW3)4yBZ zxoU^AeOaQO*X-q{6P3;v?eE)gYH@<>=S8y=*X$BFSe*HLv$bN+V~I;<{}yw7Q{c-M zihf_!eMnfp{?M|Jmvi#h|M~v?^3m^}rxND8Q0%ug`1hk-Jd?e@{)0sI?svlfJ;Yw$ zmTxuf;LrYZSoOfO-YJ*-nPzG6>WF-P#UZ`bqH|-0dXaVECzW~sh3y;9>Kfbay?e)L zb#5Q~PO*;U+bhI{OmDA<kH|>KJZQ5oZoTr_>l1I?m(DyJo^kbcsm_%*f5oKge7{6R zeg2#svhmW9nI->r_e=}=_4sYTPx+F(9ZQ>^+y2k2xVokkx_^C^@f*kGr#RNfaA_(C zg<sOHeV==A^6k|%)*9RSs;+tO-7c!9FWWZ%Ox^kIMk$@uKRh)5zPaLb>&NRyH>>vM zS=8ygx^--W&WtKyCx=~yxf465Z!zA!+GFZI=D6~;@c~Xk=QIUQF52TK(<s#D_^JNN z(ocUb%t#PRmi>DE{|5Hhc4_u0RX%+||H8HY#Y!)HuJZ4<>@hXLdiyPj=N{Yl1hr0) zcA9piZvWbaif{EZ_x7bmx7B@0VV}FEHElC5!wD<Nl6PJYm(JH$?OVL4WZ$%3lU}Kq zeLk?`XZa)xJzd3@VP`y>9;PolwBgtM%XL5Be=a-nr~J6DV#~?egeQN>>*rnnv;5-5 zMnBcV?{1utnlSC!zXi%$Byv}3?Kc*laBHfIxVlu`r8RQujMcf16KBp*zO!$yeRHE* zBgh$+7hj9tUv>PhcJD-q7mO0mdx{e0EK0Z=vNq-Xo$}}gx#){?zh8}yS{qZfC;XhR z^4t~yfr+=L{f)m+?_ZS@^YwFm`OBw?UG)`rUWsNOtFQPh`v0Wy<ceKxv)USFZ`ts0 z`emP2npV8Q>*l4(X2kMjo(iov7ktE|FFAgiUTWcst`ruIK%WfFmi#^5nx~7C&g@}c zJm>%Kx%oa-!hZ{mrE2c;e>qqG%&xa<dI_ZC)S=a2`y#~1D}KR?kCRuL$?rYG!LiPU zEAWhh-6dn$X{%>AzW-VGUFOkWnI(6!r(B<{?wED!KKt5+8}BRce%>+Z`=|S-L$wpv z@1OmE^XdA>bL#5Y|J$_9zViISu}Y`evVKt(x41Za{x{B>_Hn(6qDo3i^#Rw7HffVo zPP{Ht+F{e)z@fFAVf%A&riOyU(^Cr8C;aG~A`qal)<SSiLhza*VZS)D#aV|rpVhyN zu>51pb2a+>pXG%~%yYf|yi1+(F<bbK`Prj=>uYM0XL%P+Hud`VKJ;4s1h-%F&d1(S z-1E6HF8dnW{Xd8Q+O5u*(a|ON==|TC_ay#zz1a82>f7@Bcjqc9Me?L}nIxIN?_gUH zTEHl_PsCQnFGFhLK?n8ye-E8`dbu{~p`4uAsczmmClgaHOqVhJ&iKq;)(&+hl98v( zv{=TrQzVK1(G$b?<!h^*e%)=;-oEr8ui4Wj5>Nb0n2zmNT2?YoXj)u*?VYHMjOa;u z;S1a|1riJ0cdWViV%3&Urth{L-+6t0lVQN_?hVW4Con&^FP{I5L;6LC(U}U_c^dtZ z2J<S`e=vSGd2#vQ3%6r<cFx#Vd%bVgpHr;G*$YZ9FWanH-1%|7_0pe)cW!)I5VLpB zoHet<RrYuYpD_=rdt@88`FQScn>4K%|6O)(ID))$ELB+JV^Znw2VeHZ?%2~~6X<ho z=B?~)nPIv<asPkx8`%o;c7L4jzc(yO^0=37d+z+3*8hKpa0$p3<}A4Ug!8Q8US_Sn z<ucp-Kdb9(*O|NK)0Z5rU&rP@oX>Tve&5@yfY${H{qH7AFM58yed6i*XLf?#cRC?y zPpgr)WR}IZI$l5a|6lhX&p7Y>c=Px45CJEdUva%!7tTDGnPhrC$M9dV*9^H7#ei2{ zX4}sm-{_is_RsR2M}*3?G|%enI`0>lZF_;S$@==i){8RPSAIzH9O-|`{H^b%!sc^L zJME`%&dZTIc79=mN2Zj%*-hcvWA*#RlmG1YHU0O`^{Ap{nB2xT%kO_x>rD5~%ws(( zRefRQa>ueP_csEC89dbo9{Sa>BwMVIKPKF)CA}r<;ffi{zel<D{LeY7^6yT1FzcDy z8~dt~nc=}1@yIXkd(ML2({?b&hR<o8x$*A*iEV~wDvZA0eDhP{8yipRjX&%+yzTsc zr|s|EdhEe{(K@?kNtIcPbr_HS;BWi5zRmIbZ<Dw)^^5M_a8UPuydd>;j9>1pU$R>& z5~S`O{5*fz(j5-0Uw&WtAv<G^qn?1#zsbfY{^<Ao|6n2c^x=m1f5zWmY9yfSXX1)- z-o1L#9wy7usMkqmmjxf4Uww@I$e;O|*R_p&UYxD{87UibL)k9okL2${3Dti+e_0Hc z7$5wjeyf+aMC-9%K4c4EdY5`EWG}4$=boSbA*gn+DF~c9zVPqb)ZJ?DJ_zsX|GjF( zfrHr>@03lOe>}H-s#p4Mb?2AnGb8WcK3)^LE2hotR5AO{CEb5+e6`aqG`*V>Y`NCd zrQhTGssD$~UItA3fAz+@#4xiLsY36a9b|qKe|>-YnaBF?ncMcB*zb7Xd;j@@DHo+f zd;VK|`|s3o>0_qVNBMs@g7*ISZkNaRSI4;P|G~a!libg<{vR#tPS|f-@$dUC{m=hD zBr?zawl!P+=2fTnzeD-IrzT6^wr)GN)AH8$9g!^O?`*A!X)VjB<&Uggt|;z2_raI? z#E0?AMEVu&Z$G%v;`qqw$|dt;Ip=$y|2T99&G~J5tz?E-ZBd@tuP4RlKh{6CRGc~Y zq5p^P)$5q;z3=}$^X|HE?e~qfcGGQ-6`WK1drba+;T)Owx7xo}?%n%%|9#Jbn>l(_ zz1II8?=&#A|G507)V{{u*Nc7i|2MyX+i*K*AHxo5kegBB^4rz-r=r)-{vEee`u5e` zhBp59zh8d8Grjt0;f$Min@_E{l-95MC;3;-@8_2{%s+i_d+Pt?(l+0}@2W4YI^VeO z=bd6{?FqjRtm9(2KmFF~;Kj$wQ*9o~`|DIaJ+YzE>`uCc)v@{=xsv7jSK~fj|I5Xt zCG-E`_rHg8xvM$(I~nbl)jhZS{S2{d`b_<^e-{t4SycvYT97miyi+v2`{R7sV|CCp z)BREXR_}c-$R3MDTnWszewk}G?%QYg`m6#-aFJwUXU*3Qjdsh;%*;OQd2XA3ZMLHe z2pDhLxY6*n?*cui&znxhT#9<Ua{0VNpXdLtvHAIAazt$G+^=dE6}Rr&*Z17^edUjf z{dFx<r%sK`=aY3hqiCh^Oh8toxZ~JEgQpX(Nl8mfTNFRzdCs&#!cWM2d5gflz<s-R zMg5%15qkgBDXz~Qd@YtP>_=r5H7D_1w2+x*lf)it`mu;p5DZZEpk9nEzgv2Jjd@d= zdY96kSE1{jWQw;i_x4r7^*b82XUNQOFA12V(g!KzRxm|8BDjeaY!&G6i$=TS|Nfl+ zFLOPvTKCmgtGpc#+5VjW|L6P~^G>Zt-toVLz@wXIW*Q4PJpf(W?2T)}-VQX<1)4~| zdNp*-x^<7f-OfM$^z`)QKg}}Q-tGIH_vg>~|2EU6PcM9RMRU(f-~2=Tbsw59)kduq zyZ859`Qs-iCr8A@9Fe~N!_DUFmEfhnLE&C;So&VW(W9<&Y$}D`SDvrFkhgvL&#(-) ze~<M4G3nR;JiT$#rlzS=ML}~g;2XOCmp|j@ef@6t`!)fl@_Uub_xD!1{NDL`-EM^z zjlbo;zGVI{pC^2A$Hqpx<^P_>|6?t`SE+9I;~@Vd&@Jh8FQ?aWuCKoP`oojS{^zPL zuVC7?ZCk<Luh$<7&;Q|aet-R&WckC#?f(_lJQALN;QIc5rE~0RrPf!T&EBwa<HPr# zuWjEa%5VS2;N9NuaiGNo6+a%f7yf>`-T$@jg&x}v2be3a@4nXxnsfeszutb6&f&G& z?{%$Rt6M+c`u!f^`M>WxFF0@e{lV$@e@15J=7qO&w=146W^kDIyyEZc`2MwPb!$LZ zv)g{Z(|o?>nQ_Jc-}miTZ+8tYIcs|T!D9Kp8v8!>=0A|W|AVdWX?Pv${(rCczw@t| zX>ZcAzW(p)AD|nc_xyRPuYdQP%_7G=UzX}0H9l|i_<!}2iSB>ySNORkFVEEbdr1FJ zQ{8jx`;oieF0cQ!{Hy%Ghw|q#x>u}XcyYe=UGcy2rBm!`e{K2q!rlH=ezw`{s?yTX z|4-xpExi`?`hD&DYN>|07Yp0})XLR-aO8FP|Nj5K_g~EBX+6HPvskL3?m;8_mTOV* z`)VT9Jr}*-`CP7k{_^>CQQn$g_kO>(dh4}cpsD*UQ-bXOe!2Y5?*E_j|JP)1ofQ`y zJ^P*X0xyfYKRf=--v3kj89#4oa<cRO7q0r3zTdCkU-wiye&zk&_r7PX-6_B5V9g6> z`AgU1>ub;N|2U^Zt<m;H@rt{7k7wWiqn5Y#>$OX7x8JMM-uG$h`ZF1;Uu>xO^YM7$ zw>LL~{$0s3-ScVc`Y%5}KWOGpDlHW?zgMw%|9M~YyDe9*hCaJ7Cn`FcnPHAaArr%g zv-x$xbN!Z2aZf)t=iuqMZ<~VT_P$BgKRnYo{ZDP(+v|0_pgD#=&&-$a_-c|}Iq&hj z>URgPT@wSXF?hz$`!x1_m3Z9$U)LXp*MAN7-frBV5zue@P2$`f%jWF$d&TzuoV~wO z{@;goh6+EI$%5yrm@|Hzn{VH5bH4CuX!z8;{jXN7F8KE5rev<DteBpA)zkCB{x%Qa z7r(l)GPd8g^p!|)4qxWlkNdvw<=_9Kdw<9Dy>C((eEODTc0E4cKmDEbyY_SQY<Fv) z?~}LhGx442Ui@gHyWGLE=J$KjHg_&vs#^1|c>dw@|K6N`^srq%?cW85cRQcU)x3_r zf9U%De_vzkAJ=uT6+Z4Ye{^~NKa;pWkHjC}OrL+W-TqJFoubpa6<;p8SNgdKA7uL_ zBkVM#?t0YwUA-&j|NXQ)T+i_Mv&*vOcN*W<Jh%SwY5M*>?`vnei&UNTj%#X{ualUr zAAc;}?z7~czi;!8GxOVA`2O#VJlEeB?)HbO@BfawQ+~g8#r4<B_I;Hu3$O2eSNiYy z>vg;NKr=OQKMsjM3ZDN<ByZPCH3l2?MIVzoQ=K)ZFfg#a_H=O!`7L8r`AKDw#;ww; z@9yj@-o1`NsI=I4`n#$2%l+pc+kD<`_v?-4ZNJMD=bYQ~`|kT=`~TkF|ByTW2h+Np z&!p;qzr4KsV&3+`mzS1a`n&t{3hVQFvAbIQmLIm6C7e0y(ek=i%Rh95?_nyxUu(W@ z|G%m~C+Gj+{M^p=36xNtpPPG_*ZfX{MW5htL%E6vjDKFv|EKxL;#g>S>`|LV3w8DM z9_@O)?r?Iy?XhB|SsZ2;o(IfYw&P)&bix0>->2v8|NrlI;c4CN;PkrV+pX-vUteAZ z{o4YWtg@>IC8{-R*FMaS|2=E}`SAU}Lf5QaYk2%w%QdO;JB93azi*y@wEzF_{e^G0 zUZ3`_?l7;pg6E_lIor=?jDNf<-yeNy@%y^(yDOf}O#f5+Zufh;D_N#@3J&vLu2c@u zjLO~;rTdJZ_sP}ub*6HaPXulLd^r4XfB2q9q7}Dq-+NY{CU<c|)LOB9|Np*!{A%_3 zXO@D#$8^$`ExrjFS}&QT@+<%UxBRc)_kFjmeLlDR)zPD_e?d#FHs3Q@)zI6^`}b{r zeRTcr+xM?Ad;yiMV7~pwBf?SHYwdqs?0<FjYUtma=j+1kKb=tirJG;bz3<nn)n9-8 z+Ew2NnmGIQRKI>_-G_thUz_>uR;=Is&Z_oy?)I~<bT3Z%`|ka}b#bw=SL6RY68{P= z>~7z?_w9S-bL;yn*YA8L_4nub`ndYn(f2Ry|D?Tt(fa-Ws^+H7ycYFZ=k%A;ao>#o zz6#$T1(u)x|IhQUrq^Q@zu)n=FLJN$tVR4a514;>$N!pC_vhpBujTtb%l>t*|Kc9y zwetP$_jYSdKexLHpL?{<^mE6z@BhB<kFWpO9e>6C&qMyN&iuAZ@^`;A+q-AaoAWa( z{ahX&WBVoZd$av-<G)SfdmNT$uBw0cyzZQSy~~$Y{TfH+8(;5(W)s(LjSPF@EdOf) zr~qDfHS5>(`k&LkD)-w2RrPU;>%G{%_ib)fWo4wkzW!?v``4wV-o_Q?Cfs{Ju{ZqN zz5lm${rtIeWowVimcI~I_j}>Ccp=Ccf1gbDpEmD#r~14Lpn9To@x=@3eseCA-zjX* zGn*Y;XKup1|7-OAr~QH9ag|H!zOIgcEB!pmxIV+=E^o;*!MD%N>mHkbxf&k7cCyOF z^mB7A=GT3m{dIA_-K+oSij}0y7jC__`Q>itGFqkf<O`jUW{Oq=ZwaVLrlbUFr@{L( zh@(9i%tn=thQMGCfq(zMy^dgDU|>j?u>Y$`*%a3%J_ZH`=7Ay^+tMWe$GT6P3UZRC LtDnm{r-UW|rlM_f literal 0 HcmV?d00001 diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_15.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_15.png new file mode 100644 index 0000000000000000000000000000000000000000..c7cc462ee8c9fb52b0645b250f7cddfb79556ef8 GIT binary patch literal 116042 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Zy|X#DY4g7Kf1c}<$FHi& z-x{^HHP16gC_}l4k*A}9k#SqRS=^%ss>1pfW`=&p5@oFAW{1!4k?`*k7V>{{r0s^p zG4Bl<4^A^YreH8>!UP8)j+IOA?cTNf+U|L!|0>Q^zFYb3Rap7zY0;tgx5r0p&$cZ+ zxAT1EwEOSBXTTN$8nKzc7OzP%OTpFz_Av6omb@KnV1q3WOm<){fkf#<!v(OFf+r*{ zz!t)#@X+1Z90PYg+r#hwJ*$6m=4J34%i1oLJ_X;i|3R4|CFf^$ErZf(MJ{HBeLt`M z-tlRd^voN(a(nwdQl83Kmd&aEoBxkruJ#2ZL(=ib>&*A^Hkj}EsheGyp`^6wP?LfJ zM_Y(iD1+D1OH%R^J7T!jB0^{Fg41o{t&H`b-Q^j<*RTAXdjCgm+#=DEn-9d;6#xHy zJf9(<s%+ZAaOMZ{`(B>4=-WK4eVgLa%tIfp2&*KDHw0yy*Cn$v^ew-tEf^V@Im@W_ z84tsGo4+c5<NCd>u36yklb8DX+FAya=-g9JjT+{$o>n*;bbQ~(6MIc&3CC=FU&T<f zf6ugb)z@>_UTjKyn)tT<^YQ=9_y4~A&vhW?MZnr?*FJ49+xzlmX4G1-1sirxoutC~ zwW_!Nr~W@yhW+3E|7kb1Thy!F>&&oB{-<(Z%`b7uGGF$cckY}#Qo5cc;rLs7r{wqE zj0HBOw_H+wp7rtn{NnmPE(Zgi0^5$w-!d<}FaC5Skm1x*uCrm%4JS{o-E#X`>EfGL z8vYtB$z(e4{Qs+Do1a_t3!Z2DSl!IN|4rCLecSq{3r|`t6DWr#AkmVW6BZdf*c=)0 zyS@JR{!Pj4Gmp-BC$}{0I@hl(?!yz@<!gBwe!t(}|Ni&B_sm<G_67a=YZtixbhzE` z=?pwovah~cEtqiZ>6BxF!Qbm88r1)Pc|LQl-O&R&5rO*i7utWdVA$OMSMsfO9b3cd z_}|7qmY$j=^S(-m#rcp9*Q$#dvDeO@aQ44!a<p`-+{R14nia2hIV}&57I9^$`TLr` z_|X$ihE-Fwo(6Rm9li5CQ|gh`veWW>%zXa#ya(?8z5Cpv^pwlrn%}eUomsp6-mX*b z`wLYH&&)Jd|M6!2e?5k;-~8gfZ>#5e@mFEGA9Kmg3GaSi+WV)SzfPdx_4?h@^lLtL zGkjTfJ0~<aGP3gdj|T^xYaR*LpKIp7$9{nS{|EbR&90G>n>TNE={p}j--_wL%$Jd~ z!xYZP%3Z2>HPQdWR{JV_hUNZq7a6x$+&-BnePPXv`Y(HA-|YG&%22USZK<A$e9oU| z^}iU}=UZ|dIRF3A@0l6?Ofwq4v0Cl+Oj>ugz~aF}_We8uu5=#W^VIsE;DWwSULHcl z^Z$R0uWih)zxtLTXJ$b4W~oaisby(w4bANQLTqV4*%6!?)4fBOjU^*A!#{XGv*KlA zmaDqaa;W}Y@%-m2m!J8q!=Vfssd0Ee*;}w}+1XbmyIcajwqIv|a3Q$=R(k8>itMtQ zO?H_LdeWB`CaYIIYndrJ&$@WldYL&)51vhbw>0SDtE*nG%c^Uh8P~HPc>nj_`_C^H z$3NY={;wHB+`muL*WWD66+7N1`?xE2@}Doe>zEqm{|?`OU|sC)Yd=<)wV8NY{M+i! z{NaOpec$BceoPm56?)v0kE^t<sAXng-}l(Q=qT^Aec{KyANq7TI5+3%<oUmJ8Rpfz zk}v#vua@D>-D=g_<!>amKF)L!I?nKA7q?CE7fFU^&(ke`T$#+U=fg7ViqE&}6@LG; z`hQy2^UP2Ck{=xEe)jwq82$!5nS9ezNH|?M#L*zd;>G3HWehJ$#AeK&&6-g4i)Xq2 ze5MCiR%#x)P*cD2+JWzzLqBOOl9|HMmUbXckN@r7|7Y`UPuhO3VQW}E&+5dr++`W> z?v~$Q`~7(8iS_XktuBRKk7pg+@qBurjO)7-PcP1e_LYp-wlwKU2kpQA{G_s)xOP|4 zp&Kodrn7x_@9of8ui{zpVqrVOj~~bX&p2Om?92sun;*IgPj~Noy_=!rUwDAs<o{15 z`xpH<A!zrbey@Ck2G7my`S+vbZta?$wz{QV{#Wt7KNHKD4Ql@={MC7G<9Cp8PY&a$ zwQm#NZ~q_7@a@izqP0G;D(8*wPAcE?`1jA#{`Fi9?D9Xj>c3@Po~IJn@_grxn_5$& zE!N)Nmiu_Aek~`%{tw;zk1Xz=DaCNSPv+Xsc*o`b^VuHEj<4@{Y<`#Hz~}kpU!&wM zMZ79~#%S^7$@Lkt&no>%OP?{*Z1qFq%jq*_&SOicN}DxvW@K90bA}o5FD|~Er7L57 zm$5k~)utyYZ|7S-hP=9$Ys;q3Dza4TOFDGHB*0O^&^kNp!Ta6sPs`Y5Y3)+aJaqo= zo%4(u|Nj_0O?=}hAmGNiF8`L=@!&1XV(fS?q&jmoH8^HiU8(d_a#($JlVU<q<s}o< zt}{D%51(jTQukDw|3k3-*I))vt6;;<C4nM^$7RbuG>Pv?@a-!%K53oY&M*IL>iRm~ zOtHA~oQI6-c0B6ZYP035=IjqI^yfTWssGQ8A^z`?-<GzeJPnB{Y)={HW&aCbHRBi8 z?{~i{*X{kP+i+-=zPpIK&o&?S?N{@JZE7VNL^g3=e=+C%OF7G9()<7VGVFP>bbHZ{ z4L|3FEnbwpp{eb#BExcjnWslSF3zqod7S;~$7O~;&+31u&a+Dq6R`T*@Xz2jSFV5& z$0vdB9SU8Xo6~b;RF6citDm&Y?7h6qq$_uB&-FVl7PcmAmCIDEr)x6qCs;h0>HO@w ze9bROwwtEAKOTGj`Iz}WL5Efm{otha+($USFkgOdQ}KhvF-+KD<<z2;U-F<+6OznP zUQ>884J2+9++S3-d#&h~(-W2zJZj<G`}?u|Kc@Qs-*0{k++4inc3Rv2hwb)9ukZV2 zu)!jW@xiv+dC5shNuvD~#jny7CmipSOKehHE4!Of_}A{*-`}>{Y$;XrO=A1J?8WUb z6OUVb>(ys0c=FJ{@YPCoh8M1KcNfmQUFNwW&Gn|Xsz=at+wvJ%5B2N*{$JJg_Ppcv z+e@d-y(67hW5;j%sq}Ma@$9dH#~<E$y^i@z)`H2kg?rb{wGInfn|5ebbKUgC?eila zFP4m7mmjuy`7&#pPe%$F4rxSgkxjUl>p7`KMb_4PvdY%&b+eXq|1z(1iC%wOz3<HR z=MUdLy|CtvTH&FKi`71*=jGjV+i|z#a(C{n$XUy}Om_18{8@eRZT^zD{KEUSY1bDh z_)L4#-W9{s8<G<HvRvF_a!b};#)j9rwcOvU_PX*W&s)ADwa6(kX8MZTvLCM3|5f<^ z(!N%xfnEMj8}HJxIa9K(mYDd>t9de~(el7N+v*?l-v5-d@xR@(W=m@;D??gZI_GQC zeLu|SGe79Fj(6OBH}15vbhW3&gO%0)Z14X$B+pRr<HBX0U$zWdy`J0lzj({A=Z$=g zdj047|5X_tzHyX_^klu?y#DOFCtKJ5G-Oy+8oIGgZ`WMbJ!{sk6S#RjuqID>^5>Z8 z=Oi!7{XHuGk6-S`@BQo#+Qj!}wDy-3pJvwxG<fns(b&O%lFRv9o2PiCEz&r;dEx6o zlU?(JBTORvCtYl?_4Uoz{Ws>@t%Hi^wu|vFEz;nhUT(PZ!p*S$yK=$DeNVX`<<(4& zcDPsmKK}DM`D&?#?X}0tKTq4e|8R|O=;SC@&q+7_`N|wuDV%pmT*y_er}p~P>mPTS z@0lBJleBHh-{1OoSATDaF}rIC?Exn{XusH`H|Jzp-TxQnb*(d3CcoKrs>Se~?FXiH zJFdMk-IIGhbj!9k3<(A=Zoe;WsJgl4-n)AneHCNG6?u~7s!qI7{1gB0^!(4^^`-XQ z+;`t>UMyLE-8Uk_;JVtmZ%StJ<vTx}(q{Z|HU4ktyFH)JUA6q+tGE7=^l?u6|M%h_ zOt1eropHyrS=lSHT%R0@>38<8o!ori=%w`8*ZX=`uQ#urF2CdH*O<x&OBq<^O1{gU zG2vcG2XEp3H^LKQzV9!1`|tVsUkmeH?!IFxUhccg@%a^#tzDKEx%WP-+<*MDjNHEK zA=UPOPE230kF{ZT{_b2*G-R9jxZK`X8*XTB&78qnt68VXZGK$2?<`lDq0$kZuI1lK zy%usTeIInriP3vs`}>*2(R!6TCT4!OPIp>#VUK;&!wYYg&I_%U=V{~F%v7Rko;E}D zV(qh+&Nd&{HZ#<`o!Gv!DqOfh{O-4`RbS7FmrgyRc)4AkCE?#0W1ip3?iYVK5zJGi z=A_G4<<i)>uImtEV8XB2f47{SXS@H1cYZZ1gTLL<68@bvQVUMsm~Hh(ME>{Idfo%c z@&9C&aGtkG+xB_a`+4>YL(KU1R%K7pwf0^5O5eWdL|y&O^2|_Qj<~HGf67@*e|*t> z{*(0jZ{`dYZ#F8cc-G8YFJmBc?smQD>}L=Ey$atyi<zB|;lncXy`4dxJ9lX7`Uda5 zJMr}{li9wrC-1BOU$<1khWq$e%PYCYS52S4JSH7~uGD<LRKveRBH!yjIWx#qf64Dm zJNqOwpQHYF%g=xNtGV|5KDT!kN2J=^*2-s_beC)Gb5^!qFD|uUx{bKL^pTL&qR%!L z#9x(-jI8|qZ&mo-Q+ewpT_>LV9qARR)$lkpC!%Ur)BLw*Z{&q#UOBUK&Gl1Tq)b<d zUY7g0uKWG&Z`Gd)UK@0AIvE$()E2clh6(O7=a6KZC_AM+u;=v?=9>9MC;!|D+v~IR zP5OG-y3g0|vmZE@ZFlhezt#1pujS5OUFLaV_Oprmf0Z+wnOC!^U~Z65w0y!BE5D#c zIh#~DZ0A+{D2}Oo%Fkr5G4=VR%z7np=gYI<`Q!3zqiue2Myo^Q|9*e}^y6>)eEWA6 zeZ8CfCe5%gTIhB-ZvM?+HI+{{j5k-@%=s8PIdt8vq;G2bl8#@yYW1g7bN!oNM}+x5 zFA|^mY+=yMCl3y?K6~b~V$RLa#<#y4M=E%p>G@lFJ@$Bc{r7U_59iAFP1djfd79zO z`SYureyDm)YEgFYH@3ddm{6A2*vk63YT@NnJ8$zBUw?hsT+-*a{J63I?0}<1OOF*; zEV*v{zBhaQ-m<O#TS_%QY<uMYhWWuh`#Sshzfag1f;lo4roa2_d|6ZdY?J6@(~5_3 zn}x2fj63|%`F@gt1jFJ}*NQ6p<gHKX>eur!+^={dxGGZQip%QG=hHnd1#W$nm=JdL zcCXa#^0zDrMZfcw_4zOcXl3$0x>|5Mcl*cR`~UxDkg+c7dA+IYSJDsFV*cscrg_y5 z;~3PULw6h5U0m@Xb@j`{IhW*JzO+A^dFM6znKR$tysmlwMZxEd-JL$>eJgp~Z<epz zzG}+pG}n8c!iUx<#Fh(OdOQ31&z0vI;_m-h^UvUsalF~zb<%k;50=;IMXd}r+~&2_ zQ!4t*)|r+cSt{TDar$;piEpt9%l%G^Ph0IDU)-y9c4g4oo9P>rRzC^KY|u-7`Qu>z z2X^@%tPFg1Me<8^Y|I%im3+J=x_Hi~z`V*yOWtJ7Y=0O!IW*~bP5sh^r%s7aYFEj- zy^Ys^dH?nO|J>y2|9CE2cBc8+mzN7=b$039DLnp~;m1Y!zk&PS-rje%?*C-}S?sm* z#C65<)6&}JS6ts+`D%uzJjdfJdGm#j3KnKqg};onZTqu#L;3eOKfk%#{-1lzc%s!* zZQJME`@iED<bF+#f9kO<^-78QqX&|oP4{vC-qz<7v^;7%^M}p<|Lm>#aQ&Zb`nehU zcXpS**OLExY{K@pn~g8;dA81+=|j`>d!E(bmopZ4b}sI?5*FAe!FQIS_W8TJcS^6n zW}I<n-{ku5_5ZjSo_4XlSpD$T>h;Uw%qKtme!t#6{M}xzhP?WUb7jGmqD7l)BjQ%o zh`ifdx@haeq8op6Zo8gezae?GC;RQqi(MzQE_5$E^D+3@&8iPCdU*ZWKiFR9yLWou z>1&-i>e4}vavJW*wv<#qyIHWyc)@M{7rdKRy>oPt=|A*pzVGh4_ohtlnHQgUeCx8b zb05|J@qLnFT<0(Gbm1F5&#YflHa?!5a@|yO>PsD-AD{03UHLPnRQ`H=y)8rZ_N+n= zy|c%%{(^=tTwGkPX|7#xI^t!C&zl$P_rAaX;R<s+!-B}79MQ7#r3D{6?&f^6^?kc* z=VOa9TSLF#ZRye?@#R;i&RIEI^oU!q_6zaF_uqg1wtaT({P^#?t{1+!VfgP`{(rHC z`+x7=Pdv^iyl!jl@!mg|^#2JZg!y-A%cY6NX}_4h_-a<+*L$&ds_%z0uGn5a>xZj? z@1;XoAq&r~XU+_p@a)G)$$y{o>qV{``~G?I<Vlv?zg?kP;T8W*-(xwj?{)mC>H8}5 z8R~yb<o`J9`V5bWRg3+WCWbkGiz(%euf7qpSbYBzv$FTMQolD|<NEcKlW8;4k0;yr z9n_A??E3Qas@VO{d+)O!cw4@w$8Wjwgx0OrecsB^Ti2RPnQ^_?cw8<yu}<&ztkA#0 zW^2<npUjOs`se=t8}dc(C#x~N@b0(GJ-pi8NBWtS-d=?>c2h3t%uYYC{@;=EkH5n2 zZPYrxH|mqq+`jmyCp?Su^JcHOxuP+VW3SGVyWeHhwwdH~R4+GADLZ)Q^W8Xy@(Jxr z+glb|Za;Zcr#F7d$&;R1vrRswd~XbA6kuaKFJsGkpjW>}li%h`DZ{#3#j?H6SQw^e zHG5rkk(zQURId6>VP0M5&5y}hSzSMW{@h%@=Y;D;hS+0Xa!p@9Oq7iK8f(wzke@fJ zxxb#bVdi3X&DPj$SI#uAd$wC-@q<e?=C-Y}xyBuP9-n>xpi?+)!i;dq>D;qt&rbgT z?{5QV_5JPn^7+-bZ!`ROlWw1F|NT_>zE698p8dJt!;enk)dfeSy?4euo4US+_5a_) z``H~<UOJ+mZkeN5c4Xp_g=f3HA6@t({erD_ng6$&Gg||-{=dDsG_&cs<rM9kPcDBo zH{O^l&d`77e`VdDyZ@~jZgYJVnWXaY%aoPX7hm&Nyj;8e^IG*YX1V42{)n!w{2}co zx6aPk*n4l@yZbGQpKm7Yj#?Y{<?o#TI@hoAv8_H>C=>UQtN8x^bN_!Z%e|eMeqiBD z#=`|KYtpV4it+1gzP|s{{QnK&vHA0K!{6N6*yO&q>eI=^ujiFFu<!eEonel}-UIuz z&s1_9no(!=Vcu(=o&R6Ef86x;iqzIkXQkh#B)-vB^zXj4HT(LqwTI%fXWwmDxA$#z zW!AZv<+u98jVoI%&CB<_y88U?y7Ihz&X%jM?a#ihH?QJRXQ)Ne%?`8YyZw)a?ThtZ zef3f4`g&%D?f2_;&u#sa|Nrg&k0-+AAHA~O%~<hjWBW||#IQAU{@I8gFJWp6Jaq2$ zS)FIm`@YZp^PB(A{RXxd;@Nq5@8*PFFT0%+SpL~N?$AT$G-*(;W$yR%oSRAC6yj#g zSN9EmYhT~_>Z_IKjJNBp>|Ix8EwZ0vp>XcouHHk9vQyLxU1sIBr@t~$`C)zL`x9BV zog0dlx~(*+(ovgeIsa)?@=3>quXn{%-~G%m!>Y0=`dx)({l9dz{{g=p;^!Hdd@ts@ z@=EQzS<l(5YfE2zttzR0_BVKK-oBVyTZ<m|nlpWvB)-4lvFhei70c$&D{rVfw<`bJ zoFA9W`#$~ucW^%AhkNt?9ON~OI5WSoeDAZVf6n*+HDhS^KXY-->}{zMZf2Jh`h;z+ zr{2#i=KFm(Fmd}+OR?Xl+!W(BF7}-BH0*xu_q)=M=GcoD%3RKvVfNz6%HVCb`vc;a zUCg-g)^~gE?X>PAFDn(MdzC{Mw49K*ap!WfQQ0TaFI9W}mQN1nDu0{xE;KyWb!EsS z_4-fhj4#S|%UG9*H00a-v*5p*zwKMqkH`Pz@Bcll=2Cb2o2=P-!}SK*-rdQYlWx5J z`ljpW&3WZ_OMTL(t}1_ftMuOdsqWf5?aq%Z?tR((ar&yLwU2hCE!$^Z&h*S@Rm0&I zwLz;xGxJT~_v%J(yHQ;8;)3G0_xI1gyu3X8|AFfpz1B89?|paK!f<unSGU=hDi;Z? z+jp$xp`1;{1na#0a}5k`uPL?S-f~-5yXJ_r|Gp+r6Y0;2u*b!#8ti9VbiMg~Je=j^ zs*~HV?D;lp_0L~_{h0+^dcFTy3d-&OslM#p$=C1pw1(fQ`@Bi^ag=qzVeX2L-SIpJ zp1=RAbhc{S->8%66GHR+g9~EXS7vUOs;=5r?z#W4&L^uKm7PMz51#xN81r9u-`c!A zW$eqJpXJ)O?U{+S%ahvkHKBiQn#}f1OG{(8u{pgzHkZH2VP#s8=auAX8z+eeW|~Nq zHN;)XF`GGK#)gGXYs0#w^9&SA&F>T_um9h!rt@!OzU-E0@1un|-@k`3S0+|I-yw0U zbX)eioo(#$H3Aa6BGV_$&%R#z^84>CQCb(uHBUX=wD<hy3#ARO^LI4H|9cwGc4q5| z?vK7cJ~!6Bz4vupdExcg@{b$)YjdXdSN-*x%yRx~jx@`J6ydPmZ$~QCXOzV!eiD`c z`|En<mRoP`q+ZJRld)gO_$&29_x{Rt+24Eb?X7+^>GI@lId>0zd#hHyGv*RQ?bavn zC(HkwDF5)tm-WmB6<-Xhw{4ku=F+^F>&j;@xz{|nu|@L25>GEv?UI=lc2g&1{;zv| zSpF$1`?|E#Y?@^|Q*ZO#`&etwaiI45-SZ!Vms#ZPj!d2KHeXKsn_0Y<-G^eC$;ao{ z>&%~0G^a+vPD^Q4eeBjZw>=xnHlIm3tz+vnUmms=ASR~xsLJH%v&Yrdrp;S$-{+CV zw$@KtQ%^0j%gox&>67!{s7q;)#-_x#eUER{g)F}u_&->$)9DWM41r?}VHZ-@JlT9m zSXkIQ&;R49@V#9smesqbO{@vKTqtAxS+Z^6-yLZN`Z)#$4|mRcKDWGk>fPPtn>Qq+ z{rUa(UuF2M&r_#B##RDWhKQ|w_N?sPos+ZgrEFue{ypd0?`0ZcJ7bQ0uN7UolSMON zt-1Kz%{GgcT)kIxulQ!hjH!2Jt;+?D8=BkwcV&>V{KIqoe!<~Wa$ne{ELZ-y&;O*k zpw(2br<1nV?0U7THm3AyC`0!pv6NEKQj9;{^M7(OtowK4_>J15qI=%-O=sNj|3KY| zvYf&O|NF)K49ENB)7`gu$*FOc-z^nq@Rzr8Nl#2Xyk<f3;j`OkW_`c^@0j@~_y3ng zru95JBG%dcNaB3yhrNNjAE&N<ta@KsRIAuc@pb0I>{Y4r%N8GUxh>+6bN%#{RnPv4 z9M}9D`+3d$neRXMF89^C@;Bc8Q0e*Iat&2~FI^Tgn`O~AbKX2QpZP}ovGrdry64(o zDU`W=U303}kA3H_hR5gDA3M_0x#(4imDykCCrK|>swS(}zwq(%Gcq?XKlgmTZo5ss z$z+vC6NmHG*Jqc;pYNX9UT`&Q>*uyF+ivGp%Pn8N{Jgcp`Muw^uD|-=kI|FnH{KJU zp9ZD%DkcM|j8m*jE@b%Xthz9J{`PN2rhTr9{`YnJ-G4?k_n%i@pY8Z_Z~Tuxi#VNk zTKv40v9w6?z2%j)9gk<2+%Df76WH-P>V$gH`W=tBY|byfZF+us=jK<lW9t7hGR&*{ zrBJ=j%(}VesdoIsF759O8`9rTU0r%&b=q^i&)fh0@c-{ESN+G3L9XV9;qCC5?|C$) z+eGnxUSnIgEBW!=+WSkR44dDUEj}}Cnq-UrmQ`1@p4kc?=lpz^(fH=Qm&cbqoAG|u z$@Pf>6IHygmt>@!e--6xEx+Y<E}x9S_h%<3tG{iz|L^bbw@-Gy-X)%M|MR}{Z{ED& zl3$x+5)}uT!V#2Yj&hv7(Ztg7<jgfeKbC5=?SIaCX4Y9X`yb8A6i#nm`z^1mGV0)y zCr>KVTfLV~T6?eV%?(5A)iripuXouzEvh^z@SQt!^EqXoZ}0E>ufM+e`iCU#3wdet zo)_Nz{7wH?MBJa{rGiKAefpMmJulcquQPeK)S4@^y3NmA%F%jiG_U+;Hize=32Cca z_LcujnzpIv(}xGSx3?93c;GnOsdU>PNke=4{QKJO{c>9a9i%JSC)8e#JJ0|3LqF4p zv)}(QT`pETrO+oF_0>qV{tM5Iy=RwPzEku#Z&FTeZr;A*Uz#k}yU({eT627lTuj2$ zKTe-CbX=up{npbzWMyuiKL7Yr?;D~@@s9RoZ*F{&Uyzd_z5VLs(%hn=NzLs1Olb~9 z8x<EF-LqiN;h42yl|N6%?=xcGb@0j0pzZgnUbF6h2Rg&@Oj(?M_07{^zc!dHjaqw5 zG_tkedg;trvzXj&U(;26f8yVn^M82y?f+SPPuV$ly7A4eH!aqAS0@$rW!pLAZ`0c+ zRlPKcO(Oj5?pb-$j21EeIx5ZMBiov_w(a#iYsb=!kJc<Q`Y^}o>C;b7nZJOp82J5e z_xZN`@4x@LDjxc&pw^cx9c628pP!wT^F&1RdTHfd>HWeD<~7gc>b~>aF&;?Seae@; z?DLt8ff-+3N*Z7Mbv@oLV|()MIgUSWe)>1{wN;rz)k4`Qv&9-+davg^nf$Ez;DK-c zq0(-8ZSRC2DP*GIg3MG&Z_tvF<NfmcpS(XE?sLiHD$j@16W{yl%_^r}s(!cAy>&y_ ziL2r9XOG+eD?BjgdHMd|cOArbRW}-xH!!pFZ76>3xBFAclM@rC+TP&RvOoXT`%bg; zgTDHL<*VA`+bpsVtE+9ZS#GA<m3&9XCGLFF)`{VJ?Ft?+%=J4ScV5}OPv@4qRX<0O z%<(oRem3UWMO!C^Utqj7IhyguLHVDYcIEG<Gg_2A68T>DRbZ*ptm6h}l$IY_s=Pw) zNTH1Mti83r%cNPi|F67W^yoo2qeayp73;D$3=u|qvy8b9f7qn7@YClP7JYXYIthjr z8D6QLu<^^L>3h$#MaFxn>+&mps;zf^zIN@_ySvMo)%3ONUudM~R!%*gx^DlyoXXE1 z4)e!<`ffhk_uj8-+nFxB{yOdJ4YO{Wnk^Uie7PlBxng(Btl9BJ+zh|@WB$)!dol0% z#`^s$SFF$8_-m5N!nvW@`6g0F3eR-M|4BNKBN{n{|Jwe~*849n`&#oVc>bd=nVbJ! zKk6s5zTEuoC;lHB>p%H1*nMo@fBbL1+}8Ju#~agUPG@y{c=>D9+}Pb^H`7n(ZohK~ zd^E1^hi`8TL!W3r6`KF=h&#iN2kiBS=Vklu&=+HAl+9sxO!#f<C~zZ6`S8Pni~E}u zHdr@ad0qO|^Xa4)c@sB=Xie42zN#GWsQ+xi=}+2adp@nbY2pxXc{S_nq|euE&OeTQ zUnPE^vfKD%tL070_1E<F>|LxgzbuSh`TzT;v*yfsGJpT`=ZqSwbE8Vvz5di!zK7Z1 z_w4F<<@c1<{!I9AEjoW|^Vhl7<wcK<a5CiW`}r)?;?dS{t?-K1<$seI_I-W9T=Vo} z^7FHX=h?f3g@xbT-7VfAzUKjJnZUnE)AzLe{r&y6=*OtFW%nGv&))aBongnfw%a#0 zzV1r>U2QhWYiZJJrMXt6r}(y=e!8jGM`Nm&$!y=>?;nM&ocBEQlCxfC5n@q9*o9Q* zli_FiWh@qmei5B=UZDQ}_xk;@zSE}$ufF=m>%`RXxXOz^8!KI({MlcWskVJq@x7dv za`E{x#}_V&Id3|3yLEAK@s-zKySp}>3YT2J=aUzoyxpEf$Ibi7-kW}njjR9u{o_ab z{nH;FXz{kTcylK;i22^XZ`*I*4UYS=NPJ`deLK*tiB*w*=LMa#IiG*(lJ}Ds&^gk% zCGD#=oX)zy5NkH2rhCHoJ<n~+s<|UAE9GXdS!4ZfN3(z3r^yVU>%5+&is(-E-k!ex z<qs{Bz$c%4eSJ6P-rnY|WwWjPeVpC@pXZsUZ@c=c>bXVQhw|sE?;rX9ZN1;e^!iVM z40c~<>K9)2HD~<L$Y1kd&r7CFMl#25ntWf-!|uxrSu54i!w6a=F{xcHvn<kVQrPO$ zaQ~FA8An~7?6fX?#In2W?XD%?FTcCH+p_o>Pr|kxr!KED>kg}Ks{iC)KSy2uHy6YF ze`lt@`5D}?^~AB|<vTk%Iy!V#oA`QOp0aYK=I+{CM{n&a)owo6a4^AP`|a3;$};)u zUI(oVSrMW&OGo5p3eu_;u0qi1OcPV5s&F!Jb92ABv-9($ecP{Q-CR_(dGqF+o10Q^ z_UGT(*?0Qh>h;VI4t%{{3_8p@CTOFrVB~y=ITKT-KKJ^6fd9_{)%QOFS6_Y8P_nrw zX8Qa8$L-k;MDKh2`>o3HwA07MZ}x~hg0Al|Vw+>)dwHuJN2K)U&!2sKd~Vdg4vVNg zdPv{u|7!o|^|>$qtY7=*&+9wu?e6|Quh*q?pru5=e4@$R|67-S-oNc!o&DLfXD{Y$ zzy2a4MHA|UjgNl6TGVyo*%G8>6oX?O4k&s$dI+u>da(X0<B1;yGU;pi6N4}RjE}bZ zpY8p;{_Tr9>vf?XFZt(sZmDPqyao|1**Hlh^0o5~lb|y@zumbQZP54VqR%F^Dd8br zTn*2wz9oCkd9i2xB-Qu-EfQ_@mMm!%=hJ*S$viOY{%y?%PwsDVtABs<d%ci)c9qTS ziLd*vxtIJ45BJ)&<8Ao;^r=gCq}x|Je*f>~weh*Rr&7)SJ<Hma&--a3mON>{P|7|K znUr^?(6n|>)SRWuUX}g|KRfCBe=FPnezSDjt<NpGTCDENT|edUBG=ER|Dw<D{D1xB z&ie)>|H7|Mdb@v((pLM`>ni%VFLE301E;2)F|9LMpWDdWKQC5NQp$E%c=>hny2;=W z>_DuhN;w>CbG?elWmb`5eBMthtZx3-{9ioh<*kkr708RS<Uyf1@$|DB|1Hw%btW%+ zdFpRj`j_2r@*@x4-(L7~PA5$HlOoIRf5r3k4d?rE|F4g%{~7uJQb6#usgHH`Z8u?5 z*|Z2Lb%VSTX{N=bx@o0_c=#{f(lh_3)#m=L*?%L@T1DHreA<aq!5zChP8exEo4<_9 zNc84{Io@*rts;vjSe@I{#y-Eirti?5r#p+!6)%1+AAj-|m(uK+Y%i3QPP;T0O+2fh zYI^#ixM@KAl=6LEzAd+uBKdyCE(tB3cy%dK+7~UE=)LTLW29GMujBXj9HpN|pO$fz z*G}7dbjuB{B|7D`Uq83X>HnH4J#F)jty`CuIsd<y?Dbc1;?xC<yH2QHKJ0PM{rj=B z)MISVcm6wf)47W`O_;wY=#uO8Z+|Rzp5DFn*3V_^X2+Krq|09TQLr@CJml4!<*b)~ zibo1UGNhm&q!Dbm?30R;(XmT`hU;pcn*3kS+<M`?Q}(kMmx@hm<Xfu~Oy_>*i@N9W zYvWUqL$@yT-gMVk=GxPEs50(KO>W-=-ie{h8F%$e-E6&c0_$hdc^uE4O4#mjY2dxD zET$~Wd;F4#s;@A^Bo)K?o3}f1^>GFj%dng0AHEa#U>4h}qDZ}x+c}dMFJ~M&9ciP! zao+zwCb~X97>}-OcdcEpHOu_dUyeCnYv;}PeP|o<$Jl*&?AvW?Y+83fhho5`^bL<o zEhdJar+QA(;Sw#qW3%OysqwQ`PM@_-Ynx1-E;9QgdecEn^pBRyca@*7Rn+>D86H_E z`U-EJlxNrZxQb!Ny!Q9AkFRZS&knyByER^E`r-|1YyOE9aUK19?Xpn5VUa<;|0NaH z^pJ)Ng?F7q`kEiFdHCxVTh}Fv-M#*s{~y{}9$+}@pk#Lk+szXu4%1Din@{kR5q5v} zP{eIv?OO}JdHGhm=DmJcDd%_XU}<c*$prh=7pFXbHm9W7yFz1rv1m!I-szv(PWnHO z9zAkq^QU>G|MaJF#`~YIoO`6zu~I~^jgcWyK;Y;^-b!=9cgyZ-g`S#nT9o0`Qlq++ zEDg_J?mCgGu_W?=$l>1U<qt|c-=1e(bH;YwGy9sC{p*E~I#$XYcS+=MkZ_%#wj)yd z(NDR3(|tev+;?_L;O)APUEe<k<yzl-l5KZ#)}%)|6E{8CwQg=osqA)v?l&2-&eM8P zd;PvkGrcCItbXQrBEf)R!R1&52_D7|G1I-aaycvwS{Spk?~rTlegQqJMNUQM&n^-@ ztaCS^u<*fB?Kk?N7uXJz%6|IkaQ0jLoXzRq-X7=vKmUqk=ma}!-h~kv8wG?`icaqi zk4g316uNH3jx0NwORv8(N_?y4X{&v7Va-05%%1l%udXjz>b5zMeZj@7z}2P<1=^yU z_itEteDh|-v(tAw?Q&s#wXs-ow%7WA9UpHBs)&F6J(t^tf7(yG`1kK;{+V;E(8t20 zcJ99fhxA0bhJy(Wlb8K?YQ%6gYiiWpEs9gUwhFX9zBzyAz4Ir%yt=g?dwR*ZH(35R z)7AW6e(l=iWh$-DSI?fCeP93K@0&lr+wR#SaIy1NaipBog445%WaBSe@UhkU&9~w` zurhf0i?6#FuDmv#ReE`0uAk3^9M=$SQ-)Ivkw11zu6W-3b*Z&gmWBQr3yuCoC-(VG zZc*XBTgr8N|B_bSHktOoz8FJ`<Aon=&)eO(lcYCy-SJ72R5m`BJ@-mSJn4FO=#lQ( zpO(CQ<hS*CWyQ}W)67pbUi<wp#=C8+x?$k8Ozy)I6bzWZ)U9_n&t5L}?78HZ>My_3 zCK>t(J$mzN>giOe$mdnZ*Uf!%C-L0=c&&#!PC3h4uI8#!Jio&ta_YS2uN#hL%KdCF zcys(S=c<dA^2;||*~)uf@80KbHoa}{oa`nPifwhQl-baoeZJVx{7$j&@BMS$o(l>- zlD+Zn-KP;H^A>mHUEiXp?msW#)f3MHIzdxT*?sjAZs<J8skS|rb-~@HtZ$oT*rnO> z|Jj<Ee~yT_()L_)isJ!;XdbSng|RALLdJs9x1Z<5%-}B9NS&-SwW!tWXiQ_#Ql^{7 z3lEg;am}2rG~HYA9emDL`^BcRO*2o{Oxt%~z98w91q1v1sxC*dM|KypHss#sW7ym^ z_1Fb7<H_ru-;DHPXTMX^_Ww_@|E#Mv`yajXoR=iflGb)}U4&|<?zEtolUnb>-&-se z)jnUS8G0&2YwDX~)u8ILOIAo66kuaaOyOc%>S=h#L~?KWr6X<&maODGW~}|;<%$Eo zJA;-*oj$Crz4&|2J?`hBJe@s@Q$qG=${5K!QCwNOi(8gK>{;5(+4C1qUfago#+WJQ z_Hvip+OpewzS%^b<z#qu_Svhyj*nm2{64kZGi!0#rIaa20>?M*d_UP~iSx!4!T&ZN z2s=<_d%cZm_qy))KX<ftObYz*`&pg+lFTgS<xK}C7@WI3|4ohfqEff(oq;oUKfm?) zy@g)fwxoIDo@atD-%0I|iu|=(U)eRGS7iRy&!5%S{C!~T|M5&PJL8LQzpiMhs;Qk_ z_4C|2zTb5pxOY2={B}56cRp?Z^u$7Gxi-PQar_PE4%u)QZ+=#~+*xK;wOy&qC6iP6 z#RV}o`q|Dh(~Guc#pPdFan<Mc-3&92lS)=|xgPXf(%bsG*M?nc!RcFtpS&*rY}QKo zc1DK5onL<0bwmEOJ5PGvwk(dFKIwhnDd#)hQv;J<Sg0N0E10w7$Lw>J5icK>u6uM? zM}lwW`J#uv_R4umInLtUVSB)EZtU?wkH>2kzft-2XZezC%x|sqwz~1o@%)^B{W3!# zXSbEGqr>vsswWP8m}IhTF57X>w=C?LUNTRaznsVmmN;q{C?J&D{5@;!scE^l8;>f! z%bfK}YEEk4+t!+fc`n^fcMfZucI;PbI>2*n_g=owpNr3&oAupy{q4jH#@G4Jr)G=I z+m(9S>`{fu$4xVzF5LICcD~Buxi(#j*9t`h(&oO<;PRYQa`9VPV43ZuBU_xG32O$L zIX<eiOObuMDSX+zj7vGQx2(+Cnr1iuX3zWfN4E3Z|DDs<F?cic7Z+#Rg{0%Mtq%)@ zRLhd?9F_Imrm}Kvbzt_DOn;v~t$6)F^Jhi<lE)*L3-7&Y=`YOYY+NwMs%nz@{;w<y zcUvu2ZDreC_Kr!RPgzTJa{s-IZEssvKmTo(dgkji3*lDX7iNnC=c^@@rAakBKHgXK z=0zfd)o0n;a@O<G%eYRxyIqtzB|C226wOrYLKErSsJCx!&gnVyAojRzI(NeI4^dBo zG8*)<HRivSduq(S@a3Cx=X{LI)7Tmk?H5cl?b%v2*KM<7ZHCnG4N)7lm7l-yj`RpR zZNFW{_`CGX-ZTlG8Ryexh(8lAn9E}R`p7TU`(+ui=T$r33hjE!a>O&m`bweH<*r*( zyq-ygd8zKvN%vzua`cmD@4*6(^u)fn>m?Ip)eoLjvyV9+Ii+~U^Q$wjmVCD2V5-`y z*WCE?U)A2$c%!+ytJa#GnmO6^oL<k=8;#yxlX$;PvQXSwEqc66K*H6q`QQY<bjF6A zJ1eVhs)(;^o__cFU&s0>k56nCd2nk%*K><5rQJ=UEsTfPB!mg@aJ1ia@sPN5zU!mw z!3hd}9-CiGa+J8K6zw_b#y5?Q_9Hiom3)IH)oh4ZzbX5>-nu*0ybSNc`n`_Utcxhf z4nCQ8(4z0H*5fl@GOJ`i-zq(uuv?;a!uH#N3lB`2ob<V}Sz}A<j#+!n*1ZnY6EUkk zr~Sga=KrrqdwEvbC7MTW+TMO$YEhfT)v)tr<f^T+=Blg-(axD^GWkyQE^d?AX-zAi zOc%RaVp;vwtX@q#n<+={*`2nB6Lv;kUT#zLg2UhDqwj$)ri*hXZH>`;Tq$>TRV2fz z&{I>ge!kY)IxEug{gzu_em#p~Nz7PebujP$?B18YEGH+q_Lx6yo#4Gh2Gq<J6cn6j zxInZdviN7rqUSp+ZcYglXes%X_Ra2VLfN$^`F=T(3$DHjSihY?W9lih9zEa57qfP~ zo_Kzal|@<F<wBXYx90V0{^fO$Y5TG{=9XVN<9Sy7=)W57se9HG?R#ITvNHIGVC62S z6z$mKfi3Os)<%`vJ!kc3?a#loVfW`#k8UhBSaSdE?N|HOO-}p1rE<QAv&&<h9@|d$ z)jJOscx=C(I$>>_YUkmC8SPJ0U#CsY+$vhUV6uhUxle_UHI&X27dJOJCWPg;J9<pm zE62n9>#yBk9i55`uP>fH)GB*j`P^rB?{&Ryg*R$eYo_NvlyDdPyU;TIZ`|}&o#p#? z8|>GRT4<bqX?~OA{D%c64ED1fR{Z-Xa^ez|Cp#~8-sS5zIr`D(_txawewQTF)O=$n zhpqNqIcMqPoJ;A>_vDs)I!$m@E_p5<apIQz{n7%P^Lf${F^>LR=X<9FzH$_3afx(^ z5n8@Q?Uq?lisiMP(^pN|JMY%ki*ihws`jtvSI8Y+n3*nC726ir5O4N9ck#`XqSImw zYTNUcUo^11ur%o8x}N1r%y#MCUwI&>(CeE2t(Na)a<Y?_eAy&x=I1;A;g7=L_b<Mz zoZJ%m+xgXl>0VQ`E4M^WEt2~gzBXues^Yt~p4)QGuP?fP(|1bjW|PJpwvM*9gEogq zeVr<^Tw<?fm(1Osx4khkycbe^McL2qi(eGA_V)Fk35)N`8knbBrElI`yd_H5WYZ(B zr(QShCS0=E*z9p$yXCH>UZm|*r;OBpJ4OFIzBbz_(fs=7oQyD;<2TE)ZccyL<5YjS zWXtEi?Bmm20yDVh9QB;^wsE%qq#ai8pC_K*_;`ZFGn;2I=J&alMO@*U-7L3UFfe0Z znuUyk1ka1~<{4SGlD<KjXOlfM73at*=;f^y>s6c6q>wOUDIX7eZPm?&J-6RpdRy{# ziP!e~+h4LTos?~T>#5h&pnIKV=HE*_CbbxFy-bh3>N|htvo9-!8GPni9R0F|^Sf>B zFP`Gay!!IQc?T0RivM?CSJM>f@%AX(oc*dwuD5OG72c)^Z+DjordBRLYVg4K|2B;+ zmkpPRu{k`M)fhMD`77~xqAHr1alJ+d=UrFec(WvIsaU$=wZ(}qi!}4}D-$0JGvs%z zc&6#SZ|%y<Yp&;hJY>-)$rlveQdC#hxYP2p+=~*iH{bfMMxDL4-_z<;Tv2TK#cP|_ zMc*hZ5Wf53=ifJ#a&g<3MBE#5m#3#all)?R^SE-%`Nea1S9vd;q?;G57rw%L)9Wj9 zmTpc^<FDT9xbSc1O|e#$l`GAIR$tAzx9h$By)*;+br%cs=4C61yQ8+3w#`ZE*zIr2 zeS6ilSKBnMDac$n>m;#zZy)E~v)e4CzWgrREqLk3y$eSVd8_qYY0=pk$(nuKlY72s z#2(j)uXmc6oGz7lq_N3(PvM*gX`$7ZcNhrI>Dgx2^=O8Q!D@BCZASwOze&vfr`mIF z|KnL7Tz1!nOiK7{ACz+=$!Xz)ND;xb=tf>P=imhGljZgwKKu==Sfz6`MEHDnOlzXc zjP;k=7z-tC^goXd1aVtG^071Sb)4@Qcfg1%hs9-O%(5sm);6iHR!f8A+Fs?oO1*93 z+p(x4?)aLtxihQ|UQD0I_~1w9<T;kPVHf=8S{=R91DZAy<7jgZp2Io0D`EA4+45O+ zW;b&8)!bix)9Curn^}TK4gW3bnDnQ^?EO}T&)1(%J>Xm77sg}Q`_cQ~im0!P%#JAf ze(w6EdH9X3FsovU=-1fe2aC`1eT>b0ys>KDY5&&eRw0{1uU$K`MAyZQt2v`%x~Th` z5^J-k3vR!>`Q2ylwGFP}-4_Gby?$i1_<6;@jThhF|M9)b@W}mQ+dDdES&yrqD64z% z)h*D!P~y>!zPG`@=C#jX{%xxFmEUQsdvCuMPWdY>d~l+>=8q-kGQKxy^sT)9Nn_Qf zzdQS^y@HEv&9y&m-?^^W#+vs+>e;8gkte^eyzbjky*BLlN$ppB%7=7H%z2y^X{en! zbpNr%#>!mJrn~AUo^I8y*5_7i$`LxQ(%L@b=lLSDHt}~2J^mB!?wsQ^GyHg==FJku z`5JwmpJR&IrRP1j=sO#)QtI~m$uiB#Wt-nyMLzw0h@tl4Pw@kJ$>}rra{meNUv9ZL zC&+77zB<Q}$UaAz<=e7~WLVP#X4VF;d~$O`R{6zi`lo-g$NYE~cY57VR?$_O%U^1= zn|VIEXqKUQV+&LHm9$<xu5I<H&QA`{IKr19Gkbr8?sYC}|D1D*3w_l)gqsdd_*oeo zTlwlnA)mbAZTY!&m6K*>e*SnleOcs-C%3PEJ=@~BubOe?UO&y&Dbo5!%Qsc;3)!S8 z*Zff6cwuh(-RLhi5&GfDt@Bh`FGSz}{3&gog_nm=!CsrKD>poinsw{c&qA4-x~m^q zNL|(XSo`_&G}9w@EuX8;+`Os8`*A=;Sg+vmj~eMO_1|`ieVw)P+`9_7mW6AZ1z8rp zWoLa@u;p!n(9O3de@za0yPbb<#kcU$pYINJ+k8H6-u3-g)YsZi)#pCjO0RoY-Ir_p z$YR^eia>z}6?&diLhHUOpDJAVJ|biLr}pLXS`X8ORh|}gdhPXDnxYnY$z<d03)8%v z|7?oXFnahc(pPf-mKXPD=L)%=^Y_+7?gKr`Suy>6;Of}|i>el<9d<aZpmXNyE;XOK zC%=D_dFwf6iC|_<nxe4!vIte<_^VzDA>Zs_YXK%dS+loqZfcBc%{O_Iy3gMOY_w+Q zJ=pc*XIJ*g!<>r8=A`R?^!RM>z$7Z<P0E(-*-;uz!Hb?u6?=PE*W2^$?1OXa`PEmy z^PVA;?)s=Bc=n=+YK4kx6*m1|aJ+Nnl=rFH9jg12xHYWu4A)diroWh<+L>bW{;w13 zYZLCm?b<Io*Y268);gEHi*-{_!ROz13P0A$pFhj3yXzb8!|A7fL`tj<FDlG2IjJ^R z`FwWQQq4pOBlC1Fy}2{(4xgE6?657%&YFA1hHrIYjg<y6Y1&&`ryg<=Ev#Ow%C|B3 zP{du8g+WHE!#!n!KgDSM%(_;kJ?n+V;<mD#^(HsG-m30T2|uvdK*djK&KiZKkB_*t zdad?U6g}={Y@zl<{J{59%RaowvhZJVZpYer{Z1Ese=}Uj*p|6<Gt-WzMu!z-=9(Xu zd|N)x%FIc(Q)rUPdZl?cI25jzii=;+UbDcuFTMNN+G~6Fho#?Nx1d^X>Z-__>#oi+ zb23ofsQs*P)*~0rmFZzu_MTAQV0~G|%;~b{#_Os3Y`jmJ?_V6X`cjtZij<c=7AtG# zP4W7-B4N(+oA33fYKN=}Jr!9U^2yt*D#V&EHxD%OaB4dfWANE6vrHF!O>6eLHiLKb z+AfAiDoGY^F2A0!YWBXzlU#n9xrg31s9L(|t;TfkR2k!U<_ldin~oQiiB03WUMBYR zVE@)HccvfJ+Pp-7#aY_UwnWzY!)f`5pWl1582WdyEe+y4UhK9oy6Qp96qQyD?&LS$ z#5y*2y;(W=QOd&)i87OqRd!UTtnOn^^pH6olC73{<ZJBg<vZ?7?CrJ^IA^u%{rO4! z7e1eQ9Vj96WUC%q?e5gO3NJ3co^^e$-|;+FG2UNG3R6DM^PcBEh4+Z|Qm(7BGFxi) zH$B(8$CbHR)357DVa{rWa_d;@i1-=vH%G7gT4l?2^ILqNgwXQEUz$y1TX(3R%V>D_ zU_y%d?)OK`WEaNh24|aTq$VC+x7|+7GwgY7*o>N@80(+c-<NkT%Gk11^2RncnK?C0 zOD24JVxbqO&3*f;tg++np6|bY)&+fhoX)<p|EbBs$Fu&_Ex4F*A!nv;s`gZ^=7R|$ zzj~5i$9~x*Yh4-oE#}aP8XE~d&2S(26Z$`=c&lE@dBDE-&Woq(oHu2x-ffus-}e0C zd0P)oo~$dyJK5_&_0qs_bzg>d6*=Dnw_+9d9Jv?0?s32=we`R5@^RmM?e$dT>7-=# zr_FWkVcAN*ZS9uU1YIcCn0jX86)DqMXE~$ZZnO1M*ImMVYS~u1c|OpbFFhyhLh9R_ z0xHw9w#jF#zPV`5*)p}yn|U_Xwm(lh7f>d1XkBFLO4Hd_Hm_Q~FMQFoTK}zq%Y)2T zw|_0`KG~`JtbB*u(xA-B^vdZop2%GGe4@Ja=>KJlLszO8YHz#i*Z$J@GS6nOUztL; ztI`TZZf>x?Uixv9*3xyaZ_oTww9-ZB_~NNk51sT3)?LwmsMvk;*R;^W18-(#GA#3x zTYlekb*HDy<R`5U53QK6ZlZ|avhHxb+g?|fth`%Xz0?1DmHr9)TmNm;`kbP7?!El> z!pU#4^JdRocw6%A;k&29&Wej!m27%_>1|2GixN&|;g6G(lxi4GUFEvEDRcIzr<2y| z?75l$@6Y=4hl>syEVyniI@Ow+yJT~*wZxa)z%>@DZ_N|Cwd!KF+rw+;GL~NOj)}gy zCTL}#ZvP^QYp3T%*UZ;_{&?vR9Usrlp)MVd8h%CwTh_li;`wVY>!USArEgS@-28f? zpYzPBwa?R!3cN0r)|<ax!|L>p1f6R-v7bJRf1FtOz@pDrJ^RXRAD<bb*R$5TE#Dmw z(fih@{FeyB@feO@%XnwmUS1Y-_LuKkvEFSz|5dH^+<SG&)U_wfrF`$a`933iUybhf zig`C<?%5aSNK~%1)H)Wf`FnB5ViBQ77rD$P>}tJQ;^x}%d9F>{VaC7nEZ2YDtXiYK z^?mQbLpF22sW2>!Y7Lrp>cNA6vzIKTCr@57qxRatmObkOHq2gQEVbaY#0jZ@<44aQ z;(PtoYHCo}ON*|TyuR*@84me%ZI^@7KE$q_lB+lIwPjgDe6~qu%0k!ZZF#BJMSnAR zTweXb=6aY&`E=#~8zyw8|6erKTR6tBvP0iNfbGj>gL|zvFQ4)8zj*$T?_?FDP@j`p zvFZ2U@3zaE*8TK%>Z{5Xaa@4noYp}tilzq5GTO;PO*ezw|Y%a&V~9tzoFSNBF@ zFY9H+?#BnheElX})MHz+Sa;H&pqWvNT~({?dE1#MX`By^c_#gNPPXN?ueZ)mT(;8p zGRNVLy7lMJ_)KHAH9fj=r7*)8pSekjt4;2`JZF63)57Y#jDK^aml$wyHeC=C^bfk; zW-{&c;xBWHRwjMsH-CILKX3XTsU0WhZ*4xLkTPNJ`MUM~`m<;7HZ2H<t=}>?S<i3U z33q>AcZ>hIKT|^2#w`w7eft+5-)ogASNxvn{@>WQ>eX?UpDb73*cdPGV=j30#L(*V z=Od9FrE_}biDp_^DV>*p`qS+8<SD0@b>Dnl)^X@S-T5LLnd=8dcQ1H!j<K?KTG3js z%`<aNqjeuY5_oz&S+ViRlBO@#i?f4QhvjtC?7g>SCNIbB$&-EZZl3C!8_u*L`~1|L zvwpK)o4MVt*?D@xbDLvxWoK_}OwQIanQeOOtr){oFWK{_Z+Cu~^G#EJjecIV+s=Q1 z5;sNW#%*tY-M3BsP3i8C=Vyu+hpoJ&d)wyzc45uv!xN&G`mLV1cl)CmlYY53vAr;2 z>-zhvCiSF#Z<^_0gM<ldSFtq9{mtu)tK4FqI`8w#9ei<S&M_-PR$f2boR@SvY**yJ z70)e0R*8BoU6U~RdH<(Z^OBPzVtD25AHVujl>J4agyD&z|G)n-Hv3I~cwx?Ai>|^= z>$@l2_;+z)^V^Jyx{UMb>o2EWcrTo?m1&Yn<oDI<v=55>IGJ|uckQ$1&u5<QPC0w- z!u#jX?N#pY*Y<M1%{fVJTV6x_C(lVOb(c$=+WsmgnmPD$$@V@i`1bqQKK5%TXDgh4 z$lt8U&Ar)2)|%_UMCbDbpLSH*nin5i_l9p*?V%k0y9W(6Xz%uv5ni5|$ndo9UH;@- z91~oPbiU8sU#I4(AyQO)B5dzx(J;67jfoa2r@mSBKf3W|v8UM#pYwV@r@BAyIoEJH zgFoed@ro2d+pke`v$lHOeAl@qY=wn`eA>=`cjMYyb%K^y+n-->UzO`@t^XvwRrX2e zD<9l?-TwH(9P_vS>u)P_xG{ezxmdpT%+K;`fwnyt=e^K-8f7;zT+LV5srsDqXL|)X zKFKd<p3HyWzs*2*>ZvQ6b}9F!&Hna;CH>nB&f^L)L7zS^T9~>!>%7tP#r@jL1Ac6a z$_&V#S-tt%iU-f5^{V7NMfz`Lxm`bY^x)Zdk><V|qfZ?(EG+9?bRhl4Yo{=ma*H>? z@18V&63R1kd@xmO%VyRI8cku<+y}R<b+~4~>Amjsukwr4re_!LF+P5#-R_HG-maHw zx89n)Et_rqe$V9nKf3pCm@m)Q{%3RjxAQml)mrzuHE-Ydb*+qLQOd>h79}qP%J0{j z_qsK|y}kYOW&6LE%f$R4dq1wpuU)Xdac}kaPyfE}pa1vwcjgb)`#)Rnd7GR6_#nId zlUDs2#rJjJcmKR>|2Np~*Tw!#xwp+gm->8|wtY`4yIcjs`Oh7XXPEE*c^0(T<9z+U z&vPt`+sgNSp1UOT6ubS8gQovp&+86c5q@(0qvzV219Lt*DIZttRhpF3X4JPhFfX_3 z?!Fb*-)@}H%A)_p`pC_123Mn+za0^KRcd@XM(bI#-E+xPhhE*Znz_^bQgPf-PsKUf ztBqc}M?QTiGRelK|Dsmc;~i<-`kQn;HeJsQyJ)vnJK?02wY_$($Rz31)jJO-ItcJ^ zZVuQv#mPg3Z>906=i7JA=rf=7w%k_cy6n^QmM<5ry53#?y|`b-aQ}bHzcWk|#gfm; z3$Q7EHr^~_pBQ$Q-~Kbtaz8od1@~Xy;ApYv>ezfeQAGGy<tql2%$~X5%VKA5eo@tT z)?O!1cxTMQtBd6~+lBFdF1zF+YuS2BR8Ft*#m|ht34!;%TI$RE-n8Rz<72CDHy`{~ z%?cGZy_#XN@@iJa(m&<vwo8BCxj+59x?k`j1Ma)Mk8A>tzhQb<Stfn?il><A!?=Z3 zJKpyns`#AV;5=>Cgg&P`*Nb;=oFlWmV*alytJTbRJ(=z^d(u|@#77S%<$s=fD}DXz zon~Rjzp{VXlyR{2XJy*+^cUZKROURNnwh?}LTatp)mfGHJ7%Y7>mM)t@YhCkLE7qN z=2^bG7dJoOwInZbwL{SF25$*l=f@@+qt71mbdi|(-BqIX$3u-GEiR{D?=)QO-pf}$ z?W(;Nu2s5guiZg|+e=k-TcT$w$3HVxeBH|SBKyI+-S6YRy#K!UeQnJPXZc6o@xO$s zzrTCBz3%mP&>gF1V$1Kc9&oq&B)D$ZE3J1spUd6*&}RMtw1d^=*Neq6b~Q6>tG_XT zmi{!z|5_;jsP=ue{M$7TBlBh0Zx^n;;$<d(_j7EJ`fCXl!N4~UQhuIU@={~^DNn_7 z)?9{(W(qv%3xf<R9X=Num+a==wmJ8k>-kTPb5mdZSkrv&<IZz`XUCdvo%^h6uit*t z#@VHN78z_v>?xGE{Wl`^_(sK;sa|K>ZiT+)wb{RAh59zR^Ow4c-4cuWH2a<ho>ZHZ zb=J(U%=Xa318rSZg-Pf4Gnf6pQnb@)?Y#xlL=S0BJ=MB*yZip4$gVGQzy5vwR(Aq_ z#$$^`_AfSn_`kXQncb$;$esVcm9%x7czN#X)zA+rDoetc-5zf-5bXWIe#;>%Q9&l= z79&6NRu&JAt-UQb`3^CzWaYC+*m^}M!p630)vD;yc9~?W!}oqmR@+n>=Re&mIZ<-r z&bn9oL@ixXj@Uhav-x|}{a@Esn#Wt&9xIucwIJ6-^YsH=h6QIg+!c>_WvIWT>yoEt z=$BIhPWN8Nc4q57mn%M}*wXarSkluK$5Pa<JeZboE8ufZf|I5Yf6%uxpOvrjA9>HI zr|50|Z1PE#YWB?Hpm0~6-dpEbKg`lI%1%DuB+7bBc>A;nJ#m3m4$n`|n-ds+>xhf7 zon}DA;Y}Yigy!paGxdCKR6oFVPpjdy{?fOz+9vV)n|`|P6uL-5<yNXe+3SnHJKM`; zr~NDTRur&i&Fby@9X5OKu}zmB9AahT@9Q`CtjZmGf9_|co$^Lmf~xP7d)(gLi|Eb1 zvQ+x>%o5HG0uimQHs>Wxw(K|CVRoUe`EGe_PU5W(s%s20QeV$MyujIV)-{KWztL9< zH}BiMy?<S9!o}au1zMU_-fi!>CT0KQAiu%vvmegp*9qJIy4ZiARCeFjwfRTy|2!4G zuL*Q$;*b9SKlm9A)c<>4|LAr6|EfE4m=C=F_wN0oOsPLF-0gRLJntaD;s`-8@~0Nu z7yAD-{(ozJ-RId6dedk4sQoxz|Hr-NZFc<O{`x=3BCd_h@^ATVYJZ8$uYV`gYXARF zu}$r-k`JGoo0&yi1?!(H&05yUX24KTRkiDoe@U%GMOT5C=&Fs~1%1b@H!gL(ZPKvy zh4YV?>;n0PB6CzrH6?0{1es*^p107uEth-U_2vx+zFl@tAA~(Hiq;fX{ln0wCY+Ib z;a85w{q2TTYkr$avKR`+dUbDdczN5)w`@*}&WwMC$AXS^J6ODwh<N64IB*4%^}UJW z4>D@Lt;(H#?gX1(oVYLF#9Mc!mbR{va`#M*4E=a3Nyqa;m}0KYf3A}%c~^NChVh@) zuX?@bdzJmR1f{u~V-~be{}=Uc>6?a)I;lmH<wEiA@2oo|wAFmo8h7O>3w!%~guY*` zX*2I*c*K4y;85jp%l1h^Q}g?G?k;a=@0Vv}@bmLqWNpoyw6p!SOd`AFfeO3gd8d|e zwaUJ~^5@6NV4L3$BpDL&>+i4JoHX;`v>iLvPb}awJhzx@`5LV^_7xlq4}um&>RmMP z3tY6@Zsx&*O~0p=uF?pon!I_HRPuT2(D22AEg^>4JG!b5OqbpCdGmR-^KLq;@>sI& zcc$&x-F@<0Ud(C}U+#CJVNwj26;Gc|aGGv#PT}w@w_WG7uI(>d&TEx_tmDjztG0%F zCYsjl;61qW>2IEGK`UxC5Bk|UJ~V#u&c-j!Pc7RzgO|N#rAo5Yn$y1FcVA~MzPPpa zkM*rv5o$?WI`uxqrU(4mzduIr;&)q#&)=U{C*5+dvE1UgU$yRQc)h6ozmNTeH8nl; zKicaL$p1Mg|KR@rzxVb3)>g0cd$EZ1=+FC>=fCg!Zu{rw{Qp0{-uoeS;*|Pgr$DYg zX8o)6pWZNw>?=K;W9GVf#`0eo$&3@tOcM*$mO4Gn=6ijT#rpR-#m#!!26_b-=f0Tt z{yaN(=sC+J<-6p2)g}ZT_1(GEN>1bMcaOSLHan+mD$zOR)W|*aYQX2;wil*P+<IFu z$YE;eodwfFW$)JH-aqadKL4j-!^a!Xw*|0<EHqfveBDVjbw$rc{rJ1<T6|;q)Y<Yb z&2iRhy)>QG=iB$hKL%%)2kT6|JtyJfk+YqtQipys7U(I2HlCWU>Z6w2leOLP{@vT| zmPN%g1dOiDS@*<v!{_KvXXU=z2)uYEDS7<O!NbRYybAx%&u~CW%>3Q@c-doT6YuY~ zd$I7W;A5R#!Q7h33Mn@89(*+3u37)(gW$Xx)!Yk~;Wzhws`Gc#$<}(1b)t5rPv~)m z_|X0frMfv5?+*seoN=|V`P@{ehu#a9Oj_}0qsA$&Ih%Dny0iIz?|!Fg{(DtH!LbE< z%nwa&=QsTQLRsdgpG^AYV4dgdCbwK%xrI&X?DHmWj`yX8a{UH3Zy!F$EdJrv%r_3d z9#3S?{A+&g&q=f99c+R!sZY;c-lUh@-o9u;MzrK!p`7=B#2Pk4`akta{IPXoVeXYo z#$&fNDzDc@X-Be6Io4~RGHZVV&yE6B%XhZx7JSt&R9_HqRyR<DweD$n9qay|v-fwt zuYF(rqxb#~-al{e|I?jkTiv!Tx3Hwd<i}re{kS7*er`@bfA7Q;d0E+ouXmXny|%3X zwY<J-^5n@s{>T4$B)<B80<7o~I8yB>`GxmjRQIw>@XhXCntxvJ|EIn0@7sK4hI#h& zegFTx|9=d$6^n@hbcgvP{eO@2Km7SwT=U@|J3~YL&*}A!k<)%0Gv8PE^1jAtp{3J5 z<%rB&Y?yxVNmk2UX7QhYAFQ_h#vjA>=gS+G?#-H2_k(x8+%1tR6yy@TY?GFu-0l;f z&z)nb{;emx^ZNrux5ZYcwtx1yR@)oZc0O0v`JITI&y=oBEjlSBq0i>Hubft#?!SKO z_hY?!c6UxbO=g>(UjKYv-%nQy&Uxn1LPDXD$&aeHMp^es3ZJvw5#F1TyNG8-G+XZ% z>z<7j^Sm|LB}=5r-Q&U(S{k&xdj8I^e<zo0Qzlt(UG&gY7TvVVH-7JV`+G)bP^(jH z|Ay_)pUwK1BHn7g>yEvJ!^^XqcL;a}?RoV0z@2U;i}%;|XQmYIn{qMnZ$dr)wHg)% ziMKu<9()vLIB+^#-@v~3=HYGmjM*2fTsu>kmWD_4x|tqRF8}k5?_1%A1Jf(6h`LRE z&u=T`*m31!!@8D*ixj6EnzHK14e4*aZ#ho9<B!>p5t8X+RBn2v$=I$UmmwhN*Eu2W z5Zyb9k!5@2i~3fTaLr@ypMSuhQGH+hw~HSYmmNRO(2!<%{LXakB7=gL@2{>pQt@cs z{{8<M*x9RZeEod!V6*#;kH>>oEqS!le|wXHe0b2JPsMJgQmK+(xK_PLE{oo5w=Q2N z=s8pJ<h+3FW;+Sd@_$mCUV;|WYY*IQPW~?XA%riYKOpS!4^#0ej_NX79QU*SdvpFD z&;IY#``i2NesQFyr~f#}U)NCodwcz1{`w!zZ{EIr$p8NX|3}c~%ZeW#6y<Cx8bG~^ zA6w&pZ+-FV-`f0I?)cxgu78;OzJ|U2Yj}O@;ls|La}$rs|Gg-mySBMn;f(hxksBY) zrT%_k{KXu8`dh(2hVHaJJDmx)#R>%%uyE<0)?3A;9M3(SU9C)Qx5g=}ZMPS6evmQy z?Z0E@N~Q-6igQc+G#H;gjbJ;GvwQND(-CvCDtk*O=}W!l_ALFcqgP@n?ziaO()}?V z8jqhgIsf|jeru;`QA6+S(&V+;_8+);C*J*Xz4l!Gmwg{>baM5YY^-ul^|BpH-p=uk zuS#cG-a_kmoj-e+b!Lk_T(t5O*W{CaIroD@ReQ>r<*u4e@hI+#eXMw+?PLFPh35fI z3qD-BT@|9dW4(`>u+10K3-V|8bsaraX>dS7BJHBi-Hj7_lD7y)sZG7Od&xStfQ6r1 zu5O5%6f1J@psi)s<ugwbJd8>rHLmPCqENxwa$wC9r74e@uKnQC@OvkH=iBdn{d4(u z2<&@TGj&gG`##p`2c->;1%%|yyK(nsqlgmQUita9M_ztmY2cP<E6d{X6pIgCED>_^ z{{6!lHf|5i>q>1MU%tM*bjow4&*onk^JjiAY<;k?CM|ta`(O6Fym%91gM-NhmvzK0 zY@Bn+f&Hbm#DnL;=OlkkP)k~OPea9gi9o=@H~wN8uOH}dXzrZ9x$OHlL#gFq`K!OE zD{hm%wctKee9cGJeV^yPfAI73^BcEsA720e*ZRlp_J0)Xo|o6LGkh?w|7<=X=+W)_ z|IEa?S?hjpua^dGevsds=*02ov;BYLe?R*FOYHv|y}xzWI`D}ZKVI+u_xkpq2t;9K zx`6kW?g!9WAo+hQLqmW3`@X*)boA@=f9H<N*Y|*m!Kkm%w;6)I7^K)AvraB}W~?~* znk38554EeK3*@!JQyULSFY#EJv}JyyW7W*S$mtqWx&+T%b^p3uT<kw*Tl2e(0)F2l zQkHmmdI&D#o1Ll^VWM-nw*OeV<XW=_O1;KAcf|YX`ImhvkvpFrsv(jpQ7`B_bB*E2 z3&)gB`IX*Jyt(DVK9Lsgy5yBtpFFBlu7CH7rBW$fAjqjw{99E>!@<-tT^F61nYY!v z?ud7@Hbn<ShTph3bHO*EP&I+wX&ejpB=2cnTacqyelh;;{RnxngfpcN8iK7|JHH%B zN<W`Eb4^`~o|OhO!{JNcJ;ZwwpIi-F>UEcEM}onv=}xAyxANZY*H751Z2!=s_Q~b% zEa@NR)=Y5;3^NSY-qB&af2)|IP|}*tb&tDKo9$*zXFd5|E7T^xzSp-bSN_nXqO;3h zZ=1kXlg^{LCo<di*tvPZLVDufI@65*=d>wFJPI?_ia!<DujQfmc+cWfLar8d%&u2$ zFHLYUc4<7dTKBvBn+G3-!?m<5oMU?**OU~UG5mh4rgr|W@+W^U-krX3%lWBUzdqXr zv-_$g%lrsB&E7xn!OHx}H3c6S9%qR>*Uc_me#*S#d%M|-BW#I}UDA6!w^}c9c>44e zk7>`v!lF0Tvg#Y1R^8BZ_K*}`6?^-*FORs;1D#z7%K5pa_fIy7_H3>=tkHF8XV>pu z@0Cv;qzS!VrIWCxTwm1l(!K9eK`SDd-`4$PvpX+lw1RbN=9wiy8cx6UG?T5j)-<2f zS;Vsb{oNnsYu9H!*RndYe%6g=x!&s+FWDwGA;_W9Gh_KFi5tRB3w7@PD9;s+t`l_? zJiaG{_1NRskWj(++b=GtomphQ&~$d($|HYI?<&tRI>_ws!*Km7t#iK_oMp{k%Uo=3 zti1i}MpG|i>lfWOUad7noJ%=wG1=C1@})OCm5y6nfB4AX%4f}rqD{%YAzZGJD%)!m zANyUpaU(<ETGW?Yzb7+fB>(K-?^^%GWUuya3F&6pV_z;Dl${@4pd4^j(L+1X?4MkW z$cpUx5{vG}JFBD?ewkgmH0Jr#3x!REY##!yO}zag|M!pBsZ%5bnik7d-|ybb{^N(T z_?zk<FBI+O%zY$oUoQRf`T6;epNi`<Fnm60!<P1YU;pxWyRT98e_N_gr0fx{HITEd zZ9CpCzkC1ZCxY{A%N!ez_scJy*OMf0`mV0i+F!MnW=C8nbX!9^O#&>AISf-A)y>#X zCpbS&)LyVhQ&PIv$1Tq66l+O-P`=mPC9XjQ8v5#wVvgkOd7xYM{)aY8dxDbGLxJZU z#|oSle#&Cei!s~F^OV`k&A#QcOJ`|WOpAdAmuPi!UiP;9y9UP=oz7V(@@iGnw@Fs2 z-7_4g2k~rvc<_jt@yp3U)id{$r>yHLIg|0Ho#iT1@v7Dde^;C`I;Y+`#W48Zwp0@b zoz<sOgBhl@I@wCOJ9{Nh3QRijjj3SWfs^5dy=~WK>wn^vjDGoCti12{B<8jiB8AWM zPW+2BP@80_<Zaus)aTusV>^D{v%MDhN;{NsVahJ{J2##Rd_H6TmHoctvC1i1!&5uY zP4CoP8nBA#lJ^oz@#l7aCm5tV>~yswUz}RR(lQ}?=I{IK6i(iM!WPfJaQU`v8*BQb z`2xMJ#BJhZ@Rr>4QuWulsre0tB1UIEPc<%W)y{rp-Mg(&UvEdp^^*=~%ls2`f>&@h zt}1BDW#^Y;No1T6WN_=z$;<qV4D<iKQU7uBd_5b3g{{@Gn>QsH5-#c_nccm0MSiX^ z+scrb^>#I%B;x;G*n6#AzP87`KUVt5$&4o1{F*)6_xE2+F`s#)@YN<Ki;QN!96p^Z z&WxKTtZ*y+QC2cpbdI%S#EylM!s0iAx^{4~2shlnQ=oUDeBs?GU45G#ZtZj_5a6BU zcHp|Rw_yGsr!Jp9)+gNQ@60>qWE(s?B~)_XS&MaHM)SYamXG1CotsuA?BU)WqNF!x z=aid2mdnoD$ktTdX`P<1La`<K$W&L(m&fa4^)`AM?pfIVfIH#&X)6o&r`dm7Cuk%G zxHwgJR;}#X@i1?<otMYdNgCZ;m+aZE9hqpbx3f6d&PuGz)aaPRlA8~FPq6L?k`g@4 z{%aRggmAr{>#LXpkDoQ|lzMUFPlIyl`$rt}?@LKXdw$)^_<i=-Q|!Ahl@<hlzW7XD z{9MExjVY;|3xgjxuM~MwoGWv9bHtqm5y=N4-tUiZEWXd>ueBn{R=VWDofC0UyEYtr zET6S_X7PFUhAbnerKfJ3Y&H~Y-V%F%@n`9hV-Y-BUYZA5?=L8B_$-&`sj{QqTjU08 zEkFy;cLBY3Uuz?{`l_Bh`+0ZnUJJd{zy|NezqQZJKfU<KZ1ZvJqjvY>6+cg%yt{n) zatrI(OblDDZTNTZ0IPeT$c@{@o4)by`y^WP=izaNhIIM5hP$!bHP>skt|~cRx@mLs z#}t{<?&svE=jtme-;=+!Kv>%KM3#tG;-lM7BX;nz2~=??=bh>`{kYFML-vqP&$o%m z3opFB@UGQaQ_@&_im%U;zZ<7c+Gwt^S>}P}E4_*+oy|G+4}P_<v9dG^C^|gKi@I{_ z-CKhthI&(+LPK9f@8=Na>1h{pm$5nD*8XB|qJbHU_nkD~AOCiwMjo|W{aX6}cKrr( z(|U<x&IQ{qtj*qDpyeZf+^2}~ZT5oP#H8MY``=&G9`n|kUd!`*=hhA`wq)H`fm}xS zE~q=(-I{IkZ{=o%<|#~5=imRmsjIfV_o5;5>Bv>R(+<u3Z=+RI!Sg0+HqUIG%^E%S zVx_Hzek89H;R;<c@6NS*Cu$oMV`tAU6cJj<Z{FQ_W7DdGhyNU|QBb+Vyh*`aXHuXl zL*Cw3j!bu?=ZLy;uI!4Q`+K`$$<tp8b{pQleX}*hHROrGF~zCYa;?__cQU^gl5)6F zv3zT<2-mG8JynsrvK7|Vzmq)q*!76ri)wc3iwxmj+qX&nUT`9%T%KRfmWjc~|J;XP zKLi*GiYi(j3tykSFW)5Ubzkd~b2q*obiOY4sd@SN4_{`kHobrMzVq9^o>R0IS*>2< zB`$Fyq;rd=I>RbQb&e(l2<qr<FnV#sO;Dz0^{zu1HjE4r*$TBK6FKcpnB4N2_d@B9 zop&OGb}ZZW>1?W#LbmF>mPlRp<H-b#!s(v(PD>PDI(nne>j+29ys0O4y={n`w^GD{ zYw4nxsfI=8_D|69UcuFRYRZehmHBIWpPLEWc=>+*XwGA(eS+un+7c(Wy)r%jb6uX9 z+g2al=@2<>V`}*QZyQ6E({-}b(;pv6?D5q*+2iarQ&w8cTHZimm$vuHYZd=)d&}kD z`tkeol%0kAPffN;y0#W=&k@w|v`GJW?|?<Sh|$iyn^iWZU1Qoexkc2hD(gy@yLiP) zFOQ|0%z|I<5u22EFz<%o4vupXIZMMrQ^OAD$NXL~!|}PZYeTqg#IXexMW^_lS4N6x zOzAlv|8qwC!HM<3?)K|@!@QC<8GpS0TtMk(2ZNYX#nT0b26o1IYfJBDGSv5TB<Cdd zoIQ2z&aLBreePWNxql{yVnAq~&M&{kA5O8H*0FfJ;o9FdtFqtx_%^G1FYC8&b9VoJ z*&IA)o>gb{Wj#S1H?D&LeOYhbT6g|#Zmxav-j?A(O#+wXDVE8XcMAvwow_nhx4iZI zAJJ_)quD>!U0|DgLt@U#sq2N;Xua4N{Ud8Jdz;-)C&p%8t8R1U?A)BAVFui77uI<# zvPz%fIyug5!f!6Y=xc?FF=ulp1Qky^>Am@v^M~Tq3S#y38wwZR`#fDpJS&JPwbyS~ zYqQ}u-N*d@|6Z}us?pckFg2+8qq@+}Hyd@ldwTCLSgkiZE@lE(LA36XO18pgz8wd` zEX;P^<WINByEb)F;k>Au8&AZwAAMbD{b0^=sS8?rUoRDyDHt}X!`j$&TGN`IqhbB; zj`;6ieyBUu(NXp30-0COZY)u1?k+sYU;b}esw8trl=ODNGw=96&e>d+U^VU5^`#5C zCKWySyXlwtyeHpg+w2pc{ESmm^w_-wp8`V;wy5NUnv-qWrqc7}*0=7dIkxqW)13a0 ziBYc4YA?JOt_)C`qJQ<VAlLh^OvXG*B!d@e?CJN8JZ8CP)vFi08zRguGB4K93MuV8 zSs~6~AQvv-A9G-7fYvM>F1<%v5AI}mUL&xl>$sY|+xPbccdI=f`9a2TL8LT8>V?i; zB^SZdo4N!a?aNM9nRxU*_r!pC`%VWv`Ml?m?~nV_T^Uuc{#sHN?RQG;)0vM`e}^eO zEWc-#7kPO34BM3E6$ZUOpFYV=5J?s|=6z=~kJSwWVS^I?^ZtL9m=vx%ZSpU_nREJ6 zxt||jhOj@rTe;RT=e6ks*+Yjip2|z7FL+@*!HJ_lOwO32-j;J`n@`fTt#_9FNvzw) z+~71Z^%QH=Lz%m4w-wf<&vE9E+`PNliGTLg%9OPxmj1dtvAZ=33#YyMHD9B;=3mvF zK4sx!n&Ee!tX<NOIPH9#lD@tDbK`T@r?c#7I#N5?Q?jJ-RQZ~RP7dE~eJr;2Hk$ga zP2O}q`{1OPN&ocI86>zwjb4P7G(Mkm|8<Yf>1*Z;-ER}uni?EC^sA>T-#6%00pF2p zdv(s)mtIwfx$PRcU{zMgy^Jkd+*9sNjTcQd5qLUB-P2lrU4KLO`-@Ag_tb+EchSpT zQ-n(2s$84<Byin10ke)u{@WqvXI#rPvrB7oX5pOiUeQ<j%l5~8t@US)R<G6F|EA43 z#&3t%qQg5*%#Ce4_)6>D*?T#w=8B!Dc%0s%oF~MnF!>?Z!Q}YL<TDPB<ixy>MTNh9 zvybWYGcm<YXRW;ZEg!GGE6jIeU+<|(PxaGf(vEDaw)#nzGkPpcnqU^cD{9H#ZN=sO z&+GL%({CC^y!=-4A?fgg$W=Gv&KgSXI<$O$@!RWX&9B~MKlSw5&$PrHj_HRDcRcvs zX@2r_&JwT3>z8&EPcUUW_G|Vg&pQ3QGlze5EWgcItjc!k`tt5#Ifn0_XDs=tu+DU9 z&p(lcCPqKR3)fyeF2#I6ERHKba!+5YK*GMI`GMCoygL_h+~p2=)1^?G$@?K~_My|) z-E(@sb0u9??8Im+cXg{=>-ngm&zhVd)~w?_k9p^bHudu?1?L#t3RkWcFxEV`@MTa@ ztEp>s`0>!Y*E0WvAFjOG^xMi)K6#PB>)CJj&F}g7sqXF@p~v#y@0-p_&E0rsx-pyB zZ$|NrE(ap!PCfI%+$cc&<FXu+zyGG6&3u0<^?K&B#oMC9%fCId)&Da$v`AF+%H9z7 zwJ)ubdt4WrtHmCR?g)tzzV3M9-@gOyI@aqYyRUOOr1~-F%`vvHc(7b1Ti0T{fm-zM zmc(ZakJrUpJy)96<S}tuU~5o-E8|n%GVYa&B<D`~bm+HZ#Nm7Am7VtRf?6P+@3>A! ztXf^;e5GP)WH0aX{lBY<qr~Gk`Kevw>HYue#B(;iNilbCg%~BX7d`!=FK{hN+`Hwv z*7sEL+KqFizlJ1Dxc=(&!Sm~_+VfAvoR>I#ZvL0|)%)*7|2vmz`tZnC$++{19@}qy zJU3b7aG&Y(f7dMI=betr4zSyFseISnn26_Z*U!IFtNeN01tBL3&D~SDPMyB7dtKLY zSFVRk-rQVfbK(~JXUXWxwGBIh1GFYWYh8{e1v7?I3xuUlD^!>E`JU_%U@6?55Seyr z-tT+X`!1Y)>XCEm%o^QdIpNPUd&+um-uis=@Soq(M?>$QKh?r3{q5&_>+C7JcTd_^ zUh(!|^-j;`jc-HWKH)n1p;V%HcIt(-8z$^q-8GHt6if0Bp@mNcKEHc&@J<ky;91A} zu0Ndx7;-Ok>LygHZLRV27dWzQvu*Kt2m4xHHqo=<(}j5D*k``q`F*3(w!}a8zsknd z+ka2n-uCeI^7#|*)c$>vs++eX-2B<k?D)T)=EY}YOw1!<K0oPOs!)0Jf@?jyHgDG+ z!zA$v{fKPAsM`hEiMbh#vuZqM{QtXQ<?}atzH>On$WGcJj2MPtbC4`)+F>Rlsmk$4 zuVCHkZ>n)~@@JH>ZU6K-?ZP`|ZHal?pI_)KHGK1<j`7SrX~Dax#fQJfnf!Yk|EKKy zr|qSB9g&~C&pf;Lt)^)Q*A_?h4$+NIW&1dq6xveGeVuq_;-5=%tqUzzuV|?{%~$Jt zmF-CMj{4-fjr)&%^?&>D$R^L*w^whKtoeLsiLceieHYl~Dy;K9BPYn>ct=%l#??*v zH!leP`}a2B-ps3gJ!khExRjQ8b?eR}mYe=AKKp&r_uLcLw>?j3{<z0y;|5OWx{Jqd zAKUkGdir(FN2>yOt<ZX}9oYqTPF1%9W1AE@zCYg+^I6GA^0`8F-TsQ}Z*JU@3cMM@ z?{o9Bsj%Pg#x9l}`Qis}pZ}BnWc%UZ^#S+KU3)U8UiQWZ`KBFWAWvosh|FVg6u5m} zRD9P@rdho84r}+`<J(;JwCH<dvN-SmUnguO7a1qTmDgNn|IgJu_w}6S#CH|!>{io! zoy5K$U(&zh_k<&JkrU&s1;R(R7NpruF;U`ZVu&$&z3z0^x{p7vY3^L~`@*b^9+_XN zD<1FP=zY6)^Vh7&tNT73z4wV_<6Mv_>w0(B-q~Jl>L~DC#QtVvLO^?6{i#}=HN1QK z?th$_y)*E_+2>_D)gRA~|6cL=PrSEy<D2|ryFMShfAZdey))}Oelw(A;DohDIg*$c z@IZp@z5BaGIX5p@zvlaVFN^WmyMGS^%I9(W|2Lg~?OQMV^L-npIH|wm+X89KKC<0- zbMf!Ti)5C(3eVl{_U_w}*h6j$e}_gHuY1*Bck}gSQ@1;^XjOPF)Y^N^-o<4*Kbd_y zrN*gOxV<8Ld1;fvIyTQco!_6!UB6U2b4{Uc-ZGYrToTu|&x(4UEo|;@c0RT|duOlE z`#Yw;=Gxci>CNq3e3a|m?3u-Nb!VU6FRRbleC*Gnk6X;<riJg#H#*iPZ~y<#>tAQy zWcltftNgS6XsF%)ouwDI_8%2J{>Nxr;klh$&(Hs#v-{V~_sUZsJ_3hG2QR33{=2we zx%67xgnbGfxe0TZYsYexcjxqNR}4SAZkq2tZY`zii_ec=mA&)%%sc7(d+te}mV17G zpX1?m-xDn6{rrAk*T3rL>pjn<ci)mf`!B3a@JTFB-X(*#%TC(;4-lNxv3g;sEJrr` z_1Hhw`CsDX>*`N0pR50L)93j+qQM#B=x@LNe7pC1Q>GlLPF%b5?e>E8J2U>g{IlP( z=j!{9I@14(?ZsPfF8U$M{@|Gz&+V#|yl=I)v;Xfst=E(*`@j6Lk>uAZyT7d2OTGVH zh`m2!eb?*x|Bv`ONS7!bvJADkqt<lnf7rs$|H~GB{{L-3@&B@gANR**{K*%Ws&A?g z-lfF>4hRsL#Jm7CSE&@LD@D!Lo_#+@R66F)EbrYV>nHy_)wb{cTD8v~IZby2t@x3= zn78*guVB^#7V(eO$8vV+A7DFgJYDda{Mx%W?w|Zw&%AL%b8&pOxqNNpZ@))UDc6@9 zN(H4A|KE1rHu^-u+s#Lx|39Gop=tI3>9(?eju}(Z{_1Zy{cG7;R_=Lc?T@56NtVE! z*K~tHquI}8n?XgT>9!}uhWk|WOQKJ<P2b49=(x!rbGF^x&3li^zdU#Duk@*(pX;TK z+oRp>j!dz=qp|JhpY&_TI8C;+B#VCw_lYe2Ui*Ld%Xae<-}=7SHkrL(Ddd&7VZC+D zf^{!vGv1xY(WLNBea^c>M^>FMd-$g5{oLPAOZQ7Z;&T)#M{|t8`xBLxVS3>{Y6_m; zrtIzrxHC_Iqe&r8_*9Az%f_4F=xtdq{%g|jU#&vwY!TJ}I=6(vI)_Odo_EmmWlU?f z)}ywp@>BC*W%x(6DURwL-iaUouhcyDHGX21lpwTpFBF94O|YXncpFsSv3yKjWAX5; zPUI1gq9b94ZnU0e(n?h3ND2kHMK3wltAy>=!uy^PpQKJiy#^^NmoLxe=VqVvpR=i= zKBL)BVERPYLu>C>27a~pXqMsWCcskoowN9_bT-qi`NAw4nO3l&lxwFJ2p<XMxLHz^ zpssgRDNN1iK-8*K1&*d0a{E%w?Q5FUm)fs$_CJf`9(9m6$`7nN#L)KcX8DvYCYx{W zXK`F3k)8PWKW9?up1(C!)5}&*OZv&;7{h#P0nGc30!P>!gvy(CWP1FpS$-n*t)SID zmcrb7^Ax{ZO<f(A{n2RY6}69cdmdLhzv63BSjU)qf%B1UVYgd+_qTQ5bG|dJuJb;k zn-ux%xir77Y;seDeA3;#I?kKhLq9K@zvHKcw&}-W-Q<_IwrqHp-Bh8Tle6&Kw$1IQ z^f;O#SXByPQPrdXE+|+&#>L!X{rc!WpW26p{zJi2{+>(FpRhxir7-o=n&hgS$9po@ z_D;^YpdV|}Ty$)mPWB=ltB>b+&K)#=Uh6eaI6pYx!W`#4+*=&gx6StXm9f@0+qnC* zcvennXvej<Qd^IG_sYff7jM-$dH1EmednAX_orIwpWG*Z<DlCy-Hc${ou+II32PcT z`%9~G)|T<|8lS9k;9xv9$6$h?SbJE(#Hf@)wsSjfpV=M1r1kSw57qeZo!s7r9n~j) zE=c<Kb-~BD8O=9l-&gMVJOQ<CI<-JJ+Wp@DYf;RLegFJpke~6SXZah?6VqY@PS%_+ zZ`MC8m$UcHS-#C7;RjXO-aDsQbmr=Y>gA}5rzG8foq8_*MgAFg@mT)Dlb`9O2kTAR z7@fSJx9yq~L&7h)+WX85x7NAt&S7MT-R^S#=lkv6U!(+VBo9d1w*`d+c<neI<fz5U zpmFNq_o*QQ|I+6a7gg+MnVrRRE>^az;I7I}^Tlrz3iVH{=bd~u{n(Q%`PtVN&e^?_ zjp4MYjZN?$0T;I13!Q5f^!R#O&7^9tGcxR2=X`sIYs~%c331;~Sh7FPJ0u*_q+Pzs zTT!u<W%{B2J@M5^dsayO)!VVPU3!9H+78e2V%g0TlV`SYAC3wrOHW<Gy!PFz_}bR> zJO6#WKab<+QPcC{fBg0po_^)O`L1WwoYY3=|GgGcH3r{uHe{S$&l|q1c)Pj9v51J* zVjF7jFU*wENiSwNP-1uV%^MMhg0iBfmnRh&5;nfrn3K-XP`0z>oynH?8(t?Bawe?T zo>I!npy95n_Slx;z`cWvZjTKa63RDqU##d^wT_Wtm4?C|oqu&KqWAmGo_oIIqCwh^ zuL<{@%j~#2at<H-blhay5wjvk2J`Pn46Zr-UXXPE`-NTZ_ji9?d5z6xjq}nbkv!Q` ztqlV2ZV5Ow8BWW+_tHvHW{acxxryS1`2uxDSKJooMxRLwW;pQY4bSo8>I@CbA{V^A zlNMVbY5t-$NJD$O#q6H!p0aYoZ{4PGVb|vg=+}IkmVd6-(7<l>)ok8mpH;l3YSG6x z?O5>GM)!op<Cli%4`MFxzL1sFay>WSU(-b>+LO1gPS5ysu<7Mh$L-C%H%aR#?=Wbd zoxf`DLYH4w|C$dfCqGU)E5V(7r*zTQ#;s`rH@MCV@-P%TI&PQv+-;_Kz;&0IMe@qF zS?R~W@#Wn5yry#f-KH|b_y<pZ2(-7aXJA+#zvs|t@$-xf?fUVLo?OYjHa%CEdE?zp zuIW`RN+pSshyKm-Ze3L*{bkp@g#3DOh7JEe2+G;lu`pEpc_Jw%V{>HPU3P{Z$paA& z=beB5-OcEJ%lF#;bL@wHuXDa$dSTb+{nMXGC+oHp#CrxhRHimfDEcsCy@JHN$@{Mr zRNXoA^LcFL>YEY{2bV}c_+z+3qhjfAx!lVP471WY({3hhEMYtz_ucOx=K>vXk=EJi zQ-T6c*-mq1R8?K#GyD5*8+JiXl#xPkQ^e9t|JR)Kom;MDO!J=eW6e+T^Y%x(K{Gw- z$K4}-d8lpH>*ix{VpvsDbnNcm+L}KX!#{r1|7*nHu=0^p`q}c@`iDPPPf@wgW~jBM z+C(w=>NdS*q15QwswUSnDTR8ATD&<pB~NiJX$tC6I`Y23kS*%<il`0O_`G<Su32r* zK9CxE?}XOI2`irpIK~~XJo8}Pp<2tm>(8E>$G`d6Nm(14ZH|-VmcB8o?rCgNS>e6Q zZ~5y*uP?sV`xkfrb%jmL$=>NH+>Gy@_6B)sL^}PLB>mF(Rm19Fp7VlD*6KyylcH<? zM%;*4v}MNm!lII<^Y(vv7(SdlU*Gh6{%)RM-RI*IUKzj0y}u~;?w-Y^{Mnm6F`ir0 z<;=+$y7SDH3ZsMXCZ1j}f39ERUY^pB{=o3X8kO&>coh%J<gve6@Y`wKuNP6~@Abus z&pg)?zM(U1hW@jRKYy=AO`d8T$?-D#Z?{nBOHrQ3g0HGr7*?zj3eqf?7ou{#?)>`? zcYU8MDr-9Ye)s&?02}i!UMF^6iZNK1|68(9@bF{99qczs_%H0;&AuhKJ9RSy!<lqr zpY!Jmo}Dh4mCF3=`L9(vkG}?psdnx9a9@70Tz^35z9(!a-Z7S(d1t)EQQd6XAGT?y z-#zP=jNAW*iQ&WL`F}+A|G4ST$gn<c&ykv!OWwOlXZ$ZwwdgveD<xO|LF8D5O~n@$ z27{Zon;Ujq`@P4bZdb4L*O+Zr&2-b!(-|5rzvP_unf2CFp@zwOjz4!`K9=vq(jKJB zut1}`;;`gZ<(@LN6+3^=%KgcfJoicCifx$}zvpet@tNeen|Fb<eKPNwlPMn}Tf0&j zzTek4#grPspusBk^qO|fXXzdG@;RrRKWN@g$iA!Iyy?UJ4T<NYt5e<5Vs9_Xy|Z;g zL|KN__Z_*`CAHjN7RoGdH_Hpwn9)%bA1PuuVQCjr>O`K?OFSBN6jeiBu3NrpRlqNW z#UVyhyBVUlf7o{Ih-J!6lNsmy3V-}EWq8mn9{*tT`8#+1y*kQ$<`3J(SiK9sc(+|- z6MHF@(Bt^Y=E1{bMP~DpH<oaxGq;^Q$I`&f^~G(u(nRxP`MZx5tNu86Au4%e!Sm0r zudo03X)1S}yu4guRZ-J2@6UqC?`}Pq)?CfJFVOVhxp~sh|2DT*{P-}jzNTST_YTMS zr`2p5HcqXaK9QYg?#dav<<@w%C3iIb|FGssbK@G3W<xs<Bc5x@3^_k;s@f*LjGI$< zj;Am}%rxh>#3}n(X`M&U{7jxRZ_a}c22<ah5jQq?-yf*edg^y_NN8)-o2GW_>gpS> z`I9cR_Pb^4dMa;Y$LNYDJuYmUY1e%3>x^^DD!yJyjj{XtMEu9g^YwfT6<<GbpLwpA zd}*6*iTI{)nM<eTmVdUitN0a~q3^x7?nte~-8+*Q{<TJACyNzsjCk<jLhr}b`f&+X z_T7`p(@cBLAF#?_@L)mC;-G~(-7hBD$i02U=xyYo_@wn&`1iSuO$&1k=lWgLsbRbD z&A=}BolW|s9jq(owsu~uN}kK2ufp)Euy=1WJHxr{)sYW><bOCR@5R=TQ1SHKQ?t`; zuh%tiQ>*LSciF&>`QB?itFL9b-OEbP&zz@wvBG)5%N(w`TRAV^e1DMX&TOWusf?P< z6C*pbLR=3kD2ASyqOECg@2lRE-|RPT^QYB>p4qg!=VsYf_RW!zJZoI9f6b7d-y5Z8 z_?>OR=9ePI_Ve{`t8VeTsePD1%*$G$ndj2WY0f`4zAO<x|M}w!6*=z3ra9|_uYKAh zIOYHQZ#^%*a#lL8EtUB{J-()I{=fJB3=Hez_8+<Vh3DFNQ>g|HN&AxmZrLVs$@S;w zZti|6bnNtvkVps7rw{hT9^GBGp?6+&(Wf<)8ltan>78@j`|j}!!*hx*TJA|6Zy8*} z)Q(kDy*U$k_r1ZhW2${$Rdql7uswe*E`_Ch<HC$dTff&@rFGvFS-$)@L&M^5{STj> zdduuByQ`jdSu?7B{luU}Yvw3<trW7Z)@!c&@IkQWUEq&uhd?m_l|pp~>5?R8%Xnic zvGmycNtV%%-kkC6IPTtVQS(=b;lrz|t2NHQ-Ys@(iEF~c*N@aD$8Ooh{8{)x>C=VJ z=kH7P+HHQJuGu2~OyQ4HC%44y`6F}sDO2rx)!qb-P{v8#GXk2=v2Z;VyLEc$kwf1N z@^<sB(g+A&_-~bj4p)bZ#Qjgu!UpIPo_bv$B{I@iI2%`S5{?@%mh)Y*UGowd%a z)HUj|=gSpZxF>|%bgEpMGvmnJlehjhMP!$(T|Gbc%=8($HR2sFdAe6>Kh3x$R=d6B z{`ZCNgLlu__x>WA`|D)~ujI=-|7`i}-`2GB;4it&%L<P#eknCWfTN|?cBgmff-ioL zQx_V{db9Woql>C2SA18%b?b^BC1UgAD|YS{@O-4Vqhhm9>EXnlooCq?PU|pmuP~4| z$k^}rvZ_~aN1L=XbI7d-^+J9}yK_ki-O`MUowW@XeCd9%?&ap!M;OkOzTfxZ@7gby z^Vlmh&*r>4w=-Nn{^3*Y@VtT_zc@Z0mAQ7GS!a8|ow?@)#OCb$d8E>yqP%wIxzBeu z*Y>yzPq}yWmh03o(@VDt8F}XH-#eX;Va^<x$8U~QzS0rr{$f`UBEr?WDsW2PoSgy_ z>h3C~Fuu&5J#)eYn<+C_-q_pr^QXmnNB`MXVyAO*uDKrid+S;M)32VT&+@k%J0s-u ze6RbVzYB7u&WP(7R996=*-nhxYj@<dxc<jm>pj!c(=-0a9Fgq*&JgPH=8YT!!?Vq* zrxqPr$A8SPtZc!RS@}z(OXjQTwTGRAcK#d%ST-^Su+6=pq4&x-)3`G0_Ldpv&KHzC zi81Q;?>DslD!Jw+&)Gw%Jk^)gokfowY(0O(p!?!E3D<|40_Uh!-t)Tm|5V(|GLDOn z)@5$^Ao%EKQfJ!Eo@E-$ohHvu-f=1Tve$h7EAB6LlMgYTIUZbc_uzwkf#(|-4*l3J zD|T6PnO*a_nZ2v{6+g}U)FJ5}A#D7i_Il#Rm_=XTZ8~PLSnaz-@BY)u_ty5DbeQyF zbD;0-1gp}|M?OAO?CYPy^6|?Lj^O+@i~0T+b<zSWlX;4l<ugn>&E}nNv1~WnXXEb` z+h!!cG*;PsQ>1pf&+|3DpQpX9eb+Z%D`ZOI>P;@8Q&#L<ToD?&BI|oadAa!(zvC<J z9ltj(nBhyPthLIAH@|MHHRXhJajx_VG5Vr7-Sgi$pFcTf)1MVJNQ$N2tYkWqA-n%# zx$Ui`(wl!4^_{bSw~OzZ!IC+DCsfDQCF@qL-<3H#HN;VOy0^~r&r@<!98TY<C^~oW z@6VjIjgzKt^E8941$cLF*NpQU=lm3EJt|Xs-<8><FZV>{`gtma*CT%M{JQv1(eCdP zVTJ=QPb%)Zc2;tgM!+;zoywK3q*}c`y9sXEn9BLE^sQ@T%F-03IZLzKjn!we$E1rs zzRJVewIc0=aasA#Kj*KeT}!)bwZ{16W;5frr+K<=FE|vXWAOR=<jtFd_k7Aa9IhY# z=<8{53o9!ohBM2S2WloZW+ZTG8qWQBN$c>3A2%mQIIXCjE8_S%$n4Ht=j!DPc&#>C zKG{?@*)r{!^p|z6yE7K8DKVUz{7(E_?&Y1mmVcaduSG2FT(`>o#@(B)FU?;pZ2K&g zU-{!t?)`=7=Ebk`e;tc@-ZkIyY}PyRjbY1oS!iBLvMipK8xl3+X??Rr`|HVU2Uz=f zB61!cO*q*6d51v4#tQ<0m$DNUv21-Cr8Aw|q;6wuuTRa}M&~!ZtDN(fF{qsUV=A?O z!K`_HA3sf<ENl1wP4J$Yf0_&re*EB2S6>&CW;J{9Oy7&Iubk6nSvoDZUoG#0REguU zdpgMhOLA`~X4|A3)Hrt_vOr3_xwR;ANgw;yiWXb_+BdyNll7Or-^I4qSMT%TX@wom zyHAE+yO4Ry`wnBo>WkU;FKv9EymtS!v<DmHpUG#umU8DQdsg@O@Frff^o>W7cjj#T zkbJXbZTTzztvkQZeK_^yzDr_-XSQB^v6j(^o&VUR`>h5O>UgSiFI2vtzU}p+Ka01@ z-D3_rS9Z6ecVoui8*}FReLO0@ZtH{R^J}_Z{?Yl@_dv!~a@WG1g<SD!!P7QsyM(Gs z)`a#O&g{AT-h=a<_w249r^?9c(0;>tZx}wP8XJB%WL7P-Q_b)|N!?mWmAA*7q-FP3 z{EBm5->@xrk@}e&tD`IPmwx;8HCsl0SHt^@4;B0R_zT~7i#@xXX>;zH1c#`XNXVRh zYP-F+^m1;jjQ{p|S@;33o9j+Lz2}56h?T>`<}5r_Z^o}LR$kq^mL1%byD?|)>-_ub zC-c-kx?U5$CB=QrdHyx2-PYBCT4jG<q!>wmN;;Fh@7~)-Q<p!O)Vy3pw`Z$nHn*5@ zgP2)b5L?lPb)TOy7u;N1JZV$4uJT?M^_#vo?T<0O-u(F1D~o6Eo}1Zf&--U<_1@^V z3Gc3Du0Iw&@VsXs@madGF#iA6hbmo(e4df-H&0Hk`S??xfx-Uw{r~Of?KmaBB%gWa z*Lzt{+T^W_)hdCKGYhuoN^fqgz3zH=<G$+`15QZ1u6laQhX3V*nVMqHc@Cv-Y7v+a z<RGeN9IP+?;?Mo*u8pn*<$2RD{M-BFlTS;rn(5bl$6nkOn3?5iz_yro*3$Dqrrj3X z@@yW;r`x{Vo1&0byH--dj&-t5Hc!&m_G=e?cgAjeaZ63x^~N^K-??5>z87cloPW^M zcsjxE*n!PX4CgFMgj$ZwW)+uNDAsH^?c|Q!kO>)YH%+>2e(m-0x6yOv?kw7LKE9?g zJnrRX6J3d*@4`z(xc*0IiJtzlYSn=iWo&C6-<5syes`Yi;*%_;p$j$kPT8v!@LNxN z_iuKAeL4$QtZK}BVK(hd%+#8B9M|_>t35MAI{CtDx!BjCHnr9UZQN{Kn_r5gFV}0f zv$Z|=a^~q7{?CKsqn^F9KK)e4SNd5l^U7MbSjN=3r{<?9D%6(EH5Pn+ymW2<o4dA0 z%DHYW5Z>;0XGi8_v3;@P>TcPQF(tcQXPuqS`(UAJtI!0;SuH+6CoNmzORg+tDvfRI zyxQsh?oy2S++NB4b@!W!&D-jZ>s3k>pIf|3BrLjMqU8yteN)z3E<JklcEQr^KYw&@ zx%omjhodE>^f6CEVrKJ-#WuT}uUXl}pHj(xGH30NWApoVR`-j`KbL-8AfWQ@*rKnc zwa3+uSNxk<yyV}}<?|m*p1*t6`OTXr`|P@Rte541+5KFJ^Xr`D#Y*=2>E7PbX?i)Y z%PaSm&gP42Wpt*7H8alHc|CQGV*#J$-|83D1@+PQZr(h2h@Jmgcco5wgXvC&PgTjK z+!l|&mGsQo=6ZP-@2O3h$pJ@h32gav-g^1t^YxQrrt9{6yp+w&A!jAO#5Mo6S%g{f zmO7i>n|-~HrRU$@SLwR*{EO$E<v)DhG_7ZuEO6=U=OB;kPQh*0$~ua<#g+1&ghulG z5zLvfe@)xF-HsDdWs5J|PMhw#gZb&~`ypMIlXsR#?_Ydac~8Z|S2L%7wq%%XW#%Dy zdh!y1z(;XYRFB;|oRpp}{+s{KvBLU%{>4>2hpb;}p9}~U{%*eZV8t7`{@-#O?|zlf zurXY)wJ(m__x6$n3(EZ7Zmf2{e!Oyfq@Kb2R^DHd%i<o{%|5r`%cbvmJ6*1qWc&`; zl$>;OifN{q@F6#OKG4c&+1Hm_A7uN-Y|x$Yo&%-J;^rV(l9X(4Yyr2?k!`+y(|V5H zTa~~wr!%Ey5sTJ+`5k(%B~CuC6*uN_DmbAatgU@Qsr=x*eLPpJI3F);IT4e@EfOnU z@7^)RvEBD>OYbS;=Q^jJEzyWIvy*TR{PHd6&<D<Q3tM`Y8P#6r_1RR^JlkN--glel zt<{Ut-&y{5s%uG9T<Nva0?xgvzNNwLw$okNBR}8FX;XfG=ijfR+A{LHbgsU<DU$nq z)AeQMhQizod#_zsc;vtf3-+&3{6^af^FB$=nxSsU@StDvhJrND?c?u_&ndK=zaq{3 zu>WR`-QlEnb8qu1w3J(k*GLOL?>uwjtQ7BE6ASC&nJb^xG~V<6Q><)$%%bUqCWr5* z!s~~oi_TD)pYE}Wm0Q^O^Vy`Xx{HU|4sUi`R@YpeHNQT(c}Zbd!dJP^*)?p=L0+O< zsZZapeJmIf?xHIFn1TPUwMD;bN)VUG($hD*R2R<pr2m@7#W$|0?C_m$vF)jBIqRGh zB%9bgza$wR&w1tZC~dQ4f=`HI!Lj6Pp#>AK@CGgVrZ#!=Tw|S@Y2{T#O&3#oZp}V3 zb?KpZ@AMcFLbOcy<(V0J{M6PZ<<9^2t?-bn{rvB?Vy7=8CbTX4xJvf^>zM5Mj_<2W z7S7oene^=Vw>MvO%KpzdcW%QM+5B7ET(56^aeKjrR|zFnpBFVXEuZ&d@v5dEnN1&3 z{cHY8ep##0s+7^}cgJpH+S#Zt``WhU-nN)&wBbdIrS<GbU%p73Zk;U?E3NYVkJCwu z_Zo|n7WSq(#O{(>dvS%E;wi`9U9Uf03%z{p(2f(gwu&$;3;ecpw~GIjsC3gGX4@t` z3R*Ushk1vE{_42DKc0N;&pw*D^ZM6EAM+y&GU{#5hzEah{59M2PW9TqZWnUP4mqth zKlgHW|KX1h1Z=K$uH$}o-@2f>QDWL(^O`H`u4mMoUcULJNcz6oyES&*$!mJQ&ExtI zpWZm(jyYrH**uv#{gZOnERX%-Z)@x>&FN*o&gN8ca`#rYL+tyXr5o$~v1yNM-h83T zy`g<pyutgfeYV`|UfA%L|Jzn8eVcJx<k|Fld=s9Up8qF(u>BxY!rb}&EuHKQ8$+b7 zZnG8JSNG-38<ERTb=aDFeN#DS@3P<j;zyjt?0wHwr%(53Ia{VEy5!63+?5GEWfPSc z+@inOC7jsValTPEX~W4Uv%L={vM=TMIeYKDhRwx-PStl0MyMB7`8(z*s#=tPk4pCa zBA9twZ<@|e^`)2W&ONd@XwfZw#C7w5JM*6}Pd`56is`9SYirBO%P;&)-uC~2;;xt~ z+YeiIEKbSQ-@Waq%@)tu^AZfduf5PyHoHiE%iCLWwHaG)n#`Er`rstb=9$(1UY^u^ zX18Kfgieh)zx}pb2b89?E~%X5&9^k>!|D}UA*<Rxd8(@&S@8I1)v+X7eeX45pvuC3 zjr)}se;2Kc)VcV>b5nlxoL}2S=huGYto!x<AG?0d{R=lga#qDVbLA>HYb&2jUTXE2 z=jjRGw#8LVn^qYe-YmMg_4nr*Wl?i;9nrI9r!CL<`Ca(YvH7BH5AW9<e-9L@TsgXO z(UBYOugl$(B^DP)FJHLwa#x;{`8N5OkMdo!9hPwHzbX}b|G|?JTN!>o`usfN7i;51 z+b#QFzV=)GX8zX9i)vGh|9^~+o_uS~+S$?K9xdljO72*{Tfe2{<Mci6s<znOxR@#X znm<vu=jzO#H-4^l-qvx}?r|j}<EEqQPR8lHKR@r*-yJg5fA;nr{k|<jN=NM8j6O*N zX(k<;YybDXzxQk#f8ag-sBG!iHow=g|50m-l-~SogU&hQp7sMS6}k>B*Am*4TYQ#? zY}`6`tJ*KYGs}$U$jTpQExT>D@$E8!B<0N=;zxPguHP)}%ecgEaO}~XgRIRj_ujl( z)Ah87QP@ncR{FMeQMwV+fv=T%wPw?e7u>(k%ph@@|9-vLlFI*?nas+X@lHF~i_QgT zEbovERi3id{{ND$@3D`cFB4di6nVsu<=LU{)i0lKUg!S$^}^-p=@!zV5?9yR)n42( z;hxI6>?jF&4uhGNFV~*Go2_83+w->ScIub!7Irp0t6Cq_Ua2ZRx9)XP!k$Py!|ukr zmecBNO=h1pILovz_wtdjiPvV8oRMr6a9kL%;FH(nixoXtLGG9L-3cg(o#1(=%)#^p zS~qn^XiT(<{^{J^5}h?aA6feK#eOTOs%g5eKbQIQXMg*npU>MLd>y`SUdg^0u9lMw zr4(14YvoZr|Db8{C&@_{Gn!Vd2@h+o`}Z<>hC}}oqkD1X8EJlI=C+oHK0egeNz*&E z=C@t8?$mVV;NM#}t-A2@TE*gBhmy>?*R3?0yiSNSJ2yvoN6vH$TdRYw^<%6zh|jO@ zx|u2QU+mZto|FonB^<SZ(<FSqC0ieSnl$lN$=Z@X`V;P@%{+TsA?9)ur$+qp$SJH- zbpD>N+?8kSyX)hmFAAqy&l>YqPSdn?TgI^Q4BOFN|0S6}?@ym_+GDd-W&PRA|1uM| zYMHnl&)M{rQQAu7!JJD^Yj->iiJW2IG-pfvGBfvwbq9hk)m$iT{<-V#4B7V9kESo~ z%m{g=B6{l7_8F5d$;vb2UQV*IJvK8u_3Zg&hO<>uCr$q}dj;!WCGox8p|R=B&(m|c zb}u`4$2xSrjBJvjbt_-0pPIJn2^Q5DkC3gW7aW$5dAsAy+sQB4U+gkFXS>?sx1P1h zcH93ktj8>O%%8n#*P(MqdV@o+UTjv{GM6{<zGE)0x9OY1*UHr77H`YFXcC*_somnT zxkUFy)n#Y)t<xm=uEgdxX07d=`S$6egD+P`$M38A%e7qnUE%he3*U6D;)@pVw$oZO z>#0!p(r95*?(6T&ZTQ|AOz&ph@@~<tBfP0I&a<R^@Y7OVwc^#9K+)7M;sxgOvQK;8 z<GTGIyV>Ic+uR+chkSQuPOGSWQPuG8N&P>4yZU!#>hA6Og|B$$_4W4`6cu%)PEgpY zn-g(FYOdI6Hi3H!*sgiTFfPytF}b%(EZ(T_UWDxzuamzne3$CgH=l8Sd4$jT3nreA z<g&7hA8VI0^K5-7d#Lwiip{|<IbFx{Z)`PtEj>FoVs32HRx!0`9-rmu7QB1I{QZ*V zCf+Y~u<$F}ag%SUbnNwmOf&prwdWp9diYoB9Bb%1gC0e%f8DDb9-3#zoV4)EJ1cD_ zb?xM%!^iw*G>RE;UB7v>^%T#wT&>O9icd7DpYZcNcInx%8&5PRy#HYN{J}oIjk9_J zD=SwScX~4(`yT0WKW+WvJ#2SbGZ=GgKX`m!c;(J^>7ss1@AoqcpP5<QWV6jNTGQ*y ztg4cgUlcZl>s0=y-F2NWOWH0wm-}1VRy5q&zH*Y+(M=s^AEfn9-g=FFSM2@gFR!o~ zrlqTA%yykKzoB^h0fB;7(K@}e)BP5Fe8s&zvi{c_XPa8HemP@3hvL1zKg{}Wkgd30 zciKN2?blMftJlfo)R&7-wNGb#{vxNW-<07|%+aJso@BE)W43iibtXLfDR6t1xwlDO z@XFtEOqG+8y4gO?^=!O)!D;jBC>^mpTO(`BgAcv8zl+gXmKXf4`DRqM#N*TKxAdl+ zG|6q&+s5+lVtHb&aMh~azc&f!%n~g=s8}1YOvkIo{oTEo>!K}_^5WPV*3_iu-g$bs zwp{^r@#Sn0Ewy)=inFhm%J#+Y`sO~r=9lrGH}&;Q3>LO_PSR0HTX=VE>pgdR=a(y$ z=9SK(hZ*&&MVuV2>issE_r{5%()rWcw?cc^#j_6V{L+@O*-Y$#htQgwoY-hh_kwV? zm~Z+|%Bt@=m!F(?ZKvA$I-gI@yJVH^jzo3eOFy=IoBQ?B3yygwENAGSelTbGn)Qi> zCr?k@`f%dCNXyGbv$;d~?dDd`E$=;j_~TBs&(9L)Ea%y!6HxKA=ZVs8qs?ztZ=dQT zsr{OF${lsiOWD~B!fQWYzF(a7;Q5n98~=tbGhqzsY^vRSN5La}X~>O_LJ#kr<Zyi{ z;y9=Kb$UdeWwX$+OA*|B+z&T*&RH%tW9N~W4L(JuB`V5t8e@LW7GVwQN~t*JYQt8$ z{-U1v4A$qbf68#@uL-?wI>r3`EuPNmWe0Xlxf+-LaLN_8#k_7w$F>*rbhVkB6Vtpr zIkacN>(VLzww-3(wXOT+&#PzthfB^r+hQp8{PQNAjhi2z`J%Raw?yUjuTGlFTe!~s zRP&sFcg<|C(}!vf&0ySY^Lw9XugV(M@2N&HQzy(cOv<w;|NZ<=mgl^=D?dA2HktAJ zb-mU6q*t<c#Wx#oiRHfBUSx2Dd(r#d8EH4S*;ehJcQMM{)B4Y?v<qyeuZx7w*iN0Y zVvpg2j6KbpRxJ8+_iTOnYYBn(?70^@dk;!9-@No)*KYRXGyV%suj?&!*!6zl);{U! zHPr`L`*ZiTOwrg|of+A;VShctfvr*#U;UE)qHSBf``h!pix1?BC*ImICA4?fyd&GP zm%V;;jJ2|R+L_d_3h_b)fmJPEbIX`sOH9(0e5QR+LSc%FZPD`&73unY^|y6`Hz-Tj zpNq`78$89-ZL#62k9-UcEB9<wIGr3-p06qJz3``HjH`TCP?v_fiP_fAT+%xPo^0@V zYHqb!bxY*jyu253=_<4J{y46!mU+2FbNe-Rjm^yhV(&sVHyW35f1f+o^UZ_<Kg+g; zR!=rL@1e(_cyLj%MgQzlP2LB)T@8*c?wMZ9r#9)xTt?4N=P$43o)_00x#0aB!K_(g zpHtg+e!mf+C%&;}`D?2X=@%0V1GjgVZV^uIIr{HbQ+LHV(NxxR5ues4=*aQU_Eoxe z>&1(6OS?YZJNHWGO6$SB4|dI&f7onSjr!yr?EA%3xkKvK8r{5m_}}4nhK9?VgCnvx z78vq<sg-Y5|JlCn=l*NUIJ!$eyL?bw>Av_!`LWVYqciHwEl17HYfqmrclOEO%2&VX z-{w2LRQk!yq{h6RJ!|DYFKOPYHZ5bv*<Ji`nY_7&zMJl{D`hjhbs){N`^9Yq(N%}0 z)`x_$PW8N#zxhwc4IQ*KgsB%gqtzwMIL`%EYF3%vJa}(kw~Dvg#wq6x-a6nEEgh>d zGxdRyhZ3t-{)V7_wHvktH<y2`;FquY5z27j;6FyLrFkmMQ=eXJ(5c^$`SGvg8ymMD zmP`6K^dGZ+A^&CLng!Q$Jv6OeCjZGfb8^)~5uQ`CqkPNC0z_Ox%nP>3y?nts&o$aL z@5fOK(C)3Tr}zsRkGcQ6ohErVBUa5erA~Fp`Ds%^TUX6WIR9Ny@3q!sL3QC-ugeX0 z{Q22)cTc!{GLO!TPaBqK1b8j{)W!F5=_7|1rf+&zC&aA3C9r*)XH%Zh^5o>=U?b_n zcg|E@%v`3y$$5OCVbrNltxR(*<{R=o{rxcPE6Zft<qa!V7ltr@*m^GZ_56i59(<Kl zc|PHetgu>&jQ{gT^JYJ+47NC?5TW%mA<}Gms@!)Tov9rPGv|NZ>$W>0;ig6M@}r9! zck{4yS!ui9_!607`u@D;@}M+xjogsPq$j;=)OP=VvHP54i&Bc%-Os(IAOCEfSrWa< zC@p7dP=b$3=_xJ$hoAM2CQYmR+!y~Z?(k2Yr7kbuPpxME{o_G1KZ6BxjHaqze?J35 z_cG6!k;%#GEVE1X9>g58^!IAKSkbeW{oKyK4=yUdk==28^4`A@-_%{}V&27lGqc|w zIc47Mj8ADb*Q6O{ZFAim<5YextN&)>C!L=9>*X(YO;OF4)~|gZy(L$E^XI*WA1e&> z9!YAlwrlNOv^pTb$<0+j^+G3Twe@ZFJ26WRr92W_;y=&k=nd=Fde74>YM#cJ@%Q%? z7S;3|z2hl#dzoXz+}>4E)^*OG9()wGsr@9v5YSup;m5^fh65?}Mk`|X2yQZc|4di1 zA!oZ-{*{=56NhwXsZZvdBC;`W%E4ntUGINCY;{W_M=($;a;j-apekqhy=PgiJZA3E z9{ViBf*hubmX&>H++ozb&fD+$!{D;LZM{YbjDjjFgB;UlUs~iLRDSHosjw6I`ic9W zCLf%nygP{N>WQmmyUe=Z-7&f5aQg!5p+g4KdakeS?f&yw_fk@{a`wTdxkf$Hr^c0R z+`MLOpjy%Pm(Lrx<2>U}8O-b1xcm9D%~f+$-sP;_deOY#OoUasO1ef!<EAf-w#OFh zL`6$yTU(}cEZy2;n89se-&;Iy{&}&6@8=krH~h0`Uf7$)t1A}Uy_3H}cNg1Uzs4Ch z6E=A+DK6l3oKnF3;3nJN2{&%u{ak-%!F4OP@FgNIN>^>>{mzgbxn{FyP(u2nJ14t~ zcvhzDd3UY!-?O6kz0dB%#Q!*ZtNAYb3%h@+3<pwd4!&0B|M;hP`!`EVyCXU8P8r== z=YG9yK@h*3*+QoUA3nQ8POJFzgmYf)2T_ItoB8dJTu#sXY%lkI0Y@CS(~;jl=eBLU zvF@S~+cWjVWP#_BceB4lE$00mHT%>QiS!F|fA8J)_QEl%((Y^W-Rp|)pJ(2j=$mrj zK#TO}O{)TbF?3Gg^7&A4cZZkbt);>!3;B9MD}L8bI$gC?U`2NNoR1$aD%({4I`Ws# z;+)^yGp{$Fw>y|V{~y!w<Lm6d+`MTsYpsk;g~ZcD`Pwgra&~;@(>1*Erv&xZvb~CW z|7+IyyLUM1JC+omTUfJYyHsz$6jlrFOO~9GJ3d~y<?>iz_Rb|tI;Z4zP6=4mz;RP} z-pPP)3C(k=zoc_TO8PXi-KT{<WLmn)V4g+iOOD4kf@d4b-L2>~JeMke?&#gNf4A<O z46B?HxT;a5qBJJYxIDUD;k~I$i1aEAgOABOH*e<-Rk{8l;Z<5<%=e}zDpO+a6f2vb zp5&R-w{=~&%b9rz6B_xCpOi8#=qs;3@V|ZY4ejmgj?d`1Tdj9GhH>JtYU|HBp6kxB zuuoT7cDQ$Ipxmv}S{?g@4KE{#7<DaMz8()q*;Jp+zN~&urDxgo#-EoO{k~5~?Oj@) zm;c<iNc{MRKR12C>JyiqKa(u~!|AHTdkfdu!E+<0EZwaxlFBN3YR;Orub1wJecve4 zV%&G?{(1MuoKv)nM6Xt@*%0yVy_(k@{iZ@WYagF7_Xmek_sHAUw)H>T-xF_T#lo<s z>Zeru@ppxrXC#{ypL-m8`RF@SFRv?cnkF;fJZ$El_voYXa+N!`Ee}*&Kdb)uqQ*Jn z*%#L)^rkF#G?|dXv(eF}eYVRV@mss^Gw1Q0@(;PYvvSefTN>T}|G(LLx<BP~=(oQ| zQsX~Gh2E|8lb64(|9<s*X~pK0nVbe&QrXzrcs2+yA7NpM*rfi4m4`v`AWzGY1I*7l zIun~(5)x!vQo0YCSE&BJVYhwX6;u7{_Z>gj1UD*`g@u)uhNp$5UHv6H_tly;dye(V zS}R@KJn!ioXYnWRd~Y9=SoM)nQ>FKIX=tKE-`Na{V;K+f#Zx6icsx&@FksNXFjKa{ z>t#l-(vu5($CY`s^$XX#i_Y8g`13{g#hh)24ekCt31&F(v3t6JBKzOs_xt+K|6hNe znPHw?E&t_})30xhWtLVGj;b`2SlYSoYQ&GUd)NP}{(R>r^~rN``Dfmp8$x;6+qF)7 zIJL@U<zJVx&s1IKD3^a+w>hMZ<(gCW)o6vhWTy?gb*p_{rs=DTc5Pa4a@rJ4^GGdD z-NS62)4Da9?3o|*dtWatNEA{Gtrsd=ub#p<-$)?l&T6U0o&Mr8{P+#{F5P|fle<Hq zw5-=Lo9CzYk~1+3Oe)HyFTC%kMm&hl|2<FTQh`C@qIBb(W%K&=T3+xv1$n)=G(URr z#Ti8n-9eXsPJaCD!sl=XmFH8u82u(qJ0Ib^bD{6;i!PD{7dmRCCv50wm6__rU6+!3 zJ9?2P<IM`stZ0)JY|c7PFV7v@Qo<23t^c=x`YEQBU5=5W61`3**KcwN4P9|~QBpv7 zN43;7$w@oPbKSYcldZheSFbjD@+fVp%C;+esy7?-f0ol+>Es?cZHr@2I5UT;=c&4~ zs<xjxQ<$T53W{FUR?hl)=(-}yf>syPFSC^vA7pTE?>CV7T{-2FP-?||$5`jq><;}` z6OZkwb}zF!Zn$NQ7Z+RTRe?}hvw3W$({h{BUf#a5BjnO`OXsNyx7IZp{=6Y4b9e6d zvkQurdj*@$KA6$s=y6-7r+rHEx~+Vv+>sZ~e0eB$(17PK6j?L4Uzj=fprw1D7U#>? z511sTn8p-X=E|36>|!(XDqq?XP#6B=#Ye_IzM3gHHWJS59m&_rp4esg?p6L-EOh_v zris1EofZP7uk2Q-1YWN@UTLr<P^7em&9#8hG4Rl~*d)huCv>Mw)3n;Z^!&Z@!uxMS znzSdboVsL^hSQP78eB#~T3o&_na<r*Iq5d(S>$EVO#kGC^H%%3Evz=2wA+#`NmYrL zA$6sp?T3pm)Zg13eY{wmp~2topUCFV+zbtzrSq!OVm`_U2&rZ7_#)B%LQs6})X7eE zC)cjsI#al2*#W`0yp@X#!xtK^`BP~&&&NRK=WVZb=G*R^R#-1EQ|0b<!<kx<?h`eW zb=L3-l`1AY+Ip~TgPT)_#L8Ixi=~l`dF@Y*y;<XWdyB!rC!P_Ut}AU%8f44Q{<h3Q z@x_#>K?`&a&sc2w>LADD%z&*|m8Ht(m|hWFTbLoW-Xl_HT1rCX6xI|qv6D+*%yzqA znzQ|QebBtf*S7^67Mh%zP-iU19}uRTwOPG?{+BD9n-e6q$DCVP)g{t(O#FMTA#5#x zP^?zSt|q=umC3rA;iq;jd1bz6x#+I*d+k=+#)nAo)W*+~@iUnHGfQ)>;XMt#S^G+L zXKucAZlcx&sgzf8g3qMwoZ>kGj!r2Gn7pRe%JzVX#`d;m!B+;$r+PVdsT9_8yfS-M z^?_;bP01xw8vL4rlY{$aU-OKM4K-y;d=${zJ|%s1S4fhJ*86EZ46)Z2W!HMnT^60j z{Q9=A{<`b3KEYj2^8BS9ZJ!u)!F8EN*SyO)q1QB;c*NJ~_Zypeu6i8)Hi}b~dy;hi zYSug2b+_3+i7>CM`5iuW|8fm35ySt%*^?Zrc9u-oVSQoAPUC$`xSuXq{dQ~pJKeqi z^vm5pZNDJVS99w0?)UrLQ^oD8ze$P}+h2TZC0xYeoYl5DWYb#Vl~V%a#Ln(-|9?G- zdAcm~^rykkzjIIgmbm20(g%y2e=k^NDDj)~?!hk&PbNC8+B<*8Q{e!uwUHVx7B%!u zHDx(*d6BX1(^t`&3ZH9*pDbNkq`2Tk@7A9M(y7bOS(f;Ar|N80v5NSWBmL)4bw|O8 zm>b+hzr?%}Or#PGIOcJbwrU(GId|#Uu0k=_$G<lPapek|MPxiq{(Sp#{<MN^&MA*Q zWzMfo^nF|s$QyWFR9DM4H1%qN%rf>mo6k?*Px|iR;`MUr<%f33x*-*pH?6p4_3Hlf zfBG#7k@cb1EjZqO|8Y@x#|);(DH>arIk0YN<M_KLbGn1Hx4VRg^fdo-jz@DCH5W{E zlYHhr`Q?;P|K#nfdKL$K$}^gKsm4p&b)FH=<ip%0Y3v=pUou@fdN+<)P)sf;^TmeS z(bGW*c5&zZ&Nn@d;%bG9FLH#M+*_d)HOE6WDN3`a(C*UKh5rARO>T}|caf`M-G!*E zkk9~Kp6HCFh8%)lR;>#>(s|n}#L(@+)Js?Ndfx?1b2Z|Kn(V#Xuxv}@dhVwuUJ5nu zauZkTXw`eUX#LhjCqvH%C>kpTyL~U-aJuP}qxrrIyDwcxG;NamUsuhpSr@)iq)qYp zhm(`te>^&0E6DKS&CT>37M}&bEX%x5rklGcR!i|l^}{dzHp_E6<~>)vk+aQdNz~yJ zXI@Wn3Y-?gw_c97P{M1qFCYKO<_Fijo%19oPW^K^($j6JiGcE5zA1<GWdznvPrA47 zl-Qk<yAR3>D!8a!wpLo(A)})+#d}$Cp>ffDbH}_Mh7f}{+TC2GCmi*+9Lumc)KGNk zb;XRT*$USpg4TI5>V$Zo|DL<M^~TTD*|zU=3P1aMcwWEk80*Zj|6pMFKA$wJ@2;zA z`$P`r?(REtdXrk4gUMlE>9&&EmF(KroBw9-e?9qF+mE@YR~^ZC!YeS}rn3Fln-rs? zDMkk^rm)-C)pb68oXl{bXs3dG!#3Zo=RW^izSSv|S0l^La!!)az4Ri3qZMzCe`{`L z?s^~|DrvT1+jXWhb%!ipz{_!-&CCTXb9WYdtXiRB+0MU;tJ&(w?oiXW1yb3Dvb_%u zy<2*ztIUX>f7y(dAg|_w4T}_yMXcDM9h-Hx-|F5J^SgV+%fstlSsjtJ4t=4J%(BKX zpw&rM=~Zgv#Kjgyk=vS;j|WeDZnTOmH83c0`dZhOWjhnsd!9L~dx|ME)=~QYxhU-y z6Z+R}IaM@ivrY8#1&eGfrbRBk^K8<&g}Is%8c)BUdR(ykxI2fVm*`B_m2Q`rZE9bg zHmv){9e*HFBX&zhTE=ZYzPL~C<}9swVKY_1{%P$SGwqqvLX#&4IVerl713HIts(V% z)h3s~Fp1WTQx6v(ulQvd-}$I`{%@P9ZI@rwO?B$J@4{YLFM5Ud@kfEL2l|b>fA;L# zY-+Z$Z%%VV^VXe82mgCo`Cgs8Ktxkw$%F|Dojewrltc!d>R5H^P0cR*+&^X<iZwT_ zf1HTZVO`4ATV>!9dz_<cX6&~~LB~qediD7PPA#7%x{4z?Fl0jRw0{#e|Gv)HsN#M- zYVviK81C*Dvjd&PSv6h5V)rE<<y&gf!}U_?oMK)5dIb^9MS2d`C+yN%XnggAtyGkr z<34u1lYhBm6C{3>S=*|-{9R#lw7}$uhQ&kwe!dScOe~)3PmgHZ^M9N7J~uugqbD|^ zsjVkddM@5@Kg)htQIr35mBY%$=3U1M1TLACO4cx6+F97o&;FV11Jm4{#h<KR9JVm< z<2RJ~)fp9fy=3C1Ye^Pz!Mvw8t-9FOSY#!cC~_*|O0(5Txy@B;nlB1?-Q74RBlPEP zWe$bOS*o48-|pGzqr<v*>oV@zX<;`e&r(`@zP57urY1gam3*-y(-(y9QL%l-F>S?b z##;eWUL8}iS1<A5?z$?{ToCPe*wS%l?mhDZ^2R&2E-UXaJ$k+HH`8|&`|n0U^*g1n zn###mu6$VieqZzR_rG@?PJf;rp(iCJeQvJ9ZPvxk$r+9>V!Q$b_d2E9?Tk5ElQz@L zV~bvZ*vt~s9{1GHg&J%UtwA2~KOTvH-2eale`bb?=W~y*Xuf_d?6OmyWMfELpl4@R zK%xzg(S?_S%O(pmIBd?@5c7+5-pgH6^d8jAv=%J>#pv~PLX`9B9hyofY`j-8S;^F| zRay4fa9QyGd8so~jwFe*KZ{n|<{El6<Mj+@y}&7^OK<*Qt+Ki<o7=Kv*G0YsS6ZFK zFQiTs^Olxx{`O`^>Qc9@(<Itl=WLBV)qYJXXi2Z7Vv5<F<?pjMvu-<4rqv=65Gk9t zQZ;t_=}k>tYK8nSqI~LHqXHR{lH5gXGHxHs?`tnCH?ckNsL<f?Z1ae=OFeT93(n1# zcFMR_v-XtG;foz+F|Q9Yqz1N{`_EI`bzwy_Pu%od`45iq?_91aedgIt`|#SfL<uOm znQYN??hTJuc2`6BwM89ma;Y=V_|9?8&ARnfw@XM(BJ*mf@9ssddcj8m#kU-e4@)&* z*|k{K>-l06>z()Yi#)d+Td?k>|Fx)FsbN|(txo#5<*fDI{WtQ9fWV4XlaxA~?&u$0 z?JJbp<GM0%c9+uAYd2FW)IyE!oDNc(vspmtgxK1zn=BtH$AyNbPCAx*YU%oSH_I<S zcb?rDGIfCzj{#?zZU6mR_V>2+d<+)$mPd;&2AQ~M_5M8MUT}MxVtIMG@nrYuGxu|H zu2oqo6q4$xmVY>~ch#rl+Z9&F96Rob1v!bD9t+O*`f{&&{^9>WcmC&Pm?7t*`AU0J z$L)LWdyH6nFG(%cGn`qW`TyWUWt*x;s!N?1#EauMt<H>6nDS<mSiw5yRqrwak8E-~ z*edxUIie>>G?j5>(~?-me!2bK$KTt1eQ#;o!1qeX<D<gUr8|}FLPb_&ANf@-#+SNs zWxjapvJ#oulFD8)f2|Z@GIP7r%@i6MJXKWe<Fl0pQlSN3ww+t_I!Tl>Ud(4%vvVkK zgNUy9BKu8~vfQ;e*1otC;5DhsH+%23qkrv`johnMMOQkmDSfi&zDckDR+a7F8KsQc zvM;v0ZZu!hQ!MMy_Bt;%Tx0btAN%fA4uYo`q_h8=WSYOpjIa3asuh1KKRWa=7uQxa zp1Wh|`EG>)$0dKolt~`iGt<6bI}qZzZ{5~5PUEeMG+sJ|znG*FQ#o&o{^G*xs@-KF zkNb4)I*5mSkMVe!y+Y|({z{$sF=>;Hr{_iUu05Qq8kof^Dkl9?rSGNl^QKF7Tb+NO zoV9V9TKYbd@KuT4SGVqM-LYS`?ud|W)a$o9cf2=P`9y5R*;9*-6g*OQXLs-a_+xH4 z14H`q<ulIeW!%v?E!1tGm_3cVB=(G>|77EplbI_bHLjHU{%mi*tSn>miTk~Jzudw# zf0as%B!lA?P2fAm_&6|Pft>B3%inA3{$$vA_TAXYBJ}-%MB2MwPZJtWF1&AGSyj^V z^OCpMYRA@XoT;zYupT-#PhUMl!PP=8Y{4q0Uk4UAtvtMF!@7WWoAZlSX#73I*_~*5 z#QI=+g2~K99FxLSzcSC&Sblc?4hQ)@w=E0G&N*uK8s((CSfsFXLvf$X(YaH%e7Nj- z@$}EDt;>q4X20KGKGC7rd6Nl$i00I#Z=LSuCf8cIUkfqhy=!^kqW;RhooCFBE!7Kn z@nrA9EsK1kX6pW_tvug;@p*74Kj+h$_;p(D*WH$Goj>12zG2k@s~5+f%vOIH;jrXq zKxml8sis>ot3y1G?waDHyws=r$EJo!pZ?_>Fp_RoeTP=9-;`_-c~Yb~bx~|3!;@t( zJGib{-ui1g*KtkR>X1p#MO`PxtZrR0Yi*SHL6vuTWtw-@WS?wzm=x$e<>J!_&xq$Q zlArJXGQGDc>1^nivX-e+1hh^*n)&s~+jtRIwL<?_EQ(>bZS8i(f0Y!NBBk_xvdb@B zfyiHNT3jKDRfe*@1z&z}GCX+lhbMRY5~*#MFB`|4*`qmOquMHA#U%}Vn~pA8Wx$bX zdibP3`(aK#d3!bno4P+NlND0u_o#oFmm0W8>+g*x*-M$NTngAjJDZ!G|5r69>Nm|( z+Wous&!Y;4ikF`&Y>qB2;1TO?lX;i^+*soE)1|HJ0z)>Q4Gnm~a@qOig3}oc%L9*P z>^P;|=5V_;MCP*7N+$P*7PeMaD#byrUw6sBs}%ZuC&6IBx8e^ky+tz5tX~+}Ta_+b zk{2T8yK_oQP}bYhWaBsQOuuTa;9cT#Y?4#JfAhJGrENi$dn{8|sVL^I>YQi&Dp)IO z#_J=GSB8azeEG+}a&~%K^_1L3A*Z%i#zrelV}m?I9VaHwU23AP85}<?$Z_SAqL;UA zd#sf-w>P9bQ*Uk2Tl6xIQSp8FRK7H0aF^<n=N5q`F_m+c9540V?q%M&cx0h*td!4G z2hXB)C5DrXijD4maHzO@y{lMEKkt5QXSK@H{@<*X%jWUTmc5>T*h2CF_l2*KxyC=m zW?NNO7vEN2GR4HNM@`wL>I(;h!Thre<{nkB_@I~0tuxJz{T8Qha-Wup?uyk_9WQU3 zzQNC@W-&u9$%gmS&y$R+7S_ka@@53;PjOhdxFq6$mGj}oOH9p;^>vYAdp{cJ%51-= zwcY!U#U<CyixnQ+CC?q6p1<|8$IEl-E+@&91F5l#wAe1B&PcQlh-#X4lS!J%&tliz zHlYcz*Bv+-o12vx4pbO9%Em?Ct^9TQ?xgtUZl$mLBYt_t1%C40^<lTy&le1OxdL`i zw(ac-t?#T^m$dfNOIeQBZc%HwZ;1p39Te$$*U#;=v}C<Xx*h+g_paNweSccUF;Q|` zN6z8R_n-YW49jd?$079n+#$B-WlOts&g$r1C=G1s)o@)uz3A`X#f<wM`jf+A-YhSE zoG8Qp?CXXjbK$jOVi`l<0%L2}eUtBWFPQu#+#%DoE%MkbmA_M)WV~IsMeo^FTra-+ z$H_HW+m)YNir7}V=DvP?AaL^b=ZdFu%{~2lCwP{wUUe+6V}bWV16ltM?|!l}B<$PK z!1>rGQbc6q*06;f+q;WePTp{jKfc)T*kjJC7V<o7Pc+tbPvY5J)8%fnj_+7RMD`(d z-;1?NMO+o$M}L`kMq{e^wb_1qJ?AvLh@MdqKh3&R^YtQ?=1orG_x|Y4I>zaKomo|M zW)|o4oo}5N7$0Q4S0dn)ATdR#+0nPCa_dzt_TP^4(l*}`yPhdM{p8U}KW7|Z&cBwe zxM|}-_Da?{G4k%+nhjx^8PZoQ1ybU+NzL4wpM2uB!2bQGFR9$kl2-I?50Z)%zdEb! z3XhTZ#}mP2Tl5xeae6ml{<DP+dB;4|Y9IcU|FJOf+5zs8wDidB5z{9WTv80RJheRG zwYbUdf<Uj=pYBfIzJ3$;+wGfEHd&@^_vG8BslRz$c9g~S(%!{~oo8&AkUgvN)Ak8c zMml1>8$;4ItjZ3V8b9HBYUd^`4fc@NO=@{Tsoit`)NtKnGJEaZrPiMHwqo1+C-+^w zUTV9A*xAR+ar7K!bH83{`+kDO%TO=2?N4W@B^cMY{rfq?tnzZw-Kh9Y6U6?cdcI`W zj4$E$*u5{h>gV?83wJ%^V=b3|n`z>6B0TR!@c;JLwa>5aJfADqU&FZP+4>t(clz5c zKV$AX<<ncy)#4dT6LL;CnztRxyuWUvSHP#Mop#)Nr?i?r-glp4LHxU`KhEX!+3u1u zgqO!>{<bQ=I1~3_RY!%K<9^e7CC82Hf8^yT8P85Qzu1(YbE2!|sQ_IjhR`~RE6z8V zxdoqGn)~*FPl@k2l~0!(6)aW7FFMAwzwqq&61OUM_D;3+E|sYvtlj&#UfgpJTk=Ad zf2GQ*gd5KiCNr)G3Ap&ji;H7n22WXmz(QNynEIMt!ICAr=N3<3NHO_)`PHeC6?5B; z%PGliT)VA9;O|Md_h+{)PpY_jyi<Oe{KkE?#wS+?DgHU$)ja$5%ANl2jgNC_oSVJt zqJ)lWh>z-qzE?Ba8*klrG21)&)1*nCPbJT=ou7E^Aa_aH`<=}_pUmt0tM)L<oL=-^ zbffu>H|m?KFEGV=9Fek4jXcEWxx0AZ6u%O$bum*@CJ03GRTeRXd8PSX-K1VF^6<O1 zozMT`wKr4u%x-=3_C!GDX6Ajpi&pPlFR?L7&)|u3df$V}-%q<4rsmfyvHuma;!QTE z%J$cxp0ECGw7&Fk_k!(}{j;~Z)T_t-aQXGM{$1%*Q|?RAPxOAjeQhq7q{a4j``bHz z+S5vy7Ce@#E8Vzd!4c8NmG<>_>YvulKXR&;r&zY4@ti^a3EyLp+oc{Rev{jtS9<h~ z-lBLngJ(ik>56mDh&{czD{{&4wbNW*N%K7X^yv3gi~K_pryKA7RC&iICLZL_l4HGf zlJu<SkDry!{;V5xefCfFm@w%}NAEKSal|i?_?x_A{s&goqR-PJDqFR8weEi8U$;JY z_dSN+UE#Zq+_vWHefc7P-X(!AvpzoB)t@{g`~XHjJ#k%AOwmQ}qTN~F|Aa1iarW>u z<$L)*cD!S@^;|P$f}!QXpT)-I|E5LGTRvsF^5gZNj_rsG3Hy?|;J1U`$^9!A%=q+c zao53x@7K+dD-W%Xo20n^+1?kHzpp$yGxf>!$G-8g)zj;qUpvov%{Eheeww|fvHZlX z$KGx8e)nOYR{VMS!v?q8#9#1i?z{T&dhFlj=E>#yK0Kc<OmI5DDmzpEsOpJ=oT>X( zUJ(7h{^#GgNx2dCek_f<TKBqV%8}HEFLrJ6bLyC9^>x+v3W4LV8#jDhy}J1C^^(2z zm0_tD_@7DDf33WHe?PbMyy_==oz==8<k~!Ym(Xc_7&_j}bNCH|jAQzYo~_H|r0+PT zUX(t3$2Q#6Bh2@nl3x9i;@8JJ*$-uzR12TGy1qYY{q$M;Uj5_?mtX$+)T5bqQ|}sn zzkYr83F}{a@BYoR2-`8QNF{vtcP)*3eiye}KcD(M`N#EC;d!+=(sD{OcDIPX;F-Mn zsbHnOo;T0t(>ZywU$0{Q`Sf__*1W&`LHG7Gg|Ev?d$jlDx5utOn4h}Ee*84KO6hy) zQ-SdN{}gBJi2rPJ_W1SEObwpHF}&V)B%!^mM2R%^2OL(1?`Y{1rO%L7oN#sTy*oR% zgsIKlDcc!yyy_)$to4d5-!~KrZRS2w{P|Ml_N%8~hi+?r{UE#c+`b(<jL)n)z+KXI zvfyUu|01)fAD2txwfDXdU4O*jjC65#&`Fb@;^9`U_7-7t*GfL~^LQ$7{b^tR_qCgg z6MRD%>+OGe-uTY>Tw{JsDaW2uU+--{Zkxm1c2h{FFkJ%Xz!|a)%AnYdo1$@BF+TL# zKCOmhvybu==T}U)Sk!h?JFn_uZFk3aQA>HHKRebtK3?5+cs0}0L#<ISc06L_IsD}T ztJUE>({eWY6<N9OU$6gha-9*V{M)Q+R=T!!_Vt~&rarW@o__rOwDa{fM~{BJU&(w` zLh_m8L7{S(3nbcZGFmj9GsyR;m#$bl`;F~AOR)2fO-|o)_xXySR&!22v*UlW+xU#x zLsqN9EG+`py>$1#%XW=f*YKG8hFizm>Zv;}+?_fv@AK9DX8k*q3_q><y}pWffxUJ2 z_U%`WulG_t>94C87TZ$()8UQe!oTt6X6x3+9lXQ!J4>qW>W<3HoR|0iTIKDEsFS|m zxq9B^{VH!CI_^5PcHj32tK~mx{rvs)-oF30{`yY*F{6FE<Don8pfZDT`r0Mctu33l zgZG?>d%o-L>YpdC_w-JRZz*4uS^ny9%)wCM8Rj!@Jn7&2>Ra1O|2?1f9ABe<=lUi$ z>1S*CCZC>b8W-9!>GuC~H?A++|Ef6NaGQnthHLq2uK&%uC$Vn(?z+FdjbHxU%QydL zQ|^^E=l8DO?ybM~?}+4%$^WzeptQl6zJr!8KmiTOD&X<F#Huwno8C^1S-gAOr*knU zUY6~sahZAh$upxP+Rl0AHFvZ3S=ZJ%s=u|HyZhQU^P1M(x&Le1kI$d|=vsX9`nzlL zFa67xT6nkJX8G)oW{<z8ML+(x?QL$t+?}uc55zFXEii7GqO)R$x5)PYa}WLfpZD<F ze(N1?-;3q_-`#o}#7&=Z`a>kjWRd=b_cQE&Z?<n1V7mY7+V&Uwo)&f5|5|K+XtKJ$ zfmH8@+53Oa{&CX3?o#zV(2Yocj^+Phb6YGp&!)1;{@-JJx63Bm|9*sLr5U^jg}z%q z`F;Pt-M?@7|HVLe-rd;!Kl=VJv41b;|Kt4sqyK-$@qYQop!)*q{$8(_m9P20I3>v7 z*aPYNKiKY7K9~LTd;foH&=n^4|K7ddTFh7f*}VSqwfV=TcE@*4`Q8w7YwP#7?-@Ft zeDPW8Kj*{u^mFTzg1^4W^SJl#*bVctm#KMf>;Ferx6gl)C|JB;Y6!!QxB1fS?z#L7 z%RXB!bn38{7nWz5e(U~^f9D_nfBPU|VM<ipk$?P(KP2ujt^Pazrmsa)o%@{m^B>Q? z|3~fLyZ8V2+}+(v{+~R_`S0KR|8k(4Q##kzzRmveY5M*i@U0l&%QOC7uV-bbd0&11 z@c%#O|3BD$|F7P@KTq`^XUG4R`u9oyzfk@6^7{76moM-B<poa?XLuj5{*wLJUjL&V zbQMb@$lSfZ?SDLA-jdtBzW(p)lKa2k@9)>Ied&#Sv6XlHFQI$&|7)wxtp9s!ed5lT zN6q|p6~Fn9T2C)Oy>I*e4*Ng<h3Xmvi&U%T+2^!Bm|Oj9p~9j1Gj})K`sT#Naq{Bl z+mC{NbIbkD7v8w(OUK{&{RiJ3Nd8}UK<K;m1Nr|S<v+&%{~8avg`xgszI^>3!&95y zxL##^@bdEVA3q-VzclopZ};}^-xn`9QX?-VU)va?w=qWVWqIE=<J*Vy4~2_8g?Vs~ zP~U?4M)Gw(6#qT(|HpFw@4NEA>tDCde?I5)&rHURX{!sr8m|6xbN*jRK0dw||MlxW zcISV4h)7Ip4|0Ere%8!ycVPMax~}y#Pqi;ZIcN8RZz=&f(K)+!x&Qn{nNoXdes21{ z$KU?%lts_p@BMynsmIUL)AcWId%N^R)w%iqUe15?<VnlF{~r$XoBwA;n7_SA{KfV& z;roAu{&~P|e*koE#pVC|zj*I&$*=o7yJWWp*Pqk-|8UzrU)*nZ2y`{dpHu7qa4|fX zUjK9Y$HVgf1mtVK2--fYzW-Zp)v80``#w$8zQ22wme2Cb_x{7ez~D^Y0m~QL&!iX~ zoWAeN(tEXwFLLzD+b{cF|NeU&|NVd8wtxKbF&WeWy#MoD`3LU(AGlLAzJFa`FKhq* zvwi>lpL6dYod5sl{KrST#ebYD-`9Nq|KI!1UCkk7%3*^u^A2%;k$tlM->dZtwjRs> zdo4fFZvNxd@qe}cJ(T~)==F0~tC!{<@I@RC`2R8N|FwF5*TIB_`~TkFKNkPzX#Aaz z>fn+bT+-hYdpM`K{IBAS-4DNf5n*R%|FV1QH$MBb^90ZQ2-E#}>E@PyTZFXhCmN;B zEcm_OlBwxd@m2Z4uMtNsDe3(_`L^D;Mc_re<GOuwI!yZ?eA^$L^!xsvx7TH3pM@6O z-ygl>FSsO9&97&$u(V8Meb;wTu%xXrdEGjtnPQ!P-H+57%-feI_Py)U!PUo`zAKr# z?vKl@yZzKXdFkHm_kS%k{!qBj_Q<P@8F`<79s{*L^4Vt}L2AkK9S|%@+kB*8)?)eZ zJcXWKwR@M}{a&_HdCuY$Z(sMFw(7M0{A|yvxu5MV6*r}o-I&L-tNxGd>9zS2S6esx z*FQ);05+4${ld(*3J=oH<ZqpIH*ww1(sgsD-P`=^2Codm_3Yy3kM`cIJ@o%P_x9Nz zcU>!f$2E25fwEuq6?gYNXOMp!-6;NmXYxVuinc^EX8jBBlqQkJp3rH%Ik4*Y@pa$N z?{#?MbvNAh-KzVsQ~ups9(L3A8mGC(k27!UmE*4et<IHCeeU<8m_4v*-_CE#uZw=v zP1ZVGYkMro^+>(={m)gIs^72Q-8=nEVfy^0o4TKF>3uK%lPK}b>;bFQX2-BOr{6zh zJ(X^=e`n9xr`zAfZ+^q3_qx!w{ChxGulUpQ6JqYn7k@vG>$A4pd!_C{-!WmWyo$5O z@2b1x*AzbBwLkWFM;FUs1L-ErAuEZ$RVRG-r@POQ^LU-I_5RVdGg;XtF5I0W-Tqs9 z``*}fGoL#4`{wNXd*AJBk^BqpHTm^EJJ0>B$!G3dbpIdIf^PZU*X#q{&6d<VY*5ap ze_>|t#q|nh_3B#ZcE0uvxGa3_Znb`-xnr!l{{4GRwXtFAqJK``DR}OuP2HZVh41v1 z7U%5yd-qk@LFNdBomXWiMaR$IfA`y&y^62@A85W+l)CN_<C$uSww<vNkIsSO5t9GF ziy@>x87z%84El4*<HM|sd$oPrES|53z0;L-;OVs7o!z?xwrkX<o4J+!Syy-FZOxSG zYNyyv<<nL5T6fEs_jpb^Y<u+UZaek!AVX)jh`%^<R^Z7*-umw48tWg~ZS#v!h{#Ut zU3hy-M0>NqB(X<M93C(8y)^|}ZT1AD-|PEb5w^E)hv2sA=VzKNq{2<Dr}s%Si^A3d z6r@PBC7OX2^hgWn&Puv_zT~&xvdnX9>#O5_<nlh3@rjsH9^1Yxl8Ir~vc{KI|0NiL zJTsoQOD`4OqQ$@vm96pi{q!J}%ldX{>lO7btozS%kD<~yO!@MaD(kC#+Fot@1W(-k zARx9Pyn};f!l%pcgRP%j4@;VUu6g$}Ioa3S6Q>`W&%4R9R4BfFrg>{IN_u_3VO7k0 zXDvJDwPzOTPxmP8-FxazVfkUp^Wmw<_m)36sddisSJSnql3Z?v8L@L7fB7N7P*7Ia zw=K3Uonyr&huG^34ZCC($nh~SG*>lf-B~}iY04@4X7kzAPyXJuoc-&1);)Vp0hUin zDNf(MCz+S>S(N{bcw2n`e67fu(uU3d_;2o*IQ{CWeD`-MK}DzaF74ee{JPcKysm$H z&#|?+e|zO8KUrP)a_aY=EGJH!XRT-ddtmjQkYB0{hil)MehSM`X{zq+l9qlfH{(sr z+ojA;{{CNOxc>SrrkT4QR9&r?P&>q3lGb{6<L;OGUNL(ZXZy>{Y2H{T^mdJ-l$`6A zz$TFet@EdFIdPq^2)I{ppeA5t$Ib5>AD)&>Hkf~&kwHJ+=D2_TCt-#IpVQA5*jaP; zhh6YWvXNtAP`j+zCuhsZU{m#nZ`nHrhJfp)C4xnl=k8hDeKYUt|C&V)a$+o`Zd`c2 zcB_Hf5}^q1ZZ=I71%{=64#jBkE`4OF;Qa3YS@Fr=Gxt55^I6(Y(RA_asI21mvjuJi zdENRj!6`ub$@cKb?Gx^c{ET>>e`m@2xX(ZLw$8rs;gC)4zu5A|Nz3Ke+@7;{%gQ3> zBieDQ|8lSPr<S`-3wKWLE8TFe<@byJfANm?RovgbAA8p2o!BjP`FqcWBiC-;ORM;{ z+_e9^Px$BkPo<Tm@2Lp>R5GcX68rwn^&_d*!?!Q{yFTZr>09}~WeO=}=JVOlyiUaE z0fyb^)x8k+#o+eQE!Pf3IOjc#y}poFC_C9_TdTIhp>s<oa4r3I(K&XC#wn(#>d8hs zm(D$NTfcToZIX+Iy;<z_#El;Wzkn{QNw@zi!0=%*e|_6@b$v#LYg+^aR<J8G9C*A~ zx#r#H_z&m**UP%9O}#e3@YL_Fj3;F`dmleryp!*oYWSaZz7y}>c)okvQ6q`ZrLpev z@m!1xCo#rHW=u(CWmxe_Dm9Xc!S$;7x1F2k|8|m!=9#tZXpI>&L(G}y6CUOVd1akm z6marGKxW5+pa8{9de>aMT*M-8mV7yqntDC&-nabEf6mJ0ujlYguI@=;yg5T_PB?E$ zzVz&nZ;Q5M@&wMzN)etIqhGN9kJS2C|9=;RxrlN;xV=AoDzoOS*P=<DngY>E^4n#D zj)ZBmt_%rUc<1JieYc;y&F=~K3N*QH$?&i2-v7CqMJ`QsQaWASB*0`99GL56$(q77 zF;2C!_Qlh1Vc-14U8hQ9W%=*_cmB<N@%{fR|ClQ81bZ;bJ~x@!rMr*q@E)!>(9o#f z%U-<)a}7%-zPcrrdwoIdFV<5@mdBHxiFcfSI_b%~Ymt+-in}%*Jn-D6UoE-k_~in{ z-JW@OR?k;{7kP5$)e>eaxnl`pVkXDW$3IxyU&qDp<6?h(OZxfwKaZR6uGzRkYrlq# zh1HQYAJ0qrxm(Pr>inHy;~4p?S6KZ@^B0bDzxSKQ`seMPq0hk3eY7Vp{*0c1{r(T% z^~JaBXk?k9v*N7#Vna3deRKQ!<d%9Kj@A!bH?3&*Uct}b4Cfv_n$z}tejOKsg{5_? zz`pt6yPQPLOuJU8+;3U6YQYMn#_s_Ww4|exPBl)+{G2HrbpLNok<z#7WZh}r`yXzZ zasHyD{kg->;?J<|%&-Y(@$Fpd*X^LF8Y1z$G;)E?p=BX=baq}e+)@8m{zZKG?4y&+ z{?9S}ko7vJaZ>1{7fU5lCcV1xFEw=G8ZQpP<KM$oIc;J-t<pGsl*#w@7c)-*@ouLJ z8w<oTAG@SJ^;z07O~_T$EN!*aEUjfZ6+E}@>+vs`A9lG^cG|;VyK<%}mKxdVRZU8H z-0!MoDs$WPwnUHg<J76=cvV&N0}R)<V%D#k8k3TErui}-a6h~IoO{r$)aF#<<s6T4 z%nl#DX~~eV(ZXFi<v?zFqXNI!q5}pJQ*8g<dA=aT@#2Q<;y?D?(tBd(cE0-J-3^m- ze7jQ(I<4(2k8M65$G~7${Y^8@=KJ>a=g(hQHLoz3Yct=$)Bekz|3Bv+KL2;UfNHaA z-ly*qHeOqh8*O4ZYsZ|&N-n3)pZ716`}ODNP0MrV{TUfH-?Y4?an`t@p_NN;^~Hk{ z@9Q6SGt{W08hm+v_;x%)+|~czSHEBWBDekKO-s99FV8bD%(wkLW8d8hqhkdoj0`?* z$~?#Zm8Dxvx#jLr@=&!Wa3^!aB9$oZt|d>3zW2HYep`J~-%-;z*Zc9$j~~5t#OvmW zb9EFJtyNJ_U8-*R`ad5-RF=^PVS$p}av>7E%l~bgAn<D$*W9mq?|#pC#P~(I<KwRC zs<N)1t@6b>RtG#MIE8C;u~|K45LA9`<hg!rE64Lg1r`S)WKu${Zd|ope*ItK8GGBW zZ|_Ie*OnZ+XnKXy^Y1w+@3;DYJ0Hm>@6~*l@h13m!3FbOcixEKcys!$=(Q-5vqI_V z|7KauKbs)<Y@(k-+F$!V`)gJXEg>2n7C*k29N7NfAY{$Ku8SF7;txMJMDpujm^oMR zd~V+DX+^VVr%u+rFg@bj^BMYkT&l_p4`)jF=<B6LoJs#OCspHf>TSN}j}i<CJx33I zVYqy<<zBJ0(D&Z~`A;UTvHi@_v1#|R%)-KV>R0sp=0Co<`8)%|@$>PIzNo}K(Yqko zeM9aT<8gI$hCgiH;-7uyR$N%MenvSTLu~qn7`=@gv*kDcWIcC&kM_TtFC}$P>Feng z6ur9r>CYRc)2T21`@R-`op{i0j-RIaua~?1Kc2Ab%HPGh@^0NL*}0`N^r!!Lv$>yv z!T#sR_9<M&Uw#O*_dDG@u;y$_K|$)A7;!uG*kzrwxh)r`1_u7tUisk4Gnu3BnJ?<@ z&$XVz^1jR8?q7%4i`111x%b};5mQ|fH06Be+{IrQRYfjYBqui8lt%QQaNT)9D(G&^ zquuXr{?;qpel1Dx)}JR&RL}YUouS;?93r*rL$KT0N%0*gYnW76d@??7dz&Eemt~p8 zDXvtDHZQGR^FA=CCazKC?|D4^d|_Et+l+EPj*PjhE*?1=mmc(0N|WX5&ub+ct|e@= zVPVjS{j$g1?E1T#rYZk-*)-HN9|858zv#pTpI1EmC|Z*@wx!T5%PVzL<gea_hC;Sj z=}ST`t9ArU(e!=w_W9g1&RCknnnlJtH0H+XOv|{fb|)@j-;89jC;QT$r(5t|ywTmw zt>cukH&$;WN6^N!n+XzSOZoZvE|#V-OYdF3vSa6S#xLHcJBrJ1t~**J*?(N-xwze_ zPoIu@7v<U8+ADwFcXU&0ahsC&*+q)wMN3&-Lzi6Rzh|L3>q1Fvd)m$gQlB?>OP+IL z`TOLJNV?<Pf~vZ%&7cKmM{}nAs=vG_GiudDyF6=~+A6_&%zK57&CdV$_wA2E+h(+y zeOD_~ytI}zWyPNbA&!?aIVOhi=W>T;bWM@YR!B-&wn?Koaek@Tr0>T#pT`)<7|Xf} z`1|)|@~mGi<odMtXV;>y>mJ-R>?jJ>RNXtxkZoJ{RX!`8<}25Ibh>im7{3`b_+@E6 zztGAh*xfC8uGz}V(?L}Al-?ZXs9+QG^2_Ia&&^ua$osgz>DZRsX5pV#^?vY+X4Pk3 zY!hkj-dsFq?%Y6@aF46zmC8%~j5LcGVwd0E*7`E)z|YT59(-u{x9#J(o$j@@Q|pe( za$lA->YN=Lqrh^i_P=@Jx<x!+>u1kY`SmaVVoUOiHLYTGcjnLN`(=MPh8<KTvc}rY zahAU8Gh3Cn;`2|L&o_C}p9j9H?wYJIecuibq3_!cZsL4;-HKUOrY2Wox{BwbT}wR= z+3_9GOFd_up84?Mn%2@jvFf**7M9uBTOU3xUKjZ9(^Eq|zrQVccJq@3%|h3FHPRQ= z%UE?`MfUvZrgHv)?CrH{O+35gRrvOrG+m1@S;#y6tWbAq!L+&h1%{vB))bcYZQc-B zT3F~N+`TP(?-#=_?-!O%NK|$acU|9gu-ERBnaHQ|mI*>$(*qW^%-Yzt%2gz4vBs)` z-3?u-QcD*VS^F+ru)9gDPcOTE<>|N6;`UryRNx-ox9B~Sp0iVBy6&{@2TJc`JXiWg zJ7~H7JR9U;Bpf(lN?5`!y(QNeR;>wFJ1+fV%ley(_nzt7X1}S>p(BLL%PT6!n%&~! zrJZ@3d1EXlh+U2hu!_39)$^Zr?a7rPWd*nIXY5~amTO{-@EU=P-F!;Z!i3xU+E2vZ z(0z~+am1Q2xtY8E_92O8Ma%x@mH*2FU6afgi|tEE*rR*+nfslTtuKYkWp{nBom%{2 z=Z@oNg`Ou^HS3+3Ds$=nwxGSuJFnY3xM=_z*Wfw)hEK*Zy^QU-%+;S;&P^(u@Y-t9 zDa-5&lFk>WY|CC5_9bcO5gnJ9TdB;Ct*Y+s=(g1Ho|5Xg|NbB2_w^<V^i%uay_r_l zxYn>>=a<5rN8TKAFF5b#S5Wij?k)Xueg^R^D|Wujh`uGoEuX@pcc%4N!UNx5ZOx2a zM(a*y?RZzccpod@%6)sb-g|JWZC~zM)tx2Jb#@7eWbP8nwa`1A+8x=kY4)`PoYz;E z+i4}+-YH7{TOX>jzxw0E>&}L%iUDD&Y|i?vVnK;FtCpUqF?5&p(N5ni`RYMa{M6#E z8P_!u6$MNup0iNcvbp>lZ)x}D7mttq`ngrAF4#T&@I-^@alTxPD;JmC4a}PC-{~nB z&FXOU#DXgV7gP8&n=-7uFMj#4vQfhD_L1lPn;wa7{5Ey{-rec!U)>wdte@iNcXioo zg_Z`<iz?c^p#n{}?njCHoZe%(n&WYQm{d^Ov6R~<*WQd?ROZVtL8MT$!S{ON(%|2o z97TETOTu3>7>F&|Wt7XVxL0w0{a#(Sg8b4yH+6o#)Ox`CB}uDMs40XyOhQ8V_N9w| zM4SRn&D+Wsd;JjG*JV0fK}$IL78vJq=wFy=t$x0K^Up<kJXL-i0kwiB0+wlbK7BMp zy|sbkXO!QKh*VxL%_4nS9(IkAjfR?E_w{eD%-gwjnx5OT*9kt-@4ip^zC+;6tv0WN zbK>Vr?*3h~&p~|7=U&h0$>LI;t)20)S0(yu?OqlbI679A@*8Ux#{S&3?sdX$J>8fk zDxT}7acRxr_c~#+Fl^F0^G(egn3Q~0bZ>Gn<+0oom0z$(LGSOj*_Stj3#jjPTA<;@ zlXR+8@1<hw^9!YkLSmnI9>2BNxlLe0!Ip`S9td<Raz4N0Q}CE~O1Qm1xSpN4>V|Lc zMa|^QRBkW-7~^$f2A6Wls#g~!SLpo;i{N;@AY|W9!M;Z07rS<Nz6gryov`J@%k9^B z?LLd@J3T!<=YPrS`-RWF3eqgM#IecVdDktZ)pK^Psom7(YuA;2+buBRx0o%nQ8u7u z_tvn0nMdyKKR<2%b-9V=u2aIZpL(-J344{LzU6P|n|%L9uh45gv%G*v=CzZ;8}8j= zGW;F$?v?g|xESe{{QpYJnlpJXOZ-yK&EfV;m6w%y`jh*)?AOb4+?O2PS961r<JsAV ztX7}Ja@41vJD(o&En0@>;r6zN;$6oiW*9^kU%QwTo!P21rLpkXqTqj)Q5rm1@*lNU z-_p-8lh|?V^ulT1Tx6!EzPzRPlz&@pknVx_fER_w5^lEGY(L8MIbhoI+-WIF5B>xl z{jXG`5ZKy%FTvuF!IYiSeePQv#GT&#?>o+0p!fFF?Fql#etYQ6{=vLplU2|no_}1a zp}}7QxHy^HwVrtKzY;u^u<7dUllKdX-~VBGBYLFsW`e+?$DxitUj!{{<#x$?c6|}| zMWMBSj&X+GJz2*8nRDj+3rl@xN>BfNYTmm;&%O7r`SaH8{bt#vF5B+4Phm=Zu{ks} zAX5MG%ri?ieV$w^eV%dZrGv36xO-<v$(pY(*>6|-J~}7+OriGvx36wa%vbu+D#IY+ zb&;(-gGEOtSHUX%gtD8$*Uvhp*RQV%ugke~YWlI;=ewVNTd1tSQu1PX>$lXsx6JhR z@#e&6d!@AH8_9~lz9izsp%J=(L%KI8H+@%q=AWHSv2Xv@vP_wBvS)pOfa1qHN}ppJ zT*Yt2tjURS<Ou512z5%YQ@!(lrg<aASj^`(mCRemd^=?|ex>+K3OTQ*S5Wn8?yd9w z{)JU#U7rJrvdRkkA`8};`8ro#VzOgm`0+_1^y%mP)2qJiEZ8A)vr2kh)i!}}Z{Ko8 zt?U%tm4dU*=<d&*_T<*Pr;87{pI|)m+<4C1AA3GOe*E0R_M6_j&E1w((y{fjNfxnO z`g_+ovDDf~CRcqpabM1V!QsD)o*V7no%8vI+sbu@Y`M3S$^^aY=E^*N%6<Qte!SiB zlZ6_(6?JWuA7VG;dS`aJE)4YGl>Kz>^)5G2r59T7|C`^r6kofozb!B9U(HY7qhf6G z^)XW~tzg?Xm+k8WrH*r!CcYYbi|g1V&&_}OhpF_X_r0mjT%nP{v$NM4O7;HD=4D^0 z<rJoyczJJZiv4!Ujb~Lan%kYTeY$Rm$NV7Cl?BtzGM#?F_`rA`OAyzJ7Nw^vRc>}( zl6rj7WM7Uy<HhMxIqdd+NA4G`y{Z>4KH*%vVsL9y8Kd$04IQ7dS5~k4ab=6s(%-EL zD>qy?wESg)?~c;%?SGC;Q?uWzwqTAeYqsN3W8dqFFPF1~YJAv#+-&;F$fYfMUL6l! zDm?urnq~Mmb^3F=_0CT!Cx=boZ!=}<{c@dQ?#eP5nV%Cl6cc4K*#kpGE3;x={pa~C zRnd5EkD}hw*|`$j-kV;f?L3mXV&&h>^7S45_J27T3O;>O)jN0IkUMpsShwXZ1;f&r zw*vyFX*93dtKl^zu`zCH=&Jd<8NY=;lKadeo7<xEtauiWNjKZ+g2Y!&wpT42?W`>i zo_>Cwfx-UohvO9=UoK~8`1z*C=iihmE06ST5b$zh-T5lP;=p2N`$9RMtW&=C+mBjq zXl+feuzanP+jZpM|BwE)`~N?g-2dUx%>2)nFDK7wH)`(wDHAJg=9(Z_ySXHAfecT8 z3-jj0UdM<9-dnZ4?mg%(KK=LqYtPf7tC$sQ<mzQ_tz4r$X`<e9V-xQ9b9r@tgwDU7 zuvkNMX@<tq0Dg7}o<oajOpYy9_h<OQJ2}u`{^o1%zOtC53&$Vc`EQb`)a1zPiDG|r z<Lv(T9FxCnvf<FgDX|J?mv?V+5j68)TWt7~af|Qe&sHBRFDGu?ytMFms(s<hZ|^3o zzBEx%BI<Tx*~8;Ar=O2cvYbEBaL!~tvz#|v6MIf<xh9a<yi_N9%2Ip(oa?ctPToKM z^{3gfc{PXi^6QhO=FFe>=;reIj0|F%KX35(Uc7Y2M!qFxSE8I-iza+6=vbwZ;kR|| z`TeKr_;Pph_bj&g_wx;tx_&<+!`Y&VJ>5&=H!$1P`fJ}mKQ&AsC_OV>b*}ol`elY^ zvN1=@?ltkwK73U6_qim=C%g3H?GF3beMx3G(EsoK|8{@-e=H0IMW2MuCiN}*YCR|R z`oi4Dd>fS|lWkWRO0a!aTkFB3w)BJGEM8aNZ&}~%1<E@a^=C)7T#8w~T;0O{<E59I zyOYnHYxYVsbKg88vFx34$MNOo3%^~me>XY({D(K2Hyqv{p*Gp5LqxK@c@kIam&0c_ z$R$~P3p}<->*SMsf2J4G?J)<eyIl?LbpQRYZvSgPc$Xf_asBzs49`AuTlwEwx0Ivm z-v8CR+DzF}C(O{&JUKBkH{jKdccI&+F>Nm0BRHpTk_$syh_b#$m1@GulD<hN&qjGQ zZdw(<K6&TICk*Mw{r}#V2?)O@yKh}~*RJ1_a?CBn%4;s=oS8YZ>9$yIL1KK&oX1~U z<)i1-ei97resL@Het_ZRDPpZ|qA@>?UuIr$!OnmFzIHXY2iD9Yx8KjHei$X|aqjiX zzt6>u=d=pVI<9Yb^v@q9?`k8>S$qzs6IzzCmUPJR9T%SBm}yl1Jhmj4Is5O%z)N>4 z@84COlyz_s=hOf_zw-ru-Xz=bzdG2x*?2}lPETopS=dyMm0n)nUeBfd`va!3J`?}9 z>+UvRt={cN4_10hdPE<dzPD$)?yhx5lb)?V{5)O1@Y5yj>(9hDUwL-zQm(p+WVDy+ z!ji^=Csr>#wd%m1jp2bax3w-cF@E>|%<G4&R>j|s99?8O<NRNhH#e8hf0S<jmHSJ- z{V&PB`Nxl*TvNW#@S0kAe6r`heFA2>*Pb(PIXL%@#O2d-tFzY`?&!*W{%D`+%${|x zH*ko5n0|hKpw_{UpP%or__}kexOjTRnRAA-e{;S&`cm?olk6AJQr{Mvm+NAkSbDc! z64II?_tNR-`c0pNw_mJqDZ0OF&B`@r>hj9(%u&gFV=(_`+21#l{Xqk<E%WPMoNs(Q z{k-96wWz>*8EZUM_pezxDLd)q=SS0u?G+7Tr=Jpg7gK*n(M9dxR<`cc7oVR$H?b_c zHtF)#5Y5#Wo^Q~8^<4aUdWQ48s>sk8a=*6pojhprlQE-qbLB1FXE)YNR@uL3)g|eD zWl;-U<R|{D@mneLeEIT-mMzQHWh=xyTRd^8+19m-yhP4f@*GY(`SPXav%<zaD?9e8 z9ru_F^M2?~_s-gU^eC%Xx8%vHL|vaPBH~PQzjS+D)!4GDw>-J--S0n1cHgHuZgTy5 zSmy2Z$+zw=i2PNUW;XlbpGQoaXPnzI<6z4c;|TW0Z<b!4*xSPUSKcY1#_HIcL-WmZ zFMqjJ??0Kx%*~E%$+vQYxeKE{b*DBTJ+u9Ok>PSLvqP4jZclVN(3agiMabyHUB>+@ z;*V*W=U%^krE137b9*>3mhqgK>pWF;?NOsQa`WS366`+j{(gGd%eP|QniI7ely=7l zUfFd)wM$FFGF0{CyCX}Zc9{RUP`!iqRm`e|x5{Ln9h7+YwEOvw7l%O?g4g~s^lQrg zQDfJhIW6S-woI`Z=WC9nn9Wa?ymNQ=w#BheGmfzQP@5FAn5)h4@IiscEBn`oq;3qn zys!3HRJZGdb@N-jST|?fx?UD}_x6)A{g##q`<8CKB4FepJGD(qq(t&;HW$atw%@bM zZ@<>`_@*DE$<ShWi1FHzUE42C;W?+ICd#4s;Lyeid>ale>Rncw*Ejjl@+O)66^+yN z_q=?1`TSV}&UcT@^X2nzRcdFQJTupNQ>NthV!mT8uARPqZ-WBvPYXJ@ThZ-&m3yX9 z(8`eVh^4Pvwz9=~v>F}DS#bAz!Gry5KeryVWbcUJbagJ5`dCtM=(_9ojwciJRaaK* zSzKZ8XEUFkx%-{ng%8UN6q~qNw#rXhxjcx=;NLb;F(avIjwyfRokTbO&)$*4vrYT$ z{%0k1A1t2l*_pfPkpIfW*0zkxk5lGM=9<{sSU0EZItzEoRcoD<=5vd)j|aD%e8_6G z+1X--!Hmp>0lj-{3ah@%@OmFJXa2&-GZ$UWgV`tXdM;g&ay`M|(31xY3<VWmSSDX& zX*eG^g}=lh#$2=X+{7jCo_rBGANM1qso(ye#PNq^*S8et`DX3jw)ALKdekIatLzni z^NiU#j1trXM7R!5Ja0co#>arGa*^Hi?}>8#p)!{qxi~CZq0OVdkKbB7LwRwe-i6kf zfQJmCch^i^w8<^h^gu>c!(r$6b9qK`lNWE=v6OdW?VKiV2G@t`2fr3He7sVvsv~af z@Z$^f<+3My@0R$?Rt;hZn$*2j$IIej{`O;+EFWLyHM?P@z5M*P>vnqA)AJslEs2;A z(k%6O<@^8LN9Tyiy)BYlvP`p8W1e)7cZlNkdW%^J7N4XQcWEeucrD%eb9vofkJ9+x z^?Piz)*5nXG9CV?I7M$oQrFhlFxx{HO+&L<SA9A!$<wyNS!?noDL;=jpSPt8?fs^2 z(ze*p?XojNgPylZBJ=ebeP%qLjpDtur!4%>-=@stF8tyWyZVIQ-_mzO4*%WR#QkGZ zV_|Sg0Kb96Z$p<=N=wg2G_Q-k{C}!bB(EXI=h>U&E@bbVs+3(V^Efe&lP}f~GWW}K z*x(FkNx-vnoq`&gDqR8EyJh%3{`k22UzzEFH+Q6`$?mUc{QTK?i|-xJvXr_|5mUG1 z{mJ%rHb)MA0kv}tY^}J~hdOIjCWl^}ZEMTv`2NyObMv)}&+AW;&bhwr316LIbi&3D zyN{kNVtmbWvUcrO1IH(~OT_|z-i~b7D-P@9JGD#4@I=bn#~)d)8Z47plKe5CeA46Z z)0~{z|HbpVSyX-D+rrnDJUMvIzAr*AyKh>$ZtB@u;FuLICfepKzgJ3DCZVdJqwvPx z`F2)b$5LKB(|dQl^4q>05z9*$85LDMm$X0Dl-vLKxPqeUIj7d<qcwcuqCAn#8k&k* z-6UhCtj=l(40w0tG3QlvF|Tzd56&h9tUkZw!MEuBk6sr@*MD5%G-1Lm_c?8c4Y%&s z<1*SErI&6H`%WoOu~{TqoOS08{`O=aXO?|(eJA#Ko|>Yx$+zaezkBlU<4<!>-f~vi zx$9cjs$7Ze3tNPZK5RaAXhy;;j)32*7deRf2%TPZOv7fs2Dit=mA-OsGWO5=C-LO= zCLM1dKE7HHafi)07g#QPUM_vIg5ToAf-4tO8&~m_URbTT>@xF}Qkn0;Tvyb7|Nj+! z>+U_dleZTvZ)#d#(pzP6WXtE`<7pOZ%yzFQ_&5t*%6ss;K2l7B`~I`T4+X3|p0Ki* zb{|OVXDqe{<y~VA&5WWL{&tJ1N9yV9?d~CUSyexno~x@zv~@aNHhHpU=IL91A06@M z+Y%(v-n#pmmXAZ8nZ+*i$dEMcsj)j^I2*#moK&t~+_cJ&gS+cvN|V{MLyimP#xF2k zxn(YQ_g6FR?a7RjZgDO(=y)2Z7Azwp``~W*;g2<cIHG=gZs8GkNtyrh;6z`(MJ{{g zct5<jTV5#e>vN6W;g1gu86G_PB69kH(QPwb{|)N-u(bd=5eu&0R6B9-py08|hFt}A zzQ=;2{%|Yi+t`+Ed04W)Z>9*7)|ANEJ?<61-u-51c$m?3S$Myr(fqlKyNkYF3yAh$ ze6dKS^J_vxvVh9I_WpSZ4#H12O;6jbRlA4tw}!$w|LU1jnb)*C+f;qwV@NQWl^_^< z<2IYvJ$vR4MZpt&C%oPu7<5JT)usD#JnkxU#e?oX3V3|&&Mn(ZzigiV(vD4%__aQ4 z*LFz`#e}4+$=;&DOT08wg0w!#PV{1A(hUDw$182F^uF84YsCh~&?%;BlbNq1CT}%9 zw!H7)dHY4nn@ZV?esp`pE(p*}-=*jMqJZy5@5+!%CA+zg#J+pG-pRp>QS_NhsqK=p z>dCxIzi?=7{`Y><zx4`=8og_DE-&kdpMU({d3A=*RhY{=tkuhxEaOOuy{NV(sB2ED z`en^?=g)13XuCDZms_~Z^!Q=HW5M!_a=mUV4xQU**w!<@C1Cc=y*0w^{rA#7X}9d( z{&bttq$Pn~t(*KNzEgkyqho5Z*kplTTRXdBr^U|~RK4=u^d_h88mo2i<Ri0ptqEv( zalOFgV4#O~#iw)0KK%V3?){EuV6d^OnWCiq=-ErQ@2r}lT}HEH_!Q<e*nFv8aZJL8 zzqb0>-~Ev$8$ABji~RauVdECd`(n?^*OO8z4z>H|{m5MZ`_J9!R&IM(0v%X)W`tg~ zsQM(qQ1Igg$7XeZ28Odmoq8vvXQz6Ls+CMgKVG<e9eaS{EK@1oK=#ABu^L?)I5tM| zHl3*3Wt&m#Zzt#Z;zC+zWO9)}*70Pf%dXc8*cDl4nn-3ZbYeNpDc+;bs4AMovuIV8 zm6(yl?~gkkf4nMY)LB}l({*8b=t9L-mF)$g8b($nX0bbR;%48roRqG;bmiUf`|U5c zSB5N{y6Z@S$)N;`j()GS4zEi$@?wLGEO#t9!Sz;N^;*!1HD`CeE&f!;*$|@O8aUz3 z-SeSNzufQrH@@!U{_e-Y9ic1!?bzHZ!u;$XXaz?42l3?-yjOTnX_aT_Ud0oXv0#-} zPn)yW@of=i9nB9ntP5<FxwC6srqRY2y^KW)F7-mczwKGe{#;w_>~@Q^<J>JlT+O%q z8J1mE)|po!nHd>+<=FD&$A3I|>}>P<jqv~9A2pvj=H1#N`>0&2q_KIz=bz`Q-#^;> z{XYNt>W*EjG|n!N<2n39Qs*mE)nsGQC0(w82SXe9mNHEhnBr|A*L%@q;eY*UD%P?* zY!WQX|E!X6(DLN_yU5(~Hp}|=|Etxvi(Ncwo?{`(>b7uF%Oxpx_ItiNH|xe2#6_6t zI)tjQEC~s@6sXC{QqQx}<do69^^>oZGp~8~`tA8ce~gqSw~H-RGf!D5lKYQSalsOo z+eeEM+Lkn2tJeB```n?{5RKT3SsA}SD|oN1^o|Qx&5ZAN`W4rtW$z%O(IsScYW>n> zLCq&@e0#RWaq;M%6gxOsWvau|k9D@0VM-aoF25^#db*EZ`4^SN<@4hk|5DDii+K;P zd;P%5xmYV_<zM|?``@=dGUl&;C^OabvMVERJ)el{#7q23mh~3y`0}@R^M-3dTvIlz z+iy5;yU6+48P~zvh6J3xlxa`p6IWXrr0exmJ<9c|dfe3_&#Muq7cJq8U1%D+B4zSh zvv#Q+kJgIc$p3uQVe{5l!*j26xisJJU(yj87#d>q_QMB(#}^r|=GFasV?5`)9s@)7 z&8AreMl&DHU2ezpzx8~*pnucB;Mj13V@hF`TBVE~BD}XxeLu|;`KKjuy6-HTegBWY znBQ{ALGm-_RxdXbuZ6ta{hMMgHLY2rbt~s$)Zqx{i45twQxET6D|zMLj1<;6_g^hO zDJpYn!3)jPyTrft`DW}AJN7FkV5!NJD<+-W&IM>{S-7*!i1M`3lfG$ExX%3MYuC%) zc+`U|JrpOYJ4a3tIeYb1{u8(Ng7(|eE&nFo$)6>bYmpYUbkAqsm11$_FUnHa)CaF% zS>UiOaa}-|=_#Wg_n^i5S*I(#xag66bITOtwNqY971*7BPt;s>TlZ<JsZ*F*FP*g5 zBDdsQIO~HT7Tct?t(<T7N0=FGY78p;_`d4-fn#>RXT9I#-(52CYFGK8gSWoSoiatl zM`QI8fu8G`RlR%u&pwxbhpAy}$lZ1K|5vW=s<fTcjK1VewqaYT=QO>oEIu6)S+03k zE=h8vhbsjrHm%^E^h9&1!r^O0(Ix`1|JU9-(fU_(4a@p<f65A-E5*&GvAPt^n>MMe zxioNLpJ2q&lY2`{<QA@Rw_C;czQbnsho3LRyH#B}+Wggm_k6$ioPpu}-tTsNe0%TQ zm2Cg{h$&WwTiGhW;CkM2*BGt^zh!He#D0oB>Rs-<Ka6XF=d|b-O0ESDCq?h`IKD~i zl*;01Oote9{jcq=y!i8Vj<AN&mY=6$X1go2)E!bkD|57algG}MLlfl=Ncg78O$`WW zUG`$iMzIF{=!~`Af#QXqjmlT=2>-K<f61q41<&=DSntM9QFXn{y;fmrlc{0T3yn(; zSUhy6Zr^yxYU$NAf8OSvRQ?;j`SUJ8hVU)*)21!l>J~UnqkBop;)fwiCf~Mf*X!}+ zV_McN_{F5|qO{@k36b-5USd6UDv)Kbj(5<PjJ3g6#QBuA>@Veu4ftTexW%_fW%?%h zuXjc69sN@$6Yy}4xvR|T?nNs8+_6(c9K)j~`zY*ZvwEH|<<vTUF{>^1-|L_Gf_nSU zpKOwsk|=c)|GP*hqjBBbwlFCxoo`ynn&KYbor`>a&fmz>R>-C{MdjmD53{-5ztz@n zXFha%YX5>0Q<gb|wgm+QeHUx=(mFB0CtwO!_sr?Lx92iH{`2_QW5s!PUn`&Y%gHZX zSNkvTw$6qesUx8~U#jS8-JP~BWO_>Z-tV`rp4{|-yZDDIM^2~F6%oBIA=f(vm!zz= zq=sHiITMoMo65CRBp`OW&ukfnjjf!wO3PMs#OBvC2yB_K`m~f;j@{Kz-|nyTPR=XN zT-Y|D+;8$`Jx_UG_cULx+*|w%GnbX@Pp@<Gn04V=DC^@xkCtcz9=TJu_RkHMyBf00 z7VOTI=TBaC@pL@yf9fn3`}%sWH;(_$-`>A2vpGPsb(KcuMvbXaw=b{RIw3JR)?q<# z-5jmcN!EY=?NekuTl(tM_WD12wY*>GFkC$U`&;d)DDJCE3*$WJ=B_IE9q$^)zW0Ju zD2JO%yx@U;N5fjrxWH8xcV77q+DCe9z1JpB`Oj$^F!zu)3ovQDxxxR6ai-SPRM+o^ z8Rx!S(EERO;j}NWyu3vm+q9N6Y}H(q!o7d;`_sOjIYsQBwN@_PUBYZF=)fN4`zXkI z`qb%9yr!O#<$UP7w#WBap6}D8A9@QN43<jz9h<?n{M*Hf4zJ%G*MqFiJQL5D6<~Cx zEK)ef^U*%Pvh9l**MvM$T`Bo$Rhu5ym8sz-8A}tK?Sq#oSLUbZYPqjaHL?75$o;bB zC2p_(H%dgFYME!d+dItXT>bs6L=e{$!>P$8OZsENQq?AkRc>yQnc-?*dnC$tlUuru zYwDiv-`n;b<THO~Iw5ER*Q!<7lUBcWTG$a3yS66MH0$t{XXheLyjZ0lbW%%Ibk&Dl zv-=jXPb~bQQsJs~_MN=6Caa00ve-!-Z*BeWy@E&LD$h)@Q)z9Tvhm221}-o2wR@S( z+zZw#m~@LYEqW3f>$J_t^0|1bf9quXo2;d?jkk#}ow~{Q)#0MeSCxzI+&X#gpJL1V z|1YCv-r9A6^-1Vo`?~zs3QL!kZQG_CDh<sQn~gaXUoe@-@M)$;rWPqB>xeLD9&S<a z&I=8?kf60h;k%C}EANcZ*q`_FAOCKtpUaS|^rK|2Y~<3z+bbpYteST<ZLD*=v90aX zLPZu9on3hX^PVQKEu7+)eNl41gFFxW3Mb7Ct7H~vJZ6gj`~S_}=$_P@vG@PSX20Eg ze(kF4s%3XCZ!yRy;NiUS<KTpu8-;FmH3@V32>2hl)S+I`vNNJVK#+eX`)N0u1uC0% zwAdWcn0}I3LXeY<t&vUVc7lw~1jB#*O&e{$efbizYxk<vujXw29`*YFhIPNMSYEvv z`#kFT?}=%@uIzlb_uH-PwfBGht-CMJ_SbNhRjmKc4V_w&-s*9lp@G+gW`6&FkAcnV zbhX%pTStzERVLrPHRJgDDLrg<ED2LizIvurQvL3h&LM|R`&k#?Jypv7|Mlhn$sCGF zvY+S9m6eD;<(<~8J$<?KryN0lSC8)&k}o>k_6jhisz3R>s#SN2`P4mpg(s@teXS}y zBfun}7!&JJ9-neo_vz!bm+X<D6E^8AZgY$4uXaoq?t8^^ejR(|@Alr0e#^NZUY_2< zldAByVp99-C>3TwrP~JXcOuFk9#rL>BFT~R*S=*-`K}2P%tpD(PKW(oe!ku6+cBn7 z`mfiPD&CqZfBw{_n3u;M{ObGFxq*#0S8W1M;qxsVne~<b{l6N`k!xV+x^Tg0*)tK> zga7>Bajz5NP;3!!;!tdvVA>#8vdN4?agkTr_Uo>fO+IdwaMLrrzz{g`)(weY){*W} zKjx-)bGZgQ(&-X5)p_1}_RAxenxsdz+&`bPyK^u~zFzP>K_H8x-+5-}cRQ7*)uAgQ zw0C8iZ0Rr2IBisQ;q)Sh&>y>w206~2`=xT?kr&gRo-JL!Ci?Yu!63J(_wM=e@4B{; zfA{shC+3~Iva;9HsX(b)fz$fy)Zf=DS;a&jy|%ddNw@a4Y5v~{NsBMM+*OuUVt=hK zUv}?S&xzN!#ZO*)A^X6sCA(tWSf6cr+N;i~naZPobyv6B&W%SSCfh^?IceSe<k5cX zdDw~@`@7ft51q;N$LUx7vKKa=bwB^Vx^uGo$C6cA--5GwT=aHL@0_yp+xLD|g}v8f zB_)+zPi^|L^+j+Avt{QLBd(97yJbBzlV`cVa|}2BwO@ei(1{=aY?PMjoSOFG^`^+@ z|K>0Mv(@F%5}%jSMx4jC9+RKFbgRer{Q-_19D>hFrr$d9&;J}BZ^<UJCv0V*p@w^| zM+tvExiwFrC1+*u>>LB0pHW^ba}0b>ow?M`sGrm{YgTjhr�oNLHtg9hHHlyEwRS zZIW5|QMIV&+S+fEoECjtxWD(B;gP)>r!wwLNfo{7-KwjwxwT1)>kFIT!`geNHqDOv zr165W<YKE{NzFY8ZcS%ZrkSl@mTd}R>bM^C<7kXY*p#f55&BF1``aa||NixB`+n|^ zrGK~F-)wmHn1u9g%j@PdY@9VydBRH-uhliXh+h1l$t9(=`NZWpyYA}EI<$4ancA|V z9Y!82=gw`Mw3@L+e{w+N@Ak8+Tfh9Drg8AsxA)bPazBO6^_$bb)v#gfMwV!~M|o>q zbxP73|7f**7k9lV_4?-P<&)1JpX(>?B^vnqXq0sD;ZNJPM0PRe+}3{(@}T?248?29 zm0MPS3t-(Vu4=5ixMcQoE4Ob`s^h#Yw^p&QXR_qxDO87~V*#gY3{@9SMonx_U{$op z_FeUPrD%`uJrVBNHZP1ijh^0fR!qH9Ddwb;BfeAgg7xLjO>+09PII?eF-7UEz-p(3 za@OZ7?)F4~J+)R~!l}16R=X`WscYXcA@ISn6+s^BMVMS87uetE+<!eNWZw0!7Eh~V zejTh@ePpNId?%-=T0t+?ZM^W$>go69t&#u5&0Kqb{F8UuI91@|$3;$em^X|5y1wP1 zaS^|sLcog$2e)pB6lG4CH{n4-p;MX?r(NpfzDY*cc1-7%X*QcX`Mbl5&z1K1{qaBd z&OKe<wdZ_#?!F1z=G#8V7peR$?mF>^z}noa)%jZ!?LI!O=O|3Nm%4wydD5c)?RD>! z%Kubv+BPTB^uYG|xX0C&pLWdle(^tb=Bu;IcW&Ez<b=s1wSCMUNn00fU6%S^{W~*n z$);&LYAzTsrl!U$ne5ePnSU)U^_)QQy(34Oax|G2=dKMgYpP-5tY_A1G4#_(e)!nK zdBxl&!IL+*RrgQvQmu;d$iKk+A$92{oAqHkUhX;fG;aNE0ioUdx?h&f-x@ggy4I0T zf!{CxpI*nGaI^8vXJ5&aw^wM0^vE|)*?7~b;*s6?N$=Hf@0|Ks@~fs<cFznquE*v7 zmuPuE-!E2a_hL!oi@5yl`=c%9hd7*A&n$i{T|NK*=PlB={~w$ov-$FuoapzRpKm<T zH8(uB;qCi=&&5^~@+Um`>}U7HciUEhn;GX{JG>Ka+aU}p<Ul1|HiPYpl(#d#c=@)K zEZu+9h2v6DxejZQ{>^7Dwtk;y?3jE1LfyZw4}5h(LMrl0gjs*H1o6IHr4uNk>2oIb z@Q?1b7mhDg@Z)5S3HEC-^jm3XQ0X^$-dXO~wlkHs8LvM*yQOB+H}Uk}pK5qG&hL0X z=lsUCyh*?2f8KNW-En5?-DS*`0q3MjCugU`?x@?Br1t#mwQS*J+nMq|WdxK&{qAvJ zKK{+-$lM8^9hm3NVYaVq@mQ@Ix%Bd(j%!V(mObo8TOU>_?-7-I+w*-{+2K|_-!sQe z&9px%O>T^vmU`xCsn@<o`^4^iuf6kq(NeuVk!@B6zh$m3d#^8SD5<h<L9F3HgNvDS zu8BEyOwDQe_-akx+AZ#C#}-sBtC(P_G@F?t(#+(-$!2A>OY1DnUCm18o%_5rDX%Kf zA*J&1wU(@x3~EKr&Y3ph&-BjkkNs-0eW7@Y@C<_+V)wqMd)S^am!5kj>GKq`X^iRz za}PgDl-~2EWrF2lnG#sYr|>RdpKD_woT`4uuPES@-~atDd_MEWxA=Z7h*LDTt-6vM z&1uV@Id|&$eJ2*%+}>@(+q^S==G$-c=AJmied-=}cHd3A81baJ`}3nClH~WabN@Bj zJE8l$tHjTfwllYV`^dko_>W@C8EL5(Ph=wYhn*HnDV)2*cJk#f9^1JK{@t9lUp1ml zq{=v(ao?Uzap~MUVskRLau=*Ue{hMzb)!=^=IU{6yL&zPW5kUKv-dwzj<mn=eH-)a zUdPGhjK3KapZqa6G8dG7K*dZX^9x7y=ZF2?iRV9l_wlISC*!lidQts;ai3FH#l^q5 zcAvp-$A#$vdA5%i<v)JGoUnG2&Nib%<-ND&>vaB!I=)4&jKS$d&4Nb1X9uSFdquwZ zZg#<IZ}ej+Yn|H7Dt<BlQnzdm-<k3E%Cu+y*DYe1bM~L0@VA#{_wu7FP8~_~uhQgD zd~yffIZyT+v3hX(rA?IS>zDiQi-pDBw@d$>x9?=gq^DaQrX?qA50;ry__jsBNsQI@ zMavV8j|_^7#XPTGZQ|bc^pIG*s@S!>nX%j4*6h1^_pbVbvsXh~Zm;L*vjJ&f=0%Fb zgbr&($+Zhy-3;>B%uXB5_+}Gnpm}Ge?!J^Y>pk}+9WUK=b=y|<oY$4YP8^XeCKotQ zW=!?mdEZo=_t4Zwv*uq<2;Fex!m0>%(U()@85COtiV{I4K524LZUhH!j+w~?PDG=G z%?ipE*u-|h0jZFedI5?FkmLy|2hnn)c&C-CO~XpWk`~E?ge}z$<=*s@-EU6+hv%7w zdk+bU9u@Zq3(C#<&76Ig{rV)$zk6!!yC?fUPWkP>xBZz<-T$ZdclNdW?@6}JkX2#0 zQDT>Fl~%ZDQNr)rhnk;m*?*$$)svNLgMaT%<~uI2I^$MZz1?ZU?qEHJ)si`emyca2 zU3B##^Uoi}$CB*>FPYe${pSyf-qUP6=QgWNnAvXkwDphmwf{Z(3OWCO8oy=BuuWfX zqni+3!20gDT%7tl!+CQaawn{fSKwZgqMUT?hj{<%BigSUtmhTH*xdh{=l+#j8=|&< zR?$wr%f4Xd<7c&U-_`o}x8!i3)q9+gjH^FbO=7uSA7>L`z3K1y(<0^{nrrIb<-97b zo$%Q1{LWh|>+jB&pKqgaZC0rKp)h01f6q0IQa*0@pU-A;!PCWyEo6<*w*Og)zt@Xx z`~NE8_Ik0S-{Ljj{9o;=xy@d2@`rT_uwcK&fE)z}1j>aB+bT6rD?MS*oSNsjn0K<k z^fvFR$w5cc^`ic7XE-uTZTqJG>!(d%URCpde@1Qn-;HZGE?+6l&@jR1E>rOy@umy^ zm5ORUD=|5#l>UxX^$2$>b2yeE;wl+`>&d_U=N|vbx%D^R{Fbf2^63*)J|8@EY~%bj z`d=2H6znZ)m<&_%d#sOpKY3)nt>b^R^Ns)ET?xtSXO#Uu&Dx!!TcjhPdwtJ|dGW@d zn0GncJG@oydHN;01V!_AEM`)D|7SDumN<nmw7YLQyWziZQQ(a|yCd^*EFGLqY&#%O z4lc+xspi~U#-y0CdqJZgtns{tk+?Lw3S136VH8|>N~}R)Lhi~bz8s1zHUcIWICm;= zTnt;bbsBey(+MWQV69hOANn6ixNK{xd6zn0z2yuuN)^Ui;$$Y*__8!M-PZqvYwO?I znRhmCZDn9t&$;u&mfzb29=VuEE4JLx=P6WAxjb{L7{__zM|}dD7<6{1I&G8X&b}L~ zz;b}2-06hP0(R6=E#>e{KlWcDH#0VU-Eku5y1B-+Egml4{#WmPt#ogp=gxbjo4d=~ zp44$H<vzmt?sLn8R43-S0-G9tJna_{xTtV?o_ci0gRAjk={?!|XUtYvRQgYE&CE2( z#7sx06MsM%9h!PJv0Z5PJHb{wE9%YBFLA7XZ8w4zq+1IL^XrxEpYO8eU*s`fht^k< z8Cf*%#5Tl%il67LY*vcWo&2wleaX0-8>#f{`F`E!KDTZN^KavPo!6i`?|0<X+xqXG zZrBjX9rNaGSApo=cj<q$FIO>a^4%y|J8`yEi$GER1qb!wmV3>q2cP!6PESf&c;?>p z#LaU~aISv!NN>jWwd^|fIZw{mK38%#y1^ZG?{2)dwPn|{>j6G?woiY}y8L-V@RrlA zSvF1_GwshfA{9ne7f$|+xPBzwx?29fQU!l=#)mV;k;k()G5EFI-j*$&t9vafB0ItN zL(kF-X2s1bnz;+~bIc<-ieBe$3P`(S_S#Bzo?G<hgUj}R=9m)}P@mwn(tGyz134wz z?4Bf?`f<jvL%_+;iFxiEZpH)8gx_$9tN(O5EUA%ral$mopj`_D^|<ud)Q`;iv%gF@ z{M7R!QPSscMsP1S-E#4xsir7{gX7ZQ3<*14vMSuN)#j+Y@8#!tgunQ-T9@dpX_dK; z+2mV%cOUw&T>sNgv;RWXk8H)5j9$-r`}6ynRct9z>c1kd{j;2$Ew`@m+<}#S^M0(@ z>pv?uXJhZlO7!SFcT{T+%jEr%|MIHO^7h>SYkus=Tfe0$OG0M9_v{yJH7lS0@X5ZP zHFd8|9?svqVMW=tvNq-l=Dp$kF53?0_cn6Mm8@Mjo9%Jcn}23vs|w`4ta`OT<Ie?s z)hEmDF{{t`Z#w_>549tYYFd&M%l|TOo?!V<#Q$1k#50Ti7oGcA*O)ReEWTX9<g-jD z^?b_bb)Q?GHx=`l-#_&&V(y{24Z7bf?w$W@^mgyhUF!XdicT|12hVEp_-CQ$lJk1c z+3g$uF29&}{zpz#Gl#0E`aFBVGYQML87rnYvROq|r%66}SQrx^!MynJBd5iASqu$% zSqJ?6LPHmx;Ste%I*WHs`dQVvW}0WpQ!9!l&62Y+FLkw2os%aheD%%xT?w<^RnDJZ zVHcyG%(JCT@$J_g#|kQ179ZaI?)@^y?Uz{@zLb|;c>SG`AvN;o`SsUpH&m@L)IF@c zmqGj!H-o^+zlUB2-wI6mxxM)9f8n(MKYI^rRvr~Tb4O&h@mt>OB{s|Z>?c3=`}arY z_Wv#GXQ(!B)YM|UHb=&v;d)-?s?75THOp*&%ccAc_GECqBjNt<mKdM4de1B2D4`R_ zW@<_+UOT2{?q;ptQg3IWw&v;vv!!1>HJ96o{ZxC~bZn*Xp{)z^{gXGX%Ud41)NHc! zMy3gg$tiEI%}TkO*kKK-dO-ysI4fThntk%1Ut8|hBO7`eKgyM?H7&Wzz~Hu6u<dX% z!-0<<4G&E(wTg|ob^CC_24)6<)SYR&XYoIZpE=)O?fydkdy^k{`j~FbJw16+yW_Hg zmthxkHB=Yw@tAp{?EUkzJoca6Cf#RV`#ilvF)R6k$-4jY^74uQ&*kp<_DY+f;qYVU zlGSny4_<9uy+dg|6T=j(q!*8)?y_kwx;igvyRByAfB*OS%j<XiyZ`PtLx2Y7N~izf z#opQ*)LFKjyZ!$Br^@O>);9Y8KcxJ=ea3jkBFUolRtal5_v^LfaJqKAI1sw=?{h&@ z)0?l}UQct8oAX-y`S~XnOg=6TO?bD+`>!$l*K#@i&(co8oQC)B?7m!AYW*&@szFP) zODTr=>OAIUCG)?|n*Q9`Zokz1b9p^8#bhtZ{r3%<dRT(@?PAv1yZVwA?8;0MS$Iv# zN#R@d(k=<h2octhm-DBqE}8Vtw({5f9M^rh%m=IGo&~No&Dr6%!NX8RbG?SY@f?}| zts)wSb}a4+%X(_IRlCw4W5MLFN0O2X-^|~(O|&X&O=I4nCn3ouWtQ97+1YRGFJ@=h zQ2)Ga4iEcuJx7n$Rj(Krx;DjJlgwpV7(08}!HOrhHeK9$I)7f3Ezg#|jb#oe%9|Pf zq%3K1xcYX%W9K!eH^oFmd|lQuaUQ3&_45r|6Ghi|yDh$Z=+TQG66^Q=v)cD<>v|@J zy#00DclQ}zSUTm#&7CX^FTSw_yqeco9o@XuOz+&W#eqJPH@Y3aa53!Oep3T0TYk-; z7we`3?5hu-%V#y$;2Fn_%B+MG#pkPEfB*dRY1nUm_Z6iX|JS4}Fs(~gSz^5Ox8n+% z^I=Xu%k->6v;HrN$;b-c@$dQ7w-Iu0FT6~6b9J#{*80T6L<NOQ5zQq>*KS;Uc5lr( zzUxcZXq8O({#{2T;#An|r&>S6&vtaaKKXl_Eo?1-*xHLfHZIMawZo2aQ(f|(XXWo2 zK74nJy)N<dXQhqY!gY7cdtXakJI{D5Ln1psOqAjIoE25?<X%jXol?ge5~kX9Y436! zFOjLy!lJH)hF_}AIX&aan#H#Gu_8l4On<_kzY|^?@0j9Qe||>Jvnh+Fo?Fu5a+C8d zKgYvc-<-Cq&Xh)L!<~#W)V*>}VlwB!n_)Xv8lG&9yROUwy2GixoWJ1r)o?}z{kuP` z+>*Diu6g=Odc*e%sWE2LAHNS&IX$s^agV#QjEoEegWGXu36l+pljFD8cI@Jdo62_S z{ZC1ijf#pYRn2za^mdz_-y8m%&vdT9np-0CukP*mYs9@cyPGTZ{pagG(vMjL8GGE^ zZ`A)S-SZ>#xnup?tI<2YT+m~9aO!IIMQ_WWvA1jZTmIS0^)fL0{>?5SyW2!EdG?k0 zs!?25kM-M&NeOYORfXmF$iLwKwd2c#*Z=ogeyjhkI{W_n&l|oi%>Ufn-2CF?Ca2>b ztcp6Hs@}UvJM5@-a5~hYX6m_fm-&l_m*!>vuk)X4fApEi(mlQ_>gUNP>V@R?INFva zpSbu@@Yv(P3Rb5TYra)lm1pPlq%pY6aW1)hWZQ~Wd^#@6H0J%<H%D=jT1&)@JA1mc zr<`A38k_ti_(R*_WRrbod3~<TzjEtP6z^m8xV5uq911r#?d!X<RZ>p=;fogn3>RLo z^?qM=d)dJqD+7OB*|h2U@dN_~hLYXZFDmn^wudi#e0jdr-?=~L`EBpswCd5v_460J z`*Y&@<h-|=`57#%teUp=)=zKX`5V4U<mEzLg<AWsjvo^J#GDqsSH9j-Alh>0u?Sba z<LoJC7^PmMtUV#l71eIDz>_(4`zL;B`^=pia`x}AusZa*JdT-R&!<nmGUj?RYcxcU zExzccvuIkM>zQn8E2~3mqu2fI<M02Y^62okkXb8qFPMFM^k~t+8`~>`&2LD?bWILk z{^rP@HJ^<vcP<t9em1;te(r+VVIFbwsus-Na4_icxr4cT>MlQBu)pYcm`PIG<30b2 zo3)NhG%N2vS^oQ5w#Ba3V*8v_lC95QZV@nCdmu`EmyDB=dnxZ*=Pl)Z-xa3L&Rf07 zY2h=Auj^bpe*Zkd`^7oF^1;{ZaR)z6G){^sZvU45{FqskvR>K5TlIIY7^+k(-!HvB zK6F}um*Wc7)*b1Jx3W(^S(qyQxKy|#rcL4(uaKttr^!ouj_t~uWY@XDLHJg^N!zz$ zy=H8op$C6VF<Q+PA^C;%h{^9ee|N4hX%UT)%JzNJfB2#R`)@tg_Ycn1mFP$Ww|9J- zkuLYEc&+Ig^L_ot9`C3uEve~Py!+kfuRkOfPmJe(X}Cqs{q1zW?fr9Qm+#$dEV1Br z@l=~#dl`T2e)rRRcXfu`&PQ_26?<nG>^RXqn^ko47oN7og74nkXJfc?*S_J)T-Q}h zt}ly!gfhPTD$=uUV=N2Hmdt?biutkb?!l3z0YCq(Uy>Edq?jUwo}F(QtUM>@bbYpu z?@bBb#gmJ6Z#8Qxx%ybJulB}`ySvK^e^28M-nF-$eXHN2^q^B3Y1?+%E&rMPaIx?M zr#t-LV>^D|U97C}^3bk^&H(f5g~t4OAy@KeY23KpbNs@sr1ziX7|MB{UwvhKb&C0w z#(V3EZ}VmM*V>7narz`-=G(hbywu9d?$F!Yzjr)!{@T~ymndJj|KeJ&4vB*b63Ndw zUoveKkGHbg(fxP#x!J2#7P0RM;Br!X`dedC2CvVub2d`_7q2Y-AoNY{)bIMP1dILb zN4Gh>6F>hbPcNIt&H1^c&5q6e&hI02mh{wydA7#r+>CHY;d-BVPvUyA$-lY`souG^ z>OCupUH`2;dah#5k;vIqJrns0!-E_|Ri}tQoIKNMUw6T2*Jn-=-z}>6RYkU(eU>W` zq5U{LO|1X?jMe6~o!h;;_zW{^_En3o-~UeOO5WaIT72(z?c63QyQ_oA;_Ov7bBSM5 zW`E3Jd3@dK_+i1mzk3U9Y>r)A$X~cVdxnD0bJmin-@lYu+47Xd%nDw9+j040r}fp% zdh2XHX)q*|q_Qk*@|aV^R226!_LRuQ(u<4M9;!%K+qy2Br}oLYyN7pc{D}&js;c$Y z>EG-{ju$KVtJEqaR^4ye+J9B5wczb_lj@C+dZjn&he=QR>C8NLji{l{g{TbsndZKe zKi%4*tt`|dl$?8JrgZOdi%-n2|IMwv^G)krIe&k$r(ocefK*OZrw<&bW4D|rO5VC( z?D5ANQ?ofOn}gh%53G#%eO6fFM!+vubBW)cSuy4>zLXj%9g$%!PrGRze7$n^W=-Lq z&l3CQt<;vzoiuBc!>tpmw(4tg+^PJ_7gzb!^o{(E*4sPs6u9<(ShdUWNL0rbpBvwP zA4o0ikT{mzu;b@)R)wYKS#?ERIP8Qwc3uqI(K~sClbzhcZ`YTZd$@IEJT20@y@BoA z-T#||qCW4Ne&_9*TiXoT7B4jR%bNLVdhCgH9_<M+w|5^mTPD+U{ISHk*s`j^!a3i6 zewNcNun#ZrJwE?W!KT7Ej+vp}f)kD%F*A2^n|<p=jPS8#S4<|GT~loFHtcx#UupBv z&6{d}-a9{M-DR!9<cbXG-i7yTcGdnCi`)6ph~dG~>HGVv*WYJi;OXakWO4tB>9Nx0 zh4&3)Wcvet^X{)&V<>0ITzlumHMfv8A0B?nRp_1&6};$rdE#5w$VHDopJun7ZXoyT zPFeDW&#D>K&5UJbCE1^!E;=W;Q?28SSwgQ_M$)XvRTmO-uBGcH>1;C1+bbpVtM}~j zzgw>DnX%U6882vLJmN;k`OPb%k9l5xk+C2;IjM8v#gB%3HUAzRJjlrRcU{rlo`5NN zmn2Jey(qQ59ccB0u_LWn<RgEq`3AGMN4!^VYMs_;SsZmeqeN&X_bmniwxEuPPa4m* zoNaw#oAdkYGTo-@If*t0mmI(IRK9JJrP?dzjNGIp%ncbWJ?+kSY)iVgS^qBIP`{yn zVZTP>gcs#^ALXQ{H>~1{o46(8UfH2I{}r4%OFEJR?)_(c@B3+fmz@4x2We^ZWwQch zk2Wuva`E?zV{<IOA2qJMJEzY0zR2v`nJg1kU7YV6TJ$ZK^Tv&TVWJHo4r)GP@7mpF z-}tv{-QtRw4WF5q*X=(4bVGW?i_OL7!|nfVIr{KT=W`X8RkLGPWUPr^oVY1LS~KTP zM(Hn!hjyM$Q`7D+XuX)GvENYCEdBGus3i^CbQY;kww-BxdXLb;+*iAfP3%9hv-Y)E zT;)?Wh6hij^&ft{KF7SaqC&tt#=W%pVn)lt`%9#H-6K73s;$0ycZn}U_M{(jcOn-5 z`6?so`bRHx%8FfnD(^C`IQ%locHQ6Y{%6^{r|!r0eXCkkT(5Ytwdvup|2wV;Ds9^- zAm!FR>yzgkQ74BZz7pFVQ)~Ek1!!&i?<#gvxx3L4dCZXCDpEh^R;SPIPadb1ZB+3N z6707u_HF)nqIE*=vEv(KCS5aIm0$MTHYBz5pOLk;>iyQ(3Hl1RE5#4B&gPP}={9TI z!L{Q;*@35LRG<E}dM3ZhX`x2fiaYbP4d(wgP><1BzH$e*%K1CH9`AV>`K!S&a!2*4 zhuh6;?`QOWG<c#amsnBKa;sWwcWCRszSEX6U)VIbo*T{#-|^m6!SZ8_y?&RHTlJM* zUZo!sP93uLQD{B!Nxb<}QP4WQJ=gcldGY^qDetnHgy(1H-`juw^_O{N=jZJ?FK1w- zaKvwSj1<EMLGw84BQGreNu)9;3$ztv=dOucP%8WR-)t*aTaBfgzRmAf&%PF}B3iDH z&pq*M<myk$p4TR1)eC4IS{WkhbwBO#v6Mou58pkk&d->crsLD0(b($b(Onex>BDTJ z-E5N`_peRs{rl+O`L8C^Rz8y3v)MQH@rM&@{qyebYP}v;oSG0{`P6jJzpmBW3TsLv zo}b-SmU_ua#PhO=;as=bYG--PGAA)aO6=Mo;N<9KF1K=5<CpuYtxlFj7el}9a0|7} z|CR7uh_Bu5(}s0-ZKga;j}N(YLtkNuQ)HXXAEhwW4Pi?HzUkb#tJKr{PCvZn=+;n0 z!QvmG?;M}+@jl1ETe8XS#+i~$W`0(;UTEw|sfmjgSY)`Xuk!q@6w3>~vb^Gnyj=6^ zqf4y=TqkzgoGo9tr>Awg0QVf7+G-K6g<Qhknt|6F#OfBU^5rTtx6(T&wKh1fWYfci zDUF*}Ea+1D-?=m4=$Eatvln-M&+AC!+i`_AxkP)bvYpx6N!btYU2t3e;l#%at^0oO zzq+6!we*hdgI-Zj-nIr-2E~9ADIx4{yLPQxSZkZKFjr^q<9Wqzm-q6s^UC^jc|`tv zziQEmJ9}>L{#v@6$MN~Azs7w(kJPHYY5p6KHlN*jm)7YU|EgxZW4$8glwo4ly2E{; z*IHvnS8mN3-i**=-{Qq4=WdpJeEy}ULxV?@a%+Reo}X*}x`n6}iIyh#T-IuqYI&fb zvY@FjXvc?dI<<*P5AM}IX|X%`H~rWAPF23j#5L=rg^N$P9~S(^KgZzCzqQvlzW-X( z*Uulls3>Z7hJurN?7VFc=hPiO@O18O@jGd|zU1EGknQzSWO;QfRytXASG%9jmk$pZ zzAh}!N%<cB<BY4y`%WeYMOLr-`Kc=vUT=7qlBC7B#&NCl+Tx41rfhETKghUb)uUU% zT34mq#jk8W$(l6zZU=OL(CI{LBWOWFgi3$2A=}n)HCsEYu2)yiR<Pts-v}`CoxNg< zjg8f@iQ=8o^8LvxRtlbzW@EVPC+{VC(c6Ik2&ee9M>cnM-dgc{p=)KDN=`s<9#3E2 z`$dxMsX?;a>u0O2+|#9T^2xg7jv$Q?#z+qj$+p>++y1Ux@7uQJeC*Avbx)KEZ)IG0 zTo{&=&U1Ii?}HJO=QedDIWAuF<=l@7j>}gJ?j>K<)PD13mr?v&KmJqk+&epef4_W4 z`PtvU3=FJqZPkt+-W~YGK!4)p7bW@}@)k0G{eqSWxwe)(>f&}wIc|U6@Wq$kI@}*^ zzUOy6aTV2S`ywYRf2`2X<!wtqLizIQ{6zv6oAsvjG^IOrUis(!mF1rCikg*ko_<=g z)Ac~c{qwWg^lEl}Tfekq*{-~xGdmpD{A0`xo;9WDs^B7a@yVHTksZ}yY<mo*Nj-Y^ zPgLpYtISw;!^0OdM2`P_n9(x9KDlXEZH8as<BHst2BC%avm+KNh}&$w#>Bh8_0z8B z$Cpg;KgyWY@%y0jZ;MZvL2kFX*WR(?6?aulY-U&_DADh{Dy4a&&r-RwB8lFLA+P=y z1Udw@UVqXf=YOIkW5ML9msfqw3F@5lw^qFD>#JVrinpcH*PGf{xfo0BYBh}Ut6IZs zn^$mM`o;FVyN4Fm^Dyl76KA;avgFR9#J<UXdH-~)?(v`AQ_ZS%?|OOKSErzkt!{UB zbY}klmb>TAC2tG662;10>n`3{ptd@C^}Y$O*LU&l+PB1erN|mX?#TS7r|$``Z*^UK z_Ws_wEx-4lx0mTJ{QfTX&dyqChJu3UW^Qp4_pWq5$uUtgr^H6)@ihJGpKocK7Zy}- zyzc!Tx4gSCyimVODRkHEBS){#>HYlekm+6KUb%-4wsG6;t$dvJ=Kr#b7dS-KW`+IN zK4tXmd-<=wGt`oL;%+tN2v&<%u6%XvbFkdq|K-aIVs9+5y=1aj;#c+OW8Q_IL;H_q zOt@s}V#Xno%J}s5{@e0Lie{<F*MC~_lC{X_dQI)|`PU>wa&lJ(RzFUusCjZ~w$f6A zt8wp_u6(`ap{}Y^!m=qw%QPa^*1o9zHMb_YGHcc)ne&B0yN@L5zcoK0k*AlcW&C_o zl2b&r+5D*Qb_<&}&d4=;e&`ibAzy>1zGQ{6{St;-Q|gj8@#^s|xLjEI+}+*T<liiB z$-BJ5_GOJ5uPvXxv-0zg4|#Kfj~{*<Vis`A;@=9N^~aa`ixnPTyz119CbOB>4hobP z=}SC9n)&#$VDePqvesThiT;=y*WX63e|S{Co|ECj)cPOw6;Gc|XJlwE=MU)bH!gi0 z<FoGIjrN6ouh@<!f8TLm+95QreRJ^CfS|cNqW0`cx4B{~1d<C<bq{%`36xj6KUU<+ zvwZ(HTfbh`Jimsw-EPssmF|XL%)`aS1p;f<Tz;LD{#}v5AyUl3&dTL+uvnB+)bl4- zR;P>CnLcw8`EgNd@rD2S_YYl<|D(0<+f{vLhPe8tYJB~3*f+|_IUm{KDf+t1+_!gk z`CRoUQ?KVed~oiqMAe;_<rm~DChpi2<F(`Kvc$dLQ%uU{9o$|1t?>0#X@-XI{5soj z^|AfQ5{oaYd4CiLSn9O=^`g?UGWo8r&-(e*fBk3rof1?s|9|<s3b|sd$pK3bOZ4nX z|MuXU?4G*MstgCtO2;3*YrXF8>#7%f`W!W`s9Zd?$m6a3jl0f~%f9hv-MBVmX%ENg zi9CDx)%en~o`i@UUHqEu@y703l5(<(@?KTU-E#5bWvg}4>v!-wC{=cLGp#D<Z*NvC zd&RcQOU`5B-#YKpwyV$2JAb~IcYE9-rOK%62#%RHYaM%n(ynsFn0U<E{z*&PZ;1|n zxPNBeM4d~n5scYB-Weuqwr=svU8!4OQ}X>zg~=fc;ibYeqjm~ATh~{wQ7+`$##S1f zT=C@4AO3Ig$KOWBCH{Y>=;JZlgw1Tr<Ov#0D`FG_L`18aWf>f<>K2w%h&FWF@F*2~ zo#XISQfX$hinOh3y147$$Bo7YaeIFX?fbLzKRd&Z_W$3R@_q_@znH;cyYBImdpDLS z<!$X;_`Y}Rg=4%8eiMzSa7_N(uW7Zq=f|Fi0IS8Vy_Kzp9}2KLrk2&qxBveA@s`O~ zi_??6e_ps2b>de0lvh@MZ``e|E$plg-H_Hui{yU7DxvjxnQYMAgcrRZ!t-l*<EtKa z|G0Gje?3FP?e%;63g3zaR)rjoRZRAY`Qj)o^RxBZzlVl>eC;oOnlvwZv*1-q)~0#6 zr}X!TUyI6E`&jMa!-tCR?v;K&aPc5xo8A8XD_^geVsmqHs%~OURAa+|hx?*e$jbVC z`5$)c=&$%@*XN7e4m+Al{H(dNyPSW+{`XFI-ru`<{9~ZTf0L#Sk++|JpAd4vS9bsR z7YWz@S{wd*&{Fofc2nbbU%8-rm((|WtUu?#KQ*Ao?eXD?<BvC9ZaK;G^TNDc7Xx2A zaWE#|m02LwyXb@4pB-*@O)mb}t`RlUUGquJp@{P{(!2FTTNPG3I?Z${f7z-{PB#k^ zF9fM7$DCL)S1DBEwCJUCE;+`N|H^xu60hWR*VI{3p!lX?_dm1S9NlXbO0Rs`c#X+! z`(3WLzs|6I`}$kCSN@p93$@%S^78zKHYJbGWmJgBN}MpWYnhUfl2ObWx#Z*XAMXNv zd{@7=3f*~7t>;(DRrI9^+DDbdJq#_ZO5#?9$5o1&$A5abbp5_2=l3Ts`7&py*E3m6 z+!3+<vVvArHn&0rSF7v8sU}mkp1tGr(pvj+r)!(}t!w{Y|EW6}CGC9ub)oR>OA*|P zt^7xext4`3iCX>ex@d~X7R^&!r`o4;)yp<1Z9aJ<D{Ym3uHePr*G(*Ll>hy+bo#!& z_5TjrKX@HqDacSzQ8D2acXsm%ww&M_i%dJR4jex$we{Ky&*zTsL%3x1g_ciQ^t^`c zn1snz{*PCs)T%az_}t%c>_A)9Ikl^f)190&I~RSK$kqC3QRKhfpa044-G4(O+>7UF zyu*FZtK2y`|CePhvf3(Le@P;5ZDWt=LRXPyVXs9Rb3Nv0owoSKp>lr1#$`+U{yMy^ zfA+d;Tfp)c7sXCC?=oRowt87);|euR)+G}zW@qR|eSPNI5g@GeYAT}==Q&B{?8&!w z7_uFT=hsZpKI54(KVSa&v!54k%jF6#o<3zt;7@6#%45-&AG*Al?rqO8@10JWdiA~2 z6MnaE3st@=HTzb4w8O6BtS%u^)0aAlh91}USh|Sef$LnOC`qPk%YECnO*i7YFXqcA zJ1dfF#<BCqnLGq%)y?60G{s?$*|9BGzj5vqH@R>!>*S%=Jr_5AIZ<G7WaIhz)m!_7 zZP&D(J5>{T;~K*XS1sqDD%1O$-nfLGU8Ga9bGoHbZtmt6AIlHgFIeJmv+%9?jlC@o zGg=lE)%Uv}UcoS1`?Qzlf<0NK%Wu2if1b!&_AMan?hNg@T}ryw>~2ocG>}sF_4>G@ z_BmhN-mhBUYES&mFlp)OHkK9tcq=1Awr4h5^8OcVd)ow<PPOm<ZdF_I=PUR1Mj!PX zS6oArHavD((q271_`f_~FsFO&=70JNPchB)<7c?=p8tY;3=_kYP*L;sEG*A5=j-1- zcK&j_xFKI_&9havj~<xLCd1b*{C56Qvx9DrW5u}U_TBEdb@OKLQr6Rc=2K&4UszVR zVcYED)$Gx^M|Ybl{W~w2vd|}C`DJHi?(L3z>pA3}-HK6+_vi>X6u4uRCc~X)(*oXZ z7QR`^F}pu9;JMT4HETVN?hVNM?03@WRkOw6+xccMr|2<gGA3VAYrpofw%7BiFC%xh zQ}i><^krY~-kP!FWcHfY4=Xut-G~s{s-+#W?~(8N)d3n)&4kQS)j!$^3ir2eC^X)7 z{q5rIkB<qgJQeZkqQu-&d0khsQy(7tpLf33@ot>_rTfm6?f0f^<&4ygS*bg7`TV+D z-MLHtuZ!I+7Qg-4qnFF)AN%_H`o-5@KddX?%RT@9pXbr{3twN;wfTA__{Qzqhwt5! zn^*Np^Uk-YGeEO`ptTS=YF`$tZ+QQs@BIP!zZd0??hjSF^~HPt7w;cW<Nu}p+5Z3A z{SRyJ|62RwLc3kd`=9gP9~9sJ!}ZNOtNe4n?|rx1^W#x>#kZU3j0~U~5W1GntK$0q z{QsZ%Pv@PGIq@{1#rL7ZE<=G!Z_TEsvhVuzb)hbU2ghuuw~HLO8kBPE#8s{SGBPBT zm-Fx4cUx31<e~F~XWON1qLuR)z4EwSIz-&GLIq#Xh~HNv>Kd9@@kF$?{di!<NzQ#c zzlCpdiENcRV*91)T=Ty2O#Z!&@~aB22YYl@u6l9aM*jc$ubB+l)uu+SA2zPHDJZGv z`DoE;^77cCYo71iD_+Xy>XfV~ULD-Uq_D7yY3lc9WmT$P_UAkl#c#ap_IVef!^Gs& zrLil#)apj{i$sQZbrO|~`yRfKxK-^xN8MKA^E3_X&=A4*WxsChePZ)sZXExqYB5){ ze`gLSTfLT!S#nBgUF+Q6s(wyUhnBK2y!gsq@q^coapwvxncrWQKYSsfCN8sC?9%q! z$f+;B)v!3{i&yi%{rTR?^52~Iau&DKix-}{d~AMd#kp32wO!0F)m@)G6<zzi{lmSy z?d-9oi;K2y6!U%T`l#pZKCfdxG_nO3Z*Y1#rDAStS8?x&L%&$3Ef&$6X5q55m~GL9 z*%was=DYgrU$M3A!@UB|yIzc2t}XiZxzW(-MTk>JiT$oGhAHpOGfE^@e-dH-Z~6UL z#s893dR5HZ^R!OMEeSHLefVh7ucaRzzD)GJcl+kSdGpI(AJm(bb65DNM(gYI4c@C) zt`Z7;sqOjZ%@HplrxPXfb)W7zvCNsdmQ}>{;-^{cYqtLA|Nqhck$Bxh@ej@RKbjdD z`fJ}LSA4nX{?Y#b^Z!SF-~V4%^N>6Kz~=LI-Tw8zE?4~dc$|@8|3~Tljq3AjgyR1^ z691Tc|68uN?exz{iP4^S9G`A^Q?_yQbFuBE!H+LY@0aRrTXFoc#m<b}#AH3Cq<8*T zUniwsm+auT|HAf#J#S&y6xZwpF<)-xG8s1bcH}J5yztfX^mKju9>@BIiTbM-zb-T> zf4!{n>ugo8sR8#K-cJ!dbxOCxI+T5`pLyKvr(5f1m+q0;*|mG4W=xbu>!$0@<r`kd z3vYC4ysFlg_&UmYm4IAkqI2Bxpcmh(chuaJobmUrt%&2%+J(LQ`_|T2Ri0WcV$^0H z7RtYS`kfsY-+qgksd+%M{hzY$wf{?X7Odh5<w(}$F8N~{5IT3p^P8{!ck?{HJ0bhw zA+P4fbxC~n+pix#%pcFlz{9p%qW2El!gbjZib)+SH(E(axP~r#Tzuj5svgB_bMx%` z?1RoIAAOml_^#~O<C*y}*LK{v<?ik2UiQfL)b##W-+nc0$Xqo|Nh|7kC})r1#T!@L zj+d}5RB4%Dc-BEn^6;w0HJiNTlKWZBPIEnzS4_R)(hv|3c>JhK>3g^3-<r=G_e)zV zy^P3MJK3&TV6Ewd-gDfHYfJAOkTswAQIA1VZ&r|@>Dt@U3-0qywNF|7>a6QoNA_F0 z*!4os_bUF4lW*Oh7B&0EIj0jdo~0xzE@EqIYU;^MNsT<l8^7IARlR<~gqar{;u-b# zd|+A^zrW9KdGm4kdKvkDAKE|a-v6Zg<I?nfEz;(B5AMFNE3e64e)*vF{hxj{pC-?T zq@Y*9^AFv-7iV&g@j<8hyaV^{$=Urp=|3-PLBHGLh(l}zPdA743d}V3JT)WzhV+u7 zk)dA$`tLsaQBlDX+@JV2U23kHxhBg4_QQGWyW`GFnm0T0@3uY{q2IMh^^VhpPtRIA zmuhg8?EPN)d=lH5PGQ@I8PlJ=T2sZpD8Mk&O^Z{q{2uG6O+Cl<|JJ!}FVrKvbit_$ z|I0s~Q0_lsW_{20*p2JYw;emuS$D@|gKw0E#QUk5R<b<5rhhmQn!dok<Ym#7loQGl z&+6o6E<18;f@?8{=3<GY(6AT33z^L%6`7cvmj08si45|HnE1)^^Q>d8fesy80+Roq zKViE%=-8g;dCS}H+HQB;l<j*ZN`Rroi*1ov1J}<pOdo$)>Tj(6cjU+BHLRZ`^I4^f zH{6zcld8~QF~6&V-<nx}+8-^EDN{Bc+o{!+A|fSSJiGMr0?yQ1n~KW4G&NKe|NhZg z+I8Pl^6ZA57ptc71UenL^?a#NK%KG|hvZR>(#6S3rd;$>F}$kiZj(2+*FEUOjP$%U zeUEC7?f6qHTXbRb&)b&Hf713$(D=J2xYWv!X@!Q>gtghlhR4^~+`4#mu7A^x)X<~6 z(TYL;b-AW?ZeEr<MZ-bT?3QtU&As#bMZT3r_Ig!sPTl(W<8l9E^ZL)`AKB|au>a`2 z|AY6=jzZ@5700bV+{#}6@EGs%sDCf`UY$MwTMMwbf1BOs7mNFkUC+C-qj7ck`guR@ ztqxy*?E9HV%JM%w&P3n8efzNV{U66H=ZZpCz)bk;#Q$qj<@xG+!t(pSuFXF>+25|y zeD6!&A2*KMwW-gmU^;MeZgTe9E3(fn-!ty5|Ns8KZQZZs^;ZA(?%%&(%&qF3t!C}K zg#FeB-Yspv^El4FYK_lhk-N<sGGe7A<S(%{u83ND%BU)IiO7nY6)Tr~FEgvuTM(e3 zWp48&=X~Y1kWUVp?|ZX)db#!lDYV^<RA@_?y{j-WPVsp`Uwci|R5R<R7k5p3ze;;) zQpLM>3GCDL;~m$(UL?Vj!;>%K5yiOpqs7+Eh5-xjc&`kYD$2$zzRu!B`Qq?|#5MWG z^ChP<zuw!D+PLn!ny2O>rp+Njt@7zHUp#i`t?LQg!7jBnxukhYR^q%BClg-#u6r<f z`OPVFg=}B{+CN*`iEqD)qN>zfFTax$K24cAHA{;3@!lO?D|MDs*}bjb_Tja0Tu*96 zum7JV{Z<|SnI|m088Lg2qskiXxi6nLIHk$CFgRxI(Uj7V|D~NRIltWUg{GCO$C(dm z=lb$yEYJIA6ncj_NNs&(;Mag3Tl+$Vj(xu$^;+WTime}C%0K*U^mM}QDN-7(9f3L5 zUg(^^<0LJsEY&pqZte80m+Z%0NH7MjFq$f=9l~{T--RuoY-9HKO*9XEQ<55a?8Uqw z(F>KC2O`uit#x;v&7Ew-zsqGed$FvSUpw2cE=eA?ir3NiyTs!v80|kW+cO-fJh}g& z^ghLX&!3&0eQ|Z&+gql4{(L&EzVG?e@HoqdmGhTeetBfho>CVMLGK`u)W*8=x_uX4 zFIZFc&$dBJMP*OpirE_15?gz|7OZ8=dh3!iYnh)@jW_SX-kZtZzxG;A=$z5Qxktxq zN^0Y!>8nmVi#lsg|FANoI5gR!=xzMrskz+TT{h3Z+-a{qbv?)H^>gm46CPcBTUwa; zUZ||BDZyX#_MSH@Zv1zDY&fe>qjpKMUZ(LjgF{Dp*DTU_tdx`}Hm4x*Znn<xa;@Bl zI@=fMg-Y~$h19*#;Sx1x%1yh_@-Kf+qmfMSg(F{Dw{Vn1+J26n<69T3=d-P_ql9<L zloeeHB2kOxWc(MoHrvNM+gHR$n$LYj^4l*eacW0urX5TF-B+SNrz~7YcaE*ZQ{lPF zZ)KMX%~-dr*h9SFt(=+X5|5oHe@@ZrZCSJV{)e{3Q`Xs4ty-x&S?n0k!F?y6KfC4R zy~om}>|87V^mk=eFMj;o62jV~)nuwR&0uXdGsoqu%`pag{EN?duRJPHo*m0qrSUM0 zH%R+b#+1XiB)nFOESlFm$uFRM=4`ju4W6Pb3saVPUV6D`RnTpP`wLDv-SNGg@Z>bB z_1+l;e{<A?w#Vjr$@S#kkc-ZCTP(QmL#zG+>3t8SKio*}e|T$acE!7$&mX;h{88e( z{ePQ#AN$G~80OV{^1QRNn7#g^c)j5L&(G`sJ>OCM+^>coRxq4xmiwamd9(fR%@yyf z?|0|_T9$w4>}>Oo3;Am~e*gac<DvY&L=MFd2l?v+z_ryg^Zk;byO2IU<gb_bTPOd% z`u=YQhW}6I{}KN4y8iF_kIMF+lz)7U|6j_m?#!+4wfDd0&S|P%pei7;rzN!YQ2TGO zR;T5U_q<%Cv0zh>hu_jGm1|s<Jz7`FY+82TT5jovt1+h4aVbh)gr8rntG%1qIYWc- z<=${v%|MaVFYl&#IaQrsWV*7X+vO8q=Hh6@1zuB6zP31?Z0DVIJcZ--F2S<PQ@s-R zgdW$t&wg=VT)x2Rtr|-grLUH|zG7>)!o{t8H`!K{^4`6Yk@dV+(8<NW>*OB&;;-H} z1+20j-<NLn|HzTJ*Gp7D_PU*G<Po8!)MZsUzRULTUzgwN`PZgmKUe6njwzMJ+o}`x zc0T44VATi}`SL~X%Y}cfO(Cu#?4~o>FC1{=Pg!=6J#>m8)6xGAcJ^CN)3JWK`;%qD z+K@Y&4FfxJ_?+*hi+agV;#CZo7V1-6lsmJP)t$e}>*)r8k5MZY6>+`0m^shsX8P9q zO25Bq+04-MRd(_Cy74iqKzUhtvZc?$5Du$`ZBiG+thNP<t)2E&T{Fk$v+=EC7qVZs z#(vgPR9xhxP+7cm(h9Hls$q7wcsu6Z&sBJz9<=NgYij7y4c}IEeJ&0Z(VTVAy^nF- zd9xt5i>`NHOp#Lk^f7(ma%VjblMB<&bnEZysQ;b+UpKDyYv`Vby!i)&{cRdS&DS5# z^8ckV960~?&iRKwen{AVOSW%|-k$gH<8k@p^8X&nACr2)@WKAy@&5<>|2^?{+xq?e z|9|g~yW9V|ICai>8$qWdt@+DeB^VTNomv(0B9(2|>g%$fmIrxAtm%E)-*fHb?j-?+ z>$40m&HNq}+u8Yj&HAT8W=3A2i(Wf>^<LHJ5}Fzxv%)F$=b4{My4sS<d~<jeRZcmn znqIM#*4k|5;kRko!t03(RVF<Q50(A$yLpG^CgT_GOJfy-=jC0#68TfVS8dAcOsSq@ z%2%AlvzB)$c^hy2elhKPGr#G!>|5v39a0jn-pw<=CZN|XG}SyTB=E?jSlya`mFuR- zTo&3B$f;v~zT&cg)1oijxAK-V=l*%LV@=ds{i$bmg-eyM*;uITr67I&RL-Bs$lvGp z=}%kxXrA=bwU(Y8XDnWBNz)BC($ZZ2{J7-tzczL^n4(%gu5noyvPb@0N!r@a^NXW( zwsNOv`t0L>|L)y`PlwkXIyO~1{KMC~;*2}4EPK3g{TAbO3)gmLGC6ff?8|F)&@jzj zd*aZI&6YPJ<~Kc_aC4WZh9vLtxb4kx_m>8(jFXp*-yNs1wKRFEz`9r`trZhI-|h<z zE0ont-F9<I?L7(Rm7#YSvZgqS+AS6fv2Bfs$XK91Gksp=vn$tI1uA~MT>kOPW&iUv z=MVGS_x%5N|Nrkf{XO8FF9J>{v=%n{U1L*Z>5{l~yF1Bylg5RQ^IVqB`L1#$!1S70 z>7|_SJ1%N&(OCad*6GVRp?MYiQ=(j#AKAKod$?iC)~R#3=5GAHK)QKRKwzm^e*N_t zPZ5olxmhcNITlaR2oXH2`t(lu#O8?Z6SL~0tk=ii-hPQI<<<YWe(Zni^xM9EtFjGA z?MTpgRC?*wf^S|A-K0(a72eGVSuE)GbmQ-u`VAWdUW?71bl#9zlf^6k<HE};12W=8 z7X=vFgsxiBFeluufGJfhXxSDf&Dav>KoLXNM8UWzmCN6*;nH+{^LcI_`!RRrEw}b_ zyq(|qxz*4?+CyK6y=3w6?E$HK)_q==W+2&hcbCxS{~4Q^M8AJ~zq@{kK;VfrXAV`g zGH``D{P=jX)3NPJ-xJ5_0uv0i_BCHR&+Zzz>&147<l6j?hK8T}KW{#>TQ&1xr-a_! z*Ix@N-y1PJc-Ss??5X=4^S{?#uTOqq`{HZ`i%ExI)3IeGn__x`J51g`JNVm+i$lfG z?zySIX3O7wt3O=4eY01z_*>cc3-5Ps4GI-2?k|fjU(#Rn;>SiO2E$Lwbb@?KG*ef9 za(MIqkb~D`t<4#-*M0p&=gXB8m4PO{COa(*?x<dWySbBFSLLyvs7Cjpr<)JzcKPaT zPkx*}<)UZn9-RvxpH4dEXBv1db)Jgw#cg3Ck(PXG7SDVk;B<sFWciv4KZN3a?^Zm` zoIhJTC8u6o`{n)vQY{C{v>95boDK_}yTc*woJ#4YrPpmgM5R4kde=|f&3vPd|MFKZ zqJLLuCGXf`D7CAwHZHq&R~cL4-76YXT&{jh<^KJ5$}`3U(X|`iy_Nq}@1gplta`=q zt@XOE{|C9)vZh?+TqC-{;Nzb;N}H@-uZk)AZ-3HidwtwVg&ddCUA870|6abaq$U6V z8p&k4DzTsIx>9<=Lt9Tt|Le~C|4lB}?pyoLhfhQ!T<4$YSD$+QjMJUdTt7cPza=gf zx&OS-qO}47W;t<BKX2#e_mkfJy?o#2JlTy+vmH1Dud9THCSDJJQSsu`;ff~@-5D6x z$JfcayXOU$+DIMlYy0^57}o*yk2}{*ox|feS>5|>yU3;dzG`M;W1HQ3^L!L*UOd#U zc=Ax2p}~D!jN^Ixcn#C<W%1#Uq(Zo+q&A*f9&+fELN?3F6rbEv&UX?g-sRRi>MdHg zCP*ms<?8z>v!q()w7$J1rwp5Oz9v$2;pD56d(<6OH(!76ni`btB%3H7x2j8`?RiVa zp6^F8BKB9W-*T#Dj!M<N=6frx?s0FJG51V$>#TK)ziX*iSe#nraDB(z`)(^kj79ZA z^tP;ZST#GFM_^V=RHIXC_?+*nbb>lwI+aa&Tk<~S+oz~WW$#tB-amZto`)fEp$nHM zkKBPxTFEO^*0?@)R+zoa)A~;`tD=rpJumxSyH%@%>(fPzHod;}&+<}r0K@b&0h_1C zW{I%rgoa!%XH>Z-oXN8$U?$g|uH@)+$-n>Qa@>A<PuX{^;Cji0iudykHFH8VUb0O8 zlddCh)N$&G&>yNzzqRxKyMFm^@us`LCHUUvyl@3C|Lw;Y*nHAic_ErZGrII*a+IT* z73b_#QXaa-6ZZ+VYF&OF9hmcI%9JHj>`bp$r?K{(iMg{afOVJccD0=*H;yXz?_p&4 zaO?2)0+SNCFK*Hz?Z+kh=8DI@W>f1pa?r)lPxJQ0+`ubqv@X8>e(`PjpZm36%40(A zEWI21<xkCq?;n(ZJj<^XW_Z9GE`PL7yl3)l6`|>C9lLdwUgG>*dC^mI@ri{&M%@l4 zUF1X+*0!8#`P;N3bz#?)dABdEdlGZOK|R}9F7Eovvd2r-`wFWoe3z5F&(5Ir#8!H; zQ}3ov?p`Z1?u3MjieKlpXq>j`gPM?fRp<fknTs^IGLkR3OkI7DYoga1596P?|8}c% z>F6dVPOh8Azdvy2g@tDpOfcM2b>Y3UlZ)e*O&ZCw+yljCHtH?tIc*)js-xR@sY%Gf zMU6LKf4}hdSHN!9um8Clf<K<+DcLWWv8A`$K+(nM!e(AA?X~(_+rHSzPun}?Up?cA z&n3m8fA_>p`SNyt(f{SWwhR;21xJb$o|(k$QJ7Ubf3EB)yY6Xfr!IM|OO2L^oVojg zKX?9=_Q%2wrxefg>4o#1?=95~_NWQm;rq4bUWTmazwcAhX8*R`yy&IkmgON_t@9Ju zr|UhOXdc7Lu;<~o+$+7O9m8E47cWlk>1#eX@8w$t!_<`ls;e%wpDVY1Q98GAZ~05b zH@17a+x23L)|axq_&T@oo~D*ato^yKY&+`SS}{EM_4W0O_g@~rpYN*uK<VMN>0DFy zn+2`B@$A|yi+TQSJB~Z`i=BASt9iL%*(Topx0!)Oa-dBKiqSvHR%ulgZ_S&ez;#DS zasG?P>o%Qz)pE!!IoM0m_MO*Gn;l0h3d~Pv%yB#uKiNpC#cQST*T>O|Jbo^7xuM{u zR`*Q3a$;q?*rB%V`zNgA@!xO%Ve7oP<uR+2q;9VYxF{fg$hDiHA;?!`W;R!^-}0{9 zdoM!*YrIeDe(JGdILM)S+GyKmVF#XR-%FYgZgX3C<^AKwuHXN2JM8;ezUZ&|vH3Rb zR_k5ucmF-S`tyFKw+o;DJH9ZiJ}Q;{<SidjR+kSvQ5SFh|Kh*vfAp4TclYQ%D%Y$u zDpHxP9VPcg^LhSq`@aX)=*&{gz8&|}_62|JF=h95hK4E=r<bSa*lzjG(bw01p`uq% z+2_sSsjn8jw!PaN$9^~Vf9zdGw%z9x_HU`?{Of4%#(!#))5@R{&j|U_U9~)W1ovA@ z91%+PI<;1M^`RfaJz1Km+kQ^D=B|FtKB?#rXWO5Xr2>lSt?NWU!|<TS19)%s8s5Bi zyW4xe&l5@RntX5aHNIyrcYk;CTJh$i>#d__oO5J9f8_D0n%}TyE~~;j!DE&$H6vTD zzgje5d*}y=u(^CoCS9;<31z<Ye6hFcqht<;Uw5lBC-2(v>7|^}l#W1GAMTwVf9nO$ ze5#nUb;?a0{fDkjON6rx`-}3w=hPb-zS~+?tW;B*`F8)#i`II+nw1REiEqPv_K5#8 zRrtPO{<pgi@BfLKC-tbV(NmC>OLl(qzU|w)m+gEuPoL{cSve!a@&0$oA=fi%rp|Jj z_F-!B#n<l_ygt2zx61m)$HbS-|M;x-6}ex1xj;kIOLUdHMXb;P%}Lx3o!4^<E`EAy zQ%7LT?N=Y?`aIk%zBAqSx6t?VlKYz{WP(ZrSE(~BAt$~I8c8-Sm#9|s*ZXbsUvQ#W zR=1qaZS5IH|MT6-e&YJ)&60)l{=aZFwh8mxXVBm;*x^*Iv@~aqK}?Fl1=Th6^@+Xz z`zCyzarJQQlS8kWUKl)?lNOR=YCKEH{M)ln#>*v3U$*Z2dvBXjuJV&Dg-#uRYSVw; z%iUk!A|T-C?szJ~ub}+9&=P&Q`!C-=5R}iWtEhQ%gum5%-c-g1W-+^)<+?6OKK<L* zlX|e~Zk$eNw8qn~QZ=(USW@g-)0<Kg^Ckq@6=?41K61tMJm)9gRUiHxl@q_IhrSGB zs|&}Hw;r>rv(mLcoQw8&R+m{l<N0e(tB=v&E!tfFnMKMdRT;&2EGnPjvoG`2*YoQu zI~;O5Z|PXPQmjll^ik(Y`l0@(_D}2bAKH60Y_7O===JRiT^6&ydv15V+Ng5y%=f1c z-~F5V#`d%QzMmUrF$>RJZq+iWytUzzDnof0+l77`CWaNSrNpe3={l~cunbWQ5Ie`L zKeg-80<V)xMBa-9&NP=eq1M<b=JDQg_V*bVvi-zB3v9p5DP0t?ys&5^+b65JnvpDu zdrZDAuAbhO)w=T6f8ErN2Cv;?WZpQ{-+H#Y$nZ+RX5J;f>Zw0-E^j?ywp{O$=KMs4 zOvyUw!&#wsoGsUXu$WS2Vm7tQ^xBV8f(IY4rQF%ztMw*mSy5kZvyI04`G0R+&`?jQ zMc=u2!gA)e*KhXBf4IK#{k8knGyXeXS$^`@#|3h|sg_&)xTlw&JM!e-yzB>`x16~B zgW2xOH>aIO=KSIg8)YB9JAH{wwfk9|qJa9Otara}-)-I&wBw7@{0&BRtGB+Zuk5J$ zFl+mfBK6kd<(vlvoy_>8UbM`aY~!1+#9dLi|K<OuU%bOk{(WJ0=6m0UoA0|j!!uNM zC#_6vP1~T`_WF@o@=2u`xjX!J*KIE9m5+J9bZH(xqjr<hj=7fe<}Fipa-K7xo89>i zCv3n0bcm1Bxw9hm-xkSgelJ)!KjfNfir|@V3-wjECOO&sT2!57-n(|E%x%Gw^@%&? z7bXRsd%2>Czk1mzsmXCgRcASO-nihPp5mu-U5!t%Fk`)fM3(2YGf(0!ZZhRh^040h zXVQkiz=W!u_WvCcs>^(~Ju%tdZ!B?e?VWAx+~xL5XWe~sU!^4`11)6=8-<5G@XFl1 zX4?PXDZ3XYJ^WTUEqkBtz2Z%cXI{<Do%(IF#j4w)#z&aDj`{wqtq%I|NoV1QmI>XU z&DhUauP;u~_Pi#Q-<bPQgu7Pw^Ty~*r`aVBo;c3PeKGI<t>bq-eg3xi<fqJ*32U3! ztQ3oruX67W{cm?O?Z)qI{VR8FmcAn>XTz4+>|Z6l@UAyUWbuq<l;umpP8^o@JiPau zHf0IT?y+z5wdXa8Ut`;zuq)xNyVHqgXMV^L1ULE8Zk?Tc?MJipjh;p7EpynBx4%0u zL$*=pup8gKt#13Q?A7KLflU!mt2QY)dFp*Uz<K^j-H!EFKCE2I_38RWz4&u`ik(i# zpzpwb!pJeNuk-BZ4py<%52VUIzm=R9w^_DU(Z$BDaa*&J+)LZO%BbJZyLNv`(wTPo z*MG0y_tZ4hpUd98&#=+<eAS!D_x5C(UpXX@9=2`U+S%2uwTjuFKN!q&`gT0>_q)t_ z@4jr@JYV1Tx%ac4v$e}!8-1L1^8B1qKjoGQGEy&EY#4qzRjFQn*K@K?_!`6JTjy?V z)(=XrKW@p_GiT<_zwvV_(pKg;v7hL_*tY!L=N;*L>ou3>Z=RojfAh}Vr10A0ZMSav z*@$eYOx}8IUbXz{-EoE4A7t1)!x~M~cc*POdvN}b^=t#VwM=H*ir-rl-@zK*C!`$s ztrWEzqfe+u#?6k{_P;4%cOKK{*Z<$XzbVuH@JXZHiN^WQQ*O_{dW?Z#$%K!$I20qi zs~t0p?QTo!rgym}<Xrw`eg1-C_wlIBubdUq8`!KmJx(@sg&z7AubcD#>Y;D(vN^x6 z28qRVtrhzA|LUR}|61lWl(Rzf4ft${`$22A-nf51{%azrLTwRn3S(jAz0NQ7BKp+9 zgN*ln95Y|{%K$p{t^Mf1gM_Q?4r&6^ZmUIiZWYtt_d{vl%h~%l<A0tC->`lA_E*kI z(x?9YvjgdS1iBwwFLu|KSBDj)IerUR>c4S*vS$PT#L5kxe@{epH#alK?5~>}#gol8 z)pMJOqKnC?@87;%s}oRseSWF;^c(#rb|%OxJ#Ve;m?Qp8(TLw{sr*I9?ehwD!-9_^ zk~stEAcTghUoV%>kNfI4;p)OEhj!olswcAMu-7@p--2+PKOeGlc?K2`=|psY7}~%G z6o8G*W<Wmm1J7Xxzr;Rk@BgG-@n+-k3vbIle%roZw*Fgs{kB)mO4*0Nx54jyU#q_^ zem|cgOWpJGy5(PYZ58vk|7!x8tBYITUcUEr?2kXs?eABeUmLys!<AtF#Qc2z>gwu> zS1Xqn{QmYfbsk%!qWsSj?jP>n|9khw-MdGxt`7gmZ2y7z$0PCmH>%EOm>lx|bHx9_ zsj1o$JZwMyz5ibaT3fL8d(Bhr_=DB=f5-8#F~{sIVzvJ{*}n5*#hx?4irSCD>%WG7 zoO}Q0+#Mw^h4f-~wScCK_y7OBUp_wlzvB1P?slI9A%n99cE{^n-W|Q{Z_lgf@_K*v z^>s(D?^ILz+{X56+Nb^hzyCkRZvVsa&msLkO#fc3|Ht+J&;0+zd!F0AKM1;{K2%;R zl9`X6|KqmpdwJ#mzHnc@?;m`TM9r7Q@<-F{K1;^zF5|ub+4g>Ob93{LdEfWGul;f7 zxm|nu{93W|cE5G(zVAH$aOLuOQP(slh<^U_`TS#M`5z2+e_#4P-uZl<^JSBY@4N5! z9zJ~d$2|VJ56wS*9JlXFpI6B?|Hl#ag75EQYwmxqmEUrWfnlxbzVFrh#oOE4e;iS_ zYXqs;|22Al>-?WH=SN=6oT&P#_x_LGA4lW=xc+$>|4;SbC;k6I{~yKw;r=tb{&W7L zL(~7Z-{GJC^Gy1O_<yJC50=+GFW)vV-CimEq4mDU)*mi;>mU99?^*sowSC7-1!r1M z%TfLRW&Xe5-|zq3-Jfmyz5oA5`)&6BKiltLq^$Isi{baj{(75#xjh@NuZ!Kh|3~+J ziTToe?PdA-=l|VW|995bYq$3Qy}f@c!<*&ye_#HX=U@9OSghgi?)|@aKb5tKl+L@i zCzJ8U^ZE7nqO#w<y}dm*a@x0<>GL|@|Gag5U)s_s-)^SQ-+C?TclG}7)nQ(l`@d~n zfAssG_5Z)_&slzXWBI!~k?%MsY<=+Q>FIC#|6Tuo>YwvFP<H(N%zXb%yYF|3zs-GL zv;6PM`M)%?b&o3+nf*Il|AYTqZhrOcE7y0ZDRno<ebG&^k$b#({$HJYf8UjFpH~lx z2>-fIleMk1Hfh$p^o~E&D{UV2clqU)59YqFNq=KM|JRk}8@6w6KQ3Qyv+p@{%K7(= zX+_V^$ub-`%x}-b@Z(LoefO?)(SKk3`ue)!bo9MTuiW!1Pe&L0{q^<7y!x-}|B1RS z7PR|)^Ss{27bjO;jCwpXecr)`4;4XE65r&D;%go-%OCh&_x}4MP%Pc7n)kP3&Q#Ex z)%Er9$CLYQ+vI;Ols|O;|KIz}4`y}fv?X0-cbIm5_4<8WYfa^9zg)cbx!>-WM&6wr z8y78Bn(g#L`SP#x)A#>*`ePn=O7zXu)!{dfZxhJY1x;j1{eLt6ukoIzy7`O`etCq3 z?x^`$^m^}4i;~C3dWHYK`SkSkid9{IGrWJy-v3kD=I4{i5`679Zr(h2-2Pu-&F}5? z)}YkA@&5$lk7ta}KLCx1cAu|#W~?6f*uv%9p~wC9efR&Iy?<nT-Rtd-o=%TH)^7Jj zanEDf_XnQa|F2xvdBSNy<G!ODic$5^+5R@}Cv@IjtzY(4_1ng`Pmb6BIsWl_{om`L z#9ny*`zHB`bMk+0%Rl_w?z`okeYMiyv@Z`DTmO9C-v0C7H})#eL8W!wtL1fE^*`F{ zJMy+yKRdrse&U?(d!E~V{1|=zR~X0(6_;n<YXL7udDN-SP~hwGjNAFn_6geI>l`#o zldivec6PRU83X4`6^-fhuGO!L-Q6}lzV7Fd^!UoBqTe>^K31=Lr2YYvjDJkF|0!Ja z*t{;e=HIQY*%JN7ca**kd;NFv-;7Q3@9rw)E{)wRpUW8<`cVGw;`)~Nzt+7!1S*>L zyv@x&T>s1ef9K!!Ii2V0zHQ!7`C0AWzi-<YYjBCUHa?$UFZcha{r_|k*G6~w+9`iK z?wB_pWXP|59sThTw|;@Iix?B{7u_YRwD$acn}59cyzTX>e><PgJ8XULW1pz3=uHv1 z>NkclyUW&Itv~kIa9;htpEv43$qRGFi|_Z1X$fnO_W%FU|9E@-@9iH!!49eqqSo*K z`!?S_a@yLuFPFUk*H@Rnxs@V!yzr0ZLS0v<g$fdyKln3PU%yEZJLsbqWW?deCCN3n zq_DK8SR`Eie?!oQ9amNg2A8hBraD<9DuBE7Jn!+=&+iUcf1IU%=QS%o%cl<$<ZBf7 zn=76-&f2zp`~I1W-@bjDW+K&lJ~BEwJ1s43*3zX*A4hU5RmtSz=ReE;-(&gZ%(lac zpI=>F{ju=nrKQWRzwV8nt^9B8;lqcY-Q8X8yW8=b(N6{j76wlj$B?_*)F16P?6kgY zSm{6C?(CH-A#(P0bGGN-PfJZzRrjBFrk!72?e9g62M-=7G#>;Z-^))P9&VT9VY_+v zuJ0t9iVq6K#l@B1-bA(?PMkJ<`sKXsoA>Xx-*@cl>hR4wcFZ_?_H0gG-m^bHKff&7 zJvmC~_?vTct!K`jefrojH@C$XfBg9K^Yf26x3}k~CnhSse*OC9ty`z2YKIp+Jk%;9 zE34|+*Vk9{?#|8<tGPM3xv90aw%pv@FTeku93^)A#k;$^D?dJRy|=%9{`K|o&+qN6 zwk&+)a_!o+Ni*c@&d9%iG;fCTzWmZsQ)y}Gn>TNsJUw0i^4qe@SzC`)r&TM}nKk~i z|MueI;yJd}W|uEt-dXYS(T|VrAO8IOY~uTQ`r~J3XM5IFuQ~De_xIvoUtXR$bLPpX zr>7<P+V96azP#N3<=3jrtx=g<qh5Zkx_SHd>;qXdTK3PLzby09larG_TE_3I@!Ws^ z{GUHHY3b>g-<Ey;`1pAKy3M<H&(6NSF14)8?DOZ(FTel(`RnUz!}V>RJ4#<)`(gd+ z%F5uEC036u{Lk>)KRe%;*Y{(dw0Yi=yLstZSz77m=A8Wc`ugW*XJ>!>{mtc1&VH4X zDRsNq85kJqp4-1*U|<MnaA0R(XkcQoVqjnpQMka!z_5U!k&l6aft90#fq_B8VF5D( qg99UzECT}rm%yl&5gcMaL_c?W$hj%S_AxLpFnGH9xvX<aXaWF@ppOgy literal 0 HcmV?d00001 diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_20.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_20.png new file mode 100644 index 0000000000000000000000000000000000000000..9a00a3657cd09a41c51c4ac4f7ada961e5870018 GIT binary patch literal 123708 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LvuAw0hU)Kl@bUawKO) z{$3Q6xzI~UL1iH?cU$b1jS;-^JqLR;Z`<Z3=QvB>ew=ov%($$6*2ftiZ|r!R=f7Qi z&xYP!Y34SwV-hU~Je-__q6Ah=%DP|F|24P#-;VcpD<)2zIaN?nP;zGFzWMzj6K4v( zzq{l8-s<-|pO>E#WR4YJafBi_2Ez-iFb+#1i@->dOq^W!=!S946aN3k!Q$tPOCQ=4 ziZliNvWJ96VoKrl-Hc5JJckajKiGYL-}KY#_VsnXwZ68~waLK3Z;sX3{r~y@v-jIo z*fUIgTJStJpW(sp_|Lb#=FC#yXfj9ut*459@|l&PXy+ZP?H&Rxc>?^q6gZlosE6T^ zqqv!E;)Boq^?#o;{CW5OpWgm|)%8bwLE@I&XB+H)K3UE<W8U1QPemAih?nnWJH6@J z=FHhbOOv9W&sX8gVtAreU3hvo!v>j;ahy#C5mSPE{CyceoVo0OamDqM;#=5jlZvcw zZ_j5>SYy=pypq94{0rmMmOk5$A8e-_SG!UEL5d;fdi41;PH7p#3$4E1TG{`P`~PK? z|GD@-+ku#bKn;=Wn<Jy=y?mLeHI++Y({4w><AzIvCdU6d8qe}z`~Ug(BcF@q#)XJ5 z82tSZU;K!Bzt`$z;wSFi$WvQaXUMQS?|0!T_IdmbPfslJ6=?ZqY;1dWaes|8!~Unq z)&i=JgEwD%@Mh*@hKjg(8&6p<OrCsOQvUk-)5*z68@@LL88Vdr|Epf{YU29B<EKk4 zZff8Apm$8IY+d^07Tz9@J19w(f7b?0PUiXg>YKjV|6ct6*t*y%@#0-&laf4bUL02A zV3Mo-V#x4r_xree-?nXMeB>xE((Bf|A@Ff@{J;4OCa*)imI^6MI##!6(S+jfe<d0G z|Gw2XwyvGGtSln%)3S^?)iMn?kJ}yo@%BCAgRbyB?B>(sr+>>+soC#3Va0+|Prdw) zdn{e<rI{1`N3eO>#hkzs-6d5wS`s-9l<)g2kbZ6+<AMqL51tlPRMy_t7EOq*Iw`-U zrqAD=7j$>K=(+jVSIw8-@!IrG(P>@hyuZ&B`;?X~JNMz~`C68SOF#1Bezw&!pZKg$ z(l7Di(6T4@^6wmeU-RQILrn44(3-ce<JlL)-ALRti>p~RRz}{os>i?nSFz291A7_% z-01(i!ceUBpn<iucgD_|-zPX3mMu&7jcD9Z7UcQ(XS@Ab<@&#M40?0y{kO6P2A#}f zH<)(a{>t3gH#;A>GFYt3@mlMWmGkG}`}&T@=Ve$QOt1gi?9=1Vl;K?6dNfbwb@t^f z)5;f(`Ah}x&J@P|ZvHPcq4kqOM{@1_`d9DwALHNi#EfB^?}-Xyo+&|R&YfW>`0^r< zDLy}I>nFQ;(-%K@efGef>BrB$e0?Rytn!1RZtMS3;qRWE5d1smr{jsU=J$C{6kp<X zTyT6%)>bzOt*ozX49ELyvYv6BF1oh1_RujGo|44iqBmC}=UFZ;Z+*T@@59=~&lz@n z{K<ae`O#|AjI6Cz@xLyGGyXWe|Bpt$-LKrZk6qIlKO7R@S8(^%)=-PmS0ca5d_EPw zuM=n3|KWXIt8MkSHN~sV*tPmB|DF(MsCbdQ|G>@QbjB4w1zd7(8-@w=#d9BcDF5gD zo84jezi;{wJ9A4l*VDH(-#-7BZCKv-$9tVcfj|Q@yI%71b+K;?V~!pPWO3NL?SQfR ze8z;jx@n8u=P^ClX@2Ki_Prm<CqFLz|JzsQ^*{TvKP>5bHrxWtd!;X(ePhwrF^N~} ze*VQQvlZ7@F@&t<K6CyolYy=6(N^x~j289(WE>aRzZX5dBkz$azq5^f`~6F7yPt18 zv-khq_qIpH_y163=##NL^-b0)^WE#X?^cy|RSJ9S93=$YxK3X?w&QVC#59famU|Pd z-J!)li=%)W!^Z{OvnRPNJ{YWCq7x?J#xijlXie<QPfAYposVa*%hw1r_}6_3u6gNQ z)&B3r#rKR|=KFu1Ww`X8S>^7@`d2HLThu*bk^i^fj>AEMMaHJ0z;^bwhk>2bKm2H( z|9E!&zc_|v{_;yF9+~6LrE|bjCZMcPoW1UWJ>!P|yTrTFv!+_~#ZBAub#4Ch`nrdo z8EgvvZ~t*d{7Z#UyJBB*vU;4B_2sqJWp5t*Jini_A^zvp_{SHIm+&<NtM_^T=bykW zuE+4<?t7aPFQwNpKe%~*SCZ{)lSx-re`b)WekJ%UO}O>`8y@4!x1{ZiZI7P$V#09Q z`0|-EXN-)k*$@12nw#Z2y<p9?Sti2gD+Ju`)V!8uxbx#rw9izj^W7bXIutH2Pmymq zb1sYj&))BKlP9Z}x_ys0`sa}TAEt&Q^S^s&C4aA-uh6qG*48YtZ-r^=JwfK!8&iJl z^EbZ0{mMj5a6!;Y3C<Z8q`fo`1$@sHXmOkLYi<7B^XLDZInVInh_L^Rh)V`MJO6&W zU3so}-e$eGcfFQ$Z+v{b|MR2i`(&n`c<rZq=ls6f-`6&0N>5HXym+I*(TVHpMH=$! ze>KNglyfzNt>`UcIDYN_(@$3W4;{3wpSe1(QdeQqt2mCu6Ha!;JqSB?{NsE(zJ{ih z!=`&)7;hC`Uh$Rx4(kEm^ZQ#LAOD)J^>j~6GvlSKtqeN~o~fk!&5wD0tw-;<pFQsZ z`G4oufBa(j)?tNNjnvvDB2mT*UM?5<E@0ooF=?k6SMnm2YxZHMj{I$QUGrsc?AkEj zq@zyz9A@Z0Q1$#hYpvLMnaj`Ze|<4FnVemAxAgq8tLy7b8&rbcOuP{z-jS5?qv~ws zmmiXURMZ<<!np1#`7egniX2S}Jq(Y$M9fsrrd>W!ySb;ozngt8`;;c*^etcB1<(H_ z_5aU#&z~!9S{^(8mG8eZf9*VXxk`=~A-W8As$Q@4@$uo=cr<!)lv1Nj=_eN9Ei2yK z;?8*a{@h&a>zgyBnMB=9o|j(Q{!+NV@Kt9%L&2kk=ZpWH_{(s`xjoAJeeUfeB9oT9 z`6+YcRNDWyR?$B`$9>)Jb?lpI!0M|SYICdKmY#ohuzmmH{{<g6+&i{u$E#PX8Q=15 znPfiQD`;o(1d;Bju(#$}b8P;dvD%(ivN87USv&LCrw`TrnFU%3-7OE4+!Q))xH0Se z(!w=o)~-*wx^bVUXztgjW{oTF{hz*#TVT7rP^9?NlCXbg&YqQSz0GTGbG~J+=2Dl; zOU#-7W9x6P)|{$!r+WQ5sVD3oC%q1EjNnaL$syh4mdhx5T*NDtAt(K1^p3do<vcx^ za~^Fw$vLsG)N}2%C-VOuGS>b7ZqI#yncpUH$(3nKHAKERJ$`euUEk;o<G1(s&-4Gi z!2i%9C@tlJj*bq4fw8rBfYzt4^?$e+w%`A#bnN)?>zgx`{bfunKOMdQXm|W?3x?zU zw!WJK*%jjFr9A(d&+>rv{&%&1AN}h%8xp>0JXKlR^!kAE=G~P?PuB}IIC*Z0Sl=2| z%BU{6`g6;(Qi)ibV@oWy`IdV1yVrjYuRr+r|DW>=G1Y&+GUvU$re+%8wEyVG<XaB? zk0YMla(z-%wb<jK#LFs)ZST`rWsg<KZ09Xox@F7VKf0B<iGoX)vewQw@Ok>l%u2*c z^J~QF;&)s4exA6^7#GC!>0b4}#`6D9E;H<T$bSD&cKr9|U$(3_ubdJ(zA^H?OQ4I) zQpFm^#1*M;s`Yly3a|SwU3u~Ft|f2m>mSQivbD^ch*3^TH?2&0{(XJ@`|C3;%e!o+ zXG=bAJbXU!e(0`iANu}I55BpLyCH3JqFpwls(*F<_jk7xh1P`%un6+ot;pv1fBpY2 z%YXmgzfVqFIPK5Yy^r&68*+31y5-`joAkGO_G!J{JPr4M^xl8aXZ=pX@9=hu%xU*D zx_&<W{+~<!#{qT*(5Z=<9quWqIqk{r`%Yhc|MElc#?|r1M6bWN^|U>|PIS6#ogG76 zX<PN_s7tG(BszajpWpK1)&JJje74mueDC*M$>Kf}d*LD5)z6njKJQvA{%UQi{bLI; z{=17e@0G9rAsujw?LhDLdsYvw<>j7AU7KND@uBEhS~|nW1^TVCy`Ma@aGCfmAzf7Q zmgc%M*{*7wOS2!V1|695`hnH1{JnFUWnUHUw-Oa#`}Olfv~H}o?a6QVa<*lta=s`k zbJ6x(^!v=^;}xH(-5D#MJZ#^QbY6nt`u$%)Tuaw3-_^Ca;pJm~1_S%AJZszHzR$5K zY)OmNzM{0>??rZLsDue;?cRGiD+<58|8F|4{&hD)#jB2%YL30iY`Y9T&9Sa)@&EH} zKl_7?`E{%zXN>z_7R7z9`<Q>Cvg(p{sM^hK(dn!HJv)5-%yZl8%YrTl?QyDn?Q603 z!;8iKA3xjwuV%3Mc7yYgMbxvozENu{KVQBvW8R(kUzesA{rHf`@NU;@y&}ubqp~Jm zn!)c*Y|A}%?3j<wuZ7O-Dn}j&MQl60@s`E&tX=ch?S9u9Q~TJPF+*q0<9+A<F)}Qd z`>TE^a&Kj5{y}@&mG=LyDu0+}&3D4hWBv-gGse@W%sI7N?CFyDaH9*weZ7+<3|pP% z{d9S!UFpu|ZMARz6IFe~r>2Jurqso|=y9@cn6qc%Qf=0}pxK2rYaDj2_`NCQ%Ze%8 zBA=>kigKl|Z#|nHw6j#e?MI`TjQ*Ut3umUZtT$(ls>|s4q|mcr?Ue)NAB%qNm^#V* zUh(AXV)Z|E{}*hy8(ueS{{Qm-oo}tTg}oEnZ+G@^{r}mZC8Ju!b450u<iAiSd$h~o zX3j_Ec6Iq*T+?H}@iC}vdmCr;#$O<;IVYbB)|25l#G!C|_MsC+-)4LZs(rKl-ucJh z@8;I!M@|cjJYMJ`lC?5$^}U2|d#1U}t4b47zp1;gX48SEw@Y##)$ZQLzxt>2B$Lgr zC;QtS`Fj2JL&f>?pS-xp`s~@35Wnkxd|uTZ<36(S-p2jEUahV?9et1Kfc5>KexSYD zOa}J$`jSU>tMn!N&9OQArbe{k=1x{Iu`jP%vwDB3+*uHpf5GFB<*KVz=WW(5?TXvy zvHI$wxa;SSg@(tPzFEIP@#EaLJA~O8cYF_)e{y^NUx5X}jJj98*4E`j6^2=_nW1y2 z_<Od0$kqbY<^8q&X`4B>7)NvOE&O%GGq3L9X~v3258E|Wv{rPUlIWYQ9QHQns&0Js z)#ImKzrDN3d*I2ry>qM!`5I#UvIO{>qx1Jp1x>**%&{u%T0ObvSJSbxFRO2y7T@`G zCp*K8H6lIfHH+pP_uTW+aY=@Wvy`r_`gLhL<Ikm^t=7(c$G∓oQgvug(-ytn*zN zbl~$A_j^Hxj*}*=yT-G^^h-_MzFSM~T{xb##cAIc-@Wg4ecQ!a_e}hdW9iWoleGPU z?k!t?_RLIm&*JCli}<ZJWV9>p2s_c~Zg+Swd&!L8eE}xL8#Gq8<OwpzN_hIo*EaRn zzX)fr`1N7$6QRmH9*wJ!yB5g?-|N%uPd+-YYaWmOd>w(vU!Q+&N(qbW44Jee`8c10 zblv)@tED#oegx04UamfiTRiGm#FpG0f4_w@eGs<)D7@!Qs=o33`d6B^7nc`aJoIYj z%$W~k-`DB8`@Q_os1UTQ#!sTvr7<pMrK@(^mq?2Z-x<=+#~Ro#|H;rYRnz~?lT`aZ zbqsQUX5W9{5@eLMORA{EYya`B4<CHnrt&rBsTo7vzx(^<^Z);rZ)Cdke#L_Wjf&gr ziYN5F-E4e$&!2PQ%pc}Fzkl$@J$;6R#T|zPQa5R|Z;86)aDQ*Pe)+whS`2FC@1B|e zKOfJ2;B<GR9S>+)-Ai?^WF2U)`OU`Dj4Mo|#HY^o+C1U)r^L)vpSInp{_T=_`RIn- zo;O{OpWU3jn~(kW{?$$MPh2>x@#ssX?RGg^%j7378P+9BKfYU>yUkx^YEFPlXJcG8 z+m%;Uc{>7fgR*~Ine7=?Zm-gHYtt`pLp!^Ds^*fi=I7U~E;%>nvVWcEB^kzT-U7>l z%DN+7nx>}gJaV$Mw^;6KtJ?iPukOFvFUnVR*7Q2VhT7d0?Je(a#4MhVXg}oy9BJ0; z5xKhRTHn8K^?&$fcK*+1=y|F$x%KWwT^*SzbKmUKPW|(2TB>Ay(h?Et$xKJX<Le}Y zRo^=5^mnq?nwm)Q-uvMe`~BzC^);%?{pLQJ|L^5|h94)~|4oVAy(K35`MTFXw#NT8 zb*T2=B**`@Rh+*{KSWD(oyCUs>UV$57?ys#8?~QfMMUbJz?nAt#a5^&o_)F5_|J6v zUlQ9ExBobK@?@e}{ozTUKiT|dEoUtFFzfl}-u3sH55)idDgWWq^z5Y`D`S-6uicyQ zcY6FuW&W4hU-rz-OMO4jb{XH6iVM|;zi(y#u=2g_!S1*<lfUe2<+A^BIG_2!w%hRz zTceKpr@Wn(8tk`c+tQ+&D;ngg-x!KLdp_wq&sXi7$YaNj?Jzw#<NrnfKce4lmWn#u zuXvNGygqO7af92NR{nPUq<wV8^5+xoS6rW6d9^!V-fMTe>#P-*i@4`ltbTu1R@im1 zR0eB+zslQn$%Y%(=BT{8TGf4%wf6k=S9V*|w7mH_nC@=>m=*JQbxKjuq(5Sz^WND0 z5n^Dv|9s};=Zrhv?L7bdANzjh15baiUuI**=&&z9E&hU6^PKPp8;{F9KQ_DMXn*nZ zbB6Zz`+t0B+MspBLENn?r0MI0PRY1W&*n2Nuroh<@whx=!m}rVMUK6>uC^CNV`s17 z@>{y`C0AK*w(_TM*Y`|SKcAs&c-Ba7&6zuQWZL;;nYO(7``}>no`<~o3=dAn|J(HQ zc6a=rN2!lz2QU8cWu~!n#>Z!eKHJ3oc_jW(z5d&Dh9{qrcf<)DUS=TXF2ky(r`N~y z*Ery_w9ow94b~F_z5d)@8mM)wP-jogrk^Eedwt&AU_Nm8``xqtd%xGSC%CK4cak|C zW3l{m+!blxdG)7rYu<atE_>T2zAt0O+509-ioVXA8R?~3`~TRM8U8(Qofd9*_1n^R zTCO*1b7DfIn10p7eeeH&(YHIdxYU+iW_IQ!u4#Sg+jLi7-ry7W|5yD_i|g@=pHHi; zF5}&B^|10?n_a&m+jstd{h#5$Om1$OJIjBc<X4jFd}te<TX?_R?~%&WE2mt~AL$Jj zmi(>Yad^?UH#aw@ZvG&Cywr5T>b$>+eP>?24!QHyM(z8{eLEkk>c?)2d4H!yRR83) z{psiB=GA;UskkNLMo-S!<^B?pmx^?!dbNh{d-a=f$J=eU&*(jo|Nl|`^M~#7PrCkA zGg^GQ;e2NPMLF%&hW__1bvJ}bZ2m2^xBKTU`8xIeUl;zD7GSR3dgkoe*e9j3^4C>g z<?VT?)+c{C^$nk#&5k#Q+j1|Pc8EWF9_Z!y_otrbRIekBLGh*kWOg=%)gPJYKjq3U z-sWY7rygs#s6PErGOtadeEL71T?qnV$4-l%e0uA0lFX}rU%H;E_B!3(w)54ibjE^r zZzS{f{cWvzXKeK^;FZI7H-Q(wBN>lQ>f6k#^!DtlwyM2;YuC-6@09rZ=%sby*JI0N z8O&|pTh2L`ssA{{SvPw@{FAS~&pPvM3Mc*l{&+s)gTMBF`+O61mK8skt6y*U|FLjA z%Yl!^#XVEM+_=Q$wAiF$k;L(BmOH|~CoaC~_vYICZ8O5%T6g4Mmk1P!{=4h?-n`&1 zKchMpbrePRJ3c=@-~91Uuk4vcJ9AFWes^QzVU^CwKOJ6(?TluD48J-Guq3kFxOF@E z(20pv7rd7WUCo-MdB^PDozwdJ=fvn8_y7OJpE+RlRg2PBDh&QM|19|LE%&ar{c`eu z|MovKrk!|yW9R83rpqMLT9<Yzy)|5O{q?creKXQyYfUeEE_-EL{Y|HOO~~2{Sz9|6 zWt@J0tlWEHz=3UF{c3aH@tk=Xz}Wq*I7mlK;{Lk%y}7ry&9t*Cdn3`#C;RA7EBE32 zA8cyzI*%>h{x<2_dVPI}oci`2u7_RPTY0{}xVZRE-R)eKeR`Y2*6JD9*%>|%%eM>S z-<2Ba_A^k!MLd;pzeu3Otmnr?Sx;W@@Xm@WeJWb>eBW}$4~L7cALlImad`j5O8>aZ z<7fB0*e3n^+Oe<CK5RYzu=0Gh97Fm2&!xw_Jb!MT<86HM&N`8ZZAW)zzU|#>5dHp@ z%&n8ziOV&;bhx#DD!%@I)-LRN?AC7X&$pWOms*y#c9guGS#?zZ=#3i^#>U1BZ|?8E zUvazk{`3Ijh1w}cb$UcHg{Btm%;EW>lboFF<KrW-GGJ-Y!&})~m%O``z5a3Nf2Y%r z<bU4_435(3QVPBw&30m{r}**6%<D<(_I&aJEi7A*tD)z5>-x6b%NZssLR1{%%`4`m zzxy1ri?879*6W`d`D++1TvzfvW^QPh=yiMV@4N4xowI)bM0oy>BNL+c76umfBwMHP zFm+7kUH$3DkxkM*)!$!M9ChFSS@zV_!m{@lADXB8%@<_e%YNxeeqZkFT^Fmr`<2Mf z+mid+tnA&Dji=-Mc)lb~v{SeL_t^g2%$N6B7yNut_$^;L-H5Y#Q!e||mi`?FR%Yg2 zSP>EEAryP8&)aVK@%{h*rOQ9IY+s*nTg|g<XYO&md%w1oGZehv`@Qhj9=|?oyD*Ks z4rka}fCV$JnD-lPJv&{=^pB4B@sG>*dz&xS(KbDD+tcOpcTt<`Ib1#cl|Erx9zQx& zJJ~1i`u_PdBC49}v;|!!dQO>s{<-zFC8wrv_MH7?#N&L(z+_X|=}l*>Rz<Bn^(*)V z*Tfy%$SrEQlEft*<*n*!YSVQ5KTevyr^O;JX5CWXU8^%Ar``O?({$iZT$w@mvYS^v z#T+l3rn_-d`TICAu`hk~i!Vl8yF9Nd=-Bb&N1N|4|E$?}c=qf~)!*~p?ed<^6n$rT zZ<}A&(@ME@uf2k1=><3}G`V&$edVGhM*DJa?$epRHNE`$yI7aNBc<o}$u$TcpZ{=H z_IlZz#pa5c7L#7@dJ?nt!pY~KW2e{b`tzwdrtarc2H8aJLj^m&-OB!X^!py}25q~K zoZsHvKF*z2&&bfuC*QOrshhRtVRt;sgD)>Hzwz4h#8IaB`P_1*4_`JWhlq=r^|H(A z<n0Mf-~GQaeE+Qd|KzPUrbrxB^Nf*jwb<7BddqQH^^bkeW0ucdaVE?ATIe%d*7K=* z=A<XZsC&rhSBh}|s_araTH|~EtMO;vc@<IZPItf06^{A4CYwQH>Mnlo8#yk4N4|V9 zS#W*I%96hq-Q`VR2b|t?CQ5z!>4&@Y!ea_sEsq^(2@4Ee9V+}!kz=)Enr`9}5B0ex zPkKIk_Dt{B@1;p6E;}0cJ?3M!jg85_x@+EQ)u{!d-A7YZ_db67c$xh2<;$m=UI>o+ z*cIMUc#nDI#Jjwid+r=L(sELrA=f!Lf|2#<DHr#)dt2@wQ{Sfhd*heC+wXm2in;zY z@_NSNKl9e#y}L0{V@=-{lc;l_3$9JruGFOz5>$TqboY^3TMzT1?{9CnKeo7%RaG}L zV#@s|v$FY^KYY3DezU%H9S>-wS9k67x9kc38&9`geX?+4b^pIS`>)0Ok0kfovmIdO zw@tgI_4%q=+_{B8*NWf1<PKe2ULHH!DNg$K<JA6K(cBjQ5H69=zh-tWn(;Gg^2{Y= zzg89(pSk|!S@>!G&c{oOt$I|8OE+pv<v(`(xMfYm{n_c~=b1{^we!gu&3?WucfG~F z<=OLZ-n_}UJ?utKN3|>3$g=XuCr?y@J(qpRJ8|m%WtOz$<m5e%WvvuXFWs{@dalWu zgrcINo3RgL^wKwNpKn!q>W!9u`-xpuhd=L8Reh(Oy4g=ut({MHQQZ33**k9WY>AdU zUby2|WV=<}bhZC0*C^eLwz~J`=IY7Ejs~XeIVcphxhl$YhVQ-41#|Azaumue7Sdn% zT4(;5APJe3HWkPFWMyotuCxT`s?Ak?_Wb$T%|)M{crIqTbw<>IFRqmL|EuG5Obze% z{STip@3L02M%T(IHbr^Wd^dJGw_m<fb2skMk^N@o@#$5L-(R0pem-;ktLtY)_dL;_ zxN3t-?uz%jO*miQxie>G|6aXSPD|vz1TXjdy1((zvb4{ARfpQrii##JcJF7pr4YH+ z#Y9?sirx(FRwn(LhurL!FZjAi>6f0?-M;3>KJE2;gf2YY6ZfG>oM%^L^rWPXC-$j0 z@5sG9$GV&^WBS_Yt`f!H^S<wCKQ3QCM_+B@+`Tzvxu!a|(`ptOA2T(*a9nHk`D63W zXEQ(k)Epk*?c{dEA>Q`vvU7_AG{iQ(?KWQ#<~=1PgzcKjRPicx(+l6<-afwf`@QTZ zw|m_dJ1fnRG7J=v%>4T2&z_SjH_mikl5_jn)b(}34EO&p)&DfHzh0{0<VPlRnR};= zm*2Ydg4?)i@mKkMl~<-Dzdp(l@3U*)rrgsKOSD5XZg#aK-Uyz*WcIVOX_wddtD5(0 zkb0sg2(R2*1Rb_bZJqdJ(`miOUtV60t=IcHLt|+Q`wsR?w?0l+Ive!ssD53bP$F*! z=$Zuox=)iE-aY@m@B3Z{rMt0?&-e;{d`K*Ne=pa@U)^txL{74~W~Tl0U26{V7X1Ex zSMlcIY6Y)jA38g8v!#L$X&mxX`D7%%hClP#>%;B*!E3|Lezhrl<l-*-GDI*Xa@s^D z^Vz<_MO$auzF>Gf`8H$4@&5hY>+gK_W$>G8dEWNEotvKUvx{6pPeV3rY06U7Ic;?5 z&0OnpDbYI%(_@d$TzsGH!IPJp-`v{DopAEQs<l1>EVh~pFV$_)IUTY>z;)^dsg$n@ zJu3PY2f2IB?3(QwrKMODTONFT?OOBd@9$VkV#2ImdYp->|7g>nz3!rFzFgIdh3o9? z&CHIyj{jf9@ak(-{OxU_9#0oP-T1CJd`VFGLhHOeFVh(KWcQ`{vh8|oA!D_~_|@sH z5_W|$#`99L^{1b92|V(7-gg^^>0M_gNxjamx;)z_;{0>_|CM?%7oP49+g-Tl;?9T9 z-al6V|J9oD$CvoOs^4v^F4-_oW1W6uI_s@ZFN0PdnP*#lMyBZVS@UAh8Na(&?*02~ z)m?M%^v72J|CS8$|318*xo;ZpcfXqZ=Et_Z|DAUC@$Y>nO)q6_wW|A8dq0FpbE?-S zHPKy8@5B;SPChNNt+Wl|uQFqcePMsIH9TsTFVB~Qff^#a`l5?v+ROL<zRPf0EnO(= znAfj80WmxGEWTiWY_g5S%l&(eEG<v&uf4C&{NUsblaid<&(`MGYA<*_+q!Ra&ZKKs zB=$U=7TvQEbm02AIhM=^dd=@yw1};@x70uX`u?BA3^ngB{{DIG@$zZChW@=rJ3Be~ zWGomC6wmuCliYH@<g%}fRmq8pBi%<IZF2h_oBu1EA*S^0+Bdg0ug|}qZane)bKkfn zpP!$XPQLxwX0gwSr$s%zy))-;UK%8Oe4;P^LTwc`l+_fVxwNh;*>yiYBz|1LKcS@k z$J_k+-5-~6H!qIRk@7#0Iz4vVs~-nUl#70?zaTsLcIo{7&?j>DGa{zB#wFQapIUNf z=Iq&vL$ua<rB1Dq)ZhKas88PB?!vcTrE2~cfArQ@-M#(e$@6y$uU;w2<nF#(U6OG? z`u-2MVB4p^Uax=t;9xUD&i#FRmzVnMEr0%5deR4>he`APzDbuZZBI!QZ)*fiA}i?% zg3h%)KV`cBo4eF;HJ)j=^Y_m^U-xY@!<$=MyEn>Bn#Or|^Z$mpA6+Ja0#(oN>@0qB zW8>o0N0Qn3WFEZR{hn=?_SRh&H|pg6x%=_b?jQI6-L16yY%b6I;B)*hHuF0L%nb6s zF0@bM6&GM@PK}IyCMV*?e3MNGIqTcJIJ8V@s@%zUn>Nf`5u$ahT8W4M;|z{Nw=9dF z@l=0%^YT^Yt=;AN!NI`|dWBQlLUTp69t;0@UH>`Q=If2^3_lJ{-<SByU*%fUhMyCc z$3Uu_7usH$Q-bDLm!F&BAFX?Pd;ap9IhS(GR$k3w&U%=UeB112&Ab{r{n@Qe8;+ta zbAdO#YE}D^8N|fIZtSft51+p_L`!Yuoi}fEZg0zdUH#il_Vy;rf}>X%WcEFi0_{v_ zSU2e{XVV5l_==hr+L>#<^#3{0UlRKf6yMDytCMb;<^R7ppXI?;`yXYSPj0;W=p$>Q zwvtdeyqDuB!KkxzO4NHdj@O6({IL-h7Jin#Q?$+B>|^(r{~sp)i;rLO|N8VT|ChdR z@4xeVx*CtOgZHlAb5(qQ)z^Y##q9lyi;H{u`_~6&w=5Ot+zlBDG6>qSPA8Dn@y4u< zBPdC9q%8O;-z%-q!#6E;ZMpC^lS}_!cYpc+OX=_aI*<G7_2FE74sm6<66Clz(yS-( z$Rh5&T8`wDAO?%R<T~*-#%*tPz6&nw*SY#XP~@cFzX=om#m9?%ua{_JxUuccO@8L3 zS6si_b*L9c=)9|s{LM4}O@#9I{{@jX|G5`;o;e0@);Ae2b+E?@Tx(of)^)Vn&Su)H z`kQ;>m8Y?GrhmJXKlNX{zu5P!73bPdKl(Slx?VS8$=&7G4F2&vvN`l>!teSW9`*S= zM;yd=C4FpO8=z1;bwi(y=}n#z#?;28Uo5YN?fI$Oow~gI^rWM!6?lZY*IGYUOa5E* zxIZ=Wt>I4p+AXur9to8De9JfXpoVemwm;t^)&`oNs@?eT<emSQ&d-*=X(o=AMY&XV zmulzCiHeYw-n@9<>g|{GHst+UdVBvTL$}|**Xw8QU)eWX>+@|<)k}9zY}%r(YFkjh z&hz-swO{6&R*CMK&|2QU^-*!Prik{h=rFtDXGi|-V>>N(|IdcddG^K3aV2xxjMz#m z|EKR<QTp06E$)!?ZSLkbzn31H-+gYqwBZJ`m`PKwm>$k@dUn&}<*Qv^3gVYsPh0Zr zf8M&IQuCg7`|plOow+X}`M%CCyXG0uZEo`OCigCRBv9qdQ<CUe)f*^zvXd+9Uh0WG zu1gO;Tl8)HHv2Q*;~z=<P0oD0`m){0SrLbKiml$CKCN#4QvOTppKUpx6uJ6d%}X1H z|6;SXzxiH!Ad|uK^wrDT-_7)Q{qK`?k2oao)?(k!#Fx|h?^Ik7o_^2ZYQ6vQ4F_8i z)_lFU`^DwecYIFwtzA92B1$K5HLu9(^NMnJzm={}Uh!&%d062*Ua`Zs&hARly}#!E z_5JN)Uy8Zja?2JwTr!XSdcjCqP4;v3uc{-*e>&Qk&;9;mQnchDHfNQ0XesB0R7zRi z?t4eyBwjC`QCV{<Zqu6ChOhr_WqWmTe@K1YlR1&cq^$y~b|@Uqd%Vh~X=c5dRP6oQ z+Nr1Wn$ARpS+%WQ7jNdpbogqY@6Ga(s!p-mvYksNdbeEtGJ7B2M(5Jjb(<b8em3u| zv9zz`g=MzpE6&~T5n-OqY<4W*`n<>N0$hux{W+O*!^>-7eMh5S$))9ihhIfrvSJZg zk(x92Tfnxm%9M7MV$sN;@X9OQ*F08BzS?~0_}2*uQCuOHIHyVNYt6g3@7d~|EQ|L9 zNZ*~d_Dt69dV#<-%-mn)h4$X*&z^QWO>AQJNza0lmnU%QMrn4J9On-^9<P@<h394E zyXR&XUf4c=Eg!#6G2?oY^tqSUQjb?3D4EEf@Z{R`*Dl9znaZ{rZEq{Nd<-+(UZe>8 zS|L~*pPId0JL1;vOUK{epSU~gZKu!g0}r0=>lVJ2T7T}_|A5W^%05nIe`)w;?mLxp zZ~Zge-v8D)Tl8w0?#Ws5KjbE{>OR~n^<-<nP2n{cj!a#)Ebq4Yis#X}2Ryp2nukj+ zJ$$UztX=cF?76cWA|`D6(X+U8ZP?BKFQXELyO<dQxJ(<ggq}6LRGAgn%_Yrmc%fBQ z(w8~aVND3rYWeo%cc(|KTE(_0zHnvsvS}4tpB0z2m6gr+EuA2IRcY5MgAG5rc_*w> zty-ONJE(B4_q<fuQ%Y;=mp$fnnPr{)(fQg}wYI3Qf9=2gZq%FS8S%MzW?pe_O>%MW zmnlDYb!T6gx&HR6p082rJO3=b^4x2sU5hzyWzOj{3%zSMCZ1itI`QkP|J&G??oGV? zlh^Ez%p}R%zw2|2YA2U0II~-tA6_{&DS&4B<Vq4VLyjH3aQNH3q|VQ6OZ??#ADtg} zTJ6~+>p!bGyd`49zT2%}+_W|DZ261(>o)BaU;9qV%0vBERQaaqr`c|Io9~m&HBjne zEVlo$e%X6A*~VKs?~Iih_g*QUboK0-b>eI@Gk+{9Uh{PG=?b>+_{+O(->vz2@BOyE zAFuju^5?%>l)R09-?qmoY{$EQ*RM=o-B-V<{IP*>5#O!m9eI4Grux;ay!H6?f<>>o zax(6uxy1fCd+m!)Oo{%ArS-Z!Hc1P(wJ%gV>{|M3XGmmx+lsPxy;o1fnxA@cXJf<b z+GdUJPL?;jxY>kXT)gi3NNDoz4J^`6|Gl5)&F43B#(BY)P5bWt_s&_c>Ym&e*W9S8 zJ3DW%ozF>;c$ruKxUYJC<8<qU`r~pDzqiXCaXS(f;XS`UV%OZO7Y*AZR!94Psah2% z+2S^*#OBq@oi`?!FWexKw1B%gF?eeEi}F2>q{Ir9w@i?<`5Qg&n^}79(tYo?d}Z5g zdQtWDy$0R`s>hnY&EMT`|EByq|E228zB#@VmNeh4w!5{|ewPdXS4;f}`}K_y?i+UH zwEPV`m+NCBUCI3O-(jCi+dsZc{p`ix=<V}Fx?XYL(+Lvjl^w_G1@o&<W(O+d9<}{j zcQI6~{MUO2iNAkee=GZ~@P6~vw8>Me|6VG&>>d`~UfWq+nEZ9mzUjBVul-rpT=!tw z1g7uT8}~hBThO@qm(HU@3IhLs7M$Q%{v_`HfsRH!o}RNIml8ul^7neoGy7HQA^sry z^z2LCF<JB1e`njlC;QiA!4t>Td&QI$H@}~?bg~+s*0F7~?V|P`v7EeQ{dBj~ev>WL z`|LknxI5RV_}rQ$Tk6#p#QPsuah`GYNyZERKgT@UTXO%m^1ZXMhFLoqw`sjyGGn#> z+}rC@CLH>O*1|f{tjDo>(fgkz>|K6oduEpTv(Md=#`&vaR^ayp-IG?+^<NyH*?#f; z&Ek@I`j4BV?@V`-vpw?f?I!K2+?#ECu3tYD_U9b);(D&Wt)`3HKdwLT$;5hafz{{u zb${Y^a+)(IE#Ou@>Ds*~HESK;?7+!)S6%(PLGwjv_mb!HB(`?%<=Zm<@Yd@p_jTHC zKYBm$-<n4fOGOHQeLur=e_M{u?z@dEOH6+6cDxj<_c`>I`s}B>xRl$1-sW6cQ>!88 zCE92=Pgz%T$2_CY6ZH+P8N!P4*6e;#fAUh>+~UnV$7i!+<j;qbzD$|1hJAi-(5W{? z$2-lnj&A!JHz_sp+5XbRE8C`Qe^8cr{d@BH+AU?`zn<;1dix}OuU+-sw2Shr)26IX zKep0C^N|LVLZ8zj4VA7(Pihk^tL_xZir+3|u$^Xk^7YpK)YW_3tJkpCt<2sxaoy9f zl*94!-+VrP%Vx&vwQ?6Le}$ei&3^N|WbcxY-w|4UlkYG0{Cq3<=!a_#+4A4rCmxOa z)c4ydb-nxV@7=%cfB*iP`trz<L&w~CN)q4BSY>A0C-kyqNz$PJ{j%t_Vu2z|4{n(C zEzS=;URo$4ecS7Ze7D-FM4oA{=iV)e=w4ShH(j9i>baa<HFJ{eZ_SrWHod>_b4l$! zH{~scSI+*u|8DZbwF=j&{FEcZt9-obuivxj=@FD`W2`&vANQN3&OwCjS1p%Jxb!2- z^UBYkF?{&M%GGMKp!ch(t^D*2=YN0Y(ckw>`re1z3Tx8-NUkWUp4hnQUWu`sbN!O% zr(46mX6FQZ2_CPq>0H!daOL$p4W2-a;<(#|XO7K#y(6OYa?;sk5AnA$t<?*{Hzixl z3{aU`$ad6gVUnxN>(UJO|F`+JO@8~i`**$a_kM#av_|^J1>CEXmd<@W&-QtDpKPn* z*C^hGpFb;^;;Wa*99N6iVGPg_IZ;_zv~FK%?()5pSKi+CrEdG1oHF;a@c3%MwcAc7 z%v|@z<8gZFzCz2&2zjYpOVW4Vw_Eyj4}0^cxTU-Q-j%uk>c;!`dwiy)ZWY%3w(x)W z`;)Ks)mP=l-`5hC;IDcn*&!PED3tT?gai4E4}R-P^|CRXO>1`B>uCJbvQJqjx_VF7 zPn)Abk`0}?w|msj6y9k(8Tz|6pYL||Jx%Mg=Zv(MbjR4RZfQ01-ao(B&|Js#A5YO6 z&;P!nD%vMa^xoa-zQ222VrI5$=^dAw_G><Fcw4Yf;lg9j#n%=@t!BEAWyZNkK>gzs z@orTv)xCULqFhgG^erdd7G$#U*cEEf!}RvI<+}ham(D2T9;VM$vd<U092GcbSXN}e zJMP>X>$@?0=7BCdJ68o8&v~to!+XR*{My`-m!d3;#+Qv5=GfMDg>B-{o9gA`=f@!6 zF4|Stb1J)Y#p)spKda1?rEcEyz1hx9J*g+vb48ES^n};1P3v#huG%nd#sZzwhYIJG z@#y`X`b2kUjQoK|p`|*1*i+U>u+CHBaaP{?+Two^_u-?nMOW3z${c^$(HK|#fBm=5 zZ>y67z8E)e3Od!}UMN$Z6Xfc-rc&V7mZ+0WyDlyWyUP8lYOB}YxKzc+gx|jN4Jylu z^7=mJR`DEe3)=K>MqhID%%g?>Zm#)}`TzK;&rvHXE=tU=G`svkeJW@DMx7oNiKUyL zFPGlk_c({6b5)S{8ylVnGMV=6i5Z`?m;By*EvUbETUA24;=OZvxwrYY<w`pjoqe0~ zRXJe)i~p9B3)Q+-Tz|zd$F6dc@p3<=3mIkyne><Qe(XHyx$XUpmG+i9dp8yO+?bi3 zXi@aNw}~&<OU5D4<-zL@%J=ghZolLkHs9dNxdj?M89#lKHyrnRc;l^s>iNr$OYPzp z1ZXh@XoxW8uDQK!UcC7uw>E6aJbRIT*QE&gBm6bX($6y&JbF?Xbykhx>8X~F&+>w` zZl3Zpc4`h<nSLSj^xd~>zPmhmw^~&??}E>-``@E)RZlvZleKA%+o_z-k*Ac--fd4! zPT#YA-gNcp72LYZ&lepR6<Pn+we*iM$E72tiI@H-K2TqNrsAwo(S3`qgI;xAhJWQ3 z*Uzn5^XaEe+(HJ2bEm#8{2zY%<=xUS|F^HUPqFqrv`$28s>`vBfs<J3t~JM*Pr4G7 zJMWcK@2fw1{zX4{Y`*o*-EBEdPd?w?_Ex1!Usv`X*Altn$C~Fg$`2_V_&(Wi#naj8 z2fzRAJL1R15$vxo*td9ZWZzun=W21E=5$Z?R#`c%dGhJUPq(HU%|HKm*W0BRUYzG| z_T`%Xt$y)EgM~7;s^|1dHdy%WZK-<0Zu@>&@#fq}wJFM9?Y{Z0+#u&^EV{zZJ-t!x z_48+2iau1k?>l|j-;UE^?@fnDOSR+28E<SZ@1H4Ol*ea2y(%|1h(B+YT1#(%Jb&}I z8;^c7_U@8f{rvf}6`|q`8CPHbIBC27k;MIcLAI0Ur@7j3s($!X$>ljCXk~=i=XJ^H zlf-t<)tdA*po(KQyWxe_brLRjqN|Q*bbWkX<!EMV>%G>D+hJ$m;o`3b(@#JBP&BWT z^-^=<Z-;Gjr6zi(m;0xdWzXHymL|+Mam^kR4(3-YOSZ>dUd?I!(pg93Ws{XPYw59` zW&6vE^p+OQ^!ikJT<=RH)3tNE_FnW%wmW=adEDAdE3#iMPF?u5SY^86&vk*<0s?1V zFLV)Up8KV;a?PQNU5QEG{V(ml#FQdoc)Ho5`DRU5@*|V(Y8mNfm98Y=#S$!bj^6!| zYttr&t#;Hl)XL`O4w;<JAv5`+Eze)?wnruR(|Y^%-LT+q3i3){$0zhM^TA~=GgGOr zRn|2N;+D_TThT10)zzVNx3W-1NPV{aMke*0%5Ud1PnR&XT%S8(w`IRq>YR<8o($W3 z^Ngh<S32%|dZI=2M`z$Z1M~EvLpQ`C`jQ_l-1@}!uENF*mtu8S&t2`3`1n~#{j^ib z5z|_8)n{+HcI$U#XmLUOeAcVm8P%<?y9IjaPTUc1QQY=kwwA5o)gPI@>FL+cz5Qie z=(2Hzd8Br7@{{hUq_<Ctp6$}8wm8=@@%)Q<Cl^o1TVpnxH!bap+liHv)h+Aai7;&a zx$30;BP+f{k%vnpZ^cfpc@&{B^|*$*U-t^31oiBo>u0x~PP-LXG+(`M(V73|SCaxI zxRMrd+g^x^`Ic;$@#u<9x5mvyd1kB5oIArP&~8|K@?7dp8@G)y$Gq8mtxIlqx1CGa z!MAzie#5rY)4$z%vE;fj&n?d1SzB2}s)|{JmO4q<FHd^w%6=#!QMIjF;`oGPJyBwT zB9p&=d35M><*^$gMk(eVO%tNFdM#eJo^jjUm-W)8y&f+SEu8g6?eg<F2?16{$6v() zDUY6i`fKbG_95kKQ2CB%Hu2us6Ham_#JpZ<(|A<5k-2Nz$9KQ4yuNi~i%h#gXZ@Ah zX?64VMZA>GwRz<+;puOa*|!`rO=ca_m_L7ZYMx*IrE_O|45vR)&op`M68KCau|a-` zs-^B_$!%Bl&d>aAQ`A{#Y-V@v+sU_Y_Q%AZPuiFwl$V;k#Qhe-OJlc*i>GKxTiDyX z+XlAZ=$qUl?O7DId+j&HAeWbI+NV}XhR7_QWXE&3Bj%iOa)epD&->muy~^8e2@^jn z{M>je!_eB6^}w4mGV7)v_B{3>Xy1t^Ww~qe?*}HYS#*3_(#9Ev0@M3H%lH1SyfM4o zYxS9iu*D~RE^R+AQ`@z?Uxsmu`P?VAKZ6*r7oJcp{2#Z`K{0S%Z@89;R&qm_?GnGw zb9Q@7eCC)Hb#vR@hx;XZvlVhgQl{#__nmPlH&k3`eYe4?)@@qq*6%LWU#2Z}FS!%5 zyQJgorL0$T|5$EyNR2ryt<4>JOv|*Za_{PwR_B!R7hJZ>a{E2+o!0uBi?2@?3eC1V zlJLTZA@9jvM*-DM_f3}BT$`s=@+N(kv+U78>uDxkzHFa78lP9b&H3Q`Q)uz6liCw@ zZckd;5#l4D78kvH?%BKBbQeoq{5$_k@f|(c$G`0yA6)iYa(LZifwo^?Pu#2DJLy~W z{^W}%PuvZ?Z7gv_F;Qan{n_7-3vSGs{^H}`14n#sZ%p=D_q0f^@9nH@>oZ+$E|8m< zllFAl{YBF>T(hp0@%;btMdbOpd8`l4ybSh<z3|iX)m5oFfs|F=N7VW|Q(srhZux%7 z_m^e3Mu3l3$lF^xXIu2GR1x|<clV#Z*E<ZWxA<!qEtC=5xBh+Q@!pL(($}wk-^=y* zsXuHjz-tS&ekb>Be=Us8d&;=B6iOMt6>6LO+Th!la=RDdD}7HNve~`u?SrScioPy6 zow03JMB;%x%R||NH($<~e|6QNS5Bh!v-w;(4l|ffugH1)E$YO!w@W@eJG!tgd-?Xq zJa2!^wmfL`dd9T(#-^sc2R<gB|FHMH9qWNNhqjzt7@#Nm!KUA7(>|SPT%Oa)X6R0p z^#8<oWmRdEXGXBh_RwIhK1~ge=^NL*PEddRZ&TN%t>+jIEpz25S*Sft%Hx_1>#~g- z*Eyfd_I?nR8MHtlAuY<^=jkPhr$Hw@?&#h&n_q6+89ZfEPuHzYYqo`44b1MI|H}D8 zrJ7IvmJ=)@x3{IHyf7?O;}l+TL-CwSXjku@y}H$34j+){^Kz6)%`V~pbh<z3cv*j+ z>~@ai+>qlFjkwdVmvt1qbn+3r*w@Q9*;mm1Lg$&LkbiQ=ocBMkvW(R~pJxAlRnFVz z7JWvXr*ElNHHD>j%GrCo`>dhD<@6`z4%eXu4L`Am>wNX*A9Jo&liO>5@|T!wvV*kP z-y;$)3R~`H1+L9vuC2?Pwo_6!+rIvpj=J9*hLWEvU%ur2W&4?%#c{I1O^J|+Mvwb) zHQy}Bm%VMMx{B+l(qqq+emd<*OOqyj%Y1BiIb6Er@?!lh?X@BTDv$joUPKg&s()Uc zzV&cUz_Ez_M-uiP_QDd$#ypQprDpvuzw~t8)i~$Mpv`B>WInm>ohP|EL_=iH7v2>X z%kFsy1zn2{5&vSfB5d`gj29aO_FpwJ-6?z9uz#=9%O|Osn}26<Y<vDWuWzTFbFdV1 zo}k*pinD1BduR4oe&$xwj9EMF@<NG|5|5tR3OC2;Op{z6@+Dm?>&L$NGS`&CG9%6Q zvIQ0H?pgL)Ejd{2`{}N=cTYX;ztD)WE%Ji<wP~A9Zqw=NoU`J=)7zYz|A=i>iS*qX zwKQ)1Wv@y4PxtPbSpIT*ddi`)SrX@tol;HJzqY6J_DsV))9;>}cy3e9tZUN(7as^Z zrP6jd?8dWRGmDqoDjK@hek;6m#Idh?_W6ev-YTDkZ<X8;7uz=Vq_>#+v1Gy94~}?F zi{QSLV|r?vg3rD6B3fN%|IR#}zIPk*f3;bOcc0hV^g0Qu&bw*A!x_x#^klX`qd`VG z@AdOVs}urR5<BKs-1?g~+2W(at!?g#%WVzkJ=dLmVr4s9{2z<nPd}W}*<M>*k^6G1 zN$&n~Js-o;e=-cu&(D7v^Q-C?Q?V!8v#Pc8JnjUy`b8)4o|<xNOYZ3kvF@KXj%(IO zD#kB+$$rc_@n(+L!?U+G8vK23!8c=4v!I2bmTvMYnc%2Xn`EcVZ8M8hyTdS5;||01 z(}~uHzq0p!vEi0Ixp%M2#4xRCC&j%^O6M%nFnR2^`s$La7vgS*ZBF#E{ngk%dqtVd z^@D!S{8OBBj;G0OXPlZQ{{Fbih15xQssGGvbWR`g{AD)(yU$6Jr@OXHD%^GPgRkZB z1LXy=;^w^WpNc9vS8a~Vxa6bd^TRPiE&cY!-mVK>x{EA~uCI~lm)yGi@s77|-pT&# zdE0j>Cv!KeBTq?U=o-IS%rDnmKKo>b+^tQypIB{YOg*hS+0g7r{_(A?yY2+eGBpd@ zxH5E2fZDs8n{qbq*zjhXO~gVgu?`~vz24l&Wo8>5TSQDd<X2ZF%YHjA{j;zB*5v4j zFl#Ywk9Vx*(+?LH%WjNlK6FK1_Q4~a+jV<iyg0vellw+p?%SolGfi})wUzJs{=QUp z;M|(YK`Yn4-p#VDdAbgV&Gp>$Ut8NY2gtdJmDetMa{s7nm+r1zX1m_)e05@R!lOBl zZyZ^CdtL9_CFh+o#EPdqPD-Bms_L<YnY7Njw+~b!kJz3!zMdf9f5>27<JL*KhF7yp zXU@O6=^OX+b4CB=n4MalzHFuLi#y6^qwY$mI7$e#G@h(o_<DtUrNp8ea}IAhP`Krx z5ZgXOF>$TUEo<92c{l2~Uw?m3f#=h&sDxu;=F<=R9-9-9sktrtnC$hO9a<;8#5YK* zN<Z6ZRP1rCG+g)N+uP+YZ~xd_6<HMidfu7zVC79lc5XY@@RpcAf0f1WX>Yyd_&bZR zv}P?X>*D<po<H^X>TT*Un*Hu|CQDQri>%&DHrIRF0dkjxz6ROl7d5#QRtKAMIp<g( z@cng%H>OB8cfs$v>R^G>X43cOO*cN@nr$87S6#bu(F~^`zVj!a_LR))am>42l~-o8 z(>Ntos{tifs|fJ#+Q78ZWly_*+1Bd0DxI5iCfjZfkW!w0LO6O_^XnJa*G)hC)n@bK zHNquZY{Lp4`E3b2_IpLZ+xHii>)wegw{X9{e5v8rM{mFJZG64!M_o$U=S@r3TkCI3 zwb7jRc!KxSt8sGYKO4#2IrxT8{~O<z+lRM=?AA5dT6g`G=k_({{+$og=xE-t`2W<E z&GUG*Gu0V4<w~DFE$N@XaDw^0HT%B(SM9sH&@3YL|Cd?qg)5hp%$^ZYoqXH#QIC~+ zSmw(j9UbNCTXVS8IX4!@ik~jDnxv++<@nLFPkXKyK7VR_sv~aw(WS?qE!32#I@ohl zaBW)mOv|~kKkw`;_KCl6@`0GxDz~6pTs4z7=yxeSir8xWX0eaarii1tTc-qBOq^Te zHt}?(WcJ=`3vP1sd{Xf}!O>IFwBzXcw+S{c-&R{c-<5WTgQ+z)^2n;cHl=gS7eDe$ z-D9br?!@!y<PZBZ8{PLW{rxe0=lS*D{@$H;e3Pznp}cmu#<VTduNN1)B(|ihcNWL8 zANQX2rYvnvr}E-2oQn;N*<Tklo6J({+Z=b>t|D{ypFdSRuG3NzmwUDp>ph+HElvFR zu@f^}4!w<fnJAGQEubP-c$~BFuF4io9;1^Qy2{h%pR9CaoBvrxCTEe#%a{u}GhPX< zdp)zj=k%tYMe6YyK_{O3zA8U`s`F4V!x0DZu!OUZ%eBhmpFX;=NjF(UjO*>eGi!Q0 zz4!kxk*a$5ENYvk?$qMq9VZ=LTJ%NAJTdwdw=_gPt?QokGX38yGjrB7M>V|eTpK%U z-OY>(UVd4(%cAeC&?&AB5fN6Mbx)&XgV5s(pFhcd3~$bOJ!${@Pyb#&mHB1!%=cOO z-q`8qc-c;G@+o@~mAmlp53{AL#;S}V5)ak6P4_=td?A#dLC0G7|25~+dUqd%?lIpy zabwW?FXf(>mL9Q{mY+LuB3oT|Sg`k+*=yDIt&iV6%lFTfjvP~trUnh&^!7uWCi$-0 z<9#ptxY9b)GYPiWbF)pW7Sx7@$O!+iJF600x;M=Hr`xPvsk6(>RvlI__{s2S#ooe6 zTUN-brQVDP%ZW?ZuACvj>iy7S=GhHrj$K=!*B&lY|102?$!*3+Wj)=%(DmV&rn1VF z<+0m8+j*?>U67PK=SH8i>O_&~ZI|y&*>&Xm%WWrD*VUJ;iTQl<cYAB<q2r%gZJs&_ zaZUdGp?TU%^W&R(6z{DuU!nd`p1XAs=i81&C#J0Wy2r-P&F=k<Epx?AMQs+eSatqX z(j{K*>!q5i$BMQIP1u~VSvf3W`R?*na~B-inB!!Bmhr-(xa*Iv?0G#Q>}-#+>*{+c zNsiMCWM<D<5Oi(n&7wFy^+FTIWw%_G1}VzTUoz)e-G;eknyiW5%H@ra8GR55J~d+6 z((sj;zdx`3GAG?ea^)1;`QLk3H2IikneL6YF@E~sR#%wsb>_LcVrTmb&wV|!ZpCX+ zjVYH}ij#Z#^Dpl&k4?IMH0tuZk3lOZ>;L8an>6LyJN;#EZF_tlO{rRY?8_IEz!%H& zjjTUT%ewA(J}vKf*-7=UF?(bD)C;99l*gYFzA%4^iEZ3-xfdVqxe2bF=3iPT*HD~( zUPxtTTIZvszvX?{p5EB>@zcCO#~C@P**VFx-_4(WHLic*>EA)?qbB9(crCfI@BX5& zt8tU6Y8zkek!yanRqO1uePV0f_P&kGH(MFDdW+Ede3^EOljR!XUQ>>3nRW2=(`!HO z?z*I_^8efWo6*%tN6Ma6Fa5IG;^To|b(5=Nua~d8n&mcEp!MyVlZ7(QGNm=jQ&l=I zFXUKxFKS|##f68;C)ew;-!44!C+YUJV}<N-lX6aYi?8^$f2GyI@64|<%l>{A=V+d` z^2tMsK2E`oK-ulitLA8laNm;ds1w_i#l7^3!2HH1bFwXND{Q!BzU1ZdJ>d%BS3WPB zT<rLAA9Kc)*JtM0ul~QR=1*H3^I3m?L$h^Lxu$L`{M4DX$|P)2h)$r!G)9dnTvnZ` zDxtY-@8@5hUbDB_F0jRdZ|9zOx4jB`YChd6EKZx(6H=5vYvZv)e$TELba5C-e$Bpm zq^2urir1u0x2^?O7ld6+zH#J_4foU|&GWwZ+=+`ctMu1ajk2DVaJwQ-is|XYHKiYQ zbGVK;h_ks}7fL>DbSd`y*_j7*vVNZV-PyBcqeJpHrq&>%mrrb!l}lr$#|SMB)#?qD zyUhH!&$jyJZhKwlq{qARmOZ&%@Zz~qWkT|{ptM3UHpbp6-iDhuCDYRN1XL1P17&8d zwCz)Vq~g2g?G3emmrp-Gd+5ODPe0bix|~$nb-(Rb!sbKeKmR?sAGbfTy6{bK?2N~U zEcYr{*Z)%KO_{94(_D6?y{mW6#Z9syn>Kvls_Z&y_}OObtll!VTXq+sr+>d65i>D# zo|^XdzC#nzob}f|d!9C9--6%uzYeiJOIyaULQm&`x?APyt4H`R`8*Un8`fME#C4M2 z`O`_`1WUfw6vt`3N8hfL-~Gd9{w3v-O~;xwUEL)bmDK!_zWxon?BSk$wNk3HQSO&r z;HC3ge3K12Q<T+{Ll!+Mo1<Z-B{^GX_uT#iWjaNc=R-IzDmpLTB@`FCd(D~dtub<< z$5}k>udn9z@qJmt5d8f7g*D-w!puiE>1-Aha^2XuJe2E`=hmj8ok_nc%4_)(Z)7f6 z-+Gbn?AyFKmmm6gZtbmUOxid1=-rJ9JYOP$qdOEXoOjO6o3_$;IfKS@EfKF<H)Nz| zFEFxWJn&@OT%UJ$j((eaoAJiJWb?<uQB}E?s>+Y$-nhM}l72pO0`F-fw}Q-~o}$R( zi+9KEj_PWC#c^=crTdNZvM<|6BsyI1G81~taXPR4>JhC)Q#~GLZ)N2w-sRN#_{Ot; z+jHB4g#HN%2Ww50T%VynDd=sN;$mw(&chBoC5e^Sc62YVitJzBoO!PC$buEu#6L{l z;c~la<{o!N$&9^D_hj}>I6YJL(wx^pK0QC?8jJhHWSl$w_$hbV!wJ_G$e7g5UM9Bv zYSiN{oo1%wgzbOCwpIx}HnTtd=M7KYBgritzM67#16Ip6&zti6*t+W)s*@ut>w4Vw zx(U3<77)Kukd)1qG?#~O=`GV8(!ExjH(&ON_we%box42nGB=ZG`%H;vH)?D}wL@NA zi`pO|ogL)k_3cV_=%FS5ukZ7aJGW?IxPJ8ZQ=Mfe*LQ@iKKf@*T)<r0%BIQ3=d&fe zdXt$pxixI{MFo#XInn#_C!KOlbkXKHQ@d`;T6UcV3!k|=Beu<bdGO(v)Oz7#sW#{K z%3bcroAlfKW<=IcJKo2R>xES|{&N(N@J~v5ID6gIvw_d@S3X?PaaK)V<IWbf?W-sE zEVJ~>k)3ew_IC*rXW@w|=N)8b@A&_-)$&=|mPR}4TE~8Suk$B&r9}PSyo_%zZ<z1* z;>}kVP3W=T`l_ag_v>#TzTUGQ{IBQbByEqe^R&u*DfL{-@Iti1;%OEJ&z|{uMxEZK zA%5vey6Ukm&pBT!T2IPa-`xMdh=DKWrqSb-uXpWG)9*K(VtSz}`S!NTXWT!H9w%3A zUNqsekI@l>4V@uZ!lY8fwY;{5+61ONYcSxr>{YR2S}(Ip=dHDYrzb~W@S3Z!?Zf2k zm%A*ty}cl<9=GqnlWn<a%5F!KnSXqn+mrJtU?Fp-V?6u62mJpUr1N$(e*9Q??D+AW zkNd2D?B4&|`t$d&)kn|&dvktM@pHdZPmMswT3Qx9ayf3;Cu@D|b=-HWQ%{Yo%ileD zUia?#hsm+l@FiD?j}_&<ls-7n$XxTGS^mj|h0Y9rUe5ognO|{Ox&n0g<h$ber>pP( zj{Em5|Npf9+BeB>ZftD+zW06Yo^M;%KmGUn{qaJXMH-Jx*H`lHE_?gv-R}2kSy^4> z`##UrSo-5byZxSX_t*8N?onA?Q@>25t<`sqi~^7ItCQ>YH7oTkD)Y%zGtRm3X`@i( zsvxf07nfGQ>Q(cbba8LU%mpT4h9B)~_5W^?slBx!=FTNKWj^tVod-iRcTQy3ztpzT zQCp!e>G9tUfioD6`0Sh;anz-5Qs&LFjICeV0yke>boCSGWZCqkn<QskKfyKqoQ2V^ z6-E*&UYduFc;Cn|T^agXO>X<uPriR<i@Gnn)tI_<^9%RF6r<Q?*S$AQZf=}?R;+GS zLWlA-voGcIn;YM#@A~kpOt}A^cg~hmclIZW1g#I9X;m-RAbj5D?8o#z1_RU5#xSF8 zE{Q4c9(pYO%bB?3vl&b0CwI*g+qal&^DOqcd}UWf&hMyc*}hh<ays??<}5oUxc}xM z|6{!SuNnni)Zp^1W4&9SB4RXC<w;odsl3Fkp)rz6L(Xm0eDYcCe&^<6J-?cl+}^$9 z`|3$&Z5RFC6PSO&$I0@Kf=Z7Q=s+_Sw@q)gr2m!`&&n{`ylK_C)$fj8-+xb7Xi{oI zf|{7~0Ws!fate_OifTR|pQIl<u*pTa#U>$zlap<pf|^2P8>3G{r>eJt+W+eJ?f-A> z3*9~|M`^L;*?Yfv%cO6*6)Pz#71v(cD>_qh`R(-irQf1nN8f*xcklMDzZQA__Abnl zJyvP8+F<UDx63a}zFO5a^P6r%>;K$ur5kdX=5D-kYuyR1DXnMQx?`AlR@|u$R=LF+ z^x;UG!5J;<bEh<Xj%_pXoj32n-`~P97P7t93`EwQji@gWcyVvr?&F8gE?B<SyEs#F zntvbPhbJq~Ch+sORn#Y4@0zi3r_h`!Q<wE_TccqyZCd<&qXjGPR#%5LeinRn>Sc6_ z<)0f;$%kr%jQC}v+S>gK3Jv+*r!OttP};V3^;L%(=@XjwvHm%h|L549^Y?#U+x|hk z{-gMh?e)LSYyN$nf4qGE@7O<A<Nu1*eGRV{W%zKt{_pi4KOXmg?En9x|HrNC``YCH zJYfHE{{J8UnolRyf4o@S&%jXsYk7Uw{eN%oAKSj~tFDZkTv^Go*M)b&1z&#J=HVro z;a0{d)@l`Sec}EMwGXSAWwLkn7$)4YHdL3`voU1v^!N8373;@6>Rf%)NNwBRh*!6! zmCBffbYDH|q^y@A{4P_#Z{kjuX-_j^yT!Fnr2IcNle6}KY4U`;GpS+6{>`t<Yi+6V zf9dx+vGDPiH-`ix!#3o+O;&44HQ->>n71X)FiQQhreK`ckv5mG1v<Y4T7{!n9(mWF zKG+r7S1)|G_V33&M&+wf?0?VB4rgfakN+!@KWB5Dp_Oa!Z-(|p*}&I4RlIFs+FPR7 z4;mLV9<#KL%I2uozaCpK^R2~?lbmbzZ?&#fv|yR;5%cCj$o5sPZ)N#QSJwT!RQ&#{ zsL7(*hjZEu(-Q<{3inKwJhiEP)BC0^Mx2-4-H58lJa}a4{PrVjOXMxZ8@u#U+oHS_ zI2qVvd5$sUf0t}O^Jd4iy^Kp1XWw=R<2kcNUue73yTf1B7V+2%#T@u{gl$46Pg5aB zyz1hT1)+zJIB+EETnPy8<#?Z~$D;O_tGBz8hp+GBr^V-)8D{ZoXBhK5zx{RXjc?Y^ ztPGAZ9j!Hxd356HEB;^3Pu_iR;?}sv#=U%s*JFi@y|ycF@BH|^EY0fig(zn$Mz0x# zH>O|X+FD(ANooIbeYb6YnC&W3pItjQTfq13(cjKHy6*DI+6!qc{jm3aE&t<>67fGz zg?~6K|4+d8@`Kg!f3tp^bC<7e(XV~!{bPFlPjQ9=`~SV(|HwQ3S5Uz@#s}H)zok~K zI>cZ9<8bwUHl{`g1py8g5VeN?)Pj7@|Nq|q?^|E<RC~tRGzq@;AGi1ajjs9F9e<?1 z?u+u1%D%^sAMbp>zv3g)`na2C&aDn#|KZWm?w$MP<>i&nfBrD{bwH@7*7S)C4aL_F zy>!cIZhNWpF)}j2V2j|nhZhB>blaHuvS##Nb7fd<rgfr-w_ztoz0lR10~f4beJ!za zy?w<@nE%X0U31Zk@7vny_^s19cvuvTpZHZgd+<WjM8a$NqkCpk7azU3q97+QDQTL) z>E;68oAwTBsy-*u?(*+i@I}vFJuJ|zCz|bO<h+F%zbz~_l`Xg`b@a-#$}OR+(=<N( z`nmp=#M|kq{Orw&Z0*yIg^Rd~DBUtk%{ywjd*yQz(azaE%Pp+8mVJCv({u93*5K79 zS?-71t~FkI{pHk~^zYSApEU?D8ErXtQXzI`@BVo0<h!r$uW*cd@S%rwqNk!!N@d@? z?2{4Ss$N(={oVbCY4glvg)P1U8%#FLY@MPepYgVb^_l5&qg7_|JcR`rk-_cm?k{+& zP8jQNn!4iE`v|UD)8Cu>_C6Lkbgw%uzv1xm^Nb8#hF{czx2)T%@c8qUL|H3OhM9{q z_}Q7i@bCG1lJVTLO%wS=S7%KA^?ltG%U|qacYptQ$!=k5-96W0Rc44_JLk=aW0pJ0 z%#IfnTwkm$%+ys_u{ku<v?uxC%}JB^W*F>v81`;~gEq6mT#JJB_6IHs|IU+@v2#4X zHdOBjtHtAheRJ9*x8$9XOb)nrEq$WmDM{|R%2T$Tk&pX%Nk;V2f?b9m&MGcFVNja= zu`I3CXy(WFt?Yja1g0@rzKA|_{_mah58ds53Htf_e>AWEZ2n{I{a?C&KHLBQ+<Sk& z59jXAca^uf|K7g;&+Oj^{{ICJi({_)=)6|A**e=aXz!W>AB(dc;`jWJ{4&?*<<S>1 zSJyOsD#>nkc>jp=YPYv!&$|x~IF4S>`?cdlqUXnVcf$7Xnz}uPJzV0h?7sgwyQja1 zsc`-C@S$SM8K%2iu9~)3bLaZJd7C*$$tb3?sao=xE2HA)f_!V<KRTP%PZj6Zz7n~9 zv!3Uzw;q~-d|ooLzghG2zuXI3#r8RN>7=T(#icj)X;hy$&D4Cb@pt9E;)78UzyGa$ z?ox6y`ntkB?WLx#mhrkc>#0;c%($?sb;Vt!HKq;kch9{b$jffA<ZV39f-~GaG5mM_ zePD<b%(e^XGGb9LvNhN+^;G{Zr>y6#Q%;;>TFQOQ?(d!F7k*i#9&?`i`NbSoUbe?s zCeFKyk13?+u%0x^FR!w&`gHD`u}%HAoga4Iw|98=uKhvHbD84qt8dPGiM(!Er#*L{ ztD(lnCo5~&#a%mB&03hd_VK|<R<Xw-HReBzQ7C`)s4{Lr$@{l^G!%AlY)k+8@!g?s z4Ba>Sw=y?!-|P9ZSKGMr;env@_J3YDGq62hSAFE<$><*UZTt3QzOwjl>2$z5&8X*p zK|w=ZeZ%5p`59JiCB<=GlJAeIF>TxZcsl!%t^ZQv9z5vWdiJ<~pFv64uQzYbY-7$z z=3L6pla;J6MZf)0hLN}e<Am0Aa=J#6&v!O*a`GHwd>6$eeXKc{pU*>bzV+^Tw<g#c zP5-C*#-!uXKGi3cee?g`oPSjR?<M_*prlgwQM_KT{@?TZzUlh$i`He&nKS21?f=c^ z?YJX9PuGu+J2_?koH+|JXKBy;D)Rqx{XhRXbLY1HxBK~I@;m(=cwr~Nq1|Zo!kQ_W zXVt1h)A#>LO^Ix)|IuE5;QIc5r3?p_&#&wH|D*r^0r|fd<rx`3C;L8#zW+<i?(di2 znja6_85%%!vPKtE{J&4r^KIM$MKoeqzUt*@FMeSB!03G8n@#QW|NlrnlXjkg;rVmr z9(Uz4HT8G0#ExuMdA@Ld>O^q~i&ZxsBs8e|zxnp}Awy+ci%-7P-Z;M3oG;e$B+JY# zHdeggvGLi7I}y`TITcy92-hYX6#lX3&S6PjR8&97CSgwW)|!&Zj4@&lD?F>J7hb%5 zNLj#0(`iBYG>f97w!;q{H9l`(IyI3|Xp#x%{aKuR=PH&&oVKxvj(xh|+Rc5^MNfb2 zsL|bdCcxs^*~!cOn{#LOoHHy{l`9Qh$QcsYdPVGnj`R90k>CG)U}*1it2C%-vf17v zvX7}b@pUSvtkT<Sic1|Lr%6~PUY@RB&t`l7c%{XWf{ffBv#+l=DAfApd-*_ys8PV2 z;*^=Pw{7$dWFod*`EXKr&yNFXXZz>LD3^0xb8mN-;A?AqmnC}Ayzb`dWbbdsxqYWq zHa0V#&Ux{@ZC#66+S$owl7_SMcxr+(_}Jc^vfA@Ea{kooXTNP%-L^aGw@&KwN#ECr zhyT6Pu3uPC&~Wn1t-0m-_a1G&zMhfc@kv&#^nM9uBlB~q>yI3~VCU^W-}dmqi;8Tu zvnSeH)io{rJ^Re2uQNloCz%ItnYVNDQ%Sx#xt3K$9SenfUVpvssL7kG6Ma^KIW@-Y zF2k|Z3tJ5X>dqZz@!At2)hlvvAE%<z{+~W63-@U1bMefX`<nOH3(@8PrlUJ&%zqwx ztI<6m>C*%UzF%S=*y}&A|M(jJzqIDh$Kw*cZa?mQ-`5UmydC<!|9`EFtn9<`y65E| ze((SPyW-m$$$56QUHNsNXaD#)|NqYgul`+KUnd$5I<NzDeG}+{gP!m2??0Y>|BqVT z_wxGf#;oO+56()RdMo~akx0w}9`2{f2V{1i4>l?7y|uM|=DD<m&jLR2M5gs7&J)+D zTKaph!$YyNl@lGgB<D^wz5io-N5}E^C2{Rr4^EFSGCXrq)BD_k&q~`gPo)NAo9nF9 zzM`fxYwNXzrIQS$Vm_SRBP=#y0q>L-ss0BPG`#dTt?Xov=G<0y?Ru#Z$GnAS=1S?j zZuI_Mbl%vb{OnrB8IN~Mw_Z5rk<GjGYs^XakX85o%(*XqBi;Dgw$nDw`}1Y@JYIhO zLh=02&oYlYV+GDH+q~duVCZHC@$)Hdn{)zp<^KB1=(YWZ93T5OQ=w~|Ty_dAub-dT z#KV4WW!<+w%rdgK%Wrgx>wjDrJh$%iFXI@WoZTzZ!ghYEC|k#^cv1dFp<Y*9#1B3` z{(>(@boYFY<5*R|H{~x=(7TGW&xO9Jo0UeqziSYF_&f`j`)=2;2F^B{{<SZiX6hL? zKAIQQH1%4-x`dYBWy@r5$R+p*CPcy30&FhNk(^!sx^CJI@q_tE9E_73^BWxV1?HSe z_n-gpX7TI{3v0{6M~|M!JKSirJ$vcF4eid)bL3>@7wepIs6XGW!@`+cee>%&{gsA0 zzg^$WqZr{4CM$1$xSN0NgQ8e-3){-}iz`z%^c|ZVaBI15&es(t2|`y(-$pIj>gA{* z=lypJ-_lg2(*Yva%w*;G3JX%c%J$8-ajm!DIrY9LInO7uX2;~I^3nhQ36{w{S&+}T zK7Ri(^L-zAYks|4ZeeA0NdM0v{RhAA|F^4qd%cdA;X``;xAX}?k6y?Bw_0{tv+ikl z9c%s1>GhIFoLU5a{NDe+`p>=hf92{xLVM%*_y3%|ztjHbWc!=XQUxJxMo`l+kr&jz z0iCeD_v`!A$Vb-qfAa17Joo*bA9F!lo<U;<yVv>aCPW|HDWE9Mb}996``;Vqe|B0m z8F8KZsxr^ix5MC+jk}t1X>3L5>m}@k6Q`f}^k$xM#O%dO%6X?1ET}OH@8FsFps{Ic zs*#{f_w6iUV@<EEEAH9`<yzY_#jY-BH{QpXGjH3D4Gz~f=}h9w+i359&ay>BV~*0M zGpb91!_Rf|OuGHiT&GO&!Z8-ExZB%StkPPceLLDy@%!ruo62&;?rh3!Yj3x(DcIX2 z>HhdsmfB^_Wy#*#<@}E;CP#>|o~q+d&D(x{lg^io=ZzQ_PfXYt^T7H1mSVn?phfRn zHqNtK>&$hIq2k{`c7}%Y|NH-Qe?8Mz`C4Sf-nD{Ftk;}oJ{5SkH!#Ij;F+;kve8DS z=+ao_>7R90&6RmR#kJ2m&1?Gl=@;B*D;Ilxzf`KoAz7lAoONEoV0q8A4B6m?tF&G$ z(MgZrR2Mt<kx~BNgu_!gA8Q$<J>QVb^zC=;mzbHy9v)P5dt7MYci*^_ukFS3zaMJV zEVc+6Jf7+D%;-hW=5rFEznd(tSv=M#`psu+SJx%3pR3t3MMgcJ|KrVU>vNCZTF;rg zZ@cu>GgD1=nzqdUe9YnZC4Pg97Yc0ZOC26sh1gVnQb{zoIqW`v`_q-@=h?Z|UuYM& zZd|o)zVqvkH_9&E6I|CIQ*y{{!>cMqi;CPeS4AS*8mnJM?3&gX7HE3;_ADPSj&O6{ zV~KMv6~$g(s5>cilIV`>QosLxJpZtFU#QL3D?9G2RK6|VJH=>^&!y8wZilNC*FN%m zy*T^TDl7ZPyZ`SiS?TCxxc9BavswPDl~!pMa~y1*R5va4MDt^H=Gku2(ah{OK3>l| z_c@G#Cu8m>)A;RM!>jt{zRhHxa3N1JeL~PNhbaOljN+w&Swuf>x_<bEZpmgF{^YnP zmR+0L<JLd_mfMuqU?{WJbISeo>Fst(70(--Pw>>5r=2}$VB_XfAd?lXeoKp2_>?(M zi-6(<HH+p6>-NRF9B(!j)VP*=`NyS<Gifq0UT^le<z?09E!<uHYPR}Zm6iu5yw)cw zPJFJqB>2R1Cl}Eyg(=b!YY$HSQ0;tp?yKF)cf3DaT~Mo2xANl6%U%m}Yr6UPj#*Tl zW6KmgUATbP<=M+uJhtESUdZz}WhP7%4~Sa$tx@OL;zbok-*=lit}YY0VR1>%G)AE~ zxvZq7VSc9W(Z4@8KewnYY*P38zvBO6{|}S>-_*#(#<0i=trhJlzBaXQV)$W+1Fk#F z{~lJHXS@B}e|P)OhV$$;{|2Rsboq#`-<Q+R2YgH7wMyQ7Gq|bX|Ba94B8U#607pOb z6i4-#?yap0!gv<8%{vs;YJ6fd&(7EGbJA!2oz{IL-B<WhKohsOc5AP|_ETTarZSyM z-9KZ?%ozXs?;N<6HP^o35aN|T7#UF5e)8asg5-Qtfju93JpZpR-BI6j{P+2pq1)dX zb?@e3nrYz~t~brsyf{<fa-jUH+Yg^_3SL&mKH13m<))WTX$xx(r(H-+yBIG%{nRD} zsp%h2eQI&qE_d`T<Jk%WmoDpM8L5rodefO)&!-7=Z|c93dP;TrMxQ3d4#j6i&g<`U zZ%N1v5fFN0lg4kWS|^yZGW^If!M8lyQ(66Ptj)Z2;E>~?M~0cxx{RMFaeqJXZK`<T zezl$EeFram(3BGWy&~Oc{$hO=(NA+1nVh*j|Hy>c|94F%T$;P|{SqZ(k$FoMj72Kt zB(j>+l?n|S7qTTQl*o9mkD8l0Gx&7>npIObu=5`|q#9CuJ3?bEvvq(ruV%8DSu$JH z?Kc&xrzSVv*xDoB`TG0sg)Z)1jk_{0n)U5GoIHI_@3&j`5?gq7iM;q-)Oc83KrcLU zwV40>+J^MwX0QK#xfv`Y8yWTM_4&BRe{YvFG~6ud+O^5+eeUhHayK>OFTZPf_;XL5 z>ps8th`W6B!qffs|0`wWA~!ycTQANscfO3h<Nk2AusfpCQ?BhSvEggE%Vzna<#pjs z(W^}7Jk_(FHvT-p{5J5lP-^AM*eTT)pOgxlO`6GZMK_tJ<r7=~;+0Ep$DNa2{`<rE z@=5PYMKw2eamvXQu`x6`a=l;RJ~b%WM=0ds#8t;ddOmV<?B@9H_cv_9o#j)XXRhe= z?RMV1dpl3z!&9p66U7}bPEVJ)G+ly2QjFzgaaIqX=?fo21>=WH=cgZC%5YLj`!4I0 z&)>N?OCt)zZaw0uuAO2VeS6N+N{yKlW16hja-U3H@%elgkLxsNi&cxRNx5F!^|t#* z&WoK%Uv5vll5Bs(RWzB$iEGNbusv_TUf8zw_iE1KYd0=%GOWHe@9D*POQr-Q2c-)J zTzc=lu;90-jq`eW@gtct58EC1@jRdTy(pWvJ9|!aSbqJCEsobhR$Nmt-En7r_r-*L z)$KjGON}JA$MVnqeqsF{d9kS9E&iwF^?&9>vqk+btf*-Cm(VdU`uBku0=tdQY<s)u z`O$!HcYkSU3oR|<)N@&oB%S<h&aZXL_86wU&zbCD^;<?xM&a}47!HZGAMacQ_r_|z zd=zJ3SYQ7q_|KE8{tOK7@9#Z)^u($c;i0@Qtt&-X`S|!hyxDp8AGdrxqrQC=C&P~i zH=jEx1U(b_yYI4<q@1GusULOwY^GiJS@~Bg_s}W@_PHA*-mT2Iq`$Rm&w+xB#S^@w zMfQn>M?G(`Y`!&3cSrP&Lb>z4nyuGT{g()=xa+Nd-k3x4aMJrYp1bG7Qe#`+-=Ep3 z!=dB4Q2V<149<eY`t<1h-Pw;<CP?;2maSFXr1NFP^Y4F*(jV5}eQRLB5_>QD*dcGL z^F>qk3iW2+KV;!N@weT|i;m`M*NhKmWW19pIjCsC|NXGuy2~GzhyM{ZU{iE?ad@t% zBv<%yjU^njB3v^MDechU(s=(Pm1*V)r~2Gno{;F>Z$GOzZ;G0b5x!~9Y2(1Wd+f!@ z^Q?cznW;(zw%7i4)=YJpZKb*P#?*TD58lrg2erFcT2Ezm+x<SXdC{ArzZ>=Dw^a+s z6f$z2fAP}9<3t3<8L?DOMH}w3o38Kiecq(bXVuVh^ze@K-hwB35~@o?XLf(@dehHt z{IPPv%p)HZzG>-qDRF$3Om4a>9<-qFefq)5jEkzSA_byN&e@VTRHd|TtX<1?dV5Dg zxrO_~h?&g?4Om<cy!rL)#M!scb{ze<@od%pif=Od@llD}&GX|Q*Oc%vtXO8+lgu-% zvhCmp0sT2Uo_5c#>`eE!FE}pAGSTj!C6{=`$<IQS^VEMa?5Li*H=R-NP}Tye643Y^ zs4WI6tjidtII8Qkxhj>tED!5>^?QxmP3;ToW4o1;ncjw^ZTmNk^;NP{v(IfGP2QI; zdUMq#Xjj|0&Qm`Bc?nysua1FUrpuPeMh(1&`d6P(;gVJUa?52`iPb-bNj_bC+wV#+ z>&BQ(k1Tz&fd4>cdE|kq-!{ih>yG_(C%0XBx?}mP2XUr1GlVy(gdelN%J89UZ<Nz+ zs}hEFu0eL?Jy-odCAz(5eXdb$D<fm|^n+V#SU*oqAJ_cn`^@%om_9w0!J(%p^H=uR zHffeMvDz`mx()ZucdoeWx&EXAr(}t_d8xm%NuTW1Z41B6*=Ux=wv<KuQ<PiNH7kQv zTg)E3yQvW&c26<EVgL2rJD(LFeeF@lw81jE-je<9)4-sv(#UBUOVb@CIW(KU9Zmf$ zA9_bvZ0eN2YzL3;_hQY}OXl;Rdt~zAhwZjMwf<L*b}u?|apKtp(^DDsF7+9!Z76Oz zA#_`bd2z4uwD~_x{c7?%E+jg2oZZ)avu|Cw6K_>gan;|tgzpC>4D_0E4K6GU+k5|g z;)7dxcJ)7H#KpIrjlF%P@PAYCh1ZXNbe`QMFKd7JU}JL1Nv6to@8@$Y4Twy;?sjIQ za$a!ZeY5JWg8iV}DIjLXovn9m&*oSWTb{OQt5!_);#s})`?0Dhu@!HlUI*}>n$mRP z+KDtTwsju!o}bukle2%_!RWH=V__AI_mwY+&(PO?FvmGtw5r<ZoKmQvB*WUtWrm)y zQsqhhv3ebcf3Dkf_LSYxXYqYD7FRCmO^~gP%9ee(wDZTL)^b0e9M@Ey11UM78ZHqn zcfQZLpSr}%-J^4p#zOuz8UeSjY&<*l*qv5y^K(II3(wBFBsE8IVO+7nW3l6rVp(!; zi#PBup3yQtFT!M<^ny>1-$(O^sxI<~KYL-95dUJA0t<`h4?N}5pL6XvpE=t=IP(Eh zf$DC7L)&_M?km22@a*}@&mUsjfA4z8p_jlE!M?HZpiuVz<b(;vX631h9;<n`{O)$S zq!k+Vd;hk#JLk{ZQf)J>b$)l`w1xH?{1T?6>-~5bz2W794rBLt_Gir7dNvw7izz7B zkZ^d(l*VgkcfNST^!?zZShuKCiB*3+3fr|emux$hA?$sah5z97xb^Mo?xGA1TXm<1 zr?a+CF=B~qV`o>?nDo4oV@I*r^$kuO1&YtEEqT%*%&=&OFro|8xIuUUk5!_g&XT#e z95*SXT_`rV;Zd|YWWfc)XN&rkg5Ek!(q6d3du{Wq^@ePhQn#i|-2LWcnbMTiTM}-v zy{Y{m8SY)kf8~_Qp=^PAdv%HF2hvXlC9WvlIG5w|)#VAn<(Jb%Yp=!37PzuKz2NNE z<u}FFuaS=Au}M+Tw6gCHU{g@(+Qf5n#kS0(vY4Y{O&%J1BbPbPHeG5u!*Keh$a%Y> zTE4j_ofYc;on1Wro5Y<tMfJ0`ezm_{FT5-7vWlcS=RwyW(hM1IpYLS!&Ykd^>v>>A zNCBT_<qmW0_-nG#QOo>(UHJ8L^P`XNRvwQ?5ld<8EtvbaGd<bqwCQi5j^&bX`e%Rs zomic;z0dW0+1>9BIsa83o?+Q^rmQ1Fc53WOu|1{d8N!R-IxEj^Icmg`cvEHO@}tY0 z)}Gw;(y-}sM)W5g-TI9@$2Tmy!d18I^`4fO))$@6UD)!?ZL6>B^;xqPzL>g@IWSV} z1h+oh^mZZEWBNCD>Ye__!O!+&fw0(NrflZy_-m_eKXo(DOg)&88s%J_8dq^#Iq2=B zUwO(&wi#8MGOH!BdA5ggUpIYQSnQ!0o^+74s_On_alhsI^L6*12x8BiTy9*OslRIH z>}|haR{fEG#iV2**rc2sIpe$5>887xx6AY%JkS2S^;)O!eWtdfRTq}X?LE=G;K6LG zY1(t&M@5&{U(q{NcIncrfY;}feg^&0DX{aO?)N)anKQ`nck1r=bI&!G$m(>6->mv4 zV7Ou@|AthScY7<Zmrp)_y;Qp5#W!`^%_=E-ztpijPUsZQZD|b9OITqs<wI&c+Zpy6 zz2439pU>eIf6@E<^{OrBWpfX{e{-(Jf4#Nt&e_}J)n0TJoIPwED&1fiE62z8FzbA@ z=ECUcuER4O;>0w%J+i-VeHS_Hu1E6y8&RDbt}Ap|gQ^Hv%C%-VwLn<xP%Zmcmgfm^ zN1U@W9xi`XV^Y?am%GU0=F=6QVzw=9{v2ItQx>7{PHjWW(hV2N&3j7wH~5z)-2CWs zwT1Ka!y-*Kai(Lb$6Kddh->hF?NE6AR*TMVGszjh^%6oS|4r9aQmxj1*;76zPp9(W zuT}5*y3VC+x$ShqQd%za#%IY5r)T~NxpKx{hUfL|m0!2Lw^+Sn*Q=*YyW{>@eb39g z-y)jr`RD2S67L9+YsozaKSUTEZf*GFb4c6A^nBEV#?nVCFK?W){;*Ip>-E6TsdCxp zE<Tx&&HYx*?1>edz+=z!DH}MsC4Kc&cf2>dxFx{qoB8?8N?$C_e`1;`d|=O+Uo-9J zvVS@wV8v?rqQ!dSq>nEWE(%OJw3FfaXYLJ8WvA=$K6v%}lm2DfFPG(cuEom5@B3}& z&|><1&*2Ic?v9-a^E$O2%z3?JZWIs8tx3^y|JVg8`iHI$=54d(nWs~AY}={Ky++GV zm!7VRPrP$u+S~uP&ed-JXTrQF>aTO{#+<|d)>NJ-^|s%m`zfSsp4HTsoSRnPj{Tl* zKEwJ`QnX5ZTzb{A<1y7aZ~dNqGyh(me?Ky3Yx?fxH{?^aou6~g)!w2v;q*+7+{+BB zkI1k5^7*alNlo=TtY`%j^8y~Lhkg~VFV;35U2|E_MfSRFYx}GxH*B`mzn9mRdwk+N z_xBEsQ!PK=d=RZliSl!PWUrmPuO_qHL&myD>T|`0_fwu4Z=0Lwt`@sNy{U2L?(^xB z%hKk?&Nkhd{qpULqFwQF>r3{YW>7fU@Y_gL+0;m1Br7B#{HNWQd9JE09=n$3yt}s~ zRy3pWXMqEs)kD8EA?<1AEEgR2Uf@fVf4P#MIY<1O*Y-u1t9HjaxL5K1?s+YnV|?H4 z^|IWzZqk<1s}D;Zf8%s_Z}a6B0@j5>*OjdFX0LYNU!HUGU&&IN`%izR&o)cAtGqro zYTBj48|Ov+dwaZ--H4&a+3N6Qm#G4d?ME^st&A&X*T+sMn|!X)!YpRzY3GfM{W30v z>aYeA2MbdoyMtuOq23o-kFJ-B{JgiZdFBy!MW1IItgk$9ebM^uzN>NMZg1b)doAS; zPAWNQcI=JZO&QtL^<mZ}=8`TC7&ojadnmi%z~2ZjgLT?p*R9)l)N;Pu{@r)qzBb-) zd(GC0JoEWab|u%%bTo~>_2lZ~bvN}aPxkUY<TX$4+spOl+GgJft|tqGIm{Cle|5^1 zI=f+O?8MlAZ<`Oivv_t|Iq1W>dy}=hHom)Gn*HV4F+B@K?!=@2+^aikOV7x2eJj+- z+pfM*&g|&27l*o&rXQ;;KbI1{qpq)H)AP_K(cLEI(`={nUcUAIkDT1CRUZl)Wl9e9 za{QIwUL|(>@UnILCwo}Ax^8bcn%*+=_rI(AWB0d*zJGa`=fWMXS^rynliOvO84Azc zFN}LO%b)vAO{=hyjZaSA)AIK^O}y8V?|TQl47yNrQ+wg^s{M|pFTnH2&|rPTpwaBN zLoD_<+xLxp*~dSr_jAowjn1#*`=#X-Uppb_Y~HR-(XTIxFPg9ZYO{8R@P!)noJo^* z`froJasRpE%2{*Q*ClPgE!Y40z3}YS%aY75Hk{Ft{8KCYQgx&Ht6RGR^Dgk7t;^TE zXa2%K$697~$Zqu<xhD&R*R|fvoTzcA`8b>U{n|AXc?zCNiS1mndTmgcOvi><aZi%I zzxBMo&Ern(!+-Bj?>pP#n_w<8<*MOw|3~(E#h&IJXU>+2?YVe)|DJ=+b#~Ja2Qk(4 z%gWj{_1jsx{QG&YN#h-+9~spGl6Unyi(Hj#b1a$Vspz{l!`YWJZi(FemgPM;+G45s z+sCIWXMX69ob_${3)6SAWtLQ`@L%}5`l`KL?VtA6*WSsyHrSsO<e6r2ira2Uf5su( zZz<0X-OQPMVol!exA(*@T$P@AYt38p6OQV4dJ<Hwzi;0;d+)sb<HthoSl_#U_{g)E z)~(TZBsV9>|9at3cG>By%JH6~Z;RJlGHr@~St=-}X(l3hTY2;T&kwc!&$;*4&-bl= zI(z@`-Ny=}PHvMDUU7f7!L!+W{{ME^d~fIL_zl$uo1Mb1@A-YXw}89jksoY%fB*-} zA-)Eq7cILlx;`k9SFY?gEZXgS<EhWJPcvVwlV_MO)vfs@bjt1L2j8Whn!VSAji3Ft z<bT^;&r`mOI~)1ER%?5oy+nN0Z|PnCt0&lOzj5*Be~Hui*HX7euDy9YE@C67(OaOt z%djg&hQm8)y6u;_GtYDHitbrjs#ac~I{C)bh1F{mO5fhznA~@AU9#e>A_Kka+Y5G^ z=ak;MZ0sH(r^Y#B&8H;+j~o872HxRBilrNj0c>+O6uxOT;7SzVcv<ty-GjRQ*JW(` zj`Cl(ot!rL($C`OE*Jl}ZsgqdvbOKP-K~GM8_a$$I#+Y`U(E7Hxs&`?r*ewh&DVC{ z^ESFA_E2y6(~Sl9<xiIiF@Yka^Gj;gPPw#rF|OAMd4?Mo-FlN`dOD?Xy|ehMN3XA^ zzgM4DHX&$gT1@S|-3OS>#buQP-@W&E`D>l!!~gsK8E>C&{%hO!*z3RJlht3pe=N7* z#nxr-kMDFVjJ@8d|55k<nYG1izkl&C+%5ka5&rwpwT*Y~C&n>73lcy2`aXMqqVK;5 z2a$5j&R=V7A4hqUx8$+B@4Q|M?l;_i7V8!L<tN|aGs>N-^2J`K1<UW<`$EY4#=P6_ z&feX-Dc?Hgl+2;6Pm-J2|II0lNOm}X=+li|e+~P0KX1{k-ZX#a!9#yvWv;u=Y_?NO z^$p7jM|FX14X=B$R!4cfl=u8}Mf_-u>EfNgPQTu^^V$0-?E*b3>-Fs|>%?QOzg?T{ z^)&h5UY)kHk8}FB`!ys>W~^mscype22mf#99gHuvw<<6H@abFZ)T;tw%t!sdF+W)# z%w(~=t36lge0T2rLyOy{+}!5>FwmK!$Zs3#roXpYZ_az$^z46`<F@$@JGeG^A;q-9 z8wQZmV67W)u`W{X)Nrlp_VN!eCIr2nwXJc1)RF4O`L8!VlMnC;<h^5i@Vd;hD{h<Y zzw_tU&)UYwu*v>A%Tkd|I+t!mUu9yjSUl%stwVP0(QnKl%(e49uG^XXe=p9~mh)Gx zVIK1083AywTcC_Z<l-Lt7<Dd}o0CfqZdkGJy;bsAiN$7ivduZ?|32EJA(qPbUVQpn z`<wqjp7{G{*R+`}cbP3;v@9+7>6(_1_o9FHx8-#Y_7-vOZan(e`H<C)h3eb>Cr>|D zyg@PNUq`pzito23?$5NlY@;r~A$@4q!LGgAcCsAeYdjQ&8W7;Zx7#f+|J0I=r|%c; zub6N#)I98^sr`x9cO(t&SlIrxVQyIW{-EjipGH2v8e{(*-D<t}Y5wYl*7|L(N#42c zd;T0<|IzC9=2u(K%ssvJ`=d`k?ibld7$j-WJG<3-Z>8Sv%aPB%d*q(~voCz7c=^2P zoi>_>Y!7bqTsQxGKg*jmzVpZK?cFZ(Ij--%s@R@sSIcT=roOa)b8yESrFRkKIVo$M zZ*Wd%_M35dS@y<f;%9y*hDaob%dFq+mihSlPQmm<=^am8Vv227pYcpH-%~i>``ybj z^;f61Pv#G=D|{VRJ}0}R?c35cqqu)b*LR$Jon(Hm`!x5dFE@8R`xhVApl7{5PggKP z-n=)lO8;7=+Ou!<XJ@?Yj=gUlvv2+Nv+34f_zV6_FVKkG@cTeja-sW&H+_$*-(32< zq4)c-JJtt!kDgNA<S^ln(KmgE4R`h=Z%|G6U0mDZ>WC$;<?#1Z)}7mS{t4R#?fE>$ z5hiuj_7gwXhW8jLCR@r&$Jfj;Z{xkhu>SC&&#C^Ko=@NSdh?Yt|MmaA<qevl9T&W4 z=FO{XO|JhfV7{C_-KeT%_km~sc7DFiQ~a&uf98kN=|0NWc0XG;@9b;iU$-msfB)RD zHvGiCbBBH(<;s@d^paob$pYbRZL#IL>#I9;A8*>|r*ZB2oP#xu`~Tmcn^s%Q{W(Q& z=R3nc>wKoWURiy1OKfR#`PV(~4y_B<j$Wnk?j?)wpXJS0Kh62)TG4jlWy;Ozo4VMW zMVVW!hbGVXJ^O}il4)1vjjE$TeZFUl#dv!53xCfS{Qi?O?(4oczp9@bh1I|M{*;Te z8(Xb-L+V@Tg=d?deZD*6bpG1XH@BNkM0fYCmtOSkkm1S+5zjfls4Abao~gTMZr<M4 zH|DGVoyA!jY*ux)`xDom*(YwzOqrhj{%_ys+w-e`TYRiAT~el9FEv{(=XuSv_}w|r zZk$dmyuF!Gxc0q)_r8bU-~Qt0Zk8!wddL<NzP@y+U+KcuQj>+VRg`kqX6;^m^w`qB zGekwA^KbtA^t{O5@7E=hGpy&|X8oR;vQcW4(7XI&OBP+;{Ypng=Zbdg-Hp|e-^C}K zYfPQ{ReR~$!sQ=}H=V!g_n+_erte$NS$D`zcz8o^n=!+6Td%oq%U`$YPrFv~yKb-a z>h-nnb|{~m(dPeoZDN?!E3=39+0D1Dnf?FMGyjeaq7$0^c9g&A_n3G(;$G3Nw3BbH z?+V}d=HsKXY`F?)52M%Fx=LYteuN&cx>#Gj>F?5wJ7Yyo#r(_=nEUs4)Qa3{y>)v7 z?tNfgV``pv<BCM{)=8b)e|Y^)KL4H9P-DwF*<07GMVga7^WF2xzvF6qWM^1H_tk^5 zU)SCG>d1e6XWZKVZ`*g6{EL12dfn`w4mm<MuN~)I<%rS#WlHQXh*o=gFsxJRdROkw zK4;D{?}uA1uh?PuI{xOi>h~%)R92S$kM>*J>0WiSy0`bs!`tdAQ{H^J&fRx9rhD_$ zH}59twC$C7{%(d;xlEgbf(~QR1<vnX$1@gRo-P+SEzEV3Q*@Ew!5HmbPmk}ree_iF z{?FX8|J}0x%m0>Dcq6?{-l$sQ#ukrzb}zDZno74AtaE+NJpaptJC6(11jHDzRO$u$ zZ#@4{#Ga5d)#qK?%Jk}{QqkkecMCUud|z{-yyjhgl=07nDKj~4JBhsYx%%z-n?tFF zdu+GOzI*FW`^N)ojn&F-?{19`cU&{CQsOaBPMAt*tij<6j)mfl8!jub&vn?rp0oMi z*M)nIJ>ssc48MEk>!PR{KE9e*1_lKNPZ!6K+2^jQ|1J>LyS{n->Us5*-^1<h{5z}n zYj3dU$+U}+=1sfzcRr|;W-iveV7Yz1bj#xMt2cLW_U}7=%QRv+>n*PJ4L{%NTdwIp zxNXK0)g5PM<mcrCwbn8{Ol;P`(#RCIY0LQhHsbHE>*tj1Hf)T~H3^ew=DQqT?Rorl z)P~%Hl`}T^`Y7G4zdX~Xs`OiR)Aom}r@f5XuK#=e&M8uRT_W56Z+821_>P*Vo~<Pp zx8(URbKWXGGAuLQyl-~;*4Q=1YO!BFRZMw3V`tnm6K&3x-%OS-TG*M3U%GD6UO%by z{>x`#&!1d-d(HaIxkvX_%s*nd_mdB!_PL`|)sr9f#%{K#nZo@{H#xUDji+bZxou`r zZnJkXgx!)lEipI8`2CgTg)?uconkm6#BAv;Q*!S4oYG?w7XF+q|MFkQN+)iP=ziq4 zElKx=P@}|>-5;y_Yi5XF-=Uc7yh9dSFYVaHQirP&#_kh)=9hlbEmKW?RJX(Y;evBY z-?RgIFK2vjK0N91#$Ot1<~!8~M9y|FPvhqQ|Mkk_Q2u(`m6g{G%BOK(d@nA4{_cUS z<oECAU*n33jJ~@{Y*+3@jnx0kL}vVsyS*(Vl$#+S%F(n;da0B|?t(dc(;p=C{mVO` zSj5P1qLOdoZPmUfOiJh9q)&A8;+%Q&eWBvP!@LPoZh95W{=3U=cJ1D?Z*qK;Lz7<m zMqZj+UB32s-GgOyFZ)YN^w+yT_pZ=+W8u2&+}78@Op1(_FIsvNg|{v|CZVzP!nU%9 zVb@Jp-4tP1(92lPHldhN?=6!L7oXyrM?HmXdMquA&AAk>ne~0%I`iT7?6;p!89sQe zuCLo}_JSeq`=m&b+3P<09RIWKea<Hfek*|@WuHxc_ul-tU-BpR(4FE*S`XvHj{47S zPKjH}ZF20ncp?AFV@}!c6Wo8>&h~p-znPOE!K!oq>zh2ABUA0ec~`9}x_x~`DEEz6 zhfG$*8iue1;bII8YhEn2-!T95rvAEo4u%)<UkoL90;kwAIIP!EH2z)Zk@=oK@#3CS z#uCh$R(CePC^<4|a^-X7x{f|}{zm@zqzzjQO&bz-r<%WOGJJNbx<vfrf~E`F2PA~& z39mIRNxHw~V&S>j8NoXq2*k9U@A;TeE!T8cv4pwk0;lvrt=zSF_v2$su9Wt^Jj%gP zP*l}*`FlPCgLo)wny{gO(}EK24Lav9yq?O?ut+12k4@s++oZK`rp}c-*1K=THO+m| zj4vPgth{!$dD->pI_LiEH`9@+J0Gj75wrKX-TsDk+iq~qH!Is?BD9}l-LK-$jFWtO zelOO%y#M4)GqzhQ-Nv%7SMy#v-|(G(%im3Z8;c9r3LZ9h3iTY9dKK_}{+&CuwRKHb zW?xz{=W%UaUEB8c_J@C-<Yaj8clY^%qBQ${KYzoS=NK5g7(;WJH|E}55U6!+qqb<( zB5%Ek)306QXS3zuTQk>QM&{v<=I0Cz>c`K2eDi~oZ@yirz5L?)@(c`{Y}#)e{`i*5 zj)9LM_x6HyZ)>xpSg&qNT<5H*QEqRUT-;|--q(IcrDcQn8J*LLOL-a#kG<cytEfHy zWvaA%of(_db^G@(-{+M-lJ9NZ7yctbCt>b~4`)nxU#)U_I&b#2%x6tEAKsiGbZK*S zN}J7TMWf%FAG}uY<=|%yX~ygV@+KP3bX{t?Dywb#`}@ocb$?F&KiL2Ow=lzj3LB?j z^KaE|3r`d=IE0D3;Fp<OXmF%mKmI{|&BOm}3^xDoJf9$b)a_iU@P><D&t82Hm!`$w z5F36W%5ke+^`S+Jj3!(OIv89M+vynOHX&ETsiwNFLG}Kt2NB;Rm~(p^Z*RL0rMjPc zex60mnzQNCH?57~;F!Mjt=a5-|0QS5j^tu{Ise%!9$~NK+flPGZ_}L;bir=+B9Wd? zk|n&)HmSS4p3s@{K%l9;dh%1tC0k0e6(^^6bWccS|EAwP@74e8853sO*48(L&;Q4= zKJG6I!-tp4*B5;HX3TKl_xI(EkM3o)Zrl3J!<1{S(FM=jruqF6>_+BwfB!MCvzr;$ z6%@4a$L(WbsQK|p=J7}NikI&upHVUTzHUO$p$&giwPKDInHkJI|G3-m*kf)6htRVD zXSFnP|1XP{oyT}AnJt!s@!h6pm4Pf`w-YQ}ZoY1QS~lmWs@tW#3GFj(98;Og?X$&L zGuEo-ed#aDOmQYQgJR9aeJv&B#|`XzD(}gPC9aJun|=9WhUlzgx0c;3X*yZa(>*b@ zB5bqdl<Iclwj<}nHMmZHdHMDCi|_0&EXDXw--z4H%Xzm^ro<`zMu_dYr4x4@-54|@ zRP^4yYIcSn@BjbG|6~9E{eLEgIeV(5SGcYUo8YITA<SeOUSCo1heh1}_hyT#M=$!$ z&r^<GFt2j^hM&7WZ_72Dc_Zq=$D<sjcU5%zLt+9nL~ltM8We<cpIXY%=N2jQ;w!tx z&e%1D$KI!|aef*8{P5PDAHR2R-j-`P`|O2X;``k;eYj*br!lOm&-(3ZE}qSoBI_I{ zh`VyQcq&?p<Q}^B<N3=&+IoHKfA^Ii$uBykdsm!c);8D2S&LWia*7RoD0i*2_ZlnD z)@uSmZRZ=c)-<j;p)g~&e`?GQ(bUc}mL{%&O6QaRCUx!I5dG3p?OV)N-n7kJ>FL)5 zZK}VE<=?;c;PuOwlFK$5GAzgwndR1+JLS?zyR&nGAHDU<w>g$_hn?ZfvdszmjWh#N zgf6SQGc;_wdb0N2pHtxu)4vyQ<o0^LlfS56&#mJ3v1$FjZsIep8f(a_1WMhq{FGqB z@w;%QVsTQ<--iP3?(XljWg_Pto{@9*b!2VMo8nD(f6wXr9CLS5@uMwfiU*c&ZEIvp zx7*OQ<WFmR!`-J1uTy{h_GMIm|4uqbF=Er=9cy+Qhuck<Vwt)2xtHUrnYu@JO2j_+ z@<i4zhAGo%pTlL7#QBGAzO#A1(0&8o&x@0lW$f$u9x`usipgU1tXQ)k(g9;o=iP<E zh^jc*o368a-J;EB#LQu4@bka-@bB&I3=QAk-%ENWayRsD%ZZH_9VXs>^YG*Id5=E) z@a)J6x>F&i*nIDbME@I!{nfwue2tq8=k1fr-)hK}DAGGqc*mrfvY+oQ;7``671<zp z=bX#?yv&{3`d@AOH)r;;V^1C_ZIF=Yk*&C~VpacB?WF>%c!koKx3sY}Pbr&y@Phz* zdwbb$BO{4jC+5V2?Yh4-asKI9%e$^zPrVeAW^UyAY;%la_C1pf+2C}m*-2L4xSk}R zStfiYCetH0bcOc!$gLlGa;)R$GAw4aFrJ_neD8Gi3*Ovo<rnM^Jp5?L@Zjd=^u$@| zI_#g<Og&I{H`m+jzmD6gbxm%;rYq(Y{a&-qaCMH^s#RHM(ysZPU!@jwXX@U1$0@U= zCEmW=cP#BX<C0wSR)K|QGOgquCs{c^WqEOHo3GH>lQlbUZpo2|d;7oWe4q5byAPSu zd-$HRFWzjt=l7Yk3&$T9hisN&>pQx@Bw<d_*0hG@AH6y+X+F9hDtvDLb?F2H35Gt| zO}r&*qIduKD16a>sgmxlm9HoChDJGBrZwr_PEdS(%7TAB>+}akx{{lZC-kVN`hBY} ze!E9tpTzcqhhN2P;CgmXICHki@9q!gb2qH0(e$ugZ7?@t+4-M8HSg`O?=R1fV`k7h z=Pu!^YwZzg`ry=@qL~Zp3m6zGem-nJ@rkLq@$XKZ)4#8=sJ+oR;i&#bO^>rJTUNB; zcGyi;{f3h%T^r*S{Fh7YoMjnn9$;nlV`nr&dS&0XtYllg<#JOPPj;`&jOsc5ZK?4- z3-{3L6B5s~d>2jZ;rlw@D>|Kd!#j7inC>OZ+6095&MUR)TGZgU<Y;-pt+M#vb<&qV zu9uF9=`kq%&M-&0nEU>eRV%l)<<*|u%+~WaX0@1`riQs$=;gMzpKbU**E@@EI#{dU zZQ*yX@N(4It^HijvuCV5Si0?KhU~4UTXMT^1>RhKSx`+p&#|nm>*7yIh6Iyc2TF`M z@2`F(nWmRuF?;KUy!}nx4yUg5xy={v6RR;ea`2!q!-2_*)hj-JQf4sQ@l<m{49EU+ z%>Lqct$R+3+!07%aOW1yJ|Vc<-XP7?oxx!>Tkh;vhAz7_gY5!17}(ZUx3Q$J*du)9 z%8XwLp07`pRv6`7=Xtp8&B;ygm2cm>+%Mm)YdQJ8K36i2l=*Y@%bcrb*3OUXQO}qq z<#xMxvQxWd&X%^Kwzk)5Q}jQ)WSP9N^u+SZoVT{MMqW32^Dkt-=)HF)rM)L_T+{47 zcRui{Swu?78u#aOn!P3G6ltb%?BJT{d}_;Q=Ow%2^F%9h_rHBo?WADS-_6!4C$z5g zTyyih7t9&5uTF;EX6c>xvZRaqyWI{8`@=U+TF=?DRdvRD|MLc=_0s3v7EbYGwkT0G zn^S00|4(U8_M4A)Ic>MicAUYCrT?{I@`j1t^Lu+kE-%Xs3>94_JbmV>Wf?KkvW(`j zc&%KOy~UB$bdxtP^RH&6z59f9lnwhjREih(a$bD2%rqlZI)W!gBjt{J(^gTfW^H?q zqoG^6IgHzu^<^!K4PKD%XHmNP(Z0eZwbvd_`4YW;ip=Krp3N6l@65dIus3XFMdW3N zt-4v|`AY;c`f~3-?+w0SzWm&F5gpgN-EzyOTvAKf9KH16+U78+D9tMmt3zL0x1H@% zP?u=@RD5~5MPcpk`+KXqKNm-H8Oik<&h)vU<zBlcE2MGV-L{|lEc`q|Yk4i$mu%sg zfA9l?`#U?^zYmHtrpTUtcu~-6`6unvwlk|g8#5mMrhL)pdf<VJ#oe1+)@xjpzU7lW zEp@`7;1XW}`O6*}ulwdnduu&w{ace1Bc1E2!+52X+2ov@ChtMX9Umo+xNIqsXZs{| zhP!#G_{KTBCT*<CIxk7Bon61MoBcD_W1&N-#il+B_DL^3SYtUWugUh(s?w**+OhL? zPchxR+d8rT&5e-K*2%`%&UU}Q1o!CYn9VKbI~n`_hfVvL;*@>UYbH7toL)3hl3n~; z@wBHC_BnS6Jjkm)C;3C>Xl#qnmXN?ZDV9sVJk5??{d!0F8SX=8xto`H{W8qH*QQhc zmc^0r!K0*>%fi}R-*3JSulV~*^xmG0b2Z$ar|*!kY)d!obz01zwf*nMhr(NOMbC9V zym*J{kSu7~N-)RMEz@7wHz%&q>RBEfGspVX-Heu(SELT?T6xiI-_warMO)mDvF<6$ znfctpqM~V&xa^nX?yq)9_b7TaWovlrmv$T9G?IAj@6aLf=YrKL<LsperY=7FQEb)G znCxx856-iAcD*5*pT+ApYhH<&s`!Pzdl?c7_Bt=}<?y=d+q^4}$u(kYwqD<Nj?C2u zj$P$Ex6JrVjOLjNE4R0|%eP*PG{5Drl~+sr!|ojtswP*s=ghIZ_2_o+oO!p8etnVC za`H-Dz17TxdCM}Q;y*29;@y-xdx5CJ4xd+d)*gO!nx8Mdbces|&BIsbF3-FD;m?_? z9#Y9)IlmofV`ZPaae@0paa)nUa(i0Ce0x`I`o1PhDx~huEVH0HGmD*s?;EdpB<(PB zh3%n)@1ak)N~PcLyeM_YQnjgbgZ^*58}B049m?CAIeTexs?NK!8O?6L9m2Y=O+Cxd zaE^!TImfcQd{c}J)|th6w3=C%PrSF+sAp^WLlg1aDh-Cy0;X?oUhr{|h+1;C`Mtf> z?ZL}`<%URq(I`?>=n}dVc*l6Av&HW7tuAp<z0>z-1Uxf4pt{*+%A&%9ikAGhRGm&- zc<S866Peh5IsJ3)UODHJ@mbDWuN{=j&P~|T#r1ZTYxM7}&vjU0mQUtfHuZXz#nId6 zbI$%;ZvR))?(a+g5AXKYhR5{i8I=B#@?G83=RYk~!#n!Z^{mx*4?8P7eb{fGXc+Ko z0#bvcMV2A;0%viA=j=s?3$}1d?)Oj+idvjG=R=UGv+3LgVR5Z<T}88Vg{;I6l=gTO zJ=C0P%frtXutUQ%x%v?QUiLGbX^lra)=h0{oi3U@$<az~<%3I?9x-SflS#di>Miuq zY+9kgz8tIcnV;|dKk<3a0^#DwF9zE~7pO}uJ1FQ{yF}aEAcobf!;I~MRnJbHO%rNw z{xEpUFjZuO*^%HY=g*%j_;xRKue-WL@0x=Cyw?+IpWa!p?)8LBdwbc3IW_O>=0Esy zB<RlhbLS0rZQz;ru|j6kp3Rx8Yej0NSFJUjbxb>U^??QfCzrAb8_l$fC7&+KJ0KIh z^v(Bxvu_O3H%Gqc?^*JG`|ra1T#59s2`9Cc%)J(0U01&6(&zQluGAPbR8KS#o4TUc z(D4J;oW`A&{KuG;PaHU4AolCz^7Rcr|Gb*Ub~U|n`ht@CU-mAYf5c@$mtn)tDW(=I z$p$lJ&-)altkZF3Uf6Fw!%61olUk)e@2+p;{dk9G+LrHZ206RSI6X41Mzt61`B>2t zzCMnT;Z>E`u{|0_C)PNu-*U5XqG!rFY2N9QT<TIYzk5xw{XN&|S>WBfhQ&5h=c;GD zR}!|6xUo(y=)@Cin=YPrs{?nkYJS$xc&;s)vsz!+`>11W=9LtiV^>N;CH?gb=HAHp z_3~u(p6YaK&b`&Y+1}sZ&#xM=__JY_I>U-BeA_%zB>DQ*c+3&p7Sp)<_sJD+COvTA zvr3d(?U7U-@+!M$W`61u*^<Q<%+|@>(k=Px?PI_=@#iibNs)}$dcp6VipBa1iY^>3 zFyJVSx@%oJdwsRv`JJD`lKy>bzFC%0p#LkzX~PP&**kxkD^|`h^7869rX6}b%I&18 zinkZ1mHemKWjhvDPt=)Xe)UwZG2cXuA4ca6?wO@8?zlC)z(MoBQ@<)(r0&92uCLuY zd$_kgIFQ5fdF#RN-BWhm*p?d*UH|u&am}}tu`K)R|66ISm*&lQE|WIN*>Q2vFER1S zn&-}~X|}VnKDsm8x}vbKaboeK^vzl~WR{9VEq%7)h1XGq<bn&9{Em!k*KWT1!&UO} zi{3X%H8%4W&D!OlVw|wg?6+F#Gg~K%<m8w8>=<reF}<ah*+1>dnO_Zxe@v@S+4yi= znsua5{AD={cdmJ8wza>+cbS5N!l6I!c9xbD%5_IO*f)HfJ*U&)`KK6%&xfv=FrL_1 ztNvs0mU9Ou?%`$BI;gs%+TZx?)Q#4gIJwVNntfN)x|7fRa`P!h3Gpj4dX8JzZsoiC z@}%d2==8|GxX8AmJxb>%TC>NV;4#|%{=udfi#1}H7HJ%Q-+CfIMAG8(-S9sX8~04u zSFC#~j^8!$dpA#XzkjY!<F$1m5%FfFqTb3=mu`1|zW3l6*2?3LJvAzKN%R&xv|^h( zf8L`nSN8dzbAK+;tLOCdP>C5QW6atT4b>N_fd}I*I<L3qaJ*H!^<~RD$AwZDbDSmZ zCa<<TeLM3_p={=-Wt{VK*XOz~3=X@{ta@eVnTzjIrYU<@Ki&1d;9RqU*ZMb$>k9;` zI?9?oR`Vaf7qZ}AP)h04xb55D-~W3!GT`OeO*~#(6=$pNU@1>NSD?B0y-t@Qn_gx2 zo)Z&OBNt35lbyBSuwG7MqipIWW@Y8Sq2-U~YXuvhQ(VFknSXbMfbZ2~4V6y|=cctL z`RC}{sLAeLqVrkd%+=D8f6M-s+L?>Dcv{)@#2kBk_O<`V$@29~3_spn)t=LrbF8bm zx%l^ACG7(YSGJ0G&Q5xAWvaiQzw+KftD`xuyz+!ZYu9f5dp>rPnP)rm+QYR*w_131 zrO#|RGi!~3cgxcn|FWyECP+TB36;I?wybrbby$~MwCRc(&fr+~UDaAz$0WFOgp&VA z#9Y>oeciJ1Fw^Vf63lP!@s?g*kQa5}ef>Ij>un~>b~jG3I%mnvGso?j!JU?Bg(W<x zehD>s(&t4^ewL}syuUkg+SyVc!((eQ+SlEB;JUH4srrr7;no&q^#v<uA2?U}{he*p zcO8z23w4UW{0{S3qtlgee(9MBJB{`(I-w|QyGx@eW#;lD=^80D;m)%^@ac8eY5caf zvT6!qXV`YQYL~qWTl*y`-`wMsR&&`tn%8PJ-`i4}5aO$+S72CXd-k|;kGuH8&#lQR zz4~rDX2c}e^zy8}Ro>sgcYboB!?PKDhYve{sczn&w)BnV!Di54hR4~i$Ru9#cyW>J z`kL6;L0nUfmrcINv0OdBuqrFmUtL^0W6mkHW=^-hVlnXor<QG5e;xT#<J?{qupj%d zE4Jjl#r-`7FDC`P`F_BX`T54Qo$FRP?0r1P`P{l|#?nhKR=rwhv~X(B{x`R;d2z;W z)z&HcFVP%(b-khAcG=~tKki>+aYmBA?|4Ox;JyQr&zfZCUCWy#wzWF#)-E=Q;}@nX z87L}N@T@9nla29laeXOfynI2m;mk*WXKt08zpt`)^7ecNhFcn|OL(G{CUZCL`c@^* zd#ujUY-Yl<XbZJIW4-NtUiP=|B|MzNw0DxKtk#q!w>i#UnilhA=P*0DbZxsXykXnf z+IwuWMZW*%Y^=~tVDdRqdC!D*N>|D20LHVD5;YAcugyF@iFX={k<$yYrs5@vj_cVk zTrs`1jjQ`ZrPs@MXP^Iem~&XoVxm(=Lb{FW4Z}u73FczcyFJAj=G(L;Mr~j9((u8F zAm84p2d){J>-@>LHj=!yZ1*SbgA*;IcAiPOaC)Y1`a<nqL#dflG^)Q<yT&!NZ{iV~ zQ#A49hWj@9O=b>(VlTc{ow!@blD^RA)q@Y5ZSB`I*QbY8{3}!L*(fO?{C;;(ZpLJ@ znLUQ3W&1*POK!J)O^dxc!(#8mlTVnE*V`I(etog{qNSeRxx3}dGFGwqzP`TBiqk|Y zBYi^41c`5L3=NAHJAbL(yCF`AeeMHCKC49Ih-2s4%fz*Gwye6T^HR}<m+iw>|N1Wf zf3Np{cy@U{1B2S);uqKS=17)g7#>=}@_qi!BMZ_OUuga(uy@mqivOR_i8HLuU|v%q z^S$3}p<A}u+=qYOh-}?0f9%Bug$EtE*MbD))lyc>eLdAyV(sG@cRougtg{Wb|Bz%A zlU=2kw$E+dtk4}6n<xG}Z&%%`*7>RWKie$_N!#uG3=I=BPAR?MxRLX456iW`37=>2 zX!dwU{oTrSMz?0`rHr&|yCq`hJU(-^Mr-M#MKifM8ZVq%y;92L)U9bR*KqO0-QKpb zcCMM?gp4h1SKWG)BBeH7v)K~%xFffAPxJdT6R!ns=wMFVm^=643zxi7!R^}$jf*cg z79I#O-0)m~GPhg{Z}G817QY`X-2UF+TRFppPa1xjEd6_TZEee{IlY&2)=M6%FE7H1 z4{l|TY1*x@Xkp&m#YX!i63ym1SQdsYPTF5wAh<2@!GoE?{g=7EK1{sx{1)@BeNvCE z2_LD;E9RTI`+M?w{)cnkhHam5cFo-UTWn1qA8beuYOB<;U>8=Z`Nr9<qaCp0OwK&< z7hkJ2V%h9YCoP+6+<D8E-^<is-Q0WEj;9~K;K_8N|MQPOOp7Pho;UMNZFO>fea292 z-L)Ds$>cX%+|@2~E}OjZ_c@h}sXpq$Ccey%qsyg4g{3*USG*B@VLfr*!-5W-^G+XH z9X>3Obi^3-%HCMjdxPuvr&32>=_r}K)xRar#jNi7yt&+>GWmAIo~p0Od#e6Q-rK*m zezuQZg3WusmjU4!lX$qNGgW40#(_5O2i|F(RC@j53)dBQa{5;7(CIPUShszpVe!P@ zpEnE7*;n8F@`&4{(%Z)_U$n|BKIZ&wlLprpwrNh`(^S(opJ(;T6!+S7`i!r4Zp`{8 z2@@CJtlsB#?1sy$;@D7$-g6(GolR$GFkfHSwQ}|HyxCUo;#N=i_%x;^UVN|6-+zuL zW`t~xyioE&sJxf^Hq%lQ8DR#a-(8c1X6(Fm?q*3>=VJA3t9q-%cm#Ud3zMSQTfZ&K zJe<B*IX5s{_R55<7mFopBv@R_C3v429XK>2!uV~)^fNo6GII~?;WgGtnXuWWf6BX- zNBjCS<8Cuv(0;4ErL_6lj+}XY-<>)7e0J+7GWSR;pUcf&aigzeVQ3%g#Z>|K^=EL1 zWS?ueWw=)DvgWeOo&o7$t9)<W%Pe>-`t^H3LAYzie^Kj|XO;=~obzX7NYB5YU?jP4 z<y^aliw)mYnF9G4<|yjt@RmfMcl!IK<d@K@(CnKJ+8Nz{iZfL{{Nh-(H(>So#svoh z!c8TZZyn1E<`kUAd#p0Z=$K+{d;c1zsXuwD`c|#FSX}0xX6fZ#{{HLlj5IUvJ6fV| zK0EKTKQ`k6+qQXU3ku(Tb-kBdl5~3hvCD$9B3rq?*UgBHaZ!7o)76>1)@)`U^X7%? zvV3Zf)q>8WF?eU;Hv2~%Blpvgy^GoxEAO_G`ocaT((OvwAyLqrzToLitHKT69-FZt zV)ZMlEz&>V|Np!H<F8=tS0%sR>H5XaKRNlb@a^gwSDRmLbDg)_?t)wEE&1dq3HN-{ zC>7Hv$(AYKH-CF|!8-Cs&GjS^_u~s!Y4yx0ID7N=b_?su_Laiki2(^`E_)}hPg?Bz z;E9jgV~2&(JZv-i+!xMYvGjM<^17|kh4m&^RQosd)$_F|97{1fdh;fy-~HQBFE4-3 zH!MA<y>|8v1v9H_3$&TvM}IiU5gNPLUgpMMU%d-e8>JQtN(ry;Nj<*wbH~-QA9N*_ zI=p<b&2@eM9n04?g&RUIpRv3*C-L0DZ|0japI1NqwLU{u^Xjn-^X-4189rEABGO~5 zbLs9@v*IdIHnz2ab?qFF*IW)u@SMFhbbf>Gy2HV1CoWrg;Yz56ea0&*tGZ(?QZ=`q z+gQDGo#vQQ`18`XvYc7lTsxf4^7@K&&h9%d(R+@mwA5;KQ*hRn#)pCC3A4MOedWB% zEq8o|gi5&7)XkU07Yq8`kNjQy=^t;}=FAGV1OX<+o{t6dd<uN-?l3EDJ$T^e{BFTn z%Q(;94LhRz{%?nQv*NW0{B6!MGB>JHUcM21z|?rGqL}U8woW?+{@Tq4Lw@w-MQ50& zOGogso0a9>E)s1~o0^rg<n+8ViyLCItrnhGbtvOa)Z)2wAIzQod~$d3mD1KMtK$2! z7Zrv4*fqE4mKba;z{*3`6*lu&4q7ZVS+;K8-lC-eb`soaNt{zfG-4NJR2Uq&DExZC zceZAM97Tbk3u}-{BIw#<-3T53o$ENJpI5v3m1li?Jr~1|_5a`3Kb-vk^L>Vf&zC1V zsAsLxoYJ)=>-IHOw<hM#*A)U>Ed@kQriNL#-pmWRlOOv1+x6?2(Tl7%T(b2D{gV4+ z`>Hg>!zOb60imW*?t-EY84IVSxor&$D9wpIvTPoo+2Im1=h)voyO<`dEtn^$ZTce8 zGq?6+%wH>~l4C6=szc8j%ss=zyFD|s=TtVcn$q5*^Jg|SWyOSb7oS;WrO|(WRaW1@ zg8Ls**%%luyG}gJd)!mx5UcnEKb0P5HbJ?=JM9-+UTX@w<(DqoI^)6ARgpIJ=UnGF zXMT&m>9b^C8s8GFcWR={C0<W;47^xQT?%SpXRqavWnOgs^zPiln?rjog^xI_?KBJc zFf(-SiXF-}bv^E`1qaves(5DH(XmvKheypo;E}6Va?`7d#UihExjud~Gb}f#Xaa{` zp0w<e3*xos{!GaY?LKv}^!$1M!e=g8`g+F#a_6pi_4$L1f!J-<SKBxjEtHaZ%so4G zj?b|buU5>NfA9A1S>3n83fUiRK5gmzZpDkeaq_n6NzqR%TRKh`X`8&<=KIVz*@i=z z=^~rv+QubslNa-(t<zCFzv{ys*`9vqX%?YU_vfVEQ=9a)S9*4)DR<9-&6kDuRHu8N z)bsNXxE}a$Z|15S-!_KM*p>4u#fESG)Ju)J5!-d6mLB??;2E${yGcL$#rG-+zJ7)q z-zsA|PIM`)vOWk}vORZ4@2l&c+3N%PZzMg-s`op8uCOjo^V;K^EL)2&te#nW^0=73 z(#rIl!<AeIovSCVIdN#w_V{lTye~=~{kt!tqdVbhwV-)-BTMrQwHrI8#s70nPI%<q z&UmXfEJ5JR<$%-`t|?86LphIb@3!2`<XU&xyWj8I{5#y|TwherPPLTU9$>&L)U}y& zikq5I%DKYxn}q%zWHfSLX`HaozTEuFrKjQ7zwiAb?8I{F#e(<+8gF0w8AQM4VaUDQ zvMVZe%je^BZ6DtG{k&}98_joa$J3PqkLQ0)?Xu2W@I~$PgC`XYZ(Sa~&yAcS!Sm*j z?fa<*72hslK5C|MY~i^`b<^`w$39%BbxvcQF=HpM#E!n)rF*h=oKanJMlm*8iMiM3 z_Qs3H*j;izD6@E*B+a%ucrYPhk6K%hL0sqk7b+8k*8VQLb|$vsh4;Pm#m#Kav8F3( z&+ZHhxYcs+ZbPF-)Mdl_d=pN7sMbq;b1LZiw7T3y$}i?OrJgdmrq_E*@c-oEzB^wH z?ImO$d^jo0aNyy`;5j>QW!zRP5)(NXo!tE3TmGr6i3iU6n)^@ww!(?SK+##D!LZrw z``zyrORVdrr8}Nad^%~StlOIP*AF^|=XRf3YkJ;Yc~7a7`*Zd8fuW%rzFxEYd7f>m zw^2xF?<sp}Ej!~|>ite-YU}12Yfcmo+gV@ngN1z^+uk?d6?Z5cpHsk!ZAFYzgn3b| z_9Txzg<saK(YR17qTtZ9J0fT?@2ypQ6H}J)+9(HcNE)TNu5bUh@a{ehu9^>zSQ#FC zc)<`ES5hY1y{dZo{TS8eoi~20cU$WJT~eb$$yspGUiW|~<?po@LZz=Pl~h_9u~jQ= zWlG<^WL=TJ%(FT9rgGfw6j{G?{`Lp|uHQ6I*5NqiF>~>C`3Emv7Bftnc2~Ok>W$1I z72#8+Tg)22&6sK{!_y`qXUm$9S@Q2*iQ)I~o5z<Ox0g}B;9+Uxul)A=L{4jYR`Gy+ z*DDtX>^>j0dgsiO5g`w@G8LHpzMds~+NxxUi}qT5)g!`x?|DBqUG6;n-`wsAn);{h z`1<-78QR<3PsAMS-pKcBLB479VS$~;Ze1#Mu217zU$SB=W4Q?1xd|(_sjqtYFx`H8 z<s0=gJSDHa?R-wGIcyO9?7*UcMf+-;ncmH8-<xY7b|Wz8*@@rVjw~vPRoGF_&nb3n zCb!&fQG<q^<rVASD87#TXsoC*$@)WvVD4mxXV<j$9%MM~Zr1$o&rkLhv5}J>@H|g{ zKEp5edtX><5Dzn}=#KY+OZtoXraQDVIV<w)5Dq?b+EL)Gv<%P1^4PFVYj|>|w9h;G z)qisk*H&TQxqizQiah@EMy52>)iLyi!W#Cx3nudfFS#sC%1vUso8g{ct{T$AZg@aP z|3dls%Lx??4=;RkJfFg+C--fKa2R+Ual%V$S^cfTUNJ9uZm{dy|Np=FyW0LuI^lc& zo6mZ)>h4|3=VizDeE(7{<ivLJ6NllJR5rFYxds8Jj+4#}s?kn=7*7Z#C?4eD?rdbA zr>u5>h4bKnT|PY*g!kWnT==`%fA{TIM#hiKJJgi3%de({roP>5_kCV**7bF#(o$1W zT-I#e#~o|!IREUiicIGT^KAd~Oi!Oa<LnvdH5#Hj_-lI%-^})V|Kwz{%*~U&bCyWR z&18R2P{E;@%A9&FjAvtXWjXho{IimaB!ApKICDaWb(+&<dkYs4)fqR7bfdI84%EH7 z5VG<>Ohv59UuSz?>yE`7cb;B*o6)qRD|6bt^RrI<%@a~u>T>IBK|zZ8jm)-A-EQO4 z%M-L_DD3Lo-gZ8|=dwtlkg{)XN6DnH)LmtE9Jkk~Id46oBEWf_O_--GZPSEfnp5`H zf8ONqu*hudDp|4QRMD=rrBl<TTXwWto=%LjN;r4P_m9tut^XCW65p<w^~NPgp)1$( z#5;z&amVF13!HtCHX}KrUikDQ?ZY1zJW;%?cIUcZScJ-7r%8IurCCdxPxiLyiE>?M z&0MhNlX*Z@YfbB+*JcOW6K5AyT-A-5wJZPKYYz3NyZ44(yZv*~bc>h|i9O1j{+3-j zYp{X4W@68twxeI)8yKkD9+Irc5x==uV(+}2&mXBY3QVlGTeIiHmT#;#uNghOTX0PA z&S%5Z7woOr81{T#`h7y_nL|GgK4hF%`%iM7{pOz+!>2Dh#pv^+`o^=`TitE%y_fV{ zeEGGoAVchDTQf6HTUw2YO-0MW#>%;=l1o-xN-z6gb3^9pPQ(9qbi5OcjL$b*tVr@& zx^s(q=&t^mCd&`Kj1W0dJpEsw{_K@on;w|W_2Qa;>cZP^1{=5y@BS0myDw6q^D#$H zV25>~ELWjA2kffr4lxJ0lB7zhu&9-XHnaSa-Ms3@i;Kw}<@eYaTw)$P)qd>w|HWbc z4?maBe|YEGi*w6`cX-|Tdyk=CZg#*o{l8cIA3k|9@#ek+fjeuG_}FSa6t9P!i7DMU z`KG?U?6Z9yfxp~dtqoVIp8563*Xr7o%xAV8O_J}I{A~Jvy2IY``l1z6HZ7gfvFOP4 zUr+Wl3fvX_P#tsV-)WW|QqONkIli;|6VK6S;&)-YpyJ#$%}V90^G-*JbYDBSIcn_= zBgHe<=KPq}Q}g4`y6Z2^V}<T+Pdrzv<u*s9!&q2Qs8mRP<${J&zXdCn$lU6VVr|Oz zsy@H-(vC8tI3~Y#$Guafj7$D%FZ@&^;`$<D{m+C8&f8zVQZ|2+c+*pP1<Umr-E0q- zl%`$yb|)k<EOE)@mG(Z8g&yL&vrm_Dq`5va*~5?;C$eu{ZRC`Hvov`Ns^^Qic5c#X z&SIPTLN$4V>Gk!?)!s_4KC+VIV6E2C1@<4#U&!3wzeq!?pYQoTS7Wt34fC(va`)qu zRNneMW>%Sk^2_;*+V<t)zrsHJ{mL}w+Od9Xi_e0-filXQ7d}7k-hXj(@`A^c-7PA= zu*|RjWXSN~=;?F|Thmp)E}y)?{UdX2P01_~rpQ-H_t`3HKC!s>pE32ZmQ@Mc@%70Q zfxr7cK3n#3w$P)vUh5qX>~86F?Xa((EPr6a?Gv+Wrv1M4a@qZDa$goX#0gK@ynBP- zGQ9<geM%*3oa+B4bR4|k()#VU?2?H)#ez=F?d|L+a~3X1Ivyf<vZ*-UOXF<Nm$glW z*WM;1i0WI<)%$hVE^g13RkPF6?LuDucp-SN_PWo7`*qJX+qN0&gf!M9$)yE#$v%%~ zdfjr}bn$^&<3u}4{woQOJrw#@*{rna`<oDH$d<;Qwd%^h#ARMj)$Mv_2ds~(xH(H_ zQ(WQu>C=C#;X5_6_13A^{-?Bkex)bWt4*+2`bvZC^$pg3j~{z>Y^V{r?08attuM!t zt62uzT6)KJOgx-x+hcsBY~sq>FCQjk1jX_7$^VQwv-%>3(~J#)ysT?OmYT>;adQqh z<&pXHu=n8!8OE~dj&(b~3I8c5$WUwf7h4d=EAUw5XhMSM-2T3cTQ%+VWVRWWNjzM= z_2hb1pZVvRN?+ON8*E)^vbpA2?o1`7&7oH#GMzkkzK)mpJd0_mR^W~6u7N+UKRmKg z$2%idY5S`iyVgt#l&I)_*PqpxKGS*C@*o|z6}JO?V}wfH81K0Jk}2lrZ_f>@v{)8A zn6)!ZH72ep>DFt_BZYT5g1$Nju@pR4V)@+tu)W>=!JSun1#K5EYu>AUZ_99?d%FI| zS3ipx4qUyedd%#p=SrcV9j<~e)msi9R<^17!@=$>Y<J!zwDZx24+6Ej1teSp7ynXO z+qTotr{&19`lWN_cA0(IQ(l=`bn2~AeB6|Mx13jsZh4=+<$A0}=+`+3XLR<QxREvg z%Pza451#yxXg5pEy&$h}?u=7}a;RkoJLgs&Sc$^Xl)?DKQN4^SdFqQf0!)|M?A!u3 zaLr8X5ZZie#a2$kr<YdlJ${e<|Bs8xGWJGtUmhmBIK1;l4wGuEg~aBC^{-o%>^&kx z&mWNZp15M7kAgCz=31vZsp>$<4X0MG4|(dS-_3OS<&}Nwb1F(jAMFYb>-@`eXzKRD zKW;Z?RWFSf^n8DFQjo(94z^yeTAeS?rms3uV&$B9xV6&PvGTfjLh%)Cp%5pZNcE!& zzoy8@$tGsls)<jZ9w*>&K22lmw|S1D6>b7oj+<q@y|q_1;ojAQtc7RKSge?%WXXTe zTuyww+5FTOw@%D|e3&`qTJyaf6_@*FJKQ*5aBjhAFNt+0dIQs4m#(ruYdXcuOsgXE z$|~)vmi3CCHn}9S&hOgv<<+Sk#-&9oEuKkvuYPo{;(=-Y)YC~vtHiUpTDdY^k4@sZ zduH4I4(Fmy71Me5JlsN;baGuXpW>9MES$DkvS!v~foC%}rAgO$*iP@4Nny%NYkAn# zEHqK}yGQ1f_x?Gov%c${D=bVDxvQ_QZzwr?mDVa9g|$JuS8k2H8vdS_Z^Er?v)NDM zUX)&VtF-yIh}n@}3lB$#ifW`b<z2s#T2at)Sb4UQ<?M#SxTQ`7eIKU=R=7tx-PDoh zd%Ae>ly$4tb0`X^b5_Yto>g)|{?U_-o`x27l|9YOpLt%Tbov)Y{IpY-voUd0FY7us zM{3PkR-V>A$sPP(eK+$}?d3bC?^6+EIJ<J`eT_bWo9t6NRCdfw&{{k3wqtyxm|LXf zj4L{KE!W+hz0Sya&sznlYs?&Md-c9(c_saRV9qU9C{w*OUbN+hR_HIzDm|CbOG{2P z3wiRowyZDY-4b{8pWc+pe~q{9Y)!BepEkR5wrq^2V(m^b#n$srLrjyi>;pBuI2#h5 zY58@k1zUehwn$`4ImY00>_s%|<H?iVE0WmvKEBAYRC{9aLZ7@%vpc4nx9`?onmxJT z_@71bH@r$_+&<G>ROO`5Cu}eH{wse$MZzJ4_V)G{B|i4wCmd2ZTsO}<?^I=~S&3EO zUfI)|q*$_b1E%FQF7`TF_~Q!SQXfg1199HVXCHjHiDik%iAN%rR`nXk$?~s`-8y%D z(wY;W{sydgbS^==(135|4S}y3PBP0qjLjXV?>jU7+NttaUYhe~pMH9zJ)~H3PRW6; zH&KE0!V$B%8?QY3`#O%j(_6Viso>m&&24rsz8lER<}8bQa)NvJh8120`)`E!I&D^Q zoV85A%vATh_n9|~DkmM;7sZm!q#Hf+mcW_iJ6#HUt~~oC&%<8v`|WlH22Y)dsj>4< zDL%e_Z{FscXI8)PUc0BuTHnk5T2E?=-}?T;&X?Qwe|=(jukN`l!-2)>{TJWQtX-DL zKk@p<#JJ{W1*eQAzc*7hL?_L0{vD$sxQ9Pp-P|wfh-cTD?6CUonrHIAA}9U4b+=H2 zJ+*U({EDfowlIG(RSVu4RLsw<zv1YE&$k{~wDl;xw>8|h)$)Z@!)eEGnW&lX3l{#_ zdUhv+_@>CoYbUns+vX9O8@l`@tI+550y2RLZ;mZ>d6VVJ{qTOc)YhoG?+&zF*&5_# z)b;0Y!ne)mjz(lgW@ooNf2OvrP^9wU-tG6Q#Q&fF|7ZTQ&C3pKt6VF2>eH3yy4uTX z>~eE|oekJ~{+W*9bs3BGYIf)TIeEB*Wh;9MeW|jQk(<qUcd~l^<F(s!L@pd`ln=OO z^P>9RcY_65>KZ~zBH3eK7kW+RximFK+W&3RtjLZez4O9hQH`O2Jm*xFUW)s3_DW#+ zqL|R1yYkj|A1r8Cr^_hjT9|uCeg$8`^0zVUYy0lLP0d~-p2V|GW%CrFm7+4;k0j=r zIL}e}SFY8eSJ<u2BeipHy+!hj$VBgBcLR#ADql6%>3L_K_ejRG^GMa^odR_qqd7SB zT(%m_Q1P%<vuex?k>ZN_{jbAN|75d9SFgvizjc9P9jQ+b6bMG@biAwV2>Hb|)gXS- zk+}AhiV}{r*DT92yZn}S>lAY@t1Wr6RkGiGhTp0c4&h}Rbh@;Hv`-flRJ0uTmt!{Q zKB)ff>xS#!{rcjzGb`rs{aO|p+`0FuZ-kjLqFH&(S*|4M`43UQV|%6>_zI<%&C&A< zdS9z`nq%&oZpZT#hi5c>U-PBCc71}B>c;O3%Vk>+tt*>VuvEda#5KQS#jTyvX1gDq zVsTG8{7yo`<%nSP`Dr~$9=nCsZv8e-WNnM)R<?$XOi?#QlN5W*e;jOi`Kni^qFpXu zk7bgIV`PMWdxG7OxyA3C?`*y17#y}QQe)`?<(Ij6UOQX9#ryMDet%nUSi|Bdv-rBX z+~xB7wbH4Xzna%vZrq|OQK_;(VnHF-fo-|+Zc&w%H@3dD_E%~aWL&@J^*bw0MZw#5 zE_t}U;P+XPy#4m^g9QzTl^1XM^Ui;7`||gDxfv|%EI!>YJpTCm{i5CXTR*nWDi)OS z*v!GayyVXl!E?FuawElN_@#gI4lUuZFy8h}^~09$TZ+$RPZfwMaS>AAcjV&1hlYIp zetVoMMLgvn<=y#xZrko{g){66&lj&+=_S-qe(+e}8{5r+Iulf8p3gUvE1BLLH+5#v zDi-mj_viJ*e4TQ`O>eFE&S%wYZS(#&*w)>C=Atrj*9jKIni9_EcfP2;3t8H5rR>By z)1cga$y<z8RUdr5?R3?ZDH=<!Pn<YOdDCx^MGuAgbdSwV7YUX7^7ygx`jwN*++TcW zm$>C6wfuSi$3HV)&OUd3y@A}$eJj75Z(DT5V{V(r`u@d_lWi(bSDfwd>o?qRabDn* zU!S%_u5Z@Zr)brsz?9MCw}nklYvYuI3;O%kE|gN=SpVXPk<<43t_yuC!bQBr6MNTO zcf8KG>ypaHt&WoGjkta7N}sS>U(pR~vD{raMd9s^4c2_ecFxzC!Cr6bxZbN;GroMr z)H~1fGM6f(i1--DH(fPf%_!h5c*?{v(e<9mgRi0%!uQ&w4lXc1Gx-|VoZ|nRIf`za zHI4f$_2yuMlFSzm#fuvgyO(X-ywO|g=!0!_;*S};Sf$@`@UfX0E$#V~)TX2{Kg@M@ z_JM2H*|sZ1J4Wn2t?ql7<!|Fmg)(bNzcn+SK6oH;I8pqtvN6Y>mEZrd->dp{rDomr z&)*|=RBZm=ymOWPv>+v4D+?QgZI!RrZr}Sulp*HU$zM5DtWVV*Hi*`4w&L+}-u3HN zP=oRJeN9`KpXY6FcQ?E8Wp4TXqX$14TA3Z0`}tMfs;3LKpE+||!|+(dR)HC5EA^|j z7I8$*3RyJOiH&>nt?Mr4Pfc?>ti?6BZ$I~7RD8mmvHR@9QjHxhlcEl8TlAqj{GC_$ z&6tH5stW>c-sf*J*>hs4$RVG9E#B%E4}NY??z{6tV~&E|o!5`O7BDtU5j2WU^VQ}} zRDW?(<*TLvLqSDl$6{yWNPBzx<43rTJuUmgIpfo&bCOfOTD|z*UQv=H7E|54?|y$m zgZH1)mqa!eH`sK16xhfq*X7*}x;+h28hn%bv_RPUc>6-H#=840b#6fw{1r0paX;7- zE^r0>y;OgErSfslo+GV0j)zKeE3TUGK%-A_(F(?cOJmnng>`MqZsobRCH48iUgh{U zS1!)ATlHC0TRtp|dL}W)W6r1Ro?NX#QTbLq%g=D~{4BV{)>mxK^38oSlYX3~eb<5z zE=?baxk0zKrwbpGUiB!P>zY-CKljt{=Z6JetL1Fh&;Ga2At1+@tNJeAsY4x`I77PL zNVy%f-Q;9<exB{&pD(jP&1unP+hk^Qg{&3~StxLc!^U!b<s>x;o}8U?4=Vb}?c8u& z*`_Wjr1`R+c%-`X^;J9UtNw7PvmZ+qRxg||?Sfi2d*a{KHP!)}CIu~+ywt+V==$Tm z%imW_T;sRB`EvNNf6LR;HF9T7+Wj;w%vG{+xs5MVY1!EcH#HU<Jh-qws-mW-X|lWj zg_CPMVq_v!U;lc%z*mg@o%Oslr7DZ(9yt=#%P)Tv<+FI+G5JWh7?<K-+XV|(dvSPG zKP}T-Wl(XD^^(fhz)<bY#r!qKWqgaTrl{1~>$ZNF$mumxi!Ibj@cX;MV4I_R!vgL# zu6wwf=iC97@AqQWRu@#BTm9Yjf#dz1mF7Mc*RE`v+dOlhw82aFOdID!SMBP(`{XCb z#m3&e)cCb<df2L}b1p)A*L*rqZe^>oO~@%SY^AN|tg4G%2k*}jVNS9HH49|!XLfm+ zhH(V8RvEr?UcNP~BdK$T$=umtRwuMqomw-~Ce!*R=PRDm8cr&Uw^|>G{kD9oqe^nG z-=)KIo?dCa%b8fjUHR3aeEw#}Vum{`d$qiuT8W>NXqjTJ9kl+yI{CEE%|Fzpd;Cc` z|7?M{pKknAN6u}le8ShBn6<9RaqG3M=L;3H9$xa5d2E+>NIJH2uE^eXrzeNbh`Rdn zWJ*(aH+Q_JQfKm>4c`wuJu2z;Sdd}CnW^&=isDvoJ|5V#=Jvr0&!&H8tDPfr)AQ#^ zLAje%JK7IB^W^T>?UQt*Gth{=;czoEPkY*?SuDaO=Wd>REBCH`u3o$0GgF;MDvr0_ zCK;HT&GwOVc3YNzzDhP`&ddpyE?!mby0lU)TVtug>{$Unf~I@qe(h87op{3_hvS*J zchz6JU(CiCb`};#9zJaJZ=a;}DRq*>WB&SSMa);7#N1_Orxz?=9bm!BmaC?pr=;A} zxy^0si&aydUV2M=t>;%($_zPr{Y`UO4Lgf(^55rqH?IFKn&9*!JtJ~jKx(9Iu;c?R zafi@QUK6IR^=lV4KW}-kXWxd`_3Zmk<b8U0eQQo_)BP=v7jR}>wUzju>?GH+?|5KO zq@8o%41sSZ=Pztss>k2YC9-bYf=g<9IiKyEefztmPyMCMFO4&&vAt|a<g0md*;Oji zVE%14>9_tm{H;5LSzs4Xxo|7+TV0frcpPWp>=pU>*e(GpgWgRc9x*Rs1rl@iJigW} zSH+|1{N`|gvd7N*t7aya-t%2MrATg#K{4M_r^Gb}W{dBb(3>!4ciL6QqGM|Wg12tk z&$oNsp}o4ll{uPu-tvc-@q|`S4ea5z3(@TQ93}Di-?qP@hPl^V+d1avO`M|2w<f)` zsHjQ5_T@_dwJ%d@dH8#7oPT;$J0?crphc_DrFFU42PYgkR(<>J5(|lMg%veS3>H>( zEsL3z|CLn~HN;(SSy#Sm<@yc<mG%jok4~)mttPptPxw*Qf`$E#Ce1xc!PPsmZC<D! zcZ-x~sM^c8EI7E_V!rP}uiMj>u56Cekp2`m>xwEv$7F|zv6}y_ypooLtyy{b<c0U8 z6PJXA+D|flc<S$#3TLf%JwG)}j#=HCykZL5bDfSC54L9H%LgtMNfG$<?w7nGi%WoK zlKt$`&HnQ?*z>JU3W>|(J8J1AzkglrQ>LR2ZC}KQCaCV;7OQC4GGQuv?3t~f6aHt< zzdA40|Cr<s;qOx}nR}e;-I1#q`<1cr&^`Vr)^FDv-luu>Ub?m<d}&jM@)9#&t<L28 z*A+W5CI>mVC8ivnCpqB;mx-f#RCDJRu0s{gK|y!yeHfx+SsLb^*!@8%&{u1z$i5Ob z{-O&rdC%W_&9^bEX!%Qp?A=!t-n@>I_^Zob@_DA$-MwZE31?ehy!&%%ZN#knNQ>kP zbq;$DJa4|f@Nc7eagbfVG2?TYiD!?WFJW8WP!psjQpu@yhW)aieEadVAltb%2cN#U zl(RrYKrcVmpd_cFH2=ckgBJz;_|7i*_u&VJbM!6Uw`CJ=U3h3Av4u0!OVd!=NT<~y z>+q(^3A1nPd%e9zFE7IHa_e=sz@{z1zs?>pax&Y>Ew{HWx9P;2(n�g?vx1<;?u1 zczurXlvZgM@wy`AmNo5H)jRjgIhk#**x~suq;P#w_w`%uKkoD{S{2nEv?}bL{+uhB z3%;#c=Wlj4JtjKNUAN}@^|a#O{O5f;veq27WG)vjVX0D%V&~&wRJ@ZOv39<2<Km>c zJC~Q(KHpw)dE42A@6Ep4($9JQ>+^zFv(Nn4ptI`JjMjpwAxxcr5`30yY1;I6%C%+o zoo`ueCkZ)u?SF4Db;(M*=gZ!QKlfbt?l%u+?(#Zx_1G-)35E=3R?nN}%JMdBhGfl) z43Y5F|9iOKH<sVNmv6QrsEm2pJTrk`1$jmfb60OYdvmw$^|fNz_f~ZM-fFv6YuT1Y zvwfd`r&TV`{rmdd@8gy`%H-~FG^}l3ZQ8YoWk%uIZ`QSQdVARS&Nyc<d*`n^ce;%V z6(>gI*X+N3{6Rv8bNKr`_8+DSOtSbiPeiiiSJAnwM~*$=_nw+@9JYMcpDf${cF**% z*H_}B^i(I!{JNmL_=#D`l+3q>i(5A+&3Bx}yLqB@!m1z<eJ}l2M_g0AHC0kn1S9!( zP1zVOp5MK9`qBGRykFcuPxN<qsyP3DPx8cl_3^p)-m|TTtp#{J!~TzNg=V%>TB22> zEBj04y6uivoFrP_zuUY)$Yt{MgqyE-K6HN?G{brQu_-zh24YK!IF{Dz=UrPH%Eb08 zK6_~(TU^oQ{UM_Hdlo2h=ZGztzqXE#yJo+yoBFgiwHHT%?%dGaA@hXytjOz!@k|T3 zHgrw7uh0BBYfs|2&ufqG{l#dyeXVJE{<G)V=VHX}J-_>W?@Pvr=ws!dza3{|%Q{ke zr$J4_WXq$nS68|Iw6MtV+~Hs6)~qda-iNOw^2v$x*1HVtX?i753Lk&Aac=TEzWQHU z<g=+&OGO^&)w+MUr4aS{6(3(I`?p%BV(FgHzgt>ZB>u2i_6bcfE8Ba5TmBd~i>C3R zWvmrXGs32x3J$f)h@4U<aCYX0yVJQhmRqrGnkIdBp6kR)G0RoUu4jw;Zp>JHcAMkn zsUe5nw*5c1T=%X^h0K{VOwn5-ZXdhw`h#TN9Koq`v$<ssI(c+lyEXk-@&?i1XF*!| zcixM=o2mOFzk}CF@g2N~XSv99qS<dvfB&tOVJyBbC7&0@pF8~U=;kf!RzANYGVi*{ z+s~pGq+aS(DzCZE#2*<PH+}XY4@QQGZqrI1tjkb89dOI)g4e<BK%+Dp<p$2e{w1q_ z%P4j!&refcy5`W;=f9QTZ{1&3@Id!%;w+n07k=yRU|8ZS`9S7S)dgkA(57UY4yy+| zdK>QMEdG?Ex%5wI&?>pu(A6~uB$oJFW^9(YU$o_f;m@>(#dd$<rEeVln_K+(ZTa=@ z$I}+GzFs*+Z|gE4hdq+9na3B}eY;cY!dJ@vo7eY3XRkmTFXP$gnXS!hSBYnt9nXsA znCdB?HT}-B#$t(iF{Yo}3uSNRd@tRRIcZ&MLyt*NYSDtl7JO~ZYj!P}bJbbmq1p?X zChqn9g|!7@KBw|erq>2@h~70#cI4Z!s&&evX^ro;%4C!miY(YN^Fg*~+dQL&P_7#c zOi#bxJ{<79w|!dCsa041haJw+Uv=`=vP=KU4zByHA-;(}XIt;)4{A{X&WZcJ->BJj zKj}9A^hWuh=$haKoK_ndUi;Uq<}{u4bq)L6Z)P{XI=|AB;Qn+`{)om|-gD(O67yVb zB%Z|^FN}U5)uMiVQ}(s4ZSVROKRh(sAz*4BINgb<Q}_8&CHs}hJ=evO{;0^@kzb^J zee;aFx2|o=e`w~v|NqxnKezWpel$1NOh4$b$<AWm*>zhzHQ9G;IxkiD`Ot=IQWti0 zHD#1q?tYq?Jnwy0&i9*jpB2|AK0SKoN6P&5htIulkADC2?5)!0&+n?t=Cx8VJ8?L| zObya);Am3lux+<_ab&NFR)btlLA}$a+oD$W;dU>aqjYj7pPk<N@Y^K!?Q74y7Ry+- z?O<`iXG4~kM!d5%zsxH-sF)aXM>M={fB93<d(Ucfn{}_JE{td}-4ppNi0!X-a>CZ` z-7|7)pLAVo2<=G!C8od0%<fnF6Vv^jzSWZEXV2-Mwz~J3{lL3--A9i_cgx(j+y4Lc z8gst8-~T=EZBcu1<lT+GH7WL-MaJ3rzxQ{XEwKIa?VSI;PX>FQernXamsj}n0^hQq zYj<{REhvwfzs6ofEc4^*wjJ^Jzn$ea;pV^f-Z~@gwcK`>6PbZ~67Dq}_iFxF7BIDa z$?J_Ar|)%jPnlmWkum?!54AbEjwsoR>qN8PopaI~wJPn;&Q5ezbu!!b^zG*N2V3=~ zDwjOF`~C*^p&j{O>MUK8b06<{Zu0Dmc(~1@vWj|fE!7k|js=PO3%@?Q7ZT>49UDAl z-%E?z3H#k{CUv|&yKT4a%;(okCSI6bmalhVU+ntS{_l#mg4^65fB!h|>D;$l<f9X> zm&?B2*It?*%`!7X+{95muk}~!*#**mi`IsJyLG=ku-7)frrc+}_~WR5RX-N&`?>J# z=X-w{Z6<8nkb3COli!EB<nJu05xutNZRzhrS3X((-O6aWJ9}aN|4TyC?0haO-jM&c zLjT6(*Bedv*RtJH+mRjk)^~|xbinD`_8Ld#D!`LO6hq|&&ZN^O`zHKj2!EO{9+a(L zx_oOXtB!6(@a?GD*QU=O>B`0afBE$Gk;B5bBkhBpn!SH_c++Lw7pr9N##J)(ezQ-r zzm>mR=tfkT^ui@V2KCDCif_EGy>qMe4R?2T;XBcFNsWo|`hM1x3w)PdY+&-LxM`o! z<ag&3FVnHt`NnrXNP7u4A8xlfV3K2WE!Xz;S^t#${bE;_?E1KR>0K4I2$qaRu{Z0> zO)nTuUd8r3?&|%lgkb*MALa62WorCaOxZV4@qX#jN1;0P;nuf~XIF;rI{KEo`uB;v z>V>P;nn%Zlveyf5PkvJ$oBZ_G^FOO!owePw{=Eyk_uDtyp1M6+h*`|$$oMve9^uM4 z)qg4F!@+maTl2mtm<gH{=Zcrh6fidmFT7Q?BXW_VT+J81-81*Qo-p2RVZHUzyqHD5 zTMW0Ch<uB1GCaPse^2I3rr$HZyRTvOz0et*xlX?#xGJD2L;HIBm+SVI_@+KwDwdXY zyr$aY)xPPs6*-P?Rr7mWRX9z^_{P(7oadFUKjfXcW1nQYrv+wYHD#zrb8L^B?Y1{u z`a)!>>E7n;dDpjOcebZr_bO$%==E&Mi}DhY-#p2BB~^{*^L|8hxJKwdf0^j&8`xcQ zc>$+Yq4w!#O0BPE^Jo6}@ZpsITXEl;`%kuiO_Td0ePda8b^N#Nv(FXv@-`O;?DeT% z6utSFgTUF%Kc0M2+|c>_ozb?-#oR|$%bc|H7cfu$FZyQV3FDlj&+pV3ey@pM5F4le z*Xxb2iKF_v)SZ4`6U&&s8abCw|FHA(?jv4jZWl~!WWHHjyUOuZQSQEPcfa;6Xv`I0 z+1P*Om;Bjj^HhH;g}yFP&Oh?xecG%!OJ18_YLb4!n>Rh5Yf7`90K7KTZLoR4vQekX zc=f^5NC%Exs^W>U@89^|4_n3ZJZbG)y9lYg&s$#YkM7#E=I@^0m%PqNA9?0vl+X2g zU3K3xW$QdE_RrVOPUR`d<>tNeGrA#Y<*oBkv*$}H&p+9_<6pZ~-`dS{Jxqk;ZmN|? zzhyU(R<N0K`9Z>Tm%u%*ohuekG`jUwanHqo|C_B_7PPL6b>iN<yY<(+yH4DXSqf!e zO@-$xjzz2&SZa^gysy5`oXm6o-?#05t1rJ4+5da@{_e?>g-dqF{yDY&50~A)ACGT+ zxBK(K`Ohc)|3<s+>iPNkeW>35y?VykwA*$y@HxOmiW=*(+W-7GZhtKP-_!U<pnHh3 z-q-)WegD|~KWFbh09{Gg*Wdqf?)w_{{a?KIw|u`}FYm-LCAAZD^;X4~7lQv@&i}`$ zAHVNN{-0y{4%xl?e{}DU_*ro!CQfE!<)I5!oBn@O{QaJ7`gMu6u*rY7AK&x$<hR?d z*|FKbD<?8Du(bZlYpwh}J(aP+gkjs!t>5O~{^q~ZEZR|%RWtL~^|BS_w*;q8pZ;TO z{BP4g57_MwJbbvY{{NddJoR70>s#N~|Ns5t*Y*8<pi4M^JmjzMnE&UA`j7VdAM6YV z?*F}e|Ka`rfA4<;-S-&}y7=?!`g+;>|Nnje*ew5t;ra9DyRB5=A(6zJ(X>yw?s<6~ z`~5%9%s+lzU%&U;zu)io_uHKR*qdK-c>niv*6$yjj{j%$@8|sgk_;d8|9{f|@oD=0 zp7MK@$LpVgZmKn$>-X{B@Avu7Svu|(c3=ARPGkmWlBGoQmAG<_oAukz+>R@7y!Tnx zD8K%gMdkVHO^K4MWm*4sx4H;^XYMMz!D#>MV*iKr|9`Fj@v*<Y=56`>`hS*>EY?+C zWqfdQvigrdpU?kIpJ!7U^!x9_hl-CZzRlm+`Ld+zWy!1hxTCl2?r*#oHpT7rs*2t; z{xvpStG#~TDg7sXbL-~+T$4+})w(m&)^%2H{-wuow&3mGZ4b`rZux2Y`*juPva>QB z8yDW}|2EwzzvlQ`m7L<)Iwy;RZ=0Fr@4x6fb^YtIq#oUPyRNh1VyicQ+^2r$y4}=$ zS*!AIPyE|C`)1gG=L7ehx8G;X*_!Q;-TM0A2K&DT8x6MfY)ZBJ^+Ng2zxV&`>V6!S zSMt5wx_|lBb+#ROGCF5#)8@UeeP1oX*Z%MP<>mg<tt${Qk$i!r_Vk|r|9)3|dn38; z*VXk-UYwe$|31q92VZ8$r>Q#6rn2c~PTTeM@z?i#e{<9Ly=ndHwcFQKo{HaJ*K2cr zedRUhe;@e&3#6x~|2yw4Ut98g<1T{}AI@(*f9GSY_}3!^wbtMN?o8}HIN!Se*1IqB z-fsSFU;KLh1BrK5|8MP^mQuJ|XQS`$`TNy&<W0VPZ~fn!OyzT{D_E}gsqI+z)ok;l z!uwbJ1h%|Qu>ZdG^My9^efK%Oev99qXMQvBX!V0>W;^qC?|*$G&-V7M^r#12JKsuO zw+otk`O@FVdw0*@e*Bf$&int$=Rg0pb8&wB1G(Hg|JH8sjGnQXdH2HkyYjiC-`0!W zuK)YvcEQ@WpEIWJt9f@m_xpvp)%l_I7m~uV%(urxPdF>DB=Trq>b`GV*FRLZ|LOU5 zFDSPj@&EtD|1tl+2mBwtybN{;Y}x<+_x|JC_kGo6IFLTSwypm6_WHx}|3AtzGt~Wi zUN2Yw#l61eyxnh}{QZB;7?fqEt8jus``)hiDxMQmPC6a0yxou!ZE&pS$hk+SnY?rA z-|Fh@Tz_C*d27SlTkp&b>s@ATRG71>bBC67VCIi2>+{!l74FsN$``)=@Y@21{g<V0 z9jn@wX#Q`*QdhBrhh_1<?@4VlkB_aJzxw_9+V9yMyC2TFpFjEP?K^)=`8j`ozV&*l zQ_}nS8rvH`+$*zrV(@17JNC(aCBL0!-*qTHE|in6JNtL*mg;YzZ%bC5eLb~k@eQ|U ziN5(oSJMytJ9Oti!?Sg(_ARcAug<%<{ra2c@a$-p=mng=roH_B8<b09s@LCs`{>7y z8~gu9@BbS8<6QZ^=EskdLDvfIzW-OR?pu2OHSSZjkEQP)IREF&`3KkQ|6c#7UjIqG z;_EBXeZTL%f3&^+_jW@Go@-Y7w((dT?u*HPk?69<dGg$UZ@mqDb4u$@|2B2Iu_kw0 zY4qDuPu}!O$=o};D1HCReberKs=Ax|mYaX)*Q@W0zsG&}HOuV8HSvfn_st*5GwxiJ z;otc;d`9YuUH_FNPXC(yc-}Yvw|xx07otzj|9f-3qgQ8s?dxcX{^LJD_gnA(_j>;~ zQ>9h`@NL6?*8l&y{{#2_58Nj<@$CP#dViPw-^=!QKTbpp<gGsRW%j$Uie^iD`{M-` zU+lG)M!j@ozxDWLe$$6Lhl<2=H`y2Lp1yUT#+{h&8&?+353kDK{5St?-*=TI-}Pcd z8#kOhbGttJ`O51#`*-K5zb**=9q#q>`?lIVZ+^#bf8q+BSFe4m&&a&`o%-){e@<ur zEqm;|_jj=3tKB@_Z8`s?&dvW{`|bX<+6^HRpO_wg%YC*k{r$c}2Wq}b%P%jy|2Z}K zyyb&y6Au0i%1%#D&vt(xbk<3(WKrlHv$hN)mG9dwJkQ<GzdG?><KcCCZ@;N4**aP6 znA>Of8)dieSJrI5`Z>DP-f`0HYwsFe^&0kR2d+PPIHNkd!Z_lkmPv*F8+E;tSEUlC z^KX%k$oS};y*RZgOy-l{1@k?-{(GNRRo}iQ)8vG$CilWxvj;vL7eDWgN>TL5e!-jh z{>t~w2Xlp`+e7Yf!i%LvtP|MhW=L+|d13DT?81lBDjR1>+i!jvVEz0@Ms?E3UhRX? zmTA><zy4Bei}So%b?04}cRpje++@Bv>Z@-)bvu7e%;p+j`JJ^}{!Uu6c+>9e2<}_| zm1;lVy?@X7aP+M0``7Ki6Sa8Fypva>PgggaYcfTDR?yG<?z?SMtL@tIn*ZC9cfY;2 zYuk2N7Xy>;JUgEMo+@?w@BG;5Q_nAzdfhTH=j^uKf9tR9J9&X+?hVV+rPuNn6%|)p zxFoxOozc&26N|U`?7F!vGuo3+)+Xh-^0gaGmi$}27^*fNbez0Wq<h0D2h~64a&yaO zGA_7%PwiHHu5ZKJZxv>SnwNh4dXjYW?-t$X)sx>QPW-FCt2g@gzj?Ro8+9FCTdT<( zJhFYC*G@$#%lWhK<tIFfTg|rlPx;w9D-XU53cju=u|47Hrsa*B{(bxOcDwDqjPn)G z{7Pa27u8+4?yCB3chv5<2Gv=OPUxY0Lv!`|FRTw8tB;5=t(%s{D}Q*}j(3TivTWPe z{=07bth<V1+hgbatXAtUD%*6Km^dzT-6~7*Eu8&5zf<?lL*9F;zU@EE?uNI|`&a7p z>~_}w-3dI`y7}%@roX+-yy;loa-%bwH+pZpetpIc`Pkpb_oSFxUh8CM^S#h1b(`m7 zt?+#9Tn^h^cKx^i8s<(~`sv=b0%nukx5w0e-}q4bf5YsXavN_LJ!BJ>n{_vf``4AH z5#=+t&AS(BU2C@eZLRTHnSZy|&Cq}QyKeKwrQh$rIpkZdf6Q0%w#mnA{pxM=Jl1fa z4g@aXv<hraoUOh5ZB*dBHubjLNK-o(<u58N_4jxrlE2@s=Qcmk6qR}V`Mz)a(~1kf z-Dl1HzA5jspUV5wd6BpO<@`HdDO!5FbL;Mt`e&okvVZ>FU%cg;*{vta6AWL~UrTai zHu^2U@qR#u^~TUJUenuR+`Lb&&q#SK+dJ!)o#Rats~^AL@#pDn%$8qwFe#H^^-691 z>VN#&%wOfcd==aEdd~~BxA(totB*d~5w_@kW!IKF*R(e-T2v){D^|KMF)-`+F2?jj zax)jr)rpu@5dPR_QRE5KMzz|DBW0Bw-YZ_uIc(;C|Jd1gm%09FWvqR_K6l;Mq{1V& z&wjiS9G2nFzne3!<?PIyjk^11Zg1ST-99scU;4J0qlw$$?+jaisa?#EXnHi8vvr5C z=`)vL={xTZzw$aHWPiG*F8a->dk^cL_b<#_y-TR@^Kr&CW)tt6;r(!I`~Oh&ui0^J zd(C!VyP&-){QlmXM?;R>Um?;geIw%M*4n(u)@d{Amh-0N9X4F!{Nqm4*SLt~EJ}s! z+j~OgZbdxyZBu*UBD+4}s~Z2=S*f#SpXphruQi>b#mJDla>0~O`;&PRVi*`I6vU2I zsHSatmoP)l=WX)d>`O;P3eVqmnK1j_m6VHDF2tqWkEm}<*}MMz95pqK&j!a<tdE-9 zD&~JH;jx*FvvbDUaP9K#$IWisP>OASbJ$R5HR@0TXoN0jj&C)0R$Si)@#u)qJ=tGB z`Eq8L&-=7V$6)qThK8FdT{m;m>iBsTRV>V3HwLN*x-WY@F_7h*&Fei;`ggvIKFkf% zUUA5-G1q-x&aS`u(q8;~>-yH;ex7?=UXGjj_N<fA!BX)zY*z2QFq<oL@7;d~^py70 zM8|xd^}hRijh*=Y8MRx5@4M93Mc==$q_+3^jXm?Oo7_KEy2sjg%{R~QoxO7BH)$sP zzI4s`+3i}}u4DV7s&>zox%_7F+|J(%IjsVd?;es0wZFLGfX9Z|x34R%TVKxRH?G!` zQd@ItPv)W3hv%CgoGo$9Zl+H`Ss53Dg|+R`r$<E@7F^&G6z*8^GH+8H`{92K3>V&h z7f{z^FfJ^g{B`cevU8u))*Y>}UcdckRN=Z;qN|H~egBqE4?AFP9dYBvwD&jf-`aLP zz-zHi?ku-Jhs@1Cj!1m3WqW)z`^?geGyZbs$<Mzgou3|gAfoKX{!QPS|JPmJHdU+H zWTt{{+gblfk+~0QE-UOh`Ferx#Kp(9T{oL^c57I`t7)!6|HD5R2W<EGpqMs)_v~3K z@=F}Qx4kP}tkkr%E-vycN3p`1s>;*8lG`dj7nj~Qso=M{up#UE{~d<CLBF2;Tk=hr z`EzT`^B{(ZjPGad$~)WHQA+{^eyfdUvp>&@|K79vs&DA64OyX!bhtk6IuUqFw0^CK zgz;<t9>y4n^J{vPT#TA}lo%QWURUQ#=Q~{Mkg;~+^JD*>KNtV;=<<06hWWL>IOA-p zIT<ugNvd6zY!OwEk&$`u^73~E2LJ!J{~x$`(U76xbKm~71AT8^?h*BVQx&YW^;|R4 zfvU3D+2;eJW@|6qb3A;yYKX2(e{*56QWN)y8(V&Abk&+L-*@?azoGo4S$p8*l`LMF zPb&LPR<JNg^t)f!W-l1jP&|E_qJnFx{q$J}B{yH>Tz7wE_4-?v?RAzt+NaUG#OOff zS<z2-mK^h09;|VDTknh|TaD9?J=58+dv~rSe^9E{?9U2WDSuyInD+XHP2&8?&sk4h z`eJ;{T_WcBgH(x?%{$B9{dwusacl3TFMBtvH1x=oSF2B3oRND>k0D@6>-*bh-@p1+ ze!cl&+Hd3A|L#h(b8i&P|JD0^<Hfc4VoODete1tPzRX?P+%90eYVNbIroq=1OT>gM z5V#TXTU}1g#8F*p!OwRQE49w7ko&eG;E82go`AVrvW+A&gWL4*8RyhMcSSx5J*=!L zsLsi-;JSQ5ML|d0cK!u+1<}(@7h8YlD!27oYB1N2kzsw@{zL8Z|HK&{{Qukkzggez zKMO-aSy|V~3Z`83?&dgt``^X(><kkMd#<$ZIBwW7_s5%8jN2~dnHwmU3g?&ei@3g2 z*PHxNV)Dw&&zCQ<Twa;^IedD!hS%qrn=}rjwj9xOQJu@z#@^1*aQLwDhdh3V%@5y6 z=l*JJ`mpu;^?M~-SD4TBEBN)xl;OeE*VpSBWZVTWo!N3(rLVSL$%Q5Js|btugQjNg z@5QE(Pv-nSDzNYI!JCJ)-ZlJRkY>(aYA*IFdwZ}5tJ`!n(`Rq~oOvBla8B^%HXYXX z2|^s|^=J5+RM|Iwo8EYKsmQ+k%uVOxTg_JQ$X**L5_)RV>*7Bmwkxz4c2_(VV`RLY z&+c_UuSmkxaFNQr2P_-sev1)XE6R2IdCzg-C!1Fqf1dN#G(<9^f5-WbQ~zXmj3j;^ zDP+>zZv2E_`Q!J-TR%2w7|fkv=o|RtYSZhQq6wQV)A#+j_~)11W1fjUXZZ_b;`c1_ zv?}Bmd4x8Ob0o^-E$50ux0)}MhK6a+S^BYPr@@uer@iOQoyW+a=NJFz4A*4eb?X8& zKG&{ouz1bDaIf;c>>u-U7dP572To?ce`lN6-KW>SXMBHc^CGqJ<c*4A{d0aFe}2|y zV34o>qiFZ@2{Xfi)zjA-O8GM6?YsP%e?n=`-}_bHHSbk^x7~eq?Yu+1I+{VdH-3As z<T{64d;ZfIH#}NbpXTmar+4P{YC%2yGp|p7zP>|d=J_*f!WkM4vrTXK)i>z>{l1)` zL8EKJ(wR3CC(BLM4a>g4;-%@MF1)AeClly^)%i(TwmX{h+Wf9_NPlCGU9vKBf8ZR2 zuHJSRu0-dDv7t<#jTt;7f6i-TUAS!ZrX1_F_2sPAuS&Ome1CIKsqnL(JkOsmv;Y5S z^LYcQnRRyFN=G^~H)l>$=z4VOT#!?QGl%A$<K5gZ7fVmFaGW)ZgG0<U`&PZ}%pGP` z=MQU4I`qx*@oMd!wSOg<4_IoY?{r&w|M&r?^Hy_C$b5clf7<HBMmra+KmSfNSIAB_ zN_$gZTG_bzw6?+QB7s}+$|9ec=bUXcuxWEX#&maHr`VhCGy7lMEXj(OzWqZfV{PCQ zV;{FN8Oyo%bofq{eAuztNn+22`Fmx23gi`Ur0#Wl>u*y7TAU^n%2w&%IyHKAN#~*y zhI40jp2)B{G*kA%UOU_4FJEdi9C-RuQY~5dm-S516K@`@)8LvTWA9d&v`zN?Plts! zb1og__$+dI&w;76GxpZhb?MvvlwtUAbh-Sa?(_2)8P1(MZ#dWYV2;G9Ft?|&2G{*p zzTO#Qy<5dPkL&6o_fDJhhO=*k^xeF&yr{=rIVMJOcE6tfhf{h1vGe9W{`2Wh&9hHJ zmoxdKSvwuKvuCoO&bO@;f4Y$=&^^1i#_aITotd-G&#P~|<aeR_<%RZHMduz!bzQo} z-{GyO;Qg|AF>89lp*?+%mx#UFcfR(VT0w0@q{xm9xj%k>PM_iThGp+%*Zt{Jr*3tc zG{x+UtU&9E9KDwN(;l2zZYdi1?C{;QOE&ImTm2zmecTF7qg}fWWt3#r9h6vP!B+lo z-=3(D#!GR(TMc^;Wu<0>{>n^_)H-r7DJ&vrvcpubMZJ7%3^B1Wk6wL}nYHuNlE4Xv zWqdApw;sAFAKI}ejBA!*z3n3l$DFt8O}{#tFU;-O9W61(?^x)nl$fb4scSBAHMHgb z-=N7A#~PO{5?gHV8u;dNiCmCpWKwZ}zNY}n@TyC1sgwHboBKac$=>f2!}7J@^rj;f zR);Hc4%e=C+p)`F^`Ga@)9)EqfBPkR>{_$k+-Dxv$C~SYykL=<ddPaC#b+li27{S? z1$9|Aar5i{Dcb#ek<4&F{CxbwFK71HOZ5jlVO{by!8hIb%$n&9n!Jj0*llC3-j8J7 zvittqe_MkzraC2tKU%(dX8w8c#o95Eifd1w*6vw<=QVfCJn7l-bLJ;no!&crbqMP` zAGJL72fyDi^RS%0wsv>yZJqQB2^!v;zt)%?tw^zXVYKU0l6Rnt^0s*b!SZ*j^0zi| zt#Y5z)I8NMbB?nrubb`~p<DN^tZS}b?D?D7t$dBfnQv)7MU=Da3!Y8=JoAA-&(HKG zp-Z<HpJ1M-b8gS~zyh|=vcHD+ms#$RSY2Bv-&AMXl)<*v;Pl$AeG}JyQ+(}Y93Oh< zYv||op^-m0=4o_gt<1`fYiK{dwffYp{Q(TCr`%~RcssM&f2WrBlyk|^S|X`S9pbXy z{$BNH!;Ltpn{3)uIbxrA0?eEWrinkW*|NVfzMxGh<MTfKO^?>C`{lTDi~M(u(0B7K zJLWnGmn89BZ`S$oA;wFnV&~%v`z~wm-INpfL?dlyIN$tp%Vyj#xN@_kYvb8=xmaI= zO%ErwUJ_{4HB?nyWbu)ISK8rjiDzki)n{uet?h4WYfruWx!c=jbLDgS+Ao6pD$-7^ znY-8S>$mgWGN}RUTAZCZR-afUBDn#!7C`3sKhx)LB{$p+yY^a&cYFQY|E6#6+rId$ zur}Fh?yr--QmhUh@!O+5xp3{@^Pe;ma;2ZQp05@TYRXkPG9|J&XW85PCF^JXUAtWJ z&Gu7gSX>rL&FNj9_R%?p$>|p7uAZ6|dXwFD$}(`NDlBc;bX?hW=_9?JJVkEO8_sia zd+JndJf(Oi_y5;(Cv#^NzuP+L^P(daX}<(|L@ZW^+-RNPkt2MKC-j_py2jfz6O4Zx zofM-M%6V?<+x2h%6z%+%75h7%`IrPtx#jk&F0NC#5?r@7XsF&X)nB+;#3bWMYh;aX zca~F<+2O43QiaBL&u1D=*`=kq+EhSuwwl^%SIwh7SEUc=uCn+o9w7Cv?nc(kncK`h zR43f&alW&6?G&fLu-didK^zaQ=LWGShps(SaeQg|s}Db2a_2?x6)6kB^B8!|R-tm* z(hs{Tu7Bk>+wH$SDSq0i^-f~0jYbhu=ZhN0&%dE<ezUnSZdJ^5jWsuVlVpOV{FA1o zdQ3`jR(!|(J2u)|;#geeET6xj+b7x2eku{^|Mu!p)i|4KJ_ZY0+oM;feylkANoH4x zT>0nP^dh~alHF=|w%mT{<mPvA%GTqX7p)EYEXJ>%^WQa2VgA_(=Zk)SK69Vhbzb%P zU3y!;Tg;L=cJ1-HqBEbE4qfe<CRF%lk;kH_w~yG)GgPs^t-qUbN-M2Hagva%wua<! z&KYHa3aV3HH-~WEm~d&<uASXR8?Of#FZl9%#XEK7O%=PDJ_Q}G^IuXR!N2tR{hW@p zCXbww-Ul7I@w!V{g3YWH^%umxSQnNMRavi-E~BO6^5zXc+uM8h8!|pAZA|-TEEQpV zA-UQ>{Hx*v{%f~l*i9GS<>XX*z~z{IbkzgCwR;at>rv)7cl+}G?Y$q^K50tH_%QnE z%`a5`#b(jzTs~JqVU<Ak{e4r|#F+w<T7R|(yXXA6@I5-i{D|u@3qy;w&HrLFGaj}) z+_Bv_o#)it{hQ*-?(Z+=i1uvac04;jf@{_S;p~egExWlFU-NQoU8?=&y{Pfe&HHY# zuJ&qg@Gh9WTw}(HkjbrIRLgel)q7-d?*#MGX|s1OO1v|3UEGoM%0oidc@Ld6pB@%F zm@uX4?xRkviMO{jeXQtNt-YABptQ7gX7FCU)$fg$EtLGMb!x7O<Mw2){V99(S`3&u z6mLzFto`5QJz48lRJO+KQ-NZvT%k|Jm>O1ZRNm3B;q4q_zPzg+54Q5hrW>eM-g*8= z<J0$so+ECz#8>Be)!Xsr)js^Izx%$ymk5tezw1*1yf=$%jJ0{x<hbKx+Z2I2%ThTQ zAFAm(dhE8Gr)6Io&Rzbd?YegC)aqZSUst|d{kGHi-R;atDjjS7&TNo3@zzvy30b*= zn^SL<LEQd?#Shj?rtkTA@FSD)mkqgZPye~o8o@33b5H$Ii5UWR^QRRvUca(6EzW(3 zhF8Yz^rsE+68$MD>KbofJ)FM0D9YsK{?_QCZ_|Tj&8fFmdlXdln_KZfEBE1V*;))U z%5yT7`c%4`s|n2x%G;kfyLwjhxdipA>+&aF+Ma%{H8O=M=cMUp*|p7IY{HbZREw<p z#e<Y4g=YD^kht~Ty72~R&s1LeLz5D71HSvQiA7Qs(?UMnx-xak`p-g}ZN3Y;D0d{) ziMwuGZ#lEf=>6HtF^aFhF)-YXlP{da!u*nL*U8yM#v30w<aly6-1-+@BVlDNzHN(m zf?CJ9$B)HaV&+8$KB-f(o9$b3Hzsu2g>^@|^;Yi*I(E=fz}r~xeMz;1+>BY5_WH>O z<{X_Laoa|xTh=@Ht-PaN`obw^vo|*z8x%Z!$1B=#;mN&fRo503v$yts%M)T8jvV?o zM{(oU^Qj@a0j5R?w;z~BKmGCND}&f>^*P783_T<jPxj26q`^9U-7!n{=~LBN7Fp?S zpKxMpuVTS%;ZVKBk}~?WTHSKLoYq`Y3g5iHe(ML7W3}!a?>_&YY|+}2^qcW5``I~# zljnp-b0qvL-p5zPvfn|-^JYQj`lpMtza_3Z#IXN_`qGOb3=KEeu<&1>GqWvh>e;)8 zn{Ia6Fu3$My18vv>|4z1CvaH!MnaSQYW?hWyA&!;FZ*jY_iyXg{j+XzDmB$Sb0|M} zq$`A*Jx|f5OW7r`Nu`kc!R$zdotcyC47L6|wez_qx%oWfZV3&RB5TL=3wkpcn_i## zcQB!!k>UA-YuS2Dm$I(ks$YG~%0+siObL8M7qS5|FZJfvy|<E9{?E2tCG$dP=~>13 zJ;x<_duDz5QPgtza=3-HJ#)gLRr<Lzw_eP6QoML;&^_V9tnTacZC=dPX%;d1prBXZ z^ZCv;&h4w#n!mA*R4)l)=US2)_~S&2&H3ig0*0u?TOMA&{E}t)^7RZ1`tdf0S5H@C z|NH9Go>RSiSG;$A<vQ}Miia&$MoyN2!D_Exs9k5S@rM6(({iOh&yT;77~tA9qm2KC zkfrO=Y4wGLeVfCNJv$$7bNuH_O?3;&{#w!ImlaJj&rW{E(=nOl(z<))yJVMa^O^DB z>@uM{xBlIHBzGm+Y{Reejb0+%A1kc4R_j@a<oNyX`MFQkZvThpbNtmFTstNtV>9vI zYYBBpqwM0z(_ehM+;TjZ^?ccfq>Trfa_{x(ZJ)+^m5pV~*+=J>Tk7q6`MmeqA)Y{y zC)cc&rk<?Xul<-MR@yXa&-}A<&ucA<y!Ow!F*H!#E%3g<Tt9=^hVqY2w{nz-Ja`-L zv`}Zt-yRp4+jj0A^A~NHd6@6=={w!W%<}&2OuqlR`r_)f)xVATmWsHUwd(jhH<r7X zRkJYHa!<@ujWv0kEe<M4>zNN6{_u+J-CNgffxlgp%Wm29Y@W3?ZCg^nyz_hhvOag@ zlK*VQ$R*_(_-o5%jjq)tCVG2pzu8}HzQG1s3zIrE<8^j?+>^zP29c4o+E1t09DIE} z&FRyxqsBJ%iLEE%Y>sz}>lf7JscCFJDH3e$7#OhOWq86I#Z3?26<%`HH?CY7xt&|{ zNSIpF?0GZHH_ETwx;{Eu#B!N&v~``$$I`IViyE|w;}5-l^oJ+D=9?zNgUS4MN5tpP zy1ux(Si{;;e2()ig9kyy1qDaU-mISd)xc(h@E4P>%%8Sx?E7(6>#@LEktth$=2#uP z`BF1(Zv`8}k4HD3SNz+lnfU$D&*GSv7zT!}n`>6JbHB~5Fy?dd?DCkw>9zi{<8iLf zo{HOr;<kTF$YGz=eWuNVN$tw^8MF4K8qG|oNzJLN{B`KL=W(NNTNf^!(D6v3^KJI7 zzj}Op{eRyFNn6RUl$c|#EVP~H^g8}GE}te{JzSffY;0j?ZGZUX>gfy(5k)G6Nv>xY z3dDHku%<lv;%24MCx7$0?UYk?GC9AlyxJCjUMqLr;uh|0mGhE~jFdW;uRp)=>Kd-6 zTf4V8?6ovJz`@4Qarwsc`?I7jaLrD7`)1MB$o$X+Y6>goNWA8mE-qg2@eeD5!ujQO zN*WfQcL%Mw#JJGJ#N5n(Gt0ykMJo;$9@^G&_f_AlZDxNC)P-f-=v?b}EP2lS-K__0 zGXCG{evlPrne6jBeL|sX$xE@jTf^3FWw_{vvB0JC_Qi)qKc5Arc78ljkr{9ETSorR z{r@ZsHGdA)SG|Au`nrB$VPWgb6BSk5Q-5FeTWUE&_>7nFm)~xhHhxL#E3&SnNQ)@% zPPTsCaYAS7p}lTejn{5zZ}&eg95Z)5Geg|oicam>VH5h-8_4w*RAye{ikm<8(Npnw z28Mb2t6Ig++p#nFxP{y4Haa@r_-cQ)p@Un0)77`>FTVDeoA)KJZ}_$0(7tK>8}z1r zQhd8UZr=fS`9I=z{|?+?j<5N}85fcN>*r6^v|w@5pejb!r4LSfb!s@SzwVr5ySHbd zn9!XmYv12G_e=5J>iSaMIRW=`x;`%5$*y-UzS_`5kYk$boZlgQi+AZ<+?ZQ!VRK}0 z`90Qzkh;fbR!u%`xFsk3ipPntv+_$Se}v4s$RTbv_3@Xd#y;xLZXO8XRAXIo`B+G3 zq>7$}(dt9?FZln~UV2+{LHfoi!A!P|$1Xf~EDi2+m~ge4UtKsRX2$b_M}K;YTwb|e z>)_UPmu61+cBmjKd;X~@DY7nMDtTtJ7wKGmc8Hy6;<{zuH=KC7t|aQZHPhND{>Hm^ z?K!Y|y8eexJFEA_{R*1Rb7p##&S|e>vDv*Are^O;es?UAxP0<R-MX9$|G2qUu*v6U zKk=xD@zR{)+PRW9d;hLohptY2*?cPU-EI5JT&<#4u6i}^4%&FC>+?+wInCrV%Vuw| z|ET65T$1#>LiFRJ1Fdrv>V6z#|Iz>d$9;x|^Y*_4*2m8@Sby=VXxh&+{Etp8c$P9x zd|zLQ&FrR|*CUs6FUviCs!^?d9(Qi$)k)dhSG?jXnNs$LuM%pN6^MzM_qbdCOu~c1 z|9|Pn+_3rl@rBUj)7&vT1nzGxj=8btfA?zb^?%lda3&@frA**Hb@1R$hxN&FQO*At zf7vd6G*9JYTh=A>!>=;sy5q&mc~5Wp5XBu|^H1{M=l_4|e>`da&&^Qr^N*z7+P|M8 z^IqM(wReZ@(}N67rwkW}Z1TJQZpoL_iBdBYbaqVKb?EP;+){SKYf;%Er!sYY3hNTt z($~lDIZ%?N-qE06F5-HLzfbv~;$x2V^k@4l?Q45G|N6;zmQ<%T-8gBr@6VL9)f&<3 zGp2~~^VK%242pAqSX9z_eZBAg|9@_Z&*<^pVcOjGK<Luc1nx^hEh7JB#m3F4ZvFeP zprKiLa^8iv-?U4A=w1qY{aWEiq-JmAJFkqmhp#T#^y{BLKf!<bvVWF7zuKd3xPIUX z<B{k;`*(t<s+H{Lzb7+V7M)nQrIO9$?&Iru3*C74t`Rty_51sIhNTAEgkOFBY&>UQ z)x%)xV~Yh7E}Qto?fi5<)b37HbFAcRzjRBhy>f2vc20b5mtPh8+kT7dDy_3Y%IAyk zU+;IHzGG8&i0i!Yvd3qvmA8Z)SQB)8zK^8PYR(DE#An=SJ*uR?ASnE!^ZnJi4gzmw zB@y%GN2FOQFLcgb%$)!3Xe;O9x{rS(<7_q`Dp<Ze&araZd7r(x;ng!XN7;HkSJ9ec zwlLlx(c5eN!;{g%>N1ZauDxEHACVgy-f(*DlGQ<p(`FZ}`~3O(j~|Em85sWml>aZS zzt-S>iIr2}nSiL$8!t=RHpYt1^C^DsIRB|7SN`W!%gi6kIB~dyUEFp3{lfIum%Jsn zT5qZK6#wOQU3EoFL1pG1S^fAu2R^5t|M2Q-Hp79Z8Bem$uMYb8I5DQ-XNbrFx7~}k ztmM9Td7Y%mq3Q(Nu+<+nq?|hLH_J72t-|@@C)d1<=ANzbP)<M7VZs>p_12y<-9nX- zhfHUk)cM{Nx%VI=pPw8v1KVNdC1D<UTOGb%b>g12=Jp=VDc4S<PYrl+V_A*Qa%1^l z+7`_H5)!Ld+3%=R-=27#VS+f9XV$y<;rj6pj)eV_kdaaH4A$4#p7VcmR)Tx7*1I#D zEv6;1r4JmhoN8YuUfFnP+y6}=8dIA-$d#~te-Ik=`+Dla1#3KRmQ1T=y#Dgcl0~^r z8t-m>UH#~+^o?JW!mFRwhB@tgS7{^XZ!puRRz74}Yd_bQzx}S2zo-BEqkdUaZL;RE zMy{RJa&MT5=dKEwRwlUQ&&owz7j(Sk=O)bCZPwc3d4Jl}AiJ$WQ>A*m&%806{ggHB z+U&R~#c%6RYc4tR&r!JKQJmP>_PFX#(qC@HxYY^VmgEVzB~ZF_Yv{MqQ%lY~zgr}z z*mrh;wx{)r=%pY26*QdT?Ks*uYmcqz-mLhV=A?J0+83=pkg?Xw=Z(UTKVM|@=gqcx z?r-;-W&OOF*DLLqLmn2-^$vX+@7pcp`f$qe;`LM3O#O6T_MGG*52ekOk&)(~Eu)mW z{y0?DnoVrn@q?%KYNvnflWVP7pJpljC^7rE@cOPfS4ArCD$oDS5t-$*e6fmaz5&lE z?y$tG)y8rhV#~I5X7|tOT(Cyud)c+r&YNq3{+4P=-Kv{@+s-YsZKdpr*q&t)u{XIm zFJ~@zvs>0QwY<i=wod)o^{vroZ_Y2|%Y7R&jjKmAbfwR^IXg@((jOe!RxG%13-hCk zTaJ_@sdc;BMdvTtu`Kc0yg4}uWx>G<%T{{E{4nY*oU%Y?wTKbpyVdyyZ|5Crc*135 zR9k)Pq=N8duLUztUcI{Y+`5^^O5e)eI`}64Z+2BI>%3;?6R)JsaB<$)!qn!K?{3VN zW?H85{NBIF<?J($#3?&ZJ*#_e?XCQ+`AP2*wq9RnGPg(Rh?%V0%dC&0J?u{}o8){H z;aIDf+H@rJjmM;{%hFR46y($}rT|=u*St9Jr8M8N-RI1y<ob$+<L~#dGo08}JBPnF z;MD8u>kBK(`tDqNZ8p#4_0vaps_(M5w_9v7?Pzazm*D9&x9w7?U|y8sy<RR{N@=YC zH`l3URrx_Hr|`GW_AT;B_d8q8ww6oZVcAx`tR>S!wHm|fw$3Z&OADW|*urVQ{gH*D znN~IyPDxYiQWvb)zfQeyslh9@h;sjX!Y3?Ja`wpoeJG&re~)qVy#re=ADkJwWnN62 zqW;`j`g{IbJnqPqax6DE^6;S`U*B8Xf|3>$!`nq&*K^ZvujJ=>CnX{Mt=d_BT3kj# z%4PmfCs|JY;+ZM%;M(L92NjfFu6JC1+4-93p@Pg=2aj4AtXY}2U+HvM);-rHtjTw{ zcYNLL%#$no*(tMUT~27{OO}RDU!U)sp!Z3{iR;L=BFF8wo%0Jg4rpw*?pIE(*;`$f z?-U@`yitp**YKHbbKsl>>GNlEIas|@)Q?eRez({`BH3=M8wX#Wa;a5emx{5V&BO@| z>n}N$E%?79@LJ!h?~=wmPBXsEPm|^0>tFch*yf88N6*;Imu&A}^r+`|y1{dvL*MNG zuIcvs&#-ar$+H#3wOOk#UkYnrO%^!FswBPj!fXE8_=!F08dECYaUHAG;<)_bx(64Z znre__h|z}cllgAhJL)j`Ug&I%P`Pm3$8NeTTUhkdm>)vA?CkCW6M03?&VTUd%!;=C z6<=l2*T;o5Z;gEC?7!Ks?co6)4LRGorhf-CTHOnK9yV6$wrr_fy!(yjZ3AC^^`mAz zA;&z{?)r6b@$n5S!!2y<TQ446%2~?3py=u0wXu0h3{Sj%U)Z40cX4a;=7Sshn->f3 z`TZ_<^V`G9@my`iFGXjB+fS9=w|`O5zucT;hm)<G+3XF?4;8OWH|gs;%kucmSIM|2 z*Vm^v8~YsFb|xY6$FwPFE5nc5+tsz)ThMP}${p6;&c5%7VD#p{>+9d&x%{uZG}|am z%<>J(;_@qpqx1JNGraizD^C9Lt5-rhb?>vTeds0b;-u7<oU-jq)bh)&S>iEl?94|t zM%JXvVeeMSPBqp)`e^6>+xr<FGTh|N*xbxF&!$qkVdMVG=`(!XG(In~l0SFWN!~|e z+vfUdsUE_Y|Ls03w<P=job_8hcJC{_b>aVYPI1oIuJ#_~lB#9==`jkg&jhdui)`PJ zeM)oI+XBU!7uMUqGc$0!{8cILaz8=(b^_n8Puw51?aKeK%yquix_rmvq>74$8+sCc z%Y#LhzAUd;Abr5%^UL%(-2Ztd7WSB&{nNBCW5b?juhtmZ-7&fP_k@ITu0;{|W63RB zBWH=)wfY-8`~35)>h|Oa#RINO`vs3)T5dD5Xw%n#s-_*>n5U!}iUrJx303I}J$-zF z*%I^DB@@!pR4pb6F7rQg>f^`P?iSU5xt?E}Z94nxp5^5iUMFX?KIG%$n;5B|yHF%4 zbJi|_nzyB=)tok#>xv!Hnq1xQuI~Hs#}iHlh54c{czeyuKKxO&`~5|E&U~ra{a+-k zwl@{7V43{L;^XSShaWP^?M>bG^~cBLFYN6VpRPqSG&CP}ejk~sa`(Zs@6Q%nMm&g& zy!B^0hjZrl-KHOoAGJ`r|8KX&L>UV^Mus^yQjdRJx$*hY8<B8j;lQM<+q2exueSa2 z``IjBe!dAySH}M}S1P==d27<|Ts@mld6P|F#YT&<c}VXxe!=_k+wNn{aU!a2;mi2G zr_{8byy9XoCH3X)NU7r;i#TSAa(Hb%<IboW*yVS=qIj|epU9DL>tj>>dPBb-zWeRI zY>%P*F1r_e0XOUxYk2#tosnucdx1vN6lnwbuL?^YlAP}>)?nLy`&F8(%C|}Z&z(sk zC(CaAUssqLT+nx;?UfSqC6!iT{^y%M9W&anDyg0C>p7DdYm*X`R-0YfWF~QM%a>*0 zdp5)^={L;(Z_;=1HE)fGN944Elaf9i3*K`CrA=XDYAx4WA|GtH@86B|SZ8ys4fh4U z{+`IVrpk>=apDb*7K^UERr|cNi=;0k{&p9*dq85w>({S;O&59RcZb{eLg&&M`aiFF z+%)=rA)O~?M@<pixfs3lrZvfOL4}hRU4Q-P!6Ba`>)nJKW;aHyH+EPb-#Xpv;i<ho z3qq&P-m~q2R+)82uE?>yXBV3sJ>YlBd+moG6KBfI+h5w)d|1)$@0((V15aOS>ba+F zGMepM+fhAfnZ&IvP38B03(d3pE5z{N#S@81#s3$azI5ifrP01+s_$z~z1%tf+U`%Y z&q+V)X*}&^YSSs?@w<4|QV;92N96?u2X5S|x0%Ou=f?ioUoUK&e{vJwk|`Q79`h#b zySOf#;|1f^ztSA)xlS%GZk*gEV93Vq%&<%*E>pdGawKEgTlr3oAg}!%s!JNaB~A!^ zp(S3l_h_G}wL<M%*WU?iqP7StIZeBn#jn(6$K$jroi%M+70ZsM4Z@BGEnC)y9axb2 zwckT+!lGF^>(c%&d)F{6p5glW%mZD`%6(@R1&Q2l&C^>|$k4q0{faGZMOW>-SeL)g z`}Naz?)Gnr$JR(qG1;2A|AD|f$G16BcjS}L`14r`cd)vv_{tx#bWZtvQuVRj`<afv z1<IGMnzH%Qw3?K4cYp7{_Hdyc>#A>uO=>bl4l+bM=SycYD*M~BqPMwrWk~LpikM8Z zwWn`MEI(RqcM)_pk&ge`{=82QkNo9YD!_E->Ku_v)lL?VC+s;D>|-TtZ{e|tXYab1 z3)BlAg@5f<a$gwxbNwotpaP-Ovd=Hw&yYXE&%}@^?+`g_QTE&A3lHSVT|M|v@z-8P zHg<Q0266qkhkwpo5tr-L+v{-lLqf;#{@&xSUtXSnXtMgT$Foa~MK<4guH&V6aE5-= z)>o1&_4jN0a@YNqIV90uFj-iSA@Em>h31U-0<XssGev{vd|7rOb*sapJ=+UKoU>VN zOUuGSZMR+Jd*`_2x9f-RZ7Fq|=B8*`++p!|-Wl~W^(A|H42Mfl75|KDx27wHcsWMp zFA=EO>z5MBzw7VzyXDNEnWGec{y%?j_K_2lVoUG*w{~&i3;o)bw|jSPT8e;E-1fJ; zISvYpPH#4(Y-IA*5pd$*-1xFJRYk0WRr(39Tf>dbhKJjF4c|;moyq^XwxZ(iudlDa zXPr6IQT=}Vj^vcou+%gj$(f~fn|`N06*#=t{9Vbv=Q1Ma+U@1V1=iUMNitv7IdZU} zQ@XZ^`-k<KRa~K|zia2Q*k|jnef%*ny2VKBPkQTv2}aIhQ!>8#^4&i!m3-&Wg;mud zqHEtA`(j+S?cV!#k>$3mKZ}wXgn5j#n-;lu>9EuYJ6++re7>~j(!#UnpB2AY#T8b* z`|^bd`x_s=A6_zTDSw9{;|>?KxAH-0iR)A>)|aj*-0bG8+1s`A&ezZocbTb)?JroR zRwA~*Br!~2otxoNeaZCL;;9$jhcI1h(%bRd`tgY=O;VA?3q1eSciC{iG)$S-t}(mj zAmdbzJHB5I-l=o{^WnQgWKddy;i4^H=Wi8rUMtcvIs9<X#OIbqlC@Xk=SF(}{`ypO z%j*A|Cm*l)Eo`QH)%yLOW_LfKGcyj{iD|!*kid5C#cd1SvuXF=9{RY}wmRj*(<dDN zwmWfU=qkkCEznc^G-H{z%RO<MEuVFS7xv}+4o?V`To*ojS!-Ry8=a@$1uG98h_#<` zQYYeoC3DYe?#PuFgmxsH+m!LzAyaggXXwf!-{-e(NvQp%UVHu5yXVDuay^buHvXv< zW74#cNM5n$H^U?4bCL^c|DNPJvvldEd670X_2Rd>4koZk9NpU%KB1s*&xym?nx8Wq zMHam?647~K_2bU198JAf*4s<3U5#Du_vGNDb?a6p_t(CC?0d!k`XiYRRW2dL3E~^i zY+mCqZRykbF*9G^?hSLil*ce-PV4^ugjbiC!%`pAp80IU{aINtb;kUnbK%?TGYs+; z-M7?VyH$2yZ;-0MY-jG0r0N@&UN6&o;g~0@e#BKw{6<jMjNsYE8FP;xWlR2Wc;6JE z*2znrRmv?bs}%h6NMd{Um%GoS$|l%-$=eq8td2oQ=}E%bPg;61tjA{<&Y5SqbKS)W zep%(VlI-exCr=KxDcyN)`DIPFbI)Tkdo9gZh;2Lf?6Z*D(K)ZIH=gD57TR!h@5O@N zQ&tzbjW=xQm=NPoEU1?5lP2I9rL6XcMd4RZ(YZj2m(^h+0imp+KT9gK=D5Ev`kdYL zgm;##_RZbb3iJYYl+AnUS~2&Tq4><cpIZ+qq>8DfoB6McU!&7Bn=g6IyZyU$t+P}Q z`$za!-YB<dKkJ+m@BQ4HkD)TKMMCV5T1nfN^QA_iVsqMELqey1c)ETo*G97gW!m5G znwP%jsjSR9egCUtklM;U7Mpaq>;BkiraQDpaI?wu9RFv=a(mJxwv4xX`7?Je39mY~ zb-QQxl0U{X8CyGx7uoRVNi`L}*bq5k%KnKDly2^LBxBS)TW9;Z?WV_HHRo+~ERO6D zXPVs3ZZ~;msehC1^;^&SJKxSPo*%T<Zn>yu!v4R@cPsNTPC`1_;|PNSx79{l&kIw^ znvZOpP?v2ow?R_>uI_;ti^!!B8`_xd9<9HdeyX_f%-=W<!4$9L#my#~r@Nm`Jj{P_ z)(*B~kMatqxob}iE9JIgHz=L>MUuJbxtD>Q@1b`eQ>vPb#gEn&RW*G)5moFRn^adk z)#caPCZ<IzRnM<dG+W)Bke+=f#aCU;;M}6E%JTgao-$oJS;hK1;9k(V3K#VNZrEA? zk6!g19FyMYJU+4M#=pxBPOE|*n(sD?ojgNech29hW`fQd`BmrCa=TQ;`d^kvF)2LT z$x}Kxu023YWW|Fs-`qQ0Zfy6}+_AOeU{w69QhD#d)!YAmwS6jV@6UIy@MrrzHO>Dg zD}<QhPR6utJ8Q|FzGfK<=d_hiF8Tzo%v|c+VEp^ux=XCDnF>|z)-O=&dc4p6<fGqu z9!ouRUdSa|@O*z~+~CL5Q02WyWYhl#HK)&RnEJ9SpV_y6vs7Eew#s?U#&XZ>g3>nL z7gw6u-nqc6#W2B7cj;yxpAQq7E=1Qqu6=W_W4mNIKi70I-7i<)*)mLUV%e(r{9^3k z0}NKRawZKw<{U|PGtn%1#OMUdT6s$&vtMqQ)82ajWQi2p+$-s`BpD(f6`!aSm~-0a zNXPP^w(qRZ16n@^>lba0sDEL*biTlG#w8kE6Rw>&&{DFh=k}jF_vEegi*_5Z7Zex0 zHGa83;<<&bEh~f1vBwJAr+F=!Gw<M1KlgJ+1=qiR3F7X#>2dzu`DdNq9<l5VU1^Yf zBKEiKOrOA&S}CR%*dF8sI~$12<DGc&!Fe4O{*6*Q1R5M8req`=Nd24=>dANg;A9tt zcRMy#c)mNa^JIv+dVn3*jt7Rm;@y)CmzJJM+_UB11h$9fk#Q}%Hq<TQ71#DXmGrpP z>s9j2+MmqZ`1Z`c^dzOJ=;7)4s@yq@=fd?b)b<D-*j7CM?O}r>KU5|yv)%4t=3zA5 z+*<$Bh6wXx+oI3ata6b1Z72LYB-!W1a*O`^f<d<ocb<2>TV$PI8hE#NF;jZs<gF6D z2aYP$OiRBgzbout$Kwgt4A~f-%ecLs!ReBgczDUj!!<qK#SxynM2sY=F8!Vo)UwY$ z_cjBA;C$9xpB3uKJS|gBzTd6AT|jr=+fK`k<{ro^4w)OaP3m0xGK+tLvDg|J2ca9M zW+<43&e`d){M%xIGt7FI)^vnTQqVuU>4VkjO;H>A+Py*)HY5bfKDAu6aq`AuzSy4* zHEd1prA~2T8eGx_>t;MvjF>P*NLf8wUUYE+=Y*gKPh47M<Mb@LG6m0FHnpqBimpEO zb=&26s;#PF`(9o-RsDBj=+Xtfll6*Z%ieDe$va;omoZ=6oNYp~&9g6gT3cVgzj!my z>yAQ}y*Sg+6$SR!7xG^^wx;LU>dOt2^{idCq)4Q6G(N4ln-<x&?CidoPIZ^fb}#=_ zKJjqxyalJ$u*PN!8_5)?$F7&P-El@GU$t|)WcMo_#aWR>{grPX%sE~c_xxPznXUDT zkBkE*@0fjLmRx+cVCn@Y4snN#e-G_mtrz|@E5E|%H^0EKy=H5t_G}hdS!<%Dz{;;z zYj;5|LHBLvUmJ~8J%R@Jrut+Vh&Agziwq0?Z?fxLSf7zhkoasLuMBa4DW6{iX|`~1 zwNzQoivH^tP_xNm|EA(geb1~tt>3%dc6`GewLmy}(-l+o?gq0D|HA7Oc`I&Co4aCR z(^T#1`%Y^oIZk#=GgNhxICJ1o%b~JOf4<e`9K2V%{?cc2o!=!4CqKzdR#Doa^;T)m zC8;@~id>rnY<#9I6;M3N{ak6u)03ZMc1k}<P?2Cz{Ifvau;|nGV|AU;S6IE{-h}0B zKYumtv;S))eJ&2oL&rptc~*UTYvY#E-&y}=fld?4rDF*nmY!zi7v6eBH)Y0~ck#0I zdvB|>s?KidQT*X>yR~Z0oNAs&N=GstFWGmI{qA&oVI|K%Rq3hqm;XKgXSRF)r{_Jb zMN+-T^@Mio{-2=Mdvl-NuUX1Ii!Qs)(5(*_pLCq#MpF37mlNjCEL-u_u~Kl!t|;vS zwL?s^H}5*#tY4ly?bU(f$pU6-Z2YA+_ULT4ZTnkiEMK(kQR(dNg<Jk~FKT#jXjyiP zY<z9yHS=x0YyaxoGq1c~^?Bdp9rGEFNwiEUU@9-rdm|%U7Pzmfk#9|Qc+W<I<DJFl zx1Ij@Eko#-%A{TLCMw7$l`}esl_YsjTU5VokF)rv;$p$(xfyfcIAv*QHeWS!(Qm!~ zu;l(@rHGo`56fqm?|S(zb@Pwqx)+zN>HE29YJuaOgA&e9bs|GU7mCQ-d8_i;i*=>) z^T4L#lV2=P(tNa1Kxiko&T-48Qrq5=yW+dW@4kI;E%$xE@<{>Ne+yo*C@wG#|L4`7 z?Rk5VVc^6Amg}dkeXvK&CgaAENF|-yTPCQ5PKw&_Ci^#!#@gg7Ph76;i}{z?#(peW zF5}#*zk$MYOTPd0Kl~}bqU?Ttie$G~jPUQuH603jUs?Jr-tl?M-}f=!v=`l$SFE#{ zVB{8e{n)lPllblW{U&Nxi)^o)nr|v!J^Rv@-G0#y;m1ziuuo6$abVk7^5@*HZ~IsM z310nn-|6}nEZa}0JZ?4&4BYx>Z)(yq;ottN?!8&{CR}z~r9w;+#|5Uj5-M@WI2evC zy~@b&RwcTe*P|g;#OT`D16$rJp4)X`n|k6Z*CXkL30(iqY+{Kw&`5o{PgFP{@o=-d zq}hZM6|QefqyD{ATJbWe@P6q<(S2vzzMYZSQrIn;IW4W-ut|qo$maIH;QPCpXU};% z<J9s-?k&G-r#x-rwO^YYHJ6uv&a}$ePwz+T&Pvfv=$>pg_1`hmgq;1yRP4@c>#47u z9C7CBr~Fd~ZSAc$t@=~>D0p|*RZX49qBUiw^YTk4E}8XaRteu`-n5nL_}1OOX`ET< zsd+u`-_qQ~yE8V}ywCjUbiLk1@NR$8!r4KH_WUD9P=c|ZR{l1MPiXtEDS<*-511DI z;J+SmVS2ng_x5)ykAB+T{;lZykx45oBpw^8o2*~3<ZoOk7l-_TenSs&O`G$d1ai7R zOZ+vNvpV_abuFvRrLx=q2iQ3|{9ve)p0hspwdd{Qx2Du~bp<cw@(!_<{{JsxO<VPn z?y^0Pr@s05=Xc`ePwCbgx_rWAzf;>U&%Z0;A{%<>-u#3AZe+;qJik-zw$7Q1+gaX= z;xiika*h@)pHRkd`pCZpwf1*cB)!?5eCN7L;oZt?S%V8sA?5$|*Pj%YOunGxcB1{W zd-zVyj|>MQJ~*ELwCCCB-9^a@(}kYC_B*;|72mtO|GLLGJ<e_Zf7GkqWM^<$`<H_2 zkKgt(ulc;~biMwM^t|)a9V2daIql2dz2>K)dcItZwK`u{?7XIsY5r@!8Z2P7+9+B5 zfmKy!wx8ED@$R$c9((5RZ1iY4%c1F%V6l>y=MU3d=U=Wi;->X46feeCrz}{wLGtv! zDg1qV^#$bJ61H6Bv6fUc<ms!c`yBB5p7P@xvtJrI*}Z_TCuA{XIML*n;}X1b<@120 z3ANE5ZgpDa{5Q4E+SPnS_RPC|R<Cy$$~gVd__advW{s7#!L^siek(?Vyj898R4q7B zeZ#r<?Tv5W+i$$*S=d`1`_FmWLH-3lI$O-<wd-B-zxw-U;<l%;l1}n2F0-z%zx>I^ zAGJXE`=#&&D;M(R)$#?!&RN~tS818yHAU|F`I0q{D?hh#72G$w{^8dDy4RcE)~V~> z{c<Aq=&2i1ANq9d*8Cq`=+m~v<G#TUp^L`3w!+J9pU8{e`n2&k1K)CarCSLz*7oe+ z#%Kr^vh!E7f1Ob_p<ioJ>EW`Sv1wZ#XENU|tjX#q-EPd{d`;o^tZDi$&mDfdS?ENT zUBoT_(2W0Yx6Hg-DHQg*>wmI_);z~=&MXaLAvGtnH!YKA+v1?k@yO9I!1dt)gB#zU zxx|M%oK57dHDj#O=#<OY<+(S|ui4uF;pG_Je6F{<|6V@yM{&dZFt;3bPo!Ot;4W^2 z_x-Hpimcp97axD%D7}<?^~+D58yP>DGygMBu=-ZYdbh3DDxs?OTv<oc+$SCJYX$DT ziTIuW@`xAP1@^Z`*7B+HZrJrqecxZ^@)e%19>!(gEIibGw`!xa?kjdj@2Sp@Z$EV8 zE@_H5YRDJiT(Ir##J@Tczwa$%>RrV7Tm0ttqYm$j^hFD<J0A%98(e?((ortk0GHi& zzFS<`l=;pe&5+^QHH)*C_`~BoZV2DdJHTaF5oID8xZA=4t!<?9;z*PkS4YtjiQ<|~ z`nOWI=hXdXJLZ1(?U$}QH{}ZEu34ha{qEmguC`U8FV_E^ExP_%-RTGK&Q+f7xZ$k( zm;F40_ObGdr_bi6ij*-k<Sc#k_*!AU{EKhPxAuq0=Z2p>vFo?eH{WXhgA-yrI?pa( zwc0puURCbqB8FS$%yVQ-maLqA%g*rF7PaF0uf9dsu)QkYk$By4_S3r$v?e{u{~p!$ zO^2t<_{!A&ml~os@7irI|7(yZcjsY?pNxsKO!M8(8#exKiQKy{uSW9p+x;&uvfpO5 zt@yL3>bhZphUTA+w+mUVE?PU!mid16UYQ~Pt{wc<j}rJ20{;a_ED~LK{@UKlcen2d zyHy#u@0Z7y2*K(Ej^1^Dzuo_O?2W+hd(Md+w?kdFPvEzLow>;3$iuK{fpGbSe|53d z*MyU*`F7m-zNPfem01p-Hr>wo`eS>>S;;)!FL!p7Yjl{cN?d<RGmQIv-2WBNy%#>r zw-4BPpYiD|n<zeu%Ja?bVlR$FSp{0HeWe=qZ1d84EgdrJw!99wU0AMqZpO_&AM-Ao z7WLPjx@-CFx2S$z=)c@e?US#W-Ix@U6PC4me%#Z><1g+=^KZSA{qxdw(F4pn)18~& z-bl4QVpgv+;Rw<}KWq$<7dp3IDT@}?{+_m<)$HE1uM?Zh_id`<_<lc$<?-(zt5QMl zuM$j~ue@*kI*m`w_I+*9_hgOd9fd2|tP6^7u9{JE<q7Yp`t8DB4(&bvw=4UdR>b8z z$IIdN?AuS*TzB!mTkzdj@^+Zl^_$#bvB8%;&K^Hiw12<nsZC$^*U!j_X1m=}87*7h zTpaW}zTeY`X^o1mb=G%xM%@dYXC+=J?Git8=}XmN*57`Un`JLmt-a;3W4p0^#w($_ zD`H|}({g<;$vsM0U)eSN+o?ATr`AggPThTD%Z-$a)h9|eI#g!lZkM+5iga7EG*f;{ z<?iJs`MnG6p1n}$v_^}vBinSMuasLJ*}MG4*<b$zz6Z4H<l2ed+QzWXPAau3cA5QY z?Z^#b7sG#sUu9xYNcA(iFL%NF>#D6x3<Y}M3N4$Lb*Cr%>`2YLT|Z6KkHh`E!*reP z^+_`>FwNyC@N4R-b$Yr#e#M{f+`fI^*{A-k)9m`VPyeB#a_YAC-W3;m+$Pt?Gdc3` z&6+3#FT0O0EMP@RSd(@LGp_x*PygY;2YZjYD(QxLP5hteU$NgxG3jUU@Av(oPyOHS zx1V<U{_h8q-lx|u(KAhrWLja*?^3Q2s(AX-2lKCg{|0COpPK#uN!DfVV-l~j`9O&k z$wCEgE5|pDp);?Xthyl|a_x6&=+EG}CI_eAO}ki`Kizcd-*rn;cV-{S-X!y_Ti~{T z?ezIGP2Mx63T3iw{a?3m<2P`PCOX^h#^0svxA+sS&V=c2v)=pvR?h>*P0P*%@6!06 z%eFN+|G#FgPC$q5j?I5JpL>-M`rF(fA>m-^^BKRF`p)|w-Mz#2b<?xchnw%(p4t$) zzI^R}#)~B%%R0W-oM`#Q6>Bi{|3(Myl1F@Rn)iFx@AX#CZ?Jvqu>5*f-roA_YuC(G zyDp}C`uN?s1$T72zn9%SR-Ik?{eJBIea~la{ls3jZ+on|cKP3T7t{^P??y*I-S_Ol zxB1rlHm#fceS1;L!zsV3*z&G2UWokt-CJVYLEqWCf6d=^>!fY>s(l}yZr{JL_eR?` z-R|9Io3G`TnckoI{%}#%ndEq5i35w?J-W8$^S(_x*XMJ`8YsISpXh*54X;U&x6>-C zujoCxTJ5o6#%ZH#?fT1XkA5?HVD`G<D0k%FnZIq~ZoT~^KPfd!dfNNi$)DbD`g?!c z!M5<Zb2n@5p5ngt&e?UBcE1g=d42omU-lcvPE~5y)vR8!{rlGc>)z$wExc?MU7gE* z=Rbq=y~ob2hMT^q{+O0`V^v&sdFdH}Upi$^&L8-jT2n87<5cMpZmV0H>cDMPiEOLM zw{CY{S-tGyzQ^Co=d3-SnEfO6>4)_N;ceCFhxcyUrdFCZSN!B%_4nn0W$#_m&fogl z#<P8@Aioszm-k&pF_&7mJ9gJ@$SmdcP+7BjarC|3YDuRTH?2ZEQ2W?AFI?sx%-g8u z={s$)#Puuhqu+^r+p~60=8WlzCoX1v(KUU+aLfIkd}hUV-=*)IbMu_{uKRss#b5rl z_dm)w{&!x}tYv=mxZv%8^UO;kMa+I5Jb3upz0LFG?=3t3Mr^fV!m@hdst-nsJI^0< z<St1v$hp=ytMpvt?)lgM-gcjF`NZziyKG}cy8{dRK0E9DZa2x``x<7xU+?k1>KXqo zNZ)-v@0!>5_}dS^+fRIUaYsMD7XSH8y$|>O?7X?fQue5w$F2juy2fAotM^V*eb<#5 z)P2EzLXY{80!561r1a0Z`2L{dZ<o5O<pnIezH_zZrN8IC2uwMZ|A+5VQPq9dnMay- zxH?L%ukyI(SzPuF)C1l9hhMR%`ZkZ@rZ;{+SDKe}?=)8bopAgAKA#uTR}S+1{URm! zCT`(^r$@rpNS1GxcfM2^{Nwz+`R&hU{5t(qM^kqG^@QV=8T_Bm-FjiXpm6#Po~Q-F z)raqJ74H1(c<bPdXxS+7924=k5gxm9yQV#jKVCb>)M$P5aZ~O8CI)+d-p)6kZ@6st zYpW%WmyUF;`)OdVIn($3eHHG9X4y&0U4MQu44dL@^JZ7_>}Y*npZ6DEwO{#DRwdT6 zvv~4{eaU+DRy!)>k6hdwEuV6$x@>aYs(wp<oBYet2H)kEnf1RuICsfQ+nJ*GzU1~+ zpWMp3;<mb3iwe>amf#lZmvakGRDWOa&EK!@+?MpU8sdjG&XPYazxegt-?@u-Y>#C< zocH$ohCQe6Uw6Lf%5t19)O@#G@`j6-tru19PfVC|n<x3Kh+}Q{ujmZJBaKESUqh;D zV|$Ljz5CZ};zzy-d;RP>7dmj4B&pu@i{e{)+2?79XV7FeR^uLP`D3A9&fZgZ|84i5 z@zS$DDeu4TPv3TP2Gg$B|8K8u<$bblw%oGoqE@bj^&K)%|C6VQb>6m7TK#K++57u> zr|wR*e`7Iem08*6MGfNYyr|8;3ruq(PJURcUYmU3*j3{<{#&n{la<lyG5r1CcmMsD zS8Za<ru*5=k$Um?X3C8<|3BV;-E%Oq<kw!gptVBmt%ld8rgtAt36;OpmtrUP^IhGm zh3Ct3u3VKdQz=ycm0B=)bFSgJ)ROJ%*1LXxFY9ObX48Jv#%#-`@7wmx&)vl)KWooM zZ!`VwZ(EKx>;IqNrMd9wi+8{I{u(~9dZEqNW*yD{T%l}XcY%O&-uK&u*Oh8Dd$ZcF zGw{@DUDi8!V?*x$5}VxjiB8-li^Nwf{*V*Km+LRgzv<89C2QMEbtW_KseROV`Bzq> zT+{Cje^YquuAjBsWtn%oWM)>;jxEv?9w;2YJGVmPyQjckN1<}WT73zI6i4+A*&Alu z$F_aCw2zsaUy_;myFJ71lL6)4xmWgxeM<{3c)33;x*#HByY=p@Hwv8h+D%_xcx#or z)b`e~t;=SgDQgcAj&nPG>#Wj+dkd{p*J@8*F{AI~jJojZoJa2x=5Kahnfd6#jV-xB z+%|j}jeY{w8-JRV-EaQ3vGm$)Fa7VkEM9!QqjqQYH8!{G7X@{~mo60?JFrvKzwli3 z#EtLP^7UnGnzPLI)|O*sr}+IWD`ZRO-(Gg!Gd^yYugCh;_s-vwtxmoAx%S1UA3yf| ztbg@=^X1L10=fn7Wjby>33R~ls+Dryqte~8(}T1VD`s}h^1bu-+sbWGx9;xGR^Pnx zYC-hM*uN#m_crhHytyTD>)p_I8BrY9_pb~(5Wm>)S{5IJS7^i()m5vw#GmY+o@)7N z5kteV^M`7$-?(PXP<Fd1)t<d7^R@FQOV3~1@=ovDDfoB8lDFlTUEbv;pXc4F<MU(r zwfR5(@iRzx|2q6+dUjrR@akW2I&Y&jz5duAUc0~a{7l_j3rk|!9amMX*(t$jUD^@5 z^?hma<m6Yy@>W|M)U6htJ$mu(d`XG7DSO?Vce8edad~O~j><03V_<0FKH=lUar?{O zE8hcN2HEBJxV`<b@`?Vr=hN1y@rmhF9z2kAYl|5B8bueWcTTS|!h8iL{f>F6zG`bz z(6+Ps&x&K>;~%~H#KjOWH8kV3dirvUr~Ql!P95ihe74@wnl5%C*3T(SH^A)Sw-}2` zv8X#DZ~EVstKPa}VCbe^DtJGA-G9&XhptVj{<G)or~8H5(^h<bmU3AA?i1tF(vHVk zcAIUN`fY2TUXWe*_;vE%N1Jv(PZbE=sI~RcG5gqe|HEz6zy4nnn_wgsykyJl8y^h} zquSFQq<gFE=hYeOUN3d;{_7W>+%TW{;-No3EZ$t@M6?rSI8z+eqZY@$?&Q4oA$0!I zFukQ~dcvowo?6Aipd-e8CO?g#Vb!Wb=TZ$NA3u4*GWny3L;LPoYh_ZKU%$$@9+EA) zW~0@{6+0%kU0$~P`--<_*Vnc?aTFwm^33^sZYuZMsa@MYC6wlF*_%CgSE~;Dim1|c zR~{|h+Ez5_8|a`k`PvqKyB`7!1*MgJIVq`c-@hm~kn?@>e(sgM!cqFO>z2HUvkVI5 zy0x<4&CkpFYkwB5weJkdIGFr9|LRe;Sgwfg!VH(cn}>$pjr_Ngd-DJ8g>qjm?DzXU zfA0!Op{o}IR#-NwK3-|I(f(uVIm^RE)i=)6%_~ciso@sAT68;a>$z_s;;XM%p7xsi z_35r(=26)aqPqLO{%db66qlJ&Y;f$b<)!a?*Y+6(Z~kFt@@LQG-EEqos$TpG*F3IB z8BDXevoF8%k}$_Z=1pA&?=xf9nr+zEn!z5mK)5%v_|Y6btGdRD*Va+as*`sVZDe3L zlWu$_?K(rl>F(l~*t<8rKQ~V_u&VyUGN+cw)sBs!W8J(4F>9a6XF?>Vv3HeSJQurQ zmDU;YVul8-)wf(?q-DhnR|R!OH?mdCaWF7{;jK79+_Gz9tjM#-I*Z8+!SQSnyXNG& zuT0Xq@Bg=P`qSPzr?pd@B5(1odc9hEPt8xkx)06onHcP<ehN*VEX;7A!sh5~`QV2; z?%p|=xTx1H^ya3SXVWyiZ*P|nRzG*_ML~bmOO0xig3os(bmMopCeC|)qDzqBx6PJo z?{>#7JpS$AH60nNh&kbjlV7rNU*DdcJE_Rbz#t&h$nM8aL-wBdDb3Cv(f?cn736<@ zn*R5@wR5FL*vVD7>C6YF@7E1q8nUAJ>`&Q$X9~Bg$f{4P-6kn65S`M$;nHghzb&uM zZ4ux8J)`78RQp-=wIweO=h_R)@7gun{n5GQ+8W=ZLQ`+dSUaVwyWrRX$@U4~@)bW{ zkS`Q`?UZ)&)Ec>1UA1=4tPg=R&dw=Z9;0&8|I$YDycx@9hu7u4^Y-CjoSDkdV54s} z=R42RX2n~WRkqH?+<*mnDQluuZ_v(}c8D{3Y15k8Ks|%vpl`2Nd&kU~&&+Txe*dA> z;p^YL{(RkF-OBx+PfE(!Ry7^(4?q2Uc8qaQX0W#PtY_Cwulw%Vyl1;k;ajGjv+2eL zGZJPt876+;ziL%N;l))gMM2h!wKN`=&0{_M<%x*@yc?^<m%sJe8}_XIUC8IFfAhY+ zWk@ZIw=31Ya4X^|)0$a{cH39A&%S92vV8M*(8i9sA42`|(WNK(|DNbq{j{fSovF+k z=TdihiR7lMe_nlJG7sN&M#A`-4R?InxvHg;s*3dFj#ZR0wV!yCzwC1GoT}6BGVUZL z*fG!8Rk_>MHu$f}TG{V?#!}6#!S7=B*d4!mRh1z-G)3=%dihzMT@NG<Ot+MH5L+bC zULy8o@@3;Wm8TzcY@e_<VRL%=)PHI6cO(l;f7+BzUO8vCM8eaZJ)0HYn6CKle{WOv zZ{6$iFIQ~Ylr@RRX!GL@B1S82MI;$-3oH6P%P>w_ecJ2n?Y};s&+7mB&@VN#aa+#m zO*~o4H|b1Xkiw?((!clGg_CnUew)od*C>`6AgC4Uq&!XgImbHLnI|S#PG7d@gkmZm z!wGlglyj%FQ`t0gWhIld)@2;e@ih08o%)o?eBJ$>J9l>GNp|jPFl3fpwbJhW=JO4I zyS*DfX1v)ae*3dP(`}){?P4!n<~DwjjB>wUw0X(Lu&G>=+lvB|9zOB-d{f5!dYMyg z-A68c`x-`uik}x>8_bsKFPhSAS;8*7jB%G_p8F;Zozp_s!|NLBm{lgn21hTLuJOFA zXoH66lp;fhQ<fnw)s(#+KY1f{>8EhdvBw61+24O%Ec$&{$*WL&N#K;p+ADtRzuJ{^ z$@jsjn=;|kr|+<-=VjQjW7mNjKNlFku&_)!Zu{{TSNOW8hqgUD-F@01kokF{P_}wx zq2uGzF`3K~y_a+gwgi2+-H;loc=}F@#rf#og9(>RCV4FRv3BmlYNzUJRwr)h>zyks ztz<ml*H;`~S9VbF?wpdyg+X->mj?VQbk5AUzD+!|)u#XH`=$GipW7z=;+V_zO|Fq_ zovPx;eqK6uZR#<#kEM)j1Ap>5hqfjco}2ib%b}<8V6T1Eo4c1b&g-stJLhwh{ETBy zZmj#ywfetq-DRHp-O_6hFZ%QB8Qb;ic{Ow6ou{tTDJ_Y7#B;&n#+R_r)>T{bsza9s z=-qMivgCK`3R<~qcYByY=jxjkNq5hH7S5l0np0HN^zq2CCo_GPYs}I1o0ht5i`)q% zS%w6jRhtfNy**>^&YfJ+n=9wF<~YpRyrGaO_ffV)h}Yp4r|MZsljb+-=ubN)(6mE3 zOBFsA02w&G;^|u^eIfPVQGpK6*&DcXn{P~6F=uM3+5E?8Y2{Pb=dUZQO)g)m9~b}N z&z-3FbMgDR4mN46%`rJ^=DW6G`Mz(kwE!m<3W@%B7<hVf?*{FdP^kx*3evK91sfw+ zB1<D(SKh6$<DPaRGV+i_?@#IcTlcd|lI~^K7XSBSt~y@kb!-}wp6hq!#lCO1hR+HK zZEf9t;mq?LyY?MC+FHw&W`6yl*XBJOj7?D!Wh!pUuetSWfzNi$tr>gG67DS8^z=*x zkH<0A=7O-PUasLXOGAC{E)HqE6uEziK*gsgnQwoz`<lPKub^>d;TE@-I^8};cm!j@ z1$x+*HmzE;G;AeT>Pt}`QLpk1K3qEUwnhAlwm17-Wni{uxyq;Q?%A?T6FHeP4mSri z8w%?@P1AhbULPA8`eJsAz=S5}*ETi!aSt~gxf?wv@@&hMLYpJ!K73YQYAWWJTUJ@u zI9-43q4$se$b@Dd4^VOZ#jv_>RZR7~v-ts5-}_gE7$*BhCOtfs5E^Q*?+*`iiKy<2 zphsV>M4ysRwAt$D?0;VFVQ013Jex}9^!{^qeyW=>pAK4J_y3o~$8*W2de?WmKIMJE zz`W$cU(5ct_MHEoGfT7^9+XHqm+G*3)wI9QB2G`p01ec8=j?QPKS3Zc=4i*#D9tI| ztYWD#9Ov#lFqwb0>B!$lpM;+K$yM4$Czx!zWTmLmG9@9`tEVkEg|~CE#WazABd%SS z9^7NU&Tz|@Y0Gc>2WI|L<Zp=0*m=?;Qd8ZrH;;?m&_efjusZj}4^!7YyL0UKrpljH zyBzu_)^0Vtn7&0Pa3|-Tr&m?u=I=jtb?f{cnJGJ`UQexLe5l5|_R8TPo(AXm`em`r zpMqSMKJ1bY;&@?DB$W}~5+$v%_^_I1<g@^-uc7_>EqxY6w=Dnq?Yu<ArjwDG(bL>! z8_0R+Eii6;kk+7K7#fuvxU()j@R;F}p0C%rqOBLcUw-azo8b-Hsi}{?JO5PY&QDhG zm8zV3_0q<ltX-E@O<Q#8e_R2df!w<1WhYgiyT=HWxz2y=AF&{u%iO%I?$f8m(<}b7 zzh`E!tNCb`W`6C&0`bioKFqs+CSVn-nBS>7<K1qSo9AaPyPLP-u8Pj{cb1J^8;y1} zT-4ez`RU9fCs)SS%=fW7bYpMbpC7(c&YAWWOCIB#_*5Wh-Iv*R*I3n(dFC9yQgSQf z#i{=MP@cpIc_}k*{LhfkS!J~2`%M<kk262c_IHmcabX8_E<L4YtUbR^W$P67`+iFo z)~+jF8W_f{Va|Cilr^+ceyvb(`qsJnt2RWh^<~wJ?OJ(}qjFj+-w%VA$IPoL|B0!U z-%ENeu5{+gANHl6pNH7!ou6WM!Bc9<niI~u1n*sZab;iY(l`a}{<H69|9DrCwq1Mv zuj#W@=FaL5SS-|iHOcPy*3YhccI`QI^mX`-nUSuY4`ePMVp~14@A$##>%P8z_hiN2 z0PZsO=jsxvHVoen9%qo-Tl{d7#K8jAFxUGoi+N{kIDV?jW<|xWcY(WanY>#5cXol& zIl;33Tf!KM4GmZh_?&sE)5_v>%Uw+Dk(>07tNYeWt@jS!HPN(ihrdftL1Naly&ra( zC2l-Bla0r}COy*UXKD#YNTk2~vZN0dKNRwH{=M}-I+>wBZJK)e_vJ~qXUe7O?DJW@ ziii8-_4VgJK5CX{VA%J4@B4?Zw(@4|*2q7UR9$9#cu|nX+|pXR`R%*~x4%7>crZ1) zr?6n+6+s@O%;R?hCq8_1=-8DRKK_MOndaQj%tLP!oOf+ov_Y%g=h=xApX1j|HauE* zK%%|i@#03#Npfk6ESpr{9`6(Ge05mmbon{OJ8Yf3a|@$aItjd1kS{^&7hl`-QZ8Pr zI;+W$?c}n$q&-1~LRvjjqtxpH@3=1!i}X3o#G<XN5U_*ez~hrFk@MW+ce#c46!5OT z_xhOm{Hv<VzI%ypKN8(~z^O`1Pa>hBfP2Hi(#86Vu6(PuI^Fz#&J>}gzwMqgwVr9x z54-a)fBF`&DDD5%Au8A2@7jBS+0bft@3Yry9~)SmC`}Ytq$a&Mxl2yrN6oqXXFGPz zOElbG?|)3WXPH@6eqhg}FRs1%JKa7wmtVih`%&`6BgxO}WSqRjciuYXI@5Tnw_fro z{c{IQzE5XOZdg-f*FLqW;M!`RQv#NIvb96Z3k`0ZYH!#nye*Xf48xtsQ>`bQ;u9s< zg*X0To&G^dV4drZ^tFsHuY|5zr4aLsBb)O}=B=tNal9%TC%vvuPB2~n-P+JSWKns0 zn_*yJQagirm_*ufjvF6O94`;-$enBXefq8Y+B%zi7B5SP^gA9|UnX@W**{m|?2d&~ z4lSL$BYt09D}Q{%>Ytn6+aEsq)0^QyO`Y(f&8tuC$_}}g>b7!$)rFI~8o3E~ED|N0 ztiQ*9_<QcG4);6r%|VHQRrZ;(&jKDN^-K<4ZZ^lqa9&U1CehsQ9l9^)Y@Cqg$HjRz z=cbWjlKi<!4P$19mNgn&QRyF6RVW%i$>R}N<m}2(IOPJ<+>GARx##^Ro3kx3=2-kV zdv`$Ov~xFG6~xyWPhq<A^yir#r*}bJJ<Ef4JM^Cn+rEEW^!1(ZHjAmJXNz^^>I*zR z#?F7q?4V`IN+*r^UdLm$uKX`5z^<T}a$@Hx%i|d)ZqJq!uStFR=vK0+?sSv&zhdK~ z?c{^5U%q=TH)b~f!6}#SJn!7y==s+^RP>Lic5Gsx7Q?sqI{F5d8->>=*{t#mon54D zUpPs7XK0uWb8cSC&nd-q4;7YjtYj7EW__oA{8$5f_?#zpbHgW;%b)lpV|2p1dqYG{ z^`vd@DsrcsU3UFe)cx}j8MB=}ZE##<%3Wli%VV-->f~ecOdB>;2%fTEJ+<EB?G3M= zn|t{tf8#BGrX(NoLHByQ@xCWq$0mJQvP|tWZ_qcD1=(kx&oSQp%TN5py{QYo)vb{` z_G-3M=1rc(bIcU;7HEeqEE4*D`nC5Q>zzMecVD-tFXdyHadzE8rwN|3_nl*RUUS^G zgLUZ?uGw3*{eSrIb%KtL*4Aqa^TSTHRH#NBzml`qv(dfZpOK+|zMbpRRZ$N6pRDT> zJ60L9z`L{PVGt{mVPC69a@U3*w|eF8&Gk>K{P6O5j7-38)iwsy0lo>Wb0bdfEBlot zbl*g2hxgL3bK*13=Qo9{UZr&=Het={*{dgny?XXc>Xb#M&|{5bevjgM6n13zKC77C zyH$7T``WTQQ^oEq3p@H`O82HiPmfk|+*%%5VtL`#5s&?$tvgpwKU%{VUMtbBE-<s@ z$=wKn_q$tTy%(JfeOHvny!pz%&<W;YR~Jn?rRvgq)r#fuZ2h!{mOJ<DI<zOMMfQKr zltinInq{BXbclU9#x-g8E&J^AU3KlV7MhCBUi!H3ShM!Qt5;Jk?4MuUl)YAco!%<0 z)S&bPCUtc~hY1mrUT-^8dpv7_(#`7<57us*b2P+l`gHNYxrZexl*CQh4Bkmbtk7aP z!}NIJAIa&4+^*c;x1LsfROzdov|MdXb=aDwBd5<sY8bz^3Rd+pV_B`6uy{LjS<Z(% zzhg5NND0O?bZc-wGY#Hpo$zDv@3QOhr~96+VVr)JWyj8$4_`gIvv=RYR&W03dv}f) zwXIiQzs@7&YNzR41G%O>H_yM>FT-=HSD7JT+BI25hEqRzuAlR=nXPM3erol_jF#hi zPjB6RUvp_$?(OpAw}S8U4o(h{v+I4cD8?mpp+M%RNfHKvQmZZnx=wxiP|~CS=E14u zufDmy0gXav-*lJiHJP8XGvdLerJlcE9A*FU;b}WV!|U$rJ9h0ja>&(et(dA<p3}Af z(RF%nnV!CSCB&`Hdpe~p(~yawXSuL;d{#~VU%rpC=d3N<K4;0-pit4EYkTW{3Z0*C zfB1~AlGx_Rjw{?t164m+y_KC{>HbdTty4inYw{GsZ_b}tZ?Bu4b^L_x`Fw#>`&Vh* zIg?jVnx|eE9zI<|yiD0^I+tC?zOd8}k$YyI|M;o3*3Yi$qs-@@r61UB=lT@>dSS?L zLx;^aB_kvDQJp?d@2fjUdIb;oozaWGZTF)2x%`5d8~cuG$OdgR%q_nAi&-LByqO`O zr+dP~0~vEY9#-p2PdmDiT{Bzf|IwPp)7RHCGQ7917CRLmE^3kNn6!36PiWgg>*f8& z7Aw4O4b14j>vi-_)kXEr{+;#eH+f=yMk$}nT-T7o9Qayewcp=s+Djj~={3acvO4uS zs>*{|Sgf0kgZq4SX6A<%Te<$U$tP6>ZH-8H*UQ%}bZWVZ?&D|M3uY@T{_E=uDq&`O zKVjY0P4gMe{2H8%U-JoVYMH9K>P)@=;q8xao|T!pdh_Iu67TnXc4l~^w%gB)L+;R_ z^Sh>HPB~})|Jg68^>cnVUgTy8mr8SL<J^2jMN&BN-DFS6XI^)w-T!C)x8s{4#yrj4 zjcXY%&QS2TssGDm|Kr|&MuvUA_y6a=_y6DbH^0~09XflKXX)+2bzhWD+})ZKaLd(( zmH*o6%g6Iu4*1VJvG&S}hkk#|?DM78WL_>_8h`s~&aoqVwwqrMuXq{4egFTx{||p| ze*f^*ov6)en`b|$ODGXl>78@BK=5Zq%gHNjs=`i5hO^u6Z^_)ZBl_vZEiSV*{Qa5r zw7#^JKi=kew|tE_!-s>PpU<##^^6Qv%vx`zwZc=3ySLjr+Fjqy>iE~y;SYA6t+kW$ zFMRaMSxxNA-JSQD?q@M<_uY4xA$eBh#nMT^KR!K@(T}rXXV_Em|M!lan;hqcZ0%TX zz_qG~OGq!F$I)<G*4&d%OjtB$pUrDB-E?+ZMf^^en~%Rey|nu4o#?cw#}0XV>7R># z`1AL928Q$d|JU!>wPo6xRWTN^yZQT8<lcX*cWe6pk}9@`se8=LSA>LGUtjm;*NZJr zKW*VYy*;L0Z!zng7c(x$WQuNb3dv&35MJ`;g4ELTrv_FmTE40m!x|IgpNGbAr=<z3 zb>13Lutu&%KPB4p>W8%#CeIGlJt529%zfjS;FR>KfsU<<g|#hJavpd-p33F9*HCP8 zRmS8g*&(kA)E0#NiOv>|DVq{xc0;3K=Zw~UFE8Fyj)}SPJg3fh^Sd0y&8G#0MO1F> z^0g{G{Pd}+o?cGN-z+=+YXxaMTdK{r7(LLNvBHq8a$fs_BSxn`rsPe{_gYzZHTcLu z(0&NrmEkw?_TOJ)>~(oUh5W7O@9hu&|98Hgnc?64|NqS5Z2mJcJb3kr>uD0>Q#HY< zVTlWZLR(LjFG$dE(_4EbgX!H@k2_b?S$1zY%(J$0e$Mrv%L>sZY*Qzf&5fV)_^>#* z5AlyjzV3s}_334eL809)uT~tMk-Vj?FvzvARx*bF*ksK#^XV&MN}}$bQrKGAY0!4} z(#5Nbp5^_Uoa=defBc+1H9wi||2_BrLH+;V(F_gz_x{W2>96f>3@a2`-osaF7C&Xi z&XWhu=Jc&HvZ#IaWM6B`i721XTQ@41{^ESU&E)2%DCsrl_jaG%`nox8{{BO&r|UB? ztdFbfn4KN{&n-N`udYj_yD?Czjrq-~yd`ty=^EH=towgGe0rke<#Wr9mOVXGmiaGw z{?l*oxBp#tN$R?u=vDXiagUb1Z;rD$KJ|6|mUU}vtUm7MWf$Q2b7|Y>pE-S=8vnZm zq#dN+PV@X*6khp8xvP4L-|_3Wj=0Xb78<c&^`=$JOH8b4rY&;`^>Pf=k~yuv;q;;w zFXg6eX5~q(@w42{>L0u9wQ^h2KQBvP#p4HKwK&#U?$EXi;fgwHcVw~lYq4j~t&Y7Y zxXW|qe1?;k-+|vwxAQ|a7V<ud@pLukUmLO_UDL(lKd8}AE<JJcPo^l<$JPEH8Gjv{ zVG(@w)&d>xJ7;p_OG+#Iywhi_c=mb2!y^{`((8^joV~Mg#=*0^$8Xp&Pd+JPzRrI2 zDxq69&K~}@^z_Lk)65wA*d}3Y&zNW8^Yohi-6Zkz(E?i!wN5s)tN+jb<KF+j^$ZQ^ z=j$4-ueW1jn9{xT?$PhlEEOUyoL<Fc>CBsKaE5h~_URPys{PVEW#+ZJ8{}?Jshb>a z?3NrDwfg(ltD<@_4Qp1f&ORgFtsr>SOZ{hVrIM*>z|x}irfKJR6E|uY#!uOp=d(rV zi)+@>o6B<Zl5gI+YLqqUTm9QLTlDAc@BjaI{{Lg;`##$<H1ylm2!6U|bVK7B!-9i{ z{QfOkV^A#iqcYM-v-#tpQ@5rDnKmciR}{+q_;!)f&7k9#A3QWWW+B=ftQd3NVD?VC zC99k)jdKqyeJ}lZs%FNDAolWEH)|Syp0Q*8{8K67LikhBcg+$WYnOkhwYEv0x~i$` z)u%r~;o;vZXPkZJ*vPy#*QG%0Eq9#W8gZ_kn^n8!oh>MSYg}_D;hl)BSEk3!dVwn; z$M*i=DXG(3ts=6LLD8e8QR1)G-*t@_OTE|n>2~bPe5uiSjm>i#=kMPcy}ohkjV~KC zvduj|?7!B0?OVv#uSzE8uCfHUB`%z6rC6$ZK}*Db@;V(S2Y<0m=M9cI30ThE;ikDF z>i;6&Epx&{*US!iw2oI{iS+H#o;&9)n*G*(JD%ylK4Duu^U~D|m;$GAtzuhh>XPK> zpZd{o$2vxFrq8XX(>6yWJZ#z#7JBvO9raq16Lobq7ntVmnC{E&zB=iy?;&0WH_ec| z!1CJKX6fm6xq(wP?mo#0oOWR<+vnB1a<v<CyyVn3J`*z1XJ828I&sEbMEvaW8L~^x zpSHjM?)Tkk^(vmJM=Lcp*MumX?%HwS+Ohd(d2f|DJa0O@^N!N#<1^;XWn^%>%(-L2 zhlhT-2{-PV*X!K2PB6K>CnA=8xA*qPjE9!2TvhN`Ohw<WLjL^y|BP`p8LHQ&ua9^B z$;u^BGfn?+#f%A|Q{7&wRi!R%bZI-@>hesh-Td1}2{m8ydxxgQdpuWFFt&C%rNdtS zG=G)WOq1hf2VL5Fq)*&Q@3C+++jM>co0HbOGL?6>TmH-b-sx68Jx6ZI%f1~G96CDQ zn_R7HI<u%Jf`f79&AR;(z6wRRpKVQCJGK7syL#Tcb`!SS*iYKhy3J-$drgdmdbjhj zgEJT(E7kOOpQ-g%Oo>lsC^pJF$?%SyW&5t=lT5~Yr-|HWn$amOSy-&Ob0M=cN2AT= zrxQ~x9~fUdb6UbZCGODuC6}0*K2G?1<kzqJdeR3Le92?A+I7d^*n%ybE4ePa?(|yn z+F^}-2Jgdj)1O*?+QT4z(exEVcdhcI<p=*gy|wd<@soA-fl;ljX2~`w9SLoRt@%9? z6`pb|?)>bi-xZL)m3P%P^EnQuz9qM)ytDm$uljv!O!vS4`TPHt{kS91{QX`v|NI|E z)D7hNKYq6V|M>^#7N}c>pc|BG9&*PYSnS^a;l)K|Fne|Q`d|A*;X?q6Tu(IZV+UPe zBliE-`u|e@_;yAy{<%5-ujIc!=l{#p|Gi${JO9_p`G=<O`=a{ikp3U0eP7q+Km77V zgyF-_^YwD~|Gq2#xOIIkFT)4x{hzIW91`ExQ2*z6{hRM@QO6h()h`*ay;KSiUo70C zrnji;M1a~wlY=w-tGi>A-h6xZ*wF8M&b{aA`TJTY2Wx*lyQIhZlJ%vM=bO*IxVH82 zqM2X23|r<t){%br<clCfbe+!Wg3^ag$75n0tt;n+KBz3#Q;0FSeDNfw+}sH6UyIG{ z+CEk=>E-T><j(tFI^o^K?e5OmG6LK7Z4FX%xcT!Z>pA_j9Xrb=eRXa1s(#(s_uTi^ zq(C)~T3!Z4V-dYsZ!&DSt|i?5*MDAYlefZ_r_2$jJGNH!s|VXu{ZeB%P|){rEAO}9 zb7`IpM#8uDhq1*NoS3+E!F)eI1KVmY28~ZjU#xQ@{C;Kpuk}8__<rBRQ}s1Xm({oZ z@y<2aS6I0?-B@Co^Shj5tUcUCM=dApG^;Nw>Y98!pMjxEX_|fho$n^Ue#S*UefEHt z_2Jh3Ip-K(E_z@b!JQ+qouz4)qc-o`KDDiVVll}Ib68^wIMphC@IJoiy3kB!!;x7# zy<QY2q@EWz9mCal=qqn!po7QlbK1E9JADLFL)+|nw3#)7R&V9Jcuz874zpy-i(gii zJ8Bhn3b=%?7Ff97tLT#PxkXuy931I}=TaGGK2;PxWcRDtE}_RYmFe+=7=_chcjwHp z<;vZ?W8T75YYqjgyfQhqX0;@P$GHQWc!ZZP(mEEL;+M&EF6-@{zrQ#9pQQS?Vgc(f zxd}nn);yC-=K1$X{~uHRC-wTK`#*Z`GceSAT^)ZkI)85~_<||%{Xbl5KF_{?<odpE zrZtbH?;qIxejhi(k5l3Mn$FjK+x+9&_I<7M|Gk|5?rYqwBjtSz26N{<=<UCGQgk|x z`t!1l<%NZL!Ownloakuo7Gc^sId#5WUC(CY-3My^eBqsAyQ#ZWar2G^cit+M|9^XK z`JG2|tiN8Wa}rTq>N+p^*Nr@mTA%%`lP?>`{Cu%)v-XPC?~%cZNBbVg?3AA2=jR{T z^Oo&&hRLxMt45BM6TaDAc)xAx#AQ1&i$%V;2i<C!(wM+wbY8)I8&7KJ!5u#sq7;2J z7{pS_*{p2rgS>i<C(qecR$ukaVuy}N*8g|6r2f|({&c%4=*EUTiR8q<ARqUNKTkSq zV|xr|?`BQ1WarLY8MJqE;{&0}MD-n!6O%=ZJg+QW^n2;cuzP>qk55bQ;CAUdlmBUM z-^VY$)@(g)8~>~>dRN01Bl}@T{Gpu(GLn?Hi!WxnEPT7Y_t@hdg7b7dw(s6pdp+9t zQt!j3zx!vqcP^2#`63$QRWPyHQ2unQqsH$!5~AWyy^iOWtz}UAlQh4%Sgike#g4Ww zrCNK_Piuc?R^1Wr(KxYq_v{|7CwYfM3dHVAIpw8pl-0Vb>*+$@S%#{e><Npa8754d z(rY>IT5tT7<u}8ZTrksSVwhQ&lGixzspXO<2d~%u{~K1mL^|Y}?=ihq>X(HL(th`T ztYCb~Biyuc$-Iby`^int9DL{IYCF$s<>lM0DEgSQq{3Xm|I6bBu@}`3Zr}fBX7{nv ze}M+qp5O0wgYM(%ng646{(<s+pJi>Tzwv->4V2gyEy7y&?s*+w{QqCqKOWVu6a4@0 z{r^7qe!148mJBt|jOQN&6@y>b*Z)1o`m4t7_#M`XObwquf9_rX({FlW@#~{`1`5+R zCfB@vTh74HFK^Ggvi#h6eZ$?mj+|jVV-&@{`nQGtg#I@VKE1f8>=S$M`NfJRVe`Pr zGjC+h+j{<BX7K#uv9%Wt-{B}^QZ??Jym9V}uH`aUXL98(*Ltq_p=WM{%YXm)`kN~_ zDqkG5Fq+wZAg%ZGCRXl<#a~Oqqp$EJZnu^9{qW<ZbcDs}Q&%gRTDff&ui}!j6AhZP z!Z6vXVUx{iLtE>kv*rIwFeF&nww7?ukM&-^Ha%hX%fn`R%X^azcC^kecv~_>+`_W7 zP~_NT0gDbv-YX#%C#T%F;W?{*I_LAldYdF3WPaDqY5jfczn!hGWb(rMGy0BId^)0c z;ruzd#YK!7mc|Y}7gK(_*E1v^_<N|m&?BAm^k$_m_Pe7le2>k~-Jo|j{jA^Yp67{$ zCs{0>KRBa%N;2UO)7=+Ub-Ctd8ta<x@9*tBHL17Z*CLLSn>W7u>#X|D)}Z6eSKdmt zNQ={39wbhV-kng>@IBa%tzP!=)QrW8@7E`prR&V?n`si#?7L9B>FKd{H|B-*lOr2X zUa>QFo#@>0tn09|GVg)uCwbD|=)7<h+*PZXY9yz|#gd#;+16_?@ks8AK9epM-E;ly zpB&%MEWckXUjNy=zPbL_^7=#J`#y<+lF0nucb<QE*e?I*=H_&UhVA#NR)3ql{a%%J z&9^r<jcfiqmfv4`r@#Ks<A>I-e_Xczd-=ike=ja7|M|fGzrefP6@C)ENvqBa+s~)> z|2h5e>vH?QnKj=w&p+z_?}`7T)$xC|>^{#t&#)tRWmMmf9agix{0&t6|D*rEMEwW$ zdVzm-_V)LaCcY~#4cwlvEy4Fo`{N$xT`P9G8XhXiT6=HuNtX0mUZwK(a~ErQhbYbs zVSSwQ!qx21ih}*}z7xd#E@@Xx*jFs?`)$FuC%%gk61LvGbS&(!6we(`A<O5ElkBvL z5>yQ4MeWoxwpt>mIhAjd`#F~lb%u&fZ@gy<?dg5-bKbAAkAe^Wq)R$KyY;`Ms%d%t z9?2zTPyg^vIcGFADo89;GU$uJ;pVU5X+n=bim3a)DK0KD;++3>m4k=szrCXMQnFT+ ztGmCQPguIo=7$#d6Ti|4r)?r;Zt`*1u{W1B{i5rZl*;TyVN&PjF{!yIJ<fevWPR9V z&lxu*wu4PvEuYVPvwgR<KXKwyNfnD#7i2_x%8y@NdB<v5vq+HIzO&5h8~9dUJ<C<T zVwQc?q-)$gjs<deOcEFl*Y3V9@J>K9Jm8L|?4%VB=WuJ!=Xc$&vN8VeH`_~lofUWS z|KMTn_wy^P%KH86<P(;eub)Rgy8R~gec(qy-3OUlzJ)wEC%Jn0rpu)tcmMa6p1VXd zWrE^2AHh3Cn*sy7`@aZ8oD)-+!C88ErbArCc9y{Ka+cKQ#%oeutjD*e#NAt%dRt<~ zLVlei*Df&Cp7&WET=VPl{A1hq|IPjLYyE#KhHTaP=X1*smCv)Ums|4+bP?jc`u~5U zkN<qo%%2x|Z@Oj|Q|ssc9GBOBePTp@vBt$cIpJ+>IXR}m(|X37&;}#XFNgS&K4%Fs z&G*opxSO?4L@8$ZrO+>PH~(5JA@bya)z-YAKM@k$PY>?oV7xD(9n-K;!@nnW^`!g7 z9CEIfcBXM#8>YUR`Q&@A-j;{&+1+2&XWxEbVRY=|Vs{D4>AcU(rZF(gIcTx->l&Sf zbMmcrlq5DLFn=rTJEL2$B%wnyqP(Kvcg&RQ9GlNtFuwfY^d|P$md1PX!D&W05ve<Q z_WgTzh~WU6u#uX_!{^<WQ>Ldf7e2NAz_zD<^=e%%=Pu>Wz{F&O6jwgYzt3{nPHvvD z@5GU#U4d3lyyu^P?wEI0vg!9Zzwg&SGHuisUsd9JZj$-y=lzd2I>sz0RCMZ@bS3bp zf!LF4g;N+-xva~5`pO~d*YP)(_i&x7<ghcdt?qHx+jn&F@qWXqe=-aONA&}LZM<qV z-Fc>p#GFo{uL`a1i<;cO#2c=V&hxnxzSNEDSR~K7+35o3{O!&gThFuKQ029m&uHSp z55+qe1Ym0cKGn}u{`}6^>5AEGr~k<&Q-U<Sr%&JKWj5J5Y~J?`ybfP@JnwuzQ)74B zeE(11J)h56|M)2Xzi`jrZ?}I;um3sy!_TCR2loHHz5ikH{NFMR4>r&Ls}r}suJ`|+ z^Z$A7|Lp(&gMUxmU#psS_)XRpHYb|y8Q1@4ukVQedo})O|DO~64}N}r{^Qd0eJ!6q z7yr4I|5r>R`N!Y;|7&Z0o{m4Z-0rJp&8y(~ho<lUlj@@;T=Vbqe0GLEXU_lOse3uS zjuT{i@BUw__cJA2Ui0_V`afRp1@A=jrSTq<*zv)7iqNFv*LU8obUVkmI6$<lJxK3U zg5&c$EgWZJQVe%}z2lI*d;f}>FPCx``SYH7l)BVsZj4~}%HkG*g*v?=6OvA5y$HCq zBVyw=+ltB!jQl~N$vwPNilPH|zD|`BJviy0L<_%`nsLu3o?}-X<6L$srW+nTceaKx z*0R&O`%~8Js^v`W>-i@}#Q)m4{@cx03-5AHOED5~VlkK0R9*6Az3U3@xnj#UuI$!& zcxtBMlsmf~6&#G-^Jbwv<8Jc}TmGm%KQX6C<-F08bF=293k980SvsY&c5hHbh+Q;` z`^zh;F~?S((+j^|+PS`a-97Vdf8LsMXdc+|e#_e5!rnoPSv5@`Cq%V>cedwmxqn;Z zonch<mKD4I<xjmGSFRkpe~Bd5oS0v4zKG=SWSHka&+h1xBWx*uUtHCeNc+tbnkl~1 z*3J3K!K}QjX`hw~@A`jB=*hv&n$s-(=Nl_JTiNJwiRkTJd*)MF>}5XIwpoi5G^#eq z%=}Uu^locbn77ceu(x+Cb5@4(yk$MU_x+;D&oy~PJY@8?IJ}?vzV7?(A7}6X@!eDL zkxBmdjpH9?p08oM|KphXhsE~47Be*1|5|K+=<HeEy6@%n;_|g$1n<>;kNxx6{(td_ zMm~o6@8$LF_kZub&wcS;{oCtxy!Ah)*WbMFTXOZhN|5zQ*N8Rgm259l!h;GV)+)}u zuPZKeZ0SCOwuK+|#W*=xu3XG(@=i?aWy5wu_vc^s2(`WVui4sBS9oUH@+Y1Ao4<cH zDQx6xe({`Vn$ESihvusb*31@3pKkR3o~Qb%9#&D4^4X!A3N)9yJ$|t7pd>f<$2Bw9 z=exd$&<jmn{O)(JCf_r;mfM1J%n!{F$dtJ8`Le)X)eEZ@ocAnnonVqy=%k(UB06a0 zdfih?Vt5r&HYGm&y;;Y5UhlHWTVLegaJ7B2i8m>4?+sq*qjy~c&ULHoD(Ne{p>tB9 zr9(L7`FBnRH>nRg&(!-e**D+#-||1l@44~;hhLj-v5AT&Hs<s&I^S)#$vvcaY5T*i zyzYx*XFrz-I`;h7v*_=SPrkanf3JnShhna0K~AD!>*JFrMe^&;>@wW<_1f(p2g~=f zGyM4Qll#t{Gk3mg&vw#1v3&ZZm4^4XtH-_YbT)0%?VVg$chr(wPkHg814oWdpXsBf zai{p(g+J#Rw|kyTUge(rX@;chsToGS#UF05CFcBJ8P1Sw^T&<j-bbam7G@cZ_l*C8 z8V%2%_ZaT^ey_UX{oe1_>Yl&6y!^-Q{eN#yTi*jO9B!y@aZul;?y>sTO<tbeyH4^I zho#KWQr~)NvqtQ5A%`=6b$%#C2)8CEP7r>~bLzj^<Ox14#WN*zvy+2XKfYJ)m@R01 zd#XWY_xuwnx(gJ9W#+hcRtH#R%#CT}oS4X)B%*X|&7O<wb63ZH^K-5A>1wOm{pjGK zgN7&FPq^7>AC%a+<*Q;!iFkxc<AwvgTTaj37ZDPscYg0uTYkZ#Yi;V<xePLW)w4S8 z8RnW-Gx#}9Iw9Sy)V?C=fJJ_x*WyU&<Sa40D{FQ}ZrGP%)XlhU#_skX$G??G-mU5_ z`F5^u{lY0mTa7ja{Bz}yI<>Un%%a_nS$B;yXJ+#*n{)NLX9;8UzklX!iNEz!UKU$t ze!g3sze8)+?s*as6P|D>AFOdH)IZ1{-}5c^a0Cy-EVhKFhKnrH&$#XDvtR#|J-*u3 z)c9}W_uoB=E1cbqa`?;7XJoin^O<*!O{w7B^L_=kyBQN6^E-x@a_{QoT`E>!Q<>(x zAUw@qDrRvDhht2)lKZnIZ_?A3TU7sPtNnXS*rxW^iMZrx@9WoXW|v4;j9C5m_G+%h zTwUCPuUXZ!TzeQVOSzr+5UsiB>Rxk?TXiBAnC9MSv<S@HD(@loV)93mk~W?~ryTYj zFOrp)@M!K|v*pC{7oJuDYuE6bH0Ye4{6&e~hyC^Ekb4nNSZi+NuQlOu7FuZQ_4Ln? z3emcRQ%k;{KIOE^dQw$ogp{v&=KseRC1Mz6ey-MYV=a3BOffa%`O^v>;U%xRPU&7a zz3E6&9Lx9qj}<&^C4rC6)o-|Z;VheIvd)e&k;P1VdUEf%e|YNC;@UIU<afOE^k=8P zyUXmnZ!;w_;=%2I%QFwk=Nw(Dc5{YSjD29Q`wFku%UI3@R*3WKDYEdJ&ex0C66QI} zOzxMuw6nsr{}+DEU$;JO?)D;!daYWqx~Lf*OQx1R{+nyAIxlXo;RV0nrziIooO{Ez zw%j=4+SdFa`QP8%{nr<Yn=dpu<`?(GqA;&pzWTH7p0CGdGc<_z&rc|;<YmwhSKVT^ zVoUGh1(Q17=&Y4C*j~xFTY-OFip<UlilxshtT>ZDlvH(Hym9K*`FV35&MmiNWcbl3 z|I5&(?((l=>6L~%o-fh9bc18&i2%!)_7>dzy=PKp$QPb_o!fBSS0uMYM!uw{JLUM> zyi>(LHz*d_>t5lXr5v#m-hLN2^3YkVBq@8>t&pcZtr>6C)rC()#vbE{SgGm1?fqt* z&TH#RlQ;#o%2w&G*LHK=ut7#^>)b!nQh74J1g#Gah;n?L@_n9bcH8-_S^qD1l)N=H zUMs+~li%w4jz9f5;rF8#SvcECF)}P$9-Q*|#jS~{l^q)MQX>OeB-T2aWUpP7P#7~s z^^*<%JNd;IH6ns;-8g!GeWL2ba<;ui)&+9Py4ki}n=*12g-rPzCEX_!!kaAgw67!Z z_mU}!C+<I-{$DHN&vM85BbM%QKR(GXE(*&}=1G~hL!w~bj-M|QG_TKcw%E?6>$3Jw z?T6KKmoAGvb>7<UXso~IExDNw5`#`iEU1}(UNnIF+{sB=>*KfjH3c5~c*DKWzxjyk z>Zi5Ww{B-Ue{1vY-wY`Yyipc%xA*-!dD(c+*Kg4b4dU`P$IqlcoxpVSr)6H6Sw_su zd+a$Eub(mtlo0dFoGNPRw=8*%um9c3dq=*!0pC@~_B7?D`f~M($G+Ny{};;tR+004 zTb`mO*TZ`EutobBl_J@zb@%o<s~vRA|Ng&@XT|P22FIKx>^P_MLV8!n1k=AC7O+}f z>=6_1(D^uBs#iVnLZH`CK7O8_;|F7B%*b=uc_sK;gpG{10o%Jj^Ec}>KR7(uB9CwP z*YMeQ_59Vg?CY7bYC*^pZ6gIqkw-U6&s3+VCn#=XU>DzLH*4D8gJE~2YAQJt4?oGO zDr)mNcc5i8zv6_{yhl@yPAOOWcwBF_mYaC`wdqrKrYp<$K4#;5%)a;NMw|S6>#K`B zY8LFB-5X}*bLvtA<4fihbFWzW&J<1J;<%Xf`@ZwryXEID$eMg{P4_H$85lDqW9=a| z?Z<hO&E`yY-Z&%6cy32kxte0~trM}Q*Iy2Lzt~H1(fSJCsq=J}987e%lajhG#x(lV z?e*Sk9=Ao>zN*lYeKx1{S41?s_xtzNbK=U&q)(@b&)nVbsn~qv&yzQT_ewT>GPnCD zmZtaHXQKEH3(Lbb55-<QWis$f(tX@kKFzylj(w$}<l~PwmCNsF&a<f#?w@~y_1EI# z{)d-2Ocb4A{e5{%TE(X$^ZrksU&Ef>zs7#geC9X1`F^z+vvCOCIcXuTxK#7G(wFC_ z-P*1eGCevblCb#E@<<*j;XATsf2(BHWUQ@|02PL_ZspaV_TTmXz$P8GP%rTp^FkSe zw)AzEs{Fe$=d(nPM+fuv1=lwpF59X->)D#EjQ7s$EsfnT#`gZz`I%?uN1tx=X1P?v z$2I9C=P4WRYlY_`I5wr1f110i<!Dj5V{DSR+SFA}){?z$Ct@zxPkh#B>2RskN&Kxn zTXA=7N9cqj@2}i0xLYN(Uu13f_96#)sqatCayCji)jiYUp1tMPj2)Uyw^L6{j=7jw z)B5G6RLRfp0xErLPo{5+k;}AP`gFVI*M?OmZ%Ri0<ypHi=>7hAx9s=tS5;*FG%+^B zzVZ)C{@%}K3=bZ?;yQXGYJ>j$T}Nun+6(PoOiemrT-^{D=HU0{z4~NMzq=dH$@vx( z{bFG#sH*CEnbLK#^RJG)Z*#pB&w?p;ITDnPm%K4+TfSVPf6=9s|D_k~dp@dY7_Mja z@R{HHWnypcy|4D2yOvCg+HmyKoo^n}M><s4jw!AWK|1FoLxJ1MP-D@Z@GEi4#lFnC zbZ$nJ$^DXO<GVZGWQl*CvGV5*)%W>X2UE%;_H^97F}GU%{ak~TrE5;RR%Y>jk>pF7 z{JiJ7%HGJNuezU<euNcYykNBH{jNRdXWbT>V>n~Mp__lo_qlt$Z90DMU$A#(^s2Ti zP3rG{ulsH8t9mW#|K+N`yxynY?p*2<q5O31R~zYHksCkA|4y3P|I@(h;HBQ(8{Qvg z<yt<?s`ih>{69zdnK!)s{$}FTCHK#WNL&_}S>7vnqV@0Dlqm;yY)rC}O19cs^z&s& z)5Oio`rVYDRI+L2M<3}mR6N$x=&Q&U5xKkn%eg+q+h_SAp86V<$4tDHC%f<e%c^&q zPaB%o_;fNla+f4!XT>_-_FKStaQ?L!w_ca(JlA@^WU|ZwmsRUO^)HW@<#X?2<oxS} zIR<SL+BA~&rcUt_dvQ`coVEVp9MzZmYrHhg71#XSZ#ui;?S8RoYTsnH{lBZ`ba%>y zgIoSzQQY});kMoBVezbH%Qv?s@6EZigVnk5>YqQ8zdth1+Z!V{KmYFeS%3Nt?|iMB zapBzMDYGu0WcihB<}v%3nZ6}M$W*rTDn{Ei#P2N2X306F|4{5|q?*&4NqbIA-1)tA zOR~q^_mwN1WLM^w{`q%pdud5d_Jz#7|1$-n=E%$O7k48Xhze|Mkrz7GMr8W>rUb{% zFTO9<R{Os9UgST9*5@__S&XxIxT9BW*9ktk`o$B)tb<u=^bfsl@c&)cHtWzd-g4RR z_D9OrY`Z9{7Hg}yecr)FyGf3`Lbazhd^vXM`|GcDr@tn;-Y;J9H*j*<ytHnHqB%b2 z85kycpNSDETPm_-f}^OaMSI~Z^_jaEyd-01w{U3b=x6R<UvqiG=G{9O*8Q^kdQ|q} zgUE#&KY`0?r6*4>S(>u{vD)^fKeK91(TvGE)N*ziiWXgxZrFJBYu$>;4}2>GihG$? z?SH(o@7<|C*I0J8YrK0~aGrHt=ZQRfsXu4mvYxZtbY>~T5tSoch8wzz^paTGqC#r_ zTNS!`1ZS-4KF6=KoB7?0vdOD9mrIHNY?jdJXUCZPz9^O1(33p*0#Dla|8>l44C$Ws zldL3sZdzZ9RQh&y0`rv;&saBZnW?<x3Ay#cmlE2XtL(Ndy}Zc2O(E0$)VK3@@=hK6 zVq<48`%IF7zX9_>*R#GWzugvP<T2m-&Ft6IbxnyvuQTHAwcnPu_W_;fbBwRfbD^=t z2hYz3{U%-iwQRkgxY3rAUmT}Y^9O!uKloQOt?j_ItA-DLNxS|2-rX!)zjqaXlwz}- z&;8<dm))U!p%3exyqU7~VPEe>-&<RKnO}?F7Mk;W%BGyX{uZ|{GgUUc{LnW)t@gvJ zWZ6$Oe-tq{wVEYOKWiOUEvTz$*EiMkpS4R{;=wGxEZ_Z~tDPq-;j3t`3$3>JwV{J~ zU4JRd>bFr(&rOngaPR&1;~##_Da+aY{j1}~b7dO;muYqETl4H|u#ijB>vT&7;kRk8 zm%RC%u)5|!;=b}Li<6&kv6W*H_gFQpxk2p35jT^W%XH6Iue_|rC%D;Z(eCfOz3U_w zeEZht!uIg<)9~4{iStV>7cj*gtWCWq_j=o&8*kTdcruxd`%mqZKNr7Cx1=6EySS8l zqv98?+j>Inc@>o>0`?b2U>*&^o1w<&le}WalMLqxQ-n(2O=DlrVQ?rSTaVkhpKEu} zBRiJu4SX-%x^A!8vrRDS*s+tZ#IA?l-*=tsHGjgJj{*AgZy%H}Pv0@=dEL{kJ&IG- zHg?t?`oy|s=Ypr{UjpWxJs4(xu_HESLEDpOn}RRcTv*ema0}$UzgukLWZa(H&T%Z# zzay0zxydg5>!ZY%{$=GwQFd=0I!p}QesIRTWd$$KJuu_VUb;B$mPNRE$nI?^C)Wm6 z-{@R2M|yYI-CK^H@jT17OWqR|%)O|w?-1iBgLj*<SEwt1l1-E0+L;xX7Jo7Izu)_B zk6wFA<nA2?U$>v(<DT#9XQ%M`pxT7}cfXnRzARnN{_|7gcAgDe;;wGK^6&iz$-An@ z+=T8WB>WJ&*T3)Roj#?k_;(T~)|%b>@m*rEg@(&}nccUvJ_x*<s8H2VbAhu7*53r5 z3Uq^G|L5xI{z0{mOFAY_+Me98$vOFqTV3MoJ;%dq#qQl)mGvn9)|$Zln^KGHtG3kf zME$y`HQVO<Zn@0|8I!K${r?_&-<5r9>Y~)0?;dV=J@ePrkbK|vSJR?PcLW`naAVKS zyMLWmF+~-x_|@5_9<9*fm@w&i-QqKnDYp5Yis$S)_koVQnejFDQ)Brx*{>7#p3wHK zZC+A$jPbfR|Kp(InGYLIuUF=~@Oy#!t$Pb!?OX6&cXO_g&w2TT*gaiaZyS2fG`but zzlZfphG6s3)xLgB3hyvC2X1j+^=--9YhO*YX7lFinu>mV7<%k5&qeo~Qx840-j^9g z%3A*0kr9@zBX)7p+&^XE<<_kCE-f_Ja<7$T?cs!Aaib;+lW%M1C~X5Bf|GW~Fzx7q z-Oj>%W=m&h22a+wCVgJE>_hw3i@leVw}j007Mzi}z{2I$ZKF)7qp}Ac>ZFAK$X~bT z%fkET`?{w^@$Y&k_rB}GzD?Y5x6VZD+s3O`THw9mV64DJ)_qImZ~Jt<V7r_YBE)to zt}p{L^`G@v^Mt>5TWWsqBjwVJ%-3&jq_u}l{<CcDruvTD?Y^(xHn-MqTRV55ba!-W zJA-$o<@Q_eO)~%QwmH1D*xcsZ|NHmm9(4=-R?qN%Ye}R1A(o~9sVft%>z<kvA>w_9 zsY|G!(_F7*LPhIBj)~IKxpx>eRyZy?sOpyd<ycjtg#MHU!Bs8+EK=HfhJucq-BQ!K zoH8r#aX<c}xj>A2ZhN`i{FF)G=A^5g&)h$E-us!x>Hoet{Z(IU^U+z;&!TzZ^7Hx6 ze~CQ5eD-lnO%&6AKdXmldiL)v`q}w@^^22J&z*kN`Top_|M3=2o2I3Is}Fy6E}zTl z%Yl{tCAJldbRIWLrC*kp|0)zX@!$XSdyjt?_Raa1{B74>-$Up3U$2T1`}b|%Q=R3^ zD)pa#|M;An<X8G$+V<CNi^<JF>q`9QTm1bW`_J6+s4N2mgV6)g62AwxZrYZA>rYu$ zVxy%cV{E-v*#D~)xBZ99_AP(Dhvmm@wXNHut)=~Y?$Min_+LKNe74-?jwb(mk;|7~ zuHGzQW!2~6;!^7S|Izyc?;pkdc>Mk5#ha0jDyM9Jto}E)w5-g<#U(Vf_s;jm$@Tx9 zcsedWajr1)>+9#|H%@u7f6J;>tGsPnH(gyn|IPGE4gYs9xDu?9J#{Ky&-9?&w+%u5 zjGG=ua)KPXV8Qg2Q-WlyN>*IC%)r3lb;Q;6^Wp{5SAP5UZO4m6-Cnl53=9igZr#4^ zZOiHxG*QM((_3@tkB`UYA3y5W@0)8~?zS*M<LeX)e_5*%4ZU427X5hGE}!(_!NH~T z_?|0DF4~^bac`31xwg-m?wU(8^7H$D{i?d2bfRZ<(A1S(U0q3<`XXF6?K>yzKiJHE zT5zwD^OtEn7o&}i+$`Al<OFv~Wzh~6h%=cP7#!Gs>BjA;C|s%T`0~r^>-u>+pH5q` z>Qf&3KU+(vMOEHy7Sc~T?iEe6U|?W4(GYxxk%2*hnahfSfg#1gk)45|fk)#70|UbZ zM%KMOw*UWpHmv&c;>G>_^(H1JN8IIWLtbf4?BuuqWAJXz=W{F8ukY{b>Z<ttcKhzN z{+dT09qnGcZ=W3-kA%SXJ4N0(x3{gmJ>&21@5k3fZeA3i;j%EGBXV=v(MD$WUq!|m z3st?R9oc$4PP&<mx9j2I_T#qS?+D+o`Ru#h(7j)-xAOC|qZ<+rCp|dOSa?0Q{Aj=Z zzZ<z{&ds%ce9roPPa`w?u?>lbA5C<Z>+I|6+jmFA>q)D4Tu0&KV@DqxY)=00;NZm@ zHzeNg{T^4i_fNsHX*!WYqN1W36Am^#GO~O$Ung#lg_f4quDh>Zz3O`XR=9AR=8M!< zXU*^TuyTtXne1;T8NEHPS2}->;WFRZV%FvFbiQ6Wap2+M_T)c5K5ne}`RVey`d=@X zC*RzZ3gX?^k{NvE>eZvU+wY3Kef##PA-~;^ge}{)9a|N;I_c`F(2KWjNo`I$`)alC zf+JB;QAzLa?A%!R_*lf|G~bf4vSU|P20#Ar@bFPXZZVyXsoLRg#l^*I;`iIt{r!4< zhGDW>NolF8i%WQTxX*k$TRwR^nb+6X_dk2~EMjAlt4_?04I#5#<)uusLUdwxnb`e) zv-!uH&F7OoJvmwU{cgE<dCk*y<Bge@msPx6Iz8#mj>5asP7B%=e!Uug{N3H%-P^Zq z+xE!nx67Q;&P^qEORq1rEPhrJUG{Wp__E`2)oWagmBIxlhOLW<{PXX}$Hyzzt<%$u z-L+-Mn-de2R|aS-5s$AiTsq~_^!U1&N=mtRc5JjrJKV;rsdVXjeEr?>$?DR-zrFPq zoEQ}q738HUYf+#O8Xms<*|TSlX2k9;TYBo$sV!MoS4|1>dcW^?-l{cge0G<;)#|H! z+-n|`o11G@@gd=U9z&#rQHn>^&!^L$wi{o%cW<8F?l+sZq@A5r^7*X!@}HldFP~z= zf6=&GOxNr2@qYWaAkT2eIqEyh%F1r6{QPW&RcY4tr@_npdi(AF?Qq%rsAgmB?{7CY zr~7aJbLHB#V`t6p$DBFe#w)!jK;y`fPT}t4b^HJQ(h%V?3R}h}XComf=-kfN+tG1$ zw)ydm$;Wp+U9oSU-LW3Y%ewB#$9g({{rdH2#_jz5wtaH8QnStT-yOagoD~}zd-2X4 znRb5pzGKJSem?9uGuPUDng4vb?f0s(w?8d%@vr^;c6(ray!>MK{=VPu_uKFL{cd;1 z2LB^F14CbNUie=3@8|OuuU>TtD!Y|L+a(?80J*m_?dZ=(=X>Vp*;|*r(dd)3tNEe% zUDmE<N6*xSQ-W-My;xj$nAiNs48vrlNBuolu3R}XLD6|vukFXmjPvtsmp{olF+njf zI9S;|b<x_jx>C~8k55cgE<DI8e&p0t?Z>NDuj{&YE$rt)_gS-NC!e0C3raM>*DB=} zsjK<TkyyX~UsX)q&!-#9-`}fvwQ_mVr6rylb8nmdc9|p0RVBH4#flf-YQ0`gN&OK1 zPt$(+=}A3PmoHnk?8l$a=ac{b`ug7@tk2@2Xn2g^+O=y79~@`|CEhdhY^|fBqW%@_ z`BSh+zV3(Ov-9)iSBJ0f`}g<v_aAjdM>?1J&JO!i_2$M#P<H<R^L+iIt=HqaU$5V9 zr}Rd+u*~x4ULIa)Go4>wUzeW>++F+o+uR}+0l#n0r+WX_vo9?z1-Ul(-S5l(_9r7| z&NR=D15F`rEPH!P!Za(Surf9_wxp!w$iKh8clX*`x~o6W`Ty^4;hP(VmRiE5rly52 zmrg&{!YQ0|a+0cH-Jc&7&t|4SX_vdXr?U9X?d|$fQc{ant<qYxYSp5pOI7F9e!ID1 z)hbYwoe)gVd2pc7u<Xr^AKz~0zZEX@(|D1(V%ah^DJiL>v$IU^PFo+jSxwD%R>-2r z!hI69RV7!hUM)TC@9yrtWy=<k&zEo9kYMMR>+!e$yT#(!WPiKPW_JEl5i>nBU4w&z z_k6t;{qZ2X{E-(I7w=x1pOMk=>eZ_}%UgS^%WFO!6~9~b<*0c45m4?<4qG25yLIc< zix)0jFqd`;3-T)b@*?o(Lic4pGlg<<b1&Yy6}88AhJj+*xjB)4qWUa?L1pjyeZREa z`eZWacN8xc317DO%dFY6gG)<GtDa5`2WNFLorno+d@?ik{r~qn$iJ6o%l7Td*G6w& z2ErX4r>E(9M{m#bwJv+(p}BNR$;(S28X}jX^Y>1@b?eq8W`3IqZhbN{`DCp^YI>~S z?NIKOHrLC&u|W}pdu6T7&dxAg95UNQzWT?*_TYs99<Q&h_1<0nUhiJr@3-3@&9E$f zwj^+|+tTm%>+N%IZc_D~XJgqbZ*NyxR<>+P(5p9Ze3Fm#cm^-?@r>S<<N1F7|2k0F zn3a{Kbv5l`yIlRBk6#|P%P)I-d;9Y9_Wx~cKOPZYxoMNp+PJ+|OI7UuSgXe!wN<rz zG+#Gnhr!zD?RvG}@0MpiKGvIgtVc5Q!UD&mwQ0Xy=Hzl!Nmjqx`TUaV^q5ImSy`7% zug3)c`Jo)KyDYb>BRFq!`guRizaKX$fy$-Q($baNwwc{6x$L`g?b@}slmC1=t)Kbq z%uJAZU<_ja|Myq*hLqRClAoO&UtX<VFLwOTzu)gyu3V|fD{E!KD`B8;c7~zy+dDfq z-+uh&#ztk|`F6G-QIM>usp(Q>_r5P5uLW@N+kOf7SbwEeJZ{D^pP4~A&oxi-|37z< zHMZ}E`uDr#@luvWDXZ44^ZWYs>&tu9?|pA?%hg`D-T%nVu!%ulODo^XF)%RvnEZVK zGpJ1=QUY!%H1RPoFh~Ymz};Q|H|!RWtSLI6cNGHz<1<ee#}EbvBhn2R)dX&?ks17S d4ZRQX(<_UeR89sKFfcGMc)I$ztaD0e0swpbvr7N~ literal 0 HcmV?d00001 diff --git a/reconstruction_im/charis_beta_VAE_bs_64_ls_5.png b/reconstruction_im/charis_beta_VAE_bs_64_ls_5.png new file mode 100644 index 0000000000000000000000000000000000000000..14368c68c25a3c524b19dce52c86f3ba6be114c0 GIT binary patch literal 119930 zcmeAS@N?(olHy`uVBq!ia0y~yV15C@9Bd2>48Du6JYis9U@3O;4B_D5;Hcq9>0n@B z;4JWnEM{QfPXuAc752+B85kHWN?apKg7ec#$`gxH8FCX#3UcyGax#+?%2JDpGxPI| z^$hh4brdp6N(!v>^%3%V`9<ma0%_us3=9eko-U3d6?5L)EuRycUiskT{hg)1JQmx% znl!s7w}<<fgmh2x0k#;AjD?mrQxrM98z#7&teduBMvmEp6laZ<DhJjn&Q9^&z?htK z=fK|RZK{!HUrBjhe!i{vTYvGpizlYNnW%bJ#&iGs=gj+dUA|}e{ap3E=e6^{S2k;O zDXDl)Qt`Yr<&<wJGnhGvaTl1Lnb4pIk_uvzSl~TL#dFdWMz$9qS|zmsszh>B$!NHY zCWc8Wo<lH`$Upt}YyJOOOTDLGx^(H#&Gh+a-)_Hechwi1#rLwXy>Q?7dfo26{<<%V zYhDG<e{_&t{>dS3{U@7F>m?s<;|;!R0xBIYIdU!1=vuZ*uqyMM^?RFhR<CvTeVV#{ z$@#Sr8=F?I+tro5es399v>HgQRYdE`yoR`0SzAy2{eJ(v{GWsJZ$AH#zW0Ic-LBW` z#Q*-%=#r3-NGK?naPFL6lY&K%?^ICsQVbL^w6O5V&)45M$Mb4rQbXO8TRV%@d)=BX zi=Vyu{AZ43@r_-juj}?N3tAblGK2wS#=}Fc?tA8fys|0t@v&Z=hz$v=W-lz9qi1=_ zw*0Ae*COV1ZSmD_x0aNbU%q=cw*XYq$v(HTwqCxAvx<-T%i=3%W*VP-{`q{g?)`nW zzdwgvo&E0v|Nja9{{8z>FKwPTr)QbhBo)t73fp(4^=rO!Um3LW2q*}B&F>z$8XiB_ zuKu#GdEwKk;qSg@pL%NawCHEU{mWI2lk;nqzxX=8Chq^rr(fqsoqhd&>-?I1-<MCj zUY}L@clk8N%5Rbj<d53@``G_^-}k-!#pf*BKcBaszrOzO>zo@K8u@EqIKu<p$icpA z@8`Mim#kmkf4=V9=A4_GS}*%q_e$sOXgu02?q7NtT#mD!EWXg6%*@POQeM9N|F^XU zKYc#Wih{ae*$#i%`@e%vzqa4H=U?#aotp3d{{350TIw5^y~SRvb27*TO=g}8s-XBg z#lTzwq9++0V2A~U?GhdXhv@^YWP!m|-U%u%GXmFNy|MFYB*U-r?~Vct0eP8=uUv9k zd56hiW5l8W9i|ETA}61JW_a?cvgt{7k>&Ffs+!%4G?EGu_!*?H+aA6o?9aGh?b=$c z*-Ia{EM|s!Q?$f$l3K>=&98q>?*FgOP?mdl%DN`;)2XMP7VT<^%gS83bS-nkwQqb} zx*u10uT7PDzUNsI!@VEJ%>Bwft9r5vxC&O6ePt~8Z(IIpvV5I<!`0Q{AAkS<%FQsR z_FZN0H9J{*o(rlkB`#!KdFdUr-kt5cLGn8$t7T^yJc3u1zR0>N#XMD@LHK-?X#c%h zb_R8w_=DfluYY>;tCYd#^~{4eZb&eEt(v<+g#AVS@3ZzPN4rEP-!JgI^tmPR&iwCh zZyc+&-`zXAzJ!@!b@=+Uj0%>9iyOIS&%4VZu^_u>#v@Rg_Y7j&(WLj%)iuyX#MQy( z_MJI}>#o1f?8+BldHMLy4yTB9_v9k4dhPM5{=5Bu<L$a4VTQSHbGL{;ygEIG?ZD6c zJ+q3kZ%^6!@rKYv)79b)*W-WYU9<Ve!SFoxS6JPzz3(sBn{XY_OrLXhm#IIqLGi^- z9)4cNf`i#{hZnhaFI#YTQlFgQ)~Mct2N@YwP1V|*cAn9L+waxVY!fMloZFi^cjx`) zWY~VUM)|zW=4rOfh4He26V4w`o>ioH{+6l#(ev&TA4|y=vb{L9WbN#0f=?dJzA&ef zd-)F2<IAh|@*OC>9(%m@``zOKLJ2(l{KiH?%WHdkdIEC7R-JpEnc4aM{<#^3%`Y!6 zXEvz+SF>*4udJ%-YW3gY7J7H8t8I4dc)IQO&lAh-`49ZL_j673=C0Z6ep@pfb91je zY+c9NvAW~6088e>vPBw8;yRf>#n#s9#Fa7qO!{M9aMF6+!~B0g${An0o9Ve%j-O-p z)Vr#jk0vWJl)bxi>=^HBhKQY?3gv3QB+jeSn)l@N)9yb<<7-$Oj(Sh?aW(F*>P_+4 z{PO14J9VG=8FqZ$7JXw&r7^=_=H?JB(<0A+dE5%~yRCma*&V-i^<%c7jg5=D`|}j@ z_~VkyC8=I(!&o0!-~S`MEA3e0Pt*S|or7;Kd3=x8{LX>x`~SY3{^zT$t?iyqQ`eg~ z*fSm4aL~5=4%dO`d*A%3($6y~$REhmuV=ly{4XEF{XduLAAbqoFW2z1d%CY@bib(O zw|9|uHayGpdTPWV9$&^<Uh}^G@^)iAgOX1#(+!Ki#V~}~mzW>@rpMrQ^wJaas4B*@ zCvVLE`zC$QBhhrm3l|>-22D=Ax=Nkl$DMThqsskuoChv^FzBsn*7!LmY2k^z-|sR@ zERgR>i{Ja}rTWgt&nohN)_%Wpbk)`K3;}D+S6qL5UQ?`SO4rZ5GaFi&mO2%y7aW-8 zTi822ceeS(!b_Tye?-5icp?WYphQbjPyO1un&C(P`}+qj1;;TSsJ8zwUqi%)dv4Cz z+B|M?y_9cnZf2gUijJ0E8nlNiLPO-z-j`Rire>L*YmktV@(O;md-v{{rrFn0%>VBQ zkd<CsU%n@4cimO5d6jSK7;bf0`q}@sIag6yGv|8K)8!wY9Oh?Ow?KZAhEnC}%exCW zk2=*z^A=flD0%5VeWreC#qpJ^x&5jnYpu(fmT145wL_z;W75<O200fpu3X;oAZzQS zYl$mDj$JzS^Raw?Z?EC3oYRtWGARY$_3l+Xz0Eko`23l9&$=Gke!p{=zwSdagWb1{ z_tT!8nYS|M+DGM={$=m(oSgTs@o$~i+PKHl<{w#qRx~_j>b>T#hh|lu-T!5&{>KY< zw=;gcu}tuoxUKkvyya(}eiGrboWvif^X&3IyACC`U*8!vR9y|$DQAs!pTW4xXz|62 zg2Uhc$u>;&U%%K(o8j+Y<}))4leK1-#bk*&Ms7;sod4^}@*hXz|F|+lMMYhDu-9@! z^N+8qRhyq(yclSfbA#bP`2Js^%Y0{>&Gfa;>*?*=Q295Cfh*Sd=LvN?PKVTzmgx2W z?VofN8d#KH47#>H+B)^E&9p18N)M%6xpwQ8*G|=U%eh*aww{Xkm49f0Mh|;Cx0rrn zN{Pu|o4q^S79ae2|ECy3zkQ8;qLHVyfyI$|w$(4>U$7?>6m%RsSYcF<k}~CDT0q>& zptZ;T2CfZT9M*k#$Ln6U&1vTz?diVHa$rv7<nPw0p_}FFukXHhl-*9?`l=rn+OK^$ zUjN6PVNTJhPO+m_O;NWWG0n?eyS93Lv4|k!<MqFo`Hu*1IB&OmV(RH>{&~v%L1+J! z{X2B@&X;CKhBUwTcdR!`IV=?DPxoqV=#bgDq`v>q-lK)mU)_HFSUI)7_+@H7>o-|u z&-Tghb)YrO%9_+;o6qMxi2wigK7)kh>J62j)fmijtEOdMe)Q$lbH7LIjt|cK6Ev&- zmSdKG@64Z{pZQ<Cp7rwG<>mg%w{HFFVe)oI`0B7usgGI@v-K;PWAEPm$i8d$&KIAy ze|%j3-~QwN&#qCs&m>vMG%=j=oK<yW#bp1mq^_e%Tcdh|vSVVjd8ADyeK}FH&%y3w znnu*ozYW*cS54B@ejIv8IR2;Azi+cY{{GHx{!iiU^TjEt8+Xns-B7f%Vdvh@Gi|HC zC1!r!nDXz>&zdL7@@x<OzTe;W_4Re;56kO+vFh#l5Gwb+v}MbdBib+CzRi6yY1P9- z<y+}rZJ4&@-eo$l_xqi<T)$XMfA?-aXVqQrBe#7TSLXh?r=OoxJwLsx^3_(W-X-}f zufKlM6!Tensp#G7>*^*QY_zz$w|drXhmsVD1=_~%_Wx&`S5w8yz{vQwx{Ue5QvJV{ zr>D*5IMRH(YO&vhl3Dq+pP$YtJoYm9@`J}m&dfBfd@|Af65~e~b(b==>b%{%ci+`7 zZ@IEcv}>tKZ|%K(!Wwst(=J{YfA4>PN1^ij{~zA_R{idC?TsqUFOX;z>He5&GXH$= z`o6$-9qc(@v!-qc^tacaz9eJzqq>ChJ710W{r%a`{NdgAJ=5=c$_u#(?m5!%XXhdg zG5t6nclYCoKkJUqy1wU`DZ`qGLZkBgwc-rdV~TnA|NlMzL3sUFsf70|Q~COzeSP!d zg-7$z50>+VH*CN4Pj~yBGoj)CAKAsP7B9P%x!kbUErwft(KNgH=bv_FT)Wu0UBz^k z@oL79$+^`_gF2IfF4lex*8chZeT{I#>ia+KcI{g3f9m~$$K9ImK<zb^)P~@nr+Q`@ zrwg*2ExGvX9)C-yUiD?^hKjG>p3TlrJ3Y<fYW6vq%Od?-B#qMy3=AfOInRB;_2Amt zXvP`F>3z2a`X)qeby{ia*Z*eTw)Z-9i{sMIUj8_9S8Lx(9s8G0JoE2wToJWWpwHV* zSLD%~2?{3y*Y+6Zrv0f3Ip)^6s6tk!p@j9W$wTJVCQ5bRa$<7#ezm@zba~pT#Q&0x z0vl?678y(OEr`7Ec~Q6Cqj$UCvnBlfb+zWx<a!6?n|_}U^4A%>y?nSJKh1ezfJg8a z)55blE53dEwxxc>^~b;8{@627W9Kz~n-30E^|5;@K0Y!1qG4A4F2>LLu@8gX&hLI{ ze*Nn!H&0MMa^0q9QHge{;&k=!uIq;0tuieix9weEcY=TaZ&L;{yT1z4WBz$F=tR{S zT~0r@Q1#}s6h=!~uJ-|_dW8Kf8gCXqXWEebxhg995o7LNqeCl~uVYxScJ18C&(A)# z>enz9Y_OKxwR^Xuq~yY&PWIEnvN!VX?U8J#{H!y%W{Jt63ES3L806RcoqD&;SNg`Z zD}_I<-v4`ki|W*-(u}OBUcbx*uC03cSV25MR(9!D+dA1}ZfzWs9QFmSzdX(6{erg# zynZ$WPe0D+ewtH#WA#^l{@>?MJpVkW;1H*ul$^uozdvtX-#1Oa{^w~19)AAK>F4F_ zzVAHGxS{g1!Qa0h_m+QuXE^KR4DV@Y9-q>V=RIKge2$0R`|4VyS*4m*R@Rrh9!>Sy zBfEGa%Y>_0b2o0ZaL}1nw)}gtug}VmM`!cvxEbvCKMwOy^IyG{?Wfb{kXa24GLA;N zK_{M{F#rAfm%vdCyG~^esSx)^k3Y!mdaWk6|9u(5u4TUI-}bcX*nSLQn6|#cl6%@Q z;m5|$zg)T~dA;Lgb<PI01NVYKsdEWW0c-3`!{TQ?VQV_l<;?Rd+WKPVSnW#wtycEF zt2@>-{DQybQxS%`Uzg`EdtUtd#ETa%6uOk$CKu1SefxI&m+VCvUcn#ESv>AhzP0ah zq+Ps1c$Tl+``Nyqe*CphzqV+{rT0I@<4j)WT8D)mbGtm{N>r*&EN`b2@3A)am-FPr zJEdjc_=hWJU*(#6_v~bin4Pv0k~SVW6Eo*g-O;7%ANR4#F((+TRIAgNb$xG)-sXab zhn)Y_9pA;Rx1(YE9@V(QKkv%-drP$C+}_69pkMcKeMYvm@y|1RU)wlNcwT+K`|>0E zkDc+4rq^leSzNz&up6lu7j{$r3?p4046tMQ{%COfVS|7JHd2Mx*IJSCU?A^OQ z^YaonHGe%7zE7y(+&ek9<Hr~>bf>Sl@_pIP?c29a(wi0TrpfYg$8rzTyEm?6xMU{o zY-sTMw6`qpw$J@-x;8&g>~)A~ShsgGcf-u$=bIBUW8PH!Jegkb>E&~V4NsO_KFe~o zPI7^^vDZ?e=W~kn7|iSbS7r77NHe*yf41)I`K$^5np{~N56r&zMU7$KpQrl8FPBbd zx^VTXDeGFhZ%;p0y1BbwRxW2_W4rWa*TaVoOY*DA%gduAE$5%#T>HC>p{mNJ?MXnW zoBNB~Qu&fMHrHw|ZZ534`)%#)6{^Sg^1Qw2TIsjPbxGLDg7@d&J$Q6_J=22Cm-qJ` zPEDzpuq|cMsxZlg5n1=#loz?peV6jU#^!>*qGeQWPDzVo@pK=@?0&tc+sfWW%Fn-N z_<PrW<yAcL-{xPucJ0`j$jyAezuR6bDKG#0^L)KrL+<Tug|F9cUnal$>aPrwN1an@ z>fT?QrIEEEGg#(G{jbaaPyGG9p6Nld{O(z*-fLWo6wWf}hG!(^=<uER&F;41>Z{BE zyMGY}BR8i7=}o`%eD6Bp%eQZHAGrB^-tqH!I|Uo26?Fz}I;tS<AkcE5W4q9nr)?)) z3vHKJytUnT?(z0Km%u64q!gPpI22Zj2JpZB^8P04fddEfuC1?RYS^9slfUYj4#NZC z|9|r%x4c=R{8jt4Mq0zVGZ`(4Z|4>^&YCx~I5WS~`k;nJ(fjl784|9&+4<yiWt7)P z-nE<8o`~K4pQWMroUOTS-P+Z=)nlJtT9|1fr4zNKLw#OHzTVFoJ6Qn}sos(Y0^%H} zmYz3f7dy)k$G$vp^~VpgAFF@6-~VH6wys8|VS^D@qD@AIiPV)z$qE0ix7W@5d`~KU z@|=IW%#BRKp1uj+Tg4Ssm-G7mRri2?^%dLJMEg$YXD^>RF>%$@Krh`wH|PJ$)=r6< z#rR8O?&X+|Rff7xg}SHfF+F%W*ZIr)d!;w(-Q3;T@7}%J{`a?B_cXm&t^-e}@1GgE zI&5QRaLi>T9&Hn;k4F;h?(_Ygb3^v~@56_k|GfWSYs`>+E$6}N_`e+7;!*uiT17rp zW}OVoN>2X$&QO1Pw@#FR_|aIK{d4Po+Q+jdJX=$FW|nOH^?CCmU+%o~_HFEx=%~wo z-=5ug@#C6E{U?vQ^`A|X|I040zc~7o=ibFty)n5Hls<M<*fnfPirMl#cHU|B$9=b2 zG`iO3N-zda>1$q8_@CdgswHk|RJ!;5fIp`1Os+BhI5$DXbCQZCbBtqnTF9|uH+Ce- zGU%?&<>@{0vN!o^;J<hB|2P}!e>{J!F_ml19*udb^X`fkz5dG2T=4$veU+|9lBZnN z_subn`xwXY>|A^f*9}Dp8JU!un^L!Iv8k7T*r>JZdC^Xjxj8ji^VHrwyj^$Xe*Ld< z1`UA=lb5WVURBj`=}n7N^klEM%GTutkHhzI9B?kb@40hvyQSx;-F&g8H`8~#y~&#s zEt_t<<=Z*66-QrAxL*I(UqbfA*=tXdYiC~z)H<&H!nwKn#jAN{tZVIdP3dyYa&Bhu zc|F%V`R%zU%E|3-(@RQAmqr(UIW+60|J%2@H7~v6A6=gR&xB!h*xE&L{o9p9x{EJ8 z4t#8S>__&Yf|eM)eeLUGe)90!6xeZ#?J@nQ^Zxj6(YD@NqjRU8DtU_?t^FaXAARi4 zJxK-;Zq|7<j~Er=B=h6WJK6bLo_vs*`+C9Z-R<+{RahTC6Z!eYOu_XB&c|=)ku>hV zubg$>=ChBNZlSz@tK!$FIco!?Z~EHZSMZsp*Bql4`?XCW*0=w-$;ZbE92}E&F*=I8 z-TYL6qhZBNG5HG_N0JxbJzTo1^w{ksT}LlX{1aL#V(bu}wq@J4Pu2T>b241B+uZiP z{{4N18J25%S#1l`x7CKrD<3x9HSPG^sKwK~nGgIsWw5nMX2+Vi&piINg6!|6$A67G zxA%cK!==xfriH7+)+)_Ezg+Y6dD$4*j15<P)@CnD$bNLlt@(G}zQ$*XI+vIEE{^JD z7i|9P+~O&v;^N}Dt6ER|!epLZa(jR4`R)F+cgpF!&lM{dX(WB`+tGK(x%|$lx%NNg z82bOb;q&;`BbLQ$HMw|k@lQd&nxCt0d?|^!k&{!=ut4bj<-6O~_P?|>R{I@p@oGv` z)Xi<`e6JQIXzz5^nKy-RZL`AJkhgE%e0iVLbZnC6${4-lqTw+IC#iZf{OI2QgS+m_ z;%Ekrrn66qJ_`2P+QycY9$kNPj-_$rjt?dbY;3<QAGSQ5eCO9<_hO#lwPBZ&uld<l z8ZO_Tqxt#SvA=E$C*1$t<`=XwSut=DPxRWWE7XMBnw$UT+}~!&E0=v$D*M{8)@c3u z*Smi{Xs>&H;(wCl)!VmE-?>-8|HIhd{@6?PW3I~X?p-;zjh(VB_sv_o)MjaoP{Q+X z%T}--{PEc6`?B5cfkugwYBahQ1l*9m@?Oq!+cHtBl_rm#zs_U4!iY3%weAc@Q$yy- ztSheKu}8kI`@j9m&u15vy{ncN-hVt>LasMlc(--b<t>X9ZtR|Qo5T5<opAVszsIis zXV;eB%igek|9@ql`G)DA>Q*j}D1Q3;*X#Aq|NVaNpWfrWG^lFs=btu9FWnPa`|NRy z-th|oF)U9fdF#zQlO`|S)DTlG{xxRKR)Y=8`I{<Imu_9#yFhj2ui4xnJ9oCVvE8)0 zz<(gwn$2?g;>#hInnhd%Yj1C3_;C64|Ebac{_bX2Q~ilE>*}e`cJ&F*`@R$ku!wl8 zF8g}q=z}V8-L!9iENo3*NH4i8@?HGuty`xeB=&DF&%5urHmLsIa~4MjJMjRIcbrFS z`f5Jyn4ny1CvT#ye|&xR{|MvQ-G3XRi?^&lc(7u(V|BIl(xA@b^S%C&peErl^L-zA z8Oq+=IC+@gp5=&pR$RryRtBB;eKxiSAHR<OZ<U*y`^}yGLQLb@Q0+NeYU~*Heonh| z^P-hrY*oINsi#(Hu<`EPJwNu!U%W3bFI@J&+5hvGSG^1|1rMLPzY4e1+Ol=)#y>5> z3_E^4o4xYdqkRv*OcoPlbKREHZM?iGqvu=E9r>+OKW|Yz`XtKRlFRe{B<^qf>N0J2 zuGslB;r)%$?*Y9R-6s8%WP9TF==xC}XW5Q&&D2Yg>2qDHtJMYM?;1^;!+PspP{O$$ zzIidy{5|JuZ#EUOrZj)q(XG+sW%{l}yS94A>uvIk1>b(|KX8-n1^d&R>GPlN`~B{5 z%agV+9kG>Rk4<)cWNyydx~qIa;OdR({xMI>Q&LhUMb~^e{j}(dPSm+swuJ|5_r@$+ zZhO!8x`ec6|NE{YMrKdDyT@Xid8R(DeRVng+k=1~4|@1`KYY-=|NM6Re<=ok+fN*U ziz|<u>+W9Ek+t;DH{C+1m(R{d&$P6DcR1_r-Yr|V$xSSi_l}B+nlVi#`1(z={<Zzb zfB%f;V!Ryv_@S4gIDggTV2hRQfmJH$Yvl}Q$rQTi&Hp!7<g{*2?~%V3w`5+v^wzv8 z@vL3Vu^!3aEZ5(@eH&AJ)|6pQ^!C19X>*1T$ISOl{CwX2f93u3dwVM1+}mrtmTP^j zX?E9@)l*H1YhQo6n{$6-dy?VI8M(TbFW#GFmnX+N?L2#R{A`6A)nVm(&$ap9-ueCC z@<;OpMJ!jE&ojuhJ?H*!XH4JI(~ot<1veCW+swOj)&2x$_p^-|iE}>P+rE2#uJz-| zDvLHa?UcBmZ5{QgWXqB3`xnnyzEvjvLXe_g{`ub9T^rIhZWaZcoUDB;+Of_3n8x;F z>npbw{dkrA;zm-}ZcrWSDOoV*{9?`3({!VcEpqK<ys<5lS9$SAos?+riLJ%U3;#bp z&tzZ_vvjp>q;HGK@r-;%{uNiGKo#xE-M`8fb!NsLF4}pfiIscDyIrptW*DdQeO=-a zX`**^UEKQR{nyt-9$x?F)Ov<x1$#qUi?n4uS??9c)k|hyKN4*wSNFlLOV`sYcB9V~ z$>o99PjCMDC;gGuY5Sl1@27lUcQ>=`@Q?lMZ|^&o-#t{m|I5rRTEF+qT>FLh*xzF} zBIX)IF6F(k+iBDOsb9S|HQl}znDo2g&tA9BrCjT7?OQQz+O#c)ezC9H*>=AE-)Dv| zZ|@wO=T#HSy;LYySN3JuikZggM)`3yd?ibR5}%%$%24xZ@_bPJ?{Md-)-`no=vn~w zzqi)^l@eIL;5q-sA9p?`{o(pmymjl*)s3H@o%IfW$X~MWPmiSWjlI?11+$)BTz}I) zyew~N`8^?qdo@QzZ9e``UK6`ps^dRf+1sx5#dh--$8`OkJZ+j#Zth2k6?^xZ+LrzP zIQ4bKm(HzgEKK#Te1GX*J4?RC+Robcc^I>pe&6xwtxk%vi+TEcKEAm8dd5A`?~bR% z&OMzX{Af*o<3ho*H(meb%J@QWSV}BkF`fIuyfq8Tw~4;Y(!Fq1YQNdlsuS}rK4BM& zl922BFDSTSw|$-N{OWsqucS1r^O<E=Yqj3uwGP9-`@5FE@ctI)8t8C-i`lKH$9rwG z=ifY*seXjf%Vo;DznzN=?$+PPXyM^KKKH@5x3|^4ez%xqdihyYRMd&*pI<gq)HiQ^ zE;avJ+{y~(D$SyuHr-)I>X|>Me=oSV`Y~sJ>|f`a2j=!{2RxV0aZ;9y`O|;Ce%kSO z`*<6Q<Lf2M@7C%wGcz;1%wEncEhU#0dtczF!aMUQZ&tDMz3f>(6%tBx_MKx^4sAR3 zh;x<KQpX!NcAwwLRZ@Da`RT!`6Uot!81Hsno-QHc=dd%zPkYV&KTq|aFPZGelyLsd z%|GYfA93f?i`g;Z=H~R}zh_%pTW9)i<G)k!xcAS^`F|xD@~dy(zSK~7cUS34mC*F% zTP4+2?YF;|blHdf-h5f>vJD2FoOKHsYXAQF+P=T>c!xpH_Q$<FJezZVzGT?*I97f^ z*y?57T;J~(i~s*&9?!O*{AAF!-0tm{zP!JAblu&;4bxAvetFyX`%n6{+{azo>mK#n zeRgNiiP<v2`rqT*lfQeX#uUp0Yfb$Y>B4ciW1sEEuXk(>T+*v;1Wl8p)MHORb}AR| zeYUNo%J%N;xZEodTT}UqmmRH**cr0uhSdG)-|fdZCRHEU`8@W(Uw)ezfA&1T&OhOR zNVzAd4{vl(v?MiXVZejy^?$E3?s$F9`toMm?O)t;Udk_v>U}<~tiNr}wY^LY=laat z+#gT<wy@McX#G*`?SUfm`MEaK-ZopLQN;RGVb2uf=G9lTqCD1BPFu(4w{mH#@Hq?i zhR^qYxV_u?wVmP3t(|k(-|ygTSi4$o*|aqe&doM%&;0y&>N@Rv|4!TNO_TLsSHsj0 zKKK8tlX?FFmxtt~ZkU&x=f8)`!emFgt>@CaPKpbrlt{i^TbWjNyk6K+Ny_uuxrn9b z`X)-fE<67I``7AKI&nhF-Os(qnSCby>55RTsh7B3CrVtpcaQIg_U89>-*-2Pzw6(% zd$;AsBf^Z|PDXGXHi%vM>dhM)rCfV4)8Omz8qDdBkM+(e_PgVMcD{Z6{`r?LUp}nd zZ&UO`x}qmz-GcDdrq9mwZqH_MbXXaZ_HNIQS@SmhVR`ob*i5eZKlA@jUU<-AcjDPu z%PYQ2tT6p{@b|m4+utg*54!(5?f&z|ar=2`rY(sc+0oUX_Nu=WKfNJs;R$gm?zTji z{|^ip{x%<e`CROiC70*_NvEH`@ap<Lchi>X6TO;!cRv!&nWi)2T*jnaQO5MSqW|aC z{7{yE{8;{X#-Besvi@AEV0&?Djhphm%-F)GQ)@mn%d<S1?Xx$|zj^=v^1oltyzk9V zcwhUz`jX>~$=czc&j0^W%JA;@&$S_w6Ka3=y}k0fboCEE2V>POTenWVckiA_Z;8?( z4KMav@9OI^xqjAExtx9^?6+*K^12IkkA3YQZYn?a@*TIB&Jxwi*rJ^=vsQ)cP2c%p z>-xvjX4mr^xcPj}>*{~5Q=)H6YWY4lxBEVwf#>awGtA|GSQ^sj)l7*!`7wKOa%s~N zHMc3}1AXq@59IKFE0cQJ;m^k6xKc*>pS}Ni4wT;i_1yDsY+u;Ypw4O2#1!8B-@WV6 z_dgddTxen2^n8B3UHZIAH3z9X&U@JRMw&1FY5VoiAp;+E<G75V<jc!^Uxu|XzkK&D zEh9r?@ABPuljG064qAJ4rfK^B<!7#Bn?5@i&2U6m?X1Y#qu$d#?&`kJaiI7Ar}JxS z-y|~V?f>(scAE@~qeFFg`KKQz{>Zsco<1pR-n^jT{D9Twm!7w~Kk~fkwe{Fab)7}4 zmFG=Z>t31lb;+`mdw$mZ*ly2w;E-$g%Qrp07e3mNoVE0$j3smx*184Sle4x;+5btL zbLscB?fXpE?)Vv_tE(GR{dOxuOxexZGi<BP7?#g3Wc&ZM|36E^?D{{-|9;9py81=d z`g_3Y&{$s^j-^4JpU+vpU%=ISHEZjaJ750J?OrV&zW(|pAHfE<BDL~`5k8j{maDgJ znssdX|9Q3Vw0}P2z0dyO<8isCXTs-{E}2~ulAW2oG)C|8Zi{<r8=h>P{$bbleX<Sv za-$<Y|8Qoosk(oD$J1l)83XjhC1v}96;@B>n!4b`?fYN78ET&O|I_}uaYw|X{X3E@ z6yLsm`{$wjKSc)Zur(g{&+jgK>lH2;@3Asu(U$q5D?hGIUADvDM{oM$uj}h=57fP% ze)f9u?QOX)pUZkwS6e4aEc<)&U`nzqzm#X0yDiU5!{ldm_USJ>wSOF_@B97td76UB z<}1s-o>@@PaP^}C$BQ>T;TKk4Q}yP)X=a?w*KW&vIOq0G^}CxcT)a1Jp4Z3K@_&5K zS$r0Kc|I?XJ+m&RN{_iD_0p=))tC6T%-poY-g~;<(<!1K<-SPg|6zPz|NnP`%3N*F z!kX8j;UBwF-k(3rZ|h<A{`S9wE!(y&JO0)uWN)1R`u(Cu;%CW5n;DkByYuD#)~r3g z%F|E3H|MBa_w8HRx*flA8UDO3U!PoQlz7Q!?d5$@QMWawe&coVdTMdE>fWNIXQD;k ztJ{A*6u)4-6#oSM`qR-X`;RjIT5JACdU5&P^Uv4+b^2ra`PoK2OR4n{Cw5;iVCp)m zG(Dz>Q-J;I*~NRLdXFi_?|=3$ko}18cc;H+3XBXx*I&Qf^@}}7Z@Q*f_e<Nm47KrR z8Ej8Honcq||N5r2izjdE6Q388_5O|5?+t&KZrrY3Tc4ZoLLjO-=f*Z&yNl{wN`AJc za?anrom(EFwY2u^g9i%H+mBuSRQ~qX)OlS+3l`Y*C}~}lI_gwYuOY$}Q+M<#L(IQv z+Lt@0Y};mL_w(g>27~NtYm`5}ekqZ#WRXwix{^O1+U-FjG;DD{(&n9hy5rZX)eJkn z-O8@KoSM&+;J0ZK-^T-MDtUZ9@1M0}+cvYZcQ!jdKR#^W6CQh~x$eU;x3-%b@^tg7 z|LZR~Z~A?@c-K+R^oBXL@3a{!eyyB(r~LbQ#vMPz?-k65uFlbz9-T4s!V!0N`M-Pp znJ(PAHf>$n+Z(%P?v{_<d!8#dx>|-uY<}^S{<xSJ7414(t*NJ4!Y=SH30k?NIgk0v z;l-8yGt6>tb+g^s8Pf+U;vD9m2%LL-a#~r4Ui_lh4DMHbU81Aek3MSrz2V%umkd0- z^7mV#4;%P&i|NJfXvnYoJey%o%_q$#pR3h_S6|KAWw9~$wprM^7|sK8%kLeWTYiuA zz%0}3Z<;O9Yp=e@=~pj1Uvc#2pI7VaIc}88%s%~ehI#(IiGM^(c?zC@ClNs_IM(^x z+?dSHP+MCod~f%jlFT_(Ri`wye_Z6RXE{)P|971BR5`V!L7f{nZY&9_RC2!(x;k|A z4*8~<g$JzbpEm16?Xs!OD^c;&<Sp9C8Sa?3kL~@hr{86-?JYaLC}?Nvv`^jZ7qB}z z9RK&tkezYu+O;oD*)#luf_Cp(9=tY$FFLxP-BI98@WsCYL3f%JJYLV(6JfPYE$#EO zvkYIpee-)U??apUo`bja*#%T*HXEm%wOkU+7Io{E=F~^Kcz>U^uzY@XJ#&J}&gnAi zfBpWw^ZUJO#vLCPbz6MBGM(|f{h^IZm#Ws<is?oj+4+1P_W}L?pY)e&ek#9Lss8`h z`v2k$^Zz^%%lgXIJza<K!Tvwr-W!y!(|%f&$#Y?<=GkONyFU;4-xs@_;Lc=g09D%+ zRaaL%xyfPRWG@pH9nJsCW0FSKrP*^Ce;w4Gc1p+k<CEHX(z0FO_iwdV=a_TjyLRQA z)7=`=yo9|9?I#%IT)1{`-}xt=*_+ybU9W$we5PdmL&xl8tzoOLI?qb5`g$e!=ezR# z+y~Cg{H=dzY4c^C3$u?p#P>vV^Q}oQi^+cSc>b?9ioOb4w`>daQj=VL^|?RCxp~|F z7r*K^4-_f9nL3@Z;A&{Nt-e9MVXKp(?x$~k<$Id7*X>{e%_nsKc{xAkwCnob?dkh$ zG`ZCGiuBD<1vR=(F@%HsI_22MtE<(s{{8v+a?LWn`NrpMCP!{g^VR6xxN`OC?#ur6 zvIVSv3ncGsmTr(VPWQ1m8Y>*GGcCjW*Zk>=jI6w}vtQf2|NiW;sJ`{v3Af8_vgBr4 z*8ltCTy<W&+qJ5?nm>GVUv;2}p@~R1)AwC+yV4T3-(&6Od-;1xRMh1)va%8W{{B^S z9v|$<=38Q!S9>-)?r{9yRO!TG>jla3vP{e+p87BD6rcC~9_M>SJMLqbiG%%(lAO2k zd&QRP=*5;DN|X%Ah|iUcjrn@+`<^EvmkoF_b8|m$wd}d~ecz88XSVNsn=5?p(-LKU z4ko?*e~J$1GDik!P0h&f-Y)dy&ZF;5eJ=KUQ%(w{otbekp-3iLqRnsFYt`Z^cTlTz z2~R<$_oc+?r=MOj?kTO<^Gp1mj6KJka9g2MYuE01xhlTu<$Z;&7a95G-p3QK#F&<U zwW*FfWo9B9*_zb(?c9!6J34J9uV22r{oc>dl2U!EpX_d0=bYG}=jq<~&98ZiPWPb; zURNhA^Vt{h;L7y*tPbC|WCq`v_1NFroBOl4j>l_b6RFaEu`AxsLiR&Cz7M!|sd%=p z2+%O9{q<#KUfYt#A$IW(V)y@wW_a?6@4b4o-Td^r_chmS{<1J6O86FbmzaFkkC?Q? zx#Zx|e75iNy=OTc4XRu<yWkF2Q^WMVZ&Ih6F8n(;=;W8Oy(N8WU^`AVD0C?m8}tP; zGc*4VIsSF6!Ovs!kG}kheet2}>g)T1RtmH!GOS&@Hu%mg=IVErACQ&;F53ZWd|Xo0 zn0_~D!QsQO*8X5x2MBkIhEFN;6j?_BpHktzZ0I`2xc@63Z=DZY^%z(G@@I@A`pU)N zJ5#$BWq<-za{jHSI06c^O7k|?rt_ecfhwMZYb7K+1c+Fb2?`_?&q-Q~m9J<eGqCJz zP^h%)Qs9xU{?B;j_17o!6MubW6zHwKBjP5wRyLMli|YTWDw?Z73qdbU>72CSxBC5` z((m>>RbyyM((ZMWsk#12@$7}&f=<dg0qa#6t8Od^=xH}fT<kcZX1$Z50>>kjgDcDq zsZNjQJTSZd>Ef54CzY(2^*3C^^-0k;T`QX!bx=VzX$s@I1+Q0J_bILU^YM7)qfT{( z6<4!Z9Opc-sQ#AYXZ!Wam%^Pf^JcYqU8*w)PiSjvdvSlWbi=xJc~-k0mApxdFI&SU zT`0fr*-G^tuN!yp_j|p)vTEy($B8a0Lzos!I3JjAvO-1v^i!r=QPGSmLRa^MK6>69 z<FGQMXMcEVN2<E*+&^n3)EwN}DK6|PsI08auw~meyZ5#hbyqk1+!3{Q)8>43hR@aF z6V5+Z-+1)WlhxN(*?c{5p5eykZ1!&dD$CE$^jQ_+4USy$e!kn?eQVa%Q}%x^+cSRH zUjKXhn|ph$|3(x$1nNznX<u*0@O*B$9H=_7e7R(@+Ww91GoLM39VD5&puQn?_b-MU zJCoUKcb744NIuS2mUExYVPV7*+4mLV4BgXpX8vLGc3<f(U&+$&zw+(#%Cg674A0KZ zK7Mq14A+6y_0_W8(~maqE83ZwB~{6y8q3SP*wiiiW87zrHAY5K@7>p5kv{XHulbdm zM8InE8@4uF4&I9Pda1TaOT^e;T+N#M?%R(j)2z~8zuG6Q&!15K;`1W5cDA2S)a^MP zymz){ZS`7w(Zk-(Ol-eduUoU%Qla{@4-%|?e)PZpBYoHI-Re89UV3tCSEelgzdvaV zr;aw{O3zQbcj+=i#K%wJmu+j=3f}l{di9}LDiT^OOGUbGt$x3EdiMIgVhvtPofJJa zxtbK_Zd?<#+UDnz$qZ|vwsvK0J(X_vS&|_ts&DVr6^9jhoa+h>*E4+RzyE`6b@=+k z<9!yTg#`s28&i%hiCZt+R;ai<M(_B%e~b)v-*^6h*R#<mxuj&u+uM(P`uFXds}o<x z#BlfWGT+qAE3Uu(^7hWj@PDuL8FzgCcKhV>$CaOZrOk`Z-z{hUuyuW1Yxurbp$vbn zx!27G6|%vXA1JH7)IOx(Z>xDKjz2rIK2AqWQm!}r%<HdgPlF~#UVilD|HX@e-*}F$ ze(WOnG-yxj$}3?DqVm@rn{2l&eAbMH26y>Nkp}B`J0Aa(_mA7Gz;WqN#L}QnVSgLJ zj`zDSZCo`oamTNf$8T;j-M4+q)+sZu-97p2DnHYO?Wwxnes<gqtls|178hFyq)U70 zA7hAhUz)b+?*2cg_ireD9mZf~Wp$~)pZ~&fX*s!P^Qzw^R#ZqBIM`1(c+m0Rm-G8L z4*1tsMOPVDDfYTGe|`P<%N+xryY(wH&1bQc)>plKzVqudd1eC}lOwC+ixnB<fBtyC zA?2pggA>aXu4RROdvlNZK-<^Xkw1SVGuV82&}_5w6KB}^I9><a9D}G{_5E32*|sj( zcWjz$t<5&0c_}(mqJMn0|6kmYyez5U^LGv|)ni(P3F0ErCxqQ!|8#213fj6?jP;4s zL%ZLXvpoakue}zTT&Lcn;IS{C<%#!4yRQ!<cBZ*UEeuHT+!Xp!H@}j*-|kn&ukRu2 zuV0?Uurx?>@AtT>mrMWrz5l=Vm*u66tHQc}uS_>zvvArM-{#&4UR&ML-K801w@Ufj z{t#xkW?QL0_pUMH47+MZ+s)z(7mQa=zqYMR+~kYRy_JyKk|F#;X-L+(S^s|=xAzOb zeEj?k`|{M4Guv!!Y<%>lZ=UqKd&TwFJUl#1J{e#4Wd8p4)?v@x1#8#7?bzbWp1)xK z{D~7SvQysexu=<T_Q}il@7W(Lo1K?*x$P^%lrGo2Uk7^`a_(%H*Z=q3d*%<Txb-Za ztm*e!dg$Gf8IOK#eO>WqqlN2_h3xVvS1<cBZm7JR#>Vz&t-{o(sa1O?ev94e*6cQ^ zE0*6`%5%S{Yv3$4yYhE;lGC2<S-G<+L}%({nJ*eVlD_L)7Y8k!AksAZ`sK3`OHV!U z*fVQ3H&a^KQSBXz7bo+mOg+As<JKgel^Q)7TaWw=)Jso0@A9O`vZ|_zq2jsqeb1dS ze)qR4D=S}_lvMMyXlBx+P1V;T(?8CAU&C&(<M*+T>mu)zeSdfN%uHkUhHcxn)rN&G z*6`~7cr|OQN%q01*H;?aNc`7*b7Na;)g}L@p92>9*=l-NTG)75T6!+pn%dE5`*CmL z@n`8bw%FF4oqy}X`Q!EPFN2mXP5!H`@tEgAX~?eE>vl6l?5!%5TF`(0vsoR3v}@q6 zjageyNv6+n%r4UD|EAxys3hp|QIqwhBCc=l>=f<@?&iI)JVNB+beYO8;s0OjTRy+@ znW5rybl-f2y?gh{Hk@0R*XBMubot?u3txUD_kUb@|2GT6{%;HKKgoSxVV#@%R{w|X zasDag?`|C2we>v1hZl$WKc6_vzp?777Q?o@yN4bm*aWP;_9|20UWUmE_1dr-83EaE zc#j;`P_l7I2=;1PFxlVkXM+CWz{PhiIn9WfU8Co<{${~aH+SzjLAE9)F3k-GpM2GM z!qjzg-`^<Zlr2&I^Ue#ZXnsnR2-2{+V=3{Nd4JVjKX-Tb=H}*?$7g+ScUwHsFX!p! zpI=`46wcrA%;izK{qLJ!j?CoN+tD!D&q{Oc;S1NVAOH3BqsrrRbFFuNx%8u@eW~|! zKgaH^)#Wld?{Ds%?N;QIqS&S3Qn@JR({{nOkjZN;4l6HyQhfHUx#IQMdTj=O+s!jq z-~T7aTw;5EqbaXGsOG&CcuF%>wp6N@&HTR1d}~WHvu)>lYKu+F|8Q09jq^XB^Y+Dy z2ba9{w>I1a<%7&?j(XFRkM&4qzKYGy*XI`3V@WtUN%hP;Tj>Vt_j`=jezP_)InpC( zyllbK<J;4sULH8Wu>Jp+uzjDN?y&lCt9N$g`QPhi9-8Lco3`xCo1Mj%l#+W5mdso8 zZ|jt<oSU0i8}$G6>u*T=s%7`(A^-7s<8-~niwk#s>3e&-GVQDsgIwhcMY-A^i451) zM9vLsmzR^gnZDG9N8037b$G$-)z2OWUq7sow5anyY;57xPiYU=C3|k>*WbQnnd==X z7Lm!J?{B`%&6Kw@iBg<@{^H~%Td%(^b(`G7)+A#)w~)<6qAl}j*`ki1qPjhr2Zbk} ze}4Ju?X0c4{M|w}M)>@m^{7}Y$UOX-`m9FPOTRNkTx&jd7ZzU2uYDaor{YoPoT5{j z4mM?(Y46_L+Nyn4=FbCm`-(HUm6lR(Zi=RJ_x1Em@ZL4WpoinIhHa<v^zIX;{wp{Z z3LdE!mNv_OzS2~hQDa)vrG2qd=NV$%=T_}K_w4NK%k}2$Tw9}Z=QHfJbXXCh_3~`a z$w{hn3Xe%nzVm2t@aJ9oUi#)g+C2ZS4!78mQ1{)tc3tAy_gLMkYMH;ky5Fp7QPav* zSGnwe)YX{WyZ-N4{?D7|->03Qx1;Ds^u15hOiDjhT&k(pi`&x@HK|R)wepaGXF0$0 zl*tT>FLLaBcl&<Q*USFQ8y;=BT#@zEi{aY3S~c6Wf|Qh&sN(#R#eRz?z7fuEae3VI zKkCMUc{OVUUEBAlf1gu)j?trkqm|gy)4Cs@6+W_k@pFm2eoyzx-|lXinxdLwkFKu` zTYcGH=DmBqrg)}q`LX!<*#fGO*S<#eIvKv(%yU6qjibrr$GWi9Pl|Sy+^^gk<*Qz> zSmW07ipw8YzMnNC&3<da!$T!XS$}_h&AGE<;_dwXvK`D{A~&Zo8sy*GQ}X*<?)JOK zK0Q6nIKwnMEGqu^_n#B5t}zW-8S?#GaBD?&f}PK{nkPk1CcUto&do82N&5Vn`-eO> zxu!onbMwp`%i>M5*Dr3koHq$nIixmdzc@AJBkTQH>FfCT`Im40de-E1THw@=hYWnu ze-!V$W9K?^*5;GkVmddT?<v{4WAk~t*_+SXS;tDQ4Ac7ZzEgX`x36C}rhZmqc(>>A zw=Xq6V|SPN`X=`$_uGBqkpKC%pJ_wl<IOH_?!GF#=qi43Qpgs&c_#ng#h3p3ImPSa zsi37sZgySky(2m=iGC<D^t0Xn`CP^9W4YV!Pg}P1`m3*7g7Wp6G`ucVNGooA)>XOK z(Uyll;>p{9E!(ygoi)AAAanWUgtu?szRVKYDRXtngWC~XujwTD`-iJ1Pt~e!d$g}j zBk9<eAG1te@v=?UdY341>6+C3=bv{rZ2Pot<&CODM}Z|XgOZbzMY>(xCS^;rI9AoK zz5e=TR-WB_|L|sAq4E#U&d;C!?Pj8cP+Q`xYjG<>UcBxO&z)cQEA!p%_jU~H_W!FA z(~V*|usZImmfpS}Net&K9`igqGjsC3w#S>L+uGYN>m2#^?VE|UpYU~=*CAS0O`27D zl(-W640_%(_Qp*3mcBDa@9dta-HG16EQ_C?^Y!<haLm{tJnhYmjm@vu?dI!X{*vbP z^1*|Is>zk-tM46NxqRNP`&w@TMcx)ax%FeprE}*j-hSM2*{^v2HOHzK2ibq#ivKT~ zJ+E_h==#{*)6&h4I{y6j*80X&89`$+GdD#~>)dy*uTC`lxA!iOlYH$PL$ln@e)*mb z_S2uMA9uZ7U;8$@|MisPpmpm{J*VDrm#dqhadYNG`SK`7Wgg8d*_lyQYs366KYHCe zL1E{!))+nBQ__>Soc}hb_}oL#8j>mVO{Xr~D*8g}_}|axHtzlX&0R~>>h>eM{YyhY zgN(n=ecmZ^bcsKIQDD?s`yQuTlYYBoEBbGg%HPd-xXpd7uY&+f=B|>ZK?@^vmN|a^ zF*)!U`_r8<?{>UP=L_}sKX1qQtFa|<M%Wd3DJie!x4+-*?$59PeVbuT#KxxU`@U_R zQ~&R$gA9k6xY@j_S1U~p#Ba$E-2eag$H2+gp3U6xEa}3BjMgH}y0u=3jT<JY&)-w_ zGp5h&Q`NI#%d)S>*Wdg$xBAli;!h{lmp=~9v|%nubz2#7EB*ZK$^Len2WF<vJDLCI zSU$s&*5k8`kDV`FF#Fb~)YA<=JSL@WSTBA}Chcy)W8Ob6md(DjH{@xN<=%x~eC8k9 zl<Lhe!#dq;bNcb>Ctj=)-bM;hHkaN_=;h<zQ0iP$bNyTT{KOQElM0;+_GVi#l;8XH zxP;;E)vHIRhR2=UQ(4St@e<UDx+rOseN89s|F7%+>%YCTwp;h=-2eZt?`6I^J5BZW zrl(EPX6po!4O;pP6BIaA6eATP56pJE(V`N+?<Cu&Xd$x+Z_<R#exF@t&LJISpvfW> zrLjz+yr+8mQ?1qKGt%Du{ag4<t~W+C*<1Pb-x?dC5VucPXU?pC|9sB*pEV2-yGk@y zuKD{y*0pBRma5E2C;Jqh6l6bKDW_8>I%jp>u9wS#cfCk5*to0yx7zHv6TF;Ff>qWj z=%4!Mc6rk})p-ZL+pN+)^Ln4DTzY;p=f2>TCaRk%Ho3#r0<<oh5gBLVq*N?C_gm1K z`fN^y>hhe#fZnL!Qr808zT=N~tjlix<e_p&Q-GhT(zkBEF)J(U-E$5fHouBine17X z+7<Th*4FOu_}Z)2<W{a+x$*q-b91fV?l&%f7h{|6E;wiQqujGHH}b`LUv0}xIsVM_ z+i%@mN8d>t7c*K4ZuI2dC@nN*eSB%%>3Kd0_ijzwkZhNFDrGm5{v_Y`UV>mSQD#A= z^hwF3OP8LRZ-2ioE;^d~!2JJz(s#c%65*QYw>;PN@%(>ZmY20%E{(OGJjZYO+v68A zrpz=>X9@@lTXyr5UWeP_p7{oR4T{a|fuW`yjx)J7F|&sSL`88qBqlb-+H$r#S!}!S zF-f&Mo;l&u6=O{ejW-YXKe)1?`nMZH+@Ht#H#R2=Cup?`uX+1xU+l-)w^OG}m>jUt z|NrUeZp-gYrz;+|iZlGG<(m6?SBzacAH)6s|Gwu=XT0x!+qS7M`JA+RGXKwyR*!p( z8FqX+rS1Rn%0u1kFoq9@itCg8yCc7T>zLp%<NCJO7VNpN4Km+1tW{)Cd#ye%@@en( z?YBb@m1v!n|Nl>o!S((huI)A7;#Ot3&AGDwWr#qI>gxOz%lFzIyyug>^3R@{S+knI zPw<aEl;XX2%Li8}DL$Eh(@z@iy*%|zv$gA%ZQC~4U6w1lyv+C8>z5_7e!ttzZy;;u z_q5o%ykegFp0%xQRhxtMRX-PdwQXj0!QXpUvu2;k-fcUv;Y{uGmdkCMD|era%E-%9 zp6VssJIkllL&fLD>l@Acve)0_o8h%Q_io$D;AP(~#H-i#Dou_1aEM#~!-Ho2O&J%J zK-<UO*L}BMxA$Ar@7nv{f1V28cj*70^Zx_l<IkU&Y5a5j|6lrQeseP9gX81R%a-3c z*u=`sFvC1w?*7kn<r>=BuRrd8o-)%gnT^5z*Tw#bSud?)Vq!o`bAJ3hU!Ny0e#hm> z)6y@Kb+oiL?R8c6os|-NCwZg9zW1-2N_dVQb&V;SsA(2FLtfF|{(fI%__1@}Ys+$O zGtCfl4_>yv`_ZG|?K`fXd{8ZSTHKEJz_zd2x!q#NOLNy}952ntHaF+;UHdksXq%-w z4~O}tq?<{%>)bVa3{p>t9C&lK=Ihn)Mj!c4XL`d<l%8C8V@`p^nRdG`iU;1v+lFp6 zGu`mu_<gnqQ&Y27<Qp=UJH{PvS^eHZB#mnyE2~5ETFyKb9~}$xr<P?+s&oBr*B#j> zo^&^Fv+k3J$K{UutL}K)&Cg`8Ac}QUpNho)-|zoxJ@jaCnLSg4v;DA(kz>c>9dGXK zm2TJ`zTfq)9qWsoD%H2+Kh!*X`qZ#=6(`T{-&+;$-8yrPciG%$+s?keu{m4&EU(&x zy!`&+9o<dN$9IHInH~_4@y>Dk^|z_d*VS%ojZzWac)KL#dSZU<@g-pee*9UBJ7m_> z?>DaY^!DZsUgq;~VY{5woA2@!4;cUbz5jo1yIfVr_4xX^uU=*8?fnuIEyD8Pm~?*1 z$w{i9!4(kJiQLpu|D(PB#Y%fe7clTMSi9hRllHnDApB^<{m-@YL5<s*kKOT4Y~NS% zCtTXGdey3m9}n9>16ixX);>C^K0oE*p;oif-@otwx7(a{HtFlDt3A@@>yH1MHaYXb zfyM^Sim&<qzvVM*+w}YA^ZEP-#P@w*ZA;M#{r^<Ie&f}{?!8i}-D|E~y}D5`xbe>^ z?e%YV+ArY$Y%~8*(qz56_pZ4(HeP<ara56-UHDzTxaz0xedhktV_@T1W3!RHy6e{F zY-#UlGY*9<u}PXav*P~e55}vN`W|1nkaBCU%jZv$#;4Y>?c4H!S8VNH<M^HL?^pdh zP#m&B_wk<3=N@mpe&!qZ{qJwPR?q+TU_<J|s^d2{ChvT=>vhAr)U{tiwd1QB&Bg8b z4{ZBoA)31EX+UJ5;zgf8?e;fcV&(6*2c)eIGMf2ji?5<a{>z{9V*h$AwH2Cq<$G^+ z^pD${&l@E@sb~Cf&;Opc%H<}1EA7<=?`M8Y?|Zn#P?^*H%rwUH-#vam`*mwxPx`jI zGp4*+8@-)rL(*fVw(GNWw*A@DG|#TY(&L*~RbgS_{`|Gmyk>nqc&XKYW9i=_hFP<s zJeCE0(|YjWM%GTd8=pHbe@s1~IPIjGWMHswq^IEQ?KAVVde7#5v%A7LYgY7If7YA1 zQ>X5dpL965VP3LX-W`wFSlQ{ZWi$Uq>4-hP`@YUxfBzq&&(F_4pBf&waLbk}Y|j&Z z#ZQ|y?bD~z`tpVj{whM-ma8RvPkgp0L@V`n#GLYbl{x3Pe3ddtU<eHj-IkwHSZLVH z#>?d6^(VRCmTg9vvZLwc%*)GePJTGUFxl_r?7PCMQ@sqcrbrs!_uiQJR;#OvZ-2kd zj>2y?>lgRe8hP4Ges=ZB9jC*Wp6bM9={3p!e384n#PyZ%LGR^1pZeDyxqbUgwaIzj zhg)ZvTxwkU^T}~5E5SFn(v7koePmf}K9h6JEW`8-FK4Fa+}pFWz2C<C?d{#u=l}iT z&amg(CvVxcJx1%p4b~?gFXfwk>Bi)y+RLD+`~DkiAB8-umXn^o_fX>*mC5cW!V>x0 zoxZ8vIJr;xo3XIA<J*aAKJWCb_h;wd{M9Yydb-EbooQ=s3Z>uv7dCBg+ONCuoAUXY z*}uO}c<OO#_1SGp{{AbAi`^`0w0E}iy5!#$yVvF4H=f6ycVo}?x@`~k-`sZk&HcSE zcl8IxEs8t8bJ3C|NBknbh4=QRX&;+(G(TWcdfaB!qpT*|w_KDf`DF2A`J6M?YwtWr zKE8cA&+)<)8rsWNT*x_oGjMzV+tOuu&c)etTo&E6d$(ruIVOvo(+PqBUDfASt~NH# z4-E~SyDu&@G<AP?czAmArJQCq-c9|MbAG?yKmXFDpx^rw`nPp}!56!=3!blN4zJ|b z%PHFt`XE`<e)sQpyMLZZw@bFq&&fHnQ^D3FvHso8=Wnv=Gcz@xK3(=a*Fr{3gzIMA z8g@RJ4b`7luUhrv&vSczhu~o0_<x_KGw%5J>viR`nduA>yUTPpr=7i|^~-QckmhaU z(o0KLu8H5?R&i%dhjrxNg4?$qnV8T1cjPO()Qa`yM?<5cZoPR^?CB}#+{UwT&7C!~ z)<<pay16<1`-Aw)-+vr9_O^P*$7S^_35R}swE5rU$y}HG@bsU5`t?i-bA2Y9(P843 zwVP!9|NZqd$4yOb{%(IBx%=9etheu51+TA(&Caf?IH@x6%&9D`x$h!ol=7`@x+C56 zPSpHP!C}q#11H(Hy~$5KU00l^sjH_X!?jAznk748-t~{ae3#lft@Bpd{8V}FH=};j z>#p{btM2~%`fl?4mzwdRfo{ps%GS5eo|-Cs)_P`r()??e($=kw({k0i`7zG(r`*9` zeUDSN2~V&*pCWhl)}#j?_y1vQShmdU-JcWU8d`7e-&N^TwYR^YR-2M;Jx}AHY3+{> z5C7VApDjG|y8QOJ+9$0(+n#kKUKJ4+y>KUMmyn9k$-b+FXH1z6e0({DE&se}U;lgS zC#mO5x0;5Eh|TzXTH5>igi|GRI*umoc^&)yl#KiTy?UoFYC4=ZbWA<IYnK%pzg*7# zebwLdcCU(yjm^Ehee>I!o1agZ`aNf3#F=eJPKDP0zI~se;>kq!9PO>QZben!S@-(U zu64F6E9a$u58JwZ`|X6k2O618OlGXw8~^{;_1vj9H=nnQRzITWp*HzjQd~sDkt;9L zKR%ZK$DfcV6J;cBP@tis#guSk!^04MGtHgO*;#Ksn-@HA`1JYn&E40RRIQEMyNmt* zq<tq#Wj}Fqy`9$h>R@x_|KIiu2abxzAL`nEovGm27tKF!mfJHXoS2~KGu!U&zdlZ3 zwSbu`A78j1|G8O9yHj+=m6x@<%LF-Rn|!L+J$dTIci*cT-tAhq*0w0he#N`jyY!a( z&-Q$n{GYqw@za|Owo|T}UH<+zq1kd_0LSr0m)$#8^0iy7dcXYgyxiSleJyW~&wGCJ zK~X{^=Sv%l{Ao9p!VD80c>cHkz3Oi1vt2hg?CuOP%3Um^|MVt<`dmN3ocwRL`yVIY z-~N2PyV?J)&1!Q_KNXkX_pMI?R5A+tCMGI={ra_R_5F`rYCqG?%{kd2sLZh9{{H_{ z=Kryt7IB8<T%UB>;b}g{XKp!u;$gF<mcit5#p_FT^Td=leg7ao(^+e3(tXBa`CXZ> z{leDWV>$3Gw)*XR3Bx3p<?DQu+Ar_FztA${$%%;};o+aZT=u`ce(Uz_pZ|P5UwqE; zIcS-Uj+B&C&O+se@c7!PZEbA7B?Q6XW%QP&d)%{T&yL)lH}`K1=!~4mO)XtrTy6aF z=jN8*J9&NIH`8N1l80v)CjYo~eV?17Bcu7f3gv{bW6#daJe<4z?y>LtzS}b7?f+Z0 zZr7_-cJT*oJ>JJ`&y!udcG;t+Z*FeRO>>;UG|l$6^qNga9v4O*t-ZP`)J%2vo;`DZ zetymjTIlfgjQpkJs*^ouXR%+napTC6lb0ESXXwx9l(*V)EYDs;M<?a>wp@lcx3{0S zo8I`~`_j!^#V03Ph=__^x^}JVM7h&Kfy&CXZ}sOy!#_S(pU;$Vyiaz^)|qG8E?o** z=0E?~GT&t$bDmfJtvb4-><CBR-nV58`+lwe?`0Is!to-c=FGz6YrD+jmNv8VZ+rgp z&G-8&a}p{wLzku<&2le3vCl8|`oTh<WzJeNH`$)`y*4FZdr$Se^zaL{_m!p2inMXJ zT2<X?k7-i365$f;oYpX1Q|<cs?e#Ke_gMvdWdEL3Tan4HFS}$@x+uGE^^dt>7p%M5 z*yMl9?fLUaJErWSjDw`DyHKago1K5(?S8K|)$8Nu`Tu1aj&_URuAa57>u3^qG2fl? z`?Y(1EYj@xabtabEmQxl{4N(CsVc`n!;fdQem=|H{lR8)7hgb7OvZV4-L-|gnch8~ zVN<R!)vI{H!JN;xx2)~kemyt!@H1J4H})4&xX-yNDJIRl^4(i+--jvs3|jAF{_kKu zVVJ+?Bb#_!#lpWfH^l2cpEdtHdH$ak(AxDaTep7v*k3>A*RLv2!VUJfbuBDB{%<X) zn7>naTz1>7-+L-Q_uUBJtIw$wUHAL;{b#G=|7wBz0Fd$nRNgcnYHDJVo|1ES*VVA{ z`PSunr>E&MC*0VOcxJXa|BD;Vs_xVGvdf;C_b+?BsqXx~Yho%Dab|gUGJ-!h-4{NW z)ve<G+=9>5)pg4j8L0*Civ!cn%wRn5K(SfUvPgxY`(DlD+TY(8)g0zql}eqr`K*(m z#@c-4<Ub7=zT($ww=;eCE*|%wQ+*x--`Y#B864L)-Fs1JSpM!#-Sl5CtoZEI1o~Z+ z%s#aBY5l&Kaf9vQ!U^77=a(H)|J$eaXkoyL#rqtzTyJbs`%-9p^`q}AQ<JT!YMGlZ zJzu){+Zl<s_hRx_KX*2`6Dgm*cjBK1lh>@b>~l`6o5=Jzxx+<CL~NGvg&l>DE#B|> zT=Bm8KKFt6|G&cPzHOe*C@VR+AmeUNLQi&9){iIZ_9t_<-({PT{rT6|*NnzLuWp_4 zHaPskvW-i&^pvFOJnAglmUBOM`>`G=yBV8;Hn*NXo0WO%!j(hUWYc~hU$u31<o1gt zlDGD*Z*-~N^!Y|w+$T-_-uWvZ$#p)vnJ25{zKCJ3cuc`TR`<KFUs&*czgMmQ{a*EZ zLHXdoz=QgAAG;?PlqiA0C25fb-hP~6k@~w{D9v8?fA0I5c6Yf-mWHX?;Xz?xY2nP= zTwHH*QXL%|=jN_kwQAG;?AzONx4qg?<yYpbG|?hu>tgNI@~$(R3QbK-*F+|3b<D5( z_0pnmvB>v4EiJueTem))uwGnD>{cG@!-5<8{I9Kz&%dmEP(+e@Tj!fwTUW=gU%>qB z{rt*rH*G$)+cT)my?fec+N@a*`B-Nz-7i+9ch>fV(asl(x;xw!AFueb@+hOw%f4do z=(MStGktDd{ZdkWX<3(>a^j?uOJW;~oE2}~@_Ci7BevCkeujTpNR|K6+@;?=RC=EO z&bgm#<+tRr=Apd*QlHnYI#F`ZW2^knxeqM*d>sm8uGh(QAAM7N<(im%*0ZS+eUEQc zPq}m{NapxP-O~I$AKiAlzCUYz|H<{4CSTR(RUFFGUA=bg(^=W;7{N1spPrnYyY1AK zD?D5O`&BRVs@afq|Nf0fm7DLKedM}qUU0CpZRa<Y+hw!zoHEZRhp64P)z?4ey?#B* zgRQFh!P~3tL0d_e1kHSF)c(6YC(%`&znE|JiWLE7oidY|N=|zAJq`#CW<Ie0-|PLK z_I=;W-|+w6`~PVNn^?=%SH{K7yPN#=Ab;J2t=Yb%uR)n~TWYkUV<Yc{rP+%vYUt{= zv$e;XCLQ4b?Z2I|_o8z<-&XVNwDTEi8kbyOb#!rc-`HONKXLzb*&}o7e!XP)^LA#s zRcWS#Nru4ErAr%DzBEWXGh=eamfGXL?|rwc`z(F=U*^qAOUv{(i7yFAH(U6eQP*|~ ztCY_g9$Bj`>HiMOJo;_dtD83a(!H?r%T`y<%MZS?`MhMF%%z)>OZryM;kh8>e}lnr z?zfz%-P5mj=^6_kz8CvUYLbr%hr7rEc|U`PQ86)RBGc!3x-K&f&-CoH-9BaN)WEPX zHiz0;ThN@-gUjXjJd>MmYJ58X|IhhZGVhtre|{5oEMa%twuDI^o4EBhto1tHFModT z_j}9-%J=_{1$BZSd@$8nwc2+>WJriharaI0*t!|@%k5_x{na@(CvVsMJ%8>@esXkC znNflJUAs#&A5@?J$0la;)hHq8PXF@9?jP>-$y$GNk=Zrp5jeBtZHbDG&ix?9)jGo@ zQ-}c+9p}DYk3YY--;V1*a=+~{R`D2y13#b7&;Pz5zThD1HjhZHsgK@nzt85g;a+@t z&+f&mR&~i*`z)ON_@?o@U3$W5J`A9#G!b#};0c+<Q}0Uo|K8BIX2+5lxwp5=e=c0? z*3Wjv?(>4V4;mPmH8eC5p7~t%TD5Vbd0EKwWfvE_7k@r$&Rp<(ZuzZ!XC0?n=zq?f zc)6IdN`T|*@q0%)E2P)u=QTw?e*5jFN44F;GiNtGwpeoM*)4&hyFTwf_bqBa`145N zTtD-33(p+C>G~|@I_v%AnbR}ZZmB%Wb<BT$>8F1O>~v;utXaA8;cxpNjEA$@7-ir3 zE&QzVIy!%^YvxMMYx;Yi1XbVVZFS<huv<Z{|Mmf!84Q+_6d3fiwUzDf$3$mmXZJ_N z7|rmQY4EV*)oWk2lN%EM?v9Am5LvY2%A9ikElVUr16{JyJ}J%g+GxBvXkW_Hs@w8= zS0CK@*n;QG7AsvHoh_5qwZe2_FV>&_)dlXvbUYDQyTIEoa%+|-!}t63`{ypy*U;D? z@4h(j)924`dD1d7HP`R^rIm20qB%10{O31ax(BB3`=ZJKS{hn>+1I?(i*=gw(Ims@ ziF?<r<2(O(*W5n2C2#v=t*33jUpM>YWcAzcGg<%MSmr<f;0L`mc`UMgN)HX9x973? zXuBOR{PAVEJ@19}(Q9PS6v~{l{T{>M)-QFmtylW&^;q`%pE=DAhqNVzzv9^c#NyxC z0|!^@H?#3RTDSWhlf@F#hbzy0uQgj2?d*7?$Fs1G$7t<UoBM}LH-(>U&J$R8=I4o; z^T)Tp-GAs|!1A}oir4?F+cJHd_UCo4A1uB6=Kf~xhU@YFc86W)SFmWe?sL|WvQ879 zQuz4T&2>WSUf+77egFH`rhBYw*RJh3m*P@tdRgDze*T{`pG(&Kp7o%r`gQL1(p~ni z&dVI%n46qF_jjIN&38+iU)}Od7cSkoanbL>_f4DD_UVXl-TeGx>-D(g-S=&Ny;wYF zT4kQ;w@ad27gU$47`1v|TNj(%9UohMx75tF{CJ=2ny9U(?pe$!y%xD9Zm*Pq>&9p2 z=5im9OrMk3y?V=*EgyRGYnU6hZ8Kxljum;+9=kE=sABEK-HR73YC3hw>$lC)%bC#{ ze!1`aa!yQ8H2YyUtBY&$yzt1#%xnXex8luLGGFS<(5d<{(Y@lsL3YN?vBwUo&pTNt zFYvL@D7St0{@WMs{3zYB^wo>4bLY>`KVLlWxnbp}lxOGX^M5(t<h%R(yTzJ$OgjTs zG?W<J*ym};%kud7!^u9&IlX@T+}A%}Q(?k4>#EYnB|bh&FUvCSdTe1)C#7F(by?-% zL{`Rlt*Ngrg)MImzPY(xZFj>`nR^=&5C8bkZqHNlw=^;!AmR9))vRi(SFi4W&)^>@ z9$O;FusQwwyDz_Le=Ps+96fvGQQ=-Ui=Z00JI8zE?fdxm{QtYhJlHt%%ZtlzOcU<z z+Ir<$pM__A<D4#$m5^lJ@q_`Ct~tZD?fZE)|JKYilE!H_u1-EX+x)QwA1^O2LrneO zuVzR8?tDIPv%LQti;H1rbhNd>yLl7BqPJw-Ha++%TSqMU{k^^KUzA_Hc5PGAQLY1P zcrvcOI>LEReX)E0wrCfd^TEqb1hTB(FKL`saKH9D<A%Dwp!qtNw2O0+*cZ*5p83e) z*V>=^^8e3$c)0!cn|a=PJ6k|w`3*NO8Ry^IQ@4B9i=~$>-mabUbY|hF$(nl-W@>4_ zK2R!iX=c`M#p?%)6;EUr$mYDtRJrqUR=Lav<I^9X&3VkSUre9(=gi&neOHH1$T64X zow#C~UFzw$iM-oXOWh}EPP%L7)3;{Ts;*V5R^|QmsjJ(!_xj1xmtTLcV410OuwH-9 z6Rrb$>gxY~=w}R`V`P2Qw!+qbzFjYW?F(myn98T2SFT)<`F5-Nvak8-?B0@YrjnDI z2YC;IisAjwD(Ct3|NHyC-rv!YQU31>cgEmYvlWl(u7-wxJRSc}sG<7(-s|67_W${G z`gbk=i}Iu&A0C26O5eXI-?1)RJsvcB8N0%7fda>#CzHHy?8p?p@KtMb)7{UN_iMiw zp4Q#IVf8w`hGPOEsgEYRL|?Cu7s&CSWpZ*``<`dBvMt_jxy%q;Ynd_e%AGrBHY6VY z^|mEcYii2vKC4GFb@f>l&u`oL*(N93ME>|YV~?f5OKRlRKevY5I?l^fd3|f<ioW+Z z<i4+a+%*4ZZ07tDD_`$tpKZVP9v7|o#(pr{a;~3zxOxAB^qA|Rcc)K2QX1>!<<lV7 z{q=n3K4IO6BRgx}*$5RHr|y1r|K0Kh7v9M3|M4dBPEq$umZFPCr{8!d?Y?{c%k|GI zEbF3@z<oqP!IO+pj??FCFM8@FSN9|Fz#6Z!v(3*hD{*wUzn~es%%JX11w&l*ThqD^ z&GHNzN?rzmdV>c<5-+~W{XS*-^x()y&*<5aZZ=`{*OD*(m@jiZrh4wG$MWqDzE*rZ zD*pNA`8vo^MQi3?aZ3q*=9u00_w&=IPv;b$vjlCHWQeJF*lHI0^}+R;3)1F4^6Q`O zQta~bKG{7>boHx;$}88H9JN)RsIl;jSD4N;ca5A&l6L}T6sWjqZMNE7`<X4vZPuHX zO<i2Gm&x_Iy*cl)NN~~2t49Mg&a9exy5iZ#c*cTjJKw8aI{GN;ukVIQFD%X#rb=$v zK6@U=y4OOznLYk(5jt+3ojcXs`!-KlEfZ%V^?1%_AI6=J-v6C&e$V%222dC1{SP~j zClO!rrp@_&h+BU{%1I%HWxlh^uI$Zml)C%o=H|+OKc6#RzPD)8CZPuZnn%LNV|(}P zFOq5R>f(y7j4hh{?c09ihXpfk=k4xIJw1(a!-Jdd9k*=T=U%REE?l>A<;LpM_8%Jg z4QhXtgr0lfR-kg|=;yo#XU*f7A1KfN`+r8=wVMr`_uk5VnUH;Zm1V=@U1kYA+qX`d z9zWry<aTf2hScWl%6FE<wKHmOUfr?oo_V`)j^*dt`)s%G8diKrIFMs3ZLy%<-)*iA zD=TYA$c$+#6z|@iQ*iJ}Y@w&-;Wl38dq0(0J;F7P#)78?TvXUIcKH^?m6mQ@duw0f z;Wj<d14T0Jv-8bdZMe9(XId7kHH4k-Z+>hMQ~UL*l(ps4sne$268R1~<|X5z((k<w zzS>uQN&&41SWx`YytMs=-SI*R+dQRK(KKy`qX!(Hh?lGtubFT(AR?ru$6ZcKtlO|+ zMI`U)3#Z-*^2*!EG-R*e`)mi-TE96Kf(`$F^#2c-xMT8?ZQG_r=Nm`=DB-jE*rYRQ z)haD6F0QJd8B6R7Yo`8wyIo3J+Is1$C$GE}r+RHn>%GYm6&aa%`ReXd=d-R)&fe6o z9e(_O$g+>`V|QBoJ6QPVk@)@x*P`=T&&1ujbt{TtUd1C$>54C3!^#f+`2OsMxtYv^ z?*D%Z8SMVnzk9f4<72;H`*-G?oc-rtxIO!W|M$KptoN~d_9*+mN6<=<g#jAr>lYti ztl#^8<%;z^^&6%xTet4qHM>*m8n1-Q{)x-W$OzcJSmyHf_j-^3cJUKD6*+Z|IA6Qv z-!GT@e?RwM8d)!BxwGl>(H2hO6)RRSoO$Ir;Z;OX(52_$=ZZb!;_RkQRXcm<?aJV- z?{6}tRq6Hn-k!Z=Ki4^a=Qf^~Pn9SBb4!mE6r9-XGt;Q`e9bds2A!B46K3b_;xsTd zd~$@-{gBVh#H^Ml-!I6WH+<}u{=#5$sw3mBj*cf%Zynzs|8+|4OK@cT&Gyn&mwtR- z7bE}QMTv1nZHIgI`y1g;56P7@lxVRwRCm2Cwwo1G|91W>lYe`?AK%}-h28dh=Bo&Z zr&QR%3FwKz6{%I}EnAL9y0{#<#I*}j$$9VvH0Xi5pGuRMMHX~JM4vFQzJLfSSvr86 z0}>uwN)PR=Wte0wbNuC7=NH$Z-ZuHS*FE|EZa7b=9lJlLJkp!?{`cNmj=z3oS<{d0 zf1dfLdit^b<*bj_Z+u@__4d17Z~gmAKfdebYM-c$a=c;t^f7ELfH<UNKFP>+!4(p` zMGZ_P5W$Hu3mD)zRl{M3D|Ohho!`Ob*ZLGAPo;?r3i|r}1rf_tKt6rBzr<WeNj<i@ z+In}{Tc(7sudeFE?_+9MdU{%5c>2D&x2B(W{QY*Dp&(ZEJ2>I|U%Wd3q)||CqRax( z5<$y{mtLAgZ_8nP@V>r&V*0$=X-D(**cRkn&$}i3cBZ@4j~@)6<#iT)m!;daLFsUk zu*ib$6Pyn#<yMESWqNSYz5cAQ{~yK%-RNzTzSYDWS9$Z}#}A8{^F1F|W-_qxNi1O4 z%l>2E`a&_mlZE@<%YUwZSu(4{Ds%s|>ER3uivM_q#mDm>xVAQW<+^oj2?rV&Tbvf& zv(d3^1!ojcw5qUYu*UjH_V)JbL~r9U5IyMLBf;q4>e|}X_qE~Iuc~){o}Xv>aO`!r z!seuR4<0<2{4J;<GV{AFKg0d+Z+z-gpB{*_coiI7z5AwD!2Wvq{IxNh2c*~UJ#}>Y zdB%iaUnKXI<tSY;Kk~Tn+S+LM;$q{3u-xX)+g|V5_S?-uMop-b;h9uSWF)79r>CdB zOzHh;9!Dzweiipr^PMhyy|f`A^v?F@-?nWNi;9kB)X>y?e93z~qk>T9w=as{rRP20 zm~l~wVVZutpJU_6C<)Unk>uljTi5^o^QR`&=tN;~gI?{t>73u{ejJwn1X^BfV9w>( zV3&SQ=HBOd-x&g;qgM+*^PJ?h^ydEj_-Bt*`m%%e*4#h-eQ#fht^JMCJiET5Nen!a zMoZfJExx~9b(`~mx4w<Hm2t*V)umHJM41Hoo(l7%ZL)Q=5oAyJzV7au8#^bPu0A`h z`D=FA#?04c3{tPYKR)(}k@baAQI2-_x+m-F|E~UPBf@nv<ldW;`R6~s`6`j{<itdV zn9{4EE{nM&b|3y+W0n`=Ui&wX!AbG^hVOdwp5M+*di(aR%4D^I@P@h~R$-NW?{9am zPCY$sW7buzQ>RZe7W)g|xegkyh>78GNK9P#&iUz#Eo(GDiAhOm67!ZOz1n;8Y^xb6 z{(L<C)<^BYrKR4C5gU_O{q6snFx>xjZM%edUd(y<6#ECi<yKD744eGTMn*qE{rl#B z_w8=fMTCT~9JsJB%F+Ht{=e^n408W&I;%LV^{(4%>UhLBv;XWvu02~KH-3tGUAU-{ z!NkmLa+y<$QGfAYm6Ka$ZajZlKjGGumA1dizp%b6nYI7V!@?}L9;Sp#l9S(RwTD?( zxoJ&Zv~i<gLxfJ+=4_{h6XrF?iS!@O%*}l}<&@l-DZAHYZ(eM3UU{zB>YXb?PQ}e` zUhjE*rfBi>kW)ReWrhC73$1!9Kg6gA6;3*t@?NIE{?V>=XD`HTPUBq}a;i>$qDMe@ zIQxNjcXvl_Ok!nVWo6wq<Ia}M%PUr{e0j5Znw>l2t}m6V!`HJVJU-UjzP4(X*V2eh zDVz-4;(8$sb(5A{$`qQpMZac$@@|=#5B?aO@9jU|z$nU4c7Ixl#u=ZuAN$-VSj_U< zI{Dli@0_gs!>4_^c6<y=QWU<>a#%1}(|)q}dy78V|EpGM9qW<2++6Q^|3Rgk{r{`~ zH<hoyxvcP*WV%7kj{=6Y^Ye0#ui3F9!c^C9(%R_lM)m({4%o;a<jwW<<ps5kd~Rig zhKe$?@h~jdvgL~3r=v-R(k@yH><hcPx<1t2XS=oT_QbrowP$TD9Qf5Dnx4DtI#=r4 z;*=;|usp~wP2Q@Z_=cz8^<347H=n7fhZp3oSg|7E`nuR}uW!C@fAifZICyfbgO<L2 zc!S>YCA)dx#aE{9%gZ(QpD&#r$FyMS(xY{@)nAW%VKZI1-!W>^9F~3e1Lw-lKj;18 zpCkX<A2u^Q^>lS@U$)=4KBw$f1jC_=5}iI>R&}!ya%yEbf_!D$SH!L?^4PjuVe`9p z)_s2~o~*dYBeSCGC%bX0s{5wW*JcMwT0yfvTn-u{X@7ovWZ3ij&*z=rc4aeKJnlL9 zV<waD!UC7o+ul!j|JzJC>-03;x%<RZbX}ALKYjZ2W>sZm<jh)I|9KYk^zRqzGcdD< ze!mbnKdMP|e}#=--9Ak<Ns;Ybt6HBweR?zWV{`Wr)}xz)R!&)aZ=L9ucigQ`E{hEx zeLSLg-&phAvzmE+>7ofom+t+0;rQv!@Q4hqt=FzyyEWxov$2J5<DI_sr6p?uw=IyF zeQwsJ<wqYEis{Gk%$VKW%>3CQz_;wtkxtv{hQA(0GvD0EesTN%=A5_R*1Z3DAai*y z+lH4DE-loVd`!Ai^uhL7wRwHhkDXSr|Cx|~CFc6pYC+rk$G=~S)C`hs{4>Mw@tc;Z zB?U6=oWg1!UdR8JYFOypZd7&U#hLQjvUfKa4><GN9(gZc4{oQn{ViQ)_0RqPOJSe6 zR%?&<{|*uAbm@zDyE}P)Zj+0Wqq8$J!|m<)+xu_sOl2;=TYCMZ{e|F=vfnGFYKMPX z$Y0B0FnLAsvojl`k8aDmo5lPwKqF=S)|DZr*d8Bl<4ry_MYEx@Z_!1KW;Whe7xypM z|CGZWG{3+ii}_2l_7nExynoU;<_&wRzcXz}JX{qO6_sOPk#s~uOY6+>TZ=xQWBopB z>(;H`Y%kxtcW-4_!~5UgEV<hc`^>YEG<bW%rO%ad*O$!M=K0UoZokK5HJ?ZJ_(pNX z<AoNl*KB6U`OR%v*d*P`D{WSybt!%SeNBV&HL9NrEo9P;&0KbMdY%-Y=;<xa+^xz# z>H;!OZfC42d+>Ib-?b?o8x9HGIbvxs^KbWJe`{auz3v8CS2Uy(=G1<>nR7cW?DF-s z(dp`@ZhbN*uVgMe5m#5oxWDqzd4@ClUKp{ycz@v{(-%GKEmvAgCcgh|#&Lg3=44y- z_QQ$iET79%%l`e?Uw@|fye<2TN8txcw{O@m!TS9kVFSn73&MXt9+yvla$+Lah5m(W z*G?6W|0B(Cd)r$Dska;#f>%z_b(`i_KIgXV@vY}4zyGZh^Mi{)RCKD(OrxpS!X`)V zsQ9R)=4ZnAXoBLc|22!IOqp^c+budedO1_wzW2AwT7sARJ-t(Wo^``}?um;p%5DTT zH##~z_%3kmdNL(Jt?uiqt9$<adfnjJ&#g6c+SI9mv9Y<~4B|Qw3DG-utji8wvw3y; zu_VK^b8|Qo(v6=U;heX5Yxea^Q?@qMeK@uAerD$BnwY@Ab5l+RS3NTLz2w2yS8Xw~ zOCS7@vrA*!SKL*7!tU7Tg9p_kg1<KeD*Hy=-MKma`;Cv^O+jP((YohsKKp=1Ihi+9 zd`$ZHWw|}$hc}zgf4WnAo>`#x*qc|O7vy~U;#GtaFEC7gDl*q-=HIXE3@g^J-~M}k z|FuopGJL|9>YhJ-wkvOWlmh$vmAqkG(o#~OWgQ7&XPc+qy>uyPcBWAG(HyCo+FIM? z^Xq<j+W*_PZtK>g`_6TDdEMNQsGFO+Osm>PPJO1y<2RMEzt3&n%sTm`%GtBN3}@!m z+C4tjyM4d)TtDsNS1KJYN^{?7Z+`D=dw%m>`*W7h=akQrRr%YsE@e`1Q};j6g!8Yj zuN%*qryM-0QQhCqo3zQV=Vi&Qx|pb_RoAlAK}+CDOP3w>NKI8;mz*bJb7^kyt%bo0 zcRYBObY_O(m1}(OcQU_APBJWZ)Ys8zs$DyC{jZ9WEw>NyZ!0Z%!}_&Go;_#cvhuT5 z^Xq5*H)J^0ceVPV$Ej1NavazE`c<{N{`02OdXFD<>$5Fbx32GaeeSQz`4Riu{+uZ; zdEij1FY|Gwstlj;(~@H6-<{U>?ZRfsyOWRendRN#IB@Fe>4?3*a?9SBJf9o8yS(^8 z1Lu>)7dakoP)qEe{@7yfwno<L7n*~MyuH0wu3gJ|rdW*SQQzYmovRi)w@>mY5z*1s z*0x@GyiRMy3W*bQESE7non@N8x$tq+tXXH4l-tOu-^iBZYUN1Ey{x`h`L6AbGjeyX zhI9+xo$jG>V}HFp!`ZWEztsi=1SF^z&7L*uO|{xwzsWvo)?ZiKKc7>~aP`K-cfnn| zQ4{X5z5Dj<3+4*n_Qq@3&HKeN$IlhCIVsLAGfz1oz{W3E6V(4ZWU|-N8+)tG8LZ3S zEm^zv>^dDWQPGdDR;T?w_+CE#!0r6?j0!SE8UAeAnvuozGgrNp<$fg_>ZiZw1Jm#7 zrvag%%R;Zb{cL~syj-0~!>+5IW#%)#JDlJa?wfVFqOg!hKPSqc_iTB^^))-s?0&YF z!Dp`7;cZJNDR;Xq-d5{ZcH6C?<W$b)o8PWUzlr;0!m#utvxwERLTxd-!=LugKX+i_ zWCjV73XO#m^fulV<Z9(;KWn*X$&wkX6b~~<#2HU{#q@bre_r*}z~s-JKBld|=KL|5 zHR)N+r#Gk9U#v-xXLu^g+~MN8YwKdBDY0THcO8y%RcTF4IzP|0Z1v3viq4?3<`U*@ ze(?IH_OnhGrOmIh!)})Tvot$i_{MAXV~Z`@)ipH?TAjSTy51cB`Li-|?Q5%5JB}wA zc6D(vh$>a9H(meu=xBHD!V3$WtY=&=c5IY<{^(KCY+s{-2M(`Zzh1fC{ANgNYirg@ zwd20!{F8#4$}&K!J8!1X-x_aUp&zsDaP9fh*lNbvR;8<|a>@e@rk%I_E))NE)l0^^ z*RCB~7rXo9X=8IfRaMnD_mcCPqN5)#x%@2sQSRA_c|R?lIF(tZ?hnp3o&U*bvQXK} zrPDLwW2V*q_UV>6@BQG1U1!V84=bb$8>QEqAN)2=_i{z;&Y2=N=a;O|JQ)(;_imwL z<|PSjZYQ5Lc}FwvusB42&ivNqboEoej!@?fhP@j%PAo~Al>hwMR-HeO^%*06o{I1I zq4t5JHRjO1%D!p(byM^2?Vfk&lNQ6eeV@FR#a8e#h&H<m^rhtOG5zN*!q;AC{QPZ& zxAE)gdpHif_P0B;%k|mgZPVQ5yb0d-c*3VMGvsdEIkEWvH%*3BY}XAo9J>-LVUWX< zKF3_V;S%F2l{%AyEtwWFX;)W;Hh8YTw>5kEUb`LZva8Rh&)<LfrAhX+8O4|H?XAw; zFn|91^&<E4jBfvwS>|gjTvu6XxF}G#WOlAh+8x{TuS2Sr@4M$Ck+r8kKH$2BM?U-K zI*z#4>t5etU9fDKT6M0jme!&bD^9RIZEbCh6xLL_yV#l)-b7m|ds5R;>duXg$(2t< zFP}G_=y7Aqx90HEf7g^`-v4gB^k~0?AyWf?%>!nw371?CM)=JzXgt{5&JYlP|G+Ze z+m;s+x~{&txq1E`o8UbwR~Wb%Wv0Eq9d)^6&C(x{u31)9O>Fbe&oGpAm|DBJV&3uj z##0Z8@Be9XxGhxBE`a?&SiM2@<TTeMYf7aLuVQ1EaQ~Um`6~fA+|M7H<TEZv$x!_G z$#G5GS0RSzdsUr{!g|aP{&=sy_Ue>ii<9E)+|S=W9ku!P{~de6<45Tp+h(j0oZeUL zSH0?S>AefHmMFXllr>^KJ<a~}{x!9a*E75+ZvXJF{+A7du$teijr*6cFN~f3?98>M z|9`HZpLi!XEZO;_TGGrj%>gGAMfyte%HO5mV~LyeYwm1@jC*@qw@;t7)?)T7nSCZD zIt;;En(9IvMZYyNvv10~YqcQx^o@z@4&QX$*wioF*`oW)s^mpLZ1e7uUoMyBw9R^7 zU3R+RdFh?kGJBrtiy1%OQ~3CHNJvOPl$6Nx;AK(aDw925y*g8BzT4^F!K=5L3;ma0 zHZh%f>gU?EYj>>6-amc%^z`lZE1GtfOlK-N=~-D>d8h98TZTU$`|DE<xA8hW|EARV z;B$mdTJV$ZuC5=Krtf1pu>0QEb@Qy=*y&50zW?XhcAMFms#A0PnfVq59G|ys+YZn7 zUQ2DPQr}q3t>;fEoBvyO_l3n5HO%i6FgJXgpB}kCk=a#M?d$(D<*^5&PtRA@zrW-h zZ`M7B8|L>{YfHMm-naJIYga{~pK1~JHzbPZdTw^#nBYGv<#g7!t+UTx?lgFQZ40CO zeZ5QfQ@78odg;$Ed@JeLHkJL#doO;jef0JjTTXs()3!2UnJ^JI39|(PHJ^9X_U5jM z*eBHRboX?_@A7sx7uS2oKiQ>sc4qPEOWU^x#$>5+et&<f?RuJ;UDu&ZHc?lNv*zZf zTLZ<9b8b6-<Dq&;)Y%?Od8UM~i~EJUUa;-dZu)ZP)2E_)b-!~N+<K*sZb&@LCoQt< z@=L#iUIDuke}8-X?e*p5{@25n<$bc5FR1LcG5vfQ!=sNaYu`Tlea}(&f#a*K$?}`? z?sC0)U2dFvONSvV`*_BrCEVZM+&uj4ZQ2=j9*KnDE4Jr1uYdmLdi^)C<_a4>rHLCJ z&zU~`_@P#AM$kf<FLD#|0#R!#mFuOs_aE*oe*S6i`&xd3qo<{$q~7?{d3tg_pI5EN z@cG%<$7hVsvpgu@|66vkTkod*-n-OhJe0Mok*J*c?_6hv@jB^ky`h`0$4~a`|5kQ+ zzV+_-+UNV8*DY5nbZ+O{cz$NdjqT;~!pCOIJxxB|mw4Lp`G*&W@3Stjo1}Cn;nKTP zugW)TT1hqBmEIooXolA2->-vJj8=!&eVyrJ^V^22%V**;7o(%9;;|enDlS~K=sVod z#l>*#ea3>lcbBO9$%h`C@X5!l>HXzd2J63GYSL)k*mpW(kF9I$UQg${mn0T_JEP5T z<KHo*=o-JiGo`U!U1uz6U$lMy@bG6j(}wErdAHgBF1P>7nXe!3)R`Sr{<=Iz{pziR zy2k0tYPQ_8E57@-+<3*YJ^pn+Z>x7^u<rG4I+V9{>()O{)a@A)PEXUV`8@mnmg{#* zta8_{KACc9orc<E&rhGv{(f>)JpRek>G5m}cJ11w{=X%->AiDdA?Mk%%huO;pU(60 zK3kj|cFKC2Xv+P^DeEt7+hX$JQMZ3;o!XfW!R24CJp3NX%gcM^$`yt*R+|XN{QUgw zSMT1weVc#xU1gz8gQ_nX$9j#ge{5=EnpgA5^S~bSDbMuoE@X%;@+#QG{q0l3$`}8@ zGsWBQRdruo9e(*v&Nt`l*RL1fOijyw`{m{3+zB)G@_X!he@c7(7RICC6A<$5s@2Ti ze{bTtcfa?oO`GLc9cj*9=bpUvOtDqYjLex|rdIDi)FHUl_H+9eRlaRr>mOTOxz_hU z`G18t!~V)Qg4fi|m<70w?kt&e)8Bf_v!qq4&&<2kcFgT|)N$Tci~Mgnzw4_0_PV|~ z^JcYl;OdR`vo;lNp1MGDV%p=n&$r^XXKOp3I(zR9r?a<2VCFVC7iGaYXMQU^T^hM} z?Zk?Om2>MKdCy;*dS8!WntpT^v$&<v@xl|QjUP|(IPz9(#-vF?e%5DM#Alo5Jvif; zytDG3EW?$nS3e#R_GkETL%;3>`+JkS>TbQWQ=(me?OQ(ku^!hsNnKrC9*Kl)6-OR} z1{`)>*`@vC=b}YQ-`?HLuAg2qePyX((UQu$`Y}5?4;||BlR0?r*|%>?=6d+3O<oe@ zm~GSl>lfR%x5iUXwDZX>XV}X<Yt}3Ys}hZbR|YJ<FMfZ2KVN;ja3>2dZ(5Ln3}0|) zs#ST9lxbI2SC?Pu#HP=F(b2QdIbPC@iV_h71IR?-lghc_HcfVuK}Ra4&#PQEcWL~# z97%uM)Sw+|esgYU%4*I?oc6BUMJcA}q$&fCyxkno4i#4Je+&-6!QHXG-}jiz6JN6J zcgd>g$v<^u_>8l!>Ac(d{4~RvdA89<v-l2w{^MM=ER4@+_2bX>W$e-0W`%rfYhzQJ zU--l8fpz&imW1qQ8xQ)_g<e(o_Qr5^WR#=*u1!Xht!!WRoCK|<WYCG+)N=ptyK;s< zZ`V#0X*nCgCm(TQU)tnvH-!9+^Nz9Byey7qNO<~M|6}|9KfDa~GFQ2(#4Y-q9o34} zC$5aBebMX_`tg&`GUv)l%joU17IoJD@wIbRP5rjev8@07@0O{L?x{LHi?oqT|McW! z!_ISMTX&=soI82`{PMMDMV8&!UvIzIz2A=0y*i7#_0YE2r*3VXeRIb}5&hNc<Z|Nw zi;7O2GIeHut$f)#lSu35bIa{^m%o2#|Nrys2G7Fj$=O+1o9?zGZIn3N&d;83VS(e8 zZL{9ieEs@$P266ohLe-kZ?B!oF5XxybNt`BWy{o}8$y<7f9ab#=gIGXf#3Vs)eoII z<+Ux>_@GC1^={r*{Cp)#em5D)ndiyy+k9x?y|Mr6+W#phFQqap34S{_|IVgccX-dU zG;P0AW4!%d)#`7Ga?V;)tsWg|eQZ(o+bulq_PqO*)$WmzlCQ7L^y9d>mh)-ALAg7i zoklwzFfpv#@rdi+NBRGP4fcOu`u};rZqJbLbCS8|mhH?1506eSdcOSqla=@Xay1kL zvX<9=lw**qc)<Af@B2jwMrQl|J1pNeGt7LJ01IdlMvL+;wGvl@w38{5K0ZFqydmjm zS6;s4>GS8e@6W!zE>``U!f)30M~{+rKV7`l^c=5wjX;C;x*ezH`5$_?VQ+ZU<}_Yr z_E`#bx3);GiQ7ACkIm;D3IS7;y_W`U*}naDu|UbZ0xq@4)2B|o`D!uIL*{FhRL*72 zsEwT^Q`bdIn!IY&Dyz9F{c69}bY|c3oNMv(=TFeG)rLcdobq-)6=RsSS7c?#ahFpo zeBS?Dy>905v*!0%4$QcGY(+r4c<b&B$3MUL?O@Hto~o^*p)l9%{bU!V#A?~o3!4~h zCwg3%$GMN2i|dWu;pn`btvidKGkv&y|6d!se1$+mNH#Nn?Q2K9y}$M{?0MhDzajIo z+5wyNTlF_gf3l{r?oCYpv*G!NS&4@|rc9UlmhQXZlHp0wl)#;QT0+-d56<|x?|jFZ zpEmaP`-259tm`<MRCd(h#&PY~>3+*KH8eIn{~e%lW`U1eXhEM<gtxabGaJvA`PK8% z)k}6)*<YQ%b?a6^zV`meY(){Sn+bm-X3lbKkh^kN;HB1GQ}_hkTJT!YDEm(n`%5y< zr&-P2wz_rQ>s$Tn_x;L>ZVdD5NyzE$?#^xf{_0g$lHq2l*AG7aeLwrk{Zo$35&LQ^ zL4~e4kEBrx=ziITTlZu;-&eNm-emq?W2WNMr)mFlCtQ=@Xg^%Wx^(4APwf}(f=im% zUiPsU%N$>~?EL)y{@@9p<^MjZl-K?11|3RbkSurp&EmeJNwKRMbY-<`-@bkO!!fG# z+V4k~PV3nxm4#@Cyeg^VoM(T%bnDxd-A#tvtxjdEf3HR7zx^iG8=;eSJM?IOh`&Rh z#$3ON)2HVj->dz+Ur^aiptsD%zpwf1os;LUbN$+AVrEvhQ#S3}?<W~eqF=tgzP^8R z^W-}BaGjH$v9_LSlRc|9PpeH1TkRB~es+oH<R7=L?_)b)zW=B1x3|Wuo7wo~&a7U) zm+e5XzwOa)Z`1T+ii?e>$JafX{p#PjZ(`r}=!u^H+`oy_oMR8ac*FGcuK8E5%P-ip z=~D&Y)_4x4lJlQ)?%!4}lsSISV*mHr>&E5p?)W`l_~1D^pUjFw9kC)lXSQwM{`hzM zyK1{z7IJ%pO@72qJ~!i%X2C>d?xvR+CRyAQ=T^VldH0{~#)uxn<YNp4|9(E7zk~UW zx?7Kgr;5-<%`34tm4X8=Rt74~{l?LHCU;*}f=sltv-9-tuh<!XZB+Z$#Cg1}jcvED z%XOxgT)L^9kbwj6Ql<HzwKaRgQeRCz{JmDFlZBm6hQY`6UP5Ztt1ByYA~rBI^h%q5 zTAN?X-O#PKt7G@OU8n!`O`0ThR!ZJkMaJ$`PEGZpGdJXOS^s7<UEQ#D<~sJG3de8f z4m2|Ne>~w_|L(zCX-CmF{`J2udu@ETsL5yIj*?sN%btEHQ0bXnI*&6-rS_rs_X*2I zkLYnmEfy6M+qby5%tUJIOq*tQemlkE*XFZCf02@wX6$fFzI#t@nwRR^K8>{t<fB!D zERz`bHM45JIDSh{tmpR<&-VOYts<3O$rJ2!XZqZl&G9zZZsWBzk<14`OSq@$L>`)^ z8_kfBnYr<xn~vCK&6stsZ*~2u{`O|0=$iBP|7)%?TXZEPWuBUH(tYjj3Fp4dw!hc8 z;!;rY<B!)?rAhyIVOzXnf$W3&Kga70Qcg_J`+w)*yxj|ySAB@L+*W>e4(EXl3$MED znmJ9b+s%q~>cQ91rsBKSEnUiLQMB~Kx>NUz@80G5a7l5;wYI|(^ZaN0u-mq}ahHTl z^aj<%+PikK+gh;q%36Q>!SC}+_3m7h__=mh#N*{Ih0?zd+vT5K^45O}+WN<^d~VsS zwMlpH+&S}h`+dFxM>>Ub>tCqPubBk8b@<!!{2dS3^maZGV$jmks`~Q&g?8W8B+-xx z`+Hk1zY)E+KwwJMV>vC2V<I6N-f1n}Fkiy)>H7!!?=G~O@;)XzTl>Sg&31<#ZrElz zm*HUL(NbrX$t&~zu6h5v<*?dhMX6BnPGQX*ZLjv|t9QpmUILBWFWoU;#ZjQ{qN{iz zXi&p!2547l-uDx+B^O;|%I}skoSA9duIfFFLCvB5K_hzw=#;n}zu)Z!Etsf&<ZrR` zhSrbcGat$AvG?-o%FM}P5?OG1rQ(b`t7I#s7H(jg`1tAXeYWT4oM4C*etBHqBEQ|~ zVIKR7zQ+L(8LK9>f8A%Xu!&EW>%!BNKo@1$Y@Nwh<=R<~EmrweO}bNXn3rMCbKCcp zkGx*b&fk}rKB2kmYQm+J>1SuL9+;vT{Nr@|zeBd)?=XX=^tLwD$=ovjTW~*f*@>2q zk4;|JGqKt}ZReG~cG~??{n;6Y%nctOAD=jXC6oT$=N5dy%X}E`RbG8xVBr%OXt?0b zwsNHtP91KGmjvC_-ez9)B_nV5#7kdXVQT@-<~Uxq{C|XNmuyDN)0B(a-oLiox)o*j zX<|RaE>4S!P10Kq-(A7_d%c)`Tu$)Ac0Spv8~1|)0uDT#9)E6|PxbmY4spBmJZx*1 z-v$-c_kSMbNMM=;TBX#mjr+^81xXc=k(K)Lp7+Za#U0-m(K9ps{1*AsA31lGotak~ zxBaz|h`9Lbz1KY-{NA_r<svKYqD>l$z>PuBy0O0ZtKVhTU%hd|BQta5-x&SYdDHJ+ z-lgCB|J+<_M$mSM(@#!LX8iGO`~F<*1bM#?-(~aV-%nns-~0bk>S@Lk-A5(N-(7jJ z^49cY|3gH2_8;5#{N>jByMNvK@q6F=;OpngSFP{;f3WFLd#!2l=Lgq=oShFFTA%bd zAJnzGqa?Z@P)kcI>6y>uV-;H-$P{TCyzf3`G&wVCy0X%x{V#sajQ*9CpjX?@R3i9t zTf(xh-0?q{9v|y{{dDn5`8IxY*Apd+)s&Q!ie6n3nE)x?JoqlieW~-QzEB+>f4}|e zb?ADHO#Z6(7qj=5Be?G_a}D){EjSk8RO#>d|L?cu>ouD-^z_m$EN}$vP+AkWch}`) zp-vXiWv~(!1q!XLt!HMN_vhZ;R$6stnr`%tU$0hc>gc3AIM4`MF1Ka-_U}*TL$Z~U zy2p;~{0r=>{{4LZ^N70LLC|e4T2mi&$Ny299$O}vzxS(HYildRoyzBPZ9X0m{_`q) zf6{>l#+q-N=RaMwdR@}RMXoJQikDuRgvV8?PMtb+&yPplZ*FhzpPj!?^8WXq=gRjL z#~goZajx@^@zUAwH96=jbc$;3f3N<n@N2hi^*4iz3kvh<|5cu||6d~|CADJBnkUcg z|677K3p3u>n9P2-jrXyC{V(C^@pYE<|31&(`D)eb8@o!io!fXAAB6A!CA$4i5%=!$ z_sf<nc{1aFUUIVX(xpq)zvc^rvc<$ZS1w$*uyluGRbSAZVh7OtpQxxP1L(506r+== z(__=*jZ;ntsQJ!1a$0{s&jIcAdk!t}oSaj@SMc-c^vND75nD1YCjOu6qU4yIoV@%$ zq-6KV3+SrW|6DsCw7BccJlolxlhqgl!o%H7q?Yd4v*&X1>Q$>&tX{pjf90xGufF{K z^r>jk#TB(@4!+y}zi!{Bsq1CFMl4BBU0#;?r+VHoa7qq0_$T#y-ty~p;1x)qg-F|) z?kpGm68G(-f8C_i)6+hlQ0|xcym8<A@~U9jcf4gEk~iJ0{eIWP#N@{R+`GHJ{@{-R zEn#tS@zY>^vG+yr{9hv6Vmc3Qrq5rxY}v88y}NeJ`u45t)$7;Rwsqg%-7UMiXV<P@ z6Q+Lp^{Z;q$tQ~1uNy%NFFiexyx4G$yXOA$$@BlH?Em{VAGEtz!m=o3`TO%T44XYv z4qf)Q&)vVR__<%$nuvpz&*v~7SQEJ!w3@=Y{N0xR%2z9wcN|SRGsAFk`ac0sR0s-M zCWai{D_-;GvHWvTT?m>YytAY5+v}xEmp*y^ocY7X{@Nb<KM(mq10@R=Eo$2RZdZ5h z?{B49o6SmJg{)e&3bX+I=KgwnP>f%XtInN%dyQ<&(OCV~dCO}fz-!<@DX#iLb${G% z829yqwHsDFnpZ8d;CqwuTfzUJIZNH`cbFV(<enGL|1HCB|HmLVH#er{<I$S$yYHvo z*pT?`WAwJ1hmYm|Tb#G~%=7c-Ptdy9n#a=j6~wwrUs{MP_-+@wqzbfl3{(a&eYv+7 z5pO{a^L~pg_@2ylp?bbv5X=$Yj3{N6ro;K#Tg~tlc>n6Z-LpQo?e(h9f8Gh_?F;={ zbm4OFhw4dlRH9Fwkh^VRdQ9?111E3Zg5{iQI}8oBw6~=#uz#EQ!5~3u*UY>kgKq-2 z5;jOD_iRi}_ME13b5f6v?aQYjKc5MI`?K-;&F^=rLj6VaLhr7Mim(4uvien9?RU%c z`FpSZTD$d#gE)($00gxNI`EXhI4q75j3Y|&M%o;^pFI1&&;CF2<mu@%_SAHmbUJ2# zu7?CjVhX2OHAB+|!6SkE4fX#X)y5P**6n$JZ}UlIp_Z?YzuYYT^ZWmY`VTLh`57i? z%)h?x;aY~8yVCc!%ybrJaTK^VGj6^6`s+(0bQlHN9;)?w2((O95JU-Vl_tHM>PIV% z-~WG8p5epl{l8ZK`Lq77nEoV=T^r8MeDCt-T)Q35fh%WtV)yeL*k5s2I?yZk*@bPY zQOis8Z5^dd8983FbFTW$5U|f>J&R*R{FZAzzJ5#}&Rq7tl($u5nh#5DO_KTU^7m{D z!sHhRXfT}Eo4}DV+v?j?_jgO9q@Q27IGcf^=};P<_l-v#je0rJMv=eo|Nklfse1p{ z`wTOBMV1Ct8n<tKJag8pMRDtym3Bw#Uou%5r1^QW{YPPjKcD`8)}C#%=xw*362mgN zpT>UmZ_;0won_k@aQpm^UVZk2`?2?(zn<u34A_@*i^WmG?s9Oj&99~UOc!2%`%vTY z=GT?X?K=zp@i4SHO^mALY3S^{+tWMq_|+(1o^PQGO1Ta!|NpJo=I7G$1?N}$SlwKG z{}=O>W8d?hU1-tm@wmeZi6ln>mPD2b9J@B?b}p8izh%?6`~TPeKen&-ShwX>8|R%$ zf?s;ox|HN<zZf#S+yCEg-`m^!cqefDs=AoBz4Ny3z7Hq=b2==)x*%vJgHoo9npNk{ zivRDKKRk*5Ct@5t{l$z1(W!@2-gfsh8+^VIZ&>!dpQ+&P>iQ`PI(ermwhQfzn|@-| zf>l?4t-7Z?d0y7qk2am|Ys}yJO%DoOa#`9}<~T#m&(r+H{|;3$cpVjLHCPg0@_g?# z!Ffi}|5n_7eC5hzhCh$(>$<$B_q=-k`u+#EcRL>U@yh-ErsylArhfkO$^HLq8MKmr zSDuaj&#Q2~c|*|=2k~vH-)rB+)jj?Dp8dfx>HG)A^Z)8Fti2=`el;W_e$&~Hox<ur zKeYd!#V)^xzv2DAckhdiE!tpr=FAy^)eZV~rBV$iS4vI~Q&=<C=TgPXiTt0J+E?>4 zOxKTHbg}hF*{0jfSGu0HPut(me0?tugT27=D_2kS^xpsT^?Tu~nZgWzuAJX9{o_VX zhUAR+)XlS(J-bn|TUM^_!)JyVoBA&E+Qa)<QWo!#Te8yf{Qp1s_J^<Uf27Ay)_b~Y zvtY*BnKS3HJvh=S>|*=)$}6#I5iZ50^9tF-xLunr$Sn6;e%P5`TJz6xyRVt^s!qkE z@6~wr?RGx<6RSwhz?5ri+!lMvWY1b_#-KjG>dIa1DWA-9YYts=;VDUsF8cI_b)IGZ zo<o}_PyczSvzy`0w@1n%-9me#@@JhDoB!j8J<|vG`Y*?Ae!UQ{{JMI-Si|&vUzW}` zTQ~R6&CThSThg24E1&Z-e0co--Ezx<2M5&pv#J+do>CnDOM-#F{=xB`1>cw$&dRxX z-Y@epJ(6tBT<}NwpK*Jh+4H?QHS7J%Y?r>uv-@=MKi`4L{(rsKSr>^kD7&vqe7~>u zZ)wc(C7w(Ut1ZtPr_W<d$jfUJ_P6Cc@Hv0)Z1a6@t>64U{fB?HiRtJ1PggR}#n<sE zu>JBnG3RFHtO*h9q3f?Ny`6bE%Zwqz<k`&Ga~Tt|vL>CLuFqKT@{;SK6MOartP^4} z^O8F*Ql+?eo#74c)^*n3|NmU=|LJ3YJyXN-c~%GC*)Gd?H~apdw4HWgj%9xqSt$9L zoH9PPLtZ4nYl`)uR}+lgq4fZZqktPj=K}8Algf6VoxI#vFHA<=rE{X>)hyHNaV`>i znX^7!aOP+Hu#o?+<@_HlA1}<e_!#Q&+4uezUk0Q9uRWfftp9XU-LmwT$@~BN?{PcG zxXRd8l^C~gdwS8#tK!wd{m(wvf6!xCc5d#1+~RY>yj&l08BS@xe|+Nle{}}F`=5e3 zeRPHIo8O+aegEIvKj+K;)?nbb`@s6|RdSlG=VOWc-#_F`Id$6i^*r0^ijUp#EC>Am zpE>{OMe;JX12-=(Px*I!;_2!7%pcCj*L4(czsGc-cz*HSG`>ugOw(r!7C)a%pD}kM z*Z!HA%a;3?)Kq0ndbv`QVcD|fGv>`ptV$DW*!feecUk7c8yRIUZk(tPQNL67+!mCI ztYfCna#B?66kc>fCt$BeTG}y}2k&>k|2)SsS!>sFtEb27{~Tvj`Cl_N#pqkydUuiK z6^)Uzr|4(-CVmB#r`}b2<>sEqS+RMJOGDM(cPa^oUR{V1KAx7hSfgyx75$orjCC*C z>o^+L*F4qMn{LvV{BGaxym{aEJkLE<Q7&{d?ah^y!F&EpUGEfKdH3c|c8ii17t;80 zvy)`y-v0EQ_v?*3^M|AS`=_54KhJcbw>OaQLG`o$i5IVgTl~5;|52OuJ(i9&Ri;Ng z&$!&pDR`Zn{AHdUYXjTsg5LENzMsED#{K`A&+x!ie_wO(@-x}5t}c>kE?si_EmOhI zKa%I>TW>zOSTa^`UbR%i{XbLZKYck_t>Hq(_l)vf?Ja&T%cpzZNv<k%N_oH4bIzn2 zG5<rdr+??~3YlHJ`(nn9LtRUgI(I}YO6dMpx+`{`Wv1Q#BbU!#*m(TSwCH)KU&sHi zV$fW&!z-vfM!|F8UE}I=!pqNH-fYUKvNb3|v&fXINr3}`4sj?fbV-c9^s;2m9rN=y zZp?7G5Z-vL;NPB!_x}EzU*A^$OZ~Q8R@$_UhL0cC|9IH{X{o*~56>zwhIe~D`yD%e z+`Qn3_2gw!9p>2<&nnz?<-06P&zJJ|_x8@V+@jm)Cu~)`?8WUXFOOUNo_e0K;Mc?c zqL(Y#88VLAon7}aw|dExoWO5M94o(B)NEfV_V3X3zw3iG*7BOn_B~Zrl)vxkPMa?$ zrk|Bx7jx~m#!+7LdmJ+|7Hslg7qX=IcvX;|bY$uJyHC!nOgF1ES==o?BjelAm2CYs zg?tSfe(bjx({4{Q@%1eIA2(~+t+~Ift}_3g?Q`*3);7<i&wqUG#dY{RG4l;NH^=bQ z{F^r|mly2*dQE)S7UQ*BHGIPy&Fb}cy#5-ZRr+rC`4Zk&t}hq;4seX%OIpbh-BngB zH+R_-txyJ=`j5dou4eJ-^hC~kw63#oV&U2eX`2t<|9iLj&#(3MEDh}Pf4U|IX)o2B zddBVXp;q^G24@)g<n7LEuQ|Q_!S73HDSKzmpU<99mDaW*=-KA_|C$W%_B~JS>Fv#Z zcEN3)$*T`nj@NhA|2s3Eq2Se%%O$sT8M>}=e%tpTmtoJ7?0pmW|DQXbMPZhu<JD;) z95p{KovDlayXrmjf{=+?*RmJhoN;`6cIm_$wtbVeug~DQ|2e~F*4G#L|Gw~7KA8WH zvtf4pho(}wx98N110Kaq4_5DOoVRS{oosP|wqt=yKF%$%?fd<Fa~or_t?zHP-Phc1 zz5ACYuPx$vEo#Gc<v!z`d)hr)x2=_%t*bZBSX16re^ElT!@ctN_dlL{UoF+Jz3#C2 z=Vj*g&6R$hbD}CQnUwyXt>Wo1S*KNBsjs)^?*UWuPqWrnOY2u3*)rwt^7D7KuQzPS zdU8e((qv|F6lf82P<nA_TEeBOy8myk*Ufv`oo-pMcA}x2<v$y~y9rgi?=5R|zsCM% zcu{ie-Bzv@B0gWfJ=kZf^e~DoaLR`Z&db_A)c;*yfA;>rw|~!^H-8)dTdw}R_ssd` z$JI9O?Ku11cHPcrQVewu#p@cY-|b9KX4`l8<f<=fo~QixK41QG=ltK6;KN?Mgamh5 z%{zZ``M;UM@un}Ow@UAy_BzjK@9F;g|E$(o{!3!0>dkz&TFP_%yGJVT=GQP?lKwBA zXYuV0ul%pFB{%1!f7|3~o)I%^QH+VO?fqAJKc()6+tjRI`K|8N#Pg1+;tbpGRzA1t zFG~+zE9H9o;^ON@*2cUZEVYJB7fzl1=qV(8@SL`jPe9D><FjG}PaRmCu(ToZf$)#C zJnn`4;<HQl8%hegKl}Bfboa99yVicY_p;>WEvAx%(=TjwEty~WOU1wDD+@z>)sw_^ z)&a~9Sj+cK3QB#xa@{4Bq*qs(8P53HId9MXW}EJ3@47ryB+GNX>mB1)t1Mm#d_PmS zdF^qFnjh(vALr^bKRCHu<*svtZPEg6<?}~_{XZUz|M#82=G#yIM!(8uhL_L1-q-)1 zHSyq`FIrzY%ifw#U1k6Ogy;8PP7eb0B{}0(?)sc(vHIaf_xVqb*S)#UQ1NEt<t3S$ zju=~)>@I${JnHP7JMlkHg%|z#QOI!bLz}rk+obN@_cGST?p8kkdBxQ%J@vmgHYQI> z`k<qs{~)Efr`y-qfBT(JL3w-LPG#8gT)*hQdmVGb=Kg=oAA1Vpw(k1C??2=E|Hr`} z&VH8>bU!g6<IH)(>}WqxX4k9dUSH+;a^d@jwSvJ~qBA!a#jmv9v@hlLZ|%5`T-W1_ z`;upVXKgVPb@=J3?tNW~>GtfxHDQaQ%!(s5#aD!%p3;?O%VpEA@ZnCj(aus4^)E`v z7IFIwe2<5<<d-V#+IvItY2cg(E6*I@*JycG`+6$VQKtlX?Yht5|CJejum5jg|Ly%h z;oaZgthuGS_nJumpSSu<2E`9g-YLAaWSyPE|H4UGNw0HWy4v~M{Lx&u^O-fH#Qm-H z7q{3uM({nlCxV<e?#w=PqUhn0&Y;={)9)RA{Js9x-#E>uA=ffzO*rC~btQM}%$+GJ z6VvC<Jh=Vdqil7rnBAwpsM&4F|L(?H?>#BBtoBi7d*wmyGoJ!<{0bf&vDv)YO)I^s z?$*BfFKsfjY`%d`N4o##?0udC*7rX0+5P`{p4q_MTwU}?xW}wzbL@)yX6|HTFy8$6 z%=y{JKliE?o84V-HS6-WmomL>-Rbkpf{r?E^x1xU=~bia$9T=}Y`7So=zZyPxp0p> z>w|sv_4@IDPW)yF=E&HWdhYY&;91;i2}fNd=hfeEStPaewPpFI)g@N43*v7^MaVus zH}B!M>HD}E*4upIP+i?5wf_2t<_RI+SBI8YtF5vN(=GmRppHT9o7|H}FS{997JgB< z#{sIE{{86xFVV0${e02lwJY=`nl8*a+?q7gdVW1iLub`V*JH<5yVgki_6zy$7QXy$ zR&~+pyUA7Sp30@~y<8pm>Q{j_YvW2Dcf}7Yu6T=ZsVS{5@k-&oWNIyVcH7SR@mVDq zThCT+-EBDk$DW(zcWX}D*nfHavC8-83887~E8ZC$Py6*pIA!bS;+yQu8ox3*8oMn2 zF5Um=qO#iAl@VIIt2bz@ZkejYw##7B9P5vw|DM#^^B(AQf2X|V(;bluRU1lO?U(PF zA3bl`EauW;<2_}ITo#>q-5t7eO^vCM=c9SH)eOl$_P#6K{^7@C|DunJc3zCxcc=8& zqUQ(imhWe4c>nj_`={Cazh&QjJ-_DCofn(;WF-Fd@%R7C{Juuqf3E3E=D<a<zvozV zdMa(+d5OD>=jPUeCl3VmV)neLJNJr_BYe5lzUk}#Ui;4Q;X?c$rscV(SFCh9)9Lwn z&VlB|yMIr*(*1Qe!;g*izvb@zKfV9NlO>gpCMvs|ReZVKoRd3$=DbIt>uYTp&R2i5 z?UDT>!5}wFrSIapt|Fi9**stVvh#nsb$uUSL+9S#Kac+Z{G3rk<fy}aj&-}=S!szr z=Gp)M-|wBzPHbf`xqVmrmTzk43E$rv)`V2XzuQ~AXW!eR8_c)MF7kK1xt)9IAm97d zmp2=IvGBAgKY1tGf6mOZPbCcpzR&p>$6-^}f7{P2LnwQJxwYWgX*<nh@=7wcRd2D{ zwyIiR&GXl$U+Kv?IXUiDl7APR*eC6Cc22SXALSHNracWB=a#(b3Yl%2x`-*LI_B~Q zhva>Spa1`;fA+qY`_7lkW;5K_8{Oo5=+uq4)$?IZs3wJ+K$RxF9+BR*i+%q-)&JqQ z`FbFoVMXhy(8TYyt%uyJul-)PwR^Vq(ij`Vi?jA_bNtwQJ??PIQ5S*LrkxA)+sk&J zy?rn3m)-tnrt2TRxw-kzVf#PK4Ew)V??1h-)@|L^^831f-kkrVldwqrXGeSIA#avi z(<`q_*I5@eRKNeN#4vT^U$^}nFG8L#3fyV6pKFV*NAbHuCjXyqw`+JlTeU7JDM`6~ ze<~-p>%8BS%oz&4EEE5{^ZY&T1M~kK%>S?|Tym+$(x`<IrWYq1z8-gex}4eZ7p?lc zCO5P5?XbHb<QOlzcU~uh-OsD*KWv&lTdCG@<+<%OueUQ6T)(To@M6Y=&6~=W+N?6m zie4Eum+QsG<8sM$dDraHo%bK=TN<{yaQWI9|BuW634T|5Nu$B;`;E(fad(feNu2j7 z<EzqdZQr#C?-cicV7`CkbzI%|ww~(6C%8&iEjaR$``Mj4#&Kn<8uM6mwKMr^j{aD; zYVr>AsMxe;XD#pNe9b5`imY-GnYq(<y0BEdny|32NcoCSPab>>XAt;WWmEi2h+(_U z|D!e^E=*_K@$ExzNcLj}5%170)x{<p+^TZbZwm9OC%*hq`0<hJvuDr5_U%>B;WoU` zI#FqIf^ALJtnix4-<dDWn)~R;<9McoUuQTEtvI=E)6R=infv!}`K9lCDfO*aQu)(6 z^L=yG&q*sAt~Sz(nS1kQWS^`xo5aoE7Z<x%zK*`nbwJ(zr|0+W)A#>*>ix_--R<Gd z&(F;hj@<5cT6o}e{6C|*=imQxG;D}a*0>>K*1Or_l1fo!VW!Z``HgAo&t7RY`@Oa& z=+pgqvTK8D;sZ6Jo?rIeZn*C`14I9v|C#&#$Nslws4n^{a>?ZBC)eQbi>|)=@W}ez zqt&209l!7Sk}7TaC)ZgmeEz(73xf=w=X*`J%+8tawKR49`J2_1^GXbEa7+o>^CtD# zp8t34{|L+F&a6Ig@+IHhjE^;G{wp01U$Xo6^ZzIHJrC51^DRpf?pyU$Jw7qV-Q4cE z1%J)A_Y4;GmGc(2pRxJ6sAZe!o^<KhcmF?0*4*}68>P2n&&Rf@8`rZ(MqO!SW-rST z{r73cOSY23bMK!D-u%pB>i4}9I-S$<-c=seo}P2v+WPu}gw<c=Eeaac=T#&zyXoY( zmp!|x-lG$_ds@}rbJ=m<OBwEzUXMM;{qy$zzqf5Z9c|z7?t>%4ys9^e&(6*6n3{Dy zFeFX*LT~W5`zd>7<o~)>{=xhG@BNI17p9+n^X83c;Ps7$mlwU;Ccd{LSlw58_hR>c zy`OTs%Vx?Q`CMF_v3BYIKU^zAw3bYKyWXmN;)awf@|l;EH}1`Qyy9`sCzH;L+hpgh zygWhZjq&=EW;}<kYKok0N<U#<4Uz?x(L7xh;HNd8goUF~g3Ehc?^q{|);0YrW6E zg<l%uWCK&qrSneFRy%Lz<zteqx+O|?mTvLiDPGq4)5|vRcsebbq2eO<{Np<>xJats zuJUC5+qGi-UjLeR+UY;)|36vJP;s8W?)f$YvCY*Fvg5xN{X5QH&)pFGJbh*8nOm27 zla`x!OcJ^O*`n&gnZ(_<_1~Dy*|@{queBm0zW2zpu>C*J=HC-5-X}ImWnq+Q_JyV1 z)9+N(ZQbj$HLCQj@Ao%1A9o!&`PU&rvuGQ%H`t`WafoBX=DW#<PE2&YpgonV*DXx* zPVvP%+3WXCGvN7oQ2vi2!>qGv>F4J$KG5#BKj-{?_O&?v`WOEn&)$FA<H`3ocb|Wf z+RU~2&?A-3PKj+%y5ffMCyMj-Ow^2C`RhO<v-iI6WnnMMcB^=9dc60e_R<iohn2^I z@6WO2->equaB;uisi#88yU%Xjn0;N({J6URyeBs{CdcfnseH`7uT^u}>K}FgZG3}- zzpf5B&M`eeF{XU)#E0`N3Y&Jn-_^Y${ni>&sn0#Vz3V@BY?qH@iPd~MMSf{ek*ny3 zbmh+E^1m#L6mA-9nl{Tkrd~FF-~UX8s>0Hv?}Z<Ko?V~#YTlk_^KMt(jNQ(g+cW#@ z$Jz6bbI1R1Vz8@ypT06Q=l52F1<Bgmvw2Si$ILOhc;mG3TG84z&QDr<*0^*AY5aD! z`!{?4n!KHf^3$LDu*63d&*BrjdC$1J%U*hGRPW1|nGAgLc5fEF-5cj0bhbrQ(K;=0 z$%(ENA*(~v7d&5iHLIt;-+E=h-ni$_X7?_6_iT3l!_xnUPCSzT{fhH?l$NK^_50Cc zCst3+?fZObT`TCU9Gf2xnjP*3#PsB>vpv7~ZeH+u@5X&o12jbLRL=9f&X~9BXIkC6 z=XHDr$Cb2?ncLaDi@Lq{^W67Owyv+$mH+dA-Mr#TwD{a*Kjyu^rqFQ3YR#(T$KF;m z_~eX!cJ<f&JRR~n`Hg+TrTlaAt@YV{X`SfW|8w5+UvBa?7W*E3SrWUud}I0gld*a& zNel8tZkB$sz5m&E&ir4Y3|9T~9(`D6sFrhU^7Ee=v+aZ!(wFx*E)MoRDYnb!Z$nbX zHBcol|Df{t`sC|onq@n)&)ePmmwTV{jUvYs*jj)Cwcqca-|4-~;$6gAm*d~e{fqXV z6<0R?GsUR#&&~Hn%clg*RJ^CJG|P5<2*;e@gf(Fai}IMnuglL$NZS7M?~fmk_<qfG znWVBVAZ}xX%#F!e*VPP4f1kGK>wJ9U<gKYedGc2?Oj7=9uHl%tgBvmo0#5h}f+dMd zPV71K`0?ZJZObc;YR5Uw(#yGiN&Rz{*3vo8jk}b-SAR^1o9lP{L~-r?_)SMo9c*Tw zIp19Ff7$N6DNAg-m-O`Zda~4tigX`s%*Z?T@9*!*!_q$58(NER<;`9c(dyKwz_CQ* zEY}5xl|j-oHv0qy$=}}kBqnUN+NRz4|LrEJJe>A?A49|C<?|jco1Gtb-!b2LQ^^tq z4i4tU7c|AXwex<Kyxr=)^V_X#Mz%|0Exiw)&CY+OUiXEaVaK~>`6mw+I`4V%ZaPE3 zn;(W7WTQnsZ0xU>X()bvZsU2klZ#EBf})<mf4+@pa$VhRmkW-Cx92Xq_4oSze_#LH z{BO{z`dFpZ_0c1hgWp9O@5h(dNXzmw?~h;M^Hue=)%Q6;iV16?QfkhKc*v|4(U^Yb z>lBq)JD2Ue?tgyk&r_GxL|^^Wpa1OG^E)gKOE-Pm((=}Al8TS7FJqejOwa4`wO<0a z^M`uv-0LUN#^QLO^m^>`d&xC-R;-ZfZS(#w(DGEFTsLvai99P|Vc|39&c%KFo_<>K zyx3V2Uv{1^ImLT}e^=>E_c;`*H+}k)FMYkeJ1ghRniX});e5r{)$zK=erlcQc{6pw z)6>2E{kyA}E|{CNu3oS(N?v}&h1q9s-}tdkHGZ1y|8u+JoCH{Go~tEKx&M2nKfeV} z>(hx_-MG0~|CnA`>oJKX_jjIHmr~(<9wYa63!U3P)Xq=4d?)^x_!aY=FPA-Lu=)Fi zlP^Bqs=4MNcl?73rtORtHBV;sN_}eE_`l(2-u?f|_9v73?b!}A^V>iBrd8a_*Lq=j zoay&l#nYwz-pjGbEnQ@|?f5Fzva7v<c5(WFdb6_CJcFLil3kYj{>x_Z^qJXG&%?Ki zPhQr2y=2AB>e8J$bNP=QJ7!ULXU=SKy_f>N{mIAsET8XuUKt*HfAik+XU?3l>JPh- z=TYH`HpHxa^2iaE$=iZ{c%3+Xe=}3s)~Me1fBb?cJiWPSuk~D=wFyZ{NuKKqB-++h z{l2+5eQtQArpvXhR$Q%z772Y{9lH6Ph}!W!*~M40b|&w*!?nd)^8WXoA1#lw)lC=u zzfynkjp%LnWGphejxF_kwCLcZsLeII%+4;0(0K5Bb-&`0%&u*LhYrN=nz3|4UCO5i zw$<MX9v$JF?zDBn8#zOB^XKcP8mFJL5WP_Lj-lvF+w33V_y6u?`185CZq~}k#YP^J zrc^C;kofYRk^TFOl3BO&Ej_XxXKyanUH0tko_Uq8go=4T?<k(C@$>45kcdTQCeLHT zT1v~xuHEhD)_%b?(e=XldA8Pn7`blGdb|4-XY{PjPENl$7K{?jDLaKO*2D#DOVpd{ zwdc!H{n+`9dB&S+R$9N?@p#qw-T!{QX1sjvwW@yQ$twPA_aMFLmMPjT)$@)Y?G|sW zyS?k^3A0W1zZTn{dfab+?s#tA^Q<|s*1S(EdwThw?MP#*TD$L0)|;b?3=P)VR>}I# zHd12y_334ak8Equ&YtJ7FBe4Vb*^2(v&K_Pf6crz4)!H41is%bpFcT&`|Y=kodsz} zR6HLoxmsLYyl&aCGQWwRZ2GV7`6tczW0!x;ocq5g^D`S5hCRCWn7#5@PP|lY<t>Y- z|L;Dl$5?N>D)Er}<hSs7%jY;&ZROLoo@mh*ZmK@>@}A2tcl=#>rA=^J^Bh%p8P{aM z)Dayi;kj<-GpTcPt+zkAo+>E3c56jLxZ^eJe>YF8no{@YvHWzWh}TC-ug4w-UoLUx z^X_|J^$vKIuU9H&x2XGL@%#Jx@`=kYFZW;nK4H7&O`Gtr8_m)W-mTy1zN&qF(~)%# zA3xrGZOgJFo=xehpNjNv$ZT45{dm9p@{1We9#{VQ^0LwH(o7`}&8JHa%=J6IG$!{s zht+`_NAei<eXg!+@W1=JlHuIE{YUo3+j!3K{`|r%%u-Z$-GW_GUYhD>@9i#MAAC@@ z`W){Z`;V>+=jQA_u&?$vgP8C7TPIxtw`i$`nDu*UUSH@W5_+g;!rf+rNqe5C>K7Wl zo|<#Xh%-=t<+fFR?q<u14+;sNHf@^S_hb$4bf<*}e9dQ0Gv~Me^Pwv~e)ZLg)6w^s z99CbIdUd0WYi7-ssOZYKT|Te$*7V$tE3sxc-gkeC8uQ)nwSBV2qF<jz<k)1+GD=&$ zHGFmGB$bD)`ZbCPQLfKU_Iw3h9#oQP3p$o<XU)wm|D)DDu2^0C`fdE-?|)yHGkkbx z|5y24{g<BIY*U)jKb~f){aLa!=;47z=67;Mzu#^zem=LHX&LLihliJS)oc{_w2}Wm zBg6ap|Lb?|6l?#jus80!<n6t2=igRW?VY#U^wQfh_PTdptJVp7EDf4yyK;lllN>>} zNd`ROqF+xaz4$3plKA6^d0b?+nc;=&{Xr|YJlbP=|9j<g>-(G=QVP``zS6LMzVy@8 z+tyr%lh0f`c;esgC^a>;AKTym(`4Y<WR`0&@A=1X+xN>F{5@NHKYo)(b{fyU!sD{% zBJS_6w|{<qKKp}hxASf{2<F=*E<6#v@8xcWAFmeke`q~^UT<ddJjw3Ij~~le7O^xu zw|!rEj-&o!cifSU$;V?{_QdGvXO`@LDE(iQ!Te5*`folNsaxM~`iXSAhKs+vwAB0D z4LuPqznKDUid&=3{+*LQ_0{iv7Pc*-ik2^sleGs+?2WLLz|W75_j|L{%AT}2a{u4k z`|lRLJoGD2Z+fiClUdp8BFpL$!UQdUuis##RyNym{ne*3_p>yXYIv=CzHHK3>&=@t zhiFYrUAbnH#$(g#F^5+MFTYk=v-re8<z@R$zrOb;x8}wA_e*aZ7G<_3{b!sk^<mrg zy=P1PD-UwV9k{sIo$<!r>hG(**(PSZd%peF7omq<^M2oXZdKYIk|=J*WO$)9*Y%px zle_QhwrA%nu91(Fo4sM*o!akrYn~{}GbY^MS9>KaaEnibWqbdO-t`{BtchP^_Eb!? zt^T%V#fKXcmEFN-bFNu)^;MX=X7ZoApHG>8*#CF8_n)irH4F{?b&rbgRJ~ryu;+d4 z`)H$BhY0y8LDtV?MBJDQnK|JBb%+Dh#)+Qj*?(lWPLBGkue-YEaY(nj_^>3tonv1= zkC~ls&5J6liVq5tCr@t3ES$PD^sUIN<i~$r*MI(N^Yex{!;c&4cF&*rt6Xc^@OR?s z7)Zq<p%s<A<yy?1ii=zQqxC>*#xB3S@UkSsZ1!uDLl=*Iw&^;mbTlb&PHWSK!vf5) z5KSP`jRD>Qb5`{YW_b4e`OW?H|GVO%*I$nf+&OcmWZBzWre8kxTFv`pQFOPLL1zC; zwRbxn^EHTy-WFy_%vNIC1sR4h2-y_#^8Js#_YsB1`-^tI;kh)o>yypCzq|MGH<;HR z-fpda-0$>p@s_zAsOuU6qO$kiY!)zU-?`KB*zx0c&lhRs*!(=CZ}eZf|IGhqN}u=d zO!=%|y#M2go&Vn)Dddsx{Jx=k$;m(YdPe_epFZ?Dv#e~|#*G_&rFu6=C>26i{kU~0 zOwe7Wz+o*6_a3By33DyT%{>fB3s730!$(pe=Nm)IMMur8H=S=>JOK%-?lb?NDHiYF z3Fq!ti0O2>fVRfufyd>N&Fvc=f7r9H-{)EV<B31-$9(!cU*+VqjwKlhD+6EMc^vpp zEo%0}U;Fq^?A$MT;?`!ci9dh#KmO5mpYwJ1nXfOD-912w3o>2~o^x+f;Fx_btYhBc ztICg~A4})V-6_VB_*?m6jN=X=!wam5+>f?h-`QKH7A<Nv?G49?H{4Ad1T}uW?sZz2 z`c;s{@kUt3Z7(z<4@m`RY~fzWr{A?O<lWmTQPWDw7Uq=hcDoX;bzb(Ejm~ppal7Q* z=j?U9OT0*o6KXQ}q_OnV!ndJo8E-C4ja$W5XZ~SN<MD92MC*0-vp0U@?lvyad1G@r zhx^b60p{2UvA<g__G>h|z4z$M|MzUmj5{)W%`Psy_V;^q?zR<D6ZRiIaIUahR<||k ztBc0cu)TrN-s{%gN_)w!J)c{7U+dbkZJgbOTR&UYr@fhyy!Xl11?y_gd9C|D)hcaz zQuSK<tU&dnoA+gje*T~H-gM3P+oxg*-#!1XwR7*WbMuz=ItImT(}yQ!_+*?>WK8n( z?;o|L1Mk1n(VjG;yKc?7+xxb?IH`0vaiNCLHZPTguNRBI^R4b!#J~B{)}Snh{Syp- zecr$2NLi)6{Ds%+a#fhQroORXY*&A~x%K*?tLu7W<`mvuX0fIuH)3X5X6~t#uJ;Qk ze(d{qi#a>4ep7j5cURU#<&D$6-#(?2|Nikm!{>kb<}B}Z(av4;!sz^MKEn&GPdCme z-S{AXQ>0u<?(3y#uT65J^xHODHZPpU9$^~o&$h=Z@@3lw;m=uSlS6ggvl{Euq-EEL zo;!YO-_NUg+pIeuuC>pO{J**OY(eZZYi2_!bB3E*dC@M9^bi9g$_*|TT2l*6^*^2K znzQ~$=+0l2lFRl~oi;k6DY2q!|C;CP-~Y*PW!NyM>Cgs)>-Vo+o}hEg>ss4Y7J<~a z+jAcM($_i0b?$emOlyJaqL3T&IvVxX^t2YulHI14bLE<6_TGKcTXhTWm=(|7b?@{3 z<h&KuPqOpMeYW>)jpf&RKJ`}D@}ryf|Cb8hw`r^6wf`5B9?aXo`Yiv(nimysru?3* zutpg(qPi|*ObOdLzfA0OpUT>6&2N^K**<2Ee!L?!*kX#qC63B3+r7TTyxw~5?}q*9 z`zo$on{oK<(G6YGbI&GkFPRnY7q+Z@<F<A0Z{7c2z9sVaugwq6wtX^-PJDK)J#j?_ zi(`ac(gJSnwCow>uiMXMnp_pqJrHK=yzBph{jzfJd<$Q{F>DJzTVWbsdG|7p+q|vQ z+C!aVwLkIAUR%tUFJF?ETa<lC%ddZJ-3u}EOKm^bt`S_@u3vmV>iXFar-JiWuD3n3 z<Le)-=g<7gk~j_-2r|bCgms;>fAil!#QE0S>f%~m_XSta^d&z0!@u$I#GIHmcRTTt z<<>mrtxMOnuf7>lG-ICZ)&2cE)q8KuJbk|J&!yMyb?+zNp8w>#-J*P<mWK)$%?5#M zr=(VYTX(x!_v^Dmmvm<QU%gda#EgBdxW}5OTkaKzg-OYGeB)d4|I5=`hm0Z?a7gC4 zmRoWh`Vd(4!A>)MrUDPU;RV)2_6<{?UcId-UbFh#|0v!TSKb|_n>M_2uFF|$dcNv_ zL9F+^Z!3zn{yca6l|b0(2}K*+U+s#p%PtRiQuRBR@ze3l)ptIBIq-O`;rXTwq5_?} zK@|if3HC4uIf}b=v<fbNvwf$<A+e8I{FAj+_G;JuEok3t$+PwOxh%W+bFIIxi95O> zcHjT25n5K361>tG7dE6WN<Ne}`RN^<d%7tz*Wdfavwp#Ek4-nEHhn1PDtq$JU7$=W zX#w}_zTJYlFBEs*NZxuN;Py7@yNz){tMAOo4UBx8l=1z%+xx&ZF4dy#3D#%r*ZAe_ z(qp=OcGr{Ab?qhZ3hVx!`pfQdv1~)vzdf2uf2nT_x?RpI+;%MM&E>aS{>>=i+^YLF zc<ol}uyE@%uf|iIajADBq`l8=Jr|oBJ~L@%ed1n044<0Gzdqqp+T|zyS>?O!EHBL| z&n^9T$$eOrzc}Mc)BE>PeR`jN^O{yn;*U3$I2-xH@MlO1W9Rz6cLmrE9cv57y%Mo` z)5rDIA6D6mdy9#k(hM?tyG!DcO^%!D--EB7{N1W~b!Fw8tVt?t3Rk6q?!IT3@TyM1 zP1EK)`+?6ke-sM(H}B^@bV<j)ZJ%CaaqZD&SN*qNW9zp~KW8g%>OYyqAiKja_`6Ii z+tqkwoAdYjZCG!eo~QEqxRGRlmd?VCQ_C+u{jPiZ=3x)1CIg=%4&r80|D>6F22Zls z*gyGSuUGbzy`De!wLkw|antwo=b}p&|NYi`vu}#|qwS{MIZML6nnmsYej$9%a-(A> zm_!!*o;SJi`Sa~z*>`<(%;l?A=w1r@A(p*1?Y243^sL~i<zY{58|m6z_%mnb|21`f z(`^4AUUO$3=j?f{*B!pqUNTYbQ)ZZ?q1IK+;1cK}q`oAtdF?@|2aVzui}wWR1e~!` z;rTFizhJ!k4NjecW$Rw)Zi)NyQB;1(-NlUUKZD+{Y@2Xy<0KR5-g_d;?`=A9^44V& z)opB5GRIX`7XEm7WR3mJd+I#3HTSK))yVs&9@}-|-g>uxakG~FwY)xavT3=F*fz@$ zubq3-?g=jXbWmX`w-B$0^vnJ23TxQVT10{+iJv#jJFW9b#9i=h8GA$C_QxslR##aT zb{dH`F(oc^5SSHwou8>jTUJ%SHvWO-d+#ILclf-EY_nf;Vy)lS&j!oQCat)9=W|R+ z)xm~oAH<|9=Y3?anpYIqSbEg*=ykc1v3Y_&x4QLy7TUvjzHZ;)gALQ|^$(^MOsHHr z@0EL$&DH&WVXyD*kJ@ywpgUN%zQ+0YokotN|9dZAaof45CGY&2;J0PnVXJu^w%=WH z_uV9wnSX3c1@|lv2-2F$AR#TCT$9Aqu;}?$WfPArt`W2T*}l;_FL~(K{r&7qESF9> z$9{IFl23;6^HZlatBPJvJhaCCu-D5SuW}9Q|Mq3bR{PfP^_tWYx1QT!^VLPS4PSTq z1z!pY)@Wf6Iiz%S(#3lsT&zt8{@i0<euXj8nN8AW{@ftNu8!o@As)hat{t2A|K`6V zpGD^7f1A$L`u^r;%jJ*0*qpx`z4_PtpX;nwYp&DcP+;4&p)<vNWzOT<FH2_3oX3=q zSJrmoln3+EV6EBG!7D?S#^?s>gfVD{6{c_OS6aUzdX4GLwDQ+cX51#fPG@d5<9Tf0 zt?e;s$`QHgCcYOlZ|%RhFm`Rjo<-gdBiT6?*o2(x3ic9==+t+-aDHj@`sR(tYG)Q% zehFXZuk&~2;oCCHJ-ueB?TktPHEGYCKk4?f*}ED&&-We==DMHvqUk{SY`%!Qh7sGn zHTLh6Wc<W8`OJsDM{;wg8D4n){P~Qza~T&{-d}Jt<HE}s`;U6QnbRNlAb4#EqeaCB zsiq5Z-3CX#*WTQt>uP6S(vh<@Ch)7yT${FM5<bD@^VBo#V-MevHktLW%EY2}X5+pG zzqaz*UR}SN;o6GG!+-RZg=ajRZ+ci^d){qR8$YF4XVpN<b5qKWtx@+B68@$5bXDP- zP_5Fe(#>s4GJAto#!o+fy0oK!E%Dp?YnEr*{p?INJ%g)kC-+^+GtD&ZRaWV<ez!s6 zJbTcTbY_QrN*~Tfy{(j+mw%bJiK*4;ppE(m_E+6JOJbib`LH@SRO?L)X8Xd|b+PA~ zH!H4Y75{wX%5ZL;rSta7ObR+8lB=&XuITkQFf{aAd+qz1^h<%OA8+N~TW4Y@9(LbI z?o8{s|EqbcJucm=+2ttW?h?5FN9Zh-bC2h*-)661cE<JZ)a5ZMM?c%v*e}TF4^DL4 zxZta$+F{*G+vXS?nbqI4Z2r56M_dA*bWKbxayQ;K#pI+?_s(<dPqY}cr5(3V+H-(g zW7=tkDIuK&A*<V;Kly!H?)HS!VY`+0FPIR#&ChkO+}drCv(wVjXYQ(zY*=}E@|knz zE^L`NGjF@^6=Nf>^Pg8<&;GVI;rhF~3|C%#&Aqz5$}}c$O3uVrr<nPt#(heXUbBne zN_$Cbkz)M$R{?w1s&L0W|7tIvdS*&?;1%UpGmmFxUHf12y{U0);Mc|1{#J%o?2E1c z)8MqyMNqgj=KR<Ckkq#u6jG0^5}c%wmY2uZuz9&(@wYdU43{hx1?X+gzO&@;mGZY~ z`FoE4(G9JQ-1=NFEikHea(a6B#7jGWf9|-{|BK)H(f#n*s)atwbFV$S`BGC&y*Fy} z)tnvYzaM7sca)g**@T0+i*<AU$G;6u7qu+AT_<e{EEMBn{c~XZ`Hvs}Bq+?)?{4N> zA?;SXSI`aA$v>-lb;-<<E!Ur3dZNN`-sZ1K?=>5StwmGs{yx)IRzBx}=A0!O98B9S zwEP!NSzENKK=i2iY3uu8+)o^yewjM?{*|;%-{Q8rUp`mA{kCfFqq^T3XCJ8T`tSFb zmqRl$Y5H^RLmN)q_#u&ymsB_H`qovCH}E7|8V6iI;dW}R>EDw6xb5z{FRN^tv`58{ zEtqFgU2VfY!I>77S+kBUDSS02Brzf-CrPFu;ozU$`8(buZ#-AL=}@uL_uS^KlZ^#} z=klFfdp7coYwWJr<OSQGNuN18<LuWnZ+I?G4nA{c_WawuVt4Z{^PNrKZu`Id{Z0Rz z=*_)f)>Sf}n4@sBa{i4gd<K3i8J`E=3tuMs#n}CK|D}J`6SIWEEu3$jH4-_*<hbxb zP~NsF3-?K6$Gm0>&K9bgt0P}EFYmgI-=iZ>p6@D=di!e6lk_upq=LRTpL(_@V2Pbs zTm0sr2cgSLa}GY<%;NV*?s!R5+FXn3e=`2HUsp4fJm!16mGc(+H^vR-o}A3LMU^-- zqdH3^Sbm&~kU!Hat)aEf{l}lU<%OBO-lsh-&6vjfD`wW5M_*npXPhy6Ua8;8B!LI4 zcB!w==uKZWMeCS={?t=ba(NrPwmzHl(lba!XU6^Z#Ec%T+~5;iiZbg@eU8y``j;hp zGg&FeDro_?w7<PeYTk>P52r6HiArOfJ8RF8Enl^^Yl)V}>$Rn3O%+Pro#7TZ(_qs* zzx(QE_Z*L_e|Y-2^g7e;xz@>_ayC~n=t>oDX4n!f8?^Q=o4AC=zsc3i;!k}qO|jT` zae73sj#vy|(#jCW+cI}T`$`_F#~*AG`8P3bqs{ZY?arGG{kLC!ZLgl*vCCV-_jll0 z3&l-tDI&*9s$(aekZCsHi9ND3YGt6#F1L8?3mi}4H_p3$fy>>*h1>Rd^`_^=&py0( z{_I$x*ZS=Blk?iQ^`0`B?K|tN8gKRj^Jmf}x6&TZRon5|UiIK@x3*(ZC$7zj3oBWF zbz$~%V?UuS=WgXK^OIe)`BCz&|C=|l>t5o_Oj*}x(be%b`R&gZvsuyeZyY^xgk|cg zK$Dil7d&(3&f6@#oHIB3$eHu!E^Ts+-WvP=_xE$GeECN1)5=<(F0v@<JCd}q<N5C? zUdKK}{{8j;P4;1p^aa*zGL5%Hb+XT#FZ{VFP|z$|_tw`kHLfKA8iDI)*7|RaT72EO z|8NXT_)<BqnU>)*OXsm(aJOh$9abkCb?^7HnsCoKm-3|BFQ0j0l74;;v(LSHk(u|! zndU3#1ZdBW`G4w$g=n<(k|4d{m9vfu-(9Dj6!U7TX6TuZ+G5@!Th+d9mMOb`_4daL z3pOPL{g?2_+qFStQZss=us6L?$$IkNAN%^#Z4b_ko1V6ramJm6Ym(A-hAj?R8E_`W z{ixBxug7Mex^lCc^)JV+AWQvCxr-kj+azi;UE0E}+NUbe=km7xtgTTRzIxAncN(s& zITpVzDQlLROQ6`<-i}8?rP_0SE`ROM<<VVVzSzHC=T}NJU)sgUrBhF<oBN+$vTWz7 z)1Hr%+6wP1zWnmiStaJgi5m-rdA%={ELrTW?XN9S##goMh2r(A4!ghfTNu4!F_^2q zsUvy&)rGg;UOFA+y6x6F*4fK#%5zR1ouIJCNW5HqVtDV7LYL#`Zl3v~GF>m8X~D&e z3umKll<wA(-zDz4?VD5lqj@efi`3ONO)Rx9RP_vKoe*{Qis8<OFL+rJU%b<Fe6Ton zjZ=S!cq6a+)h};s%%gOp!Y)3`Ja9gAdDy(}S=rzF&#t`|dHc$Zs~29l8gBh{<Jg+N zum5potIt39e&L7QBcYo8({eYP-OrftYD&}8(COKsTBeJCtq55ik~8J{6NlT^7k~Jp zbJl<H)K~7y_X@`4U(1a6nd>k~EsuBR+}TeL-TcfDv!mkN+UKtKmj`GBoPAbVH!bSw z8tJE5tzETua?M}f_|l)X_0biJt5H*z1Qlm{OSHYa@ylw1?Z*R$%O76!xoNQJxZ4dA zP}6<hokf{Xo^M;=CJ>}EyGdr=^UE(&e&!o)cHR6SG(Bx)$f}U6XU{_PLN!D-pI!I< zp3Q}-1p)2pOI>eCpJBWu<^8D2yG#84i8D8{w_7a;w$VR*^UBVo8jH@2%i>SycqXMU zP%m_P&~C{*zmfNDQPhc8Lz~~fmcGlJtymb|{I1JX*qw9kw4H1wD|fDBuF(7|Ra?ot z*Zz6ndgtYLm!_Mah`ah;-Z=m5^GiilM(h9WHFs~jdA|MK_L*JD*;9_&D(&ukU20uo zti0#)!tB(^bK|Z{y!d7sC?tIIyWRqhoVz_iOJB|DI(Ffv)anZtBnqA^RVjS*toYL> zmF4s7I1l{%oIZ0`4wvQGbLV%KG=^y_h1yQ?3llJ0nqK^Ct6!j1cI6U{o4-A`8XY@$ zn4LjG{Pde!#(p8@ri@*hd5`xbpS*r;bN^$FWx3pPO~-=m;>`R{75{UZoBeV|mTy+S ztH{y3+)r<Rt^ZXw!Bmv(HXmEB^xo%|?Xeq!oFY%J&AmQ5a&}gj!rk~-*jj+utAf|g zD&7{hK6s_X;tdg6yS61TBtH8Sb>Y+L%gs$U18433swFi2e_xd2oLR-2Z}(>0Dw|<! zZ2V={vyJOb_Q?m$Ge5X6XsOTEv}b!_w01kqUz^svEOv9&R;kC=eqMjuC;U}Oy<30U zX^}S@c}u&lZ7biq{_e*B?n`=~HD?|==ce)wK6c(@z~sRad!u4g!%E$6lPmcTA6On_ zBzMYb=bJ?n@8<RYT-G`7jQR5w=EvuL*?#%$rMI)3qUMP&sCj;E`=s(<iF0-?nXSwB z&S@_CU7>Y7Zb!^+jqUHN*Ts5IQaMuC@_zP-1@9{-tQ0PiUv*JsW9N)7kK{H^oxD)w zl=0hZXZm-FReVuBs@<&;7t3t8#^PJoqMgnhx2-u>K5u*#ezpH`hC=G%_=~dQ8@(pY zh`Vm{u4H$KwQTqXPX6$%x4!?m^K*Yx>9MNNuZ=a)M|u_XxBFeL6a5HU4UzYMqwbFD z-O57I42GUblh&BVZTFV>+L3Fb_U`C}ttYjs{A5G4LOBlmTsl=2)illX-L37ekE}M% z+`MzA<+*v*ya!fZPTx`RPKO~l__B$#+N!HBzjQp3yQL-SAiVRn$n`L-FU(q{letXI z_DQcjv$gQ=Md^;m6%)g{qNmp!TzPe`<Nixq-hbzQcGNT8@zHO)x><9#pSmkAvNHPc z<cQr}Hws0*c6Y8?<FMNNLuJCX|8tiq1%BzD`M!F}8m<jtlImL~eKYaQDBpGF_UF2F zhUahWdAa6Nmf7#>1%Bf9&ns>IJM&A8y#I2wy~iGPDfUIRlrbM$9Mqa`uYOT;?>bBW z+h@&uXP;Vld4|D<%+j-WrbW5l^8LI$XsgrlviC2(TIs#Ix2pG|r1|$w4a2*3o0y6U zg(lxP)KM6;Ai`k3fAfXXpp&;Y?Nr+1<<-H(W_Y3Xtn<vcn=?i3@;jXp)%Mg0`(RUi zxoeVHW{UWpI3FR`C1t`Bjuigi*mtpW?UXk^cY0m_%iHkH^wzVqoBR8wT*>yl799M> zPPx4Jd&s-Aa}KWAPc`?fX)4OIS?TAwrp0IZN@KlR`vc#ZoOXA9Xv>(I!@hE{^7ifD zrksr~`zrP8Q6+zjw({k=Rq>9Nv;Uj;dR#h^d#*;mWK-7t*VnTmUKdLI`tw{kYPzLa zdG7j)7fwC7cJ4rjvU;Kaq8T?%m6lFgJtw~|@!o;v5bZ}MlYgtFC~a+uUl3w?ENN+2 z**WLr7i%(aL{Hgw#MVpbR_^1Jx%nnDXU$`L@Mx*GkDp}c?<-3+rLKA2ep%vC(&YE6 z&+&R$Kx6*pnTHOjU%FN~HA_vcCuHlzOyQf`5)WJ}n2_;TC;R`cbG2(X&r-5*K6rlX zeCOF;T`SY(?VV#Dbh%tYE%Q$P%;{<@k#<|;1y~wan;Z9d%3tkza$4#6gAcXyH)MRb zO%~NUx~bN$<639o7skDQ{WnhCd%VJ3B(-mXUSU$tFBQ&@Hn*1v^!nM(*<>ru^D)SF z0`uORYo2q=NxmJ<QpO*o@uT8fOy8xBxbtOw9YR(6ieA?4P3m8f9zEa9@P?`T%R1e; zar$Mi`-8ZaZq5E3;V&G%(4L3e<!4#W!r0|ps!a-Kz6PB?dDs2H4UXCEsIy5EICgDV zso`(gUn{{9qIIk~Mp}Mxigx0+MP`3@U9LK?cFE<I6Q??xG!(z}Zol-IdCwYw$O8`c zkFR*o<teJJ)VRK4quDO&10pX!uTin$sCl#_evj+&m9NeHC+(P?{d@l#%bQoK_PHzS zd|5jAcGkJ}j-vk$H2Kee|M+&Rpymm8*;28kzLWp$oU8KA^47JFr-Q`05*rOZ+<o5j zrgDAJO1{&f_rD)CSiMNU(7!juRy%LTlAWc>;WmD+9VP3gy?e<1W1rH8%^n^ON&S<> zf2?~|v@)RVyy2^bbJaeyHZspvJ7O#Bn7>Wx%sDB^{N%iO$6~@H*17J^eX?}!i4(Wk zFWJ0s-zHRT^XSOo?9`&~7eq_F7R{KlC0?g+LB`84TcPaT9GjjxXtt(nAFOnA5J)M` zycd1@MMW2TrD*6osZ&>Mx!zuy#pQQtcj)tSizoe)io96whyGm`{`$(XoR5bT7ToQf z6P3QOOUYVnugcPd%O@WhY~s@N-e1YGGtKP5_wHl4-xsCmO?CLm!n%36rbw3vv+!B9 zv*+?J+p6{zX03D*nw<7(j>);NGp^^wEw*5r{b|apDHiVpZ_j`1H#_KNnarw?7ZIY- z0&ODBpMNeb>JM7#6`0C8Y463o_T1845-$!ddt7w0X1<f!*HvMfA!nGLZEfDS#LDkQ zX_cP*Mgg%qvMX+9UOatk{ZuWM#Ck)%wOdYn7Tx!J@!q<7ne{S@cWdO8T&?u~DyyEk zs?$nVD7$BQX1tt~`pXA<@BW*hw$gfCqx=K*xcF<QC+t7o=5vlM^iufWyHkR8Xq~uQ zcH8smBa0%-yg-r1ETt>UuHJpDp>%Op(8*ITx*Ye5_DeZ!`ct)#ed(*$xdy3IZy#K8 zXi271O7XA98ftw#4{vl=ZONUNwA;{svEh3;_q%o5IT`+(N%;Q3X7f7{Zr4*`yP~wF z&e^;wo-4WJ`n<&COH7+~2{(kD`zh!;aq`D)vvhC8YG=PMJL@Ll@pxY_*YCJ>uNA(0 zUK#xMPkW}2_3|$FuJ-K@gifs6?fYWJMjo@QkXieV-2EI9f9&?lNl$u2OJ4QNsPPnh zTKUfO)MpN+*<r#J*FJ1GFa2$S`}+yHj`r&I@%bvN`GeMlt+@S;DRHNVeqX>B*$t7i zH-s%d_~(vH!knEObI*!>e>LT;oCXK;p$!lE7*qaloj>=gZousK)1uaEy{nw^{$X_* zpVm{Y#G7l*I!a7hc}jT=^Bt>9V|9@kI|8PCTR6q2FKWT<w-au3eF!vPc0KcQ_RPPT zxjA#PPRjIuia2YTc344S%lGE0+MbUl*Cmgi-fn#7jk0o%8s@ypvW06*^gau*?eo9r zwrllOsnp*$zMEub*&P48){<*7ql?<Ct8@1GY)#YNFYbM=I%aKe;JR<}*N+{4+ukSX zzi)cw`m18oO!=g36{OE9ZF}q1{BotIRalag`^42U^VI%w?VI<0;hH_?zSl5m-~Mdt zI%!FB>)AKze5uc_y0u)G9=+krhFL$hT)X9YeXHNg(%mLGQ&K*Ca=o?9BW(S3)lT0O z^UmL_r}xB^*0%PG|M+ol-JKiPlxwz1WM7%{{H8%^%T#qY!@Yf-54KtBMwOk5KFhXw zTf)sVUqmKPp3X31Pf4fSWfyO$UbeSk{JGucnoBv}R*QS9YLyBba&oawIVIXDeaKuQ zY~h|>2Tjv}m`fqHXXJjZ+mUkR?WNqACqndJ3Eh5Fn|UkVTOru-%lVx(Cb72{b!u?b zd~QFm>~_UZr3}5bNq?0plzV5JyzO(9Ile{e*`N9I<}A6LC%C&*UEJ6G`_;gG{rTL7 zTU!@(Tc~+9U0eBDD^Y7Zf2Uxmt<EVW@5R&m7fjc>@@m=gvaKPDE@w6DmAmz}GHv;p zUBWNq=C-};w+mh$yv68M)LOUNoI`uUw>s^NS{`J&()4OpZ_vv1c>!TZCkr3Rw{y1Z z(F&J1|J}BWRoGE~de@cJrr#^ho!jp=IjeX1X011x`%daFUj2);ck3mUF!B4^TRf`M z`X(>&mf4zVn*09O&CITE#j7@pa=A)x{qF2lw*FT4u8PJ(n}07g;E8Gdo*T*%9$^TY zRq@`pX~lAl8!`)nc0Lg^?w=BOTk6G2ox;T@=j29)XtarJdUeIo<K{Mvl_A+zj`xP- z<Rsa%^U1M1crY>h<5jus48LyOHv0bU=|--{8tNZQD|7ei$!5<vbI!-8_GgoE*rK@W zxf3pLnSXx0?fKA`Uz;0>j^5eA)jA<>x#y%K?}~r@eNZ%eb^6+nJy(8wZcC51vi1p1 zy=m?>^|#*Xs$@2mYmrip%kM5TG(Y`hDK|sRzKXtSxf?IPE{)CBpPYB$e@?ih1&7A8 zQzCELR9=-9@9g2JEZTHl{>S+MyF*(aM5`Y@xg~7#OQ}Mi?Y9%_&V>lh-&ND8xm$7G z+&yQen4Wr`mNsMi@uYo*?{C?B+a);HqAYa!<&eiWx2}xf&=fl}OO(y=e~eU^d-I#O zUkdo&{#wj%{;F31SNe~mo<91<ryd`%T)!ccb7t@%=ZR158CstW)_-0Q(&dz3c3^3e z!vlRAwr^Xb_ddOzRh9efl1<RuOPe!g?}l~njC?(1)*g@5Hx)L$WRF^2t7*-1qImAc z$d$XkF29^9q;7a?UG%fhMcl`uc1__~!&|lD_4%qv(+$%vJrCOGu`@@e@~Bg1!;}@- z=iWX0V{;>lckNA0FV)TSM7mk0ACA+TKG$WRouOlG4S)5wcdQBT4<3GVZ!f#SclLCa zXHoZZry1^8x9)3>|D&HQGaKVp2CPrfbWh!*qkC*#cjmj2GndZnu_$}K{}Sg72DeMR zft{9mnRk?XtG3KalfR{LE=Y66`I+mcapa^g+8_|HR{D9Rxz~q36Oz<g^`~;YjZ&3* zKDSrm#i0`mrX1QlajBEyf`r8zGZ)=))Ag%z;fl(=t*89u?y=MSQ$F8&&U++QczVXx zXK<40&SxcD-j`A-Kblw|nZX_6zq<q}X;cE{a<pKV{|BC0BDUoc(m?5zAC<w`U#) zkFEaj=)_79tGRlC`byi@e%kVG`XA{H=Ogd-R$Z`*S?=*@*Ie<xy{oRR>=xQ~JNMc1 z=b2}u{r~*Alau%FaZKQ{eXh%X-+b|7V!zw&j17UdI!6BwCp^5e<}hF74MU^3-4eU@ zJ>T1L?2pXz^K+OUyqP&U#-^ODVdl%sXX$4*W^9-G^2TlFW$%u)k2PN%J>vOjj{1wb zBdQuA8Y0H7o)^qL?%F#inX=tdTV&(<pt_~(@f-2l>z5;+@69=Nvq9tO!{y(m&-iRt z%rh$?Yn$Ttn7geP_%$M$)pSBR4=>Vgn->3h`=4LuPw89x{;x8qJooL+yDcxa^agLc zYxKJQS<2b#T@n%HqVFtEeSfj*&YcdGuHUEH=k$lI+{&5CcAagjYKThZltu9ddLJ~W zuMrggkx`SB`)tGAF3%k64Q0DMSI)5f@AYG0s3IHdbCH!HSw21QlfGS0WLUJqJz?>) zqe&ADPWyh}b9Q~>#=iOX4>&fq26-<P5|uu%GDN$@OyWq*<dEfm%Nka?{oeM?Z&8e) z<<j8t`yG4o_P=X2^3ywST)o`j!%Y6OA9>Q4muq}Hr1W_A*+O62#h>nMR$rYuX~He* zotz4}Z%sWTY#+_P$x`>&yskMqfA7?d8x4;gJGSHbyy_pb_y3gs{ylH|Y5xBo_&1lo zk6U$BE5Gt|v_<W&F9)jU*i=q3-~aP$$m-B<@9v)N|8t^$hwoze)boa~6F7dU6+Ag1 zc<=YU??rEJ7&6p-FR!1zec#u$pxp;H|9_r;9{avZy#D9(`jhN-9~eQ0pYOi^H}Bq; zW#%6bF!Mk7ZRa`Z!!h%H6Kj8e`}oqoe%8s8p7%cXl`q)(?C<;f|7!KSw=Rf@3y~1} z*!}Fw7lz#1VI{%7Ui)|D%&JhicKGE_F8{AfCq<siTYgn#)A{uwSv~J>d8@9TBGsmM z%JkI5$)(bfdbgHsExWj1<z={6*r~((&NbREgEYif`+iM0U{d|2lF@O-(-6^|z9hX@ z^G=tZkJ}uT`7){9m)COArg<NW#Tl>9x)GZGUhw$de}*4wr$2wWJhT4a<(eZQJ8PWo z^K%^95YMi_@$0@5|Kr<VRtxI?<XOtLOJxo3UWKWO|Ce8_Z@c#EfBO5gi8;~dKD}Sw zw)L7^wbk=G)wQ{w|J&7icuZ?NpdzN2(A{u_aT2SLlHyU$6qaeKY>H1BP6!FH_z7@& zOjB%N@z9B668x)f@NMt+JH=IZ4$oTkiaRT&cGvlv#qaO_{kNq0{JVFyYht&CtzA_$ z|9fTgl3nYxW8&sKR{x)?{Nn%j`v2=EBn6yXzG9Em!rY77*8LTXzn{gsmZwA@raK}{ z>-5F<J7vE39OF1Ec1&hk%*5Yv-YGqe+>K{?MQv|7KUCTGcM->`=2M>Dj1JPwhXp^K z3+^<PIArU<As1)=M%?1l&IOMZKPmM;{uj3YVOqpH3Gpc#W_($=d;Y74s0$J-Qyb3| zrL1Djk6m)-g$DDx8k6P+ep@Fz_53Q5c=>kl_P^&&PkYb$?HKd_#}9uPMkLMZ7GRp` zeff0PnLgon^8%!qHLA~L^-egwa7xpPn3QRu3Fop8PSf0TC?#$2yO<P-oqxW3yvWIA zE?1~1XUAVVSEQXav4=IXK2Ahp$HxQ%nbwc)UW`jC-7h7EeDVE|yqAf)$no%+cpio` zmhIO*W`{UAaQ!ydi_m#L`}=}B7N#=u7v;{nFu%vJAm{x*hJ@ztsY$ahF#Toxu{Hkp z)^q3Y|9NKq@p=8f=RdC3{|&EsS3Li4`M%Gxf1bwwQ?2_sy<U>xLwNny@E?Dk+xOT1 zXs<sIzW-Nf&Hvx`K}VF-KXAAIC205OgEPZ{`F~E%e_&q!+5F?#{5oOxb$!nkUYMv* z7%#TU;r>-#y<dMP{9gQ;i;L@wzE~vNvA4WETV>|#JT8!Mhp*yuRN^DC*XENsPZh~6 zxwG=-g}BXc9QJlynYwX9!GjnU&ld$XJ*(Cllv{4`jV(KK#wRFv-cRX-xCDz0Y3A<k z$4_)Cov6CZ8TxB&n5Xf+{G{&>CT|v9dMt5s6K6_g<HH-Xq_3@Ve5odw8_T+Lml<2! z^>Y=s{@L=hCCgYAAKCMw^{A3r!tM<xUYpx;c1*gZl3sE3yhnD%?1)F%R&yW!IrQxA zy!e>5!o_Q|P1b$sGn2|)!QPvY#kTk$%LK#ucFF-iE@d?{*@im>c}e<eg<JnBuig3N z|8GyLXT^f23whg>ZR*pCjnB{9d*IH}(t?7J-unuH4Pk}zPr5Aj*RyDuyzyCN-(uzJ zfBSztsNGW#bpK*OkIiW(OT%YgQtwQ?Wga}r^m{2h>0iP32Yaq_w<VWGC)>SVyfUX= zLiViYLgC9-kG$Aw{O`+~AHu)>&Qp$DCH*dUa;@EG<(C(K7YCkF5#MR=5ceb_+xp$= zZEml{3v-*TZszx1wUnG8d~6j{KwI<Eb3X4LF$Je*+}z?jA!E553%}Ts8wZ~o9dqja zu_!*_iTRs0XOX=YX~xGMAG6>o3D~W@!t9-aru};s?o{Jm##y@<i%V}?Bp(#GazmY& zA?04fðs^B1n2{b1gNX$O?&nW+@kCrk<Y@veM-_sfzl{raD$e;nkmYgm@~Ve0xC zRh#FB`R$L0@BiWY=d=BPV}=Lu|DMKwII3S~sB@0-!Rq+GTB}wa;;;MAJhz@5J|>w| ztI_n&;m_^;f2H^Rd8)ry$GgW(`On$=e|YzOXw`qvZvRK|lg;s$FEgM2e82y{o!!45 z$qWaM%h&gOzhA%q^Y_b_gP&B&%_|lU4PCfuQOJi|Qwwg1@0e`O<e-1vNwVkhW#J6@ zKeK%<TnjbPe9UvJf<3aqu-eO5^MLXDFZcLWb$F65xVgJ0Y&d+QAl~T6h8?quw}@^E z3Y70mdSSWz&*RO;Cwvx_TwJqj&B8rLc4a=CB|mdQ!np^U=Ql@u%Cm3^{IW<>c#`a+ zD+@9=uHSZP^YygI>6=)Uck^_pF1ONq!?gDxgZjBrbM2xt>DMZjX=!JKv$>h(cBrHo zF@FzwxX2;jfFrOeZhw9H@AY@O_;(!K-+5wB<>SW523c=Kmm0)0c#B6~bXdLTcC~O2 z&lD$*?Tr&o>}b&0v%9EqV)ui2vh&-DCR{seYcVg^;cUTgS+OY=?-{R2Olf~5d-x+q z`uTgz41cct|7?FCHsx>9mrR4TIk(t$U1j+EYPm-2Q>R5A&i&kL=Xd^1?U!bL`|k5K z$HG2I^t(TBDp}n6eX0K&?$bT?-DTB6S^T~SD*|qPVXKvyKbMgqMKAE&bH%gH&dxit zSle!IlxLW6B49^#ZvKoO`@M23{<mya-fL3b7ghA(`@hux=d0XTDSb?v6qNL0$#eI| z$}+O^j|3MRxxSY97JcC59YzxlF1B+lJ0|bQK6bE`<<8cHlH7eyw%NS8tTc7U_fJfJ z8*R;xFHQ`|PK#{Yl{YDiIq=avr}o>sjM$ovR;GvE6!BSVdMm7@qiXe|)MW<`#HQF@ zmw9|^-?0ql0<qr{g6~Y(aDnM><Bys1e@g!O&~AU^=~LBzzt;bk+W%2{e`Ecx<@LM1 z|J;7s=B}!1Rk-Gg{My&iKbq}-G=Jr*IlQ5y@q|Rn^r}vt$HLYPb<d3Dlb&Q%#>L-H zu-nV&x7kZG{+HyO&VWZtugfP`d<xoV=yq=7=Ihc99Wwve=AY{OHa&F9{fL}pllGW; zi*?NLev;RmY$2t5zWaf}JuOkO1zsyP^rzaKc-`_~g5RO3PtD|Q&wh;$_xiqWdcNNO z%B`Kh56z$N@$hn|lsMDgMg1G2AKWzIuRdp<%Pi~_xbniZAg+Sx|22&}b@ZF8%gR>& zy?j1?o4#1xzeUd<OxkedTcz+yo_~KtW1Pe+-TbEgUQ?rgMPT09WeL~A<g%6to2-o% zSk(G)(@CGC3-XCif_nOnxxeUr^Z0W5dBcKG)f;b*KJ>cYH2=>1-|DC5oj)YG=Ju}g zDRMmR73cHqihD0k^qsu3;xEtA)t&3MZW86H*;{$|VzE%@%;yj1$Uk9qJ07;Ewy3I0 z{Qb@Ex>dCtnul6$+{(!RyL#OTuE*ym{WcC0lU3bWH`!)7Yumd&XS<nlFSm8E9?Mv9 z?fDrcomZAgU5#hBQ+A$r->&IrxHYl!eerX{{eOSoNWOD_vi)9r1BJXZTzz-$n)}b6 z`>6QqbAx?bJ}+2(TH8l`o0M;Gc&ELmkN1S2wk@+RUX)n;kmIrNZckH*9>u%1wmAa7 z9^bqsewW$mrAeK#%4x%r)N98c2g~d{d--~^;ImTZXP<xH7CW{4v!<xny*bCT+0HDT z#VByf>q+fPD`v4dw<RAxxb(Gn*`Z^d0z7k02Q+qcN38o+_?_pYUdHNYjVC_K*#Et3 z-y8p<HU7Z%eP4C|{5k*M=HHw1|9IqUJ}|!8b?oR-*XKX=<M;6de&)CP@u1h^=h36A zvzApVZ<_b1djI$89lLgM{r~&I-Tu}eab?KDNscCkuqLG!)lG(Mp`j1G<9`Wl(m8zp z|KIzMv*UkDF+5n@Z+B?_|KIx`gWAT74DtUyO$S%l^0i+C?H>2!@B9Dv{bCKSnwQ@3 zyS^KDEpmAH+V&l{&Y$ycpZ9piOiQ%bu=~4y+zf@E`)A&H@avP-soK?ASGI}Fao+Xf zWQD=88?NzP2Nfi)e{pwCsgx`G^Zn+|yPN+y*94cHi0o<kQdL`hPlb{5zfEq*g!ZC? zPOlh}KOV5$ytQxf;ks2Uk&ZGO4%^*6>b}(akB)|i$|t4c2P~G~T;jI3f6k5LTy^t9 zJ><&1N^ZZ%RR2RMvtC7T^V&@>gTAb^yfZ6*p4+EGmijDge;NDkMjTFMd%9@L=9@Cl z*T*w4tkcssoFDml$11Jno#z+WAGmnZ@Z7mL28O==K7~1V{yzDlGDENE+_gRxy)V1| z@+utDST4<QC}Q&Wf~u^=_nf$7tWBMNK1>g^WbI5~IwmotI9)-#(nDTAiCatOTxChS zei6^{Z*>#Wh30%bSGs-un^zZtUhb4vUn25ix5@Ij^#y8|1K&QroU_1kN6Fun`6r*= zO;+5|`$=u$!4DHx%REn3+WWpp@L9%j_w)pxM{jNxGaR`3l=a;CwT(}|qzMI`TOx8| zPLaX+;-0x1Uz~iY>GoLp3ws=AdCR`l6AmnW^W|soLHA`#CtPIt{)OXlvh}n6{__{N zn9d1cOkneU8mg=o^8Udcmg1OmktfUq_OME{f4Hd}bEuTpNbx}AngWGZ+1a1=q|5%k zTXZJD_3{zbiUQ%-B*l!ze++;Az5j1l_cgp;bpHQ8&kKu-o8Q-c-~How{U7(5_tp0g zfBa}z_j-FB_x|6z_jjkCpZD<18=m_=j+uYhZ2x=n!K;6@<9~92E92Mk|E>PL=>Ny@ z{Q2`A$ISON-v9UZzMTd8_umhk7CmPRC`&pp=g;#mUwE#k3!k~m5jEA+CGEdji^Ds$ zl)ncV7C$_&H(X52wE3Sv<iz81T=z|0dde~3`jxy(S`{AR8eL3t+}W>enKIGyb&G0I zZf=Q==b~usy?s%?QWhQkR^7DWt@TsgMOOkNZswo=d!}-dk(6-IR>On+2lMidO0N%- zTC44UV&;pwsj)TldA;xK%_&$Mu9NJrYr*Mc%|&(f0x}h^cOAK*E2e)g{_(M&<!6>% z4tSVtBKP>s6Q1Me*W@4AV9s$*()A+$rxWY;l$2KfR*KK<58cOEcvwT*h$l9x@r;qo z&ZBHII*aVjF(w<#jy}2jiH**_R)LGLdqN%O-I`_g#4Y{Ow4L7P7u(7;mUWe1WzWfU z)8GE>aed6?k5BFxCGwabYdNJ6C8?1sZvOAy#nQt1D()jwb{h#w2%MVCcU)P-m2dvx z?|*(4&)LBx94`KRhX384^V3h%-mAZO_{P);wsw|I7hfOG*4Ce}n|HcTSKiEn%P+9^ zw0apiaecY_=Tn8np_4OZKc8RMcQMR#%4(sMWxP>&^4h5aM&G4{zZ~~rY}!4={v5-) z!#~e$b$a$}`KA*WUf;HSnPGG6W9Q#94>MZgF1DW$?w@gB(=+pK$IbT+H;BF9KcGIp zrU`WIz>gP;`wMDndglM$IsfqYecx^WoLc{fi{XL)|1bWEOOIUN_s#Uo^Ws03^#2O| zd!+wQNk^+y;K%O$zpekAd;f>8?xT3U;NLp={r_I?@3a5+*uL(>dc=m`HH^9!<Qv}C zJh#sOTfP4J;qCkX=GOeaeShC~OZ%_E_O1K>-rj%r%R*a?HJ@*=yxeuJ`+-K@6$aP! z{X31<2bQMJ^<sQt)T}Y5Ie!{!<nBvSTa7JFf9475Sa+oMetG})&7Hs0JTpw!N@^`N zHQ-#yqBK!UO>x(iA8wkh$4)l;UcS2VePwp}j@943ZA;jGJKp2RhczNb76*)u35yrW z#vQigzPqs3?Xro%*81Xv=d;o`-xRRAJ?Zkc>9$7a4!HKk<sFw&O*PnQRMm0E)BpEg zyLIl<85&NeNGY{Fz9?~g`SOL|Hcxr|^MM;|Er3w&>y(>woK@UnvNwJ>ZLX7eL&<KF z))I&H@8^70^-o!1<8{5Y#gOgrD!%&9Msep<w{+jyw#xPGoMW$dIXydGqxY`h{>{sQ znc-aX`ZTA$=GIfF{o?Pzq3AS0VQRX>i~_%G=8WlGm$&I&SR#Mv<iuN-#4U4pk`;9q zoG|7PRDGYD-*85HJ70gmbhD;;sY0#Nn?Kbx?(<$P$;Xy3XK~rrbH?YIMdon}E;{MI zRR2<b=Gh->UL}As$(dz>XY$l8%xc~BWlr&dh^-+<TWpszW@sEppH<jmqR#7}=GGZG zZ}EFA$vHBzt*hA5&&NO5``k?Q)y<p6Jnn}VMBKT(vEzp276<ijZRf0}Y*ffTZ`5{% zciEi64j;DVaZ7(CoZD%2-lc%~+$Ww(d-tt-tkc-d<I~}1SF&hN-J>PB2NhzX#n#z$ zelRaT=e({&C!F2j+~KA$m3NO4$^z$mRr4=jSzfusP=9hU-^|nr_hiGmBGhy(1548z z<!*;(zh3uV{Ebp!K-v5!|L&^Ij+MzP*{pK*cYFCW(FrzIe~t74Qd+BJ)XyDLm=gK9 z+m+!3Kl=;*Ut!a@b{_~_7}L+0X?E+y)_si81&8zI$F9kLeEw|D=M91xpJ(oUT~ze1 znfZ*1tEBjeyT^3WnQrYUT$S6jd(%auWfBDp54M-LaF*Cgx=dSGpuSgtDaga%e%p(% zl^?oonT5q(^lUa@x*=2YN#$L^b+zq=8`nsQpV;9L_ao*hkKSW8CE<+d*<4B~ZHID~ zJaH8aV(#9P{(I3j?#gqPJ9f8opL;0lC6^la-`3@RXG)`;)iLhr&+``qd^s+$b5pkK zKfyTf-+N}CH1!H!7Ga(%6Wzo4e1A!<Of8F>Me)+0`L^|a$<yshzrA6NtI0TRH_xuV z?_mXt=3j|z-3u;We)-wC&CLhiM{ByltkLB6MpRMZbW(1NGRrU9>~)GP?w7Y5tZ>$p zRnn|fbG{O;rnj_bqrl!%Mww^x4&~MDirzVYcNbgQX`$CDvtB9hP&y@Tnl8}PZZ+5G zgTT#KE-!^TcY9`q8iz-RpKzXX<?T7uKE=Y%Q`h~yd)#~Cj9)6I5v55I$1S*vvKQz6 zZa1ENf70?_4|u<QT~p63-NCcjy6!<w^HRYWm#2LKN+&9!MP<KAiaWX*z4&hMhW|ow z^3>Ary_)h?g{@J~r6pzrSUz0)bwQy7Q+f3K8{T)4Z4;Dz1Kx5>bp32}jNw?|lW(^p zL#KXtFZSBIn9pLd*D@auK|!VB+Ly=o{@u$|HZf`Pt*3??4E$1poPK8Pn!J6vTl@Co zbqB7wo9poDE!=1I+|P9@_tSHVkIsfZ?$BAX*5ko*yB@|lyERq|1gw>9UNYgt+(icG zyBDYlIytQrI~B_uvuT0WlgwFC^Ze?6eD>$+tUGUYOI}v~@m~HlclMaeJoxfN%KZIY zMh3rm`wuLa|1ZJt;nyFT@abk-SFXz5vTjw&H7gC_C1);Z7xlPZ+w$qn8<zLA3Cd6P z<M#Alyy11HeX*gR|J!t#xpNXONGlX4OFWKMeOxB>NZ=h0i|&Qay@&eUE2kwIY+}~n z;ohWs&|*o*31jub>sCH1mYzAJ<W_KRX2tKAdphSQq#8Y&Yd6*Uax};1l}8SmpElB% ze|UYAcIW4FOBTI8BzIj_?bN;~w&dL!%Tz5^N<6Pw+h%^u#xHW7H!DMf&FO`qB`#ty zEv`MK2e<RPF8}+utus(6LFda%fsIc>v`k}{O3Ls0Yi_mGLuGGFg!uPEKVv!0T_{fN zywvLbYR>$VJYF~V9Ql{fQMdoVf!<ILvrQqF+qi^vH0!rpy}xH+)uJg;EGp~b;rnV~ z_>ER~<yRN#=5TtLH~M-zFx^YMW9Oe8UnRi69P;|olAfjqb%K*i#k&2|N{i%q5)~da zDHeafW~P52v?TF)Q@deDshPziw<fbYeYP8<W9+8-crea<YIrvD=tt$8eKuVm|DV;K zV%SocWbw|~K+@|j<C!q$M&F+t+$EZaZs@ge9OOP{Su$Jk%VdE>#eCVH^Y5i~{$CgK zVS<%`)VGUQ$~MM)X|u4jJN9R$?(VXZvZn9%Hw%3YUmySQ(bH^(11WZ{S1Wez=9_A> z<BWj}Pr)Ov(tQ;lncmx0^D`8DdLv@1KKFbzs~hw0A5WgJ?5z_tQ!6jbyZq~q!2(vR zjphbNSiR~m9NxI;r<Ip<N}ba&hLs{)wl%MA<eY4*m?~3Y!EG59bZkzkW~;XJG?xpu z)iQo}t{yoeefa6jmcraS+v+CCELJRB)OwC-qV>`yA%|yKby9iW2Y=YT&=Cl?IT!1H zWm?>nbp^~{yqFmhl|+@cc7`{t4Sk~&rnC3vv0F!^cqEyZX#ZE*tg}b`y^g^AA1;<J z)z3+E?KyB_>d!}WoOk)EO7AU77U<8KwC6=DYt=;Y6J0X4>6eaJI8W1gRU0Y4@flm_ z^AGon;+8Gz{mt`S=F-;Sz?6VfGmn_sNKGtcll0MMU2?*yNzQ+d?v_g#cUcup+~3t2 zA839Uzh2|b-bW4R?#AYJ73v*gip`ciR%g(l{4qVDkl7|Q%V2F2mmYIMO<vx--Mtgf z{+M9%MeU*6i<nt;>n0^ybO{z8w)nK*h2cZ1lec6Fl5PFZ{I+m5I6F1QLEP$2xum;9 zbHy&lR@ZI6<v8O64?S-CnqbgS^!04DYv(rEBpaz+`*{nia-J_dKY#CmqwHo)cC)9< zxNgi)*7#2Lam$n!{B0JNrRy#24sJZ1FW=Xu_}*53Q^Ff_i7ywms}}O_-G4sJ@=Nyf zP6x{uEb#N`H?jw?%)KEWF=gVn>c1OSua253F;D9E{O&78VzNhbr(ARuOI)<)oP<bg zx5_D=$Z72!sp-le4Rf{D30Q94xghS*Jmn{cI3K1gHoR`RjAO$&_m?K`?^{pces{~Z z^8s7s%U!+u=5J!(?80H&o6@o5ujJ!^eQUfQU8~zI6aB*{*~w(CF>`W-N8|*f?x_N1 z5(n>I{}wMHcG<K=M5Ai2-<6x%UOYY--g*{Gq@zFC@IT+#&r<!K?cm}sQwrPa?*Ghq zV^B4FRrI%s8inOSC36=)KlZAPTSGnE+^v0MXZ6lfqqgIE#t%Nk@!HJ!TzT;DkI7Gu zK0enTSNMkgjpdu$oE=?e_WyoY>%PB}{W#s|*nyeBA7{+i{O<UFiN<tkso#x<-#XU+ zoB3p)wqe1gbUl`yOAF6#?W?m6TIp9;|7yGNrTHxlhCF8~O*!-??p(3<&60{Yo4F6C zdEP!*{Yb=>(X?dgizTwfTQ;ur-CHN09DeEhlOH1ImxaBvTdftc*^*&Fsh0VHZP^#K z4T|#K9$#$OruW|F{AU5j^P6;*ycCIiR#%oKf2_Q$Ug4W`)B<6CzpM_yqJnOvKl?&g z1>e7!!JNG4%XM{z!gITphW$Mxd)KpK+S79HJN%91YulZ2Z$0%CfANhiul~Gc`!%am zvjj`8e!Dg=r|U<NbtlV3X`agU4d<9@W6O5heNlfH-B&B?Y3RJmF-d*%+7GJBlYZ}( z{5bdcqvC6cyCzj;?<;-qcE9SQO0A39T}zg2?z}$PF-D-N{jB}UO$iQ}>a|K&q{N)m zzLuzV&6}EcT2}AE_tM09hlJL*=$t-eSbWgAt3Ax>rFyo7*lE6F--FJy{ANtH$&2Wm zad_VI%I$9+Ec9s;kL;h7x{XcwCDYyO$=fnz?Y7_Vvrp74_g`zD$J5jKRKZ!(#{6Ho z*o*8<2MYGwKQd=&Mx5Ga1?TB=oHJ$jEx*Kd>*-wWwTE7>-MO@W`HZRuwcbtr%^j+@ zcRXmnou_@t^XLPcoPBALVtd?{ObPI6|Cu`R`N1Xm1~N$o+q%E*(hCgRR<k}#s?O@= zUk0{3<83d#Uf_Q(Yo3!jX_~^5T;^ly*9?#Bop59>e0ope8$;IuVSaxlQyxK=nJ3;% z>3VnNm_zpD86l<0PYtUCo>rVu@TzTXn6PQ{<oW>XY2RJ+Y+k#aS+sa-$0-)IoG8X5 z7V|0pE0vqF?^Wo_&%B@VMdjy&?SDG=7W%y2Q0l1K-4_0DkB=zl!k?G-9hhzO{YUjY zmjd}^f4|>da>lFZuH9CK2)WDgA-8v3VLFhJZN(N*nXmQN*PEN`oU`U)oyi+NH9k49 zRKH%u>iV&$<Ny0M7hb-8z-+_woz*;&`zAk-x#fD{a$rAWg6GZMUu2#{Ie6SpSKDP) zJa0<Q=2WxohVS<0+Qj@nyZ!y0`F)lSZ0F`Q9q+g7bkcUaJo)^7(|^k+{_NE%|L`vR zxxg{`1DeZ)w$AiFo$&6@_xq07yid>Nt}V5BE9@Ne`_PiJlHSkkj83iC+2OYSWVW1X z=al)ye2*`)`jqUN?&Op$8WQNWa>1jCkvi$&+gaOseeE}A9bEBfN)Vg+Kb!N-S&nIy z0fJGb%^d4Jd&~Lr{Je5_qZSBPJEs>ZJhpY_6f8Qo^|XC|+S`)}W!VAUmTezvb5~02 z+sOH8one~!_aN>5GW&vyGhdXbCpyensLEabU+(4OSif_5_TL56vNZoi?a2RFdq3pw zxA(hucFwjb6sunE9HDTmw9S|EgplUe^@?kzwp}b_daAzn*a?lTtOr>5yJzWiXR<bZ zez0!O%hprL3R~FOS-SI%Mg7q9s`__>^J8rCj_(>D`)#+IuQ0p&FTeQG{#qUF<a;p! z`OP!D7$oGxU%cG^ve00Ooyzv(_4nO(-<Eh|_cq|zeDh!)i|v|niSHJh?)Wf|=i0`* z`|M6#y*$PEwdmpdGk*X0&L{uh<@llvKXqABID85+be(74X5FQ4dg9`bs^?nobL83@ z1fQRnG-;Vp_dV;fW|e7ODcg@NUVe-J$Y0D<TkWdV$-V#ap54v!B_7^5`&>e^U%zYr zbI*<M)}E*-KefB>_W#<y9gbRwd%}0kv^ua)wP{~qSk?V2O3w^->|MRDL?om8-5&Pp zpLY)CE^Yt#xbtDcnUhOf+saty?G$rlnz^bnXUYV2^*X(j<3H5Byv#3Dc$XhYob!L> z?(GRYbMDul`QEEv9;<%4CqVbpzU<iJ|4O-8FPPsve^KzyyN~v6$CJNZ-gdlx+MoKH z*WbSXIe%NImHR`TFlWPK4!@?%_WQm0-CnCbE4>RpeO~ZH%Hqz?^Hq1g?q%(NX*8=i z+v&}#S;a>cr}S2BpX2=F#4qV(YybUa)U?=95Lm2fz0&mi%8GZ@J~p`-jec)5w|~mF z-7emEAX;tpNtQ$Z(`HX*+g7W2cVExl@@>kyw|Z_`dp_=|DNkbC?pfzQ=Iy&3ZC~$i zRX_EyMT<%E?fa{ZJB?(HtzF;SdF~Y3uFXYBE59FI%lYxyul%3J7yEpre^r$8{QJK; z&Og6C{RZzc(eqp19xk&J)BjXB`~CCZcF(U}EK#|3`_CQIxbz#x&R_K{zMiJ&|LNcR zJ2hTmPv<_{xmDu*lEt|*&bG3axm$!=9;kWBC?S#efW7*hg-LmLsiM<Vk=-5Nr{-8Z z5c|S&EpUGE^koVa>ev6|)^61QUY=C1&}j{?;2qyEia4r&n^e-iQ8_D_?b)|;$-gqL z2liI?ylgn@c3J#yl;VSOkLa7+o4)aV-gWyAcg-I~HzBdq+~Xge4RQ{>)tFYDaEVLM z<|p4H-t>LvUf-`+>??DBm43<pbvOUy&td<4cW!jz_lw0{>vB{6*f$hUU26VO<!SQI zCDY!XYk&8OpRFWF;JfIt2q8v)QI5EmqQ3X{G&#Nqu}t0dJSZr!QT?S)kFwpq<@Opy zes|b)FLeH0Zrt$pcu4BZJ%@dDJhsI>%07Ryd-e^cxe0PFg=+2B?P`C}cgOF@Hv@yY z_Bo$zVt?<wZl(HudWpQ#uS0H;<%_vam$%-XR=4W<gLyswcc*pBDZT!5P1(Dzdj9d& z-=`-V9ogc_{5bfr)p_=JySi#mrIt_r)>nNZ*k*p`Qbmkl>rjm>Gp`pGT-N^MOl@NR zBK2;MJMxiT2k&k9yKkd%@EYGuFLut<suz3v-`O+%221w$A6$NUr(@dtSL$c{xfv|> zW}5TN_B+vnOdnV8duv&t%(VYUy1<dz3ruqr$__oAVwXQvcbcnJizl;Vg_+^b=r2?J zy)}dcXC=I!b#{BXx@l{~tgGu956}I*XQKH$o<-$TfBDAE_~ZPTZKKo{2lZ*sJnugV zo3q4r+lg0tH}2);PW7wkGQauv&$%rJH%WE7hh;|XjD2w@w&iVzOYP>euR;3tr;6u` zR)!SM-_7H|ndBY7XN8<hKt`(1iV-^UFfq)sQvUF_|C275{##*iOlO5nM{3)&=Nspl zNdJk`?zKPSW{}hSE#2h1B1cmCgd=k!=Be)ptIYUwWY#Bz>*=ADkAk&Jw{O2c`Plrm zo6bpWZu)=Ial^^P@}<u_@2={Y8tFgFZ?1#Dk#`F?Q0y0RRG;=tQ+mmTe?NuO1j}D9 zug-kav)tz28>XPwOL7i+*04@(Y_wc4sjh$8aSi@R0jvKUN!vj|IW1x4tpnTRcFaCs zKL4}CGQr<bZ%;~GUc2Yfztjqux9=i<#_azuYyKndNRW={zcm-1_vbNg?maS1G&o1> zriEdD`tMUSY-N7S|6-66xTT`hao0(x9Bm9jAUf@`>FoJ_ycx^c45TOB&f9SJUDfjA zH?(I@vbLXFTxPvyU0Q@|pz!+L0m8Kh`|Gys-Q!um!BqO?x2<1pOtBW6ykf<->_6&a z?Z@hxB0$yHkxe=_k&C4-?{k>kVj5Z6==ApAf;E@^)ETC%m;BDg_ItVcJ;m8mzUTew zTA=;r?u8%w6{ns3v7k)7V=A^pYG{zCev@r##2@ZliTu`5p3@pto9w(@1>`3NKCIj5 z@Z;2x=WB2ME05Lxmh1cJrOsdOucjMA!({(wzPYcX7I@{zyM&j*6Z+V${9@T?wZ%cb zV`_m>z>H`kz4FaTZSVY~n;Fj>smWNNyq)*-G?%uyd5f03zgWq*(c;aul<BJ6CX;Q_ z-h8{&dxK@}rI=@Z-}Wzla?tJ8|Fa);Jbmv!c>c!n<j?x+KZ>tk`gr!feQVn-laGI1 zhn!FNILAC8p)T0qr>*ICu|%E7HTMhS7i?4S*owu2Q+MP~pI7$Y+}~X4Ug*WUlP=Hv zoibrbMnw1R-0Ok8Gpg(Sb9&gb|5qQ|y!_hv?Z@R6Tym}VC$BL!Yi*x<U${H@-LL0i z(Q0r1Tse2T{n5U%W#800dL6k-niTjZ{8nQ!aa7<)IxSKB+@tt=z9aYaUgx)-0@}{g z&pSGBmna>uOtrC5x$=*nd+YzhPH+Dg1l+dQfph%@@}0t2(Q*-d7Olg!LFJu`gXY$v zwJ&3ndOTlUKl19#F@<TDqV{BcZhqkXjYIL!`z_b_OD+7Tg+#f(-Cup_TmCGzIovV_ z1ioZ^c)NZIQ$w@Fe|hF(5>mhA1(F#QGv3sDT-vxl_qKVRdrtrD$NU@TU%2XkIAE!o z!SzDtfrT#q@2vfPzdrnrkL6>?LnoONSAYLl@G)b1K()Qjl|R2(UC)(s_u98J#)`5y z3S=KB(75gNn|G@s#2>mB5XYV+>4WML8HUqdllE}leSCD=@!GSScE11r?R@3unYS(4 zYMXU+1Z(%?Itc7;Zq!vVT==^82JiR#%r9hAI?g(9mo(id4m&CC76180-i+=o?8#?t z{$hSz^Sd-?t6a4Fni9EPp{<dt#XCY1BHrIomz$Tm-tu>i`8(T3=k~9U-DY|2p834x z?w>kl?>T(i@AU23&l2xySw0G2wradD-jp>J5x=cAyXaO*k8M-zo1>{$KdSo8>$_U^ z(fnn}F9E^%XE*FP@?TfK-fH1e+ooB6HbmC`soW!eclWIn>F>LC+kL+0Wz=8ew`Eq> zsZTR*w<>I7)V<Jo)idSDk$uHCny!~#JN0`9$G!c^yShcqTsfL<aIl5kTyXmEmbU%% zI@>I2&oq6%dh7qjtxS$@xF+oYU9ku0V;_-o5G-lB;cTY4ep`M=^W9T%TXnB-&dJ~N zH-G>B-{tdnw=8<jva$Nm4QItKeC&pDs%gKE$$aqr&KH*X-&SP3;E{t+{qx+nUo5v4 z;R&0okQ*(Q-*eOZ<=<nGd$~Ctc|JPcR;n-kt;6l_-XD72WgN-3@4vVk{^)NnTYXc6 zXw(8>Zztw=>kQJ0tuOc|8SV(&X1>vC%D#yI2D}IE)U!D1bVg=3zc#!%_3hzu!|z{@ zH}*W={V3pFKFh}Upwbndn!hoea#WvoXoiY-XPMXbp4|B4c{^r*Ykra>RlY9x@cMJf z8t>f&_}lwsj1P<L7n%P_b^F^ZD))Ez8+7IMaDI1A_OX$jT&>dkon@nCMx);vzT|{7 z`zPuBy?M6RO~t+1@7eCwVL$W7es+9}-O-b$6=ysYJhCr2LG0Y&x}NWkTZ=EO{POx+ z!iz1r6;t%CaW>tMP$^W0yRE~vLFvVjPd{Qqj`8iPxo)@lWX9`*?jd0!0voEYbiDtg zbHwcP-w#`szFS@VAYIN;My&s9Q*uc0yM>jvL*8$kSH|*j!Ud+e5smM9C)rl;P5SRM z?a7<F^_LeMy_UGKXU}Hm73zD=S?-)!{50U{+t+ykODwxtHrf<U*R^eq_*5UQd%)J{ zuJ*Mh=k0$K?*E*7@8g`~t%eLYy1p|eDPIuq6WHCV@(z+5KqPp`C1PItog@1WPg$3} ztn7E7_<O~}i==NjZtzn1Z0M>R%zpD}q&oj$_Yczw0_#3sWj|l_)?XmjDtU5uUs+w< z=fvmJ+wOio^1=N7zPbEc|KGFfmkiszt^BNQ`~BK;$>%J0U)_Gub<b~;`h5EzSM(kw z?96}X`aK{?64dmyy?gN7wEad=zvnOb8oSx}yK%zZXNRliG#84od9jrRG(TH3v!Xw< z@LgnR-riXo*Ux{k>*PJI;vdJau}|sWFO&cJ|86f4+p>ERQ<x3hoTV?9wwLw$KJWat zb6VbP$={29G|Ru1JRnitANfh*-Mk4om)fF_UVhnM{_)w*>hpKg8)r|-y~evG_qj+{ z?LE)Ui(4%>Cg=6%)~$K9?5Tmow`aCfj>$Z-^LXTkR-&~=*gV?2^VIRg@JmN*3m2PC zxfYPi%n;zUF!$DnPDjm?$q_A|C2Su$IdE|*F8v*SXR%ew+%vH=Z{Cyq%Pr^nEKEiD zlBNHp?-eIxA5Zl=8l5T3=Iv^|UC74YcG0_4?%mP3vt!Kp%ku176T;LV-TqtqW?6Km zW!%B!GqRJi|0n!EzSz|;Gg?A6%2|_jY1Edr(uaH7vZnl<ebM05zkOF5R%QQ|Id(v@ zxgdG_CAM2Pu5VakY5DxbCmsfcRJNHnk2`r396UI=n(2F5TTbV!+x$mmpZk0|ZhHTg z3#;>@90P_0z5*)@)9+UPu2^HCXleGpdU;ZGy-d~d@5Zy|GzuKCT~d7Mi<RNARaR5` z>WeqHY&~q@e@sSf9sl<;u{F$(7#6Tvee|1l`r_>ixrUX}bA6<yWL><%`|K$XL%@0O zkkC~5)l$dKJy$SdJ9kGZhU<wEJHrVj=l%EH8|VGCoGjpz^K3?WL*?|zZ)a&A*3dUK z@O;&9ahbL(&-}wy``>$P7h0QHRlMu(o~QkV8@GB-NLl~K^Yw<Ebrp}_`h4n6S%2hR z=bgW~mt{VcK3&%RY_W7QU(G5(aYeJIKmWDvsNd%K>)5&5f0EzcKdQNE@s){&^S<!z zzP$RkfEoY&-oI&9GY@Rb?Ovr77^cdwV9wMPcOSn@={lx+D*dzOtW$ZXj3jnHeD$6) zARupzkidhPxvP7`C3@Ky8ZK6}Jp94Ia6z6=A+^n>{5uP?!>wwD_>0*|+jIUgTz1`A z_A=RP>xEmn)3$IOdyz6(wbHQvxq5ox=4RE|3O&UI-{m*7ezxRk-=d?w&9(gSRr_mE z?b&YGyo*Jq?9SWLR~&v!Vn@g9rn=^d#f;}Fpa1(~ajZHiHlxw+&UxlO!Lm)#>b$31 zgI?`AmSc7J=~YXH2hU!~gog_=IGD~~wCe2vjU5dI&53HNpZ3jNA=`i4qWT|C`uTax z4(gMN1ezaNt4(<A<A3Qz=QXZVzKga7y;ECqsQr$uU{Zoj=Zqh$oX-X3IREf85YKky zys2c=RIPO8cG}%NpTErUH+Q`hTlFC9ce(S6@_qWrJT_l=+0*mu|5^86-v8&Ey`9f( zefJm_{Vz6m&KdiNy`FotmusHHzw`sXcbw)KA1apM*)ie4p*U%$jtw22>bZCCykeGE z{_fEB$z~aInX>Hk4R`K3^7O1J!-GFxv+u;*JT5N&e8<i`3=C(|jIR{$7F@mX0MCL4 zVv~CLt~XC%+PjCJ;Y4xg$Bz;W1!dpl?)^WL{^oJ|c|$v^LkT8K3_NTM;(D`EZ$u?u z_S=#CCp!I(=kdSWaxa=~%U`w1E%vrq{w%3g>lR+>Q25?m#CPuQ&)J?Sd2^;KHJ^AR z671FKljb@3Q}4Xv{ppGOlsjcMT0A>j-LN<9k6TzsiJ9-?f7y5M&$7s8YA$$Oqh`#p z{Do#0)66r6|D3RISI}Uei#ALb>(qBs?#-h%kuMs%vuCkgzR4R`|BH*^!>7mdA6(7; zT~TIyuqJKk`!++4{j1Mgep=YOYR+8S!~diI)@xLKd#-byaeMMk|D{VLlJlSF=g!Wv z-tHK8Yn$$^ZJd>hytW&hI=$^uvY4WmcFPMF)}?1ANULj}m6-AScGmr@iQ%f(&aAFE zB(3>{JM&feKbzm5Or|=QE-AKK#K*v9wM@QbpBlFs&&OY1{~l?6-!w(&LtxbJ<4gNX z?bl7ZT5;Le#?8Yj@51(?g54J<tNc}dX?%4{#?;<rTh=xeUGKTZW}vmF{PwN7)HA2H zZoaeh&J!WmxEsfV+A_Ev>wG+Ip>v<7Ki_bzX-M|%MRU#-6tXH+2{SM#FnGE+h7`6= zUvJOGu;<T@<T>+iulT7h|DWag{2LqprWFY<dH>CqCrW?+HLf!&mljP_)X#}dn|Yvf z@>cumk9O;pn=>?=Kli-i|6lP0y{viZl1sK+)cH`p!nw>rz<0^x^VXNnTsyn_+hd>G zW)J18=K31UzHxl>O_o$k_s3Im0@Sw5pCB|-I=af0-?ltox2jgewpvfzResI!19vR< z)J>Rh*EVP7;m)P^r@p?g>f2UWTjM|L#=@z+wj!6RkLI=}`drQo*u66-a+=0z%Tt&7 zLQ5^(gKz(CG`n@LI`R43!;PUIzWlEJ(ysi4?c1)0a~coEDqNZGFBP>wICfIZx~1y% z(q+et{0?PoX$vYd3JWz|W-dG@eh(YNpC^mwKX|G>pMgOyE<V9*HWR~^E_2&stiNil z11tXBtJe5rXZHiNI{n9wiiN*6?M@Rt`Dm5V@!dh3t5zMlv-N3>owMou#jD=<u2{Kx z!snUWB*mF7<#wHjQ96C+$(ryRp3>6o&vWn3$-jH_)2I1c-`$*_H(|?Kr`y*u=G+N+ zy+gzN<sn(NjlV)3NgsI2c$8PTb5XuJ0}n&-C#%C|`$e};7k;9mdwAaa@+Th-+a7-| zcB`uI;l}*v+)Mic0`fL{Z8crB%gJ;;bHVJG+^7H27Tmg3tLD7+4U3;98)Ms=4cEQy zy-t3z<oe%-47S?~&VT0laBP~=$Kr@96B7Fkjx8vhbRp96_}3>~;^JnhFCX{Y9bG>E z*3n<b?f-F}JAaqy?<cLCvMpz}?VsLvOK;QT&ND1V`m3J_O?NLlGxJ>fgT!X7;~6%G zPWaB5dhy2c)Vq7Lw{G8)uy(QkvAMg}6+SjI(u=F@`doZlKU`dVhTrnU$u0+<&1NoB zUh@9j{f7lDjkiT4`}+;-HubkB^D3s?;4rM&d-lWc_+9soy;)bGeEoiI#LFw&n{US^ z<ri>on9z0bz~m{aV!rB=|10k~WpA;j@R8!qy$0X^v-z_vy}0Y+o^`J_tSmL&d+^II zw#l7)+tMa;K6^JS^S0Q|-S7F>n0xyC85oW)R+h<>z3j4sVY1%aNntPir7)W6kMhE9 z=I&j~9oKj+Z)vBXw!CBhDz492Z7YpMckSGD@aa!gh6j&6$vnN{wtm$%#yy+Wc#71e zS$Xo-E#Ihfp7Bk9URBTb)Q_tLrf_{0x*i^uRaINueDkbGX>NJb>|MNUngTLR_fpO` z6zV^mbRw2z@AdbI7Is`}8j;gnU%uN`_SL*VkEwgx-(5_Xe^||(^L+D96OZR5x1E*? zCe-Iezuj8BrupZLYr0#E9vYq7B;&4roPnWIrRmPy14k~kaDPAgFW&gT>@K1Db5eIr z7t{n_dZYB{*nt;6W(gd;%5`fxQ*hv=xT&IPpC!}mn&SKdtuLQiHD|HT+xMlb19q<P zx~s*ZH^Dmc!^Mvb>c`LDeJm^^f1Be;MorJ0>he!1@wMDs9kB_MUL?kv&DdGETSt9H zOdKPFTDbU*o!cg^I9bE?_V#{LgJr&_YF<v*bkNIz%bbl<vgb_IUZ(5UztyI1);zU| zr<P;x35{=O7H2PX_B_`(bxQcRR)#k}?8|El>k1qF<E%<=t@id=emx^*w&dkwA7fHp ze63-r?JIm7ym;1wG~RO;UVjbvk~3@afh?)-<@fZz*)-e>T)p#iW!zcA*-?vc@5*wD z=L-L)FY%UBvgha;&UOBZj}vU}`R9kf<~UoZ-THpQrQ|ZtRU2M~Jo1>5y(+h<WUtoq z8CF{#KKUdCs_k}dIW_t9>+Cx*w|8b;-ZtUgEK8~R51#Do-L*R1G$n4q^PZm1O85W$ z>9F7cwFM4;GM?&tPyDUY5nZz>oZR9|MP7L=UUlclcD=(X+jYD{&XsP<($+AyOyddA zdtMy3U0_mU@?_?OJ&NmgJJbaT-HZ)Ad${-Mr$<6hYx>mAI`RvZ%bjlBFhl+J6`|61 zcN?@N40za`84hHuDAahPB!6|j(Xkl@3w2iuT|R00Y^m-1UbDoF6HjfLxZ|YM(u=!Z zFA3FswTo{bqw6$w|AvDJ9d|@N?w#fre`j;(8Qpi&)zy|39Aazd>wVeIwEyJ7Nkx`k znI?&IR$eg4Ym5!mNZ;0<_EhHbNz*jHcNX){U)bgPbIY25-JUVg+CJ%d8}p<Zym{Ey zojS5vyyD}XecwM<a^62@bXuW!`${Dj_it4hH|#u*?6}ilc|G}Zh@;i5RVq`RrMIk$ zk6N5CrA^=UK#7lQ0#8Qb{chvkfvh)r_4QX@U%P3lrq7)Nyw?@(1s*Fpu4DBt=he34 z9>=>oK37^D{c=lB=JZdNt9x7?Up_ab>B6^~E0<bWljdDrk@oG++;qz&8@Nx^)i-R* zoP24nw%q*R<@Hq=l9Oc8mL7Wc`sz<nyI)U^Gc=qIpTDSdwnB5AeB}E6g9n!F6xl1+ zHBVN(%C%8vd+zL$GMDu4EakbHZSmNyP_{w;{!?ui1BIM5$DiAT-rJF`a!>i;zJ(%D z)0u8u@zr>5J^#Gn&W+NY;o;&tEb4o&ug~Rr_VlWDOx%sikl5)bjBZc={J3&Q`1egR z?#I&)PFFr#YJY%7EvXrEq$2iOVd4FP4>$6+WiP&HrMxUGQ{$@B&l4WE+hWgd%RBtJ zMEY>g+Dih5uDVZWYOWLXnJIB2&ei8#%JlZ<x7K7voq291WHkGH;PlXr1-HL2$TN0t zvOKo<XSAAWRDQ*@%#^1#67$xsHM)_=Q2u=P^@V?>&!nlQ6-)O%_2_AkaJq3@LRPua ztNqs3+~~!tvP}H)qMoxJTWYRmEWJPMyWrZ=DgV{oCg<L6Id0Xt@7Cq6))kd^O)_Gp zELo?0W|<jNU9s`OoHXU`&o6l{OaK0nW_R?<FSRc>Yph(a-ZERCCc0&^%emK5TX%00 zNltKjbYf=a-uS5xE2{p=9AE0|opHrtMMqAH>eP*LVqtBsl`5T@JQ*MROcYtv<?>SE zDI4>ij0S0GNuFo(ggPc&Q4u;O@cM!@^NtV}MGKc>2WwlK&n0Zi=iQZ2HTiG((}kvc z7@J-#TY3Azt$R|*XTMC!KKdiOL($^Z^<A!l#}<fftzN%tWwYQds}0P23zw(8^;-Sl zOKoLk-~WH>|1&ZCx&HsJ{f>Q`1h4y~z4-cDqG!*ioSuEfzvOz`B&>{2I@UMr3x2@! ztN8)jyj0626CVCMQ@Q4eVoQhLuQ~EhEH;^yhrDR0&Jo%=_0q>0KCM+hWiIcWyfr@l z(bsJ4%=)jNR6z~Q^>KSy80PG^IzH9=_?6u5g{#$;lyc9!eSG<O?=4nw(RNAw1ttC) zi#Zy^UL482R#2FpUG=c+bi@mTotskk-Ems1w{R8L+VlT2qfEBWc5z_$T+DdLWqm3S zYt6r94*3>5sfiN(PqV|O?#}=HY@7DX;9KRlZuIgVuzG$yR8%d`E&IUklSXWEVtrN? zr?b{7r0NJh^PZIR%%WV~IriAY`D<%gOMWlNjh^!P)L+MD!}y}pD#C@6pUl<Xk|%V> zM0C|AzS&xHIyW5JSi5Cic+21N`)Xyfl?juKZ>$pQog5hcx$?N|eSN04Y3+@x-h5v6 zS#z1WUVdfVqgzXB?!?3=6=jM)4WFFt6Z`K)j@i*1E7!<huC<-ZJ{7%X%Uyf;@lNlf ziEJmjm3A-`vwf+$R{7^<w@|P5*~YHFIs50yuef>e?0uhI_D2}<N=_VK`%LuJsc*iE zvofA~i%9107FfS=gGO(i>M@NB^~2B3w0vLnN^0w5KJ(n}T}Bx-_qLiXOga%fU*LB2 z0$FtvpYVIDOK+$!88=Axw{+f<T$Ssr<#<=)%iZM1>o(_g9)8L$Sp0n1skQGP{M+V# z?vLDlj$kkKl`O_Fby=zx|Nq?oUs&IMYxnM5^OS`pmz;ht|Fv3zXO8y2iwy3Mjel3z z9NBz1nBl<7&(AGN``ZsE^R%<J6rVf4nI|&MmSK~UJKuBm4=kTA1xxN`6Y>|I?e|jr z>8i{NS@vdAXZ)VBbhc)m+P8ZJrG<_D@jEx|pI_H>eSS?-_`BzyPjjD9`)1mt%rbd~ zj)DH$8TU<e6OwLkJ`((B<rnrsbBsYR7x8b$n&)0z%e%^H%IdYN6|RQ*HoI+iWaC=< zNH1BMcm9Hq8w;KrG)xZo*2es$y7|GfoqD@(K8UedwRzoq3+~d*l|k7zR|z&LuQyD% z<sDKfwDH1)ci(SqS=ha2j_Drx+r_Kz@_A=ynSa<?q2$i;_~O;QxlX?r(${=8RGY|R ze$RBzx`3&vJVAwQFJEUA?`u3=J%7tG&lJnf1=?#bTnkLH{yyo*Z0QicxUAl<d#-G3 z%gT+7W|-l#zTm0sQT6K;wTY{xeDw7T-@Uryr?=j){C(*4rJ=K@eES-D*&#DLJ6cl1 zye)HSU}Y*ZOG@CvqKmbW96au3US_jv#ZI}#Tw2qTmr^kQSE8W=PtWQ_7tOdzL)l%Y z1m#*h-<cF>+9cL<`@NP4^JASQ4hI>|+&8~-o?*ek!^N}07JdxXSY<gYt?Sx%_oS+w zhTFIHZjAZA&W>g036u1V`?eWg_;)LS?aT{<YsDWD+|-1(*Ca>Sq|at6m0m5IvG%cL z&Y88h?)vjwE`7e{!Ld0%S@h#0pZ|I7$+>KCbltqC8eG{%*QCD~6m9zU@P&l_yuAzz zH6L#Bf0%i`hJnGN`kP%}f4c^k_R@3RHZubG419tvC&k-+yZ0jGJx5z@VCBjwp?TL% z-nl&c=hV+ampenfebuh-DEQvo{keEg%~wr^2VYP7e|)+6x<!5N|FX);##<{rSRNld zvp#S2gf!N+2e<elitU{z7Bg*eP|us}kv=`PcAeE$&(yby|JSa(XvG<EdE15Fa)Ijx zQAew1PZ7xbsLL(6#M8~t!Z^O*VBn5P@y!nz{yOsa+>bI@SM!E{*YZO4Y`u$rm$4-u zoIAIW?;vZ>?skK`1Am{Zq+WY-y0%Zr|4B#L#CNerZc4R_+Z~^4-0#ISZ3|~IPt(SN zd534r=;!V$*(tV1YD?!mo?EBB)W~xwPTYBt@%f*%LKm0v-PD=SwK?;W>D1{OOlJM{ zcHbu*k&dzSeDw9GX<FW*)DT(q+#W~m)=N*@{qxl<_HWwR`h5Ml!n(}V72)F3cNDIl zA0ArpId?XjSGI<En5mbesh$7!*4I)Jivzb`EVap>z2U$fxgLX^8&j3nuU{8nCAq}w zl-nkkM|pe)oga&t9lxBrXa$?^<s(H+t9T~`O@6b`C@p7`@tjKQWR7eu<{h<;uWcV~ zu-u*(%<b^_QqHr>mZvINpPB`Q+*T9%SsT5;TI@`*k+%NDzl&_{s`SiL^5N>xVK0BY zn}xaf>3*Y`&Q_9JGuE-~jhnKsk*z3++O2=k-QbRVDFwfjo6%31dB(#w3jB%XJ~ zn~A0cSD(Ef6YreOy6o?=og7nTHZ3}^AYc6T-+!(Jg8H|Gj^%b;DebPR>q<&^Zs$5} zvDKz|VqQnT2|KmfvDg3jSQA|${?zcn1v6id(;3oFkEy&r9I#MparEyixo7Uh#6Ns= zs_*ji>CboUD@p$Lgl+O{&a`z&$M@(Qo?~|U(}X6rqlcd@77+4L`K(-*p=`BL7jpzw zFMG!h<88N&Rg|m`3Gj=$5>k32_evD2dqFM_&kobQO?TgZ-?T6;&Z2kmUESQdIX=dM zcf7mrF;s>fd0}w-Kwj!6wz}^>4=NdEyYS~EXuZ4EeP;G)50kYGUoN?~2{>*S{QRT( z*qsSUJ!=nhy`D2aJ#vDd(Dw&Q%?-U93N#gCXKe5cc^O;&X~wC<yI+%4CK$6U^_cf` zLS6g4vMYZ3F6n&~6v{smJXLg=aQ2&TzrJSAnIHXlo`3wlLuVxSUG)`K5^rb}k-2)O zPkQ?G^#z5A%F65GYNhT>RiB)F=5&VLv&Fhm+S=2<1UfHWyy&2WM0}!Bp;r0>12r$1 z(>Hm{g{5m}`mPH+zt?ltuB8_`+nn0l5;-P@T)i=+Vb><F_Dxw$);j`kO}AoaX8x}C zuBWlNacA~n3FfD%Ds$L(Zx3N*Ie5X!{qN73rk`)vQf<qRUvT-n**5i}%JR_n2M<o^ z`s`=2N8`=oWhb3~GdD2sulwbccA~~)?}>@Kf8E(R<>U9DvV8}Cl^;KB{hqNT^=Y1; z(TlGE7RnaqiYwwztjbz&TP?7ganZ*06Q9a_J>zyk{isN<@m!N*H?-Ipq;dm7MStmC znkO#l_1r0M#?(E`4)er6-rKNu{l5<qB|#e5)5C(N8;2;iZYo`NM9*~9x&SNDu*hjM zc67;xn_r({QU2}ZS&_>td)Jȭ_=DdJcf+`iG%D|e~`!;XX#bET33o}6fTac4e% zVT`&NzwU)jP%2r!&7!~WirT~%W~(@b-!99$@Pl!^PT<tyGck56v$72Am6K)8?CdVq zJg{Z5z)7B&vr9xG`)tlHF5$Q6IC@G?<!<J8!*hpt4?lPMZ4;Qg>*?x4%lZ-(<NFN7 zWRfi<cJvgTJeMvtc?rjxLi;zTyyQ2|mvq*c9d>?kh~L)S6V~}rtpU{@?)q6*H8Lc= z{N84tqGnaQxz+hz_s!T>$rrcro|-u~=B`iPhnL>F9sZx}ukY!;{%vE{EI&>CgOX{+ z`rZ4FUEO-xbbef--PZl{&##`~ysoz?E9u<sOI9x~l}LMk$;h3Q*46i>=jJCXJNb=y zT3hV?U))moF!K&$UeDcpg|-l;sZ)ZorMH}wSz7GA?sVl0i`#Wu?nf3mXzL$NYe?u= zb!SKQQcHz9&kK$v#-vN6284ezUOrhfZF6S9x%^pXGW}+1d+OF7Uz~d|$4laY+1Dkp z7F>~y+M=q5+?4suaw~Q|5Sq39-&%z~YHK$<{{OZptReqd>g`{5qs4wdD>)?b`p)sc ze@)L<OYr5K+)`IB@aZ6Lk8J#%V{*o7Az_)U+|tdFN1YR#w{zY4>TWqZ@z*~|w|hTp zO`3}4$y8oEK5_DHem3Wnox9Vv{rD^26X2(NPkPoex2Li<(}Snf>8#KWDHW~}S+&Y7 z(rV|gls4(@8vA$b<0|@o@~mi@d7)suxu>N6;YkbJ+s-VF`u0i2_PKh1NUJyRN5{pv zrYwaS7ntVWka)?Pp*d-G-D~fMA*QFabTc0+CC;yDnlAsBCH$Pn(`QD{GG}e$JC<@s zLFbgBL{+V|!MFC>4jt}esjvImz8}ADZf$$xYF}1_i-DY&;MF}xp8T@9b0j3Xy<>8i z)stDpiq3I!r$|=WhWDGEk6B`VPvi2RFS%>qUt7mpbA5L1L=*Gt63x5T8J6yBT_0cD zb?WKXtEIe8Pw{Dqezw{v;9xLm^D4oE=kLs3y!q$0K)DL1!sxA!ynmVc_Fj709zI!e zS@G>@)5V|vcrv-4@y4D*Za253=rUJy@A{Tnn)dK(s^sbVt-E-o)n${t*Di?SJ^bfc zsE+;&KfYeW54VGQj5kbM{LqelQ>hon?RK3Nei3&#tglGMSiFfy-x10c8o5ZXHglbt z#wsJV1$Qcvd>9q38K%oTxZ@i?De9<G;g1cwQ<z+zO$oD^HGQjZb5_`*yt(BKtDI+= zXQzlAU$)#~m*?37imj)6#gy^{!c<rN)akL_6}piB@`~!nCogsv-q(;_w8d-tg_Aq( z$F5j!v`6nlQ|MEcXqB^$-%rh5G(Fj(Wa~NhzZ(jkGf1s{ERnP(P@W-!RpZ?=uY|;h z>n2ayGWn#bp8jzQ%dKoh=jYqA-}zc#W6dqyxJ^EJzs#E-Mf@ub6Jr*bFHE`h<Q3cG znS0GcHcOr=>bv!G!kO2VA6RDiE}OCIxo`fm89OXrmRNDmQ@OgwC3b3J<GJ3phjDLD zPPAU?a!q={_3gFup4Wc)#B?aWynoH#&a0JEq|-oCrjUgRg&6@Xb9YRidty~@r{(Om zPH&4Emra(AnHPQi$>;0q3qHP5Wq9yZ-TvUu*VlLKDcL=Ja(0N`rlqfDtY=;Op!_E5 z`M@V->ifgLOz@N}K6uTx?)l;x>1fZM*5_+Zm;F}KwH11Lu=MHOHTs3M|F|x%^w-wd z9ppaQg>{a3!x`0Ie%q!$W%_)RTjOc@8($&ENR!<~qGsvOcNe52-rTVF<+QqwLAN)} zNiHky{e1n~p8CI^l+VPN>|ME9;q<njFW#+{@c#5qwdyaU(RBW(tDgmCZoT-0*KJy! zr$W-rz3d%vs(IgiCwZ@!W%gv+^s79=@p|cIM{CmLxBGIZ@kq_@U(;}H?q)A_ql{Fi zmKH;{cS_HEq%{^Nt=rit=)81N@jaCywgQQHR$sCu-al@5(V^RLVfz8Kbu-vIF17gZ z2(K=^!ux8O<J+Q)#F7BN%{~r?=I!@kuzT!Q#Ca}q0#o!-C!e1mrt-6hpP18Kt><zg zJ$%*CEpryly7@UVZrX|%&TWfcwhGPZ`S`ahE!Q(ErJL!;@9swZwq>)}mi9};#V6U# zURe5eNvY0Mc7qh9Ws|4cYTwOW&2`B&r@zntg5Bx_CzA-~G+EKxX78nMw;PJpsDD~> z;DGA|_Pv2KRvQ?Y&vWhE?U%*fX0(YXBbMudjMTF`E9FiJJ<Vx)+53L8So6fGTd&Js z+t?zvsEB*^O1s_DXQbR&`Ajr#-P;}Yg+Hajr*G4VvYee%Ropvs^49RnQpNg(^TRb_ z*ZnLpJ9<Tv>-8=^zxS!J&gQu@+;3*-eEYog$%!RzZ`WOPz8|YzxjsGED0$ueX;BRp zCK-)>HWJ4q((gPx9eZVl<;@G~@_!}f|9P_i@MG@u4<)5_jVDW*Zh41Gi$3XG8`LSI z6KRpvX><0wVC0m(b+(Mvr(YlbRUlmS{b^tE%#!9EVP=U;SGVP!xH#)<-W#`$-;tWE zVozQPW;3Pt2X9sKP*6Xt_-Yf6P~zMxE8d@wo<6hqZOx-SH=gV6SDoNtyOr;GQRuW8 zK6wVEmid=wXNR0yvn=<vU))?zwRee^p2a-<bHwqgZiw{yUSGYrlZ*E8_xY*MPB?hN z>tlw%m1~8L7V~`#c5W2jaLsp((<!#+bH7O2TblW(|2C+z<kXnYKKBR55$}NGUs%Qb zOTs5;Mb>-_SY>cpHRYX{UFF0nZBN+euDCH%!+h#j@sDqL*j`>XVPXHSn<BAgazoKc z#RE+zr(M#Wb!+PXNx4(9jpcmAB%5z<VV$+jDSFzB-B(r=SvlL5X(~4_QQLK6z3YQR z*KbPgv^6_>Y`W$egYVp5UYgF@#G}fx^=>3fg00((+Z=(bwyH8FdcR2ZdsO%B5$meT z)@@&BZ`m8M&Di!@>-pDzUrrBA=-Bx$a$cgzrcB1gj}@zIqgUI!7hN%%>&|r9mcIK@ z$1PhOZOo^bEqu3a=IzhdmtPinZfjGYc-qY@R5YlNZ?Eos*N&SRyia@D)1S&*zkZG3 z%h#XUF?+WiT<|le>Eu__XXhTTSmk9>x6X3?;rGu!TQ2isyT3}T^s%k!on;&Rt&=Y@ zOgU{K_qCmsZQc3Lag3Tz=E~U~x!iURzWjuv3A|Nt&tzBMm@vbR&3wnowr^ae6*DJ# z<wf`Zf0h3{|NnD7LqoW}J*Ux?qPT^buM)Z@d9_UKyJ*bI`s~RypAP|DYwy2y^td>& zdmZ!biL>A6F{QDwopNOfz0D@M-jJ>5cu*-%;JzH6Ki^hL=P#c!edDXP7a40OpGaP` zGWwbIyNb{C(Qoq){hxE>u6OBdw%pstuCOT{nENG6LU_@dsM#A%uS#_KX{~7FF;lU) z$WzZXLwmB8Ran{b?|*CF&p&YH*Ym%ZBwCt<JiOdEB~KM?y>M~q_OKOmY_6;le<WC} zx5y{{b)QPeav_2L7jJn5{FOLT@%-&14vp?(uAW=&?vH==E7C~NXIsj&#?2qt*gOBP zi#q--ytmEB;q~H;YHn#$x79PR*>hdGy69N0q{qYaHH^A<f3AqsIeSd<0q?994nc2& z>{U;FJzg*4oVfLhN?v-av{=f`8=s7>&#TYN%2_dmYn5=?8p%2N#c5ll-5+TA{n*!e zN_VNqs#BippBIOeMp>EOWA5qv-qmaNeV*izyJ~$`nOqYWuYCMa;&HOJvpgSL#%wLm zMz5F;GyPQF>Gbe69X~F^b81CJp0;fAhdJv*yuKTBKHj#TCnQ{SnegfbJ8kwK*tz<Z z;p~`1vzd!Db4&JQNl85AwMphmyS!?F$;Hm1V9m#u<ld%pDIVUlaytKo@|8S)|1tb+ ztc?+2by0JcywyA9pQ;?|76)}Pg{cYqEKAnJe7^lO<Jg|(W>3EEv9mwEIy|hew76JU z<?X7>g#zMVXKkFY|Kx(hRsM?@$~Wy^^nz9Vdt5%l%x4QWo2s+s&poKRY46{8+6)`G z+Y5@HE9GVJxJk&J4V=1-_x3I(q0D>_RRNy3V4cl8m3iv2e;*1MoqnX$vN5G-f=<DP zKPq2xZ6b855-iyh#s2%o)@@#Npx{jrTWIsoE8FXDma=>gJtV<Ad1J}>1cO5tC+cpT zEWS57HD=rX8@EGWFaLW+g1hpz(R6`B^A5)tc<gs_Yg@H#z2<AK(6_RCqNBU+#czvI z7F(CBc>ZR_k+W)x4~geab(^jC!Q}OhPvz&@AK08<;5+50wAzBX-?mG93;5y1@si2- z;R3aymuapaG%qleWR&oVolAfHJE2~`l_z%^C*QGTznz8+o1+>o*<5*T_TWJxv&yNb zlEN2y9IxJczmR8B!dm&H@RtuiJ{Np$6JsCamGbV->#yzto19*YX=L85I3_UXzGb?= zI+NKtMjeYd<|iZ^QoE{m<8@w&&XP3+iW8ojvA%!uhG+iYH|-1!KXcl2gm)C)Q%((S z6=7Z+DlyYS;JA&RLhRe0do&DQ@fVg<F)>KU$|u`=>;50OB3$3XenVqQ<ev%|^8>4Q z9lNqLI4*wf<FDD)*XP8>FI?xfrFZ>@1<l3#E^)10|72m*mUnxnm?bQ{w*IRMS1otT zr)7JUoY&{CUw$y7rLp?X>1qL|7GJ$%ANnd)KZbyoS;7}RftT!yDY0D0Z@0YO7j(?r z_!x`i$}H0@_g$Yz?&uIwTFS%oIcTR!lZMKY$y>V@aabQYyf}G|+}vBo7Ylyc!e@1( zYWLK9-rv78ZnAy*v|ZyRU%dUqrNsvWzPw%c?}x$#zX!0j06#=x3a0pdOTEgY_h@N} zg_@@7gIo5eRf@!IC3)RneEoG$=crrf-X(^03zzP@wa$FT^sn7f8_r+;!hTz9-(S{W z&5VBM<}osCQaWCfcUAT39<IJOs{#$~>~mH#Do}r^*TwYrA;aQ>5)2n!e|4I&RC{6c zTE*{~&HEpBraDRHNKfUcdd_ppo5PnmHOO=G`jfc_1eY#m((zcc^J0La)Vd2*hxe)^ z-OFNLx@h9$hZ`q`2+d5jvCI%#&%%(<w9tOTrf*7{Mb+QDcU|<WlWWS~O@`IhFD)Ot z$FDXDaMa87>Ap5QX=X<E(HR_XPfD^&@J|Y8Xw3ZIr=_95lb)bv=dRpxZDDrru5A}L zY+7@{#I9*yB=b>ch29$*kI3%7{yMoNW$}6gw$RXph0nU8OdnQlXsgZ3d8oAHYKm*) z;)$~LpW^tNKF(OyXz^`**}r@B&+Jzey^>whw&LHy2QsdS$KOuAEL`*L^Z&zk;a)QH z=RUf+d_EIH-a37Qxfaf+cX75=GdTU4JVog58Ov7w_KJURSkm9$?D*3zU(@jY{(l~Z z1QRKx?=Sr`zm##`|GDtz|C`n2^4_;r|NH*?&Z|xOcWrIAUtizP|9s8^mJ<q*YK%_N zY6b#A35rZEOiVgAIqMslH%w4C?4(riKxU$ZkP1uVS0$Bb7IlkXvN?b5J)1l4-OGF1 zS5?guwz+=mZgo|B*8N@A-Dl0Ty;~iAHSX(`;^_NZ!*cjG@>Rw98Wwtn-;axbd~2o1 zy8Cg7VWAi7Bp0oG*cNWGjPvv5RjVGjs+8S(6_;&Y*V2;j)3WQE08@{3Y4fRtHNGXP ziaR{ilkQ42SVVyqd>&i7FS(iHwLtl^<c%sJ^K@3tw`FH|k}By{)4M)D;h6H3t+~6F zt$Vn*V6)GnGqFAA7xX_oFzx3n-uVyy?6eKre}DVryDIn6_j<?wE0&JXkV{-$TQ=qQ z?;ACGDn_Z|FPa|;Xay_gnVeO+mm&Q4{uBnGom;1$IPK%OQfFes=H5*&-kUjP+iL!} z6!}G1bI;Ut_nXP{L?tXdlj5eVaQYK1YV^dsR5(XtDMPt1gC=Xrw05Ixqtnsf{FCj% z_p*9#|9e*Y-=rgv`j0QRIeD(|*>%0)(Yl(60hw9xFK%V8DqWp(cTMM}FH#-rONEVg z-QIETht3jdW0{<TcD&t}vbQ^)xT~@*K(gqeTHZ{TXDYwEPVW5O{^M81hr&%ZZx;P1 zir%#?w>s>&QTf?5Y{eU&O356W`qXF{;}*xqziMO69hL6C*m1DQt^HEP3h5~yBJYT1 z#U|d`Q5<G$;=3m>Cojf|Wn1<9NS?KcGKX?MiKa?ArA(Q$B7L(!bGDT1JK=U-bw-Aa zmKnEg&QGxHtXXDs{n%qShgo}4vTH9KoY<p&@EOl3+vm*>1>V>H`^?a=d9(1JL;8Q- zSA6|=oT0(r?w^FXUstVhRrhP@-HFjxMW^gekDRu!gnPew`tyqapXVPxef}ovua`F^ z&&{`GPI&HkO7}@_<(03;A3Lkt9XAYj%57NnX=i^{Pwdvo7q5i=FfeR6bNqw!+#|DQ ztF=YGV(XpHe~?dp-}-4z4m&@vh8`)}zi2|@=g=KO+5hBZ@^7o{YC~Q-TgWhheeMm8 z%{%igs&rZ$B5z48SpNL^gS_^Qv-}Dkmv!sw#XWrWNl19QPoC9W7Rjv0X%c*I`~KgY zTs&vT^~nAG>i%!f6$VZdXv%*g9a+`>xi9MB>$&-N&#zV6xcz3u-09s%Q;bvBx9>S| zyL10#9$!bsgNN5`GW6BnygrCaNk!;ZL41K^b;*;RcaNr(dGC6&_hF1vs$^B|ZySl= zw!6Q-)Med0@P0GbNny#YU&VgBp5Ao)6zj?(ww&fK=FHXfy{-N!H<*j{sZiL{O1{Wl zELBbpR-P*oZN4QQyEcX2Q+sRYJP|SBeVNHkO^&-=rhj{UOx5i3dD*C1hba@)6y@gJ z)H$bBb%4#e`uu4}$wNL%LM+N8v!uL)U(Ie_Xvns8@)WbLJf%;C4bL9f^4Vx3SMTK2 z*Lf1=w6heIE-J~GrMAjjVDe1EGfgTp3i~#dH_zT)#&a>0bx9Xndm-oiKGA1Fn{~h5 zQz(2MmdE}2tK65hT)O9rO?-v5s~HyBC!J|gDeS#=P*`IrPpHVJMGaH5Ryi2le=oCs z?se7DsNerqoZy->Kl198$?EA3WF)Ll{!U-7U-0o**v_4Q-Wb<>IqA;uMn)sta81I4 zX9526ZI7S+Zr>ifyh$La_4mq8N-7th^4ogGEHeA_)<#(9%*xX{rd(K;Z@QsVYp+m1 zw(Rd^N1E4_epw)`5c1U^&+f_X%4J4RX393V9TnKyc>0cBwW3H%A)}f_<+;vi&>)k3 z<{jh5j+3lyY@J_jiaBK9v)t_8&nIs<@5Ssnc3XRP<L76;q;92Nkl|~yu->}y+4ASl zUszVko>!@|wa#eGnYlZ%^62$;8S&|RxVp16b9^itY)-#*I+Xt1S7m3Wio#<Zp9iy+ z@m)&HmEur*oMJAiu{Nrl`}-p8%CBO{|MMrO)K8W1@|tl+?*fZIdx7w+X|eXZj<Wi{ zs*-GWlQvoB!jrz}Z>Zdr6opLhp4MItMGGVK?>gN=t=iej-AY?>kMY(#Wz5YAkJ3te z{<XVQ_Mg-0GqVc2tA5|=ygS*oaz)n>Nr{@1TJugwzHRbYVd40Gx967)^-VVZk6rr1 z+h#qR`=F=&y|yu<o&?Y4?~CVMRg~MaYSx767DMJ|W*$3kC#0_9&ywPO#uIzBl*6*Y zO!4w2#^&?t^HN1ushF_LiM(n1ruJ6J<(~l&rG@X}k5{CLuHr~p#_*iuVM>$nm3Nkj zJ&rq)O+0^YF^Tt8GoG$!$5|Y;SknH8YY(H-37+XTXF@~56wVh*NY8Eme($%;I(M@x z?_Yi5lCMo!`u_4ul{2%AmR``#wJ$F+I&kuX$f?|arn?;9-3w3A>Uo~&*PVQCLX^uc z#&?eohR$245wos;jl;uFPkmZkj%xjoVm-#td*1L;hV(u5-5;+XDH47=sd-Z4PG0SU zqFmF1m%I>vA^Pp!H+I${_1f*TpFh(0U7ECe0`k6XK88;Vgsat6avn20_Y+!Pq_O?B z=2VCE8{?MhoDUFjy^*@Fs+#xhrhk0w&U5D6TC-U_efdG}v>s0D<#RTMsok8rLBIXX zrsuwIC+-nhIB!c+g3X&F-1AGX%vbST_2jj)d8num*VWLwemPgI&TbQakbA68_QgY= zp2FECf^q9~on_ycxF}5BT`V_wQs&yg&`|B>w~gU!?^xKxgeGw6IS0+#^k#8M(BZm3 zhh5i$o+R9<TDoPU=g~bS8!uW_c+SYYeXISd!4kQW$0--z*}jwgXKy!iy;-2uS;^)A zp_xVV{!Nx^+sAKh>HJJY#QOc_Z4Rp#Iu^=s&Cx8F&vWj@jrJE(y=C(+vYk80p()A0 zxAJlAr-$smvFeKK4r`NTs~=AOGn4IBMnQaXtd_@2l?T;7`cLZKTC1%kTJy>LoW+!o z2d648%<R~D!IGbgWi9WP;I}4LRWhw259XX*=@6EG+4^n&cHdj)YU~e3tf-qLZh2~v z_>vd9bS{<)y-cicsJp*!p3kufdX_6rh!}~_x~A>D!iL{${cFt@?<tx_GgGA8jo2-g z?GjjhP=Y%-Lrv7{`u1;Cl{5U$sR=h2UNN3NVe3k#XXVKPztj#iTzw~MoDkQ0!19xi zlhyl*oB9SXZcb>OeA)QR94oEKksJ?2R$6r_2!Xab@X8B|sIRv1u!@?y@>IhaeJ1uY zp$Df_B#$+#Y`y+|@ta7`xOu6H&nlxr4a-&(7B1p15%7vEop-Z~BSk0eaj0a=g9&=) ze7OWw-o0eEe5{yVq?@!X&EjT?M(*`l0s@+a|4u1P;ad8#MWise<#@WAbgzQ!GsAhe zrtR-8iamFGas&JAf07TX1<#huXj$d6=tR!_fN#GnY_~q0zfO;RhELAUxi{CeT`P@I zFuQg0y6(BZPBwpUFF8N6Kd^uD-35!DG5Fkx_-MF1a^B+m?-xFQ@?HHe<GGm3)tk&Y zDitK2yVw8!!`A-xd-7JMld3GAg=0jMe+Y`7E)_m~bK#>0cNUnPwDpMlt-0mwiTp#A zH64u!GLh4iwPVVj+O!wU?zg#VW5H8aqFcU2_gt%Nb)vYS*Rg*qMEwq1w(tvI<ehcw z=wkEIh#fa9(l2(g_bre6XT7O?i<5s*Xoa-K!NA?`m&L5>nV_$HbII1i^WSPK16vk` zbw%7WIbGzT>Ey?DFqvavP~?v3isqh0zWjo1KVn-aDYkt2@<hhm|Bb`}i}tGDVxd7n z({|QK&geUww&sdd)Unpx>uVI2ww&55kXBG;cI2|UncKss-Onv-H~(blisMv$R9sf^ zm#>iH0@K`xP7}_c^3EMeO|u^KK4mBt&RsdFLNnQ5wTagB5630s9?h#x6`XYDX{F?= zC(As~np{43d8@V=Z@XFA-a_NM!tw8zPo{A`?__dx<`6u+j8ih}>9TnOY%Nts=4>>W z`DlaT>zI~|uUGe<xp(7kkHOtFLP0kqO3al#%v~>~nA>Ug{<U=av-aVxr6CXIv_~EF zxWdCfX@kZyPq|hhb^kX{UcBsn{^L%ouC2+;b2*W+456mZu~#o<uPcoaXgJuybo;Y< z&UV3RSM0yf%Rg7q@iw$cxqR{q$Nficg4$0vs=l9(+jHQv_<Kf%Hub*?qGrzDBm3P- zwNKGYE5)|;lIr2p-8wleVZO|d_ipJ-ziq%a`N_csvyIPeo(tIJJ1l<q-D`({Mv=AI zmtVDC+G@YFuTx2nbnx6S(Az1>pDdihUw%tHathPT;8_})3yoOc9ZNh|xh40Kyy>k2 zJA7}gT6JKi_UU6YyuWU^`Q74OnS5q$o4TdIl2Z@5v%FJt-wA&(Y}?^@s3K$jO_S#9 zuNyd1Dq~u_PcD%DzQ)mM=cSc9wcg42%bDmrt9U88cfq!rUw<kk%-IhM$HebHT9PB| z;de}UO89h!hL0I7A2Ve7r>d}j?OJ1V{=#d1!vfAOfB#<=*4FF{HkIE*mZyK4^S4MK zBshj+H{<TB`u;M?BF#v9g4h`<FLYkz>|1hn?}eA^6rbC8Sbg5JA$4)W>E)IAR>Cs1 z$p>Pem8ptqi9ZjUrpl!rt<$ZP^7E+^+seh0vcB)0I(yfJ>pk4j&;PXug$A*`=PWjC zGwPiA$@*uejb;yHeoR{GF+tm|L!K(JZm)b#udxk~aMoVq{M_oueonn6r5078^1~4~ zQcVpMr8hLPi8M{QQS~JMcD?LzPjA=a1OpXOCW~f)YqPJs7Plz8^zr=O8ve^0zs{0A zd|>XEI}&WU5-p$S`KTLT={<i-`surGHe!>jg6=fW^K#pJJkYD}&R1X8dC4!l<mb+} zKU)2M?~%*T^%)udU;qEJ{_)Yz;tUOS^%94C-h8}VEWcfUVtdXhuDxs8_iaA@;0dQ% zaC~J$`=smyo?h;3p&n;0!IY&+C->aD63CVB!~Fi)RIi0EqCH=K_`>t|Awz1K?TeW~ zA1*4dT=Vb7={0Mc&z9ugj+rLD@xOqK(Zn6zicZ^DZ_7t+xu$3~w^;C&J%h*0tyffE z3#N!1zx74;<POap4WDYALs@^P&TN`w)bc9wsV9#xccsh~o?Rc89$--2b0^AyQ!?%6 z9C5?j)f3h4{YW-@^2y*>Qbyp!hhMH7Ycnqu-E@1uY;QsFUom5Iww`6ibN1BnGVG9w zUo7Q&_n^R@k1{-)J|wcTvi+@lai9IKV%xfqtbB_j2^q;3s{hJuy3@{csitEG=x`kE z%S&zUFnID9doP*4*T7(<PXER^P0huOPg5pT-g932Rz+{JWXtP}(>naJ8S9KB${TFX z-(^bu>zFCeJ;kK1cy`N-Sk>IO#SDu!Eo6^to33|3^7-0LK?w^TJU478QN8`ALFGr9 zsr~oV|5MNHJftl2^p(yH(_pS+GX(Y}K7If3Z?{+8&t7fb=wl~V-&z`U@ZX-Tj$7x+ zmS2?%Z*$GuG<U*II|cp1vOI5tYo)En+_ks`m$db88x-u>TgS~%@%x*unz44~nzYgx z7TGg?{Pj(8JeCmAQ~YF(a<S0YMJEg-Zg}1<C}{d_m;PAj{_j7}KmI%Y{o|k3*eUf7 zKgS=qEPnoQdP<PFRn#vFVaugIMVCacNOe+tFK%JEaq?5~_qO~Ww}ht(ioMvC=Tyh7 z*b=R?i`8!vqxITV3f<;CtyXttikyg@^Z(~%aSO{zDKplPdF`z!vp7CX(Ag98f3u^f z|2c^%w?(wNlvKi5lLMSuj)Vmr*%a_H)YP|G%`@$#xJ!@W?RnOdLZu}P)^D_5BE6L< zu~E-u#`iC!YfSZb$eRDPId*K9<?)t@ifmE=dCoEkzOqgymuTPD*y;Z+>oW&KLy%#N zqHMIBQszw4{f0B1Te3ATtZsLkcKht^gFo07Up%4K&1@jsU-<ONtHmEVLUWzXa_j`B z-)}0^cpfpywXrU+t?K#TMGkSdTq^^gD8AeKX8H*udpT}#uCEi`Gi~JCQtAvJR1*M~ z8haoAtqeMLW|l*ByQS`5r4|nBkCpS-B@G_yq)eU~<gnwCveoIPk{vo;(btlKSKcku z_Icl8IIZHs<_8@sTh6ka4&vYS{mn-W&Z}x^YttA?KFO(W-jO_KifH8Z?nmq2UXa-_ zZ|foMpx@~;r+&S5E<0OF;UmxT&NY{G9$9@AlaRAv3tBayphx|rg!%Iedv+SmQ#mWP zZi>_S^tZP5+%s=2)i5Y|+EvxeSk(+YasKFQ^Bq;c*%%6ni<^(NUNZ5OUF8(fzjOP} zt=j&p<md3L-BV~$)AV`ywdVg%PFmJItpCl*aA5QIxCh|=_)Zt6^Yb4+IWqN8pw^e@ zwYN(%)Z%Apbbfmq<I%b4&BHgHTYZDGQ_em9{^aE42OEtHE}WaKx3lGp=#+3fj=p1m z^Q>mJsnpMr)R_OoM>9pw@!HFqn)7UH`!4VMx?pOh;OP+6c@LZ4#=J|E{a@*!rdbiN zeCkrSr@#1_nGd>h>=c;eem*ZKYeFI4y&XO8Vp=$ti7-_Lviz(uPi2-rrl4cNKlA#* zhFyLk!8+g4-Lhw>vF-S=Z*Dg4;k~*QiyjCDC^er+YWpa#Na3<k_M42`zqB^Eux2cA zc_$QX)OKO|mnv4ZzjkTCx8I*xHd!HjzTfhUn4(8*GXt_G7YZISG@hz_TBOSMcKd1@ z?xl89gHF`^+!`nNOKtWHqqZEGIa<9pq(O&*a(NqN-#R&K_3zV_Q=~WTP<ZUrv^k>4 z>!q5{w6{#^daqoS9&)K3K6Oa%!sO5Eo8uea#>i}Y^5o7M#o`nX@fTW}f=8WKiv9l| zuzTLo-$xRij@>Z%b|L+;pLoaY=v@BEn^ntLuWj6|zIFc;p&mn%L%J8X_8m7nu&Bz} z#^*}TADwdHB+cXqruzm*793^N6?>dw78ek~!O?ifx5KZ>`GHMa(U+LaV|D*on*TA# z*ZnGHIIvv4t|xr{tsjR^pY}epEbQBg)m*~cBev(>{u(dPkfLF<TSK0Qy`n5jy*&MW zE#Gs!=J%J=(<`2-yiHF(Zy+IJA$j9Ium3Lzo;S~z1|>Et&OPvU;q{j+_n%pGt4eP+ za<4CF+kEO)@G7RA-IsIHf~7-Vf2dtIMRJo8zi><+o3Z$IyIDRB0rRCNocU@wlc9X$ z&eZh>ZoZUkTfXl}puJAgju#(pzL=H!&0go*Z96|ngN62=gnr*>KXO*T+E2J{-DIIT z|9%P|N>lm%_`|b}FS^|s%)bA2ZavCqmX>v%QPF9kgMy~wikWSNH*f8{_~6}hrw)zp z(`|b8M&=!!Rr6I;(PhW{Oy6J4x$mPJ)cx4vohCH57M#*KKQYxZYrDYuw9pBM!msjN zzSaK0G-Jzr=1&1v-F8;`1>P`p-Svw7;nw%xr*Qq8)-qxHsSF_&2jmkzEI3Xy`@NZJ z64@ibbjGt`#{@&o;77Js<}|C{w0Qe|&K;4r$v@XTo>R#2ROMsjy=jK)%CBnI+oasR zR}%k!-{-ud3bum%>FSS6i`5qN=KXwo==*%*7O{VEOXjC5njEZ4DfYZ;wEL{$PbnYu zcT?8>elwXR`QJ_t+laNVIJx&^UTi)V6(@AA(jsiR_1E_nV#ztmu8!&|_wQFv;$rx4 z^2a8gy_dZ1e2(Ma>&UMkGih7+`S^#6SNk(CEbf**<94mtZf0+QwfgiVnM+q?(_)-b zW%eGbzR+$_ytT~V|9nANTI!wU>gp2nBG&s{(+)^;U11k!!QZ#nMNpLCbD3RIe)j{L ziZ#`H8PA<tCU9!o*@q{2(v!1|@0x6rV$6|$a(GsV-o%qkhteHPctUeGYx^$`4w*W2 zc~)}L{A7uq>TR2R7S0!!m@{`*_6z0nYyY-R*cf$a;mwNf>65<+$GtovVB2?VM%doZ zC3pPh7g)>vPCoX}$AZ;=jl#ytw{KhL^PhZuM(yXPGPdH!$_xhU4(yb6?%h}{E$_69 zSEB!v?6Eb|!#x-m|4ElvGW)g0)SEgV6m=X`PHlG&`fa25cc0nC4YRe2#C{1~y>aH} zRPLE8H%qR%^^MmzwAE#5ui4s-x*GRe8YUQiToGb)#(8Pb$E^Z}E{%JhA7KLZ4Cj^< zO_=8KDai7!iQ>7K-xmJz($i18PFPgZSIGF(D)wON1O?BPQNq1n^(var=Tsir@bTf^ zSAB*C&y2U8*WJ?7Ia#4C;M55PzmCgm4u9@G+Z&l&yyWyL=G_NwYv(TiD5mo>RxGvd z{WGTNHM6s&t7mGeOK0{tw#+|P=fv50Mt8&KMF$r67<KKhXw;9XlVd2TEN-5uefC<& z<qK@m1ylT1aV%Xh#bM@c)~cJ@h6So+r~WBCx&Gp7)xsyUrU)6`wDE8j6w6JKeVwBB z?X6A9<ab}WGHThLik&#S=FpZ;Gbb_bVBN(VStPw~l47vo`VK>$t=yI?(v7d&+GlpF z<!p4XhPX)3!V^X!c8iMwTXKGXn`s@8_>gbYwC$fKthmOsxAYb3-_F>OV=@APL1*XY z9%eM#cTV-*)Slh#cmFTHuP*D{>*<x0C3`&m-0k<54P^{?Ckw^2JYNzU_u1n2gmp8v zvlb^ZI+<MCmZuoY&3SXjj?X?vD_2}BH`6?q%jvQIq}F8KNk3gJ{SUFoSE<z|+47aB zD8c8^JC3tfUg+FA`Q5W^Sz*8KR-Ze3Zs|m+J%S(q-%{b+EEKu*!2?BO{rtC2@^#kV zdvQ2t_3oelR_E4ry{L^j`FU<t<@+7$V>g_O`|NmPZFtJW>(wvcZ#)|N)ASuf*~D!t zbJy=|DfG0Sw(`r}(|22)mL;*>TQx87&l^pK1gn(>tLL!q&1*WobY*&g-cO0?VOle- zE0e=S4o*&5`dV*x{<KyWN1nI){5odH{yumrAXq<l+Tw7fiVfL!7Zi3rtXNc&=$YiH zsj{PEo}&cw+oj7(h2v+>$h;|cMD^+<uAmNur{_M~sB{X&uB_R1pos6w+4-9V!X}@( z(Oak<x71ecs@krs)7o;6BZQ7sKFc++H|Hu|WRj^d;Yj?_Q>Gg?rxbMe<?4SdSTldy z^D?F*GoDP?yuxpS(}KL5`xmbGhCIm-4y`;Ha$G&=i>JX-5yi~-sGkb8auI(%Y};p6 zxa0!UTnh;?Ucb*9cQ~m`T2~@;&S%Ea4JQAl87dt4_AdP1)^}er=f{5c`u57>P{sF! z=654JlP+y9`}fwL^ZVY6=;wc;?@f;?IJfiPk^LTG)pHCbme-1VDQXvesV-{_ziJ#} z9G<s)mBHsr*&hU?*Y$F8*QCYlW8MBEEXXm<uDgy+vG&a37XKvKXIC@VH3&HWHc-#u zF*J+x<P2jvcB7Z4x$J)3^|X*F-t9kFCEk9Xs<P?Zl20wMYj${AOn#trSETdOW#@Ct z_Jq8@{IGbMSN;9F>3VWkcWryR%ia1K@2zY94<`I^n)K27z2|G;=z9;m56g<}OV?w0 z7vOQ*S$lpH_u0p{zF(CI+ReJl>yvDz!dWk2u^$f-n$#!#l+ZfyHZRBG`Jb->M{L@6 z$NC^ziv1j)76`MS++8NoYseuv-={j=tYYqsN7rNHuAhtey61O6WZuNQCllY@FFm{I zh^j&PhxX*39^sMGx4%6ZrLn!_e-XnozViyt*$kN6qVzknM6%Qa^=Gs77Md26`q-uR zoMn<ZcRJ@-A%lR?$vNjM&s?yNXSNb#{Agl$hq-iB#Q8OUi-Nog<n}h6*)Xl-%ew1x z3YUoT=Y%p(54bWTW1GebC+(Eu)n_cYk6VA4b>X*k`5*i5bL)R!zwY|KI4AClSobrN z>fQ5H&(Gho(0Nn+YFpK%>=MZao=)BmU!R>FVY~FN>7<|P$-1KFVjs@_`2XS6WA|Gt zW`Gh&#k;6A?R|9@9ljpel%%&})z?1$oVP(8<q2l@SS@_`N*`|GTDvL0GsNdtH8b<F zyYJ-tpZ1p+S#Fl^-*onx${9Hg8GWBClX@;~&zbpe`o_Qhd&&>gJmtH*X{~B))1`p0 zZ72E|S{x@ZZkIo(B6mynN$lk3&dO`MK3cqdu-kr(Ugi2VSH<`<3hTNr_$ROP@_jS= z$Q)yh32u?Q>gp!ePUGZO-~cT#p4vJ2@{jN5)+Zj9y|Yi<z5iz8zWm$Fr>nL9ES>b0 zUwoRK%;(wlY#*lfwmdXARGAxnvhPNa@Y+_x58sdG*fBj5KVDvW?OtY=s!hjRk;eD? z+IlOlr)_wdHYMh1)c5FH8?yg6tz7J^n>?v~=kZ<jeW^j0s^&$nelPlrv44rO`Zlhk z3y{wCVRVoyNpiiRd?(TF+}#Vlo2S`_T<da8`Tp~9M{?4_=@ShN-hZ9*x#!rA^G}oY zpC5VuzUp<*`|6Az>4sHv!Ya-ka=+0OowP`2U#+oK;>@%S=jTmtl&!tLU)=o((_~wg z>bz5rKlA9nisnfA4I1{EXweuIW?1$|=H;U|=OWHLemEhi@a!Si1BahZc(dR3-HW49 zg<RWJw|y%$-&R>8eD8OJv(v5z%C{q?Z1=DHfAG7ex%nBH-23$rccxj`_k3V%Qs9%E zbaCR+<*>B?JJ5XAw4;69-k9CNax#@Vha4@%`$Jqea`r!ZtygE3H?@ps>(vbtbGN;` zY3sJ;%-y|w^|EHqIKHT^om9%wVCsIvI`7NH={eEtLB9o#_$_3$+Q`_S)9|XJbj>q$ z=G8f37w+zyecWullGx>_mc_Q>`BVQzg_x<w2JT{R@!x8+U;X{!%6Gbbx$pM>`kJ>* zceme6)6W%27pA3^7R&r|JF`x~THr_?%0Xc=3{M=@!=7FA+}$@t`MltE(`%(VYZoUe z^tJ!oy=#Nr_eH<$-z(UQ?KRtIbZpHt*Zb|pvx|=8PHzv*uQLxwm28TTi&`Ljq*f;2 z$H%=v?vwY~ymK@-va~GcckkOIpK4JtwG4jkXT`FSZ=IFzJv*Muo-{9%z4h$x)}`hg zhmXBE{IdJoaqD-+x@W@MZmBrx@O$1toT2rIL4n`O@lNwgqx5|C-S0k6+NFH{>Oa0W z=2lyzp1i#ipZ3q3zw2De-)A0s)!VOp=xAOv)x|(o-l=`hTrv51C%>deTbx%c;7D|R z`+Lrxn(xy$#fSC2R^Uid&S>-#a6fl=zD9{?@`n$)TTQR+Wz8${o~ABm^fKtq^M5zW z9$4B2?|yE0`%XZqN7D^Wl+9zz4K^=WHu6ZP=`8kHU!CS%bouz9tVB6Glf>%l&I0YH z=3dl4l9r>je%ZhJVl$CV7iC^dSWsQa13D7wUF*ROmYm5(0ZY4%O|b~{wsY8;f9*iJ z`*yRK+y6q!^J;J0Vd++#$?x-NR+31k``JZxZNKJ!ElAyY<L!>>^NUIsGajhv;4S{h zHuvVg!h7d;7ct#Q{coVQe1DDmiQ|h5=iK1i5?&+&wn<g?#^0ceysDo5=@WQjwpSfE zZa$;DeS3XRdfe%MDZjt&Og+bX@}u0H6ZfxP`Ph(UDioa(Xz%>@eASZ2X<wR*kL7*+ z`~Fwu_rI4O@0-7DuI5*{-<!Y9e%DZSEcSDU^m{=^L!`5?3qh013fB?>ZA6bozGd5F zzfpS55wY1-m3*h&Q%r2tk9>6c`+r~L!G9(Ge0^C_?|%z*s4if&5_~X+Mf7*eoBi=8 z{{3!!v)}&2HxLEk`3r1cxV#B*CJ7%y)Pnaj-`701PUv|!`~IJ_A2&;^j)E^fytz63 z#rNMo-roP0`{zx%eRl0T&?QSBqxXM}e)0Wx#kV(-|GxPD7ukF>=lXPicx6?>;(6!$ ziT=7T%75P8|ECMOZ*k|>&-rzqXa8ug|H1y}0lWQy%gg;guFbFI-v4v<{!V_o9}G?$ zCce#}3sx%r{jvP_HU7Wo{Mv7lb^pKD%O8^f-GX=a*7e0(?|so0)Sl$ETdwKv<&4dT zyLRP1KK!VqBI299nOxLwd#RY;&)5B({I;Bb>)*dl-|p+D{Qv8e$lA_-ccE=zZEbIU z&12~w_rC9ISNEUSGCw{p?$P^y@7{m7`@T**{_m^sk4yDyIq(1f_x<Bz`Tr9C|D6BN z!|>xFe|^XQU+e!L`o8~vE$9NNL*Tn2zwf?(6m<PdOl<7i*V=;cCE?Nz++S=zg07ML z@$35jzV&rqSFfF4|KT9}id9_kzi(YXbpBrb|Js_5-SJ02*SRn<{QG<Vzij-UN8%s< z{eIv6{m-%dKWxh`Yuf#I(0sRsv1teMv_F<95}WHe9t9Th@N0tBo!bO?Jle-z_n}$- z0q72y4~ymhzPR?@?$-<Dl*ntJRxuwqJzf9fMR)nu?|W)~Zu<IL-G83K=}jNz?VjPc ze1_lhhyS1Cg3c-Hc-+LeR@O~Re_M3aH}i(bfU=$&d{_Q;9%rb$P=3b0{#WpyoAdul zLhjD$T56x(!{}|LQr7-E|DWyWn&;N{559bv`Qvk|eof-mZjgbHM)Ni{-3#Ss*yU>) z{Ox|SfUe?FT-q{4=>I4E|4pEKZ`!5^>BsLol4ExG=uy|##q(=Ed48C+|NFh_?KV%v z#l=^wdNnQG_UZZmf6f<HR!aW+^JTex?5|yt$*ccXzWC+2eB!;o-}l$bP0D`HwVK=S zEx%3P&YBM?2KOIr&+NGUEj{CY_i?w=e9`ZUr@#Fz&wl&&zqS8T4q6!Be`qu9_l8$C zDSL~TJc}*3^W{d*oBLb;UjBb4`@i+N*9$js{}yg%2Dv<Z-zU*OKaSfUtN-`BzRiCB zC++=BpoH^qYY^9eP;$5X{IFgAk-Gg)&bqhP>v$PHtls}?^^cSObxr*Ce+>3Khu+jU zegB`Qt<TSWmQhz%Uu%DQ!?oslJW>4I_KN$`H7D`iik)LxvTOVK;_ruAUkK&@uKa!b zTW$Ma`Iz1Lll`U~+Wa7QOY74|O23z@SMrpx7nDmEn<uW^mwCB3_o4CeBXj?LSbKl{ z{eQiMp=xG(roa6y5cWq}rm+4;?~bYV+uf{lZq_pg->rT3c#Hjpdo~4g&sW?|Zccwu zcH92mH~C|iWpB>6kkMePJ<ika3`&YQf7jf9|M=zQ<qx0Ne_*d~0Nwvr@#~A`x%1~g zzRj<f-v7mWzlhMO+PB&9hxPwG(tq^5?)~=<;`JZJEB^j6-S_ux{$u|CANZ%omFT;= z^OxW9l(=m7=Hn4Q*Zh~S<Wo1UyB?Jum)_jcxU*QUyOn>U@3fgc8<n%}dmotgWup4M z<u`s@+kALe?)`b67;nl&?ECEb?()9d^WXpeUMm~B;ZurvWWt(ne|KMBv|+<U>GOp$ z-&?l+i~Oyj{q^YGTmRpc72ABfUm~@ms{GE^XL&YxRei}D>&0{BD<o<^BsYt_U_TN6 z_iDVOSLgkobMGIlusH^f-@o_&+qMWWFetM8`zZfku>OmCeM|iRukr4Y(|+8&|2GzN zQ|!}u>*v6W$q4bZjOeEqi%LsdFJHd=p?+=YZ{E{YXRaM#aDV*tR*2S?7lw~*+-Ba{ zwBP>wuH7q+{V$d=yT|_hc0Kb`mqQ=RH?OV^dJ|sv{rkPPzh~Rxemkeiu6(!YTl|gh zB}*1%ng37TqyM^6=>Ao)_u0R1Pg^cmH-F2{@7Id2Z+7^$zd!HI{uh!J)Blz$p0&&Q zU2goIVcKSUhM2gxvegGv&Dv~U9GUxOQFDq#-^yFZw%z#Ry-v2{>cyY(hIeh*j$gX< z{AS9c4fEgsHV}O${pNx!gHGnZXDjBl`l_E=UGLu|U0RaS7P{!niGO{zGaKLZpSx}M z;li=Q#~D>S5qIx(FoO;Sm@BjGPkMOC)Q`pYw=I!<SzEluuhH6g`FoM(zxMXOpL@*q zm!6+lcmMiECh4vJO^*j8pZRwDzH-HqZ&&?J{F`=e(v!6nYv!J@<-haq`1I^~H`r7P z)x{oJpUU;@<Es}w5P!ew{{GeP(|Z(eUY~d4n{mO5HJ|@({}gk6dVNKTMB28v=YP(9 z&Rh7`e%c&~>{@TO1391V<o#3o{p5d|ZhDd5s=R8=rMZ8@e{8$*kMYQ}Tb+OT>*o3D zG})lnraPvun;YK#-tv8$Uh$UPXD6#<zTH!sy-GsPd-i>?%%kn)_t-x>*luC-w*JN! zdaz*1`2%T6t4z;}@2!blt=9KiY|Vui(=9HodVjC$ueI&1Z7&b~)BbjB+25JRZ~xo< zx}xuyw(#}^tX75UJsVS;uHJR{xuU9@`Q)N~>*t*8R(rxzVN>+<@l3%xC#{54{?ELt zKSln@C7A<R(#5wo{6D6AVB@_RvE{)!JL`{?RQ*$a-&J-v?5)4~gSa_=o7b-RE8H)E zayk&GvH!?#+t%B^3u<G^KUT!P$o#$Y>a=HFm+YRf<Q%_u>$=db+}$_zCq&!(@t=&{ z_x7;yk;kvTn<uPRlq%tWmwNA?Y!|z{>S{B~tp6;6pleiw`y%g^N<>~U@2r3K!RVds zbnBUnJS9bS!kagLvUu(3tjQPq>zz8^=~Mgqcb;|s^Veq1uLw4V?6)#DEY|yHhvc0; zFlqgnIfj>JZ(b`qDRg`GnTz?ea;E%Fj^F57Ua+S2;=a`xB|@#WOSZ9F&G>yL_t^Vp z_uTqND=^#5(~>67eUp6e;FmYm>h+=TuiEA0^>98nJ?4-t8^^q{&)8V!#>EXktnTL8 zpNM@dns?AS<Fn>5FC_+<V|zKX*qU8RKW@mW>sIhH++HW=yTR7?-KMRT@=>?h_cR^+ z8t+}7Q7m2+BEEKcLZw0ZqSrx2r{`N}?U!5qw><Wwg6-DM&uz!E|EpTZJv!*fU6Q04 zHuInDmCjq|#5Hn$#@zaCuyg<UsMi}b@@KL62Di^QX6T7L*e4*<!_C0(+~&q)W4>ek z2?ABeQ$8}9{fs`do-sc%X}Y55fp0zYrtIkoD*FEGK*sm2(fb(txBmTo_IR`+%bHxi z;@3yBel#!Tzh%`unZ3mL&*B}E7nYy<_j=uV`L4f*+ZH75-n`%Q_uZ@f9|Lmux9k>< zT5PYE(df5^CAvucw_@pp&ofdU9XS;LIiIV3?b#|*hw|+2SAy@E@V>gq!(gyl>&&v? z-^F(s5+)qdyRbAQAd-ziz{$abl_BBKnxAvaPwzHg`E8SP(*L_RU*x{~H>)St^5pq4 z&#Us~f6TNv5+<=-*k<W%%`*AQ=UNBj)weAfp4I=pF!O)k#@v!mZ{Od@*?9QfrdKQV z^cI!=s*rtG-@Sz~Q*PoH%U5dqPkg(g`1bOdoA!1`R@c`&&gQIFtlir6H#xj?&bR)< zw?E$aA9lOk{{EjNxpNjycla^8va0WHAHLo8+@`nw?v!^nkq75aldCP9^I{Xr*C!8C z&hFzDwz0n0Y_~d1qBoC$VexC}o@3uiL$5z*b4&}n7Wd`Xi|Mrt4q;C;cHC8eVsr9E zor|3N<(0p6Ec1Tp%q-u!;>(|6xw{{f{_V-W&9?r~#H#bYKdv8mVbb5^w@S!h2S@L; zzd1P@)_XAMTx!^2qvd{OoA}1HX7{a*TP1r+buzs12`w^MyN~&4*p}ZlV*f0Dz1~?Z z+`cwsp3MFC@wvCYg-gnxIkdd6JLm2{vAqvOdKlMLcun}eH12-Jwy$qCmB@98YR@Zi zOaIn?YU;Ox({uk{e3kqA{j$IB&;D~+4(?r-+kBAKJJ)OIc}D)$`rGew_QzZ(Tq>*K zEj&55W-j--)VIvb^ruZJxm#;^`{?=ey^gWBBR;=O=`o+4&%hu)fA68$-QElbQf!*8 zshzmx@8|#FUiWi`hKDzUH4=9#>b0yrP{wj+5`S4u%>07&U+dRC{{8Is-uC64Ym%(f zdm2A$%(!(->7#`BbB3h*i*lp+b_&m$5zNT*z^~w#>zSz&p80NA|8s8HhFU+HyUr0y z@|(Au-F{g0p025%`J!8~MW5!Voj(+~$zY8_?dfOT!iyiXP4yG+wyKmrbLZ0G{V@jr zcKvJr{jc+_!=9U8+a3xz7m0uKpS*h8GslxZ?CRyjyk?y1UjJC)fF=9)^9OG2jGLCx za`JZH#eZd!uiaywt9R{s&VSwC?^pfJKm6~=In2@{>{0BwcD-+}F7-Tk`T9z7w(9%x z-<P5%-Lp<v8pFYHj`6wgoh!2sJ=?S=PwQj+>#DN36ZAh8y<FxPd-F)a;@5(D@$n1{ zcE4_(|M*c|o|$3Yx_b#WGb460SNwal_ruKp&Y~KpnHUtNHa%?LpFZQB^5w=QdUD#g zwq{DbSmt=ygyD^GK>Kyy4@Eb<KR)lb{$gfr$A5nH14GIA6O<}0_g|ZRL-5)&y_1Qt z$!2qtjAk-0th%W)QH1G`rftg;fkU@~ycqRzUbH<Big_`uTqX3K%k2EW*|M_bp-mf- z8@{V8lJ#a3+tX-v(YSy8`!5?df5=f-DN{J1#clGx7k3r?XZKk<u3T(7>zFP7uFiWg z=5p;9)N&Uov0VJuBl#mjU>eVf9zzdJ#+O%uYPzomn7!?L{$~G_Is2S{XJ0>W{%)(; z#b<0*d-|@YG91~L`md^Xzw(lnl3LODVAma2)OT(8Uvqo^^Cz*}>u2A%_SJFaqQsNm z=Br)&Qf4>no4*VX=(PSM@xteyB@gbsvSnrV3x(arZ~crX+DR$+ypZVr_~1d=Cmx2# zdCI|Di&oEwnRaYvZeDwGN9fkFZPz1TOI_|fd+p!1UqbWivc#X-|NVLX<LCK*`57Ku zT`vFdS(=C%SH9jl0~tO>2K{^0^2@hM^YrG;eSBfx-=-Ij&h_Q@aOT#Ttu~nLYdHJY z(WKUur@P`qjbGgIUO)M)mZD<pY(X!_0>+s;%jQ4TsJ3NrIM-DsQ_4O&<iN*MFKg}x zT{U%EEWKyvhD52w7frWBui-d2G1Zbm;k1#)cdPTo8mZ3aA<GW1`inj4Tw)TrCExnW zgBuxNf0y<~hB7j|+U4~4Q2HC`zxLbC_by~r+LNa9Z;tBI^A_R)c||%G^xjt#-1#c8 zx0>PJpD8EVJVT>@hhOEHx?6nL#@S8#`nO59ywp;OtIn#|tI723+@mq!u3*}QzqL0m z$Z6N_vHooywRqKE2?OWYvxn5yUSzY<kzq72XPaU9oBMlALo>IWnOOIx9!3A`Z;q!q z?^tj9Upsw!>$iAIcBjzL#KS35zr8<x<jOzy%l|r?AAYzS3h$<}eB@Bzx7sN4{?^mi zCmM5XJIb~fnaxeK+I;Wuu34=9)2>O~%9wHNZG~D~_*|7sn~W0Pr*7Z6oiV{cCc(mn z*ZPFhhjKOfUGiq%tDKcLMC<dl?G~E$GAj95+3fY}-77wy^1NgJQ@-Yhy*(>K&7Y6% z61{2ym%Qa!_4MEVUX>*l%D?t~O@`eUR-wx~1G-8*-bPuQ9!#-0_VsJ%i7xwnlF6_3 zyxe?~r?*;u24j22`kj-by%{xAJ}mfN#cX3)pHzQ*@sU`IlaF_8P{}o8e(mGC+4$KZ zu66l&A5I<z9h#{Z*IE`Q!dms0kzv7`sV}D5exE7j`cPECbV<mAxJRcWKg=;cxG>@O z0=>y0@0vsAUYVMu6w)-~Y(eqkTYrA2sVvxX>Y_&S^9K+A2X%dzWq8f&p2(gzF$;9O z864)7uU6m`XHC$*x0?6&f-f_3OPX(9`S#p=@pi|pi&smjoz<#ay{hH?VS$tz7Z}R# z#VjqFGiP4QKR1qz%kEB}Fnjq;iSk2jkL!x&Mw!pBbe*-mK6vMnscTufq|~;$YIm;t zzUFrNG41-Ei_*92SFU*=+taDNvGrTMaTPbi48P?U&i&KgT3^n+BO&0_t@`C}|KB*4 z_{cA#(J$xBGNJ1wjgM4&AAjU9zrJnqoY2iPBE`xUa8CNJ5_b26+L4#nN`;?PmWDcd z-8QsaJzx1emqx1k>9)@j>f7%fEtd|FdUS7>b;|V!&sCFmn42y$wqCen-@Zdfk7hF* zII6z>!>g~_zkfY4b$cwiWYgWV1r?nqZ}>6I_PRg!=a&Uy&kro(ZRXpS@<>vs^LIu` z^XYExn7v!iA4st|cExv2`c;vwvrP<Kewrk6Y?~6~#3A|UAA7UmlF7HGrs}6$x&LF< z#`YjL*-3ucy?F+b{vTc$?{@hA<T1aq&clQXAu~=!;nX*Cwm(_4O}k5$i$BPnGj7L+ zW)=2hh8K68mtE%`-1$4j>fmhd-Ie8~m5sM-`R8~`ALiV>GRs)$H|wshMCO-wOf1(; zVcKO`I)D0uZ2t-G7tLMxU&7OTrP^dch6lf12|b>8SLDjEBNBBC3B~@k6F8(z&OIv) zcD(-WdF4DukIqFKq@$1Z?$3@{xxb<H{f)<AC!>}qCSUuP%y8iARZ+Lcg)ho)&Afj5 z{`|_{v#<O!^;sM!qIbMIMC0_?H~#}pm!IAK|Fw2>W17vZ78!=sTmJ7VT&TF!ao+8X zWz*mOkGN&`F|RLw8q#eE`~sgA2)8>w`Y6$Vd`HRd8Iw;gQGK{+reAH^S+?G9oMBQg zPQ8~qZ!mjjig{_P&&}8;dvpr_nWVXiN_(x`Eta(Y)s>sAODwcRl9Z+f{I0P&`s0@r zLqTO>=k<I$W`;eLf2G3L@%{RG)^yosww>FoPcB<Iai?sGqRI~M2kD#p<e#1U<7dNm ztfkC$rcXiXS21xtkpv^D<X4-z&%ct)ny=z#elV@==$UI?n(Bqy%dRo_%}GDDTK<jZ z_8Gq4GCYKL&U|oi*PcCHuN0aW97=3z{&`)es)(0isp$-E;|(jD=6rX3wLl?|?c&v2 z6W^9UGQHzuY^Y~j{UPD1>AH367#Qa7`6XhkzHypUn@av1V~v%E{t5&g_4$=>!Ok-> z=zPQ~n-<HjY|bkd7nZ*Nant0$nU%$PZpl4v*Ji(S=2;|ezAaby-={2&)k&*YS*gug z&CR2JIqd%Ct?Mtm+<SNN-{Z-5?%X-j^I(qpUDu>~;dDja-`9C(?Q(j1Y|6uvEpO`O z&;2u3wr1;bTb%Ge^j7`TcZs3lE3&M=+noF6|3)}!fiQcsV~^{a*HV)=#!iTdjZ?j8 z%$WSj;Kht(c~j?qGTc*Y>KwYWNYyRbV#6o5yAsh{hv#ojZvD0F$iCA3+{?F2{{D3T zp9AsNeLH;j?A&><^>o$WUsttb_H5(+vU+uP&t0c<v+M=0+4gMVo>_FmxxRvl;lydC zL+Nv$zS)p>Y*NlH3!{_ICg=YTjZHS1n^cmke!|@Rx<r5SPyPGP5=*lA9>;sFR0tJ& zQtI{8@z)E#s@H#xZwk0StEJy?`-{zQx6BGlY)niz@Ruo2qhPzmlLW<e0oe;q&JqY? zIM#f`HamO$<gUcKB@Vx5O}d%+YMG^kz`llSRxM{@V&fj(YOQG4IDt2ki%(B=Q%a*= z%(jAaEQ@}oPFVWw_hEyy8xDb&6L;TF+t>43b?t4d)Yz+zkN6fJ+{yAhajVemwTX)F zVqQxu3l1$kF;%g(h<i>&U&8-tuM>AGJKtC2?7F+=*0a5}=B1&@MzdOc)uPuP_&aIi zk$)TAFWz#f{(XI$&+;iVe|vnY%(?t;_IJ*cGdJ|R?&4RJ?pG`8VGYarU)Ol=3hxr_ zlRHm;^Y{MJ&WJI^v9Wv+yJ1x?ug?iSyP184vu|FHy3O;>t}-C@dgAdND_=h_U0>3A zZ11z61v<YO{^%`xQQ^PMS^v1)<{i?{Bbkyk8vpLxb}~Inf9~wWXGU-O-LCJb%2r*u z{(j7ZN4=A`_TNh~+9vm9*SdsBxp(X88y>Da+c7s?D@88-b7weT*HP=A(!cm0YbPJl z>@i%iD&k~<ja;(Lwwr5Tuky@#thV*BFLQFtC!>=SPxBnRQI>!I{p9Jn=TGgvvG@M8 zhDpV3I{JY-a_;*W_#D61eD0WX%FeULqQz8;rdMd5ekI_=T+kr-Vhi7{&kwXbUX*!R zegCew{b%L77teR?dgymGW$CMLKQ7<oxvsakI{5m=WoDBfG_iN?_Of}=<X!O8=5>t2 z(`(gBL*zmu98Mp;?m6T5yx6eW>MM)y*_><Em3+K#{>s-}PAabi&N*B3p3QjcEMk(j zRd)63NKw6>!f4@J>RVh^B}Kp1yb)HvM=tT+rf<9-zV&Z?d~nCw?sv}|%`B6Q!qoJ> z%y{CnebVD5*Y`Q6|E)DH&;5V*e&f2^`?m*QHd!&ZD{Jbv_}_+&8y}d~pLjd}1|PWb zm~C`pi@WJt#&h2jeHS-BS+VZ*w3ZduL`!5hPy5xkF>{sz@9BUeZ>~8x-7)ki{U~Z> z=&MwCf9jpvw_~zpRjwUda`WTXZtMPyt#)Q5W^)sbwi&&7`Qz9#ZU%$dS2~y6VrWwi z4$Crs@jY-?&N8E!G4h{+p2j-u_ElqFdtRdDlTJZltChx0-Ywd?H(ppB*<_k=pvGdC znZYf;XEUA&^r+9)>3F)|=hhjkjP#Sc-u_TyFI;qbN5d4Ro!Z_iJGctlc3sSfvA_I+ z&EVa!7i|C3Buxz5Sd>jJH1vJ?Ua-0M<+k%T1aI$2i#O_OY^^BDi+EGKY;#Ke$$jn~ z;&uv~0{kWzbB0=L?wOR}r;@RS&G?<nF<S=Nx`k`?y|&4AKh15Pu{KIY)UT#)M!>dn zFCxzIY`l}X`1OV7Cc8KjIh(vS7Cu_Eta)Eu`a;Xy9YzKh^$wj6tyt9F_V#{qMck&9 zDG^3($1D98OIzRnxKJ@j?c4hYlgiWn%a%+lejBe6syN|H|Fqoyz0$%ts-n}YpG4fY z-)NrE=vTs){Q8RHzT2#a4>+-BEO3sAjy)d`UV1}y-K$8Qo!3kf12ZOBO`Rp3l6Oh{ z@Vk;X6LzOO{$Xy<dG}(H>DtVDCcYZQ&mW(=Tc7iC!mZ<C=K^;2PB@v<bZVuv+UAva zx3Vwr6;@m8#_YoonJE53eYv_uby?%Q^vD>CP06x3HPKPKFD$V3`LdvRx`F<gixLMW z-<Q0>+2Gsq^uCZf@0^`2W+zk5`|pVkzj^eL%9fk!9`lzwTzbZm91x_WKeyZ_e4}5D zkbQ=Lxp&FkglF@(&#+h|Cm89OMZWV(&VF$7y!!cRhIyG)Q{LX&xKMnq;;~zW=bS7} z)haVSM`cTF*E}TAyiVI>>ffbdQk9P<`K77Vu+4GY_(L*3sdjbS$7dzd-}kg@bG&8~ z+p{I+)PkTD*{?glCby=^e5f=K_$|_GG0&jw0q?nxH1nkXO>^HTw9f1Ko!IQ<<#BTD z+q>0&9!WoNyvVlT>ijde?I+tQW```#nf&*NL;3B0wfh7$U2p&M-d2DA%+8L!&d0g` zkL+6@QG%GTvtR%%4xAbCXkLoB-?qfnk-f7g_PWmLIX1&b{a|qP)zB#pnY}6xv?}(0 zvf+QaY{{gAJ$vs<eK#>bBXO%W{h0OI$;!D`SLX;-hQ+p5Y+sg_bS7=_#TU0u`7rh@ zPmYPb_2yK*eRXSgIN$o2eu*`1f0umWo-EW<EHbnAt*tEI#rKi=OM`@ZwukbvpSJCr zQu=Oh=!MFaNk#W1nV-wpc`aC_?K3AR(QG!`%k_D$F8u2?JLtVGl<nq<3uQYdDMr^- zZH+y0f0L}mj54O=2TqI5#Cjgv!y}Y=E#rk%+PA59p2e<6GoG?8s_~S{r#&4DGWYVq z)&dCq^jUa4VyTB(=$CyG%oFF79ga(Xzr{)Inq9~5>BSn)_XfqVEj^TC#<|n&m0Ps_ z)ZZObj5HR1(s7TwQKzQQt?`_3TYtn9_U*@{mh6vy@ApRO{h@WYI;KA?I@e^ic9zct z6W<k27?YjC{)Bx$7@;A0QlkBfQ2EJ&u4n#UdRcyRQ(@Vyy&G@HSO5N9uxZ)K=G;UR zssFQ%+ubl=6Rta#TgNtkvg466k8f|OzkdGEx_0q%5i;&u9iJZh7MA(n?%JJc?IogW zeOvwt|85q0aU^ag|H0lM-Ik+|zTVc}^Y4o&!-HpURgXOm)Tm$bTCMCsXHR$+PvlGW zTa`s(&nB_lJ-Te~ow6gbw^xSBsz%mbSU+1TIQ&$$)!c+<r)1Brl3aF~^H}~{wUaM? zaZS(9$=vE6Un}IbdT-rd&1K2IC0|%wX`goJRM_cD_uAwBi&W-`>p30Uv8H+Y_WPTK zV%3ivRyl6^P~X}!qojG`?HN_Sp9x(LzxM3%ON$oiJ6Zn|7X}^5=-m{)>;5Z&=eH}3 zb8kNFc=EQ-KrwAw%B=W=^qD-;YLj1b{5o~3#!ND?L{fO-&nJaJT2Ea24yi8DskWVC zYuRpHF)2c?`6IWxcFX;P+wUmptUbBs-1Ecn4-zIQu3?zr`}W!KvsXpajDPQ%bv9v3 zTVc2RvC0WY(<9p!ZK?HMf1iKy^UurAJ0)FoyS-$(&6~D&diRe%oaC|OuK%lD$H48| zkH3t4jxClrG(|^@*XKpKgt&m8lKy6%L%qj+7w5(aAKACgxO;Q^2B)2W|6B>}{dm?_ zB7XT|!K~>G{?~mwirWkw#qys!<TY!bR<LO2<8+;TL8>J4|2n=c{<q%V?_dA;^=nX* zaQ~S(Yvyj=FwyDl{0LEuVfaPKVgA=Ho>R&zuTJ00>1JN`{okjr*)cWWI2j(ieJXwB zs>zA&H7u9r2eaqTI92py>gN<uRjuc|W*6S_?0d_7^UUN;uIx!CZg5^ZrL*hb$2a?< zvajT|*ILbdaBHg1?yApH`Fi@G@y+a*__#-JxBk6*`!sh<{LSjm&)!P!*}JXiyZL&( zLgQ`gd(93Suba^z!sK<+pm~wT#GThOl{P!4N1sed*4r1cZfRcDnPZa$><UUhO0Jv3 zzIUeY#UJU*E<SA9;d_;jVZ|oSSy^q1Hr%^=GDBukj^pvqcXmxE-4`=U_1%obGt-Pd zNglLxe|(7RSpNN_FV}AMWDBP(o};MgtvVr<t99}Tem}p0uWwWtr0pI}wQ-%s-mm}s z(T}%m35!*HGwaVh5-ho!V6#b7DQ}&gVNsS)?D+-0e>k4Y*i|)i3r^vBJlpX_^SSvp zyj=>h=4QpI6IhR*wwtu>h3pzb4oTrF9B$?Z{U*<rj@h^I-r??W`Q(yf;p2hA+I0qp z6Xry98M8gSRd(~Wa`D2{%O`nfE#rH>(Of_9Ue2YRQqydl(<V>bVVJFY%J<Fs;NSgg z{@&m7OM<~**FMM4wR!(f9<g)oT^HRMzk9QNRPBvA;nuRt|J2v*dHi(t`GSXU_dEU8 zuP%ExGnMOdr?zNi{O|bfpE=*&KQGuHc--v{tL}x)sXP3AHV4{zB|C`~M(;cACAECA zw9j9K;Ijdt8>e*mSy`n?Y?<zDZn|W0v*g;w3yjR&yVsvhPmf!-Yc1oc1>FtjQvz2c z-@P(>c6QCTo68v*=Krn#&pm(dKaPgG3X-w$kAI!g+jrdj`ivbrcD(**a)q<D_@~&` z-RZklI?vG+=Bb>w_{D9<)f(I#Dx2RN^u8UQu()c+u@;GcyVe=b?K70T-8<pq52@bS zbFP-={AcTEwtKvA?sebZmpL+z#a~PLzD=$9b<S+dx`1`Mf9%)2Jh*nXDMxBw%YzlM zGtOohwUxcSlh>m1Q2LDSHA@3ACi8W<_j~dUiqB6wWjtrj9HtGaY<qR$JZ|dgR(?5u zNb0-wDFZ*1#ryS8pwv2F9WuUoTo&p)(Zlze76qf`B{<;gzF*S&e1({}U9^apF+ zCKuV9Ey<LKu6^U{e0tV0&QQx^j|J88f>TP0dtau=6vZ3N_*NNnqnNj0_w$y*wv$J` z*<W4b6ub5J+H1d5_QlLB+h3Xzs&Zl5{&}1KSCk0Lh-PL4SNGpzxE1wa+h6q+vF~Q= zS|xs~e(~${x6W@a|BBuEf1|dnwI?V_zdya9HaT-eMREM^`0r*%&gYfC^L!(Rk*SkZ zx4pb?XmCzBZ*%%Dm1M2+&X44iO;SQzcfHt^`Cj~2ie}`r#pWC2Zr9Z}?9sXV{^z6o zjnAfAZ&UGC3zW@Rn{2diwf3L$=l@AFeAxf*{(tuQfBroG_I&a770V0NcdXLBGSypW zxvAFt4Qnp0XzsGQ#vyu0t?<?EThISG@<-<F?V0m=@kgn5kL=i4=WKf@6}N6ix@8ad ze}PSW>$mzHlDBC8FfVrL1X0#aXVeWQFRX1}^YNSg!>7BxKeTvvPifKd>()hk&BF>L zwHyoBu6PC+J`=U!4cMttdB}i+Ipp3l<p);959O!le>kQYa85n=3;Vm77qz|=^EZ~- zM6BdKXTbLEO}q%}uVzJt1OtgSmIc1CTZQ5jfA&mJ+VXRePQa6G_rtwdE2o!D`lV;< zdwW`F{!>ZsypRtHS-r=?A9+mSbkgkD<tLJ4^(Ay=S`(w9=gbhvDXSTCk3T)~+G4tE z{p5Y6`)<FAI=b!GRNb3WVz=&p=e_pNF<0&NlM`wi>$hkp>ulWL6eKz0_2Hh6Tuyg3 z{kQt`%60w=8}`ih<5?g3zR5p%-Q&EYU{C0+{UvYXR_dJbEWi2hWcNRV1*}#ZRm0vd zlZ@zz4&&N;kb&XDlRuRe=U=3Cyi5^U66YJ-&dQ$7b4NF$YA+*OvoOPf%g@gnSV-=A zoVIOE_z9VP&#r&IUbDM=i%i9T36)aNjWj!6zm~4~)H!v>|3CG1N0!fz=-jQp@p49X zamH=~_J&m#6&L^8GHZe1H(ME-7sWe5G=8(rn`6(&@a0t9oE?R7Y|ESDm%m>yFJgt$ zf*i9~mp3nGSo0<C%^~(xFHN3gU5MJAT<Dy6kg4+K;mPUWKL0()Fmtn|@W#LSSzm5< z|6<Pn@p(&Hc-g||=B{0Fod-MLI;U;cbhDdQ5Y~9`*8I&oG!IFzi}QHx%6Xg0w(t$p z#fGDsTGtl!q;39jSh=0i<9jzt`iU5}CkJ0@&fEV-hT-=1_}x8^E`Q|c_1he=xq!bV z=!IyR@`gA31<!uXdHB-PVjchLm)o9PnP&Yj^wx2!!Zc4+=69Pmq`Nl$yU>>E^IG#* zWMfvEGn<dLNMmbVL+1|1OYeD|BiyGw&%5L6H*-$iTobWwGZE|fIct98tP_1U{l@&A z6K3k1zbHR1;g!?uCo3G@I+^ucJUFv)+Fwhf)Zg>t>Kh)u%;Z>}*tFGTbNR_j;lGw~ zzugr7d;L~#i|hZ4rypNrZ*z3Zwr}xE|9-D7+gDjM>Bj$g-}YzOZ`u6K|4ncE=2FDE zGXZy=$_t&k8;|M9B_}LwTXiTQqg-+R-kQ$1`&F)adFu>i{hfSo?^<>E-EI+~LvQbW z?^5!(!``g;tM+y8bg!n(Az^#h{eN=9HZJhm>!nel!R;)jmv<dpQgrj~YN-q@lXw4b zWn4K|9U2}uDcoG`)biGrf|XOd>*Sv=_y6$dr!m8U2PqPJrt~b0KF*$ZSvN&H-DA$p zIqdJJ1_}LrDBvHzhk@aVtDMmFGs}!KmZz=AmR;x0B`KofI!{@jn`e&8j`|{|r$$=c zDr*vwkH3v6o1J`Tx4-Sm9z&1mQ}^C~|M<_&t@hzu=J~m9e{WVa?b^6XFhe%P{!VMr zlh&`Zrth`;wb!vice2^}CYwnQAKb1@=zJZsnX%>D3Cktf%MU*k(6>*weet)B-`w2H zCBbOcqO7zP>Ff3xGfxTb>(FsNpL$XMmn~0B(y50hU&_jTv0%$7V!xp$q`Yo|>#6N) zf3Mf5`kO3%=0NTKSTPG*d-jCmXHTZ|+&t39&udbW`di^JqiW1;F|Cw5{p!62@19jM zo^#z|lDziZa_h#gVi8yO?kNe5NU6X5|H)pV<^Jasr*6&7s^{g6{rN3lLHPIcbN^h| zw>#Dg{8HX%{JZ>*&6<q*Z6$JdkG|cnkt<(RRk!```|STq`Jcb$pRoJiiwtPrROjfb zk1J2F>iM%o;=?B;^^c-PNBHN>nX{<G@P+zve}mQ98RF{coA*^mZfFoFD+uy(+Ie)> zsgM^cZy!DRwxnk3`?CMP`R(~m91lABa%Bit>V3Tz=jPcQKGQ0AXV2b4XTL^Y**dj6 zw6u9wq2xhn;iNp?=M(g{*#t8&tACcVu{?Zw`uyXUpTB2hs7mDz`gP;pJEh&x-;dtt z^!_m^R<3&Hcm3+9V}}mi-}Ya^Ic{3*oOzL*d4bb1V#;2v%FIb+I&iY)?Q>&QMtS2? z5-HOhce;8`obLGV+>d9{A>D5_hRs~)d+zSZ+P=wZ$09Za2TrT_cBbw6mtVGb?#yA_ z5XzIaePZa<(g_O-6&05_tp6hPT5i)B{cF{Zzp}koFO|Kp>-t`6r^@5M@9(%(o4|8s zM#^E0woH-A&db5#VwYbhnr(e3wRx9Q@O8yAoNNK7w&!v_{UtW_=>)yHEjqs^T$*0? zBrLD%n!<)duDAKO+8;V}|L(T`rCaX5yZ>A7ai8G?L%F0G#-haxDUp4<);W3lNeCxh zm6X^~k|_6J;hP0#idN_xTm1Rju?K0r|6=9uub6b~?c%iyZOi_z%dX#k<8(^jzXXY2 zy{+H;#lC+2c7Brtzis~iUbCfT+w9^m|2sYBzwF!l?VLKP|E+KB=P5pa^xOTG-?#p6 zJD!kaj(KcKbkfP(Ge@qTtC-XqenR2o+nI4IzOLy#eNTE*o>^Eji^D3FhZ5=Mypz@+ zsm_u7T)KVtbnWeyZ)DFruutW2`gJ5p_1w9&Jb#a-^eoEXTW>x+yyEXo?U+3~H~inf zlP~B;*Y$)A)<=RkM9w8!+gKi+y!=~4y8pZfZ~kO@2u&BQJQHK9{`J<A-CH7~o^O*4 z`=Hcv_lrxJ_D+{+nqTI+Y}Yxp^YBrfKY@&j3zMZPHmFQdJ}uJn`OKNsVpeDU_Pfr$ zUpx2i-SlHKPPe=_elBidyEX3f!GwmBouLzY+>_75JZ-KDYy7G6F38EF^U%uDQ;Rwj zt-YLn-g@rT^5%y7Lp%0u)iXVJr}sFjn0;R8dm)wM=*CXLt-<~`yM>KzUAFf#V_fQ* zs?~D!$G81c_taFM>)-k;@=)iE7`H!%PA>jzlV59oEa{T-42^E{TSv0f3}3DmsnOfA zMpr5Fmsj~5pTf<T*FHGqd)xl=XUWb@I)OV{QtS9wZakT?FsSR{#ea&v)(poEN;;k3 z<1e27<kN=<Z})$R%-dRTuddZ~X<Kc=)^GDyI4%C$zy7cA?^dxFNA7Xf`c2}U%q^B= z*6TPSxA0hE!l9JC7p2Y|4=%oFwT{o|fz?cb<aO8Y2eohaQ@bd8P@;LKa(4dA=N6Wm zCmmb%Q|8><Jyj-iA3V8S%wu24%24t78Pnp4z3ub-mK)ruJ70J6@X3{@=luVoI?rzF zq$~Fl8gxz@6h!`9Izb@zr~`BPeWzniyKkJ&jfj1IykW!2BdYC_xGJALz8+D*_U6dx zy3Dy#&ImiTn6019=DYZ?iXYd_TO1zhDy!|7-p^4f(aN7=|Ltvp%k941+^Gx+o9`T+ zwoIE#-CMl&%hufemml(MT^$n;8ag9@Tk$}v!?TpDL0uCvZ)Q0BEb??}36MJ`c|&*S zm&dJ&d270kOmphkP+*=Hyeuz9Q)R{n$>b!Pm1b&BvIJsUThrG(+PLqc_`UVH+y3iL z%Db`b?R|Yei*jl8y3frYm&E(75|9uU)7y1%;V1Uzn?$`X+*7Gv(Odtstzh}zShs@v z;T(FC&Z-N($xjgaJX_-5lQ;SiM*3AD-{R+0{{Fo)ectxB`*VI@_nlMyYr@3i*Z+0; zE@ZVTWZ2Tw_~!JH$w?yIo&haS$~MaG(e(YX<AKeR-v&|b60X5ZpKqFM{Ypr;XX66B z30@1sZ@79C3#o5Eyv%96OiN3$`uh0^CYx0I-7ZVcm@UB5u3qu!h~BIDdn@`DR__;( z*=nZfDJ;z7X?aa=-%(rp`+s{X*S??1bBl*3hQmYt@JUyXu)|AP{BKpBIDPza(}tDW zA)&3i`U<-WkJpKd-rasc*7KLdge#@-@9nmm%iQXcvkwf86!V)c?z&<1IxPeF&pIqK zCJ5ZgulpF#v|-)r7oLJjf!}}dPFlQ2dHc-|f!@Un3)K`_Y!^(@TD731!I16L@n)lz zquUuLv3m8c`lR~dLf(IA)r?uYFXV3ed#bPac>gxRn3iw)EiF@&p0Llj-{ALnUu{la zXsAKx@0qr{!uDOPjZ56Fc9K(Qj!2A?rf`m4D~G2;WKun|uzAi_PF0KaP}Y!>Y;Rsw zZ~UDee*R|6Z+<N~&E`)zQ@_RUtT9}cCH?os8~-<=U5<#A(jA};4@ZRFq}@ONi~sLC z!}brK+!h}`w^ZQLTbAFlk2UT;QrdSdid}zd+sw)4k1n3>y0pn{&e6L`OKYy(HA&mq zuXB3gl&y(jB0F~OWMuF;Hd$fyyYFlk)oG_c&6z*HUFT0|tfT+(z^@lfaw~64yRrUK zNo@YQ-_wmbG$&f_Tp^(3v1DiWbC#Uj-_9?8U{i4+TmNxtnfm<GD(`-J-2NYX?#Q~$ zS2ww=(`aE?b8=zG6p!r1imjg)q-&+!o4&0jdBS@2qFm|w?>;A}oWK9^Zd>`Lmv<9* z8m3Rt;(V55y>!CC*{|QOZJoa7_O|!&)t#p6T{HfBq<pCRlhImZQx);Uy5ho8C%Jj7 zjEbonY#*-?6_$14Nl=*d=8@ywYo~U9h_LBgZO^;%@6w<InTySO$?=oZUYR+(DDH98 zsD33HSr>O@+yBQqm``8M`+ul+t7UhnZCK|2jrpD5-+$a%pA?+Y=%;hAuf(mVv9fZ7 zfa9f%o{moed5_H_m0ohq)$VVe<{`v#)3dxM`;NuMW9w4Fts5A1Xa9bpF;i$^Nq5N1 zz2XPAakXlzn#%dctkh4qpj}v2#C2erdSISYFQ>s=pMag6&XcEbzD^Q-`~K&jT3^>S zv#0Gb_S9VQG{W)Tj2b01%O?|@8WfK`I3;jc=JnF;{09!Db^5nFozJA0s&jO6;%{@$ z6L<4=?sbX3d#d|mu!%iquvcs6`d-&9X5T$e{mIsE7r8Xe|MO4LFLzp5JI(xmFL*pd zYyG`{;mTWnTUM^TR<3^`f2xp|%Cdd)SH(`!`TaSg{+)TIxx(4zO};hzx85yQbx$u` z9IeIq*4&$=UBKwc!Gs?DE&I>sCw<>_X=CgA)sG`)$KFZbcH&=9L!tCNmMy;v&P7=F zXnnD?+EOWfYPz0*@bAr!XB>I+%yM^by}aMD$#?X%x7I(dmofL~+XyPvF%CeC;1k}) zvb~IJ+KJ9jI_>L|7M2P>SsL?UnoEev?)hy;gH#SWzwUdzH{L6C<B{vLBqTOi3x&z5 z_OQO3I!P!pZS%J<*WNR#8jqb832Lb+3v)%DSF3p~x_83L?boFf47SYsnz)}|&g-_J zNonhu>IO^y;zv32_3p0uzOnPktc?#81A`P#cPoTH>2c>@AYi!IS}6L^f{!<on_H|- ztzTN=`Rm3qJI><tL)+#i9*VzvFKqdPK)o$$`rH}QdCpZ`p1URL^^s~J?>9f}j@_4> zTQPU1z=_zMDvCdti<hXpO}u-7FWp4Z#X~L9Tx!?H$Q#K`YUke8e&TeDEb?2MES4R8 zva$8N##7@-pYyITl=pQWpMGer;gMBxP3_<Ar&PYEXW70=_WrfYI#;$;`<_~G?cD4Y zNuTT%s!Z`YcF*+feh=N!D=LcabJV|`FTPSLe8{}zL9x~f>o@ByOBTsKv03#fCF{Sb z^*dP~=JIo~Z}%5|Ua)Ls^WX5y|HoS03XdtyF`swK{^S46<!Kuy#eDtye_pV6`Tf!~ zn|W{Zn`M|(4jv2gN$Q`<!g7!?k>iv%(+Q`pDGp7H+>10?*q<>b9%1%U+B8XnF||;x zL1UuOaW_Wcma|DYiPIFk1$t!rr_Z!5fB$Zk)${)a*IwPOtzNn6-K%~3`=9Qt{atpw z=vDOcbC&yaV=|ijdXAhpnX>ni{NhQg8&|U@7RuZ_r{NvDtZbd#jBfca{hlxWJUC>1 zt)aLj?ZVxTFAO(J*G*1{<yU?7FEe$XWTL==ix(zacoYbKJ|ht{@0MYO#L<khyDs;9 zE<_g!`^I|ZuDn{Zai`+~wxhSc>+vj(vAMR#;LpQ|GZW)<RbE>Bw`dYz%6ugE;-ACW zC+r`#F7NX{E`N%FNAI6*m$FIHbG?4cYxNfkS`R;%bGtghGJ4xog&pGluaC>E;(4T| zqj*C1LQB9cc7~f73fJDsyK^tAk9;#rqx@^L@R4OxP6X*6@0c!YA1-H5ZrQR{;NSs) zBXuV?MC{j7Jah84?&l=CRa!42N;?`AA224_E}Wp`Hp^;m(fazNGp(FIUeAx=NclC% zRj0+|{4@)vCr`5t?$4f*xwZYKxWQb{iCVfDxAr$SEYEvm?DX4s+Rm4j$sA0X@0Z`m zuFv;P@cD9R#T>ut6}7$_|8D)a^g?%w@GJYIUs6R&YZ;1H*C&;oxv$X(-<zNyCa`IN zaI&FJrhA}w*VZ4dhG(RbrIwieoce2lciq)&$0uiUy^E&LIjnLcNbjBFIi~oQpB`I_ zEUq23?YeO3<ozav63%HQk93m1cwZLay*tlSdF$!pjuHzl22A^E(Y5Ey?_0K^^?F^> z9EY049_&nadih)X;oe{VK1oJ1Z@v~`xubR|>5l3W!FfOXJQW_xZ1k)UJASRy;zMkW z_J#c~<yUPf32%H=zk~Pl1R)RMRLAKBd2hA&XL=rcF7$teJdc{$@$Hj7Hz@b@u$s^B zt-NO~5b4Cx8DD*Si*T~v|Dd!DdP{qr9-4FIYXJL!zuzr$G(03+JGQD`{PI6Fa>1YK zhN%-KY%&m@@iF#o?z-P{3~^0{q0zU!AHCW-f4}v^z4}W^-pae}G!R_+d(m6_wMrk8 zgSPy2UjNr}dnhN{*8QIn3U4Q#__D2Oj(gYre`<$+I|X(9E3Fq{*|zSF#V_;oj}$%} zpXcuK-zD<`%Up^6!)Z%c|NgEKzi+@%Ja^g51+#Vb{$oCAZ}waK<*8RUIF+VUCubUV z+^f5KaLV?Rt3KX+kTd(ZVbrsOLTqIhw2c^#F~1I*+oHLoF5_rq+U8Jp8;2_fd3!d_ z&hct=yTefO=UPzl$zA_G8LdCO#bUy-J$ouL?3;Jg=l<F8JVsOhnNq>dDc?4*JnvZW ziG9V}ojNzxWc@XsSzq7xA=yE);mD2^+?_sJXHWY$9r8I8%g26wNuEIZy7}_lRU0N9 znRAzU?=Ss_R=;a&6E@#ny#8M<U(+4K8ApZrR>rQeOb+{>_~Q76>GPQvyeX>xTfV4X zuIx?Grl*Yi|N7oPbK~H*?cJZx#IGpt7Mk;Uj`ybh9@+Eu{`<#e`1bibjnyBEHr;+` z@b`D}{FvXjIjj7C-+sM3>B3<H`)?n=hxcg4H%z>>U*_-ZXO>(3@?YE^TkyvC+n4X* z9hNfXLXREw-XT^b1~Q*$@|(h*yfoq><K(q>*Jj;%^CoE3|GlL_^`@7ij3kOr&Mum^ zX42aB0|!KXo->6y2QQkgawc_0f6naI#10c*28PUOP3b~Pm*qGm-P4@-S~jbB9m`qv zO@k*l$<Bj8<{Fdy@r|X0^N*)Q{++W+^yt?7@TbhVjYeWRGtJLNaDLCQ{1E=z_Aa~Q zgx&0?7X9D*BxYas%D;>&iXU?95&C>5yZ$me=gT!aeU9GVas5Pea*o)?hVO5ipBZ2D z|2KpGii-ZG)bp=SNwBA@9dWJ-`y}|Q{&VfSb*?+F9d15;*ZbwI^uxYsuHRo=&uzQ@ zZ`;|uDjN=;yUDL?@HRf{Hvi4AnY%)yW%3T`O5K}q-JUsJMo)cdIe)^2XKUQ2=Kaq) zW_S4ZJsJPZo-6-Y%M-ukuVOQN?rG8Y@9)38n>IdIyuIq{jmZ*{vla+%Z82m^^NR9d zI~nV4oVEP1m2=wfO`F)$7mKXXs$CFZlqSG!aXtFj&SFkqp(Q%a2K>6`4y@h1vO2@i zBRZ(1*xb>)+4!~B{l~9Dzs%|hGg;H(5P5n*qZ8+EgLS1=!CN(hmn1FtU9-phh;qSX ziT$~MPo6TFxxKN;enApX*yo^K-^vXa{wk{Mj{UbFGvN2??avC6)~)<;;qDSX2IHl# zmn^ThjC#jEE#72hmSM_;veWOrFAsfmN_W!i`a6GT&u_RLzO&Q&ec74UMz`y)<W9Zy z-@|O`?Q8K@7@oh2>^}JR{`)^w;*6(r{|DNK-?J@H*tACJic0MNL(O+S_OJRM_xAg~ z@MDI3zjjtueiLG!>Hb+1v{e$aDOE=%#Zf)W|NX1qKg7Op&G5c{rTIth5y|p6?jA=e zZ>4mOCZ3soJkwJZmy|6H;|$?bW93?WAx%HD^!d)MY{uujN;k_LT@~o`<>&?3X}kH? zR^RmzI`~jtE-^aQ=-;<fUlLY`mFLOWY~WkG?LMb~OhM|K|9=mz7w4P3Vbz}OH|aaR z?@e*r#<B5YO}1Kd?-ve@>&+><<~i}i{r)~@&6hJXc_gwN^?N(FNA8JrGhQ(L#=lzK z^~WY3eB*8IIrsMdE&CFyewCkmz}7A#v+Vz=U%xuHW$!bVKOcX{QMe?@r>#`rYB}3x zxfgy$Z&q(!z1~*(T+R&T$Bat~Pd=4V6hE;gd%eh^qmP{$JReWzmEJ7DBGWT_%}K4x zTX~H?+*-e(`nS#&gR`-}nj2;rc+Ot!xMUxD*Rjm1|6!4rw6+^)FrH+4dzxp;(<^rp zikm+>Yi!>yxo2}GA7lF6|ErTFzJER%>ziG0YZ~+Q1^)NrPS&aao%gPuYigrxq5W06 zN9=dLo95NO&y3%|^ZrP@?%c{t`)#i@{Ze1X?|Y$hqr^4Oumq2l@~poeL>*(9>A7G_ zv4#Pg!AjkGj11=le|XN?lVV!8lV95Y_@AiTw$ogUBV6NPYXS1-PnQ3rqW$yN^Om#r zuYT1w#$K6qNO<uksrHR8%?+eeKbWpP`SZng|C!v)rBVv#Cw0DWX5v2{_&wq;OJUiR zOaFZ?n1%Z9de(Y#>wk&)s(<A-G3q=!kkYsid6~ru#uP{OQ>h2TUvRBYy0){nMtk9u z3AQ&^_O|D*pB=L9$(4o~u4b;UA31Ps{~Ne%;rU;We#+#!@3q=dA@9o7{`g0nd$Li` zwO_1h(`IciJnH_1>&&kGl5sHw8)ugO7T(;f_Tq>~&mB*l7k`#)@!Pau_Ql4>6B=e( zPM6NRm2UCqXyn&xyWf7FxoXBy=Ike|ZLOF8XKXwdtT?^EcmD+U^j&c--(8)vSFG{p zG<Ogb|8BUhcJAl7J>Ifv>W}4^xBk!RPn`H`fz=j!L+cYq=OWq(SqzaEI=v#6gr2do z2<MIQO#LSBb2-OaSo@n!_~e@ve#^Qity$*B{o^lxDx=iQ6}F|j`1^Q7O@1jwZeP8u z>$&dM{~aM$9tQkAFP`G4-l2Hr^n;!|3$<MOZf`5mJ>|Zr+(~cc+}EtVzdI(acy`Y2 zM!SH^-2{cd!Y0Ul-Y5s*l0{M(6Z;|*j`_K46Zp0M#M!({`d(!RCO5u$ZrZHJ5t#n# zi{e#B^TUiM8myz2t*T$7A=2#Eb8N>}J+3tE^{mA&jrJ8}9x*L0(-m|2e>JD<QrgS# zcQ00?6sV`U+WwN&RBbhwdO+oGtFE%w+xQusUOYj+r?c7WKj+?rbX0~5?*dLML!qGm z<x3`P`V(?TIM2_^GU?gbqhA!Y_f*8WP42n4g?pmP)^pD{%rKJYn7vVT`lf$EM|NDW zEuNr!tx(v7@x;-&65R{el~pNh_lPZ+`L5Mf-13)fcPXRxmZ!6nQx`^7Np^c*I~uiV z-m$We^4+ErCD(7cvn67UnH(=?WX_~Gr`f$vvUU|*PrGwtUEns;huhtA{=4pEV%`1c zl4Pcg!`paC_mzKr&7+oogJzkJ>?i8}Z{(1D?7;PHMyj6{TW<Em+xt(1Y<$Bxw?*c{ zjqY+*uipRBJ5Js%nfW9tWaA9Qrw1REb=ReK>s|6&{6F4i$@d#;-Tz-+|5jY_u1Ecn zc}u37c&}OUS6n#v#j42P!k1fPkPeAh#5RF-uEvqT$jRDIUU+CvXL0nIskPSk%Hm#* zuYb2Tyla(IDz@*?EH2r@C&oW(f$$Lt4^2ik1M6gYgVgv55i6`Nnr~@(TKCzF@yfr{ zAa(Kki~aJW<z^ZzmMmWI-%{!0hSG#f|Jr}eeI&wJyy%-g-`4*ZG3{4yJE#-)N=tE4 zWxmJzt(EnK#>daJ&HHv{`~L6j*Ur!K^Xa>|S^M+#Y+D(Te~OInZ&l=}m&AG<*so{% zKG=G?|NVc*w`~4CEAV){-p_x>EB&7SmVZ`iylK7v)_wXfF7<T2_Mh_k!NHWBd*8lS z|Ni;jl5g`l_Wx~vF@NU$>f1AK)yFO5v~uim%0E7>n&~9td*P*p8Nd5K*cmFav+v$1 z_U%?QQ`UnE-=!`*SP;YJduZic?Z#jKB^7`FHCSE0cm5}_)4y}t_0F=Kh*>Ou>pL^^ zt@&a+>gwxnJAbX8@$Iv``ZJcILUj(<!mbV}2QknpuOyoj&5a5jGYwbFU-&Owi|5Vr zm4BBXX3#fHTDXAID)HeQ8Lc$Vt^actew(j*<=^J!TXow4exDc1`hU~ut-k>K!rd?f zIhqu*7<?}vPW@QKHlf=(QPAnkFM&RuWhtQoEZ=Oi{=a;@`&!^{fBsALwg$hJZ<}v- z<@*`2{eLH`Tzt>E(`&Aat49O-lK+uTiL77S*9jo%)GG{|76>2VN!a4!FO%r;pT+SC z>pI&?2^EG{v$fi1%}{7_5-w?);r!-vuVHkobI?rQM;#L`?{^F8G=J1_fZ<YI=LWm= z9lxA@srNCNII15@n(_4X*U48B#TpIw>)w1=Sa_yR>-)Dwc3X~Z-8bzTU)BDdd%sJ> zh;2Q)ymRNCphfkw`Txkh+&_KOt%Nnz?=*BIHr>0oO}?mL=ZnMUYxmi<{rep|-}TD> zGr#JRvYs5XQ@)#i<vV{;;O&Pi9FWh~0Jk}Nj;zowf0xYtt}bNb)vB1+iS{=f#0}bh zelC!B<XUjUTvEFxmhIJi*-w@`AA}w0lDJ-F)UoFu<MN+BFWWQEUZHG|Yq0X4`YF)| zUwgZ6eDA-fc4l*1|2@8|ukP<LkH4N8_Dg-4|IcLk-&~(p)IYPj@^OFkp&RWpWKA5^ z+k#9MUQQ|%YWEj8EiE7-JxBJ&t;Xhg%NtKWnOwZPmD4ohg_Z$B(LXkp#|IhIzOLT% z?sHP}=6%sAd!y%w|Mj=CIGvly^mqEi6YK9gSZ;3%{r$~c<bCt8o6~=9U!wc%;{Td0 zf8TuZKhw48xLw}ve|FED`6ui8Jl*Ed9a7A_6X|dr7hVN!D??SW!;>s*wYjENZ=AM7 zXjWoa_wk)A{@qQ_B?~SXg|qF`{uQ{)X7yW@U)sCbUv>VQp}j0xbi$YQGuHm=jC4$% z?<(<I;OIh5D?`y|^^1(|va?<7bX(~=?|heick+z=JDxXJtlKVnYVwx#GbjFAe(~Su zO)=Kox|9BymcIDkxzhQU`^#JG9{)dcpt=iGMu(pA{cmV1A${?#$0Cu<0;*pEx=(yw zIjvczDKH`Gy0cg0-hbY^{8y)hO`7TTTV7P{!p$pR;)}%=oK{gw(5m%6`*puZvV2m} ziKBC8Xnl?<J7r_iwljWed0lAP`69hLbAP4Q>h0OMalhHEQu$Kr&pj8-m`}H!+*Pdo z(CMks{qUnTUz~!b?bu-4_;1OSsXJ%u9r|l9hx6RVqQBnn?^hXT{}ncF_`<(HE?GY5 z+XPnh%68$DB+rGedkiPeo4DzY=+mE(0lMdnqJK=$+_*+H{qGsm9LbHcdDg2=p3eXB z^HRO#bNiQ?)1NwC%AeiMFMU6Janj%O;g`?H{Xa70;;-c!{d<qu9XX@GZFO<}rsGGu z#X^#kxKF?PSZZx}>{S2cxy?In?+Uu2Sru2T?<2dmcJ+UuiAD3+GBzLHR(~_#zww-| zul@pCm#x~!@A3c0A4g$OVFN8IRxmz!<oD(Ifvn`t&IQk8?9Y0<Y*Wjuo3j6owfxGB z9m>6Hf|f7&ANb;ZQ{0`qGk(n%RQN0GE_un`G2%p%Uyp~O{8v}ayUI(i=pHOF%VxVT zzgo!upK{!`+<E<X9VSn{X|!HymG^#4?zFIVhb?`aVsGu&_*});ed*tkH#5?C&%Q1c ze(E4rlBCk5!X33mZ`t<CDQO>~CKflg=xph4&G;Xb{mzHK>VVkcZ`KL!;lCYtzt}gj z?hVSmQL=K=lRF#!GA;Rk^Y#20tfv&5lI0ne{8#3PL@o7L=dS2koMbztAgu4wxfzD~ zZ#539uzhjOs$c)>!Wpqi$Il)zc>T@(!OO(>D>bV3WafWavu$#OzsLWla)&$OLb|WK zvwK`M(f1DDlK;#Sf3NR-y-Ic;+q0z~tB%<%sr{Z5r>7XmXX2=?l{o9~;|1q--2a_c z5b7(rP{`kEyY9=geD1O`)5<lT3H<tdY4_}y-CpbG<!ipRz3tLk8Y^S?`_uQAkKWaY zM=t;C^}c!0mn`{XhfCRRO=pjLGG{OU3;7Li-^BC(|NDqN_;B{J$OVNT9r*NWHXdx6 zk;DE^|Jz!t7x%*x_TLRz|NmE3eNM_g-`|EC?$%7N*JO_ukLO`ld%d-q?aPb%l@;f` z{<9yqKK!NL;rB0)X`8cML%2}08mI^mn!5XIZ%<@k>9p28tbzN*jHWL*5y@j|k#3M3 zoVrf#`k{&|#~+zrOsiV6k-7Xz@*VjpZ*Tf<3fXej-S@_mb~%xycE8TQcaJ>9%HY7k zsMzz5wMFFGtOJtF{8OG)3Mf2iyc_mbN5l2S#tNS;oYlOk{ierm`n%Y_mtin^KJTTD z+`hNTvwrD2|9%`e@t-QgwdDOpu@hWPyYtVj`}gOs$~<HLuJE1zu2z0~b${Crfxpui z*7od}d-FxTNt=DVX|vDPf6do7FZdpH{%OP8-_t7ZFFy6hZu^vF_2&D|<ky7!-M#PB z`>o5C{x>>qcjOJIToF=MoupHlbLss-rKMNSs~Kxf6i^CYZ`^psC(MXZv*jP(mnAYB zhZq7S6gj4Tv3&mdtAmu$GaW03GroV$r1*1fy?du&$N3i$43FPE_;dQWB=h5{CW~IP z@3z0aRtC2(O#Zt{{dw7M%fH-9W?rhFw#4I-2*ZSBoR>_tUY}6drqRW~(CfzByMxi; zE`O*_Sm+@RxqGQE?qA>gL0$XNgSv?I25egtlX>pEn%}rl(_;O}EVZ7!+$>o>G56}& z{NnhcYfQGYz5cs<r{4)*k5g${!k=food4B&f#NUo^A9Vp)eC;&UTyS!-of(DZ@q$5 z-1nCEyx6<>i&*MeJ2u<tXO=#4WLUSpz0z&<{_Afl4Ne*FQ2Be?_5GZS>ig#he$BsC zxa!w-=hmv1^CkE(nkb9(b*8^)>YZ|b(V45e{+wF>CQ?*PU}n_0Gc69&)EF96PQH0< za(aSfcG9$4kNY39O`A6TV$L=OhD3>|(_wGJdTiZ_UTS9?{j^qn=7|ZJr`HH5<wrJd zSbb6_edD8TbF2HO7xyV#xa-?-Yx~Zt|0ULa3B7QBmd4VS3-=Twr!BhumWg54Ts^C~ zW(*7N<}JSbR^esIm2!y-877Pj*{@$m#7DC;m_!IWE(rhHShb|{?c{>&DOMMrzKB=Y zT<e{7JMvYvgY2~3;u4>8qhxwK4@4}s>E=)7NzC{n-}L!nZ0T|PiJ#10PWESse8+dz zlwr!(Rr{v~+VaQLrf}{*<GNog_42m|nul0GDU_k@ReV(Tq7utf3%2kl?D)6#c~ooZ z)9fr0n+3VAA5QoG^z7DEe(@JOkDV!xpJukjvxCRUeopGLdBV%qGflS4oS9y5fSKji zZY>TbmPWq%SyzpB9ba2N#p*@sYkT2)H`L4Lx?SEc-<y2v{fgJ~CFEx<5UxF$x^T{- z?0kE115?Kmy|+Or9>HI$CzV~uT<z(x{H|lPf55K0d{)1I|1#$6*?i*DE3S3Z!f&5c z;@{CLf9AM;pWpnCS4uQj{#`mnAjo#cB^6imK;iu=FP%~%?|r?vtD3W7u|c(tPQtf? zS!&OFm(5Z*rZdm!OtdBcn~8mE7IEL-?eUZ?@sQrUlHIafzE3&#{ae|_t(%z{Zrr_h z=-W55Z{NzUZfD)FX%`cN#rOZ~9F@baEA=Q@2TWe0CYb&A*5?ZsW(j@OZ+WLb<=teL zz2Cm-FEM}d^{?L71D9GV4R-AKzvtiTzMpH{Cj9N+yk{Hxr(5SXUD<bTcbxp10EN9h z*S7stWe~n~#Nv<z8$*jDgB;7f;<aL{%Fj6bulp^(tls*k@VdXntCgI;$baWFo+19% zzsr8v$ulgr-fx{cq;CJ<_Br!=-Ur*8doM`U|IVszFmg*-xwGCVMXA-}?4cw!Hrt<k zOU^nAwHZEY<Erd>#J0$zxA&03oZi#b@1II<yUq1w{*8_POo_i17=Fn=Zr5n+BNO^p zc(OCb&?QgGlc~1ns{&=7XHCg6SDwi^n?vt3OUs!FucrR>+udB7>v-qx{e$PWZIXER zHYYhfJ9_WE+pUq0_Plzv`a;j_h`7j$yR&!L_CLFLhq?L6KOdh>H&vc$-1>L#d(Y8T zmtQ92=ilCU?vjakT0-5&&)YooMHuHv+dSt9ymR2zFR6w-(sxr<A78v<?)M)jeK+(+ zRvrAN_G4nut*L)}EdG{T%f5O0mXTrGw(T1VE14MzeqQ>#<If+}oc!3p`KMX@UVO_p zi`wz(iRWhJGk?3P9smB8bC`MJ!ds2kC*R#Ov$Aq=P+3`=Kjp;B`?n`;E6RMx-SGND zqsFXx|58`}{rK?7<}&|1qSd^cbX=FOy|w>x?(GSx6FqOQ)0;T?m)Uc@Sm7n!AD;X^ z)#li8?UNA0f~{M6E_mMxKUSN!?(vpY7GK`%xnL^c{{P&<<=;J@zw15xCBH<T#j&*Z zzsOhno;~UdxOaQ+ihaFuLh2#aoX?Z>jTjEuCN4dp(8GGyw&`kxhUvWgSe0W<^GYTx zk-W5y@3*%#$4seDrza?1$$Pstjr;7<)UUgyI&nRHshs>gH)%y`h6n4f`(KaQDFt57 z(fK=jqyGT`*Q_4P(7)Fme!CQAH2H}v(-F`ApExa*X=d5&Q$dNb>zAI3nyYf_sQJr9 zcSG~u{@z`E<K`_UhMe5|N1vXaW@yl!E!{Bh&Jv}AFE^*>^6Wn28=&^mAhvVvq2fc5 z59e84^1E>Rt!++zE)&DI@3#e<Zt*PXYR)~nWJ_edvEqbV2e&#bzPN#ZdD>>ymF(=3 z<v%{WzUs$PiGBTAC(<vLM^5=%`20|7g$n1cSksPs_wOFvcJ2SMW2rX3{}k^i`5DRJ zaO>rQySA(hJIem6E3AF}VTxZ4pTV#E?N^(QpSz~^?R&_5rIh}Ey{nVzm<0~)+_)?< z>8`hQ?~Sm&472H4SO1$h=bd`-X-P}(XP-$dyLV?5?Ag6J_i)aVFG_jUv3Df5JBeMI zDs{#vF}D7&!GVv$>R(=8IC^syvxdRP6`lzmig$|3Oa6Y(l0Oje*L-%?#FV1H{Pkhy zZJwM-_?>q*e>s!vT>T|`x3`ytONzO?^1ratmQiz|*#EC7`rg8?#rSvF*ksPS<t3Ln z>&C{w<-7SOmR!6h{AJB$#$>%M`gtp|FT_M0`?czn=cF}jlT(lGc<8<0=7z~FxBRbg zUs(NL*7)1a?Az%dEPnYL+kW#@mEskRGWPv@KIXTJ=7er*w0>%>WP0nCGgqyiZ&RJH zG_BR5FicQU;nI;^4@<3N-(-v5pZiueCtv&Z>8You7yi7Y%5dP?Gtn73`&S?LbKq$E z!<Dk}>I0>3-!IO1l(p4vW}f-Mb)I(Hb}#QcP|Rui`Z&*qyz&Vrc79gvTz&GcZ_t`G z>t62v*|qXmP^`(7gll3<EB6Y<h^4;Vq`h2o*Ri8}Zy)@(Z)3&V1n=Ej;&0wKaBS)G zf~S*;D#d3W_;jm~Vb|8urUiCo4`vxYO`hx!{<^F@|9%_)iYI%Pg>86kU*xEJslrNw zJ8aSty@z49j;!)an|ZySb-6)%p5V2nscAQE1}1t<*Nb)9y*J;EVRCa+mruL!&LE*} z{C=uI65I<;XUMwyvP|5RvUaWfdG!RH88REA;%8UAoFA#Jw7GP_(!c3D{;j^Y&$7)* zVWExl8O!CFO@7gpDsSH8B$tQ3wDH_+koIYUyOyv;Lx@L*$=34?Dle6MeP#q_-F>=y z?zZCW^LL8PUzU9-?=dxJPG5EZxuUa(cJ{kVuY|spMx6AV$Z#uK&?oYi?;?A(^uWIf zX1}&4&);i1dt$B3-`m*})I5SjjS8-O@fT@Vd*KqlL}o9K%S^r0pFPWu<(^LcEIQL+ zQrX388w;zeci*@fHgom%ZQD1jjGeqLCpXdi_=5Lu-YWA=^$rwi>3D4LeqBgG+gYvo zi~P^ujjFN_{yX93{oCzRgkt<(Sxn!sw8W-ftFz|k`X#HKMT{C1I_|I>U+uf}lxpTN z3)k7HdlxYtw)mxAxcujgV#OS{IK`MbiId9SI^^f)^WUEB^?dg2**l6{eJ_}=&q>VA zX1Ct8%8{eZga4e=S~aJ~>msVdkG`6|pY5%YZ_w*U+?oe=YEPVeeg8ZQC*EVe8Ge&? z^qg9_zP|5HL*5jjB6hxuXLb1lq{Z(Gemw2NshD%(*tctDX694pT{hWlsjCvip;*m! zB93Q8<Q1mP%&)F)P2S-Z&&{ddu$^U9XxiQ{`KOqhc21i0LCm}D<^00!{Nb9(Mt}KV z?MhqwKSo|pHOP3PpU|6EtE9rs%r-1NJn`H2GR2u$_UD*n%hw(HzU!{p7XyyDdF(6s zex8`b^Va3A`dz={((<V%&NMk(YxOYNU9YK9u_8+Sf#Rcxqi*ZhtWD03_kF~yd60SQ z1X1%@9gmllE`1*JOs)QMrQJD&D?Y!H=bQN)H}3m)mc`cFxW#eFek0qz=e_Uy%kcSL z=xhwJ<$QJ5KmY9WGu^9;)*Gizd^_t>R_vCqDXI1K^1E;S+O+$1*njK0dP#FvEWVhr z@M4UUK*i*vP0P)j6+_}bZGEkN@TlY}A)QyH(^5Syt<ybyXfKQU8E+3I#kJR+CzVZn zal_nTYQfnf8w}4q<Z89b{;qVSNX+rjcL#wJm#*-wYdNvztIO84tIPMLC%KiEZCES5 zbX)nhjk`BDyF}+!Zf<=xY1<5)wF+03mZZJa3{X2-{Mf_b+}?eS&wnjY2w2a2Zml`z z`^EqBR<T{oG%wuvO6Hu<QNCC8HE;Rfl|IWXcs5;-g~8x?;)QoxHtt<K*>tOQ*}<@7 ztNb>`zdGl4idBK>Yh43FVer@AXWdr&+Xwrdx4rpQd-|iwizT;tF4iZU$}4;)G|Mww zzG}w5nKKtoS@i$k{h2HORUb2O;<(+u{d-K`oYT|wAAkCMo|&QS`?m?4SJPzfRCz7+ zWcQqOBdGlMT(h9u884P_?)tq;Bx2f)qgslpDa&rDdRhw@g>HQEs(&5-BbkkQTX*i+ z-Mj8vNr#fcm8S~R!@@2`c@<X%RQZMdpYzvvNzPyCxoMGU#V>mn|Gy&td&YVh*1y6_ zoiN7Bc+$P%+|-Iq7sPB`V(@P7x+7Brn2dz4&6?E7GqcQ5sG+z1^)lJ$MeV7Vj>(%v z=^hEpxa)h`?%yekGs~~mu6STK=e6bYGwZ~>-x^Q7X_d`%N4%x%qiB$V@Ucg)*9A(n za5M=_JeRa~Uv%GsRVA+SrMF$Zbs|^q6xk`z=#yf3-8Hx@U<uR8=@;*&_?}~!eRlip z+|^U-b8R^fbF57b_FDe(R86Aanis6bx&7PtQ;!$Kspu^>+Ec^OV_b0exySn%J^y^= zr*-l;3cSi~?bxz<@uodj;{PuWYV%G#HzAKFc;=Qwqq$|btDdMtF4C%Y_}kkY%{}c* zOtnj3#_f0pju{tiP9N=^R;0PA@AsOh|Cdr1TloA}OKI>fbokBC_UisrLG3!d%bz|- zv)|`FRl!(RGUMX6cV=d#9G8|ppLhK8c{^T)8#ixn%zMHlq-2<^kZPO%y2kpgpS0{- z!Ko^;D#tF(Tl%i@%#6~B{+mN`r|;ZUuC_^2SZ3n4MOoXe9|Y7#M8zHaSo(JBrtSSH zrL4TcAC-9+PQI;klbST;ph?-4#r4^m>3RPjzqsF1+oa&Kz<F_B)4$H5g`8Fw#qY;f zUHMsQ$!xmUUvcf~#S>;$uRXn{^T^R9()o(#Vw9FQv_Du_c2Z2Ja1GmWZ*Sd}#GJ<~ zXHHjGkzpQw=ja{{*7Xd<b88P+?wA+Q&ggzBal3A7!-mBfiSu%;K2GX9dMf7Sj0R;c z<=0k`|97OnkMg_ReZG6X=*$KW<J}LYbe_=*S{ljr@aQsWR`z-SB>4|C3Fw5(?_SKY zdi83CkQwd|+NE`Pj(+7o7PGF^z-7hn2_~fr4T3m09<N%lo^wHr=+ftTYY$mndHzUa zp7!5<*M~Ql-tYFAK8q=&eck_Q%QS;zi&w`j_xPHm@K~lX(mLf1-@45P4r!C}4fE9J zxe9xHOMSL=JGWch?e+%`e{KIO{Fr@9ex2N^|E`z!DVE<o%M$C5A~~r~vw3HGukTdl z^yFmb^RYpx3ERuJPs}v`#&E{(-7Zh*%t;IH26CRB<hMxp6l0{?Tcx!pR4mLnrFMim z%u1W!vG=5UbAzTnw~Lj2KZEn?rHAI1m6dJSyu9dF$*$a#%(VG0-<@FyYi>Pg^YqpI zzS=_$nep{$A)s{=5z_5qQU6_3buPW=LCn=X6Wg>vxOO6YSWEl*Kcd@YD<aplig=Wo z-N@VB`)yy5@arwNUzB{?xIKH)!MBO!@oRs)%YDCSb@*!6S%=oxw-&Z6omTcfHp)q& zb>8a0&X5e-nX?qH>xdPn7YaEoy8Z6PCOxN=GF8j7cd`tF<FCvYG*k4FXyI6N;B%D5 zPaCZandi1awM@HfuEjr>yX7mKUHh`k>P6P~V`b^`yRE%G-?qMe<J!`zR=a;keeY6u zz>&1I>VA%HVrFEdr&Mp-R-<3r9p_&EwtVL4>tA^17{A^*dCP6RI}Rz|;=X_7XGl1+ zYqilaK`HV36Lza~u5kDt{PBav{i`82PZaZV<OzQ$oGnqfe{cUbzh5`sl}%KOl`c9U zxj8O`kze4|n=8DU8?R)o{C@a=sy%bj(~mu|cmL<ctok-*RrkMMcm5?Vvn;)Lrgr>0 zUHswe497+9>)I3Is~<}JvsiZbZIb`@+q0u*-?$UP`FPuQvm8q+&6c&-CaT3QiF{?W zeYs}Js^79|3CGNXJXY7AoRezp8@yXr;k~Yg;>6ZnEQxax?(ewx{_Wz;>+ilW4!>ts z9_R4zo80m4)LScGSS0V<=)Y*PK>y<ZcW$U(`FoS;_52lVvla+1HJsR8o)`4aYfH&) z**AHwdzMe1w|Qgq?&#<nckdp&x2|jQt^4_llZ|Gpaa!$~_xxU+xKc3xUW2ZSIWIfC z7B9S0{a5EnSzF|W>B&52xVdLoFZseIercN2&D%GR9$WhS;<c~aE-!hl_Il<9{@V&1 z2fnDd@J^YVJ^jR-)pO#*R!(`&HT#=#&4EOp74_ePZkWB_a{I>3n}?>Ab>6vo>&Uuu z410F(?w*@lYX9cVyPH|8w|DQpaW{-ReC}Rb4^4rWo+m#A37_`PnyAI$ynDi-FZI7z zj@dqyJH=5nQ`KnsSrgxl>)EeJPuH*f<*%@*`PXws_Q#ED%LI-YGTB}@ZS?R<eL_)$ zfZ1HZTZzYQGUeEAKA$>MAx-J%zOwCi_v~rB8(XTs<@@aun?#I^XHJi`+^WDK;I748 znqA51JNKyV*`V)p9QSX%VzgzxegDrxx<Ycx>Z5~iA2D}+c{7#WesOE%64+XRnE&TQ zceot&^Zef~=Oq7^+rxt~I@iIYaoxO}_uId3T)#R$=l$D-yVKPgWoHMwEYmbnR0!If zp`FuP!kM;IjWK!|?;+p1%RVojuZwIF3j02%xMkPbNhXeyUaV5M%Qq=R+ER#7)3|*7 zlUXxFtK+V`GdubEe#*W3_ir9N_SBofVA{X8H`<M7PpzN$)jxz8b3j!}R8sTrn&nO@ zFS5c{uRW_>@#~~KGsC>9PwqR4URp97_%@aI&D(d2@0xNp3uT}6HF{|j<()Zsam(u0 z99vVj3m!jpDO=~o(|LWH&z$a>B-p#-|HeCSYsItQ9=iIn?83d^Yd6+vPv21ZGV=Aj z=_S^2Miz`|VK4UHT97DmbJy)cnZ<YSZN4XX>GP};YgPSct-O)4GC8eU^hS|;#FBX_ z_51!^zLNUq?wuVi-T%Lf%-j2;o}r=l`TXP8mPMVsfBWX~eSR`m-j-c>oAv!jS<|+- zhyIgTJhcSOznW$o$uOOgYREPB-{~Ingk2ZYvt?#JI91)Lx%9+^tF_+M<>Ir$LuTjO z{O{piExGK!gStePuI}w8Q|5kKcX|JWO8bZk&ueN|_y3(W$3A*p$TYXFm-usE-Pm>U z_U!2!*TygRbpIZDj=Rh8#`TG1h5nQDqHZ1Cd-q=Rgmbp0*Uk31pFa|IaMzY^DZk9a z?j`>6|8jpxcwv(#TjpUQzU%wf#_BIEpToVX{_`0F_DP<v->MpA>aO-&-n@6)t7sSV zjiH${TJn;wU!Rf7sTt!GaG+{(ia=$*i{jj+;T-xcx-6IH@!eI~dVYdQrm~^fZ=I{t zGaY7xPc%$SWxHSW<^HwWzt5(6->CQ}$spnVU-#`=vEzbPzi#ne{lBEP|7yK!vV2k+ zXrW*)mu<!wW>s(FH?KV(7N56iR-a$N#PH#Y@c(Y@*;<b?tJB5rE@{>=y}5R&xb!Qv z7n2O5AE}-e(*I|9;=JdoQ>!c&#}!RF*!elD{OOxXc}cM!zI`v>xPN!EU$igRWfRlZ zuA--1GZ=y-rXRbqYi`*s*(G<69GkrAN9lR{e%T63v7d!ah0nFOe{{Fp)~UBswuLcr zRzi7nYu=yx{qv9f|M#KL=I@lKCAaSFNfP(ib+@ndpm$JWeEH-n`_B3BF&Jz1OLHj2 zKI>*@Ra0_KIFsG-@;<|46_M{>=ch^v*+$&Ge}8j#NVVnPbie=q_OVQ0da!Jda(c$> zO&<IHEj?i_`1<OHAIIPCJMMM;pM{Umvxn@go{BN|=c%1AGA?}K#FgL3{EtC=!*|=_ znX8N^-iVPD5Ynp&QE=z{?i8!mI{DRoyXN*6_m7wupJ2Yl-uC)_Yo&tvFV~Cv`{&-7 zby7P0!Lg$@0%d`oDV?Qr{dUQU8y(wuY3<)RvmbaX=7<#@%Q5v0O+0jtQPpV2hJ!k# z!e11oa2T1Yo!Z1_BpY?rH@M`Bipga~`wv>RPv%Lx=1E7M{k&Y~@B7yU%f8*y`&L#O z_S^7F{xQ3^Wyhzr%Pjk^<lP+FSKDzDbDd(38>?i^+p@h^PutElEG{l)o^CcJ`uEhc zyl=9nFZSEcJaL)8HC<`5&!tK#33vLO_D@S~iBNz0AaQ|CcWRoF+y>p>b)4_sO|>+5 zGHFVsBGaLr$%W?xT?CzS=RQ3%xBt^DV>5#`2YC&CC6`@iA6smbT=Q0sU+RMTrdLM4 z{onsijSlkqR``9>5o_`9BDbwiHT}C&EdH_H-?sC)o*gg4i#P8VE)IW`IxX@qH|J}| zNhy*`3e!`VdfK<$t6Y51;m(Ec4A1qBEN1fFbz9~0xy=vExa;Z_YQMa<DT*<>r_d#k z@mD)HbM>?{(f*PQ=SuerAMGgNjagcM{?)s!+|KgfFB-ns+p@;U`&5b0MM+;XDPNtn zYnT|WUAwk++T|_W6I0C&Z~4`Ca+Zw3HNAIhpNfTrUuR_S_CC$wbeUati?_%=eyw%Q zah|8YXMo0ytaB~B*S@zj@%djT6!hQv^TPjufxp9V9@yzS>-b_0pX+k$61!G%yBnQ! z+-$P-SgK}-we)p<%{R-ge%&-r;Y`$pt6Ph8wOfmqo^SaOW$7&Ts!M(n<1-0WcM-EM zAKMccw}*<JTAO0@YwOIg`}`JvqraCPTl@T`#V`J??-rks|Lx=dKgBhkC!@*ljLiDk zEf@4$?y9t&2stn8B6uib=c{E-O@@4#?57JRJF$7ZjS_M7H7Si;IrVFD#HEiH5=EK{ z=e_3Z?m5dRf1|Qnsx@6BS?-C-zPO&75}z7aJ7%vs8y?obaCX_o{i|bYCi~sCJFrB= z%v&d!Cx*Z2@rur;skS@f?AvzS+%nVe@5jQ2?e7ni%{<DS^`-Wd-F{BRHP(0D-Lw1l zeYc0P@Tr4uTU;2-)&&@_JvKOdP(k_XQg_Fe9TyLLx+TRB8h1fn=edn2_jzBwoouPT zF~=-Vcz$2`HUCiJqcq{uRZZ7Dt#4ef4Y-uMd&W_@zsC7ZJN9hp+G_gs?~aQb3>WWv z@%G6)*&mlX+G{>Yhw`3V)zx(&ntg#-|Cyv$r+!KK&9!592yMD?_hR>!-_@&HLY}Ef zEYk@RaE-`XyW;)&HII&54QFJy)+f99dMo>$DUS8~x2@ONv@+}O>`PhBU*?xwW!fcj zY4xdtcbe`S{N?{JVV=wX=3jFo{rz&P_}ATPea+~_!gns@c9+hEhaPX&IZWE+8Wzmi zX2{5?&%OJ^8tttO8`?P4-rUZ5crC{Jg@D8E7xQk`NH!U=RE5n~S$Wp>a5F<=oJ+<L z#X}04l9?WFvn^d_@{MuMzq2>eD@$c%=U%Oo`KzzLv-RkXh40!Ef9WrN&z`ovev!?I zqqV1Eb`&`BKH2mC{2a^V|9VT0v~r6Vyt`w$B}#YCtI+j_%J+Sqd&kVo%&g$JY<WU$ zt?cX9uXjA|vo3I*u824q|C#Wn1?L;4?|qZ{<Ii*Z{Ca+y@Avy_-z5L|aooOd|L@)V z4|~Ub5~}%eSpHac{O_om|G)1af3+%VYW3^r`(5huYlObvtJY_Du)Y5G_QK<`<qz)v zdwXBY`k9hv3}5?B)}UiKX%{uJ5;9#QohE%@dDIrQlc#*!#g}CQncoc*ThAtFRVJ)$ zSvxg!&6-v3*RPX3{%Y4Im1BX-cZv(cS5KHc=c>m2i`w^7ci8q-GKPr#oM@M6zV6P^ zuU<tbF2)2&PPpzr$3en9<MoolyJg}t&vocb;tA6K+-kE$ucp_+DLXRNC^j<6ar4cR z&R-8&C46$GNq^hRl@sZ_?%<Q^&*m9IT&^8az9w75nfR@)ox0*Fygf-@b;lLGrM`V0 z?WHEu!#C{N)ARN5siulQHw;a-hAKR0EM1x0oW!DL^{u&H+x7Q>h{%!|;&z6ImS0?5 zpZqav+pGxtLZ*gKdoo|EfSpuW=pVHDzXr#_rW0xF@^p0*D<i);_O`9BFLU@W%vOHJ zmgm;z0~Xf}`U1A!fAvbs@8!|gPp7KRcG$A_x|>$e>=J$+j#8%pIrof6@$acRv+XiU zMHhb4GgOpoy?g8T7xt+)*J)kc&wXygY`I1M^P*KJoK{fS620w-7q~CK>yy#6*T2QX z{@?r2<jQy`fHSt>;hqI4k0w>Ctt_3(SJ4*Y#iGV?syO?+5##e@-MuP>mm>Et&*N^K z<h1Lz&jGc75K%#&3=x6jtLAepVmo9|aPv{|_cJ25_g~uBf6H<GzuCH9*TmQt9{MKz z_{ILEwr10(hhMnR8P&h!U#HUrmRh!!#2K4sNiUi5W3l}&<(d!8@<-PHy|tc^!S3ry z|A${*UjA{s{*U{f$FlDaeBbxo_D=Qty%jGOwikRpYtGDI_w%Ixqdz}C|M>TPfB*D- zUzSdlDK3qi|JMFNkKz@*OTB5ruaEaJGdyw=&V3uTW%uUhbN}p&CVw^Yee0~vp=?qT zId|$+(=}^Wp7a&jej#gRW0b@zop-F~({=itMPzsQKKgI+$ZxOjYW58?71}yVb#8q+ zCH2Tncx9Z3=Vg=W<_By_Do$K|BJCi+X2z%8r`!^F_~@p}xAq^u)UbX2e2_ibua5B? zbIZn8lctAFE4&&Se!EEb_gmXHIjeqr`McM4N$0t|xoHyum^UbNtvPqSPxkn)Ush7T zzF(bc>QeR5rB{-hZ;RWWx;zdO&B;IZ^=-Ut_siUHOW~CxoBA629=BbtpC-HNze9Ub zOCfXMn@5F}_Z#1($b2i^{PvQVyFpyN<u%jm?^cu@>?n?|U3@X((5+okEc#oc))hHU zbK*)g)?((FIPZsn+>USkN!B~^Orpya=ZMP5@aOe=Zo0vLGx*(ci+IT@#y!5f=ZLhw zzTa}kVb?279-cc}{tNt_KJ|CftzYw5wthHrpro3mNBL5>xMH&2Jj>6YC!~Dav~*>a z{nt|qX0;Y-E}7o$9wlC`cK2uT!lwB#7JLV0aJCmsRWX|BxL&luyWyqiaSaZEs_&EQ z&#vMv|G2X3O>*6rSN45dx__Tq#d}l2{r|#$ej>XozGS|tzjjOgRHNDp;|Cv)%OBra z{QN?O2`CjjR+j(CQTIr_j>-PdL;k{#k6iDR-Ol~Cxz~+(ea%ztk5kvzu)eQ2ZvEjw zGk;QT?Onffj1Q(o=N<g@%WB`Jsq1B|9N(8%y(qEz_FXqNe4B~d8{wSgN13y2BeS+{ zsEb*9Z~dC3+rFH8caP8NckGf~fBYt?n5Ajwm|V=t;{J6>E2>H~#H%gs^bz^C*7<si z%h#!@o>=uK@kLna+rx8<cSl^xGQF5%R>bLd#wG3)&#{&hOwUx;HEQcKD?Ev*)LXFp zuUh3lzx<L1-zrbsSF04;#nKdaM&WtJi;AsRuZD7XME_HJsdnQ|P@<0YZR-~=tX_Ct z+WJ<?JUSvOQ2YDqZ1oM>cJXl5@`g`;lft^DV%PkO`{He+@~oy?t*^g4&rxE*%@FRo zUN_}(<=L;*muz6%ViVvwv!-7m`7BrSzhCLai~etvC=Na5lX50|a)>sMWz?>}sf%ac zHehyE^Wm{_7s$N4fZ;&QC!OZ3dUMD0oqg$NzRgMc?C<;k-jT$RzueJ#?nT~hf4Tp@ zO8%Oy?Ypw&?^V9s#^cMhZG!TpZu!8?j1uQP&%H5rF`6E)GMVXwN{jB=XKGI;9I9nM z;d|}u*Uj~tInU4Nb^P8u&(g_dqPDa2tLrw;I1VXX&-dN^HGOIQ<bX{#b8e=8ium<C z>DJ)`S3K;ceyN{oPP(xC%vtmMJ^uB-F8?_H|Brvor^)k=9PJh_e7$!2qf1M@cT{{- zVtDZ7<>j64=h)TW`uFzH(Qb><S63R}&a)~#RhK4Ee!q5mZ*+Wo{PC^V<DxG`A}+Ra zRpkCPrSk9V`26_$1&4Vp>i^lqeOV;_FnInik-VKx#TeMbPcE5atDVmtezD5_azB5~ z1LlhRzwf2j-@kQBt9(-2g|#yp6)%Kc-*EB3roP9CJ*!3DGF-FD&QOni9e3qz*;}p@ ziMFz>#(77|o|>N&V!1QLeCD#({gG4W?%jP?<Hx!<n+F^vHpMdL2X=1GF=UgTzD#Ul zDUW{oJnOmf_f$haZl9N`Dt_9Gef6PpoZI<b|LoYiEulx*#PEst>4ZCx`bL@?%ic&Z zB$Vg#%f|L?xco9gJ9P2YEmygwg-sJ=HxycUXVc>ik+YuWe+jLb9-lPtOMXny-+xE0 z+e^GD4P5>-JbS{mO-e?IYxm4)FJAlq<BSJwAB-Q)?s?<baAJxDSH(HkxrTYV%?(=~ zG6z|8FFav1`=#xJbw!Mq^SJfoO73iq-tzjXcX7wR-m6m!&lhXNuYDNs_jyds+~=nj zE!f5I{myfn|1!L#Hbur^ahVNT%-OdTPPbgmnda&7GU<}y9PQmxF8x&Z++Uw6a3|tH z<vu=@WDcLc$pMFMJeO#ejc*N1NnR$M$m}TarDBinxvigGUfo~GXD-DXu9(F0xBJcw z^%CpIg1^E~orJ$gZr-z}M>=l@W54}Bi+g{bnKK83ecGIU{?>V$-)}ZwTUGb$jHJ!y zGsf)OKHn)mFS}vS_e&Wjb9SHG5i(u%-0TGm7xFq3`2}AcjFf2Gc39-BTGY%9A3HL) zbHChqaptYtjsgnCU!A}26+Us5X>Q;4q=zR@N^mxP>Uo|0s=i%u!`B?uLkbQn*iYDS z6!EM4F4h00dD>{IJOjg|KOfIOfBa%XcR&!U;W5Uv7=^<Un-t&J3VgWGmZP(NO_ca| zzun2^7dnznqO+RrWtd$Ne82j9A=~Vb6&b(#m5&E)={GEkU|Cy#S)SEq!(Tsv7PBYH z5{v4ir`vfdOm3ch;OCY95<Xi3p6)eiPLNaJDE%?XJkq?hb!ovvle{Lq-2L;_ICJvf zo9|llO=^l1v#svm>UaOzU*1>Sa<x0~Tl76k`DOoGuh;cYb!zRJIpd#%_b&c?J>A7i zf4?&5N#t6}sW@S&nqW+uOG-l8MQOd?k!+R*k_y6UHcKC$*()GZJ(uNxZ{<0IO+V9S zo%a3C(<!Yb?;<LEVxqi4a?Lgl+h660W(&`D8utAYo~!Js_9o-&Uze2=x_|e)EV23l zx~^_>`uRt@Uavbm(>T50|KIPo_m}UEwfS&>dB@jl(Tohw&(A;p?3voWZ(G;jJYVy5 zb^Ot1&zAk=flq-O)=yxqJ@x0_`@eGcejGD@#HwGxIIs3wB)Cy}?V8xVf8Vw@8@BC! zw~Jf;=Lz=@kHq&&=+}Mh{y4F}hQ-_4yW(~9eJ+L{FX#Wu-1Dw<{o(w-*YY3g|No@V zxWXuV`~AA=RLMJx)8D-e_`Z*Ga;l^^^W!_acCatpJmW}Wi$i*IYsk#oy{6{e%)6tv z-g<dQp*bX1yEkaIjB8f8LH@y#M#=9@J64~Ta858%C{8uyVNO2yXxrT-&z+VF9k0B( zc4v0XQ?27~19g2iPk*#?t*(rXL&jHmr7425)R=QblrCLY=9p`0-X-<zU*{u^jo%bH z4+{i&m7ML`A0FnubAi|nrnsctN1L7=vS~7KI=qLE>Gi5pmfLSlJG6OG0Uu}Qft2rG zjSl?$6<!?`)3uB(<;-2?Guidoj@NHaaJA>QV$h5E?XB|8`j_#()tRDaoGp$!&iMP? z;O}iOmN<*azwU0af4N`$a$2Imf`#6(>(;M(@MG7ipv{{$HTCkoy?NqWPTf}%VF9Nd zLK*YcEh)KH!YO_)Ls-G-dE@6pg$g_W`iZo4Y}NjK$?Nnq(dfJ_8<zAN_9RVh-PcsT zv@TJp@-O?c7@g!YAIrXfxw8!`k}oY@S)Wvt(PWo8ujZ5Io~OF`2S1;;?_a%spVam{ zMci^#FBJEDXw_$7`19}mf4gtrzkl4l|M%`2H*OpNRSCb}?LL3afxV&rM|=H&>U*E% zX21RGn_net_p#Ie%##|1CvqaL0qb0sx%hSHTwdo|*b?C%a$w5t^&DHftHo}fo7b)v zZ1kKbGvUrLo9UY;JZDRve8$wR^Si!qWd%zK=Z^Nt_6v+mw;KPQu!(<_!i$*;cC=5F zbSXF%lc6V3A)sKe)Z<xc(e>+hx9oVfwr=l12NBi@9D=Vn%SBwTEj>5?gnMF&?b|~d z4r|!O5=9(6I(0(pMU<L(s{Yh)Cwz<ix>P1Jaf3nSUup4I23(3cHe0m+i?ZC&HTyZ) zaPN%_r@RN#Z9aY3Kcib(uJ+FV_Bz-9PkL6fI;>y~e|WTh*T44W;&)$Puj||O;g!Sh zb#Hoh3&_?lu;D!XtKQmCEAeYy)UWU2Yxpnk*WP)QKSTaN!C(Dd-)tp5g(@DhICg21 zR(0jotKpBIJoRR1n0(&8`>eJ!L&M&^vC*frxs61f@^1TBo%Mbh{(hUs*5s}A%l2g_ zuQ<%GQ8W2=R)TBzAB(y-5`Ob6I2kO;{z!y{UuR$_RNf?fX_I8B;Obu+`7ikYU-qc; z!I`W&oxiuAD{uaOIq<T5pv<fV{xhrJ?R<V=zwxnxhlf~Wb`&H&NcWp#(YXKr@BR8e zPat-UL^^?X0rFXCOi#2lw_h7wy7+12Wo4E#D$gf8uxSvnnmKK{>&+c@ulf}^rn1IH zhFnR1v}56#{r9v!t3+)7<7{T2zpn4vgM%}+#<>Qzm|T;r*(}1y|K|RV_us?{45HuP zy_z{ya`UPOIt~J?9Zql8o$X$$;(xpO;JfYprmJ1}%MH#69y`T!FGo+YOKJL-3G8M0 zJ;g4!geEOJl;+!a=tS&(g@%N4zZ5o!^hWH|GdfnC|BzEcvHI$qSNC@Wr57^KJj--0 zRF&z;WZj=x2EV4S+_uc+++LH8LqD(mmssc4JSklEmu#NS+B;R=sT)7svfpq`d!4OB zMTU+19pMgc#)*>L+jd(y3arSv*|1eZ?BRv%2P}r-25i}1<(Ab4zrT6jY3;mqw}R6< z{;hQ_bNbu&>CReSpS#@ujIV|)vn>3>a&GSLdWMF#z1lZ!-ehIivOD&=n{`0gr;x}i ztzRa&c|NoetvZ%sHc@iR_Nm|QWST{rU3~HJ@$te>S)uE`pSfwg<JTKWh65{u(>Lzg zw5ZR#PkZx%>z#GK&VRX~emcmSPuBf^kT~z7p4*0RCtkJ>l$f<ZIJq!kPS_)b7Q-~- zd3w606HDfLFX~O7CS)_ALG$S&{|l1meHStPojIYn;O)FyIVN9Hj`MElF1X>4%jAFF z`TOE+k-5inHcfX6Oi8|fY0B#ev(E)ZdixT7e$)_Oc7$8t<vZ6R(PaWh_1dl&yu5kl zlVj-BL)^({`1+<#kM_8H!<TF4>8l5t1(d?O+<6}`$=!&sF!h+s(W`CtIOF9Fr?1<K zZsopkS-ND|tZPe5KnEHum;^e|V6D{O)vX5({yP8VheeX&l7Bb$ypBKQyQh8q$)56y zp>jgz6V1Li2q<0um$zWeqmzGscHUeZ{#9_{6b_}Y3k|vi&3#(=*ExH48NQGTxoCaG z^}iY0_2?&`^FJqomeC$~BbMo|xZUpY*2p^@7ovjn-W~6k4;Hmx*z*1R#ka50bJZ?n zZDU}Vewg>ooBYL_m)lM6<e4dV*?~iv`K$!<o<Cg6rbsdMxk)U%7&Q6p)v2Lt)~;n{ zI5)?(^>S6?1J?BQ2WJ*PXJA<FH}}Y;SzOC|_R0uM+mtl>*pFW(zpWP6Ylg%duKcGw zP5w87h0!ndQ^_BvABX2GjwC(>ZmU3Pi)6Fl(#<!WR;;}jROR<2XqC=#wauD)Tw{Oa zooJY7o^9~@-i-{iQn#C#YwXTlxL(Mlt^YZ!qgRwWAWT=$XvXJ{v3I6^J)P@Z@m{+8 zyTSvG!!I1f(*7RY*k62Y%3Ft|ZO3;O>*wm~Dqr0ia(7=zH5aGml$l;0FLihta{bR; zG2Nv1$uU9K*z)i63xAq<SF6sta6Hk8pMCNF6Dmtuyl*{!J-_f-<z$&F`!k~zmzJJh z=lB2e>du0SLz{{Y&G}Q!kifBH7kkT@@Ah+cnuVNaNKP$2etb_$ap05f`>)lz)}B9O zdq@4vZ$_T0`*~eIl-TwCo6EYX=bQY&rO9FyObG?^%o+JFW~|y48x?nK<7z(!2BV2L zj5(d!mh0Q`GDO7H@y(t+edE@>Ywf0|ow%gOF!$kIHQv(B7Yq&A`bXR(l2ezqPTiW! zFeUo;N8xZrhIO{pynb`SIv=jHE0j_9Uv>Ss|GXoYCe`_6a94?L_gva}-|OQ3&o2ab zX&tfn^<MTjgN4;EbuZ9X*&91J9W9v)tRtT41s5%Tn6z?}&gQubrkvX9T~y!nPL{to z@`$Ce;o@~JK_V-IB$t+DUVfwA-g{iV<G;xd;V&18^MfTPyWTGg+ds2$Q_0gl8*!b< zjQ6Ino%RjrGHRX_zm$K^Z(qM9E<$Z_ow7GJ^!Zq9FVl=oi)VYnCcw!5mPM7r>2;DU z%e!0C3<Hubd%s-wz4%7D+WC&eFYh<iT9<!u{B^zc=9h<>e}C)Etb5v=^`$?m=X{r2 z?T^}C&f-tT0rENj<)(*cCOKGIOuzTN)a}!S)I$BOe;Z%MHgkQQpZ(wYOa5=}XX)3= zA{p9V+M7FSdgVS>|Hm`8^1Nf8hyS&xwW@1g-zehXWDJfnIQELubm6{NPeOP6xx==t zY&!$PUB4!sz<2L{dvYyfvJ!Atv<R{GK6c^4)63JQPcO(R<;`9mvgYT;t)X*vc;)^+ z@^STsGM}lH(XnxdZmlY+jgO6WTfH*o5p(tY9c+5*PpSvJ)c79h`K#PHXr6Yl`Ko`_ z$L$#UCj9H%1llrTm^x+R$B*(a>MDf<Q_5V0E;O@7CmpxuI`+n)x7u?q)4Qp=IJ7p* z<GDE{{`KA;`}pd;rcT}9ubVXE<h-u8+n+1gW=G}!Sz11C-_+RHey&q%WH;$<KNR~u z$G5KfiMl$Y(dMf6bDf{PjQ3(JSKm=8ELYIdxcatK%TJ@wr*X~B|3aRbN+@#ddJ*?$ zlSRTEy-%9@^FDrkf8T%eh5uW	u4@CeA4tk$3R?`}#9amQT;zwqJS;|BvdMZ{ykj z-uAv=&sG-k+u!?l+W)ODe!nfg;CmtU^52>4GCtcYWsY0a`S?y-KgXt7yE^>By}-$z zw#;5I`_1a>D-Ad+1WcvYv83>rD4QP4+d6H-mTgT}Q$x*iD=S&Ecg4IfTHRU^8F^}U zVNaU#{ydXCDP8RA!z-`nH@)SN{LP^H>i(41sf|}JKvJ}*4v*e}8|@Y{DCdAlIf#`k z3VWinV`5?clXFQcbax&OV=LC49w$~&AG&{uvR+}dvVm&3*D;A1nwp0`PwUt-mE~Q7 z&FMuq+v=7kIeX`PFWeR??R`q%PqEQFImfi5v#qgv`Inriobu${*&WXsl{uJSw;p27 zi=RHfKGEv?fh{&KbLB;5)CUCofBM~eabC8ZuI9C0A_fMPAAazkezm6OHT(a#y8ZT2 zsoUyhztji(W;jqZ?dZL?Gp@Ub{{J`Qn2EoLCxh?reH$ChA77Yex%<_s)fevFc8}h@ zHT^D+lS<lRkFPT{_?!!5r9|0e3Y{Y_Jl1eqEU0|#+DA8;g*SuNKi-k(UCK7+w!i@c z9$WsdRcoG4He8!wmg;(a|Az#R`}|)n*RTIpeP8>rg!|t+Hedg`$jw?Hymd+WCZ$S$ z^_%$)4Ej39r3HTIy<J*5v9CC{n1Mmqz|+MsBsD+ZMMYZ7^v%)zQ(g8SochJBd(Hjd zD?T*ZT`a3Dy)u2yyPe+8jx8-NlUnls-dlrn#V60K+97vYc1!Q3^`F*l?kr{FD@^_V zwf+Rl-Vm{f|9g3)?wnKj>e9Dy{aW$5(1i8Mb!lF|zRz!TR(rA3@S|D!!un^f>Z|YP z^a-$BnD<0$%Hbtjd6`V2SBXSVQ}ejwvU9Vu`m17QnXMVz3QrcU-gIo|><V{5COIXe z$@%($i%zyLG<(`3S@+}e8nLZx#<qWdKh$Q9y~%&E{_n541i9b;7xQ5(C<yG(y1w-H zPEJM%%i#3V)%zbm->0YBdFjGmhxf}b<h98kZ`d~XSl4ft>=Qf<h12IYPfdCHb>j9p z&n40v!=+cgsp{E%caLu7rCPCHRV%;P)|+{rH#oRY{ih%2FZs83mL;#8qy5_QjH&jG zf2G&<n_7fbPY}L+e(S&GH^0yRAfCRzWafU$WV4!vqk4w%S2`|w`EKnKQ93)}WtXgz zhk<_MqMLfp8E0&~)6~eSr#X`=*XU|aOepiYPvtAWUb!?c{9kqHLcexn|6kkNty2FA zgZ7FBcFer<&iU>h?fZYfeD~aH(#0?F?84>j2bTVs4j0O=PmXDC`n)ahdqkIdq3_J4 z|7QOGd)RLKfw%E97QMAU^;~SnU+;_md2Xwf|C!S~yUTdeZ2>z?<`V&X#f*Yf_q|D4 z!(hz4P3FV&+BMO;ZcV($dO2BD-{(kmUPO7$d+X9!EYim;RWAKcls*vCTg!p6(J2a) zAqBDm^Z0xx3ma)~*MGTlgRJYTXL;^E(=|o)SLklOw%=xxZGZB#>kVJ_OQg@|zHO|? z?{n*e@G%viz14hdn$6A9hWFn}r(XVSmz-9-^Sfm8>In^hb}Y&(ubO|@K1iqQTjxj6 zW?8envTc8T_1=lpUYq;mhT(qhkhtV)x%a*8<eTIYUS97$qqF|-j?}LWKecqtI&Nmy z*Id8un)ToF-2O?675?gr^lZGds9LYQr_g+Q(9a#u(pLP_k^c6({r#H{-#>r;`D?3r zZ*9k7EF1mA{)T5S{jTpg#U)hog!&l`JCEP)2OHwdw;xw_Y?b`szTH4Jmp#}h;p_x1 zsr`QUSpW95R(9@5$$zv>=(cixkNU*xeO;^9Uvd0@qyTgPSnHc!w=c1qB<}ujUg$GR zIr!#=Mqjb+i~9TxEWw4%ucjYuJysCBe3x2$%0i)TC(~c+cYpiq^V-?&<*W3Y65p8P zC)GvTyK(y!GkyKb;-L4A1wM8W$PL<(vH185Kc2)@y+<6Dowqw76w5mEUR>wx7?%?p zm$~`)uKrx-A0nFMe5R-M&FaYi?zQKt{2ofNh=u&`2JLcwto(U@1z!lamFIfLcC$c@ z7fErwi+qIY@1-l(Zgc&}9jdr=NzXP_!+HPu3ucFxyqf$)V9Ea?jivAPC8r7>`ZH<z z-1xZsH$l}ohR0IWawdI=pJVlEz61~G3=_$c$(PUC&senar~6*Ms<{$1x}N`=7jB#B z-=)$y`*U{PmF|Aw;N%N;Ci7O<UfZVrN6t}TGnO+B+Jdf337V&xxnlL=m^qWmj|KS7 z%PmcqRP8WLs@iVS>cufK_Hvr97uQ~WKjVIz%#}kbG85wDO@4Db{!;HVQf{r(>G+rV z#+kvyQN3g03=O_ji%u4;@7^lEcw5AaZ<AGdCy1v#GN@IP)Cs?O$9?&f<decj7A2Z} zdmXpZ_t`z|MDednS<1g}D)Ig`zogiG>0Pnui<i_cII^+-ri5WQ=2i+9QJ;%fyRNym z7ng+HTb=yGrS;0St&4O1M(dtfeDS}>{p^HE?=RaL2Cw+rxtJ@nz7BkZg5&;kd4;iO zUOP`Ta{khw)wyr!Q;+|b6N3JRul>8Y<g7Yp@uGdpWnQhSZ(1=+DfOAh|IfS_MW3Tj zi|3>(vsd2QTfgLt_tZlr*3#nH6_Tf?eAZkr>yF8OmaX+$Wfs+^`Mz~Y{8RRBdHvk| zXSBohF0TLka+gTc!O96YdODx+vZcito9+0!@}auI`ucE>1gF2(zX(;d*FX4MS9ZDZ zp8S^FB)NjW-va*f%ly7Dqa+UGe4ir=4(jnXomT&!F!9^`JJz-L)K@(g_<Pw@V`B5$ zIoB)wmvUHUNcde}DzG<qdi2y!O?GU%rUX6qZ+r9ou|vB3_g~+&_C1N2xi`j){r+|C z%l|aLSKrT@9e8uy&c)|%9N+ii;{U{3=j-Rp5XLyHg)>R)LROmN3dZMByJ}b!y>$zx z%*_A$d^OV!mI|$&rN_0GJ)hmMsc$z+!kOy%vK8}xt~+m9SRy`i##hBNmVd7p%HL9V zYgc>G(pp@!VutFKf16ux)q{?U;LG}b)9I~!^oqaf+*|D(Wm?{GHNlsju3$8Av|r?* zxpC`O)7OV#!bxrcXTSV%6#k-o>f1N7b$h?vij-%A<x}IN>gwui?G9fKsOZj?@mw;c z;?qg>k4@rx82oKMvRu1<J-ycB$ec}Ex3*@l-z#SS?_>YQZQIOVA69%Oa7iFg1d7={ zFHzQ1-L`#u;k!GQr&t4wH9YSKwi>3XKYjiB_15<;9lthj+vaAa#N{ZZ)a3-hrxM~y zT-bJ1Ih|HTDm9ohn*1O~KY>V7g&hSC54A?hvlv=8DI8cG_f@M!(bZaDva=Q39FTdZ z8cJM5S|=SrOnSKRDu|b(h78Jy9jKe=QO>!MauEKad}jXNoAV#;dcDqh^UWi^=675E z|9k&`-d9CI(}&*izl6ZUv3GVBC-gjw|MxV$sD66TqeHFS7Ul0`qSlJVeO(p)(E9#Q zzjwyc($b)%2OIY7>-+k(^iJV%*&RhsPnq~P&rmGCUu$0X?s*;G>eZ_)N?(b9#`GWm zzW=}Oo$*{h_V;z)cNczo;;Eyr{}?pfH?QW?$vf%uDjsp}`PiF(<kKf3zj-#D-}gMX zeNndivW;kx+n=BF|69iW`!qc{H<vd%JKLiEpUuC=_Wut5oBPGN=k(q3`@F{_-tBs= z_gn5|hs3c~Zt(*Wr~lSJJ0tnKTuN9l)ftpR?EinZf4pw@yF={uKOAj7olyR9H2#n4 zo_}B09~btwF?{W;oOR&cJH5O;AKhvm3D1A=`#XHign!K=;UB-Q@9#5CKlfnk`dZy> z+qb_>zxV6f_D2`p<&W<Dey_Xw{a*2YyI&gbc0BIOoXcdGELZV>anI}6_lKPMZCif7 z-!Gpz>(RE`d57P<Tle=&Z28^R^R@4acRZh0{o$#8y`;6Z^^U*aZcj{=1l{nv=OJ%C z$SwQ+Jk@_Zuln7=bi2=zd;b4@KmTf`VDOV!+3OCv+y4rzc`SYZfcd_UynB9KU4Lx- zzgO#THR``?muO#K|M&He)%$;G@A>mo|NLHmD<!vwsruED^Xh(O{{ElbZ=3etEm>(% ziAtf$&!6-ESN=R#zR&pkJ^#N~{7>5dXttkmQBbgywc*d5=XUA!;!Y=w)6bpgulut2 z+upL>y4SB?e;WViXuOB!(m(IY_iHnrXqT%xQTOa1yZjV}C;$JP|L^nuLFcUxZ#JLz zV))d^E;k{_tMch7QAyW{d!Em$ev>}0>Xqh6%jw_mRj;2CbgKUU_xkB`iho`S_P=@l z&t?0+lXFa@ii(Sicd0vEX?lFT|MdQUulK9{6-eH=cdu^zpGV@Sf4|=!51I|0^1k+c z_0lO<_yre#T*zPRaj)WWZ!OqoTqm09SYDRxuK4k=z3_JK_NVvuzuk8G!_@UPsc!DB zXSku0&qwFfN%gYD{X7*O_1EUdgXW0%_~U2I@8{STpVr-;P+L3Kq|D{!ojWWHb1Vv( z7(RSB%&+V@X-?m{xz_Ek*YCGmzWDX}{c_LG&D}iz=hXP0q9s<cHh(@G4z{UEx|R~z zR{d@#`|jPlL5cNcyF_>S-q*1eho$c|fU?y&aHKqiPL3DcExrEGyza62hi3Ud3=F-U z9a$XdwG2nTRQ~(<d}6Ak-+a5d)&IY|yu730<D;Iwt{LJzZoghWcenpF@$Z?H!OQt- zzF%1xykw(t#}uLW)%SmY;NJg%d&j?DuNgIZj}-PiKHmS_?)7(Pas4=(1)Coq?^o_i zzI0LW;l|@~hkt&4elc(R#!Z`=K<V+v%=tehZGOF2yhJ`p<=xKbay6f4-#>DF|G%%y z^^5B|BwA<Z?~|PW@5}O!lcw)sIdAis$L`NV{>Rs%^N*JA`z$LZEI1WZ#PB5ReBV9g z(}8Lh!;ZvXFPE!cx^eNzIqUaFw(t9@Tl4dDyxgzIOM(wSUz)y81e9sk#q4Z4U-Qhk z;`i<Qee7}-2@jro+P9qVum6+0=lkCGM{B>|ZBN^5`RTidd&~LP@&BuS|7w%YJMi=K z^N)+f_j1htb!B<MY2ED%3k(GV^`1PcW3jCKq|&5du_5dGo6YCtA{bRV;(VT6I{c*= zHj}vT_nqSN6OZ*tfC{6J>;L~+|KpJOzJ}~|JCE%Hl^Z3yV{>wHp4i=Ay*O@eZcdJZ zr_iN~f{J~~f1ddNQ;GZ775?De?)S%f&F^*C|9fn&_E$jp<A=lik8h^WKME>S4R{3G z6hTG6pOf?da2_%^^78U>Pxm7?KxH1t>5u#E{gRay31u|Zv2;F`Fuz+O{BHmMe|LU= zzh7^kxA*HcNm)@t{h0E*r544{eEjV1=85y$d}z3O{^#fC8+Y#PTwnV(`<rq6-&f%q zckc9*vR3lYEPOt<{L$w5e|7%7-v5vLdTe>@yZ0b-7ipY&`QqjB`Ny{J|NC}M-@d<Z z^B=!lK7ZT%o$vSk1})3D>}&4(+@&K*ajDDl%ZebM%(}jZt>5;Wgk0^Hz~BG1<34ij zd7GQRdA+CmksT#gvNi9k?;pOoIX%<ICFHP<(PhES&*xRYn;0l^a{tfS`zPN2`>y<H zZ24W)>C>k_1ywHReqHF0+OT)8u6*Sa!Jj9T`#l&wJ(mB!qvpv(_b2^zUz9bMPLcon z!u{#5U%URiNw?RQuYP0rbK3SjuJdfG!}4--Z{~s~`6lbv|2+M)ncq%BzUG5t<zZg) z6SwpC*M=>3@tJx5=iK`fU%!6+sXPA9qMBbXm%sgAU0wan_<hZD>!+sIW0dXx|2%&> zzwYzwPgmF1ZQb+nm~`r_WkFt=mrbT#kFVcbb2d9pdH>I|`KQj;|NH!DR`$Ay<@YL| zukq`ip(Ov~0Q-~a`@X3DJS_h&pzd|_{Yju1D-Fx%pZ5KJH#ulhUB}4}n|FA7S}C=C z{`Y-<eBH<H_$l^34)Q;7=C@VJ-~YF4=dN8@$IqCkDV=Ild*MFA{_kb`sroe!xl?71 ze@d_amY(}lxe1g26&PiH{C}HYzk5p1RMDRo+U-=%&#_dN?rr<CH2#<B&l}18Pq!7m zyrlYb+xES_>(;G1b@gf}n4OoCbLK%#N8|;6dxj_X|Gm9`>-?Md?@wF5-xEB~qR?qu zly2qkx7$yv&#O?{J{J_$pLp{tnsc^BeLB)9{OO$a`zdeBs!ydmpJ}@P=j{D0=U1#= zzb|UvGt>1OCl_ma+8;^z;&;K*{fI%`-|O|UpjdIc_&@)CU#0?E5(9^ptB1^*$8{BR zwE7<`%`v<@t08>a`^fCG_o~lX?%z4LqkeZ<+P<B4nHd-u^zC0TFfa%xTwr8iP;gkl z%)sE#;K0tn(7@2h$H2hA$Rx|az`(>}#lXP8!coG&z`!9es$qnLQU$}5|Gv|`3TKrv QFfcH9y85}Sb4q9e0NgV>k^lez literal 0 HcmV?d00001 -- GitLab