diff --git a/Experiments/experiments.py b/Experiments/experiments.py
index bab104ebe8ca2ad37556acb98939c91d76ba9c7c..e9d9f0894c35aa116e1a5aa5a787614df9859574 100644
--- a/Experiments/experiments.py
+++ b/Experiments/experiments.py
@@ -2,11 +2,17 @@ from utils.load_model import load
 from viz.visualize import Visualizer as Viz
 import matplotlib.pyplot as plt
 from dataloader.dataloaders import *
+from VAE_model.models import VAE
+import os
+import torch
 
 
-def viz_reconstruction(path, expe_name, batch):
+def viz_reconstruction(model, path, expe_name, batch):
+
+    file_path = os.path.join(path, expe_name, 'checkpoints', 'last')
+    checkpoint = torch.load(file_path, map_location=torch.device('cpu'))
+    model.load_state_dict(checkpoint['model_states']['model'])
 
-    model = load(path, expe_name)
     viz_chairs = Viz(model)
     viz_chairs.save_images = False
 
@@ -24,6 +30,8 @@ _, dataloader_chairs = get_chairs_dataloader(batch_size=32)
 for batch_chairs, labels_chairs in dataloader_chairs:
     break
 
+# torch.load('data/batch_chairs.pt')
+
 path_to_model_folder_chairs = '../trained_models/rendered_chairs/'
 expe_name_1 = 'VAE_bs_64'
 expe_name_2 = 'VAE_bs_256'
@@ -32,5 +40,9 @@ expe_name_4 = 'beta_VAE_bs_256'
 
 list_expe = [expe_name_1, expe_name_2, expe_name_3, expe_name_4]
 
+img_size = (3, 64, 64)
+latent_spec = {"cont": 10}
+model = VAE(img_size, latent_spec=latent_spec)
+
 for i in list_expe:
-    viz_reconstruction(path_to_model_folder_chairs, i, batch_chairs)
+    viz_reconstruction(model, path_to_model_folder_chairs, i, batch_chairs)
diff --git a/OAR.2066986.stderr b/OAR.2066986.stderr
new file mode 100644
index 0000000000000000000000000000000000000000..0bb03bf57906dfc4031825f7fa552cc35aec1353
--- /dev/null
+++ b/OAR.2066986.stderr
@@ -0,0 +1,9 @@
+/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: 
+    There is an imbalance between your GPUs. You may want to exclude GPU 1 which
+    has less than 75% of the memory or cores of GPU 0. You can do so by setting
+    the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES
+    environment variable.
+  warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos]))
+/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
+  warnings.warn(warning.format(ret))
+## OAR [2020-06-24 03:51:26] Job 2066986 KILLED ##
diff --git a/OAR.2066986.stdout b/OAR.2066986.stdout
new file mode 100644
index 0000000000000000000000000000000000000000..d44df1f0e4627fcfca61ce3f83ffa302f875433e
--- /dev/null
+++ b/OAR.2066986.stdout
@@ -0,0 +1,1553 @@
+Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
+creare new diretory experiment: rendered_chairs/beta_VAE_bs_256
+load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
+use 2 gpu who named:
+Tesla K40c
+Tesla K20m
+DataParallel(
+  (module): VAE(
+    (img_to_last_conv): Sequential(
+      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (1): ReLU()
+      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+    )
+    (last_conv_to_continuous_features): Sequential(
+      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+    )
+    (features_to_hidden_continue): Sequential(
+      (0): Linear(in_features=256, out_features=20, bias=True)
+      (1): ReLU()
+    )
+    (latent_to_features): Sequential(
+      (0): Linear(in_features=10, out_features=256, bias=True)
+      (1): ReLU()
+    )
+    (features_to_img): Sequential(
+      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (9): Sigmoid()
+    )
+  )
+)
+The number of parameters of model is 765335
+don't use continuous capacity
+=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 4)'
+0/69092	Loss: 211.825
+12800/69092	Loss: 211.804
+25600/69092	Loss: 206.202
+38400/69092	Loss: 202.006
+51200/69092	Loss: 200.623
+64000/69092	Loss: 197.778
+Training time 0:03:33.530106
+Epoch: 1 Average loss: 203.12
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 5)
+0/69092	Loss: 194.363
+12800/69092	Loss: 193.513
+25600/69092	Loss: 190.886
+38400/69092	Loss: 189.957
+51200/69092	Loss: 188.767
+64000/69092	Loss: 186.445
+Training time 0:03:35.633651
+Epoch: 2 Average loss: 189.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 6)
+0/69092	Loss: 191.560
+12800/69092	Loss: 186.911
+25600/69092	Loss: 186.547
+38400/69092	Loss: 187.360
+51200/69092	Loss: 186.168
+64000/69092	Loss: 184.956
+Training time 0:03:34.640039
+Epoch: 3 Average loss: 186.13
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 7)
+0/69092	Loss: 188.289
+12800/69092	Loss: 182.612
+25600/69092	Loss: 181.754
+38400/69092	Loss: 177.558
+51200/69092	Loss: 178.641
+64000/69092	Loss: 178.958
+Training time 0:03:34.619088
+Epoch: 4 Average loss: 179.99
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 8)
+0/69092	Loss: 176.130
+12800/69092	Loss: 179.349
+25600/69092	Loss: 175.271
+38400/69092	Loss: 175.914
+51200/69092	Loss: 176.593
+64000/69092	Loss: 175.448
+Training time 0:03:34.581288
+Epoch: 5 Average loss: 176.39
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 9)
+0/69092	Loss: 173.057
+12800/69092	Loss: 174.321
+25600/69092	Loss: 173.044
+38400/69092	Loss: 172.272
+51200/69092	Loss: 173.259
+64000/69092	Loss: 170.322
+Training time 0:03:34.404385
+Epoch: 6 Average loss: 172.50
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 10)
+0/69092	Loss: 166.655
+12800/69092	Loss: 171.300
+25600/69092	Loss: 170.458
+38400/69092	Loss: 170.805
+51200/69092	Loss: 170.232
+64000/69092	Loss: 171.220
+Training time 0:03:34.964220
+Epoch: 7 Average loss: 170.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 11)
+0/69092	Loss: 178.479
+12800/69092	Loss: 170.169
+25600/69092	Loss: 169.556
+38400/69092	Loss: 171.901
+51200/69092	Loss: 168.732
+64000/69092	Loss: 169.240
+Training time 0:03:33.828026
+Epoch: 8 Average loss: 169.95
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 12)
+0/69092	Loss: 172.547
+12800/69092	Loss: 169.826
+25600/69092	Loss: 170.576
+38400/69092	Loss: 169.827
+51200/69092	Loss: 168.754
+64000/69092	Loss: 168.303
+Training time 0:03:34.457471
+Epoch: 9 Average loss: 169.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 13)
+0/69092	Loss: 167.148
+12800/69092	Loss: 168.280
+25600/69092	Loss: 168.913
+38400/69092	Loss: 170.169
+51200/69092	Loss: 168.747
+64000/69092	Loss: 168.010
+Training time 0:03:34.634507
+Epoch: 10 Average loss: 168.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 14)
+0/69092	Loss: 177.245
+12800/69092	Loss: 169.183
+25600/69092	Loss: 169.266
+38400/69092	Loss: 167.712
+51200/69092	Loss: 167.721
+64000/69092	Loss: 168.102
+Training time 0:03:34.876272
+Epoch: 11 Average loss: 168.36
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 15)
+0/69092	Loss: 176.615
+12800/69092	Loss: 167.388
+25600/69092	Loss: 168.006
+38400/69092	Loss: 167.276
+51200/69092	Loss: 168.548
+64000/69092	Loss: 166.197
+Training time 0:03:34.165047
+Epoch: 12 Average loss: 167.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 16)
+0/69092	Loss: 172.005
+12800/69092	Loss: 167.224
+25600/69092	Loss: 168.013
+38400/69092	Loss: 169.018
+51200/69092	Loss: 166.406
+64000/69092	Loss: 166.123
+Training time 0:03:34.981962
+Epoch: 13 Average loss: 167.29
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 17)
+0/69092	Loss: 168.780
+12800/69092	Loss: 168.028
+25600/69092	Loss: 166.477
+38400/69092	Loss: 166.556
+51200/69092	Loss: 166.215
+64000/69092	Loss: 168.803
+Training time 0:03:34.777682
+Epoch: 14 Average loss: 167.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 18)
+0/69092	Loss: 166.192
+12800/69092	Loss: 166.410
+25600/69092	Loss: 167.980
+38400/69092	Loss: 165.740
+51200/69092	Loss: 166.931
+64000/69092	Loss: 165.295
+Training time 0:03:33.907632
+Epoch: 15 Average loss: 166.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 19)
+0/69092	Loss: 168.910
+12800/69092	Loss: 166.387
+25600/69092	Loss: 168.154
+38400/69092	Loss: 167.979
+51200/69092	Loss: 165.611
+64000/69092	Loss: 164.256
+Training time 0:03:34.308635
+Epoch: 16 Average loss: 166.37
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 20)
+0/69092	Loss: 153.952
+12800/69092	Loss: 166.799
+25600/69092	Loss: 166.583
+38400/69092	Loss: 166.714
+51200/69092	Loss: 164.663
+64000/69092	Loss: 165.421
+Training time 0:03:34.306057
+Epoch: 17 Average loss: 166.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 21)
+0/69092	Loss: 179.877
+12800/69092	Loss: 167.473
+25600/69092	Loss: 166.346
+38400/69092	Loss: 164.610
+51200/69092	Loss: 165.784
+64000/69092	Loss: 165.548
+Training time 0:03:34.278194
+Epoch: 18 Average loss: 165.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 22)
+0/69092	Loss: 152.548
+12800/69092	Loss: 164.441
+25600/69092	Loss: 166.865
+38400/69092	Loss: 164.547
+51200/69092	Loss: 166.574
+64000/69092	Loss: 166.189
+Training time 0:03:34.177869
+Epoch: 19 Average loss: 165.65
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 23)
+0/69092	Loss: 169.217
+12800/69092	Loss: 166.643
+25600/69092	Loss: 166.234
+38400/69092	Loss: 164.382
+51200/69092	Loss: 164.328
+64000/69092	Loss: 165.078
+Training time 0:03:34.422146
+Epoch: 20 Average loss: 165.53
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 24)
+0/69092	Loss: 161.289
+12800/69092	Loss: 165.853
+25600/69092	Loss: 165.618
+38400/69092	Loss: 164.688
+51200/69092	Loss: 165.000
+64000/69092	Loss: 165.459
+Training time 0:03:34.461971
+Epoch: 21 Average loss: 165.37
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 25)
+0/69092	Loss: 159.510
+12800/69092	Loss: 165.153
+25600/69092	Loss: 165.337
+38400/69092	Loss: 164.817
+51200/69092	Loss: 165.308
+64000/69092	Loss: 165.527
+Training time 0:03:33.570288
+Epoch: 22 Average loss: 165.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 26)
+0/69092	Loss: 170.139
+12800/69092	Loss: 164.568
+25600/69092	Loss: 164.903
+38400/69092	Loss: 164.993
+51200/69092	Loss: 167.294
+64000/69092	Loss: 164.163
+Training time 0:03:34.137382
+Epoch: 23 Average loss: 165.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 27)
+0/69092	Loss: 160.074
+12800/69092	Loss: 164.802
+25600/69092	Loss: 165.156
+38400/69092	Loss: 165.485
+51200/69092	Loss: 165.304
+64000/69092	Loss: 164.874
+Training time 0:03:34.155758
+Epoch: 24 Average loss: 165.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 28)
+0/69092	Loss: 159.392
+12800/69092	Loss: 165.178
+25600/69092	Loss: 164.090
+38400/69092	Loss: 166.206
+51200/69092	Loss: 164.525
+64000/69092	Loss: 164.707
+Training time 0:03:34.617919
+Epoch: 25 Average loss: 164.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 29)
+0/69092	Loss: 171.862
+12800/69092	Loss: 163.451
+25600/69092	Loss: 165.349
+38400/69092	Loss: 166.284
+51200/69092	Loss: 164.517
+64000/69092	Loss: 164.092
+Training time 0:03:34.527260
+Epoch: 26 Average loss: 164.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 30)
+0/69092	Loss: 158.628
+12800/69092	Loss: 165.301
+25600/69092	Loss: 164.939
+38400/69092	Loss: 163.872
+51200/69092	Loss: 164.439
+64000/69092	Loss: 165.157
+Training time 0:03:35.035772
+Epoch: 27 Average loss: 164.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 31)
+0/69092	Loss: 159.360
+12800/69092	Loss: 165.523
+25600/69092	Loss: 164.674
+38400/69092	Loss: 164.216
+51200/69092	Loss: 163.631
+64000/69092	Loss: 165.648
+Training time 0:03:34.900889
+Epoch: 28 Average loss: 164.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 32)
+0/69092	Loss: 157.986
+12800/69092	Loss: 164.944
+25600/69092	Loss: 164.624
+38400/69092	Loss: 163.472
+51200/69092	Loss: 164.677
+64000/69092	Loss: 165.441
+Training time 0:03:34.285686
+Epoch: 29 Average loss: 164.50
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 33)
+0/69092	Loss: 161.244
+12800/69092	Loss: 163.373
+25600/69092	Loss: 165.776
+38400/69092	Loss: 164.253
+51200/69092	Loss: 164.947
+64000/69092	Loss: 164.238
+Training time 0:03:34.892902
+Epoch: 30 Average loss: 164.40
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 34)
+0/69092	Loss: 163.053
+12800/69092	Loss: 165.200
+25600/69092	Loss: 164.347
+38400/69092	Loss: 164.216
+51200/69092	Loss: 163.448
+64000/69092	Loss: 164.677
+Training time 0:03:34.057974
+Epoch: 31 Average loss: 164.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 35)
+0/69092	Loss: 156.522
+12800/69092	Loss: 163.038
+25600/69092	Loss: 164.385
+38400/69092	Loss: 164.930
+51200/69092	Loss: 163.186
+64000/69092	Loss: 164.172
+Training time 0:03:34.517277
+Epoch: 32 Average loss: 164.09
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 36)
+0/69092	Loss: 167.346
+12800/69092	Loss: 164.662
+25600/69092	Loss: 163.356
+38400/69092	Loss: 163.878
+51200/69092	Loss: 164.450
+64000/69092	Loss: 164.437
+Training time 0:03:34.484296
+Epoch: 33 Average loss: 164.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 37)
+0/69092	Loss: 150.947
+12800/69092	Loss: 164.719
+25600/69092	Loss: 162.579
+38400/69092	Loss: 164.336
+51200/69092	Loss: 165.475
+64000/69092	Loss: 163.452
+Training time 0:03:34.858968
+Epoch: 34 Average loss: 164.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 38)
+0/69092	Loss: 168.195
+12800/69092	Loss: 164.326
+25600/69092	Loss: 164.275
+38400/69092	Loss: 164.487
+51200/69092	Loss: 164.394
+64000/69092	Loss: 163.267
+Training time 0:03:34.799991
+Epoch: 35 Average loss: 164.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 39)
+0/69092	Loss: 162.548
+12800/69092	Loss: 164.372
+25600/69092	Loss: 164.171
+38400/69092	Loss: 163.765
+51200/69092	Loss: 163.489
+64000/69092	Loss: 163.863
+Training time 0:03:34.533021
+Epoch: 36 Average loss: 164.00
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 40)
+0/69092	Loss: 175.309
+12800/69092	Loss: 163.169
+25600/69092	Loss: 164.087
+38400/69092	Loss: 163.781
+51200/69092	Loss: 162.098
+64000/69092	Loss: 164.361
+Training time 0:03:34.473704
+Epoch: 37 Average loss: 163.85
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 41)
+0/69092	Loss: 165.228
+12800/69092	Loss: 163.195
+25600/69092	Loss: 164.960
+38400/69092	Loss: 164.452
+51200/69092	Loss: 164.154
+64000/69092	Loss: 162.288
+Training time 0:03:34.369595
+Epoch: 38 Average loss: 163.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 42)
+0/69092	Loss: 171.521
+12800/69092	Loss: 162.591
+25600/69092	Loss: 163.128
+38400/69092	Loss: 165.067
+51200/69092	Loss: 163.874
+64000/69092	Loss: 163.911
+Training time 0:03:34.312838
+Epoch: 39 Average loss: 163.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 43)
+0/69092	Loss: 155.946
+12800/69092	Loss: 163.299
+25600/69092	Loss: 162.675
+38400/69092	Loss: 165.110
+51200/69092	Loss: 164.525
+64000/69092	Loss: 164.077
+Training time 0:03:34.585969
+Epoch: 40 Average loss: 163.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 44)
+0/69092	Loss: 153.399
+12800/69092	Loss: 163.496
+25600/69092	Loss: 163.969
+38400/69092	Loss: 165.591
+51200/69092	Loss: 164.615
+64000/69092	Loss: 161.441
+Training time 0:03:34.709067
+Epoch: 41 Average loss: 163.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 45)
+0/69092	Loss: 156.591
+12800/69092	Loss: 163.524
+25600/69092	Loss: 162.621
+38400/69092	Loss: 164.014
+51200/69092	Loss: 164.112
+64000/69092	Loss: 164.345
+Training time 0:03:35.252902
+Epoch: 42 Average loss: 163.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 46)
+0/69092	Loss: 163.608
+12800/69092	Loss: 163.123
+25600/69092	Loss: 162.704
+38400/69092	Loss: 163.056
+51200/69092	Loss: 164.623
+64000/69092	Loss: 164.656
+Training time 0:03:34.662832
+Epoch: 43 Average loss: 163.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 47)
+0/69092	Loss: 153.614
+12800/69092	Loss: 163.977
+25600/69092	Loss: 163.717
+38400/69092	Loss: 163.211
+51200/69092	Loss: 163.595
+64000/69092	Loss: 162.397
+Training time 0:03:34.460078
+Epoch: 44 Average loss: 163.41
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 48)
+0/69092	Loss: 156.672
+12800/69092	Loss: 164.010
+25600/69092	Loss: 164.568
+38400/69092	Loss: 163.828
+51200/69092	Loss: 161.124
+64000/69092	Loss: 162.826
+Training time 0:03:34.715757
+Epoch: 45 Average loss: 163.37
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 49)
+0/69092	Loss: 170.756
+12800/69092	Loss: 163.939
+25600/69092	Loss: 163.215
+38400/69092	Loss: 163.414
+51200/69092	Loss: 163.922
+64000/69092	Loss: 163.683
+Training time 0:03:35.627656
+Epoch: 46 Average loss: 163.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 50)
+0/69092	Loss: 164.595
+12800/69092	Loss: 163.255
+25600/69092	Loss: 162.672
+38400/69092	Loss: 164.189
+51200/69092	Loss: 163.686
+64000/69092	Loss: 162.669
+Training time 0:03:34.370078
+Epoch: 47 Average loss: 163.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 51)
+0/69092	Loss: 165.749
+12800/69092	Loss: 162.771
+25600/69092	Loss: 163.035
+38400/69092	Loss: 164.054
+51200/69092	Loss: 161.917
+64000/69092	Loss: 162.585
+Training time 0:03:34.667025
+Epoch: 48 Average loss: 163.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 52)
+0/69092	Loss: 154.571
+12800/69092	Loss: 163.939
+25600/69092	Loss: 163.544
+38400/69092	Loss: 163.970
+51200/69092	Loss: 161.575
+64000/69092	Loss: 163.866
+Training time 0:03:34.864267
+Epoch: 49 Average loss: 163.40
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 53)
+0/69092	Loss: 166.004
+12800/69092	Loss: 163.521
+25600/69092	Loss: 162.988
+38400/69092	Loss: 163.130
+51200/69092	Loss: 163.261
+64000/69092	Loss: 163.026
+Training time 0:03:34.138736
+Epoch: 50 Average loss: 163.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 54)
+0/69092	Loss: 156.938
+12800/69092	Loss: 163.198
+25600/69092	Loss: 163.394
+38400/69092	Loss: 163.262
+51200/69092	Loss: 162.025
+64000/69092	Loss: 163.956
+Training time 0:03:34.763237
+Epoch: 51 Average loss: 163.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 55)
+0/69092	Loss: 164.332
+12800/69092	Loss: 163.878
+25600/69092	Loss: 163.516
+38400/69092	Loss: 163.663
+51200/69092	Loss: 162.682
+64000/69092	Loss: 161.136
+Training time 0:03:35.382783
+Epoch: 52 Average loss: 163.01
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 56)
+0/69092	Loss: 155.649
+12800/69092	Loss: 163.492
+25600/69092	Loss: 161.749
+38400/69092	Loss: 164.039
+51200/69092	Loss: 162.869
+64000/69092	Loss: 163.493
+Training time 0:03:35.305348
+Epoch: 53 Average loss: 163.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 57)
+0/69092	Loss: 157.357
+12800/69092	Loss: 162.833
+25600/69092	Loss: 163.294
+38400/69092	Loss: 162.755
+51200/69092	Loss: 162.863
+64000/69092	Loss: 163.724
+Training time 0:03:34.340976
+Epoch: 54 Average loss: 163.14
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 58)
+0/69092	Loss: 151.717
+12800/69092	Loss: 163.086
+25600/69092	Loss: 162.400
+38400/69092	Loss: 164.084
+51200/69092	Loss: 162.815
+64000/69092	Loss: 163.041
+Training time 0:03:35.284810
+Epoch: 55 Average loss: 163.02
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 59)
+0/69092	Loss: 158.464
+12800/69092	Loss: 163.570
+25600/69092	Loss: 161.727
+38400/69092	Loss: 164.416
+51200/69092	Loss: 162.037
+64000/69092	Loss: 163.618
+Training time 0:03:35.450159
+Epoch: 56 Average loss: 162.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 60)
+0/69092	Loss: 163.640
+12800/69092	Loss: 161.432
+25600/69092	Loss: 162.910
+38400/69092	Loss: 162.904
+51200/69092	Loss: 163.806
+64000/69092	Loss: 162.356
+Training time 0:03:35.267777
+Epoch: 57 Average loss: 162.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 61)
+0/69092	Loss: 161.019
+12800/69092	Loss: 163.341
+25600/69092	Loss: 162.614
+38400/69092	Loss: 162.124
+51200/69092	Loss: 163.792
+64000/69092	Loss: 162.896
+Training time 0:03:34.874771
+Epoch: 58 Average loss: 162.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 62)
+0/69092	Loss: 166.624
+12800/69092	Loss: 161.990
+25600/69092	Loss: 164.154
+38400/69092	Loss: 161.882
+51200/69092	Loss: 163.737
+64000/69092	Loss: 163.187
+Training time 0:03:34.613702
+Epoch: 59 Average loss: 162.95
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 63)
+0/69092	Loss: 154.731
+12800/69092	Loss: 162.162
+25600/69092	Loss: 164.492
+38400/69092	Loss: 161.770
+51200/69092	Loss: 162.852
+64000/69092	Loss: 163.725
+Training time 0:03:34.790103
+Epoch: 60 Average loss: 162.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 64)
+0/69092	Loss: 162.959
+12800/69092	Loss: 162.458
+25600/69092	Loss: 163.497
+38400/69092	Loss: 163.245
+51200/69092	Loss: 162.263
+64000/69092	Loss: 162.196
+Training time 0:03:34.640282
+Epoch: 61 Average loss: 162.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 65)
+0/69092	Loss: 149.759
+12800/69092	Loss: 162.575
+25600/69092	Loss: 163.300
+38400/69092	Loss: 162.595
+51200/69092	Loss: 162.451
+64000/69092	Loss: 163.141
+Training time 0:03:34.993601
+Epoch: 62 Average loss: 162.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 66)
+0/69092	Loss: 167.817
+12800/69092	Loss: 163.591
+25600/69092	Loss: 161.586
+38400/69092	Loss: 162.502
+51200/69092	Loss: 163.298
+64000/69092	Loss: 162.439
+Training time 0:03:34.761672
+Epoch: 63 Average loss: 162.86
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 67)
+0/69092	Loss: 162.536
+12800/69092	Loss: 163.860
+25600/69092	Loss: 161.999
+38400/69092	Loss: 162.851
+51200/69092	Loss: 161.707
+64000/69092	Loss: 161.781
+Training time 0:03:34.965002
+Epoch: 64 Average loss: 162.63
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 68)
+0/69092	Loss: 179.664
+12800/69092	Loss: 161.629
+25600/69092	Loss: 161.899
+38400/69092	Loss: 163.334
+51200/69092	Loss: 162.383
+64000/69092	Loss: 163.327
+Training time 0:03:34.568599
+Epoch: 65 Average loss: 162.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 69)
+0/69092	Loss: 173.059
+12800/69092	Loss: 161.902
+25600/69092	Loss: 162.708
+38400/69092	Loss: 162.622
+51200/69092	Loss: 161.650
+64000/69092	Loss: 162.824
+Training time 0:03:35.257544
+Epoch: 66 Average loss: 162.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 70)
+0/69092	Loss: 143.647
+12800/69092	Loss: 161.864
+25600/69092	Loss: 164.030
+38400/69092	Loss: 162.059
+51200/69092	Loss: 162.619
+64000/69092	Loss: 162.301
+Training time 0:03:35.838210
+Epoch: 67 Average loss: 162.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 71)
+0/69092	Loss: 166.080
+12800/69092	Loss: 162.964
+25600/69092	Loss: 163.455
+38400/69092	Loss: 162.464
+51200/69092	Loss: 162.000
+64000/69092	Loss: 161.847
+Training time 0:03:34.850876
+Epoch: 68 Average loss: 162.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 72)
+0/69092	Loss: 165.306
+12800/69092	Loss: 160.963
+25600/69092	Loss: 162.906
+38400/69092	Loss: 162.016
+51200/69092	Loss: 162.826
+64000/69092	Loss: 162.230
+Training time 0:03:35.222198
+Epoch: 69 Average loss: 162.24
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 73)
+0/69092	Loss: 159.279
+12800/69092	Loss: 161.766
+25600/69092	Loss: 162.684
+38400/69092	Loss: 162.991
+51200/69092	Loss: 163.154
+64000/69092	Loss: 161.012
+Training time 0:03:34.964302
+Epoch: 70 Average loss: 162.46
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 74)
+0/69092	Loss: 154.284
+12800/69092	Loss: 161.469
+25600/69092	Loss: 162.418
+38400/69092	Loss: 163.576
+51200/69092	Loss: 162.523
+64000/69092	Loss: 162.598
+Training time 0:03:34.914750
+Epoch: 71 Average loss: 162.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 75)
+0/69092	Loss: 167.185
+12800/69092	Loss: 160.845
+25600/69092	Loss: 164.084
+38400/69092	Loss: 161.897
+51200/69092	Loss: 162.055
+64000/69092	Loss: 163.471
+Training time 0:03:35.329838
+Epoch: 72 Average loss: 162.44
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 76)
+0/69092	Loss: 162.192
+12800/69092	Loss: 162.530
+25600/69092	Loss: 162.514
+38400/69092	Loss: 163.070
+51200/69092	Loss: 163.560
+64000/69092	Loss: 160.817
+Training time 0:03:35.328085
+Epoch: 73 Average loss: 162.37
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 77)
+0/69092	Loss: 166.539
+12800/69092	Loss: 162.278
+25600/69092	Loss: 163.629
+38400/69092	Loss: 162.288
+51200/69092	Loss: 160.127
+64000/69092	Loss: 162.499
+Training time 0:03:35.936274
+Epoch: 74 Average loss: 162.14
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 78)
+0/69092	Loss: 172.523
+12800/69092	Loss: 162.526
+25600/69092	Loss: 161.003
+38400/69092	Loss: 161.351
+51200/69092	Loss: 163.644
+64000/69092	Loss: 162.010
+Training time 0:03:34.917218
+Epoch: 75 Average loss: 162.09
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 79)
+0/69092	Loss: 160.719
+12800/69092	Loss: 161.441
+25600/69092	Loss: 163.190
+38400/69092	Loss: 161.822
+51200/69092	Loss: 162.764
+64000/69092	Loss: 162.811
+Training time 0:03:34.825778
+Epoch: 76 Average loss: 162.42
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 80)
+0/69092	Loss: 155.755
+12800/69092	Loss: 162.279
+25600/69092	Loss: 162.457
+38400/69092	Loss: 161.739
+51200/69092	Loss: 162.629
+64000/69092	Loss: 161.704
+Training time 0:03:34.994539
+Epoch: 77 Average loss: 162.20
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 81)
+0/69092	Loss: 167.212
+12800/69092	Loss: 161.920
+25600/69092	Loss: 162.322
+38400/69092	Loss: 163.715
+51200/69092	Loss: 162.922
+64000/69092	Loss: 161.310
+Training time 0:03:35.098604
+Epoch: 78 Average loss: 162.39
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 82)
+0/69092	Loss: 151.279
+12800/69092	Loss: 163.096
+25600/69092	Loss: 161.743
+38400/69092	Loss: 162.718
+51200/69092	Loss: 161.715
+64000/69092	Loss: 161.252
+Training time 0:03:34.378245
+Epoch: 79 Average loss: 162.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 83)
+0/69092	Loss: 171.928
+12800/69092	Loss: 161.661
+25600/69092	Loss: 162.137
+38400/69092	Loss: 162.428
+51200/69092	Loss: 162.382
+64000/69092	Loss: 162.189
+Training time 0:03:35.523365
+Epoch: 80 Average loss: 162.28
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 84)
+0/69092	Loss: 162.969
+12800/69092	Loss: 161.660
+25600/69092	Loss: 162.341
+38400/69092	Loss: 162.861
+51200/69092	Loss: 162.088
+64000/69092	Loss: 160.830
+Training time 0:03:35.828830
+Epoch: 81 Average loss: 162.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 85)
+0/69092	Loss: 163.799
+12800/69092	Loss: 160.779
+25600/69092	Loss: 161.781
+38400/69092	Loss: 162.490
+51200/69092	Loss: 162.095
+64000/69092	Loss: 162.997
+Training time 0:03:35.324407
+Epoch: 82 Average loss: 162.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 86)
+0/69092	Loss: 161.640
+12800/69092	Loss: 161.039
+25600/69092	Loss: 160.883
+38400/69092	Loss: 163.249
+51200/69092	Loss: 162.210
+64000/69092	Loss: 162.516
+Training time 0:03:35.899620
+Epoch: 83 Average loss: 162.13
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 87)
+0/69092	Loss: 158.307
+12800/69092	Loss: 161.081
+25600/69092	Loss: 162.671
+38400/69092	Loss: 163.349
+51200/69092	Loss: 161.665
+64000/69092	Loss: 162.282
+Training time 0:03:35.265596
+Epoch: 84 Average loss: 162.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 88)
+0/69092	Loss: 164.806
+12800/69092	Loss: 162.299
+25600/69092	Loss: 162.815
+38400/69092	Loss: 162.283
+51200/69092	Loss: 162.029
+64000/69092	Loss: 161.074
+Training time 0:03:35.331087
+Epoch: 85 Average loss: 162.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 89)
+0/69092	Loss: 155.805
+12800/69092	Loss: 160.191
+25600/69092	Loss: 162.544
+38400/69092	Loss: 162.671
+51200/69092	Loss: 162.905
+64000/69092	Loss: 161.941
+Training time 0:03:34.833442
+Epoch: 86 Average loss: 162.00
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 90)
+0/69092	Loss: 155.322
+12800/69092	Loss: 162.365
+25600/69092	Loss: 160.966
+38400/69092	Loss: 162.498
+51200/69092	Loss: 161.492
+64000/69092	Loss: 162.268
+Training time 0:03:35.194527
+Epoch: 87 Average loss: 161.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 91)
+0/69092	Loss: 147.863
+12800/69092	Loss: 161.758
+25600/69092	Loss: 163.217
+38400/69092	Loss: 160.943
+51200/69092	Loss: 161.846
+64000/69092	Loss: 163.150
+Training time 0:03:35.543712
+Epoch: 88 Average loss: 161.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 92)
+0/69092	Loss: 156.224
+12800/69092	Loss: 161.407
+25600/69092	Loss: 163.099
+38400/69092	Loss: 160.885
+51200/69092	Loss: 163.510
+64000/69092	Loss: 160.672
+Training time 0:03:34.976525
+Epoch: 89 Average loss: 162.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 93)
+0/69092	Loss: 163.257
+12800/69092	Loss: 160.499
+25600/69092	Loss: 161.542
+38400/69092	Loss: 161.733
+51200/69092	Loss: 162.542
+64000/69092	Loss: 162.036
+Training time 0:03:35.251829
+Epoch: 90 Average loss: 161.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 94)
+0/69092	Loss: 154.922
+12800/69092	Loss: 162.931
+25600/69092	Loss: 161.596
+38400/69092	Loss: 161.078
+51200/69092	Loss: 161.143
+64000/69092	Loss: 162.084
+Training time 0:03:34.964534
+Epoch: 91 Average loss: 161.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 95)
+0/69092	Loss: 160.102
+12800/69092	Loss: 160.236
+25600/69092	Loss: 160.102
+38400/69092	Loss: 163.086
+51200/69092	Loss: 161.250
+64000/69092	Loss: 161.530
+Training time 0:03:35.274464
+Epoch: 92 Average loss: 161.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 96)
+0/69092	Loss: 166.773
+12800/69092	Loss: 161.029
+25600/69092	Loss: 160.234
+38400/69092	Loss: 161.051
+51200/69092	Loss: 159.310
+64000/69092	Loss: 162.371
+Training time 0:03:34.579357
+Epoch: 93 Average loss: 160.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 97)
+0/69092	Loss: 156.949
+12800/69092	Loss: 160.754
+25600/69092	Loss: 161.179
+38400/69092	Loss: 160.530
+51200/69092	Loss: 160.001
+64000/69092	Loss: 160.276
+Training time 0:03:35.364384
+Epoch: 94 Average loss: 160.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 98)
+0/69092	Loss: 159.017
+12800/69092	Loss: 160.227
+25600/69092	Loss: 160.172
+38400/69092	Loss: 161.081
+51200/69092	Loss: 160.087
+64000/69092	Loss: 159.089
+Training time 0:03:35.051431
+Epoch: 95 Average loss: 160.11
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 99)
+0/69092	Loss: 158.123
+12800/69092	Loss: 161.822
+25600/69092	Loss: 161.200
+38400/69092	Loss: 159.726
+51200/69092	Loss: 159.801
+64000/69092	Loss: 159.733
+Training time 0:03:34.861642
+Epoch: 96 Average loss: 160.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 100)
+0/69092	Loss: 159.461
+12800/69092	Loss: 161.147
+25600/69092	Loss: 159.821
+38400/69092	Loss: 160.349
+51200/69092	Loss: 159.651
+64000/69092	Loss: 159.265
+Training time 0:03:34.392620
+Epoch: 97 Average loss: 160.05
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 101)
+0/69092	Loss: 162.921
+12800/69092	Loss: 160.283
+25600/69092	Loss: 160.020
+38400/69092	Loss: 159.135
+51200/69092	Loss: 160.403
+64000/69092	Loss: 159.789
+Training time 0:03:34.944138
+Epoch: 98 Average loss: 160.01
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 102)
+0/69092	Loss: 157.861
+12800/69092	Loss: 160.768
+25600/69092	Loss: 160.062
+38400/69092	Loss: 159.811
+51200/69092	Loss: 159.629
+64000/69092	Loss: 159.130
+Training time 0:03:35.133845
+Epoch: 99 Average loss: 159.78
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 103)
+0/69092	Loss: 158.712
+12800/69092	Loss: 161.059
+25600/69092	Loss: 159.315
+38400/69092	Loss: 158.331
+51200/69092	Loss: 160.059
+64000/69092	Loss: 159.669
+Training time 0:03:34.706540
+Epoch: 100 Average loss: 159.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 104)
+0/69092	Loss: 155.913
+12800/69092	Loss: 159.568
+25600/69092	Loss: 158.244
+38400/69092	Loss: 160.843
+51200/69092	Loss: 160.379
+64000/69092	Loss: 158.854
+Training time 0:03:35.405917
+Epoch: 101 Average loss: 159.61
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 105)
+0/69092	Loss: 167.682
+12800/69092	Loss: 158.469
+25600/69092	Loss: 159.905
+38400/69092	Loss: 159.218
+51200/69092	Loss: 159.482
+64000/69092	Loss: 160.674
+Training time 0:03:35.620727
+Epoch: 102 Average loss: 159.61
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 106)
+0/69092	Loss: 171.435
+12800/69092	Loss: 159.276
+25600/69092	Loss: 161.324
+38400/69092	Loss: 158.919
+51200/69092	Loss: 159.018
+64000/69092	Loss: 157.720
+Training time 0:03:35.123399
+Epoch: 103 Average loss: 159.50
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 107)
+0/69092	Loss: 157.325
+12800/69092	Loss: 160.057
+25600/69092	Loss: 159.965
+38400/69092	Loss: 158.745
+51200/69092	Loss: 158.629
+64000/69092	Loss: 160.076
+Training time 0:03:35.501608
+Epoch: 104 Average loss: 159.54
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 108)
+0/69092	Loss: 157.509
+12800/69092	Loss: 160.053
+25600/69092	Loss: 158.607
+38400/69092	Loss: 159.661
+51200/69092	Loss: 160.847
+64000/69092	Loss: 158.248
+Training time 0:03:35.400709
+Epoch: 105 Average loss: 159.56
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 109)
+0/69092	Loss: 163.613
+12800/69092	Loss: 158.970
+25600/69092	Loss: 161.421
+38400/69092	Loss: 160.211
+51200/69092	Loss: 158.902
+64000/69092	Loss: 156.983
+Training time 0:03:36.255216
+Epoch: 106 Average loss: 159.40
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 110)
+0/69092	Loss: 155.686
+12800/69092	Loss: 160.493
+25600/69092	Loss: 160.184
+38400/69092	Loss: 159.047
+51200/69092	Loss: 158.804
+64000/69092	Loss: 158.537
+Training time 0:03:35.555878
+Epoch: 107 Average loss: 159.35
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 111)
+0/69092	Loss: 156.330
+12800/69092	Loss: 159.314
+25600/69092	Loss: 159.905
+38400/69092	Loss: 159.925
+51200/69092	Loss: 159.359
+64000/69092	Loss: 157.967
+Training time 0:03:35.554763
+Epoch: 108 Average loss: 159.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 112)
+0/69092	Loss: 155.420
+12800/69092	Loss: 159.249
+25600/69092	Loss: 161.278
+38400/69092	Loss: 159.389
+51200/69092	Loss: 157.854
+64000/69092	Loss: 159.796
+Training time 0:03:35.583739
+Epoch: 109 Average loss: 159.31
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 113)
+0/69092	Loss: 159.001
+12800/69092	Loss: 160.341
+25600/69092	Loss: 159.930
+38400/69092	Loss: 159.423
+51200/69092	Loss: 156.880
+64000/69092	Loss: 159.597
+Training time 0:03:35.430130
+Epoch: 110 Average loss: 159.26
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 114)
+0/69092	Loss: 158.623
+12800/69092	Loss: 158.642
+25600/69092	Loss: 158.103
+38400/69092	Loss: 160.518
+51200/69092	Loss: 159.409
+64000/69092	Loss: 159.840
+Training time 0:03:34.558461
+Epoch: 111 Average loss: 159.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 115)
+0/69092	Loss: 152.833
+12800/69092	Loss: 159.505
+25600/69092	Loss: 159.212
+38400/69092	Loss: 158.390
+51200/69092	Loss: 159.647
+64000/69092	Loss: 158.710
+Training time 0:03:34.888443
+Epoch: 112 Average loss: 159.09
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 116)
+0/69092	Loss: 155.050
+12800/69092	Loss: 158.368
+25600/69092	Loss: 158.714
+38400/69092	Loss: 158.764
+51200/69092	Loss: 159.854
+64000/69092	Loss: 159.695
+Training time 0:03:34.671602
+Epoch: 113 Average loss: 158.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 117)
+0/69092	Loss: 163.357
+12800/69092	Loss: 158.739
+25600/69092	Loss: 159.252
+38400/69092	Loss: 158.969
+51200/69092	Loss: 159.156
+64000/69092	Loss: 157.985
+Training time 0:03:34.661148
+Epoch: 114 Average loss: 158.96
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 118)
+0/69092	Loss: 162.348
+12800/69092	Loss: 159.469
+25600/69092	Loss: 157.832
+38400/69092	Loss: 159.314
+51200/69092	Loss: 157.827
+64000/69092	Loss: 159.283
+Training time 0:03:35.230302
+Epoch: 115 Average loss: 158.89
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 119)
+0/69092	Loss: 162.101
+12800/69092	Loss: 159.002
+25600/69092	Loss: 158.509
+38400/69092	Loss: 159.518
+51200/69092	Loss: 159.064
+64000/69092	Loss: 158.847
+Training time 0:03:35.700575
+Epoch: 116 Average loss: 158.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 120)
+0/69092	Loss: 154.467
+12800/69092	Loss: 160.387
+25600/69092	Loss: 157.670
+38400/69092	Loss: 159.577
+51200/69092	Loss: 159.122
+64000/69092	Loss: 157.489
+Training time 0:03:34.765808
+Epoch: 117 Average loss: 158.96
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 121)
+0/69092	Loss: 158.054
+12800/69092	Loss: 158.487
+25600/69092	Loss: 159.933
+38400/69092	Loss: 158.417
+51200/69092	Loss: 158.789
+64000/69092	Loss: 158.287
+Training time 0:03:34.685419
+Epoch: 118 Average loss: 158.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 122)
+0/69092	Loss: 157.949
+12800/69092	Loss: 158.047
+25600/69092	Loss: 159.524
+38400/69092	Loss: 158.612
+51200/69092	Loss: 158.843
+64000/69092	Loss: 158.874
+Training time 0:03:35.283052
+Epoch: 119 Average loss: 158.82
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 123)
+0/69092	Loss: 158.028
+12800/69092	Loss: 158.785
+25600/69092	Loss: 159.106
+38400/69092	Loss: 158.322
+51200/69092	Loss: 159.148
+64000/69092	Loss: 158.622
+Training time 0:03:35.123444
+Epoch: 120 Average loss: 158.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 124)
+0/69092	Loss: 153.756
+12800/69092	Loss: 158.229
+25600/69092	Loss: 157.864
+38400/69092	Loss: 158.555
+51200/69092	Loss: 158.647
+64000/69092	Loss: 159.850
+Training time 0:03:35.094660
+Epoch: 121 Average loss: 158.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 125)
+0/69092	Loss: 143.921
+12800/69092	Loss: 159.522
+25600/69092	Loss: 158.944
+38400/69092	Loss: 159.566
+51200/69092	Loss: 157.765
+64000/69092	Loss: 158.544
+Training time 0:03:35.945210
+Epoch: 122 Average loss: 158.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 126)
+0/69092	Loss: 168.748
+12800/69092	Loss: 156.964
+25600/69092	Loss: 158.709
+38400/69092	Loss: 158.935
+51200/69092	Loss: 158.750
+64000/69092	Loss: 158.742
+Training time 0:03:35.022846
+Epoch: 123 Average loss: 158.57
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 127)
+0/69092	Loss: 174.862
+12800/69092	Loss: 159.569
+25600/69092	Loss: 157.994
+38400/69092	Loss: 159.820
+51200/69092	Loss: 159.512
+64000/69092	Loss: 156.537
+Training time 0:03:36.069587
+Epoch: 124 Average loss: 158.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 128)
+0/69092	Loss: 157.101
+12800/69092	Loss: 158.661
+25600/69092	Loss: 158.794
+38400/69092	Loss: 158.160
+51200/69092	Loss: 158.458
+64000/69092	Loss: 158.821
+Training time 0:03:34.841007
+Epoch: 125 Average loss: 158.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 129)
+0/69092	Loss: 152.880
+12800/69092	Loss: 158.483
+25600/69092	Loss: 159.524
+38400/69092	Loss: 158.460
+51200/69092	Loss: 158.845
+64000/69092	Loss: 158.793
+Training time 0:03:35.971434
+Epoch: 126 Average loss: 158.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 130)
+0/69092	Loss: 154.705
+12800/69092	Loss: 159.422
+25600/69092	Loss: 157.914
+38400/69092	Loss: 158.562
+51200/69092	Loss: 158.664
+64000/69092	Loss: 158.733
+Training time 0:03:35.689516
+Epoch: 127 Average loss: 158.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 131)
+0/69092	Loss: 160.352
+12800/69092	Loss: 158.191
+25600/69092	Loss: 158.584
+38400/69092	Loss: 157.742
+51200/69092	Loss: 159.398
+64000/69092	Loss: 159.173
+Training time 0:03:35.079701
+Epoch: 128 Average loss: 158.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 132)
+0/69092	Loss: 162.502
+12800/69092	Loss: 157.818
+25600/69092	Loss: 157.109
+38400/69092	Loss: 159.595
+51200/69092	Loss: 158.628
+64000/69092	Loss: 159.182
+Training time 0:03:35.702826
+Epoch: 129 Average loss: 158.56
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 133)
+0/69092	Loss: 157.088
+12800/69092	Loss: 158.229
+25600/69092	Loss: 157.869
+38400/69092	Loss: 159.662
+51200/69092	Loss: 158.721
+64000/69092	Loss: 157.514
+Training time 0:03:35.305305
+Epoch: 130 Average loss: 158.46
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 134)
+0/69092	Loss: 159.425
+12800/69092	Loss: 158.244
+25600/69092	Loss: 159.269
+38400/69092	Loss: 158.749
+51200/69092	Loss: 157.334
+64000/69092	Loss: 158.863
+Training time 0:03:35.265594
+Epoch: 131 Average loss: 158.43
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 135)
+0/69092	Loss: 155.062
+12800/69092	Loss: 159.819
+25600/69092	Loss: 157.603
+38400/69092	Loss: 156.517
+51200/69092	Loss: 158.284
+64000/69092	Loss: 158.365
+Training time 0:03:35.083675
+Epoch: 132 Average loss: 158.22
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 136)
+0/69092	Loss: 159.165
+12800/69092	Loss: 158.364
+25600/69092	Loss: 158.555
+38400/69092	Loss: 157.526
+51200/69092	Loss: 157.675
+64000/69092	Loss: 159.562
+Training time 0:03:34.917954
+Epoch: 133 Average loss: 158.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 137)
+0/69092	Loss: 164.086
+12800/69092	Loss: 158.136
+25600/69092	Loss: 158.652
+38400/69092	Loss: 158.086
+51200/69092	Loss: 158.328
+64000/69092	Loss: 158.661
+Training time 0:03:36.238460
+Epoch: 134 Average loss: 158.39
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 138)
+0/69092	Loss: 160.262
+12800/69092	Loss: 158.737
+25600/69092	Loss: 157.851
+38400/69092	Loss: 158.741
+51200/69092	Loss: 159.681
+64000/69092	Loss: 157.209
+Training time 0:03:35.637006
+Epoch: 135 Average loss: 158.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 139)
+0/69092	Loss: 153.405
+12800/69092	Loss: 158.161
+25600/69092	Loss: 157.899
+38400/69092	Loss: 158.128
+51200/69092	Loss: 158.549
+64000/69092	Loss: 158.466
+Training time 0:03:35.008490
+Epoch: 136 Average loss: 158.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 140)
+0/69092	Loss: 163.934
+12800/69092	Loss: 158.955
+25600/69092	Loss: 157.057
+38400/69092	Loss: 158.497
+51200/69092	Loss: 157.707
+64000/69092	Loss: 158.849
+Training time 0:03:35.428050
+Epoch: 137 Average loss: 158.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 141)
+0/69092	Loss: 155.505
+12800/69092	Loss: 157.641
+25600/69092	Loss: 158.311
+38400/69092	Loss: 158.298
+51200/69092	Loss: 159.948
+64000/69092	Loss: 159.012
+Training time 0:03:35.474795
+Epoch: 138 Average loss: 158.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 142)
+0/69092	Loss: 157.240
+12800/69092	Loss: 157.478
+25600/69092	Loss: 157.290
+38400/69092	Loss: 159.291
+51200/69092	Loss: 159.086
+64000/69092	Loss: 157.686
+Training time 0:03:34.563481
+Epoch: 139 Average loss: 158.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 143)
+0/69092	Loss: 163.161
+12800/69092	Loss: 158.980
+25600/69092	Loss: 158.207
+38400/69092	Loss: 157.897
+51200/69092	Loss: 158.807
+64000/69092	Loss: 157.534
+Training time 0:03:35.396170
+Epoch: 140 Average loss: 158.26
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 144)
+0/69092	Loss: 158.131
+12800/69092	Loss: 158.350
+25600/69092	Loss: 159.413
+38400/69092	Loss: 157.611
+51200/69092	Loss: 157.664
+64000/69092	Loss: 158.728
+Training time 0:03:35.857792
+Epoch: 141 Average loss: 158.33
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 145)
+0/69092	Loss: 157.857
+12800/69092	Loss: 156.593
+25600/69092	Loss: 158.148
+38400/69092	Loss: 158.734
+51200/69092	Loss: 157.102
+64000/69092	Loss: 160.617
+Training time 0:03:35.646313
+Epoch: 142 Average loss: 158.24
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 146)
+0/69092	Loss: 156.539
+12800/69092	Loss: 157.214
+25600/69092	Loss: 157.716
+38400/69092	Loss: 158.455
+51200/69092	Loss: 159.153
+64000/69092	Loss: 158.133
+Training time 0:03:35.056588
+Epoch: 143 Average loss: 158.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 147)
+0/69092	Loss: 158.767
+12800/69092	Loss: 158.426
+25600/69092	Loss: 158.740
+38400/69092	Loss: 158.653
+51200/69092	Loss: 157.037
+64000/69092	Loss: 158.165
+Training time 0:03:35.533263
+Epoch: 144 Average loss: 158.28
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 148)
+0/69092	Loss: 168.808
+12800/69092	Loss: 158.690
+25600/69092	Loss: 158.282
+38400/69092	Loss: 158.720
+51200/69092	Loss: 158.501
+64000/69092	Loss: 156.006
+Training time 0:03:35.591309
+Epoch: 145 Average loss: 158.29
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 149)
+0/69092	Loss: 154.829
+12800/69092	Loss: 157.699
+25600/69092	Loss: 158.313
+38400/69092	Loss: 158.132
+51200/69092	Loss: 159.645
+64000/69092	Loss: 157.362
+Training time 0:03:34.651382
+Epoch: 146 Average loss: 158.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 150)
+0/69092	Loss: 159.604
+12800/69092	Loss: 158.903
+25600/69092	Loss: 158.258
+38400/69092	Loss: 156.677
+51200/69092	Loss: 158.281
+64000/69092	Loss: 158.580
+Training time 0:03:36.077990
+Epoch: 147 Average loss: 158.26
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 151)
+0/69092	Loss: 152.812
+12800/69092	Loss: 158.197
+25600/69092	Loss: 158.080
+38400/69092	Loss: 157.186
+51200/69092	Loss: 159.838
+64000/69092	Loss: 156.717
+Training time 0:03:35.545069
+Epoch: 148 Average loss: 158.00
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 152)
+0/69092	Loss: 149.683
+12800/69092	Loss: 159.115
+25600/69092	Loss: 157.753
+38400/69092	Loss: 157.867
+51200/69092	Loss: 158.096
+64000/69092	Loss: 156.865
+Training time 0:03:35.144237
+Epoch: 149 Average loss: 158.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 153)
+0/69092	Loss: 156.870
+12800/69092	Loss: 158.312
+25600/69092	Loss: 158.026
+38400/69092	Loss: 157.353
+51200/69092	Loss: 158.157
+64000/69092	Loss: 158.827
+Training time 0:03:34.748605
+Epoch: 150 Average loss: 158.13
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 154)
+0/69092	Loss: 151.995
+12800/69092	Loss: 159.054
+25600/69092	Loss: 157.990
+38400/69092	Loss: 158.319
+51200/69092	Loss: 157.961
+64000/69092	Loss: 157.131
+Training time 0:03:35.971841
+Epoch: 151 Average loss: 158.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 155)
+0/69092	Loss: 157.716
+12800/69092	Loss: 158.155
+25600/69092	Loss: 157.841
+38400/69092	Loss: 158.173
+51200/69092	Loss: 157.463
+64000/69092	Loss: 158.897
+Training time 0:03:35.695476
+Epoch: 152 Average loss: 158.11
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 156)
+0/69092	Loss: 158.047
+12800/69092	Loss: 156.737
+25600/69092	Loss: 159.180
+38400/69092	Loss: 158.536
+51200/69092	Loss: 157.577
+64000/69092	Loss: 158.394
+Training time 0:03:35.084412
+Epoch: 153 Average loss: 158.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 157)
+0/69092	Loss: 153.462
+12800/69092	Loss: 159.247
+25600/69092	Loss: 155.980
+38400/69092	Loss: 157.080
+51200/69092	Loss: 158.520
+64000/69092	Loss: 158.175
+Training time 0:03:35.337585
+Epoch: 154 Average loss: 157.86
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 158)
+0/69092	Loss: 161.419
+12800/69092	Loss: 157.782
+25600/69092	Loss: 158.716
+38400/69092	Loss: 158.169
+51200/69092	Loss: 158.782
+64000/69092	Loss: 156.570
+Training time 0:03:35.909995
+Epoch: 155 Average loss: 158.07
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 159)
+0/69092	Loss: 153.223
+12800/69092	Loss: 158.127
+25600/69092	Loss: 157.457
+38400/69092	Loss: 158.450
+51200/69092	Loss: 158.295
+64000/69092	Loss: 157.931
+Training time 0:03:36.134499
+Epoch: 156 Average loss: 158.02
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 160)
+0/69092	Loss: 162.210
+12800/69092	Loss: 158.300
+25600/69092	Loss: 157.865
+38400/69092	Loss: 158.634
+51200/69092	Loss: 158.413
+64000/69092	Loss: 156.988
+Training time 0:03:35.206750
+Epoch: 157 Average loss: 157.89
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 161)
+0/69092	Loss: 161.032
+12800/69092	Loss: 158.088
+25600/69092	Loss: 157.736
+38400/69092	Loss: 157.373
+51200/69092	Loss: 158.703
+64000/69092	Loss: 158.100
+Training time 0:03:35.589710
+Epoch: 158 Average loss: 158.08
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 162)
+0/69092	Loss: 153.675
+12800/69092	Loss: 158.432
+25600/69092	Loss: 158.292
+38400/69092	Loss: 157.321
+51200/69092	Loss: 157.387
+64000/69092	Loss: 158.348
+Training time 0:03:35.281603
+Epoch: 159 Average loss: 157.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 163)
+0/69092	Loss: 155.890
+12800/69092	Loss: 158.047
+25600/69092	Loss: 158.035
+38400/69092	Loss: 158.387
+51200/69092	Loss: 158.192
+64000/69092	Loss: 157.601
+Training time 0:03:35.345290
+Epoch: 160 Average loss: 158.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 164)
+0/69092	Loss: 162.835
+12800/69092	Loss: 157.335
+25600/69092	Loss: 157.960
+38400/69092	Loss: 158.461
+51200/69092	Loss: 158.302
+64000/69092	Loss: 157.646
+Training time 0:03:36.107215
+Epoch: 161 Average loss: 157.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 165)
+0/69092	Loss: 156.025
+12800/69092	Loss: 156.943
+25600/69092	Loss: 157.574
+38400/69092	Loss: 158.075
+51200/69092	Loss: 158.509
+64000/69092	Loss: 159.194
+Training time 0:03:36.127311
+Epoch: 162 Average loss: 157.96
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 166)
+0/69092	Loss: 151.681
+12800/69092	Loss: 158.233
+25600/69092	Loss: 156.736
+38400/69092	Loss: 158.012
+51200/69092	Loss: 158.785
+64000/69092	Loss: 157.544
+Training time 0:03:35.675035
+Epoch: 163 Average loss: 157.85
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 167)
+0/69092	Loss: 149.342
+12800/69092	Loss: 157.504
+25600/69092	Loss: 157.447
+38400/69092	Loss: 159.814
+51200/69092	Loss: 156.905
+64000/69092	Loss: 158.121
+Training time 0:03:34.849772
+Epoch: 164 Average loss: 157.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 168)
+0/69092	Loss: 158.956
+12800/69092	Loss: 158.108
+25600/69092	Loss: 158.557
+38400/69092	Loss: 157.314
+51200/69092	Loss: 156.850
+64000/69092	Loss: 157.646
+Training time 0:03:35.625526
+Epoch: 165 Average loss: 157.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 169)
+0/69092	Loss: 157.486
+12800/69092	Loss: 157.619
+25600/69092	Loss: 158.104
+38400/69092	Loss: 159.780
+51200/69092	Loss: 157.374
+64000/69092	Loss: 157.813
+Training time 0:03:35.019341
+Epoch: 166 Average loss: 158.02
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 170)
+0/69092	Loss: 152.670
+12800/69092	Loss: 158.740
+25600/69092	Loss: 157.840
+38400/69092	Loss: 158.200
+51200/69092	Loss: 159.229
+64000/69092	Loss: 157.155
+Training time 0:03:34.361037
+Epoch: 167 Average loss: 157.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 171)
+0/69092	Loss: 151.640
+12800/69092	Loss: 157.037
+25600/69092	Loss: 158.233
diff --git a/OAR.2066987.stderr b/OAR.2066987.stderr
new file mode 100644
index 0000000000000000000000000000000000000000..01f042ddbf3b684dce92eb842907f4494d809311
--- /dev/null
+++ b/OAR.2066987.stderr
@@ -0,0 +1,3 @@
+/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
+  warnings.warn(warning.format(ret))
+## OAR [2020-06-24 03:51:26] Job 2066987 KILLED ##
diff --git a/OAR.2066987.stdout b/OAR.2066987.stdout
new file mode 100644
index 0000000000000000000000000000000000000000..e0026953c1132b772ac79dc80a441f853c1fa15f
--- /dev/null
+++ b/OAR.2066987.stdout
@@ -0,0 +1,7588 @@
+Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
+creare new diretory experiment: rendered_chairs/beta_VAE_bs_64
+load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
+use 2 gpu who named:
+Tesla K80
+Tesla K80
+DataParallel(
+  (module): VAE(
+    (img_to_last_conv): Sequential(
+      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (1): ReLU()
+      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+    )
+    (last_conv_to_continuous_features): Sequential(
+      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+    )
+    (features_to_hidden_continue): Sequential(
+      (0): Linear(in_features=256, out_features=20, bias=True)
+      (1): ReLU()
+    )
+    (latent_to_features): Sequential(
+      (0): Linear(in_features=10, out_features=256, bias=True)
+      (1): ReLU()
+    )
+    (features_to_img): Sequential(
+      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (9): Sigmoid()
+    )
+  )
+)
+The number of parameters of model is 765335
+don't use continuous capacity
+=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last'
+0/69092	Loss: 2996.283
+3200/69092	Loss: 2849.192
+6400/69092	Loss: 969.503
+9600/69092	Loss: 533.346
+12800/69092	Loss: 488.827
+16000/69092	Loss: 465.819
+19200/69092	Loss: 455.119
+22400/69092	Loss: 411.276
+25600/69092	Loss: 292.547
+28800/69092	Loss: 250.187
+32000/69092	Loss: 235.426
+35200/69092	Loss: 230.877
+38400/69092	Loss: 228.614
+41600/69092	Loss: 229.160
+44800/69092	Loss: 235.136
+48000/69092	Loss: 225.149
+51200/69092	Loss: 227.474
+54400/69092	Loss: 230.152
+57600/69092	Loss: 226.084
+60800/69092	Loss: 223.701
+64000/69092	Loss: 231.250
+67200/69092	Loss: 227.171
+Training time 0:04:11.450352
+Epoch: 1 Average loss: 447.14
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 1)
+0/69092	Loss: 251.797
+3200/69092	Loss: 225.635
+6400/69092	Loss: 228.129
+9600/69092	Loss: 223.246
+12800/69092	Loss: 214.800
+16000/69092	Loss: 216.244
+19200/69092	Loss: 213.488
+22400/69092	Loss: 204.465
+25600/69092	Loss: 210.539
+28800/69092	Loss: 208.756
+32000/69092	Loss: 211.511
+35200/69092	Loss: 201.741
+38400/69092	Loss: 208.114
+41600/69092	Loss: 203.864
+44800/69092	Loss: 207.909
+48000/69092	Loss: 200.300
+51200/69092	Loss: 202.518
+54400/69092	Loss: 202.010
+57600/69092	Loss: 199.430
+60800/69092	Loss: 199.646
+64000/69092	Loss: 191.796
+67200/69092	Loss: 192.559
+Training time 0:01:56.222555
+Epoch: 2 Average loss: 207.52
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 2)
+0/69092	Loss: 213.776
+3200/69092	Loss: 195.255
+6400/69092	Loss: 190.901
+9600/69092	Loss: 193.280
+12800/69092	Loss: 190.337
+16000/69092	Loss: 190.632
+19200/69092	Loss: 188.622
+22400/69092	Loss: 189.298
+25600/69092	Loss: 192.051
+28800/69092	Loss: 189.590
+32000/69092	Loss: 187.170
+35200/69092	Loss: 189.669
+38400/69092	Loss: 187.333
+41600/69092	Loss: 186.043
+44800/69092	Loss: 187.783
+48000/69092	Loss: 189.375
+51200/69092	Loss: 187.365
+54400/69092	Loss: 191.405
+57600/69092	Loss: 183.256
+60800/69092	Loss: 186.471
+64000/69092	Loss: 186.531
+67200/69092	Loss: 190.937
+Training time 0:01:56.276983
+Epoch: 3 Average loss: 189.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 3)
+0/69092	Loss: 216.677
+3200/69092	Loss: 187.545
+6400/69092	Loss: 189.138
+9600/69092	Loss: 188.047
+12800/69092	Loss: 184.307
+16000/69092	Loss: 188.439
+19200/69092	Loss: 186.454
+22400/69092	Loss: 188.196
+25600/69092	Loss: 184.643
+28800/69092	Loss: 187.148
+32000/69092	Loss: 184.818
+35200/69092	Loss: 184.574
+38400/69092	Loss: 185.366
+41600/69092	Loss: 192.044
+44800/69092	Loss: 186.806
+48000/69092	Loss: 188.283
+51200/69092	Loss: 183.873
+54400/69092	Loss: 188.628
+57600/69092	Loss: 186.013
+60800/69092	Loss: 187.894
+64000/69092	Loss: 186.695
+67200/69092	Loss: 184.645
+Training time 0:01:58.635203
+Epoch: 4 Average loss: 186.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 4)
+0/69092	Loss: 203.150
+3200/69092	Loss: 188.230
+6400/69092	Loss: 184.638
+9600/69092	Loss: 186.948
+12800/69092	Loss: 188.693
+16000/69092	Loss: 183.433
+19200/69092	Loss: 187.675
+22400/69092	Loss: 187.232
+25600/69092	Loss: 187.306
+28800/69092	Loss: 187.523
+32000/69092	Loss: 186.648
+35200/69092	Loss: 186.452
+38400/69092	Loss: 183.993
+41600/69092	Loss: 185.320
+44800/69092	Loss: 182.017
+48000/69092	Loss: 183.917
+51200/69092	Loss: 186.099
+54400/69092	Loss: 179.476
+57600/69092	Loss: 182.079
+60800/69092	Loss: 179.817
+64000/69092	Loss: 181.986
+67200/69092	Loss: 177.421
+Training time 0:01:57.159992
+Epoch: 5 Average loss: 184.44
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 5)
+0/69092	Loss: 201.415
+3200/69092	Loss: 180.093
+6400/69092	Loss: 179.419
+9600/69092	Loss: 178.953
+12800/69092	Loss: 178.537
+16000/69092	Loss: 181.504
+19200/69092	Loss: 179.501
+22400/69092	Loss: 179.450
+25600/69092	Loss: 176.027
+28800/69092	Loss: 178.539
+32000/69092	Loss: 176.076
+35200/69092	Loss: 175.172
+38400/69092	Loss: 177.610
+41600/69092	Loss: 177.594
+44800/69092	Loss: 176.750
+48000/69092	Loss: 177.454
+51200/69092	Loss: 176.812
+54400/69092	Loss: 181.063
+57600/69092	Loss: 176.534
+60800/69092	Loss: 177.212
+64000/69092	Loss: 173.409
+67200/69092	Loss: 175.427
+Training time 0:01:58.295935
+Epoch: 6 Average loss: 177.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 6)
+0/69092	Loss: 181.005
+3200/69092	Loss: 173.445
+6400/69092	Loss: 178.272
+9600/69092	Loss: 174.963
+12800/69092	Loss: 177.643
+16000/69092	Loss: 175.353
+19200/69092	Loss: 176.767
+22400/69092	Loss: 172.433
+25600/69092	Loss: 175.713
+28800/69092	Loss: 172.440
+32000/69092	Loss: 172.158
+35200/69092	Loss: 172.938
+38400/69092	Loss: 173.011
+41600/69092	Loss: 173.479
+44800/69092	Loss: 173.250
+48000/69092	Loss: 174.012
+51200/69092	Loss: 174.165
+54400/69092	Loss: 170.919
+57600/69092	Loss: 174.869
+60800/69092	Loss: 172.601
+64000/69092	Loss: 173.367
+67200/69092	Loss: 170.740
+Training time 0:01:56.841558
+Epoch: 7 Average loss: 173.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 7)
+0/69092	Loss: 155.570
+3200/69092	Loss: 171.951
+6400/69092	Loss: 172.733
+9600/69092	Loss: 173.404
+12800/69092	Loss: 175.665
+16000/69092	Loss: 169.749
+19200/69092	Loss: 168.763
+22400/69092	Loss: 168.842
+25600/69092	Loss: 167.193
+28800/69092	Loss: 168.480
+32000/69092	Loss: 172.957
+35200/69092	Loss: 167.509
+38400/69092	Loss: 170.859
+41600/69092	Loss: 169.670
+44800/69092	Loss: 169.974
+48000/69092	Loss: 170.610
+51200/69092	Loss: 169.231
+54400/69092	Loss: 169.917
+57600/69092	Loss: 166.675
+60800/69092	Loss: 169.919
+64000/69092	Loss: 168.816
+67200/69092	Loss: 167.087
+Training time 0:01:57.474977
+Epoch: 8 Average loss: 169.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 8)
+0/69092	Loss: 152.314
+3200/69092	Loss: 169.040
+6400/69092	Loss: 165.803
+9600/69092	Loss: 167.887
+12800/69092	Loss: 170.555
+16000/69092	Loss: 168.071
+19200/69092	Loss: 168.366
+22400/69092	Loss: 170.014
+25600/69092	Loss: 165.270
+28800/69092	Loss: 169.082
+32000/69092	Loss: 168.066
+35200/69092	Loss: 167.370
+38400/69092	Loss: 167.869
+41600/69092	Loss: 165.092
+44800/69092	Loss: 168.710
+48000/69092	Loss: 167.832
+51200/69092	Loss: 169.236
+54400/69092	Loss: 169.679
+57600/69092	Loss: 165.386
+60800/69092	Loss: 166.058
+64000/69092	Loss: 165.404
+67200/69092	Loss: 167.973
+Training time 0:01:58.003875
+Epoch: 9 Average loss: 167.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 9)
+0/69092	Loss: 186.743
+3200/69092	Loss: 166.642
+6400/69092	Loss: 165.061
+9600/69092	Loss: 165.308
+12800/69092	Loss: 168.703
+16000/69092	Loss: 168.617
+19200/69092	Loss: 170.108
+22400/69092	Loss: 167.263
+25600/69092	Loss: 165.110
+28800/69092	Loss: 167.110
+32000/69092	Loss: 168.740
+35200/69092	Loss: 167.422
+38400/69092	Loss: 166.927
+41600/69092	Loss: 165.685
+44800/69092	Loss: 166.346
+48000/69092	Loss: 167.761
+51200/69092	Loss: 165.619
+54400/69092	Loss: 162.744
+57600/69092	Loss: 167.680
+60800/69092	Loss: 166.785
+64000/69092	Loss: 166.229
+67200/69092	Loss: 164.606
+Training time 0:01:57.541170
+Epoch: 10 Average loss: 166.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 10)
+0/69092	Loss: 174.037
+3200/69092	Loss: 168.532
+6400/69092	Loss: 164.939
+9600/69092	Loss: 168.164
+12800/69092	Loss: 167.037
+16000/69092	Loss: 167.490
+19200/69092	Loss: 164.382
+22400/69092	Loss: 162.732
+25600/69092	Loss: 164.682
+28800/69092	Loss: 166.368
+32000/69092	Loss: 168.401
+35200/69092	Loss: 165.558
+38400/69092	Loss: 163.828
+41600/69092	Loss: 162.653
+44800/69092	Loss: 164.643
+48000/69092	Loss: 163.984
+51200/69092	Loss: 163.990
+54400/69092	Loss: 163.986
+57600/69092	Loss: 162.717
+60800/69092	Loss: 164.781
+64000/69092	Loss: 163.207
+67200/69092	Loss: 165.003
+Training time 0:01:56.971581
+Epoch: 11 Average loss: 164.96
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 11)
+0/69092	Loss: 166.630
+3200/69092	Loss: 164.078
+6400/69092	Loss: 163.281
+9600/69092	Loss: 161.550
+12800/69092	Loss: 162.644
+16000/69092	Loss: 165.764
+19200/69092	Loss: 161.325
+22400/69092	Loss: 164.922
+25600/69092	Loss: 162.244
+28800/69092	Loss: 161.489
+32000/69092	Loss: 163.428
+35200/69092	Loss: 160.567
+38400/69092	Loss: 161.385
+41600/69092	Loss: 165.746
+44800/69092	Loss: 161.974
+48000/69092	Loss: 163.419
+51200/69092	Loss: 162.336
+54400/69092	Loss: 161.887
+57600/69092	Loss: 163.420
+60800/69092	Loss: 161.745
+64000/69092	Loss: 165.138
+67200/69092	Loss: 165.768
+Training time 0:01:57.907880
+Epoch: 12 Average loss: 163.08
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 12)
+0/69092	Loss: 152.506
+3200/69092	Loss: 162.750
+6400/69092	Loss: 161.690
+9600/69092	Loss: 159.541
+12800/69092	Loss: 162.265
+16000/69092	Loss: 163.082
+19200/69092	Loss: 163.886
+22400/69092	Loss: 162.987
+25600/69092	Loss: 162.344
+28800/69092	Loss: 160.054
+32000/69092	Loss: 165.178
+35200/69092	Loss: 160.814
+38400/69092	Loss: 160.135
+41600/69092	Loss: 163.047
+44800/69092	Loss: 163.450
+48000/69092	Loss: 162.674
+51200/69092	Loss: 163.462
+54400/69092	Loss: 161.420
+57600/69092	Loss: 162.183
+60800/69092	Loss: 159.362
+64000/69092	Loss: 162.698
+67200/69092	Loss: 163.860
+Training time 0:01:57.682821
+Epoch: 13 Average loss: 162.29
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 13)
+0/69092	Loss: 151.394
+3200/69092	Loss: 160.503
+6400/69092	Loss: 162.126
+9600/69092	Loss: 161.237
+12800/69092	Loss: 161.298
+16000/69092	Loss: 161.677
+19200/69092	Loss: 161.436
+22400/69092	Loss: 158.760
+25600/69092	Loss: 163.906
+28800/69092	Loss: 158.558
+32000/69092	Loss: 162.262
+35200/69092	Loss: 161.091
+38400/69092	Loss: 162.268
+41600/69092	Loss: 166.815
+44800/69092	Loss: 161.044
+48000/69092	Loss: 161.988
+51200/69092	Loss: 165.298
+54400/69092	Loss: 165.238
+57600/69092	Loss: 163.105
+60800/69092	Loss: 163.867
+64000/69092	Loss: 158.813
+67200/69092	Loss: 163.015
+Training time 0:01:57.568042
+Epoch: 14 Average loss: 162.09
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 14)
+0/69092	Loss: 138.507
+3200/69092	Loss: 161.731
+6400/69092	Loss: 164.068
+9600/69092	Loss: 161.188
+12800/69092	Loss: 159.349
+16000/69092	Loss: 162.151
+19200/69092	Loss: 160.767
+22400/69092	Loss: 160.923
+25600/69092	Loss: 162.628
+28800/69092	Loss: 162.037
+32000/69092	Loss: 162.783
+35200/69092	Loss: 161.348
+38400/69092	Loss: 163.619
+41600/69092	Loss: 164.794
+44800/69092	Loss: 161.011
+48000/69092	Loss: 164.298
+51200/69092	Loss: 162.475
+54400/69092	Loss: 158.875
+57600/69092	Loss: 160.008
+60800/69092	Loss: 161.022
+64000/69092	Loss: 158.871
+67200/69092	Loss: 161.856
+Training time 0:01:57.727705
+Epoch: 15 Average loss: 161.58
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 15)
+0/69092	Loss: 145.301
+3200/69092	Loss: 163.730
+6400/69092	Loss: 159.274
+9600/69092	Loss: 160.533
+12800/69092	Loss: 163.232
+16000/69092	Loss: 160.052
+19200/69092	Loss: 158.232
+22400/69092	Loss: 161.700
+25600/69092	Loss: 161.574
+28800/69092	Loss: 159.018
+32000/69092	Loss: 163.837
+35200/69092	Loss: 161.704
+38400/69092	Loss: 161.651
+41600/69092	Loss: 158.541
+44800/69092	Loss: 162.820
+48000/69092	Loss: 162.896
+51200/69092	Loss: 158.152
+54400/69092	Loss: 160.193
+57600/69092	Loss: 160.873
+60800/69092	Loss: 162.326
+64000/69092	Loss: 164.243
+67200/69092	Loss: 160.145
+Training time 0:01:57.861897
+Epoch: 16 Average loss: 161.19
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 16)
+0/69092	Loss: 155.339
+3200/69092	Loss: 162.152
+6400/69092	Loss: 161.102
+9600/69092	Loss: 159.391
+12800/69092	Loss: 161.266
+16000/69092	Loss: 161.011
+19200/69092	Loss: 160.102
+22400/69092	Loss: 160.218
+25600/69092	Loss: 160.872
+28800/69092	Loss: 160.790
+32000/69092	Loss: 159.368
+35200/69092	Loss: 162.241
+38400/69092	Loss: 160.620
+41600/69092	Loss: 160.933
+44800/69092	Loss: 158.249
+48000/69092	Loss: 160.275
+51200/69092	Loss: 161.236
+54400/69092	Loss: 162.588
+57600/69092	Loss: 164.950
+60800/69092	Loss: 161.210
+64000/69092	Loss: 162.227
+67200/69092	Loss: 161.003
+Training time 0:01:57.713720
+Epoch: 17 Average loss: 161.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 17)
+0/69092	Loss: 148.239
+3200/69092	Loss: 159.891
+6400/69092	Loss: 164.055
+9600/69092	Loss: 159.331
+12800/69092	Loss: 161.076
+16000/69092	Loss: 158.351
+19200/69092	Loss: 158.842
+22400/69092	Loss: 162.516
+25600/69092	Loss: 164.261
+28800/69092	Loss: 160.496
+32000/69092	Loss: 162.196
+35200/69092	Loss: 161.130
+38400/69092	Loss: 163.890
+41600/69092	Loss: 158.830
+44800/69092	Loss: 158.579
+48000/69092	Loss: 157.500
+51200/69092	Loss: 159.903
+54400/69092	Loss: 158.277
+57600/69092	Loss: 157.346
+60800/69092	Loss: 161.180
+64000/69092	Loss: 159.906
+67200/69092	Loss: 163.404
+Training time 0:01:56.465208
+Epoch: 18 Average loss: 160.56
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 18)
+0/69092	Loss: 159.095
+3200/69092	Loss: 164.018
+6400/69092	Loss: 161.884
+9600/69092	Loss: 162.794
+12800/69092	Loss: 159.886
+16000/69092	Loss: 159.917
+19200/69092	Loss: 162.400
+22400/69092	Loss: 161.910
+25600/69092	Loss: 160.812
+28800/69092	Loss: 160.608
+32000/69092	Loss: 157.240
+35200/69092	Loss: 161.936
+38400/69092	Loss: 158.369
+41600/69092	Loss: 159.212
+44800/69092	Loss: 161.405
+48000/69092	Loss: 156.917
+51200/69092	Loss: 159.386
+54400/69092	Loss: 161.999
+57600/69092	Loss: 159.899
+60800/69092	Loss: 156.736
+64000/69092	Loss: 159.510
+67200/69092	Loss: 160.396
+Training time 0:01:57.294461
+Epoch: 19 Average loss: 160.37
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 19)
+0/69092	Loss: 166.383
+3200/69092	Loss: 156.651
+6400/69092	Loss: 156.774
+9600/69092	Loss: 161.875
+12800/69092	Loss: 159.251
+16000/69092	Loss: 161.151
+19200/69092	Loss: 158.966
+22400/69092	Loss: 160.892
+25600/69092	Loss: 161.681
+28800/69092	Loss: 159.795
+32000/69092	Loss: 163.193
+35200/69092	Loss: 160.392
+38400/69092	Loss: 160.293
+41600/69092	Loss: 160.649
+44800/69092	Loss: 157.463
+48000/69092	Loss: 158.044
+51200/69092	Loss: 160.192
+54400/69092	Loss: 157.318
+57600/69092	Loss: 161.197
+60800/69092	Loss: 159.937
+64000/69092	Loss: 160.161
+67200/69092	Loss: 161.669
+Training time 0:01:56.904126
+Epoch: 20 Average loss: 159.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 20)
+0/69092	Loss: 171.773
+3200/69092	Loss: 159.427
+6400/69092	Loss: 158.473
+9600/69092	Loss: 160.956
+12800/69092	Loss: 159.469
+16000/69092	Loss: 160.518
+19200/69092	Loss: 159.570
+22400/69092	Loss: 159.130
+25600/69092	Loss: 159.077
+28800/69092	Loss: 160.857
+32000/69092	Loss: 158.243
+35200/69092	Loss: 159.962
+38400/69092	Loss: 158.049
+41600/69092	Loss: 160.047
+44800/69092	Loss: 158.965
+48000/69092	Loss: 159.137
+51200/69092	Loss: 161.349
+54400/69092	Loss: 158.891
+57600/69092	Loss: 157.075
+60800/69092	Loss: 157.941
+64000/69092	Loss: 160.834
+67200/69092	Loss: 160.211
+Training time 0:01:56.811086
+Epoch: 21 Average loss: 159.56
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 21)
+0/69092	Loss: 172.026
+3200/69092	Loss: 158.737
+6400/69092	Loss: 159.783
+9600/69092	Loss: 158.712
+12800/69092	Loss: 161.717
+16000/69092	Loss: 157.204
+19200/69092	Loss: 158.553
+22400/69092	Loss: 159.628
+25600/69092	Loss: 159.737
+28800/69092	Loss: 158.026
+32000/69092	Loss: 157.675
+35200/69092	Loss: 158.144
+38400/69092	Loss: 159.967
+41600/69092	Loss: 157.859
+44800/69092	Loss: 159.856
+48000/69092	Loss: 158.685
+51200/69092	Loss: 160.014
+54400/69092	Loss: 160.899
+57600/69092	Loss: 159.168
+60800/69092	Loss: 160.320
+64000/69092	Loss: 160.828
+67200/69092	Loss: 160.718
+Training time 0:01:57.005308
+Epoch: 22 Average loss: 159.40
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 22)
+0/69092	Loss: 162.527
+3200/69092	Loss: 159.943
+6400/69092	Loss: 159.977
+9600/69092	Loss: 159.632
+12800/69092	Loss: 157.619
+16000/69092	Loss: 160.869
+19200/69092	Loss: 159.872
+22400/69092	Loss: 157.746
+25600/69092	Loss: 162.287
+28800/69092	Loss: 158.565
+32000/69092	Loss: 159.370
+35200/69092	Loss: 157.351
+38400/69092	Loss: 157.113
+41600/69092	Loss: 159.929
+44800/69092	Loss: 157.951
+48000/69092	Loss: 154.322
+51200/69092	Loss: 159.021
+54400/69092	Loss: 162.566
+57600/69092	Loss: 161.822
+60800/69092	Loss: 159.119
+64000/69092	Loss: 158.475
+67200/69092	Loss: 160.544
+Training time 0:01:56.138479
+Epoch: 23 Average loss: 159.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 23)
+0/69092	Loss: 159.601
+3200/69092	Loss: 156.261
+6400/69092	Loss: 159.154
+9600/69092	Loss: 160.216
+12800/69092	Loss: 160.138
+16000/69092	Loss: 160.859
+19200/69092	Loss: 156.390
+22400/69092	Loss: 157.362
+25600/69092	Loss: 161.009
+28800/69092	Loss: 161.188
+32000/69092	Loss: 158.415
+35200/69092	Loss: 161.258
+38400/69092	Loss: 159.534
+41600/69092	Loss: 161.277
+44800/69092	Loss: 158.023
+48000/69092	Loss: 159.033
+51200/69092	Loss: 156.571
+54400/69092	Loss: 157.854
+57600/69092	Loss: 157.330
+60800/69092	Loss: 157.524
+64000/69092	Loss: 161.840
+67200/69092	Loss: 158.968
+Training time 0:01:57.433571
+Epoch: 24 Average loss: 159.01
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 24)
+0/69092	Loss: 150.259
+3200/69092	Loss: 158.042
+6400/69092	Loss: 154.284
+9600/69092	Loss: 160.489
+12800/69092	Loss: 158.749
+16000/69092	Loss: 159.962
+19200/69092	Loss: 160.096
+22400/69092	Loss: 157.985
+25600/69092	Loss: 158.357
+28800/69092	Loss: 158.214
+32000/69092	Loss: 159.433
+35200/69092	Loss: 158.871
+38400/69092	Loss: 161.416
+41600/69092	Loss: 159.513
+44800/69092	Loss: 155.319
+48000/69092	Loss: 158.951
+51200/69092	Loss: 157.902
+54400/69092	Loss: 160.520
+57600/69092	Loss: 160.258
+60800/69092	Loss: 161.847
+64000/69092	Loss: 160.397
+67200/69092	Loss: 157.660
+Training time 0:01:56.686785
+Epoch: 25 Average loss: 158.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 25)
+0/69092	Loss: 175.847
+3200/69092	Loss: 157.577
+6400/69092	Loss: 157.154
+9600/69092	Loss: 157.575
+12800/69092	Loss: 156.347
+16000/69092	Loss: 158.304
+19200/69092	Loss: 155.464
+22400/69092	Loss: 159.012
+25600/69092	Loss: 159.411
+28800/69092	Loss: 160.263
+32000/69092	Loss: 160.227
+35200/69092	Loss: 159.304
+38400/69092	Loss: 158.754
+41600/69092	Loss: 159.499
+44800/69092	Loss: 159.814
+48000/69092	Loss: 158.230
+51200/69092	Loss: 157.477
+54400/69092	Loss: 159.319
+57600/69092	Loss: 159.392
+60800/69092	Loss: 156.280
+64000/69092	Loss: 161.949
+67200/69092	Loss: 158.237
+Training time 0:01:57.091565
+Epoch: 26 Average loss: 158.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 26)
+0/69092	Loss: 174.317
+3200/69092	Loss: 158.828
+6400/69092	Loss: 158.258
+9600/69092	Loss: 159.041
+12800/69092	Loss: 158.030
+16000/69092	Loss: 156.668
+19200/69092	Loss: 156.140
+22400/69092	Loss: 158.096
+25600/69092	Loss: 161.542
+28800/69092	Loss: 158.097
+32000/69092	Loss: 161.879
+35200/69092	Loss: 160.185
+38400/69092	Loss: 159.539
+41600/69092	Loss: 156.600
+44800/69092	Loss: 159.622
+48000/69092	Loss: 158.632
+51200/69092	Loss: 158.489
+54400/69092	Loss: 158.777
+57600/69092	Loss: 160.157
+60800/69092	Loss: 157.835
+64000/69092	Loss: 161.454
+67200/69092	Loss: 157.710
+Training time 0:01:57.573170
+Epoch: 27 Average loss: 158.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 27)
+0/69092	Loss: 169.950
+3200/69092	Loss: 160.448
+6400/69092	Loss: 157.658
+9600/69092	Loss: 157.383
+12800/69092	Loss: 158.649
+16000/69092	Loss: 155.918
+19200/69092	Loss: 161.217
+22400/69092	Loss: 158.561
+25600/69092	Loss: 157.231
+28800/69092	Loss: 156.257
+32000/69092	Loss: 160.891
+35200/69092	Loss: 157.534
+38400/69092	Loss: 158.610
+41600/69092	Loss: 161.252
+44800/69092	Loss: 156.420
+48000/69092	Loss: 158.420
+51200/69092	Loss: 156.531
+54400/69092	Loss: 158.198
+57600/69092	Loss: 159.361
+60800/69092	Loss: 158.509
+64000/69092	Loss: 160.518
+67200/69092	Loss: 158.676
+Training time 0:01:57.898555
+Epoch: 28 Average loss: 158.56
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 28)
+0/69092	Loss: 180.791
+3200/69092	Loss: 158.214
+6400/69092	Loss: 160.183
+9600/69092	Loss: 159.472
+12800/69092	Loss: 158.663
+16000/69092	Loss: 157.854
+19200/69092	Loss: 155.967
+22400/69092	Loss: 161.755
+25600/69092	Loss: 156.276
+28800/69092	Loss: 158.536
+32000/69092	Loss: 157.682
+35200/69092	Loss: 157.598
+38400/69092	Loss: 159.632
+41600/69092	Loss: 158.373
+44800/69092	Loss: 160.541
+48000/69092	Loss: 157.475
+51200/69092	Loss: 158.080
+54400/69092	Loss: 158.006
+57600/69092	Loss: 157.436
+60800/69092	Loss: 157.818
+64000/69092	Loss: 157.580
+67200/69092	Loss: 159.494
+Training time 0:01:57.589396
+Epoch: 29 Average loss: 158.44
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 29)
+0/69092	Loss: 154.473
+3200/69092	Loss: 154.529
+6400/69092	Loss: 157.999
+9600/69092	Loss: 157.591
+12800/69092	Loss: 158.705
+16000/69092	Loss: 158.318
+19200/69092	Loss: 156.009
+22400/69092	Loss: 155.793
+25600/69092	Loss: 158.868
+28800/69092	Loss: 156.945
+32000/69092	Loss: 157.975
+35200/69092	Loss: 158.751
+38400/69092	Loss: 158.416
+41600/69092	Loss: 162.335
+44800/69092	Loss: 157.066
+48000/69092	Loss: 160.380
+51200/69092	Loss: 161.233
+54400/69092	Loss: 161.845
+57600/69092	Loss: 158.342
+60800/69092	Loss: 154.247
+64000/69092	Loss: 156.272
+67200/69092	Loss: 159.381
+Training time 0:01:57.963856
+Epoch: 30 Average loss: 158.13
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 30)
+0/69092	Loss: 149.043
+3200/69092	Loss: 156.477
+6400/69092	Loss: 158.939
+9600/69092	Loss: 157.941
+12800/69092	Loss: 157.031
+16000/69092	Loss: 157.882
+19200/69092	Loss: 156.246
+22400/69092	Loss: 159.650
+25600/69092	Loss: 158.450
+28800/69092	Loss: 158.476
+32000/69092	Loss: 155.707
+35200/69092	Loss: 159.538
+38400/69092	Loss: 158.855
+41600/69092	Loss: 159.387
+44800/69092	Loss: 160.851
+48000/69092	Loss: 157.442
+51200/69092	Loss: 157.171
+54400/69092	Loss: 160.320
+57600/69092	Loss: 160.352
+60800/69092	Loss: 157.819
+64000/69092	Loss: 157.999
+67200/69092	Loss: 156.369
+Training time 0:01:57.846660
+Epoch: 31 Average loss: 158.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 31)
+0/69092	Loss: 166.044
+3200/69092	Loss: 157.123
+6400/69092	Loss: 158.867
+9600/69092	Loss: 158.108
+12800/69092	Loss: 160.383
+16000/69092	Loss: 160.470
+19200/69092	Loss: 157.369
+22400/69092	Loss: 157.906
+25600/69092	Loss: 162.166
+28800/69092	Loss: 157.768
+32000/69092	Loss: 156.997
+35200/69092	Loss: 157.754
+38400/69092	Loss: 157.299
+41600/69092	Loss: 155.928
+44800/69092	Loss: 159.950
+48000/69092	Loss: 153.524
+51200/69092	Loss: 157.030
+54400/69092	Loss: 162.447
+57600/69092	Loss: 156.819
+60800/69092	Loss: 157.239
+64000/69092	Loss: 161.310
+67200/69092	Loss: 157.672
+Training time 0:01:57.086052
+Epoch: 32 Average loss: 158.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 32)
+0/69092	Loss: 141.886
+3200/69092	Loss: 159.636
+6400/69092	Loss: 157.995
+9600/69092	Loss: 158.156
+12800/69092	Loss: 159.822
+16000/69092	Loss: 157.998
+19200/69092	Loss: 157.688
+22400/69092	Loss: 157.635
+25600/69092	Loss: 158.038
+28800/69092	Loss: 159.169
+32000/69092	Loss: 155.065
+35200/69092	Loss: 160.872
+38400/69092	Loss: 157.325
+41600/69092	Loss: 154.707
+44800/69092	Loss: 156.744
+48000/69092	Loss: 154.908
+51200/69092	Loss: 159.643
+54400/69092	Loss: 159.798
+57600/69092	Loss: 159.108
+60800/69092	Loss: 157.741
+64000/69092	Loss: 159.772
+67200/69092	Loss: 156.970
+Training time 0:01:56.965621
+Epoch: 33 Average loss: 158.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 33)
+0/69092	Loss: 149.203
+3200/69092	Loss: 159.589
+6400/69092	Loss: 158.096
+9600/69092	Loss: 160.628
+12800/69092	Loss: 158.932
+16000/69092	Loss: 157.386
+19200/69092	Loss: 155.842
+22400/69092	Loss: 158.107
+25600/69092	Loss: 158.379
+28800/69092	Loss: 158.827
+32000/69092	Loss: 160.503
+35200/69092	Loss: 157.624
+38400/69092	Loss: 158.499
+41600/69092	Loss: 158.835
+44800/69092	Loss: 158.024
+48000/69092	Loss: 157.228
+51200/69092	Loss: 159.710
+54400/69092	Loss: 163.208
+57600/69092	Loss: 159.277
+60800/69092	Loss: 156.224
+64000/69092	Loss: 155.559
+67200/69092	Loss: 154.168
+Training time 0:01:57.468334
+Epoch: 34 Average loss: 158.30
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 34)
+0/69092	Loss: 155.562
+3200/69092	Loss: 157.613
+6400/69092	Loss: 159.193
+9600/69092	Loss: 157.724
+12800/69092	Loss: 159.928
+16000/69092	Loss: 156.318
+19200/69092	Loss: 156.519
+22400/69092	Loss: 156.817
+25600/69092	Loss: 158.138
+28800/69092	Loss: 157.492
+32000/69092	Loss: 154.690
+35200/69092	Loss: 157.779
+38400/69092	Loss: 159.212
+41600/69092	Loss: 159.987
+44800/69092	Loss: 157.799
+48000/69092	Loss: 157.890
+51200/69092	Loss: 162.650
+54400/69092	Loss: 157.699
+57600/69092	Loss: 157.586
+60800/69092	Loss: 156.425
+64000/69092	Loss: 157.283
+67200/69092	Loss: 159.906
+Training time 0:01:57.655810
+Epoch: 35 Average loss: 158.11
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 35)
+0/69092	Loss: 168.523
+3200/69092	Loss: 160.645
+6400/69092	Loss: 157.500
+9600/69092	Loss: 154.921
+12800/69092	Loss: 160.682
+16000/69092	Loss: 157.425
+19200/69092	Loss: 155.782
+22400/69092	Loss: 159.781
+25600/69092	Loss: 160.874
+28800/69092	Loss: 158.889
+32000/69092	Loss: 156.878
+35200/69092	Loss: 156.351
+38400/69092	Loss: 158.159
+41600/69092	Loss: 159.099
+44800/69092	Loss: 156.303
+48000/69092	Loss: 158.400
+51200/69092	Loss: 160.983
+54400/69092	Loss: 159.926
+57600/69092	Loss: 156.810
+60800/69092	Loss: 155.804
+64000/69092	Loss: 155.990
+67200/69092	Loss: 156.750
+Training time 0:01:57.653648
+Epoch: 36 Average loss: 157.88
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 36)
+0/69092	Loss: 146.145
+3200/69092	Loss: 158.221
+6400/69092	Loss: 156.710
+9600/69092	Loss: 154.593
+12800/69092	Loss: 155.646
+16000/69092	Loss: 160.545
+19200/69092	Loss: 159.107
+22400/69092	Loss: 158.840
+25600/69092	Loss: 158.424
+28800/69092	Loss: 157.260
+32000/69092	Loss: 156.305
+35200/69092	Loss: 159.250
+38400/69092	Loss: 157.572
+41600/69092	Loss: 157.123
+44800/69092	Loss: 158.622
+48000/69092	Loss: 160.923
+51200/69092	Loss: 157.823
+54400/69092	Loss: 158.834
+57600/69092	Loss: 160.488
+60800/69092	Loss: 159.627
+64000/69092	Loss: 157.076
+67200/69092	Loss: 157.016
+Training time 0:01:56.633660
+Epoch: 37 Average loss: 158.05
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 37)
+0/69092	Loss: 159.461
+3200/69092	Loss: 157.414
+6400/69092	Loss: 156.563
+9600/69092	Loss: 157.638
+12800/69092	Loss: 159.852
+16000/69092	Loss: 158.049
+19200/69092	Loss: 159.267
+22400/69092	Loss: 157.438
+25600/69092	Loss: 161.260
+28800/69092	Loss: 157.021
+32000/69092	Loss: 158.902
+35200/69092	Loss: 157.195
+38400/69092	Loss: 157.308
+41600/69092	Loss: 158.286
+44800/69092	Loss: 157.514
+48000/69092	Loss: 159.925
+51200/69092	Loss: 157.633
+54400/69092	Loss: 151.464
+57600/69092	Loss: 159.884
+60800/69092	Loss: 158.198
+64000/69092	Loss: 159.784
+67200/69092	Loss: 156.667
+Training time 0:01:56.737842
+Epoch: 38 Average loss: 157.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 38)
+0/69092	Loss: 147.399
+3200/69092	Loss: 158.412
+6400/69092	Loss: 157.194
+9600/69092	Loss: 159.238
+12800/69092	Loss: 159.889
+16000/69092	Loss: 153.887
+19200/69092	Loss: 157.620
+22400/69092	Loss: 158.452
+25600/69092	Loss: 156.053
+28800/69092	Loss: 157.084
+32000/69092	Loss: 157.309
+35200/69092	Loss: 159.122
+38400/69092	Loss: 156.366
+41600/69092	Loss: 157.924
+44800/69092	Loss: 157.066
+48000/69092	Loss: 161.849
+51200/69092	Loss: 158.760
+54400/69092	Loss: 155.814
+57600/69092	Loss: 156.654
+60800/69092	Loss: 160.296
+64000/69092	Loss: 158.226
+67200/69092	Loss: 160.055
+Training time 0:01:57.367414
+Epoch: 39 Average loss: 157.93
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 39)
+0/69092	Loss: 164.177
+3200/69092	Loss: 156.984
+6400/69092	Loss: 156.742
+9600/69092	Loss: 155.836
+12800/69092	Loss: 155.307
+16000/69092	Loss: 155.141
+19200/69092	Loss: 161.373
+22400/69092	Loss: 157.936
+25600/69092	Loss: 157.795
+28800/69092	Loss: 158.593
+32000/69092	Loss: 158.277
+35200/69092	Loss: 157.714
+38400/69092	Loss: 158.840
+41600/69092	Loss: 156.470
+44800/69092	Loss: 160.162
+48000/69092	Loss: 159.038
+51200/69092	Loss: 157.774
+54400/69092	Loss: 158.154
+57600/69092	Loss: 158.726
+60800/69092	Loss: 157.381
+64000/69092	Loss: 158.056
+67200/69092	Loss: 157.962
+Training time 0:01:56.571606
+Epoch: 40 Average loss: 157.82
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 40)
+0/69092	Loss: 163.158
+3200/69092	Loss: 154.205
+6400/69092	Loss: 161.533
+9600/69092	Loss: 154.016
+12800/69092	Loss: 158.602
+16000/69092	Loss: 159.686
+19200/69092	Loss: 158.052
+22400/69092	Loss: 157.961
+25600/69092	Loss: 157.917
+28800/69092	Loss: 158.310
+32000/69092	Loss: 155.903
+35200/69092	Loss: 160.613
+38400/69092	Loss: 157.665
+41600/69092	Loss: 154.263
+44800/69092	Loss: 159.483
+48000/69092	Loss: 159.126
+51200/69092	Loss: 161.590
+54400/69092	Loss: 156.286
+57600/69092	Loss: 155.363
+60800/69092	Loss: 154.854
+64000/69092	Loss: 156.564
+67200/69092	Loss: 156.462
+Training time 0:01:57.496448
+Epoch: 41 Average loss: 157.63
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 41)
+0/69092	Loss: 142.771
+3200/69092	Loss: 157.839
+6400/69092	Loss: 156.594
+9600/69092	Loss: 157.594
+12800/69092	Loss: 157.968
+16000/69092	Loss: 158.527
+19200/69092	Loss: 160.140
+22400/69092	Loss: 158.364
+25600/69092	Loss: 161.494
+28800/69092	Loss: 154.105
+32000/69092	Loss: 158.509
+35200/69092	Loss: 159.576
+38400/69092	Loss: 155.896
+41600/69092	Loss: 157.567
+44800/69092	Loss: 156.124
+48000/69092	Loss: 158.451
+51200/69092	Loss: 157.359
+54400/69092	Loss: 156.247
+57600/69092	Loss: 158.730
+60800/69092	Loss: 156.242
+64000/69092	Loss: 155.546
+67200/69092	Loss: 157.135
+Training time 0:01:56.132207
+Epoch: 42 Average loss: 157.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 42)
+0/69092	Loss: 148.719
+3200/69092	Loss: 157.723
+6400/69092	Loss: 157.190
+9600/69092	Loss: 157.123
+12800/69092	Loss: 159.344
+16000/69092	Loss: 156.742
+19200/69092	Loss: 157.294
+22400/69092	Loss: 161.777
+25600/69092	Loss: 156.166
+28800/69092	Loss: 159.577
+32000/69092	Loss: 156.729
+35200/69092	Loss: 156.896
+38400/69092	Loss: 160.607
+41600/69092	Loss: 158.282
+44800/69092	Loss: 156.040
+48000/69092	Loss: 160.024
+51200/69092	Loss: 156.110
+54400/69092	Loss: 158.322
+57600/69092	Loss: 156.341
+60800/69092	Loss: 159.159
+64000/69092	Loss: 156.933
+67200/69092	Loss: 155.380
+Training time 0:01:55.631859
+Epoch: 43 Average loss: 157.74
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 43)
+0/69092	Loss: 148.240
+3200/69092	Loss: 158.520
+6400/69092	Loss: 157.521
+9600/69092	Loss: 157.891
+12800/69092	Loss: 155.299
+16000/69092	Loss: 154.953
+19200/69092	Loss: 156.328
+22400/69092	Loss: 157.241
+25600/69092	Loss: 159.548
+28800/69092	Loss: 155.270
+32000/69092	Loss: 156.408
+35200/69092	Loss: 156.868
+38400/69092	Loss: 157.401
+41600/69092	Loss: 156.812
+44800/69092	Loss: 158.932
+48000/69092	Loss: 156.356
+51200/69092	Loss: 158.910
+54400/69092	Loss: 159.543
+57600/69092	Loss: 157.286
+60800/69092	Loss: 158.413
+64000/69092	Loss: 157.405
+67200/69092	Loss: 158.833
+Training time 0:01:57.376562
+Epoch: 44 Average loss: 157.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 44)
+0/69092	Loss: 183.489
+3200/69092	Loss: 158.599
+6400/69092	Loss: 157.540
+9600/69092	Loss: 158.589
+12800/69092	Loss: 156.262
+16000/69092	Loss: 158.069
+19200/69092	Loss: 157.732
+22400/69092	Loss: 158.297
+25600/69092	Loss: 155.116
+28800/69092	Loss: 156.900
+32000/69092	Loss: 158.672
+35200/69092	Loss: 157.091
+38400/69092	Loss: 157.269
+41600/69092	Loss: 157.161
+44800/69092	Loss: 159.029
+48000/69092	Loss: 157.814
+51200/69092	Loss: 157.799
+54400/69092	Loss: 160.981
+57600/69092	Loss: 155.705
+60800/69092	Loss: 153.627
+64000/69092	Loss: 156.401
+67200/69092	Loss: 157.697
+Training time 0:01:57.126096
+Epoch: 45 Average loss: 157.46
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 45)
+0/69092	Loss: 134.899
+3200/69092	Loss: 155.808
+6400/69092	Loss: 155.517
+9600/69092	Loss: 160.164
+12800/69092	Loss: 158.348
+16000/69092	Loss: 155.439
+19200/69092	Loss: 156.631
+22400/69092	Loss: 158.519
+25600/69092	Loss: 157.923
+28800/69092	Loss: 155.695
+32000/69092	Loss: 158.047
+35200/69092	Loss: 156.660
+38400/69092	Loss: 155.231
+41600/69092	Loss: 156.076
+44800/69092	Loss: 158.311
+48000/69092	Loss: 158.275
+51200/69092	Loss: 155.542
+54400/69092	Loss: 158.992
+57600/69092	Loss: 157.053
+60800/69092	Loss: 156.156
+64000/69092	Loss: 155.883
+67200/69092	Loss: 160.665
+Training time 0:01:56.797464
+Epoch: 46 Average loss: 157.27
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 46)
+0/69092	Loss: 149.035
+3200/69092	Loss: 156.858
+6400/69092	Loss: 156.009
+9600/69092	Loss: 158.135
+12800/69092	Loss: 156.576
+16000/69092	Loss: 159.007
+19200/69092	Loss: 158.286
+22400/69092	Loss: 158.013
+25600/69092	Loss: 158.883
+28800/69092	Loss: 157.480
+32000/69092	Loss: 154.650
+35200/69092	Loss: 157.620
+38400/69092	Loss: 158.066
+41600/69092	Loss: 159.452
+44800/69092	Loss: 158.096
+48000/69092	Loss: 156.719
+51200/69092	Loss: 157.181
+54400/69092	Loss: 158.686
+57600/69092	Loss: 156.388
+60800/69092	Loss: 156.867
+64000/69092	Loss: 158.142
+67200/69092	Loss: 155.473
+Training time 0:01:58.057136
+Epoch: 47 Average loss: 157.39
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 47)
+0/69092	Loss: 156.587
+3200/69092	Loss: 157.950
+6400/69092	Loss: 157.832
+9600/69092	Loss: 158.014
+12800/69092	Loss: 158.341
+16000/69092	Loss: 157.709
+19200/69092	Loss: 158.444
+22400/69092	Loss: 157.614
+25600/69092	Loss: 158.293
+28800/69092	Loss: 154.710
+32000/69092	Loss: 157.538
+35200/69092	Loss: 161.075
+38400/69092	Loss: 157.889
+41600/69092	Loss: 157.793
+44800/69092	Loss: 156.859
+48000/69092	Loss: 153.925
+51200/69092	Loss: 159.580
+54400/69092	Loss: 155.482
+57600/69092	Loss: 154.306
+60800/69092	Loss: 159.191
+64000/69092	Loss: 157.118
+67200/69092	Loss: 155.726
+Training time 0:01:58.795023
+Epoch: 48 Average loss: 157.39
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 48)
+0/69092	Loss: 165.872
+3200/69092	Loss: 157.354
+6400/69092	Loss: 155.905
+9600/69092	Loss: 155.997
+12800/69092	Loss: 157.172
+16000/69092	Loss: 157.139
+19200/69092	Loss: 156.060
+22400/69092	Loss: 157.143
+25600/69092	Loss: 158.096
+28800/69092	Loss: 156.610
+32000/69092	Loss: 157.839
+35200/69092	Loss: 158.196
+38400/69092	Loss: 159.408
+41600/69092	Loss: 158.201
+44800/69092	Loss: 160.485
+48000/69092	Loss: 156.418
+51200/69092	Loss: 156.554
+54400/69092	Loss: 155.956
+57600/69092	Loss: 156.167
+60800/69092	Loss: 159.508
+64000/69092	Loss: 157.252
+67200/69092	Loss: 154.809
+Training time 0:01:56.342746
+Epoch: 49 Average loss: 157.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 49)
+0/69092	Loss: 160.775
+3200/69092	Loss: 155.519
+6400/69092	Loss: 158.197
+9600/69092	Loss: 156.860
+12800/69092	Loss: 159.379
+16000/69092	Loss: 158.138
+19200/69092	Loss: 154.866
+22400/69092	Loss: 157.963
+25600/69092	Loss: 155.828
+28800/69092	Loss: 158.554
+32000/69092	Loss: 156.378
+35200/69092	Loss: 154.430
+38400/69092	Loss: 159.973
+41600/69092	Loss: 156.173
+44800/69092	Loss: 156.855
+48000/69092	Loss: 158.209
+51200/69092	Loss: 154.854
+54400/69092	Loss: 153.730
+57600/69092	Loss: 157.787
+60800/69092	Loss: 155.526
+64000/69092	Loss: 157.450
+67200/69092	Loss: 161.151
+Training time 0:01:57.673239
+Epoch: 50 Average loss: 157.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 50)
+0/69092	Loss: 151.309
+3200/69092	Loss: 154.663
+6400/69092	Loss: 155.966
+9600/69092	Loss: 157.126
+12800/69092	Loss: 158.215
+16000/69092	Loss: 154.137
+19200/69092	Loss: 157.095
+22400/69092	Loss: 158.049
+25600/69092	Loss: 160.578
+28800/69092	Loss: 157.522
+32000/69092	Loss: 155.314
+35200/69092	Loss: 158.797
+38400/69092	Loss: 156.035
+41600/69092	Loss: 155.960
+44800/69092	Loss: 158.463
+48000/69092	Loss: 158.309
+51200/69092	Loss: 157.494
+54400/69092	Loss: 158.661
+57600/69092	Loss: 155.803
+60800/69092	Loss: 159.165
+64000/69092	Loss: 157.056
+67200/69092	Loss: 157.738
+Training time 0:01:57.105160
+Epoch: 51 Average loss: 157.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 51)
+0/69092	Loss: 156.573
+3200/69092	Loss: 159.189
+6400/69092	Loss: 156.278
+9600/69092	Loss: 155.030
+12800/69092	Loss: 156.196
+16000/69092	Loss: 154.702
+19200/69092	Loss: 158.979
+22400/69092	Loss: 155.708
+25600/69092	Loss: 158.506
+28800/69092	Loss: 159.577
+32000/69092	Loss: 159.355
+35200/69092	Loss: 153.567
+38400/69092	Loss: 155.650
+41600/69092	Loss: 156.753
+44800/69092	Loss: 156.222
+48000/69092	Loss: 154.584
+51200/69092	Loss: 155.190
+54400/69092	Loss: 158.051
+57600/69092	Loss: 158.151
+60800/69092	Loss: 157.054
+64000/69092	Loss: 157.889
+67200/69092	Loss: 156.688
+Training time 0:01:58.536600
+Epoch: 52 Average loss: 156.83
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 52)
+0/69092	Loss: 151.972
+3200/69092	Loss: 157.845
+6400/69092	Loss: 155.750
+9600/69092	Loss: 155.901
+12800/69092	Loss: 156.866
+16000/69092	Loss: 158.451
+19200/69092	Loss: 156.067
+22400/69092	Loss: 157.738
+25600/69092	Loss: 157.944
+28800/69092	Loss: 156.943
+32000/69092	Loss: 158.236
+35200/69092	Loss: 159.389
+38400/69092	Loss: 155.751
+41600/69092	Loss: 159.080
+44800/69092	Loss: 157.479
+48000/69092	Loss: 156.445
+51200/69092	Loss: 155.405
+54400/69092	Loss: 156.730
+57600/69092	Loss: 157.065
+60800/69092	Loss: 157.780
+64000/69092	Loss: 156.755
+67200/69092	Loss: 154.428
+Training time 0:01:57.886704
+Epoch: 53 Average loss: 157.08
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 53)
+0/69092	Loss: 174.818
+3200/69092	Loss: 154.922
+6400/69092	Loss: 156.329
+9600/69092	Loss: 156.336
+12800/69092	Loss: 156.757
+16000/69092	Loss: 152.687
+19200/69092	Loss: 159.353
+22400/69092	Loss: 160.727
+25600/69092	Loss: 156.750
+28800/69092	Loss: 155.404
+32000/69092	Loss: 152.797
+35200/69092	Loss: 152.721
+38400/69092	Loss: 156.911
+41600/69092	Loss: 157.836
+44800/69092	Loss: 158.115
+48000/69092	Loss: 160.589
+51200/69092	Loss: 160.768
+54400/69092	Loss: 154.929
+57600/69092	Loss: 157.721
+60800/69092	Loss: 156.103
+64000/69092	Loss: 157.022
+67200/69092	Loss: 156.841
+Training time 0:01:57.631492
+Epoch: 54 Average loss: 156.82
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 54)
+0/69092	Loss: 161.799
+3200/69092	Loss: 158.768
+6400/69092	Loss: 155.949
+9600/69092	Loss: 156.426
+12800/69092	Loss: 157.792
+16000/69092	Loss: 156.559
+19200/69092	Loss: 156.716
+22400/69092	Loss: 155.907
+25600/69092	Loss: 158.677
+28800/69092	Loss: 156.829
+32000/69092	Loss: 156.810
+35200/69092	Loss: 158.180
+38400/69092	Loss: 155.060
+41600/69092	Loss: 160.118
+44800/69092	Loss: 155.946
+48000/69092	Loss: 156.171
+51200/69092	Loss: 156.939
+54400/69092	Loss: 157.657
+57600/69092	Loss: 158.546
+60800/69092	Loss: 153.721
+64000/69092	Loss: 157.700
+67200/69092	Loss: 157.772
+Training time 0:01:57.196255
+Epoch: 55 Average loss: 157.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 55)
+0/69092	Loss: 171.154
+3200/69092	Loss: 153.401
+6400/69092	Loss: 156.834
+9600/69092	Loss: 154.542
+12800/69092	Loss: 155.035
+16000/69092	Loss: 158.024
+19200/69092	Loss: 157.822
+22400/69092	Loss: 156.419
+25600/69092	Loss: 156.718
+28800/69092	Loss: 157.653
+32000/69092	Loss: 157.035
+35200/69092	Loss: 156.710
+38400/69092	Loss: 155.312
+41600/69092	Loss: 157.849
+44800/69092	Loss: 156.143
+48000/69092	Loss: 157.220
+51200/69092	Loss: 158.816
+54400/69092	Loss: 156.738
+57600/69092	Loss: 158.093
+60800/69092	Loss: 155.736
+64000/69092	Loss: 156.589
+67200/69092	Loss: 159.281
+Training time 0:01:57.246343
+Epoch: 56 Average loss: 156.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 56)
+0/69092	Loss: 161.665
+3200/69092	Loss: 159.070
+6400/69092	Loss: 159.161
+9600/69092	Loss: 155.761
+12800/69092	Loss: 153.790
+16000/69092	Loss: 156.048
+19200/69092	Loss: 157.425
+22400/69092	Loss: 156.850
+25600/69092	Loss: 157.505
+28800/69092	Loss: 155.880
+32000/69092	Loss: 156.811
+35200/69092	Loss: 158.641
+38400/69092	Loss: 158.764
+41600/69092	Loss: 155.957
+44800/69092	Loss: 157.562
+48000/69092	Loss: 159.475
+51200/69092	Loss: 153.178
+54400/69092	Loss: 156.193
+57600/69092	Loss: 157.788
+60800/69092	Loss: 159.666
+64000/69092	Loss: 154.616
+67200/69092	Loss: 156.717
+Training time 0:01:57.070016
+Epoch: 57 Average loss: 156.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 57)
+0/69092	Loss: 154.231
+3200/69092	Loss: 158.923
+6400/69092	Loss: 158.280
+9600/69092	Loss: 157.097
+12800/69092	Loss: 157.692
+16000/69092	Loss: 156.956
+19200/69092	Loss: 157.788
+22400/69092	Loss: 157.053
+25600/69092	Loss: 157.228
+28800/69092	Loss: 155.322
+32000/69092	Loss: 156.554
+35200/69092	Loss: 158.866
+38400/69092	Loss: 156.445
+41600/69092	Loss: 154.960
+44800/69092	Loss: 157.239
+48000/69092	Loss: 158.918
+51200/69092	Loss: 157.310
+54400/69092	Loss: 155.059
+57600/69092	Loss: 155.969
+60800/69092	Loss: 154.774
+64000/69092	Loss: 156.288
+67200/69092	Loss: 154.829
+Training time 0:01:56.619470
+Epoch: 58 Average loss: 156.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 58)
+0/69092	Loss: 158.747
+3200/69092	Loss: 156.800
+6400/69092	Loss: 159.003
+9600/69092	Loss: 157.429
+12800/69092	Loss: 154.900
+16000/69092	Loss: 155.986
+19200/69092	Loss: 156.581
+22400/69092	Loss: 159.008
+25600/69092	Loss: 159.020
+28800/69092	Loss: 155.761
+32000/69092	Loss: 155.297
+35200/69092	Loss: 159.026
+38400/69092	Loss: 156.345
+41600/69092	Loss: 156.182
+44800/69092	Loss: 156.119
+48000/69092	Loss: 155.560
+51200/69092	Loss: 157.515
+54400/69092	Loss: 155.749
+57600/69092	Loss: 156.210
+60800/69092	Loss: 158.114
+64000/69092	Loss: 156.935
+67200/69092	Loss: 157.552
+Training time 0:01:57.085682
+Epoch: 59 Average loss: 156.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 59)
+0/69092	Loss: 146.586
+3200/69092	Loss: 158.287
+6400/69092	Loss: 158.391
+9600/69092	Loss: 158.880
+12800/69092	Loss: 155.636
+16000/69092	Loss: 155.746
+19200/69092	Loss: 158.401
+22400/69092	Loss: 157.398
+25600/69092	Loss: 156.920
+28800/69092	Loss: 156.823
+32000/69092	Loss: 157.231
+35200/69092	Loss: 155.793
+38400/69092	Loss: 154.992
+41600/69092	Loss: 157.846
+44800/69092	Loss: 157.710
+48000/69092	Loss: 156.173
+51200/69092	Loss: 155.872
+54400/69092	Loss: 154.709
+57600/69092	Loss: 156.277
+60800/69092	Loss: 154.646
+64000/69092	Loss: 159.004
+67200/69092	Loss: 158.058
+Training time 0:01:57.663232
+Epoch: 60 Average loss: 156.85
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 60)
+0/69092	Loss: 166.009
+3200/69092	Loss: 156.702
+6400/69092	Loss: 157.125
+9600/69092	Loss: 158.976
+12800/69092	Loss: 156.149
+16000/69092	Loss: 153.047
+19200/69092	Loss: 155.508
+22400/69092	Loss: 161.147
+25600/69092	Loss: 156.039
+28800/69092	Loss: 158.867
+32000/69092	Loss: 156.878
+35200/69092	Loss: 151.503
+38400/69092	Loss: 154.111
+41600/69092	Loss: 158.582
+44800/69092	Loss: 158.066
+48000/69092	Loss: 156.287
+51200/69092	Loss: 154.743
+54400/69092	Loss: 156.873
+57600/69092	Loss: 157.863
+60800/69092	Loss: 158.995
+64000/69092	Loss: 156.081
+67200/69092	Loss: 158.808
+Training time 0:01:56.126829
+Epoch: 61 Average loss: 156.76
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 61)
+0/69092	Loss: 149.690
+3200/69092	Loss: 157.301
+6400/69092	Loss: 154.143
+9600/69092	Loss: 157.269
+12800/69092	Loss: 153.988
+16000/69092	Loss: 159.099
+19200/69092	Loss: 160.946
+22400/69092	Loss: 155.791
+25600/69092	Loss: 155.753
+28800/69092	Loss: 158.661
+32000/69092	Loss: 155.565
+35200/69092	Loss: 158.673
+38400/69092	Loss: 156.105
+41600/69092	Loss: 158.320
+44800/69092	Loss: 155.879
+48000/69092	Loss: 158.420
+51200/69092	Loss: 155.879
+54400/69092	Loss: 159.195
+57600/69092	Loss: 156.250
+60800/69092	Loss: 152.425
+64000/69092	Loss: 157.972
+67200/69092	Loss: 157.329
+Training time 0:01:55.724764
+Epoch: 62 Average loss: 156.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 62)
+0/69092	Loss: 130.425
+3200/69092	Loss: 155.063
+6400/69092	Loss: 156.972
+9600/69092	Loss: 156.451
+12800/69092	Loss: 157.251
+16000/69092	Loss: 155.544
+19200/69092	Loss: 157.545
+22400/69092	Loss: 156.117
+25600/69092	Loss: 154.692
+28800/69092	Loss: 161.002
+32000/69092	Loss: 154.937
+35200/69092	Loss: 157.969
+38400/69092	Loss: 159.332
+41600/69092	Loss: 155.803
+44800/69092	Loss: 158.768
+48000/69092	Loss: 157.521
+51200/69092	Loss: 156.443
+54400/69092	Loss: 156.695
+57600/69092	Loss: 156.823
+60800/69092	Loss: 154.686
+64000/69092	Loss: 154.257
+67200/69092	Loss: 154.854
+Training time 0:01:56.869917
+Epoch: 63 Average loss: 156.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 63)
+0/69092	Loss: 168.278
+3200/69092	Loss: 156.477
+6400/69092	Loss: 155.834
+9600/69092	Loss: 156.175
+12800/69092	Loss: 156.452
+16000/69092	Loss: 160.474
+19200/69092	Loss: 156.110
+22400/69092	Loss: 155.731
+25600/69092	Loss: 157.460
+28800/69092	Loss: 158.133
+32000/69092	Loss: 157.400
+35200/69092	Loss: 156.079
+38400/69092	Loss: 155.674
+41600/69092	Loss: 157.975
+44800/69092	Loss: 156.635
+48000/69092	Loss: 160.176
+51200/69092	Loss: 155.979
+54400/69092	Loss: 155.203
+57600/69092	Loss: 155.413
+60800/69092	Loss: 156.931
+64000/69092	Loss: 156.373
+67200/69092	Loss: 155.685
+Training time 0:01:56.637123
+Epoch: 64 Average loss: 156.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 64)
+0/69092	Loss: 179.476
+3200/69092	Loss: 158.416
+6400/69092	Loss: 157.825
+9600/69092	Loss: 158.553
+12800/69092	Loss: 155.701
+16000/69092	Loss: 157.353
+19200/69092	Loss: 155.801
+22400/69092	Loss: 159.169
+25600/69092	Loss: 154.814
+28800/69092	Loss: 155.133
+32000/69092	Loss: 155.811
+35200/69092	Loss: 155.900
+38400/69092	Loss: 157.083
+41600/69092	Loss: 155.313
+44800/69092	Loss: 153.626
+48000/69092	Loss: 156.280
+51200/69092	Loss: 156.116
+54400/69092	Loss: 156.223
+57600/69092	Loss: 160.646
+60800/69092	Loss: 156.571
+64000/69092	Loss: 157.397
+67200/69092	Loss: 159.361
+Training time 0:01:58.626638
+Epoch: 65 Average loss: 156.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 65)
+0/69092	Loss: 176.773
+3200/69092	Loss: 156.387
+6400/69092	Loss: 155.365
+9600/69092	Loss: 154.489
+12800/69092	Loss: 157.076
+16000/69092	Loss: 155.513
+19200/69092	Loss: 157.775
+22400/69092	Loss: 157.222
+25600/69092	Loss: 155.243
+28800/69092	Loss: 156.085
+32000/69092	Loss: 159.660
+35200/69092	Loss: 157.171
+38400/69092	Loss: 158.023
+41600/69092	Loss: 156.154
+44800/69092	Loss: 155.216
+48000/69092	Loss: 156.061
+51200/69092	Loss: 158.243
+54400/69092	Loss: 154.301
+57600/69092	Loss: 157.221
+60800/69092	Loss: 160.235
+64000/69092	Loss: 159.062
+67200/69092	Loss: 157.388
+Training time 0:01:57.428312
+Epoch: 66 Average loss: 156.88
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 66)
+0/69092	Loss: 174.267
+3200/69092	Loss: 156.316
+6400/69092	Loss: 155.633
+9600/69092	Loss: 157.480
+12800/69092	Loss: 156.161
+16000/69092	Loss: 156.051
+19200/69092	Loss: 157.521
+22400/69092	Loss: 156.603
+25600/69092	Loss: 157.186
+28800/69092	Loss: 156.992
+32000/69092	Loss: 154.298
+35200/69092	Loss: 158.896
+38400/69092	Loss: 158.421
+41600/69092	Loss: 154.238
+44800/69092	Loss: 154.904
+48000/69092	Loss: 157.834
+51200/69092	Loss: 156.558
+54400/69092	Loss: 157.259
+57600/69092	Loss: 156.655
+60800/69092	Loss: 157.521
+64000/69092	Loss: 155.841
+67200/69092	Loss: 155.924
+Training time 0:01:58.339228
+Epoch: 67 Average loss: 156.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 67)
+0/69092	Loss: 140.377
+3200/69092	Loss: 154.747
+6400/69092	Loss: 155.382
+9600/69092	Loss: 156.505
+12800/69092	Loss: 156.563
+16000/69092	Loss: 154.118
+19200/69092	Loss: 155.948
+22400/69092	Loss: 154.806
+25600/69092	Loss: 159.843
+28800/69092	Loss: 156.679
+32000/69092	Loss: 154.444
+35200/69092	Loss: 157.556
+38400/69092	Loss: 158.586
+41600/69092	Loss: 156.744
+44800/69092	Loss: 159.562
+48000/69092	Loss: 155.890
+51200/69092	Loss: 157.496
+54400/69092	Loss: 159.528
+57600/69092	Loss: 155.868
+60800/69092	Loss: 156.400
+64000/69092	Loss: 157.189
+67200/69092	Loss: 154.496
+Training time 0:01:56.978773
+Epoch: 68 Average loss: 156.65
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 68)
+0/69092	Loss: 158.141
+3200/69092	Loss: 159.387
+6400/69092	Loss: 155.405
+9600/69092	Loss: 155.339
+12800/69092	Loss: 156.634
+16000/69092	Loss: 155.310
+19200/69092	Loss: 157.443
+22400/69092	Loss: 156.007
+25600/69092	Loss: 156.260
+28800/69092	Loss: 155.516
+32000/69092	Loss: 155.838
+35200/69092	Loss: 156.311
+38400/69092	Loss: 159.134
+41600/69092	Loss: 156.855
+44800/69092	Loss: 156.743
+48000/69092	Loss: 157.367
+51200/69092	Loss: 155.085
+54400/69092	Loss: 155.545
+57600/69092	Loss: 157.443
+60800/69092	Loss: 157.246
+64000/69092	Loss: 159.013
+67200/69092	Loss: 156.078
+Training time 0:01:56.638653
+Epoch: 69 Average loss: 156.74
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 69)
+0/69092	Loss: 158.210
+3200/69092	Loss: 154.090
+6400/69092	Loss: 157.629
+9600/69092	Loss: 154.256
+12800/69092	Loss: 159.237
+16000/69092	Loss: 156.519
+19200/69092	Loss: 154.338
+22400/69092	Loss: 156.687
+25600/69092	Loss: 156.197
+28800/69092	Loss: 157.974
+32000/69092	Loss: 158.141
+35200/69092	Loss: 157.055
+38400/69092	Loss: 157.476
+41600/69092	Loss: 155.278
+44800/69092	Loss: 156.339
+48000/69092	Loss: 157.029
+51200/69092	Loss: 155.831
+54400/69092	Loss: 157.420
+57600/69092	Loss: 159.868
+60800/69092	Loss: 154.644
+64000/69092	Loss: 154.695
+67200/69092	Loss: 159.722
+Training time 0:01:57.764959
+Epoch: 70 Average loss: 156.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 70)
+0/69092	Loss: 171.868
+3200/69092	Loss: 154.971
+6400/69092	Loss: 155.690
+9600/69092	Loss: 157.860
+12800/69092	Loss: 153.959
+16000/69092	Loss: 155.459
+19200/69092	Loss: 153.802
+22400/69092	Loss: 157.337
+25600/69092	Loss: 157.796
+28800/69092	Loss: 159.014
+32000/69092	Loss: 156.024
+35200/69092	Loss: 155.496
+38400/69092	Loss: 153.453
+41600/69092	Loss: 157.982
+44800/69092	Loss: 158.127
+48000/69092	Loss: 157.016
+51200/69092	Loss: 155.336
+54400/69092	Loss: 158.065
+57600/69092	Loss: 155.201
+60800/69092	Loss: 155.793
+64000/69092	Loss: 160.623
+67200/69092	Loss: 159.226
+Training time 0:01:57.575431
+Epoch: 71 Average loss: 156.54
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 71)
+0/69092	Loss: 165.875
+3200/69092	Loss: 155.211
+6400/69092	Loss: 155.809
+9600/69092	Loss: 154.843
+12800/69092	Loss: 156.813
+16000/69092	Loss: 154.584
+19200/69092	Loss: 156.197
+22400/69092	Loss: 156.995
+25600/69092	Loss: 156.827
+28800/69092	Loss: 156.808
+32000/69092	Loss: 155.107
+35200/69092	Loss: 155.928
+38400/69092	Loss: 155.386
+41600/69092	Loss: 157.398
+44800/69092	Loss: 159.463
+48000/69092	Loss: 157.174
+51200/69092	Loss: 155.567
+54400/69092	Loss: 156.645
+57600/69092	Loss: 156.502
+60800/69092	Loss: 158.758
+64000/69092	Loss: 156.681
+67200/69092	Loss: 156.160
+Training time 0:01:57.928112
+Epoch: 72 Average loss: 156.36
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 72)
+0/69092	Loss: 149.009
+3200/69092	Loss: 157.306
+6400/69092	Loss: 154.970
+9600/69092	Loss: 155.292
+12800/69092	Loss: 160.226
+16000/69092	Loss: 155.449
+19200/69092	Loss: 154.617
+22400/69092	Loss: 159.083
+25600/69092	Loss: 157.713
+28800/69092	Loss: 153.892
+32000/69092	Loss: 157.108
+35200/69092	Loss: 157.129
+38400/69092	Loss: 158.180
+41600/69092	Loss: 154.745
+44800/69092	Loss: 157.751
+48000/69092	Loss: 154.215
+51200/69092	Loss: 155.574
+54400/69092	Loss: 156.107
+57600/69092	Loss: 159.449
+60800/69092	Loss: 154.039
+64000/69092	Loss: 157.771
+67200/69092	Loss: 154.503
+Training time 0:01:58.927985
+Epoch: 73 Average loss: 156.45
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 73)
+0/69092	Loss: 162.335
+3200/69092	Loss: 156.992
+6400/69092	Loss: 155.441
+9600/69092	Loss: 158.319
+12800/69092	Loss: 156.799
+16000/69092	Loss: 154.601
+19200/69092	Loss: 156.184
+22400/69092	Loss: 156.119
+25600/69092	Loss: 156.730
+28800/69092	Loss: 157.873
+32000/69092	Loss: 156.744
+35200/69092	Loss: 155.650
+38400/69092	Loss: 155.064
+41600/69092	Loss: 160.364
+44800/69092	Loss: 153.693
+48000/69092	Loss: 154.281
+51200/69092	Loss: 158.761
+54400/69092	Loss: 153.293
+57600/69092	Loss: 154.834
+60800/69092	Loss: 156.792
+64000/69092	Loss: 155.921
+67200/69092	Loss: 158.465
+Training time 0:01:57.424789
+Epoch: 74 Average loss: 156.35
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 74)
+0/69092	Loss: 163.777
+3200/69092	Loss: 157.036
+6400/69092	Loss: 156.859
+9600/69092	Loss: 156.726
+12800/69092	Loss: 155.765
+16000/69092	Loss: 154.939
+19200/69092	Loss: 155.907
+22400/69092	Loss: 159.550
+25600/69092	Loss: 156.406
+28800/69092	Loss: 158.700
+32000/69092	Loss: 155.796
+35200/69092	Loss: 155.475
+38400/69092	Loss: 156.091
+41600/69092	Loss: 158.845
+44800/69092	Loss: 155.325
+48000/69092	Loss: 154.642
+51200/69092	Loss: 157.505
+54400/69092	Loss: 155.458
+57600/69092	Loss: 157.678
+60800/69092	Loss: 155.414
+64000/69092	Loss: 158.049
+67200/69092	Loss: 155.451
+Training time 0:01:58.770586
+Epoch: 75 Average loss: 156.54
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 75)
+0/69092	Loss: 153.101
+3200/69092	Loss: 155.568
+6400/69092	Loss: 157.207
+9600/69092	Loss: 156.827
+12800/69092	Loss: 156.984
+16000/69092	Loss: 157.856
+19200/69092	Loss: 154.167
+22400/69092	Loss: 158.666
+25600/69092	Loss: 157.925
+28800/69092	Loss: 157.772
+32000/69092	Loss: 157.549
+35200/69092	Loss: 155.806
+38400/69092	Loss: 156.027
+41600/69092	Loss: 157.568
+44800/69092	Loss: 158.149
+48000/69092	Loss: 157.123
+51200/69092	Loss: 154.132
+54400/69092	Loss: 156.489
+57600/69092	Loss: 154.554
+60800/69092	Loss: 155.869
+64000/69092	Loss: 154.556
+67200/69092	Loss: 156.564
+Training time 0:01:57.292697
+Epoch: 76 Average loss: 156.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 76)
+0/69092	Loss: 145.325
+3200/69092	Loss: 155.806
+6400/69092	Loss: 159.306
+9600/69092	Loss: 157.818
+12800/69092	Loss: 159.852
+16000/69092	Loss: 154.932
+19200/69092	Loss: 157.023
+22400/69092	Loss: 158.302
+25600/69092	Loss: 151.931
+28800/69092	Loss: 156.084
+32000/69092	Loss: 155.341
+35200/69092	Loss: 155.337
+38400/69092	Loss: 153.945
+41600/69092	Loss: 157.345
+44800/69092	Loss: 156.563
+48000/69092	Loss: 158.502
+51200/69092	Loss: 155.921
+54400/69092	Loss: 154.319
+57600/69092	Loss: 156.743
+60800/69092	Loss: 155.385
+64000/69092	Loss: 156.278
+67200/69092	Loss: 157.242
+Training time 0:01:57.657184
+Epoch: 77 Average loss: 156.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 77)
+0/69092	Loss: 146.821
+3200/69092	Loss: 155.702
+6400/69092	Loss: 157.032
+9600/69092	Loss: 153.347
+12800/69092	Loss: 153.843
+16000/69092	Loss: 155.661
+19200/69092	Loss: 156.902
+22400/69092	Loss: 157.238
+25600/69092	Loss: 154.921
+28800/69092	Loss: 157.825
+32000/69092	Loss: 156.451
+35200/69092	Loss: 155.924
+38400/69092	Loss: 155.369
+41600/69092	Loss: 157.591
+44800/69092	Loss: 153.504
+48000/69092	Loss: 159.252
+51200/69092	Loss: 157.205
+54400/69092	Loss: 153.367
+57600/69092	Loss: 157.783
+60800/69092	Loss: 157.550
+64000/69092	Loss: 155.960
+67200/69092	Loss: 159.255
+Training time 0:01:58.393952
+Epoch: 78 Average loss: 156.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 78)
+0/69092	Loss: 156.952
+3200/69092	Loss: 154.559
+6400/69092	Loss: 156.841
+9600/69092	Loss: 154.765
+12800/69092	Loss: 156.447
+16000/69092	Loss: 155.340
+19200/69092	Loss: 159.242
+22400/69092	Loss: 156.222
+25600/69092	Loss: 156.588
+28800/69092	Loss: 156.103
+32000/69092	Loss: 154.994
+35200/69092	Loss: 152.960
+38400/69092	Loss: 155.295
+41600/69092	Loss: 155.246
+44800/69092	Loss: 156.455
+48000/69092	Loss: 155.736
+51200/69092	Loss: 155.654
+54400/69092	Loss: 159.698
+57600/69092	Loss: 156.039
+60800/69092	Loss: 157.098
+64000/69092	Loss: 157.854
+67200/69092	Loss: 157.608
+Training time 0:01:57.321396
+Epoch: 79 Average loss: 156.33
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 79)
+0/69092	Loss: 158.649
+3200/69092	Loss: 156.310
+6400/69092	Loss: 158.435
+9600/69092	Loss: 159.484
+12800/69092	Loss: 156.311
+16000/69092	Loss: 157.374
+19200/69092	Loss: 154.290
+22400/69092	Loss: 155.953
+25600/69092	Loss: 157.303
+28800/69092	Loss: 156.847
+32000/69092	Loss: 157.297
+35200/69092	Loss: 154.874
+38400/69092	Loss: 153.796
+41600/69092	Loss: 155.032
+44800/69092	Loss: 155.247
+48000/69092	Loss: 155.718
+51200/69092	Loss: 158.595
+54400/69092	Loss: 156.541
+57600/69092	Loss: 155.025
+60800/69092	Loss: 158.117
+64000/69092	Loss: 155.501
+67200/69092	Loss: 154.854
+Training time 0:01:57.033627
+Epoch: 80 Average loss: 156.31
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 80)
+0/69092	Loss: 153.145
+3200/69092	Loss: 157.788
+6400/69092	Loss: 155.704
+9600/69092	Loss: 156.658
+12800/69092	Loss: 156.560
+16000/69092	Loss: 158.374
+19200/69092	Loss: 154.177
+22400/69092	Loss: 157.375
+25600/69092	Loss: 155.362
+28800/69092	Loss: 154.780
+32000/69092	Loss: 157.483
+35200/69092	Loss: 159.989
+38400/69092	Loss: 154.817
+41600/69092	Loss: 156.393
+44800/69092	Loss: 156.688
+48000/69092	Loss: 155.386
+51200/69092	Loss: 156.064
+54400/69092	Loss: 155.947
+57600/69092	Loss: 155.760
+60800/69092	Loss: 156.316
+64000/69092	Loss: 156.993
+67200/69092	Loss: 155.297
+Training time 0:01:57.857139
+Epoch: 81 Average loss: 156.47
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 81)
+0/69092	Loss: 154.239
+3200/69092	Loss: 155.129
+6400/69092	Loss: 158.601
+9600/69092	Loss: 154.721
+12800/69092	Loss: 156.024
+16000/69092	Loss: 156.336
+19200/69092	Loss: 157.672
+22400/69092	Loss: 158.059
+25600/69092	Loss: 155.845
+28800/69092	Loss: 155.871
+32000/69092	Loss: 152.471
+35200/69092	Loss: 158.093
+38400/69092	Loss: 155.734
+41600/69092	Loss: 157.672
+44800/69092	Loss: 159.303
+48000/69092	Loss: 153.724
+51200/69092	Loss: 156.120
+54400/69092	Loss: 156.064
+57600/69092	Loss: 159.324
+60800/69092	Loss: 152.366
+64000/69092	Loss: 156.259
+67200/69092	Loss: 156.098
+Training time 0:01:57.681612
+Epoch: 82 Average loss: 156.31
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 82)
+0/69092	Loss: 147.194
+3200/69092	Loss: 155.118
+6400/69092	Loss: 158.044
+9600/69092	Loss: 157.341
+12800/69092	Loss: 154.624
+16000/69092	Loss: 154.524
+19200/69092	Loss: 156.314
+22400/69092	Loss: 156.617
+25600/69092	Loss: 158.821
+28800/69092	Loss: 156.702
+32000/69092	Loss: 156.056
+35200/69092	Loss: 156.305
+38400/69092	Loss: 157.803
+41600/69092	Loss: 155.611
+44800/69092	Loss: 157.703
+48000/69092	Loss: 154.493
+51200/69092	Loss: 151.445
+54400/69092	Loss: 157.022
+57600/69092	Loss: 153.199
+60800/69092	Loss: 156.462
+64000/69092	Loss: 159.009
+67200/69092	Loss: 157.212
+Training time 0:01:56.507123
+Epoch: 83 Average loss: 156.19
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 83)
+0/69092	Loss: 175.445
+3200/69092	Loss: 156.969
+6400/69092	Loss: 157.031
+9600/69092	Loss: 156.543
+12800/69092	Loss: 158.960
+16000/69092	Loss: 153.217
+19200/69092	Loss: 156.737
+22400/69092	Loss: 158.304
+25600/69092	Loss: 155.500
+28800/69092	Loss: 159.088
+32000/69092	Loss: 156.325
+35200/69092	Loss: 158.928
+38400/69092	Loss: 157.489
+41600/69092	Loss: 154.888
+44800/69092	Loss: 154.805
+48000/69092	Loss: 156.726
+51200/69092	Loss: 153.776
+54400/69092	Loss: 153.365
+57600/69092	Loss: 159.374
+60800/69092	Loss: 155.063
+64000/69092	Loss: 155.874
+67200/69092	Loss: 154.274
+Training time 0:01:57.244601
+Epoch: 84 Average loss: 156.41
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 84)
+0/69092	Loss: 164.614
+3200/69092	Loss: 157.171
+6400/69092	Loss: 155.307
+9600/69092	Loss: 156.460
+12800/69092	Loss: 155.634
+16000/69092	Loss: 156.408
+19200/69092	Loss: 157.974
+22400/69092	Loss: 156.530
+25600/69092	Loss: 156.866
+28800/69092	Loss: 155.673
+32000/69092	Loss: 156.370
+35200/69092	Loss: 159.204
+38400/69092	Loss: 155.918
+41600/69092	Loss: 155.865
+44800/69092	Loss: 157.439
+48000/69092	Loss: 154.114
+51200/69092	Loss: 153.143
+54400/69092	Loss: 157.290
+57600/69092	Loss: 156.481
+60800/69092	Loss: 157.914
+64000/69092	Loss: 156.956
+67200/69092	Loss: 152.564
+Training time 0:01:57.380581
+Epoch: 85 Average loss: 156.19
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 85)
+0/69092	Loss: 149.693
+3200/69092	Loss: 157.577
+6400/69092	Loss: 158.061
+9600/69092	Loss: 157.667
+12800/69092	Loss: 155.177
+16000/69092	Loss: 154.303
+19200/69092	Loss: 154.208
+22400/69092	Loss: 155.968
+25600/69092	Loss: 158.216
+28800/69092	Loss: 154.347
+32000/69092	Loss: 157.054
+35200/69092	Loss: 156.202
+38400/69092	Loss: 155.253
+41600/69092	Loss: 154.441
+44800/69092	Loss: 154.887
+48000/69092	Loss: 159.465
+51200/69092	Loss: 157.362
+54400/69092	Loss: 157.643
+57600/69092	Loss: 157.378
+60800/69092	Loss: 152.115
+64000/69092	Loss: 158.885
+67200/69092	Loss: 155.049
+Training time 0:01:58.151490
+Epoch: 86 Average loss: 156.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 86)
+0/69092	Loss: 166.214
+3200/69092	Loss: 155.207
+6400/69092	Loss: 157.761
+9600/69092	Loss: 159.346
+12800/69092	Loss: 153.914
+16000/69092	Loss: 155.418
+19200/69092	Loss: 158.452
+22400/69092	Loss: 158.067
+25600/69092	Loss: 155.389
+28800/69092	Loss: 155.912
+32000/69092	Loss: 156.085
+35200/69092	Loss: 152.244
+38400/69092	Loss: 157.502
+41600/69092	Loss: 158.903
+44800/69092	Loss: 153.392
+48000/69092	Loss: 156.485
+51200/69092	Loss: 156.900
+54400/69092	Loss: 155.792
+57600/69092	Loss: 157.120
+60800/69092	Loss: 157.923
+64000/69092	Loss: 157.795
+67200/69092	Loss: 157.277
+Training time 0:01:57.070829
+Epoch: 87 Average loss: 156.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 87)
+0/69092	Loss: 159.401
+3200/69092	Loss: 155.259
+6400/69092	Loss: 152.928
+9600/69092	Loss: 155.663
+12800/69092	Loss: 153.289
+16000/69092	Loss: 157.473
+19200/69092	Loss: 153.583
+22400/69092	Loss: 155.634
+25600/69092	Loss: 158.981
+28800/69092	Loss: 158.820
+32000/69092	Loss: 157.317
+35200/69092	Loss: 156.783
+38400/69092	Loss: 156.472
+41600/69092	Loss: 157.222
+44800/69092	Loss: 157.337
+48000/69092	Loss: 160.211
+51200/69092	Loss: 155.523
+54400/69092	Loss: 155.084
+57600/69092	Loss: 153.392
+60800/69092	Loss: 157.155
+64000/69092	Loss: 156.764
+67200/69092	Loss: 154.235
+Training time 0:01:57.391573
+Epoch: 88 Average loss: 156.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 88)
+0/69092	Loss: 170.257
+3200/69092	Loss: 155.170
+6400/69092	Loss: 154.292
+9600/69092	Loss: 155.684
+12800/69092	Loss: 156.351
+16000/69092	Loss: 155.048
+19200/69092	Loss: 156.083
+22400/69092	Loss: 155.849
+25600/69092	Loss: 157.710
+28800/69092	Loss: 156.851
+32000/69092	Loss: 154.885
+35200/69092	Loss: 158.666
+38400/69092	Loss: 153.038
+41600/69092	Loss: 154.525
+44800/69092	Loss: 155.211
+48000/69092	Loss: 156.114
+51200/69092	Loss: 159.612
+54400/69092	Loss: 157.564
+57600/69092	Loss: 155.866
+60800/69092	Loss: 155.856
+64000/69092	Loss: 157.281
+67200/69092	Loss: 156.647
+Training time 0:01:57.305374
+Epoch: 89 Average loss: 156.09
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 89)
+0/69092	Loss: 166.612
+3200/69092	Loss: 158.085
+6400/69092	Loss: 159.125
+9600/69092	Loss: 159.112
+12800/69092	Loss: 159.096
+16000/69092	Loss: 157.196
+19200/69092	Loss: 157.357
+22400/69092	Loss: 155.583
+25600/69092	Loss: 153.914
+28800/69092	Loss: 154.987
+32000/69092	Loss: 158.178
+35200/69092	Loss: 156.370
+38400/69092	Loss: 155.198
+41600/69092	Loss: 157.549
+44800/69092	Loss: 151.950
+48000/69092	Loss: 154.985
+51200/69092	Loss: 156.409
+54400/69092	Loss: 155.406
+57600/69092	Loss: 155.511
+60800/69092	Loss: 156.110
+64000/69092	Loss: 154.917
+67200/69092	Loss: 154.276
+Training time 0:01:57.986733
+Epoch: 90 Average loss: 156.36
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 90)
+0/69092	Loss: 161.165
+3200/69092	Loss: 155.136
+6400/69092	Loss: 156.198
+9600/69092	Loss: 153.660
+12800/69092	Loss: 155.246
+16000/69092	Loss: 156.955
+19200/69092	Loss: 153.845
+22400/69092	Loss: 156.662
+25600/69092	Loss: 153.142
+28800/69092	Loss: 156.530
+32000/69092	Loss: 158.489
+35200/69092	Loss: 155.523
+38400/69092	Loss: 155.862
+41600/69092	Loss: 156.376
+44800/69092	Loss: 156.332
+48000/69092	Loss: 156.171
+51200/69092	Loss: 158.691
+54400/69092	Loss: 157.633
+57600/69092	Loss: 156.059
+60800/69092	Loss: 154.969
+64000/69092	Loss: 157.326
+67200/69092	Loss: 156.304
+Training time 0:01:57.421474
+Epoch: 91 Average loss: 156.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 91)
+0/69092	Loss: 151.802
+3200/69092	Loss: 156.041
+6400/69092	Loss: 154.403
+9600/69092	Loss: 154.763
+12800/69092	Loss: 156.507
+16000/69092	Loss: 156.869
+19200/69092	Loss: 156.667
+22400/69092	Loss: 155.045
+25600/69092	Loss: 154.590
+28800/69092	Loss: 157.636
+32000/69092	Loss: 157.099
+35200/69092	Loss: 156.158
+38400/69092	Loss: 156.639
+41600/69092	Loss: 156.858
+44800/69092	Loss: 156.041
+48000/69092	Loss: 154.728
+51200/69092	Loss: 157.449
+54400/69092	Loss: 156.421
+57600/69092	Loss: 154.008
+60800/69092	Loss: 157.329
+64000/69092	Loss: 156.513
+67200/69092	Loss: 156.582
+Training time 0:01:58.422619
+Epoch: 92 Average loss: 156.14
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 92)
+0/69092	Loss: 171.456
+3200/69092	Loss: 155.931
+6400/69092	Loss: 157.035
+9600/69092	Loss: 159.603
+12800/69092	Loss: 157.328
+16000/69092	Loss: 156.010
+19200/69092	Loss: 153.786
+22400/69092	Loss: 156.192
+25600/69092	Loss: 158.596
+28800/69092	Loss: 156.441
+32000/69092	Loss: 156.643
+35200/69092	Loss: 154.531
+38400/69092	Loss: 155.786
+41600/69092	Loss: 155.990
+44800/69092	Loss: 156.323
+48000/69092	Loss: 158.751
+51200/69092	Loss: 155.836
+54400/69092	Loss: 154.206
+57600/69092	Loss: 154.051
+60800/69092	Loss: 156.084
+64000/69092	Loss: 152.273
+67200/69092	Loss: 157.339
+Training time 0:01:58.731457
+Epoch: 93 Average loss: 156.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 93)
+0/69092	Loss: 142.786
+3200/69092	Loss: 153.297
+6400/69092	Loss: 158.310
+9600/69092	Loss: 155.520
+12800/69092	Loss: 155.443
+16000/69092	Loss: 155.411
+19200/69092	Loss: 154.829
+22400/69092	Loss: 157.129
+25600/69092	Loss: 159.370
+28800/69092	Loss: 156.973
+32000/69092	Loss: 159.210
+35200/69092	Loss: 154.596
+38400/69092	Loss: 156.608
+41600/69092	Loss: 156.005
+44800/69092	Loss: 156.838
+48000/69092	Loss: 155.210
+51200/69092	Loss: 156.871
+54400/69092	Loss: 155.138
+57600/69092	Loss: 158.078
+60800/69092	Loss: 157.500
+64000/69092	Loss: 151.739
+67200/69092	Loss: 154.873
+Training time 0:01:57.963713
+Epoch: 94 Average loss: 156.04
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 94)
+0/69092	Loss: 146.263
+3200/69092	Loss: 155.555
+6400/69092	Loss: 156.554
+9600/69092	Loss: 156.213
+12800/69092	Loss: 157.070
+16000/69092	Loss: 156.395
+19200/69092	Loss: 156.235
+22400/69092	Loss: 157.114
+25600/69092	Loss: 154.361
+28800/69092	Loss: 156.385
+32000/69092	Loss: 158.074
+35200/69092	Loss: 155.020
+38400/69092	Loss: 154.145
+41600/69092	Loss: 157.834
+44800/69092	Loss: 156.239
+48000/69092	Loss: 155.449
+51200/69092	Loss: 153.666
+54400/69092	Loss: 158.090
+57600/69092	Loss: 158.146
+60800/69092	Loss: 154.828
+64000/69092	Loss: 155.400
+67200/69092	Loss: 156.501
+Training time 0:01:57.965091
+Epoch: 95 Average loss: 156.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 95)
+0/69092	Loss: 155.656
+3200/69092	Loss: 157.595
+6400/69092	Loss: 153.861
+9600/69092	Loss: 155.861
+12800/69092	Loss: 155.790
+16000/69092	Loss: 157.198
+19200/69092	Loss: 156.227
+22400/69092	Loss: 156.544
+25600/69092	Loss: 158.305
+28800/69092	Loss: 157.060
+32000/69092	Loss: 154.424
+35200/69092	Loss: 156.990
+38400/69092	Loss: 157.722
+41600/69092	Loss: 157.220
+44800/69092	Loss: 155.997
+48000/69092	Loss: 158.155
+51200/69092	Loss: 154.313
+54400/69092	Loss: 156.447
+57600/69092	Loss: 155.546
+60800/69092	Loss: 156.773
+64000/69092	Loss: 156.543
+67200/69092	Loss: 155.272
+Training time 0:01:58.809980
+Epoch: 96 Average loss: 156.34
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 96)
+0/69092	Loss: 143.069
+3200/69092	Loss: 156.347
+6400/69092	Loss: 153.732
+9600/69092	Loss: 156.612
+12800/69092	Loss: 155.316
+16000/69092	Loss: 154.381
+19200/69092	Loss: 157.289
+22400/69092	Loss: 156.253
+25600/69092	Loss: 157.973
+28800/69092	Loss: 155.417
+32000/69092	Loss: 157.265
+35200/69092	Loss: 155.337
+38400/69092	Loss: 156.951
+41600/69092	Loss: 157.890
+44800/69092	Loss: 154.225
+48000/69092	Loss: 158.220
+51200/69092	Loss: 155.795
+54400/69092	Loss: 154.808
+57600/69092	Loss: 157.551
+60800/69092	Loss: 156.183
+64000/69092	Loss: 153.365
+67200/69092	Loss: 155.159
+Training time 0:01:57.791352
+Epoch: 97 Average loss: 155.96
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 97)
+0/69092	Loss: 149.637
+3200/69092	Loss: 155.549
+6400/69092	Loss: 155.544
+9600/69092	Loss: 155.894
+12800/69092	Loss: 152.778
+16000/69092	Loss: 158.410
+19200/69092	Loss: 157.024
+22400/69092	Loss: 156.053
+25600/69092	Loss: 157.290
+28800/69092	Loss: 155.204
+32000/69092	Loss: 158.822
+35200/69092	Loss: 153.736
+38400/69092	Loss: 154.738
+41600/69092	Loss: 156.868
+44800/69092	Loss: 156.905
+48000/69092	Loss: 156.006
+51200/69092	Loss: 154.121
+54400/69092	Loss: 155.837
+57600/69092	Loss: 155.911
+60800/69092	Loss: 157.958
+64000/69092	Loss: 157.863
+67200/69092	Loss: 154.774
+Training time 0:01:58.207927
+Epoch: 98 Average loss: 156.12
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 98)
+0/69092	Loss: 163.931
+3200/69092	Loss: 158.819
+6400/69092	Loss: 157.153
+9600/69092	Loss: 155.351
+12800/69092	Loss: 155.589
+16000/69092	Loss: 156.833
+19200/69092	Loss: 154.299
+22400/69092	Loss: 154.606
+25600/69092	Loss: 154.769
+28800/69092	Loss: 156.260
+32000/69092	Loss: 157.328
+35200/69092	Loss: 155.191
+38400/69092	Loss: 154.232
+41600/69092	Loss: 157.153
+44800/69092	Loss: 155.967
+48000/69092	Loss: 155.095
+51200/69092	Loss: 158.086
+54400/69092	Loss: 159.181
+57600/69092	Loss: 154.697
+60800/69092	Loss: 158.055
+64000/69092	Loss: 153.272
+67200/69092	Loss: 158.289
+Training time 0:01:57.142832
+Epoch: 99 Average loss: 156.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 99)
+0/69092	Loss: 174.706
+3200/69092	Loss: 157.421
+6400/69092	Loss: 158.913
+9600/69092	Loss: 156.374
+12800/69092	Loss: 155.065
+16000/69092	Loss: 151.730
+19200/69092	Loss: 157.468
+22400/69092	Loss: 154.397
+25600/69092	Loss: 153.762
+28800/69092	Loss: 157.019
+32000/69092	Loss: 156.850
+35200/69092	Loss: 155.036
+38400/69092	Loss: 155.356
+41600/69092	Loss: 157.865
+44800/69092	Loss: 157.956
+48000/69092	Loss: 155.131
+51200/69092	Loss: 154.815
+54400/69092	Loss: 156.507
+57600/69092	Loss: 155.000
+60800/69092	Loss: 155.166
+64000/69092	Loss: 159.171
+67200/69092	Loss: 154.491
+Training time 0:01:58.077721
+Epoch: 100 Average loss: 156.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 100)
+0/69092	Loss: 177.416
+3200/69092	Loss: 157.837
+6400/69092	Loss: 156.611
+9600/69092	Loss: 158.248
+12800/69092	Loss: 152.985
+16000/69092	Loss: 158.325
+19200/69092	Loss: 158.759
+22400/69092	Loss: 155.081
+25600/69092	Loss: 158.922
+28800/69092	Loss: 155.390
+32000/69092	Loss: 157.686
+35200/69092	Loss: 156.999
+38400/69092	Loss: 155.144
+41600/69092	Loss: 154.144
+44800/69092	Loss: 153.212
+48000/69092	Loss: 154.081
+51200/69092	Loss: 156.668
+54400/69092	Loss: 157.358
+57600/69092	Loss: 156.153
+60800/69092	Loss: 153.402
+64000/69092	Loss: 156.362
+67200/69092	Loss: 155.231
+Training time 0:01:57.508650
+Epoch: 101 Average loss: 156.11
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 101)
+0/69092	Loss: 155.446
+3200/69092	Loss: 154.474
+6400/69092	Loss: 153.953
+9600/69092	Loss: 153.650
+12800/69092	Loss: 155.206
+16000/69092	Loss: 156.317
+19200/69092	Loss: 156.065
+22400/69092	Loss: 156.366
+25600/69092	Loss: 157.411
+28800/69092	Loss: 157.308
+32000/69092	Loss: 155.609
+35200/69092	Loss: 156.758
+38400/69092	Loss: 153.468
+41600/69092	Loss: 156.464
+44800/69092	Loss: 156.841
+48000/69092	Loss: 156.027
+51200/69092	Loss: 157.217
+54400/69092	Loss: 153.982
+57600/69092	Loss: 155.583
+60800/69092	Loss: 156.712
+64000/69092	Loss: 155.515
+67200/69092	Loss: 156.003
+Training time 0:01:57.582020
+Epoch: 102 Average loss: 155.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 102)
+0/69092	Loss: 159.455
+3200/69092	Loss: 155.785
+6400/69092	Loss: 154.714
+9600/69092	Loss: 155.369
+12800/69092	Loss: 156.687
+16000/69092	Loss: 156.739
+19200/69092	Loss: 157.092
+22400/69092	Loss: 156.777
+25600/69092	Loss: 153.528
+28800/69092	Loss: 156.226
+32000/69092	Loss: 154.600
+35200/69092	Loss: 159.076
+38400/69092	Loss: 156.869
+41600/69092	Loss: 158.280
+44800/69092	Loss: 157.099
+48000/69092	Loss: 155.385
+51200/69092	Loss: 158.444
+54400/69092	Loss: 155.024
+57600/69092	Loss: 153.150
+60800/69092	Loss: 158.682
+64000/69092	Loss: 155.967
+67200/69092	Loss: 153.019
+Training time 0:01:58.641232
+Epoch: 103 Average loss: 156.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 103)
+0/69092	Loss: 158.399
+3200/69092	Loss: 155.141
+6400/69092	Loss: 158.227
+9600/69092	Loss: 154.084
+12800/69092	Loss: 156.589
+16000/69092	Loss: 157.047
+19200/69092	Loss: 155.855
+22400/69092	Loss: 155.442
+25600/69092	Loss: 156.533
+28800/69092	Loss: 156.653
+32000/69092	Loss: 157.194
+35200/69092	Loss: 159.617
+38400/69092	Loss: 154.397
+41600/69092	Loss: 154.771
+44800/69092	Loss: 154.845
+48000/69092	Loss: 154.884
+51200/69092	Loss: 157.147
+54400/69092	Loss: 154.389
+57600/69092	Loss: 155.469
+60800/69092	Loss: 155.751
+64000/69092	Loss: 157.746
+67200/69092	Loss: 154.849
+Training time 0:01:56.475910
+Epoch: 104 Average loss: 156.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 104)
+0/69092	Loss: 161.428
+3200/69092	Loss: 156.067
+6400/69092	Loss: 155.341
+9600/69092	Loss: 154.913
+12800/69092	Loss: 156.163
+16000/69092	Loss: 156.547
+19200/69092	Loss: 153.794
+22400/69092	Loss: 154.937
+25600/69092	Loss: 155.151
+28800/69092	Loss: 155.289
+32000/69092	Loss: 158.602
+35200/69092	Loss: 155.166
+38400/69092	Loss: 158.150
+41600/69092	Loss: 156.249
+44800/69092	Loss: 156.493
+48000/69092	Loss: 157.303
+51200/69092	Loss: 154.698
+54400/69092	Loss: 157.452
+57600/69092	Loss: 155.032
+60800/69092	Loss: 156.297
+64000/69092	Loss: 156.383
+67200/69092	Loss: 154.772
+Training time 0:01:57.094854
+Epoch: 105 Average loss: 155.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 105)
+0/69092	Loss: 150.408
+3200/69092	Loss: 157.610
+6400/69092	Loss: 152.280
+9600/69092	Loss: 156.733
+12800/69092	Loss: 154.552
+16000/69092	Loss: 156.122
+19200/69092	Loss: 157.433
+22400/69092	Loss: 155.877
+25600/69092	Loss: 156.331
+28800/69092	Loss: 157.846
+32000/69092	Loss: 156.285
+35200/69092	Loss: 156.583
+38400/69092	Loss: 154.465
+41600/69092	Loss: 153.643
+44800/69092	Loss: 157.368
+48000/69092	Loss: 155.520
+51200/69092	Loss: 156.080
+54400/69092	Loss: 154.398
+57600/69092	Loss: 158.109
+60800/69092	Loss: 157.425
+64000/69092	Loss: 157.451
+67200/69092	Loss: 154.696
+Training time 0:01:57.905391
+Epoch: 106 Average loss: 155.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 106)
+0/69092	Loss: 147.812
+3200/69092	Loss: 158.075
+6400/69092	Loss: 155.240
+9600/69092	Loss: 156.768
+12800/69092	Loss: 156.193
+16000/69092	Loss: 154.905
+19200/69092	Loss: 156.216
+22400/69092	Loss: 154.655
+25600/69092	Loss: 156.460
+28800/69092	Loss: 153.076
+32000/69092	Loss: 157.954
+35200/69092	Loss: 155.930
+38400/69092	Loss: 156.325
+41600/69092	Loss: 156.681
+44800/69092	Loss: 159.643
+48000/69092	Loss: 155.343
+51200/69092	Loss: 155.199
+54400/69092	Loss: 156.110
+57600/69092	Loss: 153.686
+60800/69092	Loss: 156.879
+64000/69092	Loss: 154.585
+67200/69092	Loss: 155.212
+Training time 0:01:56.307127
+Epoch: 107 Average loss: 155.89
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 107)
+0/69092	Loss: 154.253
+3200/69092	Loss: 153.416
+6400/69092	Loss: 152.018
+9600/69092	Loss: 156.441
+12800/69092	Loss: 156.551
+16000/69092	Loss: 155.907
+19200/69092	Loss: 154.270
+22400/69092	Loss: 158.192
+25600/69092	Loss: 157.611
+28800/69092	Loss: 157.174
+32000/69092	Loss: 156.599
+35200/69092	Loss: 156.001
+38400/69092	Loss: 155.926
+41600/69092	Loss: 156.182
+44800/69092	Loss: 156.168
+48000/69092	Loss: 155.820
+51200/69092	Loss: 156.520
+54400/69092	Loss: 157.469
+57600/69092	Loss: 153.393
+60800/69092	Loss: 156.360
+64000/69092	Loss: 158.875
+67200/69092	Loss: 156.235
+Training time 0:01:57.121476
+Epoch: 108 Average loss: 156.08
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 108)
+0/69092	Loss: 137.626
+3200/69092	Loss: 155.626
+6400/69092	Loss: 155.304
+9600/69092	Loss: 154.819
+12800/69092	Loss: 156.864
+16000/69092	Loss: 156.049
+19200/69092	Loss: 154.754
+22400/69092	Loss: 160.521
+25600/69092	Loss: 156.218
+28800/69092	Loss: 154.110
+32000/69092	Loss: 158.628
+35200/69092	Loss: 155.418
+38400/69092	Loss: 154.081
+41600/69092	Loss: 154.984
+44800/69092	Loss: 157.052
+48000/69092	Loss: 157.016
+51200/69092	Loss: 157.039
+54400/69092	Loss: 155.440
+57600/69092	Loss: 154.973
+60800/69092	Loss: 156.595
+64000/69092	Loss: 154.637
+67200/69092	Loss: 155.397
+Training time 0:01:57.346284
+Epoch: 109 Average loss: 155.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 109)
+0/69092	Loss: 149.738
+3200/69092	Loss: 156.390
+6400/69092	Loss: 156.148
+9600/69092	Loss: 155.724
+12800/69092	Loss: 156.560
+16000/69092	Loss: 156.340
+19200/69092	Loss: 156.251
+22400/69092	Loss: 155.574
+25600/69092	Loss: 155.729
+28800/69092	Loss: 155.537
+32000/69092	Loss: 153.385
+35200/69092	Loss: 153.714
+38400/69092	Loss: 155.649
+41600/69092	Loss: 155.944
+44800/69092	Loss: 155.621
+48000/69092	Loss: 158.474
+51200/69092	Loss: 155.418
+54400/69092	Loss: 156.086
+57600/69092	Loss: 157.631
+60800/69092	Loss: 155.373
+64000/69092	Loss: 155.928
+67200/69092	Loss: 158.605
+Training time 0:01:57.531353
+Epoch: 110 Average loss: 155.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 110)
+0/69092	Loss: 170.792
+3200/69092	Loss: 155.238
+6400/69092	Loss: 155.519
+9600/69092	Loss: 157.654
+12800/69092	Loss: 155.047
+16000/69092	Loss: 156.356
+19200/69092	Loss: 157.393
+22400/69092	Loss: 155.473
+25600/69092	Loss: 157.268
+28800/69092	Loss: 154.345
+32000/69092	Loss: 155.822
+35200/69092	Loss: 157.345
+38400/69092	Loss: 157.502
+41600/69092	Loss: 154.908
+44800/69092	Loss: 154.225
+48000/69092	Loss: 154.840
+51200/69092	Loss: 154.386
+54400/69092	Loss: 153.638
+57600/69092	Loss: 153.358
+60800/69092	Loss: 155.077
+64000/69092	Loss: 156.759
+67200/69092	Loss: 156.415
+Training time 0:01:56.946783
+Epoch: 111 Average loss: 155.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 111)
+0/69092	Loss: 150.964
+3200/69092	Loss: 158.559
+6400/69092	Loss: 154.329
+9600/69092	Loss: 154.166
+12800/69092	Loss: 154.935
+16000/69092	Loss: 156.629
+19200/69092	Loss: 157.566
+22400/69092	Loss: 158.841
+25600/69092	Loss: 155.628
+28800/69092	Loss: 154.152
+32000/69092	Loss: 155.909
+35200/69092	Loss: 153.850
+38400/69092	Loss: 156.465
+41600/69092	Loss: 156.930
+44800/69092	Loss: 155.522
+48000/69092	Loss: 156.088
+51200/69092	Loss: 158.124
+54400/69092	Loss: 154.659
+57600/69092	Loss: 153.904
+60800/69092	Loss: 151.762
+64000/69092	Loss: 156.022
+67200/69092	Loss: 156.427
+Training time 0:01:57.189807
+Epoch: 112 Average loss: 155.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 112)
+0/69092	Loss: 175.846
+3200/69092	Loss: 157.925
+6400/69092	Loss: 155.612
+9600/69092	Loss: 155.114
+12800/69092	Loss: 156.187
+16000/69092	Loss: 155.551
+19200/69092	Loss: 155.641
+22400/69092	Loss: 155.834
+25600/69092	Loss: 153.425
+28800/69092	Loss: 155.658
+32000/69092	Loss: 154.897
+35200/69092	Loss: 155.391
+38400/69092	Loss: 154.131
+41600/69092	Loss: 155.877
+44800/69092	Loss: 155.467
+48000/69092	Loss: 157.181
+51200/69092	Loss: 155.400
+54400/69092	Loss: 154.917
+57600/69092	Loss: 154.325
+60800/69092	Loss: 156.443
+64000/69092	Loss: 156.540
+67200/69092	Loss: 155.040
+Training time 0:01:57.976793
+Epoch: 113 Average loss: 155.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 113)
+0/69092	Loss: 174.227
+3200/69092	Loss: 154.453
+6400/69092	Loss: 158.337
+9600/69092	Loss: 154.710
+12800/69092	Loss: 157.299
+16000/69092	Loss: 156.532
+19200/69092	Loss: 154.051
+22400/69092	Loss: 154.384
+25600/69092	Loss: 152.617
+28800/69092	Loss: 154.337
+32000/69092	Loss: 154.008
+35200/69092	Loss: 155.621
+38400/69092	Loss: 153.317
+41600/69092	Loss: 158.356
+44800/69092	Loss: 154.623
+48000/69092	Loss: 155.293
+51200/69092	Loss: 156.157
+54400/69092	Loss: 156.266
+57600/69092	Loss: 156.518
+60800/69092	Loss: 156.546
+64000/69092	Loss: 155.152
+67200/69092	Loss: 152.980
+Training time 0:01:58.318560
+Epoch: 114 Average loss: 155.34
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 114)
+0/69092	Loss: 168.966
+3200/69092	Loss: 154.778
+6400/69092	Loss: 152.374
+9600/69092	Loss: 154.265
+12800/69092	Loss: 155.828
+16000/69092	Loss: 156.947
+19200/69092	Loss: 153.212
+22400/69092	Loss: 155.507
+25600/69092	Loss: 155.495
+28800/69092	Loss: 153.549
+32000/69092	Loss: 155.035
+35200/69092	Loss: 155.916
+38400/69092	Loss: 156.398
+41600/69092	Loss: 155.636
+44800/69092	Loss: 157.366
+48000/69092	Loss: 153.544
+51200/69092	Loss: 158.787
+54400/69092	Loss: 153.198
+57600/69092	Loss: 155.386
+60800/69092	Loss: 153.367
+64000/69092	Loss: 154.176
+67200/69092	Loss: 155.239
+Training time 0:01:57.300875
+Epoch: 115 Average loss: 155.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 115)
+0/69092	Loss: 153.426
+3200/69092	Loss: 152.366
+6400/69092	Loss: 153.814
+9600/69092	Loss: 156.034
+12800/69092	Loss: 154.588
+16000/69092	Loss: 158.361
+19200/69092	Loss: 155.269
+22400/69092	Loss: 153.414
+25600/69092	Loss: 157.952
+28800/69092	Loss: 155.246
+32000/69092	Loss: 154.442
+35200/69092	Loss: 157.097
+38400/69092	Loss: 155.266
+41600/69092	Loss: 155.442
+44800/69092	Loss: 153.841
+48000/69092	Loss: 154.809
+51200/69092	Loss: 150.702
+54400/69092	Loss: 156.469
+57600/69092	Loss: 155.105
+60800/69092	Loss: 157.730
+64000/69092	Loss: 155.257
+67200/69092	Loss: 151.986
+Training time 0:01:57.025523
+Epoch: 116 Average loss: 155.12
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 116)
+0/69092	Loss: 148.078
+3200/69092	Loss: 152.770
+6400/69092	Loss: 153.422
+9600/69092	Loss: 155.244
+12800/69092	Loss: 157.139
+16000/69092	Loss: 157.257
+19200/69092	Loss: 155.262
+22400/69092	Loss: 157.124
+25600/69092	Loss: 153.268
+28800/69092	Loss: 153.607
+32000/69092	Loss: 155.643
+35200/69092	Loss: 155.779
+38400/69092	Loss: 154.522
+41600/69092	Loss: 154.395
+44800/69092	Loss: 155.834
+48000/69092	Loss: 151.930
+51200/69092	Loss: 152.719
+54400/69092	Loss: 155.352
+57600/69092	Loss: 155.928
+60800/69092	Loss: 157.246
+64000/69092	Loss: 155.415
+67200/69092	Loss: 154.781
+Training time 0:01:58.664741
+Epoch: 117 Average loss: 155.05
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 117)
+0/69092	Loss: 171.513
+3200/69092	Loss: 157.710
+6400/69092	Loss: 153.195
+9600/69092	Loss: 155.382
+12800/69092	Loss: 153.891
+16000/69092	Loss: 159.238
+19200/69092	Loss: 154.755
+22400/69092	Loss: 154.061
+25600/69092	Loss: 154.306
+28800/69092	Loss: 153.344
+32000/69092	Loss: 155.959
+35200/69092	Loss: 153.530
+38400/69092	Loss: 154.895
+41600/69092	Loss: 155.108
+44800/69092	Loss: 155.699
+48000/69092	Loss: 154.761
+51200/69092	Loss: 154.865
+54400/69092	Loss: 155.258
+57600/69092	Loss: 154.297
+60800/69092	Loss: 156.943
+64000/69092	Loss: 153.107
+67200/69092	Loss: 154.885
+Training time 0:01:58.273350
+Epoch: 118 Average loss: 154.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 118)
+0/69092	Loss: 150.001
+3200/69092	Loss: 154.122
+6400/69092	Loss: 154.486
+9600/69092	Loss: 153.961
+12800/69092	Loss: 155.133
+16000/69092	Loss: 154.922
+19200/69092	Loss: 153.014
+22400/69092	Loss: 153.390
+25600/69092	Loss: 157.570
+28800/69092	Loss: 156.498
+32000/69092	Loss: 154.375
+35200/69092	Loss: 157.862
+38400/69092	Loss: 155.825
+41600/69092	Loss: 153.963
+44800/69092	Loss: 154.603
+48000/69092	Loss: 154.339
+51200/69092	Loss: 152.880
+54400/69092	Loss: 156.724
+57600/69092	Loss: 155.091
+60800/69092	Loss: 152.868
+64000/69092	Loss: 154.170
+67200/69092	Loss: 156.052
+Training time 0:01:58.633698
+Epoch: 119 Average loss: 154.83
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 119)
+0/69092	Loss: 160.933
+3200/69092	Loss: 155.272
+6400/69092	Loss: 156.377
+9600/69092	Loss: 152.034
+12800/69092	Loss: 155.839
+16000/69092	Loss: 154.538
+19200/69092	Loss: 155.078
+22400/69092	Loss: 153.071
+25600/69092	Loss: 155.367
+28800/69092	Loss: 154.745
+32000/69092	Loss: 153.654
+35200/69092	Loss: 152.479
+38400/69092	Loss: 153.916
+41600/69092	Loss: 154.280
+44800/69092	Loss: 152.825
+48000/69092	Loss: 156.693
+51200/69092	Loss: 154.448
+54400/69092	Loss: 156.211
+57600/69092	Loss: 157.181
+60800/69092	Loss: 156.198
+64000/69092	Loss: 155.162
+67200/69092	Loss: 154.812
+Training time 0:01:58.076896
+Epoch: 120 Average loss: 154.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 120)
+0/69092	Loss: 132.012
+3200/69092	Loss: 155.977
+6400/69092	Loss: 152.125
+9600/69092	Loss: 154.250
+12800/69092	Loss: 152.881
+16000/69092	Loss: 157.267
+19200/69092	Loss: 156.522
+22400/69092	Loss: 155.579
+25600/69092	Loss: 156.021
+28800/69092	Loss: 152.512
+32000/69092	Loss: 157.851
+35200/69092	Loss: 155.854
+38400/69092	Loss: 154.697
+41600/69092	Loss: 154.646
+44800/69092	Loss: 155.231
+48000/69092	Loss: 151.950
+51200/69092	Loss: 153.412
+54400/69092	Loss: 154.098
+57600/69092	Loss: 154.528
+60800/69092	Loss: 154.204
+64000/69092	Loss: 154.731
+67200/69092	Loss: 157.961
+Training time 0:01:57.341197
+Epoch: 121 Average loss: 154.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 121)
+0/69092	Loss: 147.670
+3200/69092	Loss: 155.720
+6400/69092	Loss: 155.014
+9600/69092	Loss: 153.611
+12800/69092	Loss: 154.024
+16000/69092	Loss: 156.432
+19200/69092	Loss: 152.719
+22400/69092	Loss: 156.579
+25600/69092	Loss: 150.242
+28800/69092	Loss: 154.217
+32000/69092	Loss: 153.524
+35200/69092	Loss: 155.488
+38400/69092	Loss: 153.052
+41600/69092	Loss: 157.173
+44800/69092	Loss: 157.166
+48000/69092	Loss: 157.039
+51200/69092	Loss: 156.565
+54400/69092	Loss: 153.906
+57600/69092	Loss: 155.050
+60800/69092	Loss: 153.772
+64000/69092	Loss: 151.165
+67200/69092	Loss: 156.539
+Training time 0:01:58.555985
+Epoch: 122 Average loss: 154.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 122)
+0/69092	Loss: 149.961
+3200/69092	Loss: 154.561
+6400/69092	Loss: 154.395
+9600/69092	Loss: 154.540
+12800/69092	Loss: 151.944
+16000/69092	Loss: 153.042
+19200/69092	Loss: 155.138
+22400/69092	Loss: 153.326
+25600/69092	Loss: 155.592
+28800/69092	Loss: 155.934
+32000/69092	Loss: 152.884
+35200/69092	Loss: 154.599
+38400/69092	Loss: 155.866
+41600/69092	Loss: 157.803
+44800/69092	Loss: 155.345
+48000/69092	Loss: 156.320
+51200/69092	Loss: 151.717
+54400/69092	Loss: 154.813
+57600/69092	Loss: 153.258
+60800/69092	Loss: 154.829
+64000/69092	Loss: 155.179
+67200/69092	Loss: 152.764
+Training time 0:01:58.459415
+Epoch: 123 Average loss: 154.48
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 123)
+0/69092	Loss: 143.996
+3200/69092	Loss: 154.933
+6400/69092	Loss: 155.628
+9600/69092	Loss: 154.814
+12800/69092	Loss: 153.867
+16000/69092	Loss: 155.074
+19200/69092	Loss: 153.150
+22400/69092	Loss: 153.663
+25600/69092	Loss: 154.939
+28800/69092	Loss: 150.770
+32000/69092	Loss: 154.517
+35200/69092	Loss: 155.187
+38400/69092	Loss: 156.361
+41600/69092	Loss: 155.239
+44800/69092	Loss: 154.829
+48000/69092	Loss: 154.833
+51200/69092	Loss: 154.172
+54400/69092	Loss: 155.574
+57600/69092	Loss: 155.616
+60800/69092	Loss: 155.825
+64000/69092	Loss: 155.648
+67200/69092	Loss: 154.989
+Training time 0:01:57.505004
+Epoch: 124 Average loss: 154.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 124)
+0/69092	Loss: 149.688
+3200/69092	Loss: 153.352
+6400/69092	Loss: 152.295
+9600/69092	Loss: 154.284
+12800/69092	Loss: 155.867
+16000/69092	Loss: 156.085
+19200/69092	Loss: 155.497
+22400/69092	Loss: 155.256
+25600/69092	Loss: 156.888
+28800/69092	Loss: 154.722
+32000/69092	Loss: 154.577
+35200/69092	Loss: 153.832
+38400/69092	Loss: 153.127
+41600/69092	Loss: 156.272
+44800/69092	Loss: 152.897
+48000/69092	Loss: 152.821
+51200/69092	Loss: 155.048
+54400/69092	Loss: 154.859
+57600/69092	Loss: 154.674
+60800/69092	Loss: 154.172
+64000/69092	Loss: 153.382
+67200/69092	Loss: 155.391
+Training time 0:01:57.617767
+Epoch: 125 Average loss: 154.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 125)
+0/69092	Loss: 174.120
+3200/69092	Loss: 154.710
+6400/69092	Loss: 155.469
+9600/69092	Loss: 154.952
+12800/69092	Loss: 154.360
+16000/69092	Loss: 153.049
+19200/69092	Loss: 155.451
+22400/69092	Loss: 155.977
+25600/69092	Loss: 153.877
+28800/69092	Loss: 153.698
+32000/69092	Loss: 155.169
+35200/69092	Loss: 155.187
+38400/69092	Loss: 154.105
+41600/69092	Loss: 151.598
+44800/69092	Loss: 154.485
+48000/69092	Loss: 155.221
+51200/69092	Loss: 153.565
+54400/69092	Loss: 156.596
+57600/69092	Loss: 156.262
+60800/69092	Loss: 151.911
+64000/69092	Loss: 155.138
+67200/69092	Loss: 153.838
+Training time 0:01:57.489586
+Epoch: 126 Average loss: 154.54
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 126)
+0/69092	Loss: 161.715
+3200/69092	Loss: 156.828
+6400/69092	Loss: 156.048
+9600/69092	Loss: 156.895
+12800/69092	Loss: 153.084
+16000/69092	Loss: 150.651
+19200/69092	Loss: 156.812
+22400/69092	Loss: 153.117
+25600/69092	Loss: 153.393
+28800/69092	Loss: 155.779
+32000/69092	Loss: 150.421
+35200/69092	Loss: 152.936
+38400/69092	Loss: 154.379
+41600/69092	Loss: 154.482
+44800/69092	Loss: 157.635
+48000/69092	Loss: 155.784
+51200/69092	Loss: 154.992
+54400/69092	Loss: 157.164
+57600/69092	Loss: 152.517
+60800/69092	Loss: 154.083
+64000/69092	Loss: 155.171
+67200/69092	Loss: 154.870
+Training time 0:01:58.320576
+Epoch: 127 Average loss: 154.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 127)
+0/69092	Loss: 149.820
+3200/69092	Loss: 155.763
+6400/69092	Loss: 154.983
+9600/69092	Loss: 153.094
+12800/69092	Loss: 154.531
+16000/69092	Loss: 153.738
+19200/69092	Loss: 154.447
+22400/69092	Loss: 154.038
+25600/69092	Loss: 152.407
+28800/69092	Loss: 152.053
+32000/69092	Loss: 156.108
+35200/69092	Loss: 157.111
+38400/69092	Loss: 154.522
+41600/69092	Loss: 154.477
+44800/69092	Loss: 155.592
+48000/69092	Loss: 155.653
+51200/69092	Loss: 155.518
+54400/69092	Loss: 155.488
+57600/69092	Loss: 153.067
+60800/69092	Loss: 153.172
+64000/69092	Loss: 155.850
+67200/69092	Loss: 152.925
+Training time 0:01:58.128835
+Epoch: 128 Average loss: 154.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 128)
+0/69092	Loss: 154.357
+3200/69092	Loss: 153.358
+6400/69092	Loss: 154.050
+9600/69092	Loss: 155.832
+12800/69092	Loss: 153.568
+16000/69092	Loss: 155.070
+19200/69092	Loss: 152.445
+22400/69092	Loss: 153.246
+25600/69092	Loss: 152.740
+28800/69092	Loss: 156.151
+32000/69092	Loss: 155.030
+35200/69092	Loss: 151.880
+38400/69092	Loss: 153.706
+41600/69092	Loss: 156.196
+44800/69092	Loss: 154.440
+48000/69092	Loss: 152.798
+51200/69092	Loss: 155.316
+54400/69092	Loss: 153.793
+57600/69092	Loss: 155.304
+60800/69092	Loss: 156.240
+64000/69092	Loss: 156.599
+67200/69092	Loss: 153.464
+Training time 0:01:58.853265
+Epoch: 129 Average loss: 154.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 129)
+0/69092	Loss: 159.408
+3200/69092	Loss: 154.166
+6400/69092	Loss: 155.684
+9600/69092	Loss: 154.080
+12800/69092	Loss: 154.837
+16000/69092	Loss: 155.003
+19200/69092	Loss: 154.744
+22400/69092	Loss: 149.973
+25600/69092	Loss: 152.992
+28800/69092	Loss: 153.851
+32000/69092	Loss: 155.261
+35200/69092	Loss: 156.042
+38400/69092	Loss: 154.715
+41600/69092	Loss: 154.610
+44800/69092	Loss: 154.538
+48000/69092	Loss: 155.196
+51200/69092	Loss: 154.074
+54400/69092	Loss: 153.846
+57600/69092	Loss: 155.952
+60800/69092	Loss: 153.240
+64000/69092	Loss: 154.886
+67200/69092	Loss: 152.854
+Training time 0:01:59.618850
+Epoch: 130 Average loss: 154.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 130)
+0/69092	Loss: 155.935
+3200/69092	Loss: 154.465
+6400/69092	Loss: 154.565
+9600/69092	Loss: 155.417
+12800/69092	Loss: 152.406
+16000/69092	Loss: 155.113
+19200/69092	Loss: 152.698
+22400/69092	Loss: 156.341
+25600/69092	Loss: 154.342
+28800/69092	Loss: 153.397
+32000/69092	Loss: 149.231
+35200/69092	Loss: 154.516
+38400/69092	Loss: 151.761
+41600/69092	Loss: 153.513
+44800/69092	Loss: 155.560
+48000/69092	Loss: 156.695
+51200/69092	Loss: 153.803
+54400/69092	Loss: 159.459
+57600/69092	Loss: 155.416
+60800/69092	Loss: 154.987
+64000/69092	Loss: 154.935
+67200/69092	Loss: 155.008
+Training time 0:01:57.487546
+Epoch: 131 Average loss: 154.45
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 131)
+0/69092	Loss: 145.728
+3200/69092	Loss: 152.723
+6400/69092	Loss: 155.251
+9600/69092	Loss: 155.858
+12800/69092	Loss: 155.717
+16000/69092	Loss: 157.164
+19200/69092	Loss: 156.345
+22400/69092	Loss: 152.506
+25600/69092	Loss: 155.294
+28800/69092	Loss: 156.185
+32000/69092	Loss: 154.058
+35200/69092	Loss: 152.411
+38400/69092	Loss: 152.938
+41600/69092	Loss: 154.333
+44800/69092	Loss: 152.387
+48000/69092	Loss: 151.226
+51200/69092	Loss: 152.922
+54400/69092	Loss: 153.569
+57600/69092	Loss: 153.481
+60800/69092	Loss: 153.954
+64000/69092	Loss: 155.628
+67200/69092	Loss: 156.342
+Training time 0:01:57.605448
+Epoch: 132 Average loss: 154.36
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 132)
+0/69092	Loss: 147.528
+3200/69092	Loss: 153.321
+6400/69092	Loss: 153.253
+9600/69092	Loss: 151.012
+12800/69092	Loss: 152.982
+16000/69092	Loss: 153.983
+19200/69092	Loss: 153.548
+22400/69092	Loss: 157.116
+25600/69092	Loss: 155.926
+28800/69092	Loss: 154.905
+32000/69092	Loss: 152.167
+35200/69092	Loss: 154.952
+38400/69092	Loss: 155.216
+41600/69092	Loss: 157.491
+44800/69092	Loss: 152.950
+48000/69092	Loss: 153.880
+51200/69092	Loss: 152.695
+54400/69092	Loss: 153.012
+57600/69092	Loss: 155.877
+60800/69092	Loss: 151.846
+64000/69092	Loss: 155.664
+67200/69092	Loss: 155.213
+Training time 0:01:58.702622
+Epoch: 133 Average loss: 154.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 133)
+0/69092	Loss: 159.723
+3200/69092	Loss: 154.466
+6400/69092	Loss: 152.954
+9600/69092	Loss: 154.046
+12800/69092	Loss: 155.107
+16000/69092	Loss: 154.238
+19200/69092	Loss: 152.850
+22400/69092	Loss: 154.230
+25600/69092	Loss: 152.999
+28800/69092	Loss: 153.305
+32000/69092	Loss: 156.465
+35200/69092	Loss: 153.700
+38400/69092	Loss: 153.750
+41600/69092	Loss: 156.218
+44800/69092	Loss: 154.095
+48000/69092	Loss: 151.172
+51200/69092	Loss: 154.330
+54400/69092	Loss: 153.509
+57600/69092	Loss: 154.224
+60800/69092	Loss: 155.738
+64000/69092	Loss: 153.959
+67200/69092	Loss: 154.808
+Training time 0:01:57.000587
+Epoch: 134 Average loss: 154.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 134)
+0/69092	Loss: 156.543
+3200/69092	Loss: 154.426
+6400/69092	Loss: 154.341
+9600/69092	Loss: 151.155
+12800/69092	Loss: 156.247
+16000/69092	Loss: 154.293
+19200/69092	Loss: 152.839
+22400/69092	Loss: 155.701
+25600/69092	Loss: 153.560
+28800/69092	Loss: 154.129
+32000/69092	Loss: 154.981
+35200/69092	Loss: 152.740
+38400/69092	Loss: 154.321
+41600/69092	Loss: 153.580
+44800/69092	Loss: 155.099
+48000/69092	Loss: 153.782
+51200/69092	Loss: 153.338
+54400/69092	Loss: 155.170
+57600/69092	Loss: 152.697
+60800/69092	Loss: 152.968
+64000/69092	Loss: 157.106
+67200/69092	Loss: 153.546
+Training time 0:01:57.662060
+Epoch: 135 Average loss: 154.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 135)
+0/69092	Loss: 159.106
+3200/69092	Loss: 153.990
+6400/69092	Loss: 155.767
+9600/69092	Loss: 154.633
+12800/69092	Loss: 156.908
+16000/69092	Loss: 152.705
+19200/69092	Loss: 153.722
+22400/69092	Loss: 154.371
+25600/69092	Loss: 155.097
+28800/69092	Loss: 153.648
+32000/69092	Loss: 153.985
+35200/69092	Loss: 153.991
+38400/69092	Loss: 152.757
+41600/69092	Loss: 156.407
+44800/69092	Loss: 150.817
+48000/69092	Loss: 155.814
+51200/69092	Loss: 153.631
+54400/69092	Loss: 156.232
+57600/69092	Loss: 153.291
+60800/69092	Loss: 152.798
+64000/69092	Loss: 150.308
+67200/69092	Loss: 155.751
+Training time 0:01:56.928577
+Epoch: 136 Average loss: 154.26
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 136)
+0/69092	Loss: 153.956
+3200/69092	Loss: 155.212
+6400/69092	Loss: 152.447
+9600/69092	Loss: 153.818
+12800/69092	Loss: 152.746
+16000/69092	Loss: 155.759
+19200/69092	Loss: 153.714
+22400/69092	Loss: 152.721
+25600/69092	Loss: 152.225
+28800/69092	Loss: 151.169
+32000/69092	Loss: 152.706
+35200/69092	Loss: 155.753
+38400/69092	Loss: 155.422
+41600/69092	Loss: 155.398
+44800/69092	Loss: 152.257
+48000/69092	Loss: 153.857
+51200/69092	Loss: 157.067
+54400/69092	Loss: 153.970
+57600/69092	Loss: 154.447
+60800/69092	Loss: 152.205
+64000/69092	Loss: 154.156
+67200/69092	Loss: 156.353
+Training time 0:01:57.550661
+Epoch: 137 Average loss: 153.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 137)
+0/69092	Loss: 142.783
+3200/69092	Loss: 156.137
+6400/69092	Loss: 155.682
+9600/69092	Loss: 153.996
+12800/69092	Loss: 155.705
+16000/69092	Loss: 155.974
+19200/69092	Loss: 156.330
+22400/69092	Loss: 152.064
+25600/69092	Loss: 155.111
+28800/69092	Loss: 152.343
+32000/69092	Loss: 156.257
+35200/69092	Loss: 153.007
+38400/69092	Loss: 152.673
+41600/69092	Loss: 152.809
+44800/69092	Loss: 153.557
+48000/69092	Loss: 153.619
+51200/69092	Loss: 153.444
+54400/69092	Loss: 151.786
+57600/69092	Loss: 152.920
+60800/69092	Loss: 151.331
+64000/69092	Loss: 152.122
+67200/69092	Loss: 159.084
+Training time 0:01:57.336705
+Epoch: 138 Average loss: 154.04
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 138)
+0/69092	Loss: 160.587
+3200/69092	Loss: 156.926
+6400/69092	Loss: 153.134
+9600/69092	Loss: 153.596
+12800/69092	Loss: 155.380
+16000/69092	Loss: 153.227
+19200/69092	Loss: 153.911
+22400/69092	Loss: 153.887
+25600/69092	Loss: 153.708
+28800/69092	Loss: 155.804
+32000/69092	Loss: 152.475
+35200/69092	Loss: 155.362
+38400/69092	Loss: 154.846
+41600/69092	Loss: 152.605
+44800/69092	Loss: 156.361
+48000/69092	Loss: 155.316
+51200/69092	Loss: 152.677
+54400/69092	Loss: 154.207
+57600/69092	Loss: 152.265
+60800/69092	Loss: 153.547
+64000/69092	Loss: 152.417
+67200/69092	Loss: 153.493
+Training time 0:01:58.230480
+Epoch: 139 Average loss: 154.03
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 139)
+0/69092	Loss: 139.523
+3200/69092	Loss: 154.231
+6400/69092	Loss: 155.235
+9600/69092	Loss: 154.371
+12800/69092	Loss: 154.983
+16000/69092	Loss: 154.015
+19200/69092	Loss: 154.778
+22400/69092	Loss: 156.963
+25600/69092	Loss: 150.474
+28800/69092	Loss: 150.523
+32000/69092	Loss: 154.557
+35200/69092	Loss: 155.371
+38400/69092	Loss: 154.050
+41600/69092	Loss: 153.330
+44800/69092	Loss: 156.219
+48000/69092	Loss: 152.746
+51200/69092	Loss: 155.189
+54400/69092	Loss: 151.280
+57600/69092	Loss: 153.665
+60800/69092	Loss: 154.930
+64000/69092	Loss: 154.840
+67200/69092	Loss: 155.642
+Training time 0:01:56.672850
+Epoch: 140 Average loss: 154.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 140)
+0/69092	Loss: 156.655
+3200/69092	Loss: 155.086
+6400/69092	Loss: 155.348
+9600/69092	Loss: 154.012
+12800/69092	Loss: 152.327
+16000/69092	Loss: 151.027
+19200/69092	Loss: 153.559
+22400/69092	Loss: 153.670
+25600/69092	Loss: 153.736
+28800/69092	Loss: 157.209
+32000/69092	Loss: 153.606
+35200/69092	Loss: 153.187
+38400/69092	Loss: 152.696
+41600/69092	Loss: 152.603
+44800/69092	Loss: 153.964
+48000/69092	Loss: 155.424
+51200/69092	Loss: 153.954
+54400/69092	Loss: 153.999
+57600/69092	Loss: 154.230
+60800/69092	Loss: 155.382
+64000/69092	Loss: 152.991
+67200/69092	Loss: 150.853
+Training time 0:01:58.026175
+Epoch: 141 Average loss: 153.86
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 141)
+0/69092	Loss: 160.142
+3200/69092	Loss: 153.358
+6400/69092	Loss: 154.774
+9600/69092	Loss: 152.377
+12800/69092	Loss: 154.675
+16000/69092	Loss: 156.249
+19200/69092	Loss: 155.458
+22400/69092	Loss: 152.909
+25600/69092	Loss: 155.081
+28800/69092	Loss: 154.258
+32000/69092	Loss: 153.205
+35200/69092	Loss: 155.777
+38400/69092	Loss: 152.785
+41600/69092	Loss: 153.439
+44800/69092	Loss: 151.158
+48000/69092	Loss: 152.683
+51200/69092	Loss: 156.369
+54400/69092	Loss: 152.324
+57600/69092	Loss: 151.797
+60800/69092	Loss: 152.179
+64000/69092	Loss: 153.761
+67200/69092	Loss: 155.343
+Training time 0:01:57.734306
+Epoch: 142 Average loss: 153.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 142)
+0/69092	Loss: 150.114
+3200/69092	Loss: 156.249
+6400/69092	Loss: 151.748
+9600/69092	Loss: 154.695
+12800/69092	Loss: 156.563
+16000/69092	Loss: 155.681
+19200/69092	Loss: 154.723
+22400/69092	Loss: 153.296
+25600/69092	Loss: 153.170
+28800/69092	Loss: 153.939
+32000/69092	Loss: 154.430
+35200/69092	Loss: 155.606
+38400/69092	Loss: 150.784
+41600/69092	Loss: 154.820
+44800/69092	Loss: 152.319
+48000/69092	Loss: 156.628
+51200/69092	Loss: 154.337
+54400/69092	Loss: 153.493
+57600/69092	Loss: 151.842
+60800/69092	Loss: 153.395
+64000/69092	Loss: 154.761
+67200/69092	Loss: 153.199
+Training time 0:01:57.780932
+Epoch: 143 Average loss: 153.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 143)
+0/69092	Loss: 169.829
+3200/69092	Loss: 152.957
+6400/69092	Loss: 152.465
+9600/69092	Loss: 153.118
+12800/69092	Loss: 152.974
+16000/69092	Loss: 153.778
+19200/69092	Loss: 152.374
+22400/69092	Loss: 155.112
+25600/69092	Loss: 155.510
+28800/69092	Loss: 153.136
+32000/69092	Loss: 153.114
+35200/69092	Loss: 155.219
+38400/69092	Loss: 154.435
+41600/69092	Loss: 155.116
+44800/69092	Loss: 153.666
+48000/69092	Loss: 154.597
+51200/69092	Loss: 153.671
+54400/69092	Loss: 154.324
+57600/69092	Loss: 155.815
+60800/69092	Loss: 154.392
+64000/69092	Loss: 152.200
+67200/69092	Loss: 153.992
+Training time 0:01:57.695235
+Epoch: 144 Average loss: 153.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 144)
+0/69092	Loss: 155.833
+3200/69092	Loss: 153.278
+6400/69092	Loss: 156.467
+9600/69092	Loss: 152.783
+12800/69092	Loss: 155.711
+16000/69092	Loss: 153.770
+19200/69092	Loss: 150.296
+22400/69092	Loss: 153.311
+25600/69092	Loss: 154.870
+28800/69092	Loss: 152.703
+32000/69092	Loss: 155.669
+35200/69092	Loss: 156.915
+38400/69092	Loss: 153.689
+41600/69092	Loss: 154.421
+44800/69092	Loss: 152.794
+48000/69092	Loss: 152.755
+51200/69092	Loss: 154.377
+54400/69092	Loss: 148.934
+57600/69092	Loss: 153.359
+60800/69092	Loss: 153.478
+64000/69092	Loss: 154.794
+67200/69092	Loss: 154.613
+Training time 0:01:57.431273
+Epoch: 145 Average loss: 153.83
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 145)
+0/69092	Loss: 158.462
+3200/69092	Loss: 154.293
+6400/69092	Loss: 152.808
+9600/69092	Loss: 155.977
+12800/69092	Loss: 155.423
+16000/69092	Loss: 152.008
+19200/69092	Loss: 154.136
+22400/69092	Loss: 152.260
+25600/69092	Loss: 152.057
+28800/69092	Loss: 153.241
+32000/69092	Loss: 154.236
+35200/69092	Loss: 155.114
+38400/69092	Loss: 153.480
+41600/69092	Loss: 153.581
+44800/69092	Loss: 152.582
+48000/69092	Loss: 151.147
+51200/69092	Loss: 155.744
+54400/69092	Loss: 156.545
+57600/69092	Loss: 154.778
+60800/69092	Loss: 151.076
+64000/69092	Loss: 156.301
+67200/69092	Loss: 153.371
+Training time 0:01:57.628707
+Epoch: 146 Average loss: 153.93
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 146)
+0/69092	Loss: 156.194
+3200/69092	Loss: 154.547
+6400/69092	Loss: 155.653
+9600/69092	Loss: 155.409
+12800/69092	Loss: 153.601
+16000/69092	Loss: 151.753
+19200/69092	Loss: 154.548
+22400/69092	Loss: 154.939
+25600/69092	Loss: 153.980
+28800/69092	Loss: 156.103
+32000/69092	Loss: 152.202
+35200/69092	Loss: 154.228
+38400/69092	Loss: 153.186
+41600/69092	Loss: 153.617
+44800/69092	Loss: 155.158
+48000/69092	Loss: 151.201
+51200/69092	Loss: 154.912
+54400/69092	Loss: 154.494
+57600/69092	Loss: 153.789
+60800/69092	Loss: 152.809
+64000/69092	Loss: 152.733
+67200/69092	Loss: 151.789
+Training time 0:01:58.751913
+Epoch: 147 Average loss: 153.91
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 147)
+0/69092	Loss: 162.678
+3200/69092	Loss: 154.196
+6400/69092	Loss: 153.003
+9600/69092	Loss: 155.581
+12800/69092	Loss: 155.374
+16000/69092	Loss: 154.330
+19200/69092	Loss: 153.539
+22400/69092	Loss: 151.800
+25600/69092	Loss: 152.051
+28800/69092	Loss: 154.773
+32000/69092	Loss: 151.551
+35200/69092	Loss: 156.579
+38400/69092	Loss: 153.501
+41600/69092	Loss: 155.479
+44800/69092	Loss: 153.281
+48000/69092	Loss: 154.757
+51200/69092	Loss: 152.889
+54400/69092	Loss: 152.369
+57600/69092	Loss: 151.568
+60800/69092	Loss: 154.789
+64000/69092	Loss: 156.925
+67200/69092	Loss: 151.513
+Training time 0:01:57.488062
+Epoch: 148 Average loss: 153.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 148)
+0/69092	Loss: 151.224
+3200/69092	Loss: 153.451
+6400/69092	Loss: 154.341
+9600/69092	Loss: 154.280
+12800/69092	Loss: 152.081
+16000/69092	Loss: 154.267
+19200/69092	Loss: 155.218
+22400/69092	Loss: 157.274
+25600/69092	Loss: 150.625
+28800/69092	Loss: 154.814
+32000/69092	Loss: 153.785
+35200/69092	Loss: 154.031
+38400/69092	Loss: 153.243
+41600/69092	Loss: 153.179
+44800/69092	Loss: 153.648
+48000/69092	Loss: 151.641
+51200/69092	Loss: 152.208
+54400/69092	Loss: 153.805
+57600/69092	Loss: 155.211
+60800/69092	Loss: 154.852
+64000/69092	Loss: 152.221
+67200/69092	Loss: 153.810
+Training time 0:01:58.789382
+Epoch: 149 Average loss: 153.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 149)
+0/69092	Loss: 152.636
+3200/69092	Loss: 151.073
+6400/69092	Loss: 151.507
+9600/69092	Loss: 153.848
+12800/69092	Loss: 152.529
+16000/69092	Loss: 153.900
+19200/69092	Loss: 154.187
+22400/69092	Loss: 153.347
+25600/69092	Loss: 153.988
+28800/69092	Loss: 154.171
+32000/69092	Loss: 156.736
+35200/69092	Loss: 154.913
+38400/69092	Loss: 153.681
+41600/69092	Loss: 153.000
+44800/69092	Loss: 152.467
+48000/69092	Loss: 152.460
+51200/69092	Loss: 153.296
+54400/69092	Loss: 154.302
+57600/69092	Loss: 153.158
+60800/69092	Loss: 153.864
+64000/69092	Loss: 156.101
+67200/69092	Loss: 154.313
+Training time 0:01:58.051617
+Epoch: 150 Average loss: 153.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 150)
+0/69092	Loss: 162.084
+3200/69092	Loss: 153.760
+6400/69092	Loss: 152.667
+9600/69092	Loss: 153.247
+12800/69092	Loss: 153.087
+16000/69092	Loss: 152.668
+19200/69092	Loss: 153.215
+22400/69092	Loss: 151.081
+25600/69092	Loss: 156.073
+28800/69092	Loss: 154.337
+32000/69092	Loss: 155.127
+35200/69092	Loss: 154.757
+38400/69092	Loss: 152.933
+41600/69092	Loss: 154.723
+44800/69092	Loss: 154.110
+48000/69092	Loss: 151.663
+51200/69092	Loss: 155.294
+54400/69092	Loss: 155.273
+57600/69092	Loss: 154.865
+60800/69092	Loss: 152.884
+64000/69092	Loss: 150.369
+67200/69092	Loss: 155.480
+Training time 0:01:58.039805
+Epoch: 151 Average loss: 153.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 151)
+0/69092	Loss: 154.323
+3200/69092	Loss: 154.346
+6400/69092	Loss: 156.689
+9600/69092	Loss: 154.837
+12800/69092	Loss: 152.500
+16000/69092	Loss: 154.715
+19200/69092	Loss: 153.188
+22400/69092	Loss: 154.261
+25600/69092	Loss: 154.184
+28800/69092	Loss: 154.488
+32000/69092	Loss: 155.662
+35200/69092	Loss: 152.800
+38400/69092	Loss: 151.050
+41600/69092	Loss: 152.624
+44800/69092	Loss: 152.340
+48000/69092	Loss: 154.712
+51200/69092	Loss: 155.533
+54400/69092	Loss: 155.045
+57600/69092	Loss: 154.351
+60800/69092	Loss: 154.003
+64000/69092	Loss: 153.178
+67200/69092	Loss: 156.106
+Training time 0:01:57.533614
+Epoch: 152 Average loss: 154.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 152)
+0/69092	Loss: 160.166
+3200/69092	Loss: 155.509
+6400/69092	Loss: 154.516
+9600/69092	Loss: 154.513
+12800/69092	Loss: 151.618
+16000/69092	Loss: 155.012
+19200/69092	Loss: 154.437
+22400/69092	Loss: 155.936
+25600/69092	Loss: 152.202
+28800/69092	Loss: 154.504
+32000/69092	Loss: 152.626
+35200/69092	Loss: 152.439
+38400/69092	Loss: 152.898
+41600/69092	Loss: 152.279
+44800/69092	Loss: 155.021
+48000/69092	Loss: 153.674
+51200/69092	Loss: 155.295
+54400/69092	Loss: 155.256
+57600/69092	Loss: 156.158
+60800/69092	Loss: 154.614
+64000/69092	Loss: 152.384
+67200/69092	Loss: 153.594
+Training time 0:01:57.634748
+Epoch: 153 Average loss: 154.01
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 153)
+0/69092	Loss: 140.068
+3200/69092	Loss: 155.298
+6400/69092	Loss: 152.207
+9600/69092	Loss: 151.929
+12800/69092	Loss: 153.416
+16000/69092	Loss: 155.561
+19200/69092	Loss: 157.925
+22400/69092	Loss: 154.117
+25600/69092	Loss: 151.465
+28800/69092	Loss: 153.599
+32000/69092	Loss: 155.049
+35200/69092	Loss: 152.796
+38400/69092	Loss: 156.962
+41600/69092	Loss: 152.889
+44800/69092	Loss: 152.001
+48000/69092	Loss: 154.006
+51200/69092	Loss: 152.195
+54400/69092	Loss: 157.328
+57600/69092	Loss: 151.284
+60800/69092	Loss: 153.628
+64000/69092	Loss: 156.930
+67200/69092	Loss: 151.567
+Training time 0:01:58.139985
+Epoch: 154 Average loss: 153.88
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 154)
+0/69092	Loss: 156.653
+3200/69092	Loss: 152.359
+6400/69092	Loss: 153.745
+9600/69092	Loss: 154.052
+12800/69092	Loss: 153.711
+16000/69092	Loss: 151.837
+19200/69092	Loss: 151.056
+22400/69092	Loss: 154.054
+25600/69092	Loss: 153.293
+28800/69092	Loss: 153.260
+32000/69092	Loss: 152.467
+35200/69092	Loss: 154.089
+38400/69092	Loss: 151.759
+41600/69092	Loss: 156.242
+44800/69092	Loss: 152.816
+48000/69092	Loss: 155.227
+51200/69092	Loss: 153.193
+54400/69092	Loss: 153.702
+57600/69092	Loss: 154.848
+60800/69092	Loss: 155.175
+64000/69092	Loss: 154.394
+67200/69092	Loss: 152.495
+Training time 0:01:57.368083
+Epoch: 155 Average loss: 153.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 155)
+0/69092	Loss: 167.637
+3200/69092	Loss: 151.109
+6400/69092	Loss: 153.323
+9600/69092	Loss: 155.334
+12800/69092	Loss: 153.465
+16000/69092	Loss: 153.807
+19200/69092	Loss: 154.708
+22400/69092	Loss: 154.279
+25600/69092	Loss: 155.457
+28800/69092	Loss: 155.550
+32000/69092	Loss: 152.109
+35200/69092	Loss: 152.939
+38400/69092	Loss: 152.208
+41600/69092	Loss: 155.243
+44800/69092	Loss: 154.913
+48000/69092	Loss: 152.296
+51200/69092	Loss: 152.721
+54400/69092	Loss: 153.143
+57600/69092	Loss: 155.118
+60800/69092	Loss: 154.669
+64000/69092	Loss: 153.953
+67200/69092	Loss: 151.785
+Training time 0:01:57.368878
+Epoch: 156 Average loss: 153.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 156)
+0/69092	Loss: 151.414
+3200/69092	Loss: 153.087
+6400/69092	Loss: 155.039
+9600/69092	Loss: 152.998
+12800/69092	Loss: 152.374
+16000/69092	Loss: 155.734
+19200/69092	Loss: 153.986
+22400/69092	Loss: 153.311
+25600/69092	Loss: 154.019
+28800/69092	Loss: 153.302
+32000/69092	Loss: 155.839
+35200/69092	Loss: 152.492
+38400/69092	Loss: 151.044
+41600/69092	Loss: 154.090
+44800/69092	Loss: 155.471
+48000/69092	Loss: 150.539
+51200/69092	Loss: 154.657
+54400/69092	Loss: 154.625
+57600/69092	Loss: 151.827
+60800/69092	Loss: 153.499
+64000/69092	Loss: 155.504
+67200/69092	Loss: 153.294
+Training time 0:01:57.937851
+Epoch: 157 Average loss: 153.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 157)
+0/69092	Loss: 155.203
+3200/69092	Loss: 153.649
+6400/69092	Loss: 153.099
+9600/69092	Loss: 153.397
+12800/69092	Loss: 151.938
+16000/69092	Loss: 154.316
+19200/69092	Loss: 154.341
+22400/69092	Loss: 154.392
+25600/69092	Loss: 151.844
+28800/69092	Loss: 152.773
+32000/69092	Loss: 152.386
+35200/69092	Loss: 152.962
+38400/69092	Loss: 155.712
+41600/69092	Loss: 154.281
+44800/69092	Loss: 152.907
+48000/69092	Loss: 154.915
+51200/69092	Loss: 153.984
+54400/69092	Loss: 152.315
+57600/69092	Loss: 154.558
+60800/69092	Loss: 152.245
+64000/69092	Loss: 156.315
+67200/69092	Loss: 154.819
+Training time 0:01:56.487464
+Epoch: 158 Average loss: 153.59
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 158)
+0/69092	Loss: 138.796
+3200/69092	Loss: 150.871
+6400/69092	Loss: 152.803
+9600/69092	Loss: 152.876
+12800/69092	Loss: 153.534
+16000/69092	Loss: 153.738
+19200/69092	Loss: 153.358
+22400/69092	Loss: 153.958
+25600/69092	Loss: 155.503
+28800/69092	Loss: 154.094
+32000/69092	Loss: 153.473
+35200/69092	Loss: 153.654
+38400/69092	Loss: 151.730
+41600/69092	Loss: 156.619
+44800/69092	Loss: 152.114
+48000/69092	Loss: 150.256
+51200/69092	Loss: 152.394
+54400/69092	Loss: 156.116
+57600/69092	Loss: 156.554
+60800/69092	Loss: 154.473
+64000/69092	Loss: 153.228
+67200/69092	Loss: 155.879
+Training time 0:01:56.763215
+Epoch: 159 Average loss: 153.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 159)
+0/69092	Loss: 135.210
+3200/69092	Loss: 153.410
+6400/69092	Loss: 154.654
+9600/69092	Loss: 151.387
+12800/69092	Loss: 153.361
+16000/69092	Loss: 154.785
+19200/69092	Loss: 153.738
+22400/69092	Loss: 154.280
+25600/69092	Loss: 151.401
+28800/69092	Loss: 153.722
+32000/69092	Loss: 156.128
+35200/69092	Loss: 152.507
+38400/69092	Loss: 155.037
+41600/69092	Loss: 155.098
+44800/69092	Loss: 150.621
+48000/69092	Loss: 156.095
+51200/69092	Loss: 156.333
+54400/69092	Loss: 154.415
+57600/69092	Loss: 152.454
+60800/69092	Loss: 156.055
+64000/69092	Loss: 150.316
+67200/69092	Loss: 151.292
+Training time 0:01:57.123982
+Epoch: 160 Average loss: 153.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 160)
+0/69092	Loss: 160.980
+3200/69092	Loss: 153.038
+6400/69092	Loss: 155.879
+9600/69092	Loss: 153.908
+12800/69092	Loss: 153.496
+16000/69092	Loss: 152.851
+19200/69092	Loss: 150.351
+22400/69092	Loss: 154.568
+25600/69092	Loss: 152.232
+28800/69092	Loss: 154.261
+32000/69092	Loss: 151.139
+35200/69092	Loss: 151.672
+38400/69092	Loss: 153.071
+41600/69092	Loss: 155.655
+44800/69092	Loss: 155.650
+48000/69092	Loss: 154.988
+51200/69092	Loss: 155.444
+54400/69092	Loss: 152.756
+57600/69092	Loss: 154.898
+60800/69092	Loss: 153.796
+64000/69092	Loss: 154.462
+67200/69092	Loss: 154.135
+Training time 0:01:57.824355
+Epoch: 161 Average loss: 153.73
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 161)
+0/69092	Loss: 154.934
+3200/69092	Loss: 154.769
+6400/69092	Loss: 155.408
+9600/69092	Loss: 152.720
+12800/69092	Loss: 153.010
+16000/69092	Loss: 149.867
+19200/69092	Loss: 154.809
+22400/69092	Loss: 153.012
+25600/69092	Loss: 151.028
+28800/69092	Loss: 153.618
+32000/69092	Loss: 153.146
+35200/69092	Loss: 152.735
+38400/69092	Loss: 155.770
+41600/69092	Loss: 155.319
+44800/69092	Loss: 150.476
+48000/69092	Loss: 153.693
+51200/69092	Loss: 157.593
+54400/69092	Loss: 153.628
+57600/69092	Loss: 155.057
+60800/69092	Loss: 153.639
+64000/69092	Loss: 154.853
+67200/69092	Loss: 152.783
+Training time 0:01:57.259768
+Epoch: 162 Average loss: 153.68
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 162)
+0/69092	Loss: 165.094
+3200/69092	Loss: 152.293
+6400/69092	Loss: 153.304
+9600/69092	Loss: 152.834
+12800/69092	Loss: 153.095
+16000/69092	Loss: 154.263
+19200/69092	Loss: 152.015
+22400/69092	Loss: 151.859
+25600/69092	Loss: 153.817
+28800/69092	Loss: 152.712
+32000/69092	Loss: 152.396
+35200/69092	Loss: 156.793
+38400/69092	Loss: 155.159
+41600/69092	Loss: 154.835
+44800/69092	Loss: 155.972
+48000/69092	Loss: 154.872
+51200/69092	Loss: 154.652
+54400/69092	Loss: 153.499
+57600/69092	Loss: 154.220
+60800/69092	Loss: 154.119
+64000/69092	Loss: 153.693
+67200/69092	Loss: 150.792
+Training time 0:01:57.292765
+Epoch: 163 Average loss: 153.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 163)
+0/69092	Loss: 148.269
+3200/69092	Loss: 153.030
+6400/69092	Loss: 153.241
+9600/69092	Loss: 154.577
+12800/69092	Loss: 153.547
+16000/69092	Loss: 151.112
+19200/69092	Loss: 152.070
+22400/69092	Loss: 153.096
+25600/69092	Loss: 152.512
+28800/69092	Loss: 150.972
+32000/69092	Loss: 151.387
+35200/69092	Loss: 153.144
+38400/69092	Loss: 155.376
+41600/69092	Loss: 156.802
+44800/69092	Loss: 152.794
+48000/69092	Loss: 154.014
+51200/69092	Loss: 155.498
+54400/69092	Loss: 151.854
+57600/69092	Loss: 152.469
+60800/69092	Loss: 153.989
+64000/69092	Loss: 155.050
+67200/69092	Loss: 154.904
+Training time 0:01:57.148237
+Epoch: 164 Average loss: 153.40
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 164)
+0/69092	Loss: 151.540
+3200/69092	Loss: 153.635
+6400/69092	Loss: 152.285
+9600/69092	Loss: 154.483
+12800/69092	Loss: 152.696
+16000/69092	Loss: 154.921
+19200/69092	Loss: 154.862
+22400/69092	Loss: 151.676
+25600/69092	Loss: 152.808
+28800/69092	Loss: 152.856
+32000/69092	Loss: 153.457
+35200/69092	Loss: 152.996
+38400/69092	Loss: 152.261
+41600/69092	Loss: 155.414
+44800/69092	Loss: 156.066
+48000/69092	Loss: 154.481
+51200/69092	Loss: 154.283
+54400/69092	Loss: 152.288
+57600/69092	Loss: 150.680
+60800/69092	Loss: 151.630
+64000/69092	Loss: 154.652
+67200/69092	Loss: 155.656
+Training time 0:01:58.221382
+Epoch: 165 Average loss: 153.58
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 165)
+0/69092	Loss: 171.343
+3200/69092	Loss: 152.834
+6400/69092	Loss: 152.541
+9600/69092	Loss: 152.125
+12800/69092	Loss: 155.896
+16000/69092	Loss: 152.651
+19200/69092	Loss: 155.593
+22400/69092	Loss: 155.573
+25600/69092	Loss: 153.585
+28800/69092	Loss: 152.051
+32000/69092	Loss: 152.165
+35200/69092	Loss: 154.546
+38400/69092	Loss: 151.660
+41600/69092	Loss: 156.363
+44800/69092	Loss: 153.298
+48000/69092	Loss: 155.658
+51200/69092	Loss: 152.386
+54400/69092	Loss: 153.483
+57600/69092	Loss: 155.383
+60800/69092	Loss: 152.277
+64000/69092	Loss: 153.315
+67200/69092	Loss: 151.966
+Training time 0:01:57.881041
+Epoch: 166 Average loss: 153.55
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 166)
+0/69092	Loss: 133.887
+3200/69092	Loss: 153.197
+6400/69092	Loss: 154.835
+9600/69092	Loss: 156.742
+12800/69092	Loss: 156.334
+16000/69092	Loss: 153.026
+19200/69092	Loss: 155.560
+22400/69092	Loss: 152.819
+25600/69092	Loss: 150.628
+28800/69092	Loss: 154.498
+32000/69092	Loss: 153.396
+35200/69092	Loss: 151.004
+38400/69092	Loss: 154.679
+41600/69092	Loss: 152.436
+44800/69092	Loss: 151.559
+48000/69092	Loss: 152.250
+51200/69092	Loss: 152.775
+54400/69092	Loss: 150.975
+57600/69092	Loss: 155.503
+60800/69092	Loss: 155.001
+64000/69092	Loss: 153.101
+67200/69092	Loss: 154.978
+Training time 0:02:00.223303
+Epoch: 167 Average loss: 153.58
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 167)
+0/69092	Loss: 149.147
+3200/69092	Loss: 153.933
+6400/69092	Loss: 153.032
+9600/69092	Loss: 154.035
+12800/69092	Loss: 152.999
+16000/69092	Loss: 155.712
+19200/69092	Loss: 152.549
+22400/69092	Loss: 153.545
+25600/69092	Loss: 151.579
+28800/69092	Loss: 154.253
+32000/69092	Loss: 152.795
+35200/69092	Loss: 154.479
+38400/69092	Loss: 153.484
+41600/69092	Loss: 153.771
+44800/69092	Loss: 152.245
+48000/69092	Loss: 154.020
+51200/69092	Loss: 151.847
+54400/69092	Loss: 154.695
+57600/69092	Loss: 153.501
+60800/69092	Loss: 154.201
+64000/69092	Loss: 153.938
+67200/69092	Loss: 152.550
+Training time 0:01:59.050741
+Epoch: 168 Average loss: 153.47
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 168)
+0/69092	Loss: 144.126
+3200/69092	Loss: 150.372
+6400/69092	Loss: 153.316
+9600/69092	Loss: 154.595
+12800/69092	Loss: 153.953
+16000/69092	Loss: 153.465
+19200/69092	Loss: 157.098
+22400/69092	Loss: 151.469
+25600/69092	Loss: 154.502
+28800/69092	Loss: 153.161
+32000/69092	Loss: 156.288
+35200/69092	Loss: 154.901
+38400/69092	Loss: 155.341
+41600/69092	Loss: 151.716
+44800/69092	Loss: 153.132
+48000/69092	Loss: 152.583
+51200/69092	Loss: 153.175
+54400/69092	Loss: 154.553
+57600/69092	Loss: 152.595
+60800/69092	Loss: 154.646
+64000/69092	Loss: 153.893
+67200/69092	Loss: 152.846
+Training time 0:01:58.963661
+Epoch: 169 Average loss: 153.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 169)
+0/69092	Loss: 154.990
+3200/69092	Loss: 152.755
+6400/69092	Loss: 155.570
+9600/69092	Loss: 151.471
+12800/69092	Loss: 153.766
+16000/69092	Loss: 156.364
+19200/69092	Loss: 152.366
+22400/69092	Loss: 154.997
+25600/69092	Loss: 153.211
+28800/69092	Loss: 151.262
+32000/69092	Loss: 152.426
+35200/69092	Loss: 153.907
+38400/69092	Loss: 153.318
+41600/69092	Loss: 153.294
+44800/69092	Loss: 153.489
+48000/69092	Loss: 154.007
+51200/69092	Loss: 152.344
+54400/69092	Loss: 153.836
+57600/69092	Loss: 152.884
+60800/69092	Loss: 155.056
+64000/69092	Loss: 154.297
+67200/69092	Loss: 153.268
+Training time 0:01:58.488707
+Epoch: 170 Average loss: 153.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 170)
+0/69092	Loss: 167.717
+3200/69092	Loss: 152.391
+6400/69092	Loss: 152.808
+9600/69092	Loss: 152.220
+12800/69092	Loss: 153.617
+16000/69092	Loss: 153.518
+19200/69092	Loss: 152.460
+22400/69092	Loss: 150.817
+25600/69092	Loss: 150.826
+28800/69092	Loss: 153.375
+32000/69092	Loss: 154.226
+35200/69092	Loss: 153.087
+38400/69092	Loss: 155.085
+41600/69092	Loss: 156.487
+44800/69092	Loss: 153.923
+48000/69092	Loss: 156.388
+51200/69092	Loss: 153.785
+54400/69092	Loss: 152.192
+57600/69092	Loss: 152.904
+60800/69092	Loss: 152.771
+64000/69092	Loss: 155.423
+67200/69092	Loss: 152.926
+Training time 0:01:58.307055
+Epoch: 171 Average loss: 153.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 171)
+0/69092	Loss: 170.096
+3200/69092	Loss: 155.635
+6400/69092	Loss: 152.207
+9600/69092	Loss: 155.079
+12800/69092	Loss: 154.785
+16000/69092	Loss: 152.576
+19200/69092	Loss: 153.121
+22400/69092	Loss: 153.258
+25600/69092	Loss: 155.704
+28800/69092	Loss: 153.085
+32000/69092	Loss: 152.489
+35200/69092	Loss: 153.985
+38400/69092	Loss: 154.194
+41600/69092	Loss: 151.834
+44800/69092	Loss: 152.536
+48000/69092	Loss: 153.344
+51200/69092	Loss: 154.594
+54400/69092	Loss: 152.373
+57600/69092	Loss: 151.567
+60800/69092	Loss: 153.130
+64000/69092	Loss: 154.112
+67200/69092	Loss: 154.415
+Training time 0:01:58.900402
+Epoch: 172 Average loss: 153.58
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 172)
+0/69092	Loss: 143.302
+3200/69092	Loss: 152.115
+6400/69092	Loss: 155.343
+9600/69092	Loss: 152.340
+12800/69092	Loss: 153.269
+16000/69092	Loss: 154.656
+19200/69092	Loss: 153.654
+22400/69092	Loss: 154.883
+25600/69092	Loss: 154.575
+28800/69092	Loss: 152.981
+32000/69092	Loss: 154.290
+35200/69092	Loss: 151.548
+38400/69092	Loss: 152.813
+41600/69092	Loss: 154.564
+44800/69092	Loss: 153.418
+48000/69092	Loss: 152.377
+51200/69092	Loss: 154.408
+54400/69092	Loss: 152.647
+57600/69092	Loss: 154.015
+60800/69092	Loss: 152.811
+64000/69092	Loss: 152.712
+67200/69092	Loss: 154.420
+Training time 0:01:57.682425
+Epoch: 173 Average loss: 153.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 173)
+0/69092	Loss: 161.742
+3200/69092	Loss: 152.407
+6400/69092	Loss: 154.528
+9600/69092	Loss: 152.282
+12800/69092	Loss: 152.555
+16000/69092	Loss: 158.049
+19200/69092	Loss: 152.968
+22400/69092	Loss: 155.897
+25600/69092	Loss: 154.286
+28800/69092	Loss: 151.864
+32000/69092	Loss: 154.010
+35200/69092	Loss: 155.564
+38400/69092	Loss: 153.267
+41600/69092	Loss: 153.191
+44800/69092	Loss: 151.635
+48000/69092	Loss: 152.679
+51200/69092	Loss: 150.579
+54400/69092	Loss: 155.121
+57600/69092	Loss: 155.764
+60800/69092	Loss: 153.156
+64000/69092	Loss: 152.468
+67200/69092	Loss: 151.519
+Training time 0:01:57.521824
+Epoch: 174 Average loss: 153.59
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 174)
+0/69092	Loss: 158.305
+3200/69092	Loss: 152.383
+6400/69092	Loss: 154.169
+9600/69092	Loss: 150.961
+12800/69092	Loss: 153.143
+16000/69092	Loss: 153.458
+19200/69092	Loss: 153.839
+22400/69092	Loss: 151.545
+25600/69092	Loss: 153.530
+28800/69092	Loss: 155.227
+32000/69092	Loss: 154.590
+35200/69092	Loss: 152.267
+38400/69092	Loss: 151.884
+41600/69092	Loss: 154.034
+44800/69092	Loss: 156.312
+48000/69092	Loss: 153.903
+51200/69092	Loss: 151.786
+54400/69092	Loss: 155.048
+57600/69092	Loss: 153.929
+60800/69092	Loss: 152.964
+64000/69092	Loss: 155.330
+67200/69092	Loss: 152.212
+Training time 0:01:57.989732
+Epoch: 175 Average loss: 153.45
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 175)
+0/69092	Loss: 154.773
+3200/69092	Loss: 153.349
+6400/69092	Loss: 152.404
+9600/69092	Loss: 155.498
+12800/69092	Loss: 153.516
+16000/69092	Loss: 152.032
+19200/69092	Loss: 152.516
+22400/69092	Loss: 152.473
+25600/69092	Loss: 153.110
+28800/69092	Loss: 154.600
+32000/69092	Loss: 154.944
+35200/69092	Loss: 153.640
+38400/69092	Loss: 151.123
+41600/69092	Loss: 156.020
+44800/69092	Loss: 154.271
+48000/69092	Loss: 154.586
+51200/69092	Loss: 154.334
+54400/69092	Loss: 151.005
+57600/69092	Loss: 152.191
+60800/69092	Loss: 154.740
+64000/69092	Loss: 156.242
+67200/69092	Loss: 154.027
+Training time 0:01:58.843046
+Epoch: 176 Average loss: 153.61
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 176)
+0/69092	Loss: 158.858
+3200/69092	Loss: 153.196
+6400/69092	Loss: 154.578
+9600/69092	Loss: 150.756
+12800/69092	Loss: 153.812
+16000/69092	Loss: 153.160
+19200/69092	Loss: 154.003
+22400/69092	Loss: 151.577
+25600/69092	Loss: 153.593
+28800/69092	Loss: 153.182
+32000/69092	Loss: 152.201
+35200/69092	Loss: 151.410
+38400/69092	Loss: 155.908
+41600/69092	Loss: 152.600
+44800/69092	Loss: 152.176
+48000/69092	Loss: 153.082
+51200/69092	Loss: 152.875
+54400/69092	Loss: 151.435
+57600/69092	Loss: 152.980
+60800/69092	Loss: 153.839
+64000/69092	Loss: 154.810
+67200/69092	Loss: 153.459
+Training time 0:01:58.518576
+Epoch: 177 Average loss: 153.23
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 177)
+0/69092	Loss: 157.223
+3200/69092	Loss: 153.913
+6400/69092	Loss: 153.103
+9600/69092	Loss: 154.528
+12800/69092	Loss: 153.509
+16000/69092	Loss: 151.302
+19200/69092	Loss: 152.627
+22400/69092	Loss: 152.497
+25600/69092	Loss: 155.063
+28800/69092	Loss: 155.373
+32000/69092	Loss: 153.499
+35200/69092	Loss: 154.216
+38400/69092	Loss: 153.588
+41600/69092	Loss: 153.213
+44800/69092	Loss: 153.914
+48000/69092	Loss: 154.398
+51200/69092	Loss: 154.633
+54400/69092	Loss: 153.529
+57600/69092	Loss: 153.721
+60800/69092	Loss: 154.351
+64000/69092	Loss: 152.790
+67200/69092	Loss: 152.004
+Training time 0:01:57.289607
+Epoch: 178 Average loss: 153.53
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 178)
+0/69092	Loss: 145.029
+3200/69092	Loss: 152.700
+6400/69092	Loss: 152.931
+9600/69092	Loss: 153.840
+12800/69092	Loss: 154.261
+16000/69092	Loss: 154.241
+19200/69092	Loss: 151.976
+22400/69092	Loss: 151.930
+25600/69092	Loss: 154.033
+28800/69092	Loss: 152.037
+32000/69092	Loss: 151.990
+35200/69092	Loss: 152.888
+38400/69092	Loss: 154.279
+41600/69092	Loss: 155.329
+44800/69092	Loss: 151.620
+48000/69092	Loss: 152.798
+51200/69092	Loss: 155.666
+54400/69092	Loss: 152.107
+57600/69092	Loss: 154.560
+60800/69092	Loss: 155.811
+64000/69092	Loss: 155.327
+67200/69092	Loss: 154.384
+Training time 0:01:58.109030
+Epoch: 179 Average loss: 153.47
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 179)
+0/69092	Loss: 132.821
+3200/69092	Loss: 152.968
+6400/69092	Loss: 153.225
+9600/69092	Loss: 151.330
+12800/69092	Loss: 153.036
+16000/69092	Loss: 153.537
+19200/69092	Loss: 151.809
+22400/69092	Loss: 153.752
+25600/69092	Loss: 154.048
+28800/69092	Loss: 153.331
+32000/69092	Loss: 154.121
+35200/69092	Loss: 154.223
+38400/69092	Loss: 154.314
+41600/69092	Loss: 153.762
+44800/69092	Loss: 153.451
+48000/69092	Loss: 155.277
+51200/69092	Loss: 153.193
+54400/69092	Loss: 153.819
+57600/69092	Loss: 151.237
+60800/69092	Loss: 154.401
+64000/69092	Loss: 151.327
+67200/69092	Loss: 156.048
+Training time 0:01:57.815115
+Epoch: 180 Average loss: 153.48
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 180)
+0/69092	Loss: 173.967
+3200/69092	Loss: 152.204
+6400/69092	Loss: 152.267
+9600/69092	Loss: 151.751
+12800/69092	Loss: 151.760
+16000/69092	Loss: 153.885
+19200/69092	Loss: 155.183
+22400/69092	Loss: 152.168
+25600/69092	Loss: 153.368
+28800/69092	Loss: 153.427
+32000/69092	Loss: 154.799
+35200/69092	Loss: 153.473
+38400/69092	Loss: 151.237
+41600/69092	Loss: 154.292
+44800/69092	Loss: 152.430
+48000/69092	Loss: 152.931
+51200/69092	Loss: 154.436
+54400/69092	Loss: 153.806
+57600/69092	Loss: 151.751
+60800/69092	Loss: 155.160
+64000/69092	Loss: 155.420
+67200/69092	Loss: 153.280
+Training time 0:01:57.631428
+Epoch: 181 Average loss: 153.35
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 181)
+0/69092	Loss: 160.243
+3200/69092	Loss: 152.580
+6400/69092	Loss: 154.525
+9600/69092	Loss: 152.073
+12800/69092	Loss: 155.034
+16000/69092	Loss: 153.844
+19200/69092	Loss: 153.800
+22400/69092	Loss: 156.658
+25600/69092	Loss: 153.285
+28800/69092	Loss: 154.415
+32000/69092	Loss: 153.113
+35200/69092	Loss: 154.413
+38400/69092	Loss: 152.150
+41600/69092	Loss: 151.703
+44800/69092	Loss: 152.631
+48000/69092	Loss: 152.867
+51200/69092	Loss: 152.753
+54400/69092	Loss: 150.697
+57600/69092	Loss: 154.120
+60800/69092	Loss: 153.307
+64000/69092	Loss: 153.509
+67200/69092	Loss: 154.321
+Training time 0:01:57.180327
+Epoch: 182 Average loss: 153.42
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 182)
+0/69092	Loss: 136.811
+3200/69092	Loss: 152.304
+6400/69092	Loss: 152.458
+9600/69092	Loss: 153.344
+12800/69092	Loss: 152.510
+16000/69092	Loss: 153.771
+19200/69092	Loss: 151.043
+22400/69092	Loss: 152.869
+25600/69092	Loss: 153.920
+28800/69092	Loss: 151.993
+32000/69092	Loss: 151.534
+35200/69092	Loss: 155.510
+38400/69092	Loss: 153.072
+41600/69092	Loss: 154.331
+44800/69092	Loss: 155.306
+48000/69092	Loss: 153.523
+51200/69092	Loss: 153.880
+54400/69092	Loss: 151.733
+57600/69092	Loss: 152.510
+60800/69092	Loss: 153.814
+64000/69092	Loss: 155.455
+67200/69092	Loss: 153.340
+Training time 0:01:57.497684
+Epoch: 183 Average loss: 153.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 183)
+0/69092	Loss: 161.665
+3200/69092	Loss: 153.367
+6400/69092	Loss: 153.018
+9600/69092	Loss: 151.798
+12800/69092	Loss: 152.768
+16000/69092	Loss: 155.262
+19200/69092	Loss: 153.670
+22400/69092	Loss: 155.870
+25600/69092	Loss: 153.954
+28800/69092	Loss: 153.844
+32000/69092	Loss: 150.597
+35200/69092	Loss: 153.193
+38400/69092	Loss: 154.559
+41600/69092	Loss: 149.616
+44800/69092	Loss: 155.597
+48000/69092	Loss: 152.084
+51200/69092	Loss: 153.694
+54400/69092	Loss: 152.873
+57600/69092	Loss: 154.909
+60800/69092	Loss: 154.249
+64000/69092	Loss: 151.734
+67200/69092	Loss: 152.525
+Training time 0:01:57.514177
+Epoch: 184 Average loss: 153.38
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 184)
+0/69092	Loss: 144.798
+3200/69092	Loss: 155.912
+6400/69092	Loss: 151.287
+9600/69092	Loss: 154.737
+12800/69092	Loss: 154.034
+16000/69092	Loss: 151.924
+19200/69092	Loss: 154.095
+22400/69092	Loss: 154.697
+25600/69092	Loss: 152.513
+28800/69092	Loss: 156.892
+32000/69092	Loss: 153.192
+35200/69092	Loss: 151.831
+38400/69092	Loss: 149.926
+41600/69092	Loss: 151.670
+44800/69092	Loss: 151.493
+48000/69092	Loss: 152.894
+51200/69092	Loss: 152.332
+54400/69092	Loss: 153.629
+57600/69092	Loss: 154.366
+60800/69092	Loss: 152.517
+64000/69092	Loss: 153.422
+67200/69092	Loss: 151.854
+Training time 0:01:56.780317
+Epoch: 185 Average loss: 153.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 185)
+0/69092	Loss: 153.127
+3200/69092	Loss: 153.570
+6400/69092	Loss: 152.923
+9600/69092	Loss: 153.774
+12800/69092	Loss: 150.843
+16000/69092	Loss: 153.916
+19200/69092	Loss: 153.384
+22400/69092	Loss: 153.709
+25600/69092	Loss: 153.429
+28800/69092	Loss: 153.527
+32000/69092	Loss: 152.805
+35200/69092	Loss: 153.293
+38400/69092	Loss: 153.931
+41600/69092	Loss: 155.595
+44800/69092	Loss: 152.922
+48000/69092	Loss: 154.691
+51200/69092	Loss: 151.888
+54400/69092	Loss: 151.208
+57600/69092	Loss: 155.162
+60800/69092	Loss: 151.213
+64000/69092	Loss: 151.698
+67200/69092	Loss: 153.116
+Training time 0:01:56.582316
+Epoch: 186 Average loss: 153.25
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 186)
+0/69092	Loss: 139.081
+3200/69092	Loss: 153.198
+6400/69092	Loss: 154.580
+9600/69092	Loss: 152.502
+12800/69092	Loss: 153.499
+16000/69092	Loss: 153.171
+19200/69092	Loss: 155.828
+22400/69092	Loss: 152.913
+25600/69092	Loss: 154.017
+28800/69092	Loss: 151.482
+32000/69092	Loss: 154.483
+35200/69092	Loss: 152.055
+38400/69092	Loss: 154.829
+41600/69092	Loss: 153.987
+44800/69092	Loss: 150.099
+48000/69092	Loss: 153.025
+51200/69092	Loss: 153.195
+54400/69092	Loss: 154.443
+57600/69092	Loss: 152.576
+60800/69092	Loss: 153.728
+64000/69092	Loss: 153.300
+67200/69092	Loss: 152.755
+Training time 0:01:57.961633
+Epoch: 187 Average loss: 153.30
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 187)
+0/69092	Loss: 137.805
+3200/69092	Loss: 153.069
+6400/69092	Loss: 150.559
+9600/69092	Loss: 155.338
+12800/69092	Loss: 154.055
+16000/69092	Loss: 154.296
+19200/69092	Loss: 151.792
+22400/69092	Loss: 151.791
+25600/69092	Loss: 154.987
+28800/69092	Loss: 155.171
+32000/69092	Loss: 154.879
+35200/69092	Loss: 154.590
+38400/69092	Loss: 152.051
+41600/69092	Loss: 151.056
+44800/69092	Loss: 150.419
+48000/69092	Loss: 152.993
+51200/69092	Loss: 152.944
+54400/69092	Loss: 154.770
+57600/69092	Loss: 156.868
+60800/69092	Loss: 152.806
+64000/69092	Loss: 153.789
+67200/69092	Loss: 154.109
+Training time 0:01:57.402130
+Epoch: 188 Average loss: 153.35
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 188)
+0/69092	Loss: 157.948
+3200/69092	Loss: 154.815
+6400/69092	Loss: 154.208
+9600/69092	Loss: 152.943
+12800/69092	Loss: 153.998
+16000/69092	Loss: 153.828
+19200/69092	Loss: 153.881
+22400/69092	Loss: 154.333
+25600/69092	Loss: 150.921
+28800/69092	Loss: 154.029
+32000/69092	Loss: 155.490
+35200/69092	Loss: 155.009
+38400/69092	Loss: 150.726
+41600/69092	Loss: 151.606
+44800/69092	Loss: 153.686
+48000/69092	Loss: 150.523
+51200/69092	Loss: 152.818
+54400/69092	Loss: 152.474
+57600/69092	Loss: 152.829
+60800/69092	Loss: 154.985
+64000/69092	Loss: 153.498
+67200/69092	Loss: 154.083
+Training time 0:01:56.221509
+Epoch: 189 Average loss: 153.42
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 189)
+0/69092	Loss: 153.654
+3200/69092	Loss: 156.417
+6400/69092	Loss: 153.118
+9600/69092	Loss: 149.262
+12800/69092	Loss: 153.621
+16000/69092	Loss: 154.701
+19200/69092	Loss: 154.152
+22400/69092	Loss: 152.348
+25600/69092	Loss: 153.848
+28800/69092	Loss: 156.334
+32000/69092	Loss: 153.381
+35200/69092	Loss: 155.933
+38400/69092	Loss: 151.845
+41600/69092	Loss: 152.259
+44800/69092	Loss: 154.884
+48000/69092	Loss: 151.158
+51200/69092	Loss: 150.854
+54400/69092	Loss: 152.270
+57600/69092	Loss: 154.510
+60800/69092	Loss: 152.766
+64000/69092	Loss: 150.074
+67200/69092	Loss: 151.896
+Training time 0:01:57.703280
+Epoch: 190 Average loss: 153.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 190)
+0/69092	Loss: 144.723
+3200/69092	Loss: 156.459
+6400/69092	Loss: 153.414
+9600/69092	Loss: 153.992
+12800/69092	Loss: 153.518
+16000/69092	Loss: 153.729
+19200/69092	Loss: 153.492
+22400/69092	Loss: 153.319
+25600/69092	Loss: 152.642
+28800/69092	Loss: 156.405
+32000/69092	Loss: 153.737
+35200/69092	Loss: 152.013
+38400/69092	Loss: 153.221
+41600/69092	Loss: 152.657
+44800/69092	Loss: 153.036
+48000/69092	Loss: 152.068
+51200/69092	Loss: 153.679
+54400/69092	Loss: 156.465
+57600/69092	Loss: 151.852
+60800/69092	Loss: 152.137
+64000/69092	Loss: 152.480
+67200/69092	Loss: 152.526
+Training time 0:01:57.576354
+Epoch: 191 Average loss: 153.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 191)
+0/69092	Loss: 164.213
+3200/69092	Loss: 151.961
+6400/69092	Loss: 153.876
+9600/69092	Loss: 154.495
+12800/69092	Loss: 154.759
+16000/69092	Loss: 152.287
+19200/69092	Loss: 155.725
+22400/69092	Loss: 152.406
+25600/69092	Loss: 151.840
+28800/69092	Loss: 154.640
+32000/69092	Loss: 152.285
+35200/69092	Loss: 153.189
+38400/69092	Loss: 152.761
+41600/69092	Loss: 154.928
+44800/69092	Loss: 153.206
+48000/69092	Loss: 153.663
+51200/69092	Loss: 151.281
+54400/69092	Loss: 152.788
+57600/69092	Loss: 151.861
+60800/69092	Loss: 152.905
+64000/69092	Loss: 153.191
+67200/69092	Loss: 152.214
+Training time 0:01:57.872127
+Epoch: 192 Average loss: 153.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 192)
+0/69092	Loss: 153.189
+3200/69092	Loss: 155.156
+6400/69092	Loss: 151.581
+9600/69092	Loss: 154.650
+12800/69092	Loss: 152.335
+16000/69092	Loss: 149.066
+19200/69092	Loss: 152.989
+22400/69092	Loss: 153.812
+25600/69092	Loss: 152.393
+28800/69092	Loss: 153.612
+32000/69092	Loss: 154.801
+35200/69092	Loss: 154.680
+38400/69092	Loss: 153.958
+41600/69092	Loss: 151.278
+44800/69092	Loss: 151.372
+48000/69092	Loss: 153.783
+51200/69092	Loss: 153.446
+54400/69092	Loss: 156.406
+57600/69092	Loss: 155.755
+60800/69092	Loss: 152.011
+64000/69092	Loss: 156.086
+67200/69092	Loss: 153.127
+Training time 0:01:57.083778
+Epoch: 193 Average loss: 153.49
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 193)
+0/69092	Loss: 154.344
+3200/69092	Loss: 153.425
+6400/69092	Loss: 152.044
+9600/69092	Loss: 156.312
+12800/69092	Loss: 152.580
+16000/69092	Loss: 152.340
+19200/69092	Loss: 153.742
+22400/69092	Loss: 152.416
+25600/69092	Loss: 151.204
+28800/69092	Loss: 154.553
+32000/69092	Loss: 154.041
+35200/69092	Loss: 154.902
+38400/69092	Loss: 155.723
+41600/69092	Loss: 149.735
+44800/69092	Loss: 153.955
+48000/69092	Loss: 154.440
+51200/69092	Loss: 154.848
+54400/69092	Loss: 151.147
+57600/69092	Loss: 152.391
+60800/69092	Loss: 152.510
+64000/69092	Loss: 154.010
+67200/69092	Loss: 153.323
+Training time 0:01:58.359636
+Epoch: 194 Average loss: 153.30
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 194)
+0/69092	Loss: 146.915
+3200/69092	Loss: 152.609
+6400/69092	Loss: 151.790
+9600/69092	Loss: 153.264
+12800/69092	Loss: 152.660
+16000/69092	Loss: 154.266
+19200/69092	Loss: 154.850
+22400/69092	Loss: 154.107
+25600/69092	Loss: 154.467
+28800/69092	Loss: 154.660
+32000/69092	Loss: 153.173
+35200/69092	Loss: 151.806
+38400/69092	Loss: 154.004
+41600/69092	Loss: 154.130
+44800/69092	Loss: 155.406
+48000/69092	Loss: 154.135
+51200/69092	Loss: 153.146
+54400/69092	Loss: 151.344
+57600/69092	Loss: 152.490
+60800/69092	Loss: 151.122
+64000/69092	Loss: 152.136
+67200/69092	Loss: 155.151
+Training time 0:01:58.474192
+Epoch: 195 Average loss: 153.33
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 195)
+0/69092	Loss: 160.613
+3200/69092	Loss: 153.715
+6400/69092	Loss: 153.313
+9600/69092	Loss: 154.246
+12800/69092	Loss: 152.969
+16000/69092	Loss: 150.915
+19200/69092	Loss: 152.274
+22400/69092	Loss: 153.307
+25600/69092	Loss: 154.993
+28800/69092	Loss: 151.508
+32000/69092	Loss: 153.728
+35200/69092	Loss: 151.085
+38400/69092	Loss: 152.811
+41600/69092	Loss: 154.267
+44800/69092	Loss: 153.282
+48000/69092	Loss: 152.042
+51200/69092	Loss: 153.633
+54400/69092	Loss: 153.821
+57600/69092	Loss: 156.052
+60800/69092	Loss: 152.132
+64000/69092	Loss: 153.222
+67200/69092	Loss: 153.562
+Training time 0:01:57.272817
+Epoch: 196 Average loss: 153.13
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 196)
+0/69092	Loss: 168.341
+3200/69092	Loss: 155.781
+6400/69092	Loss: 150.020
+9600/69092	Loss: 153.713
+12800/69092	Loss: 154.805
+16000/69092	Loss: 154.924
+19200/69092	Loss: 152.543
+22400/69092	Loss: 153.672
+25600/69092	Loss: 152.248
+28800/69092	Loss: 155.535
+32000/69092	Loss: 154.706
+35200/69092	Loss: 151.173
+38400/69092	Loss: 153.029
+41600/69092	Loss: 155.129
+44800/69092	Loss: 154.305
+48000/69092	Loss: 150.333
+51200/69092	Loss: 153.224
+54400/69092	Loss: 152.112
+57600/69092	Loss: 155.518
+60800/69092	Loss: 151.340
+64000/69092	Loss: 152.720
+67200/69092	Loss: 155.200
+Training time 0:01:57.564049
+Epoch: 197 Average loss: 153.36
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 197)
+0/69092	Loss: 152.832
+3200/69092	Loss: 155.401
+6400/69092	Loss: 152.652
+9600/69092	Loss: 153.890
+12800/69092	Loss: 150.696
+16000/69092	Loss: 151.536
+19200/69092	Loss: 153.555
+22400/69092	Loss: 152.638
+25600/69092	Loss: 152.626
+28800/69092	Loss: 151.146
+32000/69092	Loss: 152.802
+35200/69092	Loss: 155.171
+38400/69092	Loss: 153.063
+41600/69092	Loss: 154.563
+44800/69092	Loss: 155.242
+48000/69092	Loss: 151.568
+51200/69092	Loss: 155.067
+54400/69092	Loss: 153.353
+57600/69092	Loss: 154.043
+60800/69092	Loss: 152.441
+64000/69092	Loss: 152.133
+67200/69092	Loss: 152.631
+48000/69092	Loss: 153.327
+51200/69092	Loss: 151.013
+54400/69092	Loss: 152.419
+57600/69092	Loss: 153.783
+60800/69092	Loss: 153.751
+64000/69092	Loss: 152.644
+67200/69092	Loss: 154.169
+Training time 0:01:57.663572
+Epoch: 201 Average loss: 153.17
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 201)
+0/69092	Loss: 154.454
+3200/69092	Loss: 155.674
+6400/69092	Loss: 151.339
+9600/69092	Loss: 152.021
+12800/69092	Loss: 153.099
+16000/69092	Loss: 152.180
+19200/69092	Loss: 152.736
+22400/69092	Loss: 151.503
+25600/69092	Loss: 151.432
+28800/69092	Loss: 153.191
+32000/69092	Loss: 152.134
+35200/69092	Loss: 151.568
+38400/69092	Loss: 153.513
+41600/69092	Loss: 152.303
+44800/69092	Loss: 153.737
+48000/69092	Loss: 155.662
+51200/69092	Loss: 152.872
+54400/69092	Loss: 151.656
+57600/69092	Loss: 153.501
+60800/69092	Loss: 155.283
+64000/69092	Loss: 152.747
+67200/69092	Loss: 153.056
+Training time 0:01:58.155480
+Epoch: 202 Average loss: 152.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 202)
+0/69092	Loss: 151.555
+3200/69092	Loss: 153.526
+6400/69092	Loss: 154.845
+9600/69092	Loss: 153.318
+12800/69092	Loss: 153.101
+16000/69092	Loss: 151.746
+19200/69092	Loss: 149.802
+22400/69092	Loss: 155.046
+25600/69092	Loss: 155.019
+28800/69092	Loss: 153.662
+32000/69092	Loss: 154.378
+35200/69092	Loss: 153.605
+38400/69092	Loss: 152.214
+41600/69092	Loss: 151.754
+44800/69092	Loss: 150.080
+48000/69092	Loss: 153.390
+51200/69092	Loss: 153.520
+54400/69092	Loss: 153.503
+57600/69092	Loss: 153.312
+60800/69092	Loss: 153.914
+64000/69092	Loss: 152.388
+67200/69092	Loss: 152.194
+Training time 0:01:56.956451
+Epoch: 203 Average loss: 152.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 203)
+0/69092	Loss: 178.683
+3200/69092	Loss: 152.457
+6400/69092	Loss: 156.550
+9600/69092	Loss: 150.915
+12800/69092	Loss: 150.799
+16000/69092	Loss: 155.364
+19200/69092	Loss: 153.083
+22400/69092	Loss: 151.785
+25600/69092	Loss: 154.004
+28800/69092	Loss: 152.351
+32000/69092	Loss: 155.011
+35200/69092	Loss: 152.374
+38400/69092	Loss: 154.534
+41600/69092	Loss: 151.444
+44800/69092	Loss: 151.489
+48000/69092	Loss: 152.020
+51200/69092	Loss: 153.392
+54400/69092	Loss: 154.347
+57600/69092	Loss: 151.340
+60800/69092	Loss: 155.808
+64000/69092	Loss: 154.347
+67200/69092	Loss: 152.377
+Training time 0:01:56.859912
+Epoch: 204 Average loss: 153.16
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 204)
+0/69092	Loss: 138.625
+3200/69092	Loss: 152.850
+6400/69092	Loss: 152.322
+9600/69092	Loss: 154.403
+12800/69092	Loss: 153.948
+16000/69092	Loss: 151.989
+19200/69092	Loss: 154.287
+22400/69092	Loss: 151.121
+25600/69092	Loss: 151.187
+28800/69092	Loss: 153.457
+32000/69092	Loss: 153.582
+35200/69092	Loss: 153.946
+38400/69092	Loss: 150.736
+41600/69092	Loss: 155.028
+44800/69092	Loss: 153.445
+48000/69092	Loss: 153.018
+51200/69092	Loss: 149.907
+54400/69092	Loss: 153.789
+57600/69092	Loss: 151.504
+60800/69092	Loss: 153.333
+64000/69092	Loss: 154.963
+67200/69092	Loss: 155.373
+Training time 0:01:59.365824
+Epoch: 205 Average loss: 153.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 205)
+0/69092	Loss: 147.201
+3200/69092	Loss: 151.697
+6400/69092	Loss: 153.379
+9600/69092	Loss: 153.823
+12800/69092	Loss: 153.457
+16000/69092	Loss: 151.413
+19200/69092	Loss: 154.404
+22400/69092	Loss: 151.473
+25600/69092	Loss: 154.228
+28800/69092	Loss: 153.431
+32000/69092	Loss: 150.146
+35200/69092	Loss: 151.431
+38400/69092	Loss: 152.684
+41600/69092	Loss: 154.671
+44800/69092	Loss: 152.336
+48000/69092	Loss: 153.124
+51200/69092	Loss: 154.301
+54400/69092	Loss: 155.121
+57600/69092	Loss: 153.226
+60800/69092	Loss: 151.249
+64000/69092	Loss: 154.757
+67200/69092	Loss: 153.826
+Training time 0:01:57.188512
+Epoch: 206 Average loss: 153.05
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 206)
+0/69092	Loss: 136.333
+3200/69092	Loss: 152.612
+6400/69092	Loss: 151.811
+9600/69092	Loss: 153.699
+12800/69092	Loss: 154.377
+16000/69092	Loss: 152.827
+19200/69092	Loss: 152.339
+22400/69092	Loss: 151.878
+25600/69092	Loss: 155.262
+28800/69092	Loss: 152.071
+32000/69092	Loss: 152.793
+35200/69092	Loss: 155.137
+38400/69092	Loss: 154.037
+41600/69092	Loss: 152.279
+44800/69092	Loss: 156.727
+48000/69092	Loss: 151.432
+51200/69092	Loss: 150.464
+54400/69092	Loss: 154.882
+57600/69092	Loss: 154.085
+60800/69092	Loss: 153.740
+64000/69092	Loss: 153.330
+67200/69092	Loss: 151.401
+Training time 0:01:56.002772
+Epoch: 207 Average loss: 153.15
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 207)
+0/69092	Loss: 159.126
+3200/69092	Loss: 152.052
+6400/69092	Loss: 155.090
+9600/69092	Loss: 154.483
+12800/69092	Loss: 152.618
+16000/69092	Loss: 152.206
+19200/69092	Loss: 154.047
+22400/69092	Loss: 152.661
+25600/69092	Loss: 153.379
+28800/69092	Loss: 152.244
+32000/69092	Loss: 153.195
+35200/69092	Loss: 156.466
+38400/69092	Loss: 152.258
+41600/69092	Loss: 152.118
+44800/69092	Loss: 151.220
+48000/69092	Loss: 153.403
+51200/69092	Loss: 150.577
+54400/69092	Loss: 151.009
+57600/69092	Loss: 154.787
+60800/69092	Loss: 156.546
+64000/69092	Loss: 151.253
+67200/69092	Loss: 154.397
+Training time 0:01:56.828773
+Epoch: 208 Average loss: 153.08
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 208)
+0/69092	Loss: 151.807
+3200/69092	Loss: 154.319
+6400/69092	Loss: 153.644
+9600/69092	Loss: 153.258
+12800/69092	Loss: 152.806
+16000/69092	Loss: 153.872
+19200/69092	Loss: 154.030
+22400/69092	Loss: 155.283
+25600/69092	Loss: 151.143
+28800/69092	Loss: 153.840
+32000/69092	Loss: 154.017
+35200/69092	Loss: 150.235
+38400/69092	Loss: 154.384
+41600/69092	Loss: 155.664
+44800/69092	Loss: 151.471
+48000/69092	Loss: 154.014
+51200/69092	Loss: 150.890
+54400/69092	Loss: 155.039
+57600/69092	Loss: 151.520
+60800/69092	Loss: 153.483
+64000/69092	Loss: 153.392
+67200/69092	Loss: 156.238
+Training time 0:01:57.092329
+Epoch: 209 Average loss: 153.44
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 209)
+0/69092	Loss: 141.051
+3200/69092	Loss: 152.772
+6400/69092	Loss: 155.085
+9600/69092	Loss: 153.431
+12800/69092	Loss: 154.207
+16000/69092	Loss: 152.324
+19200/69092	Loss: 153.692
+22400/69092	Loss: 151.638
+25600/69092	Loss: 150.807
+28800/69092	Loss: 153.521
+32000/69092	Loss: 153.642
+35200/69092	Loss: 153.839
+38400/69092	Loss: 153.318
+41600/69092	Loss: 154.310
+44800/69092	Loss: 152.291
+48000/69092	Loss: 155.064
+51200/69092	Loss: 150.262
+54400/69092	Loss: 154.975
+57600/69092	Loss: 153.587
+60800/69092	Loss: 152.115
+64000/69092	Loss: 152.571
+67200/69092	Loss: 154.876
+Training time 0:01:58.064314
+Epoch: 210 Average loss: 153.18
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 210)
+0/69092	Loss: 159.396
+3200/69092	Loss: 154.733
+6400/69092	Loss: 153.565
+9600/69092	Loss: 153.966
+12800/69092	Loss: 152.109
+16000/69092	Loss: 152.466
+19200/69092	Loss: 150.720
+22400/69092	Loss: 152.711
+25600/69092	Loss: 152.942
+28800/69092	Loss: 151.933
+32000/69092	Loss: 155.083
+35200/69092	Loss: 150.069
+38400/69092	Loss: 152.721
+41600/69092	Loss: 152.702
+44800/69092	Loss: 151.334
+48000/69092	Loss: 153.130
+51200/69092	Loss: 154.547
+54400/69092	Loss: 153.815
+57600/69092	Loss: 152.741
+60800/69092	Loss: 153.496
+64000/69092	Loss: 153.536
+67200/69092	Loss: 152.980
+Training time 0:01:56.995772
+Epoch: 211 Average loss: 152.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 211)
+0/69092	Loss: 144.274
+3200/69092	Loss: 152.331
+6400/69092	Loss: 153.078
+9600/69092	Loss: 154.833
+12800/69092	Loss: 153.554
+16000/69092	Loss: 153.760
+19200/69092	Loss: 151.267
+22400/69092	Loss: 151.098
+25600/69092	Loss: 153.938
+28800/69092	Loss: 151.686
+32000/69092	Loss: 154.255
+35200/69092	Loss: 154.566
+38400/69092	Loss: 151.615
+41600/69092	Loss: 152.900
+44800/69092	Loss: 151.473
+48000/69092	Loss: 153.045
+51200/69092	Loss: 153.881
+54400/69092	Loss: 152.394
+57600/69092	Loss: 154.118
+60800/69092	Loss: 155.064
+64000/69092	Loss: 152.237
+67200/69092	Loss: 152.952
+Training time 0:01:57.304691
+Epoch: 212 Average loss: 152.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 212)
+0/69092	Loss: 152.058
+3200/69092	Loss: 152.385
+6400/69092	Loss: 154.151
+9600/69092	Loss: 154.332
+12800/69092	Loss: 154.325
+16000/69092	Loss: 153.314
+19200/69092	Loss: 151.008
+22400/69092	Loss: 154.562
+25600/69092	Loss: 154.595
+28800/69092	Loss: 150.897
+32000/69092	Loss: 153.565
+35200/69092	Loss: 151.765
+38400/69092	Loss: 152.672
+41600/69092	Loss: 153.964
+44800/69092	Loss: 154.752
+48000/69092	Loss: 153.246
+51200/69092	Loss: 152.780
+54400/69092	Loss: 153.455
+57600/69092	Loss: 154.722
+60800/69092	Loss: 149.292
+64000/69092	Loss: 153.789
+67200/69092	Loss: 151.950
+Training time 0:01:57.575948
+Epoch: 213 Average loss: 153.12
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 213)
+0/69092	Loss: 139.377
+3200/69092	Loss: 153.930
+6400/69092	Loss: 154.103
+9600/69092	Loss: 154.827
+12800/69092	Loss: 152.510
+16000/69092	Loss: 151.385
+19200/69092	Loss: 151.542
+22400/69092	Loss: 151.446
+25600/69092	Loss: 154.575
+28800/69092	Loss: 153.756
+32000/69092	Loss: 152.215
+35200/69092	Loss: 154.727
+38400/69092	Loss: 155.033
+41600/69092	Loss: 155.026
+44800/69092	Loss: 152.661
+48000/69092	Loss: 151.856
+51200/69092	Loss: 152.589
+54400/69092	Loss: 152.167
+57600/69092	Loss: 151.153
+60800/69092	Loss: 155.150
+64000/69092	Loss: 150.389
+67200/69092	Loss: 155.713
+Training time 0:01:57.480193
+Epoch: 214 Average loss: 153.12
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 214)
+0/69092	Loss: 162.559
+3200/69092	Loss: 153.853
+6400/69092	Loss: 151.702
+9600/69092	Loss: 155.117
+12800/69092	Loss: 150.545
+16000/69092	Loss: 153.676
+19200/69092	Loss: 152.117
+22400/69092	Loss: 152.922
+25600/69092	Loss: 152.732
+28800/69092	Loss: 154.555
+32000/69092	Loss: 151.590
+35200/69092	Loss: 154.411
+38400/69092	Loss: 154.215
+41600/69092	Loss: 152.622
+44800/69092	Loss: 154.972
+48000/69092	Loss: 151.488
+51200/69092	Loss: 154.537
+54400/69092	Loss: 152.975
+57600/69092	Loss: 154.043
+60800/69092	Loss: 154.166
+64000/69092	Loss: 152.604
+67200/69092	Loss: 154.063
+Training time 0:01:58.489547
+Epoch: 215 Average loss: 153.29
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 215)
+0/69092	Loss: 142.518
+3200/69092	Loss: 152.601
+6400/69092	Loss: 154.142
+9600/69092	Loss: 152.091
+12800/69092	Loss: 150.358
+16000/69092	Loss: 151.021
+19200/69092	Loss: 154.161
+22400/69092	Loss: 152.234
+25600/69092	Loss: 154.221
+28800/69092	Loss: 154.208
+32000/69092	Loss: 153.602
+35200/69092	Loss: 155.292
+38400/69092	Loss: 152.614
+41600/69092	Loss: 152.557
+44800/69092	Loss: 152.863
+48000/69092	Loss: 151.437
+51200/69092	Loss: 151.839
+54400/69092	Loss: 154.302
+57600/69092	Loss: 153.296
+60800/69092	Loss: 154.567
+64000/69092	Loss: 153.093
+67200/69092	Loss: 153.120
+Training time 0:01:58.124137
+Epoch: 216 Average loss: 153.07
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 216)
+0/69092	Loss: 145.412
+3200/69092	Loss: 153.349
+6400/69092	Loss: 151.452
+9600/69092	Loss: 151.918
+12800/69092	Loss: 154.555
+16000/69092	Loss: 151.488
+19200/69092	Loss: 155.105
+22400/69092	Loss: 155.665
+25600/69092	Loss: 153.667
+28800/69092	Loss: 152.872
+32000/69092	Loss: 155.300
+35200/69092	Loss: 150.349
+38400/69092	Loss: 151.373
+41600/69092	Loss: 152.978
+44800/69092	Loss: 152.866
+48000/69092	Loss: 154.216
+51200/69092	Loss: 154.033
+54400/69092	Loss: 152.151
+57600/69092	Loss: 152.067
+60800/69092	Loss: 152.121
+64000/69092	Loss: 154.637
+67200/69092	Loss: 151.924
+Training time 0:01:57.129648
+Epoch: 217 Average loss: 153.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 217)
+0/69092	Loss: 137.423
+3200/69092	Loss: 153.207
+6400/69092	Loss: 152.468
+9600/69092	Loss: 152.777
+12800/69092	Loss: 151.594
+16000/69092	Loss: 153.604
+19200/69092	Loss: 151.826
+22400/69092	Loss: 154.964
+25600/69092	Loss: 153.965
+28800/69092	Loss: 152.907
+32000/69092	Loss: 153.653
+35200/69092	Loss: 154.905
+38400/69092	Loss: 154.736
+41600/69092	Loss: 152.599
+44800/69092	Loss: 151.174
+48000/69092	Loss: 154.147
+51200/69092	Loss: 150.586
+54400/69092	Loss: 152.760
+57600/69092	Loss: 154.728
+60800/69092	Loss: 154.205
+64000/69092	Loss: 152.165
+67200/69092	Loss: 153.749
+Training time 0:01:57.834001
+Epoch: 218 Average loss: 153.21
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 218)
+0/69092	Loss: 134.265
+3200/69092	Loss: 153.752
+6400/69092	Loss: 153.571
+9600/69092	Loss: 154.039
+12800/69092	Loss: 150.626
+16000/69092	Loss: 154.971
+19200/69092	Loss: 150.849
+22400/69092	Loss: 150.640
+25600/69092	Loss: 153.325
+28800/69092	Loss: 154.799
+32000/69092	Loss: 153.318
+35200/69092	Loss: 152.523
+38400/69092	Loss: 151.084
+41600/69092	Loss: 152.294
+44800/69092	Loss: 156.620
+48000/69092	Loss: 151.964
+51200/69092	Loss: 155.712
+54400/69092	Loss: 153.685
+57600/69092	Loss: 151.700
+60800/69092	Loss: 154.930
+64000/69092	Loss: 152.310
+67200/69092	Loss: 153.247
+Training time 0:01:57.508754
+Epoch: 219 Average loss: 153.04
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 219)
+0/69092	Loss: 161.132
+3200/69092	Loss: 150.378
+6400/69092	Loss: 152.743
+9600/69092	Loss: 155.444
+12800/69092	Loss: 152.940
+16000/69092	Loss: 152.020
+19200/69092	Loss: 153.433
+22400/69092	Loss: 155.989
+25600/69092	Loss: 155.301
+28800/69092	Loss: 154.193
+32000/69092	Loss: 156.297
+35200/69092	Loss: 152.717
+38400/69092	Loss: 150.820
+41600/69092	Loss: 152.908
+44800/69092	Loss: 151.835
+48000/69092	Loss: 152.418
+51200/69092	Loss: 152.099
+54400/69092	Loss: 154.057
+57600/69092	Loss: 150.807
+60800/69092	Loss: 151.370
+64000/69092	Loss: 151.246
+67200/69092	Loss: 153.691
+Training time 0:01:59.273445
+Epoch: 220 Average loss: 153.06
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 220)
+0/69092	Loss: 134.050
+3200/69092	Loss: 151.060
+6400/69092	Loss: 153.877
+9600/69092	Loss: 151.699
+12800/69092	Loss: 152.957
+16000/69092	Loss: 152.666
+19200/69092	Loss: 153.443
+22400/69092	Loss: 151.911
+25600/69092	Loss: 151.438
+28800/69092	Loss: 154.364
+32000/69092	Loss: 152.828
+35200/69092	Loss: 152.053
+38400/69092	Loss: 153.011
+41600/69092	Loss: 153.660
+44800/69092	Loss: 156.375
+48000/69092	Loss: 156.092
+51200/69092	Loss: 151.725
+54400/69092	Loss: 153.148
+57600/69092	Loss: 150.407
+60800/69092	Loss: 154.755
+64000/69092	Loss: 153.873
+67200/69092	Loss: 151.987
+Training time 0:01:58.140186
+Epoch: 221 Average loss: 152.99
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 221)
+0/69092	Loss: 167.617
+3200/69092	Loss: 150.980
+6400/69092	Loss: 154.489
+9600/69092	Loss: 155.176
+12800/69092	Loss: 151.077
+16000/69092	Loss: 150.855
+19200/69092	Loss: 153.607
+22400/69092	Loss: 151.541
+25600/69092	Loss: 155.577
+28800/69092	Loss: 156.103
+32000/69092	Loss: 153.661
+35200/69092	Loss: 152.441
+38400/69092	Loss: 153.900
+41600/69092	Loss: 153.054
+44800/69092	Loss: 150.793
+48000/69092	Loss: 152.771
+51200/69092	Loss: 152.938
+54400/69092	Loss: 154.573
+57600/69092	Loss: 151.687
+60800/69092	Loss: 151.964
+64000/69092	Loss: 154.685
+67200/69092	Loss: 150.734
+Training time 0:01:58.151980
+Epoch: 222 Average loss: 153.10
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 222)
+0/69092	Loss: 163.035
+3200/69092	Loss: 150.475
+6400/69092	Loss: 150.694
+9600/69092	Loss: 151.595
+12800/69092	Loss: 156.462
+16000/69092	Loss: 156.534
+19200/69092	Loss: 153.539
+22400/69092	Loss: 154.385
+25600/69092	Loss: 153.351
+28800/69092	Loss: 152.876
+32000/69092	Loss: 153.442
+35200/69092	Loss: 151.764
+38400/69092	Loss: 153.304
+41600/69092	Loss: 153.636
+44800/69092	Loss: 152.515
+48000/69092	Loss: 149.859
+51200/69092	Loss: 151.391
+54400/69092	Loss: 153.922
+57600/69092	Loss: 154.066
+60800/69092	Loss: 152.113
+64000/69092	Loss: 153.166
+67200/69092	Loss: 154.064
+Training time 0:01:58.093341
+Epoch: 223 Average loss: 153.00
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 223)
+0/69092	Loss: 149.104
+3200/69092	Loss: 153.765
+6400/69092	Loss: 151.818
+9600/69092	Loss: 152.883
+12800/69092	Loss: 153.506
+16000/69092	Loss: 150.765
+19200/69092	Loss: 153.645
+22400/69092	Loss: 152.073
+25600/69092	Loss: 153.641
+28800/69092	Loss: 152.799
+32000/69092	Loss: 153.312
+35200/69092	Loss: 153.976
+38400/69092	Loss: 154.457
+41600/69092	Loss: 152.348
+44800/69092	Loss: 153.460
+48000/69092	Loss: 153.998
+51200/69092	Loss: 153.964
+54400/69092	Loss: 150.323
+57600/69092	Loss: 153.979
+60800/69092	Loss: 153.562
+64000/69092	Loss: 152.081
+67200/69092	Loss: 153.445
+Training time 0:01:57.995336
+Epoch: 224 Average loss: 152.98
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 224)
+0/69092	Loss: 149.157
+3200/69092	Loss: 154.474
+6400/69092	Loss: 155.022
+9600/69092	Loss: 151.593
+12800/69092	Loss: 154.747
+16000/69092	Loss: 152.064
+19200/69092	Loss: 152.685
+22400/69092	Loss: 153.768
+25600/69092	Loss: 152.074
+28800/69092	Loss: 152.134
+32000/69092	Loss: 150.306
+35200/69092	Loss: 153.294
+38400/69092	Loss: 156.220
+41600/69092	Loss: 152.025
+44800/69092	Loss: 154.947
+48000/69092	Loss: 153.498
+51200/69092	Loss: 152.489
+54400/69092	Loss: 153.522
+57600/69092	Loss: 152.365
+60800/69092	Loss: 153.052
+64000/69092	Loss: 151.943
+67200/69092	Loss: 149.966
+Training time 0:01:57.633472
+Epoch: 225 Average loss: 152.95
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 225)
+0/69092	Loss: 157.358
+3200/69092	Loss: 153.386
+6400/69092	Loss: 155.215
+9600/69092	Loss: 152.323
+12800/69092	Loss: 152.303
+16000/69092	Loss: 152.981
+19200/69092	Loss: 151.551
+22400/69092	Loss: 152.605
+25600/69092	Loss: 154.201
+28800/69092	Loss: 153.261
+32000/69092	Loss: 151.061
+35200/69092	Loss: 151.811
+38400/69092	Loss: 152.017
+41600/69092	Loss: 152.559
+44800/69092	Loss: 151.012
+48000/69092	Loss: 152.297
+51200/69092	Loss: 153.949
+54400/69092	Loss: 153.699
+57600/69092	Loss: 153.550
+60800/69092	Loss: 155.443
+64000/69092	Loss: 152.688
+67200/69092	Loss: 152.526
+Training time 0:01:58.981002
+Epoch: 226 Average loss: 152.88
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 226)
+0/69092	Loss: 168.753
+3200/69092	Loss: 153.817
+6400/69092	Loss: 155.469
+9600/69092	Loss: 152.652
+12800/69092	Loss: 149.638
+16000/69092	Loss: 150.607
+19200/69092	Loss: 153.912
+22400/69092	Loss: 153.587
+25600/69092	Loss: 151.851
+28800/69092	Loss: 153.092
+32000/69092	Loss: 149.984
+35200/69092	Loss: 153.251
+38400/69092	Loss: 153.295
+41600/69092	Loss: 151.924
+44800/69092	Loss: 152.871
+48000/69092	Loss: 154.267
+51200/69092	Loss: 153.253
+54400/69092	Loss: 152.931
+57600/69092	Loss: 153.489
+60800/69092	Loss: 154.847
+64000/69092	Loss: 152.248
+67200/69092	Loss: 153.873
+Training time 0:01:57.918332
+Epoch: 227 Average loss: 152.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 227)
+0/69092	Loss: 145.500
+3200/69092	Loss: 150.818
+6400/69092	Loss: 153.259
+9600/69092	Loss: 153.745
+12800/69092	Loss: 155.952
+16000/69092	Loss: 153.876
+19200/69092	Loss: 153.586
+22400/69092	Loss: 152.680
+25600/69092	Loss: 153.108
+28800/69092	Loss: 155.919
+32000/69092	Loss: 150.221
+35200/69092	Loss: 152.665
+38400/69092	Loss: 153.170
+41600/69092	Loss: 151.231
+44800/69092	Loss: 154.256
+48000/69092	Loss: 152.153
+51200/69092	Loss: 151.312
+54400/69092	Loss: 151.172
+57600/69092	Loss: 156.990
+60800/69092	Loss: 150.704
+64000/69092	Loss: 153.871
+67200/69092	Loss: 154.719
+Training time 0:01:57.894648
+Epoch: 228 Average loss: 153.07
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 228)
+0/69092	Loss: 180.293
+3200/69092	Loss: 153.891
+6400/69092	Loss: 151.699
+9600/69092	Loss: 151.629
+12800/69092	Loss: 155.177
+16000/69092	Loss: 153.444
+19200/69092	Loss: 152.763
+22400/69092	Loss: 155.033
+25600/69092	Loss: 154.848
+28800/69092	Loss: 152.626
+32000/69092	Loss: 152.012
+35200/69092	Loss: 155.433
+38400/69092	Loss: 151.165
+41600/69092	Loss: 150.821
+44800/69092	Loss: 153.422
+48000/69092	Loss: 150.301
+51200/69092	Loss: 153.288
+54400/69092	Loss: 153.095
+57600/69092	Loss: 153.022
+60800/69092	Loss: 155.040
+64000/69092	Loss: 152.108
+67200/69092	Loss: 151.459
+Training time 0:01:57.319584
+Epoch: 229 Average loss: 153.05
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 229)
+0/69092	Loss: 142.525
+3200/69092	Loss: 151.068
+6400/69092	Loss: 152.307
+9600/69092	Loss: 152.833
+12800/69092	Loss: 150.623
+16000/69092	Loss: 154.464
+19200/69092	Loss: 153.870
+22400/69092	Loss: 154.721
+25600/69092	Loss: 152.589
+28800/69092	Loss: 151.536
+32000/69092	Loss: 154.682
+35200/69092	Loss: 152.351
+38400/69092	Loss: 154.690
+41600/69092	Loss: 151.623
+44800/69092	Loss: 155.794
+48000/69092	Loss: 154.772
+51200/69092	Loss: 149.038
+54400/69092	Loss: 152.770
+57600/69092	Loss: 154.300
+60800/69092	Loss: 152.137
+64000/69092	Loss: 152.796
+67200/69092	Loss: 152.573
+Training time 0:01:57.791838
+Epoch: 230 Average loss: 153.00
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 230)
+0/69092	Loss: 154.642
+3200/69092	Loss: 151.589
+6400/69092	Loss: 153.849
+9600/69092	Loss: 152.458
+12800/69092	Loss: 155.827
+16000/69092	Loss: 151.786
+19200/69092	Loss: 147.413
+22400/69092	Loss: 154.911
+25600/69092	Loss: 151.117
+28800/69092	Loss: 153.292
+32000/69092	Loss: 154.569
+35200/69092	Loss: 154.036
+38400/69092	Loss: 154.870
+41600/69092	Loss: 154.462
+44800/69092	Loss: 152.763
+48000/69092	Loss: 152.092
+51200/69092	Loss: 153.746
+54400/69092	Loss: 151.517
+57600/69092	Loss: 153.789
+60800/69092	Loss: 150.274
+64000/69092	Loss: 153.312
+67200/69092	Loss: 153.244
+Training time 0:01:57.312702
+Epoch: 231 Average loss: 152.97
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 231)
+0/69092	Loss: 140.259
+3200/69092	Loss: 154.425
+6400/69092	Loss: 151.092
+9600/69092	Loss: 151.372
+12800/69092	Loss: 152.726
+16000/69092	Loss: 153.478
+19200/69092	Loss: 152.184
+22400/69092	Loss: 156.321
+25600/69092	Loss: 151.891
+28800/69092	Loss: 150.921
+32000/69092	Loss: 153.356
+35200/69092	Loss: 152.676
+38400/69092	Loss: 152.050
+41600/69092	Loss: 150.893
+44800/69092	Loss: 151.221
+48000/69092	Loss: 151.875
+51200/69092	Loss: 154.692
+54400/69092	Loss: 154.223
+57600/69092	Loss: 155.129
+60800/69092	Loss: 152.654
+64000/69092	Loss: 153.452
+67200/69092	Loss: 152.980
+Training time 0:01:56.487330
+Epoch: 232 Average loss: 152.82
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 232)
+0/69092	Loss: 171.943
+3200/69092	Loss: 154.085
+6400/69092	Loss: 153.825
+9600/69092	Loss: 154.207
+12800/69092	Loss: 150.958
+16000/69092	Loss: 152.458
+19200/69092	Loss: 152.403
+22400/69092	Loss: 152.995
+25600/69092	Loss: 152.974
+28800/69092	Loss: 151.200
+32000/69092	Loss: 152.450
+35200/69092	Loss: 153.039
+38400/69092	Loss: 151.633
+41600/69092	Loss: 154.753
+44800/69092	Loss: 153.677
+48000/69092	Loss: 152.379
+51200/69092	Loss: 156.328
+54400/69092	Loss: 151.903
+57600/69092	Loss: 155.844
+60800/69092	Loss: 150.981
+64000/69092	Loss: 151.734
+67200/69092	Loss: 154.408
+Training time 0:01:57.974114
+Epoch: 233 Average loss: 153.07
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 233)
+0/69092	Loss: 146.546
+3200/69092	Loss: 151.793
+6400/69092	Loss: 153.263
+9600/69092	Loss: 150.700
+12800/69092	Loss: 153.306
+16000/69092	Loss: 152.140
+19200/69092	Loss: 152.216
+22400/69092	Loss: 152.413
+25600/69092	Loss: 154.672
+28800/69092	Loss: 154.708
+32000/69092	Loss: 151.919
+35200/69092	Loss: 152.004
+38400/69092	Loss: 152.031
+41600/69092	Loss: 154.102
+44800/69092	Loss: 152.538
+48000/69092	Loss: 154.181
+51200/69092	Loss: 152.703
+54400/69092	Loss: 153.828
+57600/69092	Loss: 151.973
+60800/69092	Loss: 151.424
+64000/69092	Loss: 154.326
+67200/69092	Loss: 153.638
+Training time 0:01:56.738304
+Epoch: 234 Average loss: 152.94
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 234)
+0/69092	Loss: 147.142
+3200/69092	Loss: 154.610
+6400/69092	Loss: 152.188
+9600/69092	Loss: 153.607
+12800/69092	Loss: 154.154
+16000/69092	Loss: 154.403
+19200/69092	Loss: 154.347
+22400/69092	Loss: 151.795
+25600/69092	Loss: 150.659
+28800/69092	Loss: 152.914
+32000/69092	Loss: 151.999
+35200/69092	Loss: 153.316
+38400/69092	Loss: 152.318
+41600/69092	Loss: 152.568
+44800/69092	Loss: 151.948
+48000/69092	Loss: 153.530
+51200/69092	Loss: 151.766
+54400/69092	Loss: 152.731
+57600/69092	Loss: 153.901
+60800/69092	Loss: 152.770
+64000/69092	Loss: 152.304
+67200/69092	Loss: 153.580
+Training time 0:01:56.618151
+Epoch: 235 Average loss: 152.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 235)
+0/69092	Loss: 140.823
+3200/69092	Loss: 154.382
+6400/69092	Loss: 151.163
+9600/69092	Loss: 154.541
+12800/69092	Loss: 153.418
+16000/69092	Loss: 153.596
+19200/69092	Loss: 154.555
+22400/69092	Loss: 154.492
+25600/69092	Loss: 154.233
+28800/69092	Loss: 152.816
+32000/69092	Loss: 152.097
+35200/69092	Loss: 153.348
+38400/69092	Loss: 154.650
+41600/69092	Loss: 150.105
+44800/69092	Loss: 151.391
+48000/69092	Loss: 151.594
+51200/69092	Loss: 152.375
+54400/69092	Loss: 152.202
+57600/69092	Loss: 153.161
+60800/69092	Loss: 152.484
+64000/69092	Loss: 153.472
+67200/69092	Loss: 153.056
+Training time 0:01:57.025385
+Epoch: 236 Average loss: 152.92
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 236)
+0/69092	Loss: 150.785
+3200/69092	Loss: 153.572
+6400/69092	Loss: 151.538
+9600/69092	Loss: 152.222
+12800/69092	Loss: 151.326
+16000/69092	Loss: 151.781
+19200/69092	Loss: 154.058
+22400/69092	Loss: 151.357
+25600/69092	Loss: 151.036
+28800/69092	Loss: 155.959
+32000/69092	Loss: 152.228
+35200/69092	Loss: 151.662
+38400/69092	Loss: 154.893
+41600/69092	Loss: 150.476
+44800/69092	Loss: 153.312
+48000/69092	Loss: 152.785
+51200/69092	Loss: 154.991
+54400/69092	Loss: 151.464
+57600/69092	Loss: 153.208
+60800/69092	Loss: 153.533
+64000/69092	Loss: 151.943
+67200/69092	Loss: 153.342
+Training time 0:01:58.060189
+Epoch: 237 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 237)
+0/69092	Loss: 146.388
+3200/69092	Loss: 155.082
+6400/69092	Loss: 152.964
+9600/69092	Loss: 153.962
+12800/69092	Loss: 155.305
+16000/69092	Loss: 152.804
+19200/69092	Loss: 152.230
+22400/69092	Loss: 150.812
+25600/69092	Loss: 154.837
+28800/69092	Loss: 152.240
+32000/69092	Loss: 151.777
+35200/69092	Loss: 153.701
+38400/69092	Loss: 153.288
+41600/69092	Loss: 151.931
+44800/69092	Loss: 153.427
+48000/69092	Loss: 153.089
+51200/69092	Loss: 151.594
+54400/69092	Loss: 152.101
+57600/69092	Loss: 152.920
+60800/69092	Loss: 151.710
+64000/69092	Loss: 152.992
+67200/69092	Loss: 152.111
+Training time 0:01:58.970486
+Epoch: 238 Average loss: 152.89
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 238)
+0/69092	Loss: 149.429
+3200/69092	Loss: 150.371
+6400/69092	Loss: 154.537
+9600/69092	Loss: 151.209
+12800/69092	Loss: 152.965
+16000/69092	Loss: 152.941
+19200/69092	Loss: 150.059
+22400/69092	Loss: 153.176
+25600/69092	Loss: 154.018
+28800/69092	Loss: 154.078
+32000/69092	Loss: 152.689
+35200/69092	Loss: 151.744
+38400/69092	Loss: 152.659
+41600/69092	Loss: 154.504
+44800/69092	Loss: 151.904
+48000/69092	Loss: 154.087
+51200/69092	Loss: 152.256
+54400/69092	Loss: 154.235
+57600/69092	Loss: 156.127
+60800/69092	Loss: 153.656
+64000/69092	Loss: 152.386
+67200/69092	Loss: 154.235
+Training time 0:01:58.623239
+Epoch: 239 Average loss: 152.99
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 239)
+0/69092	Loss: 167.180
+3200/69092	Loss: 153.784
+6400/69092	Loss: 153.886
+9600/69092	Loss: 151.928
+12800/69092	Loss: 154.879
+16000/69092	Loss: 154.330
+19200/69092	Loss: 153.325
+22400/69092	Loss: 150.341
+25600/69092	Loss: 151.352
+28800/69092	Loss: 151.670
+32000/69092	Loss: 149.873
+35200/69092	Loss: 151.475
+38400/69092	Loss: 152.915
+41600/69092	Loss: 154.261
+44800/69092	Loss: 152.991
+48000/69092	Loss: 154.228
+51200/69092	Loss: 153.721
+54400/69092	Loss: 153.371
+57600/69092	Loss: 154.614
+60800/69092	Loss: 150.271
+64000/69092	Loss: 152.129
+67200/69092	Loss: 153.947
+Training time 0:01:58.830728
+Epoch: 240 Average loss: 152.78
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 240)
+0/69092	Loss: 153.859
+3200/69092	Loss: 149.460
+6400/69092	Loss: 153.149
+9600/69092	Loss: 154.061
+12800/69092	Loss: 152.206
+16000/69092	Loss: 152.393
+19200/69092	Loss: 149.998
+22400/69092	Loss: 153.934
+25600/69092	Loss: 153.449
+28800/69092	Loss: 153.169
+32000/69092	Loss: 152.671
+35200/69092	Loss: 151.362
+38400/69092	Loss: 151.255
+41600/69092	Loss: 152.122
+44800/69092	Loss: 152.350
+48000/69092	Loss: 152.428
+51200/69092	Loss: 154.282
+54400/69092	Loss: 154.570
+57600/69092	Loss: 153.494
+60800/69092	Loss: 149.670
+64000/69092	Loss: 152.422
+67200/69092	Loss: 154.780
+Training time 0:01:57.960246
+Epoch: 241 Average loss: 152.59
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 241)
+0/69092	Loss: 158.629
+3200/69092	Loss: 150.650
+6400/69092	Loss: 154.195
+9600/69092	Loss: 153.340
+12800/69092	Loss: 152.238
+16000/69092	Loss: 152.531
+19200/69092	Loss: 151.346
+22400/69092	Loss: 151.401
+25600/69092	Loss: 153.823
+28800/69092	Loss: 155.058
+32000/69092	Loss: 153.807
+35200/69092	Loss: 150.709
+38400/69092	Loss: 153.555
+41600/69092	Loss: 153.592
+44800/69092	Loss: 151.298
+48000/69092	Loss: 155.065
+51200/69092	Loss: 151.654
+54400/69092	Loss: 153.802
+57600/69092	Loss: 152.691
+60800/69092	Loss: 153.699
+64000/69092	Loss: 153.345
+67200/69092	Loss: 151.487
+Training time 0:01:58.264088
+Epoch: 242 Average loss: 152.88
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 242)
+0/69092	Loss: 137.126
+3200/69092	Loss: 152.149
+6400/69092	Loss: 151.933
+9600/69092	Loss: 152.520
+12800/69092	Loss: 157.330
+16000/69092	Loss: 155.815
+19200/69092	Loss: 152.166
+22400/69092	Loss: 154.238
+25600/69092	Loss: 149.851
+28800/69092	Loss: 151.604
+32000/69092	Loss: 151.911
+35200/69092	Loss: 153.001
+38400/69092	Loss: 154.620
+41600/69092	Loss: 155.193
+44800/69092	Loss: 152.859
+48000/69092	Loss: 153.107
+51200/69092	Loss: 153.861
+54400/69092	Loss: 151.699
+57600/69092	Loss: 148.180
+60800/69092	Loss: 153.639
+64000/69092	Loss: 152.561
+67200/69092	Loss: 153.073
+Training time 0:01:57.771225
+Epoch: 243 Average loss: 152.90
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 243)
+0/69092	Loss: 153.165
+3200/69092	Loss: 151.722
+6400/69092	Loss: 153.502
+9600/69092	Loss: 149.978
+12800/69092	Loss: 153.114
+16000/69092	Loss: 152.880
+19200/69092	Loss: 152.990
+22400/69092	Loss: 153.534
+25600/69092	Loss: 155.184
+28800/69092	Loss: 152.679
+32000/69092	Loss: 153.160
+35200/69092	Loss: 153.210
+38400/69092	Loss: 151.402
+41600/69092	Loss: 152.639
+44800/69092	Loss: 151.424
+48000/69092	Loss: 152.328
+51200/69092	Loss: 154.335
+54400/69092	Loss: 153.779
+57600/69092	Loss: 153.537
+60800/69092	Loss: 155.218
+64000/69092	Loss: 151.940
+67200/69092	Loss: 155.476
+Training time 0:01:57.331840
+Epoch: 244 Average loss: 153.02
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 244)
+0/69092	Loss: 163.873
+3200/69092	Loss: 151.982
+6400/69092	Loss: 153.628
+9600/69092	Loss: 152.854
+12800/69092	Loss: 152.921
+16000/69092	Loss: 152.405
+19200/69092	Loss: 152.727
+22400/69092	Loss: 153.639
+25600/69092	Loss: 150.654
+28800/69092	Loss: 151.494
+32000/69092	Loss: 154.417
+35200/69092	Loss: 152.415
+38400/69092	Loss: 154.000
+41600/69092	Loss: 154.083
+44800/69092	Loss: 153.606
+48000/69092	Loss: 152.192
+51200/69092	Loss: 151.583
+54400/69092	Loss: 153.490
+57600/69092	Loss: 151.840
+60800/69092	Loss: 152.757
+64000/69092	Loss: 156.619
+67200/69092	Loss: 151.462
+Training time 0:01:57.832230
+Epoch: 245 Average loss: 152.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 245)
+0/69092	Loss: 148.779
+3200/69092	Loss: 152.686
+6400/69092	Loss: 152.497
+9600/69092	Loss: 152.702
+12800/69092	Loss: 153.036
+16000/69092	Loss: 152.658
+19200/69092	Loss: 152.918
+22400/69092	Loss: 153.495
+25600/69092	Loss: 154.115
+28800/69092	Loss: 152.814
+32000/69092	Loss: 153.349
+35200/69092	Loss: 154.072
+38400/69092	Loss: 155.817
+41600/69092	Loss: 151.697
+44800/69092	Loss: 149.036
+48000/69092	Loss: 152.748
+51200/69092	Loss: 153.825
+54400/69092	Loss: 150.494
+57600/69092	Loss: 153.051
+60800/69092	Loss: 151.825
+64000/69092	Loss: 152.996
+67200/69092	Loss: 151.816
+Training time 0:01:58.694350
+Epoch: 246 Average loss: 152.79
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 246)
+0/69092	Loss: 140.414
+3200/69092	Loss: 151.577
+6400/69092	Loss: 153.748
+9600/69092	Loss: 151.823
+12800/69092	Loss: 155.714
+16000/69092	Loss: 154.473
+19200/69092	Loss: 154.174
+22400/69092	Loss: 153.460
+25600/69092	Loss: 155.288
+28800/69092	Loss: 151.393
+32000/69092	Loss: 150.425
+35200/69092	Loss: 153.623
+38400/69092	Loss: 153.749
+41600/69092	Loss: 150.976
+44800/69092	Loss: 151.228
+48000/69092	Loss: 154.616
+51200/69092	Loss: 153.523
+54400/69092	Loss: 153.865
+57600/69092	Loss: 152.582
+60800/69092	Loss: 152.402
+64000/69092	Loss: 151.277
+67200/69092	Loss: 152.981
+Training time 0:01:58.011280
+Epoch: 247 Average loss: 153.01
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 247)
+0/69092	Loss: 152.841
+3200/69092	Loss: 151.889
+6400/69092	Loss: 151.357
+9600/69092	Loss: 153.424
+12800/69092	Loss: 153.532
+16000/69092	Loss: 152.280
+19200/69092	Loss: 153.647
+22400/69092	Loss: 152.426
+25600/69092	Loss: 152.805
+28800/69092	Loss: 154.031
+32000/69092	Loss: 154.262
+35200/69092	Loss: 151.558
+38400/69092	Loss: 154.836
+41600/69092	Loss: 154.432
+44800/69092	Loss: 151.479
+48000/69092	Loss: 151.301
+51200/69092	Loss: 153.854
+54400/69092	Loss: 153.573
+57600/69092	Loss: 151.656
+60800/69092	Loss: 152.319
+64000/69092	Loss: 151.431
+67200/69092	Loss: 153.094
+Training time 0:01:57.768346
+Epoch: 248 Average loss: 152.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 248)
+0/69092	Loss: 166.012
+3200/69092	Loss: 153.240
+6400/69092	Loss: 152.772
+9600/69092	Loss: 151.369
+12800/69092	Loss: 152.029
+16000/69092	Loss: 152.143
+19200/69092	Loss: 154.384
+22400/69092	Loss: 150.355
+25600/69092	Loss: 153.370
+28800/69092	Loss: 152.927
+32000/69092	Loss: 153.648
+35200/69092	Loss: 151.301
+38400/69092	Loss: 155.468
+41600/69092	Loss: 156.302
+44800/69092	Loss: 151.039
+48000/69092	Loss: 153.663
+51200/69092	Loss: 151.174
+54400/69092	Loss: 154.291
+57600/69092	Loss: 152.261
+60800/69092	Loss: 151.814
+64000/69092	Loss: 153.514
+67200/69092	Loss: 151.401
+Training time 0:01:58.015001
+Epoch: 249 Average loss: 152.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 249)
+0/69092	Loss: 171.326
+3200/69092	Loss: 150.472
+6400/69092	Loss: 151.960
+9600/69092	Loss: 152.078
+12800/69092	Loss: 152.642
+16000/69092	Loss: 153.280
+19200/69092	Loss: 152.284
+22400/69092	Loss: 152.422
+25600/69092	Loss: 151.907
+28800/69092	Loss: 152.561
+32000/69092	Loss: 149.760
+35200/69092	Loss: 152.690
+38400/69092	Loss: 155.108
+41600/69092	Loss: 151.258
+44800/69092	Loss: 153.570
+48000/69092	Loss: 151.424
+51200/69092	Loss: 153.171
+54400/69092	Loss: 157.287
+57600/69092	Loss: 151.796
+60800/69092	Loss: 150.432
+64000/69092	Loss: 156.293
+67200/69092	Loss: 154.974
+Training time 0:01:58.922323
+Epoch: 250 Average loss: 152.78
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 250)
+0/69092	Loss: 138.233
+3200/69092	Loss: 154.458
+6400/69092	Loss: 153.750
+9600/69092	Loss: 152.624
+12800/69092	Loss: 153.770
+16000/69092	Loss: 152.733
+19200/69092	Loss: 152.485
+22400/69092	Loss: 152.774
+25600/69092	Loss: 153.434
+28800/69092	Loss: 151.495
+32000/69092	Loss: 152.250
+35200/69092	Loss: 151.584
+38400/69092	Loss: 149.970
+41600/69092	Loss: 150.455
+44800/69092	Loss: 153.378
+48000/69092	Loss: 152.234
+51200/69092	Loss: 154.340
+54400/69092	Loss: 150.703
+57600/69092	Loss: 154.407
+60800/69092	Loss: 153.559
+64000/69092	Loss: 154.581
+67200/69092	Loss: 152.552
+Training time 0:01:58.782987
+Epoch: 251 Average loss: 152.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 251)
+0/69092	Loss: 137.886
+3200/69092	Loss: 151.589
+6400/69092	Loss: 154.657
+9600/69092	Loss: 151.275
+12800/69092	Loss: 155.411
+16000/69092	Loss: 150.019
+19200/69092	Loss: 153.638
+22400/69092	Loss: 152.607
+25600/69092	Loss: 153.826
+28800/69092	Loss: 151.253
+32000/69092	Loss: 151.264
+35200/69092	Loss: 152.621
+38400/69092	Loss: 150.846
+41600/69092	Loss: 149.545
+44800/69092	Loss: 153.929
+48000/69092	Loss: 151.218
+51200/69092	Loss: 154.030
+54400/69092	Loss: 152.595
+57600/69092	Loss: 153.678
+60800/69092	Loss: 154.111
+64000/69092	Loss: 155.239
+67200/69092	Loss: 151.756
+Training time 0:01:57.211614
+Epoch: 252 Average loss: 152.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 252)
+0/69092	Loss: 152.495
+3200/69092	Loss: 150.697
+6400/69092	Loss: 152.906
+9600/69092	Loss: 154.209
+12800/69092	Loss: 151.907
+16000/69092	Loss: 153.116
+19200/69092	Loss: 153.199
+22400/69092	Loss: 157.065
+25600/69092	Loss: 153.429
+28800/69092	Loss: 150.678
+32000/69092	Loss: 154.541
+35200/69092	Loss: 151.967
+38400/69092	Loss: 150.193
+41600/69092	Loss: 152.339
+44800/69092	Loss: 152.816
+48000/69092	Loss: 153.139
+51200/69092	Loss: 152.789
+54400/69092	Loss: 154.099
+57600/69092	Loss: 151.841
+60800/69092	Loss: 149.700
+64000/69092	Loss: 151.373
+67200/69092	Loss: 154.340
+Training time 0:01:58.622072
+Epoch: 253 Average loss: 152.59
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 253)
+0/69092	Loss: 154.265
+3200/69092	Loss: 154.588
+6400/69092	Loss: 153.872
+9600/69092	Loss: 153.735
+12800/69092	Loss: 151.987
+16000/69092	Loss: 154.820
+19200/69092	Loss: 153.018
+22400/69092	Loss: 152.302
+25600/69092	Loss: 148.332
+28800/69092	Loss: 151.921
+32000/69092	Loss: 152.113
+35200/69092	Loss: 152.645
+38400/69092	Loss: 153.627
+41600/69092	Loss: 152.151
+44800/69092	Loss: 151.182
+48000/69092	Loss: 155.992
+51200/69092	Loss: 153.104
+54400/69092	Loss: 153.117
+57600/69092	Loss: 151.015
+60800/69092	Loss: 152.780
+64000/69092	Loss: 151.153
+67200/69092	Loss: 151.886
+Training time 0:01:57.786232
+Epoch: 254 Average loss: 152.65
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 254)
+0/69092	Loss: 164.848
+3200/69092	Loss: 154.808
+6400/69092	Loss: 151.647
+9600/69092	Loss: 152.834
+12800/69092	Loss: 152.288
+16000/69092	Loss: 149.960
+19200/69092	Loss: 152.225
+22400/69092	Loss: 153.333
+25600/69092	Loss: 153.560
+28800/69092	Loss: 151.350
+32000/69092	Loss: 153.601
+35200/69092	Loss: 152.374
+38400/69092	Loss: 153.109
+41600/69092	Loss: 153.594
+44800/69092	Loss: 153.065
+48000/69092	Loss: 154.874
+51200/69092	Loss: 152.092
+54400/69092	Loss: 154.703
+57600/69092	Loss: 153.148
+60800/69092	Loss: 151.717
+64000/69092	Loss: 151.697
+67200/69092	Loss: 150.450
+Training time 0:01:57.186922
+Epoch: 255 Average loss: 152.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 255)
+0/69092	Loss: 159.468
+3200/69092	Loss: 149.750
+6400/69092	Loss: 150.201
+9600/69092	Loss: 153.377
+12800/69092	Loss: 152.825
+16000/69092	Loss: 155.122
+19200/69092	Loss: 151.268
+22400/69092	Loss: 151.344
+25600/69092	Loss: 154.080
+28800/69092	Loss: 153.874
+32000/69092	Loss: 152.653
+35200/69092	Loss: 150.462
+38400/69092	Loss: 154.206
+41600/69092	Loss: 152.439
+44800/69092	Loss: 153.870
+48000/69092	Loss: 151.248
+51200/69092	Loss: 155.585
+54400/69092	Loss: 152.482
+57600/69092	Loss: 154.297
+60800/69092	Loss: 151.850
+64000/69092	Loss: 153.208
+67200/69092	Loss: 152.750
+Training time 0:01:57.968381
+Epoch: 256 Average loss: 152.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 256)
+0/69092	Loss: 156.280
+3200/69092	Loss: 152.914
+6400/69092	Loss: 152.317
+9600/69092	Loss: 152.924
+12800/69092	Loss: 155.169
+16000/69092	Loss: 150.258
+19200/69092	Loss: 151.012
+22400/69092	Loss: 150.593
+25600/69092	Loss: 152.653
+28800/69092	Loss: 155.055
+32000/69092	Loss: 155.057
+35200/69092	Loss: 151.790
+38400/69092	Loss: 153.150
+41600/69092	Loss: 154.666
+44800/69092	Loss: 150.037
+48000/69092	Loss: 152.272
+51200/69092	Loss: 151.922
+54400/69092	Loss: 155.862
+57600/69092	Loss: 151.559
+60800/69092	Loss: 154.010
+64000/69092	Loss: 153.064
+67200/69092	Loss: 151.706
+Training time 0:01:57.276543
+Epoch: 257 Average loss: 152.76
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 257)
+0/69092	Loss: 142.211
+3200/69092	Loss: 151.189
+6400/69092	Loss: 152.004
+9600/69092	Loss: 151.198
+12800/69092	Loss: 152.895
+16000/69092	Loss: 151.605
+19200/69092	Loss: 152.305
+22400/69092	Loss: 155.254
+25600/69092	Loss: 153.309
+28800/69092	Loss: 153.986
+32000/69092	Loss: 152.648
+35200/69092	Loss: 153.982
+38400/69092	Loss: 155.367
+41600/69092	Loss: 153.210
+44800/69092	Loss: 151.697
+48000/69092	Loss: 151.390
+51200/69092	Loss: 149.967
+54400/69092	Loss: 153.383
+57600/69092	Loss: 151.912
+60800/69092	Loss: 154.006
+64000/69092	Loss: 151.930
+67200/69092	Loss: 152.065
+Training time 0:01:56.878804
+Epoch: 258 Average loss: 152.65
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 258)
+0/69092	Loss: 158.911
+3200/69092	Loss: 153.411
+6400/69092	Loss: 150.013
+9600/69092	Loss: 152.422
+12800/69092	Loss: 152.190
+16000/69092	Loss: 150.353
+19200/69092	Loss: 152.823
+22400/69092	Loss: 154.977
+25600/69092	Loss: 152.330
+28800/69092	Loss: 151.853
+32000/69092	Loss: 154.677
+35200/69092	Loss: 153.071
+38400/69092	Loss: 153.771
+41600/69092	Loss: 150.395
+44800/69092	Loss: 152.291
+48000/69092	Loss: 154.876
+51200/69092	Loss: 152.035
+54400/69092	Loss: 153.179
+57600/69092	Loss: 152.952
+60800/69092	Loss: 152.539
+64000/69092	Loss: 151.809
+67200/69092	Loss: 154.798
+Training time 0:01:57.443749
+Epoch: 259 Average loss: 152.68
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 259)
+0/69092	Loss: 149.823
+3200/69092	Loss: 151.102
+6400/69092	Loss: 152.268
+9600/69092	Loss: 152.794
+12800/69092	Loss: 152.513
+16000/69092	Loss: 150.592
+19200/69092	Loss: 154.891
+22400/69092	Loss: 152.223
+25600/69092	Loss: 153.607
+28800/69092	Loss: 153.653
+32000/69092	Loss: 153.814
+35200/69092	Loss: 154.163
+38400/69092	Loss: 153.399
+41600/69092	Loss: 151.809
+44800/69092	Loss: 154.830
+48000/69092	Loss: 154.203
+51200/69092	Loss: 155.129
+54400/69092	Loss: 150.845
+57600/69092	Loss: 153.779
+60800/69092	Loss: 153.241
+64000/69092	Loss: 151.113
+67200/69092	Loss: 151.490
+Training time 0:01:57.874040
+Epoch: 260 Average loss: 152.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 260)
+0/69092	Loss: 160.968
+3200/69092	Loss: 153.856
+6400/69092	Loss: 151.266
+9600/69092	Loss: 153.994
+12800/69092	Loss: 154.312
+16000/69092	Loss: 153.076
+19200/69092	Loss: 153.044
+22400/69092	Loss: 150.164
+25600/69092	Loss: 153.244
+28800/69092	Loss: 151.634
+32000/69092	Loss: 151.537
+35200/69092	Loss: 151.893
+38400/69092	Loss: 153.561
+41600/69092	Loss: 152.941
+44800/69092	Loss: 150.265
+48000/69092	Loss: 154.725
+51200/69092	Loss: 151.257
+54400/69092	Loss: 153.929
+57600/69092	Loss: 157.241
+60800/69092	Loss: 151.191
+64000/69092	Loss: 150.971
+67200/69092	Loss: 150.893
+Training time 0:01:58.076517
+Epoch: 261 Average loss: 152.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 261)
+0/69092	Loss: 147.421
+3200/69092	Loss: 150.568
+6400/69092	Loss: 153.908
+9600/69092	Loss: 151.035
+12800/69092	Loss: 153.411
+16000/69092	Loss: 153.190
+19200/69092	Loss: 154.554
+22400/69092	Loss: 152.081
+25600/69092	Loss: 152.818
+28800/69092	Loss: 154.111
+32000/69092	Loss: 150.059
+35200/69092	Loss: 150.468
+38400/69092	Loss: 152.673
+41600/69092	Loss: 152.803
+44800/69092	Loss: 152.556
+48000/69092	Loss: 154.632
+51200/69092	Loss: 152.632
+54400/69092	Loss: 154.996
+57600/69092	Loss: 153.504
+60800/69092	Loss: 150.261
+64000/69092	Loss: 152.706
+67200/69092	Loss: 152.677
+Training time 0:01:57.302088
+Epoch: 262 Average loss: 152.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 262)
+0/69092	Loss: 142.283
+3200/69092	Loss: 154.785
+6400/69092	Loss: 154.332
+9600/69092	Loss: 156.019
+12800/69092	Loss: 151.168
+16000/69092	Loss: 153.149
+19200/69092	Loss: 152.787
+22400/69092	Loss: 153.482
+25600/69092	Loss: 149.799
+28800/69092	Loss: 152.477
+32000/69092	Loss: 151.953
+35200/69092	Loss: 152.393
+38400/69092	Loss: 152.471
+41600/69092	Loss: 151.076
+44800/69092	Loss: 152.994
+48000/69092	Loss: 153.052
+51200/69092	Loss: 153.551
+54400/69092	Loss: 150.230
+57600/69092	Loss: 156.880
+60800/69092	Loss: 153.239
+64000/69092	Loss: 150.834
+67200/69092	Loss: 150.893
+Training time 0:01:57.486335
+Epoch: 263 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 263)
+0/69092	Loss: 154.675
+3200/69092	Loss: 151.951
+6400/69092	Loss: 152.441
+9600/69092	Loss: 152.127
+12800/69092	Loss: 155.155
+16000/69092	Loss: 154.091
+19200/69092	Loss: 151.372
+22400/69092	Loss: 151.638
+25600/69092	Loss: 153.164
+28800/69092	Loss: 154.142
+32000/69092	Loss: 154.530
+35200/69092	Loss: 153.171
+38400/69092	Loss: 153.054
+41600/69092	Loss: 153.564
+44800/69092	Loss: 153.418
+48000/69092	Loss: 153.077
+51200/69092	Loss: 149.604
+54400/69092	Loss: 150.347
+57600/69092	Loss: 152.601
+60800/69092	Loss: 152.954
+64000/69092	Loss: 155.343
+67200/69092	Loss: 153.840
+Training time 0:01:59.114386
+Epoch: 264 Average loss: 152.89
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 264)
+0/69092	Loss: 139.263
+3200/69092	Loss: 154.954
+6400/69092	Loss: 153.696
+9600/69092	Loss: 152.386
+12800/69092	Loss: 152.791
+16000/69092	Loss: 151.914
+19200/69092	Loss: 149.500
+22400/69092	Loss: 154.803
+25600/69092	Loss: 153.657
+28800/69092	Loss: 152.668
+32000/69092	Loss: 153.327
+35200/69092	Loss: 153.247
+38400/69092	Loss: 152.760
+41600/69092	Loss: 152.406
+44800/69092	Loss: 154.987
+48000/69092	Loss: 152.898
+51200/69092	Loss: 153.748
+54400/69092	Loss: 151.533
+57600/69092	Loss: 153.668
+60800/69092	Loss: 149.640
+64000/69092	Loss: 151.914
+67200/69092	Loss: 152.941
+Training time 0:01:57.698918
+Epoch: 265 Average loss: 152.84
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 265)
+0/69092	Loss: 155.013
+3200/69092	Loss: 151.811
+6400/69092	Loss: 155.869
+9600/69092	Loss: 152.115
+12800/69092	Loss: 152.942
+16000/69092	Loss: 152.425
+19200/69092	Loss: 153.377
+22400/69092	Loss: 151.957
+25600/69092	Loss: 152.837
+28800/69092	Loss: 152.242
+32000/69092	Loss: 151.534
+35200/69092	Loss: 156.065
+38400/69092	Loss: 152.275
+41600/69092	Loss: 153.260
+44800/69092	Loss: 152.785
+48000/69092	Loss: 153.206
+51200/69092	Loss: 152.334
+54400/69092	Loss: 154.073
+57600/69092	Loss: 149.882
+60800/69092	Loss: 151.589
+64000/69092	Loss: 154.203
+67200/69092	Loss: 152.275
+Training time 0:01:57.469466
+Epoch: 266 Average loss: 152.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 266)
+0/69092	Loss: 141.726
+3200/69092	Loss: 155.509
+6400/69092	Loss: 152.069
+9600/69092	Loss: 151.864
+12800/69092	Loss: 153.164
+16000/69092	Loss: 151.388
+19200/69092	Loss: 152.751
+22400/69092	Loss: 150.445
+25600/69092	Loss: 152.793
+28800/69092	Loss: 154.118
+32000/69092	Loss: 151.966
+35200/69092	Loss: 154.259
+38400/69092	Loss: 151.459
+41600/69092	Loss: 153.852
+44800/69092	Loss: 150.929
+48000/69092	Loss: 153.467
+51200/69092	Loss: 150.057
+54400/69092	Loss: 152.735
+57600/69092	Loss: 153.921
+60800/69092	Loss: 153.803
+64000/69092	Loss: 154.605
+67200/69092	Loss: 152.399
+Training time 0:01:58.696024
+Epoch: 267 Average loss: 152.82
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 267)
+0/69092	Loss: 162.807
+3200/69092	Loss: 152.459
+6400/69092	Loss: 151.132
+9600/69092	Loss: 154.186
+12800/69092	Loss: 153.120
+16000/69092	Loss: 151.405
+19200/69092	Loss: 154.002
+22400/69092	Loss: 154.980
+25600/69092	Loss: 152.142
+28800/69092	Loss: 153.381
+32000/69092	Loss: 152.718
+35200/69092	Loss: 153.642
+38400/69092	Loss: 150.856
+41600/69092	Loss: 152.572
+44800/69092	Loss: 151.835
+48000/69092	Loss: 151.172
+51200/69092	Loss: 151.984
+54400/69092	Loss: 152.436
+57600/69092	Loss: 153.853
+60800/69092	Loss: 152.823
+64000/69092	Loss: 152.601
+67200/69092	Loss: 151.127
+Training time 0:01:58.643948
+Epoch: 268 Average loss: 152.59
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 268)
+0/69092	Loss: 146.007
+3200/69092	Loss: 152.665
+6400/69092	Loss: 148.254
+9600/69092	Loss: 152.633
+12800/69092	Loss: 153.458
+16000/69092	Loss: 152.366
+19200/69092	Loss: 152.990
+22400/69092	Loss: 150.128
+25600/69092	Loss: 155.924
+28800/69092	Loss: 152.743
+32000/69092	Loss: 152.780
+35200/69092	Loss: 153.090
+38400/69092	Loss: 153.323
+41600/69092	Loss: 154.732
+44800/69092	Loss: 152.933
+48000/69092	Loss: 150.215
+51200/69092	Loss: 154.162
+54400/69092	Loss: 153.797
+57600/69092	Loss: 152.727
+60800/69092	Loss: 151.417
+64000/69092	Loss: 153.367
+67200/69092	Loss: 152.949
+Training time 0:01:57.551861
+Epoch: 269 Average loss: 152.80
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 269)
+0/69092	Loss: 149.141
+3200/69092	Loss: 151.763
+6400/69092	Loss: 155.300
+9600/69092	Loss: 152.559
+12800/69092	Loss: 153.875
+16000/69092	Loss: 152.526
+19200/69092	Loss: 154.846
+22400/69092	Loss: 154.796
+25600/69092	Loss: 155.227
+28800/69092	Loss: 153.401
+32000/69092	Loss: 152.158
+35200/69092	Loss: 149.651
+38400/69092	Loss: 153.244
+41600/69092	Loss: 150.770
+44800/69092	Loss: 149.556
+48000/69092	Loss: 152.984
+51200/69092	Loss: 152.080
+54400/69092	Loss: 152.754
+57600/69092	Loss: 153.258
+60800/69092	Loss: 150.837
+64000/69092	Loss: 152.301
+67200/69092	Loss: 151.229
+Training time 0:01:57.921661
+Epoch: 270 Average loss: 152.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 270)
+0/69092	Loss: 142.933
+3200/69092	Loss: 152.796
+6400/69092	Loss: 150.910
+9600/69092	Loss: 153.081
+12800/69092	Loss: 153.405
+16000/69092	Loss: 152.920
+19200/69092	Loss: 152.042
+22400/69092	Loss: 154.867
+25600/69092	Loss: 153.590
+28800/69092	Loss: 152.184
+32000/69092	Loss: 153.050
+35200/69092	Loss: 153.680
+38400/69092	Loss: 151.029
+41600/69092	Loss: 154.061
+44800/69092	Loss: 152.405
+48000/69092	Loss: 150.160
+51200/69092	Loss: 151.964
+54400/69092	Loss: 154.095
+57600/69092	Loss: 151.362
+60800/69092	Loss: 153.141
+64000/69092	Loss: 154.389
+67200/69092	Loss: 154.353
+Training time 0:01:59.452528
+Epoch: 271 Average loss: 152.87
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 271)
+0/69092	Loss: 150.556
+3200/69092	Loss: 153.041
+6400/69092	Loss: 153.402
+9600/69092	Loss: 155.189
+12800/69092	Loss: 152.243
+16000/69092	Loss: 151.945
+19200/69092	Loss: 154.608
+22400/69092	Loss: 152.223
+25600/69092	Loss: 154.073
+28800/69092	Loss: 153.556
+32000/69092	Loss: 150.664
+35200/69092	Loss: 151.851
+38400/69092	Loss: 151.498
+41600/69092	Loss: 152.595
+44800/69092	Loss: 152.928
+48000/69092	Loss: 153.242
+51200/69092	Loss: 153.713
+54400/69092	Loss: 152.356
+57600/69092	Loss: 153.249
+60800/69092	Loss: 152.940
+64000/69092	Loss: 152.066
+67200/69092	Loss: 151.505
+Training time 0:01:57.362015
+Epoch: 272 Average loss: 152.81
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 272)
+0/69092	Loss: 142.003
+3200/69092	Loss: 151.796
+6400/69092	Loss: 151.929
+9600/69092	Loss: 150.793
+12800/69092	Loss: 153.583
+16000/69092	Loss: 151.567
+19200/69092	Loss: 151.955
+22400/69092	Loss: 153.185
+25600/69092	Loss: 154.144
+28800/69092	Loss: 156.695
+32000/69092	Loss: 154.361
+35200/69092	Loss: 149.322
+38400/69092	Loss: 152.257
+41600/69092	Loss: 152.399
+44800/69092	Loss: 153.998
+48000/69092	Loss: 151.968
+51200/69092	Loss: 153.755
+54400/69092	Loss: 151.921
+57600/69092	Loss: 151.026
+60800/69092	Loss: 153.841
+64000/69092	Loss: 153.881
+67200/69092	Loss: 152.031
+Training time 0:01:58.291481
+Epoch: 273 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 273)
+0/69092	Loss: 158.201
+3200/69092	Loss: 152.413
+6400/69092	Loss: 153.468
+9600/69092	Loss: 155.352
+12800/69092	Loss: 152.032
+16000/69092	Loss: 157.388
+19200/69092	Loss: 151.542
+22400/69092	Loss: 153.839
+25600/69092	Loss: 149.530
+28800/69092	Loss: 154.402
+32000/69092	Loss: 151.130
+35200/69092	Loss: 151.442
+38400/69092	Loss: 152.801
+41600/69092	Loss: 151.071
+44800/69092	Loss: 151.423
+48000/69092	Loss: 150.880
+51200/69092	Loss: 150.917
+54400/69092	Loss: 150.763
+57600/69092	Loss: 153.037
+60800/69092	Loss: 153.487
+64000/69092	Loss: 151.277
+67200/69092	Loss: 150.896
+Training time 0:01:58.769421
+Epoch: 274 Average loss: 152.42
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 274)
+0/69092	Loss: 160.438
+3200/69092	Loss: 152.681
+6400/69092	Loss: 152.843
+9600/69092	Loss: 152.961
+12800/69092	Loss: 152.704
+16000/69092	Loss: 153.302
+19200/69092	Loss: 153.046
+22400/69092	Loss: 153.274
+25600/69092	Loss: 153.559
+28800/69092	Loss: 152.442
+32000/69092	Loss: 153.256
+35200/69092	Loss: 154.847
+38400/69092	Loss: 152.374
+41600/69092	Loss: 153.332
+44800/69092	Loss: 151.789
+48000/69092	Loss: 153.424
+51200/69092	Loss: 150.841
+54400/69092	Loss: 151.940
+57600/69092	Loss: 151.622
+60800/69092	Loss: 149.453
+64000/69092	Loss: 152.197
+67200/69092	Loss: 153.990
+Training time 0:01:58.371440
+Epoch: 275 Average loss: 152.60
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 275)
+0/69092	Loss: 141.484
+3200/69092	Loss: 149.177
+6400/69092	Loss: 152.234
+9600/69092	Loss: 154.466
+12800/69092	Loss: 153.979
+16000/69092	Loss: 152.520
+19200/69092	Loss: 150.125
+22400/69092	Loss: 153.602
+25600/69092	Loss: 150.493
+28800/69092	Loss: 153.142
+32000/69092	Loss: 151.109
+35200/69092	Loss: 154.505
+38400/69092	Loss: 150.900
+41600/69092	Loss: 153.333
+44800/69092	Loss: 152.536
+48000/69092	Loss: 153.065
+51200/69092	Loss: 154.529
+54400/69092	Loss: 153.817
+57600/69092	Loss: 152.384
+60800/69092	Loss: 154.093
+64000/69092	Loss: 152.869
+67200/69092	Loss: 154.160
+Training time 0:01:58.752701
+Epoch: 276 Average loss: 152.78
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 276)
+0/69092	Loss: 161.542
+3200/69092	Loss: 151.479
+6400/69092	Loss: 151.229
+9600/69092	Loss: 151.512
+12800/69092	Loss: 155.455
+16000/69092	Loss: 152.145
+19200/69092	Loss: 153.118
+22400/69092	Loss: 149.699
+25600/69092	Loss: 155.748
+28800/69092	Loss: 154.457
+32000/69092	Loss: 150.352
+35200/69092	Loss: 152.252
+38400/69092	Loss: 151.361
+41600/69092	Loss: 152.664
+44800/69092	Loss: 153.569
+48000/69092	Loss: 152.681
+51200/69092	Loss: 152.369
+54400/69092	Loss: 154.724
+57600/69092	Loss: 153.242
+60800/69092	Loss: 152.829
+64000/69092	Loss: 153.175
+67200/69092	Loss: 151.537
+Training time 0:01:57.784326
+Epoch: 277 Average loss: 152.69
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 277)
+0/69092	Loss: 149.280
+3200/69092	Loss: 154.593
+6400/69092	Loss: 152.479
+9600/69092	Loss: 154.989
+12800/69092	Loss: 151.323
+16000/69092	Loss: 151.349
+19200/69092	Loss: 151.386
+22400/69092	Loss: 153.495
+25600/69092	Loss: 152.349
+28800/69092	Loss: 151.247
+32000/69092	Loss: 150.856
+35200/69092	Loss: 151.904
+38400/69092	Loss: 152.026
+41600/69092	Loss: 153.252
+44800/69092	Loss: 154.163
+48000/69092	Loss: 155.559
+51200/69092	Loss: 151.879
+54400/69092	Loss: 151.481
+57600/69092	Loss: 152.619
+60800/69092	Loss: 152.518
+64000/69092	Loss: 153.189
+67200/69092	Loss: 152.749
+Training time 0:01:57.859074
+Epoch: 278 Average loss: 152.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 278)
+0/69092	Loss: 156.299
+3200/69092	Loss: 151.066
+6400/69092	Loss: 151.783
+9600/69092	Loss: 155.925
+12800/69092	Loss: 152.142
+16000/69092	Loss: 152.426
+19200/69092	Loss: 151.780
+22400/69092	Loss: 152.905
+25600/69092	Loss: 149.619
+28800/69092	Loss: 151.266
+32000/69092	Loss: 156.912
+35200/69092	Loss: 151.277
+38400/69092	Loss: 151.305
+41600/69092	Loss: 153.080
+44800/69092	Loss: 153.298
+48000/69092	Loss: 152.996
+51200/69092	Loss: 152.664
+54400/69092	Loss: 153.955
+57600/69092	Loss: 154.590
+60800/69092	Loss: 149.706
+64000/69092	Loss: 152.275
+67200/69092	Loss: 152.630
+Training time 0:01:58.990335
+Epoch: 279 Average loss: 152.60
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 279)
+0/69092	Loss: 143.356
+3200/69092	Loss: 152.061
+6400/69092	Loss: 154.725
+9600/69092	Loss: 153.405
+12800/69092	Loss: 151.985
+16000/69092	Loss: 150.851
+19200/69092	Loss: 153.406
+22400/69092	Loss: 151.505
+25600/69092	Loss: 153.520
+28800/69092	Loss: 151.705
+32000/69092	Loss: 152.698
+35200/69092	Loss: 151.784
+38400/69092	Loss: 151.416
+41600/69092	Loss: 152.642
+44800/69092	Loss: 153.926
+48000/69092	Loss: 151.930
+51200/69092	Loss: 154.906
+54400/69092	Loss: 150.797
+57600/69092	Loss: 153.323
+60800/69092	Loss: 152.949
+64000/69092	Loss: 153.460
+67200/69092	Loss: 151.746
+Training time 0:01:58.308913
+Epoch: 280 Average loss: 152.63
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 280)
+0/69092	Loss: 142.265
+3200/69092	Loss: 151.712
+6400/69092	Loss: 151.126
+9600/69092	Loss: 152.569
+12800/69092	Loss: 151.902
+16000/69092	Loss: 152.489
+19200/69092	Loss: 152.019
+22400/69092	Loss: 151.205
+25600/69092	Loss: 151.586
+28800/69092	Loss: 152.102
+32000/69092	Loss: 150.318
+35200/69092	Loss: 151.045
+38400/69092	Loss: 155.814
+41600/69092	Loss: 154.385
+44800/69092	Loss: 152.161
+48000/69092	Loss: 154.467
+51200/69092	Loss: 150.515
+54400/69092	Loss: 152.695
+57600/69092	Loss: 153.329
+60800/69092	Loss: 155.119
+64000/69092	Loss: 155.157
+67200/69092	Loss: 152.908
+Training time 0:01:58.651631
+Epoch: 281 Average loss: 152.60
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 281)
+0/69092	Loss: 151.869
+3200/69092	Loss: 153.188
+6400/69092	Loss: 152.571
+9600/69092	Loss: 152.404
+12800/69092	Loss: 153.798
+16000/69092	Loss: 149.458
+19200/69092	Loss: 153.177
+22400/69092	Loss: 150.964
+25600/69092	Loss: 150.271
+28800/69092	Loss: 153.199
+32000/69092	Loss: 155.340
+35200/69092	Loss: 152.222
+38400/69092	Loss: 151.226
+41600/69092	Loss: 154.360
+44800/69092	Loss: 155.158
+48000/69092	Loss: 154.387
+51200/69092	Loss: 150.845
+54400/69092	Loss: 151.437
+57600/69092	Loss: 153.333
+60800/69092	Loss: 151.227
+64000/69092	Loss: 153.513
+67200/69092	Loss: 153.691
+Training time 0:01:57.497398
+Epoch: 282 Average loss: 152.66
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 282)
+0/69092	Loss: 165.902
+3200/69092	Loss: 151.715
+6400/69092	Loss: 153.018
+9600/69092	Loss: 151.757
+12800/69092	Loss: 151.362
+16000/69092	Loss: 152.003
+19200/69092	Loss: 150.494
+22400/69092	Loss: 154.354
+25600/69092	Loss: 154.707
+28800/69092	Loss: 154.283
+32000/69092	Loss: 151.562
+35200/69092	Loss: 155.610
+38400/69092	Loss: 149.549
+41600/69092	Loss: 152.613
+44800/69092	Loss: 149.132
+48000/69092	Loss: 150.932
+51200/69092	Loss: 152.113
+54400/69092	Loss: 153.424
+57600/69092	Loss: 153.880
+60800/69092	Loss: 153.068
+64000/69092	Loss: 154.432
+67200/69092	Loss: 154.038
+Training time 0:01:59.049903
+Epoch: 283 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 283)
+0/69092	Loss: 174.708
+3200/69092	Loss: 151.921
+6400/69092	Loss: 149.889
+9600/69092	Loss: 151.991
+12800/69092	Loss: 151.384
+16000/69092	Loss: 151.687
+19200/69092	Loss: 152.362
+22400/69092	Loss: 151.949
+25600/69092	Loss: 154.865
+28800/69092	Loss: 151.209
+32000/69092	Loss: 151.930
+35200/69092	Loss: 153.212
+38400/69092	Loss: 150.856
+41600/69092	Loss: 151.925
+44800/69092	Loss: 153.258
+48000/69092	Loss: 150.260
+51200/69092	Loss: 150.451
+54400/69092	Loss: 154.306
+57600/69092	Loss: 153.019
+60800/69092	Loss: 152.606
+64000/69092	Loss: 152.802
+67200/69092	Loss: 154.756
+Training time 0:01:57.222668
+Epoch: 284 Average loss: 152.33
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 284)
+0/69092	Loss: 148.232
+3200/69092	Loss: 152.646
+6400/69092	Loss: 151.825
+9600/69092	Loss: 152.101
+12800/69092	Loss: 152.151
+16000/69092	Loss: 150.848
+19200/69092	Loss: 151.938
+22400/69092	Loss: 150.148
+25600/69092	Loss: 153.628
+28800/69092	Loss: 151.971
+32000/69092	Loss: 151.637
+35200/69092	Loss: 151.882
+38400/69092	Loss: 153.685
+41600/69092	Loss: 152.497
+44800/69092	Loss: 151.789
+48000/69092	Loss: 153.182
+51200/69092	Loss: 154.075
+54400/69092	Loss: 154.834
+57600/69092	Loss: 152.172
+60800/69092	Loss: 153.122
+64000/69092	Loss: 153.420
+67200/69092	Loss: 153.720
+Training time 0:01:56.426317
+Epoch: 285 Average loss: 152.61
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 285)
+0/69092	Loss: 154.183
+3200/69092	Loss: 150.867
+6400/69092	Loss: 154.852
+9600/69092	Loss: 152.651
+12800/69092	Loss: 153.153
+16000/69092	Loss: 151.580
+19200/69092	Loss: 151.932
+22400/69092	Loss: 154.201
+25600/69092	Loss: 151.271
+28800/69092	Loss: 152.627
+32000/69092	Loss: 153.525
+35200/69092	Loss: 151.554
+38400/69092	Loss: 152.553
+41600/69092	Loss: 154.507
+44800/69092	Loss: 152.794
+48000/69092	Loss: 153.166
+51200/69092	Loss: 152.614
+54400/69092	Loss: 154.548
+57600/69092	Loss: 152.935
+60800/69092	Loss: 151.850
+64000/69092	Loss: 151.610
+67200/69092	Loss: 153.154
+Training time 0:01:57.813196
+Epoch: 286 Average loss: 152.77
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 286)
+0/69092	Loss: 148.648
+3200/69092	Loss: 154.444
+6400/69092	Loss: 153.393
+9600/69092	Loss: 151.211
+12800/69092	Loss: 153.246
+16000/69092	Loss: 152.464
+19200/69092	Loss: 151.482
+22400/69092	Loss: 152.856
+25600/69092	Loss: 151.314
+28800/69092	Loss: 150.153
+32000/69092	Loss: 151.764
+35200/69092	Loss: 152.335
+38400/69092	Loss: 150.711
+41600/69092	Loss: 154.129
+44800/69092	Loss: 152.080
+48000/69092	Loss: 153.004
+51200/69092	Loss: 153.742
+54400/69092	Loss: 153.686
+57600/69092	Loss: 152.916
+60800/69092	Loss: 154.399
+64000/69092	Loss: 151.379
+67200/69092	Loss: 152.140
+Training time 0:01:57.746516
+Epoch: 287 Average loss: 152.45
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 287)
+0/69092	Loss: 138.473
+3200/69092	Loss: 150.914
+6400/69092	Loss: 149.557
+9600/69092	Loss: 155.582
+12800/69092	Loss: 155.137
+16000/69092	Loss: 153.468
+19200/69092	Loss: 150.097
+22400/69092	Loss: 150.141
+25600/69092	Loss: 154.457
+28800/69092	Loss: 151.908
+32000/69092	Loss: 150.218
+35200/69092	Loss: 153.292
+38400/69092	Loss: 150.264
+41600/69092	Loss: 151.930
+44800/69092	Loss: 153.945
+48000/69092	Loss: 152.658
+51200/69092	Loss: 154.502
+54400/69092	Loss: 152.157
+57600/69092	Loss: 151.399
+60800/69092	Loss: 152.390
+64000/69092	Loss: 152.204
+67200/69092	Loss: 151.642
+Training time 0:01:58.206529
+Epoch: 288 Average loss: 152.32
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 288)
+0/69092	Loss: 139.143
+3200/69092	Loss: 151.870
+6400/69092	Loss: 149.610
+9600/69092	Loss: 153.246
+12800/69092	Loss: 152.547
+16000/69092	Loss: 154.961
+19200/69092	Loss: 150.978
+22400/69092	Loss: 150.914
+25600/69092	Loss: 155.167
+28800/69092	Loss: 152.139
+32000/69092	Loss: 153.613
+35200/69092	Loss: 149.871
+38400/69092	Loss: 151.635
+41600/69092	Loss: 153.673
+44800/69092	Loss: 152.072
+48000/69092	Loss: 154.959
+51200/69092	Loss: 154.649
+54400/69092	Loss: 151.008
+57600/69092	Loss: 152.606
+60800/69092	Loss: 151.091
+64000/69092	Loss: 154.021
+67200/69092	Loss: 155.655
+Training time 0:01:58.182080
+Epoch: 289 Average loss: 152.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 289)
+0/69092	Loss: 153.771
+3200/69092	Loss: 153.182
+6400/69092	Loss: 156.509
+9600/69092	Loss: 153.219
+12800/69092	Loss: 150.625
+16000/69092	Loss: 150.845
+19200/69092	Loss: 150.406
+22400/69092	Loss: 151.609
+25600/69092	Loss: 152.303
+28800/69092	Loss: 155.698
+32000/69092	Loss: 154.752
+35200/69092	Loss: 152.203
+38400/69092	Loss: 152.052
+41600/69092	Loss: 150.904
+44800/69092	Loss: 153.018
+48000/69092	Loss: 154.200
+51200/69092	Loss: 153.990
+54400/69092	Loss: 150.695
+57600/69092	Loss: 151.786
+60800/69092	Loss: 150.960
+64000/69092	Loss: 153.491
+67200/69092	Loss: 153.766
+Training time 0:01:56.702625
+Epoch: 290 Average loss: 152.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 290)
+0/69092	Loss: 144.858
+3200/69092	Loss: 154.124
+6400/69092	Loss: 152.808
+9600/69092	Loss: 152.267
+12800/69092	Loss: 153.314
+16000/69092	Loss: 152.880
+19200/69092	Loss: 152.399
+22400/69092	Loss: 155.578
+25600/69092	Loss: 151.986
+28800/69092	Loss: 154.957
+32000/69092	Loss: 149.377
+35200/69092	Loss: 151.953
+38400/69092	Loss: 153.675
+41600/69092	Loss: 149.530
+44800/69092	Loss: 151.295
+48000/69092	Loss: 152.107
+51200/69092	Loss: 153.384
+54400/69092	Loss: 153.480
+57600/69092	Loss: 152.505
+60800/69092	Loss: 153.533
+64000/69092	Loss: 150.302
+67200/69092	Loss: 152.367
+Training time 0:01:57.117872
+Epoch: 291 Average loss: 152.54
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 291)
+0/69092	Loss: 146.660
+3200/69092	Loss: 154.319
+6400/69092	Loss: 150.582
+9600/69092	Loss: 151.213
+12800/69092	Loss: 154.199
+16000/69092	Loss: 152.823
+19200/69092	Loss: 154.952
+22400/69092	Loss: 153.487
+25600/69092	Loss: 155.376
+28800/69092	Loss: 150.760
+32000/69092	Loss: 151.841
+35200/69092	Loss: 151.915
+38400/69092	Loss: 153.543
+41600/69092	Loss: 153.795
+44800/69092	Loss: 151.942
+48000/69092	Loss: 154.003
+51200/69092	Loss: 151.467
+54400/69092	Loss: 152.260
+57600/69092	Loss: 151.282
+60800/69092	Loss: 151.538
+64000/69092	Loss: 150.303
+67200/69092	Loss: 154.587
+Training time 0:01:58.680452
+Epoch: 292 Average loss: 152.64
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 292)
+0/69092	Loss: 145.385
+3200/69092	Loss: 151.340
+6400/69092	Loss: 152.098
+9600/69092	Loss: 152.663
+12800/69092	Loss: 155.032
+16000/69092	Loss: 152.518
+19200/69092	Loss: 151.539
+22400/69092	Loss: 154.198
+25600/69092	Loss: 150.988
+28800/69092	Loss: 152.627
+32000/69092	Loss: 149.553
+35200/69092	Loss: 154.579
+38400/69092	Loss: 153.449
+41600/69092	Loss: 152.452
+44800/69092	Loss: 153.757
+48000/69092	Loss: 153.841
+51200/69092	Loss: 154.989
+54400/69092	Loss: 151.559
+57600/69092	Loss: 151.460
+60800/69092	Loss: 150.837
+64000/69092	Loss: 153.636
+67200/69092	Loss: 153.198
+Training time 0:01:57.312848
+Epoch: 293 Average loss: 152.68
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 293)
+0/69092	Loss: 159.010
+3200/69092	Loss: 151.893
+6400/69092	Loss: 152.605
+9600/69092	Loss: 154.632
+12800/69092	Loss: 153.891
+16000/69092	Loss: 154.094
+19200/69092	Loss: 152.895
+22400/69092	Loss: 153.460
+25600/69092	Loss: 151.271
+28800/69092	Loss: 152.545
+32000/69092	Loss: 155.276
+35200/69092	Loss: 149.771
+38400/69092	Loss: 152.842
+41600/69092	Loss: 152.335
+44800/69092	Loss: 149.782
+48000/69092	Loss: 151.298
+51200/69092	Loss: 152.164
+54400/69092	Loss: 152.249
+57600/69092	Loss: 154.120
+60800/69092	Loss: 152.138
+64000/69092	Loss: 154.047
+67200/69092	Loss: 154.118
+Training time 0:01:58.901837
+Epoch: 294 Average loss: 152.70
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 294)
+0/69092	Loss: 154.872
+3200/69092	Loss: 152.256
+6400/69092	Loss: 151.741
+9600/69092	Loss: 151.242
+12800/69092	Loss: 152.359
+16000/69092	Loss: 152.685
+19200/69092	Loss: 152.911
+22400/69092	Loss: 152.940
+25600/69092	Loss: 150.561
+28800/69092	Loss: 154.254
+32000/69092	Loss: 150.908
+35200/69092	Loss: 148.987
+38400/69092	Loss: 152.038
+41600/69092	Loss: 153.540
+44800/69092	Loss: 152.610
+48000/69092	Loss: 152.271
+51200/69092	Loss: 154.108
+54400/69092	Loss: 153.427
+57600/69092	Loss: 153.687
+60800/69092	Loss: 154.644
+64000/69092	Loss: 155.805
+67200/69092	Loss: 153.871
+Training time 0:01:57.515136
+Epoch: 295 Average loss: 152.72
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 295)
+0/69092	Loss: 172.136
+3200/69092	Loss: 154.477
+6400/69092	Loss: 154.377
+9600/69092	Loss: 153.084
+12800/69092	Loss: 152.990
+16000/69092	Loss: 153.255
+19200/69092	Loss: 149.538
+22400/69092	Loss: 151.873
+25600/69092	Loss: 151.863
+28800/69092	Loss: 152.404
+32000/69092	Loss: 153.600
+35200/69092	Loss: 151.885
+38400/69092	Loss: 153.565
+41600/69092	Loss: 153.836
+44800/69092	Loss: 148.658
+48000/69092	Loss: 152.054
+51200/69092	Loss: 153.897
+54400/69092	Loss: 151.908
+57600/69092	Loss: 150.511
+60800/69092	Loss: 154.268
+64000/69092	Loss: 152.153
+67200/69092	Loss: 151.667
+Training time 0:01:58.336184
+Epoch: 296 Average loss: 152.51
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 296)
+0/69092	Loss: 154.380
+3200/69092	Loss: 152.538
+6400/69092	Loss: 155.622
+9600/69092	Loss: 152.135
+12800/69092	Loss: 149.899
+16000/69092	Loss: 152.044
+19200/69092	Loss: 152.027
+22400/69092	Loss: 154.125
+25600/69092	Loss: 153.997
+28800/69092	Loss: 151.971
+32000/69092	Loss: 154.026
+35200/69092	Loss: 153.330
+38400/69092	Loss: 153.267
+41600/69092	Loss: 152.542
+44800/69092	Loss: 153.030
+48000/69092	Loss: 150.755
+51200/69092	Loss: 150.433
+54400/69092	Loss: 151.056
+57600/69092	Loss: 151.493
+60800/69092	Loss: 150.925
+64000/69092	Loss: 153.196
+67200/69092	Loss: 153.390
+Training time 0:01:58.935444
+Epoch: 297 Average loss: 152.53
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 297)
+0/69092	Loss: 162.380
+3200/69092	Loss: 152.809
+6400/69092	Loss: 153.967
+9600/69092	Loss: 152.654
+12800/69092	Loss: 153.532
+16000/69092	Loss: 150.451
+19200/69092	Loss: 154.726
+22400/69092	Loss: 152.309
+25600/69092	Loss: 156.937
+28800/69092	Loss: 151.914
+32000/69092	Loss: 151.362
+35200/69092	Loss: 151.774
+38400/69092	Loss: 150.487
+41600/69092	Loss: 152.882
+44800/69092	Loss: 153.183
+48000/69092	Loss: 152.330
+51200/69092	Loss: 151.612
+54400/69092	Loss: 151.251
+57600/69092	Loss: 149.921
+60800/69092	Loss: 152.920
+64000/69092	Loss: 154.771
+67200/69092	Loss: 152.781
+Training time 0:01:58.921640
+Epoch: 298 Average loss: 152.66
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 298)
+0/69092	Loss: 140.366
+3200/69092	Loss: 151.046
+6400/69092	Loss: 151.239
+9600/69092	Loss: 151.586
+12800/69092	Loss: 154.627
+16000/69092	Loss: 153.641
+19200/69092	Loss: 148.075
+22400/69092	Loss: 151.608
+25600/69092	Loss: 153.601
+28800/69092	Loss: 152.342
+32000/69092	Loss: 151.909
+35200/69092	Loss: 155.055
+38400/69092	Loss: 150.865
+41600/69092	Loss: 153.405
+44800/69092	Loss: 155.919
+48000/69092	Loss: 152.391
+51200/69092	Loss: 154.713
+54400/69092	Loss: 153.119
+57600/69092	Loss: 153.990
+60800/69092	Loss: 153.354
+64000/69092	Loss: 153.947
+67200/69092	Loss: 153.847
+Training time 0:01:58.544115
+Epoch: 299 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 299)
+0/69092	Loss: 150.468
+3200/69092	Loss: 151.150
+6400/69092	Loss: 152.774
+9600/69092	Loss: 154.188
+12800/69092	Loss: 152.119
+16000/69092	Loss: 151.245
+19200/69092	Loss: 153.454
+22400/69092	Loss: 154.601
+25600/69092	Loss: 153.383
+28800/69092	Loss: 154.201
+32000/69092	Loss: 151.125
+35200/69092	Loss: 152.874
+38400/69092	Loss: 151.267
+41600/69092	Loss: 150.446
+44800/69092	Loss: 152.735
+48000/69092	Loss: 153.413
+51200/69092	Loss: 153.193
+54400/69092	Loss: 152.989
+57600/69092	Loss: 152.980
+60800/69092	Loss: 152.818
+64000/69092	Loss: 153.845
+67200/69092	Loss: 150.960
+Training time 0:01:58.547261
+Epoch: 300 Average loss: 152.71
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 300)
+0/69092	Loss: 143.955
+3200/69092	Loss: 151.614
+6400/69092	Loss: 153.480
+9600/69092	Loss: 150.109
+12800/69092	Loss: 154.329
+16000/69092	Loss: 153.942
+19200/69092	Loss: 153.163
+22400/69092	Loss: 150.900
+25600/69092	Loss: 153.223
+28800/69092	Loss: 153.431
+32000/69092	Loss: 151.569
+35200/69092	Loss: 156.695
+38400/69092	Loss: 150.314
+41600/69092	Loss: 152.747
+44800/69092	Loss: 150.995
+48000/69092	Loss: 151.577
+51200/69092	Loss: 153.174
+54400/69092	Loss: 150.933
+57600/69092	Loss: 153.805
+60800/69092	Loss: 150.738
+64000/69092	Loss: 151.947
+67200/69092	Loss: 151.593
+Training time 0:01:58.548118
+Epoch: 301 Average loss: 152.46
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 301)
+0/69092	Loss: 147.279
+3200/69092	Loss: 155.644
+6400/69092	Loss: 151.232
+9600/69092	Loss: 151.488
+12800/69092	Loss: 153.075
+16000/69092	Loss: 152.990
+19200/69092	Loss: 152.349
+22400/69092	Loss: 151.458
+25600/69092	Loss: 152.777
+28800/69092	Loss: 156.447
+32000/69092	Loss: 155.383
+35200/69092	Loss: 149.996
+38400/69092	Loss: 150.005
+41600/69092	Loss: 152.548
+44800/69092	Loss: 150.427
+48000/69092	Loss: 152.403
+51200/69092	Loss: 153.461
+54400/69092	Loss: 152.818
+57600/69092	Loss: 153.848
+60800/69092	Loss: 151.459
+64000/69092	Loss: 153.510
+67200/69092	Loss: 153.262
+Training time 0:01:59.635448
+Epoch: 302 Average loss: 152.62
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 302)
+0/69092	Loss: 153.877
+3200/69092	Loss: 152.488
+6400/69092	Loss: 152.250
+9600/69092	Loss: 153.468
+12800/69092	Loss: 154.536
+16000/69092	Loss: 151.385
+19200/69092	Loss: 151.035
+22400/69092	Loss: 150.293
+25600/69092	Loss: 154.147
+28800/69092	Loss: 153.163
+32000/69092	Loss: 154.560
+35200/69092	Loss: 152.221
+38400/69092	Loss: 155.581
+41600/69092	Loss: 153.473
+44800/69092	Loss: 153.722
+48000/69092	Loss: 151.588
+51200/69092	Loss: 151.839
+54400/69092	Loss: 152.329
+57600/69092	Loss: 150.435
+60800/69092	Loss: 151.320
+64000/69092	Loss: 153.641
+67200/69092	Loss: 153.587
+Training time 0:01:58.953545
+Epoch: 303 Average loss: 152.75
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 303)
+0/69092	Loss: 150.752
+3200/69092	Loss: 154.228
+6400/69092	Loss: 151.872
+9600/69092	Loss: 151.435
+12800/69092	Loss: 153.457
+16000/69092	Loss: 155.695
+19200/69092	Loss: 154.470
+22400/69092	Loss: 153.321
+25600/69092	Loss: 153.885
+28800/69092	Loss: 152.395
+32000/69092	Loss: 151.585
+35200/69092	Loss: 151.974
+38400/69092	Loss: 151.704
+41600/69092	Loss: 154.140
+44800/69092	Loss: 152.625
+48000/69092	Loss: 151.551
+51200/69092	Loss: 153.556
+54400/69092	Loss: 153.088
+57600/69092	Loss: 150.098
+60800/69092	Loss: 150.307
+64000/69092	Loss: 152.213
+67200/69092	Loss: 153.466
+Training time 0:01:59.769055
+Epoch: 304 Average loss: 152.67
+=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 304)
+0/69092	Loss: 135.868
+3200/69092	Loss: 151.608
+6400/69092	Loss: 153.318
+9600/69092	Loss: 154.543
+12800/69092	Loss: 152.205
+16000/69092	Loss: 152.045
+19200/69092	Loss: 153.663
+22400/69092	Loss: 153.126
+25600/69092	Loss: 151.074
diff --git a/OAR.2066988.stderr b/OAR.2066988.stderr
new file mode 100644
index 0000000000000000000000000000000000000000..e842733f51f7c87aabeda14f050c0fa2ff041395
--- /dev/null
+++ b/OAR.2066988.stderr
@@ -0,0 +1,3 @@
+/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
+  warnings.warn(warning.format(ret))
+## OAR [2020-06-24 06:43:10] Job 2066988 KILLED ##
diff --git a/OAR.2066988.stdout b/OAR.2066988.stdout
new file mode 100644
index 0000000000000000000000000000000000000000..42d8ca3af1e081f42c686dc71d29f58a989a07bb
--- /dev/null
+++ b/OAR.2066988.stdout
@@ -0,0 +1,1336 @@
+Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
+creare new diretory experiment: rendered_chairs/VAE_bs_256
+load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
+use 2 gpu who named:
+GeForce RTX 2080 Ti
+GeForce RTX 2080 Ti
+DataParallel(
+  (module): VAE(
+    (img_to_last_conv): Sequential(
+      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (1): ReLU()
+      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+    )
+    (last_conv_to_continuous_features): Sequential(
+      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+    )
+    (features_to_hidden_continue): Sequential(
+      (0): Linear(in_features=256, out_features=20, bias=True)
+      (1): ReLU()
+    )
+    (latent_to_features): Sequential(
+      (0): Linear(in_features=10, out_features=256, bias=True)
+      (1): ReLU()
+    )
+    (features_to_img): Sequential(
+      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (9): Sigmoid()
+    )
+  )
+)
+The number of parameters of model is 765335
+don't use continuous capacity
+=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last'
+0/69092	Loss: 2814.439
+12800/69092	Loss: 2606.417
+25600/69092	Loss: 812.792
+38400/69092	Loss: 524.628
+51200/69092	Loss: 410.449
+64000/69092	Loss: 288.235
+Training time 0:04:00.502541
+Epoch: 1 Average loss: 888.26
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 1)
+0/69092	Loss: 254.843
+12800/69092	Loss: 241.234
+25600/69092	Loss: 230.002
+38400/69092	Loss: 228.340
+51200/69092	Loss: 221.194
+64000/69092	Loss: 215.089
+Training time 0:03:58.901498
+Epoch: 2 Average loss: 226.36
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 2)
+0/69092	Loss: 208.402
+12800/69092	Loss: 212.035
+25600/69092	Loss: 210.421
+38400/69092	Loss: 210.173
+51200/69092	Loss: 207.824
+64000/69092	Loss: 205.581
+Training time 0:03:51.885673
+Epoch: 3 Average loss: 208.84
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 3)
+0/69092	Loss: 211.543
+12800/69092	Loss: 202.477
+25600/69092	Loss: 200.710
+38400/69092	Loss: 198.968
+51200/69092	Loss: 193.583
+64000/69092	Loss: 186.156
+Training time 0:03:57.600496
+Epoch: 4 Average loss: 195.31
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 4)
+0/69092	Loss: 173.161
+12800/69092	Loss: 173.079
+25600/69092	Loss: 166.273
+38400/69092	Loss: 165.127
+51200/69092	Loss: 162.785
+64000/69092	Loss: 159.291
+Training time 0:04:05.123858
+Epoch: 5 Average loss: 164.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 5)
+0/69092	Loss: 156.576
+12800/69092	Loss: 154.753
+25600/69092	Loss: 151.747
+38400/69092	Loss: 151.202
+51200/69092	Loss: 148.720
+64000/69092	Loss: 147.345
+Training time 0:04:05.650963
+Epoch: 6 Average loss: 150.38
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 6)
+0/69092	Loss: 147.825
+12800/69092	Loss: 144.725
+25600/69092	Loss: 143.537
+38400/69092	Loss: 143.139
+51200/69092	Loss: 141.119
+64000/69092	Loss: 141.689
+Training time 0:04:08.122079
+Epoch: 7 Average loss: 142.63
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 7)
+0/69092	Loss: 131.992
+12800/69092	Loss: 140.162
+25600/69092	Loss: 138.903
+38400/69092	Loss: 138.267
+51200/69092	Loss: 136.916
+64000/69092	Loss: 138.901
+Training time 0:03:54.331655
+Epoch: 8 Average loss: 138.51
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 8)
+0/69092	Loss: 140.047
+12800/69092	Loss: 136.032
+25600/69092	Loss: 136.670
+38400/69092	Loss: 135.414
+51200/69092	Loss: 135.785
+64000/69092	Loss: 135.055
+Training time 0:04:09.508379
+Epoch: 9 Average loss: 135.55
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 9)
+0/69092	Loss: 131.478
+12800/69092	Loss: 134.254
+25600/69092	Loss: 133.785
+38400/69092	Loss: 133.843
+51200/69092	Loss: 134.290
+64000/69092	Loss: 132.657
+Training time 0:04:13.579643
+Epoch: 10 Average loss: 133.88
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 10)
+0/69092	Loss: 129.377
+12800/69092	Loss: 133.059
+25600/69092	Loss: 132.677
+38400/69092	Loss: 132.448
+51200/69092	Loss: 131.756
+64000/69092	Loss: 132.828
+Training time 0:04:11.038189
+Epoch: 11 Average loss: 132.56
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 11)
+0/69092	Loss: 128.447
+12800/69092	Loss: 132.007
+25600/69092	Loss: 131.486
+38400/69092	Loss: 131.955
+51200/69092	Loss: 131.331
+64000/69092	Loss: 132.508
+Training time 0:04:05.952124
+Epoch: 12 Average loss: 131.67
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 12)
+0/69092	Loss: 127.952
+12800/69092	Loss: 131.422
+25600/69092	Loss: 130.121
+38400/69092	Loss: 130.560
+51200/69092	Loss: 130.675
+64000/69092	Loss: 130.489
+Training time 0:04:03.246605
+Epoch: 13 Average loss: 130.66
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 13)
+0/69092	Loss: 136.223
+12800/69092	Loss: 129.585
+25600/69092	Loss: 129.881
+38400/69092	Loss: 130.199
+51200/69092	Loss: 129.653
+64000/69092	Loss: 129.837
+Training time 0:03:58.965557
+Epoch: 14 Average loss: 129.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 14)
+0/69092	Loss: 126.331
+12800/69092	Loss: 129.435
+25600/69092	Loss: 128.785
+38400/69092	Loss: 128.843
+51200/69092	Loss: 130.551
+64000/69092	Loss: 128.547
+Training time 0:04:09.519483
+Epoch: 15 Average loss: 129.28
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 15)
+0/69092	Loss: 124.206
+12800/69092	Loss: 128.104
+25600/69092	Loss: 127.977
+38400/69092	Loss: 129.959
+51200/69092	Loss: 129.623
+64000/69092	Loss: 128.646
+Training time 0:04:06.651803
+Epoch: 16 Average loss: 128.79
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 16)
+0/69092	Loss: 123.285
+12800/69092	Loss: 129.276
+25600/69092	Loss: 128.834
+38400/69092	Loss: 128.149
+51200/69092	Loss: 128.007
+64000/69092	Loss: 127.012
+Training time 0:04:09.535457
+Epoch: 17 Average loss: 128.33
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 17)
+0/69092	Loss: 122.490
+12800/69092	Loss: 128.020
+25600/69092	Loss: 128.469
+38400/69092	Loss: 127.697
+51200/69092	Loss: 127.443
+64000/69092	Loss: 127.452
+Training time 0:04:15.114925
+Epoch: 18 Average loss: 127.72
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 18)
+0/69092	Loss: 125.483
+12800/69092	Loss: 127.551
+25600/69092	Loss: 127.873
+38400/69092	Loss: 127.776
+51200/69092	Loss: 127.685
+64000/69092	Loss: 126.057
+Training time 0:04:01.902371
+Epoch: 19 Average loss: 127.38
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 19)
+0/69092	Loss: 122.885
+12800/69092	Loss: 126.344
+25600/69092	Loss: 127.344
+38400/69092	Loss: 127.723
+51200/69092	Loss: 126.600
+64000/69092	Loss: 127.361
+Training time 0:04:00.677389
+Epoch: 20 Average loss: 127.00
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 20)
+0/69092	Loss: 131.818
+12800/69092	Loss: 126.634
+25600/69092	Loss: 125.596
+38400/69092	Loss: 126.447
+51200/69092	Loss: 127.722
+64000/69092	Loss: 125.743
+Training time 0:04:08.702550
+Epoch: 21 Average loss: 126.59
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 21)
+0/69092	Loss: 120.820
+12800/69092	Loss: 125.706
+25600/69092	Loss: 127.387
+38400/69092	Loss: 126.881
+51200/69092	Loss: 125.378
+64000/69092	Loss: 126.583
+Training time 0:04:03.607133
+Epoch: 22 Average loss: 126.26
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 22)
+0/69092	Loss: 123.223
+12800/69092	Loss: 125.898
+25600/69092	Loss: 125.606
+38400/69092	Loss: 125.715
+51200/69092	Loss: 126.186
+64000/69092	Loss: 126.409
+Training time 0:04:07.609030
+Epoch: 23 Average loss: 125.96
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 23)
+0/69092	Loss: 128.143
+12800/69092	Loss: 125.965
+25600/69092	Loss: 126.009
+38400/69092	Loss: 125.024
+51200/69092	Loss: 125.283
+64000/69092	Loss: 126.305
+Training time 0:04:00.812965
+Epoch: 24 Average loss: 125.70
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 24)
+0/69092	Loss: 125.396
+12800/69092	Loss: 125.719
+25600/69092	Loss: 126.159
+38400/69092	Loss: 124.345
+51200/69092	Loss: 124.650
+64000/69092	Loss: 125.511
+Training time 0:03:58.507761
+Epoch: 25 Average loss: 125.29
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 25)
+0/69092	Loss: 136.129
+12800/69092	Loss: 126.168
+25600/69092	Loss: 125.467
+38400/69092	Loss: 124.673
+51200/69092	Loss: 124.727
+64000/69092	Loss: 124.674
+Training time 0:04:06.371973
+Epoch: 26 Average loss: 125.08
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 26)
+0/69092	Loss: 119.995
+12800/69092	Loss: 125.162
+25600/69092	Loss: 124.900
+38400/69092	Loss: 124.906
+51200/69092	Loss: 124.934
+64000/69092	Loss: 124.702
+Training time 0:04:08.636811
+Epoch: 27 Average loss: 124.80
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 27)
+0/69092	Loss: 121.814
+12800/69092	Loss: 124.749
+25600/69092	Loss: 123.778
+38400/69092	Loss: 125.225
+51200/69092	Loss: 124.118
+64000/69092	Loss: 125.262
+Training time 0:04:07.395318
+Epoch: 28 Average loss: 124.58
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 28)
+0/69092	Loss: 122.369
+12800/69092	Loss: 124.628
+25600/69092	Loss: 124.176
+38400/69092	Loss: 124.751
+51200/69092	Loss: 123.993
+64000/69092	Loss: 124.350
+Training time 0:04:13.117962
+Epoch: 29 Average loss: 124.32
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 29)
+0/69092	Loss: 121.895
+12800/69092	Loss: 124.362
+25600/69092	Loss: 125.226
+38400/69092	Loss: 124.151
+51200/69092	Loss: 123.218
+64000/69092	Loss: 124.114
+Training time 0:04:00.434000
+Epoch: 30 Average loss: 124.12
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 30)
+0/69092	Loss: 115.194
+12800/69092	Loss: 124.568
+25600/69092	Loss: 123.711
+38400/69092	Loss: 122.897
+51200/69092	Loss: 124.132
+64000/69092	Loss: 123.650
+Training time 0:04:05.715337
+Epoch: 31 Average loss: 123.82
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 31)
+0/69092	Loss: 124.334
+12800/69092	Loss: 123.616
+25600/69092	Loss: 123.198
+38400/69092	Loss: 124.313
+51200/69092	Loss: 123.299
+64000/69092	Loss: 123.692
+Training time 0:04:08.544469
+Epoch: 32 Average loss: 123.67
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 32)
+0/69092	Loss: 127.550
+12800/69092	Loss: 123.950
+25600/69092	Loss: 123.163
+38400/69092	Loss: 123.634
+51200/69092	Loss: 122.978
+64000/69092	Loss: 124.027
+Training time 0:04:13.082735
+Epoch: 33 Average loss: 123.47
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 33)
+0/69092	Loss: 123.320
+12800/69092	Loss: 123.340
+25600/69092	Loss: 122.071
+38400/69092	Loss: 123.296
+51200/69092	Loss: 123.829
+64000/69092	Loss: 123.658
+Training time 0:04:15.650392
+Epoch: 34 Average loss: 123.40
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 34)
+0/69092	Loss: 128.216
+12800/69092	Loss: 122.262
+25600/69092	Loss: 123.458
+38400/69092	Loss: 123.642
+51200/69092	Loss: 123.133
+64000/69092	Loss: 123.217
+Training time 0:04:08.276315
+Epoch: 35 Average loss: 123.08
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 35)
+0/69092	Loss: 120.675
+12800/69092	Loss: 122.984
+25600/69092	Loss: 121.834
+38400/69092	Loss: 123.413
+51200/69092	Loss: 122.305
+64000/69092	Loss: 123.635
+Training time 0:04:03.058292
+Epoch: 36 Average loss: 122.89
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 36)
+0/69092	Loss: 118.445
+12800/69092	Loss: 123.013
+25600/69092	Loss: 122.418
+38400/69092	Loss: 122.231
+51200/69092	Loss: 123.021
+64000/69092	Loss: 122.842
+Training time 0:04:06.648961
+Epoch: 37 Average loss: 122.82
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 37)
+0/69092	Loss: 121.083
+12800/69092	Loss: 123.263
+25600/69092	Loss: 122.257
+38400/69092	Loss: 122.379
+51200/69092	Loss: 122.171
+64000/69092	Loss: 123.059
+Training time 0:04:15.049360
+Epoch: 38 Average loss: 122.71
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 38)
+0/69092	Loss: 123.324
+12800/69092	Loss: 122.454
+25600/69092	Loss: 121.804
+38400/69092	Loss: 122.938
+51200/69092	Loss: 122.913
+64000/69092	Loss: 122.085
+Training time 0:04:05.371204
+Epoch: 39 Average loss: 122.43
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 39)
+0/69092	Loss: 128.633
+12800/69092	Loss: 121.116
+25600/69092	Loss: 121.840
+38400/69092	Loss: 122.284
+51200/69092	Loss: 122.594
+64000/69092	Loss: 123.471
+Training time 0:04:11.828321
+Epoch: 40 Average loss: 122.34
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 40)
+0/69092	Loss: 118.211
+12800/69092	Loss: 122.969
+25600/69092	Loss: 123.368
+38400/69092	Loss: 121.575
+51200/69092	Loss: 122.347
+64000/69092	Loss: 121.758
+Training time 0:04:09.545590
+Epoch: 41 Average loss: 122.25
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 41)
+0/69092	Loss: 122.601
+12800/69092	Loss: 122.031
+25600/69092	Loss: 123.502
+38400/69092	Loss: 123.221
+51200/69092	Loss: 121.567
+64000/69092	Loss: 121.257
+Training time 0:04:03.271690
+Epoch: 42 Average loss: 122.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 42)
+0/69092	Loss: 127.457
+12800/69092	Loss: 121.780
+25600/69092	Loss: 121.304
+38400/69092	Loss: 123.179
+51200/69092	Loss: 121.032
+64000/69092	Loss: 122.156
+Training time 0:04:06.866565
+Epoch: 43 Average loss: 121.91
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 43)
+0/69092	Loss: 122.912
+12800/69092	Loss: 121.686
+25600/69092	Loss: 121.672
+38400/69092	Loss: 121.170
+51200/69092	Loss: 121.757
+64000/69092	Loss: 122.824
+Training time 0:04:05.681837
+Epoch: 44 Average loss: 121.81
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 44)
+0/69092	Loss: 135.368
+12800/69092	Loss: 121.265
+25600/69092	Loss: 121.626
+38400/69092	Loss: 121.669
+51200/69092	Loss: 122.190
+64000/69092	Loss: 121.709
+Training time 0:04:11.599922
+Epoch: 45 Average loss: 121.79
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 45)
+0/69092	Loss: 121.074
+12800/69092	Loss: 121.516
+25600/69092	Loss: 120.940
+38400/69092	Loss: 122.202
+51200/69092	Loss: 121.848
+64000/69092	Loss: 122.093
+Training time 0:04:15.838166
+Epoch: 46 Average loss: 121.68
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 46)
+0/69092	Loss: 126.527
+12800/69092	Loss: 121.600
+25600/69092	Loss: 121.211
+38400/69092	Loss: 122.194
+51200/69092	Loss: 121.122
+64000/69092	Loss: 121.598
+Training time 0:04:08.633490
+Epoch: 47 Average loss: 121.51
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 47)
+0/69092	Loss: 126.953
+12800/69092	Loss: 121.570
+25600/69092	Loss: 121.045
+38400/69092	Loss: 122.628
+51200/69092	Loss: 121.052
+64000/69092	Loss: 120.897
+Training time 0:03:58.102023
+Epoch: 48 Average loss: 121.48
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 48)
+0/69092	Loss: 124.567
+12800/69092	Loss: 121.877
+25600/69092	Loss: 120.928
+38400/69092	Loss: 121.011
+51200/69092	Loss: 121.311
+64000/69092	Loss: 121.826
+Training time 0:04:06.935042
+Epoch: 49 Average loss: 121.45
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 49)
+0/69092	Loss: 121.404
+12800/69092	Loss: 121.514
+25600/69092	Loss: 121.087
+38400/69092	Loss: 121.419
+51200/69092	Loss: 121.384
+64000/69092	Loss: 121.023
+Training time 0:04:15.166332
+Epoch: 50 Average loss: 121.23
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 50)
+0/69092	Loss: 126.006
+12800/69092	Loss: 120.948
+25600/69092	Loss: 121.760
+38400/69092	Loss: 121.779
+51200/69092	Loss: 120.402
+64000/69092	Loss: 120.823
+Training time 0:04:28.909935
+Epoch: 51 Average loss: 121.15
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 51)
+0/69092	Loss: 124.286
+12800/69092	Loss: 121.074
+25600/69092	Loss: 121.402
+38400/69092	Loss: 121.318
+51200/69092	Loss: 120.578
+64000/69092	Loss: 121.595
+Training time 0:04:18.253963
+Epoch: 52 Average loss: 121.13
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 52)
+0/69092	Loss: 120.751
+12800/69092	Loss: 121.077
+25600/69092	Loss: 121.218
+38400/69092	Loss: 120.888
+51200/69092	Loss: 120.694
+64000/69092	Loss: 120.242
+Training time 0:04:06.896767
+Epoch: 53 Average loss: 120.93
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 53)
+0/69092	Loss: 127.181
+12800/69092	Loss: 120.765
+25600/69092	Loss: 120.254
+38400/69092	Loss: 120.713
+51200/69092	Loss: 120.709
+64000/69092	Loss: 121.636
+Training time 0:04:06.321434
+Epoch: 54 Average loss: 120.87
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 54)
+0/69092	Loss: 125.942
+12800/69092	Loss: 121.474
+25600/69092	Loss: 120.848
+38400/69092	Loss: 120.489
+51200/69092	Loss: 121.334
+64000/69092	Loss: 119.914
+Training time 0:04:07.908865
+Epoch: 55 Average loss: 120.75
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 55)
+0/69092	Loss: 119.879
+12800/69092	Loss: 121.761
+25600/69092	Loss: 120.564
+38400/69092	Loss: 119.969
+51200/69092	Loss: 120.840
+64000/69092	Loss: 121.243
+Training time 0:04:24.374569
+Epoch: 56 Average loss: 120.73
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 56)
+0/69092	Loss: 122.110
+12800/69092	Loss: 120.853
+25600/69092	Loss: 121.248
+38400/69092	Loss: 118.912
+51200/69092	Loss: 120.841
+64000/69092	Loss: 121.255
+Training time 0:04:19.634250
+Epoch: 57 Average loss: 120.63
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 57)
+0/69092	Loss: 119.217
+12800/69092	Loss: 119.208
+25600/69092	Loss: 119.932
+38400/69092	Loss: 121.283
+51200/69092	Loss: 120.620
+64000/69092	Loss: 120.339
+Training time 0:04:20.572270
+Epoch: 58 Average loss: 120.38
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 58)
+0/69092	Loss: 118.004
+12800/69092	Loss: 121.649
+25600/69092	Loss: 120.544
+38400/69092	Loss: 120.965
+51200/69092	Loss: 118.516
+64000/69092	Loss: 120.499
+Training time 0:04:13.101164
+Epoch: 59 Average loss: 120.46
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 59)
+0/69092	Loss: 112.881
+12800/69092	Loss: 120.567
+25600/69092	Loss: 120.420
+38400/69092	Loss: 119.364
+51200/69092	Loss: 119.955
+64000/69092	Loss: 121.037
+Training time 0:04:10.750013
+Epoch: 60 Average loss: 120.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 60)
+0/69092	Loss: 122.250
+12800/69092	Loss: 119.708
+25600/69092	Loss: 120.189
+38400/69092	Loss: 120.499
+51200/69092	Loss: 120.354
+64000/69092	Loss: 120.335
+Training time 0:04:13.578982
+Epoch: 61 Average loss: 120.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 61)
+0/69092	Loss: 117.498
+12800/69092	Loss: 120.426
+25600/69092	Loss: 120.447
+38400/69092	Loss: 119.672
+51200/69092	Loss: 120.147
+64000/69092	Loss: 119.269
+Training time 0:04:20.939895
+Epoch: 62 Average loss: 119.97
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 62)
+0/69092	Loss: 125.455
+12800/69092	Loss: 119.791
+25600/69092	Loss: 120.792
+38400/69092	Loss: 119.489
+51200/69092	Loss: 120.414
+64000/69092	Loss: 119.984
+Training time 0:04:19.158055
+Epoch: 63 Average loss: 120.14
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 63)
+0/69092	Loss: 117.290
+12800/69092	Loss: 119.601
+25600/69092	Loss: 120.635
+38400/69092	Loss: 119.446
+51200/69092	Loss: 119.494
+64000/69092	Loss: 120.180
+Training time 0:04:19.186761
+Epoch: 64 Average loss: 119.92
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 64)
+0/69092	Loss: 120.642
+12800/69092	Loss: 119.806
+25600/69092	Loss: 120.017
+38400/69092	Loss: 120.107
+51200/69092	Loss: 120.154
+64000/69092	Loss: 119.791
+Training time 0:04:17.913614
+Epoch: 65 Average loss: 119.92
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 65)
+0/69092	Loss: 119.794
+12800/69092	Loss: 118.851
+25600/69092	Loss: 120.739
+38400/69092	Loss: 120.140
+51200/69092	Loss: 120.621
+64000/69092	Loss: 118.912
+Training time 0:04:07.989220
+Epoch: 66 Average loss: 119.93
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 66)
+0/69092	Loss: 121.311
+12800/69092	Loss: 121.100
+25600/69092	Loss: 118.866
+38400/69092	Loss: 119.869
+51200/69092	Loss: 119.210
+64000/69092	Loss: 119.637
+Training time 0:04:04.809304
+Epoch: 67 Average loss: 119.71
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 67)
+0/69092	Loss: 117.776
+12800/69092	Loss: 119.768
+25600/69092	Loss: 119.897
+38400/69092	Loss: 119.051
+51200/69092	Loss: 119.888
+64000/69092	Loss: 119.118
+Training time 0:04:05.612033
+Epoch: 68 Average loss: 119.64
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 68)
+0/69092	Loss: 114.908
+12800/69092	Loss: 119.558
+25600/69092	Loss: 120.312
+38400/69092	Loss: 119.431
+51200/69092	Loss: 118.943
+64000/69092	Loss: 119.501
+Training time 0:04:18.977186
+Epoch: 69 Average loss: 119.52
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 69)
+0/69092	Loss: 122.569
+12800/69092	Loss: 118.864
+25600/69092	Loss: 119.829
+38400/69092	Loss: 119.767
+51200/69092	Loss: 119.599
+64000/69092	Loss: 119.105
+Training time 0:04:11.458453
+Epoch: 70 Average loss: 119.48
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 70)
+0/69092	Loss: 125.237
+12800/69092	Loss: 119.324
+25600/69092	Loss: 119.526
+38400/69092	Loss: 119.403
+51200/69092	Loss: 119.721
+64000/69092	Loss: 119.557
+Training time 0:04:15.062350
+Epoch: 71 Average loss: 119.49
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 71)
+0/69092	Loss: 117.608
+12800/69092	Loss: 119.207
+25600/69092	Loss: 119.193
+38400/69092	Loss: 119.453
+51200/69092	Loss: 119.239
+64000/69092	Loss: 119.616
+Training time 0:04:05.494584
+Epoch: 72 Average loss: 119.38
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 72)
+0/69092	Loss: 113.774
+12800/69092	Loss: 119.703
+25600/69092	Loss: 120.271
+38400/69092	Loss: 118.884
+51200/69092	Loss: 118.561
+64000/69092	Loss: 119.390
+Training time 0:04:04.810459
+Epoch: 73 Average loss: 119.31
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 73)
+0/69092	Loss: 121.206
+12800/69092	Loss: 119.420
+25600/69092	Loss: 119.455
+38400/69092	Loss: 119.734
+51200/69092	Loss: 118.942
+64000/69092	Loss: 118.688
+Training time 0:04:03.597461
+Epoch: 74 Average loss: 119.27
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 74)
+0/69092	Loss: 123.219
+12800/69092	Loss: 118.896
+25600/69092	Loss: 119.816
+38400/69092	Loss: 117.844
+51200/69092	Loss: 119.564
+64000/69092	Loss: 119.447
+Training time 0:04:11.406864
+Epoch: 75 Average loss: 119.14
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 75)
+0/69092	Loss: 116.660
+12800/69092	Loss: 118.787
+25600/69092	Loss: 118.336
+38400/69092	Loss: 119.625
+51200/69092	Loss: 119.877
+64000/69092	Loss: 119.186
+Training time 0:04:24.342829
+Epoch: 76 Average loss: 119.21
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 76)
+0/69092	Loss: 119.502
+12800/69092	Loss: 117.959
+25600/69092	Loss: 118.876
+38400/69092	Loss: 119.940
+51200/69092	Loss: 118.478
+64000/69092	Loss: 119.287
+Training time 0:04:07.572541
+Epoch: 77 Average loss: 119.02
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 77)
+0/69092	Loss: 112.084
+12800/69092	Loss: 117.931
+25600/69092	Loss: 118.700
+38400/69092	Loss: 119.683
+51200/69092	Loss: 118.883
+64000/69092	Loss: 118.919
+Training time 0:04:03.865588
+Epoch: 78 Average loss: 118.85
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 78)
+0/69092	Loss: 117.714
+12800/69092	Loss: 119.233
+25600/69092	Loss: 118.715
+38400/69092	Loss: 118.166
+51200/69092	Loss: 118.807
+64000/69092	Loss: 119.992
+Training time 0:04:05.190180
+Epoch: 79 Average loss: 119.03
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 79)
+0/69092	Loss: 117.169
+12800/69092	Loss: 117.980
+25600/69092	Loss: 118.887
+38400/69092	Loss: 118.441
+51200/69092	Loss: 118.812
+64000/69092	Loss: 119.412
+Training time 0:04:02.204515
+Epoch: 80 Average loss: 118.79
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 80)
+0/69092	Loss: 118.471
+12800/69092	Loss: 118.986
+25600/69092	Loss: 117.801
+38400/69092	Loss: 118.665
+51200/69092	Loss: 119.535
+64000/69092	Loss: 119.216
+Training time 0:04:14.209794
+Epoch: 81 Average loss: 118.92
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 81)
+0/69092	Loss: 113.233
+12800/69092	Loss: 118.796
+25600/69092	Loss: 120.057
+38400/69092	Loss: 118.499
+51200/69092	Loss: 118.816
+64000/69092	Loss: 117.538
+Training time 0:04:15.709971
+Epoch: 82 Average loss: 118.69
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 82)
+0/69092	Loss: 114.715
+12800/69092	Loss: 118.884
+25600/69092	Loss: 118.494
+38400/69092	Loss: 118.577
+51200/69092	Loss: 118.888
+64000/69092	Loss: 118.886
+Training time 0:04:11.655027
+Epoch: 83 Average loss: 118.71
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 83)
+0/69092	Loss: 114.184
+12800/69092	Loss: 118.511
+25600/69092	Loss: 119.265
+38400/69092	Loss: 118.358
+51200/69092	Loss: 119.018
+64000/69092	Loss: 118.696
+Training time 0:04:03.034456
+Epoch: 84 Average loss: 118.64
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 84)
+0/69092	Loss: 119.023
+12800/69092	Loss: 118.235
+25600/69092	Loss: 118.429
+38400/69092	Loss: 117.985
+51200/69092	Loss: 118.307
+64000/69092	Loss: 119.246
+Training time 0:04:07.248343
+Epoch: 85 Average loss: 118.52
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 85)
+0/69092	Loss: 121.420
+12800/69092	Loss: 118.604
+25600/69092	Loss: 118.223
+38400/69092	Loss: 118.012
+51200/69092	Loss: 118.248
+64000/69092	Loss: 119.041
+Training time 0:04:09.127944
+Epoch: 86 Average loss: 118.43
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 86)
+0/69092	Loss: 119.622
+12800/69092	Loss: 118.327
+25600/69092	Loss: 119.245
+38400/69092	Loss: 118.592
+51200/69092	Loss: 117.328
+64000/69092	Loss: 118.681
+Training time 0:04:19.338612
+Epoch: 87 Average loss: 118.44
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 87)
+0/69092	Loss: 111.174
+12800/69092	Loss: 118.593
+25600/69092	Loss: 118.148
+38400/69092	Loss: 118.586
+51200/69092	Loss: 118.532
+64000/69092	Loss: 118.767
+Training time 0:04:15.535839
+Epoch: 88 Average loss: 118.37
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 88)
+0/69092	Loss: 116.705
+12800/69092	Loss: 118.352
+25600/69092	Loss: 118.533
+38400/69092	Loss: 118.169
+51200/69092	Loss: 118.406
+64000/69092	Loss: 118.343
+Training time 0:04:20.266325
+Epoch: 89 Average loss: 118.38
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 89)
+0/69092	Loss: 115.584
+12800/69092	Loss: 117.936
+25600/69092	Loss: 118.092
+38400/69092	Loss: 118.414
+51200/69092	Loss: 118.575
+64000/69092	Loss: 117.829
+Training time 0:04:17.261602
+Epoch: 90 Average loss: 118.19
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 90)
+0/69092	Loss: 117.601
+12800/69092	Loss: 118.211
+25600/69092	Loss: 118.045
+38400/69092	Loss: 117.952
+51200/69092	Loss: 118.657
+64000/69092	Loss: 118.763
+Training time 0:04:10.787288
+Epoch: 91 Average loss: 118.30
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 91)
+0/69092	Loss: 111.534
+12800/69092	Loss: 117.956
+25600/69092	Loss: 118.221
+38400/69092	Loss: 118.217
+51200/69092	Loss: 117.930
+64000/69092	Loss: 118.685
+Training time 0:04:05.952103
+Epoch: 92 Average loss: 118.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 92)
+0/69092	Loss: 115.097
+12800/69092	Loss: 118.364
+25600/69092	Loss: 118.456
+38400/69092	Loss: 117.776
+51200/69092	Loss: 118.108
+64000/69092	Loss: 118.348
+Training time 0:04:14.091436
+Epoch: 93 Average loss: 118.24
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 93)
+0/69092	Loss: 117.903
+12800/69092	Loss: 118.141
+25600/69092	Loss: 117.958
+38400/69092	Loss: 118.750
+51200/69092	Loss: 116.999
+64000/69092	Loss: 119.126
+Training time 0:04:19.666973
+Epoch: 94 Average loss: 118.09
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 94)
+0/69092	Loss: 122.937
+12800/69092	Loss: 118.038
+25600/69092	Loss: 117.933
+38400/69092	Loss: 117.870
+51200/69092	Loss: 117.970
+64000/69092	Loss: 118.466
+Training time 0:04:27.989384
+Epoch: 95 Average loss: 118.03
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 95)
+0/69092	Loss: 113.251
+12800/69092	Loss: 117.549
+25600/69092	Loss: 118.034
+38400/69092	Loss: 118.375
+51200/69092	Loss: 117.229
+64000/69092	Loss: 118.759
+Training time 0:04:23.592842
+Epoch: 96 Average loss: 117.92
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 96)
+0/69092	Loss: 125.196
+12800/69092	Loss: 118.374
+25600/69092	Loss: 118.202
+38400/69092	Loss: 118.131
+51200/69092	Loss: 117.639
+64000/69092	Loss: 117.563
+Training time 0:04:07.757856
+Epoch: 97 Average loss: 117.94
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 97)
+0/69092	Loss: 116.827
+12800/69092	Loss: 118.167
+25600/69092	Loss: 117.874
+38400/69092	Loss: 118.108
+51200/69092	Loss: 117.770
+64000/69092	Loss: 117.935
+Training time 0:04:07.602487
+Epoch: 98 Average loss: 117.88
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 98)
+0/69092	Loss: 116.395
+12800/69092	Loss: 118.537
+25600/69092	Loss: 116.787
+38400/69092	Loss: 117.802
+51200/69092	Loss: 118.060
+64000/69092	Loss: 117.920
+Training time 0:04:04.077916
+Epoch: 99 Average loss: 117.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 99)
+0/69092	Loss: 120.129
+12800/69092	Loss: 117.395
+25600/69092	Loss: 118.096
+38400/69092	Loss: 118.253
+51200/69092	Loss: 118.095
+64000/69092	Loss: 117.124
+Training time 0:04:14.157682
+Epoch: 100 Average loss: 117.81
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 100)
+0/69092	Loss: 115.819
+12800/69092	Loss: 117.516
+25600/69092	Loss: 117.688
+38400/69092	Loss: 117.822
+51200/69092	Loss: 117.359
+64000/69092	Loss: 118.094
+Training time 0:04:19.060029
+Epoch: 101 Average loss: 117.74
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 101)
+0/69092	Loss: 117.652
+12800/69092	Loss: 117.546
+25600/69092	Loss: 117.209
+38400/69092	Loss: 118.417
+51200/69092	Loss: 117.194
+64000/69092	Loss: 117.343
+Training time 0:04:27.360355
+Epoch: 102 Average loss: 117.65
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 102)
+0/69092	Loss: 119.372
+12800/69092	Loss: 117.161
+25600/69092	Loss: 117.579
+38400/69092	Loss: 118.675
+51200/69092	Loss: 118.077
+64000/69092	Loss: 116.353
+Training time 0:04:21.829024
+Epoch: 103 Average loss: 117.65
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 103)
+0/69092	Loss: 122.145
+12800/69092	Loss: 117.681
+25600/69092	Loss: 117.564
+38400/69092	Loss: 117.854
+51200/69092	Loss: 117.792
+64000/69092	Loss: 117.095
+Training time 0:04:10.505366
+Epoch: 104 Average loss: 117.66
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 104)
+0/69092	Loss: 119.037
+12800/69092	Loss: 117.433
+25600/69092	Loss: 117.319
+38400/69092	Loss: 118.096
+51200/69092	Loss: 118.451
+64000/69092	Loss: 117.593
+Training time 0:04:13.309748
+Epoch: 105 Average loss: 117.70
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 105)
+0/69092	Loss: 115.671
+12800/69092	Loss: 118.765
+25600/69092	Loss: 117.530
+38400/69092	Loss: 116.610
+51200/69092	Loss: 117.387
+64000/69092	Loss: 118.102
+Training time 0:04:10.225632
+Epoch: 106 Average loss: 117.64
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 106)
+0/69092	Loss: 115.970
+12800/69092	Loss: 117.271
+25600/69092	Loss: 118.336
+38400/69092	Loss: 116.654
+51200/69092	Loss: 116.908
+64000/69092	Loss: 118.475
+Training time 0:04:08.311380
+Epoch: 107 Average loss: 117.52
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 107)
+0/69092	Loss: 118.297
+12800/69092	Loss: 118.045
+25600/69092	Loss: 117.715
+38400/69092	Loss: 116.549
+51200/69092	Loss: 117.337
+64000/69092	Loss: 118.109
+Training time 0:04:18.767566
+Epoch: 108 Average loss: 117.52
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 108)
+0/69092	Loss: 115.676
+12800/69092	Loss: 118.016
+25600/69092	Loss: 116.507
+38400/69092	Loss: 117.254
+51200/69092	Loss: 117.718
+64000/69092	Loss: 118.072
+Training time 0:04:27.749704
+Epoch: 109 Average loss: 117.42
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 109)
+0/69092	Loss: 118.938
+12800/69092	Loss: 116.951
+25600/69092	Loss: 117.728
+38400/69092	Loss: 118.054
+51200/69092	Loss: 117.318
+64000/69092	Loss: 117.840
+Training time 0:04:26.627106
+Epoch: 110 Average loss: 117.56
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 110)
+0/69092	Loss: 121.937
+12800/69092	Loss: 118.140
+25600/69092	Loss: 117.377
+38400/69092	Loss: 117.915
+51200/69092	Loss: 117.499
+64000/69092	Loss: 116.375
+Training time 0:04:12.037837
+Epoch: 111 Average loss: 117.39
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 111)
+0/69092	Loss: 113.947
+12800/69092	Loss: 115.591
+25600/69092	Loss: 117.857
+38400/69092	Loss: 117.139
+51200/69092	Loss: 117.992
+64000/69092	Loss: 117.336
+Training time 0:04:07.543581
+Epoch: 112 Average loss: 117.20
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 112)
+0/69092	Loss: 117.774
+12800/69092	Loss: 117.031
+25600/69092	Loss: 116.865
+38400/69092	Loss: 117.537
+51200/69092	Loss: 117.092
+64000/69092	Loss: 117.203
+Training time 0:04:06.793473
+Epoch: 113 Average loss: 117.34
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 113)
+0/69092	Loss: 122.003
+12800/69092	Loss: 117.281
+25600/69092	Loss: 116.915
+38400/69092	Loss: 117.246
+51200/69092	Loss: 117.098
+64000/69092	Loss: 117.323
+Training time 0:04:18.110371
+Epoch: 114 Average loss: 117.14
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 114)
+0/69092	Loss: 113.728
+12800/69092	Loss: 117.338
+25600/69092	Loss: 117.415
+38400/69092	Loss: 117.887
+51200/69092	Loss: 116.883
+64000/69092	Loss: 116.655
+Training time 0:04:23.082706
+Epoch: 115 Average loss: 117.17
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 115)
+0/69092	Loss: 113.460
+12800/69092	Loss: 116.962
+25600/69092	Loss: 117.133
+38400/69092	Loss: 117.736
+51200/69092	Loss: 116.920
+64000/69092	Loss: 117.195
+Training time 0:04:17.946739
+Epoch: 116 Average loss: 117.18
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 116)
+0/69092	Loss: 122.396
+12800/69092	Loss: 117.253
+25600/69092	Loss: 117.988
+38400/69092	Loss: 116.718
+51200/69092	Loss: 116.569
+64000/69092	Loss: 117.342
+Training time 0:04:09.487106
+Epoch: 117 Average loss: 117.17
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 117)
+0/69092	Loss: 120.599
+12800/69092	Loss: 118.029
+25600/69092	Loss: 116.844
+38400/69092	Loss: 116.261
+51200/69092	Loss: 117.148
+64000/69092	Loss: 116.991
+Training time 0:04:06.126837
+Epoch: 118 Average loss: 117.11
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 118)
+0/69092	Loss: 113.447
+12800/69092	Loss: 117.673
+25600/69092	Loss: 116.305
+38400/69092	Loss: 117.318
+51200/69092	Loss: 117.771
+64000/69092	Loss: 116.620
+Training time 0:04:06.952300
+Epoch: 119 Average loss: 117.09
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 119)
+0/69092	Loss: 116.694
+12800/69092	Loss: 117.533
+25600/69092	Loss: 117.339
+38400/69092	Loss: 116.549
+51200/69092	Loss: 116.852
+64000/69092	Loss: 117.144
+Training time 0:04:18.524811
+Epoch: 120 Average loss: 117.04
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 120)
+0/69092	Loss: 121.263
+12800/69092	Loss: 117.623
+25600/69092	Loss: 116.567
+38400/69092	Loss: 117.494
+51200/69092	Loss: 116.391
+64000/69092	Loss: 116.778
+Training time 0:04:26.026426
+Epoch: 121 Average loss: 116.96
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 121)
+0/69092	Loss: 119.814
+12800/69092	Loss: 117.488
+25600/69092	Loss: 116.667
+38400/69092	Loss: 116.857
+51200/69092	Loss: 116.277
+64000/69092	Loss: 116.752
+Training time 0:04:21.240310
+Epoch: 122 Average loss: 116.84
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 122)
+0/69092	Loss: 114.083
+12800/69092	Loss: 117.017
+25600/69092	Loss: 116.481
+38400/69092	Loss: 115.768
+51200/69092	Loss: 117.344
+64000/69092	Loss: 118.059
+Training time 0:04:21.731750
+Epoch: 123 Average loss: 116.92
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 123)
+0/69092	Loss: 115.396
+12800/69092	Loss: 116.999
+25600/69092	Loss: 117.044
+38400/69092	Loss: 116.922
+51200/69092	Loss: 116.681
+64000/69092	Loss: 117.204
+Training time 0:04:13.355516
+Epoch: 124 Average loss: 116.84
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 124)
+0/69092	Loss: 114.354
+12800/69092	Loss: 116.758
+25600/69092	Loss: 117.844
+38400/69092	Loss: 116.776
+51200/69092	Loss: 116.723
+64000/69092	Loss: 116.333
+Training time 0:04:11.060562
+Epoch: 125 Average loss: 116.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 125)
+0/69092	Loss: 112.850
+12800/69092	Loss: 116.547
+25600/69092	Loss: 117.430
+38400/69092	Loss: 116.559
+51200/69092	Loss: 116.838
+64000/69092	Loss: 117.391
+Training time 0:04:11.748621
+Epoch: 126 Average loss: 116.94
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 126)
+0/69092	Loss: 122.874
+12800/69092	Loss: 115.833
+25600/69092	Loss: 116.628
+38400/69092	Loss: 117.270
+51200/69092	Loss: 116.436
+64000/69092	Loss: 116.940
+Training time 0:04:12.916334
+Epoch: 127 Average loss: 116.83
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 127)
+0/69092	Loss: 120.091
+12800/69092	Loss: 116.054
+25600/69092	Loss: 116.758
+38400/69092	Loss: 116.714
+51200/69092	Loss: 116.977
+64000/69092	Loss: 117.389
+Training time 0:04:19.136137
+Epoch: 128 Average loss: 116.78
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 128)
+0/69092	Loss: 120.740
+12800/69092	Loss: 117.049
+25600/69092	Loss: 117.354
+38400/69092	Loss: 116.619
+51200/69092	Loss: 116.406
+64000/69092	Loss: 116.879
+Training time 0:04:14.033693
+Epoch: 129 Average loss: 116.84
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 129)
+0/69092	Loss: 115.168
+12800/69092	Loss: 117.192
+25600/69092	Loss: 115.843
+38400/69092	Loss: 116.705
+51200/69092	Loss: 116.972
+64000/69092	Loss: 117.077
+Training time 0:04:12.246856
+Epoch: 130 Average loss: 116.65
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 130)
+0/69092	Loss: 112.333
+12800/69092	Loss: 116.003
+25600/69092	Loss: 117.295
+38400/69092	Loss: 116.347
+51200/69092	Loss: 117.229
+64000/69092	Loss: 117.151
+Training time 0:04:09.115987
+Epoch: 131 Average loss: 116.72
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 131)
+0/69092	Loss: 111.468
+12800/69092	Loss: 117.271
+25600/69092	Loss: 116.352
+38400/69092	Loss: 116.958
+51200/69092	Loss: 116.093
+64000/69092	Loss: 116.560
+Training time 0:04:06.089068
+Epoch: 132 Average loss: 116.62
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 132)
+0/69092	Loss: 122.202
+12800/69092	Loss: 116.612
+25600/69092	Loss: 116.396
+38400/69092	Loss: 116.750
+51200/69092	Loss: 117.098
+64000/69092	Loss: 116.652
+Training time 0:04:12.456707
+Epoch: 133 Average loss: 116.74
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 133)
+0/69092	Loss: 115.194
+12800/69092	Loss: 115.900
+25600/69092	Loss: 117.075
+38400/69092	Loss: 116.256
+51200/69092	Loss: 116.497
+64000/69092	Loss: 116.524
+Training time 0:04:19.269725
+Epoch: 134 Average loss: 116.48
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 134)
+0/69092	Loss: 117.595
+12800/69092	Loss: 116.274
+25600/69092	Loss: 116.078
+38400/69092	Loss: 116.369
+51200/69092	Loss: 116.956
+64000/69092	Loss: 116.922
+Training time 0:04:17.374130
+Epoch: 135 Average loss: 116.57
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 135)
+0/69092	Loss: 118.568
+12800/69092	Loss: 116.903
+25600/69092	Loss: 116.886
+38400/69092	Loss: 116.347
+51200/69092	Loss: 116.076
+64000/69092	Loss: 116.188
+Training time 0:04:24.367970
+Epoch: 136 Average loss: 116.50
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 136)
+0/69092	Loss: 111.307
+12800/69092	Loss: 116.186
+25600/69092	Loss: 116.851
+38400/69092	Loss: 116.367
+51200/69092	Loss: 117.102
+64000/69092	Loss: 116.760
+Training time 0:04:08.283412
+Epoch: 137 Average loss: 116.63
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 137)
+0/69092	Loss: 120.235
+12800/69092	Loss: 116.380
+25600/69092	Loss: 116.760
+38400/69092	Loss: 116.232
+51200/69092	Loss: 116.531
+64000/69092	Loss: 116.034
+Training time 0:04:11.104504
+Epoch: 138 Average loss: 116.44
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 138)
+0/69092	Loss: 118.149
+12800/69092	Loss: 116.341
+25600/69092	Loss: 116.744
+38400/69092	Loss: 116.054
+51200/69092	Loss: 116.238
+64000/69092	Loss: 116.862
+Training time 0:04:04.615421
+Epoch: 139 Average loss: 116.47
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 139)
+0/69092	Loss: 116.938
+12800/69092	Loss: 116.694
+25600/69092	Loss: 116.568
+38400/69092	Loss: 116.814
+51200/69092	Loss: 115.828
+64000/69092	Loss: 116.409
+Training time 0:04:13.500231
+Epoch: 140 Average loss: 116.43
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 140)
+0/69092	Loss: 120.534
+12800/69092	Loss: 116.519
+25600/69092	Loss: 116.369
+38400/69092	Loss: 115.763
+51200/69092	Loss: 116.506
+64000/69092	Loss: 116.365
+Training time 0:04:16.106278
+Epoch: 141 Average loss: 116.28
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 141)
+0/69092	Loss: 119.007
+12800/69092	Loss: 116.184
+25600/69092	Loss: 117.124
+38400/69092	Loss: 115.399
+51200/69092	Loss: 115.922
+64000/69092	Loss: 116.029
+Training time 0:04:20.728542
+Epoch: 142 Average loss: 116.21
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 142)
+0/69092	Loss: 112.271
+12800/69092	Loss: 116.729
+25600/69092	Loss: 115.879
+38400/69092	Loss: 117.016
+51200/69092	Loss: 116.293
+64000/69092	Loss: 116.261
+Training time 0:04:14.548097
+Epoch: 143 Average loss: 116.39
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 143)
+0/69092	Loss: 119.247
+12800/69092	Loss: 116.008
diff --git a/OAR.2066989.stderr b/OAR.2066989.stderr
new file mode 100644
index 0000000000000000000000000000000000000000..234323fdd0c0cd9b7dadab71ac41d247f46869b1
--- /dev/null
+++ b/OAR.2066989.stderr
@@ -0,0 +1,3 @@
+/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
+  warnings.warn(warning.format(ret))
+## OAR [2020-06-24 07:00:02] Job 2066989 KILLED ##
diff --git a/OAR.2066989.stdout b/OAR.2066989.stdout
new file mode 100644
index 0000000000000000000000000000000000000000..d530a05bea3bf17252ed2c1e75fa5b2dfa98a56e
--- /dev/null
+++ b/OAR.2066989.stdout
@@ -0,0 +1,3460 @@
+Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True)
+creare new diretory experiment: rendered_chairs/VAE_bs_64
+load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64)
+use 2 gpu who named:
+GeForce RTX 2080 Ti
+GeForce RTX 2080 Ti
+DataParallel(
+  (module): VAE(
+    (img_to_last_conv): Sequential(
+      (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (1): ReLU()
+      (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+    )
+    (last_conv_to_continuous_features): Sequential(
+      (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+    )
+    (features_to_hidden_continue): Sequential(
+      (0): Linear(in_features=256, out_features=20, bias=True)
+      (1): ReLU()
+    )
+    (latent_to_features): Sequential(
+      (0): Linear(in_features=10, out_features=256, bias=True)
+      (1): ReLU()
+    )
+    (features_to_img): Sequential(
+      (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1))
+      (1): ReLU()
+      (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (3): ReLU()
+      (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (5): ReLU()
+      (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (7): ReLU()
+      (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
+      (9): Sigmoid()
+    )
+  )
+)
+The number of parameters of model is 765335
+don't use continuous capacity
+=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 3)'
+0/69092	Loss: 168.710
+3200/69092	Loss: 151.090
+6400/69092	Loss: 149.554
+9600/69092	Loss: 147.097
+12800/69092	Loss: 149.283
+16000/69092	Loss: 147.124
+19200/69092	Loss: 148.296
+22400/69092	Loss: 151.390
+25600/69092	Loss: 149.540
+28800/69092	Loss: 148.538
+32000/69092	Loss: 146.801
+35200/69092	Loss: 146.608
+38400/69092	Loss: 147.409
+41600/69092	Loss: 141.844
+44800/69092	Loss: 148.554
+48000/69092	Loss: 149.620
+51200/69092	Loss: 146.300
+54400/69092	Loss: 150.148
+57600/69092	Loss: 146.875
+60800/69092	Loss: 143.943
+64000/69092	Loss: 147.783
+67200/69092	Loss: 147.213
+Training time 0:04:24.323380
+Epoch: 1 Average loss: 147.75
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 4)
+0/69092	Loss: 158.819
+3200/69092	Loss: 145.455
+6400/69092	Loss: 146.130
+9600/69092	Loss: 144.380
+12800/69092	Loss: 144.843
+16000/69092	Loss: 146.080
+19200/69092	Loss: 145.421
+22400/69092	Loss: 149.645
+25600/69092	Loss: 148.440
+28800/69092	Loss: 144.370
+32000/69092	Loss: 147.816
+35200/69092	Loss: 146.294
+38400/69092	Loss: 145.632
+41600/69092	Loss: 141.891
+44800/69092	Loss: 143.450
+48000/69092	Loss: 143.778
+51200/69092	Loss: 145.786
+54400/69092	Loss: 143.362
+57600/69092	Loss: 147.704
+60800/69092	Loss: 147.121
+64000/69092	Loss: 145.282
+67200/69092	Loss: 145.587
+Training time 0:04:20.176991
+Epoch: 2 Average loss: 145.67
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 5)
+0/69092	Loss: 134.195
+3200/69092	Loss: 148.996
+6400/69092	Loss: 142.480
+9600/69092	Loss: 141.951
+12800/69092	Loss: 144.894
+16000/69092	Loss: 142.587
+19200/69092	Loss: 143.194
+22400/69092	Loss: 144.316
+25600/69092	Loss: 142.355
+28800/69092	Loss: 145.405
+32000/69092	Loss: 142.902
+35200/69092	Loss: 146.418
+38400/69092	Loss: 144.190
+41600/69092	Loss: 143.508
+44800/69092	Loss: 142.121
+48000/69092	Loss: 144.655
+51200/69092	Loss: 143.216
+54400/69092	Loss: 145.905
+57600/69092	Loss: 144.233
+60800/69092	Loss: 143.225
+64000/69092	Loss: 143.747
+67200/69092	Loss: 144.372
+Training time 0:04:21.847400
+Epoch: 3 Average loss: 144.14
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 6)
+0/69092	Loss: 158.546
+3200/69092	Loss: 143.724
+6400/69092	Loss: 143.463
+9600/69092	Loss: 143.337
+12800/69092	Loss: 144.160
+16000/69092	Loss: 144.717
+19200/69092	Loss: 142.720
+22400/69092	Loss: 141.418
+25600/69092	Loss: 142.358
+28800/69092	Loss: 143.985
+32000/69092	Loss: 141.719
+35200/69092	Loss: 140.359
+38400/69092	Loss: 142.268
+41600/69092	Loss: 143.411
+44800/69092	Loss: 144.112
+48000/69092	Loss: 142.263
+51200/69092	Loss: 142.091
+54400/69092	Loss: 144.641
+57600/69092	Loss: 142.175
+60800/69092	Loss: 141.229
+64000/69092	Loss: 140.349
+67200/69092	Loss: 140.640
+Training time 0:04:28.338593
+Epoch: 4 Average loss: 142.68
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 7)
+0/69092	Loss: 142.651
+3200/69092	Loss: 140.940
+6400/69092	Loss: 141.995
+9600/69092	Loss: 143.163
+12800/69092	Loss: 139.080
+16000/69092	Loss: 142.381
+19200/69092	Loss: 139.068
+22400/69092	Loss: 142.262
+25600/69092	Loss: 142.301
+28800/69092	Loss: 144.625
+32000/69092	Loss: 143.733
+35200/69092	Loss: 139.129
+38400/69092	Loss: 140.834
+41600/69092	Loss: 140.503
+44800/69092	Loss: 143.628
+48000/69092	Loss: 140.086
+51200/69092	Loss: 142.102
+54400/69092	Loss: 142.008
+57600/69092	Loss: 143.115
+60800/69092	Loss: 142.930
+64000/69092	Loss: 139.570
+67200/69092	Loss: 143.483
+Training time 0:04:32.850446
+Epoch: 5 Average loss: 141.72
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 8)
+0/69092	Loss: 148.280
+3200/69092	Loss: 139.345
+6400/69092	Loss: 140.230
+9600/69092	Loss: 143.982
+12800/69092	Loss: 139.087
+16000/69092	Loss: 140.962
+19200/69092	Loss: 141.655
+22400/69092	Loss: 140.223
+25600/69092	Loss: 141.955
+28800/69092	Loss: 140.359
+32000/69092	Loss: 141.023
+35200/69092	Loss: 138.533
+38400/69092	Loss: 140.527
+41600/69092	Loss: 138.105
+44800/69092	Loss: 140.392
+48000/69092	Loss: 143.276
+51200/69092	Loss: 141.854
+54400/69092	Loss: 137.973
+57600/69092	Loss: 143.096
+60800/69092	Loss: 141.552
+64000/69092	Loss: 140.871
+67200/69092	Loss: 141.383
+Training time 0:04:28.358295
+Epoch: 6 Average loss: 140.77
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 9)
+0/69092	Loss: 151.288
+3200/69092	Loss: 139.086
+6400/69092	Loss: 139.084
+9600/69092	Loss: 142.941
+12800/69092	Loss: 138.658
+16000/69092	Loss: 139.222
+19200/69092	Loss: 141.122
+22400/69092	Loss: 140.593
+25600/69092	Loss: 140.055
+28800/69092	Loss: 140.370
+32000/69092	Loss: 139.670
+35200/69092	Loss: 137.626
+38400/69092	Loss: 138.915
+41600/69092	Loss: 141.240
+44800/69092	Loss: 140.973
+48000/69092	Loss: 137.559
+51200/69092	Loss: 138.119
+54400/69092	Loss: 142.163
+57600/69092	Loss: 139.065
+60800/69092	Loss: 141.348
+64000/69092	Loss: 139.424
+67200/69092	Loss: 137.497
+Training time 0:04:20.120376
+Epoch: 7 Average loss: 139.74
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 10)
+0/69092	Loss: 141.026
+3200/69092	Loss: 139.577
+6400/69092	Loss: 136.711
+9600/69092	Loss: 141.149
+12800/69092	Loss: 138.626
+16000/69092	Loss: 137.874
+19200/69092	Loss: 137.986
+22400/69092	Loss: 138.027
+25600/69092	Loss: 137.398
+28800/69092	Loss: 138.577
+32000/69092	Loss: 138.277
+35200/69092	Loss: 139.278
+38400/69092	Loss: 134.269
+41600/69092	Loss: 138.488
+44800/69092	Loss: 137.161
+48000/69092	Loss: 139.269
+51200/69092	Loss: 138.194
+54400/69092	Loss: 138.302
+57600/69092	Loss: 139.736
+60800/69092	Loss: 138.145
+64000/69092	Loss: 137.397
+67200/69092	Loss: 142.087
+Training time 0:04:18.076296
+Epoch: 8 Average loss: 138.50
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 11)
+0/69092	Loss: 142.430
+3200/69092	Loss: 135.373
+6400/69092	Loss: 136.746
+9600/69092	Loss: 138.606
+12800/69092	Loss: 137.819
+16000/69092	Loss: 137.245
+19200/69092	Loss: 140.270
+22400/69092	Loss: 137.765
+25600/69092	Loss: 137.542
+28800/69092	Loss: 137.094
+32000/69092	Loss: 137.280
+35200/69092	Loss: 135.271
+38400/69092	Loss: 138.115
+41600/69092	Loss: 138.030
+44800/69092	Loss: 133.132
+48000/69092	Loss: 136.096
+51200/69092	Loss: 137.447
+54400/69092	Loss: 136.824
+57600/69092	Loss: 138.901
+60800/69092	Loss: 135.466
+64000/69092	Loss: 137.750
+67200/69092	Loss: 135.623
+Training time 0:04:24.652008
+Epoch: 9 Average loss: 137.10
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 12)
+0/69092	Loss: 133.767
+3200/69092	Loss: 132.615
+6400/69092	Loss: 135.810
+9600/69092	Loss: 136.655
+12800/69092	Loss: 137.254
+16000/69092	Loss: 138.474
+19200/69092	Loss: 135.189
+22400/69092	Loss: 135.563
+25600/69092	Loss: 135.713
+28800/69092	Loss: 136.169
+32000/69092	Loss: 136.928
+35200/69092	Loss: 134.499
+38400/69092	Loss: 135.761
+41600/69092	Loss: 133.933
+44800/69092	Loss: 137.196
+48000/69092	Loss: 135.761
+51200/69092	Loss: 133.530
+54400/69092	Loss: 135.310
+57600/69092	Loss: 134.247
+60800/69092	Loss: 133.764
+64000/69092	Loss: 132.814
+67200/69092	Loss: 132.712
+Training time 0:04:27.168263
+Epoch: 10 Average loss: 135.18
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 13)
+0/69092	Loss: 133.262
+3200/69092	Loss: 132.734
+6400/69092	Loss: 132.997
+9600/69092	Loss: 133.191
+12800/69092	Loss: 135.774
+16000/69092	Loss: 131.620
+19200/69092	Loss: 132.652
+22400/69092	Loss: 130.358
+25600/69092	Loss: 133.336
+28800/69092	Loss: 134.207
+32000/69092	Loss: 130.676
+35200/69092	Loss: 135.177
+38400/69092	Loss: 130.273
+41600/69092	Loss: 133.683
+44800/69092	Loss: 132.092
+48000/69092	Loss: 131.892
+51200/69092	Loss: 129.759
+54400/69092	Loss: 132.611
+57600/69092	Loss: 130.502
+60800/69092	Loss: 130.160
+64000/69092	Loss: 131.685
+67200/69092	Loss: 127.816
+Training time 0:04:24.848130
+Epoch: 11 Average loss: 132.05
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 14)
+0/69092	Loss: 124.336
+3200/69092	Loss: 129.374
+6400/69092	Loss: 131.302
+9600/69092	Loss: 129.214
+12800/69092	Loss: 131.172
+16000/69092	Loss: 128.778
+19200/69092	Loss: 129.312
+22400/69092	Loss: 131.400
+25600/69092	Loss: 130.371
+28800/69092	Loss: 127.324
+32000/69092	Loss: 129.498
+35200/69092	Loss: 131.702
+38400/69092	Loss: 128.119
+41600/69092	Loss: 129.399
+44800/69092	Loss: 129.674
+48000/69092	Loss: 128.298
+51200/69092	Loss: 128.708
+54400/69092	Loss: 127.717
+57600/69092	Loss: 130.327
+60800/69092	Loss: 129.181
+64000/69092	Loss: 128.923
+67200/69092	Loss: 128.455
+Training time 0:04:25.437912
+Epoch: 12 Average loss: 129.40
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 15)
+0/69092	Loss: 134.263
+3200/69092	Loss: 127.368
+6400/69092	Loss: 129.353
+9600/69092	Loss: 129.035
+12800/69092	Loss: 129.155
+16000/69092	Loss: 132.011
+19200/69092	Loss: 128.835
+22400/69092	Loss: 127.944
+25600/69092	Loss: 129.106
+28800/69092	Loss: 128.343
+32000/69092	Loss: 128.297
+35200/69092	Loss: 126.306
+38400/69092	Loss: 129.187
+41600/69092	Loss: 125.339
+44800/69092	Loss: 127.106
+48000/69092	Loss: 127.993
+51200/69092	Loss: 126.170
+54400/69092	Loss: 123.472
+57600/69092	Loss: 127.903
+60800/69092	Loss: 128.256
+64000/69092	Loss: 127.095
+67200/69092	Loss: 127.681
+Training time 0:04:32.032921
+Epoch: 13 Average loss: 127.95
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 16)
+0/69092	Loss: 131.333
+3200/69092	Loss: 126.908
+6400/69092	Loss: 127.240
+9600/69092	Loss: 125.892
+12800/69092	Loss: 128.212
+16000/69092	Loss: 127.065
+19200/69092	Loss: 128.321
+22400/69092	Loss: 128.990
+25600/69092	Loss: 128.002
+28800/69092	Loss: 128.531
+32000/69092	Loss: 124.950
+35200/69092	Loss: 127.374
+38400/69092	Loss: 124.957
+41600/69092	Loss: 123.737
+44800/69092	Loss: 127.220
+48000/69092	Loss: 125.341
+51200/69092	Loss: 127.031
+54400/69092	Loss: 126.577
+57600/69092	Loss: 127.925
+60800/69092	Loss: 125.480
+64000/69092	Loss: 125.735
+67200/69092	Loss: 129.284
+Training time 0:04:26.086614
+Epoch: 14 Average loss: 126.97
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 17)
+0/69092	Loss: 133.018
+3200/69092	Loss: 124.639
+6400/69092	Loss: 127.398
+9600/69092	Loss: 128.027
+12800/69092	Loss: 127.694
+16000/69092	Loss: 127.104
+19200/69092	Loss: 123.045
+22400/69092	Loss: 126.155
+25600/69092	Loss: 127.054
+28800/69092	Loss: 128.421
+32000/69092	Loss: 123.365
+35200/69092	Loss: 127.267
+38400/69092	Loss: 127.019
+41600/69092	Loss: 125.752
+44800/69092	Loss: 127.605
+48000/69092	Loss: 125.695
+51200/69092	Loss: 124.555
+54400/69092	Loss: 127.477
+57600/69092	Loss: 128.311
+60800/69092	Loss: 128.544
+64000/69092	Loss: 125.838
+67200/69092	Loss: 125.219
+Training time 0:04:26.177394
+Epoch: 15 Average loss: 126.43
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 18)
+0/69092	Loss: 129.000
+3200/69092	Loss: 126.913
+6400/69092	Loss: 126.775
+9600/69092	Loss: 125.272
+12800/69092	Loss: 128.050
+16000/69092	Loss: 123.353
+19200/69092	Loss: 125.428
+22400/69092	Loss: 125.317
+25600/69092	Loss: 126.913
+28800/69092	Loss: 124.705
+32000/69092	Loss: 124.564
+35200/69092	Loss: 123.664
+38400/69092	Loss: 126.124
+41600/69092	Loss: 125.927
+44800/69092	Loss: 124.006
+48000/69092	Loss: 125.397
+51200/69092	Loss: 121.915
+54400/69092	Loss: 126.219
+57600/69092	Loss: 125.470
+60800/69092	Loss: 125.073
+64000/69092	Loss: 123.041
+67200/69092	Loss: 125.522
+Training time 0:04:17.666420
+Epoch: 16 Average loss: 125.19
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 19)
+0/69092	Loss: 130.460
+3200/69092	Loss: 125.000
+6400/69092	Loss: 122.856
+9600/69092	Loss: 124.084
+12800/69092	Loss: 123.778
+16000/69092	Loss: 122.321
+19200/69092	Loss: 124.423
+22400/69092	Loss: 125.071
+25600/69092	Loss: 124.913
+28800/69092	Loss: 125.839
+32000/69092	Loss: 123.424
+35200/69092	Loss: 124.882
+38400/69092	Loss: 123.690
+41600/69092	Loss: 125.155
+44800/69092	Loss: 124.251
+48000/69092	Loss: 120.418
+51200/69092	Loss: 123.887
+54400/69092	Loss: 122.937
+57600/69092	Loss: 123.103
+60800/69092	Loss: 122.097
+64000/69092	Loss: 122.104
+67200/69092	Loss: 126.776
+Training time 0:04:17.206166
+Epoch: 17 Average loss: 123.90
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 20)
+0/69092	Loss: 125.709
+3200/69092	Loss: 122.481
+6400/69092	Loss: 124.142
+9600/69092	Loss: 125.479
+12800/69092	Loss: 122.792
+16000/69092	Loss: 122.145
+19200/69092	Loss: 122.566
+22400/69092	Loss: 124.190
+25600/69092	Loss: 123.891
+28800/69092	Loss: 122.902
+32000/69092	Loss: 124.310
+35200/69092	Loss: 122.531
+38400/69092	Loss: 121.952
+41600/69092	Loss: 121.670
+44800/69092	Loss: 121.877
+48000/69092	Loss: 121.542
+51200/69092	Loss: 121.311
+54400/69092	Loss: 123.462
+57600/69092	Loss: 122.085
+60800/69092	Loss: 122.979
+64000/69092	Loss: 122.467
+67200/69092	Loss: 125.233
+Training time 0:04:21.616950
+Epoch: 18 Average loss: 122.98
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 21)
+0/69092	Loss: 131.789
+3200/69092	Loss: 122.443
+6400/69092	Loss: 122.318
+9600/69092	Loss: 122.900
+12800/69092	Loss: 122.974
+16000/69092	Loss: 121.412
+19200/69092	Loss: 120.611
+22400/69092	Loss: 122.656
+25600/69092	Loss: 122.382
+28800/69092	Loss: 122.912
+32000/69092	Loss: 123.287
+35200/69092	Loss: 123.464
+38400/69092	Loss: 124.760
+41600/69092	Loss: 123.023
+44800/69092	Loss: 120.572
+48000/69092	Loss: 121.521
+51200/69092	Loss: 121.732
+54400/69092	Loss: 121.177
+57600/69092	Loss: 121.043
+60800/69092	Loss: 122.161
+64000/69092	Loss: 123.240
+67200/69092	Loss: 122.289
+Training time 0:04:23.710109
+Epoch: 19 Average loss: 122.31
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 22)
+0/69092	Loss: 132.011
+3200/69092	Loss: 122.395
+6400/69092	Loss: 122.687
+9600/69092	Loss: 119.839
+12800/69092	Loss: 120.750
+16000/69092	Loss: 121.405
+19200/69092	Loss: 123.091
+22400/69092	Loss: 121.585
+25600/69092	Loss: 122.142
+28800/69092	Loss: 124.710
+32000/69092	Loss: 120.898
+35200/69092	Loss: 122.051
+38400/69092	Loss: 121.603
+41600/69092	Loss: 125.219
+44800/69092	Loss: 120.014
+48000/69092	Loss: 121.117
+51200/69092	Loss: 120.134
+54400/69092	Loss: 120.445
+57600/69092	Loss: 123.741
+60800/69092	Loss: 121.813
+64000/69092	Loss: 123.181
+67200/69092	Loss: 119.608
+Training time 0:04:22.895842
+Epoch: 20 Average loss: 121.77
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 23)
+0/69092	Loss: 119.060
+3200/69092	Loss: 124.563
+6400/69092	Loss: 119.417
+9600/69092	Loss: 120.945
+12800/69092	Loss: 124.082
+16000/69092	Loss: 118.880
+19200/69092	Loss: 122.143
+22400/69092	Loss: 122.192
+25600/69092	Loss: 120.804
+28800/69092	Loss: 120.837
+32000/69092	Loss: 121.632
+35200/69092	Loss: 120.909
+38400/69092	Loss: 120.049
+41600/69092	Loss: 120.950
+44800/69092	Loss: 123.908
+48000/69092	Loss: 123.852
+51200/69092	Loss: 121.084
+54400/69092	Loss: 122.443
+57600/69092	Loss: 119.249
+60800/69092	Loss: 121.478
+64000/69092	Loss: 121.191
+67200/69092	Loss: 119.711
+Training time 0:04:25.586193
+Epoch: 21 Average loss: 121.49
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 24)
+0/69092	Loss: 147.141
+3200/69092	Loss: 122.941
+6400/69092	Loss: 121.454
+9600/69092	Loss: 121.708
+12800/69092	Loss: 120.407
+16000/69092	Loss: 120.226
+19200/69092	Loss: 120.991
+22400/69092	Loss: 121.804
+25600/69092	Loss: 120.271
+28800/69092	Loss: 119.301
+32000/69092	Loss: 120.266
+35200/69092	Loss: 119.405
+38400/69092	Loss: 122.874
+41600/69092	Loss: 121.870
+44800/69092	Loss: 120.460
+48000/69092	Loss: 122.500
+51200/69092	Loss: 122.703
+54400/69092	Loss: 120.388
+57600/69092	Loss: 121.708
+60800/69092	Loss: 121.478
+64000/69092	Loss: 119.001
+67200/69092	Loss: 120.973
+Training time 0:04:25.966213
+Epoch: 22 Average loss: 121.14
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 25)
+0/69092	Loss: 137.482
+3200/69092	Loss: 122.287
+6400/69092	Loss: 122.076
+9600/69092	Loss: 121.104
+12800/69092	Loss: 120.438
+16000/69092	Loss: 122.045
+19200/69092	Loss: 122.709
+22400/69092	Loss: 120.998
+25600/69092	Loss: 120.313
+28800/69092	Loss: 121.337
+32000/69092	Loss: 121.268
+35200/69092	Loss: 121.532
+38400/69092	Loss: 121.357
+41600/69092	Loss: 120.043
+44800/69092	Loss: 120.123
+48000/69092	Loss: 120.658
+51200/69092	Loss: 117.727
+54400/69092	Loss: 120.464
+57600/69092	Loss: 122.582
+60800/69092	Loss: 120.352
+64000/69092	Loss: 121.307
+67200/69092	Loss: 120.479
+Training time 0:04:26.382108
+Epoch: 23 Average loss: 120.90
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 26)
+0/69092	Loss: 118.231
+3200/69092	Loss: 120.758
+6400/69092	Loss: 122.165
+9600/69092	Loss: 121.244
+12800/69092	Loss: 121.333
+16000/69092	Loss: 120.261
+19200/69092	Loss: 121.975
+22400/69092	Loss: 120.148
+25600/69092	Loss: 119.612
+28800/69092	Loss: 120.985
+32000/69092	Loss: 121.173
+35200/69092	Loss: 121.716
+38400/69092	Loss: 118.881
+41600/69092	Loss: 120.434
+44800/69092	Loss: 121.482
+48000/69092	Loss: 122.284
+51200/69092	Loss: 120.594
+54400/69092	Loss: 119.384
+57600/69092	Loss: 119.849
+60800/69092	Loss: 121.753
+64000/69092	Loss: 119.563
+67200/69092	Loss: 116.662
+Training time 0:04:25.570850
+Epoch: 24 Average loss: 120.61
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 27)
+0/69092	Loss: 108.304
+3200/69092	Loss: 119.500
+6400/69092	Loss: 122.795
+9600/69092	Loss: 122.464
+12800/69092	Loss: 119.600
+16000/69092	Loss: 120.985
+19200/69092	Loss: 122.724
+22400/69092	Loss: 119.015
+25600/69092	Loss: 118.877
+28800/69092	Loss: 119.459
+32000/69092	Loss: 121.005
+35200/69092	Loss: 119.976
+38400/69092	Loss: 122.819
+41600/69092	Loss: 119.724
+44800/69092	Loss: 119.924
+48000/69092	Loss: 119.103
+51200/69092	Loss: 120.916
+54400/69092	Loss: 121.308
+57600/69092	Loss: 120.914
+60800/69092	Loss: 121.022
+64000/69092	Loss: 118.564
+67200/69092	Loss: 119.804
+Training time 0:04:18.949771
+Epoch: 25 Average loss: 120.49
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 28)
+0/69092	Loss: 118.364
+3200/69092	Loss: 120.370
+6400/69092	Loss: 120.641
+9600/69092	Loss: 119.070
+12800/69092	Loss: 119.905
+16000/69092	Loss: 119.110
+19200/69092	Loss: 121.879
+22400/69092	Loss: 121.081
+25600/69092	Loss: 122.831
+28800/69092	Loss: 121.406
+32000/69092	Loss: 121.728
+35200/69092	Loss: 120.143
+38400/69092	Loss: 122.315
+41600/69092	Loss: 117.706
+44800/69092	Loss: 119.317
+48000/69092	Loss: 119.798
+51200/69092	Loss: 119.000
+54400/69092	Loss: 119.467
+57600/69092	Loss: 120.210
+60800/69092	Loss: 119.858
+64000/69092	Loss: 119.213
+67200/69092	Loss: 119.887
+Training time 0:04:25.713850
+Epoch: 26 Average loss: 120.20
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 29)
+0/69092	Loss: 118.972
+3200/69092	Loss: 121.785
+6400/69092	Loss: 120.323
+9600/69092	Loss: 120.396
+12800/69092	Loss: 118.445
+16000/69092	Loss: 121.621
+19200/69092	Loss: 120.981
+22400/69092	Loss: 119.977
+25600/69092	Loss: 120.309
+28800/69092	Loss: 119.998
+32000/69092	Loss: 121.007
+35200/69092	Loss: 117.874
+38400/69092	Loss: 120.944
+41600/69092	Loss: 119.022
+44800/69092	Loss: 119.192
+48000/69092	Loss: 119.571
+51200/69092	Loss: 120.265
+54400/69092	Loss: 119.264
+57600/69092	Loss: 120.044
+60800/69092	Loss: 119.642
+64000/69092	Loss: 119.094
+67200/69092	Loss: 121.274
+Training time 0:04:32.947963
+Epoch: 27 Average loss: 120.08
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 30)
+0/69092	Loss: 105.711
+3200/69092	Loss: 120.707
+6400/69092	Loss: 119.270
+9600/69092	Loss: 118.434
+12800/69092	Loss: 118.723
+16000/69092	Loss: 121.686
+19200/69092	Loss: 119.470
+22400/69092	Loss: 121.206
+25600/69092	Loss: 118.162
+28800/69092	Loss: 119.135
+32000/69092	Loss: 119.909
+35200/69092	Loss: 122.402
+38400/69092	Loss: 121.348
+41600/69092	Loss: 121.857
+44800/69092	Loss: 118.933
+48000/69092	Loss: 120.389
+51200/69092	Loss: 118.926
+54400/69092	Loss: 120.242
+57600/69092	Loss: 118.897
+60800/69092	Loss: 118.025
+64000/69092	Loss: 119.202
+67200/69092	Loss: 118.477
+Training time 0:04:38.239052
+Epoch: 28 Average loss: 119.79
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 31)
+0/69092	Loss: 125.045
+3200/69092	Loss: 119.077
+6400/69092	Loss: 121.288
+9600/69092	Loss: 118.648
+12800/69092	Loss: 117.952
+16000/69092	Loss: 120.929
+19200/69092	Loss: 118.522
+22400/69092	Loss: 119.540
+25600/69092	Loss: 117.916
+28800/69092	Loss: 121.027
+32000/69092	Loss: 120.191
+35200/69092	Loss: 119.669
+38400/69092	Loss: 120.919
+41600/69092	Loss: 118.882
+44800/69092	Loss: 121.225
+48000/69092	Loss: 119.187
+51200/69092	Loss: 119.246
+54400/69092	Loss: 120.123
+57600/69092	Loss: 120.759
+60800/69092	Loss: 118.614
+64000/69092	Loss: 119.713
+67200/69092	Loss: 119.882
+Training time 0:04:30.982903
+Epoch: 29 Average loss: 119.67
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 32)
+0/69092	Loss: 116.535
+3200/69092	Loss: 120.467
+6400/69092	Loss: 120.213
+9600/69092	Loss: 116.316
+12800/69092	Loss: 122.133
+16000/69092	Loss: 118.893
+19200/69092	Loss: 119.812
+22400/69092	Loss: 121.830
+25600/69092	Loss: 118.437
+28800/69092	Loss: 119.630
+32000/69092	Loss: 119.669
+35200/69092	Loss: 117.338
+38400/69092	Loss: 118.764
+41600/69092	Loss: 118.184
+44800/69092	Loss: 118.814
+48000/69092	Loss: 121.905
+51200/69092	Loss: 119.987
+54400/69092	Loss: 117.650
+57600/69092	Loss: 120.923
+60800/69092	Loss: 119.119
+64000/69092	Loss: 120.850
+67200/69092	Loss: 119.152
+Training time 0:04:32.173868
+Epoch: 30 Average loss: 119.59
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 33)
+0/69092	Loss: 116.206
+3200/69092	Loss: 120.007
+6400/69092	Loss: 120.306
+9600/69092	Loss: 120.622
+12800/69092	Loss: 118.230
+16000/69092	Loss: 119.093
+19200/69092	Loss: 122.371
+22400/69092	Loss: 117.925
+25600/69092	Loss: 121.133
+28800/69092	Loss: 119.946
+32000/69092	Loss: 119.513
+35200/69092	Loss: 120.525
+38400/69092	Loss: 116.965
+41600/69092	Loss: 119.378
+44800/69092	Loss: 116.394
+48000/69092	Loss: 118.768
+51200/69092	Loss: 119.274
+54400/69092	Loss: 118.630
+57600/69092	Loss: 117.748
+60800/69092	Loss: 118.896
+64000/69092	Loss: 118.875
+67200/69092	Loss: 118.516
+Training time 0:04:29.045180
+Epoch: 31 Average loss: 119.29
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 34)
+0/69092	Loss: 117.266
+3200/69092	Loss: 118.274
+6400/69092	Loss: 117.234
+9600/69092	Loss: 120.030
+12800/69092	Loss: 119.236
+16000/69092	Loss: 120.456
+19200/69092	Loss: 120.226
+22400/69092	Loss: 120.690
+25600/69092	Loss: 117.134
+28800/69092	Loss: 117.551
+32000/69092	Loss: 118.243
+35200/69092	Loss: 120.714
+38400/69092	Loss: 117.411
+41600/69092	Loss: 121.130
+44800/69092	Loss: 118.548
+48000/69092	Loss: 119.227
+51200/69092	Loss: 119.998
+54400/69092	Loss: 119.477
+57600/69092	Loss: 120.617
+60800/69092	Loss: 118.561
+64000/69092	Loss: 118.560
+67200/69092	Loss: 119.088
+Training time 0:04:29.912910
+Epoch: 32 Average loss: 119.23
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 35)
+0/69092	Loss: 123.715
+3200/69092	Loss: 119.440
+6400/69092	Loss: 118.955
+9600/69092	Loss: 117.991
+12800/69092	Loss: 120.905
+16000/69092	Loss: 118.625
+19200/69092	Loss: 120.808
+22400/69092	Loss: 117.325
+25600/69092	Loss: 120.590
+28800/69092	Loss: 120.715
+32000/69092	Loss: 117.795
+35200/69092	Loss: 117.978
+38400/69092	Loss: 118.461
+41600/69092	Loss: 117.702
+44800/69092	Loss: 118.960
+48000/69092	Loss: 120.560
+51200/69092	Loss: 116.987
+54400/69092	Loss: 120.304
+57600/69092	Loss: 119.230
+60800/69092	Loss: 117.759
+64000/69092	Loss: 120.255
+67200/69092	Loss: 118.699
+Training time 0:04:33.274534
+Epoch: 33 Average loss: 119.11
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 36)
+0/69092	Loss: 118.849
+3200/69092	Loss: 120.621
+6400/69092	Loss: 119.201
+9600/69092	Loss: 118.597
+12800/69092	Loss: 119.319
+16000/69092	Loss: 117.364
+19200/69092	Loss: 118.661
+22400/69092	Loss: 117.795
+25600/69092	Loss: 119.699
+28800/69092	Loss: 120.421
+32000/69092	Loss: 118.955
+35200/69092	Loss: 118.800
+38400/69092	Loss: 118.993
+41600/69092	Loss: 120.018
+44800/69092	Loss: 118.363
+48000/69092	Loss: 119.996
+51200/69092	Loss: 120.001
+54400/69092	Loss: 118.896
+57600/69092	Loss: 116.693
+60800/69092	Loss: 121.120
+64000/69092	Loss: 118.783
+67200/69092	Loss: 120.760
+Training time 0:04:27.301002
+Epoch: 34 Average loss: 119.10
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 37)
+0/69092	Loss: 117.403
+3200/69092	Loss: 119.066
+6400/69092	Loss: 118.569
+9600/69092	Loss: 119.955
+12800/69092	Loss: 118.320
+16000/69092	Loss: 118.868
+19200/69092	Loss: 118.263
+22400/69092	Loss: 118.127
+25600/69092	Loss: 118.569
+28800/69092	Loss: 118.432
+32000/69092	Loss: 117.366
+35200/69092	Loss: 118.409
+38400/69092	Loss: 119.698
+41600/69092	Loss: 118.692
+44800/69092	Loss: 119.147
+48000/69092	Loss: 117.626
+51200/69092	Loss: 120.895
+54400/69092	Loss: 118.511
+57600/69092	Loss: 119.247
+60800/69092	Loss: 118.111
+64000/69092	Loss: 120.180
+67200/69092	Loss: 117.345
+Training time 0:04:26.693822
+Epoch: 35 Average loss: 118.71
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 38)
+0/69092	Loss: 126.114
+3200/69092	Loss: 120.061
+6400/69092	Loss: 117.689
+9600/69092	Loss: 119.253
+12800/69092	Loss: 119.081
+16000/69092	Loss: 120.007
+19200/69092	Loss: 118.019
+22400/69092	Loss: 117.523
+25600/69092	Loss: 117.614
+28800/69092	Loss: 120.150
+32000/69092	Loss: 119.956
+35200/69092	Loss: 116.728
+38400/69092	Loss: 117.896
+41600/69092	Loss: 117.262
+44800/69092	Loss: 116.199
+48000/69092	Loss: 118.588
+51200/69092	Loss: 116.918
+54400/69092	Loss: 117.918
+57600/69092	Loss: 122.362
+60800/69092	Loss: 118.200
+64000/69092	Loss: 119.610
+67200/69092	Loss: 119.881
+Training time 0:04:28.605144
+Epoch: 36 Average loss: 118.68
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 39)
+0/69092	Loss: 116.029
+3200/69092	Loss: 119.409
+6400/69092	Loss: 117.547
+9600/69092	Loss: 120.324
+12800/69092	Loss: 119.865
+16000/69092	Loss: 117.831
+19200/69092	Loss: 119.817
+22400/69092	Loss: 120.161
+25600/69092	Loss: 119.740
+28800/69092	Loss: 119.457
+32000/69092	Loss: 118.670
+35200/69092	Loss: 115.878
+38400/69092	Loss: 118.448
+41600/69092	Loss: 119.814
+44800/69092	Loss: 120.318
+48000/69092	Loss: 117.253
+51200/69092	Loss: 118.179
+54400/69092	Loss: 116.454
+57600/69092	Loss: 118.137
+60800/69092	Loss: 117.428
+64000/69092	Loss: 117.346
+67200/69092	Loss: 117.489
+Training time 0:04:26.394531
+Epoch: 37 Average loss: 118.54
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 40)
+0/69092	Loss: 131.857
+3200/69092	Loss: 119.845
+6400/69092	Loss: 118.204
+9600/69092	Loss: 119.427
+12800/69092	Loss: 118.579
+16000/69092	Loss: 118.246
+19200/69092	Loss: 117.630
+22400/69092	Loss: 118.912
+25600/69092	Loss: 118.977
+28800/69092	Loss: 120.189
+32000/69092	Loss: 119.178
+35200/69092	Loss: 120.338
+38400/69092	Loss: 119.431
+41600/69092	Loss: 116.851
+44800/69092	Loss: 118.863
+48000/69092	Loss: 117.607
+51200/69092	Loss: 120.131
+54400/69092	Loss: 116.522
+57600/69092	Loss: 117.548
+60800/69092	Loss: 120.433
+64000/69092	Loss: 119.288
+67200/69092	Loss: 117.617
+Training time 0:04:28.231272
+Epoch: 38 Average loss: 118.76
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 41)
+0/69092	Loss: 104.315
+3200/69092	Loss: 118.207
+6400/69092	Loss: 118.797
+9600/69092	Loss: 117.818
+12800/69092	Loss: 119.333
+16000/69092	Loss: 118.367
+19200/69092	Loss: 117.582
+22400/69092	Loss: 118.845
+25600/69092	Loss: 118.929
+28800/69092	Loss: 118.353
+32000/69092	Loss: 116.249
+35200/69092	Loss: 117.122
+38400/69092	Loss: 117.133
+41600/69092	Loss: 118.203
+44800/69092	Loss: 118.386
+48000/69092	Loss: 119.663
+51200/69092	Loss: 119.400
+54400/69092	Loss: 118.007
+57600/69092	Loss: 118.821
+60800/69092	Loss: 117.460
+64000/69092	Loss: 120.259
+67200/69092	Loss: 117.853
+Training time 0:04:36.544689
+Epoch: 39 Average loss: 118.36
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 42)
+0/69092	Loss: 115.324
+3200/69092	Loss: 118.398
+6400/69092	Loss: 119.789
+9600/69092	Loss: 118.277
+12800/69092	Loss: 118.077
+16000/69092	Loss: 119.158
+19200/69092	Loss: 118.147
+22400/69092	Loss: 118.761
+25600/69092	Loss: 117.942
+28800/69092	Loss: 118.611
+32000/69092	Loss: 117.219
+35200/69092	Loss: 116.300
+38400/69092	Loss: 119.515
+41600/69092	Loss: 118.987
+44800/69092	Loss: 118.719
+48000/69092	Loss: 117.598
+51200/69092	Loss: 117.573
+54400/69092	Loss: 119.454
+57600/69092	Loss: 118.737
+60800/69092	Loss: 119.045
+64000/69092	Loss: 116.808
+67200/69092	Loss: 117.400
+Training time 0:04:33.331351
+Epoch: 40 Average loss: 118.27
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 43)
+0/69092	Loss: 118.771
+3200/69092	Loss: 116.662
+6400/69092	Loss: 117.344
+9600/69092	Loss: 117.850
+12800/69092	Loss: 118.028
+16000/69092	Loss: 117.963
+19200/69092	Loss: 116.616
+22400/69092	Loss: 119.128
+25600/69092	Loss: 117.621
+28800/69092	Loss: 117.808
+32000/69092	Loss: 118.379
+35200/69092	Loss: 119.555
+38400/69092	Loss: 118.062
+41600/69092	Loss: 120.114
+44800/69092	Loss: 119.300
+48000/69092	Loss: 119.374
+51200/69092	Loss: 118.337
+54400/69092	Loss: 117.450
+57600/69092	Loss: 118.320
+60800/69092	Loss: 116.882
+64000/69092	Loss: 118.007
+67200/69092	Loss: 118.956
+Training time 0:04:29.097078
+Epoch: 41 Average loss: 118.27
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 44)
+0/69092	Loss: 121.785
+3200/69092	Loss: 118.478
+6400/69092	Loss: 119.252
+9600/69092	Loss: 116.702
+12800/69092	Loss: 117.992
+16000/69092	Loss: 117.752
+19200/69092	Loss: 120.084
+22400/69092	Loss: 118.588
+25600/69092	Loss: 117.626
+28800/69092	Loss: 118.204
+32000/69092	Loss: 118.521
+35200/69092	Loss: 118.790
+38400/69092	Loss: 115.994
+41600/69092	Loss: 117.095
+44800/69092	Loss: 119.387
+48000/69092	Loss: 119.568
+51200/69092	Loss: 118.056
+54400/69092	Loss: 119.010
+57600/69092	Loss: 118.281
+60800/69092	Loss: 116.275
+64000/69092	Loss: 118.264
+67200/69092	Loss: 118.857
+Training time 0:04:34.029356
+Epoch: 42 Average loss: 118.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 45)
+0/69092	Loss: 123.996
+3200/69092	Loss: 116.337
+6400/69092	Loss: 115.972
+9600/69092	Loss: 117.151
+12800/69092	Loss: 118.222
+16000/69092	Loss: 117.206
+19200/69092	Loss: 117.800
+22400/69092	Loss: 119.091
+25600/69092	Loss: 118.343
+28800/69092	Loss: 117.973
+32000/69092	Loss: 118.411
+35200/69092	Loss: 118.765
+38400/69092	Loss: 117.752
+41600/69092	Loss: 116.759
+44800/69092	Loss: 118.769
+48000/69092	Loss: 115.599
+51200/69092	Loss: 116.894
+54400/69092	Loss: 118.179
+57600/69092	Loss: 118.572
+60800/69092	Loss: 119.989
+64000/69092	Loss: 119.213
+67200/69092	Loss: 119.978
+Training time 0:04:14.785945
+Epoch: 43 Average loss: 117.97
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 46)
+0/69092	Loss: 106.408
+3200/69092	Loss: 116.920
+6400/69092	Loss: 118.497
+9600/69092	Loss: 117.738
+12800/69092	Loss: 117.219
+16000/69092	Loss: 116.886
+19200/69092	Loss: 116.969
+22400/69092	Loss: 116.356
+25600/69092	Loss: 118.912
+28800/69092	Loss: 116.484
+32000/69092	Loss: 115.970
+35200/69092	Loss: 118.229
+38400/69092	Loss: 118.897
+41600/69092	Loss: 118.444
+44800/69092	Loss: 119.632
+48000/69092	Loss: 119.609
+51200/69092	Loss: 119.555
+54400/69092	Loss: 117.546
+57600/69092	Loss: 118.634
+60800/69092	Loss: 117.183
+64000/69092	Loss: 117.965
+67200/69092	Loss: 115.849
+Training time 0:04:21.044989
+Epoch: 44 Average loss: 117.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 47)
+0/69092	Loss: 120.892
+3200/69092	Loss: 118.694
+6400/69092	Loss: 118.532
+9600/69092	Loss: 116.084
+12800/69092	Loss: 118.203
+16000/69092	Loss: 117.872
+19200/69092	Loss: 118.580
+22400/69092	Loss: 118.333
+25600/69092	Loss: 117.916
+28800/69092	Loss: 116.091
+32000/69092	Loss: 118.709
+35200/69092	Loss: 116.751
+38400/69092	Loss: 118.845
+41600/69092	Loss: 116.645
+44800/69092	Loss: 119.898
+48000/69092	Loss: 117.519
+51200/69092	Loss: 117.996
+54400/69092	Loss: 118.353
+57600/69092	Loss: 117.601
+60800/69092	Loss: 116.375
+64000/69092	Loss: 118.261
+67200/69092	Loss: 115.889
+Training time 0:04:12.758008
+Epoch: 45 Average loss: 117.74
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 48)
+0/69092	Loss: 118.087
+3200/69092	Loss: 117.098
+6400/69092	Loss: 118.501
+9600/69092	Loss: 116.625
+12800/69092	Loss: 119.324
+16000/69092	Loss: 119.308
+19200/69092	Loss: 117.987
+22400/69092	Loss: 117.006
+25600/69092	Loss: 117.740
+28800/69092	Loss: 117.534
+32000/69092	Loss: 117.054
+35200/69092	Loss: 118.291
+38400/69092	Loss: 115.554
+41600/69092	Loss: 115.861
+44800/69092	Loss: 118.069
+48000/69092	Loss: 119.460
+51200/69092	Loss: 118.501
+54400/69092	Loss: 117.221
+57600/69092	Loss: 116.807
+60800/69092	Loss: 116.986
+64000/69092	Loss: 118.153
+67200/69092	Loss: 117.880
+Training time 0:04:20.462099
+Epoch: 46 Average loss: 117.73
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 49)
+0/69092	Loss: 125.376
+3200/69092	Loss: 118.748
+6400/69092	Loss: 116.575
+9600/69092	Loss: 119.625
+12800/69092	Loss: 117.221
+16000/69092	Loss: 119.347
+19200/69092	Loss: 118.588
+22400/69092	Loss: 116.669
+25600/69092	Loss: 118.300
+28800/69092	Loss: 118.447
+32000/69092	Loss: 117.466
+35200/69092	Loss: 117.586
+38400/69092	Loss: 116.847
+41600/69092	Loss: 119.315
+44800/69092	Loss: 116.312
+48000/69092	Loss: 117.635
+51200/69092	Loss: 116.860
+54400/69092	Loss: 115.944
+57600/69092	Loss: 118.172
+60800/69092	Loss: 117.511
+64000/69092	Loss: 116.628
+67200/69092	Loss: 118.540
+Training time 0:04:20.977065
+Epoch: 47 Average loss: 117.77
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 50)
+0/69092	Loss: 116.650
+3200/69092	Loss: 117.711
+6400/69092	Loss: 117.896
+9600/69092	Loss: 117.998
+12800/69092	Loss: 117.463
+16000/69092	Loss: 119.810
+19200/69092	Loss: 117.047
+22400/69092	Loss: 116.851
+25600/69092	Loss: 118.149
+28800/69092	Loss: 117.825
+32000/69092	Loss: 118.743
+35200/69092	Loss: 116.654
+38400/69092	Loss: 117.213
+41600/69092	Loss: 115.864
+44800/69092	Loss: 118.279
+48000/69092	Loss: 117.977
+51200/69092	Loss: 119.500
+54400/69092	Loss: 116.919
+57600/69092	Loss: 115.241
+60800/69092	Loss: 120.465
+64000/69092	Loss: 116.324
+67200/69092	Loss: 117.485
+Training time 0:04:32.062968
+Epoch: 48 Average loss: 117.64
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 51)
+0/69092	Loss: 109.422
+3200/69092	Loss: 118.779
+6400/69092	Loss: 114.385
+9600/69092	Loss: 118.288
+12800/69092	Loss: 117.950
+16000/69092	Loss: 117.745
+19200/69092	Loss: 118.373
+22400/69092	Loss: 117.894
+25600/69092	Loss: 116.823
+28800/69092	Loss: 117.096
+32000/69092	Loss: 116.887
+35200/69092	Loss: 115.479
+38400/69092	Loss: 117.367
+41600/69092	Loss: 117.097
+44800/69092	Loss: 119.047
+48000/69092	Loss: 117.317
+51200/69092	Loss: 117.486
+54400/69092	Loss: 117.068
+57600/69092	Loss: 117.542
+60800/69092	Loss: 117.758
+64000/69092	Loss: 117.278
+67200/69092	Loss: 117.851
+Training time 0:04:23.378010
+Epoch: 49 Average loss: 117.45
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 52)
+0/69092	Loss: 134.673
+3200/69092	Loss: 116.821
+6400/69092	Loss: 118.035
+9600/69092	Loss: 117.602
+12800/69092	Loss: 116.879
+16000/69092	Loss: 118.296
+19200/69092	Loss: 116.002
+22400/69092	Loss: 118.027
+25600/69092	Loss: 118.486
+28800/69092	Loss: 119.646
+32000/69092	Loss: 118.729
+35200/69092	Loss: 117.728
+38400/69092	Loss: 117.981
+41600/69092	Loss: 116.104
+44800/69092	Loss: 117.923
+48000/69092	Loss: 116.814
+51200/69092	Loss: 119.341
+54400/69092	Loss: 117.462
+57600/69092	Loss: 115.161
+60800/69092	Loss: 117.117
+64000/69092	Loss: 117.501
+67200/69092	Loss: 117.372
+Training time 0:04:20.237584
+Epoch: 50 Average loss: 117.57
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 53)
+0/69092	Loss: 111.840
+3200/69092	Loss: 116.925
+6400/69092	Loss: 117.049
+9600/69092	Loss: 117.445
+12800/69092	Loss: 118.647
+16000/69092	Loss: 116.480
+19200/69092	Loss: 117.663
+22400/69092	Loss: 117.357
+25600/69092	Loss: 116.542
+28800/69092	Loss: 117.214
+32000/69092	Loss: 116.737
+35200/69092	Loss: 117.576
+38400/69092	Loss: 115.957
+41600/69092	Loss: 117.487
+44800/69092	Loss: 117.003
+48000/69092	Loss: 117.846
+51200/69092	Loss: 116.705
+54400/69092	Loss: 116.772
+57600/69092	Loss: 117.018
+60800/69092	Loss: 119.256
+64000/69092	Loss: 118.638
+67200/69092	Loss: 119.231
+Training time 0:04:22.076445
+Epoch: 51 Average loss: 117.41
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 54)
+0/69092	Loss: 112.129
+3200/69092	Loss: 117.937
+6400/69092	Loss: 117.977
+9600/69092	Loss: 118.404
+12800/69092	Loss: 118.683
+16000/69092	Loss: 115.423
+19200/69092	Loss: 117.976
+22400/69092	Loss: 117.606
+25600/69092	Loss: 115.392
+28800/69092	Loss: 118.396
+32000/69092	Loss: 118.410
+35200/69092	Loss: 120.169
+38400/69092	Loss: 115.286
+41600/69092	Loss: 116.985
+44800/69092	Loss: 116.913
+48000/69092	Loss: 116.859
+51200/69092	Loss: 117.496
+54400/69092	Loss: 117.475
+57600/69092	Loss: 117.096
+60800/69092	Loss: 117.043
+64000/69092	Loss: 117.797
+67200/69092	Loss: 117.296
+Training time 0:04:18.183982
+Epoch: 52 Average loss: 117.44
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 55)
+0/69092	Loss: 109.696
+3200/69092	Loss: 118.624
+6400/69092	Loss: 116.392
+9600/69092	Loss: 115.355
+12800/69092	Loss: 118.917
+16000/69092	Loss: 116.919
+19200/69092	Loss: 117.824
+22400/69092	Loss: 117.217
+25600/69092	Loss: 118.351
+28800/69092	Loss: 115.596
+32000/69092	Loss: 115.765
+35200/69092	Loss: 117.230
+38400/69092	Loss: 115.949
+41600/69092	Loss: 114.170
+44800/69092	Loss: 115.958
+48000/69092	Loss: 119.411
+51200/69092	Loss: 116.037
+54400/69092	Loss: 118.067
+57600/69092	Loss: 117.140
+60800/69092	Loss: 116.311
+64000/69092	Loss: 117.791
+67200/69092	Loss: 117.873
+Training time 0:04:28.247742
+Epoch: 53 Average loss: 117.04
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 56)
+0/69092	Loss: 119.751
+3200/69092	Loss: 118.410
+6400/69092	Loss: 116.364
+9600/69092	Loss: 117.416
+12800/69092	Loss: 116.910
+16000/69092	Loss: 117.747
+19200/69092	Loss: 119.832
+22400/69092	Loss: 117.021
+25600/69092	Loss: 117.239
+28800/69092	Loss: 115.512
+32000/69092	Loss: 116.949
+35200/69092	Loss: 117.572
+38400/69092	Loss: 117.688
+41600/69092	Loss: 115.560
+44800/69092	Loss: 118.275
+48000/69092	Loss: 117.558
+51200/69092	Loss: 115.515
+54400/69092	Loss: 117.731
+57600/69092	Loss: 115.984
+60800/69092	Loss: 117.454
+64000/69092	Loss: 115.422
+67200/69092	Loss: 118.018
+Training time 0:04:33.892244
+Epoch: 54 Average loss: 117.15
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 57)
+0/69092	Loss: 122.561
+3200/69092	Loss: 117.605
+6400/69092	Loss: 117.209
+9600/69092	Loss: 118.036
+12800/69092	Loss: 116.387
+16000/69092	Loss: 117.226
+19200/69092	Loss: 116.761
+22400/69092	Loss: 116.501
+25600/69092	Loss: 117.119
+28800/69092	Loss: 117.525
+32000/69092	Loss: 119.526
+35200/69092	Loss: 115.889
+38400/69092	Loss: 116.361
+41600/69092	Loss: 117.674
+44800/69092	Loss: 116.317
+48000/69092	Loss: 114.762
+51200/69092	Loss: 115.947
+54400/69092	Loss: 116.371
+57600/69092	Loss: 117.442
+60800/69092	Loss: 116.723
+64000/69092	Loss: 117.863
+67200/69092	Loss: 118.023
+Training time 0:04:26.042149
+Epoch: 55 Average loss: 117.06
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 58)
+0/69092	Loss: 114.835
+3200/69092	Loss: 116.415
+6400/69092	Loss: 115.747
+9600/69092	Loss: 116.319
+12800/69092	Loss: 117.885
+16000/69092	Loss: 117.722
+19200/69092	Loss: 115.351
+22400/69092	Loss: 118.106
+25600/69092	Loss: 117.478
+28800/69092	Loss: 116.495
+32000/69092	Loss: 117.339
+35200/69092	Loss: 116.400
+38400/69092	Loss: 116.613
+41600/69092	Loss: 116.669
+44800/69092	Loss: 115.792
+48000/69092	Loss: 117.015
+51200/69092	Loss: 118.780
+54400/69092	Loss: 116.552
+57600/69092	Loss: 115.665
+60800/69092	Loss: 117.378
+64000/69092	Loss: 116.443
+67200/69092	Loss: 116.465
+Training time 0:04:28.371721
+Epoch: 56 Average loss: 116.85
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 59)
+0/69092	Loss: 116.169
+3200/69092	Loss: 117.142
+6400/69092	Loss: 115.437
+9600/69092	Loss: 115.886
+12800/69092	Loss: 117.338
+16000/69092	Loss: 117.990
+19200/69092	Loss: 116.401
+22400/69092	Loss: 116.773
+25600/69092	Loss: 117.632
+28800/69092	Loss: 119.238
+32000/69092	Loss: 115.935
+35200/69092	Loss: 116.649
+38400/69092	Loss: 116.294
+41600/69092	Loss: 115.736
+44800/69092	Loss: 118.223
+48000/69092	Loss: 117.310
+51200/69092	Loss: 116.516
+54400/69092	Loss: 115.370
+57600/69092	Loss: 115.812
+60800/69092	Loss: 117.136
+64000/69092	Loss: 117.079
+67200/69092	Loss: 116.638
+Training time 0:04:26.000514
+Epoch: 57 Average loss: 116.88
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 60)
+0/69092	Loss: 110.920
+3200/69092	Loss: 114.819
+6400/69092	Loss: 118.254
+9600/69092	Loss: 116.914
+12800/69092	Loss: 115.104
+16000/69092	Loss: 117.142
+19200/69092	Loss: 116.541
+22400/69092	Loss: 116.466
+25600/69092	Loss: 117.216
+28800/69092	Loss: 116.823
+32000/69092	Loss: 118.113
+35200/69092	Loss: 118.111
+38400/69092	Loss: 115.204
+41600/69092	Loss: 119.473
+44800/69092	Loss: 116.941
+48000/69092	Loss: 117.162
+51200/69092	Loss: 117.440
+54400/69092	Loss: 118.859
+57600/69092	Loss: 117.363
+60800/69092	Loss: 116.367
+64000/69092	Loss: 115.175
+67200/69092	Loss: 115.445
+Training time 0:04:20.411956
+Epoch: 58 Average loss: 116.94
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 61)
+0/69092	Loss: 123.952
+3200/69092	Loss: 115.271
+6400/69092	Loss: 118.519
+9600/69092	Loss: 117.646
+12800/69092	Loss: 117.271
+16000/69092	Loss: 116.498
+19200/69092	Loss: 114.770
+22400/69092	Loss: 115.375
+25600/69092	Loss: 116.423
+28800/69092	Loss: 114.687
+32000/69092	Loss: 117.993
+35200/69092	Loss: 115.539
+38400/69092	Loss: 116.548
+41600/69092	Loss: 117.976
+44800/69092	Loss: 117.867
+48000/69092	Loss: 116.480
+51200/69092	Loss: 118.782
+54400/69092	Loss: 116.445
+57600/69092	Loss: 115.679
+60800/69092	Loss: 115.930
+64000/69092	Loss: 118.402
+67200/69092	Loss: 119.948
+Training time 0:04:14.535964
+Epoch: 59 Average loss: 116.89
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 62)
+0/69092	Loss: 100.414
+3200/69092	Loss: 115.779
+6400/69092	Loss: 116.562
+9600/69092	Loss: 115.648
+12800/69092	Loss: 117.149
+16000/69092	Loss: 116.193
+19200/69092	Loss: 117.466
+22400/69092	Loss: 119.299
+25600/69092	Loss: 115.709
+28800/69092	Loss: 119.611
+32000/69092	Loss: 117.682
+35200/69092	Loss: 114.740
+38400/69092	Loss: 118.007
+41600/69092	Loss: 116.426
+44800/69092	Loss: 118.943
+48000/69092	Loss: 117.323
+51200/69092	Loss: 116.706
+54400/69092	Loss: 115.251
+57600/69092	Loss: 115.733
+60800/69092	Loss: 115.655
+64000/69092	Loss: 117.807
+67200/69092	Loss: 117.300
+Training time 0:04:16.028042
+Epoch: 60 Average loss: 116.90
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 63)
+0/69092	Loss: 115.661
+3200/69092	Loss: 116.403
+6400/69092	Loss: 117.127
+9600/69092	Loss: 116.554
+12800/69092	Loss: 117.257
+16000/69092	Loss: 117.434
+19200/69092	Loss: 115.576
+22400/69092	Loss: 116.923
+25600/69092	Loss: 117.401
+28800/69092	Loss: 116.043
+32000/69092	Loss: 116.124
+35200/69092	Loss: 114.900
+38400/69092	Loss: 116.566
+41600/69092	Loss: 116.817
+44800/69092	Loss: 115.295
+48000/69092	Loss: 117.047
+51200/69092	Loss: 116.223
+54400/69092	Loss: 117.439
+57600/69092	Loss: 114.738
+60800/69092	Loss: 116.195
+64000/69092	Loss: 117.599
+67200/69092	Loss: 116.314
+Training time 0:04:18.673967
+Epoch: 61 Average loss: 116.50
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 64)
+0/69092	Loss: 116.701
+3200/69092	Loss: 115.635
+6400/69092	Loss: 115.918
+9600/69092	Loss: 116.463
+12800/69092	Loss: 114.782
+16000/69092	Loss: 119.606
+19200/69092	Loss: 116.417
+22400/69092	Loss: 116.438
+25600/69092	Loss: 116.582
+28800/69092	Loss: 116.684
+32000/69092	Loss: 117.507
+35200/69092	Loss: 115.514
+38400/69092	Loss: 118.919
+41600/69092	Loss: 115.495
+44800/69092	Loss: 117.188
+48000/69092	Loss: 118.238
+51200/69092	Loss: 115.925
+54400/69092	Loss: 114.867
+57600/69092	Loss: 116.680
+60800/69092	Loss: 117.989
+64000/69092	Loss: 115.270
+67200/69092	Loss: 116.514
+Training time 0:04:21.632812
+Epoch: 62 Average loss: 116.60
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 65)
+0/69092	Loss: 107.765
+3200/69092	Loss: 115.992
+6400/69092	Loss: 114.613
+9600/69092	Loss: 116.039
+12800/69092	Loss: 116.738
+16000/69092	Loss: 116.278
+19200/69092	Loss: 117.953
+22400/69092	Loss: 117.638
+25600/69092	Loss: 116.648
+28800/69092	Loss: 116.693
+32000/69092	Loss: 117.494
+35200/69092	Loss: 115.466
+38400/69092	Loss: 116.476
+41600/69092	Loss: 116.449
+44800/69092	Loss: 115.923
+48000/69092	Loss: 118.222
+51200/69092	Loss: 115.599
+54400/69092	Loss: 117.616
+57600/69092	Loss: 114.726
+60800/69092	Loss: 116.805
+64000/69092	Loss: 116.337
+67200/69092	Loss: 116.728
+Training time 0:04:21.771630
+Epoch: 63 Average loss: 116.49
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 66)
+0/69092	Loss: 112.972
+3200/69092	Loss: 116.920
+6400/69092	Loss: 116.534
+9600/69092	Loss: 115.370
+12800/69092	Loss: 117.104
+16000/69092	Loss: 117.011
+19200/69092	Loss: 117.300
+22400/69092	Loss: 114.896
+25600/69092	Loss: 112.888
+28800/69092	Loss: 116.259
+32000/69092	Loss: 116.728
+35200/69092	Loss: 117.515
+38400/69092	Loss: 117.990
+41600/69092	Loss: 116.353
+44800/69092	Loss: 115.560
+48000/69092	Loss: 117.958
+51200/69092	Loss: 115.790
+54400/69092	Loss: 117.354
+57600/69092	Loss: 117.081
+60800/69092	Loss: 116.480
+64000/69092	Loss: 118.028
+67200/69092	Loss: 116.265
+Training time 0:04:21.300752
+Epoch: 64 Average loss: 116.53
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 67)
+0/69092	Loss: 127.194
+3200/69092	Loss: 115.406
+6400/69092	Loss: 116.160
+9600/69092	Loss: 117.016
+12800/69092	Loss: 116.635
+16000/69092	Loss: 117.400
+19200/69092	Loss: 117.031
+22400/69092	Loss: 114.807
+25600/69092	Loss: 116.996
+28800/69092	Loss: 117.163
+32000/69092	Loss: 114.979
+35200/69092	Loss: 117.914
+38400/69092	Loss: 115.196
+41600/69092	Loss: 115.262
+44800/69092	Loss: 116.426
+48000/69092	Loss: 115.990
+51200/69092	Loss: 117.046
+54400/69092	Loss: 116.395
+57600/69092	Loss: 116.468
+60800/69092	Loss: 117.116
+64000/69092	Loss: 117.099
+67200/69092	Loss: 117.352
+Training time 0:04:19.523237
+Epoch: 65 Average loss: 116.47
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 68)
+0/69092	Loss: 130.036
+3200/69092	Loss: 116.596
+6400/69092	Loss: 115.924
+9600/69092	Loss: 116.912
+12800/69092	Loss: 117.363
+16000/69092	Loss: 115.103
+19200/69092	Loss: 116.001
+22400/69092	Loss: 117.190
+25600/69092	Loss: 117.382
+28800/69092	Loss: 117.636
+32000/69092	Loss: 116.078
+35200/69092	Loss: 114.790
+38400/69092	Loss: 115.516
+41600/69092	Loss: 117.044
+44800/69092	Loss: 115.866
+48000/69092	Loss: 115.281
+51200/69092	Loss: 116.932
+54400/69092	Loss: 116.562
+57600/69092	Loss: 114.892
+60800/69092	Loss: 115.262
+64000/69092	Loss: 118.491
+67200/69092	Loss: 117.641
+Training time 0:04:13.537568
+Epoch: 66 Average loss: 116.39
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 69)
+0/69092	Loss: 131.276
+3200/69092	Loss: 116.788
+6400/69092	Loss: 115.669
+9600/69092	Loss: 116.492
+12800/69092	Loss: 114.834
+16000/69092	Loss: 117.516
+19200/69092	Loss: 116.285
+22400/69092	Loss: 116.431
+25600/69092	Loss: 115.076
+28800/69092	Loss: 116.645
+32000/69092	Loss: 115.335
+35200/69092	Loss: 115.405
+38400/69092	Loss: 115.994
+41600/69092	Loss: 114.355
+44800/69092	Loss: 116.930
+48000/69092	Loss: 115.433
+51200/69092	Loss: 116.551
+54400/69092	Loss: 117.376
+57600/69092	Loss: 116.016
+60800/69092	Loss: 117.925
+64000/69092	Loss: 117.088
+67200/69092	Loss: 118.403
+Training time 0:04:15.694500
+Epoch: 67 Average loss: 116.33
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 70)
+0/69092	Loss: 116.447
+3200/69092	Loss: 117.105
+6400/69092	Loss: 114.875
+9600/69092	Loss: 117.971
+12800/69092	Loss: 117.665
+16000/69092	Loss: 116.713
+19200/69092	Loss: 115.762
+22400/69092	Loss: 116.025
+25600/69092	Loss: 115.859
+28800/69092	Loss: 117.123
+32000/69092	Loss: 115.941
+35200/69092	Loss: 114.252
+38400/69092	Loss: 116.231
+41600/69092	Loss: 115.251
+44800/69092	Loss: 117.061
+48000/69092	Loss: 117.370
+51200/69092	Loss: 116.626
+54400/69092	Loss: 115.745
+57600/69092	Loss: 115.975
+60800/69092	Loss: 115.250
+64000/69092	Loss: 117.407
+67200/69092	Loss: 117.801
+Training time 0:04:23.256883
+Epoch: 68 Average loss: 116.39
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 71)
+0/69092	Loss: 109.427
+3200/69092	Loss: 115.791
+6400/69092	Loss: 117.890
+9600/69092	Loss: 117.328
+12800/69092	Loss: 116.337
+16000/69092	Loss: 115.928
+19200/69092	Loss: 115.436
+22400/69092	Loss: 117.851
+25600/69092	Loss: 116.486
+28800/69092	Loss: 116.733
+32000/69092	Loss: 117.120
+35200/69092	Loss: 116.794
+38400/69092	Loss: 115.890
+41600/69092	Loss: 117.253
+44800/69092	Loss: 116.706
+48000/69092	Loss: 114.991
+51200/69092	Loss: 115.969
+54400/69092	Loss: 115.819
+57600/69092	Loss: 115.382
+60800/69092	Loss: 116.838
+64000/69092	Loss: 116.069
+67200/69092	Loss: 115.233
+Training time 0:04:14.798986
+Epoch: 69 Average loss: 116.27
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 72)
+0/69092	Loss: 115.002
+3200/69092	Loss: 117.518
+6400/69092	Loss: 115.190
+9600/69092	Loss: 115.954
+12800/69092	Loss: 115.045
+16000/69092	Loss: 116.130
+19200/69092	Loss: 116.050
+22400/69092	Loss: 115.581
+25600/69092	Loss: 117.877
+28800/69092	Loss: 115.889
+32000/69092	Loss: 114.806
+35200/69092	Loss: 116.736
+38400/69092	Loss: 115.884
+41600/69092	Loss: 115.327
+44800/69092	Loss: 116.250
+48000/69092	Loss: 115.486
+51200/69092	Loss: 115.868
+54400/69092	Loss: 118.572
+57600/69092	Loss: 114.840
+60800/69092	Loss: 116.344
+64000/69092	Loss: 115.752
+67200/69092	Loss: 116.489
+Training time 0:04:19.510293
+Epoch: 70 Average loss: 116.12
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 73)
+0/69092	Loss: 134.101
+3200/69092	Loss: 117.654
+6400/69092	Loss: 115.580
+9600/69092	Loss: 117.954
+12800/69092	Loss: 115.616
+16000/69092	Loss: 114.816
+19200/69092	Loss: 116.003
+22400/69092	Loss: 118.480
+25600/69092	Loss: 114.473
+28800/69092	Loss: 116.164
+32000/69092	Loss: 116.078
+35200/69092	Loss: 115.936
+38400/69092	Loss: 115.966
+41600/69092	Loss: 115.125
+44800/69092	Loss: 116.449
+48000/69092	Loss: 116.312
+51200/69092	Loss: 115.841
+54400/69092	Loss: 115.415
+57600/69092	Loss: 117.123
+60800/69092	Loss: 116.921
+64000/69092	Loss: 117.044
+67200/69092	Loss: 115.881
+Training time 0:04:21.271139
+Epoch: 71 Average loss: 116.21
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 74)
+0/69092	Loss: 110.241
+3200/69092	Loss: 115.037
+6400/69092	Loss: 113.940
+9600/69092	Loss: 116.558
+12800/69092	Loss: 117.040
+16000/69092	Loss: 114.286
+19200/69092	Loss: 118.157
+22400/69092	Loss: 116.347
+25600/69092	Loss: 115.526
+28800/69092	Loss: 115.577
+32000/69092	Loss: 116.441
+35200/69092	Loss: 115.329
+38400/69092	Loss: 117.232
+41600/69092	Loss: 117.204
+44800/69092	Loss: 116.180
+48000/69092	Loss: 113.763
+51200/69092	Loss: 113.985
+54400/69092	Loss: 116.504
+57600/69092	Loss: 117.151
+60800/69092	Loss: 117.439
+64000/69092	Loss: 115.862
+67200/69092	Loss: 116.257
+Training time 0:04:20.527632
+Epoch: 72 Average loss: 116.07
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 75)
+0/69092	Loss: 117.426
+3200/69092	Loss: 114.095
+6400/69092	Loss: 116.426
+9600/69092	Loss: 117.106
+12800/69092	Loss: 116.094
+16000/69092	Loss: 116.348
+19200/69092	Loss: 116.034
+22400/69092	Loss: 116.527
+25600/69092	Loss: 115.802
+28800/69092	Loss: 115.645
+32000/69092	Loss: 115.092
+35200/69092	Loss: 117.360
+38400/69092	Loss: 116.234
+41600/69092	Loss: 115.253
+44800/69092	Loss: 116.481
+48000/69092	Loss: 115.347
+51200/69092	Loss: 114.886
+54400/69092	Loss: 116.217
+57600/69092	Loss: 117.852
+60800/69092	Loss: 114.498
+64000/69092	Loss: 116.421
+67200/69092	Loss: 117.095
+Training time 0:04:14.108358
+Epoch: 73 Average loss: 116.01
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 76)
+0/69092	Loss: 120.607
+3200/69092	Loss: 115.399
+6400/69092	Loss: 114.639
+9600/69092	Loss: 115.672
+12800/69092	Loss: 114.804
+16000/69092	Loss: 115.667
+19200/69092	Loss: 116.190
+22400/69092	Loss: 117.506
+25600/69092	Loss: 114.107
+28800/69092	Loss: 116.319
+32000/69092	Loss: 114.787
+35200/69092	Loss: 116.422
+38400/69092	Loss: 117.309
+41600/69092	Loss: 118.066
+44800/69092	Loss: 114.058
+48000/69092	Loss: 116.455
+51200/69092	Loss: 115.945
+54400/69092	Loss: 115.025
+57600/69092	Loss: 119.706
+60800/69092	Loss: 114.159
+64000/69092	Loss: 117.580
+67200/69092	Loss: 115.744
+Training time 0:04:18.325905
+Epoch: 74 Average loss: 115.99
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 77)
+0/69092	Loss: 118.108
+3200/69092	Loss: 115.449
+6400/69092	Loss: 117.178
+9600/69092	Loss: 115.026
+12800/69092	Loss: 114.951
+16000/69092	Loss: 118.810
+19200/69092	Loss: 118.613
+22400/69092	Loss: 114.244
+25600/69092	Loss: 114.633
+28800/69092	Loss: 115.905
+32000/69092	Loss: 115.582
+35200/69092	Loss: 116.536
+38400/69092	Loss: 116.985
+41600/69092	Loss: 116.062
+44800/69092	Loss: 116.445
+48000/69092	Loss: 116.440
+51200/69092	Loss: 116.525
+54400/69092	Loss: 113.789
+57600/69092	Loss: 115.686
+60800/69092	Loss: 116.835
+64000/69092	Loss: 116.446
+67200/69092	Loss: 114.254
+Training time 0:04:11.717487
+Epoch: 75 Average loss: 115.98
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 78)
+0/69092	Loss: 110.195
+3200/69092	Loss: 116.650
+6400/69092	Loss: 116.428
+9600/69092	Loss: 116.469
+12800/69092	Loss: 115.338
+16000/69092	Loss: 115.323
+19200/69092	Loss: 115.777
+22400/69092	Loss: 115.717
+25600/69092	Loss: 114.637
+28800/69092	Loss: 115.820
+32000/69092	Loss: 115.664
+35200/69092	Loss: 115.927
+38400/69092	Loss: 117.323
+41600/69092	Loss: 116.202
+44800/69092	Loss: 113.799
+48000/69092	Loss: 117.076
+51200/69092	Loss: 115.777
+54400/69092	Loss: 117.773
+57600/69092	Loss: 114.421
+60800/69092	Loss: 114.618
+64000/69092	Loss: 115.741
+67200/69092	Loss: 115.039
+Training time 0:04:20.126153
+Epoch: 76 Average loss: 115.82
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 79)
+0/69092	Loss: 115.282
+3200/69092	Loss: 115.687
+6400/69092	Loss: 116.064
+9600/69092	Loss: 115.918
+12800/69092	Loss: 113.280
+16000/69092	Loss: 114.392
+19200/69092	Loss: 115.886
+22400/69092	Loss: 117.267
+25600/69092	Loss: 116.556
+28800/69092	Loss: 117.617
+32000/69092	Loss: 116.096
+35200/69092	Loss: 116.449
+38400/69092	Loss: 116.663
+41600/69092	Loss: 116.042
+44800/69092	Loss: 115.932
+48000/69092	Loss: 114.773
+51200/69092	Loss: 116.468
+54400/69092	Loss: 114.870
+57600/69092	Loss: 115.219
+60800/69092	Loss: 116.082
+64000/69092	Loss: 115.782
+67200/69092	Loss: 114.948
+Training time 0:04:26.667052
+Epoch: 77 Average loss: 115.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 80)
+0/69092	Loss: 113.016
+3200/69092	Loss: 116.797
+6400/69092	Loss: 116.327
+9600/69092	Loss: 114.864
+12800/69092	Loss: 113.603
+16000/69092	Loss: 118.688
+19200/69092	Loss: 117.221
+22400/69092	Loss: 114.753
+25600/69092	Loss: 115.706
+28800/69092	Loss: 116.332
+32000/69092	Loss: 115.016
+35200/69092	Loss: 114.848
+38400/69092	Loss: 115.691
+41600/69092	Loss: 114.871
+44800/69092	Loss: 114.361
+48000/69092	Loss: 115.572
+51200/69092	Loss: 115.656
+54400/69092	Loss: 115.938
+57600/69092	Loss: 115.503
+60800/69092	Loss: 117.543
+64000/69092	Loss: 116.509
+67200/69092	Loss: 116.613
+Training time 0:04:27.455867
+Epoch: 78 Average loss: 115.73
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 81)
+0/69092	Loss: 116.266
+3200/69092	Loss: 116.131
+6400/69092	Loss: 116.205
+9600/69092	Loss: 113.487
+12800/69092	Loss: 116.034
+16000/69092	Loss: 115.570
+19200/69092	Loss: 116.025
+22400/69092	Loss: 115.053
+25600/69092	Loss: 113.316
+28800/69092	Loss: 116.254
+32000/69092	Loss: 117.574
+35200/69092	Loss: 117.817
+38400/69092	Loss: 116.883
+41600/69092	Loss: 116.216
+44800/69092	Loss: 117.161
+48000/69092	Loss: 117.616
+51200/69092	Loss: 114.720
+54400/69092	Loss: 115.970
+57600/69092	Loss: 114.982
+60800/69092	Loss: 114.933
+64000/69092	Loss: 118.061
+67200/69092	Loss: 113.611
+Training time 0:04:25.561758
+Epoch: 79 Average loss: 115.93
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 82)
+0/69092	Loss: 105.227
+3200/69092	Loss: 116.596
+6400/69092	Loss: 115.248
+9600/69092	Loss: 117.734
+12800/69092	Loss: 116.540
+16000/69092	Loss: 116.902
+19200/69092	Loss: 114.568
+22400/69092	Loss: 114.365
+25600/69092	Loss: 115.724
+28800/69092	Loss: 115.997
+32000/69092	Loss: 114.831
+35200/69092	Loss: 115.820
+38400/69092	Loss: 115.015
+41600/69092	Loss: 114.732
+44800/69092	Loss: 115.605
+48000/69092	Loss: 117.712
+51200/69092	Loss: 117.044
+54400/69092	Loss: 115.373
+57600/69092	Loss: 114.918
+60800/69092	Loss: 114.857
+64000/69092	Loss: 115.588
+67200/69092	Loss: 115.213
+Training time 0:04:21.035061
+Epoch: 80 Average loss: 115.73
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 83)
+0/69092	Loss: 116.023
+3200/69092	Loss: 114.750
+6400/69092	Loss: 115.606
+9600/69092	Loss: 114.526
+12800/69092	Loss: 116.967
+16000/69092	Loss: 115.071
+19200/69092	Loss: 116.907
+22400/69092	Loss: 116.157
+25600/69092	Loss: 115.547
+28800/69092	Loss: 115.020
+32000/69092	Loss: 115.856
+35200/69092	Loss: 116.306
+38400/69092	Loss: 115.244
+41600/69092	Loss: 115.245
+44800/69092	Loss: 113.337
+48000/69092	Loss: 115.717
+51200/69092	Loss: 114.111
+54400/69092	Loss: 116.606
+57600/69092	Loss: 115.800
+60800/69092	Loss: 117.631
+64000/69092	Loss: 115.104
+67200/69092	Loss: 115.512
+Training time 0:04:27.606268
+Epoch: 81 Average loss: 115.63
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 84)
+0/69092	Loss: 109.763
+3200/69092	Loss: 114.796
+6400/69092	Loss: 114.820
+9600/69092	Loss: 116.260
+12800/69092	Loss: 115.517
+16000/69092	Loss: 114.184
+19200/69092	Loss: 112.686
+22400/69092	Loss: 114.702
+25600/69092	Loss: 113.757
+28800/69092	Loss: 116.156
+32000/69092	Loss: 116.493
+35200/69092	Loss: 117.036
+38400/69092	Loss: 114.748
+41600/69092	Loss: 116.401
+44800/69092	Loss: 117.682
+48000/69092	Loss: 115.540
+51200/69092	Loss: 116.903
+54400/69092	Loss: 114.747
+57600/69092	Loss: 118.514
+60800/69092	Loss: 116.045
+64000/69092	Loss: 115.743
+67200/69092	Loss: 114.532
+Training time 0:04:21.981919
+Epoch: 82 Average loss: 115.55
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 85)
+0/69092	Loss: 102.658
+3200/69092	Loss: 115.777
+6400/69092	Loss: 115.979
+9600/69092	Loss: 114.755
+12800/69092	Loss: 116.289
+16000/69092	Loss: 113.141
+19200/69092	Loss: 113.872
+22400/69092	Loss: 116.325
+25600/69092	Loss: 115.921
+28800/69092	Loss: 116.949
+32000/69092	Loss: 115.509
+35200/69092	Loss: 115.380
+38400/69092	Loss: 114.348
+41600/69092	Loss: 113.686
+44800/69092	Loss: 115.715
+48000/69092	Loss: 115.677
+51200/69092	Loss: 117.759
+54400/69092	Loss: 117.281
+57600/69092	Loss: 117.353
+60800/69092	Loss: 116.770
+64000/69092	Loss: 115.188
+67200/69092	Loss: 115.187
+Training time 0:04:15.339523
+Epoch: 83 Average loss: 115.65
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 86)
+0/69092	Loss: 106.183
+3200/69092	Loss: 115.604
+6400/69092	Loss: 114.901
+9600/69092	Loss: 115.998
+12800/69092	Loss: 115.279
+16000/69092	Loss: 115.837
+19200/69092	Loss: 114.004
+22400/69092	Loss: 114.471
+25600/69092	Loss: 116.697
+28800/69092	Loss: 116.087
+32000/69092	Loss: 115.580
+35200/69092	Loss: 114.502
+38400/69092	Loss: 114.836
+41600/69092	Loss: 116.212
+44800/69092	Loss: 115.260
+48000/69092	Loss: 116.323
+51200/69092	Loss: 115.060
+54400/69092	Loss: 115.965
+57600/69092	Loss: 115.483
+60800/69092	Loss: 116.460
+64000/69092	Loss: 115.958
+67200/69092	Loss: 114.216
+Training time 0:04:24.070150
+Epoch: 84 Average loss: 115.45
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 87)
+0/69092	Loss: 109.772
+3200/69092	Loss: 114.663
+6400/69092	Loss: 116.979
+9600/69092	Loss: 115.478
+12800/69092	Loss: 115.829
+16000/69092	Loss: 113.845
+19200/69092	Loss: 116.495
+22400/69092	Loss: 114.270
+25600/69092	Loss: 117.338
+28800/69092	Loss: 117.073
+32000/69092	Loss: 115.038
+35200/69092	Loss: 114.788
+38400/69092	Loss: 115.930
+41600/69092	Loss: 115.175
+44800/69092	Loss: 114.302
+48000/69092	Loss: 114.691
+51200/69092	Loss: 117.297
+54400/69092	Loss: 115.718
+57600/69092	Loss: 116.222
+60800/69092	Loss: 115.254
+64000/69092	Loss: 113.235
+67200/69092	Loss: 116.336
+Training time 0:04:27.389755
+Epoch: 85 Average loss: 115.56
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 88)
+0/69092	Loss: 114.321
+3200/69092	Loss: 114.351
+6400/69092	Loss: 115.291
+9600/69092	Loss: 116.430
+12800/69092	Loss: 117.276
+16000/69092	Loss: 116.460
+19200/69092	Loss: 114.705
+22400/69092	Loss: 114.293
+25600/69092	Loss: 115.415
+28800/69092	Loss: 113.700
+32000/69092	Loss: 115.014
+35200/69092	Loss: 115.317
+38400/69092	Loss: 116.014
+41600/69092	Loss: 116.513
+44800/69092	Loss: 117.764
+48000/69092	Loss: 114.385
+51200/69092	Loss: 115.029
+54400/69092	Loss: 114.609
+57600/69092	Loss: 116.770
+60800/69092	Loss: 115.598
+64000/69092	Loss: 116.776
+67200/69092	Loss: 115.444
+Training time 0:04:35.227404
+Epoch: 86 Average loss: 115.54
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 89)
+0/69092	Loss: 110.096
+3200/69092	Loss: 115.085
+6400/69092	Loss: 115.375
+9600/69092	Loss: 113.848
+12800/69092	Loss: 115.607
+16000/69092	Loss: 115.240
+19200/69092	Loss: 115.920
+22400/69092	Loss: 113.823
+25600/69092	Loss: 114.585
+28800/69092	Loss: 115.852
+32000/69092	Loss: 115.286
+35200/69092	Loss: 115.811
+38400/69092	Loss: 116.294
+41600/69092	Loss: 115.652
+44800/69092	Loss: 115.174
+48000/69092	Loss: 115.841
+51200/69092	Loss: 116.753
+54400/69092	Loss: 115.245
+57600/69092	Loss: 114.727
+60800/69092	Loss: 115.222
+64000/69092	Loss: 114.703
+67200/69092	Loss: 116.976
+Training time 0:04:32.743549
+Epoch: 87 Average loss: 115.41
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 90)
+0/69092	Loss: 119.462
+3200/69092	Loss: 115.533
+6400/69092	Loss: 117.001
+9600/69092	Loss: 116.389
+12800/69092	Loss: 115.264
+16000/69092	Loss: 114.015
+19200/69092	Loss: 115.133
+22400/69092	Loss: 115.934
+25600/69092	Loss: 113.928
+28800/69092	Loss: 116.988
+32000/69092	Loss: 113.673
+35200/69092	Loss: 114.373
+38400/69092	Loss: 116.277
+41600/69092	Loss: 117.572
+44800/69092	Loss: 111.675
+48000/69092	Loss: 117.552
+51200/69092	Loss: 115.310
+54400/69092	Loss: 115.944
+57600/69092	Loss: 116.559
+60800/69092	Loss: 114.095
+64000/69092	Loss: 114.392
+67200/69092	Loss: 114.071
+Training time 0:04:25.855823
+Epoch: 88 Average loss: 115.29
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 91)
+0/69092	Loss: 112.185
+3200/69092	Loss: 115.037
+6400/69092	Loss: 114.506
+9600/69092	Loss: 115.579
+12800/69092	Loss: 116.375
+16000/69092	Loss: 114.867
+19200/69092	Loss: 114.462
+22400/69092	Loss: 116.254
+25600/69092	Loss: 114.250
+28800/69092	Loss: 118.013
+32000/69092	Loss: 116.511
+35200/69092	Loss: 112.674
+38400/69092	Loss: 114.184
+41600/69092	Loss: 116.883
+44800/69092	Loss: 115.688
+48000/69092	Loss: 114.781
+51200/69092	Loss: 116.460
+54400/69092	Loss: 114.772
+57600/69092	Loss: 114.616
+60800/69092	Loss: 114.424
+64000/69092	Loss: 115.626
+67200/69092	Loss: 114.778
+Training time 0:04:18.054649
+Epoch: 89 Average loss: 115.32
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 92)
+0/69092	Loss: 117.381
+3200/69092	Loss: 116.538
+6400/69092	Loss: 114.395
+9600/69092	Loss: 114.199
+12800/69092	Loss: 115.076
+16000/69092	Loss: 113.660
+19200/69092	Loss: 115.942
+22400/69092	Loss: 115.406
+25600/69092	Loss: 115.577
+28800/69092	Loss: 116.055
+32000/69092	Loss: 115.750
+35200/69092	Loss: 115.183
+38400/69092	Loss: 114.756
+41600/69092	Loss: 116.439
+44800/69092	Loss: 116.094
+48000/69092	Loss: 115.108
+51200/69092	Loss: 116.191
+54400/69092	Loss: 117.091
+57600/69092	Loss: 114.440
+60800/69092	Loss: 114.310
+64000/69092	Loss: 116.254
+67200/69092	Loss: 115.486
+Training time 0:04:11.502557
+Epoch: 90 Average loss: 115.44
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 93)
+0/69092	Loss: 109.876
+3200/69092	Loss: 114.018
+6400/69092	Loss: 112.307
+9600/69092	Loss: 113.206
+12800/69092	Loss: 116.645
+16000/69092	Loss: 114.336
+19200/69092	Loss: 115.819
+22400/69092	Loss: 114.077
+25600/69092	Loss: 113.695
+28800/69092	Loss: 116.631
+32000/69092	Loss: 116.626
+35200/69092	Loss: 115.507
+38400/69092	Loss: 116.458
+41600/69092	Loss: 117.837
+44800/69092	Loss: 115.667
+48000/69092	Loss: 114.105
+51200/69092	Loss: 115.868
+54400/69092	Loss: 113.209
+57600/69092	Loss: 116.659
+60800/69092	Loss: 113.839
+64000/69092	Loss: 115.627
+67200/69092	Loss: 115.893
+Training time 0:04:23.661572
+Epoch: 91 Average loss: 115.23
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 94)
+0/69092	Loss: 109.875
+3200/69092	Loss: 116.904
+6400/69092	Loss: 114.350
+9600/69092	Loss: 113.917
+12800/69092	Loss: 115.405
+16000/69092	Loss: 114.182
+19200/69092	Loss: 115.203
+22400/69092	Loss: 116.412
+25600/69092	Loss: 115.923
+28800/69092	Loss: 114.897
+32000/69092	Loss: 115.843
+35200/69092	Loss: 115.061
+38400/69092	Loss: 113.299
+41600/69092	Loss: 113.805
+44800/69092	Loss: 114.774
+48000/69092	Loss: 115.476
+51200/69092	Loss: 115.628
+54400/69092	Loss: 115.072
+57600/69092	Loss: 114.085
+60800/69092	Loss: 116.230
+64000/69092	Loss: 115.288
+67200/69092	Loss: 116.407
+Training time 0:04:18.970973
+Epoch: 92 Average loss: 115.28
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 95)
+0/69092	Loss: 107.112
+3200/69092	Loss: 116.615
+6400/69092	Loss: 115.904
+9600/69092	Loss: 115.694
+12800/69092	Loss: 115.271
+16000/69092	Loss: 114.946
+19200/69092	Loss: 114.214
+22400/69092	Loss: 115.723
+25600/69092	Loss: 115.411
+28800/69092	Loss: 114.224
+32000/69092	Loss: 115.103
+35200/69092	Loss: 117.514
+38400/69092	Loss: 114.115
+41600/69092	Loss: 116.881
+44800/69092	Loss: 117.588
+48000/69092	Loss: 113.807
+51200/69092	Loss: 115.843
+54400/69092	Loss: 116.029
+57600/69092	Loss: 115.897
+60800/69092	Loss: 112.874
+64000/69092	Loss: 115.341
+67200/69092	Loss: 113.812
+Training time 0:04:34.910466
+Epoch: 93 Average loss: 115.33
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 96)
+0/69092	Loss: 111.090
+3200/69092	Loss: 113.802
+6400/69092	Loss: 113.778
+9600/69092	Loss: 116.835
+12800/69092	Loss: 116.298
+16000/69092	Loss: 115.383
+19200/69092	Loss: 115.244
+22400/69092	Loss: 117.004
+25600/69092	Loss: 113.987
+28800/69092	Loss: 114.258
+32000/69092	Loss: 116.204
+35200/69092	Loss: 114.571
+38400/69092	Loss: 115.871
+41600/69092	Loss: 114.701
+44800/69092	Loss: 114.940
+48000/69092	Loss: 115.518
+51200/69092	Loss: 115.979
+54400/69092	Loss: 114.040
+57600/69092	Loss: 115.293
+60800/69092	Loss: 113.554
+64000/69092	Loss: 115.140
+67200/69092	Loss: 114.921
+Training time 0:04:29.937189
+Epoch: 94 Average loss: 115.17
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 97)
+0/69092	Loss: 104.309
+3200/69092	Loss: 114.970
+6400/69092	Loss: 114.448
+9600/69092	Loss: 116.391
+12800/69092	Loss: 116.613
+16000/69092	Loss: 116.624
+19200/69092	Loss: 114.606
+22400/69092	Loss: 114.459
+25600/69092	Loss: 114.573
+28800/69092	Loss: 114.351
+32000/69092	Loss: 114.737
+35200/69092	Loss: 114.211
+38400/69092	Loss: 116.090
+41600/69092	Loss: 115.409
+44800/69092	Loss: 113.350
+48000/69092	Loss: 116.947
+51200/69092	Loss: 116.175
+54400/69092	Loss: 114.535
+57600/69092	Loss: 113.567
+60800/69092	Loss: 113.530
+64000/69092	Loss: 115.104
+67200/69092	Loss: 115.522
+Training time 0:04:32.566710
+Epoch: 95 Average loss: 115.10
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 98)
+0/69092	Loss: 103.548
+3200/69092	Loss: 114.404
+6400/69092	Loss: 115.306
+9600/69092	Loss: 115.076
+12800/69092	Loss: 116.447
+16000/69092	Loss: 113.969
+19200/69092	Loss: 116.127
+22400/69092	Loss: 115.642
+25600/69092	Loss: 114.994
+28800/69092	Loss: 116.458
+32000/69092	Loss: 115.971
+35200/69092	Loss: 117.573
+38400/69092	Loss: 117.198
+41600/69092	Loss: 114.652
+44800/69092	Loss: 113.356
+48000/69092	Loss: 115.118
+51200/69092	Loss: 114.814
+54400/69092	Loss: 114.915
+57600/69092	Loss: 113.385
+60800/69092	Loss: 114.671
+64000/69092	Loss: 114.218
+67200/69092	Loss: 115.762
+Training time 0:04:30.297416
+Epoch: 96 Average loss: 115.27
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 99)
+0/69092	Loss: 103.183
+3200/69092	Loss: 114.371
+6400/69092	Loss: 114.578
+9600/69092	Loss: 114.177
+12800/69092	Loss: 113.374
+16000/69092	Loss: 114.539
+19200/69092	Loss: 115.190
+22400/69092	Loss: 115.282
+25600/69092	Loss: 115.299
+28800/69092	Loss: 115.313
+32000/69092	Loss: 115.930
+35200/69092	Loss: 115.794
+38400/69092	Loss: 115.233
+41600/69092	Loss: 115.526
+44800/69092	Loss: 115.670
+48000/69092	Loss: 116.022
+51200/69092	Loss: 115.881
+54400/69092	Loss: 114.486
+57600/69092	Loss: 116.493
+60800/69092	Loss: 113.559
+64000/69092	Loss: 114.572
+67200/69092	Loss: 113.786
+Training time 0:04:14.350046
+Epoch: 97 Average loss: 114.96
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 100)
+0/69092	Loss: 109.205
+3200/69092	Loss: 114.470
+6400/69092	Loss: 115.518
+9600/69092	Loss: 115.455
+12800/69092	Loss: 114.463
+16000/69092	Loss: 114.735
+19200/69092	Loss: 112.726
+22400/69092	Loss: 115.038
+25600/69092	Loss: 115.942
+28800/69092	Loss: 116.597
+32000/69092	Loss: 114.920
+35200/69092	Loss: 115.183
+38400/69092	Loss: 115.178
+41600/69092	Loss: 115.187
+44800/69092	Loss: 115.023
+48000/69092	Loss: 114.013
+51200/69092	Loss: 115.620
+54400/69092	Loss: 113.888
+57600/69092	Loss: 115.136
+60800/69092	Loss: 117.265
+64000/69092	Loss: 114.032
+67200/69092	Loss: 115.695
+Training time 0:04:16.813142
+Epoch: 98 Average loss: 115.06
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 101)
+0/69092	Loss: 102.324
+3200/69092	Loss: 117.226
+6400/69092	Loss: 111.502
+9600/69092	Loss: 115.173
+12800/69092	Loss: 116.427
+16000/69092	Loss: 117.208
+19200/69092	Loss: 113.589
+22400/69092	Loss: 116.157
+25600/69092	Loss: 113.960
+28800/69092	Loss: 113.542
+32000/69092	Loss: 115.706
+35200/69092	Loss: 114.351
+38400/69092	Loss: 113.532
+41600/69092	Loss: 115.807
+44800/69092	Loss: 114.047
+48000/69092	Loss: 116.583
+51200/69092	Loss: 114.274
+54400/69092	Loss: 115.270
+57600/69092	Loss: 114.983
+60800/69092	Loss: 113.886
+64000/69092	Loss: 115.446
+67200/69092	Loss: 116.695
+Training time 0:04:16.901688
+Epoch: 99 Average loss: 115.03
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 102)
+0/69092	Loss: 101.450
+3200/69092	Loss: 114.254
+6400/69092	Loss: 114.502
+9600/69092	Loss: 115.191
+12800/69092	Loss: 115.722
+16000/69092	Loss: 115.505
+19200/69092	Loss: 115.682
+22400/69092	Loss: 115.095
+25600/69092	Loss: 113.668
+28800/69092	Loss: 116.141
+32000/69092	Loss: 116.021
+35200/69092	Loss: 114.208
+38400/69092	Loss: 114.481
+41600/69092	Loss: 116.893
+44800/69092	Loss: 115.935
+48000/69092	Loss: 114.079
+51200/69092	Loss: 115.014
+54400/69092	Loss: 116.096
+57600/69092	Loss: 114.209
+60800/69092	Loss: 114.125
+64000/69092	Loss: 116.074
+67200/69092	Loss: 113.280
+Training time 0:04:30.717629
+Epoch: 100 Average loss: 115.05
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 103)
+0/69092	Loss: 110.561
+3200/69092	Loss: 114.694
+6400/69092	Loss: 115.096
+9600/69092	Loss: 112.462
+12800/69092	Loss: 114.749
+16000/69092	Loss: 113.297
+19200/69092	Loss: 117.057
+22400/69092	Loss: 115.330
+25600/69092	Loss: 116.169
+28800/69092	Loss: 115.596
+32000/69092	Loss: 115.761
+35200/69092	Loss: 114.065
+38400/69092	Loss: 114.156
+41600/69092	Loss: 114.239
+44800/69092	Loss: 113.600
+48000/69092	Loss: 116.481
+51200/69092	Loss: 115.040
+54400/69092	Loss: 116.844
+57600/69092	Loss: 115.482
+60800/69092	Loss: 114.866
+64000/69092	Loss: 114.837
+67200/69092	Loss: 113.714
+Training time 0:04:33.068145
+Epoch: 101 Average loss: 114.95
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 104)
+0/69092	Loss: 111.877
+3200/69092	Loss: 113.528
+6400/69092	Loss: 116.126
+9600/69092	Loss: 115.060
+12800/69092	Loss: 115.645
+16000/69092	Loss: 112.514
+19200/69092	Loss: 114.612
+22400/69092	Loss: 114.462
+25600/69092	Loss: 115.992
+28800/69092	Loss: 114.581
+32000/69092	Loss: 117.691
+35200/69092	Loss: 113.213
+38400/69092	Loss: 114.303
+41600/69092	Loss: 114.591
+44800/69092	Loss: 114.572
+48000/69092	Loss: 113.757
+51200/69092	Loss: 115.127
+54400/69092	Loss: 114.971
+57600/69092	Loss: 115.206
+60800/69092	Loss: 114.473
+64000/69092	Loss: 113.442
+67200/69092	Loss: 114.790
+Training time 0:04:26.031708
+Epoch: 102 Average loss: 114.77
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 105)
+0/69092	Loss: 123.542
+3200/69092	Loss: 115.210
+6400/69092	Loss: 114.367
+9600/69092	Loss: 116.109
+12800/69092	Loss: 113.503
+16000/69092	Loss: 115.242
+19200/69092	Loss: 115.365
+22400/69092	Loss: 115.884
+25600/69092	Loss: 113.157
+28800/69092	Loss: 115.895
+32000/69092	Loss: 114.043
+35200/69092	Loss: 115.025
+38400/69092	Loss: 115.140
+41600/69092	Loss: 114.808
+44800/69092	Loss: 114.618
+48000/69092	Loss: 115.046
+51200/69092	Loss: 115.224
+54400/69092	Loss: 116.526
+57600/69092	Loss: 114.561
+60800/69092	Loss: 114.281
+64000/69092	Loss: 114.436
+67200/69092	Loss: 112.579
+Training time 0:04:25.144287
+Epoch: 103 Average loss: 114.78
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 106)
+0/69092	Loss: 105.940
+3200/69092	Loss: 115.154
+6400/69092	Loss: 115.266
+9600/69092	Loss: 114.273
+12800/69092	Loss: 116.441
+16000/69092	Loss: 114.447
+19200/69092	Loss: 114.707
+22400/69092	Loss: 114.581
+25600/69092	Loss: 115.075
+28800/69092	Loss: 112.858
+32000/69092	Loss: 115.417
+35200/69092	Loss: 113.227
+38400/69092	Loss: 114.756
+41600/69092	Loss: 115.456
+44800/69092	Loss: 115.085
+48000/69092	Loss: 114.573
+51200/69092	Loss: 113.830
+54400/69092	Loss: 114.057
+57600/69092	Loss: 115.467
+60800/69092	Loss: 116.554
+64000/69092	Loss: 115.321
+67200/69092	Loss: 114.775
+Training time 0:04:26.405936
+Epoch: 104 Average loss: 114.83
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 107)
+0/69092	Loss: 105.310
+3200/69092	Loss: 114.426
+6400/69092	Loss: 113.549
+9600/69092	Loss: 113.799
+12800/69092	Loss: 115.263
+16000/69092	Loss: 113.263
+19200/69092	Loss: 114.692
+22400/69092	Loss: 113.127
+25600/69092	Loss: 112.946
+28800/69092	Loss: 117.490
+32000/69092	Loss: 114.970
+35200/69092	Loss: 115.424
+38400/69092	Loss: 114.136
+41600/69092	Loss: 114.439
+44800/69092	Loss: 116.172
+48000/69092	Loss: 114.843
+51200/69092	Loss: 114.015
+54400/69092	Loss: 117.099
+57600/69092	Loss: 115.218
+60800/69092	Loss: 115.403
+64000/69092	Loss: 115.615
+67200/69092	Loss: 115.623
+Training time 0:04:30.908597
+Epoch: 105 Average loss: 114.84
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 108)
+0/69092	Loss: 116.573
+3200/69092	Loss: 113.115
+6400/69092	Loss: 116.044
+9600/69092	Loss: 114.502
+12800/69092	Loss: 115.132
+16000/69092	Loss: 114.569
+19200/69092	Loss: 115.861
+22400/69092	Loss: 115.374
+25600/69092	Loss: 115.477
+28800/69092	Loss: 114.479
+32000/69092	Loss: 113.733
+35200/69092	Loss: 114.816
+38400/69092	Loss: 113.667
+41600/69092	Loss: 113.461
+44800/69092	Loss: 114.692
+48000/69092	Loss: 115.788
+51200/69092	Loss: 114.131
+54400/69092	Loss: 115.042
+57600/69092	Loss: 114.190
+60800/69092	Loss: 115.706
+64000/69092	Loss: 113.984
+67200/69092	Loss: 114.659
+Training time 0:04:22.615178
+Epoch: 106 Average loss: 114.72
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 109)
+0/69092	Loss: 116.218
+3200/69092	Loss: 116.439
+6400/69092	Loss: 114.330
+9600/69092	Loss: 114.518
+12800/69092	Loss: 114.244
+16000/69092	Loss: 115.165
+19200/69092	Loss: 116.537
+22400/69092	Loss: 114.890
+25600/69092	Loss: 115.084
+28800/69092	Loss: 113.722
+32000/69092	Loss: 115.406
+35200/69092	Loss: 117.413
+38400/69092	Loss: 116.108
+41600/69092	Loss: 114.091
+44800/69092	Loss: 114.189
+48000/69092	Loss: 113.336
+51200/69092	Loss: 114.854
+54400/69092	Loss: 114.296
+57600/69092	Loss: 114.604
+60800/69092	Loss: 113.472
+64000/69092	Loss: 114.589
+67200/69092	Loss: 113.700
+Training time 0:04:15.871955
+Epoch: 107 Average loss: 114.78
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 110)
+0/69092	Loss: 110.384
+3200/69092	Loss: 115.819
+6400/69092	Loss: 115.273
+9600/69092	Loss: 113.674
+12800/69092	Loss: 113.988
+16000/69092	Loss: 115.226
+19200/69092	Loss: 114.639
+22400/69092	Loss: 115.910
+25600/69092	Loss: 116.044
+28800/69092	Loss: 115.133
+32000/69092	Loss: 113.307
+35200/69092	Loss: 113.846
+38400/69092	Loss: 113.773
+41600/69092	Loss: 114.995
+44800/69092	Loss: 116.288
+48000/69092	Loss: 117.788
+51200/69092	Loss: 115.265
+54400/69092	Loss: 113.632
+57600/69092	Loss: 113.777
+60800/69092	Loss: 112.919
+64000/69092	Loss: 114.026
+67200/69092	Loss: 114.251
+Training time 0:04:15.986438
+Epoch: 108 Average loss: 114.82
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 111)
+0/69092	Loss: 110.926
+3200/69092	Loss: 115.009
+6400/69092	Loss: 113.864
+9600/69092	Loss: 112.513
+12800/69092	Loss: 115.393
+16000/69092	Loss: 115.601
+19200/69092	Loss: 114.252
+22400/69092	Loss: 114.202
+25600/69092	Loss: 114.249
+28800/69092	Loss: 115.185
+32000/69092	Loss: 114.265
+35200/69092	Loss: 113.490
+38400/69092	Loss: 113.867
+41600/69092	Loss: 115.186
+44800/69092	Loss: 115.967
+48000/69092	Loss: 111.777
+51200/69092	Loss: 113.831
+54400/69092	Loss: 116.026
+57600/69092	Loss: 113.335
+60800/69092	Loss: 115.290
+64000/69092	Loss: 116.204
+67200/69092	Loss: 114.208
+Training time 0:04:20.591390
+Epoch: 109 Average loss: 114.50
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 112)
+0/69092	Loss: 115.884
+3200/69092	Loss: 117.003
+6400/69092	Loss: 116.712
+9600/69092	Loss: 114.350
+12800/69092	Loss: 114.647
+16000/69092	Loss: 116.077
+19200/69092	Loss: 113.585
+22400/69092	Loss: 115.143
+25600/69092	Loss: 113.691
+28800/69092	Loss: 115.322
+32000/69092	Loss: 114.797
+35200/69092	Loss: 115.077
+38400/69092	Loss: 118.525
+41600/69092	Loss: 113.060
+44800/69092	Loss: 113.783
+48000/69092	Loss: 116.291
+51200/69092	Loss: 113.717
+54400/69092	Loss: 115.111
+57600/69092	Loss: 113.641
+60800/69092	Loss: 114.002
+64000/69092	Loss: 113.758
+67200/69092	Loss: 113.087
+Training time 0:04:26.836611
+Epoch: 110 Average loss: 114.81
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 113)
+0/69092	Loss: 125.851
+3200/69092	Loss: 116.071
+6400/69092	Loss: 112.736
+9600/69092	Loss: 115.678
+12800/69092	Loss: 114.922
+16000/69092	Loss: 113.817
+19200/69092	Loss: 115.561
+22400/69092	Loss: 113.305
+25600/69092	Loss: 112.979
+28800/69092	Loss: 116.145
+32000/69092	Loss: 114.480
+35200/69092	Loss: 116.515
+38400/69092	Loss: 113.043
+41600/69092	Loss: 112.938
+44800/69092	Loss: 114.279
+48000/69092	Loss: 114.374
+51200/69092	Loss: 114.732
+54400/69092	Loss: 113.942
+57600/69092	Loss: 115.297
+60800/69092	Loss: 114.086
+64000/69092	Loss: 114.664
+67200/69092	Loss: 115.492
+Training time 0:04:35.629081
+Epoch: 111 Average loss: 114.54
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 114)
+0/69092	Loss: 104.279
+3200/69092	Loss: 115.154
+6400/69092	Loss: 113.715
+9600/69092	Loss: 113.930
+12800/69092	Loss: 114.900
+16000/69092	Loss: 113.268
+19200/69092	Loss: 113.740
+22400/69092	Loss: 114.593
+25600/69092	Loss: 114.678
+28800/69092	Loss: 115.832
+32000/69092	Loss: 115.583
+35200/69092	Loss: 114.260
+38400/69092	Loss: 115.078
+41600/69092	Loss: 113.106
+44800/69092	Loss: 115.660
+48000/69092	Loss: 115.305
+51200/69092	Loss: 115.483
+54400/69092	Loss: 113.941
+57600/69092	Loss: 114.990
+60800/69092	Loss: 115.176
+64000/69092	Loss: 113.339
+67200/69092	Loss: 114.725
+Training time 0:04:29.687402
+Epoch: 112 Average loss: 114.54
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 115)
+0/69092	Loss: 102.917
+3200/69092	Loss: 114.706
+6400/69092	Loss: 115.422
+9600/69092	Loss: 116.626
+12800/69092	Loss: 117.345
+16000/69092	Loss: 115.406
+19200/69092	Loss: 113.189
+22400/69092	Loss: 114.186
+25600/69092	Loss: 113.471
+28800/69092	Loss: 113.179
+32000/69092	Loss: 112.903
+35200/69092	Loss: 112.962
+38400/69092	Loss: 112.716
+41600/69092	Loss: 114.636
+44800/69092	Loss: 117.224
+48000/69092	Loss: 113.902
+51200/69092	Loss: 114.505
+54400/69092	Loss: 114.530
+57600/69092	Loss: 114.777
+60800/69092	Loss: 114.589
+64000/69092	Loss: 114.345
+67200/69092	Loss: 114.994
+Training time 0:04:30.520088
+Epoch: 113 Average loss: 114.54
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 116)
+0/69092	Loss: 113.905
+3200/69092	Loss: 117.563
+6400/69092	Loss: 113.548
+9600/69092	Loss: 115.576
+12800/69092	Loss: 114.451
+16000/69092	Loss: 115.835
+19200/69092	Loss: 114.568
+22400/69092	Loss: 114.740
+25600/69092	Loss: 114.518
+28800/69092	Loss: 115.925
+32000/69092	Loss: 111.706
+35200/69092	Loss: 113.438
+38400/69092	Loss: 113.781
+41600/69092	Loss: 115.378
+44800/69092	Loss: 114.766
+48000/69092	Loss: 112.897
+51200/69092	Loss: 111.760
+54400/69092	Loss: 113.607
+57600/69092	Loss: 114.396
+60800/69092	Loss: 115.229
+64000/69092	Loss: 115.306
+67200/69092	Loss: 115.853
+Training time 0:04:29.241112
+Epoch: 114 Average loss: 114.59
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 117)
+0/69092	Loss: 104.253
+3200/69092	Loss: 114.970
+6400/69092	Loss: 113.504
+9600/69092	Loss: 114.310
+12800/69092	Loss: 114.699
+16000/69092	Loss: 113.594
+19200/69092	Loss: 113.744
+22400/69092	Loss: 114.847
+25600/69092	Loss: 114.582
+28800/69092	Loss: 114.003
+32000/69092	Loss: 114.017
+35200/69092	Loss: 113.475
+38400/69092	Loss: 115.256
+41600/69092	Loss: 116.657
+44800/69092	Loss: 114.122
+48000/69092	Loss: 113.792
+51200/69092	Loss: 113.483
+54400/69092	Loss: 114.718
+57600/69092	Loss: 115.763
+60800/69092	Loss: 115.972
+64000/69092	Loss: 114.327
+67200/69092	Loss: 114.012
+Training time 0:04:27.381340
+Epoch: 115 Average loss: 114.45
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 118)
+0/69092	Loss: 110.148
+3200/69092	Loss: 114.791
+6400/69092	Loss: 115.172
+9600/69092	Loss: 114.780
+12800/69092	Loss: 115.101
+16000/69092	Loss: 115.442
+19200/69092	Loss: 114.977
+22400/69092	Loss: 113.353
+25600/69092	Loss: 114.346
+28800/69092	Loss: 115.027
+32000/69092	Loss: 113.964
+35200/69092	Loss: 115.722
+38400/69092	Loss: 113.181
+41600/69092	Loss: 114.651
+44800/69092	Loss: 111.235
+48000/69092	Loss: 114.792
+51200/69092	Loss: 113.957
+54400/69092	Loss: 113.560
+57600/69092	Loss: 116.211
+60800/69092	Loss: 115.072
+64000/69092	Loss: 113.563
+67200/69092	Loss: 113.980
+Training time 0:04:18.154084
+Epoch: 116 Average loss: 114.42
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 119)
+0/69092	Loss: 120.825
+3200/69092	Loss: 115.325
+6400/69092	Loss: 113.553
+9600/69092	Loss: 113.736
+12800/69092	Loss: 116.343
+16000/69092	Loss: 115.969
+19200/69092	Loss: 115.205
+22400/69092	Loss: 115.081
+25600/69092	Loss: 113.776
+28800/69092	Loss: 114.976
+32000/69092	Loss: 114.686
+35200/69092	Loss: 113.304
+38400/69092	Loss: 115.544
+41600/69092	Loss: 112.245
+44800/69092	Loss: 113.748
+48000/69092	Loss: 113.974
+51200/69092	Loss: 114.691
+54400/69092	Loss: 115.770
+57600/69092	Loss: 113.741
+60800/69092	Loss: 113.169
+64000/69092	Loss: 114.951
+67200/69092	Loss: 116.248
+Training time 0:04:18.164247
+Epoch: 117 Average loss: 114.55
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 120)
+0/69092	Loss: 109.928
+3200/69092	Loss: 115.008
+6400/69092	Loss: 113.864
+9600/69092	Loss: 114.838
+12800/69092	Loss: 114.410
+16000/69092	Loss: 114.373
+19200/69092	Loss: 114.011
+22400/69092	Loss: 117.361
+25600/69092	Loss: 116.671
+28800/69092	Loss: 112.738
+32000/69092	Loss: 115.302
+35200/69092	Loss: 115.476
+38400/69092	Loss: 112.458
+41600/69092	Loss: 115.842
+44800/69092	Loss: 114.128
+48000/69092	Loss: 116.531
+51200/69092	Loss: 113.945
+54400/69092	Loss: 113.735
+57600/69092	Loss: 113.663
+60800/69092	Loss: 113.893
+64000/69092	Loss: 114.535
+67200/69092	Loss: 111.640
+Training time 0:04:21.234648
+Epoch: 118 Average loss: 114.48
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 121)
+0/69092	Loss: 112.347
+3200/69092	Loss: 112.206
+6400/69092	Loss: 113.684
+9600/69092	Loss: 115.071
+12800/69092	Loss: 114.938
+16000/69092	Loss: 113.291
+19200/69092	Loss: 114.991
+22400/69092	Loss: 114.087
+25600/69092	Loss: 113.994
+28800/69092	Loss: 114.996
+32000/69092	Loss: 114.884
+35200/69092	Loss: 113.972
+38400/69092	Loss: 115.015
+41600/69092	Loss: 114.189
+44800/69092	Loss: 115.831
+48000/69092	Loss: 115.978
+51200/69092	Loss: 115.122
+54400/69092	Loss: 113.542
+57600/69092	Loss: 113.660
+60800/69092	Loss: 115.409
+64000/69092	Loss: 113.369
+67200/69092	Loss: 113.812
+Training time 0:04:21.509968
+Epoch: 119 Average loss: 114.42
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 122)
+0/69092	Loss: 110.610
+3200/69092	Loss: 114.091
+6400/69092	Loss: 114.390
+9600/69092	Loss: 113.732
+12800/69092	Loss: 113.679
+16000/69092	Loss: 114.955
+19200/69092	Loss: 112.877
+22400/69092	Loss: 115.253
+25600/69092	Loss: 113.215
+28800/69092	Loss: 116.279
+32000/69092	Loss: 114.028
+35200/69092	Loss: 113.391
+38400/69092	Loss: 114.243
+41600/69092	Loss: 114.268
+44800/69092	Loss: 113.596
+48000/69092	Loss: 116.315
+51200/69092	Loss: 114.467
+54400/69092	Loss: 113.734
+57600/69092	Loss: 115.470
+60800/69092	Loss: 114.426
+64000/69092	Loss: 112.766
+67200/69092	Loss: 116.240
+Training time 0:04:26.174176
+Epoch: 120 Average loss: 114.31
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 123)
+0/69092	Loss: 108.468
+3200/69092	Loss: 113.823
+6400/69092	Loss: 113.926
+9600/69092	Loss: 112.867
+12800/69092	Loss: 115.001
+16000/69092	Loss: 115.812
+19200/69092	Loss: 115.371
+22400/69092	Loss: 114.633
+25600/69092	Loss: 113.848
+28800/69092	Loss: 115.192
+32000/69092	Loss: 115.266
+35200/69092	Loss: 113.069
+38400/69092	Loss: 113.941
+41600/69092	Loss: 113.058
+44800/69092	Loss: 115.085
+48000/69092	Loss: 114.492
+51200/69092	Loss: 115.389
+54400/69092	Loss: 114.802
+57600/69092	Loss: 114.942
+60800/69092	Loss: 116.039
+64000/69092	Loss: 115.730
+67200/69092	Loss: 113.697
+Training time 0:04:26.866437
+Epoch: 121 Average loss: 114.57
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 124)
+0/69092	Loss: 120.564
+3200/69092	Loss: 113.837
+6400/69092	Loss: 113.033
+9600/69092	Loss: 114.391
+12800/69092	Loss: 112.768
+16000/69092	Loss: 115.145
+19200/69092	Loss: 113.677
+22400/69092	Loss: 114.920
+25600/69092	Loss: 113.847
+28800/69092	Loss: 113.706
+32000/69092	Loss: 114.759
+35200/69092	Loss: 113.610
+38400/69092	Loss: 111.903
+41600/69092	Loss: 114.020
+44800/69092	Loss: 115.250
+48000/69092	Loss: 113.698
+51200/69092	Loss: 115.873
+54400/69092	Loss: 114.153
+57600/69092	Loss: 116.196
+60800/69092	Loss: 114.086
+64000/69092	Loss: 115.693
+67200/69092	Loss: 112.606
+Training time 0:04:26.091665
+Epoch: 122 Average loss: 114.24
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 125)
+0/69092	Loss: 116.260
+3200/69092	Loss: 115.572
+6400/69092	Loss: 113.364
+9600/69092	Loss: 114.549
+12800/69092	Loss: 112.625
+16000/69092	Loss: 114.697
+19200/69092	Loss: 114.014
+22400/69092	Loss: 114.915
+25600/69092	Loss: 113.741
+28800/69092	Loss: 113.853
+32000/69092	Loss: 113.749
+35200/69092	Loss: 114.529
+38400/69092	Loss: 115.581
+41600/69092	Loss: 113.452
+44800/69092	Loss: 114.885
+48000/69092	Loss: 114.452
+51200/69092	Loss: 113.929
+54400/69092	Loss: 113.919
+57600/69092	Loss: 112.803
+60800/69092	Loss: 116.090
+64000/69092	Loss: 113.673
+67200/69092	Loss: 114.878
+Training time 0:04:20.195962
+Epoch: 123 Average loss: 114.29
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 126)
+0/69092	Loss: 102.904
+3200/69092	Loss: 114.950
+6400/69092	Loss: 114.285
+9600/69092	Loss: 113.059
+12800/69092	Loss: 114.756
+16000/69092	Loss: 114.081
+19200/69092	Loss: 116.571
+22400/69092	Loss: 115.653
+25600/69092	Loss: 114.392
+28800/69092	Loss: 112.085
+32000/69092	Loss: 115.196
+35200/69092	Loss: 115.576
+38400/69092	Loss: 112.741
+41600/69092	Loss: 114.079
+44800/69092	Loss: 112.967
+48000/69092	Loss: 114.430
+51200/69092	Loss: 113.740
+54400/69092	Loss: 112.241
+57600/69092	Loss: 115.875
+60800/69092	Loss: 115.158
+64000/69092	Loss: 113.297
+67200/69092	Loss: 113.612
+Training time 0:04:21.333011
+Epoch: 124 Average loss: 114.22
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 127)
+0/69092	Loss: 121.503
+3200/69092	Loss: 113.770
+6400/69092	Loss: 113.968
+9600/69092	Loss: 115.570
+12800/69092	Loss: 113.710
+16000/69092	Loss: 115.004
+19200/69092	Loss: 115.766
+22400/69092	Loss: 110.885
+25600/69092	Loss: 116.284
+28800/69092	Loss: 115.173
+32000/69092	Loss: 115.608
+35200/69092	Loss: 113.924
+38400/69092	Loss: 113.265
+41600/69092	Loss: 111.167
+44800/69092	Loss: 114.134
+48000/69092	Loss: 113.143
+51200/69092	Loss: 111.826
+54400/69092	Loss: 114.397
+57600/69092	Loss: 113.879
+60800/69092	Loss: 115.124
+64000/69092	Loss: 115.703
+67200/69092	Loss: 113.662
+Training time 0:04:15.476898
+Epoch: 125 Average loss: 114.16
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 128)
+0/69092	Loss: 126.295
+3200/69092	Loss: 116.617
+6400/69092	Loss: 114.015
+9600/69092	Loss: 113.958
+12800/69092	Loss: 113.577
+16000/69092	Loss: 115.547
+19200/69092	Loss: 113.954
+22400/69092	Loss: 113.498
+25600/69092	Loss: 115.607
+28800/69092	Loss: 111.954
+32000/69092	Loss: 113.496
+35200/69092	Loss: 113.677
+38400/69092	Loss: 114.765
+41600/69092	Loss: 115.236
+44800/69092	Loss: 114.410
+48000/69092	Loss: 114.308
+51200/69092	Loss: 111.934
+54400/69092	Loss: 113.136
+57600/69092	Loss: 115.013
+60800/69092	Loss: 114.129
+64000/69092	Loss: 113.522
+67200/69092	Loss: 113.718
+Training time 0:04:28.347039
+Epoch: 126 Average loss: 114.13
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 129)
+0/69092	Loss: 119.682
+3200/69092	Loss: 114.543
+6400/69092	Loss: 112.717
+9600/69092	Loss: 114.208
+12800/69092	Loss: 112.800
+16000/69092	Loss: 112.286
+19200/69092	Loss: 114.785
+22400/69092	Loss: 112.812
+25600/69092	Loss: 114.896
+28800/69092	Loss: 113.281
+32000/69092	Loss: 114.762
+35200/69092	Loss: 114.394
+38400/69092	Loss: 114.450
+41600/69092	Loss: 115.436
+44800/69092	Loss: 115.494
+48000/69092	Loss: 115.467
+51200/69092	Loss: 116.115
+54400/69092	Loss: 113.398
+57600/69092	Loss: 115.479
+60800/69092	Loss: 113.288
+64000/69092	Loss: 112.189
+67200/69092	Loss: 113.367
+Training time 0:04:24.226082
+Epoch: 127 Average loss: 114.09
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 130)
+0/69092	Loss: 108.846
+3200/69092	Loss: 113.563
+6400/69092	Loss: 113.164
+9600/69092	Loss: 113.377
+12800/69092	Loss: 113.232
+16000/69092	Loss: 115.017
+19200/69092	Loss: 114.418
+22400/69092	Loss: 113.556
+25600/69092	Loss: 113.549
+28800/69092	Loss: 114.477
+32000/69092	Loss: 113.487
+35200/69092	Loss: 115.755
+38400/69092	Loss: 113.114
+41600/69092	Loss: 112.750
+44800/69092	Loss: 114.507
+48000/69092	Loss: 113.253
+51200/69092	Loss: 114.938
+54400/69092	Loss: 114.313
+57600/69092	Loss: 113.574
+60800/69092	Loss: 115.895
+64000/69092	Loss: 112.618
+67200/69092	Loss: 115.091
+Training time 0:04:26.704741
+Epoch: 128 Average loss: 114.00
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 131)
+0/69092	Loss: 116.501
+3200/69092	Loss: 115.050
+6400/69092	Loss: 113.112
+9600/69092	Loss: 113.652
+12800/69092	Loss: 114.119
+16000/69092	Loss: 112.435
+19200/69092	Loss: 113.488
+22400/69092	Loss: 113.293
+25600/69092	Loss: 114.508
+28800/69092	Loss: 113.832
+32000/69092	Loss: 115.152
+35200/69092	Loss: 114.316
+38400/69092	Loss: 113.723
+41600/69092	Loss: 112.864
+44800/69092	Loss: 114.576
+48000/69092	Loss: 114.918
+51200/69092	Loss: 114.874
+54400/69092	Loss: 115.212
+57600/69092	Loss: 114.723
+60800/69092	Loss: 114.521
+64000/69092	Loss: 114.774
+67200/69092	Loss: 114.068
+Training time 0:04:24.372506
+Epoch: 129 Average loss: 114.13
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 132)
+0/69092	Loss: 115.373
+3200/69092	Loss: 112.991
+6400/69092	Loss: 115.433
+9600/69092	Loss: 114.669
+12800/69092	Loss: 114.506
+16000/69092	Loss: 113.683
+19200/69092	Loss: 113.663
+22400/69092	Loss: 113.430
+25600/69092	Loss: 114.815
+28800/69092	Loss: 112.627
+32000/69092	Loss: 115.622
+35200/69092	Loss: 112.702
+38400/69092	Loss: 112.591
+41600/69092	Loss: 115.371
+44800/69092	Loss: 115.227
+48000/69092	Loss: 114.349
+51200/69092	Loss: 115.599
+54400/69092	Loss: 114.853
+57600/69092	Loss: 113.642
+60800/69092	Loss: 112.977
+64000/69092	Loss: 112.816
+67200/69092	Loss: 115.588
+Training time 0:04:25.369487
+Epoch: 130 Average loss: 114.15
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 133)
+0/69092	Loss: 107.789
+3200/69092	Loss: 112.483
+6400/69092	Loss: 115.576
+9600/69092	Loss: 115.011
+12800/69092	Loss: 113.660
+16000/69092	Loss: 115.363
+19200/69092	Loss: 115.619
+22400/69092	Loss: 113.759
+25600/69092	Loss: 111.395
+28800/69092	Loss: 112.099
+32000/69092	Loss: 114.761
+35200/69092	Loss: 113.568
+38400/69092	Loss: 114.094
+41600/69092	Loss: 114.263
+44800/69092	Loss: 115.484
+48000/69092	Loss: 113.398
+51200/69092	Loss: 114.657
+54400/69092	Loss: 114.476
+57600/69092	Loss: 113.724
+60800/69092	Loss: 113.923
+64000/69092	Loss: 113.543
+67200/69092	Loss: 113.137
+Training time 0:04:23.321508
+Epoch: 131 Average loss: 114.05
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 134)
+0/69092	Loss: 123.004
+3200/69092	Loss: 114.564
+6400/69092	Loss: 113.602
+9600/69092	Loss: 113.447
+12800/69092	Loss: 113.275
+16000/69092	Loss: 114.056
+19200/69092	Loss: 114.602
+22400/69092	Loss: 114.670
+25600/69092	Loss: 113.045
+28800/69092	Loss: 113.388
+32000/69092	Loss: 113.867
+35200/69092	Loss: 115.408
+38400/69092	Loss: 114.099
+41600/69092	Loss: 113.591
+44800/69092	Loss: 113.610
+48000/69092	Loss: 113.645
+51200/69092	Loss: 113.597
+54400/69092	Loss: 113.680
+57600/69092	Loss: 114.309
+60800/69092	Loss: 113.205
+64000/69092	Loss: 113.916
+67200/69092	Loss: 117.059
+Training time 0:04:20.153807
+Epoch: 132 Average loss: 114.00
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 135)
+0/69092	Loss: 108.133
+3200/69092	Loss: 112.305
+6400/69092	Loss: 113.728
+9600/69092	Loss: 111.871
+12800/69092	Loss: 112.839
+16000/69092	Loss: 113.411
+19200/69092	Loss: 114.898
+22400/69092	Loss: 112.742
+25600/69092	Loss: 113.579
+28800/69092	Loss: 113.920
+32000/69092	Loss: 115.454
+35200/69092	Loss: 112.449
+38400/69092	Loss: 113.912
+41600/69092	Loss: 113.215
+44800/69092	Loss: 114.048
+48000/69092	Loss: 115.217
+51200/69092	Loss: 113.958
+54400/69092	Loss: 115.548
+57600/69092	Loss: 115.074
+60800/69092	Loss: 114.615
+64000/69092	Loss: 114.327
+67200/69092	Loss: 114.783
+Training time 0:04:13.651886
+Epoch: 133 Average loss: 113.98
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 136)
+0/69092	Loss: 112.990
+3200/69092	Loss: 112.850
+6400/69092	Loss: 111.781
+9600/69092	Loss: 114.440
+12800/69092	Loss: 113.950
+16000/69092	Loss: 113.776
+19200/69092	Loss: 116.008
+22400/69092	Loss: 114.935
+25600/69092	Loss: 113.381
+28800/69092	Loss: 115.506
+32000/69092	Loss: 113.739
+35200/69092	Loss: 115.350
+38400/69092	Loss: 113.398
+41600/69092	Loss: 112.783
+44800/69092	Loss: 114.051
+48000/69092	Loss: 113.729
+51200/69092	Loss: 111.615
+54400/69092	Loss: 112.875
+57600/69092	Loss: 113.566
+60800/69092	Loss: 112.446
+64000/69092	Loss: 115.136
+67200/69092	Loss: 113.092
+Training time 0:04:03.871304
+Epoch: 134 Average loss: 113.86
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 137)
+0/69092	Loss: 113.820
+3200/69092	Loss: 113.023
+6400/69092	Loss: 113.605
+9600/69092	Loss: 115.006
+12800/69092	Loss: 113.062
+16000/69092	Loss: 113.313
+19200/69092	Loss: 113.548
+22400/69092	Loss: 113.821
+25600/69092	Loss: 113.696
+28800/69092	Loss: 113.847
+32000/69092	Loss: 112.898
+35200/69092	Loss: 115.648
+38400/69092	Loss: 115.076
+41600/69092	Loss: 112.041
+44800/69092	Loss: 112.616
+48000/69092	Loss: 114.295
+51200/69092	Loss: 114.063
+54400/69092	Loss: 114.141
+57600/69092	Loss: 113.066
+60800/69092	Loss: 114.087
+64000/69092	Loss: 116.195
+67200/69092	Loss: 113.690
+Training time 0:04:07.117686
+Epoch: 135 Average loss: 113.87
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 138)
+0/69092	Loss: 117.427
+3200/69092	Loss: 114.269
+6400/69092	Loss: 115.480
+9600/69092	Loss: 112.917
+12800/69092	Loss: 114.796
+16000/69092	Loss: 113.584
+19200/69092	Loss: 113.838
+22400/69092	Loss: 114.711
+25600/69092	Loss: 112.946
+28800/69092	Loss: 112.712
+32000/69092	Loss: 113.911
+35200/69092	Loss: 113.644
+38400/69092	Loss: 115.387
+41600/69092	Loss: 114.737
+44800/69092	Loss: 113.171
+48000/69092	Loss: 113.791
+51200/69092	Loss: 113.560
+54400/69092	Loss: 113.901
+57600/69092	Loss: 115.148
+60800/69092	Loss: 112.369
+64000/69092	Loss: 112.151
+67200/69092	Loss: 115.114
+Training time 0:04:02.716749
+Epoch: 136 Average loss: 113.90
+=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 139)
+0/69092	Loss: 109.092
+3200/69092	Loss: 115.821
+6400/69092	Loss: 112.875
+9600/69092	Loss: 114.357
+12800/69092	Loss: 114.035
+16000/69092	Loss: 112.059
+19200/69092	Loss: 114.598
+22400/69092	Loss: 113.213
+25600/69092	Loss: 113.436
+28800/69092	Loss: 115.048
+32000/69092	Loss: 113.937
+35200/69092	Loss: 112.612
+38400/69092	Loss: 114.134
diff --git a/dataloader/dataloaders.py b/dataloader/dataloaders.py
index 5c557b75bb4332ad0fc62e03394ce5dffaba8fc7..4e2d5fc7000778b39a4ae5c20c10cfcfdf28cbba 100644
--- a/dataloader/dataloaders.py
+++ b/dataloader/dataloaders.py
@@ -104,7 +104,7 @@ def get_dsprites_dataloader(batch_size=128, path_to_data='../data/dSprites/dspri
     return train_loader, test_loader
 
 
-def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='data/rendered_chairs'):
+def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='../data/rendered_chairs'):
     """
     Chairs dataloader. Chairs are center cropped and resized to (64, 64).
     """
diff --git a/img_gif/rendered_chairs_VAE_bs_256.gif b/img_gif/rendered_chairs_VAE_bs_256.gif
new file mode 100644
index 0000000000000000000000000000000000000000..8c9e20e22a38163a921a71a76909049c820a06c6
Binary files /dev/null and b/img_gif/rendered_chairs_VAE_bs_256.gif differ
diff --git a/img_gif/rendered_chairs_VAE_bs_64.gif b/img_gif/rendered_chairs_VAE_bs_64.gif
new file mode 100644
index 0000000000000000000000000000000000000000..73e8c7107d2ec3c283ebd56ad5ebefe0b58561c6
Binary files /dev/null and b/img_gif/rendered_chairs_VAE_bs_64.gif differ
diff --git a/img_gif/rendered_chairs_beta_VAE_bs_256.gif b/img_gif/rendered_chairs_beta_VAE_bs_256.gif
new file mode 100644
index 0000000000000000000000000000000000000000..dd5cf8b274bff2de340db5b3af845b768135d800
Binary files /dev/null and b/img_gif/rendered_chairs_beta_VAE_bs_256.gif differ
diff --git a/img_gif/rendered_chairs_beta_VAE_bs_64.gif b/img_gif/rendered_chairs_beta_VAE_bs_64.gif
new file mode 100644
index 0000000000000000000000000000000000000000..f250b235a2626fe803a5ea601b21c03c2cbf2f98
Binary files /dev/null and b/img_gif/rendered_chairs_beta_VAE_bs_64.gif differ
diff --git a/main.py b/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..2e80eb9cff461e1ecd3de9c4927dac28acbb5b9e
--- /dev/null
+++ b/main.py
@@ -0,0 +1,159 @@
+"""
+Code from: https://github.com/Schlumberger/joint-vae
+https://github.com/1Konny/Beta-VAE
+"""
+
+# import sys
+# sys.path.append('')
+import os
+from dataloader.dataloaders import *
+import torch.nn as nn
+from VAE_model.models import VAE
+from torch import optim
+from viz.visualize import Visualizer
+from utils.training import Trainer, gpu_config
+import argparse
+import json
+
+
+def main(args):
+
+    # continue and discrete capacity
+    if args.cont_capacity is not None:
+        cont_capacity = [float(item) for item in args.cont_capacity.split(',')]
+    else:
+        cont_capacity = args.cont_capacity
+    if args.disc_capacity is not None:
+        disc_capacity = [float(item) for item in args.disc_capacity.split(',')]
+    else:
+        disc_capacity = args.disc_capacity
+
+    # latent_spec
+    latent_spec = {"cont": args.latent_spec_cont}
+
+    # number of classes and image size:
+    if args.dataset == 'mnist' or args.dataset == 'fashion_data':
+        nb_classes = 10
+        img_size = (1, 32, 32)
+    elif args.dataset == 'celeba_64':
+        nb_classes = None
+        img_size = (3, 64, 64)
+    elif args.dataset == 'rendered_chairs':
+        nb_classes = 1393
+        img_size = (3, 64, 64)
+    elif args.dataset == 'dSprites':
+        nb_classes = 6
+
+    # create and write a json file:
+    if not args.load_model_checkpoint:
+        print('creare new diretory experiment: {}/{}'.format(args.dataset, args.experiment_name))
+        ckpt_dir = os.path.join('trained_models', args.dataset, args.experiment_name, args.ckpt_dir)
+        if not os.path.exists(ckpt_dir):
+            print("create new directory: {}".format(ckpt_dir))
+            os.makedirs(ckpt_dir, exist_ok=True)
+
+        parameter = {'dataset': args.dataset, 'epochs': args.epochs, 'cont_capacity': args.cont_capacity,
+                     'disc_capacity': args.disc_capacity, 'record_loss_every': args.record_loss_every,
+                     'batch_size': args.batch_size, 'latent_spec_cont': args.latent_spec_cont,
+                     'experiment_name': args.experiment_name, 'print_loss_every': args.print_loss_every,
+                     'latent_spec_disc': args.latent_spec_disc, 'nb_classes': nb_classes}
+
+        # Save json parameters:
+        file_path = os.path.join('trained_models/', args.dataset, args.experiment_name, 'specs.json')
+        with open(file_path, 'w') as json_file:
+            json.dump(parameter, json_file)
+        
+    # create model
+    model = VAE(img_size, latent_spec=latent_spec)
+    # load dataset
+    train_loader, test_loader, dataset_name = load_dataset(args.dataset, args.batch_size, num_worker=args.num_worker)
+
+    # Define model
+    model, use_gpu, device = gpu_config(model)
+
+    if args.verbose:
+        print(model)
+        num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
+        print('The number of parameters of model is', num_params)
+
+    # Define optimizer and criterion
+    optimizer = optim.Adam(model.parameters(), lr=args.lr)
+    criterion = nn.CrossEntropyLoss()
+
+    # Define trainer
+    trainer = Trainer(model, device, optimizer, criterion, save_step=args.save_step, ckpt_dir=args.ckpt_dir,
+                      ckpt_name=args.ckpt_name,
+                      expe_name=args.experiment_name,
+                      dataset=args.dataset,
+                      cont_capacity=cont_capacity,
+                      disc_capacity=disc_capacity,
+                      is_beta=args.is_beta_VAE,
+                      beta=args.beta)
+
+    # define visualizer
+    viz = Visualizer(model)
+
+    # Train model:
+    trainer.train(train_loader, args.epochs, save_training_gif=('../img_gif/' + dataset_name + '_' +
+                                                                args.latent_name + args.experiment_name + '.gif', viz))
+
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description='VAE')
+    parser.add_argument('--batch-size', type=int, default=64, metavar='integer value',
+                        help='input batch size for training (default: 64)')
+    parser.add_argument('--record-loss-every', type=int, default=50, metavar='integer value',
+                        help='Record loss every (value)')
+    parser.add_argument('--print-loss-every', type=int, default=50, metavar='integer value',
+                        help='Print loss every (value)')
+    parser.add_argument('--epochs', type=int, default=100, metavar='integer value',
+                        help='number of epochs to train (default: 100)')
+    parser.add_argument('--lr', type=float, default=5e-4, metavar='value',
+                        help='learning rate value')
+    parser.add_argument('--dataset', type=str, default=None, metavar='name',
+                        help='Dataset Name')
+    parser.add_argument('--save-model', type=bool, default=True, metavar='bool',
+                        help='Save model')
+    parser.add_argument('--save-reconstruction-image', type=bool, default=False, metavar='bool',
+                        help='Save reconstruction image')
+    parser.add_argument('--latent_spec_cont', type=int, default=10, metavar='integer value',
+                        help='Capacity of continue latent space')
+    parser.add_argument('--latent_spec_disc', type=list, default=None, metavar='integer list',
+                        help='Capacity of discrete latent space')
+    parser.add_argument('--cont-capacity', type=str, default=None, metavar='integer tuple',
+                        help='capacity of continuous channels')
+    parser.add_argument('--disc-capacity', type=str, default=None, metavar='integer tuple',
+                        help='capacity of discrete channels')
+    parser.add_argument('--experiment-name', type=str, default='', metavar='name',
+                        help='experiment name')
+    parser.add_argument('--latent-name', type=str, default='', metavar='name',
+                        help='Latent space name')
+    parser.add_argument('--is-beta-VAE', type=bool, default=False, metavar='beta_VAE',
+                        help='If use beta-VAE')
+    parser.add_argument('--beta', type=int, default=None, metavar='beta',
+                        help='Beta value')
+    parser.add_argument("--gpu-devices", type=int, nargs='+', default=None, help="GPU devices available")
+    parser.add_argument("--load-model-checkpoint", type=bool, default=False, help="If we use a pre trained model")
+    parser.add_argument("--load-expe-name", type=str, default='', help="The name expe to loading")
+    parser.add_argument("--num-worker", type=int, default=4, help="num worker to dataloader")
+    parser.add_argument("--verbose", type=bool, default=True, help="To print details model")
+    parser.add_argument("--save-step", type=int, default=1, help="save model every step")
+    parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory')
+    parser.add_argument('--ckpt_name', default='last', type=str,
+                        help='load previous checkpoint. insert checkpoint filename')
+
+    args = parser.parse_args()
+
+    assert args.dataset in ['mnist', 'fashion_data', 'celeba_64', 'rendered_chairs', 'dSprites'], \
+        "The choisen dataset is not available. Please choose a dataset from the following: ['mnist', 'fashion_data', " \
+        "'celeba_64', 'rendered_chairs', 'dSprites'] "
+    if args.is_beta_VAE:
+        assert args.beta is not None, 'Beta is null or if you use Beta-VAe model, please enter a beta value'
+
+    print(parser.parse_args())
+
+    gpu_devices = ','.join([str(id) for id in args.gpu_devices])
+    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_devices
+
+    main(args)
diff --git a/parameters_combinations/param_combinations_chairs.txt b/parameters_combinations/param_combinations_chairs.txt
index 3564326e4e7db5ddce4e8e13009f245304c9926b..e1228ff44808c90a06ca62bdef045378612d1926 100644
--- a/parameters_combinations/param_combinations_chairs.txt
+++ b/parameters_combinations/param_combinations_chairs.txt
@@ -1,4 +1,4 @@
 --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_256
 --batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64
 --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --experiment-name=VAE_bs_256
---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --experiment-name=VAE_bs_64
+--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --experiment-name=VAE_bs_64
\ No newline at end of file
diff --git a/reconstruction_im/charis_VAE_bs_256.png b/reconstruction_im/charis_VAE_bs_256.png
index 32d809c7d3f9f9333b1ab0a8a68a93a72f77dd9c..fe5203301e4e636df2121a0f510738e750f76734 100644
Binary files a/reconstruction_im/charis_VAE_bs_256.png and b/reconstruction_im/charis_VAE_bs_256.png differ
diff --git a/reconstruction_im/charis_VAE_bs_64.png b/reconstruction_im/charis_VAE_bs_64.png
index 4c083d463dc5433906f55a51dc67786d729b8b4f..f85ecdf45943cdb836202d75b590d16f8e084349 100644
Binary files a/reconstruction_im/charis_VAE_bs_64.png and b/reconstruction_im/charis_VAE_bs_64.png differ
diff --git a/reconstruction_im/charis_beta_VAE_bs_256.png b/reconstruction_im/charis_beta_VAE_bs_256.png
index 24f379186d26895de0526f53882cb84b53016c04..187679a81c1eccd22d6432a74f8c391cf90f136e 100644
Binary files a/reconstruction_im/charis_beta_VAE_bs_256.png and b/reconstruction_im/charis_beta_VAE_bs_256.png differ
diff --git a/reconstruction_im/charis_beta_VAE_bs_64.png b/reconstruction_im/charis_beta_VAE_bs_64.png
index c92eb0ce79ebd76b029eff0a1da84bf11e58f004..b559a570179e6deb1bd9dd398ba343144e5b97ba 100644
Binary files a/reconstruction_im/charis_beta_VAE_bs_64.png and b/reconstruction_im/charis_beta_VAE_bs_64.png differ
diff --git a/reconstruction_im/rendered_chairs_beta_VAE.png b/reconstruction_im/rendered_chairs_beta_VAE.png
deleted file mode 100644
index 669f39ee976079cef2b5775cb5afdcfb2073dec2..0000000000000000000000000000000000000000
Binary files a/reconstruction_im/rendered_chairs_beta_VAE.png and /dev/null differ
diff --git a/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last
new file mode 100644
index 0000000000000000000000000000000000000000..99f36b9f28d156f588c78a5e48e07ef9edb5c2f3
Binary files /dev/null and b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last differ
diff --git a/trained_models/rendered_chairs/VAE_bs_256/specs.json b/trained_models/rendered_chairs/VAE_bs_256/specs.json
new file mode 100644
index 0000000000000000000000000000000000000000..e5db16dfdc394df06c653399ea4b0f8ceb67a98a
--- /dev/null
+++ b/trained_models/rendered_chairs/VAE_bs_256/specs.json
@@ -0,0 +1 @@
+{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 256, "latent_spec_cont": 10, "experiment_name": "VAE_bs_256", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393}
\ No newline at end of file
diff --git a/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last
new file mode 100644
index 0000000000000000000000000000000000000000..726fe5245fd727ef42b5cab3fce2df35c699360b
Binary files /dev/null and b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last differ
diff --git a/trained_models/rendered_chairs/VAE_bs_64/specs.json b/trained_models/rendered_chairs/VAE_bs_64/specs.json
new file mode 100644
index 0000000000000000000000000000000000000000..7a56498990531b3e8d7a20338898b1169c0c6ad0
--- /dev/null
+++ b/trained_models/rendered_chairs/VAE_bs_64/specs.json
@@ -0,0 +1 @@
+{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393}
\ No newline at end of file
diff --git a/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last
new file mode 100644
index 0000000000000000000000000000000000000000..e5e9aeabf13e873880a78a5259aa91b7a380e44d
Binary files /dev/null and b/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last differ
diff --git a/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json b/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json
new file mode 100644
index 0000000000000000000000000000000000000000..63331fde7e7e21992aa7dbc092d180154810b71c
--- /dev/null
+++ b/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json
@@ -0,0 +1 @@
+{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 256, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_256", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393}
\ No newline at end of file
diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last
new file mode 100644
index 0000000000000000000000000000000000000000..f4622f965f57120a08b95ae017bcf9a12094de95
Binary files /dev/null and b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last differ
diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json b/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json
new file mode 100644
index 0000000000000000000000000000000000000000..c11acc1ccaf888effbbb2b16b457aba4895677b6
--- /dev/null
+++ b/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json
@@ -0,0 +1 @@
+{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393}
\ No newline at end of file