diff --git a/Experiments/experiments.py b/Experiments/experiments.py index bab104ebe8ca2ad37556acb98939c91d76ba9c7c..e9d9f0894c35aa116e1a5aa5a787614df9859574 100644 --- a/Experiments/experiments.py +++ b/Experiments/experiments.py @@ -2,11 +2,17 @@ from utils.load_model import load from viz.visualize import Visualizer as Viz import matplotlib.pyplot as plt from dataloader.dataloaders import * +from VAE_model.models import VAE +import os +import torch -def viz_reconstruction(path, expe_name, batch): +def viz_reconstruction(model, path, expe_name, batch): + + file_path = os.path.join(path, expe_name, 'checkpoints', 'last') + checkpoint = torch.load(file_path, map_location=torch.device('cpu')) + model.load_state_dict(checkpoint['model_states']['model']) - model = load(path, expe_name) viz_chairs = Viz(model) viz_chairs.save_images = False @@ -24,6 +30,8 @@ _, dataloader_chairs = get_chairs_dataloader(batch_size=32) for batch_chairs, labels_chairs in dataloader_chairs: break +# torch.load('data/batch_chairs.pt') + path_to_model_folder_chairs = '../trained_models/rendered_chairs/' expe_name_1 = 'VAE_bs_64' expe_name_2 = 'VAE_bs_256' @@ -32,5 +40,9 @@ expe_name_4 = 'beta_VAE_bs_256' list_expe = [expe_name_1, expe_name_2, expe_name_3, expe_name_4] +img_size = (3, 64, 64) +latent_spec = {"cont": 10} +model = VAE(img_size, latent_spec=latent_spec) + for i in list_expe: - viz_reconstruction(path_to_model_folder_chairs, i, batch_chairs) + viz_reconstruction(model, path_to_model_folder_chairs, i, batch_chairs) diff --git a/OAR.2066986.stderr b/OAR.2066986.stderr new file mode 100644 index 0000000000000000000000000000000000000000..0bb03bf57906dfc4031825f7fa552cc35aec1353 --- /dev/null +++ b/OAR.2066986.stderr @@ -0,0 +1,9 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py:26: UserWarning: + There is an imbalance between your GPUs. You may want to exclude GPU 1 which + has less than 75% of the memory or cores of GPU 0. You can do so by setting + the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES + environment variable. + warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])) +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-06-24 03:51:26] Job 2066986 KILLED ## diff --git a/OAR.2066986.stdout b/OAR.2066986.stdout new file mode 100644 index 0000000000000000000000000000000000000000..d44df1f0e4627fcfca61ce3f83ffa302f875433e --- /dev/null +++ b/OAR.2066986.stdout @@ -0,0 +1,1553 @@ +Namespace(batch_size=256, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +creare new diretory experiment: rendered_chairs/beta_VAE_bs_256 +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K40c +Tesla K20m +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last (iter 4)' +0/69092 Loss: 211.825 +12800/69092 Loss: 211.804 +25600/69092 Loss: 206.202 +38400/69092 Loss: 202.006 +51200/69092 Loss: 200.623 +64000/69092 Loss: 197.778 +Training time 0:03:33.530106 +Epoch: 1 Average loss: 203.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 5) +0/69092 Loss: 194.363 +12800/69092 Loss: 193.513 +25600/69092 Loss: 190.886 +38400/69092 Loss: 189.957 +51200/69092 Loss: 188.767 +64000/69092 Loss: 186.445 +Training time 0:03:35.633651 +Epoch: 2 Average loss: 189.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 6) +0/69092 Loss: 191.560 +12800/69092 Loss: 186.911 +25600/69092 Loss: 186.547 +38400/69092 Loss: 187.360 +51200/69092 Loss: 186.168 +64000/69092 Loss: 184.956 +Training time 0:03:34.640039 +Epoch: 3 Average loss: 186.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 7) +0/69092 Loss: 188.289 +12800/69092 Loss: 182.612 +25600/69092 Loss: 181.754 +38400/69092 Loss: 177.558 +51200/69092 Loss: 178.641 +64000/69092 Loss: 178.958 +Training time 0:03:34.619088 +Epoch: 4 Average loss: 179.99 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 8) +0/69092 Loss: 176.130 +12800/69092 Loss: 179.349 +25600/69092 Loss: 175.271 +38400/69092 Loss: 175.914 +51200/69092 Loss: 176.593 +64000/69092 Loss: 175.448 +Training time 0:03:34.581288 +Epoch: 5 Average loss: 176.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 9) +0/69092 Loss: 173.057 +12800/69092 Loss: 174.321 +25600/69092 Loss: 173.044 +38400/69092 Loss: 172.272 +51200/69092 Loss: 173.259 +64000/69092 Loss: 170.322 +Training time 0:03:34.404385 +Epoch: 6 Average loss: 172.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 10) +0/69092 Loss: 166.655 +12800/69092 Loss: 171.300 +25600/69092 Loss: 170.458 +38400/69092 Loss: 170.805 +51200/69092 Loss: 170.232 +64000/69092 Loss: 171.220 +Training time 0:03:34.964220 +Epoch: 7 Average loss: 170.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 11) +0/69092 Loss: 178.479 +12800/69092 Loss: 170.169 +25600/69092 Loss: 169.556 +38400/69092 Loss: 171.901 +51200/69092 Loss: 168.732 +64000/69092 Loss: 169.240 +Training time 0:03:33.828026 +Epoch: 8 Average loss: 169.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 12) +0/69092 Loss: 172.547 +12800/69092 Loss: 169.826 +25600/69092 Loss: 170.576 +38400/69092 Loss: 169.827 +51200/69092 Loss: 168.754 +64000/69092 Loss: 168.303 +Training time 0:03:34.457471 +Epoch: 9 Average loss: 169.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 13) +0/69092 Loss: 167.148 +12800/69092 Loss: 168.280 +25600/69092 Loss: 168.913 +38400/69092 Loss: 170.169 +51200/69092 Loss: 168.747 +64000/69092 Loss: 168.010 +Training time 0:03:34.634507 +Epoch: 10 Average loss: 168.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 14) +0/69092 Loss: 177.245 +12800/69092 Loss: 169.183 +25600/69092 Loss: 169.266 +38400/69092 Loss: 167.712 +51200/69092 Loss: 167.721 +64000/69092 Loss: 168.102 +Training time 0:03:34.876272 +Epoch: 11 Average loss: 168.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 15) +0/69092 Loss: 176.615 +12800/69092 Loss: 167.388 +25600/69092 Loss: 168.006 +38400/69092 Loss: 167.276 +51200/69092 Loss: 168.548 +64000/69092 Loss: 166.197 +Training time 0:03:34.165047 +Epoch: 12 Average loss: 167.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 16) +0/69092 Loss: 172.005 +12800/69092 Loss: 167.224 +25600/69092 Loss: 168.013 +38400/69092 Loss: 169.018 +51200/69092 Loss: 166.406 +64000/69092 Loss: 166.123 +Training time 0:03:34.981962 +Epoch: 13 Average loss: 167.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 17) +0/69092 Loss: 168.780 +12800/69092 Loss: 168.028 +25600/69092 Loss: 166.477 +38400/69092 Loss: 166.556 +51200/69092 Loss: 166.215 +64000/69092 Loss: 168.803 +Training time 0:03:34.777682 +Epoch: 14 Average loss: 167.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 18) +0/69092 Loss: 166.192 +12800/69092 Loss: 166.410 +25600/69092 Loss: 167.980 +38400/69092 Loss: 165.740 +51200/69092 Loss: 166.931 +64000/69092 Loss: 165.295 +Training time 0:03:33.907632 +Epoch: 15 Average loss: 166.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 19) +0/69092 Loss: 168.910 +12800/69092 Loss: 166.387 +25600/69092 Loss: 168.154 +38400/69092 Loss: 167.979 +51200/69092 Loss: 165.611 +64000/69092 Loss: 164.256 +Training time 0:03:34.308635 +Epoch: 16 Average loss: 166.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 20) +0/69092 Loss: 153.952 +12800/69092 Loss: 166.799 +25600/69092 Loss: 166.583 +38400/69092 Loss: 166.714 +51200/69092 Loss: 164.663 +64000/69092 Loss: 165.421 +Training time 0:03:34.306057 +Epoch: 17 Average loss: 166.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 21) +0/69092 Loss: 179.877 +12800/69092 Loss: 167.473 +25600/69092 Loss: 166.346 +38400/69092 Loss: 164.610 +51200/69092 Loss: 165.784 +64000/69092 Loss: 165.548 +Training time 0:03:34.278194 +Epoch: 18 Average loss: 165.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 22) +0/69092 Loss: 152.548 +12800/69092 Loss: 164.441 +25600/69092 Loss: 166.865 +38400/69092 Loss: 164.547 +51200/69092 Loss: 166.574 +64000/69092 Loss: 166.189 +Training time 0:03:34.177869 +Epoch: 19 Average loss: 165.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 23) +0/69092 Loss: 169.217 +12800/69092 Loss: 166.643 +25600/69092 Loss: 166.234 +38400/69092 Loss: 164.382 +51200/69092 Loss: 164.328 +64000/69092 Loss: 165.078 +Training time 0:03:34.422146 +Epoch: 20 Average loss: 165.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 24) +0/69092 Loss: 161.289 +12800/69092 Loss: 165.853 +25600/69092 Loss: 165.618 +38400/69092 Loss: 164.688 +51200/69092 Loss: 165.000 +64000/69092 Loss: 165.459 +Training time 0:03:34.461971 +Epoch: 21 Average loss: 165.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 25) +0/69092 Loss: 159.510 +12800/69092 Loss: 165.153 +25600/69092 Loss: 165.337 +38400/69092 Loss: 164.817 +51200/69092 Loss: 165.308 +64000/69092 Loss: 165.527 +Training time 0:03:33.570288 +Epoch: 22 Average loss: 165.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 26) +0/69092 Loss: 170.139 +12800/69092 Loss: 164.568 +25600/69092 Loss: 164.903 +38400/69092 Loss: 164.993 +51200/69092 Loss: 167.294 +64000/69092 Loss: 164.163 +Training time 0:03:34.137382 +Epoch: 23 Average loss: 165.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 27) +0/69092 Loss: 160.074 +12800/69092 Loss: 164.802 +25600/69092 Loss: 165.156 +38400/69092 Loss: 165.485 +51200/69092 Loss: 165.304 +64000/69092 Loss: 164.874 +Training time 0:03:34.155758 +Epoch: 24 Average loss: 165.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 28) +0/69092 Loss: 159.392 +12800/69092 Loss: 165.178 +25600/69092 Loss: 164.090 +38400/69092 Loss: 166.206 +51200/69092 Loss: 164.525 +64000/69092 Loss: 164.707 +Training time 0:03:34.617919 +Epoch: 25 Average loss: 164.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 29) +0/69092 Loss: 171.862 +12800/69092 Loss: 163.451 +25600/69092 Loss: 165.349 +38400/69092 Loss: 166.284 +51200/69092 Loss: 164.517 +64000/69092 Loss: 164.092 +Training time 0:03:34.527260 +Epoch: 26 Average loss: 164.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 30) +0/69092 Loss: 158.628 +12800/69092 Loss: 165.301 +25600/69092 Loss: 164.939 +38400/69092 Loss: 163.872 +51200/69092 Loss: 164.439 +64000/69092 Loss: 165.157 +Training time 0:03:35.035772 +Epoch: 27 Average loss: 164.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 31) +0/69092 Loss: 159.360 +12800/69092 Loss: 165.523 +25600/69092 Loss: 164.674 +38400/69092 Loss: 164.216 +51200/69092 Loss: 163.631 +64000/69092 Loss: 165.648 +Training time 0:03:34.900889 +Epoch: 28 Average loss: 164.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 32) +0/69092 Loss: 157.986 +12800/69092 Loss: 164.944 +25600/69092 Loss: 164.624 +38400/69092 Loss: 163.472 +51200/69092 Loss: 164.677 +64000/69092 Loss: 165.441 +Training time 0:03:34.285686 +Epoch: 29 Average loss: 164.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 33) +0/69092 Loss: 161.244 +12800/69092 Loss: 163.373 +25600/69092 Loss: 165.776 +38400/69092 Loss: 164.253 +51200/69092 Loss: 164.947 +64000/69092 Loss: 164.238 +Training time 0:03:34.892902 +Epoch: 30 Average loss: 164.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 34) +0/69092 Loss: 163.053 +12800/69092 Loss: 165.200 +25600/69092 Loss: 164.347 +38400/69092 Loss: 164.216 +51200/69092 Loss: 163.448 +64000/69092 Loss: 164.677 +Training time 0:03:34.057974 +Epoch: 31 Average loss: 164.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 35) +0/69092 Loss: 156.522 +12800/69092 Loss: 163.038 +25600/69092 Loss: 164.385 +38400/69092 Loss: 164.930 +51200/69092 Loss: 163.186 +64000/69092 Loss: 164.172 +Training time 0:03:34.517277 +Epoch: 32 Average loss: 164.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 36) +0/69092 Loss: 167.346 +12800/69092 Loss: 164.662 +25600/69092 Loss: 163.356 +38400/69092 Loss: 163.878 +51200/69092 Loss: 164.450 +64000/69092 Loss: 164.437 +Training time 0:03:34.484296 +Epoch: 33 Average loss: 164.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 37) +0/69092 Loss: 150.947 +12800/69092 Loss: 164.719 +25600/69092 Loss: 162.579 +38400/69092 Loss: 164.336 +51200/69092 Loss: 165.475 +64000/69092 Loss: 163.452 +Training time 0:03:34.858968 +Epoch: 34 Average loss: 164.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 38) +0/69092 Loss: 168.195 +12800/69092 Loss: 164.326 +25600/69092 Loss: 164.275 +38400/69092 Loss: 164.487 +51200/69092 Loss: 164.394 +64000/69092 Loss: 163.267 +Training time 0:03:34.799991 +Epoch: 35 Average loss: 164.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 39) +0/69092 Loss: 162.548 +12800/69092 Loss: 164.372 +25600/69092 Loss: 164.171 +38400/69092 Loss: 163.765 +51200/69092 Loss: 163.489 +64000/69092 Loss: 163.863 +Training time 0:03:34.533021 +Epoch: 36 Average loss: 164.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 40) +0/69092 Loss: 175.309 +12800/69092 Loss: 163.169 +25600/69092 Loss: 164.087 +38400/69092 Loss: 163.781 +51200/69092 Loss: 162.098 +64000/69092 Loss: 164.361 +Training time 0:03:34.473704 +Epoch: 37 Average loss: 163.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 41) +0/69092 Loss: 165.228 +12800/69092 Loss: 163.195 +25600/69092 Loss: 164.960 +38400/69092 Loss: 164.452 +51200/69092 Loss: 164.154 +64000/69092 Loss: 162.288 +Training time 0:03:34.369595 +Epoch: 38 Average loss: 163.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 42) +0/69092 Loss: 171.521 +12800/69092 Loss: 162.591 +25600/69092 Loss: 163.128 +38400/69092 Loss: 165.067 +51200/69092 Loss: 163.874 +64000/69092 Loss: 163.911 +Training time 0:03:34.312838 +Epoch: 39 Average loss: 163.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 43) +0/69092 Loss: 155.946 +12800/69092 Loss: 163.299 +25600/69092 Loss: 162.675 +38400/69092 Loss: 165.110 +51200/69092 Loss: 164.525 +64000/69092 Loss: 164.077 +Training time 0:03:34.585969 +Epoch: 40 Average loss: 163.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 44) +0/69092 Loss: 153.399 +12800/69092 Loss: 163.496 +25600/69092 Loss: 163.969 +38400/69092 Loss: 165.591 +51200/69092 Loss: 164.615 +64000/69092 Loss: 161.441 +Training time 0:03:34.709067 +Epoch: 41 Average loss: 163.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 45) +0/69092 Loss: 156.591 +12800/69092 Loss: 163.524 +25600/69092 Loss: 162.621 +38400/69092 Loss: 164.014 +51200/69092 Loss: 164.112 +64000/69092 Loss: 164.345 +Training time 0:03:35.252902 +Epoch: 42 Average loss: 163.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 46) +0/69092 Loss: 163.608 +12800/69092 Loss: 163.123 +25600/69092 Loss: 162.704 +38400/69092 Loss: 163.056 +51200/69092 Loss: 164.623 +64000/69092 Loss: 164.656 +Training time 0:03:34.662832 +Epoch: 43 Average loss: 163.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 47) +0/69092 Loss: 153.614 +12800/69092 Loss: 163.977 +25600/69092 Loss: 163.717 +38400/69092 Loss: 163.211 +51200/69092 Loss: 163.595 +64000/69092 Loss: 162.397 +Training time 0:03:34.460078 +Epoch: 44 Average loss: 163.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 48) +0/69092 Loss: 156.672 +12800/69092 Loss: 164.010 +25600/69092 Loss: 164.568 +38400/69092 Loss: 163.828 +51200/69092 Loss: 161.124 +64000/69092 Loss: 162.826 +Training time 0:03:34.715757 +Epoch: 45 Average loss: 163.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 49) +0/69092 Loss: 170.756 +12800/69092 Loss: 163.939 +25600/69092 Loss: 163.215 +38400/69092 Loss: 163.414 +51200/69092 Loss: 163.922 +64000/69092 Loss: 163.683 +Training time 0:03:35.627656 +Epoch: 46 Average loss: 163.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 50) +0/69092 Loss: 164.595 +12800/69092 Loss: 163.255 +25600/69092 Loss: 162.672 +38400/69092 Loss: 164.189 +51200/69092 Loss: 163.686 +64000/69092 Loss: 162.669 +Training time 0:03:34.370078 +Epoch: 47 Average loss: 163.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 51) +0/69092 Loss: 165.749 +12800/69092 Loss: 162.771 +25600/69092 Loss: 163.035 +38400/69092 Loss: 164.054 +51200/69092 Loss: 161.917 +64000/69092 Loss: 162.585 +Training time 0:03:34.667025 +Epoch: 48 Average loss: 163.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 52) +0/69092 Loss: 154.571 +12800/69092 Loss: 163.939 +25600/69092 Loss: 163.544 +38400/69092 Loss: 163.970 +51200/69092 Loss: 161.575 +64000/69092 Loss: 163.866 +Training time 0:03:34.864267 +Epoch: 49 Average loss: 163.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 53) +0/69092 Loss: 166.004 +12800/69092 Loss: 163.521 +25600/69092 Loss: 162.988 +38400/69092 Loss: 163.130 +51200/69092 Loss: 163.261 +64000/69092 Loss: 163.026 +Training time 0:03:34.138736 +Epoch: 50 Average loss: 163.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 54) +0/69092 Loss: 156.938 +12800/69092 Loss: 163.198 +25600/69092 Loss: 163.394 +38400/69092 Loss: 163.262 +51200/69092 Loss: 162.025 +64000/69092 Loss: 163.956 +Training time 0:03:34.763237 +Epoch: 51 Average loss: 163.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 55) +0/69092 Loss: 164.332 +12800/69092 Loss: 163.878 +25600/69092 Loss: 163.516 +38400/69092 Loss: 163.663 +51200/69092 Loss: 162.682 +64000/69092 Loss: 161.136 +Training time 0:03:35.382783 +Epoch: 52 Average loss: 163.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 56) +0/69092 Loss: 155.649 +12800/69092 Loss: 163.492 +25600/69092 Loss: 161.749 +38400/69092 Loss: 164.039 +51200/69092 Loss: 162.869 +64000/69092 Loss: 163.493 +Training time 0:03:35.305348 +Epoch: 53 Average loss: 163.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 57) +0/69092 Loss: 157.357 +12800/69092 Loss: 162.833 +25600/69092 Loss: 163.294 +38400/69092 Loss: 162.755 +51200/69092 Loss: 162.863 +64000/69092 Loss: 163.724 +Training time 0:03:34.340976 +Epoch: 54 Average loss: 163.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 58) +0/69092 Loss: 151.717 +12800/69092 Loss: 163.086 +25600/69092 Loss: 162.400 +38400/69092 Loss: 164.084 +51200/69092 Loss: 162.815 +64000/69092 Loss: 163.041 +Training time 0:03:35.284810 +Epoch: 55 Average loss: 163.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 59) +0/69092 Loss: 158.464 +12800/69092 Loss: 163.570 +25600/69092 Loss: 161.727 +38400/69092 Loss: 164.416 +51200/69092 Loss: 162.037 +64000/69092 Loss: 163.618 +Training time 0:03:35.450159 +Epoch: 56 Average loss: 162.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 60) +0/69092 Loss: 163.640 +12800/69092 Loss: 161.432 +25600/69092 Loss: 162.910 +38400/69092 Loss: 162.904 +51200/69092 Loss: 163.806 +64000/69092 Loss: 162.356 +Training time 0:03:35.267777 +Epoch: 57 Average loss: 162.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 61) +0/69092 Loss: 161.019 +12800/69092 Loss: 163.341 +25600/69092 Loss: 162.614 +38400/69092 Loss: 162.124 +51200/69092 Loss: 163.792 +64000/69092 Loss: 162.896 +Training time 0:03:34.874771 +Epoch: 58 Average loss: 162.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 62) +0/69092 Loss: 166.624 +12800/69092 Loss: 161.990 +25600/69092 Loss: 164.154 +38400/69092 Loss: 161.882 +51200/69092 Loss: 163.737 +64000/69092 Loss: 163.187 +Training time 0:03:34.613702 +Epoch: 59 Average loss: 162.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 63) +0/69092 Loss: 154.731 +12800/69092 Loss: 162.162 +25600/69092 Loss: 164.492 +38400/69092 Loss: 161.770 +51200/69092 Loss: 162.852 +64000/69092 Loss: 163.725 +Training time 0:03:34.790103 +Epoch: 60 Average loss: 162.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 64) +0/69092 Loss: 162.959 +12800/69092 Loss: 162.458 +25600/69092 Loss: 163.497 +38400/69092 Loss: 163.245 +51200/69092 Loss: 162.263 +64000/69092 Loss: 162.196 +Training time 0:03:34.640282 +Epoch: 61 Average loss: 162.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 65) +0/69092 Loss: 149.759 +12800/69092 Loss: 162.575 +25600/69092 Loss: 163.300 +38400/69092 Loss: 162.595 +51200/69092 Loss: 162.451 +64000/69092 Loss: 163.141 +Training time 0:03:34.993601 +Epoch: 62 Average loss: 162.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 66) +0/69092 Loss: 167.817 +12800/69092 Loss: 163.591 +25600/69092 Loss: 161.586 +38400/69092 Loss: 162.502 +51200/69092 Loss: 163.298 +64000/69092 Loss: 162.439 +Training time 0:03:34.761672 +Epoch: 63 Average loss: 162.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 67) +0/69092 Loss: 162.536 +12800/69092 Loss: 163.860 +25600/69092 Loss: 161.999 +38400/69092 Loss: 162.851 +51200/69092 Loss: 161.707 +64000/69092 Loss: 161.781 +Training time 0:03:34.965002 +Epoch: 64 Average loss: 162.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 68) +0/69092 Loss: 179.664 +12800/69092 Loss: 161.629 +25600/69092 Loss: 161.899 +38400/69092 Loss: 163.334 +51200/69092 Loss: 162.383 +64000/69092 Loss: 163.327 +Training time 0:03:34.568599 +Epoch: 65 Average loss: 162.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 69) +0/69092 Loss: 173.059 +12800/69092 Loss: 161.902 +25600/69092 Loss: 162.708 +38400/69092 Loss: 162.622 +51200/69092 Loss: 161.650 +64000/69092 Loss: 162.824 +Training time 0:03:35.257544 +Epoch: 66 Average loss: 162.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 70) +0/69092 Loss: 143.647 +12800/69092 Loss: 161.864 +25600/69092 Loss: 164.030 +38400/69092 Loss: 162.059 +51200/69092 Loss: 162.619 +64000/69092 Loss: 162.301 +Training time 0:03:35.838210 +Epoch: 67 Average loss: 162.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 71) +0/69092 Loss: 166.080 +12800/69092 Loss: 162.964 +25600/69092 Loss: 163.455 +38400/69092 Loss: 162.464 +51200/69092 Loss: 162.000 +64000/69092 Loss: 161.847 +Training time 0:03:34.850876 +Epoch: 68 Average loss: 162.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 72) +0/69092 Loss: 165.306 +12800/69092 Loss: 160.963 +25600/69092 Loss: 162.906 +38400/69092 Loss: 162.016 +51200/69092 Loss: 162.826 +64000/69092 Loss: 162.230 +Training time 0:03:35.222198 +Epoch: 69 Average loss: 162.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 73) +0/69092 Loss: 159.279 +12800/69092 Loss: 161.766 +25600/69092 Loss: 162.684 +38400/69092 Loss: 162.991 +51200/69092 Loss: 163.154 +64000/69092 Loss: 161.012 +Training time 0:03:34.964302 +Epoch: 70 Average loss: 162.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 74) +0/69092 Loss: 154.284 +12800/69092 Loss: 161.469 +25600/69092 Loss: 162.418 +38400/69092 Loss: 163.576 +51200/69092 Loss: 162.523 +64000/69092 Loss: 162.598 +Training time 0:03:34.914750 +Epoch: 71 Average loss: 162.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 75) +0/69092 Loss: 167.185 +12800/69092 Loss: 160.845 +25600/69092 Loss: 164.084 +38400/69092 Loss: 161.897 +51200/69092 Loss: 162.055 +64000/69092 Loss: 163.471 +Training time 0:03:35.329838 +Epoch: 72 Average loss: 162.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 76) +0/69092 Loss: 162.192 +12800/69092 Loss: 162.530 +25600/69092 Loss: 162.514 +38400/69092 Loss: 163.070 +51200/69092 Loss: 163.560 +64000/69092 Loss: 160.817 +Training time 0:03:35.328085 +Epoch: 73 Average loss: 162.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 77) +0/69092 Loss: 166.539 +12800/69092 Loss: 162.278 +25600/69092 Loss: 163.629 +38400/69092 Loss: 162.288 +51200/69092 Loss: 160.127 +64000/69092 Loss: 162.499 +Training time 0:03:35.936274 +Epoch: 74 Average loss: 162.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 78) +0/69092 Loss: 172.523 +12800/69092 Loss: 162.526 +25600/69092 Loss: 161.003 +38400/69092 Loss: 161.351 +51200/69092 Loss: 163.644 +64000/69092 Loss: 162.010 +Training time 0:03:34.917218 +Epoch: 75 Average loss: 162.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 79) +0/69092 Loss: 160.719 +12800/69092 Loss: 161.441 +25600/69092 Loss: 163.190 +38400/69092 Loss: 161.822 +51200/69092 Loss: 162.764 +64000/69092 Loss: 162.811 +Training time 0:03:34.825778 +Epoch: 76 Average loss: 162.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 80) +0/69092 Loss: 155.755 +12800/69092 Loss: 162.279 +25600/69092 Loss: 162.457 +38400/69092 Loss: 161.739 +51200/69092 Loss: 162.629 +64000/69092 Loss: 161.704 +Training time 0:03:34.994539 +Epoch: 77 Average loss: 162.20 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 81) +0/69092 Loss: 167.212 +12800/69092 Loss: 161.920 +25600/69092 Loss: 162.322 +38400/69092 Loss: 163.715 +51200/69092 Loss: 162.922 +64000/69092 Loss: 161.310 +Training time 0:03:35.098604 +Epoch: 78 Average loss: 162.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 82) +0/69092 Loss: 151.279 +12800/69092 Loss: 163.096 +25600/69092 Loss: 161.743 +38400/69092 Loss: 162.718 +51200/69092 Loss: 161.715 +64000/69092 Loss: 161.252 +Training time 0:03:34.378245 +Epoch: 79 Average loss: 162.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 83) +0/69092 Loss: 171.928 +12800/69092 Loss: 161.661 +25600/69092 Loss: 162.137 +38400/69092 Loss: 162.428 +51200/69092 Loss: 162.382 +64000/69092 Loss: 162.189 +Training time 0:03:35.523365 +Epoch: 80 Average loss: 162.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 84) +0/69092 Loss: 162.969 +12800/69092 Loss: 161.660 +25600/69092 Loss: 162.341 +38400/69092 Loss: 162.861 +51200/69092 Loss: 162.088 +64000/69092 Loss: 160.830 +Training time 0:03:35.828830 +Epoch: 81 Average loss: 162.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 85) +0/69092 Loss: 163.799 +12800/69092 Loss: 160.779 +25600/69092 Loss: 161.781 +38400/69092 Loss: 162.490 +51200/69092 Loss: 162.095 +64000/69092 Loss: 162.997 +Training time 0:03:35.324407 +Epoch: 82 Average loss: 162.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 86) +0/69092 Loss: 161.640 +12800/69092 Loss: 161.039 +25600/69092 Loss: 160.883 +38400/69092 Loss: 163.249 +51200/69092 Loss: 162.210 +64000/69092 Loss: 162.516 +Training time 0:03:35.899620 +Epoch: 83 Average loss: 162.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 87) +0/69092 Loss: 158.307 +12800/69092 Loss: 161.081 +25600/69092 Loss: 162.671 +38400/69092 Loss: 163.349 +51200/69092 Loss: 161.665 +64000/69092 Loss: 162.282 +Training time 0:03:35.265596 +Epoch: 84 Average loss: 162.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 88) +0/69092 Loss: 164.806 +12800/69092 Loss: 162.299 +25600/69092 Loss: 162.815 +38400/69092 Loss: 162.283 +51200/69092 Loss: 162.029 +64000/69092 Loss: 161.074 +Training time 0:03:35.331087 +Epoch: 85 Average loss: 162.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 89) +0/69092 Loss: 155.805 +12800/69092 Loss: 160.191 +25600/69092 Loss: 162.544 +38400/69092 Loss: 162.671 +51200/69092 Loss: 162.905 +64000/69092 Loss: 161.941 +Training time 0:03:34.833442 +Epoch: 86 Average loss: 162.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 90) +0/69092 Loss: 155.322 +12800/69092 Loss: 162.365 +25600/69092 Loss: 160.966 +38400/69092 Loss: 162.498 +51200/69092 Loss: 161.492 +64000/69092 Loss: 162.268 +Training time 0:03:35.194527 +Epoch: 87 Average loss: 161.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 91) +0/69092 Loss: 147.863 +12800/69092 Loss: 161.758 +25600/69092 Loss: 163.217 +38400/69092 Loss: 160.943 +51200/69092 Loss: 161.846 +64000/69092 Loss: 163.150 +Training time 0:03:35.543712 +Epoch: 88 Average loss: 161.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 92) +0/69092 Loss: 156.224 +12800/69092 Loss: 161.407 +25600/69092 Loss: 163.099 +38400/69092 Loss: 160.885 +51200/69092 Loss: 163.510 +64000/69092 Loss: 160.672 +Training time 0:03:34.976525 +Epoch: 89 Average loss: 162.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 93) +0/69092 Loss: 163.257 +12800/69092 Loss: 160.499 +25600/69092 Loss: 161.542 +38400/69092 Loss: 161.733 +51200/69092 Loss: 162.542 +64000/69092 Loss: 162.036 +Training time 0:03:35.251829 +Epoch: 90 Average loss: 161.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 94) +0/69092 Loss: 154.922 +12800/69092 Loss: 162.931 +25600/69092 Loss: 161.596 +38400/69092 Loss: 161.078 +51200/69092 Loss: 161.143 +64000/69092 Loss: 162.084 +Training time 0:03:34.964534 +Epoch: 91 Average loss: 161.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 95) +0/69092 Loss: 160.102 +12800/69092 Loss: 160.236 +25600/69092 Loss: 160.102 +38400/69092 Loss: 163.086 +51200/69092 Loss: 161.250 +64000/69092 Loss: 161.530 +Training time 0:03:35.274464 +Epoch: 92 Average loss: 161.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 96) +0/69092 Loss: 166.773 +12800/69092 Loss: 161.029 +25600/69092 Loss: 160.234 +38400/69092 Loss: 161.051 +51200/69092 Loss: 159.310 +64000/69092 Loss: 162.371 +Training time 0:03:34.579357 +Epoch: 93 Average loss: 160.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 97) +0/69092 Loss: 156.949 +12800/69092 Loss: 160.754 +25600/69092 Loss: 161.179 +38400/69092 Loss: 160.530 +51200/69092 Loss: 160.001 +64000/69092 Loss: 160.276 +Training time 0:03:35.364384 +Epoch: 94 Average loss: 160.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 98) +0/69092 Loss: 159.017 +12800/69092 Loss: 160.227 +25600/69092 Loss: 160.172 +38400/69092 Loss: 161.081 +51200/69092 Loss: 160.087 +64000/69092 Loss: 159.089 +Training time 0:03:35.051431 +Epoch: 95 Average loss: 160.11 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 99) +0/69092 Loss: 158.123 +12800/69092 Loss: 161.822 +25600/69092 Loss: 161.200 +38400/69092 Loss: 159.726 +51200/69092 Loss: 159.801 +64000/69092 Loss: 159.733 +Training time 0:03:34.861642 +Epoch: 96 Average loss: 160.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 100) +0/69092 Loss: 159.461 +12800/69092 Loss: 161.147 +25600/69092 Loss: 159.821 +38400/69092 Loss: 160.349 +51200/69092 Loss: 159.651 +64000/69092 Loss: 159.265 +Training time 0:03:34.392620 +Epoch: 97 Average loss: 160.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 101) +0/69092 Loss: 162.921 +12800/69092 Loss: 160.283 +25600/69092 Loss: 160.020 +38400/69092 Loss: 159.135 +51200/69092 Loss: 160.403 +64000/69092 Loss: 159.789 +Training time 0:03:34.944138 +Epoch: 98 Average loss: 160.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 102) +0/69092 Loss: 157.861 +12800/69092 Loss: 160.768 +25600/69092 Loss: 160.062 +38400/69092 Loss: 159.811 +51200/69092 Loss: 159.629 +64000/69092 Loss: 159.130 +Training time 0:03:35.133845 +Epoch: 99 Average loss: 159.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 103) +0/69092 Loss: 158.712 +12800/69092 Loss: 161.059 +25600/69092 Loss: 159.315 +38400/69092 Loss: 158.331 +51200/69092 Loss: 160.059 +64000/69092 Loss: 159.669 +Training time 0:03:34.706540 +Epoch: 100 Average loss: 159.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 104) +0/69092 Loss: 155.913 +12800/69092 Loss: 159.568 +25600/69092 Loss: 158.244 +38400/69092 Loss: 160.843 +51200/69092 Loss: 160.379 +64000/69092 Loss: 158.854 +Training time 0:03:35.405917 +Epoch: 101 Average loss: 159.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 105) +0/69092 Loss: 167.682 +12800/69092 Loss: 158.469 +25600/69092 Loss: 159.905 +38400/69092 Loss: 159.218 +51200/69092 Loss: 159.482 +64000/69092 Loss: 160.674 +Training time 0:03:35.620727 +Epoch: 102 Average loss: 159.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 106) +0/69092 Loss: 171.435 +12800/69092 Loss: 159.276 +25600/69092 Loss: 161.324 +38400/69092 Loss: 158.919 +51200/69092 Loss: 159.018 +64000/69092 Loss: 157.720 +Training time 0:03:35.123399 +Epoch: 103 Average loss: 159.50 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 107) +0/69092 Loss: 157.325 +12800/69092 Loss: 160.057 +25600/69092 Loss: 159.965 +38400/69092 Loss: 158.745 +51200/69092 Loss: 158.629 +64000/69092 Loss: 160.076 +Training time 0:03:35.501608 +Epoch: 104 Average loss: 159.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 108) +0/69092 Loss: 157.509 +12800/69092 Loss: 160.053 +25600/69092 Loss: 158.607 +38400/69092 Loss: 159.661 +51200/69092 Loss: 160.847 +64000/69092 Loss: 158.248 +Training time 0:03:35.400709 +Epoch: 105 Average loss: 159.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 109) +0/69092 Loss: 163.613 +12800/69092 Loss: 158.970 +25600/69092 Loss: 161.421 +38400/69092 Loss: 160.211 +51200/69092 Loss: 158.902 +64000/69092 Loss: 156.983 +Training time 0:03:36.255216 +Epoch: 106 Average loss: 159.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 110) +0/69092 Loss: 155.686 +12800/69092 Loss: 160.493 +25600/69092 Loss: 160.184 +38400/69092 Loss: 159.047 +51200/69092 Loss: 158.804 +64000/69092 Loss: 158.537 +Training time 0:03:35.555878 +Epoch: 107 Average loss: 159.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 111) +0/69092 Loss: 156.330 +12800/69092 Loss: 159.314 +25600/69092 Loss: 159.905 +38400/69092 Loss: 159.925 +51200/69092 Loss: 159.359 +64000/69092 Loss: 157.967 +Training time 0:03:35.554763 +Epoch: 108 Average loss: 159.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 112) +0/69092 Loss: 155.420 +12800/69092 Loss: 159.249 +25600/69092 Loss: 161.278 +38400/69092 Loss: 159.389 +51200/69092 Loss: 157.854 +64000/69092 Loss: 159.796 +Training time 0:03:35.583739 +Epoch: 109 Average loss: 159.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 113) +0/69092 Loss: 159.001 +12800/69092 Loss: 160.341 +25600/69092 Loss: 159.930 +38400/69092 Loss: 159.423 +51200/69092 Loss: 156.880 +64000/69092 Loss: 159.597 +Training time 0:03:35.430130 +Epoch: 110 Average loss: 159.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 114) +0/69092 Loss: 158.623 +12800/69092 Loss: 158.642 +25600/69092 Loss: 158.103 +38400/69092 Loss: 160.518 +51200/69092 Loss: 159.409 +64000/69092 Loss: 159.840 +Training time 0:03:34.558461 +Epoch: 111 Average loss: 159.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 115) +0/69092 Loss: 152.833 +12800/69092 Loss: 159.505 +25600/69092 Loss: 159.212 +38400/69092 Loss: 158.390 +51200/69092 Loss: 159.647 +64000/69092 Loss: 158.710 +Training time 0:03:34.888443 +Epoch: 112 Average loss: 159.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 116) +0/69092 Loss: 155.050 +12800/69092 Loss: 158.368 +25600/69092 Loss: 158.714 +38400/69092 Loss: 158.764 +51200/69092 Loss: 159.854 +64000/69092 Loss: 159.695 +Training time 0:03:34.671602 +Epoch: 113 Average loss: 158.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 117) +0/69092 Loss: 163.357 +12800/69092 Loss: 158.739 +25600/69092 Loss: 159.252 +38400/69092 Loss: 158.969 +51200/69092 Loss: 159.156 +64000/69092 Loss: 157.985 +Training time 0:03:34.661148 +Epoch: 114 Average loss: 158.96 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 118) +0/69092 Loss: 162.348 +12800/69092 Loss: 159.469 +25600/69092 Loss: 157.832 +38400/69092 Loss: 159.314 +51200/69092 Loss: 157.827 +64000/69092 Loss: 159.283 +Training time 0:03:35.230302 +Epoch: 115 Average loss: 158.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 119) +0/69092 Loss: 162.101 +12800/69092 Loss: 159.002 +25600/69092 Loss: 158.509 +38400/69092 Loss: 159.518 +51200/69092 Loss: 159.064 +64000/69092 Loss: 158.847 +Training time 0:03:35.700575 +Epoch: 116 Average loss: 158.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 120) +0/69092 Loss: 154.467 +12800/69092 Loss: 160.387 +25600/69092 Loss: 157.670 +38400/69092 Loss: 159.577 +51200/69092 Loss: 159.122 +64000/69092 Loss: 157.489 +Training time 0:03:34.765808 +Epoch: 117 Average loss: 158.96 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 121) +0/69092 Loss: 158.054 +12800/69092 Loss: 158.487 +25600/69092 Loss: 159.933 +38400/69092 Loss: 158.417 +51200/69092 Loss: 158.789 +64000/69092 Loss: 158.287 +Training time 0:03:34.685419 +Epoch: 118 Average loss: 158.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 122) +0/69092 Loss: 157.949 +12800/69092 Loss: 158.047 +25600/69092 Loss: 159.524 +38400/69092 Loss: 158.612 +51200/69092 Loss: 158.843 +64000/69092 Loss: 158.874 +Training time 0:03:35.283052 +Epoch: 119 Average loss: 158.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 123) +0/69092 Loss: 158.028 +12800/69092 Loss: 158.785 +25600/69092 Loss: 159.106 +38400/69092 Loss: 158.322 +51200/69092 Loss: 159.148 +64000/69092 Loss: 158.622 +Training time 0:03:35.123444 +Epoch: 120 Average loss: 158.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 124) +0/69092 Loss: 153.756 +12800/69092 Loss: 158.229 +25600/69092 Loss: 157.864 +38400/69092 Loss: 158.555 +51200/69092 Loss: 158.647 +64000/69092 Loss: 159.850 +Training time 0:03:35.094660 +Epoch: 121 Average loss: 158.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 125) +0/69092 Loss: 143.921 +12800/69092 Loss: 159.522 +25600/69092 Loss: 158.944 +38400/69092 Loss: 159.566 +51200/69092 Loss: 157.765 +64000/69092 Loss: 158.544 +Training time 0:03:35.945210 +Epoch: 122 Average loss: 158.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 126) +0/69092 Loss: 168.748 +12800/69092 Loss: 156.964 +25600/69092 Loss: 158.709 +38400/69092 Loss: 158.935 +51200/69092 Loss: 158.750 +64000/69092 Loss: 158.742 +Training time 0:03:35.022846 +Epoch: 123 Average loss: 158.57 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 127) +0/69092 Loss: 174.862 +12800/69092 Loss: 159.569 +25600/69092 Loss: 157.994 +38400/69092 Loss: 159.820 +51200/69092 Loss: 159.512 +64000/69092 Loss: 156.537 +Training time 0:03:36.069587 +Epoch: 124 Average loss: 158.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 128) +0/69092 Loss: 157.101 +12800/69092 Loss: 158.661 +25600/69092 Loss: 158.794 +38400/69092 Loss: 158.160 +51200/69092 Loss: 158.458 +64000/69092 Loss: 158.821 +Training time 0:03:34.841007 +Epoch: 125 Average loss: 158.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 129) +0/69092 Loss: 152.880 +12800/69092 Loss: 158.483 +25600/69092 Loss: 159.524 +38400/69092 Loss: 158.460 +51200/69092 Loss: 158.845 +64000/69092 Loss: 158.793 +Training time 0:03:35.971434 +Epoch: 126 Average loss: 158.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 130) +0/69092 Loss: 154.705 +12800/69092 Loss: 159.422 +25600/69092 Loss: 157.914 +38400/69092 Loss: 158.562 +51200/69092 Loss: 158.664 +64000/69092 Loss: 158.733 +Training time 0:03:35.689516 +Epoch: 127 Average loss: 158.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 131) +0/69092 Loss: 160.352 +12800/69092 Loss: 158.191 +25600/69092 Loss: 158.584 +38400/69092 Loss: 157.742 +51200/69092 Loss: 159.398 +64000/69092 Loss: 159.173 +Training time 0:03:35.079701 +Epoch: 128 Average loss: 158.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 132) +0/69092 Loss: 162.502 +12800/69092 Loss: 157.818 +25600/69092 Loss: 157.109 +38400/69092 Loss: 159.595 +51200/69092 Loss: 158.628 +64000/69092 Loss: 159.182 +Training time 0:03:35.702826 +Epoch: 129 Average loss: 158.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 133) +0/69092 Loss: 157.088 +12800/69092 Loss: 158.229 +25600/69092 Loss: 157.869 +38400/69092 Loss: 159.662 +51200/69092 Loss: 158.721 +64000/69092 Loss: 157.514 +Training time 0:03:35.305305 +Epoch: 130 Average loss: 158.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 134) +0/69092 Loss: 159.425 +12800/69092 Loss: 158.244 +25600/69092 Loss: 159.269 +38400/69092 Loss: 158.749 +51200/69092 Loss: 157.334 +64000/69092 Loss: 158.863 +Training time 0:03:35.265594 +Epoch: 131 Average loss: 158.43 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 135) +0/69092 Loss: 155.062 +12800/69092 Loss: 159.819 +25600/69092 Loss: 157.603 +38400/69092 Loss: 156.517 +51200/69092 Loss: 158.284 +64000/69092 Loss: 158.365 +Training time 0:03:35.083675 +Epoch: 132 Average loss: 158.22 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 136) +0/69092 Loss: 159.165 +12800/69092 Loss: 158.364 +25600/69092 Loss: 158.555 +38400/69092 Loss: 157.526 +51200/69092 Loss: 157.675 +64000/69092 Loss: 159.562 +Training time 0:03:34.917954 +Epoch: 133 Average loss: 158.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 137) +0/69092 Loss: 164.086 +12800/69092 Loss: 158.136 +25600/69092 Loss: 158.652 +38400/69092 Loss: 158.086 +51200/69092 Loss: 158.328 +64000/69092 Loss: 158.661 +Training time 0:03:36.238460 +Epoch: 134 Average loss: 158.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 138) +0/69092 Loss: 160.262 +12800/69092 Loss: 158.737 +25600/69092 Loss: 157.851 +38400/69092 Loss: 158.741 +51200/69092 Loss: 159.681 +64000/69092 Loss: 157.209 +Training time 0:03:35.637006 +Epoch: 135 Average loss: 158.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 139) +0/69092 Loss: 153.405 +12800/69092 Loss: 158.161 +25600/69092 Loss: 157.899 +38400/69092 Loss: 158.128 +51200/69092 Loss: 158.549 +64000/69092 Loss: 158.466 +Training time 0:03:35.008490 +Epoch: 136 Average loss: 158.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 140) +0/69092 Loss: 163.934 +12800/69092 Loss: 158.955 +25600/69092 Loss: 157.057 +38400/69092 Loss: 158.497 +51200/69092 Loss: 157.707 +64000/69092 Loss: 158.849 +Training time 0:03:35.428050 +Epoch: 137 Average loss: 158.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 141) +0/69092 Loss: 155.505 +12800/69092 Loss: 157.641 +25600/69092 Loss: 158.311 +38400/69092 Loss: 158.298 +51200/69092 Loss: 159.948 +64000/69092 Loss: 159.012 +Training time 0:03:35.474795 +Epoch: 138 Average loss: 158.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 142) +0/69092 Loss: 157.240 +12800/69092 Loss: 157.478 +25600/69092 Loss: 157.290 +38400/69092 Loss: 159.291 +51200/69092 Loss: 159.086 +64000/69092 Loss: 157.686 +Training time 0:03:34.563481 +Epoch: 139 Average loss: 158.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 143) +0/69092 Loss: 163.161 +12800/69092 Loss: 158.980 +25600/69092 Loss: 158.207 +38400/69092 Loss: 157.897 +51200/69092 Loss: 158.807 +64000/69092 Loss: 157.534 +Training time 0:03:35.396170 +Epoch: 140 Average loss: 158.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 144) +0/69092 Loss: 158.131 +12800/69092 Loss: 158.350 +25600/69092 Loss: 159.413 +38400/69092 Loss: 157.611 +51200/69092 Loss: 157.664 +64000/69092 Loss: 158.728 +Training time 0:03:35.857792 +Epoch: 141 Average loss: 158.33 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 145) +0/69092 Loss: 157.857 +12800/69092 Loss: 156.593 +25600/69092 Loss: 158.148 +38400/69092 Loss: 158.734 +51200/69092 Loss: 157.102 +64000/69092 Loss: 160.617 +Training time 0:03:35.646313 +Epoch: 142 Average loss: 158.24 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 146) +0/69092 Loss: 156.539 +12800/69092 Loss: 157.214 +25600/69092 Loss: 157.716 +38400/69092 Loss: 158.455 +51200/69092 Loss: 159.153 +64000/69092 Loss: 158.133 +Training time 0:03:35.056588 +Epoch: 143 Average loss: 158.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 147) +0/69092 Loss: 158.767 +12800/69092 Loss: 158.426 +25600/69092 Loss: 158.740 +38400/69092 Loss: 158.653 +51200/69092 Loss: 157.037 +64000/69092 Loss: 158.165 +Training time 0:03:35.533263 +Epoch: 144 Average loss: 158.28 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 148) +0/69092 Loss: 168.808 +12800/69092 Loss: 158.690 +25600/69092 Loss: 158.282 +38400/69092 Loss: 158.720 +51200/69092 Loss: 158.501 +64000/69092 Loss: 156.006 +Training time 0:03:35.591309 +Epoch: 145 Average loss: 158.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 149) +0/69092 Loss: 154.829 +12800/69092 Loss: 157.699 +25600/69092 Loss: 158.313 +38400/69092 Loss: 158.132 +51200/69092 Loss: 159.645 +64000/69092 Loss: 157.362 +Training time 0:03:34.651382 +Epoch: 146 Average loss: 158.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 150) +0/69092 Loss: 159.604 +12800/69092 Loss: 158.903 +25600/69092 Loss: 158.258 +38400/69092 Loss: 156.677 +51200/69092 Loss: 158.281 +64000/69092 Loss: 158.580 +Training time 0:03:36.077990 +Epoch: 147 Average loss: 158.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 151) +0/69092 Loss: 152.812 +12800/69092 Loss: 158.197 +25600/69092 Loss: 158.080 +38400/69092 Loss: 157.186 +51200/69092 Loss: 159.838 +64000/69092 Loss: 156.717 +Training time 0:03:35.545069 +Epoch: 148 Average loss: 158.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 152) +0/69092 Loss: 149.683 +12800/69092 Loss: 159.115 +25600/69092 Loss: 157.753 +38400/69092 Loss: 157.867 +51200/69092 Loss: 158.096 +64000/69092 Loss: 156.865 +Training time 0:03:35.144237 +Epoch: 149 Average loss: 158.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 153) +0/69092 Loss: 156.870 +12800/69092 Loss: 158.312 +25600/69092 Loss: 158.026 +38400/69092 Loss: 157.353 +51200/69092 Loss: 158.157 +64000/69092 Loss: 158.827 +Training time 0:03:34.748605 +Epoch: 150 Average loss: 158.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 154) +0/69092 Loss: 151.995 +12800/69092 Loss: 159.054 +25600/69092 Loss: 157.990 +38400/69092 Loss: 158.319 +51200/69092 Loss: 157.961 +64000/69092 Loss: 157.131 +Training time 0:03:35.971841 +Epoch: 151 Average loss: 158.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 155) +0/69092 Loss: 157.716 +12800/69092 Loss: 158.155 +25600/69092 Loss: 157.841 +38400/69092 Loss: 158.173 +51200/69092 Loss: 157.463 +64000/69092 Loss: 158.897 +Training time 0:03:35.695476 +Epoch: 152 Average loss: 158.11 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 156) +0/69092 Loss: 158.047 +12800/69092 Loss: 156.737 +25600/69092 Loss: 159.180 +38400/69092 Loss: 158.536 +51200/69092 Loss: 157.577 +64000/69092 Loss: 158.394 +Training time 0:03:35.084412 +Epoch: 153 Average loss: 158.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 157) +0/69092 Loss: 153.462 +12800/69092 Loss: 159.247 +25600/69092 Loss: 155.980 +38400/69092 Loss: 157.080 +51200/69092 Loss: 158.520 +64000/69092 Loss: 158.175 +Training time 0:03:35.337585 +Epoch: 154 Average loss: 157.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 158) +0/69092 Loss: 161.419 +12800/69092 Loss: 157.782 +25600/69092 Loss: 158.716 +38400/69092 Loss: 158.169 +51200/69092 Loss: 158.782 +64000/69092 Loss: 156.570 +Training time 0:03:35.909995 +Epoch: 155 Average loss: 158.07 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 159) +0/69092 Loss: 153.223 +12800/69092 Loss: 158.127 +25600/69092 Loss: 157.457 +38400/69092 Loss: 158.450 +51200/69092 Loss: 158.295 +64000/69092 Loss: 157.931 +Training time 0:03:36.134499 +Epoch: 156 Average loss: 158.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 160) +0/69092 Loss: 162.210 +12800/69092 Loss: 158.300 +25600/69092 Loss: 157.865 +38400/69092 Loss: 158.634 +51200/69092 Loss: 158.413 +64000/69092 Loss: 156.988 +Training time 0:03:35.206750 +Epoch: 157 Average loss: 157.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 161) +0/69092 Loss: 161.032 +12800/69092 Loss: 158.088 +25600/69092 Loss: 157.736 +38400/69092 Loss: 157.373 +51200/69092 Loss: 158.703 +64000/69092 Loss: 158.100 +Training time 0:03:35.589710 +Epoch: 158 Average loss: 158.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 162) +0/69092 Loss: 153.675 +12800/69092 Loss: 158.432 +25600/69092 Loss: 158.292 +38400/69092 Loss: 157.321 +51200/69092 Loss: 157.387 +64000/69092 Loss: 158.348 +Training time 0:03:35.281603 +Epoch: 159 Average loss: 157.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 163) +0/69092 Loss: 155.890 +12800/69092 Loss: 158.047 +25600/69092 Loss: 158.035 +38400/69092 Loss: 158.387 +51200/69092 Loss: 158.192 +64000/69092 Loss: 157.601 +Training time 0:03:35.345290 +Epoch: 160 Average loss: 158.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 164) +0/69092 Loss: 162.835 +12800/69092 Loss: 157.335 +25600/69092 Loss: 157.960 +38400/69092 Loss: 158.461 +51200/69092 Loss: 158.302 +64000/69092 Loss: 157.646 +Training time 0:03:36.107215 +Epoch: 161 Average loss: 157.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 165) +0/69092 Loss: 156.025 +12800/69092 Loss: 156.943 +25600/69092 Loss: 157.574 +38400/69092 Loss: 158.075 +51200/69092 Loss: 158.509 +64000/69092 Loss: 159.194 +Training time 0:03:36.127311 +Epoch: 162 Average loss: 157.96 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 166) +0/69092 Loss: 151.681 +12800/69092 Loss: 158.233 +25600/69092 Loss: 156.736 +38400/69092 Loss: 158.012 +51200/69092 Loss: 158.785 +64000/69092 Loss: 157.544 +Training time 0:03:35.675035 +Epoch: 163 Average loss: 157.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 167) +0/69092 Loss: 149.342 +12800/69092 Loss: 157.504 +25600/69092 Loss: 157.447 +38400/69092 Loss: 159.814 +51200/69092 Loss: 156.905 +64000/69092 Loss: 158.121 +Training time 0:03:34.849772 +Epoch: 164 Average loss: 157.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 168) +0/69092 Loss: 158.956 +12800/69092 Loss: 158.108 +25600/69092 Loss: 158.557 +38400/69092 Loss: 157.314 +51200/69092 Loss: 156.850 +64000/69092 Loss: 157.646 +Training time 0:03:35.625526 +Epoch: 165 Average loss: 157.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 169) +0/69092 Loss: 157.486 +12800/69092 Loss: 157.619 +25600/69092 Loss: 158.104 +38400/69092 Loss: 159.780 +51200/69092 Loss: 157.374 +64000/69092 Loss: 157.813 +Training time 0:03:35.019341 +Epoch: 166 Average loss: 158.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 170) +0/69092 Loss: 152.670 +12800/69092 Loss: 158.740 +25600/69092 Loss: 157.840 +38400/69092 Loss: 158.200 +51200/69092 Loss: 159.229 +64000/69092 Loss: 157.155 +Training time 0:03:34.361037 +Epoch: 167 Average loss: 157.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last' (iter 171) +0/69092 Loss: 151.640 +12800/69092 Loss: 157.037 +25600/69092 Loss: 158.233 diff --git a/OAR.2066987.stderr b/OAR.2066987.stderr new file mode 100644 index 0000000000000000000000000000000000000000..01f042ddbf3b684dce92eb842907f4494d809311 --- /dev/null +++ b/OAR.2066987.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-06-24 03:51:26] Job 2066987 KILLED ## diff --git a/OAR.2066987.stdout b/OAR.2066987.stdout new file mode 100644 index 0000000000000000000000000000000000000000..e0026953c1132b772ac79dc80a441f853c1fa15f --- /dev/null +++ b/OAR.2066987.stdout @@ -0,0 +1,7588 @@ +Namespace(batch_size=64, beta=4, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='beta_VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=True, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +creare new diretory experiment: rendered_chairs/beta_VAE_bs_64 +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +Tesla K80 +Tesla K80 +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> no checkpoint found at 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' +0/69092 Loss: 2996.283 +3200/69092 Loss: 2849.192 +6400/69092 Loss: 969.503 +9600/69092 Loss: 533.346 +12800/69092 Loss: 488.827 +16000/69092 Loss: 465.819 +19200/69092 Loss: 455.119 +22400/69092 Loss: 411.276 +25600/69092 Loss: 292.547 +28800/69092 Loss: 250.187 +32000/69092 Loss: 235.426 +35200/69092 Loss: 230.877 +38400/69092 Loss: 228.614 +41600/69092 Loss: 229.160 +44800/69092 Loss: 235.136 +48000/69092 Loss: 225.149 +51200/69092 Loss: 227.474 +54400/69092 Loss: 230.152 +57600/69092 Loss: 226.084 +60800/69092 Loss: 223.701 +64000/69092 Loss: 231.250 +67200/69092 Loss: 227.171 +Training time 0:04:11.450352 +Epoch: 1 Average loss: 447.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 1) +0/69092 Loss: 251.797 +3200/69092 Loss: 225.635 +6400/69092 Loss: 228.129 +9600/69092 Loss: 223.246 +12800/69092 Loss: 214.800 +16000/69092 Loss: 216.244 +19200/69092 Loss: 213.488 +22400/69092 Loss: 204.465 +25600/69092 Loss: 210.539 +28800/69092 Loss: 208.756 +32000/69092 Loss: 211.511 +35200/69092 Loss: 201.741 +38400/69092 Loss: 208.114 +41600/69092 Loss: 203.864 +44800/69092 Loss: 207.909 +48000/69092 Loss: 200.300 +51200/69092 Loss: 202.518 +54400/69092 Loss: 202.010 +57600/69092 Loss: 199.430 +60800/69092 Loss: 199.646 +64000/69092 Loss: 191.796 +67200/69092 Loss: 192.559 +Training time 0:01:56.222555 +Epoch: 2 Average loss: 207.52 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 2) +0/69092 Loss: 213.776 +3200/69092 Loss: 195.255 +6400/69092 Loss: 190.901 +9600/69092 Loss: 193.280 +12800/69092 Loss: 190.337 +16000/69092 Loss: 190.632 +19200/69092 Loss: 188.622 +22400/69092 Loss: 189.298 +25600/69092 Loss: 192.051 +28800/69092 Loss: 189.590 +32000/69092 Loss: 187.170 +35200/69092 Loss: 189.669 +38400/69092 Loss: 187.333 +41600/69092 Loss: 186.043 +44800/69092 Loss: 187.783 +48000/69092 Loss: 189.375 +51200/69092 Loss: 187.365 +54400/69092 Loss: 191.405 +57600/69092 Loss: 183.256 +60800/69092 Loss: 186.471 +64000/69092 Loss: 186.531 +67200/69092 Loss: 190.937 +Training time 0:01:56.276983 +Epoch: 3 Average loss: 189.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 3) +0/69092 Loss: 216.677 +3200/69092 Loss: 187.545 +6400/69092 Loss: 189.138 +9600/69092 Loss: 188.047 +12800/69092 Loss: 184.307 +16000/69092 Loss: 188.439 +19200/69092 Loss: 186.454 +22400/69092 Loss: 188.196 +25600/69092 Loss: 184.643 +28800/69092 Loss: 187.148 +32000/69092 Loss: 184.818 +35200/69092 Loss: 184.574 +38400/69092 Loss: 185.366 +41600/69092 Loss: 192.044 +44800/69092 Loss: 186.806 +48000/69092 Loss: 188.283 +51200/69092 Loss: 183.873 +54400/69092 Loss: 188.628 +57600/69092 Loss: 186.013 +60800/69092 Loss: 187.894 +64000/69092 Loss: 186.695 +67200/69092 Loss: 184.645 +Training time 0:01:58.635203 +Epoch: 4 Average loss: 186.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 4) +0/69092 Loss: 203.150 +3200/69092 Loss: 188.230 +6400/69092 Loss: 184.638 +9600/69092 Loss: 186.948 +12800/69092 Loss: 188.693 +16000/69092 Loss: 183.433 +19200/69092 Loss: 187.675 +22400/69092 Loss: 187.232 +25600/69092 Loss: 187.306 +28800/69092 Loss: 187.523 +32000/69092 Loss: 186.648 +35200/69092 Loss: 186.452 +38400/69092 Loss: 183.993 +41600/69092 Loss: 185.320 +44800/69092 Loss: 182.017 +48000/69092 Loss: 183.917 +51200/69092 Loss: 186.099 +54400/69092 Loss: 179.476 +57600/69092 Loss: 182.079 +60800/69092 Loss: 179.817 +64000/69092 Loss: 181.986 +67200/69092 Loss: 177.421 +Training time 0:01:57.159992 +Epoch: 5 Average loss: 184.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 5) +0/69092 Loss: 201.415 +3200/69092 Loss: 180.093 +6400/69092 Loss: 179.419 +9600/69092 Loss: 178.953 +12800/69092 Loss: 178.537 +16000/69092 Loss: 181.504 +19200/69092 Loss: 179.501 +22400/69092 Loss: 179.450 +25600/69092 Loss: 176.027 +28800/69092 Loss: 178.539 +32000/69092 Loss: 176.076 +35200/69092 Loss: 175.172 +38400/69092 Loss: 177.610 +41600/69092 Loss: 177.594 +44800/69092 Loss: 176.750 +48000/69092 Loss: 177.454 +51200/69092 Loss: 176.812 +54400/69092 Loss: 181.063 +57600/69092 Loss: 176.534 +60800/69092 Loss: 177.212 +64000/69092 Loss: 173.409 +67200/69092 Loss: 175.427 +Training time 0:01:58.295935 +Epoch: 6 Average loss: 177.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 6) +0/69092 Loss: 181.005 +3200/69092 Loss: 173.445 +6400/69092 Loss: 178.272 +9600/69092 Loss: 174.963 +12800/69092 Loss: 177.643 +16000/69092 Loss: 175.353 +19200/69092 Loss: 176.767 +22400/69092 Loss: 172.433 +25600/69092 Loss: 175.713 +28800/69092 Loss: 172.440 +32000/69092 Loss: 172.158 +35200/69092 Loss: 172.938 +38400/69092 Loss: 173.011 +41600/69092 Loss: 173.479 +44800/69092 Loss: 173.250 +48000/69092 Loss: 174.012 +51200/69092 Loss: 174.165 +54400/69092 Loss: 170.919 +57600/69092 Loss: 174.869 +60800/69092 Loss: 172.601 +64000/69092 Loss: 173.367 +67200/69092 Loss: 170.740 +Training time 0:01:56.841558 +Epoch: 7 Average loss: 173.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 7) +0/69092 Loss: 155.570 +3200/69092 Loss: 171.951 +6400/69092 Loss: 172.733 +9600/69092 Loss: 173.404 +12800/69092 Loss: 175.665 +16000/69092 Loss: 169.749 +19200/69092 Loss: 168.763 +22400/69092 Loss: 168.842 +25600/69092 Loss: 167.193 +28800/69092 Loss: 168.480 +32000/69092 Loss: 172.957 +35200/69092 Loss: 167.509 +38400/69092 Loss: 170.859 +41600/69092 Loss: 169.670 +44800/69092 Loss: 169.974 +48000/69092 Loss: 170.610 +51200/69092 Loss: 169.231 +54400/69092 Loss: 169.917 +57600/69092 Loss: 166.675 +60800/69092 Loss: 169.919 +64000/69092 Loss: 168.816 +67200/69092 Loss: 167.087 +Training time 0:01:57.474977 +Epoch: 8 Average loss: 169.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 8) +0/69092 Loss: 152.314 +3200/69092 Loss: 169.040 +6400/69092 Loss: 165.803 +9600/69092 Loss: 167.887 +12800/69092 Loss: 170.555 +16000/69092 Loss: 168.071 +19200/69092 Loss: 168.366 +22400/69092 Loss: 170.014 +25600/69092 Loss: 165.270 +28800/69092 Loss: 169.082 +32000/69092 Loss: 168.066 +35200/69092 Loss: 167.370 +38400/69092 Loss: 167.869 +41600/69092 Loss: 165.092 +44800/69092 Loss: 168.710 +48000/69092 Loss: 167.832 +51200/69092 Loss: 169.236 +54400/69092 Loss: 169.679 +57600/69092 Loss: 165.386 +60800/69092 Loss: 166.058 +64000/69092 Loss: 165.404 +67200/69092 Loss: 167.973 +Training time 0:01:58.003875 +Epoch: 9 Average loss: 167.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 9) +0/69092 Loss: 186.743 +3200/69092 Loss: 166.642 +6400/69092 Loss: 165.061 +9600/69092 Loss: 165.308 +12800/69092 Loss: 168.703 +16000/69092 Loss: 168.617 +19200/69092 Loss: 170.108 +22400/69092 Loss: 167.263 +25600/69092 Loss: 165.110 +28800/69092 Loss: 167.110 +32000/69092 Loss: 168.740 +35200/69092 Loss: 167.422 +38400/69092 Loss: 166.927 +41600/69092 Loss: 165.685 +44800/69092 Loss: 166.346 +48000/69092 Loss: 167.761 +51200/69092 Loss: 165.619 +54400/69092 Loss: 162.744 +57600/69092 Loss: 167.680 +60800/69092 Loss: 166.785 +64000/69092 Loss: 166.229 +67200/69092 Loss: 164.606 +Training time 0:01:57.541170 +Epoch: 10 Average loss: 166.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 10) +0/69092 Loss: 174.037 +3200/69092 Loss: 168.532 +6400/69092 Loss: 164.939 +9600/69092 Loss: 168.164 +12800/69092 Loss: 167.037 +16000/69092 Loss: 167.490 +19200/69092 Loss: 164.382 +22400/69092 Loss: 162.732 +25600/69092 Loss: 164.682 +28800/69092 Loss: 166.368 +32000/69092 Loss: 168.401 +35200/69092 Loss: 165.558 +38400/69092 Loss: 163.828 +41600/69092 Loss: 162.653 +44800/69092 Loss: 164.643 +48000/69092 Loss: 163.984 +51200/69092 Loss: 163.990 +54400/69092 Loss: 163.986 +57600/69092 Loss: 162.717 +60800/69092 Loss: 164.781 +64000/69092 Loss: 163.207 +67200/69092 Loss: 165.003 +Training time 0:01:56.971581 +Epoch: 11 Average loss: 164.96 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 11) +0/69092 Loss: 166.630 +3200/69092 Loss: 164.078 +6400/69092 Loss: 163.281 +9600/69092 Loss: 161.550 +12800/69092 Loss: 162.644 +16000/69092 Loss: 165.764 +19200/69092 Loss: 161.325 +22400/69092 Loss: 164.922 +25600/69092 Loss: 162.244 +28800/69092 Loss: 161.489 +32000/69092 Loss: 163.428 +35200/69092 Loss: 160.567 +38400/69092 Loss: 161.385 +41600/69092 Loss: 165.746 +44800/69092 Loss: 161.974 +48000/69092 Loss: 163.419 +51200/69092 Loss: 162.336 +54400/69092 Loss: 161.887 +57600/69092 Loss: 163.420 +60800/69092 Loss: 161.745 +64000/69092 Loss: 165.138 +67200/69092 Loss: 165.768 +Training time 0:01:57.907880 +Epoch: 12 Average loss: 163.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 12) +0/69092 Loss: 152.506 +3200/69092 Loss: 162.750 +6400/69092 Loss: 161.690 +9600/69092 Loss: 159.541 +12800/69092 Loss: 162.265 +16000/69092 Loss: 163.082 +19200/69092 Loss: 163.886 +22400/69092 Loss: 162.987 +25600/69092 Loss: 162.344 +28800/69092 Loss: 160.054 +32000/69092 Loss: 165.178 +35200/69092 Loss: 160.814 +38400/69092 Loss: 160.135 +41600/69092 Loss: 163.047 +44800/69092 Loss: 163.450 +48000/69092 Loss: 162.674 +51200/69092 Loss: 163.462 +54400/69092 Loss: 161.420 +57600/69092 Loss: 162.183 +60800/69092 Loss: 159.362 +64000/69092 Loss: 162.698 +67200/69092 Loss: 163.860 +Training time 0:01:57.682821 +Epoch: 13 Average loss: 162.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 13) +0/69092 Loss: 151.394 +3200/69092 Loss: 160.503 +6400/69092 Loss: 162.126 +9600/69092 Loss: 161.237 +12800/69092 Loss: 161.298 +16000/69092 Loss: 161.677 +19200/69092 Loss: 161.436 +22400/69092 Loss: 158.760 +25600/69092 Loss: 163.906 +28800/69092 Loss: 158.558 +32000/69092 Loss: 162.262 +35200/69092 Loss: 161.091 +38400/69092 Loss: 162.268 +41600/69092 Loss: 166.815 +44800/69092 Loss: 161.044 +48000/69092 Loss: 161.988 +51200/69092 Loss: 165.298 +54400/69092 Loss: 165.238 +57600/69092 Loss: 163.105 +60800/69092 Loss: 163.867 +64000/69092 Loss: 158.813 +67200/69092 Loss: 163.015 +Training time 0:01:57.568042 +Epoch: 14 Average loss: 162.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 14) +0/69092 Loss: 138.507 +3200/69092 Loss: 161.731 +6400/69092 Loss: 164.068 +9600/69092 Loss: 161.188 +12800/69092 Loss: 159.349 +16000/69092 Loss: 162.151 +19200/69092 Loss: 160.767 +22400/69092 Loss: 160.923 +25600/69092 Loss: 162.628 +28800/69092 Loss: 162.037 +32000/69092 Loss: 162.783 +35200/69092 Loss: 161.348 +38400/69092 Loss: 163.619 +41600/69092 Loss: 164.794 +44800/69092 Loss: 161.011 +48000/69092 Loss: 164.298 +51200/69092 Loss: 162.475 +54400/69092 Loss: 158.875 +57600/69092 Loss: 160.008 +60800/69092 Loss: 161.022 +64000/69092 Loss: 158.871 +67200/69092 Loss: 161.856 +Training time 0:01:57.727705 +Epoch: 15 Average loss: 161.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 15) +0/69092 Loss: 145.301 +3200/69092 Loss: 163.730 +6400/69092 Loss: 159.274 +9600/69092 Loss: 160.533 +12800/69092 Loss: 163.232 +16000/69092 Loss: 160.052 +19200/69092 Loss: 158.232 +22400/69092 Loss: 161.700 +25600/69092 Loss: 161.574 +28800/69092 Loss: 159.018 +32000/69092 Loss: 163.837 +35200/69092 Loss: 161.704 +38400/69092 Loss: 161.651 +41600/69092 Loss: 158.541 +44800/69092 Loss: 162.820 +48000/69092 Loss: 162.896 +51200/69092 Loss: 158.152 +54400/69092 Loss: 160.193 +57600/69092 Loss: 160.873 +60800/69092 Loss: 162.326 +64000/69092 Loss: 164.243 +67200/69092 Loss: 160.145 +Training time 0:01:57.861897 +Epoch: 16 Average loss: 161.19 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 16) +0/69092 Loss: 155.339 +3200/69092 Loss: 162.152 +6400/69092 Loss: 161.102 +9600/69092 Loss: 159.391 +12800/69092 Loss: 161.266 +16000/69092 Loss: 161.011 +19200/69092 Loss: 160.102 +22400/69092 Loss: 160.218 +25600/69092 Loss: 160.872 +28800/69092 Loss: 160.790 +32000/69092 Loss: 159.368 +35200/69092 Loss: 162.241 +38400/69092 Loss: 160.620 +41600/69092 Loss: 160.933 +44800/69092 Loss: 158.249 +48000/69092 Loss: 160.275 +51200/69092 Loss: 161.236 +54400/69092 Loss: 162.588 +57600/69092 Loss: 164.950 +60800/69092 Loss: 161.210 +64000/69092 Loss: 162.227 +67200/69092 Loss: 161.003 +Training time 0:01:57.713720 +Epoch: 17 Average loss: 161.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 17) +0/69092 Loss: 148.239 +3200/69092 Loss: 159.891 +6400/69092 Loss: 164.055 +9600/69092 Loss: 159.331 +12800/69092 Loss: 161.076 +16000/69092 Loss: 158.351 +19200/69092 Loss: 158.842 +22400/69092 Loss: 162.516 +25600/69092 Loss: 164.261 +28800/69092 Loss: 160.496 +32000/69092 Loss: 162.196 +35200/69092 Loss: 161.130 +38400/69092 Loss: 163.890 +41600/69092 Loss: 158.830 +44800/69092 Loss: 158.579 +48000/69092 Loss: 157.500 +51200/69092 Loss: 159.903 +54400/69092 Loss: 158.277 +57600/69092 Loss: 157.346 +60800/69092 Loss: 161.180 +64000/69092 Loss: 159.906 +67200/69092 Loss: 163.404 +Training time 0:01:56.465208 +Epoch: 18 Average loss: 160.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 18) +0/69092 Loss: 159.095 +3200/69092 Loss: 164.018 +6400/69092 Loss: 161.884 +9600/69092 Loss: 162.794 +12800/69092 Loss: 159.886 +16000/69092 Loss: 159.917 +19200/69092 Loss: 162.400 +22400/69092 Loss: 161.910 +25600/69092 Loss: 160.812 +28800/69092 Loss: 160.608 +32000/69092 Loss: 157.240 +35200/69092 Loss: 161.936 +38400/69092 Loss: 158.369 +41600/69092 Loss: 159.212 +44800/69092 Loss: 161.405 +48000/69092 Loss: 156.917 +51200/69092 Loss: 159.386 +54400/69092 Loss: 161.999 +57600/69092 Loss: 159.899 +60800/69092 Loss: 156.736 +64000/69092 Loss: 159.510 +67200/69092 Loss: 160.396 +Training time 0:01:57.294461 +Epoch: 19 Average loss: 160.37 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 19) +0/69092 Loss: 166.383 +3200/69092 Loss: 156.651 +6400/69092 Loss: 156.774 +9600/69092 Loss: 161.875 +12800/69092 Loss: 159.251 +16000/69092 Loss: 161.151 +19200/69092 Loss: 158.966 +22400/69092 Loss: 160.892 +25600/69092 Loss: 161.681 +28800/69092 Loss: 159.795 +32000/69092 Loss: 163.193 +35200/69092 Loss: 160.392 +38400/69092 Loss: 160.293 +41600/69092 Loss: 160.649 +44800/69092 Loss: 157.463 +48000/69092 Loss: 158.044 +51200/69092 Loss: 160.192 +54400/69092 Loss: 157.318 +57600/69092 Loss: 161.197 +60800/69092 Loss: 159.937 +64000/69092 Loss: 160.161 +67200/69092 Loss: 161.669 +Training time 0:01:56.904126 +Epoch: 20 Average loss: 159.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 20) +0/69092 Loss: 171.773 +3200/69092 Loss: 159.427 +6400/69092 Loss: 158.473 +9600/69092 Loss: 160.956 +12800/69092 Loss: 159.469 +16000/69092 Loss: 160.518 +19200/69092 Loss: 159.570 +22400/69092 Loss: 159.130 +25600/69092 Loss: 159.077 +28800/69092 Loss: 160.857 +32000/69092 Loss: 158.243 +35200/69092 Loss: 159.962 +38400/69092 Loss: 158.049 +41600/69092 Loss: 160.047 +44800/69092 Loss: 158.965 +48000/69092 Loss: 159.137 +51200/69092 Loss: 161.349 +54400/69092 Loss: 158.891 +57600/69092 Loss: 157.075 +60800/69092 Loss: 157.941 +64000/69092 Loss: 160.834 +67200/69092 Loss: 160.211 +Training time 0:01:56.811086 +Epoch: 21 Average loss: 159.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 21) +0/69092 Loss: 172.026 +3200/69092 Loss: 158.737 +6400/69092 Loss: 159.783 +9600/69092 Loss: 158.712 +12800/69092 Loss: 161.717 +16000/69092 Loss: 157.204 +19200/69092 Loss: 158.553 +22400/69092 Loss: 159.628 +25600/69092 Loss: 159.737 +28800/69092 Loss: 158.026 +32000/69092 Loss: 157.675 +35200/69092 Loss: 158.144 +38400/69092 Loss: 159.967 +41600/69092 Loss: 157.859 +44800/69092 Loss: 159.856 +48000/69092 Loss: 158.685 +51200/69092 Loss: 160.014 +54400/69092 Loss: 160.899 +57600/69092 Loss: 159.168 +60800/69092 Loss: 160.320 +64000/69092 Loss: 160.828 +67200/69092 Loss: 160.718 +Training time 0:01:57.005308 +Epoch: 22 Average loss: 159.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 22) +0/69092 Loss: 162.527 +3200/69092 Loss: 159.943 +6400/69092 Loss: 159.977 +9600/69092 Loss: 159.632 +12800/69092 Loss: 157.619 +16000/69092 Loss: 160.869 +19200/69092 Loss: 159.872 +22400/69092 Loss: 157.746 +25600/69092 Loss: 162.287 +28800/69092 Loss: 158.565 +32000/69092 Loss: 159.370 +35200/69092 Loss: 157.351 +38400/69092 Loss: 157.113 +41600/69092 Loss: 159.929 +44800/69092 Loss: 157.951 +48000/69092 Loss: 154.322 +51200/69092 Loss: 159.021 +54400/69092 Loss: 162.566 +57600/69092 Loss: 161.822 +60800/69092 Loss: 159.119 +64000/69092 Loss: 158.475 +67200/69092 Loss: 160.544 +Training time 0:01:56.138479 +Epoch: 23 Average loss: 159.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 23) +0/69092 Loss: 159.601 +3200/69092 Loss: 156.261 +6400/69092 Loss: 159.154 +9600/69092 Loss: 160.216 +12800/69092 Loss: 160.138 +16000/69092 Loss: 160.859 +19200/69092 Loss: 156.390 +22400/69092 Loss: 157.362 +25600/69092 Loss: 161.009 +28800/69092 Loss: 161.188 +32000/69092 Loss: 158.415 +35200/69092 Loss: 161.258 +38400/69092 Loss: 159.534 +41600/69092 Loss: 161.277 +44800/69092 Loss: 158.023 +48000/69092 Loss: 159.033 +51200/69092 Loss: 156.571 +54400/69092 Loss: 157.854 +57600/69092 Loss: 157.330 +60800/69092 Loss: 157.524 +64000/69092 Loss: 161.840 +67200/69092 Loss: 158.968 +Training time 0:01:57.433571 +Epoch: 24 Average loss: 159.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 24) +0/69092 Loss: 150.259 +3200/69092 Loss: 158.042 +6400/69092 Loss: 154.284 +9600/69092 Loss: 160.489 +12800/69092 Loss: 158.749 +16000/69092 Loss: 159.962 +19200/69092 Loss: 160.096 +22400/69092 Loss: 157.985 +25600/69092 Loss: 158.357 +28800/69092 Loss: 158.214 +32000/69092 Loss: 159.433 +35200/69092 Loss: 158.871 +38400/69092 Loss: 161.416 +41600/69092 Loss: 159.513 +44800/69092 Loss: 155.319 +48000/69092 Loss: 158.951 +51200/69092 Loss: 157.902 +54400/69092 Loss: 160.520 +57600/69092 Loss: 160.258 +60800/69092 Loss: 161.847 +64000/69092 Loss: 160.397 +67200/69092 Loss: 157.660 +Training time 0:01:56.686785 +Epoch: 25 Average loss: 158.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 25) +0/69092 Loss: 175.847 +3200/69092 Loss: 157.577 +6400/69092 Loss: 157.154 +9600/69092 Loss: 157.575 +12800/69092 Loss: 156.347 +16000/69092 Loss: 158.304 +19200/69092 Loss: 155.464 +22400/69092 Loss: 159.012 +25600/69092 Loss: 159.411 +28800/69092 Loss: 160.263 +32000/69092 Loss: 160.227 +35200/69092 Loss: 159.304 +38400/69092 Loss: 158.754 +41600/69092 Loss: 159.499 +44800/69092 Loss: 159.814 +48000/69092 Loss: 158.230 +51200/69092 Loss: 157.477 +54400/69092 Loss: 159.319 +57600/69092 Loss: 159.392 +60800/69092 Loss: 156.280 +64000/69092 Loss: 161.949 +67200/69092 Loss: 158.237 +Training time 0:01:57.091565 +Epoch: 26 Average loss: 158.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 26) +0/69092 Loss: 174.317 +3200/69092 Loss: 158.828 +6400/69092 Loss: 158.258 +9600/69092 Loss: 159.041 +12800/69092 Loss: 158.030 +16000/69092 Loss: 156.668 +19200/69092 Loss: 156.140 +22400/69092 Loss: 158.096 +25600/69092 Loss: 161.542 +28800/69092 Loss: 158.097 +32000/69092 Loss: 161.879 +35200/69092 Loss: 160.185 +38400/69092 Loss: 159.539 +41600/69092 Loss: 156.600 +44800/69092 Loss: 159.622 +48000/69092 Loss: 158.632 +51200/69092 Loss: 158.489 +54400/69092 Loss: 158.777 +57600/69092 Loss: 160.157 +60800/69092 Loss: 157.835 +64000/69092 Loss: 161.454 +67200/69092 Loss: 157.710 +Training time 0:01:57.573170 +Epoch: 27 Average loss: 158.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 27) +0/69092 Loss: 169.950 +3200/69092 Loss: 160.448 +6400/69092 Loss: 157.658 +9600/69092 Loss: 157.383 +12800/69092 Loss: 158.649 +16000/69092 Loss: 155.918 +19200/69092 Loss: 161.217 +22400/69092 Loss: 158.561 +25600/69092 Loss: 157.231 +28800/69092 Loss: 156.257 +32000/69092 Loss: 160.891 +35200/69092 Loss: 157.534 +38400/69092 Loss: 158.610 +41600/69092 Loss: 161.252 +44800/69092 Loss: 156.420 +48000/69092 Loss: 158.420 +51200/69092 Loss: 156.531 +54400/69092 Loss: 158.198 +57600/69092 Loss: 159.361 +60800/69092 Loss: 158.509 +64000/69092 Loss: 160.518 +67200/69092 Loss: 158.676 +Training time 0:01:57.898555 +Epoch: 28 Average loss: 158.56 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 28) +0/69092 Loss: 180.791 +3200/69092 Loss: 158.214 +6400/69092 Loss: 160.183 +9600/69092 Loss: 159.472 +12800/69092 Loss: 158.663 +16000/69092 Loss: 157.854 +19200/69092 Loss: 155.967 +22400/69092 Loss: 161.755 +25600/69092 Loss: 156.276 +28800/69092 Loss: 158.536 +32000/69092 Loss: 157.682 +35200/69092 Loss: 157.598 +38400/69092 Loss: 159.632 +41600/69092 Loss: 158.373 +44800/69092 Loss: 160.541 +48000/69092 Loss: 157.475 +51200/69092 Loss: 158.080 +54400/69092 Loss: 158.006 +57600/69092 Loss: 157.436 +60800/69092 Loss: 157.818 +64000/69092 Loss: 157.580 +67200/69092 Loss: 159.494 +Training time 0:01:57.589396 +Epoch: 29 Average loss: 158.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 29) +0/69092 Loss: 154.473 +3200/69092 Loss: 154.529 +6400/69092 Loss: 157.999 +9600/69092 Loss: 157.591 +12800/69092 Loss: 158.705 +16000/69092 Loss: 158.318 +19200/69092 Loss: 156.009 +22400/69092 Loss: 155.793 +25600/69092 Loss: 158.868 +28800/69092 Loss: 156.945 +32000/69092 Loss: 157.975 +35200/69092 Loss: 158.751 +38400/69092 Loss: 158.416 +41600/69092 Loss: 162.335 +44800/69092 Loss: 157.066 +48000/69092 Loss: 160.380 +51200/69092 Loss: 161.233 +54400/69092 Loss: 161.845 +57600/69092 Loss: 158.342 +60800/69092 Loss: 154.247 +64000/69092 Loss: 156.272 +67200/69092 Loss: 159.381 +Training time 0:01:57.963856 +Epoch: 30 Average loss: 158.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 30) +0/69092 Loss: 149.043 +3200/69092 Loss: 156.477 +6400/69092 Loss: 158.939 +9600/69092 Loss: 157.941 +12800/69092 Loss: 157.031 +16000/69092 Loss: 157.882 +19200/69092 Loss: 156.246 +22400/69092 Loss: 159.650 +25600/69092 Loss: 158.450 +28800/69092 Loss: 158.476 +32000/69092 Loss: 155.707 +35200/69092 Loss: 159.538 +38400/69092 Loss: 158.855 +41600/69092 Loss: 159.387 +44800/69092 Loss: 160.851 +48000/69092 Loss: 157.442 +51200/69092 Loss: 157.171 +54400/69092 Loss: 160.320 +57600/69092 Loss: 160.352 +60800/69092 Loss: 157.819 +64000/69092 Loss: 157.999 +67200/69092 Loss: 156.369 +Training time 0:01:57.846660 +Epoch: 31 Average loss: 158.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 31) +0/69092 Loss: 166.044 +3200/69092 Loss: 157.123 +6400/69092 Loss: 158.867 +9600/69092 Loss: 158.108 +12800/69092 Loss: 160.383 +16000/69092 Loss: 160.470 +19200/69092 Loss: 157.369 +22400/69092 Loss: 157.906 +25600/69092 Loss: 162.166 +28800/69092 Loss: 157.768 +32000/69092 Loss: 156.997 +35200/69092 Loss: 157.754 +38400/69092 Loss: 157.299 +41600/69092 Loss: 155.928 +44800/69092 Loss: 159.950 +48000/69092 Loss: 153.524 +51200/69092 Loss: 157.030 +54400/69092 Loss: 162.447 +57600/69092 Loss: 156.819 +60800/69092 Loss: 157.239 +64000/69092 Loss: 161.310 +67200/69092 Loss: 157.672 +Training time 0:01:57.086052 +Epoch: 32 Average loss: 158.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 32) +0/69092 Loss: 141.886 +3200/69092 Loss: 159.636 +6400/69092 Loss: 157.995 +9600/69092 Loss: 158.156 +12800/69092 Loss: 159.822 +16000/69092 Loss: 157.998 +19200/69092 Loss: 157.688 +22400/69092 Loss: 157.635 +25600/69092 Loss: 158.038 +28800/69092 Loss: 159.169 +32000/69092 Loss: 155.065 +35200/69092 Loss: 160.872 +38400/69092 Loss: 157.325 +41600/69092 Loss: 154.707 +44800/69092 Loss: 156.744 +48000/69092 Loss: 154.908 +51200/69092 Loss: 159.643 +54400/69092 Loss: 159.798 +57600/69092 Loss: 159.108 +60800/69092 Loss: 157.741 +64000/69092 Loss: 159.772 +67200/69092 Loss: 156.970 +Training time 0:01:56.965621 +Epoch: 33 Average loss: 158.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 33) +0/69092 Loss: 149.203 +3200/69092 Loss: 159.589 +6400/69092 Loss: 158.096 +9600/69092 Loss: 160.628 +12800/69092 Loss: 158.932 +16000/69092 Loss: 157.386 +19200/69092 Loss: 155.842 +22400/69092 Loss: 158.107 +25600/69092 Loss: 158.379 +28800/69092 Loss: 158.827 +32000/69092 Loss: 160.503 +35200/69092 Loss: 157.624 +38400/69092 Loss: 158.499 +41600/69092 Loss: 158.835 +44800/69092 Loss: 158.024 +48000/69092 Loss: 157.228 +51200/69092 Loss: 159.710 +54400/69092 Loss: 163.208 +57600/69092 Loss: 159.277 +60800/69092 Loss: 156.224 +64000/69092 Loss: 155.559 +67200/69092 Loss: 154.168 +Training time 0:01:57.468334 +Epoch: 34 Average loss: 158.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 34) +0/69092 Loss: 155.562 +3200/69092 Loss: 157.613 +6400/69092 Loss: 159.193 +9600/69092 Loss: 157.724 +12800/69092 Loss: 159.928 +16000/69092 Loss: 156.318 +19200/69092 Loss: 156.519 +22400/69092 Loss: 156.817 +25600/69092 Loss: 158.138 +28800/69092 Loss: 157.492 +32000/69092 Loss: 154.690 +35200/69092 Loss: 157.779 +38400/69092 Loss: 159.212 +41600/69092 Loss: 159.987 +44800/69092 Loss: 157.799 +48000/69092 Loss: 157.890 +51200/69092 Loss: 162.650 +54400/69092 Loss: 157.699 +57600/69092 Loss: 157.586 +60800/69092 Loss: 156.425 +64000/69092 Loss: 157.283 +67200/69092 Loss: 159.906 +Training time 0:01:57.655810 +Epoch: 35 Average loss: 158.11 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 35) +0/69092 Loss: 168.523 +3200/69092 Loss: 160.645 +6400/69092 Loss: 157.500 +9600/69092 Loss: 154.921 +12800/69092 Loss: 160.682 +16000/69092 Loss: 157.425 +19200/69092 Loss: 155.782 +22400/69092 Loss: 159.781 +25600/69092 Loss: 160.874 +28800/69092 Loss: 158.889 +32000/69092 Loss: 156.878 +35200/69092 Loss: 156.351 +38400/69092 Loss: 158.159 +41600/69092 Loss: 159.099 +44800/69092 Loss: 156.303 +48000/69092 Loss: 158.400 +51200/69092 Loss: 160.983 +54400/69092 Loss: 159.926 +57600/69092 Loss: 156.810 +60800/69092 Loss: 155.804 +64000/69092 Loss: 155.990 +67200/69092 Loss: 156.750 +Training time 0:01:57.653648 +Epoch: 36 Average loss: 157.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 36) +0/69092 Loss: 146.145 +3200/69092 Loss: 158.221 +6400/69092 Loss: 156.710 +9600/69092 Loss: 154.593 +12800/69092 Loss: 155.646 +16000/69092 Loss: 160.545 +19200/69092 Loss: 159.107 +22400/69092 Loss: 158.840 +25600/69092 Loss: 158.424 +28800/69092 Loss: 157.260 +32000/69092 Loss: 156.305 +35200/69092 Loss: 159.250 +38400/69092 Loss: 157.572 +41600/69092 Loss: 157.123 +44800/69092 Loss: 158.622 +48000/69092 Loss: 160.923 +51200/69092 Loss: 157.823 +54400/69092 Loss: 158.834 +57600/69092 Loss: 160.488 +60800/69092 Loss: 159.627 +64000/69092 Loss: 157.076 +67200/69092 Loss: 157.016 +Training time 0:01:56.633660 +Epoch: 37 Average loss: 158.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 37) +0/69092 Loss: 159.461 +3200/69092 Loss: 157.414 +6400/69092 Loss: 156.563 +9600/69092 Loss: 157.638 +12800/69092 Loss: 159.852 +16000/69092 Loss: 158.049 +19200/69092 Loss: 159.267 +22400/69092 Loss: 157.438 +25600/69092 Loss: 161.260 +28800/69092 Loss: 157.021 +32000/69092 Loss: 158.902 +35200/69092 Loss: 157.195 +38400/69092 Loss: 157.308 +41600/69092 Loss: 158.286 +44800/69092 Loss: 157.514 +48000/69092 Loss: 159.925 +51200/69092 Loss: 157.633 +54400/69092 Loss: 151.464 +57600/69092 Loss: 159.884 +60800/69092 Loss: 158.198 +64000/69092 Loss: 159.784 +67200/69092 Loss: 156.667 +Training time 0:01:56.737842 +Epoch: 38 Average loss: 157.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 38) +0/69092 Loss: 147.399 +3200/69092 Loss: 158.412 +6400/69092 Loss: 157.194 +9600/69092 Loss: 159.238 +12800/69092 Loss: 159.889 +16000/69092 Loss: 153.887 +19200/69092 Loss: 157.620 +22400/69092 Loss: 158.452 +25600/69092 Loss: 156.053 +28800/69092 Loss: 157.084 +32000/69092 Loss: 157.309 +35200/69092 Loss: 159.122 +38400/69092 Loss: 156.366 +41600/69092 Loss: 157.924 +44800/69092 Loss: 157.066 +48000/69092 Loss: 161.849 +51200/69092 Loss: 158.760 +54400/69092 Loss: 155.814 +57600/69092 Loss: 156.654 +60800/69092 Loss: 160.296 +64000/69092 Loss: 158.226 +67200/69092 Loss: 160.055 +Training time 0:01:57.367414 +Epoch: 39 Average loss: 157.93 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 39) +0/69092 Loss: 164.177 +3200/69092 Loss: 156.984 +6400/69092 Loss: 156.742 +9600/69092 Loss: 155.836 +12800/69092 Loss: 155.307 +16000/69092 Loss: 155.141 +19200/69092 Loss: 161.373 +22400/69092 Loss: 157.936 +25600/69092 Loss: 157.795 +28800/69092 Loss: 158.593 +32000/69092 Loss: 158.277 +35200/69092 Loss: 157.714 +38400/69092 Loss: 158.840 +41600/69092 Loss: 156.470 +44800/69092 Loss: 160.162 +48000/69092 Loss: 159.038 +51200/69092 Loss: 157.774 +54400/69092 Loss: 158.154 +57600/69092 Loss: 158.726 +60800/69092 Loss: 157.381 +64000/69092 Loss: 158.056 +67200/69092 Loss: 157.962 +Training time 0:01:56.571606 +Epoch: 40 Average loss: 157.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 40) +0/69092 Loss: 163.158 +3200/69092 Loss: 154.205 +6400/69092 Loss: 161.533 +9600/69092 Loss: 154.016 +12800/69092 Loss: 158.602 +16000/69092 Loss: 159.686 +19200/69092 Loss: 158.052 +22400/69092 Loss: 157.961 +25600/69092 Loss: 157.917 +28800/69092 Loss: 158.310 +32000/69092 Loss: 155.903 +35200/69092 Loss: 160.613 +38400/69092 Loss: 157.665 +41600/69092 Loss: 154.263 +44800/69092 Loss: 159.483 +48000/69092 Loss: 159.126 +51200/69092 Loss: 161.590 +54400/69092 Loss: 156.286 +57600/69092 Loss: 155.363 +60800/69092 Loss: 154.854 +64000/69092 Loss: 156.564 +67200/69092 Loss: 156.462 +Training time 0:01:57.496448 +Epoch: 41 Average loss: 157.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 41) +0/69092 Loss: 142.771 +3200/69092 Loss: 157.839 +6400/69092 Loss: 156.594 +9600/69092 Loss: 157.594 +12800/69092 Loss: 157.968 +16000/69092 Loss: 158.527 +19200/69092 Loss: 160.140 +22400/69092 Loss: 158.364 +25600/69092 Loss: 161.494 +28800/69092 Loss: 154.105 +32000/69092 Loss: 158.509 +35200/69092 Loss: 159.576 +38400/69092 Loss: 155.896 +41600/69092 Loss: 157.567 +44800/69092 Loss: 156.124 +48000/69092 Loss: 158.451 +51200/69092 Loss: 157.359 +54400/69092 Loss: 156.247 +57600/69092 Loss: 158.730 +60800/69092 Loss: 156.242 +64000/69092 Loss: 155.546 +67200/69092 Loss: 157.135 +Training time 0:01:56.132207 +Epoch: 42 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 42) +0/69092 Loss: 148.719 +3200/69092 Loss: 157.723 +6400/69092 Loss: 157.190 +9600/69092 Loss: 157.123 +12800/69092 Loss: 159.344 +16000/69092 Loss: 156.742 +19200/69092 Loss: 157.294 +22400/69092 Loss: 161.777 +25600/69092 Loss: 156.166 +28800/69092 Loss: 159.577 +32000/69092 Loss: 156.729 +35200/69092 Loss: 156.896 +38400/69092 Loss: 160.607 +41600/69092 Loss: 158.282 +44800/69092 Loss: 156.040 +48000/69092 Loss: 160.024 +51200/69092 Loss: 156.110 +54400/69092 Loss: 158.322 +57600/69092 Loss: 156.341 +60800/69092 Loss: 159.159 +64000/69092 Loss: 156.933 +67200/69092 Loss: 155.380 +Training time 0:01:55.631859 +Epoch: 43 Average loss: 157.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 43) +0/69092 Loss: 148.240 +3200/69092 Loss: 158.520 +6400/69092 Loss: 157.521 +9600/69092 Loss: 157.891 +12800/69092 Loss: 155.299 +16000/69092 Loss: 154.953 +19200/69092 Loss: 156.328 +22400/69092 Loss: 157.241 +25600/69092 Loss: 159.548 +28800/69092 Loss: 155.270 +32000/69092 Loss: 156.408 +35200/69092 Loss: 156.868 +38400/69092 Loss: 157.401 +41600/69092 Loss: 156.812 +44800/69092 Loss: 158.932 +48000/69092 Loss: 156.356 +51200/69092 Loss: 158.910 +54400/69092 Loss: 159.543 +57600/69092 Loss: 157.286 +60800/69092 Loss: 158.413 +64000/69092 Loss: 157.405 +67200/69092 Loss: 158.833 +Training time 0:01:57.376562 +Epoch: 44 Average loss: 157.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 44) +0/69092 Loss: 183.489 +3200/69092 Loss: 158.599 +6400/69092 Loss: 157.540 +9600/69092 Loss: 158.589 +12800/69092 Loss: 156.262 +16000/69092 Loss: 158.069 +19200/69092 Loss: 157.732 +22400/69092 Loss: 158.297 +25600/69092 Loss: 155.116 +28800/69092 Loss: 156.900 +32000/69092 Loss: 158.672 +35200/69092 Loss: 157.091 +38400/69092 Loss: 157.269 +41600/69092 Loss: 157.161 +44800/69092 Loss: 159.029 +48000/69092 Loss: 157.814 +51200/69092 Loss: 157.799 +54400/69092 Loss: 160.981 +57600/69092 Loss: 155.705 +60800/69092 Loss: 153.627 +64000/69092 Loss: 156.401 +67200/69092 Loss: 157.697 +Training time 0:01:57.126096 +Epoch: 45 Average loss: 157.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 45) +0/69092 Loss: 134.899 +3200/69092 Loss: 155.808 +6400/69092 Loss: 155.517 +9600/69092 Loss: 160.164 +12800/69092 Loss: 158.348 +16000/69092 Loss: 155.439 +19200/69092 Loss: 156.631 +22400/69092 Loss: 158.519 +25600/69092 Loss: 157.923 +28800/69092 Loss: 155.695 +32000/69092 Loss: 158.047 +35200/69092 Loss: 156.660 +38400/69092 Loss: 155.231 +41600/69092 Loss: 156.076 +44800/69092 Loss: 158.311 +48000/69092 Loss: 158.275 +51200/69092 Loss: 155.542 +54400/69092 Loss: 158.992 +57600/69092 Loss: 157.053 +60800/69092 Loss: 156.156 +64000/69092 Loss: 155.883 +67200/69092 Loss: 160.665 +Training time 0:01:56.797464 +Epoch: 46 Average loss: 157.27 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 46) +0/69092 Loss: 149.035 +3200/69092 Loss: 156.858 +6400/69092 Loss: 156.009 +9600/69092 Loss: 158.135 +12800/69092 Loss: 156.576 +16000/69092 Loss: 159.007 +19200/69092 Loss: 158.286 +22400/69092 Loss: 158.013 +25600/69092 Loss: 158.883 +28800/69092 Loss: 157.480 +32000/69092 Loss: 154.650 +35200/69092 Loss: 157.620 +38400/69092 Loss: 158.066 +41600/69092 Loss: 159.452 +44800/69092 Loss: 158.096 +48000/69092 Loss: 156.719 +51200/69092 Loss: 157.181 +54400/69092 Loss: 158.686 +57600/69092 Loss: 156.388 +60800/69092 Loss: 156.867 +64000/69092 Loss: 158.142 +67200/69092 Loss: 155.473 +Training time 0:01:58.057136 +Epoch: 47 Average loss: 157.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 47) +0/69092 Loss: 156.587 +3200/69092 Loss: 157.950 +6400/69092 Loss: 157.832 +9600/69092 Loss: 158.014 +12800/69092 Loss: 158.341 +16000/69092 Loss: 157.709 +19200/69092 Loss: 158.444 +22400/69092 Loss: 157.614 +25600/69092 Loss: 158.293 +28800/69092 Loss: 154.710 +32000/69092 Loss: 157.538 +35200/69092 Loss: 161.075 +38400/69092 Loss: 157.889 +41600/69092 Loss: 157.793 +44800/69092 Loss: 156.859 +48000/69092 Loss: 153.925 +51200/69092 Loss: 159.580 +54400/69092 Loss: 155.482 +57600/69092 Loss: 154.306 +60800/69092 Loss: 159.191 +64000/69092 Loss: 157.118 +67200/69092 Loss: 155.726 +Training time 0:01:58.795023 +Epoch: 48 Average loss: 157.39 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 48) +0/69092 Loss: 165.872 +3200/69092 Loss: 157.354 +6400/69092 Loss: 155.905 +9600/69092 Loss: 155.997 +12800/69092 Loss: 157.172 +16000/69092 Loss: 157.139 +19200/69092 Loss: 156.060 +22400/69092 Loss: 157.143 +25600/69092 Loss: 158.096 +28800/69092 Loss: 156.610 +32000/69092 Loss: 157.839 +35200/69092 Loss: 158.196 +38400/69092 Loss: 159.408 +41600/69092 Loss: 158.201 +44800/69092 Loss: 160.485 +48000/69092 Loss: 156.418 +51200/69092 Loss: 156.554 +54400/69092 Loss: 155.956 +57600/69092 Loss: 156.167 +60800/69092 Loss: 159.508 +64000/69092 Loss: 157.252 +67200/69092 Loss: 154.809 +Training time 0:01:56.342746 +Epoch: 49 Average loss: 157.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 49) +0/69092 Loss: 160.775 +3200/69092 Loss: 155.519 +6400/69092 Loss: 158.197 +9600/69092 Loss: 156.860 +12800/69092 Loss: 159.379 +16000/69092 Loss: 158.138 +19200/69092 Loss: 154.866 +22400/69092 Loss: 157.963 +25600/69092 Loss: 155.828 +28800/69092 Loss: 158.554 +32000/69092 Loss: 156.378 +35200/69092 Loss: 154.430 +38400/69092 Loss: 159.973 +41600/69092 Loss: 156.173 +44800/69092 Loss: 156.855 +48000/69092 Loss: 158.209 +51200/69092 Loss: 154.854 +54400/69092 Loss: 153.730 +57600/69092 Loss: 157.787 +60800/69092 Loss: 155.526 +64000/69092 Loss: 157.450 +67200/69092 Loss: 161.151 +Training time 0:01:57.673239 +Epoch: 50 Average loss: 157.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 50) +0/69092 Loss: 151.309 +3200/69092 Loss: 154.663 +6400/69092 Loss: 155.966 +9600/69092 Loss: 157.126 +12800/69092 Loss: 158.215 +16000/69092 Loss: 154.137 +19200/69092 Loss: 157.095 +22400/69092 Loss: 158.049 +25600/69092 Loss: 160.578 +28800/69092 Loss: 157.522 +32000/69092 Loss: 155.314 +35200/69092 Loss: 158.797 +38400/69092 Loss: 156.035 +41600/69092 Loss: 155.960 +44800/69092 Loss: 158.463 +48000/69092 Loss: 158.309 +51200/69092 Loss: 157.494 +54400/69092 Loss: 158.661 +57600/69092 Loss: 155.803 +60800/69092 Loss: 159.165 +64000/69092 Loss: 157.056 +67200/69092 Loss: 157.738 +Training time 0:01:57.105160 +Epoch: 51 Average loss: 157.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 51) +0/69092 Loss: 156.573 +3200/69092 Loss: 159.189 +6400/69092 Loss: 156.278 +9600/69092 Loss: 155.030 +12800/69092 Loss: 156.196 +16000/69092 Loss: 154.702 +19200/69092 Loss: 158.979 +22400/69092 Loss: 155.708 +25600/69092 Loss: 158.506 +28800/69092 Loss: 159.577 +32000/69092 Loss: 159.355 +35200/69092 Loss: 153.567 +38400/69092 Loss: 155.650 +41600/69092 Loss: 156.753 +44800/69092 Loss: 156.222 +48000/69092 Loss: 154.584 +51200/69092 Loss: 155.190 +54400/69092 Loss: 158.051 +57600/69092 Loss: 158.151 +60800/69092 Loss: 157.054 +64000/69092 Loss: 157.889 +67200/69092 Loss: 156.688 +Training time 0:01:58.536600 +Epoch: 52 Average loss: 156.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 52) +0/69092 Loss: 151.972 +3200/69092 Loss: 157.845 +6400/69092 Loss: 155.750 +9600/69092 Loss: 155.901 +12800/69092 Loss: 156.866 +16000/69092 Loss: 158.451 +19200/69092 Loss: 156.067 +22400/69092 Loss: 157.738 +25600/69092 Loss: 157.944 +28800/69092 Loss: 156.943 +32000/69092 Loss: 158.236 +35200/69092 Loss: 159.389 +38400/69092 Loss: 155.751 +41600/69092 Loss: 159.080 +44800/69092 Loss: 157.479 +48000/69092 Loss: 156.445 +51200/69092 Loss: 155.405 +54400/69092 Loss: 156.730 +57600/69092 Loss: 157.065 +60800/69092 Loss: 157.780 +64000/69092 Loss: 156.755 +67200/69092 Loss: 154.428 +Training time 0:01:57.886704 +Epoch: 53 Average loss: 157.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 53) +0/69092 Loss: 174.818 +3200/69092 Loss: 154.922 +6400/69092 Loss: 156.329 +9600/69092 Loss: 156.336 +12800/69092 Loss: 156.757 +16000/69092 Loss: 152.687 +19200/69092 Loss: 159.353 +22400/69092 Loss: 160.727 +25600/69092 Loss: 156.750 +28800/69092 Loss: 155.404 +32000/69092 Loss: 152.797 +35200/69092 Loss: 152.721 +38400/69092 Loss: 156.911 +41600/69092 Loss: 157.836 +44800/69092 Loss: 158.115 +48000/69092 Loss: 160.589 +51200/69092 Loss: 160.768 +54400/69092 Loss: 154.929 +57600/69092 Loss: 157.721 +60800/69092 Loss: 156.103 +64000/69092 Loss: 157.022 +67200/69092 Loss: 156.841 +Training time 0:01:57.631492 +Epoch: 54 Average loss: 156.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 54) +0/69092 Loss: 161.799 +3200/69092 Loss: 158.768 +6400/69092 Loss: 155.949 +9600/69092 Loss: 156.426 +12800/69092 Loss: 157.792 +16000/69092 Loss: 156.559 +19200/69092 Loss: 156.716 +22400/69092 Loss: 155.907 +25600/69092 Loss: 158.677 +28800/69092 Loss: 156.829 +32000/69092 Loss: 156.810 +35200/69092 Loss: 158.180 +38400/69092 Loss: 155.060 +41600/69092 Loss: 160.118 +44800/69092 Loss: 155.946 +48000/69092 Loss: 156.171 +51200/69092 Loss: 156.939 +54400/69092 Loss: 157.657 +57600/69092 Loss: 158.546 +60800/69092 Loss: 153.721 +64000/69092 Loss: 157.700 +67200/69092 Loss: 157.772 +Training time 0:01:57.196255 +Epoch: 55 Average loss: 157.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 55) +0/69092 Loss: 171.154 +3200/69092 Loss: 153.401 +6400/69092 Loss: 156.834 +9600/69092 Loss: 154.542 +12800/69092 Loss: 155.035 +16000/69092 Loss: 158.024 +19200/69092 Loss: 157.822 +22400/69092 Loss: 156.419 +25600/69092 Loss: 156.718 +28800/69092 Loss: 157.653 +32000/69092 Loss: 157.035 +35200/69092 Loss: 156.710 +38400/69092 Loss: 155.312 +41600/69092 Loss: 157.849 +44800/69092 Loss: 156.143 +48000/69092 Loss: 157.220 +51200/69092 Loss: 158.816 +54400/69092 Loss: 156.738 +57600/69092 Loss: 158.093 +60800/69092 Loss: 155.736 +64000/69092 Loss: 156.589 +67200/69092 Loss: 159.281 +Training time 0:01:57.246343 +Epoch: 56 Average loss: 156.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 56) +0/69092 Loss: 161.665 +3200/69092 Loss: 159.070 +6400/69092 Loss: 159.161 +9600/69092 Loss: 155.761 +12800/69092 Loss: 153.790 +16000/69092 Loss: 156.048 +19200/69092 Loss: 157.425 +22400/69092 Loss: 156.850 +25600/69092 Loss: 157.505 +28800/69092 Loss: 155.880 +32000/69092 Loss: 156.811 +35200/69092 Loss: 158.641 +38400/69092 Loss: 158.764 +41600/69092 Loss: 155.957 +44800/69092 Loss: 157.562 +48000/69092 Loss: 159.475 +51200/69092 Loss: 153.178 +54400/69092 Loss: 156.193 +57600/69092 Loss: 157.788 +60800/69092 Loss: 159.666 +64000/69092 Loss: 154.616 +67200/69092 Loss: 156.717 +Training time 0:01:57.070016 +Epoch: 57 Average loss: 156.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 57) +0/69092 Loss: 154.231 +3200/69092 Loss: 158.923 +6400/69092 Loss: 158.280 +9600/69092 Loss: 157.097 +12800/69092 Loss: 157.692 +16000/69092 Loss: 156.956 +19200/69092 Loss: 157.788 +22400/69092 Loss: 157.053 +25600/69092 Loss: 157.228 +28800/69092 Loss: 155.322 +32000/69092 Loss: 156.554 +35200/69092 Loss: 158.866 +38400/69092 Loss: 156.445 +41600/69092 Loss: 154.960 +44800/69092 Loss: 157.239 +48000/69092 Loss: 158.918 +51200/69092 Loss: 157.310 +54400/69092 Loss: 155.059 +57600/69092 Loss: 155.969 +60800/69092 Loss: 154.774 +64000/69092 Loss: 156.288 +67200/69092 Loss: 154.829 +Training time 0:01:56.619470 +Epoch: 58 Average loss: 156.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 58) +0/69092 Loss: 158.747 +3200/69092 Loss: 156.800 +6400/69092 Loss: 159.003 +9600/69092 Loss: 157.429 +12800/69092 Loss: 154.900 +16000/69092 Loss: 155.986 +19200/69092 Loss: 156.581 +22400/69092 Loss: 159.008 +25600/69092 Loss: 159.020 +28800/69092 Loss: 155.761 +32000/69092 Loss: 155.297 +35200/69092 Loss: 159.026 +38400/69092 Loss: 156.345 +41600/69092 Loss: 156.182 +44800/69092 Loss: 156.119 +48000/69092 Loss: 155.560 +51200/69092 Loss: 157.515 +54400/69092 Loss: 155.749 +57600/69092 Loss: 156.210 +60800/69092 Loss: 158.114 +64000/69092 Loss: 156.935 +67200/69092 Loss: 157.552 +Training time 0:01:57.085682 +Epoch: 59 Average loss: 156.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 59) +0/69092 Loss: 146.586 +3200/69092 Loss: 158.287 +6400/69092 Loss: 158.391 +9600/69092 Loss: 158.880 +12800/69092 Loss: 155.636 +16000/69092 Loss: 155.746 +19200/69092 Loss: 158.401 +22400/69092 Loss: 157.398 +25600/69092 Loss: 156.920 +28800/69092 Loss: 156.823 +32000/69092 Loss: 157.231 +35200/69092 Loss: 155.793 +38400/69092 Loss: 154.992 +41600/69092 Loss: 157.846 +44800/69092 Loss: 157.710 +48000/69092 Loss: 156.173 +51200/69092 Loss: 155.872 +54400/69092 Loss: 154.709 +57600/69092 Loss: 156.277 +60800/69092 Loss: 154.646 +64000/69092 Loss: 159.004 +67200/69092 Loss: 158.058 +Training time 0:01:57.663232 +Epoch: 60 Average loss: 156.85 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 60) +0/69092 Loss: 166.009 +3200/69092 Loss: 156.702 +6400/69092 Loss: 157.125 +9600/69092 Loss: 158.976 +12800/69092 Loss: 156.149 +16000/69092 Loss: 153.047 +19200/69092 Loss: 155.508 +22400/69092 Loss: 161.147 +25600/69092 Loss: 156.039 +28800/69092 Loss: 158.867 +32000/69092 Loss: 156.878 +35200/69092 Loss: 151.503 +38400/69092 Loss: 154.111 +41600/69092 Loss: 158.582 +44800/69092 Loss: 158.066 +48000/69092 Loss: 156.287 +51200/69092 Loss: 154.743 +54400/69092 Loss: 156.873 +57600/69092 Loss: 157.863 +60800/69092 Loss: 158.995 +64000/69092 Loss: 156.081 +67200/69092 Loss: 158.808 +Training time 0:01:56.126829 +Epoch: 61 Average loss: 156.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 61) +0/69092 Loss: 149.690 +3200/69092 Loss: 157.301 +6400/69092 Loss: 154.143 +9600/69092 Loss: 157.269 +12800/69092 Loss: 153.988 +16000/69092 Loss: 159.099 +19200/69092 Loss: 160.946 +22400/69092 Loss: 155.791 +25600/69092 Loss: 155.753 +28800/69092 Loss: 158.661 +32000/69092 Loss: 155.565 +35200/69092 Loss: 158.673 +38400/69092 Loss: 156.105 +41600/69092 Loss: 158.320 +44800/69092 Loss: 155.879 +48000/69092 Loss: 158.420 +51200/69092 Loss: 155.879 +54400/69092 Loss: 159.195 +57600/69092 Loss: 156.250 +60800/69092 Loss: 152.425 +64000/69092 Loss: 157.972 +67200/69092 Loss: 157.329 +Training time 0:01:55.724764 +Epoch: 62 Average loss: 156.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 62) +0/69092 Loss: 130.425 +3200/69092 Loss: 155.063 +6400/69092 Loss: 156.972 +9600/69092 Loss: 156.451 +12800/69092 Loss: 157.251 +16000/69092 Loss: 155.544 +19200/69092 Loss: 157.545 +22400/69092 Loss: 156.117 +25600/69092 Loss: 154.692 +28800/69092 Loss: 161.002 +32000/69092 Loss: 154.937 +35200/69092 Loss: 157.969 +38400/69092 Loss: 159.332 +41600/69092 Loss: 155.803 +44800/69092 Loss: 158.768 +48000/69092 Loss: 157.521 +51200/69092 Loss: 156.443 +54400/69092 Loss: 156.695 +57600/69092 Loss: 156.823 +60800/69092 Loss: 154.686 +64000/69092 Loss: 154.257 +67200/69092 Loss: 154.854 +Training time 0:01:56.869917 +Epoch: 63 Average loss: 156.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 63) +0/69092 Loss: 168.278 +3200/69092 Loss: 156.477 +6400/69092 Loss: 155.834 +9600/69092 Loss: 156.175 +12800/69092 Loss: 156.452 +16000/69092 Loss: 160.474 +19200/69092 Loss: 156.110 +22400/69092 Loss: 155.731 +25600/69092 Loss: 157.460 +28800/69092 Loss: 158.133 +32000/69092 Loss: 157.400 +35200/69092 Loss: 156.079 +38400/69092 Loss: 155.674 +41600/69092 Loss: 157.975 +44800/69092 Loss: 156.635 +48000/69092 Loss: 160.176 +51200/69092 Loss: 155.979 +54400/69092 Loss: 155.203 +57600/69092 Loss: 155.413 +60800/69092 Loss: 156.931 +64000/69092 Loss: 156.373 +67200/69092 Loss: 155.685 +Training time 0:01:56.637123 +Epoch: 64 Average loss: 156.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 64) +0/69092 Loss: 179.476 +3200/69092 Loss: 158.416 +6400/69092 Loss: 157.825 +9600/69092 Loss: 158.553 +12800/69092 Loss: 155.701 +16000/69092 Loss: 157.353 +19200/69092 Loss: 155.801 +22400/69092 Loss: 159.169 +25600/69092 Loss: 154.814 +28800/69092 Loss: 155.133 +32000/69092 Loss: 155.811 +35200/69092 Loss: 155.900 +38400/69092 Loss: 157.083 +41600/69092 Loss: 155.313 +44800/69092 Loss: 153.626 +48000/69092 Loss: 156.280 +51200/69092 Loss: 156.116 +54400/69092 Loss: 156.223 +57600/69092 Loss: 160.646 +60800/69092 Loss: 156.571 +64000/69092 Loss: 157.397 +67200/69092 Loss: 159.361 +Training time 0:01:58.626638 +Epoch: 65 Average loss: 156.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 65) +0/69092 Loss: 176.773 +3200/69092 Loss: 156.387 +6400/69092 Loss: 155.365 +9600/69092 Loss: 154.489 +12800/69092 Loss: 157.076 +16000/69092 Loss: 155.513 +19200/69092 Loss: 157.775 +22400/69092 Loss: 157.222 +25600/69092 Loss: 155.243 +28800/69092 Loss: 156.085 +32000/69092 Loss: 159.660 +35200/69092 Loss: 157.171 +38400/69092 Loss: 158.023 +41600/69092 Loss: 156.154 +44800/69092 Loss: 155.216 +48000/69092 Loss: 156.061 +51200/69092 Loss: 158.243 +54400/69092 Loss: 154.301 +57600/69092 Loss: 157.221 +60800/69092 Loss: 160.235 +64000/69092 Loss: 159.062 +67200/69092 Loss: 157.388 +Training time 0:01:57.428312 +Epoch: 66 Average loss: 156.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 66) +0/69092 Loss: 174.267 +3200/69092 Loss: 156.316 +6400/69092 Loss: 155.633 +9600/69092 Loss: 157.480 +12800/69092 Loss: 156.161 +16000/69092 Loss: 156.051 +19200/69092 Loss: 157.521 +22400/69092 Loss: 156.603 +25600/69092 Loss: 157.186 +28800/69092 Loss: 156.992 +32000/69092 Loss: 154.298 +35200/69092 Loss: 158.896 +38400/69092 Loss: 158.421 +41600/69092 Loss: 154.238 +44800/69092 Loss: 154.904 +48000/69092 Loss: 157.834 +51200/69092 Loss: 156.558 +54400/69092 Loss: 157.259 +57600/69092 Loss: 156.655 +60800/69092 Loss: 157.521 +64000/69092 Loss: 155.841 +67200/69092 Loss: 155.924 +Training time 0:01:58.339228 +Epoch: 67 Average loss: 156.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 67) +0/69092 Loss: 140.377 +3200/69092 Loss: 154.747 +6400/69092 Loss: 155.382 +9600/69092 Loss: 156.505 +12800/69092 Loss: 156.563 +16000/69092 Loss: 154.118 +19200/69092 Loss: 155.948 +22400/69092 Loss: 154.806 +25600/69092 Loss: 159.843 +28800/69092 Loss: 156.679 +32000/69092 Loss: 154.444 +35200/69092 Loss: 157.556 +38400/69092 Loss: 158.586 +41600/69092 Loss: 156.744 +44800/69092 Loss: 159.562 +48000/69092 Loss: 155.890 +51200/69092 Loss: 157.496 +54400/69092 Loss: 159.528 +57600/69092 Loss: 155.868 +60800/69092 Loss: 156.400 +64000/69092 Loss: 157.189 +67200/69092 Loss: 154.496 +Training time 0:01:56.978773 +Epoch: 68 Average loss: 156.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 68) +0/69092 Loss: 158.141 +3200/69092 Loss: 159.387 +6400/69092 Loss: 155.405 +9600/69092 Loss: 155.339 +12800/69092 Loss: 156.634 +16000/69092 Loss: 155.310 +19200/69092 Loss: 157.443 +22400/69092 Loss: 156.007 +25600/69092 Loss: 156.260 +28800/69092 Loss: 155.516 +32000/69092 Loss: 155.838 +35200/69092 Loss: 156.311 +38400/69092 Loss: 159.134 +41600/69092 Loss: 156.855 +44800/69092 Loss: 156.743 +48000/69092 Loss: 157.367 +51200/69092 Loss: 155.085 +54400/69092 Loss: 155.545 +57600/69092 Loss: 157.443 +60800/69092 Loss: 157.246 +64000/69092 Loss: 159.013 +67200/69092 Loss: 156.078 +Training time 0:01:56.638653 +Epoch: 69 Average loss: 156.74 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 69) +0/69092 Loss: 158.210 +3200/69092 Loss: 154.090 +6400/69092 Loss: 157.629 +9600/69092 Loss: 154.256 +12800/69092 Loss: 159.237 +16000/69092 Loss: 156.519 +19200/69092 Loss: 154.338 +22400/69092 Loss: 156.687 +25600/69092 Loss: 156.197 +28800/69092 Loss: 157.974 +32000/69092 Loss: 158.141 +35200/69092 Loss: 157.055 +38400/69092 Loss: 157.476 +41600/69092 Loss: 155.278 +44800/69092 Loss: 156.339 +48000/69092 Loss: 157.029 +51200/69092 Loss: 155.831 +54400/69092 Loss: 157.420 +57600/69092 Loss: 159.868 +60800/69092 Loss: 154.644 +64000/69092 Loss: 154.695 +67200/69092 Loss: 159.722 +Training time 0:01:57.764959 +Epoch: 70 Average loss: 156.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 70) +0/69092 Loss: 171.868 +3200/69092 Loss: 154.971 +6400/69092 Loss: 155.690 +9600/69092 Loss: 157.860 +12800/69092 Loss: 153.959 +16000/69092 Loss: 155.459 +19200/69092 Loss: 153.802 +22400/69092 Loss: 157.337 +25600/69092 Loss: 157.796 +28800/69092 Loss: 159.014 +32000/69092 Loss: 156.024 +35200/69092 Loss: 155.496 +38400/69092 Loss: 153.453 +41600/69092 Loss: 157.982 +44800/69092 Loss: 158.127 +48000/69092 Loss: 157.016 +51200/69092 Loss: 155.336 +54400/69092 Loss: 158.065 +57600/69092 Loss: 155.201 +60800/69092 Loss: 155.793 +64000/69092 Loss: 160.623 +67200/69092 Loss: 159.226 +Training time 0:01:57.575431 +Epoch: 71 Average loss: 156.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 71) +0/69092 Loss: 165.875 +3200/69092 Loss: 155.211 +6400/69092 Loss: 155.809 +9600/69092 Loss: 154.843 +12800/69092 Loss: 156.813 +16000/69092 Loss: 154.584 +19200/69092 Loss: 156.197 +22400/69092 Loss: 156.995 +25600/69092 Loss: 156.827 +28800/69092 Loss: 156.808 +32000/69092 Loss: 155.107 +35200/69092 Loss: 155.928 +38400/69092 Loss: 155.386 +41600/69092 Loss: 157.398 +44800/69092 Loss: 159.463 +48000/69092 Loss: 157.174 +51200/69092 Loss: 155.567 +54400/69092 Loss: 156.645 +57600/69092 Loss: 156.502 +60800/69092 Loss: 158.758 +64000/69092 Loss: 156.681 +67200/69092 Loss: 156.160 +Training time 0:01:57.928112 +Epoch: 72 Average loss: 156.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 72) +0/69092 Loss: 149.009 +3200/69092 Loss: 157.306 +6400/69092 Loss: 154.970 +9600/69092 Loss: 155.292 +12800/69092 Loss: 160.226 +16000/69092 Loss: 155.449 +19200/69092 Loss: 154.617 +22400/69092 Loss: 159.083 +25600/69092 Loss: 157.713 +28800/69092 Loss: 153.892 +32000/69092 Loss: 157.108 +35200/69092 Loss: 157.129 +38400/69092 Loss: 158.180 +41600/69092 Loss: 154.745 +44800/69092 Loss: 157.751 +48000/69092 Loss: 154.215 +51200/69092 Loss: 155.574 +54400/69092 Loss: 156.107 +57600/69092 Loss: 159.449 +60800/69092 Loss: 154.039 +64000/69092 Loss: 157.771 +67200/69092 Loss: 154.503 +Training time 0:01:58.927985 +Epoch: 73 Average loss: 156.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 73) +0/69092 Loss: 162.335 +3200/69092 Loss: 156.992 +6400/69092 Loss: 155.441 +9600/69092 Loss: 158.319 +12800/69092 Loss: 156.799 +16000/69092 Loss: 154.601 +19200/69092 Loss: 156.184 +22400/69092 Loss: 156.119 +25600/69092 Loss: 156.730 +28800/69092 Loss: 157.873 +32000/69092 Loss: 156.744 +35200/69092 Loss: 155.650 +38400/69092 Loss: 155.064 +41600/69092 Loss: 160.364 +44800/69092 Loss: 153.693 +48000/69092 Loss: 154.281 +51200/69092 Loss: 158.761 +54400/69092 Loss: 153.293 +57600/69092 Loss: 154.834 +60800/69092 Loss: 156.792 +64000/69092 Loss: 155.921 +67200/69092 Loss: 158.465 +Training time 0:01:57.424789 +Epoch: 74 Average loss: 156.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 74) +0/69092 Loss: 163.777 +3200/69092 Loss: 157.036 +6400/69092 Loss: 156.859 +9600/69092 Loss: 156.726 +12800/69092 Loss: 155.765 +16000/69092 Loss: 154.939 +19200/69092 Loss: 155.907 +22400/69092 Loss: 159.550 +25600/69092 Loss: 156.406 +28800/69092 Loss: 158.700 +32000/69092 Loss: 155.796 +35200/69092 Loss: 155.475 +38400/69092 Loss: 156.091 +41600/69092 Loss: 158.845 +44800/69092 Loss: 155.325 +48000/69092 Loss: 154.642 +51200/69092 Loss: 157.505 +54400/69092 Loss: 155.458 +57600/69092 Loss: 157.678 +60800/69092 Loss: 155.414 +64000/69092 Loss: 158.049 +67200/69092 Loss: 155.451 +Training time 0:01:58.770586 +Epoch: 75 Average loss: 156.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 75) +0/69092 Loss: 153.101 +3200/69092 Loss: 155.568 +6400/69092 Loss: 157.207 +9600/69092 Loss: 156.827 +12800/69092 Loss: 156.984 +16000/69092 Loss: 157.856 +19200/69092 Loss: 154.167 +22400/69092 Loss: 158.666 +25600/69092 Loss: 157.925 +28800/69092 Loss: 157.772 +32000/69092 Loss: 157.549 +35200/69092 Loss: 155.806 +38400/69092 Loss: 156.027 +41600/69092 Loss: 157.568 +44800/69092 Loss: 158.149 +48000/69092 Loss: 157.123 +51200/69092 Loss: 154.132 +54400/69092 Loss: 156.489 +57600/69092 Loss: 154.554 +60800/69092 Loss: 155.869 +64000/69092 Loss: 154.556 +67200/69092 Loss: 156.564 +Training time 0:01:57.292697 +Epoch: 76 Average loss: 156.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 76) +0/69092 Loss: 145.325 +3200/69092 Loss: 155.806 +6400/69092 Loss: 159.306 +9600/69092 Loss: 157.818 +12800/69092 Loss: 159.852 +16000/69092 Loss: 154.932 +19200/69092 Loss: 157.023 +22400/69092 Loss: 158.302 +25600/69092 Loss: 151.931 +28800/69092 Loss: 156.084 +32000/69092 Loss: 155.341 +35200/69092 Loss: 155.337 +38400/69092 Loss: 153.945 +41600/69092 Loss: 157.345 +44800/69092 Loss: 156.563 +48000/69092 Loss: 158.502 +51200/69092 Loss: 155.921 +54400/69092 Loss: 154.319 +57600/69092 Loss: 156.743 +60800/69092 Loss: 155.385 +64000/69092 Loss: 156.278 +67200/69092 Loss: 157.242 +Training time 0:01:57.657184 +Epoch: 77 Average loss: 156.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 77) +0/69092 Loss: 146.821 +3200/69092 Loss: 155.702 +6400/69092 Loss: 157.032 +9600/69092 Loss: 153.347 +12800/69092 Loss: 153.843 +16000/69092 Loss: 155.661 +19200/69092 Loss: 156.902 +22400/69092 Loss: 157.238 +25600/69092 Loss: 154.921 +28800/69092 Loss: 157.825 +32000/69092 Loss: 156.451 +35200/69092 Loss: 155.924 +38400/69092 Loss: 155.369 +41600/69092 Loss: 157.591 +44800/69092 Loss: 153.504 +48000/69092 Loss: 159.252 +51200/69092 Loss: 157.205 +54400/69092 Loss: 153.367 +57600/69092 Loss: 157.783 +60800/69092 Loss: 157.550 +64000/69092 Loss: 155.960 +67200/69092 Loss: 159.255 +Training time 0:01:58.393952 +Epoch: 78 Average loss: 156.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 78) +0/69092 Loss: 156.952 +3200/69092 Loss: 154.559 +6400/69092 Loss: 156.841 +9600/69092 Loss: 154.765 +12800/69092 Loss: 156.447 +16000/69092 Loss: 155.340 +19200/69092 Loss: 159.242 +22400/69092 Loss: 156.222 +25600/69092 Loss: 156.588 +28800/69092 Loss: 156.103 +32000/69092 Loss: 154.994 +35200/69092 Loss: 152.960 +38400/69092 Loss: 155.295 +41600/69092 Loss: 155.246 +44800/69092 Loss: 156.455 +48000/69092 Loss: 155.736 +51200/69092 Loss: 155.654 +54400/69092 Loss: 159.698 +57600/69092 Loss: 156.039 +60800/69092 Loss: 157.098 +64000/69092 Loss: 157.854 +67200/69092 Loss: 157.608 +Training time 0:01:57.321396 +Epoch: 79 Average loss: 156.33 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 79) +0/69092 Loss: 158.649 +3200/69092 Loss: 156.310 +6400/69092 Loss: 158.435 +9600/69092 Loss: 159.484 +12800/69092 Loss: 156.311 +16000/69092 Loss: 157.374 +19200/69092 Loss: 154.290 +22400/69092 Loss: 155.953 +25600/69092 Loss: 157.303 +28800/69092 Loss: 156.847 +32000/69092 Loss: 157.297 +35200/69092 Loss: 154.874 +38400/69092 Loss: 153.796 +41600/69092 Loss: 155.032 +44800/69092 Loss: 155.247 +48000/69092 Loss: 155.718 +51200/69092 Loss: 158.595 +54400/69092 Loss: 156.541 +57600/69092 Loss: 155.025 +60800/69092 Loss: 158.117 +64000/69092 Loss: 155.501 +67200/69092 Loss: 154.854 +Training time 0:01:57.033627 +Epoch: 80 Average loss: 156.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 80) +0/69092 Loss: 153.145 +3200/69092 Loss: 157.788 +6400/69092 Loss: 155.704 +9600/69092 Loss: 156.658 +12800/69092 Loss: 156.560 +16000/69092 Loss: 158.374 +19200/69092 Loss: 154.177 +22400/69092 Loss: 157.375 +25600/69092 Loss: 155.362 +28800/69092 Loss: 154.780 +32000/69092 Loss: 157.483 +35200/69092 Loss: 159.989 +38400/69092 Loss: 154.817 +41600/69092 Loss: 156.393 +44800/69092 Loss: 156.688 +48000/69092 Loss: 155.386 +51200/69092 Loss: 156.064 +54400/69092 Loss: 155.947 +57600/69092 Loss: 155.760 +60800/69092 Loss: 156.316 +64000/69092 Loss: 156.993 +67200/69092 Loss: 155.297 +Training time 0:01:57.857139 +Epoch: 81 Average loss: 156.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 81) +0/69092 Loss: 154.239 +3200/69092 Loss: 155.129 +6400/69092 Loss: 158.601 +9600/69092 Loss: 154.721 +12800/69092 Loss: 156.024 +16000/69092 Loss: 156.336 +19200/69092 Loss: 157.672 +22400/69092 Loss: 158.059 +25600/69092 Loss: 155.845 +28800/69092 Loss: 155.871 +32000/69092 Loss: 152.471 +35200/69092 Loss: 158.093 +38400/69092 Loss: 155.734 +41600/69092 Loss: 157.672 +44800/69092 Loss: 159.303 +48000/69092 Loss: 153.724 +51200/69092 Loss: 156.120 +54400/69092 Loss: 156.064 +57600/69092 Loss: 159.324 +60800/69092 Loss: 152.366 +64000/69092 Loss: 156.259 +67200/69092 Loss: 156.098 +Training time 0:01:57.681612 +Epoch: 82 Average loss: 156.31 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 82) +0/69092 Loss: 147.194 +3200/69092 Loss: 155.118 +6400/69092 Loss: 158.044 +9600/69092 Loss: 157.341 +12800/69092 Loss: 154.624 +16000/69092 Loss: 154.524 +19200/69092 Loss: 156.314 +22400/69092 Loss: 156.617 +25600/69092 Loss: 158.821 +28800/69092 Loss: 156.702 +32000/69092 Loss: 156.056 +35200/69092 Loss: 156.305 +38400/69092 Loss: 157.803 +41600/69092 Loss: 155.611 +44800/69092 Loss: 157.703 +48000/69092 Loss: 154.493 +51200/69092 Loss: 151.445 +54400/69092 Loss: 157.022 +57600/69092 Loss: 153.199 +60800/69092 Loss: 156.462 +64000/69092 Loss: 159.009 +67200/69092 Loss: 157.212 +Training time 0:01:56.507123 +Epoch: 83 Average loss: 156.19 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 83) +0/69092 Loss: 175.445 +3200/69092 Loss: 156.969 +6400/69092 Loss: 157.031 +9600/69092 Loss: 156.543 +12800/69092 Loss: 158.960 +16000/69092 Loss: 153.217 +19200/69092 Loss: 156.737 +22400/69092 Loss: 158.304 +25600/69092 Loss: 155.500 +28800/69092 Loss: 159.088 +32000/69092 Loss: 156.325 +35200/69092 Loss: 158.928 +38400/69092 Loss: 157.489 +41600/69092 Loss: 154.888 +44800/69092 Loss: 154.805 +48000/69092 Loss: 156.726 +51200/69092 Loss: 153.776 +54400/69092 Loss: 153.365 +57600/69092 Loss: 159.374 +60800/69092 Loss: 155.063 +64000/69092 Loss: 155.874 +67200/69092 Loss: 154.274 +Training time 0:01:57.244601 +Epoch: 84 Average loss: 156.41 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 84) +0/69092 Loss: 164.614 +3200/69092 Loss: 157.171 +6400/69092 Loss: 155.307 +9600/69092 Loss: 156.460 +12800/69092 Loss: 155.634 +16000/69092 Loss: 156.408 +19200/69092 Loss: 157.974 +22400/69092 Loss: 156.530 +25600/69092 Loss: 156.866 +28800/69092 Loss: 155.673 +32000/69092 Loss: 156.370 +35200/69092 Loss: 159.204 +38400/69092 Loss: 155.918 +41600/69092 Loss: 155.865 +44800/69092 Loss: 157.439 +48000/69092 Loss: 154.114 +51200/69092 Loss: 153.143 +54400/69092 Loss: 157.290 +57600/69092 Loss: 156.481 +60800/69092 Loss: 157.914 +64000/69092 Loss: 156.956 +67200/69092 Loss: 152.564 +Training time 0:01:57.380581 +Epoch: 85 Average loss: 156.19 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 85) +0/69092 Loss: 149.693 +3200/69092 Loss: 157.577 +6400/69092 Loss: 158.061 +9600/69092 Loss: 157.667 +12800/69092 Loss: 155.177 +16000/69092 Loss: 154.303 +19200/69092 Loss: 154.208 +22400/69092 Loss: 155.968 +25600/69092 Loss: 158.216 +28800/69092 Loss: 154.347 +32000/69092 Loss: 157.054 +35200/69092 Loss: 156.202 +38400/69092 Loss: 155.253 +41600/69092 Loss: 154.441 +44800/69092 Loss: 154.887 +48000/69092 Loss: 159.465 +51200/69092 Loss: 157.362 +54400/69092 Loss: 157.643 +57600/69092 Loss: 157.378 +60800/69092 Loss: 152.115 +64000/69092 Loss: 158.885 +67200/69092 Loss: 155.049 +Training time 0:01:58.151490 +Epoch: 86 Average loss: 156.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 86) +0/69092 Loss: 166.214 +3200/69092 Loss: 155.207 +6400/69092 Loss: 157.761 +9600/69092 Loss: 159.346 +12800/69092 Loss: 153.914 +16000/69092 Loss: 155.418 +19200/69092 Loss: 158.452 +22400/69092 Loss: 158.067 +25600/69092 Loss: 155.389 +28800/69092 Loss: 155.912 +32000/69092 Loss: 156.085 +35200/69092 Loss: 152.244 +38400/69092 Loss: 157.502 +41600/69092 Loss: 158.903 +44800/69092 Loss: 153.392 +48000/69092 Loss: 156.485 +51200/69092 Loss: 156.900 +54400/69092 Loss: 155.792 +57600/69092 Loss: 157.120 +60800/69092 Loss: 157.923 +64000/69092 Loss: 157.795 +67200/69092 Loss: 157.277 +Training time 0:01:57.070829 +Epoch: 87 Average loss: 156.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 87) +0/69092 Loss: 159.401 +3200/69092 Loss: 155.259 +6400/69092 Loss: 152.928 +9600/69092 Loss: 155.663 +12800/69092 Loss: 153.289 +16000/69092 Loss: 157.473 +19200/69092 Loss: 153.583 +22400/69092 Loss: 155.634 +25600/69092 Loss: 158.981 +28800/69092 Loss: 158.820 +32000/69092 Loss: 157.317 +35200/69092 Loss: 156.783 +38400/69092 Loss: 156.472 +41600/69092 Loss: 157.222 +44800/69092 Loss: 157.337 +48000/69092 Loss: 160.211 +51200/69092 Loss: 155.523 +54400/69092 Loss: 155.084 +57600/69092 Loss: 153.392 +60800/69092 Loss: 157.155 +64000/69092 Loss: 156.764 +67200/69092 Loss: 154.235 +Training time 0:01:57.391573 +Epoch: 88 Average loss: 156.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 88) +0/69092 Loss: 170.257 +3200/69092 Loss: 155.170 +6400/69092 Loss: 154.292 +9600/69092 Loss: 155.684 +12800/69092 Loss: 156.351 +16000/69092 Loss: 155.048 +19200/69092 Loss: 156.083 +22400/69092 Loss: 155.849 +25600/69092 Loss: 157.710 +28800/69092 Loss: 156.851 +32000/69092 Loss: 154.885 +35200/69092 Loss: 158.666 +38400/69092 Loss: 153.038 +41600/69092 Loss: 154.525 +44800/69092 Loss: 155.211 +48000/69092 Loss: 156.114 +51200/69092 Loss: 159.612 +54400/69092 Loss: 157.564 +57600/69092 Loss: 155.866 +60800/69092 Loss: 155.856 +64000/69092 Loss: 157.281 +67200/69092 Loss: 156.647 +Training time 0:01:57.305374 +Epoch: 89 Average loss: 156.09 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 89) +0/69092 Loss: 166.612 +3200/69092 Loss: 158.085 +6400/69092 Loss: 159.125 +9600/69092 Loss: 159.112 +12800/69092 Loss: 159.096 +16000/69092 Loss: 157.196 +19200/69092 Loss: 157.357 +22400/69092 Loss: 155.583 +25600/69092 Loss: 153.914 +28800/69092 Loss: 154.987 +32000/69092 Loss: 158.178 +35200/69092 Loss: 156.370 +38400/69092 Loss: 155.198 +41600/69092 Loss: 157.549 +44800/69092 Loss: 151.950 +48000/69092 Loss: 154.985 +51200/69092 Loss: 156.409 +54400/69092 Loss: 155.406 +57600/69092 Loss: 155.511 +60800/69092 Loss: 156.110 +64000/69092 Loss: 154.917 +67200/69092 Loss: 154.276 +Training time 0:01:57.986733 +Epoch: 90 Average loss: 156.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 90) +0/69092 Loss: 161.165 +3200/69092 Loss: 155.136 +6400/69092 Loss: 156.198 +9600/69092 Loss: 153.660 +12800/69092 Loss: 155.246 +16000/69092 Loss: 156.955 +19200/69092 Loss: 153.845 +22400/69092 Loss: 156.662 +25600/69092 Loss: 153.142 +28800/69092 Loss: 156.530 +32000/69092 Loss: 158.489 +35200/69092 Loss: 155.523 +38400/69092 Loss: 155.862 +41600/69092 Loss: 156.376 +44800/69092 Loss: 156.332 +48000/69092 Loss: 156.171 +51200/69092 Loss: 158.691 +54400/69092 Loss: 157.633 +57600/69092 Loss: 156.059 +60800/69092 Loss: 154.969 +64000/69092 Loss: 157.326 +67200/69092 Loss: 156.304 +Training time 0:01:57.421474 +Epoch: 91 Average loss: 156.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 91) +0/69092 Loss: 151.802 +3200/69092 Loss: 156.041 +6400/69092 Loss: 154.403 +9600/69092 Loss: 154.763 +12800/69092 Loss: 156.507 +16000/69092 Loss: 156.869 +19200/69092 Loss: 156.667 +22400/69092 Loss: 155.045 +25600/69092 Loss: 154.590 +28800/69092 Loss: 157.636 +32000/69092 Loss: 157.099 +35200/69092 Loss: 156.158 +38400/69092 Loss: 156.639 +41600/69092 Loss: 156.858 +44800/69092 Loss: 156.041 +48000/69092 Loss: 154.728 +51200/69092 Loss: 157.449 +54400/69092 Loss: 156.421 +57600/69092 Loss: 154.008 +60800/69092 Loss: 157.329 +64000/69092 Loss: 156.513 +67200/69092 Loss: 156.582 +Training time 0:01:58.422619 +Epoch: 92 Average loss: 156.14 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 92) +0/69092 Loss: 171.456 +3200/69092 Loss: 155.931 +6400/69092 Loss: 157.035 +9600/69092 Loss: 159.603 +12800/69092 Loss: 157.328 +16000/69092 Loss: 156.010 +19200/69092 Loss: 153.786 +22400/69092 Loss: 156.192 +25600/69092 Loss: 158.596 +28800/69092 Loss: 156.441 +32000/69092 Loss: 156.643 +35200/69092 Loss: 154.531 +38400/69092 Loss: 155.786 +41600/69092 Loss: 155.990 +44800/69092 Loss: 156.323 +48000/69092 Loss: 158.751 +51200/69092 Loss: 155.836 +54400/69092 Loss: 154.206 +57600/69092 Loss: 154.051 +60800/69092 Loss: 156.084 +64000/69092 Loss: 152.273 +67200/69092 Loss: 157.339 +Training time 0:01:58.731457 +Epoch: 93 Average loss: 156.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 93) +0/69092 Loss: 142.786 +3200/69092 Loss: 153.297 +6400/69092 Loss: 158.310 +9600/69092 Loss: 155.520 +12800/69092 Loss: 155.443 +16000/69092 Loss: 155.411 +19200/69092 Loss: 154.829 +22400/69092 Loss: 157.129 +25600/69092 Loss: 159.370 +28800/69092 Loss: 156.973 +32000/69092 Loss: 159.210 +35200/69092 Loss: 154.596 +38400/69092 Loss: 156.608 +41600/69092 Loss: 156.005 +44800/69092 Loss: 156.838 +48000/69092 Loss: 155.210 +51200/69092 Loss: 156.871 +54400/69092 Loss: 155.138 +57600/69092 Loss: 158.078 +60800/69092 Loss: 157.500 +64000/69092 Loss: 151.739 +67200/69092 Loss: 154.873 +Training time 0:01:57.963713 +Epoch: 94 Average loss: 156.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 94) +0/69092 Loss: 146.263 +3200/69092 Loss: 155.555 +6400/69092 Loss: 156.554 +9600/69092 Loss: 156.213 +12800/69092 Loss: 157.070 +16000/69092 Loss: 156.395 +19200/69092 Loss: 156.235 +22400/69092 Loss: 157.114 +25600/69092 Loss: 154.361 +28800/69092 Loss: 156.385 +32000/69092 Loss: 158.074 +35200/69092 Loss: 155.020 +38400/69092 Loss: 154.145 +41600/69092 Loss: 157.834 +44800/69092 Loss: 156.239 +48000/69092 Loss: 155.449 +51200/69092 Loss: 153.666 +54400/69092 Loss: 158.090 +57600/69092 Loss: 158.146 +60800/69092 Loss: 154.828 +64000/69092 Loss: 155.400 +67200/69092 Loss: 156.501 +Training time 0:01:57.965091 +Epoch: 95 Average loss: 156.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 95) +0/69092 Loss: 155.656 +3200/69092 Loss: 157.595 +6400/69092 Loss: 153.861 +9600/69092 Loss: 155.861 +12800/69092 Loss: 155.790 +16000/69092 Loss: 157.198 +19200/69092 Loss: 156.227 +22400/69092 Loss: 156.544 +25600/69092 Loss: 158.305 +28800/69092 Loss: 157.060 +32000/69092 Loss: 154.424 +35200/69092 Loss: 156.990 +38400/69092 Loss: 157.722 +41600/69092 Loss: 157.220 +44800/69092 Loss: 155.997 +48000/69092 Loss: 158.155 +51200/69092 Loss: 154.313 +54400/69092 Loss: 156.447 +57600/69092 Loss: 155.546 +60800/69092 Loss: 156.773 +64000/69092 Loss: 156.543 +67200/69092 Loss: 155.272 +Training time 0:01:58.809980 +Epoch: 96 Average loss: 156.34 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 96) +0/69092 Loss: 143.069 +3200/69092 Loss: 156.347 +6400/69092 Loss: 153.732 +9600/69092 Loss: 156.612 +12800/69092 Loss: 155.316 +16000/69092 Loss: 154.381 +19200/69092 Loss: 157.289 +22400/69092 Loss: 156.253 +25600/69092 Loss: 157.973 +28800/69092 Loss: 155.417 +32000/69092 Loss: 157.265 +35200/69092 Loss: 155.337 +38400/69092 Loss: 156.951 +41600/69092 Loss: 157.890 +44800/69092 Loss: 154.225 +48000/69092 Loss: 158.220 +51200/69092 Loss: 155.795 +54400/69092 Loss: 154.808 +57600/69092 Loss: 157.551 +60800/69092 Loss: 156.183 +64000/69092 Loss: 153.365 +67200/69092 Loss: 155.159 +Training time 0:01:57.791352 +Epoch: 97 Average loss: 155.96 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 97) +0/69092 Loss: 149.637 +3200/69092 Loss: 155.549 +6400/69092 Loss: 155.544 +9600/69092 Loss: 155.894 +12800/69092 Loss: 152.778 +16000/69092 Loss: 158.410 +19200/69092 Loss: 157.024 +22400/69092 Loss: 156.053 +25600/69092 Loss: 157.290 +28800/69092 Loss: 155.204 +32000/69092 Loss: 158.822 +35200/69092 Loss: 153.736 +38400/69092 Loss: 154.738 +41600/69092 Loss: 156.868 +44800/69092 Loss: 156.905 +48000/69092 Loss: 156.006 +51200/69092 Loss: 154.121 +54400/69092 Loss: 155.837 +57600/69092 Loss: 155.911 +60800/69092 Loss: 157.958 +64000/69092 Loss: 157.863 +67200/69092 Loss: 154.774 +Training time 0:01:58.207927 +Epoch: 98 Average loss: 156.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 98) +0/69092 Loss: 163.931 +3200/69092 Loss: 158.819 +6400/69092 Loss: 157.153 +9600/69092 Loss: 155.351 +12800/69092 Loss: 155.589 +16000/69092 Loss: 156.833 +19200/69092 Loss: 154.299 +22400/69092 Loss: 154.606 +25600/69092 Loss: 154.769 +28800/69092 Loss: 156.260 +32000/69092 Loss: 157.328 +35200/69092 Loss: 155.191 +38400/69092 Loss: 154.232 +41600/69092 Loss: 157.153 +44800/69092 Loss: 155.967 +48000/69092 Loss: 155.095 +51200/69092 Loss: 158.086 +54400/69092 Loss: 159.181 +57600/69092 Loss: 154.697 +60800/69092 Loss: 158.055 +64000/69092 Loss: 153.272 +67200/69092 Loss: 158.289 +Training time 0:01:57.142832 +Epoch: 99 Average loss: 156.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 99) +0/69092 Loss: 174.706 +3200/69092 Loss: 157.421 +6400/69092 Loss: 158.913 +9600/69092 Loss: 156.374 +12800/69092 Loss: 155.065 +16000/69092 Loss: 151.730 +19200/69092 Loss: 157.468 +22400/69092 Loss: 154.397 +25600/69092 Loss: 153.762 +28800/69092 Loss: 157.019 +32000/69092 Loss: 156.850 +35200/69092 Loss: 155.036 +38400/69092 Loss: 155.356 +41600/69092 Loss: 157.865 +44800/69092 Loss: 157.956 +48000/69092 Loss: 155.131 +51200/69092 Loss: 154.815 +54400/69092 Loss: 156.507 +57600/69092 Loss: 155.000 +60800/69092 Loss: 155.166 +64000/69092 Loss: 159.171 +67200/69092 Loss: 154.491 +Training time 0:01:58.077721 +Epoch: 100 Average loss: 156.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 100) +0/69092 Loss: 177.416 +3200/69092 Loss: 157.837 +6400/69092 Loss: 156.611 +9600/69092 Loss: 158.248 +12800/69092 Loss: 152.985 +16000/69092 Loss: 158.325 +19200/69092 Loss: 158.759 +22400/69092 Loss: 155.081 +25600/69092 Loss: 158.922 +28800/69092 Loss: 155.390 +32000/69092 Loss: 157.686 +35200/69092 Loss: 156.999 +38400/69092 Loss: 155.144 +41600/69092 Loss: 154.144 +44800/69092 Loss: 153.212 +48000/69092 Loss: 154.081 +51200/69092 Loss: 156.668 +54400/69092 Loss: 157.358 +57600/69092 Loss: 156.153 +60800/69092 Loss: 153.402 +64000/69092 Loss: 156.362 +67200/69092 Loss: 155.231 +Training time 0:01:57.508650 +Epoch: 101 Average loss: 156.11 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 101) +0/69092 Loss: 155.446 +3200/69092 Loss: 154.474 +6400/69092 Loss: 153.953 +9600/69092 Loss: 153.650 +12800/69092 Loss: 155.206 +16000/69092 Loss: 156.317 +19200/69092 Loss: 156.065 +22400/69092 Loss: 156.366 +25600/69092 Loss: 157.411 +28800/69092 Loss: 157.308 +32000/69092 Loss: 155.609 +35200/69092 Loss: 156.758 +38400/69092 Loss: 153.468 +41600/69092 Loss: 156.464 +44800/69092 Loss: 156.841 +48000/69092 Loss: 156.027 +51200/69092 Loss: 157.217 +54400/69092 Loss: 153.982 +57600/69092 Loss: 155.583 +60800/69092 Loss: 156.712 +64000/69092 Loss: 155.515 +67200/69092 Loss: 156.003 +Training time 0:01:57.582020 +Epoch: 102 Average loss: 155.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 102) +0/69092 Loss: 159.455 +3200/69092 Loss: 155.785 +6400/69092 Loss: 154.714 +9600/69092 Loss: 155.369 +12800/69092 Loss: 156.687 +16000/69092 Loss: 156.739 +19200/69092 Loss: 157.092 +22400/69092 Loss: 156.777 +25600/69092 Loss: 153.528 +28800/69092 Loss: 156.226 +32000/69092 Loss: 154.600 +35200/69092 Loss: 159.076 +38400/69092 Loss: 156.869 +41600/69092 Loss: 158.280 +44800/69092 Loss: 157.099 +48000/69092 Loss: 155.385 +51200/69092 Loss: 158.444 +54400/69092 Loss: 155.024 +57600/69092 Loss: 153.150 +60800/69092 Loss: 158.682 +64000/69092 Loss: 155.967 +67200/69092 Loss: 153.019 +Training time 0:01:58.641232 +Epoch: 103 Average loss: 156.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 103) +0/69092 Loss: 158.399 +3200/69092 Loss: 155.141 +6400/69092 Loss: 158.227 +9600/69092 Loss: 154.084 +12800/69092 Loss: 156.589 +16000/69092 Loss: 157.047 +19200/69092 Loss: 155.855 +22400/69092 Loss: 155.442 +25600/69092 Loss: 156.533 +28800/69092 Loss: 156.653 +32000/69092 Loss: 157.194 +35200/69092 Loss: 159.617 +38400/69092 Loss: 154.397 +41600/69092 Loss: 154.771 +44800/69092 Loss: 154.845 +48000/69092 Loss: 154.884 +51200/69092 Loss: 157.147 +54400/69092 Loss: 154.389 +57600/69092 Loss: 155.469 +60800/69092 Loss: 155.751 +64000/69092 Loss: 157.746 +67200/69092 Loss: 154.849 +Training time 0:01:56.475910 +Epoch: 104 Average loss: 156.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 104) +0/69092 Loss: 161.428 +3200/69092 Loss: 156.067 +6400/69092 Loss: 155.341 +9600/69092 Loss: 154.913 +12800/69092 Loss: 156.163 +16000/69092 Loss: 156.547 +19200/69092 Loss: 153.794 +22400/69092 Loss: 154.937 +25600/69092 Loss: 155.151 +28800/69092 Loss: 155.289 +32000/69092 Loss: 158.602 +35200/69092 Loss: 155.166 +38400/69092 Loss: 158.150 +41600/69092 Loss: 156.249 +44800/69092 Loss: 156.493 +48000/69092 Loss: 157.303 +51200/69092 Loss: 154.698 +54400/69092 Loss: 157.452 +57600/69092 Loss: 155.032 +60800/69092 Loss: 156.297 +64000/69092 Loss: 156.383 +67200/69092 Loss: 154.772 +Training time 0:01:57.094854 +Epoch: 105 Average loss: 155.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 105) +0/69092 Loss: 150.408 +3200/69092 Loss: 157.610 +6400/69092 Loss: 152.280 +9600/69092 Loss: 156.733 +12800/69092 Loss: 154.552 +16000/69092 Loss: 156.122 +19200/69092 Loss: 157.433 +22400/69092 Loss: 155.877 +25600/69092 Loss: 156.331 +28800/69092 Loss: 157.846 +32000/69092 Loss: 156.285 +35200/69092 Loss: 156.583 +38400/69092 Loss: 154.465 +41600/69092 Loss: 153.643 +44800/69092 Loss: 157.368 +48000/69092 Loss: 155.520 +51200/69092 Loss: 156.080 +54400/69092 Loss: 154.398 +57600/69092 Loss: 158.109 +60800/69092 Loss: 157.425 +64000/69092 Loss: 157.451 +67200/69092 Loss: 154.696 +Training time 0:01:57.905391 +Epoch: 106 Average loss: 155.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 106) +0/69092 Loss: 147.812 +3200/69092 Loss: 158.075 +6400/69092 Loss: 155.240 +9600/69092 Loss: 156.768 +12800/69092 Loss: 156.193 +16000/69092 Loss: 154.905 +19200/69092 Loss: 156.216 +22400/69092 Loss: 154.655 +25600/69092 Loss: 156.460 +28800/69092 Loss: 153.076 +32000/69092 Loss: 157.954 +35200/69092 Loss: 155.930 +38400/69092 Loss: 156.325 +41600/69092 Loss: 156.681 +44800/69092 Loss: 159.643 +48000/69092 Loss: 155.343 +51200/69092 Loss: 155.199 +54400/69092 Loss: 156.110 +57600/69092 Loss: 153.686 +60800/69092 Loss: 156.879 +64000/69092 Loss: 154.585 +67200/69092 Loss: 155.212 +Training time 0:01:56.307127 +Epoch: 107 Average loss: 155.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 107) +0/69092 Loss: 154.253 +3200/69092 Loss: 153.416 +6400/69092 Loss: 152.018 +9600/69092 Loss: 156.441 +12800/69092 Loss: 156.551 +16000/69092 Loss: 155.907 +19200/69092 Loss: 154.270 +22400/69092 Loss: 158.192 +25600/69092 Loss: 157.611 +28800/69092 Loss: 157.174 +32000/69092 Loss: 156.599 +35200/69092 Loss: 156.001 +38400/69092 Loss: 155.926 +41600/69092 Loss: 156.182 +44800/69092 Loss: 156.168 +48000/69092 Loss: 155.820 +51200/69092 Loss: 156.520 +54400/69092 Loss: 157.469 +57600/69092 Loss: 153.393 +60800/69092 Loss: 156.360 +64000/69092 Loss: 158.875 +67200/69092 Loss: 156.235 +Training time 0:01:57.121476 +Epoch: 108 Average loss: 156.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 108) +0/69092 Loss: 137.626 +3200/69092 Loss: 155.626 +6400/69092 Loss: 155.304 +9600/69092 Loss: 154.819 +12800/69092 Loss: 156.864 +16000/69092 Loss: 156.049 +19200/69092 Loss: 154.754 +22400/69092 Loss: 160.521 +25600/69092 Loss: 156.218 +28800/69092 Loss: 154.110 +32000/69092 Loss: 158.628 +35200/69092 Loss: 155.418 +38400/69092 Loss: 154.081 +41600/69092 Loss: 154.984 +44800/69092 Loss: 157.052 +48000/69092 Loss: 157.016 +51200/69092 Loss: 157.039 +54400/69092 Loss: 155.440 +57600/69092 Loss: 154.973 +60800/69092 Loss: 156.595 +64000/69092 Loss: 154.637 +67200/69092 Loss: 155.397 +Training time 0:01:57.346284 +Epoch: 109 Average loss: 155.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 109) +0/69092 Loss: 149.738 +3200/69092 Loss: 156.390 +6400/69092 Loss: 156.148 +9600/69092 Loss: 155.724 +12800/69092 Loss: 156.560 +16000/69092 Loss: 156.340 +19200/69092 Loss: 156.251 +22400/69092 Loss: 155.574 +25600/69092 Loss: 155.729 +28800/69092 Loss: 155.537 +32000/69092 Loss: 153.385 +35200/69092 Loss: 153.714 +38400/69092 Loss: 155.649 +41600/69092 Loss: 155.944 +44800/69092 Loss: 155.621 +48000/69092 Loss: 158.474 +51200/69092 Loss: 155.418 +54400/69092 Loss: 156.086 +57600/69092 Loss: 157.631 +60800/69092 Loss: 155.373 +64000/69092 Loss: 155.928 +67200/69092 Loss: 158.605 +Training time 0:01:57.531353 +Epoch: 110 Average loss: 155.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 110) +0/69092 Loss: 170.792 +3200/69092 Loss: 155.238 +6400/69092 Loss: 155.519 +9600/69092 Loss: 157.654 +12800/69092 Loss: 155.047 +16000/69092 Loss: 156.356 +19200/69092 Loss: 157.393 +22400/69092 Loss: 155.473 +25600/69092 Loss: 157.268 +28800/69092 Loss: 154.345 +32000/69092 Loss: 155.822 +35200/69092 Loss: 157.345 +38400/69092 Loss: 157.502 +41600/69092 Loss: 154.908 +44800/69092 Loss: 154.225 +48000/69092 Loss: 154.840 +51200/69092 Loss: 154.386 +54400/69092 Loss: 153.638 +57600/69092 Loss: 153.358 +60800/69092 Loss: 155.077 +64000/69092 Loss: 156.759 +67200/69092 Loss: 156.415 +Training time 0:01:56.946783 +Epoch: 111 Average loss: 155.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 111) +0/69092 Loss: 150.964 +3200/69092 Loss: 158.559 +6400/69092 Loss: 154.329 +9600/69092 Loss: 154.166 +12800/69092 Loss: 154.935 +16000/69092 Loss: 156.629 +19200/69092 Loss: 157.566 +22400/69092 Loss: 158.841 +25600/69092 Loss: 155.628 +28800/69092 Loss: 154.152 +32000/69092 Loss: 155.909 +35200/69092 Loss: 153.850 +38400/69092 Loss: 156.465 +41600/69092 Loss: 156.930 +44800/69092 Loss: 155.522 +48000/69092 Loss: 156.088 +51200/69092 Loss: 158.124 +54400/69092 Loss: 154.659 +57600/69092 Loss: 153.904 +60800/69092 Loss: 151.762 +64000/69092 Loss: 156.022 +67200/69092 Loss: 156.427 +Training time 0:01:57.189807 +Epoch: 112 Average loss: 155.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 112) +0/69092 Loss: 175.846 +3200/69092 Loss: 157.925 +6400/69092 Loss: 155.612 +9600/69092 Loss: 155.114 +12800/69092 Loss: 156.187 +16000/69092 Loss: 155.551 +19200/69092 Loss: 155.641 +22400/69092 Loss: 155.834 +25600/69092 Loss: 153.425 +28800/69092 Loss: 155.658 +32000/69092 Loss: 154.897 +35200/69092 Loss: 155.391 +38400/69092 Loss: 154.131 +41600/69092 Loss: 155.877 +44800/69092 Loss: 155.467 +48000/69092 Loss: 157.181 +51200/69092 Loss: 155.400 +54400/69092 Loss: 154.917 +57600/69092 Loss: 154.325 +60800/69092 Loss: 156.443 +64000/69092 Loss: 156.540 +67200/69092 Loss: 155.040 +Training time 0:01:57.976793 +Epoch: 113 Average loss: 155.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 113) +0/69092 Loss: 174.227 +3200/69092 Loss: 154.453 +6400/69092 Loss: 158.337 +9600/69092 Loss: 154.710 +12800/69092 Loss: 157.299 +16000/69092 Loss: 156.532 +19200/69092 Loss: 154.051 +22400/69092 Loss: 154.384 +25600/69092 Loss: 152.617 +28800/69092 Loss: 154.337 +32000/69092 Loss: 154.008 +35200/69092 Loss: 155.621 +38400/69092 Loss: 153.317 +41600/69092 Loss: 158.356 +44800/69092 Loss: 154.623 +48000/69092 Loss: 155.293 +51200/69092 Loss: 156.157 +54400/69092 Loss: 156.266 +57600/69092 Loss: 156.518 +60800/69092 Loss: 156.546 +64000/69092 Loss: 155.152 +67200/69092 Loss: 152.980 +Training time 0:01:58.318560 +Epoch: 114 Average loss: 155.34 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 114) +0/69092 Loss: 168.966 +3200/69092 Loss: 154.778 +6400/69092 Loss: 152.374 +9600/69092 Loss: 154.265 +12800/69092 Loss: 155.828 +16000/69092 Loss: 156.947 +19200/69092 Loss: 153.212 +22400/69092 Loss: 155.507 +25600/69092 Loss: 155.495 +28800/69092 Loss: 153.549 +32000/69092 Loss: 155.035 +35200/69092 Loss: 155.916 +38400/69092 Loss: 156.398 +41600/69092 Loss: 155.636 +44800/69092 Loss: 157.366 +48000/69092 Loss: 153.544 +51200/69092 Loss: 158.787 +54400/69092 Loss: 153.198 +57600/69092 Loss: 155.386 +60800/69092 Loss: 153.367 +64000/69092 Loss: 154.176 +67200/69092 Loss: 155.239 +Training time 0:01:57.300875 +Epoch: 115 Average loss: 155.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 115) +0/69092 Loss: 153.426 +3200/69092 Loss: 152.366 +6400/69092 Loss: 153.814 +9600/69092 Loss: 156.034 +12800/69092 Loss: 154.588 +16000/69092 Loss: 158.361 +19200/69092 Loss: 155.269 +22400/69092 Loss: 153.414 +25600/69092 Loss: 157.952 +28800/69092 Loss: 155.246 +32000/69092 Loss: 154.442 +35200/69092 Loss: 157.097 +38400/69092 Loss: 155.266 +41600/69092 Loss: 155.442 +44800/69092 Loss: 153.841 +48000/69092 Loss: 154.809 +51200/69092 Loss: 150.702 +54400/69092 Loss: 156.469 +57600/69092 Loss: 155.105 +60800/69092 Loss: 157.730 +64000/69092 Loss: 155.257 +67200/69092 Loss: 151.986 +Training time 0:01:57.025523 +Epoch: 116 Average loss: 155.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 116) +0/69092 Loss: 148.078 +3200/69092 Loss: 152.770 +6400/69092 Loss: 153.422 +9600/69092 Loss: 155.244 +12800/69092 Loss: 157.139 +16000/69092 Loss: 157.257 +19200/69092 Loss: 155.262 +22400/69092 Loss: 157.124 +25600/69092 Loss: 153.268 +28800/69092 Loss: 153.607 +32000/69092 Loss: 155.643 +35200/69092 Loss: 155.779 +38400/69092 Loss: 154.522 +41600/69092 Loss: 154.395 +44800/69092 Loss: 155.834 +48000/69092 Loss: 151.930 +51200/69092 Loss: 152.719 +54400/69092 Loss: 155.352 +57600/69092 Loss: 155.928 +60800/69092 Loss: 157.246 +64000/69092 Loss: 155.415 +67200/69092 Loss: 154.781 +Training time 0:01:58.664741 +Epoch: 117 Average loss: 155.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 117) +0/69092 Loss: 171.513 +3200/69092 Loss: 157.710 +6400/69092 Loss: 153.195 +9600/69092 Loss: 155.382 +12800/69092 Loss: 153.891 +16000/69092 Loss: 159.238 +19200/69092 Loss: 154.755 +22400/69092 Loss: 154.061 +25600/69092 Loss: 154.306 +28800/69092 Loss: 153.344 +32000/69092 Loss: 155.959 +35200/69092 Loss: 153.530 +38400/69092 Loss: 154.895 +41600/69092 Loss: 155.108 +44800/69092 Loss: 155.699 +48000/69092 Loss: 154.761 +51200/69092 Loss: 154.865 +54400/69092 Loss: 155.258 +57600/69092 Loss: 154.297 +60800/69092 Loss: 156.943 +64000/69092 Loss: 153.107 +67200/69092 Loss: 154.885 +Training time 0:01:58.273350 +Epoch: 118 Average loss: 154.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 118) +0/69092 Loss: 150.001 +3200/69092 Loss: 154.122 +6400/69092 Loss: 154.486 +9600/69092 Loss: 153.961 +12800/69092 Loss: 155.133 +16000/69092 Loss: 154.922 +19200/69092 Loss: 153.014 +22400/69092 Loss: 153.390 +25600/69092 Loss: 157.570 +28800/69092 Loss: 156.498 +32000/69092 Loss: 154.375 +35200/69092 Loss: 157.862 +38400/69092 Loss: 155.825 +41600/69092 Loss: 153.963 +44800/69092 Loss: 154.603 +48000/69092 Loss: 154.339 +51200/69092 Loss: 152.880 +54400/69092 Loss: 156.724 +57600/69092 Loss: 155.091 +60800/69092 Loss: 152.868 +64000/69092 Loss: 154.170 +67200/69092 Loss: 156.052 +Training time 0:01:58.633698 +Epoch: 119 Average loss: 154.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 119) +0/69092 Loss: 160.933 +3200/69092 Loss: 155.272 +6400/69092 Loss: 156.377 +9600/69092 Loss: 152.034 +12800/69092 Loss: 155.839 +16000/69092 Loss: 154.538 +19200/69092 Loss: 155.078 +22400/69092 Loss: 153.071 +25600/69092 Loss: 155.367 +28800/69092 Loss: 154.745 +32000/69092 Loss: 153.654 +35200/69092 Loss: 152.479 +38400/69092 Loss: 153.916 +41600/69092 Loss: 154.280 +44800/69092 Loss: 152.825 +48000/69092 Loss: 156.693 +51200/69092 Loss: 154.448 +54400/69092 Loss: 156.211 +57600/69092 Loss: 157.181 +60800/69092 Loss: 156.198 +64000/69092 Loss: 155.162 +67200/69092 Loss: 154.812 +Training time 0:01:58.076896 +Epoch: 120 Average loss: 154.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 120) +0/69092 Loss: 132.012 +3200/69092 Loss: 155.977 +6400/69092 Loss: 152.125 +9600/69092 Loss: 154.250 +12800/69092 Loss: 152.881 +16000/69092 Loss: 157.267 +19200/69092 Loss: 156.522 +22400/69092 Loss: 155.579 +25600/69092 Loss: 156.021 +28800/69092 Loss: 152.512 +32000/69092 Loss: 157.851 +35200/69092 Loss: 155.854 +38400/69092 Loss: 154.697 +41600/69092 Loss: 154.646 +44800/69092 Loss: 155.231 +48000/69092 Loss: 151.950 +51200/69092 Loss: 153.412 +54400/69092 Loss: 154.098 +57600/69092 Loss: 154.528 +60800/69092 Loss: 154.204 +64000/69092 Loss: 154.731 +67200/69092 Loss: 157.961 +Training time 0:01:57.341197 +Epoch: 121 Average loss: 154.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 121) +0/69092 Loss: 147.670 +3200/69092 Loss: 155.720 +6400/69092 Loss: 155.014 +9600/69092 Loss: 153.611 +12800/69092 Loss: 154.024 +16000/69092 Loss: 156.432 +19200/69092 Loss: 152.719 +22400/69092 Loss: 156.579 +25600/69092 Loss: 150.242 +28800/69092 Loss: 154.217 +32000/69092 Loss: 153.524 +35200/69092 Loss: 155.488 +38400/69092 Loss: 153.052 +41600/69092 Loss: 157.173 +44800/69092 Loss: 157.166 +48000/69092 Loss: 157.039 +51200/69092 Loss: 156.565 +54400/69092 Loss: 153.906 +57600/69092 Loss: 155.050 +60800/69092 Loss: 153.772 +64000/69092 Loss: 151.165 +67200/69092 Loss: 156.539 +Training time 0:01:58.555985 +Epoch: 122 Average loss: 154.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 122) +0/69092 Loss: 149.961 +3200/69092 Loss: 154.561 +6400/69092 Loss: 154.395 +9600/69092 Loss: 154.540 +12800/69092 Loss: 151.944 +16000/69092 Loss: 153.042 +19200/69092 Loss: 155.138 +22400/69092 Loss: 153.326 +25600/69092 Loss: 155.592 +28800/69092 Loss: 155.934 +32000/69092 Loss: 152.884 +35200/69092 Loss: 154.599 +38400/69092 Loss: 155.866 +41600/69092 Loss: 157.803 +44800/69092 Loss: 155.345 +48000/69092 Loss: 156.320 +51200/69092 Loss: 151.717 +54400/69092 Loss: 154.813 +57600/69092 Loss: 153.258 +60800/69092 Loss: 154.829 +64000/69092 Loss: 155.179 +67200/69092 Loss: 152.764 +Training time 0:01:58.459415 +Epoch: 123 Average loss: 154.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 123) +0/69092 Loss: 143.996 +3200/69092 Loss: 154.933 +6400/69092 Loss: 155.628 +9600/69092 Loss: 154.814 +12800/69092 Loss: 153.867 +16000/69092 Loss: 155.074 +19200/69092 Loss: 153.150 +22400/69092 Loss: 153.663 +25600/69092 Loss: 154.939 +28800/69092 Loss: 150.770 +32000/69092 Loss: 154.517 +35200/69092 Loss: 155.187 +38400/69092 Loss: 156.361 +41600/69092 Loss: 155.239 +44800/69092 Loss: 154.829 +48000/69092 Loss: 154.833 +51200/69092 Loss: 154.172 +54400/69092 Loss: 155.574 +57600/69092 Loss: 155.616 +60800/69092 Loss: 155.825 +64000/69092 Loss: 155.648 +67200/69092 Loss: 154.989 +Training time 0:01:57.505004 +Epoch: 124 Average loss: 154.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 124) +0/69092 Loss: 149.688 +3200/69092 Loss: 153.352 +6400/69092 Loss: 152.295 +9600/69092 Loss: 154.284 +12800/69092 Loss: 155.867 +16000/69092 Loss: 156.085 +19200/69092 Loss: 155.497 +22400/69092 Loss: 155.256 +25600/69092 Loss: 156.888 +28800/69092 Loss: 154.722 +32000/69092 Loss: 154.577 +35200/69092 Loss: 153.832 +38400/69092 Loss: 153.127 +41600/69092 Loss: 156.272 +44800/69092 Loss: 152.897 +48000/69092 Loss: 152.821 +51200/69092 Loss: 155.048 +54400/69092 Loss: 154.859 +57600/69092 Loss: 154.674 +60800/69092 Loss: 154.172 +64000/69092 Loss: 153.382 +67200/69092 Loss: 155.391 +Training time 0:01:57.617767 +Epoch: 125 Average loss: 154.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 125) +0/69092 Loss: 174.120 +3200/69092 Loss: 154.710 +6400/69092 Loss: 155.469 +9600/69092 Loss: 154.952 +12800/69092 Loss: 154.360 +16000/69092 Loss: 153.049 +19200/69092 Loss: 155.451 +22400/69092 Loss: 155.977 +25600/69092 Loss: 153.877 +28800/69092 Loss: 153.698 +32000/69092 Loss: 155.169 +35200/69092 Loss: 155.187 +38400/69092 Loss: 154.105 +41600/69092 Loss: 151.598 +44800/69092 Loss: 154.485 +48000/69092 Loss: 155.221 +51200/69092 Loss: 153.565 +54400/69092 Loss: 156.596 +57600/69092 Loss: 156.262 +60800/69092 Loss: 151.911 +64000/69092 Loss: 155.138 +67200/69092 Loss: 153.838 +Training time 0:01:57.489586 +Epoch: 126 Average loss: 154.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 126) +0/69092 Loss: 161.715 +3200/69092 Loss: 156.828 +6400/69092 Loss: 156.048 +9600/69092 Loss: 156.895 +12800/69092 Loss: 153.084 +16000/69092 Loss: 150.651 +19200/69092 Loss: 156.812 +22400/69092 Loss: 153.117 +25600/69092 Loss: 153.393 +28800/69092 Loss: 155.779 +32000/69092 Loss: 150.421 +35200/69092 Loss: 152.936 +38400/69092 Loss: 154.379 +41600/69092 Loss: 154.482 +44800/69092 Loss: 157.635 +48000/69092 Loss: 155.784 +51200/69092 Loss: 154.992 +54400/69092 Loss: 157.164 +57600/69092 Loss: 152.517 +60800/69092 Loss: 154.083 +64000/69092 Loss: 155.171 +67200/69092 Loss: 154.870 +Training time 0:01:58.320576 +Epoch: 127 Average loss: 154.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 127) +0/69092 Loss: 149.820 +3200/69092 Loss: 155.763 +6400/69092 Loss: 154.983 +9600/69092 Loss: 153.094 +12800/69092 Loss: 154.531 +16000/69092 Loss: 153.738 +19200/69092 Loss: 154.447 +22400/69092 Loss: 154.038 +25600/69092 Loss: 152.407 +28800/69092 Loss: 152.053 +32000/69092 Loss: 156.108 +35200/69092 Loss: 157.111 +38400/69092 Loss: 154.522 +41600/69092 Loss: 154.477 +44800/69092 Loss: 155.592 +48000/69092 Loss: 155.653 +51200/69092 Loss: 155.518 +54400/69092 Loss: 155.488 +57600/69092 Loss: 153.067 +60800/69092 Loss: 153.172 +64000/69092 Loss: 155.850 +67200/69092 Loss: 152.925 +Training time 0:01:58.128835 +Epoch: 128 Average loss: 154.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 128) +0/69092 Loss: 154.357 +3200/69092 Loss: 153.358 +6400/69092 Loss: 154.050 +9600/69092 Loss: 155.832 +12800/69092 Loss: 153.568 +16000/69092 Loss: 155.070 +19200/69092 Loss: 152.445 +22400/69092 Loss: 153.246 +25600/69092 Loss: 152.740 +28800/69092 Loss: 156.151 +32000/69092 Loss: 155.030 +35200/69092 Loss: 151.880 +38400/69092 Loss: 153.706 +41600/69092 Loss: 156.196 +44800/69092 Loss: 154.440 +48000/69092 Loss: 152.798 +51200/69092 Loss: 155.316 +54400/69092 Loss: 153.793 +57600/69092 Loss: 155.304 +60800/69092 Loss: 156.240 +64000/69092 Loss: 156.599 +67200/69092 Loss: 153.464 +Training time 0:01:58.853265 +Epoch: 129 Average loss: 154.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 129) +0/69092 Loss: 159.408 +3200/69092 Loss: 154.166 +6400/69092 Loss: 155.684 +9600/69092 Loss: 154.080 +12800/69092 Loss: 154.837 +16000/69092 Loss: 155.003 +19200/69092 Loss: 154.744 +22400/69092 Loss: 149.973 +25600/69092 Loss: 152.992 +28800/69092 Loss: 153.851 +32000/69092 Loss: 155.261 +35200/69092 Loss: 156.042 +38400/69092 Loss: 154.715 +41600/69092 Loss: 154.610 +44800/69092 Loss: 154.538 +48000/69092 Loss: 155.196 +51200/69092 Loss: 154.074 +54400/69092 Loss: 153.846 +57600/69092 Loss: 155.952 +60800/69092 Loss: 153.240 +64000/69092 Loss: 154.886 +67200/69092 Loss: 152.854 +Training time 0:01:59.618850 +Epoch: 130 Average loss: 154.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 130) +0/69092 Loss: 155.935 +3200/69092 Loss: 154.465 +6400/69092 Loss: 154.565 +9600/69092 Loss: 155.417 +12800/69092 Loss: 152.406 +16000/69092 Loss: 155.113 +19200/69092 Loss: 152.698 +22400/69092 Loss: 156.341 +25600/69092 Loss: 154.342 +28800/69092 Loss: 153.397 +32000/69092 Loss: 149.231 +35200/69092 Loss: 154.516 +38400/69092 Loss: 151.761 +41600/69092 Loss: 153.513 +44800/69092 Loss: 155.560 +48000/69092 Loss: 156.695 +51200/69092 Loss: 153.803 +54400/69092 Loss: 159.459 +57600/69092 Loss: 155.416 +60800/69092 Loss: 154.987 +64000/69092 Loss: 154.935 +67200/69092 Loss: 155.008 +Training time 0:01:57.487546 +Epoch: 131 Average loss: 154.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 131) +0/69092 Loss: 145.728 +3200/69092 Loss: 152.723 +6400/69092 Loss: 155.251 +9600/69092 Loss: 155.858 +12800/69092 Loss: 155.717 +16000/69092 Loss: 157.164 +19200/69092 Loss: 156.345 +22400/69092 Loss: 152.506 +25600/69092 Loss: 155.294 +28800/69092 Loss: 156.185 +32000/69092 Loss: 154.058 +35200/69092 Loss: 152.411 +38400/69092 Loss: 152.938 +41600/69092 Loss: 154.333 +44800/69092 Loss: 152.387 +48000/69092 Loss: 151.226 +51200/69092 Loss: 152.922 +54400/69092 Loss: 153.569 +57600/69092 Loss: 153.481 +60800/69092 Loss: 153.954 +64000/69092 Loss: 155.628 +67200/69092 Loss: 156.342 +Training time 0:01:57.605448 +Epoch: 132 Average loss: 154.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 132) +0/69092 Loss: 147.528 +3200/69092 Loss: 153.321 +6400/69092 Loss: 153.253 +9600/69092 Loss: 151.012 +12800/69092 Loss: 152.982 +16000/69092 Loss: 153.983 +19200/69092 Loss: 153.548 +22400/69092 Loss: 157.116 +25600/69092 Loss: 155.926 +28800/69092 Loss: 154.905 +32000/69092 Loss: 152.167 +35200/69092 Loss: 154.952 +38400/69092 Loss: 155.216 +41600/69092 Loss: 157.491 +44800/69092 Loss: 152.950 +48000/69092 Loss: 153.880 +51200/69092 Loss: 152.695 +54400/69092 Loss: 153.012 +57600/69092 Loss: 155.877 +60800/69092 Loss: 151.846 +64000/69092 Loss: 155.664 +67200/69092 Loss: 155.213 +Training time 0:01:58.702622 +Epoch: 133 Average loss: 154.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 133) +0/69092 Loss: 159.723 +3200/69092 Loss: 154.466 +6400/69092 Loss: 152.954 +9600/69092 Loss: 154.046 +12800/69092 Loss: 155.107 +16000/69092 Loss: 154.238 +19200/69092 Loss: 152.850 +22400/69092 Loss: 154.230 +25600/69092 Loss: 152.999 +28800/69092 Loss: 153.305 +32000/69092 Loss: 156.465 +35200/69092 Loss: 153.700 +38400/69092 Loss: 153.750 +41600/69092 Loss: 156.218 +44800/69092 Loss: 154.095 +48000/69092 Loss: 151.172 +51200/69092 Loss: 154.330 +54400/69092 Loss: 153.509 +57600/69092 Loss: 154.224 +60800/69092 Loss: 155.738 +64000/69092 Loss: 153.959 +67200/69092 Loss: 154.808 +Training time 0:01:57.000587 +Epoch: 134 Average loss: 154.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 134) +0/69092 Loss: 156.543 +3200/69092 Loss: 154.426 +6400/69092 Loss: 154.341 +9600/69092 Loss: 151.155 +12800/69092 Loss: 156.247 +16000/69092 Loss: 154.293 +19200/69092 Loss: 152.839 +22400/69092 Loss: 155.701 +25600/69092 Loss: 153.560 +28800/69092 Loss: 154.129 +32000/69092 Loss: 154.981 +35200/69092 Loss: 152.740 +38400/69092 Loss: 154.321 +41600/69092 Loss: 153.580 +44800/69092 Loss: 155.099 +48000/69092 Loss: 153.782 +51200/69092 Loss: 153.338 +54400/69092 Loss: 155.170 +57600/69092 Loss: 152.697 +60800/69092 Loss: 152.968 +64000/69092 Loss: 157.106 +67200/69092 Loss: 153.546 +Training time 0:01:57.662060 +Epoch: 135 Average loss: 154.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 135) +0/69092 Loss: 159.106 +3200/69092 Loss: 153.990 +6400/69092 Loss: 155.767 +9600/69092 Loss: 154.633 +12800/69092 Loss: 156.908 +16000/69092 Loss: 152.705 +19200/69092 Loss: 153.722 +22400/69092 Loss: 154.371 +25600/69092 Loss: 155.097 +28800/69092 Loss: 153.648 +32000/69092 Loss: 153.985 +35200/69092 Loss: 153.991 +38400/69092 Loss: 152.757 +41600/69092 Loss: 156.407 +44800/69092 Loss: 150.817 +48000/69092 Loss: 155.814 +51200/69092 Loss: 153.631 +54400/69092 Loss: 156.232 +57600/69092 Loss: 153.291 +60800/69092 Loss: 152.798 +64000/69092 Loss: 150.308 +67200/69092 Loss: 155.751 +Training time 0:01:56.928577 +Epoch: 136 Average loss: 154.26 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 136) +0/69092 Loss: 153.956 +3200/69092 Loss: 155.212 +6400/69092 Loss: 152.447 +9600/69092 Loss: 153.818 +12800/69092 Loss: 152.746 +16000/69092 Loss: 155.759 +19200/69092 Loss: 153.714 +22400/69092 Loss: 152.721 +25600/69092 Loss: 152.225 +28800/69092 Loss: 151.169 +32000/69092 Loss: 152.706 +35200/69092 Loss: 155.753 +38400/69092 Loss: 155.422 +41600/69092 Loss: 155.398 +44800/69092 Loss: 152.257 +48000/69092 Loss: 153.857 +51200/69092 Loss: 157.067 +54400/69092 Loss: 153.970 +57600/69092 Loss: 154.447 +60800/69092 Loss: 152.205 +64000/69092 Loss: 154.156 +67200/69092 Loss: 156.353 +Training time 0:01:57.550661 +Epoch: 137 Average loss: 153.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 137) +0/69092 Loss: 142.783 +3200/69092 Loss: 156.137 +6400/69092 Loss: 155.682 +9600/69092 Loss: 153.996 +12800/69092 Loss: 155.705 +16000/69092 Loss: 155.974 +19200/69092 Loss: 156.330 +22400/69092 Loss: 152.064 +25600/69092 Loss: 155.111 +28800/69092 Loss: 152.343 +32000/69092 Loss: 156.257 +35200/69092 Loss: 153.007 +38400/69092 Loss: 152.673 +41600/69092 Loss: 152.809 +44800/69092 Loss: 153.557 +48000/69092 Loss: 153.619 +51200/69092 Loss: 153.444 +54400/69092 Loss: 151.786 +57600/69092 Loss: 152.920 +60800/69092 Loss: 151.331 +64000/69092 Loss: 152.122 +67200/69092 Loss: 159.084 +Training time 0:01:57.336705 +Epoch: 138 Average loss: 154.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 138) +0/69092 Loss: 160.587 +3200/69092 Loss: 156.926 +6400/69092 Loss: 153.134 +9600/69092 Loss: 153.596 +12800/69092 Loss: 155.380 +16000/69092 Loss: 153.227 +19200/69092 Loss: 153.911 +22400/69092 Loss: 153.887 +25600/69092 Loss: 153.708 +28800/69092 Loss: 155.804 +32000/69092 Loss: 152.475 +35200/69092 Loss: 155.362 +38400/69092 Loss: 154.846 +41600/69092 Loss: 152.605 +44800/69092 Loss: 156.361 +48000/69092 Loss: 155.316 +51200/69092 Loss: 152.677 +54400/69092 Loss: 154.207 +57600/69092 Loss: 152.265 +60800/69092 Loss: 153.547 +64000/69092 Loss: 152.417 +67200/69092 Loss: 153.493 +Training time 0:01:58.230480 +Epoch: 139 Average loss: 154.03 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 139) +0/69092 Loss: 139.523 +3200/69092 Loss: 154.231 +6400/69092 Loss: 155.235 +9600/69092 Loss: 154.371 +12800/69092 Loss: 154.983 +16000/69092 Loss: 154.015 +19200/69092 Loss: 154.778 +22400/69092 Loss: 156.963 +25600/69092 Loss: 150.474 +28800/69092 Loss: 150.523 +32000/69092 Loss: 154.557 +35200/69092 Loss: 155.371 +38400/69092 Loss: 154.050 +41600/69092 Loss: 153.330 +44800/69092 Loss: 156.219 +48000/69092 Loss: 152.746 +51200/69092 Loss: 155.189 +54400/69092 Loss: 151.280 +57600/69092 Loss: 153.665 +60800/69092 Loss: 154.930 +64000/69092 Loss: 154.840 +67200/69092 Loss: 155.642 +Training time 0:01:56.672850 +Epoch: 140 Average loss: 154.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 140) +0/69092 Loss: 156.655 +3200/69092 Loss: 155.086 +6400/69092 Loss: 155.348 +9600/69092 Loss: 154.012 +12800/69092 Loss: 152.327 +16000/69092 Loss: 151.027 +19200/69092 Loss: 153.559 +22400/69092 Loss: 153.670 +25600/69092 Loss: 153.736 +28800/69092 Loss: 157.209 +32000/69092 Loss: 153.606 +35200/69092 Loss: 153.187 +38400/69092 Loss: 152.696 +41600/69092 Loss: 152.603 +44800/69092 Loss: 153.964 +48000/69092 Loss: 155.424 +51200/69092 Loss: 153.954 +54400/69092 Loss: 153.999 +57600/69092 Loss: 154.230 +60800/69092 Loss: 155.382 +64000/69092 Loss: 152.991 +67200/69092 Loss: 150.853 +Training time 0:01:58.026175 +Epoch: 141 Average loss: 153.86 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 141) +0/69092 Loss: 160.142 +3200/69092 Loss: 153.358 +6400/69092 Loss: 154.774 +9600/69092 Loss: 152.377 +12800/69092 Loss: 154.675 +16000/69092 Loss: 156.249 +19200/69092 Loss: 155.458 +22400/69092 Loss: 152.909 +25600/69092 Loss: 155.081 +28800/69092 Loss: 154.258 +32000/69092 Loss: 153.205 +35200/69092 Loss: 155.777 +38400/69092 Loss: 152.785 +41600/69092 Loss: 153.439 +44800/69092 Loss: 151.158 +48000/69092 Loss: 152.683 +51200/69092 Loss: 156.369 +54400/69092 Loss: 152.324 +57600/69092 Loss: 151.797 +60800/69092 Loss: 152.179 +64000/69092 Loss: 153.761 +67200/69092 Loss: 155.343 +Training time 0:01:57.734306 +Epoch: 142 Average loss: 153.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 142) +0/69092 Loss: 150.114 +3200/69092 Loss: 156.249 +6400/69092 Loss: 151.748 +9600/69092 Loss: 154.695 +12800/69092 Loss: 156.563 +16000/69092 Loss: 155.681 +19200/69092 Loss: 154.723 +22400/69092 Loss: 153.296 +25600/69092 Loss: 153.170 +28800/69092 Loss: 153.939 +32000/69092 Loss: 154.430 +35200/69092 Loss: 155.606 +38400/69092 Loss: 150.784 +41600/69092 Loss: 154.820 +44800/69092 Loss: 152.319 +48000/69092 Loss: 156.628 +51200/69092 Loss: 154.337 +54400/69092 Loss: 153.493 +57600/69092 Loss: 151.842 +60800/69092 Loss: 153.395 +64000/69092 Loss: 154.761 +67200/69092 Loss: 153.199 +Training time 0:01:57.780932 +Epoch: 143 Average loss: 153.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 143) +0/69092 Loss: 169.829 +3200/69092 Loss: 152.957 +6400/69092 Loss: 152.465 +9600/69092 Loss: 153.118 +12800/69092 Loss: 152.974 +16000/69092 Loss: 153.778 +19200/69092 Loss: 152.374 +22400/69092 Loss: 155.112 +25600/69092 Loss: 155.510 +28800/69092 Loss: 153.136 +32000/69092 Loss: 153.114 +35200/69092 Loss: 155.219 +38400/69092 Loss: 154.435 +41600/69092 Loss: 155.116 +44800/69092 Loss: 153.666 +48000/69092 Loss: 154.597 +51200/69092 Loss: 153.671 +54400/69092 Loss: 154.324 +57600/69092 Loss: 155.815 +60800/69092 Loss: 154.392 +64000/69092 Loss: 152.200 +67200/69092 Loss: 153.992 +Training time 0:01:57.695235 +Epoch: 144 Average loss: 153.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 144) +0/69092 Loss: 155.833 +3200/69092 Loss: 153.278 +6400/69092 Loss: 156.467 +9600/69092 Loss: 152.783 +12800/69092 Loss: 155.711 +16000/69092 Loss: 153.770 +19200/69092 Loss: 150.296 +22400/69092 Loss: 153.311 +25600/69092 Loss: 154.870 +28800/69092 Loss: 152.703 +32000/69092 Loss: 155.669 +35200/69092 Loss: 156.915 +38400/69092 Loss: 153.689 +41600/69092 Loss: 154.421 +44800/69092 Loss: 152.794 +48000/69092 Loss: 152.755 +51200/69092 Loss: 154.377 +54400/69092 Loss: 148.934 +57600/69092 Loss: 153.359 +60800/69092 Loss: 153.478 +64000/69092 Loss: 154.794 +67200/69092 Loss: 154.613 +Training time 0:01:57.431273 +Epoch: 145 Average loss: 153.83 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 145) +0/69092 Loss: 158.462 +3200/69092 Loss: 154.293 +6400/69092 Loss: 152.808 +9600/69092 Loss: 155.977 +12800/69092 Loss: 155.423 +16000/69092 Loss: 152.008 +19200/69092 Loss: 154.136 +22400/69092 Loss: 152.260 +25600/69092 Loss: 152.057 +28800/69092 Loss: 153.241 +32000/69092 Loss: 154.236 +35200/69092 Loss: 155.114 +38400/69092 Loss: 153.480 +41600/69092 Loss: 153.581 +44800/69092 Loss: 152.582 +48000/69092 Loss: 151.147 +51200/69092 Loss: 155.744 +54400/69092 Loss: 156.545 +57600/69092 Loss: 154.778 +60800/69092 Loss: 151.076 +64000/69092 Loss: 156.301 +67200/69092 Loss: 153.371 +Training time 0:01:57.628707 +Epoch: 146 Average loss: 153.93 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 146) +0/69092 Loss: 156.194 +3200/69092 Loss: 154.547 +6400/69092 Loss: 155.653 +9600/69092 Loss: 155.409 +12800/69092 Loss: 153.601 +16000/69092 Loss: 151.753 +19200/69092 Loss: 154.548 +22400/69092 Loss: 154.939 +25600/69092 Loss: 153.980 +28800/69092 Loss: 156.103 +32000/69092 Loss: 152.202 +35200/69092 Loss: 154.228 +38400/69092 Loss: 153.186 +41600/69092 Loss: 153.617 +44800/69092 Loss: 155.158 +48000/69092 Loss: 151.201 +51200/69092 Loss: 154.912 +54400/69092 Loss: 154.494 +57600/69092 Loss: 153.789 +60800/69092 Loss: 152.809 +64000/69092 Loss: 152.733 +67200/69092 Loss: 151.789 +Training time 0:01:58.751913 +Epoch: 147 Average loss: 153.91 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 147) +0/69092 Loss: 162.678 +3200/69092 Loss: 154.196 +6400/69092 Loss: 153.003 +9600/69092 Loss: 155.581 +12800/69092 Loss: 155.374 +16000/69092 Loss: 154.330 +19200/69092 Loss: 153.539 +22400/69092 Loss: 151.800 +25600/69092 Loss: 152.051 +28800/69092 Loss: 154.773 +32000/69092 Loss: 151.551 +35200/69092 Loss: 156.579 +38400/69092 Loss: 153.501 +41600/69092 Loss: 155.479 +44800/69092 Loss: 153.281 +48000/69092 Loss: 154.757 +51200/69092 Loss: 152.889 +54400/69092 Loss: 152.369 +57600/69092 Loss: 151.568 +60800/69092 Loss: 154.789 +64000/69092 Loss: 156.925 +67200/69092 Loss: 151.513 +Training time 0:01:57.488062 +Epoch: 148 Average loss: 153.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 148) +0/69092 Loss: 151.224 +3200/69092 Loss: 153.451 +6400/69092 Loss: 154.341 +9600/69092 Loss: 154.280 +12800/69092 Loss: 152.081 +16000/69092 Loss: 154.267 +19200/69092 Loss: 155.218 +22400/69092 Loss: 157.274 +25600/69092 Loss: 150.625 +28800/69092 Loss: 154.814 +32000/69092 Loss: 153.785 +35200/69092 Loss: 154.031 +38400/69092 Loss: 153.243 +41600/69092 Loss: 153.179 +44800/69092 Loss: 153.648 +48000/69092 Loss: 151.641 +51200/69092 Loss: 152.208 +54400/69092 Loss: 153.805 +57600/69092 Loss: 155.211 +60800/69092 Loss: 154.852 +64000/69092 Loss: 152.221 +67200/69092 Loss: 153.810 +Training time 0:01:58.789382 +Epoch: 149 Average loss: 153.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 149) +0/69092 Loss: 152.636 +3200/69092 Loss: 151.073 +6400/69092 Loss: 151.507 +9600/69092 Loss: 153.848 +12800/69092 Loss: 152.529 +16000/69092 Loss: 153.900 +19200/69092 Loss: 154.187 +22400/69092 Loss: 153.347 +25600/69092 Loss: 153.988 +28800/69092 Loss: 154.171 +32000/69092 Loss: 156.736 +35200/69092 Loss: 154.913 +38400/69092 Loss: 153.681 +41600/69092 Loss: 153.000 +44800/69092 Loss: 152.467 +48000/69092 Loss: 152.460 +51200/69092 Loss: 153.296 +54400/69092 Loss: 154.302 +57600/69092 Loss: 153.158 +60800/69092 Loss: 153.864 +64000/69092 Loss: 156.101 +67200/69092 Loss: 154.313 +Training time 0:01:58.051617 +Epoch: 150 Average loss: 153.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 150) +0/69092 Loss: 162.084 +3200/69092 Loss: 153.760 +6400/69092 Loss: 152.667 +9600/69092 Loss: 153.247 +12800/69092 Loss: 153.087 +16000/69092 Loss: 152.668 +19200/69092 Loss: 153.215 +22400/69092 Loss: 151.081 +25600/69092 Loss: 156.073 +28800/69092 Loss: 154.337 +32000/69092 Loss: 155.127 +35200/69092 Loss: 154.757 +38400/69092 Loss: 152.933 +41600/69092 Loss: 154.723 +44800/69092 Loss: 154.110 +48000/69092 Loss: 151.663 +51200/69092 Loss: 155.294 +54400/69092 Loss: 155.273 +57600/69092 Loss: 154.865 +60800/69092 Loss: 152.884 +64000/69092 Loss: 150.369 +67200/69092 Loss: 155.480 +Training time 0:01:58.039805 +Epoch: 151 Average loss: 153.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 151) +0/69092 Loss: 154.323 +3200/69092 Loss: 154.346 +6400/69092 Loss: 156.689 +9600/69092 Loss: 154.837 +12800/69092 Loss: 152.500 +16000/69092 Loss: 154.715 +19200/69092 Loss: 153.188 +22400/69092 Loss: 154.261 +25600/69092 Loss: 154.184 +28800/69092 Loss: 154.488 +32000/69092 Loss: 155.662 +35200/69092 Loss: 152.800 +38400/69092 Loss: 151.050 +41600/69092 Loss: 152.624 +44800/69092 Loss: 152.340 +48000/69092 Loss: 154.712 +51200/69092 Loss: 155.533 +54400/69092 Loss: 155.045 +57600/69092 Loss: 154.351 +60800/69092 Loss: 154.003 +64000/69092 Loss: 153.178 +67200/69092 Loss: 156.106 +Training time 0:01:57.533614 +Epoch: 152 Average loss: 154.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 152) +0/69092 Loss: 160.166 +3200/69092 Loss: 155.509 +6400/69092 Loss: 154.516 +9600/69092 Loss: 154.513 +12800/69092 Loss: 151.618 +16000/69092 Loss: 155.012 +19200/69092 Loss: 154.437 +22400/69092 Loss: 155.936 +25600/69092 Loss: 152.202 +28800/69092 Loss: 154.504 +32000/69092 Loss: 152.626 +35200/69092 Loss: 152.439 +38400/69092 Loss: 152.898 +41600/69092 Loss: 152.279 +44800/69092 Loss: 155.021 +48000/69092 Loss: 153.674 +51200/69092 Loss: 155.295 +54400/69092 Loss: 155.256 +57600/69092 Loss: 156.158 +60800/69092 Loss: 154.614 +64000/69092 Loss: 152.384 +67200/69092 Loss: 153.594 +Training time 0:01:57.634748 +Epoch: 153 Average loss: 154.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 153) +0/69092 Loss: 140.068 +3200/69092 Loss: 155.298 +6400/69092 Loss: 152.207 +9600/69092 Loss: 151.929 +12800/69092 Loss: 153.416 +16000/69092 Loss: 155.561 +19200/69092 Loss: 157.925 +22400/69092 Loss: 154.117 +25600/69092 Loss: 151.465 +28800/69092 Loss: 153.599 +32000/69092 Loss: 155.049 +35200/69092 Loss: 152.796 +38400/69092 Loss: 156.962 +41600/69092 Loss: 152.889 +44800/69092 Loss: 152.001 +48000/69092 Loss: 154.006 +51200/69092 Loss: 152.195 +54400/69092 Loss: 157.328 +57600/69092 Loss: 151.284 +60800/69092 Loss: 153.628 +64000/69092 Loss: 156.930 +67200/69092 Loss: 151.567 +Training time 0:01:58.139985 +Epoch: 154 Average loss: 153.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 154) +0/69092 Loss: 156.653 +3200/69092 Loss: 152.359 +6400/69092 Loss: 153.745 +9600/69092 Loss: 154.052 +12800/69092 Loss: 153.711 +16000/69092 Loss: 151.837 +19200/69092 Loss: 151.056 +22400/69092 Loss: 154.054 +25600/69092 Loss: 153.293 +28800/69092 Loss: 153.260 +32000/69092 Loss: 152.467 +35200/69092 Loss: 154.089 +38400/69092 Loss: 151.759 +41600/69092 Loss: 156.242 +44800/69092 Loss: 152.816 +48000/69092 Loss: 155.227 +51200/69092 Loss: 153.193 +54400/69092 Loss: 153.702 +57600/69092 Loss: 154.848 +60800/69092 Loss: 155.175 +64000/69092 Loss: 154.394 +67200/69092 Loss: 152.495 +Training time 0:01:57.368083 +Epoch: 155 Average loss: 153.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 155) +0/69092 Loss: 167.637 +3200/69092 Loss: 151.109 +6400/69092 Loss: 153.323 +9600/69092 Loss: 155.334 +12800/69092 Loss: 153.465 +16000/69092 Loss: 153.807 +19200/69092 Loss: 154.708 +22400/69092 Loss: 154.279 +25600/69092 Loss: 155.457 +28800/69092 Loss: 155.550 +32000/69092 Loss: 152.109 +35200/69092 Loss: 152.939 +38400/69092 Loss: 152.208 +41600/69092 Loss: 155.243 +44800/69092 Loss: 154.913 +48000/69092 Loss: 152.296 +51200/69092 Loss: 152.721 +54400/69092 Loss: 153.143 +57600/69092 Loss: 155.118 +60800/69092 Loss: 154.669 +64000/69092 Loss: 153.953 +67200/69092 Loss: 151.785 +Training time 0:01:57.368878 +Epoch: 156 Average loss: 153.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 156) +0/69092 Loss: 151.414 +3200/69092 Loss: 153.087 +6400/69092 Loss: 155.039 +9600/69092 Loss: 152.998 +12800/69092 Loss: 152.374 +16000/69092 Loss: 155.734 +19200/69092 Loss: 153.986 +22400/69092 Loss: 153.311 +25600/69092 Loss: 154.019 +28800/69092 Loss: 153.302 +32000/69092 Loss: 155.839 +35200/69092 Loss: 152.492 +38400/69092 Loss: 151.044 +41600/69092 Loss: 154.090 +44800/69092 Loss: 155.471 +48000/69092 Loss: 150.539 +51200/69092 Loss: 154.657 +54400/69092 Loss: 154.625 +57600/69092 Loss: 151.827 +60800/69092 Loss: 153.499 +64000/69092 Loss: 155.504 +67200/69092 Loss: 153.294 +Training time 0:01:57.937851 +Epoch: 157 Average loss: 153.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 157) +0/69092 Loss: 155.203 +3200/69092 Loss: 153.649 +6400/69092 Loss: 153.099 +9600/69092 Loss: 153.397 +12800/69092 Loss: 151.938 +16000/69092 Loss: 154.316 +19200/69092 Loss: 154.341 +22400/69092 Loss: 154.392 +25600/69092 Loss: 151.844 +28800/69092 Loss: 152.773 +32000/69092 Loss: 152.386 +35200/69092 Loss: 152.962 +38400/69092 Loss: 155.712 +41600/69092 Loss: 154.281 +44800/69092 Loss: 152.907 +48000/69092 Loss: 154.915 +51200/69092 Loss: 153.984 +54400/69092 Loss: 152.315 +57600/69092 Loss: 154.558 +60800/69092 Loss: 152.245 +64000/69092 Loss: 156.315 +67200/69092 Loss: 154.819 +Training time 0:01:56.487464 +Epoch: 158 Average loss: 153.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 158) +0/69092 Loss: 138.796 +3200/69092 Loss: 150.871 +6400/69092 Loss: 152.803 +9600/69092 Loss: 152.876 +12800/69092 Loss: 153.534 +16000/69092 Loss: 153.738 +19200/69092 Loss: 153.358 +22400/69092 Loss: 153.958 +25600/69092 Loss: 155.503 +28800/69092 Loss: 154.094 +32000/69092 Loss: 153.473 +35200/69092 Loss: 153.654 +38400/69092 Loss: 151.730 +41600/69092 Loss: 156.619 +44800/69092 Loss: 152.114 +48000/69092 Loss: 150.256 +51200/69092 Loss: 152.394 +54400/69092 Loss: 156.116 +57600/69092 Loss: 156.554 +60800/69092 Loss: 154.473 +64000/69092 Loss: 153.228 +67200/69092 Loss: 155.879 +Training time 0:01:56.763215 +Epoch: 159 Average loss: 153.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 159) +0/69092 Loss: 135.210 +3200/69092 Loss: 153.410 +6400/69092 Loss: 154.654 +9600/69092 Loss: 151.387 +12800/69092 Loss: 153.361 +16000/69092 Loss: 154.785 +19200/69092 Loss: 153.738 +22400/69092 Loss: 154.280 +25600/69092 Loss: 151.401 +28800/69092 Loss: 153.722 +32000/69092 Loss: 156.128 +35200/69092 Loss: 152.507 +38400/69092 Loss: 155.037 +41600/69092 Loss: 155.098 +44800/69092 Loss: 150.621 +48000/69092 Loss: 156.095 +51200/69092 Loss: 156.333 +54400/69092 Loss: 154.415 +57600/69092 Loss: 152.454 +60800/69092 Loss: 156.055 +64000/69092 Loss: 150.316 +67200/69092 Loss: 151.292 +Training time 0:01:57.123982 +Epoch: 160 Average loss: 153.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 160) +0/69092 Loss: 160.980 +3200/69092 Loss: 153.038 +6400/69092 Loss: 155.879 +9600/69092 Loss: 153.908 +12800/69092 Loss: 153.496 +16000/69092 Loss: 152.851 +19200/69092 Loss: 150.351 +22400/69092 Loss: 154.568 +25600/69092 Loss: 152.232 +28800/69092 Loss: 154.261 +32000/69092 Loss: 151.139 +35200/69092 Loss: 151.672 +38400/69092 Loss: 153.071 +41600/69092 Loss: 155.655 +44800/69092 Loss: 155.650 +48000/69092 Loss: 154.988 +51200/69092 Loss: 155.444 +54400/69092 Loss: 152.756 +57600/69092 Loss: 154.898 +60800/69092 Loss: 153.796 +64000/69092 Loss: 154.462 +67200/69092 Loss: 154.135 +Training time 0:01:57.824355 +Epoch: 161 Average loss: 153.73 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 161) +0/69092 Loss: 154.934 +3200/69092 Loss: 154.769 +6400/69092 Loss: 155.408 +9600/69092 Loss: 152.720 +12800/69092 Loss: 153.010 +16000/69092 Loss: 149.867 +19200/69092 Loss: 154.809 +22400/69092 Loss: 153.012 +25600/69092 Loss: 151.028 +28800/69092 Loss: 153.618 +32000/69092 Loss: 153.146 +35200/69092 Loss: 152.735 +38400/69092 Loss: 155.770 +41600/69092 Loss: 155.319 +44800/69092 Loss: 150.476 +48000/69092 Loss: 153.693 +51200/69092 Loss: 157.593 +54400/69092 Loss: 153.628 +57600/69092 Loss: 155.057 +60800/69092 Loss: 153.639 +64000/69092 Loss: 154.853 +67200/69092 Loss: 152.783 +Training time 0:01:57.259768 +Epoch: 162 Average loss: 153.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 162) +0/69092 Loss: 165.094 +3200/69092 Loss: 152.293 +6400/69092 Loss: 153.304 +9600/69092 Loss: 152.834 +12800/69092 Loss: 153.095 +16000/69092 Loss: 154.263 +19200/69092 Loss: 152.015 +22400/69092 Loss: 151.859 +25600/69092 Loss: 153.817 +28800/69092 Loss: 152.712 +32000/69092 Loss: 152.396 +35200/69092 Loss: 156.793 +38400/69092 Loss: 155.159 +41600/69092 Loss: 154.835 +44800/69092 Loss: 155.972 +48000/69092 Loss: 154.872 +51200/69092 Loss: 154.652 +54400/69092 Loss: 153.499 +57600/69092 Loss: 154.220 +60800/69092 Loss: 154.119 +64000/69092 Loss: 153.693 +67200/69092 Loss: 150.792 +Training time 0:01:57.292765 +Epoch: 163 Average loss: 153.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 163) +0/69092 Loss: 148.269 +3200/69092 Loss: 153.030 +6400/69092 Loss: 153.241 +9600/69092 Loss: 154.577 +12800/69092 Loss: 153.547 +16000/69092 Loss: 151.112 +19200/69092 Loss: 152.070 +22400/69092 Loss: 153.096 +25600/69092 Loss: 152.512 +28800/69092 Loss: 150.972 +32000/69092 Loss: 151.387 +35200/69092 Loss: 153.144 +38400/69092 Loss: 155.376 +41600/69092 Loss: 156.802 +44800/69092 Loss: 152.794 +48000/69092 Loss: 154.014 +51200/69092 Loss: 155.498 +54400/69092 Loss: 151.854 +57600/69092 Loss: 152.469 +60800/69092 Loss: 153.989 +64000/69092 Loss: 155.050 +67200/69092 Loss: 154.904 +Training time 0:01:57.148237 +Epoch: 164 Average loss: 153.40 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 164) +0/69092 Loss: 151.540 +3200/69092 Loss: 153.635 +6400/69092 Loss: 152.285 +9600/69092 Loss: 154.483 +12800/69092 Loss: 152.696 +16000/69092 Loss: 154.921 +19200/69092 Loss: 154.862 +22400/69092 Loss: 151.676 +25600/69092 Loss: 152.808 +28800/69092 Loss: 152.856 +32000/69092 Loss: 153.457 +35200/69092 Loss: 152.996 +38400/69092 Loss: 152.261 +41600/69092 Loss: 155.414 +44800/69092 Loss: 156.066 +48000/69092 Loss: 154.481 +51200/69092 Loss: 154.283 +54400/69092 Loss: 152.288 +57600/69092 Loss: 150.680 +60800/69092 Loss: 151.630 +64000/69092 Loss: 154.652 +67200/69092 Loss: 155.656 +Training time 0:01:58.221382 +Epoch: 165 Average loss: 153.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 165) +0/69092 Loss: 171.343 +3200/69092 Loss: 152.834 +6400/69092 Loss: 152.541 +9600/69092 Loss: 152.125 +12800/69092 Loss: 155.896 +16000/69092 Loss: 152.651 +19200/69092 Loss: 155.593 +22400/69092 Loss: 155.573 +25600/69092 Loss: 153.585 +28800/69092 Loss: 152.051 +32000/69092 Loss: 152.165 +35200/69092 Loss: 154.546 +38400/69092 Loss: 151.660 +41600/69092 Loss: 156.363 +44800/69092 Loss: 153.298 +48000/69092 Loss: 155.658 +51200/69092 Loss: 152.386 +54400/69092 Loss: 153.483 +57600/69092 Loss: 155.383 +60800/69092 Loss: 152.277 +64000/69092 Loss: 153.315 +67200/69092 Loss: 151.966 +Training time 0:01:57.881041 +Epoch: 166 Average loss: 153.55 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 166) +0/69092 Loss: 133.887 +3200/69092 Loss: 153.197 +6400/69092 Loss: 154.835 +9600/69092 Loss: 156.742 +12800/69092 Loss: 156.334 +16000/69092 Loss: 153.026 +19200/69092 Loss: 155.560 +22400/69092 Loss: 152.819 +25600/69092 Loss: 150.628 +28800/69092 Loss: 154.498 +32000/69092 Loss: 153.396 +35200/69092 Loss: 151.004 +38400/69092 Loss: 154.679 +41600/69092 Loss: 152.436 +44800/69092 Loss: 151.559 +48000/69092 Loss: 152.250 +51200/69092 Loss: 152.775 +54400/69092 Loss: 150.975 +57600/69092 Loss: 155.503 +60800/69092 Loss: 155.001 +64000/69092 Loss: 153.101 +67200/69092 Loss: 154.978 +Training time 0:02:00.223303 +Epoch: 167 Average loss: 153.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 167) +0/69092 Loss: 149.147 +3200/69092 Loss: 153.933 +6400/69092 Loss: 153.032 +9600/69092 Loss: 154.035 +12800/69092 Loss: 152.999 +16000/69092 Loss: 155.712 +19200/69092 Loss: 152.549 +22400/69092 Loss: 153.545 +25600/69092 Loss: 151.579 +28800/69092 Loss: 154.253 +32000/69092 Loss: 152.795 +35200/69092 Loss: 154.479 +38400/69092 Loss: 153.484 +41600/69092 Loss: 153.771 +44800/69092 Loss: 152.245 +48000/69092 Loss: 154.020 +51200/69092 Loss: 151.847 +54400/69092 Loss: 154.695 +57600/69092 Loss: 153.501 +60800/69092 Loss: 154.201 +64000/69092 Loss: 153.938 +67200/69092 Loss: 152.550 +Training time 0:01:59.050741 +Epoch: 168 Average loss: 153.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 168) +0/69092 Loss: 144.126 +3200/69092 Loss: 150.372 +6400/69092 Loss: 153.316 +9600/69092 Loss: 154.595 +12800/69092 Loss: 153.953 +16000/69092 Loss: 153.465 +19200/69092 Loss: 157.098 +22400/69092 Loss: 151.469 +25600/69092 Loss: 154.502 +28800/69092 Loss: 153.161 +32000/69092 Loss: 156.288 +35200/69092 Loss: 154.901 +38400/69092 Loss: 155.341 +41600/69092 Loss: 151.716 +44800/69092 Loss: 153.132 +48000/69092 Loss: 152.583 +51200/69092 Loss: 153.175 +54400/69092 Loss: 154.553 +57600/69092 Loss: 152.595 +60800/69092 Loss: 154.646 +64000/69092 Loss: 153.893 +67200/69092 Loss: 152.846 +Training time 0:01:58.963661 +Epoch: 169 Average loss: 153.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 169) +0/69092 Loss: 154.990 +3200/69092 Loss: 152.755 +6400/69092 Loss: 155.570 +9600/69092 Loss: 151.471 +12800/69092 Loss: 153.766 +16000/69092 Loss: 156.364 +19200/69092 Loss: 152.366 +22400/69092 Loss: 154.997 +25600/69092 Loss: 153.211 +28800/69092 Loss: 151.262 +32000/69092 Loss: 152.426 +35200/69092 Loss: 153.907 +38400/69092 Loss: 153.318 +41600/69092 Loss: 153.294 +44800/69092 Loss: 153.489 +48000/69092 Loss: 154.007 +51200/69092 Loss: 152.344 +54400/69092 Loss: 153.836 +57600/69092 Loss: 152.884 +60800/69092 Loss: 155.056 +64000/69092 Loss: 154.297 +67200/69092 Loss: 153.268 +Training time 0:01:58.488707 +Epoch: 170 Average loss: 153.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 170) +0/69092 Loss: 167.717 +3200/69092 Loss: 152.391 +6400/69092 Loss: 152.808 +9600/69092 Loss: 152.220 +12800/69092 Loss: 153.617 +16000/69092 Loss: 153.518 +19200/69092 Loss: 152.460 +22400/69092 Loss: 150.817 +25600/69092 Loss: 150.826 +28800/69092 Loss: 153.375 +32000/69092 Loss: 154.226 +35200/69092 Loss: 153.087 +38400/69092 Loss: 155.085 +41600/69092 Loss: 156.487 +44800/69092 Loss: 153.923 +48000/69092 Loss: 156.388 +51200/69092 Loss: 153.785 +54400/69092 Loss: 152.192 +57600/69092 Loss: 152.904 +60800/69092 Loss: 152.771 +64000/69092 Loss: 155.423 +67200/69092 Loss: 152.926 +Training time 0:01:58.307055 +Epoch: 171 Average loss: 153.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 171) +0/69092 Loss: 170.096 +3200/69092 Loss: 155.635 +6400/69092 Loss: 152.207 +9600/69092 Loss: 155.079 +12800/69092 Loss: 154.785 +16000/69092 Loss: 152.576 +19200/69092 Loss: 153.121 +22400/69092 Loss: 153.258 +25600/69092 Loss: 155.704 +28800/69092 Loss: 153.085 +32000/69092 Loss: 152.489 +35200/69092 Loss: 153.985 +38400/69092 Loss: 154.194 +41600/69092 Loss: 151.834 +44800/69092 Loss: 152.536 +48000/69092 Loss: 153.344 +51200/69092 Loss: 154.594 +54400/69092 Loss: 152.373 +57600/69092 Loss: 151.567 +60800/69092 Loss: 153.130 +64000/69092 Loss: 154.112 +67200/69092 Loss: 154.415 +Training time 0:01:58.900402 +Epoch: 172 Average loss: 153.58 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 172) +0/69092 Loss: 143.302 +3200/69092 Loss: 152.115 +6400/69092 Loss: 155.343 +9600/69092 Loss: 152.340 +12800/69092 Loss: 153.269 +16000/69092 Loss: 154.656 +19200/69092 Loss: 153.654 +22400/69092 Loss: 154.883 +25600/69092 Loss: 154.575 +28800/69092 Loss: 152.981 +32000/69092 Loss: 154.290 +35200/69092 Loss: 151.548 +38400/69092 Loss: 152.813 +41600/69092 Loss: 154.564 +44800/69092 Loss: 153.418 +48000/69092 Loss: 152.377 +51200/69092 Loss: 154.408 +54400/69092 Loss: 152.647 +57600/69092 Loss: 154.015 +60800/69092 Loss: 152.811 +64000/69092 Loss: 152.712 +67200/69092 Loss: 154.420 +Training time 0:01:57.682425 +Epoch: 173 Average loss: 153.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 173) +0/69092 Loss: 161.742 +3200/69092 Loss: 152.407 +6400/69092 Loss: 154.528 +9600/69092 Loss: 152.282 +12800/69092 Loss: 152.555 +16000/69092 Loss: 158.049 +19200/69092 Loss: 152.968 +22400/69092 Loss: 155.897 +25600/69092 Loss: 154.286 +28800/69092 Loss: 151.864 +32000/69092 Loss: 154.010 +35200/69092 Loss: 155.564 +38400/69092 Loss: 153.267 +41600/69092 Loss: 153.191 +44800/69092 Loss: 151.635 +48000/69092 Loss: 152.679 +51200/69092 Loss: 150.579 +54400/69092 Loss: 155.121 +57600/69092 Loss: 155.764 +60800/69092 Loss: 153.156 +64000/69092 Loss: 152.468 +67200/69092 Loss: 151.519 +Training time 0:01:57.521824 +Epoch: 174 Average loss: 153.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 174) +0/69092 Loss: 158.305 +3200/69092 Loss: 152.383 +6400/69092 Loss: 154.169 +9600/69092 Loss: 150.961 +12800/69092 Loss: 153.143 +16000/69092 Loss: 153.458 +19200/69092 Loss: 153.839 +22400/69092 Loss: 151.545 +25600/69092 Loss: 153.530 +28800/69092 Loss: 155.227 +32000/69092 Loss: 154.590 +35200/69092 Loss: 152.267 +38400/69092 Loss: 151.884 +41600/69092 Loss: 154.034 +44800/69092 Loss: 156.312 +48000/69092 Loss: 153.903 +51200/69092 Loss: 151.786 +54400/69092 Loss: 155.048 +57600/69092 Loss: 153.929 +60800/69092 Loss: 152.964 +64000/69092 Loss: 155.330 +67200/69092 Loss: 152.212 +Training time 0:01:57.989732 +Epoch: 175 Average loss: 153.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 175) +0/69092 Loss: 154.773 +3200/69092 Loss: 153.349 +6400/69092 Loss: 152.404 +9600/69092 Loss: 155.498 +12800/69092 Loss: 153.516 +16000/69092 Loss: 152.032 +19200/69092 Loss: 152.516 +22400/69092 Loss: 152.473 +25600/69092 Loss: 153.110 +28800/69092 Loss: 154.600 +32000/69092 Loss: 154.944 +35200/69092 Loss: 153.640 +38400/69092 Loss: 151.123 +41600/69092 Loss: 156.020 +44800/69092 Loss: 154.271 +48000/69092 Loss: 154.586 +51200/69092 Loss: 154.334 +54400/69092 Loss: 151.005 +57600/69092 Loss: 152.191 +60800/69092 Loss: 154.740 +64000/69092 Loss: 156.242 +67200/69092 Loss: 154.027 +Training time 0:01:58.843046 +Epoch: 176 Average loss: 153.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 176) +0/69092 Loss: 158.858 +3200/69092 Loss: 153.196 +6400/69092 Loss: 154.578 +9600/69092 Loss: 150.756 +12800/69092 Loss: 153.812 +16000/69092 Loss: 153.160 +19200/69092 Loss: 154.003 +22400/69092 Loss: 151.577 +25600/69092 Loss: 153.593 +28800/69092 Loss: 153.182 +32000/69092 Loss: 152.201 +35200/69092 Loss: 151.410 +38400/69092 Loss: 155.908 +41600/69092 Loss: 152.600 +44800/69092 Loss: 152.176 +48000/69092 Loss: 153.082 +51200/69092 Loss: 152.875 +54400/69092 Loss: 151.435 +57600/69092 Loss: 152.980 +60800/69092 Loss: 153.839 +64000/69092 Loss: 154.810 +67200/69092 Loss: 153.459 +Training time 0:01:58.518576 +Epoch: 177 Average loss: 153.23 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 177) +0/69092 Loss: 157.223 +3200/69092 Loss: 153.913 +6400/69092 Loss: 153.103 +9600/69092 Loss: 154.528 +12800/69092 Loss: 153.509 +16000/69092 Loss: 151.302 +19200/69092 Loss: 152.627 +22400/69092 Loss: 152.497 +25600/69092 Loss: 155.063 +28800/69092 Loss: 155.373 +32000/69092 Loss: 153.499 +35200/69092 Loss: 154.216 +38400/69092 Loss: 153.588 +41600/69092 Loss: 153.213 +44800/69092 Loss: 153.914 +48000/69092 Loss: 154.398 +51200/69092 Loss: 154.633 +54400/69092 Loss: 153.529 +57600/69092 Loss: 153.721 +60800/69092 Loss: 154.351 +64000/69092 Loss: 152.790 +67200/69092 Loss: 152.004 +Training time 0:01:57.289607 +Epoch: 178 Average loss: 153.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 178) +0/69092 Loss: 145.029 +3200/69092 Loss: 152.700 +6400/69092 Loss: 152.931 +9600/69092 Loss: 153.840 +12800/69092 Loss: 154.261 +16000/69092 Loss: 154.241 +19200/69092 Loss: 151.976 +22400/69092 Loss: 151.930 +25600/69092 Loss: 154.033 +28800/69092 Loss: 152.037 +32000/69092 Loss: 151.990 +35200/69092 Loss: 152.888 +38400/69092 Loss: 154.279 +41600/69092 Loss: 155.329 +44800/69092 Loss: 151.620 +48000/69092 Loss: 152.798 +51200/69092 Loss: 155.666 +54400/69092 Loss: 152.107 +57600/69092 Loss: 154.560 +60800/69092 Loss: 155.811 +64000/69092 Loss: 155.327 +67200/69092 Loss: 154.384 +Training time 0:01:58.109030 +Epoch: 179 Average loss: 153.47 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 179) +0/69092 Loss: 132.821 +3200/69092 Loss: 152.968 +6400/69092 Loss: 153.225 +9600/69092 Loss: 151.330 +12800/69092 Loss: 153.036 +16000/69092 Loss: 153.537 +19200/69092 Loss: 151.809 +22400/69092 Loss: 153.752 +25600/69092 Loss: 154.048 +28800/69092 Loss: 153.331 +32000/69092 Loss: 154.121 +35200/69092 Loss: 154.223 +38400/69092 Loss: 154.314 +41600/69092 Loss: 153.762 +44800/69092 Loss: 153.451 +48000/69092 Loss: 155.277 +51200/69092 Loss: 153.193 +54400/69092 Loss: 153.819 +57600/69092 Loss: 151.237 +60800/69092 Loss: 154.401 +64000/69092 Loss: 151.327 +67200/69092 Loss: 156.048 +Training time 0:01:57.815115 +Epoch: 180 Average loss: 153.48 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 180) +0/69092 Loss: 173.967 +3200/69092 Loss: 152.204 +6400/69092 Loss: 152.267 +9600/69092 Loss: 151.751 +12800/69092 Loss: 151.760 +16000/69092 Loss: 153.885 +19200/69092 Loss: 155.183 +22400/69092 Loss: 152.168 +25600/69092 Loss: 153.368 +28800/69092 Loss: 153.427 +32000/69092 Loss: 154.799 +35200/69092 Loss: 153.473 +38400/69092 Loss: 151.237 +41600/69092 Loss: 154.292 +44800/69092 Loss: 152.430 +48000/69092 Loss: 152.931 +51200/69092 Loss: 154.436 +54400/69092 Loss: 153.806 +57600/69092 Loss: 151.751 +60800/69092 Loss: 155.160 +64000/69092 Loss: 155.420 +67200/69092 Loss: 153.280 +Training time 0:01:57.631428 +Epoch: 181 Average loss: 153.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 181) +0/69092 Loss: 160.243 +3200/69092 Loss: 152.580 +6400/69092 Loss: 154.525 +9600/69092 Loss: 152.073 +12800/69092 Loss: 155.034 +16000/69092 Loss: 153.844 +19200/69092 Loss: 153.800 +22400/69092 Loss: 156.658 +25600/69092 Loss: 153.285 +28800/69092 Loss: 154.415 +32000/69092 Loss: 153.113 +35200/69092 Loss: 154.413 +38400/69092 Loss: 152.150 +41600/69092 Loss: 151.703 +44800/69092 Loss: 152.631 +48000/69092 Loss: 152.867 +51200/69092 Loss: 152.753 +54400/69092 Loss: 150.697 +57600/69092 Loss: 154.120 +60800/69092 Loss: 153.307 +64000/69092 Loss: 153.509 +67200/69092 Loss: 154.321 +Training time 0:01:57.180327 +Epoch: 182 Average loss: 153.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 182) +0/69092 Loss: 136.811 +3200/69092 Loss: 152.304 +6400/69092 Loss: 152.458 +9600/69092 Loss: 153.344 +12800/69092 Loss: 152.510 +16000/69092 Loss: 153.771 +19200/69092 Loss: 151.043 +22400/69092 Loss: 152.869 +25600/69092 Loss: 153.920 +28800/69092 Loss: 151.993 +32000/69092 Loss: 151.534 +35200/69092 Loss: 155.510 +38400/69092 Loss: 153.072 +41600/69092 Loss: 154.331 +44800/69092 Loss: 155.306 +48000/69092 Loss: 153.523 +51200/69092 Loss: 153.880 +54400/69092 Loss: 151.733 +57600/69092 Loss: 152.510 +60800/69092 Loss: 153.814 +64000/69092 Loss: 155.455 +67200/69092 Loss: 153.340 +Training time 0:01:57.497684 +Epoch: 183 Average loss: 153.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 183) +0/69092 Loss: 161.665 +3200/69092 Loss: 153.367 +6400/69092 Loss: 153.018 +9600/69092 Loss: 151.798 +12800/69092 Loss: 152.768 +16000/69092 Loss: 155.262 +19200/69092 Loss: 153.670 +22400/69092 Loss: 155.870 +25600/69092 Loss: 153.954 +28800/69092 Loss: 153.844 +32000/69092 Loss: 150.597 +35200/69092 Loss: 153.193 +38400/69092 Loss: 154.559 +41600/69092 Loss: 149.616 +44800/69092 Loss: 155.597 +48000/69092 Loss: 152.084 +51200/69092 Loss: 153.694 +54400/69092 Loss: 152.873 +57600/69092 Loss: 154.909 +60800/69092 Loss: 154.249 +64000/69092 Loss: 151.734 +67200/69092 Loss: 152.525 +Training time 0:01:57.514177 +Epoch: 184 Average loss: 153.38 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 184) +0/69092 Loss: 144.798 +3200/69092 Loss: 155.912 +6400/69092 Loss: 151.287 +9600/69092 Loss: 154.737 +12800/69092 Loss: 154.034 +16000/69092 Loss: 151.924 +19200/69092 Loss: 154.095 +22400/69092 Loss: 154.697 +25600/69092 Loss: 152.513 +28800/69092 Loss: 156.892 +32000/69092 Loss: 153.192 +35200/69092 Loss: 151.831 +38400/69092 Loss: 149.926 +41600/69092 Loss: 151.670 +44800/69092 Loss: 151.493 +48000/69092 Loss: 152.894 +51200/69092 Loss: 152.332 +54400/69092 Loss: 153.629 +57600/69092 Loss: 154.366 +60800/69092 Loss: 152.517 +64000/69092 Loss: 153.422 +67200/69092 Loss: 151.854 +Training time 0:01:56.780317 +Epoch: 185 Average loss: 153.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 185) +0/69092 Loss: 153.127 +3200/69092 Loss: 153.570 +6400/69092 Loss: 152.923 +9600/69092 Loss: 153.774 +12800/69092 Loss: 150.843 +16000/69092 Loss: 153.916 +19200/69092 Loss: 153.384 +22400/69092 Loss: 153.709 +25600/69092 Loss: 153.429 +28800/69092 Loss: 153.527 +32000/69092 Loss: 152.805 +35200/69092 Loss: 153.293 +38400/69092 Loss: 153.931 +41600/69092 Loss: 155.595 +44800/69092 Loss: 152.922 +48000/69092 Loss: 154.691 +51200/69092 Loss: 151.888 +54400/69092 Loss: 151.208 +57600/69092 Loss: 155.162 +60800/69092 Loss: 151.213 +64000/69092 Loss: 151.698 +67200/69092 Loss: 153.116 +Training time 0:01:56.582316 +Epoch: 186 Average loss: 153.25 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 186) +0/69092 Loss: 139.081 +3200/69092 Loss: 153.198 +6400/69092 Loss: 154.580 +9600/69092 Loss: 152.502 +12800/69092 Loss: 153.499 +16000/69092 Loss: 153.171 +19200/69092 Loss: 155.828 +22400/69092 Loss: 152.913 +25600/69092 Loss: 154.017 +28800/69092 Loss: 151.482 +32000/69092 Loss: 154.483 +35200/69092 Loss: 152.055 +38400/69092 Loss: 154.829 +41600/69092 Loss: 153.987 +44800/69092 Loss: 150.099 +48000/69092 Loss: 153.025 +51200/69092 Loss: 153.195 +54400/69092 Loss: 154.443 +57600/69092 Loss: 152.576 +60800/69092 Loss: 153.728 +64000/69092 Loss: 153.300 +67200/69092 Loss: 152.755 +Training time 0:01:57.961633 +Epoch: 187 Average loss: 153.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 187) +0/69092 Loss: 137.805 +3200/69092 Loss: 153.069 +6400/69092 Loss: 150.559 +9600/69092 Loss: 155.338 +12800/69092 Loss: 154.055 +16000/69092 Loss: 154.296 +19200/69092 Loss: 151.792 +22400/69092 Loss: 151.791 +25600/69092 Loss: 154.987 +28800/69092 Loss: 155.171 +32000/69092 Loss: 154.879 +35200/69092 Loss: 154.590 +38400/69092 Loss: 152.051 +41600/69092 Loss: 151.056 +44800/69092 Loss: 150.419 +48000/69092 Loss: 152.993 +51200/69092 Loss: 152.944 +54400/69092 Loss: 154.770 +57600/69092 Loss: 156.868 +60800/69092 Loss: 152.806 +64000/69092 Loss: 153.789 +67200/69092 Loss: 154.109 +Training time 0:01:57.402130 +Epoch: 188 Average loss: 153.35 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 188) +0/69092 Loss: 157.948 +3200/69092 Loss: 154.815 +6400/69092 Loss: 154.208 +9600/69092 Loss: 152.943 +12800/69092 Loss: 153.998 +16000/69092 Loss: 153.828 +19200/69092 Loss: 153.881 +22400/69092 Loss: 154.333 +25600/69092 Loss: 150.921 +28800/69092 Loss: 154.029 +32000/69092 Loss: 155.490 +35200/69092 Loss: 155.009 +38400/69092 Loss: 150.726 +41600/69092 Loss: 151.606 +44800/69092 Loss: 153.686 +48000/69092 Loss: 150.523 +51200/69092 Loss: 152.818 +54400/69092 Loss: 152.474 +57600/69092 Loss: 152.829 +60800/69092 Loss: 154.985 +64000/69092 Loss: 153.498 +67200/69092 Loss: 154.083 +Training time 0:01:56.221509 +Epoch: 189 Average loss: 153.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 189) +0/69092 Loss: 153.654 +3200/69092 Loss: 156.417 +6400/69092 Loss: 153.118 +9600/69092 Loss: 149.262 +12800/69092 Loss: 153.621 +16000/69092 Loss: 154.701 +19200/69092 Loss: 154.152 +22400/69092 Loss: 152.348 +25600/69092 Loss: 153.848 +28800/69092 Loss: 156.334 +32000/69092 Loss: 153.381 +35200/69092 Loss: 155.933 +38400/69092 Loss: 151.845 +41600/69092 Loss: 152.259 +44800/69092 Loss: 154.884 +48000/69092 Loss: 151.158 +51200/69092 Loss: 150.854 +54400/69092 Loss: 152.270 +57600/69092 Loss: 154.510 +60800/69092 Loss: 152.766 +64000/69092 Loss: 150.074 +67200/69092 Loss: 151.896 +Training time 0:01:57.703280 +Epoch: 190 Average loss: 153.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 190) +0/69092 Loss: 144.723 +3200/69092 Loss: 156.459 +6400/69092 Loss: 153.414 +9600/69092 Loss: 153.992 +12800/69092 Loss: 153.518 +16000/69092 Loss: 153.729 +19200/69092 Loss: 153.492 +22400/69092 Loss: 153.319 +25600/69092 Loss: 152.642 +28800/69092 Loss: 156.405 +32000/69092 Loss: 153.737 +35200/69092 Loss: 152.013 +38400/69092 Loss: 153.221 +41600/69092 Loss: 152.657 +44800/69092 Loss: 153.036 +48000/69092 Loss: 152.068 +51200/69092 Loss: 153.679 +54400/69092 Loss: 156.465 +57600/69092 Loss: 151.852 +60800/69092 Loss: 152.137 +64000/69092 Loss: 152.480 +67200/69092 Loss: 152.526 +Training time 0:01:57.576354 +Epoch: 191 Average loss: 153.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 191) +0/69092 Loss: 164.213 +3200/69092 Loss: 151.961 +6400/69092 Loss: 153.876 +9600/69092 Loss: 154.495 +12800/69092 Loss: 154.759 +16000/69092 Loss: 152.287 +19200/69092 Loss: 155.725 +22400/69092 Loss: 152.406 +25600/69092 Loss: 151.840 +28800/69092 Loss: 154.640 +32000/69092 Loss: 152.285 +35200/69092 Loss: 153.189 +38400/69092 Loss: 152.761 +41600/69092 Loss: 154.928 +44800/69092 Loss: 153.206 +48000/69092 Loss: 153.663 +51200/69092 Loss: 151.281 +54400/69092 Loss: 152.788 +57600/69092 Loss: 151.861 +60800/69092 Loss: 152.905 +64000/69092 Loss: 153.191 +67200/69092 Loss: 152.214 +Training time 0:01:57.872127 +Epoch: 192 Average loss: 153.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 192) +0/69092 Loss: 153.189 +3200/69092 Loss: 155.156 +6400/69092 Loss: 151.581 +9600/69092 Loss: 154.650 +12800/69092 Loss: 152.335 +16000/69092 Loss: 149.066 +19200/69092 Loss: 152.989 +22400/69092 Loss: 153.812 +25600/69092 Loss: 152.393 +28800/69092 Loss: 153.612 +32000/69092 Loss: 154.801 +35200/69092 Loss: 154.680 +38400/69092 Loss: 153.958 +41600/69092 Loss: 151.278 +44800/69092 Loss: 151.372 +48000/69092 Loss: 153.783 +51200/69092 Loss: 153.446 +54400/69092 Loss: 156.406 +57600/69092 Loss: 155.755 +60800/69092 Loss: 152.011 +64000/69092 Loss: 156.086 +67200/69092 Loss: 153.127 +Training time 0:01:57.083778 +Epoch: 193 Average loss: 153.49 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 193) +0/69092 Loss: 154.344 +3200/69092 Loss: 153.425 +6400/69092 Loss: 152.044 +9600/69092 Loss: 156.312 +12800/69092 Loss: 152.580 +16000/69092 Loss: 152.340 +19200/69092 Loss: 153.742 +22400/69092 Loss: 152.416 +25600/69092 Loss: 151.204 +28800/69092 Loss: 154.553 +32000/69092 Loss: 154.041 +35200/69092 Loss: 154.902 +38400/69092 Loss: 155.723 +41600/69092 Loss: 149.735 +44800/69092 Loss: 153.955 +48000/69092 Loss: 154.440 +51200/69092 Loss: 154.848 +54400/69092 Loss: 151.147 +57600/69092 Loss: 152.391 +60800/69092 Loss: 152.510 +64000/69092 Loss: 154.010 +67200/69092 Loss: 153.323 +Training time 0:01:58.359636 +Epoch: 194 Average loss: 153.30 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 194) +0/69092 Loss: 146.915 +3200/69092 Loss: 152.609 +6400/69092 Loss: 151.790 +9600/69092 Loss: 153.264 +12800/69092 Loss: 152.660 +16000/69092 Loss: 154.266 +19200/69092 Loss: 154.850 +22400/69092 Loss: 154.107 +25600/69092 Loss: 154.467 +28800/69092 Loss: 154.660 +32000/69092 Loss: 153.173 +35200/69092 Loss: 151.806 +38400/69092 Loss: 154.004 +41600/69092 Loss: 154.130 +44800/69092 Loss: 155.406 +48000/69092 Loss: 154.135 +51200/69092 Loss: 153.146 +54400/69092 Loss: 151.344 +57600/69092 Loss: 152.490 +60800/69092 Loss: 151.122 +64000/69092 Loss: 152.136 +67200/69092 Loss: 155.151 +Training time 0:01:58.474192 +Epoch: 195 Average loss: 153.33 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 195) +0/69092 Loss: 160.613 +3200/69092 Loss: 153.715 +6400/69092 Loss: 153.313 +9600/69092 Loss: 154.246 +12800/69092 Loss: 152.969 +16000/69092 Loss: 150.915 +19200/69092 Loss: 152.274 +22400/69092 Loss: 153.307 +25600/69092 Loss: 154.993 +28800/69092 Loss: 151.508 +32000/69092 Loss: 153.728 +35200/69092 Loss: 151.085 +38400/69092 Loss: 152.811 +41600/69092 Loss: 154.267 +44800/69092 Loss: 153.282 +48000/69092 Loss: 152.042 +51200/69092 Loss: 153.633 +54400/69092 Loss: 153.821 +57600/69092 Loss: 156.052 +60800/69092 Loss: 152.132 +64000/69092 Loss: 153.222 +67200/69092 Loss: 153.562 +Training time 0:01:57.272817 +Epoch: 196 Average loss: 153.13 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 196) +0/69092 Loss: 168.341 +3200/69092 Loss: 155.781 +6400/69092 Loss: 150.020 +9600/69092 Loss: 153.713 +12800/69092 Loss: 154.805 +16000/69092 Loss: 154.924 +19200/69092 Loss: 152.543 +22400/69092 Loss: 153.672 +25600/69092 Loss: 152.248 +28800/69092 Loss: 155.535 +32000/69092 Loss: 154.706 +35200/69092 Loss: 151.173 +38400/69092 Loss: 153.029 +41600/69092 Loss: 155.129 +44800/69092 Loss: 154.305 +48000/69092 Loss: 150.333 +51200/69092 Loss: 153.224 +54400/69092 Loss: 152.112 +57600/69092 Loss: 155.518 +60800/69092 Loss: 151.340 +64000/69092 Loss: 152.720 +67200/69092 Loss: 155.200 +Training time 0:01:57.564049 +Epoch: 197 Average loss: 153.36 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 197) +0/69092 Loss: 152.832 +3200/69092 Loss: 155.401 +6400/69092 Loss: 152.652 +9600/69092 Loss: 153.890 +12800/69092 Loss: 150.696 +16000/69092 Loss: 151.536 +19200/69092 Loss: 153.555 +22400/69092 Loss: 152.638 +25600/69092 Loss: 152.626 +28800/69092 Loss: 151.146 +32000/69092 Loss: 152.802 +35200/69092 Loss: 155.171 +38400/69092 Loss: 153.063 +41600/69092 Loss: 154.563 +44800/69092 Loss: 155.242 +48000/69092 Loss: 151.568 +51200/69092 Loss: 155.067 +54400/69092 Loss: 153.353 +57600/69092 Loss: 154.043 +60800/69092 Loss: 152.441 +64000/69092 Loss: 152.133 +67200/69092 Loss: 152.631 +48000/69092 Loss: 153.327 +51200/69092 Loss: 151.013 +54400/69092 Loss: 152.419 +57600/69092 Loss: 153.783 +60800/69092 Loss: 153.751 +64000/69092 Loss: 152.644 +67200/69092 Loss: 154.169 +Training time 0:01:57.663572 +Epoch: 201 Average loss: 153.17 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 201) +0/69092 Loss: 154.454 +3200/69092 Loss: 155.674 +6400/69092 Loss: 151.339 +9600/69092 Loss: 152.021 +12800/69092 Loss: 153.099 +16000/69092 Loss: 152.180 +19200/69092 Loss: 152.736 +22400/69092 Loss: 151.503 +25600/69092 Loss: 151.432 +28800/69092 Loss: 153.191 +32000/69092 Loss: 152.134 +35200/69092 Loss: 151.568 +38400/69092 Loss: 153.513 +41600/69092 Loss: 152.303 +44800/69092 Loss: 153.737 +48000/69092 Loss: 155.662 +51200/69092 Loss: 152.872 +54400/69092 Loss: 151.656 +57600/69092 Loss: 153.501 +60800/69092 Loss: 155.283 +64000/69092 Loss: 152.747 +67200/69092 Loss: 153.056 +Training time 0:01:58.155480 +Epoch: 202 Average loss: 152.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 202) +0/69092 Loss: 151.555 +3200/69092 Loss: 153.526 +6400/69092 Loss: 154.845 +9600/69092 Loss: 153.318 +12800/69092 Loss: 153.101 +16000/69092 Loss: 151.746 +19200/69092 Loss: 149.802 +22400/69092 Loss: 155.046 +25600/69092 Loss: 155.019 +28800/69092 Loss: 153.662 +32000/69092 Loss: 154.378 +35200/69092 Loss: 153.605 +38400/69092 Loss: 152.214 +41600/69092 Loss: 151.754 +44800/69092 Loss: 150.080 +48000/69092 Loss: 153.390 +51200/69092 Loss: 153.520 +54400/69092 Loss: 153.503 +57600/69092 Loss: 153.312 +60800/69092 Loss: 153.914 +64000/69092 Loss: 152.388 +67200/69092 Loss: 152.194 +Training time 0:01:56.956451 +Epoch: 203 Average loss: 152.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 203) +0/69092 Loss: 178.683 +3200/69092 Loss: 152.457 +6400/69092 Loss: 156.550 +9600/69092 Loss: 150.915 +12800/69092 Loss: 150.799 +16000/69092 Loss: 155.364 +19200/69092 Loss: 153.083 +22400/69092 Loss: 151.785 +25600/69092 Loss: 154.004 +28800/69092 Loss: 152.351 +32000/69092 Loss: 155.011 +35200/69092 Loss: 152.374 +38400/69092 Loss: 154.534 +41600/69092 Loss: 151.444 +44800/69092 Loss: 151.489 +48000/69092 Loss: 152.020 +51200/69092 Loss: 153.392 +54400/69092 Loss: 154.347 +57600/69092 Loss: 151.340 +60800/69092 Loss: 155.808 +64000/69092 Loss: 154.347 +67200/69092 Loss: 152.377 +Training time 0:01:56.859912 +Epoch: 204 Average loss: 153.16 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 204) +0/69092 Loss: 138.625 +3200/69092 Loss: 152.850 +6400/69092 Loss: 152.322 +9600/69092 Loss: 154.403 +12800/69092 Loss: 153.948 +16000/69092 Loss: 151.989 +19200/69092 Loss: 154.287 +22400/69092 Loss: 151.121 +25600/69092 Loss: 151.187 +28800/69092 Loss: 153.457 +32000/69092 Loss: 153.582 +35200/69092 Loss: 153.946 +38400/69092 Loss: 150.736 +41600/69092 Loss: 155.028 +44800/69092 Loss: 153.445 +48000/69092 Loss: 153.018 +51200/69092 Loss: 149.907 +54400/69092 Loss: 153.789 +57600/69092 Loss: 151.504 +60800/69092 Loss: 153.333 +64000/69092 Loss: 154.963 +67200/69092 Loss: 155.373 +Training time 0:01:59.365824 +Epoch: 205 Average loss: 153.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 205) +0/69092 Loss: 147.201 +3200/69092 Loss: 151.697 +6400/69092 Loss: 153.379 +9600/69092 Loss: 153.823 +12800/69092 Loss: 153.457 +16000/69092 Loss: 151.413 +19200/69092 Loss: 154.404 +22400/69092 Loss: 151.473 +25600/69092 Loss: 154.228 +28800/69092 Loss: 153.431 +32000/69092 Loss: 150.146 +35200/69092 Loss: 151.431 +38400/69092 Loss: 152.684 +41600/69092 Loss: 154.671 +44800/69092 Loss: 152.336 +48000/69092 Loss: 153.124 +51200/69092 Loss: 154.301 +54400/69092 Loss: 155.121 +57600/69092 Loss: 153.226 +60800/69092 Loss: 151.249 +64000/69092 Loss: 154.757 +67200/69092 Loss: 153.826 +Training time 0:01:57.188512 +Epoch: 206 Average loss: 153.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 206) +0/69092 Loss: 136.333 +3200/69092 Loss: 152.612 +6400/69092 Loss: 151.811 +9600/69092 Loss: 153.699 +12800/69092 Loss: 154.377 +16000/69092 Loss: 152.827 +19200/69092 Loss: 152.339 +22400/69092 Loss: 151.878 +25600/69092 Loss: 155.262 +28800/69092 Loss: 152.071 +32000/69092 Loss: 152.793 +35200/69092 Loss: 155.137 +38400/69092 Loss: 154.037 +41600/69092 Loss: 152.279 +44800/69092 Loss: 156.727 +48000/69092 Loss: 151.432 +51200/69092 Loss: 150.464 +54400/69092 Loss: 154.882 +57600/69092 Loss: 154.085 +60800/69092 Loss: 153.740 +64000/69092 Loss: 153.330 +67200/69092 Loss: 151.401 +Training time 0:01:56.002772 +Epoch: 207 Average loss: 153.15 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 207) +0/69092 Loss: 159.126 +3200/69092 Loss: 152.052 +6400/69092 Loss: 155.090 +9600/69092 Loss: 154.483 +12800/69092 Loss: 152.618 +16000/69092 Loss: 152.206 +19200/69092 Loss: 154.047 +22400/69092 Loss: 152.661 +25600/69092 Loss: 153.379 +28800/69092 Loss: 152.244 +32000/69092 Loss: 153.195 +35200/69092 Loss: 156.466 +38400/69092 Loss: 152.258 +41600/69092 Loss: 152.118 +44800/69092 Loss: 151.220 +48000/69092 Loss: 153.403 +51200/69092 Loss: 150.577 +54400/69092 Loss: 151.009 +57600/69092 Loss: 154.787 +60800/69092 Loss: 156.546 +64000/69092 Loss: 151.253 +67200/69092 Loss: 154.397 +Training time 0:01:56.828773 +Epoch: 208 Average loss: 153.08 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 208) +0/69092 Loss: 151.807 +3200/69092 Loss: 154.319 +6400/69092 Loss: 153.644 +9600/69092 Loss: 153.258 +12800/69092 Loss: 152.806 +16000/69092 Loss: 153.872 +19200/69092 Loss: 154.030 +22400/69092 Loss: 155.283 +25600/69092 Loss: 151.143 +28800/69092 Loss: 153.840 +32000/69092 Loss: 154.017 +35200/69092 Loss: 150.235 +38400/69092 Loss: 154.384 +41600/69092 Loss: 155.664 +44800/69092 Loss: 151.471 +48000/69092 Loss: 154.014 +51200/69092 Loss: 150.890 +54400/69092 Loss: 155.039 +57600/69092 Loss: 151.520 +60800/69092 Loss: 153.483 +64000/69092 Loss: 153.392 +67200/69092 Loss: 156.238 +Training time 0:01:57.092329 +Epoch: 209 Average loss: 153.44 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 209) +0/69092 Loss: 141.051 +3200/69092 Loss: 152.772 +6400/69092 Loss: 155.085 +9600/69092 Loss: 153.431 +12800/69092 Loss: 154.207 +16000/69092 Loss: 152.324 +19200/69092 Loss: 153.692 +22400/69092 Loss: 151.638 +25600/69092 Loss: 150.807 +28800/69092 Loss: 153.521 +32000/69092 Loss: 153.642 +35200/69092 Loss: 153.839 +38400/69092 Loss: 153.318 +41600/69092 Loss: 154.310 +44800/69092 Loss: 152.291 +48000/69092 Loss: 155.064 +51200/69092 Loss: 150.262 +54400/69092 Loss: 154.975 +57600/69092 Loss: 153.587 +60800/69092 Loss: 152.115 +64000/69092 Loss: 152.571 +67200/69092 Loss: 154.876 +Training time 0:01:58.064314 +Epoch: 210 Average loss: 153.18 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 210) +0/69092 Loss: 159.396 +3200/69092 Loss: 154.733 +6400/69092 Loss: 153.565 +9600/69092 Loss: 153.966 +12800/69092 Loss: 152.109 +16000/69092 Loss: 152.466 +19200/69092 Loss: 150.720 +22400/69092 Loss: 152.711 +25600/69092 Loss: 152.942 +28800/69092 Loss: 151.933 +32000/69092 Loss: 155.083 +35200/69092 Loss: 150.069 +38400/69092 Loss: 152.721 +41600/69092 Loss: 152.702 +44800/69092 Loss: 151.334 +48000/69092 Loss: 153.130 +51200/69092 Loss: 154.547 +54400/69092 Loss: 153.815 +57600/69092 Loss: 152.741 +60800/69092 Loss: 153.496 +64000/69092 Loss: 153.536 +67200/69092 Loss: 152.980 +Training time 0:01:56.995772 +Epoch: 211 Average loss: 152.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 211) +0/69092 Loss: 144.274 +3200/69092 Loss: 152.331 +6400/69092 Loss: 153.078 +9600/69092 Loss: 154.833 +12800/69092 Loss: 153.554 +16000/69092 Loss: 153.760 +19200/69092 Loss: 151.267 +22400/69092 Loss: 151.098 +25600/69092 Loss: 153.938 +28800/69092 Loss: 151.686 +32000/69092 Loss: 154.255 +35200/69092 Loss: 154.566 +38400/69092 Loss: 151.615 +41600/69092 Loss: 152.900 +44800/69092 Loss: 151.473 +48000/69092 Loss: 153.045 +51200/69092 Loss: 153.881 +54400/69092 Loss: 152.394 +57600/69092 Loss: 154.118 +60800/69092 Loss: 155.064 +64000/69092 Loss: 152.237 +67200/69092 Loss: 152.952 +Training time 0:01:57.304691 +Epoch: 212 Average loss: 152.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 212) +0/69092 Loss: 152.058 +3200/69092 Loss: 152.385 +6400/69092 Loss: 154.151 +9600/69092 Loss: 154.332 +12800/69092 Loss: 154.325 +16000/69092 Loss: 153.314 +19200/69092 Loss: 151.008 +22400/69092 Loss: 154.562 +25600/69092 Loss: 154.595 +28800/69092 Loss: 150.897 +32000/69092 Loss: 153.565 +35200/69092 Loss: 151.765 +38400/69092 Loss: 152.672 +41600/69092 Loss: 153.964 +44800/69092 Loss: 154.752 +48000/69092 Loss: 153.246 +51200/69092 Loss: 152.780 +54400/69092 Loss: 153.455 +57600/69092 Loss: 154.722 +60800/69092 Loss: 149.292 +64000/69092 Loss: 153.789 +67200/69092 Loss: 151.950 +Training time 0:01:57.575948 +Epoch: 213 Average loss: 153.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 213) +0/69092 Loss: 139.377 +3200/69092 Loss: 153.930 +6400/69092 Loss: 154.103 +9600/69092 Loss: 154.827 +12800/69092 Loss: 152.510 +16000/69092 Loss: 151.385 +19200/69092 Loss: 151.542 +22400/69092 Loss: 151.446 +25600/69092 Loss: 154.575 +28800/69092 Loss: 153.756 +32000/69092 Loss: 152.215 +35200/69092 Loss: 154.727 +38400/69092 Loss: 155.033 +41600/69092 Loss: 155.026 +44800/69092 Loss: 152.661 +48000/69092 Loss: 151.856 +51200/69092 Loss: 152.589 +54400/69092 Loss: 152.167 +57600/69092 Loss: 151.153 +60800/69092 Loss: 155.150 +64000/69092 Loss: 150.389 +67200/69092 Loss: 155.713 +Training time 0:01:57.480193 +Epoch: 214 Average loss: 153.12 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 214) +0/69092 Loss: 162.559 +3200/69092 Loss: 153.853 +6400/69092 Loss: 151.702 +9600/69092 Loss: 155.117 +12800/69092 Loss: 150.545 +16000/69092 Loss: 153.676 +19200/69092 Loss: 152.117 +22400/69092 Loss: 152.922 +25600/69092 Loss: 152.732 +28800/69092 Loss: 154.555 +32000/69092 Loss: 151.590 +35200/69092 Loss: 154.411 +38400/69092 Loss: 154.215 +41600/69092 Loss: 152.622 +44800/69092 Loss: 154.972 +48000/69092 Loss: 151.488 +51200/69092 Loss: 154.537 +54400/69092 Loss: 152.975 +57600/69092 Loss: 154.043 +60800/69092 Loss: 154.166 +64000/69092 Loss: 152.604 +67200/69092 Loss: 154.063 +Training time 0:01:58.489547 +Epoch: 215 Average loss: 153.29 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 215) +0/69092 Loss: 142.518 +3200/69092 Loss: 152.601 +6400/69092 Loss: 154.142 +9600/69092 Loss: 152.091 +12800/69092 Loss: 150.358 +16000/69092 Loss: 151.021 +19200/69092 Loss: 154.161 +22400/69092 Loss: 152.234 +25600/69092 Loss: 154.221 +28800/69092 Loss: 154.208 +32000/69092 Loss: 153.602 +35200/69092 Loss: 155.292 +38400/69092 Loss: 152.614 +41600/69092 Loss: 152.557 +44800/69092 Loss: 152.863 +48000/69092 Loss: 151.437 +51200/69092 Loss: 151.839 +54400/69092 Loss: 154.302 +57600/69092 Loss: 153.296 +60800/69092 Loss: 154.567 +64000/69092 Loss: 153.093 +67200/69092 Loss: 153.120 +Training time 0:01:58.124137 +Epoch: 216 Average loss: 153.07 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 216) +0/69092 Loss: 145.412 +3200/69092 Loss: 153.349 +6400/69092 Loss: 151.452 +9600/69092 Loss: 151.918 +12800/69092 Loss: 154.555 +16000/69092 Loss: 151.488 +19200/69092 Loss: 155.105 +22400/69092 Loss: 155.665 +25600/69092 Loss: 153.667 +28800/69092 Loss: 152.872 +32000/69092 Loss: 155.300 +35200/69092 Loss: 150.349 +38400/69092 Loss: 151.373 +41600/69092 Loss: 152.978 +44800/69092 Loss: 152.866 +48000/69092 Loss: 154.216 +51200/69092 Loss: 154.033 +54400/69092 Loss: 152.151 +57600/69092 Loss: 152.067 +60800/69092 Loss: 152.121 +64000/69092 Loss: 154.637 +67200/69092 Loss: 151.924 +Training time 0:01:57.129648 +Epoch: 217 Average loss: 153.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 217) +0/69092 Loss: 137.423 +3200/69092 Loss: 153.207 +6400/69092 Loss: 152.468 +9600/69092 Loss: 152.777 +12800/69092 Loss: 151.594 +16000/69092 Loss: 153.604 +19200/69092 Loss: 151.826 +22400/69092 Loss: 154.964 +25600/69092 Loss: 153.965 +28800/69092 Loss: 152.907 +32000/69092 Loss: 153.653 +35200/69092 Loss: 154.905 +38400/69092 Loss: 154.736 +41600/69092 Loss: 152.599 +44800/69092 Loss: 151.174 +48000/69092 Loss: 154.147 +51200/69092 Loss: 150.586 +54400/69092 Loss: 152.760 +57600/69092 Loss: 154.728 +60800/69092 Loss: 154.205 +64000/69092 Loss: 152.165 +67200/69092 Loss: 153.749 +Training time 0:01:57.834001 +Epoch: 218 Average loss: 153.21 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 218) +0/69092 Loss: 134.265 +3200/69092 Loss: 153.752 +6400/69092 Loss: 153.571 +9600/69092 Loss: 154.039 +12800/69092 Loss: 150.626 +16000/69092 Loss: 154.971 +19200/69092 Loss: 150.849 +22400/69092 Loss: 150.640 +25600/69092 Loss: 153.325 +28800/69092 Loss: 154.799 +32000/69092 Loss: 153.318 +35200/69092 Loss: 152.523 +38400/69092 Loss: 151.084 +41600/69092 Loss: 152.294 +44800/69092 Loss: 156.620 +48000/69092 Loss: 151.964 +51200/69092 Loss: 155.712 +54400/69092 Loss: 153.685 +57600/69092 Loss: 151.700 +60800/69092 Loss: 154.930 +64000/69092 Loss: 152.310 +67200/69092 Loss: 153.247 +Training time 0:01:57.508754 +Epoch: 219 Average loss: 153.04 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 219) +0/69092 Loss: 161.132 +3200/69092 Loss: 150.378 +6400/69092 Loss: 152.743 +9600/69092 Loss: 155.444 +12800/69092 Loss: 152.940 +16000/69092 Loss: 152.020 +19200/69092 Loss: 153.433 +22400/69092 Loss: 155.989 +25600/69092 Loss: 155.301 +28800/69092 Loss: 154.193 +32000/69092 Loss: 156.297 +35200/69092 Loss: 152.717 +38400/69092 Loss: 150.820 +41600/69092 Loss: 152.908 +44800/69092 Loss: 151.835 +48000/69092 Loss: 152.418 +51200/69092 Loss: 152.099 +54400/69092 Loss: 154.057 +57600/69092 Loss: 150.807 +60800/69092 Loss: 151.370 +64000/69092 Loss: 151.246 +67200/69092 Loss: 153.691 +Training time 0:01:59.273445 +Epoch: 220 Average loss: 153.06 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 220) +0/69092 Loss: 134.050 +3200/69092 Loss: 151.060 +6400/69092 Loss: 153.877 +9600/69092 Loss: 151.699 +12800/69092 Loss: 152.957 +16000/69092 Loss: 152.666 +19200/69092 Loss: 153.443 +22400/69092 Loss: 151.911 +25600/69092 Loss: 151.438 +28800/69092 Loss: 154.364 +32000/69092 Loss: 152.828 +35200/69092 Loss: 152.053 +38400/69092 Loss: 153.011 +41600/69092 Loss: 153.660 +44800/69092 Loss: 156.375 +48000/69092 Loss: 156.092 +51200/69092 Loss: 151.725 +54400/69092 Loss: 153.148 +57600/69092 Loss: 150.407 +60800/69092 Loss: 154.755 +64000/69092 Loss: 153.873 +67200/69092 Loss: 151.987 +Training time 0:01:58.140186 +Epoch: 221 Average loss: 152.99 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 221) +0/69092 Loss: 167.617 +3200/69092 Loss: 150.980 +6400/69092 Loss: 154.489 +9600/69092 Loss: 155.176 +12800/69092 Loss: 151.077 +16000/69092 Loss: 150.855 +19200/69092 Loss: 153.607 +22400/69092 Loss: 151.541 +25600/69092 Loss: 155.577 +28800/69092 Loss: 156.103 +32000/69092 Loss: 153.661 +35200/69092 Loss: 152.441 +38400/69092 Loss: 153.900 +41600/69092 Loss: 153.054 +44800/69092 Loss: 150.793 +48000/69092 Loss: 152.771 +51200/69092 Loss: 152.938 +54400/69092 Loss: 154.573 +57600/69092 Loss: 151.687 +60800/69092 Loss: 151.964 +64000/69092 Loss: 154.685 +67200/69092 Loss: 150.734 +Training time 0:01:58.151980 +Epoch: 222 Average loss: 153.10 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 222) +0/69092 Loss: 163.035 +3200/69092 Loss: 150.475 +6400/69092 Loss: 150.694 +9600/69092 Loss: 151.595 +12800/69092 Loss: 156.462 +16000/69092 Loss: 156.534 +19200/69092 Loss: 153.539 +22400/69092 Loss: 154.385 +25600/69092 Loss: 153.351 +28800/69092 Loss: 152.876 +32000/69092 Loss: 153.442 +35200/69092 Loss: 151.764 +38400/69092 Loss: 153.304 +41600/69092 Loss: 153.636 +44800/69092 Loss: 152.515 +48000/69092 Loss: 149.859 +51200/69092 Loss: 151.391 +54400/69092 Loss: 153.922 +57600/69092 Loss: 154.066 +60800/69092 Loss: 152.113 +64000/69092 Loss: 153.166 +67200/69092 Loss: 154.064 +Training time 0:01:58.093341 +Epoch: 223 Average loss: 153.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 223) +0/69092 Loss: 149.104 +3200/69092 Loss: 153.765 +6400/69092 Loss: 151.818 +9600/69092 Loss: 152.883 +12800/69092 Loss: 153.506 +16000/69092 Loss: 150.765 +19200/69092 Loss: 153.645 +22400/69092 Loss: 152.073 +25600/69092 Loss: 153.641 +28800/69092 Loss: 152.799 +32000/69092 Loss: 153.312 +35200/69092 Loss: 153.976 +38400/69092 Loss: 154.457 +41600/69092 Loss: 152.348 +44800/69092 Loss: 153.460 +48000/69092 Loss: 153.998 +51200/69092 Loss: 153.964 +54400/69092 Loss: 150.323 +57600/69092 Loss: 153.979 +60800/69092 Loss: 153.562 +64000/69092 Loss: 152.081 +67200/69092 Loss: 153.445 +Training time 0:01:57.995336 +Epoch: 224 Average loss: 152.98 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 224) +0/69092 Loss: 149.157 +3200/69092 Loss: 154.474 +6400/69092 Loss: 155.022 +9600/69092 Loss: 151.593 +12800/69092 Loss: 154.747 +16000/69092 Loss: 152.064 +19200/69092 Loss: 152.685 +22400/69092 Loss: 153.768 +25600/69092 Loss: 152.074 +28800/69092 Loss: 152.134 +32000/69092 Loss: 150.306 +35200/69092 Loss: 153.294 +38400/69092 Loss: 156.220 +41600/69092 Loss: 152.025 +44800/69092 Loss: 154.947 +48000/69092 Loss: 153.498 +51200/69092 Loss: 152.489 +54400/69092 Loss: 153.522 +57600/69092 Loss: 152.365 +60800/69092 Loss: 153.052 +64000/69092 Loss: 151.943 +67200/69092 Loss: 149.966 +Training time 0:01:57.633472 +Epoch: 225 Average loss: 152.95 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 225) +0/69092 Loss: 157.358 +3200/69092 Loss: 153.386 +6400/69092 Loss: 155.215 +9600/69092 Loss: 152.323 +12800/69092 Loss: 152.303 +16000/69092 Loss: 152.981 +19200/69092 Loss: 151.551 +22400/69092 Loss: 152.605 +25600/69092 Loss: 154.201 +28800/69092 Loss: 153.261 +32000/69092 Loss: 151.061 +35200/69092 Loss: 151.811 +38400/69092 Loss: 152.017 +41600/69092 Loss: 152.559 +44800/69092 Loss: 151.012 +48000/69092 Loss: 152.297 +51200/69092 Loss: 153.949 +54400/69092 Loss: 153.699 +57600/69092 Loss: 153.550 +60800/69092 Loss: 155.443 +64000/69092 Loss: 152.688 +67200/69092 Loss: 152.526 +Training time 0:01:58.981002 +Epoch: 226 Average loss: 152.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 226) +0/69092 Loss: 168.753 +3200/69092 Loss: 153.817 +6400/69092 Loss: 155.469 +9600/69092 Loss: 152.652 +12800/69092 Loss: 149.638 +16000/69092 Loss: 150.607 +19200/69092 Loss: 153.912 +22400/69092 Loss: 153.587 +25600/69092 Loss: 151.851 +28800/69092 Loss: 153.092 +32000/69092 Loss: 149.984 +35200/69092 Loss: 153.251 +38400/69092 Loss: 153.295 +41600/69092 Loss: 151.924 +44800/69092 Loss: 152.871 +48000/69092 Loss: 154.267 +51200/69092 Loss: 153.253 +54400/69092 Loss: 152.931 +57600/69092 Loss: 153.489 +60800/69092 Loss: 154.847 +64000/69092 Loss: 152.248 +67200/69092 Loss: 153.873 +Training time 0:01:57.918332 +Epoch: 227 Average loss: 152.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 227) +0/69092 Loss: 145.500 +3200/69092 Loss: 150.818 +6400/69092 Loss: 153.259 +9600/69092 Loss: 153.745 +12800/69092 Loss: 155.952 +16000/69092 Loss: 153.876 +19200/69092 Loss: 153.586 +22400/69092 Loss: 152.680 +25600/69092 Loss: 153.108 +28800/69092 Loss: 155.919 +32000/69092 Loss: 150.221 +35200/69092 Loss: 152.665 +38400/69092 Loss: 153.170 +41600/69092 Loss: 151.231 +44800/69092 Loss: 154.256 +48000/69092 Loss: 152.153 +51200/69092 Loss: 151.312 +54400/69092 Loss: 151.172 +57600/69092 Loss: 156.990 +60800/69092 Loss: 150.704 +64000/69092 Loss: 153.871 +67200/69092 Loss: 154.719 +Training time 0:01:57.894648 +Epoch: 228 Average loss: 153.07 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 228) +0/69092 Loss: 180.293 +3200/69092 Loss: 153.891 +6400/69092 Loss: 151.699 +9600/69092 Loss: 151.629 +12800/69092 Loss: 155.177 +16000/69092 Loss: 153.444 +19200/69092 Loss: 152.763 +22400/69092 Loss: 155.033 +25600/69092 Loss: 154.848 +28800/69092 Loss: 152.626 +32000/69092 Loss: 152.012 +35200/69092 Loss: 155.433 +38400/69092 Loss: 151.165 +41600/69092 Loss: 150.821 +44800/69092 Loss: 153.422 +48000/69092 Loss: 150.301 +51200/69092 Loss: 153.288 +54400/69092 Loss: 153.095 +57600/69092 Loss: 153.022 +60800/69092 Loss: 155.040 +64000/69092 Loss: 152.108 +67200/69092 Loss: 151.459 +Training time 0:01:57.319584 +Epoch: 229 Average loss: 153.05 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 229) +0/69092 Loss: 142.525 +3200/69092 Loss: 151.068 +6400/69092 Loss: 152.307 +9600/69092 Loss: 152.833 +12800/69092 Loss: 150.623 +16000/69092 Loss: 154.464 +19200/69092 Loss: 153.870 +22400/69092 Loss: 154.721 +25600/69092 Loss: 152.589 +28800/69092 Loss: 151.536 +32000/69092 Loss: 154.682 +35200/69092 Loss: 152.351 +38400/69092 Loss: 154.690 +41600/69092 Loss: 151.623 +44800/69092 Loss: 155.794 +48000/69092 Loss: 154.772 +51200/69092 Loss: 149.038 +54400/69092 Loss: 152.770 +57600/69092 Loss: 154.300 +60800/69092 Loss: 152.137 +64000/69092 Loss: 152.796 +67200/69092 Loss: 152.573 +Training time 0:01:57.791838 +Epoch: 230 Average loss: 153.00 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 230) +0/69092 Loss: 154.642 +3200/69092 Loss: 151.589 +6400/69092 Loss: 153.849 +9600/69092 Loss: 152.458 +12800/69092 Loss: 155.827 +16000/69092 Loss: 151.786 +19200/69092 Loss: 147.413 +22400/69092 Loss: 154.911 +25600/69092 Loss: 151.117 +28800/69092 Loss: 153.292 +32000/69092 Loss: 154.569 +35200/69092 Loss: 154.036 +38400/69092 Loss: 154.870 +41600/69092 Loss: 154.462 +44800/69092 Loss: 152.763 +48000/69092 Loss: 152.092 +51200/69092 Loss: 153.746 +54400/69092 Loss: 151.517 +57600/69092 Loss: 153.789 +60800/69092 Loss: 150.274 +64000/69092 Loss: 153.312 +67200/69092 Loss: 153.244 +Training time 0:01:57.312702 +Epoch: 231 Average loss: 152.97 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 231) +0/69092 Loss: 140.259 +3200/69092 Loss: 154.425 +6400/69092 Loss: 151.092 +9600/69092 Loss: 151.372 +12800/69092 Loss: 152.726 +16000/69092 Loss: 153.478 +19200/69092 Loss: 152.184 +22400/69092 Loss: 156.321 +25600/69092 Loss: 151.891 +28800/69092 Loss: 150.921 +32000/69092 Loss: 153.356 +35200/69092 Loss: 152.676 +38400/69092 Loss: 152.050 +41600/69092 Loss: 150.893 +44800/69092 Loss: 151.221 +48000/69092 Loss: 151.875 +51200/69092 Loss: 154.692 +54400/69092 Loss: 154.223 +57600/69092 Loss: 155.129 +60800/69092 Loss: 152.654 +64000/69092 Loss: 153.452 +67200/69092 Loss: 152.980 +Training time 0:01:56.487330 +Epoch: 232 Average loss: 152.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 232) +0/69092 Loss: 171.943 +3200/69092 Loss: 154.085 +6400/69092 Loss: 153.825 +9600/69092 Loss: 154.207 +12800/69092 Loss: 150.958 +16000/69092 Loss: 152.458 +19200/69092 Loss: 152.403 +22400/69092 Loss: 152.995 +25600/69092 Loss: 152.974 +28800/69092 Loss: 151.200 +32000/69092 Loss: 152.450 +35200/69092 Loss: 153.039 +38400/69092 Loss: 151.633 +41600/69092 Loss: 154.753 +44800/69092 Loss: 153.677 +48000/69092 Loss: 152.379 +51200/69092 Loss: 156.328 +54400/69092 Loss: 151.903 +57600/69092 Loss: 155.844 +60800/69092 Loss: 150.981 +64000/69092 Loss: 151.734 +67200/69092 Loss: 154.408 +Training time 0:01:57.974114 +Epoch: 233 Average loss: 153.07 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 233) +0/69092 Loss: 146.546 +3200/69092 Loss: 151.793 +6400/69092 Loss: 153.263 +9600/69092 Loss: 150.700 +12800/69092 Loss: 153.306 +16000/69092 Loss: 152.140 +19200/69092 Loss: 152.216 +22400/69092 Loss: 152.413 +25600/69092 Loss: 154.672 +28800/69092 Loss: 154.708 +32000/69092 Loss: 151.919 +35200/69092 Loss: 152.004 +38400/69092 Loss: 152.031 +41600/69092 Loss: 154.102 +44800/69092 Loss: 152.538 +48000/69092 Loss: 154.181 +51200/69092 Loss: 152.703 +54400/69092 Loss: 153.828 +57600/69092 Loss: 151.973 +60800/69092 Loss: 151.424 +64000/69092 Loss: 154.326 +67200/69092 Loss: 153.638 +Training time 0:01:56.738304 +Epoch: 234 Average loss: 152.94 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 234) +0/69092 Loss: 147.142 +3200/69092 Loss: 154.610 +6400/69092 Loss: 152.188 +9600/69092 Loss: 153.607 +12800/69092 Loss: 154.154 +16000/69092 Loss: 154.403 +19200/69092 Loss: 154.347 +22400/69092 Loss: 151.795 +25600/69092 Loss: 150.659 +28800/69092 Loss: 152.914 +32000/69092 Loss: 151.999 +35200/69092 Loss: 153.316 +38400/69092 Loss: 152.318 +41600/69092 Loss: 152.568 +44800/69092 Loss: 151.948 +48000/69092 Loss: 153.530 +51200/69092 Loss: 151.766 +54400/69092 Loss: 152.731 +57600/69092 Loss: 153.901 +60800/69092 Loss: 152.770 +64000/69092 Loss: 152.304 +67200/69092 Loss: 153.580 +Training time 0:01:56.618151 +Epoch: 235 Average loss: 152.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 235) +0/69092 Loss: 140.823 +3200/69092 Loss: 154.382 +6400/69092 Loss: 151.163 +9600/69092 Loss: 154.541 +12800/69092 Loss: 153.418 +16000/69092 Loss: 153.596 +19200/69092 Loss: 154.555 +22400/69092 Loss: 154.492 +25600/69092 Loss: 154.233 +28800/69092 Loss: 152.816 +32000/69092 Loss: 152.097 +35200/69092 Loss: 153.348 +38400/69092 Loss: 154.650 +41600/69092 Loss: 150.105 +44800/69092 Loss: 151.391 +48000/69092 Loss: 151.594 +51200/69092 Loss: 152.375 +54400/69092 Loss: 152.202 +57600/69092 Loss: 153.161 +60800/69092 Loss: 152.484 +64000/69092 Loss: 153.472 +67200/69092 Loss: 153.056 +Training time 0:01:57.025385 +Epoch: 236 Average loss: 152.92 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 236) +0/69092 Loss: 150.785 +3200/69092 Loss: 153.572 +6400/69092 Loss: 151.538 +9600/69092 Loss: 152.222 +12800/69092 Loss: 151.326 +16000/69092 Loss: 151.781 +19200/69092 Loss: 154.058 +22400/69092 Loss: 151.357 +25600/69092 Loss: 151.036 +28800/69092 Loss: 155.959 +32000/69092 Loss: 152.228 +35200/69092 Loss: 151.662 +38400/69092 Loss: 154.893 +41600/69092 Loss: 150.476 +44800/69092 Loss: 153.312 +48000/69092 Loss: 152.785 +51200/69092 Loss: 154.991 +54400/69092 Loss: 151.464 +57600/69092 Loss: 153.208 +60800/69092 Loss: 153.533 +64000/69092 Loss: 151.943 +67200/69092 Loss: 153.342 +Training time 0:01:58.060189 +Epoch: 237 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 237) +0/69092 Loss: 146.388 +3200/69092 Loss: 155.082 +6400/69092 Loss: 152.964 +9600/69092 Loss: 153.962 +12800/69092 Loss: 155.305 +16000/69092 Loss: 152.804 +19200/69092 Loss: 152.230 +22400/69092 Loss: 150.812 +25600/69092 Loss: 154.837 +28800/69092 Loss: 152.240 +32000/69092 Loss: 151.777 +35200/69092 Loss: 153.701 +38400/69092 Loss: 153.288 +41600/69092 Loss: 151.931 +44800/69092 Loss: 153.427 +48000/69092 Loss: 153.089 +51200/69092 Loss: 151.594 +54400/69092 Loss: 152.101 +57600/69092 Loss: 152.920 +60800/69092 Loss: 151.710 +64000/69092 Loss: 152.992 +67200/69092 Loss: 152.111 +Training time 0:01:58.970486 +Epoch: 238 Average loss: 152.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 238) +0/69092 Loss: 149.429 +3200/69092 Loss: 150.371 +6400/69092 Loss: 154.537 +9600/69092 Loss: 151.209 +12800/69092 Loss: 152.965 +16000/69092 Loss: 152.941 +19200/69092 Loss: 150.059 +22400/69092 Loss: 153.176 +25600/69092 Loss: 154.018 +28800/69092 Loss: 154.078 +32000/69092 Loss: 152.689 +35200/69092 Loss: 151.744 +38400/69092 Loss: 152.659 +41600/69092 Loss: 154.504 +44800/69092 Loss: 151.904 +48000/69092 Loss: 154.087 +51200/69092 Loss: 152.256 +54400/69092 Loss: 154.235 +57600/69092 Loss: 156.127 +60800/69092 Loss: 153.656 +64000/69092 Loss: 152.386 +67200/69092 Loss: 154.235 +Training time 0:01:58.623239 +Epoch: 239 Average loss: 152.99 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 239) +0/69092 Loss: 167.180 +3200/69092 Loss: 153.784 +6400/69092 Loss: 153.886 +9600/69092 Loss: 151.928 +12800/69092 Loss: 154.879 +16000/69092 Loss: 154.330 +19200/69092 Loss: 153.325 +22400/69092 Loss: 150.341 +25600/69092 Loss: 151.352 +28800/69092 Loss: 151.670 +32000/69092 Loss: 149.873 +35200/69092 Loss: 151.475 +38400/69092 Loss: 152.915 +41600/69092 Loss: 154.261 +44800/69092 Loss: 152.991 +48000/69092 Loss: 154.228 +51200/69092 Loss: 153.721 +54400/69092 Loss: 153.371 +57600/69092 Loss: 154.614 +60800/69092 Loss: 150.271 +64000/69092 Loss: 152.129 +67200/69092 Loss: 153.947 +Training time 0:01:58.830728 +Epoch: 240 Average loss: 152.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 240) +0/69092 Loss: 153.859 +3200/69092 Loss: 149.460 +6400/69092 Loss: 153.149 +9600/69092 Loss: 154.061 +12800/69092 Loss: 152.206 +16000/69092 Loss: 152.393 +19200/69092 Loss: 149.998 +22400/69092 Loss: 153.934 +25600/69092 Loss: 153.449 +28800/69092 Loss: 153.169 +32000/69092 Loss: 152.671 +35200/69092 Loss: 151.362 +38400/69092 Loss: 151.255 +41600/69092 Loss: 152.122 +44800/69092 Loss: 152.350 +48000/69092 Loss: 152.428 +51200/69092 Loss: 154.282 +54400/69092 Loss: 154.570 +57600/69092 Loss: 153.494 +60800/69092 Loss: 149.670 +64000/69092 Loss: 152.422 +67200/69092 Loss: 154.780 +Training time 0:01:57.960246 +Epoch: 241 Average loss: 152.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 241) +0/69092 Loss: 158.629 +3200/69092 Loss: 150.650 +6400/69092 Loss: 154.195 +9600/69092 Loss: 153.340 +12800/69092 Loss: 152.238 +16000/69092 Loss: 152.531 +19200/69092 Loss: 151.346 +22400/69092 Loss: 151.401 +25600/69092 Loss: 153.823 +28800/69092 Loss: 155.058 +32000/69092 Loss: 153.807 +35200/69092 Loss: 150.709 +38400/69092 Loss: 153.555 +41600/69092 Loss: 153.592 +44800/69092 Loss: 151.298 +48000/69092 Loss: 155.065 +51200/69092 Loss: 151.654 +54400/69092 Loss: 153.802 +57600/69092 Loss: 152.691 +60800/69092 Loss: 153.699 +64000/69092 Loss: 153.345 +67200/69092 Loss: 151.487 +Training time 0:01:58.264088 +Epoch: 242 Average loss: 152.88 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 242) +0/69092 Loss: 137.126 +3200/69092 Loss: 152.149 +6400/69092 Loss: 151.933 +9600/69092 Loss: 152.520 +12800/69092 Loss: 157.330 +16000/69092 Loss: 155.815 +19200/69092 Loss: 152.166 +22400/69092 Loss: 154.238 +25600/69092 Loss: 149.851 +28800/69092 Loss: 151.604 +32000/69092 Loss: 151.911 +35200/69092 Loss: 153.001 +38400/69092 Loss: 154.620 +41600/69092 Loss: 155.193 +44800/69092 Loss: 152.859 +48000/69092 Loss: 153.107 +51200/69092 Loss: 153.861 +54400/69092 Loss: 151.699 +57600/69092 Loss: 148.180 +60800/69092 Loss: 153.639 +64000/69092 Loss: 152.561 +67200/69092 Loss: 153.073 +Training time 0:01:57.771225 +Epoch: 243 Average loss: 152.90 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 243) +0/69092 Loss: 153.165 +3200/69092 Loss: 151.722 +6400/69092 Loss: 153.502 +9600/69092 Loss: 149.978 +12800/69092 Loss: 153.114 +16000/69092 Loss: 152.880 +19200/69092 Loss: 152.990 +22400/69092 Loss: 153.534 +25600/69092 Loss: 155.184 +28800/69092 Loss: 152.679 +32000/69092 Loss: 153.160 +35200/69092 Loss: 153.210 +38400/69092 Loss: 151.402 +41600/69092 Loss: 152.639 +44800/69092 Loss: 151.424 +48000/69092 Loss: 152.328 +51200/69092 Loss: 154.335 +54400/69092 Loss: 153.779 +57600/69092 Loss: 153.537 +60800/69092 Loss: 155.218 +64000/69092 Loss: 151.940 +67200/69092 Loss: 155.476 +Training time 0:01:57.331840 +Epoch: 244 Average loss: 153.02 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 244) +0/69092 Loss: 163.873 +3200/69092 Loss: 151.982 +6400/69092 Loss: 153.628 +9600/69092 Loss: 152.854 +12800/69092 Loss: 152.921 +16000/69092 Loss: 152.405 +19200/69092 Loss: 152.727 +22400/69092 Loss: 153.639 +25600/69092 Loss: 150.654 +28800/69092 Loss: 151.494 +32000/69092 Loss: 154.417 +35200/69092 Loss: 152.415 +38400/69092 Loss: 154.000 +41600/69092 Loss: 154.083 +44800/69092 Loss: 153.606 +48000/69092 Loss: 152.192 +51200/69092 Loss: 151.583 +54400/69092 Loss: 153.490 +57600/69092 Loss: 151.840 +60800/69092 Loss: 152.757 +64000/69092 Loss: 156.619 +67200/69092 Loss: 151.462 +Training time 0:01:57.832230 +Epoch: 245 Average loss: 152.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 245) +0/69092 Loss: 148.779 +3200/69092 Loss: 152.686 +6400/69092 Loss: 152.497 +9600/69092 Loss: 152.702 +12800/69092 Loss: 153.036 +16000/69092 Loss: 152.658 +19200/69092 Loss: 152.918 +22400/69092 Loss: 153.495 +25600/69092 Loss: 154.115 +28800/69092 Loss: 152.814 +32000/69092 Loss: 153.349 +35200/69092 Loss: 154.072 +38400/69092 Loss: 155.817 +41600/69092 Loss: 151.697 +44800/69092 Loss: 149.036 +48000/69092 Loss: 152.748 +51200/69092 Loss: 153.825 +54400/69092 Loss: 150.494 +57600/69092 Loss: 153.051 +60800/69092 Loss: 151.825 +64000/69092 Loss: 152.996 +67200/69092 Loss: 151.816 +Training time 0:01:58.694350 +Epoch: 246 Average loss: 152.79 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 246) +0/69092 Loss: 140.414 +3200/69092 Loss: 151.577 +6400/69092 Loss: 153.748 +9600/69092 Loss: 151.823 +12800/69092 Loss: 155.714 +16000/69092 Loss: 154.473 +19200/69092 Loss: 154.174 +22400/69092 Loss: 153.460 +25600/69092 Loss: 155.288 +28800/69092 Loss: 151.393 +32000/69092 Loss: 150.425 +35200/69092 Loss: 153.623 +38400/69092 Loss: 153.749 +41600/69092 Loss: 150.976 +44800/69092 Loss: 151.228 +48000/69092 Loss: 154.616 +51200/69092 Loss: 153.523 +54400/69092 Loss: 153.865 +57600/69092 Loss: 152.582 +60800/69092 Loss: 152.402 +64000/69092 Loss: 151.277 +67200/69092 Loss: 152.981 +Training time 0:01:58.011280 +Epoch: 247 Average loss: 153.01 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 247) +0/69092 Loss: 152.841 +3200/69092 Loss: 151.889 +6400/69092 Loss: 151.357 +9600/69092 Loss: 153.424 +12800/69092 Loss: 153.532 +16000/69092 Loss: 152.280 +19200/69092 Loss: 153.647 +22400/69092 Loss: 152.426 +25600/69092 Loss: 152.805 +28800/69092 Loss: 154.031 +32000/69092 Loss: 154.262 +35200/69092 Loss: 151.558 +38400/69092 Loss: 154.836 +41600/69092 Loss: 154.432 +44800/69092 Loss: 151.479 +48000/69092 Loss: 151.301 +51200/69092 Loss: 153.854 +54400/69092 Loss: 153.573 +57600/69092 Loss: 151.656 +60800/69092 Loss: 152.319 +64000/69092 Loss: 151.431 +67200/69092 Loss: 153.094 +Training time 0:01:57.768346 +Epoch: 248 Average loss: 152.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 248) +0/69092 Loss: 166.012 +3200/69092 Loss: 153.240 +6400/69092 Loss: 152.772 +9600/69092 Loss: 151.369 +12800/69092 Loss: 152.029 +16000/69092 Loss: 152.143 +19200/69092 Loss: 154.384 +22400/69092 Loss: 150.355 +25600/69092 Loss: 153.370 +28800/69092 Loss: 152.927 +32000/69092 Loss: 153.648 +35200/69092 Loss: 151.301 +38400/69092 Loss: 155.468 +41600/69092 Loss: 156.302 +44800/69092 Loss: 151.039 +48000/69092 Loss: 153.663 +51200/69092 Loss: 151.174 +54400/69092 Loss: 154.291 +57600/69092 Loss: 152.261 +60800/69092 Loss: 151.814 +64000/69092 Loss: 153.514 +67200/69092 Loss: 151.401 +Training time 0:01:58.015001 +Epoch: 249 Average loss: 152.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 249) +0/69092 Loss: 171.326 +3200/69092 Loss: 150.472 +6400/69092 Loss: 151.960 +9600/69092 Loss: 152.078 +12800/69092 Loss: 152.642 +16000/69092 Loss: 153.280 +19200/69092 Loss: 152.284 +22400/69092 Loss: 152.422 +25600/69092 Loss: 151.907 +28800/69092 Loss: 152.561 +32000/69092 Loss: 149.760 +35200/69092 Loss: 152.690 +38400/69092 Loss: 155.108 +41600/69092 Loss: 151.258 +44800/69092 Loss: 153.570 +48000/69092 Loss: 151.424 +51200/69092 Loss: 153.171 +54400/69092 Loss: 157.287 +57600/69092 Loss: 151.796 +60800/69092 Loss: 150.432 +64000/69092 Loss: 156.293 +67200/69092 Loss: 154.974 +Training time 0:01:58.922323 +Epoch: 250 Average loss: 152.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 250) +0/69092 Loss: 138.233 +3200/69092 Loss: 154.458 +6400/69092 Loss: 153.750 +9600/69092 Loss: 152.624 +12800/69092 Loss: 153.770 +16000/69092 Loss: 152.733 +19200/69092 Loss: 152.485 +22400/69092 Loss: 152.774 +25600/69092 Loss: 153.434 +28800/69092 Loss: 151.495 +32000/69092 Loss: 152.250 +35200/69092 Loss: 151.584 +38400/69092 Loss: 149.970 +41600/69092 Loss: 150.455 +44800/69092 Loss: 153.378 +48000/69092 Loss: 152.234 +51200/69092 Loss: 154.340 +54400/69092 Loss: 150.703 +57600/69092 Loss: 154.407 +60800/69092 Loss: 153.559 +64000/69092 Loss: 154.581 +67200/69092 Loss: 152.552 +Training time 0:01:58.782987 +Epoch: 251 Average loss: 152.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 251) +0/69092 Loss: 137.886 +3200/69092 Loss: 151.589 +6400/69092 Loss: 154.657 +9600/69092 Loss: 151.275 +12800/69092 Loss: 155.411 +16000/69092 Loss: 150.019 +19200/69092 Loss: 153.638 +22400/69092 Loss: 152.607 +25600/69092 Loss: 153.826 +28800/69092 Loss: 151.253 +32000/69092 Loss: 151.264 +35200/69092 Loss: 152.621 +38400/69092 Loss: 150.846 +41600/69092 Loss: 149.545 +44800/69092 Loss: 153.929 +48000/69092 Loss: 151.218 +51200/69092 Loss: 154.030 +54400/69092 Loss: 152.595 +57600/69092 Loss: 153.678 +60800/69092 Loss: 154.111 +64000/69092 Loss: 155.239 +67200/69092 Loss: 151.756 +Training time 0:01:57.211614 +Epoch: 252 Average loss: 152.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 252) +0/69092 Loss: 152.495 +3200/69092 Loss: 150.697 +6400/69092 Loss: 152.906 +9600/69092 Loss: 154.209 +12800/69092 Loss: 151.907 +16000/69092 Loss: 153.116 +19200/69092 Loss: 153.199 +22400/69092 Loss: 157.065 +25600/69092 Loss: 153.429 +28800/69092 Loss: 150.678 +32000/69092 Loss: 154.541 +35200/69092 Loss: 151.967 +38400/69092 Loss: 150.193 +41600/69092 Loss: 152.339 +44800/69092 Loss: 152.816 +48000/69092 Loss: 153.139 +51200/69092 Loss: 152.789 +54400/69092 Loss: 154.099 +57600/69092 Loss: 151.841 +60800/69092 Loss: 149.700 +64000/69092 Loss: 151.373 +67200/69092 Loss: 154.340 +Training time 0:01:58.622072 +Epoch: 253 Average loss: 152.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 253) +0/69092 Loss: 154.265 +3200/69092 Loss: 154.588 +6400/69092 Loss: 153.872 +9600/69092 Loss: 153.735 +12800/69092 Loss: 151.987 +16000/69092 Loss: 154.820 +19200/69092 Loss: 153.018 +22400/69092 Loss: 152.302 +25600/69092 Loss: 148.332 +28800/69092 Loss: 151.921 +32000/69092 Loss: 152.113 +35200/69092 Loss: 152.645 +38400/69092 Loss: 153.627 +41600/69092 Loss: 152.151 +44800/69092 Loss: 151.182 +48000/69092 Loss: 155.992 +51200/69092 Loss: 153.104 +54400/69092 Loss: 153.117 +57600/69092 Loss: 151.015 +60800/69092 Loss: 152.780 +64000/69092 Loss: 151.153 +67200/69092 Loss: 151.886 +Training time 0:01:57.786232 +Epoch: 254 Average loss: 152.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 254) +0/69092 Loss: 164.848 +3200/69092 Loss: 154.808 +6400/69092 Loss: 151.647 +9600/69092 Loss: 152.834 +12800/69092 Loss: 152.288 +16000/69092 Loss: 149.960 +19200/69092 Loss: 152.225 +22400/69092 Loss: 153.333 +25600/69092 Loss: 153.560 +28800/69092 Loss: 151.350 +32000/69092 Loss: 153.601 +35200/69092 Loss: 152.374 +38400/69092 Loss: 153.109 +41600/69092 Loss: 153.594 +44800/69092 Loss: 153.065 +48000/69092 Loss: 154.874 +51200/69092 Loss: 152.092 +54400/69092 Loss: 154.703 +57600/69092 Loss: 153.148 +60800/69092 Loss: 151.717 +64000/69092 Loss: 151.697 +67200/69092 Loss: 150.450 +Training time 0:01:57.186922 +Epoch: 255 Average loss: 152.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 255) +0/69092 Loss: 159.468 +3200/69092 Loss: 149.750 +6400/69092 Loss: 150.201 +9600/69092 Loss: 153.377 +12800/69092 Loss: 152.825 +16000/69092 Loss: 155.122 +19200/69092 Loss: 151.268 +22400/69092 Loss: 151.344 +25600/69092 Loss: 154.080 +28800/69092 Loss: 153.874 +32000/69092 Loss: 152.653 +35200/69092 Loss: 150.462 +38400/69092 Loss: 154.206 +41600/69092 Loss: 152.439 +44800/69092 Loss: 153.870 +48000/69092 Loss: 151.248 +51200/69092 Loss: 155.585 +54400/69092 Loss: 152.482 +57600/69092 Loss: 154.297 +60800/69092 Loss: 151.850 +64000/69092 Loss: 153.208 +67200/69092 Loss: 152.750 +Training time 0:01:57.968381 +Epoch: 256 Average loss: 152.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 256) +0/69092 Loss: 156.280 +3200/69092 Loss: 152.914 +6400/69092 Loss: 152.317 +9600/69092 Loss: 152.924 +12800/69092 Loss: 155.169 +16000/69092 Loss: 150.258 +19200/69092 Loss: 151.012 +22400/69092 Loss: 150.593 +25600/69092 Loss: 152.653 +28800/69092 Loss: 155.055 +32000/69092 Loss: 155.057 +35200/69092 Loss: 151.790 +38400/69092 Loss: 153.150 +41600/69092 Loss: 154.666 +44800/69092 Loss: 150.037 +48000/69092 Loss: 152.272 +51200/69092 Loss: 151.922 +54400/69092 Loss: 155.862 +57600/69092 Loss: 151.559 +60800/69092 Loss: 154.010 +64000/69092 Loss: 153.064 +67200/69092 Loss: 151.706 +Training time 0:01:57.276543 +Epoch: 257 Average loss: 152.76 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 257) +0/69092 Loss: 142.211 +3200/69092 Loss: 151.189 +6400/69092 Loss: 152.004 +9600/69092 Loss: 151.198 +12800/69092 Loss: 152.895 +16000/69092 Loss: 151.605 +19200/69092 Loss: 152.305 +22400/69092 Loss: 155.254 +25600/69092 Loss: 153.309 +28800/69092 Loss: 153.986 +32000/69092 Loss: 152.648 +35200/69092 Loss: 153.982 +38400/69092 Loss: 155.367 +41600/69092 Loss: 153.210 +44800/69092 Loss: 151.697 +48000/69092 Loss: 151.390 +51200/69092 Loss: 149.967 +54400/69092 Loss: 153.383 +57600/69092 Loss: 151.912 +60800/69092 Loss: 154.006 +64000/69092 Loss: 151.930 +67200/69092 Loss: 152.065 +Training time 0:01:56.878804 +Epoch: 258 Average loss: 152.65 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 258) +0/69092 Loss: 158.911 +3200/69092 Loss: 153.411 +6400/69092 Loss: 150.013 +9600/69092 Loss: 152.422 +12800/69092 Loss: 152.190 +16000/69092 Loss: 150.353 +19200/69092 Loss: 152.823 +22400/69092 Loss: 154.977 +25600/69092 Loss: 152.330 +28800/69092 Loss: 151.853 +32000/69092 Loss: 154.677 +35200/69092 Loss: 153.071 +38400/69092 Loss: 153.771 +41600/69092 Loss: 150.395 +44800/69092 Loss: 152.291 +48000/69092 Loss: 154.876 +51200/69092 Loss: 152.035 +54400/69092 Loss: 153.179 +57600/69092 Loss: 152.952 +60800/69092 Loss: 152.539 +64000/69092 Loss: 151.809 +67200/69092 Loss: 154.798 +Training time 0:01:57.443749 +Epoch: 259 Average loss: 152.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 259) +0/69092 Loss: 149.823 +3200/69092 Loss: 151.102 +6400/69092 Loss: 152.268 +9600/69092 Loss: 152.794 +12800/69092 Loss: 152.513 +16000/69092 Loss: 150.592 +19200/69092 Loss: 154.891 +22400/69092 Loss: 152.223 +25600/69092 Loss: 153.607 +28800/69092 Loss: 153.653 +32000/69092 Loss: 153.814 +35200/69092 Loss: 154.163 +38400/69092 Loss: 153.399 +41600/69092 Loss: 151.809 +44800/69092 Loss: 154.830 +48000/69092 Loss: 154.203 +51200/69092 Loss: 155.129 +54400/69092 Loss: 150.845 +57600/69092 Loss: 153.779 +60800/69092 Loss: 153.241 +64000/69092 Loss: 151.113 +67200/69092 Loss: 151.490 +Training time 0:01:57.874040 +Epoch: 260 Average loss: 152.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 260) +0/69092 Loss: 160.968 +3200/69092 Loss: 153.856 +6400/69092 Loss: 151.266 +9600/69092 Loss: 153.994 +12800/69092 Loss: 154.312 +16000/69092 Loss: 153.076 +19200/69092 Loss: 153.044 +22400/69092 Loss: 150.164 +25600/69092 Loss: 153.244 +28800/69092 Loss: 151.634 +32000/69092 Loss: 151.537 +35200/69092 Loss: 151.893 +38400/69092 Loss: 153.561 +41600/69092 Loss: 152.941 +44800/69092 Loss: 150.265 +48000/69092 Loss: 154.725 +51200/69092 Loss: 151.257 +54400/69092 Loss: 153.929 +57600/69092 Loss: 157.241 +60800/69092 Loss: 151.191 +64000/69092 Loss: 150.971 +67200/69092 Loss: 150.893 +Training time 0:01:58.076517 +Epoch: 261 Average loss: 152.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 261) +0/69092 Loss: 147.421 +3200/69092 Loss: 150.568 +6400/69092 Loss: 153.908 +9600/69092 Loss: 151.035 +12800/69092 Loss: 153.411 +16000/69092 Loss: 153.190 +19200/69092 Loss: 154.554 +22400/69092 Loss: 152.081 +25600/69092 Loss: 152.818 +28800/69092 Loss: 154.111 +32000/69092 Loss: 150.059 +35200/69092 Loss: 150.468 +38400/69092 Loss: 152.673 +41600/69092 Loss: 152.803 +44800/69092 Loss: 152.556 +48000/69092 Loss: 154.632 +51200/69092 Loss: 152.632 +54400/69092 Loss: 154.996 +57600/69092 Loss: 153.504 +60800/69092 Loss: 150.261 +64000/69092 Loss: 152.706 +67200/69092 Loss: 152.677 +Training time 0:01:57.302088 +Epoch: 262 Average loss: 152.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 262) +0/69092 Loss: 142.283 +3200/69092 Loss: 154.785 +6400/69092 Loss: 154.332 +9600/69092 Loss: 156.019 +12800/69092 Loss: 151.168 +16000/69092 Loss: 153.149 +19200/69092 Loss: 152.787 +22400/69092 Loss: 153.482 +25600/69092 Loss: 149.799 +28800/69092 Loss: 152.477 +32000/69092 Loss: 151.953 +35200/69092 Loss: 152.393 +38400/69092 Loss: 152.471 +41600/69092 Loss: 151.076 +44800/69092 Loss: 152.994 +48000/69092 Loss: 153.052 +51200/69092 Loss: 153.551 +54400/69092 Loss: 150.230 +57600/69092 Loss: 156.880 +60800/69092 Loss: 153.239 +64000/69092 Loss: 150.834 +67200/69092 Loss: 150.893 +Training time 0:01:57.486335 +Epoch: 263 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 263) +0/69092 Loss: 154.675 +3200/69092 Loss: 151.951 +6400/69092 Loss: 152.441 +9600/69092 Loss: 152.127 +12800/69092 Loss: 155.155 +16000/69092 Loss: 154.091 +19200/69092 Loss: 151.372 +22400/69092 Loss: 151.638 +25600/69092 Loss: 153.164 +28800/69092 Loss: 154.142 +32000/69092 Loss: 154.530 +35200/69092 Loss: 153.171 +38400/69092 Loss: 153.054 +41600/69092 Loss: 153.564 +44800/69092 Loss: 153.418 +48000/69092 Loss: 153.077 +51200/69092 Loss: 149.604 +54400/69092 Loss: 150.347 +57600/69092 Loss: 152.601 +60800/69092 Loss: 152.954 +64000/69092 Loss: 155.343 +67200/69092 Loss: 153.840 +Training time 0:01:59.114386 +Epoch: 264 Average loss: 152.89 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 264) +0/69092 Loss: 139.263 +3200/69092 Loss: 154.954 +6400/69092 Loss: 153.696 +9600/69092 Loss: 152.386 +12800/69092 Loss: 152.791 +16000/69092 Loss: 151.914 +19200/69092 Loss: 149.500 +22400/69092 Loss: 154.803 +25600/69092 Loss: 153.657 +28800/69092 Loss: 152.668 +32000/69092 Loss: 153.327 +35200/69092 Loss: 153.247 +38400/69092 Loss: 152.760 +41600/69092 Loss: 152.406 +44800/69092 Loss: 154.987 +48000/69092 Loss: 152.898 +51200/69092 Loss: 153.748 +54400/69092 Loss: 151.533 +57600/69092 Loss: 153.668 +60800/69092 Loss: 149.640 +64000/69092 Loss: 151.914 +67200/69092 Loss: 152.941 +Training time 0:01:57.698918 +Epoch: 265 Average loss: 152.84 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 265) +0/69092 Loss: 155.013 +3200/69092 Loss: 151.811 +6400/69092 Loss: 155.869 +9600/69092 Loss: 152.115 +12800/69092 Loss: 152.942 +16000/69092 Loss: 152.425 +19200/69092 Loss: 153.377 +22400/69092 Loss: 151.957 +25600/69092 Loss: 152.837 +28800/69092 Loss: 152.242 +32000/69092 Loss: 151.534 +35200/69092 Loss: 156.065 +38400/69092 Loss: 152.275 +41600/69092 Loss: 153.260 +44800/69092 Loss: 152.785 +48000/69092 Loss: 153.206 +51200/69092 Loss: 152.334 +54400/69092 Loss: 154.073 +57600/69092 Loss: 149.882 +60800/69092 Loss: 151.589 +64000/69092 Loss: 154.203 +67200/69092 Loss: 152.275 +Training time 0:01:57.469466 +Epoch: 266 Average loss: 152.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 266) +0/69092 Loss: 141.726 +3200/69092 Loss: 155.509 +6400/69092 Loss: 152.069 +9600/69092 Loss: 151.864 +12800/69092 Loss: 153.164 +16000/69092 Loss: 151.388 +19200/69092 Loss: 152.751 +22400/69092 Loss: 150.445 +25600/69092 Loss: 152.793 +28800/69092 Loss: 154.118 +32000/69092 Loss: 151.966 +35200/69092 Loss: 154.259 +38400/69092 Loss: 151.459 +41600/69092 Loss: 153.852 +44800/69092 Loss: 150.929 +48000/69092 Loss: 153.467 +51200/69092 Loss: 150.057 +54400/69092 Loss: 152.735 +57600/69092 Loss: 153.921 +60800/69092 Loss: 153.803 +64000/69092 Loss: 154.605 +67200/69092 Loss: 152.399 +Training time 0:01:58.696024 +Epoch: 267 Average loss: 152.82 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 267) +0/69092 Loss: 162.807 +3200/69092 Loss: 152.459 +6400/69092 Loss: 151.132 +9600/69092 Loss: 154.186 +12800/69092 Loss: 153.120 +16000/69092 Loss: 151.405 +19200/69092 Loss: 154.002 +22400/69092 Loss: 154.980 +25600/69092 Loss: 152.142 +28800/69092 Loss: 153.381 +32000/69092 Loss: 152.718 +35200/69092 Loss: 153.642 +38400/69092 Loss: 150.856 +41600/69092 Loss: 152.572 +44800/69092 Loss: 151.835 +48000/69092 Loss: 151.172 +51200/69092 Loss: 151.984 +54400/69092 Loss: 152.436 +57600/69092 Loss: 153.853 +60800/69092 Loss: 152.823 +64000/69092 Loss: 152.601 +67200/69092 Loss: 151.127 +Training time 0:01:58.643948 +Epoch: 268 Average loss: 152.59 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 268) +0/69092 Loss: 146.007 +3200/69092 Loss: 152.665 +6400/69092 Loss: 148.254 +9600/69092 Loss: 152.633 +12800/69092 Loss: 153.458 +16000/69092 Loss: 152.366 +19200/69092 Loss: 152.990 +22400/69092 Loss: 150.128 +25600/69092 Loss: 155.924 +28800/69092 Loss: 152.743 +32000/69092 Loss: 152.780 +35200/69092 Loss: 153.090 +38400/69092 Loss: 153.323 +41600/69092 Loss: 154.732 +44800/69092 Loss: 152.933 +48000/69092 Loss: 150.215 +51200/69092 Loss: 154.162 +54400/69092 Loss: 153.797 +57600/69092 Loss: 152.727 +60800/69092 Loss: 151.417 +64000/69092 Loss: 153.367 +67200/69092 Loss: 152.949 +Training time 0:01:57.551861 +Epoch: 269 Average loss: 152.80 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 269) +0/69092 Loss: 149.141 +3200/69092 Loss: 151.763 +6400/69092 Loss: 155.300 +9600/69092 Loss: 152.559 +12800/69092 Loss: 153.875 +16000/69092 Loss: 152.526 +19200/69092 Loss: 154.846 +22400/69092 Loss: 154.796 +25600/69092 Loss: 155.227 +28800/69092 Loss: 153.401 +32000/69092 Loss: 152.158 +35200/69092 Loss: 149.651 +38400/69092 Loss: 153.244 +41600/69092 Loss: 150.770 +44800/69092 Loss: 149.556 +48000/69092 Loss: 152.984 +51200/69092 Loss: 152.080 +54400/69092 Loss: 152.754 +57600/69092 Loss: 153.258 +60800/69092 Loss: 150.837 +64000/69092 Loss: 152.301 +67200/69092 Loss: 151.229 +Training time 0:01:57.921661 +Epoch: 270 Average loss: 152.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 270) +0/69092 Loss: 142.933 +3200/69092 Loss: 152.796 +6400/69092 Loss: 150.910 +9600/69092 Loss: 153.081 +12800/69092 Loss: 153.405 +16000/69092 Loss: 152.920 +19200/69092 Loss: 152.042 +22400/69092 Loss: 154.867 +25600/69092 Loss: 153.590 +28800/69092 Loss: 152.184 +32000/69092 Loss: 153.050 +35200/69092 Loss: 153.680 +38400/69092 Loss: 151.029 +41600/69092 Loss: 154.061 +44800/69092 Loss: 152.405 +48000/69092 Loss: 150.160 +51200/69092 Loss: 151.964 +54400/69092 Loss: 154.095 +57600/69092 Loss: 151.362 +60800/69092 Loss: 153.141 +64000/69092 Loss: 154.389 +67200/69092 Loss: 154.353 +Training time 0:01:59.452528 +Epoch: 271 Average loss: 152.87 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 271) +0/69092 Loss: 150.556 +3200/69092 Loss: 153.041 +6400/69092 Loss: 153.402 +9600/69092 Loss: 155.189 +12800/69092 Loss: 152.243 +16000/69092 Loss: 151.945 +19200/69092 Loss: 154.608 +22400/69092 Loss: 152.223 +25600/69092 Loss: 154.073 +28800/69092 Loss: 153.556 +32000/69092 Loss: 150.664 +35200/69092 Loss: 151.851 +38400/69092 Loss: 151.498 +41600/69092 Loss: 152.595 +44800/69092 Loss: 152.928 +48000/69092 Loss: 153.242 +51200/69092 Loss: 153.713 +54400/69092 Loss: 152.356 +57600/69092 Loss: 153.249 +60800/69092 Loss: 152.940 +64000/69092 Loss: 152.066 +67200/69092 Loss: 151.505 +Training time 0:01:57.362015 +Epoch: 272 Average loss: 152.81 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 272) +0/69092 Loss: 142.003 +3200/69092 Loss: 151.796 +6400/69092 Loss: 151.929 +9600/69092 Loss: 150.793 +12800/69092 Loss: 153.583 +16000/69092 Loss: 151.567 +19200/69092 Loss: 151.955 +22400/69092 Loss: 153.185 +25600/69092 Loss: 154.144 +28800/69092 Loss: 156.695 +32000/69092 Loss: 154.361 +35200/69092 Loss: 149.322 +38400/69092 Loss: 152.257 +41600/69092 Loss: 152.399 +44800/69092 Loss: 153.998 +48000/69092 Loss: 151.968 +51200/69092 Loss: 153.755 +54400/69092 Loss: 151.921 +57600/69092 Loss: 151.026 +60800/69092 Loss: 153.841 +64000/69092 Loss: 153.881 +67200/69092 Loss: 152.031 +Training time 0:01:58.291481 +Epoch: 273 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 273) +0/69092 Loss: 158.201 +3200/69092 Loss: 152.413 +6400/69092 Loss: 153.468 +9600/69092 Loss: 155.352 +12800/69092 Loss: 152.032 +16000/69092 Loss: 157.388 +19200/69092 Loss: 151.542 +22400/69092 Loss: 153.839 +25600/69092 Loss: 149.530 +28800/69092 Loss: 154.402 +32000/69092 Loss: 151.130 +35200/69092 Loss: 151.442 +38400/69092 Loss: 152.801 +41600/69092 Loss: 151.071 +44800/69092 Loss: 151.423 +48000/69092 Loss: 150.880 +51200/69092 Loss: 150.917 +54400/69092 Loss: 150.763 +57600/69092 Loss: 153.037 +60800/69092 Loss: 153.487 +64000/69092 Loss: 151.277 +67200/69092 Loss: 150.896 +Training time 0:01:58.769421 +Epoch: 274 Average loss: 152.42 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 274) +0/69092 Loss: 160.438 +3200/69092 Loss: 152.681 +6400/69092 Loss: 152.843 +9600/69092 Loss: 152.961 +12800/69092 Loss: 152.704 +16000/69092 Loss: 153.302 +19200/69092 Loss: 153.046 +22400/69092 Loss: 153.274 +25600/69092 Loss: 153.559 +28800/69092 Loss: 152.442 +32000/69092 Loss: 153.256 +35200/69092 Loss: 154.847 +38400/69092 Loss: 152.374 +41600/69092 Loss: 153.332 +44800/69092 Loss: 151.789 +48000/69092 Loss: 153.424 +51200/69092 Loss: 150.841 +54400/69092 Loss: 151.940 +57600/69092 Loss: 151.622 +60800/69092 Loss: 149.453 +64000/69092 Loss: 152.197 +67200/69092 Loss: 153.990 +Training time 0:01:58.371440 +Epoch: 275 Average loss: 152.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 275) +0/69092 Loss: 141.484 +3200/69092 Loss: 149.177 +6400/69092 Loss: 152.234 +9600/69092 Loss: 154.466 +12800/69092 Loss: 153.979 +16000/69092 Loss: 152.520 +19200/69092 Loss: 150.125 +22400/69092 Loss: 153.602 +25600/69092 Loss: 150.493 +28800/69092 Loss: 153.142 +32000/69092 Loss: 151.109 +35200/69092 Loss: 154.505 +38400/69092 Loss: 150.900 +41600/69092 Loss: 153.333 +44800/69092 Loss: 152.536 +48000/69092 Loss: 153.065 +51200/69092 Loss: 154.529 +54400/69092 Loss: 153.817 +57600/69092 Loss: 152.384 +60800/69092 Loss: 154.093 +64000/69092 Loss: 152.869 +67200/69092 Loss: 154.160 +Training time 0:01:58.752701 +Epoch: 276 Average loss: 152.78 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 276) +0/69092 Loss: 161.542 +3200/69092 Loss: 151.479 +6400/69092 Loss: 151.229 +9600/69092 Loss: 151.512 +12800/69092 Loss: 155.455 +16000/69092 Loss: 152.145 +19200/69092 Loss: 153.118 +22400/69092 Loss: 149.699 +25600/69092 Loss: 155.748 +28800/69092 Loss: 154.457 +32000/69092 Loss: 150.352 +35200/69092 Loss: 152.252 +38400/69092 Loss: 151.361 +41600/69092 Loss: 152.664 +44800/69092 Loss: 153.569 +48000/69092 Loss: 152.681 +51200/69092 Loss: 152.369 +54400/69092 Loss: 154.724 +57600/69092 Loss: 153.242 +60800/69092 Loss: 152.829 +64000/69092 Loss: 153.175 +67200/69092 Loss: 151.537 +Training time 0:01:57.784326 +Epoch: 277 Average loss: 152.69 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 277) +0/69092 Loss: 149.280 +3200/69092 Loss: 154.593 +6400/69092 Loss: 152.479 +9600/69092 Loss: 154.989 +12800/69092 Loss: 151.323 +16000/69092 Loss: 151.349 +19200/69092 Loss: 151.386 +22400/69092 Loss: 153.495 +25600/69092 Loss: 152.349 +28800/69092 Loss: 151.247 +32000/69092 Loss: 150.856 +35200/69092 Loss: 151.904 +38400/69092 Loss: 152.026 +41600/69092 Loss: 153.252 +44800/69092 Loss: 154.163 +48000/69092 Loss: 155.559 +51200/69092 Loss: 151.879 +54400/69092 Loss: 151.481 +57600/69092 Loss: 152.619 +60800/69092 Loss: 152.518 +64000/69092 Loss: 153.189 +67200/69092 Loss: 152.749 +Training time 0:01:57.859074 +Epoch: 278 Average loss: 152.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 278) +0/69092 Loss: 156.299 +3200/69092 Loss: 151.066 +6400/69092 Loss: 151.783 +9600/69092 Loss: 155.925 +12800/69092 Loss: 152.142 +16000/69092 Loss: 152.426 +19200/69092 Loss: 151.780 +22400/69092 Loss: 152.905 +25600/69092 Loss: 149.619 +28800/69092 Loss: 151.266 +32000/69092 Loss: 156.912 +35200/69092 Loss: 151.277 +38400/69092 Loss: 151.305 +41600/69092 Loss: 153.080 +44800/69092 Loss: 153.298 +48000/69092 Loss: 152.996 +51200/69092 Loss: 152.664 +54400/69092 Loss: 153.955 +57600/69092 Loss: 154.590 +60800/69092 Loss: 149.706 +64000/69092 Loss: 152.275 +67200/69092 Loss: 152.630 +Training time 0:01:58.990335 +Epoch: 279 Average loss: 152.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 279) +0/69092 Loss: 143.356 +3200/69092 Loss: 152.061 +6400/69092 Loss: 154.725 +9600/69092 Loss: 153.405 +12800/69092 Loss: 151.985 +16000/69092 Loss: 150.851 +19200/69092 Loss: 153.406 +22400/69092 Loss: 151.505 +25600/69092 Loss: 153.520 +28800/69092 Loss: 151.705 +32000/69092 Loss: 152.698 +35200/69092 Loss: 151.784 +38400/69092 Loss: 151.416 +41600/69092 Loss: 152.642 +44800/69092 Loss: 153.926 +48000/69092 Loss: 151.930 +51200/69092 Loss: 154.906 +54400/69092 Loss: 150.797 +57600/69092 Loss: 153.323 +60800/69092 Loss: 152.949 +64000/69092 Loss: 153.460 +67200/69092 Loss: 151.746 +Training time 0:01:58.308913 +Epoch: 280 Average loss: 152.63 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 280) +0/69092 Loss: 142.265 +3200/69092 Loss: 151.712 +6400/69092 Loss: 151.126 +9600/69092 Loss: 152.569 +12800/69092 Loss: 151.902 +16000/69092 Loss: 152.489 +19200/69092 Loss: 152.019 +22400/69092 Loss: 151.205 +25600/69092 Loss: 151.586 +28800/69092 Loss: 152.102 +32000/69092 Loss: 150.318 +35200/69092 Loss: 151.045 +38400/69092 Loss: 155.814 +41600/69092 Loss: 154.385 +44800/69092 Loss: 152.161 +48000/69092 Loss: 154.467 +51200/69092 Loss: 150.515 +54400/69092 Loss: 152.695 +57600/69092 Loss: 153.329 +60800/69092 Loss: 155.119 +64000/69092 Loss: 155.157 +67200/69092 Loss: 152.908 +Training time 0:01:58.651631 +Epoch: 281 Average loss: 152.60 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 281) +0/69092 Loss: 151.869 +3200/69092 Loss: 153.188 +6400/69092 Loss: 152.571 +9600/69092 Loss: 152.404 +12800/69092 Loss: 153.798 +16000/69092 Loss: 149.458 +19200/69092 Loss: 153.177 +22400/69092 Loss: 150.964 +25600/69092 Loss: 150.271 +28800/69092 Loss: 153.199 +32000/69092 Loss: 155.340 +35200/69092 Loss: 152.222 +38400/69092 Loss: 151.226 +41600/69092 Loss: 154.360 +44800/69092 Loss: 155.158 +48000/69092 Loss: 154.387 +51200/69092 Loss: 150.845 +54400/69092 Loss: 151.437 +57600/69092 Loss: 153.333 +60800/69092 Loss: 151.227 +64000/69092 Loss: 153.513 +67200/69092 Loss: 153.691 +Training time 0:01:57.497398 +Epoch: 282 Average loss: 152.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 282) +0/69092 Loss: 165.902 +3200/69092 Loss: 151.715 +6400/69092 Loss: 153.018 +9600/69092 Loss: 151.757 +12800/69092 Loss: 151.362 +16000/69092 Loss: 152.003 +19200/69092 Loss: 150.494 +22400/69092 Loss: 154.354 +25600/69092 Loss: 154.707 +28800/69092 Loss: 154.283 +32000/69092 Loss: 151.562 +35200/69092 Loss: 155.610 +38400/69092 Loss: 149.549 +41600/69092 Loss: 152.613 +44800/69092 Loss: 149.132 +48000/69092 Loss: 150.932 +51200/69092 Loss: 152.113 +54400/69092 Loss: 153.424 +57600/69092 Loss: 153.880 +60800/69092 Loss: 153.068 +64000/69092 Loss: 154.432 +67200/69092 Loss: 154.038 +Training time 0:01:59.049903 +Epoch: 283 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 283) +0/69092 Loss: 174.708 +3200/69092 Loss: 151.921 +6400/69092 Loss: 149.889 +9600/69092 Loss: 151.991 +12800/69092 Loss: 151.384 +16000/69092 Loss: 151.687 +19200/69092 Loss: 152.362 +22400/69092 Loss: 151.949 +25600/69092 Loss: 154.865 +28800/69092 Loss: 151.209 +32000/69092 Loss: 151.930 +35200/69092 Loss: 153.212 +38400/69092 Loss: 150.856 +41600/69092 Loss: 151.925 +44800/69092 Loss: 153.258 +48000/69092 Loss: 150.260 +51200/69092 Loss: 150.451 +54400/69092 Loss: 154.306 +57600/69092 Loss: 153.019 +60800/69092 Loss: 152.606 +64000/69092 Loss: 152.802 +67200/69092 Loss: 154.756 +Training time 0:01:57.222668 +Epoch: 284 Average loss: 152.33 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 284) +0/69092 Loss: 148.232 +3200/69092 Loss: 152.646 +6400/69092 Loss: 151.825 +9600/69092 Loss: 152.101 +12800/69092 Loss: 152.151 +16000/69092 Loss: 150.848 +19200/69092 Loss: 151.938 +22400/69092 Loss: 150.148 +25600/69092 Loss: 153.628 +28800/69092 Loss: 151.971 +32000/69092 Loss: 151.637 +35200/69092 Loss: 151.882 +38400/69092 Loss: 153.685 +41600/69092 Loss: 152.497 +44800/69092 Loss: 151.789 +48000/69092 Loss: 153.182 +51200/69092 Loss: 154.075 +54400/69092 Loss: 154.834 +57600/69092 Loss: 152.172 +60800/69092 Loss: 153.122 +64000/69092 Loss: 153.420 +67200/69092 Loss: 153.720 +Training time 0:01:56.426317 +Epoch: 285 Average loss: 152.61 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 285) +0/69092 Loss: 154.183 +3200/69092 Loss: 150.867 +6400/69092 Loss: 154.852 +9600/69092 Loss: 152.651 +12800/69092 Loss: 153.153 +16000/69092 Loss: 151.580 +19200/69092 Loss: 151.932 +22400/69092 Loss: 154.201 +25600/69092 Loss: 151.271 +28800/69092 Loss: 152.627 +32000/69092 Loss: 153.525 +35200/69092 Loss: 151.554 +38400/69092 Loss: 152.553 +41600/69092 Loss: 154.507 +44800/69092 Loss: 152.794 +48000/69092 Loss: 153.166 +51200/69092 Loss: 152.614 +54400/69092 Loss: 154.548 +57600/69092 Loss: 152.935 +60800/69092 Loss: 151.850 +64000/69092 Loss: 151.610 +67200/69092 Loss: 153.154 +Training time 0:01:57.813196 +Epoch: 286 Average loss: 152.77 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 286) +0/69092 Loss: 148.648 +3200/69092 Loss: 154.444 +6400/69092 Loss: 153.393 +9600/69092 Loss: 151.211 +12800/69092 Loss: 153.246 +16000/69092 Loss: 152.464 +19200/69092 Loss: 151.482 +22400/69092 Loss: 152.856 +25600/69092 Loss: 151.314 +28800/69092 Loss: 150.153 +32000/69092 Loss: 151.764 +35200/69092 Loss: 152.335 +38400/69092 Loss: 150.711 +41600/69092 Loss: 154.129 +44800/69092 Loss: 152.080 +48000/69092 Loss: 153.004 +51200/69092 Loss: 153.742 +54400/69092 Loss: 153.686 +57600/69092 Loss: 152.916 +60800/69092 Loss: 154.399 +64000/69092 Loss: 151.379 +67200/69092 Loss: 152.140 +Training time 0:01:57.746516 +Epoch: 287 Average loss: 152.45 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 287) +0/69092 Loss: 138.473 +3200/69092 Loss: 150.914 +6400/69092 Loss: 149.557 +9600/69092 Loss: 155.582 +12800/69092 Loss: 155.137 +16000/69092 Loss: 153.468 +19200/69092 Loss: 150.097 +22400/69092 Loss: 150.141 +25600/69092 Loss: 154.457 +28800/69092 Loss: 151.908 +32000/69092 Loss: 150.218 +35200/69092 Loss: 153.292 +38400/69092 Loss: 150.264 +41600/69092 Loss: 151.930 +44800/69092 Loss: 153.945 +48000/69092 Loss: 152.658 +51200/69092 Loss: 154.502 +54400/69092 Loss: 152.157 +57600/69092 Loss: 151.399 +60800/69092 Loss: 152.390 +64000/69092 Loss: 152.204 +67200/69092 Loss: 151.642 +Training time 0:01:58.206529 +Epoch: 288 Average loss: 152.32 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 288) +0/69092 Loss: 139.143 +3200/69092 Loss: 151.870 +6400/69092 Loss: 149.610 +9600/69092 Loss: 153.246 +12800/69092 Loss: 152.547 +16000/69092 Loss: 154.961 +19200/69092 Loss: 150.978 +22400/69092 Loss: 150.914 +25600/69092 Loss: 155.167 +28800/69092 Loss: 152.139 +32000/69092 Loss: 153.613 +35200/69092 Loss: 149.871 +38400/69092 Loss: 151.635 +41600/69092 Loss: 153.673 +44800/69092 Loss: 152.072 +48000/69092 Loss: 154.959 +51200/69092 Loss: 154.649 +54400/69092 Loss: 151.008 +57600/69092 Loss: 152.606 +60800/69092 Loss: 151.091 +64000/69092 Loss: 154.021 +67200/69092 Loss: 155.655 +Training time 0:01:58.182080 +Epoch: 289 Average loss: 152.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 289) +0/69092 Loss: 153.771 +3200/69092 Loss: 153.182 +6400/69092 Loss: 156.509 +9600/69092 Loss: 153.219 +12800/69092 Loss: 150.625 +16000/69092 Loss: 150.845 +19200/69092 Loss: 150.406 +22400/69092 Loss: 151.609 +25600/69092 Loss: 152.303 +28800/69092 Loss: 155.698 +32000/69092 Loss: 154.752 +35200/69092 Loss: 152.203 +38400/69092 Loss: 152.052 +41600/69092 Loss: 150.904 +44800/69092 Loss: 153.018 +48000/69092 Loss: 154.200 +51200/69092 Loss: 153.990 +54400/69092 Loss: 150.695 +57600/69092 Loss: 151.786 +60800/69092 Loss: 150.960 +64000/69092 Loss: 153.491 +67200/69092 Loss: 153.766 +Training time 0:01:56.702625 +Epoch: 290 Average loss: 152.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 290) +0/69092 Loss: 144.858 +3200/69092 Loss: 154.124 +6400/69092 Loss: 152.808 +9600/69092 Loss: 152.267 +12800/69092 Loss: 153.314 +16000/69092 Loss: 152.880 +19200/69092 Loss: 152.399 +22400/69092 Loss: 155.578 +25600/69092 Loss: 151.986 +28800/69092 Loss: 154.957 +32000/69092 Loss: 149.377 +35200/69092 Loss: 151.953 +38400/69092 Loss: 153.675 +41600/69092 Loss: 149.530 +44800/69092 Loss: 151.295 +48000/69092 Loss: 152.107 +51200/69092 Loss: 153.384 +54400/69092 Loss: 153.480 +57600/69092 Loss: 152.505 +60800/69092 Loss: 153.533 +64000/69092 Loss: 150.302 +67200/69092 Loss: 152.367 +Training time 0:01:57.117872 +Epoch: 291 Average loss: 152.54 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 291) +0/69092 Loss: 146.660 +3200/69092 Loss: 154.319 +6400/69092 Loss: 150.582 +9600/69092 Loss: 151.213 +12800/69092 Loss: 154.199 +16000/69092 Loss: 152.823 +19200/69092 Loss: 154.952 +22400/69092 Loss: 153.487 +25600/69092 Loss: 155.376 +28800/69092 Loss: 150.760 +32000/69092 Loss: 151.841 +35200/69092 Loss: 151.915 +38400/69092 Loss: 153.543 +41600/69092 Loss: 153.795 +44800/69092 Loss: 151.942 +48000/69092 Loss: 154.003 +51200/69092 Loss: 151.467 +54400/69092 Loss: 152.260 +57600/69092 Loss: 151.282 +60800/69092 Loss: 151.538 +64000/69092 Loss: 150.303 +67200/69092 Loss: 154.587 +Training time 0:01:58.680452 +Epoch: 292 Average loss: 152.64 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 292) +0/69092 Loss: 145.385 +3200/69092 Loss: 151.340 +6400/69092 Loss: 152.098 +9600/69092 Loss: 152.663 +12800/69092 Loss: 155.032 +16000/69092 Loss: 152.518 +19200/69092 Loss: 151.539 +22400/69092 Loss: 154.198 +25600/69092 Loss: 150.988 +28800/69092 Loss: 152.627 +32000/69092 Loss: 149.553 +35200/69092 Loss: 154.579 +38400/69092 Loss: 153.449 +41600/69092 Loss: 152.452 +44800/69092 Loss: 153.757 +48000/69092 Loss: 153.841 +51200/69092 Loss: 154.989 +54400/69092 Loss: 151.559 +57600/69092 Loss: 151.460 +60800/69092 Loss: 150.837 +64000/69092 Loss: 153.636 +67200/69092 Loss: 153.198 +Training time 0:01:57.312848 +Epoch: 293 Average loss: 152.68 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 293) +0/69092 Loss: 159.010 +3200/69092 Loss: 151.893 +6400/69092 Loss: 152.605 +9600/69092 Loss: 154.632 +12800/69092 Loss: 153.891 +16000/69092 Loss: 154.094 +19200/69092 Loss: 152.895 +22400/69092 Loss: 153.460 +25600/69092 Loss: 151.271 +28800/69092 Loss: 152.545 +32000/69092 Loss: 155.276 +35200/69092 Loss: 149.771 +38400/69092 Loss: 152.842 +41600/69092 Loss: 152.335 +44800/69092 Loss: 149.782 +48000/69092 Loss: 151.298 +51200/69092 Loss: 152.164 +54400/69092 Loss: 152.249 +57600/69092 Loss: 154.120 +60800/69092 Loss: 152.138 +64000/69092 Loss: 154.047 +67200/69092 Loss: 154.118 +Training time 0:01:58.901837 +Epoch: 294 Average loss: 152.70 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 294) +0/69092 Loss: 154.872 +3200/69092 Loss: 152.256 +6400/69092 Loss: 151.741 +9600/69092 Loss: 151.242 +12800/69092 Loss: 152.359 +16000/69092 Loss: 152.685 +19200/69092 Loss: 152.911 +22400/69092 Loss: 152.940 +25600/69092 Loss: 150.561 +28800/69092 Loss: 154.254 +32000/69092 Loss: 150.908 +35200/69092 Loss: 148.987 +38400/69092 Loss: 152.038 +41600/69092 Loss: 153.540 +44800/69092 Loss: 152.610 +48000/69092 Loss: 152.271 +51200/69092 Loss: 154.108 +54400/69092 Loss: 153.427 +57600/69092 Loss: 153.687 +60800/69092 Loss: 154.644 +64000/69092 Loss: 155.805 +67200/69092 Loss: 153.871 +Training time 0:01:57.515136 +Epoch: 295 Average loss: 152.72 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 295) +0/69092 Loss: 172.136 +3200/69092 Loss: 154.477 +6400/69092 Loss: 154.377 +9600/69092 Loss: 153.084 +12800/69092 Loss: 152.990 +16000/69092 Loss: 153.255 +19200/69092 Loss: 149.538 +22400/69092 Loss: 151.873 +25600/69092 Loss: 151.863 +28800/69092 Loss: 152.404 +32000/69092 Loss: 153.600 +35200/69092 Loss: 151.885 +38400/69092 Loss: 153.565 +41600/69092 Loss: 153.836 +44800/69092 Loss: 148.658 +48000/69092 Loss: 152.054 +51200/69092 Loss: 153.897 +54400/69092 Loss: 151.908 +57600/69092 Loss: 150.511 +60800/69092 Loss: 154.268 +64000/69092 Loss: 152.153 +67200/69092 Loss: 151.667 +Training time 0:01:58.336184 +Epoch: 296 Average loss: 152.51 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 296) +0/69092 Loss: 154.380 +3200/69092 Loss: 152.538 +6400/69092 Loss: 155.622 +9600/69092 Loss: 152.135 +12800/69092 Loss: 149.899 +16000/69092 Loss: 152.044 +19200/69092 Loss: 152.027 +22400/69092 Loss: 154.125 +25600/69092 Loss: 153.997 +28800/69092 Loss: 151.971 +32000/69092 Loss: 154.026 +35200/69092 Loss: 153.330 +38400/69092 Loss: 153.267 +41600/69092 Loss: 152.542 +44800/69092 Loss: 153.030 +48000/69092 Loss: 150.755 +51200/69092 Loss: 150.433 +54400/69092 Loss: 151.056 +57600/69092 Loss: 151.493 +60800/69092 Loss: 150.925 +64000/69092 Loss: 153.196 +67200/69092 Loss: 153.390 +Training time 0:01:58.935444 +Epoch: 297 Average loss: 152.53 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 297) +0/69092 Loss: 162.380 +3200/69092 Loss: 152.809 +6400/69092 Loss: 153.967 +9600/69092 Loss: 152.654 +12800/69092 Loss: 153.532 +16000/69092 Loss: 150.451 +19200/69092 Loss: 154.726 +22400/69092 Loss: 152.309 +25600/69092 Loss: 156.937 +28800/69092 Loss: 151.914 +32000/69092 Loss: 151.362 +35200/69092 Loss: 151.774 +38400/69092 Loss: 150.487 +41600/69092 Loss: 152.882 +44800/69092 Loss: 153.183 +48000/69092 Loss: 152.330 +51200/69092 Loss: 151.612 +54400/69092 Loss: 151.251 +57600/69092 Loss: 149.921 +60800/69092 Loss: 152.920 +64000/69092 Loss: 154.771 +67200/69092 Loss: 152.781 +Training time 0:01:58.921640 +Epoch: 298 Average loss: 152.66 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 298) +0/69092 Loss: 140.366 +3200/69092 Loss: 151.046 +6400/69092 Loss: 151.239 +9600/69092 Loss: 151.586 +12800/69092 Loss: 154.627 +16000/69092 Loss: 153.641 +19200/69092 Loss: 148.075 +22400/69092 Loss: 151.608 +25600/69092 Loss: 153.601 +28800/69092 Loss: 152.342 +32000/69092 Loss: 151.909 +35200/69092 Loss: 155.055 +38400/69092 Loss: 150.865 +41600/69092 Loss: 153.405 +44800/69092 Loss: 155.919 +48000/69092 Loss: 152.391 +51200/69092 Loss: 154.713 +54400/69092 Loss: 153.119 +57600/69092 Loss: 153.990 +60800/69092 Loss: 153.354 +64000/69092 Loss: 153.947 +67200/69092 Loss: 153.847 +Training time 0:01:58.544115 +Epoch: 299 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 299) +0/69092 Loss: 150.468 +3200/69092 Loss: 151.150 +6400/69092 Loss: 152.774 +9600/69092 Loss: 154.188 +12800/69092 Loss: 152.119 +16000/69092 Loss: 151.245 +19200/69092 Loss: 153.454 +22400/69092 Loss: 154.601 +25600/69092 Loss: 153.383 +28800/69092 Loss: 154.201 +32000/69092 Loss: 151.125 +35200/69092 Loss: 152.874 +38400/69092 Loss: 151.267 +41600/69092 Loss: 150.446 +44800/69092 Loss: 152.735 +48000/69092 Loss: 153.413 +51200/69092 Loss: 153.193 +54400/69092 Loss: 152.989 +57600/69092 Loss: 152.980 +60800/69092 Loss: 152.818 +64000/69092 Loss: 153.845 +67200/69092 Loss: 150.960 +Training time 0:01:58.547261 +Epoch: 300 Average loss: 152.71 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 300) +0/69092 Loss: 143.955 +3200/69092 Loss: 151.614 +6400/69092 Loss: 153.480 +9600/69092 Loss: 150.109 +12800/69092 Loss: 154.329 +16000/69092 Loss: 153.942 +19200/69092 Loss: 153.163 +22400/69092 Loss: 150.900 +25600/69092 Loss: 153.223 +28800/69092 Loss: 153.431 +32000/69092 Loss: 151.569 +35200/69092 Loss: 156.695 +38400/69092 Loss: 150.314 +41600/69092 Loss: 152.747 +44800/69092 Loss: 150.995 +48000/69092 Loss: 151.577 +51200/69092 Loss: 153.174 +54400/69092 Loss: 150.933 +57600/69092 Loss: 153.805 +60800/69092 Loss: 150.738 +64000/69092 Loss: 151.947 +67200/69092 Loss: 151.593 +Training time 0:01:58.548118 +Epoch: 301 Average loss: 152.46 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 301) +0/69092 Loss: 147.279 +3200/69092 Loss: 155.644 +6400/69092 Loss: 151.232 +9600/69092 Loss: 151.488 +12800/69092 Loss: 153.075 +16000/69092 Loss: 152.990 +19200/69092 Loss: 152.349 +22400/69092 Loss: 151.458 +25600/69092 Loss: 152.777 +28800/69092 Loss: 156.447 +32000/69092 Loss: 155.383 +35200/69092 Loss: 149.996 +38400/69092 Loss: 150.005 +41600/69092 Loss: 152.548 +44800/69092 Loss: 150.427 +48000/69092 Loss: 152.403 +51200/69092 Loss: 153.461 +54400/69092 Loss: 152.818 +57600/69092 Loss: 153.848 +60800/69092 Loss: 151.459 +64000/69092 Loss: 153.510 +67200/69092 Loss: 153.262 +Training time 0:01:59.635448 +Epoch: 302 Average loss: 152.62 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 302) +0/69092 Loss: 153.877 +3200/69092 Loss: 152.488 +6400/69092 Loss: 152.250 +9600/69092 Loss: 153.468 +12800/69092 Loss: 154.536 +16000/69092 Loss: 151.385 +19200/69092 Loss: 151.035 +22400/69092 Loss: 150.293 +25600/69092 Loss: 154.147 +28800/69092 Loss: 153.163 +32000/69092 Loss: 154.560 +35200/69092 Loss: 152.221 +38400/69092 Loss: 155.581 +41600/69092 Loss: 153.473 +44800/69092 Loss: 153.722 +48000/69092 Loss: 151.588 +51200/69092 Loss: 151.839 +54400/69092 Loss: 152.329 +57600/69092 Loss: 150.435 +60800/69092 Loss: 151.320 +64000/69092 Loss: 153.641 +67200/69092 Loss: 153.587 +Training time 0:01:58.953545 +Epoch: 303 Average loss: 152.75 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 303) +0/69092 Loss: 150.752 +3200/69092 Loss: 154.228 +6400/69092 Loss: 151.872 +9600/69092 Loss: 151.435 +12800/69092 Loss: 153.457 +16000/69092 Loss: 155.695 +19200/69092 Loss: 154.470 +22400/69092 Loss: 153.321 +25600/69092 Loss: 153.885 +28800/69092 Loss: 152.395 +32000/69092 Loss: 151.585 +35200/69092 Loss: 151.974 +38400/69092 Loss: 151.704 +41600/69092 Loss: 154.140 +44800/69092 Loss: 152.625 +48000/69092 Loss: 151.551 +51200/69092 Loss: 153.556 +54400/69092 Loss: 153.088 +57600/69092 Loss: 150.098 +60800/69092 Loss: 150.307 +64000/69092 Loss: 152.213 +67200/69092 Loss: 153.466 +Training time 0:01:59.769055 +Epoch: 304 Average loss: 152.67 +=> saved checkpoint 'trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last' (iter 304) +0/69092 Loss: 135.868 +3200/69092 Loss: 151.608 +6400/69092 Loss: 153.318 +9600/69092 Loss: 154.543 +12800/69092 Loss: 152.205 +16000/69092 Loss: 152.045 +19200/69092 Loss: 153.663 +22400/69092 Loss: 153.126 +25600/69092 Loss: 151.074 diff --git a/OAR.2066988.stderr b/OAR.2066988.stderr new file mode 100644 index 0000000000000000000000000000000000000000..e842733f51f7c87aabeda14f050c0fa2ff041395 --- /dev/null +++ b/OAR.2066988.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-06-24 06:43:10] Job 2066988 KILLED ## diff --git a/OAR.2066988.stdout b/OAR.2066988.stdout new file mode 100644 index 0000000000000000000000000000000000000000..42d8ca3af1e081f42c686dc71d29f58a989a07bb --- /dev/null +++ b/OAR.2066988.stdout @@ -0,0 +1,1336 @@ +Namespace(batch_size=256, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_256', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +creare new diretory experiment: rendered_chairs/VAE_bs_256 +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> no checkpoint found at 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' +0/69092 Loss: 2814.439 +12800/69092 Loss: 2606.417 +25600/69092 Loss: 812.792 +38400/69092 Loss: 524.628 +51200/69092 Loss: 410.449 +64000/69092 Loss: 288.235 +Training time 0:04:00.502541 +Epoch: 1 Average loss: 888.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 1) +0/69092 Loss: 254.843 +12800/69092 Loss: 241.234 +25600/69092 Loss: 230.002 +38400/69092 Loss: 228.340 +51200/69092 Loss: 221.194 +64000/69092 Loss: 215.089 +Training time 0:03:58.901498 +Epoch: 2 Average loss: 226.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 2) +0/69092 Loss: 208.402 +12800/69092 Loss: 212.035 +25600/69092 Loss: 210.421 +38400/69092 Loss: 210.173 +51200/69092 Loss: 207.824 +64000/69092 Loss: 205.581 +Training time 0:03:51.885673 +Epoch: 3 Average loss: 208.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 3) +0/69092 Loss: 211.543 +12800/69092 Loss: 202.477 +25600/69092 Loss: 200.710 +38400/69092 Loss: 198.968 +51200/69092 Loss: 193.583 +64000/69092 Loss: 186.156 +Training time 0:03:57.600496 +Epoch: 4 Average loss: 195.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 4) +0/69092 Loss: 173.161 +12800/69092 Loss: 173.079 +25600/69092 Loss: 166.273 +38400/69092 Loss: 165.127 +51200/69092 Loss: 162.785 +64000/69092 Loss: 159.291 +Training time 0:04:05.123858 +Epoch: 5 Average loss: 164.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 5) +0/69092 Loss: 156.576 +12800/69092 Loss: 154.753 +25600/69092 Loss: 151.747 +38400/69092 Loss: 151.202 +51200/69092 Loss: 148.720 +64000/69092 Loss: 147.345 +Training time 0:04:05.650963 +Epoch: 6 Average loss: 150.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 6) +0/69092 Loss: 147.825 +12800/69092 Loss: 144.725 +25600/69092 Loss: 143.537 +38400/69092 Loss: 143.139 +51200/69092 Loss: 141.119 +64000/69092 Loss: 141.689 +Training time 0:04:08.122079 +Epoch: 7 Average loss: 142.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 7) +0/69092 Loss: 131.992 +12800/69092 Loss: 140.162 +25600/69092 Loss: 138.903 +38400/69092 Loss: 138.267 +51200/69092 Loss: 136.916 +64000/69092 Loss: 138.901 +Training time 0:03:54.331655 +Epoch: 8 Average loss: 138.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 8) +0/69092 Loss: 140.047 +12800/69092 Loss: 136.032 +25600/69092 Loss: 136.670 +38400/69092 Loss: 135.414 +51200/69092 Loss: 135.785 +64000/69092 Loss: 135.055 +Training time 0:04:09.508379 +Epoch: 9 Average loss: 135.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 9) +0/69092 Loss: 131.478 +12800/69092 Loss: 134.254 +25600/69092 Loss: 133.785 +38400/69092 Loss: 133.843 +51200/69092 Loss: 134.290 +64000/69092 Loss: 132.657 +Training time 0:04:13.579643 +Epoch: 10 Average loss: 133.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 10) +0/69092 Loss: 129.377 +12800/69092 Loss: 133.059 +25600/69092 Loss: 132.677 +38400/69092 Loss: 132.448 +51200/69092 Loss: 131.756 +64000/69092 Loss: 132.828 +Training time 0:04:11.038189 +Epoch: 11 Average loss: 132.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 11) +0/69092 Loss: 128.447 +12800/69092 Loss: 132.007 +25600/69092 Loss: 131.486 +38400/69092 Loss: 131.955 +51200/69092 Loss: 131.331 +64000/69092 Loss: 132.508 +Training time 0:04:05.952124 +Epoch: 12 Average loss: 131.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 12) +0/69092 Loss: 127.952 +12800/69092 Loss: 131.422 +25600/69092 Loss: 130.121 +38400/69092 Loss: 130.560 +51200/69092 Loss: 130.675 +64000/69092 Loss: 130.489 +Training time 0:04:03.246605 +Epoch: 13 Average loss: 130.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 13) +0/69092 Loss: 136.223 +12800/69092 Loss: 129.585 +25600/69092 Loss: 129.881 +38400/69092 Loss: 130.199 +51200/69092 Loss: 129.653 +64000/69092 Loss: 129.837 +Training time 0:03:58.965557 +Epoch: 14 Average loss: 129.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 14) +0/69092 Loss: 126.331 +12800/69092 Loss: 129.435 +25600/69092 Loss: 128.785 +38400/69092 Loss: 128.843 +51200/69092 Loss: 130.551 +64000/69092 Loss: 128.547 +Training time 0:04:09.519483 +Epoch: 15 Average loss: 129.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 15) +0/69092 Loss: 124.206 +12800/69092 Loss: 128.104 +25600/69092 Loss: 127.977 +38400/69092 Loss: 129.959 +51200/69092 Loss: 129.623 +64000/69092 Loss: 128.646 +Training time 0:04:06.651803 +Epoch: 16 Average loss: 128.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 16) +0/69092 Loss: 123.285 +12800/69092 Loss: 129.276 +25600/69092 Loss: 128.834 +38400/69092 Loss: 128.149 +51200/69092 Loss: 128.007 +64000/69092 Loss: 127.012 +Training time 0:04:09.535457 +Epoch: 17 Average loss: 128.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 17) +0/69092 Loss: 122.490 +12800/69092 Loss: 128.020 +25600/69092 Loss: 128.469 +38400/69092 Loss: 127.697 +51200/69092 Loss: 127.443 +64000/69092 Loss: 127.452 +Training time 0:04:15.114925 +Epoch: 18 Average loss: 127.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 18) +0/69092 Loss: 125.483 +12800/69092 Loss: 127.551 +25600/69092 Loss: 127.873 +38400/69092 Loss: 127.776 +51200/69092 Loss: 127.685 +64000/69092 Loss: 126.057 +Training time 0:04:01.902371 +Epoch: 19 Average loss: 127.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 19) +0/69092 Loss: 122.885 +12800/69092 Loss: 126.344 +25600/69092 Loss: 127.344 +38400/69092 Loss: 127.723 +51200/69092 Loss: 126.600 +64000/69092 Loss: 127.361 +Training time 0:04:00.677389 +Epoch: 20 Average loss: 127.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 20) +0/69092 Loss: 131.818 +12800/69092 Loss: 126.634 +25600/69092 Loss: 125.596 +38400/69092 Loss: 126.447 +51200/69092 Loss: 127.722 +64000/69092 Loss: 125.743 +Training time 0:04:08.702550 +Epoch: 21 Average loss: 126.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 21) +0/69092 Loss: 120.820 +12800/69092 Loss: 125.706 +25600/69092 Loss: 127.387 +38400/69092 Loss: 126.881 +51200/69092 Loss: 125.378 +64000/69092 Loss: 126.583 +Training time 0:04:03.607133 +Epoch: 22 Average loss: 126.26 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 22) +0/69092 Loss: 123.223 +12800/69092 Loss: 125.898 +25600/69092 Loss: 125.606 +38400/69092 Loss: 125.715 +51200/69092 Loss: 126.186 +64000/69092 Loss: 126.409 +Training time 0:04:07.609030 +Epoch: 23 Average loss: 125.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 23) +0/69092 Loss: 128.143 +12800/69092 Loss: 125.965 +25600/69092 Loss: 126.009 +38400/69092 Loss: 125.024 +51200/69092 Loss: 125.283 +64000/69092 Loss: 126.305 +Training time 0:04:00.812965 +Epoch: 24 Average loss: 125.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 24) +0/69092 Loss: 125.396 +12800/69092 Loss: 125.719 +25600/69092 Loss: 126.159 +38400/69092 Loss: 124.345 +51200/69092 Loss: 124.650 +64000/69092 Loss: 125.511 +Training time 0:03:58.507761 +Epoch: 25 Average loss: 125.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 25) +0/69092 Loss: 136.129 +12800/69092 Loss: 126.168 +25600/69092 Loss: 125.467 +38400/69092 Loss: 124.673 +51200/69092 Loss: 124.727 +64000/69092 Loss: 124.674 +Training time 0:04:06.371973 +Epoch: 26 Average loss: 125.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 26) +0/69092 Loss: 119.995 +12800/69092 Loss: 125.162 +25600/69092 Loss: 124.900 +38400/69092 Loss: 124.906 +51200/69092 Loss: 124.934 +64000/69092 Loss: 124.702 +Training time 0:04:08.636811 +Epoch: 27 Average loss: 124.80 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 27) +0/69092 Loss: 121.814 +12800/69092 Loss: 124.749 +25600/69092 Loss: 123.778 +38400/69092 Loss: 125.225 +51200/69092 Loss: 124.118 +64000/69092 Loss: 125.262 +Training time 0:04:07.395318 +Epoch: 28 Average loss: 124.58 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 28) +0/69092 Loss: 122.369 +12800/69092 Loss: 124.628 +25600/69092 Loss: 124.176 +38400/69092 Loss: 124.751 +51200/69092 Loss: 123.993 +64000/69092 Loss: 124.350 +Training time 0:04:13.117962 +Epoch: 29 Average loss: 124.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 29) +0/69092 Loss: 121.895 +12800/69092 Loss: 124.362 +25600/69092 Loss: 125.226 +38400/69092 Loss: 124.151 +51200/69092 Loss: 123.218 +64000/69092 Loss: 124.114 +Training time 0:04:00.434000 +Epoch: 30 Average loss: 124.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 30) +0/69092 Loss: 115.194 +12800/69092 Loss: 124.568 +25600/69092 Loss: 123.711 +38400/69092 Loss: 122.897 +51200/69092 Loss: 124.132 +64000/69092 Loss: 123.650 +Training time 0:04:05.715337 +Epoch: 31 Average loss: 123.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 31) +0/69092 Loss: 124.334 +12800/69092 Loss: 123.616 +25600/69092 Loss: 123.198 +38400/69092 Loss: 124.313 +51200/69092 Loss: 123.299 +64000/69092 Loss: 123.692 +Training time 0:04:08.544469 +Epoch: 32 Average loss: 123.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 32) +0/69092 Loss: 127.550 +12800/69092 Loss: 123.950 +25600/69092 Loss: 123.163 +38400/69092 Loss: 123.634 +51200/69092 Loss: 122.978 +64000/69092 Loss: 124.027 +Training time 0:04:13.082735 +Epoch: 33 Average loss: 123.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 33) +0/69092 Loss: 123.320 +12800/69092 Loss: 123.340 +25600/69092 Loss: 122.071 +38400/69092 Loss: 123.296 +51200/69092 Loss: 123.829 +64000/69092 Loss: 123.658 +Training time 0:04:15.650392 +Epoch: 34 Average loss: 123.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 34) +0/69092 Loss: 128.216 +12800/69092 Loss: 122.262 +25600/69092 Loss: 123.458 +38400/69092 Loss: 123.642 +51200/69092 Loss: 123.133 +64000/69092 Loss: 123.217 +Training time 0:04:08.276315 +Epoch: 35 Average loss: 123.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 35) +0/69092 Loss: 120.675 +12800/69092 Loss: 122.984 +25600/69092 Loss: 121.834 +38400/69092 Loss: 123.413 +51200/69092 Loss: 122.305 +64000/69092 Loss: 123.635 +Training time 0:04:03.058292 +Epoch: 36 Average loss: 122.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 36) +0/69092 Loss: 118.445 +12800/69092 Loss: 123.013 +25600/69092 Loss: 122.418 +38400/69092 Loss: 122.231 +51200/69092 Loss: 123.021 +64000/69092 Loss: 122.842 +Training time 0:04:06.648961 +Epoch: 37 Average loss: 122.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 37) +0/69092 Loss: 121.083 +12800/69092 Loss: 123.263 +25600/69092 Loss: 122.257 +38400/69092 Loss: 122.379 +51200/69092 Loss: 122.171 +64000/69092 Loss: 123.059 +Training time 0:04:15.049360 +Epoch: 38 Average loss: 122.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 38) +0/69092 Loss: 123.324 +12800/69092 Loss: 122.454 +25600/69092 Loss: 121.804 +38400/69092 Loss: 122.938 +51200/69092 Loss: 122.913 +64000/69092 Loss: 122.085 +Training time 0:04:05.371204 +Epoch: 39 Average loss: 122.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 39) +0/69092 Loss: 128.633 +12800/69092 Loss: 121.116 +25600/69092 Loss: 121.840 +38400/69092 Loss: 122.284 +51200/69092 Loss: 122.594 +64000/69092 Loss: 123.471 +Training time 0:04:11.828321 +Epoch: 40 Average loss: 122.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 40) +0/69092 Loss: 118.211 +12800/69092 Loss: 122.969 +25600/69092 Loss: 123.368 +38400/69092 Loss: 121.575 +51200/69092 Loss: 122.347 +64000/69092 Loss: 121.758 +Training time 0:04:09.545590 +Epoch: 41 Average loss: 122.25 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 41) +0/69092 Loss: 122.601 +12800/69092 Loss: 122.031 +25600/69092 Loss: 123.502 +38400/69092 Loss: 123.221 +51200/69092 Loss: 121.567 +64000/69092 Loss: 121.257 +Training time 0:04:03.271690 +Epoch: 42 Average loss: 122.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 42) +0/69092 Loss: 127.457 +12800/69092 Loss: 121.780 +25600/69092 Loss: 121.304 +38400/69092 Loss: 123.179 +51200/69092 Loss: 121.032 +64000/69092 Loss: 122.156 +Training time 0:04:06.866565 +Epoch: 43 Average loss: 121.91 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 43) +0/69092 Loss: 122.912 +12800/69092 Loss: 121.686 +25600/69092 Loss: 121.672 +38400/69092 Loss: 121.170 +51200/69092 Loss: 121.757 +64000/69092 Loss: 122.824 +Training time 0:04:05.681837 +Epoch: 44 Average loss: 121.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 44) +0/69092 Loss: 135.368 +12800/69092 Loss: 121.265 +25600/69092 Loss: 121.626 +38400/69092 Loss: 121.669 +51200/69092 Loss: 122.190 +64000/69092 Loss: 121.709 +Training time 0:04:11.599922 +Epoch: 45 Average loss: 121.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 45) +0/69092 Loss: 121.074 +12800/69092 Loss: 121.516 +25600/69092 Loss: 120.940 +38400/69092 Loss: 122.202 +51200/69092 Loss: 121.848 +64000/69092 Loss: 122.093 +Training time 0:04:15.838166 +Epoch: 46 Average loss: 121.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 46) +0/69092 Loss: 126.527 +12800/69092 Loss: 121.600 +25600/69092 Loss: 121.211 +38400/69092 Loss: 122.194 +51200/69092 Loss: 121.122 +64000/69092 Loss: 121.598 +Training time 0:04:08.633490 +Epoch: 47 Average loss: 121.51 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 47) +0/69092 Loss: 126.953 +12800/69092 Loss: 121.570 +25600/69092 Loss: 121.045 +38400/69092 Loss: 122.628 +51200/69092 Loss: 121.052 +64000/69092 Loss: 120.897 +Training time 0:03:58.102023 +Epoch: 48 Average loss: 121.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 48) +0/69092 Loss: 124.567 +12800/69092 Loss: 121.877 +25600/69092 Loss: 120.928 +38400/69092 Loss: 121.011 +51200/69092 Loss: 121.311 +64000/69092 Loss: 121.826 +Training time 0:04:06.935042 +Epoch: 49 Average loss: 121.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 49) +0/69092 Loss: 121.404 +12800/69092 Loss: 121.514 +25600/69092 Loss: 121.087 +38400/69092 Loss: 121.419 +51200/69092 Loss: 121.384 +64000/69092 Loss: 121.023 +Training time 0:04:15.166332 +Epoch: 50 Average loss: 121.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 50) +0/69092 Loss: 126.006 +12800/69092 Loss: 120.948 +25600/69092 Loss: 121.760 +38400/69092 Loss: 121.779 +51200/69092 Loss: 120.402 +64000/69092 Loss: 120.823 +Training time 0:04:28.909935 +Epoch: 51 Average loss: 121.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 51) +0/69092 Loss: 124.286 +12800/69092 Loss: 121.074 +25600/69092 Loss: 121.402 +38400/69092 Loss: 121.318 +51200/69092 Loss: 120.578 +64000/69092 Loss: 121.595 +Training time 0:04:18.253963 +Epoch: 52 Average loss: 121.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 52) +0/69092 Loss: 120.751 +12800/69092 Loss: 121.077 +25600/69092 Loss: 121.218 +38400/69092 Loss: 120.888 +51200/69092 Loss: 120.694 +64000/69092 Loss: 120.242 +Training time 0:04:06.896767 +Epoch: 53 Average loss: 120.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 53) +0/69092 Loss: 127.181 +12800/69092 Loss: 120.765 +25600/69092 Loss: 120.254 +38400/69092 Loss: 120.713 +51200/69092 Loss: 120.709 +64000/69092 Loss: 121.636 +Training time 0:04:06.321434 +Epoch: 54 Average loss: 120.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 54) +0/69092 Loss: 125.942 +12800/69092 Loss: 121.474 +25600/69092 Loss: 120.848 +38400/69092 Loss: 120.489 +51200/69092 Loss: 121.334 +64000/69092 Loss: 119.914 +Training time 0:04:07.908865 +Epoch: 55 Average loss: 120.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 55) +0/69092 Loss: 119.879 +12800/69092 Loss: 121.761 +25600/69092 Loss: 120.564 +38400/69092 Loss: 119.969 +51200/69092 Loss: 120.840 +64000/69092 Loss: 121.243 +Training time 0:04:24.374569 +Epoch: 56 Average loss: 120.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 56) +0/69092 Loss: 122.110 +12800/69092 Loss: 120.853 +25600/69092 Loss: 121.248 +38400/69092 Loss: 118.912 +51200/69092 Loss: 120.841 +64000/69092 Loss: 121.255 +Training time 0:04:19.634250 +Epoch: 57 Average loss: 120.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 57) +0/69092 Loss: 119.217 +12800/69092 Loss: 119.208 +25600/69092 Loss: 119.932 +38400/69092 Loss: 121.283 +51200/69092 Loss: 120.620 +64000/69092 Loss: 120.339 +Training time 0:04:20.572270 +Epoch: 58 Average loss: 120.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 58) +0/69092 Loss: 118.004 +12800/69092 Loss: 121.649 +25600/69092 Loss: 120.544 +38400/69092 Loss: 120.965 +51200/69092 Loss: 118.516 +64000/69092 Loss: 120.499 +Training time 0:04:13.101164 +Epoch: 59 Average loss: 120.46 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 59) +0/69092 Loss: 112.881 +12800/69092 Loss: 120.567 +25600/69092 Loss: 120.420 +38400/69092 Loss: 119.364 +51200/69092 Loss: 119.955 +64000/69092 Loss: 121.037 +Training time 0:04:10.750013 +Epoch: 60 Average loss: 120.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 60) +0/69092 Loss: 122.250 +12800/69092 Loss: 119.708 +25600/69092 Loss: 120.189 +38400/69092 Loss: 120.499 +51200/69092 Loss: 120.354 +64000/69092 Loss: 120.335 +Training time 0:04:13.578982 +Epoch: 61 Average loss: 120.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 61) +0/69092 Loss: 117.498 +12800/69092 Loss: 120.426 +25600/69092 Loss: 120.447 +38400/69092 Loss: 119.672 +51200/69092 Loss: 120.147 +64000/69092 Loss: 119.269 +Training time 0:04:20.939895 +Epoch: 62 Average loss: 119.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 62) +0/69092 Loss: 125.455 +12800/69092 Loss: 119.791 +25600/69092 Loss: 120.792 +38400/69092 Loss: 119.489 +51200/69092 Loss: 120.414 +64000/69092 Loss: 119.984 +Training time 0:04:19.158055 +Epoch: 63 Average loss: 120.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 63) +0/69092 Loss: 117.290 +12800/69092 Loss: 119.601 +25600/69092 Loss: 120.635 +38400/69092 Loss: 119.446 +51200/69092 Loss: 119.494 +64000/69092 Loss: 120.180 +Training time 0:04:19.186761 +Epoch: 64 Average loss: 119.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 64) +0/69092 Loss: 120.642 +12800/69092 Loss: 119.806 +25600/69092 Loss: 120.017 +38400/69092 Loss: 120.107 +51200/69092 Loss: 120.154 +64000/69092 Loss: 119.791 +Training time 0:04:17.913614 +Epoch: 65 Average loss: 119.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 65) +0/69092 Loss: 119.794 +12800/69092 Loss: 118.851 +25600/69092 Loss: 120.739 +38400/69092 Loss: 120.140 +51200/69092 Loss: 120.621 +64000/69092 Loss: 118.912 +Training time 0:04:07.989220 +Epoch: 66 Average loss: 119.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 66) +0/69092 Loss: 121.311 +12800/69092 Loss: 121.100 +25600/69092 Loss: 118.866 +38400/69092 Loss: 119.869 +51200/69092 Loss: 119.210 +64000/69092 Loss: 119.637 +Training time 0:04:04.809304 +Epoch: 67 Average loss: 119.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 67) +0/69092 Loss: 117.776 +12800/69092 Loss: 119.768 +25600/69092 Loss: 119.897 +38400/69092 Loss: 119.051 +51200/69092 Loss: 119.888 +64000/69092 Loss: 119.118 +Training time 0:04:05.612033 +Epoch: 68 Average loss: 119.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 68) +0/69092 Loss: 114.908 +12800/69092 Loss: 119.558 +25600/69092 Loss: 120.312 +38400/69092 Loss: 119.431 +51200/69092 Loss: 118.943 +64000/69092 Loss: 119.501 +Training time 0:04:18.977186 +Epoch: 69 Average loss: 119.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 69) +0/69092 Loss: 122.569 +12800/69092 Loss: 118.864 +25600/69092 Loss: 119.829 +38400/69092 Loss: 119.767 +51200/69092 Loss: 119.599 +64000/69092 Loss: 119.105 +Training time 0:04:11.458453 +Epoch: 70 Average loss: 119.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 70) +0/69092 Loss: 125.237 +12800/69092 Loss: 119.324 +25600/69092 Loss: 119.526 +38400/69092 Loss: 119.403 +51200/69092 Loss: 119.721 +64000/69092 Loss: 119.557 +Training time 0:04:15.062350 +Epoch: 71 Average loss: 119.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 71) +0/69092 Loss: 117.608 +12800/69092 Loss: 119.207 +25600/69092 Loss: 119.193 +38400/69092 Loss: 119.453 +51200/69092 Loss: 119.239 +64000/69092 Loss: 119.616 +Training time 0:04:05.494584 +Epoch: 72 Average loss: 119.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 72) +0/69092 Loss: 113.774 +12800/69092 Loss: 119.703 +25600/69092 Loss: 120.271 +38400/69092 Loss: 118.884 +51200/69092 Loss: 118.561 +64000/69092 Loss: 119.390 +Training time 0:04:04.810459 +Epoch: 73 Average loss: 119.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 73) +0/69092 Loss: 121.206 +12800/69092 Loss: 119.420 +25600/69092 Loss: 119.455 +38400/69092 Loss: 119.734 +51200/69092 Loss: 118.942 +64000/69092 Loss: 118.688 +Training time 0:04:03.597461 +Epoch: 74 Average loss: 119.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 74) +0/69092 Loss: 123.219 +12800/69092 Loss: 118.896 +25600/69092 Loss: 119.816 +38400/69092 Loss: 117.844 +51200/69092 Loss: 119.564 +64000/69092 Loss: 119.447 +Training time 0:04:11.406864 +Epoch: 75 Average loss: 119.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 75) +0/69092 Loss: 116.660 +12800/69092 Loss: 118.787 +25600/69092 Loss: 118.336 +38400/69092 Loss: 119.625 +51200/69092 Loss: 119.877 +64000/69092 Loss: 119.186 +Training time 0:04:24.342829 +Epoch: 76 Average loss: 119.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 76) +0/69092 Loss: 119.502 +12800/69092 Loss: 117.959 +25600/69092 Loss: 118.876 +38400/69092 Loss: 119.940 +51200/69092 Loss: 118.478 +64000/69092 Loss: 119.287 +Training time 0:04:07.572541 +Epoch: 77 Average loss: 119.02 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 77) +0/69092 Loss: 112.084 +12800/69092 Loss: 117.931 +25600/69092 Loss: 118.700 +38400/69092 Loss: 119.683 +51200/69092 Loss: 118.883 +64000/69092 Loss: 118.919 +Training time 0:04:03.865588 +Epoch: 78 Average loss: 118.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 78) +0/69092 Loss: 117.714 +12800/69092 Loss: 119.233 +25600/69092 Loss: 118.715 +38400/69092 Loss: 118.166 +51200/69092 Loss: 118.807 +64000/69092 Loss: 119.992 +Training time 0:04:05.190180 +Epoch: 79 Average loss: 119.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 79) +0/69092 Loss: 117.169 +12800/69092 Loss: 117.980 +25600/69092 Loss: 118.887 +38400/69092 Loss: 118.441 +51200/69092 Loss: 118.812 +64000/69092 Loss: 119.412 +Training time 0:04:02.204515 +Epoch: 80 Average loss: 118.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 80) +0/69092 Loss: 118.471 +12800/69092 Loss: 118.986 +25600/69092 Loss: 117.801 +38400/69092 Loss: 118.665 +51200/69092 Loss: 119.535 +64000/69092 Loss: 119.216 +Training time 0:04:14.209794 +Epoch: 81 Average loss: 118.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 81) +0/69092 Loss: 113.233 +12800/69092 Loss: 118.796 +25600/69092 Loss: 120.057 +38400/69092 Loss: 118.499 +51200/69092 Loss: 118.816 +64000/69092 Loss: 117.538 +Training time 0:04:15.709971 +Epoch: 82 Average loss: 118.69 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 82) +0/69092 Loss: 114.715 +12800/69092 Loss: 118.884 +25600/69092 Loss: 118.494 +38400/69092 Loss: 118.577 +51200/69092 Loss: 118.888 +64000/69092 Loss: 118.886 +Training time 0:04:11.655027 +Epoch: 83 Average loss: 118.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 83) +0/69092 Loss: 114.184 +12800/69092 Loss: 118.511 +25600/69092 Loss: 119.265 +38400/69092 Loss: 118.358 +51200/69092 Loss: 119.018 +64000/69092 Loss: 118.696 +Training time 0:04:03.034456 +Epoch: 84 Average loss: 118.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 84) +0/69092 Loss: 119.023 +12800/69092 Loss: 118.235 +25600/69092 Loss: 118.429 +38400/69092 Loss: 117.985 +51200/69092 Loss: 118.307 +64000/69092 Loss: 119.246 +Training time 0:04:07.248343 +Epoch: 85 Average loss: 118.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 85) +0/69092 Loss: 121.420 +12800/69092 Loss: 118.604 +25600/69092 Loss: 118.223 +38400/69092 Loss: 118.012 +51200/69092 Loss: 118.248 +64000/69092 Loss: 119.041 +Training time 0:04:09.127944 +Epoch: 86 Average loss: 118.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 86) +0/69092 Loss: 119.622 +12800/69092 Loss: 118.327 +25600/69092 Loss: 119.245 +38400/69092 Loss: 118.592 +51200/69092 Loss: 117.328 +64000/69092 Loss: 118.681 +Training time 0:04:19.338612 +Epoch: 87 Average loss: 118.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 87) +0/69092 Loss: 111.174 +12800/69092 Loss: 118.593 +25600/69092 Loss: 118.148 +38400/69092 Loss: 118.586 +51200/69092 Loss: 118.532 +64000/69092 Loss: 118.767 +Training time 0:04:15.535839 +Epoch: 88 Average loss: 118.37 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 88) +0/69092 Loss: 116.705 +12800/69092 Loss: 118.352 +25600/69092 Loss: 118.533 +38400/69092 Loss: 118.169 +51200/69092 Loss: 118.406 +64000/69092 Loss: 118.343 +Training time 0:04:20.266325 +Epoch: 89 Average loss: 118.38 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 89) +0/69092 Loss: 115.584 +12800/69092 Loss: 117.936 +25600/69092 Loss: 118.092 +38400/69092 Loss: 118.414 +51200/69092 Loss: 118.575 +64000/69092 Loss: 117.829 +Training time 0:04:17.261602 +Epoch: 90 Average loss: 118.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 90) +0/69092 Loss: 117.601 +12800/69092 Loss: 118.211 +25600/69092 Loss: 118.045 +38400/69092 Loss: 117.952 +51200/69092 Loss: 118.657 +64000/69092 Loss: 118.763 +Training time 0:04:10.787288 +Epoch: 91 Average loss: 118.30 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 91) +0/69092 Loss: 111.534 +12800/69092 Loss: 117.956 +25600/69092 Loss: 118.221 +38400/69092 Loss: 118.217 +51200/69092 Loss: 117.930 +64000/69092 Loss: 118.685 +Training time 0:04:05.952103 +Epoch: 92 Average loss: 118.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 92) +0/69092 Loss: 115.097 +12800/69092 Loss: 118.364 +25600/69092 Loss: 118.456 +38400/69092 Loss: 117.776 +51200/69092 Loss: 118.108 +64000/69092 Loss: 118.348 +Training time 0:04:14.091436 +Epoch: 93 Average loss: 118.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 93) +0/69092 Loss: 117.903 +12800/69092 Loss: 118.141 +25600/69092 Loss: 117.958 +38400/69092 Loss: 118.750 +51200/69092 Loss: 116.999 +64000/69092 Loss: 119.126 +Training time 0:04:19.666973 +Epoch: 94 Average loss: 118.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 94) +0/69092 Loss: 122.937 +12800/69092 Loss: 118.038 +25600/69092 Loss: 117.933 +38400/69092 Loss: 117.870 +51200/69092 Loss: 117.970 +64000/69092 Loss: 118.466 +Training time 0:04:27.989384 +Epoch: 95 Average loss: 118.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 95) +0/69092 Loss: 113.251 +12800/69092 Loss: 117.549 +25600/69092 Loss: 118.034 +38400/69092 Loss: 118.375 +51200/69092 Loss: 117.229 +64000/69092 Loss: 118.759 +Training time 0:04:23.592842 +Epoch: 96 Average loss: 117.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 96) +0/69092 Loss: 125.196 +12800/69092 Loss: 118.374 +25600/69092 Loss: 118.202 +38400/69092 Loss: 118.131 +51200/69092 Loss: 117.639 +64000/69092 Loss: 117.563 +Training time 0:04:07.757856 +Epoch: 97 Average loss: 117.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 97) +0/69092 Loss: 116.827 +12800/69092 Loss: 118.167 +25600/69092 Loss: 117.874 +38400/69092 Loss: 118.108 +51200/69092 Loss: 117.770 +64000/69092 Loss: 117.935 +Training time 0:04:07.602487 +Epoch: 98 Average loss: 117.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 98) +0/69092 Loss: 116.395 +12800/69092 Loss: 118.537 +25600/69092 Loss: 116.787 +38400/69092 Loss: 117.802 +51200/69092 Loss: 118.060 +64000/69092 Loss: 117.920 +Training time 0:04:04.077916 +Epoch: 99 Average loss: 117.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 99) +0/69092 Loss: 120.129 +12800/69092 Loss: 117.395 +25600/69092 Loss: 118.096 +38400/69092 Loss: 118.253 +51200/69092 Loss: 118.095 +64000/69092 Loss: 117.124 +Training time 0:04:14.157682 +Epoch: 100 Average loss: 117.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 100) +0/69092 Loss: 115.819 +12800/69092 Loss: 117.516 +25600/69092 Loss: 117.688 +38400/69092 Loss: 117.822 +51200/69092 Loss: 117.359 +64000/69092 Loss: 118.094 +Training time 0:04:19.060029 +Epoch: 101 Average loss: 117.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 101) +0/69092 Loss: 117.652 +12800/69092 Loss: 117.546 +25600/69092 Loss: 117.209 +38400/69092 Loss: 118.417 +51200/69092 Loss: 117.194 +64000/69092 Loss: 117.343 +Training time 0:04:27.360355 +Epoch: 102 Average loss: 117.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 102) +0/69092 Loss: 119.372 +12800/69092 Loss: 117.161 +25600/69092 Loss: 117.579 +38400/69092 Loss: 118.675 +51200/69092 Loss: 118.077 +64000/69092 Loss: 116.353 +Training time 0:04:21.829024 +Epoch: 103 Average loss: 117.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 103) +0/69092 Loss: 122.145 +12800/69092 Loss: 117.681 +25600/69092 Loss: 117.564 +38400/69092 Loss: 117.854 +51200/69092 Loss: 117.792 +64000/69092 Loss: 117.095 +Training time 0:04:10.505366 +Epoch: 104 Average loss: 117.66 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 104) +0/69092 Loss: 119.037 +12800/69092 Loss: 117.433 +25600/69092 Loss: 117.319 +38400/69092 Loss: 118.096 +51200/69092 Loss: 118.451 +64000/69092 Loss: 117.593 +Training time 0:04:13.309748 +Epoch: 105 Average loss: 117.70 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 105) +0/69092 Loss: 115.671 +12800/69092 Loss: 118.765 +25600/69092 Loss: 117.530 +38400/69092 Loss: 116.610 +51200/69092 Loss: 117.387 +64000/69092 Loss: 118.102 +Training time 0:04:10.225632 +Epoch: 106 Average loss: 117.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 106) +0/69092 Loss: 115.970 +12800/69092 Loss: 117.271 +25600/69092 Loss: 118.336 +38400/69092 Loss: 116.654 +51200/69092 Loss: 116.908 +64000/69092 Loss: 118.475 +Training time 0:04:08.311380 +Epoch: 107 Average loss: 117.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 107) +0/69092 Loss: 118.297 +12800/69092 Loss: 118.045 +25600/69092 Loss: 117.715 +38400/69092 Loss: 116.549 +51200/69092 Loss: 117.337 +64000/69092 Loss: 118.109 +Training time 0:04:18.767566 +Epoch: 108 Average loss: 117.52 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 108) +0/69092 Loss: 115.676 +12800/69092 Loss: 118.016 +25600/69092 Loss: 116.507 +38400/69092 Loss: 117.254 +51200/69092 Loss: 117.718 +64000/69092 Loss: 118.072 +Training time 0:04:27.749704 +Epoch: 109 Average loss: 117.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 109) +0/69092 Loss: 118.938 +12800/69092 Loss: 116.951 +25600/69092 Loss: 117.728 +38400/69092 Loss: 118.054 +51200/69092 Loss: 117.318 +64000/69092 Loss: 117.840 +Training time 0:04:26.627106 +Epoch: 110 Average loss: 117.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 110) +0/69092 Loss: 121.937 +12800/69092 Loss: 118.140 +25600/69092 Loss: 117.377 +38400/69092 Loss: 117.915 +51200/69092 Loss: 117.499 +64000/69092 Loss: 116.375 +Training time 0:04:12.037837 +Epoch: 111 Average loss: 117.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 111) +0/69092 Loss: 113.947 +12800/69092 Loss: 115.591 +25600/69092 Loss: 117.857 +38400/69092 Loss: 117.139 +51200/69092 Loss: 117.992 +64000/69092 Loss: 117.336 +Training time 0:04:07.543581 +Epoch: 112 Average loss: 117.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 112) +0/69092 Loss: 117.774 +12800/69092 Loss: 117.031 +25600/69092 Loss: 116.865 +38400/69092 Loss: 117.537 +51200/69092 Loss: 117.092 +64000/69092 Loss: 117.203 +Training time 0:04:06.793473 +Epoch: 113 Average loss: 117.34 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 113) +0/69092 Loss: 122.003 +12800/69092 Loss: 117.281 +25600/69092 Loss: 116.915 +38400/69092 Loss: 117.246 +51200/69092 Loss: 117.098 +64000/69092 Loss: 117.323 +Training time 0:04:18.110371 +Epoch: 114 Average loss: 117.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 114) +0/69092 Loss: 113.728 +12800/69092 Loss: 117.338 +25600/69092 Loss: 117.415 +38400/69092 Loss: 117.887 +51200/69092 Loss: 116.883 +64000/69092 Loss: 116.655 +Training time 0:04:23.082706 +Epoch: 115 Average loss: 117.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 115) +0/69092 Loss: 113.460 +12800/69092 Loss: 116.962 +25600/69092 Loss: 117.133 +38400/69092 Loss: 117.736 +51200/69092 Loss: 116.920 +64000/69092 Loss: 117.195 +Training time 0:04:17.946739 +Epoch: 116 Average loss: 117.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 116) +0/69092 Loss: 122.396 +12800/69092 Loss: 117.253 +25600/69092 Loss: 117.988 +38400/69092 Loss: 116.718 +51200/69092 Loss: 116.569 +64000/69092 Loss: 117.342 +Training time 0:04:09.487106 +Epoch: 117 Average loss: 117.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 117) +0/69092 Loss: 120.599 +12800/69092 Loss: 118.029 +25600/69092 Loss: 116.844 +38400/69092 Loss: 116.261 +51200/69092 Loss: 117.148 +64000/69092 Loss: 116.991 +Training time 0:04:06.126837 +Epoch: 118 Average loss: 117.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 118) +0/69092 Loss: 113.447 +12800/69092 Loss: 117.673 +25600/69092 Loss: 116.305 +38400/69092 Loss: 117.318 +51200/69092 Loss: 117.771 +64000/69092 Loss: 116.620 +Training time 0:04:06.952300 +Epoch: 119 Average loss: 117.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 119) +0/69092 Loss: 116.694 +12800/69092 Loss: 117.533 +25600/69092 Loss: 117.339 +38400/69092 Loss: 116.549 +51200/69092 Loss: 116.852 +64000/69092 Loss: 117.144 +Training time 0:04:18.524811 +Epoch: 120 Average loss: 117.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 120) +0/69092 Loss: 121.263 +12800/69092 Loss: 117.623 +25600/69092 Loss: 116.567 +38400/69092 Loss: 117.494 +51200/69092 Loss: 116.391 +64000/69092 Loss: 116.778 +Training time 0:04:26.026426 +Epoch: 121 Average loss: 116.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 121) +0/69092 Loss: 119.814 +12800/69092 Loss: 117.488 +25600/69092 Loss: 116.667 +38400/69092 Loss: 116.857 +51200/69092 Loss: 116.277 +64000/69092 Loss: 116.752 +Training time 0:04:21.240310 +Epoch: 122 Average loss: 116.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 122) +0/69092 Loss: 114.083 +12800/69092 Loss: 117.017 +25600/69092 Loss: 116.481 +38400/69092 Loss: 115.768 +51200/69092 Loss: 117.344 +64000/69092 Loss: 118.059 +Training time 0:04:21.731750 +Epoch: 123 Average loss: 116.92 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 123) +0/69092 Loss: 115.396 +12800/69092 Loss: 116.999 +25600/69092 Loss: 117.044 +38400/69092 Loss: 116.922 +51200/69092 Loss: 116.681 +64000/69092 Loss: 117.204 +Training time 0:04:13.355516 +Epoch: 124 Average loss: 116.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 124) +0/69092 Loss: 114.354 +12800/69092 Loss: 116.758 +25600/69092 Loss: 117.844 +38400/69092 Loss: 116.776 +51200/69092 Loss: 116.723 +64000/69092 Loss: 116.333 +Training time 0:04:11.060562 +Epoch: 125 Average loss: 116.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 125) +0/69092 Loss: 112.850 +12800/69092 Loss: 116.547 +25600/69092 Loss: 117.430 +38400/69092 Loss: 116.559 +51200/69092 Loss: 116.838 +64000/69092 Loss: 117.391 +Training time 0:04:11.748621 +Epoch: 126 Average loss: 116.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 126) +0/69092 Loss: 122.874 +12800/69092 Loss: 115.833 +25600/69092 Loss: 116.628 +38400/69092 Loss: 117.270 +51200/69092 Loss: 116.436 +64000/69092 Loss: 116.940 +Training time 0:04:12.916334 +Epoch: 127 Average loss: 116.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 127) +0/69092 Loss: 120.091 +12800/69092 Loss: 116.054 +25600/69092 Loss: 116.758 +38400/69092 Loss: 116.714 +51200/69092 Loss: 116.977 +64000/69092 Loss: 117.389 +Training time 0:04:19.136137 +Epoch: 128 Average loss: 116.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 128) +0/69092 Loss: 120.740 +12800/69092 Loss: 117.049 +25600/69092 Loss: 117.354 +38400/69092 Loss: 116.619 +51200/69092 Loss: 116.406 +64000/69092 Loss: 116.879 +Training time 0:04:14.033693 +Epoch: 129 Average loss: 116.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 129) +0/69092 Loss: 115.168 +12800/69092 Loss: 117.192 +25600/69092 Loss: 115.843 +38400/69092 Loss: 116.705 +51200/69092 Loss: 116.972 +64000/69092 Loss: 117.077 +Training time 0:04:12.246856 +Epoch: 130 Average loss: 116.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 130) +0/69092 Loss: 112.333 +12800/69092 Loss: 116.003 +25600/69092 Loss: 117.295 +38400/69092 Loss: 116.347 +51200/69092 Loss: 117.229 +64000/69092 Loss: 117.151 +Training time 0:04:09.115987 +Epoch: 131 Average loss: 116.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 131) +0/69092 Loss: 111.468 +12800/69092 Loss: 117.271 +25600/69092 Loss: 116.352 +38400/69092 Loss: 116.958 +51200/69092 Loss: 116.093 +64000/69092 Loss: 116.560 +Training time 0:04:06.089068 +Epoch: 132 Average loss: 116.62 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 132) +0/69092 Loss: 122.202 +12800/69092 Loss: 116.612 +25600/69092 Loss: 116.396 +38400/69092 Loss: 116.750 +51200/69092 Loss: 117.098 +64000/69092 Loss: 116.652 +Training time 0:04:12.456707 +Epoch: 133 Average loss: 116.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 133) +0/69092 Loss: 115.194 +12800/69092 Loss: 115.900 +25600/69092 Loss: 117.075 +38400/69092 Loss: 116.256 +51200/69092 Loss: 116.497 +64000/69092 Loss: 116.524 +Training time 0:04:19.269725 +Epoch: 134 Average loss: 116.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 134) +0/69092 Loss: 117.595 +12800/69092 Loss: 116.274 +25600/69092 Loss: 116.078 +38400/69092 Loss: 116.369 +51200/69092 Loss: 116.956 +64000/69092 Loss: 116.922 +Training time 0:04:17.374130 +Epoch: 135 Average loss: 116.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 135) +0/69092 Loss: 118.568 +12800/69092 Loss: 116.903 +25600/69092 Loss: 116.886 +38400/69092 Loss: 116.347 +51200/69092 Loss: 116.076 +64000/69092 Loss: 116.188 +Training time 0:04:24.367970 +Epoch: 136 Average loss: 116.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 136) +0/69092 Loss: 111.307 +12800/69092 Loss: 116.186 +25600/69092 Loss: 116.851 +38400/69092 Loss: 116.367 +51200/69092 Loss: 117.102 +64000/69092 Loss: 116.760 +Training time 0:04:08.283412 +Epoch: 137 Average loss: 116.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 137) +0/69092 Loss: 120.235 +12800/69092 Loss: 116.380 +25600/69092 Loss: 116.760 +38400/69092 Loss: 116.232 +51200/69092 Loss: 116.531 +64000/69092 Loss: 116.034 +Training time 0:04:11.104504 +Epoch: 138 Average loss: 116.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 138) +0/69092 Loss: 118.149 +12800/69092 Loss: 116.341 +25600/69092 Loss: 116.744 +38400/69092 Loss: 116.054 +51200/69092 Loss: 116.238 +64000/69092 Loss: 116.862 +Training time 0:04:04.615421 +Epoch: 139 Average loss: 116.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 139) +0/69092 Loss: 116.938 +12800/69092 Loss: 116.694 +25600/69092 Loss: 116.568 +38400/69092 Loss: 116.814 +51200/69092 Loss: 115.828 +64000/69092 Loss: 116.409 +Training time 0:04:13.500231 +Epoch: 140 Average loss: 116.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 140) +0/69092 Loss: 120.534 +12800/69092 Loss: 116.519 +25600/69092 Loss: 116.369 +38400/69092 Loss: 115.763 +51200/69092 Loss: 116.506 +64000/69092 Loss: 116.365 +Training time 0:04:16.106278 +Epoch: 141 Average loss: 116.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 141) +0/69092 Loss: 119.007 +12800/69092 Loss: 116.184 +25600/69092 Loss: 117.124 +38400/69092 Loss: 115.399 +51200/69092 Loss: 115.922 +64000/69092 Loss: 116.029 +Training time 0:04:20.728542 +Epoch: 142 Average loss: 116.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 142) +0/69092 Loss: 112.271 +12800/69092 Loss: 116.729 +25600/69092 Loss: 115.879 +38400/69092 Loss: 117.016 +51200/69092 Loss: 116.293 +64000/69092 Loss: 116.261 +Training time 0:04:14.548097 +Epoch: 143 Average loss: 116.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_256/checkpoints/last' (iter 143) +0/69092 Loss: 119.247 +12800/69092 Loss: 116.008 diff --git a/OAR.2066989.stderr b/OAR.2066989.stderr new file mode 100644 index 0000000000000000000000000000000000000000..234323fdd0c0cd9b7dadab71ac41d247f46869b1 --- /dev/null +++ b/OAR.2066989.stderr @@ -0,0 +1,3 @@ +/data1/home/julien.dejasmin/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/_reduction.py:43: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. + warnings.warn(warning.format(ret)) +## OAR [2020-06-24 07:00:02] Job 2066989 KILLED ## diff --git a/OAR.2066989.stdout b/OAR.2066989.stdout new file mode 100644 index 0000000000000000000000000000000000000000..d530a05bea3bf17252ed2c1e75fa5b2dfa98a56e --- /dev/null +++ b/OAR.2066989.stdout @@ -0,0 +1,3460 @@ +Namespace(batch_size=64, beta=None, ckpt_dir='checkpoints', ckpt_name='last', cont_capacity=None, dataset='rendered_chairs', disc_capacity=None, epochs=400, experiment_name='VAE_bs_64', gpu_devices=[0, 1], is_beta_VAE=False, latent_name='', latent_spec_cont=10, latent_spec_disc=None, load_expe_name='', load_model_checkpoint=False, lr=0.0001, num_worker=4, print_loss_every=50, record_loss_every=50, save_model=True, save_reconstruction_image=False, save_step=1, verbose=True) +creare new diretory experiment: rendered_chairs/VAE_bs_64 +load dataset: rendered_chairs, with: 69120 train images of shape: (3, 64, 64) +use 2 gpu who named: +GeForce RTX 2080 Ti +GeForce RTX 2080 Ti +DataParallel( + (module): VAE( + (img_to_last_conv): Sequential( + (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (1): ReLU() + (2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + ) + (last_conv_to_continuous_features): Sequential( + (0): Conv2d(64, 256, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + ) + (features_to_hidden_continue): Sequential( + (0): Linear(in_features=256, out_features=20, bias=True) + (1): ReLU() + ) + (latent_to_features): Sequential( + (0): Linear(in_features=10, out_features=256, bias=True) + (1): ReLU() + ) + (features_to_img): Sequential( + (0): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(1, 1)) + (1): ReLU() + (2): ConvTranspose2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (3): ReLU() + (4): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (5): ReLU() + (6): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (7): ReLU() + (8): ConvTranspose2d(32, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) + (9): Sigmoid() + ) + ) +) +The number of parameters of model is 765335 +don't use continuous capacity +=> loaded checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last (iter 3)' +0/69092 Loss: 168.710 +3200/69092 Loss: 151.090 +6400/69092 Loss: 149.554 +9600/69092 Loss: 147.097 +12800/69092 Loss: 149.283 +16000/69092 Loss: 147.124 +19200/69092 Loss: 148.296 +22400/69092 Loss: 151.390 +25600/69092 Loss: 149.540 +28800/69092 Loss: 148.538 +32000/69092 Loss: 146.801 +35200/69092 Loss: 146.608 +38400/69092 Loss: 147.409 +41600/69092 Loss: 141.844 +44800/69092 Loss: 148.554 +48000/69092 Loss: 149.620 +51200/69092 Loss: 146.300 +54400/69092 Loss: 150.148 +57600/69092 Loss: 146.875 +60800/69092 Loss: 143.943 +64000/69092 Loss: 147.783 +67200/69092 Loss: 147.213 +Training time 0:04:24.323380 +Epoch: 1 Average loss: 147.75 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 4) +0/69092 Loss: 158.819 +3200/69092 Loss: 145.455 +6400/69092 Loss: 146.130 +9600/69092 Loss: 144.380 +12800/69092 Loss: 144.843 +16000/69092 Loss: 146.080 +19200/69092 Loss: 145.421 +22400/69092 Loss: 149.645 +25600/69092 Loss: 148.440 +28800/69092 Loss: 144.370 +32000/69092 Loss: 147.816 +35200/69092 Loss: 146.294 +38400/69092 Loss: 145.632 +41600/69092 Loss: 141.891 +44800/69092 Loss: 143.450 +48000/69092 Loss: 143.778 +51200/69092 Loss: 145.786 +54400/69092 Loss: 143.362 +57600/69092 Loss: 147.704 +60800/69092 Loss: 147.121 +64000/69092 Loss: 145.282 +67200/69092 Loss: 145.587 +Training time 0:04:20.176991 +Epoch: 2 Average loss: 145.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 5) +0/69092 Loss: 134.195 +3200/69092 Loss: 148.996 +6400/69092 Loss: 142.480 +9600/69092 Loss: 141.951 +12800/69092 Loss: 144.894 +16000/69092 Loss: 142.587 +19200/69092 Loss: 143.194 +22400/69092 Loss: 144.316 +25600/69092 Loss: 142.355 +28800/69092 Loss: 145.405 +32000/69092 Loss: 142.902 +35200/69092 Loss: 146.418 +38400/69092 Loss: 144.190 +41600/69092 Loss: 143.508 +44800/69092 Loss: 142.121 +48000/69092 Loss: 144.655 +51200/69092 Loss: 143.216 +54400/69092 Loss: 145.905 +57600/69092 Loss: 144.233 +60800/69092 Loss: 143.225 +64000/69092 Loss: 143.747 +67200/69092 Loss: 144.372 +Training time 0:04:21.847400 +Epoch: 3 Average loss: 144.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 6) +0/69092 Loss: 158.546 +3200/69092 Loss: 143.724 +6400/69092 Loss: 143.463 +9600/69092 Loss: 143.337 +12800/69092 Loss: 144.160 +16000/69092 Loss: 144.717 +19200/69092 Loss: 142.720 +22400/69092 Loss: 141.418 +25600/69092 Loss: 142.358 +28800/69092 Loss: 143.985 +32000/69092 Loss: 141.719 +35200/69092 Loss: 140.359 +38400/69092 Loss: 142.268 +41600/69092 Loss: 143.411 +44800/69092 Loss: 144.112 +48000/69092 Loss: 142.263 +51200/69092 Loss: 142.091 +54400/69092 Loss: 144.641 +57600/69092 Loss: 142.175 +60800/69092 Loss: 141.229 +64000/69092 Loss: 140.349 +67200/69092 Loss: 140.640 +Training time 0:04:28.338593 +Epoch: 4 Average loss: 142.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 7) +0/69092 Loss: 142.651 +3200/69092 Loss: 140.940 +6400/69092 Loss: 141.995 +9600/69092 Loss: 143.163 +12800/69092 Loss: 139.080 +16000/69092 Loss: 142.381 +19200/69092 Loss: 139.068 +22400/69092 Loss: 142.262 +25600/69092 Loss: 142.301 +28800/69092 Loss: 144.625 +32000/69092 Loss: 143.733 +35200/69092 Loss: 139.129 +38400/69092 Loss: 140.834 +41600/69092 Loss: 140.503 +44800/69092 Loss: 143.628 +48000/69092 Loss: 140.086 +51200/69092 Loss: 142.102 +54400/69092 Loss: 142.008 +57600/69092 Loss: 143.115 +60800/69092 Loss: 142.930 +64000/69092 Loss: 139.570 +67200/69092 Loss: 143.483 +Training time 0:04:32.850446 +Epoch: 5 Average loss: 141.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 8) +0/69092 Loss: 148.280 +3200/69092 Loss: 139.345 +6400/69092 Loss: 140.230 +9600/69092 Loss: 143.982 +12800/69092 Loss: 139.087 +16000/69092 Loss: 140.962 +19200/69092 Loss: 141.655 +22400/69092 Loss: 140.223 +25600/69092 Loss: 141.955 +28800/69092 Loss: 140.359 +32000/69092 Loss: 141.023 +35200/69092 Loss: 138.533 +38400/69092 Loss: 140.527 +41600/69092 Loss: 138.105 +44800/69092 Loss: 140.392 +48000/69092 Loss: 143.276 +51200/69092 Loss: 141.854 +54400/69092 Loss: 137.973 +57600/69092 Loss: 143.096 +60800/69092 Loss: 141.552 +64000/69092 Loss: 140.871 +67200/69092 Loss: 141.383 +Training time 0:04:28.358295 +Epoch: 6 Average loss: 140.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 9) +0/69092 Loss: 151.288 +3200/69092 Loss: 139.086 +6400/69092 Loss: 139.084 +9600/69092 Loss: 142.941 +12800/69092 Loss: 138.658 +16000/69092 Loss: 139.222 +19200/69092 Loss: 141.122 +22400/69092 Loss: 140.593 +25600/69092 Loss: 140.055 +28800/69092 Loss: 140.370 +32000/69092 Loss: 139.670 +35200/69092 Loss: 137.626 +38400/69092 Loss: 138.915 +41600/69092 Loss: 141.240 +44800/69092 Loss: 140.973 +48000/69092 Loss: 137.559 +51200/69092 Loss: 138.119 +54400/69092 Loss: 142.163 +57600/69092 Loss: 139.065 +60800/69092 Loss: 141.348 +64000/69092 Loss: 139.424 +67200/69092 Loss: 137.497 +Training time 0:04:20.120376 +Epoch: 7 Average loss: 139.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 10) +0/69092 Loss: 141.026 +3200/69092 Loss: 139.577 +6400/69092 Loss: 136.711 +9600/69092 Loss: 141.149 +12800/69092 Loss: 138.626 +16000/69092 Loss: 137.874 +19200/69092 Loss: 137.986 +22400/69092 Loss: 138.027 +25600/69092 Loss: 137.398 +28800/69092 Loss: 138.577 +32000/69092 Loss: 138.277 +35200/69092 Loss: 139.278 +38400/69092 Loss: 134.269 +41600/69092 Loss: 138.488 +44800/69092 Loss: 137.161 +48000/69092 Loss: 139.269 +51200/69092 Loss: 138.194 +54400/69092 Loss: 138.302 +57600/69092 Loss: 139.736 +60800/69092 Loss: 138.145 +64000/69092 Loss: 137.397 +67200/69092 Loss: 142.087 +Training time 0:04:18.076296 +Epoch: 8 Average loss: 138.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 11) +0/69092 Loss: 142.430 +3200/69092 Loss: 135.373 +6400/69092 Loss: 136.746 +9600/69092 Loss: 138.606 +12800/69092 Loss: 137.819 +16000/69092 Loss: 137.245 +19200/69092 Loss: 140.270 +22400/69092 Loss: 137.765 +25600/69092 Loss: 137.542 +28800/69092 Loss: 137.094 +32000/69092 Loss: 137.280 +35200/69092 Loss: 135.271 +38400/69092 Loss: 138.115 +41600/69092 Loss: 138.030 +44800/69092 Loss: 133.132 +48000/69092 Loss: 136.096 +51200/69092 Loss: 137.447 +54400/69092 Loss: 136.824 +57600/69092 Loss: 138.901 +60800/69092 Loss: 135.466 +64000/69092 Loss: 137.750 +67200/69092 Loss: 135.623 +Training time 0:04:24.652008 +Epoch: 9 Average loss: 137.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 12) +0/69092 Loss: 133.767 +3200/69092 Loss: 132.615 +6400/69092 Loss: 135.810 +9600/69092 Loss: 136.655 +12800/69092 Loss: 137.254 +16000/69092 Loss: 138.474 +19200/69092 Loss: 135.189 +22400/69092 Loss: 135.563 +25600/69092 Loss: 135.713 +28800/69092 Loss: 136.169 +32000/69092 Loss: 136.928 +35200/69092 Loss: 134.499 +38400/69092 Loss: 135.761 +41600/69092 Loss: 133.933 +44800/69092 Loss: 137.196 +48000/69092 Loss: 135.761 +51200/69092 Loss: 133.530 +54400/69092 Loss: 135.310 +57600/69092 Loss: 134.247 +60800/69092 Loss: 133.764 +64000/69092 Loss: 132.814 +67200/69092 Loss: 132.712 +Training time 0:04:27.168263 +Epoch: 10 Average loss: 135.18 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 13) +0/69092 Loss: 133.262 +3200/69092 Loss: 132.734 +6400/69092 Loss: 132.997 +9600/69092 Loss: 133.191 +12800/69092 Loss: 135.774 +16000/69092 Loss: 131.620 +19200/69092 Loss: 132.652 +22400/69092 Loss: 130.358 +25600/69092 Loss: 133.336 +28800/69092 Loss: 134.207 +32000/69092 Loss: 130.676 +35200/69092 Loss: 135.177 +38400/69092 Loss: 130.273 +41600/69092 Loss: 133.683 +44800/69092 Loss: 132.092 +48000/69092 Loss: 131.892 +51200/69092 Loss: 129.759 +54400/69092 Loss: 132.611 +57600/69092 Loss: 130.502 +60800/69092 Loss: 130.160 +64000/69092 Loss: 131.685 +67200/69092 Loss: 127.816 +Training time 0:04:24.848130 +Epoch: 11 Average loss: 132.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 14) +0/69092 Loss: 124.336 +3200/69092 Loss: 129.374 +6400/69092 Loss: 131.302 +9600/69092 Loss: 129.214 +12800/69092 Loss: 131.172 +16000/69092 Loss: 128.778 +19200/69092 Loss: 129.312 +22400/69092 Loss: 131.400 +25600/69092 Loss: 130.371 +28800/69092 Loss: 127.324 +32000/69092 Loss: 129.498 +35200/69092 Loss: 131.702 +38400/69092 Loss: 128.119 +41600/69092 Loss: 129.399 +44800/69092 Loss: 129.674 +48000/69092 Loss: 128.298 +51200/69092 Loss: 128.708 +54400/69092 Loss: 127.717 +57600/69092 Loss: 130.327 +60800/69092 Loss: 129.181 +64000/69092 Loss: 128.923 +67200/69092 Loss: 128.455 +Training time 0:04:25.437912 +Epoch: 12 Average loss: 129.40 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 15) +0/69092 Loss: 134.263 +3200/69092 Loss: 127.368 +6400/69092 Loss: 129.353 +9600/69092 Loss: 129.035 +12800/69092 Loss: 129.155 +16000/69092 Loss: 132.011 +19200/69092 Loss: 128.835 +22400/69092 Loss: 127.944 +25600/69092 Loss: 129.106 +28800/69092 Loss: 128.343 +32000/69092 Loss: 128.297 +35200/69092 Loss: 126.306 +38400/69092 Loss: 129.187 +41600/69092 Loss: 125.339 +44800/69092 Loss: 127.106 +48000/69092 Loss: 127.993 +51200/69092 Loss: 126.170 +54400/69092 Loss: 123.472 +57600/69092 Loss: 127.903 +60800/69092 Loss: 128.256 +64000/69092 Loss: 127.095 +67200/69092 Loss: 127.681 +Training time 0:04:32.032921 +Epoch: 13 Average loss: 127.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 16) +0/69092 Loss: 131.333 +3200/69092 Loss: 126.908 +6400/69092 Loss: 127.240 +9600/69092 Loss: 125.892 +12800/69092 Loss: 128.212 +16000/69092 Loss: 127.065 +19200/69092 Loss: 128.321 +22400/69092 Loss: 128.990 +25600/69092 Loss: 128.002 +28800/69092 Loss: 128.531 +32000/69092 Loss: 124.950 +35200/69092 Loss: 127.374 +38400/69092 Loss: 124.957 +41600/69092 Loss: 123.737 +44800/69092 Loss: 127.220 +48000/69092 Loss: 125.341 +51200/69092 Loss: 127.031 +54400/69092 Loss: 126.577 +57600/69092 Loss: 127.925 +60800/69092 Loss: 125.480 +64000/69092 Loss: 125.735 +67200/69092 Loss: 129.284 +Training time 0:04:26.086614 +Epoch: 14 Average loss: 126.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 17) +0/69092 Loss: 133.018 +3200/69092 Loss: 124.639 +6400/69092 Loss: 127.398 +9600/69092 Loss: 128.027 +12800/69092 Loss: 127.694 +16000/69092 Loss: 127.104 +19200/69092 Loss: 123.045 +22400/69092 Loss: 126.155 +25600/69092 Loss: 127.054 +28800/69092 Loss: 128.421 +32000/69092 Loss: 123.365 +35200/69092 Loss: 127.267 +38400/69092 Loss: 127.019 +41600/69092 Loss: 125.752 +44800/69092 Loss: 127.605 +48000/69092 Loss: 125.695 +51200/69092 Loss: 124.555 +54400/69092 Loss: 127.477 +57600/69092 Loss: 128.311 +60800/69092 Loss: 128.544 +64000/69092 Loss: 125.838 +67200/69092 Loss: 125.219 +Training time 0:04:26.177394 +Epoch: 15 Average loss: 126.43 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 18) +0/69092 Loss: 129.000 +3200/69092 Loss: 126.913 +6400/69092 Loss: 126.775 +9600/69092 Loss: 125.272 +12800/69092 Loss: 128.050 +16000/69092 Loss: 123.353 +19200/69092 Loss: 125.428 +22400/69092 Loss: 125.317 +25600/69092 Loss: 126.913 +28800/69092 Loss: 124.705 +32000/69092 Loss: 124.564 +35200/69092 Loss: 123.664 +38400/69092 Loss: 126.124 +41600/69092 Loss: 125.927 +44800/69092 Loss: 124.006 +48000/69092 Loss: 125.397 +51200/69092 Loss: 121.915 +54400/69092 Loss: 126.219 +57600/69092 Loss: 125.470 +60800/69092 Loss: 125.073 +64000/69092 Loss: 123.041 +67200/69092 Loss: 125.522 +Training time 0:04:17.666420 +Epoch: 16 Average loss: 125.19 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 19) +0/69092 Loss: 130.460 +3200/69092 Loss: 125.000 +6400/69092 Loss: 122.856 +9600/69092 Loss: 124.084 +12800/69092 Loss: 123.778 +16000/69092 Loss: 122.321 +19200/69092 Loss: 124.423 +22400/69092 Loss: 125.071 +25600/69092 Loss: 124.913 +28800/69092 Loss: 125.839 +32000/69092 Loss: 123.424 +35200/69092 Loss: 124.882 +38400/69092 Loss: 123.690 +41600/69092 Loss: 125.155 +44800/69092 Loss: 124.251 +48000/69092 Loss: 120.418 +51200/69092 Loss: 123.887 +54400/69092 Loss: 122.937 +57600/69092 Loss: 123.103 +60800/69092 Loss: 122.097 +64000/69092 Loss: 122.104 +67200/69092 Loss: 126.776 +Training time 0:04:17.206166 +Epoch: 17 Average loss: 123.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 20) +0/69092 Loss: 125.709 +3200/69092 Loss: 122.481 +6400/69092 Loss: 124.142 +9600/69092 Loss: 125.479 +12800/69092 Loss: 122.792 +16000/69092 Loss: 122.145 +19200/69092 Loss: 122.566 +22400/69092 Loss: 124.190 +25600/69092 Loss: 123.891 +28800/69092 Loss: 122.902 +32000/69092 Loss: 124.310 +35200/69092 Loss: 122.531 +38400/69092 Loss: 121.952 +41600/69092 Loss: 121.670 +44800/69092 Loss: 121.877 +48000/69092 Loss: 121.542 +51200/69092 Loss: 121.311 +54400/69092 Loss: 123.462 +57600/69092 Loss: 122.085 +60800/69092 Loss: 122.979 +64000/69092 Loss: 122.467 +67200/69092 Loss: 125.233 +Training time 0:04:21.616950 +Epoch: 18 Average loss: 122.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 21) +0/69092 Loss: 131.789 +3200/69092 Loss: 122.443 +6400/69092 Loss: 122.318 +9600/69092 Loss: 122.900 +12800/69092 Loss: 122.974 +16000/69092 Loss: 121.412 +19200/69092 Loss: 120.611 +22400/69092 Loss: 122.656 +25600/69092 Loss: 122.382 +28800/69092 Loss: 122.912 +32000/69092 Loss: 123.287 +35200/69092 Loss: 123.464 +38400/69092 Loss: 124.760 +41600/69092 Loss: 123.023 +44800/69092 Loss: 120.572 +48000/69092 Loss: 121.521 +51200/69092 Loss: 121.732 +54400/69092 Loss: 121.177 +57600/69092 Loss: 121.043 +60800/69092 Loss: 122.161 +64000/69092 Loss: 123.240 +67200/69092 Loss: 122.289 +Training time 0:04:23.710109 +Epoch: 19 Average loss: 122.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 22) +0/69092 Loss: 132.011 +3200/69092 Loss: 122.395 +6400/69092 Loss: 122.687 +9600/69092 Loss: 119.839 +12800/69092 Loss: 120.750 +16000/69092 Loss: 121.405 +19200/69092 Loss: 123.091 +22400/69092 Loss: 121.585 +25600/69092 Loss: 122.142 +28800/69092 Loss: 124.710 +32000/69092 Loss: 120.898 +35200/69092 Loss: 122.051 +38400/69092 Loss: 121.603 +41600/69092 Loss: 125.219 +44800/69092 Loss: 120.014 +48000/69092 Loss: 121.117 +51200/69092 Loss: 120.134 +54400/69092 Loss: 120.445 +57600/69092 Loss: 123.741 +60800/69092 Loss: 121.813 +64000/69092 Loss: 123.181 +67200/69092 Loss: 119.608 +Training time 0:04:22.895842 +Epoch: 20 Average loss: 121.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 23) +0/69092 Loss: 119.060 +3200/69092 Loss: 124.563 +6400/69092 Loss: 119.417 +9600/69092 Loss: 120.945 +12800/69092 Loss: 124.082 +16000/69092 Loss: 118.880 +19200/69092 Loss: 122.143 +22400/69092 Loss: 122.192 +25600/69092 Loss: 120.804 +28800/69092 Loss: 120.837 +32000/69092 Loss: 121.632 +35200/69092 Loss: 120.909 +38400/69092 Loss: 120.049 +41600/69092 Loss: 120.950 +44800/69092 Loss: 123.908 +48000/69092 Loss: 123.852 +51200/69092 Loss: 121.084 +54400/69092 Loss: 122.443 +57600/69092 Loss: 119.249 +60800/69092 Loss: 121.478 +64000/69092 Loss: 121.191 +67200/69092 Loss: 119.711 +Training time 0:04:25.586193 +Epoch: 21 Average loss: 121.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 24) +0/69092 Loss: 147.141 +3200/69092 Loss: 122.941 +6400/69092 Loss: 121.454 +9600/69092 Loss: 121.708 +12800/69092 Loss: 120.407 +16000/69092 Loss: 120.226 +19200/69092 Loss: 120.991 +22400/69092 Loss: 121.804 +25600/69092 Loss: 120.271 +28800/69092 Loss: 119.301 +32000/69092 Loss: 120.266 +35200/69092 Loss: 119.405 +38400/69092 Loss: 122.874 +41600/69092 Loss: 121.870 +44800/69092 Loss: 120.460 +48000/69092 Loss: 122.500 +51200/69092 Loss: 122.703 +54400/69092 Loss: 120.388 +57600/69092 Loss: 121.708 +60800/69092 Loss: 121.478 +64000/69092 Loss: 119.001 +67200/69092 Loss: 120.973 +Training time 0:04:25.966213 +Epoch: 22 Average loss: 121.14 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 25) +0/69092 Loss: 137.482 +3200/69092 Loss: 122.287 +6400/69092 Loss: 122.076 +9600/69092 Loss: 121.104 +12800/69092 Loss: 120.438 +16000/69092 Loss: 122.045 +19200/69092 Loss: 122.709 +22400/69092 Loss: 120.998 +25600/69092 Loss: 120.313 +28800/69092 Loss: 121.337 +32000/69092 Loss: 121.268 +35200/69092 Loss: 121.532 +38400/69092 Loss: 121.357 +41600/69092 Loss: 120.043 +44800/69092 Loss: 120.123 +48000/69092 Loss: 120.658 +51200/69092 Loss: 117.727 +54400/69092 Loss: 120.464 +57600/69092 Loss: 122.582 +60800/69092 Loss: 120.352 +64000/69092 Loss: 121.307 +67200/69092 Loss: 120.479 +Training time 0:04:26.382108 +Epoch: 23 Average loss: 120.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 26) +0/69092 Loss: 118.231 +3200/69092 Loss: 120.758 +6400/69092 Loss: 122.165 +9600/69092 Loss: 121.244 +12800/69092 Loss: 121.333 +16000/69092 Loss: 120.261 +19200/69092 Loss: 121.975 +22400/69092 Loss: 120.148 +25600/69092 Loss: 119.612 +28800/69092 Loss: 120.985 +32000/69092 Loss: 121.173 +35200/69092 Loss: 121.716 +38400/69092 Loss: 118.881 +41600/69092 Loss: 120.434 +44800/69092 Loss: 121.482 +48000/69092 Loss: 122.284 +51200/69092 Loss: 120.594 +54400/69092 Loss: 119.384 +57600/69092 Loss: 119.849 +60800/69092 Loss: 121.753 +64000/69092 Loss: 119.563 +67200/69092 Loss: 116.662 +Training time 0:04:25.570850 +Epoch: 24 Average loss: 120.61 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 27) +0/69092 Loss: 108.304 +3200/69092 Loss: 119.500 +6400/69092 Loss: 122.795 +9600/69092 Loss: 122.464 +12800/69092 Loss: 119.600 +16000/69092 Loss: 120.985 +19200/69092 Loss: 122.724 +22400/69092 Loss: 119.015 +25600/69092 Loss: 118.877 +28800/69092 Loss: 119.459 +32000/69092 Loss: 121.005 +35200/69092 Loss: 119.976 +38400/69092 Loss: 122.819 +41600/69092 Loss: 119.724 +44800/69092 Loss: 119.924 +48000/69092 Loss: 119.103 +51200/69092 Loss: 120.916 +54400/69092 Loss: 121.308 +57600/69092 Loss: 120.914 +60800/69092 Loss: 121.022 +64000/69092 Loss: 118.564 +67200/69092 Loss: 119.804 +Training time 0:04:18.949771 +Epoch: 25 Average loss: 120.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 28) +0/69092 Loss: 118.364 +3200/69092 Loss: 120.370 +6400/69092 Loss: 120.641 +9600/69092 Loss: 119.070 +12800/69092 Loss: 119.905 +16000/69092 Loss: 119.110 +19200/69092 Loss: 121.879 +22400/69092 Loss: 121.081 +25600/69092 Loss: 122.831 +28800/69092 Loss: 121.406 +32000/69092 Loss: 121.728 +35200/69092 Loss: 120.143 +38400/69092 Loss: 122.315 +41600/69092 Loss: 117.706 +44800/69092 Loss: 119.317 +48000/69092 Loss: 119.798 +51200/69092 Loss: 119.000 +54400/69092 Loss: 119.467 +57600/69092 Loss: 120.210 +60800/69092 Loss: 119.858 +64000/69092 Loss: 119.213 +67200/69092 Loss: 119.887 +Training time 0:04:25.713850 +Epoch: 26 Average loss: 120.20 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 29) +0/69092 Loss: 118.972 +3200/69092 Loss: 121.785 +6400/69092 Loss: 120.323 +9600/69092 Loss: 120.396 +12800/69092 Loss: 118.445 +16000/69092 Loss: 121.621 +19200/69092 Loss: 120.981 +22400/69092 Loss: 119.977 +25600/69092 Loss: 120.309 +28800/69092 Loss: 119.998 +32000/69092 Loss: 121.007 +35200/69092 Loss: 117.874 +38400/69092 Loss: 120.944 +41600/69092 Loss: 119.022 +44800/69092 Loss: 119.192 +48000/69092 Loss: 119.571 +51200/69092 Loss: 120.265 +54400/69092 Loss: 119.264 +57600/69092 Loss: 120.044 +60800/69092 Loss: 119.642 +64000/69092 Loss: 119.094 +67200/69092 Loss: 121.274 +Training time 0:04:32.947963 +Epoch: 27 Average loss: 120.08 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 30) +0/69092 Loss: 105.711 +3200/69092 Loss: 120.707 +6400/69092 Loss: 119.270 +9600/69092 Loss: 118.434 +12800/69092 Loss: 118.723 +16000/69092 Loss: 121.686 +19200/69092 Loss: 119.470 +22400/69092 Loss: 121.206 +25600/69092 Loss: 118.162 +28800/69092 Loss: 119.135 +32000/69092 Loss: 119.909 +35200/69092 Loss: 122.402 +38400/69092 Loss: 121.348 +41600/69092 Loss: 121.857 +44800/69092 Loss: 118.933 +48000/69092 Loss: 120.389 +51200/69092 Loss: 118.926 +54400/69092 Loss: 120.242 +57600/69092 Loss: 118.897 +60800/69092 Loss: 118.025 +64000/69092 Loss: 119.202 +67200/69092 Loss: 118.477 +Training time 0:04:38.239052 +Epoch: 28 Average loss: 119.79 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 31) +0/69092 Loss: 125.045 +3200/69092 Loss: 119.077 +6400/69092 Loss: 121.288 +9600/69092 Loss: 118.648 +12800/69092 Loss: 117.952 +16000/69092 Loss: 120.929 +19200/69092 Loss: 118.522 +22400/69092 Loss: 119.540 +25600/69092 Loss: 117.916 +28800/69092 Loss: 121.027 +32000/69092 Loss: 120.191 +35200/69092 Loss: 119.669 +38400/69092 Loss: 120.919 +41600/69092 Loss: 118.882 +44800/69092 Loss: 121.225 +48000/69092 Loss: 119.187 +51200/69092 Loss: 119.246 +54400/69092 Loss: 120.123 +57600/69092 Loss: 120.759 +60800/69092 Loss: 118.614 +64000/69092 Loss: 119.713 +67200/69092 Loss: 119.882 +Training time 0:04:30.982903 +Epoch: 29 Average loss: 119.67 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 32) +0/69092 Loss: 116.535 +3200/69092 Loss: 120.467 +6400/69092 Loss: 120.213 +9600/69092 Loss: 116.316 +12800/69092 Loss: 122.133 +16000/69092 Loss: 118.893 +19200/69092 Loss: 119.812 +22400/69092 Loss: 121.830 +25600/69092 Loss: 118.437 +28800/69092 Loss: 119.630 +32000/69092 Loss: 119.669 +35200/69092 Loss: 117.338 +38400/69092 Loss: 118.764 +41600/69092 Loss: 118.184 +44800/69092 Loss: 118.814 +48000/69092 Loss: 121.905 +51200/69092 Loss: 119.987 +54400/69092 Loss: 117.650 +57600/69092 Loss: 120.923 +60800/69092 Loss: 119.119 +64000/69092 Loss: 120.850 +67200/69092 Loss: 119.152 +Training time 0:04:32.173868 +Epoch: 30 Average loss: 119.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 33) +0/69092 Loss: 116.206 +3200/69092 Loss: 120.007 +6400/69092 Loss: 120.306 +9600/69092 Loss: 120.622 +12800/69092 Loss: 118.230 +16000/69092 Loss: 119.093 +19200/69092 Loss: 122.371 +22400/69092 Loss: 117.925 +25600/69092 Loss: 121.133 +28800/69092 Loss: 119.946 +32000/69092 Loss: 119.513 +35200/69092 Loss: 120.525 +38400/69092 Loss: 116.965 +41600/69092 Loss: 119.378 +44800/69092 Loss: 116.394 +48000/69092 Loss: 118.768 +51200/69092 Loss: 119.274 +54400/69092 Loss: 118.630 +57600/69092 Loss: 117.748 +60800/69092 Loss: 118.896 +64000/69092 Loss: 118.875 +67200/69092 Loss: 118.516 +Training time 0:04:29.045180 +Epoch: 31 Average loss: 119.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 34) +0/69092 Loss: 117.266 +3200/69092 Loss: 118.274 +6400/69092 Loss: 117.234 +9600/69092 Loss: 120.030 +12800/69092 Loss: 119.236 +16000/69092 Loss: 120.456 +19200/69092 Loss: 120.226 +22400/69092 Loss: 120.690 +25600/69092 Loss: 117.134 +28800/69092 Loss: 117.551 +32000/69092 Loss: 118.243 +35200/69092 Loss: 120.714 +38400/69092 Loss: 117.411 +41600/69092 Loss: 121.130 +44800/69092 Loss: 118.548 +48000/69092 Loss: 119.227 +51200/69092 Loss: 119.998 +54400/69092 Loss: 119.477 +57600/69092 Loss: 120.617 +60800/69092 Loss: 118.561 +64000/69092 Loss: 118.560 +67200/69092 Loss: 119.088 +Training time 0:04:29.912910 +Epoch: 32 Average loss: 119.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 35) +0/69092 Loss: 123.715 +3200/69092 Loss: 119.440 +6400/69092 Loss: 118.955 +9600/69092 Loss: 117.991 +12800/69092 Loss: 120.905 +16000/69092 Loss: 118.625 +19200/69092 Loss: 120.808 +22400/69092 Loss: 117.325 +25600/69092 Loss: 120.590 +28800/69092 Loss: 120.715 +32000/69092 Loss: 117.795 +35200/69092 Loss: 117.978 +38400/69092 Loss: 118.461 +41600/69092 Loss: 117.702 +44800/69092 Loss: 118.960 +48000/69092 Loss: 120.560 +51200/69092 Loss: 116.987 +54400/69092 Loss: 120.304 +57600/69092 Loss: 119.230 +60800/69092 Loss: 117.759 +64000/69092 Loss: 120.255 +67200/69092 Loss: 118.699 +Training time 0:04:33.274534 +Epoch: 33 Average loss: 119.11 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 36) +0/69092 Loss: 118.849 +3200/69092 Loss: 120.621 +6400/69092 Loss: 119.201 +9600/69092 Loss: 118.597 +12800/69092 Loss: 119.319 +16000/69092 Loss: 117.364 +19200/69092 Loss: 118.661 +22400/69092 Loss: 117.795 +25600/69092 Loss: 119.699 +28800/69092 Loss: 120.421 +32000/69092 Loss: 118.955 +35200/69092 Loss: 118.800 +38400/69092 Loss: 118.993 +41600/69092 Loss: 120.018 +44800/69092 Loss: 118.363 +48000/69092 Loss: 119.996 +51200/69092 Loss: 120.001 +54400/69092 Loss: 118.896 +57600/69092 Loss: 116.693 +60800/69092 Loss: 121.120 +64000/69092 Loss: 118.783 +67200/69092 Loss: 120.760 +Training time 0:04:27.301002 +Epoch: 34 Average loss: 119.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 37) +0/69092 Loss: 117.403 +3200/69092 Loss: 119.066 +6400/69092 Loss: 118.569 +9600/69092 Loss: 119.955 +12800/69092 Loss: 118.320 +16000/69092 Loss: 118.868 +19200/69092 Loss: 118.263 +22400/69092 Loss: 118.127 +25600/69092 Loss: 118.569 +28800/69092 Loss: 118.432 +32000/69092 Loss: 117.366 +35200/69092 Loss: 118.409 +38400/69092 Loss: 119.698 +41600/69092 Loss: 118.692 +44800/69092 Loss: 119.147 +48000/69092 Loss: 117.626 +51200/69092 Loss: 120.895 +54400/69092 Loss: 118.511 +57600/69092 Loss: 119.247 +60800/69092 Loss: 118.111 +64000/69092 Loss: 120.180 +67200/69092 Loss: 117.345 +Training time 0:04:26.693822 +Epoch: 35 Average loss: 118.71 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 38) +0/69092 Loss: 126.114 +3200/69092 Loss: 120.061 +6400/69092 Loss: 117.689 +9600/69092 Loss: 119.253 +12800/69092 Loss: 119.081 +16000/69092 Loss: 120.007 +19200/69092 Loss: 118.019 +22400/69092 Loss: 117.523 +25600/69092 Loss: 117.614 +28800/69092 Loss: 120.150 +32000/69092 Loss: 119.956 +35200/69092 Loss: 116.728 +38400/69092 Loss: 117.896 +41600/69092 Loss: 117.262 +44800/69092 Loss: 116.199 +48000/69092 Loss: 118.588 +51200/69092 Loss: 116.918 +54400/69092 Loss: 117.918 +57600/69092 Loss: 122.362 +60800/69092 Loss: 118.200 +64000/69092 Loss: 119.610 +67200/69092 Loss: 119.881 +Training time 0:04:28.605144 +Epoch: 36 Average loss: 118.68 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 39) +0/69092 Loss: 116.029 +3200/69092 Loss: 119.409 +6400/69092 Loss: 117.547 +9600/69092 Loss: 120.324 +12800/69092 Loss: 119.865 +16000/69092 Loss: 117.831 +19200/69092 Loss: 119.817 +22400/69092 Loss: 120.161 +25600/69092 Loss: 119.740 +28800/69092 Loss: 119.457 +32000/69092 Loss: 118.670 +35200/69092 Loss: 115.878 +38400/69092 Loss: 118.448 +41600/69092 Loss: 119.814 +44800/69092 Loss: 120.318 +48000/69092 Loss: 117.253 +51200/69092 Loss: 118.179 +54400/69092 Loss: 116.454 +57600/69092 Loss: 118.137 +60800/69092 Loss: 117.428 +64000/69092 Loss: 117.346 +67200/69092 Loss: 117.489 +Training time 0:04:26.394531 +Epoch: 37 Average loss: 118.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 40) +0/69092 Loss: 131.857 +3200/69092 Loss: 119.845 +6400/69092 Loss: 118.204 +9600/69092 Loss: 119.427 +12800/69092 Loss: 118.579 +16000/69092 Loss: 118.246 +19200/69092 Loss: 117.630 +22400/69092 Loss: 118.912 +25600/69092 Loss: 118.977 +28800/69092 Loss: 120.189 +32000/69092 Loss: 119.178 +35200/69092 Loss: 120.338 +38400/69092 Loss: 119.431 +41600/69092 Loss: 116.851 +44800/69092 Loss: 118.863 +48000/69092 Loss: 117.607 +51200/69092 Loss: 120.131 +54400/69092 Loss: 116.522 +57600/69092 Loss: 117.548 +60800/69092 Loss: 120.433 +64000/69092 Loss: 119.288 +67200/69092 Loss: 117.617 +Training time 0:04:28.231272 +Epoch: 38 Average loss: 118.76 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 41) +0/69092 Loss: 104.315 +3200/69092 Loss: 118.207 +6400/69092 Loss: 118.797 +9600/69092 Loss: 117.818 +12800/69092 Loss: 119.333 +16000/69092 Loss: 118.367 +19200/69092 Loss: 117.582 +22400/69092 Loss: 118.845 +25600/69092 Loss: 118.929 +28800/69092 Loss: 118.353 +32000/69092 Loss: 116.249 +35200/69092 Loss: 117.122 +38400/69092 Loss: 117.133 +41600/69092 Loss: 118.203 +44800/69092 Loss: 118.386 +48000/69092 Loss: 119.663 +51200/69092 Loss: 119.400 +54400/69092 Loss: 118.007 +57600/69092 Loss: 118.821 +60800/69092 Loss: 117.460 +64000/69092 Loss: 120.259 +67200/69092 Loss: 117.853 +Training time 0:04:36.544689 +Epoch: 39 Average loss: 118.36 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 42) +0/69092 Loss: 115.324 +3200/69092 Loss: 118.398 +6400/69092 Loss: 119.789 +9600/69092 Loss: 118.277 +12800/69092 Loss: 118.077 +16000/69092 Loss: 119.158 +19200/69092 Loss: 118.147 +22400/69092 Loss: 118.761 +25600/69092 Loss: 117.942 +28800/69092 Loss: 118.611 +32000/69092 Loss: 117.219 +35200/69092 Loss: 116.300 +38400/69092 Loss: 119.515 +41600/69092 Loss: 118.987 +44800/69092 Loss: 118.719 +48000/69092 Loss: 117.598 +51200/69092 Loss: 117.573 +54400/69092 Loss: 119.454 +57600/69092 Loss: 118.737 +60800/69092 Loss: 119.045 +64000/69092 Loss: 116.808 +67200/69092 Loss: 117.400 +Training time 0:04:33.331351 +Epoch: 40 Average loss: 118.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 43) +0/69092 Loss: 118.771 +3200/69092 Loss: 116.662 +6400/69092 Loss: 117.344 +9600/69092 Loss: 117.850 +12800/69092 Loss: 118.028 +16000/69092 Loss: 117.963 +19200/69092 Loss: 116.616 +22400/69092 Loss: 119.128 +25600/69092 Loss: 117.621 +28800/69092 Loss: 117.808 +32000/69092 Loss: 118.379 +35200/69092 Loss: 119.555 +38400/69092 Loss: 118.062 +41600/69092 Loss: 120.114 +44800/69092 Loss: 119.300 +48000/69092 Loss: 119.374 +51200/69092 Loss: 118.337 +54400/69092 Loss: 117.450 +57600/69092 Loss: 118.320 +60800/69092 Loss: 116.882 +64000/69092 Loss: 118.007 +67200/69092 Loss: 118.956 +Training time 0:04:29.097078 +Epoch: 41 Average loss: 118.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 44) +0/69092 Loss: 121.785 +3200/69092 Loss: 118.478 +6400/69092 Loss: 119.252 +9600/69092 Loss: 116.702 +12800/69092 Loss: 117.992 +16000/69092 Loss: 117.752 +19200/69092 Loss: 120.084 +22400/69092 Loss: 118.588 +25600/69092 Loss: 117.626 +28800/69092 Loss: 118.204 +32000/69092 Loss: 118.521 +35200/69092 Loss: 118.790 +38400/69092 Loss: 115.994 +41600/69092 Loss: 117.095 +44800/69092 Loss: 119.387 +48000/69092 Loss: 119.568 +51200/69092 Loss: 118.056 +54400/69092 Loss: 119.010 +57600/69092 Loss: 118.281 +60800/69092 Loss: 116.275 +64000/69092 Loss: 118.264 +67200/69092 Loss: 118.857 +Training time 0:04:34.029356 +Epoch: 42 Average loss: 118.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 45) +0/69092 Loss: 123.996 +3200/69092 Loss: 116.337 +6400/69092 Loss: 115.972 +9600/69092 Loss: 117.151 +12800/69092 Loss: 118.222 +16000/69092 Loss: 117.206 +19200/69092 Loss: 117.800 +22400/69092 Loss: 119.091 +25600/69092 Loss: 118.343 +28800/69092 Loss: 117.973 +32000/69092 Loss: 118.411 +35200/69092 Loss: 118.765 +38400/69092 Loss: 117.752 +41600/69092 Loss: 116.759 +44800/69092 Loss: 118.769 +48000/69092 Loss: 115.599 +51200/69092 Loss: 116.894 +54400/69092 Loss: 118.179 +57600/69092 Loss: 118.572 +60800/69092 Loss: 119.989 +64000/69092 Loss: 119.213 +67200/69092 Loss: 119.978 +Training time 0:04:14.785945 +Epoch: 43 Average loss: 117.97 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 46) +0/69092 Loss: 106.408 +3200/69092 Loss: 116.920 +6400/69092 Loss: 118.497 +9600/69092 Loss: 117.738 +12800/69092 Loss: 117.219 +16000/69092 Loss: 116.886 +19200/69092 Loss: 116.969 +22400/69092 Loss: 116.356 +25600/69092 Loss: 118.912 +28800/69092 Loss: 116.484 +32000/69092 Loss: 115.970 +35200/69092 Loss: 118.229 +38400/69092 Loss: 118.897 +41600/69092 Loss: 118.444 +44800/69092 Loss: 119.632 +48000/69092 Loss: 119.609 +51200/69092 Loss: 119.555 +54400/69092 Loss: 117.546 +57600/69092 Loss: 118.634 +60800/69092 Loss: 117.183 +64000/69092 Loss: 117.965 +67200/69092 Loss: 115.849 +Training time 0:04:21.044989 +Epoch: 44 Average loss: 117.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 47) +0/69092 Loss: 120.892 +3200/69092 Loss: 118.694 +6400/69092 Loss: 118.532 +9600/69092 Loss: 116.084 +12800/69092 Loss: 118.203 +16000/69092 Loss: 117.872 +19200/69092 Loss: 118.580 +22400/69092 Loss: 118.333 +25600/69092 Loss: 117.916 +28800/69092 Loss: 116.091 +32000/69092 Loss: 118.709 +35200/69092 Loss: 116.751 +38400/69092 Loss: 118.845 +41600/69092 Loss: 116.645 +44800/69092 Loss: 119.898 +48000/69092 Loss: 117.519 +51200/69092 Loss: 117.996 +54400/69092 Loss: 118.353 +57600/69092 Loss: 117.601 +60800/69092 Loss: 116.375 +64000/69092 Loss: 118.261 +67200/69092 Loss: 115.889 +Training time 0:04:12.758008 +Epoch: 45 Average loss: 117.74 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 48) +0/69092 Loss: 118.087 +3200/69092 Loss: 117.098 +6400/69092 Loss: 118.501 +9600/69092 Loss: 116.625 +12800/69092 Loss: 119.324 +16000/69092 Loss: 119.308 +19200/69092 Loss: 117.987 +22400/69092 Loss: 117.006 +25600/69092 Loss: 117.740 +28800/69092 Loss: 117.534 +32000/69092 Loss: 117.054 +35200/69092 Loss: 118.291 +38400/69092 Loss: 115.554 +41600/69092 Loss: 115.861 +44800/69092 Loss: 118.069 +48000/69092 Loss: 119.460 +51200/69092 Loss: 118.501 +54400/69092 Loss: 117.221 +57600/69092 Loss: 116.807 +60800/69092 Loss: 116.986 +64000/69092 Loss: 118.153 +67200/69092 Loss: 117.880 +Training time 0:04:20.462099 +Epoch: 46 Average loss: 117.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 49) +0/69092 Loss: 125.376 +3200/69092 Loss: 118.748 +6400/69092 Loss: 116.575 +9600/69092 Loss: 119.625 +12800/69092 Loss: 117.221 +16000/69092 Loss: 119.347 +19200/69092 Loss: 118.588 +22400/69092 Loss: 116.669 +25600/69092 Loss: 118.300 +28800/69092 Loss: 118.447 +32000/69092 Loss: 117.466 +35200/69092 Loss: 117.586 +38400/69092 Loss: 116.847 +41600/69092 Loss: 119.315 +44800/69092 Loss: 116.312 +48000/69092 Loss: 117.635 +51200/69092 Loss: 116.860 +54400/69092 Loss: 115.944 +57600/69092 Loss: 118.172 +60800/69092 Loss: 117.511 +64000/69092 Loss: 116.628 +67200/69092 Loss: 118.540 +Training time 0:04:20.977065 +Epoch: 47 Average loss: 117.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 50) +0/69092 Loss: 116.650 +3200/69092 Loss: 117.711 +6400/69092 Loss: 117.896 +9600/69092 Loss: 117.998 +12800/69092 Loss: 117.463 +16000/69092 Loss: 119.810 +19200/69092 Loss: 117.047 +22400/69092 Loss: 116.851 +25600/69092 Loss: 118.149 +28800/69092 Loss: 117.825 +32000/69092 Loss: 118.743 +35200/69092 Loss: 116.654 +38400/69092 Loss: 117.213 +41600/69092 Loss: 115.864 +44800/69092 Loss: 118.279 +48000/69092 Loss: 117.977 +51200/69092 Loss: 119.500 +54400/69092 Loss: 116.919 +57600/69092 Loss: 115.241 +60800/69092 Loss: 120.465 +64000/69092 Loss: 116.324 +67200/69092 Loss: 117.485 +Training time 0:04:32.062968 +Epoch: 48 Average loss: 117.64 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 51) +0/69092 Loss: 109.422 +3200/69092 Loss: 118.779 +6400/69092 Loss: 114.385 +9600/69092 Loss: 118.288 +12800/69092 Loss: 117.950 +16000/69092 Loss: 117.745 +19200/69092 Loss: 118.373 +22400/69092 Loss: 117.894 +25600/69092 Loss: 116.823 +28800/69092 Loss: 117.096 +32000/69092 Loss: 116.887 +35200/69092 Loss: 115.479 +38400/69092 Loss: 117.367 +41600/69092 Loss: 117.097 +44800/69092 Loss: 119.047 +48000/69092 Loss: 117.317 +51200/69092 Loss: 117.486 +54400/69092 Loss: 117.068 +57600/69092 Loss: 117.542 +60800/69092 Loss: 117.758 +64000/69092 Loss: 117.278 +67200/69092 Loss: 117.851 +Training time 0:04:23.378010 +Epoch: 49 Average loss: 117.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 52) +0/69092 Loss: 134.673 +3200/69092 Loss: 116.821 +6400/69092 Loss: 118.035 +9600/69092 Loss: 117.602 +12800/69092 Loss: 116.879 +16000/69092 Loss: 118.296 +19200/69092 Loss: 116.002 +22400/69092 Loss: 118.027 +25600/69092 Loss: 118.486 +28800/69092 Loss: 119.646 +32000/69092 Loss: 118.729 +35200/69092 Loss: 117.728 +38400/69092 Loss: 117.981 +41600/69092 Loss: 116.104 +44800/69092 Loss: 117.923 +48000/69092 Loss: 116.814 +51200/69092 Loss: 119.341 +54400/69092 Loss: 117.462 +57600/69092 Loss: 115.161 +60800/69092 Loss: 117.117 +64000/69092 Loss: 117.501 +67200/69092 Loss: 117.372 +Training time 0:04:20.237584 +Epoch: 50 Average loss: 117.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 53) +0/69092 Loss: 111.840 +3200/69092 Loss: 116.925 +6400/69092 Loss: 117.049 +9600/69092 Loss: 117.445 +12800/69092 Loss: 118.647 +16000/69092 Loss: 116.480 +19200/69092 Loss: 117.663 +22400/69092 Loss: 117.357 +25600/69092 Loss: 116.542 +28800/69092 Loss: 117.214 +32000/69092 Loss: 116.737 +35200/69092 Loss: 117.576 +38400/69092 Loss: 115.957 +41600/69092 Loss: 117.487 +44800/69092 Loss: 117.003 +48000/69092 Loss: 117.846 +51200/69092 Loss: 116.705 +54400/69092 Loss: 116.772 +57600/69092 Loss: 117.018 +60800/69092 Loss: 119.256 +64000/69092 Loss: 118.638 +67200/69092 Loss: 119.231 +Training time 0:04:22.076445 +Epoch: 51 Average loss: 117.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 54) +0/69092 Loss: 112.129 +3200/69092 Loss: 117.937 +6400/69092 Loss: 117.977 +9600/69092 Loss: 118.404 +12800/69092 Loss: 118.683 +16000/69092 Loss: 115.423 +19200/69092 Loss: 117.976 +22400/69092 Loss: 117.606 +25600/69092 Loss: 115.392 +28800/69092 Loss: 118.396 +32000/69092 Loss: 118.410 +35200/69092 Loss: 120.169 +38400/69092 Loss: 115.286 +41600/69092 Loss: 116.985 +44800/69092 Loss: 116.913 +48000/69092 Loss: 116.859 +51200/69092 Loss: 117.496 +54400/69092 Loss: 117.475 +57600/69092 Loss: 117.096 +60800/69092 Loss: 117.043 +64000/69092 Loss: 117.797 +67200/69092 Loss: 117.296 +Training time 0:04:18.183982 +Epoch: 52 Average loss: 117.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 55) +0/69092 Loss: 109.696 +3200/69092 Loss: 118.624 +6400/69092 Loss: 116.392 +9600/69092 Loss: 115.355 +12800/69092 Loss: 118.917 +16000/69092 Loss: 116.919 +19200/69092 Loss: 117.824 +22400/69092 Loss: 117.217 +25600/69092 Loss: 118.351 +28800/69092 Loss: 115.596 +32000/69092 Loss: 115.765 +35200/69092 Loss: 117.230 +38400/69092 Loss: 115.949 +41600/69092 Loss: 114.170 +44800/69092 Loss: 115.958 +48000/69092 Loss: 119.411 +51200/69092 Loss: 116.037 +54400/69092 Loss: 118.067 +57600/69092 Loss: 117.140 +60800/69092 Loss: 116.311 +64000/69092 Loss: 117.791 +67200/69092 Loss: 117.873 +Training time 0:04:28.247742 +Epoch: 53 Average loss: 117.04 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 56) +0/69092 Loss: 119.751 +3200/69092 Loss: 118.410 +6400/69092 Loss: 116.364 +9600/69092 Loss: 117.416 +12800/69092 Loss: 116.910 +16000/69092 Loss: 117.747 +19200/69092 Loss: 119.832 +22400/69092 Loss: 117.021 +25600/69092 Loss: 117.239 +28800/69092 Loss: 115.512 +32000/69092 Loss: 116.949 +35200/69092 Loss: 117.572 +38400/69092 Loss: 117.688 +41600/69092 Loss: 115.560 +44800/69092 Loss: 118.275 +48000/69092 Loss: 117.558 +51200/69092 Loss: 115.515 +54400/69092 Loss: 117.731 +57600/69092 Loss: 115.984 +60800/69092 Loss: 117.454 +64000/69092 Loss: 115.422 +67200/69092 Loss: 118.018 +Training time 0:04:33.892244 +Epoch: 54 Average loss: 117.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 57) +0/69092 Loss: 122.561 +3200/69092 Loss: 117.605 +6400/69092 Loss: 117.209 +9600/69092 Loss: 118.036 +12800/69092 Loss: 116.387 +16000/69092 Loss: 117.226 +19200/69092 Loss: 116.761 +22400/69092 Loss: 116.501 +25600/69092 Loss: 117.119 +28800/69092 Loss: 117.525 +32000/69092 Loss: 119.526 +35200/69092 Loss: 115.889 +38400/69092 Loss: 116.361 +41600/69092 Loss: 117.674 +44800/69092 Loss: 116.317 +48000/69092 Loss: 114.762 +51200/69092 Loss: 115.947 +54400/69092 Loss: 116.371 +57600/69092 Loss: 117.442 +60800/69092 Loss: 116.723 +64000/69092 Loss: 117.863 +67200/69092 Loss: 118.023 +Training time 0:04:26.042149 +Epoch: 55 Average loss: 117.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 58) +0/69092 Loss: 114.835 +3200/69092 Loss: 116.415 +6400/69092 Loss: 115.747 +9600/69092 Loss: 116.319 +12800/69092 Loss: 117.885 +16000/69092 Loss: 117.722 +19200/69092 Loss: 115.351 +22400/69092 Loss: 118.106 +25600/69092 Loss: 117.478 +28800/69092 Loss: 116.495 +32000/69092 Loss: 117.339 +35200/69092 Loss: 116.400 +38400/69092 Loss: 116.613 +41600/69092 Loss: 116.669 +44800/69092 Loss: 115.792 +48000/69092 Loss: 117.015 +51200/69092 Loss: 118.780 +54400/69092 Loss: 116.552 +57600/69092 Loss: 115.665 +60800/69092 Loss: 117.378 +64000/69092 Loss: 116.443 +67200/69092 Loss: 116.465 +Training time 0:04:28.371721 +Epoch: 56 Average loss: 116.85 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 59) +0/69092 Loss: 116.169 +3200/69092 Loss: 117.142 +6400/69092 Loss: 115.437 +9600/69092 Loss: 115.886 +12800/69092 Loss: 117.338 +16000/69092 Loss: 117.990 +19200/69092 Loss: 116.401 +22400/69092 Loss: 116.773 +25600/69092 Loss: 117.632 +28800/69092 Loss: 119.238 +32000/69092 Loss: 115.935 +35200/69092 Loss: 116.649 +38400/69092 Loss: 116.294 +41600/69092 Loss: 115.736 +44800/69092 Loss: 118.223 +48000/69092 Loss: 117.310 +51200/69092 Loss: 116.516 +54400/69092 Loss: 115.370 +57600/69092 Loss: 115.812 +60800/69092 Loss: 117.136 +64000/69092 Loss: 117.079 +67200/69092 Loss: 116.638 +Training time 0:04:26.000514 +Epoch: 57 Average loss: 116.88 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 60) +0/69092 Loss: 110.920 +3200/69092 Loss: 114.819 +6400/69092 Loss: 118.254 +9600/69092 Loss: 116.914 +12800/69092 Loss: 115.104 +16000/69092 Loss: 117.142 +19200/69092 Loss: 116.541 +22400/69092 Loss: 116.466 +25600/69092 Loss: 117.216 +28800/69092 Loss: 116.823 +32000/69092 Loss: 118.113 +35200/69092 Loss: 118.111 +38400/69092 Loss: 115.204 +41600/69092 Loss: 119.473 +44800/69092 Loss: 116.941 +48000/69092 Loss: 117.162 +51200/69092 Loss: 117.440 +54400/69092 Loss: 118.859 +57600/69092 Loss: 117.363 +60800/69092 Loss: 116.367 +64000/69092 Loss: 115.175 +67200/69092 Loss: 115.445 +Training time 0:04:20.411956 +Epoch: 58 Average loss: 116.94 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 61) +0/69092 Loss: 123.952 +3200/69092 Loss: 115.271 +6400/69092 Loss: 118.519 +9600/69092 Loss: 117.646 +12800/69092 Loss: 117.271 +16000/69092 Loss: 116.498 +19200/69092 Loss: 114.770 +22400/69092 Loss: 115.375 +25600/69092 Loss: 116.423 +28800/69092 Loss: 114.687 +32000/69092 Loss: 117.993 +35200/69092 Loss: 115.539 +38400/69092 Loss: 116.548 +41600/69092 Loss: 117.976 +44800/69092 Loss: 117.867 +48000/69092 Loss: 116.480 +51200/69092 Loss: 118.782 +54400/69092 Loss: 116.445 +57600/69092 Loss: 115.679 +60800/69092 Loss: 115.930 +64000/69092 Loss: 118.402 +67200/69092 Loss: 119.948 +Training time 0:04:14.535964 +Epoch: 59 Average loss: 116.89 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 62) +0/69092 Loss: 100.414 +3200/69092 Loss: 115.779 +6400/69092 Loss: 116.562 +9600/69092 Loss: 115.648 +12800/69092 Loss: 117.149 +16000/69092 Loss: 116.193 +19200/69092 Loss: 117.466 +22400/69092 Loss: 119.299 +25600/69092 Loss: 115.709 +28800/69092 Loss: 119.611 +32000/69092 Loss: 117.682 +35200/69092 Loss: 114.740 +38400/69092 Loss: 118.007 +41600/69092 Loss: 116.426 +44800/69092 Loss: 118.943 +48000/69092 Loss: 117.323 +51200/69092 Loss: 116.706 +54400/69092 Loss: 115.251 +57600/69092 Loss: 115.733 +60800/69092 Loss: 115.655 +64000/69092 Loss: 117.807 +67200/69092 Loss: 117.300 +Training time 0:04:16.028042 +Epoch: 60 Average loss: 116.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 63) +0/69092 Loss: 115.661 +3200/69092 Loss: 116.403 +6400/69092 Loss: 117.127 +9600/69092 Loss: 116.554 +12800/69092 Loss: 117.257 +16000/69092 Loss: 117.434 +19200/69092 Loss: 115.576 +22400/69092 Loss: 116.923 +25600/69092 Loss: 117.401 +28800/69092 Loss: 116.043 +32000/69092 Loss: 116.124 +35200/69092 Loss: 114.900 +38400/69092 Loss: 116.566 +41600/69092 Loss: 116.817 +44800/69092 Loss: 115.295 +48000/69092 Loss: 117.047 +51200/69092 Loss: 116.223 +54400/69092 Loss: 117.439 +57600/69092 Loss: 114.738 +60800/69092 Loss: 116.195 +64000/69092 Loss: 117.599 +67200/69092 Loss: 116.314 +Training time 0:04:18.673967 +Epoch: 61 Average loss: 116.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 64) +0/69092 Loss: 116.701 +3200/69092 Loss: 115.635 +6400/69092 Loss: 115.918 +9600/69092 Loss: 116.463 +12800/69092 Loss: 114.782 +16000/69092 Loss: 119.606 +19200/69092 Loss: 116.417 +22400/69092 Loss: 116.438 +25600/69092 Loss: 116.582 +28800/69092 Loss: 116.684 +32000/69092 Loss: 117.507 +35200/69092 Loss: 115.514 +38400/69092 Loss: 118.919 +41600/69092 Loss: 115.495 +44800/69092 Loss: 117.188 +48000/69092 Loss: 118.238 +51200/69092 Loss: 115.925 +54400/69092 Loss: 114.867 +57600/69092 Loss: 116.680 +60800/69092 Loss: 117.989 +64000/69092 Loss: 115.270 +67200/69092 Loss: 116.514 +Training time 0:04:21.632812 +Epoch: 62 Average loss: 116.60 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 65) +0/69092 Loss: 107.765 +3200/69092 Loss: 115.992 +6400/69092 Loss: 114.613 +9600/69092 Loss: 116.039 +12800/69092 Loss: 116.738 +16000/69092 Loss: 116.278 +19200/69092 Loss: 117.953 +22400/69092 Loss: 117.638 +25600/69092 Loss: 116.648 +28800/69092 Loss: 116.693 +32000/69092 Loss: 117.494 +35200/69092 Loss: 115.466 +38400/69092 Loss: 116.476 +41600/69092 Loss: 116.449 +44800/69092 Loss: 115.923 +48000/69092 Loss: 118.222 +51200/69092 Loss: 115.599 +54400/69092 Loss: 117.616 +57600/69092 Loss: 114.726 +60800/69092 Loss: 116.805 +64000/69092 Loss: 116.337 +67200/69092 Loss: 116.728 +Training time 0:04:21.771630 +Epoch: 63 Average loss: 116.49 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 66) +0/69092 Loss: 112.972 +3200/69092 Loss: 116.920 +6400/69092 Loss: 116.534 +9600/69092 Loss: 115.370 +12800/69092 Loss: 117.104 +16000/69092 Loss: 117.011 +19200/69092 Loss: 117.300 +22400/69092 Loss: 114.896 +25600/69092 Loss: 112.888 +28800/69092 Loss: 116.259 +32000/69092 Loss: 116.728 +35200/69092 Loss: 117.515 +38400/69092 Loss: 117.990 +41600/69092 Loss: 116.353 +44800/69092 Loss: 115.560 +48000/69092 Loss: 117.958 +51200/69092 Loss: 115.790 +54400/69092 Loss: 117.354 +57600/69092 Loss: 117.081 +60800/69092 Loss: 116.480 +64000/69092 Loss: 118.028 +67200/69092 Loss: 116.265 +Training time 0:04:21.300752 +Epoch: 64 Average loss: 116.53 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 67) +0/69092 Loss: 127.194 +3200/69092 Loss: 115.406 +6400/69092 Loss: 116.160 +9600/69092 Loss: 117.016 +12800/69092 Loss: 116.635 +16000/69092 Loss: 117.400 +19200/69092 Loss: 117.031 +22400/69092 Loss: 114.807 +25600/69092 Loss: 116.996 +28800/69092 Loss: 117.163 +32000/69092 Loss: 114.979 +35200/69092 Loss: 117.914 +38400/69092 Loss: 115.196 +41600/69092 Loss: 115.262 +44800/69092 Loss: 116.426 +48000/69092 Loss: 115.990 +51200/69092 Loss: 117.046 +54400/69092 Loss: 116.395 +57600/69092 Loss: 116.468 +60800/69092 Loss: 117.116 +64000/69092 Loss: 117.099 +67200/69092 Loss: 117.352 +Training time 0:04:19.523237 +Epoch: 65 Average loss: 116.47 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 68) +0/69092 Loss: 130.036 +3200/69092 Loss: 116.596 +6400/69092 Loss: 115.924 +9600/69092 Loss: 116.912 +12800/69092 Loss: 117.363 +16000/69092 Loss: 115.103 +19200/69092 Loss: 116.001 +22400/69092 Loss: 117.190 +25600/69092 Loss: 117.382 +28800/69092 Loss: 117.636 +32000/69092 Loss: 116.078 +35200/69092 Loss: 114.790 +38400/69092 Loss: 115.516 +41600/69092 Loss: 117.044 +44800/69092 Loss: 115.866 +48000/69092 Loss: 115.281 +51200/69092 Loss: 116.932 +54400/69092 Loss: 116.562 +57600/69092 Loss: 114.892 +60800/69092 Loss: 115.262 +64000/69092 Loss: 118.491 +67200/69092 Loss: 117.641 +Training time 0:04:13.537568 +Epoch: 66 Average loss: 116.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 69) +0/69092 Loss: 131.276 +3200/69092 Loss: 116.788 +6400/69092 Loss: 115.669 +9600/69092 Loss: 116.492 +12800/69092 Loss: 114.834 +16000/69092 Loss: 117.516 +19200/69092 Loss: 116.285 +22400/69092 Loss: 116.431 +25600/69092 Loss: 115.076 +28800/69092 Loss: 116.645 +32000/69092 Loss: 115.335 +35200/69092 Loss: 115.405 +38400/69092 Loss: 115.994 +41600/69092 Loss: 114.355 +44800/69092 Loss: 116.930 +48000/69092 Loss: 115.433 +51200/69092 Loss: 116.551 +54400/69092 Loss: 117.376 +57600/69092 Loss: 116.016 +60800/69092 Loss: 117.925 +64000/69092 Loss: 117.088 +67200/69092 Loss: 118.403 +Training time 0:04:15.694500 +Epoch: 67 Average loss: 116.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 70) +0/69092 Loss: 116.447 +3200/69092 Loss: 117.105 +6400/69092 Loss: 114.875 +9600/69092 Loss: 117.971 +12800/69092 Loss: 117.665 +16000/69092 Loss: 116.713 +19200/69092 Loss: 115.762 +22400/69092 Loss: 116.025 +25600/69092 Loss: 115.859 +28800/69092 Loss: 117.123 +32000/69092 Loss: 115.941 +35200/69092 Loss: 114.252 +38400/69092 Loss: 116.231 +41600/69092 Loss: 115.251 +44800/69092 Loss: 117.061 +48000/69092 Loss: 117.370 +51200/69092 Loss: 116.626 +54400/69092 Loss: 115.745 +57600/69092 Loss: 115.975 +60800/69092 Loss: 115.250 +64000/69092 Loss: 117.407 +67200/69092 Loss: 117.801 +Training time 0:04:23.256883 +Epoch: 68 Average loss: 116.39 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 71) +0/69092 Loss: 109.427 +3200/69092 Loss: 115.791 +6400/69092 Loss: 117.890 +9600/69092 Loss: 117.328 +12800/69092 Loss: 116.337 +16000/69092 Loss: 115.928 +19200/69092 Loss: 115.436 +22400/69092 Loss: 117.851 +25600/69092 Loss: 116.486 +28800/69092 Loss: 116.733 +32000/69092 Loss: 117.120 +35200/69092 Loss: 116.794 +38400/69092 Loss: 115.890 +41600/69092 Loss: 117.253 +44800/69092 Loss: 116.706 +48000/69092 Loss: 114.991 +51200/69092 Loss: 115.969 +54400/69092 Loss: 115.819 +57600/69092 Loss: 115.382 +60800/69092 Loss: 116.838 +64000/69092 Loss: 116.069 +67200/69092 Loss: 115.233 +Training time 0:04:14.798986 +Epoch: 69 Average loss: 116.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 72) +0/69092 Loss: 115.002 +3200/69092 Loss: 117.518 +6400/69092 Loss: 115.190 +9600/69092 Loss: 115.954 +12800/69092 Loss: 115.045 +16000/69092 Loss: 116.130 +19200/69092 Loss: 116.050 +22400/69092 Loss: 115.581 +25600/69092 Loss: 117.877 +28800/69092 Loss: 115.889 +32000/69092 Loss: 114.806 +35200/69092 Loss: 116.736 +38400/69092 Loss: 115.884 +41600/69092 Loss: 115.327 +44800/69092 Loss: 116.250 +48000/69092 Loss: 115.486 +51200/69092 Loss: 115.868 +54400/69092 Loss: 118.572 +57600/69092 Loss: 114.840 +60800/69092 Loss: 116.344 +64000/69092 Loss: 115.752 +67200/69092 Loss: 116.489 +Training time 0:04:19.510293 +Epoch: 70 Average loss: 116.12 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 73) +0/69092 Loss: 134.101 +3200/69092 Loss: 117.654 +6400/69092 Loss: 115.580 +9600/69092 Loss: 117.954 +12800/69092 Loss: 115.616 +16000/69092 Loss: 114.816 +19200/69092 Loss: 116.003 +22400/69092 Loss: 118.480 +25600/69092 Loss: 114.473 +28800/69092 Loss: 116.164 +32000/69092 Loss: 116.078 +35200/69092 Loss: 115.936 +38400/69092 Loss: 115.966 +41600/69092 Loss: 115.125 +44800/69092 Loss: 116.449 +48000/69092 Loss: 116.312 +51200/69092 Loss: 115.841 +54400/69092 Loss: 115.415 +57600/69092 Loss: 117.123 +60800/69092 Loss: 116.921 +64000/69092 Loss: 117.044 +67200/69092 Loss: 115.881 +Training time 0:04:21.271139 +Epoch: 71 Average loss: 116.21 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 74) +0/69092 Loss: 110.241 +3200/69092 Loss: 115.037 +6400/69092 Loss: 113.940 +9600/69092 Loss: 116.558 +12800/69092 Loss: 117.040 +16000/69092 Loss: 114.286 +19200/69092 Loss: 118.157 +22400/69092 Loss: 116.347 +25600/69092 Loss: 115.526 +28800/69092 Loss: 115.577 +32000/69092 Loss: 116.441 +35200/69092 Loss: 115.329 +38400/69092 Loss: 117.232 +41600/69092 Loss: 117.204 +44800/69092 Loss: 116.180 +48000/69092 Loss: 113.763 +51200/69092 Loss: 113.985 +54400/69092 Loss: 116.504 +57600/69092 Loss: 117.151 +60800/69092 Loss: 117.439 +64000/69092 Loss: 115.862 +67200/69092 Loss: 116.257 +Training time 0:04:20.527632 +Epoch: 72 Average loss: 116.07 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 75) +0/69092 Loss: 117.426 +3200/69092 Loss: 114.095 +6400/69092 Loss: 116.426 +9600/69092 Loss: 117.106 +12800/69092 Loss: 116.094 +16000/69092 Loss: 116.348 +19200/69092 Loss: 116.034 +22400/69092 Loss: 116.527 +25600/69092 Loss: 115.802 +28800/69092 Loss: 115.645 +32000/69092 Loss: 115.092 +35200/69092 Loss: 117.360 +38400/69092 Loss: 116.234 +41600/69092 Loss: 115.253 +44800/69092 Loss: 116.481 +48000/69092 Loss: 115.347 +51200/69092 Loss: 114.886 +54400/69092 Loss: 116.217 +57600/69092 Loss: 117.852 +60800/69092 Loss: 114.498 +64000/69092 Loss: 116.421 +67200/69092 Loss: 117.095 +Training time 0:04:14.108358 +Epoch: 73 Average loss: 116.01 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 76) +0/69092 Loss: 120.607 +3200/69092 Loss: 115.399 +6400/69092 Loss: 114.639 +9600/69092 Loss: 115.672 +12800/69092 Loss: 114.804 +16000/69092 Loss: 115.667 +19200/69092 Loss: 116.190 +22400/69092 Loss: 117.506 +25600/69092 Loss: 114.107 +28800/69092 Loss: 116.319 +32000/69092 Loss: 114.787 +35200/69092 Loss: 116.422 +38400/69092 Loss: 117.309 +41600/69092 Loss: 118.066 +44800/69092 Loss: 114.058 +48000/69092 Loss: 116.455 +51200/69092 Loss: 115.945 +54400/69092 Loss: 115.025 +57600/69092 Loss: 119.706 +60800/69092 Loss: 114.159 +64000/69092 Loss: 117.580 +67200/69092 Loss: 115.744 +Training time 0:04:18.325905 +Epoch: 74 Average loss: 115.99 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 77) +0/69092 Loss: 118.108 +3200/69092 Loss: 115.449 +6400/69092 Loss: 117.178 +9600/69092 Loss: 115.026 +12800/69092 Loss: 114.951 +16000/69092 Loss: 118.810 +19200/69092 Loss: 118.613 +22400/69092 Loss: 114.244 +25600/69092 Loss: 114.633 +28800/69092 Loss: 115.905 +32000/69092 Loss: 115.582 +35200/69092 Loss: 116.536 +38400/69092 Loss: 116.985 +41600/69092 Loss: 116.062 +44800/69092 Loss: 116.445 +48000/69092 Loss: 116.440 +51200/69092 Loss: 116.525 +54400/69092 Loss: 113.789 +57600/69092 Loss: 115.686 +60800/69092 Loss: 116.835 +64000/69092 Loss: 116.446 +67200/69092 Loss: 114.254 +Training time 0:04:11.717487 +Epoch: 75 Average loss: 115.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 78) +0/69092 Loss: 110.195 +3200/69092 Loss: 116.650 +6400/69092 Loss: 116.428 +9600/69092 Loss: 116.469 +12800/69092 Loss: 115.338 +16000/69092 Loss: 115.323 +19200/69092 Loss: 115.777 +22400/69092 Loss: 115.717 +25600/69092 Loss: 114.637 +28800/69092 Loss: 115.820 +32000/69092 Loss: 115.664 +35200/69092 Loss: 115.927 +38400/69092 Loss: 117.323 +41600/69092 Loss: 116.202 +44800/69092 Loss: 113.799 +48000/69092 Loss: 117.076 +51200/69092 Loss: 115.777 +54400/69092 Loss: 117.773 +57600/69092 Loss: 114.421 +60800/69092 Loss: 114.618 +64000/69092 Loss: 115.741 +67200/69092 Loss: 115.039 +Training time 0:04:20.126153 +Epoch: 76 Average loss: 115.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 79) +0/69092 Loss: 115.282 +3200/69092 Loss: 115.687 +6400/69092 Loss: 116.064 +9600/69092 Loss: 115.918 +12800/69092 Loss: 113.280 +16000/69092 Loss: 114.392 +19200/69092 Loss: 115.886 +22400/69092 Loss: 117.267 +25600/69092 Loss: 116.556 +28800/69092 Loss: 117.617 +32000/69092 Loss: 116.096 +35200/69092 Loss: 116.449 +38400/69092 Loss: 116.663 +41600/69092 Loss: 116.042 +44800/69092 Loss: 115.932 +48000/69092 Loss: 114.773 +51200/69092 Loss: 116.468 +54400/69092 Loss: 114.870 +57600/69092 Loss: 115.219 +60800/69092 Loss: 116.082 +64000/69092 Loss: 115.782 +67200/69092 Loss: 114.948 +Training time 0:04:26.667052 +Epoch: 77 Average loss: 115.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 80) +0/69092 Loss: 113.016 +3200/69092 Loss: 116.797 +6400/69092 Loss: 116.327 +9600/69092 Loss: 114.864 +12800/69092 Loss: 113.603 +16000/69092 Loss: 118.688 +19200/69092 Loss: 117.221 +22400/69092 Loss: 114.753 +25600/69092 Loss: 115.706 +28800/69092 Loss: 116.332 +32000/69092 Loss: 115.016 +35200/69092 Loss: 114.848 +38400/69092 Loss: 115.691 +41600/69092 Loss: 114.871 +44800/69092 Loss: 114.361 +48000/69092 Loss: 115.572 +51200/69092 Loss: 115.656 +54400/69092 Loss: 115.938 +57600/69092 Loss: 115.503 +60800/69092 Loss: 117.543 +64000/69092 Loss: 116.509 +67200/69092 Loss: 116.613 +Training time 0:04:27.455867 +Epoch: 78 Average loss: 115.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 81) +0/69092 Loss: 116.266 +3200/69092 Loss: 116.131 +6400/69092 Loss: 116.205 +9600/69092 Loss: 113.487 +12800/69092 Loss: 116.034 +16000/69092 Loss: 115.570 +19200/69092 Loss: 116.025 +22400/69092 Loss: 115.053 +25600/69092 Loss: 113.316 +28800/69092 Loss: 116.254 +32000/69092 Loss: 117.574 +35200/69092 Loss: 117.817 +38400/69092 Loss: 116.883 +41600/69092 Loss: 116.216 +44800/69092 Loss: 117.161 +48000/69092 Loss: 117.616 +51200/69092 Loss: 114.720 +54400/69092 Loss: 115.970 +57600/69092 Loss: 114.982 +60800/69092 Loss: 114.933 +64000/69092 Loss: 118.061 +67200/69092 Loss: 113.611 +Training time 0:04:25.561758 +Epoch: 79 Average loss: 115.93 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 82) +0/69092 Loss: 105.227 +3200/69092 Loss: 116.596 +6400/69092 Loss: 115.248 +9600/69092 Loss: 117.734 +12800/69092 Loss: 116.540 +16000/69092 Loss: 116.902 +19200/69092 Loss: 114.568 +22400/69092 Loss: 114.365 +25600/69092 Loss: 115.724 +28800/69092 Loss: 115.997 +32000/69092 Loss: 114.831 +35200/69092 Loss: 115.820 +38400/69092 Loss: 115.015 +41600/69092 Loss: 114.732 +44800/69092 Loss: 115.605 +48000/69092 Loss: 117.712 +51200/69092 Loss: 117.044 +54400/69092 Loss: 115.373 +57600/69092 Loss: 114.918 +60800/69092 Loss: 114.857 +64000/69092 Loss: 115.588 +67200/69092 Loss: 115.213 +Training time 0:04:21.035061 +Epoch: 80 Average loss: 115.73 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 83) +0/69092 Loss: 116.023 +3200/69092 Loss: 114.750 +6400/69092 Loss: 115.606 +9600/69092 Loss: 114.526 +12800/69092 Loss: 116.967 +16000/69092 Loss: 115.071 +19200/69092 Loss: 116.907 +22400/69092 Loss: 116.157 +25600/69092 Loss: 115.547 +28800/69092 Loss: 115.020 +32000/69092 Loss: 115.856 +35200/69092 Loss: 116.306 +38400/69092 Loss: 115.244 +41600/69092 Loss: 115.245 +44800/69092 Loss: 113.337 +48000/69092 Loss: 115.717 +51200/69092 Loss: 114.111 +54400/69092 Loss: 116.606 +57600/69092 Loss: 115.800 +60800/69092 Loss: 117.631 +64000/69092 Loss: 115.104 +67200/69092 Loss: 115.512 +Training time 0:04:27.606268 +Epoch: 81 Average loss: 115.63 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 84) +0/69092 Loss: 109.763 +3200/69092 Loss: 114.796 +6400/69092 Loss: 114.820 +9600/69092 Loss: 116.260 +12800/69092 Loss: 115.517 +16000/69092 Loss: 114.184 +19200/69092 Loss: 112.686 +22400/69092 Loss: 114.702 +25600/69092 Loss: 113.757 +28800/69092 Loss: 116.156 +32000/69092 Loss: 116.493 +35200/69092 Loss: 117.036 +38400/69092 Loss: 114.748 +41600/69092 Loss: 116.401 +44800/69092 Loss: 117.682 +48000/69092 Loss: 115.540 +51200/69092 Loss: 116.903 +54400/69092 Loss: 114.747 +57600/69092 Loss: 118.514 +60800/69092 Loss: 116.045 +64000/69092 Loss: 115.743 +67200/69092 Loss: 114.532 +Training time 0:04:21.981919 +Epoch: 82 Average loss: 115.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 85) +0/69092 Loss: 102.658 +3200/69092 Loss: 115.777 +6400/69092 Loss: 115.979 +9600/69092 Loss: 114.755 +12800/69092 Loss: 116.289 +16000/69092 Loss: 113.141 +19200/69092 Loss: 113.872 +22400/69092 Loss: 116.325 +25600/69092 Loss: 115.921 +28800/69092 Loss: 116.949 +32000/69092 Loss: 115.509 +35200/69092 Loss: 115.380 +38400/69092 Loss: 114.348 +41600/69092 Loss: 113.686 +44800/69092 Loss: 115.715 +48000/69092 Loss: 115.677 +51200/69092 Loss: 117.759 +54400/69092 Loss: 117.281 +57600/69092 Loss: 117.353 +60800/69092 Loss: 116.770 +64000/69092 Loss: 115.188 +67200/69092 Loss: 115.187 +Training time 0:04:15.339523 +Epoch: 83 Average loss: 115.65 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 86) +0/69092 Loss: 106.183 +3200/69092 Loss: 115.604 +6400/69092 Loss: 114.901 +9600/69092 Loss: 115.998 +12800/69092 Loss: 115.279 +16000/69092 Loss: 115.837 +19200/69092 Loss: 114.004 +22400/69092 Loss: 114.471 +25600/69092 Loss: 116.697 +28800/69092 Loss: 116.087 +32000/69092 Loss: 115.580 +35200/69092 Loss: 114.502 +38400/69092 Loss: 114.836 +41600/69092 Loss: 116.212 +44800/69092 Loss: 115.260 +48000/69092 Loss: 116.323 +51200/69092 Loss: 115.060 +54400/69092 Loss: 115.965 +57600/69092 Loss: 115.483 +60800/69092 Loss: 116.460 +64000/69092 Loss: 115.958 +67200/69092 Loss: 114.216 +Training time 0:04:24.070150 +Epoch: 84 Average loss: 115.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 87) +0/69092 Loss: 109.772 +3200/69092 Loss: 114.663 +6400/69092 Loss: 116.979 +9600/69092 Loss: 115.478 +12800/69092 Loss: 115.829 +16000/69092 Loss: 113.845 +19200/69092 Loss: 116.495 +22400/69092 Loss: 114.270 +25600/69092 Loss: 117.338 +28800/69092 Loss: 117.073 +32000/69092 Loss: 115.038 +35200/69092 Loss: 114.788 +38400/69092 Loss: 115.930 +41600/69092 Loss: 115.175 +44800/69092 Loss: 114.302 +48000/69092 Loss: 114.691 +51200/69092 Loss: 117.297 +54400/69092 Loss: 115.718 +57600/69092 Loss: 116.222 +60800/69092 Loss: 115.254 +64000/69092 Loss: 113.235 +67200/69092 Loss: 116.336 +Training time 0:04:27.389755 +Epoch: 85 Average loss: 115.56 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 88) +0/69092 Loss: 114.321 +3200/69092 Loss: 114.351 +6400/69092 Loss: 115.291 +9600/69092 Loss: 116.430 +12800/69092 Loss: 117.276 +16000/69092 Loss: 116.460 +19200/69092 Loss: 114.705 +22400/69092 Loss: 114.293 +25600/69092 Loss: 115.415 +28800/69092 Loss: 113.700 +32000/69092 Loss: 115.014 +35200/69092 Loss: 115.317 +38400/69092 Loss: 116.014 +41600/69092 Loss: 116.513 +44800/69092 Loss: 117.764 +48000/69092 Loss: 114.385 +51200/69092 Loss: 115.029 +54400/69092 Loss: 114.609 +57600/69092 Loss: 116.770 +60800/69092 Loss: 115.598 +64000/69092 Loss: 116.776 +67200/69092 Loss: 115.444 +Training time 0:04:35.227404 +Epoch: 86 Average loss: 115.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 89) +0/69092 Loss: 110.096 +3200/69092 Loss: 115.085 +6400/69092 Loss: 115.375 +9600/69092 Loss: 113.848 +12800/69092 Loss: 115.607 +16000/69092 Loss: 115.240 +19200/69092 Loss: 115.920 +22400/69092 Loss: 113.823 +25600/69092 Loss: 114.585 +28800/69092 Loss: 115.852 +32000/69092 Loss: 115.286 +35200/69092 Loss: 115.811 +38400/69092 Loss: 116.294 +41600/69092 Loss: 115.652 +44800/69092 Loss: 115.174 +48000/69092 Loss: 115.841 +51200/69092 Loss: 116.753 +54400/69092 Loss: 115.245 +57600/69092 Loss: 114.727 +60800/69092 Loss: 115.222 +64000/69092 Loss: 114.703 +67200/69092 Loss: 116.976 +Training time 0:04:32.743549 +Epoch: 87 Average loss: 115.41 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 90) +0/69092 Loss: 119.462 +3200/69092 Loss: 115.533 +6400/69092 Loss: 117.001 +9600/69092 Loss: 116.389 +12800/69092 Loss: 115.264 +16000/69092 Loss: 114.015 +19200/69092 Loss: 115.133 +22400/69092 Loss: 115.934 +25600/69092 Loss: 113.928 +28800/69092 Loss: 116.988 +32000/69092 Loss: 113.673 +35200/69092 Loss: 114.373 +38400/69092 Loss: 116.277 +41600/69092 Loss: 117.572 +44800/69092 Loss: 111.675 +48000/69092 Loss: 117.552 +51200/69092 Loss: 115.310 +54400/69092 Loss: 115.944 +57600/69092 Loss: 116.559 +60800/69092 Loss: 114.095 +64000/69092 Loss: 114.392 +67200/69092 Loss: 114.071 +Training time 0:04:25.855823 +Epoch: 88 Average loss: 115.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 91) +0/69092 Loss: 112.185 +3200/69092 Loss: 115.037 +6400/69092 Loss: 114.506 +9600/69092 Loss: 115.579 +12800/69092 Loss: 116.375 +16000/69092 Loss: 114.867 +19200/69092 Loss: 114.462 +22400/69092 Loss: 116.254 +25600/69092 Loss: 114.250 +28800/69092 Loss: 118.013 +32000/69092 Loss: 116.511 +35200/69092 Loss: 112.674 +38400/69092 Loss: 114.184 +41600/69092 Loss: 116.883 +44800/69092 Loss: 115.688 +48000/69092 Loss: 114.781 +51200/69092 Loss: 116.460 +54400/69092 Loss: 114.772 +57600/69092 Loss: 114.616 +60800/69092 Loss: 114.424 +64000/69092 Loss: 115.626 +67200/69092 Loss: 114.778 +Training time 0:04:18.054649 +Epoch: 89 Average loss: 115.32 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 92) +0/69092 Loss: 117.381 +3200/69092 Loss: 116.538 +6400/69092 Loss: 114.395 +9600/69092 Loss: 114.199 +12800/69092 Loss: 115.076 +16000/69092 Loss: 113.660 +19200/69092 Loss: 115.942 +22400/69092 Loss: 115.406 +25600/69092 Loss: 115.577 +28800/69092 Loss: 116.055 +32000/69092 Loss: 115.750 +35200/69092 Loss: 115.183 +38400/69092 Loss: 114.756 +41600/69092 Loss: 116.439 +44800/69092 Loss: 116.094 +48000/69092 Loss: 115.108 +51200/69092 Loss: 116.191 +54400/69092 Loss: 117.091 +57600/69092 Loss: 114.440 +60800/69092 Loss: 114.310 +64000/69092 Loss: 116.254 +67200/69092 Loss: 115.486 +Training time 0:04:11.502557 +Epoch: 90 Average loss: 115.44 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 93) +0/69092 Loss: 109.876 +3200/69092 Loss: 114.018 +6400/69092 Loss: 112.307 +9600/69092 Loss: 113.206 +12800/69092 Loss: 116.645 +16000/69092 Loss: 114.336 +19200/69092 Loss: 115.819 +22400/69092 Loss: 114.077 +25600/69092 Loss: 113.695 +28800/69092 Loss: 116.631 +32000/69092 Loss: 116.626 +35200/69092 Loss: 115.507 +38400/69092 Loss: 116.458 +41600/69092 Loss: 117.837 +44800/69092 Loss: 115.667 +48000/69092 Loss: 114.105 +51200/69092 Loss: 115.868 +54400/69092 Loss: 113.209 +57600/69092 Loss: 116.659 +60800/69092 Loss: 113.839 +64000/69092 Loss: 115.627 +67200/69092 Loss: 115.893 +Training time 0:04:23.661572 +Epoch: 91 Average loss: 115.23 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 94) +0/69092 Loss: 109.875 +3200/69092 Loss: 116.904 +6400/69092 Loss: 114.350 +9600/69092 Loss: 113.917 +12800/69092 Loss: 115.405 +16000/69092 Loss: 114.182 +19200/69092 Loss: 115.203 +22400/69092 Loss: 116.412 +25600/69092 Loss: 115.923 +28800/69092 Loss: 114.897 +32000/69092 Loss: 115.843 +35200/69092 Loss: 115.061 +38400/69092 Loss: 113.299 +41600/69092 Loss: 113.805 +44800/69092 Loss: 114.774 +48000/69092 Loss: 115.476 +51200/69092 Loss: 115.628 +54400/69092 Loss: 115.072 +57600/69092 Loss: 114.085 +60800/69092 Loss: 116.230 +64000/69092 Loss: 115.288 +67200/69092 Loss: 116.407 +Training time 0:04:18.970973 +Epoch: 92 Average loss: 115.28 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 95) +0/69092 Loss: 107.112 +3200/69092 Loss: 116.615 +6400/69092 Loss: 115.904 +9600/69092 Loss: 115.694 +12800/69092 Loss: 115.271 +16000/69092 Loss: 114.946 +19200/69092 Loss: 114.214 +22400/69092 Loss: 115.723 +25600/69092 Loss: 115.411 +28800/69092 Loss: 114.224 +32000/69092 Loss: 115.103 +35200/69092 Loss: 117.514 +38400/69092 Loss: 114.115 +41600/69092 Loss: 116.881 +44800/69092 Loss: 117.588 +48000/69092 Loss: 113.807 +51200/69092 Loss: 115.843 +54400/69092 Loss: 116.029 +57600/69092 Loss: 115.897 +60800/69092 Loss: 112.874 +64000/69092 Loss: 115.341 +67200/69092 Loss: 113.812 +Training time 0:04:34.910466 +Epoch: 93 Average loss: 115.33 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 96) +0/69092 Loss: 111.090 +3200/69092 Loss: 113.802 +6400/69092 Loss: 113.778 +9600/69092 Loss: 116.835 +12800/69092 Loss: 116.298 +16000/69092 Loss: 115.383 +19200/69092 Loss: 115.244 +22400/69092 Loss: 117.004 +25600/69092 Loss: 113.987 +28800/69092 Loss: 114.258 +32000/69092 Loss: 116.204 +35200/69092 Loss: 114.571 +38400/69092 Loss: 115.871 +41600/69092 Loss: 114.701 +44800/69092 Loss: 114.940 +48000/69092 Loss: 115.518 +51200/69092 Loss: 115.979 +54400/69092 Loss: 114.040 +57600/69092 Loss: 115.293 +60800/69092 Loss: 113.554 +64000/69092 Loss: 115.140 +67200/69092 Loss: 114.921 +Training time 0:04:29.937189 +Epoch: 94 Average loss: 115.17 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 97) +0/69092 Loss: 104.309 +3200/69092 Loss: 114.970 +6400/69092 Loss: 114.448 +9600/69092 Loss: 116.391 +12800/69092 Loss: 116.613 +16000/69092 Loss: 116.624 +19200/69092 Loss: 114.606 +22400/69092 Loss: 114.459 +25600/69092 Loss: 114.573 +28800/69092 Loss: 114.351 +32000/69092 Loss: 114.737 +35200/69092 Loss: 114.211 +38400/69092 Loss: 116.090 +41600/69092 Loss: 115.409 +44800/69092 Loss: 113.350 +48000/69092 Loss: 116.947 +51200/69092 Loss: 116.175 +54400/69092 Loss: 114.535 +57600/69092 Loss: 113.567 +60800/69092 Loss: 113.530 +64000/69092 Loss: 115.104 +67200/69092 Loss: 115.522 +Training time 0:04:32.566710 +Epoch: 95 Average loss: 115.10 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 98) +0/69092 Loss: 103.548 +3200/69092 Loss: 114.404 +6400/69092 Loss: 115.306 +9600/69092 Loss: 115.076 +12800/69092 Loss: 116.447 +16000/69092 Loss: 113.969 +19200/69092 Loss: 116.127 +22400/69092 Loss: 115.642 +25600/69092 Loss: 114.994 +28800/69092 Loss: 116.458 +32000/69092 Loss: 115.971 +35200/69092 Loss: 117.573 +38400/69092 Loss: 117.198 +41600/69092 Loss: 114.652 +44800/69092 Loss: 113.356 +48000/69092 Loss: 115.118 +51200/69092 Loss: 114.814 +54400/69092 Loss: 114.915 +57600/69092 Loss: 113.385 +60800/69092 Loss: 114.671 +64000/69092 Loss: 114.218 +67200/69092 Loss: 115.762 +Training time 0:04:30.297416 +Epoch: 96 Average loss: 115.27 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 99) +0/69092 Loss: 103.183 +3200/69092 Loss: 114.371 +6400/69092 Loss: 114.578 +9600/69092 Loss: 114.177 +12800/69092 Loss: 113.374 +16000/69092 Loss: 114.539 +19200/69092 Loss: 115.190 +22400/69092 Loss: 115.282 +25600/69092 Loss: 115.299 +28800/69092 Loss: 115.313 +32000/69092 Loss: 115.930 +35200/69092 Loss: 115.794 +38400/69092 Loss: 115.233 +41600/69092 Loss: 115.526 +44800/69092 Loss: 115.670 +48000/69092 Loss: 116.022 +51200/69092 Loss: 115.881 +54400/69092 Loss: 114.486 +57600/69092 Loss: 116.493 +60800/69092 Loss: 113.559 +64000/69092 Loss: 114.572 +67200/69092 Loss: 113.786 +Training time 0:04:14.350046 +Epoch: 97 Average loss: 114.96 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 100) +0/69092 Loss: 109.205 +3200/69092 Loss: 114.470 +6400/69092 Loss: 115.518 +9600/69092 Loss: 115.455 +12800/69092 Loss: 114.463 +16000/69092 Loss: 114.735 +19200/69092 Loss: 112.726 +22400/69092 Loss: 115.038 +25600/69092 Loss: 115.942 +28800/69092 Loss: 116.597 +32000/69092 Loss: 114.920 +35200/69092 Loss: 115.183 +38400/69092 Loss: 115.178 +41600/69092 Loss: 115.187 +44800/69092 Loss: 115.023 +48000/69092 Loss: 114.013 +51200/69092 Loss: 115.620 +54400/69092 Loss: 113.888 +57600/69092 Loss: 115.136 +60800/69092 Loss: 117.265 +64000/69092 Loss: 114.032 +67200/69092 Loss: 115.695 +Training time 0:04:16.813142 +Epoch: 98 Average loss: 115.06 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 101) +0/69092 Loss: 102.324 +3200/69092 Loss: 117.226 +6400/69092 Loss: 111.502 +9600/69092 Loss: 115.173 +12800/69092 Loss: 116.427 +16000/69092 Loss: 117.208 +19200/69092 Loss: 113.589 +22400/69092 Loss: 116.157 +25600/69092 Loss: 113.960 +28800/69092 Loss: 113.542 +32000/69092 Loss: 115.706 +35200/69092 Loss: 114.351 +38400/69092 Loss: 113.532 +41600/69092 Loss: 115.807 +44800/69092 Loss: 114.047 +48000/69092 Loss: 116.583 +51200/69092 Loss: 114.274 +54400/69092 Loss: 115.270 +57600/69092 Loss: 114.983 +60800/69092 Loss: 113.886 +64000/69092 Loss: 115.446 +67200/69092 Loss: 116.695 +Training time 0:04:16.901688 +Epoch: 99 Average loss: 115.03 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 102) +0/69092 Loss: 101.450 +3200/69092 Loss: 114.254 +6400/69092 Loss: 114.502 +9600/69092 Loss: 115.191 +12800/69092 Loss: 115.722 +16000/69092 Loss: 115.505 +19200/69092 Loss: 115.682 +22400/69092 Loss: 115.095 +25600/69092 Loss: 113.668 +28800/69092 Loss: 116.141 +32000/69092 Loss: 116.021 +35200/69092 Loss: 114.208 +38400/69092 Loss: 114.481 +41600/69092 Loss: 116.893 +44800/69092 Loss: 115.935 +48000/69092 Loss: 114.079 +51200/69092 Loss: 115.014 +54400/69092 Loss: 116.096 +57600/69092 Loss: 114.209 +60800/69092 Loss: 114.125 +64000/69092 Loss: 116.074 +67200/69092 Loss: 113.280 +Training time 0:04:30.717629 +Epoch: 100 Average loss: 115.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 103) +0/69092 Loss: 110.561 +3200/69092 Loss: 114.694 +6400/69092 Loss: 115.096 +9600/69092 Loss: 112.462 +12800/69092 Loss: 114.749 +16000/69092 Loss: 113.297 +19200/69092 Loss: 117.057 +22400/69092 Loss: 115.330 +25600/69092 Loss: 116.169 +28800/69092 Loss: 115.596 +32000/69092 Loss: 115.761 +35200/69092 Loss: 114.065 +38400/69092 Loss: 114.156 +41600/69092 Loss: 114.239 +44800/69092 Loss: 113.600 +48000/69092 Loss: 116.481 +51200/69092 Loss: 115.040 +54400/69092 Loss: 116.844 +57600/69092 Loss: 115.482 +60800/69092 Loss: 114.866 +64000/69092 Loss: 114.837 +67200/69092 Loss: 113.714 +Training time 0:04:33.068145 +Epoch: 101 Average loss: 114.95 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 104) +0/69092 Loss: 111.877 +3200/69092 Loss: 113.528 +6400/69092 Loss: 116.126 +9600/69092 Loss: 115.060 +12800/69092 Loss: 115.645 +16000/69092 Loss: 112.514 +19200/69092 Loss: 114.612 +22400/69092 Loss: 114.462 +25600/69092 Loss: 115.992 +28800/69092 Loss: 114.581 +32000/69092 Loss: 117.691 +35200/69092 Loss: 113.213 +38400/69092 Loss: 114.303 +41600/69092 Loss: 114.591 +44800/69092 Loss: 114.572 +48000/69092 Loss: 113.757 +51200/69092 Loss: 115.127 +54400/69092 Loss: 114.971 +57600/69092 Loss: 115.206 +60800/69092 Loss: 114.473 +64000/69092 Loss: 113.442 +67200/69092 Loss: 114.790 +Training time 0:04:26.031708 +Epoch: 102 Average loss: 114.77 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 105) +0/69092 Loss: 123.542 +3200/69092 Loss: 115.210 +6400/69092 Loss: 114.367 +9600/69092 Loss: 116.109 +12800/69092 Loss: 113.503 +16000/69092 Loss: 115.242 +19200/69092 Loss: 115.365 +22400/69092 Loss: 115.884 +25600/69092 Loss: 113.157 +28800/69092 Loss: 115.895 +32000/69092 Loss: 114.043 +35200/69092 Loss: 115.025 +38400/69092 Loss: 115.140 +41600/69092 Loss: 114.808 +44800/69092 Loss: 114.618 +48000/69092 Loss: 115.046 +51200/69092 Loss: 115.224 +54400/69092 Loss: 116.526 +57600/69092 Loss: 114.561 +60800/69092 Loss: 114.281 +64000/69092 Loss: 114.436 +67200/69092 Loss: 112.579 +Training time 0:04:25.144287 +Epoch: 103 Average loss: 114.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 106) +0/69092 Loss: 105.940 +3200/69092 Loss: 115.154 +6400/69092 Loss: 115.266 +9600/69092 Loss: 114.273 +12800/69092 Loss: 116.441 +16000/69092 Loss: 114.447 +19200/69092 Loss: 114.707 +22400/69092 Loss: 114.581 +25600/69092 Loss: 115.075 +28800/69092 Loss: 112.858 +32000/69092 Loss: 115.417 +35200/69092 Loss: 113.227 +38400/69092 Loss: 114.756 +41600/69092 Loss: 115.456 +44800/69092 Loss: 115.085 +48000/69092 Loss: 114.573 +51200/69092 Loss: 113.830 +54400/69092 Loss: 114.057 +57600/69092 Loss: 115.467 +60800/69092 Loss: 116.554 +64000/69092 Loss: 115.321 +67200/69092 Loss: 114.775 +Training time 0:04:26.405936 +Epoch: 104 Average loss: 114.83 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 107) +0/69092 Loss: 105.310 +3200/69092 Loss: 114.426 +6400/69092 Loss: 113.549 +9600/69092 Loss: 113.799 +12800/69092 Loss: 115.263 +16000/69092 Loss: 113.263 +19200/69092 Loss: 114.692 +22400/69092 Loss: 113.127 +25600/69092 Loss: 112.946 +28800/69092 Loss: 117.490 +32000/69092 Loss: 114.970 +35200/69092 Loss: 115.424 +38400/69092 Loss: 114.136 +41600/69092 Loss: 114.439 +44800/69092 Loss: 116.172 +48000/69092 Loss: 114.843 +51200/69092 Loss: 114.015 +54400/69092 Loss: 117.099 +57600/69092 Loss: 115.218 +60800/69092 Loss: 115.403 +64000/69092 Loss: 115.615 +67200/69092 Loss: 115.623 +Training time 0:04:30.908597 +Epoch: 105 Average loss: 114.84 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 108) +0/69092 Loss: 116.573 +3200/69092 Loss: 113.115 +6400/69092 Loss: 116.044 +9600/69092 Loss: 114.502 +12800/69092 Loss: 115.132 +16000/69092 Loss: 114.569 +19200/69092 Loss: 115.861 +22400/69092 Loss: 115.374 +25600/69092 Loss: 115.477 +28800/69092 Loss: 114.479 +32000/69092 Loss: 113.733 +35200/69092 Loss: 114.816 +38400/69092 Loss: 113.667 +41600/69092 Loss: 113.461 +44800/69092 Loss: 114.692 +48000/69092 Loss: 115.788 +51200/69092 Loss: 114.131 +54400/69092 Loss: 115.042 +57600/69092 Loss: 114.190 +60800/69092 Loss: 115.706 +64000/69092 Loss: 113.984 +67200/69092 Loss: 114.659 +Training time 0:04:22.615178 +Epoch: 106 Average loss: 114.72 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 109) +0/69092 Loss: 116.218 +3200/69092 Loss: 116.439 +6400/69092 Loss: 114.330 +9600/69092 Loss: 114.518 +12800/69092 Loss: 114.244 +16000/69092 Loss: 115.165 +19200/69092 Loss: 116.537 +22400/69092 Loss: 114.890 +25600/69092 Loss: 115.084 +28800/69092 Loss: 113.722 +32000/69092 Loss: 115.406 +35200/69092 Loss: 117.413 +38400/69092 Loss: 116.108 +41600/69092 Loss: 114.091 +44800/69092 Loss: 114.189 +48000/69092 Loss: 113.336 +51200/69092 Loss: 114.854 +54400/69092 Loss: 114.296 +57600/69092 Loss: 114.604 +60800/69092 Loss: 113.472 +64000/69092 Loss: 114.589 +67200/69092 Loss: 113.700 +Training time 0:04:15.871955 +Epoch: 107 Average loss: 114.78 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 110) +0/69092 Loss: 110.384 +3200/69092 Loss: 115.819 +6400/69092 Loss: 115.273 +9600/69092 Loss: 113.674 +12800/69092 Loss: 113.988 +16000/69092 Loss: 115.226 +19200/69092 Loss: 114.639 +22400/69092 Loss: 115.910 +25600/69092 Loss: 116.044 +28800/69092 Loss: 115.133 +32000/69092 Loss: 113.307 +35200/69092 Loss: 113.846 +38400/69092 Loss: 113.773 +41600/69092 Loss: 114.995 +44800/69092 Loss: 116.288 +48000/69092 Loss: 117.788 +51200/69092 Loss: 115.265 +54400/69092 Loss: 113.632 +57600/69092 Loss: 113.777 +60800/69092 Loss: 112.919 +64000/69092 Loss: 114.026 +67200/69092 Loss: 114.251 +Training time 0:04:15.986438 +Epoch: 108 Average loss: 114.82 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 111) +0/69092 Loss: 110.926 +3200/69092 Loss: 115.009 +6400/69092 Loss: 113.864 +9600/69092 Loss: 112.513 +12800/69092 Loss: 115.393 +16000/69092 Loss: 115.601 +19200/69092 Loss: 114.252 +22400/69092 Loss: 114.202 +25600/69092 Loss: 114.249 +28800/69092 Loss: 115.185 +32000/69092 Loss: 114.265 +35200/69092 Loss: 113.490 +38400/69092 Loss: 113.867 +41600/69092 Loss: 115.186 +44800/69092 Loss: 115.967 +48000/69092 Loss: 111.777 +51200/69092 Loss: 113.831 +54400/69092 Loss: 116.026 +57600/69092 Loss: 113.335 +60800/69092 Loss: 115.290 +64000/69092 Loss: 116.204 +67200/69092 Loss: 114.208 +Training time 0:04:20.591390 +Epoch: 109 Average loss: 114.50 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 112) +0/69092 Loss: 115.884 +3200/69092 Loss: 117.003 +6400/69092 Loss: 116.712 +9600/69092 Loss: 114.350 +12800/69092 Loss: 114.647 +16000/69092 Loss: 116.077 +19200/69092 Loss: 113.585 +22400/69092 Loss: 115.143 +25600/69092 Loss: 113.691 +28800/69092 Loss: 115.322 +32000/69092 Loss: 114.797 +35200/69092 Loss: 115.077 +38400/69092 Loss: 118.525 +41600/69092 Loss: 113.060 +44800/69092 Loss: 113.783 +48000/69092 Loss: 116.291 +51200/69092 Loss: 113.717 +54400/69092 Loss: 115.111 +57600/69092 Loss: 113.641 +60800/69092 Loss: 114.002 +64000/69092 Loss: 113.758 +67200/69092 Loss: 113.087 +Training time 0:04:26.836611 +Epoch: 110 Average loss: 114.81 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 113) +0/69092 Loss: 125.851 +3200/69092 Loss: 116.071 +6400/69092 Loss: 112.736 +9600/69092 Loss: 115.678 +12800/69092 Loss: 114.922 +16000/69092 Loss: 113.817 +19200/69092 Loss: 115.561 +22400/69092 Loss: 113.305 +25600/69092 Loss: 112.979 +28800/69092 Loss: 116.145 +32000/69092 Loss: 114.480 +35200/69092 Loss: 116.515 +38400/69092 Loss: 113.043 +41600/69092 Loss: 112.938 +44800/69092 Loss: 114.279 +48000/69092 Loss: 114.374 +51200/69092 Loss: 114.732 +54400/69092 Loss: 113.942 +57600/69092 Loss: 115.297 +60800/69092 Loss: 114.086 +64000/69092 Loss: 114.664 +67200/69092 Loss: 115.492 +Training time 0:04:35.629081 +Epoch: 111 Average loss: 114.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 114) +0/69092 Loss: 104.279 +3200/69092 Loss: 115.154 +6400/69092 Loss: 113.715 +9600/69092 Loss: 113.930 +12800/69092 Loss: 114.900 +16000/69092 Loss: 113.268 +19200/69092 Loss: 113.740 +22400/69092 Loss: 114.593 +25600/69092 Loss: 114.678 +28800/69092 Loss: 115.832 +32000/69092 Loss: 115.583 +35200/69092 Loss: 114.260 +38400/69092 Loss: 115.078 +41600/69092 Loss: 113.106 +44800/69092 Loss: 115.660 +48000/69092 Loss: 115.305 +51200/69092 Loss: 115.483 +54400/69092 Loss: 113.941 +57600/69092 Loss: 114.990 +60800/69092 Loss: 115.176 +64000/69092 Loss: 113.339 +67200/69092 Loss: 114.725 +Training time 0:04:29.687402 +Epoch: 112 Average loss: 114.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 115) +0/69092 Loss: 102.917 +3200/69092 Loss: 114.706 +6400/69092 Loss: 115.422 +9600/69092 Loss: 116.626 +12800/69092 Loss: 117.345 +16000/69092 Loss: 115.406 +19200/69092 Loss: 113.189 +22400/69092 Loss: 114.186 +25600/69092 Loss: 113.471 +28800/69092 Loss: 113.179 +32000/69092 Loss: 112.903 +35200/69092 Loss: 112.962 +38400/69092 Loss: 112.716 +41600/69092 Loss: 114.636 +44800/69092 Loss: 117.224 +48000/69092 Loss: 113.902 +51200/69092 Loss: 114.505 +54400/69092 Loss: 114.530 +57600/69092 Loss: 114.777 +60800/69092 Loss: 114.589 +64000/69092 Loss: 114.345 +67200/69092 Loss: 114.994 +Training time 0:04:30.520088 +Epoch: 113 Average loss: 114.54 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 116) +0/69092 Loss: 113.905 +3200/69092 Loss: 117.563 +6400/69092 Loss: 113.548 +9600/69092 Loss: 115.576 +12800/69092 Loss: 114.451 +16000/69092 Loss: 115.835 +19200/69092 Loss: 114.568 +22400/69092 Loss: 114.740 +25600/69092 Loss: 114.518 +28800/69092 Loss: 115.925 +32000/69092 Loss: 111.706 +35200/69092 Loss: 113.438 +38400/69092 Loss: 113.781 +41600/69092 Loss: 115.378 +44800/69092 Loss: 114.766 +48000/69092 Loss: 112.897 +51200/69092 Loss: 111.760 +54400/69092 Loss: 113.607 +57600/69092 Loss: 114.396 +60800/69092 Loss: 115.229 +64000/69092 Loss: 115.306 +67200/69092 Loss: 115.853 +Training time 0:04:29.241112 +Epoch: 114 Average loss: 114.59 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 117) +0/69092 Loss: 104.253 +3200/69092 Loss: 114.970 +6400/69092 Loss: 113.504 +9600/69092 Loss: 114.310 +12800/69092 Loss: 114.699 +16000/69092 Loss: 113.594 +19200/69092 Loss: 113.744 +22400/69092 Loss: 114.847 +25600/69092 Loss: 114.582 +28800/69092 Loss: 114.003 +32000/69092 Loss: 114.017 +35200/69092 Loss: 113.475 +38400/69092 Loss: 115.256 +41600/69092 Loss: 116.657 +44800/69092 Loss: 114.122 +48000/69092 Loss: 113.792 +51200/69092 Loss: 113.483 +54400/69092 Loss: 114.718 +57600/69092 Loss: 115.763 +60800/69092 Loss: 115.972 +64000/69092 Loss: 114.327 +67200/69092 Loss: 114.012 +Training time 0:04:27.381340 +Epoch: 115 Average loss: 114.45 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 118) +0/69092 Loss: 110.148 +3200/69092 Loss: 114.791 +6400/69092 Loss: 115.172 +9600/69092 Loss: 114.780 +12800/69092 Loss: 115.101 +16000/69092 Loss: 115.442 +19200/69092 Loss: 114.977 +22400/69092 Loss: 113.353 +25600/69092 Loss: 114.346 +28800/69092 Loss: 115.027 +32000/69092 Loss: 113.964 +35200/69092 Loss: 115.722 +38400/69092 Loss: 113.181 +41600/69092 Loss: 114.651 +44800/69092 Loss: 111.235 +48000/69092 Loss: 114.792 +51200/69092 Loss: 113.957 +54400/69092 Loss: 113.560 +57600/69092 Loss: 116.211 +60800/69092 Loss: 115.072 +64000/69092 Loss: 113.563 +67200/69092 Loss: 113.980 +Training time 0:04:18.154084 +Epoch: 116 Average loss: 114.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 119) +0/69092 Loss: 120.825 +3200/69092 Loss: 115.325 +6400/69092 Loss: 113.553 +9600/69092 Loss: 113.736 +12800/69092 Loss: 116.343 +16000/69092 Loss: 115.969 +19200/69092 Loss: 115.205 +22400/69092 Loss: 115.081 +25600/69092 Loss: 113.776 +28800/69092 Loss: 114.976 +32000/69092 Loss: 114.686 +35200/69092 Loss: 113.304 +38400/69092 Loss: 115.544 +41600/69092 Loss: 112.245 +44800/69092 Loss: 113.748 +48000/69092 Loss: 113.974 +51200/69092 Loss: 114.691 +54400/69092 Loss: 115.770 +57600/69092 Loss: 113.741 +60800/69092 Loss: 113.169 +64000/69092 Loss: 114.951 +67200/69092 Loss: 116.248 +Training time 0:04:18.164247 +Epoch: 117 Average loss: 114.55 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 120) +0/69092 Loss: 109.928 +3200/69092 Loss: 115.008 +6400/69092 Loss: 113.864 +9600/69092 Loss: 114.838 +12800/69092 Loss: 114.410 +16000/69092 Loss: 114.373 +19200/69092 Loss: 114.011 +22400/69092 Loss: 117.361 +25600/69092 Loss: 116.671 +28800/69092 Loss: 112.738 +32000/69092 Loss: 115.302 +35200/69092 Loss: 115.476 +38400/69092 Loss: 112.458 +41600/69092 Loss: 115.842 +44800/69092 Loss: 114.128 +48000/69092 Loss: 116.531 +51200/69092 Loss: 113.945 +54400/69092 Loss: 113.735 +57600/69092 Loss: 113.663 +60800/69092 Loss: 113.893 +64000/69092 Loss: 114.535 +67200/69092 Loss: 111.640 +Training time 0:04:21.234648 +Epoch: 118 Average loss: 114.48 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 121) +0/69092 Loss: 112.347 +3200/69092 Loss: 112.206 +6400/69092 Loss: 113.684 +9600/69092 Loss: 115.071 +12800/69092 Loss: 114.938 +16000/69092 Loss: 113.291 +19200/69092 Loss: 114.991 +22400/69092 Loss: 114.087 +25600/69092 Loss: 113.994 +28800/69092 Loss: 114.996 +32000/69092 Loss: 114.884 +35200/69092 Loss: 113.972 +38400/69092 Loss: 115.015 +41600/69092 Loss: 114.189 +44800/69092 Loss: 115.831 +48000/69092 Loss: 115.978 +51200/69092 Loss: 115.122 +54400/69092 Loss: 113.542 +57600/69092 Loss: 113.660 +60800/69092 Loss: 115.409 +64000/69092 Loss: 113.369 +67200/69092 Loss: 113.812 +Training time 0:04:21.509968 +Epoch: 119 Average loss: 114.42 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 122) +0/69092 Loss: 110.610 +3200/69092 Loss: 114.091 +6400/69092 Loss: 114.390 +9600/69092 Loss: 113.732 +12800/69092 Loss: 113.679 +16000/69092 Loss: 114.955 +19200/69092 Loss: 112.877 +22400/69092 Loss: 115.253 +25600/69092 Loss: 113.215 +28800/69092 Loss: 116.279 +32000/69092 Loss: 114.028 +35200/69092 Loss: 113.391 +38400/69092 Loss: 114.243 +41600/69092 Loss: 114.268 +44800/69092 Loss: 113.596 +48000/69092 Loss: 116.315 +51200/69092 Loss: 114.467 +54400/69092 Loss: 113.734 +57600/69092 Loss: 115.470 +60800/69092 Loss: 114.426 +64000/69092 Loss: 112.766 +67200/69092 Loss: 116.240 +Training time 0:04:26.174176 +Epoch: 120 Average loss: 114.31 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 123) +0/69092 Loss: 108.468 +3200/69092 Loss: 113.823 +6400/69092 Loss: 113.926 +9600/69092 Loss: 112.867 +12800/69092 Loss: 115.001 +16000/69092 Loss: 115.812 +19200/69092 Loss: 115.371 +22400/69092 Loss: 114.633 +25600/69092 Loss: 113.848 +28800/69092 Loss: 115.192 +32000/69092 Loss: 115.266 +35200/69092 Loss: 113.069 +38400/69092 Loss: 113.941 +41600/69092 Loss: 113.058 +44800/69092 Loss: 115.085 +48000/69092 Loss: 114.492 +51200/69092 Loss: 115.389 +54400/69092 Loss: 114.802 +57600/69092 Loss: 114.942 +60800/69092 Loss: 116.039 +64000/69092 Loss: 115.730 +67200/69092 Loss: 113.697 +Training time 0:04:26.866437 +Epoch: 121 Average loss: 114.57 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 124) +0/69092 Loss: 120.564 +3200/69092 Loss: 113.837 +6400/69092 Loss: 113.033 +9600/69092 Loss: 114.391 +12800/69092 Loss: 112.768 +16000/69092 Loss: 115.145 +19200/69092 Loss: 113.677 +22400/69092 Loss: 114.920 +25600/69092 Loss: 113.847 +28800/69092 Loss: 113.706 +32000/69092 Loss: 114.759 +35200/69092 Loss: 113.610 +38400/69092 Loss: 111.903 +41600/69092 Loss: 114.020 +44800/69092 Loss: 115.250 +48000/69092 Loss: 113.698 +51200/69092 Loss: 115.873 +54400/69092 Loss: 114.153 +57600/69092 Loss: 116.196 +60800/69092 Loss: 114.086 +64000/69092 Loss: 115.693 +67200/69092 Loss: 112.606 +Training time 0:04:26.091665 +Epoch: 122 Average loss: 114.24 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 125) +0/69092 Loss: 116.260 +3200/69092 Loss: 115.572 +6400/69092 Loss: 113.364 +9600/69092 Loss: 114.549 +12800/69092 Loss: 112.625 +16000/69092 Loss: 114.697 +19200/69092 Loss: 114.014 +22400/69092 Loss: 114.915 +25600/69092 Loss: 113.741 +28800/69092 Loss: 113.853 +32000/69092 Loss: 113.749 +35200/69092 Loss: 114.529 +38400/69092 Loss: 115.581 +41600/69092 Loss: 113.452 +44800/69092 Loss: 114.885 +48000/69092 Loss: 114.452 +51200/69092 Loss: 113.929 +54400/69092 Loss: 113.919 +57600/69092 Loss: 112.803 +60800/69092 Loss: 116.090 +64000/69092 Loss: 113.673 +67200/69092 Loss: 114.878 +Training time 0:04:20.195962 +Epoch: 123 Average loss: 114.29 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 126) +0/69092 Loss: 102.904 +3200/69092 Loss: 114.950 +6400/69092 Loss: 114.285 +9600/69092 Loss: 113.059 +12800/69092 Loss: 114.756 +16000/69092 Loss: 114.081 +19200/69092 Loss: 116.571 +22400/69092 Loss: 115.653 +25600/69092 Loss: 114.392 +28800/69092 Loss: 112.085 +32000/69092 Loss: 115.196 +35200/69092 Loss: 115.576 +38400/69092 Loss: 112.741 +41600/69092 Loss: 114.079 +44800/69092 Loss: 112.967 +48000/69092 Loss: 114.430 +51200/69092 Loss: 113.740 +54400/69092 Loss: 112.241 +57600/69092 Loss: 115.875 +60800/69092 Loss: 115.158 +64000/69092 Loss: 113.297 +67200/69092 Loss: 113.612 +Training time 0:04:21.333011 +Epoch: 124 Average loss: 114.22 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 127) +0/69092 Loss: 121.503 +3200/69092 Loss: 113.770 +6400/69092 Loss: 113.968 +9600/69092 Loss: 115.570 +12800/69092 Loss: 113.710 +16000/69092 Loss: 115.004 +19200/69092 Loss: 115.766 +22400/69092 Loss: 110.885 +25600/69092 Loss: 116.284 +28800/69092 Loss: 115.173 +32000/69092 Loss: 115.608 +35200/69092 Loss: 113.924 +38400/69092 Loss: 113.265 +41600/69092 Loss: 111.167 +44800/69092 Loss: 114.134 +48000/69092 Loss: 113.143 +51200/69092 Loss: 111.826 +54400/69092 Loss: 114.397 +57600/69092 Loss: 113.879 +60800/69092 Loss: 115.124 +64000/69092 Loss: 115.703 +67200/69092 Loss: 113.662 +Training time 0:04:15.476898 +Epoch: 125 Average loss: 114.16 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 128) +0/69092 Loss: 126.295 +3200/69092 Loss: 116.617 +6400/69092 Loss: 114.015 +9600/69092 Loss: 113.958 +12800/69092 Loss: 113.577 +16000/69092 Loss: 115.547 +19200/69092 Loss: 113.954 +22400/69092 Loss: 113.498 +25600/69092 Loss: 115.607 +28800/69092 Loss: 111.954 +32000/69092 Loss: 113.496 +35200/69092 Loss: 113.677 +38400/69092 Loss: 114.765 +41600/69092 Loss: 115.236 +44800/69092 Loss: 114.410 +48000/69092 Loss: 114.308 +51200/69092 Loss: 111.934 +54400/69092 Loss: 113.136 +57600/69092 Loss: 115.013 +60800/69092 Loss: 114.129 +64000/69092 Loss: 113.522 +67200/69092 Loss: 113.718 +Training time 0:04:28.347039 +Epoch: 126 Average loss: 114.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 129) +0/69092 Loss: 119.682 +3200/69092 Loss: 114.543 +6400/69092 Loss: 112.717 +9600/69092 Loss: 114.208 +12800/69092 Loss: 112.800 +16000/69092 Loss: 112.286 +19200/69092 Loss: 114.785 +22400/69092 Loss: 112.812 +25600/69092 Loss: 114.896 +28800/69092 Loss: 113.281 +32000/69092 Loss: 114.762 +35200/69092 Loss: 114.394 +38400/69092 Loss: 114.450 +41600/69092 Loss: 115.436 +44800/69092 Loss: 115.494 +48000/69092 Loss: 115.467 +51200/69092 Loss: 116.115 +54400/69092 Loss: 113.398 +57600/69092 Loss: 115.479 +60800/69092 Loss: 113.288 +64000/69092 Loss: 112.189 +67200/69092 Loss: 113.367 +Training time 0:04:24.226082 +Epoch: 127 Average loss: 114.09 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 130) +0/69092 Loss: 108.846 +3200/69092 Loss: 113.563 +6400/69092 Loss: 113.164 +9600/69092 Loss: 113.377 +12800/69092 Loss: 113.232 +16000/69092 Loss: 115.017 +19200/69092 Loss: 114.418 +22400/69092 Loss: 113.556 +25600/69092 Loss: 113.549 +28800/69092 Loss: 114.477 +32000/69092 Loss: 113.487 +35200/69092 Loss: 115.755 +38400/69092 Loss: 113.114 +41600/69092 Loss: 112.750 +44800/69092 Loss: 114.507 +48000/69092 Loss: 113.253 +51200/69092 Loss: 114.938 +54400/69092 Loss: 114.313 +57600/69092 Loss: 113.574 +60800/69092 Loss: 115.895 +64000/69092 Loss: 112.618 +67200/69092 Loss: 115.091 +Training time 0:04:26.704741 +Epoch: 128 Average loss: 114.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 131) +0/69092 Loss: 116.501 +3200/69092 Loss: 115.050 +6400/69092 Loss: 113.112 +9600/69092 Loss: 113.652 +12800/69092 Loss: 114.119 +16000/69092 Loss: 112.435 +19200/69092 Loss: 113.488 +22400/69092 Loss: 113.293 +25600/69092 Loss: 114.508 +28800/69092 Loss: 113.832 +32000/69092 Loss: 115.152 +35200/69092 Loss: 114.316 +38400/69092 Loss: 113.723 +41600/69092 Loss: 112.864 +44800/69092 Loss: 114.576 +48000/69092 Loss: 114.918 +51200/69092 Loss: 114.874 +54400/69092 Loss: 115.212 +57600/69092 Loss: 114.723 +60800/69092 Loss: 114.521 +64000/69092 Loss: 114.774 +67200/69092 Loss: 114.068 +Training time 0:04:24.372506 +Epoch: 129 Average loss: 114.13 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 132) +0/69092 Loss: 115.373 +3200/69092 Loss: 112.991 +6400/69092 Loss: 115.433 +9600/69092 Loss: 114.669 +12800/69092 Loss: 114.506 +16000/69092 Loss: 113.683 +19200/69092 Loss: 113.663 +22400/69092 Loss: 113.430 +25600/69092 Loss: 114.815 +28800/69092 Loss: 112.627 +32000/69092 Loss: 115.622 +35200/69092 Loss: 112.702 +38400/69092 Loss: 112.591 +41600/69092 Loss: 115.371 +44800/69092 Loss: 115.227 +48000/69092 Loss: 114.349 +51200/69092 Loss: 115.599 +54400/69092 Loss: 114.853 +57600/69092 Loss: 113.642 +60800/69092 Loss: 112.977 +64000/69092 Loss: 112.816 +67200/69092 Loss: 115.588 +Training time 0:04:25.369487 +Epoch: 130 Average loss: 114.15 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 133) +0/69092 Loss: 107.789 +3200/69092 Loss: 112.483 +6400/69092 Loss: 115.576 +9600/69092 Loss: 115.011 +12800/69092 Loss: 113.660 +16000/69092 Loss: 115.363 +19200/69092 Loss: 115.619 +22400/69092 Loss: 113.759 +25600/69092 Loss: 111.395 +28800/69092 Loss: 112.099 +32000/69092 Loss: 114.761 +35200/69092 Loss: 113.568 +38400/69092 Loss: 114.094 +41600/69092 Loss: 114.263 +44800/69092 Loss: 115.484 +48000/69092 Loss: 113.398 +51200/69092 Loss: 114.657 +54400/69092 Loss: 114.476 +57600/69092 Loss: 113.724 +60800/69092 Loss: 113.923 +64000/69092 Loss: 113.543 +67200/69092 Loss: 113.137 +Training time 0:04:23.321508 +Epoch: 131 Average loss: 114.05 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 134) +0/69092 Loss: 123.004 +3200/69092 Loss: 114.564 +6400/69092 Loss: 113.602 +9600/69092 Loss: 113.447 +12800/69092 Loss: 113.275 +16000/69092 Loss: 114.056 +19200/69092 Loss: 114.602 +22400/69092 Loss: 114.670 +25600/69092 Loss: 113.045 +28800/69092 Loss: 113.388 +32000/69092 Loss: 113.867 +35200/69092 Loss: 115.408 +38400/69092 Loss: 114.099 +41600/69092 Loss: 113.591 +44800/69092 Loss: 113.610 +48000/69092 Loss: 113.645 +51200/69092 Loss: 113.597 +54400/69092 Loss: 113.680 +57600/69092 Loss: 114.309 +60800/69092 Loss: 113.205 +64000/69092 Loss: 113.916 +67200/69092 Loss: 117.059 +Training time 0:04:20.153807 +Epoch: 132 Average loss: 114.00 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 135) +0/69092 Loss: 108.133 +3200/69092 Loss: 112.305 +6400/69092 Loss: 113.728 +9600/69092 Loss: 111.871 +12800/69092 Loss: 112.839 +16000/69092 Loss: 113.411 +19200/69092 Loss: 114.898 +22400/69092 Loss: 112.742 +25600/69092 Loss: 113.579 +28800/69092 Loss: 113.920 +32000/69092 Loss: 115.454 +35200/69092 Loss: 112.449 +38400/69092 Loss: 113.912 +41600/69092 Loss: 113.215 +44800/69092 Loss: 114.048 +48000/69092 Loss: 115.217 +51200/69092 Loss: 113.958 +54400/69092 Loss: 115.548 +57600/69092 Loss: 115.074 +60800/69092 Loss: 114.615 +64000/69092 Loss: 114.327 +67200/69092 Loss: 114.783 +Training time 0:04:13.651886 +Epoch: 133 Average loss: 113.98 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 136) +0/69092 Loss: 112.990 +3200/69092 Loss: 112.850 +6400/69092 Loss: 111.781 +9600/69092 Loss: 114.440 +12800/69092 Loss: 113.950 +16000/69092 Loss: 113.776 +19200/69092 Loss: 116.008 +22400/69092 Loss: 114.935 +25600/69092 Loss: 113.381 +28800/69092 Loss: 115.506 +32000/69092 Loss: 113.739 +35200/69092 Loss: 115.350 +38400/69092 Loss: 113.398 +41600/69092 Loss: 112.783 +44800/69092 Loss: 114.051 +48000/69092 Loss: 113.729 +51200/69092 Loss: 111.615 +54400/69092 Loss: 112.875 +57600/69092 Loss: 113.566 +60800/69092 Loss: 112.446 +64000/69092 Loss: 115.136 +67200/69092 Loss: 113.092 +Training time 0:04:03.871304 +Epoch: 134 Average loss: 113.86 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 137) +0/69092 Loss: 113.820 +3200/69092 Loss: 113.023 +6400/69092 Loss: 113.605 +9600/69092 Loss: 115.006 +12800/69092 Loss: 113.062 +16000/69092 Loss: 113.313 +19200/69092 Loss: 113.548 +22400/69092 Loss: 113.821 +25600/69092 Loss: 113.696 +28800/69092 Loss: 113.847 +32000/69092 Loss: 112.898 +35200/69092 Loss: 115.648 +38400/69092 Loss: 115.076 +41600/69092 Loss: 112.041 +44800/69092 Loss: 112.616 +48000/69092 Loss: 114.295 +51200/69092 Loss: 114.063 +54400/69092 Loss: 114.141 +57600/69092 Loss: 113.066 +60800/69092 Loss: 114.087 +64000/69092 Loss: 116.195 +67200/69092 Loss: 113.690 +Training time 0:04:07.117686 +Epoch: 135 Average loss: 113.87 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 138) +0/69092 Loss: 117.427 +3200/69092 Loss: 114.269 +6400/69092 Loss: 115.480 +9600/69092 Loss: 112.917 +12800/69092 Loss: 114.796 +16000/69092 Loss: 113.584 +19200/69092 Loss: 113.838 +22400/69092 Loss: 114.711 +25600/69092 Loss: 112.946 +28800/69092 Loss: 112.712 +32000/69092 Loss: 113.911 +35200/69092 Loss: 113.644 +38400/69092 Loss: 115.387 +41600/69092 Loss: 114.737 +44800/69092 Loss: 113.171 +48000/69092 Loss: 113.791 +51200/69092 Loss: 113.560 +54400/69092 Loss: 113.901 +57600/69092 Loss: 115.148 +60800/69092 Loss: 112.369 +64000/69092 Loss: 112.151 +67200/69092 Loss: 115.114 +Training time 0:04:02.716749 +Epoch: 136 Average loss: 113.90 +=> saved checkpoint 'trained_models/rendered_chairs/VAE_bs_64/checkpoints/last' (iter 139) +0/69092 Loss: 109.092 +3200/69092 Loss: 115.821 +6400/69092 Loss: 112.875 +9600/69092 Loss: 114.357 +12800/69092 Loss: 114.035 +16000/69092 Loss: 112.059 +19200/69092 Loss: 114.598 +22400/69092 Loss: 113.213 +25600/69092 Loss: 113.436 +28800/69092 Loss: 115.048 +32000/69092 Loss: 113.937 +35200/69092 Loss: 112.612 +38400/69092 Loss: 114.134 diff --git a/dataloader/dataloaders.py b/dataloader/dataloaders.py index 5c557b75bb4332ad0fc62e03394ce5dffaba8fc7..4e2d5fc7000778b39a4ae5c20c10cfcfdf28cbba 100644 --- a/dataloader/dataloaders.py +++ b/dataloader/dataloaders.py @@ -104,7 +104,7 @@ def get_dsprites_dataloader(batch_size=128, path_to_data='../data/dSprites/dspri return train_loader, test_loader -def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='data/rendered_chairs'): +def get_chairs_dataloader(num_worker=4, batch_size=128, path_to_data='../data/rendered_chairs'): """ Chairs dataloader. Chairs are center cropped and resized to (64, 64). """ diff --git a/img_gif/rendered_chairs_VAE_bs_256.gif b/img_gif/rendered_chairs_VAE_bs_256.gif new file mode 100644 index 0000000000000000000000000000000000000000..8c9e20e22a38163a921a71a76909049c820a06c6 Binary files /dev/null and b/img_gif/rendered_chairs_VAE_bs_256.gif differ diff --git a/img_gif/rendered_chairs_VAE_bs_64.gif b/img_gif/rendered_chairs_VAE_bs_64.gif new file mode 100644 index 0000000000000000000000000000000000000000..73e8c7107d2ec3c283ebd56ad5ebefe0b58561c6 Binary files /dev/null and b/img_gif/rendered_chairs_VAE_bs_64.gif differ diff --git a/img_gif/rendered_chairs_beta_VAE_bs_256.gif b/img_gif/rendered_chairs_beta_VAE_bs_256.gif new file mode 100644 index 0000000000000000000000000000000000000000..dd5cf8b274bff2de340db5b3af845b768135d800 Binary files /dev/null and b/img_gif/rendered_chairs_beta_VAE_bs_256.gif differ diff --git a/img_gif/rendered_chairs_beta_VAE_bs_64.gif b/img_gif/rendered_chairs_beta_VAE_bs_64.gif new file mode 100644 index 0000000000000000000000000000000000000000..f250b235a2626fe803a5ea601b21c03c2cbf2f98 Binary files /dev/null and b/img_gif/rendered_chairs_beta_VAE_bs_64.gif differ diff --git a/main.py b/main.py new file mode 100644 index 0000000000000000000000000000000000000000..2e80eb9cff461e1ecd3de9c4927dac28acbb5b9e --- /dev/null +++ b/main.py @@ -0,0 +1,159 @@ +""" +Code from: https://github.com/Schlumberger/joint-vae +https://github.com/1Konny/Beta-VAE +""" + +# import sys +# sys.path.append('') +import os +from dataloader.dataloaders import * +import torch.nn as nn +from VAE_model.models import VAE +from torch import optim +from viz.visualize import Visualizer +from utils.training import Trainer, gpu_config +import argparse +import json + + +def main(args): + + # continue and discrete capacity + if args.cont_capacity is not None: + cont_capacity = [float(item) for item in args.cont_capacity.split(',')] + else: + cont_capacity = args.cont_capacity + if args.disc_capacity is not None: + disc_capacity = [float(item) for item in args.disc_capacity.split(',')] + else: + disc_capacity = args.disc_capacity + + # latent_spec + latent_spec = {"cont": args.latent_spec_cont} + + # number of classes and image size: + if args.dataset == 'mnist' or args.dataset == 'fashion_data': + nb_classes = 10 + img_size = (1, 32, 32) + elif args.dataset == 'celeba_64': + nb_classes = None + img_size = (3, 64, 64) + elif args.dataset == 'rendered_chairs': + nb_classes = 1393 + img_size = (3, 64, 64) + elif args.dataset == 'dSprites': + nb_classes = 6 + + # create and write a json file: + if not args.load_model_checkpoint: + print('creare new diretory experiment: {}/{}'.format(args.dataset, args.experiment_name)) + ckpt_dir = os.path.join('trained_models', args.dataset, args.experiment_name, args.ckpt_dir) + if not os.path.exists(ckpt_dir): + print("create new directory: {}".format(ckpt_dir)) + os.makedirs(ckpt_dir, exist_ok=True) + + parameter = {'dataset': args.dataset, 'epochs': args.epochs, 'cont_capacity': args.cont_capacity, + 'disc_capacity': args.disc_capacity, 'record_loss_every': args.record_loss_every, + 'batch_size': args.batch_size, 'latent_spec_cont': args.latent_spec_cont, + 'experiment_name': args.experiment_name, 'print_loss_every': args.print_loss_every, + 'latent_spec_disc': args.latent_spec_disc, 'nb_classes': nb_classes} + + # Save json parameters: + file_path = os.path.join('trained_models/', args.dataset, args.experiment_name, 'specs.json') + with open(file_path, 'w') as json_file: + json.dump(parameter, json_file) + + # create model + model = VAE(img_size, latent_spec=latent_spec) + # load dataset + train_loader, test_loader, dataset_name = load_dataset(args.dataset, args.batch_size, num_worker=args.num_worker) + + # Define model + model, use_gpu, device = gpu_config(model) + + if args.verbose: + print(model) + num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) + print('The number of parameters of model is', num_params) + + # Define optimizer and criterion + optimizer = optim.Adam(model.parameters(), lr=args.lr) + criterion = nn.CrossEntropyLoss() + + # Define trainer + trainer = Trainer(model, device, optimizer, criterion, save_step=args.save_step, ckpt_dir=args.ckpt_dir, + ckpt_name=args.ckpt_name, + expe_name=args.experiment_name, + dataset=args.dataset, + cont_capacity=cont_capacity, + disc_capacity=disc_capacity, + is_beta=args.is_beta_VAE, + beta=args.beta) + + # define visualizer + viz = Visualizer(model) + + # Train model: + trainer.train(train_loader, args.epochs, save_training_gif=('../img_gif/' + dataset_name + '_' + + args.latent_name + args.experiment_name + '.gif', viz)) + + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='VAE') + parser.add_argument('--batch-size', type=int, default=64, metavar='integer value', + help='input batch size for training (default: 64)') + parser.add_argument('--record-loss-every', type=int, default=50, metavar='integer value', + help='Record loss every (value)') + parser.add_argument('--print-loss-every', type=int, default=50, metavar='integer value', + help='Print loss every (value)') + parser.add_argument('--epochs', type=int, default=100, metavar='integer value', + help='number of epochs to train (default: 100)') + parser.add_argument('--lr', type=float, default=5e-4, metavar='value', + help='learning rate value') + parser.add_argument('--dataset', type=str, default=None, metavar='name', + help='Dataset Name') + parser.add_argument('--save-model', type=bool, default=True, metavar='bool', + help='Save model') + parser.add_argument('--save-reconstruction-image', type=bool, default=False, metavar='bool', + help='Save reconstruction image') + parser.add_argument('--latent_spec_cont', type=int, default=10, metavar='integer value', + help='Capacity of continue latent space') + parser.add_argument('--latent_spec_disc', type=list, default=None, metavar='integer list', + help='Capacity of discrete latent space') + parser.add_argument('--cont-capacity', type=str, default=None, metavar='integer tuple', + help='capacity of continuous channels') + parser.add_argument('--disc-capacity', type=str, default=None, metavar='integer tuple', + help='capacity of discrete channels') + parser.add_argument('--experiment-name', type=str, default='', metavar='name', + help='experiment name') + parser.add_argument('--latent-name', type=str, default='', metavar='name', + help='Latent space name') + parser.add_argument('--is-beta-VAE', type=bool, default=False, metavar='beta_VAE', + help='If use beta-VAE') + parser.add_argument('--beta', type=int, default=None, metavar='beta', + help='Beta value') + parser.add_argument("--gpu-devices", type=int, nargs='+', default=None, help="GPU devices available") + parser.add_argument("--load-model-checkpoint", type=bool, default=False, help="If we use a pre trained model") + parser.add_argument("--load-expe-name", type=str, default='', help="The name expe to loading") + parser.add_argument("--num-worker", type=int, default=4, help="num worker to dataloader") + parser.add_argument("--verbose", type=bool, default=True, help="To print details model") + parser.add_argument("--save-step", type=int, default=1, help="save model every step") + parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory') + parser.add_argument('--ckpt_name', default='last', type=str, + help='load previous checkpoint. insert checkpoint filename') + + args = parser.parse_args() + + assert args.dataset in ['mnist', 'fashion_data', 'celeba_64', 'rendered_chairs', 'dSprites'], \ + "The choisen dataset is not available. Please choose a dataset from the following: ['mnist', 'fashion_data', " \ + "'celeba_64', 'rendered_chairs', 'dSprites'] " + if args.is_beta_VAE: + assert args.beta is not None, 'Beta is null or if you use Beta-VAe model, please enter a beta value' + + print(parser.parse_args()) + + gpu_devices = ','.join([str(id) for id in args.gpu_devices]) + os.environ["CUDA_VISIBLE_DEVICES"] = gpu_devices + + main(args) diff --git a/parameters_combinations/param_combinations_chairs.txt b/parameters_combinations/param_combinations_chairs.txt index 3564326e4e7db5ddce4e8e13009f245304c9926b..e1228ff44808c90a06ca62bdef045378612d1926 100644 --- a/parameters_combinations/param_combinations_chairs.txt +++ b/parameters_combinations/param_combinations_chairs.txt @@ -1,4 +1,4 @@ --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_256 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_256 --batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --is-beta-VAE=True --beta=4 --lr=1e-4 --experiment-name=beta_VAE_bs_64 --gpu-devices 0 1 --experiment-name=beta_VAE_bs_64 --batch-size=256 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_256 --gpu-devices 0 1 --experiment-name=VAE_bs_256 ---batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --experiment-name=VAE_bs_64 +--batch-size=64 --dataset=rendered_chairs --epochs=400 --latent_spec_cont=10 --lr=1e-4 --experiment-name=VAE_bs_64 --gpu-devices 0 1 --experiment-name=VAE_bs_64 \ No newline at end of file diff --git a/reconstruction_im/charis_VAE_bs_256.png b/reconstruction_im/charis_VAE_bs_256.png index 32d809c7d3f9f9333b1ab0a8a68a93a72f77dd9c..fe5203301e4e636df2121a0f510738e750f76734 100644 Binary files a/reconstruction_im/charis_VAE_bs_256.png and b/reconstruction_im/charis_VAE_bs_256.png differ diff --git a/reconstruction_im/charis_VAE_bs_64.png b/reconstruction_im/charis_VAE_bs_64.png index 4c083d463dc5433906f55a51dc67786d729b8b4f..f85ecdf45943cdb836202d75b590d16f8e084349 100644 Binary files a/reconstruction_im/charis_VAE_bs_64.png and b/reconstruction_im/charis_VAE_bs_64.png differ diff --git a/reconstruction_im/charis_beta_VAE_bs_256.png b/reconstruction_im/charis_beta_VAE_bs_256.png index 24f379186d26895de0526f53882cb84b53016c04..187679a81c1eccd22d6432a74f8c391cf90f136e 100644 Binary files a/reconstruction_im/charis_beta_VAE_bs_256.png and b/reconstruction_im/charis_beta_VAE_bs_256.png differ diff --git a/reconstruction_im/charis_beta_VAE_bs_64.png b/reconstruction_im/charis_beta_VAE_bs_64.png index c92eb0ce79ebd76b029eff0a1da84bf11e58f004..b559a570179e6deb1bd9dd398ba343144e5b97ba 100644 Binary files a/reconstruction_im/charis_beta_VAE_bs_64.png and b/reconstruction_im/charis_beta_VAE_bs_64.png differ diff --git a/reconstruction_im/rendered_chairs_beta_VAE.png b/reconstruction_im/rendered_chairs_beta_VAE.png deleted file mode 100644 index 669f39ee976079cef2b5775cb5afdcfb2073dec2..0000000000000000000000000000000000000000 Binary files a/reconstruction_im/rendered_chairs_beta_VAE.png and /dev/null differ diff --git a/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last new file mode 100644 index 0000000000000000000000000000000000000000..99f36b9f28d156f588c78a5e48e07ef9edb5c2f3 Binary files /dev/null and b/trained_models/rendered_chairs/VAE_bs_256/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_256/specs.json b/trained_models/rendered_chairs/VAE_bs_256/specs.json new file mode 100644 index 0000000000000000000000000000000000000000..e5db16dfdc394df06c653399ea4b0f8ceb67a98a --- /dev/null +++ b/trained_models/rendered_chairs/VAE_bs_256/specs.json @@ -0,0 +1 @@ +{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 256, "latent_spec_cont": 10, "experiment_name": "VAE_bs_256", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393} \ No newline at end of file diff --git a/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last new file mode 100644 index 0000000000000000000000000000000000000000..726fe5245fd727ef42b5cab3fce2df35c699360b Binary files /dev/null and b/trained_models/rendered_chairs/VAE_bs_64/checkpoints/last differ diff --git a/trained_models/rendered_chairs/VAE_bs_64/specs.json b/trained_models/rendered_chairs/VAE_bs_64/specs.json new file mode 100644 index 0000000000000000000000000000000000000000..7a56498990531b3e8d7a20338898b1169c0c6ad0 --- /dev/null +++ b/trained_models/rendered_chairs/VAE_bs_64/specs.json @@ -0,0 +1 @@ +{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393} \ No newline at end of file diff --git a/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last new file mode 100644 index 0000000000000000000000000000000000000000..e5e9aeabf13e873880a78a5259aa91b7a380e44d Binary files /dev/null and b/trained_models/rendered_chairs/beta_VAE_bs_256/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json b/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json new file mode 100644 index 0000000000000000000000000000000000000000..63331fde7e7e21992aa7dbc092d180154810b71c --- /dev/null +++ b/trained_models/rendered_chairs/beta_VAE_bs_256/specs.json @@ -0,0 +1 @@ +{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 256, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_256", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393} \ No newline at end of file diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last new file mode 100644 index 0000000000000000000000000000000000000000..f4622f965f57120a08b95ae017bcf9a12094de95 Binary files /dev/null and b/trained_models/rendered_chairs/beta_VAE_bs_64/checkpoints/last differ diff --git a/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json b/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json new file mode 100644 index 0000000000000000000000000000000000000000..c11acc1ccaf888effbbb2b16b457aba4895677b6 --- /dev/null +++ b/trained_models/rendered_chairs/beta_VAE_bs_64/specs.json @@ -0,0 +1 @@ +{"dataset": "rendered_chairs", "epochs": 400, "cont_capacity": null, "disc_capacity": null, "record_loss_every": 50, "batch_size": 64, "latent_spec_cont": 10, "experiment_name": "beta_VAE_bs_64", "print_loss_every": 50, "latent_spec_disc": null, "nb_classes": 1393} \ No newline at end of file