import sys import random import torch import copy from Transition import Transition, getMissingLinks, applyTransition import Features from Dicts import Dicts from Util import timeStamp, prettyInt, numParameters, getDevice from Rl import ReplayMemory, selectAction, optimizeModel import Networks import Decode import Config from conll18_ud_eval import load_conllu, evaluate ################################################################################ def trainMode(debug, filename, type, modelDir, nbIter, batchSize, devFile, silent=False) : transitionSet = [Transition(elem) for elem in ["RIGHT", "LEFT", "SHIFT", "REDUCE"]] strategy = {"RIGHT" : 1, "SHIFT" : 1, "LEFT" : 0, "REDUCE" : 0} sentences = Config.readConllu(filename) if type == "oracle" : trainModelOracle(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent) return if type == "rl": trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentences, silent) return print("ERROR : unknown type '%s'"%type, file=sys.stderr) exit(1) ################################################################################ ################################################################################ def extractExamples(ts, strat, config, dicts, debug=False) : examples = [] EOS = Transition("EOS") config.moveWordIndex(0) moved = True while moved : missingLinks = getMissingLinks(config) candidates = sorted([[trans.getOracleScore(config, missingLinks), trans.name] for trans in ts if trans.appliable(config)]) if len(candidates) == 0 : break candidate = candidates[0][1] candidateIndex = [trans.name for trans in ts].index(candidate) features = Features.extractFeatures(dicts, config) example = torch.cat([torch.LongTensor([candidateIndex]), features]) examples.append(example) if debug : config.printForDebug(sys.stderr) print(str(candidates)+"\n"+("-"*80)+"\n", file=sys.stderr) moved = applyTransition(ts, strat, config, candidate) EOS.apply(config) return examples ################################################################################ ################################################################################ def evalModelAndSave(debug, model, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter) : devScore = "" saved = True if bestLoss is None else totalLoss < bestLoss bestLoss = totalLoss if bestLoss is None else min(bestLoss, totalLoss) if devFile is not None : outFilename = modelDir+"/predicted_dev.conllu" Decode.decodeMode(debug, devFile, "model", modelDir, model, dicts, open(outFilename, "w")) res = evaluate(load_conllu(open(devFile, "r")), load_conllu(open(outFilename, "r")), []) UAS = res["UAS"][0].f1 score = UAS saved = True if bestScore is None else score > bestScore bestScore = score if bestScore is None else max(bestScore, score) devScore = ", Dev : UAS=%.2f"%(UAS) if saved : torch.save(model, modelDir+"/network.pt") print("{} : Epoch {:{}}/{}, loss={:6.2f}{} {}".format(timeStamp(), epoch, len(str(nbIter)), nbIter, totalLoss, devScore, "SAVED" if saved else ""), file=sys.stderr) return bestLoss, bestScore ################################################################################ ################################################################################ def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, transitionSet, strategy, sentences, silent=False) : examples = [] dicts = Dicts() dicts.readConllu(filename, ["FORM", "UPOS"]) dicts.save(modelDir+"/dicts.json") print("%s : Starting to extract examples..."%(timeStamp()), file=sys.stderr) for config in sentences : examples += extractExamples(transitionSet, strategy, config, dicts, debug) print("%s : Extracted %s examples"%(timeStamp(), prettyInt(len(examples), 3)), file=sys.stderr) examples = torch.stack(examples) network = Networks.BaseNet(dicts, examples[0].size(0)-1, len(transitionSet)).to(getDevice()) print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(network)), 3)), file=sys.stderr) optimizer = torch.optim.Adam(network.parameters(), lr=0.0001) lossFct = torch.nn.CrossEntropyLoss() bestLoss = None bestScore = None for epoch in range(1,nbEpochs+1) : network.train() examples = examples.index_select(0, torch.randperm(examples.size(0))) totalLoss = 0.0 nbEx = 0 printInterval = 2000 advancement = 0 for batchIndex in range(0,examples.size(0)-batchSize,batchSize) : batch = examples[batchIndex:batchIndex+batchSize].to(getDevice()) targets = batch[:,:1].view(-1) inputs = batch[:,1:] nbEx += targets.size(0) advancement += targets.size(0) if not silent and advancement >= printInterval : advancement = 0 print("Curent epoch %6.2f%%"%(100.0*nbEx/examples.size(0)), end="\r", file=sys.stderr) outputs = network(inputs) loss = lossFct(outputs, targets) network.zero_grad() loss.backward() optimizer.step() totalLoss += float(loss) bestLoss, bestScore = evalModelAndSave(debug, network, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbEpochs) ################################################################################ ################################################################################ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transitionSet, strategy, sentencesOriginal, silent=False) : memory = None dicts = Dicts() dicts.readConllu(filename, ["FORM", "UPOS"]) dicts.save(modelDir + "/dicts.json") policy_net = None target_net = None optimizer = None bestLoss = None bestScore = None sentences = copy.deepcopy(sentencesOriginal) nbExByEpoch = sum(map(len,sentences)) sentIndex = 0 for epoch in range(1,nbIter+1) : i = 0 totalLoss = 0.0 while True : if sentIndex >= len(sentences) : sentences = copy.deepcopy(sentencesOriginal) random.shuffle(sentences) sentIndex = 0 if not silent : print("Curent epoch %6.2f%%"%(100.0*i/nbExByEpoch), end="\r", file=sys.stderr) sentence = sentences[sentIndex] sentence.moveWordIndex(0) state = Features.extractFeaturesPosExtended(dicts, sentence).to(getDevice()) if policy_net is None : policy_net = Networks.BaseNet(dicts, state.numel(), len(transitionSet)).to(getDevice()) target_net = Networks.BaseNet(dicts, state.numel(), len(transitionSet)).to(getDevice()) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() policy_net.train() optimizer = torch.optim.Adam(policy_net.parameters(), lr=0.0001) print("%s : Model has %s parameters"%(timeStamp(), prettyInt((numParameters(policy_net)), 3)), file=sys.stderr) while True : missingLinks = getMissingLinks(sentence) if debug : sentence.printForDebug(sys.stderr) action = selectAction(policy_net, state, transitionSet, sentence, missingLinks, probaRandom=0.1, probaOracle=0.1) if action is None : break appliable = action.appliable(sentence) # Reward for doing an illegal action reward = -3.0 if appliable : reward = -1.0*action.getOracleScore(sentence, missingLinks) reward = torch.FloatTensor([reward]).to(getDevice()) newState = None if appliable : applyTransition(transitionSet, strategy, sentence, action.name) newState = Features.extractFeaturesPosExtended(dicts, sentence).to(getDevice()) if memory is None : memory = ReplayMemory(5000, state.numel()) memory.push(state, torch.LongTensor([transitionSet.index(action)]).to(getDevice()), newState, reward) state = newState if i % batchSize == 0 : totalLoss += optimizeModel(batchSize, policy_net, target_net, memory, optimizer) if i % (2*batchSize) == 0 : target_net.load_state_dict(policy_net.state_dict()) target_net.eval() policy_net.train() i += 1 if state is None : break if i >= nbExByEpoch : break sentIndex += 1 bestLoss, bestScore = evalModelAndSave(debug, policy_net, dicts, modelDir, devFile, bestLoss, totalLoss, bestScore, epoch, nbIter) ################################################################################