import torch import torch.nn as nn import torch.nn.functional as F import Features ################################################################################ class BaseNet(nn.Module): def __init__(self, dicts, outputSize) : super().__init__() self.dummyParam = nn.Parameter(torch.empty(0), requires_grad=False) self.featureFunction = "b.-2 b.-1 b.0 b.1 b.2 s.0 s.1 s.2 s.0.0 s.0.-1 s.0.1 s.1.0 s.1.-1 s.1.1 s.2.0 s.2.-1 s.2.1" self.columns = ["UPOS", "FORM"] self.embSize = 64 self.nbTargets = len(self.featureFunction.split()) self.inputSize = len(self.columns)*self.nbTargets self.outputSize = outputSize for name in dicts.dicts : self.add_module("emb_"+name, nn.Embedding(len(dicts.dicts[name]), self.embSize)) self.fc1 = nn.Linear(self.inputSize * self.embSize, 1600) self.fc2 = nn.Linear(1600, outputSize) self.dropout = nn.Dropout(0.3) self.apply(self.initWeights) def forward(self, x) : embeddings = [] for i in range(len(self.columns)) : embeddings.append(getattr(self, "emb_"+self.columns[i])(x[...,i*self.nbTargets:(i+1)*self.nbTargets])) x = torch.cat(embeddings,-1) x = self.dropout(x.view(x.size(0),-1)) x = F.relu(self.dropout(self.fc1(x))) x = self.fc2(x) return x def currentDevice(self) : return self.dummyParam.device def initWeights(self,m) : if type(m) == nn.Linear: torch.nn.init.xavier_uniform_(m.weight) m.bias.data.fill_(0.01) def extractFeatures(self, dicts, config) : return Features.extractColsFeatures(dicts, config, self.featureFunction, self.columns) ################################################################################