#include "Classifier.hpp" #include "util.hpp" #include "OneWordNetwork.hpp" #include "ConcatWordsNetwork.hpp" #include "RLTNetwork.hpp" #include "CNNNetwork.hpp" Classifier::Classifier(const std::string & name, const std::string & topology, const std::string & tsFile) { this->name = name; this->transitionSet.reset(new TransitionSet(tsFile)); initNeuralNetwork(topology); } TransitionSet & Classifier::getTransitionSet() { return *transitionSet; } NeuralNetwork & Classifier::getNN() { return reinterpret_cast<NeuralNetwork&>(nn); } const std::string & Classifier::getName() const { return name; } void Classifier::initNeuralNetwork(const std::string & topology) { static std::vector<std::tuple<std::regex, std::string, std::function<void(const std::smatch &)>>> initializers { { std::regex("OneWord\\(([+\\-]?\\d+)\\)"), "OneWord(focusedIndex) : Only use the word embedding of the focused word.", [this,topology](auto sm) { this->nn.reset(new OneWordNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]))); } }, { std::regex("ConcatWords\\(([+\\-]?\\d+),([+\\-]?\\d+),([+\\-]?\\d+)\\)"), "ConcatWords(leftBorder,rightBorder,nbStack) : Concatenate embeddings of words in context.", [this,topology](auto sm) { this->nn.reset(new ConcatWordsNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3]))); } }, { std::regex("CNN\\((\\d+),(\\d+),(\\d+),(\\d+),\\{(.*)\\},\\{(.*)\\},\\{(.*)\\},\\{(.*)\\},\\{(.*)\\}\\,([+\\-]?\\d+)\\,([+\\-]?\\d+)\\)"), "CNN(unknownValueThreshold,leftBorder,rightBorder,nbStack,{columns},{focusedBuffer},{focusedStack},{focusedColumns},{maxNbElements},leftBorderRawInput, rightBorderRawInput) : CNN to capture context.", [this,topology](auto sm) { std::vector<int> focusedBuffer, focusedStack, maxNbElements; std::vector<std::string> focusedColumns, columns; for (auto s : util::split(std::string(sm[5]), ',')) columns.emplace_back(s); for (auto s : util::split(std::string(sm[6]), ',')) focusedBuffer.push_back(std::stoi(std::string(s))); for (auto s : util::split(std::string(sm[7]), ',')) focusedStack.push_back(std::stoi(std::string(s))); for (auto s : util::split(std::string(sm[8]), ',')) focusedColumns.emplace_back(s); for (auto s : util::split(std::string(sm[9]), ',')) maxNbElements.push_back(std::stoi(std::string(s))); if (focusedColumns.size() != maxNbElements.size()) util::myThrow("focusedColumns.size() != maxNbElements.size()"); this->nn.reset(new CNNNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3]), std::stoi(sm[4]), columns, focusedBuffer, focusedStack, focusedColumns, maxNbElements, std::stoi(sm[10]), std::stoi(sm[11]))); } }, { std::regex("RLT\\(([+\\-]?\\d+),([+\\-]?\\d+),([+\\-]?\\d+)\\)"), "RLT(leftBorder,rightBorder,nbStack) : Recursive tree LSTM.", [this,topology](auto sm) { this->nn.reset(new RLTNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3]))); } }, }; for (auto & initializer : initializers) if (util::doIfNameMatch(std::get<0>(initializer),topology,std::get<2>(initializer))) { this->nn->to(NeuralNetworkImpl::device); return; } std::string errorMessage = fmt::format("Unknown neural network '{}', available networks :\n", topology); for (auto & initializer : initializers) errorMessage += std::get<1>(initializer) + "\n"; util::myThrow(errorMessage); }