#include "DepthLayerTreeEmbeddingModule.hpp" DepthLayerTreeEmbeddingModuleImpl::DepthLayerTreeEmbeddingModuleImpl(std::string name, const std::string & definition) { setName(name); std::regex regex("(?:(?:\\s|\\t)*)Columns\\{(.*)\\}(?:(?:\\s|\\t)*)Buffer\\{(.*)\\}(?:(?:\\s|\\t)*)Stack\\{(.*)\\}(?:(?:\\s|\\t)*)LayerSizes\\{(.*)\\}(?:(?:\\s|\\t)*)(\\S+)\\{(.*)\\}(?:(?:\\s|\\t)*)In\\{(.*)\\}(?:(?:\\s|\\t)*)Out\\{(.*)\\}(?:(?:\\s|\\t)*)"); if (!util::doIfNameMatch(regex, definition, [this,&definition](auto sm) { try { columns = util::split(sm.str(1), ' '); for (auto & index : util::split(sm.str(2), ' ')) focusedBuffer.emplace_back(std::stoi(index)); for (auto & index : util::split(sm.str(3), ' ')) focusedStack.emplace_back(std::stoi(index)); for (auto & elem : util::split(sm.str(4), ' ')) maxElemPerDepth.emplace_back(std::stoi(elem)); auto subModuleType = sm.str(5); auto subModuleArguments = util::split(sm.str(6), ' '); auto options = MyModule::ModuleOptions(true) .bidirectional(std::stoi(subModuleArguments[0])) .num_layers(std::stoi(subModuleArguments[1])) .dropout(std::stof(subModuleArguments[2])) .complete(std::stoi(subModuleArguments[3])); inSize = std::stoi(sm.str(7)); int outSize = std::stoi(sm.str(8)); for (unsigned int i = 0; i < maxElemPerDepth.size(); i++) { std::string name = fmt::format("{}_{}", i, subModuleType); if (subModuleType == "LSTM") depthModules.emplace_back(register_module(name, LSTM(columns.size()*inSize, outSize, options))); else if (subModuleType == "GRU") depthModules.emplace_back(register_module(name, GRU(columns.size()*inSize, outSize, options))); else if (subModuleType == "Concat") depthModules.emplace_back(register_module(name, Concat(inSize))); else util::myThrow(fmt::format("unknown sumodule type '{}'", subModuleType)); } } catch (std::exception & e) {util::myThrow(fmt::format("{} in '{}'",e.what(),definition));} })) util::myThrow(fmt::format("invalid definition '{}'", definition)); } torch::Tensor DepthLayerTreeEmbeddingModuleImpl::forward(torch::Tensor input) { auto context = wordEmbeddings(input.narrow(1, firstInputIndex, getInputSize())); std::vector<torch::Tensor> outputs; int offset = 0; for (unsigned int focused = 0; focused < focusedBuffer.size()+focusedStack.size(); focused++) for (unsigned int depth = 0; depth < maxElemPerDepth.size(); depth++) { outputs.emplace_back(depthModules[depth]->forward(context.narrow(1, offset, maxElemPerDepth[depth]*columns.size()).view({context.size(0), maxElemPerDepth[depth], (long)columns.size()*context.size(2)}))); offset += maxElemPerDepth[depth]*columns.size(); } return torch::cat(outputs, 1); } std::size_t DepthLayerTreeEmbeddingModuleImpl::getOutputSize() { std::size_t outputSize = 0; for (unsigned int depth = 0; depth < maxElemPerDepth.size(); depth++) outputSize += depthModules[depth]->getOutputSize(maxElemPerDepth[depth]); return outputSize*(focusedBuffer.size()+focusedStack.size()); } std::size_t DepthLayerTreeEmbeddingModuleImpl::getInputSize() { int inputSize = 0; for (int maxElem : maxElemPerDepth) inputSize += (focusedBuffer.size()+focusedStack.size())*maxElem*columns.size(); return inputSize; } void DepthLayerTreeEmbeddingModuleImpl::addToContext(std::vector<std::vector<long>> & context, const Config & config) { auto & dict = getDict(); std::vector<long> focusedIndexes; for (int index : focusedBuffer) focusedIndexes.emplace_back(config.getRelativeWordIndex(index)); for (int index : focusedStack) if (config.hasStack(index)) focusedIndexes.emplace_back(config.getStack(index)); else focusedIndexes.emplace_back(-1); for (auto & contextElement : context) for (auto index : focusedIndexes) { std::vector<std::string> childs{std::to_string(index)}; for (unsigned int depth = 0; depth < maxElemPerDepth.size(); depth++) { std::vector<std::string> newChilds; for (auto & child : childs) if (config.has(Config::childsColName, std::stoi(child), 0)) { auto val = util::split(config.getAsFeature(Config::childsColName, std::stoi(child)).get(), '|'); newChilds.insert(newChilds.end(), val.begin(), val.end()); } childs = newChilds; for (int i = 0; i < maxElemPerDepth[depth]; i++) for (auto & col : columns) if (i < (int)newChilds.size() and config.has(col, std::stoi(newChilds[i]), 0)) contextElement.emplace_back(dict.getIndexOrInsert(config.getAsFeature(col,std::stoi(newChilds[i])))); else contextElement.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr)); } } } void DepthLayerTreeEmbeddingModuleImpl::registerEmbeddings() { wordEmbeddings = register_module("embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(getDict().size(), inSize))); }