#include "CNNNetwork.hpp" CNNNetworkImpl::CNNNetworkImpl(int nbOutputs, int unknownValueThreshold, std::vector<int> bufferContext, std::vector<int> stackContext, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput) : unknownValueThreshold(unknownValueThreshold), focusedColumns(focusedColumns), maxNbElements(maxNbElements), leftWindowRawInput(leftWindowRawInput), rightWindowRawInput(rightWindowRawInput) { constexpr int embeddingsSize = 64; constexpr int hiddenSize = 1024; constexpr int nbFiltersContext = 512; constexpr int nbFiltersFocused = 64; setBufferContext(bufferContext); setStackContext(stackContext); setColumns(columns); setBufferFocused(focusedBufferIndexes); setStackFocused(focusedStackIndexes); rawInputSize = leftWindowRawInput + rightWindowRawInput + 1; if (leftWindowRawInput < 0 or rightWindowRawInput < 0) rawInputSize = 0; else rawInputCNN = register_module("rawInputCNN", CNN(std::vector<int>{2,3,4}, nbFiltersFocused, embeddingsSize)); int rawInputCNNOutputSize = rawInputSize == 0 ? 0 : rawInputCNN->getOutputSize(); wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(maxNbEmbeddings, embeddingsSize))); embeddingsDropout = register_module("embeddings_dropout", torch::nn::Dropout(0.3)); cnnDropout = register_module("cnn_dropout", torch::nn::Dropout(0.3)); hiddenDropout = register_module("hidden_dropout", torch::nn::Dropout(0.3)); contextCNN = register_module("contextCNN", CNN(std::vector<int>{2,3,4}, nbFiltersContext, columns.size()*embeddingsSize)); int totalCnnOutputSize = contextCNN->getOutputSize()+rawInputCNNOutputSize; for (auto & col : focusedColumns) { std::vector<int> windows{2,3,4}; cnns.emplace_back(register_module(fmt::format("CNN_{}", col), CNN(windows, nbFiltersFocused, embeddingsSize))); totalCnnOutputSize += cnns.back()->getOutputSize() * (focusedBufferIndexes.size()+focusedStackIndexes.size()); } linear1 = register_module("linear1", torch::nn::Linear(totalCnnOutputSize, hiddenSize)); linear2 = register_module("linear2", torch::nn::Linear(hiddenSize, nbOutputs)); } torch::Tensor CNNNetworkImpl::forward(torch::Tensor input) { if (input.dim() == 1) input = input.unsqueeze(0); auto embeddings = embeddingsDropout(wordEmbeddings(input)); auto context = embeddings.narrow(1, rawInputSize, getContextSize()); context = context.view({context.size(0), context.size(1)/(int)columns.size(), (int)columns.size()*(int)wordEmbeddings->options.embedding_dim()}); auto elementsEmbeddings = embeddings.narrow(1, rawInputSize+context.size(1), input.size(1)-(rawInputSize+context.size(1))); std::vector<torch::Tensor> cnnOutputs; if (rawInputSize != 0) { auto rawLetters = embeddings.narrow(1, 0, leftWindowRawInput+rightWindowRawInput+1); cnnOutputs.emplace_back(rawInputCNN(rawLetters.unsqueeze(1))); } auto curIndex = 0; for (unsigned int i = 0; i < focusedColumns.size(); i++) { long nbElements = maxNbElements[i]; for (unsigned int focused = 0; focused < bufferFocused.size()+stackFocused.size(); focused++) { auto cnnInput = elementsEmbeddings.narrow(1, curIndex, nbElements).unsqueeze(1); curIndex += nbElements; cnnOutputs.emplace_back(cnns[i](cnnInput)); } } cnnOutputs.emplace_back(contextCNN(context.unsqueeze(1))); auto totalInput = cnnDropout(torch::cat(cnnOutputs, 1)); return linear2(hiddenDropout(torch::relu(linear1(totalInput)))); } std::vector<std::vector<long>> CNNNetworkImpl::extractContext(Config & config, Dict & dict) const { if (dict.size() >= maxNbEmbeddings) util::warning(fmt::format("dict.size()={} > maxNbEmbeddings={}", dict.size(), maxNbEmbeddings)); std::vector<long> contextIndexes = extractContextIndexes(config); std::vector<std::vector<long>> context; context.emplace_back(); if (rawInputSize > 0) { for (int i = 0; i < leftWindowRawInput; i++) if (config.hasCharacter(config.getCharacterIndex()-leftWindowRawInput+i)) context.back().push_back(dict.getIndexOrInsert(fmt::format("{}", config.getLetter(config.getCharacterIndex()-leftWindowRawInput+i)))); else context.back().push_back(dict.getIndexOrInsert(Dict::nullValueStr)); for (int i = 0; i <= rightWindowRawInput; i++) if (config.hasCharacter(config.getCharacterIndex()+i)) context.back().push_back(dict.getIndexOrInsert(fmt::format("{}", config.getLetter(config.getCharacterIndex()+i)))); else context.back().push_back(dict.getIndexOrInsert(Dict::nullValueStr)); } for (auto index : contextIndexes) for (auto & col : columns) if (index == -1) for (auto & contextElement : context) contextElement.push_back(dict.getIndexOrInsert(Dict::nullValueStr)); else { int dictIndex = dict.getIndexOrInsert(config.getAsFeature(col, index)); for (auto & contextElement : context) contextElement.push_back(dictIndex); if (is_training()) if (col == "FORM" || col == "LEMMA") if (dict.getNbOccs(dictIndex) <= unknownValueThreshold) { context.emplace_back(context.back()); context.back().back() = dict.getIndexOrInsert(Dict::unknownValueStr); } } std::vector<long> focusedIndexes = extractFocusedIndexes(config); for (auto & contextElement : context) for (unsigned int colIndex = 0; colIndex < focusedColumns.size(); colIndex++) { auto & col = focusedColumns[colIndex]; for (auto index : focusedIndexes) { if (index == -1) { for (int i = 0; i < maxNbElements[colIndex]; i++) contextElement.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr)); continue; } std::vector<std::string> elements; if (col == "FORM") { auto asUtf8 = util::splitAsUtf8(config.getAsFeature(col, index).get()); for (int i = 0; i < maxNbElements[colIndex]; i++) if (i < (int)asUtf8.size()) elements.emplace_back(fmt::format("{}", asUtf8[i])); else elements.emplace_back(Dict::nullValueStr); } else if (col == "FEATS") { auto splited = util::split(config.getAsFeature(col, index).get(), '|'); for (int i = 0; i < maxNbElements[colIndex]; i++) if (i < (int)splited.size()) elements.emplace_back(fmt::format("FEATS({})", splited[i])); else elements.emplace_back(Dict::nullValueStr); } else if (col == "ID") { if (config.isTokenPredicted(index)) elements.emplace_back("ID(TOKEN)"); else if (config.isMultiwordPredicted(index)) elements.emplace_back("ID(MULTIWORD)"); else if (config.isEmptyNodePredicted(index)) elements.emplace_back("ID(EMPTYNODE)"); } else { elements.emplace_back(config.getAsFeature(col, index)); } if ((int)elements.size() != maxNbElements[colIndex]) util::myThrow(fmt::format("elements.size ({}) != maxNbElements[colIndex ({},{})]", elements.size(), maxNbElements[colIndex], col)); for (auto & element : elements) contextElement.emplace_back(dict.getIndexOrInsert(element)); } } if (!is_training() && context.size() > 1) util::myThrow(fmt::format("Not in training mode, yet context yields multiple variants (size={})", context.size())); return context; }