#include "TestNetwork.hpp"

TestNetworkImpl::TestNetworkImpl(int nbOutputs, int focusedIndex)
{
  constexpr int embeddingsSize = 30;

  wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(200000, embeddingsSize).sparse(true)));
  auto params = wordEmbeddings->parameters();
  _sparseParameters.insert(_sparseParameters.end(), params.begin(), params.end());

  linear = register_module("linear", torch::nn::Linear(embeddingsSize, nbOutputs));
  params = linear->parameters();
  _denseParameters.insert(_denseParameters.end(), params.begin(), params.end());

  this->focusedIndex = focusedIndex;
}

std::vector<torch::Tensor> & TestNetworkImpl::denseParameters()
{
  return _denseParameters;
}

std::vector<torch::Tensor> & TestNetworkImpl::sparseParameters()
{
  return _sparseParameters;
}

torch::Tensor TestNetworkImpl::forward(torch::Tensor input)
{
  // input dim = {batch, sequence, embeddings}
  auto wordsAsEmb = wordEmbeddings(input);
  // reshaped dim = {sequence, batch, embeddings}
  auto reshaped = wordsAsEmb.permute({1,0,2});

  auto res = torch::softmax(linear(reshaped[focusedIndex]), 1);

  return res;
}