#include "OneWordNetwork.hpp" OneWordNetworkImpl::OneWordNetworkImpl(int nbOutputs, int focusedIndex) { constexpr int embeddingsSize = 30; wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(200000, embeddingsSize).sparse(true))); auto params = wordEmbeddings->parameters(); _sparseParameters.insert(_sparseParameters.end(), params.begin(), params.end()); linear = register_module("linear", torch::nn::Linear(embeddingsSize, nbOutputs)); params = linear->parameters(); _denseParameters.insert(_denseParameters.end(), params.begin(), params.end()); int leftBorder = 0; int rightBorder = 0; if (focusedIndex < 0) leftBorder = -focusedIndex; if (focusedIndex > 0) rightBorder = focusedIndex; this->focusedIndex = focusedIndex <= 0 ? 0 : focusedIndex; setLeftBorder(leftBorder); setRightBorder(rightBorder); setNbStackElements(0); } std::vector<torch::Tensor> & OneWordNetworkImpl::denseParameters() { return _denseParameters; } std::vector<torch::Tensor> & OneWordNetworkImpl::sparseParameters() { return _sparseParameters; } torch::Tensor OneWordNetworkImpl::forward(torch::Tensor input) { // input dim = {batch, sequence, embeddings} auto wordsAsEmb = wordEmbeddings(input); auto reshaped = wordsAsEmb; // reshaped dim = {sequence, batch, embeddings} if (reshaped.dim() == 3) reshaped = wordsAsEmb.permute({1,0,2}); auto res = torch::softmax(linear(reshaped[focusedIndex]), reshaped.dim() == 3 ? 1 : 0); return res; }