From 70896a64b530e3ffcacd39f1f94baf0da0153b31 Mon Sep 17 00:00:00 2001 From: Franck Dary <franck.dary@lis-lab.fr> Date: Fri, 17 Apr 2020 10:32:30 +0200 Subject: [PATCH] Added total input dropout to LSTMNetwork --- reading_machine/src/Classifier.cpp | 11 +++++++++-- torch_modules/include/LSTMNetwork.hpp | 3 ++- torch_modules/src/LSTMNetwork.cpp | 5 +++-- 3 files changed, 14 insertions(+), 5 deletions(-) diff --git a/reading_machine/src/Classifier.cpp b/reading_machine/src/Classifier.cpp index 957e21f..89c7bb3 100644 --- a/reading_machine/src/Classifier.cpp +++ b/reading_machine/src/Classifier.cpp @@ -96,7 +96,7 @@ void Classifier::initLSTM(const std::vector<std::string> & definition, std::size int rawInputLeftWindow, rawInputRightWindow; int embeddingsSize, contextLSTMSize, focusedLSTMSize, rawInputLSTMSize, splitTransLSTMSize, nbLayers, treeEmbeddingSize; bool bilstm; - float lstmDropout, embeddingsDropout; + float lstmDropout, embeddingsDropout, totalInputDropout; if (curIndex >= definition.size() || !util::doIfNameMatch(std::regex("(?:(?:\\s|\\t)*)(?:Unknown value threshold :|)(?:(?:\\s|\\t)*)(\\S+)"), definition[curIndex], [&curIndex,&unknownValueThreshold](auto sm) { @@ -240,6 +240,13 @@ void Classifier::initLSTM(const std::vector<std::string> & definition, std::size })) util::myThrow(fmt::format("Invalid line '{}', expected '{}'\n", curIndex < definition.size() ? definition[curIndex] : "", "(LSTM dropout :) value")); + if (curIndex >= definition.size() || !util::doIfNameMatch(std::regex("(?:(?:\\s|\\t)*)(?:Total input dropout :|)(?:(?:\\s|\\t)*)(\\S+)"), definition[curIndex], [&curIndex,&totalInputDropout](auto sm) + { + totalInputDropout = std::stof(sm.str(1)); + curIndex++; + })) + util::myThrow(fmt::format("Invalid line '{}', expected '{}'\n", curIndex < definition.size() ? definition[curIndex] : "", "(Total input dropout :) value")); + if (curIndex >= definition.size() || !util::doIfNameMatch(std::regex("(?:(?:\\s|\\t)*)(?:Embeddings dropout :|)(?:(?:\\s|\\t)*)(\\S+)"), definition[curIndex], [&curIndex,&embeddingsDropout](auto sm) { embeddingsDropout = std::stof(sm.str(1)); @@ -285,7 +292,7 @@ void Classifier::initLSTM(const std::vector<std::string> & definition, std::size })) util::myThrow(fmt::format("Invalid line '{}', expected '{}'\n", curIndex < definition.size() ? definition[curIndex] : "", "(Tree embedding size :) value")); - this->nn.reset(new LSTMNetworkImpl(this->transitionSet->size(), unknownValueThreshold, bufferContext, stackContext, columns, focusedBuffer, focusedStack, focusedColumns, maxNbElements, rawInputLeftWindow, rawInputRightWindow, embeddingsSize, mlp, contextLSTMSize, focusedLSTMSize, rawInputLSTMSize, splitTransLSTMSize, nbLayers, bilstm, lstmDropout, treeEmbeddingColumns, treeEmbeddingBuffer, treeEmbeddingStack, treeEmbeddingNbElems, treeEmbeddingSize, embeddingsDropout)); + this->nn.reset(new LSTMNetworkImpl(this->transitionSet->size(), unknownValueThreshold, bufferContext, stackContext, columns, focusedBuffer, focusedStack, focusedColumns, maxNbElements, rawInputLeftWindow, rawInputRightWindow, embeddingsSize, mlp, contextLSTMSize, focusedLSTMSize, rawInputLSTMSize, splitTransLSTMSize, nbLayers, bilstm, lstmDropout, treeEmbeddingColumns, treeEmbeddingBuffer, treeEmbeddingStack, treeEmbeddingNbElems, treeEmbeddingSize, embeddingsDropout, totalInputDropout)); } void Classifier::loadOptimizer(std::filesystem::path path) diff --git a/torch_modules/include/LSTMNetwork.hpp b/torch_modules/include/LSTMNetwork.hpp index 4ff3b17..550fae1 100644 --- a/torch_modules/include/LSTMNetwork.hpp +++ b/torch_modules/include/LSTMNetwork.hpp @@ -15,6 +15,7 @@ class LSTMNetworkImpl : public NeuralNetworkImpl torch::nn::Embedding wordEmbeddings{nullptr}; torch::nn::Dropout embeddingsDropout{nullptr}; + torch::nn::Dropout inputDropout{nullptr}; MLP mlp{nullptr}; ContextLSTM contextLSTM{nullptr}; @@ -28,7 +29,7 @@ class LSTMNetworkImpl : public NeuralNetworkImpl public : - LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, std::vector<int> bufferContext, std::vector<int> stackContext, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput, int embeddingsSize, std::vector<std::pair<int, float>> mlpParams, int contextLSTMSize, int focusedLSTMSize, int rawInputLSTMSize, int splitTransLSTMSize, int numLayers, bool bilstm, float lstmDropout, std::vector<std::string> treeEmbeddingColumns, std::vector<int> treeEmbeddingBuffer, std::vector<int> treeEmbeddingStack, std::vector<int> treeEmbeddingNbElems, int treeEmbeddingSize, float embeddingsDropoutValue); + LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, std::vector<int> bufferContext, std::vector<int> stackContext, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput, int embeddingsSize, std::vector<std::pair<int, float>> mlpParams, int contextLSTMSize, int focusedLSTMSize, int rawInputLSTMSize, int splitTransLSTMSize, int numLayers, bool bilstm, float lstmDropout, std::vector<std::string> treeEmbeddingColumns, std::vector<int> treeEmbeddingBuffer, std::vector<int> treeEmbeddingStack, std::vector<int> treeEmbeddingNbElems, int treeEmbeddingSize, float embeddingsDropoutValue, float totalInputDropout); torch::Tensor forward(torch::Tensor input) override; std::vector<std::vector<long>> extractContext(Config & config, Dict & dict) const override; }; diff --git a/torch_modules/src/LSTMNetwork.cpp b/torch_modules/src/LSTMNetwork.cpp index ae8ed04..98cbb08 100644 --- a/torch_modules/src/LSTMNetwork.cpp +++ b/torch_modules/src/LSTMNetwork.cpp @@ -1,6 +1,6 @@ #include "LSTMNetwork.hpp" -LSTMNetworkImpl::LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, std::vector<int> bufferContext, std::vector<int> stackContext, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput, int embeddingsSize, std::vector<std::pair<int, float>> mlpParams, int contextLSTMSize, int focusedLSTMSize, int rawInputLSTMSize, int splitTransLSTMSize, int numLayers, bool bilstm, float lstmDropout, std::vector<std::string> treeEmbeddingColumns, std::vector<int> treeEmbeddingBuffer, std::vector<int> treeEmbeddingStack, std::vector<int> treeEmbeddingNbElems, int treeEmbeddingSize, float embeddingsDropoutValue) +LSTMNetworkImpl::LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, std::vector<int> bufferContext, std::vector<int> stackContext, std::vector<std::string> columns, std::vector<int> focusedBufferIndexes, std::vector<int> focusedStackIndexes, std::vector<std::string> focusedColumns, std::vector<int> maxNbElements, int leftWindowRawInput, int rightWindowRawInput, int embeddingsSize, std::vector<std::pair<int, float>> mlpParams, int contextLSTMSize, int focusedLSTMSize, int rawInputLSTMSize, int splitTransLSTMSize, int numLayers, bool bilstm, float lstmDropout, std::vector<std::string> treeEmbeddingColumns, std::vector<int> treeEmbeddingBuffer, std::vector<int> treeEmbeddingStack, std::vector<int> treeEmbeddingNbElems, int treeEmbeddingSize, float embeddingsDropoutValue, float totalInputDropout) { LSTMImpl::LSTMOptions lstmOptions{true,bilstm,numLayers,lstmDropout,false}; auto lstmOptionsAll = lstmOptions; @@ -47,6 +47,7 @@ LSTMNetworkImpl::LSTMNetworkImpl(int nbOutputs, int unknownValueThreshold, std:: wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(maxNbEmbeddings, embeddingsSize))); embeddingsDropout = register_module("embeddings_dropout", torch::nn::Dropout(embeddingsDropoutValue)); + inputDropout = register_module("input_dropout", torch::nn::Dropout(totalInputDropout)); mlp = register_module("mlp", MLP(currentOutputSize, nbOutputs, mlpParams)); } @@ -73,7 +74,7 @@ torch::Tensor LSTMNetworkImpl::forward(torch::Tensor input) for (auto & lstm : focusedLstms) outputs.emplace_back(lstm(embeddings)); - auto totalInput = torch::cat(outputs, 1); + auto totalInput = inputDropout(torch::cat(outputs, 1)); return mlp(totalInput); } -- GitLab