diff --git a/README.md b/README.md index 2a6ec2616f34c24db69703e6f1fdbbcdc2cf391c..f1f626d37d7168537773e0623c3fa51b96f3edd1 100644 --- a/README.md +++ b/README.md @@ -23,9 +23,7 @@ $ pip install name-package .matlab files can be executed in matlab or octave. ## Contact -Feel free to contact me if you have questions, tips or anything else to say. I'd really appreciate it! - -Loïc Lehnhoff - <loic.lehnhoff@gmail.com> +Please contact [Loïc Lehnhoff](mailto:loic.lehnhoff@gmail.com), [Bastien Mérigot](mailto:bastien.merigot@umontpellier.fr) or [Hervé Glotin](mailto:herve.glotin@lis-lab.fr) for any question related to this repository. ## Related to Results and scripts are presented in details in: Lehnhoff, L.; Glotin, H.; Bernard, S.; Dabin, W.; Le Gall, Y.; Menut, E.; Meheust, E.; Peltier, H.; Pochat, A.; Pochat, K.; Rimaud, T.; Sourget, Q.; Spitz, J.; Van Canneyt, O.; Mérigot, B. Behavioural Responses of Common Dolphins Delphinus delphis to a Bio-Inspired Acoustic Device for Limiting Fishery By-Catch. Sustainability 2022, 14, 13186. https://doi.org/10.3390/su142013186 \ No newline at end of file diff --git a/Stats/.Rhistory b/Stats/.Rhistory index 2d7f5bdf7fc481d7600c8b044f236b475791a9cb..711e717faf579bdc3bd57c3e030de797b9010243 100644 --- a/Stats/.Rhistory +++ b/Stats/.Rhistory @@ -1,257 +1,3 @@ -legend_title="Fishing net", legend_labs=c("Present", "Absent")) -# BBPs -letters_df <- computeLetters(emmeans(mod.bbp, pairwise~fishing_net:acoustic, adjust="tukey"), -"fishing_net") -letters_df$acoustic <- computeLetters(emmeans(mod.bbp, pairwise~fishing_net:acoustic, adjust="tukey"), -"acoustic")$acoustic -letters_df <- letters_df[, c("acoustic","fishing_net","letter")] -letters_df$letter <- gsub(" ", "", letters_df$letter) -barPlot(computeStats(acoustic.dta, fishing_net, BBPs_per_dolphin, two=acoustic), -NULL, acoustic, fill=fishing_net, -old_names = c("AV","AV+D","D","D+AP","AP"), ytitle="Mean number of BBPs per dolphin per min", -new_names = c("BEF","BEF+DUR","DUR", "DUR+AFT", "AFT"), -xname="Activation sequence", height=c(1.65,1.65,1.72,1.65,1.72,1.65,1.65,1.72,1.72,1.72), -colours=c("#E69F00","#999999"), size=5, -legend_title="Fishing net", legend_labs=c("Present", "Absent")) -# Clicks -letters_df <- computeLetters(emmeans(mod.cli, pairwise~fishing_net:acoustic, adjust="tukey"), -"fishing_net") -letters_df$acoustic <- computeLetters(emmeans(mod.cli, pairwise~fishing_net:acoustic, adjust="tukey"), -"acoustic")$acoustic -letters_df <- letters_df[, c("acoustic","fishing_net","letter")] -letters_df$letter <- gsub(" ", "", letters_df$letter) -barPlot(computeStats(acoustic.dta, fishing_net, clicks_per_dolphin, two=acoustic), -NULL, acoustic, fill=fishing_net, -old_names = c("AV","AV+D","D","D+AP","AP"), ytitle="Mean number of clicks per dolphin per min", -new_names = c("BEF","BEF+DUR","DUR", "DUR+AFT", "AFT"), -xname="Activation sequence", height=c(180,180,187,187,180,187,180,180,187,187), -colours=c("#E69F00","#999999"), size=5, -legend_title="Fishing net", legend_labs=c("Present", "Absent")) -#### Behaviour plots #### -# Whistles -table <- cld(emmeans(mod.whi, pairwise~behavior, adjust="tukey"), Letters = letters) -myletters_df <- data.frame(behavior=table$behavior,letter = trimws(table$.group)) -barPlot(computeStats(acoustic.dta, behavior, whistling_time_per_dolphin/n_bins), -myletters_df, behavior, height=1.5, ytitle="Mean whistling time per dolphin per min (in sec)", -old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins") -# BBPs -# real effect measured in model -table <- cld(emmeans(mod.bbp, pairwise~behavior, adjust="tukey"), Letters = letters) -myletters_df <- data.frame(acoustic=table$behavior,letter = trimws(table$.group)) -barPlot(computeStats(acoustic.dta, behavior, BBPs_per_dolphin), -myletters_df, behavior, height=1.2, ytitle="Mean number of BBPs per dolphin per min", -old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins") -# Clicks -# no significant effect in click statistical model so all the same letters -myletters_df <- data.frame(behavior=unique(acoustic.dta$behavior), -letter = rep("a",length(unique(acoustic.dta$behavior)))) -barPlot(computeStats(acoustic.dta, behavior, clicks_per_dolphin), -myletters_df, -behavior, old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins", height=150, -ytitle="Mean number of clicks per dolphin per min") -#### Nets plots + KW analysis #### -# Whistles -#KW test -kruskal.test(acoustic.dta$whistling_time_per_dolphin ~ acoustic.dta$net) -# p<0.05 so post-hoc -kruskalmc(acoustic.dta$whistling_time_per_dolphin, acoustic.dta$net) -# DIY : letters -myletters_df <- data.frame(net=c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -letter = c("a","ad","bd","cd","a")) -barPlot(computeStats(acoustic.dta, net, whistling_time_per_dolphin/n_bins), -NULL, -net, old_names = c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -new_names = c("Absent", "Nylon trawl net", "PE trawl net", "Nylon gill net", "Long nylon gill net"), -xname="Fishing nets", height=.6, -ytitle="Mean whistling time per dolphin per min (in sec)")+ -theme(axis.text.x=element_text(size=8.5)) -# BBPs -#KW test -kruskal.test(acoustic.dta$BBPs_per_dolphin ~ acoustic.dta$net) -# p<0.05 so post-hoc -kruskalmc(acoustic.dta$BBPs_per_dolphin, acoustic.dta$net) -# DIY : letters -myletters_df <- data.frame(net=c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -letter = c("a","a","a","a","a")) -barPlot(computeStats(acoustic.dta, net, BBPs_per_dolphin), -NULL, -net, old_names = c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -new_names = c("Absent", "Nylon trawl net", "PE trawl net", "Nylon gill net", "Long nylon gill net"), -xname="Fishing nets", height=.8, -ytitle="Mean number of BBPs per dolphin per min")+ -theme(axis.text.x=element_text(size=8.5)) -# Clicks -#KW test -kruskal.test(acoustic.dta$clicks_per_dolphin ~ acoustic.dta$net) -# p<0.05 so post-hoc -kruskalmc(acoustic.dta$clicks_per_dolphin, acoustic.dta$net) -# DIY : letters -myletters_df <- data.frame(net=c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -letter = c("ae","ad","bd","cd","e")) -barPlot(computeStats(acoustic.dta, net, clicks_per_dolphin), -NULL, -net, old_names = c("SSF", "chalut_blanc", "chalut_vert", "tremail", "grand_filet"), -new_names = c("Absent", "Nylon trawl net", "PE trawl net", "Nylon gill net", "Long nylon gill net"), -xname="Fishing nets", height=120, -ytitle="Mean number of clicks per dolphin per min")+ -theme(axis.text.x=element_text(size=8.5)) -#### Beacon plots + KW analysis (letters not shown for readability) #### -# Whistles -#KW test -kruskal.test(acoustic.dta$whistling_time_per_dolphin ~ acoustic.dta$beacon) -names = computeStats(acoustic.dta, beacon, whistling_time_per_dolphin/n_bins)["beacon"] -barPlot(computeStats(acoustic.dta, beacon, whistling_time_per_dolphin/n_bins), -NULL, -beacon, old_names = unlist(names), new_names = unlist(names), -xname="Signals from bio-inspired beacon", height=0.9, size=3, -ytitle="Mean whistling time per dolphin per min (in sec)")+ -theme(axis.text.x=element_text(size=8))+ -scale_x_discrete(guide=guide_axis(n.dodge = 2)) -# NC stands for "Unknown". Corresponding to categories where the beacon was not turned on yet ('BEF') -# BBPs -#KW test -kruskal.test(acoustic.dta$BBPs_per_dolphin ~ acoustic.dta$beacon) -names = computeStats(acoustic.dta, beacon, BBPs_per_dolphin)["beacon"] -barPlot(computeStats(acoustic.dta, beacon, BBPs_per_dolphin), -NULL, -beacon, old_names = unlist(names), new_names = unlist(names), -xname="Signals from bio-inspired beacon", height=0.5, size=3, -ytitle="Mean number of BBPs per dolphin per min")+ -theme(axis.text.x=element_text(size=8))+ -scale_x_discrete(guide=guide_axis(n.dodge = 2)) -# NC stands for "Unknown". Corresponding to categories where the beacon was not turned on yet ('BEF') -# Clicks -#KW test -kruskal.test(acoustic.dta$clicks_per_dolphin ~ acoustic.dta$beacon) -names = computeStats(acoustic.dta, beacon, clicks_per_dolphin)["beacon"] -barPlot(computeStats(acoustic.dta, beacon, clicks_per_dolphin), -NULL, -beacon, old_names = unlist(names), unlist(names), -xname="Signals from bio-inspired beacon", height=150, size=3, -ytitle="Mean number of clicks per dolphin per min")+ -theme(axis.text.x=element_text(size=8))+ -scale_x_discrete(guide=guide_axis(n.dodge = 2)) -# NC stands for "Unknown". Corresponding to categories where the beacon was not turned on yet ('BEF') -#### Plots by number of dolphins #### -# Whistles -numb_stats_w <- computeStats(acoustic.dta, number, total_whistles_duration/n_bins) -numb_stats_w[is.na(numb_stats_w)] <- 0 -numb_stats_w$number <- as.factor(numb_stats_w$number) -numb_stats_w %>% -ggplot(aes(x=number, y=mean, group=1)) + -geom_errorbar(aes(x=number, ymin=mean-ic, ymax=mean+ic), -color="red", width=.1, show.legend = FALSE)+ -geom_point() + geom_line() + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Mean whistling time per dolphin per min (in sec)")+ -xlab("Number of dolphins in group") -# BBPs -numb_stats_b <- computeStats(acoustic.dta, number, number_of_bbp) -numb_stats_b[is.na(numb_stats_b)] <- 0 -numb_stats_b$number <- as.factor(numb_stats_b$number) -numb_stats_b %>% -ggplot(aes(x=number, y=mean, group=1)) + -geom_errorbar(aes(x=number, ymin=mean-ic, ymax=mean+ic), -color="red", width=.1, show.legend = FALSE)+ -geom_point() + geom_line() + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Number of BBPs per dolphin per min")+ -xlab("Number of dolphins in group") -# Clicks -numb_stats_c <- computeStats(acoustic.dta, number, number_of_clicks) -numb_stats_c[is.na(numb_stats_c)] <- 0 -numb_stats_c$number <- as.factor(numb_stats_c$number) -numb_stats_c %>% -ggplot(aes(x=number, y=mean, group=1)) + -geom_errorbar(aes(x=number, ymin=mean-ic, ymax=mean+ic), -color="red", width=.1)+ -geom_point() + geom_line() + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Mean number of clicks per dolphin per min")+ -xlab("Number of echolocation clicks in group") -#### Plots by Group ID #### -# Whistles -numb_stats_w <- computeStats(acoustic.dta, ID, whistling_time_per_dolphin/n_bins) -numb_stats_w[is.na(numb_stats_w)] <- 0 -numb_stats_w$ID <- as.factor(numb_stats_w$ID) -numb_stats_w %>% -ggplot(aes(x=ID, y=mean, group=1)) + -geom_errorbar(aes(x=ID, ymin=mean-sd, ymax=mean+ci), -color="red", width=.1, show.legend = FALSE)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge = 2))+ -theme_light() + theme(text=element_text(size=12)) + -ylab("Mean whistling time per dolphin per min (in sec)")+ -xlab("ID of dolphins group") -# BBPs -numb_stats_b <- computeStats(acoustic.dta, ID, BBPs_per_dolphin) -numb_stats_b[is.na(numb_stats_b)] <- 0 -numb_stats_b$ID <- as.factor(numb_stats_b$ID) -numb_stats_b %>% -ggplot(aes(x=ID, y=mean, group=1)) + -geom_errorbar(aes(x=ID, ymin=mean-sd, ymax=mean+ci), -color="red", width=.1, show.legend = FALSE)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge = 2))+ -theme_light() + theme(text=element_text(size=12)) + -ylab("Number of BBPs per dolphin per min")+ -xlab("ID of dolphins group") -# Clicks -numb_stats_c <- computeStats(acoustic.dta, ID, clicks_per_dolphin) -numb_stats_c[is.na(numb_stats_c)] <- 0 -numb_stats_c$ID <- as.factor(numb_stats_c$ID) -numb_stats_c %>% -ggplot(aes(x=ID, y=mean, group=1)) + -geom_errorbar(aes(x=ID, ymin=mean-sd, ymax=mean+ci), -color="red", width=.1)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge = 2))+ -theme_light() + theme(text=element_text(size=12)) + -ylab("Mean number of clicks per dolphin per min")+ -xlab("ID of dolphin group") -# KW test on IDs -# whistles (excluding groups "2" because 1 sample and groups because no whistles recorded ) -data_test <- acoustic.dta[acoustic.dta$ID!="2",] -print( posthocKW(data_test$whistling_time_per_dolphin, data_test$ID)) -print( posthocKW(data_test$BBPs_per_dolphin, data_test$ID)) -print( posthocKW(data_test$clicks_per_dolphin, data_test$ID)) -#### Plots by days #### -# clicks -numb_stats_c <- computeStats(acoustic.dta, date, clicks_per_dolphin) -numb_stats_c %>% -ggplot(aes(x=date, y=mean, group=1)) + -geom_errorbar(aes(x=date, ymin=mean-sd, ymax=mean+ci), -color="black", width=.1)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge=2)) + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Mean number of clicks per dolphin per min")+ -xlab("Days of recording") -# BBPs -numb_stats_c <- computeStats(acoustic.dta, date, BBPs_per_dolphin) -numb_stats_c %>% -ggplot(aes(x=date, y=mean, group=1)) + -geom_errorbar(aes(x=date, ymin=mean-sd, ymax=mean+ci), -color="black", width=.1)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge=2)) + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Number of BBPs per dolphin per min")+ -xlab("Days of recording") -# Whistles -numb_stats_c <- computeStats(acoustic.dta, date, whistling_time_per_dolphin/n_bins) -numb_stats_c %>% -ggplot(aes(x=date, y=mean, group=1)) + -geom_errorbar(aes(x=date, ymin=mean-sd, ymax=mean+ci), -color="black", width=.1)+ -geom_point() + scale_x_discrete(guide = guide_axis(n.dodge=2)) + -theme_classic() + theme(text=element_text(size=12)) + -ylab("Mean whistling time per dolphin per min (in sec)")+ -xlab("Days of recording") -computeStats(acoustic.dta, acoustic, clicks_per_dolphin) -108/43.8 -88.2/43.8 ######################################################################## # STATISTICS # Author : Loic LEHNHOFF @@ -290,223 +36,6 @@ clicks.dta <- clicks.dta[order(clicks.dta$audio_names),] # Merge files into 1 dataset acoustic.dta <- clicks.dta acoustic.dta$number_of_bbp <- bbp.dta$number_of_BBP -acoustic.dta$total_whistles_duration <- whistles.dta$total_whistles_duration -rm(whistles.dta, bbp.dta, clicks.dta) -# add group IDs -id2020 <- read.table(file=paste0(folder, 'CSV_data/Audio_Data_2020.csv'), -sep = ',', header=TRUE)[1:396,] -id2021 <- read.table(file=paste0(folder, 'CSV_data/Audio_Data_2021.csv'), -sep = ',', header=TRUE)[1:96,] -id2021$ID <- id2021$ID+max(id2020$ID) -id2021$Seq <- id2021$Seq+max(id2020$Seq) -id.dta <- rbind(id2020, id2021) -id.dta$Fichier.Audio <-str_sub(id.dta$Fichier.Audio, -27, -5) -acoustic.dta$ID <- rep(-1, 490) -for (name in acoustic.dta$audio_names){ -acoustic.dta$ID[match(name, acoustic.dta$audio_names)] <- id.dta$ID[match(name, id.dta$Fichier.Audio)] -} -acoustic.dta$ID <- as.factor(acoustic.dta$ID) -rm(id2020, id2021, id.dta) -# suppress "T" acoustic data (other groups not tested on our variables) -acoustic.dta <- acoustic.dta[acoustic.dta$acoustic!="T",] -# shuffle dataframe -acoustic.dta <- acoustic.dta[sample(1:nrow(acoustic.dta)), ] -acoustic.dta$acoustic <- factor(acoustic.dta$acoustic) -#################### DATA INSPECTION ################################# -# Data description -names(acoustic.dta) -# self explenatory except acoustic : correspond to the activation sequence. -# Look for obvious correlations -plot(acoustic.dta) # nothing that we can see -# Look for zero-inflation -100*sum(acoustic.dta$number_of_clicks == 0)/nrow(acoustic.dta) -100*sum(acoustic.dta$number_of_bbp == 0)/nrow(acoustic.dta) -100*sum(acoustic.dta$total_whistles_duration == 0)/nrow(acoustic.dta) -# 5.8%, 53.7% & 27.1% of our data are zeros. Will have to be dealt with. -# QUESTION: This study is aimed at understanding if dolphin's acoustic activity -# is influenced by their behavior, the emission of a pinger or a fishing net. -# Dependent variables (Y): number_of_clicks, number_of_bbp, total_whistles_duration. -# Explanatory variables (X): acoustic, fishing_net, behavior, beacon, net, number. -# What are the H0/ H1 hypotheses ? -# H0 : No influence of any of the explanatory variables on a dependant one. -# H1 : Influence of an explanatory variable on a dependent one. -##################### DATA EXPLORATION ################################ -# Y Outlier detection -par(mfrow=c(2,3)) -boxplot(acoustic.dta$total_whistles_duration, col='red', -ylab='total_whistles_duration') -boxplot(acoustic.dta$number_of_bbp, col='red', -ylab='number_of_bbp') -boxplot(acoustic.dta$number_of_clicks, col='red', -ylab='number_of_clicks') -dotchart(acoustic.dta$total_whistles_duration, pch=16, -xlab='total_whistles_duration', col='red') -dotchart(acoustic.dta$number_of_bbp, pch=16, -xlab='number_of_bbp', col='red') -dotchart(acoustic.dta$number_of_clicks, pch=16, -xlab='number_of_clicks', col='red') -# Y distribution -par(mfrow=c(2,3)) -hist(acoustic.dta$total_whistles_duration, col='red', breaks=8, -xlab='total_whistles_duration', ylab='number') -hist(acoustic.dta$number_of_bbp, col='red', breaks=8, -xlab='number_of_bbp', ylab='number') -hist(acoustic.dta$number_of_clicks, col='red', breaks=8, -xlab='number_of_clicks', ylab='number') -qqnorm(acoustic.dta$total_whistles_duration, col='red', pch=16) -qqline(acoustic.dta$total_whistles_duration) -qqnorm(acoustic.dta$number_of_bbp, col='red', pch=16) -qqline(acoustic.dta$number_of_bbp) -qqnorm(acoustic.dta$number_of_clicks, col='red', pch=16) -qqline(acoustic.dta$number_of_clicks) -shapiro.test(acoustic.dta$total_whistles_duration) -shapiro.test(acoustic.dta$number_of_bbp) -shapiro.test(acoustic.dta$number_of_clicks) -# p-values are significant => they do not follow normal distributions -# will need a transformation or the use of a glim model -# X Number of individuals per level -summary(factor(acoustic.dta$acoustic)) -summary(factor(acoustic.dta$fishing_net)) -summary(factor(acoustic.dta$behavior)) -summary(factor(acoustic.dta$beacon)) -summary(factor(acoustic.dta$net)) -table(factor(acoustic.dta$acoustic),factor(acoustic.dta$fishing_net)) -table(factor(acoustic.dta$acoustic),factor(acoustic.dta$behavior)) -table(factor(acoustic.dta$behavior),factor(acoustic.dta$acoustic)) -ftable(factor(acoustic.dta$fishing_net), factor(acoustic.dta$behavior), factor(acoustic.dta$acoustic)) -# => unbalanced, no big deal but will need more work (no orthogonality): -# Effects can depend on the order of the variables -# => Beacon and net have modalities with <10 individuals => analysis impossible -# => They will be treated apart from the rest as they are likely to be biased -##################### STATISTICAL MODELLING ########################### -### Model tested -# GLM: General linear model (residual hypothesis: normality, homoscedasticity, independant) -# GLIM: Generalized linear model (residual hypothesis: uncorrelated residuals) -# NB : Negative Binomial model (residual hypothesis: independantM) -# ZINB: Zero inflated negative binomial model (residual hypothesis: independant) -# We are using number as an offset (more dolphins => more signals) -# beacon and net explanatory variables could not be tested in models -# as they contain information already present in "fishing_net" which is more -# interesting to keep for our study. They will be treated after -# (using kruskall-Wallis non-parametric test) -# fishing_net, behavior and acoustic where tested with their interactions. -# If a variable is it in a model, it is because it had no significant effect. -par(mfrow=c(1,1)) -### Model for whistles -# Residual hypotheses not verified for GLM -# Overdipsersion when using GLIM (negative binomial) -# Using ZINB: -zero.whi <- zeroinfl(total_whistles_duration ~ -acoustic + fishing_net + behavior + offset(log(number)), -data=acoustic.dta, dist='negbin') -nb.whi <- glm.nb(total_whistles_duration ~ -acoustic + fishing_net + behavior + offset(log(number)), -data=acoustic.dta) -# comparison ZINB VS NB model -vuong(zero.whi, nb.whi) #(if p-value<0.05 then first model in comparison is better) -mod.whi <- zero.whi # => zeroinflated model is indeed better suited -car::Anova(mod.whi, type=3) -dwtest(mod.whi) # H0 -> independent if p>0.05 (autocorrelation if p<0.05) -bptest(mod.whi) # H0 -> homoscedasticity if p<0.05 -mod.whi$df.null/mod.whi$df.residual -# no dispersion, perfect -### Model for BBP -# No normality of residuals for GLM -# overdispersion with GLIM quasipoisson -#try with glim NB: -mod.bbp <- glm.nb(number_of_bbp ~ acoustic + fishing_net + behavior -+ offset(log(number)), -data=acoustic.dta) -car::Anova(mod.bbp, type=3) -dwtest(mod.bbp) # H0 -> independent if p>0.05 (autocorrelation if p<0.05) -bptest(mod.bbp) # H0 -> homoscedasticity if p<0.05 -mod.bbp$deviance/mod.bbp$df.residual -# slight underdispersion, not improved with ZINB so we keep this -### Model for clicks -# Using NB model: -mod.cli <- glm.nb(number_of_clicks ~ acoustic + fishing_net + acoustic:fishing_net + offset(log(number)), -data=acoustic.dta) -car::Anova(mod.cli, type=3) -dwtest(mod.cli) # H0 -> independent if p>0.05 (autocorrelation if p<0.05) -bptest(mod.cli) # H0 -> homoscedasticity if p<0.05 -mod.cli$deviance/mod.cli$df.residual -# slight overdispersion. (ZINB does not clearly improve results so we keep this) -# FYI1: Comparison of combination of explanatory variables between models -# were compared based on BIC criterion. -# The model with the lowest BIC was kept (and is the one shown) -# FYI2: log(number of dolphin per group) does have an effect on data but we have -# no interest in investigating it, that is why we use it as an offset. -##################### Boxplots and comparisons ##################### -### Functions to compute stats -computeLetters <- function(temp, category) { -test <- multcomp::cld(object = temp$emmeans, -Letters = letters) -myletters_df <- data.frame(category=test[,category], -letter=trimws(test$.group)) -colnames(myletters_df)[1] <- category -return(myletters_df) -} -computeStats <- function(data, category, values, two=NULL, three=NULL) { -my_sum <- data %>% -group_by({{category}}, {{two}}, {{three}}) %>% -summarise( -n=n(), -mean=mean({{values}}), -sd=sd({{values}}) -) %>% -mutate( se=sd/sqrt(n)) %>% -mutate( ic=se * qt((1-0.05)/2 + .5, n-1)) -return(my_sum) -} -barPlot <- function(dta, signif, category, old_names, new_names, fill=NULL, size=5, -height, xname="", colours="black", legend_title="", legend_labs="",ytitle=""){ -if (!is.null(signif)){colnames(signif)[1] <- "use"} -dta %>% -mutate(use=fct_relevel({{category}}, old_names)) %>% -ggplot(aes(x=use, y=mean, group={{fill}}, fill={{fill}},color={{fill}})) + -{if(length(colours)==1)geom_point(color=colours, position=position_dodge(.5))}+ -{if(length(colours)==2)geom_point(position=position_dodge(.5), show.legend = FALSE)}+ -{if(length(colours)==2)scale_color_manual(values=colours, name=legend_title, labels=legend_labs)}+ -scale_x_discrete(breaks=old_names, -labels=new_names)+ -ylab(ytitle)+ -xlab(xname)+ -theme_classic()+ theme(text=element_text(size=12))+ -{if(!is.null(signif))geom_text(data=signif, aes(label=letter, y=height), size=size, -colour="black", position=position_dodge(.5))}+ -geom_errorbar(aes(x=use, ymin=mean-ic, ymax=mean+ic), position=position_dodge(.5), width=.1, show.legend = FALSE) -} -####Introducing variables averaged per dolphins #### -# since we introduced an offset, variables can be divided by the number of dolphins -acoustic.dta$whistling_time_per_dolphin <- acoustic.dta$total_whistles_duration/acoustic.dta$number -acoustic.dta$BBPs_per_dolphin <- acoustic.dta$number_of_bbp/acoustic.dta$number -acoustic.dta$clicks_per_dolphin <- acoustic.dta$number_of_clicks/acoustic.dta$number -#### Fishing net #### -#### Behaviour plots #### -# Whistles -table <- cld(emmeans(mod.whi, pairwise~behavior, adjust="tukey"), Letters = letters) -myletters_df <- data.frame(behavior=table$behavior,letter = trimws(table$.group)) -barPlot(computeStats(acoustic.dta, behavior, whistling_time_per_dolphin/n_bins), -myletters_df, behavior, height=1.5, ytitle="Mean whistling time per dolphin per min (in sec)", -old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins") -# BBPs -# real effect measured in model -table <- cld(emmeans(mod.bbp, pairwise~behavior, adjust="tukey"), Letters = letters) -myletters_df <- data.frame(acoustic=table$behavior,letter = trimws(table$.group)) -barPlot(computeStats(acoustic.dta, behavior, BBPs_per_dolphin), -myletters_df, behavior, height=1.2, ytitle="Mean number of BBPs per dolphin per min", -old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins") -# Clicks -# no significant effect in click statistical model so all the same letters -myletters_df <- data.frame(behavior=unique(acoustic.dta$behavior), -letter = rep("a",length(unique(acoustic.dta$behavior)))) -barPlot(computeStats(acoustic.dta, behavior, clicks_per_dolphin), -myletters_df, -behavior, old_names = c("CHAS", "DEPL", "SOCI"), -new_names = c("Foraging", "Travelling", "Socialising"), -xname="Behaviours of dolphins", height=150, -ytitle="Mean number of clicks per dolphin per min") +acoustic.dta +acoustic.dta$number_of_bbp +mean(acoustic.dta$number_of_bbp)