# -*- coding: utf-8 -*- """ ============== Use Case MumBo ============== Use case for all classifier of multimodallearn MumBo multi class digit from sklearn, multivue - vue 0 digit data (color of sklearn) - vue 1 gradiant of image in first direction - vue 2 gradiant of image in second direction """ from __future__ import absolute_import import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from multimodal.datasets.base import load_dict, save_dict from multimodal.tests.data.get_dataset_path import get_dataset_path from multimodal.datasets.data_sample import MultiModalArray from multimodal.boosting.mumbo import MumboClassifier from usecase_function import plot_subplot if __name__ == '__main__': # file = get_dataset_path("digit_histogram.npy") file = get_dataset_path("digit_col_grad.npy") y = np.load(get_dataset_path("digit_y.npy")) base_estimator = DecisionTreeClassifier(max_depth=4) dic_digit = load_dict(file) XX =MultiModalArray(dic_digit) X_train, X_test, y_train, y_test = train_test_split(XX, y) est2 = MumboClassifier(base_estimator=base_estimator).fit(X_train, y_train) y_pred2 = est2.predict(X_test) y_pred22 = est2.predict(X_train) print("result of MumboClassifier on digit ") result2 = np.mean(y_pred2.ravel() == y_test.ravel()) * 100 print(result2) fig = plt.figure(figsize=(12., 11.)) fig.suptitle("Mumbo: result" + str(result2), fontsize=16) plot_subplot(X_train, y_train, y_pred22 , 0, (4, 1, 1), "train vue 0" ) plot_subplot(X_test, y_test,y_pred2, 0, (4, 1, 2), "test vue 0" ) plot_subplot(X_test, y_test, y_pred2, 1, (4, 1, 3), "test vue 1" ) plot_subplot(X_test, y_test,y_pred2, 2, (4, 1, 4), "test vue 2" ) # plt.legend() plt.show()