|build-status| |docs| |coverage| scikit-multimodallearn ====================== **scikit-multimodallearn** is a Python package implementing algorithms multimodal data. It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular package for machine learning in Python. Documentation ------------- The **documentation** including installation instructions, API documentation and examples is `available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_. Installation ------------ Dependencies ~~~~~~~~~~~~ **scikit-multimodallearn** works with **Python 3.5 or later**. **scikit-multimodallearn** depends on **scikit-learn** (version >= 0.19). Optionally, **matplotlib** is required to run the examples. Installation using pip ~~~~~~~~~~~~~~~~~~~~~~ **scikit-multimodallearn** is `available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_ and can be installed using **pip**:: pip install scikit-multimodallearn Development ----------- The development of this package follows the guidelines provided by the scikit-learn community. Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_ of the scikit-learn project for more details. Source code ~~~~~~~~~~~ You can get the **source code** from the **Git** repository of the project:: git clone git@gitlab.lis-lab.fr:dev/multiconfusion.git Testing ~~~~~~~ **pytest** and **pytest-cov** are required to run the **test suite** with:: cd multimodal pytest A code coverage report is displayed in the terminal when running the tests. An HTML version of the report is also stored in the directory **htmlcov**. Generating the documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The generation of the documentation requires **sphinx**, **sphinx-gallery**, **numpydoc** and **matplotlib** and can be run with:: python setup.py build_sphinx The resulting files are stored in the directory **build/sphinx/html**. Credits ------- **scikit-multimodallearn** is developped by the `development team <https://developpement.lis-lab.fr/>`_ of the `LIS <http://www.lis-lab.fr/>`_. If you use **scikit-multimodallearn** in a scientific publication, please cite the following paper:: @InProceedings{Koco:2011:BAMCC, author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile}, editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato and Vazirgiannis, Michalis}, title={A Boosting Approach to Multiview Classification with Cooperation}, booktitle={Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II}, year={2011}, location={Athens, Greece}, publisher={Springer-Verlag}, address={Berlin, Heidelberg}, pages={209--228}, numpages = {20}, isbn={978-3-642-23783-6} url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14}, keywords={boosting, classification, multiview learning, supervised learning}, } @InProceedings{Huu:2019:BAMCC, author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile}, editor={}, title={Multi-view Metric Learning in Vector-valued Kernel Spaces}, booktitle={arXiv:1803.07821v1}, year={2018}, location={Athens, Greece}, publisher={}, address={}, pages={209--228}, numpages = {12} isbn={978-3-642-23783-6} url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14}, keywords={boosting, classification, multiview learning, merric learning, vector-valued, kernel spaces}, } References ~~~~~~~~~~ * Sokol Koço, Cécile Capponi, `"Learning from Imbalanced Datasets with cross-view cooperation"` Linking and mining heterogeneous an multi-view data, Unsupervised and semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer * Sokol Koço, Cécile Capponi, `"A boosting approach to multiview classification with cooperation" <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_, Proceedings of the 2011 European Conference on Machine Learning (ECML), Athens, Greece, pp.209-228, 2011, Springer-Verlag. * Sokol Koço, `"Tackling the uneven views problem with cooperation based ensemble learning methods" <http://www.theses.fr/en/2013AIXM4101>`_, PhD Thesis, Aix-Marseille Université, 2013. * Riikka Huusari, Hachem Kadri and Cécile Capponi, "Multi-View Metric Learning in Vector-Valued Kernel Spaces" in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018 Copyright ~~~~~~~~~ Université d'Aix Marseille (AMU) - Centre National de la Recherche Scientifique (CNRS) - Université de Toulon (UTLN). Copyright © 2017-2018 AMU, CNRS, UTLN License ~~~~~~~ **scikit-multimodallearn** is free software: you can redistribute it and/or modify it under the terms of the **New BSD License**