From d3601a40483fac5ea68680052dce998aa3a0db7c Mon Sep 17 00:00:00 2001 From: Dominique Benielli <dominique.benielli@lis-lab.fr> Date: Thu, 23 Jul 2020 16:07:11 +0200 Subject: [PATCH] change cumbo to combo --- copyrightstamp.txt | 2 +- doc/reference/api.rst | 2 +- ...x_glr_plot_cumbo_2_views_2_classes_001.png | Bin ...x_glr_plot_cumbo_3_views_3_classes_001.png | Bin ...glr_plot_cumbo_2_views_2_classes_thumb.png | Bin ...glr_plot_cumbo_3_views_3_classes_thumb.png | Bin .../plot_cumbo_2_views_2_classes.ipynb | 0 .../plot_cumbo_2_views_2_classes.py | 0 .../plot_cumbo_2_views_2_classes.py.md5 | 0 .../plot_cumbo_2_views_2_classes.rst | 0 ...lot_cumbo_2_views_2_classes_codeobj.pickle | Bin .../plot_cumbo_3_views_3_classes.ipynb | 0 .../plot_cumbo_3_views_3_classes.py | 0 .../plot_cumbo_3_views_3_classes.py.md5 | 0 .../plot_cumbo_3_views_3_classes.rst | 0 ...lot_cumbo_3_views_3_classes_codeobj.pickle | Bin .../{cumbo => combo}/sg_execution_times.rst | 0 examples/{cumbo => combo}/README.txt | 0 .../plot_combo_2_views_2_classes.py} | 4 +- .../plot_combo_3_views_3_classes.py} | 8 +- ...CuBo.py => plot_usecase_exampleMuComBo.py} | 2 +- multimodal/boosting/__init__.py | 4 +- multimodal/boosting/boost.py | 4 +- multimodal/boosting/{cumbo.py => combo.py} | 26 ++-- multimodal/boosting/mumbo.py | 2 +- multimodal/kernels/lpMKL.py | 2 +- multimodal/kernels/mkernel.py | 2 +- multimodal/kernels/mvml.py | 2 +- .../tests/{test_cumbo.py => test_combo.py} | 140 +++++++++--------- multimodal/tests/test_data_sample.py | 2 +- multimodal/tests/test_mkl.py | 2 +- multimodal/tests/test_mumbo.py | 2 +- multimodal/tests/test_mvml.py | 2 +- setup.py | 2 +- 34 files changed, 105 insertions(+), 105 deletions(-) rename doc/tutorial/auto_examples/{cumbo => combo}/images/sphx_glr_plot_cumbo_2_views_2_classes_001.png (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/images/sphx_glr_plot_cumbo_3_views_3_classes_001.png (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/images/thumb/sphx_glr_plot_cumbo_2_views_2_classes_thumb.png (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/images/thumb/sphx_glr_plot_cumbo_3_views_3_classes_thumb.png (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_2_views_2_classes.ipynb (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_2_views_2_classes.py (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_2_views_2_classes.py.md5 (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_2_views_2_classes.rst (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_2_views_2_classes_codeobj.pickle (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_3_views_3_classes.ipynb (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_3_views_3_classes.py (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_3_views_3_classes.py.md5 (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_3_views_3_classes.rst (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/plot_cumbo_3_views_3_classes_codeobj.pickle (100%) rename doc/tutorial/auto_examples/{cumbo => combo}/sg_execution_times.rst (100%) rename examples/{cumbo => combo}/README.txt (100%) rename examples/{cumbo/plot_cumbo_2_views_2_classes.py => combo/plot_combo_2_views_2_classes.py} (97%) rename examples/{cumbo/plot_cumbo_3_views_3_classes.py => combo/plot_combo_3_views_3_classes.py} (95%) rename examples/usecase/{plot_usecase_exampleMuCuBo.py => plot_usecase_exampleMuComBo.py} (98%) rename multimodal/boosting/{cumbo.py => combo.py} (97%) rename multimodal/tests/{test_cumbo.py => test_combo.py} (93%) diff --git a/copyrightstamp.txt b/copyrightstamp.txt index b3d76ec..c863e02 100644 --- a/copyrightstamp.txt +++ b/copyrightstamp.txt @@ -23,7 +23,7 @@ Description: ----------- The multimodal package implement classifiers multiview, -MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +MumboClassifier class, MuComboClassifier class, MVML class, MKL class. compatible with sklearn Version: diff --git a/doc/reference/api.rst b/doc/reference/api.rst index e680643..da894f4 100644 --- a/doc/reference/api.rst +++ b/doc/reference/api.rst @@ -23,7 +23,7 @@ multimodal.boosting.mumbo multimodal.boosting.cumbo +++++++++++++++++++++++++ -.. automodule:: multimodal.boosting.cumbo +.. automodule:: multimodal.boosting.combo :members: :inherited-members: diff --git a/doc/tutorial/auto_examples/cumbo/images/sphx_glr_plot_cumbo_2_views_2_classes_001.png b/doc/tutorial/auto_examples/combo/images/sphx_glr_plot_cumbo_2_views_2_classes_001.png similarity index 100% rename from doc/tutorial/auto_examples/cumbo/images/sphx_glr_plot_cumbo_2_views_2_classes_001.png rename to doc/tutorial/auto_examples/combo/images/sphx_glr_plot_cumbo_2_views_2_classes_001.png diff --git a/doc/tutorial/auto_examples/cumbo/images/sphx_glr_plot_cumbo_3_views_3_classes_001.png b/doc/tutorial/auto_examples/combo/images/sphx_glr_plot_cumbo_3_views_3_classes_001.png similarity index 100% rename from doc/tutorial/auto_examples/cumbo/images/sphx_glr_plot_cumbo_3_views_3_classes_001.png rename to doc/tutorial/auto_examples/combo/images/sphx_glr_plot_cumbo_3_views_3_classes_001.png diff --git a/doc/tutorial/auto_examples/cumbo/images/thumb/sphx_glr_plot_cumbo_2_views_2_classes_thumb.png b/doc/tutorial/auto_examples/combo/images/thumb/sphx_glr_plot_cumbo_2_views_2_classes_thumb.png similarity index 100% rename from doc/tutorial/auto_examples/cumbo/images/thumb/sphx_glr_plot_cumbo_2_views_2_classes_thumb.png rename to doc/tutorial/auto_examples/combo/images/thumb/sphx_glr_plot_cumbo_2_views_2_classes_thumb.png diff --git a/doc/tutorial/auto_examples/cumbo/images/thumb/sphx_glr_plot_cumbo_3_views_3_classes_thumb.png b/doc/tutorial/auto_examples/combo/images/thumb/sphx_glr_plot_cumbo_3_views_3_classes_thumb.png similarity index 100% rename from doc/tutorial/auto_examples/cumbo/images/thumb/sphx_glr_plot_cumbo_3_views_3_classes_thumb.png rename to doc/tutorial/auto_examples/combo/images/thumb/sphx_glr_plot_cumbo_3_views_3_classes_thumb.png diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.ipynb b/doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.ipynb similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.ipynb rename to doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.ipynb diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.py b/doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.py similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.py rename to doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.py diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.py.md5 b/doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.py.md5 similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.py.md5 rename to doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.py.md5 diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.rst b/doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.rst similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes.rst rename to doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes.rst diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes_codeobj.pickle b/doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes_codeobj.pickle similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_2_views_2_classes_codeobj.pickle rename to doc/tutorial/auto_examples/combo/plot_cumbo_2_views_2_classes_codeobj.pickle diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.ipynb b/doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.ipynb similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.ipynb rename to doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.ipynb diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.py b/doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.py similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.py rename to doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.py diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.py.md5 b/doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.py.md5 similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.py.md5 rename to doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.py.md5 diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.rst b/doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.rst similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes.rst rename to doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes.rst diff --git a/doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes_codeobj.pickle b/doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes_codeobj.pickle similarity index 100% rename from doc/tutorial/auto_examples/cumbo/plot_cumbo_3_views_3_classes_codeobj.pickle rename to doc/tutorial/auto_examples/combo/plot_cumbo_3_views_3_classes_codeobj.pickle diff --git a/doc/tutorial/auto_examples/cumbo/sg_execution_times.rst b/doc/tutorial/auto_examples/combo/sg_execution_times.rst similarity index 100% rename from doc/tutorial/auto_examples/cumbo/sg_execution_times.rst rename to doc/tutorial/auto_examples/combo/sg_execution_times.rst diff --git a/examples/cumbo/README.txt b/examples/combo/README.txt similarity index 100% rename from examples/cumbo/README.txt rename to examples/combo/README.txt diff --git a/examples/cumbo/plot_cumbo_2_views_2_classes.py b/examples/combo/plot_combo_2_views_2_classes.py similarity index 97% rename from examples/cumbo/plot_cumbo_2_views_2_classes.py rename to examples/combo/plot_combo_2_views_2_classes.py index 77d0588..7c25791 100644 --- a/examples/cumbo/plot_cumbo_2_views_2_classes.py +++ b/examples/combo/plot_combo_2_views_2_classes.py @@ -23,7 +23,7 @@ rightly classify the points. """ import numpy as np -from multimodal.boosting.cumbo import MuCumboClassifier +from multimodal.boosting.combo import MuComboClassifier from matplotlib import pyplot as plt @@ -59,7 +59,7 @@ y[2*n_samples:] = 1 views_ind = np.array([0, 2, 4]) n_estimators = 3 -clf = MuCumboClassifier(n_estimators=n_estimators) +clf = MuComboClassifier(n_estimators=n_estimators) clf.fit(X, y, views_ind) print('\nAfter 3 iterations, the MuCuMBo classifier reaches exact ' diff --git a/examples/cumbo/plot_cumbo_3_views_3_classes.py b/examples/combo/plot_combo_3_views_3_classes.py similarity index 95% rename from examples/cumbo/plot_cumbo_3_views_3_classes.py rename to examples/combo/plot_combo_3_views_3_classes.py index 058b2dc..205c61d 100644 --- a/examples/cumbo/plot_cumbo_3_views_3_classes.py +++ b/examples/combo/plot_combo_3_views_3_classes.py @@ -1,7 +1,7 @@ # -*- coding: utf-8 -*- """ ================================== -MuCumbo 3 views, 3 classes example +MuCombo 3 views, 3 classes example ================================== In this toy example, we generate data from three classes, split between three @@ -12,12 +12,12 @@ well seperated, while the points for the third class are not seperated with the two other classes. That means that, taken separately, none of the single views allows for a good classification of the data. -Nevertheless, the MuCuMbo algorithm take adavantage of the complementarity of +Nevertheless, the MuCoMbo algorithm take adavantage of the complementarity of the views to rightly classify the points. """ import numpy as np -from multimodal.boosting.cumbo import MuCumboClassifier +from multimodal.boosting.combo import MuComboClassifier from matplotlib import pyplot as plt @@ -56,7 +56,7 @@ y[2*n_samples:] = 2 views_ind = np.array([0, 2, 4, 6]) n_estimators = 4 -clf = MuCumboClassifier(n_estimators=n_estimators) +clf = MuComboClassifier(n_estimators=n_estimators) clf.fit(X, y, views_ind) print('\nAfter 4 iterations, the MuCuMBo classifier reaches exact ' diff --git a/examples/usecase/plot_usecase_exampleMuCuBo.py b/examples/usecase/plot_usecase_exampleMuComBo.py similarity index 98% rename from examples/usecase/plot_usecase_exampleMuCuBo.py rename to examples/usecase/plot_usecase_exampleMuComBo.py index f3d7254..dc6ddba 100644 --- a/examples/usecase/plot_usecase_exampleMuCuBo.py +++ b/examples/usecase/plot_usecase_exampleMuComBo.py @@ -20,7 +20,7 @@ from multimodal.datasets.base import load_dict, save_dict from multimodal.tests.data.get_dataset_path import get_dataset_path from multimodal.datasets.data_sample import MultiModalArray -from multimodal.boosting.cumbo import MuCumboClassifier +from multimodal.boosting.combo import MuComboClassifier import numpy as np import matplotlib.pyplot as plt import matplotlib._color_data as mcd diff --git a/multimodal/boosting/__init__.py b/multimodal/boosting/__init__.py index bb0d1af..7aaa2a2 100644 --- a/multimodal/boosting/__init__.py +++ b/multimodal/boosting/__init__.py @@ -1,6 +1,6 @@ from .mumbo import MumboClassifier -from .cumbo import MuCumboClassifier +from .combo import MuComboClassifier -__all__ = ['MumboClassifier', 'MuCumboClassifier'] +__all__ = ['MumboClassifier', 'MuComboClassifier'] diff --git a/multimodal/boosting/boost.py b/multimodal/boosting/boost.py index 3fd7f15..182a1fd 100644 --- a/multimodal/boosting/boost.py +++ b/multimodal/boosting/boost.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: @@ -53,7 +53,7 @@ from multimodal.datasets.data_sample import MultiModalData, MultiModalArray, Mul class UBoosting(metaclass=ABCMeta): """ - Abstract class MuCumboClassifier and MumboClassifier should inherit from + Abstract class MuComboClassifier and MumboClassifier should inherit from UBoosting for methods """ diff --git a/multimodal/boosting/cumbo.py b/multimodal/boosting/combo.py similarity index 97% rename from multimodal/boosting/cumbo.py rename to multimodal/boosting/combo.py index d32965b..2adfa87 100644 --- a/multimodal/boosting/cumbo.py +++ b/multimodal/boosting/combo.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: @@ -42,7 +42,7 @@ r""" This module contains a **Mu**\ lti\ **C**\ onfusion **M**\ Matrix **B**\ osting (**CuMBo**) -estimator for classification implemented in the ``MuCumboClassifier`` class. +estimator for classification implemented in the ``MuComboClassifier`` class. """ import numpy as np @@ -61,7 +61,7 @@ from .boost import UBoosting import warnings -class MuCumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): +class MuComboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): r"""It then iterates the process on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. @@ -121,27 +121,27 @@ class MuCumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): Examples -------- - >>> from multimodal.boosting.cumbo import MuCumboClassifier + >>> from multimodal.boosting.cumbo import MuComboClassifier >>> from sklearn.datasets import load_iris >>> X, y = load_iris(return_X_y=True) >>> views_ind = [0, 2, 4] # view 0: sepal data, view 1: petal data - >>> clf = MuCumboClassifier(random_state=0) + >>> clf = MuComboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuCumboClassifier(base_estimator=None, n_estimators=50, random_state=0) + MuComboClassifier(base_estimator=None, n_estimators=50, random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [0] >>> views_ind = [[0, 2], [1, 3]] # view 0: length data, view 1: width data - >>> clf = MuCumboClassifier(random_state=0) + >>> clf = MuComboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuCumboClassifier(base_estimator=None, n_estimators=50, random_state=0) + MuComboClassifier(base_estimator=None, n_estimators=50, random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [0] >>> from sklearn.tree import DecisionTreeClassifier >>> base_estimator = DecisionTreeClassifier(max_depth=2) - >>> clf = MuCumboClassifier(base_estimator=base_estimator, random_state=1) + >>> clf = MuComboClassifier(base_estimator=base_estimator, random_state=1) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuCumboClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2, + MuComboClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, @@ -177,14 +177,14 @@ class MuCumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): base_estimator=None, n_estimators=50, random_state=None): # n_estimators=50, - super(MuCumboClassifier, self).__init__( + super(MuComboClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators) self.random_state = random_state def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" - super(MuCumboClassifier, self)._validate_estimator( + super(MuComboClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) if not has_fit_parameter(self.base_estimator_, "sample_weight"): @@ -688,7 +688,7 @@ class MuCumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): score : float Mean accuracy of self.predict(X) wrt. y. """ - return super(MuCumboClassifier, self).score(X, y) + return super(MuComboClassifier, self).score(X, y) def staged_score(self, X, y): """Return staged mean accuracy on the given test data and labels. diff --git a/multimodal/boosting/mumbo.py b/multimodal/boosting/mumbo.py index 90d4704..4b5244b 100644 --- a/multimodal/boosting/mumbo.py +++ b/multimodal/boosting/mumbo.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/kernels/lpMKL.py b/multimodal/kernels/lpMKL.py index f0c33d9..12f6901 100644 --- a/multimodal/kernels/lpMKL.py +++ b/multimodal/kernels/lpMKL.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/kernels/mkernel.py b/multimodal/kernels/mkernel.py index a6b7527..7334e79 100644 --- a/multimodal/kernels/mkernel.py +++ b/multimodal/kernels/mkernel.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/kernels/mvml.py b/multimodal/kernels/mvml.py index 9a3a4c6..e261661 100644 --- a/multimodal/kernels/mvml.py +++ b/multimodal/kernels/mvml.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/tests/test_cumbo.py b/multimodal/tests/test_combo.py similarity index 93% rename from multimodal/tests/test_cumbo.py rename to multimodal/tests/test_combo.py index 0c5176e..52c59f0 100644 --- a/multimodal/tests/test_cumbo.py +++ b/multimodal/tests/test_combo.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: @@ -60,11 +60,11 @@ from sklearn.linear_model import Lasso from sklearn.tree import DecisionTreeClassifier from sklearn import datasets from sklearn.utils.estimator_checks import check_estimator -from multimodal.boosting.cumbo import MuCumboClassifier +from multimodal.boosting.combo import MuComboClassifier from multimodal.tests.data.get_dataset_path import get_dataset_path from multimodal.datasets.data_sample import MultiModalArray -class TestMuCumboClassifier(unittest.TestCase): +class TestMuComboClassifier(unittest.TestCase): @classmethod def setUpClass(clf): @@ -75,11 +75,11 @@ class TestMuCumboClassifier(unittest.TestCase): def test_init(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() self.assertEqual(clf.random_state, None) self.assertEqual(clf.n_estimators, 50) n_estimators = 3 - clf = MuCumboClassifier(n_estimators=n_estimators) + clf = MuComboClassifier(n_estimators=n_estimators) #self.assertEqual(clf.view_mode_) def test_init_var(self): @@ -98,7 +98,7 @@ class TestMuCumboClassifier(unittest.TestCase): expected_predicted_classes_shape = ((n_views, y.shape[0])) expected_n_yi_s = np.array([1, 1, 2]) expected_beta_class = np.ones((n_views, n_classes)) / n_classes - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_classes_ = n_classes (cost, label_score, label_score_glob, predicted_classes, score_function, beta_class, n_yi_s) \ = clf._init_var(n_views, y) @@ -121,7 +121,7 @@ class TestMuCumboClassifier(unittest.TestCase): expected_dist = np.array( [[0.25, 0.25, 0.25, 0.25], [0.5, 0.5, -2., 2.], [-0.5, 0.5, -1., 2.]]) - clf = MuCumboClassifier() + clf = MuComboClassifier() dist = clf._compute_dist(cost, y) np.testing.assert_equal(dist, expected_dist) @@ -156,7 +156,7 @@ class TestMuCumboClassifier(unittest.TestCase): # expected_coop_coef = np.array([[1, 0, 1, 0], [1, 1, 1, 0], [0, 0, 1, 1]], # dtype=np.float64) # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # coop_coef = clf._compute_coop_coef(predicted_classes, y) # # assert_array_equal(coop_coef, expected_coop_coef) @@ -172,7 +172,7 @@ class TestMuCumboClassifier(unittest.TestCase): y = np.array([0, 2, 1, 2]) expected_edges = np.array([1.25, 0.75, 0.25]) - clf = MuCumboClassifier() + clf = MuComboClassifier() edges = clf._compute_edges(cost, predicted_classes, y) np.testing.assert_equal(edges, expected_edges) @@ -183,7 +183,7 @@ class TestMuCumboClassifier(unittest.TestCase): expected_alpha = 0.5 edge = (np.e-1.) / (np.e+1.) - clf = MuCumboClassifier() + clf = MuComboClassifier() alpha = clf._compute_alphas(edge) self.assertAlmostEqual(alpha, expected_alpha, decimal) @@ -197,7 +197,7 @@ class TestMuCumboClassifier(unittest.TestCase): def test_prepare_beta_solver(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_views_ = 3 clf.n_classes_ = 3 A, b, G, h, l = clf._prepare_beta_solver() @@ -239,7 +239,7 @@ class TestMuCumboClassifier(unittest.TestCase): self.assertEqual(l, {'l': 18}) def test_solver_cp_forbeta(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_views_ = 3 clf.n_classes_ = 3 clf.n_yi_ = np.array([1, 1, 2]) @@ -265,7 +265,7 @@ class TestMuCumboClassifier(unittest.TestCase): np.testing.assert_almost_equal(s_r, np.ones(3, dtype=np.float), 9) def test_solver_compute_betas(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_views_ = 3 clf.n_classes_ = 3 clf.n_yi_ = np.array([1, 1, 2]) @@ -295,7 +295,7 @@ class TestMuCumboClassifier(unittest.TestCase): def test_indicatrice(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_views_ = 3 clf.n_classes_ = 3 y_i = np.array([0, 1, 2, 0]) @@ -331,7 +331,7 @@ class TestMuCumboClassifier(unittest.TestCase): [[-2, 1, 0.5], [1, 1, -1], [1, -2, 0.5], [1, 1, -1]]], dtype=np.float64) score_function_Tminus1 =10 *np.ones((3,4,3), dtype=np.float) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.n_views_ = 3 clf.n_classes_ = 3 clf.n_yi_ = np.array([1, 1, 2]) @@ -380,7 +380,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [[8, 2, -4], [2, 4, 0.], [4, 1, -2], [8, 4., 1]]], # dtype=np.float64) # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # cost, label_score = clf._compute_cost(label_score, pred_classes, y, alphas, # use_coop_coef=True) # @@ -413,7 +413,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [[-9., 1., 8.], [1., 0.125, -1.125], [4., -4.5, 0.5], [1., 8., -9.]]], # dtype=np.float64) # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # cost, label_score = clf._compute_cost(label_score, pred_classes, y, alphas, # use_coop_coef=False) # @@ -447,7 +447,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [[-2., 1., 1.], [1., 0.125, -1.125], [0.5, -1., 0.5], [1., 8., -9.]]], # dtype=np.float64) # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # cost, label_score = clf._compute_cost(label_score, pred_classes, y, alphas, # use_coop_coef=True) # @@ -461,19 +461,19 @@ class TestMuCumboClassifier(unittest.TestCase): # # n_estimators = 10 # - # clf = MuCumboClassifier(n_estimators=n_estimators, best_view_mode='edge') + # clf = MuComboClassifier(n_estimators=n_estimators, best_view_mode='edge') # clf.fit(iris.data, iris.target, iris.views_ind) # score = clf.score(iris.data, iris.target) # assert_greater(score, 0.95, "Failed with score = {}".format(score)) # - # clf = MuCumboClassifier(n_estimators=n_estimators, best_view_mode='error') + # clf = MuComboClassifier(n_estimators=n_estimators, best_view_mode='error') # clf.fit(iris.data, iris.target, iris.views_ind) # score = clf.score(iris.data, iris.target) # assert_greater(score, 0.95, "Failed with score = {}".format(score)) # - # assert_raises(ValueError, MuCumboClassifier(), best_view_mode='test') + # assert_raises(ValueError, MuComboClassifier(), best_view_mode='test') # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.best_view_mode = 'test' # assert_raises(ValueError, clf.fit, iris.data, iris.target, iris.views_ind) # @@ -483,7 +483,7 @@ class TestMuCumboClassifier(unittest.TestCase): X = np.array([[1., 1., 1.], [-1., -1., -1.]]) y = np.array([0, 1]) expected_views_ind = np.array([0, 1, 3]) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(X, y) # np.testing.assert_equal(clf.X_.views_ind, expected_views_ind) @@ -495,12 +495,12 @@ class TestMuCumboClassifier(unittest.TestCase): X = np.array([[1., 1., 1.], [-1., -1., -1.]]) views_ind = np.array([0, 1, 3]) y = np.array([3, 1]) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(X, y, views_ind) np.testing.assert_almost_equal(clf.predict(X), y) y = np.array(["class_1", "class_2"]) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(X, y) np.testing.assert_equal(clf.predict(X), y) # Check that misformed or inconsistent inputs raise expections @@ -517,70 +517,70 @@ class TestMuCumboClassifier(unittest.TestCase): # X = np.array([[1., 1., 1.], [-1., -1., -1.]]) # y = np.array([1]) # views_ind = np.array([0, 1, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # y = np.array([1, 0, 0, 1]) # views_ind = np.array([0, 1, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # y = np.array([3.2, 1.1]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # y = np.array([0, 1]) # views_ind = np.array([0, 3, 1]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([-1, 1, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([0, 1, 4]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([0.5, 1, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array("test") - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.zeros((3, 2, 4)) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[-1], [1, 2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[3], [1, 2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[0.5], [1, 2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[-1, 0], [1, 2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[0, 3], [1, 2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # views_ind = np.array([[0.5], [1], [2]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y, views_ind) # # def test_decision_function(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(self.iris.data, self.iris.target, self.iris.views_ind) X = np.zeros((4, 3)) with self.assertRaises(ValueError): @@ -591,7 +591,7 @@ class TestMuCumboClassifier(unittest.TestCase): np.testing.assert_almost_equal(dec, dec_expected, 9) def test_predict(self): - clf = MuCumboClassifier() + clf = MuComboClassifier() X = np.array([[0., 0.5, 0.7], [1., 1.5, 1.7], [2., 2.5, 2.7]]) y = np.array([1, 1, 1]) clf.fit(X, y) @@ -605,13 +605,13 @@ class TestMuCumboClassifier(unittest.TestCase): # # Check that using empty data raises an exception # X = np.array([[]]) # y = np.array([]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # assert_raises(ValueError, clf.fit, X, y) # # # Check that fit() works for the smallest possible dataset # X = np.array([[0.]]) # y = np.array([0]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y) # assert_array_equal(clf.predict(X), y) # assert_array_equal(clf.predict(np.array([[1.]])), np.array([0])) @@ -620,7 +620,7 @@ class TestMuCumboClassifier(unittest.TestCase): # X = np.array([[0., 0.5, 0.7], [1., 1.5, 1.7], [2., 2.5, 2.7]]) # y = np.array([1, 1, 1]) # views_ind = np.array([0, 1, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # assert_array_equal(clf.predict(np.array([[-1., 0., 1.]])), np.array([1])) @@ -628,7 +628,7 @@ class TestMuCumboClassifier(unittest.TestCase): # X = np.array([[0., 0.5, 0.7], [1., 1.5, 1.7], [2., 2.5, 2.7]]) # y = np.array([1, 1, 1]) # views_ind = np.array([[0, 2], [1]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # assert_array_equal(clf.predict(np.array([[-1., 0., 1.]])), np.array([1])) @@ -647,7 +647,7 @@ class TestMuCumboClassifier(unittest.TestCase): [-0.3, -1.3]]) y = np.array([0, 0, 0, 1, 1, 1]) views_ind = np.array([0, 2]) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(X, y, views_ind) #assert_array_equal(clf.predict(X), y) #assert_array_equal(clf.predict(np.array([[1., 1.], [-1., -1.]])), @@ -655,7 +655,7 @@ class TestMuCumboClassifier(unittest.TestCase): #assert_equal(clf.decision_function(X).shape, y.shape) views_ind = np.array([[1, 0]]) - clf = MuCumboClassifier() + clf = MuComboClassifier() clf.fit(X, y, views_ind) np.testing.assert_almost_equal(clf.predict(X), y) @@ -676,7 +676,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [-0.3, -1.3, -1.4]]) # y = np.array([0, 0, 0, 1, 1, 1]) # views_ind = np.array([0, 2, 3]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # assert_array_equal(clf.predict(np.array([[1., 1., 1.], [-1., -1., -1.]])), @@ -684,7 +684,7 @@ class TestMuCumboClassifier(unittest.TestCase): # assert_equal(clf.decision_function(X).shape, y.shape) # # views_ind = np.array([[2, 0], [1]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # assert_array_equal(clf.predict(np.array([[1., 1., 1.], [-1., -1., -1.]])), @@ -701,7 +701,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [-0.3, -1.3, -1.4, -0.6, -0.7]]) # y = np.array([0, 0, 0, 1, 1, 1]) # views_ind = np.array([0, 2, 3, 5]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # data = np.array([[1., 1., 1., 1., 1.], [-1., -1., -1., -1., -1.]]) @@ -709,7 +709,7 @@ class TestMuCumboClassifier(unittest.TestCase): # assert_equal(clf.decision_function(X).shape, y.shape) # # views_ind = np.array([[2, 0], [1], [3, 4]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # data = np.array([[1., 1., 1., 1., 1.], [-1., -1., -1., -1., -1.]]) @@ -726,7 +726,7 @@ class TestMuCumboClassifier(unittest.TestCase): # [-0.3, -1.3, -1.4, -0.6, -0.7]]) # y = np.array([0, 0, 1, 1, 2, 2]) # views_ind = np.array([0, 2, 3, 5]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # data = np.array( @@ -737,7 +737,7 @@ class TestMuCumboClassifier(unittest.TestCase): # assert_equal(clf.decision_function(X).shape, (X.shape[0], 3)) # # views_ind = np.array([[1, 0], [2], [3, 4]]) - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(X, y, views_ind) # assert_array_equal(clf.predict(X), y) # data = np.array( @@ -767,7 +767,7 @@ class TestMuCumboClassifier(unittest.TestCase): # y = np.zeros(2*n_samples, dtype=np.int64) # y[n_samples:] = 1 # views_ind = np.array([0, 2, 4]) - # clf = MuCumboClassifier(n_estimators=1) + # clf = MuComboClassifier(n_estimators=1) # clf.fit(X, y, views_ind) # assert_equal(clf.score(X, y), 1.) # @@ -786,7 +786,7 @@ class TestMuCumboClassifier(unittest.TestCase): # y = np.zeros(4*n_samples, dtype=np.int64) # y[2*n_samples:] = 1 # views_ind = np.array([0, 2, 4]) - # clf = MuCumboClassifier(n_estimators=3) + # clf = MuComboClassifier(n_estimators=3) # clf.fit(X, y, views_ind) # assert_equal(clf.score(X, y), 1.) # @@ -808,7 +808,7 @@ class TestMuCumboClassifier(unittest.TestCase): # y[n_samples:2*n_samples] = 1 # y[2*n_samples:] = 2 # views_ind = np.array([0, 2, 4, 6]) - # clf = MuCumboClassifier(n_estimators=3) + # clf = MuComboClassifier(n_estimators=3) # clf.fit(X, y, views_ind) # assert_equal(clf.score(X, y), 1.) # @@ -830,13 +830,13 @@ class TestMuCumboClassifier(unittest.TestCase): # y[n_samples:2*n_samples] = 1 # y[2*n_samples:] = 2 # views_ind = np.array([0, 2, 4, 6]) - # clf = MuCumboClassifier(n_estimators=4) + # clf = MuComboClassifier(n_estimators=4) # clf.fit(X, y, views_ind) # assert_equal(clf.score(X, y), 1.) # def test_classifier(self): - return check_estimator(MuCumboClassifier) + return check_estimator(MuComboClassifier) # # # def test_iris(): @@ -847,7 +847,7 @@ class TestMuCumboClassifier(unittest.TestCase): # classes = np.unique(iris.target) # # for views_ind in [iris.views_ind, np.array([[0, 2], [1, 3]])]: - # clf = MuCumboClassifier(n_estimators=n_estimators) + # clf = MuComboClassifier(n_estimators=n_estimators) # # clf.fit(iris.data, iris.target, views_ind) # @@ -884,7 +884,7 @@ class TestMuCumboClassifier(unittest.TestCase): # for X, y, views_ind in data: - clf = MuCumboClassifier(n_estimators=n_estimators, random_state=seed) + clf = MuComboClassifier(n_estimators=n_estimators, random_state=seed) clf.fit(X, y, views_ind) staged_dec_func = [dec_f for dec_f in clf.staged_decision_function(X)] staged_predict = [predict for predict in clf.staged_predict(X)] @@ -897,7 +897,7 @@ class TestMuCumboClassifier(unittest.TestCase): # assert_equal(len(staged_score), n_estimators) # # for ind in range(n_estimators): - # clf = MuCumboClassifier(n_estimators=ind+1, random_state=seed) + # clf = MuComboClassifier(n_estimators=ind+1, random_state=seed) # clf.fit(X, y, views_ind) # dec_func = clf.decision_function(X) # predict = clf.predict(X) @@ -911,7 +911,7 @@ class TestMuCumboClassifier(unittest.TestCase): # np.random.seed(seed) # # # Check that base trees can be grid-searched. - mumbo = MuCumboClassifier(base_estimator=DecisionTreeClassifier()) + mumbo = MuComboClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(mumbo, parameters) @@ -929,7 +929,7 @@ class TestMuCumboClassifier(unittest.TestCase): # # # Check pickability. # - # clf = MuCumboClassifier() + # clf = MuComboClassifier() # clf.fit(iris.data, iris.target, iris.views_ind) # score = clf.score(iris.data, iris.target) # dump = pickle.dumps(clf) @@ -945,19 +945,19 @@ class TestMuCumboClassifier(unittest.TestCase): # """ Test different base estimators.""" n_estimators = 5 - clf = MuCumboClassifier(RandomForestClassifier(), n_estimators=n_estimators) + clf = MuComboClassifier(RandomForestClassifier(), n_estimators=n_estimators) clf.fit(self.iris.data, self.iris.target, self.iris.views_ind) score = clf.score(self.iris.data, self.iris.target) self.assertGreater(score, 0.95, "Failed with score = {}".format(score)) - clf = MuCumboClassifier(SVC(), n_estimators=n_estimators) + clf = MuComboClassifier(SVC(), n_estimators=n_estimators) clf.fit(self.iris.data, self.iris.target, self.iris.views_ind) score = clf.score(self.iris.data, self.iris.target) self.assertGreater(score, 0.95, "Failed with score = {}".format(score)) # # Check that using a base estimator that doesn't support sample_weight # # raises an error. - clf = MuCumboClassifier(Lasso()) + clf = MuComboClassifier(Lasso()) self.assertRaises(ValueError, clf.fit, self.iris.data, self.iris.target, self.iris.views_ind) # assert_raises(ValueError, clf.fit, iris.data, iris.target, iris.views_ind) # @@ -985,13 +985,13 @@ class TestMuCumboClassifier(unittest.TestCase): # for views_ind in (iris.views_ind, np.array([[0, 2], [1, 3]])): # X_sparse = sparse_format(X_dense) # - # clf_sparse = MuCumboClassifier( + # clf_sparse = MuComboClassifier( # base_estimator=CustomSVC(), # random_state=seed, # n_estimators=n_estimators) # clf_sparse.fit(X_sparse, y, views_ind) # - # clf_dense = MuCumboClassifier( + # clf_dense = MuComboClassifier( # base_estimator=CustomSVC(), # random_state=seed, # n_estimators=n_estimators) @@ -1032,5 +1032,5 @@ class TestMuCumboClassifier(unittest.TestCase): if __name__ == '__main__': unittest.main() # suite = unittest.TestLoader().loadTestsFromTestCase - # (TestMuCumboClassifier().test_class_variation()) + # (TestMuComboClassifier().test_class_variation()) # unittest.TextTestRunner(verbosity=2).run(suite) \ No newline at end of file diff --git a/multimodal/tests/test_data_sample.py b/multimodal/tests/test_data_sample.py index 47a5754..469ba50 100644 --- a/multimodal/tests/test_data_sample.py +++ b/multimodal/tests/test_data_sample.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/tests/test_mkl.py b/multimodal/tests/test_mkl.py index e1c147f..b384db4 100644 --- a/multimodal/tests/test_mkl.py +++ b/multimodal/tests/test_mkl.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/tests/test_mumbo.py b/multimodal/tests/test_mumbo.py index 486045d..38f846c 100644 --- a/multimodal/tests/test_mumbo.py +++ b/multimodal/tests/test_mumbo.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/multimodal/tests/test_mvml.py b/multimodal/tests/test_mvml.py index 30da4a9..9f33c3b 100644 --- a/multimodal/tests/test_mvml.py +++ b/multimodal/tests/test_mvml.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: diff --git a/setup.py b/setup.py index 541026e..fa4dd7e 100644 --- a/setup.py +++ b/setup.py @@ -24,7 +24,7 @@ # ----------- # # The multimodal package implement classifiers multiview, -# MumboClassifier class, MuCumboClassifier class, MVML class, MKL class. +# MumboClassifier class, MuComboClassifier class, MVML class, MKL class. # compatible with sklearn # # Version: -- GitLab