From d20f728ebbff91068f0075711d0c459f3c930537 Mon Sep 17 00:00:00 2001
From: Dominique Benielli <dominique.benielli@lis-lab.fr>
Date: Wed, 26 Feb 2020 17:45:33 +0100
Subject: [PATCH] Update plot_usecase_exampleMKL.py

---
 examples/usecase/plot_usecase_exampleMKL.py | 26 +++++++++++++++++++--
 1 file changed, 24 insertions(+), 2 deletions(-)

diff --git a/examples/usecase/plot_usecase_exampleMKL.py b/examples/usecase/plot_usecase_exampleMKL.py
index 6d420a0..27d6fbf 100644
--- a/examples/usecase/plot_usecase_exampleMKL.py
+++ b/examples/usecase/plot_usecase_exampleMKL.py
@@ -10,7 +10,7 @@ multi class digit from sklearn, multivue
  - vue 2 gradiant of image in second direction
 
 """
-from __future__ import absolute_import
+
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.multiclass import OneVsOneClassifier
@@ -22,7 +22,29 @@ from multimodal.datasets.data_sample import MultiModalArray
 from multimodal.kernels.mvml import MVML
 from multimodal.kernels.lpMKL import MKL
 
-from examples.usecase.usecase_function import plot_subplot
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib._color_data as mcd
+
+
+def plot_subplot(X, Y, Y_pred, vue, subplot, title):
+    cn = mcd.CSS4_COLORS
+    classes = np.unique(Y)
+    n_classes = len(np.unique(Y))
+    axs = plt.subplot(subplot[0],subplot[1],subplot[2])
+    axs.set_title(title)
+    #plt.scatter(X._extract_view(vue), X._extract_view(vue), s=40, c='gray',
+    #            edgecolors=(0, 0, 0))
+    for index, k in zip(range(n_classes), cn.keys()):
+         Y_class, = np.where(Y==classes[index])
+         Y_class_pred = np.intersect1d(np.where(Y_pred==classes[index])[0], np.where(Y_pred==Y)[0])
+         plt.scatter(X._extract_view(vue)[Y_class],
+                     X._extract_view(vue)[Y_class],
+                     s=40, c=cn[k], edgecolors='blue', linewidths=2, label="class real class: "+str(index)) #
+         plt.scatter(X._extract_view(vue)[Y_class_pred],
+                     X._extract_view(vue)[Y_class_pred],
+                     s=160, edgecolors='orange', linewidths=2, label="class prediction: "+str(index))
+
 
 if __name__ == '__main__':
     # file = get_dataset_path("digit_histogram.npy")
-- 
GitLab