diff --git a/examples/usecase/plot_usecase_exampleMKL.py b/examples/usecase/plot_usecase_exampleMKL.py
index 6d420a001b59b30c0a30aa2ff67641a8979646c4..27d6fbf446dd4ebbcc065836401d8cc387770b1e 100644
--- a/examples/usecase/plot_usecase_exampleMKL.py
+++ b/examples/usecase/plot_usecase_exampleMKL.py
@@ -10,7 +10,7 @@ multi class digit from sklearn, multivue
  - vue 2 gradiant of image in second direction
 
 """
-from __future__ import absolute_import
+
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.multiclass import OneVsOneClassifier
@@ -22,7 +22,29 @@ from multimodal.datasets.data_sample import MultiModalArray
 from multimodal.kernels.mvml import MVML
 from multimodal.kernels.lpMKL import MKL
 
-from examples.usecase.usecase_function import plot_subplot
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib._color_data as mcd
+
+
+def plot_subplot(X, Y, Y_pred, vue, subplot, title):
+    cn = mcd.CSS4_COLORS
+    classes = np.unique(Y)
+    n_classes = len(np.unique(Y))
+    axs = plt.subplot(subplot[0],subplot[1],subplot[2])
+    axs.set_title(title)
+    #plt.scatter(X._extract_view(vue), X._extract_view(vue), s=40, c='gray',
+    #            edgecolors=(0, 0, 0))
+    for index, k in zip(range(n_classes), cn.keys()):
+         Y_class, = np.where(Y==classes[index])
+         Y_class_pred = np.intersect1d(np.where(Y_pred==classes[index])[0], np.where(Y_pred==Y)[0])
+         plt.scatter(X._extract_view(vue)[Y_class],
+                     X._extract_view(vue)[Y_class],
+                     s=40, c=cn[k], edgecolors='blue', linewidths=2, label="class real class: "+str(index)) #
+         plt.scatter(X._extract_view(vue)[Y_class_pred],
+                     X._extract_view(vue)[Y_class_pred],
+                     s=160, edgecolors='orange', linewidths=2, label="class prediction: "+str(index))
+
 
 if __name__ == '__main__':
     # file = get_dataset_path("digit_histogram.npy")