diff --git a/examples/usecase/plot_usecase_exampleMKL.py b/examples/usecase/plot_usecase_exampleMKL.py index 6d420a001b59b30c0a30aa2ff67641a8979646c4..27d6fbf446dd4ebbcc065836401d8cc387770b1e 100644 --- a/examples/usecase/plot_usecase_exampleMKL.py +++ b/examples/usecase/plot_usecase_exampleMKL.py @@ -10,7 +10,7 @@ multi class digit from sklearn, multivue - vue 2 gradiant of image in second direction """ -from __future__ import absolute_import + import numpy as np import matplotlib.pyplot as plt from sklearn.multiclass import OneVsOneClassifier @@ -22,7 +22,29 @@ from multimodal.datasets.data_sample import MultiModalArray from multimodal.kernels.mvml import MVML from multimodal.kernels.lpMKL import MKL -from examples.usecase.usecase_function import plot_subplot +import numpy as np +import matplotlib.pyplot as plt +import matplotlib._color_data as mcd + + +def plot_subplot(X, Y, Y_pred, vue, subplot, title): + cn = mcd.CSS4_COLORS + classes = np.unique(Y) + n_classes = len(np.unique(Y)) + axs = plt.subplot(subplot[0],subplot[1],subplot[2]) + axs.set_title(title) + #plt.scatter(X._extract_view(vue), X._extract_view(vue), s=40, c='gray', + # edgecolors=(0, 0, 0)) + for index, k in zip(range(n_classes), cn.keys()): + Y_class, = np.where(Y==classes[index]) + Y_class_pred = np.intersect1d(np.where(Y_pred==classes[index])[0], np.where(Y_pred==Y)[0]) + plt.scatter(X._extract_view(vue)[Y_class], + X._extract_view(vue)[Y_class], + s=40, c=cn[k], edgecolors='blue', linewidths=2, label="class real class: "+str(index)) # + plt.scatter(X._extract_view(vue)[Y_class_pred], + X._extract_view(vue)[Y_class_pred], + s=160, edgecolors='orange', linewidths=2, label="class prediction: "+str(index)) + if __name__ == '__main__': # file = get_dataset_path("digit_histogram.npy")