diff --git a/examples/usecase/README.txt b/examples/usecase/README.txt new file mode 100644 index 0000000000000000000000000000000000000000..57127282599f607b44a590f0eb567b146418ef10 --- /dev/null +++ b/examples/usecase/README.txt @@ -0,0 +1,6 @@ + +Use Case Examples +----------------- + +The following toy examples illustrate how the multimodal as usecase on digit dataset of sklearn + diff --git a/examples/usecase/usecase_example.py b/examples/usecase/usecase_example.py new file mode 100644 index 0000000000000000000000000000000000000000..e29936a074fd23a16da61ac9bb8dea2175e57041 --- /dev/null +++ b/examples/usecase/usecase_example.py @@ -0,0 +1,119 @@ +# -*- coding: utf-8 -*- +""" +======== +Use Case +======== +Use case for all classifier of multimodallearn (in file mvml.py) is intended to be used with very simple simulated dataset + +multi class digit from sklearn, multivue + - vue 0 digit data (color of sklearn) + - vue 1 gradiant of image in first direction + - vue 2 gradiant of image in second direction + +""" + +import numpy as np +import matplotlib.pyplot as plt +import matplotlib._color_data as mcd +from sklearn import datasets +from sklearn.multiclass import OneVsRestClassifier +from sklearn.multiclass import OneVsOneClassifier +from sklearn.model_selection import train_test_split +from sklearn.tree import DecisionTreeClassifier +from multimodal.datasets.base import load_dict, save_dict +from multimodal.tests.data.get_dataset_path import get_dataset_path +from multimodal.datasets.data_sample import MultiModalArray +from multimodal.kernels.mvml import MVML +from multimodal.kernels.lpMKL import MKL +from multimodal.boosting.mumbo import MumboClassifier +from multimodal.boosting.cumbo import MuCumboClassifier + +def plot_subplot(X, Y, Y_pred, vue, subplot, title): + cn = mcd.CSS4_COLORS + classes = np.unique(Y) + n_classes = len(np.unique(Y)) + axs = plt.subplot(subplot[0],subplot[1],subplot[2]) + axs.set_title(title) + #plt.scatter(X._extract_view(vue), X._extract_view(vue), s=40, c='gray', + # edgecolors=(0, 0, 0)) + for index, k in zip(range(n_classes), cn.keys()): + Y_class, = np.where(Y==classes[index]) + Y_class_pred = np.intersect1d(np.where(Y_pred==classes[index])[0], np.where(Y_pred==Y)[0]) + plt.scatter(X._extract_view(vue)[Y_class], + X._extract_view(vue)[Y_class], + s=40, c=cn[k], edgecolors='blue', linewidths=2, label="class real class: "+str(index)) # + plt.scatter(X._extract_view(vue)[Y_class_pred], + X._extract_view(vue)[Y_class_pred], + s=160, edgecolors='orange', linewidths=2, label="class prediction: "+str(index)) + + +if __name__ == '__main__': + # file = get_dataset_path("digit_histogram.npy") + file = get_dataset_path("digit_col_grad.npy") + y = np.load(get_dataset_path("digit_y.npy")) + base_estimator = DecisionTreeClassifier(max_depth=4) + dic_digit = load_dict(file) + XX =MultiModalArray(dic_digit) + X_train, X_test, y_train, y_test = train_test_split(XX, y) + est1 = OneVsOneClassifier(MVML(lmbda=0.1, eta=1, nystrom_param=0.2)).fit(X_train, y_train) + y_pred1 = est1.predict(X_test) + y_pred11 = est1.predict(X_train) + print("result of MVML on digit with oneversone") + result1 = np.mean(y_pred1.ravel() == y_test.ravel()) * 100 + print(result1) + est2 = MumboClassifier(base_estimator=base_estimator).fit(X_train, y_train) + y_pred2 = est2.predict(X_test) + y_pred22 = est2.predict(X_train) + print("result of MumboClassifier on digit ") + result2 = np.mean(y_pred2.ravel() == y_test.ravel()) * 100 + print(result2) + + est3 = MuCumboClassifier(base_estimator=base_estimator).fit(X_train, y_train) + y_pred3 = est3.predict(X_test) + y_pred33 = est3.predict(X_train) + print("result of MuCumboClassifier on digit ") + result3 = np.mean(y_pred3.ravel() == y_test.ravel()) * 100 + print(result3) + + est4 = OneVsOneClassifier(MKL(lmbda=0.1, nystrom_param=0.2)).fit(X_train, y_train) + y_pred4 = est4.predict(X_test) + y_pred44 = est4.predict(X_train) + print("result of MKL on digit with oneversone") + result4 = np.mean(y_pred4.ravel() == y_test.ravel()) * 100 + print(result4) + + fig = plt.figure(figsize=(12., 11.)) + fig.suptitle("MKL : result" + str(result4), fontsize=16) + plot_subplot(X_train, y_train, y_pred44 ,0, (4, 1, 1), "train vue 0" ) + plot_subplot(X_test, y_test,y_pred4 , 0, (4, 1, 2), "test vue 0" ) + plot_subplot(X_test, y_test, y_pred4,1, (4, 1, 3), "test vue 1" ) + plot_subplot(X_test, y_test,y_pred4, 2, (4, 1, 4), "test vue 2" ) + # plt.legend() + plt.show() + fig = plt.figure(figsize=(12., 11.)) + fig.suptitle("MuCumbo: result" + str(result3), fontsize=16) + plot_subplot(X_train, y_train, y_pred33 ,0, (4, 1, 1), "train vue 0" ) + plot_subplot(X_test, y_test,y_pred3 , 0, (4, 1, 2), "test vue 0" ) + plot_subplot(X_test, y_test, y_pred3,1, (4, 1, 3), "test vue 1" ) + plot_subplot(X_test, y_test,y_pred3, 2, (4, 1, 4), "test vue 2" ) + # plt.legend() + plt.show() + fig = plt.figure(figsize=(12., 11.)) + fig.suptitle("Mumbo: result" + str(result2), fontsize=16) + plot_subplot(X_train, y_train, y_pred22 , 0, (4, 1, 1), "train vue 0" ) + plot_subplot(X_test, y_test,y_pred2, 0, (4, 1, 2), "test vue 0" ) + plot_subplot(X_test, y_test, y_pred2, 1, (4, 1, 3), "test vue 1" ) + plot_subplot(X_test, y_test,y_pred2, 2, (4, 1, 4), "test vue 2" ) + # plt.legend() + plt.show() + fig = plt.figure(figsize=(12., 11.)) + fig.suptitle("MVML: result" + str(result1), fontsize=16) + plot_subplot(X_train, y_train, y_pred11 + , 0, (4, 1, 1), "train vue 0" ) + plot_subplot(X_test, y_test,y_pred1, 0, (4, 1, 2), "test vue 0" ) + plot_subplot(X_test, y_test, y_pred1, 1, (4, 1, 3), "test vue 1" ) + plot_subplot(X_test, y_test,y_pred1, 2, (4, 1, 4), "test vue 2" ) + #plt.legend() + plt.show() + #mvml = MVML(lmbda=0.1, eta=1, nystrom_param=0.2) + #mvml.fit(dic_digit_histo, y) diff --git a/multimodal/tests/data/digit_col_grad.npy b/multimodal/tests/data/digit_col_grad.npy new file mode 100644 index 0000000000000000000000000000000000000000..4bf58093b489c2adf79c32e98f9c7fe00a22721b Binary files /dev/null and b/multimodal/tests/data/digit_col_grad.npy differ diff --git a/multimodal/tests/data/digit_y.npy b/multimodal/tests/data/digit_y.npy new file mode 100644 index 0000000000000000000000000000000000000000..b5588884574d1c89a5d34ece3993af4b532b7191 Binary files /dev/null and b/multimodal/tests/data/digit_y.npy differ