diff --git a/multimodal/boosting/cumbo.py b/multimodal/boosting/cumbo.py index 0d7eb4d12f3c1839e29c904d6cdfaccecda3261f..55a07f917a96674eed42f36fe7c37d676d7175ce 100644 --- a/multimodal/boosting/cumbo.py +++ b/multimodal/boosting/cumbo.py @@ -113,23 +113,29 @@ class MuCumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): >>> views_ind = [0, 2, 4] # view 0: sepal data, view 1: petal data >>> clf = MuCumboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - + MuCumboClassifier(base_estimator=None, n_estimators=50, random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) - [1] + [0] >>> views_ind = [[0, 2], [1, 3]] # view 0: length data, view 1: width data >>> clf = MuCumboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - + MuCumboClassifier(base_estimator=None, n_estimators=50, random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) - [1] + [0] >>> from sklearn.tree import DecisionTreeClassifier >>> base_estimator = DecisionTreeClassifier(max_depth=2) >>> clf = MuCumboClassifier(base_estimator=base_estimator, random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - + MuCumboClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2, + max_features=None, max_leaf_nodes=None, + min_impurity_decrease=0.0, min_impurity_split=None, + min_samples_leaf=1, min_samples_split=2, + min_weight_fraction_leaf=0.0, presort=False, random_state=None, + splitter='best'), + n_estimators=50, random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) - [1] + [0] See also --------