diff --git a/multimodal/boosting/combo.py b/multimodal/boosting/combo.py index c56ebf2428c28885de7d0b30d9903a369538ec7f..47c7c59c0e7ff8cc60e82dcd143661a404be2a6f 100644 --- a/multimodal/boosting/combo.py +++ b/multimodal/boosting/combo.py @@ -127,13 +127,13 @@ class MuComboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): >>> views_ind = [0, 2, 4] # view 0: sepal data, view 1: petal data >>> clf = MuComboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuComboClassifier(base_estimator=None, n_estimators=50, random_state=0) + MuComboClassifier(random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [0] >>> views_ind = [[0, 2], [1, 3]] # view 0: length data, view 1: width data >>> clf = MuComboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuComboClassifier(base_estimator=None, n_estimators=50, random_state=0) + MuComboClassifier(random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [0] @@ -141,13 +141,8 @@ class MuComboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): >>> base_estimator = DecisionTreeClassifier(max_depth=2) >>> clf = MuComboClassifier(base_estimator=base_estimator, random_state=1) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MuComboClassifier(base_estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=2, - max_features=None, max_leaf_nodes=None, - min_impurity_decrease=0.0, min_impurity_split=None, - min_samples_leaf=1, min_samples_split=2, - min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, - splitter='best'), - n_estimators=50, random_state=1) + MuComboClassifier(base_estimator=DecisionTreeClassifier(max_depth=2), + random_state=1) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [0] diff --git a/multimodal/boosting/mumbo.py b/multimodal/boosting/mumbo.py index 255c4f77e1844c3212988f68048d8d51ebcff67f..62f0c5abf6a6791ea777a3455968b76d90128b1e 100644 --- a/multimodal/boosting/mumbo.py +++ b/multimodal/boosting/mumbo.py @@ -127,15 +127,13 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): >>> views_ind = [0, 2, 4] # view 0: sepal data, view 1: petal data >>> clf = MumboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MumboClassifier(base_estimator=None, best_view_mode='edge', - n_estimators=50, random_state=0) + MumboClassifier(random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [1] >>> views_ind = [[0, 2], [1, 3]] # view 0: length data, view 1: width data >>> clf = MumboClassifier(random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MumboClassifier(base_estimator=None, best_view_mode='edge', - n_estimators=50, random_state=0) + MumboClassifier(random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [1] @@ -143,13 +141,8 @@ class MumboClassifier(BaseEnsemble, ClassifierMixin, UBoosting): >>> base_estimator = DecisionTreeClassifier(max_depth=2) >>> clf = MumboClassifier(base_estimator=base_estimator, random_state=0) >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MumboClassifier(base_estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, - criterion='gini', max_depth=2, max_features=None, - max_leaf_nodes=None, min_impurity_decrease=0.0, - min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, - min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, - splitter='best'), - best_view_mode='edge', n_estimators=50, random_state=0) + MumboClassifier(base_estimator=DecisionTreeClassifier(max_depth=2), + random_state=0) >>> print(clf.predict([[ 5., 3., 1., 1.]])) [1] diff --git a/multimodal/kernels/mvml.py b/multimodal/kernels/mvml.py index 0636077e11b6104e23eaee8de87a149e55ac8cec..8444ff3636f3cd0bc10b495f30cfabfe93da6646 100644 --- a/multimodal/kernels/mvml.py +++ b/multimodal/kernels/mvml.py @@ -152,8 +152,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin, RegressorMixin): >>> clf.get_params() {'eta': 1, 'kernel': 'linear', 'kernel_params': None, 'learn_A': 1, 'learn_w': 0, 'lmbda': 0.1, 'n_loops': 6, 'nystrom_param': 1.0, 'precision': 0.0001} >>> clf.fit(X, y, views_ind) # doctest: +NORMALIZE_WHITESPACE - MVML(eta=1, kernel='linear', kernel_params=None, learn_A=1, learn_w=0, - lmbda=0.1, n_loops=6, nystrom_param=1.0, precision=0.0001) + MVML() >>> print(clf.predict([[ 5., 3., 1., 1.]])) 0 diff --git a/setup.py b/setup.py index a4e76c403cf5ce354add295f88c0130c6fbb751a..0bb17e2c7a939f99098001af1fe6ce404bcdcf90 100644 --- a/setup.py +++ b/setup.py @@ -177,7 +177,7 @@ def setup_package(): 'ensemble methods, boosting, kernel') packages = find_packages(exclude=['*.tests']) install_requires = ['scikit-learn>=0.24', 'numpy', 'scipy', 'cvxopt' ] - python_requires = '>=3.5' + python_requires = '>=3.6' extras_require = { 'dev': ['pytest', 'pytest-cov'], 'doc': ['sphinx', 'numpydoc', 'sphinx_gallery', 'matplotlib']}