From 1133a020c30c5ec221708741019e40712c12558f Mon Sep 17 00:00:00 2001 From: Dominique Benielli <dominique.benielli@lis-lab.fr> Date: Tue, 18 Feb 2020 10:18:50 +0100 Subject: [PATCH] predit with out ind --- multimodal/kernels/lpMKL.py | 14 +++++++++++--- multimodal/kernels/mvml.py | 11 ++++------- 2 files changed, 15 insertions(+), 10 deletions(-) diff --git a/multimodal/kernels/lpMKL.py b/multimodal/kernels/lpMKL.py index 44a15eb..76436b6 100644 --- a/multimodal/kernels/lpMKL.py +++ b/multimodal/kernels/lpMKL.py @@ -237,7 +237,7 @@ class MKL(BaseEstimator, ClassifierMixin, MKernel): return C, weights - def predict(self, X, views_ind=None): + def predict(self, X): """ Parameters @@ -271,7 +271,7 @@ class MKL(BaseEstimator, ClassifierMixin, MKernel): """ check_is_fitted(self, ['X_', 'C', 'K_', 'y_', 'weights']) X , test_kernels = self._global_kernel_transform(X, - views_ind=views_ind, + views_ind=self.X_.views_ind, Y=self.X_) check_array(X) C = self.C @@ -322,7 +322,15 @@ class MKL(BaseEstimator, ClassifierMixin, MKernel): Parameters ---------- - X : {array-like} of shape = (n_samples, n_features) + X : dict dictionary with all views {array like} with shape = (n_samples, n_features) for multi-view + for each view. + or + `MultiModalData` , `MultiModalArray` + or + {array-like,}, shape = (n_samples, n_features) + Training multi-view input samples. can be also Kernel where attibute 'kernel' + is set to precompute "precomputed" + y : array-like, shape = (n_samples,) True labels for X. diff --git a/multimodal/kernels/mvml.py b/multimodal/kernels/mvml.py index 706bc28..3a09996 100644 --- a/multimodal/kernels/mvml.py +++ b/multimodal/kernels/mvml.py @@ -410,7 +410,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): A_inv = spli.pinv(A) return A_inv - def predict(self, X, views_ind=None): + def predict(self, X): """ Parameters @@ -444,7 +444,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): """ check_is_fitted(self, ['X_', 'U_dict', 'K_', 'y_']) # , 'U_dict', 'K_' 'y_' X, test_kernels = self._global_kernel_transform(X, - views_ind=views_ind, + views_ind=self.X_.views_ind, Y=self.X_) check_array(X) @@ -454,12 +454,9 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): else: pred = np.sign(pred) pred = pred.astype(int) - pred = np.where(pred == -1, 0 , pred) + pred = np.where(pred == -1, 0, pred) return np.take(self.classes_, pred) - - - def _predict_mvml(self, test_kernels, g, w): """ @@ -599,7 +596,7 @@ class MVML(MKernel, BaseEstimator, ClassifierMixin): return A_new - def score(self, X, y): + def score(self, X, y=None): """Return the mean accuracy on the given test data and labels. Parameters -- GitLab