diff --git a/multimodal/datasets/digit.py b/multimodal/datasets/digit.py deleted file mode 100644 index 2411306adce3217e8e660db4e5f0a3053f646efa..0000000000000000000000000000000000000000 --- a/multimodal/datasets/digit.py +++ /dev/null @@ -1,62 +0,0 @@ -from sklearn import datasets -import numpy as np -import PIL -import matplotlib.pyplot as plt -import os -import matplotlib.pyplot as plt -from multimodal.datasets.base import load_dict, save_dict -from multimodal.tests.data.get_dataset_path import get_dataset_path -from multimodal.datasets.data_sample import MultiModalArray -from multimodal.kernels.mvml import MVML -#Load the digits dataset -digits = datasets.load_digits() - -#Display the first digit -plt.figure(1, figsize=(3, 3)) -plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest') -plt.show() -colors = digits.data -gradiant = np.gradient(digits.images, axis=[1,2]) -print(gradiant[0].shape) -gradiant0 = gradiant[0].reshape(colors.shape[0], colors.shape[1]) -gradiant1 = gradiant[1].reshape(colors.shape[0], colors.shape[1]) -for ind in range(digits.images.shape[0]): - ima0 = digits.images[ind, :,:] - ima1 = gradiant[0][ind, :,:] - ima2 = gradiant[1][ind, :,:] - ama_pil0 = PIL.Image.fromarray(ima0, mode=None) - ama_pil1 = PIL.Image.fromarray(ima1, mode=None) - ama_pil2 = PIL.Image.fromarray(ima2, mode=None) - histo_color = np.asarray(ama_pil0.histogram()) - histo_gradiant0 = np.asarray(ama_pil1.histogram()) - histo_gradiant1 = np.asarray(ama_pil2.histogram()) - if ind==0: - list_histogram_color = histo_color - list_histogram_gradiant0 = histo_gradiant0 - list_histogram_gradiant1 = histo_gradiant1 - else: - list_histogram_color = np.vstack((list_histogram_color, histo_color)) - list_histogram_gradiant0 = np.vstack((list_histogram_gradiant0, histo_gradiant0)) - list_histogram_gradiant1 = np.vstack((list_histogram_gradiant1, histo_gradiant1)) - -dict_digit = {0: list_histogram_color, 1: list_histogram_gradiant0, 2: list_histogram_gradiant1} - - -print(list_histogram_color.shape) -print(list_histogram_gradiant0.shape) -print(list_histogram_gradiant1.shape) -file = get_dataset_path("digit_histogram.npy") -save_dict(dict_digit, file) - -d2 = load_dict(file) - -figure = plt.figure(figsize=(27, 9)) -ax = plt.subplot(2,1,1) - -ax.scatter(list_histogram_color[:,3], list_histogram_color[:,4], c=digits.target, edgecolors='k') -ax = plt.subplot(2,1,2) -ax.scatter(list_histogram_color[:,0], list_histogram_color[:,1], c=digits.target, edgecolors='k') -plt.show() - -mvml = MVML(lmbda=0.1, eta=1, nystrom_param=0.2) -mvml.fit(d2)