README.rst 4.7 KB
Newer Older
Dominique Benielli's avatar
Dominique Benielli committed
1

Dominique Benielli's avatar
Dominique Benielli committed
2
3
|build-status| |docs| |coverage|

Dominique Benielli's avatar
Dominique Benielli committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
scikit-multimodallearn
======================

**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.

It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular
package for machine learning in Python.


Documentation
-------------

The **documentation** including installation instructions, API documentation
and examples is
Dominique Benielli's avatar
doc    
Dominique Benielli committed
18
`available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_.
Dominique Benielli's avatar
Dominique Benielli committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


Installation
------------

Dependencies
~~~~~~~~~~~~

**scikit-multimodallearn** works with **Python 3.5 or later**.

**scikit-multimodallearn** depends on **scikit-learn** (version >= 0.19).

Optionally, **matplotlib** is required to run the examples.

Installation using pip
~~~~~~~~~~~~~~~~~~~~~~

**scikit-multimodallearn** is
Dominique Benielli's avatar
doc    
Dominique Benielli committed
37
`available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_
Dominique Benielli's avatar
Dominique Benielli committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
and can be installed using **pip**::

  pip install scikit-multimodallearn


Development
-----------

The development of this package follows the guidelines provided by the
scikit-learn community.

Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_
of the scikit-learn project for more details.

Source code
~~~~~~~~~~~

You can get the **source code** from the **Git** repository of the project::

  git clone git@gitlab.lis-lab.fr:dev/multiconfusion.git

Testing
~~~~~~~

**pytest** and **pytest-cov** are required to run the **test suite** with::

Dominique Benielli's avatar
Dominique Benielli committed
64
  cd multimodal
Dominique Benielli's avatar
Dominique Benielli committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  pytest

A code coverage report is displayed in the terminal when running the tests.
An HTML version of the report is also stored in the directory **htmlcov**.


Generating the documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The generation of the documentation requires **sphinx**, **sphinx-gallery**,
**numpydoc** and **matplotlib** and can be run with::

  python setup.py build_sphinx

The resulting files are stored in the directory **build/sphinx/html**.


Credits
-------

**scikit-multimodallearn** is developped by the
`development team <https://developpement.lis-lab.fr/>`_ of the
`LIS <http://www.lis-lab.fr/>`_.

If you use **scikit-multimodallearn** in a scientific publication, please cite the
following paper::

 @InProceedings{Koco:2011:BAMCC,
  author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
  editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
          and Vazirgiannis, Michalis},
  title={A Boosting Approach to Multiview Classification with Cooperation},
  booktitle={Proceedings of the 2011 European Conference on Machine Learning
             and Knowledge Discovery in Databases - Volume Part II},
  year={2011},
  location={Athens, Greece},
  publisher={Springer-Verlag},
  address={Berlin, Heidelberg},
  pages={209--228},
  numpages = {20},
  isbn={978-3-642-23783-6}
  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
  keywords={boosting, classification, multiview learning,
            supervised learning},
 }

Dominique Benielli's avatar
doc    
Dominique Benielli committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
 @InProceedings{Huu:2019:BAMCC,
  author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
  editor={},
  title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
  booktitle={arXiv:1803.07821v1},
  year={2018},
  location={Athens, Greece},
  publisher={},
  address={},
  pages={209--228},
  numpages = {12}
  isbn={978-3-642-23783-6}
  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
  keywords={boosting, classification, multiview learning,
            merric learning, vector-valued, kernel spaces},
 }
Dominique Benielli's avatar
Dominique Benielli committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

References
~~~~~~~~~~
* Sokol Koço, Cécile Capponi,
  `"Learning from Imbalanced Datasets with cross-view cooperation"`
  Linking and mining heterogeneous an multi-view data, Unsupervised and
  semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer

* Sokol Koço, Cécile Capponi,
  `"A boosting approach to multiview classification with cooperation"
  <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,
  Proceedings of the 2011 European Conference on Machine Learning (ECML),
  Athens, Greece, pp.209-228, 2011, Springer-Verlag.

* Sokol Koço,
  `"Tackling the uneven views problem with cooperation based ensemble
  learning methods" <http://www.theses.fr/en/2013AIXM4101>`_,
  PhD Thesis, Aix-Marseille Université, 2013.

* Riikka Huusari, Hachem Kadri and Cécile Capponi,
  "Multi-View Metric Learning in Vector-Valued Kernel Spaces"
  in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright
~~~~~~~~~

Université d'Aix Marseille (AMU) -
Centre National de la Recherche Scientifique (CNRS) -
Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License
~~~~~~~

Dominique Benielli's avatar
Dominique Benielli committed
162
163
**scikit-multimodallearn** is free software: you can redistribute it and/or modify
it under the terms of the **New BSD License**