README.rst 4.24 KB
Newer Older
Dominique Benielli's avatar
Dominique Benielli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
scikit-multimodallearn
======================

**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.

It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular
package for machine learning in Python.


Documentation
-------------

The **documentation** including installation instructions, API documentation
and examples is
`available online <http://dev.pages.lis-lab.fr/multimodal>`_.


Installation
------------

Dependencies
~~~~~~~~~~~~

**scikit-multimodallearn** works with **Python 3.5 or later**.

**scikit-multimodallearn** depends on **scikit-learn** (version >= 0.19).

Optionally, **matplotlib** is required to run the examples.

Installation using pip
~~~~~~~~~~~~~~~~~~~~~~

**scikit-multimodallearn** is
`available on PyPI <https://pypi.org/project/multiconfusion/>`_
and can be installed using **pip**::

  pip install scikit-multimodallearn


Development
-----------

The development of this package follows the guidelines provided by the
scikit-learn community.

Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_
of the scikit-learn project for more details.

Source code
~~~~~~~~~~~

You can get the **source code** from the **Git** repository of the project::

  git clone git@gitlab.lis-lab.fr:dev/multiconfusion.git

Testing
~~~~~~~

**pytest** and **pytest-cov** are required to run the **test suite** with::

  cd multiconfusion
  pytest

A code coverage report is displayed in the terminal when running the tests.
An HTML version of the report is also stored in the directory **htmlcov**.


Generating the documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The generation of the documentation requires **sphinx**, **sphinx-gallery**,
**numpydoc** and **matplotlib** and can be run with::

  python setup.py build_sphinx

The resulting files are stored in the directory **build/sphinx/html**.


Credits
-------

**scikit-multimodallearn** is developped by the
`development team <https://developpement.lis-lab.fr/>`_ of the
`LIS <http://www.lis-lab.fr/>`_.

If you use **scikit-multimodallearn** in a scientific publication, please cite the
following paper::

 @InProceedings{Koco:2011:BAMCC,
  author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
  editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
          and Vazirgiannis, Michalis},
  title={A Boosting Approach to Multiview Classification with Cooperation},
  booktitle={Proceedings of the 2011 European Conference on Machine Learning
             and Knowledge Discovery in Databases - Volume Part II},
  year={2011},
  location={Athens, Greece},
  publisher={Springer-Verlag},
  address={Berlin, Heidelberg},
  pages={209--228},
  numpages = {20},
  isbn={978-3-642-23783-6}
  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
  keywords={boosting, classification, multiview learning,
            supervised learning},
 }


References
~~~~~~~~~~
* Sokol Koço, Cécile Capponi,
  `"Learning from Imbalanced Datasets with cross-view cooperation"`
  Linking and mining heterogeneous an multi-view data, Unsupervised and
  semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer


* Sokol Koço, Cécile Capponi,
  `"A boosting approach to multiview classification with cooperation"
  <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,
  Proceedings of the 2011 European Conference on Machine Learning (ECML),
  Athens, Greece, pp.209-228, 2011, Springer-Verlag.

* Sokol Koço,
  `"Tackling the uneven views problem with cooperation based ensemble
  learning methods" <http://www.theses.fr/en/2013AIXM4101>`_,
  PhD Thesis, Aix-Marseille Université, 2013.

* Riikka Huusari, Hachem Kadri and Cécile Capponi,
  "Multi-View Metric Learning in Vector-Valued Kernel Spaces"
  in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright
~~~~~~~~~

Université d'Aix Marseille (AMU) -
Centre National de la Recherche Scientifique (CNRS) -
Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License
~~~~~~~

**multiconfusion** is free software: you can redistribute it and/or modify
it under the terms of the **GNU Lesser General Public License** as published by
the Free Software Foundation, either **version 3** of the License, or
(at your option) any later version.