import os import numpy as np import parameters from multiviews_datasets import generator_multiviews_dataset, results_to_csv from tests.test_classifier import score_multiviews_n_samples, graph_comparaison_classifier_scores_n_samples, score_multiviews_R, score_multiviews_Z_factor, score_multiviews_n_views_R, score_multiviews_class_sep, score_one_multiview_dataset, score_multiviews_n_informative_divided import warnings warnings.simplefilter(action='ignore', category=FutureWarning) n_samples = 100 n_views = 3 n_classes = 2 Z_factor = 1 R = 0 n_clusters_per_class = 1 class_sep_factor = 100 n_informative_divid = 1 standard_deviation = 2 d = 4 D = 10 path = "/home/baptiste/Documents/Datasets/Generated/try_outlier/" if not os.path.exists(path): os.mkdir(path) Z, y, results, unsued_dimensions_percent, n_informative = generator_multiviews_dataset(n_samples, n_views, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) print(y[:10]) print(unsued_dimensions_percent) print(n_informative) print(Z.shape) y[:10] = np.invert(y[:10].astype(bool)).astype(int) print(y[:10]) results_to_csv(path, Z, y, results)