#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 27 16:14:14 2019 @author: bernardet """ import parameters from multiviews_datasets import generator_multiviews_dataset, results_to_csv from tests.test_classifier import score_multiviews_n_samples, graph_comparaison_classifier_scores_n_samples, score_multiviews_R, score_multiviews_Z_factor, score_multiviews_n_views_R, score_multiviews_class_sep, score_one_multiview_dataset, score_multiviews_n_informative_divided import warnings warnings.simplefilter(action='ignore', category=FutureWarning) n_samples = parameters.n_samples n_views = parameters.n_views n_classes = 3#parameters.n_classes Z_factor = parameters.Z_factor R = parameters.R n_clusters_per_class = 1#parameters.n_clusters_per_class class_sep_factor = 2#5#2#parameters.class_sep_factor n_informative_divid = 2#parameters.n_informative_divid cv = parameters.cv classifier = parameters.classifier classifier_dictionary = parameters.classifier_dictionary d = parameters.d D = parameters.D standard_deviation = parameters.standard_deviation path_data = parameters.path_data path_graph = parameters.path_graph n_samples_list = parameters.n_samples_list R_list = parameters.R_list Z_factor_list = parameters.Z_factor_list n_views_list = parameters.n_views_list class_sep_factor_list = parameters.class_sep_factor_list n_informative_divid_list = parameters.n_informative_divid_list # Generate one dataset #Z, y, multiviews_list, unsued_columns_percent = generator_multiviews_dataset(n_samples, n_views, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(Z, y, multiviews_list) # Register one multiview dataset #results_to_csv(path, Z, y, multiviews_list) # Score of one multiview dataset #df_dimensions, df_scores_means, df_scores_std = score_one_multiview_dataset(cv, classifier, classifier_dictionary, n_samples, n_views, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(df_dimensions, df_scores_means, df_scores_std) # Scores of n_samples_list datasets #mean_samples, std_samples = score_multiviews_n_samples(n_samples_list, path_graph, cv, classifier, classifier_dictionary, n_views, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(mean_samples, std_samples) # Plot scores classifier2 vs score classifier1 classifier1 = "SVM" classifier2 = "NB" #graph_comparaison_classifier_scores_n_samples(classifier1, classifier2, n_samples_list, path_graph, cv, classifier_dictionary, n_views, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) # Scores of R_list datasets #mean_R, std_R = score_multiviews_R(R_list, path_graph, cv, classifier, classifier_dictionary, n_samples, n_views, n_classes, Z_factor, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(mean_R, std_R) # Scores of Z_factor_list datasets #mean_Z, std_Z, error_Z = score_multiviews_Z_factor(Z_factor_list, path_graph, cv, classifier, classifier_dictionary, n_samples, n_views, n_classes, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(mean_Z, std_Z, error_Z) # Scores divided by scores for R=1 (redundancy null) of n_views_list and R_list datasets #dict_n_views_R_ratio = score_multiviews_n_views_R(n_views_list, R_list, path_graph, cv, classifier, classifier_dictionary, n_samples, n_classes, Z_factor, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation) #print(dict_n_views_R_ratio) # Scores of class_sep_factor_list datasets #df_mean, df_std = score_multiviews_class_sep(class_sep_factor_list, path_data, path_graph, cv, classifier, classifier_dictionary, n_views, n_samples, n_classes, Z_factor, R, n_clusters_per_class, n_informative_divid, d, D, standard_deviation) #print(df_mean, df_std) # Scores of n_informative_divid_list datasets #mean_n_info, std_n_info = score_multiviews_n_informative_divided(n_informative_divid_list, path_graph, cv, classifier, classifier_dictionary, n_views, n_samples, n_classes, Z_factor, R, n_clusters_per_class, class_sep_factor, d, D, standard_deviation) #print(mean_n_info, std_n_info) Z_factor_list = [1, 3, 10, 25, 100, 250, 1000] path_graph = "/home/bernardet/Documents/StageL3/Graph/n_views_3_10_1_clus_2_n_info_div/" n_classes = 2 n_clusters_per_class = 1 class_sep_factor = 2 n_informative_divid = 2 for n_views in range(3, 11): n_samples = 500*n_views mean_Z, std_Z, error_Z = score_multiviews_Z_factor(Z_factor_list, path_graph, cv, classifier, classifier_dictionary, n_samples, n_views, n_classes, R, n_clusters_per_class, class_sep_factor, n_informative_divid, d, D, standard_deviation)