From 94116327c538cd527c5075e233f1eea828c87cb7 Mon Sep 17 00:00:00 2001
From: Dominique Benielli <dominique.benielli@univ-amu.fr>
Date: Fri, 9 May 2025 16:30:11 +0200
Subject: [PATCH] warning suppressed

---
 ltfatpy/fourier/dcti.py      | 2 +-
 ltfatpy/fourier/dctii.py     | 4 ++--
 ltfatpy/fourier/dctiii.py    | 4 ++--
 ltfatpy/fourier/dstii.py     | 4 ++--
 ltfatpy/fourier/dstiii.py    | 2 +-
 ltfatpy/fourier/psech.py     | 2 +-
 ltfatpy/gabor/dgt.py         | 2 +-
 ltfatpy/gabor/idgt.py        | 2 +-
 ltfatpy/gabor/phaselock.py   | 4 ++--
 ltfatpy/gabor/tfplot.py      | 4 ++--
 ltfatpy/sigproc/normalize.py | 4 ++--
 11 files changed, 17 insertions(+), 17 deletions(-)

diff --git a/ltfatpy/fourier/dcti.py b/ltfatpy/fourier/dcti.py
index c5c0a14..de8f304 100644
--- a/ltfatpy/fourier/dcti.py
+++ b/ltfatpy/fourier/dcti.py
@@ -115,7 +115,7 @@ def dcti(f, L=None, dim=None):
     .. math::
 
         w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} & \\text{if }n=0
-        \\text{ or }n=L-1 \\\ 1 & \\text{otherwise}\\end{cases}
+        \\text{ or }n=L-1 \\ 1 & \\text{otherwise}\\end{cases}
 
     Then
 
diff --git a/ltfatpy/fourier/dctii.py b/ltfatpy/fourier/dctii.py
index 123c1fc..c8303f2 100644
--- a/ltfatpy/fourier/dctii.py
+++ b/ltfatpy/fourier/dctii.py
@@ -107,7 +107,7 @@ def dctii(f, L=None, dim=None):
     The transform is real (output is real if input is real) and
     it is orthonormal.
 
-    This is the inverse of \|dctiii\|.
+    This is the inverse of \\|dctiii\\|.
 
     Let f be a signal of length **L**, let :math:`c=dctii(f)` and define the
     vector **w** of length **L** by
@@ -117,7 +117,7 @@ def dctii(f, L=None, dim=None):
     .. math::
 
         w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} & \\text{if }n=0
-        \\\ 1 & \\text{otherwise}\\end{cases}
+        \\ 1 & \\text{otherwise}\\end{cases}
 
     Then
 
diff --git a/ltfatpy/fourier/dctiii.py b/ltfatpy/fourier/dctiii.py
index 7c0542d..506a78d 100644
--- a/ltfatpy/fourier/dctiii.py
+++ b/ltfatpy/fourier/dctiii.py
@@ -105,7 +105,7 @@ def dctiii(f, L=None, dim=None):
     The transform is real (output is real if input is real) and
     it is orthonormal.
 
-    This is the inverse of \|dctii\|.
+    This is the inverse of \\|dctii\\|.
 
     Let f be a signal of length **L**, let :math:`c=dctiii(f)` and define the
     vector **w** of length **L** by
@@ -115,7 +115,7 @@ def dctiii(f, L=None, dim=None):
     .. math::
 
         w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} & \\text{if }n=0
-        \\text{ or }n=L-1 \\\ 1 & \\text{otherwise}\\end{cases}
+        \\text{ or }n=L-1  \\ 1 & \\text{otherwise}\\end{cases}
 
     Then
 
diff --git a/ltfatpy/fourier/dstii.py b/ltfatpy/fourier/dstii.py
index 800c544..f034842 100644
--- a/ltfatpy/fourier/dstii.py
+++ b/ltfatpy/fourier/dstii.py
@@ -103,7 +103,7 @@ def dstii(f, L=None, dim=None):
 
     The transform is real (output is real if input is real) and orthonormal.
 
-    The inverse transform of \\|dstii\| is \\|dstiii\|.
+    The inverse transform of \\|dstii\\| is \\|dstiii\\|.
 
     Let **f** be a signal of length **L**, let ``c=dstii(f)`` and define the
     vector **w** of length **L** by
@@ -113,7 +113,7 @@ def dstii(f, L=None, dim=None):
     .. math::
 
         w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} &
-        \\text{if }n=L-1 \\\ 1 & \\text{otherwise}\\end{cases}
+        \\text{if }n=L-1 \\ 1 & \\text{otherwise}\\end{cases}
 
     Then
 
diff --git a/ltfatpy/fourier/dstiii.py b/ltfatpy/fourier/dstiii.py
index 0a0359e..a0ce139 100644
--- a/ltfatpy/fourier/dstiii.py
+++ b/ltfatpy/fourier/dstiii.py
@@ -113,7 +113,7 @@ def dstiii(f, L=None, dim=None):
     .. math::
 
         w\\left(n\\right)=\\begin{cases}\\frac{1}{\\sqrt{2}} &
-        \\text{if }n=L-1 \\\ 1 & \\text{otherwise}\\end{cases}
+        \\text{if }n=L-1 \\ 1 & \\text{otherwise}\\end{cases}
 
     Then
 
diff --git a/ltfatpy/fourier/psech.py b/ltfatpy/fourier/psech.py
index 58cfd3c..aff6dc9 100644
--- a/ltfatpy/fourier/psech.py
+++ b/ltfatpy/fourier/psech.py
@@ -91,7 +91,7 @@ def psech(L, tfr=None, s=None, **kwargs):
 
     ``psech(L,tfr)`` computes samples of a periodized hyperbolic secant.
     The function returns a regular sampling of the periodization
-    of the function :math:`sech(\pi\cdot x)`
+    of the function :math:`sech(\\pi\\cdot x)`
 
     The returned function has norm equal to 1.
 
diff --git a/ltfatpy/gabor/dgt.py b/ltfatpy/gabor/dgt.py
index 8be57a9..1f01630 100644
--- a/ltfatpy/gabor/dgt.py
+++ b/ltfatpy/gabor/dgt.py
@@ -173,7 +173,7 @@ def dgt(f, g, a, M, L=None, pt='freqinv'):
         c\\left(m+1,n+1\\right)=\\sum_{l=0}^{L-1}f(l+1)\\overline{g(l-an+1)}
         e^{-2\\pi ilm/M}
 
-    where :math:`m=0,\ldots,M-1`, :math:`n=0, \\ldots,N-1` and :math:`l-an`
+    where :math:`m=0,\\ldots,M-1`, :math:`n=0, \\ldots,N-1` and :math:`l-an`
     are computed modulo **L**.
 
     - Additional parameters:
diff --git a/ltfatpy/gabor/idgt.py b/ltfatpy/gabor/idgt.py
index df7da92..35f8cb1 100644
--- a/ltfatpy/gabor/idgt.py
+++ b/ltfatpy/gabor/idgt.py
@@ -117,7 +117,7 @@ def idgt(coef, g, a, Ls=None, pt='freqinv'):
     one column vector for each of the TF-planes in **c**.
 
     Assume that ``f=idgt(c, g, a, L)`` for an array **c** of size
-    :math:`M \times N`. Then the following holds for :math:`k=0,\ldots,L-1`:
+    :math:`M \\times N`. Then the following holds for :math:`k=0,\\ldots,L-1`:
 
     .. math::
 
diff --git a/ltfatpy/gabor/phaselock.py b/ltfatpy/gabor/phaselock.py
index 5e5d544..5a4a472 100644
--- a/ltfatpy/gabor/phaselock.py
+++ b/ltfatpy/gabor/phaselock.py
@@ -103,8 +103,8 @@ def phaselock(c, a):
         c(m+1,n+1) = sum f(l+1)*exp(-2*pi*i*m*(l-n*a)/M)*conj(g(l-a*n+1)),
                      l=0
 
-    .. math:: c\\left(m+1,n+1\\right)=\sum_{l=0}^{L-1}f(l+1)
-              e^{-2\pi im(l-na)/M}\overline{g(l-an+1)},
+    .. math:: c\\left(m+1,n+1\\right)=\\sum_{l=0}^{L-1}f(l+1)
+              e^{-2\\pi im(l-na)/M}\\overline{g(l-an+1)},
 
     where ``m = 0,..., M-1`` and ``n = 0,..., N-1`` and ``l-a*n`` are computed
     modulo ``L``.
diff --git a/ltfatpy/gabor/tfplot.py b/ltfatpy/gabor/tfplot.py
index a5aa845..670d054 100644
--- a/ltfatpy/gabor/tfplot.py
+++ b/ltfatpy/gabor/tfplot.py
@@ -123,12 +123,12 @@ def tfplot(coef, step, yr, fs=None, dynrange=None, normalization='db',
 
     Possible values for **normalization**:
         ============ ==========================================================
-        ``'db'``     Apply :math:`20*\log_{10}` to the coefficients. This makes
+        ``'db'``     Apply :math:`20*\\log_{10}` to the coefficients. This makes
                      it possible to see very weak phenomena, but it might show
                      too much noise. A logarithmic scale is more adapted to
                      perception of sound. This is the default.
 
-        ``'dbsq'``   Apply :math:`10*\log_{10}` to the coefficients. Same as
+        ``'dbsq'``   Apply :math:`10*\\log_{10}` to the coefficients. Same as
                      the ``'db'`` option, but assume that the input is already
                      squared.
 
diff --git a/ltfatpy/sigproc/normalize.py b/ltfatpy/sigproc/normalize.py
index 5c4b089..7d2971d 100644
--- a/ltfatpy/sigproc/normalize.py
+++ b/ltfatpy/sigproc/normalize.py
@@ -145,10 +145,10 @@ def normalize(f, norm='2', dim=None):
             fnorm[ii] = LA.norm(f[:, ii], np.inf)
             f[:, ii] = f[:, ii] / fnorm[ii]
         elif norm == 'rms':
-            fnorm[ii] = rms(f[:, ii])
+            fnorm[ii] = rms(f[:, ii]).item()
             f[:, ii] = f[:, ii] / fnorm[ii]
         elif norm == 's0':
-            fnorm[ii] = s0norm(f[:, ii])
+            fnorm[ii] = s0norm(f[:, ii]).item()
             f[:, ii] = f[:, ii] / fnorm[ii]
         elif norm == 'wav':
             if np.issubdtype(f.dtype, np.floating):
-- 
GitLab