isevenfunction.py 3.78 KB
Newer Older
Denis Arrivault's avatar
Denis Arrivault committed
1
# -*- coding: utf-8 -*-
Denis Arrivault's avatar
Denis Arrivault committed
2
# ######### COPYRIGHT #########
3
4
# Credits
# #######
Denis Arrivault's avatar
Denis Arrivault committed
5
#
6
7
# Copyright(c) 2015-2018
# ----------------------
Denis Arrivault's avatar
Denis Arrivault committed
8
#
9
10
11
12
13
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
Denis Arrivault's avatar
Denis Arrivault committed
14
15
#
# This software is a port from LTFAT 2.1.0 :
16
# Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
Denis Arrivault's avatar
Denis Arrivault committed
17
18
19
20
#
# Contributors
# ------------
#
21
22
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
Denis Arrivault's avatar
Denis Arrivault committed
23
24
25
26
#
# Description
# -----------
#
27
28
29
30
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
Denis Arrivault's avatar
Denis Arrivault committed
31
32
33
34
#
# Version
# -------
#
35
# * ltfatpy version = 1.0.14
Denis Arrivault's avatar
Denis Arrivault committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
Denis Arrivault's avatar
Denis Arrivault committed
55
56


Denis Arrivault's avatar
Denis Arrivault committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
""" Module of even function tests

Ported from ltfat_2.1.0/fourier/isevenfunction.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np
import numpy.linalg as LA


def isevenfunction(f, tol=1e-10, centering='wp'):
    """ True if function is even

    - Usage:

        | ``t = isevenfunction(f)``
        | ``t = isevenfunction(f, tol)``

    - Input parameters:

    :param numpy.ndarray f: vector of data to test (one dimension)
    :param float tol: tolerance (1e-10 by default)
    :param str centering: Point even function type : whole or half point even.
        **centering** can be 'wp' or 'hp', 'wp' is the default.

    -Output parameter:

    :return: True if **f** is whole point even
    :rtype: bool

    `isevenfunction(f)` returns True if *f* is whole point even. Otherwise it
    returns False.

    ``isevenfunction(f, tol)`` the same, using the tolerance *tol* to measure
    how large the error between the two parts of the vector can be. Default
    is 1e-10.

    Setting **centering** to 'hp', does the same for half point even functions.

    .. seealso:: :func:`~ltfatpy.fourier.middlepad.middlepad`, :func:`peven`
    """
    if f.ndim > 1:
        raise ValueError("f should be a one dimensional vector")

    # Define initial values for flags
    # definput.flags.centering = {'wp','hp'};
    # definput.keyvals.tol     = 1e-10;

    L = f.shape[0]

    if centering == 'wp':
        # Determine middle point of sequence.
        if L % 2 == 0:
113
            middle = L // 2
Denis Arrivault's avatar
Denis Arrivault committed
114
        else:
115
            middle = (L+1) // 2
Denis Arrivault's avatar
Denis Arrivault committed
116
117
118
119
120

        # Relative norm of difference between the parts of the signal.
        d = (LA.norm(f[1:middle] - np.conj(np.flipud(f[L-middle+1:L]))) /
             LA.norm(f))
    elif centering == 'hp':
121
        middle = int(np.floor(L/2))
Denis Arrivault's avatar
Denis Arrivault committed
122
123
124
125
126
127
128
129
        d = (LA.norm(f[0:middle] - np.conj(np.flipud(f[L-middle:L]))) /
             LA.norm(f))
    else:
        raise ValueError("centering parameter should be set to 'wp'" +
                         "(default) or 'hp'")

    # Return true if d less than tolerance.
    return (d <= tol)