psech.py 5 KB
Newer Older
Denis Arrivault's avatar
Denis Arrivault committed
1
# -*- coding: utf-8 -*-
Denis Arrivault's avatar
Denis Arrivault committed
2
# ######### COPYRIGHT #########
3
4
# Credits
# #######
Denis Arrivault's avatar
Denis Arrivault committed
5
#
6
7
# Copyright(c) 2015-2018
# ----------------------
Denis Arrivault's avatar
Denis Arrivault committed
8
#
9
10
11
12
13
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
Denis Arrivault's avatar
Denis Arrivault committed
14
15
#
# This software is a port from LTFAT 2.1.0 :
16
# Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
Denis Arrivault's avatar
Denis Arrivault committed
17
18
19
20
#
# Contributors
# ------------
#
21
22
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
Denis Arrivault's avatar
Denis Arrivault committed
23
24
25
26
#
# Description
# -----------
#
27
28
29
30
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
Denis Arrivault's avatar
Denis Arrivault committed
31
32
33
34
#
# Version
# -------
#
35
# * ltfatpy version = 1.0.13
Denis Arrivault's avatar
Denis Arrivault committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
Denis Arrivault's avatar
Denis Arrivault committed
55
56


Denis Arrivault's avatar
Denis Arrivault committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
""" Module of Sampled, periodized hyperbolic secant calculation

Ported from ltfat_2.1.0/fourier/psech.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np
import six


def psech(L, tfr=None, s=None, **kwargs):
    """Sampled, periodized hyperbolic secant

    - Usage:

        | ``(g, tfr) = psech(L)``
        | ``(g, tfr) = psech(L, tfr)``
        | ``(g, tfr) = psech(L, s=...)``

    - Input parameters:

    :param int L: length of vector.
    :param float tfr: ratio between time and frequency support.
    :param int s: number of samples (equivalent to :math:`tfr=s^2/L`)

    - Output parameters:

    :returns: ``(g, tfr)``
    :rtype: tuple
    :var numpy.ndarray g: periodized hyperbolic cosine
    :var float tfr: calculated ratio between time and frequency support

    ``psech(L,tfr)`` computes samples of a periodized hyperbolic secant.
    The function returns a regular sampling of the periodization
    of the function :math:`sech(\pi\cdot x)`

    The returned function has norm equal to 1.

    The parameter **tfr** determines the ratio between the effective support
    of **g** and the effective support of the DFT of **g**. If **tfr** > 1
    then **g** has a wider support than the DFT of **g**.

    ``psech(L)`` does the same setting than **tfr** = 1.

    ``psech(L,s)`` returns a hyperbolic secant with an effective support of
    **s** samples. This means that approx. 96% of the energy or 74% or the
    area under the graph is contained within **s** samples. This is
    equivalent to ``psech(L,s^2/L)``.

    ``(g,tfr) = psech( ... )`` returns the time-to-frequency support ratio.
    This is useful if you did not specify it (i.e. used the **s** input
    format).

    The function is whole-point even.  This implies that
    ``fft(psech(L,tfr))`` is real for any **L** and **tfr**.

    If this function is used to generate a window for a Gabor frame, then
    the window giving the smallest frame bound ratio is generated by
    ``psech(L,a*M/L)``.

    - Examples:

        This example creates a ``psech`` function, and demonstrates that it
        is its own Discrete Fourier Transform:

        >>> import numpy as np
        >>> import numpy.linalg as nla
        >>> g = psech(128)[0] # DFT invariance: Should be close to zero.
        >>> diff = nla.norm(g-np.fft.fft(g)/np.sqrt(128))
        >>> np.abs(diff) < 10e-10
        True

    .. seealso:: :func:`~ltfatpy.fourier.pgauss.pgauss`, :func:`pbspline`,
        :func:`pherm`

    - References:
        :cite:`jast02-1`
    """
    if not isinstance(L, six.integer_types):
        raise TypeError('L must be an integer')

    if s is not None:
        if not isinstance(s, six.integer_types):
            raise TypeError('s must be an integer')
        tfr = float(s**2 / L)
    elif tfr is None:
        tfr = 1

    safe = 12
    g = np.zeros(L)
    sqrtl = np.sqrt(L)
    w = tfr

    # Outside the interval [-safe,safe] then sech(pi*x) is numerically zero.
    nk = np.ceil(safe / np.sqrt(L / np.sqrt(w)))

    lr = np.arange(L)
    for k in np.arange(-nk, nk+1):
        g = g + (1 / np.cosh(np.pi * (lr / sqrtl - k * sqrtl) / np.sqrt(w)))

    # Normalize it.
    g = g * np.sqrt(np.pi / (2 * np.sqrt(L*w)))
    return(g, tfr)

164
if __name__ == '__main__':  # pragma: no cover
Denis Arrivault's avatar
Denis Arrivault committed
165
166
    import doctest
    doctest.testmod()