from ..Monoview.MonoviewUtils import CustomUniform, CustomRandint, BaseMonoviewClassifier from ..Monoview.Additions.CQBoostUtils import ColumnGenerationClassifier from ..Monoview.Additions.BoostUtils import getInterpretBase import numpy as np class CQBoost(ColumnGenerationClassifier, BaseMonoviewClassifier): def __init__(self, random_state=None, mu=0.01, epsilon=1e-06, **kwargs): super(CQBoost, self).__init__( random_state=random_state, mu=mu, epsilon=epsilon ) self.param_names = ["mu", "epsilon"] self.distribs = [CustomUniform(loc=0.5, state=1.0, multiplier="e-"), CustomRandint(low=1, high=15, multiplier="e-")] self.classed_params = [] self.weird_strings = {} def canProbas(self): """Used to know if the classifier can return label probabilities""" return True def getInterpret(self, directory, y_test): np.savetxt(directory + "train_metrics.csv", self.train_metrics, delimiter=',') return getInterpretBase(self, directory, "CQBoost", self.weights_, y_test) def formatCmdArgs(args): """Used to format kwargs for the parsed args""" kwargsDict = {"mu": args.CQB_mu, "epsilon": args.CQB_epsilon} return kwargsDict def paramsToSet(nIter, randomState): """Used for weighted linear early fusion to generate random search sets""" paramsSet = [] for _ in range(nIter): paramsSet.append({"mu": 10**-randomState.uniform(0.5, 1.5), "epsilon": 10**-randomState.randint(1, 15)}) return paramsSet