diff --git a/Code/MonoMultiViewClassifiers/ExecClassif.py b/Code/MonoMultiViewClassifiers/ExecClassif.py index 1731a110487fdf96e0ea72813c1b85ad6da5824a..528fa4e694c32c512180635aded29f1a7757c92c 100644 --- a/Code/MonoMultiViewClassifiers/ExecClassif.py +++ b/Code/MonoMultiViewClassifiers/ExecClassif.py @@ -171,16 +171,16 @@ def classifyOneIter_multicore(LABELS_DICTIONARY, argumentDictionaries, nbCores, times = [dataBaseTime, monoviewTime, multiviewTime] results = (resultsMonoview, resultsMultiview) labelAnalysis = analyzeLabels(labels, trueLabels, results, directory) - logging.debug("Start:\t Analyze Global Results for iteration") + logging.debug("Start:\t Analyze Iteration Results") resultAnalysis(benchmark, results, args.name, times, metrics, directory) - logging.debug("Done:\t Analyze Global Results for iteration") + logging.debug("Done:\t Analyze Iteration Results") globalAnalysisTime = time.time() - monoviewTime - dataBaseTime - start - multiviewTime totalTime = time.time() - start logging.info("Extraction time : " + str(dataBaseTime) + "s, Monoview time : " + str(monoviewTime) + "s, Multiview Time : " + str(multiviewTime) + - "s, Global Analysis Time : " + str(globalAnalysisTime) + - "s, Total Duration : " + str(totalTime) + "s") + "s, Iteration Analysis Time : " + str(globalAnalysisTime) + + "s, Iteration Duration : " + str(totalTime) + "s") return results, labelAnalysis @@ -245,16 +245,16 @@ def classifyOneIter(LABELS_DICTIONARY, argumentDictionaries, nbCores, directory, times = [dataBaseTime, monoviewTime, multiviewTime] results = (resultsMonoview, resultsMultiview) labelAnalysis = analyzeLabels(labels, trueLabels, results, directory) - logging.debug("Start:\t Analyze Global Results") + logging.debug("Start:\t Analyze Iteration Results") resultAnalysis(benchmark, results, args.name, times, metrics, directory) - logging.debug("Done:\t Analyze Global Results") + logging.debug("Done:\t Analyze Iteration Results") globalAnalysisTime = time.time() - monoviewTime - dataBaseTime - start - multiviewTime totalTime = time.time() - start logging.info("Extraction time : " + str(dataBaseTime) + "s, Monoview time : " + str(monoviewTime) + "s, Multiview Time : " + str(multiviewTime) + - "s, Global Analysis Time : " + str(globalAnalysisTime) + - "s, Total Duration : " + str(totalTime) + "s") + "s, Iteration Analysis Time : " + str(globalAnalysisTime) + + "s, Iteration Duration : " + str(totalTime) + "s") return results, labelAnalysis @@ -324,6 +324,7 @@ def execClassif(arguments): directories = execution.genDirecortiesNames(directory, statsIter) if statsIter > 1: + logging.debug("Start:\t Benchmark classification") for statIterIndex in range(statsIter): if not os.path.exists(os.path.dirname(directories[statIterIndex] + "train_labels.csv")): try: @@ -368,6 +369,8 @@ def execClassif(arguments): classificationIndices[iterIndex], kFolds[iterIndex], statsIterRandomStates[iterIndex], hyperParamSearch, metrics, DATASET, viewsIndices, dataBaseTime, start, benchmark, views)) + logging.debug("Done:\t Benchmark classification") + logging.debug("Start:\t Global Results Analysis") classifiersIterResults = [] iterLabelAnalysis = [] for result in iterResults: @@ -378,8 +381,12 @@ def execClassif(arguments): classifiersNames = genNamesFromRes(mono, multi) analyzeIterLabels(iterLabelAnalysis, directory, classifiersNames) analyzeIterResults(classifiersIterResults, args.name, metrics, directory) + logging.debug("Done:\t Global Results Analysis") + totalDur = time.time()-start + logging.info("Info:\t Total duration : "+str(totalDur)) else: + logging.debug("Start:\t Benchmark classification") if not os.path.exists(os.path.dirname(directories + "train_labels.csv")): try: os.makedirs(os.path.dirname(directories + "train_labels.csv")) @@ -393,6 +400,9 @@ def execClassif(arguments): kFolds, statsIterRandomStates, hyperParamSearch, metrics, DATASET, viewsIndices, dataBaseTime, start, benchmark, views) + logging.debug("Done:\t Benchmark classification") + totalDur = time.time()-start + logging.info("Info:\t Total duration : "+str(totalDur)) if statsIter > 1: pass