diff --git a/summit/multiview_platform/monoview_classifiers/repeatboost.py b/summit/multiview_platform/monoview_classifiers/repeatboost.py index cec9230cd1c4cbec76ecdae358068c3a65d45786..c7e605944dfcb9a6949a42f3304a6a81b15dbe33 100644 --- a/summit/multiview_platform/monoview_classifiers/repeatboost.py +++ b/summit/multiview_platform/monoview_classifiers/repeatboost.py @@ -23,7 +23,7 @@ class RepDT(DecisionTree): def fit(self, X, y, sample_weight=None, check_input=True): if sample_weight is not None: new_X, new_y = self.fake_repetitions(X, y, sample_weight, - precision=5) + precision=3) else: new_X = X new_y = y diff --git a/summit/multiview_platform/monoview_classifiers/scm.py b/summit/multiview_platform/monoview_classifiers/scm.py index 4ee442f138e3f37e80ec2969e49a4ddfb028ead3..375a08d6b076249d535915396dfb9e80dcdd0244 100644 --- a/summit/multiview_platform/monoview_classifiers/scm.py +++ b/summit/multiview_platform/monoview_classifiers/scm.py @@ -65,7 +65,7 @@ class SCM(scm, BaseMonoviewClassifier): def fit(self, X, y, tiebreaker=None, iteration_callback=None, sample_weight=None, **fit_params): if sample_weight is not None: - new_X, new_y = self.fake_repetitions(X, y, sample_weight, precision=5) + new_X, new_y = self.fake_repetitions(X, y, sample_weight, precision=3) else: new_X = X new_y = y