diff --git a/multiview_platform/execute.py b/multiview_platform/execute.py
index a142cb88fa45fb4f904bb71a97295b50f02195a5..39ca74f1c40b776e34354f56deeb4359b9837f16 100644
--- a/multiview_platform/execute.py
+++ b/multiview_platform/execute.py
@@ -1,6 +1,5 @@
 """This is the execution module, used to execute the code"""
 
-
 def exec():
     import multiview_platform.versions as versions
     versions.test_versions()
diff --git a/multiview_platform/mono_multi_view_classifiers/exec_classif.py b/multiview_platform/mono_multi_view_classifiers/exec_classif.py
index 93c6f75964a477927c51adb142251d107d476e53..6bf02eb49a9d33196092600dea846cb1fffe8894 100644
--- a/multiview_platform/mono_multi_view_classifiers/exec_classif.py
+++ b/multiview_platform/mono_multi_view_classifiers/exec_classif.py
@@ -458,7 +458,7 @@ def exec_one_benchmark(core_index=-1, labels_dictionary=None, directory=None,
                                classification_indices, k_folds,
                                core_index, args["Base"]["type"], args["Base"]["pathf"], random_state,
                                labels,
-                               hyperParamSearch=hyper_param_search,
+                               hyper_param_search=hyper_param_search,
                                metrics=metrics,
                                nIter=args["Classification"]["hps_iter"], **argument)
         for argument in argument_dictionaries["Monoview"]]
diff --git a/multiview_platform/mono_multi_view_classifiers/monoview/exec_classif_mono_view.py b/multiview_platform/mono_multi_view_classifiers/monoview/exec_classif_mono_view.py
index 5c807f3ac3523e21b9b17ec7c91b5112385fa564..c61d5d12c2602d46917cf864756921b52a914ec7 100644
--- a/multiview_platform/mono_multi_view_classifiers/monoview/exec_classif_mono_view.py
+++ b/multiview_platform/mono_multi_view_classifiers/monoview/exec_classif_mono_view.py
@@ -30,22 +30,22 @@ __status__ = "Prototype"  # Production, Development, Prototype
 def exec_monoview_multicore(directory, name, labelsNames, classificationIndices,
                            KFolds, datasetFileIndex, databaseType,
                            path, randomState, labels,
-                           hyperParamSearch="randomizedSearch",
+                           hyper_param_search="randomized_search",
                            metrics=[["accuracy_score", None]], nIter=30,
                            **args):
     DATASET = h5py.File(path + name + str(datasetFileIndex) + ".hdf5", "r")
     neededViewIndex = args["viewIndex"]
     X = DATASET.get("View" + str(neededViewIndex))
     Y = labels
-    return ExecMonoview(directory, X, Y, name, labelsNames,
+    return exec_monoview(directory, X, Y, name, labelsNames,
                         classificationIndices, KFolds, 1, databaseType, path,
-                        randomState, hyperParamSearch=hyperParamSearch,
+                        randomState, hyper_param_search=hyper_param_search,
                         metrics=metrics, nIter=nIter, **args)
 
 
 def exec_monoview(directory, X, Y, name, labelsNames, classificationIndices,
                  KFolds, nbCores, databaseType, path,
-                 randomState, hyperParamSearch="randomizedSearch",
+                 randomState, hyper_param_search="randomized_search",
                  metrics=[["accuracy_score", None]], nIter=30, **args):
     logging.debug("Start:\t Loading data")
     kwargs, \
@@ -67,7 +67,7 @@ def exec_monoview(directory, X, Y, name, labelsNames, classificationIndices,
         + str(nbCores) + ", algorithm : " + CL_type)
 
     logging.debug("Start:\t Determine Train/Test split")
-    X_train, y_train, X_test, y_test, X_test_multiclass = initTrainTest(X, Y,
+    X_train, y_train, X_test, y_test, X_test_multiclass = init_train_test(X, Y,
                                                                         classificationIndices)
 
     logging.debug("Info:\t Shape X_train:" + str(
@@ -79,7 +79,7 @@ def exec_monoview(directory, X, Y, name, labelsNames, classificationIndices,
     logging.debug("Start:\t Generate classifier args")
     classifierModule = getattr(monoview_classifiers, CL_type)
     classifier_class_name = classifierModule.classifier_class_name
-    clKWARGS, testFoldsPreds = getHPs(classifierModule, hyperParamSearch,
+    clKWARGS, testFoldsPreds = getHPs(classifierModule, hyper_parameter_search,
                                       nIter, CL_type, classifier_class_name,
                                       X_train, y_train,
                                       randomState, outputFileName,
@@ -114,7 +114,7 @@ def exec_monoview(directory, X, Y, name, labelsNames, classificationIndices,
     stringAnalysis, \
     imagesAnalysis, \
     metricsScores = execute(name, classificationIndices, KFolds, nbCores,
-                            hyperParamSearch, metrics, nIter, feat, CL_type,
+                            hyper_parameter_search, metrics, nIter, feat, CL_type,
                             clKWARGS, labelsNames, X.shape,
                             y_train, y_train_pred, y_test, y_test_pred, t_end,
                             randomState, classifier, outputFileName)
diff --git a/multiview_platform/mono_multi_view_classifiers/multiview/additions/diversity_utils.py b/multiview_platform/mono_multi_view_classifiers/multiview/additions/diversity_utils.py
index 977730184b0f502af77fe4d0025e37d869eddccd..9cf1ba574b9acfe3e0374a67313704f9bf1fe3e5 100644
--- a/multiview_platform/mono_multi_view_classifiers/multiview/additions/diversity_utils.py
+++ b/multiview_platform/mono_multi_view_classifiers/multiview/additions/diversity_utils.py
@@ -4,7 +4,7 @@ import os
 
 import numpy as np
 
-from ...utils.multiclass import isBiclass, genMulticlassMonoviewDecision
+from ...utils.multiclass import is_biclass, gen_multiclass_monoview_decision
 
 
 def getClassifiersDecisions(allClassifersNames, viewsIndices, resultsMonoview):
diff --git a/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py b/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py
index 696c97e5cafd44e82d78bebbd9dd71d21d3405d8..fdbf358cf8ce67aa8fe7b9377c0bee89c3aaa43b 100644
--- a/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py
+++ b/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py
@@ -80,21 +80,21 @@ def saveResults(classifier, LABELS_DICTIONARY, stringAnalysis, views, classifier
 def exec_multiview_multicore(directory, coreIndex, name, learningRate, nbFolds,
                             databaseType, path, LABELS_DICTIONARY,
                             randomState, labels,
-                            hyperParamSearch=False, nbCores=1, metrics=None,
+                            hyper_param_search=False, nbCores=1, metrics=None,
                             nIter=30, **arguments):
     """Used to load an HDF5 dataset for each parallel job and execute multiview classification"""
     DATASET = h5py.File(path + name + str(coreIndex) + ".hdf5", "r")
-    return ExecMultiview(directory, DATASET, name, learningRate, nbFolds, 1,
+    return exec_multiview(directory, DATASET, name, learningRate, nbFolds, 1,
                          databaseType, path, LABELS_DICTIONARY,
                          randomState, labels,
-                         hyperParamSearch=hyperParamSearch, metrics=metrics,
+                          hyper_param_search=hyper_param_search, metrics=metrics,
                          nIter=nIter, **arguments)
 
 
 def exec_multiview(directory, DATASET, name, classificationIndices, KFolds,
-                  nbCores, databaseType, path,
-                  LABELS_DICTIONARY, randomState, labels,
-                  hyperParamSearch=False, metrics=None, nIter=30, **kwargs):
+                   nbCores, databaseType, path,
+                   LABELS_DICTIONARY, randomState, labels,
+                   hyper_param_search=False, metrics=None, nIter=30, **kwargs):
     """Used to execute multiview classification and result analysis"""
     logging.debug("Start:\t Initialize constants")
     CL_type, \
@@ -122,20 +122,20 @@ def exec_multiview(directory, DATASET, name, classificationIndices, KFolds,
     logging.debug("Done:\t Getting classifiers modules")
 
     logging.debug("Start:\t Optimizing hyperparameters")
-    if hyperParamSearch != "None":
+    if hyper_param_search != "None":
         classifier_config = hyper_parameter_search.searchBestSettings(DATASET, labels,
-                                                               classifier_module,
-                                                               classifier_name,
-                                                                    metrics[0],
-                                                               learningIndices,
-                                                               KFolds,
-                                                               randomState,
-                                                               directory,
-                                                               nb_cores=nbCores,
-                                                               viewsIndices=viewsIndices,
-                                                               searchingTool=hyperParamSearch,
-                                                               n_iter=nIter,
-                                                               classifier_config=classifier_config)
+                                                                      classifier_module,
+                                                                      classifier_name,
+                                                                      metrics[0],
+                                                                      learningIndices,
+                                                                      KFolds,
+                                                                      randomState,
+                                                                      directory,
+                                                                      nb_cores=nbCores,
+                                                                      viewsIndices=viewsIndices,
+                                                                      searchingTool=hyper_param_search,
+                                                                      n_iter=nIter,
+                                                                      classifier_config=classifier_config)
 
     classifier = getattr(classifier_module, classifier_name)(randomState,
                                                              **classifier_config)
@@ -177,7 +177,7 @@ def exec_multiview(directory, DATASET, name, classificationIndices, KFolds,
         classifier_config, classificationIndices,
         LABELS_DICTIONARY, views, nbCores, times,
         name, KFolds,
-        hyperParamSearch, nIter, metrics,
+        hyper_param_search, nIter, metrics,
         viewsIndices, randomState, labels, classifier_module)
     logging.info("Done:\t Result Analysis for " + CL_type)
 
@@ -283,7 +283,7 @@ if __name__ == "__main__":
     if args.log:
         logging.getLogger().addHandler(logging.StreamHandler())
 
-    res = ExecMultiview(directory, DATASET, name, classificationIndices, KFolds,
+    res = exec_multiview(directory, DATASET, name, classificationIndices, KFolds,
                         nbCores, databaseType, path,
                         LABELS_DICTIONARY, randomState, labels,
                         hyperParamSearch=hyperParamSearch, metrics=metrics,
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/execution.py b/multiview_platform/mono_multi_view_classifiers/utils/execution.py
index e5bfe258bccf5dc9dfd36c6c7ce43c6590ca0418..65cfae5df01a3b73045243d38e6f6533150fe871 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/execution.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/execution.py
@@ -108,10 +108,10 @@ def get_database_function(name, type_var):
     getDatabase : function
         The function that will be used to extract the database
     """
-    if name not in ["Fake", "Plausible"]:
-        get_database = getattr(DB, "getClassicDB" + type_var[1:])
+    if name not in ["fake", "plausible"]:
+        get_database = getattr(DB, "get_classic_db_" + type_var[1:])
     else:
-        get_database = getattr(DB, "get" + name + "DB" + type_var[1:])
+        get_database = getattr(DB, "get_" + name + "_db_" + type_var[1:])
     return get_database
 
 
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py b/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
index 0d86492787e2e290fc5d351ec446ada1c49c1049..e83eff45eb9a41b258fb71fec8a813c914155860 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
@@ -90,7 +90,7 @@ def makeMeNoisy(viewData, randomState, percentage=5):
     return noisyViewData
 
 
-def getPlausibleDBhdf5(features, pathF, name, NB_CLASS=3, LABELS_NAME="",
+def get_plausible_db_hdf5(features, pathF, name, NB_CLASS=3, LABELS_NAME="",
                        randomState=None, full=True, add_noise=False,
                        noise_std=0.15, nbView=3,
                    nbClass=2, datasetLength=100, randomStateInt=42, nbFeatures = 10):
@@ -380,7 +380,7 @@ def copyhdf5_dataset(source_data_file, destination_data_file, source_dataset_nam
             new_d_set.attrs[key] = value
 
 
-def get_classicDBhdf5(views, path_f, name_DB, nb_class, asked_labels_names,
+def get_classic_db_hdf5(views, path_f, name_DB, nb_class, asked_labels_names,
                      random_state, full=False, add_noise=False, noise_std=0.15,):
     """Used to load a hdf5 database"""
     if full:
@@ -467,7 +467,7 @@ def add_gaussian_noise(dataset_file, random_state, path_f, dataset_name,
     return noisy_dataset, dataset_name + "_noised"
 
 
-def getClassicDBcsv(views, pathF, nameDB, NB_CLASS, askedLabelsNames,
+def get_classic_db_csv(views, pathF, nameDB, NB_CLASS, askedLabelsNames,
                     randomState, full=False, add_noise=False, noise_std=0.15,
                     delimiter=","):
     # TODO : Update this one
@@ -497,7 +497,7 @@ def getClassicDBcsv(views, pathF, nameDB, NB_CLASS, askedLabelsNames,
     metaDataGrp.attrs["nbClass"] = len(labelsNames)
     metaDataGrp.attrs["datasetLength"] = len(labels)
     datasetFile.close()
-    datasetFile, labelsDictionary, dataset_name = getClassicDBhdf5(views, pathF, nameDB,
+    datasetFile, labelsDictionary, dataset_name = get_classic_db_hdf5(views, pathF, nameDB,
                                                      NB_CLASS, askedLabelsNames,
                                                      randomState, full)
 
diff --git a/multiview_platform/tests/test_ExecClassif.py b/multiview_platform/tests/test_ExecClassif.py
index 07ba4ecc0dce6ad16f6924625072b273bc5dd53c..ea295dbf36a30be1358582a5ff15d4a1f12a94df 100644
--- a/multiview_platform/tests/test_ExecClassif.py
+++ b/multiview_platform/tests/test_ExecClassif.py
@@ -20,7 +20,7 @@ class Test_initKWARGS(unittest.TestCase):
 
     def test_initKWARGSFunc_no_monoview(self):
         benchmark = {"monoview": {}, "multiview": {}}
-        args = exec_classif.initKWARGSFunc({}, benchmark)
+        args = exec_classif.init_kwargs_func({}, benchmark)
         self.assertEqual(args, {"monoview": {}, "multiview": {}})
 
 
@@ -205,15 +205,15 @@ class Test_init_argument_dictionaries(unittest.TestCase):
         self.assertEqual(arguments["multiview"][0], expected_output[0])
 
 
-def fakeBenchmarkExec(coreIndex=-1, a=7, args=1):
-    return [coreIndex, a]
+def fakeBenchmarkExec(core_index=-1, a=7, args=1):
+    return [core_index, a]
 
 
-def fakeBenchmarkExec_mutlicore(nbCores=-1, a=6, args=1):
-    return [nbCores, a]
+def fakeBenchmarkExec_mutlicore(nb_cores=-1, a=6, args=1):
+    return [nb_cores, a]
 
 
-def fakeBenchmarkExec_monocore(DATASET=1, a=4, args=1):
+def fakeBenchmarkExec_monocore(dataset_var=1, a=4, args=1):
     return [a]
 
 
@@ -247,10 +247,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(1, 2, 3, cls.argumentDictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-                                         execOneBenchmark=fakeBenchmarkExec,
-                                         execOneBenchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                         execOneBenchmarkMonoCore=fakeBenchmarkExec_monocore,
-                                         getResults=fakegetResults,
+                                         exec_one_benchmark=fakeBenchmarkExec,
+                                         exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
+                                         exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
+                                         get_results=fakegetResults,
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -260,10 +260,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 1, 2, cls.argumentDictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-                                         execOneBenchmark=fakeBenchmarkExec,
-                                         execOneBenchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                         execOneBenchmarkMonoCore=fakeBenchmarkExec_monocore,
-                                         getResults=fakegetResults,
+                                          exec_one_benchmark=fakeBenchmarkExec,
+                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
+                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
+                                          get_results=fakegetResults,
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -275,10 +275,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 2, 2, cls.argumentDictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-                                         execOneBenchmark=fakeBenchmarkExec,
-                                         execOneBenchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                         execOneBenchmarkMonoCore=fakeBenchmarkExec_monocore,
-                                         getResults=fakegetResults,
+                                          exec_one_benchmark=fakeBenchmarkExec,
+                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
+                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
+                                          get_results=fakegetResults,
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -286,10 +286,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 1, 1, cls.argumentDictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-                                         execOneBenchmark=fakeBenchmarkExec,
-                                         execOneBenchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                         execOneBenchmarkMonoCore=fakeBenchmarkExec_monocore,
-                                         getResults=fakegetResults,
+                                          exec_one_benchmark=fakeBenchmarkExec,
+                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
+                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
+                                          get_results=fakegetResults,
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -304,13 +304,13 @@ class Test_execBenchmark(unittest.TestCase):
 
 def fakeExecMono(directory, name, labelsNames, classificationIndices, kFolds,
                  coreIndex, type, pathF, randomState, labels,
-                 hyperParamSearch="try", metrics="try", nIter=1, **arguments):
+                 hyper_param_search="try", metrics="try", nIter=1, **arguments):
     return ["Mono", arguments]
 
 
 def fakeExecMulti(directory, coreIndex, name, classificationIndices, kFolds,
                   type, pathF, LABELS_DICTIONARY,
-                  randomState, labels, hyperParamSearch="", metrics=None,
+                  randomState, labels, hyper_param_search="", metrics=None,
                   nIter=1, **arguments):
     return ["Multi", arguments]
 
@@ -344,20 +344,20 @@ class Test_execOneBenchmark(unittest.TestCase):
             "Classification": {"hps_iter": 1}}
 
     def test_simple(cls):
-        flag, results = exec_classif.execOneBenchmark(coreIndex=10,
-                                                      LABELS_DICTIONARY={
+        flag, results = exec_classif.exec_one_benchmark(core_index=10,
+                                                        labels_dictionary={
                                                                    0: "a",
                                                                    1: "b"},
                                                       directory="multiview_platform/tests/tmp_tests/",
-                                                      classificationIndices=(
+                                                        classification_indices=(
                                                                [1, 2, 3, 4],
                                                                [0, 5, 6, 7, 8]),
                                                                args=cls.args,
-                                                               kFolds=FakeKfold(),
-                                                               randomState="try",
-                                                               hyperParamSearch="try",
+                                                        k_folds=FakeKfold(),
+                                                        random_state="try",
+                                                        hyper_param_search="try",
                                                                metrics="try",
-                                                               argumentDictionaries={
+                                                        argument_dictionaries={
                                                                    "Monoview": [
                                                                        {
                                                                            "try": 0},
@@ -369,16 +369,16 @@ class Test_execOneBenchmark(unittest.TestCase):
                                                                            "try4": 10}]},
                                                       benchmark="try",
                                                       views="try",
-                                                      viewsIndices="try",
+                                                        views_indices="try",
                                                       flag=None,
                                                       labels=np.array(
                                                                    [0, 1, 2, 1,
                                                                     2, 2, 2, 12,
                                                                     1, 2, 1, 1,
                                                                     2, 1, 21]),
-                                                      ExecMonoview_multicore=fakeExecMono,
+                                                        exec_monoview_multicore=fakeExecMono,
                                                       exec_multiview_multicore=fakeExecMulti,
-                                                      initMultiviewArguments=fakeInitMulti)
+                                                        init_multiview_arguments=fakeInitMulti)
 
         cls.assertEqual(flag, None)
         cls.assertEqual(results ,
@@ -411,17 +411,17 @@ class Test_execOneBenchmark_multicore(unittest.TestCase):
             "Classification": {"hps_iter": 1}}
 
     def test_simple(cls):
-        flag, results = exec_classif.execOneBenchmark_multicore(
-            nbCores=2,
-            LABELS_DICTIONARY={0: "a", 1: "b"},
+        flag, results = exec_classif.exec_one_benchmark_multicore(
+            nb_cores=2,
+            labels_dictionary={0: "a", 1: "b"},
             directory="multiview_platform/tests/tmp_tests/",
-            classificationIndices=([1, 2, 3, 4], [0, 10, 20, 30, 40]),
+            classification_indices=([1, 2, 3, 4], [0, 10, 20, 30, 40]),
             args=cls.args,
-            kFolds=FakeKfold(),
-            randomState="try",
-            hyperParamSearch="try",
+            k_folds=FakeKfold(),
+            random_state="try",
+            hyper_param_search="try",
             metrics="try",
-            argumentDictionaries={
+            argument_dictionaries={
                                                                    "monoview": [
                                                                        {
                                                                            "try": 0},
@@ -436,9 +436,9 @@ class Test_execOneBenchmark_multicore(unittest.TestCase):
             viewsIndices="try",
             flag=None,
             labels=np.array([0, 1, 2, 3, 4, 2, 2, 12, 1, 2, 1, 1, 2, 1, 21]),
-            ExecMonoview_multicore=fakeExecMono,
+            exec_monoview_multicore=fakeExecMono,
             exec_multiview_multicore=fakeExecMulti,
-            initMultiviewArguments=fakeInitMulti)
+            init_multiview_arguments=fakeInitMulti)
 
         cls.assertEqual(flag, None)
         cls.assertEqual(results ,
diff --git a/multiview_platform/tests/test_mono_view/test_ExecClassifMonoView.py b/multiview_platform/tests/test_mono_view/test_ExecClassifMonoView.py
index c5e70b74c7aadddf7b7d93bef5030e2911d1f647..43dcefa76126d59820490abff5a642a48a6eb63a 100644
--- a/multiview_platform/tests/test_mono_view/test_ExecClassifMonoView.py
+++ b/multiview_platform/tests/test_mono_view/test_ExecClassifMonoView.py
@@ -77,7 +77,7 @@ class Test_initTrainTest(unittest.TestCase):
                                      np.array([1, 3, 5, 7, 9])]
 
     def test_simple(cls):
-        X_train, y_train, X_test, y_test, X_test_multiclass = exec_classif_mono_view.initTrainTest(
+        X_train, y_train, X_test, y_test, X_test_multiclass = exec_classif_mono_view.init_train_test(
             cls.X, cls.Y, cls.classificationIndices)
         np.testing.assert_array_equal(X_train, np.array(
             [np.array([102, 435, 348, 270, 106]),
diff --git a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
index e59ce5fbc419a28643dff535be8fb6d1347a49bc..c97e04d02afcd366943b4eceeed3c6a7312077f8 100644
--- a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
+++ b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
@@ -22,7 +22,7 @@ class Test_copyhdf5Dataset(unittest.TestCase):
         cls.dataset.attrs["test_arg"] = "Am I copied"
 
     def test_simple_copy(cls):
-        get_multiview_db.copyhdf5Dataset(cls.dataset_file, cls.dataset_file,
+        get_multiview_db.copyhdf5_dataset(cls.dataset_file, cls.dataset_file,
                                        "test", "test_copy_1", np.arange(10))
         np.testing.assert_array_equal(cls.dataset_file.get("test").value,
                                       cls.dataset_file.get("test_copy_1").value)
@@ -31,7 +31,7 @@ class Test_copyhdf5Dataset(unittest.TestCase):
 
     def test_copy_only_some_indices(cls):
         usedIndices = cls.random_state.choice(10, 6, replace=False)
-        get_multiview_db.copyhdf5Dataset(cls.dataset_file, cls.dataset_file,
+        get_multiview_db.copyhdf5_dataset(cls.dataset_file, cls.dataset_file,
                                        "test", "test_copy", usedIndices)
         np.testing.assert_array_equal(
             cls.dataset_file.get("test").value[usedIndices, :],
@@ -68,7 +68,7 @@ class Test_filterViews(unittest.TestCase):
         cls.temp_dataset_file = h5py.File(
             "multiview_platform/tests/temp_tests/test_copy_temp.hdf5", "w")
         cls.dataset_file.copy("Metadata", cls.temp_dataset_file)
-        get_multiview_db.filterViews(cls.dataset_file, cls.temp_dataset_file,
+        get_multiview_db.filter_views(cls.dataset_file, cls.temp_dataset_file,
                                      cls.views, np.arange(10))
         cls.assertEqual(cls.dataset_file.get("View1").attrs["name"],
                         cls.temp_dataset_file.get("View0").attrs["name"])
@@ -82,7 +82,7 @@ class Test_filterViews(unittest.TestCase):
             "multiview_platform/tests/temp_tests/test_copy_temp.hdf5", "w")
         cls.dataset_file.copy("Metadata", cls.temp_dataset_file)
         usedIndices = cls.random_state.choice(10, 6, replace=False)
-        get_multiview_db.filterViews(cls.dataset_file, cls.temp_dataset_file,
+        get_multiview_db.filter_views(cls.dataset_file, cls.temp_dataset_file,
                                      cls.views, usedIndices)
         np.testing.assert_array_equal(
             cls.dataset_file.get("View1").value[usedIndices, :],
@@ -112,7 +112,7 @@ class Test_filterLabels(unittest.TestCase):
     def test_simple(cls):
         newLabels, \
         newLabelsNames, \
-        usedIndices = get_multiview_db.filterLabels(cls.labelsSet,
+        usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
                                                     cls.askedLabelsNamesSet,
                                                     cls.fullLabels,
                                                     cls.availableLabelsNames,
@@ -127,7 +127,7 @@ class Test_filterLabels(unittest.TestCase):
         cls.availableLabelsNames = ["test_label_0", "test_label_1"]
         newLabels, \
         newLabelsNames, \
-        usedIndices = get_multiview_db.filterLabels(cls.labelsSet,
+        usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
                                                     cls.askedLabelsNamesSet,
                                                     cls.fullLabels,
                                                     cls.availableLabelsNames,
@@ -141,7 +141,7 @@ class Test_filterLabels(unittest.TestCase):
                                    "test_label_2", "test_label_3",
                                    "chicken_is_heaven"}
         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.filterLabels(cls.labelsSet,
+            get_multiview_db.filter_labels(cls.labelsSet,
                                           cls.askedLabelsNamesSet,
                                           cls.fullLabels,
                                           cls.availableLabelsNames,
@@ -155,7 +155,7 @@ class Test_filterLabels(unittest.TestCase):
                                 "test_label_3"]
         newLabels, \
         newLabelsNames, \
-        usedIndices = get_multiview_db.filterLabels(cls.labelsSet,
+        usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
                                                     cls.askedLabelsNamesSet,
                                                     cls.fullLabels,
                                                     cls.availableLabelsNames,
@@ -179,7 +179,7 @@ class Test_selectAskedLabels(unittest.TestCase):
     def test_simple(cls):
         newLabels, \
         newLabelsNames, \
-        usedIndices = get_multiview_db.selectAskedLabels(cls.askedLabelsNamesSet,
+        usedIndices = get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
                                                          cls.availableLabelsNames,
                                                          cls.askedLabelsNames,
                                                          cls.fullLabels)
@@ -194,7 +194,7 @@ class Test_selectAskedLabels(unittest.TestCase):
                                 "test_label_3"]
         newLabels, \
         newLabelsNames, \
-        usedIndices = get_multiview_db.selectAskedLabels(cls.askedLabelsNamesSet,
+        usedIndices = get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
                                                          cls.availableLabelsNames,
                                                          cls.askedLabelsNames,
                                                          cls.fullLabels)
@@ -206,7 +206,7 @@ class Test_selectAskedLabels(unittest.TestCase):
         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3",
                                    "chicken_is_heaven"}
         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.selectAskedLabels(cls.askedLabelsNamesSet,
+            get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
                                                cls.availableLabelsNames,
                                                cls.askedLabelsNames,
                                                cls.fullLabels)
@@ -224,7 +224,7 @@ class Test_getAllLabels(unittest.TestCase):
                                     "test_label_2", "test_label_3"]
 
     def test_simple(cls):
-        newLabels, newLabelsNames, usedIndices = get_multiview_db.getAllLabels(
+        newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels(
             cls.fullLabels, cls.availableLabelsNames)
         cls.assertEqual(cls.availableLabelsNames, newLabelsNames)
         np.testing.assert_array_equal(usedIndices, np.arange(10))
@@ -241,7 +241,7 @@ class Test_fillLabelNames(unittest.TestCase):
         cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)]
 
     def test_simple(cls):
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fillLabelNames(
+        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
             cls.NB_CLASS,
             cls.askedLabelsNames,
             cls.randomState,
@@ -251,7 +251,7 @@ class Test_fillLabelNames(unittest.TestCase):
 
     def test_missing_labels_names(cls):
         cls.NB_CLASS = 39
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fillLabelNames(
+        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
             cls.NB_CLASS,
             cls.askedLabelsNames,
             cls.randomState,
@@ -279,7 +279,7 @@ class Test_fillLabelNames(unittest.TestCase):
         cls.NB_CLASS = 2
         cls.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4",
                                 "test_label_6"]
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fillLabelNames(
+        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
             cls.NB_CLASS,
             cls.askedLabelsNames,
             cls.randomState,
@@ -298,14 +298,14 @@ class Test_allAskedLabelsAreAvailable(unittest.TestCase):
 
     def test_asked_available_labels(cls):
         cls.assertTrue(
-            get_multiview_db.allAskedLabelsAreAvailable(cls.askedLabelsNamesSet,
+            get_multiview_db.all_asked_labels_are_available(cls.askedLabelsNamesSet,
                                                         cls.availableLabelsNames))
 
     def test_asked_unavailable_label(cls):
         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3",
                                    "chicken_is_heaven"}
         cls.assertFalse(
-            get_multiview_db.allAskedLabelsAreAvailable(cls.askedLabelsNamesSet,
+            get_multiview_db.all_asked_labels_are_available(cls.askedLabelsNamesSet,
                                                         cls.availableLabelsNames))
 
 
@@ -316,18 +316,18 @@ class Test_getClasses(unittest.TestCase):
         cls.random_state = np.random.RandomState(42)
 
     def test_multiclass(cls):
-        labelsSet = get_multiview_db.getClasses(
+        labelsSet = get_multiview_db.get_classes(
             cls.random_state.randint(0, 5, 30))
         cls.assertEqual(labelsSet, {0, 1, 2, 3, 4})
 
     def test_biclass(cls):
-        labelsSet = get_multiview_db.getClasses(
+        labelsSet = get_multiview_db.get_classes(
             cls.random_state.randint(0, 2, 30))
         cls.assertEqual(labelsSet, {0, 1})
 
     def test_one_class(cls):
         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.getClasses(np.zeros(30, dtype=int))
+            get_multiview_db.get_classes(np.zeros(30, dtype=int))
         exception = catcher.exception
         # cls.assertTrue("Dataset must have at least two different labels" in exception)
 
@@ -363,7 +363,7 @@ class Test_getClassicDBhdf5(unittest.TestCase):
             cls.dataset.attrs["name"] = "test_view_" + str(i)
 
     def test_simple(cls):
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBhdf5(
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
             cls.views, cls.pathF, cls.nameDB,
             cls.NB_CLASS, cls.askedLabelsNames,
             cls.random_state)
@@ -381,7 +381,7 @@ class Test_getClassicDBhdf5(unittest.TestCase):
         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
                             "test_label_3"]
         NB_CLASS = 4
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBhdf5(
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
             cls.views, cls.pathF, cls.nameDB,
             NB_CLASS, askedLabelsNames,
             cls.random_state)
@@ -398,7 +398,7 @@ class Test_getClassicDBhdf5(unittest.TestCase):
 
     def test_all_views_asked(cls):
         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBhdf5(views,
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
                                                                                           cls.pathF,
                                                                                           cls.nameDB,
                                                                                           cls.NB_CLASS,
@@ -423,7 +423,7 @@ class Test_getClassicDBhdf5(unittest.TestCase):
                             "test_label_3"]
         NB_CLASS = 4
         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBhdf5(views,
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
                                                                                           cls.pathF,
                                                                                           cls.nameDB,
                                                                                           NB_CLASS,
@@ -481,7 +481,7 @@ class Test_getClassicDBcsv(unittest.TestCase):
             cls.datas.append(data)
 
     def test_simple(cls):
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBcsv(
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
             cls.views, cls.pathF, cls.nameDB,
             cls.NB_CLASS, cls.askedLabelsNames,
             cls.random_state, delimiter=",")
@@ -497,7 +497,7 @@ class Test_getClassicDBcsv(unittest.TestCase):
 
     def test_all_views_asked(cls):
         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBcsv(views,
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
                                                                                          cls.pathF,
                                                                                          cls.nameDB,
                                                                                          cls.NB_CLASS,
@@ -522,7 +522,7 @@ class Test_getClassicDBcsv(unittest.TestCase):
         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
                             "test_label_3"]
         NB_CLASS = 4
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBcsv(
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
             cls.views, cls.pathF, cls.nameDB,
             NB_CLASS, askedLabelsNames,
             cls.random_state, delimiter=",")
@@ -541,7 +541,7 @@ class Test_getClassicDBcsv(unittest.TestCase):
                             "test_label_3"]
         NB_CLASS = 4
         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.getClassicDBcsv(views,
+        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
                                                                                          cls.pathF,
                                                                                          cls.nameDB,
                                                                                          NB_CLASS,
diff --git a/multiview_platform/tests/test_utils/test_execution.py b/multiview_platform/tests/test_utils/test_execution.py
index 003b928bccd7816d0b84d86249fece750c4c2abe..b974324d3d0a0027762c7ca6e7ab0fbb0042eca3 100644
--- a/multiview_platform/tests/test_utils/test_execution.py
+++ b/multiview_platform/tests/test_utils/test_execution.py
@@ -3,6 +3,8 @@ import unittest
 
 import numpy as np
 
+from ..utils import rm_tmp
+
 from ...mono_multi_view_classifiers.utils import execution
 
 
@@ -12,7 +14,7 @@ class Test_parseTheArgs(unittest.TestCase):
         self.args = []
 
     def test_empty_args(self):
-        args = execution.parseTheArgs([])
+        args = execution.parse_the_args([])
         # print args
 
 
@@ -25,14 +27,14 @@ class Test_initStatsIterRandomStates(unittest.TestCase):
 
     def test_one_statiter(cls):
         cls.state = cls.randomState.get_state()[1]
-        statsIterRandomStates = execution.initStatsIterRandomStates(
+        statsIterRandomStates = execution.init_stats_iter_random_states(
             cls.statsIter, cls.randomState)
         np.testing.assert_array_equal(statsIterRandomStates[0].get_state()[1],
                                       cls.state)
 
     def test_multiple_iter(cls):
         cls.statsIter = 3
-        statsIterRandomStates = execution.initStatsIterRandomStates(
+        statsIterRandomStates = execution.init_stats_iter_random_states(
             cls.statsIter, cls.randomState)
         cls.assertAlmostEqual(len(statsIterRandomStates), 3)
         cls.assertNotEqual(statsIterRandomStates[0].randint(5000),
@@ -51,50 +53,51 @@ class Test_getDatabaseFunction(unittest.TestCase):
         cls.type = ".csv"
 
     def test_simple(cls):
-        getDB = execution.getDatabaseFunction(cls.name, cls.type)
+        getDB = execution.get_database_function(cls.name, cls.type)
         from ...mono_multi_view_classifiers.utils.get_multiview_db import \
-            getClassicDBcsv
-        cls.assertEqual(getDB, getClassicDBcsv)
+            get_classic_db_csv
+        cls.assertEqual(getDB, get_classic_db_csv)
 
     def test_hdf5(cls):
         cls.type = ".hdf5"
-        getDB = execution.getDatabaseFunction(cls.name, cls.type)
+        getDB = execution.get_database_function(cls.name, cls.type)
         from ...mono_multi_view_classifiers.utils.get_multiview_db import \
-            getClassicDBhdf5
-        cls.assertEqual(getDB, getClassicDBhdf5)
+            get_classic_db_hdf5
+        cls.assertEqual(getDB, get_classic_db_hdf5)
 
     def test_plausible_hdf5(cls):
-        cls.name = "Plausible"
+        cls.name = "plausible"
         cls.type = ".hdf5"
-        getDB = execution.getDatabaseFunction(cls.name, cls.type)
+        getDB = execution.get_database_function(cls.name, cls.type)
         from ...mono_multi_view_classifiers.utils.get_multiview_db import \
-            getPlausibleDBhdf5
-        cls.assertEqual(getDB, getPlausibleDBhdf5)
+            get_plausible_db_hdf5
+        cls.assertEqual(getDB, get_plausible_db_hdf5)
 
 
 class Test_initRandomState(unittest.TestCase):
 
     def setUp(self):
-        os.mkdir("multiview_platform/tests/temp_tests/")
+        rm_tmp()
+        os.mkdir("multiview_platform/tests/tmp_tests/")
 
     def tearDown(self):
-        os.rmdir("multiview_platform/tests/temp_tests/")
+        os.rmdir("multiview_platform/tests/tmp_tests/")
 
     def test_random_state_42(self):
         randomState_42 = np.random.RandomState(42)
-        randomState = execution.initRandomState("42",
-                                                "multiview_platform/tests/temp_tests/")
-        os.remove("multiview_platform/tests/temp_tests/randomState.pickle")
+        randomState = execution.init_random_state("42",
+                                                "multiview_platform/tests/tmp_tests/")
+        os.remove("multiview_platform/tests/tmp_tests/randomState.pickle")
         np.testing.assert_array_equal(randomState.beta(1, 100, 100),
                                       randomState_42.beta(1, 100, 100))
 
     def test_random_state_pickle(self):
-        randomState_to_pickle = execution.initRandomState(None,
-                                                          "multiview_platform/tests/temp_tests/")
-        pickled_randomState = execution.initRandomState(
-            "multiview_platform/tests/temp_tests/randomState.pickle",
-            "multiview_platform/tests/temp_tests/")
-        os.remove("multiview_platform/tests/temp_tests/randomState.pickle")
+        randomState_to_pickle = execution.init_random_state(None,
+                                                          "multiview_platform/tests/tmp_tests/")
+        pickled_randomState = execution.init_random_state(
+            "multiview_platform/tests/tmp_tests/randomState.pickle",
+            "multiview_platform/tests/tmp_tests/")
+        os.remove("multiview_platform/tests/tmp_tests/randomState.pickle")
         np.testing.assert_array_equal(randomState_to_pickle.beta(1, 100, 100),
                                       pickled_randomState.beta(1, 100, 100))
 
@@ -144,7 +147,7 @@ class Test_genSplits(unittest.TestCase):
         self.splitRatio = 0.2
 
     def test_simple(self):
-        splits = execution.genSplits(self.labels, self.splitRatio,
+        splits = execution.gen_splits(self.labels, self.splitRatio,
                                      self.statsIterRandomStates)
         self.assertEqual(len(splits), 3)
         self.assertEqual(len(splits[1]), 2)
@@ -159,7 +162,7 @@ class Test_genSplits(unittest.TestCase):
         self.assertGreater(len(np.where(self.labels[splits[1][1]] == 2)[0]), 0)
 
     def test_genSplits_no_iter(self):
-        splits = execution.genSplits(self.labels, self.splitRatio,
+        splits = execution.gen_splits(self.labels, self.splitRatio,
                                      self.statsIterRandomStates)
         self.assertEqual(len(splits), 3)
         self.assertEqual(len(splits[0]), 2)
@@ -194,7 +197,7 @@ class Test_genDirecortiesNames(unittest.TestCase):
         cls.stats_iter = 5
 
     def test_simple_ovo(cls):
-        directories = execution.genDirecortiesNames(cls.directory,
+        directories = execution.gen_direcorties_names(cls.directory,
                                                     cls.stats_iter)
         cls.assertEqual(len(directories), 5)
         cls.assertEqual(directories[0], "../chicken_is_heaven/iter_1/")
@@ -202,7 +205,7 @@ class Test_genDirecortiesNames(unittest.TestCase):
 
     def test_ovo_no_iter(cls):
         cls.stats_iter = 1
-        directories = execution.genDirecortiesNames(cls.directory,
+        directories = execution.gen_direcorties_names(cls.directory,
                                                     cls.stats_iter)
         cls.assertEqual(len(directories), 1)
         cls.assertEqual(directories[0], "../chicken_is_heaven/")
diff --git a/multiview_platform/tests/test_utils/test_multiclass.py b/multiview_platform/tests/test_utils/test_multiclass.py
index a73e9f2b044dd8cd42c534e21d610ba384a897ec..7b00a32842e3dcbd7b8c7d99fdd1a2c8267d4126 100644
--- a/multiview_platform/tests/test_utils/test_multiclass.py
+++ b/multiview_platform/tests/test_utils/test_multiclass.py
@@ -21,7 +21,7 @@ class Test_genMulticlassLabels(unittest.TestCase):
              cls.testIndices[1]]]
 
     def test_one_versus_one(cls):
-        multiclassLabels, labelsIndices, oldIndicesMulticlass = multiclass.genMulticlassLabels(
+        multiclassLabels, labelsIndices, oldIndicesMulticlass = multiclass.gen_multiclass_labels(
             cls.labels, "oneVersusOne", cls.classificationIndices)
         cls.assertEqual(len(multiclassLabels), 10)
         cls.assertEqual(labelsIndices,