diff --git a/summit/multiview_platform/monoview/exec_classif_mono_view.py b/summit/multiview_platform/monoview/exec_classif_mono_view.py index 3c7a99f281959e47a913acfae365b8670dbdf2dc..df1cef88e8725a024807d1bf526f63f11e18aae4 100644 --- a/summit/multiview_platform/monoview/exec_classif_mono_view.py +++ b/summit/multiview_platform/monoview/exec_classif_mono_view.py @@ -215,7 +215,7 @@ def get_hyper_params(classifier_module, search_method, classifier_module_name, random_state=random_state, framework="monoview", n_jobs=nb_cores, **hps_kwargs) - hps.fit(X_train, y_train, **kwargs[classifier_module_name]) + hps.fit(X_train, y_train) cl_kwargs = hps.get_best_params() hps.gen_report(output_file_name) logging.info("Done:\t " + search_method + " best settings") diff --git a/summit/multiview_platform/multiview/exec_multiview.py b/summit/multiview_platform/multiview/exec_multiview.py index fc203e4ef6adfca6ae759cb168d79af9210ace53..1f3dcdc39b11f0d0e79c3f1629068bbfd72973b4 100644 --- a/summit/multiview_platform/multiview/exec_multiview.py +++ b/summit/multiview_platform/multiview/exec_multiview.py @@ -265,9 +265,9 @@ def exec_multiview(directory, dataset_var, name, classification_indices, classifier_module = getattr(multiview_classifiers, cl_type) classifier_name = classifier_module.classifier_class_name # classifierClass = getattr(classifierModule, CL_type + "Class") - logging.debug("Done:\t Getting classifiers modules") + logging.info("Done:\t Getting classifiers modules") - logging.debug("Start:\t Optimizing hyperparameters") + logging.info("Start:\t Optimizing hyperparameters") hps_beg = time.monotonic() if hps_method != "None": hps_method_class = getattr(hyper_parameter_search, hps_method) @@ -298,16 +298,16 @@ def exec_multiview(directory, dataset_var, name, classification_indices, **classifier_config), random_state, multiview=True, y=dataset_var.get_labels()) - logging.debug("Done:\t Optimizing hyperparameters") - logging.debug("Start:\t Fitting classifier") + logging.info("Done:\t Optimizing hyperparameters") + logging.info("Start:\t Fitting classifier") fit_beg = time.monotonic() classifier.fit(dataset_var, dataset_var.get_labels(), train_indices=learning_indices, view_indices=views_indices) fit_duration = time.monotonic() - fit_beg - logging.debug("Done:\t Fitting classifier") + logging.info("Done:\t Fitting classifier") - logging.debug("Start:\t Predicting") + logging.info("Start:\t Predicting") train_pred = classifier.predict(dataset_var, sample_indices=learning_indices, view_indices=views_indices) @@ -349,10 +349,10 @@ def exec_multiview(directory, dataset_var, name, classification_indices, confusion_matrix = result_analyzer.analyze() logging.info("Done:\t Result Analysis for " + cl_type) - logging.debug("Start:\t Saving preds") + logging.info("Start:\t Saving preds") save_results(string_analysis, images_analysis, output_file_name, confusion_matrix) - logging.debug("Start:\t Saving preds") + logging.info("Start:\t Saving preds") return MultiviewResult(cl_type, classifier_config, metrics_scores, full_pred, hps_duration, fit_duration,