diff --git a/config_files/config_test.yml b/config_files/config_test.yml
index 862062fa9bb84514d8bc99b6daa7afa06b3940be..cb002a30e0fd90d4ef266e013e6d51b54db9ccd1 100644
--- a/config_files/config_test.yml
+++ b/config_files/config_test.yml
@@ -22,8 +22,8 @@ Classification:
   nb_folds: 2
   nb_class: 2
   classes:
-  type: ["multiview"]
-  algos_monoview: ["decision_tree","bayesian_inference_fusion"]
+  type: ["monoview"]
+  algos_monoview: ["adaboost",]
   algos_multiview: ["svm_jumbo_fusion"]
   stats_iter: 1
   metrics: ["accuracy_score", "f1_score"]
diff --git a/docs/build/.doctrees/analyzeresult.doctree b/docs/build/.doctrees/analyzeresult.doctree
index 32ea8228f4c715ceb76e92fd8116a22012d4ba7a..b9ccc7ba6c0a0a33dd12057c5418f9f893ed212e 100644
Binary files a/docs/build/.doctrees/analyzeresult.doctree and b/docs/build/.doctrees/analyzeresult.doctree differ
diff --git a/docs/build/.doctrees/environment.pickle b/docs/build/.doctrees/environment.pickle
index 177485eace56b05e56482e86907b31add3574cb8..c1bf415e835029acd293ce48727440702d267526 100644
Binary files a/docs/build/.doctrees/environment.pickle and b/docs/build/.doctrees/environment.pickle differ
diff --git a/docs/build/.doctrees/references/monomulti/exec_classif.doctree b/docs/build/.doctrees/references/monomulti/exec_classif.doctree
index e0d281f79132feac8cf2bb51d76dc1dd4b149342..20d898b1226e724b32a0219afd1180fee3a50045 100644
Binary files a/docs/build/.doctrees/references/monomulti/exec_classif.doctree and b/docs/build/.doctrees/references/monomulti/exec_classif.doctree differ
diff --git a/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.doctree b/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.doctree
index 3ad7211789792edef1f48d884ba597de2755878d..0f00d82619258470e99c654164220bd0586bf716 100644
Binary files a/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.doctree and b/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.doctree differ
diff --git a/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.utils.doctree b/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.utils.doctree
index 5e229efe213676659d3a0e6b5e1d7d71b1c7343d..8048e1555c670affd6d7fba09621d62ca554e1e7 100644
Binary files a/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.utils.doctree and b/docs/build/.doctrees/references/multiview_platform.mono_multi_view_classifiers.utils.doctree differ
diff --git a/docs/build/.doctrees/references/multiview_platform.tests.doctree b/docs/build/.doctrees/references/multiview_platform.tests.doctree
index e4fc70919d63fec7ea4c58ff1f76399c10a638ca..24e0d186e5904864b92d75442abacb9f3ce85058 100644
Binary files a/docs/build/.doctrees/references/multiview_platform.tests.doctree and b/docs/build/.doctrees/references/multiview_platform.tests.doctree differ
diff --git a/docs/build/.doctrees/tutorials/example2.doctree b/docs/build/.doctrees/tutorials/example2.doctree
index f78a86c7ab4ce8d1496b5c7f217ca03b12227fa2..f8ebd36104129a78d08c5248278279b11ce49b2e 100644
Binary files a/docs/build/.doctrees/tutorials/example2.doctree and b/docs/build/.doctrees/tutorials/example2.doctree differ
diff --git a/docs/build/.doctrees/tutorials/index.doctree b/docs/build/.doctrees/tutorials/index.doctree
index d859ae3000f41e9eb048e955e3f5d1feafe3d388..929ad886c37ddaf43797d5841a1bc99629fefcac 100644
Binary files a/docs/build/.doctrees/tutorials/index.doctree and b/docs/build/.doctrees/tutorials/index.doctree differ
diff --git a/docs/build/_sources/tutorials/example2.rst.txt b/docs/build/_sources/tutorials/example2.rst.txt
index 12bdb6bd0c6a4902e25d0d956844f7971de2a5c5..16f8381363b9ef182ea3d1fe68f6dfe16e1966c2 100644
--- a/docs/build/_sources/tutorials/example2.rst.txt
+++ b/docs/build/_sources/tutorials/example2.rst.txt
@@ -264,5 +264,9 @@ The figure below represents the duration of the execution on a personal computer
 
 The duration is in seconds, and we used 2,5,10,15,20 as values for ``nb_folds`` and 2,5,10,20,30,50,100 for ``hps_iter`` with two monoview classifiers and one multiview classifier on simulated data.
 
+.. note::
+    In order to compensate the fact that the multiview classifiers have more complex problems to solve, it is possible to use ``"randomized_search-equiv"`` as the HPS optimization method to allow
+    ``hps_iter`` draws for the monoview classifiers and ``hps_iter * nb_view`` draws for the ones that are multiview.
+
 
 
diff --git a/docs/build/_sources/tutorials/index.rst.txt b/docs/build/_sources/tutorials/index.rst.txt
index 751c9e059806ed946bdbd3028ef8079904b7fa9b..2011f5488eb99578dda23501928f3ffa32a7ae3f 100644
--- a/docs/build/_sources/tutorials/index.rst.txt
+++ b/docs/build/_sources/tutorials/index.rst.txt
@@ -12,4 +12,5 @@ The following are some tutorials which explain how to use the toolbox.
     example2
     example3
     example4
+    example5
 
diff --git a/docs/build/analyzeresult.html b/docs/build/analyzeresult.html
index baa2213eca4e31cc80a233fa2ac063bcbb5da29c..706d0209a86fe4fbaafd8a8f07b81b5857d40421 100644
--- a/docs/build/analyzeresult.html
+++ b/docs/build/analyzeresult.html
@@ -80,7 +80,7 @@ label combination, regrouping the scores for each metrics and the information us
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass">
-<code class="descname">analyze_iter_multiclass</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directory</em>, <em>stats_iter</em>, <em>metrics</em>, <em>data_base_name</em>, <em>nb_examples</em>, <em>example_ids</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass" title="Permalink to this definition">¶</a></dt>
+<code class="descname">analyze_iter_multiclass</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directory</em>, <em>stats_iter</em>, <em>metrics</em>, <em>data_base_name</em>, <em>nb_examples</em>, <em>example_ids</em>, <em>multiclass_labels</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to mean the multiclass results on the iterations executed with different random states</p>
 </dd></dl>
 
@@ -175,7 +175,7 @@ and -100 if the example was not classified.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass">
-<code class="descname">gen_metrics_scores_multiclass</code><span class="sig-paren">(</span><em>results</em>, <em>true_labels</em>, <em>metrics</em>, <em>arguments_dictionaries</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass" title="Permalink to this definition">¶</a></dt>
+<code class="descname">gen_metrics_scores_multiclass</code><span class="sig-paren">(</span><em>results</em>, <em>true_labels</em>, <em>metrics_list</em>, <em>arguments_dictionaries</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to add all the metrics scores to the multiclass result structure  for each clf and each iteration</p>
 </dd></dl>
 
@@ -340,7 +340,7 @@ organized as :
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d">
-<code class="descname">plot_2d</code><span class="sig-paren">(</span><em>data</em>, <em>classifiers_names</em>, <em>nbClassifiers</em>, <em>nbExamples</em>, <em>fileName</em>, <em>minSize=10</em>, <em>width_denominator=2.0</em>, <em>height_denominator=20.0</em>, <em>stats_iter=1</em>, <em>use_plotly=True</em>, <em>example_ids=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d" title="Permalink to this definition">¶</a></dt>
+<code class="descname">plot_2d</code><span class="sig-paren">(</span><em>data</em>, <em>classifiers_names</em>, <em>nbClassifiers</em>, <em>nbExamples</em>, <em>file_name</em>, <em>minSize=10</em>, <em>labels=None</em>, <em>width_denominator=2.0</em>, <em>height_denominator=20.0</em>, <em>stats_iter=1</em>, <em>use_plotly=True</em>, <em>example_ids=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to generate a 2D plot of the errors.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
@@ -353,7 +353,7 @@ and -100 if the example was not classified.</li>
 <li><strong>nbClassifiers</strong> (<em>int</em>) – The number of classifiers.</li>
 <li><strong>nbExamples</strong> (<em>int</em>) – The number of examples.</li>
 <li><strong>nbCopies</strong> (<em>int</em>) – The number of times the data is copied (classifier wise) in order for the figure to be more readable</li>
-<li><strong>fileName</strong> (<em>str</em>) – The name of the file in which the figure will be saved (“error_analysis_2D.png” will be added at the end)</li>
+<li><strong>file_name</strong> (<em>str</em>) – The name of the file in which the figure will be saved (“error_analysis_2D.png” will be added at the end)</li>
 <li><strong>minSize</strong> (<em>int</em><em>, </em><em>optinal</em><em>, </em><em>default: 10</em>) – The minimum width and height of the figure.</li>
 <li><strong>width_denominator</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default: 1.0</em>) – To obtain the image width, the number of classifiers will be divided by this number.</li>
 <li><strong>height_denominator</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default: 1.0</em>) – To obtain the image width, the number of examples will be divided by this number.</li>
@@ -388,7 +388,7 @@ and -100 if the example was not classified.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores">
-<code class="descname">plot_metric_scores</code><span class="sig-paren">(</span><em>train_scores</em>, <em>test_scores</em>, <em>names</em>, <em>nb_results</em>, <em>metric_name</em>, <em>file_name</em>, <em>tag=''</em>, <em>train_STDs=None</em>, <em>test_STDs=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores" title="Permalink to this definition">¶</a></dt>
+<code class="descname">plot_metric_scores</code><span class="sig-paren">(</span><em>train_scores</em>, <em>test_scores</em>, <em>names</em>, <em>nb_results</em>, <em>metric_name</em>, <em>file_name</em>, <em>tag=''</em>, <em>train_STDs=None</em>, <em>test_STDs=None</em>, <em>use_plotly=True</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to plot and save the score barplot for a specific metric.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
diff --git a/docs/build/genindex.html b/docs/build/genindex.html
index 87d09978993f6ce35b36bea67fdb1b812462b6e0..e4ced6ffbb110cacff02372809087791799133f4 100644
--- a/docs/build/genindex.html
+++ b/docs/build/genindex.html
@@ -160,14 +160,10 @@
       <li><a href="references/monomulti/exec_classif.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark">exec_benchmark() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>, <a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark">[1]</a>
 </li>
       <li><a href="references/monomulti/exec_classif.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif">exec_classif() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>, <a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif">[1]</a>
-</li>
-      <li><a href="references/monomulti/exec_classif.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark">exec_one_benchmark() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>, <a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark">[1]</a>
 </li>
   </ul></td>
   <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_mono_core">exec_one_benchmark_mono_core() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>
-</li>
-      <li><a href="references/monomulti/exec_classif.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore">exec_one_benchmark_multicore() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>, <a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore">[1]</a>
 </li>
       <li><a href="references/multiview_platform.html#multiview_platform.execute.execute">execute() (in module multiview_platform.execute)</a>
 </li>
@@ -495,15 +491,17 @@
 </li>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_feature_importances">publish_feature_importances() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
-  </ul></td>
-  <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_biclass_example_errors">publish_iter_biclass_example_errors() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
+  </ul></td>
+  <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_biclass_metrics_scores">publish_iter_biclass_metrics_scores() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_example_errors">publish_iter_multiclass_example_errors() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_metrics_scores">publish_iter_multiclass_metrics_scores() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
+</li>
+      <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_tracebacks">publish_tracebacks() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.publishExampleErrors">publishExampleErrors() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
@@ -538,6 +536,10 @@
 <table style="width: 100%" class="indextable genindextable"><tr>
   <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.mono_multi_view_classifiers.utils.html#multiview_platform.mono_multi_view_classifiers.utils.configuration.save_config">save_config() (in module multiview_platform.mono_multi_view_classifiers.utils.configuration)</a>
+</li>
+      <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.save_dict_to_text">save_dict_to_text() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
+</li>
+      <li><a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.result_analysis.save_failed">save_failed() (in module multiview_platform.mono_multi_view_classifiers.result_analysis)</a>
 </li>
       <li><a href="references/monomulti/metrics.html#multiview_platform.mono_multi_view_classifiers.metrics.framework.score">score() (in module multiview_platform.mono_multi_view_classifiers.metrics.framework)</a>
 </li>
@@ -551,11 +553,9 @@
 </li>
       <li><a href="references/monomulti/exec_classif.html#multiview_platform.mono_multi_view_classifiers.exec_classif.set_element">set_element() (in module multiview_platform.mono_multi_view_classifiers.exec_classif)</a>, <a href="references/multiview_platform.mono_multi_view_classifiers.html#multiview_platform.mono_multi_view_classifiers.exec_classif.set_element">[1]</a>
 </li>
-      <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.setUp">setUp() (multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark class method)</a>
+      <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_genKFolds.setUp">setUp() (Test_genKFolds method)</a>
 
       <ul>
-        <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_genKFolds.setUp">(Test_genKFolds method)</a>
-</li>
         <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_genSplits.setUp">(Test_genSplits method)</a>
 </li>
         <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ResultAnalysis.Test_get_arguments.setUp">(Test_get_arguments method)</a>
@@ -575,8 +575,6 @@
         <li><a href="references/multiview_platform.tests.test_metrics.html#multiview_platform.tests.test_metrics.test_accuracy_score.Test_accuracy_score.setUpClass">(Test_accuracy_score method)</a>
 </li>
         <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries.setUpClass">(multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries class method)</a>
-</li>
-        <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.setUpClass">(multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore class method)</a>
 </li>
         <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_get_path_dict.setUpClass">(multiview_platform.tests.test_ExecClassif.Test_get_path_dict class method)</a>
 </li>
@@ -621,16 +619,12 @@
 <h2 id="T">T</h2>
 <table style="width: 100%" class="indextable genindextable"><tr>
   <td style="width: 33%; vertical-align: top;"><ul>
-      <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.tearDown">tearDown() (multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark class method)</a>
+      <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv.tearDown">tearDown() (multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv class method)</a>
 
       <ul>
         <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_hdf5.tearDown">(Test_get_classic_db_hdf5 method)</a>
 </li>
         <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_initRandomState.tearDown">(Test_initRandomState method)</a>
-</li>
-        <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.tearDown">(multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore class method)</a>
-</li>
-        <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv.tearDown">(multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv class method)</a>
 </li>
       </ul></li>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execBenchmark.tearDownClass">tearDownClass() (multiview_platform.tests.test_ExecClassif.Test_execBenchmark class method)</a>
@@ -668,10 +662,6 @@
       <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_parseTheArgs.test_empty_args">test_empty_args() (Test_parseTheArgs method)</a>
 </li>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execBenchmark">Test_execBenchmark (class in multiview_platform.tests.test_ExecClassif)</a>
-</li>
-      <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark">Test_execOneBenchmark (class in multiview_platform.tests.test_ExecClassif)</a>
-</li>
-      <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore">Test_execOneBenchmark_multicore (class in multiview_platform.tests.test_ExecClassif)</a>
 </li>
       <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_configuration.Test_get_the_args.test_file_loading">test_file_loading() (Test_get_the_args method)</a>
 </li>
@@ -723,10 +713,10 @@
 </li>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries.test_init_argument_dictionaries_multiview">test_init_argument_dictionaries_multiview() (Test_InitArgumentDictionaries method)</a>
 </li>
-  </ul></td>
-  <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries.test_init_argument_dictionaries_multiview_complex">test_init_argument_dictionaries_multiview_complex() (Test_InitArgumentDictionaries method)</a>
 </li>
+  </ul></td>
+  <td style="width: 33%; vertical-align: top;"><ul>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries.test_init_argument_dictionaries_multiview_multiple">test_init_argument_dictionaries_multiview_multiple() (Test_InitArgumentDictionaries method)</a>
 </li>
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries.test_init_argument_dictionaries_multiview_multiple_complex">test_init_argument_dictionaries_multiview_multiple_complex() (Test_InitArgumentDictionaries method)</a>
@@ -776,10 +766,6 @@
       <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execBenchmark.test_simple">test_simple() (Test_execBenchmark method)</a>
 
       <ul>
-        <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.test_simple">(Test_execOneBenchmark method)</a>
-</li>
-        <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.test_simple">(Test_execOneBenchmark_multicore method)</a>
-</li>
         <li><a href="references/multiview_platform.tests.html#multiview_platform.tests.test_ResultAnalysis.Test_format_previous_results.test_simple">(Test_format_previous_results method)</a>
 </li>
         <li><a href="references/multiview_platform.tests.test_utils.html#multiview_platform.tests.test_utils.test_execution.Test_genSplits.test_simple">(Test_genSplits method)</a>
diff --git a/docs/build/index.html b/docs/build/index.html
index a9ca0f9f95793cdb92940bdfd7046179dfa58ca4..306ba5c865433a584ccded648a4e3dec0d835e73 100644
--- a/docs/build/index.html
+++ b/docs/build/index.html
@@ -100,6 +100,10 @@ contain the root <cite>toctree</cite> directive.</p>
 <li class="toctree-l3"><a class="reference internal" href="tutorials/example4.html#adding-additional-information-on-the-examples">Adding additional information on the examples</a></li>
 </ul>
 </li>
+<li class="toctree-l2"><a class="reference internal" href="tutorials/example5.html">Taking control : Use your own algorithms</a><ul>
+<li class="toctree-l3"><a class="reference internal" href="tutorials/example5.html#simple-task-adding-a-monoview-classifier">Simple task : Adding a monoview classifier</a></li>
+</ul>
+</li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="references/multiview_platform.html">multiview_platform references</a><ul>
diff --git a/docs/build/objects.inv b/docs/build/objects.inv
index dcf1f18c8c2377145346b06b02467f1cad00325b..894f065d75819f2f0ffe9edf44c7b56a0c9aa19a 100644
Binary files a/docs/build/objects.inv and b/docs/build/objects.inv differ
diff --git a/docs/build/py-modindex.html b/docs/build/py-modindex.html
index 0e6daedb1b59b6854763a6e3cb13247c27b84176..64097138f62c7ec9dc997935e532c177bb2e4cb9 100644
--- a/docs/build/py-modindex.html
+++ b/docs/build/py-modindex.html
@@ -160,7 +160,7 @@
      <tr class="cg-1">
        <td></td>
        <td>&#160;&#160;&#160;
-       <a href="references/multiview_platform.html#module-multiview_platform.tests"><code class="xref">multiview_platform.tests</code></a></td><td>
+       <a href="references/multiview_platform.tests.html#module-multiview_platform.tests"><code class="xref">multiview_platform.tests</code></a></td><td>
        <em></em></td></tr>
      <tr class="cg-1">
        <td></td>
diff --git a/docs/build/references/monomulti/exec_classif.html b/docs/build/references/monomulti/exec_classif.html
index 46574b8852b0afe57824f3dcb5557a1a068211c3..499b0c231b8dbd0668d8bf74771eda34daab2b78 100644
--- a/docs/build/references/monomulti/exec_classif.html
+++ b/docs/build/references/monomulti/exec_classif.html
@@ -89,7 +89,7 @@ examples and the cross validation folds.</p>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark">
-<code class="descname">exec_benchmark</code><span class="sig-paren">(</span><em>nb_cores</em>, <em>stats_iter</em>, <em>nb_multiclass</em>, <em>benchmark_arguments_dictionaries</em>, <em>classification_indices</em>, <em>directories</em>, <em>directory</em>, <em>multi_class_labels</em>, <em>metrics</em>, <em>labels_dictionary</em>, <em>nb_labels</em>, <em>dataset_var</em>, <em>exec_one_benchmark=&lt;function exec_one_benchmark&gt;</em>, <em>exec_one_benchmark_multicore=&lt;function exec_one_benchmark_multicore&gt;</em>, <em>exec_one_benchmark_mono_core=&lt;function exec_one_benchmark_mono_core&gt;</em>, <em>get_results=&lt;function get_results&gt;</em>, <em>delete=&lt;function delete_HDF5&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark" title="Permalink to this definition">¶</a></dt>
+<code class="descname">exec_benchmark</code><span class="sig-paren">(</span><em>nb_cores</em>, <em>stats_iter</em>, <em>nb_multiclass</em>, <em>benchmark_arguments_dictionaries</em>, <em>classification_indices</em>, <em>directories</em>, <em>directory</em>, <em>multi_class_labels</em>, <em>metrics</em>, <em>labels_dictionary</em>, <em>nb_labels</em>, <em>dataset_var</em>, <em>exec_one_benchmark_mono_core=&lt;function exec_one_benchmark_mono_core&gt;</em>, <em>get_results=&lt;function get_results&gt;</em>, <em>delete=&lt;function delete_HDF5&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to execute the needed benchmark(s) on multicore or mono-core functions.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
@@ -128,21 +128,21 @@ multiclass testing set.</li>
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif">
 <code class="descname">exec_classif</code><span class="sig-paren">(</span><em>arguments</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif" title="Permalink to this definition">¶</a></dt>
-<dd><p>Main function to execute the benchmark</p>
-</dd></dl>
-
-<dl class="function">
-<dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark">
-<code class="descname">exec_one_benchmark</code><span class="sig-paren">(</span><em>core_index=-1</em>, <em>labels_dictionary=None</em>, <em>directory=None</em>, <em>classification_indices=None</em>, <em>args=None</em>, <em>k_folds=None</em>, <em>random_state=None</em>, <em>hyper_param_search=None</em>, <em>metrics=None</em>, <em>argument_dictionaries=None</em>, <em>benchmark=None</em>, <em>views=None</em>, <em>views_indices=None</em>, <em>flag=None</em>, <em>labels=None</em>, <em>exec_monoview_multicore=&lt;function exec_monoview_multicore&gt;</em>, <em>exec_multiview_multicore=&lt;function exec_multiview_multicore&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark" title="Permalink to this definition">¶</a></dt>
-<dd><p>Used to run a benchmark using one core. ExecMonoview_multicore, initMultiviewArguments and
-exec_multiview_multicore args are only used for tests</p>
-</dd></dl>
-
-<dl class="function">
-<dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore">
-<code class="descname">exec_one_benchmark_multicore</code><span class="sig-paren">(</span><em>nb_cores=-1</em>, <em>labels_dictionary=None</em>, <em>directory=None</em>, <em>classification_indices=None</em>, <em>args=None</em>, <em>k_folds=None</em>, <em>random_state=None</em>, <em>hyper_param_search=None</em>, <em>metrics=None</em>, <em>argument_dictionaries=None</em>, <em>benchmark=None</em>, <em>views=None</em>, <em>views_indices=None</em>, <em>flag=None</em>, <em>labels=None</em>, <em>exec_monoview_multicore=&lt;function exec_monoview_multicore&gt;</em>, <em>exec_multiview_multicore=&lt;function exec_multiview_multicore&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore" title="Permalink to this definition">¶</a></dt>
-<dd><p>Used to run a benchmark using multiple cores. ExecMonoview_multicore, initMultiviewArguments and
-exec_multiview_multicore args are only used for tests</p>
+<dd><p>Runs the benchmark with the given arguments</p>
+<table class="docutils field-list" frame="void" rules="none">
+<col class="field-name" />
+<col class="field-body" />
+<tbody valign="top">
+<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>arguments</strong> – </td>
+</tr>
+<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><ul class="simple">
+<li><em>&gt;&gt;&gt; exec_classif([–config_path, /path/to/config/files/])</em></li>
+<li><em>&gt;&gt;&gt;</em></li>
+</ul>
+</td>
+</tr>
+</tbody>
+</table>
 </dd></dl>
 
 <dl class="function">
diff --git a/docs/build/references/multiview_platform.html b/docs/build/references/multiview_platform.html
index 2d4b5e01b74145260162e41b7d8e76d1ab9441aa..6d89ec329903cc4aadbc9fc8f72de6cd40b78d6a 100644
--- a/docs/build/references/multiview_platform.html
+++ b/docs/build/references/multiview_platform.html
@@ -19,7 +19,7 @@
     <link rel="index" title="Index" href="../genindex.html" />
     <link rel="search" title="Search" href="../search.html" />
     <link rel="next" title="multiview_platform.mono_multi_view_classifiers package" href="multiview_platform.mono_multi_view_classifiers.html" />
-    <link rel="prev" title="Taking control : Use your own dataset" href="../tutorials/example4.html" /> 
+    <link rel="prev" title="Taking control : Use your own algorithms" href="../tutorials/example5.html" /> 
   </head><body>
     <div class="related" role="navigation" aria-label="related navigation">
       <h3>Navigation</h3>
@@ -34,7 +34,7 @@
           <a href="multiview_platform.mono_multi_view_classifiers.html" title="multiview_platform.mono_multi_view_classifiers package"
              accesskey="N">next</a> |</li>
         <li class="right" >
-          <a href="../tutorials/example4.html" title="Taking control : Use your own dataset"
+          <a href="../tutorials/example5.html" title="Taking control : Use your own algorithms"
              accesskey="P">previous</a> |</li>
         <li class="nav-item nav-item-0"><a href="../index.html">MultiviewPlatform 0 documentation</a> &#187;</li> 
       </ul>
@@ -307,8 +307,8 @@
 </ul>
 
   <h4>Previous topic</h4>
-  <p class="topless"><a href="../tutorials/example4.html"
-                        title="previous chapter">Taking control : Use your own dataset</a></p>
+  <p class="topless"><a href="../tutorials/example5.html"
+                        title="previous chapter">Taking control : Use your own algorithms</a></p>
   <h4>Next topic</h4>
   <p class="topless"><a href="multiview_platform.mono_multi_view_classifiers.html"
                         title="next chapter">multiview_platform.mono_multi_view_classifiers package</a></p>
@@ -348,7 +348,7 @@
           <a href="multiview_platform.mono_multi_view_classifiers.html" title="multiview_platform.mono_multi_view_classifiers package"
              >next</a> |</li>
         <li class="right" >
-          <a href="../tutorials/example4.html" title="Taking control : Use your own dataset"
+          <a href="../tutorials/example5.html" title="Taking control : Use your own algorithms"
              >previous</a> |</li>
         <li class="nav-item nav-item-0"><a href="../index.html">MultiviewPlatform 0 documentation</a> &#187;</li> 
       </ul>
diff --git a/docs/build/references/multiview_platform.mono_multi_view_classifiers.html b/docs/build/references/multiview_platform.mono_multi_view_classifiers.html
index 81c6a46566cacb8579d40203d64741833f529975..470c49f0387ac1a277c11dcfe378e0693108eee5 100644
--- a/docs/build/references/multiview_platform.mono_multi_view_classifiers.html
+++ b/docs/build/references/multiview_platform.mono_multi_view_classifiers.html
@@ -216,7 +216,7 @@ examples and the cross validation folds.</p>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark">
-<code class="descname">exec_benchmark</code><span class="sig-paren">(</span><em>nb_cores</em>, <em>stats_iter</em>, <em>nb_multiclass</em>, <em>benchmark_arguments_dictionaries</em>, <em>classification_indices</em>, <em>directories</em>, <em>directory</em>, <em>multi_class_labels</em>, <em>metrics</em>, <em>labels_dictionary</em>, <em>nb_labels</em>, <em>dataset_var</em>, <em>exec_one_benchmark=&lt;function exec_one_benchmark&gt;</em>, <em>exec_one_benchmark_multicore=&lt;function exec_one_benchmark_multicore&gt;</em>, <em>exec_one_benchmark_mono_core=&lt;function exec_one_benchmark_mono_core&gt;</em>, <em>get_results=&lt;function get_results&gt;</em>, <em>delete=&lt;function delete_HDF5&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark" title="Permalink to this definition">¶</a></dt>
+<code class="descname">exec_benchmark</code><span class="sig-paren">(</span><em>nb_cores</em>, <em>stats_iter</em>, <em>nb_multiclass</em>, <em>benchmark_arguments_dictionaries</em>, <em>classification_indices</em>, <em>directories</em>, <em>directory</em>, <em>multi_class_labels</em>, <em>metrics</em>, <em>labels_dictionary</em>, <em>nb_labels</em>, <em>dataset_var</em>, <em>exec_one_benchmark_mono_core=&lt;function exec_one_benchmark_mono_core&gt;</em>, <em>get_results=&lt;function get_results&gt;</em>, <em>delete=&lt;function delete_HDF5&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_benchmark" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to execute the needed benchmark(s) on multicore or mono-core functions.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
@@ -255,14 +255,21 @@ multiclass testing set.</li>
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif">
 <code class="descname">exec_classif</code><span class="sig-paren">(</span><em>arguments</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_classif" title="Permalink to this definition">¶</a></dt>
-<dd><p>Main function to execute the benchmark</p>
-</dd></dl>
-
-<dl class="function">
-<dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark">
-<code class="descname">exec_one_benchmark</code><span class="sig-paren">(</span><em>core_index=-1</em>, <em>labels_dictionary=None</em>, <em>directory=None</em>, <em>classification_indices=None</em>, <em>args=None</em>, <em>k_folds=None</em>, <em>random_state=None</em>, <em>hyper_param_search=None</em>, <em>metrics=None</em>, <em>argument_dictionaries=None</em>, <em>benchmark=None</em>, <em>views=None</em>, <em>views_indices=None</em>, <em>flag=None</em>, <em>labels=None</em>, <em>exec_monoview_multicore=&lt;function exec_monoview_multicore&gt;</em>, <em>exec_multiview_multicore=&lt;function exec_multiview_multicore&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark" title="Permalink to this definition">¶</a></dt>
-<dd><p>Used to run a benchmark using one core. ExecMonoview_multicore, initMultiviewArguments and
-exec_multiview_multicore args are only used for tests</p>
+<dd><p>Runs the benchmark with the given arguments</p>
+<table class="docutils field-list" frame="void" rules="none">
+<col class="field-name" />
+<col class="field-body" />
+<tbody valign="top">
+<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>arguments</strong> – </td>
+</tr>
+<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><ul class="simple">
+<li><em>&gt;&gt;&gt; exec_classif([–config_path, /path/to/config/files/])</em></li>
+<li><em>&gt;&gt;&gt;</em></li>
+</ul>
+</td>
+</tr>
+</tbody>
+</table>
 </dd></dl>
 
 <dl class="function">
@@ -270,13 +277,6 @@ exec_multiview_multicore args are only used for tests</p>
 <code class="descname">exec_one_benchmark_mono_core</code><span class="sig-paren">(</span><em>dataset_var=None</em>, <em>labels_dictionary=None</em>, <em>directory=None</em>, <em>classification_indices=None</em>, <em>args=None</em>, <em>k_folds=None</em>, <em>random_state=None</em>, <em>hyper_param_search=None</em>, <em>metrics=None</em>, <em>argument_dictionaries=None</em>, <em>benchmark=None</em>, <em>views=None</em>, <em>views_indices=None</em>, <em>flag=None</em>, <em>labels=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_mono_core" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
-<dl class="function">
-<dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore">
-<code class="descname">exec_one_benchmark_multicore</code><span class="sig-paren">(</span><em>nb_cores=-1</em>, <em>labels_dictionary=None</em>, <em>directory=None</em>, <em>classification_indices=None</em>, <em>args=None</em>, <em>k_folds=None</em>, <em>random_state=None</em>, <em>hyper_param_search=None</em>, <em>metrics=None</em>, <em>argument_dictionaries=None</em>, <em>benchmark=None</em>, <em>views=None</em>, <em>views_indices=None</em>, <em>flag=None</em>, <em>labels=None</em>, <em>exec_monoview_multicore=&lt;function exec_monoview_multicore&gt;</em>, <em>exec_multiview_multicore=&lt;function exec_multiview_multicore&gt;</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.exec_one_benchmark_multicore" title="Permalink to this definition">¶</a></dt>
-<dd><p>Used to run a benchmark using multiple cores. ExecMonoview_multicore, initMultiviewArguments and
-exec_multiview_multicore args are only used for tests</p>
-</dd></dl>
-
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.exec_classif.extract_dict">
 <code class="descname">extract_dict</code><span class="sig-paren">(</span><em>classifier_config</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.exec_classif.extract_dict" title="Permalink to this definition">¶</a></dt>
@@ -553,7 +553,7 @@ label combination, regrouping the scores for each metrics and the information us
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass">
-<code class="descname">analyze_iter_multiclass</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directory</em>, <em>stats_iter</em>, <em>metrics</em>, <em>data_base_name</em>, <em>nb_examples</em>, <em>example_ids</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass" title="Permalink to this definition">¶</a></dt>
+<code class="descname">analyze_iter_multiclass</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directory</em>, <em>stats_iter</em>, <em>metrics</em>, <em>data_base_name</em>, <em>nb_examples</em>, <em>example_ids</em>, <em>multiclass_labels</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.analyze_iter_multiclass" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to mean the multiclass results on the iterations executed with different random states</p>
 </dd></dl>
 
@@ -658,7 +658,7 @@ and -100 if the example was not classified.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass">
-<code class="descname">gen_metrics_scores_multiclass</code><span class="sig-paren">(</span><em>results</em>, <em>true_labels</em>, <em>metrics</em>, <em>arguments_dictionaries</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass" title="Permalink to this definition">¶</a></dt>
+<code class="descname">gen_metrics_scores_multiclass</code><span class="sig-paren">(</span><em>results</em>, <em>true_labels</em>, <em>metrics_list</em>, <em>arguments_dictionaries</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.gen_metrics_scores_multiclass" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to add all the metrics scores to the multiclass result structure  for each clf and each iteration</p>
 </dd></dl>
 
@@ -833,7 +833,7 @@ organized as :
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d">
-<code class="descname">plot_2d</code><span class="sig-paren">(</span><em>data</em>, <em>classifiers_names</em>, <em>nbClassifiers</em>, <em>nbExamples</em>, <em>fileName</em>, <em>minSize=10</em>, <em>width_denominator=2.0</em>, <em>height_denominator=20.0</em>, <em>stats_iter=1</em>, <em>use_plotly=True</em>, <em>example_ids=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d" title="Permalink to this definition">¶</a></dt>
+<code class="descname">plot_2d</code><span class="sig-paren">(</span><em>data</em>, <em>classifiers_names</em>, <em>nbClassifiers</em>, <em>nbExamples</em>, <em>file_name</em>, <em>minSize=10</em>, <em>labels=None</em>, <em>width_denominator=2.0</em>, <em>height_denominator=20.0</em>, <em>stats_iter=1</em>, <em>use_plotly=True</em>, <em>example_ids=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_2d" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to generate a 2D plot of the errors.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
@@ -846,7 +846,7 @@ and -100 if the example was not classified.</li>
 <li><strong>nbClassifiers</strong> (<em>int</em>) – The number of classifiers.</li>
 <li><strong>nbExamples</strong> (<em>int</em>) – The number of examples.</li>
 <li><strong>nbCopies</strong> (<em>int</em>) – The number of times the data is copied (classifier wise) in order for the figure to be more readable</li>
-<li><strong>fileName</strong> (<em>str</em>) – The name of the file in which the figure will be saved (“error_analysis_2D.png” will be added at the end)</li>
+<li><strong>file_name</strong> (<em>str</em>) – The name of the file in which the figure will be saved (“error_analysis_2D.png” will be added at the end)</li>
 <li><strong>minSize</strong> (<em>int</em><em>, </em><em>optinal</em><em>, </em><em>default: 10</em>) – The minimum width and height of the figure.</li>
 <li><strong>width_denominator</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default: 1.0</em>) – To obtain the image width, the number of classifiers will be divided by this number.</li>
 <li><strong>height_denominator</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default: 1.0</em>) – To obtain the image width, the number of examples will be divided by this number.</li>
@@ -881,7 +881,7 @@ and -100 if the example was not classified.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores">
-<code class="descname">plot_metric_scores</code><span class="sig-paren">(</span><em>train_scores</em>, <em>test_scores</em>, <em>names</em>, <em>nb_results</em>, <em>metric_name</em>, <em>file_name</em>, <em>tag=''</em>, <em>train_STDs=None</em>, <em>test_STDs=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores" title="Permalink to this definition">¶</a></dt>
+<code class="descname">plot_metric_scores</code><span class="sig-paren">(</span><em>train_scores</em>, <em>test_scores</em>, <em>names</em>, <em>nb_results</em>, <em>metric_name</em>, <em>file_name</em>, <em>tag=''</em>, <em>train_STDs=None</em>, <em>test_STDs=None</em>, <em>use_plotly=True</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.plot_metric_scores" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to plot and save the score barplot for a specific metric.</p>
 <table class="docutils field-list" frame="void" rules="none">
 <col class="field-name" />
@@ -911,7 +911,7 @@ and -100 if the example was not classified.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.publishExampleErrors">
-<code class="descname">publishExampleErrors</code><span class="sig-paren">(</span><em>example_errors</em>, <em>directory</em>, <em>databaseName</em>, <em>labels_names</em>, <em>example_ids</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publishExampleErrors" title="Permalink to this definition">¶</a></dt>
+<code class="descname">publishExampleErrors</code><span class="sig-paren">(</span><em>example_errors</em>, <em>directory</em>, <em>databaseName</em>, <em>labels_names</em>, <em>example_ids</em>, <em>labels</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publishExampleErrors" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <dl class="function">
@@ -943,7 +943,7 @@ Values : The scores and names of each classifier .</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.publishMulticlassExmapleErrors">
-<code class="descname">publishMulticlassExmapleErrors</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directories</em>, <em>databaseName</em>, <em>example_ids</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publishMulticlassExmapleErrors" title="Permalink to this definition">¶</a></dt>
+<code class="descname">publishMulticlassExmapleErrors</code><span class="sig-paren">(</span><em>multiclass_results</em>, <em>directories</em>, <em>databaseName</em>, <em>example_ids</em>, <em>multiclass_labels</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publishMulticlassExmapleErrors" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <dl class="function">
@@ -968,7 +968,7 @@ Values : The scores and names of each classifier .</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_example_errors">
-<code class="descname">publish_iter_multiclass_example_errors</code><span class="sig-paren">(</span><em>iter_multiclass_results</em>, <em>directory</em>, <em>classifiers_names</em>, <em>stats_iter</em>, <em>example_ids</em>, <em>min_size=10</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_example_errors" title="Permalink to this definition">¶</a></dt>
+<code class="descname">publish_iter_multiclass_example_errors</code><span class="sig-paren">(</span><em>iter_multiclass_results</em>, <em>directory</em>, <em>classifiers_names</em>, <em>stats_iter</em>, <em>example_ids</em>, <em>multiclass_labels</em>, <em>min_size=10</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_example_errors" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <dl class="function">
@@ -976,6 +976,21 @@ Values : The scores and names of each classifier .</li>
 <code class="descname">publish_iter_multiclass_metrics_scores</code><span class="sig-paren">(</span><em>iter_multiclass_results</em>, <em>classifiers_names</em>, <em>data_base_name</em>, <em>directory</em>, <em>stats_iter</em>, <em>min_size=10</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_iter_multiclass_metrics_scores" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
+<dl class="function">
+<dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.publish_tracebacks">
+<code class="descname">publish_tracebacks</code><span class="sig-paren">(</span><em>directory</em>, <em>database_name</em>, <em>labels_names</em>, <em>tracebacks</em>, <em>flag</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.publish_tracebacks" title="Permalink to this definition">¶</a></dt>
+<dd></dd></dl>
+
+<dl class="function">
+<dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.save_dict_to_text">
+<code class="descname">save_dict_to_text</code><span class="sig-paren">(</span><em>dictionnary</em>, <em>output_file</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.save_dict_to_text" title="Permalink to this definition">¶</a></dt>
+<dd></dd></dl>
+
+<dl class="function">
+<dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.save_failed">
+<code class="descname">save_failed</code><span class="sig-paren">(</span><em>failed_list</em>, <em>directory</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.save_failed" title="Permalink to this definition">¶</a></dt>
+<dd></dd></dl>
+
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.result_analysis.sort_by_test_score">
 <code class="descname">sort_by_test_score</code><span class="sig-paren">(</span><em>train_scores</em>, <em>test_scores</em>, <em>names</em>, <em>train_STDs=None</em>, <em>test_STDs=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.result_analysis.sort_by_test_score" title="Permalink to this definition">¶</a></dt>
diff --git a/docs/build/references/multiview_platform.mono_multi_view_classifiers.utils.html b/docs/build/references/multiview_platform.mono_multi_view_classifiers.utils.html
index dfb9b8df6638f6f556e9917ccc60596b37e679ef..2d9b2723a9187507f9f21d623f6c890efa3b7461 100644
--- a/docs/build/references/multiview_platform.mono_multi_view_classifiers.utils.html
+++ b/docs/build/references/multiview_platform.mono_multi_view_classifiers.utils.html
@@ -754,7 +754,7 @@ for example 10 e -(float)</p>
 
 <dl class="class">
 <dt id="multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV">
-<em class="property">class </em><code class="descname">MultiviewCompatibleRandomizedSearchCV</code><span class="sig-paren">(</span><em>estimator</em>, <em>param_distributions</em>, <em>n_iter=10</em>, <em>refit=True</em>, <em>n_jobs=1</em>, <em>scoring=None</em>, <em>cv=None</em>, <em>random_state=None</em>, <em>learning_indices=None</em>, <em>view_indices=None</em>, <em>framework='monoview'</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV" title="Permalink to this definition">¶</a></dt>
+<em class="property">class </em><code class="descname">MultiviewCompatibleRandomizedSearchCV</code><span class="sig-paren">(</span><em>estimator</em>, <em>param_distributions</em>, <em>n_iter=10</em>, <em>refit=True</em>, <em>n_jobs=1</em>, <em>scoring=None</em>, <em>cv=None</em>, <em>random_state=None</em>, <em>learning_indices=None</em>, <em>view_indices=None</em>, <em>framework='monoview'</em>, <em>equivalent_draws=True</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV" title="Permalink to this definition">¶</a></dt>
 <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.model_selection._search.RandomizedSearchCV</span></code></p>
 <dl class="method">
 <dt id="multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV.fit">
@@ -815,12 +815,12 @@ train/test set.</li>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.randomized_search">
-<code class="descname">randomized_search</code><span class="sig-paren">(</span><em>X, y, framework, random_state, output_file_name, classifier_module, classifier_name, folds=4, nb_cores=1, metric=['accuracy_score', None], n_iter=30, classifier_kwargs=None, learning_indices=None, view_indices=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.randomized_search" title="Permalink to this definition">¶</a></dt>
+<code class="descname">randomized_search</code><span class="sig-paren">(</span><em>X, y, framework, random_state, output_file_name, classifier_module, classifier_name, folds=4, nb_cores=1, metric=['accuracy_score', None], n_iter=30, classifier_kwargs=None, learning_indices=None, view_indices=None, equivalent_draws=True</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.randomized_search" title="Permalink to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <dl class="function">
 <dt id="multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.search_best_settings">
-<code class="descname">search_best_settings</code><span class="sig-paren">(</span><em>dataset_var</em>, <em>labels</em>, <em>classifier_module</em>, <em>classifier_name</em>, <em>metrics</em>, <em>learning_indices</em>, <em>i_k_folds</em>, <em>random_state</em>, <em>directory</em>, <em>views_indices=None</em>, <em>nb_cores=1</em>, <em>searching_tool='randomized_search'</em>, <em>n_iter=1</em>, <em>classifier_config=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.search_best_settings" title="Permalink to this definition">¶</a></dt>
+<code class="descname">search_best_settings</code><span class="sig-paren">(</span><em>dataset_var</em>, <em>labels</em>, <em>classifier_module</em>, <em>classifier_name</em>, <em>metrics</em>, <em>learning_indices</em>, <em>i_k_folds</em>, <em>random_state</em>, <em>directory</em>, <em>views_indices=None</em>, <em>nb_cores=1</em>, <em>searching_tool='randomized_search-equiv'</em>, <em>n_iter=1</em>, <em>classifier_config=None</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.search_best_settings" title="Permalink to this definition">¶</a></dt>
 <dd><p>Used to select the right hyper-parameter optimization function
 to optimize hyper parameters</p>
 </dd></dl>
diff --git a/docs/build/references/multiview_platform.tests.html b/docs/build/references/multiview_platform.tests.html
index d5ddc52a57f7e01f5c3efcf365a0c84e875b6200..54b2c5eb59ffeec9d02e6613bb5097653ed7a1a1 100644
--- a/docs/build/references/multiview_platform.tests.html
+++ b/docs/build/references/multiview_platform.tests.html
@@ -223,52 +223,6 @@
 
 </dd></dl>
 
-<dl class="class">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark">
-<em class="property">class </em><code class="descname">Test_execOneBenchmark</code><span class="sig-paren">(</span><em>methodName='runTest'</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark" title="Permalink to this definition">¶</a></dt>
-<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">unittest.case.TestCase</span></code></p>
-<dl class="classmethod">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.setUp">
-<em class="property">classmethod </em><code class="descname">setUp</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.setUp" title="Permalink to this definition">¶</a></dt>
-<dd><p>Hook method for setting up the test fixture before exercising it.</p>
-</dd></dl>
-
-<dl class="classmethod">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.tearDown">
-<em class="property">classmethod </em><code class="descname">tearDown</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.tearDown" title="Permalink to this definition">¶</a></dt>
-<dd><p>Hook method for deconstructing the test fixture after testing it.</p>
-</dd></dl>
-
-<dl class="method">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.test_simple">
-<code class="descname">test_simple</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark.test_simple" title="Permalink to this definition">¶</a></dt>
-<dd></dd></dl>
-
-</dd></dl>
-
-<dl class="class">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore">
-<em class="property">class </em><code class="descname">Test_execOneBenchmark_multicore</code><span class="sig-paren">(</span><em>methodName='runTest'</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore" title="Permalink to this definition">¶</a></dt>
-<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">unittest.case.TestCase</span></code></p>
-<dl class="classmethod">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.setUpClass">
-<em class="property">classmethod </em><code class="descname">setUpClass</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.setUpClass" title="Permalink to this definition">¶</a></dt>
-<dd><p>Hook method for setting up class fixture before running tests in the class.</p>
-</dd></dl>
-
-<dl class="classmethod">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.tearDown">
-<em class="property">classmethod </em><code class="descname">tearDown</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.tearDown" title="Permalink to this definition">¶</a></dt>
-<dd><p>Hook method for deconstructing the test fixture after testing it.</p>
-</dd></dl>
-
-<dl class="method">
-<dt id="multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.test_simple">
-<code class="descname">test_simple</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore.test_simple" title="Permalink to this definition">¶</a></dt>
-<dd></dd></dl>
-
-</dd></dl>
-
 <dl class="class">
 <dt id="multiview_platform.tests.test_ExecClassif.Test_get_path_dict">
 <em class="property">class </em><code class="descname">Test_get_path_dict</code><span class="sig-paren">(</span><em>methodName='runTest'</em><span class="sig-paren">)</span><a class="headerlink" href="#multiview_platform.tests.test_ExecClassif.Test_get_path_dict" title="Permalink to this definition">¶</a></dt>
diff --git a/docs/build/searchindex.js b/docs/build/searchindex.js
index 02f293985aea12872818717116c2dccc1d58ba9f..1d6269da33cbd72baa34a2f239d6afca40b9ac3c 100644
--- a/docs/build/searchindex.js
+++ b/docs/build/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["analyzeresult","api","execution","index","modules","readme_link","references/monomulti/exec_classif","references/monomulti/metrics","references/monomulti/multiview_classifiers/classifiers","references/monomulti/multiview_classifiers/diversity_fusion","references/monomulti/utils/execution","references/monomulti/utils/multiclass","references/monomultidoc","references/multiview_platform","references/multiview_platform.mono_multi_view_classifiers","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion","references/multiview_platform.mono_multi_view_classifiers.utils","references/multiview_platform.tests","references/multiview_platform.tests.test_metrics","references/multiview_platform.tests.test_mono_view","references/multiview_platform.tests.test_monoview_classifiers","references/multiview_platform.tests.test_multiview_classifiers","references/multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure","references/multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_Fusion","references/multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure","references/multiview_platform.tests.test_utils","tutorials/example1","tutorials/example2","tutorials/example3","tutorials/example4","tutorials/index","tutorials/installation"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,sphinx:55},filenames:["analyzeresult.rst","api.rst","execution.rst","index.rst","modules.rst","readme_link.rst","references/monomulti/exec_classif.rst","references/monomulti/metrics.rst","references/monomulti/multiview_classifiers/classifiers.rst","references/monomulti/multiview_classifiers/diversity_fusion.rst","references/monomulti/utils/execution.rst","references/monomulti/utils/multiclass.rst","references/monomultidoc.rst","references/multiview_platform.rst","references/multiview_platform.mono_multi_view_classifiers.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.utils.rst","references/multiview_platform.tests.rst","references/multiview_platform.tests.test_metrics.rst","references/multiview_platform.tests.test_mono_view.rst","references/multiview_platform.tests.test_monoview_classifiers.rst","references/multiview_platform.tests.test_multiview_classifiers.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_Fusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure.rst","references/multiview_platform.tests.test_utils.rst","tutorials/example1.rst","tutorials/example2.rst","tutorials/example3.rst","tutorials/example4.rst","tutorials/index.rst","tutorials/installation.rst"],objects:{"":{multiview_platform:[13,0,0,"-"]},"multiview_platform.execute":{execute:[13,1,1,""]},"multiview_platform.mono_multi_view_classifiers":{exec_classif:[14,0,0,"-"],multiview_classifiers:[15,0,0,"-"],result_analysis:[14,0,0,"-"],utils:[27,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.exec_classif":{arange_metrics:[14,1,1,""],benchmark_init:[14,1,1,""],exec_benchmark:[14,1,1,""],exec_classif:[14,1,1,""],exec_one_benchmark:[14,1,1,""],exec_one_benchmark_mono_core:[14,1,1,""],exec_one_benchmark_multicore:[14,1,1,""],extract_dict:[14,1,1,""],gen_multiple_args_dictionnaries:[14,1,1,""],gen_multiple_kwargs_combinations:[14,1,1,""],gen_single_monoview_arg_dictionary:[14,1,1,""],gen_single_multiview_arg_dictionary:[14,1,1,""],get_path_dict:[14,1,1,""],init_argument_dictionaries:[14,1,1,""],init_benchmark:[14,1,1,""],init_kwargs:[14,1,1,""],init_kwargs_func:[14,1,1,""],init_monoview_exps:[14,1,1,""],init_multiview_exps:[14,1,1,""],is_dict_in:[14,1,1,""],multiple_args:[14,1,1,""],set_element:[14,1,1,""]},"multiview_platform.mono_multi_view_classifiers.metrics":{framework:[7,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.metrics.framework":{getConfig:[7,1,1,""],get_scorer:[7,1,1,""],score:[7,1,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers":{difficulty_fusion:[16,0,0,"-"],disagree_fusion:[17,0,0,"-"],double_fault_fusion:[18,0,0,"-"],entropy_fusion:[19,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion":{DifficultyFusion:[16,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion.DifficultyFusion":{diversity_measure:[16,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion":{DisagreeFusion:[17,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion.DisagreeFusion":{diversity_measure:[17,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion":{DoubleFaultFusion:[18,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion.DoubleFaultFusion":{diversity_measure:[18,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion":{EntropyFusion:[19,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion.EntropyFusion":{diversity_measure:[19,3,1,""]},"multiview_platform.mono_multi_view_classifiers.result_analysis":{add_new_labels_combination:[14,1,1,""],add_new_metric:[14,1,1,""],analyzeMulticlass:[14,1,1,""],analyze_biclass:[14,1,1,""],analyze_iter_multiclass:[14,1,1,""],analyzebiclass_iter:[14,1,1,""],autolabel:[14,1,1,""],format_previous_results:[14,1,1,""],gen_classifiers_dict:[14,1,1,""],gen_error_data:[14,1,1,""],gen_error_data_glob:[14,1,1,""],gen_metrics_scores_multiclass:[14,1,1,""],get_arguments:[14,1,1,""],get_error_on_labels_multiclass:[14,1,1,""],get_example_errors_biclass:[14,1,1,""],get_feature_importances:[14,1,1,""],get_fig_size:[14,1,1,""],get_metrics_scores_biclass:[14,1,1,""],get_results:[14,1,1,""],init_plot:[14,1,1,""],iterCmap:[14,1,1,""],numpy_mean_and_std:[14,1,1,""],plot_2d:[14,1,1,""],plot_errors_bar:[14,1,1,""],plot_metric_scores:[14,1,1,""],plot_results_noise:[14,1,1,""],publishExampleErrors:[14,1,1,""],publishMetricsGraphs:[14,1,1,""],publishMulticlassExmapleErrors:[14,1,1,""],publishMulticlassScores:[14,1,1,""],publish_feature_importances:[14,1,1,""],publish_iter_biclass_example_errors:[14,1,1,""],publish_iter_biclass_metrics_scores:[14,1,1,""],publish_iter_multiclass_example_errors:[14,1,1,""],publish_iter_multiclass_metrics_scores:[14,1,1,""],sort_by_test_score:[14,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils":{configuration:[27,0,0,"-"],dataset:[27,0,0,"-"],execution:[27,0,0,"-"],get_multiview_db:[27,0,0,"-"],hyper_parameter_search:[27,0,0,"-"],make_file_config:[27,0,0,"-"],multiclass:[27,0,0,"-"],multiview_result_analysis:[27,0,0,"-"],transformations:[27,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.utils.configuration":{get_the_args:[27,1,1,""],save_config:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.dataset":{Dataset:[27,2,1,""],confirm:[27,1,1,""],copy_hdf5:[27,1,1,""],datasets_already_exist:[27,1,1,""],delete_HDF5:[27,1,1,""],extract_subset:[27,1,1,""],init_multiple_datasets:[27,1,1,""],input_:[27,1,1,""],is_just_number:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.dataset.Dataset":{add_gaussian_noise:[27,3,1,""],check_selected_label_names:[27,3,1,""],copy_view:[27,3,1,""],dataset:[27,4,1,""],filter:[27,3,1,""],get_label_names:[27,3,1,""],get_labels:[27,3,1,""],get_name:[27,3,1,""],get_nb_class:[27,3,1,""],get_nb_examples:[27,3,1,""],get_shape:[27,3,1,""],get_v:[27,3,1,""],get_view_dict:[27,3,1,""],get_view_name:[27,3,1,""],init_attrs:[27,3,1,""],init_example_indces:[27,3,1,""],init_view_names:[27,3,1,""],nb_view:[27,4,1,""],rm:[27,3,1,""],select_labels:[27,3,1,""],select_views_and_labels:[27,3,1,""],to_numpy_array:[27,3,1,""],update_hdf5_dataset:[27,3,1,""],view_dict:[27,4,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.execution":{find_dataset_names:[27,1,1,""],gen_argument_dictionaries:[27,1,1,""],gen_direcorties_names:[27,1,1,""],gen_k_folds:[27,1,1,""],gen_splits:[27,1,1,""],get_database_function:[27,1,1,""],init_log_file:[27,1,1,""],init_random_state:[27,1,1,""],init_stats_iter_random_states:[27,1,1,""],init_views:[27,1,1,""],parse_the_args:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.get_multiview_db":{DatasetError:[27,5,1,""],get_classic_db_csv:[27,1,1,""],get_classic_db_hdf5:[27,1,1,""],get_plausible_db_hdf5:[27,1,1,""],make_me_noisy:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search":{CustomRandint:[27,2,1,""],CustomUniform:[27,2,1,""],MultiviewCompatibleRandomizedSearchCV:[27,2,1,""],compute_possible_combinations:[27,1,1,""],gen_heat_maps:[27,1,1,""],get_test_folds_preds:[27,1,1,""],grid_search:[27,1,1,""],randomized_search:[27,1,1,""],search_best_settings:[27,1,1,""],spear_mint:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.CustomRandint":{get_nb_possibilities:[27,3,1,""],rvs:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.CustomUniform":{rvs:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV":{fit:[27,3,1,""],fit_multiview:[27,3,1,""],get_test_folds_preds:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.make_file_config":{ConfigurationMaker:[27,2,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.multiclass":{gen_multiclass_labels:[27,1,1,""],gen_multiclass_monoview_decision:[27,1,1,""],is_biclass:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.multiview_result_analysis":{get_metrics_scores:[27,1,1,""],get_total_metric_scores:[27,1,1,""],print_metric_score:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.transformations":{sign_labels:[27,1,1,""],unsign_labels:[27,1,1,""]},"multiview_platform.tests":{test_ExecClassif:[28,0,0,"-"],test_ResultAnalysis:[28,0,0,"-"],test_metrics:[29,0,0,"-"],test_mono_view:[30,0,0,"-"],test_monoview_classifiers:[31,0,0,"-"],test_multiview_classifiers:[32,0,0,"-"],test_utils:[39,0,0,"-"]},"multiview_platform.tests.test_ExecClassif":{FakeKfold:[28,2,1,""],Test_InitArgumentDictionaries:[28,2,1,""],Test_execBenchmark:[28,2,1,""],Test_execOneBenchmark:[28,2,1,""],Test_execOneBenchmark_multicore:[28,2,1,""],Test_get_path_dict:[28,2,1,""],Test_initBenchmark:[28,2,1,""],Test_initKWARGS:[28,2,1,""],Test_set_element:[28,2,1,""],fakeBenchmarkExec:[28,1,1,""],fakeBenchmarkExec_monocore:[28,1,1,""],fakeBenchmarkExec_mutlicore:[28,1,1,""],fakeDelete:[28,1,1,""],fakeExecMono:[28,1,1,""],fakeExecMulti:[28,1,1,""],fakeInitMulti:[28,1,1,""],fakegetResults:[28,1,1,""]},"multiview_platform.tests.test_ExecClassif.FakeKfold":{split:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries":{setUpClass:[28,6,1,""],test_init_argument_dictionaries_monoview:[28,3,1,""],test_init_argument_dictionaries_multiview:[28,3,1,""],test_init_argument_dictionaries_multiview_complex:[28,3,1,""],test_init_argument_dictionaries_multiview_multiple:[28,3,1,""],test_init_argument_dictionaries_multiview_multiple_complex:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_execBenchmark":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_multiclass_and_iter:[28,3,1,""],test_multiclass_no_iter:[28,3,1,""],test_no_iter_biclass_multicore:[28,3,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark":{setUp:[28,6,1,""],tearDown:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_execOneBenchmark_multicore":{setUpClass:[28,6,1,""],tearDown:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_get_path_dict":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_initBenchmark":{test_benchmark_wanted:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_initKWARGS":{test_initKWARGSFunc_no_monoview:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_set_element":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis":{Test_format_previous_results:[28,2,1,""],Test_gen_error_data:[28,2,1,""],Test_gen_error_data_glob:[28,2,1,""],Test_get_arguments:[28,2,1,""],Test_get_example_errors_biclass:[28,2,1,""],Test_get_metrics_scores_biclass:[28,2,1,""],Test_init_plot:[28,2,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_format_previous_results":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_gen_error_data":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_gen_error_data_glob":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_arguments":{setUp:[28,3,1,""],test_benchmark_wanted:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_example_errors_biclass":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_metrics_scores_biclass":{multiple_monoview_classifiers:[28,3,1,""],mutiview_result:[28,3,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_init_plot":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_metrics":{test_accuracy_score:[29,0,0,"-"]},"multiview_platform.tests.test_metrics.test_accuracy_score":{Test_accuracy_score:[29,2,1,""]},"multiview_platform.tests.test_metrics.test_accuracy_score.Test_accuracy_score":{score_test:[29,3,1,""],setUpClass:[29,3,1,""]},"multiview_platform.tests.test_mono_view":{test_ExecClassifMonoView:[30,0,0,"-"],test_MonoviewUtils:[30,0,0,"-"]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView":{Test_getHPs:[30,2,1,""],Test_initConstants:[30,2,1,""],Test_initTrainTest:[30,2,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_getHPs":{setUpClass:[30,6,1,""],tearDownClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_initConstants":{setUpClass:[30,6,1,""],tearDownClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_initTrainTest":{setUpClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_MonoviewUtils":{Test_genTestFoldsPreds:[30,2,1,""]},"multiview_platform.tests.test_mono_view.test_MonoviewUtils.Test_genTestFoldsPreds":{setUpClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_monoview_classifiers":{test_adaboost:[31,0,0,"-"],test_compatibility:[31,0,0,"-"]},"multiview_platform.tests.test_multiview_classifiers":{Test_PseudoCQMeasure:[38,0,0,"-"],test_diversity_utils:[32,0,0,"-"]},"multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure":{test_PseudoCQFusionModule:[38,0,0,"-"]},"multiview_platform.tests.test_utils":{test_GetMultiviewDB:[39,0,0,"-"],test_configuration:[39,0,0,"-"],test_execution:[39,0,0,"-"],test_multiclass:[39,0,0,"-"]},"multiview_platform.tests.test_utils.test_GetMultiviewDB":{Test_get_classic_db_csv:[39,2,1,""],Test_get_classic_db_hdf5:[39,2,1,""],Test_get_plausible_db_hdf5:[39,2,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv":{setUp:[39,3,1,""],tearDown:[39,6,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_hdf5":{setUp:[39,3,1,""],tearDown:[39,3,1,""],test_all_views_asked:[39,3,1,""],test_asked_the_whole_dataset:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_plausible_db_hdf5":{setUpClass:[39,6,1,""],tearDownClass:[39,6,1,""],test_simple:[39,3,1,""],test_two_class:[39,3,1,""]},"multiview_platform.tests.test_utils.test_configuration":{Test_get_the_args:[39,2,1,""]},"multiview_platform.tests.test_utils.test_configuration.Test_get_the_args":{setUpClass:[39,6,1,""],tearDownClass:[39,6,1,""],test_arguments:[39,3,1,""],test_dict_format:[39,3,1,""],test_file_loading:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution":{FakeArg:[39,2,1,""],Test_genArgumentDictionaries:[39,2,1,""],Test_genDirecortiesNames:[39,2,1,""],Test_genKFolds:[39,2,1,""],Test_genSplits:[39,2,1,""],Test_getDatabaseFunction:[39,2,1,""],Test_initRandomState:[39,2,1,""],Test_initStatsIterRandomStates:[39,2,1,""],Test_parseTheArgs:[39,2,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genArgumentDictionaries":{setUpClass:[39,6,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genDirecortiesNames":{setUpClass:[39,6,1,""],test_ovo_no_iter:[39,3,1,""],test_simple_ovo:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genKFolds":{setUp:[39,3,1,""],test_genKFolds_iter:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genSplits":{setUp:[39,3,1,""],test_genSplits_no_iter:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_getDatabaseFunction":{setUpClass:[39,6,1,""],test_hdf5:[39,3,1,""],test_plausible_hdf5:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_initRandomState":{setUp:[39,3,1,""],tearDown:[39,3,1,""],test_random_state_42:[39,3,1,""],test_random_state_pickle:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_initStatsIterRandomStates":{setUpClass:[39,6,1,""],test_multiple_iter:[39,3,1,""],test_one_statiter:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_parseTheArgs":{setUp:[39,3,1,""],test_empty_args:[39,3,1,""]},"multiview_platform.tests.test_utils.test_multiclass":{Test_genMulticlassLabels:[39,2,1,""]},"multiview_platform.tests.test_utils.test_multiclass.Test_genMulticlassLabels":{setUpClass:[39,6,1,""],test_one_versus_one:[39,3,1,""]},"multiview_platform.versions":{test_versions:[13,1,1,""]},multiview_platform:{execute:[13,0,0,"-"],mono_multi_view_classifiers:[14,0,0,"-"],tests:[13,0,0,"-"],versions:[13,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"],"5":["py","exception","Python exception"],"6":["py","classmethod","Python class method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute","5":"py:exception","6":"py:classmethod"},terms:{"0x7f30a3a1bb40":40,"0x7f3186287e30":[],"12_42_":41,"12_42__":41,"15588087e":[],"1560_04_01":41,"1560_12_25":42,"15887658e":[],"15_42":42,"16493056e":[],"200x100":43,"200x40":43,"200x55":43,"25000130e":[],"25th":40,"2d_plot_data":[0,14,40,42],"345px":[],"55845734e":[],"56532883e":[],"68070076e":[],"78582022e":[],"78647881e":[],"84741585e":[],"95570764e":[],"99267234e":[],"99456183e":[],"boolean":[5,7,27],"case":[0,6,14,27,28,29,30,39],"class":[6,7,14,16,17,18,19,27,28,29,30,39,40,41,43],"default":[0,7,14,40,41],"final":40,"float":[0,7,14,27,41],"function":[0,6,7,14,27,40],"import":[0,5,14,27,40,41,43],"int":[0,5,6,14,27],"long":43,"new":[27,40,42],"return":[0,6,7,14,27,42],"static":[],"true":[0,6,14,27,40],"try":[5,28,43],"while":[27,41,43],Adding:[3,40],And:[5,41,43],But:41,For:[0,5,6,14,27,40,41,42,43],IDs:43,Ids:43,One:[5,27,41],THe:[0,14,27,41,43],The:[0,3,5,6,7,14,27,40,41,42,44],Then:[27,40,42,43],These:[7,40,41],Ths:41,Use:[3,44],Used:[0,5,6,13,14,27],Will:[6,14],With:5,Yes:[27,40,42],_fit_stag:[],_gen:27,_search:27,_static:[],abl:[5,27,40,41,43],about:5,abs:[],absolut:5,access:[],accord:27,account:[],accuraci:[40,41],accuracy_scor:[27,41,42],adaboost:[6,14,40,41,42],adaboost_gra:[],adaboost_pregen10:[],adaboost_pregen:[],adaboost_pregen_tre:[],adaboostclassifi:[],adapt:[3,27],add:[0,3,6,7,14,27,40,41,42,43],add_gaussian_nois:27,add_new_labels_combin:14,add_new_metr:14,add_nois:27,added:[0,6,14],adding:43,addit:[3,5,16,17,18,19],advantag:3,advis:[],after:[28,30,39,42],again:[],agrument:27,aim:[5,40],alexandr:5,algorithm:[5,6,14,27,40,41],algortihm:40,algos_monoview:[40,41],algos_muliview:40,algos_multiview:41,all:[0,5,6,13,14,27,28,30,39,40,42,43],all_view:27,alloc:[],allow:[3,27,40,41,43],almost:[],along:27,alpha:[],alreadi:27,also:[27,40,41,43],alwai:[],among:[],amount:[40,41],analys:[],analysi:[1,14],analyz:[0,14,40,41,43],analyze_biclass:[0,14],analyze_iter_multiclass:[0,14],analyze_result:[13,14,15],analyzebiclass_it:[0,14],analyzemulticlass:[0,14],ani:[6,14,40,41],anim:43,anoth:[],answer:27,anyth:[0,14],appear:42,approx:[],approxim:[],arange_metr:[6,14],are_spars:27,area:[],arg:[6,14,27,28],arg_view:27,args_dictionari:[6,14],argument:[0,3,6,7,14,27,28,40,41,42],argument_dictionari:[6,14,27,28],arguments_dictionari:[0,14],around:5,arrai:[0,5,6,7,14,27],arrang:[6,14],art:40,asarrai:[],ask:[6,14,40],asked_labels_nam:27,askedlabelsnam:27,astyp:43,atm:5,attr:[5,43],attribur:5,attribut:[5,27,43],author:3,auto:[],autolabel:[0,14],automat:5,avail:[0,5,14,27,40,41,43],available_indic:27,averag:[0,14,40],avoid:[],axi:[],back:[],bale:27,baptist:[5,13],bar:[0,14,40,42],bar_plot_data:[0,14,40,42],bar_width:[0,14],bare:3,barplot:[0,14],base:[16,17,18,19,27,28,29,30,39],base_estim:[6,14,41],base_file_nam:[0,14],baseestim:[],baselin:40,basemonoviewclassifi:[],basemultiviewclassifi:[],basi:[],basic:40,bauvin:5,bayesian_inference_fus:[],bayesianinfer:[13,14,15,22,23],bboxinout:[],bea:43,bear:43,bear_112:43,becaus:27,becom:41,bee:[],been:[6,14,40,43],befor:[5,27,28,29,30,39],begin:40,behaviour:40,being:[5,6,14,41,43],belong:[0,14],below:[0,14,40,41],benchmark:[0,3,6,14,27,28,40,41,42,43],benchmark_argument_dictionari:[0,14],benchmark_arguments_dictionari:[6,14,28],benchmark_init:[6,14],benchmarkargumentdictionari:[0,14,27],benchmarkargumentsdictionari:27,benchmrak:41,bencmark:[0,14],best:[40,41,42],better:[0,7,14,40,41],between:[0,14,27,41,42,43],biclass:[0,6,14,27,40],biclass_result:[0,14],biclassresult:[0,14],big:27,bigger:41,binari:40,bird:43,bird_785:43,black:40,blue:[],bool:27,boost:[],boosting_bound:[],boostutil:[],both:[0,14],bound:[0,14],bound_nam:[],boundari:[],boundarynorm:[0,14],bracket:41,brows:27,btween:41,build:41,bypass:41,c_greed:[],call:[5,40,41],callabl:7,can:[3,5,6,14,27,40,41,42,43],capac:[5,41],car:43,car_369:43,cardin:[],care:[],carefulli:5,carri:[],cast:[],categori:40,cb_boost:[],cbboostutil:[],center:27,central:[0,14],cfg:[],cg_desc10:[],cg_desc:[],cg_desc_tre:[],cgdescutil:[],chain:[],chang:27,change_label_to_minu:[],change_label_to_zero:[],check:[5,6,14,27],check_input:[],check_selected_label_nam:27,child:[],choos:43,chose:41,cl_gs_iter:5,cl_kwrag:[6,14],cl_nbfold:5,cl_split:5,cl_statsit:5,cl_type:[6,14,27],clariti:43,class_weight:[],classed_list:[],classed_param:[],classier:27,classif:[0,3,14,27,40,42],classifi:[0,3,5,6,12,14,27,41,42,43],classifiact:41,classification_indic:[0,6,14,27,28],classification_karg:[],classificationindic:[],classificationkwarg:[],classifier_class_nam:[],classifier_config:[6,14,16,17,18,19,27,41],classifier_configur:[6,14],classifier_dict:27,classifier_kwarg:27,classifier_modul:27,classifier_module_nam:[],classifier_nam:[0,6,14,16,17,18,19,27,41],classifiermixin:[],classifiermodul:[],classifierneg:[0,14],classifierposit:[0,14],classifiers_decis:[16,19],classifiers_nam:[0,6,14],classifii:[0,14],classlabelsnam:[],classmethod:[28,30,39],clean:27,clf:[0,14],click:40,clkwarg:[],clone:5,close:42,closer:41,cmap:[0,14],coarsest:[],code:[2,3,13,41,42],coeff:[],coeffs_approx:[],coeffs_detail1:[],coeffs_detail2:[],coeffs_iw:[],collbarr:[],color:[0,14],colormap:[0,14],column:40,combi_result:14,combin:[0,6,14,16,19,27,41],come:[],command:[5,45],comment:[40,41],commentari:43,commentary_dataset:43,commentary_matrix:43,common:40,compat:3,complement:[],complet:3,complex:[27,40,41],complic:[],comput:[5,27,41],compute_possible_combin:27,conain:27,conatin:[0,14],concant:27,concat_view:27,concaten:27,conclus:41,conduct:[0,14],config:[5,6,14,27,40,41,42,43],config_example_1:13,config_example_2_1_1:41,config_exmaple_1:40,config_fil:[5,13,27,42],config_path:[5,13],configgener:[],configstr:7,configur:[0,5,7,13,14,40,41],configurationmak:27,confirm:[27,40],connect:[],conresspond:43,consid:[0,14],consider:[6,14],consist:[41,43],consol:27,constain:[],constant:[],consum:41,contain:[0,3,5,14,27,40],containig:27,content:[1,3,4,12],context:3,contigu:[],continu:[],contribut:[],contributor:3,control:[3,40,41,42,44],convers:3,convert:[27,43],coo_matrix:[],coordin:[],coordinate_desc:[],copi:[0,14,27,40],copy_hdf5:27,copy_view:27,core:[3,6,14,40],core_index:[6,14,28],coreindex:28,correctli:[5,43],correspond:[0,14,27,40],could:40,count:[0,5,14,40],coupl:[0,6,14,27],couplediversityfusionclassifi:[17,18],cq_boost:[],cq_boosttre:[],cq_boostv21:[],cq_boostv2:[],cqboostutil:[],creat:[3,5,6,14,27,43],create_dataset:43,create_group:43,criteria:[],criterion:41,crop:27,cross:[6,14,27,40],csr_matrix:[],csv:[0,14,27,41,42,43],current:[],custom:40,customdecisiontre:[],customrandint:27,customuniform:27,cvs_or_:5,dark:40,data:[0,3,14,27,40,41,43],data_base_nam:[0,14],databas:[0,14,27,40],database_nam:[0,5,14,43],database_typ:[],databasenam:14,databasetyp:[],datafram:[0,14],dataset:[3,6,13,14,40,41,42,44],dataset_file_index:[],dataset_var:[6,14,27,28],dataseterror:27,datasetfil:27,datasetlength:[5,43],datasets_already_exist:27,date:40,debug:27,decemb:40,decid:[],decis:[27,41],decision_tre:[40,41,42],decision_tree_pregen:[],decisiontre:[],decisiontreeclassifi:41,decod:27,decomposit:[],deconstruct:[28,30,39],decrypt:[7,40],dedic:[],deep:41,deeper:41,defend:41,degre:[],delet:[6,14,27],delete_hdf5:[6,14,27],delimit:[27,43],demand:41,demo:[],depend:[0,14,41,42],depth:41,derectori:[],descend:[0,14],descent:[],describ:[3,7,43],descript:27,detail1:[],detail2:[],detail:5,detect:40,detector:[],develop:[5,40,43,45],deviat:[0,14,42],diagon:[],dicaitonari:[0,14],dict:[0,6,7,14,27],dictionari:[0,6,7,14,27],dictionnari:[0,14,27],did:[0,14],didn:40,differ:[0,3,5,6,14,27,40,41,42,43],difficulty_fus:[13,14,15,41],difficultyfus:16,direcori:14,direct:[3,41],directli:[0,14,27],directori:[0,5,6,14,27,28,40,42,45],disabl:41,disagree_fus:[13,14,15],disagreefus:17,discontinu:[],discov:3,disk:27,dispach:[6,14],displai:[40,42],distrib:[],distribut:[27,41],divers:12,diversity_measur:[16,17,18,19],diversity_util:[16,17,18,19],divid:[0,14,41],docstr:13,document:[1,5,13],docutil:5,doe:27,don:41,done:[6,14,27,42],dot:27,double_fault_fus:[13,14,15,41],doublefaultfus:18,doublet:27,download:45,draw:[41,42],drawn:[],drive:5,drouin:5,dtype:43,due:[],durat:[41,42],dure:[0,14,40,41],each:[0,5,6,14,27,40,41,42,43],earli:[],earlyfus:[13,14,15,22],earlyfusionpackag:[13,14,15,22,23],easi:[3,5],easili:43,effect:[],effici:[0,5,14,41],either:[5,6,14],element:[0,14],els:[0,14],enabl:41,encapsul:27,encod:[5,43],end:[0,14,27,41],ensembl:[],enter:27,entri:[0,14],entropy_fus:[13,14,15],entropyfus:19,environ:40,equal:41,equival:[],eras:[],error:[0,14,40],error_2d:[],error_analysi:[0,14],error_analysis_2d:[0,14,42],error_analysis_bar:42,error_on_exampl:[0,14],estim:[3,27,41],etc:7,evalu:[5,6,14,27,40,41],even:[27,42],exact:[],exampl:[0,3,5,6,13,14,27,44],example2:41,example_1:40,example_2:[],example_2_1:41,example_error:[0,14],example_id:[0,14,27,28,43],example_indic:27,examples_indic:[],except:27,exec_benchmark:[6,14],exec_classif:[4,6,13],exec_classif_mono_view:[],exec_monoview:[],exec_monoview_multicor:[6,14],exec_multiview:[],exec_multiview_multicor:[6,14],exec_one_benchmark:[6,14],exec_one_benchmark_mono_cor:[6,14],exec_one_benchmark_multicor:[6,14],exec_plot:[],execmonoview_multicor:[6,14],exect:1,execut:[0,2,3,4,5,12,14,40,41],exeperi:[6,14],exercis:[28,39],exist:27,exmapl:[],expect:[],experi:[0,3,6,14,40],experiment:[0,14,27],explain:[7,44],explan:3,explor:[6,14],exponenti:[],export_result:[],extent:[],extern:43,extract:[0,14,27],extract_dict:[6,14],extract_subset:27,extrat:27,f1_score:[40,42],f_2:[],f_k:[],fail:[0,14,40],failur:40,fairest:41,fakearg:39,fakebenchmarkexec:28,fakebenchmarkexec_monocor:28,fakebenchmarkexec_mutlicor:28,fakedelet:28,fakeexecmono:28,fakeexecmulti:28,fakegetresult:28,fakeinitmulti:28,fakekfold:28,fals:[7,27,43],far:[40,41],fare:41,fat_late_fus:[13,14,15],fat_scm_late_fus:[13,14,15],fbeta_scor:[],feat:[],featur:[0,14,27,40,42,43],feature_import:[0,14,40,42],feature_importance_datafram:[40,42],feature_nam:[0,14],feature_std:14,few:[0,14],field:[],fig_kwarg:[0,14],figur:[0,14,40,41,42],file:[0,3,6,7,14,27,41,42,43],file_insertion_en:41,file_nam:[0,14,27],filenam:[0,14],fill:43,filter:27,find:[27,40,43],find_dataset_nam:27,finest:[],first:[3,5,6,14,27,41,43,44],first_classifier_decis:[17,18],fit:[27,41],fit_multiview:27,fit_param:27,five:40,fix:[27,40,43],fixtur:[28,29,30,39],flag:[0,6,14],float32:[],focu:41,fold:[6,14,27,40,42],folds_list:27,follow:[5,7,40,43,44,45],following_s:[],forest:[],format:[0,14,40,43],format_previous_result:[0,14],fortran:[],four:40,frac:41,framework:[6,12,14,27],from:[0,5,7,14,27,40,41,42],full:[5,6,14,27,40],full_label:[],full_labels_pr:[],fulli:43,further:5,fusion:[12,13,14,15,41],g_1:[],g_2:[],g_k:[],gap:43,gen:27,gen_argument_dictionari:27,gen_best_param:[],gen_classifiers_dict:14,gen_direcorties_nam:27,gen_error_data:[0,14],gen_error_data_glob:14,gen_heat_map:27,gen_k_fold:27,gen_metrics_scores_multiclass:[0,14],gen_multiclass_label:27,gen_multiclass_monoview_decis:27,gen_multiple_args_dictionnari:[6,14],gen_multiple_kwargs_combin:[6,14],gen_single_monoview_arg_dictionari:14,gen_single_multiview_arg_dictionari:14,gen_split:27,genbestparam:[],gendistrib:[],gener:[0,5,6,14,27,40,41],generic_scor:[],genfromtxt:43,genparamsfromdetector:[],gentestfoldspr:[],geq:[],get:[0,3,6,7,14,27,41,42],get_accuracy_graph:[],get_argu:[0,14],get_available_monoview_classifi:[],get_classic_db_csv:27,get_classic_db_hdf5:27,get_classifier_nam:[],get_database_funct:27,get_error_on_labels_multiclass:[0,14],get_example_errors_biclass:[0,14],get_examples_views_indic:[],get_feature_import:[0,14],get_fig_s:[0,14],get_interpret:[],get_label:27,get_label_nam:27,get_metrics_scor:27,get_metrics_scores_biclass:[0,14],get_monoview_classifi:[],get_multiview_db:[13,14],get_nam:27,get_name_for_fus:[],get_nb_class:27,get_nb_exampl:27,get_nb_poss:27,get_path_dict:[6,14],get_plausible_db_hdf5:27,get_result:[0,6,14],get_scor:7,get_shap:27,get_test_folds_pr:27,get_the_arg:27,get_total_metric_scor:27,get_v:27,get_view_dict:27,get_view_nam:27,getclassifierconfigstr:[],getconfig:7,getdatabas:27,getdbconfigstr:[],gethp:[],getinterpret:[],getmetricscor:[],getmetricsscor:[],gettotalmetricscor:[],gini:41,gitwork:13,give:[27,41],given:[5,6,14,27,41],globaldiversityfusionclassifi:[16,19],goal:[27,43],good:41,got:40,gradient:[],gradient_boost:[],gradientboost:[],gradientboostingclassifi:[],grai:40,graph:40,great:[41,42],greater:7,grid:[],grid_search:27,gridsearch:27,groud_truth:[0,14],ground:7,ground_truth:[0,14],group:[5,27,43],guaussian:27,guess:[],h5py:[5,27,43],half:40,hamming_loss:[],hand:3,handl:[],happen:41,hard:[5,40],harder:40,has:[0,14,27,40,41,43],have:[0,6,14,27,40,41,42],hdd:27,hdf5:[3,6,14,27],hdf5_file:[27,43],heat:27,height:[0,14],height_denomin:[0,14],held:[],henc:[],here:[0,14,40,41,42,43],hide:27,high:27,higher:40,highli:[5,40],hing:[],hole:41,home:13,hook:[28,29,30,39],horizont:40,hover:40,how:[0,3,7,14,40,41,44],howev:[41,42],hpo:[41,42],hps_iter:41,hps_type:41,html:[5,42],huelsmann:5,huge:41,hyper:[3,6,14,27,40,42,44],hyper_param_search:[6,14,27,28],hyper_parameter_search:[13,14],hyperparamt:41,hyperparm:27,i_k_fold:27,id_tabl:43,idea:41,ideal:41,identifi:[0,14],ifram:[],ignor:[],imag:[0,14,40,43],image_dataset:43,image_matrix:43,images_analysi:[],imagesanalysi:[],implement:41,incorrectli:40,ind_detailj0:[],inde:[40,42],independ:40,index:[0,3,5,6,14,27,43],indic:[0,6,14,27],indices_multiclass:27,individu:42,inform:[0,3,5,14,27,40,41],inherit:[10,11],init:[6,14,27],init_argument_dictionari:14,init_attr:27,init_benchmark:[6,14],init_const:[],init_example_indc:27,init_kwarg:[6,14],init_kwargs_func:[6,14],init_log_fil:27,init_monoview_exp:[6,14],init_multiple_dataset:27,init_multiview_exp:14,init_plot:14,init_random_st:27,init_stats_iter_random_st:27,init_train_test:[],init_view:27,init_view_nam:27,initconst:[],initi:[6,14,27],initmultiviewargu:[6,14],input:[6,14,42,43],input_:27,insid:[40,41],insignific:[],instal:[3,13,44],instanc:[],instead:[],instruct:41,integ:[0,6,7,14,27],interact:[5,40],intern:[],interpret:[5,40],interpret_str:[],introduc:27,introduct:3,introspect:[],intuit:3,invers:27,involv:41,is_biclass:27,is_dict_in:[6,14],is_just_numb:27,is_temp:27,issu:[27,42],ist:[6,14],iter:[0,3,6,14,27,40,44],iter_1:42,iter_2:42,iter_3:42,iter_:42,iter_biclass_result:14,iter_index:[0,14],iter_multiclass_result:14,iter_result:14,iterbiclassresult:14,itercmap:[0,14],its:[3,41,43],itself:[6,14],jaccard_similarity_scor:[],jan:3,joblib:5,just:[5,6,14],k_fold:[6,14,27,28],keep:[27,40,41,42,43],kei:[0,6,7,14,27],kernel:[],key1:[6,14],key1_1:[6,14],key2:[6,14],keyword:[6,14],kfold:27,kneighborsclassifi:[],knn:[],know:41,kwarg:[6,7,14,27],kwargs_combin:[6,14],kwargs_init:[6,14],label:[0,5,6,7,14,27,28,40,43],label_nam:27,labels_combin:[14,27],labels_dataset:43,labels_dictionari:[0,6,14,27,28],labels_indic:27,labels_nam:[0,14,27,28],labelscomin:14,laplacian:[],larger:42,lasso:[40,41],last:[5,41],lastli:27,late:41,latefus:[13,14,15,22],latefusionpackag:[13,14,15,22,23],later:27,latter:[],launch:3,layer:[],lbarr:[],lbarre0:[],lbarre0m:[],learn:[5,13,27,40,41,42,45],learning_indic:27,learning_r:[],learningindic:[],learningr:[],learnrate_0:[],least:[3,5,6,14,40],left:40,less:40,let:[40,41,43],letter:27,level:27,levels_coeff:[],licenc:[],light:40,like:[3,7,27,41,42],limit:[5,27],limits_:[],linalg:[],line:[40,41,42,43],linear:[],linear_model:[],linearregress:[],list:[0,5,6,14,27,43],listedcolormap:[0,14],listof:[6,14],load:[27,43],loadabl:40,loc:27,local:[],locat:[6,14,40],log:[5,27,42],log_loss:[],logfil:27,longer:[27,41],look:42,loop:42,loss:[],lot:40,low:27,lsite:27,lucki:42,m2r:5,machin:[5,13,40,45],made:[27,40,41],mai:5,main:[3,6,14,27,40,42],mainli:[0,14,40],major:41,majority_voting_fus:41,majorityvot:[13,14,15,22,23],make:43,make_file_config:[13,14],make_me_noisi:27,make_scor:7,mandatori:[7,43],mani:[0,14,40,41],manipul:5,map:[6,14,27],markers:[],markov:[],master:3,matplotlib:[0,5,14],matric:[40,43],matrix:[0,14,27,40,43],matter:41,matthews_corrcoef:[],max:41,max_depth:41,max_featur:[],max_it:[],max_leaf_nod:[],maximum:[],mayb:27,mazid:5,mean:[0,14,40,41,42],meaning:[5,42],mearn:5,member:[10,11],memori:27,memoryview:[],metadata:[5,43],metadata_group:43,method:[13,14,15,22,27,28,29,30,39,41],methodnam:[28,29,30,39],metric:[0,6,12,14,27,28,40],metric_datafram:14,metric_list:[],metric_modul:29,metric_nam:[0,14],metric_princ:[6,14,41],metric_scor:27,metric_score_str:[],metric_to_plot:14,metrics_analysi:[0,14],metrics_list:[],metrics_scor:[0,14],metrics_var:27,metricscor:[0,14],metricsscor:[0,14],min_cq:[],min_cq_graalpi:[],min_cq_graalpy_tre:[],min_impurity_decreas:[],min_impurity_split:[],min_samples_leaf:[],min_samples_split:[],min_siz:[0,14],min_weight_fraction_leaf:[],mincqutil:[],minimum:[0,14,43],minsiz:[0,14],minu:[],minut:[27,40],misclassifi:[0,14],miss:43,missclassifi:40,mod:[],model:41,model_select:[6,14,27],modifi:[3,27,42],modul:[1,2,3,4,5,12,41],moment:[41,43],mon:3,monitor:[],mono:[0,3,6,14,27],mono_multi_view_classifi:[3,4,13],monomutliviewclassifi:5,monoview:[0,5,6,14,27,40,41,42],monoview_algo:[6,14],monoview_classifi:[],monoview_estim:[16,17,18,19],monoview_result:27,monoview_util:[],monoviewresult:[0,14],more:[0,5,14,27,41,42,43],morev:40,most:[40,41,43],mtrand:[27,40],muber:[0,14],much:[27,41],multi:[0,3,14],multi_class_label:[6,14,28],multiclass:[0,6,7,12,13,14],multiclass_label:[0,14,27],multiclass_method:27,multiclass_pr:27,multiclass_result:[0,14],multicor:[6,14,27],multipl:[6,14,27,40,42],multiple_arg:[6,14],multiple_monoview_classifi:28,multipli:[0,14,27],multiresolut:[],multivew:41,multiview:[3,5,6,13,14,27,41,42,43],multiview_algo:[6,14],multiview_classifi:[13,14],multiview_classifier_arg:[6,14],multiview_machin:5,multiview_platform:[3,5,40,41],multiview_result_analysi:[13,14],multiview_util:[],multiviewcompatiblerandomizedsearchcv:27,multiviewresult:[0,14],must:[0,7,14,27,43],mutiview_result:28,mutli:[6,14],mutlipl:[6,14],mutlipli:27,mutliview:[],n_0:[40,41],n_clf:[0,14],n_estim:[6,14,41],n_featur:[0,14,27],n_iter:[27,28],n_job:27,n_neighbor:[],n_output:27,n_sampl:[7,27],n_target:[],naiv:40,name:[0,5,6,14,27,28,40,41,43],name_db:27,namedb:27,namig:5,napprox:[],nb_class:[6,14,27],nb_classifi:14,nb_considered_feat:[],nb_core:[6,14,27,28],nb_exampl:[0,14,27,28],nb_featur:27,nb_fold:[27,41],nb_label:[0,6,14,27,28],nb_multiclass:[0,6,14,28],nb_result:[0,14],nb_view:27,nbarr:[],nbclass:[5,43],nbclassifi:[0,14],nbcopi:[0,14],nbcore:27,nbexampl:[0,14],nbview:[5,43],ndarrai:[6,14,27],ndetail1:[],nearli:42,necess:[3,41],necessari:27,need:[0,5,6,7,14,27,41,45],need_proba:[],neg:[0,14],neighbor:[],neq:[],net:[],nikola:5,nint:[],niter:[],no_vs_y:41,node:[],nois:[27,40],noise_result:14,noise_std:27,noisi:27,non:[],none:[0,6,14,16,17,18,19,27,28,40,41],norm:[0,14],note:[],now:[41,43],number:[0,5,6,14,27,40,41,43],numer:[0,14],numpi:[0,5,6,14,27,40,43],numpy_mean_and_std:14,object:[0,6,7,14,27,28,39,40,43],obtain:[0,14,41],omi:[5,13,40,45],onc:5,one:[0,5,6,14,27,40,41,42,43],ones:[0,6,14,27,40],oneversusal:27,oneversuson:27,oni:27,onli:[6,14,27,41,43],oper:[],optim:[3,6,14,27,44],optin:[0,14],option:[0,14,27,41],order:[0,5,6,7,14,27,40,41,42,43],ordinari:[],organ:[0,14,40],origin:27,osseni:5,other:[40,42],otherwis:[],our:[],out:[],outlier:40,output:[40,41,42],output_file_nam:27,outputfilenam:[],over:[0,14,40,42],overfit:41,own:[3,5,44],packag:[3,4,6,7,13,45],page:[3,41],panda:[0,5,14,40],parallel:27,param:27,param_distribut:27,param_nam:[],paramet:[0,3,5,6,7,14,27,40,42,44],params_dict:27,params_to_str:[],paramsset:[],paramstoset:[],paramt:41,pars:[6,14,27,40],parse_the_arg:27,parsedargumentpars:[6,14],part:[40,41],partial:43,particular:40,pass:[0,6,14,27,41],path:[0,5,6,14,27,43],path_f:27,path_for_new:27,path_to_config_fil:27,path_to_your_dataset:5,pathf:[5,27,28,43],pbject:27,penalti:[],per:27,percent:[],percentag:27,perf:[],perfom:27,perform:[0,3,6,14,27,40,41,42],perofm:41,person:[0,14,41],pickl:[5,27,42],pip:[5,45],pixel:5,plai:5,plane:43,plane_452:43,platform:[3,5,7,41,42,43],platfro:43,platofrm:41,plausibl:[27,40,41],plot:[0,5,14,40,42],plot_2d:[0,14],plot_errors_bar:[0,14],plot_metric_scor:[0,14],plot_results_nois:14,plotli:5,plotted_data:[],plotted_metr:[],plotted_metric_nam:[],plt:[],png:[0,14,42],point:27,poor:42,pos:[],pos_label:40,posit:[0,14],possibl:[6,14,27,40,41],potenti:41,precis:[40,41],precision_scor:[],precomput:[],pred:27,predict:[7,41],prefer:[],pregenutil:[],prerequisit:[3,13],present:40,preset:41,presort:[],previou:[0,14,27,40,41,42,43],princip:[6,14],print:[0,14,40,42],print_metric_scor:27,printmetricscor:[],prior:5,priovid:40,problem:40,procedur:3,process:[6,14,27,41],process_analysi:[],process_analysis_flag:[],process_coeffici:[],process_reconstruction_sign:[],process_sign:[],project:5,propos:[5,41],provid:[6,14,27,40,41],pseudo:[41,42],pseudo_cq_fus:[13,14,15],publish:[0,14],publish_feature_import:14,publish_iter_biclass_example_error:14,publish_iter_biclass_metrics_scor:14,publish_iter_multiclass_example_error:14,publish_iter_multiclass_metrics_scor:14,publishexampleerror:14,publishmetricsgraph:[0,14],publishmulticlassexmapleerror:14,publishmulticlassscor:14,purpos:[6,14],put:[],pyplot:[0,14],python3:45,python:[5,41,43,45],pywp:[],pyyaml:5,qar_boost:[],qar_boost_nc3:[],qar_boostv2:[],qar_boostv3:[],quickstart:3,ram:5,randint:27,random:[0,14,27,40,42],random_forest:[],random_st:[6,14,16,17,18,19,27,28,42],random_state_arg:27,randomforest:[],randomforestclassifi:[],randomised_search:41,randomized_search:[27,41],randomizedsearchcv:27,randomli:41,randomsatearg:27,randomsearch:27,randomst:[27,40],rang:[5,27],rate:40,ratio:[0,14,27,41],ration:41,raw:[0,14],read:5,readabl:[0,14],readi:43,readm:3,real:[0,5,14],realiz:[0,14],realli:27,reason:[],recal:[],recall_scor:[],recod:43,recommend:[5,40],reconstruct:[],recov:[],rect:[0,14],rectangl:40,red:[],reduc:[6,14,41],reduced_kwargs_combin:[6,14],refer:[3,27],refit:27,regress:27,regroup:[0,14,40,42],rel:[27,43],relat:[40,41],relev:41,rememb:[],remov:3,repeat:41,report:27,repositori:5,repres:41,represent:40,reproduct:40,reproductilb:41,requir:[43,45],res_dir:40,reslut:[0,14],resp:27,rest_of_the_arg:[6,14],restrain:[0,14],result:[1,5,6,14,27,28,40,41,42,43],result_analysi:[4,13],result_directori:27,results_directori:27,resultsmonoview:28,resum:[6,14,27],retriev:27,retuern:[],reus:[],revers:[6,14],right:[5,6,14,27,40,41,43],robust:41,roc_auc_scor:[],root:3,row:40,rowlbarr:[],run:[3,6,14,27,28,29,30,39,40,41,42,43,45],runtest:[28,29,30,39],runtim:41,rvs:27,s10:43,sai:40,same:[27,40,41,43],sampl:27,sample_weight:40,satatisitc:42,satisfi:43,sattist:27,save:[0,6,14,27,40,42,43],save_config:27,save_result:[],saveresult:[],scalar:7,scale:27,schur:[],scipi:5,scm:[],scm_pregen:[],scm_pregen_tre:[],scm_sparsiti:[],scm_sparsity_tte:[],scmforlinear:[13,14,15,22,23],score:[0,7,14,27,40,41,42],score_test:29,scorer:7,scores_arrai:[14,27],script:[5,43],scroe:[],search:[3,40],search_best_set:27,searching_tool:27,second:[40,41],second_classifier_decis:[17,18],section:[40,41,42],secur:41,see:[5,27,41],seed:[27,40],seem:40,seen:[0,14,41,42],select:[27,41],select_label:27,select_views_and_label:27,selected_label_nam:27,self:27,semin:[],sequenc:[],serach:41,serv:41,server:[],set:[0,6,14,27,28,29,30,39,40,41,42,43],set_el:[6,14],settl:42,setup:[3,28,39],setupclass:[28,29,30,39],sever:[],sgd:41,sgdclassifi:[],shape:[0,7,14,27,40],shapelbarr:[],share:27,should:[3,40,41,43],show:[0,14,27,40,42],shuffl:[],sig:[],sig_l:[],sig_r:[],sign_label:27,signal:27,similar:40,similarli:[41,43],simpl:40,simplest:[40,41],simul:[3,40,41],sinc:[],singl:[42,43],six:5,size:[0,14],sklearn:[5,6,7,14,27,41],slice:27,slightli:42,snapshot:[],solut:[5,27],solv:[],some:[0,5,14,27,40,41,44],sort:[0,14,43],sort_by_test_scor:[0,14],sorted_nam:[0,14],sorted_test_scor:[0,14],sorted_test_std:[0,14],sorted_train_scor:[0,14],sorted_train_std:[0,14],sound:43,sound_dataset:43,sound_matrix:43,source_view_nam:27,space:[27,41],spare:5,spars:[5,27,43],sparsif:[],sparsifi:[],spear_mint:27,spearmint:27,specif:[0,5,6,14,27,41,42],specifi:[5,6,7,14,27,40,41],spectacularli:40,sphinx:3,split:[3,6,14,27,28,40,42],split_ratio:27,splitter:41,spy:[],squar:[],src:[],standard:[0,14,42],start:[0,3,14],started_1560_04_01:41,started_1560_12_25:[40,42],startl:40,stat:42,state:[0,14,27,40,41],statist:[0,3,6,14,27,44],stats_it:[0,6,14,27,28,42],stats_iter_random_st:27,statsit:[0,14,27],std:[0,14,27,42],step:[3,44],step_predict:[],still:5,stochastic_gradi:[],stop:27,store:[0,5,6,7,14,27,40,41,43],str:[0,6,14,27],stratifi:27,stratifiedkfold:27,stratifiedshufflesplit:41,string:[5,6,7,14,27],string_analysi:[],stringanalysi:[],strongli:41,struct_mana_r:[],struct_mres_gr:[],struct_multires_lbarr:[],structur:[0,3,14,40,42],stuff:13,sub:41,subgraph:[],submodul:[3,4,15],subpackag:[3,4],subplot:[0,14],subsampl:[],subset:[27,41],success:40,successfulli:40,sucess:5,sum:45,summari:[40,42],suppos:43,sure:43,svc:[],svcc:[],svcclassifi:[],svm_linear:40,svm_poli:41,svm_rbf:[],svmforlinear:[13,14,15,22,23],svmlinear:[],svmlinearwith:40,svmpoli:[],svmrbf:[],symmetr:40,t_start:[],tab:[],tab_multir:[],tab_struct_multires_lbarr:[],tabl:41,tag:[0,14],take:[3,40,41,44],taken:[],target:[7,27],target_dataset:27,target_view_index:27,task:[40,41],teardown:[28,39],teardownclass:[28,30,39],tell:27,templat:[],temporari:27,term:[40,41,42],termin:[40,45],test:[0,3,4,6,14,27,40,42],test_accuracy_scor:[13,28],test_adaboost:[13,28],test_all_views_ask:39,test_argu:39,test_asked_the_whole_dataset:39,test_benchmark_w:28,test_compat:[13,28],test_configur:[13,28],test_dict_format:39,test_difficultymeasur:[13,28,32],test_difficultymeasuremodul:[13,28,32],test_disagreefus:[13,28,32],test_disagreefusionmodul:[13,28,32],test_diversity_util:[13,28],test_doublefaultfus:[13,28,32],test_doublefaultfusionmodul:[13,28,32],test_empty_arg:39,test_entropyfus:[13,28,32],test_entropyfusionmodul:[13,28,32],test_execbenchmark:28,test_execclassif:[4,13],test_execclassifmonoview:[13,28],test_execonebenchmark:28,test_execonebenchmark_multicor:28,test_execut:[13,28],test_file_load:39,test_folds_pr:[],test_format_previous_result:28,test_fus:[13,28,32],test_fusionmodul:[13,28,32],test_gen_error_data:28,test_gen_error_data_glob:28,test_genargumentdictionari:39,test_gendirecortiesnam:39,test_genkfold:39,test_genkfolds_it:39,test_genmulticlasslabel:39,test_gensplit:39,test_gensplits_no_it:39,test_gentestfoldspr:30,test_get_argu:28,test_get_classic_db_csv:39,test_get_classic_db_hdf5:39,test_get_example_errors_biclass:28,test_get_metrics_scores_biclass:28,test_get_path_dict:28,test_get_plausible_db_hdf5:39,test_get_the_arg:39,test_getdatabasefunct:39,test_gethp:30,test_getmultiviewdb:[13,28],test_hdf5:39,test_init_argument_dictionaries_monoview:28,test_init_argument_dictionaries_multiview:28,test_init_argument_dictionaries_multiview_complex:28,test_init_argument_dictionaries_multiview_multipl:28,test_init_argument_dictionaries_multiview_multiple_complex:28,test_init_plot:28,test_initargumentdictionari:28,test_initbenchmark:28,test_initconst:30,test_initkwarg:28,test_initkwargsfunc_no_monoview:28,test_initrandomst:39,test_initstatsiterrandomst:39,test_inittraintest:30,test_label:27,test_labels_multiclass:[],test_metr:[13,28],test_mono_view:[13,28],test_monoview_classifi:[13,28],test_monoviewutil:[13,28],test_multiclass:[13,28],test_multiclass_and_it:28,test_multiclass_no_it:28,test_multiple_it:39,test_multiview_classifi:[13,28],test_no_iter_biclass_multicor:28,test_one_statit:39,test_one_versus_on:39,test_ovo_no_it:39,test_parsethearg:39,test_plausible_hdf5:39,test_pseudocqfusionmodul:[13,28,32],test_pseudocqmeasur:[13,28,32],test_random_state_42:39,test_random_state_pickl:39,test_resultanalysi:[4,13],test_scor:[0,14],test_set_el:28,test_simpl:[28,30,39],test_simple_ovo:39,test_std:[0,14],test_two_class:39,test_util:[13,28],test_vers:13,testcas:[28,29,30,39],testlabel:[],testscor:[],text:[0,14,41],tha:41,than:[27,40,41,42],thank:[6,14,41],thei:[5,41],them:[0,14,27,40,41,43],thi:[0,2,3,5,6,7,13,14,27,41,42,43],thing:[],third:[],thoroughli:3,those:40,thread:[5,6,14,27],three:[41,43],through:40,ths:7,thu:41,tick:[0,14],time:[0,5,14,40,41],timeout:27,titl:[0,14],to_numpy_arrai:27,to_str:[],tobe:27,toctre:3,todo:[40,41],tol:[],too:[27,41],took:40,tool:[3,43],toolbox:44,top:42,top_directori:5,total:[5,6,14],tradeoff:41,train:[0,3,6,14,27,40,42],train_indic:[40,42],train_label:[27,40,42],train_scor:[0,14],train_std:[0,14],trainlabel:[],trainscor:[],transform:[0,13,14],tree:41,triplet:[6,14,27],true_label:[0,14],truth:7,tune:[6,14],tupl:[],tutori:3,two:[27,40,41,43],txt:[40,42],type:[0,5,6,7,14,27,28,40,41],type_var:27,unbalanc:41,under:[40,42],understand:[3,40,44],uniform:41,uniqu:27,unittest:[5,28,29,30,39],unknown:41,unless:[],unlucki:42,unseen:41,unsign_label:27,unsupervis:27,update_hdf5_dataset:27,url:41,usabl:[0,14],usag:[],use:[3,5,6,14,27,40,41,43,44],use_plotli:[0,14],used:[2,3,6,13,14,27,40,41,43],used_indic:27,useful:[0,14,40,41],usefulness:41,user:[6,14,27,40,41],user_exemple_analysis_recon:[],uses:[40,41,42],using:[5,6,14,27,40,41,43],usual:43,utf:5,util:[12,13,14],valid:[6,14,27,40],validation_indic:27,validationindic:[],valu:[0,6,7,14,27,40,41,43],value1:[6,14],value2:[6,14],vanish:[],variabl:[6,14],variou:[],vector:27,veri:40,version:[3,4,5,40],versu:[0,14,27],vertex:[],vertic:42,view0:43,view1:43,view2:43,view:[0,3,6,14,27,28,40,41,42,43],view_data:27,view_dict:27,view_idx:27,view_index:[6,14,27],view_indic:27,view_limit:27,view_nam:[0,5,6,14,27],viewnumber0:[40,41,42],viewnumber1:[40,41,42],viewnumber2:[40,41,42],views_dictionari:[6,14],views_indic:[6,14,27,28],viewx:5,visibl:40,visual:[5,40],vote:41,wai:[0,14,40,41,43],want:41,warm_start:[],warn:41,watch:[],weight:[],weight_boost:[],weighted_linear_late_fus:[40,42],weightedlinear:[13,14,15,22,23],weird_str:[],welcom:1,well:[0,14],were:[6,14,41],what:45,when:27,where:[0,14,27,40],whether:[0,5,7,14,27],which:[0,5,6,7,14,27,41,42,44],white:40,whiter:[0,14],whitespac:[0,14],whole:[27,40,41,42],whose:[],width:[0,14],width_denomin:[0,14],wil:[6,14,27],wise:[0,14,41],wit:43,within:41,without:3,won:41,word:[],work:[7,27,41,43],worst:40,would:[],written:43,x_train:[],xbarr:[],xbarrei:[],xlabel:[],y_pred:7,y_test:[],y_test_multiclass_pr:[],y_test_pr:[],y_train:[],y_train_pr:[],y_true:7,yaml:5,yaml_config:27,yield:[],yml:[5,13,27,41,42],you:[3,40,41,42,43,45],your:[3,44],your_dataset_nam:5,zero:[0,14,27],zero_one_loss:[],zero_to_on:[],zoom:40},titles:["Result analysis module","Multiview Platform","Welcome to the exection documentation","Welcome to MultiviewPlatform\u2019s documentation!","multiview_platform","Readme","Classification execution module","Metrics framework","Classifiers","Diversity Fusion Classifiers","Utils execution module","Utils Multiclass module","Mono and mutliview classification","multiview_platform references","multiview_platform.mono_multi_view_classifiers package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion package","multiview_platform.mono_multi_view_classifiers.utils package","multiview_platform.tests package","multiview_platform.tests.test_metrics package","multiview_platform.tests.test_mono_view package","multiview_platform.tests.test_monoview_classifiers package","multiview_platform.tests.test_multiview_classifiers package","multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure package","multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion package","multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion package","multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion package","multiview_platform.tests.test_multiview_classifiers.Test_Fusion package","multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure package","multiview_platform.tests.test_utils package","Example 1 : First steps with Multiview Platform","Example 2 : Understanding the hyper-parameter optimization","Example 3 : Understanding the statistical iterations","Taking control : Use your own dataset","Multiview Platform Tutorials","Install Multiview Platform"],titleterms:{"1560_12_25":40,"15_42":40,Adding:43,The:43,Use:43,accuracy_scor:40,adaboost:[],adaboost_gra:[],adaboost_pregen10:[],adaboost_pregen:[],adaboost_pregen_tre:[],addit:43,alreadi:5,analysi:0,analyze_result:[16,17,18,19,20,21,22,26],argument:5,author:5,bare:43,bayesianinfer:25,benchmark:5,boostutil:[],c_greed:[],cb_boost:[],cbboostutil:[],cg_desc10:[],cg_desc:[],cg_desc_tre:[],cgdescutil:[],choic:41,classif:[5,6,12],classifi:[8,9,40],coeffici:[],compat:5,comput:[],config_fil:40,configur:27,content:[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],context:[40,42],contributor:5,control:43,convers:43,cq_boost:[],cq_boosttre:[],cq_boostv21:[],cq_boostv2:[],cqboostutil:[],cross:41,csv:[5,40],data:5,dataset:[5,27,43],decision_tre:[],decision_tree_pregen:[],depend:40,difficulty_fus:16,disagree_fus:17,discov:5,divers:9,diversity_util:[],document:[2,3],double_fault_fus:18,earlyfus:23,earlyfusionpackag:24,entropy_fus:19,error_analysis_2d:40,error_analysis_bar:40,exampl:[40,41,42,43],exec_classif:14,exec_classif_mono_view:[],exec_multiview:[],exec_plot:[],exect:2,execut:[6,10,13,27],experi:41,explan:41,export_result:[],f1_score:[],fat_late_fus:20,fat_scm_late_fus:21,fbeta_scor:[],file:[5,40],first:40,fold:41,format:5,framework:7,fusion:[9,22,23,24,25],generic_scor:[],get:[5,40],get_multiview_db:27,gradient_boost:[],graph:[],hamming_loss:[],hand:41,have:5,hdf5:[5,43],how:42,html:40,hyper:41,hyper_parameter_search:27,impact:41,indic:3,inform:43,instal:[5,45],intertwin:[],introduct:40,intuit:41,iter:42,jaccard_similarity_scor:[],knn:[],lasso:[],latefus:23,latefusionpackag:25,launch:45,log:40,log_loss:[],majorityvot:25,make_file_config:27,matthews_corrcoef:[],method:[23,24,25],metric:[7,41],min_cq:[],min_cq_graalpi:[],min_cq_graalpy_tre:[],mincqutil:[],modul:[0,6,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],mono:[5,12],mono_multi_view_classifi:[14,15,16,17,18,19,20,21,22,23,24,25,26,27],monoview:[],monoview_classifi:[],monoview_util:[],multi:5,multiclass:[11,27],multipl:5,multiview:[1,40,44,45],multiview_classifi:[15,16,17,18,19,20,21,22,23,24,25,26],multiview_platform:[4,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],multiview_result_analysi:27,multiview_util:[],multiviewplatform:3,must:5,mutliview:12,necess:43,oper:[],optim:41,organ:5,own:43,packag:[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],paramet:41,pickl:40,platform:[1,40,44,45],png:40,precision_scor:[],pregenutil:[],prerequisit:5,process:[],pseudo_cq_fus:26,qar_boost:[],qar_boost_nc3:[],qar_boostv2:[],qar_boostv3:[],random:41,random_forest:[],random_st:40,readm:5,recall_scor:[],reconstruct:[],refer:13,result:0,result_analysi:14,roc_auc_scor:[],run:5,scm:[],scm_pregen:[],scm_pregen_tre:[],scm_sparsiti:[],scm_sparsity_tte:[],scmforlinear:25,search:41,setup:45,sgd:[],signal:[],simul:5,size:41,split:41,start:[5,40],statist:42,step:40,structur:43,subgraph:[],submodul:[13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],subpackag:[13,14,15,22,23,28,32,37],svcclassifi:[],svm_linear:[],svm_poli:[],svm_rbf:[],svmforlinear:25,tabl:3,take:43,test:[5,13,28,29,30,31,32,33,34,35,36,37,38,39,41],test_accuracy_scor:29,test_adaboost:31,test_compat:31,test_configur:39,test_difficultymeasur:33,test_difficultymeasuremodul:33,test_disagreefus:34,test_disagreefusionmodul:34,test_diversity_util:32,test_doublefaultfus:35,test_doublefaultfusionmodul:35,test_entropyfus:36,test_entropyfusionmodul:36,test_execclassif:28,test_execclassifmonoview:30,test_execut:39,test_fus:37,test_fusionmodul:37,test_getmultiviewdb:39,test_metr:29,test_mono_view:30,test_monoview_classifi:31,test_monoviewutil:30,test_multiclass:39,test_multiview_classifi:[32,33,34,35,36,37,38],test_pseudocqfusionmodul:38,test_pseudocqmeasur:38,test_resultanalysi:28,test_util:39,them:5,thi:40,tool:45,train:41,transform:27,tutori:[40,44],understand:[41,42],usag:41,use:42,util:[10,11,27],valid:41,version:13,view:5,wavelet:[],weightedlinear:[24,25],welcom:[2,3],yml:40,you:5,your:[5,43],zero_one_loss:[]}})
\ No newline at end of file
+Search.setIndex({docnames:["analyzeresult","api","execution","index","modules","readme_link","references/monomulti/exec_classif","references/monomulti/metrics","references/monomulti/multiview_classifiers/classifiers","references/monomulti/multiview_classifiers/diversity_fusion","references/monomulti/utils/execution","references/monomulti/utils/multiclass","references/monomultidoc","references/multiview_platform","references/multiview_platform.mono_multi_view_classifiers","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion","references/multiview_platform.mono_multi_view_classifiers.utils","references/multiview_platform.tests","references/multiview_platform.tests.test_metrics","references/multiview_platform.tests.test_mono_view","references/multiview_platform.tests.test_monoview_classifiers","references/multiview_platform.tests.test_multiview_classifiers","references/multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure","references/multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion","references/multiview_platform.tests.test_multiview_classifiers.Test_Fusion","references/multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure","references/multiview_platform.tests.test_utils","tutorials/example1","tutorials/example2","tutorials/example3","tutorials/example4","tutorials/example5","tutorials/index","tutorials/installation"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,sphinx:55},filenames:["analyzeresult.rst","api.rst","execution.rst","index.rst","modules.rst","readme_link.rst","references/monomulti/exec_classif.rst","references/monomulti/metrics.rst","references/monomulti/multiview_classifiers/classifiers.rst","references/monomulti/multiview_classifiers/diversity_fusion.rst","references/monomulti/utils/execution.rst","references/monomulti/utils/multiclass.rst","references/monomultidoc.rst","references/multiview_platform.rst","references/multiview_platform.mono_multi_view_classifiers.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage.rst","references/multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion.rst","references/multiview_platform.mono_multi_view_classifiers.utils.rst","references/multiview_platform.tests.rst","references/multiview_platform.tests.test_metrics.rst","references/multiview_platform.tests.test_mono_view.rst","references/multiview_platform.tests.test_monoview_classifiers.rst","references/multiview_platform.tests.test_multiview_classifiers.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_Fusion.rst","references/multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure.rst","references/multiview_platform.tests.test_utils.rst","tutorials/example1.rst","tutorials/example2.rst","tutorials/example3.rst","tutorials/example4.rst","tutorials/example5.rst","tutorials/index.rst","tutorials/installation.rst"],objects:{"":{multiview_platform:[13,0,0,"-"]},"multiview_platform.execute":{execute:[13,1,1,""]},"multiview_platform.mono_multi_view_classifiers":{exec_classif:[14,0,0,"-"],multiview_classifiers:[15,0,0,"-"],result_analysis:[14,0,0,"-"],utils:[27,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.exec_classif":{arange_metrics:[14,1,1,""],benchmark_init:[14,1,1,""],exec_benchmark:[14,1,1,""],exec_classif:[14,1,1,""],exec_one_benchmark_mono_core:[14,1,1,""],extract_dict:[14,1,1,""],gen_multiple_args_dictionnaries:[14,1,1,""],gen_multiple_kwargs_combinations:[14,1,1,""],gen_single_monoview_arg_dictionary:[14,1,1,""],gen_single_multiview_arg_dictionary:[14,1,1,""],get_path_dict:[14,1,1,""],init_argument_dictionaries:[14,1,1,""],init_benchmark:[14,1,1,""],init_kwargs:[14,1,1,""],init_kwargs_func:[14,1,1,""],init_monoview_exps:[14,1,1,""],init_multiview_exps:[14,1,1,""],is_dict_in:[14,1,1,""],multiple_args:[14,1,1,""],set_element:[14,1,1,""]},"multiview_platform.mono_multi_view_classifiers.metrics":{framework:[7,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.metrics.framework":{getConfig:[7,1,1,""],get_scorer:[7,1,1,""],score:[7,1,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers":{difficulty_fusion:[16,0,0,"-"],disagree_fusion:[17,0,0,"-"],double_fault_fusion:[18,0,0,"-"],entropy_fusion:[19,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion":{DifficultyFusion:[16,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion.DifficultyFusion":{diversity_measure:[16,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion":{DisagreeFusion:[17,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion.DisagreeFusion":{diversity_measure:[17,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion":{DoubleFaultFusion:[18,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion.DoubleFaultFusion":{diversity_measure:[18,3,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion":{EntropyFusion:[19,2,1,""]},"multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion.EntropyFusion":{diversity_measure:[19,3,1,""]},"multiview_platform.mono_multi_view_classifiers.result_analysis":{add_new_labels_combination:[14,1,1,""],add_new_metric:[14,1,1,""],analyzeMulticlass:[14,1,1,""],analyze_biclass:[14,1,1,""],analyze_iter_multiclass:[14,1,1,""],analyzebiclass_iter:[14,1,1,""],autolabel:[14,1,1,""],format_previous_results:[14,1,1,""],gen_classifiers_dict:[14,1,1,""],gen_error_data:[14,1,1,""],gen_error_data_glob:[14,1,1,""],gen_metrics_scores_multiclass:[14,1,1,""],get_arguments:[14,1,1,""],get_error_on_labels_multiclass:[14,1,1,""],get_example_errors_biclass:[14,1,1,""],get_feature_importances:[14,1,1,""],get_fig_size:[14,1,1,""],get_metrics_scores_biclass:[14,1,1,""],get_results:[14,1,1,""],init_plot:[14,1,1,""],iterCmap:[14,1,1,""],numpy_mean_and_std:[14,1,1,""],plot_2d:[14,1,1,""],plot_errors_bar:[14,1,1,""],plot_metric_scores:[14,1,1,""],plot_results_noise:[14,1,1,""],publishExampleErrors:[14,1,1,""],publishMetricsGraphs:[14,1,1,""],publishMulticlassExmapleErrors:[14,1,1,""],publishMulticlassScores:[14,1,1,""],publish_feature_importances:[14,1,1,""],publish_iter_biclass_example_errors:[14,1,1,""],publish_iter_biclass_metrics_scores:[14,1,1,""],publish_iter_multiclass_example_errors:[14,1,1,""],publish_iter_multiclass_metrics_scores:[14,1,1,""],publish_tracebacks:[14,1,1,""],save_dict_to_text:[14,1,1,""],save_failed:[14,1,1,""],sort_by_test_score:[14,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils":{configuration:[27,0,0,"-"],dataset:[27,0,0,"-"],execution:[27,0,0,"-"],get_multiview_db:[27,0,0,"-"],hyper_parameter_search:[27,0,0,"-"],make_file_config:[27,0,0,"-"],multiclass:[27,0,0,"-"],multiview_result_analysis:[27,0,0,"-"],transformations:[27,0,0,"-"]},"multiview_platform.mono_multi_view_classifiers.utils.configuration":{get_the_args:[27,1,1,""],save_config:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.dataset":{Dataset:[27,2,1,""],confirm:[27,1,1,""],copy_hdf5:[27,1,1,""],datasets_already_exist:[27,1,1,""],delete_HDF5:[27,1,1,""],extract_subset:[27,1,1,""],init_multiple_datasets:[27,1,1,""],input_:[27,1,1,""],is_just_number:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.dataset.Dataset":{add_gaussian_noise:[27,3,1,""],check_selected_label_names:[27,3,1,""],copy_view:[27,3,1,""],dataset:[27,4,1,""],filter:[27,3,1,""],get_label_names:[27,3,1,""],get_labels:[27,3,1,""],get_name:[27,3,1,""],get_nb_class:[27,3,1,""],get_nb_examples:[27,3,1,""],get_shape:[27,3,1,""],get_v:[27,3,1,""],get_view_dict:[27,3,1,""],get_view_name:[27,3,1,""],init_attrs:[27,3,1,""],init_example_indces:[27,3,1,""],init_view_names:[27,3,1,""],nb_view:[27,4,1,""],rm:[27,3,1,""],select_labels:[27,3,1,""],select_views_and_labels:[27,3,1,""],to_numpy_array:[27,3,1,""],update_hdf5_dataset:[27,3,1,""],view_dict:[27,4,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.execution":{find_dataset_names:[27,1,1,""],gen_argument_dictionaries:[27,1,1,""],gen_direcorties_names:[27,1,1,""],gen_k_folds:[27,1,1,""],gen_splits:[27,1,1,""],get_database_function:[27,1,1,""],init_log_file:[27,1,1,""],init_random_state:[27,1,1,""],init_stats_iter_random_states:[27,1,1,""],init_views:[27,1,1,""],parse_the_args:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.get_multiview_db":{DatasetError:[27,5,1,""],get_classic_db_csv:[27,1,1,""],get_classic_db_hdf5:[27,1,1,""],get_plausible_db_hdf5:[27,1,1,""],make_me_noisy:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search":{CustomRandint:[27,2,1,""],CustomUniform:[27,2,1,""],MultiviewCompatibleRandomizedSearchCV:[27,2,1,""],compute_possible_combinations:[27,1,1,""],gen_heat_maps:[27,1,1,""],get_test_folds_preds:[27,1,1,""],grid_search:[27,1,1,""],randomized_search:[27,1,1,""],search_best_settings:[27,1,1,""],spear_mint:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.CustomRandint":{get_nb_possibilities:[27,3,1,""],rvs:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.CustomUniform":{rvs:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.hyper_parameter_search.MultiviewCompatibleRandomizedSearchCV":{fit:[27,3,1,""],fit_multiview:[27,3,1,""],get_test_folds_preds:[27,3,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.make_file_config":{ConfigurationMaker:[27,2,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.multiclass":{gen_multiclass_labels:[27,1,1,""],gen_multiclass_monoview_decision:[27,1,1,""],is_biclass:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.multiview_result_analysis":{get_metrics_scores:[27,1,1,""],get_total_metric_scores:[27,1,1,""],print_metric_score:[27,1,1,""]},"multiview_platform.mono_multi_view_classifiers.utils.transformations":{sign_labels:[27,1,1,""],unsign_labels:[27,1,1,""]},"multiview_platform.tests":{test_ExecClassif:[28,0,0,"-"],test_ResultAnalysis:[28,0,0,"-"],test_metrics:[29,0,0,"-"],test_mono_view:[30,0,0,"-"],test_monoview_classifiers:[31,0,0,"-"],test_multiview_classifiers:[32,0,0,"-"],test_utils:[39,0,0,"-"]},"multiview_platform.tests.test_ExecClassif":{FakeKfold:[28,2,1,""],Test_InitArgumentDictionaries:[28,2,1,""],Test_execBenchmark:[28,2,1,""],Test_get_path_dict:[28,2,1,""],Test_initBenchmark:[28,2,1,""],Test_initKWARGS:[28,2,1,""],Test_set_element:[28,2,1,""],fakeBenchmarkExec:[28,1,1,""],fakeBenchmarkExec_monocore:[28,1,1,""],fakeBenchmarkExec_mutlicore:[28,1,1,""],fakeDelete:[28,1,1,""],fakeExecMono:[28,1,1,""],fakeExecMulti:[28,1,1,""],fakeInitMulti:[28,1,1,""],fakegetResults:[28,1,1,""]},"multiview_platform.tests.test_ExecClassif.FakeKfold":{split:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_InitArgumentDictionaries":{setUpClass:[28,6,1,""],test_init_argument_dictionaries_monoview:[28,3,1,""],test_init_argument_dictionaries_multiview:[28,3,1,""],test_init_argument_dictionaries_multiview_complex:[28,3,1,""],test_init_argument_dictionaries_multiview_multiple:[28,3,1,""],test_init_argument_dictionaries_multiview_multiple_complex:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_execBenchmark":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_multiclass_and_iter:[28,3,1,""],test_multiclass_no_iter:[28,3,1,""],test_no_iter_biclass_multicore:[28,3,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_get_path_dict":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_initBenchmark":{test_benchmark_wanted:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_initKWARGS":{test_initKWARGSFunc_no_monoview:[28,3,1,""]},"multiview_platform.tests.test_ExecClassif.Test_set_element":{setUpClass:[28,6,1,""],tearDownClass:[28,6,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis":{Test_format_previous_results:[28,2,1,""],Test_gen_error_data:[28,2,1,""],Test_gen_error_data_glob:[28,2,1,""],Test_get_arguments:[28,2,1,""],Test_get_example_errors_biclass:[28,2,1,""],Test_get_metrics_scores_biclass:[28,2,1,""],Test_init_plot:[28,2,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_format_previous_results":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_gen_error_data":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_gen_error_data_glob":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_arguments":{setUp:[28,3,1,""],test_benchmark_wanted:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_example_errors_biclass":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_get_metrics_scores_biclass":{multiple_monoview_classifiers:[28,3,1,""],mutiview_result:[28,3,1,""],test_simple:[28,3,1,""]},"multiview_platform.tests.test_ResultAnalysis.Test_init_plot":{test_simple:[28,3,1,""]},"multiview_platform.tests.test_metrics":{test_accuracy_score:[29,0,0,"-"]},"multiview_platform.tests.test_metrics.test_accuracy_score":{Test_accuracy_score:[29,2,1,""]},"multiview_platform.tests.test_metrics.test_accuracy_score.Test_accuracy_score":{score_test:[29,3,1,""],setUpClass:[29,3,1,""]},"multiview_platform.tests.test_mono_view":{test_ExecClassifMonoView:[30,0,0,"-"],test_MonoviewUtils:[30,0,0,"-"]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView":{Test_getHPs:[30,2,1,""],Test_initConstants:[30,2,1,""],Test_initTrainTest:[30,2,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_getHPs":{setUpClass:[30,6,1,""],tearDownClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_initConstants":{setUpClass:[30,6,1,""],tearDownClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_ExecClassifMonoView.Test_initTrainTest":{setUpClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_mono_view.test_MonoviewUtils":{Test_genTestFoldsPreds:[30,2,1,""]},"multiview_platform.tests.test_mono_view.test_MonoviewUtils.Test_genTestFoldsPreds":{setUpClass:[30,6,1,""],test_simple:[30,3,1,""]},"multiview_platform.tests.test_monoview_classifiers":{test_adaboost:[31,0,0,"-"],test_compatibility:[31,0,0,"-"]},"multiview_platform.tests.test_multiview_classifiers":{Test_PseudoCQMeasure:[38,0,0,"-"],test_diversity_utils:[32,0,0,"-"]},"multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure":{test_PseudoCQFusionModule:[38,0,0,"-"]},"multiview_platform.tests.test_utils":{test_GetMultiviewDB:[39,0,0,"-"],test_configuration:[39,0,0,"-"],test_execution:[39,0,0,"-"],test_multiclass:[39,0,0,"-"]},"multiview_platform.tests.test_utils.test_GetMultiviewDB":{Test_get_classic_db_csv:[39,2,1,""],Test_get_classic_db_hdf5:[39,2,1,""],Test_get_plausible_db_hdf5:[39,2,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_csv":{setUp:[39,3,1,""],tearDown:[39,6,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_classic_db_hdf5":{setUp:[39,3,1,""],tearDown:[39,3,1,""],test_all_views_asked:[39,3,1,""],test_asked_the_whole_dataset:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_GetMultiviewDB.Test_get_plausible_db_hdf5":{setUpClass:[39,6,1,""],tearDownClass:[39,6,1,""],test_simple:[39,3,1,""],test_two_class:[39,3,1,""]},"multiview_platform.tests.test_utils.test_configuration":{Test_get_the_args:[39,2,1,""]},"multiview_platform.tests.test_utils.test_configuration.Test_get_the_args":{setUpClass:[39,6,1,""],tearDownClass:[39,6,1,""],test_arguments:[39,3,1,""],test_dict_format:[39,3,1,""],test_file_loading:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution":{FakeArg:[39,2,1,""],Test_genArgumentDictionaries:[39,2,1,""],Test_genDirecortiesNames:[39,2,1,""],Test_genKFolds:[39,2,1,""],Test_genSplits:[39,2,1,""],Test_getDatabaseFunction:[39,2,1,""],Test_initRandomState:[39,2,1,""],Test_initStatsIterRandomStates:[39,2,1,""],Test_parseTheArgs:[39,2,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genArgumentDictionaries":{setUpClass:[39,6,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genDirecortiesNames":{setUpClass:[39,6,1,""],test_ovo_no_iter:[39,3,1,""],test_simple_ovo:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genKFolds":{setUp:[39,3,1,""],test_genKFolds_iter:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_genSplits":{setUp:[39,3,1,""],test_genSplits_no_iter:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_getDatabaseFunction":{setUpClass:[39,6,1,""],test_hdf5:[39,3,1,""],test_plausible_hdf5:[39,3,1,""],test_simple:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_initRandomState":{setUp:[39,3,1,""],tearDown:[39,3,1,""],test_random_state_42:[39,3,1,""],test_random_state_pickle:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_initStatsIterRandomStates":{setUpClass:[39,6,1,""],test_multiple_iter:[39,3,1,""],test_one_statiter:[39,3,1,""]},"multiview_platform.tests.test_utils.test_execution.Test_parseTheArgs":{setUp:[39,3,1,""],test_empty_args:[39,3,1,""]},"multiview_platform.tests.test_utils.test_multiclass":{Test_genMulticlassLabels:[39,2,1,""]},"multiview_platform.tests.test_utils.test_multiclass.Test_genMulticlassLabels":{setUpClass:[39,6,1,""],test_one_versus_one:[39,3,1,""]},"multiview_platform.versions":{test_versions:[13,1,1,""]},multiview_platform:{execute:[13,0,0,"-"],mono_multi_view_classifiers:[14,0,0,"-"],tests:[28,0,0,"-"],versions:[13,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"],"5":["py","exception","Python exception"],"6":["py","classmethod","Python class method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute","5":"py:exception","6":"py:classmethod"},terms:{"0x7f30a3a1bb40":40,"0x7f3186287e30":[],"12_42_":41,"12_42__":41,"15588087e":[],"1560_04_01":41,"1560_12_25":42,"15887658e":[],"15_42":42,"16493056e":[],"200x100":43,"200x40":43,"200x55":43,"25000130e":[],"25th":40,"2d_plot_data":[0,14,40,42],"345px":[],"55845734e":[],"56532883e":[],"68070076e":[],"78582022e":[],"78647881e":[],"84741585e":[],"95570764e":[],"99267234e":[],"99456183e":[],"boolean":[5,7,27],"case":[0,6,14,27,28,29,30,39],"class":[6,7,14,16,17,18,19,27,28,29,30,39,40,41,43,44],"default":[0,7,14,40,41],"final":40,"float":[0,7,14,27,41,44],"function":[0,6,7,14,27,40],"import":[0,5,14,27,40,41,43,44],"int":[0,5,6,14,27],"long":43,"new":[27,40,42],"return":[0,6,7,14,27,42],"static":[],"super":44,"true":[0,6,14,27,40],"try":[5,28,43],"while":[27,41,43],Adding:[3,40],And:[5,41,43],But:41,For:[0,5,6,14,27,40,41,42,43,44],HPS:41,IDs:43,Ids:[],One:[5,27,41,44],THe:[0,14,27,41,43],The:[0,3,5,6,7,14,27,40,41,42,45],Then:[27,40,42,43,44],These:[7,40,41],Ths:41,Use:[3,45],Used:[0,5,6,13,14,27],Will:[6,14],With:5,Yes:[27,40,42],__init__:44,_fit_stag:[],_gen:27,_search:27,_static:[],abl:[5,27,40,41,43,44],about:5,abs:[],absolut:5,access:[],accord:27,account:[],accuraci:[40,41],accuracy_scor:[27,41,42],adaboost:[6,14,40,41,42],adaboost_gra:[],adaboost_pregen10:[],adaboost_pregen:[],adaboost_pregen_tre:[],adaboostclassifi:[],adapt:[3,27],add:[0,3,6,7,14,27,40,41,42,43,44],add_gaussian_nois:27,add_new_labels_combin:14,add_new_metr:14,add_nois:27,added:[0,6,14,44],adding:43,addit:[3,5,16,17,18,19],advantag:3,advis:[],after:[28,30,39,42],again:[],agrument:27,aim:[5,40],alexandr:5,algo:44,algo_modul:44,algoclassifi:44,algorithm:[3,5,6,14,27,40,41,45],algortihm:40,algos_monoview:[40,41],algos_muliview:40,algos_multiview:41,all:[0,5,6,13,14,27,28,30,39,40,42,43,44],all_view:27,alloc:[],allow:[3,27,40,41,43,44],almost:[],along:27,alpha:[],alreadi:[27,44],also:[27,40,41,43],alwai:[],among:[],amount:[40,41],analys:[],analysi:[1,14],analyz:[0,14,40,41,43],analyze_biclass:[0,14],analyze_iter_multiclass:[0,14],analyze_result:[13,14,15],analyzebiclass_it:[0,14],analyzemulticlass:[0,14],ani:[6,14,40,41],anim:43,anoth:[],answer:27,anyth:[0,14],appear:42,approx:[],approxim:[],arange_metr:[6,14],are_spars:27,area:[],arg:[6,14,27,28],arg_view:27,args_dictionari:[6,14],argument:[0,3,6,7,14,27,28,40,41,42],argument_dictionari:[6,14,27,28],arguments_dictionari:[0,14],around:5,arrai:[0,5,6,7,14,27],arrang:[6,14],art:40,asarrai:[],ask:[6,14,40],asked_labels_nam:27,askedlabelsnam:27,astyp:43,atm:5,attr:[5,43],attribur:5,attribut:[5,27,43,44],author:3,auto:[],autolabel:[0,14],automat:5,avail:[0,5,14,27,40,41,43],available_indic:27,averag:[0,14,40],avoid:[],axi:[],back:[],bale:27,baptist:[5,13],bar:[0,14,40,42],bar_plot_data:[0,14,40,42],bar_width:[0,14],bare:3,barplot:[0,14],base:[16,17,18,19,27,28,29,30,39],base_estim:[6,14,41],base_file_nam:[0,14],baseestim:[],baselin:40,basemonoviewclassifi:44,basemultiviewclassifi:[],basi:[],basic:40,bauvin:5,bayesian_inference_fus:[],bayesianinfer:[13,14,15,22,23],bboxinout:[],bea:43,bear:43,bear_112:43,becaus:27,becom:41,bee:[],been:[6,14,40,43],befor:[5,27,28,29,30,39],begin:40,behaviour:40,being:[5,6,14,41,43],belong:[0,14],below:[0,14,40,41],benchmark:[0,3,6,14,27,28,40,41,42,43],benchmark_argument_dictionari:[0,14],benchmark_arguments_dictionari:[6,14,28],benchmark_init:[6,14],benchmarkargumentdictionari:[0,14,27],benchmarkargumentsdictionari:27,benchmrak:41,bencmark:[0,14],best:[40,41,42],better:[0,7,14,40,41],between:[0,14,27,41,42,43,44],biclass:[0,6,14,27,40],biclass_result:[0,14],biclassresult:[0,14],big:27,bigger:41,binari:40,bird:43,bird_785:43,black:40,blue:[],bool:27,boost:[],boosting_bound:[],boostutil:[],both:[0,14],bound:[0,14],bound_nam:[],boundari:[],boundarynorm:[0,14],bracket:41,brows:27,btween:41,build:41,bypass:41,c_greed:[],call:[5,40,41,44],callabl:7,can:[3,5,6,14,27,40,41,42,43],capac:[5,41],car:43,car_369:43,cardin:[],care:[],carefulli:5,carri:[],cast:[],categori:40,cb_boost:[],cbboostutil:[],center:27,central:[0,14],cfg:[],cg_desc10:[],cg_desc:[],cg_desc_tre:[],cgdescutil:[],chain:[],chang:27,change_label_to_minu:[],change_label_to_zero:[],check:[5,6,14,27],check_input:[],check_selected_label_nam:27,child:[],choos:43,chose:41,cl_gs_iter:5,cl_kwrag:[6,14],cl_nbfold:5,cl_split:5,cl_statsit:5,cl_type:[6,14,27],clariti:43,class_weight:[],classed_list:[],classed_param:[],classier:27,classif:[0,3,14,27,40,42],classifi:[0,3,5,6,12,14,27,41,42,43],classifiact:41,classification_indic:[0,6,14,27,28],classification_karg:[],classificationindic:[],classificationkwarg:[],classifier_class_nam:[],classifier_config:[6,14,16,17,18,19,27,41],classifier_configur:[6,14],classifier_dict:27,classifier_kwarg:27,classifier_modul:27,classifier_module_nam:[],classifier_nam:[0,6,14,16,17,18,19,27,41],classifiermixin:[],classifiermodul:[],classifierneg:[0,14],classifierposit:[0,14],classifiers_decis:[16,19],classifiers_nam:[0,6,14],classifii:[0,14],classlabelsnam:[],classmethod:[28,30,39],clean:27,clf:[0,14],click:40,clkwarg:[],clone:5,close:42,closer:41,cmap:[0,14],coarsest:[],code:[2,3,13,41,42,44],coeff:[],coeffs_approx:[],coeffs_detail1:[],coeffs_detail2:[],coeffs_iw:[],collbarr:[],color:[0,14],colormap:[0,14],column:40,combi_result:14,combin:[0,6,14,16,19,27,41],come:[],command:[5,46],comment:[40,41],commentari:43,commentary_dataset:43,commentary_matrix:43,common:40,compar:44,compat:3,compens:41,complement:[],complet:3,complex:[27,40,41],complic:[],comput:[5,27,41],compute_possible_combin:27,conain:27,conatin:[0,14],concant:27,concat_view:27,concaten:27,conclus:41,conduct:[0,14],config:[5,6,14,27,40,41,42,43],config_example_1:13,config_example_2_1_1:41,config_exmaple_1:40,config_fil:[5,13,27,42],config_path:[5,6,13,14],configgener:[],configstr:7,configur:[0,5,7,13,14,40,41],configurationmak:27,confirm:[27,40],connect:[],conresspond:[],consid:[0,14],consider:[6,14],consist:[41,43],consol:27,constain:[],constant:[],consum:41,contain:[0,3,5,14,27,40,44],containig:27,content:[1,3,4,12],context:3,contigu:[],continu:[],contribut:[],contributor:3,control:[3,40,41,42,45],convers:3,convert:[27,43],coo_matrix:[],coordin:[],coordinate_desc:[],copi:[0,14,27,40],copy_hdf5:27,copy_view:27,core:[3,6,14,40],core_index:28,coreindex:28,correctli:[5,43],correspond:[0,14,27,40,43,44],could:40,count:[0,5,14,40],coupl:[0,6,14,27],couplediversityfusionclassifi:[17,18],cq_boost:[],cq_boosttre:[],cq_boostv21:[],cq_boostv2:[],cqboostutil:[],creat:[3,5,6,14,27,43,44],create_dataset:43,create_group:43,criteria:[],criterion:41,crop:27,cross:[6,14,27,40],csr_matrix:[],csv:[0,14,27,41,42,43],current:[],custom:40,customdecisiontre:[],customrandint:[27,44],customuniform:[27,44],cvs_or_:5,dark:40,data:[0,3,14,27,40,41,43],data_base_nam:[0,14],databas:[0,14,27,40],database_nam:[0,5,14,43],database_typ:[],databasenam:14,databasetyp:[],datafram:[0,14],dataset:[3,6,13,14,40,41,42,45],dataset_file_index:[],dataset_var:[6,14,27,28],dataseterror:27,datasetfil:27,datasetlength:[5,43],datasets_already_exist:27,date:40,debug:27,decemb:40,decid:[],decis:[27,41],decision_tre:[40,41,42],decision_tree_pregen:[],decisiontre:[],decisiontreeclassifi:41,decod:27,decomposit:[],deconstruct:[28,30,39],decrypt:[7,40],dedic:[],deep:41,deeper:41,def:44,defend:41,defin:44,degre:[],delet:[6,14,27],delete_hdf5:[6,14,27],delimit:[27,43],demand:41,demo:[],depend:[0,14,41,42],depth:41,derectori:[],descend:[0,14],descent:[],describ:[3,7,43],descript:27,detail1:[],detail2:[],detail:5,detect:40,detector:[],develop:[5,40,43,46],deviat:[0,14,42],diagon:[],dicaitonari:[0,14],dict:[0,6,7,14,27],dictionari:[0,6,7,14,27],dictionnari:[0,14,27],dicument:44,did:[0,14],didn:40,differ:[0,3,5,6,14,27,40,41,42,43],difficulty_fus:[13,14,15,41],difficultyfus:16,direcori:14,direct:[3,41],directli:[0,14,27],directori:[0,5,6,14,27,28,40,42,46],disabl:41,disagree_fus:[13,14,15],disagreefus:17,discontinu:[],discov:3,disk:27,dispach:[6,14],displai:[40,42],distrib:44,distribut:[27,41,44],divers:12,diversity_measur:[16,17,18,19],diversity_util:[16,17,18,19],divid:[0,14,41],doc:44,docstr:13,document:[1,5,13],docutil:5,doe:27,don:41,done:[6,14,27,42],dot:27,double_fault_fus:[13,14,15,41],doublefaultfus:18,doublet:27,download:46,draw:[41,42],drawn:[],drive:5,drouin:5,dtype:43,due:[],durat:[41,42],dure:[0,14,40,41],each:[0,5,6,14,27,40,41,42,43,44],earli:[],earlyfus:[13,14,15,22],earlyfusionpackag:[13,14,15,22,23],easi:[3,5],easili:43,effect:[],effici:[0,5,14,41],either:[5,6,14],element:[0,14],els:[0,14],enabl:41,encapsul:27,encod:[5,43],end:[0,14,27,41],ensembl:[],enter:27,entri:[0,14],entropy_fus:[13,14,15],entropyfus:19,environ:40,equal:41,equiv:[27,41],equival:[],equivalent_draw:27,eras:[],error:[0,14,40],error_2d:[],error_analysi:[0,14],error_analysis_2d:[0,14,42],error_analysis_bar:42,error_on_exampl:[0,14],estim:[3,27,41],etc:7,evalu:[5,6,14,27,40,41],even:[27,42],exact:[],exampl:[0,3,5,6,13,14,27,44,45],example2:41,example_1:40,example_2:[],example_2_1:41,example_error:[0,14],example_id:[0,14,27,28,43],example_indic:27,examples_indic:[],except:27,exec_benchmark:[6,14],exec_classif:[4,6,13],exec_classif_mono_view:[],exec_monoview:[],exec_monoview_multicor:[],exec_multiview:[],exec_multiview_multicor:[],exec_one_benchmark:[],exec_one_benchmark_mono_cor:[6,14],exec_one_benchmark_multicor:[],exec_plot:[],execmonoview_multicor:[],exect:1,execut:[0,2,3,4,5,12,14,40,41],exeperi:[6,14],exercis:[28,39],exist:27,exmapl:[],expect:[],experi:[0,3,6,14,40],experiment:[0,14,27],explain:[7,45],explan:3,explor:[6,14],exponenti:[],export_result:[],extent:[],extern:43,extract:[0,14,27],extract_dict:[6,14],extract_subset:27,extrat:27,f1_score:[40,42],f_2:[],f_k:[],fact:41,fail:[0,14,40],failed_list:14,failur:40,fairest:41,fakearg:39,fakebenchmarkexec:28,fakebenchmarkexec_monocor:28,fakebenchmarkexec_mutlicor:28,fakedelet:28,fakeexecmono:28,fakeexecmulti:28,fakegetresult:28,fakeinitmulti:28,fakekfold:28,fals:[7,27,43],far:[40,41],fare:41,fashion:44,fat_late_fus:[13,14,15],fat_scm_late_fus:[13,14,15],fbeta_scor:[],feat:[],featur:[0,14,27,40,42,43],feature_import:[0,14,40,42],feature_importance_datafram:[40,42],feature_nam:[0,14],feature_std:14,few:[0,14],field:[],fig_kwarg:[0,14],figur:[0,14,40,41,42],file:[0,3,6,7,14,27,41,42,43,44],file_insertion_en:41,file_nam:[0,14,27],filenam:[0,14],fill:43,filter:27,find:[27,40,43],find_dataset_nam:27,finest:[],first:[3,5,6,14,27,41,43,45],first_classifier_decis:[17,18],fit:[27,41],fit_multiview:27,fit_param:27,five:40,fix:[27,40,43],fixtur:[28,29,30,39],flag:[0,14],float32:[],focu:41,fold:[6,14,27,40,42],folds_list:27,follow:[5,7,40,43,45,46],following_s:[],forest:[],format:[0,14,40,43],format_previous_result:[0,14],fortran:[],four:40,frac:41,framework:[6,12,14,27],from:[0,5,7,14,27,40,41,42,44],full:[5,6,14,27,40],full_label:[],full_labels_pr:[],fulli:43,further:5,fusion:[12,13,14,15,41],g_1:[],g_2:[],g_k:[],gap:43,gen:27,gen_argument_dictionari:27,gen_best_param:[],gen_classifiers_dict:14,gen_direcorties_nam:27,gen_error_data:[0,14],gen_error_data_glob:14,gen_heat_map:27,gen_k_fold:27,gen_metrics_scores_multiclass:[0,14],gen_multiclass_label:27,gen_multiclass_monoview_decis:27,gen_multiple_args_dictionnari:[6,14],gen_multiple_kwargs_combin:[6,14],gen_single_monoview_arg_dictionari:14,gen_single_multiview_arg_dictionari:14,gen_split:27,genbestparam:[],gendistrib:[],gener:[0,5,6,14,27,40,41],generic_scor:[],genfromtxt:43,genparamsfromdetector:[],gentestfoldspr:[],geq:[],get:[0,3,6,7,14,27,41,42],get_accuracy_graph:[],get_argu:[0,14],get_available_monoview_classifi:[],get_classic_db_csv:27,get_classic_db_hdf5:27,get_classifier_nam:[],get_database_funct:27,get_error_on_labels_multiclass:[0,14],get_example_errors_biclass:[0,14],get_examples_views_indic:[],get_feature_import:[0,14],get_fig_s:[0,14],get_interpret:[],get_label:27,get_label_nam:27,get_metrics_scor:27,get_metrics_scores_biclass:[0,14],get_monoview_classifi:[],get_multiview_db:[13,14],get_nam:27,get_name_for_fus:[],get_nb_class:27,get_nb_exampl:27,get_nb_poss:27,get_path_dict:[6,14],get_plausible_db_hdf5:27,get_result:[0,6,14],get_scor:7,get_shap:27,get_test_folds_pr:27,get_the_arg:27,get_total_metric_scor:27,get_v:27,get_view_dict:27,get_view_nam:27,getclassifierconfigstr:[],getconfig:7,getdatabas:27,getdbconfigstr:[],gethp:[],getinterpret:[],getmetricscor:[],getmetricsscor:[],gettotalmetricscor:[],gini:41,gitwork:13,give:[27,41],given:[5,6,14,27,41],globaldiversityfusionclassifi:[16,19],goal:[27,43,44],good:41,got:40,gradient:[],gradient_boost:[],gradientboost:[],gradientboostingclassifi:[],grai:40,graph:40,great:[41,42],greater:7,grid:[],grid_search:27,gridsearch:27,groud_truth:[0,14],ground:7,ground_truth:[0,14],group:[5,27,43],guaussian:27,guess:[],guidelin:44,h5py:[5,27,43],half:40,hamming_loss:[],hand:3,handl:[],happen:41,hard:[5,40],harder:40,has:[0,14,27,40,41,43],have:[0,6,14,27,40,41,42,44],hdd:27,hdf5:[3,6,14,27],hdf5_file:[27,43],heat:27,height:[0,14],height_denomin:[0,14],held:[],henc:[],here:[0,14,40,41,42,43],hide:27,high:27,higher:40,highli:[5,40],hing:[],hole:41,home:13,hook:[28,29,30,39],horizont:40,hover:40,how:[0,3,7,14,40,41,45],howev:[41,42],hpo:[41,42],hps_iter:41,hps_type:41,html:[5,42],huelsmann:5,huge:41,hyper:[3,6,14,27,40,42,44,45],hyper_param_search:[14,27,28],hyper_parameter_search:[13,14],hyperparamt:41,hyperparm:27,i_k_fold:27,id_tabl:43,idea:41,ideal:41,identifi:[0,14],ifram:[],ignor:[],imag:[0,14,40,43],image_dataset:43,image_matrix:43,images_analysi:[],imagesanalysi:[],implement:[41,44],includ:44,incorrectli:40,ind_detailj0:[],inde:[40,42,44],independ:40,index:[0,3,5,6,14,27,43],indic:[0,6,14,27],indices_multiclass:27,individu:42,inform:[0,3,5,14,27,40,41,44],inherit:[10,11,44],init:[6,14,27],init_argument_dictionari:14,init_attr:27,init_benchmark:[6,14],init_const:[],init_example_indc:27,init_kwarg:[6,14],init_kwargs_func:[6,14],init_log_fil:27,init_monoview_exp:[6,14],init_multiple_dataset:27,init_multiview_exp:14,init_plot:14,init_random_st:27,init_stats_iter_random_st:27,init_train_test:[],init_view:27,init_view_nam:27,initconst:[],initi:[6,14,27],initmultiviewargu:[],input:[6,14,42,43],input_:27,insid:[40,41],insignific:[],instal:[3,13,45],instanc:[],instead:[],instruct:41,integ:[0,6,7,14,27,44],interact:[5,40],intern:[],interpret:[5,40],interpret_str:[],introduc:27,introduct:3,introspect:[],intuit:3,invers:27,involv:41,is_biclass:27,is_dict_in:[6,14],is_just_numb:27,is_temp:27,issu:[27,42],ist:[6,14],iter:[0,3,6,14,27,40,45],iter_1:42,iter_2:42,iter_3:42,iter_:42,iter_biclass_result:14,iter_index:[0,14],iter_multiclass_result:14,iter_result:14,iterbiclassresult:14,itercmap:[0,14],its:[3,41,43],itself:[6,14],jaccard_similarity_scor:[],jan:3,joblib:5,just:[5,6,14,43],k_fold:[6,14,27,28],keep:[27,40,41,42,43],kei:[0,6,7,14,27],kernel:[],key1:[6,14],key1_1:[6,14],key2:[6,14],keyword:[6,14],kfold:27,kneighborsclassifi:[],knn:[],know:41,kwarg:[6,7,14,27],kwargs_combin:[6,14],kwargs_init:[6,14],label:[0,5,6,7,14,27,28,40,43],label_nam:27,labels_combin:[14,27],labels_dataset:43,labels_dictionari:[0,6,14,27,28],labels_indic:27,labels_nam:[0,14,27,28],labelscomin:14,laplacian:[],larger:42,lasso:[40,41],last:[5,41],lastli:27,late:41,latefus:[13,14,15,22],latefusionpackag:[13,14,15,22,23],later:27,latter:[],launch:3,layer:[],lbarr:[],lbarre0:[],lbarre0m:[],learn:[5,13,27,40,41,42,46],learning_indic:27,learning_r:[],learningindic:[],learningr:[],learnrate_0:[],least:[3,5,6,14,40],left:40,less:40,let:[40,41,43,44],letter:27,level:27,levels_coeff:[],licenc:[],light:40,like:[3,7,27,41,42],limit:[5,27],limits_:[],linalg:[],line:[40,41,42,43],linear:[],linear_model:[],linearregress:[],list:[0,5,6,14,27,43],listedcolormap:[0,14],listof:[6,14],load:[27,43],loadabl:40,loc:27,local:[],locat:[6,14,40],log:[5,27,42],log_loss:[],logfil:27,longer:[27,41],look:42,loop:42,loss:[],lot:40,low:27,lsite:27,lucki:42,m2r:5,machin:[5,13,40,46],made:[27,40,41],mai:5,main:[3,6,14,27,40,42,44],mainli:[0,14,40],major:41,majority_voting_fus:41,majorityvot:[13,14,15,22,23],make:43,make_file_config:[13,14],make_me_noisi:27,make_scor:7,mandatori:[7,43],mani:[0,14,40,41],manipul:5,map:[6,14,27],markers:[],markov:[],master:3,matplotlib:[0,5,14],matric:[40,43],matrix:[0,14,27,40,43],matter:41,matthews_corrcoef:[],max:41,max_depth:[41,44],max_featur:[],max_it:[],max_leaf_nod:[],maximum:[],mayb:27,mazid:5,mean:[0,14,40,41,42],meaning:[5,42],mearn:5,member:[10,11],memori:27,memoryview:[],metadata:[5,43],metadata_group:43,method:[13,14,15,22,27,28,29,30,39,41,44],methodnam:[28,29,30,39],metric:[0,6,12,14,27,28,40],metric_datafram:14,metric_list:[],metric_modul:29,metric_nam:[0,14],metric_princ:[6,14,41],metric_scor:27,metric_score_str:[],metric_to_plot:14,metrics_analysi:[0,14],metrics_list:[0,14],metrics_scor:[0,14],metrics_var:27,metricscor:[0,14],metricsscor:[0,14],min_cq:[],min_cq_graalpi:[],min_cq_graalpy_tre:[],min_impurity_decreas:[],min_impurity_split:[],min_samples_leaf:[],min_samples_split:[],min_siz:[0,14],min_weight_fraction_leaf:[],mincqutil:[],minimum:[0,14,43],minsiz:[0,14],minu:[],minut:[27,40],misclassifi:[0,14],miss:43,missclassifi:40,mod:[],model:41,model_select:[6,14,27],modifi:[3,27,42,44],modul:[1,2,3,4,5,12,41,44],moment:[41,43],mon:3,monitor:[],mono:[0,3,6,14,27],mono_multi_view_classifi:[3,4,13,44],monomutliviewclassifi:5,monoview:[0,3,5,6,14,27,40,41,42],monoview_algo:[6,14],monoview_classifi:44,monoview_estim:[16,17,18,19],monoview_result:27,monoview_util:44,monoviewresult:[0,14],more:[0,5,14,27,41,42,43],morev:40,most:[40,41,43],mtrand:[27,40],muber:[0,14],much:[27,41],multi:[0,3,14],multi_class_label:[6,14,28],multiclass:[0,6,7,12,13,14],multiclass_label:[0,14,27],multiclass_method:27,multiclass_pr:27,multiclass_result:[0,14],multicor:[6,14,27],multipl:[6,14,27,40,42],multiple_arg:[6,14],multiple_monoview_classifi:28,multipli:[0,14,27],multiresolut:[],multivew:41,multiview:[3,5,6,13,14,27,41,42,43],multiview_algo:[6,14],multiview_classifi:[13,14],multiview_classifier_arg:[6,14],multiview_machin:5,multiview_platform:[3,5,40,41,44],multiview_result_analysi:[13,14],multiview_util:[],multiviewcompatiblerandomizedsearchcv:27,multiviewresult:[0,14],must:[0,7,14,27,43,44],mutiview_result:28,mutli:[6,14],mutlipl:[6,14],mutlipli:27,mutliview:[],n_0:[40,41],n_clf:[0,14],n_estim:[6,14,41],n_featur:[0,14,27],n_iter:[27,28],n_job:27,n_neighbor:[],n_output:27,n_sampl:[7,27],n_target:[],naiv:40,name:[0,5,6,14,27,28,40,41,43,44],name_db:27,namedb:27,namig:5,napprox:[],nb_class:[6,14,27],nb_classifi:14,nb_considered_feat:[],nb_core:[6,14,27,28],nb_exampl:[0,14,27,28],nb_featur:27,nb_fold:[27,41],nb_label:[0,6,14,27,28],nb_multiclass:[0,6,14,28],nb_result:[0,14],nb_view:[27,41],nbarr:[],nbclass:[5,43],nbclassifi:[0,14],nbcopi:[0,14],nbcore:27,nbexampl:[0,14],nbview:[5,43],ndarrai:[6,14,27],ndetail1:[],nearli:42,necess:[3,41],necessari:27,need:[0,5,6,7,14,27,41,44,46],need_proba:[],neg:[0,14],neighbor:[],neq:[],net:[],nikola:5,nint:[],niter:[],no_vs_y:41,node:[],nois:[27,40],noise_result:14,noise_std:27,noisi:27,non:[],none:[0,6,14,16,17,18,19,27,28,40,41],norm:[0,14],norm_typ:44,note:[],now:[41,43,44],number:[0,5,6,14,27,40,41,43],numer:[0,14],numpi:[0,5,6,14,27,40,43],numpy_mean_and_std:14,object:[0,6,7,14,27,28,39,40,43],obtain:[0,14,41],omi:[5,13,40,46],onc:5,one:[0,5,6,14,27,40,41,42,43,44],ones:[0,6,14,27,40,41],oneversusal:27,oneversuson:27,oni:27,onli:[27,41,43],oper:[],optim:[3,6,14,27,44,45],optin:[0,14],option:[0,14,27,41],order:[0,5,6,7,14,27,40,41,42,43,44],ordinari:[],organ:[0,14,40],origin:27,osseni:5,other:[40,42,44],otherwis:[],our:[],out:[],outlier:40,output:[40,41,42],output_fil:14,output_file_nam:27,outputfilenam:[],over:[0,14,40,42],overfit:41,own:[3,5,45],packag:[3,4,6,7,13,46],page:[3,41],panda:[0,5,14,40],parallel:27,param:27,param_distribut:27,param_nam:44,paramet:[0,3,5,6,7,14,27,40,42,44,45],params_dict:27,params_to_str:[],paramsset:[],paramstoset:[],paramt:41,pars:[6,14,27,40],parse_the_arg:27,parsedargumentpars:[6,14],part:[40,41],partial:43,particular:40,pass:[0,6,14,27,41],path:[0,5,6,14,27,43],path_f:27,path_for_new:27,path_to_config_fil:27,path_to_your_dataset:5,pathf:[5,27,28,43],pbject:27,penalti:[],per:27,percent:[],percentag:27,perf:[],perfom:27,perform:[0,3,6,14,27,40,41,42],perofm:41,person:[0,14,41],pickl:[5,27,42],pip:[5,46],pixel:5,plai:5,plane:43,plane_452:43,platform:[3,5,7,41,42,43,44],platfro:43,platfrom:44,platofrm:41,plausibl:[27,40,41],plot:[0,5,14,40,42],plot_2d:[0,14],plot_errors_bar:[0,14],plot_metric_scor:[0,14],plot_results_nois:14,plotli:5,plotted_data:[],plotted_metr:[],plotted_metric_nam:[],plt:[],png:[0,14,42],point:27,poor:42,pos:[],pos_label:40,posit:[0,14],possibl:[6,14,27,40,41],potenti:41,precis:[40,41],precision_scor:[],precomput:[],pred:27,predict:[7,41],prefer:[],pregenutil:[],prerequisit:[3,13],present:40,preset:41,presort:[],previou:[0,14,27,40,41,42,43],princip:[6,14],print:[0,14,40,42],print_metric_scor:27,printmetricscor:[],prior:5,priovid:40,problem:[40,41],procedur:3,process:[6,14,27,41],process_analysi:[],process_analysis_flag:[],process_coeffici:[],process_reconstruction_sign:[],process_sign:[],project:5,propos:[5,41],provid:[6,14,27,40,41,44],pseudo:[41,42],pseudo_cq_fus:[13,14,15],publish:[0,14],publish_feature_import:14,publish_iter_biclass_example_error:14,publish_iter_biclass_metrics_scor:14,publish_iter_multiclass_example_error:14,publish_iter_multiclass_metrics_scor:14,publish_traceback:14,publishexampleerror:14,publishmetricsgraph:[0,14],publishmulticlassexmapleerror:14,publishmulticlassscor:14,purpos:[6,14],put:[],pyplot:[0,14],python3:46,python:[5,41,43,44,46],pywp:[],pyyaml:5,qar_boost:[],qar_boost_nc3:[],qar_boostv2:[],qar_boostv3:[],quickstart:3,ram:5,randint:27,random:[0,14,27,40,42,44],random_forest:[],random_s:44,random_st:[14,16,17,18,19,27,28,42],random_state_arg:27,randomforest:[],randomforestclassifi:[],randomised_search:41,randomized_search:[27,41],randomizedsearchcv:27,randomli:41,randomsatearg:27,randomsearch:27,randomst:[27,40],rang:[5,27],rate:40,ratio:[0,14,27,41],ration:41,raw:[0,14],read:5,readabl:[0,14],readi:43,readm:3,real:[0,5,14],realiz:[0,14],realli:27,reason:[],recal:[],recall_scor:[],recod:43,recommend:[5,40],reconstruct:[],recov:[],rect:[0,14],rectangl:40,red:[],reduc:[6,14,41],reduced_kwargs_combin:[6,14],ref:44,refer:[3,27],refit:27,regress:27,regroup:[0,14,40,42],rel:[27,43],relat:[40,41,44],relev:41,rememb:[],remov:3,repeat:41,report:27,repositori:5,repres:41,represent:40,reproduc:44,reproduct:40,reproductilb:41,requir:[43,44,46],res_dir:40,reslut:[0,14],resp:27,rest_of_the_arg:[6,14],restrain:[0,14],result:[1,5,6,14,27,28,40,41,42,43],result_analysi:[4,13],result_directori:27,results_directori:27,resultsmonoview:28,resum:[6,14,27],retriev:27,retuern:[],reus:[],revers:[6,14],right:[5,6,14,27,40,41,43],robust:41,roc_auc_scor:[],root:3,row:40,rowlbarr:[],run:[3,6,14,27,28,29,30,39,40,41,42,43,46],runtest:[28,29,30,39],runtim:41,rvs:27,s10:43,sai:[40,44],same:[27,40,41,43],sampl:27,sample_weight:40,satatisitc:42,satisfi:43,sattist:27,save:[0,6,14,27,40,42,43],save_config:27,save_dict_to_text:14,save_fail:14,save_result:[],saveresult:[],scalar:7,scale:27,schur:[],scipi:5,scm:[],scm_pregen:[],scm_pregen_tre:[],scm_sparsiti:[],scm_sparsity_tte:[],scmforlinear:[13,14,15,22,23],score:[0,7,14,27,40,41,42],score_test:29,scorer:7,scores_arrai:[14,27],script:[5,43],scroe:[],search:[3,40],search_best_set:27,searching_tool:27,second:[40,41],second_classifier_decis:[17,18],section:[40,41,42],secur:41,see:[5,27,41,44],seed:[27,40],seem:40,seen:[0,14,41,42],select:[27,41],select_label:27,select_views_and_label:27,selected_label_nam:27,self:[27,44],semin:[],sequenc:[],serach:41,serv:41,server:[],set:[0,6,14,27,28,29,30,39,40,41,42,43],set_el:[6,14],settl:42,setup:[3,28,39],setupclass:[28,29,30,39],sever:[],sgd:41,sgdclassifi:[],shape:[0,7,14,27,40],shapelbarr:[],share:27,should:[3,40,41,43],show:[0,14,27,40,42],shuffl:[],sig:[],sig_l:[],sig_r:[],sign_label:27,signal:27,similar:40,similarli:[41,43],simpl:[3,40],simplest:[40,41],simul:[3,40,41],sinc:[],singl:[42,43],six:5,size:[0,14],sklearn:[5,6,7,14,27,41,44],slice:27,slightli:42,snapshot:[],solut:[5,27],solv:41,some:[0,5,14,27,40,41,44,45],sort:[0,14,43],sort_by_test_scor:[0,14],sorted_nam:[0,14],sorted_test_scor:[0,14],sorted_test_std:[0,14],sorted_train_scor:[0,14],sorted_train_std:[0,14],sound:43,sound_dataset:43,sound_matrix:43,source_view_nam:27,space:[27,41],spare:5,spars:[5,27,43],sparsif:[],sparsifi:[],spear_mint:27,spearmint:27,specif:[0,5,6,14,27,41,42],specifi:[5,6,7,14,27,40,41],spectacularli:40,sphinx:3,split:[3,6,14,27,28,40,42],split_ratio:27,splitter:41,spy:[],squar:[],src:[],standard:[0,14,42],start:[0,3,14],started_1560_04_01:41,started_1560_12_25:[40,42],startl:40,stat:42,state:[0,14,27,40,41,44],statist:[0,3,6,14,27,45],stats_it:[0,6,14,27,28,42],stats_iter_random_st:27,statsit:[0,14,27],std:[0,14,27,42],step:[3,45],step_predict:[],still:5,stochastic_gradi:[],stop:27,store:[0,5,6,7,14,27,40,41,43],str:[0,6,14,27],stratifi:27,stratifiedkfold:27,stratifiedshufflesplit:41,string:[5,6,7,14,27,44],string_analysi:[],stringanalysi:[],strongli:41,struct_mana_r:[],struct_mres_gr:[],struct_multires_lbarr:[],structur:[0,3,14,40,42],stuff:13,sub:41,subgraph:[],submodul:[3,4,15],subpackag:[3,4],subplot:[0,14],subsampl:[],subset:[27,41],success:40,successfulli:40,sucess:5,sum:46,summari:[40,42],suppos:[43,44],sure:43,svc:[],svcc:[],svcclassifi:[],svm_linear:40,svm_poli:41,svm_rbf:[],svmforlinear:[13,14,15,22,23],svmlinear:[],svmlinearwith:40,svmpoli:[],svmrbf:[],symmetr:40,t_start:[],tab:[],tab_multir:[],tab_struct_multires_lbarr:[],tabl:41,tag:[0,14],take:[3,40,41,45],taken:[],target:[7,27],target_dataset:27,target_view_index:27,task:[3,40,41],teardown:39,teardownclass:[28,30,39],tell:27,templat:[],temporari:27,term:[40,41,42],termin:[40,46],test:[0,3,4,6,14,27,40,42],test_accuracy_scor:[13,28],test_adaboost:[13,28],test_all_views_ask:39,test_argu:39,test_asked_the_whole_dataset:39,test_benchmark_w:28,test_compat:[13,28],test_configur:[13,28],test_dict_format:39,test_difficultymeasur:[13,28,32],test_difficultymeasuremodul:[13,28,32],test_disagreefus:[13,28,32],test_disagreefusionmodul:[13,28,32],test_diversity_util:[13,28],test_doublefaultfus:[13,28,32],test_doublefaultfusionmodul:[13,28,32],test_empty_arg:39,test_entropyfus:[13,28,32],test_entropyfusionmodul:[13,28,32],test_execbenchmark:28,test_execclassif:[4,13],test_execclassifmonoview:[13,28],test_execonebenchmark:[],test_execonebenchmark_multicor:[],test_execut:[13,28],test_file_load:39,test_folds_pr:[],test_format_previous_result:28,test_fus:[13,28,32],test_fusionmodul:[13,28,32],test_gen_error_data:28,test_gen_error_data_glob:28,test_genargumentdictionari:39,test_gendirecortiesnam:39,test_genkfold:39,test_genkfolds_it:39,test_genmulticlasslabel:39,test_gensplit:39,test_gensplits_no_it:39,test_gentestfoldspr:30,test_get_argu:28,test_get_classic_db_csv:39,test_get_classic_db_hdf5:39,test_get_example_errors_biclass:28,test_get_metrics_scores_biclass:28,test_get_path_dict:28,test_get_plausible_db_hdf5:39,test_get_the_arg:39,test_getdatabasefunct:39,test_gethp:30,test_getmultiviewdb:[13,28],test_hdf5:39,test_init_argument_dictionaries_monoview:28,test_init_argument_dictionaries_multiview:28,test_init_argument_dictionaries_multiview_complex:28,test_init_argument_dictionaries_multiview_multipl:28,test_init_argument_dictionaries_multiview_multiple_complex:28,test_init_plot:28,test_initargumentdictionari:28,test_initbenchmark:28,test_initconst:30,test_initkwarg:28,test_initkwargsfunc_no_monoview:28,test_initrandomst:39,test_initstatsiterrandomst:39,test_inittraintest:30,test_label:27,test_labels_multiclass:[],test_metr:[13,28],test_mono_view:[13,28],test_monoview_classifi:[13,28],test_monoviewutil:[13,28],test_multiclass:[13,28],test_multiclass_and_it:28,test_multiclass_no_it:28,test_multiple_it:39,test_multiview_classifi:[13,28],test_no_iter_biclass_multicor:28,test_one_statit:39,test_one_versus_on:39,test_ovo_no_it:39,test_parsethearg:39,test_plausible_hdf5:39,test_pseudocqfusionmodul:[13,28,32],test_pseudocqmeasur:[13,28,32],test_random_state_42:39,test_random_state_pickl:39,test_resultanalysi:[4,13],test_scor:[0,14],test_set_el:28,test_simpl:[28,30,39],test_simple_ovo:39,test_std:[0,14],test_two_class:39,test_util:[13,28],test_vers:13,testcas:[28,29,30,39],testlabel:[],testscor:[],text:[0,14,41],tha:41,than:[27,40,41,42],thank:[6,14,41],thei:[5,41,44],them:[0,14,27,40,41,43],thi:[0,2,3,5,6,7,13,14,27,41,42,43,44],thing:[],third:[],thoroughli:3,those:40,thread:[5,6,14,27],three:[41,43,44],through:40,ths:7,thu:41,tick:[0,14],time:[0,5,14,40,41],timeout:27,titl:[0,14],to_numpy_arrai:27,to_str:[],tobe:27,toctre:3,todo:[40,41],tol:[],too:[27,41],took:40,tool:[3,43],toolbox:45,top:42,top_directori:5,total:[5,6,14],traceback:14,trade_off:44,tradeoff:41,train:[0,3,6,14,27,40,42],train_indic:[40,42],train_label:[27,40,42],train_scor:[0,14],train_std:[0,14],trainlabel:[],trainscor:[],transform:[0,13,14],tree:41,triplet:[6,14,27],true_label:[0,14],truth:7,tune:[6,14],tupl:[],tutori:3,two:[27,40,41,43,44],txt:[40,42],type:[0,5,6,7,14,27,28,40,41],type_var:27,unbalanc:41,under:[40,42],understand:[3,40,45],uniform:41,uniqu:27,unittest:[5,28,29,30,39],unknown:41,unless:[],unlucki:42,unseen:41,unsign_label:27,unsupervis:27,update_hdf5_dataset:27,url:41,usabl:[0,14,44],usag:[],use:[3,5,6,14,27,40,41,43,44,45],use_plotli:[0,14],used:[2,3,6,13,14,27,40,41,43,44],used_indic:27,useful:[0,14,40,41],usefulness:41,user:[6,14,27,40,41],user_exemple_analysis_recon:[],uses:[40,41,42],using:[5,27,40,41,43],usual:43,utf:5,util:[12,13,14],valid:[6,14,27,40],validation_indic:27,validationindic:[],valu:[0,6,7,14,27,40,41,43],value1:[6,14],value2:[6,14],vanish:[],variabl:[6,14],variou:[],vector:27,veri:40,version:[3,4,5,40],versu:[0,14,27],vertex:[],vertic:42,view0:43,view1:43,view2:43,view:[0,3,6,14,27,28,40,41,42,43],view_data:27,view_dict:27,view_idx:27,view_index:[6,14,27],view_indic:27,view_limit:27,view_nam:[0,5,6,14,27],viewnumber0:[40,41,42],viewnumber1:[40,41,42],viewnumber2:[40,41,42],views_dictionari:[6,14],views_indic:[14,27,28],viewx:5,visibl:40,visual:[5,40],vote:41,wai:[0,14,40,41,43],want:[41,44],warm_start:[],warn:41,watch:[],weight:[],weight_boost:[],weighted_linear_late_fus:[40,42],weightedlinear:[13,14,15,22,23],weird_str:[],welcom:1,well:[0,14],were:[6,14,41],what:46,when:27,where:[0,14,27,40],whether:[0,5,7,14,27],which:[0,5,6,7,14,27,41,42,44,45],white:40,whiter:[0,14],whitespac:[0,14],whole:[27,40,41,42],whose:[],width:[0,14],width_denomin:[0,14],wil:[6,14,27,44],wise:[0,14,41],wit:43,within:41,without:[3,44],won:41,word:[],work:[7,27,41,43],worst:40,would:[],written:43,x_train:[],xbarr:[],xbarrei:[],xlabel:[],y_pred:7,y_test:[],y_test_multiclass_pr:[],y_test_pr:[],y_train:[],y_train_pr:[],y_true:7,yaml:5,yaml_config:27,yield:[],yml:[5,13,27,41,42],you:[3,40,41,42,43,46],your:[3,45],your_dataset_nam:5,zero:[0,14,27],zero_one_loss:[],zero_to_on:[],zoom:40},titles:["Result analysis module","Multiview Platform","Welcome to the exection documentation","Welcome to MultiviewPlatform\u2019s documentation!","multiview_platform","Readme","Classification execution module","Metrics framework","Classifiers","Diversity Fusion Classifiers","Utils execution module","Utils Multiclass module","Mono and mutliview classification","multiview_platform references","multiview_platform.mono_multi_view_classifiers package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.difficulty_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.disagree_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.double_fault_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.entropy_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_late_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fat_scm_late_fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.EarlyFusionPackage package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.fusion.Methods.LateFusionPackage package","multiview_platform.mono_multi_view_classifiers.multiview_classifiers.pseudo_cq_fusion package","multiview_platform.mono_multi_view_classifiers.utils package","multiview_platform.tests package","multiview_platform.tests.test_metrics package","multiview_platform.tests.test_mono_view package","multiview_platform.tests.test_monoview_classifiers package","multiview_platform.tests.test_multiview_classifiers package","multiview_platform.tests.test_multiview_classifiers.Test_DifficultyMeasure package","multiview_platform.tests.test_multiview_classifiers.Test_DisagreeFusion package","multiview_platform.tests.test_multiview_classifiers.Test_DoubleFaultFusion package","multiview_platform.tests.test_multiview_classifiers.Test_EntropyFusion package","multiview_platform.tests.test_multiview_classifiers.Test_Fusion package","multiview_platform.tests.test_multiview_classifiers.Test_PseudoCQMeasure package","multiview_platform.tests.test_utils package","Example 1 : First steps with Multiview Platform","Example 2 : Understanding the hyper-parameter optimization","Example 3 : Understanding the statistical iterations","Taking control : Use your own dataset","Taking control : Use your own algorithms","Multiview Platform Tutorials","Install Multiview Platform"],titleterms:{"1560_12_25":40,"15_42":40,Adding:[43,44],The:43,Use:[43,44],accuracy_scor:40,adaboost:[],adaboost_gra:[],adaboost_pregen10:[],adaboost_pregen:[],adaboost_pregen_tre:[],addit:43,algorithm:44,alreadi:5,analysi:0,analyze_result:[16,17,18,19,20,21,22,26],argument:5,author:5,bare:43,bayesianinfer:25,benchmark:5,boostutil:[],c_greed:[],cb_boost:[],cbboostutil:[],cg_desc10:[],cg_desc:[],cg_desc_tre:[],cgdescutil:[],choic:41,classif:[5,6,12],classifi:[8,9,40,44],coeffici:[],compat:5,comput:[],config_fil:40,configur:27,content:[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],context:[40,42],contributor:5,control:[43,44],convers:43,cq_boost:[],cq_boosttre:[],cq_boostv21:[],cq_boostv2:[],cqboostutil:[],cross:41,csv:[5,40],data:5,dataset:[5,27,43],decision_tre:[],decision_tree_pregen:[],depend:40,difficulty_fus:16,disagree_fus:17,discov:5,divers:9,diversity_util:[],document:[2,3],double_fault_fus:18,earlyfus:23,earlyfusionpackag:24,entropy_fus:19,error_analysis_2d:40,error_analysis_bar:40,exampl:[40,41,42,43],exec_classif:14,exec_classif_mono_view:[],exec_multiview:[],exec_plot:[],exect:2,execut:[6,10,13,27],experi:41,explan:41,export_result:[],f1_score:[],fat_late_fus:20,fat_scm_late_fus:21,fbeta_scor:[],file:[5,40],first:40,fold:41,format:5,framework:7,fusion:[9,22,23,24,25],generic_scor:[],get:[5,40],get_multiview_db:27,gradient_boost:[],graph:[],hamming_loss:[],hand:41,have:5,hdf5:[5,43],how:42,html:40,hyper:41,hyper_parameter_search:27,impact:41,indic:3,inform:43,instal:[5,46],intertwin:[],introduct:40,intuit:41,iter:42,jaccard_similarity_scor:[],knn:[],lasso:[],latefus:23,latefusionpackag:25,launch:46,log:40,log_loss:[],majorityvot:25,make_file_config:27,matthews_corrcoef:[],method:[23,24,25],metric:[7,41],min_cq:[],min_cq_graalpi:[],min_cq_graalpy_tre:[],mincqutil:[],modul:[0,6,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],mono:[5,12],mono_multi_view_classifi:[14,15,16,17,18,19,20,21,22,23,24,25,26,27],monoview:44,monoview_classifi:[],monoview_util:[],multi:5,multiclass:[11,27],multipl:5,multiview:[1,40,45,46],multiview_classifi:[15,16,17,18,19,20,21,22,23,24,25,26],multiview_platform:[4,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],multiview_result_analysi:27,multiview_util:[],multiviewplatform:3,must:5,mutliview:12,necess:43,oper:[],optim:41,organ:5,own:[43,44],packag:[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],paramet:41,pickl:40,platform:[1,40,45,46],png:40,precision_scor:[],pregenutil:[],prerequisit:5,process:[],pseudo_cq_fus:26,qar_boost:[],qar_boost_nc3:[],qar_boostv2:[],qar_boostv3:[],random:41,random_forest:[],random_st:40,readm:5,recall_scor:[],reconstruct:[],refer:13,result:0,result_analysi:14,roc_auc_scor:[],run:5,scm:[],scm_pregen:[],scm_pregen_tre:[],scm_sparsiti:[],scm_sparsity_tte:[],scmforlinear:25,search:41,setup:46,sgd:[],signal:[],simpl:44,simul:5,size:41,split:41,start:[5,40],statist:42,step:40,structur:43,subgraph:[],submodul:[13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39],subpackag:[13,14,15,22,23,28,32,37],svcclassifi:[],svm_linear:[],svm_poli:[],svm_rbf:[],svmforlinear:25,tabl:3,take:[43,44],task:44,test:[5,13,28,29,30,31,32,33,34,35,36,37,38,39,41],test_accuracy_scor:29,test_adaboost:31,test_compat:31,test_configur:39,test_difficultymeasur:33,test_difficultymeasuremodul:33,test_disagreefus:34,test_disagreefusionmodul:34,test_diversity_util:32,test_doublefaultfus:35,test_doublefaultfusionmodul:35,test_entropyfus:36,test_entropyfusionmodul:36,test_execclassif:28,test_execclassifmonoview:30,test_execut:39,test_fus:37,test_fusionmodul:37,test_getmultiviewdb:39,test_metr:29,test_mono_view:30,test_monoview_classifi:31,test_monoviewutil:30,test_multiclass:39,test_multiview_classifi:[32,33,34,35,36,37,38],test_pseudocqfusionmodul:38,test_pseudocqmeasur:38,test_resultanalysi:28,test_util:39,them:5,thi:40,tool:46,train:41,transform:27,tutori:[40,45],understand:[41,42],usag:41,use:42,util:[10,11,27],valid:41,version:13,view:5,wavelet:[],weightedlinear:[24,25],welcom:[2,3],yml:40,you:5,your:[5,43,44],zero_one_loss:[]}})
\ No newline at end of file
diff --git a/docs/build/tutorials/example1.html b/docs/build/tutorials/example1.html
index 116d58e2ae1e5e01a826b4f7278e3b92e40d0c23..81b085b2ebd7c22214e72c89919fb6b1835b6fc3 100644
--- a/docs/build/tutorials/example1.html
+++ b/docs/build/tutorials/example1.html
@@ -18,7 +18,7 @@
     
     <link rel="index" title="Index" href="../genindex.html" />
     <link rel="search" title="Search" href="../search.html" />
-    <link rel="next" title="multiview_platform references" href="../references/multiview_platform.html" />
+    <link rel="next" title="Example 2 : Understanding the hyper-parameter optimization" href="example2.html" />
     <link rel="prev" title="Install Multiview Platform" href="installation.html" /> 
   </head><body>
     <div class="related" role="navigation" aria-label="related navigation">
@@ -31,7 +31,7 @@
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="../references/multiview_platform.html" title="multiview_platform references"
+          <a href="example2.html" title="Example 2 : Understanding the hyper-parameter optimization"
              accesskey="N">next</a> |</li>
         <li class="right" >
           <a href="installation.html" title="Install Multiview Platform"
@@ -314,8 +314,8 @@ available for classifiers that present some interpretation-related information (
   <p class="topless"><a href="installation.html"
                         title="previous chapter">Install Multiview Platform</a></p>
   <h4>Next topic</h4>
-  <p class="topless"><a href="../references/multiview_platform.html"
-                        title="next chapter">multiview_platform references</a></p>
+  <p class="topless"><a href="example2.html"
+                        title="next chapter">Example 2 : Understanding the hyper-parameter optimization</a></p>
   <div role="note" aria-label="source link">
     <h3>This Page</h3>
     <ul class="this-page-menu">
@@ -349,7 +349,7 @@ available for classifiers that present some interpretation-related information (
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="../references/multiview_platform.html" title="multiview_platform references"
+          <a href="example2.html" title="Example 2 : Understanding the hyper-parameter optimization"
              >next</a> |</li>
         <li class="right" >
           <a href="installation.html" title="Install Multiview Platform"
diff --git a/docs/build/tutorials/example2.html b/docs/build/tutorials/example2.html
index 381a0859914cb0ad281df8965ebb5b537cc20596..8fdf6b576f0f73c46ae10744fa37b3ae62749e42 100644
--- a/docs/build/tutorials/example2.html
+++ b/docs/build/tutorials/example2.html
@@ -18,7 +18,7 @@
     
     <link rel="index" title="Index" href="../genindex.html" />
     <link rel="search" title="Search" href="../search.html" />
-    <link rel="next" title="Example 2 : Understanding the statistical iterations" href="example3.html" />
+    <link rel="next" title="Example 3 : Understanding the statistical iterations" href="example3.html" />
     <link rel="prev" title="Example 1 : First steps with Multiview Platform" href="example1.html" /> 
   </head><body>
     <div class="related" role="navigation" aria-label="related navigation">
@@ -31,7 +31,7 @@
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="example3.html" title="Example 2 : Understanding the statistical iterations"
+          <a href="example3.html" title="Example 3 : Understanding the statistical iterations"
              accesskey="N">next</a> |</li>
         <li class="right" >
           <a href="example1.html" title="Example 1 : First steps with Multiview Platform"
@@ -402,6 +402,11 @@ dataset.</p>
         </div>
 </body>
 </html><p>The duration is in seconds, and we used 2,5,10,15,20 as values for <code class="docutils literal notranslate"><span class="pre">nb_folds</span></code> and 2,5,10,20,30,50,100 for <code class="docutils literal notranslate"><span class="pre">hps_iter</span></code> with two monoview classifiers and one multiview classifier on simulated data.</p>
+<div class="admonition note">
+<p class="first admonition-title">Note</p>
+<p class="last">In order to compensate the fact that the multiview classifiers have more complex problems to solve, it is possible to use <code class="docutils literal notranslate"><span class="pre">&quot;randomized_search-equiv&quot;</span></code> as the HPS optimization method to allow
+<code class="docutils literal notranslate"><span class="pre">hps_iter</span></code> draws for the monoview classifiers and <code class="docutils literal notranslate"><span class="pre">hps_iter</span> <span class="pre">*</span> <span class="pre">nb_view</span></code> draws for the ones that are multiview.</p>
+</div>
 </div>
 </div>
 </div>
@@ -437,7 +442,7 @@ dataset.</p>
                         title="previous chapter">Example 1 : First steps with Multiview Platform</a></p>
   <h4>Next topic</h4>
   <p class="topless"><a href="example3.html"
-                        title="next chapter">Example 2 : Understanding the statistical iterations</a></p>
+                        title="next chapter">Example 3 : Understanding the statistical iterations</a></p>
   <div role="note" aria-label="source link">
     <h3>This Page</h3>
     <ul class="this-page-menu">
@@ -471,7 +476,7 @@ dataset.</p>
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="example3.html" title="Example 2 : Understanding the statistical iterations"
+          <a href="example3.html" title="Example 3 : Understanding the statistical iterations"
              >next</a> |</li>
         <li class="right" >
           <a href="example1.html" title="Example 1 : First steps with Multiview Platform"
diff --git a/docs/build/tutorials/index.html b/docs/build/tutorials/index.html
index b1d96f9d1a89d36fd5bae7d8d10142c18d50bc1f..b34289634878464fb5df952ed9c1db2162fb6ad7 100644
--- a/docs/build/tutorials/index.html
+++ b/docs/build/tutorials/index.html
@@ -55,6 +55,7 @@
 <li class="toctree-l1"><a class="reference internal" href="example2.html">Example 2 : Understanding the hyper-parameter optimization</a></li>
 <li class="toctree-l1"><a class="reference internal" href="example3.html">Example 3 : Understanding the statistical iterations</a></li>
 <li class="toctree-l1"><a class="reference internal" href="example4.html">Taking control : Use your own dataset</a></li>
+<li class="toctree-l1"><a class="reference internal" href="example5.html">Taking control : Use your own algorithms</a></li>
 </ul>
 </div>
 </div>
diff --git a/docs/build/tutorials/installation.html b/docs/build/tutorials/installation.html
index 4a39b26c5715f716eb56555c171981f1829f4e8e..059ff8431f16693382f3864c1157e2afce4ef38c 100644
--- a/docs/build/tutorials/installation.html
+++ b/docs/build/tutorials/installation.html
@@ -18,7 +18,7 @@
     
     <link rel="index" title="Index" href="../genindex.html" />
     <link rel="search" title="Search" href="../search.html" />
-    <link rel="next" title="multiview_platform package" href="../multiview_platform.html" />
+    <link rel="next" title="Example 1 : First steps with Multiview Platform" href="example1.html" />
     <link rel="prev" title="Multiview Platform Tutorials" href="index.html" /> 
   </head><body>
     <div class="related" role="navigation" aria-label="related navigation">
@@ -31,7 +31,7 @@
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="../multiview_platform.html" title="multiview_platform package"
+          <a href="example1.html" title="Example 1 : First steps with Multiview Platform"
              accesskey="N">next</a> |</li>
         <li class="right" >
           <a href="index.html" title="Multiview Platform Tutorials"
@@ -80,8 +80,8 @@
   <p class="topless"><a href="index.html"
                         title="previous chapter">Multiview Platform Tutorials</a></p>
   <h4>Next topic</h4>
-  <p class="topless"><a href="../multiview_platform.html"
-                        title="next chapter">multiview_platform package</a></p>
+  <p class="topless"><a href="example1.html"
+                        title="next chapter">Example 1 : First steps with Multiview Platform</a></p>
   <div role="note" aria-label="source link">
     <h3>This Page</h3>
     <ul class="this-page-menu">
@@ -115,7 +115,7 @@
           <a href="../py-modindex.html" title="Python Module Index"
              >modules</a> |</li>
         <li class="right" >
-          <a href="../multiview_platform.html" title="multiview_platform package"
+          <a href="example1.html" title="Example 1 : First steps with Multiview Platform"
              >next</a> |</li>
         <li class="right" >
           <a href="index.html" title="Multiview Platform Tutorials"
diff --git a/docs/source/tutorials/example5.rst b/docs/source/tutorials/example5.rst
new file mode 100644
index 0000000000000000000000000000000000000000..adc8fd8db34222f60a0917b07311acbeb59f8c27
--- /dev/null
+++ b/docs/source/tutorials/example5.rst
@@ -0,0 +1,66 @@
+.. |algo| replace:: name_me
+========================================
+Taking control : Use your own algorithms
+========================================
+
+.. role:: python(code)
+    :language: python
+
+One of the main goals of this platform is to be able to add a classifier to it without modifying the code.
+
+Simple task : Adding a monoview classifier
+------------------------------------------
+
+Let's say we want to add a monoview classifier called "algo" to the platform in order to compare it to the other available ones.
+Let's suppose that we have a python module ``algo_module.py`` in which algo is defined in the class :python:`Algo` with the guidelines of ``sklearn``.
+
+To add algo to the platform, let's create a file called ``algo.py`` in ``multiview_platform/mono_multi_view_classifiers/monoview_classifiers/``
+
+In this file let's define the class :python:`AlgoClassifier`, inheriting from :python:`Algo` and :python:`BaseMonoviewClassifier` that contains the required methods for the platfrom.
+
+.. code-block:: python
+
+    import Algo
+    from ..monoview.monoview_utils import BaseMonoviewClassifier
+
+    class AlgoClassifier(Algo, BaseMonoviewClassifier):
+
+
+To be able to use the hyper-parameter optimization of the platform, we need to provide some information in the :python:`__init__()` method.
+Indeed, all the algorithms included in the platform must provide two hyper-parameter-related attributes :
+
+- :python:`self.param_names` that contain the name of the hyper-parameters that have to be optimized (they must correspond to the name of the attributes of the class :python:`Algo`)
+- :python:`self.distribs` that contain the distributions for each of these hyper-parameters.
+
+For example, let's suppose that algo need three hyper-parameters and a random state parameter that allow reproducibility :
+
+- :python:`trade_off` that is a float between 0 and 1,
+- :python:`norm_type` that is a string in :python:`["l1", "l2"]`,
+- :python:`max_depth` that is an integer between 0 and 100.
+
+Then, the :python:`__init__()` method of the :python:`AlgoClassifier` class wil be :
+
+.. code-block:: python
+
+    import Algo
+    from ..monoview.monoview_utils import BaseMonoviewClassifier, CustomUniform, CustomRandint
+
+    class AlgoClassifier(Algo, BaseMonoviewClassifier):
+
+        def __init__(self, random_sate=42, trade_off=0.5, norm_type='l1', max_depth=50)
+
+            super(AlgoClassifier, self).__init__(random_sate=random_sate,
+                                                 trade_off=trade_off,
+                                                 norm_type=norm_type,
+                                                 max_depth=max_depth)
+
+            self.param_names = ["trade_off", "norm_type", "max_depth"]
+            self.distribs = [CustomUniform(),
+                             ["l1", "l2"],
+                             CustomRandint()]
+
+In this method, we added the needed attributes. See REF TO DOC OF DISTRIBS for the dicumentation on the used distributions.
+
+If "algo" is implemented in a sklearn fashion, it is now usable in the platform.
+
+TODO interpretation
diff --git a/docs/source/tutorials/index.rst b/docs/source/tutorials/index.rst
index 751c9e059806ed946bdbd3028ef8079904b7fa9b..2011f5488eb99578dda23501928f3ffa32a7ae3f 100644
--- a/docs/source/tutorials/index.rst
+++ b/docs/source/tutorials/index.rst
@@ -12,4 +12,5 @@ The following are some tutorials which explain how to use the toolbox.
     example2
     example3
     example4
+    example5
 
diff --git a/multiview_platform/mono_multi_view_classifiers/result_analysis.py b/multiview_platform/mono_multi_view_classifiers/result_analysis.py
index eff380ac884fae9be36d93606b019987fab4d68a..e7eb416632bde9c614fa054159864b5f67876347 100644
--- a/multiview_platform/mono_multi_view_classifiers/result_analysis.py
+++ b/multiview_platform/mono_multi_view_classifiers/result_analysis.py
@@ -732,7 +732,7 @@ def analyze_biclass(results, benchmark_argument_dictionaries, stats_iter, metric
         metrics_scores = get_metrics_scores_biclass(metrics, result)
         example_errors = get_example_errors_biclass(arguments["labels"], result)
         feature_importances = get_feature_importances(result)
-
+        print(feature_importances)
         directory = arguments["directory"]
 
         database_name = arguments["args"]["Base"]["name"]