diff --git a/multiview_platform/mono_multi_view_classifiers/utils/dataset.py b/multiview_platform/mono_multi_view_classifiers/utils/dataset.py
index 2caae5411c20639f8ba428bfbaadbe07ec164d8e..b00059035d1a63ee51f766cb451e663e23509ad1 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/dataset.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/dataset.py
@@ -157,12 +157,31 @@ class Dataset():
         return self.dataset["Metadata"].attrs["datasetLength"]
 
     def get_view_dict(self):
+        """
+        Returns the dictionary with view indices as keys and the corresponding
+        names as values
+        """
         view_dict = {}
         for view_index in range(self.nb_view):
             view_dict[self.dataset["View" + str(view_index)].attrs["name"]] = view_index
         return view_dict
 
     def get_label_names(self, decode=True, example_indices=None):
+        """
+        Used to get the list of the label names for the give set of examples
+
+        Parameters
+        ----------
+        decode : bool
+            If True, will decode the label names before lsiting them
+
+        example_indices : numpy.ndarray
+            The array containig the indices of the needed examples
+
+        Returns
+        -------
+
+        """
         example_indices = self.init_example_indces(example_indices)
         selected_labels = self.get_labels(example_indices)
         if decode:
@@ -175,12 +194,26 @@ class Dataset():
                     if label in selected_labels]
 
     def init_example_indces(self, example_indices=None):
+        """If no example indices are provided, selects all the examples."""
         if example_indices is None:
             return range(self.get_nb_examples())
         else:
             return example_indices
 
     def get_v(self, view_index, example_indices=None):
+        """
+        Selects the view to extract
+        Parameters
+        ----------
+        view_index : int
+            The index of the view to extract
+        example_indices : numpy.ndarray
+            The array containing the indices of the examples to extract.
+
+        Returns
+        -------
+        A numpy.ndarray containing the view data for the needed examples
+        """
         example_indices = self.init_example_indces(example_indices)
         if type(example_indices) is int:
             return self.dataset["View" + str(view_index)][example_indices, :]
@@ -203,10 +236,12 @@ class Dataset():
 
                 return sparse_mat
 
-    def get_shape(self, example_indices=None):
-        return self.get_v(0,example_indices=example_indices).shape
+    def get_shape(self, view_index=0, example_indices=None):
+        """Gets the shape of the needed view"""
+        return self.get_v(view_index,example_indices=example_indices).shape
 
     def get_nb_class(self, example_indices=None):
+        """Gets the number of class of the dataset"""
         example_indices = self.init_example_indces(example_indices)
         return len(np.unique(self.dataset["Labels"][()][example_indices]))
 
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/parameters.py b/multiview_platform/mono_multi_view_classifiers/utils/parameters.py
deleted file mode 100644
index 2b61691f20124cb20fd7872aa8c44f5757397f02..0000000000000000000000000000000000000000
--- a/multiview_platform/mono_multi_view_classifiers/utils/parameters.py
+++ /dev/null
@@ -1,145 +0,0 @@
-import numpy as np
-
-
-class Parameter_pdata(object):
-    class __Parameter_pdata:
-        nbr_i = 0
-        # option de renormalisation des donnees
-        #  la séparation se faisant à une permutation pret et à un facteur de
-        # renormalisation pret, on peut choisir de normaliser les données au debut
-        # de l'algo et/ou à chaque iteration de l'algo et/ou à la fin de l'algo
-        # on normalise A ou S
-        _data_norm = {'FlagInit': True, 'FlagIter': False, 'FlagEnd': False}
-        # % on normalise suivant les colonnes (1) 'dim' (norme des colonnes à 1) ou les
-        # 'dim'% lignes (2) (norme des lignes à 1)
-        _Norm = {'p': 1, 'dim': 1, 'x': 'A'}
-        _list_mode = ['real', 'simul']
-        _list_x = ['A', 'S']
-
-        def __init__(self):
-            self._Norm['p'] = 1
-            self._Norm['dim'] = 1
-            self._Norm['x'] = self._list_x[0]
-            self.mode = self._list_mode[1]
-            self.sigma = 20000
-            self.dim = 1
-            if self.nbr_i > 0:
-                raise ValueError("Instance of class Parameter_pdata can be only one")
-            self.nbr_i += 1
-
-        def __str__(self):
-            return repr(self)
-
-    instance = None
-
-    #     def __init__(self, arg):
-    #         if not Parameter_pdata.instance:
-    #             Parameter_pdata.instance = Parameter_pdata.__Parameter_pdata(arg)
-    #         else:
-    #             Parameter_pdata.instance.val = arg
-
-    def __new__(cls):  # _new_ est toujours une méthode de classe
-        if not Parameter_pdata.instance:
-            Parameter_pdata.instance = Parameter_pdata.__Parameter_pdata()
-        return Parameter_pdata.instance
-
-    def __getattr__(self, attr):
-        return getattr(self.instance, attr)
-
-    #     def __setattr__(self, attr, val):
-    #         return setattr(self.instance, attr, val)
-
-    def __setattr__(self, name):
-        return setattr(self.instance, name)
-
-
-class Parameter_palgo(object):
-    class __Parameter_palgo:
-
-        nbr_i = 0
-        _list_algo = ['BCVMFB', 'PALS', 'STALS', 'LSfro', 'LSkl']
-        _stop = {'DifA': False, 'DifS': False,
-                 'ObjFct': True, 'threshold': np.finfo(float).eps}
-        _pfwt = {'w': 'db6', 'family_pfwt': 'db',
-                 'level': 10, 'K': 4,
-                 'Ls': 3000, 'L1': 3000, 'L2': 3000}
-        # _wavelette_type = ['db', 'db6']
-        # 'LS' pour Lee et Seung
-        # 'Lips' pour la constante de Lipschitz
-        # 'PALM' pas de preconditionnement
-        _list_precond = ['LS', 'Lips', 'PALM']
-
-        def __init__(self):
-            self.flagWave = False
-            self.val = None
-            algo_value = self._list_algo[1]
-            self._algo = algo_value
-            self.gamma = 0.99
-            self.inf = np.inf
-            self.eps = np.finfo(float).eps
-            self.niter = 1000
-            self.eta_inf = 'eps'
-            self.eta_sup = 'inf'
-            self.alpha_A = 0.0
-            self.p_A = 1
-            self.p_S = 1
-            self.alpha_S = 0.0
-            # self.level = 10
-            self.alpha_S_eval = False
-            self.stopThreshold = 10e-5,
-            self.precond = 'LS'  # 'LS' pour Lee et Seung
-            self.F = None
-            self.Fstar = None
-            self.verbose = False
-
-            if self.nbr_i > 0:
-                raise ValueError("Instance of class Parameter_pdata can be only one")
-            self.nbr_i += 1
-
-        def __str__(self):
-            return repr(self) + repr(self.val)
-
-        @property
-        def algo(self):
-            return self._algo
-
-        @algo.setter
-        def algo(self, algo_value):
-            if algo_value not in self._list_algo:
-                raise NameError("parameter algo must be in %s" % self._list_algo)
-            else:
-                self._algo = algo_value
-
-    instance = None
-
-    #     def __init__(self, arg):
-    #         if not Parameter_pdata.instance:
-    #             Parameter_pdata.instance = Parameter_pdata.__Parameter_pdata(arg)
-    #         else:
-    #             Parameter_pdata.instance.val = arg
-
-    def __new__(cls):  # _new_ est toujours une méthode de classe
-        if not Parameter_palgo.instance:
-            Parameter_palgo.instance = Parameter_palgo.__Parameter_palgo()
-        return Parameter_palgo.instance
-
-    def __getattr__(self, attr):
-        return getattr(self.instance, attr)
-
-    #     def __setattr__(self, attr, val):
-    #         return setattr(self.instance, attr, val)
-
-    def __setattr__(self, name):
-        return setattr(self.instance, name)
-
-
-if __name__ == '__main__':
-    a = Parameter_pdata()
-    a = Parameter_pdata()
-    b = Parameter_pdata()
-    b.val = 6
-    b.x = 8
-    a.x = 10
-    param = Parameter_palgo()
-    algo = param._list_algo[3]
-    param.algo = algo
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/transformations.py b/multiview_platform/mono_multi_view_classifiers/utils/transformations.py
index 9d26ddde8bd02fea2ef1176385ac251260027e40..9d78ee1e94d04bc84b4ed575e01bdac521b76425 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/transformations.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/transformations.py
@@ -2,6 +2,7 @@ import numpy as np
 
 
 def sign_labels(labels):
+    """Used to transform 0/1 labels to -1/1 labels"""
     if set(labels) == (0, 1):
         return np.array([label if label != 0 else -1 for label in labels])
     else: