diff --git a/multiview_platform/mono_multi_view_classifiers/exec_classif.py b/multiview_platform/mono_multi_view_classifiers/exec_classif.py index 1dac8577bda66f21dfc5be4a3ad5d998d84250f3..f98cc1949b9962f8f80ad32d3693faf65ea19f2c 100644 --- a/multiview_platform/mono_multi_view_classifiers/exec_classif.py +++ b/multiview_platform/mono_multi_view_classifiers/exec_classif.py @@ -11,15 +11,14 @@ import itertools import numpy as np from joblib import Parallel, delayed from sklearn.tree import DecisionTreeClassifier + # Import own modules from . import monoview_classifiers from . import multiview_classifiers from .multiview.exec_multiview import exec_multiview, exec_multiview_multicore from .monoview.exec_classif_mono_view import exec_monoview, exec_monoview_multicore from .utils.dataset import delete_HDF5 -from .result_analysis import get_results -from .result_analysis import plot_results_noise -# resultAnalysis, analyzeLabels, analyzeIterResults, analyzeIterLabels, genNamesFromRes, +from .result_analysis import get_results, plot_results_noise, analyze_biclass from .utils import execution, dataset, multiclass, configuration matplotlib.use( @@ -772,7 +771,6 @@ def exec_benchmark(nb_cores, stats_iter, nb_multiclass, # else: for arguments in benchmark_arguments_dictionaries: benchmark_results = exec_one_benchmark_mono_core(dataset_var=dataset_var, **arguments) - from .result_analysis import analyze_biclass analyze_biclass([benchmark_results], benchmark_arguments_dictionaries, stats_iter, metrics, example_ids=dataset_var.example_ids) results += [benchmark_results] logging.debug("Done:\t Executing all the needed biclass benchmarks")