diff --git a/multiview_platform/tests/test_ExecClassif.py b/multiview_platform/tests/test_ExecClassif.py index 5348634a6ef1760ab04df2b71497d84ca1f488c3..71f53c9948fe44f0ca550b35dbdaad7e7d584ea3 100644 --- a/multiview_platform/tests/test_ExecClassif.py +++ b/multiview_platform/tests/test_ExecClassif.py @@ -232,16 +232,9 @@ class Test_execBenchmark(unittest.TestCase): @classmethod def setUpClass(cls): rm_tmp() -<<<<<<< HEAD - os.mkdir("./tests/tmp_tests") - cls.Dataset = h5py.File( - tmp_path+"test_file.hdf5", "w") - cls.labels = cls.Dataset.create_dataset("Labels", - data=np.array([0, 1, 2])) -======= + os.mkdir(tmp_path) cls.Dataset = test_dataset ->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd cls.argument_dictionaries = [{"a": 4, "args": {}}] cls.args = { "Base":{"name": "chicken_is_heaven", "type": "type", "pathf": "pathF"}, diff --git a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py index 7706331636fae346ef4b2298d8a4c69c60869fe6..91c283aa2e3d156edeff4ea5428579428ab60a07 100644 --- a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py +++ b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py @@ -5,102 +5,102 @@ import h5py import numpy as np from ...mono_multi_view_classifiers.utils import get_multiview_db -<<<<<<< HEAD -from ..utils import rm_tmp, tmp_path - - -class Test_copyhdf5Dataset(unittest.TestCase): - - @classmethod - def setUpClass(cls): - rm_tmp() - cls.random_state = np.random.RandomState(42) - if not os.path.exists("multiview_platform/tests/tmp_tests"): - os.mkdir("multiview_platform/tests/tmp_tests") - cls.dataset_file = h5py.File( - tmp_path+"test_copy.hdf5", "w") - cls.dataset = cls.dataset_file.create_dataset("test", - data=cls.random_state.randint( - 0, 100, (10, 20))) - cls.dataset.attrs["test_arg"] = "Am I copied" - - def test_simple_copy(self): - get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file, - "test", "test_copy_1", np.arange(10)) - np.testing.assert_array_equal(self.dataset_file.get("test").value, - self.dataset_file.get("test_copy_1").value) - self.assertEqual("Am I copied", - self.dataset_file.get("test_copy_1").attrs["test_arg"]) - - def test_copy_only_some_indices(self): - usedIndices = self.random_state.choice(10, 6, replace=False) - get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file, - "test", "test_copy", usedIndices) - np.testing.assert_array_equal( - self.dataset_file.get("test").value[usedIndices, :], - self.dataset_file.get("test_copy").value) - self.assertEqual("Am I copied", - self.dataset_file.get("test_copy").attrs["test_arg"]) - - @classmethod - def tearDownClass(cls): - os.remove(tmp_path+"test_copy.hdf5") - os.rmdir("multiview_platform/tests/tmp_tests") - - -class Test_filterViews(unittest.TestCase): - - @classmethod - def setUpClass(cls): - rm_tmp() - cls.random_state = np.random.RandomState(42) - cls.views = ["test_view_1", "test_view_2"] - if not os.path.exists("multiview_platform/tests/tmp_tests"): - os.mkdir("multiview_platform/tests/tmp_tests") - cls.dataset_file = h5py.File( - tmp_path+"test_copy.hdf5", "w") - cls.metadata_group = cls.dataset_file.create_group("Metadata") - cls.metadata_group.attrs["nbView"] = 4 - - for i in range(4): - cls.dataset = cls.dataset_file.create_dataset("View" + str(i), - data=cls.random_state.randint( - 0, 100, (10, 20))) - cls.dataset.attrs["name"] = "test_view_" + str(i) - - def test_simple_filter(self): - self.temp_dataset_file = h5py.File( - tmp_path+"test_copy_temp.hdf5", "w") - self.dataset_file.copy("Metadata", self.temp_dataset_file) - get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file, - self.views, np.arange(10)) - self.assertEqual(self.dataset_file.get("View1").attrs["name"], - self.temp_dataset_file.get("View0").attrs["name"]) - np.testing.assert_array_equal(self.dataset_file.get("View2").value, - self.temp_dataset_file.get("View1").value) - self.assertEqual(self.temp_dataset_file.get("Metadata").attrs["nbView"], - 2) - - def test_filter_view_and_examples(self): - self.temp_dataset_file = h5py.File( - tmp_path+"test_copy_temp.hdf5", "w") - self.dataset_file.copy("Metadata", self.temp_dataset_file) - usedIndices = self.random_state.choice(10, 6, replace=False) - get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file, - self.views, usedIndices) - np.testing.assert_array_equal( - self.dataset_file.get("View1").value[usedIndices, :], - self.temp_dataset_file.get("View0").value) - self.temp_dataset_file.close() - - @classmethod - def tearDownClass(cls): - os.remove(tmp_path+"test_copy.hdf5") - os.remove(tmp_path+"test_copy_temp.hdf5") - os.rmdir("multiview_platform/tests/tmp_tests") -======= +# <<<<<<< HEAD +# from ..utils import rm_tmp, tmp_path +# +# +# class Test_copyhdf5Dataset(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# rm_tmp() +# cls.random_state = np.random.RandomState(42) +# if not os.path.exists("multiview_platform/tests/tmp_tests"): +# os.mkdir("multiview_platform/tests/tmp_tests") +# cls.dataset_file = h5py.File( +# tmp_path+"test_copy.hdf5", "w") +# cls.dataset = cls.dataset_file.create_dataset("test", +# data=cls.random_state.randint( +# 0, 100, (10, 20))) +# cls.dataset.attrs["test_arg"] = "Am I copied" +# +# def test_simple_copy(self): +# get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file, +# "test", "test_copy_1", np.arange(10)) +# np.testing.assert_array_equal(self.dataset_file.get("test").value, +# self.dataset_file.get("test_copy_1").value) +# self.assertEqual("Am I copied", +# self.dataset_file.get("test_copy_1").attrs["test_arg"]) +# +# def test_copy_only_some_indices(self): +# usedIndices = self.random_state.choice(10, 6, replace=False) +# get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file, +# "test", "test_copy", usedIndices) +# np.testing.assert_array_equal( +# self.dataset_file.get("test").value[usedIndices, :], +# self.dataset_file.get("test_copy").value) +# self.assertEqual("Am I copied", +# self.dataset_file.get("test_copy").attrs["test_arg"]) +# +# @classmethod +# def tearDownClass(cls): +# os.remove(tmp_path+"test_copy.hdf5") +# os.rmdir("multiview_platform/tests/tmp_tests") +# +# +# class Test_filterViews(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# rm_tmp() +# cls.random_state = np.random.RandomState(42) +# cls.views = ["test_view_1", "test_view_2"] +# if not os.path.exists("multiview_platform/tests/tmp_tests"): +# os.mkdir("multiview_platform/tests/tmp_tests") +# cls.dataset_file = h5py.File( +# tmp_path+"test_copy.hdf5", "w") +# cls.metadata_group = cls.dataset_file.create_group("Metadata") +# cls.metadata_group.attrs["nbView"] = 4 +# +# for i in range(4): +# cls.dataset = cls.dataset_file.create_dataset("View" + str(i), +# data=cls.random_state.randint( +# 0, 100, (10, 20))) +# cls.dataset.attrs["name"] = "test_view_" + str(i) +# +# def test_simple_filter(self): +# self.temp_dataset_file = h5py.File( +# tmp_path+"test_copy_temp.hdf5", "w") +# self.dataset_file.copy("Metadata", self.temp_dataset_file) +# get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file, +# self.views, np.arange(10)) +# self.assertEqual(self.dataset_file.get("View1").attrs["name"], +# self.temp_dataset_file.get("View0").attrs["name"]) +# np.testing.assert_array_equal(self.dataset_file.get("View2").value, +# self.temp_dataset_file.get("View1").value) +# self.assertEqual(self.temp_dataset_file.get("Metadata").attrs["nbView"], +# 2) +# +# def test_filter_view_and_examples(self): +# self.temp_dataset_file = h5py.File( +# tmp_path+"test_copy_temp.hdf5", "w") +# self.dataset_file.copy("Metadata", self.temp_dataset_file) +# usedIndices = self.random_state.choice(10, 6, replace=False) +# get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file, +# self.views, usedIndices) +# np.testing.assert_array_equal( +# self.dataset_file.get("View1").value[usedIndices, :], +# self.temp_dataset_file.get("View0").value) +# self.temp_dataset_file.close() +# +# @classmethod +# def tearDownClass(cls): +# os.remove(tmp_path+"test_copy.hdf5") +# os.remove(tmp_path+"test_copy_temp.hdf5") +# os.rmdir("multiview_platform/tests/tmp_tests") +# ======= from ..utils import rm_tmp, tmp_path, test_dataset ->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd +# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd # class Test_copyhdf5Dataset(unittest.TestCase): @@ -429,356 +429,356 @@ from ..utils import rm_tmp, tmp_path, test_dataset # exception = catcher.exception # # cls.assertTrue("Dataset must have at least two different labels" in exception) # -<<<<<<< HEAD -class Test_filterLabels(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.random_state = np.random.RandomState(42) - cls.labelsSet = set(range(4)) - cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} - cls.fullLabels = cls.random_state.randint(0, 4, 10) - cls.availableLabelsNames = ["test_label_0", "test_label_1", - "test_label_2", "test_label_3"] - cls.askedLabelsNames = ["test_label_1", "test_label_3"] - - def test_simple(self): - newLabels, \ - newLabelsNames, \ - usedIndices = get_multiview_db.filter_labels(self.labelsSet, - self.askedLabelsNamesSet, - self.fullLabels, - self.availableLabelsNames, - self.askedLabelsNames) - self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9])) - np.testing.assert_array_equal(newLabels, np.array([1, 1, 0])) - - def test_biclasse(self): - self.labelsSet = {0, 1} - self.fullLabels = self.random_state.randint(0, 2, 10) - self.availableLabelsNames = ["test_label_0", "test_label_1"] - newLabels, \ - newLabelsNames, \ - usedIndices = get_multiview_db.filter_labels(self.labelsSet, - self.askedLabelsNamesSet, - self.fullLabels, - self.availableLabelsNames, - self.askedLabelsNames) - self.assertEqual(self.availableLabelsNames, newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.arange(10)) - np.testing.assert_array_equal(newLabels, self.fullLabels) - - def test_asked_too_many_labels(self): - self.askedLabelsNamesSet = {"test_label_0", "test_label_1", - "test_label_2", "test_label_3", - "chicken_is_heaven"} - with self.assertRaises(get_multiview_db.DatasetError) as catcher: - get_multiview_db.filter_labels(self.labelsSet, - self.askedLabelsNamesSet, - self.fullLabels, - self.availableLabelsNames, - self.askedLabelsNames) - exception = catcher.exception - - def test_asked_all_labels(self): - self.askedLabelsNamesSet = {"test_label_0", "test_label_1", - "test_label_2", "test_label_3"} - self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - newLabels, \ - newLabelsNames, \ - usedIndices = get_multiview_db.filter_labels(self.labelsSet, - self.askedLabelsNamesSet, - self.fullLabels, - self.availableLabelsNames, - self.askedLabelsNames) - self.assertEqual(self.availableLabelsNames, newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.arange(10)) - np.testing.assert_array_equal(newLabels, self.fullLabels) - - -class Test_selectAskedLabels(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.random_state = np.random.RandomState(42) - cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} - cls.fullLabels = cls.random_state.randint(0, 4, 10) - cls.availableLabelsNames = ["test_label_0", "test_label_1", - "test_label_2", "test_label_3"] - cls.askedLabelsNames = ["test_label_1", "test_label_3"] - - def test_simple(self): - newLabels, \ - newLabelsNames, \ - usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, - self.availableLabelsNames, - self.askedLabelsNames, - self.fullLabels) - self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9])) - np.testing.assert_array_equal(newLabels, np.array([1, 1, 0])) - - def test_asked_all_labels(self): - self.askedLabelsNamesSet = {"test_label_0", "test_label_1", - "test_label_2", "test_label_3"} - self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - newLabels, \ - newLabelsNames, \ - usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, - self.availableLabelsNames, - self.askedLabelsNames, - self.fullLabels) - self.assertEqual(self.availableLabelsNames, newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.arange(10)) - np.testing.assert_array_equal(newLabels, self.fullLabels) - - def test_asked_unavailable_labels(self): - self.askedLabelsNamesSet = {"test_label_1", "test_label_3", - "chicken_is_heaven"} - with self.assertRaises(get_multiview_db.DatasetError) as catcher: - get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, - self.availableLabelsNames, - self.askedLabelsNames, - self.fullLabels) - exception = catcher.exception - # self.assertTrue("Asked labels are not all available in the dataset" in exception) - - -class Test_getAllLabels(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.random_state = np.random.RandomState(42) - cls.fullLabels = cls.random_state.randint(0, 4, 10) - cls.availableLabelsNames = ["test_label_0", "test_label_1", - "test_label_2", "test_label_3"] - - def test_simple(self): - newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels( - self.fullLabels, self.availableLabelsNames) - self.assertEqual(self.availableLabelsNames, newLabelsNames) - np.testing.assert_array_equal(usedIndices, np.arange(10)) - np.testing.assert_array_equal(newLabels, self.fullLabels) - - -class Test_fillLabelNames(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.NB_CLASS = 2 - cls.askedLabelsNames = ["test_label_1", "test_label_3"] - cls.random_state = np.random.RandomState(42) - cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)] - - def test_simple(self): - askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( - self.NB_CLASS, - self.askedLabelsNames, - self.random_state, - self.availableLabelsNames) - self.assertEqual(askedLabelsNames, self.askedLabelsNames) - self.assertEqual(askedLabelsNamesSet, set(self.askedLabelsNames)) - - def test_missing_labels_names(self): - self.NB_CLASS = 39 - askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( - self.NB_CLASS, - self.askedLabelsNames, - self.random_state, - self.availableLabelsNames) - - self.assertEqual(askedLabelsNames, - ['test_label_1', 'test_label_3', 'test_label_35', - 'test_label_38', 'test_label_6', 'test_label_15', - 'test_label_32', 'test_label_28', 'test_label_8', - 'test_label_29', 'test_label_26', 'test_label_17', - 'test_label_19', 'test_label_10', 'test_label_18', - 'test_label_14', 'test_label_21', 'test_label_11', - 'test_label_34', 'test_label_0', 'test_label_27', - 'test_label_7', 'test_label_13', 'test_label_2', - 'test_label_39', 'test_label_23', 'test_label_4', - 'test_label_31', 'test_label_37', 'test_label_5', - 'test_label_36', 'test_label_25', 'test_label_33', - 'test_label_12', 'test_label_24', 'test_label_20', - 'test_label_22', 'test_label_9', 'test_label_16']) - self.assertEqual(askedLabelsNamesSet, set( - ["test_label_" + str(_) for _ in range(30)] + [ - "test_label_" + str(31 + _) for _ in range(9)])) - - def test_too_many_label_names(self): - self.NB_CLASS = 2 - self.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4", - "test_label_6"] - askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( - self.NB_CLASS, - self.askedLabelsNames, - self.random_state, - self.availableLabelsNames) - self.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"]) - self.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"}) - - -class Test_allAskedLabelsAreAvailable(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} - cls.availableLabelsNames = ["test_label_0", "test_label_1", - "test_label_2", "test_label_3"] - - def test_asked_available_labels(self): - self.assertTrue( - get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet, - self.availableLabelsNames)) - - def test_asked_unavailable_label(self): - self.askedLabelsNamesSet = {"test_label_1", "test_label_3", - "chicken_is_heaven"} - self.assertFalse( - get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet, - self.availableLabelsNames)) - - -class Test_getClasses(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.random_state = np.random.RandomState(42) - - def test_multiclass(self): - labelsSet = get_multiview_db.get_classes( - self.random_state.randint(0, 5, 30)) - self.assertEqual(labelsSet, {0, 1, 2, 3, 4}) - - def test_biclass(self): - labelsSet = get_multiview_db.get_classes( - self.random_state.randint(0, 2, 30)) - self.assertEqual(labelsSet, {0, 1}) - - def test_one_class(self): - with self.assertRaises(get_multiview_db.DatasetError) as catcher: - get_multiview_db.get_classes(np.zeros(30, dtype=int)) - exception = catcher.exception - # self.assertTrue("Dataset must have at least two different labels" in exception) - -======= ->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd +# <<<<<<< HEAD +# class Test_filterLabels(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.random_state = np.random.RandomState(42) +# cls.labelsSet = set(range(4)) +# cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} +# cls.fullLabels = cls.random_state.randint(0, 4, 10) +# cls.availableLabelsNames = ["test_label_0", "test_label_1", +# "test_label_2", "test_label_3"] +# cls.askedLabelsNames = ["test_label_1", "test_label_3"] +# +# def test_simple(self): +# newLabels, \ +# newLabelsNames, \ +# usedIndices = get_multiview_db.filter_labels(self.labelsSet, +# self.askedLabelsNamesSet, +# self.fullLabels, +# self.availableLabelsNames, +# self.askedLabelsNames) +# self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9])) +# np.testing.assert_array_equal(newLabels, np.array([1, 1, 0])) +# +# def test_biclasse(self): +# self.labelsSet = {0, 1} +# self.fullLabels = self.random_state.randint(0, 2, 10) +# self.availableLabelsNames = ["test_label_0", "test_label_1"] +# newLabels, \ +# newLabelsNames, \ +# usedIndices = get_multiview_db.filter_labels(self.labelsSet, +# self.askedLabelsNamesSet, +# self.fullLabels, +# self.availableLabelsNames, +# self.askedLabelsNames) +# self.assertEqual(self.availableLabelsNames, newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.arange(10)) +# np.testing.assert_array_equal(newLabels, self.fullLabels) +# +# def test_asked_too_many_labels(self): +# self.askedLabelsNamesSet = {"test_label_0", "test_label_1", +# "test_label_2", "test_label_3", +# "chicken_is_heaven"} +# with self.assertRaises(get_multiview_db.DatasetError) as catcher: +# get_multiview_db.filter_labels(self.labelsSet, +# self.askedLabelsNamesSet, +# self.fullLabels, +# self.availableLabelsNames, +# self.askedLabelsNames) +# exception = catcher.exception +# +# def test_asked_all_labels(self): +# self.askedLabelsNamesSet = {"test_label_0", "test_label_1", +# "test_label_2", "test_label_3"} +# self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# newLabels, \ +# newLabelsNames, \ +# usedIndices = get_multiview_db.filter_labels(self.labelsSet, +# self.askedLabelsNamesSet, +# self.fullLabels, +# self.availableLabelsNames, +# self.askedLabelsNames) +# self.assertEqual(self.availableLabelsNames, newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.arange(10)) +# np.testing.assert_array_equal(newLabels, self.fullLabels) +# +# +# class Test_selectAskedLabels(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.random_state = np.random.RandomState(42) +# cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} +# cls.fullLabels = cls.random_state.randint(0, 4, 10) +# cls.availableLabelsNames = ["test_label_0", "test_label_1", +# "test_label_2", "test_label_3"] +# cls.askedLabelsNames = ["test_label_1", "test_label_3"] +# +# def test_simple(self): +# newLabels, \ +# newLabelsNames, \ +# usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, +# self.availableLabelsNames, +# self.askedLabelsNames, +# self.fullLabels) +# self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9])) +# np.testing.assert_array_equal(newLabels, np.array([1, 1, 0])) +# +# def test_asked_all_labels(self): +# self.askedLabelsNamesSet = {"test_label_0", "test_label_1", +# "test_label_2", "test_label_3"} +# self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# newLabels, \ +# newLabelsNames, \ +# usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, +# self.availableLabelsNames, +# self.askedLabelsNames, +# self.fullLabels) +# self.assertEqual(self.availableLabelsNames, newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.arange(10)) +# np.testing.assert_array_equal(newLabels, self.fullLabels) +# +# def test_asked_unavailable_labels(self): +# self.askedLabelsNamesSet = {"test_label_1", "test_label_3", +# "chicken_is_heaven"} +# with self.assertRaises(get_multiview_db.DatasetError) as catcher: +# get_multiview_db.select_asked_labels(self.askedLabelsNamesSet, +# self.availableLabelsNames, +# self.askedLabelsNames, +# self.fullLabels) +# exception = catcher.exception +# # self.assertTrue("Asked labels are not all available in the dataset" in exception) +# +# +# class Test_getAllLabels(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.random_state = np.random.RandomState(42) +# cls.fullLabels = cls.random_state.randint(0, 4, 10) +# cls.availableLabelsNames = ["test_label_0", "test_label_1", +# "test_label_2", "test_label_3"] +# +# def test_simple(self): +# newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels( +# self.fullLabels, self.availableLabelsNames) +# self.assertEqual(self.availableLabelsNames, newLabelsNames) +# np.testing.assert_array_equal(usedIndices, np.arange(10)) +# np.testing.assert_array_equal(newLabels, self.fullLabels) +# +# +# class Test_fillLabelNames(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.NB_CLASS = 2 +# cls.askedLabelsNames = ["test_label_1", "test_label_3"] +# cls.random_state = np.random.RandomState(42) +# cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)] +# +# def test_simple(self): +# askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( +# self.NB_CLASS, +# self.askedLabelsNames, +# self.random_state, +# self.availableLabelsNames) +# self.assertEqual(askedLabelsNames, self.askedLabelsNames) +# self.assertEqual(askedLabelsNamesSet, set(self.askedLabelsNames)) +# +# def test_missing_labels_names(self): +# self.NB_CLASS = 39 +# askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( +# self.NB_CLASS, +# self.askedLabelsNames, +# self.random_state, +# self.availableLabelsNames) +# +# self.assertEqual(askedLabelsNames, +# ['test_label_1', 'test_label_3', 'test_label_35', +# 'test_label_38', 'test_label_6', 'test_label_15', +# 'test_label_32', 'test_label_28', 'test_label_8', +# 'test_label_29', 'test_label_26', 'test_label_17', +# 'test_label_19', 'test_label_10', 'test_label_18', +# 'test_label_14', 'test_label_21', 'test_label_11', +# 'test_label_34', 'test_label_0', 'test_label_27', +# 'test_label_7', 'test_label_13', 'test_label_2', +# 'test_label_39', 'test_label_23', 'test_label_4', +# 'test_label_31', 'test_label_37', 'test_label_5', +# 'test_label_36', 'test_label_25', 'test_label_33', +# 'test_label_12', 'test_label_24', 'test_label_20', +# 'test_label_22', 'test_label_9', 'test_label_16']) +# self.assertEqual(askedLabelsNamesSet, set( +# ["test_label_" + str(_) for _ in range(30)] + [ +# "test_label_" + str(31 + _) for _ in range(9)])) +# +# def test_too_many_label_names(self): +# self.NB_CLASS = 2 +# self.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4", +# "test_label_6"] +# askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names( +# self.NB_CLASS, +# self.askedLabelsNames, +# self.random_state, +# self.availableLabelsNames) +# self.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"]) +# self.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"}) +# +# +# class Test_allAskedLabelsAreAvailable(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"} +# cls.availableLabelsNames = ["test_label_0", "test_label_1", +# "test_label_2", "test_label_3"] +# +# def test_asked_available_labels(self): +# self.assertTrue( +# get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet, +# self.availableLabelsNames)) +# +# def test_asked_unavailable_label(self): +# self.askedLabelsNamesSet = {"test_label_1", "test_label_3", +# "chicken_is_heaven"} +# self.assertFalse( +# get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet, +# self.availableLabelsNames)) +# +# +# class Test_getClasses(unittest.TestCase): +# +# @classmethod +# def setUpClass(cls): +# cls.random_state = np.random.RandomState(42) +# +# def test_multiclass(self): +# labelsSet = get_multiview_db.get_classes( +# self.random_state.randint(0, 5, 30)) +# self.assertEqual(labelsSet, {0, 1, 2, 3, 4}) +# +# def test_biclass(self): +# labelsSet = get_multiview_db.get_classes( +# self.random_state.randint(0, 2, 30)) +# self.assertEqual(labelsSet, {0, 1}) +# +# def test_one_class(self): +# with self.assertRaises(get_multiview_db.DatasetError) as catcher: +# get_multiview_db.get_classes(np.zeros(30, dtype=int)) +# exception = catcher.exception +# # self.assertTrue("Dataset must have at least two different labels" in exception) +# +# ======= +# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd class Test_get_classic_db_hdf5(unittest.TestCase): def setUp(self): rm_tmp() -<<<<<<< HEAD - if not os.path.exists("multiview_platform/tests/tmp_tests"): - os.mkdir("multiview_platform/tests/tmp_tests") - cls.dataset_file = h5py.File( - tmp_path+"test_dataset.hdf5", "w") - cls.pathF = tmp_path - cls.nameDB = "test_dataset" - cls.NB_CLASS = 2 - cls.askedLabelsNames = ["test_label_1", "test_label_3"] - cls.random_state = np.random.RandomState(42) - cls.views = ["test_view_1", "test_view_3"] - cls.metadata_group = cls.dataset_file.create_group("Metadata") - cls.metadata_group.attrs["nbView"] = 4 - cls.labels_dataset = cls.dataset_file.create_dataset("Labels", - data=cls.random_state.randint( - 0, 4, 10)) - cls.labels_dataset.attrs["names"] = ["test_label_0".encode(), - "test_label_1".encode(), - "test_label_2".encode(), - "test_label_3".encode()] - - for i in range(4): - cls.dataset = cls.dataset_file.create_dataset("View" + str(i), - data=cls.random_state.randint( - 0, 100, (10, 20))) - cls.dataset.attrs["name"] = "test_view_" + str(i) - - def test_simple(self): - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5( - self.views, self.pathF, self.nameDB, - self.NB_CLASS, self.askedLabelsNames, - self.random_state) - self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") - self.assertEqual(labels_dictionary, - {0: "test_label_1", 1: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) - np.testing.assert_array_equal(dataset_file.get("View0").value, - self.dataset_file.get("View1").value[ - np.array([1, 5, 9]), :]) - - def test_all_labels_asked(self): - askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - NB_CLASS = 4 - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5( - self.views, self.pathF, self.nameDB, - NB_CLASS, askedLabelsNames, - self.random_state) - self.assertEqual(dataset_name, 'test_dataset_temp_view_label_select') - self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") - self.assertEqual(labels_dictionary, - {0: "test_label_0", 1: "test_label_1", - 2: "test_label_2", 3: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) - np.testing.assert_array_equal(dataset_file.get("View0").value, - self.dataset_file.get("View1").value) - - def test_all_views_asked(self): - views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views, - self.pathF, - self.nameDB, - self.NB_CLASS, - self.askedLabelsNames, - self.random_state) - for viewIndex in range(4): - np.testing.assert_array_equal( - dataset_file.get("View" + str(viewIndex)).value, - self.dataset_file.get("View" + str(viewIndex)).value[ - np.array([1, 5, 9]), :]) - self.assertEqual( - dataset_file.get("View" + str(viewIndex)).attrs["name"], - "test_view_" + str(viewIndex)) - self.assertEqual(labels_dictionary, - {0: "test_label_1", 1: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) - - def test_asked_the_whole_dataset(self): - askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - NB_CLASS = 4 - views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views, - self.pathF, - self.nameDB, - NB_CLASS, - askedLabelsNames, - self.random_state) - for viewIndex in range(4): - np.testing.assert_array_equal( - dataset_file.get("View" + str(viewIndex)).value, - self.dataset_file.get("View" + str(viewIndex))) - self.assertEqual( - dataset_file.get("View" + str(viewIndex)).attrs["name"], - "test_view_" + str(viewIndex)) - self.assertEqual(labels_dictionary, - {0: "test_label_0", 1: "test_label_1", - 2: "test_label_2", 3: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) -======= +# <<<<<<< HEAD +# if not os.path.exists("multiview_platform/tests/tmp_tests"): +# os.mkdir("multiview_platform/tests/tmp_tests") +# cls.dataset_file = h5py.File( +# tmp_path+"test_dataset.hdf5", "w") +# cls.pathF = tmp_path +# cls.nameDB = "test_dataset" +# cls.NB_CLASS = 2 +# cls.askedLabelsNames = ["test_label_1", "test_label_3"] +# cls.random_state = np.random.RandomState(42) +# cls.views = ["test_view_1", "test_view_3"] +# cls.metadata_group = cls.dataset_file.create_group("Metadata") +# cls.metadata_group.attrs["nbView"] = 4 +# cls.labels_dataset = cls.dataset_file.create_dataset("Labels", +# data=cls.random_state.randint( +# 0, 4, 10)) +# cls.labels_dataset.attrs["names"] = ["test_label_0".encode(), +# "test_label_1".encode(), +# "test_label_2".encode(), +# "test_label_3".encode()] +# +# for i in range(4): +# cls.dataset = cls.dataset_file.create_dataset("View" + str(i), +# data=cls.random_state.randint( +# 0, 100, (10, 20))) +# cls.dataset.attrs["name"] = "test_view_" + str(i) +# +# def test_simple(self): +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5( +# self.views, self.pathF, self.nameDB, +# self.NB_CLASS, self.askedLabelsNames, +# self.random_state) +# self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") +# self.assertEqual(labels_dictionary, +# {0: "test_label_1", 1: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) +# np.testing.assert_array_equal(dataset_file.get("View0").value, +# self.dataset_file.get("View1").value[ +# np.array([1, 5, 9]), :]) +# +# def test_all_labels_asked(self): +# askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# NB_CLASS = 4 +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5( +# self.views, self.pathF, self.nameDB, +# NB_CLASS, askedLabelsNames, +# self.random_state) +# self.assertEqual(dataset_name, 'test_dataset_temp_view_label_select') +# self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") +# self.assertEqual(labels_dictionary, +# {0: "test_label_0", 1: "test_label_1", +# 2: "test_label_2", 3: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) +# np.testing.assert_array_equal(dataset_file.get("View0").value, +# self.dataset_file.get("View1").value) +# +# def test_all_views_asked(self): +# views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views, +# self.pathF, +# self.nameDB, +# self.NB_CLASS, +# self.askedLabelsNames, +# self.random_state) +# for viewIndex in range(4): +# np.testing.assert_array_equal( +# dataset_file.get("View" + str(viewIndex)).value, +# self.dataset_file.get("View" + str(viewIndex)).value[ +# np.array([1, 5, 9]), :]) +# self.assertEqual( +# dataset_file.get("View" + str(viewIndex)).attrs["name"], +# "test_view_" + str(viewIndex)) +# self.assertEqual(labels_dictionary, +# {0: "test_label_1", 1: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) +# +# def test_asked_the_whole_dataset(self): +# askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# NB_CLASS = 4 +# views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views, +# self.pathF, +# self.nameDB, +# NB_CLASS, +# askedLabelsNames, +# self.random_state) +# for viewIndex in range(4): +# np.testing.assert_array_equal( +# dataset_file.get("View" + str(viewIndex)).value, +# self.dataset_file.get("View" + str(viewIndex))) +# self.assertEqual( +# dataset_file.get("View" + str(viewIndex)).attrs["name"], +# "test_view_" + str(viewIndex)) +# self.assertEqual(labels_dictionary, +# {0: "test_label_0", 1: "test_label_1", +# 2: "test_label_2", 3: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) +# ======= os.mkdir(tmp_path) self.rs = np.random.RandomState(42) self.nb_view = 3 @@ -810,7 +810,7 @@ class Test_get_classic_db_hdf5(unittest.TestCase): meta_data_grp.attrs["nbView"] = len(self.views) meta_data_grp.attrs["nbClass"] = len(np.unique(self.labels)) meta_data_grp.attrs["datasetLength"] = len(self.labels) ->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd +# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd def test_simple(self): dataset , labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5( @@ -868,102 +868,102 @@ class Test_get_classic_db_csv(unittest.TestCase): data, delimiter=",") self.datas.append(data) -<<<<<<< HEAD +# <<<<<<< HEAD +# def test_simple(self): +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( +# self.views, self.pathF, self.nameDB, +# self.NB_CLASS, self.askedLabelsNames, +# self.random_state, delimiter=",") +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) +# self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") +# self.assertEqual(dataset_file.get("View0").attrs["name"], "test_view_1") +# self.assertEqual(labels_dictionary, +# {0: "test_label_1", 1: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) +# np.testing.assert_array_equal(dataset_file.get("View0").value, +# self.datas[1][np.array([1, 5, 9]), :]) +# +# def test_all_views_asked(self): +# views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views, +# self.pathF, +# self.nameDB, +# self.NB_CLASS, +# self.askedLabelsNames, +# self.random_state, +# delimiter=",") +# self.assertEqual(labels_dictionary, +# {0: "test_label_1", 1: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) +# self.assertEqual(dataset_name,'test_dataset_temp_view_label_select') +# for viewIndex in range(4): +# np.testing.assert_array_equal( +# dataset_file.get("View" + str(viewIndex)).value, +# self.datas[viewIndex][np.array([1, 5, 9]), :]) +# self.assertEqual( +# dataset_file.get("View" + str(viewIndex)).attrs["name"], +# "test_view_" + str(viewIndex)) +# +# def test_all_labels_asked(self): +# askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# NB_CLASS = 4 +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( +# self.views, self.pathF, self.nameDB, +# NB_CLASS, askedLabelsNames, +# self.random_state, delimiter=",") +# self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") +# self.assertEqual(labels_dictionary, +# {0: "test_label_0", 1: "test_label_1", +# 2: "test_label_2", 3: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) +# np.testing.assert_array_equal(dataset_file.get("View0").value, +# self.datas[1]) +# +# def test_asked_the_whole_dataset(self): +# askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", +# "test_label_3"] +# NB_CLASS = 4 +# views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] +# dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views, +# self.pathF, +# self.nameDB, +# NB_CLASS, +# askedLabelsNames, +# self.random_state, +# delimiter=",") +# for viewIndex in range(4): +# np.testing.assert_array_equal( +# dataset_file.get("View" + str(viewIndex)).value, +# self.datas[viewIndex]) +# self.assertEqual( +# dataset_file.get("View" + str(viewIndex)).attrs["name"], +# "test_view_" + str(viewIndex)) +# self.assertEqual(labels_dictionary, +# {0: "test_label_0", 1: "test_label_1", +# 2: "test_label_2", 3: "test_label_3"}) +# self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) +# self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) +# ======= def test_simple(self): - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( + dataset, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( self.views, self.pathF, self.nameDB, self.NB_CLASS, self.askedLabelsNames, - self.random_state, delimiter=",") - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) - self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") - self.assertEqual(dataset_file.get("View0").attrs["name"], "test_view_1") + self.random_state, delimiter=",", path_for_new=tmp_path) + self.assertEqual(dataset.nb_view, 2) + self.assertEqual(dataset.get_view_dict(), {'test_view_1': 0, 'test_view_3': 1}) self.assertEqual(labels_dictionary, - {0: "test_label_1", 1: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) - np.testing.assert_array_equal(dataset_file.get("View0").value, - self.datas[1][np.array([1, 5, 9]), :]) - - def test_all_views_asked(self): - views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views, - self.pathF, - self.nameDB, - self.NB_CLASS, - self.askedLabelsNames, - self.random_state, - delimiter=",") - self.assertEqual(labels_dictionary, - {0: "test_label_1", 1: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2) - self.assertEqual(dataset_name,'test_dataset_temp_view_label_select') - for viewIndex in range(4): - np.testing.assert_array_equal( - dataset_file.get("View" + str(viewIndex)).value, - self.datas[viewIndex][np.array([1, 5, 9]), :]) - self.assertEqual( - dataset_file.get("View" + str(viewIndex)).attrs["name"], - "test_view_" + str(viewIndex)) - - def test_all_labels_asked(self): - askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - NB_CLASS = 4 - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( - self.views, self.pathF, self.nameDB, - NB_CLASS, askedLabelsNames, - self.random_state, delimiter=",") - self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3") - self.assertEqual(labels_dictionary, - {0: "test_label_0", 1: "test_label_1", - 2: "test_label_2", 3: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) - np.testing.assert_array_equal(dataset_file.get("View0").value, - self.datas[1]) - - def test_asked_the_whole_dataset(self): - askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2", - "test_label_3"] - NB_CLASS = 4 - views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"] - dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views, - self.pathF, - self.nameDB, - NB_CLASS, - askedLabelsNames, - self.random_state, - delimiter=",") - for viewIndex in range(4): - np.testing.assert_array_equal( - dataset_file.get("View" + str(viewIndex)).value, - self.datas[viewIndex]) - self.assertEqual( - dataset_file.get("View" + str(viewIndex)).attrs["name"], - "test_view_" + str(viewIndex)) - self.assertEqual(labels_dictionary, - {0: "test_label_0", 1: "test_label_1", - 2: "test_label_2", 3: "test_label_3"}) - self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10) - self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4) - self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4) -======= - def test_simple(cls): - dataset, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv( - cls.views, cls.pathF, cls.nameDB, - cls.NB_CLASS, cls.askedLabelsNames, - cls.random_state, delimiter=",", path_for_new=tmp_path) - cls.assertEqual(dataset.nb_view, 2) - cls.assertEqual(dataset.get_view_dict(), {'test_view_1': 0, 'test_view_3': 1}) - cls.assertEqual(labels_dictionary, - {0: "test_label_1", 1: "test_label_3"}) - cls.assertEqual(dataset.get_nb_examples(), 3) - cls.assertEqual(dataset.get_nb_class(), 2) + {0: "test_label_1", 1: "test_label_3"}) + self.assertEqual(dataset.get_nb_examples(), 3) + self.assertEqual(dataset.get_nb_class(), 2) ->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd +# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd @classmethod def tearDown(self):