diff --git a/multiview_platform/tests/test_ExecClassif.py b/multiview_platform/tests/test_ExecClassif.py
index 5348634a6ef1760ab04df2b71497d84ca1f488c3..71f53c9948fe44f0ca550b35dbdaad7e7d584ea3 100644
--- a/multiview_platform/tests/test_ExecClassif.py
+++ b/multiview_platform/tests/test_ExecClassif.py
@@ -232,16 +232,9 @@ class Test_execBenchmark(unittest.TestCase):
     @classmethod
     def setUpClass(cls):
         rm_tmp()
-<<<<<<< HEAD
-        os.mkdir("./tests/tmp_tests")
-        cls.Dataset = h5py.File(
-            tmp_path+"test_file.hdf5", "w")
-        cls.labels = cls.Dataset.create_dataset("Labels",
-                                                data=np.array([0, 1, 2]))
-=======
+
         os.mkdir(tmp_path)
         cls.Dataset = test_dataset
->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
         cls.argument_dictionaries = [{"a": 4, "args": {}}]
         cls.args = {
             "Base":{"name": "chicken_is_heaven", "type": "type", "pathf": "pathF"},
diff --git a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
index 7706331636fae346ef4b2298d8a4c69c60869fe6..91c283aa2e3d156edeff4ea5428579428ab60a07 100644
--- a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
+++ b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
@@ -5,102 +5,102 @@ import h5py
 import numpy as np
 
 from ...mono_multi_view_classifiers.utils import get_multiview_db
-<<<<<<< HEAD
-from ..utils import rm_tmp, tmp_path
-
-
-class Test_copyhdf5Dataset(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        rm_tmp()
-        cls.random_state = np.random.RandomState(42)
-        if not os.path.exists("multiview_platform/tests/tmp_tests"):
-            os.mkdir("multiview_platform/tests/tmp_tests")
-        cls.dataset_file = h5py.File(
-            tmp_path+"test_copy.hdf5", "w")
-        cls.dataset = cls.dataset_file.create_dataset("test",
-                                                      data=cls.random_state.randint(
-                                                          0, 100, (10, 20)))
-        cls.dataset.attrs["test_arg"] = "Am I copied"
-
-    def test_simple_copy(self):
-        get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
-                                       "test", "test_copy_1", np.arange(10))
-        np.testing.assert_array_equal(self.dataset_file.get("test").value,
-                                      self.dataset_file.get("test_copy_1").value)
-        self.assertEqual("Am I copied",
-                        self.dataset_file.get("test_copy_1").attrs["test_arg"])
-
-    def test_copy_only_some_indices(self):
-        usedIndices = self.random_state.choice(10, 6, replace=False)
-        get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
-                                       "test", "test_copy", usedIndices)
-        np.testing.assert_array_equal(
-            self.dataset_file.get("test").value[usedIndices, :],
-            self.dataset_file.get("test_copy").value)
-        self.assertEqual("Am I copied",
-                        self.dataset_file.get("test_copy").attrs["test_arg"])
-
-    @classmethod
-    def tearDownClass(cls):
-        os.remove(tmp_path+"test_copy.hdf5")
-        os.rmdir("multiview_platform/tests/tmp_tests")
-
-
-class Test_filterViews(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        rm_tmp()
-        cls.random_state = np.random.RandomState(42)
-        cls.views = ["test_view_1", "test_view_2"]
-        if not os.path.exists("multiview_platform/tests/tmp_tests"):
-            os.mkdir("multiview_platform/tests/tmp_tests")
-        cls.dataset_file = h5py.File(
-            tmp_path+"test_copy.hdf5", "w")
-        cls.metadata_group = cls.dataset_file.create_group("Metadata")
-        cls.metadata_group.attrs["nbView"] = 4
-
-        for i in range(4):
-            cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
-                                                          data=cls.random_state.randint(
-                                                              0, 100, (10, 20)))
-            cls.dataset.attrs["name"] = "test_view_" + str(i)
-
-    def test_simple_filter(self):
-        self.temp_dataset_file = h5py.File(
-            tmp_path+"test_copy_temp.hdf5", "w")
-        self.dataset_file.copy("Metadata", self.temp_dataset_file)
-        get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
-                                     self.views, np.arange(10))
-        self.assertEqual(self.dataset_file.get("View1").attrs["name"],
-                        self.temp_dataset_file.get("View0").attrs["name"])
-        np.testing.assert_array_equal(self.dataset_file.get("View2").value,
-                                      self.temp_dataset_file.get("View1").value)
-        self.assertEqual(self.temp_dataset_file.get("Metadata").attrs["nbView"],
-                        2)
-
-    def test_filter_view_and_examples(self):
-        self.temp_dataset_file = h5py.File(
-            tmp_path+"test_copy_temp.hdf5", "w")
-        self.dataset_file.copy("Metadata", self.temp_dataset_file)
-        usedIndices = self.random_state.choice(10, 6, replace=False)
-        get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
-                                     self.views, usedIndices)
-        np.testing.assert_array_equal(
-            self.dataset_file.get("View1").value[usedIndices, :],
-            self.temp_dataset_file.get("View0").value)
-        self.temp_dataset_file.close()
-
-    @classmethod
-    def tearDownClass(cls):
-        os.remove(tmp_path+"test_copy.hdf5")
-        os.remove(tmp_path+"test_copy_temp.hdf5")
-        os.rmdir("multiview_platform/tests/tmp_tests")
-=======
+# <<<<<<< HEAD
+# from ..utils import rm_tmp, tmp_path
+#
+#
+# class Test_copyhdf5Dataset(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         rm_tmp()
+#         cls.random_state = np.random.RandomState(42)
+#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
+#             os.mkdir("multiview_platform/tests/tmp_tests")
+#         cls.dataset_file = h5py.File(
+#             tmp_path+"test_copy.hdf5", "w")
+#         cls.dataset = cls.dataset_file.create_dataset("test",
+#                                                       data=cls.random_state.randint(
+#                                                           0, 100, (10, 20)))
+#         cls.dataset.attrs["test_arg"] = "Am I copied"
+#
+#     def test_simple_copy(self):
+#         get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
+#                                        "test", "test_copy_1", np.arange(10))
+#         np.testing.assert_array_equal(self.dataset_file.get("test").value,
+#                                       self.dataset_file.get("test_copy_1").value)
+#         self.assertEqual("Am I copied",
+#                         self.dataset_file.get("test_copy_1").attrs["test_arg"])
+#
+#     def test_copy_only_some_indices(self):
+#         usedIndices = self.random_state.choice(10, 6, replace=False)
+#         get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
+#                                        "test", "test_copy", usedIndices)
+#         np.testing.assert_array_equal(
+#             self.dataset_file.get("test").value[usedIndices, :],
+#             self.dataset_file.get("test_copy").value)
+#         self.assertEqual("Am I copied",
+#                         self.dataset_file.get("test_copy").attrs["test_arg"])
+#
+#     @classmethod
+#     def tearDownClass(cls):
+#         os.remove(tmp_path+"test_copy.hdf5")
+#         os.rmdir("multiview_platform/tests/tmp_tests")
+#
+#
+# class Test_filterViews(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         rm_tmp()
+#         cls.random_state = np.random.RandomState(42)
+#         cls.views = ["test_view_1", "test_view_2"]
+#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
+#             os.mkdir("multiview_platform/tests/tmp_tests")
+#         cls.dataset_file = h5py.File(
+#             tmp_path+"test_copy.hdf5", "w")
+#         cls.metadata_group = cls.dataset_file.create_group("Metadata")
+#         cls.metadata_group.attrs["nbView"] = 4
+#
+#         for i in range(4):
+#             cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
+#                                                           data=cls.random_state.randint(
+#                                                               0, 100, (10, 20)))
+#             cls.dataset.attrs["name"] = "test_view_" + str(i)
+#
+#     def test_simple_filter(self):
+#         self.temp_dataset_file = h5py.File(
+#             tmp_path+"test_copy_temp.hdf5", "w")
+#         self.dataset_file.copy("Metadata", self.temp_dataset_file)
+#         get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
+#                                      self.views, np.arange(10))
+#         self.assertEqual(self.dataset_file.get("View1").attrs["name"],
+#                         self.temp_dataset_file.get("View0").attrs["name"])
+#         np.testing.assert_array_equal(self.dataset_file.get("View2").value,
+#                                       self.temp_dataset_file.get("View1").value)
+#         self.assertEqual(self.temp_dataset_file.get("Metadata").attrs["nbView"],
+#                         2)
+#
+#     def test_filter_view_and_examples(self):
+#         self.temp_dataset_file = h5py.File(
+#             tmp_path+"test_copy_temp.hdf5", "w")
+#         self.dataset_file.copy("Metadata", self.temp_dataset_file)
+#         usedIndices = self.random_state.choice(10, 6, replace=False)
+#         get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
+#                                      self.views, usedIndices)
+#         np.testing.assert_array_equal(
+#             self.dataset_file.get("View1").value[usedIndices, :],
+#             self.temp_dataset_file.get("View0").value)
+#         self.temp_dataset_file.close()
+#
+#     @classmethod
+#     def tearDownClass(cls):
+#         os.remove(tmp_path+"test_copy.hdf5")
+#         os.remove(tmp_path+"test_copy_temp.hdf5")
+#         os.rmdir("multiview_platform/tests/tmp_tests")
+# =======
 from ..utils import rm_tmp, tmp_path, test_dataset
->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
+# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
 
 # class Test_copyhdf5Dataset(unittest.TestCase):
@@ -429,356 +429,356 @@ from ..utils import rm_tmp, tmp_path, test_dataset
 #         exception = catcher.exception
 #         # cls.assertTrue("Dataset must have at least two different labels" in exception)
 #
-<<<<<<< HEAD
-class Test_filterLabels(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.random_state = np.random.RandomState(42)
-        cls.labelsSet = set(range(4))
-        cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-        cls.fullLabels = cls.random_state.randint(0, 4, 10)
-        cls.availableLabelsNames = ["test_label_0", "test_label_1",
-                                    "test_label_2", "test_label_3"]
-        cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-
-    def test_simple(self):
-        newLabels, \
-        newLabelsNames, \
-        usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-                                                    self.askedLabelsNamesSet,
-                                                    self.fullLabels,
-                                                    self.availableLabelsNames,
-                                                    self.askedLabelsNames)
-        self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-        np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-
-    def test_biclasse(self):
-        self.labelsSet = {0, 1}
-        self.fullLabels = self.random_state.randint(0, 2, 10)
-        self.availableLabelsNames = ["test_label_0", "test_label_1"]
-        newLabels, \
-        newLabelsNames, \
-        usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-                                                     self.askedLabelsNamesSet,
-                                                     self.fullLabels,
-                                                     self.availableLabelsNames,
-                                                     self.askedLabelsNames)
-        self.assertEqual(self.availableLabelsNames, newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.arange(10))
-        np.testing.assert_array_equal(newLabels, self.fullLabels)
-
-    def test_asked_too_many_labels(self):
-        self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-                                   "test_label_2", "test_label_3",
-                                   "chicken_is_heaven"}
-        with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.filter_labels(self.labelsSet,
-                                          self.askedLabelsNamesSet,
-                                          self.fullLabels,
-                                          self.availableLabelsNames,
-                                          self.askedLabelsNames)
-        exception = catcher.exception
-
-    def test_asked_all_labels(self):
-        self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-                                   "test_label_2", "test_label_3"}
-        self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                                "test_label_3"]
-        newLabels, \
-        newLabelsNames, \
-        usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-                                                    self.askedLabelsNamesSet,
-                                                    self.fullLabels,
-                                                    self.availableLabelsNames,
-                                                    self.askedLabelsNames)
-        self.assertEqual(self.availableLabelsNames, newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.arange(10))
-        np.testing.assert_array_equal(newLabels, self.fullLabels)
-
-
-class Test_selectAskedLabels(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.random_state = np.random.RandomState(42)
-        cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-        cls.fullLabels = cls.random_state.randint(0, 4, 10)
-        cls.availableLabelsNames = ["test_label_0", "test_label_1",
-                                    "test_label_2", "test_label_3"]
-        cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-
-    def test_simple(self):
-        newLabels, \
-        newLabelsNames, \
-        usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-                                                         self.availableLabelsNames,
-                                                         self.askedLabelsNames,
-                                                         self.fullLabels)
-        self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-        np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-
-    def test_asked_all_labels(self):
-        self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-                                   "test_label_2", "test_label_3"}
-        self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                                "test_label_3"]
-        newLabels, \
-        newLabelsNames, \
-        usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-                                                         self.availableLabelsNames,
-                                                         self.askedLabelsNames,
-                                                         self.fullLabels)
-        self.assertEqual(self.availableLabelsNames, newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.arange(10))
-        np.testing.assert_array_equal(newLabels, self.fullLabels)
-
-    def test_asked_unavailable_labels(self):
-        self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-                                   "chicken_is_heaven"}
-        with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-                                               self.availableLabelsNames,
-                                               self.askedLabelsNames,
-                                               self.fullLabels)
-        exception = catcher.exception
-        # self.assertTrue("Asked labels are not all available in the dataset" in exception)
-
-
-class Test_getAllLabels(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.random_state = np.random.RandomState(42)
-        cls.fullLabels = cls.random_state.randint(0, 4, 10)
-        cls.availableLabelsNames = ["test_label_0", "test_label_1",
-                                    "test_label_2", "test_label_3"]
-
-    def test_simple(self):
-        newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels(
-            self.fullLabels, self.availableLabelsNames)
-        self.assertEqual(self.availableLabelsNames, newLabelsNames)
-        np.testing.assert_array_equal(usedIndices, np.arange(10))
-        np.testing.assert_array_equal(newLabels, self.fullLabels)
-
-
-class Test_fillLabelNames(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.NB_CLASS = 2
-        cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-        cls.random_state = np.random.RandomState(42)
-        cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)]
-
-    def test_simple(self):
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-            self.NB_CLASS,
-            self.askedLabelsNames,
-            self.random_state,
-            self.availableLabelsNames)
-        self.assertEqual(askedLabelsNames, self.askedLabelsNames)
-        self.assertEqual(askedLabelsNamesSet, set(self.askedLabelsNames))
-
-    def test_missing_labels_names(self):
-        self.NB_CLASS = 39
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-            self.NB_CLASS,
-            self.askedLabelsNames,
-            self.random_state,
-            self.availableLabelsNames)
-
-        self.assertEqual(askedLabelsNames,
-                        ['test_label_1', 'test_label_3', 'test_label_35',
-                         'test_label_38', 'test_label_6', 'test_label_15',
-                         'test_label_32', 'test_label_28', 'test_label_8',
-                         'test_label_29', 'test_label_26', 'test_label_17',
-                         'test_label_19', 'test_label_10', 'test_label_18',
-                         'test_label_14', 'test_label_21', 'test_label_11',
-                         'test_label_34', 'test_label_0', 'test_label_27',
-                         'test_label_7', 'test_label_13', 'test_label_2',
-                         'test_label_39', 'test_label_23', 'test_label_4',
-                         'test_label_31', 'test_label_37', 'test_label_5',
-                         'test_label_36', 'test_label_25', 'test_label_33',
-                         'test_label_12', 'test_label_24', 'test_label_20',
-                         'test_label_22', 'test_label_9', 'test_label_16'])
-        self.assertEqual(askedLabelsNamesSet, set(
-            ["test_label_" + str(_) for _ in range(30)] + [
-                "test_label_" + str(31 + _) for _ in range(9)]))
-
-    def test_too_many_label_names(self):
-        self.NB_CLASS = 2
-        self.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4",
-                                "test_label_6"]
-        askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-            self.NB_CLASS,
-            self.askedLabelsNames,
-            self.random_state,
-            self.availableLabelsNames)
-        self.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"])
-        self.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"})
-
-
-class Test_allAskedLabelsAreAvailable(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-        cls.availableLabelsNames = ["test_label_0", "test_label_1",
-                                    "test_label_2", "test_label_3"]
-
-    def test_asked_available_labels(self):
-        self.assertTrue(
-            get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
-                                                        self.availableLabelsNames))
-
-    def test_asked_unavailable_label(self):
-        self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-                                   "chicken_is_heaven"}
-        self.assertFalse(
-            get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
-                                                        self.availableLabelsNames))
-
-
-class Test_getClasses(unittest.TestCase):
-
-    @classmethod
-    def setUpClass(cls):
-        cls.random_state = np.random.RandomState(42)
-
-    def test_multiclass(self):
-        labelsSet = get_multiview_db.get_classes(
-            self.random_state.randint(0, 5, 30))
-        self.assertEqual(labelsSet, {0, 1, 2, 3, 4})
-
-    def test_biclass(self):
-        labelsSet = get_multiview_db.get_classes(
-            self.random_state.randint(0, 2, 30))
-        self.assertEqual(labelsSet, {0, 1})
-
-    def test_one_class(self):
-        with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-            get_multiview_db.get_classes(np.zeros(30, dtype=int))
-        exception = catcher.exception
-        # self.assertTrue("Dataset must have at least two different labels" in exception)
-
-=======
->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
+# <<<<<<< HEAD
+# class Test_filterLabels(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.random_state = np.random.RandomState(42)
+#         cls.labelsSet = set(range(4))
+#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
+#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
+#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
+#                                     "test_label_2", "test_label_3"]
+#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
+#
+#     def test_simple(self):
+#         newLabels, \
+#         newLabelsNames, \
+#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
+#                                                     self.askedLabelsNamesSet,
+#                                                     self.fullLabels,
+#                                                     self.availableLabelsNames,
+#                                                     self.askedLabelsNames)
+#         self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
+#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
+#
+#     def test_biclasse(self):
+#         self.labelsSet = {0, 1}
+#         self.fullLabels = self.random_state.randint(0, 2, 10)
+#         self.availableLabelsNames = ["test_label_0", "test_label_1"]
+#         newLabels, \
+#         newLabelsNames, \
+#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
+#                                                      self.askedLabelsNamesSet,
+#                                                      self.fullLabels,
+#                                                      self.availableLabelsNames,
+#                                                      self.askedLabelsNames)
+#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.arange(10))
+#         np.testing.assert_array_equal(newLabels, self.fullLabels)
+#
+#     def test_asked_too_many_labels(self):
+#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
+#                                    "test_label_2", "test_label_3",
+#                                    "chicken_is_heaven"}
+#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
+#             get_multiview_db.filter_labels(self.labelsSet,
+#                                           self.askedLabelsNamesSet,
+#                                           self.fullLabels,
+#                                           self.availableLabelsNames,
+#                                           self.askedLabelsNames)
+#         exception = catcher.exception
+#
+#     def test_asked_all_labels(self):
+#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
+#                                    "test_label_2", "test_label_3"}
+#         self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                                 "test_label_3"]
+#         newLabels, \
+#         newLabelsNames, \
+#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
+#                                                     self.askedLabelsNamesSet,
+#                                                     self.fullLabels,
+#                                                     self.availableLabelsNames,
+#                                                     self.askedLabelsNames)
+#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.arange(10))
+#         np.testing.assert_array_equal(newLabels, self.fullLabels)
+#
+#
+# class Test_selectAskedLabels(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.random_state = np.random.RandomState(42)
+#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
+#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
+#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
+#                                     "test_label_2", "test_label_3"]
+#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
+#
+#     def test_simple(self):
+#         newLabels, \
+#         newLabelsNames, \
+#         usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
+#                                                          self.availableLabelsNames,
+#                                                          self.askedLabelsNames,
+#                                                          self.fullLabels)
+#         self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
+#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
+#
+#     def test_asked_all_labels(self):
+#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
+#                                    "test_label_2", "test_label_3"}
+#         self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                                 "test_label_3"]
+#         newLabels, \
+#         newLabelsNames, \
+#         usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
+#                                                          self.availableLabelsNames,
+#                                                          self.askedLabelsNames,
+#                                                          self.fullLabels)
+#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.arange(10))
+#         np.testing.assert_array_equal(newLabels, self.fullLabels)
+#
+#     def test_asked_unavailable_labels(self):
+#         self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
+#                                    "chicken_is_heaven"}
+#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
+#             get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
+#                                                self.availableLabelsNames,
+#                                                self.askedLabelsNames,
+#                                                self.fullLabels)
+#         exception = catcher.exception
+#         # self.assertTrue("Asked labels are not all available in the dataset" in exception)
+#
+#
+# class Test_getAllLabels(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.random_state = np.random.RandomState(42)
+#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
+#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
+#                                     "test_label_2", "test_label_3"]
+#
+#     def test_simple(self):
+#         newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels(
+#             self.fullLabels, self.availableLabelsNames)
+#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
+#         np.testing.assert_array_equal(usedIndices, np.arange(10))
+#         np.testing.assert_array_equal(newLabels, self.fullLabels)
+#
+#
+# class Test_fillLabelNames(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.NB_CLASS = 2
+#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
+#         cls.random_state = np.random.RandomState(42)
+#         cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)]
+#
+#     def test_simple(self):
+#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
+#             self.NB_CLASS,
+#             self.askedLabelsNames,
+#             self.random_state,
+#             self.availableLabelsNames)
+#         self.assertEqual(askedLabelsNames, self.askedLabelsNames)
+#         self.assertEqual(askedLabelsNamesSet, set(self.askedLabelsNames))
+#
+#     def test_missing_labels_names(self):
+#         self.NB_CLASS = 39
+#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
+#             self.NB_CLASS,
+#             self.askedLabelsNames,
+#             self.random_state,
+#             self.availableLabelsNames)
+#
+#         self.assertEqual(askedLabelsNames,
+#                         ['test_label_1', 'test_label_3', 'test_label_35',
+#                          'test_label_38', 'test_label_6', 'test_label_15',
+#                          'test_label_32', 'test_label_28', 'test_label_8',
+#                          'test_label_29', 'test_label_26', 'test_label_17',
+#                          'test_label_19', 'test_label_10', 'test_label_18',
+#                          'test_label_14', 'test_label_21', 'test_label_11',
+#                          'test_label_34', 'test_label_0', 'test_label_27',
+#                          'test_label_7', 'test_label_13', 'test_label_2',
+#                          'test_label_39', 'test_label_23', 'test_label_4',
+#                          'test_label_31', 'test_label_37', 'test_label_5',
+#                          'test_label_36', 'test_label_25', 'test_label_33',
+#                          'test_label_12', 'test_label_24', 'test_label_20',
+#                          'test_label_22', 'test_label_9', 'test_label_16'])
+#         self.assertEqual(askedLabelsNamesSet, set(
+#             ["test_label_" + str(_) for _ in range(30)] + [
+#                 "test_label_" + str(31 + _) for _ in range(9)]))
+#
+#     def test_too_many_label_names(self):
+#         self.NB_CLASS = 2
+#         self.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4",
+#                                 "test_label_6"]
+#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
+#             self.NB_CLASS,
+#             self.askedLabelsNames,
+#             self.random_state,
+#             self.availableLabelsNames)
+#         self.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"])
+#         self.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"})
+#
+#
+# class Test_allAskedLabelsAreAvailable(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
+#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
+#                                     "test_label_2", "test_label_3"]
+#
+#     def test_asked_available_labels(self):
+#         self.assertTrue(
+#             get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
+#                                                         self.availableLabelsNames))
+#
+#     def test_asked_unavailable_label(self):
+#         self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
+#                                    "chicken_is_heaven"}
+#         self.assertFalse(
+#             get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
+#                                                         self.availableLabelsNames))
+#
+#
+# class Test_getClasses(unittest.TestCase):
+#
+#     @classmethod
+#     def setUpClass(cls):
+#         cls.random_state = np.random.RandomState(42)
+#
+#     def test_multiclass(self):
+#         labelsSet = get_multiview_db.get_classes(
+#             self.random_state.randint(0, 5, 30))
+#         self.assertEqual(labelsSet, {0, 1, 2, 3, 4})
+#
+#     def test_biclass(self):
+#         labelsSet = get_multiview_db.get_classes(
+#             self.random_state.randint(0, 2, 30))
+#         self.assertEqual(labelsSet, {0, 1})
+#
+#     def test_one_class(self):
+#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
+#             get_multiview_db.get_classes(np.zeros(30, dtype=int))
+#         exception = catcher.exception
+#         # self.assertTrue("Dataset must have at least two different labels" in exception)
+#
+# =======
+# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
 class Test_get_classic_db_hdf5(unittest.TestCase):
 
     def setUp(self):
         rm_tmp()
-<<<<<<< HEAD
-        if not os.path.exists("multiview_platform/tests/tmp_tests"):
-            os.mkdir("multiview_platform/tests/tmp_tests")
-        cls.dataset_file = h5py.File(
-            tmp_path+"test_dataset.hdf5", "w")
-        cls.pathF = tmp_path
-        cls.nameDB = "test_dataset"
-        cls.NB_CLASS = 2
-        cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-        cls.random_state = np.random.RandomState(42)
-        cls.views = ["test_view_1", "test_view_3"]
-        cls.metadata_group = cls.dataset_file.create_group("Metadata")
-        cls.metadata_group.attrs["nbView"] = 4
-        cls.labels_dataset = cls.dataset_file.create_dataset("Labels",
-                                                             data=cls.random_state.randint(
-                                                                 0, 4, 10))
-        cls.labels_dataset.attrs["names"] = ["test_label_0".encode(),
-                                             "test_label_1".encode(),
-                                             "test_label_2".encode(),
-                                             "test_label_3".encode()]
-
-        for i in range(4):
-            cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
-                                                          data=cls.random_state.randint(
-                                                              0, 100, (10, 20)))
-            cls.dataset.attrs["name"] = "test_view_" + str(i)
-
-    def test_simple(self):
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
-            self.views, self.pathF, self.nameDB,
-            self.NB_CLASS, self.askedLabelsNames,
-            self.random_state)
-        self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_1", 1: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-        np.testing.assert_array_equal(dataset_file.get("View0").value,
-                                      self.dataset_file.get("View1").value[
-                                      np.array([1, 5, 9]), :])
-
-    def test_all_labels_asked(self):
-        askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                            "test_label_3"]
-        NB_CLASS = 4
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
-            self.views, self.pathF, self.nameDB,
-            NB_CLASS, askedLabelsNames,
-            self.random_state)
-        self.assertEqual(dataset_name, 'test_dataset_temp_view_label_select')
-        self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_0", 1: "test_label_1",
-                         2: "test_label_2", 3: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-        np.testing.assert_array_equal(dataset_file.get("View0").value,
-                                      self.dataset_file.get("View1").value)
-
-    def test_all_views_asked(self):
-        views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
-                                                                                          self.pathF,
-                                                                                          self.nameDB,
-                                                                                          self.NB_CLASS,
-                                                                                          self.askedLabelsNames,
-                                                                                          self.random_state)
-        for viewIndex in range(4):
-            np.testing.assert_array_equal(
-                dataset_file.get("View" + str(viewIndex)).value,
-                self.dataset_file.get("View" + str(viewIndex)).value[
-                np.array([1, 5, 9]), :])
-            self.assertEqual(
-                dataset_file.get("View" + str(viewIndex)).attrs["name"],
-                "test_view_" + str(viewIndex))
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_1", 1: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-
-    def test_asked_the_whole_dataset(self):
-        askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                            "test_label_3"]
-        NB_CLASS = 4
-        views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
-                                                                                          self.pathF,
-                                                                                          self.nameDB,
-                                                                                          NB_CLASS,
-                                                                                          askedLabelsNames,
-                                                                                          self.random_state)
-        for viewIndex in range(4):
-            np.testing.assert_array_equal(
-                dataset_file.get("View" + str(viewIndex)).value,
-                self.dataset_file.get("View" + str(viewIndex)))
-            self.assertEqual(
-                dataset_file.get("View" + str(viewIndex)).attrs["name"],
-                "test_view_" + str(viewIndex))
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_0", 1: "test_label_1",
-                         2: "test_label_2", 3: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-=======
+# <<<<<<< HEAD
+#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
+#             os.mkdir("multiview_platform/tests/tmp_tests")
+#         cls.dataset_file = h5py.File(
+#             tmp_path+"test_dataset.hdf5", "w")
+#         cls.pathF = tmp_path
+#         cls.nameDB = "test_dataset"
+#         cls.NB_CLASS = 2
+#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
+#         cls.random_state = np.random.RandomState(42)
+#         cls.views = ["test_view_1", "test_view_3"]
+#         cls.metadata_group = cls.dataset_file.create_group("Metadata")
+#         cls.metadata_group.attrs["nbView"] = 4
+#         cls.labels_dataset = cls.dataset_file.create_dataset("Labels",
+#                                                              data=cls.random_state.randint(
+#                                                                  0, 4, 10))
+#         cls.labels_dataset.attrs["names"] = ["test_label_0".encode(),
+#                                              "test_label_1".encode(),
+#                                              "test_label_2".encode(),
+#                                              "test_label_3".encode()]
+#
+#         for i in range(4):
+#             cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
+#                                                           data=cls.random_state.randint(
+#                                                               0, 100, (10, 20)))
+#             cls.dataset.attrs["name"] = "test_view_" + str(i)
+#
+#     def test_simple(self):
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
+#             self.views, self.pathF, self.nameDB,
+#             self.NB_CLASS, self.askedLabelsNames,
+#             self.random_state)
+#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_1", 1: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
+#         np.testing.assert_array_equal(dataset_file.get("View0").value,
+#                                       self.dataset_file.get("View1").value[
+#                                       np.array([1, 5, 9]), :])
+#
+#     def test_all_labels_asked(self):
+#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                             "test_label_3"]
+#         NB_CLASS = 4
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
+#             self.views, self.pathF, self.nameDB,
+#             NB_CLASS, askedLabelsNames,
+#             self.random_state)
+#         self.assertEqual(dataset_name, 'test_dataset_temp_view_label_select')
+#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_0", 1: "test_label_1",
+#                          2: "test_label_2", 3: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
+#         np.testing.assert_array_equal(dataset_file.get("View0").value,
+#                                       self.dataset_file.get("View1").value)
+#
+#     def test_all_views_asked(self):
+#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
+#                                                                                           self.pathF,
+#                                                                                           self.nameDB,
+#                                                                                           self.NB_CLASS,
+#                                                                                           self.askedLabelsNames,
+#                                                                                           self.random_state)
+#         for viewIndex in range(4):
+#             np.testing.assert_array_equal(
+#                 dataset_file.get("View" + str(viewIndex)).value,
+#                 self.dataset_file.get("View" + str(viewIndex)).value[
+#                 np.array([1, 5, 9]), :])
+#             self.assertEqual(
+#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
+#                 "test_view_" + str(viewIndex))
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_1", 1: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
+#
+#     def test_asked_the_whole_dataset(self):
+#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                             "test_label_3"]
+#         NB_CLASS = 4
+#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
+#                                                                                           self.pathF,
+#                                                                                           self.nameDB,
+#                                                                                           NB_CLASS,
+#                                                                                           askedLabelsNames,
+#                                                                                           self.random_state)
+#         for viewIndex in range(4):
+#             np.testing.assert_array_equal(
+#                 dataset_file.get("View" + str(viewIndex)).value,
+#                 self.dataset_file.get("View" + str(viewIndex)))
+#             self.assertEqual(
+#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
+#                 "test_view_" + str(viewIndex))
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_0", 1: "test_label_1",
+#                          2: "test_label_2", 3: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
+# =======
         os.mkdir(tmp_path)
         self.rs = np.random.RandomState(42)
         self.nb_view = 3
@@ -810,7 +810,7 @@ class Test_get_classic_db_hdf5(unittest.TestCase):
         meta_data_grp.attrs["nbView"] = len(self.views)
         meta_data_grp.attrs["nbClass"] = len(np.unique(self.labels))
         meta_data_grp.attrs["datasetLength"] = len(self.labels)
->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
+# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
     def test_simple(self):
         dataset , labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
@@ -868,102 +868,102 @@ class Test_get_classic_db_csv(unittest.TestCase):
                        data, delimiter=",")
             self.datas.append(data)
 
-<<<<<<< HEAD
+# <<<<<<< HEAD
+#     def test_simple(self):
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
+#             self.views, self.pathF, self.nameDB,
+#             self.NB_CLASS, self.askedLabelsNames,
+#             self.random_state, delimiter=",")
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
+#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
+#         self.assertEqual(dataset_file.get("View0").attrs["name"], "test_view_1")
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_1", 1: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
+#         np.testing.assert_array_equal(dataset_file.get("View0").value,
+#                                       self.datas[1][np.array([1, 5, 9]), :])
+#
+#     def test_all_views_asked(self):
+#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
+#                                                                                          self.pathF,
+#                                                                                          self.nameDB,
+#                                                                                          self.NB_CLASS,
+#                                                                                          self.askedLabelsNames,
+#                                                                                          self.random_state,
+#                                                                                          delimiter=",")
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_1", 1: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
+#         self.assertEqual(dataset_name,'test_dataset_temp_view_label_select')
+#         for viewIndex in range(4):
+#             np.testing.assert_array_equal(
+#                 dataset_file.get("View" + str(viewIndex)).value,
+#                 self.datas[viewIndex][np.array([1, 5, 9]), :])
+#             self.assertEqual(
+#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
+#                 "test_view_" + str(viewIndex))
+#
+#     def test_all_labels_asked(self):
+#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                             "test_label_3"]
+#         NB_CLASS = 4
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
+#             self.views, self.pathF, self.nameDB,
+#             NB_CLASS, askedLabelsNames,
+#             self.random_state, delimiter=",")
+#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_0", 1: "test_label_1",
+#                          2: "test_label_2", 3: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
+#         np.testing.assert_array_equal(dataset_file.get("View0").value,
+#                                       self.datas[1])
+#
+#     def test_asked_the_whole_dataset(self):
+#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
+#                             "test_label_3"]
+#         NB_CLASS = 4
+#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
+#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
+#                                                                                          self.pathF,
+#                                                                                          self.nameDB,
+#                                                                                          NB_CLASS,
+#                                                                                          askedLabelsNames,
+#                                                                                          self.random_state,
+#                                                                                          delimiter=",")
+#         for viewIndex in range(4):
+#             np.testing.assert_array_equal(
+#                 dataset_file.get("View" + str(viewIndex)).value,
+#                 self.datas[viewIndex])
+#             self.assertEqual(
+#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
+#                 "test_view_" + str(viewIndex))
+#         self.assertEqual(labels_dictionary,
+#                         {0: "test_label_0", 1: "test_label_1",
+#                          2: "test_label_2", 3: "test_label_3"})
+#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
+#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
+# =======
     def test_simple(self):
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
+        dataset, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
             self.views, self.pathF, self.nameDB,
             self.NB_CLASS, self.askedLabelsNames,
-            self.random_state, delimiter=",")
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-        self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-        self.assertEqual(dataset_file.get("View0").attrs["name"], "test_view_1")
+            self.random_state, delimiter=",", path_for_new=tmp_path)
+        self.assertEqual(dataset.nb_view, 2)
+        self.assertEqual(dataset.get_view_dict(), {'test_view_1': 0, 'test_view_3': 1})
         self.assertEqual(labels_dictionary,
-                        {0: "test_label_1", 1: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-        np.testing.assert_array_equal(dataset_file.get("View0").value,
-                                      self.datas[1][np.array([1, 5, 9]), :])
-
-    def test_all_views_asked(self):
-        views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
-                                                                                         self.pathF,
-                                                                                         self.nameDB,
-                                                                                         self.NB_CLASS,
-                                                                                         self.askedLabelsNames,
-                                                                                         self.random_state,
-                                                                                         delimiter=",")
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_1", 1: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-        self.assertEqual(dataset_name,'test_dataset_temp_view_label_select')
-        for viewIndex in range(4):
-            np.testing.assert_array_equal(
-                dataset_file.get("View" + str(viewIndex)).value,
-                self.datas[viewIndex][np.array([1, 5, 9]), :])
-            self.assertEqual(
-                dataset_file.get("View" + str(viewIndex)).attrs["name"],
-                "test_view_" + str(viewIndex))
-
-    def test_all_labels_asked(self):
-        askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                            "test_label_3"]
-        NB_CLASS = 4
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
-            self.views, self.pathF, self.nameDB,
-            NB_CLASS, askedLabelsNames,
-            self.random_state, delimiter=",")
-        self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_0", 1: "test_label_1",
-                         2: "test_label_2", 3: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-        np.testing.assert_array_equal(dataset_file.get("View0").value,
-                                      self.datas[1])
-
-    def test_asked_the_whole_dataset(self):
-        askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-                            "test_label_3"]
-        NB_CLASS = 4
-        views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-        dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
-                                                                                         self.pathF,
-                                                                                         self.nameDB,
-                                                                                         NB_CLASS,
-                                                                                         askedLabelsNames,
-                                                                                         self.random_state,
-                                                                                         delimiter=",")
-        for viewIndex in range(4):
-            np.testing.assert_array_equal(
-                dataset_file.get("View" + str(viewIndex)).value,
-                self.datas[viewIndex])
-            self.assertEqual(
-                dataset_file.get("View" + str(viewIndex)).attrs["name"],
-                "test_view_" + str(viewIndex))
-        self.assertEqual(labels_dictionary,
-                        {0: "test_label_0", 1: "test_label_1",
-                         2: "test_label_2", 3: "test_label_3"})
-        self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-        self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-=======
-    def test_simple(cls):
-        dataset, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
-            cls.views, cls.pathF, cls.nameDB,
-            cls.NB_CLASS, cls.askedLabelsNames,
-            cls.random_state, delimiter=",", path_for_new=tmp_path)
-        cls.assertEqual(dataset.nb_view, 2)
-        cls.assertEqual(dataset.get_view_dict(), {'test_view_1': 0, 'test_view_3': 1})
-        cls.assertEqual(labels_dictionary,
-                        {0: "test_label_1", 1: "test_label_3"})
-        cls.assertEqual(dataset.get_nb_examples(), 3)
-        cls.assertEqual(dataset.get_nb_class(), 2)
+                         {0: "test_label_1", 1: "test_label_3"})
+        self.assertEqual(dataset.get_nb_examples(), 3)
+        self.assertEqual(dataset.get_nb_class(), 2)
 
->>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
+# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
     @classmethod
     def tearDown(self):