diff --git a/config_files/config_test.yml b/config_files/config_test.yml index d3142c905d75ff62da3e79f90c8e62e171211dfb..e40bbc9ee56d6ae2724bae182c40a5ede7725158 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -1,11 +1,11 @@ # The base configuration of the benchmark Base : log: True - name: ["awa-tiger-wolf-all"] + name: ["plausible", "koukou"] label: "_" type: ".hdf5" views: - pathf: "/home/baptiste/Documents/Datasets/AWA/base/" + pathf: "../data/" nice: 0 random_state: 42 nb_cores: 1 @@ -25,7 +25,7 @@ Classification: type: ["multiview", "monoview"] algos_monoview: ["decision_tree", "adaboost", "random_forest" ] algos_multiview: ["weighted_linear_early_fusion",] - stats_iter: 1 + stats_iter: 2 metrics: ["accuracy_score", "f1_score"] metric_princ: "f1_score" hps_type: "randomized_search-equiv" diff --git a/multiview_platform/mono_multi_view_classifiers/exec_classif.py b/multiview_platform/mono_multi_view_classifiers/exec_classif.py index f51bb61994bf7835274bae7170089dd406290fd9..1dac8577bda66f21dfc5be4a3ad5d998d84250f3 100644 --- a/multiview_platform/mono_multi_view_classifiers/exec_classif.py +++ b/multiview_platform/mono_multi_view_classifiers/exec_classif.py @@ -771,7 +771,10 @@ def exec_benchmark(nb_cores, stats_iter, nb_multiclass, # benchmark_arguments_dictionaries[0])] # else: for arguments in benchmark_arguments_dictionaries: - results += [exec_one_benchmark_mono_core(dataset_var=dataset_var, **arguments)] + benchmark_results = exec_one_benchmark_mono_core(dataset_var=dataset_var, **arguments) + from .result_analysis import analyze_biclass + analyze_biclass([benchmark_results], benchmark_arguments_dictionaries, stats_iter, metrics, example_ids=dataset_var.example_ids) + results += [benchmark_results] logging.debug("Done:\t Executing all the needed biclass benchmarks") # Do everything with flagging