diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 00ee0c77962ffa24ccb651ef1eb90a6621df10da..6cadcb608b3142c4f3329ef021f4424de73ada72 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -4,7 +4,7 @@ name: ["generated_dset",] label: "_" file_type: ".hdf5" views: -pathf: "/home/baptiste/Documents/Gitwork/multiview_generator/generator/" +pathf: "/home/baptiste/Documents/Gitwork/multiview_generator/demo/" nice: 0 random_state: 42 nb_cores: 1 diff --git a/multiview_platform/mono_multi_view_classifiers/result_analysis/error_analysis.py b/multiview_platform/mono_multi_view_classifiers/result_analysis/error_analysis.py index fd18a3b02edc250479a688084ec4759c7dde6e5f..103dd50d2cc4d93a655bc63eb455127277acc867 100644 --- a/multiview_platform/mono_multi_view_classifiers/result_analysis/error_analysis.py +++ b/multiview_platform/mono_multi_view_classifiers/result_analysis/error_analysis.py @@ -50,8 +50,7 @@ def publish_example_errors(example_errors, directory, databaseName, labels_names, example_ids, labels): logging.debug("Start:\t Biclass Label analysis figure generation") - base_file_name = os.path.join(directory, databaseName + "-" + "_vs_".join( - labels_names) + "-") + base_file_name = os.path.join(directory, databaseName + "-" ) nb_classifiers, nb_examples, classifiers_names, \ data_2d, error_on_examples = gen_error_data(example_errors) diff --git a/multiview_platform/mono_multi_view_classifiers/result_analysis/metric_analysis.py b/multiview_platform/mono_multi_view_classifiers/result_analysis/metric_analysis.py index 9cb296f2dea29686416c36be6325e0a62102ec36..a0876f9ce7f2697f9d65b81aaf34a1f07dc63825 100644 --- a/multiview_platform/mono_multi_view_classifiers/result_analysis/metric_analysis.py +++ b/multiview_platform/mono_multi_view_classifiers/result_analysis/metric_analysis.py @@ -7,6 +7,7 @@ import logging from ..utils.organization import secure_file_path + def get_metrics_scores(metrics, results, label_names): r"""Used to extract metrics scores in case of classification @@ -41,6 +42,10 @@ def get_metrics_scores(metrics, results, label_names): index=["train", "test"], columns=classifier_names)) for metric in metrics) + class_metric_scores = dict((metric[0], pd.DataFrame( + index=pd.MultiIndex.from_product([["train", "test"], label_names]), + columns=classifier_names, dtype=float)) + for metric in metrics) for metric in metrics: for classifier_result in results: @@ -50,12 +55,6 @@ def get_metrics_scores(metrics, results, label_names): metrics_scores[metric[0]].loc[ "test", classifier_result.get_classifier_name()] = \ classifier_result.metrics_scores[metric[0]][1] - - class_metric_scores = dict((metric[0], pd.DataFrame(index=pd.MultiIndex.from_product([["train", "test"], label_names]), - columns=classifier_names, dtype=float)) - for metric in metrics) - for metric in metrics: - for classifier_result in results: for label_index, label_name in enumerate(label_names): class_metric_scores[metric[0]].loc[( "train", label_name),classifier_result.get_classifier_name()] = \ @@ -95,10 +94,10 @@ def publish_metrics_graphs(metrics_scores, directory, database_name, train_scores, test_scores, classifier_names, \ file_name, nb_results, results,\ class_test_scores = init_plot(results, metric_name, - metrics_scores[metric_name], - directory, - database_name, labels_names, - class_metric_scores[metric_name]) + metrics_scores[metric_name], + directory, + database_name, + class_metric_scores[metric_name]) plot_metric_scores(train_scores, test_scores, classifier_names, nb_results, metric_name, file_name, @@ -148,32 +147,8 @@ def publish_all_metrics_scores(iter_results, class_iter_results, directory, plot_class_metric_scores(test, file_name, label_names, classifier_names, metric_name, stds=test_std, tag="averaged") return results -# def publish_all_class_metrics_scores(iter_results, directory, -# data_base_name, stats_iter, -# min_size=10): -# results = [] -# secure_file_path(os.path.join(directory, "a")) -# -# for metric_name, scores in iter_results.items(): -# train = np.array(scores["mean"].loc["train"]) -# test = np.array(scores["mean"].loc["test"]) -# names = np.array(scores["mean"].columns) -# train_std = np.array(scores["std"].loc["train"]) -# test_std = np.array(scores["std"].loc["test"]) -# -# file_name = os.path.join(directory, data_base_name + "-mean_on_" + str( -# stats_iter) + "_iter-" + metric_name+"-class") -# -# plot_class_metric_scores(test, file_name, labels_names=names, file_name, tag=" averaged", -# train_STDs=train_std, test_STDs=test_std) -# results += [[classifier_name, metric_name, test_mean, test_std] -# for classifier_name, test_mean, test_std -# in zip(names, test, test_std)] -# return results - - def init_plot(results, metric_name, metric_dataframe, - directory, database_name, labels_names, class_metric_scores): + directory, database_name, class_metric_scores): train = np.array(metric_dataframe.loc["train"]) test = np.array(metric_dataframe.loc["test"]) class_test = np.array(class_metric_scores.loc["test"]) @@ -181,8 +156,7 @@ def init_plot(results, metric_name, metric_dataframe, nb_results = metric_dataframe.shape[1] - file_name = os.path.join(directory, database_name + "-" + "_vs_".join( - labels_names) + "-" + metric_name) + file_name = os.path.join(directory, database_name + "-" + metric_name) results += [[classifiers_name, metric_name, test_mean, test_std, class_mean] for classifiers_name, test_mean, class_mean, test_std in