Skip to content
Snippets Groups Projects
Commit a99d6031 authored by Kossi Kossivi's avatar Kossi Kossivi
Browse files

Adding feature_importances_ attr to Mumbo and weighted_linear_early_fusion

parent e17f19b0
No related branches found
No related tags found
No related merge requests found
......@@ -12,4 +12,4 @@ plotly>=4.2.1
matplotlib>=3.1.1
tabulate>=0.8.6
pyscm-ml>=1.0.0
imbalanced-learn
\ No newline at end of file
imbalanced-learn>=0.10.1
\ No newline at end of file
......@@ -90,6 +90,9 @@ class Mumbo(BaseMultiviewClassifier, MumboClassifier):
np.savetxt(os.path.join(directory, "feature_importances",
base_file_name + view_name + "-feature_importances.csv"),
feature_importances, delimiter=',')
# CHANGE: Making self.feature_importances_ one array, so he can be easy to use in
# summit.multiview_platform.result_analysis.feature_importances.get_feature_importances
self.feature_importances_ = np.concatenate(self.feature_importances_)
self.view_importances /= np.sum(self.view_importances)
np.savetxt(os.path.join(directory, base_file_name + "view_importances.csv"), self.view_importances,
delimiter=',')
......
......@@ -65,6 +65,8 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier):
y=y[train_indices])
self.monoview_classifier.fit(X, y[train_indices])
self.monoview_classifier_config = self.monoview_classifier.get_params()
if hasattr(self.monoview_classifier, 'feature_importances_'):
self.feature_importances_ = self.monoview_classifier.feature_importances_
return self
def predict(self, X, sample_indices=None, view_indices=None):
......
......@@ -44,7 +44,7 @@ def get_feature_importances(result, feature_ids=None, view_names=None,):
v_feature_id]
feature_importances["mv"] = pd.DataFrame(index=feat_ids)
if hasattr(classifier_result.clf, 'feature_importances_'):
feature_importances["mv"][classifier_result.classifier_name] = np.concatenate(classifier_result.clf.feature_importances_)
feature_importances["mv"][classifier_result.classifier_name] = classifier_result.clf.feature_importances_
return feature_importances
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment