From 9b7f991611b84d870b4f02d0e5783033183650c2 Mon Sep 17 00:00:00 2001 From: Baptiste Bauvin <baptiste.bauvin@lis-lab.fr> Date: Tue, 2 Apr 2019 11:49:37 -0400 Subject: [PATCH] Debugged sparsity scm from placeholder --- .../MonoviewClassifiers/SCMPregen.py | 2 ++ .../MonoviewClassifiers/SCMPregenTree.py | 2 ++ .../MonoviewClassifiers/SCMSparsity.py | 6 ++++-- .../MonoviewClassifiers/SCMSparsityTree.py | 4 +++- 4 files changed, 11 insertions(+), 3 deletions(-) diff --git a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregen.py b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregen.py index dd6224cf..f4b6df25 100644 --- a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregen.py +++ b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregen.py @@ -40,6 +40,7 @@ class SCMPregen(scm, BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') @@ -57,6 +58,7 @@ class SCMPregen(scm, BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') diff --git a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregenTree.py b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregenTree.py index 6634bb5a..5ead0cf9 100644 --- a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregenTree.py +++ b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMPregenTree.py @@ -42,6 +42,7 @@ class SCMPregenTree(scm, BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') @@ -59,6 +60,7 @@ class SCMPregenTree(scm, BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') diff --git a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsity.py b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsity.py index 27745be1..83c757f7 100644 --- a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsity.py +++ b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsity.py @@ -16,7 +16,7 @@ __status__ = "Prototype" # Production, Development, Prototype class SCMSparsity(BaseMonoviewClassifier, PregenClassifier): - def __init__(self, random_state=None, model_type="conjunction", + def __init__(self, random_state=None, model_type="disjunction", max_rules=10, p=0.1, n_stumps=1, self_complemented=True, **kwargs): self.scm_estimators = [scm( random_state=random_state, @@ -49,6 +49,7 @@ class SCMSparsity(BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') @@ -59,7 +60,7 @@ class SCMSparsity(BaseMonoviewClassifier, PregenClassifier): scm_estimator.fit(place_holder, y, tiebreaker=None, iteration_callback=None, **fit_params) end = time.time() self.times = np.array([end-beg, 0]) - self.train_metrics = [zero_one_loss.score(y, scm_estimator.predict(X)) for scm_estimator in self.scm_estimators] + self.train_metrics = [zero_one_loss.score(y, scm_estimator.predict(place_holder)) for scm_estimator in self.scm_estimators] return self.scm_estimators[-1] def predict(self, X): @@ -71,6 +72,7 @@ class SCMSparsity(BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') diff --git a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsityTree.py b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsityTree.py index e28a99f1..bb271733 100644 --- a/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsityTree.py +++ b/multiview_platform/MonoMultiViewClassifiers/MonoviewClassifiers/SCMSparsityTree.py @@ -49,6 +49,7 @@ class SCMSparsityTree(BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') @@ -59,7 +60,7 @@ class SCMSparsityTree(BaseMonoviewClassifier, PregenClassifier): scm_estimator.fit(place_holder, y, tiebreaker=None, iteration_callback=None, **fit_params) end = time.time() self.times = np.array([end-beg, 0]) - self.train_metrics = [zero_one_loss.score(y, scm_estimator.predict(X)) for scm_estimator in self.scm_estimators] + self.train_metrics = [zero_one_loss.score(y, scm_estimator.predict(place_holder)) for scm_estimator in self.scm_estimators] return self.scm_estimators[-1] def predict(self, X): @@ -71,6 +72,7 @@ class SCMSparsityTree(BaseMonoviewClassifier, PregenClassifier): file_name = "pregen_x" + str(a) + ".csv" while file_name in list_files: a = int(np.random.randint(0, 10000)) + file_name = "pregen_x" + str(a) + ".csv" else: file_name = "pregen_x"+str(a)+".csv" np.savetxt(file_name, pregen_X, delimiter=',') -- GitLab