diff --git a/summit/multiview_platform/exec_classif.py b/summit/multiview_platform/exec_classif.py index efaae89152deabd28d2071fc8055e134b346451e..ca5e8978aa62e334e20760625ce89fab733503fd 100644 --- a/summit/multiview_platform/exec_classif.py +++ b/summit/multiview_platform/exec_classif.py @@ -300,7 +300,7 @@ def init_kwargs(args, classifiers_names, framework="monoview"): For example, for Adaboost, the KWARGS will be `{"n_estimators":<value>, "base_estimator":<value>}`""" - logging.debug("Start:\t Initializing monoview classifiers arguments") + logging.info("Start:\t Initializing monoview classifiers arguments") kwargs = {} for classifiers_name in classifiers_names: try: @@ -316,7 +316,7 @@ def init_kwargs(args, classifiers_names, framework="monoview"): kwargs[classifiers_name] = args[classifiers_name] else: kwargs[classifiers_name] = {} - logging.debug("Done:\t Initializing monoview classifiers arguments") + logging.info("Done:\t Initializing monoview classifiers arguments") return kwargs @@ -402,7 +402,7 @@ def benchmark_init(directory, classification_indices, labels, labels_dictionary, ------- """ - logging.debug("Start:\t Benchmark initialization") + logging.info("Start:\t Benchmark initialization") secure_file_path(os.path.join(directory, "train_labels.csv")) train_indices = classification_indices[0] train_labels = dataset_var.get_labels(sample_indices=train_indices) @@ -421,7 +421,7 @@ def benchmark_init(directory, classification_indices, labels, labels_dictionary, np.savetxt(file_name, train_labels[test_cv_indices[:min_fold_len]], delimiter=",") labels_names = list(labels_dictionary.values()) - logging.debug("Done:\t Benchmark initialization") + logging.info("Done:\t Benchmark initialization") return results_monoview, labels_names @@ -550,7 +550,7 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, labels_dictionary, k_folds, dataset_var) logging.getLogger('matplotlib.font_manager').disabled = True - logging.debug("Start:\t monoview benchmark") + logging.info("Start:\t monoview benchmark") traceback_outputs = {} for arguments in argument_dictionaries["monoview"]: try: @@ -571,9 +571,9 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, else: raise - logging.debug("Done:\t monoview benchmark") + logging.info("Done:\t monoview benchmark") - logging.debug("Start:\t multiview arguments initialization") + logging.info("Start:\t multiview arguments initialization") # argument_dictionaries = initMultiviewArguments(args, benchmark, views, # views_indices, @@ -581,9 +581,9 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, # random_state, directory, # resultsMonoview, # classification_indices) - logging.debug("Done:\t multiview arguments initialization") + logging.info("Done:\t multiview arguments initialization") - logging.debug("Start:\t multiview benchmark") + logging.info("Start:\t multiview benchmark") results_multiview = [] for arguments in argument_dictionaries["multiview"]: try: @@ -602,7 +602,7 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, arguments["classifier_name"]] = traceback.format_exc() else: raise - logging.debug("Done:\t multiview benchmark") + logging.info("Done:\t multiview benchmark") return [flag, results_monoview + results_multiview, traceback_outputs] @@ -653,7 +653,7 @@ def exec_benchmark(nb_cores, stats_iter, results : list of lists The results of the benchmark. """ - logging.debug("Start:\t Executing all the needed benchmarks") + logging.info("Start:\t Executing all the needed benchmarks") results = [] # if nb_cores > 1: # if stats_iter > 1 or nb_multiclass > 1: @@ -681,17 +681,17 @@ def exec_benchmark(nb_cores, stats_iter, metrics, sample_ids=dataset_var.sample_ids, labels=dataset_var.get_labels()) results += [benchmark_results] - logging.debug("Done:\t Executing all the needed benchmarks") + logging.info("Done:\t Executing all the needed benchmarks") # Do everything with flagging - logging.debug("Start:\t Analyzing predictions") + logging.info("Start:\t Analyzing predictions") results_mean_stds = analyze(results, stats_iter, benchmark_arguments_dictionaries, metrics, directory, dataset_var.sample_ids, dataset_var.get_labels()) - logging.debug("Done:\t Analyzing predictions") + logging.info("Done:\t Analyzing predictions") delete(benchmark_arguments_dictionaries, nb_cores, dataset_var) return results_mean_stds diff --git a/summit/multiview_platform/monoview/exec_classif_mono_view.py b/summit/multiview_platform/monoview/exec_classif_mono_view.py index 324fdc38c65ca7348e9867596bb0e4a709aa4488..59c6b1458eb5f9ca7ee88426af00b6704b43cabb 100644 --- a/summit/multiview_platform/monoview/exec_classif_mono_view.py +++ b/summit/multiview_platform/monoview/exec_classif_mono_view.py @@ -55,7 +55,7 @@ def exec_monoview(directory, X, Y, database_name, labels_names, random_state, hyper_param_search="Random", metrics={"accuracy_score*": {}}, n_iter=30, view_name="", hps_kwargs={}, **args): - logging.debug("Start:\t Loading data") + logging.info("Start:\t Loading data") kwargs, \ t_start, \ view_name, \ @@ -68,9 +68,9 @@ def exec_monoview(directory, X, Y, database_name, labels_names, base_file_name = init_constants(args, X, classification_indices, labels_names, database_name, directory, view_name, ) - logging.debug("Done:\t Loading data") + logging.info("Done:\t Loading data") - logging.debug( + logging.info( "Info:\t Classification - Database:" + str( database_name) + " View:" + str( view_name) + " train ratio:" @@ -78,17 +78,17 @@ def exec_monoview(directory, X, Y, database_name, labels_names, k_folds.n_splits) + ", cores:" + str(nb_cores) + ", algorithm : " + classifier_name) - logging.debug("Start:\t Determine Train/Test split") + logging.info("Start:\t Determine Train/Test split") X_train, y_train, X_test, y_test = init_train_test(X, Y, classification_indices) - logging.debug("Info:\t Shape X_train:" + str( + logging.info("Info:\t Shape X_train:" + str( X_train.shape) + ", Length of y_train:" + str(len(y_train))) - logging.debug("Info:\t Shape X_test:" + str( + logging.info("Info:\t Shape X_test:" + str( X_test.shape) + ", Length of y_test:" + str(len(y_test))) - logging.debug("Done:\t Determine Train/Test split") + logging.info("Done:\t Determine Train/Test split") - logging.debug("Start:\t Generate classifier args") + logging.info("Start:\t Generate classifier args") classifier_module = getattr(monoview_classifiers, classifier_name) classifier_class_name = classifier_module.classifier_class_name hyper_param_beg = time.monotonic() @@ -100,9 +100,9 @@ def exec_monoview(directory, X, Y, database_name, labels_names, k_folds, nb_cores, metrics, kwargs, **hps_kwargs) hyper_param_duration = time.monotonic() - hyper_param_beg - logging.debug("Done:\t Generate classifier args") + logging.info("Done:\t Generate classifier args") - logging.debug("Start:\t Training") + logging.info("Start:\t Training") classifier = get_mc_estim(getattr(classifier_module, classifier_class_name) @@ -112,9 +112,9 @@ def exec_monoview(directory, X, Y, database_name, labels_names, fit_beg = time.monotonic() classifier.fit(X_train, y_train) # NB_CORES=nbCores, fit_duration = time.monotonic() - fit_beg - logging.debug("Done:\t Training") + logging.info("Done:\t Training") - logging.debug("Start:\t Predicting") + logging.info("Start:\t Predicting") train_pred = classifier.predict(X_train) pred_beg = time.monotonic() test_pred = classifier.predict(X_test) @@ -127,14 +127,14 @@ def exec_monoview(directory, X, Y, database_name, labels_names, for testIndex, index in enumerate(classification_indices[1]): full_pred[index] = test_pred[testIndex] - logging.debug("Done:\t Predicting") + logging.info("Done:\t Predicting") whole_duration = time.monotonic() - t_start - logging.debug( + logging.info( "Info:\t Duration for training and predicting: " + str( whole_duration) + "[s]") - logging.debug("Start:\t Getting results") + logging.info("Start:\t Getting results") result_analyzer = MonoviewResultAnalyzer(view_name=view_name, classifier_name=classifier_name, shape=X.shape, @@ -154,9 +154,9 @@ def exec_monoview(directory, X, Y, database_name, labels_names, duration=whole_duration) string_analysis, images_analysis, metrics_scores, class_metrics_scores, \ confusion_matrix = result_analyzer.analyze() - logging.debug("Done:\t Getting results") + logging.info("Done:\t Getting results") - logging.debug("Start:\t Saving preds") + logging.info("Start:\t Saving preds") save_results(string_analysis, output_file_name, full_pred, train_pred, y_train, images_analysis, y_test, confusion_matrix) logging.info("Done:\t Saving results") @@ -203,7 +203,7 @@ def get_hyper_params(classifier_module, search_method, classifier_module_name, output_file_name, k_folds, nb_cores, metrics, kwargs, **hps_kwargs): if search_method != "None": - logging.debug( + logging.info( "Start:\t " + search_method + " best settings for " + classifier_module_name) classifier_hp_search = getattr(hyper_parameter_search, search_method) estimator = getattr(classifier_module, classifier_class_name)( @@ -218,7 +218,7 @@ def get_hyper_params(classifier_module, search_method, classifier_module_name, hps.fit(X_train, y_train, **kwargs[classifier_module_name]) cl_kwargs = hps.get_best_params() hps.gen_report(output_file_name) - logging.debug("Done:\t " + search_method + " best settings") + logging.info("Done:\t " + search_method + " best settings") else: cl_kwargs = kwargs[classifier_module_name] return cl_kwargs diff --git a/summit/multiview_platform/multiview/exec_multiview.py b/summit/multiview_platform/multiview/exec_multiview.py index bed8317a1656137838ecc093e42fb088fca668d6..fc203e4ef6adfca6ae759cb168d79af9210ace53 100644 --- a/summit/multiview_platform/multiview/exec_multiview.py +++ b/summit/multiview_platform/multiview/exec_multiview.py @@ -237,7 +237,7 @@ def exec_multiview(directory, dataset_var, name, classification_indices, ``MultiviewResult`` """ - logging.debug("Start:\t Initialize constants") + logging.info("Start:\t Initialize constants") cl_type, \ t_start, \ views_indices, \ @@ -250,16 +250,16 @@ def exec_multiview(directory, dataset_var, name, classification_indices, base_file_name, \ metrics = init_constants(kwargs, classification_indices, metrics, name, nb_cores, k_folds, dataset_var, directory) - logging.debug("Done:\t Initialize constants") + logging.info("Done:\t Initialize constants") extraction_time = time.time() - t_start logging.info("Info:\t Extraction duration " + str(extraction_time) + "s") - logging.debug("Start:\t Getting train/test split") + logging.info("Start:\t Getting train/test split") learning_indices, validation_indices = classification_indices - logging.debug("Done:\t Getting train/test split") + logging.info("Done:\t Getting train/test split") - logging.debug("Start:\t Getting classifiers modules") + logging.info("Start:\t Getting classifiers modules") # classifierPackage = getattr(multiview_classifiers, # CL_type) # Permet d'appeler un module avec une string classifier_module = getattr(multiview_classifiers, cl_type) diff --git a/summit/multiview_platform/result_analysis/error_analysis.py b/summit/multiview_platform/result_analysis/error_analysis.py index 12f018072c6ffbd099f304bb0a17c9ba7d6fadf7..f26671a37071bf0de5e844b5c55a9f0ab84b807d 100644 --- a/summit/multiview_platform/result_analysis/error_analysis.py +++ b/summit/multiview_platform/result_analysis/error_analysis.py @@ -47,7 +47,7 @@ def get_sample_errors(groud_truth, results): def publish_sample_errors(sample_errors, directory, databaseName, labels_names, sample_ids, labels): # pragma: no cover - logging.debug("Start:\t Label analysis figure generation") + logging.info("Start:\t Label analysis figure generation") base_file_name = os.path.join(directory, databaseName + "-") @@ -64,13 +64,13 @@ def publish_sample_errors(sample_errors, directory, databaseName, plot_errors_bar(error_on_samples, nb_samples, base_file_name, sample_ids=sample_ids) - logging.debug("Done:\t Label analysis figures generation") + logging.info("Done:\t Label analysis figures generation") def publish_all_sample_errors(iter_results, directory, stats_iter, sample_ids, labels): # pragma: no cover - logging.debug( + logging.info( "Start:\t Global label analysis figure generation") nb_samples, nb_classifiers, data, \ @@ -87,7 +87,7 @@ def publish_all_sample_errors(iter_results, directory, plot_errors_bar(error_on_samples, nb_samples, os.path.join(directory, ""), sample_ids=sample_ids) - logging.debug( + logging.info( "Done:\t Global label analysis figures generation") diff --git a/summit/multiview_platform/result_analysis/execution.py b/summit/multiview_platform/result_analysis/execution.py index 7d3c9c6fe80db4b9cb51f62683840019fcb46882..16ec3fe0eaf9b19b337dd897b88e2df4c266b01c 100644 --- a/summit/multiview_platform/result_analysis/execution.py +++ b/summit/multiview_platform/result_analysis/execution.py @@ -65,7 +65,7 @@ def analyze_iterations(results, benchmark_argument_dictionaries, stats_iter, label combination, regrouping the scores for each metrics and the information useful to plot errors on samples. """ - logging.debug("Start:\t Analyzing all results") + logging.info("Start:\t Analyzing all results") iter_results = {"metrics_scores": [i for i in range(stats_iter)], "class_metrics_scores": [i for i in range(stats_iter)], "sample_errors": [i for i in range(stats_iter)], @@ -105,7 +105,7 @@ def analyze_iterations(results, benchmark_argument_dictionaries, stats_iter, iter_results["labels"] = labels iter_results["durations"][iter_index] = durations - logging.debug("Done:\t Analyzing all results") + logging.info("Done:\t Analyzing all results") return res, iter_results, flagged_tracebacks_list, labels_names diff --git a/summit/multiview_platform/result_analysis/metric_analysis.py b/summit/multiview_platform/result_analysis/metric_analysis.py index c2db7b26d9d933f2981e809a2cf7ee5505c4ab7a..3948676b202355656e473e09b72125065bebeba5 100644 --- a/summit/multiview_platform/result_analysis/metric_analysis.py +++ b/summit/multiview_platform/result_analysis/metric_analysis.py @@ -95,7 +95,7 @@ def publish_metrics_graphs(metrics_scores, directory, database_name, """ results = [] for metric_name in metrics_scores.keys(): - logging.debug( + logging.info( "Start:\t Score graph generation for " + metric_name) train_scores, test_scores, classifier_names, \ file_name, nb_results, results, \ @@ -112,7 +112,7 @@ def publish_metrics_graphs(metrics_scores, directory, database_name, class_file_name = file_name+"-class" plot_class_metric_scores(class_test_scores, class_file_name, labels_names, classifier_names, metric_name) - logging.debug( + logging.info( "Done:\t Score graph generation for " + metric_name) return results diff --git a/summit/multiview_platform/utils/dataset.py b/summit/multiview_platform/utils/dataset.py index 25c396fa8fcb84fcb0e4e7152bd266fb824f7c77..07023b756fea909cc01e821de05f1f28febf61b8 100644 --- a/summit/multiview_platform/utils/dataset.py +++ b/summit/multiview_platform/utils/dataset.py @@ -693,14 +693,14 @@ def init_multiple_datasets(path_f, name, nb_cores): # pragma: no cover """ if nb_cores > 1: if datasets_already_exist(path_f, name, nb_cores): - logging.debug( + logging.info( "Info:\t Enough copies of the dataset are already available") pass else: if os.path.getsize( os.path.join(path_f, name + ".hdf5")) * nb_cores / float( 1024) / 1000 / 1000 > 0.1: - logging.debug("Start:\t Creating " + str( + logging.info("Start:\t Creating " + str( nb_cores) + " temporary datasets for multiprocessing") logging.warning( r" WARNING : /!\ This may use a lot of HDD storage space : " + @@ -715,7 +715,7 @@ def init_multiple_datasets(path_f, name, nb_cores): # pragma: no cover else: pass dataset_files = copy_hdf5(path_f, name, nb_cores) - logging.debug("Start:\t Creating datasets for multiprocessing") + logging.info("Start:\t Creating datasets for multiprocessing") return dataset_files @@ -732,10 +732,10 @@ def copy_hdf5(pathF, name, nbCores): def delete_HDF5(benchmarkArgumentsDictionaries, nbCores, dataset): """Used to delete temporary copies at the end of the benchmark""" if nbCores > 1: - logging.debug("Start:\t Deleting " + str( + logging.info("Start:\t Deleting " + str( nbCores) + " temporary datasets for multiprocessing") args = benchmarkArgumentsDictionaries[0]["args"] - logging.debug("Start:\t Deleting datasets for multiprocessing") + logging.info("Start:\t Deleting datasets for multiprocessing") for coreIndex in range(nbCores): os.remove(args["pathf"] + args["name"] + str(coreIndex) + ".hdf5") diff --git a/summit/multiview_platform/utils/execution.py b/summit/multiview_platform/utils/execution.py index 0ce9886406018fabe7c30f0264106009bac857a5..459335a099e4ed30d045bd9f2df9fdd85f2bf56d 100644 --- a/summit/multiview_platform/utils/execution.py +++ b/summit/multiview_platform/utils/execution.py @@ -171,7 +171,7 @@ def init_log_file(name, views, cl_type, log, debug, label, log_file_path = os.path.join(result_directory, log_file_name) os.makedirs(os.path.dirname(log_file_path)) logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', - filename=log_file_path, level=logging.DEBUG, + filename=log_file_path, level=logging.INFO, filemode='w') if log: logging.getLogger().addHandler(logging.StreamHandler())