diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/Adaboost.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/Adaboost.py index 73e2235e49cf94dd0dcbc2cfb1a37768d4f25731..7caafade8b8576591a1ef20f970c491c3e4af7b7 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/Adaboost.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/Adaboost.py @@ -35,8 +35,8 @@ def paramsToSet(nIter, randomState): """Used for weighted linear early fusion to generate random search sets""" paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 15), - DecisionTreeClassifier()]) + paramsSet.append({"n_estimators": randomState.randint(1, 15), + "base_estimator": DecisionTreeClassifier()}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/DecisionTree.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/DecisionTree.py index fe82b333e202cb42b775812f2c1092251b5b1461..165123726da54b9bd733c8fc1bde32a2c9483ef4 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/DecisionTree.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/DecisionTree.py @@ -29,8 +29,9 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 300), randomState.choice(["gini", "entropy"]), - randomState.choice(["best", "random"])]) + paramsSet.append({"max_depth": randomState.randint(1, 300), + "criterion": randomState.choice(["gini", "entropy"]), + "splitter": randomState.choice(["best", "random"])}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/KNN.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/KNN.py index 2c784da603eaefc36bf8c01a26ffe068cd28615b..d242580e28ea6b5c71963e9542571f391a9d6b0c 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/KNN.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/KNN.py @@ -29,8 +29,10 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 20), randomState.choice(["uniform", "distance"]), - randomState.choice(["auto", "ball_tree", "kd_tree", "brute"]), randomState.choice([1, 2])]) + paramsSet.append({"n_neighbors": randomState.randint(1, 20), + "weights": randomState.choice(["uniform", "distance"]), + "algorithm": randomState.choice(["auto", "ball_tree", "kd_tree", "brute"]), + "p": randomState.choice([1, 2])}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/RandomForest.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/RandomForest.py index f0955df8713bd112ef7639a95cb2f45adc26acc6..2130acfb779fb29fda488eb0082b8d3a0e210945 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/RandomForest.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/RandomForest.py @@ -30,8 +30,9 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 300), randomState.randint(1, 300), - randomState.choice(["gini", "entropy"])]) + paramsSet.append({"n_estimators": randomState.randint(1, 300), + "max_depth": randomState.randint(1, 300), + "criterion": randomState.choice(["gini", "entropy"])}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SCM.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SCM.py index bebfc0e59d643f6d1c818b52c867a5ef59d7e944..28c09a132a7699acab4ef818019c6e39bf779b59 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SCM.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SCM.py @@ -63,7 +63,9 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.choice(["conjunction", "disjunction"]), randomState.randint(1, 15), randomState.random_sample()]) + paramsSet.append({"model_type": randomState.choice(["conjunction", "disjunction"]), + "max_rules": randomState.randint(1, 15), + "p": randomState.random_sample()}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SGD.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SGD.py index 27d8c2df8b3695157a83206df50f3c88e188d6f4..c208277599b5f3a6ecadcf77578ca007359e1f3c 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SGD.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SGD.py @@ -28,8 +28,9 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.choice(['log', 'modified_huber']), - randomState.choice(["l1", "l2", "elasticnet"]), randomState.random_sample()]) + paramsSet.append({"loss": randomState.choice(['log', 'modified_huber']), + "penalty": randomState.choice(["l1", "l2", "elasticnet"]), + "alpha": randomState.random_sample()}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMLinear.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMLinear.py index 9b354513ab814e8146af68ba272639897c838d9b..2517f5eb945b382e3d2acab53cc6f89a52a06eca 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMLinear.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMLinear.py @@ -26,7 +26,7 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 10000), ]) + paramsSet.append({"C": randomState.randint(1, 10000), }) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMPoly.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMPoly.py index 93abfc038db51bf2d7ba93f1461c492ebf5a847e..5c6aff003ed6ec427cdd27c1bb4401a9e1436d8c 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMPoly.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMPoly.py @@ -26,7 +26,7 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 10000), randomState.randint(1, 30)]) + paramsSet.append({"C": randomState.randint(1, 10000), "degree": randomState.randint(1, 30)}) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMRBF.py b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMRBF.py index 85cca14337425cc9c988679fbb6e53f7f7c8b69a..df99dc47fe2881537305b5746e4e8c5540528f56 100644 --- a/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMRBF.py +++ b/Code/MonoMultiViewClassifiers/MonoviewClassifiers/SVMRBF.py @@ -26,7 +26,7 @@ def fit(DATASET, CLASS_LABELS, randomState, NB_CORES=1, **kwargs): def paramsToSet(nIter, randomState): paramsSet = [] for _ in range(nIter): - paramsSet.append([randomState.randint(1, 10000), ]) + paramsSet.append({"C": randomState.randint(1, 10000), }) return paramsSet diff --git a/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py b/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py index c5f72caee1118897968f2da9a75fdcaaa40a3ec5..16fba3f0726744dbc7f36a4c711428bb98dc2e08 100644 --- a/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py +++ b/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py @@ -87,7 +87,7 @@ class WeightedLinear(EarlyFusionClassifier): def setParams(self, paramsSet): self.weights = paramsSet[0] - self.monoviewClassifiersConfig = dict((str(index), param) for index, param in enumerate(paramsSet[1])) + self.monoviewClassifiersConfig = paramsSet[1] def predict_hdf5(self, DATASET, usedIndices=None, viewsIndices=None): if type(viewsIndices) == type(None): diff --git a/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/LateFusion.py b/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/LateFusion.py index ff6d3ea378add33a5739dceb75c146be04944ec5..1ba4023fef00538dbf9d04ff832643cc45e65c3f 100644 --- a/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/LateFusion.py +++ b/Code/MonoMultiViewClassifiers/MultiviewClassifiers/Fusion/Methods/LateFusion.py @@ -54,11 +54,11 @@ def intersect(allClassifersNames, directory, viewsIndices, resultsMonoview, clas if resultMonoview[1][0] in classifiersNames[resultMonoview[0]]: classifierIndex = classifiersNames.index(resultMonoview[1][0]) wrongSets[resultMonoview[0]][classifierIndex] = np.where( - trainLabels + resultMonoview[1][3][classificationIndices[0]] == 1) + trainLabels + resultMonoview[1][3][classificationIndices[0]] == 1)[0] else: classifiersNames[resultMonoview[0]].append(resultMonoview[1][0]) wrongSets[resultMonoview[0]].append( - np.where(trainLabels + resultMonoview[1][3][classificationIndices[0]] == 1)) + np.where(trainLabels + resultMonoview[1][3][classificationIndices[0]] == 1)[0]) combinations = itertools.combinations_with_replacement(range(len(classifiersNames[0])), nbViews) bestLen = length