From 95a5d33c668a328aad10e290b3d19b9f9cb2cdfe Mon Sep 17 00:00:00 2001
From: bbauvin <baptiste.bauvin@centrale-marseille.fr>
Date: Tue, 30 Aug 2016 17:43:47 -0400
Subject: [PATCH] Debugged added fake data available for hdf5, seems to be
 working, need to limit time for svm

---
 Code/MonoMutliViewClassifiers/ExecClassif.py  | 137 +++---
 .../Metrics/__init__.py                       |   7 +
 .../Monoview/ExecClassifMonoView.py           |  12 +-
 .../MonoviewClassifiers/Adaboost.py           |  31 +-
 .../MonoviewClassifiers/DecisionTree.py       |  18 +-
 .../MonoviewClassifiers/KNN.py                |  18 +-
 .../MonoviewClassifiers/RandomForest.py       |  22 +-
 .../MonoviewClassifiers/SGD.py                |  21 +-
 .../MonoviewClassifiers/SVMLinear.py          |  19 +-
 .../MonoviewClassifiers/SVMPoly.py            |  25 +-
 .../MonoviewClassifiers/SVMRBF.py             |  19 +-
 .../Multiview/ExecMultiview.py                |   8 +-
 .../Multiview/Fusion/Fusion.py                |  17 +-
 .../Multiview/Fusion/Methods/EarlyFusion.py   |   4 +-
 .../EarlyFusionPackage/WeightedLinear.py      |  12 +-
 .../Methods/EarlyFusionPackage/__init__.py    |   7 +
 .../Multiview/Fusion/Methods/LateFusion.py    |   3 +-
 .../LateFusionPackage/BayesianInference.py    |  14 +-
 .../LateFusionPackage/MajorityVoting.py       |  10 +-
 .../Methods/LateFusionPackage/SVMForLinear.py |   4 +-
 .../LateFusionPackage/WeightedLinear.py       |  10 +-
 .../Methods/LateFusionPackage/__init__.py     |   7 +
 .../Multiview/Fusion/Methods/__init__.py      |   3 +-
 .../Fusion/Methods/poulet/__init__.py         |   7 -
 .../Multiview/Fusion/__init__.py              |   2 +-
 .../Multiview/GetMultiviewDb.py               |  79 ++--
 .../Mumbo/Classifiers/DecisionTree.py         |   2 +-
 .../Multiview/Mumbo/Mumbo.py                  |   4 +-
 .../ResultAnalysis.py                         |  19 +-
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   1 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   1 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  10 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  41 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  41 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  41 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  41 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  41 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  19 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  52 +++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  52 +++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  52 +++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  74 ++++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  89 ++++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log | 250 +++++++++++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   1 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |   8 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log | 327 ++++++++++++++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  21 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  18 +
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  36 ++
 ...A__RNASeq_Clinic-ModifiedMultiOmic-LOG.log |  18 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log | 351 +++++++++++++++
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log | 411 ++++++++++++++++++
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  24 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  19 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  19 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |  17 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log | 195 +++++++++
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   8 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   1 +
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log | 162 +++++++
 ...hyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log |   8 +
 ...k-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log |   0
 ...k-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log |   0
 ...k-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log |   0
 ...k-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log |  63 +++
 .../Results/poulet20160830-103357.png         | Bin 0 -> 18696 bytes
 .../Results/poulet20160830-103441.png         | Bin 0 -> 18696 bytes
 .../Results/poulet20160830-103912.png         | Bin 0 -> 18696 bytes
 .../Results/poulet20160830-104001.png         | Bin 0 -> 18696 bytes
 Code/MonoMutliViewClassifiers/__init__.py     |   2 +
 124 files changed, 3338 insertions(+), 241 deletions(-)
 delete mode 100644 Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-100913-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101023-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101050-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101154-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101352-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101558-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101646-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101740-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101751-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101941-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-101956-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102012-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102220-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102230-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102638-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102655-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-102950-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-103111-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-103400-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-103541-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-103807-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-103947-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-104427-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-104736-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-110552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113527-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113545-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113603-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113620-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-113643-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-161224-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-162734-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-162804-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-163114-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-163354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-164435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-165446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-170755-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-170857-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-172028-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160829-175309-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-100943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-101446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-101634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-102454-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-102653-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-102706-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-102823-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-102929-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-103201-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-103354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-103441-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-103912-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-104000-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-104030-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-104124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-111552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-111631-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-111651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-111721-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-111801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-112132-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-112630-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-113306-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-113333-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-113715-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-114018-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-114344-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-114801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-115133-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-115229-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-115605-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-115919-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-120336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-120633-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-120904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-120923-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-121006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-173818-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-173904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-173935-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-173953-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/20160830-174032-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
 create mode 100644 Code/MonoMutliViewClassifiers/Results/poulet20160830-103357.png
 create mode 100644 Code/MonoMutliViewClassifiers/Results/poulet20160830-103441.png
 create mode 100644 Code/MonoMutliViewClassifiers/Results/poulet20160830-103912.png
 create mode 100644 Code/MonoMutliViewClassifiers/Results/poulet20160830-104001.png

diff --git a/Code/MonoMutliViewClassifiers/ExecClassif.py b/Code/MonoMutliViewClassifiers/ExecClassif.py
index 54b27ba1..964e0351 100644
--- a/Code/MonoMutliViewClassifiers/ExecClassif.py
+++ b/Code/MonoMutliViewClassifiers/ExecClassif.py
@@ -10,6 +10,7 @@ import time
 import logging
 from joblib import Parallel, delayed
 from ResultAnalysis import resultAnalysis
+import itertools
 import numpy as np
 import MonoviewClassifiers
 
@@ -21,7 +22,7 @@ parser = argparse.ArgumentParser(
 groupStandard = parser.add_argument_group('Standard arguments')
 groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
 groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)',
-                           default='ModifiedMultiOmic')
+                           default='MultiOmic')
 groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of database : .hdf5 or .csv',
                            default='.hdf5')
 groupStandard.add_argument('--views', metavar='STRING', action='store',help='Name of the views selected for learning',
@@ -43,10 +44,10 @@ groupClass.add_argument('--CL_split', metavar='FLOAT', action='store',
 groupClass.add_argument('--CL_nbFolds', metavar='INT', action='store', help='Number of folds in cross validation',
                         type=int, default=5 )
 groupClass.add_argument('--CL_nb_class', metavar='INT', action='store', help='Number of classes, -1 for all', type=int,
-                        default=4)
+                        default=2)
 groupClass.add_argument('--CL_classes', metavar='STRING', action='store',
                         help='Classes used in the dataset (names of the folders) if not filled, random classes will be '
-                             'selected ex. walrus:mole:leopard', default="")
+                             'selected ex. walrus:mole:leopard', default="jambon:poney")
 groupClass.add_argument('--CL_type', metavar='STRING', action='store',
                         help='Determine whether to use Multiview, Monoview, or Benchmark, separate with : if multiple',
                         default='Benchmark')
@@ -59,7 +60,10 @@ groupClass.add_argument('--CL_algos_multiview', metavar='STRING', action='store'
 groupClass.add_argument('--CL_cores', metavar='INT', action='store', help='Number of cores, -1 for all', type=int,
                         default=1)
 groupClass.add_argument('--CL_metrics', metavar='STRING', action='store',
-                        help='Determine which metric to use, separate with ":" if multiple, if empty, considering all', default='')
+                        help='Determine which metric to use, separate with ":" if multiple, if empty, considering all, '
+                             'first one will be used for gridsearch', default='')
+groupClass.add_argument('--CL_GS_iter', metavar='INT', action='store',
+                        help='Determine how many Randomized grid search tests to do', type=int, default=30)
 
 groupRF = parser.add_argument_group('Random Forest arguments')
 groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees',
@@ -155,6 +159,10 @@ datasetLength = DATASET.get("Metadata").attrs["datasetLength"]
 NB_VIEW = DATASET.get("Metadata").attrs["nbView"]
 views = [str(DATASET.get("View"+str(viewIndex)).attrs["name"]) for viewIndex in range(NB_VIEW)]
 NB_CLASS = DATASET.get("Metadata").attrs["nbClass"]
+metrics = args.CL_metrics.split(":")
+if metrics == [""]:
+    metrics = [["accuracy_score", None]]
+metric = metrics[0]
 
 
 logging.info("Start:\t Finding all available mono- & multiview algorithms")
@@ -167,18 +175,20 @@ if args.CL_type.split(":")==["Benchmark"]:
                          for fusionModulesName in fusionModulesNames]
         fusionClasses = [getattr(fusionModule, fusionModulesName+"Classifier")
                          for fusionModulesName, fusionModule in zip(fusionModulesNames, fusionModules)]
-        fusionMethods = dict((fusionModulesName, [subclass.__name__ for subclass in fusionClasse.__subclasses__() ])
-                            for fusionModulesName, fusionClasse in zip(fusionModulesNames, fusionClasses))
+        fusionMethods = dict((fusionModulesName, [name for _, name, isPackage in
+                                                  pkgutil.iter_modules(["Multiview/Fusion/Methods/"+fusionModulesName+"Package"])
+                                                  if not isPackage])
+                             for fusionModulesName, fusionClasse in zip(fusionModulesNames, fusionClasses))
         allMonoviewAlgos = [name for _, name, isPackage in
                             pkgutil.iter_modules(['MonoviewClassifiers'])
                             if not isPackage]
         fusionMonoviewClassifiers = allMonoviewAlgos
         allFusionAlgos = {"Methods": fusionMethods, "Classifiers": fusionMonoviewClassifiers}
         allMumboAlgos = [name for _, name, isPackage in
-                                   pkgutil.iter_modules(['Multiview/Mumbo/Classifiers'])
-                                   if not isPackage and not name in ["SubSampling", "ModifiedMulticlass", "Kover"]]
+                         pkgutil.iter_modules(['Multiview/Mumbo/Classifiers'])
+                         if not isPackage and not name in ["SubSampling", "ModifiedMulticlass", "Kover"]]
         allMultiviewAlgos = {"Fusion": allFusionAlgos, "Mumbo": allMumboAlgos}
-        benchmark = {"Monoview": allMonoviewAlgos, "Multiview" : allMultiviewAlgos}
+        benchmark = {"Monoview": allMonoviewAlgos, "Multiview": allMultiviewAlgos}
 
 if "Multiview" in args.CL_type.strip(":"):
     benchmark["Multiview"] = {}
@@ -188,9 +198,9 @@ if "Multiview" in args.CL_type.strip(":"):
         benchmark["Multiview"]["Fusion"]= {}
         benchmark["Multiview"]["Fusion"]["Methods"] = dict((fusionType, []) for fusionType in args.FU_types.split(":"))
         if "LateFusion" in args.FU_types.split(":"):
-            benchmark["Multiview"]["Fusion"]["LateFusion"] = args.FU_late_methods.split(":")
+            benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] = args.FU_late_methods.split(":")
         if "EarlyFusion" in args.FU_types.split(":"):
-            benchmark["Multiview"]["Fusion"]["EarlyFusion"] = args.FU_early_methods.split(":")
+            benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] = args.FU_early_methods.split(":")
         benchmark["Multiview"]["Fusion"]["Classifiers"] = args.FU_cl_names.split(":")
 
 
@@ -199,10 +209,9 @@ if "Monoview" in args.CL_type.strip(":"):
 
 
 fusionClassifierConfig = "a"
-fusionMethodConfig = "a"
+fusionMethodConfig = ["q", "b"]
 mumboClassifierConfig = "a"
 mumboclassifierNames = "a"
-metrics = args.CL_metrics.split(":")
 
 RandomForestKWARGS = {"0":map(int, args.CL_RF_trees.split())}
 SVMLinearKWARGS = {"0":map(int, args.CL_SVML_C.split(":"))}
@@ -227,13 +236,13 @@ if benchmark["Monoview"]:
             argumentDictionaries["Monoview"][str(view)].append(arguments)
 bestClassifiers = []
 bestClassifiersConfigs = []
-resultsMonoview =[]
+resultsMonoview = []
 for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()):
-    resultsMonoview += (Parallel(n_jobs=nbCores)(
+    resultsMonoview.append( (Parallel(n_jobs=nbCores)(
         delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)), DATASET.get("labels").value, args.name,
                               args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True,
-                              metrics=metrics[viewIndex], **arguments)
-        for arguments in viewArguments))
+                              metric=metric, nIter=args.CL_GS_iter, **arguments)
+        for arguments in viewArguments)))
 
     accuracies = [result[1] for result in resultsMonoview[viewIndex]]
     classifiersNames = [result[0] for result in resultsMonoview[viewIndex]]
@@ -242,54 +251,54 @@ for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].value
     bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))])
 # bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]
 # bestClassifiersConfigs = [["1"],["1"],["1"],["1"]]
-#
-# if benchmark["Multiview"]:
-#     if benchmark["Multiview"]["Mumbo"]:
-#         for classifier in benchmark["Multiview"]["Mumbo"]:
-#             arguments = {"CL_type": "Mumbo",
-#                          "views": args.views.split(":"),
-#                          "NB_VIEW": len(args.views.split(":")),
-#                          "NB_CLASS": len(args.CL_classes.split(":")),
-#                          "LABELS_NAMES": args.CL_classes.split(":"),
-#                          "MumboKWARGS": {"classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree",
-#                                                               "DecisionTree"],
-#                                          "maxIter":int(args.MU_iter[0]), "minIter":int(args.MU_iter[1]),
-#                                          "threshold":args.MU_iter[2]}}
-#             argumentDictionaries["Multiview"].append(arguments)
-#     if benchmark["Multiview"]["Fusion"]:
-#         if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
-#             for method in benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"]:
-#                 arguments = {"CL_type": "Fusion",
-#                              "views": args.views.split(":"),
-#                              "NB_VIEW": len(args.views.split(":")),
-#                              "NB_CLASS": len(args.CL_classes.split(":")),
-#                              "LABELS_NAMES": args.CL_classes.split(":"),
-#                              "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
-#                                               "classifiersNames": bestClassifiers,
-#                                               "classifiersConfigs": bestClassifiersConfigs,
-#                                               'fusionMethodConfig': fusionMethodConfig}}
-#                 argumentDictionaries["Multiview"].append(arguments)
-#         if benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
-#             for method in benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"]:
-#                 for classifier in benchmark["Multiview"]["Fusion"]["Classifiers"]:
-#                     arguments = {"CL_type": "Fusion",
-#                                  "views": args.views.split(":"),
-#                                  "NB_VIEW": len(args.views.split(":")),
-#                                  "NB_CLASS": len(args.CL_classes.split(":")),
-#                                  "LABELS_NAMES": args.CL_classes.split(":"),
-#                                  "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
-#                                                   "classifiersNames": classifier,
-#                                                   "classifiersConfigs": fusionClassifierConfig,
-#                                                   'fusionMethodConfig': fusionMethodConfig}}
-#                     argumentDictionaries["Multiview"].append(arguments)
-
-# resultsMultiview = Parallel(n_jobs=nbCores)(
-#     delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF,
-#                            LABELS_DICTIONARY, gridSearch=True, metrics=metrics, **arguments)
-#     for arguments in argumentDictionaries["Multiview"])
-resultsMultiview = []
+
+if benchmark["Multiview"]:
+    if benchmark["Multiview"]["Mumbo"]:
+        for combination in itertools.combinations_with_replacement(range(len(benchmark["Multiview"]["Mumbo"])), NB_VIEW):
+            classifiersNames = [benchmark["Multiview"]["Mumbo"][index] for index in combination]
+            arguments = {"CL_type": "Mumbo",
+                         "views": args.views.split(":"),
+                         "NB_VIEW": len(args.views.split(":")),
+                         "NB_CLASS": len(args.CL_classes.split(":")),
+                         "LABELS_NAMES": args.CL_classes.split(":"),
+                         "MumboKWARGS": {"classifiersNames": classifiersNames,
+                                         "maxIter":int(args.MU_iter[0]), "minIter":int(args.MU_iter[1]),
+                                         "threshold":args.MU_iter[2]}}
+            argumentDictionaries["Multiview"].append(arguments)
+    if benchmark["Multiview"]["Fusion"]:
+        if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
+            for method in benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"]:
+                arguments = {"CL_type": "Fusion",
+                             "views": args.views.split(":"),
+                             "NB_VIEW": len(args.views.split(":")),
+                             "NB_CLASS": len(args.CL_classes.split(":")),
+                             "LABELS_NAMES": args.CL_classes.split(":"),
+                             "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
+                                              "classifiersNames": bestClassifiers,
+                                              "classifiersConfigs": bestClassifiersConfigs,
+                                              'fusionMethodConfig': fusionMethodConfig}}
+                argumentDictionaries["Multiview"].append(arguments)
+        if benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
+            for method in benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"]:
+                for classifier in benchmark["Multiview"]["Fusion"]["Classifiers"]:
+                    arguments = {"CL_type": "Fusion",
+                                 "views": args.views.split(":"),
+                                 "NB_VIEW": len(args.views.split(":")),
+                                 "NB_CLASS": len(args.CL_classes.split(":")),
+                                 "LABELS_NAMES": args.CL_classes.split(":"),
+                                 "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
+                                                  "classifiersNames": classifier,
+                                                  "classifiersConfigs": fusionClassifierConfig,
+                                                  'fusionMethodConfig': fusionMethodConfig}}
+                    argumentDictionaries["Multiview"].append(arguments)
+
+print len(argumentDictionaries["Multiview"]), len(argumentDictionaries["Monoview"])
+resultsMultiview = Parallel(n_jobs=nbCores)(
+    delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF,
+                           LABELS_DICTIONARY, gridSearch=True, metrics=metrics, **arguments)
+    for arguments in argumentDictionaries["Multiview"])
+
 results = (resultsMonoview, resultsMultiview)
 resultAnalysis(benchmark, results)
-print len(argumentDictionaries["Multiview"]), len(argumentDictionaries["Monoview"])
 
 
diff --git a/Code/MonoMutliViewClassifiers/Metrics/__init__.py b/Code/MonoMutliViewClassifiers/Metrics/__init__.py
index e69de29b..9bbd76fb 100644
--- a/Code/MonoMutliViewClassifiers/Metrics/__init__.py
+++ b/Code/MonoMutliViewClassifiers/Metrics/__init__.py
@@ -0,0 +1,7 @@
+import os
+for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
+    if module == '__init__.py' or module[-3:] != '.py':
+        continue
+    __import__(module[:-3], locals(), globals())
+del module
+del os
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
index 9e2a187c..d6d172e8 100644
--- a/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
+++ b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
@@ -32,7 +32,7 @@ __date__	= 2016-03-25
 
 
 def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path, gridSearch=True,
-                metrics="accuracy_score", **kwargs):
+                metric=["accuracy_score", None], nIter=30, **kwargs):
 
     t_start = time.time()
     directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/"
@@ -43,7 +43,6 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
     CL_type = kwargs["CL_type"]
     classifierKWARGS = kwargs[CL_type+"KWARGS"]
     X = X.value
-    metrics = [getattr(Metrics, metric) for metric in metrics]
 
     # Determine the Database to extract features
     logging.debug("### Main Programm for Classification MonoView")
@@ -62,18 +61,17 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
     # Begin Classification RandomForest
     logging.debug("Start:\t Classification")
 
-
     classifierModule = getattr(MonoviewClassifiers, CL_type)
     classifierGridSearch = getattr(classifierModule, "gridSearch")
 
-    cl_desc = classifierGridSearch(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores, metrics=metrics)
-    cl_res = classifierModule.fit(X_train, y_train, NB_CORES=nbCores)
+    cl_desc = classifierGridSearch(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores, metric=metric, nIter=nIter)
+    cl_res = classifierModule.fit(X_train, y_train, NB_CORES=nbCores, **dict((str(index), desc) for index, desc in enumerate(cl_desc)))
     t_end  = time.time() - t_start
 
     # Add result to Results DF
     df_class_res = pd.DataFrame()
-    df_class_res = df_class_res.append({'a_class_time':t_end, 'b_cl_desc': cl_desc, 'c_cl_res': cl_res,
-                                                    'd_cl_score': cl_res.best_score_}, ignore_index=True)
+    # df_class_res = df_class_res.append({'a_class_time':t_end, 'b_cl_desc': cl_desc, 'c_cl_res': cl_res,
+    #                                                 'd_cl_score': cl_res.best_score_}, ignore_index=True)
 
     logging.debug("Info:\t Time for Classification: " + str(t_end) + "[s]")
     logging.debug("Done:\t Classification")
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
index df9269d6..a3ba7f67 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
@@ -2,18 +2,15 @@ from sklearn.ensemble import AdaBoostClassifier
 from sklearn.pipeline import Pipeline
 from sklearn.grid_search import RandomizedSearchCV
 from sklearn.tree import DecisionTreeClassifier
-from sklearn.utils.testing import all_estimators
-import inspect
-import numpy as np
 import Metrics
-
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     num_estimators = int(kwargs['0'])
-    base_estimators = int(kwargs['1'])
+    base_estimators = kwargs['1']
     classifier = AdaBoostClassifier(n_estimators=num_estimators, base_estimator=base_estimators)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 #
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -29,16 +26,22 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nbCores=1):
+def gridSearch(X_train, y_train, nbFolds=4, metric=["accuracy_score", None], nIter=30, nbCores=1):
+
     pipeline = Pipeline([('classifier', AdaBoostClassifier())])
-    classifiers = [clf for name, clf in all_estimators(type_filter='classifier')
-                   if 'sample_weight' in inspect.getargspec(clf().fit)[0]
-                   and (name != "AdaBoostClassifier" and name !="GradientBoostingClassifier")]
-    param= {"classifier__n_estimators": np.random.randint(1, 30, 10),
-            "classifier__base_estimator": classifiers}
+    # classifiers = [clf for name, clf in all_estimators(type_filter='classifier')
+    #                if 'sample_weight' in inspect.getargspec(clf().fit)[0]
+    #                and (name != "AdaBoostClassifier" and name !="GradientBoostingClassifier" )]
+
+    param= {"classifier__n_estimators": randint(1, 15),
+            "classifier__base_estimator": [DecisionTreeClassifier()]}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid = RandomizedSearchCV(pipeline,param_distributions=param,refit=True,n_jobs=nbCores,scoring='accuracy',cv=nbFolds)
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid = RandomizedSearchCV(pipeline, n_iter=nIter, param_distributions=param,refit=True,n_jobs=nbCores,scoring=scorer,cv=nbFolds)
     detector = grid.fit(X_train, y_train)
     desc_estimators = [detector.best_params_["classifier__n_estimators"],
                        detector.best_params_["classifier__base_estimator"]]
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
index ce7e739b..5dd79f65 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
@@ -1,14 +1,14 @@
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1, **kwargs):
     maxDepth = int(kwargs['0'])
     classifier = DecisionTreeClassifier(max_depth=maxDepth)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -24,12 +24,16 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1, **kwargs):
 #     return description, DT_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
     pipeline_DT = Pipeline([('classifier', DecisionTreeClassifier())])
-    param_DT = {"classifier__max_depth":np.random.randint(1, 30, 10)}
+    param_DT = {"classifier__max_depth": randint(1, 30)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_DT = GridSearchCV(pipeline_DT, param_grid=param_DT, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_DT = RandomizedSearchCV(pipeline_DT, n_iter=nIter, param_distributions=param_DT, refit=True, n_jobs=nbCores, scoring=scorer,
                            cv=nbFolds)
     DT_detector = grid_DT.fit(X_train, y_train)
     desc_params = [DT_detector.best_params_["classifier__max_depth"]]
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
index 5e513325..e8edfbef 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
@@ -1,14 +1,14 @@
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     nNeighbors = int(kwargs['0'])
     classifier = KNeighborsClassifier(n_neighbors=nNeighbors)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -24,12 +24,16 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, KNN_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30 ):
     pipeline_KNN = Pipeline([('classifier', KNeighborsClassifier())])
-    param_KNN = {"classifier__n_neighbors": np.random.randint(1, 30, 10)}
+    param_KNN = {"classifier__n_neighbors": randint(1, 50)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_KNN = GridSearchCV(pipeline_KNN, param_grid=param_KNN, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_KNN = RandomizedSearchCV(pipeline_KNN, n_iter=nIter, param_distributions=param_KNN, refit=True, n_jobs=nbCores, scoring=scorer,
                             cv=nbFolds)
     KNN_detector = grid_KNN.fit(X_train, y_train)
     desc_params = [KNN_detector.best_params_["classifier__n_neighbors"]]
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
index 445fdfec..b40cf6e3 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
@@ -1,15 +1,15 @@
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.pipeline import Pipeline
-from sklearn.grid_search import GridSearchCV
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
-
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     num_estimators = int(kwargs['0'])
     maxDepth = int(kwargs['1'])
     classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -43,15 +43,21 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, rf_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
     pipeline_rf = Pipeline([('classifier', RandomForestClassifier())])
-    param_rf = {"classifier__n_estimators": np.random.randint(1, 30, 10)}
+    param_rf = {"classifier__n_estimators": randint(1, 30),
+                "classifier__max_depth":randint(1, 30)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_rf = GridSearchCV(pipeline_rf,param_grid=param_rf,refit=True,n_jobs=nbCores,scoring='accuracy',cv=nbFolds)
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_rf = RandomizedSearchCV(pipeline_rf, n_iter=nIter,param_distributions=param_rf,refit=True,n_jobs=nbCores,scoring=scorer,cv=nbFolds)
     rf_detector = grid_rf.fit(X_train, y_train)
 
-    desc_estimators = [rf_detector.best_params_["classifier__n_estimators"]]
+    desc_estimators = [rf_detector.best_params_["classifier__n_estimators"],
+                       rf_detector.best_params_["classifier__max_depth"]]
     return desc_estimators
 
 
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
index 15627703..4323e744 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
@@ -1,20 +1,19 @@
 from sklearn.linear_model import SGDClassifier
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
-
+from scipy.stats import uniform
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     loss = kwargs['0']
     penalty = kwargs['1']
     try:
-        alpha = int(kwargs['2'])
+        alpha = float(kwargs['2'])
     except:
         alpha = 0.15
     classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -32,16 +31,20 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, SGD_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
     pipeline_SGD = Pipeline([('classifier', SGDClassifier())])
     losses = ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron']
     penalties = ["l1", "l2", "elasticnet"]
-    alphas = list(np.random.randint(1,10,10))+list(np.random.random_sample(10))
+    alphas = uniform()
     param_SGD = {"classifier__loss": losses, "classifier__penalty": penalties,
                  "classifier__alpha": alphas}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_SGD = GridSearchCV(pipeline_SGD, param_grid=param_SGD, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_SGD = RandomizedSearchCV(pipeline_SGD, n_iter=nIter, param_distributions=param_SGD, refit=True, n_jobs=nbCores, scoring=scorer,
                             cv=nbFolds)
     SGD_detector = grid_SGD.fit(X_train, y_train)
     desc_params = [SGD_detector.best_params_["classifier__loss"], SGD_detector.best_params_["classifier__penalty"],
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
index 43619432..523e998b 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
@@ -1,15 +1,14 @@
 from sklearn.svm import SVC
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
-
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     C = int(kwargs['0'])
     classifier = SVC(C=C, kernel='linear', probability=True)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -25,12 +24,16 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, SVMLinear_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
     pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))])
-    param_SVMLinear = {"classifier__C":np.random.randint(1,2000,30)}
+    param_SVMLinear = {"classifier__C":randint(1, 10000)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_SVMLinear = RandomizedSearchCV(pipeline_SVMLinear, n_iter=nIter,param_distributions=param_SVMLinear, refit=True, n_jobs=nbCores, scoring=scorer,
                                   cv=nbFolds)
 
     SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
index 7db4dd56..7285b29e 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
@@ -1,16 +1,15 @@
 from sklearn.svm import SVC
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
-
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     C = int(kwargs['0'])
     degree = int(kwargs['1'])
     classifier = SVC(C=C, kernel='poly', degree=degree, probability=True)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -25,15 +24,19 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return desc_params
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
-    pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="poly"))])
-    param_SVMRBF = {"classifier__C": np.random.randint(1,2000,30)}
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
+    pipeline_SVMPoly = Pipeline([('classifier', SVC(kernel="poly"))])
+    param_SVMPoly = {"classifier__C": randint(1, 10000), "classifier__degree":randint(1, 30)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_SVMPoly = RandomizedSearchCV(pipeline_SVMPoly, n_iter=nIter, param_distributions=param_SVMPoly, refit=True, n_jobs=nbCores, scoring=scorer,
                                cv=nbFolds)
-    SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
-    desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
+    SVMRBF_detector = grid_SVMPoly.fit(X_train, y_train)
+    desc_params = [SVMRBF_detector.best_params_["classifier__C"], SVMRBF_detector.best_params_["classifier__degree"]]
     return desc_params
 
 
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
index 7c2e9276..481f2ec0 100644
--- a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
@@ -1,15 +1,14 @@
 from sklearn.svm import SVC
 from sklearn.pipeline import Pipeline                   # Pipelining in classification
-from sklearn.grid_search import GridSearchCV
-import numpy as np
+from sklearn.grid_search import RandomizedSearchCV
 import Metrics
-
+from scipy.stats import randint
 
 def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
     C = int(kwargs['0'])
     classifier = SVC(C=C, kernel='rbf', probability=True)
     classifier.fit(DATASET, CLASS_LABELS)
-    return "No desc", classifier
+    return classifier
 
 
 # def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
@@ -25,12 +24,16 @@ def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
 #     return description, SVMRBF_detector
 
 
-def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], **kwargs):
+def gridSearch(X_train, y_train, nbFolds=4, nbCores=1, metric=["accuracy_score", None], nIter=30):
     pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="rbf"))])
-    param_SVMRBF = {"classifier__C": np.random.randint(1,2000,30)}
+    param_SVMRBF = {"classifier__C": randint(1, 10000)}
     metricModule = getattr(Metrics, metric[0])
-    scorer = metricModule.get_scorer(dict((index, metricConfig) for index, metricConfig in enumerate(metric[1])))
-    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+    if metric[1]!=None:
+        metricKWARGS = dict((index, metricConfig) for index, metricConfig in enumerate(metric[1]))
+    else:
+        metricKWARGS = {}
+    scorer = metricModule.get_scorer(**metricKWARGS)
+    grid_SVMRBF = RandomizedSearchCV(pipeline_SVMRBF, n_iter=nIter, param_distributions=param_SVMRBF, refit=True, n_jobs=nbCores, scoring=scorer,
                                cv=nbFolds)
     SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
     desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
diff --git a/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
index 450624ec..aa2160d5 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
@@ -17,14 +17,14 @@ import time
 
 
 def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, path, LABELS_DICTIONARY,
-                  gridSearch=False, metrics=None,**kwargs):
+                  gridSearch=False, metric=None, nIter=30, **kwargs):
 
     datasetLength = DATASET.get("Metadata").attrs["datasetLength"]
     NB_VIEW = DATASET.get("Metadata").attrs["nbView"]
     views = [str(DATASET.get("View"+str(viewIndex)).attrs["name"]) for viewIndex in range(NB_VIEW)]
     NB_CLASS = DATASET.get("Metadata").attrs["nbClass"]
-    if not metrics:
-        metrics = ["accuracy_score" for view in range (NB_VIEW)]
+    if not metric:
+        metric = ["accuracy_score", None]
 
     CL_type = kwargs["CL_type"]
     views = kwargs["views"]
@@ -82,7 +82,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
     if gridSearch:
         logging.info("Start:\t Gridsearching best settings for monoview classifiers")
         bestSettings, fusionConfig = classifierGridSearch(DATASET, classificationKWARGS, learningIndices
-                                                          , metrics=metrics)
+                                                          , metric=metric, nIter=nIter)
         classificationKWARGS["classifiersConfigs"] = bestSettings
         try:
             classificationKWARGS["fusionMethodConfig"] = fusionConfig
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
index 73d82040..e036ef5f 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
@@ -7,7 +7,7 @@ def makeMonoviewData_hdf5(DATASET, weights=None, usedIndices=None):
     if not usedIndices:
         uesdIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
     NB_VIEW = DATASET.get("Metadata").attrs["nbView"]
-    if type(weights)=="NoneType":
+    if weights==None:
         weights = np.array([1/NB_VIEW for i in range(NB_VIEW)])
     if sum(weights)!=1:
         weights = weights/sum(weights)
@@ -16,7 +16,7 @@ def makeMonoviewData_hdf5(DATASET, weights=None, usedIndices=None):
     return monoviewData
 
 
-def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metrics=None):
+def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metric=None, nIter=30):
     fusionTypeName = classificationKWARGS["fusionType"]
     fusionTypePackage = globals()[fusionTypeName+"Package"]
     fusionMethodModuleName = classificationKWARGS["fusionMethod"]
@@ -28,12 +28,14 @@ def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metrics=None
         classifierMethod = getattr(classifierModule, "gridSearch")
         if fusionMethodModuleName == "LateFusion":
             bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[learningIndices],
-                                                 DATASET.get("labels")[learningIndices], metrics=metrics[classifierIndex]))
+                                                 DATASET.get("labels")[learningIndices], metric=metric,
+                                                 nIter=nIter))
         else:
             bestSettings.append(classifierMethod(makeMonoviewData_hdf5(DATASET, usedIndices=learningIndices),
-                                                 DATASET.get("labels")[learningIndices], metrics=metrics[classifierIndex]))
+                                                 DATASET.get("labels")[learningIndices], metric=metric,
+                                                 nIter=nIter))
     classificationKWARGS["classifiersConfigs"] = bestSettings
-    fusionMethodConfig = fusionMethodModule.gridSearch(DATASET, classificationKWARGS, learningIndices)
+    fusionMethodConfig = fusionMethodModule.gridSearch(DATASET, classificationKWARGS, learningIndices, nIter=nIter)
     return bestSettings, fusionMethodConfig
 
 
@@ -41,8 +43,9 @@ class Fusion:
     def __init__(self, NB_VIEW, DATASET_LENGTH, CLASS_LABELS, NB_CORES=1,**kwargs):
         fusionType = kwargs['fusionType']
         fusionMethod = kwargs['fusionMethod']
-        fusionTypeModule = globals()[fusionType]
-        fusionMethodClass = getattr(fusionTypeModule, fusionMethod)
+        fusionTypePackage = globals()[fusionType+"Package"]
+        fusionMethodModule = getattr(fusionTypePackage, fusionMethod)
+        fusionMethodClass = getattr(fusionMethodModule, fusionMethod)
         nbCores = NB_CORES
         classifierKWARGS = dict((key, value) for key, value in kwargs.iteritems() if key not in ['fusionType', 'fusionMethod'])
         self.classifier = fusionMethodClass(NB_CORES=nbCores, **classifierKWARGS)
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
index 627e1bb4..0512b141 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
@@ -3,8 +3,6 @@
 
 import numpy as np
 
-import MonoviewClassifiers
-
 
 class EarlyFusionClassifier(object):
     def __init__(self, monoviewClassifiersNames, monoviewClassifiersConfigs, NB_CORES=1):
@@ -18,7 +16,7 @@ class EarlyFusionClassifier(object):
         if not usedIndices:
             uesdIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         NB_VIEW = DATASET.get("Metadata").attrs["nbView"]
-        if type(weights)=="NoneType":
+        if weights== None:
             weights = np.array([1/NB_VIEW for i in range(NB_VIEW)])
         if sum(weights)!=1:
             weights = weights/sum(weights)
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py
index 4965f831..56aaf146 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/WeightedLinear.py
@@ -1,15 +1,15 @@
-from EarlyFusion import EarlyFusionClassifier
+from ...Methods.EarlyFusion import EarlyFusionClassifier
 import MonoviewClassifiers
 import numpy as np
 from sklearn.metrics import accuracy_score
 
 
-def gridSearch(DATASET, classificationKWARGS, trainIndices):
+def gridSearch(DATASET, classificationKWARGS, trainIndices, nIter=30):
     bestScore = 0.0
     bestConfig = None
     if classificationKWARGS["fusionMethodConfig"][0] is not None:
-        for i in range(0):
-            randomWeightsArray = np.random.random_sample(len(DATASET.get("Metadata").attrs["nbView"]))
+        for i in range(nIter):
+            randomWeightsArray = np.random.random_sample(DATASET.get("Metadata").attrs["nbView"])
             normalizedArray = randomWeightsArray/np.sum(randomWeightsArray)
             classificationKWARGS["fusionMethodConfig"][0] = normalizedArray
             classifier = WeightedLinear(1, **classificationKWARGS)
@@ -24,7 +24,7 @@ def gridSearch(DATASET, classificationKWARGS, trainIndices):
 
 class WeightedLinear(EarlyFusionClassifier):
     def __init__(self, NB_CORES=1, **kwargs):
-        EarlyFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['monoviewClassifiersConfigs'],
+        EarlyFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['classifiersConfigs'],
                                        NB_CORES=NB_CORES)
         self.weights = np.array(map(float, kwargs['fusionMethodConfig'][0]))
 
@@ -33,7 +33,7 @@ class WeightedLinear(EarlyFusionClassifier):
             trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         self.makeMonoviewData_hdf5(DATASET, weights=self.weights, usedIndices=trainIndices)
         monoviewClassifierModule = getattr(MonoviewClassifiers, self.monoviewClassifierName)
-        desc, self.monoviewClassifier = monoviewClassifierModule.fit(self.monoviewData, DATASET.get("labels")[trainIndices],
+        self.monoviewClassifier = monoviewClassifierModule.fit(self.monoviewData, DATASET.get("labels")[trainIndices],
                                                                      NB_CORES=self.nbCores,
                                                                      **dict((str(configIndex),config) for configIndex,config in
                                                                             enumerate(self.monoviewClassifiersConfig)))
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/__init__.py
index e69de29b..9bbd76fb 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/__init__.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusionPackage/__init__.py
@@ -0,0 +1,7 @@
+import os
+for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
+    if module == '__init__.py' or module[-3:] != '.py':
+        continue
+    __import__(module[:-3], locals(), globals())
+del module
+del os
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
index 844f9969..2564c79c 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
@@ -36,13 +36,12 @@ class LateFusionClassifier(object):
         if trainIndices == None:
             trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         nbView = DATASET.get("Metadata").attrs["nbView"]
-        monoviewResults = Parallel(n_jobs=self.nbCores)(
+        self.monoviewClassifiers = Parallel(n_jobs=self.nbCores)(
             delayed(fifMonoviewClassifier)(self.monoviewClassifiersNames[viewIndex],
                                               DATASET.get("View"+str(viewIndex))[trainIndices, :],
                                               DATASET.get("labels")[trainIndices],
                                               self.monoviewClassifiersConfigs[viewIndex])
             for viewIndex in range(nbView))
-        self.monoviewClassifiers = [monoviewClassifier for desc, monoviewClassifier in monoviewResults]
 
 
 # class WeightedLinear(LateFusionClassifier):
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/BayesianInference.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/BayesianInference.py
index af908e11..94935792 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/BayesianInference.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/BayesianInference.py
@@ -1,14 +1,14 @@
-from LateFusion import LateFusionClassifier
+from ...Methods.LateFusion import LateFusionClassifier
 import MonoviewClassifiers
 import numpy as np
 from sklearn.metrics import accuracy_score
 
-def gridSearch(DATASET, classificationKWARGS, trainIndices):
+def gridSearch(DATASET, classificationKWARGS, trainIndices, nIter=30):
     bestScore = 0.0
     bestConfig = None
     if classificationKWARGS["fusionMethodConfig"][0] is not None:
-        for i in range(0):
-            randomWeightsArray = np.random.random_sample(len(DATASET.get("Metadata").attrs["nbView"]))
+        for i in range(nIter):
+            randomWeightsArray = np.random.random_sample(DATASET.get("Metadata").attrs["nbView"])
             normalizedArray = randomWeightsArray/np.sum(randomWeightsArray)
             classificationKWARGS["fusionMethodConfig"][0] = normalizedArray
             classifier = BayesianInference(1, **classificationKWARGS)
@@ -23,12 +23,12 @@ def gridSearch(DATASET, classificationKWARGS, trainIndices):
 
 class BayesianInference(LateFusionClassifier):
     def __init__(self, NB_CORES=1, **kwargs):
-        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['monoviewClassifiersConfigs'],
+        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['classifiersConfigs'],
                                       NB_CORES=NB_CORES)
         self.weights = np.array(map(float, kwargs['fusionMethodConfig'][0]))
 
     def predict_hdf5(self, DATASET, usedIndices=None):
-        nbView = DATASET.get("nbView").value
+        nbView = DATASET.get("Metadata").attrs["nbView"]
         if usedIndices == None:
             usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         if sum(self.weights)!=1.0:
@@ -40,7 +40,7 @@ class BayesianInference(LateFusionClassifier):
                 viewScores[viewIndex] = np.power(self.monoviewClassifiers[viewIndex].predict_proba(DATASET.get("View" + str(viewIndex))
                                                                                                    [usedIndices]),
                                                  self.weights[viewIndex])
-            predictedLabels = np.argmax(np.prod(viewScores, axis=1), axis=1)
+            predictedLabels = np.argmax(np.prod(viewScores, axis=0), axis=1)
         else:
             predictedLabels = []
         return predictedLabels
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/MajorityVoting.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/MajorityVoting.py
index ce837a4c..166f5ce7 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/MajorityVoting.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/MajorityVoting.py
@@ -1,15 +1,15 @@
-from LateFusion import LateFusionClassifier
+from ...Methods.LateFusion import LateFusionClassifier
 import MonoviewClassifiers
 import numpy as np
 from sklearn.metrics import accuracy_score
 
 
-def gridSearch(DATASET, classificationKWARGS, trainIndices):
+def gridSearch(DATASET, classificationKWARGS, trainIndices, nIter=30):
     bestScore = 0.0
     bestConfig = None
     if classificationKWARGS["fusionMethodConfig"][0] is not None:
-        for i in range(0):
-            randomWeightsArray = np.random.random_sample(len(DATASET.get("Metadata").attrs["nbView"]))
+        for i in range(nIter):
+            randomWeightsArray = np.random.random_sample(DATASET.get("Metadata").attrs["nbView"])
             normalizedArray = randomWeightsArray/np.sum(randomWeightsArray)
             classificationKWARGS["fusionMethodConfig"][0] = normalizedArray
             classifier = MajorityVoting(1, **classificationKWARGS)
@@ -24,7 +24,7 @@ def gridSearch(DATASET, classificationKWARGS, trainIndices):
 
 class MajorityVoting(LateFusionClassifier):
     def __init__(self, NB_CORES=1, **kwargs):
-        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['monoviewClassifiersConfigs'],
+        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['classifiersConfigs'],
                                       NB_CORES=NB_CORES)
         self.weights = np.array(map(float, kwargs['fusionMethodConfig'][0]))
 
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/SVMForLinear.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/SVMForLinear.py
index a6464406..6dbc3c24 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/SVMForLinear.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/SVMForLinear.py
@@ -1,4 +1,4 @@
-from LateFusion import LateFusionClassifier
+from ...Methods.LateFusion import LateFusionClassifier
 import MonoviewClassifiers
 import numpy as np
 from sklearn.multiclass import OneVsOneClassifier
@@ -11,7 +11,7 @@ def gridSearch(DATASET, classificationKWARGS, trainIndices):
 
 class SVMForLinear(LateFusionClassifier):
     def __init__(self, NB_CORES=1, **kwargs):
-        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['monoviewClassifiersConfigs'],
+        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['classifiersConfigs'],
                                       NB_CORES=NB_CORES)
         self.SVMClassifier = None
 
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/WeightedLinear.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/WeightedLinear.py
index 3ba4b76b..64f5c97e 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/WeightedLinear.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/WeightedLinear.py
@@ -1,15 +1,15 @@
-from LateFusion import LateFusionClassifier
+from ...Methods.LateFusion import LateFusionClassifier
 import MonoviewClassifiers
 import numpy as np
 from sklearn.metrics import accuracy_score
 
 
-def gridSearch(DATASET, classificationKWARGS, trainIndices):
+def gridSearch(DATASET, classificationKWARGS, trainIndices, nIter=30):
     bestScore = 0.0
     bestConfig = None
     if classificationKWARGS["fusionMethodConfig"][0] is not None:
-        for i in range(0):
-            randomWeightsArray = np.random.random_sample(len(DATASET.get("Metadata").attrs["nbView"]))
+        for i in range(nIter):
+            randomWeightsArray = np.random.random_sample(DATASET.get("Metadata").attrs["nbView"])
             normalizedArray = randomWeightsArray/np.sum(randomWeightsArray)
             classificationKWARGS["fusionMethodConfig"][0] = normalizedArray
             classifier = WeightedLinear(1, **classificationKWARGS)
@@ -24,7 +24,7 @@ def gridSearch(DATASET, classificationKWARGS, trainIndices):
 
 class WeightedLinear(LateFusionClassifier):
     def __init__(self, NB_CORES=1, **kwargs):
-        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['monoviewClassifiersConfigs'],
+        LateFusionClassifier.__init__(self, kwargs['classifiersNames'], kwargs['classifiersConfigs'],
                                       NB_CORES=NB_CORES)
         self.weights = map(float, kwargs['fusionMethodConfig'][0])
 
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/__init__.py
index e69de29b..9bbd76fb 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/__init__.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusionPackage/__init__.py
@@ -0,0 +1,7 @@
+import os
+for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
+    if module == '__init__.py' or module[-3:] != '.py':
+        continue
+    __import__(module[:-3], locals(), globals())
+del module
+del os
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
index b99d85d7..3ce1d337 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
@@ -1 +1,2 @@
-from . import EarlyFusionPackage, LateFusionPackage
\ No newline at end of file
+from . import EarlyFusion, LateFusion, LateFusionPackage, EarlyFusionPackage
+__all__ = ["EarlyFusionPackage", "LateFusionPackage"]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
deleted file mode 100644
index 9bbd76fb..00000000
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-import os
-for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
-    if module == '__init__.py' or module[-3:] != '.py':
-        continue
-    __import__(module[:-3], locals(), globals())
-del module
-del os
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
index 5ae1818a..9b0e79fa 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
@@ -1,2 +1,2 @@
-from . import Fusion, analyzeResults
+from . import Fusion, analyzeResults, Methods
 __all__ = ["Fusion", "Methods"]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
index c7d4a6c1..a69ea79e 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
@@ -24,9 +24,9 @@ def getDataset(pathToDB, viewNames, DBName):
     return np.array(dataset)
 
 
-def getFakeDB(features, pathF, name , NB_CLASS, LABELS_NAME):
+def getFakeDBhdf5(features, pathF, name , NB_CLASS, LABELS_NAME):
     NB_VIEW = len(features)
-    DATASET_LENGTH = int(pathF)
+    DATASET_LENGTH = 300
     VIEW_DIMENSIONS = np.random.random_integers(5, 20, NB_VIEW)
 
     DATA = dict((indx,
@@ -37,7 +37,23 @@ def getFakeDB(features, pathF, name , NB_CLASS, LABELS_NAME):
 
     CLASS_LABELS = np.random.random_integers(0, NB_CLASS-1, DATASET_LENGTH)
     LABELS_DICTIONARY = dict((indx, feature) for indx, feature in enumerate(features))
-    return DATA, CLASS_LABELS, LABELS_DICTIONARY, DATASET_LENGTH
+    datasetFile = h5py.File(pathF+"Fake.hdf5", "w")
+    for index, viewData in enumerate(DATA.values()):
+        viewDset = datasetFile.create_dataset("View"+str(index), viewData.shape)
+        viewDset[...] = viewData
+        viewDset.attrs["name"] = "View"+str(index)
+    labelsDset = datasetFile.create_dataset("labels", CLASS_LABELS.shape)
+    labelsDset[...] = CLASS_LABELS
+    labelsDset.attrs["name"] = "Labels"
+
+    metaDataGrp = datasetFile.create_group("Metadata")
+    metaDataGrp.attrs["nbView"] = NB_VIEW
+    metaDataGrp.attrs["nbClass"] = NB_CLASS
+    metaDataGrp.attrs["datasetLength"] = len(CLASS_LABELS)
+    labelDictionary = {0:"No", 1:"Yes"}
+    datasetFile.close()
+    datasetFile = h5py.File(pathF+"Fake.hdf5", "r")
+    return datasetFile, LABELS_DICTIONARY
 
 
 def getAwaLabels(nbLabels, pathToAwa):
@@ -385,17 +401,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     clinicalDset.attrs["name"] = "Clinic_"
     logging.debug("Done:\t Getting Clinical Data")
 
-    labelFile = open(path+'brca_labels_triple-negatif.csv')
-    labels = np.array([int(line.strip().split(',')[1]) for line in labelFile])
-    labelsDset = datasetFile.create_dataset("labels", labels.shape)
-    labelsDset[...] = labels
-    labelsDset.attrs["name"] = "Labels"
 
-    metaDataGrp = datasetFile.create_group("Metadata")
-    metaDataGrp.attrs["nbView"] = 5
-    metaDataGrp.attrs["nbClass"] = 2
-    metaDataGrp.attrs["datasetLength"] = len(labels)
-    labelDictionary = {0:"No", 1:"Yes"}
 
     logging.debug("Start:\t Getting Modified RNASeq Data")
     RNASeq = datasetFile["View2"][...]
@@ -408,24 +414,35 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     mrnaseqDset.attrs["name"] = "MRNASeq"
     logging.debug("Done:\t Getting Modified RNASeq Data")
 
-    datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "r")
-    logging.debug("Start:\t Getting Binary RNASeq Data")
-    binarizedRNASeqDset = datasetFile.create_dataset("View5", shape=(len(labels), len(rnaseqData)*(len(rnaseqData)-1)/2), dtype=bool)
-    for exampleIndex in range(len(labels)):
-        offseti=0
-        rnaseqData = datasetFile["View2"][exampleIndex]
-        for i, idata in enumerate(rnaseqData):
-            for j, jdata in enumerate(rnaseqData):
-                if i < j:
-                    binarizedRNASeqDset[offseti+j] = idata > jdata
-            offseti += len(rnaseqData)-i-1
-    binarizedRNASeqDset.attrs["name"] = "BRNASeq"
-    i=0
-    for featureIndex in range(len(rnaseqData)*(len(rnaseqData)-1)/2):
-        if allSame(binarizedRNASeqDset[:, featureIndex]):
-            i+=1
-    print i
-    logging.debug("Done:\t Getting Binary RNASeq Data")
+    labelFile = open(path+'brca_labels_triple-negatif.csv')
+    labels = np.array([int(line.strip().split(',')[1]) for line in labelFile])
+    labelsDset = datasetFile.create_dataset("labels", labels.shape)
+    labelsDset[...] = labels
+    labelsDset.attrs["name"] = "Labels"
+
+    metaDataGrp = datasetFile.create_group("Metadata")
+    metaDataGrp.attrs["nbView"] = 5
+    metaDataGrp.attrs["nbClass"] = 2
+    metaDataGrp.attrs["datasetLength"] = len(labels)
+    labelDictionary = {0:"No", 1:"Yes"}
+    # datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "r")
+    # logging.debug("Start:\t Getting Binary RNASeq Data")
+    # binarizedRNASeqDset = datasetFile.create_dataset("View5", shape=(len(labels), len(rnaseqData)*(len(rnaseqData)-1)/2), dtype=bool)
+    # for exampleIndex in range(len(labels)):
+    #     offseti=0
+    #     rnaseqData = datasetFile["View2"][exampleIndex]
+    #     for i, idata in enumerate(rnaseqData):
+    #         for j, jdata in enumerate(rnaseqData):
+    #             if i < j:
+    #                 binarizedRNASeqDset[offseti+j] = idata > jdata
+    #         offseti += len(rnaseqData)-i-1
+    # binarizedRNASeqDset.attrs["name"] = "BRNASeq"
+    # i=0
+    # for featureIndex in range(len(rnaseqData)*(len(rnaseqData)-1)/2):
+    #     if allSame(binarizedRNASeqDset[:, featureIndex]):
+    #         i+=1
+    # print i
+    # logging.debug("Done:\t Getting Binary RNASeq Data")
 
 
     datasetFile.close()
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
index 97d57a57..d6d947aa 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
@@ -31,7 +31,7 @@ def getConfig(classifierConfig):
     return 'with depth ' + str(depth) + ', ' + ' sub-sampled at ' + str(subSampling) + ' '
 
 
-def gridSearch(data, labels, metrics="accuracy_score"):
+def gridSearch(data, labels, metric="accuracy_score"):
     minSubSampling = 1.0/(len(labels)/2)
     bestSettings = []
     bestResults = []
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
index 19dfc884..3f482152 100644
--- a/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
@@ -42,7 +42,7 @@ def trainWeakClassifier_hdf5(classifierName, monoviewDataset, CLASS_LABELS, DATA
     return classifier, classes, isBad, averageAccuracy
 
 
-def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metrics=None):
+def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metric=None, nIter=None):
     classifiersNames = classificationKWARGS["classifiersNames"]
     bestSettings = []
     for classifierIndex, classifierName in enumerate(classifiersNames):
@@ -50,7 +50,7 @@ def gridSearch_hdf5(DATASET, classificationKWARGS, learningIndices, metrics=None
         classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
         classifierMethod = getattr(classifierModule, "gridSearch")
         bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[learningIndices],
-                                             DATASET.get("labels")[learningIndices], metrics=metrics[classifierIndex]))
+                                             DATASET.get("labels")[learningIndices], metric=metric))
         logging.debug("\tDone:\t Gridsearch for "+classifierName)
     return bestSettings, None
 
diff --git a/Code/MonoMutliViewClassifiers/ResultAnalysis.py b/Code/MonoMutliViewClassifiers/ResultAnalysis.py
index 1145fad9..99d3abce 100644
--- a/Code/MonoMutliViewClassifiers/ResultAnalysis.py
+++ b/Code/MonoMutliViewClassifiers/ResultAnalysis.py
@@ -8,26 +8,17 @@ def resultAnalysis(benchmark, results):
     nbResults = len(mono)+len(multi)
     accuracies = [float(accuracy)*100 for [a, accuracy, c, d] in mono]+[float(accuracy)*100 for a, b, c, d, accuracy in multi]
     f = pylab.figure()
+    try:
+        fig = plt.gcf()
+        fig.subplots_adjust(bottom=2.0)
+    except:
+        pass
     ax = f.add_axes([0.1, 0.1, 0.8, 0.8])
     ax.set_title("Accuracies on validation set for each classifier")
     ax.bar(range(nbResults), accuracies, align='center')
     ax.set_xticks(range(nbResults))
     ax.set_xticklabels(names, rotation="vertical")
-    try:
-        fig = plt.gcf()
-        fig.subplots_adjust(bottom=0.8)
-    except:
-        pass
-    # plt.bar(range(nbResults), accuracies, 1)
-    # plt.xlabel('ClassLabels')
-    # plt.ylabel('Precision in %')
-    # plt.title('Results of benchmark-Classification')
-    # plt.axis([0, nbResults, 0, 100])
-    # plt.xticks(range(nbResults), rotation="vertical")
 
-    # Makes sure that the file does not yet exist
     f.savefig("Results/poulet"+time.strftime("%Y%m%d-%H%M%S")+".png")
 
-    #plt.close()
-
 
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-100913-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-100913-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..98ed54ed
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-100913-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-29 10:09:14,077 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101023-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101023-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..3936a601
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101023-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:10:23,014 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:10:23,449 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:10:23,449 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:10:23,449 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:10:23,504 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:10:23,504 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:10:23,504 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:10:23,504 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101050-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101050-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..6df3ccc4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101050-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:10:50,980 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:10:51,009 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:10:51,009 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:10:51,009 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:10:51,084 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:10:51,084 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:10:51,084 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:10:51,085 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101154-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101154-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..7e1bbd2c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101154-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:11:54,701 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:11:54,714 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:11:54,714 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:11:54,714 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:11:54,732 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:11:54,732 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:11:54,732 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:11:54,732 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..46f9c6f3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:13:45,809 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:13:45,822 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:13:45,823 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:13:45,823 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:13:45,838 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:13:45,838 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:13:45,838 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:13:45,838 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101352-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101352-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..8be8e66a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101352-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-29 10:13:52,819 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..f589fa98
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:15:03,270 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:15:03,283 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:15:03,283 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:15:03,284 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:15:03,297 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:15:03,297 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:15:03,298 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:15:03,298 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101558-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101558-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..cdb502cf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101558-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:15:58,072 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:15:58,097 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:15:58,097 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:15:58,097 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:15:58,120 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:15:58,120 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:15:58,121 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:15:58,121 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101646-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101646-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..06313cca
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101646-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:16:46,408 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:16:46,431 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:16:46,431 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:16:46,431 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:16:46,482 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:16:46,483 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:16:46,483 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:16:46,483 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101740-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101740-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..a2dd7d2b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101740-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:17:40,406 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:17:40,426 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:17:40,427 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:17:40,427 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:17:40,453 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:17:40,453 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:17:40,453 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:17:40,453 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101751-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101751-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..e1a22711
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101751-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:17:51,798 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:17:51,820 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:17:51,820 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:17:51,820 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:17:51,843 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:17:51,844 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:17:51,844 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:17:51,844 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101941-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101941-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..812afead
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101941-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:19:41,708 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:19:41,729 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:19:41,729 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:19:41,729 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:19:41,753 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:19:41,753 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:19:41,754 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:19:41,754 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-101956-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-101956-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..3015c4d1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-101956-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:19:56,966 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:19:56,988 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:19:56,989 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:19:56,989 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:19:57,015 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:19:57,015 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:19:57,015 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:19:57,015 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102012-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102012-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..4d24f175
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102012-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:20:12,435 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:20:12,475 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:20:12,475 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:20:12,475 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:20:12,504 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:20:12,504 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:20:12,504 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:20:12,504 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102220-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102220-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..5804a953
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102220-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:22:20,103 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:22:20,120 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:22:20,120 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:22:20,120 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:22:20,147 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:22:20,147 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:22:20,147 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:22:20,147 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102230-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102230-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..f08e7f53
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102230-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:22:30,088 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:22:30,109 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:22:30,109 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:22:30,109 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:22:30,133 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:22:30,134 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:22:30,134 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:22:30,134 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102638-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102638-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..2ca2bbe5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102638-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:26:38,598 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:26:38,625 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:26:38,625 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:26:38,625 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:26:38,648 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:26:38,648 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:26:38,648 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:26:38,648 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102655-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102655-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ec9d9130
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102655-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:26:55,242 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:26:55,258 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:26:55,258 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:26:55,258 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:26:55,282 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:26:55,282 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:26:55,282 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:26:55,282 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-102950-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-102950-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..a7c2811b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-102950-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:29:50,267 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:29:50,286 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:29:50,286 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:29:50,286 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:29:50,309 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:29:50,310 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:29:50,310 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:29:50,310 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-103111-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-103111-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..693210bc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-103111-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:31:11,631 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:31:11,656 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:31:11,656 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:31:11,656 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:31:11,681 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:31:11,682 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:31:11,682 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:31:11,682 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-103400-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-103400-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ef29922b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-103400-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:34:00,795 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:34:00,815 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:34:00,815 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:34:00,815 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:34:00,839 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:34:00,839 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:34:00,839 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:34:00,839 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-103541-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-103541-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d6bfde15
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-103541-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:35:41,981 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:35:42,005 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:35:42,005 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:35:42,005 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:35:42,031 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:35:42,031 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:35:42,031 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:35:42,031 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-103807-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-103807-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..6c0b71b1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-103807-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:38:07,944 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:38:07,961 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:38:07,962 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:38:07,962 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:38:07,985 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:38:07,985 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:38:07,985 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:38:07,985 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-103947-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-103947-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..94ce9abb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-103947-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,10 @@
+2016-08-29 10:39:47,039 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:39:47,055 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:39:47,055 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:39:47,055 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:39:47,081 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:39:47,081 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:39:47,081 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:39:47,081 DEBUG: Start:	 Classification
+2016-08-29 10:40:55,241 DEBUG: Info:	 Time for Classification: 68.1998140812[s]
+2016-08-29 10:40:55,241 DEBUG: Done:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-104427-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-104427-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..96bde205
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-104427-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 10:44:27,654 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:44:27,666 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:44:27,667 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:44:27,667 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:44:27,689 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:44:27,689 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:44:27,689 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:44:27,689 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-104736-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-104736-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..fc023d5f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-104736-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,41 @@
+2016-08-29 10:47:36,028 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 10:47:36,061 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:47:36,061 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 10:47:36,061 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:47:36,094 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:47:36,094 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:47:36,094 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:47:36,094 DEBUG: Start:	 Classification
+2016-08-29 10:48:53,387 DEBUG: Info:	 Time for Classification: 77.3440101147[s]
+2016-08-29 10:48:53,387 DEBUG: Done:	 Classification
+2016-08-29 10:48:53,453 DEBUG: Start:	 Statistic Results
+2016-08-29 10:48:53,453 INFO: Accuracy :0.771428571429
+2016-08-29 10:48:53,606 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:48:53,606 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 10:48:53,606 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:48:53,621 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:48:53,621 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:48:53,621 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:48:53,621 DEBUG: Start:	 Classification
+2016-08-29 10:50:00,677 DEBUG: Info:	 Time for Classification: 67.2197928429[s]
+2016-08-29 10:50:00,677 DEBUG: Done:	 Classification
+2016-08-29 10:50:00,680 DEBUG: Start:	 Statistic Results
+2016-08-29 10:50:00,681 INFO: Accuracy :0.819047619048
+2016-08-29 10:50:00,697 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:50:00,698 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 10:50:00,698 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:50:00,722 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:50:00,722 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:50:00,722 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:50:00,723 DEBUG: Start:	 Classification
+2016-08-29 10:50:26,356 DEBUG: Info:	 Time for Classification: 25.6708378792[s]
+2016-08-29 10:50:26,356 DEBUG: Done:	 Classification
+2016-08-29 10:50:27,661 DEBUG: Start:	 Statistic Results
+2016-08-29 10:50:27,661 INFO: Accuracy :0.866666666667
+2016-08-29 10:50:27,678 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 10:50:27,679 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 10:50:27,679 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 10:50:27,702 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 10:50:27,702 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 10:50:27,702 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 10:50:27,702 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-110552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-110552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..bbce0c1f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-110552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,41 @@
+2016-08-29 11:05:52,286 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:05:52,312 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:05:52,312 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:05:52,312 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:05:52,343 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:05:52,343 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:05:52,343 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:05:52,343 DEBUG: Start:	 Classification
+2016-08-29 11:07:01,782 DEBUG: Info:	 Time for Classification: 69.4608111382[s]
+2016-08-29 11:07:01,782 DEBUG: Done:	 Classification
+2016-08-29 11:07:01,847 DEBUG: Start:	 Statistic Results
+2016-08-29 11:07:01,847 INFO: Accuracy :0.761904761905
+2016-08-29 11:07:02,104 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:07:02,104 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 11:07:02,105 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:07:02,123 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:07:02,124 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:07:02,124 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:07:02,124 DEBUG: Start:	 Classification
+2016-08-29 11:07:58,361 DEBUG: Info:	 Time for Classification: 56.5090019703[s]
+2016-08-29 11:07:58,361 DEBUG: Done:	 Classification
+2016-08-29 11:07:58,364 DEBUG: Start:	 Statistic Results
+2016-08-29 11:07:58,364 INFO: Accuracy :0.847619047619
+2016-08-29 11:07:58,376 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:07:58,376 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 11:07:58,376 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:07:58,391 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:07:58,391 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:07:58,391 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:07:58,391 DEBUG: Start:	 Classification
+2016-08-29 11:08:22,883 DEBUG: Info:	 Time for Classification: 24.5160729885[s]
+2016-08-29 11:08:22,883 DEBUG: Done:	 Classification
+2016-08-29 11:08:24,141 DEBUG: Start:	 Statistic Results
+2016-08-29 11:08:24,141 INFO: Accuracy :0.819047619048
+2016-08-29 11:08:24,154 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:08:24,154 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 11:08:24,154 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:08:24,167 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:08:24,167 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:08:24,167 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:08:24,167 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..eea4e0e2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:32:28,555 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:32:28,929 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:32:28,929 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:32:28,929 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:32:28,956 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:32:28,956 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:32:28,957 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:32:28,957 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..6c73282c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:33:36,885 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:33:36,898 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:33:36,898 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:33:36,898 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:33:36,912 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:33:36,912 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:33:36,912 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:33:36,912 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ebe97f82
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:34:35,315 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:34:35,327 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:34:35,327 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:34:35,327 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:34:35,341 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:34:35,341 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:34:35,341 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:34:35,341 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..095f822a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:35:03,863 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:35:03,874 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:35:03,874 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:35:03,874 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:35:03,888 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:35:03,888 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:35:03,888 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:35:03,888 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113527-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113527-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..e4d04078
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113527-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:35:27,343 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:35:27,356 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:35:27,356 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:35:27,356 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:35:27,369 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:35:27,370 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:35:27,370 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:35:27,370 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113545-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113545-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d8192fc8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113545-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:35:45,321 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:35:45,333 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:35:45,334 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:35:45,334 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:35:45,347 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:35:45,347 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:35:45,348 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:35:45,348 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113603-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113603-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..f29ce0d7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113603-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:36:03,040 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:36:03,052 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:36:03,052 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:36:03,052 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:36:03,066 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:36:03,066 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:36:03,066 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:36:03,066 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113620-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113620-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..e215d7cf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113620-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:36:20,212 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:36:20,223 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:36:20,223 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:36:20,223 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:36:20,237 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:36:20,237 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:36:20,237 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:36:20,237 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..18c25cb5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 11:36:34,528 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:36:34,541 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:36:34,541 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:36:34,541 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:36:34,554 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:36:34,555 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:36:34,555 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:36:34,555 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-113643-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-113643-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..b2da76d1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-113643-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,41 @@
+2016-08-29 11:36:43,371 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 11:36:43,384 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:36:43,384 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 11:36:43,384 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:36:43,398 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:36:43,398 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:36:43,398 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:36:43,399 DEBUG: Start:	 Classification
+2016-08-29 11:38:00,511 DEBUG: Info:	 Time for Classification: 77.1025300026[s]
+2016-08-29 11:38:00,511 DEBUG: Done:	 Classification
+2016-08-29 11:38:00,522 DEBUG: Start:	 Statistic Results
+2016-08-29 11:38:00,522 INFO: Accuracy :0.809523809524
+2016-08-29 11:38:00,536 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:38:00,536 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 11:38:00,536 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:38:00,548 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:38:00,548 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:38:00,548 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:38:00,548 DEBUG: Start:	 Classification
+2016-08-29 11:38:56,773 DEBUG: Info:	 Time for Classification: 56.2486650944[s]
+2016-08-29 11:38:56,773 DEBUG: Done:	 Classification
+2016-08-29 11:38:56,777 DEBUG: Start:	 Statistic Results
+2016-08-29 11:38:56,777 INFO: Accuracy :0.8
+2016-08-29 11:38:56,788 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:38:56,788 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 11:38:56,788 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:38:56,802 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:38:56,802 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:38:56,803 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:38:56,803 DEBUG: Start:	 Classification
+2016-08-29 11:39:21,163 DEBUG: Info:	 Time for Classification: 24.3840839863[s]
+2016-08-29 11:39:21,163 DEBUG: Done:	 Classification
+2016-08-29 11:39:22,430 DEBUG: Start:	 Statistic Results
+2016-08-29 11:39:22,431 INFO: Accuracy :0.866666666667
+2016-08-29 11:39:22,442 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 11:39:22,442 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 11:39:22,442 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 11:39:22,456 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 11:39:22,456 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 11:39:22,456 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 11:39:22,456 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-161224-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-161224-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..57aa82c6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-161224-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,41 @@
+2016-08-29 16:12:24,709 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:12:24,741 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:12:24,741 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:12:24,741 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:12:24,762 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:12:24,762 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:12:24,762 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:12:24,762 DEBUG: Start:	 Classification
+2016-08-29 16:13:31,023 DEBUG: Info:	 Time for Classification: 66.301500082[s]
+2016-08-29 16:13:31,023 DEBUG: Done:	 Classification
+2016-08-29 16:13:31,028 DEBUG: Start:	 Statistic Results
+2016-08-29 16:13:31,029 INFO: Accuracy :0.8
+2016-08-29 16:13:31,040 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:13:31,040 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:13:31,041 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:13:31,052 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:13:31,052 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:13:31,052 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:13:31,052 DEBUG: Start:	 Classification
+2016-08-29 16:14:39,410 DEBUG: Info:	 Time for Classification: 68.3794088364[s]
+2016-08-29 16:14:39,410 DEBUG: Done:	 Classification
+2016-08-29 16:14:39,413 DEBUG: Start:	 Statistic Results
+2016-08-29 16:14:39,413 INFO: Accuracy :0.809523809524
+2016-08-29 16:14:39,425 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:14:39,425 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 16:14:39,425 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:14:39,439 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:14:39,440 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:14:39,440 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:14:39,440 DEBUG: Start:	 Classification
+2016-08-29 16:15:04,957 DEBUG: Info:	 Time for Classification: 25.5417969227[s]
+2016-08-29 16:15:04,957 DEBUG: Done:	 Classification
+2016-08-29 16:15:06,265 DEBUG: Start:	 Statistic Results
+2016-08-29 16:15:06,265 INFO: Accuracy :0.819047619048
+2016-08-29 16:15:06,279 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:15:06,279 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 16:15:06,279 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:15:06,293 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:15:06,293 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:15:06,293 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:15:06,293 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-162734-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-162734-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ada58403
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-162734-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 16:27:34,694 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:27:34,964 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:27:34,965 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:27:34,965 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:27:34,980 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:27:34,980 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:27:34,980 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:27:34,980 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-162804-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-162804-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..eb8d6c15
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-162804-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,41 @@
+2016-08-29 16:28:04,635 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:28:04,652 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:28:04,652 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:28:04,652 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:28:04,667 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:28:04,667 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:28:04,667 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:28:04,667 DEBUG: Start:	 Classification
+2016-08-29 16:29:18,596 DEBUG: Info:	 Time for Classification: 73.9371509552[s]
+2016-08-29 16:29:18,596 DEBUG: Done:	 Classification
+2016-08-29 16:29:18,602 DEBUG: Start:	 Statistic Results
+2016-08-29 16:29:18,602 INFO: Accuracy :0.828571428571
+2016-08-29 16:29:18,614 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:29:18,615 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:29:18,615 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:29:18,627 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:29:18,627 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:29:18,628 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:29:18,628 DEBUG: Start:	 Classification
+2016-08-29 16:30:27,563 DEBUG: Info:	 Time for Classification: 68.9593780041[s]
+2016-08-29 16:30:27,564 DEBUG: Done:	 Classification
+2016-08-29 16:30:27,567 DEBUG: Start:	 Statistic Results
+2016-08-29 16:30:27,567 INFO: Accuracy :0.771428571429
+2016-08-29 16:30:27,578 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:30:27,578 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 16:30:27,578 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:30:27,593 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:30:27,593 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:30:27,593 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:30:27,593 DEBUG: Start:	 Classification
+2016-08-29 16:30:54,275 DEBUG: Info:	 Time for Classification: 26.7061460018[s]
+2016-08-29 16:30:54,275 DEBUG: Done:	 Classification
+2016-08-29 16:30:55,635 DEBUG: Start:	 Statistic Results
+2016-08-29 16:30:55,635 INFO: Accuracy :0.866666666667
+2016-08-29 16:30:55,648 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:30:55,648 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 16:30:55,648 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:30:55,661 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:30:55,661 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:30:55,661 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:30:55,661 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-163114-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-163114-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..4161cbe0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-163114-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-29 16:31:14,680 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:31:14,693 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:31:14,693 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:31:14,693 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:31:14,707 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:31:14,707 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:31:14,707 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:31:14,707 DEBUG: Start:	 Classification
+2016-08-29 16:32:26,973 DEBUG: Info:	 Time for Classification: 72.2895948887[s]
+2016-08-29 16:32:26,973 DEBUG: Done:	 Classification
+2016-08-29 16:32:26,978 DEBUG: Start:	 Statistic Results
+2016-08-29 16:32:26,978 INFO: Accuracy :0.695238095238
+2016-08-29 16:32:26,990 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:32:26,990 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:32:26,990 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:32:27,001 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:32:27,001 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:32:27,001 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:32:27,001 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-163354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-163354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..d6dc7593
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-163354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,52 @@
+2016-08-29 16:33:54,279 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:33:54,292 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:33:54,292 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:33:54,292 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:33:54,305 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:33:54,305 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:33:54,305 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:33:54,305 DEBUG: Start:	 Classification
+2016-08-29 16:34:58,988 DEBUG: Info:	 Time for Classification: 64.7065241337[s]
+2016-08-29 16:34:58,988 DEBUG: Done:	 Classification
+2016-08-29 16:34:58,993 DEBUG: Start:	 Statistic Results
+2016-08-29 16:34:58,993 INFO: Accuracy :0.8
+2016-08-29 16:34:59,005 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:34:59,005 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:34:59,005 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:34:59,016 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:34:59,016 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:34:59,016 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:34:59,016 DEBUG: Start:	 Classification
+2016-08-29 16:36:02,531 DEBUG: Info:	 Time for Classification: 63.5361440182[s]
+2016-08-29 16:36:02,531 DEBUG: Done:	 Classification
+2016-08-29 16:36:02,534 DEBUG: Start:	 Statistic Results
+2016-08-29 16:36:02,535 INFO: Accuracy :0.761904761905
+2016-08-29 16:36:02,542 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:36:02,543 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 16:36:02,543 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:36:02,554 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:36:02,555 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:36:02,555 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:36:02,555 DEBUG: Start:	 Classification
+2016-08-29 16:36:26,497 DEBUG: Info:	 Time for Classification: 23.9610130787[s]
+2016-08-29 16:36:26,497 DEBUG: Done:	 Classification
+2016-08-29 16:36:27,746 DEBUG: Start:	 Statistic Results
+2016-08-29 16:36:27,746 INFO: Accuracy :0.895238095238
+2016-08-29 16:36:27,758 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:36:27,758 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 16:36:27,758 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:36:27,771 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:36:27,771 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:36:27,771 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:36:27,771 DEBUG: Start:	 Classification
+2016-08-29 16:37:14,329 DEBUG: Info:	 Time for Classification: 46.5805008411[s]
+2016-08-29 16:37:14,329 DEBUG: Done:	 Classification
+2016-08-29 16:37:14,335 DEBUG: Start:	 Statistic Results
+2016-08-29 16:37:14,335 INFO: Accuracy :0.92380952381
+2016-08-29 16:37:14,347 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:37:14,347 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 16:37:14,347 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:37:14,359 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:37:14,359 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:37:14,359 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:37:14,359 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-164435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-164435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..ac4b900a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-164435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,52 @@
+2016-08-29 16:44:35,350 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:44:35,362 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:44:35,362 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:44:35,362 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:44:35,376 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:44:35,376 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:44:35,376 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:44:35,376 DEBUG: Start:	 Classification
+2016-08-29 16:45:30,063 DEBUG: Info:	 Time for Classification: 54.7101948261[s]
+2016-08-29 16:45:30,063 DEBUG: Done:	 Classification
+2016-08-29 16:45:30,068 DEBUG: Start:	 Statistic Results
+2016-08-29 16:45:30,068 INFO: Accuracy :0.838095238095
+2016-08-29 16:45:30,079 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:45:30,080 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:45:30,080 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:45:30,091 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:45:30,091 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:45:30,091 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:45:30,091 DEBUG: Start:	 Classification
+2016-08-29 16:46:30,600 DEBUG: Info:	 Time for Classification: 60.5300340652[s]
+2016-08-29 16:46:30,600 DEBUG: Done:	 Classification
+2016-08-29 16:46:30,603 DEBUG: Start:	 Statistic Results
+2016-08-29 16:46:30,603 INFO: Accuracy :0.828571428571
+2016-08-29 16:46:30,615 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:46:30,615 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 16:46:30,615 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:46:30,629 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:46:30,629 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:46:30,629 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:46:30,629 DEBUG: Start:	 Classification
+2016-08-29 16:46:55,375 DEBUG: Info:	 Time for Classification: 24.7699568272[s]
+2016-08-29 16:46:55,375 DEBUG: Done:	 Classification
+2016-08-29 16:46:56,632 DEBUG: Start:	 Statistic Results
+2016-08-29 16:46:56,632 INFO: Accuracy :0.847619047619
+2016-08-29 16:46:56,644 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:46:56,645 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 16:46:56,645 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:46:56,658 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:46:56,658 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:46:56,658 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:46:56,659 DEBUG: Start:	 Classification
+2016-08-29 16:47:39,147 DEBUG: Info:	 Time for Classification: 42.5119411945[s]
+2016-08-29 16:47:39,147 DEBUG: Done:	 Classification
+2016-08-29 16:47:39,152 DEBUG: Start:	 Statistic Results
+2016-08-29 16:47:39,152 INFO: Accuracy :0.885714285714
+2016-08-29 16:47:39,160 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:47:39,160 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 16:47:39,160 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:47:39,171 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:47:39,171 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:47:39,172 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:47:39,172 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-165446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-165446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..2933f265
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-165446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,52 @@
+2016-08-29 16:54:46,227 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 16:54:46,239 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:54:46,239 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 16:54:46,239 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:54:46,253 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:54:46,253 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:54:46,254 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:54:46,254 DEBUG: Start:	 Classification
+2016-08-29 16:55:59,652 DEBUG: Info:	 Time for Classification: 73.4229171276[s]
+2016-08-29 16:55:59,652 DEBUG: Done:	 Classification
+2016-08-29 16:55:59,657 DEBUG: Start:	 Statistic Results
+2016-08-29 16:55:59,657 INFO: Accuracy :0.8
+2016-08-29 16:55:59,669 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:55:59,669 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 16:55:59,669 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:55:59,680 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:55:59,680 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:55:59,680 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:55:59,680 DEBUG: Start:	 Classification
+2016-08-29 16:56:53,704 DEBUG: Info:	 Time for Classification: 54.0451388359[s]
+2016-08-29 16:56:53,704 DEBUG: Done:	 Classification
+2016-08-29 16:56:53,711 DEBUG: Start:	 Statistic Results
+2016-08-29 16:56:53,711 INFO: Accuracy :0.761904761905
+2016-08-29 16:56:53,723 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:56:53,723 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 16:56:53,723 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:56:53,737 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:56:53,737 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:56:53,737 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:56:53,737 DEBUG: Start:	 Classification
+2016-08-29 16:57:18,331 DEBUG: Info:	 Time for Classification: 24.6174499989[s]
+2016-08-29 16:57:18,331 DEBUG: Done:	 Classification
+2016-08-29 16:57:19,611 DEBUG: Start:	 Statistic Results
+2016-08-29 16:57:19,611 INFO: Accuracy :0.857142857143
+2016-08-29 16:57:19,623 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:57:19,623 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 16:57:19,624 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:57:19,637 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:57:19,637 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:57:19,638 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:57:19,638 DEBUG: Start:	 Classification
+2016-08-29 16:58:07,785 DEBUG: Info:	 Time for Classification: 48.1718809605[s]
+2016-08-29 16:58:07,786 DEBUG: Done:	 Classification
+2016-08-29 16:58:07,791 DEBUG: Start:	 Statistic Results
+2016-08-29 16:58:07,791 INFO: Accuracy :0.828571428571
+2016-08-29 16:58:07,803 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 16:58:07,803 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 16:58:07,803 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 16:58:07,816 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 16:58:07,817 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 16:58:07,817 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 16:58:07,817 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-170755-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-170755-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..0f7d7ee6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-170755-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-29 17:07:55,205 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 17:07:55,218 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:07:55,219 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 17:07:55,219 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:07:55,232 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:07:55,232 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:07:55,232 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:07:55,232 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-170857-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-170857-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..3c38718b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-170857-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,74 @@
+2016-08-29 17:08:57,904 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 17:08:57,917 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:08:57,918 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 17:08:57,918 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:08:57,931 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:08:57,931 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:08:57,931 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:08:57,931 DEBUG: Start:	 Classification
+2016-08-29 17:10:06,685 DEBUG: Info:	 Time for Classification: 68.778083086[s]
+2016-08-29 17:10:06,685 DEBUG: Done:	 Classification
+2016-08-29 17:10:06,690 DEBUG: Start:	 Statistic Results
+2016-08-29 17:10:06,691 INFO: Accuracy :0.866666666667
+2016-08-29 17:10:06,702 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:10:06,702 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 17:10:06,702 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:10:06,713 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:10:06,713 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:10:06,713 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:10:06,713 DEBUG: Start:	 Classification
+2016-08-29 17:10:46,716 DEBUG: Info:	 Time for Classification: 40.023277998[s]
+2016-08-29 17:10:46,716 DEBUG: Done:	 Classification
+2016-08-29 17:10:46,719 DEBUG: Start:	 Statistic Results
+2016-08-29 17:10:46,719 INFO: Accuracy :0.790476190476
+2016-08-29 17:10:46,731 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:10:46,731 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 17:10:46,731 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:10:46,744 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:10:46,744 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:10:46,744 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:10:46,745 DEBUG: Start:	 Classification
+2016-08-29 17:11:01,689 DEBUG: Info:	 Time for Classification: 14.9678399563[s]
+2016-08-29 17:11:01,689 DEBUG: Done:	 Classification
+2016-08-29 17:11:02,981 DEBUG: Start:	 Statistic Results
+2016-08-29 17:11:02,981 INFO: Accuracy :0.819047619048
+2016-08-29 17:11:02,994 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:11:02,994 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 17:11:02,994 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:11:03,008 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:11:03,008 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:11:03,008 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:11:03,008 DEBUG: Start:	 Classification
+2016-08-29 17:11:46,405 DEBUG: Info:	 Time for Classification: 43.4208889008[s]
+2016-08-29 17:11:46,405 DEBUG: Done:	 Classification
+2016-08-29 17:11:46,412 DEBUG: Start:	 Statistic Results
+2016-08-29 17:11:46,413 INFO: Accuracy :0.866666666667
+2016-08-29 17:11:46,422 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:11:46,422 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 17:11:46,423 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:11:46,435 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:11:46,435 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:11:46,435 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:11:46,435 DEBUG: Start:	 Classification
+2016-08-29 17:16:45,480 DEBUG: Info:	 Time for Classification: 299.065301895[s]
+2016-08-29 17:16:45,480 DEBUG: Done:	 Classification
+2016-08-29 17:16:45,489 DEBUG: Start:	 Statistic Results
+2016-08-29 17:16:45,490 INFO: Accuracy :0.885714285714
+2016-08-29 17:16:45,498 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:16:45,499 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-29 17:16:45,499 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:16:45,510 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:16:45,510 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:16:45,510 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:16:45,510 DEBUG: Start:	 Classification
+2016-08-29 17:17:14,549 DEBUG: Info:	 Time for Classification: 29.0579118729[s]
+2016-08-29 17:17:14,549 DEBUG: Done:	 Classification
+2016-08-29 17:17:14,891 DEBUG: Start:	 Statistic Results
+2016-08-29 17:17:14,891 INFO: Accuracy :0.847619047619
+2016-08-29 17:17:14,899 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:17:14,899 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-29 17:17:14,899 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:17:14,909 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:17:14,909 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:17:14,909 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:17:14,910 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-172028-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-172028-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..33c0108d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-172028-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,89 @@
+2016-08-29 17:20:28,923 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 17:20:28,935 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:20:28,936 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 17:20:28,936 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:20:28,949 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:20:28,949 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:20:28,949 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:20:28,950 DEBUG: Start:	 Classification
+2016-08-29 17:21:38,751 DEBUG: Info:	 Time for Classification: 69.825948[s]
+2016-08-29 17:21:38,752 DEBUG: Done:	 Classification
+2016-08-29 17:21:38,757 DEBUG: Start:	 Statistic Results
+2016-08-29 17:21:38,757 INFO: Accuracy :0.790476190476
+2016-08-29 17:21:38,768 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:21:38,768 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 17:21:38,768 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:21:38,779 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:21:38,780 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:21:38,780 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:21:38,780 DEBUG: Start:	 Classification
+2016-08-29 17:22:12,472 DEBUG: Info:	 Time for Classification: 33.7131619453[s]
+2016-08-29 17:22:12,472 DEBUG: Done:	 Classification
+2016-08-29 17:22:12,475 DEBUG: Start:	 Statistic Results
+2016-08-29 17:22:12,475 INFO: Accuracy :0.780952380952
+2016-08-29 17:22:12,487 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:22:12,487 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 17:22:12,487 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:22:12,500 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:22:12,500 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:22:12,500 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:22:12,501 DEBUG: Start:	 Classification
+2016-08-29 17:22:27,403 DEBUG: Info:	 Time for Classification: 14.9256680012[s]
+2016-08-29 17:22:27,403 DEBUG: Done:	 Classification
+2016-08-29 17:22:28,653 DEBUG: Start:	 Statistic Results
+2016-08-29 17:22:28,654 INFO: Accuracy :0.866666666667
+2016-08-29 17:22:28,666 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:22:28,666 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 17:22:28,666 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:22:28,679 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:22:28,680 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:22:28,680 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:22:28,680 DEBUG: Start:	 Classification
+2016-08-29 17:23:06,935 DEBUG: Info:	 Time for Classification: 38.2793560028[s]
+2016-08-29 17:23:06,935 DEBUG: Done:	 Classification
+2016-08-29 17:23:06,942 DEBUG: Start:	 Statistic Results
+2016-08-29 17:23:06,943 INFO: Accuracy :0.847619047619
+2016-08-29 17:23:06,954 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:23:06,955 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 17:23:06,955 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:23:06,969 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:23:06,969 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:23:06,969 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:23:06,969 DEBUG: Start:	 Classification
+2016-08-29 17:27:52,404 DEBUG: Info:	 Time for Classification: 285.460083008[s]
+2016-08-29 17:27:52,405 DEBUG: Done:	 Classification
+2016-08-29 17:27:52,414 DEBUG: Start:	 Statistic Results
+2016-08-29 17:27:52,414 INFO: Accuracy :0.847619047619
+2016-08-29 17:27:52,423 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:27:52,423 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-29 17:27:52,423 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:27:52,435 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:27:52,435 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:27:52,435 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:27:52,435 DEBUG: Start:	 Classification
+2016-08-29 17:28:17,707 DEBUG: Info:	 Time for Classification: 25.2910339832[s]
+2016-08-29 17:28:17,707 DEBUG: Done:	 Classification
+2016-08-29 17:28:18,029 DEBUG: Start:	 Statistic Results
+2016-08-29 17:28:18,029 INFO: Accuracy :0.866666666667
+2016-08-29 17:28:18,037 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:28:18,038 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-29 17:28:18,038 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:28:18,049 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:28:18,049 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:28:18,049 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:28:18,049 DEBUG: Start:	 Classification
+2016-08-29 17:30:54,635 DEBUG: Info:	 Time for Classification: 156.604124069[s]
+2016-08-29 17:30:54,635 DEBUG: Done:	 Classification
+2016-08-29 17:30:54,996 DEBUG: Start:	 Statistic Results
+2016-08-29 17:30:54,997 INFO: Accuracy :0.914285714286
+2016-08-29 17:30:55,005 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:30:55,005 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-29 17:30:55,005 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:30:55,016 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:30:55,016 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:30:55,016 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:30:55,017 DEBUG: Start:	 Classification
+2016-08-29 17:31:21,638 DEBUG: Info:	 Time for Classification: 26.6399168968[s]
+2016-08-29 17:31:21,638 DEBUG: Done:	 Classification
+2016-08-29 17:31:21,995 DEBUG: Start:	 Statistic Results
+2016-08-29 17:31:21,995 INFO: Accuracy :0.92380952381
diff --git a/Code/MonoMutliViewClassifiers/Results/20160829-175309-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160829-175309-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..2098ea93
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160829-175309-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,250 @@
+2016-08-29 17:53:09,721 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-29 17:53:09,741 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:53:09,741 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 17:53:09,741 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:53:09,769 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:53:09,769 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:53:09,769 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:53:09,769 DEBUG: Start:	 Classification
+2016-08-29 17:54:18,537 DEBUG: Info:	 Time for Classification: 68.8128628731[s]
+2016-08-29 17:54:18,537 DEBUG: Done:	 Classification
+2016-08-29 17:54:18,542 DEBUG: Start:	 Statistic Results
+2016-08-29 17:54:18,543 INFO: Accuracy :0.752380952381
+2016-08-29 17:54:18,563 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:54:18,563 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 17:54:18,563 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:54:18,574 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:54:18,574 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:54:18,575 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:54:18,575 DEBUG: Start:	 Classification
+2016-08-29 17:55:01,610 DEBUG: Info:	 Time for Classification: 43.0636219978[s]
+2016-08-29 17:55:01,610 DEBUG: Done:	 Classification
+2016-08-29 17:55:01,613 DEBUG: Start:	 Statistic Results
+2016-08-29 17:55:01,613 INFO: Accuracy :0.847619047619
+2016-08-29 17:55:01,623 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:55:01,623 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 17:55:01,623 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:55:01,637 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:55:01,637 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:55:01,637 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:55:01,637 DEBUG: Start:	 Classification
+2016-08-29 17:55:17,053 DEBUG: Info:	 Time for Classification: 15.4375040531[s]
+2016-08-29 17:55:17,053 DEBUG: Done:	 Classification
+2016-08-29 17:55:18,349 DEBUG: Start:	 Statistic Results
+2016-08-29 17:55:18,349 INFO: Accuracy :0.857142857143
+2016-08-29 17:55:18,371 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:55:18,371 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 17:55:18,371 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:55:18,391 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:55:18,392 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:55:18,392 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:55:18,392 DEBUG: Start:	 Classification
+2016-08-29 17:55:46,780 DEBUG: Info:	 Time for Classification: 28.4254119396[s]
+2016-08-29 17:55:46,780 DEBUG: Done:	 Classification
+2016-08-29 17:55:46,784 DEBUG: Start:	 Statistic Results
+2016-08-29 17:55:46,785 INFO: Accuracy :0.780952380952
+2016-08-29 17:55:46,803 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 17:55:46,803 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 17:55:46,803 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 17:55:46,823 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 17:55:46,823 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 17:55:46,823 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 17:55:46,823 DEBUG: Start:	 Classification
+2016-08-29 18:00:35,467 DEBUG: Info:	 Time for Classification: 288.678122044[s]
+2016-08-29 18:00:35,467 DEBUG: Done:	 Classification
+2016-08-29 18:00:35,477 DEBUG: Start:	 Statistic Results
+2016-08-29 18:00:35,478 INFO: Accuracy :0.866666666667
+2016-08-29 18:00:35,493 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:00:35,493 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-29 18:00:35,494 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:00:35,507 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 18:00:35,508 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 18:00:35,508 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:00:35,508 DEBUG: Start:	 Classification
+2016-08-29 18:01:01,704 DEBUG: Info:	 Time for Classification: 26.2219488621[s]
+2016-08-29 18:01:01,704 DEBUG: Done:	 Classification
+2016-08-29 18:01:02,046 DEBUG: Start:	 Statistic Results
+2016-08-29 18:01:02,047 INFO: Accuracy :0.87619047619
+2016-08-29 18:01:02,058 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:01:02,058 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-29 18:01:02,058 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:01:02,071 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 18:01:02,071 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 18:01:02,071 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:01:02,071 DEBUG: Start:	 Classification
+2016-08-29 18:03:49,809 DEBUG: Info:	 Time for Classification: 167.760786057[s]
+2016-08-29 18:03:49,810 DEBUG: Done:	 Classification
+2016-08-29 18:03:50,168 DEBUG: Start:	 Statistic Results
+2016-08-29 18:03:50,168 INFO: Accuracy :0.952380952381
+2016-08-29 18:03:50,180 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:03:50,180 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-29 18:03:50,180 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:03:50,193 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-29 18:03:50,193 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-29 18:03:50,193 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:03:50,193 DEBUG: Start:	 Classification
+2016-08-29 18:04:16,487 DEBUG: Info:	 Time for Classification: 26.3166110516[s]
+2016-08-29 18:04:16,487 DEBUG: Done:	 Classification
+2016-08-29 18:04:16,856 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:16,856 INFO: Accuracy :0.933333333333
+2016-08-29 18:04:16,882 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:16,882 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 18:04:16,883 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:16,883 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:16,883 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:16,884 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:16,884 DEBUG: Start:	 Classification
+2016-08-29 18:04:18,942 DEBUG: Info:	 Time for Classification: 2.08398890495[s]
+2016-08-29 18:04:18,942 DEBUG: Done:	 Classification
+2016-08-29 18:04:18,944 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:18,944 INFO: Accuracy :0.87619047619
+2016-08-29 18:04:18,945 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:18,945 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 18:04:18,945 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:18,946 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:18,946 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:18,946 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:18,946 DEBUG: Start:	 Classification
+2016-08-29 18:04:20,134 DEBUG: Info:	 Time for Classification: 1.1890399456[s]
+2016-08-29 18:04:20,134 DEBUG: Done:	 Classification
+2016-08-29 18:04:20,136 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:20,136 INFO: Accuracy :0.87619047619
+2016-08-29 18:04:20,137 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:20,137 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 18:04:20,138 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:20,138 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:20,138 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:20,138 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:20,138 DEBUG: Start:	 Classification
+2016-08-29 18:04:20,749 DEBUG: Info:	 Time for Classification: 0.612411022186[s]
+2016-08-29 18:04:20,750 DEBUG: Done:	 Classification
+2016-08-29 18:04:20,794 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:20,794 INFO: Accuracy :0.790476190476
+2016-08-29 18:04:20,796 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:20,796 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 18:04:20,796 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:20,797 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:20,797 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:20,797 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:20,797 DEBUG: Start:	 Classification
+2016-08-29 18:04:35,959 DEBUG: Info:	 Time for Classification: 15.1630759239[s]
+2016-08-29 18:04:35,959 DEBUG: Done:	 Classification
+2016-08-29 18:04:35,963 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:35,964 INFO: Accuracy :0.828571428571
+2016-08-29 18:04:35,965 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:35,965 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 18:04:35,965 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:35,966 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:35,966 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:35,966 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:35,966 DEBUG: Start:	 Classification
+2016-08-29 18:04:53,803 DEBUG: Info:	 Time for Classification: 17.8378360271[s]
+2016-08-29 18:04:53,803 DEBUG: Done:	 Classification
+2016-08-29 18:04:53,804 DEBUG: Start:	 Statistic Results
+2016-08-29 18:04:53,805 INFO: Accuracy :0.790476190476
+2016-08-29 18:04:53,806 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:04:53,806 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-29 18:04:53,806 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:04:53,807 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:04:53,807 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:04:53,807 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:04:53,807 DEBUG: Start:	 Classification
+2016-08-29 18:05:05,528 DEBUG: Info:	 Time for Classification: 11.7219748497[s]
+2016-08-29 18:05:05,528 DEBUG: Done:	 Classification
+2016-08-29 18:05:05,535 DEBUG: Start:	 Statistic Results
+2016-08-29 18:05:05,536 INFO: Accuracy :0.780952380952
+2016-08-29 18:05:05,537 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:05:05,537 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-29 18:05:05,537 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:05:05,538 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:05:05,538 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:05:05,538 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:05:05,538 DEBUG: Start:	 Classification
+2016-08-29 18:05:28,522 DEBUG: Info:	 Time for Classification: 22.985229969[s]
+2016-08-29 18:05:28,522 DEBUG: Done:	 Classification
+2016-08-29 18:05:28,531 DEBUG: Start:	 Statistic Results
+2016-08-29 18:05:28,531 INFO: Accuracy :0.771428571429
+2016-08-29 18:05:28,532 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:05:28,533 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-29 18:05:28,533 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:05:28,533 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-29 18:05:28,533 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-29 18:05:28,534 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:05:28,534 DEBUG: Start:	 Classification
+2016-08-29 18:05:30,759 DEBUG: Info:	 Time for Classification: 2.22728586197[s]
+2016-08-29 18:05:30,760 DEBUG: Done:	 Classification
+2016-08-29 18:05:30,788 DEBUG: Start:	 Statistic Results
+2016-08-29 18:05:30,788 INFO: Accuracy :0.695238095238
+2016-08-29 18:05:31,924 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:05:31,925 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-29 18:05:31,925 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:05:31,998 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:05:31,998 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:05:31,998 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:05:31,999 DEBUG: Start:	 Classification
+2016-08-29 18:10:30,396 DEBUG: Info:	 Time for Classification: 299.606837034[s]
+2016-08-29 18:10:30,397 DEBUG: Done:	 Classification
+2016-08-29 18:10:30,408 DEBUG: Start:	 Statistic Results
+2016-08-29 18:10:30,409 INFO: Accuracy :0.638095238095
+2016-08-29 18:10:30,542 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:10:30,542 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-29 18:10:30,543 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:10:30,589 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:10:30,590 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:10:30,590 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:10:30,590 DEBUG: Start:	 Classification
+2016-08-29 18:13:17,645 DEBUG: Info:	 Time for Classification: 167.231894016[s]
+2016-08-29 18:13:17,646 DEBUG: Done:	 Classification
+2016-08-29 18:13:17,651 DEBUG: Start:	 Statistic Results
+2016-08-29 18:13:17,652 INFO: Accuracy :0.6
+2016-08-29 18:13:17,682 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:13:17,682 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-29 18:13:17,682 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:13:17,716 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:13:17,716 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:13:17,716 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:13:17,716 DEBUG: Start:	 Classification
+2016-08-29 18:14:05,059 DEBUG: Info:	 Time for Classification: 47.4056019783[s]
+2016-08-29 18:14:05,059 DEBUG: Done:	 Classification
+2016-08-29 18:14:08,685 DEBUG: Start:	 Statistic Results
+2016-08-29 18:14:08,686 INFO: Accuracy :0.733333333333
+2016-08-29 18:14:08,719 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:14:08,719 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-29 18:14:08,719 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:14:08,756 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:14:08,756 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:14:08,756 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:14:08,756 DEBUG: Start:	 Classification
+2016-08-29 18:15:27,068 DEBUG: Info:	 Time for Classification: 78.3780429363[s]
+2016-08-29 18:15:27,068 DEBUG: Done:	 Classification
+2016-08-29 18:15:27,079 DEBUG: Start:	 Statistic Results
+2016-08-29 18:15:27,079 INFO: Accuracy :0.771428571429
+2016-08-29 18:15:27,109 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:15:27,109 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-29 18:15:27,109 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:15:27,142 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:15:27,143 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:15:27,143 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:15:27,143 DEBUG: Start:	 Classification
+2016-08-29 18:29:35,987 DEBUG: Info:	 Time for Classification: 848.906258821[s]
+2016-08-29 18:29:35,987 DEBUG: Done:	 Classification
+2016-08-29 18:29:36,013 DEBUG: Start:	 Statistic Results
+2016-08-29 18:29:36,013 INFO: Accuracy :0.657142857143
+2016-08-29 18:29:36,044 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:29:36,044 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-29 18:29:36,045 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:29:36,082 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:29:36,082 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:29:36,082 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:29:36,082 DEBUG: Start:	 Classification
+2016-08-29 18:31:41,723 DEBUG: Info:	 Time for Classification: 125.707715034[s]
+2016-08-29 18:31:41,723 DEBUG: Done:	 Classification
+2016-08-29 18:31:43,162 DEBUG: Start:	 Statistic Results
+2016-08-29 18:31:43,162 INFO: Accuracy :0.619047619048
+2016-08-29 18:31:43,194 DEBUG: ### Main Programm for Classification MonoView
+2016-08-29 18:31:43,194 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-29 18:31:43,194 DEBUG: Start:	 Determine Train/Test split
+2016-08-29 18:31:43,228 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-29 18:31:43,228 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-29 18:31:43,228 DEBUG: Done:	 Determine Train/Test split
+2016-08-29 18:31:43,228 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-100943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-100943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..43a7698b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-100943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 10:09:43,739 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-101446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-101446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..5bee1cc1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-101446-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-30 10:14:46,438 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:14:46,474 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:14:46,474 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 10:14:46,474 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:14:46,502 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:14:46,502 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:14:46,503 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:14:46,503 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-101634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-101634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..556e2502
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-101634-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,327 @@
+2016-08-30 10:16:34,609 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:16:34,621 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:16:34,621 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 10:16:34,621 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:16:34,639 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:16:34,639 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:16:34,639 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:16:34,639 DEBUG: Start:	 Classification
+2016-08-30 10:16:44,776 DEBUG: Info:	 Time for Classification: 10.1228818893[s]
+2016-08-30 10:16:44,776 DEBUG: Done:	 Classification
+2016-08-30 10:16:44,803 DEBUG: Start:	 Statistic Results
+2016-08-30 10:16:44,803 INFO: Accuracy :0.8
+2016-08-30 10:16:44,815 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:16:44,815 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 10:16:44,815 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:16:44,827 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:16:44,827 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:16:44,827 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:16:44,827 DEBUG: Start:	 Classification
+2016-08-30 10:16:54,553 DEBUG: Info:	 Time for Classification: 9.74853897095[s]
+2016-08-30 10:16:54,553 DEBUG: Done:	 Classification
+2016-08-30 10:16:54,556 DEBUG: Start:	 Statistic Results
+2016-08-30 10:16:54,557 INFO: Accuracy :0.790476190476
+2016-08-30 10:16:54,566 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:16:54,566 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 10:16:54,566 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:16:54,578 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:16:54,578 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:16:54,578 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:16:54,578 DEBUG: Start:	 Classification
+2016-08-30 10:16:57,460 DEBUG: Info:	 Time for Classification: 2.90179514885[s]
+2016-08-30 10:16:57,460 DEBUG: Done:	 Classification
+2016-08-30 10:16:58,781 DEBUG: Start:	 Statistic Results
+2016-08-30 10:16:58,781 INFO: Accuracy :0.8
+2016-08-30 10:16:58,796 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:16:58,797 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 10:16:58,797 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:16:58,809 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:16:58,809 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:16:58,809 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:16:58,809 DEBUG: Start:	 Classification
+2016-08-30 10:16:59,325 DEBUG: Info:	 Time for Classification: 0.53910112381[s]
+2016-08-30 10:16:59,325 DEBUG: Done:	 Classification
+2016-08-30 10:16:59,329 DEBUG: Start:	 Statistic Results
+2016-08-30 10:16:59,330 INFO: Accuracy :0.761904761905
+2016-08-30 10:16:59,342 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:16:59,342 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 10:16:59,343 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:16:59,358 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:16:59,358 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:16:59,358 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:16:59,358 DEBUG: Start:	 Classification
+2016-08-30 10:17:00,543 DEBUG: Info:	 Time for Classification: 1.21113300323[s]
+2016-08-30 10:17:00,543 DEBUG: Done:	 Classification
+2016-08-30 10:17:00,554 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:00,554 INFO: Accuracy :0.714285714286
+2016-08-30 10:17:00,569 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:00,570 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 10:17:00,570 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:00,588 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:17:00,588 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:17:00,588 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:00,588 DEBUG: Start:	 Classification
+2016-08-30 10:17:08,388 DEBUG: Info:	 Time for Classification: 7.83058905602[s]
+2016-08-30 10:17:08,389 DEBUG: Done:	 Classification
+2016-08-30 10:17:08,689 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:08,690 INFO: Accuracy :0.87619047619
+2016-08-30 10:17:08,703 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:08,704 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 10:17:08,704 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:08,716 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:17:08,716 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:17:08,716 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:08,716 DEBUG: Start:	 Classification
+2016-08-30 10:17:16,673 DEBUG: Info:	 Time for Classification: 7.98002386093[s]
+2016-08-30 10:17:16,673 DEBUG: Done:	 Classification
+2016-08-30 10:17:17,017 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:17,017 INFO: Accuracy :0.87619047619
+2016-08-30 10:17:17,031 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:17,031 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Methyl_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 10:17:17,031 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:17,044 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 10:17:17,044 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 10:17:17,044 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:17,044 DEBUG: Start:	 Classification
+2016-08-30 10:17:24,297 DEBUG: Info:	 Time for Classification: 7.27610015869[s]
+2016-08-30 10:17:24,297 DEBUG: Done:	 Classification
+2016-08-30 10:17:24,592 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:24,593 INFO: Accuracy :0.866666666667
+2016-08-30 10:17:24,616 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:24,616 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 10:17:24,617 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:24,617 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:24,617 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:24,618 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:24,618 DEBUG: Start:	 Classification
+2016-08-30 10:17:24,892 DEBUG: Info:	 Time for Classification: 0.294700860977[s]
+2016-08-30 10:17:24,892 DEBUG: Done:	 Classification
+2016-08-30 10:17:24,893 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:24,894 INFO: Accuracy :0.790476190476
+2016-08-30 10:17:24,895 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:24,895 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 10:17:24,895 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:24,896 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:24,896 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:24,896 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:24,896 DEBUG: Start:	 Classification
+2016-08-30 10:17:24,985 DEBUG: Info:	 Time for Classification: 0.0903129577637[s]
+2016-08-30 10:17:24,985 DEBUG: Done:	 Classification
+2016-08-30 10:17:24,987 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:24,987 INFO: Accuracy :0.819047619048
+2016-08-30 10:17:24,988 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:24,988 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 10:17:24,988 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:24,989 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:24,989 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:24,989 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:24,989 DEBUG: Start:	 Classification
+2016-08-30 10:17:25,103 DEBUG: Info:	 Time for Classification: 0.115062952042[s]
+2016-08-30 10:17:25,103 DEBUG: Done:	 Classification
+2016-08-30 10:17:25,148 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:25,149 INFO: Accuracy :0.72380952381
+2016-08-30 10:17:25,150 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:25,150 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 10:17:25,150 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:25,151 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:25,151 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:25,151 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:25,151 DEBUG: Start:	 Classification
+2016-08-30 10:17:25,713 DEBUG: Info:	 Time for Classification: 0.563421010971[s]
+2016-08-30 10:17:25,713 DEBUG: Done:	 Classification
+2016-08-30 10:17:25,717 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:25,717 INFO: Accuracy :0.857142857143
+2016-08-30 10:17:25,719 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:25,719 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 10:17:25,719 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:25,720 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:25,720 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:25,720 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:25,720 DEBUG: Start:	 Classification
+2016-08-30 10:17:25,800 DEBUG: Info:	 Time for Classification: 0.0812940597534[s]
+2016-08-30 10:17:25,800 DEBUG: Done:	 Classification
+2016-08-30 10:17:25,802 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:25,803 INFO: Accuracy :0.666666666667
+2016-08-30 10:17:25,804 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:25,804 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 10:17:25,805 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:25,806 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:25,806 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:25,806 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:25,806 DEBUG: Start:	 Classification
+2016-08-30 10:17:44,549 DEBUG: Info:	 Time for Classification: 18.7451300621[s]
+2016-08-30 10:17:44,549 DEBUG: Done:	 Classification
+2016-08-30 10:17:44,558 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:44,558 INFO: Accuracy :0.8
+2016-08-30 10:17:44,560 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:44,560 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 10:17:44,560 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:44,561 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:44,561 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:44,561 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:44,561 DEBUG: Start:	 Classification
+2016-08-30 10:17:44,604 DEBUG: Info:	 Time for Classification: 0.0441439151764[s]
+2016-08-30 10:17:44,604 DEBUG: Done:	 Classification
+2016-08-30 10:17:44,605 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:44,606 INFO: Accuracy :0.304761904762
+2016-08-30 10:17:44,607 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:44,607 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:MiRNA__ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 10:17:44,607 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:44,608 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 10:17:44,608 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 10:17:44,608 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:44,608 DEBUG: Start:	 Classification
+2016-08-30 10:17:45,263 DEBUG: Info:	 Time for Classification: 0.656535148621[s]
+2016-08-30 10:17:45,264 DEBUG: Done:	 Classification
+2016-08-30 10:17:45,292 DEBUG: Start:	 Statistic Results
+2016-08-30 10:17:45,292 INFO: Accuracy :0.771428571429
+2016-08-30 10:17:46,418 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:17:46,418 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 10:17:46,419 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:17:46,523 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:17:46,523 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:17:46,523 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:17:46,523 DEBUG: Start:	 Classification
+2016-08-30 10:18:37,100 DEBUG: Info:	 Time for Classification: 51.806524992[s]
+2016-08-30 10:18:37,100 DEBUG: Done:	 Classification
+2016-08-30 10:18:37,111 DEBUG: Start:	 Statistic Results
+2016-08-30 10:18:37,111 INFO: Accuracy :0.657142857143
+2016-08-30 10:18:37,299 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:18:37,299 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 10:18:37,299 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:18:37,365 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:18:37,365 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:18:37,365 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:18:37,365 DEBUG: Start:	 Classification
+2016-08-30 10:18:45,045 DEBUG: Info:	 Time for Classification: 7.92616009712[s]
+2016-08-30 10:18:45,045 DEBUG: Done:	 Classification
+2016-08-30 10:18:45,051 DEBUG: Start:	 Statistic Results
+2016-08-30 10:18:45,051 INFO: Accuracy :0.666666666667
+2016-08-30 10:18:45,093 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:18:45,093 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 10:18:45,094 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:18:45,147 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:18:45,147 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:18:45,147 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:18:45,147 DEBUG: Start:	 Classification
+2016-08-30 10:18:53,751 DEBUG: Info:	 Time for Classification: 8.69405412674[s]
+2016-08-30 10:18:53,752 DEBUG: Done:	 Classification
+2016-08-30 10:18:57,272 DEBUG: Start:	 Statistic Results
+2016-08-30 10:18:57,272 INFO: Accuracy :0.733333333333
+2016-08-30 10:18:57,324 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:18:57,324 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 10:18:57,324 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:18:57,389 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:18:57,390 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:18:57,390 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:18:57,390 DEBUG: Start:	 Classification
+2016-08-30 10:18:57,934 DEBUG: Info:	 Time for Classification: 0.645569086075[s]
+2016-08-30 10:18:57,934 DEBUG: Done:	 Classification
+2016-08-30 10:18:57,940 DEBUG: Start:	 Statistic Results
+2016-08-30 10:18:57,940 INFO: Accuracy :0.514285714286
+2016-08-30 10:18:57,982 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:18:57,982 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 10:18:57,982 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:18:58,035 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:18:58,035 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:18:58,035 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:18:58,035 DEBUG: Start:	 Classification
+2016-08-30 10:19:05,580 DEBUG: Info:	 Time for Classification: 7.63366723061[s]
+2016-08-30 10:19:05,580 DEBUG: Done:	 Classification
+2016-08-30 10:19:05,626 DEBUG: Start:	 Statistic Results
+2016-08-30 10:19:05,626 INFO: Accuracy :0.552380952381
+2016-08-30 10:19:05,671 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:19:05,671 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 10:19:05,671 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:19:05,730 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:19:05,730 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:19:05,730 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:19:05,730 DEBUG: Start:	 Classification
+2016-08-30 10:19:50,442 DEBUG: Info:	 Time for Classification: 44.8092310429[s]
+2016-08-30 10:19:50,442 DEBUG: Done:	 Classification
+2016-08-30 10:19:52,058 DEBUG: Start:	 Statistic Results
+2016-08-30 10:19:52,058 INFO: Accuracy :0.647619047619
+2016-08-30 10:19:52,098 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:19:52,099 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 10:19:52,099 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:19:52,135 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:19:52,135 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:19:52,135 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:19:52,135 DEBUG: Start:	 Classification
+2016-08-30 10:19:53,501 DEBUG: Info:	 Time for Classification: 1.43281602859[s]
+2016-08-30 10:19:53,501 DEBUG: Done:	 Classification
+2016-08-30 10:19:53,538 DEBUG: Start:	 Statistic Results
+2016-08-30 10:19:53,538 INFO: Accuracy :0.257142857143
+2016-08-30 10:19:53,568 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:19:53,568 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:RNASeq_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 10:19:53,568 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:19:53,602 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 10:19:53,602 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 10:19:53,602 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:19:53,602 DEBUG: Start:	 Classification
+2016-08-30 10:20:40,756 DEBUG: Info:	 Time for Classification: 47.2164580822[s]
+2016-08-30 10:20:40,756 DEBUG: Done:	 Classification
+2016-08-30 10:20:42,788 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:42,789 INFO: Accuracy :0.761904761905
+2016-08-30 10:20:42,817 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:42,818 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 10:20:42,818 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:42,818 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:42,818 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:42,818 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:42,818 DEBUG: Start:	 Classification
+2016-08-30 10:20:42,868 DEBUG: Info:	 Time for Classification: 0.0714671611786[s]
+2016-08-30 10:20:42,869 DEBUG: Done:	 Classification
+2016-08-30 10:20:42,870 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:42,870 INFO: Accuracy :0.771428571429
+2016-08-30 10:20:42,871 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:42,871 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 10:20:42,872 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:42,872 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:42,872 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:42,872 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:42,872 DEBUG: Start:	 Classification
+2016-08-30 10:20:42,905 DEBUG: Info:	 Time for Classification: 0.0336558818817[s]
+2016-08-30 10:20:42,905 DEBUG: Done:	 Classification
+2016-08-30 10:20:42,907 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:42,907 INFO: Accuracy :0.847619047619
+2016-08-30 10:20:42,908 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:42,908 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 10:20:42,908 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:42,908 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:42,909 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:42,909 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:42,909 DEBUG: Start:	 Classification
+2016-08-30 10:20:42,946 DEBUG: Info:	 Time for Classification: 0.0375559329987[s]
+2016-08-30 10:20:42,946 DEBUG: Done:	 Classification
+2016-08-30 10:20:42,953 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:42,953 INFO: Accuracy :0.704761904762
+2016-08-30 10:20:42,954 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:42,954 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 10:20:42,954 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:42,955 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:42,955 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:42,955 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:42,955 DEBUG: Start:	 Classification
+2016-08-30 10:20:43,489 DEBUG: Info:	 Time for Classification: 0.53512597084[s]
+2016-08-30 10:20:43,489 DEBUG: Done:	 Classification
+2016-08-30 10:20:43,493 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:43,494 INFO: Accuracy :0.790476190476
+2016-08-30 10:20:43,495 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:43,495 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 10:20:43,495 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:43,495 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:43,495 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:43,495 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:43,495 DEBUG: Start:	 Classification
+2016-08-30 10:20:43,539 DEBUG: Info:	 Time for Classification: 0.0446429252625[s]
+2016-08-30 10:20:43,539 DEBUG: Done:	 Classification
+2016-08-30 10:20:43,541 DEBUG: Start:	 Statistic Results
+2016-08-30 10:20:43,541 INFO: Accuracy :0.609523809524
+2016-08-30 10:20:43,542 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 10:20:43,542 DEBUG: ### Classification - Database:ModifiedMultiOmic Feature:Clinic_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 10:20:43,542 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 10:20:43,543 DEBUG: Info:	 Shape X_train:(242, 127), Length of y_train:242
+2016-08-30 10:20:43,543 DEBUG: Info:	 Shape X_test:(105, 127), Length of y_test:105
+2016-08-30 10:20:43,543 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 10:20:43,543 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-102454-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-102454-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..6eb1779d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-102454-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,21 @@
+2016-08-30 10:24:54,277 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:24:54,280 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:24:54,280 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:24:54,280 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-30 10:24:54,281 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-30 10:24:54,281 INFO: Info:	 Shape of RNASeq_ :(347, 73599)
+2016-08-30 10:24:54,282 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-30 10:24:54,282 INFO: Done:	 Read Database Files
+2016-08-30 10:24:54,282 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:24:54,286 INFO: Done:	 Determine validation split
+2016-08-30 10:24:54,286 INFO: Start:	 Determine 5 folds
+2016-08-30 10:24:54,294 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:24:54,294 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:24:54,294 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:24:54,294 INFO: Done:	 Determine folds
+2016-08-30 10:24:54,294 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:24:54,294 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:24:54,295 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-30 10:24:58,093 DEBUG: 		Info:	 Best Reslut : 0.515409836066
+2016-08-30 10:24:58,093 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:24:58,095 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-102653-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-102653-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..79a51492
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-102653-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-30 10:26:53,326 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:26:53,329 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:26:53,330 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:26:53,330 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-30 10:26:53,331 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-30 10:26:53,331 INFO: Info:	 Shape of RNASeq_ :(347, 73599)
+2016-08-30 10:26:53,332 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-30 10:26:53,332 INFO: Done:	 Read Database Files
+2016-08-30 10:26:53,332 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:26:53,338 INFO: Done:	 Determine validation split
+2016-08-30 10:26:53,338 INFO: Start:	 Determine 5 folds
+2016-08-30 10:26:53,349 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:26:53,349 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:26:53,349 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:26:53,349 INFO: Done:	 Determine folds
+2016-08-30 10:26:53,350 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:26:53,350 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:26:53,350 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-102706-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-102706-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..b2f8bb9e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-102706-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,36 @@
+2016-08-30 10:27:06,826 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:27:06,829 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:27:06,829 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:27:06,829 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-30 10:27:06,830 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-30 10:27:06,830 INFO: Info:	 Shape of RNASeq_ :(347, 73599)
+2016-08-30 10:27:06,830 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-30 10:27:06,831 INFO: Done:	 Read Database Files
+2016-08-30 10:27:06,831 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:27:06,834 INFO: Done:	 Determine validation split
+2016-08-30 10:27:06,834 INFO: Start:	 Determine 5 folds
+2016-08-30 10:27:06,842 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:27:06,842 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:27:06,842 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:27:06,842 INFO: Done:	 Determine folds
+2016-08-30 10:27:06,842 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:27:06,842 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:27:06,843 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-30 10:27:10,624 DEBUG: 		Info:	 Best Reslut : 0.508606557377
+2016-08-30 10:27:10,626 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:27:10,626 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-30 10:27:12,016 DEBUG: 		Info:	 Best Reslut : 0.514262295082
+2016-08-30 10:27:12,016 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:27:12,017 DEBUG: 	Start:	 Gridsearch for DecisionTree on RNASeq_
+2016-08-30 10:27:19,883 DEBUG: 		Info:	 Best Reslut : 0.505
+2016-08-30 10:27:19,886 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:27:19,886 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-30 10:27:21,594 DEBUG: 		Info:	 Best Reslut : 0.58762295082
+2016-08-30 10:27:21,594 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:27:21,594 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:27:21,595 INFO: 	Start:	 Fold number 1
+2016-08-30 10:27:23,833 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:27:23,868 DEBUG: 			View 0 : 0.566820276498
+2016-08-30 10:27:23,878 DEBUG: 			View 1 : 0.63133640553
+2016-08-30 10:27:23,931 DEBUG: 			View 2 : 0.63133640553
+2016-08-30 10:27:23,943 DEBUG: 			View 3 : 0.36866359447
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-102823-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-102823-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
new file mode 100644
index 00000000..f52649ae
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-102823-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-30 10:28:23,860 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:28:23,862 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:28:23,862 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:28:23,863 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-30 10:28:23,863 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-30 10:28:23,864 INFO: Info:	 Shape of RNASeq_ :(347, 73599)
+2016-08-30 10:28:23,864 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-30 10:28:23,864 INFO: Done:	 Read Database Files
+2016-08-30 10:28:23,864 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:28:23,868 INFO: Done:	 Determine validation split
+2016-08-30 10:28:23,868 INFO: Start:	 Determine 5 folds
+2016-08-30 10:28:23,876 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:28:23,876 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:28:23,876 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:28:23,876 INFO: Done:	 Determine folds
+2016-08-30 10:28:23,876 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:28:23,876 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:28:23,877 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-102929-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-102929-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..1a0f4d80
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-102929-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,351 @@
+2016-08-30 10:29:29,871 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:29:29,873 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:29:29,874 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:29:29,874 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 10:29:29,875 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 10:29:29,875 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 10:29:29,876 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 10:29:29,876 INFO: Done:	 Read Database Files
+2016-08-30 10:29:29,876 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:29:29,880 INFO: Done:	 Determine validation split
+2016-08-30 10:29:29,881 INFO: Start:	 Determine 5 folds
+2016-08-30 10:29:29,888 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:29:29,888 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:29:29,889 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:29:29,889 INFO: Done:	 Determine folds
+2016-08-30 10:29:29,889 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:29:29,889 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:29:29,889 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-30 10:29:33,972 DEBUG: 		Info:	 Best Reslut : 0.542131147541
+2016-08-30 10:29:33,973 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:29:33,973 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-30 10:29:35,385 DEBUG: 		Info:	 Best Reslut : 0.518278688525
+2016-08-30 10:29:35,385 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:29:35,386 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-30 10:29:44,374 DEBUG: 		Info:	 Best Reslut : 0.530163934426
+2016-08-30 10:29:44,377 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:29:44,378 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-30 10:29:46,222 DEBUG: 		Info:	 Best Reslut : 0.564016393443
+2016-08-30 10:29:46,222 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:29:46,222 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:29:46,222 INFO: 	Start:	 Fold number 1
+2016-08-30 10:29:48,537 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:29:48,675 DEBUG: 			View 0 : 0.617224880383
+2016-08-30 10:29:48,685 DEBUG: 			View 1 : 0.617224880383
+2016-08-30 10:29:49,169 DEBUG: 			View 2 : 0.516746411483
+2016-08-30 10:29:49,180 DEBUG: 			View 3 : 0.483253588517
+2016-08-30 10:29:49,237 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:29:49,338 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:29:49,359 DEBUG: 			View 0 : 0.459330143541
+2016-08-30 10:29:49,369 DEBUG: 			View 1 : 0.454545454545
+2016-08-30 10:29:49,429 DEBUG: 			View 2 : 0.607655502392
+2016-08-30 10:29:49,440 DEBUG: 			View 3 : 0.497607655502
+2016-08-30 10:29:49,513 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:29:49,721 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:29:49,741 DEBUG: 			View 0 : 0.473684210526
+2016-08-30 10:29:49,751 DEBUG: 			View 1 : 0.55023923445
+2016-08-30 10:29:49,811 DEBUG: 			View 2 : 0.421052631579
+2016-08-30 10:29:49,823 DEBUG: 			View 3 : 0.516746411483
+2016-08-30 10:29:49,896 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:50,175 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:29:50,196 DEBUG: 			View 0 : 0.626794258373
+2016-08-30 10:29:50,206 DEBUG: 			View 1 : 0.631578947368
+2016-08-30 10:29:50,266 DEBUG: 			View 2 : 0.488038277512
+2016-08-30 10:29:50,279 DEBUG: 			View 3 : 0.535885167464
+2016-08-30 10:29:50,356 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:50,716 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:29:50,737 DEBUG: 			View 0 : 0.516746411483
+2016-08-30 10:29:50,746 DEBUG: 			View 1 : 0.416267942584
+2016-08-30 10:29:50,817 DEBUG: 			View 2 : 0.397129186603
+2016-08-30 10:29:50,829 DEBUG: 			View 3 : 0.602870813397
+2016-08-30 10:29:50,907 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:29:51,341 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:29:51,363 DEBUG: 			View 0 : 0.416267942584
+2016-08-30 10:29:51,373 DEBUG: 			View 1 : 0.717703349282
+2016-08-30 10:29:51,436 DEBUG: 			View 2 : 0.545454545455
+2016-08-30 10:29:51,448 DEBUG: 			View 3 : 0.583732057416
+2016-08-30 10:29:51,532 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:52,048 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:29:52,068 DEBUG: 			View 0 : 0.344497607656
+2016-08-30 10:29:52,078 DEBUG: 			View 1 : 0.645933014354
+2016-08-30 10:29:52,136 DEBUG: 			View 2 : 0.502392344498
+2016-08-30 10:29:52,147 DEBUG: 			View 3 : 0.507177033493
+2016-08-30 10:29:52,234 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:52,819 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:29:52,840 DEBUG: 			View 0 : 0.421052631579
+2016-08-30 10:29:52,850 DEBUG: 			View 1 : 0.478468899522
+2016-08-30 10:29:52,909 DEBUG: 			View 2 : 0.545454545455
+2016-08-30 10:29:52,920 DEBUG: 			View 3 : 0.602870813397
+2016-08-30 10:29:53,010 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:29:53,681 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:29:53,701 DEBUG: 			View 0 : 0.488038277512
+2016-08-30 10:29:53,711 DEBUG: 			View 1 : 0.406698564593
+2016-08-30 10:29:53,769 DEBUG: 			View 2 : 0.540669856459
+2016-08-30 10:29:53,781 DEBUG: 			View 3 : 0.488038277512
+2016-08-30 10:29:53,879 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:29:54,639 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:29:54,659 DEBUG: 			View 0 : 0.430622009569
+2016-08-30 10:29:54,669 DEBUG: 			View 1 : 0.674641148325
+2016-08-30 10:29:54,729 DEBUG: 			View 2 : 0.655502392344
+2016-08-30 10:29:54,742 DEBUG: 			View 3 : 0.382775119617
+2016-08-30 10:29:54,840 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:55,684 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:29:55,705 DEBUG: 			View 0 : 0.397129186603
+2016-08-30 10:29:55,715 DEBUG: 			View 1 : 0.626794258373
+2016-08-30 10:29:55,776 DEBUG: 			View 2 : 0.564593301435
+2016-08-30 10:29:55,789 DEBUG: 			View 3 : 0.430622009569
+2016-08-30 10:29:55,893 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:56,812 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:29:56,832 DEBUG: 			View 0 : 0.645933014354
+2016-08-30 10:29:56,842 DEBUG: 			View 1 : 0.392344497608
+2016-08-30 10:29:56,901 DEBUG: 			View 2 : 0.526315789474
+2016-08-30 10:29:56,912 DEBUG: 			View 3 : 0.598086124402
+2016-08-30 10:29:57,017 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:29:58,014 DEBUG: 		Start:	 Iteration 13
+2016-08-30 10:29:58,035 DEBUG: 			View 0 : 0.679425837321
+2016-08-30 10:29:58,046 DEBUG: 			View 1 : 0.708133971292
+2016-08-30 10:29:58,104 DEBUG: 			View 2 : 0.55023923445
+2016-08-30 10:29:58,115 DEBUG: 			View 3 : 0.574162679426
+2016-08-30 10:29:58,223 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:29:59,301 DEBUG: 		Start:	 Iteration 14
+2016-08-30 10:29:59,322 DEBUG: 			View 0 : 0.444976076555
+2016-08-30 10:29:59,332 DEBUG: 			View 1 : 0.693779904306
+2016-08-30 10:29:59,391 DEBUG: 			View 2 : 0.531100478469
+2016-08-30 10:29:59,402 DEBUG: 			View 3 : 0.574162679426
+2016-08-30 10:29:59,512 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:00,668 DEBUG: 		Start:	 Iteration 15
+2016-08-30 10:30:00,688 DEBUG: 			View 0 : 0.535885167464
+2016-08-30 10:30:00,698 DEBUG: 			View 1 : 0.574162679426
+2016-08-30 10:30:00,758 DEBUG: 			View 2 : 0.569377990431
+2016-08-30 10:30:00,770 DEBUG: 			View 3 : 0.44976076555
+2016-08-30 10:30:00,886 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:02,118 DEBUG: 		Start:	 Iteration 16
+2016-08-30 10:30:02,138 DEBUG: 			View 0 : 0.626794258373
+2016-08-30 10:30:02,148 DEBUG: 			View 1 : 0.598086124402
+2016-08-30 10:30:02,207 DEBUG: 			View 2 : 0.488038277512
+2016-08-30 10:30:02,219 DEBUG: 			View 3 : 0.526315789474
+2016-08-30 10:30:02,338 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:30:03,646 DEBUG: 		Start:	 Iteration 17
+2016-08-30 10:30:03,667 DEBUG: 			View 0 : 0.684210526316
+2016-08-30 10:30:03,676 DEBUG: 			View 1 : 0.583732057416
+2016-08-30 10:30:03,736 DEBUG: 			View 2 : 0.473684210526
+2016-08-30 10:30:03,747 DEBUG: 			View 3 : 0.502392344498
+2016-08-30 10:30:03,871 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:30:05,259 DEBUG: 		Start:	 Iteration 18
+2016-08-30 10:30:05,279 DEBUG: 			View 0 : 0.535885167464
+2016-08-30 10:30:05,290 DEBUG: 			View 1 : 0.473684210526
+2016-08-30 10:30:05,350 DEBUG: 			View 2 : 0.464114832536
+2016-08-30 10:30:05,362 DEBUG: 			View 3 : 0.574162679426
+2016-08-30 10:30:05,488 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:30:06,969 DEBUG: 		Start:	 Iteration 19
+2016-08-30 10:30:06,991 DEBUG: 			View 0 : 0.492822966507
+2016-08-30 10:30:07,002 DEBUG: 			View 1 : 0.435406698565
+2016-08-30 10:30:07,061 DEBUG: 			View 2 : 0.488038277512
+2016-08-30 10:30:07,073 DEBUG: 			View 3 : 0.535885167464
+2016-08-30 10:30:07,200 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:30:08,747 DEBUG: 		Start:	 Iteration 20
+2016-08-30 10:30:08,767 DEBUG: 			View 0 : 0.55023923445
+2016-08-30 10:30:08,777 DEBUG: 			View 1 : 0.693779904306
+2016-08-30 10:30:08,836 DEBUG: 			View 2 : 0.569377990431
+2016-08-30 10:30:08,847 DEBUG: 			View 3 : 0.531100478469
+2016-08-30 10:30:08,979 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:10,609 DEBUG: 		Start:	 Iteration 21
+2016-08-30 10:30:10,629 DEBUG: 			View 0 : 0.583732057416
+2016-08-30 10:30:10,639 DEBUG: 			View 1 : 0.650717703349
+2016-08-30 10:30:10,698 DEBUG: 			View 2 : 0.397129186603
+2016-08-30 10:30:10,710 DEBUG: 			View 3 : 0.478468899522
+2016-08-30 10:30:10,854 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:12,610 DEBUG: 		Start:	 Iteration 22
+2016-08-30 10:30:12,630 DEBUG: 			View 0 : 0.765550239234
+2016-08-30 10:30:12,640 DEBUG: 			View 1 : 0.44019138756
+2016-08-30 10:30:12,700 DEBUG: 			View 2 : 0.354066985646
+2016-08-30 10:30:12,712 DEBUG: 			View 3 : 0.526315789474
+2016-08-30 10:30:12,853 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:30:14,721 DEBUG: 		Start:	 Iteration 23
+2016-08-30 10:30:14,742 DEBUG: 			View 0 : 0.497607655502
+2016-08-30 10:30:14,752 DEBUG: 			View 1 : 0.593301435407
+2016-08-30 10:30:14,811 DEBUG: 			View 2 : 0.521531100478
+2016-08-30 10:30:14,823 DEBUG: 			View 3 : 0.521531100478
+2016-08-30 10:30:14,970 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:16,861 DEBUG: 		Start:	 Iteration 24
+2016-08-30 10:30:16,881 DEBUG: 			View 0 : 0.492822966507
+2016-08-30 10:30:16,891 DEBUG: 			View 1 : 0.416267942584
+2016-08-30 10:30:16,951 DEBUG: 			View 2 : 0.545454545455
+2016-08-30 10:30:16,963 DEBUG: 			View 3 : 0.612440191388
+2016-08-30 10:30:17,109 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:30:19,363 DEBUG: 		Start:	 Iteration 25
+2016-08-30 10:30:19,384 DEBUG: 			View 0 : 0.511961722488
+2016-08-30 10:30:19,394 DEBUG: 			View 1 : 0.425837320574
+2016-08-30 10:30:19,455 DEBUG: 			View 2 : 0.540669856459
+2016-08-30 10:30:19,467 DEBUG: 			View 3 : 0.401913875598
+2016-08-30 10:30:19,614 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:30:21,662 DEBUG: 		Start:	 Iteration 26
+2016-08-30 10:30:21,683 DEBUG: 			View 0 : 0.411483253589
+2016-08-30 10:30:21,692 DEBUG: 			View 1 : 0.425837320574
+2016-08-30 10:30:21,752 DEBUG: 			View 2 : 0.454545454545
+2016-08-30 10:30:21,764 DEBUG: 			View 3 : 0.521531100478
+2016-08-30 10:30:21,917 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:30:24,029 DEBUG: 		Start:	 Iteration 27
+2016-08-30 10:30:24,049 DEBUG: 			View 0 : 0.598086124402
+2016-08-30 10:30:24,059 DEBUG: 			View 1 : 0.674641148325
+2016-08-30 10:30:24,119 DEBUG: 			View 2 : 0.665071770335
+2016-08-30 10:30:24,131 DEBUG: 			View 3 : 0.55980861244
+2016-08-30 10:30:24,288 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:30:26,547 DEBUG: 		Start:	 Iteration 28
+2016-08-30 10:30:26,567 DEBUG: 			View 0 : 0.44019138756
+2016-08-30 10:30:26,577 DEBUG: 			View 1 : 0.430622009569
+2016-08-30 10:30:26,637 DEBUG: 			View 2 : 0.44976076555
+2016-08-30 10:30:26,649 DEBUG: 			View 3 : 0.387559808612
+2016-08-30 10:30:26,650 WARNING: WARNING:	All bad for iteration 27
+2016-08-30 10:30:26,813 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:30:29,246 DEBUG: 		Start:	 Iteration 29
+2016-08-30 10:30:29,269 DEBUG: 			View 0 : 0.492822966507
+2016-08-30 10:30:29,279 DEBUG: 			View 1 : 0.33971291866
+2016-08-30 10:30:29,348 DEBUG: 			View 2 : 0.602870813397
+2016-08-30 10:30:29,362 DEBUG: 			View 3 : 0.478468899522
+2016-08-30 10:30:29,536 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:30:32,153 DEBUG: 		Start:	 Iteration 30
+2016-08-30 10:30:32,173 DEBUG: 			View 0 : 0.55980861244
+2016-08-30 10:30:32,183 DEBUG: 			View 1 : 0.679425837321
+2016-08-30 10:30:32,244 DEBUG: 			View 2 : 0.387559808612
+2016-08-30 10:30:32,256 DEBUG: 			View 3 : 0.459330143541
+2016-08-30 10:30:32,421 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:34,947 DEBUG: 		Start:	 Iteration 31
+2016-08-30 10:30:34,969 DEBUG: 			View 0 : 0.622009569378
+2016-08-30 10:30:34,980 DEBUG: 			View 1 : 0.746411483254
+2016-08-30 10:30:35,035 DEBUG: 			View 2 : 0.564593301435
+2016-08-30 10:30:35,046 DEBUG: 			View 3 : 0.468899521531
+2016-08-30 10:30:35,215 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:37,816 DEBUG: 		Start:	 Iteration 32
+2016-08-30 10:30:37,837 DEBUG: 			View 0 : 0.373205741627
+2016-08-30 10:30:37,847 DEBUG: 			View 1 : 0.641148325359
+2016-08-30 10:30:37,905 DEBUG: 			View 2 : 0.574162679426
+2016-08-30 10:30:37,915 DEBUG: 			View 3 : 0.574162679426
+2016-08-30 10:30:38,088 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:40,837 DEBUG: 		Start:	 Iteration 33
+2016-08-30 10:30:40,859 DEBUG: 			View 0 : 0.468899521531
+2016-08-30 10:30:40,869 DEBUG: 			View 1 : 0.545454545455
+2016-08-30 10:30:40,915 DEBUG: 			View 2 : 0.397129186603
+2016-08-30 10:30:40,926 DEBUG: 			View 3 : 0.382775119617
+2016-08-30 10:30:41,105 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:44,011 DEBUG: 		Start:	 Iteration 34
+2016-08-30 10:30:44,035 DEBUG: 			View 0 : 0.468899521531
+2016-08-30 10:30:44,046 DEBUG: 			View 1 : 0.66985645933
+2016-08-30 10:30:44,095 DEBUG: 			View 2 : 0.526315789474
+2016-08-30 10:30:44,105 DEBUG: 			View 3 : 0.531100478469
+2016-08-30 10:30:44,305 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:30:47,140 DEBUG: 		Start:	 Iteration 35
+2016-08-30 10:30:47,160 DEBUG: 			View 0 : 0.483253588517
+2016-08-30 10:30:47,170 DEBUG: 			View 1 : 0.497607655502
+2016-08-30 10:30:47,215 DEBUG: 			View 2 : 0.564593301435
+2016-08-30 10:30:47,224 DEBUG: 			View 3 : 0.430622009569
+2016-08-30 10:30:47,405 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:30:50,293 DEBUG: 		Start:	 Iteration 36
+2016-08-30 10:30:50,314 DEBUG: 			View 0 : 0.483253588517
+2016-08-30 10:30:50,324 DEBUG: 			View 1 : 0.507177033493
+2016-08-30 10:30:50,369 DEBUG: 			View 2 : 0.521531100478
+2016-08-30 10:30:50,379 DEBUG: 			View 3 : 0.569377990431
+2016-08-30 10:30:50,567 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:30:53,529 DEBUG: 		Start:	 Iteration 37
+2016-08-30 10:30:53,549 DEBUG: 			View 0 : 0.66028708134
+2016-08-30 10:30:53,559 DEBUG: 			View 1 : 0.636363636364
+2016-08-30 10:30:53,605 DEBUG: 			View 2 : 0.507177033493
+2016-08-30 10:30:53,615 DEBUG: 			View 3 : 0.564593301435
+2016-08-30 10:30:53,807 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:30:56,845 DEBUG: 		Start:	 Iteration 38
+2016-08-30 10:30:56,866 DEBUG: 			View 0 : 0.444976076555
+2016-08-30 10:30:56,876 DEBUG: 			View 1 : 0.607655502392
+2016-08-30 10:30:56,921 DEBUG: 			View 2 : 0.535885167464
+2016-08-30 10:30:56,930 DEBUG: 			View 3 : 0.454545454545
+2016-08-30 10:30:57,121 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:31:00,227 DEBUG: 		Start:	 Iteration 39
+2016-08-30 10:31:00,247 DEBUG: 			View 0 : 0.708133971292
+2016-08-30 10:31:00,257 DEBUG: 			View 1 : 0.401913875598
+2016-08-30 10:31:00,302 DEBUG: 			View 2 : 0.502392344498
+2016-08-30 10:31:00,311 DEBUG: 			View 3 : 0.483253588517
+2016-08-30 10:31:00,507 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:31:03,715 DEBUG: 		Start:	 Iteration 40
+2016-08-30 10:31:03,736 DEBUG: 			View 0 : 0.387559808612
+2016-08-30 10:31:03,748 DEBUG: 			View 1 : 0.425837320574
+2016-08-30 10:31:03,801 DEBUG: 			View 2 : 0.392344497608
+2016-08-30 10:31:03,811 DEBUG: 			View 3 : 0.531100478469
+2016-08-30 10:31:04,030 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:31:07,435 DEBUG: 		Start:	 Iteration 41
+2016-08-30 10:31:07,455 DEBUG: 			View 0 : 0.468899521531
+2016-08-30 10:31:07,465 DEBUG: 			View 1 : 0.55980861244
+2016-08-30 10:31:07,509 DEBUG: 			View 2 : 0.397129186603
+2016-08-30 10:31:07,518 DEBUG: 			View 3 : 0.430622009569
+2016-08-30 10:31:07,725 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:31:11,097 DEBUG: 		Start:	 Iteration 42
+2016-08-30 10:31:11,117 DEBUG: 			View 0 : 0.732057416268
+2016-08-30 10:31:11,127 DEBUG: 			View 1 : 0.665071770335
+2016-08-30 10:31:11,172 DEBUG: 			View 2 : 0.583732057416
+2016-08-30 10:31:11,181 DEBUG: 			View 3 : 0.401913875598
+2016-08-30 10:31:11,385 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:31:14,868 DEBUG: 		Start:	 Iteration 43
+2016-08-30 10:31:14,889 DEBUG: 			View 0 : 0.483253588517
+2016-08-30 10:31:14,899 DEBUG: 			View 1 : 0.349282296651
+2016-08-30 10:31:14,949 DEBUG: 			View 2 : 0.444976076555
+2016-08-30 10:31:14,958 DEBUG: 			View 3 : 0.430622009569
+2016-08-30 10:31:14,959 WARNING: WARNING:	All bad for iteration 42
+2016-08-30 10:31:15,170 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:31:18,860 DEBUG: 		Start:	 Iteration 44
+2016-08-30 10:31:18,885 DEBUG: 			View 0 : 0.382775119617
+2016-08-30 10:31:18,897 DEBUG: 			View 1 : 0.454545454545
+2016-08-30 10:31:18,951 DEBUG: 			View 2 : 0.507177033493
+2016-08-30 10:31:18,962 DEBUG: 			View 3 : 0.507177033493
+2016-08-30 10:31:19,206 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:31:22,894 DEBUG: 		Start:	 Iteration 45
+2016-08-30 10:31:22,915 DEBUG: 			View 0 : 0.44976076555
+2016-08-30 10:31:22,924 DEBUG: 			View 1 : 0.626794258373
+2016-08-30 10:31:22,970 DEBUG: 			View 2 : 0.545454545455
+2016-08-30 10:31:22,979 DEBUG: 			View 3 : 0.569377990431
+2016-08-30 10:31:23,195 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:31:26,915 DEBUG: 		Start:	 Iteration 46
+2016-08-30 10:31:26,935 DEBUG: 			View 0 : 0.540669856459
+2016-08-30 10:31:26,946 DEBUG: 			View 1 : 0.516746411483
+2016-08-30 10:31:26,998 DEBUG: 			View 2 : 0.526315789474
+2016-08-30 10:31:27,008 DEBUG: 			View 3 : 0.622009569378
+2016-08-30 10:31:27,231 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:31:31,037 DEBUG: 		Start:	 Iteration 47
+2016-08-30 10:31:31,058 DEBUG: 			View 0 : 0.535885167464
+2016-08-30 10:31:31,068 DEBUG: 			View 1 : 0.435406698565
+2016-08-30 10:31:31,112 DEBUG: 			View 2 : 0.55023923445
+2016-08-30 10:31:31,122 DEBUG: 			View 3 : 0.602870813397
+2016-08-30 10:31:31,345 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:31:35,202 DEBUG: 		Start:	 Iteration 48
+2016-08-30 10:31:35,223 DEBUG: 			View 0 : 0.492822966507
+2016-08-30 10:31:35,233 DEBUG: 			View 1 : 0.593301435407
+2016-08-30 10:31:35,279 DEBUG: 			View 2 : 0.545454545455
+2016-08-30 10:31:35,289 DEBUG: 			View 3 : 0.602870813397
+2016-08-30 10:31:35,516 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:31:39,436 DEBUG: 		Start:	 Iteration 49
+2016-08-30 10:31:39,456 DEBUG: 			View 0 : 0.588516746411
+2016-08-30 10:31:39,466 DEBUG: 			View 1 : 0.55023923445
+2016-08-30 10:31:39,511 DEBUG: 			View 2 : 0.464114832536
+2016-08-30 10:31:39,520 DEBUG: 			View 3 : 0.421052631579
+2016-08-30 10:31:39,750 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:31:43,781 DEBUG: 		Start:	 Iteration 50
+2016-08-30 10:31:43,804 DEBUG: 			View 0 : 0.430622009569
+2016-08-30 10:31:43,814 DEBUG: 			View 1 : 0.526315789474
+2016-08-30 10:31:43,862 DEBUG: 			View 2 : 0.535885167464
+2016-08-30 10:31:43,871 DEBUG: 			View 3 : 0.421052631579
+2016-08-30 10:31:44,112 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:31:48,221 DEBUG: 		Start:	 Iteration 51
+2016-08-30 10:31:48,241 DEBUG: 			View 0 : 0.636363636364
+2016-08-30 10:31:48,251 DEBUG: 			View 1 : 0.612440191388
+2016-08-30 10:31:48,296 DEBUG: 			View 2 : 0.55980861244
+2016-08-30 10:31:48,306 DEBUG: 			View 3 : 0.593301435407
+2016-08-30 10:31:48,543 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:31:52,711 DEBUG: 		Start:	 Iteration 52
+2016-08-30 10:31:52,732 DEBUG: 			View 0 : 0.535885167464
+2016-08-30 10:31:52,742 DEBUG: 			View 1 : 0.421052631579
+2016-08-30 10:31:52,787 DEBUG: 			View 2 : 0.535885167464
+2016-08-30 10:31:52,797 DEBUG: 			View 3 : 0.540669856459
+2016-08-30 10:31:53,039 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:31:57,458 DEBUG: 		Start:	 Iteration 53
+2016-08-30 10:31:57,479 DEBUG: 			View 0 : 0.488038277512
+2016-08-30 10:31:57,489 DEBUG: 			View 1 : 0.622009569378
+2016-08-30 10:31:57,541 DEBUG: 			View 2 : 0.622009569378
+2016-08-30 10:31:57,551 DEBUG: 			View 3 : 0.411483253589
+2016-08-30 10:31:57,807 DEBUG: 			 Best view : 		RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-103201-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-103201-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..e8f6ff97
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-103201-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,411 @@
+2016-08-30 10:32:01,666 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:32:01,668 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:32:01,668 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 10:32:01,668 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 10:32:01,669 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 10:32:01,669 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 10:32:01,670 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 10:32:01,670 INFO: Done:	 Read Database Files
+2016-08-30 10:32:01,670 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:32:01,674 INFO: Done:	 Determine validation split
+2016-08-30 10:32:01,674 INFO: Start:	 Determine 5 folds
+2016-08-30 10:32:01,682 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:32:01,682 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:32:01,682 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:32:01,682 INFO: Done:	 Determine folds
+2016-08-30 10:32:01,682 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 10:32:01,682 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:32:01,683 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-30 10:32:05,444 DEBUG: 		Info:	 Best Reslut : 0.538196721311
+2016-08-30 10:32:05,445 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:32:05,445 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-30 10:32:06,789 DEBUG: 		Info:	 Best Reslut : 0.54737704918
+2016-08-30 10:32:06,789 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:32:06,790 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-30 10:32:14,632 DEBUG: 		Info:	 Best Reslut : 0.509016393443
+2016-08-30 10:32:14,632 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:32:14,633 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-30 10:32:15,897 DEBUG: 		Info:	 Best Reslut : 0.500245901639
+2016-08-30 10:32:15,897 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 10:32:15,897 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-30 10:32:15,897 INFO: 	Start:	 Fold number 1
+2016-08-30 10:32:18,046 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:32:18,066 DEBUG: 			View 0 : 0.62441314554
+2016-08-30 10:32:18,076 DEBUG: 			View 1 : 0.37558685446
+2016-08-30 10:32:18,129 DEBUG: 			View 2 : 0.50234741784
+2016-08-30 10:32:18,139 DEBUG: 			View 3 : 0.37558685446
+2016-08-30 10:32:18,192 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:18,289 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:32:18,310 DEBUG: 			View 0 : 0.464788732394
+2016-08-30 10:32:18,320 DEBUG: 			View 1 : 0.638497652582
+2016-08-30 10:32:18,365 DEBUG: 			View 2 : 0.516431924883
+2016-08-30 10:32:18,375 DEBUG: 			View 3 : 0.619718309859
+2016-08-30 10:32:18,437 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:18,611 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:32:18,632 DEBUG: 			View 0 : 0.394366197183
+2016-08-30 10:32:18,641 DEBUG: 			View 1 : 0.638497652582
+2016-08-30 10:32:18,687 DEBUG: 			View 2 : 0.596244131455
+2016-08-30 10:32:18,696 DEBUG: 			View 3 : 0.384976525822
+2016-08-30 10:32:18,767 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:19,022 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:32:19,042 DEBUG: 			View 0 : 0.422535211268
+2016-08-30 10:32:19,052 DEBUG: 			View 1 : 0.417840375587
+2016-08-30 10:32:19,101 DEBUG: 			View 2 : 0.474178403756
+2016-08-30 10:32:19,111 DEBUG: 			View 3 : 0.43661971831
+2016-08-30 10:32:19,111 WARNING: WARNING:	All bad for iteration 3
+2016-08-30 10:32:19,186 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:19,519 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:32:19,540 DEBUG: 			View 0 : 0.413145539906
+2016-08-30 10:32:19,550 DEBUG: 			View 1 : 0.704225352113
+2016-08-30 10:32:19,595 DEBUG: 			View 2 : 0.530516431925
+2016-08-30 10:32:19,604 DEBUG: 			View 3 : 0.619718309859
+2016-08-30 10:32:19,681 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:20,092 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:32:20,113 DEBUG: 			View 0 : 0.403755868545
+2016-08-30 10:32:20,122 DEBUG: 			View 1 : 0.511737089202
+2016-08-30 10:32:20,167 DEBUG: 			View 2 : 0.389671361502
+2016-08-30 10:32:20,176 DEBUG: 			View 3 : 0.553990610329
+2016-08-30 10:32:20,258 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:20,746 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:32:20,767 DEBUG: 			View 0 : 0.591549295775
+2016-08-30 10:32:20,777 DEBUG: 			View 1 : 0.619718309859
+2016-08-30 10:32:20,822 DEBUG: 			View 2 : 0.577464788732
+2016-08-30 10:32:20,831 DEBUG: 			View 3 : 0.516431924883
+2016-08-30 10:32:20,916 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:21,484 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:32:21,505 DEBUG: 			View 0 : 0.62441314554
+2016-08-30 10:32:21,515 DEBUG: 			View 1 : 0.544600938967
+2016-08-30 10:32:21,560 DEBUG: 			View 2 : 0.62441314554
+2016-08-30 10:32:21,569 DEBUG: 			View 3 : 0.380281690141
+2016-08-30 10:32:21,656 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:22,320 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:32:22,341 DEBUG: 			View 0 : 0.647887323944
+2016-08-30 10:32:22,351 DEBUG: 			View 1 : 0.629107981221
+2016-08-30 10:32:22,396 DEBUG: 			View 2 : 0.488262910798
+2016-08-30 10:32:22,405 DEBUG: 			View 3 : 0.43661971831
+2016-08-30 10:32:22,496 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:23,250 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:32:23,270 DEBUG: 			View 0 : 0.577464788732
+2016-08-30 10:32:23,280 DEBUG: 			View 1 : 0.507042253521
+2016-08-30 10:32:23,325 DEBUG: 			View 2 : 0.615023474178
+2016-08-30 10:32:23,335 DEBUG: 			View 3 : 0.370892018779
+2016-08-30 10:32:23,429 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:24,282 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:32:24,302 DEBUG: 			View 0 : 0.427230046948
+2016-08-30 10:32:24,312 DEBUG: 			View 1 : 0.394366197183
+2016-08-30 10:32:24,357 DEBUG: 			View 2 : 0.455399061033
+2016-08-30 10:32:24,367 DEBUG: 			View 3 : 0.600938967136
+2016-08-30 10:32:24,466 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:25,634 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:32:25,659 DEBUG: 			View 0 : 0.408450704225
+2016-08-30 10:32:25,669 DEBUG: 			View 1 : 0.647887323944
+2016-08-30 10:32:25,714 DEBUG: 			View 2 : 0.389671361502
+2016-08-30 10:32:25,724 DEBUG: 			View 3 : 0.50234741784
+2016-08-30 10:32:25,824 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:26,830 INFO: 	Start: 	 Classification
+2016-08-30 10:32:28,538 INFO: 	Done: 	 Fold number 1
+2016-08-30 10:32:28,538 INFO: 	Start:	 Fold number 2
+2016-08-30 10:32:30,671 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:32:30,690 DEBUG: 			View 0 : 0.615384615385
+2016-08-30 10:32:30,700 DEBUG: 			View 1 : 0.432692307692
+2016-08-30 10:32:30,750 DEBUG: 			View 2 : 0.432692307692
+2016-08-30 10:32:30,759 DEBUG: 			View 3 : 0.5625
+2016-08-30 10:32:30,811 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:30,909 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:32:30,929 DEBUG: 			View 0 : 0.586538461538
+2016-08-30 10:32:30,939 DEBUG: 			View 1 : 0.552884615385
+2016-08-30 10:32:30,984 DEBUG: 			View 2 : 0.4375
+2016-08-30 10:32:30,993 DEBUG: 			View 3 : 0.423076923077
+2016-08-30 10:32:31,052 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:31,233 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:32:31,253 DEBUG: 			View 0 : 0.567307692308
+2016-08-30 10:32:31,263 DEBUG: 			View 1 : 0.639423076923
+2016-08-30 10:32:31,307 DEBUG: 			View 2 : 0.423076923077
+2016-08-30 10:32:31,316 DEBUG: 			View 3 : 0.615384615385
+2016-08-30 10:32:31,385 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:31,644 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:32:31,664 DEBUG: 			View 0 : 0.581730769231
+2016-08-30 10:32:31,675 DEBUG: 			View 1 : 0.644230769231
+2016-08-30 10:32:31,723 DEBUG: 			View 2 : 0.552884615385
+2016-08-30 10:32:31,733 DEBUG: 			View 3 : 0.581730769231
+2016-08-30 10:32:31,806 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:32,142 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:32:32,163 DEBUG: 			View 0 : 0.644230769231
+2016-08-30 10:32:32,172 DEBUG: 			View 1 : 0.379807692308
+2016-08-30 10:32:32,216 DEBUG: 			View 2 : 0.451923076923
+2016-08-30 10:32:32,225 DEBUG: 			View 3 : 0.596153846154
+2016-08-30 10:32:32,303 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:32,718 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:32:32,738 DEBUG: 			View 0 : 0.591346153846
+2016-08-30 10:32:32,748 DEBUG: 			View 1 : 0.4375
+2016-08-30 10:32:32,792 DEBUG: 			View 2 : 0.4375
+2016-08-30 10:32:32,801 DEBUG: 			View 3 : 0.519230769231
+2016-08-30 10:32:32,881 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:33,376 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:32:33,396 DEBUG: 			View 0 : 0.658653846154
+2016-08-30 10:32:33,406 DEBUG: 			View 1 : 0.336538461538
+2016-08-30 10:32:33,452 DEBUG: 			View 2 : 0.557692307692
+2016-08-30 10:32:33,461 DEBUG: 			View 3 : 0.4375
+2016-08-30 10:32:33,546 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:34,138 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:32:34,159 DEBUG: 			View 0 : 0.620192307692
+2016-08-30 10:32:34,168 DEBUG: 			View 1 : 0.586538461538
+2016-08-30 10:32:34,212 DEBUG: 			View 2 : 0.461538461538
+2016-08-30 10:32:34,222 DEBUG: 			View 3 : 0.504807692308
+2016-08-30 10:32:34,307 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:34,966 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:32:34,986 DEBUG: 			View 0 : 0.716346153846
+2016-08-30 10:32:34,996 DEBUG: 			View 1 : 0.451923076923
+2016-08-30 10:32:35,042 DEBUG: 			View 2 : 0.5625
+2016-08-30 10:32:35,051 DEBUG: 			View 3 : 0.4375
+2016-08-30 10:32:35,142 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:35,887 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:32:35,907 DEBUG: 			View 0 : 0.298076923077
+2016-08-30 10:32:35,917 DEBUG: 			View 1 : 0.384615384615
+2016-08-30 10:32:35,960 DEBUG: 			View 2 : 0.394230769231
+2016-08-30 10:32:35,970 DEBUG: 			View 3 : 0.495192307692
+2016-08-30 10:32:35,970 WARNING: WARNING:	All bad for iteration 9
+2016-08-30 10:32:36,064 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:36,889 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:32:36,910 DEBUG: 			View 0 : 0.625
+2016-08-30 10:32:36,919 DEBUG: 			View 1 : 0.572115384615
+2016-08-30 10:32:36,963 DEBUG: 			View 2 : 0.471153846154
+2016-08-30 10:32:36,973 DEBUG: 			View 3 : 0.403846153846
+2016-08-30 10:32:37,067 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:37,969 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:32:37,989 DEBUG: 			View 0 : 0.519230769231
+2016-08-30 10:32:37,999 DEBUG: 			View 1 : 0.677884615385
+2016-08-30 10:32:38,044 DEBUG: 			View 2 : 0.524038461538
+2016-08-30 10:32:38,054 DEBUG: 			View 3 : 0.581730769231
+2016-08-30 10:32:38,152 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:39,168 INFO: 	Start: 	 Classification
+2016-08-30 10:32:40,834 INFO: 	Done: 	 Fold number 2
+2016-08-30 10:32:40,834 INFO: 	Start:	 Fold number 3
+2016-08-30 10:32:42,966 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:32:42,985 DEBUG: 			View 0 : 0.620853080569
+2016-08-30 10:32:42,995 DEBUG: 			View 1 : 0.379146919431
+2016-08-30 10:32:43,039 DEBUG: 			View 2 : 0.620853080569
+2016-08-30 10:32:43,048 DEBUG: 			View 3 : 0.379146919431
+2016-08-30 10:32:43,101 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:43,202 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:32:43,223 DEBUG: 			View 0 : 0.654028436019
+2016-08-30 10:32:43,232 DEBUG: 			View 1 : 0.331753554502
+2016-08-30 10:32:43,279 DEBUG: 			View 2 : 0.407582938389
+2016-08-30 10:32:43,288 DEBUG: 			View 3 : 0.431279620853
+2016-08-30 10:32:43,348 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:43,532 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:32:43,552 DEBUG: 			View 0 : 0.407582938389
+2016-08-30 10:32:43,562 DEBUG: 			View 1 : 0.526066350711
+2016-08-30 10:32:43,607 DEBUG: 			View 2 : 0.578199052133
+2016-08-30 10:32:43,616 DEBUG: 			View 3 : 0.488151658768
+2016-08-30 10:32:43,686 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:43,971 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:32:43,991 DEBUG: 			View 0 : 0.497630331754
+2016-08-30 10:32:44,001 DEBUG: 			View 1 : 0.644549763033
+2016-08-30 10:32:44,050 DEBUG: 			View 2 : 0.587677725118
+2016-08-30 10:32:44,060 DEBUG: 			View 3 : 0.587677725118
+2016-08-30 10:32:44,135 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:44,497 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:32:44,517 DEBUG: 			View 0 : 0.60663507109
+2016-08-30 10:32:44,527 DEBUG: 			View 1 : 0.407582938389
+2016-08-30 10:32:44,571 DEBUG: 			View 2 : 0.568720379147
+2016-08-30 10:32:44,581 DEBUG: 			View 3 : 0.582938388626
+2016-08-30 10:32:44,657 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:45,100 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:32:45,120 DEBUG: 			View 0 : 0.511848341232
+2016-08-30 10:32:45,130 DEBUG: 			View 1 : 0.369668246445
+2016-08-30 10:32:45,174 DEBUG: 			View 2 : 0.45971563981
+2016-08-30 10:32:45,184 DEBUG: 			View 3 : 0.42654028436
+2016-08-30 10:32:45,263 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:45,792 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:32:45,813 DEBUG: 			View 0 : 0.436018957346
+2016-08-30 10:32:45,823 DEBUG: 			View 1 : 0.649289099526
+2016-08-30 10:32:45,868 DEBUG: 			View 2 : 0.526066350711
+2016-08-30 10:32:45,877 DEBUG: 			View 3 : 0.582938388626
+2016-08-30 10:32:45,960 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:46,565 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:32:46,585 DEBUG: 			View 0 : 0.265402843602
+2016-08-30 10:32:46,595 DEBUG: 			View 1 : 0.436018957346
+2016-08-30 10:32:46,639 DEBUG: 			View 2 : 0.625592417062
+2016-08-30 10:32:46,649 DEBUG: 			View 3 : 0.402843601896
+2016-08-30 10:32:46,734 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:47,448 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:32:47,468 DEBUG: 			View 0 : 0.421800947867
+2016-08-30 10:32:47,479 DEBUG: 			View 1 : 0.374407582938
+2016-08-30 10:32:47,523 DEBUG: 			View 2 : 0.545023696682
+2016-08-30 10:32:47,532 DEBUG: 			View 3 : 0.611374407583
+2016-08-30 10:32:47,621 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:48,401 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:32:48,422 DEBUG: 			View 0 : 0.469194312796
+2016-08-30 10:32:48,431 DEBUG: 			View 1 : 0.63981042654
+2016-08-30 10:32:48,476 DEBUG: 			View 2 : 0.478672985782
+2016-08-30 10:32:48,485 DEBUG: 			View 3 : 0.549763033175
+2016-08-30 10:32:48,577 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:49,431 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:32:49,451 DEBUG: 			View 0 : 0.587677725118
+2016-08-30 10:32:49,461 DEBUG: 			View 1 : 0.668246445498
+2016-08-30 10:32:49,505 DEBUG: 			View 2 : 0.54028436019
+2016-08-30 10:32:49,514 DEBUG: 			View 3 : 0.57345971564
+2016-08-30 10:32:49,609 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:50,544 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:32:50,564 DEBUG: 			View 0 : 0.526066350711
+2016-08-30 10:32:50,574 DEBUG: 			View 1 : 0.440758293839
+2016-08-30 10:32:50,618 DEBUG: 			View 2 : 0.521327014218
+2016-08-30 10:32:50,628 DEBUG: 			View 3 : 0.592417061611
+2016-08-30 10:32:50,727 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:51,744 INFO: 	Start: 	 Classification
+2016-08-30 10:32:53,456 INFO: 	Done: 	 Fold number 3
+2016-08-30 10:32:53,457 INFO: 	Start:	 Fold number 4
+2016-08-30 10:32:55,550 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:32:55,569 DEBUG: 			View 0 : 0.386473429952
+2016-08-30 10:32:55,579 DEBUG: 			View 1 : 0.613526570048
+2016-08-30 10:32:55,614 DEBUG: 			View 2 : 0.613526570048
+2016-08-30 10:32:55,623 DEBUG: 			View 3 : 0.613526570048
+2016-08-30 10:32:55,675 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:32:55,767 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:32:55,787 DEBUG: 			View 0 : 0.449275362319
+2016-08-30 10:32:55,797 DEBUG: 			View 1 : 0.473429951691
+2016-08-30 10:32:55,841 DEBUG: 			View 2 : 0.579710144928
+2016-08-30 10:32:55,850 DEBUG: 			View 3 : 0.3961352657
+2016-08-30 10:32:55,909 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:56,100 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:32:56,120 DEBUG: 			View 0 : 0.565217391304
+2016-08-30 10:32:56,129 DEBUG: 			View 1 : 0.410628019324
+2016-08-30 10:32:56,174 DEBUG: 			View 2 : 0.473429951691
+2016-08-30 10:32:56,184 DEBUG: 			View 3 : 0.51690821256
+2016-08-30 10:32:56,253 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:56,528 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:32:56,549 DEBUG: 			View 0 : 0.3961352657
+2016-08-30 10:32:56,558 DEBUG: 			View 1 : 0.323671497585
+2016-08-30 10:32:56,603 DEBUG: 			View 2 : 0.555555555556
+2016-08-30 10:32:56,612 DEBUG: 			View 3 : 0.492753623188
+2016-08-30 10:32:56,684 DEBUG: 			 Best view : 		RANSeq
+2016-08-30 10:32:57,048 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:32:57,068 DEBUG: 			View 0 : 0.405797101449
+2016-08-30 10:32:57,078 DEBUG: 			View 1 : 0.405797101449
+2016-08-30 10:32:57,121 DEBUG: 			View 2 : 0.531400966184
+2016-08-30 10:32:57,131 DEBUG: 			View 3 : 0.657004830918
+2016-08-30 10:32:57,206 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:57,646 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:32:57,667 DEBUG: 			View 0 : 0.642512077295
+2016-08-30 10:32:57,677 DEBUG: 			View 1 : 0.43961352657
+2016-08-30 10:32:57,721 DEBUG: 			View 2 : 0.536231884058
+2016-08-30 10:32:57,730 DEBUG: 			View 3 : 0.507246376812
+2016-08-30 10:32:57,810 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:32:58,332 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:32:58,352 DEBUG: 			View 0 : 0.458937198068
+2016-08-30 10:32:58,361 DEBUG: 			View 1 : 0.550724637681
+2016-08-30 10:32:58,405 DEBUG: 			View 2 : 0.449275362319
+2016-08-30 10:32:58,415 DEBUG: 			View 3 : 0.536231884058
+2016-08-30 10:32:58,497 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:59,098 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:32:59,118 DEBUG: 			View 0 : 0.357487922705
+2016-08-30 10:32:59,127 DEBUG: 			View 1 : 0.333333333333
+2016-08-30 10:32:59,171 DEBUG: 			View 2 : 0.555555555556
+2016-08-30 10:32:59,180 DEBUG: 			View 3 : 0.565217391304
+2016-08-30 10:32:59,267 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:32:59,942 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:32:59,962 DEBUG: 			View 0 : 0.555555555556
+2016-08-30 10:32:59,971 DEBUG: 			View 1 : 0.714975845411
+2016-08-30 10:33:00,016 DEBUG: 			View 2 : 0.584541062802
+2016-08-30 10:33:00,025 DEBUG: 			View 3 : 0.599033816425
+2016-08-30 10:33:00,114 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:00,866 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:33:00,887 DEBUG: 			View 0 : 0.589371980676
+2016-08-30 10:33:00,896 DEBUG: 			View 1 : 0.400966183575
+2016-08-30 10:33:00,941 DEBUG: 			View 2 : 0.425120772947
+2016-08-30 10:33:00,951 DEBUG: 			View 3 : 0.531400966184
+2016-08-30 10:33:01,042 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:33:01,872 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:33:01,892 DEBUG: 			View 0 : 0.652173913043
+2016-08-30 10:33:01,902 DEBUG: 			View 1 : 0.323671497585
+2016-08-30 10:33:01,945 DEBUG: 			View 2 : 0.584541062802
+2016-08-30 10:33:01,955 DEBUG: 			View 3 : 0.550724637681
+2016-08-30 10:33:02,048 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:33:02,963 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:33:02,983 DEBUG: 			View 0 : 0.420289855072
+2016-08-30 10:33:02,993 DEBUG: 			View 1 : 0.652173913043
+2016-08-30 10:33:03,037 DEBUG: 			View 2 : 0.502415458937
+2016-08-30 10:33:03,046 DEBUG: 			View 3 : 0.458937198068
+2016-08-30 10:33:03,143 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:04,155 INFO: 	Start: 	 Classification
+2016-08-30 10:33:05,860 INFO: 	Done: 	 Fold number 4
+2016-08-30 10:33:05,860 INFO: 	Start:	 Fold number 5
+2016-08-30 10:33:08,018 DEBUG: 		Start:	 Iteration 1
+2016-08-30 10:33:08,037 DEBUG: 			View 0 : 0.377358490566
+2016-08-30 10:33:08,047 DEBUG: 			View 1 : 0.377358490566
+2016-08-30 10:33:08,087 DEBUG: 			View 2 : 0.377358490566
+2016-08-30 10:33:08,097 DEBUG: 			View 3 : 0.485849056604
+2016-08-30 10:33:08,097 WARNING: WARNING:	All bad for iteration 0
+2016-08-30 10:33:08,150 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:33:08,244 DEBUG: 		Start:	 Iteration 2
+2016-08-30 10:33:08,264 DEBUG: 			View 0 : 0.603773584906
+2016-08-30 10:33:08,274 DEBUG: 			View 1 : 0.415094339623
+2016-08-30 10:33:08,320 DEBUG: 			View 2 : 0.405660377358
+2016-08-30 10:33:08,330 DEBUG: 			View 3 : 0.632075471698
+2016-08-30 10:33:08,391 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:33:08,565 DEBUG: 		Start:	 Iteration 3
+2016-08-30 10:33:08,585 DEBUG: 			View 0 : 0.641509433962
+2016-08-30 10:33:08,595 DEBUG: 			View 1 : 0.665094339623
+2016-08-30 10:33:08,641 DEBUG: 			View 2 : 0.400943396226
+2016-08-30 10:33:08,651 DEBUG: 			View 3 : 0.457547169811
+2016-08-30 10:33:08,722 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:08,973 DEBUG: 		Start:	 Iteration 4
+2016-08-30 10:33:08,994 DEBUG: 			View 0 : 0.632075471698
+2016-08-30 10:33:09,004 DEBUG: 			View 1 : 0.61320754717
+2016-08-30 10:33:09,056 DEBUG: 			View 2 : 0.471698113208
+2016-08-30 10:33:09,065 DEBUG: 			View 3 : 0.481132075472
+2016-08-30 10:33:09,139 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:09,480 DEBUG: 		Start:	 Iteration 5
+2016-08-30 10:33:09,501 DEBUG: 			View 0 : 0.542452830189
+2016-08-30 10:33:09,511 DEBUG: 			View 1 : 0.674528301887
+2016-08-30 10:33:09,556 DEBUG: 			View 2 : 0.547169811321
+2016-08-30 10:33:09,566 DEBUG: 			View 3 : 0.570754716981
+2016-08-30 10:33:09,643 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:10,057 DEBUG: 		Start:	 Iteration 6
+2016-08-30 10:33:10,082 DEBUG: 			View 0 : 0.570754716981
+2016-08-30 10:33:10,092 DEBUG: 			View 1 : 0.410377358491
+2016-08-30 10:33:10,139 DEBUG: 			View 2 : 0.547169811321
+2016-08-30 10:33:10,148 DEBUG: 			View 3 : 0.36320754717
+2016-08-30 10:33:10,233 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:33:10,741 DEBUG: 		Start:	 Iteration 7
+2016-08-30 10:33:10,765 DEBUG: 			View 0 : 0.547169811321
+2016-08-30 10:33:10,777 DEBUG: 			View 1 : 0.594339622642
+2016-08-30 10:33:10,841 DEBUG: 			View 2 : 0.561320754717
+2016-08-30 10:33:10,851 DEBUG: 			View 3 : 0.589622641509
+2016-08-30 10:33:10,964 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:33:11,636 DEBUG: 		Start:	 Iteration 8
+2016-08-30 10:33:11,657 DEBUG: 			View 0 : 0.52358490566
+2016-08-30 10:33:11,667 DEBUG: 			View 1 : 0.778301886792
+2016-08-30 10:33:11,712 DEBUG: 			View 2 : 0.617924528302
+2016-08-30 10:33:11,721 DEBUG: 			View 3 : 0.580188679245
+2016-08-30 10:33:11,808 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:12,481 DEBUG: 		Start:	 Iteration 9
+2016-08-30 10:33:12,502 DEBUG: 			View 0 : 0.471698113208
+2016-08-30 10:33:12,512 DEBUG: 			View 1 : 0.707547169811
+2016-08-30 10:33:12,577 DEBUG: 			View 2 : 0.594339622642
+2016-08-30 10:33:12,591 DEBUG: 			View 3 : 0.433962264151
+2016-08-30 10:33:12,725 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:13,559 DEBUG: 		Start:	 Iteration 10
+2016-08-30 10:33:13,579 DEBUG: 			View 0 : 0.63679245283
+2016-08-30 10:33:13,589 DEBUG: 			View 1 : 0.358490566038
+2016-08-30 10:33:13,633 DEBUG: 			View 2 : 0.566037735849
+2016-08-30 10:33:13,643 DEBUG: 			View 3 : 0.61320754717
+2016-08-30 10:33:13,740 DEBUG: 			 Best view : 		Methyl
+2016-08-30 10:33:14,619 DEBUG: 		Start:	 Iteration 11
+2016-08-30 10:33:14,640 DEBUG: 			View 0 : 0.504716981132
+2016-08-30 10:33:14,649 DEBUG: 			View 1 : 0.382075471698
+2016-08-30 10:33:14,694 DEBUG: 			View 2 : 0.528301886792
+2016-08-30 10:33:14,703 DEBUG: 			View 3 : 0.594339622642
+2016-08-30 10:33:14,799 DEBUG: 			 Best view : 		Clinic
+2016-08-30 10:33:15,762 DEBUG: 		Start:	 Iteration 12
+2016-08-30 10:33:15,790 DEBUG: 			View 0 : 0.52358490566
+2016-08-30 10:33:15,801 DEBUG: 			View 1 : 0.768867924528
+2016-08-30 10:33:15,855 DEBUG: 			View 2 : 0.419811320755
+2016-08-30 10:33:15,866 DEBUG: 			View 3 : 0.63679245283
+2016-08-30 10:33:15,993 DEBUG: 			 Best view : 		MiRNA_
+2016-08-30 10:33:17,215 INFO: 	Start: 	 Classification
+2016-08-30 10:33:18,932 INFO: 	Done: 	 Fold number 5
+2016-08-30 10:33:18,932 INFO: Done:	 Classification
+2016-08-30 10:33:18,932 INFO: Info:	 Time for Classification: 77[s]
+2016-08-30 10:33:18,932 INFO: Start:	 Result Analysis for Mumbo
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-103354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-103354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..5aefc952
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-103354-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 10:33:54,921 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-103441-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-103441-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..28f996c8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-103441-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 10:34:41,540 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-103912-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-103912-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..3b1d3b51
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-103912-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 10:39:12,183 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-104000-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-104000-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..063116f1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-104000-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 10:40:00,884 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-104030-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-104030-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..c2f50254
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-104030-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 10:40:30,687 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:40:30,691 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:40:30,691 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 10:40:30,691 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 10:40:30,692 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 10:40:30,692 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 10:40:30,693 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 10:40:30,693 INFO: Done:	 Read Database Files
+2016-08-30 10:40:30,693 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:40:30,697 INFO: Done:	 Determine validation split
+2016-08-30 10:40:30,697 INFO: Start:	 Determine 5 folds
+2016-08-30 10:40:30,707 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:40:30,707 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:40:30,707 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:40:30,707 INFO: Done:	 Determine folds
+2016-08-30 10:40:30,707 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 10:40:30,707 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-104124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-104124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..56cba5c7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-104124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 10:41:24,634 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 10:41:24,637 INFO: ### Main Programm for Multiview Classification
+2016-08-30 10:41:24,637 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 10:41:24,637 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 10:41:24,638 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 10:41:24,638 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 10:41:24,639 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 10:41:24,639 INFO: Done:	 Read Database Files
+2016-08-30 10:41:24,639 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 10:41:24,643 INFO: Done:	 Determine validation split
+2016-08-30 10:41:24,643 INFO: Start:	 Determine 5 folds
+2016-08-30 10:41:24,649 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 10:41:24,649 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 10:41:24,649 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 10:41:24,649 INFO: Done:	 Determine folds
+2016-08-30 10:41:24,649 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 10:41:24,650 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-111552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-111552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..9de80239
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-111552-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:15:52,440 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:15:52,443 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:15:52,443 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:15:52,444 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:15:52,444 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:15:52,444 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:15:52,445 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:15:52,445 INFO: Done:	 Read Database Files
+2016-08-30 11:15:52,445 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:15:52,449 INFO: Done:	 Determine validation split
+2016-08-30 11:15:52,449 INFO: Start:	 Determine 5 folds
+2016-08-30 11:15:52,457 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:15:52,457 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:15:52,457 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:15:52,458 INFO: Done:	 Determine folds
+2016-08-30 11:15:52,458 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:15:52,458 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-111631-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-111631-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..1bf11011
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-111631-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:16:31,858 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:16:31,861 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:16:31,861 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:16:31,861 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:16:31,862 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:16:31,862 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:16:31,862 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:16:31,863 INFO: Done:	 Read Database Files
+2016-08-30 11:16:31,863 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:16:31,866 INFO: Done:	 Determine validation split
+2016-08-30 11:16:31,866 INFO: Start:	 Determine 5 folds
+2016-08-30 11:16:31,874 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:16:31,874 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:16:31,875 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:16:31,875 INFO: Done:	 Determine folds
+2016-08-30 11:16:31,875 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:16:31,875 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-111651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-111651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..3d5ef906
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-111651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:16:51,463 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:16:51,467 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:16:51,467 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:16:51,468 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:16:51,468 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:16:51,469 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:16:51,469 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:16:51,469 INFO: Done:	 Read Database Files
+2016-08-30 11:16:51,469 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:16:51,473 INFO: Done:	 Determine validation split
+2016-08-30 11:16:51,473 INFO: Start:	 Determine 5 folds
+2016-08-30 11:16:51,480 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:16:51,480 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:16:51,480 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:16:51,480 INFO: Done:	 Determine folds
+2016-08-30 11:16:51,480 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:16:51,480 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-111721-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-111721-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..4adb9e9a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-111721-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:17:21,256 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:17:21,260 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:17:21,260 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:17:21,260 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:17:21,261 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:17:21,261 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:17:21,262 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:17:21,262 INFO: Done:	 Read Database Files
+2016-08-30 11:17:21,262 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:17:21,266 INFO: Done:	 Determine validation split
+2016-08-30 11:17:21,266 INFO: Start:	 Determine 5 folds
+2016-08-30 11:17:21,275 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:17:21,275 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:17:21,275 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:17:21,275 INFO: Done:	 Determine folds
+2016-08-30 11:17:21,275 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:17:21,275 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-111801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-111801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..e2e98434
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-111801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:18:01,192 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:18:01,196 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:18:01,196 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:18:01,197 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:18:01,198 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:18:01,199 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:18:01,199 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:18:01,199 INFO: Done:	 Read Database Files
+2016-08-30 11:18:01,199 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:18:01,203 INFO: Done:	 Determine validation split
+2016-08-30 11:18:01,203 INFO: Start:	 Determine 5 folds
+2016-08-30 11:18:01,211 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:18:01,211 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:18:01,211 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:18:01,211 INFO: Done:	 Determine folds
+2016-08-30 11:18:01,211 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:18:01,211 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-112132-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-112132-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..cafff0e5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-112132-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:21:32,186 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:21:32,189 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:21:32,189 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:21:32,189 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:21:32,189 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:21:32,190 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:21:32,190 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:21:32,191 INFO: Done:	 Read Database Files
+2016-08-30 11:21:32,191 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:21:32,194 INFO: Done:	 Determine validation split
+2016-08-30 11:21:32,194 INFO: Start:	 Determine 5 folds
+2016-08-30 11:21:32,203 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:21:32,203 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:21:32,203 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:21:32,203 INFO: Done:	 Determine folds
+2016-08-30 11:21:32,203 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:21:32,204 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-112630-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-112630-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..036d6c4f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-112630-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:26:30,166 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:26:30,172 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:26:30,172 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:26:30,173 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:26:30,175 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:26:30,175 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:26:30,176 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:26:30,177 INFO: Done:	 Read Database Files
+2016-08-30 11:26:30,177 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:26:30,182 INFO: Done:	 Determine validation split
+2016-08-30 11:26:30,182 INFO: Start:	 Determine 5 folds
+2016-08-30 11:26:30,189 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:26:30,189 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:26:30,189 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:26:30,189 INFO: Done:	 Determine folds
+2016-08-30 11:26:30,189 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:26:30,189 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-113306-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-113306-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..1f185bb0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-113306-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-30 11:33:06,872 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:33:06,876 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:33:06,876 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-30 11:33:06,877 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:33:06,877 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:33:06,878 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:33:06,878 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:33:06,879 INFO: Done:	 Read Database Files
+2016-08-30 11:33:06,879 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:33:06,883 INFO: Done:	 Determine validation split
+2016-08-30 11:33:06,884 INFO: Start:	 Determine 5 folds
+2016-08-30 11:33:06,892 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:33:06,892 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:33:06,892 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:33:06,892 INFO: Done:	 Determine folds
+2016-08-30 11:33:06,893 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-30 11:33:06,893 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 11:33:06,893 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-30 11:33:10,734 DEBUG: 		Info:	 Best Reslut : 0.511229508197
+2016-08-30 11:33:10,735 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 11:33:10,735 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-30 11:33:12,103 DEBUG: 		Info:	 Best Reslut : 0.566885245902
+2016-08-30 11:33:12,103 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-30 11:33:12,103 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-113333-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-113333-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..76aac63b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-113333-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:33:33,283 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:33:33,287 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:33:33,287 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:33:33,287 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:33:33,288 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:33:33,288 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:33:33,289 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:33:33,289 INFO: Done:	 Read Database Files
+2016-08-30 11:33:33,289 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:33:33,292 INFO: Done:	 Determine validation split
+2016-08-30 11:33:33,292 INFO: Start:	 Determine 5 folds
+2016-08-30 11:33:33,300 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:33:33,301 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:33:33,301 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:33:33,301 INFO: Done:	 Determine folds
+2016-08-30 11:33:33,301 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:33:33,301 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-113715-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-113715-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..bccb04ff
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-113715-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:37:15,915 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:37:15,919 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:37:15,919 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:37:15,920 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:37:15,920 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:37:15,921 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:37:15,921 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:37:15,921 INFO: Done:	 Read Database Files
+2016-08-30 11:37:15,921 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:37:15,925 INFO: Done:	 Determine validation split
+2016-08-30 11:37:15,925 INFO: Start:	 Determine 5 folds
+2016-08-30 11:37:15,933 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:37:15,933 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:37:15,933 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:37:15,933 INFO: Done:	 Determine folds
+2016-08-30 11:37:15,933 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:37:15,934 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-114018-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-114018-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..60dc01d8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-114018-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-30 11:40:18,184 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:40:18,188 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:40:18,188 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:40:18,188 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:40:18,189 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:40:18,189 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:40:18,190 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:40:18,190 INFO: Done:	 Read Database Files
+2016-08-30 11:40:18,190 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:40:18,194 INFO: Done:	 Determine validation split
+2016-08-30 11:40:18,194 INFO: Start:	 Determine 5 folds
+2016-08-30 11:40:18,201 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:40:18,202 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:40:18,202 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:40:18,202 INFO: Done:	 Determine folds
+2016-08-30 11:40:18,202 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:40:18,202 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 11:42:11,831 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-30 11:42:11,831 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-114344-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-114344-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..ffdb5985
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-114344-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-30 11:43:44,517 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:43:44,521 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:43:44,521 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:43:44,521 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:43:44,521 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:43:44,522 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:43:44,522 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:43:44,522 INFO: Done:	 Read Database Files
+2016-08-30 11:43:44,522 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:43:44,526 INFO: Done:	 Determine validation split
+2016-08-30 11:43:44,526 INFO: Start:	 Determine 5 folds
+2016-08-30 11:43:44,533 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:43:44,534 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:43:44,534 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:43:44,534 INFO: Done:	 Determine folds
+2016-08-30 11:43:44,534 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:43:44,534 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-30 11:45:38,865 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-30 11:45:38,865 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-114801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-114801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..b9d58f56
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-114801-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:48:01,091 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:48:01,094 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:48:01,094 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:48:01,094 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:48:01,095 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:48:01,095 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:48:01,096 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:48:01,096 INFO: Done:	 Read Database Files
+2016-08-30 11:48:01,096 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:48:01,100 INFO: Done:	 Determine validation split
+2016-08-30 11:48:01,100 INFO: Start:	 Determine 5 folds
+2016-08-30 11:48:01,108 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:48:01,108 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:48:01,108 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:48:01,109 INFO: Done:	 Determine folds
+2016-08-30 11:48:01,109 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:48:01,109 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-115133-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-115133-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..15cf2d19
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-115133-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:51:33,943 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:51:33,947 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:51:33,947 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:51:33,948 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:51:33,948 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:51:33,948 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:51:33,949 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:51:33,949 INFO: Done:	 Read Database Files
+2016-08-30 11:51:33,949 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:51:33,953 INFO: Done:	 Determine validation split
+2016-08-30 11:51:33,953 INFO: Start:	 Determine 5 folds
+2016-08-30 11:51:33,961 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:51:33,961 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:51:33,961 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:51:33,961 INFO: Done:	 Determine folds
+2016-08-30 11:51:33,961 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:51:33,961 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-115229-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-115229-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..43fe7249
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-115229-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:52:29,468 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:52:29,471 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:52:29,472 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:52:29,472 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:52:29,472 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:52:29,473 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:52:29,473 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:52:29,473 INFO: Done:	 Read Database Files
+2016-08-30 11:52:29,473 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:52:29,477 INFO: Done:	 Determine validation split
+2016-08-30 11:52:29,477 INFO: Start:	 Determine 5 folds
+2016-08-30 11:52:29,485 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:52:29,485 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:52:29,485 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:52:29,486 INFO: Done:	 Determine folds
+2016-08-30 11:52:29,486 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:52:29,486 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-115605-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-115605-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..5301fb8a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-115605-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:56:05,730 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:56:05,733 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:56:05,734 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:56:05,734 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:56:05,735 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:56:05,735 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:56:05,735 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:56:05,736 INFO: Done:	 Read Database Files
+2016-08-30 11:56:05,736 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:56:05,740 INFO: Done:	 Determine validation split
+2016-08-30 11:56:05,740 INFO: Start:	 Determine 5 folds
+2016-08-30 11:56:05,748 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:56:05,748 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:56:05,748 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:56:05,748 INFO: Done:	 Determine folds
+2016-08-30 11:56:05,748 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:56:05,748 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-115919-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-115919-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..b77b6bd2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-115919-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,17 @@
+2016-08-30 11:59:19,771 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 11:59:19,775 INFO: ### Main Programm for Multiview Classification
+2016-08-30 11:59:19,775 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1
+2016-08-30 11:59:19,776 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-30 11:59:19,776 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-30 11:59:19,777 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-30 11:59:19,777 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-30 11:59:19,777 INFO: Done:	 Read Database Files
+2016-08-30 11:59:19,777 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-30 11:59:19,781 INFO: Done:	 Determine validation split
+2016-08-30 11:59:19,781 INFO: Start:	 Determine 5 folds
+2016-08-30 11:59:19,788 INFO: Info:	 Length of Learning Sets: 196
+2016-08-30 11:59:19,788 INFO: Info:	 Length of Testing Sets: 48
+2016-08-30 11:59:19,789 INFO: Info:	 Length of Validation Set: 103
+2016-08-30 11:59:19,789 INFO: Done:	 Determine folds
+2016-08-30 11:59:19,789 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-30 11:59:19,789 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-120336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-120336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..b81da0aa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-120336-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,195 @@
+2016-08-30 12:03:36,717 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 12:03:36,730 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:03:36,730 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:03:36,730 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:03:36,744 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:03:36,744 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:03:36,745 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:03:36,745 DEBUG: Start:	 Classification
+2016-08-30 12:03:47,963 DEBUG: Info:	 Time for Classification: 11.2434618473[s]
+2016-08-30 12:03:47,963 DEBUG: Done:	 Classification
+2016-08-30 12:03:47,987 DEBUG: Start:	 Statistic Results
+2016-08-30 12:03:47,987 INFO: Accuracy :0.838095238095
+2016-08-30 12:03:47,999 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:03:47,999 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 12:03:47,999 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:03:48,010 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:03:48,010 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:03:48,011 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:03:48,011 DEBUG: Start:	 Classification
+2016-08-30 12:03:58,159 DEBUG: Info:	 Time for Classification: 10.1701390743[s]
+2016-08-30 12:03:58,159 DEBUG: Done:	 Classification
+2016-08-30 12:03:58,162 DEBUG: Start:	 Statistic Results
+2016-08-30 12:03:58,162 INFO: Accuracy :0.819047619048
+2016-08-30 12:03:58,174 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:03:58,175 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 12:03:58,175 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:03:58,188 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:03:58,188 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:03:58,188 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:03:58,188 DEBUG: Start:	 Classification
+2016-08-30 12:04:00,912 DEBUG: Info:	 Time for Classification: 2.74817919731[s]
+2016-08-30 12:04:00,913 DEBUG: Done:	 Classification
+2016-08-30 12:04:02,188 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:02,189 INFO: Accuracy :0.87619047619
+2016-08-30 12:04:02,201 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:02,201 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 12:04:02,201 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:02,215 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:04:02,215 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:04:02,215 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:02,215 DEBUG: Start:	 Classification
+2016-08-30 12:04:02,958 DEBUG: Info:	 Time for Classification: 0.766482830048[s]
+2016-08-30 12:04:02,958 DEBUG: Done:	 Classification
+2016-08-30 12:04:02,962 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:02,962 INFO: Accuracy :0.885714285714
+2016-08-30 12:04:02,974 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:02,975 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 12:04:02,975 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:02,988 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:04:02,988 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:04:02,988 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:02,989 DEBUG: Start:	 Classification
+2016-08-30 12:04:04,699 DEBUG: Info:	 Time for Classification: 1.73435711861[s]
+2016-08-30 12:04:04,699 DEBUG: Done:	 Classification
+2016-08-30 12:04:04,708 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:04,708 INFO: Accuracy :0.761904761905
+2016-08-30 12:04:04,718 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:04,718 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 12:04:04,719 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:04,731 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:04:04,731 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:04:04,731 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:04,731 DEBUG: Start:	 Classification
+2016-08-30 12:04:13,743 DEBUG: Info:	 Time for Classification: 9.03304004669[s]
+2016-08-30 12:04:13,743 DEBUG: Done:	 Classification
+2016-08-30 12:04:14,080 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:14,080 INFO: Accuracy :0.838095238095
+2016-08-30 12:04:14,089 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:14,089 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 12:04:14,089 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:14,101 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:04:14,101 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:04:14,101 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:14,101 DEBUG: Start:	 Classification
+2016-08-30 12:04:23,971 DEBUG: Info:	 Time for Classification: 9.88981103897[s]
+2016-08-30 12:04:23,972 DEBUG: Done:	 Classification
+2016-08-30 12:04:24,391 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:24,391 INFO: Accuracy :0.819047619048
+2016-08-30 12:04:24,400 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:24,400 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 12:04:24,400 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:24,412 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:04:24,412 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:04:24,412 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:24,412 DEBUG: Start:	 Classification
+2016-08-30 12:04:35,480 DEBUG: Info:	 Time for Classification: 11.0867400169[s]
+2016-08-30 12:04:35,480 DEBUG: Done:	 Classification
+2016-08-30 12:04:35,853 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:35,854 INFO: Accuracy :0.914285714286
+2016-08-30 12:04:35,855 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:35,855 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:04:35,855 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:35,856 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:35,856 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:35,856 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:35,856 DEBUG: Start:	 Classification
+2016-08-30 12:04:36,123 DEBUG: Info:	 Time for Classification: 0.267621040344[s]
+2016-08-30 12:04:36,123 DEBUG: Done:	 Classification
+2016-08-30 12:04:36,124 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:36,125 INFO: Accuracy :0.752380952381
+2016-08-30 12:04:36,126 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:36,126 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 12:04:36,126 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:36,127 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:36,127 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:36,127 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:36,127 DEBUG: Start:	 Classification
+2016-08-30 12:04:36,393 DEBUG: Info:	 Time for Classification: 0.267601013184[s]
+2016-08-30 12:04:36,393 DEBUG: Done:	 Classification
+2016-08-30 12:04:36,395 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:36,395 INFO: Accuracy :0.780952380952
+2016-08-30 12:04:36,396 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:36,396 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 12:04:36,396 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:36,397 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:36,397 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:36,397 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:36,397 DEBUG: Start:	 Classification
+2016-08-30 12:04:36,506 DEBUG: Info:	 Time for Classification: 0.109934806824[s]
+2016-08-30 12:04:36,506 DEBUG: Done:	 Classification
+2016-08-30 12:04:36,552 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:36,552 INFO: Accuracy :0.714285714286
+2016-08-30 12:04:36,554 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:36,554 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 12:04:36,554 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:36,555 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:36,555 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:36,555 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:36,555 DEBUG: Start:	 Classification
+2016-08-30 12:04:36,785 DEBUG: Info:	 Time for Classification: 0.231173038483[s]
+2016-08-30 12:04:36,785 DEBUG: Done:	 Classification
+2016-08-30 12:04:36,787 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:36,787 INFO: Accuracy :0.866666666667
+2016-08-30 12:04:36,788 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:36,789 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 12:04:36,789 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:36,789 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:36,789 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:36,789 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:36,790 DEBUG: Start:	 Classification
+2016-08-30 12:04:36,904 DEBUG: Info:	 Time for Classification: 0.115266084671[s]
+2016-08-30 12:04:36,904 DEBUG: Done:	 Classification
+2016-08-30 12:04:36,905 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:36,906 INFO: Accuracy :0.828571428571
+2016-08-30 12:04:36,907 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:36,907 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 12:04:36,907 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:36,908 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:36,908 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:36,908 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:36,908 DEBUG: Start:	 Classification
+2016-08-30 12:04:45,396 DEBUG: Info:	 Time for Classification: 8.48903298378[s]
+2016-08-30 12:04:45,396 DEBUG: Done:	 Classification
+2016-08-30 12:04:45,404 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:45,404 INFO: Accuracy :0.761904761905
+2016-08-30 12:04:45,405 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:45,405 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 12:04:45,405 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:45,406 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:45,406 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:45,406 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:45,406 DEBUG: Start:	 Classification
+2016-08-30 12:04:45,450 DEBUG: Info:	 Time for Classification: 0.0446889400482[s]
+2016-08-30 12:04:45,450 DEBUG: Done:	 Classification
+2016-08-30 12:04:45,452 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:45,452 INFO: Accuracy :0.266666666667
+2016-08-30 12:04:45,453 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:45,453 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 12:04:45,453 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:45,454 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:04:45,454 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:04:45,454 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:45,454 DEBUG: Start:	 Classification
+2016-08-30 12:04:46,106 DEBUG: Info:	 Time for Classification: 0.653275966644[s]
+2016-08-30 12:04:46,106 DEBUG: Done:	 Classification
+2016-08-30 12:04:46,135 DEBUG: Start:	 Statistic Results
+2016-08-30 12:04:46,135 INFO: Accuracy :0.733333333333
+2016-08-30 12:04:46,181 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:04:46,181 DEBUG: ### Classification - Database:MultiOmic Feature:RANSeq train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:04:46,182 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:04:46,235 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 12:04:46,235 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 12:04:46,235 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:04:46,236 DEBUG: Start:	 Classification
+2016-08-30 12:05:24,578 DEBUG: Info:	 Time for Classification: 38.4417188168[s]
+2016-08-30 12:05:24,578 DEBUG: Done:	 Classification
+2016-08-30 12:05:24,588 DEBUG: Start:	 Statistic Results
+2016-08-30 12:05:24,589 INFO: Accuracy :0.542857142857
+2016-08-30 12:05:24,640 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:05:24,640 DEBUG: ### Classification - Database:MultiOmic Feature:RANSeq train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 12:05:24,640 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:05:24,692 DEBUG: Info:	 Shape X_train:(242, 73599), Length of y_train:242
+2016-08-30 12:05:24,693 DEBUG: Info:	 Shape X_test:(105, 73599), Length of y_test:105
+2016-08-30 12:05:24,693 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:05:24,693 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-120633-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-120633-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..29759730
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-120633-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 12:06:33,599 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-120904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-120904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..97a22c85
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-120904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-30 12:09:04,809 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 12:09:04,823 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:09:04,823 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:09:04,823 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:09:04,837 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:09:04,838 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:09:04,838 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:09:04,838 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-120923-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-120923-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..bfec55db
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-120923-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-30 12:09:23,217 INFO: Start:	 Finding all available mono- & multiview algorithms
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-121006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-121006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..b3084b9a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-121006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,162 @@
+2016-08-30 12:10:06,567 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 12:10:06,583 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:10:06,583 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:10:06,584 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:10:06,605 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:10:06,605 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:10:06,605 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:10:06,606 DEBUG: Start:	 Classification
+2016-08-30 12:13:40,602 DEBUG: Info:	 Time for Classification: 214.031033993[s]
+2016-08-30 12:13:40,602 DEBUG: Done:	 Classification
+2016-08-30 12:13:40,607 DEBUG: Start:	 Statistic Results
+2016-08-30 12:13:40,607 INFO: Accuracy :0.828571428571
+2016-08-30 12:13:40,893 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:13:40,893 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 12:13:40,894 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:13:40,908 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:13:40,908 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:13:40,908 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:13:40,908 DEBUG: Start:	 Classification
+2016-08-30 12:16:58,671 DEBUG: Info:	 Time for Classification: 198.055801153[s]
+2016-08-30 12:16:58,671 DEBUG: Done:	 Classification
+2016-08-30 12:16:58,674 DEBUG: Start:	 Statistic Results
+2016-08-30 12:16:58,674 INFO: Accuracy :0.771428571429
+2016-08-30 12:16:58,688 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:16:58,688 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 12:16:58,688 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:16:58,717 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:16:58,717 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:16:58,717 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:16:58,717 DEBUG: Start:	 Classification
+2016-08-30 12:18:12,781 DEBUG: Info:	 Time for Classification: 74.1028950214[s]
+2016-08-30 12:18:12,781 DEBUG: Done:	 Classification
+2016-08-30 12:18:14,045 DEBUG: Start:	 Statistic Results
+2016-08-30 12:18:14,045 INFO: Accuracy :0.866666666667
+2016-08-30 12:18:14,058 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:18:14,058 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 12:18:14,058 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:18:14,072 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:18:14,072 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:18:14,072 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:18:14,072 DEBUG: Start:	 Classification
+2016-08-30 12:18:36,574 DEBUG: Info:	 Time for Classification: 22.5265438557[s]
+2016-08-30 12:18:36,575 DEBUG: Done:	 Classification
+2016-08-30 12:18:36,580 DEBUG: Start:	 Statistic Results
+2016-08-30 12:18:36,581 INFO: Accuracy :0.885714285714
+2016-08-30 12:18:36,593 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:18:36,593 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 12:18:36,593 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:18:36,608 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:18:36,608 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:18:36,608 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:18:36,608 DEBUG: Start:	 Classification
+2016-08-30 12:19:07,120 DEBUG: Info:	 Time for Classification: 30.5368850231[s]
+2016-08-30 12:19:07,120 DEBUG: Done:	 Classification
+2016-08-30 12:19:07,129 DEBUG: Start:	 Statistic Results
+2016-08-30 12:19:07,129 INFO: Accuracy :0.895238095238
+2016-08-30 12:19:07,139 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:19:07,139 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 12:19:07,139 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:19:07,151 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:19:07,151 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:19:07,151 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:19:07,151 DEBUG: Start:	 Classification
+2016-08-30 12:20:43,155 DEBUG: Info:	 Time for Classification: 96.0247499943[s]
+2016-08-30 12:20:43,155 DEBUG: Done:	 Classification
+2016-08-30 12:20:43,427 DEBUG: Start:	 Statistic Results
+2016-08-30 12:20:43,427 INFO: Accuracy :0.857142857143
+2016-08-30 12:20:43,436 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:20:43,436 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 12:20:43,436 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:20:43,448 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:20:43,448 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:20:43,448 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:20:43,448 DEBUG: Start:	 Classification
+2016-08-30 12:22:26,658 DEBUG: Info:	 Time for Classification: 103.229175806[s]
+2016-08-30 12:22:26,658 DEBUG: Done:	 Classification
+2016-08-30 12:22:26,943 DEBUG: Start:	 Statistic Results
+2016-08-30 12:22:26,944 INFO: Accuracy :0.87619047619
+2016-08-30 12:22:26,953 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:22:26,953 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMRBF
+2016-08-30 12:22:26,953 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:22:26,965 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 12:22:26,965 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 12:22:26,965 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:22:26,965 DEBUG: Start:	 Classification
+2016-08-30 12:24:41,765 DEBUG: Info:	 Time for Classification: 134.81978488[s]
+2016-08-30 12:24:41,765 DEBUG: Done:	 Classification
+2016-08-30 12:24:42,111 DEBUG: Start:	 Statistic Results
+2016-08-30 12:24:42,111 INFO: Accuracy :0.885714285714
+2016-08-30 12:24:42,139 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:24:42,140 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 12:24:42,140 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:24:42,141 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:24:42,141 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:24:42,141 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:24:42,142 DEBUG: Start:	 Classification
+2016-08-30 12:24:48,311 DEBUG: Info:	 Time for Classification: 6.19787788391[s]
+2016-08-30 12:24:48,311 DEBUG: Done:	 Classification
+2016-08-30 12:24:48,312 DEBUG: Start:	 Statistic Results
+2016-08-30 12:24:48,313 INFO: Accuracy :0.838095238095
+2016-08-30 12:24:48,314 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:24:48,314 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 12:24:48,314 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:24:48,315 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:24:48,315 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:24:48,315 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:24:48,315 DEBUG: Start:	 Classification
+2016-08-30 12:24:53,099 DEBUG: Info:	 Time for Classification: 4.78557896614[s]
+2016-08-30 12:24:53,099 DEBUG: Done:	 Classification
+2016-08-30 12:24:53,101 DEBUG: Start:	 Statistic Results
+2016-08-30 12:24:53,101 INFO: Accuracy :0.752380952381
+2016-08-30 12:24:53,102 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:24:53,102 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 12:24:53,102 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:24:53,103 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:24:53,103 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:24:53,103 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:24:53,103 DEBUG: Start:	 Classification
+2016-08-30 12:24:55,948 DEBUG: Info:	 Time for Classification: 2.84561300278[s]
+2016-08-30 12:24:55,948 DEBUG: Done:	 Classification
+2016-08-30 12:24:55,992 DEBUG: Start:	 Statistic Results
+2016-08-30 12:24:55,992 INFO: Accuracy :0.8
+2016-08-30 12:24:55,994 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:24:55,994 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 12:24:55,994 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:24:55,995 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:24:55,995 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:24:55,995 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:24:55,995 DEBUG: Start:	 Classification
+2016-08-30 12:25:04,528 DEBUG: Info:	 Time for Classification: 8.534678936[s]
+2016-08-30 12:25:04,528 DEBUG: Done:	 Classification
+2016-08-30 12:25:04,532 DEBUG: Start:	 Statistic Results
+2016-08-30 12:25:04,532 INFO: Accuracy :0.838095238095
+2016-08-30 12:25:04,533 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:25:04,533 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 12:25:04,533 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:25:04,534 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:25:04,534 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:25:04,534 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:25:04,534 DEBUG: Start:	 Classification
+2016-08-30 12:25:06,746 DEBUG: Info:	 Time for Classification: 2.21299600601[s]
+2016-08-30 12:25:06,746 DEBUG: Done:	 Classification
+2016-08-30 12:25:06,748 DEBUG: Start:	 Statistic Results
+2016-08-30 12:25:06,748 INFO: Accuracy :0.657142857143
+2016-08-30 12:25:06,750 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:25:06,750 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 12:25:06,750 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:25:06,750 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:25:06,751 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:25:06,751 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:25:06,751 DEBUG: Start:	 Classification
+2016-08-30 12:28:06,160 DEBUG: Info:	 Time for Classification: 179.410264969[s]
+2016-08-30 12:28:06,160 DEBUG: Done:	 Classification
+2016-08-30 12:28:06,168 DEBUG: Start:	 Statistic Results
+2016-08-30 12:28:06,168 INFO: Accuracy :0.780952380952
+2016-08-30 12:28:06,170 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 12:28:06,170 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMPoly
+2016-08-30 12:28:06,170 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 12:28:06,171 DEBUG: Info:	 Shape X_train:(242, 1046), Length of y_train:242
+2016-08-30 12:28:06,171 DEBUG: Info:	 Shape X_test:(105, 1046), Length of y_test:105
+2016-08-30 12:28:06,171 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 12:28:06,171 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-173818-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-173818-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 00000000..703a6426
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-173818-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-30 17:38:18,256 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 17:38:18,679 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:38:18,679 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 17:38:18,680 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:38:18,716 DEBUG: Info:	 Shape X_train:(242, 25978), Length of y_train:242
+2016-08-30 17:38:18,716 DEBUG: Info:	 Shape X_test:(105, 25978), Length of y_test:105
+2016-08-30 17:38:18,716 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:38:18,716 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-173904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-173904-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
new file mode 100644
index 00000000..e69de29b
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-173935-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-173935-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
new file mode 100644
index 00000000..e69de29b
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-173953-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-173953-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
new file mode 100644
index 00000000..e69de29b
diff --git a/Code/MonoMutliViewClassifiers/Results/20160830-174032-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160830-174032-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
new file mode 100644
index 00000000..6e73e7de
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160830-174032-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-Fake-LOG.log
@@ -0,0 +1,63 @@
+2016-08-30 17:40:32,385 INFO: Start:	 Finding all available mono- & multiview algorithms
+2016-08-30 17:40:32,388 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:32,388 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : Adaboost
+2016-08-30 17:40:32,388 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:32,388 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:32,388 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:32,389 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:32,389 DEBUG: Start:	 Classification
+2016-08-30 17:40:33,567 DEBUG: Info:	 Time for Classification: 1.13154196739[s]
+2016-08-30 17:40:33,567 DEBUG: Done:	 Classification
+2016-08-30 17:40:33,594 DEBUG: Start:	 Statistic Results
+2016-08-30 17:40:33,595 INFO: Accuracy :0.0888888888889
+2016-08-30 17:40:33,596 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:33,597 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : DecisionTree
+2016-08-30 17:40:33,597 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:33,597 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:33,597 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:33,597 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:33,598 DEBUG: Start:	 Classification
+2016-08-30 17:40:34,354 DEBUG: Info:	 Time for Classification: 0.757889986038[s]
+2016-08-30 17:40:34,354 DEBUG: Done:	 Classification
+2016-08-30 17:40:34,355 DEBUG: Start:	 Statistic Results
+2016-08-30 17:40:34,356 INFO: Accuracy :0.122222222222
+2016-08-30 17:40:34,357 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:34,357 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : KNN
+2016-08-30 17:40:34,357 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:34,357 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:34,357 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:34,357 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:34,357 DEBUG: Start:	 Classification
+2016-08-30 17:40:34,982 DEBUG: Info:	 Time for Classification: 0.624792098999[s]
+2016-08-30 17:40:34,982 DEBUG: Done:	 Classification
+2016-08-30 17:40:34,984 DEBUG: Start:	 Statistic Results
+2016-08-30 17:40:34,985 INFO: Accuracy :0.1
+2016-08-30 17:40:34,986 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:34,986 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : RandomForest
+2016-08-30 17:40:34,986 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:34,986 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:34,986 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:34,986 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:34,986 DEBUG: Start:	 Classification
+2016-08-30 17:40:41,176 DEBUG: Info:	 Time for Classification: 6.19013905525[s]
+2016-08-30 17:40:41,176 DEBUG: Done:	 Classification
+2016-08-30 17:40:41,179 DEBUG: Start:	 Statistic Results
+2016-08-30 17:40:41,179 INFO: Accuracy :0.1
+2016-08-30 17:40:41,180 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:41,180 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SGD
+2016-08-30 17:40:41,180 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:41,181 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:41,181 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:41,181 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:41,181 DEBUG: Start:	 Classification
+2016-08-30 17:40:42,661 DEBUG: Info:	 Time for Classification: 1.48085689545[s]
+2016-08-30 17:40:42,661 DEBUG: Done:	 Classification
+2016-08-30 17:40:42,663 DEBUG: Start:	 Statistic Results
+2016-08-30 17:40:42,663 INFO: Accuracy :0.0888888888889
+2016-08-30 17:40:42,664 DEBUG: ### Main Programm for Classification MonoView
+2016-08-30 17:40:42,664 DEBUG: ### Classification - Database:Fake Feature:View0 train_size:0.7, CrossValidation k-folds:5, cores:1, algorithm : SVMLinear
+2016-08-30 17:40:42,664 DEBUG: Start:	 Determine Train/Test split
+2016-08-30 17:40:42,664 DEBUG: Info:	 Shape X_train:(210, 16), Length of y_train:210
+2016-08-30 17:40:42,665 DEBUG: Info:	 Shape X_test:(90, 16), Length of y_test:90
+2016-08-30 17:40:42,665 DEBUG: Done:	 Determine Train/Test split
+2016-08-30 17:40:42,665 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/poulet20160830-103357.png b/Code/MonoMutliViewClassifiers/Results/poulet20160830-103357.png
new file mode 100644
index 0000000000000000000000000000000000000000..856ba33724ecee47c6f6e1a2771592f4a6f27da8
GIT binary patch
literal 18696
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2LL~IizrVY+4z{QWOpx%2Na0<v
zV4|wa%|nZr7Ei1dWE4!i!^S2$@wqy)g^`g?lR?8Gp2SL)RAY_9D>^zj1X~|4X>_m&
zOmJ1;YEhZ+`QO3Wbs4*@Cv>!P+&^Dh=;}ZBa;aZ<Y5Co|q042GdjuI67#JcR#J%DJ
zF?JLQIDqH~X9h+F28IM)MivGJh6Ym>0g&jmkt5k~dd}-zSvNO5UHa}=s=lVC=epN_
zr~P`^E`O>t*7o<C&EkJ7l->KLyxtYHIqmGxcZ<a9|F+h@-}if6-tM<%Q+1=m*1cYp
ze7tY^F7N4gmR7~D3|iW?Ds**P?cV3X7qV*~AM4%q_uK8#v!>Til*V3N9qvD=<p1CA
zr%Pks-rIY-th~{?&tLw}!X7!>sCBPTmBzlkvGH+G`E&k*g))|X#VdCg-sJvbBmV8@
z{)pSJYuL^E9>*9mrd(eaTNE44Z}Y)n;;n7@_v3b#y$#x5_t&K8iAU-Cdw<JcsOq^C
z*6Dx#e(Uek>G4<A#ah>XyP5v#;^KC<KADy6@^uyowGX@mYgSq_h#WgJ)A;GGbv=ev
zPp5{Pl)bs(eRpY6{_SnKT-@BduiV|CWSVuw<My`P;E<3hUrXn|e~|X>&Q7b!PfL!<
z{WV-0voq-C&6`yZTg9)ejo$8kS5_prG48drS<Z!p&h20Rd_JH3;=;nX)5m%w7bhNW
zTj|uwWwx73gggA$_4pk+dp@7DK6T<mz<j&fkbO0kXXn{QFZZ9n@5)`RZ;u{53fY)+
z)cbC)c2Gvfibszgm3+M#9v#2kaM^*UqS|30F)?$N-iwKPUaiNqsr-GMXONH2nWL}x
z^qd>xURQsAH}$ba-S_#Qo}Sj$)AMt5blkR!Q$(6Y;7{V7Pp7ntWZeJ${vLjQo^9!m
z4~e?5yG#=P?%89r_sb>ktV>HePfgKWykUdE)isg9e}8|!er~RHcgXeym!p{GGS8VZ
zWyyjC3QwOsdv!B?e(2j<TScX$URlaMc|O1X+K$4<S5}2;hpr0oR8&;#>g&5^`~A-1
zEnBuUJpTP`cK(+G%={~|uCC(Z<qiG$>FL!qk;Wh!<GwP@U0wU^jHK^uGvDp^s#Ys0
zD~rm>t*iR_D)ZHqm390#rs+m63tJndX=WC-aN)vL0SlWZO`2p<`|C?X?Vqi4=E(F)
z8oQa_Et!1i@L^F&$(3nmXJtM-)M{6H-ZnSw`nuRx_xA2yxAU3QRGr8mUTL!{pPru9
z&zSrB+uPuPfC;azub1E8cY9mz(_QPf<=uUy>Fwzm`25`5(7jcqt*xz^Mn*xtvrI1j
z|M&iX+=q(u<#83W&2mF_m1MfQxxM;!J72$`djHR7vtM0ZJw5B{s-+zr9Ih@dD;%5I
zW*Mb+o&Q!88(#eE%tS-C&{ZKH=WMHZxASx3I!41|FP2V^3vzO5@|vmz(xa-P0uuSO
zJO0W0c>BL!CbRKKJh*B9>dMN+Q>IMeu3M+_^0fZ`kbXH^o8KiRC0kxyU%&ofGyCf^
zGmYa)^-KQCnr2N|6}npOc;S>ulO9#-eVV`6;nViJCnhSV_I$L7cXV`&yZ*f9_uK8S
z?(W{M6}D!@gb4znD*_yAe|@>Q{eIo+&oiFK-T!<md%dQiVc=4)sk<IzOZCawu1Y-I
z_OeYnFCZdf1}ITnTO0j)@ArG3SN^Wvzy8T?iQBPO)eGzj9ylC5dQ?+K$LHy(slkig
zdcWK$K0kMRZs4(B7v1GwzT5piY^m2&5h<xvGiFHKt$MxIZvE9}cK%l<)#rzR5|E(a
z!cD2CSCzfJ_3HNa^+rZUHec)hMxC$!zw7_M->E$xYs%*AzAyTv^3zH6`74T_pX=)E
z4D|5m&<bC-rd_Ve<M;RX-&a=eJ1?=o;*p5XA4M6Pih%sRU#DeVUG?<mg?R>vO=)Ll
zEYyqL_2bI<vuCf)|Mx|GZOqP~soLRT=jYjm?kdSlO-Xri*8G0R<z>F1d#k=WUDrKj
zx%=l=>(W<C&fER=$-TWTw4F~@L{?V!<r~eQ^ERJ*W|`-&+x>2rck1bBSKr;;y*1~i
z(b|ZOPWk))ZhN=mG2i;*G5czE?kan`YR(*)t(lkIzTc}}-zRIm?7aQ|n8(L@FFW(w
zh9u1Qn{T%kWD2M(&APsB?L6CREfbRv`I--n|2|FMpK-X2cb0ASw&nkNB#pmZaOT%k
zQ*%3c@?=+6*QJBa>|c+H$7`sn9xe7Ob}T9`E<G+=o^f`T>8^jjUVpuj-2d{)$;nY$
zGA8aSeGRhq&ijLIZf<QtLP8;Xt4hDVyBqD^Cv)-j`u*#^y}h0N^wiX>dwVJyU-$O*
zUVXd${<`n?s{Nz4<y`DFzxQJ6pX2iNS58gUzPcgN`EJ2s-g%$g<tklDUtJ0O{Oqi#
zu<+vfb-z6S|2$uRWp%iI?)`nSi`{yy-p^o;+@3c#Z~x!2r_Y|P3SREFDsJyCv;2E&
zmMmG)ApVU{+RVq%(b3DtC#022bjr+`D??X@WnNg|`0LH)^Lw^kKQU2xYst%?+K)%Y
zrA#s=oSLGk>^X0L(1Y5a`+mQ>{O9NA(49r8U*F%4?|Yo_^3u|(CllSjd^|3n{qD|A
zyIfFMAM2IYR#9<@-Bl7;R<=z{FJ=Y1T!n+9qvNZqtFKqipRB+CPf)Lv>7>`Yy!`ya
zuC5CG`uV*5>)ZMJuYP%X*|h3Q#`%>ktvBnVw`43lbH>MamWk)bj~}z{@7tR`_v6Qp
zjK71IdWrVRSO%>QUw^G#zHWtG?XMMHQ?=%$PWtk4`TSL-udi7ZK5CgXd2;DtUh@~P
z*YCf!r}FcZS+iDszh8e}`^Pi;=Z}x~Uq3ZfyY&0r^3|!Qr=2=;#^(L!&DG!YO!M!>
z>@I&Fc6pia)or=ab1e$NN$b{@%*B$%X)EIQ*UkH7b}wA-SlM)N3N61^xg6x>w6n8T
z1~2ymRZiRT?yd@4?DleI`aI1IwTZ`n-T(hDy!>wIbR}iwsdMJ6;S$w)ablwKt!=rp
zm-)|MxBu_k{7FmJtkJn!c02dizu)gmf4|+XZD|>KOycdWt=^}n=>|{Ni?#WEX#G^p
zU^iv=zAMkp&Yn7J)~f1vJCASP|MWla7pXtr_y1pO|NrNCPyt_5v`H&;)e>3jvW#bE
zW>&pkyZy^a_4yTlSJi@YYJ|}N`2(NN+vm$1H~jzSxxH;Fuat>_qoZTm^K*0UzP9s9
zr^y^Qe0zJlxuvCL-07mCqB9Q<w|9qp|M&a7`MTG$Vt1GQTvPn@)zxE#GR9d~G}eDw
zvP9*vMc>Y!&t{*UsO(;I>+he>=btT~U-wD#{_gVioxQ!L=64F3!+$<J-0u7G(o$a!
zkB*-&7We<zW<C9}#WL4!vA9%aw;qGO$1@z8*=Fw9W8+^L7dP+a_4V@$W3TH(Z#xql
zx4*7dSW4>E*O(`tub0>V``BMEalG(MZ28^Pb8{>oYucB*m;h?~6vkd(6Tkmn@Vto=
z6J?GYu6sRe|Np=5<NCjzvwjcKF#q3|<=j!<|NQ*i``9Aw!~{jV)5rQ`vtzEC1~2#f
zs`dZf?)NpXo;`auD{O7l%+>35oqBV7`}yq1prA>GvDa7YT(ApV9j5zu*SgBrYq#$?
zrS3oPjpXNc`MQdG|0I%q=G)cwyxx^|xQ#dNDeK$SjlX{1%3d#dywInajrYvS$?CRG
z)&1w0fC78n>sdcPKd;_;^8Nb;M&>==madK7KI_4QgyP4&=D%Y9uebepM7VCgaB`1j
z*_#>H|BILXKYM@ruWxUw9cwK?ne%TRe{#>t*xlRiKY!9|eh(CKuh;Lt_k5$waYI2t
z!DpY(+v|te&oa-?YiepbBb~qJVd%V>GczAOe(W0&F~hRr!-C~^j{QD$^u{|&OUrrJ
z|2MI6pWA&;D|FS2RiUe^rizxWk+m)}S@(LD{{BCgmY?0(|M^;UzU1-3Gs6Bh4}<m1
z&9BSY*WLO2zcKE$rl#hx(pcl_Z#naifA}tScVF%9ov&7{_KAs^b8~<F{_ww{tHWk4
zSfFruW3v1DPoHa#F&q_SWU1%4x;ota;K74&?6v=YUEkmH*y7pC<@3L-s(yAxGI*Jf
zq_CXayU%R@vRhYX`&?x9Sirpcv!q4Ag2LGAZ*Fcr9&A?kr{b|ipQKI22Ugo->zO^`
z;^t|Fubb1^+xwM^>1Us;bz01I)4RJ$KTo;3KK{Ooi_46~?)_p_JU_FptVjd}%D1<-
zYp0!^V|m%4FZtKk*UvRi+h?qa+PdmGqu;*Q>vo@uDL!i|zUAGTH9BDDNK3!|9ASR1
zVlgKt=gtQTTT@O7J>Io$rgizc@Sm-06Z-A{-N@H4dG_XC#A3JJ2KGJwa_;Q7Xwmmr
z_)?dUL)7-X+?ea8+TrWIto;A)_j~E%g+8mp*6um=nSVw7&!^(^&Cbp?2W2f`b-y{~
zGCvug?EQXEdqZ5{xBK^%8=mAJSM#0qBlr52%;3kn)?GhXQ^)YJ+#!0xdHer&Ec%jn
zmA!pcUYV7(sxbDt&wRVTO>*y(_O6fVdAqOTW71=bzLysk9%fy8J)S|cWB<moS65E%
zSeIS)=0;$`?LQ2k{{OrG-}-%(UKqpA*YW?eVy>Hl>XJX}mOHoeEpzD<ihKBcd(AP1
z>0HYb7T&1-|M&aXyXE&+=HA{GC;sVf_4~b5k2=+-Oq#Ul`Mm0L#ftZ@$JehtbH+zi
zP3_gK?De`IHgX4l-=1}2L*ju{`T9Q_<7z&-E?v6x<%5IGr%s;ys8cNCUj6;u*FR7G
zom8KHq7YPFFZ1|&V_)s=J{ikJJ9b$7{rkTDdt_cu;K@m<TXS!l`A43gXZ!WZWdB#7
zmeKcjcdzcLEH=%%^P?%f+^X)+j<R=mR(6SMuSz>R%kK1Ne`_y)|L>7v^78M$o3wgO
z)e^1H`@Pf2+4<_$?C`z6UahWrKDXTF{M}`~v$vGK4l8|i<>d267j3J*Wt^E|7_~KP
zYT5gHYuBvNIlt*oZji`qv)oB4rrFodq|bc43)EEK_xqjo{8Ug?eq&?u)}*6cwcqcS
zTNOS!;`;LZ&P$gsKi#$N{^eVs=E{Nv3j1%bNIN^LtE1zC=K7G8la_40t~V!NZCl>m
zT`!M{$6o<8*3ZqgUS0b7TGpK%8_$0gbiG+$&;RrGM%Qk!y6M|<ZU%t@@Y3bWSC@DS
z`|o^g!MacU$L6}fRh~g<Y0K^h|L2pl(Maw&KcoKr_o>|*?_R!isqXUc$bE-;wx*w-
z7qzQorI3)&m9^34TQe>?^-7z6o7uan^7AuLgC5jB>XkNM6}!6(WcQ=TkL$N<uK9fb
za@hK~wY<`1KXmLXJ}fvl$8z!8+uL7Hi_ZHP6?Wq<*N!P13L4+i&dg9eUU+4>zx?`7
zn^I4|dbj)iwMnYpQ)bP2wbSy(#^mEFFPoN`>G<5ezpCcvr@GVA^<r1)#qL^>a&i)=
zYYJ}ax3`}zjjjD~kUeU1TJNUKoAsmS*Z+E{?s=(C)|zXN<Gr2iJDS<~ubEztS)6%!
zS>~xJnpGc<imT53+aPD27t<(S;r(gOW4R2qg?~Q%**N$0o!4ULL}g^w?Af!2>3a3L
z-|zRwuix{jEA9Nex0W|NJv~3}&aeId_j}fj4GWEojjwLW48B|Wd~R1yPe?$(1S2CO
zlj?6d>vMx7X3m^hB%}V|-vfP)^t7~9j?HYhwq{QU1><sm`Pka8SGoB3u5C;{ZjyOv
ziPHDy*I%EkzZ1{R#T671GKEjp>dEFc3vyLXK4&Vbmom#)u{Ha8)|VF-qxMv6e0FxW
zdU6k_%Oa@kR`G6c;FQ1LzfagN%YAEkuVLNymxt<ZPPBja{a*F?_pHw^-E4kSd_3oI
z?bD>3@7*8eVs30KdvU=L)ZA6`nXw>pb6V!H9!aBPE9(CKs`~fy`PE&e*`7fwgO-Bo
z{EQ<Vf>GOYX5Op)9xItFA}YER)OrN9qVHcnl|OO++T;E5@*DadTYxf;f8~PjA`2{(
z8Wu!Y*ZkNJ6dbJTd3SgD_iAQ?<Ao;4$9Vi1PW}(rGa<i)J2-sO^JxA0%m05_U)UjV
zxSc=T!=uA2@6HQj-B<f+f7iV0sLh*SU+eg_wWFtJO363pii?X}#qYcWH6Lrg-(5bx
z{$J$lYiloGTIy|D{LBZ`OpmYsyY<vm?ecr2|9(8~ubck-{F_Pf@4pwkUb`KXok6~+
z`}Z@wwY4?#U=wRsS69&OZMl12`OPqJbnll7_44XE-@1icOh@CAj{Q$1W#!bKi;c|e
zfAqe8m)ZO2l=i6;CoZfATx?SFqhNh%W@hFrlgyxrzdyg;Cu>>cl74Q^$C*-J&dfBn
zs`;_OYr0--;I*gzi`{y+<lHoR`s`WO<72(Q-q-(Mtr@&*Mf&-9U44CFr>E(5@A)5>
z^Yiw`1+}*dW%mCrNmSo-qP|Bwz9z8W_S+5CtsDRD3kqqi<^Q&PL-N#f=W4ER%Z*M=
zO?^4p-|ph={QYY)FE0c4(5k9-WnEvV`|^#77$~8}RX!EXy}iwMb=cZVS5^jpeY5%e
zDT&Xs)fRtHuaEx!=ks|ke*XO{`gujveGYdg>8h%_T3TAJir>FauI7W|{{M>>E!tA_
z)C<&foD{OVEEm*hjIa6VdZ4+vrgf$E+`m^{t*Wcet*`y{a=GiS)o;(uwFb44f7BF6
zC4af-F8}k2zmLxpLpSZPH5y-bE%`5992IqowbuD(_EPWZVYAJ0zkE8a|N7tW_tz&X
zyZ@;>Fkf3q$?59q@ay;XR@W|bn6@Nzb(rU+%6iYAYkz%txj1;a-^;Jp<F9{udKxs~
z@%7Ek%g+<6_xJx?_$_92`1*go<@)Qw*UwwB`EuF6sJOU!*Ve_p4&GP%+|RO4c!T}F
zC;cl8ZvU7TofjAvH}C%2pAXyRU!9q0y#Ke^q$NVCUK)mmfuI&~xBfnj<eul<9gE)V
zcdgVrr~d!Tbcgfx|Lo@O-&@~(<cN#sr{8q~9dEx+U9?N$weFjU^P!tkJXKXyGynYf
z_-p?EpYl(iJYjir`s?-h_3rYuA)s#IlFh-%@i{+l|EhVv@_@W7Bg@fStJm+-I$mf}
z`>W*a48z0k_k&v8r%s=~3=)6&X1z$i&8H5(c{VHC<*H7+j!Ag=res4qzr0>atf!ZU
z$A>$ue`Dh7elAt>pBJ;lFl=Rzt999%51bClZap8W<*Gp=QM*bqedpWVec%52=RQv!
zF0M=Q|2~Poy}jMP{^#lVl2=zW=UdtT`?2`?E@s)3r}f?Sise!D4;tC0OrO47(YdW+
zt`#VZLAB=e#}=<{Z+~AY|9tz4ySul`9KSfnve+d3oXq~^@t*(9&%RoJ{O>vI_n;2K
z{+0aO@0QI5l}D!8*D`KyN{u_c%xC5!^97+RgIteE%>TD!`SR>DGYspP1OMp<{d;F9
zaDtiNMj^SUjaT|v=~?fvuxaz^eq~zrJvP1i`skLrzrPxOFZxpdJ0kGg{Y|N-PZiE_
zvK4=Rc}HRL)m5S1+1J-yeRQ;Y?=;=0Egsp|*M+W)+PY`me~neYzP?_ad3jmXrj*XK
zv$LLVKNlWf`?R!b4mi?&zuO(U)Js%1dYcb8lUH$DU+cH~bs}Hl@7I0XN?(V`+Ef@M
z?7jb3yz97Jwa>wW2c>K(Hk7@&@o=+^x%u_?(?t%*^MV>NQG2VlZp**FZg&2@od@z`
ze}8?w{NiHw>}zWxrA)J?#9Y7HA*j41@i5!ouh*ixy1OsOmfu|(wA3r}`@6eU@ArN;
zsryp_>cLOq3jIE>`d#4JS*E7-|7zae-0a>fWqRq|-QA#`*|)d1Uw^$Gum8n@onLNE
zyL?^5$B!RhU0FHVYl_Cge*1qBpfSy&qD}XzUhA&^_4L%#%h~JqE(6tzuH9l;x3{g$
z+x1cn)Q$S}s9XQbVSf7`wjH+DKRi4P8hCi|bb9=?=={A)r|Cwoa%$zWs`#*=?9C0Z
zx&MD0w=eno^}4rJ^)7E0mlh#mVO#dY^0i+k+Wq|!Y?^c9Lh-p0$9XlMJV9e7D_5@E
z_4C>6tLtK|=h{>Taf|C+S?JtuQt~1I)D>;5`^U97>1bEh#YL_6>i^fWva_$wySodd
zqxO~UrxVJvOtYt1mA_kaZmzYqnORtT?boUIDxb@izP)wzePdAKnK_oh<#!6(tx8`l
z>65iy<<={8Yft6ou(eT3x8>e`wg3O$_2GZ-?XAwfv!f6+%m9*@WtyFJyid03_uK7P
zR|c!^|C@Pr)zo9X(#zT9YXat4m4Yg^kYzrSw!dC1X8e71u{;0LWy`W29%|k7@tE}0
zeYMq=eT&WS*91#SN;3L4?~ypxC%Zayb=b<x%ga_pZC$0Lq_idVv>3?mpg?b6WVR{g
z-u=I=y?u4yVz*x}7WbFjul-*6&aU>n?e`UabFEz8eSULuGiZEgMfCQ(UC-xLgNoGJ
zzhAF=`TB;Yq@*;OTj{L19#`$VHfrmoW`4UBCnu|e%+d;8)>HT6A$#q|qvE$VrFLIi
zAHP0(-A=blODp3wyM$D|GC+?0e9pS`{oe1do=%SsOG;YgH`fZ(6@1mqZ};J6(u?a{
z*4G-D*|Xl?+Y4%#tqNJWX!W{XUee}yS5}3t4%wO&dfx8ez3TUwCnhNF`g$!|R9t-d
zix(MxKOE)<xh^1JLK}}{kz=w+UETvpkF`--zr3&iAN}{&*UP=;_g0wY-qO(1^V_*|
z=dHcf+wFe6P<C~9ufA&{`onpX<<qdl)b#Y(%jZ>{I&$pTtVycgv)p>6=9YIIt2y2$
zYy9{3ck}Bp#l4*T{N}n*TMTBK<$j7bS64sYBWHW-%DULwEp2VHK0Q4>+y3uMf4k59
zhu6)st(Ll8dUpT6uj@Zw+xxiBy65$-XJ^gtf0;7ZviO+KT&t@lSyxU>(F#2U>a6Y9
zVe$EbGyl&!)=LaZ>wi3Czr44)Ja}D<rLdS-nvjstnc4aKGQ-x#fx1=a?S8Kb|GQ*~
zim-@CNW%a0^Ye1^c0Lso78FbbjXYmo8La;KYIwY81%DH$n{8M7Yetu-_N)mL1d88o
zy*_Kn5|z)dR<EzRS{!?QOU}(p@2j4lot+NqvYnc$o$lo1<a4x3)c5i--?K9elh5$m
z|9P<T`=`_Tv-@PNXT7?*diIA81t5n7uaC1euKQE5{-wfsb!+R}Hvj*8UY2)vmzs{w
znJId)w@k9Ho!Rs6*K4~{V<RJw-y7NGKKzal|FnlqYV+$|Y8o0ReCAjfChYzC`uc3}
z=)?Mbx4;^6Z(Y%e-nJ&-wq-zUa?i~znUgbbZ(FMwyK4&w?|j^6?GqIhbs%?N?rpQ;
z^S0k-fWp0_gX8i7N9ND(>;LaQ@I3R;k<Mpr(s>387cM+j8oU0bH+R*)W&ZQ?q|9<M
z4jn%1TT!tCH2il!GmiV#{&)NT*9nV=h!ki&DBk=1UiGs^b~yu3-&ZquSx;w2hr!nD
z>t^+TU&o()cX#*SZ96agy)Kbl_U=yRq{)+gLqeu-a&d84n7&#s`bEm**_&GFs_*Y|
zlaiCqhK9$cCM75PzQ4Ekub+ACzT;N&A0O|Z{d|7?J(G+J2S9P((%L#R>*}hRyWj0P
zz311f)p6hR44+-vyIv%1_w(DE)B7vGTy*!{nswF3!=t0KtIMdfvor0?48yput3p;L
ztqNWJ?D9T?<k%er3wM6MSM3`UGe<LY)s)Vj9+T47*Gvz$^MBuU{o=OV+n{lbM3CPX
zEne)Kk+EWB)YermZ*5(D-L|`j^G}rheUm+n^OmpQ_v_S`x3{l{tPDB|O3y`4PtDv_
z`g#_qa<BPtkUg%n`&S%Cj8~swYsa%`Ute5w_MWD5@xj67(8X@NOP4GGjUh+vttxH2
zKSe6}$`ViE+MiFSSG`)fJY-#rC1}EBclrBk%Y0|sly9AOF3#u9w%q8YOP8*!|Nn2-
z%Vo1mzPt!Le@6W0{RN;I(jRZTav5%JNNg4o7B)>h#KJ3Q6ESJZ+_`J5N?)z0`T2=;
z9`ny*()lZ@zrO?ZFsw>mD7<`A`K++8FzfodxzEnde!kMW>`lbqxB2y#kIUERJbmQF
zz`*dpD=bIfDSk`F#HQxvtNZKg{Ubd*I(~h9z5MIz>*5uOw;mnsE`7W8dexzJ6<1f+
zmD$(VfeMzqymd=9@1No`&n8mVx-8`Hudk)g&PcB3)(5#XCg!MFL(aWDk%fhYcIA=2
z9v&Zb_*HCe@4mm%&dJGXRrzVjw*32gFW>NpgQkJ*?kY7+IKa@_-mYz96JvhAruaZ)
zJ!leGBz7aO0%(4ry8Y&#-KXE(-oD-=SGDriGylTxhq(1Y!|k9+L(t&En>RUIb8my{
zpQ}eDKr`eG|Km5#Z8O)__EuC>w0pX6;lg=OT{E+LK5ntC`?KTu`{(oP*WI`g;ThB|
zrW>-@jkj0U`r9JE#T*O_3^6aeav3xuH!az;d2{Wl&-qrNn^I0HZ7r2Ke%b7Q{^Mi4
zwhx^rfks!=d}n3c-Brr^?c;}shpV2?Ee~1hHI?Z%GXq1zY3H!8X+}myCC}%UYiVh{
z0!^u|yumhM#te!5%Ol_3-yc6|4^#90Z9l(qWzGJ-z2@g9yVAvr7jy49=VDbI{^a+&
z-RlonF)%Rf_;Y5qxxa1ow>?+x{&3dX#;9Uv7Y7>h{`mO#UOg9oZ|}*EExP*q^*5~D
zpILSJ(j^fwv1L1USa=5A-BlX8$c1yian{@0+s_xf-*i|NvQp{g8@>~NofsGx^ll~p
z@q(=dsK31}_j2v`yU#88Tpo(vX1KJoIK5ZiKF&Dp%!SAO_IjSDPM!?(^6C;277ktL
z#Oise-~Qi<GiQ9Rt_XB?bab4zty^6G+9Xx)D;tyDJ=6WCgC;&EO`Z(0-!sU?rRCPv
z?B!2SPtX4S?d`mTO}V$t)<$pl<G24)&{%uM{_U$@uh)OKek}%amH(W&_>!Y$4Js-s
zE4-)cNtxx$;FGa<uv7Tgy4c+&+1GUZ_b#7b7ghZ1OrV=vn^yQbotHTbGfgrl{rdKH
zwQlq_4J|FN%gcO&<KpJI^~t>4I<NlEWBIE8f4^T{<jTz}V-avn!gr>TYhYj?$mp|*
z%nS?+)AuGxJE&y7yR%cuu4c!xv$K~kcJF_+Y<AwIPft%@-BFnAFMGW3$*y~wId`vH
zEvg-sabkiZXnJwercF~OOjux9{A@+q*;#R=>-YbwS{u39&AFZL>WhnupYB>0wKZ$$
z#^mF_=AIH~U|?{#Xn9Pcc%}76_pO<i)vm6OkC!&jdm^I4z|f%0aJ+th?8d!<il8+R
zr};<fS_n|CAI1wpj#@Q5dGaLV#Rc#z`k_OIrp%bJVybp{T)^!!XMA`i3>+?Ayx7&z
z5pa5%?$mkn>h76cym+xFHr#uf&Q1wuP~a5wCCNH~`qZA2)mDbDkDFyvxd~KouZy)_
z8@+wqfwE%~TeGkGaf|6(IMB#!ns>)S)~dwA)6?_T&f@d~Wry4OudfVV{>0+kQ8`d4
z$sqceVH2pQ^Y7PdDdV&r&^REdnf-qM|9$Irzq7LadL@{38>lt~HC}ISPJcZ!ecr{x
z{Pt`3?S6nJ^P~)uTJD>Hn*DKAFI9PEt-gGh059(W8JuxZ3DjYz|Nn2^rU?@SzP`Th
z|N8oR&>#Wxw%9!t8`tgq7FGJ<!ogrMQPHLAVs~qqnuhM&xzjF}jaO=k-(0Jeo|Dy#
zj>X(L2=e)akRIj}&(6*UwQxH+IM#n^X<<44$>GxF%c1MzZ0CcxpbpIK?fKue;&&7*
zymaXjXf;Xqg<_EIMv>bLo9h499X)d7$CTqoj+~HKT>JZ*=*qP!>$ffUn|o=3qVty@
zkNZ~#E%g##_#C8zNpl;c3TE|@_507~^RK_WyewswbHnw8DJZ`-vBbaPV+q=n;+dMB
z{(H)NtI|`O_h{tG9{;%I?1>W>etdjvTKlV{wY4>N$vjYj!?6UlCJ>R9j!wA!r;2s!
z-`n^9Edz~SM{Z67jWmYOb#CX&yuL1WRm{#$mCK*X+Ei>%QdZu3s_M&&g>tr4A~!&R
zef0XDpPxZp(Dj?noH^rtW%g<Jjl2pUKYj#tbo=D(-<2v>MMce$IUZP3Q`4Ax9W=Z$
zZ`!nF8#WjmJ$lr0(ziD^7w7N)3z~%eyz03{pIqIKM9aR#i{1NImAt&f`mOZQk<L2(
zDs~2j1M<`N>rXMyy|v`m*Vplj<YMKz-kK`RwJyK*^73+1(D-1apI={4P!K3#bBSts
zOsf0y(Y^NbS#zu6XFcJ!nc4X&?w<Yg;o)KAD&o?Mi;F>%&3k`7n?0}oyzTcnDw!`X
zECh{MA3A(Emj_gM?oblB9q#}dd0px)&MR%^!_FrY&?{vMs{CVjmt|gC6FINS-~R8G
zXJ=+E?&;wPT^AF1=_Z3w<|UP{Z*PZ3Z_5b`37N9YclNS9du)1TEH7RDw(WM_=g9n&
zlqEfepn>2?lPA}IFJxk1U<jW?T!mo&WCxxK;d$))pX+{tl2U+4-@|S9U8mLaJvi1Y
zy_1cFf#Ctyfsgm|!*kX%f*MQ(KNTB53OBSdfb2gY#RO`HFl2KmfJE1fN-{7E%|KWd
z!9HQm92s6&s}NDG5YRdvAz|UIMNdz0XU(2Db0s4)n}(HDl%Sws*3C^zFI~R8_f<-2
zYUZmeD|dZ9XDuo%z53Ep@6~a8tEyfuojzsy^zYR?oS;VGBGK0jmzMj>`_3})+*|ea
z(vy>uL9-oYZ*OIS+N0ZykFAK^T^6+=p^=SGW<}xSV=pf(boTP{x^!-?we45Xq!p+s
zH0jF`VgHOnEu5>u*3Ocvd?NVu_4W7VveFC;3<au1J%-PM$`8%wl{NznunMdBTzGJ>
zS=ICA&6}%&m-n5TuD^b3_I0+L-)LP9PtfrBqeqWGi~i2eHus<O<+8s$XtocuFlO(q
z@2{`>YierV+L+wFDs;72f$eOw+@Qa|zHTji>~?i^`1|dAk_-$CM`ggxp}(vt7Z<s5
z@$rTI|M%B6RZ&s#)%ErBK{e6d>hEkhyDL5>#a6%FI`4y`XJBC9t6N)F2L%UDojqII
zQ!9Mk9RD8^o@8#%y}hm5R0fodw2m>Re13MetGhec#ib>@(#feQy;9-j%a?V+nNChk
zpfTIGx3`P$c=z}BcW*1{D3G2Qo1<n8Z|?7pH#9V~dunKCXml*&{=Qn*EbWyCw(Z=x
zbCyZwq*bA-m$mUqi$SXm&V5&8IWQ{@%?)oC_uH*nzyDtpXnOU@uA^r2L0P}v<EUA~
z6rISRn>TOTJzefM_mhskSM>2hrfst3d2`}wzlQe8*+!M$t4tTH29@;+6OyDIl9H1C
z%+s1$U+b2Wlhc^{`E_i@?I}}4Z2x|_3|fd|l5=B&)7R1u4-R(q^nB5JeQ|Mn)t486
zD~>ZVFgScPtp8VYcE0`n)jGz;pM}0Y`xKbN>`_y*2Q=09_;`PHY{$H5)6|X^ipa~y
zCq&m@{<3W8QqbzM!otG1rz=;ke06{Se$bE~sQcgg?)8yQ;hAl`3=9v99>3>)`X{p@
zu;l1BrS@}ktwFWqEW_ls<vQx>?wXpK(6vS?o}l6DeLtT`gNA)pzinh@-;#1t$p7ZU
z!|hu$E-I<2tFLzH6q@(RH2c~L_kKAqFRxE`<Uxyr54>M|;~&$c2@@9R#qP?uu_4i_
z;6X#yl@$x8Oc4Rib!<*M`{_#cub0bB)6dDIrlhPWdU|ToIkpL)wo?B6eV{S8MT-`h
z<lZuQ`t)h$lM@r?Z38XyDJt3&b3OEUpX}FT()kr%A1<4n2kJeo?E%+2LL#>rlst={
zpS$|u;bGJKdp5GRRUx3|j??tx*B$GXu6||F_t-dk>g!!m8<SewcqA8T1~1dl*7oM)
z<eX)k-j{W4&C8YF|9-#!dU|}_L>1d_H<ImM%Nr)KfZO;xI%JZ2c3zqLWAQ0__JYU9
zdSjTG7#IpzAN+W~U3=SgaILW8&&XK}4a#)GxC4N?xIK6cvxlEwUmKt7DlSni4ILey
z&d$!LokdSsx1K$7=1K!2vxuzh+Kvv6tvNS?Kn2z7b<x}Xd}o;iR#farN=h=xxS%lC
zqVQ1?A1kOC+EvN$^78V2HQ!lF;`UZ$etL2eRCMkxd%Gp??k=X=lF6VlSvO*X12a3{
zl^unTOI}=11WkWEKQ}k7)I9&*8qoUED=UL%Srjh%_5J;N&|0_b>+AMEzW_2_JLtpG
zcMb}mrPZKii=4u086O@ToCLCJrQcjD(4f|qvbVPya>eyxR(ySZJ^SOMqpvP3Y*tz6
zJzWnpi_#&eY?6P^#{cgBpY#7;yc!<Amf!wQz{7_RCoOrsZnqyZ8_xyMBF9~&ukRO5
zVPIf5Fm>sTe@vT*=|uSdn6PBU3XRgYw?bF0TzTs3*{LdjKb_W(+F7);>g%hgobr>d
z>@Lr5ZEt_wYku#CtQ%;<M9famaN3^A&5s^E5)l-97&>plga?sw9#vJlUR_=NJb2!O
z2@58x`)B?B_IA<|&|<~q{`15B{`$K2)l`i@C(sha^^%|hJir836>;)%+5dlki)7Rj
z?lxTmDP8cPE0^KqsZ&879v%Lb85t|mD+6yyCEMhF{?E25`T}UYhe0H6Bd>z0_q33*
zvTgo9R|YS)Io*BfTA_^p?LYe)Ux{r2)d38x;W_CCxk|XM{QLV`)pO&<jjY?wt`85m
z{pa#drmMOcvd=*iU&#H0n1E^q1_lxP&(F_;`U-nb85tYv2j=U^A2n+@a{PGq*H>3T
z)Bo37Uu0%x7Rk7O{P>Y|+gEen{HUl|hYlSQ5f@kY1XcS@&COqLrq5ql{QTU!D$umS
zp32R;N?(^b*3PvkTy($t9wP(8hvQG*b3gT+ZT8bAq2-X~w&e+>@9sn{_n&{QN7C3P
z)zZ?^%hNM3DQS^b$O;9|UmuUle?4n{{{?6*buPb*#R66DX%(mV<n7kDc8h6RT1KjR
zO_`uFRWCMbZS;1~8qPiMYV6X_$;`DVY?>_yYA%aMZv4xtqNwN?yQ}2lhQz}q4-PPb
zMy5dRjIG(zK@*89zkj*xpM7qQC1|<-(^FGb=kh8{R`U(Izpr*{>S-}oSJ%v2TQWh@
zxF;qm@4aSR^(DhJ?@q+oS*Dj87@4=EpO@SF;Se{dQ3hI=d0WPafq|jmruMe|4IY>7
z>@5CzegD7E&(F?YUf|eV^6ZSHZv4I&&;pw)g);8zUfc3qFWs7Sl&kdhHQ(T6J{N=i
zZI`}ykpWumvMO@(vhcgnc{^RT!`FpGM9h$@|5FHBmISI~#q?q_QhUHT;fUd}8Qyn0
z?N|LNW-!mYbHWtVF$ibq`(L*^=`S~^v(Rvw8(g7`zzsCRyv{gk)sT{wmUW<k5wzyS
z#ib=`Th7WaU%qhX?a#k&2P*SYPfrU?Nm+7hd;a?O`~TlteQu(%yGh<13(z{|ix)3y
zMQ>Y^xA$w<-jBzm#j7nq2})G|M^L$fKynXgWENDo`P+V-a%!sf^32Q2G&MCnL9Ozy
zudZ_E)IU1Hsj8~_a(aB-MdR}}iyu5l0ObTwU*g%>*`eEVB0Vqt`uf_m=0^c&+zGS{
zsGwkjn10-vcXxMZ-`<uB8X)R@2+F46ElJW2pmpH5D~CNyxBcf@g<6-tyRv+K-Kwgu
zuRJG#R$W__z5?}As^0B<uHsqx>dM7FS?iFML8|_@LG$XMa>4%pPk+#0l~&}YC+|(X
zKoc9Mf^z&1f@VTM!%P@8gl+!sHePAatOjU7!rG{<pRD%2+Vy(fXD<1lpn!byCI_^Z
zPdw2Cl)RQC$$&<h_8xNH*V4iQ9cSXdaZO^e{=Oehyiz6~Zr43OH`l80kxS$2`}^zn
zFWJ119Td<<19O;9{QLV`R9N_N@VxkK`S<rV<o3&0E_(Ckjna1esxK?j&dmXBnORx$
z^Hb|vP!-U?uqK8%sVC6S?;Pt@UQW)5DygZdmH&RnEL^zI=$MAKw)TVMC;Hr1{@t<q
z_Y1ThLCe@UICz=Q&INX$!KEDrVRej=o6~x|rs-7Pt4~Z!oEN;>Ynsl=H*a$0AGa!f
zHAUvQ=7&Qc{-ieEnjiiAx?J@e!@a-X?Ve>>yzJGLmBBAIf+CCK%qe|^t=ZSZyu41a
zUOj8?s->oOtXTHg&QGV4l9QS3j)Cg$2@@tbZI?IAngSa8`}=wR|0|%mLdU;TmmF+n
z*ETY`w0ezuzuc>fi;uI~gR0!F=|4X|&;Ix4XI$#cnKP%aFrUt^&A6oI=ciY9cb6}`
z1*(YN-r8#SG&3`ki<>(*CMM><w!X(J^6u^eZAz$_R{QCsI;gLD=<wmar<VK8T?JZU
z|M9r|^~wHrkt_E3&9S)np7k>W1H+HUpT4(#TIM@DWPjaX?<<Q>J8#^}vA6j7IZ%gT
znoi^+P0;E#G2N&oPoAVq)d)Nkyf6K{9B7!z?yddbFTuIDwww(9cGmoU#?@7!pnhfe
z-Rtr7vCV9}LF?o8n$-RIaX-@qlrA8R_Ydm&`u?D8O4D?szdV`juLYTexIE9c8oU=F
z?d+_1yF5KTL2Da7efngRdc0r$y6*Nni{k5ky87GwT+-CsY+CrpMKXEHym{-2o}TiY
z1YW9<dC3K|!)1nH@}8z%70`MN&;o}0cF)uw^h%q50+ss*L>nIOzrXIrJ<hwOv1=nX
zIytxTT%4jAJZ0+Cr7bNiXJ;B8*RJtM_up9*`(D0SNlEF;!*=<s4-XDX*;Z}&^y$-;
zMXubS3=Qf-M{m!&`ttJf(iayLzrMbHe!2YSw6k0i;7yt$ejER?KIv~@;bCAXNPRfk
zIY}7U?Wzy{XTSgF^m^TU`@a2tV%L{wm*j5Fx>K_G;+2Cb|9U(8gsiUxF1r!Pyh*di
zG4;@f(%fee?asTn9WOVUnBOZ|92D^Q%~6Th3VFFRr|w!3yd<QvjC+}|YSeG_-l=n9
zds?1NUv@VCn*Zi+9~&lpu$=$h^1lE2bDN*fkz-)!5>#Mda4=+IVPMd319eZ2atJUm
zERbMiVqg$ac3@y=NMhk&U<l{|?drv=*myDXlLrTzBX<_1is{A7uq=M|WZUgL@A&xp
zTb{GCvtPb<Z(il+XQ}V*?A-bJoHc0s!Q3LyauJ`{*x0PBtV_3V|Mu)>U|^WD;9E}o
zfsj>Kv!>}rPYaK)HI<c>jogsnxNFz0OSf*#x_9rMiK*$_qJJkQDre^Ao?YnNzA5kS
zt}EBBE!(`=c<tJ?H#evIKRY|S{L;?Q)nQLJ&;Og#CvX2RQ-+&?;as-yH_-{{^D5Q!
z_x(t!`#k%8%H3V1KQH#zO%ac)P@MnsO!}t}hxzB1)jdAe`||z!^Y82b|Niqt-Tovq
zzs-c)+uKqL3Jm(~|NZbx|M%m#{WJgiU%_GP<7$`nGcz!xu(5lTmzV49da+0+eqT+^
z+Jy@h-@bi&b64r>%=m>b-n~1=Ykp@!_WHeLHMt)j9gW<S;yJJG*Gtde_Wyo7UK6!d
zYjxP#Q;S@?&)sokU}z{bHgov(>zCS*!!xE$n<ishWwL(%zh6@}U(GUIzvq+Jy8Zut
zO+NSi`}gN3CMpYGGtap(f#2?j0%-N3{m-M!3=Ha~$;?j<G%{!A<jmP(x6RDL!s6+h
z3l{?1+}xJg{$F4JSNrw#_2++meQlh6ZjOJ|O9qAmB3(5cd!yDqTikCq>)O4@&1tHh
zZSC#H>+J($V`Eoc&1!3JU%sb*<Lza$><j%T{rR%o-ZwZnxbDYcdB4|Ej0_F`{U$Qp
z+*ezD>((v5-Rpx^ro6wmH#0BKueP?<&CN~it!3Gp2(77JuU@}izGptfnDgsmcYnGP
z?7wvR^7N>5Mh1p|)vioWPHC?{0~*@jTK+~isJFM*vf#miCAW`X)7$ssk>>m4e}8_?
zG|j%Y<(ajW)u-P48s+$ZpQeBAum7X$`RU#6_i8`S-`=wCL#zIiN#1&vPfgdy?X@a?
zes1oDvhR1xpTFDv-tMUk1B3DPX}ZyyQcq9g%x348v+)iuezziI_0?B5_jOFp%+Ei6
zZmzX@?X~2mr>5TAl<M8q)>d?oRout&{-sNkX3d)Q=GNBiL%%L9_5S>9cK)+o^LrkX
zV#;o&{(Nr#f9C(+*8^6D1g#DG{PTRhowKvEdTr0Wd-r0>@0R|&eg9wCCH^za3<Y@~
z|Gb|(d!xKl{Kh2LdzH`U+I+uL{5bpl-tTeqYQNpQQ+Qlf_)&5~g2L}_Z)cnAum1jy
z^M2aC{QLX9eEG6u@7~&)w<p!-pLt*ReK%-b(&PHNKab_rJ*}**KVJ#vdw%UV0|Un-
z(76EqwNdUY3=N;p_54-)BB~ws<of=9rF9>g<)3W59_Q`s?7VB&E+Z?eS)ec!{&uhU
zye%jS-Q3-eUw^m%|390bPbNoh%Za?UCUWwvTeos<Y*6g&?XCQ9kp1}g+RwA^&-rrW
z{r>-TtFC5&nxv`R3=HWPdUz+ynl<asL;m^`x3*?~J|gU&Qc+={tE>C-ZGQc1?R7hn
z4&C!wI%(FdPW@+RW*V!57Q$|-`ugh6tML7&UcAV-b?erpn>S~&a*NIR_ECH4DM?#?
z1_py>d*)C34^%TSGMv+&_rJEt_?xi;1H*xx?i7_;Bo%R^ijSUo!C+bOAt7vC%*<A9
z@w9VuEO)-$cKg!x>*jBN9z1w(%l7T*_x4oIv@Xwkx99V@JzuXytKY5u@!?@fNeO81
zf92}cr>F1xvh+^r^;pZYH#cTl@i8#W`JQ$D8>`RKsI_S~H>Fm7y&8V`;>C%q++s^s
zuhw3>cJ0fzZ+(M<FKa&Um$965?b<aNs}haZ*VcOH=H^;iTVK9)YnE;Gx0HK(Dj!$d
z|M_tEPSxwRk}@)9PEFM={`qwJ^SkBu&-Te$8yOi*+O=z!|L+|P3<YsBHZp!XV|@O}
zQSo@6^78U&`tkErcD`P>`_i2|b3g|g%r?)rd-~^Cuk_{n_vhc;UH<%5_Ilq*HNS7)
zKX-lKx2-n+emsucU-$RNy>_`O4Q6KMm#<%+UOGL_YTv%Hx3~NsrZ6xR{F}8g|KO{4
z@6Nf3$C}8=dtSP5VZyg>-*WEmGCkfeZ~yiWulXGVIeE`b6(1kzL~c^?xBvU)$E}0S
z?3*($FS}EIzjo)BOWwtQetfL?a?w5gp92HKfit`l_U+rp`O#q6(xs~I{c>ktuitO?
zG-qqnS?%?ECcR$2|KF0&fB*iqEPCQGDdqXOxssBSp25MvVQV5L-rStNeBVC1?RSd2
z|NZ;EfBsHpMg|6Ba|b>diwVb$9rJvhoZZ~q9DI(Cmp3&fB_--}{+^F+tFC6rRlQia
z=kK@MH}_N)gKFUW_vfp6PkS=A{GO#SXaXYWg|WibtkPTg*|SWu!zQIvR8;)=E`0Us
zRZw(RR8*Y$EwMXy)lcE?GIli<o<YIEljqHwcjfwZb<cJCe!aR=a@qIhj>2TQ$|n;u
zW33q&3bI_8QhtAXo0*+${dS+%(n))(zc1Ul)AH-ruac6IGq*gyu`zjNh}PqU1xCr+
zeNF2h&D%JC`~AA#Ex-4CJSJUyGj;mY_4R*WPw6)nGpzpp&i3v_1_lfE9^3cUSMA%1
zvq-31j@QLiJZzo(O)qAL!TbIH|4r%NT>t-{%E|Bh|Nqte&cIOc?&kjb`n-KVpKY#{
z{6D#i<wUD^+>Gk?d%yoTE&h5nJpK8(xs$Jzzr8gT6!bfHR-U@)wRF<zb-T3m_y75{
z<aS)u%cVL|TQuhXzVm#N%Jtat*hx>`ZofZoOL;+oLHyrW;md30EcKqA_W9Y_pQpn2
z6`cxCVPLQ@=i%p1|NrlA<gSvJH}_5XA8Gup+5r^5@7}!w)gV9LmG7UeQu%)G_fKy&
zpMTb8{q6*-c#Ofm@`MBhP=a}Mv|Ihm|2OIO-ue0OfBavz6<VV#UYuMLUtC<g@88$;
z>94P?m6Vb?_2=j3$tt(E<(@upz(KC!L8IpSjSCkl-v52?`?(i885w5W-1F(<Nl-)W
zYfk);lRbTX&!$D^oy=apcbaMTwIvG|D#pgfN=itacz1Vq@lnz6p7*)Axo5w<y=`n|
zWwo#D$A^b8#b-?|OI`#ZRW4VvOlxavBR3=*{BaM|nE82a`@X5mmVxub&j-!?n-UMV
z)qL!ZKXY1t|D2nf)5UGA85riQPRnUf`Tuj$fvwrspZ$D3|NMs!1yNB^pKc`gKb@7m
zZsvydYuD;pm%TZ0T)y5Wv9_SVV0HNVbK7!ngKEBQ+qRXIm8D%=<T_by_44KF`+pqO
z-;{oS-kEu}*7tv&EC2LjaevywL#^{)Nis4#s4-g1%)-E6vHi>qeI*tKhI6)5XgiOP
cisc{g@6R&xZZY1O2<mKmy85}Sb4q9e02S8a-~a#s

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Results/poulet20160830-103441.png b/Code/MonoMutliViewClassifiers/Results/poulet20160830-103441.png
new file mode 100644
index 0000000000000000000000000000000000000000..856ba33724ecee47c6f6e1a2771592f4a6f27da8
GIT binary patch
literal 18696
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2LL~IizrVY+4z{QWOpx%2Na0<v
zV4|wa%|nZr7Ei1dWE4!i!^S2$@wqy)g^`g?lR?8Gp2SL)RAY_9D>^zj1X~|4X>_m&
zOmJ1;YEhZ+`QO3Wbs4*@Cv>!P+&^Dh=;}ZBa;aZ<Y5Co|q042GdjuI67#JcR#J%DJ
zF?JLQIDqH~X9h+F28IM)MivGJh6Ym>0g&jmkt5k~dd}-zSvNO5UHa}=s=lVC=epN_
zr~P`^E`O>t*7o<C&EkJ7l->KLyxtYHIqmGxcZ<a9|F+h@-}if6-tM<%Q+1=m*1cYp
ze7tY^F7N4gmR7~D3|iW?Ds**P?cV3X7qV*~AM4%q_uK8#v!>Til*V3N9qvD=<p1CA
zr%Pks-rIY-th~{?&tLw}!X7!>sCBPTmBzlkvGH+G`E&k*g))|X#VdCg-sJvbBmV8@
z{)pSJYuL^E9>*9mrd(eaTNE44Z}Y)n;;n7@_v3b#y$#x5_t&K8iAU-Cdw<JcsOq^C
z*6Dx#e(Uek>G4<A#ah>XyP5v#;^KC<KADy6@^uyowGX@mYgSq_h#WgJ)A;GGbv=ev
zPp5{Pl)bs(eRpY6{_SnKT-@BduiV|CWSVuw<My`P;E<3hUrXn|e~|X>&Q7b!PfL!<
z{WV-0voq-C&6`yZTg9)ejo$8kS5_prG48drS<Z!p&h20Rd_JH3;=;nX)5m%w7bhNW
zTj|uwWwx73gggA$_4pk+dp@7DK6T<mz<j&fkbO0kXXn{QFZZ9n@5)`RZ;u{53fY)+
z)cbC)c2Gvfibszgm3+M#9v#2kaM^*UqS|30F)?$N-iwKPUaiNqsr-GMXONH2nWL}x
z^qd>xURQsAH}$ba-S_#Qo}Sj$)AMt5blkR!Q$(6Y;7{V7Pp7ntWZeJ${vLjQo^9!m
z4~e?5yG#=P?%89r_sb>ktV>HePfgKWykUdE)isg9e}8|!er~RHcgXeym!p{GGS8VZ
zWyyjC3QwOsdv!B?e(2j<TScX$URlaMc|O1X+K$4<S5}2;hpr0oR8&;#>g&5^`~A-1
zEnBuUJpTP`cK(+G%={~|uCC(Z<qiG$>FL!qk;Wh!<GwP@U0wU^jHK^uGvDp^s#Ys0
zD~rm>t*iR_D)ZHqm390#rs+m63tJndX=WC-aN)vL0SlWZO`2p<`|C?X?Vqi4=E(F)
z8oQa_Et!1i@L^F&$(3nmXJtM-)M{6H-ZnSw`nuRx_xA2yxAU3QRGr8mUTL!{pPru9
z&zSrB+uPuPfC;azub1E8cY9mz(_QPf<=uUy>Fwzm`25`5(7jcqt*xz^Mn*xtvrI1j
z|M&iX+=q(u<#83W&2mF_m1MfQxxM;!J72$`djHR7vtM0ZJw5B{s-+zr9Ih@dD;%5I
zW*Mb+o&Q!88(#eE%tS-C&{ZKH=WMHZxASx3I!41|FP2V^3vzO5@|vmz(xa-P0uuSO
zJO0W0c>BL!CbRKKJh*B9>dMN+Q>IMeu3M+_^0fZ`kbXH^o8KiRC0kxyU%&ofGyCf^
zGmYa)^-KQCnr2N|6}npOc;S>ulO9#-eVV`6;nViJCnhSV_I$L7cXV`&yZ*f9_uK8S
z?(W{M6}D!@gb4znD*_yAe|@>Q{eIo+&oiFK-T!<md%dQiVc=4)sk<IzOZCawu1Y-I
z_OeYnFCZdf1}ITnTO0j)@ArG3SN^Wvzy8T?iQBPO)eGzj9ylC5dQ?+K$LHy(slkig
zdcWK$K0kMRZs4(B7v1GwzT5piY^m2&5h<xvGiFHKt$MxIZvE9}cK%l<)#rzR5|E(a
z!cD2CSCzfJ_3HNa^+rZUHec)hMxC$!zw7_M->E$xYs%*AzAyTv^3zH6`74T_pX=)E
z4D|5m&<bC-rd_Ve<M;RX-&a=eJ1?=o;*p5XA4M6Pih%sRU#DeVUG?<mg?R>vO=)Ll
zEYyqL_2bI<vuCf)|Mx|GZOqP~soLRT=jYjm?kdSlO-Xri*8G0R<z>F1d#k=WUDrKj
zx%=l=>(W<C&fER=$-TWTw4F~@L{?V!<r~eQ^ERJ*W|`-&+x>2rck1bBSKr;;y*1~i
z(b|ZOPWk))ZhN=mG2i;*G5czE?kan`YR(*)t(lkIzTc}}-zRIm?7aQ|n8(L@FFW(w
zh9u1Qn{T%kWD2M(&APsB?L6CREfbRv`I--n|2|FMpK-X2cb0ASw&nkNB#pmZaOT%k
zQ*%3c@?=+6*QJBa>|c+H$7`sn9xe7Ob}T9`E<G+=o^f`T>8^jjUVpuj-2d{)$;nY$
zGA8aSeGRhq&ijLIZf<QtLP8;Xt4hDVyBqD^Cv)-j`u*#^y}h0N^wiX>dwVJyU-$O*
zUVXd${<`n?s{Nz4<y`DFzxQJ6pX2iNS58gUzPcgN`EJ2s-g%$g<tklDUtJ0O{Oqi#
zu<+vfb-z6S|2$uRWp%iI?)`nSi`{yy-p^o;+@3c#Z~x!2r_Y|P3SREFDsJyCv;2E&
zmMmG)ApVU{+RVq%(b3DtC#022bjr+`D??X@WnNg|`0LH)^Lw^kKQU2xYst%?+K)%Y
zrA#s=oSLGk>^X0L(1Y5a`+mQ>{O9NA(49r8U*F%4?|Yo_^3u|(CllSjd^|3n{qD|A
zyIfFMAM2IYR#9<@-Bl7;R<=z{FJ=Y1T!n+9qvNZqtFKqipRB+CPf)Lv>7>`Yy!`ya
zuC5CG`uV*5>)ZMJuYP%X*|h3Q#`%>ktvBnVw`43lbH>MamWk)bj~}z{@7tR`_v6Qp
zjK71IdWrVRSO%>QUw^G#zHWtG?XMMHQ?=%$PWtk4`TSL-udi7ZK5CgXd2;DtUh@~P
z*YCf!r}FcZS+iDszh8e}`^Pi;=Z}x~Uq3ZfyY&0r^3|!Qr=2=;#^(L!&DG!YO!M!>
z>@I&Fc6pia)or=ab1e$NN$b{@%*B$%X)EIQ*UkH7b}wA-SlM)N3N61^xg6x>w6n8T
z1~2ymRZiRT?yd@4?DleI`aI1IwTZ`n-T(hDy!>wIbR}iwsdMJ6;S$w)ablwKt!=rp
zm-)|MxBu_k{7FmJtkJn!c02dizu)gmf4|+XZD|>KOycdWt=^}n=>|{Ni?#WEX#G^p
zU^iv=zAMkp&Yn7J)~f1vJCASP|MWla7pXtr_y1pO|NrNCPyt_5v`H&;)e>3jvW#bE
zW>&pkyZy^a_4yTlSJi@YYJ|}N`2(NN+vm$1H~jzSxxH;Fuat>_qoZTm^K*0UzP9s9
zr^y^Qe0zJlxuvCL-07mCqB9Q<w|9qp|M&a7`MTG$Vt1GQTvPn@)zxE#GR9d~G}eDw
zvP9*vMc>Y!&t{*UsO(;I>+he>=btT~U-wD#{_gVioxQ!L=64F3!+$<J-0u7G(o$a!
zkB*-&7We<zW<C9}#WL4!vA9%aw;qGO$1@z8*=Fw9W8+^L7dP+a_4V@$W3TH(Z#xql
zx4*7dSW4>E*O(`tub0>V``BMEalG(MZ28^Pb8{>oYucB*m;h?~6vkd(6Tkmn@Vto=
z6J?GYu6sRe|Np=5<NCjzvwjcKF#q3|<=j!<|NQ*i``9Aw!~{jV)5rQ`vtzEC1~2#f
zs`dZf?)NpXo;`auD{O7l%+>35oqBV7`}yq1prA>GvDa7YT(ApV9j5zu*SgBrYq#$?
zrS3oPjpXNc`MQdG|0I%q=G)cwyxx^|xQ#dNDeK$SjlX{1%3d#dywInajrYvS$?CRG
z)&1w0fC78n>sdcPKd;_;^8Nb;M&>==madK7KI_4QgyP4&=D%Y9uebepM7VCgaB`1j
z*_#>H|BILXKYM@ruWxUw9cwK?ne%TRe{#>t*xlRiKY!9|eh(CKuh;Lt_k5$waYI2t
z!DpY(+v|te&oa-?YiepbBb~qJVd%V>GczAOe(W0&F~hRr!-C~^j{QD$^u{|&OUrrJ
z|2MI6pWA&;D|FS2RiUe^rizxWk+m)}S@(LD{{BCgmY?0(|M^;UzU1-3Gs6Bh4}<m1
z&9BSY*WLO2zcKE$rl#hx(pcl_Z#naifA}tScVF%9ov&7{_KAs^b8~<F{_ww{tHWk4
zSfFruW3v1DPoHa#F&q_SWU1%4x;ota;K74&?6v=YUEkmH*y7pC<@3L-s(yAxGI*Jf
zq_CXayU%R@vRhYX`&?x9Sirpcv!q4Ag2LGAZ*Fcr9&A?kr{b|ipQKI22Ugo->zO^`
z;^t|Fubb1^+xwM^>1Us;bz01I)4RJ$KTo;3KK{Ooi_46~?)_p_JU_FptVjd}%D1<-
zYp0!^V|m%4FZtKk*UvRi+h?qa+PdmGqu;*Q>vo@uDL!i|zUAGTH9BDDNK3!|9ASR1
zVlgKt=gtQTTT@O7J>Io$rgizc@Sm-06Z-A{-N@H4dG_XC#A3JJ2KGJwa_;Q7Xwmmr
z_)?dUL)7-X+?ea8+TrWIto;A)_j~E%g+8mp*6um=nSVw7&!^(^&Cbp?2W2f`b-y{~
zGCvug?EQXEdqZ5{xBK^%8=mAJSM#0qBlr52%;3kn)?GhXQ^)YJ+#!0xdHer&Ec%jn
zmA!pcUYV7(sxbDt&wRVTO>*y(_O6fVdAqOTW71=bzLysk9%fy8J)S|cWB<moS65E%
zSeIS)=0;$`?LQ2k{{OrG-}-%(UKqpA*YW?eVy>Hl>XJX}mOHoeEpzD<ihKBcd(AP1
z>0HYb7T&1-|M&aXyXE&+=HA{GC;sVf_4~b5k2=+-Oq#Ul`Mm0L#ftZ@$JehtbH+zi
zP3_gK?De`IHgX4l-=1}2L*ju{`T9Q_<7z&-E?v6x<%5IGr%s;ys8cNCUj6;u*FR7G
zom8KHq7YPFFZ1|&V_)s=J{ikJJ9b$7{rkTDdt_cu;K@m<TXS!l`A43gXZ!WZWdB#7
zmeKcjcdzcLEH=%%^P?%f+^X)+j<R=mR(6SMuSz>R%kK1Ne`_y)|L>7v^78M$o3wgO
z)e^1H`@Pf2+4<_$?C`z6UahWrKDXTF{M}`~v$vGK4l8|i<>d267j3J*Wt^E|7_~KP
zYT5gHYuBvNIlt*oZji`qv)oB4rrFodq|bc43)EEK_xqjo{8Ug?eq&?u)}*6cwcqcS
zTNOS!;`;LZ&P$gsKi#$N{^eVs=E{Nv3j1%bNIN^LtE1zC=K7G8la_40t~V!NZCl>m
zT`!M{$6o<8*3ZqgUS0b7TGpK%8_$0gbiG+$&;RrGM%Qk!y6M|<ZU%t@@Y3bWSC@DS
z`|o^g!MacU$L6}fRh~g<Y0K^h|L2pl(Maw&KcoKr_o>|*?_R!isqXUc$bE-;wx*w-
z7qzQorI3)&m9^34TQe>?^-7z6o7uan^7AuLgC5jB>XkNM6}!6(WcQ=TkL$N<uK9fb
za@hK~wY<`1KXmLXJ}fvl$8z!8+uL7Hi_ZHP6?Wq<*N!P13L4+i&dg9eUU+4>zx?`7
zn^I4|dbj)iwMnYpQ)bP2wbSy(#^mEFFPoN`>G<5ezpCcvr@GVA^<r1)#qL^>a&i)=
zYYJ}ax3`}zjjjD~kUeU1TJNUKoAsmS*Z+E{?s=(C)|zXN<Gr2iJDS<~ubEztS)6%!
zS>~xJnpGc<imT53+aPD27t<(S;r(gOW4R2qg?~Q%**N$0o!4ULL}g^w?Af!2>3a3L
z-|zRwuix{jEA9Nex0W|NJv~3}&aeId_j}fj4GWEojjwLW48B|Wd~R1yPe?$(1S2CO
zlj?6d>vMx7X3m^hB%}V|-vfP)^t7~9j?HYhwq{QU1><sm`Pka8SGoB3u5C;{ZjyOv
ziPHDy*I%EkzZ1{R#T671GKEjp>dEFc3vyLXK4&Vbmom#)u{Ha8)|VF-qxMv6e0FxW
zdU6k_%Oa@kR`G6c;FQ1LzfagN%YAEkuVLNymxt<ZPPBja{a*F?_pHw^-E4kSd_3oI
z?bD>3@7*8eVs30KdvU=L)ZA6`nXw>pb6V!H9!aBPE9(CKs`~fy`PE&e*`7fwgO-Bo
z{EQ<Vf>GOYX5Op)9xItFA}YER)OrN9qVHcnl|OO++T;E5@*DadTYxf;f8~PjA`2{(
z8Wu!Y*ZkNJ6dbJTd3SgD_iAQ?<Ao;4$9Vi1PW}(rGa<i)J2-sO^JxA0%m05_U)UjV
zxSc=T!=uA2@6HQj-B<f+f7iV0sLh*SU+eg_wWFtJO363pii?X}#qYcWH6Lrg-(5bx
z{$J$lYiloGTIy|D{LBZ`OpmYsyY<vm?ecr2|9(8~ubck-{F_Pf@4pwkUb`KXok6~+
z`}Z@wwY4?#U=wRsS69&OZMl12`OPqJbnll7_44XE-@1icOh@CAj{Q$1W#!bKi;c|e
zfAqe8m)ZO2l=i6;CoZfATx?SFqhNh%W@hFrlgyxrzdyg;Cu>>cl74Q^$C*-J&dfBn
zs`;_OYr0--;I*gzi`{y+<lHoR`s`WO<72(Q-q-(Mtr@&*Mf&-9U44CFr>E(5@A)5>
z^Yiw`1+}*dW%mCrNmSo-qP|Bwz9z8W_S+5CtsDRD3kqqi<^Q&PL-N#f=W4ER%Z*M=
zO?^4p-|ph={QYY)FE0c4(5k9-WnEvV`|^#77$~8}RX!EXy}iwMb=cZVS5^jpeY5%e
zDT&Xs)fRtHuaEx!=ks|ke*XO{`gujveGYdg>8h%_T3TAJir>FauI7W|{{M>>E!tA_
z)C<&foD{OVEEm*hjIa6VdZ4+vrgf$E+`m^{t*Wcet*`y{a=GiS)o;(uwFb44f7BF6
zC4af-F8}k2zmLxpLpSZPH5y-bE%`5992IqowbuD(_EPWZVYAJ0zkE8a|N7tW_tz&X
zyZ@;>Fkf3q$?59q@ay;XR@W|bn6@Nzb(rU+%6iYAYkz%txj1;a-^;Jp<F9{udKxs~
z@%7Ek%g+<6_xJx?_$_92`1*go<@)Qw*UwwB`EuF6sJOU!*Ve_p4&GP%+|RO4c!T}F
zC;cl8ZvU7TofjAvH}C%2pAXyRU!9q0y#Ke^q$NVCUK)mmfuI&~xBfnj<eul<9gE)V
zcdgVrr~d!Tbcgfx|Lo@O-&@~(<cN#sr{8q~9dEx+U9?N$weFjU^P!tkJXKXyGynYf
z_-p?EpYl(iJYjir`s?-h_3rYuA)s#IlFh-%@i{+l|EhVv@_@W7Bg@fStJm+-I$mf}
z`>W*a48z0k_k&v8r%s=~3=)6&X1z$i&8H5(c{VHC<*H7+j!Ag=res4qzr0>atf!ZU
z$A>$ue`Dh7elAt>pBJ;lFl=Rzt999%51bClZap8W<*Gp=QM*bqedpWVec%52=RQv!
zF0M=Q|2~Poy}jMP{^#lVl2=zW=UdtT`?2`?E@s)3r}f?Sise!D4;tC0OrO47(YdW+
zt`#VZLAB=e#}=<{Z+~AY|9tz4ySul`9KSfnve+d3oXq~^@t*(9&%RoJ{O>vI_n;2K
z{+0aO@0QI5l}D!8*D`KyN{u_c%xC5!^97+RgIteE%>TD!`SR>DGYspP1OMp<{d;F9
zaDtiNMj^SUjaT|v=~?fvuxaz^eq~zrJvP1i`skLrzrPxOFZxpdJ0kGg{Y|N-PZiE_
zvK4=Rc}HRL)m5S1+1J-yeRQ;Y?=;=0Egsp|*M+W)+PY`me~neYzP?_ad3jmXrj*XK
zv$LLVKNlWf`?R!b4mi?&zuO(U)Js%1dYcb8lUH$DU+cH~bs}Hl@7I0XN?(V`+Ef@M
z?7jb3yz97Jwa>wW2c>K(Hk7@&@o=+^x%u_?(?t%*^MV>NQG2VlZp**FZg&2@od@z`
ze}8?w{NiHw>}zWxrA)J?#9Y7HA*j41@i5!ouh*ixy1OsOmfu|(wA3r}`@6eU@ArN;
zsryp_>cLOq3jIE>`d#4JS*E7-|7zae-0a>fWqRq|-QA#`*|)d1Uw^$Gum8n@onLNE
zyL?^5$B!RhU0FHVYl_Cge*1qBpfSy&qD}XzUhA&^_4L%#%h~JqE(6tzuH9l;x3{g$
z+x1cn)Q$S}s9XQbVSf7`wjH+DKRi4P8hCi|bb9=?=={A)r|Cwoa%$zWs`#*=?9C0Z
zx&MD0w=eno^}4rJ^)7E0mlh#mVO#dY^0i+k+Wq|!Y?^c9Lh-p0$9XlMJV9e7D_5@E
z_4C>6tLtK|=h{>Taf|C+S?JtuQt~1I)D>;5`^U97>1bEh#YL_6>i^fWva_$wySodd
zqxO~UrxVJvOtYt1mA_kaZmzYqnORtT?boUIDxb@izP)wzePdAKnK_oh<#!6(tx8`l
z>65iy<<={8Yft6ou(eT3x8>e`wg3O$_2GZ-?XAwfv!f6+%m9*@WtyFJyid03_uK7P
zR|c!^|C@Pr)zo9X(#zT9YXat4m4Yg^kYzrSw!dC1X8e71u{;0LWy`W29%|k7@tE}0
zeYMq=eT&WS*91#SN;3L4?~ypxC%Zayb=b<x%ga_pZC$0Lq_idVv>3?mpg?b6WVR{g
z-u=I=y?u4yVz*x}7WbFjul-*6&aU>n?e`UabFEz8eSULuGiZEgMfCQ(UC-xLgNoGJ
zzhAF=`TB;Yq@*;OTj{L19#`$VHfrmoW`4UBCnu|e%+d;8)>HT6A$#q|qvE$VrFLIi
zAHP0(-A=blODp3wyM$D|GC+?0e9pS`{oe1do=%SsOG;YgH`fZ(6@1mqZ};J6(u?a{
z*4G-D*|Xl?+Y4%#tqNJWX!W{XUee}yS5}3t4%wO&dfx8ez3TUwCnhNF`g$!|R9t-d
zix(MxKOE)<xh^1JLK}}{kz=w+UETvpkF`--zr3&iAN}{&*UP=;_g0wY-qO(1^V_*|
z=dHcf+wFe6P<C~9ufA&{`onpX<<qdl)b#Y(%jZ>{I&$pTtVycgv)p>6=9YIIt2y2$
zYy9{3ck}Bp#l4*T{N}n*TMTBK<$j7bS64sYBWHW-%DULwEp2VHK0Q4>+y3uMf4k59
zhu6)st(Ll8dUpT6uj@Zw+xxiBy65$-XJ^gtf0;7ZviO+KT&t@lSyxU>(F#2U>a6Y9
zVe$EbGyl&!)=LaZ>wi3Czr44)Ja}D<rLdS-nvjstnc4aKGQ-x#fx1=a?S8Kb|GQ*~
zim-@CNW%a0^Ye1^c0Lso78FbbjXYmo8La;KYIwY81%DH$n{8M7Yetu-_N)mL1d88o
zy*_Kn5|z)dR<EzRS{!?QOU}(p@2j4lot+NqvYnc$o$lo1<a4x3)c5i--?K9elh5$m
z|9P<T`=`_Tv-@PNXT7?*diIA81t5n7uaC1euKQE5{-wfsb!+R}Hvj*8UY2)vmzs{w
znJId)w@k9Ho!Rs6*K4~{V<RJw-y7NGKKzal|FnlqYV+$|Y8o0ReCAjfChYzC`uc3}
z=)?Mbx4;^6Z(Y%e-nJ&-wq-zUa?i~znUgbbZ(FMwyK4&w?|j^6?GqIhbs%?N?rpQ;
z^S0k-fWp0_gX8i7N9ND(>;LaQ@I3R;k<Mpr(s>387cM+j8oU0bH+R*)W&ZQ?q|9<M
z4jn%1TT!tCH2il!GmiV#{&)NT*9nV=h!ki&DBk=1UiGs^b~yu3-&ZquSx;w2hr!nD
z>t^+TU&o()cX#*SZ96agy)Kbl_U=yRq{)+gLqeu-a&d84n7&#s`bEm**_&GFs_*Y|
zlaiCqhK9$cCM75PzQ4Ekub+ACzT;N&A0O|Z{d|7?J(G+J2S9P((%L#R>*}hRyWj0P
zz311f)p6hR44+-vyIv%1_w(DE)B7vGTy*!{nswF3!=t0KtIMdfvor0?48yput3p;L
ztqNWJ?D9T?<k%er3wM6MSM3`UGe<LY)s)Vj9+T47*Gvz$^MBuU{o=OV+n{lbM3CPX
zEne)Kk+EWB)YermZ*5(D-L|`j^G}rheUm+n^OmpQ_v_S`x3{l{tPDB|O3y`4PtDv_
z`g#_qa<BPtkUg%n`&S%Cj8~swYsa%`Ute5w_MWD5@xj67(8X@NOP4GGjUh+vttxH2
zKSe6}$`ViE+MiFSSG`)fJY-#rC1}EBclrBk%Y0|sly9AOF3#u9w%q8YOP8*!|Nn2-
z%Vo1mzPt!Le@6W0{RN;I(jRZTav5%JNNg4o7B)>h#KJ3Q6ESJZ+_`J5N?)z0`T2=;
z9`ny*()lZ@zrO?ZFsw>mD7<`A`K++8FzfodxzEnde!kMW>`lbqxB2y#kIUERJbmQF
zz`*dpD=bIfDSk`F#HQxvtNZKg{Ubd*I(~h9z5MIz>*5uOw;mnsE`7W8dexzJ6<1f+
zmD$(VfeMzqymd=9@1No`&n8mVx-8`Hudk)g&PcB3)(5#XCg!MFL(aWDk%fhYcIA=2
z9v&Zb_*HCe@4mm%&dJGXRrzVjw*32gFW>NpgQkJ*?kY7+IKa@_-mYz96JvhAruaZ)
zJ!leGBz7aO0%(4ry8Y&#-KXE(-oD-=SGDriGylTxhq(1Y!|k9+L(t&En>RUIb8my{
zpQ}eDKr`eG|Km5#Z8O)__EuC>w0pX6;lg=OT{E+LK5ntC`?KTu`{(oP*WI`g;ThB|
zrW>-@jkj0U`r9JE#T*O_3^6aeav3xuH!az;d2{Wl&-qrNn^I0HZ7r2Ke%b7Q{^Mi4
zwhx^rfks!=d}n3c-Brr^?c;}shpV2?Ee~1hHI?Z%GXq1zY3H!8X+}myCC}%UYiVh{
z0!^u|yumhM#te!5%Ol_3-yc6|4^#90Z9l(qWzGJ-z2@g9yVAvr7jy49=VDbI{^a+&
z-RlonF)%Rf_;Y5qxxa1ow>?+x{&3dX#;9Uv7Y7>h{`mO#UOg9oZ|}*EExP*q^*5~D
zpILSJ(j^fwv1L1USa=5A-BlX8$c1yian{@0+s_xf-*i|NvQp{g8@>~NofsGx^ll~p
z@q(=dsK31}_j2v`yU#88Tpo(vX1KJoIK5ZiKF&Dp%!SAO_IjSDPM!?(^6C;277ktL
z#Oise-~Qi<GiQ9Rt_XB?bab4zty^6G+9Xx)D;tyDJ=6WCgC;&EO`Z(0-!sU?rRCPv
z?B!2SPtX4S?d`mTO}V$t)<$pl<G24)&{%uM{_U$@uh)OKek}%amH(W&_>!Y$4Js-s
zE4-)cNtxx$;FGa<uv7Tgy4c+&+1GUZ_b#7b7ghZ1OrV=vn^yQbotHTbGfgrl{rdKH
zwQlq_4J|FN%gcO&<KpJI^~t>4I<NlEWBIE8f4^T{<jTz}V-avn!gr>TYhYj?$mp|*
z%nS?+)AuGxJE&y7yR%cuu4c!xv$K~kcJF_+Y<AwIPft%@-BFnAFMGW3$*y~wId`vH
zEvg-sabkiZXnJwercF~OOjux9{A@+q*;#R=>-YbwS{u39&AFZL>WhnupYB>0wKZ$$
z#^mF_=AIH~U|?{#Xn9Pcc%}76_pO<i)vm6OkC!&jdm^I4z|f%0aJ+th?8d!<il8+R
zr};<fS_n|CAI1wpj#@Q5dGaLV#Rc#z`k_OIrp%bJVybp{T)^!!XMA`i3>+?Ayx7&z
z5pa5%?$mkn>h76cym+xFHr#uf&Q1wuP~a5wCCNH~`qZA2)mDbDkDFyvxd~KouZy)_
z8@+wqfwE%~TeGkGaf|6(IMB#!ns>)S)~dwA)6?_T&f@d~Wry4OudfVV{>0+kQ8`d4
z$sqceVH2pQ^Y7PdDdV&r&^REdnf-qM|9$Irzq7LadL@{38>lt~HC}ISPJcZ!ecr{x
z{Pt`3?S6nJ^P~)uTJD>Hn*DKAFI9PEt-gGh059(W8JuxZ3DjYz|Nn2^rU?@SzP`Th
z|N8oR&>#Wxw%9!t8`tgq7FGJ<!ogrMQPHLAVs~qqnuhM&xzjF}jaO=k-(0Jeo|Dy#
zj>X(L2=e)akRIj}&(6*UwQxH+IM#n^X<<44$>GxF%c1MzZ0CcxpbpIK?fKue;&&7*
zymaXjXf;Xqg<_EIMv>bLo9h499X)d7$CTqoj+~HKT>JZ*=*qP!>$ffUn|o=3qVty@
zkNZ~#E%g##_#C8zNpl;c3TE|@_507~^RK_WyewswbHnw8DJZ`-vBbaPV+q=n;+dMB
z{(H)NtI|`O_h{tG9{;%I?1>W>etdjvTKlV{wY4>N$vjYj!?6UlCJ>R9j!wA!r;2s!
z-`n^9Edz~SM{Z67jWmYOb#CX&yuL1WRm{#$mCK*X+Ei>%QdZu3s_M&&g>tr4A~!&R
zef0XDpPxZp(Dj?noH^rtW%g<Jjl2pUKYj#tbo=D(-<2v>MMce$IUZP3Q`4Ax9W=Z$
zZ`!nF8#WjmJ$lr0(ziD^7w7N)3z~%eyz03{pIqIKM9aR#i{1NImAt&f`mOZQk<L2(
zDs~2j1M<`N>rXMyy|v`m*Vplj<YMKz-kK`RwJyK*^73+1(D-1apI={4P!K3#bBSts
zOsf0y(Y^NbS#zu6XFcJ!nc4X&?w<Yg;o)KAD&o?Mi;F>%&3k`7n?0}oyzTcnDw!`X
zECh{MA3A(Emj_gM?oblB9q#}dd0px)&MR%^!_FrY&?{vMs{CVjmt|gC6FINS-~R8G
zXJ=+E?&;wPT^AF1=_Z3w<|UP{Z*PZ3Z_5b`37N9YclNS9du)1TEH7RDw(WM_=g9n&
zlqEfepn>2?lPA}IFJxk1U<jW?T!mo&WCxxK;d$))pX+{tl2U+4-@|S9U8mLaJvi1Y
zy_1cFf#Ctyfsgm|!*kX%f*MQ(KNTB53OBSdfb2gY#RO`HFl2KmfJE1fN-{7E%|KWd
z!9HQm92s6&s}NDG5YRdvAz|UIMNdz0XU(2Db0s4)n}(HDl%Sws*3C^zFI~R8_f<-2
zYUZmeD|dZ9XDuo%z53Ep@6~a8tEyfuojzsy^zYR?oS;VGBGK0jmzMj>`_3})+*|ea
z(vy>uL9-oYZ*OIS+N0ZykFAK^T^6+=p^=SGW<}xSV=pf(boTP{x^!-?we45Xq!p+s
zH0jF`VgHOnEu5>u*3Ocvd?NVu_4W7VveFC;3<au1J%-PM$`8%wl{NznunMdBTzGJ>
zS=ICA&6}%&m-n5TuD^b3_I0+L-)LP9PtfrBqeqWGi~i2eHus<O<+8s$XtocuFlO(q
z@2{`>YierV+L+wFDs;72f$eOw+@Qa|zHTji>~?i^`1|dAk_-$CM`ggxp}(vt7Z<s5
z@$rTI|M%B6RZ&s#)%ErBK{e6d>hEkhyDL5>#a6%FI`4y`XJBC9t6N)F2L%UDojqII
zQ!9Mk9RD8^o@8#%y}hm5R0fodw2m>Re13MetGhec#ib>@(#feQy;9-j%a?V+nNChk
zpfTIGx3`P$c=z}BcW*1{D3G2Qo1<n8Z|?7pH#9V~dunKCXml*&{=Qn*EbWyCw(Z=x
zbCyZwq*bA-m$mUqi$SXm&V5&8IWQ{@%?)oC_uH*nzyDtpXnOU@uA^r2L0P}v<EUA~
z6rISRn>TOTJzefM_mhskSM>2hrfst3d2`}wzlQe8*+!M$t4tTH29@;+6OyDIl9H1C
z%+s1$U+b2Wlhc^{`E_i@?I}}4Z2x|_3|fd|l5=B&)7R1u4-R(q^nB5JeQ|Mn)t486
zD~>ZVFgScPtp8VYcE0`n)jGz;pM}0Y`xKbN>`_y*2Q=09_;`PHY{$H5)6|X^ipa~y
zCq&m@{<3W8QqbzM!otG1rz=;ke06{Se$bE~sQcgg?)8yQ;hAl`3=9v99>3>)`X{p@
zu;l1BrS@}ktwFWqEW_ls<vQx>?wXpK(6vS?o}l6DeLtT`gNA)pzinh@-;#1t$p7ZU
z!|hu$E-I<2tFLzH6q@(RH2c~L_kKAqFRxE`<Uxyr54>M|;~&$c2@@9R#qP?uu_4i_
z;6X#yl@$x8Oc4Rib!<*M`{_#cub0bB)6dDIrlhPWdU|ToIkpL)wo?B6eV{S8MT-`h
z<lZuQ`t)h$lM@r?Z38XyDJt3&b3OEUpX}FT()kr%A1<4n2kJeo?E%+2LL#>rlst={
zpS$|u;bGJKdp5GRRUx3|j??tx*B$GXu6||F_t-dk>g!!m8<SewcqA8T1~1dl*7oM)
z<eX)k-j{W4&C8YF|9-#!dU|}_L>1d_H<ImM%Nr)KfZO;xI%JZ2c3zqLWAQ0__JYU9
zdSjTG7#IpzAN+W~U3=SgaILW8&&XK}4a#)GxC4N?xIK6cvxlEwUmKt7DlSni4ILey
z&d$!LokdSsx1K$7=1K!2vxuzh+Kvv6tvNS?Kn2z7b<x}Xd}o;iR#farN=h=xxS%lC
zqVQ1?A1kOC+EvN$^78V2HQ!lF;`UZ$etL2eRCMkxd%Gp??k=X=lF6VlSvO*X12a3{
zl^unTOI}=11WkWEKQ}k7)I9&*8qoUED=UL%Srjh%_5J;N&|0_b>+AMEzW_2_JLtpG
zcMb}mrPZKii=4u086O@ToCLCJrQcjD(4f|qvbVPya>eyxR(ySZJ^SOMqpvP3Y*tz6
zJzWnpi_#&eY?6P^#{cgBpY#7;yc!<Amf!wQz{7_RCoOrsZnqyZ8_xyMBF9~&ukRO5
zVPIf5Fm>sTe@vT*=|uSdn6PBU3XRgYw?bF0TzTs3*{LdjKb_W(+F7);>g%hgobr>d
z>@Lr5ZEt_wYku#CtQ%;<M9famaN3^A&5s^E5)l-97&>plga?sw9#vJlUR_=NJb2!O
z2@58x`)B?B_IA<|&|<~q{`15B{`$K2)l`i@C(sha^^%|hJir836>;)%+5dlki)7Rj
z?lxTmDP8cPE0^KqsZ&879v%Lb85t|mD+6yyCEMhF{?E25`T}UYhe0H6Bd>z0_q33*
zvTgo9R|YS)Io*BfTA_^p?LYe)Ux{r2)d38x;W_CCxk|XM{QLV`)pO&<jjY?wt`85m
z{pa#drmMOcvd=*iU&#H0n1E^q1_lxP&(F_;`U-nb85tYv2j=U^A2n+@a{PGq*H>3T
z)Bo37Uu0%x7Rk7O{P>Y|+gEen{HUl|hYlSQ5f@kY1XcS@&COqLrq5ql{QTU!D$umS
zp32R;N?(^b*3PvkTy($t9wP(8hvQG*b3gT+ZT8bAq2-X~w&e+>@9sn{_n&{QN7C3P
z)zZ?^%hNM3DQS^b$O;9|UmuUle?4n{{{?6*buPb*#R66DX%(mV<n7kDc8h6RT1KjR
zO_`uFRWCMbZS;1~8qPiMYV6X_$;`DVY?>_yYA%aMZv4xtqNwN?yQ}2lhQz}q4-PPb
zMy5dRjIG(zK@*89zkj*xpM7qQC1|<-(^FGb=kh8{R`U(Izpr*{>S-}oSJ%v2TQWh@
zxF;qm@4aSR^(DhJ?@q+oS*Dj87@4=EpO@SF;Se{dQ3hI=d0WPafq|jmruMe|4IY>7
z>@5CzegD7E&(F?YUf|eV^6ZSHZv4I&&;pw)g);8zUfc3qFWs7Sl&kdhHQ(T6J{N=i
zZI`}ykpWumvMO@(vhcgnc{^RT!`FpGM9h$@|5FHBmISI~#q?q_QhUHT;fUd}8Qyn0
z?N|LNW-!mYbHWtVF$ibq`(L*^=`S~^v(Rvw8(g7`zzsCRyv{gk)sT{wmUW<k5wzyS
z#ib=`Th7WaU%qhX?a#k&2P*SYPfrU?Nm+7hd;a?O`~TlteQu(%yGh<13(z{|ix)3y
zMQ>Y^xA$w<-jBzm#j7nq2})G|M^L$fKynXgWENDo`P+V-a%!sf^32Q2G&MCnL9Ozy
zudZ_E)IU1Hsj8~_a(aB-MdR}}iyu5l0ObTwU*g%>*`eEVB0Vqt`uf_m=0^c&+zGS{
zsGwkjn10-vcXxMZ-`<uB8X)R@2+F46ElJW2pmpH5D~CNyxBcf@g<6-tyRv+K-Kwgu
zuRJG#R$W__z5?}As^0B<uHsqx>dM7FS?iFML8|_@LG$XMa>4%pPk+#0l~&}YC+|(X
zKoc9Mf^z&1f@VTM!%P@8gl+!sHePAatOjU7!rG{<pRD%2+Vy(fXD<1lpn!byCI_^Z
zPdw2Cl)RQC$$&<h_8xNH*V4iQ9cSXdaZO^e{=Oehyiz6~Zr43OH`l80kxS$2`}^zn
zFWJ119Td<<19O;9{QLV`R9N_N@VxkK`S<rV<o3&0E_(Ckjna1esxK?j&dmXBnORx$
z^Hb|vP!-U?uqK8%sVC6S?;Pt@UQW)5DygZdmH&RnEL^zI=$MAKw)TVMC;Hr1{@t<q
z_Y1ThLCe@UICz=Q&INX$!KEDrVRej=o6~x|rs-7Pt4~Z!oEN;>Ynsl=H*a$0AGa!f
zHAUvQ=7&Qc{-ieEnjiiAx?J@e!@a-X?Ve>>yzJGLmBBAIf+CCK%qe|^t=ZSZyu41a
zUOj8?s->oOtXTHg&QGV4l9QS3j)Cg$2@@tbZI?IAngSa8`}=wR|0|%mLdU;TmmF+n
z*ETY`w0ezuzuc>fi;uI~gR0!F=|4X|&;Ix4XI$#cnKP%aFrUt^&A6oI=ciY9cb6}`
z1*(YN-r8#SG&3`ki<>(*CMM><w!X(J^6u^eZAz$_R{QCsI;gLD=<wmar<VK8T?JZU
z|M9r|^~wHrkt_E3&9S)np7k>W1H+HUpT4(#TIM@DWPjaX?<<Q>J8#^}vA6j7IZ%gT
znoi^+P0;E#G2N&oPoAVq)d)Nkyf6K{9B7!z?yddbFTuIDwww(9cGmoU#?@7!pnhfe
z-Rtr7vCV9}LF?o8n$-RIaX-@qlrA8R_Ydm&`u?D8O4D?szdV`juLYTexIE9c8oU=F
z?d+_1yF5KTL2Da7efngRdc0r$y6*Nni{k5ky87GwT+-CsY+CrpMKXEHym{-2o}TiY
z1YW9<dC3K|!)1nH@}8z%70`MN&;o}0cF)uw^h%q50+ss*L>nIOzrXIrJ<hwOv1=nX
zIytxTT%4jAJZ0+Cr7bNiXJ;B8*RJtM_up9*`(D0SNlEF;!*=<s4-XDX*;Z}&^y$-;
zMXubS3=Qf-M{m!&`ttJf(iayLzrMbHe!2YSw6k0i;7yt$ejER?KIv~@;bCAXNPRfk
zIY}7U?Wzy{XTSgF^m^TU`@a2tV%L{wm*j5Fx>K_G;+2Cb|9U(8gsiUxF1r!Pyh*di
zG4;@f(%fee?asTn9WOVUnBOZ|92D^Q%~6Th3VFFRr|w!3yd<QvjC+}|YSeG_-l=n9
zds?1NUv@VCn*Zi+9~&lpu$=$h^1lE2bDN*fkz-)!5>#Mda4=+IVPMd319eZ2atJUm
zERbMiVqg$ac3@y=NMhk&U<l{|?drv=*myDXlLrTzBX<_1is{A7uq=M|WZUgL@A&xp
zTb{GCvtPb<Z(il+XQ}V*?A-bJoHc0s!Q3LyauJ`{*x0PBtV_3V|Mu)>U|^WD;9E}o
zfsj>Kv!>}rPYaK)HI<c>jogsnxNFz0OSf*#x_9rMiK*$_qJJkQDre^Ao?YnNzA5kS
zt}EBBE!(`=c<tJ?H#evIKRY|S{L;?Q)nQLJ&;Og#CvX2RQ-+&?;as-yH_-{{^D5Q!
z_x(t!`#k%8%H3V1KQH#zO%ac)P@MnsO!}t}hxzB1)jdAe`||z!^Y82b|Niqt-Tovq
zzs-c)+uKqL3Jm(~|NZbx|M%m#{WJgiU%_GP<7$`nGcz!xu(5lTmzV49da+0+eqT+^
z+Jy@h-@bi&b64r>%=m>b-n~1=Ykp@!_WHeLHMt)j9gW<S;yJJG*Gtde_Wyo7UK6!d
zYjxP#Q;S@?&)sokU}z{bHgov(>zCS*!!xE$n<ishWwL(%zh6@}U(GUIzvq+Jy8Zut
zO+NSi`}gN3CMpYGGtap(f#2?j0%-N3{m-M!3=Ha~$;?j<G%{!A<jmP(x6RDL!s6+h
z3l{?1+}xJg{$F4JSNrw#_2++meQlh6ZjOJ|O9qAmB3(5cd!yDqTikCq>)O4@&1tHh
zZSC#H>+J($V`Eoc&1!3JU%sb*<Lza$><j%T{rR%o-ZwZnxbDYcdB4|Ej0_F`{U$Qp
z+*ezD>((v5-Rpx^ro6wmH#0BKueP?<&CN~it!3Gp2(77JuU@}izGptfnDgsmcYnGP
z?7wvR^7N>5Mh1p|)vioWPHC?{0~*@jTK+~isJFM*vf#miCAW`X)7$ssk>>m4e}8_?
zG|j%Y<(ajW)u-P48s+$ZpQeBAum7X$`RU#6_i8`S-`=wCL#zIiN#1&vPfgdy?X@a?
zes1oDvhR1xpTFDv-tMUk1B3DPX}ZyyQcq9g%x348v+)iuezziI_0?B5_jOFp%+Ei6
zZmzX@?X~2mr>5TAl<M8q)>d?oRout&{-sNkX3d)Q=GNBiL%%L9_5S>9cK)+o^LrkX
zV#;o&{(Nr#f9C(+*8^6D1g#DG{PTRhowKvEdTr0Wd-r0>@0R|&eg9wCCH^za3<Y@~
z|Gb|(d!xKl{Kh2LdzH`U+I+uL{5bpl-tTeqYQNpQQ+Qlf_)&5~g2L}_Z)cnAum1jy
z^M2aC{QLX9eEG6u@7~&)w<p!-pLt*ReK%-b(&PHNKab_rJ*}**KVJ#vdw%UV0|Un-
z(76EqwNdUY3=N;p_54-)BB~ws<of=9rF9>g<)3W59_Q`s?7VB&E+Z?eS)ec!{&uhU
zye%jS-Q3-eUw^m%|390bPbNoh%Za?UCUWwvTeos<Y*6g&?XCQ9kp1}g+RwA^&-rrW
z{r>-TtFC5&nxv`R3=HWPdUz+ynl<asL;m^`x3*?~J|gU&Qc+={tE>C-ZGQc1?R7hn
z4&C!wI%(FdPW@+RW*V!57Q$|-`ugh6tML7&UcAV-b?erpn>S~&a*NIR_ECH4DM?#?
z1_py>d*)C34^%TSGMv+&_rJEt_?xi;1H*xx?i7_;Bo%R^ijSUo!C+bOAt7vC%*<A9
z@w9VuEO)-$cKg!x>*jBN9z1w(%l7T*_x4oIv@Xwkx99V@JzuXytKY5u@!?@fNeO81
zf92}cr>F1xvh+^r^;pZYH#cTl@i8#W`JQ$D8>`RKsI_S~H>Fm7y&8V`;>C%q++s^s
zuhw3>cJ0fzZ+(M<FKa&Um$965?b<aNs}haZ*VcOH=H^;iTVK9)YnE;Gx0HK(Dj!$d
z|M_tEPSxwRk}@)9PEFM={`qwJ^SkBu&-Te$8yOi*+O=z!|L+|P3<YsBHZp!XV|@O}
zQSo@6^78U&`tkErcD`P>`_i2|b3g|g%r?)rd-~^Cuk_{n_vhc;UH<%5_Ilq*HNS7)
zKX-lKx2-n+emsucU-$RNy>_`O4Q6KMm#<%+UOGL_YTv%Hx3~NsrZ6xR{F}8g|KO{4
z@6Nf3$C}8=dtSP5VZyg>-*WEmGCkfeZ~yiWulXGVIeE`b6(1kzL~c^?xBvU)$E}0S
z?3*($FS}EIzjo)BOWwtQetfL?a?w5gp92HKfit`l_U+rp`O#q6(xs~I{c>ktuitO?
zG-qqnS?%?ECcR$2|KF0&fB*iqEPCQGDdqXOxssBSp25MvVQV5L-rStNeBVC1?RSd2
z|NZ;EfBsHpMg|6Ba|b>diwVb$9rJvhoZZ~q9DI(Cmp3&fB_--}{+^F+tFC6rRlQia
z=kK@MH}_N)gKFUW_vfp6PkS=A{GO#SXaXYWg|WibtkPTg*|SWu!zQIvR8;)=E`0Us
zRZw(RR8*Y$EwMXy)lcE?GIli<o<YIEljqHwcjfwZb<cJCe!aR=a@qIhj>2TQ$|n;u
zW33q&3bI_8QhtAXo0*+${dS+%(n))(zc1Ul)AH-ruac6IGq*gyu`zjNh}PqU1xCr+
zeNF2h&D%JC`~AA#Ex-4CJSJUyGj;mY_4R*WPw6)nGpzpp&i3v_1_lfE9^3cUSMA%1
zvq-31j@QLiJZzo(O)qAL!TbIH|4r%NT>t-{%E|Bh|Nqte&cIOc?&kjb`n-KVpKY#{
z{6D#i<wUD^+>Gk?d%yoTE&h5nJpK8(xs$Jzzr8gT6!bfHR-U@)wRF<zb-T3m_y75{
z<aS)u%cVL|TQuhXzVm#N%Jtat*hx>`ZofZoOL;+oLHyrW;md30EcKqA_W9Y_pQpn2
z6`cxCVPLQ@=i%p1|NrlA<gSvJH}_5XA8Gup+5r^5@7}!w)gV9LmG7UeQu%)G_fKy&
zpMTb8{q6*-c#Ofm@`MBhP=a}Mv|Ihm|2OIO-ue0OfBavz6<VV#UYuMLUtC<g@88$;
z>94P?m6Vb?_2=j3$tt(E<(@upz(KC!L8IpSjSCkl-v52?`?(i885w5W-1F(<Nl-)W
zYfk);lRbTX&!$D^oy=apcbaMTwIvG|D#pgfN=itacz1Vq@lnz6p7*)Axo5w<y=`n|
zWwo#D$A^b8#b-?|OI`#ZRW4VvOlxavBR3=*{BaM|nE82a`@X5mmVxub&j-!?n-UMV
z)qL!ZKXY1t|D2nf)5UGA85riQPRnUf`Tuj$fvwrspZ$D3|NMs!1yNB^pKc`gKb@7m
zZsvydYuD;pm%TZ0T)y5Wv9_SVV0HNVbK7!ngKEBQ+qRXIm8D%=<T_by_44KF`+pqO
z-;{oS-kEu}*7tv&EC2LjaevywL#^{)Nis4#s4-g1%)-E6vHi>qeI*tKhI6)5XgiOP
cisc{g@6R&xZZY1O2<mKmy85}Sb4q9e02S8a-~a#s

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Results/poulet20160830-103912.png b/Code/MonoMutliViewClassifiers/Results/poulet20160830-103912.png
new file mode 100644
index 0000000000000000000000000000000000000000..856ba33724ecee47c6f6e1a2771592f4a6f27da8
GIT binary patch
literal 18696
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2LL~IizrVY+4z{QWOpx%2Na0<v
zV4|wa%|nZr7Ei1dWE4!i!^S2$@wqy)g^`g?lR?8Gp2SL)RAY_9D>^zj1X~|4X>_m&
zOmJ1;YEhZ+`QO3Wbs4*@Cv>!P+&^Dh=;}ZBa;aZ<Y5Co|q042GdjuI67#JcR#J%DJ
zF?JLQIDqH~X9h+F28IM)MivGJh6Ym>0g&jmkt5k~dd}-zSvNO5UHa}=s=lVC=epN_
zr~P`^E`O>t*7o<C&EkJ7l->KLyxtYHIqmGxcZ<a9|F+h@-}if6-tM<%Q+1=m*1cYp
ze7tY^F7N4gmR7~D3|iW?Ds**P?cV3X7qV*~AM4%q_uK8#v!>Til*V3N9qvD=<p1CA
zr%Pks-rIY-th~{?&tLw}!X7!>sCBPTmBzlkvGH+G`E&k*g))|X#VdCg-sJvbBmV8@
z{)pSJYuL^E9>*9mrd(eaTNE44Z}Y)n;;n7@_v3b#y$#x5_t&K8iAU-Cdw<JcsOq^C
z*6Dx#e(Uek>G4<A#ah>XyP5v#;^KC<KADy6@^uyowGX@mYgSq_h#WgJ)A;GGbv=ev
zPp5{Pl)bs(eRpY6{_SnKT-@BduiV|CWSVuw<My`P;E<3hUrXn|e~|X>&Q7b!PfL!<
z{WV-0voq-C&6`yZTg9)ejo$8kS5_prG48drS<Z!p&h20Rd_JH3;=;nX)5m%w7bhNW
zTj|uwWwx73gggA$_4pk+dp@7DK6T<mz<j&fkbO0kXXn{QFZZ9n@5)`RZ;u{53fY)+
z)cbC)c2Gvfibszgm3+M#9v#2kaM^*UqS|30F)?$N-iwKPUaiNqsr-GMXONH2nWL}x
z^qd>xURQsAH}$ba-S_#Qo}Sj$)AMt5blkR!Q$(6Y;7{V7Pp7ntWZeJ${vLjQo^9!m
z4~e?5yG#=P?%89r_sb>ktV>HePfgKWykUdE)isg9e}8|!er~RHcgXeym!p{GGS8VZ
zWyyjC3QwOsdv!B?e(2j<TScX$URlaMc|O1X+K$4<S5}2;hpr0oR8&;#>g&5^`~A-1
zEnBuUJpTP`cK(+G%={~|uCC(Z<qiG$>FL!qk;Wh!<GwP@U0wU^jHK^uGvDp^s#Ys0
zD~rm>t*iR_D)ZHqm390#rs+m63tJndX=WC-aN)vL0SlWZO`2p<`|C?X?Vqi4=E(F)
z8oQa_Et!1i@L^F&$(3nmXJtM-)M{6H-ZnSw`nuRx_xA2yxAU3QRGr8mUTL!{pPru9
z&zSrB+uPuPfC;azub1E8cY9mz(_QPf<=uUy>Fwzm`25`5(7jcqt*xz^Mn*xtvrI1j
z|M&iX+=q(u<#83W&2mF_m1MfQxxM;!J72$`djHR7vtM0ZJw5B{s-+zr9Ih@dD;%5I
zW*Mb+o&Q!88(#eE%tS-C&{ZKH=WMHZxASx3I!41|FP2V^3vzO5@|vmz(xa-P0uuSO
zJO0W0c>BL!CbRKKJh*B9>dMN+Q>IMeu3M+_^0fZ`kbXH^o8KiRC0kxyU%&ofGyCf^
zGmYa)^-KQCnr2N|6}npOc;S>ulO9#-eVV`6;nViJCnhSV_I$L7cXV`&yZ*f9_uK8S
z?(W{M6}D!@gb4znD*_yAe|@>Q{eIo+&oiFK-T!<md%dQiVc=4)sk<IzOZCawu1Y-I
z_OeYnFCZdf1}ITnTO0j)@ArG3SN^Wvzy8T?iQBPO)eGzj9ylC5dQ?+K$LHy(slkig
zdcWK$K0kMRZs4(B7v1GwzT5piY^m2&5h<xvGiFHKt$MxIZvE9}cK%l<)#rzR5|E(a
z!cD2CSCzfJ_3HNa^+rZUHec)hMxC$!zw7_M->E$xYs%*AzAyTv^3zH6`74T_pX=)E
z4D|5m&<bC-rd_Ve<M;RX-&a=eJ1?=o;*p5XA4M6Pih%sRU#DeVUG?<mg?R>vO=)Ll
zEYyqL_2bI<vuCf)|Mx|GZOqP~soLRT=jYjm?kdSlO-Xri*8G0R<z>F1d#k=WUDrKj
zx%=l=>(W<C&fER=$-TWTw4F~@L{?V!<r~eQ^ERJ*W|`-&+x>2rck1bBSKr;;y*1~i
z(b|ZOPWk))ZhN=mG2i;*G5czE?kan`YR(*)t(lkIzTc}}-zRIm?7aQ|n8(L@FFW(w
zh9u1Qn{T%kWD2M(&APsB?L6CREfbRv`I--n|2|FMpK-X2cb0ASw&nkNB#pmZaOT%k
zQ*%3c@?=+6*QJBa>|c+H$7`sn9xe7Ob}T9`E<G+=o^f`T>8^jjUVpuj-2d{)$;nY$
zGA8aSeGRhq&ijLIZf<QtLP8;Xt4hDVyBqD^Cv)-j`u*#^y}h0N^wiX>dwVJyU-$O*
zUVXd${<`n?s{Nz4<y`DFzxQJ6pX2iNS58gUzPcgN`EJ2s-g%$g<tklDUtJ0O{Oqi#
zu<+vfb-z6S|2$uRWp%iI?)`nSi`{yy-p^o;+@3c#Z~x!2r_Y|P3SREFDsJyCv;2E&
zmMmG)ApVU{+RVq%(b3DtC#022bjr+`D??X@WnNg|`0LH)^Lw^kKQU2xYst%?+K)%Y
zrA#s=oSLGk>^X0L(1Y5a`+mQ>{O9NA(49r8U*F%4?|Yo_^3u|(CllSjd^|3n{qD|A
zyIfFMAM2IYR#9<@-Bl7;R<=z{FJ=Y1T!n+9qvNZqtFKqipRB+CPf)Lv>7>`Yy!`ya
zuC5CG`uV*5>)ZMJuYP%X*|h3Q#`%>ktvBnVw`43lbH>MamWk)bj~}z{@7tR`_v6Qp
zjK71IdWrVRSO%>QUw^G#zHWtG?XMMHQ?=%$PWtk4`TSL-udi7ZK5CgXd2;DtUh@~P
z*YCf!r}FcZS+iDszh8e}`^Pi;=Z}x~Uq3ZfyY&0r^3|!Qr=2=;#^(L!&DG!YO!M!>
z>@I&Fc6pia)or=ab1e$NN$b{@%*B$%X)EIQ*UkH7b}wA-SlM)N3N61^xg6x>w6n8T
z1~2ymRZiRT?yd@4?DleI`aI1IwTZ`n-T(hDy!>wIbR}iwsdMJ6;S$w)ablwKt!=rp
zm-)|MxBu_k{7FmJtkJn!c02dizu)gmf4|+XZD|>KOycdWt=^}n=>|{Ni?#WEX#G^p
zU^iv=zAMkp&Yn7J)~f1vJCASP|MWla7pXtr_y1pO|NrNCPyt_5v`H&;)e>3jvW#bE
zW>&pkyZy^a_4yTlSJi@YYJ|}N`2(NN+vm$1H~jzSxxH;Fuat>_qoZTm^K*0UzP9s9
zr^y^Qe0zJlxuvCL-07mCqB9Q<w|9qp|M&a7`MTG$Vt1GQTvPn@)zxE#GR9d~G}eDw
zvP9*vMc>Y!&t{*UsO(;I>+he>=btT~U-wD#{_gVioxQ!L=64F3!+$<J-0u7G(o$a!
zkB*-&7We<zW<C9}#WL4!vA9%aw;qGO$1@z8*=Fw9W8+^L7dP+a_4V@$W3TH(Z#xql
zx4*7dSW4>E*O(`tub0>V``BMEalG(MZ28^Pb8{>oYucB*m;h?~6vkd(6Tkmn@Vto=
z6J?GYu6sRe|Np=5<NCjzvwjcKF#q3|<=j!<|NQ*i``9Aw!~{jV)5rQ`vtzEC1~2#f
zs`dZf?)NpXo;`auD{O7l%+>35oqBV7`}yq1prA>GvDa7YT(ApV9j5zu*SgBrYq#$?
zrS3oPjpXNc`MQdG|0I%q=G)cwyxx^|xQ#dNDeK$SjlX{1%3d#dywInajrYvS$?CRG
z)&1w0fC78n>sdcPKd;_;^8Nb;M&>==madK7KI_4QgyP4&=D%Y9uebepM7VCgaB`1j
z*_#>H|BILXKYM@ruWxUw9cwK?ne%TRe{#>t*xlRiKY!9|eh(CKuh;Lt_k5$waYI2t
z!DpY(+v|te&oa-?YiepbBb~qJVd%V>GczAOe(W0&F~hRr!-C~^j{QD$^u{|&OUrrJ
z|2MI6pWA&;D|FS2RiUe^rizxWk+m)}S@(LD{{BCgmY?0(|M^;UzU1-3Gs6Bh4}<m1
z&9BSY*WLO2zcKE$rl#hx(pcl_Z#naifA}tScVF%9ov&7{_KAs^b8~<F{_ww{tHWk4
zSfFruW3v1DPoHa#F&q_SWU1%4x;ota;K74&?6v=YUEkmH*y7pC<@3L-s(yAxGI*Jf
zq_CXayU%R@vRhYX`&?x9Sirpcv!q4Ag2LGAZ*Fcr9&A?kr{b|ipQKI22Ugo->zO^`
z;^t|Fubb1^+xwM^>1Us;bz01I)4RJ$KTo;3KK{Ooi_46~?)_p_JU_FptVjd}%D1<-
zYp0!^V|m%4FZtKk*UvRi+h?qa+PdmGqu;*Q>vo@uDL!i|zUAGTH9BDDNK3!|9ASR1
zVlgKt=gtQTTT@O7J>Io$rgizc@Sm-06Z-A{-N@H4dG_XC#A3JJ2KGJwa_;Q7Xwmmr
z_)?dUL)7-X+?ea8+TrWIto;A)_j~E%g+8mp*6um=nSVw7&!^(^&Cbp?2W2f`b-y{~
zGCvug?EQXEdqZ5{xBK^%8=mAJSM#0qBlr52%;3kn)?GhXQ^)YJ+#!0xdHer&Ec%jn
zmA!pcUYV7(sxbDt&wRVTO>*y(_O6fVdAqOTW71=bzLysk9%fy8J)S|cWB<moS65E%
zSeIS)=0;$`?LQ2k{{OrG-}-%(UKqpA*YW?eVy>Hl>XJX}mOHoeEpzD<ihKBcd(AP1
z>0HYb7T&1-|M&aXyXE&+=HA{GC;sVf_4~b5k2=+-Oq#Ul`Mm0L#ftZ@$JehtbH+zi
zP3_gK?De`IHgX4l-=1}2L*ju{`T9Q_<7z&-E?v6x<%5IGr%s;ys8cNCUj6;u*FR7G
zom8KHq7YPFFZ1|&V_)s=J{ikJJ9b$7{rkTDdt_cu;K@m<TXS!l`A43gXZ!WZWdB#7
zmeKcjcdzcLEH=%%^P?%f+^X)+j<R=mR(6SMuSz>R%kK1Ne`_y)|L>7v^78M$o3wgO
z)e^1H`@Pf2+4<_$?C`z6UahWrKDXTF{M}`~v$vGK4l8|i<>d267j3J*Wt^E|7_~KP
zYT5gHYuBvNIlt*oZji`qv)oB4rrFodq|bc43)EEK_xqjo{8Ug?eq&?u)}*6cwcqcS
zTNOS!;`;LZ&P$gsKi#$N{^eVs=E{Nv3j1%bNIN^LtE1zC=K7G8la_40t~V!NZCl>m
zT`!M{$6o<8*3ZqgUS0b7TGpK%8_$0gbiG+$&;RrGM%Qk!y6M|<ZU%t@@Y3bWSC@DS
z`|o^g!MacU$L6}fRh~g<Y0K^h|L2pl(Maw&KcoKr_o>|*?_R!isqXUc$bE-;wx*w-
z7qzQorI3)&m9^34TQe>?^-7z6o7uan^7AuLgC5jB>XkNM6}!6(WcQ=TkL$N<uK9fb
za@hK~wY<`1KXmLXJ}fvl$8z!8+uL7Hi_ZHP6?Wq<*N!P13L4+i&dg9eUU+4>zx?`7
zn^I4|dbj)iwMnYpQ)bP2wbSy(#^mEFFPoN`>G<5ezpCcvr@GVA^<r1)#qL^>a&i)=
zYYJ}ax3`}zjjjD~kUeU1TJNUKoAsmS*Z+E{?s=(C)|zXN<Gr2iJDS<~ubEztS)6%!
zS>~xJnpGc<imT53+aPD27t<(S;r(gOW4R2qg?~Q%**N$0o!4ULL}g^w?Af!2>3a3L
z-|zRwuix{jEA9Nex0W|NJv~3}&aeId_j}fj4GWEojjwLW48B|Wd~R1yPe?$(1S2CO
zlj?6d>vMx7X3m^hB%}V|-vfP)^t7~9j?HYhwq{QU1><sm`Pka8SGoB3u5C;{ZjyOv
ziPHDy*I%EkzZ1{R#T671GKEjp>dEFc3vyLXK4&Vbmom#)u{Ha8)|VF-qxMv6e0FxW
zdU6k_%Oa@kR`G6c;FQ1LzfagN%YAEkuVLNymxt<ZPPBja{a*F?_pHw^-E4kSd_3oI
z?bD>3@7*8eVs30KdvU=L)ZA6`nXw>pb6V!H9!aBPE9(CKs`~fy`PE&e*`7fwgO-Bo
z{EQ<Vf>GOYX5Op)9xItFA}YER)OrN9qVHcnl|OO++T;E5@*DadTYxf;f8~PjA`2{(
z8Wu!Y*ZkNJ6dbJTd3SgD_iAQ?<Ao;4$9Vi1PW}(rGa<i)J2-sO^JxA0%m05_U)UjV
zxSc=T!=uA2@6HQj-B<f+f7iV0sLh*SU+eg_wWFtJO363pii?X}#qYcWH6Lrg-(5bx
z{$J$lYiloGTIy|D{LBZ`OpmYsyY<vm?ecr2|9(8~ubck-{F_Pf@4pwkUb`KXok6~+
z`}Z@wwY4?#U=wRsS69&OZMl12`OPqJbnll7_44XE-@1icOh@CAj{Q$1W#!bKi;c|e
zfAqe8m)ZO2l=i6;CoZfATx?SFqhNh%W@hFrlgyxrzdyg;Cu>>cl74Q^$C*-J&dfBn
zs`;_OYr0--;I*gzi`{y+<lHoR`s`WO<72(Q-q-(Mtr@&*Mf&-9U44CFr>E(5@A)5>
z^Yiw`1+}*dW%mCrNmSo-qP|Bwz9z8W_S+5CtsDRD3kqqi<^Q&PL-N#f=W4ER%Z*M=
zO?^4p-|ph={QYY)FE0c4(5k9-WnEvV`|^#77$~8}RX!EXy}iwMb=cZVS5^jpeY5%e
zDT&Xs)fRtHuaEx!=ks|ke*XO{`gujveGYdg>8h%_T3TAJir>FauI7W|{{M>>E!tA_
z)C<&foD{OVEEm*hjIa6VdZ4+vrgf$E+`m^{t*Wcet*`y{a=GiS)o;(uwFb44f7BF6
zC4af-F8}k2zmLxpLpSZPH5y-bE%`5992IqowbuD(_EPWZVYAJ0zkE8a|N7tW_tz&X
zyZ@;>Fkf3q$?59q@ay;XR@W|bn6@Nzb(rU+%6iYAYkz%txj1;a-^;Jp<F9{udKxs~
z@%7Ek%g+<6_xJx?_$_92`1*go<@)Qw*UwwB`EuF6sJOU!*Ve_p4&GP%+|RO4c!T}F
zC;cl8ZvU7TofjAvH}C%2pAXyRU!9q0y#Ke^q$NVCUK)mmfuI&~xBfnj<eul<9gE)V
zcdgVrr~d!Tbcgfx|Lo@O-&@~(<cN#sr{8q~9dEx+U9?N$weFjU^P!tkJXKXyGynYf
z_-p?EpYl(iJYjir`s?-h_3rYuA)s#IlFh-%@i{+l|EhVv@_@W7Bg@fStJm+-I$mf}
z`>W*a48z0k_k&v8r%s=~3=)6&X1z$i&8H5(c{VHC<*H7+j!Ag=res4qzr0>atf!ZU
z$A>$ue`Dh7elAt>pBJ;lFl=Rzt999%51bClZap8W<*Gp=QM*bqedpWVec%52=RQv!
zF0M=Q|2~Poy}jMP{^#lVl2=zW=UdtT`?2`?E@s)3r}f?Sise!D4;tC0OrO47(YdW+
zt`#VZLAB=e#}=<{Z+~AY|9tz4ySul`9KSfnve+d3oXq~^@t*(9&%RoJ{O>vI_n;2K
z{+0aO@0QI5l}D!8*D`KyN{u_c%xC5!^97+RgIteE%>TD!`SR>DGYspP1OMp<{d;F9
zaDtiNMj^SUjaT|v=~?fvuxaz^eq~zrJvP1i`skLrzrPxOFZxpdJ0kGg{Y|N-PZiE_
zvK4=Rc}HRL)m5S1+1J-yeRQ;Y?=;=0Egsp|*M+W)+PY`me~neYzP?_ad3jmXrj*XK
zv$LLVKNlWf`?R!b4mi?&zuO(U)Js%1dYcb8lUH$DU+cH~bs}Hl@7I0XN?(V`+Ef@M
z?7jb3yz97Jwa>wW2c>K(Hk7@&@o=+^x%u_?(?t%*^MV>NQG2VlZp**FZg&2@od@z`
ze}8?w{NiHw>}zWxrA)J?#9Y7HA*j41@i5!ouh*ixy1OsOmfu|(wA3r}`@6eU@ArN;
zsryp_>cLOq3jIE>`d#4JS*E7-|7zae-0a>fWqRq|-QA#`*|)d1Uw^$Gum8n@onLNE
zyL?^5$B!RhU0FHVYl_Cge*1qBpfSy&qD}XzUhA&^_4L%#%h~JqE(6tzuH9l;x3{g$
z+x1cn)Q$S}s9XQbVSf7`wjH+DKRi4P8hCi|bb9=?=={A)r|Cwoa%$zWs`#*=?9C0Z
zx&MD0w=eno^}4rJ^)7E0mlh#mVO#dY^0i+k+Wq|!Y?^c9Lh-p0$9XlMJV9e7D_5@E
z_4C>6tLtK|=h{>Taf|C+S?JtuQt~1I)D>;5`^U97>1bEh#YL_6>i^fWva_$wySodd
zqxO~UrxVJvOtYt1mA_kaZmzYqnORtT?boUIDxb@izP)wzePdAKnK_oh<#!6(tx8`l
z>65iy<<={8Yft6ou(eT3x8>e`wg3O$_2GZ-?XAwfv!f6+%m9*@WtyFJyid03_uK7P
zR|c!^|C@Pr)zo9X(#zT9YXat4m4Yg^kYzrSw!dC1X8e71u{;0LWy`W29%|k7@tE}0
zeYMq=eT&WS*91#SN;3L4?~ypxC%Zayb=b<x%ga_pZC$0Lq_idVv>3?mpg?b6WVR{g
z-u=I=y?u4yVz*x}7WbFjul-*6&aU>n?e`UabFEz8eSULuGiZEgMfCQ(UC-xLgNoGJ
zzhAF=`TB;Yq@*;OTj{L19#`$VHfrmoW`4UBCnu|e%+d;8)>HT6A$#q|qvE$VrFLIi
zAHP0(-A=blODp3wyM$D|GC+?0e9pS`{oe1do=%SsOG;YgH`fZ(6@1mqZ};J6(u?a{
z*4G-D*|Xl?+Y4%#tqNJWX!W{XUee}yS5}3t4%wO&dfx8ez3TUwCnhNF`g$!|R9t-d
zix(MxKOE)<xh^1JLK}}{kz=w+UETvpkF`--zr3&iAN}{&*UP=;_g0wY-qO(1^V_*|
z=dHcf+wFe6P<C~9ufA&{`onpX<<qdl)b#Y(%jZ>{I&$pTtVycgv)p>6=9YIIt2y2$
zYy9{3ck}Bp#l4*T{N}n*TMTBK<$j7bS64sYBWHW-%DULwEp2VHK0Q4>+y3uMf4k59
zhu6)st(Ll8dUpT6uj@Zw+xxiBy65$-XJ^gtf0;7ZviO+KT&t@lSyxU>(F#2U>a6Y9
zVe$EbGyl&!)=LaZ>wi3Czr44)Ja}D<rLdS-nvjstnc4aKGQ-x#fx1=a?S8Kb|GQ*~
zim-@CNW%a0^Ye1^c0Lso78FbbjXYmo8La;KYIwY81%DH$n{8M7Yetu-_N)mL1d88o
zy*_Kn5|z)dR<EzRS{!?QOU}(p@2j4lot+NqvYnc$o$lo1<a4x3)c5i--?K9elh5$m
z|9P<T`=`_Tv-@PNXT7?*diIA81t5n7uaC1euKQE5{-wfsb!+R}Hvj*8UY2)vmzs{w
znJId)w@k9Ho!Rs6*K4~{V<RJw-y7NGKKzal|FnlqYV+$|Y8o0ReCAjfChYzC`uc3}
z=)?Mbx4;^6Z(Y%e-nJ&-wq-zUa?i~znUgbbZ(FMwyK4&w?|j^6?GqIhbs%?N?rpQ;
z^S0k-fWp0_gX8i7N9ND(>;LaQ@I3R;k<Mpr(s>387cM+j8oU0bH+R*)W&ZQ?q|9<M
z4jn%1TT!tCH2il!GmiV#{&)NT*9nV=h!ki&DBk=1UiGs^b~yu3-&ZquSx;w2hr!nD
z>t^+TU&o()cX#*SZ96agy)Kbl_U=yRq{)+gLqeu-a&d84n7&#s`bEm**_&GFs_*Y|
zlaiCqhK9$cCM75PzQ4Ekub+ACzT;N&A0O|Z{d|7?J(G+J2S9P((%L#R>*}hRyWj0P
zz311f)p6hR44+-vyIv%1_w(DE)B7vGTy*!{nswF3!=t0KtIMdfvor0?48yput3p;L
ztqNWJ?D9T?<k%er3wM6MSM3`UGe<LY)s)Vj9+T47*Gvz$^MBuU{o=OV+n{lbM3CPX
zEne)Kk+EWB)YermZ*5(D-L|`j^G}rheUm+n^OmpQ_v_S`x3{l{tPDB|O3y`4PtDv_
z`g#_qa<BPtkUg%n`&S%Cj8~swYsa%`Ute5w_MWD5@xj67(8X@NOP4GGjUh+vttxH2
zKSe6}$`ViE+MiFSSG`)fJY-#rC1}EBclrBk%Y0|sly9AOF3#u9w%q8YOP8*!|Nn2-
z%Vo1mzPt!Le@6W0{RN;I(jRZTav5%JNNg4o7B)>h#KJ3Q6ESJZ+_`J5N?)z0`T2=;
z9`ny*()lZ@zrO?ZFsw>mD7<`A`K++8FzfodxzEnde!kMW>`lbqxB2y#kIUERJbmQF
zz`*dpD=bIfDSk`F#HQxvtNZKg{Ubd*I(~h9z5MIz>*5uOw;mnsE`7W8dexzJ6<1f+
zmD$(VfeMzqymd=9@1No`&n8mVx-8`Hudk)g&PcB3)(5#XCg!MFL(aWDk%fhYcIA=2
z9v&Zb_*HCe@4mm%&dJGXRrzVjw*32gFW>NpgQkJ*?kY7+IKa@_-mYz96JvhAruaZ)
zJ!leGBz7aO0%(4ry8Y&#-KXE(-oD-=SGDriGylTxhq(1Y!|k9+L(t&En>RUIb8my{
zpQ}eDKr`eG|Km5#Z8O)__EuC>w0pX6;lg=OT{E+LK5ntC`?KTu`{(oP*WI`g;ThB|
zrW>-@jkj0U`r9JE#T*O_3^6aeav3xuH!az;d2{Wl&-qrNn^I0HZ7r2Ke%b7Q{^Mi4
zwhx^rfks!=d}n3c-Brr^?c;}shpV2?Ee~1hHI?Z%GXq1zY3H!8X+}myCC}%UYiVh{
z0!^u|yumhM#te!5%Ol_3-yc6|4^#90Z9l(qWzGJ-z2@g9yVAvr7jy49=VDbI{^a+&
z-RlonF)%Rf_;Y5qxxa1ow>?+x{&3dX#;9Uv7Y7>h{`mO#UOg9oZ|}*EExP*q^*5~D
zpILSJ(j^fwv1L1USa=5A-BlX8$c1yian{@0+s_xf-*i|NvQp{g8@>~NofsGx^ll~p
z@q(=dsK31}_j2v`yU#88Tpo(vX1KJoIK5ZiKF&Dp%!SAO_IjSDPM!?(^6C;277ktL
z#Oise-~Qi<GiQ9Rt_XB?bab4zty^6G+9Xx)D;tyDJ=6WCgC;&EO`Z(0-!sU?rRCPv
z?B!2SPtX4S?d`mTO}V$t)<$pl<G24)&{%uM{_U$@uh)OKek}%amH(W&_>!Y$4Js-s
zE4-)cNtxx$;FGa<uv7Tgy4c+&+1GUZ_b#7b7ghZ1OrV=vn^yQbotHTbGfgrl{rdKH
zwQlq_4J|FN%gcO&<KpJI^~t>4I<NlEWBIE8f4^T{<jTz}V-avn!gr>TYhYj?$mp|*
z%nS?+)AuGxJE&y7yR%cuu4c!xv$K~kcJF_+Y<AwIPft%@-BFnAFMGW3$*y~wId`vH
zEvg-sabkiZXnJwercF~OOjux9{A@+q*;#R=>-YbwS{u39&AFZL>WhnupYB>0wKZ$$
z#^mF_=AIH~U|?{#Xn9Pcc%}76_pO<i)vm6OkC!&jdm^I4z|f%0aJ+th?8d!<il8+R
zr};<fS_n|CAI1wpj#@Q5dGaLV#Rc#z`k_OIrp%bJVybp{T)^!!XMA`i3>+?Ayx7&z
z5pa5%?$mkn>h76cym+xFHr#uf&Q1wuP~a5wCCNH~`qZA2)mDbDkDFyvxd~KouZy)_
z8@+wqfwE%~TeGkGaf|6(IMB#!ns>)S)~dwA)6?_T&f@d~Wry4OudfVV{>0+kQ8`d4
z$sqceVH2pQ^Y7PdDdV&r&^REdnf-qM|9$Irzq7LadL@{38>lt~HC}ISPJcZ!ecr{x
z{Pt`3?S6nJ^P~)uTJD>Hn*DKAFI9PEt-gGh059(W8JuxZ3DjYz|Nn2^rU?@SzP`Th
z|N8oR&>#Wxw%9!t8`tgq7FGJ<!ogrMQPHLAVs~qqnuhM&xzjF}jaO=k-(0Jeo|Dy#
zj>X(L2=e)akRIj}&(6*UwQxH+IM#n^X<<44$>GxF%c1MzZ0CcxpbpIK?fKue;&&7*
zymaXjXf;Xqg<_EIMv>bLo9h499X)d7$CTqoj+~HKT>JZ*=*qP!>$ffUn|o=3qVty@
zkNZ~#E%g##_#C8zNpl;c3TE|@_507~^RK_WyewswbHnw8DJZ`-vBbaPV+q=n;+dMB
z{(H)NtI|`O_h{tG9{;%I?1>W>etdjvTKlV{wY4>N$vjYj!?6UlCJ>R9j!wA!r;2s!
z-`n^9Edz~SM{Z67jWmYOb#CX&yuL1WRm{#$mCK*X+Ei>%QdZu3s_M&&g>tr4A~!&R
zef0XDpPxZp(Dj?noH^rtW%g<Jjl2pUKYj#tbo=D(-<2v>MMce$IUZP3Q`4Ax9W=Z$
zZ`!nF8#WjmJ$lr0(ziD^7w7N)3z~%eyz03{pIqIKM9aR#i{1NImAt&f`mOZQk<L2(
zDs~2j1M<`N>rXMyy|v`m*Vplj<YMKz-kK`RwJyK*^73+1(D-1apI={4P!K3#bBSts
zOsf0y(Y^NbS#zu6XFcJ!nc4X&?w<Yg;o)KAD&o?Mi;F>%&3k`7n?0}oyzTcnDw!`X
zECh{MA3A(Emj_gM?oblB9q#}dd0px)&MR%^!_FrY&?{vMs{CVjmt|gC6FINS-~R8G
zXJ=+E?&;wPT^AF1=_Z3w<|UP{Z*PZ3Z_5b`37N9YclNS9du)1TEH7RDw(WM_=g9n&
zlqEfepn>2?lPA}IFJxk1U<jW?T!mo&WCxxK;d$))pX+{tl2U+4-@|S9U8mLaJvi1Y
zy_1cFf#Ctyfsgm|!*kX%f*MQ(KNTB53OBSdfb2gY#RO`HFl2KmfJE1fN-{7E%|KWd
z!9HQm92s6&s}NDG5YRdvAz|UIMNdz0XU(2Db0s4)n}(HDl%Sws*3C^zFI~R8_f<-2
zYUZmeD|dZ9XDuo%z53Ep@6~a8tEyfuojzsy^zYR?oS;VGBGK0jmzMj>`_3})+*|ea
z(vy>uL9-oYZ*OIS+N0ZykFAK^T^6+=p^=SGW<}xSV=pf(boTP{x^!-?we45Xq!p+s
zH0jF`VgHOnEu5>u*3Ocvd?NVu_4W7VveFC;3<au1J%-PM$`8%wl{NznunMdBTzGJ>
zS=ICA&6}%&m-n5TuD^b3_I0+L-)LP9PtfrBqeqWGi~i2eHus<O<+8s$XtocuFlO(q
z@2{`>YierV+L+wFDs;72f$eOw+@Qa|zHTji>~?i^`1|dAk_-$CM`ggxp}(vt7Z<s5
z@$rTI|M%B6RZ&s#)%ErBK{e6d>hEkhyDL5>#a6%FI`4y`XJBC9t6N)F2L%UDojqII
zQ!9Mk9RD8^o@8#%y}hm5R0fodw2m>Re13MetGhec#ib>@(#feQy;9-j%a?V+nNChk
zpfTIGx3`P$c=z}BcW*1{D3G2Qo1<n8Z|?7pH#9V~dunKCXml*&{=Qn*EbWyCw(Z=x
zbCyZwq*bA-m$mUqi$SXm&V5&8IWQ{@%?)oC_uH*nzyDtpXnOU@uA^r2L0P}v<EUA~
z6rISRn>TOTJzefM_mhskSM>2hrfst3d2`}wzlQe8*+!M$t4tTH29@;+6OyDIl9H1C
z%+s1$U+b2Wlhc^{`E_i@?I}}4Z2x|_3|fd|l5=B&)7R1u4-R(q^nB5JeQ|Mn)t486
zD~>ZVFgScPtp8VYcE0`n)jGz;pM}0Y`xKbN>`_y*2Q=09_;`PHY{$H5)6|X^ipa~y
zCq&m@{<3W8QqbzM!otG1rz=;ke06{Se$bE~sQcgg?)8yQ;hAl`3=9v99>3>)`X{p@
zu;l1BrS@}ktwFWqEW_ls<vQx>?wXpK(6vS?o}l6DeLtT`gNA)pzinh@-;#1t$p7ZU
z!|hu$E-I<2tFLzH6q@(RH2c~L_kKAqFRxE`<Uxyr54>M|;~&$c2@@9R#qP?uu_4i_
z;6X#yl@$x8Oc4Rib!<*M`{_#cub0bB)6dDIrlhPWdU|ToIkpL)wo?B6eV{S8MT-`h
z<lZuQ`t)h$lM@r?Z38XyDJt3&b3OEUpX}FT()kr%A1<4n2kJeo?E%+2LL#>rlst={
zpS$|u;bGJKdp5GRRUx3|j??tx*B$GXu6||F_t-dk>g!!m8<SewcqA8T1~1dl*7oM)
z<eX)k-j{W4&C8YF|9-#!dU|}_L>1d_H<ImM%Nr)KfZO;xI%JZ2c3zqLWAQ0__JYU9
zdSjTG7#IpzAN+W~U3=SgaILW8&&XK}4a#)GxC4N?xIK6cvxlEwUmKt7DlSni4ILey
z&d$!LokdSsx1K$7=1K!2vxuzh+Kvv6tvNS?Kn2z7b<x}Xd}o;iR#farN=h=xxS%lC
zqVQ1?A1kOC+EvN$^78V2HQ!lF;`UZ$etL2eRCMkxd%Gp??k=X=lF6VlSvO*X12a3{
zl^unTOI}=11WkWEKQ}k7)I9&*8qoUED=UL%Srjh%_5J;N&|0_b>+AMEzW_2_JLtpG
zcMb}mrPZKii=4u086O@ToCLCJrQcjD(4f|qvbVPya>eyxR(ySZJ^SOMqpvP3Y*tz6
zJzWnpi_#&eY?6P^#{cgBpY#7;yc!<Amf!wQz{7_RCoOrsZnqyZ8_xyMBF9~&ukRO5
zVPIf5Fm>sTe@vT*=|uSdn6PBU3XRgYw?bF0TzTs3*{LdjKb_W(+F7);>g%hgobr>d
z>@Lr5ZEt_wYku#CtQ%;<M9famaN3^A&5s^E5)l-97&>plga?sw9#vJlUR_=NJb2!O
z2@58x`)B?B_IA<|&|<~q{`15B{`$K2)l`i@C(sha^^%|hJir836>;)%+5dlki)7Rj
z?lxTmDP8cPE0^KqsZ&879v%Lb85t|mD+6yyCEMhF{?E25`T}UYhe0H6Bd>z0_q33*
zvTgo9R|YS)Io*BfTA_^p?LYe)Ux{r2)d38x;W_CCxk|XM{QLV`)pO&<jjY?wt`85m
z{pa#drmMOcvd=*iU&#H0n1E^q1_lxP&(F_;`U-nb85tYv2j=U^A2n+@a{PGq*H>3T
z)Bo37Uu0%x7Rk7O{P>Y|+gEen{HUl|hYlSQ5f@kY1XcS@&COqLrq5ql{QTU!D$umS
zp32R;N?(^b*3PvkTy($t9wP(8hvQG*b3gT+ZT8bAq2-X~w&e+>@9sn{_n&{QN7C3P
z)zZ?^%hNM3DQS^b$O;9|UmuUle?4n{{{?6*buPb*#R66DX%(mV<n7kDc8h6RT1KjR
zO_`uFRWCMbZS;1~8qPiMYV6X_$;`DVY?>_yYA%aMZv4xtqNwN?yQ}2lhQz}q4-PPb
zMy5dRjIG(zK@*89zkj*xpM7qQC1|<-(^FGb=kh8{R`U(Izpr*{>S-}oSJ%v2TQWh@
zxF;qm@4aSR^(DhJ?@q+oS*Dj87@4=EpO@SF;Se{dQ3hI=d0WPafq|jmruMe|4IY>7
z>@5CzegD7E&(F?YUf|eV^6ZSHZv4I&&;pw)g);8zUfc3qFWs7Sl&kdhHQ(T6J{N=i
zZI`}ykpWumvMO@(vhcgnc{^RT!`FpGM9h$@|5FHBmISI~#q?q_QhUHT;fUd}8Qyn0
z?N|LNW-!mYbHWtVF$ibq`(L*^=`S~^v(Rvw8(g7`zzsCRyv{gk)sT{wmUW<k5wzyS
z#ib=`Th7WaU%qhX?a#k&2P*SYPfrU?Nm+7hd;a?O`~TlteQu(%yGh<13(z{|ix)3y
zMQ>Y^xA$w<-jBzm#j7nq2})G|M^L$fKynXgWENDo`P+V-a%!sf^32Q2G&MCnL9Ozy
zudZ_E)IU1Hsj8~_a(aB-MdR}}iyu5l0ObTwU*g%>*`eEVB0Vqt`uf_m=0^c&+zGS{
zsGwkjn10-vcXxMZ-`<uB8X)R@2+F46ElJW2pmpH5D~CNyxBcf@g<6-tyRv+K-Kwgu
zuRJG#R$W__z5?}As^0B<uHsqx>dM7FS?iFML8|_@LG$XMa>4%pPk+#0l~&}YC+|(X
zKoc9Mf^z&1f@VTM!%P@8gl+!sHePAatOjU7!rG{<pRD%2+Vy(fXD<1lpn!byCI_^Z
zPdw2Cl)RQC$$&<h_8xNH*V4iQ9cSXdaZO^e{=Oehyiz6~Zr43OH`l80kxS$2`}^zn
zFWJ119Td<<19O;9{QLV`R9N_N@VxkK`S<rV<o3&0E_(Ckjna1esxK?j&dmXBnORx$
z^Hb|vP!-U?uqK8%sVC6S?;Pt@UQW)5DygZdmH&RnEL^zI=$MAKw)TVMC;Hr1{@t<q
z_Y1ThLCe@UICz=Q&INX$!KEDrVRej=o6~x|rs-7Pt4~Z!oEN;>Ynsl=H*a$0AGa!f
zHAUvQ=7&Qc{-ieEnjiiAx?J@e!@a-X?Ve>>yzJGLmBBAIf+CCK%qe|^t=ZSZyu41a
zUOj8?s->oOtXTHg&QGV4l9QS3j)Cg$2@@tbZI?IAngSa8`}=wR|0|%mLdU;TmmF+n
z*ETY`w0ezuzuc>fi;uI~gR0!F=|4X|&;Ix4XI$#cnKP%aFrUt^&A6oI=ciY9cb6}`
z1*(YN-r8#SG&3`ki<>(*CMM><w!X(J^6u^eZAz$_R{QCsI;gLD=<wmar<VK8T?JZU
z|M9r|^~wHrkt_E3&9S)np7k>W1H+HUpT4(#TIM@DWPjaX?<<Q>J8#^}vA6j7IZ%gT
znoi^+P0;E#G2N&oPoAVq)d)Nkyf6K{9B7!z?yddbFTuIDwww(9cGmoU#?@7!pnhfe
z-Rtr7vCV9}LF?o8n$-RIaX-@qlrA8R_Ydm&`u?D8O4D?szdV`juLYTexIE9c8oU=F
z?d+_1yF5KTL2Da7efngRdc0r$y6*Nni{k5ky87GwT+-CsY+CrpMKXEHym{-2o}TiY
z1YW9<dC3K|!)1nH@}8z%70`MN&;o}0cF)uw^h%q50+ss*L>nIOzrXIrJ<hwOv1=nX
zIytxTT%4jAJZ0+Cr7bNiXJ;B8*RJtM_up9*`(D0SNlEF;!*=<s4-XDX*;Z}&^y$-;
zMXubS3=Qf-M{m!&`ttJf(iayLzrMbHe!2YSw6k0i;7yt$ejER?KIv~@;bCAXNPRfk
zIY}7U?Wzy{XTSgF^m^TU`@a2tV%L{wm*j5Fx>K_G;+2Cb|9U(8gsiUxF1r!Pyh*di
zG4;@f(%fee?asTn9WOVUnBOZ|92D^Q%~6Th3VFFRr|w!3yd<QvjC+}|YSeG_-l=n9
zds?1NUv@VCn*Zi+9~&lpu$=$h^1lE2bDN*fkz-)!5>#Mda4=+IVPMd319eZ2atJUm
zERbMiVqg$ac3@y=NMhk&U<l{|?drv=*myDXlLrTzBX<_1is{A7uq=M|WZUgL@A&xp
zTb{GCvtPb<Z(il+XQ}V*?A-bJoHc0s!Q3LyauJ`{*x0PBtV_3V|Mu)>U|^WD;9E}o
zfsj>Kv!>}rPYaK)HI<c>jogsnxNFz0OSf*#x_9rMiK*$_qJJkQDre^Ao?YnNzA5kS
zt}EBBE!(`=c<tJ?H#evIKRY|S{L;?Q)nQLJ&;Og#CvX2RQ-+&?;as-yH_-{{^D5Q!
z_x(t!`#k%8%H3V1KQH#zO%ac)P@MnsO!}t}hxzB1)jdAe`||z!^Y82b|Niqt-Tovq
zzs-c)+uKqL3Jm(~|NZbx|M%m#{WJgiU%_GP<7$`nGcz!xu(5lTmzV49da+0+eqT+^
z+Jy@h-@bi&b64r>%=m>b-n~1=Ykp@!_WHeLHMt)j9gW<S;yJJG*Gtde_Wyo7UK6!d
zYjxP#Q;S@?&)sokU}z{bHgov(>zCS*!!xE$n<ishWwL(%zh6@}U(GUIzvq+Jy8Zut
zO+NSi`}gN3CMpYGGtap(f#2?j0%-N3{m-M!3=Ha~$;?j<G%{!A<jmP(x6RDL!s6+h
z3l{?1+}xJg{$F4JSNrw#_2++meQlh6ZjOJ|O9qAmB3(5cd!yDqTikCq>)O4@&1tHh
zZSC#H>+J($V`Eoc&1!3JU%sb*<Lza$><j%T{rR%o-ZwZnxbDYcdB4|Ej0_F`{U$Qp
z+*ezD>((v5-Rpx^ro6wmH#0BKueP?<&CN~it!3Gp2(77JuU@}izGptfnDgsmcYnGP
z?7wvR^7N>5Mh1p|)vioWPHC?{0~*@jTK+~isJFM*vf#miCAW`X)7$ssk>>m4e}8_?
zG|j%Y<(ajW)u-P48s+$ZpQeBAum7X$`RU#6_i8`S-`=wCL#zIiN#1&vPfgdy?X@a?
zes1oDvhR1xpTFDv-tMUk1B3DPX}ZyyQcq9g%x348v+)iuezziI_0?B5_jOFp%+Ei6
zZmzX@?X~2mr>5TAl<M8q)>d?oRout&{-sNkX3d)Q=GNBiL%%L9_5S>9cK)+o^LrkX
zV#;o&{(Nr#f9C(+*8^6D1g#DG{PTRhowKvEdTr0Wd-r0>@0R|&eg9wCCH^za3<Y@~
z|Gb|(d!xKl{Kh2LdzH`U+I+uL{5bpl-tTeqYQNpQQ+Qlf_)&5~g2L}_Z)cnAum1jy
z^M2aC{QLX9eEG6u@7~&)w<p!-pLt*ReK%-b(&PHNKab_rJ*}**KVJ#vdw%UV0|Un-
z(76EqwNdUY3=N;p_54-)BB~ws<of=9rF9>g<)3W59_Q`s?7VB&E+Z?eS)ec!{&uhU
zye%jS-Q3-eUw^m%|390bPbNoh%Za?UCUWwvTeos<Y*6g&?XCQ9kp1}g+RwA^&-rrW
z{r>-TtFC5&nxv`R3=HWPdUz+ynl<asL;m^`x3*?~J|gU&Qc+={tE>C-ZGQc1?R7hn
z4&C!wI%(FdPW@+RW*V!57Q$|-`ugh6tML7&UcAV-b?erpn>S~&a*NIR_ECH4DM?#?
z1_py>d*)C34^%TSGMv+&_rJEt_?xi;1H*xx?i7_;Bo%R^ijSUo!C+bOAt7vC%*<A9
z@w9VuEO)-$cKg!x>*jBN9z1w(%l7T*_x4oIv@Xwkx99V@JzuXytKY5u@!?@fNeO81
zf92}cr>F1xvh+^r^;pZYH#cTl@i8#W`JQ$D8>`RKsI_S~H>Fm7y&8V`;>C%q++s^s
zuhw3>cJ0fzZ+(M<FKa&Um$965?b<aNs}haZ*VcOH=H^;iTVK9)YnE;Gx0HK(Dj!$d
z|M_tEPSxwRk}@)9PEFM={`qwJ^SkBu&-Te$8yOi*+O=z!|L+|P3<YsBHZp!XV|@O}
zQSo@6^78U&`tkErcD`P>`_i2|b3g|g%r?)rd-~^Cuk_{n_vhc;UH<%5_Ilq*HNS7)
zKX-lKx2-n+emsucU-$RNy>_`O4Q6KMm#<%+UOGL_YTv%Hx3~NsrZ6xR{F}8g|KO{4
z@6Nf3$C}8=dtSP5VZyg>-*WEmGCkfeZ~yiWulXGVIeE`b6(1kzL~c^?xBvU)$E}0S
z?3*($FS}EIzjo)BOWwtQetfL?a?w5gp92HKfit`l_U+rp`O#q6(xs~I{c>ktuitO?
zG-qqnS?%?ECcR$2|KF0&fB*iqEPCQGDdqXOxssBSp25MvVQV5L-rStNeBVC1?RSd2
z|NZ;EfBsHpMg|6Ba|b>diwVb$9rJvhoZZ~q9DI(Cmp3&fB_--}{+^F+tFC6rRlQia
z=kK@MH}_N)gKFUW_vfp6PkS=A{GO#SXaXYWg|WibtkPTg*|SWu!zQIvR8;)=E`0Us
zRZw(RR8*Y$EwMXy)lcE?GIli<o<YIEljqHwcjfwZb<cJCe!aR=a@qIhj>2TQ$|n;u
zW33q&3bI_8QhtAXo0*+${dS+%(n))(zc1Ul)AH-ruac6IGq*gyu`zjNh}PqU1xCr+
zeNF2h&D%JC`~AA#Ex-4CJSJUyGj;mY_4R*WPw6)nGpzpp&i3v_1_lfE9^3cUSMA%1
zvq-31j@QLiJZzo(O)qAL!TbIH|4r%NT>t-{%E|Bh|Nqte&cIOc?&kjb`n-KVpKY#{
z{6D#i<wUD^+>Gk?d%yoTE&h5nJpK8(xs$Jzzr8gT6!bfHR-U@)wRF<zb-T3m_y75{
z<aS)u%cVL|TQuhXzVm#N%Jtat*hx>`ZofZoOL;+oLHyrW;md30EcKqA_W9Y_pQpn2
z6`cxCVPLQ@=i%p1|NrlA<gSvJH}_5XA8Gup+5r^5@7}!w)gV9LmG7UeQu%)G_fKy&
zpMTb8{q6*-c#Ofm@`MBhP=a}Mv|Ihm|2OIO-ue0OfBavz6<VV#UYuMLUtC<g@88$;
z>94P?m6Vb?_2=j3$tt(E<(@upz(KC!L8IpSjSCkl-v52?`?(i885w5W-1F(<Nl-)W
zYfk);lRbTX&!$D^oy=apcbaMTwIvG|D#pgfN=itacz1Vq@lnz6p7*)Axo5w<y=`n|
zWwo#D$A^b8#b-?|OI`#ZRW4VvOlxavBR3=*{BaM|nE82a`@X5mmVxub&j-!?n-UMV
z)qL!ZKXY1t|D2nf)5UGA85riQPRnUf`Tuj$fvwrspZ$D3|NMs!1yNB^pKc`gKb@7m
zZsvydYuD;pm%TZ0T)y5Wv9_SVV0HNVbK7!ngKEBQ+qRXIm8D%=<T_by_44KF`+pqO
z-;{oS-kEu}*7tv&EC2LjaevywL#^{)Nis4#s4-g1%)-E6vHi>qeI*tKhI6)5XgiOP
cisc{g@6R&xZZY1O2<mKmy85}Sb4q9e02S8a-~a#s

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/Results/poulet20160830-104001.png b/Code/MonoMutliViewClassifiers/Results/poulet20160830-104001.png
new file mode 100644
index 0000000000000000000000000000000000000000..856ba33724ecee47c6f6e1a2771592f4a6f27da8
GIT binary patch
literal 18696
zcmeAS@N?(olHy`uVBq!ia0y~yU{+vYV2a>iV_;yIRn}C%z`(##?Bp53!NI{%!;#X#
zz`(#+;1OBOz`&mf!i+2ImuE6CC@^@sIEGZrd2_e2LL~IizrVY+4z{QWOpx%2Na0<v
zV4|wa%|nZr7Ei1dWE4!i!^S2$@wqy)g^`g?lR?8Gp2SL)RAY_9D>^zj1X~|4X>_m&
zOmJ1;YEhZ+`QO3Wbs4*@Cv>!P+&^Dh=;}ZBa;aZ<Y5Co|q042GdjuI67#JcR#J%DJ
zF?JLQIDqH~X9h+F28IM)MivGJh6Ym>0g&jmkt5k~dd}-zSvNO5UHa}=s=lVC=epN_
zr~P`^E`O>t*7o<C&EkJ7l->KLyxtYHIqmGxcZ<a9|F+h@-}if6-tM<%Q+1=m*1cYp
ze7tY^F7N4gmR7~D3|iW?Ds**P?cV3X7qV*~AM4%q_uK8#v!>Til*V3N9qvD=<p1CA
zr%Pks-rIY-th~{?&tLw}!X7!>sCBPTmBzlkvGH+G`E&k*g))|X#VdCg-sJvbBmV8@
z{)pSJYuL^E9>*9mrd(eaTNE44Z}Y)n;;n7@_v3b#y$#x5_t&K8iAU-Cdw<JcsOq^C
z*6Dx#e(Uek>G4<A#ah>XyP5v#;^KC<KADy6@^uyowGX@mYgSq_h#WgJ)A;GGbv=ev
zPp5{Pl)bs(eRpY6{_SnKT-@BduiV|CWSVuw<My`P;E<3hUrXn|e~|X>&Q7b!PfL!<
z{WV-0voq-C&6`yZTg9)ejo$8kS5_prG48drS<Z!p&h20Rd_JH3;=;nX)5m%w7bhNW
zTj|uwWwx73gggA$_4pk+dp@7DK6T<mz<j&fkbO0kXXn{QFZZ9n@5)`RZ;u{53fY)+
z)cbC)c2Gvfibszgm3+M#9v#2kaM^*UqS|30F)?$N-iwKPUaiNqsr-GMXONH2nWL}x
z^qd>xURQsAH}$ba-S_#Qo}Sj$)AMt5blkR!Q$(6Y;7{V7Pp7ntWZeJ${vLjQo^9!m
z4~e?5yG#=P?%89r_sb>ktV>HePfgKWykUdE)isg9e}8|!er~RHcgXeym!p{GGS8VZ
zWyyjC3QwOsdv!B?e(2j<TScX$URlaMc|O1X+K$4<S5}2;hpr0oR8&;#>g&5^`~A-1
zEnBuUJpTP`cK(+G%={~|uCC(Z<qiG$>FL!qk;Wh!<GwP@U0wU^jHK^uGvDp^s#Ys0
zD~rm>t*iR_D)ZHqm390#rs+m63tJndX=WC-aN)vL0SlWZO`2p<`|C?X?Vqi4=E(F)
z8oQa_Et!1i@L^F&$(3nmXJtM-)M{6H-ZnSw`nuRx_xA2yxAU3QRGr8mUTL!{pPru9
z&zSrB+uPuPfC;azub1E8cY9mz(_QPf<=uUy>Fwzm`25`5(7jcqt*xz^Mn*xtvrI1j
z|M&iX+=q(u<#83W&2mF_m1MfQxxM;!J72$`djHR7vtM0ZJw5B{s-+zr9Ih@dD;%5I
zW*Mb+o&Q!88(#eE%tS-C&{ZKH=WMHZxASx3I!41|FP2V^3vzO5@|vmz(xa-P0uuSO
zJO0W0c>BL!CbRKKJh*B9>dMN+Q>IMeu3M+_^0fZ`kbXH^o8KiRC0kxyU%&ofGyCf^
zGmYa)^-KQCnr2N|6}npOc;S>ulO9#-eVV`6;nViJCnhSV_I$L7cXV`&yZ*f9_uK8S
z?(W{M6}D!@gb4znD*_yAe|@>Q{eIo+&oiFK-T!<md%dQiVc=4)sk<IzOZCawu1Y-I
z_OeYnFCZdf1}ITnTO0j)@ArG3SN^Wvzy8T?iQBPO)eGzj9ylC5dQ?+K$LHy(slkig
zdcWK$K0kMRZs4(B7v1GwzT5piY^m2&5h<xvGiFHKt$MxIZvE9}cK%l<)#rzR5|E(a
z!cD2CSCzfJ_3HNa^+rZUHec)hMxC$!zw7_M->E$xYs%*AzAyTv^3zH6`74T_pX=)E
z4D|5m&<bC-rd_Ve<M;RX-&a=eJ1?=o;*p5XA4M6Pih%sRU#DeVUG?<mg?R>vO=)Ll
zEYyqL_2bI<vuCf)|Mx|GZOqP~soLRT=jYjm?kdSlO-Xri*8G0R<z>F1d#k=WUDrKj
zx%=l=>(W<C&fER=$-TWTw4F~@L{?V!<r~eQ^ERJ*W|`-&+x>2rck1bBSKr;;y*1~i
z(b|ZOPWk))ZhN=mG2i;*G5czE?kan`YR(*)t(lkIzTc}}-zRIm?7aQ|n8(L@FFW(w
zh9u1Qn{T%kWD2M(&APsB?L6CREfbRv`I--n|2|FMpK-X2cb0ASw&nkNB#pmZaOT%k
zQ*%3c@?=+6*QJBa>|c+H$7`sn9xe7Ob}T9`E<G+=o^f`T>8^jjUVpuj-2d{)$;nY$
zGA8aSeGRhq&ijLIZf<QtLP8;Xt4hDVyBqD^Cv)-j`u*#^y}h0N^wiX>dwVJyU-$O*
zUVXd${<`n?s{Nz4<y`DFzxQJ6pX2iNS58gUzPcgN`EJ2s-g%$g<tklDUtJ0O{Oqi#
zu<+vfb-z6S|2$uRWp%iI?)`nSi`{yy-p^o;+@3c#Z~x!2r_Y|P3SREFDsJyCv;2E&
zmMmG)ApVU{+RVq%(b3DtC#022bjr+`D??X@WnNg|`0LH)^Lw^kKQU2xYst%?+K)%Y
zrA#s=oSLGk>^X0L(1Y5a`+mQ>{O9NA(49r8U*F%4?|Yo_^3u|(CllSjd^|3n{qD|A
zyIfFMAM2IYR#9<@-Bl7;R<=z{FJ=Y1T!n+9qvNZqtFKqipRB+CPf)Lv>7>`Yy!`ya
zuC5CG`uV*5>)ZMJuYP%X*|h3Q#`%>ktvBnVw`43lbH>MamWk)bj~}z{@7tR`_v6Qp
zjK71IdWrVRSO%>QUw^G#zHWtG?XMMHQ?=%$PWtk4`TSL-udi7ZK5CgXd2;DtUh@~P
z*YCf!r}FcZS+iDszh8e}`^Pi;=Z}x~Uq3ZfyY&0r^3|!Qr=2=;#^(L!&DG!YO!M!>
z>@I&Fc6pia)or=ab1e$NN$b{@%*B$%X)EIQ*UkH7b}wA-SlM)N3N61^xg6x>w6n8T
z1~2ymRZiRT?yd@4?DleI`aI1IwTZ`n-T(hDy!>wIbR}iwsdMJ6;S$w)ablwKt!=rp
zm-)|MxBu_k{7FmJtkJn!c02dizu)gmf4|+XZD|>KOycdWt=^}n=>|{Ni?#WEX#G^p
zU^iv=zAMkp&Yn7J)~f1vJCASP|MWla7pXtr_y1pO|NrNCPyt_5v`H&;)e>3jvW#bE
zW>&pkyZy^a_4yTlSJi@YYJ|}N`2(NN+vm$1H~jzSxxH;Fuat>_qoZTm^K*0UzP9s9
zr^y^Qe0zJlxuvCL-07mCqB9Q<w|9qp|M&a7`MTG$Vt1GQTvPn@)zxE#GR9d~G}eDw
zvP9*vMc>Y!&t{*UsO(;I>+he>=btT~U-wD#{_gVioxQ!L=64F3!+$<J-0u7G(o$a!
zkB*-&7We<zW<C9}#WL4!vA9%aw;qGO$1@z8*=Fw9W8+^L7dP+a_4V@$W3TH(Z#xql
zx4*7dSW4>E*O(`tub0>V``BMEalG(MZ28^Pb8{>oYucB*m;h?~6vkd(6Tkmn@Vto=
z6J?GYu6sRe|Np=5<NCjzvwjcKF#q3|<=j!<|NQ*i``9Aw!~{jV)5rQ`vtzEC1~2#f
zs`dZf?)NpXo;`auD{O7l%+>35oqBV7`}yq1prA>GvDa7YT(ApV9j5zu*SgBrYq#$?
zrS3oPjpXNc`MQdG|0I%q=G)cwyxx^|xQ#dNDeK$SjlX{1%3d#dywInajrYvS$?CRG
z)&1w0fC78n>sdcPKd;_;^8Nb;M&>==madK7KI_4QgyP4&=D%Y9uebepM7VCgaB`1j
z*_#>H|BILXKYM@ruWxUw9cwK?ne%TRe{#>t*xlRiKY!9|eh(CKuh;Lt_k5$waYI2t
z!DpY(+v|te&oa-?YiepbBb~qJVd%V>GczAOe(W0&F~hRr!-C~^j{QD$^u{|&OUrrJ
z|2MI6pWA&;D|FS2RiUe^rizxWk+m)}S@(LD{{BCgmY?0(|M^;UzU1-3Gs6Bh4}<m1
z&9BSY*WLO2zcKE$rl#hx(pcl_Z#naifA}tScVF%9ov&7{_KAs^b8~<F{_ww{tHWk4
zSfFruW3v1DPoHa#F&q_SWU1%4x;ota;K74&?6v=YUEkmH*y7pC<@3L-s(yAxGI*Jf
zq_CXayU%R@vRhYX`&?x9Sirpcv!q4Ag2LGAZ*Fcr9&A?kr{b|ipQKI22Ugo->zO^`
z;^t|Fubb1^+xwM^>1Us;bz01I)4RJ$KTo;3KK{Ooi_46~?)_p_JU_FptVjd}%D1<-
zYp0!^V|m%4FZtKk*UvRi+h?qa+PdmGqu;*Q>vo@uDL!i|zUAGTH9BDDNK3!|9ASR1
zVlgKt=gtQTTT@O7J>Io$rgizc@Sm-06Z-A{-N@H4dG_XC#A3JJ2KGJwa_;Q7Xwmmr
z_)?dUL)7-X+?ea8+TrWIto;A)_j~E%g+8mp*6um=nSVw7&!^(^&Cbp?2W2f`b-y{~
zGCvug?EQXEdqZ5{xBK^%8=mAJSM#0qBlr52%;3kn)?GhXQ^)YJ+#!0xdHer&Ec%jn
zmA!pcUYV7(sxbDt&wRVTO>*y(_O6fVdAqOTW71=bzLysk9%fy8J)S|cWB<moS65E%
zSeIS)=0;$`?LQ2k{{OrG-}-%(UKqpA*YW?eVy>Hl>XJX}mOHoeEpzD<ihKBcd(AP1
z>0HYb7T&1-|M&aXyXE&+=HA{GC;sVf_4~b5k2=+-Oq#Ul`Mm0L#ftZ@$JehtbH+zi
zP3_gK?De`IHgX4l-=1}2L*ju{`T9Q_<7z&-E?v6x<%5IGr%s;ys8cNCUj6;u*FR7G
zom8KHq7YPFFZ1|&V_)s=J{ikJJ9b$7{rkTDdt_cu;K@m<TXS!l`A43gXZ!WZWdB#7
zmeKcjcdzcLEH=%%^P?%f+^X)+j<R=mR(6SMuSz>R%kK1Ne`_y)|L>7v^78M$o3wgO
z)e^1H`@Pf2+4<_$?C`z6UahWrKDXTF{M}`~v$vGK4l8|i<>d267j3J*Wt^E|7_~KP
zYT5gHYuBvNIlt*oZji`qv)oB4rrFodq|bc43)EEK_xqjo{8Ug?eq&?u)}*6cwcqcS
zTNOS!;`;LZ&P$gsKi#$N{^eVs=E{Nv3j1%bNIN^LtE1zC=K7G8la_40t~V!NZCl>m
zT`!M{$6o<8*3ZqgUS0b7TGpK%8_$0gbiG+$&;RrGM%Qk!y6M|<ZU%t@@Y3bWSC@DS
z`|o^g!MacU$L6}fRh~g<Y0K^h|L2pl(Maw&KcoKr_o>|*?_R!isqXUc$bE-;wx*w-
z7qzQorI3)&m9^34TQe>?^-7z6o7uan^7AuLgC5jB>XkNM6}!6(WcQ=TkL$N<uK9fb
za@hK~wY<`1KXmLXJ}fvl$8z!8+uL7Hi_ZHP6?Wq<*N!P13L4+i&dg9eUU+4>zx?`7
zn^I4|dbj)iwMnYpQ)bP2wbSy(#^mEFFPoN`>G<5ezpCcvr@GVA^<r1)#qL^>a&i)=
zYYJ}ax3`}zjjjD~kUeU1TJNUKoAsmS*Z+E{?s=(C)|zXN<Gr2iJDS<~ubEztS)6%!
zS>~xJnpGc<imT53+aPD27t<(S;r(gOW4R2qg?~Q%**N$0o!4ULL}g^w?Af!2>3a3L
z-|zRwuix{jEA9Nex0W|NJv~3}&aeId_j}fj4GWEojjwLW48B|Wd~R1yPe?$(1S2CO
zlj?6d>vMx7X3m^hB%}V|-vfP)^t7~9j?HYhwq{QU1><sm`Pka8SGoB3u5C;{ZjyOv
ziPHDy*I%EkzZ1{R#T671GKEjp>dEFc3vyLXK4&Vbmom#)u{Ha8)|VF-qxMv6e0FxW
zdU6k_%Oa@kR`G6c;FQ1LzfagN%YAEkuVLNymxt<ZPPBja{a*F?_pHw^-E4kSd_3oI
z?bD>3@7*8eVs30KdvU=L)ZA6`nXw>pb6V!H9!aBPE9(CKs`~fy`PE&e*`7fwgO-Bo
z{EQ<Vf>GOYX5Op)9xItFA}YER)OrN9qVHcnl|OO++T;E5@*DadTYxf;f8~PjA`2{(
z8Wu!Y*ZkNJ6dbJTd3SgD_iAQ?<Ao;4$9Vi1PW}(rGa<i)J2-sO^JxA0%m05_U)UjV
zxSc=T!=uA2@6HQj-B<f+f7iV0sLh*SU+eg_wWFtJO363pii?X}#qYcWH6Lrg-(5bx
z{$J$lYiloGTIy|D{LBZ`OpmYsyY<vm?ecr2|9(8~ubck-{F_Pf@4pwkUb`KXok6~+
z`}Z@wwY4?#U=wRsS69&OZMl12`OPqJbnll7_44XE-@1icOh@CAj{Q$1W#!bKi;c|e
zfAqe8m)ZO2l=i6;CoZfATx?SFqhNh%W@hFrlgyxrzdyg;Cu>>cl74Q^$C*-J&dfBn
zs`;_OYr0--;I*gzi`{y+<lHoR`s`WO<72(Q-q-(Mtr@&*Mf&-9U44CFr>E(5@A)5>
z^Yiw`1+}*dW%mCrNmSo-qP|Bwz9z8W_S+5CtsDRD3kqqi<^Q&PL-N#f=W4ER%Z*M=
zO?^4p-|ph={QYY)FE0c4(5k9-WnEvV`|^#77$~8}RX!EXy}iwMb=cZVS5^jpeY5%e
zDT&Xs)fRtHuaEx!=ks|ke*XO{`gujveGYdg>8h%_T3TAJir>FauI7W|{{M>>E!tA_
z)C<&foD{OVEEm*hjIa6VdZ4+vrgf$E+`m^{t*Wcet*`y{a=GiS)o;(uwFb44f7BF6
zC4af-F8}k2zmLxpLpSZPH5y-bE%`5992IqowbuD(_EPWZVYAJ0zkE8a|N7tW_tz&X
zyZ@;>Fkf3q$?59q@ay;XR@W|bn6@Nzb(rU+%6iYAYkz%txj1;a-^;Jp<F9{udKxs~
z@%7Ek%g+<6_xJx?_$_92`1*go<@)Qw*UwwB`EuF6sJOU!*Ve_p4&GP%+|RO4c!T}F
zC;cl8ZvU7TofjAvH}C%2pAXyRU!9q0y#Ke^q$NVCUK)mmfuI&~xBfnj<eul<9gE)V
zcdgVrr~d!Tbcgfx|Lo@O-&@~(<cN#sr{8q~9dEx+U9?N$weFjU^P!tkJXKXyGynYf
z_-p?EpYl(iJYjir`s?-h_3rYuA)s#IlFh-%@i{+l|EhVv@_@W7Bg@fStJm+-I$mf}
z`>W*a48z0k_k&v8r%s=~3=)6&X1z$i&8H5(c{VHC<*H7+j!Ag=res4qzr0>atf!ZU
z$A>$ue`Dh7elAt>pBJ;lFl=Rzt999%51bClZap8W<*Gp=QM*bqedpWVec%52=RQv!
zF0M=Q|2~Poy}jMP{^#lVl2=zW=UdtT`?2`?E@s)3r}f?Sise!D4;tC0OrO47(YdW+
zt`#VZLAB=e#}=<{Z+~AY|9tz4ySul`9KSfnve+d3oXq~^@t*(9&%RoJ{O>vI_n;2K
z{+0aO@0QI5l}D!8*D`KyN{u_c%xC5!^97+RgIteE%>TD!`SR>DGYspP1OMp<{d;F9
zaDtiNMj^SUjaT|v=~?fvuxaz^eq~zrJvP1i`skLrzrPxOFZxpdJ0kGg{Y|N-PZiE_
zvK4=Rc}HRL)m5S1+1J-yeRQ;Y?=;=0Egsp|*M+W)+PY`me~neYzP?_ad3jmXrj*XK
zv$LLVKNlWf`?R!b4mi?&zuO(U)Js%1dYcb8lUH$DU+cH~bs}Hl@7I0XN?(V`+Ef@M
z?7jb3yz97Jwa>wW2c>K(Hk7@&@o=+^x%u_?(?t%*^MV>NQG2VlZp**FZg&2@od@z`
ze}8?w{NiHw>}zWxrA)J?#9Y7HA*j41@i5!ouh*ixy1OsOmfu|(wA3r}`@6eU@ArN;
zsryp_>cLOq3jIE>`d#4JS*E7-|7zae-0a>fWqRq|-QA#`*|)d1Uw^$Gum8n@onLNE
zyL?^5$B!RhU0FHVYl_Cge*1qBpfSy&qD}XzUhA&^_4L%#%h~JqE(6tzuH9l;x3{g$
z+x1cn)Q$S}s9XQbVSf7`wjH+DKRi4P8hCi|bb9=?=={A)r|Cwoa%$zWs`#*=?9C0Z
zx&MD0w=eno^}4rJ^)7E0mlh#mVO#dY^0i+k+Wq|!Y?^c9Lh-p0$9XlMJV9e7D_5@E
z_4C>6tLtK|=h{>Taf|C+S?JtuQt~1I)D>;5`^U97>1bEh#YL_6>i^fWva_$wySodd
zqxO~UrxVJvOtYt1mA_kaZmzYqnORtT?boUIDxb@izP)wzePdAKnK_oh<#!6(tx8`l
z>65iy<<={8Yft6ou(eT3x8>e`wg3O$_2GZ-?XAwfv!f6+%m9*@WtyFJyid03_uK7P
zR|c!^|C@Pr)zo9X(#zT9YXat4m4Yg^kYzrSw!dC1X8e71u{;0LWy`W29%|k7@tE}0
zeYMq=eT&WS*91#SN;3L4?~ypxC%Zayb=b<x%ga_pZC$0Lq_idVv>3?mpg?b6WVR{g
z-u=I=y?u4yVz*x}7WbFjul-*6&aU>n?e`UabFEz8eSULuGiZEgMfCQ(UC-xLgNoGJ
zzhAF=`TB;Yq@*;OTj{L19#`$VHfrmoW`4UBCnu|e%+d;8)>HT6A$#q|qvE$VrFLIi
zAHP0(-A=blODp3wyM$D|GC+?0e9pS`{oe1do=%SsOG;YgH`fZ(6@1mqZ};J6(u?a{
z*4G-D*|Xl?+Y4%#tqNJWX!W{XUee}yS5}3t4%wO&dfx8ez3TUwCnhNF`g$!|R9t-d
zix(MxKOE)<xh^1JLK}}{kz=w+UETvpkF`--zr3&iAN}{&*UP=;_g0wY-qO(1^V_*|
z=dHcf+wFe6P<C~9ufA&{`onpX<<qdl)b#Y(%jZ>{I&$pTtVycgv)p>6=9YIIt2y2$
zYy9{3ck}Bp#l4*T{N}n*TMTBK<$j7bS64sYBWHW-%DULwEp2VHK0Q4>+y3uMf4k59
zhu6)st(Ll8dUpT6uj@Zw+xxiBy65$-XJ^gtf0;7ZviO+KT&t@lSyxU>(F#2U>a6Y9
zVe$EbGyl&!)=LaZ>wi3Czr44)Ja}D<rLdS-nvjstnc4aKGQ-x#fx1=a?S8Kb|GQ*~
zim-@CNW%a0^Ye1^c0Lso78FbbjXYmo8La;KYIwY81%DH$n{8M7Yetu-_N)mL1d88o
zy*_Kn5|z)dR<EzRS{!?QOU}(p@2j4lot+NqvYnc$o$lo1<a4x3)c5i--?K9elh5$m
z|9P<T`=`_Tv-@PNXT7?*diIA81t5n7uaC1euKQE5{-wfsb!+R}Hvj*8UY2)vmzs{w
znJId)w@k9Ho!Rs6*K4~{V<RJw-y7NGKKzal|FnlqYV+$|Y8o0ReCAjfChYzC`uc3}
z=)?Mbx4;^6Z(Y%e-nJ&-wq-zUa?i~znUgbbZ(FMwyK4&w?|j^6?GqIhbs%?N?rpQ;
z^S0k-fWp0_gX8i7N9ND(>;LaQ@I3R;k<Mpr(s>387cM+j8oU0bH+R*)W&ZQ?q|9<M
z4jn%1TT!tCH2il!GmiV#{&)NT*9nV=h!ki&DBk=1UiGs^b~yu3-&ZquSx;w2hr!nD
z>t^+TU&o()cX#*SZ96agy)Kbl_U=yRq{)+gLqeu-a&d84n7&#s`bEm**_&GFs_*Y|
zlaiCqhK9$cCM75PzQ4Ekub+ACzT;N&A0O|Z{d|7?J(G+J2S9P((%L#R>*}hRyWj0P
zz311f)p6hR44+-vyIv%1_w(DE)B7vGTy*!{nswF3!=t0KtIMdfvor0?48yput3p;L
ztqNWJ?D9T?<k%er3wM6MSM3`UGe<LY)s)Vj9+T47*Gvz$^MBuU{o=OV+n{lbM3CPX
zEne)Kk+EWB)YermZ*5(D-L|`j^G}rheUm+n^OmpQ_v_S`x3{l{tPDB|O3y`4PtDv_
z`g#_qa<BPtkUg%n`&S%Cj8~swYsa%`Ute5w_MWD5@xj67(8X@NOP4GGjUh+vttxH2
zKSe6}$`ViE+MiFSSG`)fJY-#rC1}EBclrBk%Y0|sly9AOF3#u9w%q8YOP8*!|Nn2-
z%Vo1mzPt!Le@6W0{RN;I(jRZTav5%JNNg4o7B)>h#KJ3Q6ESJZ+_`J5N?)z0`T2=;
z9`ny*()lZ@zrO?ZFsw>mD7<`A`K++8FzfodxzEnde!kMW>`lbqxB2y#kIUERJbmQF
zz`*dpD=bIfDSk`F#HQxvtNZKg{Ubd*I(~h9z5MIz>*5uOw;mnsE`7W8dexzJ6<1f+
zmD$(VfeMzqymd=9@1No`&n8mVx-8`Hudk)g&PcB3)(5#XCg!MFL(aWDk%fhYcIA=2
z9v&Zb_*HCe@4mm%&dJGXRrzVjw*32gFW>NpgQkJ*?kY7+IKa@_-mYz96JvhAruaZ)
zJ!leGBz7aO0%(4ry8Y&#-KXE(-oD-=SGDriGylTxhq(1Y!|k9+L(t&En>RUIb8my{
zpQ}eDKr`eG|Km5#Z8O)__EuC>w0pX6;lg=OT{E+LK5ntC`?KTu`{(oP*WI`g;ThB|
zrW>-@jkj0U`r9JE#T*O_3^6aeav3xuH!az;d2{Wl&-qrNn^I0HZ7r2Ke%b7Q{^Mi4
zwhx^rfks!=d}n3c-Brr^?c;}shpV2?Ee~1hHI?Z%GXq1zY3H!8X+}myCC}%UYiVh{
z0!^u|yumhM#te!5%Ol_3-yc6|4^#90Z9l(qWzGJ-z2@g9yVAvr7jy49=VDbI{^a+&
z-RlonF)%Rf_;Y5qxxa1ow>?+x{&3dX#;9Uv7Y7>h{`mO#UOg9oZ|}*EExP*q^*5~D
zpILSJ(j^fwv1L1USa=5A-BlX8$c1yian{@0+s_xf-*i|NvQp{g8@>~NofsGx^ll~p
z@q(=dsK31}_j2v`yU#88Tpo(vX1KJoIK5ZiKF&Dp%!SAO_IjSDPM!?(^6C;277ktL
z#Oise-~Qi<GiQ9Rt_XB?bab4zty^6G+9Xx)D;tyDJ=6WCgC;&EO`Z(0-!sU?rRCPv
z?B!2SPtX4S?d`mTO}V$t)<$pl<G24)&{%uM{_U$@uh)OKek}%amH(W&_>!Y$4Js-s
zE4-)cNtxx$;FGa<uv7Tgy4c+&+1GUZ_b#7b7ghZ1OrV=vn^yQbotHTbGfgrl{rdKH
zwQlq_4J|FN%gcO&<KpJI^~t>4I<NlEWBIE8f4^T{<jTz}V-avn!gr>TYhYj?$mp|*
z%nS?+)AuGxJE&y7yR%cuu4c!xv$K~kcJF_+Y<AwIPft%@-BFnAFMGW3$*y~wId`vH
zEvg-sabkiZXnJwercF~OOjux9{A@+q*;#R=>-YbwS{u39&AFZL>WhnupYB>0wKZ$$
z#^mF_=AIH~U|?{#Xn9Pcc%}76_pO<i)vm6OkC!&jdm^I4z|f%0aJ+th?8d!<il8+R
zr};<fS_n|CAI1wpj#@Q5dGaLV#Rc#z`k_OIrp%bJVybp{T)^!!XMA`i3>+?Ayx7&z
z5pa5%?$mkn>h76cym+xFHr#uf&Q1wuP~a5wCCNH~`qZA2)mDbDkDFyvxd~KouZy)_
z8@+wqfwE%~TeGkGaf|6(IMB#!ns>)S)~dwA)6?_T&f@d~Wry4OudfVV{>0+kQ8`d4
z$sqceVH2pQ^Y7PdDdV&r&^REdnf-qM|9$Irzq7LadL@{38>lt~HC}ISPJcZ!ecr{x
z{Pt`3?S6nJ^P~)uTJD>Hn*DKAFI9PEt-gGh059(W8JuxZ3DjYz|Nn2^rU?@SzP`Th
z|N8oR&>#Wxw%9!t8`tgq7FGJ<!ogrMQPHLAVs~qqnuhM&xzjF}jaO=k-(0Jeo|Dy#
zj>X(L2=e)akRIj}&(6*UwQxH+IM#n^X<<44$>GxF%c1MzZ0CcxpbpIK?fKue;&&7*
zymaXjXf;Xqg<_EIMv>bLo9h499X)d7$CTqoj+~HKT>JZ*=*qP!>$ffUn|o=3qVty@
zkNZ~#E%g##_#C8zNpl;c3TE|@_507~^RK_WyewswbHnw8DJZ`-vBbaPV+q=n;+dMB
z{(H)NtI|`O_h{tG9{;%I?1>W>etdjvTKlV{wY4>N$vjYj!?6UlCJ>R9j!wA!r;2s!
z-`n^9Edz~SM{Z67jWmYOb#CX&yuL1WRm{#$mCK*X+Ei>%QdZu3s_M&&g>tr4A~!&R
zef0XDpPxZp(Dj?noH^rtW%g<Jjl2pUKYj#tbo=D(-<2v>MMce$IUZP3Q`4Ax9W=Z$
zZ`!nF8#WjmJ$lr0(ziD^7w7N)3z~%eyz03{pIqIKM9aR#i{1NImAt&f`mOZQk<L2(
zDs~2j1M<`N>rXMyy|v`m*Vplj<YMKz-kK`RwJyK*^73+1(D-1apI={4P!K3#bBSts
zOsf0y(Y^NbS#zu6XFcJ!nc4X&?w<Yg;o)KAD&o?Mi;F>%&3k`7n?0}oyzTcnDw!`X
zECh{MA3A(Emj_gM?oblB9q#}dd0px)&MR%^!_FrY&?{vMs{CVjmt|gC6FINS-~R8G
zXJ=+E?&;wPT^AF1=_Z3w<|UP{Z*PZ3Z_5b`37N9YclNS9du)1TEH7RDw(WM_=g9n&
zlqEfepn>2?lPA}IFJxk1U<jW?T!mo&WCxxK;d$))pX+{tl2U+4-@|S9U8mLaJvi1Y
zy_1cFf#Ctyfsgm|!*kX%f*MQ(KNTB53OBSdfb2gY#RO`HFl2KmfJE1fN-{7E%|KWd
z!9HQm92s6&s}NDG5YRdvAz|UIMNdz0XU(2Db0s4)n}(HDl%Sws*3C^zFI~R8_f<-2
zYUZmeD|dZ9XDuo%z53Ep@6~a8tEyfuojzsy^zYR?oS;VGBGK0jmzMj>`_3})+*|ea
z(vy>uL9-oYZ*OIS+N0ZykFAK^T^6+=p^=SGW<}xSV=pf(boTP{x^!-?we45Xq!p+s
zH0jF`VgHOnEu5>u*3Ocvd?NVu_4W7VveFC;3<au1J%-PM$`8%wl{NznunMdBTzGJ>
zS=ICA&6}%&m-n5TuD^b3_I0+L-)LP9PtfrBqeqWGi~i2eHus<O<+8s$XtocuFlO(q
z@2{`>YierV+L+wFDs;72f$eOw+@Qa|zHTji>~?i^`1|dAk_-$CM`ggxp}(vt7Z<s5
z@$rTI|M%B6RZ&s#)%ErBK{e6d>hEkhyDL5>#a6%FI`4y`XJBC9t6N)F2L%UDojqII
zQ!9Mk9RD8^o@8#%y}hm5R0fodw2m>Re13MetGhec#ib>@(#feQy;9-j%a?V+nNChk
zpfTIGx3`P$c=z}BcW*1{D3G2Qo1<n8Z|?7pH#9V~dunKCXml*&{=Qn*EbWyCw(Z=x
zbCyZwq*bA-m$mUqi$SXm&V5&8IWQ{@%?)oC_uH*nzyDtpXnOU@uA^r2L0P}v<EUA~
z6rISRn>TOTJzefM_mhskSM>2hrfst3d2`}wzlQe8*+!M$t4tTH29@;+6OyDIl9H1C
z%+s1$U+b2Wlhc^{`E_i@?I}}4Z2x|_3|fd|l5=B&)7R1u4-R(q^nB5JeQ|Mn)t486
zD~>ZVFgScPtp8VYcE0`n)jGz;pM}0Y`xKbN>`_y*2Q=09_;`PHY{$H5)6|X^ipa~y
zCq&m@{<3W8QqbzM!otG1rz=;ke06{Se$bE~sQcgg?)8yQ;hAl`3=9v99>3>)`X{p@
zu;l1BrS@}ktwFWqEW_ls<vQx>?wXpK(6vS?o}l6DeLtT`gNA)pzinh@-;#1t$p7ZU
z!|hu$E-I<2tFLzH6q@(RH2c~L_kKAqFRxE`<Uxyr54>M|;~&$c2@@9R#qP?uu_4i_
z;6X#yl@$x8Oc4Rib!<*M`{_#cub0bB)6dDIrlhPWdU|ToIkpL)wo?B6eV{S8MT-`h
z<lZuQ`t)h$lM@r?Z38XyDJt3&b3OEUpX}FT()kr%A1<4n2kJeo?E%+2LL#>rlst={
zpS$|u;bGJKdp5GRRUx3|j??tx*B$GXu6||F_t-dk>g!!m8<SewcqA8T1~1dl*7oM)
z<eX)k-j{W4&C8YF|9-#!dU|}_L>1d_H<ImM%Nr)KfZO;xI%JZ2c3zqLWAQ0__JYU9
zdSjTG7#IpzAN+W~U3=SgaILW8&&XK}4a#)GxC4N?xIK6cvxlEwUmKt7DlSni4ILey
z&d$!LokdSsx1K$7=1K!2vxuzh+Kvv6tvNS?Kn2z7b<x}Xd}o;iR#farN=h=xxS%lC
zqVQ1?A1kOC+EvN$^78V2HQ!lF;`UZ$etL2eRCMkxd%Gp??k=X=lF6VlSvO*X12a3{
zl^unTOI}=11WkWEKQ}k7)I9&*8qoUED=UL%Srjh%_5J;N&|0_b>+AMEzW_2_JLtpG
zcMb}mrPZKii=4u086O@ToCLCJrQcjD(4f|qvbVPya>eyxR(ySZJ^SOMqpvP3Y*tz6
zJzWnpi_#&eY?6P^#{cgBpY#7;yc!<Amf!wQz{7_RCoOrsZnqyZ8_xyMBF9~&ukRO5
zVPIf5Fm>sTe@vT*=|uSdn6PBU3XRgYw?bF0TzTs3*{LdjKb_W(+F7);>g%hgobr>d
z>@Lr5ZEt_wYku#CtQ%;<M9famaN3^A&5s^E5)l-97&>plga?sw9#vJlUR_=NJb2!O
z2@58x`)B?B_IA<|&|<~q{`15B{`$K2)l`i@C(sha^^%|hJir836>;)%+5dlki)7Rj
z?lxTmDP8cPE0^KqsZ&879v%Lb85t|mD+6yyCEMhF{?E25`T}UYhe0H6Bd>z0_q33*
zvTgo9R|YS)Io*BfTA_^p?LYe)Ux{r2)d38x;W_CCxk|XM{QLV`)pO&<jjY?wt`85m
z{pa#drmMOcvd=*iU&#H0n1E^q1_lxP&(F_;`U-nb85tYv2j=U^A2n+@a{PGq*H>3T
z)Bo37Uu0%x7Rk7O{P>Y|+gEen{HUl|hYlSQ5f@kY1XcS@&COqLrq5ql{QTU!D$umS
zp32R;N?(^b*3PvkTy($t9wP(8hvQG*b3gT+ZT8bAq2-X~w&e+>@9sn{_n&{QN7C3P
z)zZ?^%hNM3DQS^b$O;9|UmuUle?4n{{{?6*buPb*#R66DX%(mV<n7kDc8h6RT1KjR
zO_`uFRWCMbZS;1~8qPiMYV6X_$;`DVY?>_yYA%aMZv4xtqNwN?yQ}2lhQz}q4-PPb
zMy5dRjIG(zK@*89zkj*xpM7qQC1|<-(^FGb=kh8{R`U(Izpr*{>S-}oSJ%v2TQWh@
zxF;qm@4aSR^(DhJ?@q+oS*Dj87@4=EpO@SF;Se{dQ3hI=d0WPafq|jmruMe|4IY>7
z>@5CzegD7E&(F?YUf|eV^6ZSHZv4I&&;pw)g);8zUfc3qFWs7Sl&kdhHQ(T6J{N=i
zZI`}ykpWumvMO@(vhcgnc{^RT!`FpGM9h$@|5FHBmISI~#q?q_QhUHT;fUd}8Qyn0
z?N|LNW-!mYbHWtVF$ibq`(L*^=`S~^v(Rvw8(g7`zzsCRyv{gk)sT{wmUW<k5wzyS
z#ib=`Th7WaU%qhX?a#k&2P*SYPfrU?Nm+7hd;a?O`~TlteQu(%yGh<13(z{|ix)3y
zMQ>Y^xA$w<-jBzm#j7nq2})G|M^L$fKynXgWENDo`P+V-a%!sf^32Q2G&MCnL9Ozy
zudZ_E)IU1Hsj8~_a(aB-MdR}}iyu5l0ObTwU*g%>*`eEVB0Vqt`uf_m=0^c&+zGS{
zsGwkjn10-vcXxMZ-`<uB8X)R@2+F46ElJW2pmpH5D~CNyxBcf@g<6-tyRv+K-Kwgu
zuRJG#R$W__z5?}As^0B<uHsqx>dM7FS?iFML8|_@LG$XMa>4%pPk+#0l~&}YC+|(X
zKoc9Mf^z&1f@VTM!%P@8gl+!sHePAatOjU7!rG{<pRD%2+Vy(fXD<1lpn!byCI_^Z
zPdw2Cl)RQC$$&<h_8xNH*V4iQ9cSXdaZO^e{=Oehyiz6~Zr43OH`l80kxS$2`}^zn
zFWJ119Td<<19O;9{QLV`R9N_N@VxkK`S<rV<o3&0E_(Ckjna1esxK?j&dmXBnORx$
z^Hb|vP!-U?uqK8%sVC6S?;Pt@UQW)5DygZdmH&RnEL^zI=$MAKw)TVMC;Hr1{@t<q
z_Y1ThLCe@UICz=Q&INX$!KEDrVRej=o6~x|rs-7Pt4~Z!oEN;>Ynsl=H*a$0AGa!f
zHAUvQ=7&Qc{-ieEnjiiAx?J@e!@a-X?Ve>>yzJGLmBBAIf+CCK%qe|^t=ZSZyu41a
zUOj8?s->oOtXTHg&QGV4l9QS3j)Cg$2@@tbZI?IAngSa8`}=wR|0|%mLdU;TmmF+n
z*ETY`w0ezuzuc>fi;uI~gR0!F=|4X|&;Ix4XI$#cnKP%aFrUt^&A6oI=ciY9cb6}`
z1*(YN-r8#SG&3`ki<>(*CMM><w!X(J^6u^eZAz$_R{QCsI;gLD=<wmar<VK8T?JZU
z|M9r|^~wHrkt_E3&9S)np7k>W1H+HUpT4(#TIM@DWPjaX?<<Q>J8#^}vA6j7IZ%gT
znoi^+P0;E#G2N&oPoAVq)d)Nkyf6K{9B7!z?yddbFTuIDwww(9cGmoU#?@7!pnhfe
z-Rtr7vCV9}LF?o8n$-RIaX-@qlrA8R_Ydm&`u?D8O4D?szdV`juLYTexIE9c8oU=F
z?d+_1yF5KTL2Da7efngRdc0r$y6*Nni{k5ky87GwT+-CsY+CrpMKXEHym{-2o}TiY
z1YW9<dC3K|!)1nH@}8z%70`MN&;o}0cF)uw^h%q50+ss*L>nIOzrXIrJ<hwOv1=nX
zIytxTT%4jAJZ0+Cr7bNiXJ;B8*RJtM_up9*`(D0SNlEF;!*=<s4-XDX*;Z}&^y$-;
zMXubS3=Qf-M{m!&`ttJf(iayLzrMbHe!2YSw6k0i;7yt$ejER?KIv~@;bCAXNPRfk
zIY}7U?Wzy{XTSgF^m^TU`@a2tV%L{wm*j5Fx>K_G;+2Cb|9U(8gsiUxF1r!Pyh*di
zG4;@f(%fee?asTn9WOVUnBOZ|92D^Q%~6Th3VFFRr|w!3yd<QvjC+}|YSeG_-l=n9
zds?1NUv@VCn*Zi+9~&lpu$=$h^1lE2bDN*fkz-)!5>#Mda4=+IVPMd319eZ2atJUm
zERbMiVqg$ac3@y=NMhk&U<l{|?drv=*myDXlLrTzBX<_1is{A7uq=M|WZUgL@A&xp
zTb{GCvtPb<Z(il+XQ}V*?A-bJoHc0s!Q3LyauJ`{*x0PBtV_3V|Mu)>U|^WD;9E}o
zfsj>Kv!>}rPYaK)HI<c>jogsnxNFz0OSf*#x_9rMiK*$_qJJkQDre^Ao?YnNzA5kS
zt}EBBE!(`=c<tJ?H#evIKRY|S{L;?Q)nQLJ&;Og#CvX2RQ-+&?;as-yH_-{{^D5Q!
z_x(t!`#k%8%H3V1KQH#zO%ac)P@MnsO!}t}hxzB1)jdAe`||z!^Y82b|Niqt-Tovq
zzs-c)+uKqL3Jm(~|NZbx|M%m#{WJgiU%_GP<7$`nGcz!xu(5lTmzV49da+0+eqT+^
z+Jy@h-@bi&b64r>%=m>b-n~1=Ykp@!_WHeLHMt)j9gW<S;yJJG*Gtde_Wyo7UK6!d
zYjxP#Q;S@?&)sokU}z{bHgov(>zCS*!!xE$n<ishWwL(%zh6@}U(GUIzvq+Jy8Zut
zO+NSi`}gN3CMpYGGtap(f#2?j0%-N3{m-M!3=Ha~$;?j<G%{!A<jmP(x6RDL!s6+h
z3l{?1+}xJg{$F4JSNrw#_2++meQlh6ZjOJ|O9qAmB3(5cd!yDqTikCq>)O4@&1tHh
zZSC#H>+J($V`Eoc&1!3JU%sb*<Lza$><j%T{rR%o-ZwZnxbDYcdB4|Ej0_F`{U$Qp
z+*ezD>((v5-Rpx^ro6wmH#0BKueP?<&CN~it!3Gp2(77JuU@}izGptfnDgsmcYnGP
z?7wvR^7N>5Mh1p|)vioWPHC?{0~*@jTK+~isJFM*vf#miCAW`X)7$ssk>>m4e}8_?
zG|j%Y<(ajW)u-P48s+$ZpQeBAum7X$`RU#6_i8`S-`=wCL#zIiN#1&vPfgdy?X@a?
zes1oDvhR1xpTFDv-tMUk1B3DPX}ZyyQcq9g%x348v+)iuezziI_0?B5_jOFp%+Ei6
zZmzX@?X~2mr>5TAl<M8q)>d?oRout&{-sNkX3d)Q=GNBiL%%L9_5S>9cK)+o^LrkX
zV#;o&{(Nr#f9C(+*8^6D1g#DG{PTRhowKvEdTr0Wd-r0>@0R|&eg9wCCH^za3<Y@~
z|Gb|(d!xKl{Kh2LdzH`U+I+uL{5bpl-tTeqYQNpQQ+Qlf_)&5~g2L}_Z)cnAum1jy
z^M2aC{QLX9eEG6u@7~&)w<p!-pLt*ReK%-b(&PHNKab_rJ*}**KVJ#vdw%UV0|Un-
z(76EqwNdUY3=N;p_54-)BB~ws<of=9rF9>g<)3W59_Q`s?7VB&E+Z?eS)ec!{&uhU
zye%jS-Q3-eUw^m%|390bPbNoh%Za?UCUWwvTeos<Y*6g&?XCQ9kp1}g+RwA^&-rrW
z{r>-TtFC5&nxv`R3=HWPdUz+ynl<asL;m^`x3*?~J|gU&Qc+={tE>C-ZGQc1?R7hn
z4&C!wI%(FdPW@+RW*V!57Q$|-`ugh6tML7&UcAV-b?erpn>S~&a*NIR_ECH4DM?#?
z1_py>d*)C34^%TSGMv+&_rJEt_?xi;1H*xx?i7_;Bo%R^ijSUo!C+bOAt7vC%*<A9
z@w9VuEO)-$cKg!x>*jBN9z1w(%l7T*_x4oIv@Xwkx99V@JzuXytKY5u@!?@fNeO81
zf92}cr>F1xvh+^r^;pZYH#cTl@i8#W`JQ$D8>`RKsI_S~H>Fm7y&8V`;>C%q++s^s
zuhw3>cJ0fzZ+(M<FKa&Um$965?b<aNs}haZ*VcOH=H^;iTVK9)YnE;Gx0HK(Dj!$d
z|M_tEPSxwRk}@)9PEFM={`qwJ^SkBu&-Te$8yOi*+O=z!|L+|P3<YsBHZp!XV|@O}
zQSo@6^78U&`tkErcD`P>`_i2|b3g|g%r?)rd-~^Cuk_{n_vhc;UH<%5_Ilq*HNS7)
zKX-lKx2-n+emsucU-$RNy>_`O4Q6KMm#<%+UOGL_YTv%Hx3~NsrZ6xR{F}8g|KO{4
z@6Nf3$C}8=dtSP5VZyg>-*WEmGCkfeZ~yiWulXGVIeE`b6(1kzL~c^?xBvU)$E}0S
z?3*($FS}EIzjo)BOWwtQetfL?a?w5gp92HKfit`l_U+rp`O#q6(xs~I{c>ktuitO?
zG-qqnS?%?ECcR$2|KF0&fB*iqEPCQGDdqXOxssBSp25MvVQV5L-rStNeBVC1?RSd2
z|NZ;EfBsHpMg|6Ba|b>diwVb$9rJvhoZZ~q9DI(Cmp3&fB_--}{+^F+tFC6rRlQia
z=kK@MH}_N)gKFUW_vfp6PkS=A{GO#SXaXYWg|WibtkPTg*|SWu!zQIvR8;)=E`0Us
zRZw(RR8*Y$EwMXy)lcE?GIli<o<YIEljqHwcjfwZb<cJCe!aR=a@qIhj>2TQ$|n;u
zW33q&3bI_8QhtAXo0*+${dS+%(n))(zc1Ul)AH-ruac6IGq*gyu`zjNh}PqU1xCr+
zeNF2h&D%JC`~AA#Ex-4CJSJUyGj;mY_4R*WPw6)nGpzpp&i3v_1_lfE9^3cUSMA%1
zvq-31j@QLiJZzo(O)qAL!TbIH|4r%NT>t-{%E|Bh|Nqte&cIOc?&kjb`n-KVpKY#{
z{6D#i<wUD^+>Gk?d%yoTE&h5nJpK8(xs$Jzzr8gT6!bfHR-U@)wRF<zb-T3m_y75{
z<aS)u%cVL|TQuhXzVm#N%Jtat*hx>`ZofZoOL;+oLHyrW;md30EcKqA_W9Y_pQpn2
z6`cxCVPLQ@=i%p1|NrlA<gSvJH}_5XA8Gup+5r^5@7}!w)gV9LmG7UeQu%)G_fKy&
zpMTb8{q6*-c#Ofm@`MBhP=a}Mv|Ihm|2OIO-ue0OfBavz6<VV#UYuMLUtC<g@88$;
z>94P?m6Vb?_2=j3$tt(E<(@upz(KC!L8IpSjSCkl-v52?`?(i885w5W-1F(<Nl-)W
zYfk);lRbTX&!$D^oy=apcbaMTwIvG|D#pgfN=itacz1Vq@lnz6p7*)Axo5w<y=`n|
zWwo#D$A^b8#b-?|OI`#ZRW4VvOlxavBR3=*{BaM|nE82a`@X5mmVxub&j-!?n-UMV
z)qL!ZKXY1t|D2nf)5UGA85riQPRnUf`Tuj$fvwrspZ$D3|NMs!1yNB^pKc`gKb@7m
zZsvydYuD;pm%TZ0T)y5Wv9_SVV0HNVbK7!ngKEBQ+qRXIm8D%=<T_by_44KF`+pqO
z-;{oS-kEu}*7tv&EC2LjaevywL#^{)Nis4#s4-g1%)-E6vHi>qeI*tKhI6)5XgiOP
cisc{g@6R&xZZY1O2<mKmy85}Sb4q9e02S8a-~a#s

literal 0
HcmV?d00001

diff --git a/Code/MonoMutliViewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/__init__.py
index e69de29b..980f1899 100644
--- a/Code/MonoMutliViewClassifiers/__init__.py
+++ b/Code/MonoMutliViewClassifiers/__init__.py
@@ -0,0 +1,2 @@
+from . import ExecClassif, ResultAnalysis, Versions, Metrics, MonoviewClassifiers, Monoview, Multiview
+__all__ = ['Metrics', 'Monoview', 'MonoviewClassifiers', 'Multiview']
-- 
GitLab